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ABSTRACT

GENUS ONE ENUMERATIVE INVARIANTS IN P"

By

Eleny-Nicoleta Ionel

In this thesis we prove recursive formulas for 74, the number of degree d elliptic curves
with fixed j invariant in P®. We use analysis to relate the classical invariant 74 to
the genus one perturbed invariant RT) 4 defined recently by Ruan and Tian (the later
invariant can be computed inductively).

Our approach is to start with RT; 4 and consider a sequence of perturbations
converging to zero. In the limit we get not only holomorphic tori (i.e. 74), but
also bubble trees with ghost base. We use Taubes Obstruction Bundle method to
compute the contribution of the ghost base stratum to the difference between the two

invariants.
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0 Introduction.

A classical problem in enumerative algebraic geometry is to compute the number of

degree d, genus g holomorphic curves in P" that pass through a certain number of

constraints (points, lines, etc).

Let o4 denote the number of degree d rational curves (g = 0) through appropriate
constraints. For example o,(pt,pt) = 1 (since 2 points determine a line). The first
nontrivial cases were computed around 1875 when Schubert, Halphen, Chasles et al.
found o, for P? and P3. Later, more low degree examples were computed in P2 and
P3, but the progress was slow. Then in 1993 Kontsevich [K] predicted, based on ideas
of Witten, that the number o4 of degree d rational curves in P? through 3d —1 points.

satisfies the following recursive relation:

04 = d d - dldg 04,04
d,-{%}:d[(:;dl -1/ \3d, -2 e
where d; # 0, and o; = 1. Ruan-Tian ([RT], 1994) extended these formulas for o4 in
any P™.

When genus g = 1, the classical problem splits into two totally different prob-
lems: one can count (i) elliptic curves with a fixed complex structure, or (ii) elliptic
curves with unspecified complex structure (each satisfying the appropriate number of

constraints). This paper gives recursive formulas which completely solve the first of

these.

Thus our goal is to compute the number 74 of degree d elliptic curves in P* with
fixed ; invariant. This problem is considerable harder than the ¢ = 0 case. The
simplest nontrivial case - 73 in P? — was determined by Alluffi (1991) using classical
methods. Recently Pandharipande [Pan] has made more significant progress, using

the Kontsevich moduli space of stable curves to give recursive formulas for 7; in P2.



We will approach this problem from a different direction, using analysis. This
approach is based on the ideas introduced by Gromov to study symplectic topology.

If (X, 7) is a fixed Riemann surface, let
(f:So P |B:f =0, [f] = d-1€ Hy(P",Z) }/ Aut(E, j)

be the moduli space of degree d holomorphic maps f : ¥ — P", modulo the auto-
morphisms of (X,7). Each constraint, such as the requirement that the image of f
passes through a specified point, defines a subset of this moduli space.

Imposing enough constraints gives a 0-dimensional “cutdown moduli” space M.
To see whether or not it consists of finitely many points, one looks at its bubble
tree compactification M, [PW]. If the constraints are cut transversely, then all the
boundary strata of My are at least codimension 1, and thus empty. Unfortunately,'
transversality fails at multiply-covered maps or at constant maps (called ghosts), so
M, is not a manifold.

This was a real problem until 1994, when Ruan and Tian considered the moduli

space M, of solutions of the perturbed equation:

9:f = v(z, f(2))

and used marked points instead of moding out by Aut(Z, ). For a generic perturba-
tion v the moduli space M, is smooth and compact, so it consists of finitely many
points that, counted with sign, give an invariant RT;, (independent of v).

In P", the genus 0 perturbed invariant RTy is equal to the enumerative invariant
04. The perturbed invariants satisfy a degeneration formula that gives not only
recursive formulas to compute the enumerative invariant o4 in P", but also expresses
the higher genus perturbed invariants in terms of the genus zero invariants [RT]. For

convenience, these formulas are included in the Appendix.

Unfortunately, when g = 1, the perturbed invariant RT,;; does not equal the

enumerative invariant 74. For example, for d = 2 curves in P? the Ruan-Tian invariant

is RT;; = 2 (cf. (A.2)), while 7, = 0 (there are no degree 2 elliptic curves in P?).



Thus while the Ruan-Tian invariants are readily computable, they differ from the
enumerative invariants 7;. One should seek a formula for the difference between the
two invariants. For that, we take the obvious approach:

Start with the genus 1 perturbed invariant RTy, and consider a sequence of generic
perturbations ¥ — 0. A sequence of (J,v)-holomorphic maps converges either to a
holomorphic torus or to a bubble tree whose base is a constant map (ghost base).
Proposition 1.21 shows that the contribution of the (J,0)-holomorphic tori is a mul-
tiple of 7.

We show that the only other contribution comes from bubble trees with ghost
base such that the bubble point is equal to the marked point z, € T2. To compute
this contribution, we use the Taubes “Obstruction Bundle” method. Proposition 1.7
identifies the moduli space of (J, v)-holomorphic maps that are close to a bubble tree
with the zero set of a specific section of the obstruction bundle. Studying the leading
order term of this section, we are able to compute the corresponding contribution

(Proposition 1.26). Adding both contributions, yields our main analytic result:

Theorem 0.1 Consider the genus 1 enumerative invariant 74(f3y,...,0) in P". Let
Uy be the n — 1 dimensional moduli space of 1-marked rational curves of degree d in

P" passing through B,,...,0Bc. Let L = Uy be the relative tangent bundle, and denote
by L — Uy its blow up defined by (1.17). Then:

n—1
n; 7a(Bry- .., Bk) = RTa1 (61 | B2y -- -, Bk) — Z (7::21

i=0

)ev‘(H""‘l)ci(Z')

‘where H' is a codimension i hyperplane in P", ev : U; — P™ is the evaluation
map corresponding to the special marked point and n; is the order of the group of

automorphisms of the complez structure j that fiz a point.

Theorem 0.1 becomes completely explicit provided we can compute the top power

intersections ev*( H"~*~1)ci(L*). We do this in the second part of the paper, in several

steps. For simplicity of notation, let

z=c(L") € H (U Z), F=c (L") e H Uy, Z), and y=ev'(H) (0.1)



where y € H*(Uy,Z) or y € H?*(Uy;,Z) depending on the context. In this notation,
Theorem 0.1 becomes:
3 t n+ 1 ~i n—1—1
and( . ) = Z Ud(H”,H'? )+ E ( ) 1- [le] (0.2)
e —~ \1+4+2
t14i2=n 1=0
Proposition 2.2 gives recursive formulas relating 7'y’ to z'y’ and Proposition 2.5
gives recursive formulas for r'y’ in terms of the enumerative invariant o4. Finally,

the recursive formulas for o4 are known (see [RT], [K]), so the right hand side of (0.2)

can be recursively computed.

In the end, we give applications of these formulas. We explicitly work out the
formulas expressing the number of degree d elliptic curves passing through generic

constraints in P2 and P2 in terms of the rational enumerative invariant o4. For

example:

Proposition 0.2 For j # 0,1728, the number 14 = 74(p?, %) of elliptic curves in P3
with fired j invariant and passing through a points and b lines (such that 2a + b =
4d — 1) is given by:

Y d(2didy — Yo, (I, You () (0.3)
d1+d2=d

al—

where aq(l, -) = o4(l,p% %) is the number of degree d rational curves in P3 passing
through same conditions as 74 plus one more line. The sum above is over all decom-
positions into a degree d, and a degree d; component, d; # 0, and all possible ways of

distributing the constraints p®, I® on the two components.
Using a computer program, one computes then specific examples, e.g.
(") =6-25920 and T5(p,!'") = 6 - 15856790593536.

when 5 # 0,1728. To get 7, for j = 0 or j = 1728 one simply divides the 7, computed

for a generic j by 2 or 3 respectively.



1 Analysis

1.1 Setup

Let 74 be the genus one degree d enumerative invariant (with fixed j invariant) and
o4 be the genus zero degree d enumerative invariant in P*. Using analytic methods,

we will compute 74 by relating it to the perturbed invariant BTy, introduced by Ruan

and Tian [RT]. The later is defined as follows.

Let (X,7) be a genus g Riemann surface with a fixed complex structure and v
an inhomogenous term. A (J,v)-holomorphic map is a solution f : ¥ — P™ of the
equation

9:f(z) = v(z, f(2)). (1.1)

For 2g + 1 > 3, let z;,...,z; be fixed marked points on X, and a,,...,o, Bi,...,0%

be various codimension submanifolds in P", such that

l k
index 9y = (n+1)d —n(g—1) = Z(n - |as]) + g(n -1-|B)

1=1
For a generic v, the invariant

RTd.y(alv' -, l ,Blv"' ,/Bk)

counts the number of (J, v)-holomorphic degree d maps f : £ — P™ that pass through
By .., Bk with f(z;) €Ea;fori=1,...,1.

The first part of this paper is devoted to the proof of Theorem 0.1.

Outline of the Proof of Theorem 0.1. The proof is done in several

steps. The basic idea is to start with the genus 1 perturbed invariant

RTu.(By | Bas -, ) (1.2)



and take a sequence of generic perturbations v — 0. Denote by Mg, the moduli
space of (J,tv)-holomorphic maps satisfying the constraints in (1.2), and let

Mu = U Md.l.tu- (13)

>0

As t = 0, a sequence of (J,tv)-holomorphic maps converges to a (J,0)-holomorphic
torus or to a bubble tree ([PW]). Let M" denote the bubble tree compactification of

M (for details on bubble tree compactifications, see [P]).

Proposition 1.21 shows that the number of (J,tv)-holomorphic maps converging

to a J-holomorphic torus is equal to
n;7a(Bry- - - Br)

where n; = |Aut,,(j)| is the order of the group of automorphisms of the complex

structure j that fix the point z,namely,

2 ifj#0,1728
6 if j=1728

These multiplicities occur because if f is a J-holomorphic map, then so is f o ¢ for

any ¢ € Aut,,(j), but they get perturbed to distinct (J, tv)-holomorphic maps.

