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ABSTRACT

SEIBERG-WITTEN INVARIANTS OF RATIONAL BLOW-DOWNS AND
GEOGRAPHY PROBLEMS OF IRREDUCIBLE 4-MANIFOLDS

BY

Jongil Park

One of the main problems in Seiberg-Witten theory is to find (SW)-basic classes
and its invariants for a given smooth 4-manifold. Rational blow-down procedure
introduced by R. Fintushel and R. Stern is one way to compute these invariants for

some smooth 4-manifolds.

This thesis consists of two parts. First, we find (SW)-basic classes and Seiberg-

Witten invariants for rational blow-down 4-manifolds by using index computations.

(R. Fintushel and R. Stern did ¢ = 1 case.)

Secondly, we investigate the geography problems (in particular, the existence
problem and the uniqueness problem) for simply connected smooth irreducible 4-
manifolds. By taking fiber sums along an embedded surface of square 0 and by
the rational blow-down procedure, we construct many new examples of irreducible
4-manifolds. Furthermore, we prove “All but finitely many lattice points (a,b) ly-
ing in between ¢ = 0 and ¢? = 8x (non-positive signature region) can be realized as
(x,c?) of a simply connected irreducible 4-manifold which has infinitely many distinct

smooth structures.”
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Chapter 1

Introduction

As gauge theory (Donaldson theory and Seiberg-Witten theory) is developed, the fun-

damental problem in this area is to find its invariants for a given smooth 4-manifold.

In 1993, R. Fintushel and R. Stern introduced a surgical procedure, called rational
blow-down, to compute the Donaldson series for simply connected regular elliptic
surfaces with multiple fibers of relatively prime orders. ‘Rational blow-down’ means
that if a smooth 4-manifold X contains a certain configuration C, of transversally
intersecting 2-spheres whose boundary is L(p?,1 — p), then one can construct a new

smooth 4-manifold X, from X by replacing C, with a rational ball B,.

In fact, A. Casson and J. Harer ([CH]) showed that for any pair of relatively prime
integers p and ¢, L(p?,1—pq) bounds a rational ball B,,. Hence one can extend
this rational blow-down procedure to the general case, that is, whenever a smooth 4-
manifold X contains a certain configuration C, 4 of transversally intersecting 2-spheres
whose boundary is L(p?,1—pq), one can always construct a new smooth 4-manifold

X,,q by replacing C, , with a rational ball B, ,.

For the ¢ = 1 case, R. Fintushel and R. Stern initially computed the Donaldson

series of X, = X, from the Donaldson series of X, and later they computed the



Seiberg-Witten invariants of X, ([FS3]). In Chapter 3 of this paper we extend these
results to the general case. Explicitly, we prove the following theorem by using index

computations:

Theorem 1.0.1 Suppose X is a smooth 4-manifold which contains a configuration Cy,.
If L is a characteristic line bundle on X such that SWx(L) # 0, (Llc,,)?* = —b2(Cy,)
and ¢;(L|Lp2,1pq)) = mp € Lz = H*(L(p?,1—pq); Z) with m = (p— 1) (mod 2),
then L induces a characteristic line bundle T on X, , such that SWx, (L) = SWx(L).

Furthermore, we prove the following theorem:

Theorem 1.0.2 If a simply connected smooth 4-manifold X contains a configuration
C,., satisfying condition (%) below, then the SW-invariants of X,, are completely
determined by those of X. That is, for any characteristic line bundle L on X, , with
SWx, (L) # 0, there ezists a characteristic line bundle L on X such that SWx(L) =

SWx, ().

The condition (*) in the theorem above is following:

k

() {0(X eieils, ) - e6=%1,Vi} = {mp: —(p-1) < m < (p-1) and m = (p-1) (mod 2)}
1=1

All known configurations C,, satisfy this condition.

As applications, we explore the geography problems for simply connected smooth

irreducible 4-manifolds. Namely, the existence problem: which pairs (x = "+—2ﬂ, =
30 + 2e) of lattice points are realized by simply connected smooth irreducible 4-
manifolds and the uniqueness problem: are there infinitely many distinct irreducible
smooth 4-manifolds which are all homeomorphic at each lattice point? In Chapter 4

we give partial answers for these problems. That is, we find many new examples of



such 4-manifolds in the wedge between ¢ = 0 and ¢ = 2x —6. Actually we construct
new examples which cover all lattice points in this region (The examples lying in the
wedge were first found by R. Fintushel and R. Stern, and later by R. Gompf and
A. Stipsicz.). Note that any such 4-manifold in this region cannot admit a complex
structure with either orientation. We also investigate uniqueness problem, i.e. the
problem of finding infinitely many diffeomorphism types for a given pair (x, ¢?) lying
in between ¢ = 0 and ¢? < 9x. As a result of Theorem 1.0.2, we can compute
Seiberg-Witten invariants of X(p), where X (p) is the result of p-surgery in the cusp
neighborhood of a cusp fiber in X. Under a mild condition on X making X(p) simply
connected, such X(p) is not diffeomorphic, but is homeomorphic to X. In fact, for
infinitely many (x,c?), we can find irreducible 4-manifolds containing a cusp fiber
satisfying the mild condition, for example, by taking fiber sums. The main result we

prove in this paper is

Theorem 1.0.3 All but finitely many lattice points (a,b) lying in between ¢ = 0 and
c? = 8x (non-positive signature region) can be realized as (x, c?) of a simply connected

irreducible 4-manifold which has infinitely many distinct smooth structures.



Chapter 2

The Topology of Rational
Blow-downs

In this chapter we describe topological aspects and several examples of rationally

blowdown 4-manifolds.

