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ABSTRACT

PROBING THE SYMMETRY-BREAKING MECHANISM THROUGH THE

ELECTROWEAK INTERACTIONS OF THE TOP QUARK

By

Ehab Malkawi

Since the top quark mass is of the order of the symmetry-breaking scale, the

top quark is likely to provide useful hints about the symmetry-breaking mechanism

responsible for generating the gauge boson masses and at least connected with the

fermion mass generation mechanism. I propose to probe the electroweak symmetry-

breaking sector by measuring the effective couplings of the top quark to the gauge

bosons. Different scenarios of electroweak symmetry-breaking will imply different

correlations among these couplings. Using precision LEP and SLC data, I constrain

the nonuniversal couplings of the top quark to the gauge bosons using the electroweak

chiral Lagrangian framework. Constraining these couplings will provide an estimate

for possible deviation in the gauge universality advocated in the SM. At the order

of m? In A2, in which A ~ 47w is the cutoff scale of the effective theory, new physics

in the left-handed neutral current is already constrained by LEP data. In models

with an approximate custodial symmetry, a positive new physics contribution in the

left-handed charged current is preferred. The right-handed neutral current can be

constrained by studying the direct detection of the top quark at the Tevatron and

the LHC. At the LC, the neutral current can be better measured.

It is also interesting to note that due to the nonstandard couplings of the top

quark to the gauge bosons, the upper bound on the top quark mass, from radiative



corrections, can be raised from the SM bound m. < 200 GeV to as large as 300 GeV.

That is to say, if there is new physics associated with the top quark, it is possible

to say that (from radiative corrections) the top quark is heavier than what the SM

predicts.

Also, I present a theoretical frame work to extract the pure m. corrections to the

low energy data in the chiral Lagrangian framework. The result is useful and inter-

esting for him reasons: First, it simplifies the whole process of calculating radiative

corrections. Second, this approach is shown to clearly identify observables which are

sensitive to the symmetry-breaking sector of the electroweak theory.

Finally, I present a self-contained model which demonstrates how the nonstandard

top quark couplings to the gauge bosons can be generated. The model has a very

rich structure and significant implications at low and high energy scales. Using the

low energy data I discuss the possible constraints on the model. On the other hand,

high energy colliders will provide further tests and demonstrate possible new physics

especially interesting FCNC processes.
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Chapter 1

The Standard Model and

Precision Tests

The Standard Model is a SU(3)C x SU(2) L x U(1)y gauge invariant quantum

field theory of the strong and electroweak interactions. The Standard Model has

been very successful in describing the fermions’ (quarks and leptons) interactions via

the force mediators (gauge bosons). The gauge symmetry SU(3)0 is associated with

the strong interaction (QCD) of the quarks via the corresponding gauge bosons known

as the gluons. The remaining symmetry 3U(2) L x U(1)y known as the electroweak

symmetry is composed of the weak SU(2) L and the hypercharge U(1)y symmetries.

The electroweak symmetry governs the unified weak and electromagnetic interac-

tions, collectively, know as the electroweak interactions. To allow for the generation

of the weak gauge boson masses the gauge symmetry SU(2) L x U(l)y must be bro-

ken into the electromagnetic symmetry group U(1)em. This breakdown is triggered

through the spontaneous symmetry breaking. The intimate connection between the

electroweak interactions and the symmetry breaking mechanism constitutes the major

issue I will explore throughout this body of work. Therefore, throughout this study

I will be mainly concentrating on the electroweak interactions. In the next section I

will outline the basic features of the electroweak Standard Model. For a more detailed
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discussion the reader can refer to existing literature [1, 2, 3, 4, 5].

1.1 The Electroweak Standard Model

The electroweak Standard Model (SM) is based on the gauge group SU(2) L x

U(1)y with the following basic structures:

0 The fermions are assembled in three families or generations with left-handed

doublets and right-handed singlets under the SU (2);, group:

9 9 R9 Ra Ra

e L d L

y La 3 L9 ”Ra Ra R)

V, t

(1. )La (b)La T39 bRa tR- (1.1)

The hypercharge quantum number Y] of a fermion f is fixed by the Gell-Mann-

Nishijima relation

Y

Q; = T31 + 31’ (1.2)

where QI is the electric charge in units of e and T3; is the weak isospin quantum

number. For example, the left-handed electron 8;, has Qe = -—1 and T3e = —1/2.

A left—handed fermion doublet will be denoted by In, whereas a right-handed

fermion singlet denoted by \IIR. The fermionic Lagrangian is given by

cm = ZEI7”D,,\II£ + ZIP—giyuppxrf, , (1.3)

f f

where f = 1,2,3 is a family index. Also,

Ta

13er = (a, - 2'9 2
Y

w; — ig’EBp) \IIL, (1.4)



0er = (a, — ig’QBp) tn, (1.5)

where a = 1,2,3 is an isospin index. The gauge boson field W; with the

gauge coupling 9 and the gauge boson field B” with the gauge coupling 9’ are

associated with the gauge groups SU(2) L and U(1),», respectively. The Pauli

matrices 'r“’s are normalized according to the relation:

Trace('r“'rb) = 26"". - (1.6)

There are 4 gauge bosons transmitting the electroweak force:

A (photon), W+, W", Z. (1.7)

The self-interactions of the gauge bosons are given by

1 I! 1 a a V

LGK = jaws" — ZWWW # , (1.8)

where

3,“, = 6,3,, — 3.3,, (1.9)

W3, = 6,.W3 — aw; + geabcwgwg, (1.10)

and with the field definitions

W11FIW2

w=t = ————, 1.11fl ( )

Z=cosOW3—sin03, A=sin0W3+cosdB, (1.12)

where 0 is the weak mixing angle and cos2 0 = 1 — sin2 0 .
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o A complex scalar doublet field with hypercharge Y = —1 implements the spon-

taneous symmetry—breaking

<I>= ((v+H+i¢o) /\/§)
.4)- (1.13)

where the fields ¢o and 45* are called the would-be Goldstone bosons and the

neutral field H is called the Higgs boson. The scalar doublet field <I> has a

non-vanishing vacuum expectation value (v.e.v) < <I> >, where

<<I>>= (”a/5). (1.14)

The components (13*, ¢° are unphysical and can be gauged away in a specific

gauge known as the unitary gauge. The scalar Lagrangian is given by

A 122’ 2

cu. = (D..<I>1*(D”<I>> - 5 («NW — 7) . (1.15)

where

. r“ . 1
D,,<I> = (a, -- 193%: + 1933,.) <1. (1.16)

Because of the v.e.v, spontaneous symmetry-breaking is triggered and the Wi

and Z bosons are rendered massive:

2 2

MW_2'1 MZ=_——\/9+5’”2 , 2 (1.17)

The fermion masses are generated through the fermion interactions to the scalar

doublet <I> (Yukawa interactions), e.g., for the third generation

m___¢\/2 fimb (

£Yukawa = —-—(tL bL) (DIR + IL EL) (—IT2(I)') b}; +
 

Jim, (. _
v 11;, TL) (—i'rg<I>"') T}; + hermitian conjugate. (1.18) 
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Due to the generation of quark masses for both the up and down type quarks, mixing

between different quark families is possible. The mixing is described by a unitary

matrix VCKM which consists of three mixing angles and one phase. No mixing in the

lepton sector can be generated within the SM because neutrinos are massless.

The full electroweak gauge invariant SM Lagrangian can be written as

['SM = £FK + CGK + £¢K + LYukawa- (1.19)

By examining Eq. (1.19) one concludes that the SM has a certain number of free

parameters: 9, g’ , v, A, in addition to the fermion masses m; and the quark mixing

matrix 1. Those free parameters have to be determined from experimental data.

The parameter /\ can be traded for the Higgs boson mass mH = vx/X. The Higgs

boson mass is experimentally constrained to be above 65 GeV [6]. Also, theoretical

arguments suggest an upper bound on mg of about 1 TeV [7, 8]. All fermion masses

[9] except the top quark mass [10, 11] are below the M2 scale [12]. Throughout this

work, I will refer to fermions with masses below the M2 scale by light fermions. Also,

by low energy experiments I mean experiments operating at the M2 scale or below.

1.2 Radiative Corrections

At tree level the low energy electroweak observables can be entirely written in

terms of the three free parameters 9, g’, and v in addition to the light fermion masses

and the quark mixing matrix VCKM. The top quark mass m, and the Higgs boson mass

my only enter through radiative corrections. Thus, given the light fermion masses

and the quark mixing matrix, three additional measurable quantities are needed to

fix the free parameters 9, g’, and v. The three observables chosen must be precisely

 

1Also, from the QCD sector, there is the strong gauge coupling 9,.
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measured and theoretically calculable in a clean way. After this procedure of defining

the physical input, other observables can be predicted and compared with the cor-

responding experimental data. Different choices of the basic measured observables

correspond to different renormalization schemes. In general, loop calculations are

divergent and therefore, one needs to regularize the theory. Different regularization

schemes are used in the literature, e. 9., using a momentum-cutoff, dimensional reg-

ularization, etc. The tree-level (bare) parameters in the Lagrangian have no direct

physical meaning and can be replaced by the renormalized parameters, e. g., the bare

gauge coupling go can be written in terms of the renormalized coupling 9

9=Qo+59, (1.20)

where 69 is called the coupling counterterm. The renormalized parameters are finite

by definition and can be fixed by a set of measurable quantities. By this redefinition

of the parameters the one-loop amplitudes are rendered finite. However, only the

divergent part of the counterterm is fixed by the requirement of divergence cancela-

tion. The finite part is somewhat arbitrary and thus calculated quantities depend on

the renormalization scheme. To any perturbative order, the difference in a calculated

quantity using two different renormalization schemes is of a higher order, e.g., for

a one-loop calculation the difference is of the order of a two-loop correction. All

renormalization schemes are equivalent if calculations are performed to all orders.

Since only a perturbative fixed order calculation is usually possible, one should be

consistent in defining the renormalization scheme and using the calculated numbers

in that particular scheme. Different renormalization schemes are implemented in the

literature. In appendix A, I discuss in some detail different renormalization schemes.

Here, I briefly mention some of the most commonly used schemes:

0 The Z-pole scheme, where the input observables are chosen to be:
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— The electromagnetic coupling a = e2/47r measured from electron-proton

(e-p) scattering in the limit of zero momentum transfer q2 —+ 0 (Thomson

limit) [9]

(1'1 = 137.0359895(61). (1.21)

- The Fermi coupling constant Gp measured from the muon lifetime “r” and

the theoretical formula

1 @7715 mg a 25 2 2a m,,

'1; "" 192773 (1—8m2) (1+; (RT—fl. )) (1+5-7Tln me), (122)
p

  

where QED corrections to the four-fermion interaction includes the one-

loop correction and the leading correction in 02. The value of Gp is [9].

Gp = 1.166389(22) x 10“5 GeV—2. (1.23)

- The Z mass [12]

M2 = 91.1885 :1: 0.0022 GeV . (1.24)

In this scheme the weak mixing angle sin2 0 is defined to all orders by the

relation

1 41m ”2

'20:.1— 205-1-1—-——— . 1.25sm cos 2( [ fiGngj ) ( I

By definition sin2 0 has no dependence on the top quark mass m, and the

Higgs boson mass m”.

o The on-shell scheme where a, Mz, and MW are the input observables. In this

scheme the weak mixing angle sin2 0 is defined to all orders as

M2- 2 w
sm 0 =1— -——. (1.26)

Mg

Unfortunately, the W mass is not determined as precisely as Mz [12, 13]

Mw = 80.26 :1: 0.16 GeV. (1.27)
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Therefore, sin2 0 is usually extracted from other data. In this case sin2 0 has a

strong dependence on the top quark mass m,.

o The MS scheme where only the divergent pieces in the loop calculations are

absorbed by the counterterms. In this scheme, sin2 0 is defined as

 8-3 = 1 — _, , (1.28)

where MW and M; are the W and Z masses defined in the MS scheme. In this

scheme the weak mixing angle 33 has some sensitivity on the top quark mass.

For more information on renormalization schemes, the reader can refer to ap-

pendix A.

The main goal of this work is to browse through the top quark effects to low energy

data. Therefore, it is advantageous to isolate the top quark effects to low energy data

completely from the input parameters. For this reason, I will work with the Z-pole

scheme since sin2 0, by definition, does not depend on the top quark mass. The basic

observables a, Gp, and M2 can be written in terms of the parameters 9, g’, and v as

follow

929,2 GP: 1 _\/92+9'2v
= , _, M ______, 1.29

a W «82 Z 2 ‘ ’

These equations can be solved in favour of g, g’, and v as a function of a, Gp, and

Mg as follow

  

- 1/2

1): 1 , = 47m, 9,: x/47ra, (1.30)

J20)? s1n0 6080

where

1 47m ”2
- 2 2 _
sm0=1-c030=— 1—1——— 1.31

2 ( fiGFMfii ) ( )
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All other derived parameters in the Lagrangian can be written in terms of the input

parameters. For the W mass we have

M3}, = cos2 0 Mg. (1.32)

The photon coupling to the fermions f—7 is given by

Qn/mn- (1.33)

The W* coupling to the fermions f-f’ is given by

V47ra

mfill " 75)- (1'34)

The Z coupling to the fermions f-7 is given by

‘ 1/2

(«.20ng) 7u(9Vf " 9/1175) , (1.35)

where

9Vf = T3; - 2Q] Sinzg, 9A; = T3f~ (1.36)

For the electron QC 2 —1, T3,. = —1/2.

If we do not care at all about radiative corrections, it is already possible to predict

the low energy observables. However, the existed low energy data are precise enough

to force us into considering the radiative corrections. In the rest of this chapter I will

confine the discussion to the physics at the Z-mass scale, i.e., the physics at LEP and

SLC (e"’e" colliders at the Z pole). At one-loop level, the amplitude for the process

e‘e"’ —+ f7 near the Z resonance can be factorized and written as

A(e‘e+ —1 f7) = A, + Az, (1.37)
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where A, and Az are the photon— and Z-exchange amplitudes, respectively. In

Eq. (1.37) I have ignored contributions from box diagrams which have a negligi-

ble effect at the Z pole [14]. Near the Z peak the total cross section as a function of

the center of mass (c.m.) energy («3) can be written as

0,7(3) = az’ffis) + awfls) + a7z‘f7(s) . (1.38)

Here, 0207(8) is the Z contribution to the cross section defined as

_ 0 sI‘2Z

WT“) ’ ”f7 (s — M3,)? + era/M3 ’
 (1.39)

where 0?? is the peak cross section which is connected to the Z partial decay widths

for Z -) e‘e+ and Z —-> f7,

127rI‘CI‘,

0'0- : —- .

u Mgrié
(1.40)

Eq. (1.39) is taken as the definition of the Z mass and the total decay width [‘2

[15, 16]. Notice that Eq. (1.39) is different from the Breit-Wigner shape by the s-

dependence of the width [14]. The terms a7’f7(s) and a7z,f7(s) in Eq. (1.38) stand

for the pure photon and the Z-photon interference contributions to the cross section.

Near the Z peak, the largest contribution to the cross section 0,7(3) comes from

the Z contribution. For the LEP physics it is customary to extract the pure QED

effects and to isolate them from the Z contribution. Below I discuss the QED correc-

tions.

1.2.1 QED Corrections

The pure photon and the Z-photon interference contributions to the cross section

07.f7(8) and 07z,17(3)1 are theoretically calculated and subtracted from 0,7(8). The

QED corrections can be summarized in the following items
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o The initial-state photon radiation is the largest source of correction to the Breit-

Wigner Z-line shape. This correction causes a reduction of about 25% in the

peak cross section [15]. It can be counted for through a ”structure function”

G(a:, s) that can be deconvoluted from the measured cross section 0'1“?“(3)

0}“79”(s) = jde(a:,s)a,7((1—:r)s), (1.41)

where a: is the fraction of the initial momentum of the electron or the positron

carried by the photon. The function G(:1:,s) is theoretically predicted to a good

accuracy through renormalization group methods [17].

o The largest QED effect to the physical observables at the Z—pole comes from

the change (running) in a due to the change in the energy scale from (12 = 0,

where a is measured, to q2 = M; where physical observables are evaluated.

This effect is related to the photon vacuum polarization function which can be

written as

Illuqz) = —ig,,,,q2F7"(q2) + qpqy terms. (1.42)

Note that 1133(0) = 0 due to QED gauge invariance. In defining the running

coupling a at the Z-pole I only consider the light fermions contribution to the

photon vacuum polarization function. Hence, from the photon exchange at one

loop (see Figure 1.1a) we have

00 00 a a

32- ,2 - 329F770?) = q—gu — 177702)], , (1.43)

where no is the bare coupling as discussed in the next section. A redefinition

(renormalization) of an is performed to render it finite,

a, —> a[1+ 1177(0)] . (1.44)
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Therefore, we get

a(q2) = 0(1— F77(q2) + F77(0)) E a(1+ Aa(q2)) , (1.45)

where Aa(q2) is a finite correction to the electromagnetic coupling a. The

improved summed expression for a is (see Figure 1.1b)

a

In Aa(q2) I do not include the gauge bosons or the top quark contributions

which are conventionally included in the remainder of the corrections. I write

the light leptons and quarks contributions to Aa(q2) as Aa¢(q2) and Aaq(q2),

respectively. At the Z-mass scale, the leptonic contribution to a is determined

accurately, Aa((M§;) = -0.03142 [18], whereas for the quark contribution Aug,

3 perturbative calculation is not possible. The determination of A0,, is done

using a dispersion integral over the measured cross section of e+e‘ -> hadrons

[18]. This gives Aaqulg) = —0.0286(9) and therefore one obtains [18]

a-1(M§) = 128.89 :1: 0.09, (1.47)

where the largest uncertainty is coming from the hadron contribution. The

effect of the running a is significant in the radiative correction analysis near the

Z pole. With the coupling cr(q2 = 0) being replaced by the running coupling

(1(q2 = Mg) in the tree-level Z contribution to the cross section, one obtains

what is called the improved Born approximation for physics at the Z-pole.

Final state-photon radiations are accounted for by including a factor (1 +

3aQ}/47r) multiplying the Z partial widths. Similarly, for the QCD correc-

tions we include the factor RQCD in the hadronic partial widths, where [19]

2 3

RQCD = 1+ (9—5?) —1.4(-a—‘(-:—4§—)) — 12.4%?) , (1.48)
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and a, is the QCD coupling, a, = gf/477.

o The remaining QED corrections due to proper vertex correction and fermion

self-energies are negligibly small at' the Z-pole and vanish for a real photon

(s —) 0) [14]. The typical size of these corrections to the form factors is about

10‘3 relative to the tree-level [14].

By taking care of the photonic corrections theoretically and experimentally, one

can concentrate on the Z contribution to the Z-pole physics. Even with the inclusion

of the running coupling a(M§) in the Z-pole observables it has been shown that the

weak radiative corrections are becoming more apparent and significant in low energy

data [20]. In this case one needs to go through the whole renormalization procedure.

1.3 Renormalization

In considering the renormalization procedure at one loop one needs to consider the

whole set of one-loop level contributions, which can be summarized in the following

corrections:

0 The vacuum polarization functions of the gauge bosons (see Figure 1.2a) written

in the following form

“39(92) = —z'g,,,, (742(0) + q2F‘j(q2)) + qpqu terms, (1.49)

where i, j = W, Z, 7(photon). Alternatively instead of using Z and 7 one can

use i, j = 3, 0 for W3 and B, respectively. The relation between the two cases

is as follow

A33 = cos2 0 A” + 2 sin 9 cos 07472 + sin2 0 A?1 , (1.50)
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Figure 1.1: a: The Feynman diagrams contributing to the running a up to one-loop

level. b: The Feynman diagrams contributing to the running a summed to all orders.
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A30 = — c080 sin BAZZ + (cos2 0 — sin2 0 )A72 + 0056 sin (9747'1 , (1.51)

A00 = sin2 0 A22 - 2sin 0 cos 0.472 + cos2 0 A77 , (1.52)

and similarly for F'7 . In Eq. (1.49), there is a small imaginary part which I will

ignore since it does not contribute at the one-loop level.

0 The contribution to the vector and the axial form factors at q2 = Mg in the

Z -+ f7 vertex from prOper vertex diagrams and fermion self energies only (see

Figure 1.2b)

1/2

(750mg) 1.09” — 641,15). (1.53)

o All the one-loop corrections except the W vacuum polarization to the ,u-decay

amplitude at zero external momentum (see Figure 1.2c). All these corrections

will be denoted by (SCH/.3 [16]

6—?7-‘1245EMI- 791/.) (W‘(1 — 19v.) . (1.54)

The input bare parameters can be written in terms of the renormalized ones and

the above one-loop corrections [16].

(1) For the electromagnetic coupling I write the bare parameter do in terms of the

renormalized coupling a and the counterterm do as

a=ao+6a. (1.55)

The one-loop corrections to the effective coupling 7-e“-e+ at zero momentum

transfer (12 = 0 are summarized in Figure 1.3. The bare coupling 7-e‘-e+ can

be written, using Eq. (1.55), as

1 6

6‘7” (1 — 53') , (1.56)

C!
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Figure 1.2: The whole set of one-loop corrections needed to renormalize the SM

parameters a, Gp, and Mg.
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where 60/01 = 266/e. The one-loop proper vertex and self-energies calculation

can be written as

67p (59% - 7559/93) - (1-57)

The photon wave function can be written as (1 + 1 /26Z.,) where (SZ7 = —F77(0).

Adding all the one-loop corrections, one finds

 

 

1 (la v,z A7z(0) 1

87” (I — 2:7- — 2sin0c030 Mg + 69% + 2627)

ac AIZ(0)

6 e — , .

4.67““ ( 9A 2sin0cosl9 Mg ) (1 58)

where ve = -1/2 + 2sin20 and ac = —1/2 are the vector and axial-vector

couplings of the Z boson to e" e+.

In pure QED no 7-2 mixing exists and using the QED Ward identity one finds

dgVe = 59.47: = 0 [21]. Therefore, the renormalized coupling reduces to

160 1

e(1— 5"; + 5527) . (1.59)

By requiring that, in the limit q2 = 0, the renormalized coupling reduces to (e)

we conclude that

—— = ($27 = —F77(0), (1.60)

In the SM case we have to include the 7-Z mixing which is mainly due to the W-

boson loop. In the SM case one finds that the electromagnetic Ward-Takahashi

identity guarantees [21]

1 1472(0)

4sin0cosl9 Mg
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Also, one finds

l—4sin20A’1Z )__ sin20 A720)

4sin9cos0 Mg _ sin9cos0M§ '

  69v. + (1.62)

Therefore the coupling reduces to

160 l sin20 1472(0)

e (1 - 2‘0— + 2627 — sin9cosl9 Mg ) ' (1'63)

 

From which one finds

. .72

ég:_F7./(O)_2sm0A (0)

a c080 Mg

 (1.64)

For the Z—mass renormalization I consider the one-loop corrections to the Z

boson propagator (see Figure 1.4a). One finds

 

 
 

 

 

 

1 1 A22 0 21722 2

92 " M20 92 " M20 92 " M20

The full or dressed propagator is

1 —+ 1 1 _

«12 - M40 42 - Mg. 1+ “lghfigjz‘q’l

1 (1 66)
92 - M20 + A“(0) + 921722012) ' °

The physical mass MZ is identified with the position of the pole

q2 — Mg, + AZZ(0) + 1121:2201?) = 0 at q2 = Mg. (1.67)

Hence defining the mass counterterm as

M; = 143,, + 6M3, (1.68)

one finds

6M2 Azz 0

Z - — ( )— FZZ(M§). (1.69)

M%_ M%
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Figure 1.3: The one-loop corrections to the coupling 'y-e’—e+.
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Figure 1.4: a: The vacuum polarization function of the Z boson, up to one loop. b:

The one-loop corrections to the p decay. All corrections, except the W self-energy,

are collectively denoted by 60143.
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(3) For the Fermi coupling Gp, I compute the one-loop correction to the p decay (see

Figure 1.4b). I denote all the proper vertex, box and self energies corrections

by 6GV,B. Writing the counterterm as

GP = GPO + 507*, (1.70)

and adding the one-loop calculations with the counterterm to the p—decay am-

plitude, one finds

 

WW 2 WW 2
GP 1_§_G_1~_A (0)+9P2‘ (q)+6Gv,B . (1.71)

GF q2 — MWO GP

At q2 = 0 we have

60,. AWW(0) 601/3
1 — —— —- ——'— . .Gp( GP + Mgv + GP (172)

By requiring that Eq. (1.72) reduces to CF one finds

6 AWW 0 6

GP - ( ) + -———GV'B . (1.73)
“6*?" M3,, Gp

All other derived quantities can be written in terms of the renormalized a, Gp, M2.

and their counterterms. The renormalized weak mixing angle can be derived as follows

sin20 = sin200 + 6811129, cos26 = cos2 00 + 6cos29, (1.74)

where

- 2 2 "0‘0
sm 90cos 00 = -———————. 1.75

fiGFoMgo ( )

Therefore, one finds

6cos20 = —6sin20 =  

sin29cos20 (_6a 6G; 6Mg), (1.76)

c0820 —sin20 3+ Gp + Mg
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where sin2 0 is defined to all orders as

1 4770: “2

sm0_1—c030=§(1—[1————\/§Fg] ) (1.77)

Equivalently,

1ra
. 2 2

Sin 0 cos 0 = ——

«20ng

and c0826 2 1— sin2 0 . (1.78)

The renormalized IV mass can be derived from the tree-level relation

M3”, = cos2 OoMgo. (1.79)

One finds

M3,, = M3“, + 6M3} = cos2 GoMgo + 6M12v = cos2 6 Mg + 6M};

2 2
2

M2 COS 9 (sin2 0 6—0 - sin2 6 EE— — cos2 0 6%) - (L80)
 

sin20 — c0326 0 Op Mg

By demanding that MW coincides with the physical (on-shell) mass, the counterterm

6M3], is fixed

In summary, the tree-level (bare) S matrix

30 = 30(001GF01M20)1 (1-32)

is replaced at one-loop level by a finite physical 3 matrix

so -+ S(a,Gp, Mg) + 65(01, Gp, Mg, 111., m”), (1.83)

where 65 encompasses the one-loop corrections and the induced shift in the renor-

malized quantities. Notice that m, and my only appear in the radiative corrections.
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The tree-level amplitude Z —+ f7 can be written as

fiGmM§O_ 1 . 2 1
W247“ (—§ '1' 28111 60 + 755) ue

X7177” (T3, — 2Q, sin200 — 7573,) 11;. (1.84)

A(e’e+ —> Z —+ f?)

Next, I include all the one-loop corrections and the counterterms to the amplitude A.

Notice that the photon—Z mixing will also contribute to the amplitude. One finds

A(e‘e+ —> Z —) f7) =

 

2 2 22
«220111422 (1 _ 56p __ 6M: _ FZZ(Mg) __ 11192 (M2))

q - M2 GP Mz dq

9:7,. (9v. + Agv. — 75 [91c + A9181) u. x

1777» (9v; + Agw - 75 [94; + A9411) "1, (1-85)

where to simplify the notation, I defined

9v; = T3] - 2Qfsin20, 9/4; = T31, (1.86)

. 2 . “472(0) Z 2

Agvf=2Qfdsln 0 +6gvf—2Qfsm0cosl9 M2 +17.1 (M2) , (1.87)

2

A91; = 5911;- (1-88)

This result is slightly different from the result given in Ref. [16] by the inclusion

of the term A7Z(0) in Eq. (1.87). At one-loop level, fermions do not contribute to

1472(0), i.e., A}Z(0) = 0. However, there is a small contribution from the W—boson

loop [14].

Determining the amplitude enables us to calculate all physical observables at

LEP, namely the partial decay widths, the forward-backward asymmetries, and the

polarization measurements Ac and A,. The partial-decay widths can be written as

follow

N 1 - — — F M —— M
6N2 C< Gp Mg ( Z) dq2 ( Z)

X ([gv; + Agvf]2 '1' [9A] + AgAf]2) , (1.89)

 
 

NZ -* f7)
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where NC- is a color factor, NC = 3 for a quark final state and 1 otherwise. The

leptonic forward-backward asymmetry can be written as

3lgAz + AQAzlzlgvc + Agvzl2

2 1

([9111 + AQA112 + [9w + AQVtI2)

 A‘FB = (1.90)

where I have assumed lepton universality in A‘FB. In the SM, lepton universality is a

valid statement. However, In chapter 5 I will discuss a model, different from the SM,

which may break lepton universality. In the following discussion I will continue with

the assumption of lepton universality. The e and 7' polarization observables A, and

A, can be written as

f __ 219.4! + AQAII [W] + Agv1]

([94! + A9402 + law + Agwl?)

where f stands for e or T.

(1.91)

If we ignore for the moment the non-oblique corrections to the form-factors Agvf

and Ag,” ((5gi = 69,4, = 0) then it is clear that only oblique corrections (corrections

independent of the fermion flavor) are present. Also, one finds that all LEP observ-

ables can be written in terms of three combinations of oblique corrections. The first

correction is the one multiplying the partial decay width in Eq. (1.89), namely

- F”(M2) — fizz-(M2)) (192)
6Gp 6Mg

(lg2”'37 - M;

The second one is seen clearly from the ratio

7Z

£911; = 4|Qf| (68in20 -— sin0cos€ [AMgm + Flz(M§)]) - (1-93)

9.4; Z

 

The third one is given in terms of the W mass, which can be seen clearly from

Eq. (1.80). From Eq. (1.80) one can extract the third oblique correction,

M117

coszoMg =1+
 

6Mg, _ sin20 (£3 _ 60p 00820 6Mg) (194)

Mg, sin20 -cos20 0 Op - sin 0 Mg
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To summarize, ignoring all non-oblique corrections, there are only three combinations

of oblique corrections which affect the Z—pole observables.

To include the non-oblique corrections one has to make some general assumptions

to make the analysis simple and useful as a model independent tool. Before I do this

I consider the measurements of I‘(Z —) p'p+), A763, and MW with the non-oblique

corrections included. I combine the term A9,,” with the oblique correction to the

decay width I‘(Z -) 11" 11+) and define the first parameter Ap where

2 ZZ

ApE _5_c_;_,: — LA? — FZZ(Mg F—— 2 —Gr M2 ) dq2(Mz) 489A”. (1.95)

Using the form-factors ratio extracted from A323 one finds

W}: + AgVu

=1—4'n20—2A +21—4'26A . 1.969.1,. + A9,,” s1 91/11 ( 8m ) 911,1 ( )

I define the second parameter Ak’ where

9Vu+AgVu __ -2 r
————=1-4sm 61+Ak . 1.979M+A9Au ( ) ( )

From which one concludes

, 1

Ak - 2sin20

 (AgV, —- (1 — 431112 (9)4941) . (1.98)

Using the parameters Ap and Ak’ one can write the observables F(Z —) [171") and

 

 

.4ng

GFM3 , 2
_ + _ Z 2 I

. I‘(Z—>p 11 )-24N§(1+Ap)([1—4sm 6(1+Ak)] +1), (1.99)

2

3 1—4sin20(1+Ak’

747.3: [ )1 (1.100)

(1+ [1 - 4sin20 (1 + Ak’)]2)2 .
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It is worth mentioning that one needs to assume only e-p universality to extract Ak’

from the forward-backward asymmetries Aim. So far there is no need to include the

1' letpon in the universality assumption. Finally, using Eq. (1.80) and the expression

for (1 — 5:712?) 5%., I introduce the third parameter Arw where

Z Z

(1 M3,) M3,, na(Mg)

-— —E . 1.101

M2 M3. fiapMHl-Arw) ( ’

Using Eq. (1.80) one finds

6_G_p_ 60 + cos20 6Mg + sin26 — c0329 5M3],

G"? a $11126 M; 311129 143,, ‘

  AI‘w: (1.102)

One should remember that the term 60/0 in Eq. (1.102) does not include the light

fermions contribution which has been absorbed in 0(Mg) as discussed earlier. Notice

that in the improved Born approximation (including only the QED corrections) Ap,

Ak’, and Arw vanish by definition.

In terms of the one-loop corrections we found earlier one can write explicitly the

quantities Ap, Arw, and Ak’ as follow

  

  

   

  

 

 

AP = 14:20) " figég)‘ " Mz—Liz:(M2)- 62:8 — 469A!» (1103)

A... = {$3.33 (A139 — A335”) 353186141 1 111(0)

_sin2:; :0820 FWW(M?V) + 2:1:00A320) + 62:3 , (1.104)

cozs’jien 30;:00 A120) + 2sin6cos 6F72(M?)+

msg#21112 0 62:3 + 691,, — (1 — 4 sin? a )591, . (1.105)
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Now I expand my scope and take a further step into the analysis. The definition of

the parameters Ap, Arw, and Ak’ in terms of the physical observables I‘(Z —-) p"M”),

1452.3, and MW nominate these parameters to be used as a model independent probe.

The parameters Ap, Arw, and Ak’ are equipped to describe radiative corrections due

to any model which is identical in its tree—level low energy part to that of the SM.

Therefore, I will proceed with this aim in mind.

To include additional observables in the model independent analysis I will make

some general assumptions [16, 22, 23]. I start by assuming e-p-T lepton universality.

As mentioned before, lepton universality is a valid statement in the SM. Consequently,

all leptonic partial decay widths and forward-backward asymmetries are uniquely

determined by Ap and Ak’. Similarly for the polarization measurements Ae and

A,. In the case of lepton universality one can use the average lepton measurements

I‘(Z -+ (“(+) and A533 in defining Ap and Ak’. To include the quark measurements,

i.e., the hadronic widths and the forward-backward asymmetries, further assumptions

are needed. I assume that all relevant deviations from the SM are only contained in

the vacuum polarization functions, i.e., through oblique corrections. This may be

a reasonable assumption except for the b quark which I handle separately. In the

b-quark case, there is a large non-oblique correction to the decay width I‘(Z —> b5)

due to vertex diagrams involving the top quark. This correction can not be expressed

in terms of the parameters we defined above. Therefore, I follow Refs. [16, 22, 23] by

introducing an additional parameter 6,, to describe this non-oblique correction. I will

discuss this parameter in the next section.