As t = 0, there are also a certain number of solutions converging to bubble trees.
Because the moduli space of (J,0)-holomorphic tori passing through 3;,...,08k is 0
dimensional, the only bubble trees which occur have with a multiply-covered or a

ghost base (for these transversality fails, so dimensions jump up).

A careful dimension count shows that the multiply-covered base strata are still
codimension at least one for genus ¢ = 1 maps in P*. (This is not true for g > 2.)
But at a ghost base bubble tree the dimension jumps up by n so these strata are n —1
dimensional. There are actually 2 such pieces, corresponding to bubble tree where
(1) the bubble point is at the marked point z, and (ii) the bubble point is somewhere

else. To make this precise, a digression is necessary to set up some notation.



Let

MS = {(f,y1,---,9k) | f: 5% — P" degree d holomorphic, f(y;) € 3; }  (1.5)

be the moduli space of bubble maps, and M4 = M3/G be the corresponding moduli
space of curves, where G = PSL(2,C). Introduce one special marked point y € S?

and let

ud:{[fvy’yl"”’yk] | [faylv'--’ykleMd} (16)

be the moduli space of I-marked curves and

ev:Ud—)P", ev([f’yayh-“syk]) =f(y)° (1°7)

be the corresponding evaluation map. We will use f(y) to record the image of the
ghost base

For generic constraints f,...,0x the bubble tree compactification of Uy is a
smooth manifold that comes with a natural stratification, depending on the pos-
sible splittings into bubble trees and how the degree d and the constraints i, ..., Bk
distribute on each bubble.

With this, the two “pieces” of the boundary of M" are:
{z;} xUs and T? xev'(B) (1.8)

The first factor records the bubble point, while the image of the ghost base is encoded
in the second factor. For generic constraints each piece, as well as their intersection,

is a smooth manifold, again stratified.

To see which bubble trees with ghost base appear as a limit of perturbed tori,
we use the Taubes Obstruction Bundle. This construction must be performed on the
link of each strata. We do this first on the top statum of {z;} x Uy, which consists
of bubble trees with ghost base and a single bubble.

First we construct in Section 1.2 a set of approximate maps by gluing in the

bubble. The “gluing data” [f,y,v] consists of a nonvanishing vector v tangent to the



bubble at the bubble point y. Proposition 1.4 shows that the obstruction bundle is
then diffeomorphic to ev*(TP").

In Section 1.4 we correct the approximate maps to make then (J, tv)-holomorphic
by pushing them in a direction normal to the kernel of the linearized equation. Those
approximate maps that can be corrected to solutions of the equation (1.1) are then
identified with the zero set of a section ¥, of the obstruction bundle. Proposition 1.7
shows that actually all the solutions of the equation (1.1) are obtained this way, i.e.
the end of the moduli space of (J, tv)-holomorphic maps is diffeomorphic to the zero

set of the section ;.

To understand the zero set of i it is enough to look at the leading order term of
its expansion as t & 0. By Proposition 1.45 this has the form df,(v) + t where v is

the projection of v on the obstruction bundle.

The construction described above extends naturally to all the other boundary
strata. Each bubble comes with “gluing data ” [f;,y;,v;], consisting of a vector v;
tangent to the bubble at the bubble point y;. But the leading order term of the

section 1, depends only on the vectors tangent to the first level of nontrivial bubbles.

More precisely, let Z, C U, denote the collection of bubble trees for which the
image u = f(y) of the ghost base lies on h nontrivial bubbles. Geometrically, the
image of a bubble tree in Z, has h components C,,...,C), that meet at u. Let
W|z, — Z; be the bundle whose fiber is T,C; @ - - - @ T,,C. The leading order term

of ¥ on Z) is a section of W, equal to

a(f,y,0]) + t0 = dfy(y1)(v1) + - . + dfu(yn) (o) + to

where ([fi,yi,vi])k, is the gluing data corresponding to the bubbles C;, i = 1,..., h.

Unfortunately W — U, is not a vector bundle. But if we blow up each strata

Z), starting with the bottom one, then the total space of W is the same as the total
space of L, the blow-up of the relative tangent sheaf L — Uy. The leading order

term of v, descends as a map a+tv: L — ev*(TP™). Moreover,  doesn’t vanish on



Im(M) = ev.(Ua) so it induces a splitting on the restriction

TP"/Im(M) = C(v) @ E.
Finally, we put all these pieces together in Proposition 1.26 to prove that the number
of (J,v)-holomorphic maps converging as v — 0 to the boundary strata {z;} x Uy is
given by the Euler class c,—1(ev*(E) ® L").

In Section 1.8 we show that the other boundary strata T2 x ev*(3;) gives trivial

contribution, concluding the proof of the Theorem 0.1.

1.2 The Approximate gluing map

Let Uy be the moduli space of 1-marked rational curves of degree d passing through

the conditions (,...,0%. In this section we construct a set of approximate maps

starting from {z,} x Uy, the first boundary strata in (1.8). We will use a:

Cutoff function. In what follows, fix a smooth cutoff function 3 such that g(r) = 0

for r <1and B(r) = 1 for r > 2. Let Bx(r) = B(r/v/A). Then B\ has the following

properties:

1Bl <1, |dB:] < 2/VA and dB, is supported in VA < r < 2v/A

The definition of the approximate gluing map on the top stratum. Let N
denote the top stratum of {z,} xU . First we need to choose a canonical representative
of each bubble curve [f,y] € NV (recall that f(y) is the image of the ghost base). Using
the G = PSL(2, C) action, we can assume that y is the North pole and f is centered
on the vertical axis, which leaves a C* = S! x R, indeterminancy. To break it off,

include as gluing data a unit vector tangent to the domain S? of the bubble at the

bubble point y. The frame bundle

Fr={[f,y.u]|[f,y] €Uz ueT,S? |ul=1} (1.9)
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models the link of A'. The notation [f,y, u] means the equivalence class under the

action of G given by:

g-(fiy,u)=(fog™", g(y), 9(u))

where the compact piece SO(3) C G acts on the unit frame u by rotations and the
noncompact part acts trivially.

Fix a nonzero vector u; tangent to the torus at z,. This determines an identifica-
tion Ty, (T?) = C such that u; = 1, giving local coordinates on the torus at z; = 0.

Similarly, let up be a unit vector tangent to the sphere S? at the north pole and

consider the identification
(Tlezaul) = (TNSZa uO) (110)

that induces natural coordinates on the sphere via the stereographical projection
(such that N =0, up = 1). These choices of local coordinates on the domain of the
bubble tree will be used for the rest of the paper. Fix also a metric on P" such that

we can use normal coordinates up to radius 1.

Figure 1. The domain of the bubble tree.

To glue, one needs to make sure that only a small part of the energy of f is
concentrated in a neighbourhood of y. The convention in [PW] is to rescale f until
€o of its energy is distributed in H,, the hemisphere centered at y.

But since the constructions in the next couple of sections involve quite a few

estimates, we prefer to do a different rescaling, that will simplify the analysis. Choose
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a representative of [f,y,v] such that
y=0, u=1, f centered on the vertical axis (1.11)

Since on the top strata [f,y] cannot be a ghost, such representative is uniquely de-
termined up to a rescaling factor r € Ry. We will choose this rescaling factor such

that moreover
max{ |V3f(2)|, |z] <1} <2 (1.12)
Note that if the degree of f is not 1, then imposing the extra condition

max{ |[V?f(z)], || <1} =2 (1.13)

determines uniquely the representative. To see this, choose some representative f

~

as in (1.11) and look for a map f(z) = f(rz) satisfying also (1.13). The uniqueness

comes from the fact that the map s(r) = max{ |V2f(z)|, |z| < r}—2/r? is decreasing.
If the degree of f is 1, (i.e. the image curve is a line), then we could replace (1.13)
by say |df(0)] = 1 and still have (1.12) satisfied.
Finally, the approzimate gluing map

Ye : Fr x (0,€) = Maps(T?, X)

Ye( [fry,u], A) = fi (1.14)

is constructed as follows: Choose the unique representative of [f, y, u] satisfying (1.11)

and (1.13). The approximate map f, is obtained by gluing to the constant map f(y)
defined on T? the bubble map f rescaled by a factor of A inside a disk D(0, V') C T?,

z

() = Bl f (*)

where the multiplication is done in normal coordinates at f(0).



12

rescale

Figure 2. The rescaled domain of the approximate map.
In what follows, we will denote by Gl = Fr x (0,¢) the set of gluing data.

Weighted Norms. On the domain of fy we will use the rescaled metric g\ =
652dzdz, where
0:(z) = (1 = Ba(2) )X+ X71z]*) + Ba(2)
Define

1/p
l€llipn = (/ |€P652 + |V§|”0§_2) for € vector field along fy and

1/p
Inllpn = (/ |n|”9§'2) for n 1-form along f

The weighted norm of a vector field or 1-form on f) equals its usual norm off B(0,2v/A)

and on B(0,v/}) it is equal with the norm of its pulled back on S? via a rescaling of
factor A. The usual Sobolev embeddings hold for this weighted norms with constants

independent of .

