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ABSTRACT

SYSTEMATIC STUDIES OF RHAGOLETISAND RELATED GENERA
(DIPTERA: TEPHRITIDAE)

By

John Jenkins

Two traditional sources of taxonomic characters, male genitalia and wing patterns,
were examined in detail, and relationships among Rhagoletis and 16 related genera were
analyzed. The genitalia of 278 males in 90 species was examined. A detailed description
of the male genitalia based on these examinations is given. A ground plan for the phallus
is proposed, and homology of genital structures is discussed. Elements of banded wing
patterns are identified using structural landmarks instead of their relative position on
the wing. A model of wing pattern evolution is presented, and a transformation series
for wing patterns in Rhagoletis is given. A phylogenetic analysis of 50 species of
Rhagoletis and 38 species in 17 other trypeﬁne genera was performed. During the
character analysis, 247 characters were examined, resulting in 91,942 recorded
observations. Characters used in the cladistic analysis are detailed, and the use of
polymorphisms as cladistic characters is discussed. Results of the cladistic analysis
indicate that Rhagoletis is not monophyletic; that the subtribe Carpomyina is
monophyletic and the subtribe Trypetina is paraphyletic; and that previously unplaced

trypetines may be closely related to the Trypetina.
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INTRODUCTION

The genus Rhagoletis includes 62 described species occurring in temperate areas of
the Holarctic, Oriental, and Neotropical regions (Bush, 1966; Hardy, 1977; Foote,
1981, 1984; Berlocher, 1984; Hernandez-Ortiz, 1985, 1993; Norrbom, 1989). The
genus is placed in the subtribe Carpomyina (tribe Trypetini) (Foote et al., 1993)
which also includes the Palearctic genera Carpomya, Goniglossum, and Myiopardalis; the
Nearctic genus Zonosemata; and the Neotropical genera Cryptodacus (=Lezca),
Haywardina (=Cryptoplagia), Rhagoletotrypeta, and Stoneola (Norrbom, 1989).

Members of Carpomyina whose biology is known breed in the fleshy fruits of plants
from a wide variety of families (see Foote, 1981; White and Elson-Harris, 1992;
Hernandez-Ortiz, 1993; Norrbom, 1994; Smith and Bush, in review). A number of
these flies are serious agricultural pests, especially species of Rhagoletis (Boller and
Prokopy, 1977; Foote, 1981; White and Elson-Harris, 1992). Species of Rhagoletis
also have been the subject of numerous studies in the field of evolutionary biology
(Feder et al., 1988; Bierbaum and Bush, 1990; Frey and Bush, 1990; Bush 1992;
Berlocher et al., 1993; Johnson et al., 1996; McPheron and Han, submitted; Smith and
Bush, in review).

Comparative studies of fruit flies in general, and Rhagoletis in particular, are
hindered by the current state of the classification of the family. Recent classifications of
the Tephritidae (e.g., Hardy, 1973; Foote et al., 1993) have changed little since the one
proposed by Herring in 1947 (Hardy 1980, 1983; Hancock, 1986; Foote et al., 1993).
These classifications are untested, intuition-based arrangements, and the degree to

which they reflect phylogenetic relationships is uncertain.
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Phylogenetic systematics, or cladistics, is currently the most widely accepted
method for inferring phylogenetic relationships (Forey et al., 1992; Kluge and Wolf,
1993). Recent studies have done little to improve the classification of the family, and
most suffer from what Kluge and Wolf (1993) called "ad hoc methods that only bear the
label, not the meaning, of phylogenetic systematics."

In Hancock's (1986) classification of the Trypetinae, characters were polarized
using an “outgroup comparison with other subfamilies® without specifying which
subfamilies. Further, many of his defining characters are polymorphic (e.g., "Female
typically with three spermatheca, two in a few species and genera, and a variously
shaped aculeus [segment 8];"), tautological (e.g., "Leg with a row of bristles on fore
femora present or absent.”), or noncharacters (e.g., “...; stigma [wing cell sc] not
vestigial;..."). Hancock stated that, "Character trends therefore need to be applied if a
workable classification is to be achieved, accepting that various anomalies may occur.”
However, trends are highly subjective and dividing them into meaningful characters can
be quite arbitrary.

Discussing the classification of North American fruit flies, Foote et al. (1993)
concluded that "homoplasy (convergent evolution) appears to be common in many
morphological characters that have been the main basis of classification." Their
conclusion was based on the assumption that the family is "a relatively recent, rapidly
radiating group® (Foote et al., 1993). However, demonstrating homoplasy depends on a
resolved cladogram because homoplasy is a property of characters only within the
framework of ancestor-descendant relationships (Wiley, 1981). Similarly, Foote et
al's (1993) use of “monophyly," "synapomorphy,” and “pleisiomorphy*® is often
inappropriate because these terms are relative only in conjunction with a testable
hypothesis of relationships (cladogram).

Another problem has been the assumption that widely distributed characters are

primitive. In a phylogenetic study of selected tephritid flies using ribosomal DNA, Han
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and McPheron (1994) stated that, "When two equally parsimonious interpretations of

ancestral states were possible..., the state more common within the Tephritidae was
arbitrarily assigned as ancestral" (reference to specific characters omitted). However,
when relationships are not resolved, the assumption that common equals primitive does
not ensure that the most recent common ancestor to the study group had the primitive
state, especially in groups where homoplasy is common (Wiley, 1981; Watrous and
Wheeler, 1981). In addition, the cladogram upon which they based their outgroup
relationships (Han and McPheron, 1994, figure 1) misrepresented the phylogeny
proposed for the Tephritoidea by McAlpine (1989). McAlpine (1989, figure 116.3)
places the Piophilidae in a clade that is a sister taxon to the clade containing the
Tephritidae, not basal to the Tephritidae as shown by Han and McPheron (1994, figure
1).

