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ABSTRACT

PROBING THE SYMMETRY-BREAKING MECHANISM THROUGH THE
ELECTROWEAK INTERACTIONS OF THE TOP QUARK

By

Ehab Malkawi

Since the top quark mass is of the order of the symmetry-breaking scale, the
top quark is likely to provide useful hints about the symmetry-breaking mechanism
responsible for generating the gauge boson masses and at least connected with the
fermion mass generation mechanism. I propose to probe the electroweak symmetry-
breaking sector by measuring the effective couplings of the top quark to the gauge
bosons. Different scenarios of electroweak symmetry-breaking will imply different
correlations among these couplings. Using precision LEP and SLC data, I constrain
the nonuniversal couplings of the top quark to the gauge bosons using the electroweak
chiral Lagrangian framework. Constraining these couplings will provide an estimate
for possible deviation in the gauge universality advocated in the SM. At the order
of m?In A2, in which A ~ 47v is the cutoff scale of the effective theory, new physics
in the left-handed neutral current is already constrained by LEP data. In models
with an approximate custodial symmetry, a positive new physics contribution in the
left-handed charged current is preferred. The right-handed neutral current can be
constrained by studying the direct detection of the top quark at the Tevatron and

the LHC. At the LC, the neutral current can be better measured.

It is also interesting to note that due to the nonstandard couplings of the top

quark to the gauge bosons, the upper bound on the top quark mass, from radiative



corrections, can be raised from the SM bound m, < 200 GeV to as large as 300 GeV.
That is to say, if there is new physics associated with the top quark, it is possible
to say that (from radiative corrections) the top quark is heavier than what the SM

predicts.

Also, I present a theoretical frame work to extract the pure m, corrections to the
low energy data in the chiral Lagrangian framework. The result is useful and inter-
esting for two reasons: First, it simplifies the whole process of calculating radiative
corrections. Second, this approach is shown to clearly identify observables which are

sensitive to the symmetry-breaking sector of the electroweak theory.

Finally, I present a self-contained model which demonstrates how the nonstandard
top quark couplings to the gauge bosons can be generated. The model has a very
rich structure and significant implications at low and high energy scales. Using the
low energy data I discuss the possible constraints on the model. On the other hand,
high energy colliders will provide further tests and demonstrate possible new physics

especially interesting FCNC processes.
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Chapter 1

The Standard Model and
Precision Tests

The Standard Model is a SU(3)¢c x SU(2), x U(1)y gauge invariant quantum
field theory of the strong and electroweak interactions. The Standard Model has
been very successful in describing the fermions’ (quarks and leptons) interactions via
the force mediators (gauge bosons). The gauge symmetry SU(3)c¢ is associated with
the strong interaction (QCD) of the quarks via the corresponding gauge bosons known
as the gluons. The remaining symmetry SU(2), x U(1)y known as the electroweak
symmetry is composed of the weak SU(2), and the hypercharge U(1)y symmetries.
The electroweak symmetry governs the unified weak and electromagnetic interac-
tions, collectively, know as the electroweak interactions. To allow for the generation
of the weak gauge boson masses the gauge symmetry SU(2); x U(1)y must be bro-
ken into the electromagnetic symmetry group U(1)em. This breakdown is triggered
through the spontaneous symmetry breaking. The intimate connection between the
electroweak interactions and the symmetry breaking mechanism constitutes the major
issue I will explore throughout this body of work. Therefore, throughout this study
I will be mainly concentrating on the electroweak interactions. In the next section I

will outline the basic features of the electroweak Standard Model. For a more detailed
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discussion the reader can refer to existing literature [1, 2, 3, 4, 5].

1.1 The Electroweak Standard Model

The electroweak Standard Model (SM) is based on the gauge group SU(2), X

U(1)y with the following basic structures:

e The fermions are assembled in three families or generations with left-handed

doublets and right-handed singlets under the SU(2), group:

(%), (2), en dn

’ ) R R R
€/L d/

V" C

( y )L, (s)La KR, SRy CR,

vy t
(T)L, (b)L, TR, bR, tR. (1.1)

The hypercharge quantum number Y} of a fermion f is fixed by the Gell-Mann-
Nishijima relation

Y
Q=T+, (1.2)

where Q is the electric charge in units of e and T3; is the weak isospin quantum
number. For example, the left-handed electron e, has Q. = —1 and T3, = —1/2.
A left-handed fermion doublet will be denoted by ¥; whereas a right-handed

fermion singlet denoted by ¥ 5. The fermionic Lagrangian is given by
Lex =Y ¥iv'D,¥] + 3 ¥}y D, ¥, (1.3)
/ f

where f = 1,2,3 is a family index. Also,

Ta

D, ¥, = (a,, ~ ig5

a N Y
w; —lg,EB") v, (1.4)



Dp‘I’R = (ap - 1g’QB") ‘I’R ) (15)

where a = 1,2,3 is an isospin index. The gauge boson field W with the
gauge coupling g and the gauge boson field B, with the gauge coupling ¢ are
associated with the gauge groups SU(2), and U(1)y, respectively. The Pauli

matrices 7*’s are normalized according to the relation:

Trace(°7°%) = 26°. (1.6)
There are 4 gauge bosons transmitting the electroweak force:

A (photon), W* W~ Z. (1.7)

The self-interactions of the gauge bosons are given by

1 14 1 a auy
Lok = =7 BuB" — JWi, W™, (1.8)
where
B,, =98,B, - 3,B,, (1.9)
We, = 9,Wg — W2 + ge*WiWwe, (1.10)

and with the field definitions

Wl Fiw?
Wh = —— 1.11
V2 (111)
Z =cosO W3 —sinfB, A=sin0W?3+cosbB, (1.12)

where 6 is the weak mixing angle and cos? =1 —sin?4.
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o A complex scalar doublet field with hypercharge Y = —1 implements the spon-

taneous symmetry-breaking

o ((u+H+i¢°)/\/§), (1.13)

i~
where the fields ¢° and ¢* are called the would-be Goldstone bosons and the

neutral field H is called the Higgs boson. The scalar doublet field ® has a

non-vanishing vacuum expectation value (v.e.v) < & >, where
<®>= (”/3/5). (1.14)

The components ¢+, ¢° are unphysical and can be gauged away in a specific

gauge known as the unitary gauge. The scalar Lagrangian is given by

hY 02\ 2
Lok = (D, ®)!(D*®) - 5((@*@)2 - -2-) , (1.15)
where
o 1
D,® = (a,, —igTWe + ig'§B,,) ®. (1.16)

Because of the v.e.v, spontaneous symmetry-breaking is triggered and the W*

and Z bosons are rendered massive:

‘/ 2+ 2

The fermion masses are generated through the fermion interactions to the scalar

doublet & (Yukawa interactions), e.g., for the third generation

‘/i"" (@, bL)Btn+ ‘/im"(

V2m,
v

cYukawa = EL BL) (—iTg(I).) bR +

(UL TL) (—iTa®") 7 + hermitian conjugate. (1.18)
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Due to the generation of quark masses for both the up and down type quarks, mixing
between different quark families is possible. The mixing is described by a unitary
matrix Vckm which consists of three mixing angles and one phase. No mixing in the

lepton sector can be generated within the SM because neutrinos are massless.

The full electroweak gauge invariant SM Lagrangian can be written as
Lsm = Lrk + Lok + Lok + Lyukawa - (1.19)

By examining Eq. (1.19) one concludes that the SM has a certain number of free
parameters: g, ¢, v, A, in addition to the fermion masses m; and the quark mixing

matrix 1. Those free parameters have to be determined from experimental data.

The parameter A can be traded for the Higgs boson mass my = vv/A. The Higgs
boson mass is experimentally constrained to be above 65 GeV [6]. Also, theoretical
arguments suggest an upper bound on my of about 1 TeV (7, 8]. All fermion masses
[9] except the top quark mass [10, 11] are below the M scale [12]. Throughout this
work, I will refer to fermions with masses below the M scale by light fermions. Also,

by low energy experiments I mean experiments operating at the Mz scale or below.

1.2 Radiative Corrections

At tree level the low energy electroweak observables can be entirely written in
terms of the three free parameters g, ¢/, and v in addition to the light fermion masses
and the quark mixing matrix Vckm. The top quark mass m, and the Higgs boson mass
mpy only enter through radiative corrections. Thus, given the light fermion masses
and the quark mixing matrix, three additional measurable quantities are needed to

fix the free parameters g, ¢/, and v. The three observables chosen must be precisely

! Also, from the QCD sector, there is the strong gauge coupling g,.



6

measured and theoretically calculable in a clean way. After this procedure of deﬁnihg
the physical input, other observables can be predicted and compared with the cor-
responding éxperimenta.l data. Different choices of the basic measured observables
correspond to different renormalization schemes. In general, loop calculations are
divergent and therefore, one needs to regularize the theory. Different regularization
schemes are used in the literature, e.g., using a momentum-cutoff, dimensional reg-
ularization, etc. The tree-level (bare) parameters in the Lagrangian have no direct
physical meaning and can be replaced by the renormalized parameters, e.g., the bare

gauge coupling go can be written in terms of the renormalized coupling g
g=go+4dg, (1.20)

where 4g is called the coupling counterterm. The renormalized parameters are finite
by definition and can be fixed by a set of measurable quantities. By this redefinition
of the parameters the one-loop amplitudes are rendered finite. However, only the
divergent part of the counterterm is fixed by the requirement of divergence cancela-
tion. The finite part is somewhat arbitrary and thus calculated quantities depend on
the renormalization scheme. To any perturbative order, the difference in a calculated
quantity using two different renormalization schemes is of a higher order, e.g., for
a one-loop calculation the difference is of the order of a two-loop correction. All
renormalization schemes are equivalent if calculations are performed to all orders.
Since only a perturbative fixed order calculation is usually possible, one should be
consistent in defining the renormalization scheme and using the calculated numbers
in that particular scheme. Different renormalization schemes are implemented in the
literature. In appendix A, I discuss in some detail different renormalization schemes.

Here, I briefly mention some of the most commonly used schemes:

o The Z-pole scheme, where the input observables are chosen to be:
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— The electromagnetic coupling a = €?/4m measured from electron-proton
(e-p) scattering in the limit of zero momentum transfer g2 — 0 (Thomson

limit) [9]
a~! =137.0359895(61) . (1.21)

— The Fermi coupling constant G measured from the muon lifetime 7, and
the theoretical formula

1 Gim) m? a (25 |, 2a, m,
W 1920 (1-8;5 (1+2(F-7)) (rzn) . 02

p e

where QED corrections to the four-fermion interaction includes the one-

loop correction and the leading correction in a?. The value of GF is [9).
Gr = 1.166389(22) x 1075 GeV~2. (1.23)
— The Z mass [12]
Mz = 91.1885 + 0.0022 GeV . (1.24)

In this scheme the weak mixing angle sin?# is defined to all orders by the

relation

. 2 9 1 4ma 1/2
sm0=1—cos0§§ 1—[1—m] . (1.25)

By definition sin?# has no dependence on the top quark mass m, and the

Higgs boson mass my.
e The on-shell scheme where a, Mz, and My are the input observables. In this
scheme the weak mixing angle sin?§ is defined to all orders as

. M3
sin?0 =1 - _1\71% . (1.26)

Unfortunately, the W mass is not determined as precisely as Mz [12, 13]

My = 80.26 + 0.16 GeV.. (1.27)
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Therefore, sin? @ is usually extracted from other data. In this case sin?§ has a

strong dependence on the top quark mass m,.

o The MS scheme where only the divergent pieces in the loop calculations are
absorbed by the counterterms. In this scheme, sin? @ is defined as
My
=2
2 =1-——r (1.28)
] _TMZ
where My, and M are the W and Z masses defined in the MS scheme. In this

scheme the weak mixing angle 32 has some sensitivity on the top quark mass.

For more information on renormalization schemes, the reader can refer to ap-

pendix A.

The main goal of this work is to browse through the top quark effects to low energy
data. Therefore, it is advantageous to isolate the top quark effects to low energy data
completely from the input parameters. For this reason, I will work with the Z-pole
scheme since sin? 8, by definition, does not depend on the top quark mass. The basic

observables a, Gr, and Mz can be written in terms of the parameters g, ¢/, and v as

follow
oz 99 Gp=— _Vgitgly (1.29)
“wery O Mt w '

These equations can be solved in favour of g, ¢’, and v as a function of a, Gr, and

M7 as follow

v—( 1 )1/2 _ Vira

, Vinra
V2Gr ~ sinf’

g = cosf ’

(1.30)

where

1 1/2
<. 92 2 4ra |
0=1- 0==-11-|1—- — . 1.31
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All other derived parameters in the Lagrangian can be written in terms of the input

parameters. For the W mass we have

M2, = cos®6 M2 (1.32)
The photon coupling to the fermions f-f is given by

QsViray, . (1.33)

The W# coupling to the fermions f-f’ is given by

57———“2“;’;0%(1 — ). (1.34)

The Z coupling to the fermions f-f is given by

1/2

(V2GrM3) “vulgvs = garvs) (1.35)
where

gvy =Ts; —2Qysin®8, gay =Tsy. (1.36)

For the electron Q. = —1, T3, = —1/2.

If we do not care at all about radiative corrections, it is already possible to predict
the low energy observables. However, the existed low energy data are precise enough
to force us into considering the radiative corrections. In the rest of this chapter I will
confine the discussion to the physics at the Z-mass scale, i.e., the physics at LEP and
SLC (e*e™ colliders at the Z pole). At one-loop level, the amplitude for the process

e~et = ff near the Z resonance can be factorized and written as

Alemet = ff) = Ay + Az, (1.37)
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where A, and Az are the photon- and Z-exchange amplitudes, respectively. In
Eq. (1.37) I have ignored contributions from box diagrams which have a negligi-
ble effect at the Z pole [14]. Near the Z peak the total cross section as a function of

the center of mass (c.m.) energy (1/s) can be written as

0,7(8) = 05 47(s) + 0, ;7(s) + 0,7 ,7(5) . (1.38)

Here, 0 ;7(s) is the Z contribution to the cross section defined as

0 sI‘%
az.ﬁ(s) =957 (s - M%)Q + SZF%/M% ’

(1.39)

where 0'(}? is the peak cross section which is connected to the Z partial decay widths

for Z & e"e* and Z o fT,

12xI. T

Eq. (1.39) is taken as the definition of the Z mass and the total decay width 'z
[15, 16). Notice that Eq. (1.39) is different from the Breit-Wigner shape by the s-

dependence of the width [14]). The terms o ,7(s) and 0_; (7(s) in Eq. (1.38) stand

for the pure photon and the Z-photon interference contributions to the cross section.

Near the Z peak, the largest contribution to the cross section o ﬂ(s) comes from
the Z contribution. For the LEP physics it is customary to extract the pure QED
effects and to isolate them from the Z contribution. Below I discuss the QED correc-

tions.

1.2.1 QED Corrections

The pure photon and the Z-photon interference contributions to the cross section
0,47(s) and o, (5(s), are theoretically calculated and subtracted from o,7(s). The

QED corrections can be summarized in the following items
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o The initial-state photon radiation is the largest source of correction to the Breit-
Wigner Z-line shape. This correction causes a reduction of about 25% in the
peak cross section [15]. It can be counted for through a "structure function”

G(z, s) that can be deconvoluted from the measured cross section a',“f“(s)

o (s) = / dG(z, )0 ,7((1 - )s), (1.41)

where z is the fraction of the initial momentum of the electron or the positron
carried by the photon. The function G(z, s) is theoretically predicted to a good

accuracy through renormalization group methods [17].

o The largest QED effect to the physical observables at the Z-pole comes from
the change (running) in o due to the change in the energy scale from ¢ = 0,
where a is measured, to ¢> = M2 where physical observables are evaluated.
This effect is related to the photon vacuum polarization function which can be

written as

077(¢%) = —iguwq*F(¢*) + quq, terms. (1.42)

Note that I177(0) = 0 due to QED gauge invariance. In defining the running
coupling a at the Z-pole I only consider the light fermions contribution to the
photon vacuum polarization function. Hence, from the photon exchange at one

loop (see Figure 1.1a) we have

Qg Qy O 2y _ @ 2
22 E§F77(q )= F[l - F"(g%)], . (1.43)

where oy is the bare coupling as discussed in the next section. A redefinition

(renormalization) of aq is performed to render it finite,

ag = a[l + F7(0)] . (1.44)
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Therefore, we get
a(¢?) = a (1= F7(¢*) + F"(0)) = a (1 + Aa(¢?) , (1.45)

where Aa(g?) is a finite correction to the electromagnetic coupling a. The

improved summed expression for « is (see Figure 1.1b)

(4

o(¢") = T xarm Al

(1.46)

In Aa(g?) I do not include the gauge bosons or the top quark contributions
which are conventionally included in the remainder of the corrections. I write
the light leptons and quarks contributions to Aa(¢?) as Aa.(¢?) and Acay(g?),
respectively. At the Z-mass scale, the leptonic contribution to a is determined
accurately, Aa,(M2%) = —0.03142 [18], whereas for the quark contribution Aay,
a perturbative calculation is not possible. The determination of Aa, is done
using a dispersion integral over the measured cross section of e*e~ — hadrons

[18]. This gives Aa,(M%) = —0.0286(9) and therefore one obtains [18]
a~ (M%) =128.8940.09, (1.47)

where the largest uncertainty is coming from the hadron contribution. The
effect of the running a is significant in the radiative correction analysis near the
Z pole. With the coupling a(q? = 0) being replaced by the running coupling
a(q® = M32) in the tree-level Z contribution to the cross section, one obtains

what is called the improved Born approximation for physics at the Z-pole.

Final state-photon radiations are accounted for by including a factor (1 +
3aQ}/47r) multiplying the Z partial widths. Similarly, for the QCD correc-

tions we include the factor Rqcp in the hadronic partial widths, where [19]

2 3
Rocp =1+ (9(%)) ~14 (ﬂ;’:—@) - 12.8(%"”%)) , (1.48)
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and q, is the QCD coupling, a, = ¢g2/4~.

o The remaining QED corrections due to proper vertex correction and fermion
self-energies are negligibly small at the Z-pole and vanish for a real photon
(s = 0) [14]). The typical size of these corrections to the form factors is about

1073 relative to the tree-level [14].

By taking care of the photonic corrections theoretically and experimentally, one
can concentrate on the Z contribution to the Z-pole physics. Even with the inclusion
of the running coupling a(M2) in the Z-pole observables it has been shown that the
weak radiative corrections are becoming more apparent and significant in low energy

data [20]. In this case one needs to go through the whole renormalization procedure.

1.3 Renormalization

In considering the renormalization procedure at one loop one needs to consider the
whole set of one-loop level contributions, which can be summarized in the following

corrections:

e The vacuum polarization functions of the gauge bosons (see Figure 1.2a) written

in the following form
MJ,(¢%) = —igu (A7(0) + ¢’ F(¢?)) + guqu terms, (1.49)

where i,j = W, Z, y(photon). Alternatively instead of using Z and 7 one can
use ¢,j = 3,0 for W3 and B, respectively. The relation between the two cases

is as follow

A% = cos? § AZZ + 2sinfcosPA? +sin?0 AM (1.50)
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Figure 1.1: a: The Feynman diagrams contributing to the running a up to one-loop
level. b: The Feynman diagrams contributing to the running a summed to all orders.
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A% = —cosOsin0A%Z% 4+ (cos®’0 —sin?0)A"% + cosfsinfAT, (1.51)
A% = sin?9 A%Z — 2sinfcos9A?Z + cos’§ A7, (1.52)

and similarly for F*. In Eq. (1.49), there is a small imaginary part which I will

ignore since it does not contribute at the one-loop level.

e The contribution to the vector and the axial form factors at ¢> = M2 in the

Z — ff vertex from proper vertex diagrams and fermion self energies only (see

Figure 1.2b)
1/2
(V2GrM3) "“vu(8gv s — 8gass) - (1.53)

o All the one-loop corrections except the W vacuum polarization to the u-decay
amplitude at zero external momentum (see Figure 1.2c). All these corrections

will be denoted by 6Gy 5 [16]

6—%‘3 (@1u(1 = ys)ve) (B (1 = ws)v) - (1.54)

The input bare parameters can be written in terms of the renormalized ones and

the above one-loop corrections [16].

(1) For the electromagnetic coupling I write the bare parameter g in terms of the

renormalized coupling o and the counterterm da as
a=ag+da. (1.55)

The one-loop corrections to the effective coupling y-e~-e* at zero momentum
transfer g2 = 0 are summarized in Figure 1.3. The bare coupling v-e~-e* can

be written, using Eq. (1.55), as

16
Y (1 - 5;‘1) , (1.56)
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Figure 1.2: The whole set of one-loop corrections needed to renormalize the SM
parameters a, Gr, and M3.
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where da/a = 25e/e. The one-loop proper vertex and self-energies calculation

can be written as

€Yy (6gve — 15094c) - (1.57)

The photon wave function can be written as (1+1/26Z,) where 6Z, = —F7(0).

Adding all the one-loop corrections, one finds

14a Ve A%(0) 1
€ (1 " 2a 2sinfcosf M2 +ogve+ 562‘7
a, A7%(0)
6 e . ) .
W ( 94 = sinfcosd M3 ) (1.58)
where v, = —1/2 + 2sin’0 and a, = —1/2 are the vector and axial-vector

couplings of the Z boson to e~ e*.

In pure QED no 7-Z mixing exists and using the QED Ward identity one finds

dgve = 6gac = 0 [21]. Therefore, the renormalized coupling reduces to
léa 1
€ (1 - 5-0— + 5527) . (159)

By requiring that, in the limit g2 = 0, the renormalized coupling reduces to (e)

we conclude that
— =0Z,=-F"(0). (1.60)

In the SM case we have to include the y-Z mixing which is mainly due to the W-

boson loop. In the SM case one finds that the electromagnetic Ward-Takahashi

identity guarantees [21]

1 A"(0)
4sinfcosf M3 =0. (1.61)

59/1: +
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Also, one finds

1 —4sin%0 A2 sin?d A7Z
Sgve + 4sinfcosf M3 )= ‘WMZ(O)' (1.62)
Therefore the coupling reduces to
léa 1 sind AY%(0)
¢ (1 “3a T -2-62:7 " sinfcosf M3 ) (1.63)
From which one finds
da 2sinf A% (0)
o o _pr A )
a Fr(0) cosf M3 (1.64)

For the Z-mass renormalization I consider the one-loop corrections to the Z

boson propagator (see Figure 1.4a). One finds

1 1 AZZ(O) +q2FZZ(q2))
- 1- . 1.65
@?—-M3 ¢ - M, ( ¢* — M3, (1.6)
The full or dressed propagator is
1 5 1 1 _
FoME, " F M, | 1y
! (1.66)
@2 — M3, + A%%(0) + ¢*F%%(g%) '
The physical mass M is identified with the position of the pole
q® — M2y + A%2(0) + ¢*F?%(¢*) =0 at ¢ = M2. (1.67)
Hence defining the mass counterterm as
M2 = M%,+6M%, (1.68)
one finds
SM?2 A%Z(0
Z= O _ pzz(a3). (1.69)

ME ~ M}
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y €
e
e
Y e%e
e

Figure 1.3: The one-loop corrections to the coupling y—e~—e*.
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Figure 1.4: a: The vacuum polarization function of the Z boson, up to one loop. b:
The one-loop corrections to the p decay. All corrections, except the W self-energy,
are collectively denoted by éGy p.
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(3) For the Fermi coupling G, I compute the one-loop correction to the y decay (see
Figure 1.4b). I denote all the proper vertex, box and self energies corrections

by 6Gy g. Writing the counterterm as

Gr =Gpy+ 6Gp, (1.70)

and adding the one-loop calculations with the counterterm to the p-decay am-

plitude, one finds

6Gr  AWW(0) + #FFWW(4?) | OGvp
Gr (1 v Z— M0, + c. ) (1.71)
At ¢®> = 0 we have
6Gr  AYYW(0) 6Gys
Gr (1 ottt o) (1.72)
By requiring that Eq. (1.72) reduces to G one finds
ww
6r _ A" 7(0) , 9Cve (1.73)

Gr M} Gr

All other derived quantities can be written in terms of the renormalized a, Gr, Mz,

and their counterterms. The renormalized weak mixing angle can be derived as follows

sin?0 =sin?0g + 6sin?0, cos’f = cos?0q + Scos’h (1.74)
where
) 2 TQg
sin“fycos* by = ——mm. 1.75
0 0 \/EGFOM%O ( )

Therefore, one finds

dcos’@ = —4sin?f =

sin’ 8 cos? 8 (Ja 6Gr 6M§)’ (1.76)

cos?6 —sin?0 \ & T Gr + M2
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where sin2 @ is defined to all orders as

- 2, 1 ara  |'?
sm0=1—-cos€§§ 1- l—m . (177)
Equivalently,
sin?@ cos?f = -‘/ﬁ and cos?d =1 —sin%0 . (1.78)
z

The renormalized W mass can be derived from the tree-level relation
M2, = cos? 8 gM2, . (1.79)
One finds

ML = Mo+ M} = cos® 8 M2, + M2, = cos? M% + M2,

M2 cos®8 . 9,0a . o, 6GF 9 , OM2
(sm 0;—sm 0-a—cos 0-1\/1_% . (1.80)

" sin?0 — cos? 6
By demanding that My, coincides with the physical (on-shell) mass, the counterterm

M}, is fixed

My, AYY0)  ww
2 - 7 —F
My, My,

(M) . (1.81)
In summary, the tree-level (bare) S matrix

So = So(ao, Gro, M3,), (1.82)
is replaced at one-loop level by a finite physical S matrix

So =+ S(a,Gr, M2) +8S(a,Gp, M3, my,my), (1.83)

where 6S encompasses the one-loop corrections and the induced shift in the renor-

malized quantities. Notice that m, and my only appear in the radiative corrections.



23

The tree-level amplitude Z — ff can be written as

ﬁG M2 _ 1 . 1

XU Yy (T3! —2Qysin’* 8 — ‘75T31) us. (1.84)

AleTet 2 Z o ff) =

Next, I include all the one-loop corrections and the counterterms to the amplitude A.

Notice that the photon-Z mixing will also contribute to the amplitude. One finds

Aleet 2 Z o ff) =

q2 — M% 1- GF - M% - F (MZ) - dq2 (MZ)
Te’)’# (gV¢ + AgVe -7 [gAc + AgAe]) Ue X
TrYu (gvs + Bgvy — 75 (945 + Bgay]) uy, (1.85)
where to simplify the notation, I defined
gV!=T3,-2Q,sin20, gAf=T3;, (1.86)
2a2 : A7Z(0) vZ 2

Agyy =2Q6sin"0 + égvy — 2Qysinf cosd 2 + F'*(M3) |, (1.87)
Agag =8gay - (1.88)

This result is slightly different from the result given in Ref. [16] by the inclusion
of the term A7Z(0) in Eq. (1.87). At one-loop level, fermions do not contribute to
A"%(0), i.e., A}Z(O) = 0. However, there is a small contribution from the W-boson

loop [14].

Determining the amplitude enables us to calculate all physical observables at
LEP, namely the partial decay widths, the forward-backward asymmetries, and the

polarization measurements A, and A,. The partial-decay widths can be written as

follow
rz - f1) = e (1- G - S - o) - o)

X ([gv; +Agv I’ + [gar + AgAf]2) ; (1.89)
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where N is a color factor, Noc = 3 for a quark final state and 1 otherwise. The

leptonic forward-backward asymmetry can be written as

3[gac + Agac)love + Agve]®
2
([gAl + Agar® + [gve + Agvc]2)

Alp = (1.90)
where I have assumed lepton universality in A%p. In the SM, lepton universality is a
valid statement. However, In chapter 5 I will discuss a model, different from the SM,
which may break lepton universality. In the following discussion I will continue with

the assumption of lepton universality. The e and 7 polarization observables A, and

A, can be written as

= 2[gas + Dgagllgvs + Agv/]
([gA, + AgM]2 +[gvy + AQVI]Q)

where f stands for e or 7.

(1.91)

If we ignore for the moment the non-oblique corrections to the form-factors Agy
and Agay (6gvs = 0gay = 0) then it is clear that only oblique corrections (corrections
independent of the fermion flavor) are present. Also, one finds that all LEP observ-
ables can be written in terms of three combinations of oblique corrections. The first

correction is the one multiplying the partial decay width in Eq. (1.89), namely

6GF JM% yAA 2 2
( or -0 pron - Soom) (192

The second one is seen clearly from the ratio

~Z
M = 4|Qy| (5sin20 — sinfcosf [AMéO) + F’Z(Mg)]) . (1.93)

9as
The third one is given in terms of the W mass, which can be seen clearly from

Eq. (1.80). From Eq. (1.80) one can extract the third oblique correction,

M,

gt

MR, sin? @ (ég 6Gr cos’f 6M§) (1.94)

M}  sin®0 —cos?0 \ o Gp sin®0 M2
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To summarize, ignoring all non-oblique corrections, there are only three combinations

of oblique corrections which affect the Z-pole observables.

To include the non-oblique corrections one has to make some general assumptions
to make the analysis simple and useful as a model independent tool. Before I do this
I consider the measurements of I'(Z = p~u*), Akg, and My with the non-oblique
corrections included. I combine the term Aga, with the oblique correction to the

decay width I'(Z — p~p*) and define the first parameter Ap where

_ _8Gr M} 2z _ FZZ
Ap=_—G:—T§—F (Mz)-d—qg(Mz)-“AgAp- (1.95)

Using the form-factors ratio extracted from A% one finds

Gvu + Ang .. 9 . 9

== =1-4sin"0 — 2Agy, + 2(1 —4sin°0)Aga, - 1.96
Y. v+ 2 )Agan (1.99)
I define the second parameter Ak’ where

9vu + Ang =

— 4sin?6 (1 + AK' 1.97
P ( ). (1.97)

From which one concludes

Ak = 1

= 35nZd (Agv,, -(1- 4sin29)AgA,,) . (1.98)

Using the parameters Ap and Ak’ one can write the observables ['(Z — p~ut) and

AFBGS
- GrM Z 2 ’
T(Z = ppt) = i ‘/_(1+Ap) [1 - 4sin 0(1+Ak)] +1 (1.99)
2
3|1 —4sin?8 (1 + AK'
Al g = [ ( ) (1.100)

(1 +[1 - dsin?6 (14 Ak’)]2)2
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It is worth mentioning that one needs to assume only e-u universality to extract Ak’
from the forward-backward asymmetries A%g. So far there is no need to include the
7 letpon in the universality assumption. Finally, using Eq. (1.80) and the expression

for (l - %‘3’-) yﬁé’-, I introduce the third parameter Ary where

(1 N Mﬁ,) M}, _ ra(M3) (1.101)
M3} ) MZ ~ V2GrME(1 - Arw) .
Using Eq. (1.80) one finds
2 2 20 anc? 2
Ary = 0Gr ba cos‘0 SM; sin®6 —cos® 8 MY, (1.102)

=Cr o Tsnto MZ T snlo MG
One should remember that the term éa/a in Eq. (1.102) does not include the light
fermions contribution which has been absorbed in a(M2) as discussed earlier. Notice
that in the improved Born approximation (including only the QED corrections) Ap,

AK', and Arw vanish by definition.

In terms of the one-loop corrections we found earlier one can write explicitly the

quantities Ap, Arw, and Ak’ as follow

Ap = MM, Zd_qz(MZ)— Gy — 43gac, (1.103)
cos?f [AZZ(0) AWW(0)\ cos’8 _,,, . o "
Arw = "sinﬁa( My Mg, ) saret MDHETO)

sin?@ — cos? 6

2sin6 A72(0)  6G
- WW () r2 V.B
sin20 F (M‘V) + cos @ M% + GF ’ (1104)
2 ww zz
' cos® 6 AYW(0)  APZ(0) L zz,a g0 »
ak = cos? — sin? 0 ( M2, M2 F2%(Mz)+ F(0) | +
2sinfcosd A%(0) _ 22
cos?0 —sin’0 M2 + 2sinfcosF"“(M3) +
206G
- v.B + 59\’( - (1 - 4sin20 )JgAl . (1105)

cos2f —sin’d G
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Now I expand my scope and take a further step into the analysis. The definition of
the parameters Ap, Arw, and Ak’ in terms of the physical observables I'(Z — p~ut),
Algg, and My nominate these parameters to be used as a model independent probe.
The parameters Ap, Ary, and Ak’ are equipped to describe radiative corrections due
to any model which is identical in its tree-level low energy part to that of the SM.

Therefore, I will proceed with this aim in mind.

To include additional observables in the model independent analysis I will make
some general assumptions (16, 22, 23]. I start by assuming e-u-7 lepton universality.
As mentioned before, lepton universality is a valid statement in the SM. Consequently,
all leptonic partial decay widths and forward-backward asymmetries are uniquely
determined by Ap and Ak’. Similarly for the polarization measurements A, and
A,. In the case of lepton universality one can use the average lepton measurements
I'(Z — €¢*) and A%y in defining Ap and AK'. To include the quark measurements,
i.e., the hadronic widths and the forward-backward asymmetries, further assumptions
are needed. I assume that all relevant deviations from the SM are only contained in
the vacuum polarization functions, i.e., through oblique corrections. This may be
a reasonable assumption except for the b quark which I handle separately. In the
b-quark case, there is a large non-oblique correction to the decay width I'(Z — bb)
due to vertex diagrams involving the top quark. This correction can not be expressed
in terms of the parameters we defined above. Therefore, I follow Refs. [16, 22, 23] by
introducing an additional parameter €, to describe this non-oblique correction. I will

discuss this parameter in the next section.