To summarize this section, all precision electroweak observables at the Z pole,

under some general assumptions, can be written in terms of four quantities Arw, Ap,

Ak’, and £5 (to be discussed below). These quantities can be deduced easily from

the experimental measurements I‘(Z -+ £1”), A‘FB (assuming lepton universality),



28

MW, and I‘(Z —-) ()5). This result provides a straight-forward method to check for the

validity of the theory against the experimental data. The theory under investigation

includes a more general set of models and not exclusively the SM. All models which

are identical in their low-energy tree-level sectors to that of the SM and only differ by

radiative corrections can be included in the model independent analysis. Examples

include the Minimal Supersymmetric Standard Model (MSSM), Technicolor (TC)

models, multi-Higgs doublets models, etc.

1.4 The 6 Parameters

From the previous section, we found that all electroweak radiative corrections can

be parameterized by a set of four parameters. This result is interesting because one

does not need to worry about the whole renormalization procedure any more. To

parameterize the electroweak radiative corrections, it is useful to separate different

possible effects into different parameters. In other words, to disentangle new physics

effects it is very useful to choose the parameters so that some are sensitive to specific

types of new physics. In this work where I am interested in the top quark contributions

to low energy data, the temptation is high to choose some parameters to be very

sensitive to the top quark mass effect.

A well-known parameterization can be implemented to our case based on the

scheme used in Refs. [16, 22, 23], where the electroweak radiative corrections can be

parameterized by 4 independent parameters, three of those parameters 61, 62, and

63 are proportional to the popular T, U, and S parameters [24]. The fourth one; 6;,

describes the relevant non-oblique corrections to the proper vertex Z —) b5 [16, 22, 23].

A similar parameterization to 65 is discussed in Ref. [25]. In appendix B, I discuss

briefly the S, U, and T parameters. Also, I discuss their relation to the epsilon
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parameters.

I write the electroweak precision observables as

4

0.- : 0,-IB (1+ 20.56)) , (1.106)

j=l

where, 0.13 is the corresponding prediction of the theory in the improved Born ap-

proximation (i.€., with the QED and QCD corrections). The four dimensionless pa-

rameters £1, 62, 63, and 6), contain the genuine electroweak radiative corrections. All

dependence on m, and my comes through these parameters. The quantities agj are

fixed numerical constants.

In principle there are many different ways to parameterize the electroweak cor-

rections. In this work, I follow the parameterization in Refs. [16, 22, 23] given in

terms of the epsilon parameters. The parameters 61, 62, 63 are given in terms of the

previously defined parameters Ap, Ak’, and Arw

£1 = Ap, (1.107)

sin2 0
_ 2

62 _ COS 9 AP + cos2 0 — sin70

 Arw — 231112 0Ak’, (1.108)

63 = cos2 6Ap + (c0320 — sin2 9 )Ak'. (1.109)

For the parameter c), I write the partial-decay width Z -> b5 as follows

Gng a 2

2n¢§ (1+AP) ((951)2+(gfi,)2)
(1+ (M2)

Pb = 121r

  ) RQCD, (1.110)

where RQCD is the QCD correction given in Eq. (1.48),

R.(_<A4_>)(M_z)(_w) (1....)
7f 1r
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and a, is the QCD coupling, a, = gf/47r. The quantities 9%, and 9%, are defined as

follow [16, 22]

1

9gb = ‘30 + 60), (1.112)

 

g5), _ 1 —— 4/3(1+ Ak’)sin20 + 6,,

1.113

9X0 1 +6!» ( )

One should notice that Eqs. (1.112) and (1.113) are just auxiliary equations. So far

they do not mean that relevant physics is only coming through the bL-E-Z vertex.

In fact, from Eq. (1.110), the correct assumption is that relevant physics will modify

the decay width I}. To put it differently, the combination of relevant physics to both

the bL-FZ-Z and bR-EE-Z vertices which contributes to I], is simply parameterized by

q, (cf. Eq. (1.124)). However, if one is interested in other observables, e.g., A), (see

below), then an additional assumption is needed. The assumption is that the only

relevant new physics is coming through the bL-EZ-Z vertex. The reason is simply that

another combination of the neutral left- and right-handed b quark couplings will enter

these observables. I will adopt this assumption since the observable A), is not sensitive

to the top quark mass (see Eq. (1.141)) and also it does not show a deviation from

the SM (see Table 1.2).

In terms of the one-loop corrections we found for the parameters Ap, Arw, and

Ak’ one can write the arameters £1 62 and e as follow
1 a a 3

5GV,B
 

  

61 = 61 — 85 -— - 459,“ , (1.114)

Gr

. 2srn9 6G

62 = 82 — 81112084 — C082985 -m83 — ‘G—‘gB' " 69V! - 36g,“ , (1.115)

c -e+cos206 cos2de +cosfle_+-cos26l —sin20 l+2sin20(s (1116)

3 - 3 4 5 6 2sin§0 9v: 2sin20 gAl- -
sin0
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Here I define the following quantities

— AZZ(0) — AWW(0)

 

 

 

81 — Mg M3,, , (1.117)

e. = FWW(M3,,) — F33(M§), (1.118)

c030 30

1.119

83: sinBF (M2) ( )

64 = F77(0) — F77(M§), (1.120)

2dFZZ

e5-.. Mz—dq2 (M2), (1.121)

1172(0)= . 1.122
86 Mg ( )

For the parameter 6),, I write the one-loop corrections to the vector- and axial-

form factors (5ng and 69,45, which are due to proper vertex diagrams and b-quark self

energy, as

1 1

59% = --2- (80 + 59w) , 59.10 = *5 (80 + 59M) ~ (1-123)

In Eq. (1.123) I split the corrections to (5ng and 69,“, into two parts, the first part c),

encompass all non-oblique corrections dueto the top quark mass. (Notice that the

relevant m, corrections are only in the left-handed current.) The second part includes

the vector and axial-vector corrections independent of the top quark mass ng and

9,“, which are identical, in the SM, to the d—quark vertex corrections. Calculating

the I“), decay width using Eq. (1.89) and comparing with Eq. (1.110) one finds

‘6 = “rggm [(1'58‘“ ”)‘ng‘Sng +

24 8

2173—1115718- (l—gsinz 0)6gw—§(—-5+§sin2 (9)69”). (1.124)
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Note that the parameters 61, 62, 63, and 6,, can be written in terms of the basic

measurements F” = I‘(Z —+ p”,u+), A’;B, MW, and I}. To do this let us first rewrite

the parameters Ap, Arw, and Ak’ in terms of 61, 62, and 53. Using Eqs. (1.107)—

(1.109) one finds

  

 

Ap = 61, (1.125)

C082 0 cos2 0 — sin2 9

_ — 2 1.126

Arw sin2 0 1 sin2 0 62 + £3 ’ ( )

Ak' = 1 (63 - cos2 0 61) . (1.127)

cos2 0 — sin2 0

Using Eqs. (1.99)—(1.101) and (1.110) one finds

I), = I‘,,|3(1+1.2061— 0.2663) , (1.128)

Alf‘B = Afiglg (I + 34.6061 — 45.0063) , (1.129)

314-??- = Mi [3 (1+14361-10062—08663) (1130)

P5 = Pb]3(1+1.4161— 0.5463 + 2.9365) , (1.131)

where OIB stands for the observable O in the improved Born approximation (including

the QED and QCD corrections only). Other observables can be written in terms of

the epsilon parameters [26] as long as they satisfy the conditions we mentioned before.

0 The charged leptonic decays will be identical to I‘” as long as lepton universality

is satisfied. In this case, one can use the average leptonic decay width I“.

Similarly for the leptonic forward-backward asymmetries 145,3.
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o The polarization measurements Ac and A, are identical, assuming leptonic uni-

versality, where

 

c A e e A e

(gVe + AgVe) + (gAe + AgAe)

One finds

A, = A. = Aela (1 + 17.3.;1 — 22.553) . (1.133)

c The observable A“; is measured at SLC using polarized initial 6‘ 6+ beam

and at the Z peak. Under the general assumptions I mentioned before, the

observables Ac at LEP and ALR at SLC measure the same quantity, i.e.,

(ch + AgVe) (gAe + AgAe)
 

A” = 20». + Ayn)? + (g... + Agra? z A" (”34)

Thus, one simply has

ALR = A8 = Ae]3(1+17.361— 22.563) . (1.135)

s The total decay width of the Z boson 1‘2

[‘2 = FZIB (1 + 1.3561 — 0.4663 + 0.356),) . (1.136)

0 The observable R; = I‘h/I‘g, the ratio of the partial widths Z -) hadrons and

Z -+ 3" 6+,

R; = Rglg (1 + 0.2861 - 0.3663 + 0.5061,) . (1.137)

s For the hadronic peak cross-section 0),, where

_ 121rI‘J‘).

O’h - m, (1.138)

one finds

0'}. = 011180 + 0.0361— 0.0463 + 0.2065) . (1.139)
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o The observable Rb = I‘b/I‘h, the ratio of the partial widths Z -+ b5 and Z —+

hadrons,

R, = Rblg (1 + 0.0661 - 0.0743 + 1.795.) . (1.140)

c For the polarization measurement of Ab (at SLC), the dependence on the non-

oblique corrections is not exactly given by 6;, (see Eq. (1.124)). Nevertheless,

with the assumption that the relevant effect enters through e), one can ignore

the other contributions, i.e., 69v.) and 69,“ defined in Eq. (1.123). In this case,

one finds

A), = Ab|3(1+ 0.2361 — 0.2963 + 0.166),) . (1.141)

s The polarization measurement of A, (at SLC)

Ac = Ac[3(1+1.7161 — 2.2263) . (1.142)

0 The b—quark forward-backward asymmetry Apr

A2,, = AgrBlB (1 + 17.5361— 22.8063 + 0.166),) . (1.143)

a The c-quark forward-backward asymmetry Ah;

Ali‘s = A}BIB(1+19-0161— 24.7263) . (1.144)

0 Finally, the measurement of RC = I‘C/I‘h, the ratio of the partial widths Z —) c8

and Z —-) hadrons,

RC = Rc|3(1+ 0.11661— 0.15163 — 0.56),) . (1.145)

Therefore, using the above equations and the low energy experimental data, one can

fit the parameters 61, 62, £3, and 6),. A direct comparison with the theory is possible

by calculating the theoretical values of these parameters and then comparing with

the extracted experimental values.
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1.5 The SM Heavy mt and mm Contributions to

the Low-Energy Data

The important property of the epsilon parameters is that, for all observables at the

Z pole, the whole dependence on m, and mH enters only through these parameters.

Therefore, to calculate the m, and my contributions to the low energy data it is

enough to calculate their contributions to 61, 62, 63, and 6),. In this section, I treat the

top quark mass m, and the Higgs boson mass mH as heavy mass scales and calculate

their contributions at one-loop level to £1, 62, £3, and e), in the SM. Using the heavy

mass expansion (discussed in appendix C) and keeping only the leading contributions

of m, and mH I determine their contributions to the epsilon parameters.

1.5.1 Heavy Top Quark Contributions

In this case, only the vacuum polarization functions and the quantity e), are sensi-

tive to the top quark mass (see Figure 1.5). One can perform the calculations in any

gauge, since the result is gauge invariant. I use dimensional regularization and define

A=—n_2_4—7—ln47r, . (1.146) 

where n is the space-time dimension and 7 = 0.577. . . is the Euler’s constant. I keep

only the leading contributions of 712,.

o For the photon

1477(0) = 0, . ‘ (1.147)

92 16 sin2 0

[MINA/1%) = 167r2 9

 (A — ln m?) . (1.148)
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o For the Z boson

 

1422(0) = g2 3771?

—161r22c0820 (A-lnmf) ’

2

FZZ(M§) g 1 (l — fi-sini‘iél + 166-sin40) (A — ln m?) .
=167r2c0820 2 3

o For the W boson

2 2
9 3m 1

AW”) = razT‘ (“A ‘ 2 + 1m?) ’

 

2
g

FWW(M§) = 16712 (A — lnm?) .

o For the 7-Z mixing

4172(0) -- 0.

2 o

72 2 = ——-g ___4srn0 (1-3 ' 2 ) _ 2F (M2) 167r23cosl9 2 38111 0 (A lnmt).

s For the proper vertex 8,,

2 2

9 mt

ch = —167r2 2M3V '

Therefore, we find

AZZ(0) _ AWW(0) _ 92 3m? _ 30pm,2
  

 

 

 

= A =
— - —_

61 )0 Mg M34, 167r2 4M3V 8\/’27r2 ’

G M2£2 = FWW(M[%/) _ F33(M§) = — 43.2.13, 11107712),

_ 0030 30 2 __ GPA/112v 2

E3 - sin0 ( Z) — 12\/21r2 11mm),

0pm?

65 =
 

-4\/27r2 .

(1.149)

(1.150)

(1.151)

(1.152)

(1.153)

(1.154)

(1.155)

(1.156)

(1.157)

(1.158)

(1.159)
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Figure 1.5: The top quark contribution to the epsilon parameters, at the one-loop

level.
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1.5.2 Heavy Higgs Boson Contributions

For the heavy Higgs boson case, I calculate the vacuum polarization functions

to the leading order in my (see Figure 1.6). Due to the screening theorem [27], at

one-loop level, the leading dependence on the heavy Higgs boson mass in low energy

physical observables can be at most a logarithmic dependence. All vertex corrections

are negligible because of the small light fermions masses.

0 At tree level, the Higgs boson does not couple to the photon. Thus, the Higgs

boson does not contribute to A77(O) and F77(M§) up to one loop. Similarly,

there is no contribution to A72(0) and F7Z(M§).

o For the Z boson

 

2 2

22 - _9__ _flli_§ 2 2

A (0) - 16712C0820 ( 8 4len(m,,)) ’

2 ln(m2)Fzz 2 ___ _ 9 H .

(M2) 167r2cos20( 12 )

o For the W boson

2 2
g m 3

 

2 ln m2

FWW(M§)=—1gni’( (1211))

Therefore, one finds

AZZ(0) AWW(0) 30,514? 31520
6 = A =— .— ___— : _ W 2

1 p Mg M1241 8\/§7I2 C032 0 n(mH) 7

 

62 = FWWWfi») - 1"33(1‘4221)= 0,

(1.160)

(1.161)

(1.162)

(1.163)

(1.164)

(1.165)
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c080

€3=m 30( ———l . 1.166

24x/27r2 n(mH) ( )

M2) =

The parameter q, is not sensitive to the Higgs boson mass because the Higgs boson

couples to the b quark with a coupling strength proportional to the b-quark mass m),

(Yukawa coupling). In fact, in the limit of ignoring the bottom quark mass m5, the

Higgs boson contribution to q, vanishes.

1.6 Status of the SM

In general, precision tests performed at LEP, SLC, and the Tevatron have con-

firmed to a large accuracy the SM predictions. One-loop and even in some cases

two-loop corrections to the SM have been implemented and checked against the low

energy data [26, 28, 29]. Using the input values in Table 1.1, the SM predictions

for the low energy physical observables have been calculated [30]. In Table 1.2, I

tabulate the new data [12] and the corresponding SM predictions [30]. The SM pre-

dictions are calculated for two values of a,(M§), 0.125 and 0.115, respectively. The

top quark and Higgs boson masses used in the SM predictions are m, = 175 GeV and

my = 300 GeV, respectively. The only sensitive measurements for a,(M§) are the

total Z decay width I‘z, the ratio R; = I‘h/I‘g, and the hadronic peak cross-section

a), (see Eq. (1.138).

With all the accumulated success of the SM, there are only a few hints of possible

deviations from the SM that have been reported recently. Among those measurements

are: the LEP observation of a small excess in the measurement R), = I‘b/I‘h, the ratio

of the partial widths Z -> b5 and Z —) hadrons, of about 3.50‘ [12]. Also at LEP

there is the measurement of RC = I‘c/I‘h, ratio of the partial widths Z -+ c? and

Z -—) hadrons, with a deficit of about 2.50 [12]. At the SLC, a deviation from the SM

has been seen in the measurement of Am of about 2.80 [31]. At the Tevatron, an
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Figure 1.6: The Higgs boson contribution to the epsilon parameters, at the one-loop

level.
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excess of large E, jets has been reported [32]. Finally, there is the issue of the QCD

coupling a,(M§) [33]. From the LEP electroweak fit at the Z pole, the extracted value

for the QCD coupling is a,(M§) = 0.125 :1: 0.004 [12]. The LEP and SLC combined

fit gives a,(M§) = 0.123 :1: 0.004 [12]. These fits are not consistent with the evolved

value a,(M§) ~ 0.11 coming from the measured a, at Iq2| << ME in deep inelastic

scattering (DIS) [9], or with the value of 01, ~ 0.115 from lattice QCD [9]. As it is

argued by Shifman [34], the tendency of lower values of a,(M§); determined form low

energy observables, as compared to the higher values of a,(M§); measured at LEP

and SLC, presents a serious discrepancy that could be a signal for new physics.

The new LEP and SLC data show some interesting features which did not manifest

themselves in the old reported LEP and SLC data (before the summer of 1995) [35].

In fact, by the time I started this work the new data was not available. The old data

reported an excess of about 2.00 in R5. No significant deviation in R6 was observed

then (within 1.00). All other measurements like Re = Fh/Pg, A573, A,, A7, I‘h, Ab,

Ac, and ALR where consistent with the SM.

As I discussed in the previous sections, based on a few general assumptions, all low

energy data at LEP, SLC, and the Tevatron measurement of MW can be expressed

in terms of 4-independent parameters 61, 62, 63, and 6b. The assumptions made are

that new physics appear in the vacuum polarization functions and/or the Z -1 b5

vertex. The epsilon parameters contain the genuine electroweak corrections including

the top quark and the Higgs boson contributions. Unfortunately, in defining the 6

parameters no relevant new physics in the observable PC is assumed. Given the above

assumptions in defining the 6 parameters, the reported anomaly in Rc = I‘c/I‘), has a

very small dependence on 6;, [see Eq. (1.145)] which cannot explain the large deficit

in RC. Therefore, to use the 6 parameters one has to ignore the anomaly in Re. In

fact, as argued by Shifman [33], the size of the anomaly in He cannot be given by any
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perturbative physics.

Using the leptonic data, i.e., I“ and the asymmetries combined with the W mass,

the fit of 61 and 63 shows interesting features [36]: the good agreement with the SM,

the evidence for weak corrections, and the preference for a light Higgs boson. Lighter

Higgs boson implies lighter top quark mass. Including the hadronic data (except RC)

does not alter the correlation between 61 and 63. However, the fitted 61, is departed

from the SM by about 20. Therefore, the conclusion is that, by ignoring the anomaly

in R." the SM predictions for £1, 62, and 63, are in good agreement with the fitted

experimental values. However, the SM prediction for e), is not consistent with the low

energy data at the 20 level.

The electroweak data can be used to predict quantities like the top quark mass,

the W mass, the Higgs boson mass, and a,(M§). The new data predicts the top

quark mass to be [12]

m, = 170 :1: 10 :1: 19 (1.167)

where the central value and the first error refer to my = 300 GeV. The second error

corresponds to the variation of the central value when varying m” in the interval

60 GeV 3 mH _<_ 1000 GeV. This is consistent with the top quark mass reported from

the observation of the top quark at the Tevatron by GDP [10] and DO [11].

Up to one loop, the Higgs boson contribution to the low energy observables can be

at most a logarithmic contribution [27]. This makes the determination of my more

difficult than m¢. Also, because the effects of m, and my are correlated, the deter-

mination of m” is more difficult without a precise measurement of m,. Electroweak

precision tests show a preference for a light Higgs boson [6, 36]. However, as argued

in Ref. [37], LEP precision data, upon excluding the observables R), and RC, does not

imply a strong bound on the Higgs bosons mass, i.8., my can still be as large as 1
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TeV.

If one takes the new discrepancies seriously, i.e., is not mere statistics, then one

needs to understand the sources of these anomalies. Before the announcement of the

new data, the observed anomaly in Rb in the old data, has triggered the hope to

detect new physics. In fact, it was observed [34, 38] that if there was new physics in

R5 then the LEP fit of a,(M§) would go down to a,(M§) ~ 0.11 in better agreement

with the DIS and QCD values of a,(M§). With the inclusion of the new data, the

need for new physics is indeed more apparent. In fact, as discussed below, many

attempts have been made to explain the observed anomalies. Even though my work

is not completely oriented toward explaining these anomalies, part of it is. In the next

chapter I will discuss my general motivations for launching into this work. Below, I

will mention briefly mine and other’s efforts to understand these deviations.

If we assume that the reported anomalies are not mere statistics, then we can

advocate specific types of new physics which can tackle these experimental anomalies.

The problem is that the anomalies reported recently as a whole represent a confusing

picture. The argument given [36] is as follows: The measurement of Pb at the Z pole

is precise with uncertainty of about i3 MeV. However, the access in [‘5 by 11 MeV

and the deficit in PC by 32 MeV amounts to a deficit in the sum I}, + I}, which enters

the hadronic width I‘h, by 21 MeV. This deficit is far too large compared with the

accuracy of the measurement of Ph. Even with the inclusion of the ambiguity of a,,

coming from the M2 scale or the DIS physics, 6a, = :l:0.007 which corresponds to :l:4

MeV shift in Pb, the total shift in F], does not amount to that of I), + PC. Therefore,

a shift in the partial decay widths of the light quarks is needed. This shift must be

tuned up to account for the accuracy of Ph. The problem then is how to produce the

shifts seen in Rb and Re while not affecting other precise data, especially that of the

leptonic sector. This is not a trivial task and I think building a natural model to cure
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all these anomalies altogether is extremely difficult (ad hoc).

One possibility to explain the anomaly in Rb is through the top quark. As I

discussed in section 1.4, the decay width [‘5 has a strong dependence on the top quark

mass. Therefore, assuming the top quark couplings to the gauge bosons [39, 40, 41]

are different from the SM may be a plausible explanation to the anomaly in R5. In

chapter 3, I will discuss indetail a general treatment for studying the anomalous

top quark couplings from the low energy data using a model independent analysis.

Unfortunately, such a scenario can not accommodate the anomaly in B, because, in

the general model discussed in chapter 3, there is no mechanism to affect the charm

couplings through the top quark.

In chapter 5, I discuss a special model in which the third generation of fermions

undergoes a different SU(2) interaction from the first two generation of fermions.

The SH(2) symmetry associated with the third generation exhibits a strong flavor

dynamics which leads to a modification in the Z-boson couplings to the fermions (as

compared to the SM). Nevertheless, due to the accuracy of LEP data the constraints

on the free parameters of the model are so severe that this model can account for the

deviation in Rb from the SM at the 30 level. Even though RC is shifted in the needed

direction, the predicted value is still outside the 20 range of the data. Therefore,

one cannot explain the anomaly in RC entirely based on this proposed model. By the

time this part of my work was going through a final revision, a similar model was

proposed in Ref. [42]. Also, I have become aware of another similar model discussed

before [43].

Other efforts to explain these anomalies have been done by many theorists. The

reported anomalies can not be understood within the fully MSSM [44, 45]. According

to Ref. [44], the MSSM with additional high energy scale effects may be a suitable

candidate to explain the observed anomalies in the data. A fit on a,(M§) = 0.116
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with large Rb and large A“; can be achieved. However, such a model predicts light

superpartners below 100 GeV, a result which may rule out such a model if light

superpartners are not found at LEP2 and FNAL. In Ref. [45] a SUSY model with

four generations is proposed to explain Rb while ignoring the problem of Re. In Ref.

[46], a composite model of a forth heavy fermion family has been assumed. The model

can explain the anomaly in Rb but not the anomaly in Re. A common feature among

these models is that they all predict some light particles with masses around the MW

scale. Such models may be ruled out if nothing is observed at LEP-II and at the

Tevatron.

As it is argued in Refs. [43, 47], non-commuting extended technicolor (ETC) is a

possible candidate to give rise to a large Rb which is consistent with the data. Other

efforts are oriented towards the inclusion of an extra Z’ gauge boson [48, 49, 50].

Some of these models seem to explain the Rb anomaly but not Re. In Ref. [49] an

extra Z’ is coupled to the third family through an additional U(1) gauge symmetry.

This model may explain the anomaly in Rb and in a,(M§). Other authors [50] claim

to explain the R." anomaly, a,(M§), and RC on the expense of building ad hoc models.

The anomaly in the SLC measurement of ALR is difficult to realize because LEP

measures a similar quantity A, which is in a very excellent agreement with the SM.

In fact, in the SM and in many other extensions the two observables are identical.

It is true that the two measurements refer to different observables, nevertheless, _it

is hard to imagine new physics which would affect one and not the other. In Ref.

[51], the authors discuss the possibility of new physics which would reconcile the

measurements of ALR and Ac. They conclude that the only possible way to reconcile

the two measurements is through an additional Z’ boson coupled almost exclusively

to quarks and with a mass almost degenerate with the Z boson mass. They also

conclude that the Z' must have an almost vanishing coupling to the leptons.
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Table 1.1: The input parameters used to calculate the SM predictions in Table 1.2.

 

 

 

 

 

 

 

 

    

Input Value

a,(M§) a: 0.125

b: 0.115

CAME 128.89(9)

Mz 91.1885(22) GeV

Gp 1.166389(22) x 10"5 GeV?!

sinzd 0.2312(3)

m, 175 GeV

my 300 GeV
 

 

Summarizing this section [30, 36],

o The precision electroweak experiments at LEP and SLC test the SM predictions

at a few times 10’s. A need for electroweak corrections is demonstrated.

0 All data agree well with the predictions of the SM except for R5 which shows

an access of- about 3.50, Re which shows a deficit of about 2.50, and ALR with

a deviation of about 2.80. Combining the two data Rb and Rc alone rule out

the SM at 99.99% confidence level (C.L.) for mt > 170 GeV [30]. (i.e., a lower

mt is preferred.)

0 There are many different scenarios which can explain the access in R5. So far,

it is not possible to understand the anomaly in Be, it may even be beyond the

perturbative region [33]. It is also extremely difficult to understand the anomaly

in ALR-
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Table 1.2: Experimental and predicted values of electroweak observables for the SM.

The SM predictions are calculated using the input values in Table 1.1. Columns a

and b are for a, = 0.125 and 0.115, respectively.

 

 

 

 

 

 

I Observables Experimental data [ SM 1

_ a b

LEE

gv. —0.0368 :1: 0.0017 —0.0367 -0.0367

9A. -0.50115 :5 0.00052 —0.5012 -0.5012

sum/9vc 1.01 a: 0.14 1.00 1.00

gAp/gA, 1.0000 :1: 0.0018 1.0000 1.0000

gvf/gv, 1.008 :1: 0.071 1.000 1.000

gA,/g,., 1.0007 :1: 0.0020 1.0000 1.0000

I‘z 2.4963 :1: 0.0032 2.4978 2.4922

R. 20.797 :1; 0.058 20.784 20.716

12,, 20.796 4: 0.043 20.784 20.716

R, 20.813 :1: 0.061 20.831 20.716

0?, 41.488 :1: 0.078 41.437 41.490

A, 0.1390 :1: 0.0089 0.1439 0.1439

A, 0.1418 :1: 0.0075 0.1439 0.1439

A53 0.0157 :1: 0.0028 0.0157 0.0157

A53 0.0163 3: 0.0016 0.0157 0.0157

A,” 0.0206 :1: 0.0023 0.0157 0.0157

R, 0.2219 3: 0.0017 0.2157 0.2157

3: 0.1543 :t 0.0074 0.1721 0.1721

QLQ

Am 0.1551 :t 0.0040 0.1439 0.1439

R, 0.2171 :1: 0.0054 0.2157 0.2157

A, 0.841 :t 0.053 0.934 0.934

A, 0.606 t 0.090 0.666 0.666

1919111911

MW 80.26 a: 0.16 80.32 80.32      



Chapter 2

The Chiral Lagrangian

2.1 Physics Beyond the SM

As I discussed in chapter 1, the SM has proven to be very successful in accom-

modating all precision measurements available so far; with the exception of a few

observables. Among those observables are R1, and R, at LEP with deviations of

about 3.50 and 2.50, respectively [12]. Also at the SLC there is the A“; measure-

ment with a deviation of about 2.80 [31]. At the Tevatron there is the observation

of an excess of large E, jets [32]. Despite the success of the SM as a whole, there are

two main points regarding the SM one should bear in mind. The first point is that

some parts of the SM remain untested, examples include the top quark interactions

with the electroweak gauge bosons which is the main theme of this work. It is only

recently that the first direct observation of the top quark has been made [10, 11].

With a top quark mass much larger than the Z mass, physics of the top quark is

still premature. In chapter 3, I will discuss in detail the possibility of anomalous top

quark couplings to the gauge bosons. A second example is the study of the gauge

boson self-interactions [52]. The current available energy at LEP which is around the

Z-mass scale, does not permit a direct test on the gauge boson self-interactions. It is

only through radiative corrections that such couplings can be examined. There has

48
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been several attempts to study the SU(2) L x U(1)y gauge structure using the low

energy data at LEP/SLC and other low energy data [25, 53, 78]. With the upgrade

collider LEP-II with an energy of about twice the Z mass, a direct test will be avail—

able in the future [54]. A third example is the Higgs sector, which is responsible for

the symmetry-breaking mechanism. The Higgs boson is still a hypothetical particle.

Direct search at LEP only led to a lower constraint on the Higgs boson mass to be

larger than 65.2 GeV [6]. From radiative corrections, the Higgs boson mass still can

be as large as 1 TeV [37].

The second point about the status of the SM is that despite the celebrated success

of the SM, there is little faith that the SM is the final theory. The reasons behind

this are fundamental and basic. Some of these reasons are

0 No unification in the gauge couplings g, g’, and 9, can be attained within the

SM framework. Furthermore, gravity is a totally ignored subject in the SM.

0 The SM contains many arbitrary parameters with no apparent connections,

e.g., fermion masses and quark mixings.

o The SM provides no prediction for the fermion masses, the quark mixings, the

Higgs boson mass, and why the number of generations is 3.

o The SM provides no satisfactory explanation for the symmetry-breaking mech-

anism which takes place and gives rise to the observed mass spectrum of the

gauge bosons and fermions (see chapter 3). The Higgs boson is still a hypothet-

ical particle. In fact the sole existence of the Higgs boson by itself is a debated

issue [55].

o The SM does not explain the large and unnatural difference between light and

heavy quark masses. The question of why the top quark is so much heavier
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than the other quarks, or to put it differently why all the quarks, except the

top quark, have small masses relative to the symmetry-breaking scale 12 = 246

GeV.

0 Other issues are not contemplated within the SM, examples include neutrino

masses, the observed CP violation in the Kaon system, strong CP violation,

etc.

If one holds the belief that the SM is not a fundamental theory, then many ques-

tions arise. How come the SM is so successful? Is the success of the SM an accident,

or is there a link between the ”fundamental” theory and the SM? Where is the new

physics? How to reach for it? . . . These are some of the questions that one hopes to

answer in the on going efforts to understand nature.

2.2 Model Independent Analysis

Based on the belief that the SM is not the whole story, the search for physics

beyond the SM is a continuous effort. One can investigate the possible existence for

physics beyond the SM through a systematic model by model study. An example

may be a grand unified theory (GUT) valid up to some high energy scale. Evolving

that theory down to the electroweak scale permits a direct comparison between the

prediction of the theory and the precision low energy data [56], or at least one may

be able to set some constraints on the free parameter space of the model under

study. Such an approach provides a consistent analysis for low energy data because

the full theory under investigation is at hand. Other examples of this approach

include Supersymmetry (SUSY) models [57] and TC along with its revised versions

[47, 58, 59]. (For a review see Refs. [25, 60].) However, such approach is cumbersome

and time consuming because of the need to go over the whole model and pin point



51

all of its characteristics at low energy.

A useful alternative method in searching for new physics is the model independent

analysis. There are two common approaches in searching for new physics using a

model independent analysis. The first approach is by characterizing all energy effects

at low energy using a few parameters. As I discussed in chapter 1, such an approach

is possible, e.g., using the epsilon parameters [16, 22, 23] or the S, T, U quantities

[24] (see appendix B). Then by simply calculating theses quantities in any model and

comparing with the corresponding values extracted from the low energy data one

can judge whether a specific model is compatible with the low energy data or not.

However, one should admit that using these parameters does not allow for a general

treatment of all possible models. this is true because in defining these parameters

certain assumptions are implemented. For example, in these parameterizations one

assumes that at the tree level the low energy part of any model should reduce to that of

the SM. Difference is only allowed in radiative corrections. Other assumptions include

lepton universality in defining the epsilon parameters. In the S, T, U parameters one

assumes that the only relevant physics is coming through the vacuum polarization,

i.e., oblique corrections, and so on.

The second approach to the model independent analysis is the effective Lagrangian

approach [61, 62, 63]. In this case, under general assumptions, one can effectively

describe new physics effects to low energy data with no regard to the actual mechanism

at the high energy scale. The use of effective Lagrangians began with the introduction

of the non-linear a-model [64] in the early 60’s as an effective theory for the strong

interactions. The theoretical basis of the effective Lagrangian method was formulated

by the late 60’s [65, 66].

In general, realistic models of new physics at high energy scales generate a host of

effective operators at the low energy scale. The effective theory is valid below some



52

high energy scale A above which the effective theory breaks down. Dependingion

the underlying physics one can resort to two different approaches in constructing the

efl'ective Lagrangian. The first approach is if the underlying physics is decoupling [67].

In this case, the effective operators are usually suppressed by some power of a high

mass scale A. Therefore, the effective Lagrangian can be expanded in powers of 1/A

or equivalently in terms of increasingly suppressed higher dimensional operators [68].

(For this effective Lagrangian, the SU(2) L x U(1)y gauge symmetry is linearly realized

by inserting more Higgs doublet fields in the effective operators.) The second approach

is if the underlying physics is non-decoupling. In this case, the contributions due to

physics above A need not be suppressed by powers of 1/A. Therefore, in the non-

decoupling case, an expansion in powers of momenta is performed and the effective

Lagrangian is known as the chiral Lagrangian [68, 69]. (For the chiral Lagrangian,

the SU(2)L x U(1)y gauge symmetry is non-linearly realized, see appendix D.)

The effective Lagrangian can be taken to respect the gauge invariance of the

SM. The disadvantage of the effective Lagrangian is that it involves a large body of

free parameters, making the whole approach a tedious one for a general treatment.

To simplify the whole approach usually one resorts to a limited class of effective

operators which are sensitive to the case under study. Some recent efforts have been

implemented to account for a broader class of effective operators than has previously

been considered [70].

