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ABSTRACT

SEIBERG-WITTEN INVARIANTS OF RATIONAL BLOW-DOWNS AND

GEOGRAPHY PROBLEMS OF IRREDUCIBLE 4—MANIFOLDS

BY

Jongil Park

One of the main problems in Seiberg—Witten theory is to find (SW)-basic classes

and its invariants for a given smooth 4—manifold. Rational blow-down procedure

introduced by R. Fintushel and R. Stern is one way to compute these invariants for

some smooth 4-manifolds.

This thesis consists of two parts. First, we find (SW)-basic classes and Seiberg—

Witten invariants for rational blow-down 4-manifolds by using index computations.

(R. Fintushel and R. Stern did q = 1 case.)

Secondly, we investigate the geography problems (in particular, the existence

problem and the uniqueness problem) for simply connected smooth irreducible 4-

manifolds. By taking fiber sums along an embedded surface of square 0 and by

the rational blow-down procedure, we construct many new examples of irreducible

4-manifolds. Furthermore, we prove “All but finitely many lattice points (a,b) ly-

ing in between cf = 0 and c? = 8x (non-positive signature region) can be realized as

(x, cf) of a simply connected irreducible 4—manifold which has infinitely many distinct

smooth structures.”
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Chapter 1

Introduction

As gauge theory (Donaldson theory and Seiberg-Witten theory) is developed, the fun-

damental problem in this area is to find its invariants for a given smooth 4-manifold.

In 1993, R. Fintushel and R. Stern introduced a surgical procedure, called rational

blow-down, to compute the Donaldson series for simply connected regular elliptic

surfaces with multiple fibers of relatively prime orders. ‘Rational blow-down’ means

that if a smooth 4-manifold X contains a certain configuration Cp of transversally

intersecting 2-spheres whose boundary is L(p2,1 — p), then one can construct a new

smooth 4—manifold Xp from X by replacing Cp with a rational ball 8?.

In fact, A. Casson and J. Harer ([CH]) showed that for any pair of relatively prime

integers p and q, L(p2,1—pq) bounds a rational ball BM. Hence one can extend

this rational blow-down procedure to the general case, that is, whenever a smooth 4-

manifold X contains a certain configuration CM of transversally intersecting 2—spheres

whose boundary is L(p2,1—pq), one can always construct a new smooth 4-manifold

Xm by replacing C,M with a rational ball BM.

For the q = 1 case, R. Fintushel and R. Stern initially computed the Donaldson

series of Xp = m from the Donaldson series of X, and later they computed the



Seiberg-Witten invariants of X, ([FS3]). In Chapter 3 of this paper we extend these

results to the general case. Explicitly, we prove the following theorem by using index

computations:

Theorem 1.0.1 Suppose X is a smooth 4-manifold which contains a configuration Cp

IfL is a characteristic line bundle on X such that SWx(L) 75 0, (Lle.q)2 = —b2(C,,,q)

and c1(L|L(p2,1_pq)) = mp E sz ’5 H2(L(p2,1-pq);Z) with m —:p( — 1) (mod 2),

then L induces a characteristic line bundle L on X,DM such that Sprq(L) = SWX(L).

Furthermore, we prove the following theorem:

Theorem 1.0.2 If a simply connected smooth 4-manifold X contains a configuration

CM satisfying condition (at) below, then the SW-invariants of Xm are completely

determined by those ofX. That is, for any characteristic line bundle L on XM with

SWXM(L) 74 0, there exists a characteristic line bundle L on X such that SW’X(L) =

SWXP'Q(L).

The condition (*) in the theorem above is following:

I:

(*) {0(Zegeilgp'q):e:=:i:1,Vi}= {mp.—(p—1) Sm S (p—l) and m E (p—l) (mod 2)}

i=1

All known configurations CM satisfy this condition.

As applications, we explore the geography problems for simply connected smooth

irreducible 4-manifolds. Namely, the existence problem: which pairs (x = big—1, cf =

30 + 2c) of lattice points are realized by simply connected smooth irreducible 4-

manifolds and the uniqueness problem: are there infinitely many distinct irreducible

smooth 4—manifolds which are all homeomorphic at each lattice point? In Chapter 4

we give partial answers for these problems. That is, we find many new examples of

.
2
;



such 4—manifolds in the wedge between cf = 0 and cf = 2x — 6. Actually we construct

new examples which cover all lattice points in this region (The examples lying in the

wedge were first found by R. Fintushel and R. Stern, and later by R. Gompf and

A. Stipsicz.). Note that any such 4-manifold in this region cannot admit a complex

structure with either orientation. We also investigate uniqueness problem, i.e. the

problem of finding infinitely many diffeomorphism types for a given pair (x, cf) lying

in between cf = 0 and cf S 9x. As a result of Theorem 1.0.2, we can compute

Seiberg-Witten invariants of X(p), where X(p) is the result of p-surgery in the cusp

neighborhood of a cusp fiber in X. Under a mild condition on X making X(p) simply

connected, such X(p) is not difieomorphic, but is homeomorphic to X. In fact, for

infinitely many (x,c';’), we can find irreducible 4-manifolds containing a cusp fiber

satisfying the mild condition, for example, by taking fiber sums. The main result we

prove in this paper is

Theorem 1.0.3 All but finitely many lattice points (a,b) lying in between cf = 0 and

C? = 8X (non-positive signature region) can be realized as (x, cf) of a simply connected

irreducible 4-manifold which has infinitely many distinct smooth structures.



Chapter 2

The Topology of Rational

Blow—downs

In this chapter we describe topological aspects and several examples of rationally

blowdown 4-manifolds.

2.1 Topological Properties

For any relatively prime integers p and q with 1 S q < p, we define a configuration CM

as a smooth 4—manifold obtained by plumbing disk bundles over 2-sphere instructed

by the following linear diagram

 ’l’k :bk-l ...... __:”1

Uk Uk—l 111

where iii—1 = [bk,bk_1,.. .,b1] is a unique continued linear fraction with all b, 2 2,

and each vertex u,- represents a disk bundle over 2—sphere whose Euler number is —b,~.

Then the configuration CM has the following properties:

1. It is a simply connected smooth 4-manifold whose boundary is lens space

L(P2,1—pQ).



2. H2(CM; Z) T-_’ (“:1 Z has generators {11; : 1 S i S k} which can be represented

by embedded 2-spheres, that is, each u,- is represented by zero—section 3,? of the

disk bundle a; over 5'2. (We use u,- for both a generator and the corresponding

disk bundle.)

3. The plumbing matrix for CM with respect to the basis {ui : 1 S i S k} is given

by the symmetric k x 1:: matrix

  

{ —b1 1 o y

1 —b2 1 0

P: 0 1 —b3

0 —bk_1 1

\ 1 —b,c )

so that Cm is negative definite.

l
/
\

4. The intersection form on H2(Cp,q; Z) with respect to the dual basis {7,- : 1

i S k} (i.e. < 7,- , uj >= 6.3-) is given by

Q I: (71"71) =P-l

Proof : Note that the intersection form Q on H2(Cp,q; Z) is defined by

1 I
7i'7j3=F<7i,PD‘Yj >

where 7;- E H2(Cp,q,8Cp,q; Z) is determined by 117;) = p2 - 7,- in the sequence

0 —> H2(C,,,,ac,,,,; Z) J—'+ H2(c,,,q; Z) —3+ H2(acp,,; Z) —> o

SinceJ" = P, we have

1 , 1
’72‘ '71“ ‘2 F < VivPD'rj >= F < “Yup-1(P2'PDVJ‘) >=< 7nP-1(PD%) >

= (P-l)gj. D



Lemma 2.1.1 The inclusion induced homomorphism a : H2(Um; Z) —-+ H2(BUM; Z)

E’ sz is given by 8(1.) = m, where n; is a number satisfying

* ._ —1o 01 —10 —10 010

n,- .— b1 1 1 0 02 1 b,‘_1 1 1 0 1

Proof : By Poincaré duality , it suffices to show 6 : H2(C,,,q, 8C“; Z) —> H1(6CM; Z)

is given by 6(PD7.) = n,-. For each i, choose a fiber D? of a disk bundle u,- over 52

so that D? - .S'JZ = 6,5. Then D? is a representative for PD(’y.-) E H2(Cp,q,8Cp,q; Z).