2.1 Topological Properties

For any relatively prime integers p and g with 1 < ¢ < p, we define a configuration C, 4
as a smooth 4-manifold obtained by plumbing disk bundles over 2-sphere instructed

by the following linear diagram

_bk _bk_l ...... —_._bl
Uk Uk-1 u)
where ;;’i—l = [bk,bk-1,...,b1] is a unique continued linear fraction with all b; > 2,

and each vertex u; represents a disk bundle over 2-sphere whose Euler number is —b;.

Then the configuration C, , has the following properties:

1. It is a simply connected smooth 4-manifold whose boundary is lens space

L(p?,1-pq).



2. Hy(Cpq; Z) = @L, Z has generators {u; : 1 <i < k} which can be represented
by embedded 2-spheres, that is, each u; is represented by zero-section S? of the
disk bundle u; over S%. (We use u; for both a generator and the corresponding

disk bundle.)

3. The plumbing matrix for C, , with respect to the basis {u; : 1 <7 < k} is given

by the symmetric £ x k matrix

(b 1 0 \
1 —b 1 0
b 0 1 —bs
0 —b; 1
\ 1 b

so that C, 4 is negative definite.

4. The intersection form on H?(C,,4; Z) with respect to the dual basis {y; : 1 <
i <k} (i.e. <7i,uj; >=46;) is given by
Q:=(vi-v)=P"!
Proof : Note that the intersection form Q on H*(C,,; Z) is defined by
Vit :=;%<'7i , PDv; >
where v} € H*(Cp,q,0C,4; Z) is determined by 1°(7}) = p* - v; in the sequence
0 — H*(Cpg, 0Cp i Z) 25 HY(Cp s Z) -2 H*(0C}q: Z) — 0
Since j* = P, we have

1 , 1
Vi = F <%,PD7y; >= ? <7,PY(p* PDv;) >=< ,P"Y(PD~;) >

Ph;. O

—~



Lemma 2.1.1 The inclusion induced homomorphism @ : H*(Cpq; Z) — H*(0Chpq; Z)

= Z,2 is given by O(v:) = ni, where n; is a number satisfying

s+ _(-10\(01)/-10) (-10)(01)[0
n; ]\ b 1 10 b, 1 bi-1 1 10 1
Proof : By Poincaré duality , it suffices to show 0 : Hy(Cyp,q,0Cpq; Z) = H1(0Cp 43 Z)
is given by 8(PD~;) = n;. For each i, choose a fiber D? of a disk bundle u; over S?
so that D? . S? = §;;. Then D? is a representative for PD(vi) € Hz(Cpq,0C,4; Z).

Since

BCp‘q = D% x S,: Ua, 0D~ x S,i Us oD% x SI:-I Ud,_, -+ Ua, D™ x Sll
= D* xS}Us D™ xS}

-1 0

where S} := OD? and A := AyBAi_,--- A, with A; = ( b1

((1) é),wehave

o(PDv;) = 0(D})

() ) ()

r(z)~ ) in H,(0C,4;Z). Hence, by choosing ( (l) ) as a

1

) and B :=

which is homologous to (

generator of H,(0C,q;Z), we have 3(PD~;) =n;. O

Lemma 2.1.2 The lens space L(p?,1—pq) = 0C,, bounds a rational ball B, , with

71(By,g) = Z,, and the inclusion induced homomorphism

v H(Bpg; 2) = Z, — H(L(p*,1-pq); Z) = Zy2

can be given by n — np.



Proof : The first part was proved by Casson and Harer ([CH]). For the second
part, since Mayer-Vietoris sequence for X = C,, UL B,,, which is homeomorphic to
fkCP"

0 — Ho(Cyg;Z) ® Hy(Bpg; Z) — Hy(fkCP52Z) — - --
implies Ha(B,,; Z) is torsion free, by Poincaré duality, H*(By.q, 8By, Z) = H;(By.)

= 0. On the other hand, since the exact sequence for (B, 4,0B, ) also implies that
" H¥B,;Z) = Z, — H*(0Bp;Z) = Z,:

is injective, ¢*(1) = Ip for some [ with gcd(l, p) = 1. Hence, by re-choosing a generator

of H(0B,4;Z) = Z,2, we may assume that :*(1) = p, so that .*(n) =np. O

Lemma 2.1.3 B, is spin if p is odd, and B, 4 is not spin if p is even.

Proof : If p is odd, then H,(B,,) = Z, implies H*(B, 4; Z,) = Ext(H1(Bypy); Z2)
= 0. Assume p is even and B,, is spin. Then the index of Dirac operator on B, ,
should be an integer. But the index computation on B,, (Proposition 3.2.2 and its

remark) shows that it is not an integer—a contradiction! O

Now we define the rational blow-down procedure: Suppose X is a smooth 4-
manifold which contains a configuration C, , for some relatively prime integers p and
g. We construct a new smooth 4-manifold X, ,, called the rational blow-down
of X, by replacing C,, with the rational ball B, ,(Fig 2.1). We call this procedure
a ‘(generalized) rational blow-down’. Note that this procedure is well defined,
i.e. X, 4 is uniquely constructed (up to diffeomorphism) from X because each dif-

feomorphism of 0B,,, = L(p? 1—pq) extends over the rational ball B, , by the same



argument as Corollary 2.2 in [FS3].

Figure 2.1:

Lemma 2.1.4 b*(X,,) = b*(X) and c3(X,,) = 2(X) + k, where k = by(Cp,y).

