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ABSTRACT

Regularity and Stability for Periodic Solutions to Nonlinear

Klein-Gordon and Schrédinger Equations

By

Xinming Zhao

In this dissertation, we first prove the regularity of the periodic solutions of non-
linear Klein-Gordon Equation on the compact manifold S3.

The LP-L? estimates for periodic solutions of linear wave equations have been
developed and utilized to establish the regularity for even dimensions. It turns out
to be very difficult to handle the regularity for odd dimensions due to the structure
of the kernel of the wave operator. Yet dimension three is the most meaningful case
in physical sense because S x S3 is conformally equivalent to R! x R3. We consider
three dimensions and look for symmetric periodic solutions. The original equation is
reduced into a one dimensional equation with singularity. We prove that under some
conditions on the nonlinearity, the smoothness of the periodic solutions is one degree
higher than that of nonlinear interaction.

We then study the orbital stability for standing waves of least energy to nonlinear
Klein-Gordon(NLKG) and nonlinear Schrédinger(NLS) equations.

Many authors have studied the orbital stability of standing waves for these equa-
tions, but their attention has been principally focused on space domain R”. We
extend stability results to bounded domains and compact manifolds. Our method
also applies on R”. The mass term and nonlinear interaction term we are considering
depend on space variable as well as on solution. The following results are obtained:
(A) If the equations have positive energy, then standing waves of any frequency of
NLKG or NLS are orbitally stable. (B) If the equations have indefinite energy, a very

sharp condition is obtained on relation between the least energy and the frequency




of standing waves. We apply this condition to bounded domains, compact manifolds
and whole space R"; in each case, we produce orbital stable standing waves.
Finally, for instability, we prove that for a certain class of nonlinearity, the steady
state of least energy(ground state) of NLKG are unstable in a very strong sense: there
is a region whose boundary ground states lie on, such that every solution starting from

this region will blow up in finite time.
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Introduction

In this dissertation, we devote half of the effort to the regularity of nonlinear wave
equations and another half to the stability and instability of stationary states and
standing waves of nonlinear Klein-Gordon and Schrédinger equations.
Regularity of Nonlinear Wave Equations

We first investigate the regularity and the existence of symmetric and periodic

solutions of the semi-linear wave equation on S :
uy — Au+u+ F(l,z,u) =0 in S'x S°, (0.1)

where A is the Laplace-Beltrami operator on S2. Under various conditions on function
F, the existence results for semi-linear wave equation on S! x S™ are obtained by
many authors, e.g., Benci and Fortunato [1], Brezis and Nirenberg [6, 3], Rabinowitz
(37, 38] and Zhou [56, 57], among others. The regularity results in the case of n=1 are
obtained by Brezis and Nirenberg [6] for asymptotically linear F' and by Rabinowitz
[37] for super-linear F'. Jerison, Sogge and Zhou [57, 21] studied and proved the
regularity results for n = 2, n = 4 and n = 6. The case of n = 3 is the most
interesting and meaningful in physics, since S' x 5% is conformally equivalent to
R! x R3. It was pointed out in [57, 21] that the kernel of operator

0? -1\’
0, = 9 A+ (n 5 ) on S!' x S

plays an important role in investigating the regularity of the solution of the wave
equation. When n is even, the kernel of the operator O, is {0}, which makes it easy
to handle the regularity. In this case, we can apply the L? — L? estimates developed

in [57], [21] which are generalizations of estimates for R x R™ in [34] and [52]. If

|




n is odd, the kernel is infinite-dimensional, those L? — L7 estimates only apply to
the component orthogonal to the kernel of O. The component in the kernel is very
difficult to control or estimate . Hence it is usually hard to obtain the regularity if n
is odd. Currently, little is known of the regularity for the case of odd n > 1.

In this paper, we will seek a periodic solution of a symmetric semi-linear wave
equation on S3. The key observation is that the problem reduces to a standard one-
dimensional semi-linear wave equation with singularity, and the kernel for the one
dimensional wave is very well understood. Some techniques developed by Brezis,
Nirenberg [6, 3] and Rabinowitz [37, 38] can be modified to work for this case. Using

standard spherical coordinates, i.e., if z = (z;, 22, z3,24) € S C RY,

(
x; = sin psin ¢ cos b,

Ty = sinpsin ¢sinf,

x3 = sin p cos ¢,

T4 = COS P,

where p € [0,7],¢ € [0,7],0 € [0,27], we can rewrite equation (0.1) in the form

Ut —

1 .
sin? p[(sm2 pu,), + Doul +u+ F(t, p,¢,0,u) =0, (0.3)

where Agu = £=[(sinduy)y + zrzuse] is the Laplacian of w on S2.

sin ¢
If the function F is independent of ¢ and 6, i.e., F' = F(t,p,u), it is natural to
search for solutions of (0.3) which are also independent of ¢ and 0. Such solutions

satisfy the equation

Uy — Uy, — 2cotpu, +u+ I'(L,p,u) =0, (0.4)
and will be called symmetric solutions. If v = u(t,p) € C*(S! x S3) is a solution of
(0.4), it is immediate that v(t,p) = u(t, p) sin p satisfies the equation

vy — vy, + F(t,p,v/sinp)sinp =0 in S' x [0,7],
v(t,0) = v(t,7) =0,

(0.5)

which is a standard one-dimensional semi-linear wave equation with singularities at
p=0 and p = 7. Conversely, we will show that u = v/sinp is also a weak solution of

Equation (0.4) for any weak solution v of Equation (0.5).







The procedure for establishing the regularity is the following: We first prove the
existence of an L* symmetric solution under the condition that F' is monotone in
u (i.e. F, > a > 0) and asymptotically linear (F, < (). We then show that
every bounded symmetric solution is actually a classical solution provided that F'is
sufficiently smooth.

Stability and Instability of Standing Waves and Stationary States
In this part, we study the stability and instability of standing waves and stationary

states of nonlinear Klein-Gordon equation(NLKG)

uy —Au+u+ f(z,u) =0 in Rt xQ,
u=0 on 990 if 9Q#0, (0-6)
u(0,2) = U(z), ud(0,2) = V(x),

and nonlinear Schrodinger equation(NLS)

wy — Autu+ f(z,u) =0 in Rt xQ,

u=0 on 90 if 90 #0, (0.7)

u(0,2) = U(z),
where 2 is R”, a bounded domain in R” or n-dimensional compact manifold. Here, u
is a complex function of (z,t) € 2 x R*, A denotes the Laplace operator with respect
to space variable z € Q, f is a continuous function of the form f(z,u) = g(z, |u|)u
where ¢ : @ x Rt — R.

Equation (0.6) arises in particle physics ([28, 32]). Special cases of (0.7) include
Hartree-type and Pekar-Chaoquard equations [9] which arises in various domains of
physics, e.g. in the study of propagation of laser beams( [24, 53]) and quantum
mechanics( [20, 30]).

Of special importance are the “solitary waves” solutions of Equations (0.6) and
(0.7). These solutions include time dependent periodic solutions(standing waves) of
the form e“!¢(z) and time independent solutions(stationary states or steady states)
corresponding to w = 0.

The search for both types of solutions leads to the consideration of nonlinear

elliptic equation of the form




—Au+g(z,u) =0,
u=0 on 9N if 9N # 0,
It is well-known (see, e.g., [10], [50], [39] and [40]) that, there exist infinitely many

(0.8)

solutions of (0.8) apart from the trivial solution v = 0, among them a positive,
classical solution ug which has minimal energy among all nontrivial solutions. By

minimal we mean the functional
1
J(u) = / 5 |Vul® + G(z,u)dz,
Q

where G(z,u) = [ f(z,s)ds achieves its minimum at uo. We call such a solution
“ground state”.

The stability of both stationary states and standing waves of equations (0.6) and
(0.7) are physically very important and naturally have been extensively studied. We
can not expect the conventional stability of the stationary state due to the nature
of NLKG. Indeed, it has been proved that solutions of the NLKG (0.6) will blow
up in finite time under some conditions on nonlinearity f: For @ = R", John [11]
and Glassey [12, 13|, among others, studied the case f = —|ul|P. They obtained
finite time blow-up results of classical solutions of equation (0.6) for p < po(n) =
(n+14+vn24+10n —7)/(2(n — 1)), which is less than 1+ 4/(n —2). For a bounded
domain and a compact manifold 2, Payne and Sattinger [36] and Sternberg [48]
proved that any weak solution of equation (0.6) starting from some neighborhood of
stationary state will blow up in the L2-norm in finite time.

Blow up results for solutions of NLS (0.7) have also been obtained by Berestycki
and Cazenave [2] who showed that for = R", under certain conditions on f, solu-
tions of NLS starting from some region near a standing wave will blow up in finite
time in L2-norm. Under much more relaxed conditions on [, Shatah [43] proved for
2 = R™ that any solution of equation (0.6) starting from some neighborhood of sta-
tionary ground state may not necessarily blow up in finite time, but its L2-norm will
approaches infinity as ¢t goes to infinity.

An interesting instability result for solution of equation (0.6) was obtained by

Keller [26]. He showed that for 2 = R" some stationary state uy can be perturbed



into a time-dependent solution of us + ouy — Au + f(u) = 0 (o < 0) that remains
bounded in energy norm for ¢t > 0. If f satisfies some growth conditions at infinity,
then solutions tend to zero as t — oco. In particular, ug is not stable.

A more common type of instability of solutions of equation (0.6) and (0.7) (see [45])
is that no matter how close a solution may initially be to a ground state, the solution
will eventually leave any prescribed neighborhood of the ground state. Such solutions
may not blow up in finite time, nor go to infinity as ¢ go to infinity, nor approach
zero. In terms of techniques used for obtaining this type of instability, there are two
disparate types of instability results in the literature. The approach developed by
Strauss-Shatah [45] gives an instability criterion coming from the variational structure
of the problem; Jones’ approach [22] produced a complementary criterion related to
the difference between the number of negative eigenvalues of two selfadjoint operators
using quite different techniques. Grillakis [14] tried to combine these approaches into
one single framework.

Due to the nature of NLKG and NLS, stability in the strict sense can not be
established for the standing waves of NLKG and NLS. However a concept of orbital
stability has been proposed(for a precise definition, see the later chapters). A number
of authors(e.g. Grillakis, Shatah, Strauss [18], [19], [44], [51], Cazenave and Lions (8],
[9] and Weinstein [55]) have studied the orbital stability of standing waves of NLKG
and NLS.

It appears that almost all existing stability, instability and finite-time blow-up
results have been established for the situation where 2 = R™.

What we shall do in this dissertation is to extend orbital stability results to the case
where  is a bounded domain in R™ or a compact manifold and carry out the proofs
for stability in two chapters according to the behavior of nonlinearity f. Chapter
two deals with the equations with positive energy, while chapter three treats the
case in which the equations have indefinite energy. Our approach to proving orbital
stability of standing waves does not need the scaling property which is essential in
previous arguments for @ = R”, and consequently our approach applies on more

general domains 2. We also prove the orbital stability for dimension n = 2 on R",




which was left unresolved in [44] and [45]. We also present a unified approach to
get the results of finite-time blow-up of weak solutions of NLKG for all cases of the
space domain () that we are considering. A very important feature of our method is
that the mass m and the nonlinearity f we are considering may depend on the space

variable z as well as on the solution u.



Chapter 1

Regularity of Periodic Solutions of

Nonlinear Wave Equations

1.1 Preliminaries and Notations

Let W = 8§ x §3,0 = 38722 — Az + 1. We consider the solutions of the following

nonlinear wave equation on S3
Ou(t,z) + F(t,z,u) =0 in W. (1.1)
It is well-known [35] that the eigenvalues of O are
Mgy =02-35% =012, =12,

and the eigenfunction associated with A(j,() are

cii()sim(z), 1=1,2, m=1,2,---,%
where {Slm}iﬂ are orthonormal spherical harmonics of degree [ — 1 on S2, and

ei(t) = LCosjl, ej2(l) = - sin jt.

VT VT

It is also known that these eigenfunction constitute an orthonormal basis of the real

Hilbert space L?(W). Thus for any u € L%(W), u can be expanded as



2 2

u(t,z) = Z Z Z Z Ujitm €5i(t) S1m (),

7=0 I=1 i=1 m=1

and

lullze = D lwjimil®

j’i'lYm
where ||u]|?; = (u,u) = Ji w?dwdt, and uji, is the Fourier coefficient with respect
to this basis in L%(W), and dw is the standard measure on S3.

For k > 0 we define the Hilbert space

HAW) = {U =Y tiameiisim | ulli = Y 1452+ ) Jujuml” < 00}-

j’iYIYm j'i)l’m

From this definition, we see that for HO(W) = L*(W) and ||u|lo = ||u||z2. We use the
subscript s to denote any space of functions on W which are independent of 8 and ¢.

For any u, w € L%(W), the usual inner product

(u,w)z/ uwdwdt.
w

is given in spherical coordinates by

2 m T 2m
(u,w) = / / / / uw sin? psin ¢pdOdedpdt.
o Jo Jo Jo

If u, w € L2(S? x S®), this simplifies to

2m b
(u,w) = 471'/ / uw sin? pdpdl.
o Jo

The restriction of O to C?(W), is the opcrator

* D d
= — — — — 2cot

O, = - 24
T2 gp? p()/) +

From now on, we assume that [’ is a symmetric function, i.e.,
F(t,z,u) = F(t,p,u).
A symmetric solution of Equation (1.1) satisfies the equation

O,u(t,p) + F(t,p,u) =0 on W. (1.2)



sin lp

It is easy to show that e;;(¢) 3

is an eigenfunction of O, associated with A(j,/), and

that the set

co oo 2 .
) = 3 30 S s en() L
with

ulld =) (1 + 5% + ) |wsal*
il
Let T = S x [0, 7]. Consider the set S of all C*°(T) functions vanishing near p =0
and p = . For any v(¢,p) € S, we have

oo oo 2
v(t, p) :ZZZvﬂ,\/‘eﬁ )sinlp,

7=0 [=1 =1

where vj; is the Fourier coefficient of v with respect to the orthonormal basis

{\/gej,-(t)sinlp, G5=0,1,--, I=1,2,-, i:1,2}.