The chiral Lagrangian constitutes a powerful approach in describing the phe-

nomenon of spontaneous symmetry breaking [71]. It provides a systematic way to

effectively incorporate new physics without adhering to a limited scenario of the

symmetry-breaking mechanism as long as the electroweak symmetry is spontaneously

(as opposed to dynamically) broken. For example, one does not have to be confined to

the assumed SM Higgs mechanism and therefore, the Higgs boson is not an essential
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part of the basic structure of the chiral Lagrangian. In the next section I discuss in

some detail the structure of the electroweak chiral Lagrangian. For more details, the

reader can refer to the literature [62, 72, 73, 74, 75, 76, 77, 78].

In the effective Lagrangian approach one can understand the reason why the SM

is so successful, it is because the SM is viewed only as a low energy effective theory.

The success of the SM simply indicates the irrelevant effect of higher dimensional

operators.

Another thing to mention is that the use of the effective Lagrangian does not

necessarily stem from our ignorance of the full dynamics. In fact, as pointed out by

H. Georgi in Ref. [76], the effective field theory framework is not only simpler and

more transparent, but it actually provides a deeper insight into the relevant physics

at the distance scale that is relevant to the current experimental data.

2.3 Introduction to the Chiral Lagrangian

The chiral Lagrangian approach has been used in understanding the low energy

strong interactions because it can systematically describe the phenomenon of spon-

taneous symmetry-breaking [71]. In fact, the chiral Lagrangian found its greatest

development in the context of strong interactions [79], e.g., 7777 scattering. Recently,

the chiral Lagrangian technique has been widely used in studying the electroweak

sector [62, 72, 74, 75, 76, 77, 78], to which this work has been directed.

The chiral Lagrangian can be constructed based solely on symmetry principles

with no other assumptions regarding any explicit dynamics. Thus, it is the most

general effective Lagrangian that can accommodate any truly fundamental theory

possessing that symmetry at low energy. Since one is interested in the low energy

behavior of such a theory, an expansion in powers of the external momentum is
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performed in the chiral Lagrangian [69].

In general, one starts from a Lie group G which breaks down spontaneously into a

subgroup H, hence a Goldstone boson for every broken generator is to be introduced

[80]. I consider the case where G = SU(2) L x U(1)y and H = U(1),,m. There are three

Goldstone bosons generated by this breakdown, 45“, a = 1, 2,3 which are eventually

eaten by Wi and Z and become the longitudinal degrees of freedom of these gauge

bosons.

The Goldstone bosons transform non—linearly under G but linearly under the

subgroup H. A convenient way to handle this is to introduce the matrix field

 2 = exp (i¢:Ta) , (2.1)

where 'r“, a = 1,2,3 are the Pauli matrices normalized as: Trace(7'°'rb) = 2605. Be-

cause of U(1),3m invariance v1 = 1);» = 0, but is not necessarily equal to 113. The matrix

field 2 transforms under G as

 

a 3

E —+ 2’ = exp (£02741) 2exp(—iy:2—) , (2.2)

1,2
where a ’3 and y are the group parameters of G.

In the SM, being a special case of the chiral Lagrangian, v = 246 GeV is the

vacuum expectation value of the Higgs boson field. Also 11;; = v arises from the

approximate custodial SU(2) symmetry in the SM. It is this symmetry that is re-

sponsible for the SM tree-level relation

va
 

p = = 1 , (2.3)

5.
.

a
.

where c3 = 1 — 33 and 33 is the weak mixing angle defined in the on-shell scheme

(see appendix A). Low energy data already constrains p to be 1 within about 0.1%
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accuracy [60]. Therefore, in this work, I will assume the full theory guarantees that

v1 = v2 = 113 = 12.

Out of the Goldstone bosons and the gauge boson fields one can construct the

bosonic gauge invariant terms in the chiral Lagrangian

l a V0 1 V 1

£3 = —ZWWW" -— ZB,,,,B“+ 2521‘: (DpElD’E) , (2.4)

where the covariant derivative

7'3

0,2: 73,-2 gw;—-2:2+ig',,.2B-T§— (2.5)

Under G, the covariant derivative transforms as

07a 3

2 ) DpE exp(—iy:2—). (2.6)
 1),,2 —+ (D,2)' = exp (4“

In the unitary gauge 2 = 1, one can easily see how the gauge bosons acquire their

masses. In the unitary gauge, the mass term in the Lagrangian reduces to

_ 12 1 12 a" ' 2c... _ Zv"r11-(1),,219#2)—1:1-v'rr([—9W2+g'Bp2]

— l112(2w0WW—2 ’W3B"+ ’23 B”) (27- 8 g ,. 99 ,. 9 1. . -)

Using the field definitions in Eqs. (1.11) and (1.12) one recovers the gauge boson

masses given in Eq. (1.17)

22

 

92”2 + p— 9 v [1

£m= 4—W’‘ W + 8coszflz”z . (2.8)

The W and Z masses are

2 2 2 2

M3,,=-g—3-, Mg: 9" . (2.9) 
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The difference between the non-linear and the linear realizations is that in a general

gauge, the non-linear realization produces other complicated terms in powers of the

Goldstone bosons. (See appendix D for details.) In general, one finds

c M2W+W“’ M322“ 6 +6” - 1 3a” 3m: w # +—'2_ p +p¢ ([2 +§p¢ ¢+..., (2.10)

where the fields 63* are defined as

i_¢‘=1=i¢2
¢ .. ([2 . (2.11) 

Fermions can be included in the context of the chiral Lagrangian by assuming

that they transform under G= SU(2)L x U(1);» as [74]

f -+ f’ = e‘”Q’f, (2.12)

where QI is the electromagnetic charge of fermion f.

Out of the fermion fields f1, f2, with the condition Qf, — Qf, = 1, and the

Goldstone bosons matrix field 2 the usual linearly realized fields \II (see section 1.1)

can be constructed. For example, the left-handed fermions [SU(2)L doublet] are

constructed as

‘11,, = EFL = 2 (Q). (2.13)

One can easily show that \IIL transforms under G linearly as follows

a 3 3

\IIL -) \IIL’ = exp (2,027“) 2 exp (—iy-T2—) exp (iy [:g— + g]) FL

aaTa

2 ) exp(iy%)\11, (2.14)

 

 = exp (i

where in Eq. (2.14) I wrote the fermion charge Qf in terms of the Gell-Mann—Nishijima

relation defined in Eq. (1.2)

3
Y 7'



57

Therefore, under the group G=SU(2)L x U(1)y

 

WI. —> ‘I”L = 9 ‘I’L .’ (2.16)

where

g = exp(iafungi?) e G. (2.17)

Linearly realized right—handed fermions \I! R [SU(2) L singlet] simply coincide with

FR: i.e.,

‘I’R = F]; = (;;) . (2.18)

R

Out of the defined fields with their specified transformations it is straightforward to

construct a Lagrangian which is invariant under SU(2)), x U(1),». In constructing

the low energy chiral Lagrangian, one can use either the fermionic basis \IIL and \PR

or the basis f1 and f2. The two basis lead to an identical physical S matrix in virtue

of Coleman’s theorem [66, 81].

In constructing the chiral Lagrangian, I will follow Ref. [74] and define the com-

posite fields as

2° = —-;-Tr('r“ElD,,2). (2.19)
14

Under the gauge transformation element 9 E G and using Eqs. (2.2) and (2.6), one

finds that the composite fields transform as:

a I a i ' T3 0 - T3 1

2,, —) 2,, = —-2-Tr exp(-zy-§-)T exp(zy-2—)23 DPS . (2.20)

From which one concludes that under a general gauge transformation

I3

23 —> 2 y = 22, (2.21)
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and

:l: _ ii :1:

2: -1 2', - e 112,, , (2.22)

where

fj=‘/_(E], =1: 72f) (2.23)

The field 22 behaves as a neutral matter field while the two fields Eff behave as

charged matter fields with Q = :t1. By a matter field I mean a field which does not

transform as a gauge boson field under the symmetry group H.

In a general gauge, 22 can be expanded as

 

1 1 g ' _ _

2?: = 72:a_p¢3 2cosOZ"— 35(“745 _ WP 45+)

—;(¢+a,,¢- — ¢-a,,¢+) + . .. (2.24)

The composite field E; can be expanded as

2+-i +1W+£2+ oz '64 3W+,, — v2 ”(1) —Zg ”_v(¢ [cos p+sm.,,]—¢) p)

i

+;(¢+Bp¢3-¢3511¢+)+m 12.25)

The component 2; is just the Hermitian conjugate of 2;. In the unitary gauge 2 = 1

one finds that the composite fields reduce to the physical gauge bosons, i.e.,

 

1 9
3 _—

2" 2c050 " ’ (2'26)

and

2:: -—;gWi. (2.27)

Using the non-linear realization technique for G=SU(2) L x U(1)y and H=U(l)em

one finds that the conserved generator Q (electric charge) is associated with the B”



59

gauge boson rather than the photon A” [77]. Therefore, in constructing the chiral

Lagrangian, the covariant derivative of a fermion I will include the Bu gauge boson

field rather than the Au boson field (see below).

The main observation is that the bosonic fields 22, 2; combined with the fermionic

fields f1, f2, .. . , only feel the electromagnetic transformation U(1)em even though

the whole gauge symmetry is SU(2)L x U(l)y. This is a very important observa-

tion because it enables us to write an invariant Lagrangian under the gauge group

SU(2)L x U(1)y simply by requiring the Lagrangian (constructed from 2;, B”, and

FAR) to be invariant under U(1),,m. For example , consider the top and bottom

quarks. From Eqs. (2.13) and (2.18) one has

t

F: (b) =FL+FR, (2.28)

with f1 = t and f2 = b. The SM Lagrangian involving the t and b quarks can be

deduced from

—. . , Y 73 —
£0 = Fry” 8p—zg 3+3- Bp F—FMF

— E7”T°FLEZ + £3 , (2.29)

where the hypercharge number is Y = 1/3 and M is a diagonal mass matrix

M = (’3‘ 72b) . (2.30)

£0 is invariant under G and the electric charges of t and b quarks are given by the

relation Y/2 + T3, where T3 = 13/2 is the weak isospin quantum number (T,3 : 1/2

and T: = -1/2). The terms in Eq. (2.29) are not the only possible gauge invariant

dimension four operators. In fact, the chiral Lagrangian permits the inclusion of

other terms while keeping the gauge invariance maintained. In chapter 3, I discuss

how to parameterize the anomalous top quark couplings using the chiral Lagrangian

framework.
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Here is a final note regarding the physical Higgs boson. It is known that the gauge

bosons acquire their masses through the spontaneous symmetry-breaking mechanism.

The bosonic Lagrangian £3 in Eq. (2.4) only involves the gauge bosons and the

unphysical Goldstone bosons. The Higgs boson is not a part of the Lagrangian £3.

This indicates that the chiral Lagrangian can account for the mass generation of

the gauge bosons without the actual details of the symmetry-breaking mechanism.

Furthermore, the fermion mass term is also allowed in the chiral Lagrangian,

_mfaflfi a
(2.31)

because it is invariant under G, where the fermion field f,- transforms as in Eq. (2.12).

From this it is clear that the Higgs boson is not a necessary element in construct-

ing the low energy effective Lagrangian. This indicates that the SM Higgs mechanism

is just one example of the possible spontaneous symmetry-breaking scenarios which

might take place in nature and still be described within the chiral Lagrangian frame-

work. However, a Higgs boson field can be inserted in the chiral Lagrangian as an

additional field (SU(2) L x U(1),» singlet) with arbitrary couplings to the rest of the

fields. To retrieve the SM Higgs boson at tree level, one can simply substitute the

fermion mass m, by 9,1) and v by v + H in fig [see Eqs. (2.4) and (2.29)], where

g, = m{/11 is the Yukawa coupling for fermion f and H is the Higgs boson field.

Hence, one gets the Higgs Lagrangian

L” = gapHa“H — émgHQ — V(H) + $511 Tr (0,21022) +

i-H”'1‘:(D,,2*D#2) , (2.32)

where V(H) describes the Higgs boson self—interaction. In the SM, V(H) is given by

2

V(H) = "2% (4vH3 + H4) . (2.33)
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Each term in Eq. (2.32) is separately gauge invariant because H is electromagnetically

neutral. The coefficients of the last two terms in Eq. (2.32) can be arbitrary for a

chiral Lagrangian with a scalar field other than the SM Higgs boson.

2.4 Heavy Top Quark Contribution to the 6 Pa-

rameters in the Chiral Lagrangian

In chapter 1, I calculated the top quark leading contributions to the epsilon pa-

rameters in the SM. In this section, I repeat these calculations using the chiral La-

grangian framework. There are some differences in the Feynman diagrams between

the SM and the chiral Lagrangian case. The dimension-four gauge boson couplings

to the fermions are the same as in the SM. However, the Goldstone bosons couplings

to the fermions are different. What is important to our case are the vertices ¢3-t-

f, and (bi-t3. In Figure 2.1, I show the relevant Feynman diagrams to the epsilon

parameters in the chiral lagrangian. For the case of the 61, parameter one needs to

include an additional Feynman diagram (see Figure 2.1f) which appears because of

the non—linear realization of the chiral Lagrangian. The calculations are performed

in the ’t Hooft-Feynman gauge. Calculations have been cross-checked in the Landau

and unitary gauges, they all agree as they should. Using the heavy mass expansion

discussed in appendix C, one finds

o For the photon

A77 (0) = 0 ,
(2.34)

92 16 sin2 0

167r2 9

 F77(M§) = (A — ln m?) . (2.35)

o For the Z boson

2 2

22 _ 9 3m,

A (0) - —167r? 2 cos2 0

 (A — In 171?) , (2.36)
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2 1 1 4 . 16 .
FZZ(M§) = %?m (5 — §s1n20 + -9—s1n4 0) (A - 1n m?) . (2.37)

o For the W boson

2 3 2 l

AWW(0) = 1%,??? (-A — 2 + In 711?) , (2.38)

ww 2 92 2
F (M2) = 173;; (A — In 772,) . (2.39)

o For the 7-Z mixing

2472(0) = 0 ,
(2.40)

2 o

72 2 =_-2_£_S_lfl (1-2 ' 2 ) _ 2F (MZ) 1671’23C080 2 38m 0 (A lnmt). (2.41)

o For the proper vertex 6;, one has to include all the relevant Feynman diagrams

(see Figure 2.1c,d,e,f). One finds

0pm?

_ , 2.42
4\/21r2 ( )

 

61,:

Therefore, we find

 

 

 

€1=AP=W__M&,_-=Tfifr3m-=W’ (2.43)

e: = FWW<M5> - mm) = €3ng mm?» (2.44)

e. = :3 301 3.) = —192‘{/1§—ff,-1n(m?>. (2.451

and

5., = —f5§’:§2. (2.46)
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The result we obtained here is identical to the result in section 1.5, as expected.

By virtue of Coleman’s theorem [66, 81] the linear and non-linear realizations lead

to the same physical observables. The equivalence between the two approaches is

verified at one loop for the heavy top quark contribution to the low energy data.
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Figure 2.1: The relevant Feynman diagrams in calculating the top quark contribution

to the epsilon parameters using the chiral Lagrangian approach.



Chapter 3

Global Analysis of the Top Quark

Couplings to the Electroweak

Gauge Bosons

3.1 Motivations and Perspectives

As I discussed in chapter 2, there is little faith that the SM is the final theory.

The reasons behind this are fundamental and basic (see chapter 2). One of the most

important reasons is the assumed SM symmetry-breaking scenario. The SM assumes

the symmetry breaking is a result of the dynamics of a complex scalar doublet <I>. The

scalar doublet acquires a v.e.v along the direction of the Higgs boson field. The simple

SM scenario suffers a great difficulty if the SM is viewed as a fundamental theory. If

the SM is valid up to all energies then the scalar sector is trivial (non-interacting)

[82]. This ’triviality is problematic because of the need for a self-interacting scalar

sector to generate the W and Z masses through the symmetry-breaking mechanism.

To solve the triviality aspect of the SM scalar sector one has to assume that the

scalar potential V‘(¢) is only valid below some energy cutoff scale A. Therefore, the

SM can only be viewed as a low energy description of an effective theory which is

only valid up to the energy cutoff scale A. Another problem in the SM scalar sector

is that the loop corrections to the Higgs boson mass are quadratically divergent and

65
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counterterms must be adjusted order by order in the perturbative expansion to cancel

the quadratic divergencies. If the SM is embedded in a larger fundamental theory

with heavy mass scales then the divergencies in the loop corrections to my depend

on the square of the heavy mass scales. In order to keep my light, as required by

unitarity conditions discussed below, there must be a deliberate cancelation of all

the quadratic divergencies by the appropriate counterterms and to all orders. This

cancellation is viewed by many as an unnatural aspect in the scalar sector which is

known as the fine-tuning problem.

The most recent experimental bound on the Higgs boson mass comes from the

direct search at LEP [6]

my > 65.2 GeV at 95% CL. (3.1)

As concluded in Refs. [6, 36], electroweak precision tests show a preference for a light

Higgs boson although the allowed range of mH is still wide enough due to the soft non-

decoupling Higgs boson contribution to low energy data at one—loop level (logarithmic

contribution [27]). On the other hand, as indicated in Ref. [37], LEP precision data,

upon excluding the observables Rb and RC, does not imply a strong bound on the

Higgs bosons mass, i.e., my can still be as large as 1 TeV. The requirement of the

consistency of the SM scalar sector implies some theoretical bounds on the Higgs

mass. Unitarity of the perturbative partial wave amplitudes [8] implies an upper

bound on the Higgs mass [83, 84]

my < 860 GeV. (3.2)

The triviality aspect of the scalar sector and the requirement of new physics to appear

at a high energy scale A (of the order of 1 TeV) implies a perturbative upper bound
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on the Higgs boson mass [83]

my < 1 TeV. (3.3)

The higher the energy scale A is the lower the Higgs boson mass will be, e.g., for

A ~ A”, and for m, ~ 175 GeV one finds [85]:

m” < 200 GeV, , (3.4)

where ApL is the Planck scale. Careful estimates of the triviality using the lattice

[86] places a somewhat tighter limit

my < 640 GeV. (3.5)

Theoretical lower bounds on the Higgs mass come from the vacuum stability [87].

The lower limit is a function of the top quark mass and of the cutoff scale A. The

dependence on the top quark mass comes because the Higgs boson coupling to the

top quark is proportional to m, (Yukawa coupling). Recent analysis of the vacuum

stability [85, 88] concludes that if the cutoff scale A is as large as the Planck scale

Apt, then for m, ~ 175 GeV, the SM Higgs boson mass must be larger than about

120 GeV.

Many attempts to offer alternative scenarios for the symmetry-breaking mecha-

nism are discussed in literature. A general trend among all alternatives is that new

physics appear at or below the TeV scale. Examples include MSSM [89], technicolor

models [58, 89] and possibly extended technicolor sectors to account for the fermion

masses [47, 59]. Other examples include top-mode condensate models [90] and a

strongly interacting Higgs sector [91].

In this chapter, I study how to use the top quark to probe the origin of the

spontaneous symmetry-breaking and the generation of fermion masses. I start the
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discussion with a brief description of the top quark. The top quark is the T3 = +1/2

member of the weak isospin doublet containing the bottom quark with an electric

charge Q = +2/3. The existence of the top quark has been confirmed recently by

the CDF and D0 experiments [10, 11] at the Tevatron proton-antiproton collider

with a center of mass (c.m.) energy of 1.8 TeV. Before this direct observation of the

top quark, there were strong experimental and theoretical arguments suggesting that

the top quark must exist [92]; e. g., the measurement of the weak isospin quantum

number of the left—handed b quark T3 = —1/2 suggests that the b quark should have

an isospin partner, namely the top quark. By 1994, from a negative result of direct

search at the Tevatron, assuming SM top quark, DO concluded that mthas to be

larger than 131 GeV [93]. In the same year, data were presented by the CDF group

at FNAL to support the existence of a heavy top quark with mass m, ~ 174 i 20

GeV [94]. In 1995, both CDF and D0 announced the discovery of the top quark.

From the recent observation of top quark events at GDP and DO a fit of the mass

distribution leads to the CDF top quark mass [10]

m, = 176 :f: 9 GeV , . (3.6)

and the DO top quark mass [11]

m, = 170 a; 18 GeV, (3.7)

where the second error is the estimated systematic uncertainty. Furthermore, a recent

study [12] based on the analysis of all available LEP data concludes that the SM top

quark mass is

m, = 178 :1: 8 :33 GeV. (3.8)

The central value and the first error quoted refer to my = 300 GeV. The second
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errors correspond to the variation of the central value when varying mH in the interval

60 GeV _<_ mg g 1000 GeV.

Despite the recent success in the observation of the top quark and its mass mea-

surement, there are no compelling reasons to believe that the top quark couplings to

the weak gauge bosons should be of the SM nature. The GDP and DO measurements

of the top quark mass are from a fit on the mass distribution, i.e., from kinematics,

no conclusions can be drawn regarding interactions or dynamics. Therefore, using the

top quark radiative corrections to the low energy data is the only available approach,

so far, to study the top quark interactions. Because the top quark is heavy relative to

the other observed fundamental particles, one expects that any underlying theory at

high energy scale A >> m, will easily reveal itself at low energy through the effective

interactions of the top quark to the gauge bosons. Also, because the top quark mass

is of the order of the Fermi scale 1) = (x/2G'p)_l/2 = 246 GeV, which characterizes the

electroweak symmetry-breaking scale, the top quark may be a useful tool to probe

the symmetry-breaking sector. It is this connection between the top quark weak-

interactions and the symmetry-breaking mechanism that I would like to investigate

throughout the discussion of this chapter.

Since the fermion mass generation can be closely related to the electroweak symme-

try-breaking, one expects some residual effects of this breaking to appear in accor-

dance with the generated mass [47, 59, 95]. This means that new effects should be

more apparent in the top quark sector than any other light sector of the theory.

Therefore, it is important to study the top quark system as a direct tool to probe

new physics effects.

In the SM, which is a renormalizable theory, the couplings of the top quark to

gauge bosons are fixed by the linear realization of the gauge symmetry S'U (2);, x

U(1)y. However, the top quark mass is a free parameter in the theory (SM) and
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need to be measured experimentally. If the top quark is not a SM quark, then the

couplings of the top quark to gauge bosons can be different from the SM. Also, the

effective theory describing the top quark interactions at low energy can be non—

renormalizable. Therefore, to conclude upon the properties of the top quark from

the radiative corrections is less vital and predictive. Nevertheless, precision data at

this stage are our best hope to look for any possible deviation in the top quark sector

from the SM, until a direct measurement of the top quark interactions can be made.

To study the couplings of the top quark to the gauge bosons, I will first use

the precision data at LEP/SLC to constrain these couplings in a model independent

approach, then I will examine how to improve our knowledge about the top quark

couplings at the current and future colliders. In addition, I will discuss how to use

this knowledge to probe the symmetry-breaking mechanism.

It is generally believed that new physics is likely to come in via processes involving

longitudinal gauge bosons (equivalent to Goldstone bosons) and/or heavy fermions

such as the top quark. One commonly discussed method to probe the electroweak

symmetry sector is to study the interactions among the longitudinal gauge bosons in

the TeV region. Tremendous work has been done in the literature [96]. 'However, this

is not the subject of this work. As I argued above, the top quark plays an important

role in the search for new physics. Because of its heavy mass, new physics will feel

its presence easily and eventually may show up in its couplings to the gauge bosons.

If the top quark is a participant in a dynamical symmetry-breaking mechanism, e.g.,

through the it condensate (top-mode Standard Model) [90] which is suggested by the

fact that its mass is of the order of the Fermi scale v, then the top quark is one of

the best candidates for the search for new physics.

An attempt to study the nonuniversal interactions of the top quark has been

carried out in Ref. [95] by Peccei et a1. However, in that study only the vertex
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t-t-Z was considered based on the assumption that this is the only vertex which gains

a significant modification due to a speculated dependence of the coupling strength on

the fermion mass: m,- S 0 (fl), where ngj parameterizes some new dimensional-

four interactions among gauge bosons and fermions i and j. However, this is not

the only possible pattern of interactions, e.g., in some extended technicolor models

[59] one finds that the nonuniversal residual interactions associated with the vertices

bL-E-Z , tL-fZ-Z , and tL-E-W to be of the same order. In Section 3.4, I discuss the

case of the SM with a heavy Higgs boson (my > m,) in which we find the size of the

nonuniversal effective interactions tL-fZ—Z and tL-E-W to be of the same order but

with a negligible bL-b—i—Z effect.

Here is the outline of my approach to the analysis. First, I use the chiral La-

grangian approach [66, 69, 71, 72] to construct the most general SU(2)], x U(1)y

invariant effective Lagrangian including up to dimension—four operators for the top

and bottom quarks. Then I deduce the SM (with and without a scalar Higgs bo—

son) from this Lagrangian, and only consider new physics effects which modify the

top quark couplings to gauge bosons and possibly the vertex bL-E-Z . With this

in hand, I perform a comprehensive analysis using precision data from LEP/SLC. I

include the contributions from the vertex t—b—W in addition to the vertex t-t—Z , and

discuss the special case of having a comparable size in b—b—Z as in t-t-Z . Second, I

build an effective model with an approximate custodial symmetry (p z 1) connecting

the t-t-Z and t-b—W couplings. This reduces the number of parameters in the effective

Lagrangian and strengthens its structure and predictability. After examining what

we have learned from the LEP and SLC data, I study how to improve our knowledge

on these couplings at the Tevatron, the LHC (Large Hadron Collider) and the LC

(Linear Collider) [97]. (I use LC to represent a generic e'e+ supercollider.)

The rest of this chapter is organized as follows. In Section 3.2, I parameterize-the
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anomalous top quark couplings using the chiral Lagrangian framework. In Section 3.3,

I present the complete analysis of the top quark interactions with gauge bosons using

LEP data for various scenarios of symmetry-breaking mechanism. Also, I discuss how

the SLC measurement of A“; can contribute to the study of the top quark couplings

to the gauge bosons. In Section 3.4, I discuss the heavy Higgs limit (my > m,) in

the SM model as an example of our proposed effective model at the top quark mass

scale. In Section 3.5, I discuss how the Tevatron, LHC, and LC can contribute to

the measurement of these couplings. Some discussion and conclusions are given in

Section 3.6.

3.2 The Top Quark Couplings to Gauge Bosons

in the Chiral Lagrangian Framework

I will concentrate my discussion on the b and t quarks. Precision. tests at LEP

and SLC have shown that the interactions among the other light fermions and the

gauge bosons agree very well with the SM, with the exception of the recent observed

deviations in A“; at SLC and in Rb and R6 at LEP. As discussed in chapter 1,

if the anomaly in Re persists in the future then it is unlikely for us to be able to

understand such a large deviation within any perturbative model. Therefore, I will

ignore this measurement in my discussion. (I will come back later to say a few words

about Re.) To simplify the discussion on the proposed new top quark interactions,

I will ignore all possible mixings of the top and bottom quarks with the other light

fermions. In case there exists a fourth generation with heavy fermions, there can be a

substantial impact on the Cabibbo—Kobayashi—Maskawa (CKM) matrix element V“.

To be discussed below, this effect is effectively included in the nonstandard couplings

of t—b—W of the effective Lagrangian at low energy scale.
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Taking advantage of the chiral Lagrangian approach (see chapter 2), nonstandard

interaction terms, invariant under SU(2)], x U(1)y, are allowed in addition to the

standard terms in Eq. (2.29). These terms are

£1 = —K’ZCt—I:‘)’ptl,22 — Kng-E‘thnzz

— fixgcfi'y’bbfij — fiflgClEZ-Vyth;

" finficfi'y"b32: — fiN%ClE7"tRE; a (3.9)

where nfc, KIA/C are two arbitrary real parameters, REC, REC are two arbitrary com-

plex parameters, and the superscript NC and CC denote neutral and charged cur-

rents, respectively. The composite fields 22, a = 1, 2, 3 are discussed in chapter 2. In

the unitary gauge, the Lagrangian above reduces to

£1 = Isa—3.7;? (#130741 — 75) + nficwl + 75)) t Z.

9 - CC .CC +
+ 1,7240% 7"(1—75)+'~R 7”(1+'75))pr

9 - CC? .60? —
+ 72““ 211—75)“, 7"(1+75))tW,.- (3.10)

A few remarks are in order regarding the Lagrangian L; in Eqs. (3.9) and (3.10).

1 In principle, £1 can include nonstandard neutral currents E7 bL and bz'y b3.
1‘ :4

For the left-handed neutral current 527pr I discuss two cases:

(a) The effective left-handed vertices tLIE—Z , tL-b-Z-W , and bL¥b_[,'-Z are com-

parable in size as in some extended technicolor models [47, 59]. In this

case, the top quark contribution to low energy observables through radia-

tive corrections is of a higher order, i.e., the top quark contribution will be

suppressed by 1/167r2 relative to the b-quark contribution. In this case, as

I will discuss in the next section, the constraints derived from low energy

data on the nonstandard couplings are so stringent (of the order of a few
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percent) that it would be a challenge to directly probe the nonstandard

top quark couplings at the Tevatron, the LHC, and the LC.

(b) The effective left—handed vertex bL-bI-Z is small as compared to the t-t-Z

and t-b-W vertices. I will devote most of this work to the casewhere the

vertex bL-b—i-Z is not modified by the dynamics of the symmetry breaking.

This assumption leads to interesting conclusions to be seen in the next

section. In this case one needs to consider the contributions of the top

quark to low energy data through loop effects. A specific model with such

properties is given in Section 3.4.

I will assume that bR-bE-Z is not modified by the dynamics of the electroweak

symmetry-breaking. This is the case in the extended technicolor models dis-

cussed in Ref. [47, 59]. The model discussed in Section 3.4 is another example.

The right-handed charged current contribution “$0 in Eqs. (3.9) and (3.10) is

expected to be suppressed by the bottom quark mass. This can be understood

in the following way. If b is massless (mb = 0), then the left- and right—handed

b fields can be associated with different global U(1) quantum numbers. (U(1)

is a chiral group, not the hypercharge group.) Since the underlying theory

has an exact SU(2) L x U(1),» symmetry at high energy, the charged currents

are purely left—handed before the symmetry is broken. After the symmetry is

spontaneously broken and for a massless b the U(1) symmetry associated with

b]; remains exact (chiral invariant) so it is not possible to generate right—handed

charged currents. Thus K20 is usually suppressed by the bottom quark mass

although it could be enhanced in some models with a larger group G, i.e., in

models containing additional right—handed gauge bosons.

I observed that in the limit of ignoring the bottom quark mass, KEG does not
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contribute to the low energy data through loop insertion at the order m? In A2,

therefore one cannot constrain KEG from the LEP data. However, at the Tevar

tron and the LHC age can be measured by studying the direct detection of the

top quark and its decays. This will be discussed in Section 3.5

It is worth mentioning that the photon does not participate in the new nonuni-

versal interactions as described by the chiral Lagrangian £1 in Eq. (3.10) because the

U(1)9", symmetry remains an exact symmetry of the effective theory. Any new physics

can only contribute to the universal interactions of the photon to charged fields. This

effect can simply be absorbed in redefining the electromagnetic fine structure con-

stant 0, hence no new t-t-A or b—b—A interaction terms will appear in the effective

Lagrangian after a proper renormalization of a and the wave functions of the particle

fields.

In this analysis, I will discuss an effective model with and without the Higgs

boson. In the case of a light Higgs boson (my < 111,) I will include the Higgs boson

field in the chiral Lagrangian as a part of the light fields with no new physics being

associated with it. In the heavy Higgs boson case (my > m,), one should integrate

out the Higgs boson field from the tree-level Lagrangian. Thus, one is left with an

effective Lagrangian which contains the heavy Higgs boson effects and the additional

nonstandard couplings nfc, nfic, EEC, and KEG. The Higgs boson contribution to the

low energy effective Lagrangian (for energies E < m,) is only relevant in the gauge

sector. This is true because, as discussed in section 1.5, the Higgs boson couplings to

light fermions are negligible. However, the top quark couplings to the gauge bosons

will be affected by the heavy Higgs boson due to the large Yukawa coupling (mg/v).

In fact, a heavy Higgs boson may be the source for the nonstandard couplings of

the top quark nfc, ago, KEG, and KEG. Finally, I will consider the possibility of a

spontaneous symmetry-breaking scenario without including a SM Higgs boson in the
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full theory. In this case I consider the effects on the low energy data from the new

physics parameterized by the nonstandard interaction terms in £1 in Eq. (3.10) and

the contributions from the SM without a Higgs boson.

As I discussed above, one possibility of new physics effects is the modification of

the vertices b-b-Z , t-t—Z , and t-b-W in the effective Lagrangian by the same order of

magnitude [47, 59]. In this case, only the vertex b-b-Z can have large contributions to

low energy data while, based on the dimensional counting method, the contributions

from the other two vertices t-t-Z and t-b—W are suppressed by 1/167r2 due to their

insertion in loops.

In this case, one can use F], (the partial decay width of the Z boson to bb) to

constrain the b-b—Z coupling. Denote the nonstandard b-b-Z vertex as

g <WNW 1- ’75) , (33-11)

which is purely left-handed. In some extended technicolor models, discussed in Ref.

[47, 59], this nonstandard effect arises from the same source as the mass generation

of the top quark, therefore K. depends on the top quark mass.

As I discussed in chapter 1, the nonuniversal contribution to I}, is parameterized

by a measurable parameter denoted as q, [16, 22, 23]. Using all LEP data, a fit on 6;,

yields the value [38]

e, (103) = 0.0 a: 3.9. (3.12)

The SM contribution to q, is calculated in Ref. [26], e.g., for a 170 GeV top quark

eff“ (103) = —6.15 . (3.13)

The contribution from K, to 6,, is

6;, = -K.. V (3.14)
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Within a 95% confidence level (C.L.), one finds that

—14.2 g n (103) g 1.9. (3.15)

As an example, the simple commuting extended technicolor model presented in

Ref. [59] predicts that

1 2 m,

z - -— 3.16

K 26 47m ’
( l

where E is of order 1. Also in that model the top quark couplingsnfc, Ego, and

KEG, as defined in Eqs. (3.9) and (3.10), are of the same order as re. For a 170 GeV

top quark mass, this model predicts

K (103) x 27.5 {2. (3.17)

Hence, such a model is likely to be excluded by using the low energy data constraints

[see Eq. (3.15)].