Proof : Since C,, is negative definite, b*(X,,) = b*(X) and

C'f(xp,q) = 30(Xp,) +2e(Xp,)
= 3(o(X)+k)+2(e(X)—k)

= A(X)+k.

where o(X) is the signature of X and e(X) is the Euler characteristic of X. O

2.2 Examples
Here are several configurations C, 4 that will be used later.

Case ¢ = 1 : This case is studied in [FS3], whose configuration Cp, is

—(p+2) -2 -2

up-l up—2 u;

Fintushel and Stern used this configuration to show that the rational blow-down of
E(n)j(p1 )@2 is diffeomorphic to E(n;p), p-log transform on E(n), and to compute
the Donaldson and Seiberg-Witten invariants of simply connected elliptic surfaces

with multiple fibers. Here E(n) is a simply connected elliptic surface with no multiple



fibers and holomorphic Euler characteristic n, and ‘p-log transform on E(n)’ is the
result of removing tubular neighborhood of torus fiber in E(n), say T? x D?, and
regluing it by a diffeomorphism
¢:T?x 0D* — T? x OD?
such that the absolute value of the degree of the map
projspz o ¢ : pt x 0D* — 8D?

is p. Note that ‘p-log transform on E(n)’ is well defined, i.e. E(n;p) is uniquely
determined up to diffeomorphism by the fact that if projspz o ¢ and projsp2 0 ¢’ have
the same degree up to sign, then the resulting two manifolds are diffeomorphic ([G1,

Proposition 2.1]).

Case p = kq—1(k,q > 2) : We assume ¢ > 3 (¢ = 2 case is also obtained in a

similar way). The configuration C,, is given by

—k —(q+2) -2 -2 -3 -2 2

Uk4q-2 Uk4qg-3 Uk4q—-4 Uk Uk-1 Uk-2 u

which can be embedded in ti(k+q—2)C_P2 by choosing

€k4q—2—i — Chkiq—1—i i=1,...,k-2
€g—2 — €q—1 — €4 i=k-1

u; = €k+q-3—i — Ck4q—2—i l=k»- .. ,k+q—4
—261 — €2 — " — €91 l=k+q—3
€g—1 — €g — ** — Ekyq-2 1=k+q-2

where each ¢; (1 < i < k+¢-2) is the exceptional divisor in ﬁ(Hq—2)EF2. Furthermore,

by using Lemma 2.1.1, we get its boundary values

1 i=1,....k-1
Ovi=¢ (1+2—-k)k—1i i=k,...,k+q-3 (2.1)
pqg—1 i=k+q-2



10

which implies that Cke—;,, satisfies the condition (*) mentioned in the introduction.

Theorem 2.2.1 For any integers k and q (k,q > 2), there is an embedding Ciq—1 4 C
E(n)ﬁ(k+q—2)(ﬁ3‘_2 such that the rational blow-down is diffeomorphic to E(n;kq—1).

Proof : Consider the homology class f of the fiber in E(n) which can be repre-
sented by an immersed 2-sphere with one positive double point and self-intersection
0 (a nodal fiber). Blow up this double point so that f — 2e; (e, is the exceptional
divisor) is represented by an embedded sphere. Since e; intersects f — 2¢; at two
positive points, blow up one of these points again. By continuing in this way, we
get a configuration Ci4—1,4 in E(n)ﬂ(k+q—2)@2. We draw the case ¢ > 3 (Fig 2.2)
(q = 2 case is similar). The claim that the rational blow-down of E(n)ﬁ(k+q—2)@2
is diffeomorphic to E(n; kg—1) can be proved by Kirby calculus on the neighborhood

of a cusp fiber as the same way as Theorem 3.1 in [FS3]. O

Figure 2.2:

Here are a few remarks on this theorem:

1. The theorem above implies that there are many ways to obtainE(n;p), p-log
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transform on E(n), from E(n) via a rational blow-down procedure; so one can
choose an ‘economical’ way to get E(n;p). For example, E(n,11) is diffeomor-
phic to the rational blow-down of Cy;,; C E(n)ﬂm@z, of Cj12 C E(n)ﬁ6ﬁ’_2,
and of C113 C E(n)j5CP".

. One expects that for any relative prime integers p and g, there is an embed-
ding Cp,4 in E(n)ﬂk@z, for some k € Z, such that the rational blow-down is

diffeomorphic to E(n;p).

. The key ingredient in the proof of the theorem is to find such a configuration

Crq-1,4- We chose u; exactly the same u; embedded in ﬂ(k+q—2)@2 except
Uktg-3 = f—2e1 — €2+ —€g-1 (Uk—1 = f —2e1 — €3, if ¢=2)

. One can extend the ‘logarithmic transform’ procedure to any 4-manifold which
contains a cusp neighborhood. A cusp in a 4-manifold means a PL embedded
2-sphere of self-intersection 0 with a single non-locally flat point whose neigh-
borhood is the cone on the right-hand trefoil knot, and we define a cusp neigh-
borhood in a 4-manifold to be a manifold N obtained by performing 0-framed
surgery on the trefoil knot in the boundary of the 4-ball. Note that since the
trefoil knot is a fibered knot with a genus 1 fiber, N is fibered by tori with one
singular fiber which is a cusp. Hence one can perform ‘p-log transform’ on a
regular torus fiber in N exactly the same way as in F(n), so that the theorem

above is also true for any smooth 4-manifold containing a cusp neighborhood.



Chapter 3

Seiberg-Witten Theory of Rational
Blow-downs of 4-Manifolds

In this chapter we compute the Seiberg-Witten invariants of rational blow-downs of

4-manifolds.

3.1 Basics of Seiberg-Witten Invariants

We start by recalling the basics of Seiberg-Witten invariants introduced by Seiberg
and Witten (cf. [W],[KM]).

Let X be an oriented, closed Riemannian 4-manifold, and let L be a characteristic
line bundle on X, i.e. ¢;(L) is an integral lift of wy(X). This determines a Spin®-
structure on X. We denote the associated U(2)-bundles by W* := §* @ L'/2, where
5% is a (locally defined) spinor bundle on X. (One may choose a Spin‘-structure
first, and associated U(2)-bundles W* on X. Then L := det(W™) = det(W ™) is the
associated characteristic line bundle on X.) For simplicity we assume that H?(X;Z)
has no 2-torsion so that the set Spin°(X) of Spin‘-structures on X is identified with

the set of characteristic line bundles on X.