Let HE(T) be the completion of S under the norm

ok
olll, =, /> (142 4+ 572) Jojal”.
doiol
Remark 1.1 We use |||||| to denote norms associated with T = S* x [0, 7], and ||||

to denote norms associated with domain W = S' x 5% or S'(the distinction will be

clear in the context). u € H*(W) if and only if v = usinp € HE(T).

With these definitions, ||u||? = 47 ||[v|||5. and hence the identity

]
Osu(t, p) = mﬂlv(t ,p) for v(t,p) = u(t,p)sinp,

52

where O0; = 57 — %. This identity immediately implies the following
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Lemma 1.1. u € H¥(W) is a weak solution of (1.2) if and only if v = usinp €
HE(T) is a weak solution of
Oyv(t,p) + F(t,p,v/sinp)sinp =0 in T,
v(¢,0) = v(t,7) = 0.

(1.3)

In order to apply results from functional analysis, we extend the domain of O to

D(O) = {u e LA(W Z AU, O wjim|* < oo}

Jlm

For u = ) ujimejisim € D(O), we define

Ou = Z /\(j,l)ujumejislm.

Jidm
This definition coincides with the classical one if v € C?*(W) C D(O). Under this
definition, O is a self-adjoint operator from D(O) C L*(W) to L*(W) with kernel

Ker(O) = {u | u(t,z) = ZZ ul,-ImeH(t)slm(:c)},
=1 i=1 m=1

and the range R(O) = Ker(O)*.
Similarly, we can extend the domain of operators O; and O; whose kernels play
an important role in the proof of the regularity of the periodic solutions(cf. Brezis

and Nirenberg in [6] and Rabinowitz in [37]). When this is done, the kernel of O, is

N = Ker(D,) = {p<t+p) —plt—p) |pe L"), ] = /S pls)ds = 0},

or in terms of Fourier series expansion

o] 2
N:{v|vt/) :ZZvlzfell smlp}

=1 =1

Similarly the kernel of O, is
K = Ker(O;) = {v/sinp |vE N},

or in Fourier series expansion

00 2
1 Sml
KZ{“"‘(W’):ZZ““\/% . smlf}

=1 =1
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We will prove the existence of an L? periodic solution, we make the following

hypothesis on F'.
(F,) F(t,z,u) is nondecreasing in u for (¢,z) € W;
(F;) There exist positive constants n; and 7, such that

|F(t’xwu)| Z Uht |u| — N2 v (t,:l)) € W;

(F3) There exist positive constants v < 3 and v such that

|F(t,z,u)| < vlu| + v

Then we have the following existence result.

Theorem 1.1. If FF € C(W x R) satisfies (Fy) - (F3), then the wave equation (1.1)
possesses a solution u € L*(W). Furthermore, if F is symmetric, then equation (1.2)

possesses a symmetric solution.

Proof. If welet A=0, H = L?*W),§ =3, B =F, then this theorem is a direct

consequence of the following result due to Brezis and Nirenberg [7]. O

Theorem 1.2 (Brezis and Nirenberg). Let H be a real Hilbert space, let A :
D(A) C H — H be a closed linear operator with dense domain and closed range.

Assume
(1) N(A) = N(A™);
(2) A7': R(A) —» R(A) is compact.
Denote by § the largest posilive constant such thal
(Au,u) > —(1/8)||Au||® ¥ u € D(A)

Assume B : H — H is a nonlinear monolone demiconlinuous(i.e., mapping strongly
convergent sequence in H to weakly convergent sequence in H) operator and satis-
fies the condition that there exists a positive constant v < § and a constant C(w)

depending only on w such that

(Bu — Bw,u) > (1/7)||Bul|* = C(w) VYu,w € H.
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Then
R(A+ B) ~ R(A) + convex hull of R(B),

where ~ means the sets on both sides have the same interior and same closure. Fur-

thermore if || Bu|| — oo as ||u|| = oo, then A+ B is onto.

1.2 Boundedness of Solutions

The following stronger hypotheses on F' are needed to make all L? solutions bounded.

(F3;) there exist positive constants x; and p, such that

|Ft| S,ul |u|+/~é2 V(t,:c,u)e W x R;

(F,) there exists positive constant a such that « < F, V (¢,z,u) € W x R;

(Fs) there exists a positive constant 8 such that F, < g V (t,z,u) € W x R.

Theorem 1.3. Assume that F € C'(W x R) satisfies (F3)-(Fs) and (F3;). Let u
be any L? symmetric solution. Then there exists a constant C independent of u, F,

v, a, 3, 1 and py such that

AmEB+1 Mo
lollom < € (222 (1l + ) +2).

First, to prove the theorem, we need an estimate on solutions of the linear one-

dimensional wave equation

Oyw(t,p) + g(t,p) =0 in T,
w(t,0) =w(t,7)=0.

(1.4)

Lemma 1.2. Given g € LY(T)N N* for 1 < g < oo, lhere exists a unique solution
w e CO(T)N Nt of (1.4) such that fora=1-—1/q,

“w“COv"(T) < C“gHLq(T)) (15)
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where C%*(T) is a Holder space with C®°(T) = C(T) and C®(T) being the space of

Lipschitz continuous functions. Moreover we have an explicit representation for w

w(t,p) = ¥(t,p) + p(t +p) — p(t — p) (1.6)

with

t—p+zx _
/ d:v/ 7':Ed'r—}-a(7r p),
t+o—z m

1 T t4z )
a =—§/ da:/ g(t,z)dT (a is a constant),
0 t—x

ply) = % 0”[¢(y —5,8) —(y + s,8)|ds.

Remark 1.2. The ezplicit representation was given by Lovicarovd in [33]). With such

a representation, estimate (1.5) can be easily verified.

Let u(t,p) be an L? solution of Equation (1.2). We can write v = u; + uy with
uy € K, up € K*. Let v = usinp = uysinp + ugsinp = vy + vy, then v satisfies
Equation (1.3) with v; € N, v, € N*. Let p € L%*(S"') be the function such that
vy = p(t +p) — p(t — p) and [p] = [, p(s)ds = 0. It is easy to check that

— 2—171_-/07[1)1(3/—-9’5) —v(y + s,s)]ds. (1.7)

One can easily verify that for f,g € L*(5"),

| 10+ gt = pydpa = 5171 (19)

from which it follows that

loalllz2 = 27 [[pll7: - (1.9)

From the Fourier series expansion, it is easy to see that ”DfulHL2 is equivalent to

lua|lz, and |||Df”1||’L2 is equivalent to |||vy||[,. In this section, C will be used to
denote various constants independent of u, I, v, «, 3, pt; and p,. For the simplicity

of notations, we denote |[F|| 2y, + v by Br.
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We will carry out the proof of Theorem 1.3 in several lemmas. As we pointed out
earlier, it is relatively easier to estimate uy; and v,. For u,, one uses Lemma 1.2 to
see that v, € L®(T) from F(t,p,u)sinp € L*(T), and v, € C®! from v, € L=(T)
and v; € L* (Lemma 1.3). Consequently u, € L. The estimate for u; is more
complicated. We first use the fact that F(t,p,u) € K* or F(t,p,u)sinp € Nt. By

carefully choosing ¢ € N in following equation

/ F(t, 2,u) sin pé(t, p)dtdp = 0,
T

we will obtain the boundedness of p in Lemma 1.3. Then Lemma 1.4 uses the test
function ¢ € N, which is an approximation to D?v;, to obtain Dyv; € L?. Lemma 1.5

uses the fact
[ D20t p) sinple(e, p)didp = 0
T

for any £ € N and shows that p’ € L*°. Finally from Lemma 1.6 we conclude that
lluillze < C||p||Le, and hence that u; is bounded.

Define a function ¢ € C'(R) as follows. For positive number M,

s+ M, if s<—-M,
q(s) =1 0, if [s| < M, (1.10)
s — M, otherwise.
Lemma 1.3. There exists a constant C' such lhal

217
sl < CBr. ol < €22

Proof. By (F3), u € L%(W) implies ['({,p,u) € L2(W), which in turn implies that
F'sinp € L*(T). Therefore by Lemma 1.2, v, € C®!'/2, In particular,

lvelllee < CHlIFsinpll,z < C1F]lz < CBr

Since v is a solution of (1.3), we have

/ F(t,p,v/sinp)ésinp =0 forall £ € N, (1.11)
T
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or
/(F(t,p,u) — F(t,p,uq))sinp = —/ F(t, p,uz)¢ sinp. (1.12)
T T

Write v; = p(t+p) —p(t — p) = v{ — v, then € = g(v]) —q(v]) € N by construction.
Note that

(F(t,p,u) — F(t,p,uz))sinp = Fy(t, p,u*)vy, (1.13)

where u* is between u and u;. The above equality, the monotonicity of ¢, sq(s) >

M |q(s)|, (F4), and (1.8) lead to the estimate

/T (F(t,pu) — F(t, p,uz))E sinp
- /T Fult,p,u”) (v} = v7)(q(vF) — q(v]))
> o / (vF (o) + v q(v7) — v q(or) — v q(o?)
T
> aM/<|q(vr)|+yq<vf>l>. (1.14)
T

On the other hand, (F3) implies that

[ Pt.p.uigsing)
T

< CBy /T (Ja(w)| + la(wp)]) - (1.15)

Combining (1.12), (1.14) and (1.15) gives

ot [ (D] + o)) < CBr [ (oDl +lao0)). (116)
T JT

Whenever M < ||p|| ., the integral term in (1.16) is nonzero and we can divide by
it, and therefore M < 2C Br/a. Since M is an arbitrary number less than ||p||,«, we

have ||p||;« < CBr/a. Thus the proof is completed. O

Lemma 1.4. There exists a constant C such that

Br Br
|||U2H|CO.1 < C?’ HUQHLQO < C?,

and

B 1 [2
ol < € (S50 + 2l + 22). (1.17)
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Proof. From preceding lemma and (F3) we know that |||F'sin p|||; < CBa—F. Lemma
1.2 implies that
. Br
lloalllcas < CIFsinpll < O, (19

from which we get
: Br
luzllzee = [llvz/sinpllle < Clllvafllgos < C—, (1.19)

where the boundary conditions vy(¢,0) = v2(¢,m) = 0 have been used. As for vy, let

zh = (z(t+ h, p) — 2(¢,p))/h, for z € L*(T) and h € R. Since v is a solution of (1.3),

we have
/TF(t,p,v/sinp)fsinp=0 for all € € N. (1.20)
In the above equation, set £ = (v})~" which clearly belongs to N, we get
‘/T(Fsinp)hv{1 = 0. (1.21)
A direct computation gives
(Fsinp)" = F,(t", p,u(t + p))sin p + Fu(t, p,u”)(vf + v}), (1.22)

where u* is between u(t, p) and u(t+h, p), and ¢* is between ¢ and ¢ +h. Substituting
(1.22) into (1.21) and then using (F3;), (F4) and (F5) yield that

1 .
981l < % 111815 + 1 sinpl )

v

C
< Z B lloalllcns + g lollze + 1)

from which the inequality (1.17) follows. 0

Remark 1.3. In the proof of the previous lemma, we used the well-known fact that
if z € L*(T) is periodic in t, then z, € L*(T) if and only if there is a constant &
independent of h such that ||z"||, < & Vh € R. The test function & = (vB)™* is
an approzimation to D?v,. We did not use D?v, itself since we don’t know whether

thvl € L2(T) .
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Lemma 1.5. There exists a constant C such that

1Pl < C (“1(:; b B + %) : (1.23)
Proof. It is easy to see that F'sinp € Nt implies
Di(Fsinp) = Fysinp + Fy,v, € N*t.
Actually one can easily verify that
DfF: HXT)n N* - Nt; DF:HNT)nN = N. (1.24)

Consequently, we have

/(F[ Sil’lp + Fu(vlt + Uzt))f =0 V§ € N, (125)
T
or equivalently
—/(Ft sinp + Fyuy)€ = / F,v:6 YEe N. (1.26)
T T
Using Lemmas 1.3 and 1.4, (F3;) and (F5), we have
. +
(Fising + Fuoadlle < gl + s+ 8 llonllm < € (P2 Br 41 )

Write v, = p'(t + p) — p'(t — p) = v, — v}, with p € H'(S') by (1.7). Take ¢ =
q(vf;) — q(vy;) in (1.26), where the function g is defined by (1.10).
The right hand side of (1.26) gives

[ o= [ Ruttopanyof = on)(atot - ater)
> a [ (whalof) + viator) = ohalor) = via(o})

> oM / (Jawi)] + lai]) -

Hence
_ , p+ B _ _
oM [ Jawi)| + oo < € (1 + 22200 ) [ ot + latorl . 120
where M is any constant less than ||p'||; «, which implies (1.23). O

So far, we have shown that u, € L™, p’ € L. The following lemma completes

the proof of Theorem 1.3.
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Lemma 1.6. For any non-negative integer k,
”DfUIHLgo(W) < ||P(k+1)”L°°(Sl)'

Proof. Fixo € (0,7/4),let Ty = S* x[0,0], To = S' x [r—o,n], T3 =T\ (T1 UT?).