Since

80M D+ x 5,: UA,‘ OD" x S}, U3 80+ x SL1 U14“, mUA, D‘ x S,1

= D+XS,:UAD-XSII

—10

bgl
2

01

(10),wehave

3(P07i) = 8(D-2)

= (2.1?)(3’3Hb: ?)(‘33)(

7?. > in H1(an,in).
Hence, by choosing ( 0

‘l

where S} := 80-2 and A z: AkBAkqw-Al with A, := ( ) and B :=

which is homologous to (

H

V

8 a
:

generator of H1(BCM; Z), we have 6(PD7,-) = n,-. D

Lemma 2.1.2 The lens space L(p2,1—pq) = 86'” bounds a rational ball BM with

1r1(Bp,q) = Zp, and the inclusion induced homomorphism

(I. : H2(Bp.qi Z) '5 Zp ‘_) H2(L(P2a1_PQ)iZ) g Zp2

can be given by n 1——> np.



Proof : The first part was proved by Casson and Harer ([CH]). For the second

part, since Mayer-Vietoris sequence for X 5 CM UL T3; which is homeomorphic to

MT2

0 ——> H2(Cp,q;Z) e H2(B,.,,;Z) —+ H2(ukCP2;Z) —>

implies H2(BM; Z) is torsion free, by Poincaré duality, H2(BM, 88”; Z) ’.-‘2’ H2(Bp,q)

= 0. On the other hand, since the exact sequence for (BM, 88”) also implies that

i" : H2(Bp,q; Z) 2’ Zp ——> H2(BBM; Z) 2 sz

is injective, i"(1) = lp for some I with gcd(l, p) = 1. Hence, by re—choosing a generator

of H2(BBM; Z) ’5 sz, we may assume that i"(1) = p, so that i"(n) = np. Cl

Lemma 2.1.3 B10"] is spin ifp is odd, and BM is not spin ifp is even.

Proof : pr is odd, then H1(Bp,q) E Z? implies H2(Bp,q; Z2) 2 Ext(H1(Bp,q); Z2)

2 0. Assume p is even and B,M is spin. Then the index of Dirac operator on BM

should be an integer. But the index computation on BM (Proposition 3.2.2 and its

remark) shows that it is not an integer—a contradiction! D

Now we define the rational blow-down procedure: Suppose X is a smooth 4-

manifold which contains a configuration CM for some relatively prime integers p and

q. We construct a new smooth 4-manifold XM, called the rational blow-down

of X, by replacing CM with the rational ball Bp,q(Fig 2.1). We call this procedure

a ‘(generalized) rational blow-down’. Note that this procedure is well defined,

i.e. X,M is uniquely constructed (up to diffeomorphism) from X because each dif-

feomorphism of 38M = L(p2,1—pq) extends over the rational ball BM by the same



argument as Corollary 2.2 in [FS3].

Figure 2.1:

Lemma 2.1.4 b+(Xp,q) = b+(X) and cf(XM) = c¥(X) + k, where k = b2(Cp,q).

Proof : Since CM is negative definite, b+(Xp,q) = b+(X) and

Ci(Xp.q) : 30(Xm) + 28(Xw1)

= 3(0(X) + k) + 2(e(X) — k)

= c¥(X) +k.

where 0(X) is the signature of X and e(X) is the Euler characteristic of X. D

2.2 Examples

Here are several configurations CM that will be used later.

Case q = 1 : This case is studied in [FS3], whose configuration CM is

—(p‘+ 2) :2 —2

up—l up-Z ul

 

Fintushel and Stern used this configuration to show that the rational blow-down of

E(n)tl(p—1)CP2 is difieomorphic to E(n; p), p-log transform on E(n), and to compute

the Donaldson and Seiberg—Witten invariants of simply connected elliptic surfaces

with multiple fibers. Here E(n) is a simply connected elliptic surface with no multiple



fibers and holomorphic Euler characteristic n, and ‘p—log transform on E(n)’ is the

result of removing tubular neighborhood of torus fiber in E(n), say T2 x D2, and

regluing it by a difieomorphism

sz2x3D2—>T2XBD2

such that the absolute value of the degree of the map

projaDz o «p : pt x 6D2 ——> (902

is p. Note that ‘p—log transform on E(n)’ is well defined, i.e. E(n; p) is uniquely

determined up to diffeomorphism by the fact that if pI'OjaD2 o 99 and projapz 0 cp’ have

the same degree up to sign, then the resulting two manifolds are diffeomorphic ([Gl,

Proposition 2.1)).

Case p = kq—1(k,q 2 2) : We assume q 2 3 (q = 2 case is also obtained in a
 

similar way). The configuration CM is given by

uk+q-2 Uk+q—3 Wm;4 uk Uk—l uk—z ui

 
 

which can be embedded in tl(l~c+q—2)CP2 by choosing

ek+q—2-i "' ek-i-q—l-i i=1,” .,-l(2

eq_2 — 69-1 - eq i=k— 1

u; :2 €k+q._3_g — ek+q_2_.~ 1=k,...,—k+q4

—2el — e2 — -- - — eq_1 i=k+q—3

where each e,- (1 S i S lei-(r2) is the exceptional divisor in ti(k+q—2)C_P2. Furthermore,

by using Lemma 2.1.1, we get its boundary values

- 2 1:1,. . . ,k—l

87,- = (i + 2 — k)k — i i:k,.. .,k+q-3 (2.1)

pg — 1 i=k+q—2
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which implies that qu_1,q satisfies the condition (at) mentioned in the introduction.

Theorem 2.2.1 For any integers k and q (k, q _>_ 2), there is an embedding qu_1,q C

E(n)tl(k+q—2)-C_P.2 such that the rational blow-down is difleomorphic to E(n;kq—1).

Proof : Consider the homology class f of the fiber in E(n) which can be repre-

sented by an immersed 2—sphere with one positive double point and self-intersection

0 (a nodal fiber). Blow up this double point so that f — 2e1 (el is the exceptional

divisor) is represented by an embedded sphere. Since e1 intersects f — 2e; at two

positive points, blow up one of these points again. By continuing in this way, we

get a configuration CM-” in E(n)fl(k+q-2)fiz. We draw the case q 2 3 (Fig 2.2)

(q = 2 case is similar). The claim that the rational blow-down of E(n)ll(k+q-2)CP2

is difieomorphic to E(n; kq—l) can be proved by Kirby calculus on the neighborhood

of a cusp fiber as the same way as Theorem 3.1 in [F33]. Cl

 

 
Figure 2.2:

Here are a few remarks on this theorem:

1. The theorem above implies that there are many ways to obtainE(n; p), p—log
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transform on E(n), from E(72.) via a rational blow-down procedure; so one can

choose an ‘economical’ way to get E(n; p). For example, E(n,11) is diffeomor-

phic to the rational blow-down of 011,1 C E(n)]llOCP2, of 011,2 C E(n)]l6’fi2,

and of 011,3 C E(n)]lS—(J-P2.

. One expects that for any relative prime integers p and q, there is an embed-

ding CM in E(n)]ikCP2, for some k E Z, such that the rational blow-down is

diffeomorphic to E(n; p).

. The key ingredient in the proof of the theorem is to find such a configuration

qu_1,q. We chose it,- exactly the same u,- embedded in li(h+q—2)fi52 except

uk+q_3 =f—2el —e2---—eq_1 (Uk_1=f-2€1—€2, if q=2)

. One can extend the ‘logarithmic transform’ procedure to any 4-manifold which

contains a cusp neighborhood. A cusp in a 4-manifold means a PL embedded

2-sphere of self-intersection 0 with a single non-locally flat point whose neigh-

borhood is the cone on the right-hand trefoil knot, and we define a cusp neigh-

borhood in a 4-manifold to be a manifold N obtained by performing 0—framed

surgery on the trefoil knot in the boundary of the 4-ball. Note that since the

trefoil knot is a fibered knot with a genus 1 fiber, N is fibered by tori with one

singular fiber which is a cusp. Hence one can perform ‘p—log transform’ on a

regular torus fiber in N exactly the same way as in E(n), so that the theorem

above is also true for any smooth 4—manifold containing a cusp neighborhood.



Chapter 3

Seiberg-Witten Theory of Rational

Blow-downs of 4-Manifolds

In this chapter we compute the Seiberg-Witten invariants of rational blow-downs of

4—manifolds.

3.1 Basics of Seiberg-Witten Invariants

We start by recalling the basics of Seiberg-Witten invariants introduced by Seiberg

and Witten (cf. [W],[KM]).