Note that Clifford multiplication ¢ : T*X — Hom(W*,W ™) leads to an isomor-

12
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phism
p:AT®C — sl(W?)

taking A* to su(W), and the Levi-Civita connection on T X together with a unitary
connection A on L induces a connection V4 : I(W*+) — I'(T*X ® W*). This
connection, followed by Clifford multiplication, induces a Spin°-Dirac operator D4 :
[(W+) — ['(W~). The Seiberg-Witten equations ([W]) are the following pair of

equations for a unitary connection A of L and a section ¥ of (W) :

0

{ g (U ®U*) (3.1)

p(FF)

where F} is the self-dual part of the curvature of A and (¥ ® ¥*)o is the trace-free

part of (¥ ® ¥*) which is interpreted as an endomorphism of W+.

The gauge group G := Aut(L) = Map(X,S") acts on the space Ax(L) x (W)
by

o

9-(A¥)=(9-A-g"',g-¥)

In particular, if b;(X) = 0, then the gauge group G is homotopy equivalent to S! so
that the quotient
Bx(L) = Ax(L) x (T(W*) - 0)/S"

is homotopy equivalent to CP*. Since the set of solutions is invariant under the
action, it induces an orbit space, called the (Seiberg- Witten) moduli space, denoted

by Mx (L), whose formal dimension is
dimMy (L) = %(CI(LV — 30(X) — 2¢(X))

where (X)) is the signature of X and e(X) is the Euler characteristic of X.
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Definition A solution (A, ¥) of the Seiberg-Witten equation (3.1) is called irreducible

(reducible) if ¥ # 0 (¥ = 0).

Note that if *(X) > 0 and Mx (L) # ¢, then for a generic metricon X the moduli
space Mx (L) contains no reducible solutions, so that it is a compact, smooth manifold
of the given dimension. Furthermore the moduli space Mx(L) is orientable and its
orientation is determined by a choice of orientation on det(H°(X;R) & H!(X;R) &

H:(X;R)).

Definition The Seiberg-Witten invariant for X with b,(X) = 0 is a function SWx :

Spin¢(X) — Z defined by

0 if dimMx(L) <0 or odd
SWy(L)={ 2sign(A,¥) if dimMx(L)=0

(AW)EMx(L)
< B, [Mx(L)] > if dimMx(L):=2d;, >0 and even
where sign(A, ¥) is £1 whose sign is determined by an orientation on Mx (L), and

B is a generator of H?(B%(L);Z) = H?*(CP*;Z). For convenience, we denote the

Seiberg-Witten invariant for X by SWx = ", SWx(L) - ~.

Note that if b*(X) > 1, the Seiberg-Witten invariant SWx = 3" SWx(L)-el is a
diffeomorphism invariant, i.e. SWx does not depend on the choice of generic metric
on X and generic perturbation of the Seiberg-Witten equation. Furthermore, only

finitely many Spin®-structures on X have a non-zero Seiberg-Witten invariant.

Definition Let X be an oriented, smooth 4-manifold with b, = 0 and 4t > 1. We
say a cohomology class ¢,(L) € H*(X;Z) is a Seiberg-Witten basic class (for brevity,
SW-basic class) for X if SWx(L) # 0.
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Definition An oriented, smooth 4-manifold X is called Seiberg-Witten simple type

(for brevity, SW-simple type) if SWx(L) = 0, for all L satisfying dimMx(L) > 0.

Next we describe a (Seiberg-Witten) gluing theory for computing Seiberg-Witten
invariants of a smooth 4-manifold X = X, Uy X_ which is separated into two pieces
X,,X_ by an embedded 3-manifold Y. Let (Xgr,gr) be the Riemannian manifold
obtained from X by cutting along Y and inserting a cylinder [—R, R] x Y on which
gr is a product metric. As in Donaldson theory, if the moduli space Mx (L) is non-
empty for all sufficiently large R, then by stretching neck along Y in X (i.e. R — o0)

each solution (A, ¥) € Mx (L) is split into three relative solutions
((A4,¥4), (Ao, Vo), (A-,¥_)) € Mx,(L|x,) x Mpxy (L|rxy) x Mx_(L|x_),

and conversely any such three relative solutions (A4, ¥,), (Ao, Wo) and (A_,¥_) in-
duce a global solution (A4, ¥4 )y, (Ao, Yo)tig,(A-,¥_) € Mx(L), where g; and g; are
gluing parameters. (In general, there is an obstruction to construct a global solution
from relative solutions [D].) In particular, if the embedded 3-manifold Y in X has a
positive scalar curvature metric (e.g. Y = S3, L(p?,1—pq)), then any such solution

(Ao, o) € Mryy(L|rxy) is reducible. lLe.

Mpexy(Llrxy) = {(Ao0,0): A is an ASD U(1)—connection on Y'}

= HY(Y;R)/H\(Y;Z)

For example, if Y = S3 or L(p?,1—pq), then Mpyy(L|rxy) is a single reducible solu-
tion. Furthermore, since L is a U(1)-bundle, gluing parameters are S!. In summary,

we have
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Proposition 3.1.1 If a smooth 4-manifold X is split into two pieces X4 and X_ by
an embedded 3-manifold Y = S3 or L(p?,1—pq), then each solution (A,¥) € Mx(L)
can be obtained from two relative solutions ((A4+,¥4),(A-,¥_)) € Mx,(L|x,) x

Mx_(L|x_) and
dimMx (L) = dimMx, (L|x,) + dimMx_(L|x_) +1

where Mx,(L|x,) is the set of solutions (modulo gauge group) which converge asymp-

totically to a reducible solution in My(Lly).

Note that if dimMx_(L|x-) < 0, then Mx_(L|x-) consists of reducible solutions.

3.2 Index Computations

The technical part in the rest of this chapter is to show that dimMp, (L|s,,) = —1
and dimMc, (L|c,,) < —1, so that both Mg, (L|g,,) and Mc, (L|c,,) consist of a
single reducible solution. Before doing this, as a warm-up, we can get a well-known

blow-up formula ([FS2]) for Seiberg-Witten invariants by using index computations.