For (t,p) € Ti, using

t+p
Dfvi(t,p) = pW(t + p) — pO)(t — p) =/ pt(s)ds,

t—p

we get

k+1

IDFv1/ sin pll oo g,y < [[P*H)]| e sup |20/ sinp] < O [Jp*HD],.. .
(0<pL0)

Similarly on T3, using p(t — p) = p(t — p + 27), we have

||DfU1/SinP“L°°(T2) <C ||p(k+1)”1;°° :

Finally on 73, we have

1

sin o

1D e < PV e

Do sin sy <
;From these three inequalities, we get Dfu; € L°(W), and the proof of lemma is

completed. ]

1.3 Regularity of Solution

In this section, we will show that every bounded weak solution of (1.2) is a classical

solution if F' is sufficiently regular. We state our main result first.

Theorem 1.4. Let k > 2. Suppose that I' € C¥(W x R) satisfies (I'4) and lhat
u=u+u; € KO K is a bounded weak solution of (1.2), then uy € H*NCF2+NK
and uy € H¥'NCH "N KL for any p € [0,1/2). In particular, if I' is C™, so is .

Remark 1.4. As long as u € L™, the condilions (F'3), (F3,) and (I's) are no longer
needed for the regularity of the solution. The condition (F4) can not be relaxed to
a monotonicity condition. Indeed, let I'(t,p,s) = I'(s) € C*™ be such that F s
monotone increasing on R and F(s) = 0 for s € [—1,1], then any L* function

d(t,p) € K with ||¢]| e < 1 is a solution of (1.2).
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Throughout this section, let v = u; + u; € K @ K* be a bounded solution given
in Theorem 1.4. Let v = usinp = v; + v, with v; € N and v, € N1. We know that
v is a solution of (1.3) and v; = p(t + p) — p(t — p) for some p € L?*(S') with [p] = 0.

The main idea is to differentiate the equation k times with respect to ¢ to obtain
ODju = D{F(t,p,u(t,p))-

For uj or v, = u;sinp one uses Lemma 3.1 and Lemma 4.1 below to get Df'vz €

C%Y(T) and u, € H¥*!. For u; or v; = u; sin p one can consider the identity

/ D F(1, p, ult, p)) sinp] DE oy (1, p)dtdp = 0,
T

which produces a good term F,|D¥v;|? and yields DFv; € L*(T). Again, Dft'v,
must be replaced by suitable approximations in the detailed argument. Consequently
u; € Hf. The facts u; € C*~2* and uy € C*~1* follow from some sharp estimates on
spherical harmonics (Lemmas 4.2-4.4). It should be pointed out that Lemmas 4.5-4.9
are independent of Lemmas 4.2-4.4. In particular, one can conclude that u is a C*
solution when F' € ('™ without using Lemmas 4.2-4.4.

The proof of Theorem 1.4 will be carried out in several lemmas. To begin with,

some results on the solutions of linear wave equation
Ou(t,z) = g(t,z) in W (1.28)
are required.

Lemma 1.7. Given g € R(D) N [I*, k > 0, then lhere exists a unique v € R(O) N
HF+Y satisfying (1.28) and there exists a constanl C' such thal

[ellegr < Cllgll-

Proof. Recall that

R(D) = {u | u(t,z) = Zuﬁlmcji(i)szm(l”)} )

I1#]

and that {e;;(t)sim(z)}12; is an orthonormal basis of R(O).
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The uniqueness follows from Ker(O)*+ = R(O).

To show the existence, let g(t,z) = E#l gjiim€ji(t)Sim(x). Then clearly

Gjilm .
u(t,z) = 2 G 0) eji(t)sim(z) € R(O)

is a solution of (1.28). Moreover
2

: k+1 | Gjitm
lulliy, = Z (1+7242) )\J—l

. 14 7%+ 2
= 1 2 l2 ¢ 'im2 : ;

J#l
2
< Cligll
which completes the proof of the lemma. O

Actually we can get a sharper estimate of the solution of (1.28) by using Sogge’s

‘the best estimate on the spherical harmonics’ [46].

Lemma 1.8 (Sogge). Let H(z) be a spherical harmonics on S° of degree | > 1,
then there ezists a constant C independent of H, p and | such that

1H o5y < CLP DN H]| o0y VP 2 4,
where p' is the exponenl conjugate of p, i.e., 1/p+1/p = 1.

First, we use this result to get a sharper L? estimate for {functions in IK'. Note

that K = Ker(O,) C Ker(O).
Lemma 1.9. The identily map
[: H*'(W)n Ker(D) — H (W)

is a continuous embedding for any 1 < r < 8, where H*" (W) is the standard Sobolev

space on W consisting of all functions which together with their derivatives of order

up to k are in L"(W).
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Remark 1.5. The standard Sobolev embedding theorem only concludes that embed-
ding
HY W) — HE (W)

is continuous for 1 <r < 4. Lemma 1.9 is obviously an improvement when restricted

to Ker(D).

Proof. It suffices to show that for 4 <r <8, u € L" ifu € H' N Ker(O). Expand

u in Fourier series

Z Z Z ummslm 61, i)

with

ullf =Y 3 (14+20) Y Jwam|” 22 Y 1%af,
1 1 m l 1

where a% = S |wim|®. Set Hiy(z) = 3, Sim(€)%itm, then ||Hyl|7. = a?. Using

interpolation theory, one easily proves that for r > 2 and + + & =1,

1/r!
1220 22 buew(B)ll 1y € (ZZM{) .
l 7

Using this inequality, Holder inequality and Sogge’s lemma, we obtain that for 4 <

r<8

lull,- = 122, Hieu(t)

RIAY

r 1/r

r 1/r
(l‘[) dz

> Hiex(t)
1

r/r/ 1/r
< C / ") de
[ (5mr)
r’/r l/r’
< C(Z /|1»1,1-|"d:c) )
Iy ®
1/r'
< 0(213 o thnLa)
[}
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1/r!
C (Z 13‘2"a,’;)

Ii

1/2 2
(5 (mn)
I :

= Collull,,

’

IN

6—6r’ =

where Cy = C (212-“ )_”T < oo since ' > 8/7 and &8

2—r!

< —1. Hence the proof is

completed. a

Lemma 1.10. Suppose g € R(O)N H*, and u € K* solves (1.28), then for1 <r <

8, there exists a positive constant C(r) such that

lell iy < C(7)llgllx-
Proof. The proof is similar to that of Lemma 4 in [57], so we omit it. O
Lemma 1.11. Let M be /-dimensional compact manifold and f € C*, then for any
u € HFY(M)NL*(M), f(z,u(z)) € H*(M).

Proof. It suffices to consider the case f(z,u(z)) = f(u(z)). Set h(xz) = f(u(z)). It
is well-known that if M is an n-dimensional manifold, f € C*(M x R) and k > n/2,
then v € H¥(M) implies f(z,u(z)) € H¥(M). Therefore we only need prove for
k=1 and 2.

For k = 1, the proof easily follows from
VAP = 1] ()l [Vl
For k = 2, we only need to check that A f(u) € L*(M). Since
Af(uw) = f"(u)|Vu]* + f'(v)Au. (1.29)

The standard embedding theorem asserts that H'(M) < L*(M). Therefore |Vu|* €
L?(M), which combining with (1.29) shows that V f(u) € L*(M). O

Now we come back to establish Theorem 1.4.



23

Lemma 1.12. p' € L®(S'), Dy, € COYT) and u; € HE(W).

Proof. First,u € L>(W) impliesv € L*(T) and F(t,p,u)sinp € L*°(T). Since v is
a solution of (1.3), Lemma 1.2 asserts that v, € C%(T'). Therefore v; = v —v, € L.
Exactly the same arguments as in the proofs of Lemma 1.5 yield p’ € L*(S'), which
implies that v; is bounded. Next, since the operators O; and D; commute, we see
that D, is a periodic solution of (1.3) with nonlinear term F'sinp replaced by
Di(Fsinp) = Fysinp + F,v;. From the boundedness of v; and Lemma 1.2, it follows
that Dyv, € C%!. Finally, the fact that p' € L* (v; € H}(T)) and v, € C%!
implies that v € H}(W). Lemma 1.11 asserts that F(¢,p,u) € H}(W). Therefore
uy € H3(W) by Lemma 1.7, and the proof is completed. 0

Lemma 1.13. p” € L*(S").
Proof. Boundary conditions and vy, € C%!(T') yield that

vzt sl < C Moadlns < co. (1.30)
Let £ = —(vf,)~" in

/D,(Fsinp){zo VE e N.
T

We obtain
/ (D, (Fsin/)))h o, = 0. (1.31)
T

The mean value theorem implies
(Dy (Fsinp))* — Fyof,
= Fysinp + It + /’Lvé‘t + Fyv + Fuuv,vh/ sin p, (1.32)
where on the right side, all v’s are evaluated at some point in vp = [t,t + h] x {p},
and all F's at some point in Fr = v x [u(l,p),u(t + h,p)]. Hence by (Fy4), (1.31)
and (1.32) we have
lotlllze < (1/e) [1Full e + 1 Fucll oo [[]0"]

1Full oo |[|o2el|] 2 + 1 Fuull o loelll e [[]0"/ sin p][[ ] - (1.33)

re 1l g (0]l 2 +



24

Lemma 1.12 implies that the first four terms in bracket of (1.33) are bounded by a
constant independent of h, and so are ||Fyu|[ e and |||v¢]|| e in the fifth term.

As for v"/sin p in the fifth term, write v* = v? 4+ v2. By (1.30) we have
|||v§‘/sinp“|Lm < ||| Dsv2/ sin p||| e < 0. (1.34)
Let 0 € (0,7/4], let Ty = S* x [0,0], T, = S* x [ —o,n],and T3 = T \ (T1 U T3).

Then

h
U1

(feran) < (L) (L) (L) s

On Ty, we have 0<p<o<7/4, v, =2p fol p'(t — p+ 2ps)ds. Therefore we get

sin p

2

(vi/sinp)? = (2p/sinp)? (/0 Pt —p+ 28p)d8>
: C/I (Pt — p +25p))” ds, (1.36)

where constant C is independent of o, from which it follows that

[/Tl (v1/sin /))2}% < C [/0" /02" /Ol(p’h(t - 23/’))2dsdtdp] 3
= [/Oa /01 /(J‘Z"(P”t(t +(2s — 1)P))2(ltdsdp] 3

e ( / up'hniz(mdp) —OValp e (137)
0

Similarly on 7, using
1
vi=p(t+p)—plt—p+2r)=2(p—m) / P'(L—p+2s(p—m))ds,
0

we obtain

1

( / ) < OVl (1.38)
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On T3, we estimate that

l

C
(L) =z lbtl < (139

Writing v?, = p(t + p) — p™(t — p) and using (1.8) and [p'] = 0, we get

[wh]152 = 27l 172 (1.40)

Then it follows from (1.33)-(1.40) that for some constants Cy, C; and C5 independent
of h and o,

”p,h”Lz <Cy+ Cy/sino + C3\/(;||plh||b2 ’

Choose o in the above inequality so that C3\/o = 1, we get ||p"||;» < 2(C1+C3/sino).

Therefore Remark 1.3 concludes that ||p”||,. < co, which completes the proof. O

Lemma 1.14. u, € H3(W), p” € L*=(S'), and D?v, € C*(T).

Proof. Lemmas 1.11 - 1.13 imply that ' € HZ(W); therefore we have u, € H3(W)
by Lemma 1.7. Also [D?,0,] =0 and F'sinp € H:(T) imply that

/D?(Fsinp){ =0 VEe N.
T

We write vy, = p”(t + p) — p"(t — p), let ¢& = q(p"(L £ p)), where ¢ is defined in
(1.10). Take ¢ = ¢* — ¢~ € N. Similar to the proof of Lemma 1.5, in order to show
p"” € L*(S"), it suffices to prove that

D%(F'sinp) — Fyo1 = Fyvay + Fyusinp + 2F 00 + Fuv?/ sinp. (1.41)

is in L*(T). In fact, the first three terms of (1.41) arc in L*({) by Lemma 1.12.
That the fourth term is in L°(T') follows from Lemma 1.13 the following estimates.

By Lemma 1.12, we have

02/ sin | e < Mozl Hivae/ sin plll e < o0, (1.42)

(1.43)

|||v11v2¢/ sin P|||L°o
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Fix o € (0,7/4]. On T}, using Schwartz inequality and Lemma 1.13, we obtain

2
. t+
0/ sin plleniryy = s (J57 7(5)ds) |
‘ Le(Ty)

< 2P e " 2 712
< sup (p"(s))ds p < Clp"|l72 -

(t.p)ETH Sinp t—p
Similarly on T, we get
|08/ sin pll oo,y < oo

On T3 we can directly estimate

108,/ sin pll ooy < C |03 | oo -

(1.44)

(1.45)

(1.46)

Now p” € L™ and (4.15) tell us that D?(F'sinp) € L°°(T), which implies that

vge € COYT) since w = vy is the solution of O;w = D?(Fsinp) in R(O;).

In general, we have the following regularity result

O

Lemma 1.15. If F € CK(W x R)(k > 1) is symmetric, then u, € H*Y (W), pt¥) €

L>(SY), and Dfv, € COY(T).

Proof. This holds for k = 1 and 2 by Lemma 1.12 and Lemma 1.14. We proceed by

induction. Assume the lemma is true for k=5 > 2, i.e., pl) € L>(S"), Div, € COY(T)

fori=1,---,7, and u, € HI*'(W).