To summarize this section, all precision electroweak observables at the Z pole,
under some general assumptions, can be written in terms of four quantities Ary,, Ap,
Ak, and ¢, (to be discussed below). These quantities can be deduced easily from

the experimental measurements I'(Z — ¢~¢*), A%y (assuming lepton universality),
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My, and T'(Z — bb). This result provides a straight-forward method to check for the
validity of the theory against the experimental data. The theory under investigation
includes a more general set of models and not exclusively the SM. All models which
are identical in their low-energy tree-level sectors to that of the SM and only differ by
radiative corrections can be included in the model independent analysis. Examples
include the Minimal Supersymmetric Standard Model (MSSM), Technicolor (TC)

models, multi-Higgs doublets models, etc.

1.4 The ¢ Parameters

From the previous section, we found that all electroweak radiative corrections can
be parameterized by a set of four parameters. This result is interesting because one
does not need to worry about the whole renormalization procedure any more. To
parameterize the electroweak radiative corrections, it is useful to separate different
possible effects into different parameters. In other words, to disentangle new physics
effects it is very useful to choose the parameters so that some are sensitive to specific
types of new physics. In this work where I am interested in the top quark contributions
to low energy data, the temptation is high to choose some parameters to be very

sensitive to the top quark mass effect.

A well-known parameterization can be implemented to our case based on the
scheme used in Refs. [16, 22, 23], where the electroweak radiative corrections can be
parameterized by 4 independent parameters, three of those parameters ¢;, €3, and
€3 are proportional to the popular T, U, and S parameters [24]. The fourth one; ¢,
describes the relevant non-oblique corrections to the proper vertex Z — bb [16, 22, 23).
A similar parameterization to ¢, is discussed in Ref. [25]. In appendix B, I discuss

briefly the S, U, and T parameters. Also, I discuss their relation to the epsilon
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parameters.

I write the electroweak precision observables as
4
O; = Oi|s (1 + Za.-jq) , (1.106)
j=1
where, O;|p is the corresponding prediction of the theory in the improved Born ap-
proximation (i.e., with the QED and QCD corrections). The four dimensionless pa-
rameters ¢€,, €, €3, and ¢, contain the genuine electroweak radiative corrections. All

dependence on m, and my comes through these parameters. The quantities a;; are

fixed numerical constants.

In principle there are many different ways to parameterize the electroweak cor-
rections. In this work, I follow the parameterization in Refs. [16, 22, 23] given in
terms of the epsilon parameters. The parameters €, €, €3 are given in terms of the

previously defined parameters Ap, Ak’, and Ary

a6 =A4p, (1.107)
= o8 A+ — 0 A 2sing AR (1.108)
2= P 0s20 —sin20 W ’ '

€3 = cos>f Ap + (cos? 0 —sin?9)AK'. (1.109)

For the parameter ¢, I write the partial-decay width Z — bb as follows

GrM3 a(M3)

% 1+ 80 (o) + @) (14 252 e, (1.110)

T =
b 127

where Rgcp is the QCD correction given in Eq. (1.48),

Rgcp=1+ (9’-‘-(14-5—)) - 1.4(%1‘422))2 - 12.8(“—’%)3, (1.111)

s w
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and a, is the QCD coupling, a, = g?/4w. The quantities gl¥, and g%, are defined as

follow [16, 22]

1
g =—3(1+e), (1.112)

g¥, _ 1—4/3(1+ AK)sin®8 + ¢,
ay, 1+¢ '

(1.113)

One should notice that Eqs. (1.112) and (1.113) are just auxiliary equations. So far
they do not mean that relevant physics is only coming through the b;-b.-Z vertex.
In fact, from Eq. (1.110), the correct assumption is that relevant physics will modify
the decay width I',. To put it differently, the combination of relevant physics to both
the b.-b.-Z and bg-bg-Z vertices which contributes to I, is simply parameterized by
& (cf. Eq. (1.124)). However, if one is interested in other observables, e.g., Ay (see
below), then an additional assumption is needed. The assumption is that the only
relevant new physics is coming through the b;-b;-Z vertex. The reason is simply that
another combination of the neutral left- and right-handed b quark couplings will enter
these observables. I will adopt this assumption since the observable A, is not sensitive
to the top quark mass (see Eq. (1.141)) and also it does not show a deviation from

the SM (see Table 1.2).

In terms of the one-loop corrections we found for the parameters Ap, Ary, and

AKk’', one can write the parameters ¢, €3, and €3 as follow

€1=e —e5— 52:” — 48gae, (1.114)

) 2siné 6G
€2 = €9 — Sln2064 - COS2065 - cos 0 €g — G::B - 6gw - 359,“ , (1115)
€ = excos? 8 e —cos O e +c050e +cos20 —sinf"’ﬂ{s _1+2Si“205 (1.116)
3T 4 5V sing ° 25sin®0 W o sin?g  9Ath
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Here I define the following quantities

AZZ (0) AWW (0)

= - 1.117
es = FWY(M},) — FR(M3), (1.118)
cos8 a0, 2
= — 1.119
e = 2 FX(M}), (1.119)
eq = F(0) — F"(M32), (1.120)
dFZZ

d

A12(0)
€ = M% - (1122)

For the parameter ¢,, I write the one-loop corrections to the vector- and axial-
form factors gy, and dg4s, which are due to proper vertex diagrams and b-quark self

energy, as
1 1
ogvsy = -3 (es +dgva), dgas = -3 (es + 6gaa) - (1.123)

In Eq. (1.123) I split the corrections to dgy, and g4, into two parts, the first part e,
encompass all non-oblique corrections due to the top quark mass. (Notice that the
relevant m, corrections are only in the left-handed current.) The second part includes
the vector and axial-vector corrections independent of the top quark mass gyq and
gad, Which are identical, in the SM, to the d-quark vertex corrections. Calculating

the I'y decay width using Eq. (1.89) and comparing with Eq. (1.110) one finds

€ = e,,-i-m (1——8]1’1 0)69Vd+6gAd +

4 2 8
Zsm§0 [3 (1 ~3sin 0) Sgve = 3 ( S+ gsm 0) 69'“] (1.124)
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Note that the parameters ¢, €3, €3, and €, can be written in terms of the basic
measurements I', =I'(Z = p~p*), A%, Mw, and Ty. To do this let us first rewrite
the parameters Ap, Ary, and Ak’ in terms of ¢, €2, and €3. Using Egs. (1.107)-
(1.109) one finds

Ap=a, (1.125)
cos? 0 cos?0 —sin?8
- 1.12
Arw 7 €1 Sin?d € +2¢3, ( 6)
1
! = P
AR = 70 —sm0 (e —cos e1) . (1.127)

Using Eqs. (1.99)-(1.101) and (1.110) one finds

T, =Tl (1 +1.20¢ — 0.26¢3) , (1.128)
Al p = Ak olp (1 + 34.60€; — 45.00¢3) , (1.129)
M? M},

-M%,- = (_Al—%) lB (1 + 1.4361 - 1.0062 - 0.8663) ’ (1130)
T, = Tyls (14 1.41€; — 0.54¢3 + 2.93¢,) | (1.131)

where O| g stands for the observable O in the improved Born approximation (including
the QED and QCD corrections only). Other observables can be written in terms of

the epsilon parameters [26] as long as they satisfy the conditions we mentioned before.

o The charged leptonic decays will be identical to I, as long as lepton universality
is satisfied. In this case, one can use the average leptonic decay width T,.

Similarly for the leptonic forward-backward asymmetries A% p.
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e The polarization measurements A, and A, are identical, assuming leptonic uni-

versality, where

(ch + Ach) (gAc + AgAc)

A, = : (1.132)
(gve + Agve)® + (gac + Agac)®
One finds
A=A, = Al (1 +17.3¢; — 22.5¢3) . (1.133)

e The observable A, is measured at SLC using polarized initial e~ e* beam
and at the Z peak. Under the general assumptions I mentioned before, the

observables A, at LEP and Az at SLC measure the same quantity, i.e.,

(ch + Ach) (gAe + AgAc)

A e+ Bave + (g0 + Agal (139
Thus, one simply has
Arr=A. = A.|p (1 +17.3¢; — 22.5¢3) . (1.135)
e The total decay width of the Z boson I'z
[z =Tz|p (1 + 1.35¢; — 0.46e3 + 0.35¢;) . (1.136)

o The observable R, = ' /T, the ratio of the partial widths Z — hadrons and

Z = e
Ry = Ry|p (1 + 0.28¢; — 0.36€3 + 0.50¢;) . (1.137)

e For the hadronic peak cross-section o}, where

o) = 12#C.Ty ' 1.138
PT MRy (1.138)

one finds

op = UhlB (14 0.03¢; — 0.04¢3 + 0.2064,) . (1.139)
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o The observable R, = I',/T}, the ratio of the partial widths Z — bb and Z —
hadrons,

R, = RbIB (1 + 0.06€; — 0.07€3 + 1.7965) . (1140)

e For the polarization measurement of A, (at SLC), the dependence on the non-
oblique corrections is not exactly given by ¢, (see Eq. (1.124)). Nevertheless,
with the assumption that the relevant effect enters through e, one can ignore

the other contributions, i.e., gvq4 and dg44 defined in Eq. (1.123). In this case,

one finds
Ay, = Ayl (1 +0.23¢; — 0.29¢3 + 0.16¢;) - (1.141)
e The polarization measurement of A, (at SLC)
A=A (1 +1.71¢ — 2.22¢3) . (1.142)
o The b-quark forward-backward asymmetry A%,
Abp = A% p|B (1 +17.53¢; — 22.80€3 + 0.16¢;) . (1.143)
o The c-quark forward-backward asymmetry A%g
%8 = A%p|p (1 +19.01¢ — 24.72¢3) . (1.144)

¢ Finally, the measurement of R, = I'./T', the ratio of the partial widths Z — c¢
and Z — hadrons,

R.= R.|s (1 +0.116¢; — 0.151¢; — 0.5¢;) . (1.145)

Therefore, using the above equations and the low energy experimental data, one can
fit the parameters ¢, €3, €3, and €,. A direct comparison with the theory is possible
by calculating the theoretical values of these parameters and then comparing with

the extracted experimental values.
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1.5 The SM Heavy m; and my Contributions to
the Low-Energy Data

The important property of the epsilon parameters is that, for all observables at the
Z pole, the whole dependence on m, and my enters only through these parameters.
Therefore, to calculate the m; and my contributions to the low energy data it is
enough to calculate their contributions to €, €, €3, and €,. In this section, I treat the
top quark mass m, and the Higgs boson mass my as heavy mass scales and calculate
their contributions at one-loop level to ¢, €;, €3, and ¢, in the SM. Using the heavy
mass expansion (discussed in appendix C) and keeping only the leading contributions

of m, and my I determine their contributions to the epsilon parameters.

1.5.1 Heavy Top Quark Contributions

In this case, only the vacuum polarization functions and the quantity e, are sensi-
tive to the top quark mass (see Figure 1.5). One can perform the calculations in any

gauge, since the result is gauge invariant. I use dimensional regularization and define

A=—n_2.4—7—ln47r, (1.146)

where n is the space-time dimension and v = 0.577... is the Euler’s constant. I keep

only the leading contributions of m,.

e For the photon

A™(0) =0, | (1.147)

g% 16sin’8

FP(M2) = 16—

(A-lnm}) . (1.148)
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e For the Z boson

2 2
2z _ __ 9 _3m; _ 2
A0 = ~ g5 00mrg (A= 10mi)
2
2z 2_9_;(1_3-2 _1_‘?-4) — Inm?
F (MZ)—167r2cos20 5~ 38in 0+gsm0 (A lnm,).
e For the W boson
2 2
ww _9_3&(_ _1 2)
A (0)—1611'2 2 A 2+lnm, ,

2
g
FWW(M2) = o (A-lnm?) .

e For the v-Z mixing

2 1 4
~Z 2 -2 "7 a2 _ 2
F™(M32) = {6733 c0s0 (2 3 S 0) (& -mmf).

e For the proper vertex e,

2 2

g M
16m22M},

€y =

Therefore, we find

A%Z(0) A%W(0)  ¢* 3m?  3Gpm?

e =A40Ap= M2 M, 16m24MZ - 8von?
GrM}
 pWW 42 330202y _ _GrMy 2
o = PP (aG) - () = - Sol 1y

37 Sind 2 19y/2n?

In(m),

2
Gpm,

Wk

€ =

(1.149)

(1.150)

(1.151)

(1.152)

(1.153)

(1.154)

(1.155)

(1.156)

(1.157)

(1.158)

(1.159)
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Figure 1.5: The top quark contribution to the epsilon parameters, at the one-loop
level.
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1.5.2 Heavy Higgs Boson Contributions

For the heavy Higgs boson case, I calculate the vacuum polarization functions

to the leading order in my (see Figure 1.6). Due to the screening theorem [27], at

one-loop level, the leading dependence on the heavy Higgs boson mass in low energy

physical observables can be at most a logarithmic dependence. All vertex corrections

are negligible because of the small light fermions masses.

o At tree level, the Higgs boson does not couple to the photon. Thus, the Higgs

boson does not contribute to A77(0) and F(M2) up to one loop. Similarly,

there is no contribution to A7%(0) and F*4(M32).

e For the Z boson

2 2
ZZ(oy _ g _my 3. 2
A™0) = 1672 cos? 0 ( 8 4MZ ln(m,,)) ’
2 In(m?%)
FZZ(pM2y = 9 "\
(M) 1672 cos? 6 12

e For the W boson

Therefore, one finds

AZZ(0)  AWW(0)  3GrMj sin?0 o)
M3 M2 —  8y2m2cos?6 B

6§ =Ap=

e = F"W(M},) — F®¥(M3) =0,

(1.160)

(1.161)

(1.162)

(1.163)

(1.164)

(1.165)
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cos @ 2.  GrM} 2
= d =W . 1
€= sinol"':»,o(Mz) YW In(m¥) (1.166)

The parameter ¢, is not sensitive to the Higgs boson mass because the Higgs boson
couples to the b quark with a coupling strength proportional to the b-quark mass m;
(Yukawa coupling). In fact, in the limit of ignoring the bottom quark mass m,, the

Higgs boson contribution to €, vanishes.

1.6 Status of the SM

In general, precision tests performed at LEP, SLC, and the Tevatron have con-
firmed to a large accuracy the SM predictions. One-loop and even in some cases
two-loop corrections to the SM have been implemented and checked against the low
energy data [26, 28, 29]. Using the input values in Table 1.1, the SM predictions
for the low energy physical observables have been calculated [30]). In Table 1.2, I
tabulate the new data [12] and the corresponding SM predictions [30]. The SM pre-
dictions are calculated for two values of a,(M2), 0.125 and 0.115, respectively. The
top quark and Higgs boson masses used in the SM predictions are m, = 175 GeV and
mpy = 300 GeV, respectively. The only sensitive measurements for a,(M2) are the
total Z decay width I'z, the ratio R, = I's/T'¢, and the hadronic peak cross-section
on (see Eq. (1.138).

With all the accumulated success of the SM, there are only a few hints of possible
deviations from the SM that have been reported recently. Among those measurements
are: the LEP observation of a small excess in the measurement R, = I', /Ty, the ratio
of the partial widths Z — bb and Z — hadrons, of about 3.50 [12]. Also at LEP
there is the measurement of R, = I'./T4, ratio of the partial widths Z — ¢¢@ and
Z — hadrons, with a deficit of about 2.50 [12]. At the SLC, a deviation from the SM

has been seen in the measurement of Ay p of about 2.80 [31]. At the Tevatron, an
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Figure 1.6: The Higgs boson contribution to the epsilon parameters, at the one-loop
level.
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excess of large E; jets has been reported [32]. Finally, there is the issue of the QCD
coupling a, (M32) [33]. From the LEP electroweak fit at the Z pole, the extracted value
for the QCD coupling is a,(M2) = 0.125 £ 0.004 [12). The LEP and SLC combined
fit gives a,(M2) = 0.123  0.004 [12]. These fits are not consistent with the evolved
value a,(M2) ~ 0.11 coming from the measured o, at |¢?| < M2 in deep inelastic
scattering (DIS) [9], or with the value of a, ~ 0.115 from lattice QCD [9]. As it is
argued by Shifman [34], the tendency of lower values of a,(M2); determined form low
energy observables, as compared to the higher values of a,(M2); measured at LEP

and SLC, presents a serious discrepancy that could be a signal for new physics.

The new LEP and SLC data show some interesting features which did not manifest
themselves in the old reported LEP and SLC data (before the summer of 1995) [35].
In fact, by the time I started this work the new data was not available. The old data
reported an excess of about 2.00 in R,. No significant deviation in R, was observed
then (within 1.00). All other measurements like R, = I'y/Ty, A%p, A., A;, Th, As,

A, and Apr where consistent with the SM.

As I discussed in the previous sections, based on a few general assumptions, all low
energy data at LEP, SLC, and the Tevatron measurement of My can be expressed
in terms of 4-independent parameters ¢;, €5, €3, and €,. The assumptions made are
that new physics appear in the vacuum polarization functions and/or the Z — bb
vertex. The epsilon parameters contain the genuine electroweak corrections including
the top quark and the Higgs boson contributions. Unfortunately, in defining the €
parameters no relevant new physics in the observable I, is assumed. Given the above
assumptions in defining the € parameters, the reported anomaly in R, =I'./T', has a
very small dependence on ¢, [see Eq. (1.145)] which cannot explain the large deficit
in R.. Therefore, to use the ¢ parameters one has to ignore the anomaly in R.. In

fact, as argued by Shifman [33], the size of the anomaly in R, cannot be given by any
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perturbative physics.

Using the leptonic data, i.e., I’y and the asymmetries combined with the W mass,
the fit of ¢; and €3 shows interesting features [36): the good agreement with the SM,
the evidence for weak corrections, and the preference for a light Higgs boson. Lighter
Higgs boson implies lighter top quark mass. Including the hadronic data (except R.)
does not alter the correlation between €; and e;. However, the fitted ¢, is departed
from the SM by about 20. Therefore, the conclusion is that, by ignoring the anomaly
in R,, the SM predictions for ¢, €5, and €3, are in good agreement with the fitted
experimental values. However, the SM prediction for ¢, is not consistent with the low

energy data at the 20 level.

The electroweak data can be used to predict quantities like the top quark mass,
the W mass, the Higgs boson mass, and a,(M%). The new data predicts the top

quark mass to be [12]
m, = 170 + 10 + 19 (1.167)

where the central value and the first error refer to my = 300 GeV. The second error
corresponds to the variation of the central value when varying my in the interval
60 GeV < my < 1000 GeV. This is consistent with the top quark mass reported from

the observation of the top quark at the Tevatron by CDF [10] and D@ [11].

Up to one loop, the Higgs boson contribution to the low energy observables can be
at most a logarithmic contribution [27]. This makes the determination of my more
difficult than m,. Also, because the effects of m, and my are correlated, the deter-
mination of my is more difficult without a precise measurement of m,. Electroweak
precision tests show a preference for a light Higgs boson [6, 36]. However, as argued
in Ref. [37], LEP precision data, upon excluding the observables R, and R., does not

imply a strong bound on the Higgs bosons mass, i.e., my can still be as large as 1
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TeV.

If one takes the new discrepancies seriously, i.e., is not mere statistics, then one
needs to understand the sources of these anomalies. Before the announcement of the
new data, the observed anomaly in R, in the old data, has triggered the hope to
detect new physics. In fact, it was observed [34, 38] that if there was new physics in
R, then the LEP fit of a,(M2) would go down to a,(M%) ~ 0.11 in better agreement
with the DIS and QCD values of a,(M2). With the inclusion of the new data, the
need for new physics is indeed more apparent. In fact, as discussed below, many
attempts have been made to explain the observed anomalies. Even though my work
is not completely oriented toward explaining these anomalies, part of it is. In the next
chapter I will discuss my general motivations for launching into this work. Below, I

will mention briefly mine and other’s efforts to understand these deviations.

If we assume that the reported anomalies are not mere statistics, then we can
advocate specific types of new physics which can tackle these experimental anomalies.
The problem is that the anomalies reported recently as a whole represent a confusing
picture. The argument given [36] is as follows: The measurement of ', at the Z pole
is precise with uncertainty of about £3 MeV. However, the access in I', by 11 MeV
and the deficit in ', by 32 MeV amounts to a deficit in the sum I’y + I, which enters
the hadronic width 'y, by 21 MeV. This deficit is far too large compared with the
accuracy of the measurement of I';,. Even with the inclusion of the ambiguity of oy,
coming from the M scale or the DIS physics, da, = £0.007 which corresponds to +4
MeV shift in 'y, the total shift in Iy, does not amount to that of Iy + I'.. Therefore,
a shift in the partial decay widths of the light quarks is needed. This shift must be
tuned up to account for the accuracy of I';. The problem then is how to produce the
shifts seen in R, and R, while not affecting other precise data, especially that of the

leptonic sector. This is not a trivial task and I think building a natural model to cure
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all these anomalies altogether is extremely difficult (ad hoc).

One possibility to explain the anomaly in R, is through the top quark. As I
discussed in section 1.4, the decay width I';, has a strong dependence on the top quark
mass. Therefore, assuming the top quark couplings to the gauge bosons [39, 40, 41]
are different from the SM may be a plausible explanation to the anomaly in R,. In
chapter 3, I will discuss in detail a general treatment for studying the anomalous
top quark couplings from the low energy data using a model independent analysis.
Unfortunately, such a scenario can not accommodate the anomaly in R, because, in
the general model discussed in chapter 3, there is no mechanism to affect the charm

couplings through the top quark.

In chapter 5, I discuss a special model in which the third generation of fermions
undergoes a different SU(2) interaction from the first two generation of fermions.
The SU(2) symmetry associated with the third generation exhibits a strong flavor
dynamics which leads to a modification in the Z-boson couplings to the fermions (as
compared to the SM). Nevertheless, due to the accuracy of LEP data the constraints
on the free parameters of the model are so severe that this model can account for the
deviation in R, from the SM at the 3o level. Even though R, is shifted in the needed
direction, the predicted value is still outside the 20 range of the data. Therefore,
one cannot explain the anomaly in R, entirely based on this proposed model. By the
time this part of my work was going through a final revision, a similar model was
proposed in Ref. [42]. Also, I have become aware of another similar model discussed

before [43].

Other efforts to explain these anomalies have been done by many 'theorists. The
reported anomalies can not be understood within the fully MSSM [44, 45]. According
to Ref. [44], the MSSM with additional high energy scale effects may be a suitable

candidate to explain the observed anomalies in the data. A fit on a,(M2) = 0.116
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with large R, and large A g can be achieved. However, such a model predicts light
superpartners below 100 GeV, a result which may rule out such a model if light
superpartners are not found at LEP2 and FNAL. In Ref. [45] a SUSY model with
four generations is proposed to explain R, while ignoring the problem of R.. In Ref.
[46], a composite model of a forth heavy fermion family has been assumed. The model
can explain the anomaly in R, but not the anomaly in R.. A common feature among
these models is that they all predict some light particles with masses around the My
scale. Such models may be ruled out if nothing is observed at LEP-II and at the

Tevatron.

As it is argued in Refs. [43, 47], non-commuting extended technicolor (ETC) is a
possible candidate to give rise to a large R, which is consistent with the data. Other
efforts are oriented towards the inclusion of an extra Z’' gauge boson [48, 49, 50].
Some of these models seem to explain the R, anomaly but not R.. In Ref. [49] an
extra Z' is coupled to the third family through an additional U(1) gauge symmetry.
This model may explain the anomaly in R, and in a,(M2). Other authors [50] claim

to explain the R, anomaly, a,(M2), and R, on the expense of building ad hoc models.

The anomaly in the SLC measurement of Ay p is difficult to realize because LEP
measures a similar quantity A, which is in a very excellent agreement with the SM.
In fact, in the SM and in many other extensions the two observables are identical.
It is true that the two measurements refer to different observables, nevertheless, it
is hard to imagine new physics which would affect one and not the other. In Ref.
[61], the authors discuss the possibility of new physics which would reconcile the
measurements of A;p and A.. They conclude that the only possible way to reconcile
the two measurements is through an additional Z’ boson coupled almost exclusively
to quarks and with a mass almost degenerate with the Z boson mass. They also

conclude that the Z’' must have an almost vanishing coupling to the leptons.
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Table 1.1: The input parameters used to calculate the SM predictions in Table 1.2.

Input T Value
a,(M3) a: 0.125
b: 0.115
a(Mi) 128.89(9)
Mz 91.1885(22) GeV
Gr 1.166389(22) x 107> GeV~*
sin” 0 0.2312(3)
m, 175 GeV
my 300 GeV

Summarizing this section [30, 36],

o The precision electroweak experiments at LEP and SLC test the SM predictions

at a few times 1073. A need for electroweak corrections is demonstrated.

o All data agree well with the predictions of the SM except for R, which shows
an access of about 3.50, R. which shows a deficit of about 2.50, and ALz with
a deviation of about 2.80. Combining the two data R, and R. alone rule out
the SM at 99.99% confidence level (C.L.) for m, > 170 GeV [30]. (i.e., a lower

m, is preferred.)

e There are many different scenarios which can explain the access in R,. So far,
it is not possible to understand the anomaly in R,, it may even be beyond the
perturbative region [33]. It is also extremely difficult to understand the anomaly

in ALR-
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Table 1.2: Experimental and predicted values of electroweak observables for the SM.
The SM predictions are calculated using the input values in Table 1.1. Columns a
and b are for a, = 0.125 and 0.115, respectively.

_ Experimental data | SM I
- a b
LEP

GVe -0.0368 £ 0.0017 | —0.0367 | —0.0367
GAe —0.50115 £ 0.00052 | —0.5012 | —0.5012
gvul9ve 1.01 +0.14 1.00 1.00
Gan/9Ae 1.0000 + 0.0018 | 1.0000 | 1.0000
gve/gve 1.008 £ 0.071 1.000 1.000
gar/9ae 1.0007 £ 0.0020 1.0000 1.0000
'z 2.4963 £ 0.0032 2.4978 2.4922
R, 20.797 £ 0.058 20.784 20.716
R, 20.796 £+ 0.043 20.784 | 20.716
R, 20.813 + 0.061 20.831 20.716
ad 41.488 £ 0.078 41.437 | 41.490
A, 0.1390 £ 0.0089 0.1439 0.1439
A, 0.1418 £ 0.0075 0.1439 | 0.1439
AFB 0.0157 £ 0.0028 0.0157 0.0157
AfB 0.0163 + 0.0016 0.0157 | 0.0157
AFB 0.0206 £ 0.0023 0.0157 | 0.0157
R, 0.2219 £ 0.0017 0.2157 | 0.2157
_Rc 0.1543 £ 0.0074 0.1721 0.1721
SLC
ALr 0.1551 £+ 0.0040 0.1439 | 0.1439
R, 0.2171 £ 0.0054 0.2157 | 0.2157
Ap 0.841 £ 0.053 0.934 0.934
A, 0.606 £ 0.090 0.666 0.666
Tevatron
My 80.26 + 0.16 80.32 80.32




Chapter 2

The Chiral Lagrangian

2.1 Physics Beyond the SM

As I discussed in chapter 1, the SM has proven to be very successful in accom-
modating all precision measurements available so far; with the exception of a few
observables. Among those observables are R, and R, at LEP with deviations of
about 3.50 and 2.50, respectively [12]. Also at the SLC there is the A. g measure-
ment with a deviation of about 2.8 [31]. At the Tevatron there is the observation
of an excess of large E; jets [32]. Despite the success of the SM as a whole, there are
two main points regarding the SM one should bear in mind. The first point is that
some parts of the SM remain untested, examples include the top quark interactions
with the electroweak gauge bosons which is the main theme of this work. It is only
recently that the first direct observation of the top quark has been made [10, 11)].
With a top quark mass much larger than the Z mass, physics of the top quark is
still premature. In chapter 3, I will discuss in detail the possibility of anomalous top
quark couplings to the gauge bosons. A second example is the study of the gauge
boson self-interactions [52]. The current available energy at LEP which is around the
Z-mass scale, does not permit a direct test on the gauge boson self-interactions. It is

only through radiative corrections that such couplings can be examined. There has

48
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been several attempts to study the SU(2), x U(1)y gauge structure using the low
energy data at LEP/SLC and other low energy data [25, 53, 78]. With the upgrade
collider LEP-II with an energy of about twice the Z mass, a direct test will be avail-
able in the future [54). A third example is the Higgs sector, which is responsible for
the symmetry-breaking mechanism. The Higgs boson is still a hypothetical particle.
Direct search at LEP only led to a lower constraint on the Higgs boson mass to be
larger than 65.2 GeV [6]. From radiative corrections, the Higgs boson mass still can

be as large as 1 TeV [37].

The second point about the status of the SM is that despite the celebrated success
of the SM, there is little faith that the SM is the final theory. The reasons behind

this are fundamental and basic. Some of these reasons are

e No unification in the gauge couplings g, ¢/, and g, can be attained within the

SM framework. Furthermore, gravity is a totally ignored subject in the SM.

e The SM contains many arbitrary parameters with no apparent connections,

e.g., fermion masses and quark mixings.

¢ The SM provides no prediction for the fermion masses, the quark mixings, the

Higgs boson mass, and why the number of generations is 3.

e The SM provides no satisfactory explanation for the symmetry-breaking mech-
anism which takes place and gives rise to the observed mass spectrum of the
gauge bosons and fermions (see chapter 3). The Higgs boson is still a hypothet-
ical particle. In fact the sole existence of the Higgs boson by itself is a debated
issue [55).

e The SM does not explain the large and unnatural difference between light and

heavy quark masses. The question of why the top quark is so much heavier



50

than the other quarks, or to put it differently why all the quarks, except the

top quark, have small masses relative to the symmetry-breaking scale v = 246

GeV.

e Other issues are not contemplated within the SM, examples include neutrino
masses, the observed CP violation in the Kaon system, strong CP violation,

etc.

If one holds the belief that the SM is not a fundamental theory, then many ques-
tions arise. How come the SM is so successful? Is the success of the SM an accident,
or is there a link between the ”fundamental” theory and the SM? Where is the new
physics? How to reach for it? ... These are some of the questions that one hopes to

answer in the on going efforts to understand nature.

2.2 Model Independent Analysis

Based on the belief that the SM is not the whole story, the search for physics
beyond the SM is a continuous effort. One can investigate the possible existence for
physics beyond the SM through a systematic model by model study. An example
may be a grand unified theory (GUT) valid up to some high energy scale. Evolving
that theory down to the electroweak scale permits a direct comparison between the
prediction of the theory and the precision low energy data [56], or at least one may
be able to set some constraints on the free parameter space of the model under
study. Such an approach provides a consistent analysis for low energy data because
the full theory under investigation is at hand. Other examples of this approach
include Supersymmetry (SUSY) models [57] and TC along with its revised versions
[47, 58, 59]. (For a review see Refs. [25, 60].) However, such approach is cambersome

and time consuming because of the need to go over the whole model and pin point
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all of its characteristics at low energy.

A useful alternative method in searching for new physics is the model independent
analysis. There are two common approaches in searching for new physics using a
model independent analysis. The first approach is by characterizing all energy effects
at low energy using a few parameters. As I discussed in chapter 1, such an approach
is possible, e.g., using the epsilon parameters [16, 22, 23] or the S, T, U quantities
[24] (see appendix B). Then by simply calculating theses quantities in any model and
comparing with the corresponding values extracted from the low energy data one
can judge whether a specific model is compatible with the low energy data or not.
However, one should admit that using these parameters does not allow for a general
treatment of all possible models. this is true because in defining these parameters
certain assumptions are implemented. For example, in these parameterizations one
assumes that at the tree level the low energy part of any model should reduce to that of
the SM. Difference is only allowed in radiative corrections. Other assumptions include
lepton universality in defining the epsilon parameters. In the S, T, U parameters one
assumes that the only relevant physics is coming through the vacuum polarization,

i.e., oblique corrections, and so on.

The second approach to the model independent analysis is the effective Lagrangian
approach [61, 62, 63]. In this case, under general assumptions, one can effectively
describe new physics effects to low energy data with no regard to the actual mechanism
at the high energy scale. The use of effective Lagrangians began with the introduction
of the non-linear g-model [64] in the early 60’s as an effective theory for the strong
interactions. The theoretical basis of the effective Lagrangian method was formulated

by the late 60’s [65, 66].

In general, realistic models of new physics at high energy scales generate a host of

effective operators at the low energy scale. The effective theory is valid below some
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high energy scale A above which the effective theory breaks down. Dependingvon
the underlying physics one can resort to two different approaches in constructing the
effective Lagrangian. The first approach is if the underlying physics is decoupling [67].
In this case, the effective operators are usually suppressed by some power of a high
mass scale A. Therefore, the effective Lagrangian can be expanded in powers of 1/A
or equivalently in terms of increasingly suppressed higher dimensional operators [68].
(For this effective Lagrangian, the SU(2), xU(1)y gauge symmetry is linearly realized
by inserting more Higgs doublet fields in the effective operators.) The second approach
is if the underlying physics is non-decoupling. In this case, the contributions due to
physics above A need not be suppressed by powers of 1/A. Therefore, in the non-
decoupling case, an expansion in powers of momenta is performed and the effective
Lagrangian is known as the chiral Lagrangian [68, 69]. (For the chiral Lagrangian,

the SU(2), x U(1)y gauge symmetry is non-linearly realized, see appendix D.)

The effective Lagrangian can be taken to respect the gauge invariance of the
SM. The disadvantage of the effective Lagrangian is that it involves a large body of
free parameters, making the whole approach a tedious one for a general treatment.
To simplify the whole approach usually one resorts to a limited class of effective
operators which are sensitive to the case under study. Some recent efforts have been
implemented to account for a broader class of effective operators than has previously

been considered [70].

The chiral Lagrangian constitutes a powerful approach in describing the phe-
nomenon of spontaneous symmetry breaking [71]. It provides a systematic way to
effectively incorporate new physics without adhering to a limited scenario of the
symmetry-breaking mechanism as long as the electroweak symmetry is spontaneously
(as opposed to dynamically) broken. For example, one does not have to be confined to

the assumed SM Higgs mechanism and therefore, the Higgs boson is not an essential
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part of the basic structure of the chiral Lagrangian. In the next section I discuss in
some detail the structure of the electroweak chiral Lagrangian. For more details, the

reader can refer to the literature [62, 72, 73, 74, 75, 76, 77, 78].