Let X be an oriented, closed Riemannian 4—manifold, and let L be a characteristic

line bundle on X, i.e. c1(L) is an integral lift of w2(X). This determines a Spine-

structure on X. We denote the associated U(2)-bundles by W:t := Sat (8) L1”, where

5* is a (locally defined) spinor bundle on X. (One may choose a SpinC-structure

first, and associated U(2)-bundles W‘t on X. Then L :2 det(W+) E det(W‘) is the

associated characteristic line bundle on X.) For simplicity we assume that H2(X ; Z)

has no 2-torsion so that the set Spinc(X) of SpinC-structures on X is identified with

the set of characteristic line bundles on X.

Note that Clifford multiplication c : T‘X —> Hom(W+, W’) leads to an isomor-

12
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phism

p : A+ (8) C ——+ sl(W+)

taking A+ to su(W+), and the Levi-Civita connection on TX together with a unitary

connection A on L induces a connection VA : F(W+) —+ I‘(T"X <8) W+). This

connection, followed by Clifford multiplication, induces a Spine—Dirac operator DA :

I‘(W+) —> F(W’). The Seiberg-Witten equations ([W]) are the following pair of

equations for a unitary connection A of L and a section \II of I‘(W+) :

{0,411 = o (31)

MFA“) = i(‘1' ® ‘1")o

where F; is the self-dual part of the curvature of A and (\II (8) \II‘)0 is the trace—free

part of (‘II (8) III‘) which is interpreted as an endomorphism of W+.

The gauge group 9 := Aut(L) E Map(X,S’) acts on the space Ax(L) x F(W+)

by

g-(Aa‘l’) = (g-A-g",g-‘P)

In particular, if b1(X) = 0, then the gauge group 9 is homotopy equivalent to 5" so

that the quotient

BM) == AX(L) >< (I‘(W+) — 0)/S‘

is homotopy equivalent to CP°°. Since the set of solutions is invariant under the

action, it induces an orbit space, called the (Seiberg- Witten) moduli space, denoted

by MX(L), whose formal dimension is

dimMX(L) = %(c1(L)2 — 30(X) — 2e(X))

where U(X) is the signature of X and e(X) is the Euler characteristic of X.
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Definition A solution (A, \II) of the Seiberg-Witten equation (3.1) is called irreducible

(reducible) if ‘1! i- 0 (\P E 0).

Note that if b+(X) > 0 and MX(L) 75 (1), then for a generic metric on X the moduli

space MX(L) contains no reducible solutions, so that it is a compact, smooth manifold

of the given dimension. Furthermore the moduli space MX(L) is orientable and its

orientation is determined by a choice of orientation on det(H°(X; R) 69 H1(X ; R) EB

Hi(X;R)).

Definition The Seiberg- Witten invariant for X with b1(X) = 0 is a function SWX :

Spinc(X) —> Z defined by

0 if dimMX(L) <0 or odd

SW (L): Zsign(A,\P) if dimMX(L)=0

X (Av‘I'IEMx(L)

< ,8“, [MX(L)] > if dime(L) := 2d1, > 0 and even

where sign(A, \II) is 21:1 whose sign is determined by an orientation on MX(L), and

fl is a generator of H2(B}}(L);Z) E H2(CP°°;Z). For convenience, we denote the

Seiberg-Witten invariant for X by SWX = 2L SWx(L) - 61’.

Note that if b+(X) > 1, the Seiberg-Witten invariant SWX = E SWx(L) - eL is a

difieomorphism invariant, i.e. S'Wx does not depend on the choice of generic metric

on X and generic perturbation of the Seiberg—Witten equation. Furthermore, only

finitely many Spine-structures on X have a non-zero Seiberg-Witten invariant.

Definition Let X be an oriented, smooth 4-manifold with b, = 0 and b+ > 1. We

say a cohomology class c1(L) E H2(X ; Z) is a Seiberg- Witten basic class (for brevity,

SW-basic class) for X if SWX(L) 76 O.
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Definition An oriented, smooth 4-manifold X is called Seiberg- Witten simple type

(for brevity, SW-simple type) if SWx(L) = 0, for all L satisfying dime(L) > 0.

Next we describe a (Seiberg-Witten) gluing theory for computing Seiberg-Witten

invariants of a smooth 4-manifold X = X+ Uy X- which is separated into two pieces

X+,X_ by an embedded 3-manifold Y. Let (XR,gR) be the Riemannian manifold

obtained from X by cutting along Y and inserting a cylinder {—12, R] x Y on which

g}; is a product metric. As in Donaldson theory, if the moduli space MXR(L) is non-

empty for all sufficiently large B, then by stretching neck along Y in X (i.e. R ——> 00)

each solution (A, III) 6 MX(L) is split into three relative solutions

((A+,‘I’+),(A0aW0),(A-»‘I’—)) E MX+(LIX+) >< MRxY(LIRxY) >< Mx-(L|X-)a

and conversely any such three relative solutions (A+, \Il+), (A0, \Ilo) and (A_., ‘11-) in-

duce a global solution (A+, \II+)ilg, (A0, l§[I())]lg,(A.., ‘11.) E MX(L), where g1 and g2 are

gluing parameters. (In general, there is an obstruction to construct a global solution

from relative solutions [D].) In particular, if the embedded 3—manifold Y in X has a

positive scalar curvature metric (e.g. Y = 53, L(p2,1—pq)), then any such solution

(A0, \Ilo) E Mny(L|ny) is reducible. I.e.

Mny(L|ny) = {(Ao,0) : A0 is an ASD U(1)—connection on Y}

E H’(Y;R)/H’(Y;Z)

For example, if Y = S3 or L(p2,1-pq), then ngy(L|ny) is a single reducible solu-

tion. Furthermore, since L is a U(1)-bundle, gluing parameters are S1. In summary,

We have



16

Proposition 3.1.1 If a smooth 4-manifold X is split into two pieces X+ and X- by

an embedded 3-manifold Y = $3 or L(p2,1—pq), then each solution (A, \II) E MX(L)

can be obtained from two relative solutions ((A+,\Il+),(A_,\II_)) E Mx+(L|x+) x

Mx_(L|x_) and

dime(L) = dimMX+(LIX+) + dime_(le_) +1

where Mx,(L|X,) is the set of solutions (modulo gauge group) which converge asymp-

totically to a reducible solution in My(L|y).

Note that if dime_(L|X_) < 0, then Mx_(L|x_) consists of reducible solutions.

3.2 Index Computations

The technical part in the rest of this chapter is to show that dimMBP'q(L|3p’q) = —1

and dimMCp,q(L|Cp.q) S —1, so that both MB,,,(LIB,,.,) and Mcp'q(Llcp'q) consist of a

single reducible solution. Before doing this, as a warm-up, we can get a well-known

blow-up formula ([FS2]) for Seiberg-Witten invariants by using index computations.

Proposition 3.2.1 If X is a SW—simple type 4-manifold, then the blow-up X E

thCP2 is also ofSW-simple type, and the Seiberg- Witten invariants ofX E XllC—P2

are

SW); = SWX - (eE + e-E)

where E is the exceptional divisor ofCPz.

Proof : Note that a characteristic line bundle on X E X{$2 is of the form

L+(2k+1)E, where L is a characteristic line bundle on X and k E Z. (We identify

the exceptional divisor E with its corresponding line bundle on 52.) Suppose L :=
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L+(2k+1)E is a characteristic line bundle on X such that SWX(L) 51$ 0. When

splitting apart X along 5'3, Proposition 3.1.1 implies that any solution in MX(L)

can be obtained from two relative solutions which are identified with two (absolute)

solutions in Mx( L) x Mfiz((2k+1)E) (Since stretching neck along 53 corresponds to

choosing a sequence of metric so that the neck is pinched down to a point, the last

statement follows from a simple removable singularities argument) But since

dimMEF2((2k+l)E) = 2 - indDAIEfi-z + ind(d+ + d‘)|EI—,-2

= 2 - (aw -A(—P”>) - [5152] + (h‘ — (2° - W6?)

_ 2O/C_PQ((((2__k+_8__1)E)2 _p_1

— 1

_24)

—(4k2 + 4k)

8

 = 2- —1

S —1.

(In case Y = 53, indDA has no boundary terms.) Thus M532((2k+1)E) consists of

a single reducible solution, and MX(L) can be identified with MX(L). Furthermore,

since

dimMX(L) = —{((Lq H2k+1)E)’—(30(X)+2e(X))}

= 3mm: — (30(X) + 2e(X))} — (1.2 + k)

= dime(L) - (k2 + k),

the SW—simple type condition on X and SWX(L) 74 0 imply that dimMX(L) = 0

and k = 0 or —1. Hence X is also of SW-simple type and SWX(L) = SWX(L+E) =

SWX(L—E).Cl

In order to compute indDA on BM and Cm, we need the following two elementary

trigonometric computations.
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27H

Lemma 3.2.1 For relatively prime integers p and q, and z = e

2_ 2__

= f llt Z

Eek—voww—l) gek—lxzwr—I) E

 
 

Proof : There exist integers r and s satisfying rp + sq = 1; so 2”" = z"”"“.