For k = j+1, we first show pU*!) € L2(S') and uy € I1772(W). By (1.7) it suffices

to show D{Hvl € L*(T). By the induction hypothesis,
/ DI(F(L,p,u)sinp)é =0 VE€E N.
T
Taking ¢ = ((Divy)*)™" € N, we get

/(D{(Fsin o) (Divy)" = 0.
T

Expanding the jth derivative and using mean value thcorem, we obtain

[D}(F sin p)]* — Fu(Djv, )

— ; J h v ”
- Fu(Dt v?) + Z C/mr Ft"‘u' sinp .. sinp
m,r

Div  Djv .

sin p

(1.47)

(1.48)

(1.49)
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where C,,,’s are positive constants, and ¢; + --- + 2, + m = 7 + 1 with

Note that on the right hand side of (1.49), all v’s are evaluated at some point in
vp = [t,t+h] x {p} and F's at some point in Fr = vg X [u(t, p), u(t + h, p)]. Denoting
the second term in the right hand side of (1.49) by I(F,v, h), substituting (1.49) into
(1.48) and using (F4) lead to

1(Div)* ][] 2 < (1/@) (1F o |[[(DIv2)*|]] 12 + N (F 0, A 2) - (1.50)

In the expression of I(F,v,h), consider a typical term

i ir
Div  Dywv
sin p sin p

sin p.

By hypothesis
| Fimur ||| e < C- (1.51)

If r =0, then m = 7 + 1 and we have no derivative on v.

If r = 1, then since 7; < 7, we have
[ Fma Dol < e 1080 < o0 (152

If » > 2, then it is easy to check that ¢,_; < 7 — I. Therefore by Lemma 1.6 and
induction hypothesis we have

Div _ Dy v, N Dy vy

- - : € L>(T) for 1 <s<r-—1, (1.53)
sinp  sinp sin p

and ‘
7 sinp € L>™(T) (since 1, <7J). (1.54)
sin p

Summarizing these estimates, we obtain
bz < CHCE w )] < oo. (1.55)

Remark 1.3, (1.50) and (1.55) yield that Df“vl isin L*(T'). The induction hypothesis
and v; € H'*! imply that u = u; + uy € HI*'(W). Therefore applying Lemma 1.11

and Lemma 1.7, we conclude that u, € HI*2(W).
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Next, we show pli+1) € [2(S'). Let ¢* = q(pYtV(t £ p)), then € = gt — ¢~ € N,

where the function q is given in (1.10). Set
[(F,u) = DIt (Fsin p) — F,Di*'v;. (1.56)
The same argument as we used for I(F,u,h) shows that
HH(Eulllpe < C. (1.57)

Using (1.56), € = ¢t — ¢~ € N and DY (Fsinp) € N* we get

/ Fu(p"(t +p) = p9(t = p))(g" —q7) = / I(Fu)(q* = q7).
T T
Then following the same procedure as in the proof of Lemma 1.5, we obtain
pUth e [(8h). (1.58)

Finally, (1.56)- (1.58) imply that DI*'(F sinp) € L®(T). Since Di*'v, solves
equation (1.3) with F'sinp replaced by the bounded function D{H(F sinp), Lemma
1.2 implies that DI*'v, € C%Y(T). O

Conclusion of the proof of Theorem 1.4. Lemma 1.15 shows that u =
u; +us € (HF N K) @ (H*' N K*). Furthermore, Lemmas 1.9 and 1.10 imply that
ur +up € Wbr(W)yn K @ Wekm(W)n K+ for r € [1,8). The standard Sobolev
embedding theorem shows that u, 4+ u, € (C*¥~2#(W)N K) @ (C* (W) N K1) for
p€[0,2). ]

Remark 1.6. The regularity we established strongly relies on two hypothesis:

(1) there exists a posilive constant o such that I, > «;

(2) F is symmetric, i.e, F' is independent of ¢ and 0, when S® is expressed in spher-
ical coordinates, which allows us lo apply some resulls from one-dimensional

wave equation;

We strongly believe that the condition (1) can be relazed to the condition thal I’
is strictly increasing in u. We also hope that our results can be extended to non-

symmetric F'.
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1.4 Small Forcing Problem

As in the one-dimensional vibration problem [6], we can deal with the small forcing

problem. Consider the equation
Ou(t,z) +g(u) + f(t,z) =0 in S' x S5 (1.59)

Again we assume f is symmetric, i.e., f(t,z) = f(t,p), and look for symmetric

solutions of
Osu(t, p) + g(u) + f(t,p) = 0. (1.60)
We assume that ¢g(0) = 0, || ||« is small, and that for some positive number L,
g € CY([—L,+L)) satisfies
l9'(s)] > @ and |g(s)| <vls| Vse€[-L,+L], (1.61)

where a and v are positive constants specified in (F3) and (F,) respectively.

Theorem 1.5. Assume g has the above properties. Then there is a § > 0 such that
for each f € L®(W) with || f|| .« + || fill o < &, there exists a weak symmetric solution
of (1.60) with ||u|| ;e < L. Furthermore, if a < ¢'(s) < v for all s in [—L,+L], then

such solution of (1.60) is unique.

Remark 1.7. Theorem 1.5 and Theorem 1.} guarantee the existence, uniqueness,

and smoothness of the small solution for the equalions

O,u+u®*+au+ f(t,p) =0 in W,
Osu+sinu+ f(¢,p) =0 in W,

provided that 0 < o < 3 and f is small enough.

Proof of Theorem 1.5. For the uniqueness, assume u and u are two solutions of

(1.60) with ||u|| e < L, and ||u|| ~ < L, then

] D(u—a)(u—ﬂ)—{-/ (g(w) — g(u))(w —u) = 0. (1.62)
w

w
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(From the Fourier series expansion, we have for any u € D(O)
3(0u,u) + ||Oulf3, > 0. (1.63)
It follows from the above two inequalities and assumption on g that
/) [ 1ot = g@l < [ (o)~ g(@)tu - a)
w w
< ) [ 106-0)f =0/ [ low - g(@"
w w

Hence |g(u) — g(@)| = 0, therefore u = 4.

Now let us turn to the existence. We can construct an extension g of g satisfying
1. g € CY(R) and g(s) = g(s) for all s € [-L, L];
2. There exist 3 >4 >+~ ,0 <o’ < aand B > 0 such that

B=g(s)2a and |g(s)| <7'|s|] VseR.

Let F(t,p,u) = g(u) + f(¢,p), then F, = fi(t,p), F\, = ¢’ and
|F| <9'|ul+v |FY| < pe withy =||fllpe and p2 = foll poo - (1.64)

Therefore F satisfies (F3), (F3;) with gy = 0, (F4) and (Fs). Theorems 1.1 and 1.3
imply that there exists a solution of (1.60) such that

1 o
lullp <C %J,r)—z(llFll,; +v)+ % . (1.65)

Note that ||F||,. depends on u. To get |[ul|,« < L, we need to estimate ||I]|. in
terms of ||f|| . Since g’ > o' > 0, the Implicit Function Theorem implies that there

exists a uo(t, p) € L (W) such that

F(t,p,uo(t, p)) = g(uo(t,p)) + f(L,p) =0,

and
1
lluoll o < v, 11l - (1.66)

We write u = u; +uz € (L° N K) @ (L>*° N K*'). Then u, satisfies

O,uy + F = 0.
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Taking L? scalar product with u, we find that
(Osug,ug) + (Fyu) = 0. (1.67)
The Fourier series expansion gives
3(Oug, ug) + || Dug)|2, > 0. (1.68)
iFrom the definition of uo(t, p), we have
F(t,p,u)(u —uo) = |F (¢, pyu)| [u — uo| 2 |F(¢, p,u)| [u] = |F(t, p, )] |uol,
from which we obtain
|E(t, pyu)l [u] < F(t, p,u)u+ 2]F(t, pu)| |uol - (1.69)
Estimates (1.67)-(1.69) together with ||0,us||3, = ||F||3, imply that
/w |F| u < (1/3)]|F|l72 + Q/W |F (¢, p, )| [uol - (1.70)
Equations (1.64) and (1.70) yield
(/7) [ IFIOPI =) < Q31PN +2 [ 1]l

which gives us

3 (v .
HF“U < m (?‘*‘2““0“1,&) 83, (1.71)
Together, (1.65), (1.66), and (1.71) show that there exists a constant C' depending

only on v/, @’ and /3 such that

el < C (1S

oo + [ Sell ) - (1.72)

We can, therefore choose é so small that || f||,~ + || /i

Leo < 6 implies |lul|; < L.




Chapter 2

Orbital Stability with Positive

Energy

2.1 Problem and Notations

In this chapter, we assume that  is a bounded domain in R™ or a n-dimensional
compact manifold. We shall prove a sharp stability theorem for a wide variety of

nonlinearity f for ground state standing waves of NLKG

uy — Au+ f(z,u) =0 in R* x
u=0 on 90 if 8Q+#0, (2.1)
U(O,l‘) = U(I)a u!(Ov‘r) = V(l)v

and NLS

vy — Au+ f(z,u) =0in Rt x Q,
u=0 on JIN if 9N #0, (2.2)
u(0,z) = U(z),
By a standing wave we mean a solution of the form u(z,t) = e“'¢(x) with w a
real parameter, called frequency. The nonlinear interaction f we consider here is very

general, and has the form f(z,u) = g(z, |u|)u and satisfies the following conditions:

32
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(F) There exist constants [ > 2 and C' > 0 such that for all z € Q
|F(z,s)] <ecs' V s>0, (2.3)
where F(z,4) = F(z,|¢]) = [i* f(z,s)ds.
(FG) For [ specified in (F'), one of the following is true

1. F(z,s)/s* — oo as s — oo uniformly on Q if [ < 2n/(n — 2)

2. g(z,s)/s""? — A for some A > 0 as s —» oo uniformly on  if [ >
2n/(n — 2).

We will carry out the details for stability of NLKG (2.1). The investigation of
orbital stability for NLS is very similar, and is outlined at the end of this chapter.
Note that the search for standing wave of NLKG leads us to following nonlinear

elliptic equation

—A¢—w2¢+f(a:,gb)20,
¢=0 on 0N if 00N #0.

Any solution of (2.4) is a critical point of energy functional

CEE /Q Vo - w? |4+ / F(z).

Note that by (FG) the functional .J, is bounded from below. Since we do not need
the explicit use of dependencies of ¢ and J on frequency w, we suppress the subscript
w for notational brevity.

Next we introduce some notations which will be used throughout the rest of this
dissertation. H = H'(Q) N LY(Q) if Q is a n-dimensional compact manifold, and

H = H}(Q) N LY(Q) if Q is a bounded domain in R™ and L? = LP(Q). As usual, we

use

(u,v) = /uﬁd:v,

Q
full, = ([ 1P ae)”

|M&=AOWM+MU.
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to denote L? inner product, L? norm and H norm in space variable. Next we introduce
the notion of weak solution [41] [49] of NLKG (2.1). A weak solution of (2.1) is a

function u(z,t) defined a.e. in Q for each real ¢ such that

(A) u(resp. u;) is a weakly continuous function of ¢ with values in H(resp. L?).
(B) f is locally integrable function on 2 x R.

(C) uy — Au+ f(z,u) =0 in the sense of distribution.

We now are ready to specify our problem. From assumption (FG), J is bounded
from below for any frequency w, so it makes sense to define the minimization problem

to search for the least energy solution.

d= inf J(¢) (2.5)

In next section, we show that d is actually achieved at some ¢o(z) > 0. Any
minimizer of (2.5) is called “ground state”, and corresponding e**¢(z) called “ground
state with frequency w” or ground state for short. For fixed frequency w, define S to be
the set of all minimizer of minimization problem (2.5), i.e., S = {¢ € H | J(¢) = d}.

Now we are in a position to state main result in this chapter.

Theorem 2.1 For any fized frequency w, the standing waves of NLKG (2.1) with
frequency w is orbitally stable in the following sense: for any given € > 0, there exists

a 8(e) > 0 such that any weak solution u of (2.1) with initial data salisfying
inf (1 =l + 1V = i) < 5
has the property

inf (u(0) = @lly + llualt) = iwlly) < ¢ V120

2.2 Existence of Ground State

In this section, we prove the existence, positiveness and regularity of ground state,

and give some characterization of ground state set S.
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Lemma 2.1 Every minimizing sequence in H of problem (2.5) has a convergent sub-
sequence tn H. In particular, d is achieved at some ¢. Moreover the minimizer can

be chosen nonnegative.

Proof. Let {¢:} be a minimizing sequence. We divide the proof into two cases

Case 1: [ < 2n/(n — 2). By (FQG), there exist constants C; and C, that
J(éx) 2 CI”‘bk”?{ -C,VoeH

from which it follows that there exists a ¢o and a subsequence of {¢y}, still denoted
by {¢x}, such that ¢, — ¢o weakly in H and ¢ —> ¢o a.e. in  and strongly in L?
for any 1 < p < 2n/(n — 2). Thus from (F) and weak lower semicontinuity of |||,

we have

lim F(.’B,(}Sk) :/F($7¢0)a

im [ 16" = [ 16of"
k— o0
lim inf / |Ver|* > / |Veol® . (2.6)
k—o0
It is easy to see that if a strict inequality held in (2.6) then we would be led to
following contradiction:
d < J(¢o) < liminfJ(¢x) = d
k—>00

Therefore we have ¢, — ¢y strongly in H'(Q), thus in H by Sobolev embedding
theorem.
Case 2: [ > 2n/(n —2). (FG) implies that there exist some constants Cy, C3 and
C3 such that
J(¢) = Cillgellyy + Caliull, — Cs

which implies that there exist a ¢y and a subsequence, also denoted by {¢} € H

such that
bk — ¢o weakly in H'(Q),
¢ — o weakly in L'(9),
¢r —> ¢o strongly in LP(Q2) Vp € [1,2n/(n — 2)),

¢ — ¢o a.e. on 1.
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Assumption (FG), Fatou’s lemma, boundedness of {2 and weak lower semicontinuity

of |||l yield that

fiminf [ Fe,80 2 [ Fado) (2.7)
lim inf [V i [3 > |V ebol; - (2.8)

A strict inequality in either (2.7) or (2.8) would lead to contradiction
d < J(o) < liminf J () = d.
k—o0

Therefore equalities hold both in (2.7) and (2.8). An equality in (2.8) implies
ér —> o strongly in H'(Q). It now remains to show that ¢ — ¢ strongly in
L'(R). Assumption (FG) implies that there exists some constant C such that

A
F($a¢k) - 5 |¢kll + C > Oa
which combined with Fatou’s Lemma gives that

imint [ (F(ag0-516d) 2 [ (Pl = Slanl').