Proposition 3.2.1 If X is a SW-simple type 4-manifold, then the blow-up X =
X§CP? is also of SW-simple type, and the Seiberg- Witten invariants of X = Xﬂ€F2
are

SWy = SWx - (ef + 7F)
where E is the exceptional divisor ofﬁ?z.
Proof : Note that a characteristic line bundle on X = X ﬁ@z is of the form

L+(2k+1)E, where L is a characteristic line bundle on X and k € Z. (We identify

the exceptional divisor E with its corresponding line bundle on (3?2.) Suppose L :=
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L+ (2k+1)E is a characteristic line bundle on X such that SWy(L) # 0. When
splitting apart X along S, Proposition 3.1.1 implies that any solution in M ,\"(L)
can be obtained from two relative solutions which are identified with two (absolute)
solutions in Mx (L) X Mgp2((2k+1)E) (Since stretching neck along S corresponds to
choosing a sequence of metric so that the neck is pinched down to a point, the last

statement follows from a simple removable singularities argument.). But since

dimMgs ((2k+1)E) = 2-indDglege + ind(d* + d°)|zp2

= 2. (7" . ACP?)- [CP’] + (k' — k° — h*)(CP?)
B 2k+1)E 21
- 2/ - -1
—(4AL2
_ o, a4k
8
< -1

(In case Y = S3, indD,4 has no boundary terms.) Thus Mgg2((2k+1)E) consists of
a single reducible solution, and M (L) can be identified with Mx(L). Furthermore,

since

%{(CI(L) + (2k+1)E)? — (30(X) + 2¢(X))}

= (L) — (30(X) +2e(X))} = (K + k)

~
It

= dimMx(L) — (kK* + k),

the SW-simple type condition on X and SWX(f,) # 0 imply that dime(I:) =0
and k = 0 or —1. Hence X is also of SW-simple type and SWx (L) = SW3(L+E) =
SWi(L-E).O

In order to compute indD4 on B, , and C, 4, we need the following two elementary

trigonometric computations.
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Lemma 3.2.1 For relatively prime integers p and q, and z = e »*

2_1 2_;
p Stpk p°-1 1

kz=; (zF — 1)(2lpe)k — 1) = g (2F = 1)(ePeDE _1) forallt e Z

Proof : There exist integers r and s satisfying rp + sq = 1; so z'Pk = zstpek,
Thus it suffices to show

21 tPak _ 1

Z(zk_l)(z(,,ﬂ,k F=0 . foralltez

Given t € Z and setting w = 2P,

Pl (t+l)pgk _ ,tpek p*-1 z""’"{(zk—l)(w"—l)} + 2P (k1) 4 (z*—1)}

& (2k=1)(2PrDk 1) = & (2F = 1)(wk — 1)

p?-1 p>-1 tpgk - k
2 (2'P%*—1)  (w—(Pet)trq -1)
= ) {7+ +y +
k=1{ (z”—l)} k=1{ (z"—l) (w"—l)

p’-1 tqu_l (wtqu -1 )

= E{ztmk }+E w‘P‘l"(w"—l)}

p>-1 tpg-1 p-1

— Z{ztmk }+ Z z{zlk w-! (tpq I)k}
k=1 ( =0 k=1
p’-1 tpg-1 p>—1 tpg p’—1
= Z{ztqu }+ E Z‘lk ZZ(w-l)lk
k=1 =0 k=1 =1 k=1
p’-1 tpe-1 p>-1 tpq p°—1
— Z{ztqu }+Zzzlk Zzzlk
k=1 =0 k=1 =1 k=1
p’-1 9
=y —— +(p* -1
kg ot -1

Hence the lemma follows from induction on t. O
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Lemma 3.2.2 For relatively prime integers p and q, and z = e

s(1—pq,p E cot( 2) co (_k_(;_pq_)) — %(1 —p2)
. Pl 1
equivalently, kz=: D)o = 1) (p —1)

Note that this lemma can also be proved by using different method ([HZ]).

Proof : An easy computation shows that
p?-1 4

1-pg,p*) = (1 - p*
s(1-pg,p*) = (1 - p") + g F e )

Note that for 0 <t < p—1 and w = 27,

-1 t-1 p-l Ik

w
Z(w"—l wk —1) - gkz_:l(w"‘—l
3 p-l —t _ t p-l (w"‘—l)
= Ly ZA oD

t2 —tp
2

(The third equality follows from the fact that Y5_, w'* = —1, for 1 <1 < p—1).

Hence by using the equality Y"7—p w* = 0 for 1 < k < p—1,

p-1 p-1 tk 1

w
0 = ZZ “)(w*k - +Z(w F_D)(w—1)

t=1 k=1

= tp) P
- E E —D(w*~1)

P, 2 = P
that —(p*-1) =
SO a 12(]7 ) kz=:1 (w" _ 1)(w"‘ _ 1)
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Finally by using the fact that 7} z'P% = 0 if k # tp and T} 2" = p if k = tp,

and by Lemma 3.2.1, we have

Z; (zF — 1)(2lPrDk — 1) = ; kz=:1 (zF = 1)(2lp D)k — 1)

p-1 p
- g (2tP — 1)(2lPe-1)tp — 1)

p-1 p
B g(wt—l)(w-‘—l)

(p*-1) o

ol

Proposition 3.2.2 For any characteristic line bundle Lg on B, , with a cylindrical

end

B;q =B, U L(p*,1—pq) x [1,00)
dimMp+ (L) = —1; so the moduli space MB;q(LB) consists of a single reducible
solution.