In the effective Lagrangian approach one can understand the reason why the SM
is so successful, it is because the SM is viewed only as a low energy effective theory.
The success of the SM simply indicates the irrelevant effect of higher dimensional

operators.

Another thing to mention is that the use of the effective Lagrangian does not
necessarily stem from our ignorance of the full dynamics. In fact, as pointed out by
H. Georgi in Ref. [76], the effective field theory framework is not only simpler and
more transparent, but it actually provides a deeper insight into the relevant physics

at the distance scale that is relevant to the current experimental data.

2.3 Introduction to the Chiral Lagrangian

The chiral Lagrangian approach has been used in understanding the low energy
strong interactions because it can systematically describe the phenomenon of spon-
taneous symmetry-breaking [71]. In fact, the chiral Lagrangian found its greatest
development in the context of strong interactions [79], e.g., 7w scattering. Recently,
the chiral Lagrangian technique has been widely used in studying the electroweak

sector (62, 72, 74, 75, 76, 77, 78], to which this work has been directed.

The chiral Lagrangian can be constructed based solely on symmetry principles
with no other assumptions regarding any explicit dynamics. Thus, it is the most
general effective Lagrangian that can accommodate any truly fundamental theory
possessing that symmetry at low energy. Since one is interested in the low energy

behavior of such a theory, an expansion in powers of the external momentum is
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performed in the chiral Lagrangian [69].

In general, one starts from a Lie group G which breaks down spontaneously into a
subgroup H, hence a Goldstone boson for every broken generator is to be introduced
[80]. I consider the case where G = SU(2), x U(1)y and H = U(1)em. There are three
Goldstone bosons generated by this breakdown, ¢°, a = 1,2,3 which are eventually
eaten by W* and Z and become the longitudinal degrees of freedom of these gauge

bosons.

The Goldstone bosons transform non-linearly under G but linearly under the

subgroup H. A convenient way to handle this is to introduce the matrix field

L =exp (i¢a1-¢) , (2.1)

Va

where 7%, @ = 1,2,3 are the Pauli matrices normalized as: Trace(®7%) = 26,;. Be-
cause of U(1)em invariance v; = v, = v, but is not necessarily equal to v3. The matrix

field ¥ transforms under G as

a 3
T =exp (iQQTa) Eexp(—iy%) , (2.2)

where a!?3 and y are the group parameters of G.

In the SM, being a special case of the chiral Lagrangian, v = 246 GeV is the
vacuum expectation value of the Higgs boson field. Also v3 = v arises from the
approximate custodial SU(2) symmetry in the SM. It is this symmetry that is re-

sponsible for the SM tree-level relation

My,

p= =1, (23)

S
S

where ¢ = 1 — s2 and s} is the weak mixing angle defined in the on-shell scheme

(see appendix A). Low energy data already constrains p to be 1 within about 0.1%
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accuracy [60]. Therefore, in this work, I will assume the full theory guarantees that

V) = U =03 =0

Out of the Goldstone bosons and the gauge boson fields one can construct the

bosonic gauge invariant terms in the chiral Lagrangian

l a va 1 19 1
Lp=—gWaW"* = 2BuB" + ;o' Tr (D,stDes) (2.4)
where the covariant derivative
a 7
D,£=08,% - igW:%E +igTB, . (2.5)

Under G, the covariant derivative transforms as

a.a 3
D,E - (D) = exp (i“ 2T ) o> exp(—iyg—) . (2.6)

In the unitary gauge £ = 1, one can easily see how the gauge bosons acquire their

masses. In the unitary gauge, the mass term in the Lagrangian reduces to

1, X 1, T 31?
L, = ZU TI'(D,,S D“E)—)Zv Tr([—yW,,—é-+g'Bu§

1 a a
= 502 (s*Wewre — 2gg W3B* + ¢ B,B*) . (2.7)
Using the field definitions in Egs. (1.11) and (1.12) one recovers the gauge boson

masses given in Eq. (1.17)

2,2 2,2
_ P GV
L= S WIWs™ + 22,2, (2.8)

The W and Z masses are

2,2
g‘v v
M|2V = —, M2Z g (2°9)
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The difference between the non-linear and the linear realizations is that in a general
gauge, the non-linear realization produces other complicated terms in powers of the

Goldstone bosons. (See appendix D for details.) In general, one finds

M3

Lo = My WIWH™ + = ZuZ" + 8,010 + %a,,¢3a"¢3 +., (2.10)

where the fields ¢* are defined as

+ _ ! Fig?
=t (2.11)

Fermions can be included in the context of the chiral Lagrangian by assuming

that they transform under G= SU(2), x U(1)y as [74]
fo [ =evf, (2.12)

where Q; is the electromagnetic charge of fermion f.

Out of the fermion fields f, f2, with the condition Qs — Qf, = 1, and the
Goldstone bosons matrix field ¥ the usual linearly realized fields ¥ (see section 1.1)
can be constructed. For example, the left-handed fermions [SU(2), doublet] are

constructed as

U, =SF, =% (f ‘) . (2.13)
f2 L
One can easily show that ¥, transforms under G linearly as follows

a 3
exp (ia;a) Y exp (—iy%) exp (iy [; + %D Fy

= exp (ia; ) exp(iy%) v, (2.14)

\I’L - \I-'L'

where in Eq. (2.14) I wrote the fermion charge Qy in terms of the Gell-Mann-Nishijima

relation defined in Eq. (1.2)

Y 3
Q=T3+§, T3='2—- (2.15)
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Therefore, under the group G=SU(2), x U(1l)y

¥, — \I”L =g¥;, (2.16)
where
g = exp(i® 2"' ) exp(ig;—,) €G. (2.17)

Linearly realized right-handed fermions ¥ p [SU(2),, singlet] simply coincide with

Fg: e,

Up=Fgr= (2) . (2.18)
R

Out of the defined fields with their specified transformations it is straightforward to
construct a Lagrangian which is invariant under SU(2), x U(1)y. In constructing
the low energy chiral Lagrangian, one can use either the fermionic basis ¥, and ¥
or the basis f; and f;. The two basis lead to an identical physical S matrix in virtue

of Coleman'’s theorem [66, 81].

In constructing the chiral Lagrangian, I will follow Ref. [74] and define the com-

posite fields as
e = —%n(razfn,,z) : (2.19)

Under the gauge transformation element g € G and using Egs. (2.2) and (2.6), one

finds that the composite fields transform as:
ye /6 __ le‘ . 7 a : 7 t
W I = -3 exp(-—zy—2—) T exp(zy;)E DX . (2.20)
From which one concludes that under a general gauge transformation

3
£ 5853, (2.21)
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and
T o 5 = etvpt, (2.22)
where
o = -1—(21 ix2) (2.23)
v =2 p T 1) :

The field £3 behaves as a neutral matter field while the two fields T3 behave as
charged matter fields with Q = £1. By a matter field I mean a field which does not

transform as a gauge boson field under the symmetry group H.

In a general gauge, Sf‘ can be expanded as

1 1l g g _ _
3 _ 1943_ 2 8 (s +
By = v""a"d) 2c0s8* " v (W“ o = Wao )
i
== (#*0u8™ = 470u8*) +... (2.24)
The composite field Z} can be expanded as
1 1 g .
oh o= = ot — §gW:’ - (qb+ [cos0Z, +sinfA,] - ¢3W:)
i
+= (¢*0u8° — 6°0,6%) + ... (2.25)
The component £ is just the Hermitian conjugate of £f. In the unitary gauge & =1

one finds that the composite fields reduce to the physical gauge bosons, i.e.,

1 g
3 N e — ——
T =—5=52u (2.26)
and
1 A
S =—9Wi. (2.27)

Using the non-linear realization technique for G=SU(2), x U(1)y and H=U(1)en

one finds that the conserved generator Q (electric charge) is associated with the B,
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gauge boson rather than the photon A, [77). Therefore, in constructing the chiral
Lagrangian, the covariant derivative of a fermion f will include the B, gauge boson

field rather than the A, boson field (see below).

The main observation is that the bosonic fields 22, Ef combined with the fermionic
fields f,, fa, ..., only feel the electromagnetic transformation U(1)y, even though
the whole gauge symmetry is SU(2), x U(1)y . This is a very important observa-
tion because it enables us to write an invariant Lagrangian under the gauge group
SU(2)L x U(1)y simply by requiring the Lagrangian (constructed from I, B,,, and
Fi r) to be invariant under U(1l)em. For example , consider the top and bottom

quarks. From Egs. (2.13) and (2.18) one has
t
F= (b) = F; + Fg, (2.28)

with f; = t and fo = b. The SM Lagrangian involving the ¢t and b quarks can be
deduced from

3
Lo = Fiv* (a,, —ig [% + -’2—] B,.) F-FMF

- T"Z’)r“‘l"’FLEZ +Lp, (2.29)

where the hypercharge number is Y = 1/3 and M is a diagonal mass matrix

M= (’3‘ 72',) . (2.30)

Ly is invariant under G and the electric charges of t and b quarks are given by the
relation Y/2 + T3, where T? = 73/2 is the weak isospin quantum number (T2 = 1/2
and T = -1 /2) The terms in Eq. (2.29) are not the only possible gauge invariant
dimension four operators. In fact, the chiral Lagrangian permits the inclusic;n of
other terms while keeping the gauge invariance maintained. In chapter 3, I discuss

how to parameterize the anomalous top quark couplings using the chiral Lagrangian

framework.
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Here is a final note regarding the physical Higgs boson. It is known that the gauge
bosons acquire their masses through the spontaneous symmetry-breaking mechanism.
The bosonic Lagrangian Lp in Eq. (2.4) only involves the gauge bosons and the
unphysical Goldstone bosons. The Higgs boson is not a part of the Lagrangian Lp.
This indicates that the chiral Lagrangian can account for the mass generation of
the gauge bosons without the actual details of the symmetry-breaking mechanism.

Furthermore, the fermion mass term is also allowed in the chiral Lagrangian,
-mfiz.fi ) (231)

because it is invariant under G, where the fermion field f; transforms as in Eq. (2.12).

From this it is clear that the Higgs boson is not a necessary element in construct-
ing the low energy effective Lagrangian. This indicates that the SM Higgs mechanism
is just one example of the possible spontaneous symmetry-breaking scenarios which
might take place in nature and still be described within the chiral Lagrangian frame-
work. However, a Higgs boson field can be inserted in the chiral Lagrangian as an
additional field (SU(2), x U(1)y singlet) with arbitrary couplings to the rest of the
fields. To retrieve the SM Higgs boson at tree level, one can simply substitute the
fermion mass m; by gyv and v by v + H in £ [see Eqgs. (2.4) and (2.29)], where
g5 = my/v is the Yukawa couplixig for fermion f and H is the Higgs boson field.

Hence, one gets the Higgs Lagrangian

Lw = 30,HO"H — Zm}H? —V(H) + 2ol Tr (D, D*S) +

%HzTr(D,‘E'D"E) , (2.32)

where V(H) describes the Higgs boson self-interaction. In the SM, V(H) is given by

2
V(H) = —% (40H® + HY) . (2.33)
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Each term in Eq. (2.32) is separately gauge invariant because H is electromagnetically
neutral. The coefficients of the last two terms in Eq. (2.32) can be arbitrary for a

chiral Lagrangian with a scalar field other than the SM Higgs boson.

2.4 Heavy Top Quark Contribution to the ¢ Pa-
rameters in the Chiral Lagrangian

In chapter 1, I calculated the top quark leading contributions to the epsilon pa-
rameters in the SM. In this section, I repeat these calculations using the chiral La-
grangian framework. There are some differences in the Feynman diagrams between
the SM and the chiral Lagrangian case. The dimension-four gauge boson couplings
to the fermions are the same as in the SM. However, the Goldstone bosons couplings
to the fermions are different. What is important to our case are the vertices ¢3-t-
1, and ¢*-t-I. In Figure 2.1, I show the relevant Feynman diagrams to the epsilon
parameters in the chiral lagrangian. For the case of the ¢, parameter one needs to
include an additional Feynman diagram (see Figure 2.1f) which appears because of
the non-linear realization of the chiral Lagrangian. The calculationé are performed
in the 't Hooft-Feynman gauge. Calculations have been cross-checked in the Landau
and unitary gauges, they all agree as they should. Using the heavy mass expansion

discussed in appendix C, one finds
o For the photon

AM(0) =0, (2.34)

g® 16sin’0
1672 9

F(M32) = (A-1nm}) . (2.35)

e For the Z boson

2 2
AZZ (0) = g 3mt

2
—Wm (A —In m,) , (2.36)
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2
g 1 1 4 . 16 .
FZZ(Mg) = ].6_7T-2-C_Osﬁ (5 -_— '3-811120 + ?sm‘ 0) (A bt lnm?) . (237)

e For the W boson

2 2
ww (g = 9 3mi (_ 1 2)
A"V (0) = 672 2 A 5 +1lnmj) , (2.38)
WW r2 g 2
FY"Y(M}) = 16— (A-Inm}). (2.39)
e For the v-Z mixing
A"2(0) =0, (2.40)
F%(M3) _ g°_4sinb (l—is'n29) (A—l 2) (2.41)
z) = 16723cosf \2 ~ 3" nme) - '

e For the proper vertex e, one has to include all the relevant Feynman diagrams

(see Figure 2.1c,d,e,f). One finds

Gp'm,2
= - . 2.42
“ 4272 ( )

Therefore, we find

AZZ(0) AYY(0 2 3m?2 3Gpm?
—ap=2 0 _A_O_ g 3m _3Gm (2.43)

GFMW

2= P (M) = FP(M3) = — 2D () (244)
27
&= TgF (M) = — X R n(m) (2.45)
and
Gp??‘l2 |

€ = 4\/-”2 . (2.46)
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The result we obtained here is identical to the result in section 1.5, as expected.
By virtue of Coleman’s theorem [66, 81] the linear and non-linear realizations lead
to the same physical observables. The equivalence between the two approaches is

verified at one loop for the heavy top quark contribution to the low energy data.
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Figure 2.1: The relevant Feynman diagrams in calculating the top quark contribution
to the epsilon parameters using the chiral Lagrangian approach.



Chapter 3

Global Analysis of the Top Quark
Couplings to the Electroweak
Gauge Bosons

3.1 Motivations and Perspectives

As I discussed in chapter 2, there is little faith that the SM is the final theory.
The reasons behind this are fundamental and basic (see chapter 2). One of the most
important reasons is the assumed SM symmetry-breaking scenario. The SM assumes
the symmetry breaking is a result of the dynamics of a complex scalar doublet ®. The
scalar doublet acquires a v.e.v along the direction of the Higgs boson field. The simple
SM scenario suffers a great difficulty if the SM is viewed as a fundamental theory. If
the SM is valid up to all energies then the scalar sector is trivial (non-interacting)
[82]. This .triviality is problematic because of the need for a self-interacting scalar
sector to generate the W and Z masses through the symmetry-breaking mechanism.
To solve the triviality aspect of the SM scalar sector one has to assume that the
scalar potential V(@) is only valid below some energy cutoff scale A. Therefore, the
SM can only be viewed as a low energy description of an effective theory which is
only valid up to the energy cutoff scale A. Another problem in the SM scalar sector

is that the loop corrections to the Higgs boson mass are quadratically divergent and

65
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counterterms must be adjusted order by order in the perturbative expansion to cancel
the quadratic divergencies. If the SM is embedded in a larger fundamental theory
with heavy mass scales then the divergencies in the loop corrections to my depend
on the square of the heavy mass scales. In order to keep my light, as required by
unitarity conditions discussed below, there must be a deliberate cancelation of all
the quadratic divergencies by the appropriate counterterms and to all orders. This
cancellation is viewed by many as an unnatural aspect in the scalar sector which is

known as the fine-tuning problem.

The most recent experimental bound on the Higgs boson mass comes from the

direct search at LEP [6]
my > 65.2 GeV  at 95% C.L. (3.1)

As concluded in Refs. [6, 36], electroweak precision tests show a preference for a light
Higgs boson although the allowed range of my is still wide enough due to the soft non-
decoupling Higgs boson contribution to low energy data at one-loop level (logarithmic
contribution [27]). On the other hand, as indicated in Ref. [37], LEP precision data,
upon excluding the observables R, and R., does not imply a strong bound on the
Higgs bosons mass, i.e., my can still be as large as 1 TeV. The requirement of the
consistency of the SM scalar sector implies some theoretical bounds on the Higgs
mass. Unitarity of the perturbative partial wave amplitudes [8] implies an upper

bound on the Higgs mass [83, 84]
my < 860 GeV. (3.2)

The triviality aspect of the scalar sector and the requirement of new physics to appear

at a high energy scale A (of the order of 1 TeV) implies a perturbative upper bound
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on the Higgs boson mass [83]
my <1 TeV. (3.3)

The higher the energy scale A is the lower the Higgs boson mass will be, e.g., for
A ~ Apy, and for m, ~ 175 GeV one finds [85]:

my < 200 GeV, (3.4)

where Ap is the Planck scale. Careful estimates of the triviality using the lattice

[86] places a somewhat tighter limit
my < 640 GeV. (3.5)

Theoretical lower bounds on the Higgs mass come from the vacuum stability [87].
The lower limit is a function of the top quark mass and of the cutoff scale A. The
dependence on the top quark mass comes because the Higgs boson coupling to the
top quark is proportional to m, (Yukawa coupling). Recent analysis of the vacuum
stability [85, 88] concludes that if the cutoff scale A is as large as the Planck scale
Apr then for m; ~ 175 GeV, the SM Higgs boson mass must be larger than about
120 GeV.

Many attempts to offer alternative scenarios for the symmetry-breaking mecha-
nism are discussed in literature. A general trend among all alternatives is that new
physics appear at or below the TeV scale. Examples include MSSM [89)], technicolor
models [58, 89] and possibly extended technicolor sectors to account for the fermion
masses [47, 59]. Other examples include top-mode condensate models [90] and a

strongly interacting Higgs sector [91].

In this chapter, I study how to use the top quark to probe the origiin of the

spontaneous symmetry-breaking and the generation of fermion masses. I start the
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discussion with a brief description of the top quark. The top quark is the T3 = +1/2
member of the weak isospin doublet containing the bottom quark with an electric
charge Q = +2/3. The existence of the top quark has been confirmed recently by
the CDF and D@ experiments [10, 11] at the Tevatron proton-antiproton collider
with a center of mass (c.m.) energy of 1.8 TeV. Before this direct observation of the
top quark, there were strong experimental and theoretical arguments suggesting that
the top quark must exist [92]; e.g., the measurement of the weak isospin quantum
number of the left-handed b quark T3 = —1/2 suggests that the b quark should have
an isospin partner, namely the top quark. By 1994, from a negative result of direct
search at the Tevatron, assuming SM top quark, D@ concluded that m, has to be
larger than 131 GeV [93]. In the same year, data were presented by the CDF group
at FNAL to support the existence of a heavy top quark with mass m; ~ 174 £ 20
GeV [94]. In 1995, both CDF and D@ announced the discovery of the top quark.
From the recent observation of top quark events at CDF and D@ a fit of the mass

distribution leads to the CDF top quark mass [10]

m; =176+ 9 GeV, | (3.6)
and the D@ top quark mass [11]

m; =170 £ 18 GeV, (3.7)

where the second error is the estimated systematic uncertainty. Furthermore, a recent
study [12] based on the analysis of all available LEP data concludes that the SM top

quark mass is
m, =178 £ 8117 GeV . (3.8)

The central value and the first error quoted refer to my = 300 GeV. The second
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errors correspond to the variation of the central value when varying my in the interval

60 GeV < my < 1000 GeV.

Despite the recent success in the observation of the top quark and its mass mea-
surement, there are no compelling reasons to believe that the top quark couplings to
the weak gauge bosons should be of the SM nature. The CDF and D@ measurements
of the top quark mass are from a fit on the mass distribution, i.e., from kinematics,
no conclusions can be drawn regarding interactions or dynamics. Therefore, using the
top quark radiative corrections to the low energy data is the only available approach,
so far, to study the top quark interactions. Because the top quark is heavy relative to
the other observed fundamental particles, one expects that any underlying theory at
high energy scale A > m, will easily reveal itself at low energy through the effective
interactions of the top quark to the gauge bosons. Also, because the top quark mass
is of the order of the Fermi scale v = (/2G p)_l/2 = 246 GeV, which characterizes the
electroweak symmetry-breaking scale, the top quark may be a useful tool to probe
the symmetry-breaking sector. It is this connection between the top quark weak-
interactions and the symmetry-breaking mechanism that I would like to investigate

throughout the discussion of this chapter.

Since the fermion mass generation can be closely related to the electroweak symme-
try-breaking, one expects some residual effects of this breaking to appear in accor-
dance with the generated mass [47, 59, 95]. This means that new effects should be
more apparent in the top quark sector than any other light sector of the theory.
Therefore, it is important to study the top quark system as a direct tool to probe

new physics effects.

In the SM, which is a renormalizable theory, the couplings of the top quark to
gauge bosons are fixed by the linear realization of the gauge symmetry SU(2); x

U(1)y. However, the top quark mass is a free parameter in the theory (SM) and
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need to be measured experimentally. If the top quark is not a SM quark, then the
couplings of the top quark to gauge bosons can be different from the SM. Also, the
effective theory describing the top quark interactions at low energy can be non-
renormalizable. Therefore, to conclude upon the properties of the top quark from
the radiative corrections is less vital and predictive. Nevertheless, precision data at
this stage are our best hope to look for any possible deviation in the top quark sector

from the SM, until a direct measurement of the top quark interactions can be made.

To study the couplings of the top quark to the gauge bosons, I will first use
the precision data at LEP/SLC to constrain these couplings in a model independent
approach, then I will examine how to improve our knowledge about the top quark
couplings at the current and future colliders. In addition, I will discuss how to use

this knowledge to probe the symmetry-breaking mechanism.

It is generally believed that new physics is likely to come in via processes involving
longitudinal gauge bosons (equivalent to Goldstone bosons) and/or heavy fermions
such as the top quark. One commonly discussed method to probe the electroweak
symmetry sector is to study the interactions among the longitudinal gauge bosons in
the TeV region. Tremendous work has been done in the literature [96]. However, this
is not the subject of this work. As I argued above, the top quark plays an important
role in the search for new physics. Because of its heavy mass, new physics will feel
its presence easily and eventually may show up in its couplings to the gauge bosons.
If the top quark is a participant in a dynamical symmetry-breaking mechanism, e.g.,
through the 7t condensate (top-mode Standard Model) [90] which is suggested by the
fact that its mass is of the order of the Fermi scale v, then the top quark is one of

the best candidates for the search for new physics.

An attempt to study the nonuniversal interactions of the top quark has been

carried out in Ref. [95] by Peccei et al. However, in that study only the vertex
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t-t-Z was considered based on the assumption that this is the only vertex which gains
a significant modification due to a speculated dependence of the coupling strength on
the fermion mass: x;; < O (3'"‘;@), where k;; parameterizes some new dimensional-
four interdctions among gauge bosons and fermions i and j. However, this is not
the only possible pattern of interactions, e.g., in some extended technicolor models
[59] one finds that the nonuniversal residual interactions associated with the vertices
by-b.-Z, ty-t-Z , and t;-b-W to be of the same order. In Section 3.4, I discuss the
case of the SM with a heavy Higgs boson (my > m,) in which we find the size of the
nonuniversal effective interactions t;-t.-Z and t;-b.-W to be of the same order but

with a negligible b;-b.-Z effect.

Here is the outline of my approach to the analysis. First, I use the chiral La-
grangian approach [66, 69, 71, 72] to construct the most general SU(2), x U(1l)y
invariant effective Lagrangian including up to dimension-four operators for the top
and bottom quarks. Then I deduce the SM (with and without a scalar Higgs bo-
son) from this Lagrangian, and only consider new physics effects which modify the
top quark couplings to gauge bosons and possibly the vertex b;-b;-Z. With this
in hand, I perform a comprehensive analysis using precision data from LEP/SLC. I
include the contributions from the vertex t-6-W in addition to the vertex t-t-Z, and
discuss the special case of having a comparable size in b-b-Z as in t-t-Z. Second, I
build an effective model with an approximate custodial symmetry (p = 1) connecting
the t-t-Z and t-b-W couplings. This reduces the number of parameters in the effective
Lagrangian and strengthens its structure and predictability. After examining what
we have learned from the LEP and SLC data, I study how to improve our knowledge
on these couplings at the Tevatron, the LHC (Large Hadron Collider) and the LC

(Linear Collider) [97]. (I use LC to represent a generic e~e* supercollider.)

The rest of this chapter is organized as follows. In Section 3.2, I parameterize the
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anomalous top quark couplings using the chiral Lagrangian framework. In Section 3.3,
I present the complete analysis of the top quark interactions with gauge bosons using
LEP data for various scenarios of symmetry-breaking mechanism. Also, I discuss how
the SLC measurement of A g can contribute to the study of the top quark couplings
to the gauge bosons. In Section 3.4, I discuss the heavy Higgs limit (my > m,) in
the SM model as an example of our proposed effective model at the top quark mass
scale. In Section 3.5, I discuss how the Tevatron, LHC, and LC can contribute to

the measurement of these couplings. Some discussion and conclusions are given in

Section 3.6.

3.2 The Top Quark Couplings to Gauge Bosons
in the Chiral Lagrangian Framework

I will concentrate my discussion on the b and ¢ quarks. Precision. tests at LEP
and SLC have shown that the interactions among the other light fermions and the
gauge bosons agree very well with the SM, with the exception of the recent observed
deviations in A, g at SLC and in R, and R. at LEP. As discussed in chapter 1,
if the anomaly in R, persists in the future then it is unlikely for us to be able to
understand such a large deviation within any perturbative model. Therefore, I will
ignore this measurement in my discussion. (I will come back later to say a few words
about R..) To simplify the discussion on the proposed new top quark interactions,
I will ignore all possible mixings of the top and bottom quarks with the other light
fermions. In case there exists a fourth generation with heavy fermions, there can be a
substantial impact on the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V.
To be discussed below, this effect is effectively included in the nonstandard couplings

of t-b-W of the effective Lagrangian at low energy scale.
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Taking advantage of the chiral Lagrangian approach (see chapter 2), nonstandard
interaction terms, invariant under SU(2), x U(1l)y, are allowed in addition to the

standard terms in Eq. (2.29). These terms are

L, = —nﬁ'cﬁ'y"tLZ?‘ - Kﬁcf}y“tgzﬁ
— VKT 0] — VEREC by LT
— V2RECTRbRT) — VRS TRy tRE; (3.9)

where k€, kNC are two arbitrary real parameters, kK7€, k4C are two arbitrary com-

plex parameters, and the superscript NC and CC denote neutral and charged cur-
rents, respectively. The composite fields £, a = 1,2, 3 are discussed in chapter 2. In

the unitary gauge, the Lagrangian above reduces to

_ g s(.NC _ NC
L, = 4COSgwt(KL '7”(1 75)+'CR '7”(1+’75))th

9 +(.cc .cC
+ mt(nL (1 —7s) + Kg 7"(1+75))bW:

9 z( cct cct _
+ 2——\/§b(nL (1 = 5) + K1 4 5)) t W (3.10)

A few remarks are in order regarding the Lagrangian £, in Egs. (3.9) and (3.10).

1) In principle, £, can include nonstandard neutral currents b.v,b; and bg7,bg.
n u

For the left-handed neutral current E’y,,bL I discuss two cases:

(a) The effective left-handed vertices t;-T-Z , t;-b.-W , and b-b.-Z are com-
parable in size as in some extended technicolor models [47, 59]. In this
case, the top quark contribution to low energy observables through radia-
tive corrections is of a higher order, i.e., the top quark contribution will be
suppressed by 1/16n2 relative to the b-quark contribution. In this case, as
I will discuss in the next section, the constraints derived from low energy

data on the nonstandard couplings are so stringent (of the order of a few
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percent) that it would be a challenge to directly probe the nonstandard

top quark couplings at the Tevatron, the LHC, and the LC.

(b) The effective left-handed vertex bz-br-Z is small as compared to the t-t-Z
and t-b-W vertices. I will devote most of this work to the case where the
vertex by -bi-Z is not modified by the dynamics of the symmetry breaking.
This assumption leads to interesting conclusions to be seen in the next
section. In this case one needs to consider the contributions of the top
quark to low energy data through loop effects. A specific model with such

properties is given in Section 3.4.

I will assume that bg-bg-Z is not modified by the dynamics of the electroweak
symmetry-breaking. This is the case in the extended technicolor models dis-

cussed in Ref. [47, 59]. The model discussed in Section 3.4 is another example.

The right-handed charged current contribution ¢ in Egs. (3.9) and (3.10) is
expected to be suppressed by the bottom quark mass. This can be understood
in the following way. If b is massless (m; = 0), then the left— and right-handed
b fields can be associated with different global U(1) quantum numbers. (U(1)
is a chiral group, not the hypercharge group.) Since the underlying theory
has an éxact SU(2)L x U(1)y symmetry at high energy, the charged currents
are purely left-handed before the symmetry is broken. After the symmetry is
spontaneously broken and for a massless b the U(1) symmetry associated with
bg remains exact (chiral invariant) so it is not possible to generate right-handed
charged currents. Thus k§C is usually suppressed by the bottom quark mass
although it could be enhanced in some models with a larger group G, i.e., in

models containing additional right-handed gauge bosons.

I observed that in the limit of ignoring the bottom quark mass, kK¢ does not
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contribute to the low energy data through loop insertion at the order m?ln A2,
therefore one cannot constrain k$C from the LEP data. However, at the Teva-
tron and the LHC x$€ can be measured by studying the direct detection of the

top quark and its decays. This will be discussed in Section 3.5

It is worth mentioning that the photon does not participate in the new nonuni-
versal interactions as described by the chiral Lagrangian £, in Eq. (3.10) because the
U(1)em symmetry remains an exact symmetry of the effective theory. Any new physics
can only contribute to the universal interactions of the photon to charged fields. This
effect can simply be absorbed in redefining the electromagnetic fine structure con-
stant a, hence no new t-t-A or b-b-A interaction terms will appear in the effective

Lagrangian after a proper renormalization of a and the wave functions of the particle

fields.

In this analysis, I will discuss an effective model with and without the Higgs
boson. In the case of a light Higgs boson (my < m,) I will include the Higgs boson
field in the chiral Lagrangian as a part of the light fields with no new physics being
associated with it. In the heavy Higgs boson case (my > m,), one should integrate
out the Higgs boson field from the tree-level Lagrangian. Thus, one is left with an
effective Lagrangian which contains the heavy Higgs boson effects and the additional
nonstandard couplings k}C, k¥C, k7€, and k§C. The Higgs boson contribution to the
low energy effective Lagrangian (for energies E < m,) is only relevant in the gauge
sector. This is true because, as discussed in section 1.5, the Higgs boson couplings to
light fermions are negligible. However, the top quark couplings to the gauge bosons
will be affected by the heavy Higgs boson due to the large Yukawa coupling (m,/v).
In fact, a heavy Higgs boson may be the source for the nonstandard couplings of
the top quark k)€, k¥C, k§C, and k§C. Finally, I will consider the possibility of a

spontaneous symmetry-breaking scenario without including a SM Higgs boson in the
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full theory. In this case I consider the effects on the low energy data from the new
physics parameterized by the nonstandard interaction terms in £, in Eq. (3.10) and

the contributions from the SM without a Higgs boson.

As I discussed above, one possibility of new physics effects is the modification of
the vertices b-b-Z, t-t-Z , and t-b-W in the effective Lagrangian by the same order of
magnitude [47, 59]. In this case, only the vertex b-b-Z can have large contributions to
low energy data while, based on the dimensional counting method, the contributions
from the other two vertices t-t-Z and t-b-W are suppressed by 1/1672 due to their

insertion in loops.

In this case, one can use I', (the partial decay width of the Z boson to bb) to

constrain the b-b-Z coupling. Denote the nonstandard b-b-Z vertex as

g9
4cosé

KYu(1 = 75), (3.11)

which is purely left-handed. In some extended technicolor models, discussed in Ref.
[47, 59], this nonstandard effect arises from the same source as the mass generation

of the top quark, therefore xk depends on the top quark mass.

As I discussed in chapter 1, the nonuniversal contribution to I'; is parameterized
by a measurable parameter denoted as ¢, [16, 22, 23]. Using all LEP data, a fit on ¢,

yields the value [38]
€ (10%) = 0.0+ 3.9. (3.12)
The SM contribution to ¢, is calculated in Ref. [26], e.g., for a 170 GeV top quark
&M (10%) = -6.15 . (3.13)
The contribution from & to ¢, is

&= —K. (3.14)
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Within a 95% confidence level (C.L.), one finds that
-142< k(10%) <1.9. (3.15)

As an example, the simple commuting extended technicolor model presented in

Ref. [59] predicts that

1 2 m,

where £ is of order 1. Also in that model the top quark couplings k)¢, k¥C, and

k€, as defined in Egs. (3.9) and (3.10), are of the same order as k. For a 170 GeV

top quark mass, this model predicts
k(10%) =~ 27.5¢2. (3.17)

Hence, such a model is likely to be excluded by using the low energy data constraints

[see Eq. (3.15)].
3.3 Low Energy Constraints

In this section, I will devote the discussion to models in which the nonstandard
b-b-Z coupling can be ignored relative to the ¢-t-Z and t-b-W couplings. In this case,
the nonstandard couplings contribute to low energy observables at the quantum level,
i.e., through loop insertion. I will first discuss the general case where no relations
between the nonstandard couplings are assumed. Later, I will impose a relation
between kYC and k€ which are defined in Egs. (3.9) and (3.10) using an effective

model with an approximate custodial symmetry.
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3.3.1 General Case

In general, the chiral Lagrangian has a complicated structure and many arbitrary
coefficients which weaken its predictive power. Still, with a few further assumptions,
based on the status of present low energy data, the chiral Lagrangian can provide a

useful approach to confine the coefficients parameterizing new physics effects.