Hence we get

k—o0
A A
> tminf [ (Fleo0 - 5 16d) +1mint [ 1]
/ ([7(1,(/)0) — —2/—1- |([>0|l) + / g | o’
= /F(.’c,(bo).

From this expression, all the inequalities are forced into equalities, therefore we obtain

l‘icminf/]¢k|l=/|(/)o|l,

which implies ¢ — ¢ strongly in L'(2) by a theorem in [4].

/F(:c,d>o) — liminf [ F(, )

v

The existence of a non-negative minimizer follows from the fact that

J(|¢|) < J(P)V ¢ € H.
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Lemma 2.2 Assume that f is Lipschitz continuous on §) X R, then every real mini-

mizer of problem (2.5) is a classical solution of equation of (2.4).

Proof. Case 1: | < 2n/(n — 2). The lemma is a direct consequence of standard
elliptic theory.
Case 2: | > 2n/(n —2). We use some kind of bootstrap argument. Let ¢ be a real

minimizer of (2.5), then we have

(Vé, Vo) — w*($,v) + (f(6),v) = 0 Vo € H. (2.9)
For o > 0, set
¢ if [¢| <o,
Vo =4 —o if ¢ < —o0,

o ifog>o
Then for g =1—-2 >0, v = |v,|*v, € H and Vv = (¢ + 1) |v,|? Vv,. Substituting
them into (2.9) yields that

q 2_ 2 qg+2 _ 2 +1
@+ ) [ 11 - / 1o = /Q ol
+/ 16172 g(z, 6]) + / o1 || g(z, 4]) = O, (2.10)
(o) Q\Qo

where

M ={ze| |d(z)| <o}

Our choice of g and assumption (F) imply that each term in (2.10) is well defined.
Choose o large enough so that the last term to the left hand side of equality sign in

(2.10) becomes positive due to assumption (FG). Therefore the following estimate

holds

/a, 191"+ g(z, |¢]) < w? /Q 91"+ = 2|l (2.11)
On the other hand, using (FG), there exist positive constants C'; and C, independent
of o such that

A 16172 g(z,|o]) > C | oI —Co | o't (2.12)

/2
Qo Qs
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Combining (2.11) and (2.12) yields for some positive constant C3

/n 617 < Callgle*2,

which by arbitrariness of o implies that ¢ € L'*?. Thus the regularity of ¢ is increased
by an order of | — 2. Repeating the above procedure, we are able to improve the
regularity of ¢ so that ¢ € L? for all 1 < p < oco. Therefore, by elliptic theory,
we have ¢ € H??(Q) for all 1 < p < oo, which implies ¢ € C'*(Q) by embedding
theorem. From the Lipschitz continuity of f, we have f € C*(Q2). Hence ¢ € C*7(Q)
by Schauder theory, and the proof is completed.

To conclude this section, we give some characterization of the set of ground states.

The proof for the following lemma follows the same idea as in [9].

Lemma 2.3 For any ¢(z) € S, there exists a non-negative function ¢o(z) € S such

that ¢(z) = e%¢o(z).

Proof. Let ¢ € S and ¢ = @' + i¢? where ¢', ¢* € H are real-valued, then
&= |¢'| +1|¢?| is still in S, and this yields that

—AY — W +g(x,|9])¢’ =0,
—A|F| - #] + g(x,|4]) |#] = 0.
where j = 1 and 2. This shows that w? is the first eigenvalue of the operator

—A — g(z,|¢]) and &', ¢*, |¢'| and |¢?| are all multiples of the positive normal-

ized eigenfunction of —A — g(z, |¢|) and the proof is finished.

2.3 Orbital Stability of Standing Waves

In this section, we will prove Theorem 2.1. Let u(t) be a weak solution of NLKG
(2.1) with initial data U and V.

Define the total energy and charge as

B = 5 (f 1P+ [ 9P) + [ Fa,utpas,

Q(u(?)) = Im(u(t), u(t))-
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It has been shown [41, 49] that energy inequality holds for weak solutions of NLKG
(2.1) for the nonlinearity f we are considering, i.e., F(u(t;) < F(u(ty) for all t; >
t; > 0. From the arguments in [41, 49], it is easy to show that the charge identity
holds for weak solutions of NLKG (2.1), i.e. @(u(t)) = @Q(u(0)) for all ¢t > 0.

Proof of Theorem 2.1: Suppose that there exists a frequency w for which standing
waves are not orbitally stable. Then there exist € > 0, sequences of {t*}, {U*}, {V*}
and {u*} such that

inf (IU* ~ 8y + V4 — iwlly) — 0 (2.13)
and
inf (e (1) — Blly + () — iwdl,) 2 e (2.14)
A direct computation shows that
E(u(t)) - wQ(u / udt) — iwu(P + Ju(®),  (215)
E(u(0)) — wQ(u( /|V wU >+ J(U). (2.16)

By Lemma 2.1, S is a compact set in H, thus we may assume that U* — ¢ in H,

V¥ —s tweo in L? for some ¢p € S . Hence using (2.16) we obtain

E(u*(0)) — wQ(uf(0)) — d. (2.17)

On the other hand, (2.15), energy inequality, charge identity and (2.17) give rise to

J(uH(t*)) < E(uf(tF)) — wQ(u*(1%)) < E(u*(0)) — wQ(u*(0)) — d, (2.18)
which implies that {u*(¢*)} is a minimizing secquence of problem (2.5). Lemma 2.1
implies that there exists a ¢ € S such that

u*(t*) — ¢ strongly in H, (2.19)
J(k(t*) — d (2.20)
Using (2.20) and (2.15), we have

uk(1*) — iwg strongly in L2. (2.21)

Combination of (2.19) and (2.21) is a contradiction to (2.14), and the proof is com-

pleted.
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Remark 2.1 First if J has unique positive minimizer ¢ for some frequency w, then,

by Lemma 2.3, the ground set can be characterized as
S={e’¢ | 0 R},

and we have “real” orbital stability: For every given € > 0, there exists a 6 > 0 such
that
inf (U ~ el + [V — iwe?d],) < 5
implies
;Ielﬂg (Jlu(t) — €|l + llue(t) — iwed||,) < eV ¢ >0.

For Q = R", the minimization problem (2.5) usually is either NOT defined or
only has trivial solution. So minimization is taken over some hypersurface in H. In
this case, the NLKG or NLS may not possess standing waves for all frequency w, even

they have standing waves for some frequency, the standing waves may not necessarily

be orbitally stable [9, 18, 19, 44, 51].

2.4 Outline for Schrodinger Equation

In this section, we illustrate the proof for the orbital stability for standing waves of

NLS. The associated nonlinear elliptic equation used to seek the standing waves is

d=0 on O if 9N #0,

(2.22)

By same argument, we see that the nonlinear elliptic equation (2.22) has non-negative

ground state ¢, > 0 for all frequency w. Let
S={pe H|J(P)=d}

where

d=jnf 1@ =5 [(VoF —wlof) + [ Fla0)

peH

We have the stability theorem.
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Theorem 2.2 The standing waves of NLS of frequency w are orbitally stable in the

following sense: given € > 0, there exists a § > 0 such that if
inf ||U — <6,
inf |1V~ 6l

then

1 — >
in [lu(t) - dlly < V¢ 20.

The proof for this theorem is similar to that for stability of standing waves of NLKG.

Here we can use
o = [ o
MMM:%/NW+/F@M

to replace £ and @ for NLKG. The details are omitted.




Chapter 3

Orbital Stability with Indefinite

Energy

3.1 Introduction

In this chapter, let 2 be R" or a bounded domain or a compact manifold. We shall give
a sharp condition for orbital stability of standing waves of nonlinear Klein-Gordon

equation(NLKG)

uy — Au+m(z)u+ f(z,u) =0 in Rt xQ,
u=0 on AN if 9N #0, (3.1)
u(0,z) = U(z), u(0,z)=V(z),

and nonlinear Schrodinger equation(NLS)

iug — Au+ m(z)u+ f(z,u) =0 in Rt x Q,

u=0o0nd0 if 0Q#0N, (3.2)

u(0,z) = U(z),
where m is a real bounded function such that the lower bound A; of the spectrum of
the operator —A + m is positive. In this chapter, the nonlinear interaction f is very
different from that in last chapter, consequently new techniques must be employed.

Again f(z,u) = g(z, |u|)u and is imposed on the following conditions:

42
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(f1) fe€CYxR)and f.(z,s) and f(z,s) — 0 uniformly as s —» 0.

(f2) There exist constants 2 < [ < 2n/(n — 1) and C such that |f!(z,s)| < Cs'~2 for
large s > 0 and for all z € Q.

(f3) fi(z,s) <0 for a.e. € Q and all s > 0 and there exists a constant § > 1 such
that sfl(z,s) < 0f(z,s) for all z € 2 and all s > 0.

Remark 3.1 It follows from the assumptions (f;)-(f3) that the following statements

are true:
1. F(z,s)= [, f(z,7)dr <0 for all x € Q and all s > 0.
2. sf(z,s) <0 forall z € Q and all s > 0;

3. For any given z € §);
F(z,s)—

0+lsf(a:,s)

s a non-decreasing non-negative function of s on (0, 00).

4. For any non-negative v € H,
/v(m)f(x,v(z)) =0 < v(z)=0.

We will carry out the detailed proof for NLKG. The proof for NLS is similar and
will be outlined at the end of this chapter.
As in last chapter, search for standing waves of NLICG (3.1) leads to the following

nonlinear elliptic equation

{ —Ap — (m(z) —wh)g + [(z,4) =0, (3.3)

¢=0 on I if 90 #0.
If we define

dw) =5 (190 45 [ mte) =) ool + [ Fa,00)

where ¢, is a least energy solution among all solutions of (3.3), then we have the

following main result:
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Theorem 3.1 If d"(wo) > 0 and wi < Ay, then the standing waves of frequency wp

are orbitally stable.

It should be pointed out that although our main result is similar to that in [44],
our result applies to both = R" and = compact manifold or bounded domain,

and our method allows nonlinearity f to depend on space variable z as well as on wu.

3.2 Least Energy Solution

In this section, we shall prove the existence of a positive least energy solution of (3.3).
Since we include the case 2 = R™, we need to redefine Hilbert spaces H and L2
as follows
HYR™) if Q=R"
H=1<¢ H}Q) if Qisabounded domain,
HY(Q) if Q is a compact manifold.
L { LX(R") ifQ=R",
L*(Q) if Qis a bounded domain or a compact manifold.
where subscript r indicates that the corresponding function space consists of only
radially symmetric functions. When 2 = R", we also assume that m(z) = m(|z|)
and f(z,u) = f(Jo] ,u).
It is easy to see that every solution ¢ € H of equation (3.3) is a critical point of
energy functional

5(8) = 5 [ (V4" + (i) = ) o) + [ Fla,0)

It is also easy to verify that every solution of (3.3) satisfies the functional identity

K.(¢) = / (IVe[* + (m(z) — w?) |¢]*) + / ¢l f(x,14]) = 0.

Therefore, it is natural to search the nontrivial least energy solution by solving the

following minimization problem.

d(w) = inf J.(¢). (3.4)

PEM,
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where surface M, = {¢ € H | K,(¢) =0, ¢ # 0}.
Indeed we will show that for every w? < A;, d(w) is achieved at some nontrivial ¢
and all minimizer of (3.4) are least energy solutions of equation (3.3).

First we define functional

1

6—1

- L [ 9o+ (o) - ) )

v [ (Pl - g el 9D).,

I(¢) = Ju(9)

and set
M ={p€H|K(¢) <0, $#0}.

Next we give several lemmas to lay foundation for existence theorem of ground

states. The first lemma is about equivalent H-norm

Lemma 3.1 Let p < Ay, define

B = inf { [ (9 + (m(a) = ) oF) oty =1},

vEH

then B(p) is a positive decreasing function of p.

Proof. B(p) is a decreasing function since the integral is a decreasing function of p.
For positiveness, we prove by contradiction. For u < A;, suppose that there exists

a sequence {vy} such that
Joelly = [ (10" + o) = 1, (3.5)
(A — u)/|vkl2 < /(|Vvk!2 + (m(x) — p) |ve]?) — 0 as k — co. (3.6)

From (3.6), |vg|, — 0 as k — oco. By boundedness of m and by second part of
(3.6), we obtain
/|Vvk|2 — 0 as k — 0. (3.7)

Therefore a combination of (3.7) and |vk|, — 0 leads to a contradiction of (3.5),
which completes the proof.
Next let us prove that minimization problem (3.4) is equivalent to a very useful

minimization problem.
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Lemma 3.2 For any w? < Ay, M, and M are non-empty, and
dw) = inf I(¢).
PEMy

Furthermore, I,(¢) > d(w) if K,(¢) <0.

Proof. It easily follows from assumptions (f;) and (f3) imply that M is non-empty
for all w. The non-emptiness of M, is a consequence of the following arguments.

Consider any function v € H such that K, (v) < 0. Let v,(z) = av(z), then

2

K,(v,) = %—/([Vv|2 + (m —wQ) |v|2) +a [ |v| f(z,alv]).