Proof : It suffices to show that ind(DAIB;f'q) = 0 because

dimMpy (Lp) = 2-ind(Dalgg )+ ind(d* +d")|gs
= 2-ind(Dalgs ) + (b' = 8° — b*)(By,)

= 2-ind(Dalps ) —1

where A is a U(1)-connection on Lg — B . Now compute

c1(Lg)

ind(Dalgg,) = (72 - A(B},) - [Bf,]

_ a(ls)® p h + n(0)
= S - )
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2
Since Lg is a flat connection on B;f . the first term ﬂ%”)—- = 0, and the second term

can be computed by using Proposition 2.12 in [APS]

-1
_ o imry_ [ Py o LS mk, . (Tk(1-pq)
o_a(B,,,q)_/B;q(g) + pzkglcot(pz) cot(T P

Hence, by Lemma 3.2.2,

P1 1 2 1 2
— -s(1—pq,p?) = p 1
/B,‘;,q(24 8p? s eP) 12p2( )

The boundary term, ﬁ+—;’®, can also be computed by using Atiyah-Singer fixed point

theorem ([Sh, §19]) for a Spin°-Dirac operator D4 on D*/Z,2 = cone on L(p?, 1—pq):

hL;(-O*) = :21 Y Spin(g,D*)
P* gez {0}

1721 (eﬂki/p2 _ e--"ki/zv’)(‘.3(1--:"1)"'“’/1:’2 — e—(l-pq)rkifp’) . emPmki/p?

P2 = (1 — em/P)(1 — e=mkilP)(1 — e0pa)hi/7? ) (1 — - (pa)ki/s?)

-1 p3-1 emp-nki/p2

T g g (emki/p? — e=mkilp?)(elipa)mki/p? _ ¢=(1-pa)rki/p?)

where ¢1(LB|L(p2,1p9) = mp € H*(L(p*,1—pq); Z) = Z,2 (Lemma 2.1.2). Since Lp is
a characteristic line bundle, we can always choose an integer m so that m + q is even.
(If p and m+q are odd, choose m+p+q = m+q (mod p). If p is even, then m and ¢

are odd.) By setting z := e?™/?" and t := (m+q)/2 € Z, we have

h+n(0) _ -1 %‘ er(mia)ki/p
2 T p? o (erR/P — 1)(erlpelki/p? )
_ _—11%'1 ztpk
=AY
-1 p’-1 1
= = Z:l D 1) (by lemma 3.2.1)
= —=(1-p) (by lemma 3.2.2)

12p?
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Combining these computations we get ind(D 4| B,*;,,,) =0. O

Remark : In the proof of Proposition 3.2.2 above, if both p and m are even (in
particular m =0), a similar computation shows that indD4 on B, is not an integer.

This contradiction means that B, , is not spin for p even (cf. Lemma 2.1.3).

Corollary 3.2.1 For any characteristic line bundle Lc on C}, = Cp, U L(p?,1—
pq) X [1,00), dimMcy (Lc) is odd and < —1; so the moduli space M+ (Lc) consists

of a single reducible solution.

Proof : Since ind(d* + d*|c+ ) = (b! — b° — b*)(C},) = —1, as the same way in
the proof above, it suffices to show that ind(DAlc;.q) <0. Since X =C} UL th is
homeomorphic to ﬂk-éf’.z with k = b,(C,,), for any characteristic line bundle L on

X, ¢;(L)? < —k and

(er(L)*+ k)

ind(Dalcg,) +ind(Dalzr) = ind(Dalx) = [ “5=2

<0

Hence ind(DA|C;q) < —ind(Dylgy ) =0. O
3.3 Main Technical Theorems

Lemma 3.3.1 Let X be a smooth 4-manifold containing a configuration C,,, that
15, X = XoUL(p2,1pq) Cp,g, and let X, , be its rational blow-down. Then a line bundle
L on X,, is characteristic if and only if both L|x, on X, and L|p,, on B,, are

characteristic.

Proof : Since H'(Byq; Z2) — H'(L(p?, 1-pq); Z,) is surjective, i*®;* : H*(X,.,; Z,)

— H?*(Xo;Z,) ® H?(B,q; Z3) is injective. Hence the proof follows from the following
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commutative diagram

0 — H2(Xp'q;Z) —_ Hz(Xo;Z)@Hz(Bp,q;Z)
l 1
H'(L(p*,1-pq); Z;) — H*(X,q;Z2) BN H*(X0;Z;) ® H*(By.4; Z>) O

Theorem 3.3.1 Suppose X is a smooth 4-manifold which contains a configuration C, .
If L is a characteristic line bundle on X such that SWx(L) # 0, (Llc,,)? = —b2(Cp,)
and ¢i(L|L(p2,1pq)) = mp € Z,2 = H?*(L(p?,1-pq);Z) with m = (p — 1) (mod 2),

then L induces a characteristic line bundle L on X, such that SWx, (L) = SWx(L).

Proof : Lemma 2.1.2 and the condition ¢;(L|y(p2,1)) = mp with m = (p—1)

(mod 2) imply that the characteristic line bundle L|x, on X, extends uniquely to
a characteristic line bundle L on X, ,. First we study the solutions of Seiberg-Witten
equations on X for L by pulling apart X = Xo UL(p?,14q) Cp,q along L(p?,1—pgq).
Then Proposition 3.1.1 and Corollary 3.2.1 imply that each solution in Mx(L) can
be obtained by gluing a solution (Ax,,¥x,) € Mx,(L|x,) with a unique reducible
solution (Ac,,,0) = Mc,,(L|c,,). But, not every solution in Mx,(L|x,) produces a

global solution in Mx(L). Explicitly, using Corollary 3.2.1, the inequality
2dL = dime(L) = dimeo(leo)+dimMcp'q(LlcP'q) +1< dimM,\'o(leo) = 2dL|X0

implies that there is an obstruction bundle ¢ of rank di|x,— dL associated to the
basepoint fibration over Mx, (L|x,) such that the zero set of a generic section of £ is

homologous to Mx (L) in B%(L) (Theorem 4.53 in [D], or [FS2, §4]). Hence

SWx(L)=< B [Mx(L)]|>=< 8% B85 0 [Mx,(L|x,)] >=< 8%, [Mx, (L|x,)] >
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where 3 is a generator of H?(B%(L);Z). Similarly, since dimMBm(fl Bp,) = —1 by

Proposition 3.2.2, the same argument as above shows
SWi, (L) =< 5%, [Mx,(LIx,)] >

so that SWXP'Q(I) =SWx(L). O

Corollary 3.3.1 If two characteristic line bundles L and L' on X satisfying the
hypothesis in Theorem 3.8.1 induce the same characteristic line bundle L on X,,,

then SWx (L) = SWx(L').