In this subsection, I provide a general treatment for the case under study with
minimal imposed assumptions in the chiral Lagrangian. I only impose the assumption
that the vertex b-b-Z is not modified by the dynamics. In the chiral Lagrangian £,, as
defined in Egs. (3.9) and (3.10), there are six independent parameters (x’s) which need
to be constrained using precision data. Throughout this paper, I will only consider
the insertion of k’s once in one-loop diagrams by assuming that these nonstandard
couplings are small; nﬁ %CC < 1. At the one-loop level the imaginary parts of the
couplings do not contribute to those LEP observables of interest. Thus, hereafter I
drop the imaginary pieces from the effective couplings, which reduces the number of
relevant parameters to four. Since the bottom quark mass is small as compared to
the top quark mass, the non-standard coupling € does not contribute to low energy
observables up to the order m?InA? in the m, — 0 limit. With these observations
we conclude that only the three parameters k)¢, k¥C and k{€ (to bear in mind, this
is really Re(k§€)) can be constrained at LEP. The nonstandard coupling k%€ can be
studied using the CLEO measurement of b — s7y. An effective model with only one
nonstandard coupling k§€ was studied in Ref. [98], a constraint on the right-handed
charged current coupling k&€ was set using the CLEO measurement of b = svy. The
authors concluded that k% is well constrained to within a few percent from its SM
value (k§C = 0). This provides a complementary information to our constraint on

kNC, k€, and k§°€.
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As I discussed in chapter 1, the new physics contribution to low energy observables,
under a few general assumptions, can be parameterized by 4-independent parameters
€, €2, €3, and ¢,. In our case, the general assumptions are satisfied, namely all the
contributions of k)¢, k¥C, k{C, and k§C to low energy observables are contained in
the oblique corrections, i.e., the vacuum polarization functions of the gauge bosons,
and the non-oblique corrections to the vertex b-b-Z. Therefore, it is enough to
calculate the new physics contribution to the ¢ parameters in order to isolate all
effects to low energy observables. As discussed in chapter 1, the € parameters are
derived from four basic measured observables, I, (the partial width of Z to a charged
lepton pair), A%p (the forward-backward asymmetry at the Z peak for the charged
lepton £), My /[Mz, and T (the partial width of Z to a bb pair). The expressions of
these observables in terms of €’s are given in chapter 1. Since the top quark will only

contribute to the vacuum polarization functions and the the vertex b-b-Z, I am only

interested in the following terms

€ =e —es, (3.18)
€ = e; —cos®fes, (3.19)
€3 = e3 — cos’f e, (3.20)
& =ep, (3.21)

where e, es, €3, €5, and e, are defined in chapter 1 as follow

_ AZZ(O) 3 AWW(O)

e = M% M‘?V ’ (322)
e2 = FYW(M3) — FO(M}), (3.23)
es = 220 pa0 512y 3.24

37 sind zh (3.24)
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dFZZ

es = M%_dqz_

(M2). (3.25)
The quantity e, is defined through the proper vertex corrections

- 1—
AEIOE —Q’Lcen,,T“’*" . (3.26)

As we found in section 1.5, the parameters €; and ¢, depend quadratically on m,.
Therefore, €; and ¢, are sensitive to any new physics coming through the top quark.
On the contrary, €2 and €3 have at most a logarithmic dependence on m,. Hence, in
our effective model, the significant constraints on the parameters k¢, k¥C, and «§€

are only coming from €; and e¢,.

Non-renormalizability of the effective Lagrangian presents a major issue of how to
find a scheme to handle both the divergent and the finite pieces in loop calculations
[99, 100]. Such a problem arises because one does not know the underlying theory;
hence, no matching can be performed to extract the correct scheme to be used in
the effective Lagrangian [61]. One approach is to associate the divergent piece in
loop calculations with a physical cutoff A, the upper scale at which the effective
Lagrangian is valid [74]. In the chiral Lagrangian approach this cutoff A is taken to be
4mv ~ 3TeV [61]). For the finite piece no completely satisfactory approach is available
[99]. I assume that the underlying full theory is renormalizable. In this case, the cutoff
scale A serves as the infrared cutoff of the operators in the effective Lagrangian. Due
to the renormalizability of the full theory, from renormalization group analysis, one
concludes that the same cutoff A should also serve as the ultraviolet cutoff of the
effective Lagrangian in calculating Wilson coefficients. Hence, in the dimensional

regularization scheme, 1/ is replaced by In(A2?/u?), where € = (4 —n)/2 and n is the

1The scale 47v ~ 3 TeV is only meant to indicate the typical cutoff scale. It is equally probable
to have, say, A =1 TeV.
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space-time dimension. Furthermore, the renormalization scale u is set to be m;, the

heaviest mass scale in the effective Lagrangian of interest.

To perform calculations using the chiral Lagrangian, one should arrange the con-
tributions in powers of 1/47v and then include all diagrams up to the desired power.
In a general R, gauge (X # 1), the couplings of the Goldstone bosons to the fermions
should also be included in Feynman diagram calculations. These couplings can be
easily found by expanding the terms in £, as given in Eq. (3.9). The relevant Feyn-
man diagrams are shown in Figure 3.1. Calculations are done for a general R, gauge.
(I have also checked the calculations in the 't Hooft-Feynman gauge, the Landau

gauge, and the unitary gauge. All agree as expected.)

I calculate the contribution to €¢; and ¢, due to the new interaction terms in the
chiral Lagrangian (see Egs. (3.9) and (3.10)) using the dimensional regularization
scheme and taking the bottom mass to be zero. At the end of the calculation, as
I discussed above, I replace the divergent piece 1/e by In(A2/m?) for € = (4 — n)/2
where n is the space-time dimension. Since I am mainly interested in new physics
associated with the top quark couplings to gauge bosons, I will restrict myself to the
leading contribution enhanced by the top quark mass, i.e., of the oder of m?1n A2.

The result of the calculation is as follows

e The vacuum polarization function of the Z boson is (see Figure 3.1a)

_ M3 3m;

AZZ(O) T 42 2

(=< +x3C) < (3.27)

e The vacuum polarization function of the W boson is (see Figure 3.1b)

_ M 3m?

AWW(O)__ 472 2

(=) = (3.28)

o Figure 3.1c yields the result

1
€

) 2
g m
4 cosf 47r""v2 (—2'{%0) Yu (1 =)

(3.29)
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Figure 3.1: The relevant Feynman diagrams, for the nonstandard top quark couplings
case and in the 't Hooft-Feynman gauge, which contribute to the order O(m?In A2).
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A similar diagram with the other b quark leg attached to the Goldstone boson

yields the same result.

e Figure 3.1d yields the result

ig m?

4 cos 0 47202

1
(—2 cos? 8 kSC + ZK%C — kY ) Yu (1 — 75) (3.30)

o Figure 3.1e yields the result

ig m? 1

1
— cos? 2\ ,.cc R
4 cos 0 4m2v? ( cos™d + 2) KL Y (1= 5) p (3.31)

o The b-quark self energy (Figure 3.1f) yields the result

1

I (46) (1= ) (332)

l
T 167202 P

Therefore, one finds

G A?
be, = w—a%z-:;m?(-ﬁfc + K’;{C + ch) In m_? ’ (3'33)
13 m? (—lnNC + KNC) In i\i (3.34)
' 2J§ 2" B mE '

where é¢; denotes the new physics contribution to €; and similarly for de,. Notice
that €, and €3 do not contribute at this order. It is interesting to note that k¢ does
not contribute to €, up to this order which can be understood from Eq. (3.10). If
k$C = —1 then there is no net t-b-W coupling in the chiral Lagrangian after including
both the standard and nonstandard contributions. Hence, no dependence on the top
quark mass can be generated, i.e., the nonstandard k§€ contribution to €, must cancel
the SM contribution when k¢ = —1, independently of the couplings of the neutral

current. From this observation and because the SM contribution to ¢, is finite, I

conclude that k§C cannot contribute to €, at the order of interest. In Ref. [101] a
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similar calculation for ¢, was performed and the author claimed to get a different
result from the one above. However, the author included only the vertex corrections
to calculate the physical quantity €,, which is not complete because the wave function

corrections to the b quark must be included.

In Egs. (3.33) and (3.34) I set the renormalization scale u to be equal to m,, which
is the natural scale to be used in this study because the top quark is considered to
be the heaviest mass scale in the effective Lagrangian. I have assumed that all other
heavy fields have been integrated out to modify the effective couplings of the top
quark to gauge bosons at the scale m, in the chiral Lagrangian. Here, I ignore the
effect of the running couplings from the top quark mass scale down to the Z boson

mass scale which is a reasonable approximation for this study.

To constrain these nonstandard couplings one needs to have both the experimental
values and the SM predictions of €¢’s. The experimental data is given in Table 1.2.

From these low energy data, a fit for €; and ¢, yields the values [36]

P (10%) = 38%15,

€ (10%) = 0.0+39. (3.35)

The SM contribution to €’s have been calculated in Ref. [26]. I include these
contributions in the analysis in accordance with the assumed Higgs boson mass. If
the low energy theory contains a SM Higgs boson, i.e., there is a light Higgs boson
(myg < m,), then the calculated values of the €’s include both the SM contribution
calculated in Ref. [26] and the new physics contribution derived from the effective
couplings of the top quark to gauge bosons. In the heavy Higgs boson case (my >
m,), one should integrate out the Higgs boson field from the tree-level Lagrangian.
Thus, one is left with an effective Lagrangian which contains the heavy Higgs boson

effects and the additional nonstandard couplings xY'¢, k¥¢, k$¢, and k§¢. Up to
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one loop, the Higgs boson contribution to the low energy effective Lagrangian (for
My < E < my) is only relevant in the gauge sector. This is true because, as
discussed in section 1.5, the Higgs boson couplings to light fermions are negligible.

The effective Lagrangian after integrating out the heavy Higgs boson field can be

written as
L = 1W+W““’ 11 w3 wiwv 1B B“"—l' Ocos Be; B, W3H¥
eff = _5 o _Z( —62) v _Z uw §sm cosfe3B,,
—%M%Z,‘Z" — MZcos’0 (1 +e)WW* (3.36)
where

_APZ(0)  AWY(0) _ 3GrM}sin®8

= = In(m%), 3.37
€ M?2 M, 8v/272 cos? 0 n(miy) (3:37)
e = FWW(M2) - F¥(M2) =0, (3.38)
__ cosf oy _ GrM}, 9
e3 = sinoFso(]\lz) = 2avan? In(my,) . (3.39)

However, the top quark couplings to the gauge bosons will be affected by the heavy
Higgs boson due to the large Yukawa coupling (m,/v). In fact, a heavy Higgs boson
may be the source for the nonstandard couplings of the top quark )¢, kN¢, xk§€,
and nﬁc. In section 3.4, I calculate the heavy Higgs boson effect to the nonstandard
top quark couplings. Finally, I consider the case of a spontaneous symmetry scenario
without a Higgs boson. In this case, I subtract the Higgs boson contribution from the
SM values of the € parameters given in Ref. [26]. In this scenario, the nonstandard
top quark couplings to gauge bosons are viewed as not due to an assumed heavy Higgs

boson but possibly to some residual effects of a new symmetry-breaking mechanism.

First, I consider the light Higgs boson case (my < m,). Choosing m, = 160
and 180 GeV, respectively, and taking my = 65 GeV, I span the parameter space

defined by —1 < k)¢ <1, =1 < k}¢ < 1, and -1 < k¢ < 1. Within 95% C.L.
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and including both the SM and the new physics contributions, the allowed region
of these three parameters is found to form a thin slice in the specified volume. The
two—dimensional projections of this slice are shown in Figures 3.2, 3.3, and 3.4. These

nonstandard couplings (k’s) do exhibit some interesting features.

(1) As a function of the top quark mass, the allowed volume for the top quark

couplings to the gauge bosons shrinks as the top quark becomes more massive.

(2) New physics prefers positive k), see Figures 3.2 and 3.3. For k}¢ = 0, k}C is

constrained within —0.05 to 0.17 (0.0 to 0.15) for a 160 (180) GeV top quark.

(3) New physics prefers k{¢ ~ —xNC. This is clearly shown in Figure 3.4 which is

the projection of the allowed volume in the plane containing kN and «$€.

The preference for a positive k)€ is triggered by €. For m, = 170 GeV and

my = 65 GeV, the experimental value of ¢, is

&P =0.0£3.9, (3.46)
which is larger than the SM value

eM=—6.15. (3.41)

Therefore, the new physics contribution to ¢, favors positive values in order to be
compatible with the experimental measurement. Hence, in view of Eq. (3.34), k}¢
prefers positive values. Also, since the main contribution to ¢, is coming from k)¢
(for k’s< 1), one finds that k}C is well constrained relative to xK¥¢ and k€. The
preference for k¢ ~ —k$€ can be understood from the nonstandard contribution
to €; (see Eq. (3.33)). Since the experimental fit on €; with its small uncertainty is
coxilpatible with the SM and because x}'C is well constrained by e, there is not much

freedom in the sum k¥ + k§C, i.e., k}C + k§C ~ 0.
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Figure 3.2: A two—dimensional projection in the plane of k)’ and «}¢, for m, = 160
GeV (solid contour) and 180 GeV (dashed contour). The Higgs boson mass is fixed,
my = 65 GeV.
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Figure 3.3: A two—dimensional projection in the plane of k' and k$€, for m, = 160
GeV (solid contour) and 180 GeV (dashed contour). The Higgs boson mass is fixed,
my = 65 GeV.
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Figure 3.4: A two—dimensional projection in the plane of kK¥¢ and k§€, for m, = 160
GeV (solid contour) and 180 GeV (dashed contour). The Higgs boson mass is fixed,
my = 65GeV.
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Now, I comment on the heavy Higgs boson (my > m;) and the no-Higgs boson
cases. A different Higgs boson mass does not have a large influence on the allowed
parameter space. As discussed in section 1.5, €, is not sensitive to the Higgs boson
mass at one-loop level, while ¢; has at most, for a heavy Higgs boson, a logarithmic
dependence on my. Since kY€ is mostly constrained from €, one does not expect any
noticeable effect on the allowed range of x'C as a function of the Higgs boson mass.
Also, since the fit on ¢, is compatible with a wide range of Higgs boson masses, the
relation kN + k§C ~ 0 is maintained. In Figure 3.5 I show the parameter space of
kNC and k§C for the Higgs boson mass my = 1000 GeV and for two values of the
top quark mass, m, = 160 GeV(solid contour) and 180 GeV (dashed contour). One
finds that for k¢ = 0, k}'C is constrained within —0.03 to 0.2 (0.0 to 0.2) for a 160

(180) GeV top quark.

Next, I consider the possibility of a new symmetry-breaking scenario without a
fundamental scalar such as a SM Higgs boson. In this case, I simply subtract the
Higgs boson contribution from the SM results obtained in Ref. [26]. In this case
one expects to find no noticeable difference from the light Higgs boson case shown
in Figures 3.2, 3.3, and 3.4. This is true because a light Higgs bosons has a smaller
contribution to €; than a heavy Higgs boson [21]. Therefore, the case of the no-
Higgs boson scenario has a similar effect as the light Higgs boson case. In the next
subsection, I will discuss the heavy Higgs boson and the no-Higgs boson cases in more

detail.

In Ref. [95] a similar analysis has been carried out by Peccei et al. However, in
their analysis they did not include the charged current contribution k{¢ and assumed
only the vertex t-t-Z gives large nonstandard effects. The allowed region they found
simply corresponds, in my analysis, to the region defined by the intersection of the

allowed volume and the plane k{¢ = 0. This gives a small area confined in the



91

i T I | L LLLEL ] UL LI ) i
1.0 — —
0.5 —
KNC 0.0 _
0.5 —
-1.0— —
i 1 I L1 11 I L1 1 1 | | I | I L1 1 1 I 1 ]
-1.0 -05 0.0 0.5 1.0
NC
Ky,

Figure 3.5: A two-dimensional projection in the plane of k¢ and s}C, for m, =160
GeV (solid contour) and 180 GeV (dashed contour), and for the heavy Higgs boson
mass my = 1000 GeV.
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vicinity of the line k)¢ = k€. This can be understood from the expression of ¢

derived in Eq. (3.33). After setting K¢ = 0, one finds
€ x (x’}{c - nfc) . (3.42)

In this case one notes that the length of the allowed area is merely determined by
the contribution from ¢,. I will elaborate on a more quantitative comparison in the

second part of this section.

3.3.2 Special Case

The allowed region in the parameter space shown in Figures 3.2, 3.3, and 3.4
contains all possible new physics (to the order m?In A? ) which can modify the cou-
plings of the top quark to gauge bosons as described by k}C, k¥C, and x§€. In this
subsection, I would like to examine a special class of models in which an approximate

custodial symmetry is assumed as suggested by low energy data.

The SM has an additional (accidental) symmetry called the custodial symmetry

which is responsible for the tree-level relation
M,
=—s=1, .

where ¢2 = 1 — s2 and s? is the weak mixing angle defined in the on-shell scheme
(see appendix A). This symmetry is slightly broken at the quantum level by the
SU(2) doublet fermion mass splitting and the hypercharge coupling ¢’ [102]. Writing
p = 1+ ép, 6p would vanish to all orders if this symmetry is exact. Low energy
data indicate that dp is very close to zero. In fact, low energy data constrains p to
be 1 within about 0.1% accuracy [60]. Therefore, I will assume that the underlying
theory has a global custodial symmetry. In other words, I require the global group

SU(2)y associated with the custodial symmetry to be a subgroup of the full group



93

characterizing the full theory. I will assume that the custodial symmetry is broken
by the same factors which break it in the SM, i.e., by the fermion mass splitting and

the hypercharge coupling ¢'.

In the chiral Lagrangian this assumption of a custodial symmetry sets v3 = v, and
forces the couplings of the top quark to gauge bosons W to be equal after turning off
the hypercharge and assuming m, = m,. If the dynamics of the symmetry breaking
is such that the masses of the two SU(2) partners ¢t and b remain degenerate then
one expects new physics to contribute to the couplings of t-t-Z and t-b-W by the
same amount. However, in reality, m, < m,; thus, the custodial symmetry has to
be broken. I will discuss how this symmetry is broken shortly. Since I am mainly
interested in the leading contribution enhanced by the top quark mass at the order
m?1n A2, turning the hypercharge coupling on and off will not affect the final result

up to this order.

I construct the two Hermitian operators J;, and Jg, which transform under G as
J¢ = —iZD, Tt = g Jig} | (3.44)
Jh =iZ'D,T = grthgh , (3.45)

where g, = exp(ia®Z-) € SU(2), and ggp = exp(iy%). In fact, using either Ji or Jg
will lead to the same result. Hence, from now on I will only consider Jg. The SM

Lagrangian can be derived from

Lo=V iv'Di¥; + Cpiv* D}V p — (FLZMYp + h.c)
1

a va 1 v v2
— WA W = 2B B* + —Tx(JhJr,) | (3.46)

where M is a diagonal mass matrix. I have chosen the left—-handed fermion fields to
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be the ones defined in Eq. (2.13):
t
‘I’L = 2( ) . (347)
b/,
The fermion field ¥ transforms linearly under G=SU(2), x U(l)y, i.e.,
¥, ¥, =9¥, (3.48)

where g € SU(2), x U(1)y. The right-handed fermion fields tg and bg coincide with
the original right-handed fields (see Eq. (2.18)). Also,

Y

Di =9, - zg?W” - zg'EB,, , (3.49)
R N 2 Y T3

D,‘ = 8,, — 19 -2- + —2' Bp . (350)

Note that in the nonlinear realized effective theories using either set of fields (¥, g

or Fi g) to construct a chiral Lagrangian will lead to the same S matrix [66].

The Lagrangian £y in Eq. (3.46) is not the most general Lagrangian one can
construct based solely on the symmetry of G/H, for G=SU(2), x U(l)yand H =
U(1)em- Taking advantage of the chiral Lagrangian approach one can derive additional
interaction terms which deviate from the SM. This is so because in this formalism
the SU(2), x U(1)y symmetry is nonlinearly realized and only the U(1)er, is linearly

realized.

Because the SM is so successful one can think of the SM (without the top quark)
as being the leading term in the expansion of the effective Lagrangian. Any possible
deviation associated with the light fields can only come through higher dimensional
operators in the Lagrangian. However, this assumption is neither necessary nor prefer-

able when dealing with the top quark because no precise data are available to lead to
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such a conclusion. I will include nonstandard dimension—four operators for the cou-
plings of the top quark to gauge bosons. In fact this is all I will deal with and will not
consider operators with dimension higher than four. Note that higher dimensional

operators are naturally suppressed by powers of 1/A.

One can rewrite Jg as

Jr=Jr"5> (3.51)
with
J4* = Tr (rJf) = iTr (r°S'D T . (3.52)

The full operator Jg posses an explicit custodial symmetry when ¢’ = 0 as can easily

be checked by expanding it in powers of the Goldstone boson fields.

Consider first the left-handed sector. One can add additional interaction terms

to the Lagrangian £,
Ly = kUL, SI4SN + kU7, S35 0, + KTy, BJ47°E Y, (3.53)

where k; is an arbitrary real parameter and k; is an arbitrary complex parameter.
Note that £, still is not the most general Lagrangian one can write for the left-handed
sector, as compared to Eq. (3.9). In fact, it is our insistence on using the fermion
doublet form and the full operator Jg that lead us to this form. For shorthand, £,

can be further rewritten as
L, =V, ZKLJhs, + Ty, BJhK] Sy, (3.54)

where K is a complex diagonal matrix with three real parameters.

These new terms can be generated either through some electroweak symmetry-

breaking scenario or through some other new heavy physics effects. If my, = m,
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and ¢ = 0, then we require the effective Lagrangian to respect fully the custodial
symmetry to all orders. In this limit, K, = 0 in Eq. (3.53) and K = x;1, where 1 is

the unit matrix and «; is real.

Since m, « m,, one can think of kK, as generated through the evolution from
mp = m, to mp = 0. In the matrix notation this implies K is not proportional to

the unit matrix and can be parameterized by

t 0
KL= ("OL o ) , (3.55)
with
Kj, = % + Kg, (3.56)
and
K = % — K. (3.57)

In the unitary gauge one gets the terms

g - g -
+2c0802Re(K‘L)tL’)’“tLZ“ + ﬁ(K‘L + K.li )tL’y“bL‘/V:
+%(n';, + KBy wr — ﬁ?Re(n’i)H‘y"bLZ,, . (3.58)

As discussed in the previous section, I will assume that new physics effects will not
modify the b;-b.-Z vertex. This can be achieved by choosing k; = 2Re(k;) such that
Re(x}) vanishes in Eq. (3.57). Later, in section 3.3, I will consider a specific model

satisfying this assumption.

Since the imaginary parts of the couplings do not contribute, at one-loop level,
to LEP physics of interest, I simply drop them hereafter. With this assumption one
is left with one real parameter kj, which will be denoted from now on by k. /2. The

left-handed top quark couplings to the gauge bosons are

te—ti=2: Rl =), (3.59)
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g KL
t; —by —W: ——+,(1 - . 3.60
L L 2ﬁ27p( ¥s) ( )

Notice the connection between the neutral and the charged current, as compared to

Eq. (3.10):
kNC = 2k6€ = k. (3.61)

This conclusion holds for any underlying theory with an approximate custodial sym-

metry such that the vertex b;-b.-Z is not modified as discussed above.

For the right-handed sector, the situation is different because the right-handed
fermion fields are SU(2) singlet, hence the induced interactions do not see the full op-
erator Jp but its components individually. Therefore, one cannot impose the previous

connection between the neutral and charged current couplings.

The additional allowed interaction terms in the right-handed sector are given by

Ly = %K%NCE{,YHRJR‘;Z + %K%CG'Y"bRJR:
+%N%Ctbk’7"tn~]n,, - '2%“';1 brY*brJIRS (3.62)
¢t NC b NC

where k% - and k% = are two arbitrary real parameters and <$C is an arbitrary
complex parameter. Note that in £, we have one more additional coefficient than
we have in £; (in Eq. (3.53)), this is due to our previous assumption of using the
full operator Jp in constructing the left-handed interactions. I assume that the
br-br-Z vertex just as the b;-b.-Z vertex is not modified, then the coefficient n',’iNc
vanishes. Because k$C does not contribute to LEP physics in the limit of m, = 0 and
at the order m?1n A? we are left with one real parameter nﬁqNC which will be denoted
hereafter as kg. The right-handed top quark coupling to Z boson is

th—tpr—2: %KR’Y,,(I +7s) . (3.63)
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(As compared to Eq. (3.10), kg = k}C.)
In the rest of this section, I consider the models described by £; and £, with only

two relevant parameters k;, and kg. Performing the calculations as I discussed in the

previous subsection one finds

KL A2
2\/5 23m, (IC e ?) ln(m—?) ’ (3.64)
1 A?
bep = - f _m ( nn+n1,) In(25) (3.65)

These results simply correspond to those in Eqgs. (3.33) and (3.34) after substituting

kNC = 2k§C = k1 and kNC = kp.

The constraints on K, and kg for models with a light Higgs boson, a heavy Higgs
boson, and without a Higgs boson are presented here in order. Let us first consider a
light Higgs boson with my = 65 GeV. I include the SM values for €; and ¢, given in
Ref. [26], the experimental fit on €, and ¢, given in Eq. (3.35), and the nonstandard
contribution given in Egs. (3.64) and (3.65). I span the plane defined by x, and
kg for a top quark mass of 170 GeV. Figure 3.6 shows the allowed range for those
parameters within 95% C.L. As a general feature, one observes that the allowed
range is a narrow area aligned close to the line K, = 2k where for m; = 170 GeV the
maximum range for x, is between —0.03 and 0.23. In Table 3.1, I give the allowed
range of the couplings x; and kg for different top quark masses. As the top quark
mass increases this range shrinks and moves downward and to the right away form
the origin (kr,xg) = (0,0). This behavior can be understood if we notice that the
width of the allowed area is controlled by €; because of the small error in the value of
€7°"". Whereas, €, " controls the length of the allowed region. As the top quark mass
increases, the value of M increases. In order to be compatible with the experimental

data, the nonstandard contribution to €, prefers negative values, i.e., 2kp — Kk < 0.
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Figure 3.6: The allowed region of k;, and kg, for m; = 170 GeV, my = 65 GeV. (Note
that k; = k)¢ = 2x§C and kg = k§°.)

The observation that the allowed region shifts to the right, toward positive k., as
the top quark mass increases can be understood from the behavior of €,. As the top
quark mass increases, the value of M decreases forcing the nonstandard contribution
to be more positive, i.e., moving toward positive k;. The deviation from the rélation
KL = 2Kkp for various top quark masses is given in Figure 3.7 by calculating k; — 2xp
as a function of m,. Note that the SM has the solution k; = kg = 0, i.e., the SM
solution lies on the horizontal line shown in Figure 3.7. This solution ceases to exist
for m; > 200 GeV. The special relation k;, = 2kp is a consequence of the assumption
of an approximate custodial symmetry which I imposed in connecting the left-handed

neutral and charged currents.

As discussed above, the SM contribution to €, [26] is lower than the experimental
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Table 3.1: The confined range of the couplings, k;, and kg for various top quark
masses and for my = 65 GeV.

m, (GeV ) KL KR

120 -0.16 — 0.31 | —0.08 — 0.20
130 -0.12—0.28 | —0.07 — 0.17
140 —-0.09 — 0.26 | —0.05 — 0.15
150 -0.07—0.25 | -0.05 —0.14
160 -0.04 — 0.24 | —0.03 — 0.13
170 —-0.03 — 0.23 | —-0.03 — 0.12
180 —-0.01 — 0.22 | —0.02 — 0.11
190 0.00—0.21 | —-0.02 —0.10
200 0.01 — 0.20 | —0.02 — 0.09
210 0.02—0.20 | —0.02 — 0.09
220 0.03 — 0.19 | —0.01 — 0.08
230 0.04 —0.19 | —-0.01 — 0.07
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Figure 3.7: The allowed range of (k. — 2xg) as a function of the mass of the top
quark and for my = 65 GeV. (Note that x;, = k}C = 2«k{€ and kg = k§C.)
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Figure 3.8: The allowed range of the coupling xK{¢ = k'€ /2 = k., /2 as a function of
the mass of the top quark and for my = 65 GeV.

central value. This is reflected in the behavior of x; which prefers being positive
to compensate this difference as can be seen from Eq. (3.65). This means that in
models of electroweak symmetry-breaking with an approximate custodial symmetry,
a positive x, is preferred. In Figure 3.8, I show the allowed values for kK¢ = k)€ /2 =
kr/2 as a function of m,. With new physics effects (k, # 0) m, can be as large as
300 GeV, although in the SM (k. = 0), as seen from Figure 3.8, m, is bounded below
200 GeV.

Now, I would like to discuss the effect of the Higgs boson mass on the allowed
range of these parameters. It is easy to anticipate the effect; since ¢, is not sensitive
to the Higgs boson contribution up to one loop, the allowed range is only affected

by the Higgs boson contribution to €; which slightly affects its location relative to
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Figure 3.9: The allowed range of the coupling kK{¢ = k)¢ /2 = k1 /2 as a function of
the mass of the top quark and for my = 300 GeV.

the line k, = 2;cR. One expects that as the Higgs boson mass increases the allowed
area moves upward. The reason simply lies in the fact that the standard Higgs boson
contribution to €;, up to one loop, becomes more negative for heavier Higgs boson
(see section 1.5). Hence, 2kp prefers to be larger than k; to compensate this effect.
However, this modification is not significant because €¢; depends on the heavy Higgs
boson mass only logarithmically. In Figures 3.9 and 3.10 I show the allowed range,
within 95% C.L., for the parameters x;, and kg for m, = 170 GeV and for two choices
of the heavy Higgs boson mass my = 300 GeV and my = 1000 GeV, respectively.

Figures 3.9 and 3.10 are consistent with what one expects.

Now I consider the possibility of a new symmetry-breaking scenario without a

fundamental scalar such as a SM Higgs boson. In this case, I simply subtract the
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Kg

Figure 3.10: The allowed range of the coupling k{¢ = kY€ /2 = k. /2 as a function
of the mass of the top quark and for my = 1000 GeV.
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Figure 3.11: The allowed region of x}'C and s}, for models without a SM Higgs
boson and for m, = 170 GeV.

Higgs boson contribution from the SM results obtained in Ref. [26]. Figure 3.11 shows
the allowed area in the x; and kg plane for a 170 GeV top quark in such models.
In this case one expects to find no noticeable difference from the light Higgs boson
case shown in Figure 3.6. This is true because a light Higgs bosons has a negligible
contribution to €; as compared to a heavy Higgs boson [21]. Therefore, the case of

the no-Higgs boson scenario has a similar effect as the light Higgs case.

What we have learned is that to infer a bound on the Higgs boson mass from
the measurement of the effective couplings of the top quark to gauge bosons, one
needs a very precise measurement of the parameters k;, and kg. However, from the
correlations between the effective couplings (k’s) of the top quark to the gauge bosons,

one can infer if the symmetry-breaking sector is due to a Higgs boson or not, i.e., we
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may be able to probe the symmetry-breaking mechanism in the top quark system.
To illustrate this point, I would like to compare my results with those in Ref. [95].
Figure 3.12 shows the most general allowed region for the couplings k)¢ and x}C,
i.e., without imposing any relation between k)¢ and k{€. This region is for a top
quark mass of 170 GeV and covers the parameter space —1.0 < k¢ , k¢ < 1.0. One

finds

-0.15 < kY9 <035,

-1.0 < k¢ <10.

I also show on Figure 3.12 the allowed regions for our model (nfc =1/2xk} C) and the
model in Ref. [95] (lcfc = 0). The two regions overlap in the vicinity of the origin (0,
0) which corresponds to the SM case. Note that for m; < 200 GeV the allowed region
of ks in all models of symmetry-breaking should overlap near the origin because the
SM is consistent with low energy data at the 95% C.L. For k}C > 0.1, these two
regions diverge and become separable. One notices that the allowed range predicted
in Ref. [95] lies along the line k)¢ = xkNC whereas in our case the slope is different
kNC = 2x{C. This difference comes in because of the assumed dependence of x$°
on the other two couplings k}'C and k}¥C. In our case k{€ = k) /2, and in Ref. [95]

k§C = 0.

If we imagine that any prescribed dependence between the couplings corresponds
to a symmetry-breaking scenario, then, given the present status of low energy data, it
is possible to distinguish between different scenarios if k¢, k¢ and k§C are larger
than 10%. Better future measurements of €’s can further discriminate between dif-
ferent symmetry-breaking scenarios. Next, I will discuss how the SLC can contribute

to the study of the nonstandard couplings.
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Figure 3.12: A comparison between our model and the model in Ref. [95]. The
allowed regions in both models are shown on the plane of k)¢ and «}¢, for m, = 170
GeV and my = 300 GeV.
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3.3.3 At the SLC

The measurement of the left-right cross section asymmetry A g in Z production
with a longitudinally polarized electron beam at the SLC provides a further test of
the SM and is sensitive to new physics. As I discussed in section 1.6, the reported
measurement of Ay [31] shows a deviation of about 2.80 from the SM prediction.
By the SM prediction, I refer to the values in Table 1.2 with the reference masses
m; = 175 GeV and my = 300 GeV. In the previous discussion on the allowed space
of the nonstandard couplings k}C, k¥C, and k§C, I only concentrated on LEP data.
It is interesting to investigate if our effective model can offer some explanation for

the observed anomaly in A; . In section 1.4 we found that
Arr = (ALr)|s (1 +17.3¢; — 22.5¢3) , (3.66)

where (ALr)|s is the improved Born value for ALg.