Now for a =1, K, (v;) = K,(v) < 0 and for « close to zero K, (v,) > 0. Therefore
there exists an ag € (0,1) such that K,(vs,) = 0. Remark 3.1 and definition of I,

imply that
Vv e H, 1,(sv) is an increasing function of s on (0, 00),

which yields
dw) < I,(vey) = L,(aov) < I,(v).

Hence we get

d(w) < inf [,(¢).

PEMS
But by definition

dw) = inf J,(¢)= inl I,(¢)> inl I,(¢).

PEM, PEM, PEM,

which concludes our proof.

Lemma 3.3 For w? < Ay, M, is a C'-hypersurface in H, and both M,, and M are

bounded away from zero.

Proof. (f;)-(f3) imply that K, is a C''-functional in H which in turn implies that
M, is C! hypersurface.
For any small ¢ > 0, from (f;) and (f;) there exists a C'(¢) > 0 such that

18] f(z,|8]) > —clo* — Cle) |¢] . (3.8)
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Using (3.8), Lemma 3.1, Sobolev embedding theorem and L? interpolation theorem,

we have that for € < A} — w?

K8) 2 5 (98 + (m—o? =9 o) - () [ 1ol

22Nty - ot [ 1ol

> Cillglly — Calldllyy-

v

which implies that M, and M are bounded away from zero, and the proof is com-

pleted.

Remark 3.2 For Q@ = R", if the mass term m and nonlinear interaction term f
are independent of space variable z, then any nontrivial solution v € H of nonlinear

elliptic equation (3.3) also lies on another C' hypersurface
M, ={¢€ H| K, ($)=0, ¢#0},

where

-2 1
K (u) = n 5 /|Vu|2+n/ [i(m—wzﬂu[?-}-F(U)J .
To prove this, we need to use the scaling properly of function in H'(R™). Lel v €
H}(R™) be a solution of (3.3). Put u,(z) = u(x/u), then

Juw) = 5 [1ul+ 5 [on =l + [ P

pr? 2 M 2
= = /[Vu| +7/(m—w2)|u| +;L"/F(u).

Since u is a solution, d(J,(uw,))/dp =0 at o = 1. An casy compulation shows that

d(Ju(uu)) _n—2 2 1 2 1l 4 Flu
_zl#_\lm,_ 5 /|Vu| +n/[§(m—w)|u| +F(1)}.

Note that for n = 1 and n = 2, M/, is nol bounded away from zero, and the mini-

mization problem can not be defined.
Now we are ready to present our existence theorem for ground states.

Theorem 3.2 Let w? € (0,);). Then,




48

1. d(w) is positive;

2. Every minimizing sequence of problem (3.4) possesses a convergent subsequence.

In particular, d(w) is attained at some ¢, ;
3. This minimizer ¢, can be chosen positive;

4. Every minimizer of problem (3.4) is a solution of equation (3.3) and is called
the ground state.

Proof. Let {¢r} be a minimizing sequence in M, for problem (3.4). Remark 3.1 and
Lemma 3.1 imply that there exists a constant C'(w, ) > 0 such that for all ¢ € M,

Clw )l < 57 [ 196 + (m =) S LD = L) (59)

which implies that ¢, is bounded in H. Thus by Sobolev embedding theorem (if
1 = R™ we need corresponding embedding theorem developed in [50]), there exist a

¢o € H and a subsequence, still denoted by {¢x}, such that

¢k — ¢o weakly in H,
¢ — ¢o strongly in LP(Q),

b — ¢ a.e. on (L.

where 2 < p<2n/(n—2)if Q =R" 1< p<2n/(n—2) otherwise.
Next we want to get strong convergence of sequence {¢}. To that end, let 0 <

o = 3(M — w?) and rewrite K,,(¢) as follows:
Ku(#) = 5(¢) + P(¢) (3.10)

with
S(¢) = / Vo + / (m —w? — o) 4,

and

P@) = [16+ [ 181610
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By Lemma 3.1, \/S(¢) makes an equivalent norm on Hilbert space H, therefore after
selecting another subsequence of {¢x}, we get that ¢, — ¢o weakly in H under the

new norm, and by weak lower semicontinuity of the norm /.5(-), we have
l‘i‘mim’/ [Vl + /(m —wr—0)|gl* > /|v¢0|2 + /(m —w?—a)|d)?. (3.11)
—so0

Without loss of generality, we assume the existences of lim [ |¢x|* and lim P(¢).

In (3.8), choose 0 < € < o, we have that for some positive constants C; and C,

P(4) > Gy / el = Ca gl

which by Fatou’s lemma implies that

[P(m) vo f m@ > P60+ G [ fal

lim
ko0
Since ¢ — ¢y strongly in L” for 2 < p < 2n/(n — 2), we immediately obtain

JimP(8) > P(6). (312)

(3.11), (3.12) and Remark 3.1 yield that

L(¢0) < liminf L(¢1) = d(w), (3.13)
Ku(go) < liminf Ko () = 0, (3.14)

A strict inequality in (3.11) would imply a strict inequality in both (3.13) and (3.14)
which in turn would imply ¢y # 0, and thus by Lemma 3.2 would generate a contra-
diction
d(w) < L(¢o) < d(w).

Therefore we obtain the strong convergence of {¢;.} to ¢o under the equivalent norm
which implies the strong convergence under the original norm ||-||.

Lemma 3.3 and (3.9) show that ¢ # 0 and d(w) > 0.

The existence of positive minimizer ¢, follows from J,(|¢|) < Ju(), Ku(|4]) <

K,(¢), Lemma 3.2 and strong maximal principle.
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Finally to show that ¢, is a solution of equation (3.3), we have by Lagrange

multiplier method
§J(¢0) = A Ku(¢bo),

or

—~Ado + (m(z) —w?)go + f(x, o)
= A[=24d0 + 2(m — w?)do + f(z, do) + dof'(z, |bol)] -

Taking inner product with ¢y on both sides and using K., (¢o) = 0 lead to
0= /\/ (Vo[ + (m(x) = w?) gl + [ ['(z, |#ol)) -

Using K. (¢0) = 0 again , we obtain

0= [ Il (. ll) — [6nf ). (3.15)

From (f3), it follows that

[0l (76 levl) = 6ol )

> (1-0) [ 1ol (2. )

= @=1) [ [Vl + (m =) ] >0, (3.16)
which implies that A = 0 and the proof is completed.

Corollary 3.1 Every minimizing sequence of the minimization problem

inf 1,(¢), (3.17)
bEMS

has a subsequence converging to a ¢, € M,,. In particular, ¢, is also a minimizer of

minimization problem (3.4).

We conclude this section with the definition of the set of ground states

Su={d € M, | Ju(¢) = d(w)}.
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3.3 Standing Wave as a Function of Frequency
In this section, we prove that standing waves are smooth functions of frequency.

Lemma 3.4 d(w) and ||¢.||,; are uniformly bounded for w? on compact subsets of

(0, A1).

Proof. The uniform boundedness of d(w) follows from the fact that given wy €
(0, A1), there exists ¢o € M, hence there exists an € > 0 such that

K. (o) <0 for w € (wo — €,wp + €),
from which and Lemma 3.2 it follows that
d(w) < I(¢o) < C for w € (wo — €,w0 + ¢),
By Remark 3.1 and Lemma 3.1, we have

) = (¢u>—1(¢w>,2(“1 [ 190+ -y 6.1

B(w?)(0

2 WH%HH» (3.18)

which implies the uniform boundedness of ||¢, || ;.
Lemma 3.5 d(w) is a decreasing and continuous function of w for w € (0,/A;).
Proof. Let 0 < w; < w; < Ay and d(wy) = Jo, (¢u, ), then
Kanh) = Ko () = 52 =) [ 18u]* <0.
Therefore by Lemma 3.2 we have
d(w2) < Ly (buy) < Ly (b)) = d(wr).

which concludes the proof for monotonicity of d.
Next to show continuity, let wy € (0,/A1), and we will show d is left and right

continuous at wy.
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For left continuity, let 0 < w < wp and va(z) = agy,(z), then
9(w, @) = Ku(va)
is a smooth function of a and w. Moreover, we have
9(wo, 1) =0,
and by (3.16)

dhfeon1) = / (16enl? /(@ bun) = lbunl (2, 610)) < 0. (3.19)

Therefore by implicit function theorem, there exists a neighborhood of wy and a C'*
function @ = a(w) in this neighborhood such that a(wg) = 1 and g(w,a(w)) = 0.

Hence we have

d(wo)<d(W) L(a(w)bu)

= @)y =) [ 16l + Lafa(e)d).

Let w — wo, then a(w) — 1 and I, (a(w)d,) — d(wo). Hence d(w) — d(wo) as
w — wp, which concludes the proof for left continuity.

For right continuity, select w; such that wy < w; < v/Aj and let wy < w < w,. To
show that

lim d(w) = d(wo).
w—bug
1t suffices to find a function a(w) such that
Kuo(a(w)g,) = 0 and a(w) — 1 as w — wy. (3.20)

In fact,

dun) = Juslin) £ mlaw)d)
Jula@)bs) + T - of) / ap’

d(w) + [ (@(@)t) — (@) + D w? —uf /47
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Hence d(w) — d(wo) as w — wy, since ¢, ||y is uniformly bounded on [wo,ws].

Now we come back to find o(w) satisfying (3.20). Set

Ko (ad)
o2

= [1v6r+ -+ 1 [ ran,

g(w,a) =

where w € [wg,w;] and & > 0.

Note that we can write
9(w, @) = h(w,a) + Q(w)

with

Woe) = [ 198+ (=)o + 7 [ ufteatn)
Q) = (=) [ &

It is easy to see that h(w,1) = 0, Q(w) > 0 for w > wp and that Q(w) — 0 as
w — wo by uniform boundedness of ||¢,||,;. We can find the derivative of h with

respect to a as follows:
’ 1 v ¥
H(.a) = 35 [ (@A) abuf ()]

Hence h(w, a) = ho(w,B)(a—1) for some 3 between a and 1. Using (f3), Ku(¢.) = 0,
Remark 3.1 and Theorem 3.2 we have

ho(w,) < 20 [ Bius(a,p) <0. (3:21)

Therefore we can find an o = a(w) satisfying

g(w, @) = (o = Dho(w, f) + Q(w) = 0,

Qw)
ha(w, ) G

a=1- (3.22)

Note that by Remark 3.1, we have

d) = () < 5 [ (V6L +(m = u2)). (323)
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Using (3.21), (3.22), Remark 3.1, K,(¢.) = 0 and (3.23) we arrive at

ha(w,B)

Since Q(w) — 0 as w — wo, from (3.22) and (3.24) it follows that to show that
a(w) — 1 as w — wy, we only need to show that a is uniformly bounded on
[wo,ws]. Suppose that this is not true, by uniform boundedness of ¢, on [wo,ws],

there exist a sequence {w;} € [wo,w,] such that

and

S

<

<

%1 [Bourtepo

2 [ v6.F + m-a)2)

201 —9) (@) _ 20 = 0)d(ws)

W — @ € [wo,wa],

= (3.24)

wi) — 00,

O = bu, = b€ H weakly,

aii i) = [ 196+ (m - )i+ - [ dif@as) =0, (29)

Notice on one hand, by uniform boundedness of |||, we have

likm sup/ [IVil* + (m — wd)¢?] < oo, (3.26)

On the other hand, we define for s > 1

then

G'(s)

IN

60 = [ dut(eson) (3.2)

5 [ st a6 - b (o.s6)
%/o—ww a,58,) (by )

G(s).
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Therefore we have

Gs) 0
Gis) =

from which it follows that

—L since G(S) <0 if s > 1,

G(s) < G(1)S*. (3.28)

Next let us estimate G(1). By K,(¢.) = 0 we have

[ éutte.s

= [ (el + m - r)2)
< —2d(wy) < 0. (3.20)

G(1)

Therefore (3.27) (3.28) and (3.29) yield

hmmf—/qbkf T, apdr) =

which combined with (3.26) is a contradiction to (3.25), hence the proof is concluded.
If we assume the minimization problem (3.4) has a unique positive solution, then

we have the following theorem regarding the continuity of ¢, on w.

Theorem 3.3 For w near wy, let ¢, be the unique positive solution of problem (3.4).
Suppose that zero is not an eigenvalue of the linearized operator Lo = —A+m —wi +
f'(ybup) at bu, acting on L* (real valued). If f is a C" function, then w — ¢, is a
C' mapping from a small neighborhood of wy into H.

We carry out the proof of this theorem in two lemmas following the same procedures
as in [45].
Lemma 3.6 w — ¢, is continuous with values in H.

Proof. From Lemma 3.4 and 3.5, d(w) = 1,,(¢.) is continuous in w and ||¢, ]| is a
bounded function of w. Let {w;} be a sequence tending to wo. Then {¢,, } is bounded
in H. A subsequence may be chosen converging weakly in H to some v. Note v > 0

since each ¢, is positive and ¢, — v a.e. on . Now

Ko(d) = / (V8 + (m = )2 + uf (b)) » (3.30)
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Letting w = wx — wp, by uniform boundedness of @,,, continuity of K and d and

lower semicontinuity of weak limits, we have
Kup(v) <0,

and
L,(v) <liminf L, (d.,) = d(wo).
ko0

By similar arguments in the proof of Theorem 3.2, we have K, (v) = 0, L, (v) = d(wo)
and @,, —> v strongly in H. Then by uniqueness, v = @,,, which completes the

proof.
Lemma 3.7 In a neighborhood in H of d.,, all solutions of (3.3) lie on a C* curve.