Lemma 1.1 There ezxists g > 0 and constants C > 0 such that for any p > 1 and
A < €p:

ldfalloa < C and ||0sfallpy < CAVP (1.15)

Moreover on the annulus A: {VX < |z| < 2V/A} we have the following ezxpansion:

9sfr = VA dB - df (y)(u) + O(}) (1.16)

||

The estimates are uniform on Gl - N.
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Proof. Let B be the disk |z| < V/A. Note that dfy vanishes for |z| > 2v/X and by
the definition of the weighted norm on B,

ldfllpr8 = lldfllp.8
But (1.12) implies that

max{ |df(z)], || <1} <2 (1.17)

In the same time, 8, f, = 0 outside A. Hence we need only to consider what happens

in A. Buton A

_ A 1
10sf3] < Cldfal < C(ldBal IfI +16x] df]) 5 < C—ngplfl'*'c <C

|2|? v
since sup | f(z)] < VA sup|df| < 2v/X in normal coordinates on P™ at f(y). This
B B

concludes the first part of the proof. For the second part, notice that on A

glf*=51ﬂwf+ﬂw?iaf=%dﬂﬁf@)

~

since f is holomorphic. But using (1.12) in normal coordinates on P™ at f(y) and

y =0, we get |f(z) — f(0) — df(0)(2)] < 2|z|? so

f (-i\-) = -3 -dfy(u) + O(X) on A

“

Substituting this in the formula for J, fy we obtain (1.16). O

Extending the approximate gluing map. The approximate gluing map extends
naturally to the bubble tree compactification :y of the moduli space of 1-marked
curves. For simplicity, let A' denote some boundary stratum modeled on a bubble
tree B and corresponding to a certain distribution of the degree d = d; + ...+ d,n on

the bubbles. If [f;,y:], 1 = 1,...,m are the bubble curves corresponding to the bubble
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map f : B = P, then the gluing data Gl is a collection of unit vectors tangent to
each sphere in the domain at the corresponding bubble point together with gluing

parameters:
Gl = { ( [f;,y,-,ui],/\,- ):"=l I u; € Ty'Sz, |u,~| 75 0, < 6} (1.18)

Note that as long as f; is not a constant map, then we can choose a unique
reresentative of [fi, yi,u;] as in (1.11), (1.13). Then Lemma 1.1 extends naturally to

N to give

Lemma 1.2 With the notations above, let fy be an approzimate gluing map, and
Aj,...An be the corresponding annuli of radii X; in which the cutoff functions are

supported. Then for ¢ small enough, there exists a constant C such that:
ldfslloa < C, N0sfallpa < CAVP

Moreover, 8;fy = 0 ezcept on the annuli A; that correspond to nontrivial bubbles,

where

difr= —% dB - dfi(yi)(u;) + O(Xi) (1.19)

The estimates above are uniform on Gl - N .

We will see later that most of the important information is encoded in the first

level of nontrivial bubbles.

1.3 The Obstruction Bundle

In order to see which of the approximate maps can be corrected to solutions of the

equation 0;f = v we need first to understand the behaviour of the linearization of

this equation over the space of approximate solutions.
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Recall that transversality fails at a bubble tree with ghost base, so the linearization
at such bubble tree is not onto. The cause of that is the ghost base. Thus we start
by analysing the ghost maps:

Consider the moduli space of holomorphic maps f : T? — P”" representing 0 €

H3(P™). Obviously, the only such maps are the constant ones (ghosts). If D, is the
linearization of the section 3y : Maps(T?,P") = A% at f: T?> 5 P", f(z) =u a
constant map, then
index D, = dim KerD, — dim CokerD, = ¢,(0) +n(1 —1) =0
and
CokerD, = H'(T?, f*TP") = T,P" (canonically)

since f*(TP") is a trivial bundle, so the elements w € H'(T?, f*TP") are constant

on the torus, i.e. have the form w = Xdz for some X € T,P".

Now if f : B — P™ is a bubble tree map whose base is a ghost torus u = f(y) € P",

let Dy be the linearization at f of the section 8, : Maps(B,P") — A%!. Then
index Dy = dim KerD; — dim CokerD; = —1

To describe CokerD; we will use the following:

Definition 1.3 If f : B — P™ is as above, let
B, C B consist of the domains of all the ghost bubbles with image f(y),
B, = B— B, and
B C B denote the first level of bubbles that are not in B,.

Then CokerDy is n dimensional, consisting of 1-forms w such that

_J Xdz on B,
“=1o0 on B,

for some X € T,P". In particular, there is a natural isomorphism

CokerD = ev*(TP™)

N (1.20)
Ua
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where ev : iy — P" is the evaluation map. Since the moduli space of bubble trees
U is compact, there exists a constant E > 0 such that D;D7} has a zero eigenvalue

with multiplicity n, and all the other eigenvalues are greater than 2E.

When f) is an approximate map, let Dy be the linearization of
8, : Maps(T?, P") — A%

at fy and D3 its L*-adjoint with respect to the metric gy on T?. Then D, is not

uniformly invertible. More precisely,

Lemma 1.4 For A > 0 small, the operator Ay = D) D5 has ezactly n eigenvalues of

order /) and all the others are greater than E. Moreover, over the set of gluing data

Gl, the span of low eigenvalues

AZL(FA*TP™) < AL

low low

}
Gl

is a n-dimensional vector bundle (called the Taubes obstruction bundle), naturally

isomorphic to the bundle
ev'(TP") - Gl

where ev : Gl — P™ is the evaluation map.

Proof. The proof is more or less the same as the one Taubes used for the similar

result in the context of Donaldson theory, [T1]. For each gluing data in GI, by cutting

and pasting eigenvectors we show that the eigenvalues of Ay = D) D3 are O(\/X) close
to those of A, = D, D}, where u is the point map in the base of the bubble tree.

Take for example the top stratum of /4. Choose {w;, i = 1,n} a local orthonormal

base of CokerD = ev*(TP") and define

wi(z) =8 (m) w'(z) (1.21)
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A straightforward computation shows that:

IDswallza < A4 lwillzn (1.22)

(@, @)2a = &+ 0(}) (1.23)

The Gramm-Schmidt orthonormalization procedure then provides n eigenvectors @,

for A, with eigenvalues O(v/)) such that
T\ =wi +0(N)

The construction above extends naturally to the other substrata of U,. Note that for

example when B, has other components besides T'? then @), is equal to w not only on
the ghost base, but on all B, and is extended with 0 starting from the first level of
nontrivial bubbles.

An adaptation of Taubes argument from [T1] shows that there are at most n low

eigenvalues of A,. Therefore there is a well defined splitting

Ao'l(f,\'TP") — AO,I (f,\'TPn) D A%l(f,\‘TPn)

low

The definition (1.21) combined with (1.20) provides the isomorphism ApL = ev*(TP"),

low

concluding the proof. O

The partial right inverse of D). The restriction of Dy D} to A% is invertible

(since all its eigenvalues are at least E). Define P, to be the composition of the

L*-othogonal projection A% — A%' with the operator D}(DyD3)~! on A%'. Then
Py : A°(fi*TP") = A°(fA"TP™) (1.24)
is the partial right inverse of D) and satisfies the uniform estimate:
IPnllipn < E7Hnllpa (1.25)

We will denote by 7/* : AP (fA"TP™) — ApL (fx"TP™) the projection onto the fiber

low

of the obstruction bundle.
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1.4 The Gluing map

The next step is to correct the approximate gluing map to take values in the moduli

space My, of solutions to the equation
3;f(z) =t-v(z, f(z)) (1.26)

where v is generic and fixed and ¢ is a small parameter.
If fy is an approximate map, use the exponential map to write any nearby map

in the form f = exp,, (£), for some correction £ € A°(fi"TP"). Let D) be the

linearization of the 0,-section at fy so
01f = 35fx+ Da(€) + Qx(€) (1.27)
where Q, is quadratic in €. Similarly,
v(z, f(z)) = vz, fi(z)) + dv(€) + Qx(€)
so equation (1.26) can be rewritten as:
Dx(€) + Na(6,t) = tv(z, fi(z)) — s fa (1.28)

where N, (£,1) = Qx(€) — tdv(€) — tQx(€) is quadratic in (£, ¢).

The kernel of Dy models the tangent directions to the space of approximate maps,
so is natural to look for a correction in the normal direction. More precisely, we will

consider the solutions of (1.28) of the form
f =exp; (Pxn) where w_(n)=0 (1.29)
Since D) (Px(n)) = n for such 5, then equation (1.28) becomes
N+ Nai(Pan) = tv — 3, fi (1.30)

The existence of a solution of (1.30) is a standard aplication of the Banach fixed point

theorem combined with the estimates in the previous sections.
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Lemma 1.5 There ezists a constant 6 > 0 (independent of A, t) such that for t small
enough and for any o € A®»'(fA"TP™) so that ||a||,r < §/2 the equation:

n+ Nai(Pan) = @
has a unique small solution n € A%(f\*TP™) with |||, < é. Moreover,

Inllpa < 2llallpa
and if a is C*, so in 7.
Proof. Apply the contraction principle to the operator
Ty : A% (fr*TP") = A% (f\"TP™)
T\n = a — Nx(Pan).

defined on a small ball centered at 0 in the Banach space A%!(f\*TP™) with the

weighted Sobolev norm Lf. To prove that T is a contraction we note that:

1Tam — Tanzllpx = | Nas(Pam) — Nas(Pamz)||pa

and use some estimates of Floer. He proved in [F] that for the quadratic part Q of

(1.27), there exists a constant C' depending only on ||df]|, » such that:

1Qs(&) — Qs(&)llpn < C (]l + 2]l p)lér — E2ll1pa (1.31)
NQs(ENlpr < C [€lloos - [I€]l1,p.- (1.32)

(Floer’s estimates are for the usual Sobolev norm, but the same proof goes through
for the weighted norms.) Since ||df||,,» is uniformly bounded by Lemma 1.2, the same
constant C works for all fy € Im(~.). Moreover, for t very small the same estimates

hold for the nonlinear part N,,. Hence by (1.31):

ITom — Tanzlloba < C ([IPamllips + 1Pan2llipa) | Pa(m — m2)[l1p

< C/E2 ( ”nlnw\ + ”772”p.z\) : ”771 - 772”10\)‘-
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Choosing § < E?/(4C) this implies
IT3m = Tamallpn < 1/2 |lm — 2|5

for any n;,m2 € B(0,8). Moreover, since ||Tx(0)||,» < 6/2 then T, : B(0,6) —
B(0, ) is a contraction. Therefore T has a unique fixed point 7 in the ball such that

moreover
Inlla < 1Tom = Ta(0)llpa + ITA(0)llpa < 1/2 lInllp + [IT2(0)]]px

0 |[7llpx < 2 ||T2(0)]|p.x = 2||@]|p.a- Elliptic regularity implies that 7 is smooth when

ais. O

Corollary 1.6 For t,\ small enough, equation (1.80) has a unique small solution

Inllox < 8. Moreover,

Inllea < C(tv] + A7).