3.3 Low Energy Constraints

In this section, I will devote the discussion to models in which the nonstandard

b—b—Z coupling can be ignored relative to the t-t-Z and t-b-W couplings. In this case,

the nonstandard couplings contribute to low energy observables at the quantum level,

i.e., through loop insertion. I will first discuss the general case where no relations

between the nonstandard couplings are assumed. Later, I will impose a relation

NC
between nL and KEG which are defined in Eqs. (3.9) and (3.10) using an effective

model with an approximate custodial symmetry.
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3.3.1 General Case

In general, the chiral Lagrangian has a complicated structure and many arbitrary

coefficients which weaken its predictive power. Still, with a few further assumptions,

based on the status of present low energy data, the chiral Lagrangian can provide a

useful approach to confine the coefficients parameterizing new physics effects.

In this subsection, I provide a general treatment for the case under study with

minimal imposed assumptions in the chiral Lagrangian. I only impose the assumption

that the vertex b—b—Z is not modified by the dynamics. In the chiral Lagrangian £1, as

defined in Eqs. (3.9) and (3.10), there are six independent parameters (K’s) which need

to be constrained using precision data. Throughout this paper, I will only consider

the insertion of K’s once .in one—loop diagrams by assuming that these nonstandard

couplings are small; KNC’CC < 1. At the one—loop level the imaginary parts of the

couplings do not contribute to those LEP observables of interest. Thus, hereafter I

drop the imaginary pieces from the effective couplings, which reduces the number of

relevant parameters to four. Since the bottom quark mass is small as compared to

the top quark mass, the non-standard coupling NRC does not contribute to low energy

observables up to the order m? In A2 in the mb —) 0 limit. With these observations

we conclude that only the three parameters n50, 741,30 and NEC (to bear in mind, this

is really Re(IcEC)) can be constrained at LEP. The nonstandard coupling Kfic can be

studied using the CLEO measurement of b -) 37. An effective model with only one

nonstandard coupling ECG was studied in Ref. [98], a constraint on the right-handed

charged current coupling KCC was set using the CLEO measurement of b -) $7. The

authors concluded that nfic is well constrained to within a few percent from its SM

value (116%C = O). This provides a complementary information to our constraint on

KNC,nfic, and 1620
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As I discussed in chapter 1, the new physics contribution to low energy observables,

under a few general assumptions, can be parameterized by 4-independent parameters

61, 62, 63, and 61,. In our case, the general assumptions are satisfied, namely all the

contributions of 162’0, nfic, KEG, and nfic to low energy observables are contained in

the oblique corrections, i.e., the vacuum polarization functions of the gauge bosons,

and the non-oblique corrections to the vertex b-b-Z . Therefore, it is enough to

calculate the new physics contribution to the 6 parameters in order to isolate all

effects to low energy observables. As discussed in chapter 1, the 6 parameters are

derived from four basic measured observables, Pg (the partial width of Z to a charged

lepton pair), AfipB (the forward—backward asymmetry at the Z peak for the charged

lepton Z), Mw/Mz, and [‘5 (the partial width of Z to a bb pair). The expressions of

these observables in terms of 6’s are given in chapter 1. Since the top quark will only

contribute to the vacuum polarization functions and the the vertex b-b-Z , I am only

interested in the following terms

61 = 61 — e5 , , (3.18)

62 = 62 — cos2 0 65, (3.19)

63 = 63 - cos2 0 e5 , (3.20)

65 = e), , (3.21)

where 61, 82, 63, 65, and 8;, are defined in chapter 1 as follow

_ AZZ(0) _ AWW(0)

 e, _. Mg M31» , (3.22)

e. = FWW<M€2> — F33(M§), (3.23)

e - E9‘"—91<““’(1\42) 3 24
3 ‘ sin0 Z ’ l ' l
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65 = M3752—
(Mg). (3.25)

The quantity eb is defined through the proper vertex corrections

_ 1 _.

v, (z —+ bb) = —2£Ceby,,-—233. (3.26)

As we found in section 1.5, the parameters 61 and £5 depend quadratically on 171,.

Therefore, 61 and q, are sensitive to any new physics coming through the top quark.

On the contrary, 62 and 63 have at most a logarithmic dependence on m,. Hence, in

our effective model, the significant constraints on the parameters n50, xfic, and KEG

are only coming from £1 and 64,.

Non—renormalizability of the effective Lagrangian presents a major issue of how to

find a scheme to handle both the divergent and the finite pieces in loop calculations

[99, 100]. Such a problem arises because one does not know the underlying theory;

hence, no matching can be performed to extract the correct scheme to be used in

the effective Lagrangian [61]. One approach is to associate the divergent piece in

loop calculations with a physical cutoff A, the upper scale at which the effective

Lagrangian is valid [74]. In the chiral Lagrangian approach this cutoff A is taken to be

41w ~ 3 TeV [61]]. For the finite piece no completely satisfactory approach is available

[99]. I assume that the underlying full theory is renormalizable. In this case, the cutoff

scale A serves as the infrared cutoff of the operators in the effective Lagrangian. Due

to the renormalizability of the full theory, from renormalization group analysis, one

concludes that the same cutoff A should also serve as the ultraviolet cutoff of the

effective Lagrangian in calculating Wilson coefficients. Hence, in the dimensional

regularization scheme, 1/6 is replaced by ln(A2/[12), where 6 = (4 - n)/2 and n is the

 

1The scale 41w ~ 3TeV is only meant to indicate the typical cutoff scale. It is equally probable

to have, say, A = 1 TeV.
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space-time dimension. Furthermore, the renormalization scale )1 is set to be m,, the

heaviest mass scale in the effective Lagrangian of interest.

To perform calculations using the chiral Lagrangian, one should arrange the con-

tributions in powers of 1/47rv and then include all diagrams up to the desired power.

In a general RE gauge (2 rfi 1), the couplings of the Goldstone bosons to the fermions

should also be included in Feynman diagram calculations. These couplings can be

easily found by expanding the terms in L, as given in Eq. (3.9). The relevant Feyn-

man diagrams are shown in Figure 3.1. Calculations are done for a general R5 gauge.

(I have also checked the calculations in the ’t Hooft—Feynman gauge, the Landau

gauge, and the unitary gauge. All agree as expected.)

I calculate the contribution to 61 and 6,, due to the new interaction terms in the

chiral Lagrangian (see Eqs. (3.9) and (3.10)) using the dimensional regularization

scheme and taking the bottom mass to be zero. At the end of the calculation, as

I discussed above, I replace the divergent piece 1/6 by ln(A2/m?) for e = (4 — n)/2

where n is the space-time dimension. Since I am mainly interested in new physics

associated with the top quark couplings to gauge bosons, I will restrict myself to the

leading contribution enhanced by the top quark mass, 116., of the oder of m? In A2.

The result of the calculation is as follows

0 The vacuum polarization function of the Z boson is (see Figure 3.1a)

was: 1

- .2 («W/40>- 1 (3.27)6

1422(0)

o The vacuum polarization function of the W’ boson is (see Figure 3.1b)

M2 31712 1
WW W .00

c Figure 3.1c yields the result

1

e

' 2

29 m .60

4c030 47r2tv2 (-2h’4 )7” (1 " '75)
 (3.29)
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Figure 3.1: The relevant Feynman diagrams, for the nonstandard top quark couplings

case and in the ’t Hooft—Feynman gauge, which contribute to the order 0(mt21n A2).
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A similar diagram with the other b quark leg attached to the Goldstone boson

yields the same result.

0 Figure 3.1d yields the result

1'9 m?

4 cos 0 43%2

 

1 l

(—2 cos20CKL0+ Znfic — 1450) 7,, (1 — 75) -€— (3.30)

c Figure 3.1e yields the result

is m? 1 1
_ 2 _ cc _ _

4cos€41r2v2 ( COS 0 + 2) KL 7" (1 75) e
(3.31) 

o The b-quark self energy (Figure 3.1f) yields the result

1

 

3m2

167,2;2 “up”(.g) (1— 75) 2 (332)

Therefore, one finds

Gp A2

6f} = m3mt2(—KIZC + KIA/C + REC) In 171—? , (3.33)

5e— m? -—1 NC+~NC 1 1‘: (334b— 232—“2m 4K}; A'L n m? , . )

where 661 denotes the new physics contribution to 61 and similarly for 561,. Notice

that 62 and 63 do not contribute at this order. It13 interesting to note that KLCC does

not contribute to 6,, up to this order which can be understood from Eq. (3.10). If

REC = -1 then there is no net t-b-W coupling in the chiral Lagrangian after including

both the standard and nonstandard contributions. Hence, no dependence on the top

quark mass can be generated, i.e., the nonstandard REC contribution to 6;, must cancel

the SM contribution when KEG = —-1, independently of the couplings of the neutral

current. From this observation and because the SM contribution to 61, is finite, I

conclude that REC cannot contribute to 6;, at the order of interest. In Ref. [101] a
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similar calculation for 6;, was performed and the author claimed to get a different

result from the one above. However, the author included only the vertex corrections

to calculate the physical quantity 65, which is not complete because the wave function

corrections to the b quark must be included.

In Eqs. (3.33) and (3.34) I set the renormalization scale 11 to be equal to m,, which

is the natural scale to be used in this study because the top quark is considered to

be the heaviest mass scale in the effective Lagrangian. I have assumed that all other

heavy fields have been integrated out to modify the effective couplings of the top

quark to gauge bosons at the scale m, in the chiral Lagrangian. Here, I ignore the

effect of the running couplings from the top quark mass scale down to the Z boson

mass scale which is a reasonable approximation for this study.

To constrain these nonstandard couplings one needs to have both the experimental

values and the SM predictions of (’8. The experimental data is given in Table 1.2.

Pkom these low energy data, a fit for 61 and Q, yields the values [36]

app-(103) = 3.8:i:1.5,

egxp-(103) = 0.0239. (3.35)

The SM contribution to 6’3 have been calculated in Ref. [26]. I include these

contributions in the analysis in accordance with the assumed Higgs boson mass. If

the low energy theory contains a SM Higgs boson, i.e., there is a light Higgs boson

(my < m,), then the calculated values of the e’s include both the SM contribution

calculated in Ref. [26] and the new physics contribution derived from the effective

couplings of the top quark to gauge bosons. In the heavy Higgs boson case (my >

111.), one should integrate out the Higgs boson field from the tree—level Lagrangian.

Thus, one is left with an effective Lagrangian which contains the heavy Higgs boson

effects and the additional nonstandard couplings Kilt/C, n’gc, KEG, and 163720. Up to
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one loop, the Higgs boson contribution to the low energy effective Lagrangian (for

Mw < E << mg) is only relevant in the gauge sector. This is true because, as

discussed in section 1.5, the Higgs boson couplings to light fermions are negligible.

The effective Lagrangian after integrating out the heavy Higgs boson field can be

  

  

written as

L _ 1W+ w-pu 1 1 w3 W34“, IB 8”” _ l . 0 a B W3!”

eff — -—§ 1w —4( —e2) #0 —4 m, 2s1n cos 83 w

ma-Mgzpz" - Mg cos? 0 (1 + el)W,,+W"‘ , (3.36)

where

2422(0) AWW(0) 3GpM3V sin20

= — = — 1 2 , 3.37
61 Mg Mp2], 8\/27r2c0826 n(m,,) ( )

e. = FWWME.) — F3306) = o, (3.38)

c086 GpM2
= M2 = W1 2 . 3. 983 sin6F3O( 2) “fl”? “(mH) ( 3)

However, the top quark couplings to the gauge bosons will be affected by the heavy

Higgs boson due to the large Yukawa coupling (mt/v). In fact, a heavy Higgs boson

may be the source for the nonstandard couplings of the top quark 16fC, 162m, KEG,

and ngc. In section 3.4, I calculate the heavy Higgs boson effect to the nonstandard

top quark couplings. Finally, I consider the case of a spontaneous symmetry scenario

without a Higgs boson. In this case, I subtract the Higgs boson contribution from the

SM values of thee parameters given in Ref. [26]. In this scenario, the nonstandard

top quark couplings to gauge bosons are viewed as not due to an assumed heavy Higgs

boson but possibly to some residual effects of a new symmetry-breaking mechanism.

First, I consider the light Higgs boson case (171” < 171,). Choosing m. = 160

and 180 GeV, respectively, and taking my = 65 GeV, I span the parameter space

defined by —1 g ICIZC g 1, —1 g 16],)“: g 1, and —1 g REC g 1. Within 95% CL.
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and including both the SM and the new physics contributions, the allowed regiOn

of these three parameters is found to form a thin slice in the specified volume. The

two—dimensional projections of this slice are shown in Figures 3.2, 3.3, and 3.4. These

nonstandard couplings (16’s) do exhibit some interesting features.

(1) As a function of the top quark mass, the allowed volume for the top quark

couplings to the gauge bosons shrinks as the top quark becomes more massive.

(2) New physics prefers positive 1650, see Figures 3.2 and 3.3. For nfic = 0, 1413’C is

constrained within —-0.05 to 0.17 (0.0 to 0.15) for a 160 (180) GeV top quark.

(3) New physics prefers REC z —K’,}’C. This is clearly shown in Figure 3.4 which is

the projection of the allowed volume in the plane containing team and KEG.

The preference for a positive 162/C is triggered by 61,. For m, = 170 GeV and

my 2 65 GeV, the experimental value of 6,, is

efixp‘ = 0.0 :1: 3.9 , (3.40)

which is larger than the SM value

cf” = —6.15. (3.41)

Therefore, the new physics contribution to 6;, favors positive values in order to be

compatible with the experimental measurement. Hence, in view of Eq. (3.34), 162“:

prefers positive values. Also, since the main contribution to q, is coming from It?C

(for K’s< 1), one finds that It?C is well constrained relative to nfic and KEG. The

preference for leg“: z —n(i0 can be understood from the nonstandard contribution

to 61 (see Eq. (3.33)). Since the experimental fit on 61 with its small uncertainty is

compatible with the SM and because ngc is well constrained by 65, there is not much

freedom in the sum 141;,” + KEG, i.e., Kfic + REC ~ 0.
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Figure 3.2: A two—dimensional projection in the plane of 162'C and Riga, for m, = 160

GeV (solid contour) and 180 GeV (dashed contour). The Higgs boson mass is fixed,

my = 65 GeV.
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Figure 3.3: A two-dimensional projection in the plane of it?C and NEC, for m, = 160

GeV (solid contour) and 180 GeV (dashed contour). The Higgs boson mass is fixed,

my = 65 GeV.
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Figure 3.4: A two—dimensional projection in the plane of K1,)“: and NEC, for m, = 160

GeV (solid contour) and 180 GeV (dashed contour). The Higgs boson mass is fixed,

my = 65 GeV.
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Now, I comment on the heavy Higgs boson (my > m.) and the no—Higgs boson

cases. A different Higgs boson mass does not have a large influence on the allowed

parameter space. As discussed in section 1.5, Q, is not sensitive to the Higgs boson

mass at one-loop level, while 61 has at most, for a heavy Higgs boson, a logarithmic

dependence on m3. Since K210 is mostly constrained from Q, one does not expect any

noticeable effect on the allowed range of 161:0 as a function of the Higgs boson mass.

Also, since the fit on 61 is compatible with a wide range of Higgs boson masses, the

relation nfi’c + REC ~ 0 is maintained. In Figure 3.5 I show the parameter space of

162’C and nfic for the Higgs boson mass m” = 1000 GeV and for two values of the

top quark mass, m, = 160 GeV(solid contour) and 180 GeV (dashed contour). One

finds that for age = 0, 11ch is constrained within —0.03 to 0.2 (0.0 to 0.2) for a 160

(180) GeV top quark.

Next, I consider the possibility of a new symmetry-breaking scenario without a

fundamental scalar such as a SM Higgs boson. In this case, I simply subtract the

Higgs boson contribution from the SM results obtained in Ref. [26]. In this case

one expects to find no noticeable difference from the light Higgs boson case shown

in Figures 3.2, 3.3, and 3.4. This is true because a light Higgs bosons has a smaller

contribution to 61 than a heavy Higgs boson [21]. Therefore, the case of the no-

Higgs boson scenario has a similar effect as the light Higgs boson case. In the next

subsection, I will discuss the heavy Higgs boson and the no—Higgs boson cases in more

detail.

In Ref. [95] a similar analysis has been carried out by Peccei et al. However, in

their analysis they did not include the charged current contribution REC and assumed

only the vertex t-t-Z gives large nonstandard effects. The allowed region they found

simply corresponds, in my analysis, to the region defined by the intersection of the

allowed volume and the plane Kfc = 0. This gives a small area confined in the
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Figure 3.5: A two—dimensional projection in the plane of nil/C and nfiC, for m, -—f 160

GeV (solid contour) and 180 GeV (dashed contour), and for the heavy Higgs boson

mass my = 1000 GeV.
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NC
vicinity of the line KL = nfiC. This can be understood from the expression of 61

derived in Eq. (3.33). After setting KEG = 0, one finds

( NC _ NC) 3 42
61 or KR KL . ( . )

In this case one notes that the length of the allowed area is merely determined by

the contribution from 6),. I will elaborate on a more quantitative comparison in the

second part of this section.

3.3.2 Special Case

The allowed region in the parameter space shown in Figures 3.2, 3.3, and 3.4

contains all possible new physics (to the order m? In A2 ) which can modify the cou-

plings of the top quark to gauge bosons as described by 162’C, nfic, and REC. In this

subsection, I would like to examine a special class of models in which an approximate

custodial symmetry is assumed as suggested by low energy data.

The SM has an additional (accidental) symmetry called the custodial symmetry

which is responsible for the tree-level relation

3V

=_ = 1 .

p Mg 3% ’ (3 43)

where (:3 = 1 - 33 and 33 is the weak mixing angle defined in the on-shell scheme

(see appendix A). This symmetry is slightly broken at the quantum level by the

SU(2) doublet fermion mass splitting and the hypercharge coupling 9’ [102]. Writing

p = l + 6p, 6p would vanish to all orders if this symmetry is exact. Low energy

data indicate that tip is very close to zero. In fact, low energy data constrains p to

be 1 within about 0.1% accuracy [60]. Therefore, I will assume that the underlying

theory has a global custodial symmetry. In other words, I require the global group

SU(2)1, associated with the custodial symmetry to be a subgroup of the full group
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characterizing the full theory. I will assume that the custodial symmetry is broken

by the same factors which break it in the SM, i.e., by the fermion mass splitting and

the hypercharge coupling g’ .

In the chiral Lagrangian this assumption of a custodial symmetry sets 1);; = v, and

forces the couplings of the top quark to gauge bosons W: to be equal after turning off

the hypercharge and assuming mb = m,. If the dynamics of the symmetry breaking

is such that the masses of the two SU(2) partners t and b remain degenerate then

one expects new physics to contribute to the couplings of t-t-Z and t-b—W by the

same amount. However, in reality, m1, << mt; thus, the custodial symmetry has to

be broken. I will discuss how this symmetry is broken shortly. Since I am mainly

interested in the leading contribution enhanced by the top quark mass at the order

m? In A2, turning the hypercharge coupling on and off will not affect the final result

up to this order.

I construct the two Hermitian operators JL and JR, which transform under G as

J" = 420,2? —> gLJ£g[ , (3.44)

J“ = £210,123 —> gRJgg}, , (3.45)

where g, = exp(ia“121) E SU(2)), and 93 = exp(iy%). In fact, using either JL or JR

will lead to the same result. Hence, from now on I will only consider JR. The SM

Lagrangian can be derived from

£0 = $21761)ng + $21761)wa — (972M913 + h.c.)

1
0 Va 1 I! v2

—ZW,,,W# — ZBWB" + Z-'1‘r(J;;J,,,,) , (3.46)

where M is a diagonal mass matrix. I have chosen the left—handed fermion fields to
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be the ones defined in Eq. (2.13):

t

b L

The fermion field \IJL transforms linearly under G=SU(2) L x U(1),» , 1.6.,

‘1’], -§ \I’IL = g‘IIL , (3.48)

where g 6 SU(2);, x U(1),». The right—handed fermion fields tR and bR coincide with

the original right—handed fields (see Eq. (2.18)). Also,

, 'r“ a , Y

D: = 0,, — zygwp — zg'-2—B,, , (3.49)

. Y 7'3
D"? = 8,, - 29' (E + -2—) BF . (3.50)

Note that in the nonlinear realized effective theories using either set of fields (\IILJ;

or Fug) to construct a chiral Lagrangian will lead to the same S matrix [66].

The Lagrangian [.0 in Eq. (3.46) is not the most general Lagrangian one can

construct based solely on the symmetry of G/H, for G=SU(2),, x U(1)y and H =

U(1),,m. Taking advantage of the chiral Lagrangian approach one can derive additional

interaction terms which deviate from the SM. This is so because in this formalism

the SU(2)L x U(l)y symmetry is nonlinearly realized and only the U(1)em is linearly

realized.

Because the SM is so successful one can think of the SM (without the top quark)

as being the leading term in the expansion of the effective Lagrangian. Any possible

deviation associated with the light fields can only come through higher dimensional

operators in the Lagrangian. However, this assumption is neither necessary nor prefer-

able when dealing with the top quark because no precise data are available to lead to
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such a conclusion. I will include nonstandard dimension—four operators for the cou-

plings of the top quark to gauge bosons. In fact this is all I will deal with and will not

consider operators with dimension higher than four. Note that higher dimensional

operators are naturally suppressed by powers of 1 /A.

One can rewrite JR as

Ta

J53 = 113°; . (3.51)

with

J‘” = Tr (ran) = iTr (7021912) . (3.52)

The full operator JR posses an explicit custodial symmetry when g’ = 0 as can easily

be checked by expanding it in powers of the Goldstone boson fields.

Consider first the left—handed sector. One can add additional interaction terms

to the Lagrangian £0

1:, = xlfiypmgztm + amnnmgztm + ng‘wjypmgmfim, (3.53)

where m is an arbitrary real parameter and K2 is an arbitrary complex parameter.

Note that Cl still is not the most general Lagrangian one can write for the left—handed

sector, as compared to Eq. (3.9). In fact, it is our insistence on using the fermion

doublet form and the full operator JR that lead us to this form. For shorthand, £1

can be further rewritten as

c, = $27,2KLJ52WL + \II—L'ypEJfiIr'jzle , (3.54)

where KL is a complex diagonal matrix with three real parameters.

These new terms can be generated either through some electroweak symmetry-

breaking scenario or through some other new heavy physics effects. If 171,, = m,
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and g’ = 0, then we require the effective Lagrangian to respect fully the custodial

symmetry to all orders. In this limit, 192 = O in Eq. (3.53) and KL = 1611, where 1 is

the unit matrix and 161 is real.

Since m), << 111,, one can think of K2 as generated through the evolution from

m), = m, to m), = 0. In the matrix notation this implies KL is not proportional to

the unit matrix and can be parameterized by

‘ 0KL = (60,, xi.) ,
(3.55)

with

14', = g + .42, (3.56)

and

K2 = g — K2 . (3.57)

In the unitary gauge one gets the terms

 

 

g — g 1 —
+2c0802Re(KtL)tL7ptLZp + “£062 + If: )tL'y"bLW,f

9 — _ 9 —
+Eoc‘; + nibbnmwp — 2cos 02Re(n';,)b,,)"b,z,,. (3.58)

As discussed in the previous section, I will assume that new physics effects will not

modify the bL-bZ-Z vertex. This can be achieved by choosing 161 = 2Re(x2) such that

R6062) vanishes in Eq. (3.57). Later, in section 3.3, I will consider a specific model

satisfying this assumption.

Since the imaginary parts of the couplings do not contribute, at one-loop level,

to LEP physics of interest, I simply drop them hereafter. With this assumption one

is left with one real parameter K‘L which will be denoted from now on by KL /2. The

left—handed top quark couplings to the gauge bosons are

1,, — t, — 2: {Emma — )5), (3.59)
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9 “L
t —b —W: —— 1— . 3.60
L L 2fi27p( 75) ( )

Notice the connection between the neutral and the charged current, as compared to

Eq. (3.10):

“IZC = 2K€C = KL .
(3.61)

This conclusion holds for any underlying theory with an approximate custodial sym-

metry such that the vertex bL—E-Z is not modified as discussed above.

For the right-handed sector, the situation is different because the right—handed

fermion fields are SU(2) singlet, hence the induced interactions do not see the full op-

erator JR but its components individually. Therefore, one cannot impose the previous

connection between the neutral and charged current couplings.

The additional allowed interaction terms in the right—handed sector are given by

_ 9 1 NC— 3 9 CC— +
£2 — 2—CKR tR'y"tRJRu + ERR tR’7beJnfl

+%Kgclblz’7ptn~]np — éfilfi 19127pran , (3-62)

NC NC . . .
where 16}; and K3; are two arb1trary real parameters and REC 13 an arb1trary

complex parameter. Note that in £2 we have one more additional coefficient than

we have in L1 (in Eq. (3.53)), this is due to our previous assumption of using the

full operator JR in constructing the left—handed interactions. I assume that the

bR-b-E-Z vertex just as the bL-E-Z vertex is not modified, then the coefficient 15'}ch

vanishes. Because «(if does not contribute to LEP physics in the limit of m), = 0 and

at the order m? In A2 we are left with one real parameter KENC which will be denoted

hereafter as KR. The right—handed top quark coupling to Z boson is

t); - tn - Z: %K37p(1+ 75) . (3.63)
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(As compared to Eq. (3.10), KR—— KIA/C.)

In the rest of this section, I consider the models described by £1 and £2 with only

two relevant parameters KL and ’63. Performing the calculations as I discussed in the

previous subsection one finds

K A2

661: 232w———2F3m, (KR — %)ln(;?-) , (3.64)

m2 1 A2

56:1, 3‘75?”2m¢(—-I€R +ICL) 1110-77-1?) . (3.65)

These results simply correspond to those in Eqs. (3.33) and (3.34) after substituting

_ __ NC _ .
162/C - 2KEC — KL and KR — an.

The constraints on KL and KR for models with a light Higgs boson, a heavy Higgs

boson, and without a Higgs boson are presented here in order. Let us first consider a

light Higgs boson with mH = 65 GeV. I include the SM values for 61 and 6), given in

Ref. [26], the experimental fit on 61 and 6), given in Eq. (3.35), and the nonstandard

contribution given in Eqs. (3.64) and (3.65). I span the plane defined by KL and

RH for a top quark mass of 170 GeV. Figure 3.6 shows the allowed range for those

parameters within 95% CL. As a general feature, one observes that the allowed

range is a narrow area aligned close to the line 16;, = 2163 where for m, = 170 GeV the

maximum range for KL is between —0.03 and 0.23. In Table 3.1, I give the allowed

range of the couplings KL and K}; for different top quark masses. As the top quark

mass increases this range shrinks and moves downward and to the right away form

the origin (KLJCR) = (0,0). This behavior can be understood if we notice that the

width of the allowed area is controlled by 61 because of the small error in the value of

efxp'. Whereas, ezxp. controls the length of the allowed region. As the top quark mass

increases, the value of 6?“ increases. In order to be compatible with the experimental

data, the nonstandard contribution to £1 prefers negative values, 3.8., 2163 — KL 3 0.
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Figure 3.6: Theallowed region of KL and KR, for m, = 170 GeV, my 2 65 GeV. (Note

that KL = 161:0 = 2KEC and K]; = 16920.)

The observation that the allowed region shifts to the right, toward positive KL, as

the top quark mass increases can be understood from the behavior of 61,. As the top

quark mass increases, the value of 6E“ decreases forcing the nonstandard contribution

to be more positive, 1.6., moving toward positive KL. The deviation from the relation

KL = 2N}; for various top quark masses is given in Figure 3.7 by calculating KL — 2163

as a function of m,. Note that the SM has the solution KL = K}; = 0, i.6., the SM

solution lies on the horizontal line shown in Figure 3.7. This solution ceases to exist

for m, _>_ 200 GeV. The special relation KL = 2N}; is a consequence of the assumption

of an approximate custodial symmetry which I imposed in connecting the left—handed

neutral and charged currents.

As discussed above, the SM contribution to 6b [26] is lower than the experimental
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Table 3.1: The confined range of the couplings, KL and K}; for various top quark

masses and for my = 65 GeV.

 

 

    
 

 

 

  
 

m, (GeV ) KL RR

120 -0.16 —— 0.31 —0.08 —— 0.20

130 —0.12 — 0.28 —0.07 —— 0.17

140 —0.09 — 0.26 —0.05 -— 0.15

150 —0.07 — 0.25 -0.05 — 0.14

160 —0.04 — 0.24 —0.03 -—-— 0.13

170 —0.03 — 0.23 -—0.03 — 0.12

180 -0.01 —— 0.22 —0.02 — 0.11

190 0.00 — 0.21 —0.02 — 0.10

200 0.01 — 0.20 —0.02 —— 0.09

210 0.02 —— 0.20 —0.02 — 0.09

220 0.03 — 0.19 —0.01 — 0.08

230 0.04 — 0.19 -0.01 —— 0.07
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Figure 3.7: The allowed range of (KL — 2K3) as a function of the mass of the top

quark and for my = 65 GeV. (Note that KL = 16fC = 2:650 and NR = KEG.)
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Figure 3.8: The allowed range of the coupling KEG = refC /2 = KL /2 as a function of

the mass of the top quark and for mH = 65 GeV.

central value. This is reflected in the behavior of KL which prefers being positive

to compensate this difference as can be seen from Eq. (3.65). This means that in

models of electroweak symmetry-breaking with an approximate custodial symmetry,

a positive KL is preferred. In Figure 3.8, I show the allowed values for KEG = refC/2 =-

nL/2 as a function of m,. With new physics effects (1% 75 0) m, can be as large as

300 GeV, although in the SM (KL = 0), as seen from Figure 3.8, m, is bounded below

200 GeV.

Now, I would like to discuss the effect of the Higgs boson mass on the allowed

range of these parameters. It is easy to anticipate the effect; since 6;, is not sensitive

to the Higgs boson contribution up to one loop, the allowed range is only affected

by the Higgs boson contribution to 61 which slightly affects its location relative to



 

 
  
 

Figure 3.9: The allowed range of the coupling REC = 162’C /2 = KL/2 as a function of

the mass of the top quark and for my = 300 GeV.

the line KL = 2kg. One expects that as the Higgs boson mass increases the allowed

area moves upward. The reason simply lies in the fact that the standard Higgs boson

contribution to 61, up to one loop, becomes more negative for heavier Higgs boson

(see section 1.5). Hence, 21c}; prefers to be larger than KL to compensate this effect.

However, this modification is not significant because 61 depends on the heavy Higgs

boson mass only logarithmically. In Figures 3.9 and 3.10 I show the allowed range,

within 95% C.L., for the parameters KL and KR for m, = 170 GeV and for two choices

of the heavy Higgs boson mass my = 300 GeV and my = 1000 GeV, respectively.

Figures 3.9 and 3.10 are consistent with what one expects.

Now I consider the possibility of a new symmetry-breaking scenario without a

fundamental scalar such as a SM Higgs boson. In this case, I simply subtract the
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Figure 3.10: The allowed range of the coupling REC = K72,C /2 = KL /2 as a function

of the mass of the top quark and for m” = 1000 GeV.



 

 
  
 

Figure 3.11: The allowed region of K}:C and Islam, for models without 3. SM Higgs

boson and for m, = 170 GeV.

Higgs boson contribution from the SM results obtained in Ref. [26]. Figure 3.11 shows

the allowed area in the KL and KR plane for a 170 GeV top quark in such models.

In this case one expects to find no noticeable difference from the light Higgs boson

case shown in Figure 3.6. This is true because a light Higgs bosons has a negligible

contribution to 61 as compared to a. heavy Higgs boson [21]. Therefore, the case of

the no-Higgs boson scenario has a similar effect as the light Higgs case.

What we have learned is that to infer a bound on the Higgs boson mass from

the measurement of the effective couplings of the top quark to gauge bosons, one

needs a very precise measurement of the parameters KL and KR. However, from the

correlations between the effective couplings (K’s) of the top quark to the gauge bosons,

one can infer if the symmetry-breaking sector is due to a Higgs boson or not, i.e., we
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may be able to probe the symmetry-breaking mechanism in the top quark system.

To illustrate this point, I would like to compare my results with those in Ref. [95].

Figure 3.12 shows the most general allowed region for the couplings n.1,?C and nfic,

N
i.e., without imposing any relation between KL0 and KEG. This region is for a top

quark mass of 170 GeV and covers the parameter space —1.0 S n2“: , 51);": S 1.0. One

finds

—o.15 3 Kg“? $0.35,

—1.0 < 4031.0.

I also show on Figure 3.12 the allowed regions for our model (nfc = 1 /21f0) and the

model in Ref. [95] (nfc = 0). The two regions overlap in the vicinity of the origin (0,

0) which corresponds to the SM case. Note that for m, S 200 GeV the allowed region

of Ic’s in all models of symmetry-breaking should overlap near the origin because the

SM is consistent with low energy data at the 95% CL. For K50 2 0.1, these two

regions diverge and become separable. One notices that the allowed range predicted

in Ref. [95] lies along the line nfc = KQ’C whereas in our case the slope is different

51:0 = ZnQ’C. This difference comes in because of the assumed dependence of KEG

on the other two couplings 161:6 and team. In our case KEG = 4‘}C /2, and in Ref. [95]

REC = 0.

If we imagine that any prescribed dependence between the couplings corresponds

to a symmetry-breaking scenario, then, given the present status of low energy data, it

is possible to distinguish between different scenarios if myC, nfi’c and KEG are larger

than 10%. Better future measurements of 6’s can further discriminate between dif-

ferent symmetry-breaking scenarios. Next, I will discuss how the SLC can contribute

to the study of the nonstandard couplings.
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Figure 3.12: A comparison between our model and the model in Ref. [95]. The

allowed regions in both models are shown on the plane of Kfc and leg/C, for m, = 170

GeV and my = 300 GeV.
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3.3.3 -At the SLC

The measurement of the left—right cross section asymmetry ALR in Z production

with a longitudinally polarized electron beam at the SLC provides a further test of

the SM and is sensitive to new physics. As I discussed in section 1.6, the reported

measurement of A”; [31] shows a deviation of about 2.80 from the SM prediction.

By the SM prediction, I refer to the values in Table 1.2 with the reference masses

m. = 175 GeV and my = 300 GeV. In the previous discussion on the allowed space

of the nonstandard couplings nfc, n’l‘z’c, and Kfic, I only concentrated on LEP data.