In fact, as discussed below, the effect of the SLC measurement of A,z on possible
new physics in the top quark couplings depends on the way one incorporates A g
with LEP data. There are two methods by which one can incorporate the SLC
measurement of A p with the other existing low energy data at LEP. The first method
is to combine and average Ay with all LEP data. In this case, the anomaly in A p
is washed away due to the large number of LEP measurements consistent with the
SM. One finds that including the SLC measurement A, g with all LEP data yields a

new fit on the epsilon parameters with a slight decrease in the central value of ¢, [38]
P =35+15, (3.67)

while keeping the fit on ¢, the same. As discussed in the previous section, the non-

standard coupling x¥C is mostly constrained by €,. Therefore, no significant change
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in the allowed range of x}'C is expected. The effect of averaging the SLC and LEP
data can be easily seen in the special model I discussed previously (k{€¢ = x{C/2).
In this case, the length of the allowed area is not affected since it is controlled by
€. Since the uncertainty in €{*"" remains almost the same after including the A g
measurement, the width of the allowed area is also hardly modified. The only effect
will be to shift the allowed area slightly downward (toward 2kp < x). This con-
clusion is simply due to the preference for a more negative new physics contribution
to accommodate the smaller value of €]*". It is interesting to note that the effect of

including Ay r with the other LEP data is similar to the effect of a light Higgs boson.

The more interesting approach in dealing with the SLC measurement of A.p is
to ask whether our new effective model, checked against LEP data, can give some
insight into the status of the SLC measurement of A g. In our effective model with
nonstandard top quark couplings, the theoretical prediction for the observables A,
at LEP and A.r at SLC are identical. Therefore, it is not possible to explain the
anomaly in Ap g, at the 1o level, without affecting the value of A, which is in a very
good agreement with the SM. However, at the 20 level, one may be able to ﬁnc.l a
solution (notice that the SM is not a solution) which is compatible with both LEP

and SLC measurements.

From Eq. (3.66) and using our effective model contribution to A g, one concludes

that

Arr = (ALR)ISM (14+17.3%¢y) , (3.68)

where d¢, is the nonstandard contribution to €;, and

= —G—F—3m2(—nNC + kRC 4+ k() In LS (3.69)
1 2ﬂ”2 t L R L m‘2 * *

de

Since the reported measurement of Ay is larger than the SM prediction as seen in
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Table 1.2, the nonstandard contribution ¢, prefers positive values, i.e., k¢ +k§C >
kYC. Therefore, the SLC measurement AL g indicates a preference for that particular

region of the parameter space.

It is much easier to appreciate the App effect in dealing with the special model
discussed in the previous section. In that special model with the approximate cus-
todial symmetry, i.e., k}C = 2k{C = ki, the SLC AL pr measurement will have a
significant effect on the allowed region in the k, and kg plane. In this case, one has

2

A
oe; = 4\/- 23171, —-KL + QKR) In n_z? . (370)

In Figure 3.13, I plot the allowed region for the parameters x; and kg using the SLC
measurement of A g and ¢, extracted from the LEP data, for m, = 170 GeV and
mpy = 300 GeV at 95% C.L. From Figure 3.13 it is clear that the SLC measurement
of AL r indicates a preference for positive nonstandard contributions to d¢,, t.e., kg >

2k;. Also, one notices that the SM is excluded by the A,z measurement at 95% C.L.

It is interesting to search for a solution which is compatible with the LEP and SLC
data. In Figure 3.14, I plot the allowed region, the very narrow band, for m; = 170
GeV and my = 300 GeV consistent with LEP data, at 95% C.L., and also compatible
with the SLC measurement A,z at the same level of accuracy. One can understand
the result of Figure 3.14 as follows. First, as discussed before, there is no effect on
the length of the allowed area since it is controlled by €,. Second, the measurement
ALr prefers positive values for d¢, i.e., the region where 2k > k1. In other words
it prefers the region above the line 2k = k. This is the reason why we find the
narrow band above the line 2k = k1. Obviously, in this case, the SM is excluded by

the data for x’s=0.

To understand the effect of the top quark mass m, on the result let us concentrate



110

NC
R

Figure 3.13: The allowed region of k; and kg, using the SLC measurement A g, for
m; = 170 GeV and my = 300 GeV.
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on the two measurements: A, at LEP and A g at SLC. The two observables A, and

Arr have the same dependence on the quantity de; [see Eq. (3.68)]. For a heavier

top quark, the allowed band from the LEP fit shifts downward, this is because the

SM prediction of A, increases. Similarly, the band consistent with A, g also shifts

downward, since the SM prediction of AL g is identical to A,. Therefore, the two bands

shift in the same direction. Furthermore, for a fixed k., the difference between the
exp.

central values of the experimental measurements, A = Ay gz — AP, is proportional

to the quantity

A o m?(k5C — kEEP) = m2Apg, (3.71)
where K%LC is the central value, for a fixed k., of the allowed band extracted from

the SLC measurement, similarly, for kkEF. Therefore, the difference Ag decreases

as a function of the top quark mass. Nevertheless, the widths of the allowed bands
decreases also as a function of the top quark mass. Thus, even though the two
allowed bands from LEP and SLC move closer for a heavier top quark, their widths
decrease rapidly such that the overlap in LEP and SLC data decreases as the top
quark mass increases. In Figure 3.15 I plot the width of the overlapped region h,
due to the measurements A, and Apg, as a function of the top quark mass. Negative
values of h indicates an overlap in the measurements while positive values indicates
no overlap. One can see that the overlap |h| decreases as a function of the top quark
mass. Nevertheless, a consistent solution for both measurements still exist for a wide
range of m,. The overlap does not depend on the Higgs boson mass my because the
difference Apg is independent of my From Figure 3.14 it is clear that there will be
no effect on the length of the allowed region which in our approximation is solely
determined by €,. Hence, a more accurate measurement of ¢, i.e., I'(Z — bl-)), is

needed to further confine the nonuniversal interactions of the top quark to gauge
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Figure 3.14: The allowed region of k; and kg, using LEP data and the SLC mea-
surement of Ay g, for m; = 170 GeV and my = 300 GeV.
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Figure 3.15: The overlapping of the two measurements A, and A.g as a function of
the top quark mass. Negative values of h indicates overlapping, while positive values
indicates no overlapping.
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bosons to probe new physics.

3.4 Heavy Higgs Boson Limit in the SM

The goal of this study is to probe new physics effects, particularly the effects due
to the symmetry-breaking sector, in the top quark system by examining the couplings
of the top quark to the gauge bosons. To illustrate how a specific symmetry-breaking
mechanism might affect these couplings, in this section I consider the Standard Model
with a heavy Higgs boson (my > m,) as the full theory, and derive the effective

NC NC CcC

couplings k}C, kRC, k§C, and kGC at the top quark mass scale in the effective

Lagrangian after integrating out the heavy Higgs boson field.

Given the full theory (SM in this case), one can perform a matching between the
underlying theory and the effective Lagrangian. In this case, the heavy Higgs boson
mass acts as a regulator (cutoff) of the effective theory [103]. Figure 3.16 shows the
Feynman diagrams needed to calculate the effective couplings of the top quark to the
W and Z gauge bosons. While setting m;, = 0, and only keeping the leading terms

of the order m?Inm?, I find the following effective couplings

g Gp (-1 1 m?2
t-t-2: L0 (L (1= 20) + g1+ 20)) In (m—;’) . @)
g G -1 m?
From this result one concludes
G -1 m?2
NC _ o,CC _ F - 2 “H
Kp~ = 2K[ _2\/571-2(8) ,ln(m?), (3.74)

Gp 1 m2
KNG = 275 §m3 In (7’;) , (3.75)
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(a)

- ®)

Figure 3.16: The Feynman diagrams needed to calculate the effective couplings of the
top quark to the W and Z gauge bosons.

k$C =0. (3.76)

Note that the relation between the left-handed currents (k)¢ = 2x§C) agree
with our prediction because of the approximate custodial symmetry in the full theory
(SM) and the fact that vertex b-b-Z is not modified. The right-handed currents k§°€
and kNC are not correlated, and k$¢ vanishes for a massless b. Also, note that an
additional relation in the effective Lagrangian between the left— and right-handed

effective couplings of the top quark to Z boson emerges, i.e.,
kNC = —kBC . (3.77)

This means only the axial vector current of ¢-t-Z acquires a nonuniversal contribution

while its vector current is not modified.
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As discussed in Section 3.2, due to the Ward identities associated with the photon
field there can be no nonuniversal contribution to either the b-b-Aor t-t-A vertex
after renormalizing the fine structure constant a. This can be explicitly checked
in this model. Furthermore, up to the order of m?Inm%, the vertex b-b-Zis not
modified which agrees with the assumption I made in Section 3.2 that there exists a
dynamics of electroweak symmetry-breaking such that neither bp-bg-Z nor by -b-Z in

the effective Lagrangian is modified at the scale of m,.

From this example one learns that the effective couplings of the top quark to gauge

bosons arising from a heavy Higgs boson are correlated in a specific way: namely,
kNC = 2k§C = —kNC . (3.78)

can be arbitrary, and are not necessarily 1/2 and 1/4, respectively). In other words,
if the couplings of a heavy top quark to the gauge bosons are measured and exhibit
large deviations from these relations, then it is likely that the electroweak symmetry-
breaking is not due to the standard Higgs mechanism which contains a fundamental
heavy scalar boson. This illustrates how the symmetry-breaking sector can be probed

by measuring the effective couplings of the top quark to gauge bosons.

Next, I study how the Tevatron, the LHC, and the LC can contribute to the

measurements of the nonstandard couplings.

3.5 Direct Measurement of the Top Quark Cou-
plings

In Section 3.2, I concluded that the precision LEP data can constrain the cou-
plings kY€, k¢ and k{C, but not k&€ (the right-handed charged current). The

nonstandard coupling k§C can be studied using the b & sy measurement [98]. Also,
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I discussed how the SLC measurement of A.g can contribute to the study of the non-
standard couplings k}'C, k}¥¢ and k{C. The conclusion that the SM is not compatible
with the combined LEP and SLC data may be an indirect evidence for the anoma-
lous couplings of the top quark. In this section, I examine briefly how to improve our

knowledge on these couplings at the other current and future colliders.

3.5.1 At the Tevatron and the LHC

In this section, I study how to constrain the nonstandard couplings of the top

quark to the gauge bosons from direct detection of the top quark at hadron colliders.

At the Tevatron and the LHC, heavy top quarks are predominantly produced fx.'om
the QCD process gg,q§ — tt and the W-gluon fusion process qg(Wg) — tb,#b. In
the former process, one can probe k¢ and k%€ from the decay of the top quark to a
bottom quark and a W boson. In the latter process, these nonstandard couplings can
be measured by simply counting the production rates of signal events with a single ¢

or t. More details can be found in Ref. [104].

To probe x§¢ and k§° from the decay of the top quark to a bottom quark and a
W boson, one needs to measure the polarization of the W boson. For a massless b,
the W boson from top quark decay can only be either longitudinally or left-handed
polarized for a left-handed charged current (k4¢ = 0). For a right-handed cha.u'ged
current (k§¢ = —1) the W boson can only be either longitudinally or right-handed
polarized. (Note that the handedness of the W boson is reversed for a massless b
from  decays.) In all cases the fraction of longitudinal W from top quark decay
is enhanced by m?/2M2 as compared to the fraction of transversely polarized W.
Therefore, for a more massive top quark, it is more difficult to untangle the nfckand

k$C contributions. The W polarization measurement can be done by measuring the
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invariant mass (my) of the bottom quark and the charged lepton from the decay of
top quark [105]. We note that this method does not require knowing the longitudinal
momentum (with two—fold ambiguity) of the neutrino from W decay to reconstruct

the rest frame of the W boson in the rest frame of the top quark.

Consider the (upgraded) Tevatron as a pp collider at /s = 2 or 3.5 TeV, with an
integrated luminosity of 1or10 fb™'. Unless specified otherwise, we will give event

numbers for a 175 GeV top quark and an integrated luminosity of 1 fb™!.

The cross section of the QCD process gg,qq — tt is about 7 (29) pb at a /s =2
(3.5) TeV collider. In order to measure k$¢ and kGC we have to study the decay
kinematics of the reconstructed t and/or £. For simplicity, let us consider the ¢+ 4+ >
3 jet decay mode, whose branching ratio is Br = 228 = 2 for ¢+ = e*orp*.
We assume an experimental detection efficiency, which includes both the kinematic
acceptance and the efficiency of b-tagging, of 15% for the tf event. We further assume
that there is no ambiguity in picking up the right b (b) to combine with the charged
lepton £+ (£-) to reconstruct t (). In total, there are 7pb x 103pb™' x £ x 0.15=
300 reconstructed tf events to be used in measuring k7€ and k¢ at /s = 2TeV.
The same calculation at /s = 3.5 TeV yields 1300 reconstructed tf events. Given the
number of reconstructed top quark events, one can in principle fit the m,, distribution
to measure k¢ and «§C. We note that the polarization of the W boson can also
be studied from the distribution of cos 8, where 6; is the polar angle of £ in the rest
frame of the W boson whose z-axis is the W bosons moving direction in the rest
frame of the top quark [105]. For a massless b, cos8; is related to m2, by

2
2mu

=
Ry 7

~1. (3.79)

However, in reality, the momenta of the bottom quark and the charged lepton will

be smeared by the detector effects and the most serious problem in this analysis is
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the identification of the right b to reconstruct ¢t. There are two strategies to improve
the efficiency of identifying the right b. One is to demand a large invariant mass of
the tf system so that t is boosted and its decay products are collimated. Namely, the
right b will be moving closer to the lepton from ¢ decay. This can be easily enforced
by demanding lepton ¢ with large transverse momentum. Another is to identify the
nonisolated lepton from b decay (with a branching ratio Br(b = u*X) ~ 10%).
Both of these methods will further reduce the reconstructed signal rate by an order
of magnitude. How will these affect our conclusion on the determination of the non-
universal couplings kK¢ and k$¢? This cannot be answered in the absence of detailed

Monte Carlo studies.

Here I propose to probe the couplings k{¢ and k¢ by measuring the production
rate of the single-top quark events. A single-top quark event can be produced from
either the W-gluon fusion process gg (W+*g) — tbX, or the Drell-Yan-type process
q§ = W* — tb. Including both the single-t and single-f events, for a 2 (3.5) TeV
collider, the W-gluon fusion rate is 2 (16) pb; the Drell-Yan type rate is 0.6 (1.5) pb.
The Drell-Yan-type event is easily separated from the W-gluon fusion event, therefore
it will not be considered hereafter [106]. For the decay mode oft = bW+ — bl*v, with
€* = et or u*, the branching ratio of interest is Br = 2. The kinematic acceptance
of this event at /s = 2TeV is found to be 0.55 [106]. If the efficiency of b-tagging is
30%, there will be 2pb x 10°pb™" x 2 x 0.55 x 0.3 = 75 single-top quark events
reconstructed. At /s = 3.5 TeV the kinematic acceptance of this event is 0.50 which,
from the above calculation yields about 530 reconstructed events. Based on statistical
error alone, this corresponds to a 12% and 4% measurement on the single-top créss
section. A factor of 10 increase in the luminosity of the collider can improve the

measurement by a factor of 3 statistically.

Taking into account the theoretical uncertainties, we examine two scenarios: 20%
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Figure 3.17: The allowed |«§€| and «{C are bounded within the two dashed (solid)
lines for a 20% (50%) error on the measurement of the single-top production rate,
for a 175 GeV top quark.

and 50% error on the measurement of the single-top cross section, which depends
on both xk{¢ and xk%C. (Here we assume the experimental data agrees with the SM
prediction within 20% (50%).) We found that for a 175 GeV top quark x§¢ and
kGC are well constrained inside the region bounded by two (approximate) ellipses, as
shown in Figure 3.17. These results are not sensitive to the energies of the colliders

considered here.

The top quark produced from the W-gluon fusion process is almost 100% left-
handed (right-handed) polarized for a left-handed (right-handed) t-b-W vertex,
therefore the charged lepton ¢* from t decay has a harder momentum in a right-

handed ¢-b-W coupling than in a left-handed coupling. (Note that the couplings
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of light-fermions to W boson have been well tested from the low energy data to be
left—-handed as described in the SM.) This difference becomes smaller when the top
quark is more massive because the W boson from the top quark decay tends to be

more longitudinally polarized.

A right-handed charged current is absent in a linearly SU(2), invariant gauge the-
ory with a massless bottom quark. In this case k§C = 0, then x{C can be constrained
to within about —0.08 < k$¢ < 0.03 (—0.20 < k§¢ < 0.08) with a 20% (50%) error
on the measurement of the single-top quark production rate at the Tevatron. This
means that if we interpret (1 + k§€) as the CKM matrix element Vj,, then Vj; can
be bounded as V;, > 0.9 (or 0.8) for a 20% (or 50%) error on the measurement of
the single-top production rate. Recall that if there are more than three generations,
within 90% C.L., Vi can be anywhere between 0 and 0.9995 from low energy data [9].
This measurement can therefore provide useful information on possible additional
fermion generations. Measuring the Drell-Yan-type single-top production rate can

further improve the measurement of V.

We expect the LHC can provide similar or better bounds on these nonstandard

couplings when detailed analyses are available.

3.5.2 At the LC

The best place to probe x}¢ and k¥ associated with the t-t-Z coupling is at the
LC through e~et = A, Z — tt. A detailed Monte Carlo study on the measurement of
these couplings at the LC including detector effects and initial state radiation can be
found in Ref. [107]. The bounds were obtained by studying the angular distribution
and the polarization of the top quark produced in e~e* collisions. Assuming a 50

fb~! luminosity at /s = 500 GeV, we concluded that within a 90% confidence level,
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it should be possible to measure k}'C to within about 8%, while k¥C can be known
to within about 18%. A 1TeV machine can do better than a 500 GeV machine in
determining k' and k€ because the relative sizes of the tg(?); and t.(f), produc-
tion rates become small and the polarization of the tf pair is purer. Namely, it is
more likely to produce either a t.(f) ; or a tg(f), pair. A purer polarization of the t¢
pair makes kY'C and k}C better determined. (The purity of the tf polarization can
be further improved by polarizing the electron beam.) Furthermore, the top quark
is boosted more in a 1TeV machine thereby allowing a better determination of its
polar angle in the tf system because it is easier to find the right b associated with the

lepton to reconstruct the top quark moving direction.

Finally, we remark that at the LC x{C and k4 can be studied either from the
decay of the top quark pair or from the single-top quark production process, W-
photon fusion process ee*(W+v) = tX, or e"y(W«) —= tX, which is similar to the

W-gluon fusion process in hadron collisions.

3.6 Discussion and Conclusions

In this chapter I have applied the electroweak chiral Lagrangian to probe new
physics beyond the SM through studying the couplings of the top quark to gauge
bosons. First, I examined the precision LEP data to extract the information on these
couplings. Second, I discussed how the SLC measurement A, can contribute to the
constraints on the nonstandard couplings k'€, k¥C, and xk$€. Third, I discussed how
to improve our knowledge about the top quark nonstandard couplings at current and

future colliders such as at the Tevatron, the LHC, and the LC.

Because of the non-renormalizability of the electroweak chiral Lagrangian one can

only estimate the size of these nonstandard couplings by studying the contributions
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to LEP observables at the order of m?In A2, where A = 47v ~ 3 TeV is the cutoff
scale of the effective Lagrangian. Already I found interesting constraints on these

couplings.

Assuming b-b-Z vertex is not modified, I found that x}C is already constrained
to be —0.05 < k¢ < 0.17 (0.0 < x}° < 0.15) by LEP data at the 95% C.L. for
a 160 (180) GeV top quark. Although k¥ and k€ are allowed to be in the full
range of +1, the precision LEP data do impose some correlations among sY¢, x¥C,
and k§C. (k§€ does not contribute to the LEP observables of interest in the limit of
myp = 0.) In my calculations, these nonstandard couplings are only inserted once in

loop diagrams using dimensional regularization.

Inspired by the experimental fact p ~ 1, reflecting the existence of an approximate
custodial symmetry, I proposed an effective model to relate x}C and «£€. I found
that the nonuniversal interactions of the top quark to gauge bosons parameterized by
kY€, kN¥C, and k€ are well constrained by LEP data, within 95% C.L. The results
are summarized in Table 3.1 (see also Figures 3.6-3.10). Also, the two parameters

NC

K = K} NC

and kg = kK" are strongly correlated. In my model, kK, ~ 2xp.

I note that the relations among x’s can be used to test different models of elec-
troweak symmetry-breaking. For instance, a heavy SM Higgs boson (myg > m,) will

modify the couplings t-t-Z and t-b-W of a heavy top quark at the scale m; such that

N

kNC = 2kGC, kYC = —kNC, and k§€ = 0. Another example is the effective model

—K
discussed in Ref. [95] where, k§¢ = k{C = 0. In this model the low energy precision

data impose the relation k)¢

~ kNC. Also, the simple commuting extended techni-
color model presented in Ref. [59] predicts that the nonstandard top quark couplings

are of the same order as the nonstandard bottom quark couplings.

It is also interesting to note that the upper bound on the top quark mass can
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be raised from the SM bound m, < 200 GeV to as large as 300 GeV if new physics
occurs. That is to say, if there is new physics associated with the top quark, it is
possible that the top quark is heavier than what the SM predicts. However, for a SM

top quark, m, should be less than 200 GeV, as shown in Figures 3.7 and 3.8.

Also, I discussed how the present SLC measurement of ALk can contribute to
the constraints imposed on the nonstandard couplings k)¢, k¥C, and x§€ at LEP. I
found that if one uses the LEP constraints to predict the new physics contribution to
the SLC measurement Ay g, then for the special model, k§€ = kY /2, it is possible
to reconcile the LEP and SLC data at 95% C.L. for a wide range of the top quark

mass. This is shown in Figure 3.15.

Undoubtedly, direct detection of the top quark at the Tevatron, the LHC, and the
LC is crucial to measuring the couplings of t-b-W and ¢-t-Z. At hadron colliders,

CC and k$C can be measured by studying the polarization of the W boson from top

K
quark decay in tf events. They can also be measured simply from the production rate
of the single top quark event. The LC is the best machine to measure x¥¢ and xk}¥€
which can be measured from studying the angular distribution and the polarization

of the top quark produced in e~e* collision. Details about these bounds were given

in Section 3.5.



Chapter 4

Heavy Top Quark Effects and the
Scalar Sector

4.1 Introduction

In chapter 3, I calculated the one-loop level quadratic contribution of the top
quark mass m,, i.e., m?In A2, to the parameters ¢; and ¢,. The calculation is based
on the Lagrangian Lo + £; (see Egs. (2.29) and (3.9)). In general, in performing the
one loop level calculation, one needs to consider a gauge invariant set of Feynman
diagrams in which massive gauge bosons can appear as external and/or internal lines.
However, at one-loop level, I found that to extract the m?1n A% dependence of the
low energy observables (equivalently, €; and €,) one only needs to include the massive
gauge bosons as external fields. Figure 3.1 shows the relevant Feynman diagrams
needed to extract the m? dependence in a general R gauge. Only the Goldstone
bosons and the top quark appear as internal (propagating) fields. The gauge bosons
behave as classical (non-propagating) fields. This result is expected since extracting
corrections in power of m, is equivalent to a perturbative expansion in the Yukawa
coupling g; = m,/v which has nothing to do with the gauge structure [108]. This is
true because the m? corrections are present even for vanishing gauge couplings ie g and

— 0. The m? corrections are a consequence of the symmetry-breaking mechanism
t q Y ry g
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which controls the Yukawa interactions connecting the scalar fields and the fermion
sector. This observation is important because one can gener;lize it to include the
pure dependence on the top quark mass to all orders and not merely to the one-loop
level. Furthermore, with the gauge couplings switched off in the Lagrangian, one can
derive a set of Ward identities which relates the physical quantities, as discussed in
the next section, to appropriate renormalization constants of the reduced Lagrangian

(with gauge couplings switched off).

This observation was made for the SM case in Ref. [108], where explicit calcula-
tion of the two loop m{ corrections to the low energy observables was performed for
arbitrary values of the Higgs mass my. The calculation was performed by considering
the Lagrangian of the SM in the limit of vanishing gauge coupling constants. The
gauge bosons play the role of external sources and the relevant propagating fields are
the top quark, the massless bottom quark, the Higgs boson field, and the charged and
neutral Goldstone bosons ¢*, ¢®. This reduced Lagrangian is called the Gaugeléss
Limit of the SM [108].

In this chapter, I develop a similar formalism to calculate, at one loop level, the
contribution to €, and €, that grows like m? in the chiral Lagrangian framework. The
formalism holds for all contributions which do not vanish when setting the gauge
couplings g and ¢’ to be zero. Therefore, generalizing the result in Ref. [108] to
incorporate a larger set of effective models. Similarly, I find that to extract the m?
dependence in the chiral Lagrangian framework, one needs to concentrate only on the
Goldstone bosons, the top quark, and the massless bottom quark. The calculation of
m? dependence in the new formalism gives an identical result to the one I found in

chapter 3.

Similar to the procedure in chapter 3, I consider an effective field theory describing

the nonstandard top couplings to the gauge bosons. I show how to conveniently
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relate various radiative corrections important for testing the standard model (SM)
in a rather elegant and clear way. More importantly, this approach is shown to
clearly identify observables which are sensitive to the symmetry-breaking sector of

the electroweak theories.

In section 2, I briefly review the Gaugeless limit of the SM [108]. In section 3, I
present new formalism, in the chiral Lagrangian framework, to study the large top
quark mass contribution (in powers of m,) to low energy physics. I show that all
large m, effects enter through two quantities p and 7 [108], which are, in this limit,

equivalent to the quantities €; and €,. Section 4 contains some of my conclusions.

4.2 Large m; effects in the SM

In this section, I briefly review the analysis performed in Ref. [108] which is a
study of the large m, contributions to the low energy observables in the SM. In this
case, one is interested in corrections in powers of the Yukawa coupling g, = m, /v,
while, corrections in powers of the gauge coupling g are ignored. In other words, one
is considering fhe perturbative expansion in the Yukawa coupling g; = m,/v rather
than the gauge coupling g. To fully extract the pure m, corrections in a general R
gauge, the massive gauge bosons do not appear in loops. Thus, gauge bosons can
be treated as classical (non-propagating) sources. Consequently, there is no need
to break the gauge invariance of the SM Lagrangian in order to perform the loop
calculations. The exact gauge invariance of the Lagrangian (in the limit of ignoring
corrections in power of the gauge coupling g) leads to a set of ward identities valid
to all orders. These Ward identities relate the n-point functions of the gauge bosons
to those of the scalar Goldstone bosons. Thus, by connecting the n-point functions

of the gauge bosons to those of the Goldstone bosons, one can relate the physical
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observables to the n-point functions of the Goldstone bosons. The Ward identities
can be easily derived in the path integral formalism using the generating function

technique.

As I discussed in chapter 1, all radiative corrections to low energy observables,
under a few general assumptions, can be written in terms of the gauge boson vacuum
polarization functions and the proper vertex correction of Z-b-b. Thus, using the
derived Ward identities, one can simply relate all physical radiative corrections to a
set of corrections involving the Goldstone bosons and the fermion sector. The derived
Ward identities relate the vacuum polarization functions of the gauge bosons to those

of the Goldstone bosons [108] as follow

2,2
¢eMul)) = Tog1lla),
g2v2
¢TI = T-T%(), (4.1)

where I1,,,(¢) is the vacuum polarization of the Z boson, I1%,(g) is the vacuum po-
larization of the W* boson, I1(q) and I1*(q) are the self energy of the Goldstone
bosons ¢® and ¢*, respectively. Similarly, the Z-b-b proper vertex correction [, can

be related to the proper vertex ¢3-b-b correction I' as follow

(p" = P*) L0 p) = i2— T +

2cos ¥
-1, n. P sin? 0 P, sin?@ . __
2 (srundz -2 - Fr - 2 ys000) 2)

where PLp = (1 Fvs)/2 and Sg'(p) is the self energy of the massless b quark with

momentum p. S;!(p) is parameterized as
Sr!(p) = iZ*yp" PL + i7,p" Pr. (4.3)

At tree level, Z® = 1. However, higher order corrections contribute to Z® whereas

the right handed self-energy of the massless b quark does not get modified. This is
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true since the right-handed quark, bg, is singlet under SU(2), symmetry. Therefore,
the right-handed quark, bg, does not couple to the Goldstone bosons in the limit of

vanishing b quark mass.

The 2-point functions of the W, Z gauge bosons, and the Goldstone bosons can
be expanded in powers of ¢? since this is the only relevant low energy scale in the loop
calculations after turning off the gauge couplings. In the limit ¢> — 0 the 2-point
functions are parameterized as

2,2

Hﬂu(Q) = %(z - l)g;w ) (44)
2,2

I (q) ~ %(Z *—1)gu - (4.5)

I(q) = (23 - 1), (4.6)

T*(g) = (25 — 1)¢*, (4.7)

where at tree level Z = Z* = Z} = Zf = 1. The energy scale ¢ = 0 is the only
relevant low energy scale in the loop calculations. The internal fields are the massless
Goldstone bosons, the heavy top quark, and the Higgs boson. Therefore, there are
only three mass scales in the calculations, a low energy scale ¢> = 0 and two high

energy scales m, and my.

Using the identities in Eq. (4.1), one obtains
Z =23, (4.8)
Z* =27%. (4.9)

Since, as discussed in chapter 1, oblique corrections to physical observables can be

written in terms of the quantities Z and Z%, it is therefore possible to relate the



130

quantities Z3, ZF to direct physical observables, or equivalently to the parameters
8p, Ak, and Ary. The quantities ZJ and Z5 are related to the quantities 42Z(0)

and AWY (0) defined in Eq. (1.49) as follows

2,2 2,2

v v
A%Z(0) = 43032 =23, AYV(0) = "Tz;. (4.10)

I will discuss this connection in the next section after dealing with the chiral La-

grangian case.

The proper Z-b-b vertex, can be parameterized as [108]

i 2 . 2 .
F”(p',p) = —2cgso ((l - 551n20)Z17”PL - -3—sm20'y,,PR) , (411)

for p = p, i.e., ¢ = p' — p ~ 0. Similarly, for the proper ¢3-b-b vertex

P -p

I'= Zf'y,, ”

PL. (4.12)
Therefore, using the Ward identity in Eq. (4.2) one finds
2 .2 3 2 .2 b
(1- 3 sin 0)Z, =27+ (1 - 3 sin 0)Z,. (4.13)

To get the physical Z-b-b vertex one needs to renormalize the left-handed b quark.

Therefore, one finds the physical Z-b-b vertex to be

i (o 2gte 1+ ) 2
V.= Toosd [(1 3 sin 0+Z§ YuPL 3 sin 6 Pg| . (4.14)

The conclusion is that to calculate the pure m, corrections to low energy data,
one simply has to calculate the quantities Z3, ZF, Z}, and Z} which are calculated
from a set of Feynman diagrams involving only fermions (top and bottom quarks)

and scalar bosons ( Goldstone bosons and the Higgs boson) but not gauge bosons.

Thus, in extracting the large m, corrections to low energy observables in the SM,

one starts with the tree-level Lagrangian, involving the Higgs doublet ®, the third
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generation left-handed quark doublet ¥, = (t.,b.) and the right-handed top quark
field tg

A v?)?
L = (8,,<I>)*(6”<I>)—-2-((<I>*<I>)’——2-) +

\/imc

v

Wiv*0,V L + TRiv*Outr + (tL by) ®tr + h.c. (4.15)

From which one calculates the needed quantities Z3, Z#, 73, and Z8.

4.3 Large m; Effects In the Chiral Lagrangian

In this section, I am interested in the chiral Lagrangian formulated electroweak
theories in which the gauge symmetry SU(2), x U(1)y is nonlinearly realized. A
mentioned in chapter 3, the chiral Lagrangian can be constructed solely based upon
the broken symmetry of the theory, and it is not necessary to specify the detailed
dynamics of the actual breaking mechanism. Hence, it is the most general effec-
tive Lagrangian that can accommodate any underlying theory with that pattern of

symmetry-breaking at the low energy scale.

In this section, as a matter of convenience, I define the composite fields in a slightly

different way from the ones I defined in chapter 3. I define

Wi = —iTx(r°c!D,T) (4.16)
and
B,=¢B,, (4.17)

where I define the quantity

7-0

DT = (a,, ~ig%

W:) T . (4.18)
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The quantity D,X as defined above is not a covariant derivative. Its transformation
under SU(2), x U(1)y can be checked using the W and I field transformations (see
appendix D). In my notation W and B, are the gauge bosons associated with the
SU(2), and U(1)y groups, respectively. Also, g and ¢’ are the corresponding gauge

couplings. The composite fields transform under SU(2), x U(1)y as

Wi Wi =ws-g,y, (419)

WE 5 W5 =YW (4.20)

B,— B, =B,+dy, (4.21)
where

Wt = w. (4.22)

g V2

I also introduce the composite fields 2, and A, as
Z,=Wi+B,, (4.23)
s2A, = W3 - B, (4.24)

where s? = sin6, and ¢ = 1 — 2. In the unitary gauge (£ = 1)

Wi =—gW7, (4.25)
2, = —-%Z,, ) (4.26)

A,, = —;An y (4.27)
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where I have used the relations e = gs = ¢'c, W2 = cZ,+sA,, and B, = —sZ,+cA,.

The transformations of Z, and A, under SU(2), x U(1)y are

2,2, =2,, (4.28)

1
Au— A, = A, = =0,y (4.29)

Hence, under SU(2), x U(1)y the fields W and Z, transform as vector fields, but

A, transforms as a gauge boson field which plays the role of the photon field A,.