Proof. Follows immediately from Lemmas 1.2 and 1.4 and the estimate

1
llellpy = || tv = Bsfallpr < tlv| + CA». O

The gluing map. Let Gl be the set of gluing data. The gluing map is defined by
Ye : Gl = Maps(T?, X)

’yt([fayvu]”\) = fz\ = eXPjA(PW)

where 1 = n(f,y,u, A) is the unique solution to the equation (1.30) given by Corrolary
1.6.

By construction, ¥, is a local diffeomorphism onto its image. Moreover, if 7/*(n) =

0 then f) is actually a solution of (1.26).

The obstruction to gluing. The section

W Gl — AYL(fx*TP™) given by
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Yl fry,u, A) = 12 (n) = 72 (tr — 81 £1) — T (Nao(Pam))

will be called the obstruction to gluing. Let Z, = 1;'(0) be the zero set of this section.
By applying the gluing construction to bubble trees in Z, we obtain a subset of the

moduli space M*.

1.5 Completion of the construction

We have seen in the previous section that applying the gluing construction to the
bubble trees in the zero set Z; we will get elements of the moduli space Mg ,,. It is
not clear yet why all the elements of this moduli space close enough to the boundary
stratum A can be obtained by the gluing procedure. The purpose of this section is

to clarify this issue.

Recall the construction of the gluing map: Starting with a bubble tree we glue
in the bubble to obtain an approximate map fy. Then we correct f) by pushing it
in a direction normal to the kernel of D, in order to get an element of the moduli
space M™. The key fact here is that the kernel of the linearization D, models the
tangent space to the approximate maps, and therefore, at least in the linear model,
it is enough to look for solutions only in a normal direction. For the construction to
be complete though, we need to show that the same thing is true for the nonlinear

problem.

More precisely, we will show that for ¢ small, all the elements of the moduli space
M 14 close to the boundary stratum A can be reached starting with an approximate
map and going out in a normal direction. The proof of the following Theorem is an
adaptation of the proof for the same kind of result in the context of Donaldson theory

[DK]. It is pretty technical and we include it just for continuity.

Theorem 1.7 The end of the moduli space My, 4, close to the boundary strata N
is diffeomorphic to the zero set of the section y,. More precisely, for 6§ and t small
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enough, there ezists an isomorphism

Mg, NUs = 971(0) where (1.33)

Ug = {f : T2 - X | 3f,\ s.t. f = exph(f), ”6”1'2’,\ S é and “B—ang',\ S 53/2}(1.34)
and fy € Imy, is some approzimate map.

Proof. The proof consists of 2 steps. First, Lemma 1.8 shows that Uj; is actually a
neighborhood of A in the bubble tree convergence topology. Second, recall that in
constructing the section ¥, we were looking for solutions of the equation (1.26) that

have the form

f =exp; (Pan) for some [|nfl2a < 6 (1.35)

To prove the Theorem it is enough to show that for ¢ small, all the solutions of the

equation (1.26) can be written in the form (1.35). This is a consequence of Proposition

1.9.

Lemma 1.8 U;NM" is a neighborhood of N in the bubble tree convergence topology.
More precisely, for any (J, tv)-holomorphic map f close to the boundary strata N there

erists an approzimate map f\ such that f can be written in the form

Proof. By contradiction, assume there exists a sequence f, of (J,t,v)-holomorphic
maps for ¢, — 0 such that f, do not have the required property. By the bubble
tree convergence Theorem ([PW]) there exists a bubble tree f such that f, — f
uniform on compacts. Moreover, after rescaling the functions f, by some J,, this
becomes a L!?-convergence. But this is equivalent to saying that f, is L%~ close
to f. In particular, for A small enough, f, is L!"?*» close to f,, which contradicts

the assumption. O

Proposition 1.9 For small enough §,t any map in U; can be represented in the form

f =exp;, (Pan) for some fi € Imy,, ||n]lax <& and w{*(n) =0
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Proof. We will use the continuation method. The key fact is that a neighborhood
of fy in Imy, is modeled by A}, and that P, spans the normal directions to Im~,.

Let f € Us. By definition, there is fi € Imy, such that f = exp,, £, where
lll1,2,2 < 8. Consider the path f, = exp,, (s£). Let

S ={s€0,1]| 3fx, and ||n;|lp,», < & such that f, = exp,, (Py,n,)}.  (1.36)

Note that by definition f = fy = exp,, (0) so 0 € S. We will show that S is both

open and closed and since it is nonempty, 1 € S.

S is closed. The only open condition in the definition of S is ||7;]|,.», < 8. But since

0sfs = 9ifr, + Di,(Py,ns) + Nr(Pr,n,)  then
ns = 0sfs—8sfr,— Nr,(P\,1,)  so

C
I7allza < 185 fllzar + 10 £, )z + zzlinsllza
< NBsfllaa+ CVA+Clina3.5 (1.37)

We need to estimate ||3, f,||2.1. Since

0fs = 0sfa+sDA(E) + Na(s€) and  8;fy = 0yfr + Da(€) + Ny(€)  then

0sfs = s0sfi+ (1= 5)Bsfr+ Ni(s€) — sNA(€)
The estimate (1.32) gives ||[Nx(§)[l2.a < C [|€]1% .5 so

”alfs”b\ < Hngl”'z.,\ + ||5,1f,\||2,,\ +2C “5”3,2,\ < VA + 6324 C 82

Therefore for A << 4,
101 full2a < 2C 82 (1.38)

Using (1.38) in (1.37) we get

[17sllza < 2C 62+ CVX + Cln2,
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For small A < &3, the constraint ||n,||2,» < & implies ||7,]|2,0 < 6/2 so it is a closed
condition too.

S is open. Assume that so € S, i.e. there exists an approximate map f, such that

fa =expy, (P, (10)). We will show that s € S for s sufficiently close to so. For that

we need to find an approximate map f,, and an 7, € A% such that:
fs = expy,(s€) = epr.(P,\,n,) (1.39)

It is enough to prove that the linearization of the equation (1.39) is onto at so. First

we prove that:
Lemma 1.10 A small neighborhood N5 of fi in Im~y, is modelled by AS,,. More

0
low

f € Imr, has the form f = exp,, (( + P\g(()) for some ¢ € A, NClhea < 6.

precisely, there is a well defined map g : Ay, — A(l’.;'l such that any approrimate map

Proof. The first statement is an immediate consequence of the way we constructed
the approximate maps. For the second part, notice that any f € Im~, close to f) can

be written in the form f = exp; (x), with x small. Let x = (+ P\n be the orthogonal

decomposition of x in A% @ A%, where n € A%’ (recall that Py : A" — A% is an
isomorphism). Using the same techniques as in Section 1.4 we can prove that for any

¢ € A, there exists a unique solution n = g({) to the equation

1+ Nx(Pan) =04 f
which concludes the proof of Lemma. O

Since the notations are becoming cumbersome, we will illustrate for simplicity the

case s = 0. The general case follows similarly. Using Lemma 1.10 we can regard
the equation (1.39) as an equation in ((,n) € A), ® A%'. More precisely, for a

fixed s small, we need to find ¢ € A}, and n € A% such that the approximate map
f = exp, (€ + Pxg(()) solves the equation:

exp; (Pyn) = exp, (s€) (1.40)
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The linearization of the equation (1.40) at (0,7) is D : A, @ A%' — A°,
Do (z,n) =z + P\Vg(z) + Pxn + 1I(z,7)
where I1(z,7) is the derivative of P\n with respect to f,.

Our goal is to show that the operator D(q ) is an isomorphism in some appropriate

0,1
norms on AY @& Ag and A°.

low

Definition 1.11 On A9, & A%' and A° define the following norms:

low

I(z,n) lls, = llzliza+lin+Vg(z)llax  for any (z,n) € A}, & A’

I€lls, = lIDsEllza for any € € A°

Consider the operator T : A} & A%' — A° given by T(z,n) = z + P\(n + Vg(z)).

low

Then T is continuous, since

IT(z,n)lls, = [IDxz+n+Vg(z)ll2n < [[Dazll2x + [In + Vg(2)|20

< CA[zllign + [0 + Vg(2)]20 < [|(z.0)]5,

for A small enough. Recall that the low eigenvalues of D) are of order A!/4, and thus

IDxzll2a < A4lzll12 on AL,

Lemma 1.12 For A,4 small enough T is invertible, with the operator norm of the

inverse uniformly bounded ||T~'|| < Cr ( independent of \,5 ).