Proof. Write (3.3) as

~Ad+m(z)p+ 7o+ f(z,6) =0, (3.31)
where 7 = —w?. Let 79 = —w, ¢o = bu, and let
L(rv)=v+(m—A+7)" f(v), 7> =\, veEH. (3.32)

Then £(7,v) € H since v € H C L*™2 f(-,v) € L[> by (f;) and (f),
and therefore (1 +m — A)~'f(-,v) € H by elliptic theory. In fact, £(7,v) is a
C* operator from (—A;,00) x H into H. Note L(7o,¢9) = 0. Now the operator
Lo = —A+m —wi + f'(-,¢u,) is invertible by assumption. It follows that the
compact operator (7o +m — A)75 (-, o)(70 +m — A)~% on L? does not have —1 in
its spectrum. Hence

O (rordo) = I+ (r0 + m = A) (. ),

acting from H to H, is invertible. By implicit function theorem, the solutions of
L(7,v) = 0 in a neighborhood of (7o, ¢) form a C' curve in (—A;,00) x H.
With these preparations, we can go on to find the derivative of d, which concludes

this section.
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Lemma 3.8 Under the conditions specified in Theorem 3.3, we have

- [18.p

4w) = ul8) = 5 [ (V. + (- 16.) + [ Fla.o0),

Proof. From

we have

0.
) = [ (~2b+(m-D+ f@ b)) G2 - [10F. (39
The first integral in (3.33) is zero since ¢, is a solution of equation (3.3), and we

proved the lemma.

3.4 Stability of Standing Waves

We consider NLKG
uy — Au+m(z)u+ f(z,u) =0 in R*xQ,
u=0 on 90 if IQ#0, (3.34)
u(0,z) = U(z) € H, w(0,z)=V(z)€ L™
For = R™ it is shown in [15, 16] that strong solutions u(-) € C([0,T), H),
u(-) € ([0,7), L?) exist for nonlinear interaction we are considering. For other cases
of Q, it is shown in [41, 50] that weak solutions exist and for these solutions energy
inequality holds. In this dissertation, we will only consider the weak solutions of
NLKG or NLS. The proof of stability for strong solution is relatively easier.
Let
Buu) = 5 [ IoF + L(w).
Define
R, = {(u,v) € H& L* | E,(u,v) < d(w)} .
Next we introduce two invariant sets which plays a very important role in the estab-

lishment of stability.
R, = {(u,v) € Ry | Ku(u) >0} U{(0,v) € Ru},
R: = {(u,v) € R, | K(u) <0}.
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It is easy to prove that we have the following equivalent expressions
R, = {(u,v) € Ry | Lu(u) < d(w)},
RS = {(u,v) € Ry | Lu(u) > d(w)}.

Lemma 3.9 R. and R? are invariant regions under the solution flow of the following

modulated equation

uy + 2iwuy — Au+ (m(z) —w?)u+ f(z,u) =0 in R¥xQ,
u=0 on 9N if IN#OD, (3.35)
u(0,2) = U(z) € H, w(0,2)= V(x) € L%

Proof. Let (U,V) € R!, and assume that there exists a 7 such that (u(7),u(7)) ¢
R.. Then u(r) # 0 and K, (u(r) <0, i.e, u(r) € M. Let

s=inf {0 <t <7 (u(t),ult) € RL}, (3.36)

then K, (u(t)) > 0forall 0 < ¢ < s. Let {sx} be the minimizing sequence for problem

(3.36), then arguing similarly as in the proof of Theorem 3.2 we have
Ko (u(s)) < liminf K, (u(sk)) < 0.
ko0

Note u(s) = 0 would imply that K, (u(s)) = 0 which in turn, would imply u(sx) —
u(s) strongly in H. Then Lemma 3.3 and u(sx) € M, would imply u(s) # 0 which

contradicts the original assumption. Hence we have
Ko(u(s)) <0 and u(s) # 0. (3.37)
On the other hand
I, (u(s)) = liminf 1, (u(t))
i

< l}ﬂiﬁ[ (lw(u(l)) + ﬁ/\@(u(ﬂ(l)))

< liminf £, (u(t), u(t)) < d(w),
t—s—

which, in view of inequality (3.37), contradicts Lemma 3.2 and completes the proof

for the invariance of R..
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To show the invariance of RZ,, we just need to switch the roles of I, and K.
Let (U,V) € R? and assume that there exists a 7 such that (u(7),u,(7)) & R2, i.e.,
Lo(u(r) < d(w). Let

s=inf{0 <t <7 (u(t),w(t)¢ R}, (3.38)

then by weak lower semicontinuity I,(u(s)) < d(w) and I,(u(t)) > d(w) for all
0 <t < s. On the other hand

Ko(u(s)) = liminf(0 + 1) [u(u(t)) — Lu(u(t))

< liminf(0 4 1) [Bu(u(t), u(t)) - d(w)]
<O+ 1) [EU,V) —d(w)] <0,

which, in view of I, (u(s)) < d(w), contradicts Lemma 3.2

Lemma 3.10 Assume d"(wg) > 0. Then there exists an M(wo) > 0 such that for
every M > M(wo) there exists a § = §(M) such that if u(t) is a weak solution of
NLKG equation (3.34) with initial data satisfying

U = uolly + IV = iwodugl, <6

then
d(wy) < Ly(u(t)) < dw-) ¥t >0, (3.39)

and
/|u, —iwgu(t)]? + Je(u(t)) < d(ws) VL > 0, (3.40)

where wy = wo + 1/M.
Proof. Set vy(t) = e “*'u(t). Then vy satisfies

Vi + 2iwgvey — Avg + (m(z) —wi)ve + f(z,ve) =0 in RY xQ,
ve=0 on 99 if INAD, (3.41)
ve(0,2) = U(z), vx(0,2) = V() —iwgl.
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Note

Jus (@) = Jus (v2),

Jrosit = [ = iwsutor?

The energy inequality of modulated equation (3.41) becomes
1 1 ’
5/ [oe(t)* + Jug (u() < §/|V~ wsU” + Jup (V). (3.42)

To show (3.39) and (3.40), by invariance of R!, and R, under solution flow of
modulated equation (3.41) and by energy inequality (3.42), it is sufficient to prove
that

d(ws) < Ly (U) < d(w_), (3.43)

and

E,.(UV —iwV) < d(wg). (3.44)
We first prove (3.43). Note
Loy (U) = Ly (buo) + O(9),
therefore § can be chosen if
d(wy) < Lug(dup) < d(w-).
Set a = 7931_11) < 3. It is obvious to see that
L () = a( ) + e =) [ 1l
< d(wo) < d(w-),
and

() = Tl + i =) [ 16001

> d(wo) > d(wy).

Note
K (un) = Kl + = 2) [ [l <0,
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hence Lemma 3.2 implies that

(1) < Ly (G0).

To see d(w_) > L_(6uy), We use d”(wo) > 0 and d'(wp) = —wp [ |gun|” to get
() = L) + (6 = 2) [ 1l

= d{wp) + 2T

< d(uo) + (o= — o) (wo) < do-).

(W~ — wo)d'(wo)

Now we turn our attention to (3.44). It is easy to see that

w —u)2
Jos(U) = Jus (9un) + O(8) = Jon($00) + =5 / 6w ” + 0(6), (3:45)

and

IV —iweUll, < IV = iwodully + lwobus — wrdunll, + llwrduy — wiUll,
wo — wel [ busl; + O(8)- (3.46)

Using (3.45), (3.46) and d”(wo) > 0, and choosing & small enough, we obtain
Eun(U,V = i) < d(un) + (05 — o) () + O(6) < d(ws).
which concludes our proof for the lemma.
Finally we can present our main result.

Theorem 3.4 If d"(wo) > 0, then the ground state standing waves of frequency w are
orbitally stable in the following sense: for every given ¢ > 0 there exists a § = §(¢) > 0
such that
0 (1 = 8 + 1V = i) < 8
implies
¢ier.]9f (llu(t) = @l + llwe(t) — iwodbll,) < € forall ¢ >0.
o
Proof. Suppose that standing waves of frequency wy are not orbitally stable. Then

there exist {(U, Vi)}, {ts}, and weak solutions {u*(t)} and ¢; > 0 such that

inf (|Uk = ¢ll;; + Vi = iwodll,) — 0, (3.47)
$ESuq
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and
nf (let(e0) = 6lly + I (@)1) > o (3.45)

Since S,,, is compact in H, without loss of generality, we may assume that
(Ux, Vi) — (v, iwov) for some v € S,,.
From Lemma 3.10, there a subsequence of {k} such that
d(wo + 1/k) < L, (u*(tr)) < d(wo — 1/k), (3.49)

and
lluk () — iwsprdk (Ee)I[2 + Juy (w* () < d(wo + 1/K), (3.50)

where wy = wo + 1/k. (3.49) and (3.9) imply that u*(¢;) is bounded in H, therefore
by continuity and (3.49) again

Lo (u*(ti)) — d(wo). (3.51)
From (3.50) it follows that there exists another subsequence of {k} such that
Jun (W (1)) — d < d(wp) for some d. (3.52)
Hence (3.52) and (3.51) yield
l;lcxﬂ’iolifkw(uk(tk)) =(0+ 1)1£rii£f(Jw(u*(zk)) — L, (uf(tr))) < 0. (3.53)

(3.51) and (3.53) imply that {u*(#4)} is a minimizing sequence of problem (3.17),
therefore by Corollary 3.1 there exist a sequence of {k} and a ¢ € S,,, such that

uk () — ¢ as k — oo,
which together with (3.50) implies that
uF(ty) — iwod in L2

Therefore we get a contradiction to (3.48).
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3.5 Nonlinear Schrédinger Equation

We recall the nonlinear Schrodinger equation
— Au+m(z)u+ f(z,u)=0in Rt x Q,

u=0ondQ if 9Q+#0,

u(0,z) = U(z),
The proof of stability of standing waves of NLS will be similar to that of stability
of standing waves of NLKG which we presented in the previous sections. So we will
state the relevant lemmas and theorem without proof.

The associated nonlinear elliptic equation resulted from searching the standing

waves of the form e*“!¢(z) is

= =0,
~ (m(s) ~ )6 + f(2,8) = i
¢=0 on 9 if IN#D,
The modulated equation is
iug — Au+ (m(z) —w)u + f(z,u) =0in RY x Q,
u=0o0ndN if INF#0, (3.55)

u(0,z) = U(z),
The energy for modulated equation (3.55) becomes the energy for (3.54):
E,(u) = Ju(u).

The corresponding J, K and I functionals are
=3 [ (96 + tmio) - ) 1ef) + [ F@0)
=/(|V¢| +m(e) ~ ) P) + [ 1wl 14,

L#)= 555 / (V68 + (rm(z) - ) 6F)

+ [ (Pl - /i)

The minimization problem is

d(w) = inf Jo(#),
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where M, = {¢ € H |K,(¢) =0, ¢ # 0}.

The invariant regions R} and R? in H are defined as

R, ={ve H | E,(u) <dw)},
R,={u€eR, | K,(v)>0}uU{0},
R? = {(u,v) € R, | K.(u) < 0}.

The range for frequency w is w < A; and the derivative of d over this range is

@) == [16.f

Finally the stability theorem is

Theorem 3.5 If d’(wo) > 0, then the ground state standing waves of frequency w are
orbitally stable in the following sense: for every given € > 0 there exists a & = d(€) > 0
such that

inf ||U—¢lly<d
onf (IU = ¢lly <

implies

¢1Erg;0 lu(t) — @lly <€ forall t>0

where Sy, = {¢ € M., | Juy(¢) = d(wo)}.

3.6 Applications

In this section, we consider several cases of nonlinearity f or domain {2 where we have

orbitally stable standing waves.

Theorem 3.6 If the lower bound A\ of spectrum of operator —A + m is a positive
eigenvalue(This is certainly true if the underlying domain Q is a bounded domain in
R™ or a compact manifold. It is also true if m(z) is a potential, and the operator

—A + m has discrete spectrum to the left of a continuous spectrum), then

1. The NLKG have orbitally stable standing waves for w? € (0, \;).

2. The NLS have orbitally stable standing waves for w € (—oo, Ay).
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Proof. By Theorem 3.4 or Theorem 3.5, it suffices to show that there exists a wp
such that d”’(wp) > 0. Again we only give the proof for NLKG. The proof for NLS is
very similar.

Suppose not, then d”(w) < 0 for all w € (0,1/A;) which implies that
d(w)=-w / |¢o|? is decreasing for w € (0, \y),
which yields that there exists a positive constant C independent of w such that
/lml"’ > C forw € (¢,v/)
for any constant 0 < € < v/A;. By definition of d(w), we have

dw) = L(ds) > ——2

=30 +1) / (IVgul® + (m — w*) [¢u]’) = A1(0,C) (M — w?), (3.56)

where A; = A;(0,C) is a positive constant independent of w. Next we estimate an
upper bound for d(w). Let v(z) be the first eigenvalue of operator —A + m, and
vs(z) = dv(z). We can find § = §(w) so that

K. (v5) = 52/ (1Yol + (m —w?) Jof?) + J/Uf(ac,év) 0,

(hi =) [ v = =5 [ofta,o0)

which implies from Remark 3.1 that

or

§=6(w) — 0as w? — )\ (3.57)

Using (f3) and alternative expression for d(w) we get

d(w) S Jw(5v) S %/(lv'vlz + (m - wz) |v|2)
/\1 - UJ2
2

<s2/|u|2 = A5(0,v)8} () — w?), (3.58)

where A3(0,v) is a positive constant independent of w. Combining (3.56) and (3.58)
gives

A,
< s
0<A2_ ,
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a contradiction to (3.57), and the theorem is proved.
The second application we consider is for the case ! = R™ with n > 2. We

investigate the stability of standing waves for NLKG in the following form.

w—Au+u—|uf'u=0in R" x R, (3.59)
which corresponds to m(z) =1 and f(z,u) = — |u|’""' «, and for NLS in the form

iuy — Au — |uf’ v =0in R" x R, (3.60)
which corresponds to m(z) = 0 and f(z,u) = — |ul’" u

Theorem 3.7 The NLKG (3.59) and NLS (3.60) have orbitally standing waves for
l<p<l+4/n.