Using the fields defined as above, one may construct the SU(2), x U(1), gauge

invariant interaction terms in the chiral Lagrangian

1 apuv 1 v
T UC
v2 - v2 )
+ Z—W” w4+ gz,,z +..., (4.30)
where
Wi, = Wi — Wi + e*WiW; (4.31)
Bpu = apBu - 61/3;4 ) (432)

and where ... denotes other possible four- or higher- dimensional operators 78, 72].

It is easy to show that!

Wi, = —gTtWe, 1% (4.33)
and
v __ _2yx/a apv
W W = g WL W (4.34)

'Use Wr® = —2iZ'D,T , and [r®, r%] = 2iebere.
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This simply reflects the fact that the kinetic term is not related to the Goldstone

bosons sector, i.e., it does not originate from the symmetry-breaking sector.

The mass terms in Eq. (4.30) can be expanded as

TWIW L 2,2 = 0,600 + 30,60
2,2 2,2
+g—:—WJW"‘ + 98—:22,,2" +... (4.35)

At the tree level, the mass of W* boson is My = gv/2 and the mass of Z boson
is Mz = gv/2c. The above identity implies that the radiative corrections to the
mass of the gauge bosons can be related to the wave function renormalization of the
Goldstone bosons, cf. Eq. (4.51), and therefore sensitive to the symmetry-breaking

sector.

Fermions can be included in this context by assuming that each flavor transforms

under SU(2), x U(1)y as [74]
fof=evf, (4.36)

where Qy is the electric charge of f.

My goal is to study the large Yukawa corrections to the low energy data from
the chiral Lagrangian formulated electroweak theories. I will separate the radiative
corrections as an expansion in both the Yukawa coupling g; and the weak coupling
g. (g« = m,/v, where m, is the mass of the top quark.) With this separation one
can then consider the case where corrections of the order g are ignored compared
to those of g;. This case is similar to the analysis in Ref. [108] where the gauge
bosons were considered as classical fields so that the full gauge invariance of the SM
Lagrangian was maintained, and a set of Ward identities was derived to relate the

Green’s functions of the Goldstone bosons and the gauge bosons. Hence, large g,
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corrections can be easily obtained from calculating Feynman diagrams involving only
fermions (top and bottom quarks) and scalar bosons (e.g., Goldstone bosons and
possibly the Higgs boson) but not gauge bosons. The same conclusion can be drawn
using the chiral Lagrangian approach in a far more elegant and clear way, as shown

below in this section.

Why is the chiral Lagrangian formulation useful in finding large g; corrections
beyond the tree-level? In general to perform a loop calculation, one needs to fix a
gauge and therefore explicitly destroys the gauge invariance [SU(2), x U(1),] of the
Lagrangian. However, to find the large g, corrections one does not need to include
gauge bosons in loops [108]. Thus, there is no need to fix a gauge and the full gauge
invariance of the effective Lagrangian is maintained. Because the chiral Lagrangian
possesses the SU(2), x U(1),, invariance (nonlinearly) and the U(1),,, invariance (lin-
early) at any given order of the perturbative expansions, and all the loop corrections
can be reorganized using the composite fields Wff,Z,,, and A, in a gauge invari-
ant form, therefore, it is the most convenient and elegant way to find g; corrections
beyond the tree-level. This is obvious because the leading radiative corrections (in
powers of m,) are products of the spontaneous symmetry breaking (SSB) and there-

fore independent of the weak gauge coupling g. One notes that in the expansion of

the field
_ 2,3 ¢
Z,= 20,8 =22, + .., (4.37)

there is always a factor g associated with a weak gauge boson field. Hence, loop
corrections independent of the gauge coupling g can be obtained by simply considering
the scalar and the fermionic sectors in the theory. In the following discussion, I will

show how this is done.
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4.3.1 Effective Lagrangian

To obtain the large contributions of the top quark mass (in powers of m,) to low
energy data, one needs only to concentrate on the top-bottom fermionic sector (f; =t
and f, = b) in addition to the bosonic sector. The most general gauge invariant chiral

Lagrangian can be written as

. 253 T 53
Ly = ily 6,,+z—§—A,, t +iby 0,,—13.4,, b

1 2s} — —2s? —
- (— -2+ Kl;fc) tLYtLZ, — ( 3 t + “2C> trY"trZ,

-1 53\, 01— n
- =+ ‘é‘ bL")’ bLZ,‘ - Ebﬂ'y bRZp

1 — 1 t\ — _
_-\/_i (1 + K(IEC) tL‘Y"bLW: - \/—5 (1 + KEC ) bL‘)’“tLW“

_%nﬁcﬁv“bgw’f - %nﬁctb—,—ry“tnw;

—mtt+ ..., (4.38)
where k'€, kRC, k§C, and k§C parameterize possible deviations from the SM predic-
tions, and ... indicates possible Higgs boson interactions and other higher dimensional
operators. Here I have assumed that new physics from the SSB modify the interac-
tions of the top quark to the electroweak gauge bosons. On the other hand, the
bare b-b-Z couplings are not modified in the limit of ignoring the mass of the bottom

quark. The subscript 0 denotes bare quantities and all the fields in the Lagrangian
Lo, Eq. (4.38), are bare fields.

Needless to say, the composite fields are only used to organize the radiative cor-
rections in the chiral Lagrangian. To actually calculate loop corrections one should
expand these operators in terms of the Goldstone boson and the gauge boson fields.

The gauge invariant result of loop calculations can be written in an effective La-
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grangian with a form similar to Eq. (4.38). Denoting the fermionic part of this

effective Lagrangian as L.y, then

L s3— 1 252\ —
£efj = 3ZbLbL'Ypa“bL + Zl':igbL'YprA“ + '2' (Z‘f' - ZQTO) bL’Y“bLZ“
p— s2— 52—
+zZ,be7,,6“bR + Z3§blt7ubRAp - Z4'§bn'y‘,bnzp +..., (4.39)

in which the coefficient functions Z,, Z,, Z3, Z4, Z£, Z[E, and Z~ contain all the loop

corrections, and all the fields in £.ss are bare fields.

Since the gauge invariance is maintained one can write L.ss in a from similar to
Eq. (2.29), i.e., in terms of the B gauge boson field rather than the composite field

A. Explicitly, L.y, can written as

Legy = iZ{br,0"b — 2 %E’YprB" + -;—Z.f‘b:m‘bLZ“
+iZ By, 0br — 23%5;7‘,5,33# 4o (4.40)
where
B, = s5(2, — A,) (4.41)

derived from Eqs. (4.23) and (4.24). Note that as shown in Eqs. (4.17) and (4.21) the
field B, is not composite and transforms exactly like B,. Comparing Eq. (4.39) with

(4.40), one conclude that the coefficient functions Z,, Z,, Z3, and Z; must be related

and
Zy=2,, (4.42)

All the radiative corrections to the vertex b-b-¢% in powers of m, are summarized by

the coefficient function ZZ because, from Eq. (4.37),

lZ‘f‘H'y,,bLZ“ = z,f%

5 bryubL0 ¢ + ... (4.44)
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Since the effective Lagrangian L.;; possesses an explicit U(1)em symmetry and
under G the field A, transforms as a gauge boson field and Z, as a neutral vector

boson field, therefore, based upon the Ward identities in QED one concludes that in

Eq. (4.39)

Z, =2, (4.45)
and
Zy=2Z}. (4.46)

Hence, the effective Lagrangian L.ss can be rewritten as

2 2
‘CCH = iZl{J-Iiﬂ)'# (aﬂ - i%A#) b + iZlFG’Y“ (au - i%gA#) br

1 L L2S(2) T M 33(2)—- u
+§ Zu — Ly — bL’)’”bLZ _Zb E—bR’)’”sz +... (447)

This effective Lagrangian summarizes all the loop corrections in powers of m, in the
coefficient functions Z£, ZJ, and ZL. Recall that up to now all the fields in £.ss are
bare fields. To compare with the low energy data I prefer to express L.s; in terms of
the renormalized fields. In Eq. (4.47), the kinetic terms of the b, and b, fields can be
properly normalized after redefining (renormalizing) the fields b, and by by (Z,f‘):flb,,
and (Z,ft);”'bn, respectively. In terms of the renormalized fields by, and bgr, L.ss can

be rewritten as

2

2
Loy = bpiv® (3p - i%Au) be, + brir* (Qx - i%gAu) br

*3

L 2 2
1 (Z"L - ﬂ) BvubL 2t — by beZ* + ... (4.48)
ZE 3 3

Before considering the physical observables at low energy let us first examine the

bosonic sector. Similar to our previous discussions, loop corrections to the bosonic
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sector can be organized using the effective Lagrangian

_

1
B - — pva B vau
€5 =~z = b
¢”g +)—H xvg u
+ZP DWW+ X DB, 4 (4.49)

Note that in the above equation I have explicitly used the subscript 0 to indicate
bare quantities. The bosonic Lagrangian in Eq. (4.30) and the identity in Eq. (4.34)
imply that the Yang-Mills terms (the first two terms in Lg) are not directly related
to the SSB sector. Hence, any radiative corrections to the field Wy, must know about
the weak coupling g, i.e., suppressed by ¢ in our point of view. This also holds for
operators, of dimension four or higher, which include W, in the chiral Lagrangian
where all these gauge invariant terms are suppressed by the weak coupling g [72, 78].
(The same conclusion applies to By,.) Therefore we conclude that the fields W"*, Z,,
and A, in L.y and L5, do not get wave function corrections (renormalization) in
the limit of ignoring corrections of the order g, namely the renormalized fields and

the bare fields are identical in this limit.
Expanding the mass terms in Eq. (4.49) we find

2 2
1
z¢%°w;‘w-“ + ZX%OZ,,Z" = 20,07 0"¢™ + 52°0,6°0"¢" +

2 2 2,,2
7690% W:W"‘ + ZXMZ,,Z“ +... (4.50)

4 83

It is clear that Z¢ denotes the self energy correction of the charged Goldstone boson
¢*, and ZX denotes the self energy correction of the neutral Goldstone boson ¢°.
Since W”i and Z, do not get wave function correction in powers of m,, therefore the

gauge boson masses are

g2v2
My = z¢%% - zengy,

g2v2
M: = ZX-‘% = ZXM3, . (4.51)
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In summary, all the loop corrections in powers of m; to low energy data can be
organized in the sum of L.y [in Eq. (4.48)] and L5, [in Eq. (4.49)]. Comparing them
to the bare Lagrangian £y in Eq. (4.38), we find that in the limit of taking g — 0 the
chiral Lagrangian £( behaves as a renormalizable theory although in general a chiral
Lagrangian is nonrenormalizable. In other words, no higher dimensional operators
(counterterms) are needed to renormalize the theory in this limit. The same feature

was also found in another application of a chiral Lagrangian with 1/N expansion

[109).
4.3.2 Renormalization

Now we are ready to consider the large m, corrections to low energy data. I choose

the renormalization scheme to be the a, Gr, and Mz scheme (the Z-pole scheme).

With
4T
g% = sg° (4.52)
and
= , 4.53
SoCo \/iGFo M%o ( )
or,
1/2
1 4T
== 1-(1-——"—) : 4.54

Define the counterterms as

a = ag+da,

Gr = Gpo+9GF,

S
I

M3, + 6M3 , (4.55)
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and

§2 = s24+8s%=s2—6c,

E = g+6, (4.56)
then

s2 + (2 - s%) 6 =

Ta ( da OGfp 6M§) (4.57)

2\ " e Y et 2
As shown in the above equation, even after the counterterms da, 6Gr, and SM?2 are
fixed by data [e.g., the electron (g-2), muon lifetime, and the mass of the Z boson), I
still have the freedom to choose éc? by using a different definition of the renormalized
quantity s2c2. In this case, I will choose the definition of the renormalized s2 such that
there will be no large top quark mass dependence (in powers of m,) in the counterterm
8c2. 1 will show later that for this purpose the renormalized s? satisfies 2

2.2 — o 4.58
’ V2GrM3p' (4.58)

where p is defined from the partial width of Z into lepton pairs, cf. Eq. (4.75). With

this choice of s2 and the definition of the renormalized weak coupling

g = i’;—a , (4.59)

s
one can easily show that the counterterm §g?> (= g? — gg) does not contain large
m, dependence. (Obviously, da will not have contributions purely in powers of m,.)
Namely, in this renormalization scheme, a, g, and s? do not get renormalized after
ignoring all the contributions of the order g. Hence, all the bare couplings gy, g, and
s3 in the effective Lagrangians L.; and Cff s do not get corrected when considering

the contributions which do not vanish in the limit of g — 0. The only non-vanishing

2If one defines 8¢ = ma/v2G M2, then s? = s"(1+ Ax’) with Ak’ = —c?5p/(c? — &), and
the counterterm of s” will contain contributions in powers of m,.
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counterterm needs to be considered in Eq. (4.49) is 6v? (= v — v3). From Eq. (4.51)

and My = gv/2, one finds
Z%k =, (4.60)

because neither g nor W* (or W*) gets renormalized. Thus,

1 1
=—_=2¢% =7¢
Gro = Vo = VA Tt = Z°GF . (4.61)
Consequently,

gg _ 8GF0M§'0 _ SGFMg Zd’

Ry (4.62)

and the effective Z-b-b coupling is

GrM32 Z¢ ZL 45 ZL
FiMz u [(Z_Z* - T) - _'275] , (4.63)

where P p = (1 F 7vs)/2.

4.3.3 Low Energy Observables

A discussed in chapter 1, all the radiative corrections to low energy data can
be categorized in a model independent way into four parameters: ¢, €2, €3, and ¢,
(16, 22, 23] or equivalently, the S, T, U, ...[24] (see appendix B). The parameters ¢,
€2, €3, and €, can be derived from four basic measured observables, such as ', (the
partial decay width of Z into a u pair), A%p (the forward-backward asymmetry at
the Z peak for the u lepton), My /M (the ratio of W* and Z masses), and T, (the
partial decay width of Z into a bb pair). The expressions of these observables in terms

of €’s can be found in chapter 1.
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In this section, I only give the relevant terms in € 's that might contain the leading

effects in powers of m, from new physics. Denote the vacuum polarization for the

W1, W2, W3, and B gauge bosons as
1% ,,(q) = —igu [A7(0) + ¢*F(¢*)] + guq, terms, (4.64)

where i,7 = W, Z, v, respectively. Then,

€ =e —es5, (4.65)

€2 = ey — cos> 0 %ey, (4V.66)

€3 = e3 — cos’ 0 2ey, (4.67)

€& =€, (4.68)
where

_ AZZ(()) _AWW(O)

ex = F"Y(My) - F¥(M3), (4.70)
es = <89 pao12) (4.71)
siné zn '
dF?%Z
es = M%d_qg(Mg) : (4.72)
and e, is defined through the vertex corrections to Z — bb
N__9, . 1-%
V. (z - bb) = — e (4.73)

Both €; and €, gain corrections in powers of m,, and are sensitive to new physics

coming through the top quark. On the contrary, €5 and €3 do not play any significant
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role in our analysis because their dependence on the top mass is only logarithmic.

Hence,
€6 = 6p+ corrections of the order g,
€ = T + corrections of the order g,
€ = corrections of the order g,
e3 = corrections of the order g, (4.74)

where ép = p — 1. The parameters p and 7 are defined by

GrM3
_ + -\ z (2 2
r, = F(Z"’I‘I‘)—Pﬁﬂ_ﬁ (guv+g#,4)’
_ T GePM3 (5 |
I'y = F(Z — bb) = pm (g,,v +gbA) ’ (475)
where
1 1
Guy = —E (1-432)a gpA=—§ )
- _1(1_32+T) =-Lla4n (4.76)
Gy = 2 33 » Gbp = 2 : :

Hence, comparing to Eq. (4.63) we conclude

6p = a -1 ’
L
T = g—} -1. (4.77)

4.4 One Loop Corrections in the SM

The SM, being a linearly realized SU(2), x U(1), gauge theory, can be formu-
lated as a chiral Lagrangian after nonlinearly transforming the fields (see chapter 2).
Applying the previous formalism, I calculate the one-loop corrections of order m? to

p and 7 for the SM by taking k)¢ = k€ = k§C = k§C = 0 in Eq. (4.38). These
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loop corrections can be summarized by the coefficient functions ZX, Z¢, Z}, and Z%
which are calculated from the Feynman diagrams shown in Figure 4.1(a), 1(b), 1(c),

and the sum of 1(d) and 1(e), respectively. I find

6m? 9
ZxX = 1+W(A—lnm,) ,

6m? 1
¢ = —_—t - - 2
26 = 145 (A4 5 —lam?) |
Zb = 14 (—A+1nm2-§)
b T 167202 t 6/’
3m? 3
L _ 2 3
Z, = 1+ Rﬂ’—é;}—f (—A +Inm; — 2) . (4.78)

One notes that Figure 4.1(e) arises from the nonlinear realization of the gauge symme-
try in the chiral Lagrangian approach. Substituting the above results into Eq. (4.77),
one obtains

6 3Gpm?
p 8v/2n2 '

Gpm?
_Grm 4.79
4\/§7T2 ( )

which are the established results (see section 1.5).

4.5 One Loop Corrections with Nonstandard Top
Quark Couplings

In chapter 3, I calculated the one-loop corrections (of order m?1n A?) to p and 7
due to the nonstandard couplings of the top quark to the electroweak gauge bosons.
The set of Feynman diagrams we considered contained external massive gauge bosons
lines. In this section, I show how to reproduce those results by considering a set of
Feynman diagrams which contains only the pure Goldstone bosons, the top quark,

and the bottom quark lines, as described in Section 4.3.
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X 3 3
. ¢ [
z* N\ o
t
ot ¢~
¢ .
z : - (®)
b
¢+
L b ,// Nb
Zb : > > I\ > (c)

(d)

(e)

Figure 4.1: The Feynman diagrams which contribute to p and 7 to the order
O (m?1n A?).
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Non-renormalizability of the effective Lagrangian presents a major problem on
how to find a scheme to handle both the divergent and the finite pieces in loop
calculations [99]. Such a problem arises because the underlying theory is not yet
known, so it is not possible to apply the exact matching conditions to find the correct
scheme to be used in the effective Lagrangian [61]. One approach is to associate the
divergent piece in loop calculations with a physical cutoff A, the upper scale at which
the effective Lagrangian is valid [74]. In the chiral Lagrangian approach this cutoff
A is taken to be 4mv ~ 3TeV [61].3 For the finite piece no completely satisfactory

approach is available [99)].

To perform loop calculations using the chiral Lagrangian, one should arrange
the corrections in powers of 1/47v and include all the Feynman diagrams up to the
desired order. Figure 4.1 contains all the Feynman diagrams needed for our study. I
calculate the leading contribution to p and 7 due to the new interaction terms in the
chiral Lagrangian using the dimensional regularization scheme and taking the bottom
quark mass to be zero. At the end of the calculation, I replace the divergent piece
1/€ by In(A2/m?) for € = (4 —n)/2, where n is the space-time dimension. Effectively,
I have assumed that the underlying full theory is renormalizable. The cutoff scale
A serves as the infrared cutoff of the operators in the effective Lagrangian. Due
to the renormalizability of the full theory, from renormalization group analysis, I
conclude that the same cutoff A should also serve as the ultraviolet cutoff of the
effective Lagrangian in calculating Wilson coefficients. Hence, in the dimensional
regularization scheme, 1/¢ is replaced by In(A?/p?). Furthermore, the renormalization
scale u is set to be m,, the heaviest mass scale in the effective Lagrangian of interest.
Since I am mainly interested in new physics associated with the top quark couplings

to gauge bosons, I will restrict myself to the leading contribution enhanced by the

3This scale, 4mv ~ 3 TeV, is only meant to indicate the typical cutoff scale. It is equally probable
to have, say, A = 1TeV.
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top quark mass, i.e., of the order of (m?1nA2).

Inserting these nonstandard couplings in loop diagrams and keeping only the linear

terms in k’s, one finds

6m? A?
X = t NC _ o9,.NC
Z 1+ T6w202 (2K,L 2Kp )ln 7

12m} cc, A?

¢ _
z% = 1+167r2v2'c" nm?,

6m} cc A_2

L _
2y BT m?’
2 2
L _ m, cc NC NC A_
zZ;, = 1- Ton2? (6K,L —4K;” + Kp )ln mE (4.80)

Thus the nonstandard contributions to p and 7 are

_ 3Gsz2 cc NC NC A?
op = W(NL - KL +KR)lnm—?,
Gpm? 1 NC NC A2
T = 2\/§7r2 (—ZKR + K )1117—7;? R (4'81)

which agree with my previous results obtained in chapter 3.

4.6 Conclusions

In chapter 3, I performed a one-loop level calculation of the leading quadratic m;
corrections by considering a set of Feynman diagrams, derived form the nonlinear
chiral Lagrangian, whose external lines were the massive gauge boson lines. The
leading corrections (in power of m;) to the low energy observables were found not to
vanish in the limit of vanishing g (the weak coupling) because they originate from
strong couplings to the SSB sector, e.g., through large Yukawa coupling g;. Therefore,
the result in chapter 3 should in principle be reproduced by considering an effective

Lagrangian which involves only the scalar (the unphysical Goldstone bosons and
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probably the Higgs boson) and the top-bottom fermionic sectors. This was shown in
Section 4.3. I discussed how to relate the two corresponding sets of Green’s functions
for the low energy observables of interest. I showed that by considering a completely
different set of Green’s functions (without involving any external gauge boson line)
from that discussed in chapter 3, I obtained exactly the same results. My result for
7 is different from that given in Ref. [101] where the wave function correction to the

bottom quark was not included.



Chapter 5

A Model of Strong Flavor
Dynamics for the Top Quark

5.1 Introduction

In chapter 3, I discussed a phenomenological model in which new physics appears
in the top quark interaction with the gauge bosons. In that phenomenological model
I did not specify an explicit dynamics which triggers the top quark nonstandard
couplings. In general, these couplings could be due to different dynamical models,
e.g., extended technicolor models, models with extra gauge bosons, etc. In this chap-
ter, I construct a specific model which triggers the top quark nonstandard couplings.
It also leads to}other interesting physics at low energy. Therefore, one has to study

all of the aspects and effects of the model at low energy.

The construction of this model is based on the theoretical observation of the hier-
archy of the fermion mass spectrum. The relatively large mass of the third generation
of fermions may suggest a dynamical behavior for the third generation different from
that of the first two generations. In this model, the third generation undergoes a dif-
ferent flavor dynamics from the usual weak interaction proposed in the SM. I assume
this flavor dynamics to be associated with a new SU(2) gauged symmetry. Therefore,

a new spectrum of gauge bosons emerges in this model. No modifications to QCD

150
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interactions are considered here; this case has been discussed elsewhere [110].

5.2 The Model

The model is based on the flavor symmetry G= SU(2); x SU(2), x U(1)y . Where
the third generation of matter (top quark, t, bottom quark, b, tau lepton, 7, and its
neutrino, v,) experience a strong flavor interaction, instead of the weak interaction
advocated by the SM. On the contrary the first and second generations only feel the
weak interaction supposedly equivalent to the SM case. The strong flavor dynamics
is attributed to the SU(2), symmetry under which the left-handed fermions of the
third generation transform in the fundamental representation (doublets), while they
remain to be singlets under the SU(2); symmetry. On the other hand, the left-handed
fermions of the first and second generation transform as doublets under the SU(2),
group and singlets under the SU(2), group. The U(1)y group is the SM hypercharge
group. The right-handed fermions only transform under the U(1)y group as assigned
by the SM. Finally the QCD interactions and the color symmetry SU(3)c are the

same as in the SM.

The symmetry breaking of the Lie group G into the electromagnetic group U(1)em,
is a two stage mechanism, first SU(2); x SU(2), x U(1)y breaks down into SU(2), x
U(1)y at some large mass scale. The second stage is where SU(2), x U(1)y breaks
down into U(1)em at a scale of the order of the SM electroweak symmetry-breaking
scale. The spontaneous symmetry-breaking of the group SU(2); x SU(2), x U(1)y is
accomplished by introducing two scalar matrix fields £ = o +i7°7* ! and & with the

transformations

£~ (2,2), ®~(2,1) , (5.1)

1

7%’s are the Pauli matrices and Tr(7°7%) = 264.
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i.e., the T field transforms as a doublet under both SU(2); and SU(2), and as a
singlet under U(1)y. On the other hand the & field transforms as a doublet under
SU(2)i, as a singlet under SU(2),, and has a hypercharge quantum number Y = 1.
Thus, the scalar doublet ® is equivalent to the SM Higgs doublet. However, as to be

shown later, the Yukawa sector is different.

As a realization of the symmetry I define the field transformations as
T - gZd, ® - qgi9v?, (5.2)

where g, € SU(2);, g2 € SU(2), and gy € U(1)y. In this section I discuss fully the

structure of this model.

5.2.1 The Bosonic Sector

Under the gauged SU(2); x SU(2), x U(1)y, I introduce the covariant derivatives

of the scalar fields,
D'E = T + igW'E — igh WY | (5.3)
D*® = 0*® + igW}'d + %g’B"@ , (5.4)

where the gauge boson fields W, = W% /2 and W,, = W7%/2 corresponds to the
gauged groups SU(2); and SU(2),, respectively. The gauge coupling g, is assumed to
be larger than g; even though I will restrict myself to the region where the perturbative

calculation still holds.

With these definitions, the gauge invariant bosonic Lagrangian is

Lp = -;-D,,Q'D”Q + %Tr(D,,E*D“E) +V(®,%)
1 a (] 1 a a 1
— Ve W = W Wi — ;BB (5.5)
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where V(®,X) is the scalar potential. I assume that the first stage of symmetry

breaking is accomplished through the ¥ field, i.e. by acquiring a vacuum expectation

value u,

©=(5 o) (5.6)

Hence the symmetry SU(2); x SU(2), x U(1)y is broken into the diagonal group
SU(2)L x U(1)y, and the symmetry-breaking scale is set by the vacuum expectation
value u. The next step is to break the SU(2), x U(1)y symmetry into the U(1)em

symmetry through the scalar ® field, i.e. by acquiring a vacuum expectation value v.

@ =7 (5.7)

where v, as we will see later, is of the order of the SM symmetry-breaking scale.
Because of this pattern of symmetry breaking, the gauge couplings are related to the
U(1)em gauge coupling e by the relation

1_1

2
]

11
+=5+—. 5.8
e g g g° (58)

Here I define

e e , e

= sinfcos¢’ 9n = sinfsing’ 9= s’ (5.9)

a

where 0 is the usual weak mixing angle and ¢ is a new parameter in this model. The
scalar fields, except Re(¢°) from the ® doublet and o from the £ matrix field, become
the longitudinal components of the physical gauge bosons. The surviving Re(¢°) field
behaves similar to the SM Higgs boson except that it does not have the usual Yukawa

couplings to the third generation.

To get the gauge boson mass eigenstates, I first concentrate on the charged gauge

bosons. As a first step I rotate the gauge fields by the angle ¢.

Wit , = cos oW, +singW;' Wy, = —singW;*, + cosoW;' (5.10)
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where W, = (W}, FiW? )/ v2, and similarly for W;f,. The mass matrix reduces

to
1 —tan¢
M&,:Mg (-—tan¢ m+tan2¢) ’ (5.11)
where
2,2 2
2 — ev =y_.. 512
M=tas “=¢ (5.12)

Next I consider the neutral sector VVlﬁ, Whi, and B,. Define

W,aﬂ = cos f(cos dM’,s” + sin ¢W,?“) —sinéB,, (5.13)

A, = sinf(cos ¢VV,3,‘ + sin ¢IV,?”) + coséB,, (5.14)
and

W,}” = —singW}, + cosgW}? . (5.15)

The gauge field A, is massless, corresponding to the physical photon field, while the

remaining fields have the mass matrix

M? 1 2—cos¢9tan¢
2 -0 | _ zcos® @ 2 2
Z ™ cos?d ( cosftand 5 iCoag +cos®dtan ¢) : (5.16)

To get the mass eigenstates and the physical masses of the gauge bosons, I further
diagonalize the mass matrices M? and M. In this model, I am concentrating on
the case where g, > g;, (equivalently tan¢ < 1) but with g2 < 47 (which implies
sin¢ > g?/(4m) ~ 1/30) so that the perturbation theory is valid. Similarly, for

gn < g1, we require sin? ¢ < 0.96. Furthermore, I focus on the region where z > 1,
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though another region of interest could be z ~ 1 (u ~ v), but in this case the one-loop
level contributions due to the heavy gauge bosons should also be included because
they are of the same order as the SM one-loop contributions. In the limit z > 1, 1
expand terms only up to the leading order in 1/z. Thus, in dealing with this limit one
can ignore all higher order corrections, since they are suppressed by higher powers of

1/z. To the order 1/z, the eigenstates of the light gauge bosons are

sin® ¢ cos ¢

Wi=Wwf, + Wi, (5.17)

sin® ¢ cos ¢

2= 2t = osh

Zs,,. (5.18)

While for the heavy gauge bosons one finds

.3
Wit = -wwf“ + Wi, (5.19)
sin® ¢ cos ¢
Z:‘ = —WZI,, + ZQ,‘ . (520)

To the same order, the gauge boson masses are

4
Mye = M2(1 - = ¢), (5.21)
M2 sin? ¢
2 _ 0 _
Mj = —(1- —). (5.22)

While for the heavy gauge bosons one finds

. 2
M2, = M2 z sin® ¢
wi = Mo (sin2 ¢cos? ¢ + cos?¢ )’ (5.23)

. 2
M2 = M2 z sin® ¢ .
z =M (sin2 ¢cos? ¢ + cos? ¢ (5.24)
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It is interesting to notice that the heavy gauge bosons are degenerate up to this order,
i.e., M} = M. This is due to the fact that the heavy gauge bosons do not mix

with the hypercharge gauge boson field, B,.

5.2.2 The Fermion Sector

Now I focus my attention on the fermionic sector. The quarks transform un-
der the usual color SU(3). gauge group as in the SM. As discussed before, only
the third generation interacts with the SU(2), gauge bosons. The first and sec-
ond generations only interact with the SU(2); gauge bosons. Explicitly, under the
SU(2); x SU(2), x U(1)y symmetry, the transformation of the first and second gen-
eration is as follows
Left-handed quarks: (2,1),/3 , Left-handed leptons: (2,1)_,

For the third generation, we have

Left-handed quarks: (1,2),/3 , Left-handed leptons: (1,2)_;

For all the right-handed fermions, we have

Right-handed quarks and leptons: (1,1)q |,

where Q is the electric charge of the right-handed fermions. Because of this assign-
ment, the model is anomaly free since cancelation of anomalies are satisfied family
by family. I denote left-handed doublets of the first and second generation by \Il(Ll’z),
and right-handed singlets by \IIS;'Q) . On the other hand, I denote the left-handed dou-
blets of the third generation by ¥3 and right-handed singlets by ¥3,. The fermionic

Lagrangian is

£y = TGMiprD, ol 4 T PiprD, el 4

Uiy D, V3 + Uiy D, 03, 5.25
n BER
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with
D, v = (a — g w,,‘ ig’%—B,‘) v (5.26)
D,¥5? = (8, +igQB,) ¥4?, (5.27)

Ta
D%} = (3 +io

Y
W3, + zg'-2-B,,) o (5.28)

D, %% = (9, +ig'QB,) Vi, (5:29)

where Y is the hypercharge generator of the U(1)y group, and the relation

Q=T +T+ -}2: (5.30)

is satisfied, where T}}, is the third isospin component of SU(2)i().

In terms of the mass eigenstates of the gauge bosons W%, Z,, W'% and Z' the
g g uo “m Wy u

interaction Lagrangian is

E}"‘ = _e 0-\11_(1 2,y [Ti +T,, sin® ¢ (T,, cos® ¢ — T2 sin ¢)] \Ilg'2)Wf+

sin? ¢
T

12 _u |3 , 73 _
sin0c030\p" Y [T' +Th

(cos2 ¢TZE — sin? ¢'I}*)] \I'(Ll'2) Z,

€ =3 , -_sinqb +  COSQ j:_sinstj)cosqb + + PO
+sin0\I’L 7 i cos¢T' sing * z cos? 0 (T" +T’) W,
e —3 ,| _sing cos ¢ 3_sin3¢cos¢> 3L 2 3 o
Tom8 0 " | Toosg !t smg P T zeos’d (T3 + T? — Qsin’0) | ¥ Z,
3
i wgi, _ €Qsin® 0-—-. _sin’gcosg,,
+eQf 7S A sinfcosf’ " 7 fi | 2 zcosf Zu) - (5.31)

Now I consider fermion mass generation and mixing. The first and second gener-

ations acquire their masses through the Yukawa interactions to the & doublet field,
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with < & >= v. The Yukawa Lagrangian is

— .
Lyykawa = V. ®[g5,er + giattr + 9137R]

—2 e
+ WL ®[g5er + g5o1r + g337R] + hoc. (5.32)

For the third generation one can not generate the fermion masses through the usual
Yukawa terms (dimension four operators), as it is not allowed by gauge invariance.
It is only through higher dimension operators that one can generate these fermion
masses. This characteristic of this model may be significant in understanding the
fermion mass generation problem especially in understanding the observed mass hi-
erarchy. Thus, although the masses of the first and second generations are generated
through the Yukawa interactions as in the SM. The mass spectrum of third generation
must be generated by a different mechanism. This conclusion may be attributed, in
this model, to the strong flavor dynamics which may be evident at adequate high
energy. At high energy where the interactions are strong enough, the masses of the
third fermion generation are assumed to be generated possibly within some dynam-
ical framework. I do not offer an explicit scenario for such a picture, however, an
extended technicolor scenario may offer such a solution. The conclusion is that the
strong flavor dynamics may be an essential player in the mass generation mechanism
and an understanding of the strong dynamics at the high energy scale is required to
solve the mass generation issue. Also, the strong dynamics may be responsible for the
large masses of the third generation as compared to the first and second generations.
In this discussion, I limit my self to the region where the strong flavor interaction is
being under a perturbative control. Effectively, one can generate the third generation
masses using dimension five operators, e.g., for the 7 lepton one can generate its mass
through the following mass terms

1

A\I’_Lsth’ [g31€R + g3optr + 9337'3] + h.c., (5.33)
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where U3 = (‘;')L, and A characterizes some large mass scale associated with the
strong flavor interaction. It is reasonable to assume that A ~ u > v, and thus g33 is
of order 1. An early version of the model Ref. [111] with an additional scalar doublet
couples only to the third generation through the usual Yukawa interactions is another

scenario for generating the third family masses.