Proof. Let a = z+ Py\(n+Vg(z)). We need to estimate ||z||;,2,» and ||n + Vg(z)]|,.»
in terms of ||a||p,. Since Dya = Dyz + n + Vg(z) then
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In+Vg(@)an < llalls, + IDazllza < llalls, + CAVAlICI2n

< |lalls, + CAY* Jla — Pa(n + Vg(2))]}1.2,1

< lalls; + CAY Jlalls, + CAY [In + Vg(2)||2
So for A small we get the uniform estimate |n + Vg(z)||2n» < Cil||a||s,- Then

Izll125 = lla = P(n + Vg(2))ll120 < llalls, + Clinflay < Callalls,

thus ||(z,n)||s, < Cr||T(z,n)|/s,- This implies that T is injective. By construction,
index(T) = 0 so T is invertible, with || T~!|| < Cr ( independent of A\,§ ). O

Lemma 1.13 For z small, ||II(z,7n)|ls, < C||nll2.l/(z,0)||s,-
Proof. By differentiating the relation D;Psn = n with respect to f at f\ we get

dD;(Pan)(z) + Dy(Ml(z,7)) =0 so

Il DA(I(2, 7)) [l24 = || 8D;(Psn)(2) [|2.x-
Using the expansion of
1 1
D€ =35 (VE+J(f)oVEoy) + 2Ny(0:1,6)

(cf. [MS]) then
I 0D;(Pxn)(2) llza < Cllzlloo sl PAnll1.2,1

uniformly in a neighborhood of fy. Therefore

Iz, = [1Ds(1(z, 7)) ll2a < Clizlloonll Panll120

< Clizlhzalnlza = Clizlllinllza. B
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If we choose § small enough then for ||n]l.x < 6, ||II(z,7)|lB, < Cr/2 ||(z,n)|s,
where Cr is the constant in Lemma 1.12 so Do ,)(2z,n) = T(z,n) + II(z, n) is still

invertible. This concludes the proof of Proposition 1.9. O

1.6 The leading order term of the obstruction ; for ¢ small

Next step is to identify the leading order term of the section ; as t — 0. Let A

denote some stratum of &y and G! — N denote the gluing data as in (1.18). For
the sake of the gluing construction, the gluing data has to be defined on the domain

of the bubble tree. But we will see in a moment that the important information is
encoded in the image curves. Introduce first some notation: If u; € T}, S? is a unit -

frame and ), is the gluing parameter, let
vi=A-u; €T, S (vi#0) denote the gluing data.

Definition 1.14 For any [f,y,v] € Gl, such that f : B — P™ is an element of N,
let ([fi,yi,vi])™, be the bubble maps together with the gluing data and let u be the

image of the ghost base (so u = f;(y;) for all j € B). Set

alfuno) = 3 L (dhi(w)w) s X (1.41)
=1;eB
v(z) = zn:/p( v(z,u), wi(z) w; (1.42)

=1
where {w; = X;dz, i = 1,n} is an orthonormal base of H'(T?,u*TP"), X; € T,P"

and B is as in (1.9).

Note that a depends only on the gluing data on the first level B of essential
bubbles, and  depends only on the image of the ghost base. Then
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Lemma 1.15 Using the notation above, let f) be an approzimate gluing map. Then
fort and |\ = \/A? +...)? small enough,
D) = o(u)+0(N) (1.43)
w2@01f3) = a((f,y,0]) + O(A). (1.44)
and the section v, has the form

¥e([f,y,0]) = to(u) + a([f,y,0]) + O(AP/ + 1/ + £2). (1.45)

The estimates above are uniform on N.

Proof. For the first 2 relations, it is enough to check them on components. As-
sume for simplicity that B consists of a single bubble [f,y,v]. If w = Xdz is an

element of the base for H%!, let @) be the element of the local orthonormal frame for

AL (fr*TP") provided by Lemma 1.4. Then

[{(ry0x =@y} < lvlloollwr —@allza < CA so

(r,@r) = (ruwn) +0(})

On the other hand, using the definition of w)

(rywy) = / (v(z /(V w)+ O(A) so

@) = [ fe))+0M)

T?
which gives (1.43). Similarly,
(O0sfrswr —=@x)| < 105 fallzallwor — @allax < CAYVZA < CN3/2

and using the estimate (1.16) and the definition of w) we get

(B1fr,w2) = / LY dB{df (y)(u), X) + O(X*) = Xdf (y)(u), X) + O()?)

pe

VX< 2| <2VA
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Combine the previous 2 relations we get
(02£3,83) = (df () M), X) + O(X*7%) = (df (y)(v), X) + O(X*/?)

which implies (1.44).
The general case when B has more bubbles follows in a similar maner using the

relation (1.19) and the fact that w is 0 pass the first level of nontrivial bubbles.

Finally, the relation (1.45) is a consequence of (1.15) provided we have an estimate

of the the quadratic part. For that use (1.32) to get

( Na(Pan), @a) < |INA(Pan) llagaa l[@allax < Clinllza lnllazza llwlls

< O(AIM2 4+ 1) O(IAP4 +1).

Thus the quadratic part is O(|A|>4 + ty/|A\| +t3). O

The definition of L — #; . From this point on, since we are going to look at
the leading order term, it will become easier if we forget part of the gluing data. We

have already observed that the map a depends only on the gluing data on the first

level B of essential bubbles. Moreover, if we denote by

w =) dfi(y;)(v;) € T.P" (1.46)

jeB

then the map a and the linear part ¥y of 1, become respectively

a(w) = Xn:(w, Xi)w; (1.47)

=1

d(w) = ti(u)+ a(w) (1.48)

Introduce a space W together with a projection m : W — U, such that the fiber of
7 at a l-marked curve (possibly with more components) is the span of the tangent

planes to all the image bubbles that meet at the marked point. By definition w € W
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so (1.46) defines a projection p : G| - W. Note though that 7 : W — U, is not a
vector bundle, and that W it is equal to the relative tangent bundle L — Uy on the

top strata of U,.

Here is a more precise description of W. Stratify U, by letting Z, be the union
of all boundary strata such that the image of the marked point is on A& nontrivial

bubbles, i.e.
Z,={f: B — P"| B has h elements } (1.49)

Note that Z; D Z3 D ... and each Z} is a smooth variety with normal crossings. For
transversality arguments we need to use the moduli space 2 obtained from 2, by
collapsing all the ghost bubbles up to the first level of essential bubbles. The natural
projection

q: 2, — 2;,
has fiber Upp = Mo hr+1, the moduli space of h + 1 marked points on the sphere.

Moreover,
dimZ,=n—-h—-1 and dimZ,=n—-2h+1 (1.50)
In particular, Z, # 0 only for A < [2H].

Let L; be the pullback of the relative tangent bundle to the 2’th factor of éh. When

the constraints £, ..., Bk are in generic position, the fibers of L,,..., Ly over a point
in 2, are linearly independent subspaces of P™. This is because linear dependence

imposes n + 1 — h conditions, and 2?;, is only n — 2h + 1 dimensional. So on Z,
Wiz, =q (L1 & ... L) (1.51)

Remark 1.16 Since not all the gluing parameters can be zero, a dimension count
argument similar to the one above shows that w defined by (1.46) is an element of

W — {0}, the space nonzero vectors in W, thus p: Gl - W — {0}.

Note that W|z, is nothing but the normal bundle of Z; in Uy, for any 2 < h <

[2£1]. This observation allows us to get a line bundle out of W as follows:
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Definition 1.17 Let N = [%!]. Blow up Uy along Zn (the bottom strata), then

blow up the proper transform of Zy_, and so on, all the way up to blowing up the

proper transform of Z, and denote by
p: L~ld — Uy

the resulting manifold. Similarly, after the first blow up, extend L over the excep-
tional divisor Zy as the universal line bundle over P(Nz,), the projectivization of

the normal bundle of Zx, and so on. Let L — Uy denote the blow up of L constructed

above.

By definition, the total space of L — U, is the same as p*(W). From now on, we will

make this identification.

Note that both the map a and the linear part ; of v, pull back to L — {0} as

n

a(w) = Y (w, Xi)X; (1.52)

i=1

1/:,(w) to(m(w)) + a(w) (1.53)

where 7 : L = P is the composition L = U; =5 P For simplicity of notation, we
have also denoted by ev : :; — P" the composition Uy 5 Uy == P". Note that by

definition, a is a linear map but z/?, is not, and we have the following diagramm:

L-{0} %% evy(TP™) TP"
. L o
Uy = U, i‘i) P*

Proposition 1.18 Ast — 0 the zero set of the section 1, is homotopic to the zero

set of its leading order term

¥ : L— {0} > ev*(TP")
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Proof. In generic conditions and for ¢ small enough the zero sets of both sections
¥ : Gl = ev*(TP") and p*p.(¢y): L — {0} = ev*(TP")

consist of points lying on the top stratum of Uy and Uy respectively. But on the top
stratum, the projection pr : GI = L — {0} is an isomorphism, thus the two zero sets
are diffeomorphic for ¢ small. Note that (1.45) gives

p-(¥1(w)) = ti(u) + a(w) + O(Jw[** + ty/|w| + ¢*)

Finally, Lemma 1.19 gives that w = O(¢) on the zero set of ¥, so

p-($1(w)) = to(u) + a(w) + O(t**)

giving the desired homotopy ast —+ 0. O

Lemma 1.19 The linear map a : L— {0} — ev*(TP™) defined in (1.52) has no zeros
when the constraints 3y,...,[0; are in a generic position, thus there exists C > 0 such

that
la(w)| 2 Clw| (1.54)
Moreover, there ezists a uniform constant C on L — {0} such that the zero set of 1,

is contained in |w| < Ct.

Proof. First part is a standard transversality argument and dimension count. Note

that a induces a map
a®id:LL* - e (TP)QL" ie.
a®id:Uy; xC — ev*(TP")QL"

Because of the C*-equivariance of a, the zero set of a : L — {0} — ev*(TP") is the

same as the zero set of the section
a:U; - e (TP")QL"

a(z) = (a®:ud)(z,1)
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If the constraints f3;,..., 0Bk are in generic position, then a is transverse to the zero

set of ev*(TP"). But the base U, is only n — 1 dimensional, while the fiber is n
dimensional, so generically @ and thus a has no zeros.