Thus it suffices to show

 

92—1 2,qu _1

E (2" — I)(Z(P?'l)k _1)
= 0 , for all t E Z

Given t 6 Z and setting w = 2”“,

 

 

 

 

 

122—1 z(t+1)qu _ ztqu _ El thqk{(z"—1)(w"—l)} + z‘Pq"{(w"-1)+(3"-1)}
k=1 (zk—l)(z(P9‘1l"—1) — k=1 (2" —1)(w" — 1)

2- _ -= E{z‘mk+(z 31)}+Z:1{(ztqu_1)+(w (pcrlltqu_1)

k=l (zk——1)+(wk—l)

102-1 102-1 (2t:qk_1) (w‘qu _ 1 )
_ tqu+
— giz'l'_1)+}2{((:,_)1—wtqu(wk_1)}

132—1
tpq-l 102-1

: Z{ztmk+ __}+ Z Z{zlk__ (w— l)(tpq——l)k}

k:l (2k i=0 k=l

112-1 t100-1 p2-1 tpq 112-1
: Z{ztqu+ —1)}+ Z Zzlk_ 22(w’1 u:

k=l l=0 k=l l=1 k=l

192-1 tpq-l 102-1 tpq 172-1
= Z{ztqu+ —1)}+ Z Z Zlk— Z zlk

k=1 l=0 k=1 1: lk=1

192-1 2

 

+(p2-1)

Hence the lemma follows from induction on t. D
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21?!

Lemma 3.2.2 For relatively prime integers p and q, and z = e7

 

7r]: 1— 2

(1--pq,p =2 C0t(----C<>t(---(p—1.-‘3g-)) = 5(1-P2)

, P2" 1 _ 1
equivalently, E (2k _ ”(zone-1)): _ 1) — 12(192 — 1)

Note that this lemma can also be proved by using different method ([HZ]).

Proof : An easy computation shows that

 

 

 

 

172—1
4

1— — l—
3( —pq?p2—) ( p2)+ kgw _1)(z(Pq—l)k _1)

Note that forO S t Sp—l and wzz”,

E wt]: _1 _ Eli-i w“:

k=1 (wk —1)(w-k '- 1) (=ok=1(w—k — 1)

k=l (wk - 1) l2]. lc=l (wk -1)

tp—l) ‘

= (2 -Z((p-1)-(l-1))
l=l

_ t2 — tp

_ 2

(The third equality follows from the fact that $4-111)”: —1, for 1 S l S p — 1).

Hence by using the equality 21:0 w‘k =0 for 1 S k S p—l,

p—1 p-1 ii: p—1 1
w

0 = 2: (wk —1)(w"" — 1) +1§1 (wk —1)(w'k — l)

 
 

  

_ P

— Z 2tp +:(w"—1)(w"‘ — 1)

 m 0 a
.

D
"

.9
1 I
A "
6
n
o

I

S

lp _ p

12 k=1 (wk —1)(w“" — 1)
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Finally by using the fact that 23:},2’1’9" = 0 if k at tp and 2E, 2‘qu = p if k = tp,

and by Lemma 3.2.1, we have

 

 

P2-l p p—1 102-1 zlpk

E (21-1,(z(....,._1, " EE (,.. —1>(z<m—nk— 1)

 

10-1 p

: £02110 _1)(z(pq-l)tp _. 1)

_ ’H P

— ,E=;(w‘-—1)(w't — 1)

(102-1) ‘3

{
S
I
T
3

Proposition 3.2.2 For any characteristic line bundle L3 on BM with a cylindrical

end

3:“, = BM U L(p2,1—pq) x [1,00)

dimMB;q(LB) = —1; so the moduli space MB;q(LB) consists of a single reducible

solution.

Proof : It suffices to show that ind(DA|B;q) = 0 because

dimMB;q(L3) = 2 - ind(DAIB,-;,) + ind(d+ + d‘)|s;,,

= 2 . ind(DA|B;q) + (b‘ — b° — b+)(B;.‘,q)

= 2 - ind(DAlB;q) —l

where A is a U(1)-connection on L3 —-> ng. Now compute

.
cl(L&) A

1nd(DA|B;q) z (e 2 A(B;q))l8;ql

_ 61(LB)2_p_1 _ h+77(0)

_ jiggq‘ 8 24) ( 2 l
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2

Since L3 is a flat connection on 3;, the first term gig—‘31- = 0, and the second term

can be computed by using Proposition 2.12 in [APS]

 

(1p __k__7r(1--pq)
0:0(B;Q)=/B;q(-3—) + —:§=: cot(——)co(t—)

Hence, by Lemma 3.2.2,

P1 ‘1 2 1 2
— = —— o — = — 1

The boundary term, w, can also be computed by using Atiyah-Singer fixed point

theorem ([Sh, §19]) for a Spine-Dirac operator DA on D4/Zp2 E cone on L(p2, l-pq):

E19.) = :1 Z (gm-”($04)

2

2 P gezpz-{O}

_1 19‘1 (eflkilp2 _ e-vrki/zv’)(e(1-m)1rki/p2 _ e-(l-m)1rki/p2) . emp~1rki/p’

p2 k_l (1 _ grid/102)“ _ e-irki/p’)(1 _ e(l-m)7rki/P’)(1 _ e-(l-pq)1rki/p’)

 

_1 P2"1 emp--1rki/p2

p2 E(eflki/p _ e-wki/p )(e(l-1r>q)1rki/ID2 _ e -(1-p<z)7~'=i/zv2 )

 

where c1(LB|L(p2,1_pq)) = mp E H2(L(p2, l—pq); Z) E sz (Lemma 2.1.2). Since L3 is

a characteristic line bundle, we can always choose an integer m so that m + q is even.

(Up and m+q are odd, choose m+p+q E m+q (mod p). pr is even, then m and q

are odd.) By setting 2 := e27“?2 and t := (m+q)/2 E Z, we have

 

h + 17(0) —1 P"1 ew<m+q)ki/p

——2 : p2 i=2(e21fk1/P2_1)(621r(pq-1)ki/p2_1)

_1 pz-l ztpk

: —2 2
p H (2* —1)(z<m-1>k - 1)
 

—1""1 1

102 i=1 (2" -1)(2‘p""’" — 1)

 

(by lemma 3.2.1)

 

= (1 - p2) (by lemma 3.2.2)
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Combining these computations we get ind(DA|B;q) = 0. D

Remark : In the proof of Proposition 3.2.2 above, if both p and m are even (in

particular m=0), a similar computation shows that indDA on BM is not an integer.

This contradiction means that BM is not spin for p even (cf. Lemma 2.1.3).

Corollary 3.2.1 For any characteristic line bundle LC on C3“, = CM U L(p2,1-

pq) x [1, oo), dimMC;q(LC) is odd and S —1; so the moduli space MC;q(LC) consists

of a single reducible solution.

Proof : Since ind(d+ + d‘|0;q) = (b1 — b0 — b+)(C;q) = —1, as the same way in

the proof above, it suffices to show that ind(DAlc;;q) S 0. Since X = C3}, UL 324,: is

homeomorphic to ilk—(3P2 with k = b2(Cp,q), for any characteristic line bundle L on

X, c1(L)2 S —k and

(01(le + k)

8

 ind(DA|C;q) +ind(DA|;,q) = ind(DA|x) = [X g 0

Hence ind(DA|C;q) S —ind(DA|B;q) = 0. D

3.3 Main Technical Theorems

Lemma 3.3.1 Let X be a smooth 4-manifold containing a configuration Cm, that

is, X = X0 UL(p2,1_.pq) CM, and let XM be its rational blow-down. Then a line bundle

L on X” is characteristic if and only if both le0 on X0 and LlBM on BM are

characteristic.

Proof: Since H1(BM; Z2) -—> H1(L(p2,1—pq);Zg) is surjective, i'EBj‘ : H2(XM; Zg)

—> H2(X0; Zg) EB H2(BM; Z2) is injective. Hence the proof follows from the following
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commutative diagram

0 ——> H2(X,,,,;Z) ——>H2(XO;Z)@H2(BP,,;Z)

i i

H1(L(p2,1—pq);z2) —+ H2(Xp..;zz)‘191§H2('o;zz)eH2(Bp..:zz) :1

Theorem 3.3.1 Suppose X is a smooth 4-manifold which contains a configuration CM.