Proof. We consider the NLKG first. Due to the scaling property of the solutions in
R™", we can find an explicit expression for d(w). Let ¢,, be the positive radial symmetric

solution satisfying

~Apy + (1~ )b, — ¢, = 0.
Put v(z) = (1/8)é.(z/B), then
—5B%Av + (1 — w?)§v — 670" = 0.
which is transformed to
—Av+v—0"=0

if we select 3% = 67~! = 1 — w?. Therefore we have

1 1
5/ (IVol* +0%) = = [ o™

2 5- -1
_ (5 (ﬁn 2|V¢w(l‘/ﬁ)| +¢2(’l)/ﬂ /¢P+l /IH
= [jn 25 2Jw(¢w) = p" 26” 2([(0)),

d(0) = Jo(v) =

which implies that
d(w) = §*4*d(0) = (1 — w?)*d(0),
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where
44 (p—1)(2—n)
2(p—-1)

o =

Taking the second derivative we find
d"(w) = 2a [-1 + (2a — 1)w?] (1 — w?)*7%d(0),

which shows that if w? < 1, then

{w]d"w)>0}={w|0< <w? <1}

20 — 1

The set in right hand side is nonempty if 1 < p <1+ 4/n.
As for NLS

and

d"(w) = a(a — 1)(—w)*?

which is positive for allw < 0and 1 <p < 1+4/n.

Remark 3.3 o The same stability result for standing waves of NLKG (3.59) was
obtained by Shatah in [{3], but the approach in [{3] can not handle the case

n =1 orn =2 due to the usage of a different functional K, which is not well

defined forn =1 and n = 2.

o Similar orbital stability resull for standing waves of NLS (3.60) was obtained by
Cazenave and Lions in [9], their method is very different from the one developed
here. In [9], the frequency w can not be prescribed to find corresponding ground

state. Instead, they solve minimization problem

inf{/ |Vul® — ]—)% / luP*Y ) ], = g w € HI(R")}

where > 0 to find a ground state, then use Lagrange multiplier to find corre-

sponding frequency.

|-



Chapter 4

Finite Time Blow Up for Nonlinear

Klein-Gordon Equation

4.1 Introduction

In this chapter, 2 is R™ or a bounded domain in R™ or n-dimensional compact man-

ifold. We will only consider the following nonlinear Klein-Gordon equation:

uy — Au+m(z)u+ f(z,u) =0 in Rt xQ,
u=0 on I if 90N #0, (4.1)
u(0,2) =U(z), w(0,z)=V(z),

where condition on m(z) is the same as defined in last chapter, i.e., m(z) is a real
bounded function and if @ = R", m(z) is assumed to be radially symmetric, i.e.,
m(z) = m(|z|). We also assume that the lower bound A; of spectrum of operator
—A + m is positive. We still assume f(z,u) = g(z, |u|)u. We prove that for a class
of nonlinearity f the steady states of the least energy, i.e., ground states are unstable
in a very strong sense: there is a region on boundary of which ground states lie,
such that that every solution of NLKG (4.1) starting from this region will blow up
in finite time. This type of instability basically means the nonexistence of global
solutions for some initial data and some nonlinearities. Keller’s work [27] represents

one of the earliest results in this direction. Since then, a number of authors (e.g.,

68
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Berestyski and Cazenave (2], John [11], Glassey [12], [13], Levein [29], Payne and
Sattinger [36], Sternberg [48] and Tsutsumi [54]) have investigated the conditions on
which the solutions of (4.1) will blow-up in finite time. The second kind of instability
is that the solution of (4.1) starting near ground state may exist globally but will
approach infinity in L? norm as time ¢ approaches infinity. Shatah’s work [43] and
Keller’s work [25] represent the work in this direction. The third type of instability
is that the solution of (4.1) may exist globally and may not approach infinity as time
t approaches infinity, nevertheless the ground state is unstable. Shatah and Strauss’
paper [45] and Keller’s paper [25] represent the work in this direction.

In this chapter, we shall deal with first type of instability. We first prove the
existence of the ground state, then establish more properties of weak solutions. Finally
we prove that every solution of NLKG (4.1) starting from some region with ground

state on its boundary will blow up in finite time.

4.2 Steady State and Weak Solution

In this section, we prove the existence of steady state of the least energy, i.e, ground
state, and establish more properties of weak solutions of NLKG (4.1). For the ex-
istence of ground state, we mainly state the relevant results since the conditions
imposed on nonlinearity f in this chapter will be the same as in those in last chapter
except that we do not assume that f, < 0 which was used to prove the continuity
of d(w), therefore the proofs for some related lemmas and theorems(for instance, the
theorem of the existence of ground states) in this chapter are also similar and will be
omitted. Now let us go to the existence of ground state. The steady state of NLKG

(4.1) satisfies the nonlinear elliptic equation

—-A¢+m(z)p + f(z,¢) =0,
6=0 on 0N if 9N #0,

(4.2)

We know that every solution u € H of (4.2) is a critical point of potential energy

functional

J0) = 5 [ (9 + mic) o) + [ Fa.o),
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where F(z,v) = fov T, s)ds. It is also easy to check that every solution

of (4.2) satisfies
K(v)E/(|VU] + m(zx /|v|f (z,]|v])

Therefore every solution of (4.2) lies on hypersurface
M={veH| K()=0and v # 0}.

To find the steady state of the least energy, it is natural to turn to minimization

problem

d= Jél}\f/l J(v). (4.3)

We make following assumptions on f to ensure J to attain its minimum.

(H1) feCYQ xR)and f!(z,s), f(z,s) — 0 uniformly in  as s — 0.

(H2) There exist constants 2 < [ < 2n/(n — 1) and C such that |f!(z,s)| < Cs'~?

for large s > 0 and for all z in Q.

(H3) There exists a constant 6 > 1 such that sf.(z,s) < 8f(z,s) for all € Q and

all s > 0.

Note that the following functions satisfy the above assumptions (H1)-(H3).

f(z,s) = =sPwithl <p<1+4/(n-2),

f(z,s)=—=sP+s?withl <g<p<1l+4/(n—2).

Introduce the I functional and the region M~ in H

1) = g [ (9o + @bl + [ (Fla0)= ool e loD).
M~ ={ve H| K(v) <0 and v # 0}.

Lemma 4.1 M is a C'-hypersurface in H, and both M and M~ are bounded away

from zero.
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Lemma 4.2

d= Ulél}\f/‘f I(v) = ué%lf— I(v).
Theorem 4.1 Let f satisfy conditions (H1), (H2) and (H3), then

1. d is positive;

2. Every minimizing sequence of problem (4.83) posses a convergent subsequence.

In particular, d is attained at some ¢;
3. This minimizer ¢ can be chosen positive;

4. Every minimizer of problem (4.3) is a solution of Fquation (4.2) and is called
the ground state.

We define the set of ground states
S={pe M| J(¢)=d}.

Next we present some properties about the weak solutions of NLKG (4.1) (see [36],
[49] and [54] for details). Suppose that u is a weak solution of (4.1) on Q x [0,T),
then the following statements hold

(1) u(t) is weakly continuous from [0,7T) to H, u(t) is weakly continuous from [0, T’)

to L2. So ||u(t)||, and ||u(t)||, are bounded on compact subsets of [0, T').

(2) There exists a weakly continuous mapping from [0,7') to L? denoted by wu,, such

that
t2
(u, ) | = / (e, B,
31

for 0 < ¢, <ty and ¢ € L? where (u,v) = fQ uvdz is standard inner product on

complex valued L?(Q2).
(3) For any ¢ : [0,T) — H satisfying (1) and (2), we have

(u, %) 12 = [2[(ut,¢a)—(Vu,Vd))—(m(')uad))—(f(-,’u)ﬂ/))]dt (4.4)
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It follows from (2) that (u(¢), ¢) is Lipschitz continuous for any ¢ in L?, i.e., u(?) is

weakly Lipschitz continuous in ¢. In (4.4), if we put ¥ = u, we have

(e, u) |2} =/2 [lluells = 1Vl = (m(-)u,u) = (S, w),u)] dt. (4.5)

131

Let u(t) be weak solution of NLKG (4.1), define
N(t) = (u(t), u(t)).
We follow the approaches in [36] to get some smoothness of N(t).

Lemma 4.3 N"(t) exists a.e. in [0,T), and N'(t) is Lipschitz continuous there.

Proof. Let Q(t,s) = (u(t),u(s)). Since u(t) is weakly absolutely continuous(by (2)),

and wu,(t) is weakly continuous

V() = (5009 + 5-0(.9)

= 2Re(uy, u). (4.6)

S

From special form of our nonlinearity f(z,u) = g(z, |u|)u and (4.5) we conclude that

(ug,u) is real, so (4.6) and (4.5) yield

N'(t) — N'(t,) = 2 / [lel2 = 11Vl — (m(Juyw) — (FCou)u)] de (47)

for all 0 < ¢; < t; < T. Since each term in the integrand is bounded on compact
subsets of [0,7"), we see that N’ is Lipschitz continuous on such sets. Therefore, N”

exists a.e. in [0,7T), and
N"(8) = 2 [lluelly = IVully = (m(-)e, ) = (f (- u),0)] - (4.8)

This concludes the proof for the lemma.

4.3 Finite Time Blow Up

In this section, with preparation made in last section, we shall prove the finite time

blow up of solutions starting from a region that has ground states on its boundary.
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First we define total energy(E) as the sum of potential energy(J(u)) and kinetic

energy(%”")”g) 1
E(u,v) = J(u) + '2-”17”3

For weak solutions u(t) of NLKG (4.1), we have energy inequality
E(u(tl),ut(tl)) Z E(U(tg),ut(tz)) V 0 S tl S tg.
Next define the NLKG solution-invariant sets

R, = {(u,v) € R| K(u) >0} U {(0,v) € R},
Ry = {(u,v) € R| K(u) < 0},

where
R={(u,v) e H® L* | E(u,v) < d}.
By definition of d, K and I, R; and R; have the following alternative definitions
Ry = {(u,v) € R | I(uv) < d}U{(0,v) € R},
Ry = {(u,v) € R| I(u) > d},

Lemma 4.4 R, and R, are invariant regions under the solution flow of NLKG (4.1).

Proof. The proof is similar to the proof of similar invariance lemma in last chapter,
so we skip it.

Now we are ready to present our main result.

Theorem 4.2 Lel u be a weak solution of Fquation (4.1) with initial data (U,V) €
Ry, let [0,T) be the existence interval. Then T must be finite.

Proof. Suppose that 7' = co. Note K(u) = (0 + 1) (J(u) — I(v)). From invariance
of Ry and energy inequality, we have for all 0 <t < o0
Ku) <(0+1)(E(u,u) —d) (4.9)
<O+ 1)(EU,V)—d)=—-€e<0. (4.10)
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Let N(t) = (u(t), u(t)), recall from last section that
N"(8) = 2 [lfull? = I ull? = (m(-Ju,w) = (£, ), w)] (4.11)
Therefore by (4.10) and (4.11) we have
N"(t) = 2f|fu]|* = K (u)] > 2¢ > 0

which implies that N’ is strictly increasing for ¢ € [0, 00), and there exists some ¢; > 0
such that
N'(t)> N'(ti))>0Ve>ty (4.12)

From (H1) and (H3) we get
0+1) [ Pleu) 2 (73,0
Energy inequality implies that
[ Plau) < BUY) = 5 (I9ull + () + )
Hence we arrive at

(o) u) 2 —(04 1) / F(z,u)

+1
2

which yields by (4.11)

D

> (I1Vull; + (mu,u) + [lucll) = (8 + 1) E(U, V),

N"(t) > (04 3)||will; + (0 — DAsflull; — 2(6 + ) EU, V).

Note that N(t) is strictly increasing for ¢ > ¢; from (4.12), therefore there exists a
to > t; such that
N"(t) > (0 + 3)||wlf5-

Hence for ¢ > {5, we have that

0+3

NN" - (N')? > (0 + 3)|ullllwell2 — (0 + 3)(w,ue)* > 0,

which leads to

(V7o) =~ [NV = (a4 ) (VY] <0 for t> 1,
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where a = (§ —1)/4 > 0, and so M~ is concave and decreasing for ¢ > t;. Therefore
there exists a Ty such that N — 0 as t — Ty which implies N — oo as t —» Tp.
Thus we get contradiction to 7' = oo.

Finally we need to show that R, is not empty. Choose initial data U(z) = 7¢(z)
with ¢ € S, and choose V(z) = 0. Then E(U,V) = J(U) = J(7¢) and K(U) =
K(7¢). It suffices to find 79 so that

E(U,V) < d and K(U) < 0.

The following arguments complete our proof. Let h(r) = J(7¢) and g(7) = K(7¢).
Then

h(1) = J(¢) =d, ¢(1) = K(¢) =0,

and by (H3) and K(¢) = 0 we have
g(1) = [ (V81 +m(a) 6l + 6 7z, o))
<0-1) [ 161 S(.16)
=(1-0) [ (V4 +m() 9P) <o,

and

h'(7) = %g(T) and A"(1) = ¢'(1) < 0.

Remark 4.1 Interesting enough, if a weak solution u starts from invariance region

Ry, then the solution exists globally. To see this, energy inequality implies that

B(u(t), (1)) = gl + T(w) +

1
1 K(u) < E(U,V),
and since R; is invariant, then K(u(t)) > 0 for all t. Therefore

%nutni + I(u) < E(U, V).

So ||ull, and |lu|ly, are uniformly bounded, and this implies the global existence of the

solution.
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