It is interesting to investigate if our effective model can offer some explanation for

the observed anomaly in ALR. In section 1.4 we found that

AL}; = (ALRHB (1 +17.361 — 22.563) , (3.66)

where (ALR)|B is the improved Born value for ALR.

In fact, as discussed below, the effect of the SLC measurement of ALR on possible

new physics in the top quark couplings depends on the way one incorporates AL};

with LEP data. There are two methods by which one can incorporate the SLC

measurement of ALR with the other existing low energy data at LEP. The first method

is to combine and average ALR with all LEP data. In this case, the anomaly in ALR

is washed away due to the large number of LEP measurements consistent with the

SM. One finds that including the SLC measurement ALR with all LEP data yields a

new fit on the epsilon parameters with a slight decrease in the central value of £1 [38]

efo' = 3.5 :1: 1.5 , (3.67)

while keeping the fit on q, the same. As discussed in the previous section, the non-

standard coupling 51:0 is mostly constrained by 61,. Therefore, no significant change
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in the allowed range of 161:0 is expected. The effect of averaging the SLC and LEP

data can be easily seen in the special model I discussed previously (KEG = nfC/Z).

In this case, the length of the allowed area is not affected since it is controlled by

65. Since the uncertainty in 6?“ remains almost the same after including the A“;

measurement, the width of the allowed area is also hardly modified. The only effect

will be to shift the allowed area slightly downward (toward 2m; < KL). This con—

clusion is simply due to the preference for a more negative new physics contribution

to accommodate the smaller value of 61"“. It is interesting to note that the effect of

including ALB with the other LEP data is similar to the effect of a light Higgs boson.

The more interesting approach in dealing with the SLC measurement of A“; is

to ask whether our new effective model, checked against LEP data, can give some

insight into the status of the SLC measurement of Aug. In our effective model with

nonstandard top quark couplings, the theoretical prediction for the observables A8

at LEP and A“; at SLC are identical. Therefore, it is not possible to explain the

anomaly in .453, at the 10 level, without affecting the value of A, which is in a very

good agreement with the SM. However, at the 20 level, one may be able to find a

solution (notice that the SM is not a solution) which is compatible with both LEP

and SLC measurements.

From Eq. (3.66) and using our effective model contribution to AM, one concludes

that

ALR = (ALRHSM (1 + 17.3561) , (3.68)

where 661 is the nonstandard contribution to 61, and

A2

__2

t

G _

661 = REF-:Bmfl—Kfc + n12,” + REC) In (3.69)

Since the reported measurement of Am is larger than the SM prediction as seen in
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Table 1.2, the nonstandard contribution 561 prefers positive values, i.e., Kfic + KE0 2

fife. Therefore, the SLC measurement ALR indicates a preference for that particular

region of the parameter space.

It is much easier to appreciate the A“; effect in dealing with the special model

discussed in the previous section. In that special model with the approximate cus-

todial symmetry, i.e., K’ZC = 2n?) = KL, the SLC A“; measurement will have a

significant effect on the allowed region in the KL and KR plane. In this case, one has

661 = i3nz?(—nb + 2K3) In A: . (3.70)

4J27r2 m?

In Figure 3.13, I plot the allowed region for the parameters KL and K]; using the SLC

measurement of A“; and 61, extracted from the LEP data, for m, = 170 GeV and

my = 300 GeV at 95% CL. From Figure 3.13 it is clear that the SLC measurement

of ALR indicates a preference for positive nonstandard contributions to 661, i.e., RR 2

21st,. Also, one notices that the SM is excluded by the ALR measurement at 95% CL.

It is interesting to search for a solution which is compatible with the LEP and SLC

data. In Figure 3.14, I plot the allowed region, the very narrow band, for m, = 170

GeV and mH = 300 GeV consistent with LEP data, at 95% C.L., and also compatible

with the SLC measurement ALR at the same level of accuracy. One can understand

the result of Figure 3.14 as follows. First, as discussed before, there is no effect on

the length of the allowed area since it is controlled by 61,. Second, the measurement

A“; prefers positive values for 661, i.e., the region where 21m > KL. In other words

it prefers the region above the line 2163 = KL. This is the reason why we find the

narrow band above the line 2K}; 2 KL. Obviously, in this case, the SM is excluded by

the data for n’s=0.

To understand the effect of the top quark mass m, on the result let us concentrate
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Figure 3.13: The allowed region of KL and ’63, using the SLC measurement ALR, for

m. = 170 GeV and m” = 300 GeV.
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on the two measurements: A. at LEP and ALR at SLC. The two observables A, and

A“; have the same dependence on the quantity 661 [see Eq. (3.68)]. For a heavier

top quark, the allowed band from the LEP fit shifts downward, this is because the

SM prediction of Ae increases. Similarly, the band consistent with ALB also shifts

downward, since the SM prediction of ALR is identical to Ac. Therefore, the two bands

shift in the same direction. Furthermore, for a fixed KL, the difference between the

exp.
central values of the experimental measurements, A = ALR — Afixl", is proportional

to the quantity

A at maxi“? — Kg“) = mEAR, (3.71)

where Kim is the central value, for a fixed KL, of the allowed band extracted from

the SLC measurement, similarly, for xiii”. Therefore, the difference A3 decreases

as a function of the top quark mass. Nevertheless, the widths of the allowed bands

decreases also as a function of the top quark mass. Thus, even though the two

allowed bands from LEP and SLC move closer for a heavier top quark, their widths

decrease rapidly such that the overlap in LEP and SLC data decreases as the top

quark mass increases. In Figure 3.15 I plot the width of the overlapped region h,

due to the measurements A6 and ALR, as a function of the top quark mass. Negative

values of h indicates an overlap in the measurements while positive values indicates

no overlap. One can see that the overlap |h| decreases as a function of the top quark

mass. Nevertheless, a consistent solution for both measurements still exist for a wide

range of m,. The overlap does not depend on the Higgs boson mass m” because the

difference AR is independent of my From Figure 3.14 it is clear that there will be

no effect on the length of the allowed region which in our approximation is solely

determined by 61,. Hence, a more accurate measurement of 61,, i.e., I‘(Z —) b5), is

needed to further confine the nonuniversal interactions of the top quark to gauge
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Figure 3.14: The allowed region of KL and KR, using LEP data and the SLC mea-

surement of Am, for m, = 170 GeV and my = 300 GeV.
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Figure 3.15: The overlapping of the two measurements Ac and A“; as a function of

the top quark mass. Negative values of h indicates overlapping, while positive values

indicates no overlapping.
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bosons to probe new physics.

3.4 Heavy Higgs Boson Limit in the SM

The goal of this study is to probe new physics effects, particularly the effects due

to the symmetry-breaking sector, in the top quark system by examining the couplings

of the top quark to the gauge bosons. To illustrate how a specific symmetry-breaking

mechanism might affect these couplings, in this section I consider the Standard Model

with a heavy Higgs boson (171" > 171,) as the full theory, and derive the effective

NC NC CC
couplings KL , KR , KL , and Kfic at the top quark mass scale in the effective

Lagrangian after integrating out the heavy Higgs boson field.

Given the full theory (SM in this case), one can perform a matching between the

underlying theory and the effective Lagrangian. In this case, the heavy Higgs boson

mass acts as a regulator (cutoff) of the effective theory [103]. Figure 3.16 shows the

Feynman diagrams needed to calculate the effective couplings of the top quark to the

W and Z gauge bosons. While setting mb = 0, and only keeping the leading terms

of the order m? ln m?“ I find the following effective couplings

 

, 9 GP ‘1 2 1 2 "If!
t— t — Z . 4—CQ\/§7r2 (-8—m,7,,(1 -' '75) + gmflpu + ’75)) In (7n? , (3.72)

g G —1 m2

t- b — W I Wig—«é; (E) mf'yufl — ‘75)111 (777%) . (3.73)

From this result one concludes

 n§C=2ngC- GP (—l)m?ln- — -m—% (3.74)
2x/27r2 8 m? ’

G 1 1712
NC _ F 2 H
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‘ bs, s . s ()

Figure 3.16: The Feynman diagrams needed to calculate the effective couplings of the

top quark to the W and Z gauge bosons.

KEG = 0 . (3-76)

Note that the relation between the left—handed currents (n50 = 2KEC) agree

with our prediction because of the approximate custodial symmetry in the full theory

(SM) and the fact that vertex b-b-Z is not modified. The right-handed currents KEG

and nfic are not correlated, and nfic vanishes for a massless b. Also, note that an

additional relation in the effective Lagrangian between the left— and right—handed

effective couplings of the top quark to Z boson emerges, i.e.,

n’g’c =..- «’50. (3.77)

This means only the axial vector current of t-t-Z acquires a nonuniversal contribution

while its vector current is not modified.
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As discussed in Section 3.2, due to the Ward identities associated with the photon

field there can be no nonuniversal contribution to either the b-b—A or t-t-A vertex

after renormalizing the fine structure constant a. This can be explicitly checked

in this model. Furthermore, up to the order of m? In m?“ the vertex b—b—Z is not

modified which agrees with the assumption I made in Section 3.2 that there exists a

dynamics of electroweak symmetry-breaking such that neither bWEE-Z nor bL-b_L-Z in

the effective Lagrangian is modified at the scale of m,.

From this example one learns that the effective couplings of the top quark to gauge

bosons arising from a heavy Higgs boson are correlated in a specific way: namely,

1.50 = 216g: = —x’,¥c. (3.78)

can be arbitrary, and are not necessarily 1/2 and 1 /4, respectively). In other words,

if the couplings of a heavy top quark to the gauge bosons are measured and exhibit

large deviations from these relations, then it is likely that the electroweak symmetry-

breaking is not due to the standard Higgs mechanism which contains a fundamental

heavy scalar boson. This illustrates how the symmetry-breaking sector can be probed

by measuring the effective couplings of the top quark to gauge bosons.

Next, I study how the Tevatron, the LHC, and the LC can contribute to the

measurements of the nonstandard couplings.

3.5 Direct Measurement of the Top Quark Cou-

plings

In Section 3.2, I concluded that the precision LEP data can constrain the cou-

plings nfc, Kfi’c and KEG, but not ngc (the right—handed charged current). The

nonstandard coupling 165,330 can be studied using the b —> 37 measurement [98]. Also,
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I discussed how the SLC measurement of A“; can contribute to the study of the non-

standard couplings nfic, team and nEC. The conclusion that the SM is not compatible

with the combined LEP and SLC data may be an indirect evidence for the anoma-

lous couplings of the top quark. In this section, I examine briefly how to improve our

knowledge on these couplings at the other current and future colliders.

3.5.1 At the Tevatron and the LHC

In this section, I study how to constrain the nonstandard couplings of the. top

quark to the gauge bosons from direct detection of the top quark at hadron colliders.

At the Tevatron and the LHC, heavy top quarks are predominantly produced from

the QCD process 99,116 —> ti and the W-gluon fusion process qg(Wg) -> tbfb. In

the former process, one can probe x90 and ngc from the decay of the top quark to a

bottom quark and a W boson. In the latter process, these nonstandard couplings can

be measured by simply counting the production rates of signal events with a single t

or 5. More details can be found in Ref. [104].

To probe KEG and rcfic from the decay of the top quark to a bottom quark and a

W boson, one needs to measure the polarization of the W boson. For a massless b,

the W boson from top quark decay can only be either longitudinally or left—handed

polarized for a left—handed charged current (REC = 0). For a right—handed charged

current (KEG = —1) the W boson can only be either longitudinally or right—handed

polarized. (Note that the handedness of the W boson is reversed for a massless b

from t- decays.) In all cases the fraction of longitudinal W from top quark decay

is enhanced by mf/2M3V as compared to the fraction of transversely polarized W.

Therefore, for almore massive top quark, it is more difficult to untangle the Kgcand

REC contributions. The W polarization measurement can be done by measuring the
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invariant mass (mu) of the bottom quark and the charged lepton from the decay of

top quark [105]. We note that this method does not require knowing the longitudinal

momentum (with two—fold ambiguity) of the neutrino from W decay to reconstruct

the rest frame of the W boson in the rest frame of the top quark.

Consider the (upgraded) Tevatron as a pp collider at \/§ = 2 or 3.5 TeV, with an

integrated luminosity of lor 10 fb‘l. Unless specified otherwise, we will give event

numbers for a 175 GeV top quark and an integrated luminosity of 1 fb‘l.

The cross section of the QCD process gg, ch -) tt— is about 7 (29) pb at a J5 = 2

(3.5) TeV collider. In order to measure REC and Ego we have to study the decay

kinematics of the reconstructed t and/or t-. For simplicity, let us consider the 3* + Z

3 jet decay mode, whose branching ratio is Br = 2% = %, for 8+ = 8+ orp+.

We assume an experimental detection efficiency, which includes both the kinematic

acceptance and the efficiency of b—tagging, of 15% for the U- event. We further assume

that there is no ambiguity in picking up the right b (b) to combine with the charged

lepton 8+ (0') to reconstruct t (f). In total, there are 7pb x 103 pb'1 x 28—7 X 0.15 =

300 reconstructed tf events to be used in measuring EEG and KEG at fl = 2TeV.

The same calculation at ([9- = 3.5 TeV yields 1300 reconstructed tf events. Given the

number of reconstructed top quark events, one can in principle fit the ma distribution

EC and REC. We note that the polarization of the W boson can alsoto measure K,

be studied from the distribution of cos 9;, where 9; is the polar angle of f in the rest

frame of theW boson whose z—axis is the W bosons moving direction in the rest

frame of the top quark [105]. For a massless b, cos 6; is related to mg. by

2
2m“

*

C089! 9...’m'— 1 . (3.79)

However, in reality, the momenta of the bottom quark and the charged lepton will

be smeared by the detector effects and the most serious problem in this analysis. is
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the identification of the right b to reconstruct t. There are two strategies to improve

the efficiency of identifying the right b. One is to demand a large invariant mass of

the tt- system so that t is boosted and its decay products are collimated. Namely, the

right b will be moving closer to the lepton from t decay. This can be easily enforced

by demanding lepton B with large transverse momentum. Another is to identify the

nonisolated lepton from b decay (with a branching ratio Br(b —> p+X) ~ 10%).

Both of these methods will further reduce the reconstructed signal rate by an order

of magnitude. How will these affect our conclusion on the determination of the non—

universal couplings KEC and REC? This cannot be answered in the absence of detailed

Monte Carlo studies.

Here I propose to probe the couplings KEG and ago by measuring the production

rate of the single—top quark events. A single—top quark event can be produced from

either the W—gluon fusion process qg (W+g) —+ th, or the Drell-Yan-type process

qtj -) W" -) tb. Including both the single—t and single-t- events, for a 2 (3.5) TeV

collider, the W—gluon fusion rate is 2 (16) pb; the Drell-Yan type rate is 0.6 (1.5) pb.

The Drell-Yan-type event is easily separated from the W-gluon fusion event, therefore

it will not be considered hereafter [106]. For the decay mode of t —) bW?‘ —> b€+u, with

3+ = 8+ or 11", the branching ratio of interest is Br = g. The kinematic acceptance

of this event at \/§ = 2TeV is found to be 0.55 [106]. If the efficiency of b—tagging is

30%, there will be 2pb x 103 pb'l x g x 0.55 x 0.3 = 75 single-top quark events

reconstructed. At J? = 3.5 TeV the kinematic acceptance of this event is 0.50 which,

from the above calculation yields about 530 reconstructed events. Based on statistical

error alone, this corresponds to a 12% and 4% measurement on the single—top cross

section. A factor of 10 increase in the luminosity of the collider can improVe the

measurement by a factor of 3 statistically.

Taking into account the theoretical uncertainties, we examine two scenarios: 20%
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Figure 3.17: The allowed Ingcl and ngc are bounded within the two dashed (solid)

lines for a 20% (50%) error on the measurement of the single—top production rate,

for a 175 GeV top quark.

and 50% error on the measurement of the single—top cross section, which depends

on both KEG and K5330. (Here we assume the experimental data agrees with the SM

prediction within 20% (50%).) We found that for a 175 GeV top quark KEG and

REC are well constrained inside the region bounded by two (approximate) ellipses, as

shown in Figure 3.17. These results are not sensitive to the energies of the colliders

considered here.

The top quark produced from the W-gluon fusion process is almost 100% left—

handed (right—handed) polarized for a left—handed (right—handed) t-b-W vertex,

therefore the charged lepton 6" from t decay has a harder momentum in a right—

handed t-b-W coupling than in a left—handed coupling. (Note that the couplings
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of light-fermions to W boson have been well tested from the low energy data to be

left—handed as described in the SM.) This difference becomes smaller when the top

quark is more massive because the W boson from the top quark decay tends to be

more longitudinally polarized.

A right—handed charged current is absent in a linearly SU(2) L invariant gauge the-

ory with a massless bottom quark. In this case KEG = 0, then KEG can be constrained

to within about —0.08 < KEG < 0.03 (-0.20 < KEG < 0.08) with a 20% (50%) error

on the measurement of the single—top quark production rate at the Tevatron. This

means that if we interpret (1 + ICEC) as the CKM matrix element 14),, then Va, can

be bounded as V“, > 0.9 (or 0.8) for a 20% (or 50%) error on the measurement of

the single—top production rate. Recall that if there are more than three generations,

within 90% C.L., V“, can be anywhere between 0 and 0.9995 from low energy data [9].

This measurement can therefore provide useful information on possible additional

fermion generations. Measuring the DreIl-Yan-type single-top production rate can

further improve the measurement of 14),.

We expect the LHC can provide similar or better bounds on these nonstandard

couplings when detailed analyses are available.

3.5.2 At the LC

The best place to probe nfc and rcfic associated with the t—t-Z coupling is at the

LC through e'e+ —> A, Z —+ tt_. A detailed Monte Carlo study on the measurement of

these couplings at the LC including detector effects and initial state radiation can be

found in Ref. [107]. The bounds were obtained by studying the angular distribution

and the polarization of the top quark produced in e‘e+ collisions. Assuming a 50

fb'1 luminosity at ([3. = 500 GeV, we concluded that within a 90% confidence level,
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it should be possible to measure K’IYC to within about 8%, while “1,1110 can be known

to within about 18%. A lTeV machine can do better than a 500 GeV machine in

determining £20 and rage because the relative sizes of the t3(f) R and t[,(f) L produc-

tion rates become small and the polarization of the tf pair is purer. Namely, it is

more likely to produce either a t1, (3) R or a t3(f)L pair. A purer polarization of the tt-

pair makes 1:50 and ”go better determined. (The purity of the tt- polarization can

be further improved by polarizing the electron beam.) Furthermore, the top quark

is boosted more in a lTeV machine thereby allowing a better determination of its

polar angle in (the tf system because it is easier to find the right b associated with the

lepton to reconstruct the top quark moving direction.

Finally, we remark that at the LC REC and KEG can be studied either from the

decay of the top quark pair or from the single—top quark production process, W-

photon fusion process e’e+(W7) —+ tX, or 8")(W7) —> t—X, which is similar to the

W—gluon fusion process in hadron collisions.

3.6 Discussion and Conclusions

In this chapter I have applied the electroweak chiral Lagrangian to probe new

physics beyond the SM through studying the couplings of the top quark to gauge

bosons. First, I examined the precision LEP data to extract the information on these

couplings. Second, I discussed how the SLC measurement ALR can contribute to the

constraints on the nonstandard couplings nfc, nfiC, and REC. Third, I discussed how

to improve our knowledge about the top quark nonstandard couplings at current and

future colliders such as at the Tevatron, the LHC, and the LC.

Because of the non—renormalizability of the electroweak chiral Lagrangian one can

only estimate the size of these nonstandard couplings by studying the contributions
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to LEP observables at the order of mfln A2, where A = 47712 ~ 3 TeV is the cutoff

scale of the effective Lagrangian. Already I found interesting constraints on these

couplings.

Assuming b-b-Z vertex is not modified, I found that nfc is already constrained

to be -o.05 < n2"? < 0.17 (0.0 < nfc < 0.15) by LEP data at the 95% CL. for

a 160 (180) GeV top quark. Although nfic and KEG are allowed to be in the full

range of :tl, the precision LEP data do impose some correlations among nfc, nfic,

and KEG. (7.53," does not contribute to the LEP observables of interest in the limit of

mm = 0.) In my calculations, these nonstandard couplings are only inserted once in

loop diagrams using dimensional regularization.

Inspired by the experimental fact p z 1, reflecting the existence of an approximate

custodial symmetry, I proposed an effective model to relate mic and KEG. I found

that the nonuniversal interactions of the top quark to gauge bosons parameterized by

nfc, 162,6, and KEG are well constrained by LEP data, within 95% CL. The results

are summarized in Table 3.1 (see also Figures 3.6—3.10). Also, the two parameters

NC
KL =nL NCand NR = nR are strongly correlated. In my model, KL ~ 2K3.

I note that the relations among rc’s can be used to test different models of elec-

troweak symmetry-breaking. For instance, a heavy SM Higgs boson (my > m,) will

modify the couplings t-t-Z and t-b—W of a heavy top quark at the scale m, such that

NC___ NC

9 KL

NC _ CC

, and nfic = 0. Another example is the effective model

discussed in Ref. [95] where, 1.920 = KEG = 0. In this model the low energy precision

data impose the relation nfc ~ nfic. Also, the simple commuting extended techni-

color model presented in Ref. [59] predicts that the nonstandard top quark couplings

are of the same order as the nonstandard bottom quark couplings.

It is also interesting to note that the upper bound on the top quark mass can
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be raised from the SM bound m, < 200 GeV to as large as 300 GeV if new physics

occurs. That is to say, if there is new physics associated with the top quark, it is

possible that the top quark is heavier than what the SM predicts. However, for a SM

top quark, m, should be less than 200 GeV, as shown in Figures 3.7 and 3.8.

Also, I discussed how the present SLC measurement of AL); can contribute to

the constraints imposed on the nonstandard couplings nfc, nfi’c, and NEC at LEP. I

found that if one uses the LEP constraints to predict the new physics contribution to

the SLC measurement Aug, then for the special model, 52" = KQ’C/2, it is possible

to reconcile the LEP and SLC data at 95% CL. for a wide range of the top quark

mass. This is shown in Figure 3.15.

Undoubtedly, direct detection of the top quark at the Tevatron, the LHC, and the

LC is crucial to measuring the couplings of t-b—W and t-t-Z . At hadron colliders,

go and 1:920 can be measured by studying the polarization of the W boson from topK

quark decay in tt— events. They can also be measured simply from the production rate

of the single top quark event. The LC is the best machine to measure 5’30 and xfic

which can be measured from studying the angular distribution and the polarization

of the top quark produced in e‘e+ collision. Details about these bounds were given

in Section 3.5.



Chapter 4

Heavy Top Quark Effects and the

Scalar Sector

4.1 Introduction

In chapter 3, I calculated the one-loop level quadratic contribution of the top

quark mass m,, i.e., m? In A2, to the parameters 61 and £5. The calculation is based

on the Lagrangian £0 + [.1 (see Eqs. (2.29) and (3.9)). In general, in performing the

one loop level calculation, one needs to consider a gauge invariant set of Feynman

diagrams in which massive gauge bosons can appear as external and/or internal lines.

However, at one-loop level, I found that to extract the mfln A2 dependence of the

low energy observables (equivalently, 61 and 6),) one only needs to include the massive

gauge bosons as external fields. Figure 3.1 shows the relevant Feynman diagrams

needed to extract the m? dependence in a general R5 gauge. Only the Goldstone

bosons and the top quark appear as internal (propagating) fields. The gauge bosons

behave as classical (non-propagating) fields. This result is expected since extracting

corrections in power of m. is equivalent to a perturbative expansion in the Yukawa

coupling 9: = mt/v which has nothing to do with the gauge structure [108]. This is

true because the m? corrections are present even for vanishing gauge couplings ie 9 and

g’ —) 0. The m? corrections are a consequence of the symmetry-breaking mechanism

125
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which controls the Yukawa interactions connecting the scalar fields and the fermion

sector. This observation is important because one can generalize it to include'the

pure dependence on the top quark mass to all orders and not merely to the one-loop

level. Furthermore, with the gauge couplings switched off in the Lagrangian, one can

derive a set of Ward identities which relates the physical quantities, as discussed in

the next section, to appropriate renormalization constants of the reduced Lagrangian

(with gauge couplings switched off).

This observation was made for the SM case in Ref. [108], where explicit calcula-

tion of the two loop m‘,‘ corrections to the low energy observables was performed for

arbitrary values of the Higgs mass mH. The calculation was performed by considering

the Lagrangian of the SM in the limit of vanishing gauge coupling constants. The

gauge bosons play the role of external sources and the relevant propagating fields are

the top quark, the massless bottom quark, the Higgs boson field, and the charged and

neutral Goldstone bosons (25*, 453. This reduced Lagrangian is called the Gaugeless

Limit of the SM [108].

In this chapter, I develop a similar formalism to calculate, at one loop level, the

contribution to 61 and 65 that grows like 111? in the chiral Lagrangian framework. The

formalism holds for all contributions which do not vanish when setting the gauge

couplings g and g’ to be zero. Therefore, generalizing the result in Ref. [108] to

incorporate a larger set of effective models. Similarly, I find that to extract the m?

dependence in the chiral Lagrangian framework, one needs to concentrate only on the

Goldstone bosons, the top quark, and the massless bottom quark. The calculation of

m? dependence in the new formalism gives an identical result to the one I found in

chapter 3.

Similar to the'procedure in chapter 3, I consider an effective field theory describing

the nonstandard top couplings to the gauge bosons. I show how to conveniently
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relate various radiative corrections important for testing the standard model (SM)

in a rather elegant and clear way. More importantly, this approach is shown to

clearly identify observables which are sensitive to the symmetry-breaking sector of

the electroweak theories.

In section 2, I briefly review the Gaugeless limit of the SM [108]. In section 3, I

present new formalism, in the chiral Lagrangian framework, to study the large top

quark mass contribution (in powers of m,) to low energy physics. I show that all

large m, effects enter through two quantities p and 7' [108], which are, in this limit,

equivalent to the quantities 61 and 65. Section 4 contains some of my conclusions.

4.2 Large mt effects in the SM

In this section, I briefly review the analysis performed in Ref. [108] which is a

study of the large m, contributions to the low energy observables in the SM. In this

case, one is interested in corrections in powers of the Yukawa coupling 9, = mt/v,

while, corrections in powers of the gauge coupling 9 are ignored. In other words, one

is considering the perturbative expansion in the Yukawa coupling 9, = mt/v rather

than the gauge coupling 9. To fully extract the pure m, corrections in a general R:

gauge, the massive gauge bosons do not appear in loops. Thus, gauge bosons can

be treated as classical (non-propagating) sources. Consequently, there is no need

to break the gauge invariance of the SM Lagrangian in order to perform the loop

calculations. The exact gauge invariance of the Lagrangian (in the limit of ignoring

corrections in power of the gauge coupling g) leads to a set of ward identities valid

to all orders. These Ward identities relate the n-point functions of the gauge bosons

to those of the scalar Goldstone bosons. Thus, by connecting the n-point functions

of the gauge bosons to those of the Goldstone bosons, one can relate the physical
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observables to the n-point functions of the Goldstone bosons. The Ward identities

can be easily derived in the path integral formalism using the generating function

technique.

As I discussed in chapter 1, all radiative corrections to low energy observables,

under a few general assumptions, can be written in terms of the gauge boson vacuum

polarization functions and the proper vertex correction of Z-b-b. Thus, using the

derived Ward identities, one can simply relate all physical radiative corrections to a

set of corrections involving the Goldstone bosons and the fermion sector. The derived

Ward identities relate the vacuum polarization functions of the gauge bosons to those

of the Goldstone bosons [108] as follow

 

2 2

q”q”fl,w(q) = 430:261101),

92v?

(fquum) = THHQ), (4-1)

where IIW(q) is the vacuum polarization of the Z boson, Hfu(q) is the vacuum po-

larization of the Wi boson, U(q) and 11*(q) are the self energy of the Goldstone

bosons (1)3 and (bi, respectively. Similarly, the Z-b-b proper vertex correction 1",, can

be related to the proper vertex ¢3-b-b correction I‘ as follow

 

(p’”—p“)1‘,.(p’,p)=i 9” I‘+

   

2c059

_ , P sin20 P sin20 _

co"s,,,(s,.~‘<zo>(—,£- 3 >—(—,i*-— 3 >590») (4.2)

where PAR = (1 q: 75) /2 and 851(1)) is the self energy of the massless b quark with

momentum p. S;1(p) is parameterized as

Sm = izbverPL + WMPR. (4.3)

At tree level, Z" = 1. However, higher order corrections contribute to Z” whereas

the right handed self-energy of the massless b quark does not get modified. This is
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true since the right—handed quark, b3, is singlet under 5'U(2),, symmetry. Therefore,

the right-handed quark, b3, does not couple to the Goldstone bosons in the limit of

vanishing b quark mass.

The 2-point functions of the W, Z gauge bosons, and the Goldstone bosons can

be expanded in powers of q2 since this is the only relevant low energy scale in the loop

calculations after turning off the gauge couplings. In the limit q2 -) 0 the 2-point

functions are parameterized as

22

H.401) z figflz - 1)g..... (4.4)

2 2

113.01) z 3%(Zi -1)g,... (4.5)

II(<1) z (ZS - 1)q2. (4.6)

II*(q) z (Z? - 1M”. (4.7)

where at tree level Z = Zi = 223 = Z;t = 1. The energy scale q2 = 0 is the only

relevant low energy scale in the loop calculations. The internal fields are the massless

Goldstone bosons, the heavy top quark, and the Higgs boson. Therefore, there are

only three mass scales in the calculations, a low energy scale q2 = 0 and two high

energy scales m, and mH.

Using the identities in Eq. (4.1), one obtains

Z = 2.3, (4.8)

2* = 2;. (4.9)

Since, as discussed in chapter 1, oblique corrections to physical observables can be

written in terms of the quantities Z and Z*, it is therefore possible to relate the
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quantities Z3, 2% to direct physical observables, or equivalently to the parameters

6p, Ale, and Arw. The quantities 223 and Z; are related to the quantities Azz(0)

and AWW (0) defined in Eq. (1.49) as follows

222 2

9 v 2;, AWW(0) = iii—22*. (4.10)
4 cos2 6

 

AZZ(0) =

I will discuss this connection in the next section after dealing with the chiral La-

grangian case.

The prOper Z-b-b vertex, can be parameterized as [108]

 

i 2 . 2 .

Fu(p',P) = —2cgsa ((1 — §SIn20)ZnuPL — Esmzfi'prR) , (4.11)

for p’ z p, i.e., q = p’ — p z 0. Similarly, for the proper 053-b-b vertex

 

m __

r = 2%,,” “PL. (4.12)
221

Therefore, using the Ward identity in Eq. (4.2) one finds

2 - 2 3 2 - 2 b
(1 — 58m (9)21: Zl +(1— §sm 0)Z2. (4.13)

To get the physical Z-b-b vertex one needs to renormalize the left-handed b quark.

Therefore, one finds the physical Z-b-b vertex to be

__ .9 -2-2 a: _2.2V”— 2cosG [(1 331n0+Zg)7pP 331n0PR. (4.14) 

The conclusion is that to calculate the pure m, corrections to low energy data,

one simply has to calculate the quantities Z3, Z}, Zi‘, and Zé’ which are calculated

from a set of Feynman diagrams involving only fermions (top and bottom quarks)

and scalar bosons ( Goldstone bosons and the Higgs boson) but not gauge bosons.

Thus, in extracting the large m, corrections to low energy observables in the SM,

one starts with the tree-level Lagrangian, involving the Higgs doublet (I), the third
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generation left-handed quark doublet 11),, = (tL,bL) and the right-handed top quark

field tR

/\ 112 2

c = (3,4)*(a”<1>)—-2-((<1>*<1>)2—-2-) +

Win/"c1411, + $1??th + ({L 0L) (I’ t3 + [1.0. (4.15)
 

flmt

1)

From which one calculates the needed quantities 23, Z%, Zf, and Z3.

4.3 Large mt Effects In the Chiral Lagrangian

In this section, I am interested in the chiral Lagrangian formulated electroweak

theories in which the gauge symmetry SU(2)L X U(1)y is nonlinearly realized. A

mentioned in chapter 3, the chiral Lagrangian can be constructed solely based upon

the broken symmetry of the theory, and it is not necessary to specify the detailed

dynamics of the actual breaking mechanism. Hence, it is the most general effec—

tive Lagrangian that can accommodate any underlying theory with that pattern of

symmetry-breaking at the low energy scale.

In this section, as a matter of convenience, I define the composite fields in a slightly

different way from the ones I defined in chapter 3. I define

w; = —.'Tr(r°2*D,,2) (4-16)

and

Bu = g’B” , (4.17)

where I define the quantity

7.0

0,2 = (a, —ig 2 W3) >3 . (4.18)
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The quantity DpZ as defined above is not a covariant derivative. Its transformation

under SU(2)L x U(1),» can be checked using the W and 2 field transformations (see

appendix D). In my notation W; and B" are the gauge bosons associated with the

SU(2)L and U(1)y groups, respectively. Also, 9 and g’ are the corresponding gauge

couplings. The composite fields transform under 3U(2),, x U(1)y as

”fiawvfi=Mfi—,g, (4w)

W3 -> W’ff = ei‘vwf, (4.20)

maq;afimw am

where

Wi =W. (4.22)

“ fl

I also introduce the composite fields 2" and .24" as

2.. = W3 + 3,. , (4.23)

32.44,1 = 32W: — C23,, , (4.24)

where 32 5 sin2 0, and c2 = 1 — 32. In the unitary gauge (2 = 1)

W: = —gW: a (4'25)

9

Z” = —;Z“ , (4.26)

8

A” = -§A,, , (4.27)
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where I have used the relations 6 = gs = g’c, W3 = cZu+sAm and B“ = —sZ,,+cA,,.

The transformations of Z” and A” under SU(2)L x U(1)y are

aaq=4, am

A, —+ A; = A, — $61.3, . (4.29)

Hence, under SU(2);, x U(1)y the fields Wj‘ and Z“ transform as vector fields, but

'41: transforms as a gauge boson field which plays the role of the photon field A”.