For the second part, note that on the zero set of p.(i:)
0=p.(¢y) = a(w)+to(u)+ 0w +|w|'/?t+1*) so
a(w) = —ti(u) = O(Jwl*/* + |w|'/? ¢ +¢?)
which combined with (1.54) gives

Clw| < la(w)] < to(u)] + Clw>* + |w|'/? t + %) i.e.

lw|(C = Clw|'*) < Ct

For t and w small, the left hand side is positive, completing the proof. O

1.7 The enumerative invariant 7

Next step is to find the zero set of the leading order term of ;. As a warm-up we
will discuss first the limit case ¢t = 0. The constructions described in the previous

sections apply equally in this case, giving:

Proposition 1.20 Let N be a ghost base boundary stratum of Uy. Then the moduli
space of J-holomorphic tori close to N is isomorphic to the zero set of a section in

the obstruction bundle over the space of gluing data

Yo, yi viliy) = a((fi, i 0illiZ,) + O(IAP)

where a is defined by (1.41). Moreover, for generic constraints 3,,...,3;, the number

of J-holomorphic tori that define the enumerative invariant

7a(Br, .- -1 B1)

is finite, and the moduli space of these holomorphic tori is at a positive distance from

the ghost base boundary strata of the bubble tree compactification.
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Proof. For the second part, note that » and A~'¢ have the same zero set, so as
A — 0 the limit of the end of the moduli space of J-holomorphic tori is modeled by
the zero set of the section a. But we have seen that generically a has no zeros, and
thus there are no J-holomorphic tori in the neighborhood of that boundary stratum.

O

Now we are finally ready to evaluate the contribution from the interior.

Proposition 1.21 For t small, the number of (J,tv)-holomorphic maps that satisfy
the constraints in the definition of RTy,(5: | B2,---,0:) and are close to some (J,0)-

holomorphic torus is equal to

and(ﬁl, v aﬂl)

where n; = |Aut,,(j)| is the order of the group of automorphisms of the complez
structure j that fiz the point z,.

Proof. Recall that RT,;,(3; | B2,-.-,0:) counts the number of solutions of the
equation
31f(z) = v(z, f())

such that f(z;) € 8, and f passes through 3,,..., 0.
A generic path of perturbations converging to 0 provides a cobordism MY to the

solutions of the equation
3:f(z)=0

such that f(z,) € B, and f passes through f,,...,3. A (J,0)-holomorphic torus
f : T* -5 P" is a smooth point of this cobordism, i.e. all the intersections are
transversal and the cokernel H®!(T?, f*(TP")) vanishes (since f*(TP") is positive

for the standard complex structure).

But the invariant 74(8;,...,0)) counts the number of such solutions mod the
automorphism group of j. Imposing the condition f(z;) € B, reduces the stabilizer

to just Aut,, (7). O
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Remark 1.22 Note that the pertubed invariant counts the number of (J, v/)- holomor-

phic maps with sign. This sign is determined by the spectral flow of the linearization
Dy to 0y. In the limit, when v = 0, we have D; = 9, thus all (J,0)-tori have a

positive sign. This agrees with the way they were counted classically to obtain 7.

Lemma 1.23 For generic v the section v : ev.(Uy) — TP™ defined by (1.42) has no

ZETos.

Proof. For generic v, the section » is transverse to the zero section. But the fiber of
TP" is n dimensional, and the base Im(M) = ev.(U,) is only n — 1 dimensional, so

7 has no zeros generically. O

Remark 1.24 The zeros u € P™ of & give the location of the point maps u that can be
perturbed away to get genus one (J, v)-holomorphic maps representing 0 € H,(P"). |
Since index=0 then generically 7 has finitely many zeros. But Im(.M) is a codimension

1 subvariety in P™ that doesn’t depend on v. Then we can choose v generic so that

its zeros do not lie in Im(M), and thus #(f(y)) # 0 for any [f,y] € U,.

Moreover, Lemma 1.18 showed that as ¢ — 0 the zero set Z; of v is homotopic

to the zero set Z, of the map
vo: L — {0} — ev*(TP")
Yo(w) = &(m(w)) + a(w)
where a, U are defined in (1.52), (1.42) and 7 : L — P™ is the composition L —

U; S Pr. We have also made a change of variables w — w/t.

We are ready now to identify the zero set Zy. Since 7(u) # 0 on Im(M) then it

induces a splitting of the obstruction bundle:
TPy =C <7 >& E (1.55)
where E is an n — 1 dimensional bundle, so

eV (TP*)=C<v>@ev'E (1.56)
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Lemma 1.25 The number of zeros (counted with multiplicity) of 1o is equal to
ca-1(ev(E) @ L)
Proof. Using (1.56) map v : L — {0} = ev*(TP") splits as

hi(w) = (m(w)) + ai(w) (1.57)
Pa(w) = az(w) (1.58)

where a; denotes the corresponding projection of a(w). The map a, : L — {0} —

ev*(E) is C*-equivariant, so tensored with the identity on L* induces a C*-equivariant

map
a:U; x C* > ev’(E)QL*

that has the same zero set as a,. Let
ay:Uy > ev'(E)Q L* givenby dy(z) = ay(z,1)

Then the zero set of a; is equal to Z(a;) x C*. To find the zero set of vy, for any
(z,v) € Z(@;) x C* solve the equation

0 = ¥1(z,v) = 0(z) + as(z,v) = v(z) + v - ay(z, 1)

Note that a; # 0 on Z(a;) since a has no zeros so for any z € Z(a,) there exists a
unique v € C* such that

—v(z) =v-ayz,1)
This implies that there exists an isomorphism between the zero set of 1y and the zero
set of @;. To complete the proof, note that for generic v the section @, is transversal to

the zero section of ev*(E)®L’, so its zero set is given by the Euler class of ev*(E)QL .
a

Finally, we can compute the boundary contribution
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Proposition 1.26 For t small, the number of (J,tv)-holomorphic maps that satisfy
the constraints in the definition of RT4,(0: | B2,- -, B:1) and are close to the boundary

strata {z,} x Uy is equal to

“(n+1l “1—iy i
3 (71, et

1=0
where L is the blow up of the relative tangent bundle L defined in (1.17).

Proof. As we have seen previously, the moduli space of (J,tv)-holomorphic maps
that satisfy the constraints in the definition of RTy,(05 | B2,...,0:) and are close to
the boundary strata {z;} x U is diffeomorphic to the zero set of the section 1. Using

Lemma 1.25, the later is equal to

cnr(evi(E)@ L*) = 'i: ev*(ca-i-1(E) ) - ¢(L*)

1=0

But by definition ¢;(E) = ¢;(TP™) = (";.H> H', completing the proof. O

1.8 The other contribution

In the previous sections we have described in great length the gluing construction
corresponding to the strata {z,} x Uy, that consists of a ghost base and a bubble
at the marked point z,. Finally, it is the time to sketch the gluing construction
corresponding to other boundary stratum T? x ev*(3;) and to explain why it does

not give any contribution.

Proposition 1.27 Fort small, the number of (J,tv)-holomorphic maps that satisfy
the constraints in the definition of RTy41(5 | B2, - - -, 81) and are close to the boundary

strata T? x ev*(B) is equal to 0.
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Proof. Construct first the space of approximate maps. The only difference from
the gluing construction decribed in Section 1.2 is that we need to allow the bubble
point z € T? to vary. Since the tangent bundle of the torus is trivial, choose an
isomorphism

TT*=T?*xC
which gives an identification T,T? = C for all z € T? (providing local coordinates on

T?). The set of gluing data will then be modeled on:
T? x Fr x (0,¢)
where
Fr={[f,y,u]|[f,y] € ev(B1), u € T,S” [u| = 1}
is the restriction of the frame bundle over U, defined by (1.9).

To glue, use the unit frame u € TyS? to identify T,T? = T,5? which will induce

natural coordinates on the sphere via the stereographic projection.

Then all the constructions decribed in Sections 1.2-1.7 extend to this case. Since

the holomorphic 1-form w € H%!(T?, C) is constant along the torus, then the isomor-

phism between the obstruction bundle and ev*(TP") is independent of the bubble

point, so
H°! = p*ev*(TP™) ev*(TP™)
N \J
T? x ev*(By) 25 evi(B)

Moreover, the linear part of the section 3, that models the end of the moduli space
is also independent of the bubble point. But a dimension count shows that the zero

set of a T?-equivariant section in the obstruction bundle must be empty generically.

D



2 Applications

In this second part of the paper we explain how one can compute the top power inter-
sections ¢ (L*)ev*(H" 1~*) involved in Theorem 0.1. The programm is simple: first
we find recursive formulas for the top intersections ci(L*)ev*(H" '~*) (see Proposi-

tion 2.2), where L is the relative tangent bundle of U;, and object well known to the

algebraic geometers. Next we exploit the fact that L is a blow up of L to compute
its coresponding top intersections recursively in Proposition 2.5.

Unfortunately, the notation becomes quickly pretty complicated if we insist on
keeping track of all the information, so we chose to indicate at each step only the new

changes, leaving out the data that stays the same.
Notations. If 3o,..., Sk are various codimension constraints let

Us(Bo 5 Brs.- -, Bk) = ev™(Bo) [Ua( ; Br,-- -, Bx) ]

denote the moduli space of 1-marked cuves in P" passing through Sy, ..., Bk, such

that the special marked point is on (3 and let

Md(601 ﬂl9 v a;Bk)

denote the corresponding moduli space of curves (in which we forget the special

marked point).