With the fermion mass matrices being generated, one can obtain their physical
masses by diagonalizing the mass matrices using bilinear unitary transformations. For
example, for the lepton sector, the lepton mass matrix M, can be read out from the
mass Lagrangian written above in Egs. (5.32) and (5.33). I introduce the rotational

unitary matrices L., and R, with the transformations,

e = Lie,, el = Riel, . (5.34)
Hence, the physical mass matrix is given by

Mdiee- = LIM,R,. (5.35)

Because the third family interacts differently form the first and second generation, I
expect in general Flavor Changing Neutral Currents (FCNC) may occur at tree level.
For example, in terms of the leptonic weak eigenstates the left-handed neutral and

charged currents are given by

0

€ — : sin*¢ sin? €L
2sinfcosf ( LA )7“ [_1 +2sin”0+ z - z ¢G] ( KL ) Zu, (5.36)
TL

and

(5.37)

: 4 s 2 Ver

e ( sin"¢ sin‘¢ +
- €L BL TL )7" [1 - + G] Vu | W
V2sin8 T T Yoy
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where

000
G=|0 0 0]. (5.38)
0 0 1

In terms of the fermion mass eigenstates it follows that the left-handed neutral

current interactions are

e sin“¢ sin ¢ €L
(ézﬁi?z)v"[—1+2sin2o+ - L'GL] z,.

2sinf cosf TL

(5.39)

For the left-handed charged current interactions, one has

e _ " sin4¢ sm2¢ N Vel _
\/-fsino(qm'ﬁ)7 1-— LGL| | vu, | W +he  (5.40)

VrL

For the neutrino sector, the neutral currents are

4 : 2 VeL
€ ( Vel Upp Uil )'7“ [1 _sm ¢ + S ¢L£GL,] ( Vup ) Z,. (5.41)

2sinf cosf I T
VrL

Similarly, for the quark sector I introduce the unitary matrices L, and Ly, in terms

of the mass eigenstates one finds the following interaction terms:

4 ur
; (szﬁ)v“[l-i;-sin2o-s’“¢ Sm¢L'GL]( )Z,,,

2sinf cosf T ¢
L

(5.42)

dy
e - sint ¢ sin? ¢ -
J3sind ( UL ¢ tL )"/" [(1 - )LtL L"GLd] ( st ) W, +hec,

T
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and

. : d
e = 2 . sin'¢  sin? L
2sin00030( L3 )7” [—1+§sm20+ :c¢— x¢chLd] ( L )Zu-

The right-handed fermion couplings to the neutral gauge bosons Z and Z’ are,

respectively,

e
sin@ cos 0

(—Qsin?6), (5.45)

and

sin3¢cos¢) ' (5.46)

e . 9
—_— 0
sin@ (Q S cos?0
The fermion couplings to the photon are the usual electromagnetic couplings. As

shown above, if g, > g, then the heavy gauge bosons would couple strongly to the

third generation and weakly to the first two generations, and vice versa.

For the charged-current interactions in the quark sector, one observes that in the
case of ignoring the new physics effect, the quark mixing is described by the unitary
matrix V = L} L, which is identified as the usual Cabibbo-kobayashi-Maskawa (CKM)
mixing matrix. When new physics are turned on, the mixing acquires an additional
contribution proportional to sin?¢/z. Since the off-diagonal elements in the CKM

matrix are small, one can approximate the quark mixing as

+ 4 -2
Lf‘(l—-sm ¢+sm ¢G)Ld
T T

. 4 . 2
sin ¢+sm d)G

LiLy—
X

14

= V-

sin? ¢ + sin2¢G.

~ — (5.47)

Interesting new features emerge in this model, e.g., lepton mixing is an exciting

possibility. In addition to that, neutrinos can mix through their weak interactions,
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making it an exciting feature that may be connected to the solar neutrino problem.
Quark mixing also has interesting features, e.g., FCNC are a possibility in the model
which could be investigated. However, the quark sector has more free parameters (to
describe the mixing) than the lepton sector which makes the analysis more tedious
and less predictive. Hence, I will not consider FCNC in the quark sector. For the
lepton sector, there are already significant constraints on lepton universality and
lepton number violation from the low energy data that one has to check against
from the start. First, one must examine the already existed data on lepton number
violation to see if such mixings are allowed. As an example is the almost vanishing
branching ratio of the process I',-_,.-¢+.- Which forbids any mixing between the first
and second generation. Other lepton number violation processes, especially those
involving the third family, are not as severe as I',-_,.-.+.-. In the next section, I will

discuss in more details the constraints imposed by the low energy data.

5.3 Low Energy Constraints

As discussed in chapter 1, the input parameters of the SM a, Gp, and Mz are
defined through three experimental measurements, e.g., through the e-p scattering,
the u decay, and the Z peak at LEP. Similarly, one needs to fix the input parameters
in the proposed model. The input parameters can be chosen as a, Gp, Mz, sing,
and z. I fix the first three parameters in a similar way to the SM case. The last
two parameters will be treated as free parameters to be constrained through the low
energy data. It is advantageous to express the input parameters in this model in
terms of their corresponding SM ones. In the case of the electromagnetic coupling
both values coincide, i.e., @ = oM. In the case of weak coupling constant I use the

p decay to define Gr. I calculate the u-decay width as predicted in this model and
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including the W and W’ contributions. I find that Gr = G3M (equivalently v = vM)
as long as one demands no mixings between the first and second lepton families (see

below). Finally, I define Mz using the Z peak at LEP, i.e., Mz = M3M.

Now, one can write other bare parameters in the proposed model in terms of the

input parameters. For example consider Eq. (5.22)

e 4
My idd (1— 3 ¢) . (5.48)

= 2sinfcosf 2z

In the SM, M; can be written as

ev

= , 5.49
2~ 2sin Osm cos Osm ( )

where sin fgy is the SM weak mixing angle. Since Mz is defined in both the SM and

the proposed model through the Z peak at LEP, one concludes that

ev sin? ¢ ev
2sinf cosé (1 T2z ) " 2sinfgy cosfsy (5.50)

One finds that

. 4
2sinf cos @ = 2sin gy cos Osy (1 - Sl;x¢) . (5.51)

Hence, solving for sin@ = 1 — cos?# in terms of sin? fsy, one finds that

2 . 4 '
sin? 6 = sin® Oy [1 - (COS 0) i ﬂ . (5.52)
SM

cos 20 T

Therefore, observables can be predicted in the proposed model using the the input
quantities @, Gr, Mz, and sin®fgy. (The values of these quantities are given in
chapter 1.) In addition to those quantities one has two additional free parameters

sin? ¢ and z.

As previously discussed, lepton mixing is an interesting consequence of this model.

However, the almost null measurement of u — e~e*e~ forbids any mixing between
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the first and second lepton families. Still mixing may be allowed to exist between the
third family and either the first or the second one. It is natural to assume that the
mixing strength between leptons may be directly related to the lepton masses. If so,
one would expect the mixing between the second and the third families to be more
significant than the first and the third families. In the following discussion, I will
assume that in the case of leptons, mixing will be only between the second and the
third families. Because the mixing matrix is of the form L!GL., where the matrix
G is given in Eq. (5.38). One finds that the mixing matrix for the second and third
lepton families can be expressed by one free parameter. The 2 X 2 mixing matrix can

be written as

( sin? 3 COSﬂsinﬁ) , (5.53)

cosfsinf  cos?f

where sin 3 is a free parameter of the model for describing the mixing between the

second and third lepton families.

To test this model by the low energy constraints on lepton mixing and FCNC
processes, it is necessary to understand the form of the four-fermion current-current
interactions at zero momentum transfer. The four-fermion charged-current weak in-

teractions are [112]

2, . 2 .

2l + )+ =5k, (5.54)
and the neutral current four-fermion interactions are

2 .3 .3 . 2 . 2 2 .3 . 2 . 2 . 2

sz Ui + gk = 8in" 0em)” + —5 (5, — sin” @sin® jem)”, (5.55)

where j;, are the left-handed charged currents corresponding to the first two genera-
tions and the third generation, respectively. Similarly, j,3,,, refers to the left-handed T3

currents, while jen, represents the full electromagnetic current of the three families. I
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conclude that if there is no mixing in the lepton families then all leptonic decays are
identical to the SM, e.g., the 7 lifetime can not furnish any new information about
this model. (This also explains why Gr = G3M from the u-decay if there is no mixing
between the first and second lepton families.) However, it is more general to allow
mixing in the leptonic families, so I will investigate this possibility more carefully. Be-
cause of the almost vanishing branching ratio of the decay I'(,-.-c+.-), BR < 10712
[9], I will only allow mixing of 7 and p and their neutrinos. This mixing will mod-
ify the lifetime of the 7 lepton, which depends on one free parameter, sin? 3. The
constraints on sin? 3 come from: the ALEPH measurement (in terms of the effective
couplings ratio g,/g,, cf. Table 5.1) of the branching fraction for 7 decay into u
and the determination of the 7 lifetime [113], the lepton number violation decay of
T — ppp, with a branching ratio BR < 4.3 x 107° (at 90% C.L.) [9], and the FCNC
search at LEP with BR(Z — p*7¥) < 1.7 x 107 (at 95% C.L.) [114]. Figure 5.1
shows the Feynman diagrams for the process 7 = puu. At zero momentum transfer
both diagrams are of equal importance. One finds that

sin? B cos? 3

P(f‘-’u‘u'#*) = F(1" U VrT,) 412

(sin 82 — 4sin? Osin? )" . (5.56)

All other fermionic processes at zero momentum transfer, such as the u decay, K-K

mixing, and B-B mixing, are identical to the SM predictions.

In this model, the low energy predictions depend on the values of 1/z, sin? ¢,
and sin’? 8 in addition to the measured values of a(Mz), G, and Mz. Using the
most recent LEP measurements [12] (the total width of the Z boson, R., R, R,, the
vector gy and axial-vector g4 couplings of e, the ratios gy (1, 7)/gv (€), 9a(1,7)/94(e),
the lepton forward-backward asymmetries, the 7 and e polarization asymmetry, the
hadronic pole cross section o, and the ALEPH measurement of g, /g, [113]) combined

with the FCNC measurements of 7= = p~u~u* and Z — u~ 7%, I determine the
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m (b)

F A

Figure 5.1: The Feynman diagrams for the process 7 — puu.
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allowed values of sin? ¢, sin? 3, and M. I do not include the controversial observables
R, and R, as a part of the fit. Instead, I treat them as a prediction and discuss later
whether the proposed model is able to explain the anomaly in these measurements.
The experimental values of the electroweak observables [12] and their SM prediction

[30] are given in Table 5.1.

I calculate the changes in the relevant physical observables relative to their SM

values to leading order in 1/z, i.e.,
0=0%(1+460), (5.57)

where OSM is the SM value for the observable O including the one-loop SM correction,
and 60 represents the new physics effect to leading order in 1/z. I list the calculated

observables as follows,

rz;=oM (1 + ;16- [—0.896 sin* ¢ + 0.588 sin’ ¢]) , (5.58)
R.= RSM (1 + i [0.0794sin* ¢ + 0.549 sin? ¢]) , (5.59)
Ry= R (1+ 2 [0.0794sin* 6 +0.549 sin? g — 2130 sin? fsin’ 4), (550
R,=RM (1 + % [0.0794sin ¢ + 0.549 sin?  — 2.139 cos? Asin? ¢]) , (5.61)

€= (A%p)™M (1 + % [10.44sin® ¢]) , (5.62)
Al g = (Ahg)M (l + % [10.44 sin® ¢ + 12.14 sin? 3 sin? ¢]) , (5.63)

T = (ALp)™ (1 + % [10.445in 6 + 12.14 cos? B sin? ¢]) , (5.64)

A, = AM (1 + % [5.22sin ¢]) , (5.65)
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A, = AM (1 + % [5.22sin* ¢ + 12.14 cos® B sin? ¢]) : (5.66)
o? = (69)*M (1 + % [-0.01sin* ¢ — 0.628 sin” ¢]) : (5.67)
My = MM (1 + % [1+0.2155in* ¢]) , (5.68)

SM 1
9 _ (21) (1 + - [0.50 sin? (3 cos? ﬂ]) , (5.69)
g\ T

: .2 2
BR(r™ = p~ppt) = 0.045&[1‘2’ﬂ(sin2 B — 4sinfsin?g)”, (5.70)
sin? ¢sin Bcos B\

T(zop-r+) = 0.167 GeV ( - ) : (5.71)

In Figure 5.2 I show the fit result, at the 3o level, of the Z’ mass as a function of
sin? ¢, for a, = 0.125 and for three values of the mixing parameter sin? 3 = 0 (dashed
line), 0.5 (dot-dashed line) and 1 (solid line). In the case of sin? 3 = 0, I find a lower
bound on M approximately 1.1 TeV. For sin? 3 = 1, M is approximately 1.4 TeV.
For sin? 8 = 0.5, Mz is required to be larger for smaller sin?¢ (< 0.1) due to the
strong constraint from the lepton number violating process 7 = pupu (see Eq. (5.70)).
As shown in Figure 5.2, as sin? ¢ increases the lower bound on M increases, and
increase in M is slow for sin? ¢ < 0.5 and fast in the other case. This indicates that,
a relatively light Z’ prefers strong interactions with the third family fermions. If I
consider a 20 fit, then the lower bound on My is about 1.4 TeV for sin? 3 = 0 and 1.8
TeV for sin? 3 = 1. In Figure 5.3 I show the fit result, at the 30 level, For o, = 0.115
I find that Mz > 1.3 TeV for sin?8 = 0 and Mz > 2.2 TeV for sin?3 = 1. In
Tables 5.1 and 5.2 I calculate the low energy predictions in the model understudy for
different choices of sin? ¢, z, sin? 8 = 1, and for two values of a,, 0.125 and 0.115,

respectively.
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Figure 5.2: The lower bound on the heavy Z' mass as a function of sin?¢ for 30,
sin 8 = 0 (solid) and sin? 8 = 1 (dashed) and a, = 0.125
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Figure 5.3: The lower bound on the heavy Z' mass as a function of sin® ¢ for 3o,
8in 8 = 0 (solid) and sin? 3 = 1 (dashed) and a, = 0.115.
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As discussed in chapter 1, the LEP measured quantities R, = I',/T'y, and R, =
[./Ts are not consistent with the SM prediction. One possibility to explain the
anomaly in these quantities is to consider new physics which can affect the b and
¢ quarks’ couplings to the Z boson. The question now is whether this model is
able to give any insight regarding these measurements. The observed value R} " =
0.2219+0.0017 [12] is higher than the SM value R§M = 0.2157 [30] by about 3.50. On
the other hand, R = 0.1543 £+ 0.0074 is smaller than the SM value RM = 0.1721
by about 2.50. With the allowed region of the parameter space being determined,
I investigate which part of the allowed space is able to explain the anomaly in R,.
Because the measured value of R, is different from the SM value by more than 30, I
expect to be able to constrain the smallest and largest Z’ mass by requiring that the
new physics effect shifts the theoretical value of R, to be within the 3o range of the

measured value. In this model, R, is given by
1
R, = RSM (1 += [-0.0149 sin? ¢ + 1.739 sin? ¢]) : (5.72)

Ignoring the negligible sin* ¢ term, one finds

R,— R}M sin? ¢
B - 1.739 ~ . (5.73)
Since M2, ~ M&,m, the Z' mass can be constrained to be
462 < Mz cos ¢ < 1481 GeV. (5.74)

Thus, if I assume the anomaly in R, is mainly due to this type of new physics, then
there is an upper bound on M3 which depends on the gauge coupling (equivalently
sing). For example, for sin?¢ = 0.04, the upper bound (which is independent of

sin? 3) on Mz obtained from R, is ~ 1.5 TeV.

R
-
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For R, I find that the new modification to the SM model shifts R, in the correct

direction, i.e. it decreases the theoretical value as desired. I find
R. = RM (1 + % [0.038sin* ¢ — 0.549 sin’ ¢]) : (5.75)

However, the amount of shift is very small to account for its anomaly, e.g., with the
lower bound on the heavy mass coming from 1.1 TeV, I find that the theoretical value

of R, is still outside the 20 range of the measured value.

From these results I conclude that this model can account for the deviation in
R, from the SM at the 30 level. Even though R, is shifted in the needed direction,
the predicted value is still outside the 20 range of the data. Therefore, one cannot
explain the anomaly in R, entirely based on the proposed model. Also, in this model
the prediction of the observable Apr is identical to that of the observable A,. Thus,
this model cannot explain the discrepancy between the the SLC measurement Ap g =

0.1551 + 0.0040 and the LEP measurement A, [30].

5.4 High Energy Experiments

LEP was operating at the Z-pole with large production rates, it is therefore un-
likely to better test this model at other high energy colliders at the scale of Mz. I
have checked that the allowed parameters in Figures 5.2 and 5.3 do not upset the
measurements of W* and Z properties at the Tevatron by CDF and D@ groups
[115). To study the possible effects due to the heavy W’ and Z’ bosons, I will con-
centrate on physics at energy scales larger than Mz. In this study, the interference
effects from A (photon), Z and Z’ in neutral channels and the interference of W and
W' in charged channels are all included. To simplify the discussion, I will consider
two sets of parameters for (z, sin? @, sin 8) : (7,0.04,0) and (20.6,0.14,0.5) which cor-
respond to (Mz/,I'z) equal to (1083,291) GeV and (1050,76) GeV, respectively. The
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conclusions, however, will not significantly depend on the details of the parameters

chosen from Figures 5.2 and 5.3.

At the Tevatron, it is possible to reach the high energy region where the W’ or
Z' effects can be important. CDF has reported the result of searching for new gauge
bosons by measuring the number of excess di-lepton events with large transverse mass
[116] or invariant mass [117]. I find that those results do not further constrain the
parameters shown in Figures 5.2 and 5.3. For the Tevatron with Main Injector (a
pp collider at /s = 2 TeV with a 2fb™! luminosity), the excess in the e~e* or e*v,
rates from this model is generally not big enough to be easily observed. Since the
third family leptons can strongly couple to the new gauge bosons, the rate of 7 lepton
production can in principle be quite different from that of e or u. Furthermore, if
sin B is not zero, the production rates of pp = W, W' —= €y, or pp = 7, 2,2’ — €€
will be different for £ = eand 4. However, even with the maximal mixing between 7
and p (i.e., sin 8 = 1) this difference at the Tevatron can only exceed a 3o effect for a
10fb~?! of integrated luminosity. At the LHC (a pp collider with /s = 10 TeV and a
luminosity of 100 fb"l), this excess cannot be mistaken. Furthermore, at the LHC, the
excess in the production rates of the v, and the £*¢~ events can also be individually
tested. Thus, it is much easier to either find such new effects or constrain parameters
of the model at the LHC than at the Tevatron. I note that this conclusion holds for
either a small or large sin? ¢. Although with a large sin? ¢, the new physics effects to
light family fermions will be large, because of the large W’ and Z’ masses, the net
effect of the new physics to the production of di-lepton pairs does not significantly

depend on sin? ¢.

Another signature of the model is an excess in the top quark production, however,
this excess cannot be observed at the Tevatron because of large background from the

QCD processes q7,gg9 — tt. At the LHC, the excess in the t¢ pair productions can
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easily be seen in the invariant mass distributions. The extra gauge bosons can produce
an excess of di-jet events in the large invariant mass region, but the parameter space
remaining after imposing low energy constraints does not allow a big enough effect

to explain the results reported by CDF [32].

Another possible interesting signature is the production of uy*7¥ pairs, which is
unconstrained by current LEP data. At the Tevatron for (z,sin® ¢,sin? 3) equal to
(20.6,0.14,0.5), the most favorable scenario for observing this signal, I find a total of
about 20 events for 2fb~! of integrated luminosity, assuming no cuts are imposed. It
is interesting to notice that this implies that the upgraded Tevatron can provide a
better constraint on this FCNC type of event than LEP can. At the LHC, the cross

section is 170 fb for this choice of parameters.

At high energy electron colliders, the detection of the above new signatures be-
comes much easier as long as there are enough of them produced in the collisions.
In this model, neither LEP140 or LEP-II can see them, so I will concentrate on the
future high energy Linear Collider (LC) [118]. Consider the proposed e*e~ LC at
center of mass (CM) energy /s = 500 GeV with an integrated luminosity of 50 fb™!.
For m, = 175 GeV the SM production rate oz';‘e__";) is 558 fb. Thus, a large number
of t-T pairs is expected at the LC. Considering the set of parameters (z,sin ¢,sin? 3)
= (7.0,0.04,0.0), I find that o(.+,- 5 = 709 fb, i.e. there is about 27% increase in
the total production rate compared to the SM. At the LC it is expected to measure
the t-f cross section, for ¢ + jets decay modes, to within a few percent. With the
assumption that the expected measurement is within 3 standard deviation from the
SM, one can constrain the parameters to those which produce Mz > 2.3 TeV. I note
that the same constraints hold for different choices of sin? ¢ and z but with almost

the same ratio sin® ¢/z, especially for small sin ¢, since in the cross section the two

parameters enter as a ratio. Because only the left-handed couplings of the top quark
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are significantly modified in this model, measuring the angular distribution of ¢ in

the t-f CM frame can further improve these bounds if no new signal is found.

Although the ete~ LC is suitable to probe the model under study, I notice that
the u*u~ collider is also interesting because of the possible mixing between u and 7
leptons. For small mixing the e*e™ and the pu* 1~ colliders lead to similar production
rates as expected. For large sing3 the total production rate of o(,+,-_, becomes
smaller than the SM rate which shows the opposite effect to the production of the
ete™ — tf events predicted by this model. For the same reason, if sin? 3 = 1.0, then it
is easy to observe the difference in the production rates of e~e* and y~u* (or 7+77)
pairs at the LC. Furthermore, at the LC, if the FCNC event e"et — u*7¥ occurs, it
can be unmistakably identified. For a 500 GeV LC with a 50 fb! luminosity, I expect
an order of 300 such events to be observed for (z,sin? ¢, sin? §) equal to (20.6,0.14,0.5).
Figure 5.4 shows the FCNC event numbers at the LC for a few choices of parameters,

assuming no cuts are imposed.

In summary, I find that due to the strong constraints to this model implied from
low energy data (including Z-pole data) it is not easy to find events with new signa-
tures predicted for Tevatron or LEP-II. However, at the LHC and the LC, it becomes
easy to detect deviations from the SM in the productions of the third family or second
family (in case of large mixing between 7 and p lepton) fermions. I have also checked
the possible excess in the W*W = or the W*Z productions at future high energy
colliders. It turns out that the branching ratios for Z’ or W’ to the pure gauge boson
modes are always small. One finds

€Mz sin® ¢ cos? ¢ M3,
1927sin? 4 z? M},

I(Z =» WtW™) ~ (5.76)

Therefore, the gauge boson pair productions are not good channels for testing this

model.
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Figure 5.4: The event number of u*7¥ produced at the LC, with a c.m. energy of
500 GeV, and for two choices of parameters.
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In the process of preparing for this paper, I noticed that another similar work
appears in Ref. [42]. My conclusions on the allowed parameters of the model and
the predictions on the event yields for electron or hadron colliders are different from

theirs. Also, I became aware of a work done in Ref. [43], in which a similar model

was proposed and studied using the low energy data.
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Table 5.1: Experimental and predicted values of electroweak observables for the SM
and the proposed model (with different choices of parameters) for a, = 0.125 with
m; = 175 GeV and my = 300 GeV.

a: sin? B = 0, sin? ¢ = 0.04, M} = 1.1 TeV, I';;, = 288 GeV.

b: sin? 8 = 1, sin? ¢ = 0.04, M} = 1.4 TeV, I, = 370 GeV.

c: sin? 8 = 0, sin? ¢ = 0.80, M} = 3.0 TeV, I, = 287 GeV.

d: sin? 8 = 1, sin? ¢ = 0.80, M}, = 3.3 TeV, I';;, = 316 GeV.

Observables | Experimental data SM The model
a b c d
gv(e) —0.0368 +0.0017 | -0.0367 | -0.0367 | -0.0367 | -0.0372 | -0.0371
gale) —0.50115 £ 0.00052 | -0.5012 | -0.5012 | -0.5012 | -0.5005 | -0.5006
gv(p)/gv(e) 1.01 £0.14 1.00 1.00 1.05 1.00 1.04
ga(u)/gale) 1.0000 £ 0.0018 1.0000 | 1.0000 | 1.0034 | 1.0000 | 1.0030
gv(7)/gv(e) 1.008 £ 0.071 1.000 | 1.073 | 1.000 | 1.047 | 1.000
9a(T)/g4a(e€) 1.0007 £ 0.0020 1.0000 | 1.0055 | 1.0000 | 1.0036 | 1.0000
Iz 2.4963 £+ 0.0032 2.4978 | 2.5054 | 2.5025 | 2.4967 | 2.4969
R, 20.797 £ 0.058 20.784 | 20.848 | 20.823 | 20.830 | 20.822
R, 20.796 + 0.043 20.784 | 20.848 | 20.671 | 20.830 | 20.690
R, 20.813 £+ 0.061 20.831 | 20.648 | 20.870 | 20.717 | 20.869
o 41.488 + 0.078 41.437 | 41.293 | 41.348 | 41.343 | 41.359
A, 0.139 £ 0.0089 0.1439 | 0.1441 | 0.1440 | 0.1461 | 0.1457
A, 0.1418 £ 0.0075 0.1439 | 0.1537 | 0.1440 | 0.1523 | 0.1457
AFB 0.0157 £ 0.0028 0.0157 | 0.0157 | 0.0157 | 0.0162 | 0.0161
AfB 0.0163 £ 0.0016 0.0157 | 0.0157 | 0.0164 | 0.0162 | 0.0167
AFB 0.0206 + 0.0023 0.0157 | 0.0168 | 0.0157 | 0.0169 | 0.0161
9:/ 9 0.9943 £ 0.0065 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
R, 0.2219 £ 0.0017 0.2157 | 0.2178 | 0.2170 | 0.2170 | 0.2168
R, 0.1543 £ 0.0074 0.1721 | 0.1716 | 0.1718 | 0.1718 | 0.1718
My 80.26 £ 0.16 80.32 | 80.32 | 80.32 | 80.37 | 80.36
ALRr 0.1551 £ 0.0040 0.1439 | 0.1441 | 0.1440 | 0.1461 | 0.1457
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Table 5.2: Experimental and predicted values of electroweak observables for the SM
and the proposed model (with different choices of parameters) for a, = 0.115 with
w,= 175 GeV and my = 300 GeV.

a: sinZ B = 0, sin? ¢ = 0.04, M} = 1.3 TeV, I'; = 343 GeV.
b: sin® B = 1, sin? ¢ = 0.04, M}, = 2.1 TeV, I, = 562 GeV.
c. sin? 8 = 0, sin? ¢ = 0.80, M} = 3.0 TeV, I, = 287 GeV.

d: sin? 3 = 1, sin? ¢ = 0.80, M} = 4.5 TeV, I, = 430 GeV.

‘ Observables | Experimental data SM The model
\ a b c d
gv(e) —0.0368 £ 0.0017 | -0.0367 | -0.0367 | -0.0367 | -0.0372 | -0.0369
gale) —0.50115 £ 0.00052 | -0.5009 | -0.5012 | -0.5012 | -0.5005 | -0.5009
av(p)/gv(e) 1.01 £ 0.14 1.00 1.00 1.02 1.00 1.02
9a(p)/gale) 1.0000 + 0.0018 1.0000 | 1.0000 | 1.0015 | 1.0000 | 1.0016
av{T)/gv(e) 1.008 £ 0.071 1.000 | 1.053 | 1.000 | 1.047 | 1.000
9a(7)/gale) 1.0007 £ 0.0020 1.0000 | 1.0040 |{ 1.0000 | 1.0036 | 1.0000
Iz 2.4963 + 0.0032 2.4922 | 2.4977 | 2.4943 | 2.4911 | 2.4917
R. 20.797 £ 0.058 20.716 | 20.761 | 20.733 | 20.762 | 20.736
R, 20.796 £ 0.043 20.716 | 20.761 | 20.666 | 20.762 | 20.666
R, 20.813 + 0.061 20.762 | 20.631 | 20.779 | 20.649 | 20.782
o) 41.488 £ 0.078 41.490 | 41.387 | 41.450 | 41.395 | 41.448
A, 0.139 + 0.0089 0.1439 | 0.1440 | 0.1440 | 0.1461 | 0.1449
A, 0.1418 £ 0.0075 0.1449 | 0.1510 | 0.1440 | 0.1523 | 0.1449
AFB 0.0157 £0.0028 | 0.0157 | 0.0157 | 0.0157 | 0.0162 | 0.0159
Af;B 0.0163 £ 0.0016 0.0157 | 0.0157 | 0.0160 | 0.0162 | 0.0162
AFB 0.0206 £ 0.0023 0.0157 | 0.0165 | 0.0157 | 0.0169 | 0.0159
9+/ 9, 0.9943 £ 0.0065 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Ry 0.2219 £ 0.0017 0.2157 | 0.2172 | 0.2163 | 0.2170 | 0.2163
R, 0.1543 £ 0.0074 0.1721 | 0.1717 | 0.1720 | 0.1718 | 0.1720
My 80.26 + 0.16 80.32 | 80.32 | 80.32 | 80.37 | 80.34




Chapter 6

Discussions and Conclusions

Since the top quark is heavy, the top quark can be a window for new physics, either
from top quark decays to new objects, or from large radiative corrections. Because
of the heavy top quark mass, new physics will feel its presence easily and eventually
may show up in the effective top quark couplings to the gauge bosons. Furthermore,
since the top quark mass is of the order of the symmetry-breaking scale, the top quark
is likely to provide useful hints about the symmetry-breaking mechanism responsible
for generating the gauge boson masses and at least connected with the fermion mass
generation mechanism.

The main goal of this work is to browse through the low energy precision data
from LEP and SLC searching for possible new physics effects dominantly in conjunc-
tion with the top quark couplings to the gauge bosons. Constraining the nonstandard
couplings of the top quark provides an estimate for possible deviation in the gauge
universality advocated in the SM. Furthermore, if the deviation in the gauge univer-
sality for the top quark case is due to the symmetry-breaking mechanism, then the
measurement of and the correlation among the nonstandard couplings can be a direct

probe to the symmetry-breaking mechanism.

In chapter 3, I have applied the electroweak chiral Lagrangian to probe the non-
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standard couplings of the top quark to the gauge bosons using precision LEP data.

Assuming b-b-Z vertex is not modified, I found that k}C is already constrained to be

—0.05 < k)€ < 0.17 (0.0 < kYC < 0.15) at the 95% C.L. for a 160 (180) GeV top

quark. Although x¥C and k§€ are allowed to be in the full range of +1, precision
NC ,NC

LEP data do impose some correlations among k)¢, kNC, and k§¢. (k%C does not

contribute to the LEP observables of interest in the limit of m; = 0.)

Inspired by the experimental fact p = 1, reflecting the existence of an approximate
custodial symmetry, I proposed an effective model to relate k)’C and k§C. I found that
the nonuniversal interactions of the top quark to the gauge bosons are well constrained
by LEP data, within 95% C.L. The constraints are summarized in Table 3.1 (see also
NC and kg = kNC are strongly

Figures 3.6-3.10). Also, the two parameters K, = &

correlated where k; ~ 2kp.

I note that the relations among «'s can be used to test different models of elec-

troweak symmetry-breaking. For instance, a heavy SM Higgs boson (my > m,) will
modify the couplings t-t-Z and t-b-W of a heavy top quark at the scale m, such that

kYC = 2k§C, k€ = -n’,}’c‘, and k§C = 0. Another example is the effective model
discussed in Ref. [95]) where, k&€ = k§€ = 0. In this model the low energy precision
data impose the relation k)¢ ~ k}¥C. Also, the simple commuting extended techni-
color model presented in Ref. [59] predicts that the nonstandard top quark couplings

are of the same order as the nonstandard bottom quark couplings.

It is also interesting to note that the upper bound on the top quark mass can
be raised from the SM bound m; < 200 GeV to as large as 300 GeV if new physics
occurs. That is to say, if there is new physics associated with the top quark, it is

possible that the top quark is heavier than what the SM predicts.

Also, in chapter 3, I discussed how the present SLC measurement of A r can
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contribute to the constraints imposed on the nonstandard couplings s}, n’,}'c, and

k$C at LEP. I found that if one uses the LEP constraints to predict the new physics
contribution to the SLC measurement of Azg, then for the special model, k(¢ =

kNC /2, it is possible to reconcile the LEP and SLC data at 95% C.L.

Undoubtedly, direct detection of the top quark at the Tevatron, the LHC, and the
LC is crucial to measuring the couplings of t-b-W and t-t-Z. At hadron colliders,
k$C and k$C can be measured by studying the polarization of the W boson from top
quark decay in tt events. They can also be measured simply from the production rate
of the single top quark event. The LC is the best machine to measure k)¢ and kN¢
which can be measured from studying the angular distribution and the polarization
of the top quark produced in e~e* collision. Details about these bounds were given

in section 3.5.