Using the fields defined as above, one may construct the SU(2)L x U(1)Y gauge

invariant interaction terms in the chiral Lagrangian

1 1
, ____ _ _ 0 am! __ 11V

.63 4g,w,,,w 4g, 13,..3

02 + _,. 02 ,1

+ —4-w,, w + 3'2”}: + . .. , (4.30)

where

wgu = auw: —- aw; + eabcwfjw; , (4.31)

13,... = 0,3,, — 0.3,. , (4.32)

and where . . . denotes other possible four- or higher— dimensional operators [78, 72].

It is easy to show that1

WZJ“ = —g2*W5,r°2 (4.33)

and

W3,W°P" = gzwguwal‘” . (4.34)

 

lUse W37“ = —21'21D,,E , and [7“,71’] = 2ieabcrc.
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This simply reflects the fact that the kinetic term is not related to the Goldstone

bosons sector, i.e., it does not originate from the symmetry-breaking sector.

The mass terms in Eq. (4.30) can be expanded as

2 2

”7ij4‘ + ”E232” = ay¢+aflqr + gap¢3afla3

2 2 2 2

+g—Z—Wgwp’ + %Z,,Z" + . .. (4.35)

At the tree level, the mass of Wat boson is MW = gv/2 and the mass of Z boson

is M2 = gv/2c. The above identity implies that the radiative corrections to the

mass of the gauge bosons can be related to the wave function renormalization of the

Goldstone bosons, cf. Eq. (4.51), and therefore sensitive to the symmetry-breaking

sector.

Fermions can be included in this context by assuming that each flavor transforms

under SU(2)], x U(1),» as [74]

f -+ f’ = e‘”Q’f. (4.36)

where QI is the electric charge of f.

My goal is to study the large Yukawa corrections to the low energy data from

the chiral Lagrangian formulated electroweak theories. I will separate the radiative

corrections as an expansion in both the Yukawa coupling 9, and the weak coupling

g. (g, = mt/v, where m, is the mass of the top quark.) With this separation one

can then consider the case where corrections of the order 9 are ignored compared

to those of g,. This case is similar to the analysis in Ref. [108] where the gauge

bosons were considered as classical fields so that the full gauge invariance of the SM

Lagrangian was maintained, and a set of Ward identities was derived to relate the

Green’s functions of the Goldstone bosons and the gauge bosons. Hence, large g,
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corrections can be easily obtained from calculating Feynman diagrams involving only

fermions (top and bottom quarks) and scalar bosons (e.g., Goldstone bosons and

possibly the Higgs boson) but not gauge bosons. The same conclusion can be drawn

using the chiral Lagrangian approach in a far more elegant and clear way, as shown

below in this section.

Why is the chiral Lagrangian formulation useful in finding large g. corrections

beyond the tree-level? In general to perform a loop calculation, one needs to fix a

gauge and therefore explicitly destroys the gauge invariance [SU(2)L x U(1)Y] of the

Lagrangian. However, to find the large g, corrections one does not need to include

gauge bosons in loops [108]. Thus, there is no need to fix a gauge and the full gauge

invariance of the eflective Lagrangian is maintained. Because the chiral Lagrangian

possesses the SU(2)L x U(1)Y invariance (nonlinearly) and the U(1)cm invariance (lin-

early) at any given order of the perturbative expansions, and all the loop corrections

can be reorganized using the composite fields Wf, Z,“ and A“ in a gauge invari-

ant form, therefore, it is the most convenient and elegant way to find g. corrections

beyond the tree-level. This is obvious because the leading radiative corrections (in

powers of m.) are products of the spontaneous symmetry breaking (SSB) and there-

fore independent of the weak gauge coupling g. One notes that in the expansion of

the field

2
2,, = 56,453 — £2, + (4.37)

there is always a factor g associated with a weak gauge boson field. Hence, loop

corrections independent of the gauge coupling g can be obtained by simply considering

the scalar and the fermionic sectors in the theory. In the following discussion, I will

show how this is done.
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4.3.1 Effective Lagrangian

To obtain the large contributions of the top quark mass (in powers of m.) to low

energy data, one needs only to concentrate on the top-bottom fermionic sector (f1 = t

and f2 = b) in addition to the bosonic sector. The most general gauge invariant chiral

Lagrangian can be written as

. p .283 .- n .33
£0 = II’)’ 0,,+z—-3—.A,, t+zb7 0p—13A,‘ b

 

1 I 23‘2 _ —2s2 ._
— (— - -—° + 620) tn"tLZ.. — ( 3 0 + “20) tRVHRZu

—1 33 .— 14 33.— p

— —2- + ? bL’)’ ()sz - 3037 bRZp

-% (1 + KEG)fin/"@142;L - -—1— (I + K201) fir/"QW;

V2

1 cc— 1 ccf— -
-——rc t ”b W+ — —n b "t W‘5 R 727 R ,1 \/2 R R7 R p

—m¢Zt + . . . , (4.38)

where 32m, K120, REC, and REC parameterize possible deviations from the SM predic-

tions, and . . . indicates possible Higgs boson interactions and other higher dimensional

operators. Here I have assumed that new physics from the SSB modify the interac-

tions of the t0p quark to the electroweak gauge bosons. On the other hand, the

bare b-b-Z couplings are not modified in the limit of ignoring the mass of the bottom

quark. The subscript 0 denotes bare quantities and all the fields in the Lagrangian

£0, Eq. (4.38), are bare fields.

Needless to say, the composite fields are only used to organize the radiative cor-

rections in the chiral Lagrangian. To actually calculate loop corrections one should

expand these operators in terms of the Goldstone boson and the gauge boson fields.

The gauge invariant result of loop calculations can be written in an effective La-
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grangian with a form similar to Eq. (4.38). Denoting the fermionic part of this

effective Lagrangian as Lie”, then

_ 2_ 1 2 2 _—

£eff = iZbe'ypa"bL + 21339bL’7‘1bLA” + '2' (Z: — 22%!) bL’YflbLZ”

, — 3(2)— 33—

+!Zfbn7uapb3 + Z3§bn7prAu — Z4§bmrubRZ" + . . . , (4.39)

in which the coefficient functions 21, 22, Z3, Z4, Zf, Zf, and 25‘ contain all the loop

corrections, and all the fields in Le” are bare fields.

Since the gauge invariance is maintained one can write Cd, in a from similar to

Eq. (2.29), i.e., in terms of the B gauge boson field rather than the composite field

A. Explicitly, Eel, can written as

Leff = iZ:FZ’Yp6PbL — 21%E7prB” + $25157pr3”

+izffiyuaubfl — 23%337pb38" + . . ., (4.40)

where

8,. == 33(2) - A“) , (4.41)

derived from Eqs. (4.23) and (4.24). Note that as shown in Eqs. (4.17) and (4.21) the

field 8,, is not composite and transforms exactly like By. Comparing Eq. (4.39) with

(4.40), one conclude that the coefficient functions 21, Z2, 23, and Z4 must be related

and

Z2 = Z} , (4.42)

Z4 = 23 . (4.43)

All the radiative corrections to the vertex b-b—qb3 in powers of m, are summarized by

the coefficient function Z? because, from Eq. (4.37),

1 _ 1_
EsznflbLzfl = Zfabnprawy’ + (4.44)
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Since the effective Lagrangian Le” possesses an explicit U(1)em symmetry and

under G the field A” transforms as a gauge boson field and 2,, as a neutral vector

boson field, therefore, based upon the Ward identities in QED one concludes that in

Eq. (4.39)

21 = 2,? , (4.45)

and

Za = Z? . (4.46)

Hence, the effective Lagrangian £6” can be rewritten as

2 2

£4, = 2'sz”" (a, —- 2733—04.) 1),, + £2,511.37" (a, — £3394”) b3

1 L L283 — p 1283— p

+-2- Zv- b— bL'l’prZ —Z,, 3514pr123 +~~ (4-47)

This effective Lagrangian summarizes all the loop corrections in powers of m, in the

coefficient functions 2f, 25“, and Z5. Recall that up to now all the fields in L,” are

bare fields. To compare with the low energy data I prefer to express £6” in terms of

the renormalized fields. In Eq. (4.47), the kinetic terms of the bL and b3 fields can be

properly normalized after redefining (renormalizing) the fields bL and b); by (Zffilbl,

and (Zf)%b3, respectively. In terms of the renormalized fields bL and b3, .6,” can

be rewritten as

2 2

L,” = Eh" (8,, — £32.44”) bL + 52'7" (0,, -— 2339/1”) b);

+2

 

L 2 2
1 (Z: _ Q) Why _ tummy.” + . (4.48)z, 3 3

Before considering the physical observables at low energy let us first examine the

bosonic sector. Similar to our previous discussions, loop corrections to the bosonic
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sector can be organized using the effective Lagrangian

1 1

B = —-—W" W‘“ — —B ”3""

4.1% + —# xvg p

+Z 7,-qu +Z —8—Z,,Z +... . (4.49)

Note that in the above equation I have explicitly used the subscript 0 to indicate

bare quantities. The bosonic Lagrangian in Eq. (4.30) and the identity in Eq. (4.34)

imply that the Yang—Mills terms (the first two terms in LB) are not directly related

to the SSH sector. Hence, any radiative corrections to the field W3” must know about

the weak coupling 9, i.e., suppressed by g in our point of view. This also holds for

operators, of dimension four or higher, which include W; in the chiral Lagrangian

where all these gauge invariant terms are suppressed by the weak coupling 9 [72, 78].

(The same conclusion applies to B,,.,.) Therefore we conclude that the fields Wf, Z,“

and A” in £6” and £53” do not get wave function corrections (renormalization) in

the limit of ignoring corrections of the order 9, namely the renormalized fields and

the bare fields are identical in this limit.

Expanding the mass terms in Eq. (4.49) we find

2 2

z¢§°wgw-“ + zxis‘lzyzr‘ = z¢ap¢+a#¢- + gzxapqfiaw +

2 2 2 2

2¢Mij-” + Zxfl‘lzpz‘ + . .. (4.50)
4 age,

It is clear that Z45 denotes the self energy correction of the charged Goldstone boson

(13*, and ZX denotes the self energy correction of the neutral Goldstone boson (:53.

Since W3: and 2,, do not get wave function correction in powers of m,, therefore the

gauge boson masses are

9202

M3. — z¢—°4°=24M3v.,

92v?

M; = Zxfi =ZXM§0. (4.51)

4C3

 



140

In summary, all the loop corrections in powers of m, to low energy data can be

organized in the sum of L,” [in Eq. (4.48)] and L?” [in Eq. (4.49)]. Comparing them

to the bare Lagrangian £0 in Eq. (4.38), we find that in the limit of taking 9 —) 0 the

chiral Lagrangian £0 behaves as a renormalizable theory although in general a chiral

Lagrangian is nonrenormalizable. In other words, no higher dimensional operators

(counterterms) are needed to renormalize the theory in this limit. The same feature

was also found in another application of a chiral Lagrangian with 1/N expansion

[109].

4.3.2 Renormalization

Now we are ready to consider the large m, corrections to low energy data. I choose

the renormalization scheme to be the a, Gp, and Mz scheme (the Z-pole scheme).

With

 

 

 

47m

.93 = 8(2) 0 (4'52)

and

s c = , 4.53

or,

1/2
1 47m

s2=-1—(1- ° ) . 4.54

Define the counterterms as

a = ao+6a,

Gr = GF0+5GF.

M3, M3,, + (SM; , (4.55)
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and

32 = sg+632=sg—6c2,

(:2 = c3+5c2, (456)

then

s2c2 + (c2 — .92) 602 =  

7m ( (SQ 6GP 6M%) (4 57)

—— 1——+—+
fiGFMg a GI“ Mg

As shown in the above equation, even after the counterterms 6a, 60p, and 6M3 are

fixed by data [e.g., the electron (g-2), muon lifetime, and the mass of the Z boson], I

still have the freedom to choose 602 by using a different definition of the renormalized

quantity 3202. In this case, I will choose the definition of the renormalized 32 such that

there will be no large top quark mass dependence (in powers of m,) in the counterterm

602. I will show later that for this purpose the renormalized 32 satisfies 2

=_ , 4.58

s c x/I‘Z'GpMép ( )

where p is defined from the partial width of Z into lepton pairs, cf. Eq. (4.75). With

this choice of 32 and the definition of the renormalized weak coupling

92 = 17‘?“ ,
(4.59)

3

one can easily show that the counterterm 6g2 (= g2 — 93) does not contain large

m, dependence. (Obviously, 50 will not have contributions purely in powers of m,.)

Namely, in this renormalization scheme, a, g, and 52 do not get renormalized after

ignoring all the contributions of the order g. Hence, all the bare couplings go, g6, and

83 in the effective Lagrangians £8” and [If], do not get corrected when considering

the contributions which do not vanish in the limit of g —> 0. The only non-vanishing

 

2If one defines .n’zc’2 = na/fiGng, then 82 = s’z(1 + An’) with Ax' = —c""6p/(c’2 - 8’2), and

the counterterm of 3’2 will contain contributions in powers of m;.
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counterterm needs to be considered in Eq. (4.49) is 6'02 (= v2 — '00). From Eq. (4.51)

and MW = gv/2, one finds

24.: = 62 , (4.60)

because neither 9 nor W’: (or Wi) gets renormalized. Thus,

 

1 1

G).0 = —\/—_—_— 2“ «v? = Z¢GF . (4.61)

Consequently,

93 BGFOM§0_ 83—ng Z"
(:3 =T—TZ_" , (4.62)

and the effective Z-b-b coupling is

_ 90 u _Z_v_L_?_S_§ p_.2:_8_§p —
2—‘607 [(Z: 3 L R —

(:ng z» 25 4s2 25

fm 2x[(277)—2575 ’ (“3’

where PAR = (11F 75)/2.

 

 

4.3.3 Low Energy Observables

A discussed in chapter 1, all the radiative corrections to low energy data can

be categorized in a model independent way into four parameters: 61, 62, 63, and q,

[16, 22, 23] or equivalently, the S, T, U, . . . [24] (see appendix B). The parameters 61,

62, 63, and 65 can be derived from four basic measured observables, such as I‘,, (the

partial decay width of Z into a 11 pair), 14%,; (the forward-backward asymmetry at

the Z peak for the p lepton), Mw/Mz (the ratio of W* and Z masses), and l"), (the

partial decay width of Z into a bb pair). The expressions of these observables in terms

of (’8 can be found in chapter 1.
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In this section, I only give the relevant terms in e ’s that might contain the leading

effects in powers of m, from new physics. Denote the vacuum polarization for the

W1, W2, W3, and B gauge bosons as

1164,.(6) = —z'g..., [A‘J‘(0) + qQF‘Hqfi] + 6qu terms, (4.64)

where i, j = W, Z, '7, respectively. Then,

61 = e1 — e5 , (4.65)

62 = 82 - cos2 0 285 , (4.66)

63 = 83 - cos? 0 285 , (4.67)

65 = e), , (4.68)

where

_ AZZ(0) — AWW(0)

 

 

81 — Mg W 9 (4.69)

62 = FWW(M3v) - F33(M§), (4-70)

63 = 22S—0F3°(M2) (4 71)
sing Z ’ '

szz

66 = Mg-EqTM/Ig), (4-72)

and e), is defined through the vertex corrections to Z —+ bb

- _ 9 1 - 75
v, (z —+ bb) _ 72m, 2 . (4.73)

Both 61 and 6), gain corrections in powers of m,, and are sensitive to new physics

coming through the top quark. On the contrary, 62 and 63 do not play any significant
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role in our analysis because their dependence on the top mass is only logarithmic.

Hence,

£1 = 5p + corrections of the order g ,

6;, = T + corrections of the order g,

62 = corrections of the order 9 ,

£3 = corrections of the order 9 , (4.74)

where 6p = p — 1. The parameters p and 1' are defined by

_ — Gng 2 2

Pp = I‘(Z"*IJ # )=Pm(9pv+gm1) ’

_ - 6'ng 2 2
Pb = “Z "’ bb) = Pm (95v + 95.4) » (4-75)

where

1 l

gI‘V 2 —§ (1—482), gpA=_§ ,

1 4 1

gbv = -'2' (1—§S2+T), 9b,; =—-2-(1+7') . (4.76)

Hence, comparing to Eq. (4.63) we conclude

Zd’

6p = "Z—x' - 1 ,

zL

4.4 One Loop Corrections in the SM

The SM, being a linearly realized SU(2)L x U(1)Y gauge theory, can be formu-

lated as a chiral Lagrangian after nonlinearly transforming the fields (see chapter 2).

Applying the previous formalism, I calculate the one-loop corrections of order m? to

p and 1' for the SM by taking REC = MAC = KEG = rcfic = O in Eq. (4.38). These
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loop corrections can be summarized by the coefficient functions ZX , Z¢, Zlf‘, and Zf

which are calculated from the Feynman diagrams shown in Figure 4.1(a), 1(b), 1(c),

and the sum of 1(d) and 1(e), respectively. I find

 

 

zx = 1+1—g-:%§(A—lnmf),

Zd’ =1+—§-—n;:2(A+-—ln2m,),

2: = 3:12:20),

Z: = ngg:2(—A+1nm,-g) . (4.78)

One notes that Figure 4.1(e) arises from the nonlinear realization of the gauge symme-

try in the chiral Lagrangian approach. Substituting the above results into Eq. (4.77),

one obtains

3Gpm?

6p ,
8\/§7r2

 

2

= _Nw , (4.79)

which are the established results (see section 1.5).

4.5 One Loop Corrections with Nonstandard Top

Quark Couplings

In chapter 3, I calculated the one-loop corrections (of order m? In A2) to p and 7

due to the nonstandard couplings of the top quark to the electroweak gauge bosons.

The set of Feynman diagrams we considered contained external massive gauge bosons

lines. In this section, I show how to reproduce those results by considering a set of

Feynman diagrams which contains only the pure Goldstone bosons, the top quark,

and the bottom quark lines, as described in Section 4.3.
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Figure 4.1: The Feynman diagrams which contribute to p and 7' to the order

0(mfln A2).
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Non-renormalizability of the effective Lagrangian presents a major problem on

how to find a scheme to handle both the divergent and the finite pieces in loop

calculations [99]. Such a problem arises because the underlying theory is not yet

known, so it is not possible to apply the exact matching conditions to find the correct

scheme to be used in the effective Lagrangian [61]. One approach is to associate the

divergent piece in loop calculations with a physical cutoff A, the upper scale at which

the effective Lagrangian is valid [74]. In the chiral Lagrangian approach this cutoff

A is taken to be 47w ~ 3TeV [61].3 For the finite piece no completely satisfactory

approach is available [99].

To perform loop calculations using the chiral Lagrangian, one should arrange

the corrections in powers of 1/41rv and include all the Feynman diagrams up to the

desired order. Figure 4.1 contains all the Feynman diagrams needed for our study. I

calculate the leading contribution to p and 7' due to the new interaction terms in the

chiral Lagrangian using the dimensional regularization scheme and taking the bottom

quark mass to be zero. At the end of the calculation, I replace the divergent piece

1/6 by ln(A2/m,2) for e = (4 — n) /2, where n is the space-time dimension. Effectively,

I have assumed that the underlying full theory is renormalizable. The cutoff scale

A serves as the infrared cutoff of the operators in the effective Lagrangian. Due

to the renormalizability of the full theory, from renormalization group analysis, I

conclude that the same cutoff A should also serve as the ultraviolet cutoff of the

effective Lagrangian in calculating Wilson coefficients. Hence, in the dimensional

regularization scheme, 1/6 is replaced by ln(A2/p2). Furthermore, the renormalization

scale p is set to be mt, the heaviest mass scale in the effective Lagrangian of interest.

Since I am mainly interested in new physics associated with the top quark couplings

to gauge bosons, I will restrict myself to the leading contribution enhanced by the

 

3This scale, 41w ~ 3 TeV, is only meant to indicate the typical cutoff scale. It is equally probable

to have, say, A = 1 TeV.
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top quark mass, i.e., of the order of (m? In A2).

Inserting these nonstandard couplings in loop diagrams and keeping only the linear

terms in it’s, one finds

 

 

 

zx = 1+ 12:2; (2nfic—2K§C)In:—:,,

Zd’ = 1+igr—Zlingc £1; ,

Z]; = 1 — 162:2)? (652C — 4KEC + n20) 1n g;- . (4.80)

Thus the nonstandard contributions to p and 1' are

 

 

- 3Gpm? CC NC NC A2

which agree with my previous results obtained in chapter 3.

4.6 Conclusions

In chapter 3, I performed a one-loop level calculation of the leading quadratic mt

corrections by considering a set of Feynman diagrams, derived form the nonlinear

chiral Lagrangian, whose external lines were the massive gauge boson lines. The

leading corrections (in power of 172,) to the low energy observables were found not to

vanish in the limit of vanishing g (the weak coupling) because they originate from

strong couplings to the SSH sector, e.g., through large Yukawa coupling 9,. Therefore,

the result in chapter 3 should in principle be reproduced by considering an effective

Lagrangian which involves only the scalar (the unphysical Goldstone bosons and
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probably the Higgs boson) and the top—bottom fermionic sectors. This was shown in

Section 4.3. I discussed how to relate the two corresponding sets of Green’s functions

for the low energy observables of interest. I showed that by considering a completely

different set of Green’s functions (without involving any external gauge boson line)

from that discussed in chapter 3, I obtained exactly the same results. My result for

T is different from that given in Ref. [101] where the wave function correction to the

bottom quark was not included.



Chapter 5

A Model of Strong Flavor

Dynamics for the Top Quark

5.1 Introduction

In chapter 3, I discussed a phenomenological model in which new physics appears

in the top quark interaction with the gauge bosons. In that phenomenological model

I did not specify an explicit dynamics which triggers the top quark nonstandard

couplings. In general, these couplings could be due to different dynamical models,

e. 9., extended technicolor models, models with extra gauge bosons, etc. In this chap-

ter, I construct a specific model which triggers the top quark nonstandard couplings.

It also leads toiother interesting physics at low energy. Therefore, one has to study

all of the aspects and effects of the model at low energy.

The construction of this model is based on the theoretical observation of the hier-

archy of the fermion mass spectrum. The relatively large mass of the third generation

of fermions may suggest a dynamical behavior for the third generation different from

that of the first two generations. In this model, the third generation undergoes a dif-

ferent flavor dynamics from the usual weak interaction proposed in the SM. I assume

this flavor dynamics to be associated with a new SU(2) gauged symmetry. Therefore,

a new spectrum of gauge bosons emerges in this model. No modifications to QCD

150
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interactions are considered here; this case has been discussed elsewhere [110].

5.2 The Model

The model is based on the flavor symmetry G: SU(2), x SU(2);, x U(1),» . Where

the third generation of matter (top quark, t, bottom quark, b, tau lepton, 7', and its

neutrino, 11,.) experience a strong flavor interaction, instead of the weak interaction

advocated by the SM. On the contrary the first and second generations only feel the

weak interaction supposedly equivalent to the SM case. The strong flavor dynamics

is attributed to the SU(2);, symmetry under which the left-handed fermions of the

third generation transform in the fundamental representation (doublets), while they

remain to be singlets under the SU(2), symmetry. On the other hand, the left-handed

fermions of the first and second generation transform as doublets under the SU(2),

group and singlets under the SU(2),, group. The U(1)y group is the SM hypercharge

group. The right-handed fermions only transform under the U (1),» group as assigned

by the SM. Finally the QCD interactions and the color symmetry SU(3)C are the

same as in the SM.

The symmetry breaking of the Lie group G into the electromagnetic group U(1)....”

is a two stage mechanism, first SU(2), x SU(2)), x U(1)y breaks down into SU(2)L x

U(1)y at some large mass scale. The second stage is where SU(2)L x U(1)y breaks

down into U(1)em at a scale of the order of the SM electroweak symmetry-breaking

scale. The spontaneous symmetry-breaking of the group SU(2); x SU(2);, x U(1)y is

accomplished by introducing two scalar matrix fields 2 = a + Mar“ 1 and <I> with the

transformations

2 ~ (2,2)0 , <I> ~ (2,1)1 , (5.1)

l

 

1"”3 are the Pauli matrices and Tr(‘r°1'°) = 260b-
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i.e., the 2 field transforms as a doublet under both SU(2), and SU(2)), and as a

singlet under U(1)y. On the other hand the Q field transforms as a doublet under

SU(2)), as a singlet under SU(2),” and has a hypercharge quantum number Y = 1.

Thus, the scalar doublet Q is equivalent to the SM Higgs doublet. However, as to be

shown later, the Yukawa sector is different.

As a realization of the symmetry I define the field transformations as

2 '4 .9129; a ‘1’ —’ 9193/4) , (5-2)

where 91 6 SU(2)), 92 E SU(2);,, and 9}» E U(1)y. In this section I discuss fully the

structure of this model.

5.2.1 The Bosonic Sector

Under the gauged SU(2), x SU(2) h x U(1)y , I introduce the covariant derivatives

of the scalar fields,

D”2 = am + ig,W,"E — ighzwg , (5.3)

DWI) = aw +ig1W,”Q + gg'Bpo , (5.4)

where the gauge boson fields W} :— IV,“T° /2 and W), E Wf'r“/2 corresponds to the

gauged groups SU(2), and SU(2);,, respectively. The gauge coupling 9;, is assumed to

be larger than g; even though I will restrict myself to the region where the perturbative

calculation still holds.

With these definitions, the gauge invariant bosonic Lagrangian is

.63 = gppqfipflo + imppztpflz) + V(Q, 2)

1 a a 1 a a 1

_ZW’ ”W: ” - ZWhpWh” — 113qu , (5'5)
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where V(Q,E) is the scalar potential. I assume that the first stage of symmetry

breaking is accomplished through the 2 field, i.e. by acquiring a vacuum expectation

value u,

(2) = (g 2) . (5.6)

Hence the symmetry SU(2); x SU(2)), x U(1)y is broken into the diagonal group

SU(2)L x U(1)y , and the symmetry-breaking scale is set by the vacuum expectation

value u. The next step is to break the SU(2)], x U(1),» symmetry into the U(1)em

symmetry through the scalar Q field, i.e. by acquiring a vacuum expectation value v.

<<I>> = (0) . (5.7)

where v, as we will see later, is of the order of the SM symmetry-breaking scale.

Because of this pattern of symmetry breaking, the gauge couplings are related to the

U(1)em gauge coupling 6 by the relation

1

—=—2+'—2'+—. (5'8)

Here I define

e e , e

=-.—— gh=.—-.— g =

srn0cos¢ ’ smflsmgb ’ cosfl’

 

91 (5.9)

where 0 is the usual weak mixing angle and (b is a new parameter in this model. The

scalar fields, except Re(¢°) from the Q doublet and a from the 2 matrix field, become

the longitudinal components of the physical gauge bosons. The surviving Re(¢°) field

behaves similar to the SM Higgs boson except that it does not have the usual Yukawa

couplings to the third generation.

To get the gauge boson mass eigenstates, I first concentrate on the charged gauge

bosons. As a first step I rotate the gauge fields by the angle <25.

W?” = cos ¢Wfp + sin 43ny , W?” = — sin ¢Wfp + cos ¢W§kp , (5.10)
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where I’Vf” = (VI/,1“ ¥ iW,2p)/\/§, and similarly for Whiu. The mass matrix reduces

to

1 -tan¢

M‘2‘,=Mg (-—tan¢ m+tan2¢) a (5.11)

where

2 2 2

2: 8'” :9. 512
Mo -m x- (- >

Next I consider the neutral sector W12, W112» and B“. Define

W13p = cos 0(cos (WI/,3” + sin ¢W,?”) — sin 08,, , (5.13)

A, = sin 0(cos ¢W,3p + sin 451fo) + C0893”, (5.14)

and

W23” = — sin ¢W,3p + cos (pH/,1?” . (5.15)

The gauge field A” is massless, corresponding to the physical photon field, while the

remaining fields have the mass matrix

 

M3 1 2—cosOtan45

2 __ :ccos 0 2 2
z — c0320 (—cos€tan¢ m+cos Otan <15) . (5.16)

To get the mass eigenstates and the physical masses of the gauge bosons, I further

diagonalize the mass matrices M3,, and Mg. In this model, I am concentrating on

the case where g). > g1, (equivalently tanqfi < 1) but with g}: _<_ 47r (which implies

sin2¢ Z 92/(471’) ~ 1/30) so that the perturbation theory is valid. Similarly, for

g), < 9;, we require sin2¢ S 0.96. Furthermore, I focus on the region where a: >> 1,
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though another region of interest could be :1: ~ 1 (11 ~ v), but in this case the one-loop

level contributions due to the heavy gauge bosons should also be included because

they are of the same order as the SM one-loop contributions. In the limit a: >> 1, I

expand terms only up to the leading order in 1/1'. Thus, in dealing with this limit one

can ignore all higher order corrections, since they are suppressed by higher powers of

1 /1:. To the order 1 /1:, the eigenstates of the light gauge bosons are

sin3 45 cos d)

W: = W?” + W3”, (5.17)

sin3 (1) cos (p

Z”=ZI"+ xcosfi
Z2” - (5.18)

While for the heavy gauge bosons one finds

- 3

WE: = —WWF’, + W?” , (5.19)

sin3 ¢cos¢

2:1:—W 1’, + Z2” . (5.20)

To the same order, the gauge boson masses are

 

 

' 4

M3,. = 1402(1— 3‘“ 15), (5.21)

M2 sin4 (b2 o _
M2 _ COS, 0 (1 x ). (5.22)

While for the heavy gauge bosons one finds

 

- 2
M2 I = 2 :1: sm qb

W i M0 (sin2 czbcos2 ¢ + cos2 45 ’ (5'23)

  

- 2
M2, = 2 :1: sm ¢ .

2 M0 (sin2 (bcos2 ¢ + cos2 45 (5'24)
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It is interesting to notice that the heavy gauge bosons are degenerate up to this order,

i.e., M’Z = erzt. This is due to the fact that the heavy gauge bosons do not mix

with the hypercharge gauge boson field, B“.

5.2.2 The Fermion Sector

Now I focus my attention on the fermionic sector. The quarks transform un-

der the usual color SU(3)C gauge group as in the SM. As discussed before, only

the third generation interacts with the SU(2)), gauge bosons. The first and sec-

ond generations only interact with the SU(2), gauge bosons. Explicitly, under the

SU(2); X SU(2);, x U(1))» symmetry, the transformation of the first and second gen-

eration is as follows

Left-handed quarks: (2,1)1/3 , Left-handed leptons: (2,1)-1

For the third generation, we have

Left-handed quarks: (1,2)1/3 , Left-handed leptons: (1,2)-1

For all the right-handed fermions, we have

Right-handed quarks and leptons: (1,1)Q ,

where Q is the electric charge of the right-handed fermions. Because of this assign-

ment, the model is anomaly free since cancelation of anomalies are satisfied family

by family. I denote left-handed doublets of the first and second generation by 29'”),

and right-handed singlets by ‘11)?) . On the other hand, I denote the left-handed dou-

blets of the third generation by Q2 and right-handed singlets by ‘11:}? The fermionic

Lagrangian is

L, = III—Z(l’2)i7"D,,\II(,3'2)+TP;(1’2)2'7”D,,\IIS§’2)+

\p—Li‘iyflppq’i + fi3i7”D,,\II%, (5.25)
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with

0,293) = (a, — 79,12:er — 7,7333”) 2‘33), (5.26)

072%” = (6.. “56285231”, (5.27)

0,511), = (6,. + £9.32:ng + ig'g-Bp) 1113,, (5.28)

Du‘P'le = (all + ig’QBp) Win (529)

where Y is the hypercharge generator of the U(1)y group, and the relation

Q = T,3 + T,‘,’ + 1;- (5.30)

is satisfied, where T311) is the third isospin component of SU(2);“).

In terms of the mass eigenstates of the gauge bosons W5", Z”, WLi, and Z; the

interaction Lagrangian is

sin2 ¢
 

Lint __ 8 W112)?” [II-Th +7711: + :1: 2 i - 2 (1.2) :t
f _sin0 (T,I cos ¢—T, srn 45)] \IIL Wp-l-

sin2 (1)

17

 5:02)?" [71,3 + T)? — Q sin2 0 + (cos2 <15T,,i — sin2 ¢T,*)] Wilma,

sin 9 cos 0

  

e —3 pp_sin¢ i cosqS i:__sin3<f>cos<j> i i 3 ,i

+sin0‘pL7 _ cos¢TI +sin¢Th :rcos20 (Th +T’) WLWH

  

 
L—s p '_sin¢ 3 cos¢ 3_sin3¢cos¢ 3 3_ ,2 3 ,

+sin0wl’ 7 L cosqb ' sing”) h xcos20 (Th +T’ ern 9) ‘I’LZH

° 2
. 3

—.' ”,- _ erm 0—-.' p,- _sm ¢cos¢ ,

+8Qf7 f A” sin0c030 ”7 f“ Z" xcosO Z” ' (531)

Now I consider fermion mass generation and mixing. The first and second gener-

ations acquire their masses through the Yukawa interactions to the Q doublet field,
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with < Q >= 1). The Yukawa Lagrangian is

_l e e

['Yukawa = ‘I’L <1) [911311 + 912”}! + gis’rlz]

__2 c e c

+ ‘I’L ‘1’ [921812 + 922HR + 923712] + h-C- (532)

For the third generation one can not generate the fermion masses through the usual

Yukawa terms (dimension four operators), as it is not allowed by gauge invariance.

It is only through higher dimension operators that one can generate these fermion

masses. This characteristic of this model may be significant in understanding the

fermion mass generation problem especially in understanding the observed mass hi—

erarchy. Thus, although the masses of the first and second generations are generated

through the Yukawa interactions as in the SM. The mass spectrum of third generation

must be generated by a different mechanism. This conclusion may be attributed, in

this model, to the strong flavor dynamics which may be evident at adequate high

energy. At high energy where the interactions are strong enough, the masses of the

third fermion generation are assumed to be generated possibly within some dynam-

ical framework. I do not offer an explicit scenario for such a picture, however, an

extended technicolor scenario may offer such a solution. The conclusion is that the

strong flavor dynamics may be an essential player in the mass generation mechanism

and an understanding of the strong dynamics at the high energy scale is required to

solve the mass generation issue. Also, the strong dynamics may be responsible for the

large masses of the third generation as compared to the first and second generations.