IfL is a characteristic line bundle on X such that SWX(L) ;£ 0, (Llcp,q)2 = —b2(CM)

and c1(L|L(p2,l_.pq)) = mp E sz 9—” H2(L(p2,l—pq);Z) with m E (p — 1) (mod 2),

then L induces a characteristic line bundle L on X,M such that SWXP.Q(L) = SWx(L).

Proof : Lemma 2.1.2 and the condition c1(L|L(p2,1_pq))= mp with m E (p— 1)

(mod 2) imply that the characteristic line bundle LlXo on X0 extends uniquely to

a characteristic line bundle L on Xm- First we study the solutions of Seiberg-Witten

equations on X for L by pulling apart X = X0 UL(p2.1_pq) Cm along L(p2, l —pq).

Then Proposition 3.1.1 and Corollary 3.2.1 imply that each solution in MX(L) can

be obtained by gluing a solution (Axo, \leo) E MX0(LIX0) with a unique reducible

solution (Acp'q,0) = MC,,,.,(LIC,,,,,)- But, not every solution in MX0(LlXo) produces a

global solution in MX(L). Explicitly, using Corollary 3.2.1, the inequality

2dL = dime(L) = dime0(L|xo)+dimMcp.q(L|CP'q)+1 S dimeo(L|Xo) = ZdLIxo

implies that there is an obstruction bundle { of rank dleO— d1, associated to the

basepoint fibration over MX0(L| x0) such that the zero set of a generic section of f is

homologous to MX(L) in 83((L) (Theorem 4.53 in [D], or [FSZ, §4]). Hence

SWX(L) =< fl“, [MX(L)l >=< 5'“, BdL'XJdL fl [MX0(L|Xo)l >=< gduxo, [Mxo(L|xo)l >
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where fl is a generator of H2(133'.}(L); Z). Similarly, since dimMBp.q(LIBP'Q) = —1 by

Proposition 3.2.2, the same argument as above shows

SWXp.q(Z) =< fidblxo , [MX0(LlXo)l >

SO that SWXp.q(L-) = SWx(L). D

Corollary 3.3.1 If two characteristic line bundles L and L’ on X satisfying the

hypothesis in Theorem 3.3.1 induce the same characteristic line bundle L on X”,

then sz(L) -_- swxw).

Freedman’s classification of simply connected topological 4—manifolds implies that

X E CM UL E; is homeomorphic to fikfiPz with k = b2(Cp,q). Each generator

e.- of H2(X ; Z) when restricted to BM has the boundary value 6(Cipr,q) = mp 6

H2(L(p2, l—pq); Z) for some m. We impose the following condition (*) on CM:

1:

(*) {0(2 egeilgm): c;=:tl,Vi}={mp:—(p—l) S m S (p—l) and m E (p—l) (mod 2)}

i=1

All known configurations CM satisfy the condition (*) above. (One expects that all

relatively prime integers (p, q) satisfy the condition (*).) Under this assumption, we

prove

Lemma 3.3.2 Suppose X is a simply connected smooth 4-manifold which contains a

configuration CM satisfying the condition (it), and let XM be its rational blow-down.

If: is a characteristic line bundle on Xpm there exists a characteristic line bundle

L on X such that LIX0 = leo and c1(L|Cp.q)2 = —k, where k = b2(Cp,q).

Proof : The condition (at) on CM implies that there exists 6.- = 3:1, for 1 S i S k,

such that 6(2le «i.e.-IBM) = mp = 0c1(LIBM). Since the corresponding line bundle,
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denoted by the same notation 2;, 6,6,", is characteristic on CW UL B—p; which is

homeomorphic to ilk-652, its restriction Zia egeglcm is also characteristic on CM

and (2;, nah”)? = (217:, 6,8,)2 — (21;, 5.12437”)? = ( (“:1 6,6,)2 = —k. Now define

a line bundle L on X by

L _ le0 on X0

:3le Eteilefl on vaq

Then L has the desired properties except (possibly) characteristic, that is, if p is odd,

then L is automatically a characteristic line bundle on X, so we are done. If p is

even, we can change L (see below) so that L is characteristic on X satisfying the

same properties.

Suppose p is even.

0 —> H2(X;Z) _>H2(XO;Z)@H2(C,,,,;Z)

ih. l

H1(L(p2,l—pq);Z2) —5> H2(X;zz)‘fl> H2(X0;zg)esH2(cp,,;zz)

Since X is simply connected, H1(Xo; Z) E Z, for some t dividing p2. Ift is even, then

i" 63]" : H2(X; Z2) —+ H2(Xo; Z2)€BH2(CM; Z2) is injective so that L is characteristic.

If t is odd, then i‘ E9 3" is not injective, and in this case h.(c1(L)) = w2(X) or

Since CM satisfies the condition (*), there exists 6.- : :tl satisfying 2le 6,63,ch =

(p—m)p. Then setting 7,- E 9% we have

. k P

1) mgweilc‘p.) = (5)}? ¢ 0

k k

2) W205i — 2%)6ilcp,.) = 3(;€ieilcp,.) = mp

i=1

1: k

3) 2(6,‘ — 27,-)eglcp_q = Eda-lam, for some 6:- 2 dz].

i=1 i=1



26

Hence there exists a bundle L’ on X such that L’lem = 2:17:1(6,-—27,-)e,-|C‘M and

L’ | x0 = leo. Then we claim either L or L’ is characteristic: Suppose neither L nor

L’ is characteristic, i.e. h..(c1(L)) = h..(c1(L’)) = w2(X) +5(l). Then h..(L — L’) = 0,

so that there exists an element a E H2(X ; Z) satisfying 2a 2 L — L’. Since both

H2(Xo; Z) and H2(Cp,q; Z) are 2—torsion free,

I:

2(Otlxmalc,.,.,) = (2" 69]")(201) = (i' €9j')(L - L') = 2(0,§%eilcp,q)

implies alxo = 0 and OICM = Zlemeilcm which contradicts 8(Zf=l’7g6glcp'q) =

(spam. 0

Finally, by using the same argument as in the proof of Theorem 3.3.1 with the

characteristic line bundle L on X constructed in the Lemma 3.3.2 above, we get our

main technical theorem.

Theorem 3.3.2 Ifa simply connected smooth 4-manifold X contains a configuration

CM satisfying the condition (at), then the Seiberg— Witten invariants of XM are com-

pletely determined by those of X. That is, for any characteristic line bundle L on

XM with SWXM(L) 75 0, there exists a characteristic line bundle L on X such that

S'Wx(L) = SWXM(L). Furthermore, ifX is of SW- simple type, then XM is also of

SW—simple type.



Chapter 4

The Geography of Irreducible

4-Manifolds

In this chapter we apply the result of the previous section to several examples of

rational blow-downs and explore geography problems for simply connected smooth

irreducible 4-manifolds (Fig 4.1). The geography problems we are interested in study-

ing are twofold, that is, which lattice points in the (91.21, 3o+2e)-plane are ‘populated’

by simply connected smooth irreducible 4-manifolds (the existence problem) and if

so, are there infinitely many distinct smooth 4-manifolds which are all homeomorphic

(the uniqueness problem)? These coordinates are chosen because of their relation

to complex surfaces where holomorphic Euler characteristic X = 113(cf + c2) = %+—1-

and the chem number of = 30 + 2e. The geography problem for surfaces of general

type has been studied extensively by algebraic surface theorists (see remarks below),

and for topologists, the problems are to find constructions of new 4—manifolds and

to be able to compute invariants (such as Donaldson invariants and Seiberg-Witten

invariants) which can show that the result is an irreducible 4—manifold. Note that

a smooth 4-manifold X is called irreducible if X is not a connected sum of other

manifolds except for a homotopy sphere, i.e. if X = XlllX2 implies that one of X.-

is a homotopy sphere. One of the most powerful applications of gauge theory to

27
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4-dimensional topology related to geography problems is that both Donaldson invari-

ants and Seiberg-Witten invariants for a connected sum manifold X = Xlthg with

b+(X.-) > 0 (i = 1,2) vanish. Hence S'Wx E 0 (or Dx # 0) implies that X is irre-

ducible unless X is a blow-up manifold.

=
3
s
i
g
n
+
2
e

   

    

2 I
C

 
Eén) elliptic line

???