In particular, let Uy = Uy( ;51,...,0) be the moduli space of 1-marked curves

that appears in Theorem 0.1. If 7,5 > 0 are such that 7 + j= dim U, then let
¢a(i,j | Bus- ., Br) = €1(L7) ev™(H?) [Uy ] (2.1)

denote the top intersection. Moreover, if U, is the blow-up Uy as in (1.17), let
z=c(L") € H*Us,Z), F=ci(L") € H Uy, Z) and y=ev'(H) (2.2)

39
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where y € H*(U;,Z) or y € H*(Uy,Z) depending on the context. Note that
galij| ) =2y [Us] = 2" [Us(H’; )] (2:3)

Remark 2.1 Using the notation above and the degeneration formula (A.2), Theorem

0.1 becomes:

n—1 -
and( . ) - Z a.d(Hfl’Hiz’ . ) + z (n + 1) i;iyn—l—i . [ud] (2.4)

i\ +iz=n o \t1+2

2.1 Recursive formulas for ci(L*)ev*(H/)

Let Uy be some r-dimensional moduli space of 1-marked curves of degree d through
some constraints fy,...,0c (not necessarily the same as in Theorem 0.1) and let

L — Uy be its relative tangent sheaf. In this section we give recursive formulas for
$a(isj | ) = ¢ (L)ev* (H) U]
where the constaints 3y, ..., 8, are dropped from the notation.

Proposition 2.2 For every r-dimensional moduli space U, of any degree d > 1, there

are the following recursive relations:

¢a(0,5 |-) = oa(H’, ) (2.5)
) ) 2 .. 1 .
¢d(l + 11] | ) = _E¢d(ls] +1 | ' )+ ﬁ(bd(l,] | st : ) (26)
dg <. 1) 12
+ d;gdziqsdl(z’] IH ’ ')'adz(H ’ )

N +n2=n

: d;
+ (-0 Y 2
dy+dy=d d
11 +12=n4)

Ga, (i — 1,01 |- ) -0, (H?, ) (2.7)

for any i > 0, where the sums above are over all possible distributions of the con-
straints (,..., Bk on the two factors and dy,d; # 0. When i = 0, the last term in
(2.6) is missing.
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Proof. The first relation follows by definition, and provides the initial step of the
recursion. The second one requires more work. In what follows, we will identify a

cohomology class like ¢;(L) with a divisor representing it. Then:
Lemma 2.3 On U, we have the following relation:

1

+ ﬁ Z dgMdl.dQ (2‘8)
d

1+d2=d

where H denotes the extra condition that the curve passes through H?, and My, 4,
denotes the boundary stratum corresponding to the splittings in a degree d, 1-marked
curve and a degree d; curve, for d; # 0 (for all possible distributions of the constraints

Bi,.-.,0Bk on the two components).

Proof. Fix 2 hyperplanes in generic position in P*. Each curve in U, intersects a

hyperplane in d points. Then the moduli space Y = ev;,,(H)Nevi, ,(H) of 1-marked

curves passing through 3,,..., 8, H, H is a d? fold cover of U;:

W:Y—')Ud, [f7yla'--1yksa1b;y]_)[f,yl’-"ayk;y]

Define the section

\ e veabyl) = @0y
([f7ylv » Yk, ,b,y]) (y__a)(y_b)

Then s is a section in the relative cotangent bundle L*, and it extends to the compact-
ification 2. As a and b are getting closer together, the section s converges to 0. Thus
its zero set is the sum of the divisors {a = b} and M(y ; a,b), where M(y ; a,b) is
the sum of all boundary strata corresponding to splittings into a degree d; 1-marked
bubble and a degree d, bubble containing a,b for d = d; + d,. Note that d; # 0. The
infinity divisor is {y = a} + {y = b}. Thus

m(a(L%)) = {a=b}+ M(y; a,b) = {y =a} - {y = b}

Note that
d*ci(L*) = mum™(cy(L*))
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When projecting down to Uy, the divisor {a = b} becomes H, and the divisors
{y = a}, {y = b} become each d - ev*(H). The rest amounts to summing over all
codimension 1 boundary strata. The boundary strata Mg, 4, appears with coefficient
d? in m.(M(y,a ; b)). Combining all the pieces together completes the proof of

Lemma. O

Remark 2.4 We could have chosen any 2 marked points out of the already existent
ones, and then express ¢;(L) in terms of them. But then this expression would not
look independent of choice. Nevertheless, with some work, one can actually see that
all these divisors are homotopic. We have chosen to introduce 2 new marked points

to avoid this issue.

Relation (2.8) provides the basic relation for proving (2.6):

: 9 . 1 . 42 .
Gt (L*) = —=c(L7) -ev*(H) + e (L*) - H+ Y. 2 (L") Ma,q
d d? d,+d2=dd

so taking a cup product with ev*(H?) we get:

) . 2 o 1 ..
da(i +1,75]:) = —Edm(w +1|)+ Efﬁd(w | H?, -) (2.9)
dg 1 - - 7
+ > ﬁc,(L Jev*(H?) - Mgy, 4,

dy+d2=d

Next, we need to understand the restriction of L to the boundary stratum My, 4,.
Let
pP: ./\4,11‘,12 - L(dl

be the projection on the first component (the one that contains the special marked
point y). If A, B are the 2 special points of My, 4, (where the 2 components meet),
and

evy X evg : Uy, x Mg, - P" x P"

be the corresponding evaluation map. Then by definition

Md,,dz = (evA X evB)'([A]) (2.10)
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where A is the diagonal of P* x P™. Moreover, it is known that as divisors,
cl(L.)/Mdl d2 = P'CI(L;) + {y = A} (2°11)
where Ly = Ly, A is the relative tangent bundle of Uy,. Next step is to find

ALY Man =3 () L) ((y = AV .12

1=0

For the self intersection of the divisor {y = A} note that its normal bundle N inside

Mdhd2 iS nothing bllt p‘(LA)/{y = A}, SO for l > 0,

{y =AY =a(N) = (-1)""p e (L) - [{y = A}]
Substituting in (2.12) and after some algebraic manipulations we get:
(L") - May ] = p i (L) + (-1 'p e (L) - {y = A}) (2.13)
Compute the intersections above inside Uy, x My,. Then (2.10) combined with
the relation [A] = Y H" x H'" gives

t1+i=n

ev'(Hj) : [Mdhd2] = Z udl(Hj ) H‘l, ) ) X Mdz(Hi27 - )

11 +i2=n

ev'(H’) - [{y = ya}] Y. Uy (H" ;) x Mg, (H?, )

t1+i2=n+j

where we sum over all possible distributions of the constraints on the two components.

The relations above imply

eV’ (H?)-p'ci(Ly) - [Mayay) = Y (ci(La) Us (H 5 HY, - )) x Mg (H™=, -)
1) +i2=n
= E ¢d1(i,j | Hil’ . ) 'O'dg(Hiz, . ) (214)
f1412=n
v (H)-p"ey (La) -y =wa}l = 3 (7'(La)-Us(H" 5 -)) x Mg, (H?, )
11+i2=n+j

= Y da(i-li|-)-oq(H?, ) (2.15)

1) +i2=n+j
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Substituting these relations in (2.9) using (2.13) we get (2.6), which concludes the

proof of Proposition 2.2. 0O

2.2 Recursive formulas for ci(L*) - ev*(H’)

Let Uy = Ua( ;B1,--.,0k) the some r-dimensional moduli space of 1-marked curves
and U; be its repeated blow-up along Z[n_;u], ..., 2y asin (1.17). Next we give recur-

sive formulas for computing the top intersections z'y’:

Proposition 2.5 If U; is some r-dimensional cutdown moduli space of 1-marked

curves then for 1 + j = r, the top intersection

o ) (51+52—1)"] L

'y U) = 'Y [Uy - — — 1y [Ua, x Uy,] (2.16

y’[Ud) y’[Ua) 4,§=4 TEEATEEN] R [Ua, x Uy, ] (2.16)
n+in=n+y

where T; = cl(z‘lad ) and y; = ev*(H) on Uy, with d; # 0 fori =1,2.

Proof. Recall the construction of y: starting with Uy, we first blow up along Z[%_x],

then we blow up the proper transform of Z[n_;];_l] and so on, up to blowing up the

proper transform of Z,. Since L extends as the blow up of L then

_ (2
a(l)y=ca(l)- Y Z, (2.17)
h=2

where Z), is the exceptional divisor corresponding to Zj.

For simplicity, let N = [2!] and L™ be the partial blow up of L along Zy, ..., 2,

only. Denote by
Z(h) = —cy(LW) (2.18)

Recall that an element of Z, has h components having a point in common, the

image of the ghost base. Then:
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Lemma 2.6 Using the notations above,

(El+...+ih—l)i
(1—%1) ...-(1—%n)].

FhU) = F(h+ Dy ) -

"y’ [prZ2]19)
h

where %; and y; are ¢;(L*) and ev*(H) corresponding to the i’th component of each

element of prZ,, the proper transform of Z,.

Proof. Let 7 : L?a(,h) — L~(§h+l) be the blow up of ~§h+l) along prZ2,, and Z, be that

exceptional divisor. Then

(L) = noc, (L) = [2,] ie. z(h)=n"z(h+1)+[Z24] so

F R = 7 (F(h+ Dy )+ 3 (,)w( o+ 0y (2] (220

=1
Thus we need to understand terms like
m(a)[Zy]'  for a=F"'h+1)y’, [>1

But this kind of intersections were computed by Fulton [Ful]. Here is a brief sketch
of the argument: Let N be the normal bundle of the proper transform of Z; and
€ = On(1) be the hyperplane class in P(N). Recall that Z; is codimension h.

Combining the relation
2, =7 (On(-1))
with the definition of the Segree class of the normal bundle ([Ful] p 47)
5i(N) - o = m(c}7"H(ON(1)) - 7°(a))
one gets

m(m"(a) - [24]') = (=1)'"'a - si_a(N)
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In our case we look at top intersections (i.e. |a| +{=7r) so for { > 1

m(a) - [Zn])' = (=1)" - sica(N)[prZa) (2:21)

as integers. To complete the proof, we need to find the Segree class of N.
Note that Z, has components indexed by the different distributions of the degree
on the h bubbles:

2y = U Zdh dn
d]+...+dh=d
where d; # 0 for : = 1,...,n. When we blow up, the components of prZ, become

disjoint, and the component prZ;, , 4, can be viewed as a subset of

.....