In this discussion, I limit my self to the region where the strong flavor interaction is

being under a perturbative control. Effectively, one can generate the third generation

masses using dimension five operators, e.g., for the 1' lepton one can generate its mass

through the following mass terms

1
AIfif’z‘lcp [931812 + 932MB + 933%] + h-C-a (5-33)
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where Q: = (”:)L, and A characterizes some large mass scale associated with the

strong flavor interaction. It is reasonable to assume that A ~ it >> 12, and thus 933 is

of order 1. An early version of the model Ref. [111] with an additional scalar doublet

couples only to the third generation through the usual Yukawa interactions is another

scenario for generating the third family masses.

With the fermion mass matrices being generated, one can obtain their physical

masses by diagonalizing the mass matrices using bilinear unitary transformations. For

example, for the lepton sector, the lepton mass matrix M, can be read out from the

mass Lagrangian written above in Eqs. (5.32) and (5.33). I introduce the rotational

unitary matrices L, and R, with the transformations,

e}, —> Lifei, e), —+ 72:14,. (5.34)

Hence, the physical mass matrix is given by

M3‘%- = LLMCRC. (5.35)

Because the third family interacts differently form the first and second generation, I

expect in general Flavor Changing Neutral Currents (FCNC) may occur at tree level.

For example, in terms of the leptonic weak eigenstates the left-handed neutral and

charged currents are given by

  

   

___—e — — — . sin4 sin2 8L

23in0cosl9 ( 8L “L TL )7” [-1+281n26+ a: d) — x ¢G] “L Zn, (536)

TL

and

e __ _ __ sin4¢ sin2¢ V‘L

fisin0(e L L )7” [1— a: + :1: G] ”FL Wpi’ (5-37)
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where

000

0:000. (5.38)

001

In terms of the fermion mass eigenstates it follows that the left-handed neutral

current interactions are

. 4 2 8L

e (51:71?fi)7”[-1+2sin20+Sl:¢-SinLLIGLeI‘](L)Zu-
2 sin 0 cos 0 TL

 

(5.39)

For the left-handed charged current interactions, one has

  e (tr—r) P1—Si"4¢+5in2¢L;GL 56L W’+hc (540)
fisin0 LLL L 7 a: "L “ H '3.?

”TL

For the neutrino sector, the neutral currents are

  

2 sin9cos€

- 4 2 Va].

6 (1722173375)7”[1-81:¢+ sinxLLLIGL](V”L)Z,,. (5.41)

VTL

Similarly, for the quark sector I introduce the unitary matrices L” and L4, in terms

of the mass eigenstates one finds the following interaction terms:

 

.4 2 UL

. ()1_WW)2“
2sin9cos€ :r t

L

(5.42)

  

. d

‘9 (___) F (1-5“‘4¢)L*L+ 8‘“¢LLGL L W’+hc
fisinfl L L L 7 I " L+ d p H,

3
0
a
.
.
.
)
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and

. . d

e — _ — 2 . sm4¢ sm2¢ L

28in0c080( L 3L LL )7#[_1+ ~3-s1n20+T — a: LLGLL] ( :L Zu-

L

The right-handed fermion couplings to the neutral gauge bosons Z and Z’ are,

respectively,

e

sin 0 cos 0
(—Q sin2 0) , (5.45)

and

sin3 ¢cos¢> . (5.46)e , 2

— 9

sin0 (Q srn xc0820

The fermion couplings to the photon are the usual electromagnetic couplings. As

shown above, if g), > 9, then the heavy gauge bosons would couple strongly to the

third generation and weakly to the first two generations, and vice versa.

For the charged-current interactions in the quark sector, one observes that in the

case of ignoring the new physics effect, the quark mixing is described by the unitary

matrix V = LI,Ld which is identified as the usual Cabibbo—kobayashi-Maskawa (CKM)

mixing matrix. When new physics are turned on, the mixing acquires an additional

contribution proportional to sin2 (p/x. Since the ofl-diagonal elements in the CKM

matrix are small, one can approximate the quark mixing as

04 .2 .4 02

LL(1_smq§+sm ¢G)Ld 2 LlLd_sm¢+sm (LG

2: a: :1: a:

   

=v_  

° 4 ° 2
8111 $111<15 + d>

13 17

G. (5.47)

Interesting new features emerge in this model, e.g., lepton mixing is an exciting

possibility. In addition to that, neutrinos can mix through their weak interactions,
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making it an exciting feature that may be connected to the solar neutrino problem.

Quark mixing also has interesting features, e.g., FCNC are a possibility in the model

which could be investigated. However, the quark sector has more free parameters (to

describe the mixing) than the lepton sector which makes the analysis more tedious

and less predictive. Hence, I will not consider FCNC in the quark sector. For the

lepton sector, there are already significant constraints on lepton universality and

lepton number violation from the low energy data that one has to check against

from the start. First, one must examine the already existed data on lepton number

violation to see if such mixings are allowed. As an example is the almost vanishing

branching ratio of the process F),- _,c—e+e- which forbids any mixing between the first

and second generation. Other lepton number violation processes, especially those

involving the third family, are not as severe as I‘p—_,e—.,+¢—. In the next section, I will

discuss in more details the constraints imposed by the low energy data.

5.3 Low Energy Constraints

As discussed in chapter 1, the input parameters of the SM 0, Gp, and Mg are

defined through three experimental measurements, e.g., through the e-p scattering,

the p decay, and the Z peak at LEP. Similarly, one needs to fix the input parameters

in the proposed model. The input parameters can be chosen as a, Gp, M2, sin 03,

and 1:. I fix the first three parameters in a similar way to the SM case. The last

two parameters will be treated as free parameters to be constrained through the low

energy data. It is advantageous to express the input parameters in this model in

terms of their corresponding SM ones. In the case of the electromagnetic coupling

both values coincide, i.e., a = as”. In the case of weak coupling constant I use the

p decay to define Gp. I calculate the p-decay width as predicted in this model and
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including the W and W’ contributions. I find that Gp = G?“ (equivalently v = vs“)

as long as one demands no mixings between the first and second lepton families (see

below). Finally, I define M2 using the Z peak at LEP, i.e., M2 = M2”.

Now, one can write other bare parameters in the proposed model in terms of the

input parameters. For example consider Eq. (5.22)

' 4

Mz ——3'-’—— (1 - 8’“ d’) . (5.48) 

= 2 sin 0 cos 6 2:1:

In the SM, Mz can be written as

6’0

 

Z = 2sin05M cos 05M ’ (5°49)

where sin 03M is the SM weak mixing angle. Since Mz is defined in both the SM and

the proposed model through the Z peak at LEP, one concludes that

 

 

  

+L _ 29:2 ___ , 6v , (5,50)
2 snn 0 cos 0 2a: 2 sm 03M cos 93M

One finds that

sin4 4)

2sin9cos€ = 25in 63M cos 03M (1 — 2x ) . (5.51)

Hence, solving for sin2 0 = 1 — cos2 0 in terms of sin2 03M, one finds that

20 - 4 .

sin20 = sin2 95M 1 — COS sm d) . (5.52)

cos 26 SM .7:

Therefore, observables can be predicted in the proposed model using the the input

quantities a, G)5, M2, and sin2 03M. (The values of these quantities are given in

chapter 1.) In addition to those quantities one has two additional free parameters

sin2 55 and 0:.

As previously discussed, lepton mixing is an interesting consequence of this model.

However, the almost null measurement of p —§ e‘e+e‘ forbids any mixing between
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the first and second lepton families. Still mixing may be allowed to exist between the

third family and either the first or the second one. It is natural to assume that the

mixing strength between leptons may be directly related to the lepton masses. If so,

one would expect the mixing between the second and the third families to be more

significant than the first and the third families. In the following discussion, I will

assume that in the case of leptons, mixing will be only between the second and the

third families. Because the mixing matrix is of the form LlGLe, where the matrix

G is given in Eq. (5.38). One finds that the mixing matrix for the second and third

lepton families can be expressed by one free parameter. The 2 x 2 mixing matrix can

be written as

( sin2 ,6 cos B sin fl) ,
(5.53)

cos 3 sin 6 cos2 6

where sinfl is a free parameter of the model for describing the mixing between the

second and third lepton families.

To test this model by the low energy constraints on lepton mixing and FCNC

processes, it is necessary to understand the form of the four-fermion current-current

interactions at zero momentum transfer. The four-fermion charged-current weak in-

teractions are [112]

2 . . 2 .

5501 + 11:)? + 0333’ (554)

and the neutral current four-fermion interactions are

2 .3 .3 o 2 . 2 2 .3 . 2 . 2 o 2

55(3) +]h — sm 03m) + $50,, — srn cpsm 9.7m) , (5.55)

where j”. are the left-handed charged currents corresponding to the first two genera-

tions and the third generation, respectively. Similarly, jg), refers to the left-handed T3

currents, while jem represents the full electromagnetic current of the three families. I
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conclude that if there is no mixing in the lepton families then all leptonic decays are

identical to the SM, e.g., the T lifetime can not furnish any new information about

this model. (This also explains why Gp = 0%” from the u-decay if there is no mixing

between the first and second lepton families.) However, it is more general to allow

mixing in the leptonic families, so I will investigate this possibility more carefully. Be-

cause of the almost vanishing branching ratio of the decay I‘(,,-_,,—¢+,-), BR 5 10‘12

[9], I will only allow mixing of T and p and their neutrinos. This mixing will mod-

ify the lifetime of the T lepton, which depends on one free parameter, sin2 H. The

constraints on sin2 3 come from: the ALEPH measurement (in terms of the effective

couplings ratio gr/gp, cf. Table 5.1) of the branching fraction for T decay into p

and the determination of the T lifetime [113], the lepton number violation decay of

T —) mm, with a branching ratio BR < 4.3 x 10’6 (at 90% CL.) [9], and the FCNC

search at LEP with BR(Z -> piTT) < 1.7 x 10'5 (at 95% CL.) [114]. Figure 5.1

shows the Feynman diagrams for the process T —) pup. At zero momentum transfer

both diagrams are of equal importance. One finds that

- 2 2 2

I‘(,.-_,,,-,,-,,+) = I‘(,__,,,—,,rpu)sm 5:208 fl (sin flz - 45in2 03in2 (b) . (5.56)
 

All other fermionic processes at zero momentum transfer, such as the p decay, K-T{.

mixing, and B-3 mixing, are identical to the SM predictions.

In this model, the low energy predictions depend on the values of l/x, sin2 d),

and sinzfl in addition to the measured values of a(Mz), Gp, and Mg. Using the

most recent LEP measurements [12] (the total width of the Z boson, Re, R”, R.” the

vector gv and axial-vector gA couplings of e, the ratios gv(p, T) /gv(e), gA(p, T) /gA(e),

the lepton forward-backward asymmetries, the T and e polarization asymmetry, the

hadronic pole cross section 02, and the ALEPH measurement of g.,/gp [113]) combined

with the FCNC measurements of T‘ —) p'p‘u” and Z —+ [.l—T+, I determine the
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(b)

  
Figure 5.1: The Feynman diagrams for the process T —> ##4#-



167

allowed values of sin2 ()5, sin2 ,3, and M2,. I do not include the controversial observables

Rb and Rc as a part of the fit. Instead, I treat them as a prediction and discuss later

whether the proposed model is able to explain the anomaly in these measurements.

The experimental values of the electroweak observables [12] and their SM prediction

[30] are given in Table 5.1.

I calculate the changes in the relevant physical observables relative to their SM

values to leading order in l/x, i.e.,

0 = 0SM (1 + 60) , (5.57)

where 0SM is the SM value for the observable 0 including the one-loop SM correction,

and 60 represents the new physics effect to leading order in 1 /:1:. I list the calculated

observables as follows,

[‘2 = 1‘3“ (1+ % {—0.896sin4 as + 0.588 sin2 6]) , (5.58)

RC = REM (1 + i [0.0794 sin4 (15 + 0.549 sin2 96]) , (5.59)

Ru = Rf,” (1+ i- [0.0794 sin“ 6 + 0.549 sin2 ¢ — 2.139sin2 651112 42]) , (5.60)

R, = R§M (1 + :1; [0.0794 sin4 (b + 0.549 sin2 65 — 2.139 cos2 flsin2 43]) , (5.61)

3.3 =( 7.3)“ (1 + g [10.44 sin4 ¢]) , (5.62)

1152.3 = (1163)“ (1 + :- [10.44.6114 d> + 1214511266612 ¢]) , (5.63)

F's = (21:58)SM (1 + % [10.44 sin“ (25 + 12.14 costlflsin2 66]) , (5.64)

Ac = AEM (1 + 213 [5.22sin4 ¢]) , (5.65)
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A, = A?“ (1 + :1; [5.22 sin4 ¢ +12.14cos2 6sin2¢]) , (5.66)

02 = (absM (1 + :3 [-0.013in4 d) — 0.628 sin2 (12]) , (5.67)

MW = M3,,“ (1 + g [1 + 0.215 sin“ ¢]) , (5.68)

SM ' 1

9.“: = (9;) (1+ - [0.50sin26cos26]) , (5.69)

9;: 9p 3

_ __ _ + sin2flcoszfl ,2 '26 _ 2 2

BR(T —-) p )u u ) = 0.045——x2—-—(s1n fl — 43m sm ()5) , (5.70)

sin2 ¢sin )6 cos )6 2

I‘(z_,y-T+) = 0.167 G6V( a: ) . (5.71)

In Figure 5.2 I show the fit result, at the 30 level, of the Z’ mass as a function of

sin2 d), for a, = 0.125 and for three values of the mixing parameter sin2 6 = 0 (dashed

line), 0.5 (dot-dashed line) and 1 (solid line). In the case of sin2 6 = 0, I find a lower

bound on M2: approximately 1.1 TeV. For sin2 6 = 1, Mz: is approximately 1.4 TeV.

For sin2 ,3 = 0.5, Mz: is required to be larger for smaller sin2¢ (< 0.1) due to the

strong constraint from the lepton number violating process T —) mm (see Eq. (5.70)).

As shown in Figure 5.2, as sin2¢ increases the lower bound on M2: increases, and

increase in M2' is slow for sin2 (b < 0.5 and fast in the other case. This indicates that,

a relatively light Z’ prefers strong interactions with the third family fermions. If I

consider a 20 fit, then the lower bound on Mz' is about 1.4 TeV for sin2 6 = 0 and 1.8

TeV for sin2 6 = 1. In Figure 5.3 I show the fit result, at the 30 level, For a, = 0.115

I find that My 2 1.3 TeV for sin2fi = 0 and My 2 2.2 TeV for sin2fl = 1. In

Tables 5.1 and 5.2 I calculate the low energy predictions in the model understudy for

different choices of sin2 (b, :13, sin2 )6 = 1, and for two values of as, 0.125 and 0.115,

respectively.
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Figure 5.2: The lower bound on the heavy Z' mass as a function of sin2¢ for 3a,

sin2 6 = 0 (solid) and sin2 6 = 1 (dashed) and a, = 0.125
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Figure 5.3: The lower bound on the heavy Z’ mass as a function of sin2¢ for 3a,

sin2 )6 = 0 (solid) and sin2 [3 = 1 (dashed) and a, = 0.115.
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As discussed in chapter 1, the LEP measured quantities R5 = I‘b/I‘h and Re =

I‘c/I‘). are not consistent with the SM prediction. One possibility to explain the

anomaly in these quantities is to consider new physics which can affect the b and

c quarks’ couplings to the Z boson. The question now is whether this model is

able to give any insight regarding these measurements. The observed value R?“ =

0.2219:l:0.0017 [12] is higher than the SM value R2“ = 0.2157 [30] by about 3.50. On

the other hand, R?“ = 0.1543 j: 0.0074 is smaller than the SM value R?“ = 0.1721

by about 2.50. With the allowed region of the parameter space being determined,

I investigate which part of the allowed space is able to explain the anomaly in R5.

Because the measured value of R5 is different from the SM value by more than 30, I

expect to be able to constrain the smallest and largest Z’ mass by requiring that the

new physics effect shifts the theoretical value of R5 to be within the 30 range of the

measured value. In this model, Rb is given by

1

R5 = REM (1 + ; [—0.01495in4 (b + 1.739 sin2 05]) . (5.72)

Ignoring the negligible sin4 (0 term, one finds

 

Rb - REM _ sin? ¢

Rf“ — (1.739 a: . (5.73)

Since Mg, 2: Mam, the Z’ mass can be constrained to be

462 < Mz: 00305 < 1481 GeV. (5.74)

Thus, if I assume the anomaly in R), is mainly due to this type of new physics,'then

there is an upper bound on M2' which depends on the gauge coupling (equivalently

sin (b). For example, for sin2¢ = 0.04, the upper bound (which is independent of

sin2 [3) on M2: obtained from R), is ~ 1.5 TeV.
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For Re I find that the new modification to the SM model shifts R, in the correct

direction, i.e. it decreases the theoretical value as desired. I find

Rc = REM (1 + 31:- [0.038 sin4 45 — 0.549 sin2 05]) . (5.75)

However, the amount of shift is very small to account for its anomaly, e.g., with the

lower bound on the heavy mass coming from 1.1 TeV, I find that the theoretical value

of RC is still outside the 20 range of the measured value.

From these results I conclude that this model can account for the deviation in

R), from the SM at the 30 level. Even though RC is shifted in the needed direction,

the predicted value is still outside the 20 range of the data. Therefore, one cannot

explain the anomaly in Rc entirely based on the proposed model. Also, in this model

the prediction of the observable Am is identical to that of the observable A,. Thus,

this model cannot explain the discrepancy between the the SLC measurement ALB =

0.1551 :1: 0.0040 and the LEP measurement A. [30].

5.4 High Energy Experiments

LEP was operating at the Z-pole with large production rates, it is therefore un-

likely to better test this model at other high energy colliders at the scale of Mz. I

have checked that the allowed parameters in Figures 5.2 and 5.3 do not upset the

measurements of W:t and Z properties at the Tevatron by CDF and D0 groups

[115]. To study the possible effects due to the heavy W’ and Z’ bosons, I will con-

centrate on physics at energy scales larger than Mz. In this study, the interference

effects from A (photon), Z and Z’ in neutral channels and the interference of W and

W’ in charged channels are all included. To simplify the discussion, I will consider

two sets of parameters for (:6, sin? <1), sin2 6) : (7,0.04,0) and (20.6,0.14,0.5) which cor-

respond to (Mz:,I‘z:) equal to (1083,291) GeV and (1050,76) GeV, respectively. The
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conclusions, however, will not significantly depend on the details of the parameters

chosen from Figures 5.2 and 5.3.

At the Tevatron, it is possible to reach the high energy region where the W’ or

2’ effects can be important. CDF has reported the result of searching for new gauge

bosons by measuring the number of excess di-lepton events with large transverse mass

[116] or invariant mass [117]. I find that those results do not further constrain the

parameters shown in Figures 5.2 and 5.3. For the Tevatron with Main Injector (a

pp collider at J5 = 2 TeV with a 2fb"l luminosity), the excess in the e"e+ or e+ue

rates from this model is generally not big enough to be easily observed. Since the

third family leptons can strongly couple to the new gauge bosons, the rate of T lepton

production can in principle be quite different from that of e or u. Furthermore, if

sinfl is not zero, the production rates of pp —+ W, W’ —> (V; or pp -) 7, Z, Z’ —+ (2-

will be different for E = e and )1. However, even with the maximal mixing between T

and p (i.e., sin 6 = 1) this difference at the Tevatron can only exceed a 30 effect for a

10 fb'1 of integrated luminosity. At the LHC (a pp collider with J3 = 10 TeV and a

luminosity of 100 fb-l), this excess cannot be mistaken. Furthermore, at the LHC, the

excess in the production rates of the (V; and the (“‘8‘ events can also be individually

tested. Thus, it is much easier to either find such new effects or constrain parameters

of the model at the LHC than at the Tevatron. I note that this conclusion holds for

either a small or large sin2 (1). Although with a large sin2 4), the new physics effects to

light family fermions will be large, because of the large W’ and Z’ masses, the net

effect of the new physics to the production of di-lepton pairs does not significantly

depend on sin2 ¢.

Another signature of the model is an excess in the top quark production, however,

this excess cannot be observed at the Tevatron because of large background from the

QCD processes qq, gg —) tf. At the LHC, the excess in the tt_ pair productions can
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easily be seen in the invariant mass distributions. The extra gauge bosons can produce

an excess of di-jet events in the large invariant mass region, but the parameter space

remaining after imposing low energy constraints does not allow a big enough effect

to explain the results reported by CDF [32].

Another possible interesting signature is the production of 11in pairs, which is

unconstrained by current LEP data. At the Tevatron for (:1:,sin2 (13,sin2 6) equal to

(20.6,0.14,0.5), the most favorable scenario for observing this signal, I find a total of

about 20 events for 2 fb"1 of integrated luminosity, assuming no cuts are imposed. It

is interesting to notice that this implies that the upgraded Tevatron can provide a

better constraint on this FCNC type of event than LEP can. At the LHC, the cross

section is 170 fb for this choice of parameters.

At high energy electron colliders, the detection of the above new signatures be-

comes much easier as long as there are enough of them produced in the collisions.

In this model, neither LEP140 or LEP-II can see them, so I will concentrate on the

future high energy Linear Collider (LC) [118]. Consider the proposed e+e" LC at

center of mass (CM) energy \/§ 2 500 GeV with an integrated luminosity of 50 fb'l.

For m. = 175 GeV the SM production rate Oiyc__ui) is 558 fb. Thus, a large number

of t-f pairs is expected at the LC. Considering the set of parameters (0:,sin2 <f>,sin2 fl)

= (7.0,0.04,0.0), I find that 0(e+,-_,,;) = 709 fb, i.e. there is about 27% increase in

the total production rate compared to the SM. At the LC it is expected to measure

the t-f cross section, for f’ + jets decay modes, to within a few percent. With the

assumption that the expected measurement is within 3 standard deviation from the

SM, one can constrain the parameters to those which produce Mz; 2 2.3 TeV. I note

that the same constraints hold for different choices of sin2 4‘) and :1: but with almost

the same ratio sin2 ¢/:r, especially for small sin 43, since in the cross section the two

parameters enter as a ratio. Because only the left-handed couplings of the top quark
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are significantly modified in this model, measuring the angular distribution of t in

the t-f CM frame can further improve these bounds if no new signal is found.

Although the e+e‘ LC is suitable to probe the model under study, I notice that

the pflu‘ collider is also interesting because of the possible mixing between p and T

leptons. For small mixing the e+e" and the pflr" colliders lead to similar production

rates as expected. For large sinfl the total production rate of 0(”+”-_,,;) becomes

smaller than the SM rate which shows the opposite effect to the production of the

6+6" —) tf events predicted by this model. For the same reason, if sin2 ,6 = 1.0, then it

is easy to observe the difference in the production rates of 6"8+ and 11‘[1+ (or T+T")

pairs at the LC. Furthermore, at the LC, if the FCNC event e‘e+ -) piT“ occurs, it

can be unmistakably identified. For a 500 GeV LC with a 50 fb’1 luminosity, I expect

an order of 300 such events to be observed for (:6, sin‘2 (0, sin2 6) equal to (20.6,0.14,0.5).

Figure 5.4 shows the FCNC event numbers at the LC for a few choiCes of parameters,

assuming no cuts are imposed.

In summary, I find that due to the strong constraints to this model implied from

low energy data (including Z—pole data) it is not easy to find events with new signa-

tures predicted for Tevatron or LEP-II. However, at the LHC and the LC, it becomes

easy to detect deviations from the SM in the productions of the third family or second

family (in case of large mixing between T and p lepton) fermions. I have also checked

the possible excess in the W+W‘ or the WitZ productions at future high energy

colliders. It turns out that the branching ratios for Z’ or W’ to the pure gauge boson

modes are always small. One finds

ezMzt sin6 <f>cos2 45 Mg.
’ W+W" z .

NZ —> ) 1927rsin29 :62 Mil,

 (5.76)

Therefore, the gauge boson pair productions are not good channels for testing this

model.
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In the process of preparing for this paper, I noticed that another similar work

appears in Ref. [42]. My conclusions on the allowed parameters of the model and

the predictions on the event yields for electron or hadron colliders are different from

theirs. Also, I became aware of a work done in Ref. [43], in which a similar model

was proposed and studied using the low energy data.

 



178

Table 5.1: Experimental and predicted values of electroweak observables for the SM

and the proposed model (with different choices of parameters) for a, = 0.125 with

m. = 175 GeV and my = 300 GeV.

a: sin? 6 = 0, sin2 6 = 0.04, M; = 1.1 TeV, 1", = 288 GeV.

b: sin2fl = 1, sin2 45 = 0.04, M’z = 1.4 TeV, F’z = 370 GeV.

c: sin? 6 = 0, sin2 6 = 0.80, M'Z = 3.0 TeV, 1",, = 287 GeV.

(1: sin2 6 = 1, sin2 6 = 0.80, M5, = 3.3 TeV, r' = 316 GeV.

 

 

 

 

 

       

I Observables Expe'rimental data SM The model

a b c d

gv(e) —0.0368 :l: 0.0017 -0.0367 -0.0367 -0.0367 ~0.0372 -0.0371

gA(e) —0.501 15 :l: 0.00052 -0.5012 -0.5012 -0.5012 -0.5005 -0.5006

gv(p)/gy(e) 1.01 :l: 0.14 1.00 1.00 1.05 1.00 1.04

gA(p)/g,4(e) 1.0000 :L- 0.0018 1.0000 1.0000 1.0034 1.0000 1.0030

gV(T)/gv(e) 1.008 :l: 0.071 1.000 1.073 1.000 1.047 1.000

gA(T)/gA(e) 1.0007 :1: 0.0020 1.0000 1.0055 1.0000 1.0036 1.0000

[‘2 2.4963 2!: 0.0032 2.4978 2.5054 2.5025 2.4967 2.4969

R, 20.797 :1: 0.058 20.784 20.848 20.823 20.830 20.822

Ru 20.796 :h 0.043 20.784 20.848 20.671 20.830 20.690

. R, 20.813 :l: 0.061 20.831 20.648 20.870 20.717 20.869

02 41.488 i 0.078 41.437 41.293 41.348 41.343 41.359

Ae 0.139 :l: 0.0089 0.1439 0.1441 0.1440 0.1461 0.1457

A, 0.1418 :l: 0.0075 0.1439 0.1537 0.1440 0.1523 0.1457

A53 0.0157 :l: 0.0028 0.0157 0.0157 0.0157 0.0162 0.0161

A53 0.0163 :1: 0.0016 0.0157 0.0157 0.0164 0.0162 0.0167

A53 0.0206 :1: 0.0023 0.0157 0.0168 0.0157 0.0169 0.0161

g,/g,, 0.9943 :l: 0.0065 1.0000 1.0000 1.0000 1.0000 1.0000

R5 0.2219 :l: 0.0017 0.2157 0.2178 0.2170 0.2170 0.2168

R6 0.1543 :l: 0.0074 0.1721 0.1716 0.1718 0.1718 0.1718

MW 80.26 :h 0.16 80.32 80.32 80.32 80.37 80.36

A“; 0.1551 :1: 0.0040 0.1439 0.1441 0.1440 0.1461 0.1457
 

 

 



179

Table 5.2: Experimental and predicted values of electroweak observables for the SM

and the proposed model (with different choices of parameters) for a, = 0.115 with

'm.‘ = 175 GeV and my = 300 GeV.

a: sin? 6 = 0, sin2 6 = 0.04, M3, = 1.3 TeV, 1", = 343 GeV.

b: sin2 6 = 1, sin? 6 = 0.04, M’z = 2.1 TeV, I"Z = 562 GeV.

(2'. sin2 6 = 0, sin? 63 = 0.80, M’z = 3.0 TeV, I" = 287 GeV.

(1: sin2 B = 1, sin2 (6 = 0.80, M’Z = 4.5 TeV, I" = 430 GeV.

 

 

 

 

 

   

[ Observables Experimental data SM The model

K a b c d

gv (8) —0.0368 :l: 0.0017 -0.0367 -0.0367 -0.0367 -0.0372 -0.0369

gA(e) -0.50115 2t 0.00052 -0.5009 -0.5012 -0.5012 -0.5005 -0.5009

gv(p)/gv(e) 1.01 :l: 0.14 1.00 1.00 1.02 1.00 1.02

gA(p)/g,,(e) 1.0000 :1: 0.0018 1.0000 1.0000 1.0015 1.0000 1.0016

gV(T) /gv(e) 1.008 :1: 0.071 1.000 1.053 1.000 1.047 1.000

gA(T) [9,,(6) 1.0007 :1: 0.0020 1.0000 1.0040 1.0000 1.0036 1.0000

I‘z 2.4963 :1: 0.0032 2.4922 2.4977 2.4943 2.4911 2.4917

Rc 20.797 :1: 0.058 20.716 20.761 20.733 20.762 20.736

Ru 20.796 :t 0.043 20.716 20.761 20.666 20.762 20.666

R, 20.813 :1: 0.061 20.762 20.631 20.779 20.649 20.782

0]), 41.488 :t 0.078 41.490 41.387 41.450 41.395 41.448

A, 0.139 :1: 0.0089 0.1439 0.1440 0.1440 0.1461 0.1449

A, 0.1418 :1: 0.0075 0.1449 0.1510 0.1440 0.1523 0.1449

A53 0.0157 :1: 0.0028 0.0157 0.0157 0.0157 0.0162 0.0159

A53 0.0163 :1: 0.0016 0.0157 0.0157 0.0160 0.0162 0.0162

A53 0.0206 :l: 0.0023 0.0157 0.0165 0.0157 0.0169 0.0159

g,/g,, 0.9943 :l: 0.0065 1.0000 1.0000 1.0000 1.0000 1.0000

R), 0.2219 i 0.0017 0.2157 0.2172 0.2163 0.2170 0.2163

R, 0.1543 in 0.0074 0.1721 0.1717 0.1720 0.1718 0.1720

MW 80.26 :l: 0.16 80.32 80.32 80.32 80.37 80.34   
 

 

 



Chapter 6

Discussions and Conclusions

Since the top quark is heavy, the top quark can be a window for new physics, either

from top quark decays to new objects, or from large radiative corrections. Because

of the heavy top quark mass, new physics will feel its presence easily and eventually

may show up in the effective top quark couplings to the gauge bosons. Furthermore,

since the top quark mass is of the order of the symmetry-breaking scale, the top quark

is likely to provide useful hints about the symmetry-breaking mechanism responsible

for generating the gauge boson masses and at least connected with the fermion mass

generation mechanism.

The main goal of this work is to browse through the low energy precision data

from LEP and SLC searching for possible new physics effects dominantly in conjunc-

tion with the top quark couplings to the gauge bosons. Constraining the nonstandard

couplings of the top quark provides an estimate for possible deviation in the gauge

universality advocated in the SM. Furthermore, if the deviation in the gauge univer-

sality for the top quark case is due to the symmetry-breaking mechanism, then the

measurement of and the correlation among the nonstandard couplings can be a direct

probe to the symmetry—breaking mechanism.

In chapter 3, I have applied the electroweak chiral Lagrangian to probe the non-

180
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standard couplings of the top quark to the gauge bosons using precision LEP data.

Assuming b-b-Z vertex is not modified, I found that nfc is already constrained to be

-0.05 < Kfc < 0.17 (0.0 < K2“: < 0.15) at the 95% C.L. for a 160 (180) GeV top

quark. Although K’A’C and KEG are allowed to be in the full range of :l:1, precision

LEP data do impose some correlations among 76,70, ngc, and KEG. (ng does not

contribute to the LEP observables of interest in the limit of m), = 0.)

Inspired by the experimental fact p z 1, reflecting the existence of an approximate

custodial symmetry, I proposed an effective model to relate 61,30 and 16550. I found that

the nonuniversal interactions of the top quark to the gauge bosons are well constrained

by LEP data, within 95% C.L. The constraints are summarized in Table 3.1 (see also

NC
Figures 3.6-3.10). Also, the two parameters KL = KNC and KR = K are stronglyL R

correlated where KL ~ 2K3.

I note that the relations among K’s can be used to test different models of elec-

troweak symmetry-breaking. For instance, a heavy SM Higgs boson (my > m,) will

modify the couplings t-t-Z and t—b—W of a heavy top quark at the scale m, such that

16]?C = 2nfC, mgC = -n’,‘,’c, and KEG = 0. Another example is the effective model

discussed in Ref. [95] where, REC = REC = 0. In this model the low energy precision

data impose the relation KQ’C ~ K’A’C. Also, the simple commuting extended techni-

color model presented in Ref. [59] predicts that the nonstandard top quark couplings

are of the same order as the nonstandard bottom quark couplings.

It is also interesting to note that the upper bound on the top quark mass can

be raised from the SM bound m, < 200 GeV to as large as 300 GeV if new physics

occurs. That is to say, if there is new physics associated with the top quark, it is

possible that the top quark is heavier than what the SM predicts.

Also, in chapter 3, I discussed how the present SLC measurement of Am can

 



182

contribute to the constraints imposed on the nonstandard couplings KQ’C, 5’50, and

KEG at LEP. I found that if one uses the LEP constraints to predict the new physics

contribution to the SLC measurement of Aug, then for the special model, 1|ch =

7650/2, it is possible to reconcile the LEP and SLC data at 95% C.L.

Undoubtedly, direct detection of the top quark at the Tevatron, the LHC, and the

LC is crucial to measuring the couplings of t-b—W and t-t-Z . At hadron colliders,

KEG and xfic can be measured by studying the polarization of the W boson from top

quark decay in tf events. They can also be measured simply from the production rate

of the single top quark event. The LC is the best machine to measure rc’g’c and nfic

which can be measured from studying the angular distribution and the polarization

of the top quark produced in e’e+ collision. Details about these bounds were given

in section 3.5.

In chapter 4, I present a theoretical frame work to extract the pure m, corrections

to low energy data in the chiral Lagrangian approach. I reproduced the results in

chapter 3 by considering an effective Lagrangian which involves only the scalar sector

(the unphysical Goldstone bosons and probably the Higgs boson), and the top and

bottom quarks. I discussed how to relate the two different approaches presented in

chapters 3 and 4. I showed that by considering a completely different set of Green’s

functions (without involving any external gauge boson line) from that discussed in

chapter 3, I recovered exactly the same result. The new frame work is useful and inter-

esting because first, it simplifies the whole process of calculating radiative corrections,

as it is much easier to work with sealers than with vector bosons. Also, this approach

is shown to clearly identify observables which are sensitive to the symmetry-breaking

sector of the electroweak theory. This is clear since only contributions independent

of the gauge structure survives.