- line

Figure 4.1:

Here are a few remarks on Figure 4.1 below:

1. The simply connected minimal complex surfaces of general type live in the

dotted region determined by the “Noether line”, c? = 2X — 6 (50‘ + 3e + 12 Z

0), and the “Bogomolov-Miyaoka-Yau line”, cf 2 9x (30 S e). A surface of

signature = 0 has c? = 8x, so any surface of negative signature lies in the

region of < 8x, and any lattice point lying in this region and above c? = 2X - 6

can be realized as (x, cf) of a minimal surface which is a hyperelliptic fibration

([Pl)-

2. Moishezon and Teicher constructed infinitely many simply connected mini—

mal surfaces of positive signature (equivalently, lying in between cf = 8x and
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cf = 9x). Xiao and Chen also constructed other minimal surfaces of positive

signature which are hyperelliptic fibrations ([C]).

3. Any irreducible 4-manifold in the wedge between “elliptic line”, c? = 0, and

“Noether line” cannot admit a complex structure with either orientation because

it violates Noether inequality or B-M-Y inequality. The examples lying in this

wedge were first found by Fintushel and Stern ([FS3]). Actually, they found

examples realizing all lattice points below the Noether line. We also construct

other examples lying in this wedge (see Example 2 and Theorem 4.2.5).

4. There are no known irreducible 4—manifolds lying in elliptic line below, cf < 0,

and there is a conjecture that every smooth spin 4-manifold satisfies ill 2 13’.

Note that the rational blow-down procedure moves a manifold vertically upward

and blowing up procedure moves a manifold vertically downward in Figure 4.1.

4. 1 Examples

We compute the Seiberg-Witten invariants of a manifold constructed from E(12) via

blowing up and rationally blowing down.

Example 1 Consider a 4-manifold X =_—‘ E(3)ll2fi2 constructed by the following

blowing up process (Fig 4.2):

Then we get a configuration C53 C X

-3 —5 —2
A A

v fi

3 f—261—82 61—62
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Figure 4.2:

where s is a section in E(3) and e,- (i = l, 2) is the exceptional divisor in (DTP—2. Since

SW-basic classes in E(3) are :l: f, up to sign the SW—basic classes of X are of the

form

L = f + elel + 6262 (e.- = i1)

By using boundary values (cf. equation (2.1)), compute Lle,2 and 6(Ll05,2)

Lle.2 = (L°U1)’71+(L'U2)’72 + (L ' “3)73

= (52 — 61% + (261 + (2)72 + 73

6(Ll053) = (62 — £1) + 2(261 + 62) + 9

= 3(€1+€2)+9

Then 6(Ll05,2) is a multiple of p = 5 if and only if 61 = 62 = 1. Hence by The-

orem 3.3.1, only L = f + el + 62 descends to a SW-basic class L of X53, and

by Theorem 3.3.2, L is the only SW-basic class of X53. Since c1(L)2 = c1(L)2 —

c1(L|05,,)2 = —2 + 3 = l, X53 is a SW-simple type 4-manifold with c? = 1 which

has one basic class L =m(up to sign) and its Seiberg-Witten invariant is

swxmm = sz(L) = 1.

Next, let us consider a configuration C49-”

—4 —(qA+2) T2 T2 —3 —2 —2
‘
 

uq+2 Uq+1 uq U4 U3 U2 U1
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whose boundary values (cf. equation (2.1)) are given by

i i=1,2

37,-: 4i—9 i=3,...,q+l

(4q—1)q—l i=q+2

Then we have

Proposition 4.1.1 Suppose X is a simply connected smooth 4-manifold containing

a configuration CM (p = 4q— 1). If each u.- satisfies |L - u,-| + u? S —2, for each basic

class L in X, then Seiberg- Witten invariants of XM are given by

. _ _ SWX(L) if L-u3= c, L-uq+1 =cq and L-uq+2=2c (c: :l:1)

SWAP'JL) — { 0 otherwise

Remark : The hypothesis, IL - u,-| + u? S —2, in Proposition 4.1.1 above comes from

the adjunction inequality in [F52]. Our assumption is that the u,- are generic in the

sense that they do not fall into the special case of Theorem 1.3 in [FS2].

Proof : The condition [L - Ugl + u? S —2 implies L - u.- = 0 (i = 1.2.4,... ,q), so

that

How = (L°u3)73+(L'uq+1)7q+1+(L°"q+2)’7q+2

0(Llcp.) = 3(L - us) + (M - 5)(L-uq+1) + (m -1)(L-uq+2)

3(L-u3)—4(L-uq+1)—(L-uq+2) (mod P)

Since LlCM is characteristic, the condition 3(Llcp,q) E 0 (mod p) in Theorem 3.3.1

implies that only basic class L in XM comes from L of X satisfying

L‘U3=€, L'uq+1=cq and L-uq+2=2e (c=il)
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The rest of the proof follows from Theorem 3.3.2. B

Example 2 Let X E E(q+2)fi2-6P2(l S q S 8) be a manifold constructed as follows:

Consider the following configuration in E(q+2)

 

‘(q+2) ‘2” .. ‘2
Sq+1 Sq 31

where sq+1 is a section and f - s,- = 0, for i = 1,-~,q. (One can choose such a

configuration by using E's-fiber C E(2)[l[E(q) E E(q+2).) By blowing up the double

point of a nodal fiber f in E(q + 2) and another point in s3, we have a configuration

C4q_1,q C X such that

uq+2 = f — 261, u3 = s3 — 82 and u.- = s.-, i 75 3,q+2

Since the SW—basic classes of X have the form

L = kf-l- 6161+ €262 (Ikl S q, k E q (mod 2) and c,- = 21:1)

this example satisfies the hypothesis of the Proposition 4.1.1 above. It follows that

 

X,M has one basic class L = qf + 61 + 62 (up to sign) with c1(L)2 = q. Hence Xm is

a SW-simple type smooth 4-manifold lying in cf 2 x - 2 which has one basic class

and cannot admit a complex structure. Note that for q > 8, if one can find such a

configuration in E(q+2) (It seems to be possible), then the same argument holds.

Example 3 (p—log transform) As we see in [FS3] (or Theorem 2.2.1), E(n;p) is

obtained by blowing up and rational blow-down from E(n), so that Seiberg-Witten

invariant of E(n; p) can be computed explicitly as the same way as in Example 1:
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Theorem 4.1.1 ([FS3]) The Seiberg- Witten invariants of E(n;p) are

Sid/E(n;p) = SWE(n) ' (Cw—l)!" + (aw-3),? + . . . + e-(P—llfp)

where fp is a multiple fiber obtained by p-log transform on E(n).

Furthermore, by extending the notion of ‘p—log transform’ to any smooth 4-

manifold containing a cusp neighborhood, we extend this result

Corollary 4.1.1 Let X(p) be the result of p-log transform in the neighborhood of a

cusp, say f, in a S W-simple type irreducible 4-manifold X. Then the Seiberg- Witten

invariants of X(p) are

SWx(p) = SWX - (e(p‘llfp + e(P-3lfp + . . . + e-(p-1)f,,)

where fp is a multiple fiber in X(p) obtained by p-log transform on X.

Proof : It suffices to show that f ' L = 0 for each basic class L of X. Since

genus(f) = 1 and f2 = 0, this is implied by the adjunction inequality

f2+|f-L|S2-genus(f)—2. C]

4.2 Applications of Seiberg-Witten Theory to Ge-

ography Problems

Corollary 4.1.1 allows us to partially answer our uniqueness question above. Before

going on, we quote a well-known theorem on X(p), the p-log transform of X.

Theorem 4.2.1 ([FSl]) Let X be a simply connected 4-manifold containing a cusp

neighborhood N whose complement Z has 1r1(Z) = Zq,q Z l, and 1r1(3N) —> 1r1(Z)



34

is surjective. Let E(X) be the class of 4-manifolds {X(p) : p,q coprime, p 96 0}.

Then

(a) Each X(p) E E(X) is simply connected.

(b) IfX is not spin or q is even, then all the manifolds in E(X) are homeomorphic.

(c) IfX is spin and q is odd, then the manifolds X(p) and X(p’) in E(X) are home-

omorphic if and only ifp E p’ (mod 2).

Note that any smooth 4-manifold containing a Brieskorn manifold B(p,q,r) with

(p, q, r) 2 (2,3, 7) contains a cusp neighborhood satisfying the hypothesis of Theo-

rem 4.2.1 ([FSl]). Hence we can apply Theorem 4.2.1 and Corollary 4.1.1 to show

that such a manifold has infinitely many distinct smooth structures.