(Mopsr X Uy, X ... x Ua,)/Sh (2.22)

where Mg 141 is the moduli space of h+1 marked points on a sphere, and the symetric
group S, acts freely on the h bubbles by permuting them (giving the same bubble

tree). Consider the projections:

~

~ ~ P ~
Mo.h+1 X L{dl X ... X L(d,, — L(d,
im ANy

P
Mo,h+l X L{d, X ... X Z,ld,, — L(d,

be the projections on the i’th factor, and L; be the relative tangent bundle of the :’th

factor. The normal bundle of Z; is isomorphic to
PiLi@®...®pyLx
so the normal bundle of the proper transform of Z, inside Zjﬂ(lh“) is
N=pL&...05L,
where Z,- is the full blow up of L; as in (1.17). Thus:

1
R T sy Tpar-y (2:23)
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where Z; is the pull back via p; of the first Chern class of the relative cotangent bundle

L* of Uy,. Putting together (2.20), (2.21) and (2.23) we get:

FRYUY) = F(h+ DY)

S () <1y 1 . s
* Z(l)(_l)l [(1-51)-----(1—&)]1_,,”(I '(h = 1)y’ )[prZ,]

i=h

= w0 - [ FEEED U e
i—h

(1=21)-...- (1= 2Z4)],

But
Zh+1)[pr2u]) =214+ ...+ Zx

which gives (2.19). O

Next, note that all the cohomology classes involved in the last term of (2.19) are
pulled back from Zj, the result of collapsing the ghost bubbles in prZ; to a point.
But note that dim Z, < dim Z, unless h = 2 (the difference is dim Mg 41) so a
top intersection on Z, of classes pulled back from Z, vanishes unless h = 2. This,
combined with (2.19) and the fact that L(*) = L when h = N + 1, implies:

Tyl = x‘yi[udl—[(l(i.l;)i(zl—-lz);)} ™"y [prZs] (2:24)

But pr2, = Z, = evg(A) for A is the diagonal of P™ so

1 - . - . . -
rzs) =5 3 [Ua(H"5) xUsn(H%) 1= 32 wi'y7lUa xUs)  (2.25)
413 e

The factor of 1/2 in front of the sum comes from action of the symmetric group
S, on the 2 bubbles (yielding the same bubble tree). After distributing y on the 2
components (2.24) becomes (2.16). O
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2.3 Applications to P", n <3

In this section we apply the inductive algorithms described in the previous section to

compute the elliptic enumerative invariant 7; in P? and P°.

Proposition 2.7 The number 74(p%*~") of degree d elliptic curves in P? with fized j

tnvariant and passing though 3d — 1 points is

Td(psd-l) — l(d;- I)O'd(PSd-l) (2.26)

n;
where oq is the number of rational curves through 3d points. and n; is the order of

the group of automorphisms of the complez structure j firing a point.

Proof. For n = 2, relation (0.2) gives:
n;ma(p*1) = a4(L,1,p** ") — 3ev*(H) — &1 (L") (2.27)

where L — Uy is the relative tangent bundle over the moduli space of 1-marked
rational curves of degree d passing through 3d — 1 generic points and L is its blow up
as in (1.17).

The moduli space My of unmarked curves is n — 2 = 0 dimensional, consisting
of a4(p®@!) curves. In particular, we do not need to blow up to do the intersection

theory, i.e. L = L. Using (2.2) (or easier by inspection)

2
a(l”) = —EUd(l,PSd_l) = —204(p**")

ev"(H) = o4(l,p™") = dog(p*™") and  ou(l,l,p") = doy(p™)

So pluging them back in (2.27) we obtain

1
Td(psd-l) = n—(d2 —3d + 2) o4

J
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which gives (2.7). O
In particular,
((3)oa  ifj#0,1728

3d—1)

]
N
N =
/N
au
LU
L]
SN—r
Q

a

Ta(p ifj=0 (2.28)

| 1(*3 o ifj=1728
This formula was recently obtained by Panharipande [Pan] using different methods.

Similarly, we can prove that:

Proposition 2.8 The number 74 = 74(p*, %) of elliptic curves in P? with fized j
invariant and passing through a points and b lines (such that 2a +b = 4d — 1) is given

by:
2(d—1)(d —2) 2
Td = Ud(l) - d2(2d dg - d)dd, (1)0’,12 (229)
dn; dn; d,+2d2:=d 1
where o4(l) = oa(p*, 1%, 1) is the number of degree rational curves in P? passing

through same conditions as 74 plus one more line. By the term o4, (l)0oq, we understand
the sum over all decompositions into a degree d, and a degree d; bubble such that the

constraints are distributed in all possible ways on the bubble, and d; # 0.

Proof. When n = 3, Theorem 0.1 becomes:

nyra(p®, %) = 30 oq(HY H™,p%,1°) — 6ev™(H?) — d4ev*(H)ey (L*) — ¢2(L*)(2.30)

11 4+12=3
The moduli space M, of degree d unmarked curves passing through a points and b
lines is n — 2 = 1 dimensional, with a finite number of bubble trees in the boundary.
Then Proposition 2.8 is a consequence of (2.30) and the following Lemma after some

simple algebraic manipulations:
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Lemma 2.9 We have the following relations

> ou(H HR,p% 1) = 2d - 0a(p®, 1) (2:31)

11 +12=3

ev'(H?) = o4(p*, I**!) (2.32)
- 1 1

ev'(H) -ci(L*) =ev'(H) - ci(L*) = —504() + = Y. did3oq,(1)04,(2.33)

d d dy+dy=d

a(l?)?=- Y dyoy (D)o, (2.34)
dy+dy=d

a(l’)=-2 Y dyoy (D)o, (2.35)

dy+da=d

Proof. Relations (2.31) and (2.32) follow immediately by definition. The remaining
relations involve more work. To prove (2.33), use (2.8) to get

1

ev(H) - ei(L) = ev ()l s H)] ~ 2ou(H?) +

Z dg Udn(H’ Hil )Udz(Hiz)

g +12=3
dy +dy=d

Z dg( adn(H’l)adz(H) + UdI(H’ H)0d2(l) )
dy+dy=d

1 1

- _Effd(l) + a2 p > 4 ( didz04,(1)0a, + djoa, 04,(1) )

1+d2=d

which gives (2.33) after switching the indices in the second sum.
For simplicity we have recorded only the new constraints, whereas the old ones

get distributed in all possible ways. The equality between ev*(H)-¢,(L*) and ev*(H)-

c1(L*) is a consequence of (2.16).

Next, we need to evaluate c?(L*). We use (2.8)

ALY = Zall) e (B) W+ T Fal) [UalH)] ou(,)
1 . , &2 . |
+ gall) - [UGH, ) = 3 2 Ua (B 00 (H?,2) (2.36)

ty+1p=3
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The first term is given by (2.33). Using (2.8) again, we get:
(L*) - [Ua( s H?,-) ] = —204(1)

—zddl(H, Hi', ) = —ZUdl(Hil, )

(L) [Un(H" )] = =T

Plugging these relations in (2.36), expanding the sums and then combining the terms

together, we get (2.34).

Finally, to get (2.35), use (2.16)

- 1 (Z1+Z2—-1)2 : .
2 = 2= [ ] Us, (H" ;) x U, (H' )
3.2, [0—ma=z)), )
11 +12=3
1 . :
= oL Y ol ) ohH )=~ Y doa(l) - 0u()
dy+dz2=d di+d2=d

1y $i12=3

after expanding the sum and then combining terms together. O

If we distribute the constraints in Proposition 2.8 in all possible ways, formula (2.29)

becomes:

rr, ) = 2D e (2.37)

a

2 a\(b
I E E d _ d a; pbi+1 . az pb2
* njd di=1a;=0 2d1 2 adl( 71 ) adz(p al ) (al) (bl)

Example. Using a computer program based on (2.37) and the recursive formulas
(A.3) for o4, one recovers for example that in P? all the degree 2 elliptic invariants

are 0 (fact known for a very long time) but also one gets new examples, like:

7‘3(1”) Ts(P,l")

J #0,1728 | 6 - 25920 6 - 15856790593536

j=0 3 - 25920 3 - 15856790593536

J=1728 | 225920 2 -15856790593536
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3 Appendix

If we let 04(J1,J2,---,k) = 0q( H*,H?,..., H’*) be the genus 0 enumerative invari-
ant in P", then Ruan-Tian proved that the genus zero perturbed invariant and the

genus zero enumerative invariant are equal in P", i.e.
og(H" H?,... H*) = RT;o(H", H? H*|H*,..., H*) (A.1)
Consequences of Ruan-Tian degeneration formula are:

RTd,l(ﬁl I ﬂ27---aﬂl) = E Ud(HilaHizaBl,'-",Bl) (A2)

11 +i2=n

and that o4 in P" satisfies the following recursive formula: for j; > j, > ... > 5, > 2,

04(j1,J2,73) = —0a(g1,J2 + 1,73 — 1) + doa(jy + js — 1,j2) — doa(j1 + j2,33 — 1)
d-1 n
+ Z Z( 04, (]1,]2,i)0d2(j3 -1n- z) — 04, (jl,j3 - 1ai)ad2(j2’n - 2) ) (A3)
dy=11i=0

where 04(j1, J2,J3) = 04(j1,J2,J3, J4, - - -, Jk) and the conditions H%, ..., H’* are dis-
tributed in the right hand side in all possible ways. Note that o,(pt, pt) = 1 gives the

initial step of the recursion.
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