In chapter 5, I present a self-contained model which demonstrates how the non-
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standard top quark couplings to gauge bosons can be generated. The model has a

very rich structure and significant implications at low and high energy scales. Using

the low energy data I discuss the possible constraints on the model. On the other

hand, the high energy colliders will provide further tests and demonstrate possible

new physics especially interesting FCNC processes.



Appendix A

Renormalization Schemes

In chapter 1, I discuss in details the Z-pole renormalization scheme and very

briefly mention few other schemes. In this appendix, I discuss to some extent different

renormalization schemes and possible relations among these schemes. As discussed in

chapter 1, to fix the low energy part of the SM one needs to specify three input quan-

tities, the light fermion masses, and quark mixing. Different choices correspond to

different renormalization schemes. The most common used renormalization schemes

include, the Z-pole scheme, the on-shell scheme, and the MS scheme.

At tree level the weak mixing angle can be written in different equivalent ways,

1 47m 1’2 M2 9’2
sin200=— 1—[1———9——] =1— W0: 0 . A.1

2 ( fiGFOMgo M20 902 + 96 ( )

  

Once radiative corrections are included all these definitions are are not satisfied si-

multaneously. One has to pick one of these definition for any specific renormalization

scheme.

0 The Z-pole scheme.

In this scheme, the input observables are chosen to be:

' — The electromagnetic coupling a = 82/477 measured from electron-proton

184
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(e-p) scattering in the limit of zero momentum transfer q2 —) 0 (Thomson

limit) [9]

0‘1 = 137.0359895(61). (A.2)

— The Fermi coupling constant 6'; measured from the muon lifetime 7'” [9]

06 = 1.166389(22) x 10-5 GeV'2. (A.3)

- The Z mass [12]

M2 = 91.1885 :t 0.0022 GeV. (A4)

The Z-pole scheme is simple and precise because the input parameters are

measured very well. This scheme is suitable in studying physical observables

at the Z pole. As discussed in chapter 1, in analysing the Z-pole physics the

pure QED corrections are treated separately from the weak corrections. In

particular, the light fermions contributions to the photon vacuum polarization

function are absorbed in defining the running coupling a(M§) at the M2 scale.

In chapter 1, we found

6(Mg) = 1_ A:(M§) . (A.5) 

where, Aa(M§) is defined as

Aa(M§) = —F77(M§) + 1877(0). (A.6)

Currently, there is a lively debate on what value of a(M§) to use. I quote the

value [18]

a-1(M§) = 128.89 a; 0.09, (A7)

 F;
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In this scheme, the main theoretical error propagating into the definitions of the

SM parameters is coming from the error in determining a(M§). In this scheme,

the weak mixing angle is defined to all orders by the relation

. 1 47ra(M2) 1’2
2 _ 2 _ Z

The weak mixing angle sin? 6 is well determined theoretically [60],

sin2 6 = 0.2312 :1: 0.0003. (A.9)

The main theoretical error in sin26 is coming from the theoretical error in

determining the running coupling a(M§). In fact by only considering the error

in a(M§), there is an induced error in (isin2 6

6 sin2 0

Tsin0 ~0.1%, (A-IO)

which amounts to most of the error in sin2 0.

The Z-pole scheme is defined such that all top quark and Higgs boson contribu-

tions are removed from the parameters a(M§) and sin2 0. The top quark and

Higgs boson contributions enter when considering other predicted observables

(see chapter 1), e.g., the W mass, the partial decay widths, etc.

The on-shell scheme.

In this scheme, the input observables are taken to be a, Mz, and Mw. In the

on—shell scheme, the weak mixing angle has a simple definition. To distinguish

different schemes I will denote sin20 in the on-shell scheme by 33 where, 83 is

defined to all orders by the relation

£4382
-1— .

M6

30- (A.11)
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Unfortunately, the W mass is not determined precisely as Mz [13]

MW = 80.26 :1: 0.16 GeV. (A.12)

The large error in the measurement of MW induces a large error in calculating

33 using the defining relation [29],

2 2

(£321) 836%!) 81.6%, (11.13)
exp exp

so 83 Ma,

 

where I ignored the small error in M2. Therefore, one does not rely to the mea-

surement of MW to extract 33. The usual approach is to use the measurement

of the p decay and the theoretical formula

1 6367712 mg a 25 2 2a m“

7.." 192n3(1—8m2 (1+;(T’"))(1+§171”E)’ (“4’p

  

where QED corrections to the four-fermion interaction includes one loop cor-

rection and the leading correction in 02. Performing the l-loop radiative cor-

rections to the p decay (see Figure 1.4b) one finds that Gp/fi coincides with

the expression [14]

g: _ 77070 1 + AWW(0)

fl — 2311210114150 M3,,

where I used the bare parameters in the above equation and the term (ver-

+ (vertex, box)[ , (A.15)

tex,box) denote corrections other than the W-self energy, i.e., due to vertex,

box, and fermion Self energy diagrams. In fact these corrections are in corre-

spondence with what I called 6G“; in chapter 1,

60KB _ W00

fl - 23729011450

The bare quantities can be written in terms of the renormalized quantities as

 (vertex, box) . (A.16)

follow

em = 01 — (la , (A.17)
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M3,, = M; — mg, (A.18)

M3,, = ME, —— (SMEV. (A.19)

Therefore, one finds

 

 

M2 6M2 6M2

82 =1- W°=62—cz(—£——‘l), (A20)

°° M2. 9 9 M2 M6

where to all orders we have

M2

Thus, one finds

95 _ 1m [113 _c_g mg ma,

‘5 _ 233M3V a 33 Mg M3,,

6 2 WW

+ MW + J: (0) + (vertex, box)]

Mw
77a

where, Ar is a finite combination of one-loop diagrams and counterterms. It is

clear that Ar depends on the top quark mass m, and the Higgs boson mass my.

By including and summation of higher order corrections [14], one can write the

above relation as

2 2

2 2 _ (1 _M_w) MW _ 7‘" (A23)3 c — — — — .

9 0 Mg 114% «20,6430 - Ar)

One should recognize that the quantity AT is different in two aspects from the

quantity Arw I defined in chapter 1. First, in calculating Ar one should use the

on-shell quantities 83 and 03 rather than sin2 0 and cos2 0 defined in the Z-pole

scheme. Second, in Ar, the electromagnetic a is still defined at q2 = 0 rather

than at q2 = Mg. Thus, Ar contains QED corrections from the light fermions,
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Aa(M§) as discussed in section 1.2. In fact, for the case of AT one can absorb

the quantity Aa(M§) in defining a(M§) as we did for the Z-pole scheme.

One can split the different contributions to AT at one loop and write AT as [14]

2 6% A 2
Ar = Aa(MZ) - 3A6 + (A1")mmainder , ( . 4)

where by Ap I mean the leading contributions of the top quark mass (quadratic

in mg). Therefore, this Ap coincide with the quantity Ap I defined in chapter

1, as long as one only concentrates on the quadratic terms in m,. The term

(Ar)wminder includes the remaining contributions, e. g., the logarithmic depen-

dence in m. and m”, gauge bosons contributions, etc. The typical sizes of

Aa(M§), Ap, and (A1“)reminder are ~ 0.06, 0.03-0.05, and 0.01, respectively

[14].

The measurement of 83 is usually extracted using the measured ratio MeV/Mg

from low energy experiments like the neutrino-electron scattering. The present

world average on 83 from experimental data is [14]

M2

s: = 1 - 34—”; = 0.2253 :1: 0.0047. (A.25)

Despite the simple definition of 33 in the on-shell renormalization scheme, the

weak mixing angle 3% has a strong dependence on the top quark mass m,. Hence,

using this scheme in any analysis requires a precise knowledge of the top quark

mass.

The MS scheme.

The ITS scheme, also known as the modified minimal subtraction scheme, is

a well-known scheme in QCD physics. In this scheme, one simply, in doing

the radiative corrections, only requires that the counterterms contain the di-

vergent pieces needed to cancel divergencies arising from loop calculations. In
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other words, one only absorbs the loop divergencies in the counterterms. In

dimensional regularization one simply cancels the quantity

A=—nE4—7—ln47r, (A26) 

from the loop calculations, where n is the space-time dimension and 7 =

0.577 . . . is the Euler’s constant.

Therefore, masses and couplings calculated in the MS scheme have a dependence

on the renormalization scale 6. Consequently masses in the NTS scheme (running

masses) have no direct physical meaning. To distinguish the MS quantities I

will use a bar over the quantities. The bare quantities can be written as

a0 = 6 — 66 , (A27)

M3, =m — 5m, (A28)

MEN = 1'77“, — 6%, (A29)

The coupling ‘a' is defined using the e-p scattering at q2 = 0. From the result in

chapter lwe know that the quantity 0 is given by

 

A 2sin0 A72 (0)
= _ 77 _

a do [1 F (0) c030 Mg (A.30)

Writing an in terms of the MS renormalized quantity we find

._ 2.510 ALzs(0)

a = a [1— FA147§(0) '—3W , (A31)

where F% is defined as F7“1 with simply subtracting the divergent piece A

defined in Eq. (A.26). Similarly for the quantity ALAS" Also, 83 is sin20,

defined below, in the —M_S scheme and 2% = 1 — 83. Therefore, one finds

 
 (A.32)
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Choosing the renormalization scale to be p = M2, one can evaluate the running

coupling Zr" at the M2 scale. Notice that the top quark mass enter the quantity

A6. However, the dependence is only logarithmic. Numerically, one finds, for

m, = 180 :l: 12 GeV, [14]

(6)" = 128.08 a: 0.02 i 0.09, (A33)

where the first error corresponds to m, = 180 GeV and the second error to the

interval :l:12 GeV around the central value of the top quark mass.

The renormalized masses in the VS— scheme do not correspond to the physical

masses. In chapter 1, we found that summing loop corrections leads to the

 

 

result

——1—— —+ l (A 34)

(12 - M30 (1"- - M§o + AZZ(0) + (PFZZW) ' '

Writing the bare mass in terms of the renormalized FITS- mass

M3, =W — 5X43, (A.35)

one finds

l 1
_,

(A.36)

q2 — M§o q2 —W+ A%(0) + q2F—3—E ((12) ’

where the counterterm 6M3- has been chosen to cancel the divergence in Azz(O)+

MgFZZ(M§). The on-shell condition relate the on-shell mass to the M8 mass

as follow,

q2 -W+ Ag—ZS-(O) + q2F§§(q2) = 0, at q2 = M3. (A.37)

Therefore, one has

Mg - A7? + A-ngm) + MgFg—gmg) = 0. (A38)
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Thus, for the W and Z mass we have the relations between the on-shell and the

H8 schemes

M3. = $73 - A-f.—Z(o)— MzFZ—§(M§> . (A39)

M3,, = V3; — Algae) — Map—gyms,» . (A40)

The weak mixing angle can be defined in different ways, I choose the definition

One can relate the weak mixing angle in the on—shell scheme to the one defined

in the MS scheme as follow

 

M2 W0() AQW)—2 _ w ww 22
s, _ 1——Mg 1+-%%-+F,TS (M3,)— 33% — figmg)

= 83 + ngfis’ , (A.42)

where I defined

AZ__Z_(0) AWW(0)

X-fig E —L—’X4— ——§2—"1‘W+ F-g§2(Mz)— Fg—YS‘WMEV ). (A.43)

z W

Also, we have

63 =1—sg =c3(1—X-M—S). (A44)

The on-shell gauge boson masses can be related using the IVE quantity 8%

2_ 2%
_1_X—l—M—SMZ=_ cgpMZ, (A.45)

where I defined

1

1— fig.

25 = (A46)
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The weak mixing angle 83 can also be related to the Z-pole scheme by calcu-

lating the p decay in terms of the IVE quantities. We found earlier

AWW

M124»

£5 —. ___—flag 1

fl — 2330M12vo

+ (vertex, box)] . (A.47)

Writing the bare quantities in terms of the 171—S- renormalized quantities on finds

Gr NZ!- AEWW(0) ]

where 6(V, B)‘M_s' is all the one-loop corrections to the p decay except the W

self-energy calculated in the ITS- scheme. Using Eq. (A45), one finds

G 775 I

7% =W[1 — X-fig - F;—}S—‘V(M3,,) + 5(v, mm] . (A49)

Summing higher order corrections yields [14]

 

GP 7rEi 1

75 - 24,2, 83 mg 1 _ A? 4 (“0)

where

1
7,- : _, (A51)

1 — XE

A? = Jaws-Hwy) + 5(v, mm. (A52)

For more details on the M_S scheme, the reader can refer to the discussion in

Refs. [14, 29].

 



Appendix B

The S, T, U parameters

In this appendix, I present briefly a well-known parameterization for the low

energy data different from the epsilon parameterization. For more details the reader

can refer to Refs. [24, 25]. The parameterization I will discuss in this appendix is

similar in spirit to the epsilon parameterization.

First, the assumption made are [25]

o The electroweak gauge group of the effective low energy theory at the weak

scale is the standard 5U(2);, x U(1)y . Therefore, the only relevant electroweak

gauge bosons are the photon, W*, and Z.

0 The only relevant new physics to consider are the oblique corrections, i.e., the

corrections to the gauge boson vacuum polarization functions, with the excep-

tion of the non-oblique correction to Z~b—5 vertex.

0 The earliest use of this parameterization [24], was based on a third assump-

tion, namely, the new physics scale is large compared to the W and Z masses.

Therefore, one can expand new physics contributions to the gauge boson vac-

uum polarization functions around (12 = 0. Recent efforts have been toward

retaining more higher order terms in the expansion of the vacuum polarization
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functions [25].

I start the discussion concentrating on the oblique corrections. The parameters

S, T, and U are chosen to parameterize the oblique new physics corrections. The

convention used is to subtract the new physics effects from the SM contributions and

then define the S, T, and U parameters in term of the remnant new physics effect.

To do this, one must know the top quark and the Higgs boson masses. However,

since our knowledge of theses masses is not precisely established, one simply picks

reference masses for the top and the Higgs boson masses. Then one calculates the

SM prediction using these reference masses and define the new physics contributions

to low energy observables as the difference between the experimental data and the

SM predictions (using reference 711, and mH).

The third assumption mentioned above allows one to expand the vacuum polariza-

tion functions around q2 = 0 in powers of q2/A2, where A is the scale of new physics.

Using my notation for the vacuum polarization functions in Eq. (1.49) and the Z-pole

renormalization scheme, the S, T, and U parameters are defined as follow

05 = 4sin0cosOF30(O) , (B.l)

aU = 4sin20 [1833(0) - FWW(0)] , (3.3)

where

1830(0) = — sinocosaFZZm) + (c0320 - sin20)F7Z(O) + 1777(0), (3.4)

and

F33(0) = cos2 0 Fzz(0) + 2 sin 9 cos 0F7Z(0) + sin? 6 1777(0) . (B.5)
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Using the latest data [12], a fit for the S, T, and U parameters yields [25]

s = -0.33:1:0.19,

T = —0.17:i:0.21,

U = —0.34:{:0.51. (3.6)

The above fit is extracted for m, = 180 GeV, my = 300 GeV, 01‘1 (Mg) = 128.9, and

a, = 0.123 [25].

Recent efforts have been implemented to relax the third assumption by allowing

the new physics scale to be comparable with the Z—mass scale [25, 70]. In this case,

one retains more higher order terms in the expansion of the vacuum polarization

functions. It was shown in Ref. [70] that it is sufficient to introduce three mere

parameters and increase the total number to six. The definition of S and U, but not

T, is slightly modified as follows [70]

 

05 = 4sin0 cos9F3°(0) + 4 sin2 0 cos.2 9 [FZZ(M§) - 1722(0)] , (3.7)

AZZ(0) AWW(0)

aT — Mg -— MEV , (B.8)

aU = 441112 0 [1833(0) — FWW(0)] +

4sin2 0 FFWW(M3V) — FWW(O)] +

49,1112 a 'FZZ(Mg) - F”(0)] , (3.9) 

The S, T, and U parameters are in one to one correspondence with the oblique

corrections e3, 31, and 62 defined in chapter 1 [see Eqs. (l.117)-(1.119)]. The quanti-

ties 63, 81, and 82 constitute the leading contributions to the parameters 63, 61, and

62. Therefore, concentrating on the possible large new physics contributions one can
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relate the two set of parameters as follows

 

 

- 2
S = 4srn 0563 ,

a

T = 1661,

a

. 2 '

U = —481:05€2, (8.10)

where, 661 is the new physics (beyond the SM) contribution to 61. Similarly, for 652

and 663.

Parameterizing the non-oblique correction to the Z—b—E vertex has been imple-

mented recently [25, 119]. In Ref. [119] the non-oblique corrections from new physics

to the Z-b—5 vertex are expressed in terms of the effective left- and right-handed

couplings of the b quark to the Z boson as

1 .

9'11: (9(1),)SM + 56sm20 + 6gi, (BM)

1 .
g’}, = (95:95., + 56s1n20 + 5513,, (8.12)

where 5 sin2 0 expresses the shift of the effective weak mixing angle due to oblique cor-

rections, and 6g}: and 59% express non-oblique vertex corrections due to new physics.

The quantities (92)“ and (g§)SM are the left- and right-handed couplings of the b

quark to the Z boson in the SM, where

. 1 1 .

(938M = —§+§Sm29,

(919w = Eli-sin”. (3.13)

The decay width 1"), depends on one combination of 692 and 69’}; . While the observable

A383 depends on another combination. This parameterization is similar to the one I

used in chapter 1 (see Eq. (1.123)). The relation between the cases is simply as follow

1 6 6b (68+ £1de 9A4) ,
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591;! = _% (+5QVd'2-59Ad) , (3.14)
 

where one should remember that, in the above equation, eb, 15ng, and 69,“ contain

only the new physics effect defined as the difference between new physics and the

SM case using reference m, and my. Using the recent data [12], excluding RC, one

obtains the fit [25]

69'}, = 0.0004i0.0037,

69'}, 0.036 a: 0.017, (3.15)

where m, = 180 GeV, my = 300 GeV, a'l(M§) = 128.9, and a, = 0.123 [25].

The conclusion is that, one can express new physics effects in terms of the S,

T, U, and the two non-oblique parameters 69'}, and 6932. Notice that 69';2 does not

involve large m, effects since the large m, effects are coming at one-loop through the

left-handed W—t-b coupling.

From this brief discussion one notes some differences between the epsilon param-

eters and the parameterization discussed in this chapter.

0 In the epsilon parameterization, the parameters 61, £2, £3, and q, are written

directly in terms of physical observables, rather than in terms of two—point

functions which is the case for S, T, and U.

o The parameters 61, 62, £3, and q, incorporate the SM contribution in addition to

possible new physics. On the contrary, the other parameterization only contains

the new physics effect.



Appendix C

Heavy Mass Expansion

In this appendix I discuss how to use the heavy mass expansion and tabulate some

relevant integrals if there is a heavy mass in the loop calculation [120]. Loop integrals

will be performed using dimensional regularization. A general two-point function has

the typical integral

[(11% kph” . .. ((3.1)

2w)" (k2 — m2><<k + pf — M2) ’

where m, M are mass scales and p is an external momentum. The heavy mass M is

satisfying the conditions M > m and M >> p2. The heavy propagator is expanded

as follow

 

l __ 1 2k.p + p2

((k+p)2—M2) ’ (kz—Mz) (l—W+.
..).

(C.2)

For a three-point function a similar treatment can be done. In this case one encounters

the typical integral

 

/ d"k kyle”... ((3,3)

(2%)“ (k2 - mi)((k + p)2 - m%)((k +1) + <1)2 - M2)’

where m1 and m2 are two light mass scales and M >> 171;, mg. The external momen-

tums p and q satisfy the condition M2 >> 102, q2. The heavy propagator is expanded
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as follow

(0.4)
102—M2

1 _ 1 1_2k.p+2k.q+(p+q)2+

(k+p+q)§iM2-k2-M2 .

Determining the order of the expansion depends on the desired heavy mass M

dependence to be retained. For example, to keep contributions up to In M2 needs

more expanded terms than keeping terms up to M2 only. To determine this consider

the general integral

 

/ d4k Mdkpku...

(210‘ (k2 — mam: +107— mamk +1» + q)? - M2) . .. 1 (05)

where dis an integer and where the dependence on the heavy mass M in the numerator

can come from propagators as in the fermions’ propagators or it can come from

couplings as in the Yukawa couplings to a heavy fermion (top quark). To determine

the number of propagators to retain I will use the following quantities. Denote the

number of propagators to be retained by the integer Np. The number of explicit

momentums in the numerator by Nm. The desired power of the heavy mass M to be

retained by NM. Then the number of retained propagators is fixed by counting the

dimension of the integral. The total dimension of the integral is 4 + d + Nn - 2N?

where the term 4 is coming from the integral measure (We. therefore the following

inequality must be satisfied

4+d+Nm—2NPZNM, (C.6)

After doing the expansion, one can use the identity

 
 

(k2 — m2)(k2 _ M2) = M2 _ m2 ((k2 _ M2) -W) - ((3.7)

Then using the integrals below becomes straight forward.
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Here I tabulate some useful integrals in the heavy mass expansion and using

dimensional regularization. First I define

2
A—-n_4—7—ln41r, (C.8) 

where n is the space-time dimension and 7 = 0.577 . .. is the Euler’s constant. Also

I define the quantity gym,

 

gpuAa = guugAa + gpkgua + gyagfl
(C9)

d”k 1 i 2

f(21r)" [:2 — A42 _ _1671’2 (—A _ 1 + 111M) 1 (C.10)

  

(Pl: 1 i 2

j (270" (k2 - M2)2 = _167r2 ("A + 1" M ) 1 (0.11)

d"k 1 i 1
  

 

  

  

  

 

(20)" (k2 — M2)3 = _161r22W’
((3.12)

fag): (k2 —1M2)4 = @3735}le
(C.13)

(3'3" .2 5342 = / (if; £3533. = = 0, (C14)

/ (:1): 1:31:42 = _16in29flufl4 ("A ' 3 +1“ MI) 1 (C-15)

/ (grin “£12,452 = "101.42 9""2M2 (—A —1+lnM2) , (C.16)

/ ((21:3" (1,2,3212)?‘ = -f617}'2'gZ,—V (_A + 1n M2) 1 (C.17)



 

/ d"lc lanky

(2a)" (k2 — M2)4

 

/ d"k kflkukxk, _

(217)" k2 — M2 —

 

I d"k kpkukxk,

(210" (k:2 — M2)2

 

/ d"k kpkukik,

(2%)“ (k2 _ M2)3

(1% kpkukik,

(20)" (k2 _ M2)4
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= .. i _giL.

167r212M2’

i gpuAaMG (_ _ E 2)

167r2 24 A 6 +lnIll ,

 

' 4

’ 9"”"°M (—A —-:-+1an) .
—167r2 8

_ 2 guuAaM2

1671’2 8

 

i M(—A+lnM2). 

= _167r2 24

(—A—1+lnM2).

(C.18)

(C.19)

(C20)

(C21)

(C22)



Appendix D

Non-Linear Realization

In this appendix, we are interested in realizing the symmetry described by the Lie

group G. The symmetry of the theory is assumed to be spontaneously broken, i.e., we

consider the breakdown of G into a subgroup H. Given the symmetry group G (global

or local) and the matter fields (leptons and quarks), the problem of constructing the

invariant Lagrangian (under G) reduces to the problem of realizing the symmetry,

i.e., choosing representations of the Lie group G. The realization of the symmetry

can be achieved in two different ways; the familiar linear realization and the less

familiar non-linear realization.

D.1 Linear Realization

In this realization, the problem is choosing the natural representations of the fields.

By natural representation I mean representations which form a self-consistent the-

ory, i.e., free from of all possible anomalies. Usually the matter fields (fermions)

are assigned in the fundamental representation of the group G. On the other hand,

the gauge bosons (the force mediators) are assigned in the adjoint representation.

To illustrate, consider the Lie group SU(2)L x U(1)y (the SM group). Left-handed

fermions \IIL are assigned in doublets (the fundamental representation) under 3U(2) L
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with the transformation under G as

 

‘I’L ‘1 ‘VL = QLQY ‘I’L, (D-i)

where

9,, = exp(i . ) e SU(2)L, (D2)

9,, = 9444333) e 0(1),. (113)

and a“, a = 1,2,3 and y are real parameters of the group G. The right-handed

fermions are singlets under SU(2)], The SU(2)], gauge bosons are assigned in the

adjoint representation with the transformation

gWST“ —-> gWS'T“ = 91, (W373 — a”) g[ . (D4)

The U(1)y gauge boson B transforms as

g’YBp -+ g’YBL = 9v (YB): - 31091 , ' (13.5)

where g and g’ are the gauge couplings of SU(2),, and U(1)y, respectively.

D.2 Non-linear Realization

A different realization of the symmetry from the linear realization can be imple-

mented, namely, the non-linear realization. The starting point is the spontaneous

breakdown of G into H.

The mathematical situation is as follows; consider a real analytic manifold M,

together with a Lie group G. Under the action of G, an element a: in M transforms

as

x-—)g:r xEM, gEG. (D.6)
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We assume that there is a special point of M called the origin, described by the null

vector 0. The origin 0 is invariant under the action of a subgroup H of G:

h0=0, heH. (DJ)

The physical situation is that of a manifold of scalar fields with the origin describing

the vacuum configuration. The group G is the global or local invariance group of

the theory and the subgroup H is the invariance group of the vacuum. Thus, one is

dealing with the spontaneous breaking of G into H [72].

An important point is that for any non-linear realization of the fields, we can

redefine the fields in such away that their transformation under H is linear [66], we

call this form, in which the fields transform non-linearly under G and linearly under

H, the standard form. Furthermore, the standard form as discussed in Ref. [81] still

leads to the same S matrix as the original realization.

The group G has n generators Z“, a = 1,2,...,n and the subgroup H has p

generators V", b = 1,2, . . . , p. The symmetry described by G breaks down into the

symmetry described by H. Therefore, there are n —- p broken generators A", c =

1, 2,. . . , n - p. From the spontaneous breakdown of the theory as described by the

breakdown of G into H, there are n - p Goldstone bosons [80]. The Goldstone bosons

05°, c = 1, 2, . . . , n -p form the coordinates of the manifold M. Each Goldstone boson

45" is associated with a broken generators A“. Any element 9 E G can be uniquely

written as [66]

ia' A' eiB‘V‘9:. , ”1,2,...,n—p, 4:1,2,...,p, (0.8)

where a“ and ,6” are real numbers. We associate with every broken generator A“ a

coordinate 45" with the transformation

'6: '00'66'00 -aIa-bb
gent/1 =ezaAetflVer¢A =ei¢ .48qu . (13.9)
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Notice that the object eff. A. 6 G, therefore, the transformed object ge‘f’. A. E G, this

is why we wrote the result of the transformation in the above form. The transformar

tion of ()5 written as

¢°($) -> d>’°(d>(:r)), (D.10)

constitutes a non-linear representation of G. The above equation is taken as the

definition of the transformed fields 05’ in terms of the original fields 05 and the group

element g.

Matter fields 2p (quarks and leptons) are required to possess definite transformation

properties only with respect to element h E H, i.e.,

\II —> \P' = D(h)\II, (D.11)

where D(h) denotes a certain linear representation of H. Therefore, the non-linear

realization of the whole group G is established as

4° —+ ¢“’(¢), q; —+ 00011:. (0.12)

In general, even in the case of a global transformation one is forced to introduce

covariant derivatives for the matter fields, because of the a: dependence in d) (see

Eq. (D.10). In the case of local transformations with gauge bosons W“, a = 1, 2,. . . , n

and with their transformation under G as

0;. = 9999’ — 90,19’. I (0.13)

where

(2,, = gawgza, (p.14)
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one defines the operator [66]

L" = c-m.” (0,, - Qp)e‘°"4' = WZA“ + szb , (D.15)

where w]: transforms as a gauge boson under the subgroup H. On the other hand 7r:

transforms as a matter field (not as a gauge boson). The covariant derivative of the

fermion field \II is defined as

0,0; = (a, + wgvbw, ' (D.16)

with the transformation

D,,\II —-> D(h)D,,\I1. (D.17)

To proceed I will consider a specific example, namely the electroweak group

G=SU(2)L x U(1)y and H=U(1)em. There are 3 broken generators associated with

3 Goldstone bosons (0“, a = 1, 2, 3. The generators of G are the Pauli matrices 7'“ /2,

a = 1,2, 3 and the hypercharge generator Y/2. The U(1)em generator can be taken

as

7'3 Y

V—Q—3+E. (13.18)

The broken generators can be taken as

TO

A“ = '2— . (13.19)

Rather than working directly with the complicated transformation of the scalar fields

(1)“, we define the object

2: = e‘LZF', (D20)
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where the parameters 1)“ are introduced for dimensional purposes. Under a general

transformation (9 6 G), we have (see Eq. (D.9))

u I 3

L1'_ ,‘uLJ‘l

2 -) g}: = e‘ v e 2 , (D21)

where

g = e‘°'%em¥ . (D22)

We can write the above transformation as

- .r' - r3 - Y

e'“ 72 = E'e’“'2'e'(“'m‘2’ . (D23)

Since the left-hand side of the above equation is an element in SU(2) 1,, it follows that

the right-hand side of the equation must be independent of the hypercharge generator

Y. Thus, we conclude that u = fl and the transformation of 2 reduces to

. _,- . ,3

cm 72 = 276*"? (D24)

One can write the above transformation as

. “a . ,3

2’ = 8'“ TZe“’3T = nggL, (D25)

where

, . fa , r3

gL = em T a 9R = 6w? - (D.26)

It is clear that under G=SU(2)L x U(1),» , the field 03“ has a complicated transfor-

mation, while, under the subgroup H, the field <25“ transforms linearly. For h E H and

h = 856(r3+Y)/2

he“. A. = e‘fflA' h . (D27)
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Thus,

6545"» = h 6.6.21- h] = eih¢'A‘h’ . (D28)

From which it is clear that, for G=SU(2) L x U(1)y , the transformation

45616 _, ¢aITa = h¢aTaht = gR¢aTagL (D29)

constitutes a linear transformation.

We also find that

7r; = EIDpE (D.30)

transforms as a matter field under G, namely

7r: —+ gmrfig]z , ‘ (D.31)

where the covariant derivative D”): is

a 3

0,23 = a”): — igwg-Tz—z: + £923.15. (D.32)

Under G, the covariant derivative transforms as

73

2

D”): —+ (D,,E)' = exp (2,027“) DpE exp(—z'y ) . (D.33)

A gauge invariant (under G) can be easily seen in the following term

ivz'rfinpzfipfiz) . (D34)

This terms can be shown to give the gauge bosons their masses. In the unitary gauge,

this term reduces to

1 2 t 1 2 07'“ , 73 2

21) 'I‘I'(D”2 D”2) —) Z7.) fi(l-9Wp'-2—+gBy-2-']

1
= § 122 (92W:W”“ — 2gg'WgB" + g’2BpB") . (D.35)
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Using the field definitions in Eqs. (1.11) and (1.12) one recovers the gauge boson

masses given in Eq. (1.17)

2v2

 

921,2 + p— g p

TWPW + 80032022 . (D.36)

Thus, the W and Z masses are

22 22

2...9_”_ 2=_fl_MW— 4 , MZ “0826. (D37)

The difference between the non-linear and the linear realizations is that in a general

gauge, the non-linear realization produces other complicated terms in powers of the

Goldstone bosons. In general, one finds

2
1

5,, = M3,, WjW’” + 542—2 2,2" + ay¢+a"¢‘ + iap¢3aw3 + . .. , (D38)

where the fields (2* are defined as

4:51 =1: 2'45“
i -

¢ _ fl 0 (D039)

 

Fermions can be included in the context of the chiral Lagrangian by assuming that

they transform under G: SU(2)L X U(1),» as [74]

f -> f’ = e‘”°f. (D40)

where Q is the electromagnetic charge generator. One finds that the fermionic co-

variant derivative is

Dpf = (0,, +w,,Q) f, (D.41)

where

w“ = B” . (D.42)
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Thus surprisingly, the gauge field is the B field and not the photon field A as one

would expect.

Out of the fermion fields f1, f2, with the condition QI, — QI, = 1, and the

Goldstone bosons matrix field 23 the usual linearly realized fields \11 can be constructed.

For example, the left—handed fermions [SU(2) L doublet] are constructed as

__ _ f1
\IIL—EFL —E . (DAB)

f2 L

One can easily show that \IIL transforms under G linearly as follows

a 3 3

\IIL -) \II'L = exp 0021'“) 2 exp (—iy%—) exp (iy [T— + {D FL 

2 2

027'“) exp(iy2/2—) \IIL. (D.44) = exp (2'

Therefore, under the group G=SU(2)L x U(1)y ,

‘11,, —) \II’L = g‘IIL. (D.45)

In constructing the invariant Lagrangian, one can define the composite fields as

2° = —%Tr('r“EID,,E). (D46)
P

Under the gauge transformation element 9 E G and using Eqs. (D25) and (D33),

one finds that the composite fields transform as:

a i , 7'3 a , 7’3

2: -) 2;, = —-2-Tr (exp(—2y7)7 exp(zy§)Ble2) . (D.47)

From which one concludes that under a general gauge transformation

3 3 _ 3
2,, —> 23', _ 2 (D48)p

and

2:: -+ 23': = eiivzf, (D49)
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where

1 .

D: = Wm}, $123,). (D.50)

The field 2?, behaves as a neutral matter field while the two fields 2: behave as

charged matter fields with Q = :t1. By a matter field I mean a field which does not

transform as a gauge boson field under the symmetry group H.

In a general gauge, 22 can be expanded as

 

1 1 9 2'9 __ _

2:: = 175 ”(253-20050 ”—E-(W’fcf) _W" ¢+)

—% (¢+8,,¢‘ — ¢’8,,¢+) + . .. (D51)

The composite field 2: can be expanded as

1 1 2'9

2+ = 'v—26u¢+ —§gW: —
p

; (60+ [cos 02,, + sin 024”] — ¢3W:)

2'

+5 (¢+a,,¢3 — 636,61“) + . .. (D52)

The component )3; is just the Hermitian conjugate of 23:. 111 the unitary gauge )3 = 1

one finds that the composite fields reduce to the physical gauge bosons, i.e.,

 

1 9
3 _ __

and

1
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