Now we construct more irreducible 4-manifolds which have infinitely many dif-

feomorphism types, but all are homeomorphic. First we define another topological

surgery, called fiber sum.

Definition Let X and Y be closed, oriented smooth 4-manifolds containing a smoothly

embedded surface 2 of genus g 2 1. Suppose X represents a homology class of infinite

order and of square zero, so that there exists a tubular neighborhood, say D2 x E, in

XandY. Leth=X\D2anndYo=Y\sz2,andletN=SlXE=BD2XE

be the common boundary of 02 X Z. By choosing an orientation—reversing, fiber—

preserving diffeomorphism

(,0 : D2 x B —> D2 x E

and gluing X0 to Yo along their boundary by the map cpl : N ——> N, we define a new

oriented smooth 4-manifold X1121”, called the fiber sum of X and Y along 2. Note

that there is an induced embedding of E into X1121’ well-defined up to isotopy which
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represents a homology class of infinite order and of square zero.

Lemma 4.2.1 cf(Xlle) = cf(X)+cf(Y)+8(g— l) and x(Xll5;Y) = x(X)+X(Y)+

(g -1), where X = b_+_2j-_l_ and g = genus(E).

Proof : These follow from the fact

e(Xllzl/l = e(X)-(2-29)+€(Y)-(2--2g)

= e(X)+e(Y)+4(g—1)

U(XligY) = o(X)+o(Y) C]

We quote a product formula for Seiberg-Witten invariants of a fiber sum manifold

which provides an important tool for studying geography problems for irreducible

4-manifolds.

Theorem 4.2.2 ([MST]) Let X and Y be closed,oriented smooth 4-manifolds con-

taining a smoothly embedded surface 2 of genus g > 1. Suppose E represents a

homology class of infinite order and of square zero, and b+(X),b+(Y) 2 1. If there

are characteristic classes ll 6 H2(X;Z) and 12 E H2(X;Z) with < ll,[E] >=<

[2, [E] >= 29 — 2 and with SWXUI) E O and SWY(12) E 0, then there exists a char-

acteristic class k E H2(thgY;Z) with HIV = proj‘(ko) for kg 6 H2(E:Z) satisfying

< kg, [2] >= 2g — 2 for which SWxnszc) E 0.

In case genus(E) = 1 (i.e. E = torus), they also proved

Theorem 4.2.3 ([MS]) Suppose X and Y contain a cusp neighborhood of a cusp

fiber f. Then SW-basic classes of XllfY are given by

{KX + Ky + n - f : Kx(Ky) is a basic class of X(Y) and n = 0,:l:2}



36

Theorem 4.2.4 The fiber sum of two minimal symplectic 4-manifolds with b+ Z 2

along a symplectic (or lagrangian) surface is also minimal symplectic.

Proof : Since the fiber sum along a symplectic (or lagrangian) surface is also sym-

plectic ([G2, Corollary 1.7]), it suffices to show its minimality (a fiber sum of two

minimal symplectic 4-manifolds does not contain an embedded —l-sphere) which can

be proved by W. Lorek’s argument. Here is a sketch of an alternative argument:

Suppose E is an embedded —1-sphere in a symplectic manifold XflgY. Since there

is a symplectically embedded —1-sphere representing the same homology class as E,

we may assume that E is symplectically embedded. As the radius of a tubular neigh-

borhood E x D2 of 2 goes to zero, E goes to a limit surface Cx II ng52 H Cy in the

compactification space X H E x 52 H Y. Since the genus of a limit surface cannot

increase and genus(E) = 0, each piece of Cx H ng52 Il Cy should be Sz. Further-

more, ng52 = S2 C E x S2 has square 0. Hence, since an essential sphere S.2 of

non-negative square cannot be embedded in a symplectic 4-manifold with b+ 2 2,

E2 = —l = C} + C3, implies that either C} = —l or C3, = —l which contradicts that

X and Y are minimal. Cl

These theorems enable us to partially solve our existence question.

Theorem 4.2.5 Every lattice point in the wedge between the elliptic line (C? = 0) and

Noether line (cf = 2x—6) is realized as (x, cf) ofa simply connected smooth irreducible

4-manifold. Furthermore, each of these manifolds has infinitely many diffeomorphism

types, but all are homeomorphic.

Proof : Consider a torus fiber sum X(k, n) E E(k):][E(n—k) obtained by choosing

a cusp f in a cusp neighborhood N in B(2, 3, 6k—1) C E(k) and in B(2, 3, 6n—6k—1) C
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E(n—k).

X(ka n) = N1: UE(2,3,6k—l) B(2,3,6k—1)ufB(27396n—6k_1)UE(2,3.6fl-6lo-I) Nn—k

where Nk and NH are a neighborhood of a singular fiber and a section in E(lc) and

E(n — k) respectively. Then X(k,n) and E(n) have the same (X,C¥) = (n,0), but

they are not homeomorphic. Since E(k) \ N contains two disjoint configurations Cm,

so does X(k, n). Furthermore, X(k, n) also contains -4-sphere, a configuration C“,

which intersects f at one point. Hence, by rationally blowing down these configu-

rations, we can fill every lattice point in the wedge. Explicitly, if 1 S of S n — 5,

rationally blow down one C“ for 4 S k S n — 2. If n — 4 S cf S 2n — 9 and

of is even (odd), rationally blow down two Cm (two C“ and one C“). Finally,

if cf = 2n — 8(2n — 7), rationally blow down two Cu-” and two C.” (two C..-“

and three C“). Irreducibility of these rational blow-down manifolds follows from

Theorem 4.2.3 and the fact that such manifolds cannot be blow-up manifolds. (Oth-

erwise, there exist SW-basic classes 171,72 satisfying (It—'1 — 11—2)2 = —4 such that

Tfilxofi = 1,2) extends to a basic class K,(i = 1,2) for X(k,n). Since (K1 — K2)2 2 0

(Theorem 4.2.3) and Cm is negative definite,

0 : (A'llXo _ A’2lXolz + (hillckn — A'lekJ )2

= (K — my + (A’llcku _ A’ZICk'l )2

s (F. — ‘IEY = —4

which is a contradiction.) Second statement follows from Corollary 4.1.1 and Theo-

rem 4.2.1 because all such rational blow-down manifolds still contain a nicely embed-

ded cusp neighborhood. U

Here are a few remarks on this theorem:
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1. Fintushel and Stern showed this theorem by using twisted fiber sums. Gompf

([G2]) and Stipsicz ([St]) also showed that any lattice point with c? = even in

the wedge can be realized as (x, of) of symplectic manifolds. Stipsicz’ examples

are Xlle(n), where X is a Horikawa surface with cf = 2x — 6.

2. In fact, we can show that every lattice point in the wedge is realized as (x, C?

of symplectic manifolds by using symplectically embedded —4-spheres in E(4)

and by a slight modification of Stipsicz’ examples. That is, first consider a

torus fiber sum manifold Y E X1]fIE(4), where f’ is an embedded torus in the

cusp neighborhood contained in a Milnor fiber B(2, 3, 23) C E(4) and X is a

Horikawa surface as above. Since such an embedded torus f’ is lagrangian ([St]),

by Gompf’s argument ([G2]), Y is a symplectic manifold and still contains a

symplectically embedded —4—sphere (a configuration Cm). Hence the rational

blow-down manifold Y“ of Y is again a symplectic irreducible 4—manifold. Now,

as the same way in Stipsicz’ examples, construct torus fiber sum manifolds

Y4Jtle(n). Then any lattice point with cf = odd in the wedge is realized by

these symplectic manifolds. (It is also known that Fintushel and Stern’s twisted

fiber sum examples covering the wedge are all symplectic.)

3. Each of these manifolds constructed in the proof above has more than one SW-

basic classes. Actually one can construct infinitely many irreducible 4—manifolds

which have up to sign two (three, four, - - - ) SW-basic classes by using slightly

different examples.

4. Let Q be the set of all lattice points in the wedge between cf 2 O and c? S 2x—6.

If a simply connected irreducible 4-manifold X contains a cusp neighborhood,

then by torus fiber sum of X with manifolds constructed above, each lattice
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point in (x(X),cf(X)) + Q is represented by a simply connected 4—manifold

which has infinitely many diffeomorphism types. All these manifolds seem likely

to be minimal (so that they are irreducible). If one choose a simply connected

irreducible symplectic manifold X which contains a symplectic (or lagrangian)

torus in a cusp neighborhood, then, by taking a torus fiber sum of X with

symplectic manifolds constructed in Remark 2 above, we get a family of desired

irreducible manifolds. (Irreducibility follows from either Taubes’ result ([T])

and Theorem 4.2.4, or Theorem 4.2.3 and Theorem 4.2.4.)