Freedman’s classification of simply connected topological 4-manifolds implies that
X = C,,UL B,, is homeomorphic to }kCP~ with k = b,(C,,). Each generator
e; of H*(X;Z) when restricted to B,, has the boundary value 9(ei|s,,) = mp €

H?(L(p?,1—pq);Z) for some m. We impose the following condition (*) on C,,:

k
(*) {00 _ e€ils,, ) ee==x1,Vi}={mp:—(p-1) < m < (p-1)and m = (p—1) (mod 2)}

=1
All known configurations C,, satisfy the condition (*) above. (One expects that all
relatively prime integers (p, q) satisfy the condition (*).) Under this assumption, we

prove

Lemma 3.3.2 Suppose X is a simply connected smooth 4-manifold which contains a
configuration Cy, , satisfying the condition (x), and let X, 4 be its rational blow-down.
If L is a characteristic line bundle on X, ,, there ezists a characteristic line bundle

L on X such that L|x, = L|x, and cl(LI(;,,'q)2 = —k, where k = by(Cp ).

Proof : The condition (*) on C,, implies that there exists ¢; = £1, for 1 <i <k,

such that (5, ei€il,,) = mp = dci(L|p,,). Since the corresponding line bundle,
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denoted by the same notation Y%, €;e;, is characteristic on Cp, Uy B,, which is
homeomorphic to §kCP~, its restriction Yk, €iilc,, is also characteristic on Cp 4
and (T, eeilc,,)? = (TE, €ie)? = (T5, eieilg)’ = ( *  €ie;)? = —k. Now define
a line bundle L on X by

[ - f|x0 on Xp
2?:1 Cieilcp,q on Cp,

Then L has the desired properties except (possibly) characteristic, that is, if p is odd,
then L is automatically a characteristic line bundle on X, so we are done. If p is
even, we can change L (see below) so that L is characteristic on X satisfying the

same properties.

Suppose p is even.

0 — HYX:Z) — HY(X0:Z)® H(Cpyi Z)

{ h. i

HY(L(p*,1-pq); Zo) - HA(X;Z) "5 H*(Xo;Z2) ® HA(Cpg; Z2)

Since X is simply connected, Hy(Xo; Z) = Z, for some t dividing p?. If t is even, then
"®7" : HY(X;Z;) - H*(Xo; Z,)® H*(C,4; Z;) is injective so that L is characteristic.
If t is odd, then i* @ j* is not injective, and in this case h.(c;(L)) = wy(X) or
wy(X) + 6(1).

Since C,q satisfies the condition (*), there exists §; = £1 satisfying 5, dieilc,,, =

(p—m)p. Then setting v; = 5‘%54 we have

1) 0 eilc,,) = (S #0
l=kl X
2) 3(;(&' — 2m)eilc,,) = 3(; eieilc,,) = mp

k k
3) Z(e; - 2v)eilc,, = Ze:-e,-lcp_q, for some ¢, = £1.

1=1 1=1
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Hence there exists a bundle L' on X such that L'|c,, = 2f=1(e,-—27,~)e.-|c,'q and
L'|x, = L|x,- Then we claim either L or L’ is characteristic: Suppose neither L nor
L' is characteristic, i.e. h.(c1(L)) = ha(c1(L')) = wa(X)+6(1). Then h(L - L") =0,
so that there exists an element o € H?(X;Z) satisfying 2a = L — L'. Since both

H?*(Xo;Z) and H?*(Cp4; Z) are 2-torsion free,
k
2(alxy,alc,,) = (" ®5°)(2e) = (" @ 57)(L - L') = 2(0,)_ mieilc,.,)
1=1

implies a|x, = 0 and a|c,, = Ef_-_l%eilc,,,q which contradicts 8(259:1 Yieilc,,) =

(3)p#0. O

Finally, by using the same argument as in the proof of Theorem 3.3.1 with the
characteristic line bundle L on X constructed in the Lemma 3.3.2 above, we get our

main technical theorem.

Theorem 3.3.2 If a simply connected smooth 4-manifold X contains a configuration
Cyp.,q satisfying the condition (x), then the Seiberg- Witten invariants of X, , are com-
pletely determined by those of X. That is, for any characteristic line bundle L on
Xpq with SWx, (L) # 0, there ezists a characteristic line bundle L on X such that
SWx(L) = SWx, ,(L). Furthermore, if X is of SW- simple type, then X, is also of

SW-simple type.