In chapter 4, I present a theoretical frame work to extract the pure m, corrections
to low energy data in the chiral Lagrangian approach. I reproduced the results in
chapter 3 by considering an effective Lagrangian which involves only the scalar sector
(the unphysical Goldstone bosons and probably the Higgs boson), and the top and
bottom quarks. I discussed how to relate the two different approaches presented in
chapters 3 and 4. I showed that by considering a completely different set of Green’s
functions (without involving any external gauge boson line) from that discussed in
chapter 3, I recovered exactly the same result. The new frame work is useful and inter-
esting because first, it simplifies the whole process of calculating radiative corrections,
as it is much easier to work with scalers than with vector bosons. Also, this approach
is shown to clearly identify observables which are sensitive to the symmetry-breaking
sector of the electroweak theory. This is clear since only contributions independent

of the gauge structure survives.

In chapter 5, I present a self-contained model which demonstrates how the non-
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standard top quark couplings to gauge bosons can be generated. The model has a
very rich structure and significant implications at low and high energy scales. Using
the low energy data I discuss the possible constraints on the model. On the other
hand, the high energy colliders will provide further tests and demonstrate possible

new physics especially interesting FCNC processes.



Appendix A

Renormalization Schemes

In chapter 1, I discuss in details the Z-pole renormalization scheme and very
briefly mention few other schemes. In this appendix, I discuss to some extent different
renormalization schemes and possible relations among these schemes. As discussed in
chapter 1, to fix the low energy part of the SM one needs to specify three input quan-
tities, the light fermion masses, and quark mixing. Different choices correspond to
different renormalization schemes. The most common used renormalization schemes

include, the Z-pole scheme, the on-shell scheme, and the MS scheme.

At tree level the weak mixing angle can be written in different equivalent ways,

1 dma 1/2 M} a2
sinZfy = — 1—[1———0—] =1 wo 0 . Al
=3 ( V3G roMl, M, @+ (A1)

Once radiative corrections are included all these definitions are are not satisfied si-
multaneously. One has to pick one of these definition for any specific renormalization

scheme.

e The Z-pole scheme.

In this scheme, the input observables are chosen to be:

- — The electromagnetic coupling @ = e?/4m measured from electron-proton
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(e-p) scattering in the limit of zero momentum transfer ¢> = 0 (Thomson
limit) [9]
a~! =137.0359895(61) . (A.2)
— The Fermi coupling constant Gr measured from the muon lifetime 7, [9]
Gr = 1.166389(22) x 10~° GeV~2. (A.3)
— The Z mass [12]

Mz =91.1885+ 0.0022 GeV. (A.4)

The Z-pole scheme is simple and precise because the input parameters are
measured very well. This scheme is suitable in studying physical observables
at the Z pole. As discussed in chapter 1, in analysing the Z-pole physics the
pure QED corrections are treated separately from the weak corrections. In
particular, the light fermions contributions to the photon vacuum polarization
function are absorbed in defining the running coupling a(M2%) at the M scale.

In chapter 1, we found

2\ a

a(M3) = T=2a(id) (A.5)
where, Aa(M32) is defined as

Aa(M2) = —F"(M2) + F"(0). (A.6)

Currently, there is a lively debate on what value of a(M2%) to use. I quote the

value [18]

a” (M%) =128.89 4+ 0.09, (A.7)
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In this scheme, the main theoretical error propagating into the definitions of the
SM parameters is coming from the error in determining a(M2). In this scheme,
the weak mixing angle is defined to all orders by the relation

) 1 dra(M2)]"?
- 29 — z
sin?6 =1 — cos 6_5(1— 1--\/§ . %] : (A.8)

The weak mixing angle sin? is well determined theoretically [60],
sin?@ = 0.2312 £ 0.0003. (A.9)

The main theoretical error in sin?6 is coming from the theoretical error in
determining the running coupling a(M2). In fact by only considering the error

in a(M2%), there is an induced error in §sin?6

§sin® 0
??:-15}0— ~0.1%, (A.10)

which amounts to most of the error in sin®8.

The Z-pole scheme is defined such that all top quark and Higgs boson contribu-
tions are removed from the parameters a(M2) and sin?4. The top quark and
Higgs boson contributions enter when considering other predicted observables

(see chapter 1), e.g., the W mass, the partial decay widths, etc.

The on-shell scheme.

In this scheme, the input observables are taken to be a, Mz, and My. In the
on-shell scheme, the weak mixing angle has a simple definition. To distinguish
different schemes I will denote sin? in the on-shell scheme by s? where, s2 is
defined to all orders by the relation

My,

S%:l-—-ﬁg—.

(A.11)
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Unfortunately, the W mass is not determined precisely as Mz [13]
Mw = 80.26 £ 0.16 GeV . (A.12)

The large error in the measurement of My induces a large error in calculating

s2 using the defining relation [29],

852 (M2
(_;) ~ -_0( M2W) ~ 1.6%, (A13)
exp W / exp

Sg 33

where I ignored the small error in Mz. Therefore, one does not rely to the mea-
surement of My, to extract s3. The usual approach is to use the measurement

of the u decay and the theoretical formula

1 _ Gim; m? a (25 |, 2a. m
o 1020 \' T Om2 (HF(T"“)) (1+§FIDE)’ (A-14)

where QED corrections to the four-fermion interaction includes one loop cor-
rection and the leading correction in a?. Performing the 1-loop radiative cor-
rections to the pu decay (see Figure 1.4b) one finds that Gr/v/2 coincides with

the expression [14]

gﬁ _ Qo 1+ AWW(O)
V2 255 Misg My

where I used the bare parameters in the above equation and the term (ver-

+ (vertex, box)] , (A.15)

tex,box) denote corrections other than the W-self energy, i.e., due to vertex,
box, and fermion self energy diagrams. In fact these corrections are in corre-

spondence with what I called Gy, p in chapter 1,

JGV,B _ mTQo
V2 255Miy

The bare quantities can be written in terms of the renormalized quantities as

(vertex, box) . (A.16)

follow

ap = a —da, (A.17)
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M2, = M% — 6M3, (A.18)
M2, = M2, — SM}, . (A.19)

Therefore, one finds

M? SMZ2 M2
sg(,:l—M%’:=sg—c§(T%z— Mg) (A.20)
where to all orders we have
2 2= M},
So=1-0=1——M—g. (A21)
Thus, one finds
Gr _ _ma [1_§2+_c_3 6M§_6Mﬁ,
V2 2siM} a  s3\Mi M}
2 ww
+6MW +/: (©) + (vertex, box)]
My
T
= W (1+Ar), (A.22)

where, Ar is a finite combination of one-loop diagrams and counterterms. It is
clear that Ar depends on the top quark mass m, and the Higgs boson mass my.
By including and summation of higher order corrections [14], one can write the

above relation as

M2\ M2 Ta
22 — (1 - X LA . A.23
0% ( M%) M} = VG, ME(1 - A7) (A2)

One should recognize that the quantity Ar is different in two aspects from the
quantity Ary I defined in chapter 1. First, in calculating Ar one should use the
on-shell quantities s? and cz rather than sin?d and cos?@ defined in the Z-pole
scheme. Second, in Ar, the electromagnetic a is still defined at ¢> = 0 rather

than at g2 = M%. Thus, Ar contains QED corrections from the light fermions,
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Aa(M?2) as discussed in section 1.2. In fact, for the case of Ar one can absorb

the quantity Aa(M2) in defining a(M2) as we did for the Z-pole scheme.

One can split the different contributions to Ar at one loop and write Ar as [14]
2 _ % A.24
Ar = Aa(M3) - gAp + (A7) emainder * (A.24)

where by Ap I mean the leading contributions of the top quark mass (quadratic
in m,). Therefore, this Ap coincide with the quantity Ap I defined in chapter
1, as long as one only concentrates on the quadratic terms in m,. The term
(A7) emainder includes the remaining contributions, e.g., the logarithmic depen-
dence in m, and my, gauge bosons contributions, etc. The typical sizes of
Aa(M2), Ap, and (Ar),._ .. 4., are ~ 0.06, 0.03-0.05, and 0.01, respectively
[14].

The measurement of s2 is usually extracted using the measured ratio M2, /M2
from low energy experiments like the neutrino-electron scattering. The preseht

world average on s3 from experimental data is [14]

2
s2=1- 11% = 0.2253 + 0.0047 . (A.25)

Despite the simple definition of s2 in the on-shell renormalization scheme, the

weak mixing angle s2 has a strong dependence on the top quark mass m,. Hence,

using this scheme in any analysis requires a precise knowledge of the top quark

1mass.

The MS scheme.

The MS scheme, also known as the modified minimal subtraction scheme, is
a weli—known scheme in QCD physics. In this scheme, one simply, in doing
the radiative corrections, only requires that the counterterms contain the di-

vergent pieces needed to cancel divergencies arising from loop calculations. In
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other words, one only absorbs the loop divergencies in the counterterms. In
dimensional regularization one simply cancels the quantity

2
n—4

—~v—Indm, (A.26)

from the loop calculations, where n is the space-time dimension and v =

0.577... is the Euler’s constant.

Therefore, masses and couplings calculated in the MS scheme have a dependence
on the renormalization scale u. Consequently masses in the MS scheme (running
masses) have no direct physical meaning. To distinguish the MS quantities I

will use a bar over the quantities. The bare quantities can be written as

ayg=a— da, (A27)
M5, = M} — 6MZ, (A.28)
M2, =M2 - 6MZ,, (A.29)

The coupling @ is defined using the e-p scattering at ¢> = 0. From the result in

chapter 1 we know that the quantity a is given by

2sinf A74(0)
— — F7(0) — 22—~
a=aqg [1 F7(0) cos8 M2 (A.30)
Writing ag in terms of the M'S renormalized quantity we find
_ 25, AZ2(0)
a=qQ [1 - F%(O) - -E—O-A—l%' , (A31)

where F% is defined as F77 with simply subtracting the divergent piece A
defined in Eq. (A.26). Similarly for the quantity A-’%. Also, 32 is sin?4,
defined below, in the MS scheme and ¢ = 1 — 52. Therefore, one finds

- 41 - 4]
*= aZo] T 1-Aa’ (A.32)
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Choosing the renormalization scale to be u = M3z, one can evaluate the running
coupling @ at the Mz scale. Notice that the top quark mass enter the quantity
Aa. However, the dependence is only logarithmic. Numerically, one finds, for

m, = 180 + 12 GeV, [14]
(@)~ =128.08 +0.02+ 0.09, (A.33)

where the first error corresponds to m; = 180 GeV and the second error to the

interval £12 GeV around the central value of the top quark mass.

The renormalized masses in the MS scheme do not correspond to the physical

masses. In chapter 1, we found that summing loop corrections leads to the

result
1 - ! (A.34)
- M3, ¢* — Mo+ AZZ(0) + ¢2F42(g?) '
Writing the bare mass in terms of the renormalized MS mass
M2, = M3 — 6M32, (A.35)
one finds
1 1
(A.36)

_)
- M3y g2 — M} + AZZ(0) + ?FZZ(?)

where the counterterm 6—M—%— has been chosen to cancel the divergence in AZZ(0)+
MZ2FZZ(M2). The on-shell condition relate the on-shell mass to the MS mass

as follow,
¢* — M3 + AZZ(0) + *FZZ(¢*) = 0, atq® = M. (A.37)
Therefore, one has

M} — M2 + AZZ(0) + MZFZZ(M2) = 0. (A.38)
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Thus, for the W and Z mass we have the relations between the on-shell and the

MS schemes
(A.39)

M7 = Mj — AZZ(0) - MZFEE(M3),

M}, =M%, — AXY(0) — M}, FR (M7,) . (A.40)

The weak mixing angle can be defined in different ways, I choose the definition
(A.41)

2
2 =1-Mw

0 ik
VA

One can relate the weak mixing angle in the on-shell scheme to the one defined

- M}, AR (0)
= s5+c X5, (A.42)
where I defined
AZZ(0) AEY(0)
Xws =y — —az s (Mz) - Fg” (M) (A.43)
V4 w
Also, we have
(A.44)

% =1-5 =c(1- Xypg) -

The on-shell gauge boson masses can be related using the MS quantity 33

(A.45)

where I defined
(A.46)

_ 1
p= l—Xm.
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The weak mixing angle 32 can also be related to the Z-pole scheme by calcu-

lating the u decay in terms of the MS quantities. We found earlier

Gr Tag [1 4 AYY(0)

_—=——— t . .
73 = 30 M 2 + (vertex, box)] (A.47)

Writing the bare quantities in terms of the MS renormalized quantities on finds

Gr_ _na AYY(0) ]
— 14+ M5 22 4 5(V, B)sgs| A .48

where (V, B)yg is all the one-loop corrections to the u decay except the W

self-energy calculated in the MS scheme. Using Eq. (A.45), one finds

G
7-‘.’. 537 c2 2[1 ws — Fag’ (M%) + 6(V, B)ys] - (A.49)

Summing higher order corrections yields [14]

% = 2% ggang 1 —IAF ’ (A.50)
where
= —1 (A.51)
1 - Xy
AT = —-FY (MY) + 6(V, B)iis (A.52)

For more details on the MS scheme, the reader can refer to the discussion in

Refs. [14, 29].




Appendix B

The S, T, U parameters

In this appendix, I present briefly a well-known parameterization for the low
energy data different from the epsilon parameterization. For more details the reader
can refer to Refs. [24, 25]. The parameterization I will discuss in this appendix is

similar in spirit to the epsilon parameterization.

First, the assumption made are [25]

e The electroweak gauge group of the effective low energy theory at the weak
scale is the standard SU(2), x U(1)y . Therefore, the only relevant electroweak

gauge bosons are the photon, W%, and Z.

e The only relevant new physics to consider are the oblique corrections, i.e., the
corrections to the gauge boson vacuum polarization functions, with the excep-

tion of the non-oblique correction to Z-b-b vertex.

o The earliest use of this parameterization [24], was based on a third assump-
tion, namely, the new physics scale is large compared to the W and Z masses.
Therefore, one can expand new physics contributions to the gauge boson vac-
uum polarization functions around ¢> = 0. Recent efforts have been toward

retaining more higher order terms in the expansion of the vacuum polarization
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functions [25).

I start the discussion concentrating on the oblique corrections. The parameters
S, T, and U are chosen to parameterize the oblique new physics corrections. The
convention used is to subtract the new physics effects from the SM contributions and
then define the S, T, and U parameters in term of the remnant new physics effect.
To do this, one must know the top quark and the Higgs boson masses. However,
since our knowledge of theses masses is not precisely established, one simply picks
reference masses for the top and the Higgs boson masses. Then one calculates the
SM prediction using these reference masses and define the new physics contributions
to low energy observables as the difference between the experimental data and the

SM predictions (using reference m; and my).

The third assumption mentioned above allows one to expand the vacuum polariza-
tion functions around ¢ = 0 in powers of ¢2/A2, where A is the scale of new physics.
Using my notation for the vacuum polarization functions in Eq. (1.49) and the Z-pole

renormalization scheme, the S, T', and U parameters are defined as follow

aS = 4sinf cos0F3(0), (B.1)

oT = A;ZO) - A‘XZQ:O) , (B.2)

aU = 4sin?6 [F*(0) — F¥¥(0)] (B.3)
where

F3(0) = —sin@cos0F%%(0) + (cos?0 — sin?0)F72(0) + F"(0), (B.4)
and

F33(0) = cos? 8 FZ%(0) + 2sinf cos F%(0) + sin®8 F7(0). (B.5)
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Using the latest data [12], a fit for the S, T, and U parameters yields [25]

S = —033+0.19,
T = —0.17+0.21,
U = —0.34+051. (B.6)

The above fit is extracted for m, = 180 GeV, my = 300 GeV, a~! (M%) = 128.9, and
a, = 0.123 [23].

Recent efforts have been implemented to relax the third assumption by allowing
the new physics scale to be comparable with the Z-mass scale [25, 70]. In this case,
one retains more higher order terms in the expansion of the vacuum polarization
functions. It was shown in Ref. [70] that it is sufficient to introduce three more
parameters and increase the total number to six. The definition of S and U, but not

T, is slightly modified as follows [70]

aS = 4sinf cosF*(0) + 4sin’ 0 cos’ [FZZ(MZ) — FZ%(0)] (B.7)
AZZ(O) AWW(O)
aT = M2 - A (B.8)
aU = 4sin’§ [F(0) - F¥W(0)] +
4sin?0 [F¥W(MZ) - F¥¥(0)] +
4sin? 0 [FZZ(M3) - FZ%(0)] , (B.9)

The S, T, and U parameters are in one to one correspondence with the oblique
corrections e3, e, and e; defined in chapter 1 [see Eqs. (1.117)-(1.119)]. The quanti-
ties e3, €;, and e; constitute the leading contributions to the parameters €3, €, and

€2. Therefore, concentrating on the possible large new physics contributions one can
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relate the two set of parameters as follows

: 2
S = 4 sin 0663 ,
a
T = -];661,
a
4sin%0
U = - Py 662, (B].O)

where, d¢; is the new physics (beyond the SM) contribution to €. Similarly, for dey

and 663.

Parameterizing the non-oblique correction to the Z-b-b vertex has been imple-
mented recently [25, 119]. In Ref. [119] the non-oblique corrections from new physics
to the Z-b-b vertex are expressed in terms of the effective left- and right-handed

couplings of the b quark to the Z boson as
1
g = (91)sm + 365in’6 + &g}, (B.11)
1. .
9k = (gR)sm + 38sin’6 + bgp, (B.12)

where §sin? @ expresses the shift of the effective weak mixing angle due to oblique cor-
rections, and g% and g% express non-oblique vertex corrections due to new physics.
The quantities (g2 )sm and (g5%)sm are the left- and right-handed couplings of the b

quark to the Z boson in the SM, where

1 1 .
()sm = —3 + §Sm29 ,
(gh)sm = %Sin20. (B.13)

The decay width ', depends on one combination of g5 and §g% . While the observable
At.p depends on another combination. This parameterization is similar to the one I

used in chapter 1 (see Eq. (1.123)). The relation between the cases is simply as follow

1 dgva + 6gad
ot - -b(ur @)
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1(, Sgva—$
b = —5 (+ va g,w), (B.14)

where one should remember that, in the above equation, e;, gvq, and dg44 contain
only the new physics effect defined as the difference between new physics and the

SM case using reference m, and my. Using the recent data [12], excluding R., one

obtains the fit [25]

6g5 = 0.0004 % 0.0037,

og% 0.036 £+ 0.017, (B.15)

where m, = 180 GeV, my = 300 GeV, a~'(M2) = 128.9, and a, = 0.123 [25].

The conclusion is that, one can express new physics effects in terms of the S,
T, U, and the two non-oblique parameters §g5 and 6g%. Notice that g% does not

involve large m, effects since the large m, effects are coming at one-loop through the

left-handed W-t-b coupling.

From this brief discussion one notes some differences between the epsilon param-

eters and the parameterization discussed in this chapter.

e In the epsilon parameterization, the parameters ¢, €3, €3, and ¢, are written
directly in terms of physical observables, rather than in terms of two-point

functions which is the case for S, T, and U.

o The parameters €, €3, €3, and €, incorporate the SM contribution in addition to

possible new physics. On the contrary, the other parameterization only contains

the new physics effect.



Appendix C

Heavy Mass Expansion

In this appendix I discuss how to use the heavy mass expansion and tabulate some
relevant integrals if there is a heavy mass in the loop calculation [120]. Loop integrals
will be performed using dimensional regularization. A general two-point function has
the typical integral

&k Kok, ...
_/ (27|')" (k2 — m2)((k +P)2 — M?) ’ (C.1)

where m, M are mass scales and p is an external momentum. The heavy mass M is
satisfying the conditions M > m and M > p?. The heavy propagator is expanded

as follow

1 — 1 2k.p + p?
((k+p)* = M2) — (k2 — M?2) (“m*--)- (C.2)

For a three-point function a similar treatment can be done. In this case one encounters

the typical integral

/ (d"k kk, ... 3

2m)" (k2 — m3)((k + p)° = m3)((k +p+q)* = M2)’

where m; and m, are two light mass scales and M > m;, my. The external momen-

tums p and q satisfy the condition M2 » p?, ¢q%. The heavy propagator is expanded
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as follow

(C.4)

1 1 1_2k.p+2k.q+(p+q)2+
(k+p+a’—M> k2= M k2 — M2 )

Determining the order of the expansion depends on the desired heavy mass M
dependence to be retained. For example, to keep contributions up to In M2 needs
more expanded terms than keeping terms up to M2 only. To determine this consider
the general integral

dk M4k,k, ...
2m)* (k2 = md)((k +p)° —mB)(k+p+q)° —M2)..."

(C.5)

where d is an integer and where the dependence on the heavy mass M in the numerator
can come from propagators as in the fermions’ propagators or it can come from
couplings as in the Yukawa couplings to a heavy fermion (top quark). To determine
the number of propagators to retain I will use the following quantities. Denote the
number of propagators to be retained by the integer N,. The number of explicit
momentums in the numerator by N,,. The desired power of the heavy mass M to be
retained by Ny. Then the number of retained propagators is fixed by counting the
dimension of the integral. The total dimension of the integral is 4 + d + N, — 2N,
where the term 4 is coming from the integral measure d*k. therefore the following

inequality must be satisfied
44+d+ Ny —2N, 2 Ny, (C.6)

After doing the expansion, one can use the identity

1 1 1 1
(k2 — m2) (k2 — M?) = M2 —m? ((k2 — M?) - (k% = m2)) . (C.7)

Then using the integrals below becomes straight forward.
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Here I tabulate some useful integrals in the heavy mass expansion and using

dimensional regularization. First I define

2
A——n_4—‘y—ln41r, (C.8)

where n is the space-time dimension and v = 0.577... is the Euler’s constant. Also

I define the quantity g,, 10

Guvre = Guw9ro + Gurgue + GuoGua (C.9)
/ (g:r’;" k2 —le = _%ﬂ (-a-1+mMm?), (C.10)
/ (g;’)c" (k2 -1M2)2 - —16;2 (-a+mmar), (C.11)
(Z:rI;” (k2 —1M2)3 - 16i7r2 2;42 ’ (C.12)
(g:rl)c" (k2 -IMQ)" - 1(:1r2 61:{4 (C.13)
(g;l)c" k2 E”Mz = / (;i;';n kﬁ“f”ﬁz =...=0, (C.14)
/ (g:r l)c.. k2k:k;42 =- 16;2 g‘“’4M : (—A - g +1In M2) , (C.15)
/ (Z:r,)c" (k?li"’;}?)? = a2 (A= 1), (C.16)
/ (;:r,)c" (kzk-"a}z)a - _16i7r2g:—y (-a+np?) (C.17)
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—__t 9w
/ (2m)" (k2 )‘ 1672 12M2° (C.18)
d"knk,,k,,k;k,=_ i guoM( 11 .
(2m)" k2 — M? 1672 24 ( —F+lnM), (C.19)
/ d"k  k.kkxk, i M (3 .
@n" (R —M?2)7 16n 8 (‘ —gthM ) (C.20)
d"k  kk,kyk i QuseM?
9 _ - _ uvio
/ (2m)" (k2 — M2)° 1672 8 (-a-1+lM?). (C.21)
d*k  k,k,kyk i g
9 - _ uvio _
(@m)" (k2 — M2)* ~ 1672 24 (-a+mn?). (C.22)



Appendix D

Non-Linear Realization

In this appendix, we are interested in realizing the symmetry described by the Lie
group G. The symmetry of the theory is assumed to be spontaneously broken, i.e., we
consider the breakdown of G into a subgroup H. Given the symmetry group G (global
or local) and the matter fields (leptons and quarks), the problem of constructing the
invariant Lagrangian (under G) reduces to the problem of realizing the symmetry,
i.e., choosing representations of the Lie group G. The realization of the symmetry
can be achieved in two different ways; the familiar linear realization and the less

familiar non-linear realization.

D.1 Linear Realization

In this realization, the problem is choosing the natural representations of the fields.
By natural representation I mean representations which form a self-consistent the-
ory, i.e., free from of all possible anomalies. Usually the matter fields (fermions)
are assigned in the fundamental representation of the group G. On the other hand,
the gauge bosons (the force mediators) are assigned in the adjoint representation.
To illustrate, consider the Lie group SU(2), x U(1)y (the SM group). Left-handed

fermions ¥, are assigned in doublets (the fundamental representation) under SU(2).
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with the transformation under G as

U, -V, =919y ¥y, (D.1)
where
.a®
gL = exp(s 5 ) € SU(2)., (D.2)
BY
ov = expliT) € Uy, (D3)

and a%, a = 1,2,3 and y are real parameters of the group G. The right-handed
fermions are singlets under SU(2),. The SU(2), gauge bosons are assigned in the

adjoint representation with the transformation

gWitt = gWi't" = g, (W:T“ - Bp) gt (D.4)
The U(1)y gauge boson B transforms as

gdYB, = gYB, =gy (YB,—9,) g}, (D.5)

where g and ¢ are the gauge couplings of SU(2), and U(1)y, respectively.

D.2 Non-linear Realization

A different realization of the symmetry from the linear realization can be imple-
mented, namely, the non-linear realization. The starting point is the spontaneous

breakdown of G into H.

The mathematical situation is as follows; consider a real analytic manifold M,

together with a Lie group G. Under the action of G, an element z in M transforms

as

r—>9gr z€M, ge€G. (D.6)
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We assume that there is a special point of M called the origin, described by the null

vector 0. The origin 0 is invariant under the action of a subgroup H of G:
h0=0, heH. (D.7)

The physical situation is that of a manifold of scalar fields with the origin describing
the vacuum configuration. The group G is the global or local invariance group of
the theory and the subgroup H is the invariance group of the vacuum. Thus, one is

dealing with the spontaneous breaking of G into H [72].

An important point is that for any non-linear realization of the fields, we can
redefine the fields in such away that their transformation under H is linear [66], we
call this form, in which the fields transform non-linearly under G and linearly under
H, the standard form. Furthermore, the standard form as discussed in Ref. [81] still

leads to the same S matrix as the original realization.

The group G has n generators Z°, a = 1,2,...,n and the subgroup H has p
generators V% b =1,2,...,p. The symmetry described by G breaks down into the
symmetry described by H. Therefore, there are n — p broken generators A°, ¢ =
1,2,...,n — p. From the spontaneous breakdown of the theory as described by the
breakdown of G into H, there are n — p Goldstone bosons [80]. The Goldstone bosons
¢°,c=1,2,...,n—pform the coordinates of the manifold M. Each Goldstone boson
¢® is associated with a broken generators A®°. Any element ¢ € G can be uniquely

written as [66]

eia' A* eiﬂ‘ 1%

g= , a=12...,.n—p, b=12,...,p, (D.8)

where a® and (° are real numbers. We associate with every broken generator A°® a

coordinate ¢* with the transformation

ge?" A" = gl A° PV eidt AT — gidt A% iutVE (D.9)
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Notice that the object e*"4° € G, therefore, the transformed object ge'**4* € G, this
is why we wrote the result of the transformation in the above form. The transforma-

tion of ¢ written as
¢°(z) = ¢ (¢(2)), (D.10)

constitutes a non-linear representation of G. The above equation is taken as the
definition of the transformed fields ¢’ in terms of the original fields ¢ and the group

element g.

Matter fields ¥ (quarks and leptons) are required to possess definite transformation

properties only with respect to element h € H, i.e.,
v 5 ¥ =D(h)?¥, (D.11)

where D(h) denotes a certain linear representation of H. Therefore, the non-linear

realization of the whole group G is established as
¢* = ¢Y(9), v — D(h)¥. (D.12)

In general, even in the case of a global transformation one is forced to introduce
covariant derivatives for the matter fields, because of the = dependence in ¢ (see
Eq. (D.10). In the case of local transformations with gauge bosons W%, a =1,2,...,n

and with their transformation under G as
2, = 99" — 98,9, | (D.13)
where

Q, = gWeZ°, (D.14)
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one defines the operator [66]
L, =e "4 (9, — Q)" = r3A° + WiV, (D.15)

where wf; transforms as a gauge boson under the subgroup H. On the other hand
transforms as a matter field (not as a gauge boson). The covariant derivative of the

fermion field ¥ is defined as

D,V = (8, +WiVY, | (D.16)
with the transformation

D,V — D(h)D,¥ . (D.17)

To proceed I will consider a specific example, namely the electroweak group
G=SU(2). x U(1)y and H=U(1)em. There are 3 broken generators associated with
3 Goldstone bosons ¢°, a = 1,2,3. The generators of G are the Pauli matrices 7°/2,

a = 1,2,3 and the hypercharge generator Y/2. The U(1)em generator can be taken

as

3

V=Q=7+§. (D.18)

The broken generators can be taken as

Ta
Aa = 7 . (Dlg)

Rather than working directly with the complicated transformation of the scalar fields

¢°, we define the object

Y= ei’—:; , (D.20)
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where the parameters v are introduced for dimensional purposes. Under a general

transformation (g € G), we have (see Eq. (D.9))

e/ _a iu'a +Y
v

g = e e, (D.21)
where
— ia® I~ i,@r
g=¢€"TefT, (D.22)

We can write the above transformation as
io® Io o3 Y
eta -2—-2 = 2Iem—2-e|(u-ﬂ)3- . (D23)

Since the left-hand side of the above equation is an element in SU(2) ., it follows that
the right-hand side of the equation must be independent of the hypercharge generator

Y. Thus, we conclude that u = # and the transformation of ¥ reduces to
. ar® card
€CTE = YT, (D.24)

One can write the above transformation as

: ar® ar3
¥ =" TTe T = g 3¢}, (D.25)
where
. ar® . |
g=€"7, gp=e"T, (D.26)

It is clear that under G=SU(2); x U(1)y, the field ¢* has a complicated transfor-

mation, while, under the subgroup H, the field ¢* transforms linearly. For h € H and

h = eB(r*+Y)/2

he'®* A = "' A% (D.27)
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Thus,
PV A% — |t At pt — ihetAthY
From which it is clear that, for G=SU(2), x U(1)y, the transformation
T > ¢ai,ra = h¢°‘r°ht - gn¢"'r"g};
constitutes a linear transformation.
We also find that
= D, %
transforms as a matter field under G, namely
™4 = grmigh,

where the covariant derivative DX is

3
D,£=0,5- z’gW:-—;:E + ig'zB,,-Tz— .

Under G, the covariant derivative transforms as
a 3

D,Z - (D,5)’ = exp (i ;) D,E exp(~iy).

A gauge invariant (under G) can be easily seen in the following term

-}Iv‘“n(D,,ztpﬂz:) .

(D.28)

(D.29)

(D.30)

(D.31)

(D.32)

(D.33)

(D.34)

This terms can be shown to give the gauge bosons their masses. In the unitary gauge,

this term reduces to

1y
4

1 T 3]
2 t 1.2 el oo T
’I\'(D,,SD"E)—)41)T1‘([ Wi + 9B )

- %& (PWew*e — 29dW3B¥ + ¢ B,B") .

(D.35)
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Using the field definitions in Eqs. (1.11) and (1.12) one recovers the gauge boson
masses given in Eq. (1.17)

g’v N— g2
—Ww + Seos?d

2,Z2". (D.36)
Thus, the W and Z masses are

2,2 2,2
2 _9Y 2 _ _gv
My, T M; Teosd (D.37)

The difference between the non-linear and the linear realizationsis that in a general
gauge, the non-linear realization produces other complicated terms in powers of the

Goldstone bosons. In general, one finds

Lo =M, WIWH + Ag Z,Z" +9,0%0"¢” + = a L 0208% + (D.38)

where the fields ¢* are defined as

' Fig?
+ __
¢t = &5 (D.39)

Fermions can be included in the context of the chiral Lagrangian by assuming that

they transform under G= SU(2), x U(1)y as [74]
fo f=ef, (D.40)

where @ is the electromagnetic charge generator. One finds that the fermionic co-

variant derivative is
D,f= (8, +w.Q)f, (D.41)
where

wy = B,. (D.42)
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Thus surprisingly, the gauge field is the B field and not the photon field A as one

would expect.

Out of the fermion fields f;, f,, with the condition Qs, — Q5 = 1, and the
Goldstone bosons matrix field ¥ the usual linearly realized fields ¥ can be constructed.

For example, the left—-handed fermions [SU(2), doublet] are constructed as

¥, =SF, =% (f ‘) . (D.43)
f2 L

One can easily show that ¥, transforms under G linearly as follows

a7t 73 [ Y
¥, 9P, = exp (1 > ) Y exp (—zy?) exp (1y [? + E]) F

a2r") exp(iy};—) v, (D.44)

= exp (z'

Therefore, under the group G=SU(2), x U(1)y,
U, ¥, =99,. (D.45)
In constructing the invariant Lagrangian, one can define the composite fields as

a i a
Te = _51}(7 'D,Y). (D.46)

Under the gauge transformation element ¢ € G and using Eqgs. (D.25) and (D.33),

one finds that the composite fields transform as:
Lo T = -iTr (exp(—iyf-) 7° exp(in—a)z:'D,,z) . (D.47)
2 2 2
From which one concludes that under a general gauge transformation
Do r =13 (D.48)
and

T o T'% = etvEE, (D.49)
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where
1 .

The field )32 behaves as a neutral matter field while the two fields ij behave as
charged matter fields with Q = £1. By a matter field I mean a field which does not

transform as a gauge boson field under the symmetry group H.

In a general gauge, 2;’, can be expanded as

1 1 ¢ g _ _
Bho= S0 -5 5% (Wie™ —wy¢*)

s - os 6
Bt 4= _ 4—n 4t
-;(¢ 0u6™ — 670,06 + ... (D.51)
The composite field Z;f can be expanded as

1 1 g .
Tr = Fa,‘(;&* - EgW: - (¢+ [cos8Z, +sindA,] — ¢3W‘f)

+2 (64 0u6° - 6°0,6) + ... (D.52)

The component £ is just the Hermitian conjugate of . In the unitary gauge & = 1

one finds that the composite fields reduce to the physical gauge bosons, i.e.,

1 g
3 T e c—
5= —50g % (D.53)
and
1
SF = ——gWE. (D.54)
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