Let us consider a Milnor fiber B(p,q,pq—1) = {(21,22,Z3) E C3 : zf+zg+z§H=

e, for e > 0} which has a natural compactification (by adding a complex curve at

infinity) as a complete intersection in a weighted homogeneous space. Note that the

singularities of this compactification can be resolved to obtain a simply connected

algebraic surface X(p, q, pq— 1).

Example 4 The Milnor fiber B(2,2n+1,4n+1) is contained in the simply con-

nected algebraic surface X(2, 2n+1, 4n+1) which is diffeomorphic to B(2, 2n+1, 4n+

1) UE(2’27,+1,4n+1) T(2,2n+1). T(2, 2n+1) is the manifold obtained from +1 surgery on

the (2, 2n+1) torus knot, and it contains an obvious surface T of genus n and square

+1. The canonical class Kx of X(2,2n+1,4n+1) is represented by a multiple of T.

Let X’ = X(2,2ii.+1,4n+1)th—P2 be the manifold obtained by blowing up at a point

in T, so that

X, E B(2,2n+1,4n+l) Uz(2,2n+1,4n+1) C(2,2n+1)

where C(2,2n+1) is the blow up of T(2,2n+1). In X’ is an embedded surface 2

representing T — e, and E has genus n and self-intersection 0. Since 2 is symplecti-

cally embedded, by taking a fiber sum of X’ with itself along 2 (Fig 4.3), we get a
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simply connected symplectic 4-manifold Z E X’[12X’ which satisfies the hypothesis of

Theorem 4.2.2. Furthermore, Z is irreducible if n is odd. Note that the irreducibility

of Z follows from Theorem 4.2.2 and the fact that Z is spin because each part of the

following Figure 4.3 is spin. (The middle part, C(2, 2n+1)llzC(2, 2n+1), is embedded

in the elliptic surface

E(n +1) 9: Q U2(2.2n+1.4n+1) C(2a2n+1)i20(2a2n+1) U2(2.2n+-1.4n+l) Q,

where Q is the canonical resolution of singularity of 2? + 23"“ + 23"“ = 0 in C3.)

.B(2.2n+1.4n+1)3. all”

C(2.2n+l)§C(2.2n+l)

  

Figure 4.3:

Finally, by using the symplectic manifold Z constructed above, we prove the main

result of this paper:

Theorem 4.2.6 There is a linear function y = f(x) such that any lattice point (a,b)

satisfying b S f(a) in the first quadrant can be realized as (x, cf) ofa simply connected

symplectic 4-manifold which has infinitely many distinct irreducible smooth structures.

In particular, all lattice points (a,b) except at most finitely many in between of = 0

and cf = 8x (non-positive signature region) satisfy b S f(a).

Proof : Choose a simply connected minimal surface, say Y, of positive signature

which is a hyperelliptic fibration whose genus is odd. (One may choose a minimal

surface constructed by Xiao and Chen ([C]) for Y). Let E be a fiber of Y and

let g = genus(E). Take any irreducible symplectic 4-manifold Z which contains a

symplectically embedded surface 2 satisfying 22 = 0 and < )3, Kg >= 29—2, and also
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contains a symplectic (or lagrangian) torus f in a cusp neighborhood N satisfying

N n E = d), where K2 is a (SW)-basic class of Z (Such an irreducible 4—manifold

exists! — see Example 4). Note that since

40/1122) - 8X(Yl22) = WY) - 8X(Y)l + [4(2) - 8X(Z)l and [Ci(Y) - 8X(Y)l > 0

I:

there exists an integer k > 0 such that X EWugz has a positive signature.

Let Q be the set of all lattice points in the wedge between C? = 0 and cf S 2x—6.

Then, by taking a torus fiber sum of X with manifolds constructed in Remark 2

(Theorem 4.2.5 below), each lattice point in (x(X),cf(X)) + Q is represented by a

simply connected irreducible symplectic 4-manifold which has infinitely many difieo—

morphism types. The same is true for Xlle, Xllell/X,... So define y = f(r)

by

f(50) = Ci(X)/X(X) ‘ [1‘ - Ci(X)/2 - X(X) - 3] + 20i(Xl

Then each lattice point (a,b) satisfying b S f(a) in the first quadrantnis realized as

( X, cf) of a simply connected irreducible symplectic 4-manifoldMI]IW,

for some n 6 Z and a manifold W constructed in Remark 2 (Theorem 4.2.5 below).

Note that the irreducibility of such manifolds follows from either Taubes’ result in [T]

(A symplectic 4-manifold with b+ Z 2 has a non-zero Seiberg-Witten invariant) and

Theorem 4.2.4, or Theorem 4.2.2, Theorem 4.2.3 and Theorem 4.2.4. The second

statement follows from the fact that the slope of f(:r),cf(X ) /x(X ), is greater than

8.0

Remarks 1. In the proof above, the reason we use a symplectic manifold Z is to

make sure that all involved manifolds are minimal. Hence if one can prove that all

involved manifolds are minimal by using different argument, then one can drop the
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symplectic condition of Z.

2. Note that there are still many lattice points in the region y > f(2:) which are

 

realized as (x,cf) of 311le” - - - filelfW, for some W 6 fl and n E Z. Furthermore,

we do not claim that the f(x) constructed in the proof above is the best choice. In

fact, one may choose better y = f(1:) having the same property by choosing other

surface X required in the proof.

We close this paper by suggesting the following problem:

Problem For each pair of integers (x, cf) between elliptic line (cf = 0) and Bogomolov-

Miyaoka- Yau line (cf = 9x), are there infinitely many difieomorphism types which are

all homeomorphic?



Bibliography

[APS] M. Atiyah, V. Patodi, and 1. Singer, Spectral asymmetry and Riemannian

[CH]

[C]

[F31]

[F32]

[F33]

[G1]

[G2]

geometry.II, Math. Proc. Camb. Phil. Soc. 78 (1975), 405-432

A. Casson and J. Harer, Some homology lens spaces which bound rational

homology balls, Pac. J . Math. 96 (1981), 23-36

Z. Chen, Simply connected minimal surfaces with positive index , Math. Ann.

277 (1987), 141-164

S. Donaldson, Connections, cohomology and the intersection forms of 4-

manifolds, J. Diff. Geom. 24 (1986), 275-341

R. Fintushel and R. Stern, Surgery in cusp neighborhoods and the geography

of irreducible 4—manifold, Inventions Math. 117 (1994), 455-523

R. Fintushel and R. Stern, Immersed spheres in 4—manifolds and the immersed

Thom conjecture, Turkish 3‘. Math. 19 no 2 (1995), 145-157

R. Fintushel and R. Stern, Rational blowdowns of smooth 4-manifolds,

preprint (1995)

R. Gompf, Nuclei of elliptic surfaces, Topology 30 (1991), 479-511

R. Gompf, A new construction of symplectic manifolds, Annals of Math. 142

no 3 ( 1995), 527-595

43



44

[HZ] F. Hirzebruch and D. Zagier, “The Atiyah—Singer Theorem and Elementary

Number Theory”, Mathematical Lecture Series 3, Publish or Perish, Berkeley,

1974

[KM] P. Kronheimer and T. Mrowka, The genus of embedded surfaces in the pro—

jective plane, Mathematical Research Letters 1 (1994), 797-808

[MS] J. Morgan and Z. Szabo, Product formulas for Seiberg-Witten invariants of

4-manifolds decomposed along T3, in preparation

[MST] J. Morgan, Z. Szabo, and C. Taubes, A product formula for the Seiberg-Witten .

invariants and the generalized Thom conjecture, preprint (1995)

[P] U. Persson, An introduction to the geography of surfaces of general type, Proc.

Symp. Pure Math. vol 46 (1987), 195—217

[Sh] P. Shanahan, “The Atiyah-Singer Index Theorem”, Lecture Notes in Mathe-

matics 638, Springer-Verlag, 1976

[St] A. Stipsicz, A note on the geography of symplectic manifolds, preprint (1995)

[T] C. Taubes, The Seiberg-Witten invariants and symplectic forms, Mathemati-

cal Research Letters 1 (1994), 809-822

[W] E. Witten, Monopoles and four-manifolds, Mathematical Research Letters 1

(1994), 769-796



HICH

  

 

Ian STRTE UNIV. LIBRQRIES

l[ll[ll[l[ll]llllllllll[lllllllllll
1293015559325.3