Chapter 4

The Geography of Irreducible
4-Manifolds

In this chapter we apply the result of the previous section to several examples of
rational blow-downs and explore geography problems for simply connected smooth
irreducible 4-manifolds (Fig 4.1). The geography problems we are interested in study-
ing are twofold, that is, which lattice points in the ( g*_zﬂ, 30+2e¢)-plane are ‘populated’
by simply connected smooth irreducible 4-manifolds (the existence problem) and if
so, are there infinitely many distinct smooth 4-manifolds which are all homeomorphic
(the uniqueness problem)? These coordinates are chosen because of their relation
to complex surfaces where holomorphic Euler characteristic x = ;(c + ;) = %’-
and the chern number ¢ = 30 + 2e. The geography problem for surfaces of general
type has been studied extensively by algebraic surface theorists (see remarks below),
and for topologists, the problems are to find constructions of new 4-manifolds and
to be able to compute invariants (such as Donaldson invariants and Seiberg-Witten
invariants) which can show that the result is an irreducible 4-manifold. Note that
a smooth 4-manifold X is called irreducible if X is not a connected sum of other
manifolds except for a homotopy sphere, i.e. if X = X;§X, implies that one of X;

is a homotopy sphere. One of the most powerful applications of gauge theory to

27
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4-dimensional topology related to geography problems is that both Donaldson invari-
ants and Seiberg-Witten invariants for a connected sum manifold X = X} X; with
b*(X;) > 0 (i =1,2) vanish. Hence SWx # 0 (or Dx # 0) implies that X is irre-

ducible unless X is a blow-up manifold.

= 3sign + 2e

2
1

C

E(n) elliptic line
7?

- line
Figure 4.1:

Here are a few remarks on Figure 4.1 below:

1. The simply connected minimal complex surfaces of general type live in the
dotted region determined by the “Noether line”, ¢? = 2x — 6 (50 + 3e + 12 >
0), and the “Bogomolov-Miyaoka-Yau line”, ¢ = 9x (30 < e). A surface of
signature = 0 has ¢? = 8x, so any surface of negative signature lies in the
region ¢? < 8y, and any lattice point lying in this region and above ¢ = 2y — 6
can be realized as (x, c?) of a minimal surface which is a hyperelliptic fibration

([PD)-

2. Moishezon and Teicher constructed infinitely many simply connected mini-

mal surfaces of positive signature (equivalently, lying in between ¢ = 8x and
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c? = 9x). Xiao and Chen also constructed other minimal surfaces of positive

signature which are hyperelliptic fibrations ([C]).

3. Any irreducible 4-manifold in the wedge between “elliptic line”, ¢? = 0, and
“Noether line” cannot admit a complex structure with either orientation because
it violates Noether inequality or B-M-Y inequality. The examples lying in this
wedge were first found by Fintushel and Stern ([FS3]). Actually, they found
examples realizing all lattice points below the Noether line. We also construct

other examples lying in this wedge (see Example 2 and Theorem 4.2.5).

4. There are no known irreducible 4-manifolds lying in elliptic line below, ¢ < 0,
and there is a conjecture that every smooth spin 4-manifold satisfies I%LI >4
Note that the rational blow-down procedure moves a manifold vertically upward

and blowing up procedure moves a manifold vertically downward in Figure 4.1.

4.1 Examples

We compute the Seiberg-Witten invariants of a manifold constructed from E(n) via

blowing up and rationally blowing down.

Example 1 Consider a 4-manifold X = E(3)112@2 constructed by the following

blowing up process (Fig 4.2):

Then we get a configuration Cs; C X

-3 -5 )

S f—2e,—€e; e —e



e er &
D — 1 —
7 f- ],e, f- 2¢¢
f —_— ] —_—
S s / S
Figure 4.2:

where s is a section in E(3) and ¢; (i = 1,2) is the exceptional divisor in CP’. Since
SW-basic classes in E(3) are +f, up to sign the SW-basic classes of X are of the
form

L=f+¢€e + e (; = £1)

By using boundary values (cf. equation (2.1)), compute L|c,, and 0(L|c,,)

Lic,, = (L-ui)m+(L-uz)y2+ (L-u3)ys
= (e—ea)n+(2a+e)2+7s
O(Llc,,) = (e2—€)+2(2¢;+€)+9

= 3 +€)+9

Then 9(L|c,,) is a multiple of p = 5 if and only if ¢, = ¢ = 1. Hence by The-
orem 3.3.1, only L = f + e; + e, descends to a SW-basic class L of Xs5,, and
by Theorem 3.3.2, L is the only SW-basic class of X5,. Since ¢;(L)? = ¢;(L)? —
a(Lle,,)? = =243 =1, X5, is a SW-simple type 4-manifold with ¢} = 1 which
has one basic class L = f + e, + e; (up to sign) and its Seiberg-Witten invariant is

SWy,,(I) = SWx(L) = 1.

Next, let us consider a configuration Cyq_y,4

—4 —(q+2) -2 -2 -3 -2 -2

Ug+2 Ug+1 Uq Ug ug U Uy
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whose boundary values (cf. equation (2.1)) are given by

1 1=1,2
Ovi=1¢ 4-9 1=3,...,9+1
(4g—1)g—1 i=q+2

Then we have

Proposition 4.1.1 Suppose X is a simply connected smooth 4-manifold containing
a configuration Cp4 (p = 4q—1). If each u; satisfies |L-u;| +u? < -2, for each basic

class L in X, then Seiberg-Witten invariants of X, , are given by

oy _ ) SWx(L) f L-us=¢, L-ugy1=¢€q and L-ugiz=2¢ (e ==1)
SWxyo(L) = { 0 otherwise

Remark : The hypothesis, |L - u;| + u? < —2, in Proposition 4.1.1 above comes from
the adjunction inequality in [FS2]. Our assumption is that the u; are generic in the

sense that they do not fall into the special case of Theorem 1.3 in [FS2].
Proof : The condition |L - u;| + u? < —2 implies L - u; =0 (: = 1,2.4,...,q), so
that

Llcp.q = (L-u3)ys+(L- uq+l)’7q+1 +(L- Uq+2)’7q+2

O(Llc,,) = 3(L-u3)+ (49 —5)(L - ugs1) + (pg — 1)(L - ug42)

3(L-u3) —4(L - ug41) — (L - ug42)  (mod p)

Since L|c,, is characteristic, the condition d(L|c,,) =0 (mod p) in Theorem 3.3.1

implies that only basic class L in X,, comes from L of X satisfying

L-uz=¢€ L -uyyi=¢€q and L-ug42=2¢ (e<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>