What should be apparent from the above discussion is the central role that
characters play in reconstructing phylogenetic relationships (see also Neff, 1986;
Pimentel and Riggins, 1987; Bryant, 1989). During a phylogenetic analysis, it is only
in the character analysis that hypotheses can be proposed and tested by deduction
(Bryant, 1989). No matter what cladogram we generate, it can, in principle, be
explained by induction. Because we can never know when we hit upon the true
phylogeny, one scenario is, in principle, as good as another. The confidence that we can
have in any phylogeny depends directly upon the characters used to infer it.

The work reported herein attempts to make character analysis the central issue.
Male genital characters are used extensively in fruit fly taxonomy, but much remains
unknown about their structure and homologies. Chapter 1 deals with the morphology of
the genitalia of male trypetines in anticipation of their use in phylogenetic analysis.
Wing patterns also provide important characters, and, like male genitalia, much of what
is known about them is based on taxonomic utility rather than sound morphological

study. To stimulate interest in the historical development of wing patterns, and to
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stabilize the nomenclature of pattern elements, a heuristic model of trypetine wing
pattern evolution is presented in Chapter 2. The results of a phylogenetic analysis of
relationships among Rhagoletis and related genera are reported in Chapter 3. The
phylogenetic analysis consists of two parts: an extensive qualitative analysis of
morphology, and a cladistic analysis based on the resulting characters.

Throughout this dissertation the terms "figure,” "table,” and "character® are used to
refer to the figures, tables, and characters of other authors while “Figure,” "Table," and

“Character” refers to those herein.



CHAPTER 1
MALE GENITALIA IN THE TRYPETINI (DIPTERA: TEPHRITIDAE)

"...man makes nothing so complex as an ant or a fruit fly, and if he did, it would
surely be subject to errors of construction and assembly..." — Garcia-Bellido et al.
(1979)

Characters of the male genitalia are commonly used in the taxonomy of fruit flies,
and much of what we know about genital morphology is a result of taxonomic studies
(e.g., Benjamin, 1934; Aczél, 1955; Bush, 1966; Hardy, 1973; Novak, 1974;
Stoltzfus, 1977; Freidberg and Mathis, 1986; Korneyev, 1986; Norrbom et al., 1988;
Stoltzfus, 1988; White, 1988; Hernandez-Ortiz, 1993; Merz, 1994). In particular,
Munro (1947) summarized terminology up to 1947 and gave an extensive description -
of tephritid genitalia based on a revision of African species. More recently, Munro
(1984) gave a detailed account of genitalia in his revision of dacine fruit flies.

Despite this long-standing familiarity with the genitalia of male tephritid flies,
there are surprising gaps in our knowledge of the structures. This is in part because
descriptions are often based on taxonomic convenience rather than well-reasoned
morphological study. As a result, terms are applied as a matter of personal preference
or taxonomic tradition, and there is often more than one term for a given structure or
the same name is given to structures that are not homologous.

Another barrier to understanding tephritid genitalia has been disagreement over
interpretation of homologies in the male genitalia of the Diptera (summarized by
Cumming et al. [1995]). In a recent series of papers (Wood, 1992; Sinclair et al.,
1994; Cumming et al., 1995), however, competing hypotheses were evaluated and new

homologies proposed. This important body of work codifies terminology and uses
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phylogenetic analysis to corroborate homologies to a greater extent than previous studies
(e.g., Griffiths 1972; McAlpine, 1981a, 1989; Wiegmann et al., 1993).

Interest in cladistic analysis of tephritid taxa (e.g., Berlocher, 1981; Han, 1992;
Norrbom, 1993, 1994; Han et al., 1993) accentuates the need for phylogenetically
informative characters. Male genitalia is a potentially rich source of characters for
phylogenetic studies, however, absence of uniform terminology and established
homologies presently precludes many comparisons. Therefore, following Wood (1992),
Sinclair et al. (1994), and Cumming et al. (1995), | present a comprehensive
description of male trypetine genitalia; discuss homologies within the family; and

propose a ground plan for the phallus of tephritid flies.

Materials and Methods

Species and number of specimens examined are listed in Table 1. Specimens used
for dissection were relaxed in a humidor overnight. About two-thirds of the abdomen
was excised and macerated in sodium hydroxide (ca. 10%) heated to 60° C until
structures cleared (ca. 20—90 min). Abdomens were then acidified in glacial acetic acid
for at least 30 min, rinsed in distilled water and stored in micro vials containing
glycerin; microvials were attached to the pin below the fly. Stereo and phase-contrast
microscopes were used to examine genitalia. Glycerin was used to make temporary
microscope slide mounts. Drawings were made using a drawing tube attached to the
microscope.

When available, frozen or recently killed flies were used for preparations studied
with scanning electron microscopy. Specimens were cleaned by soaking in enzymatic
laundry detergent (Procter and Gambel's ERA®, 5% v/v) for 30 min with brief (10
sec.) sonication followed by three rinses in double distilled water. Flies were fixed in
FAA (2 formalin:1 glacial acetic acid:10 80% EtOH:7 water) for 12—24 h, rinsed three

times in 70% EtOH with a 15 min soak between rinses, and dehydrated in a graded
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alcohol series. Flies were either air dried or dried in a critical point drier, then coated
with gold and examined in a JEOL JSM-35CF scanning electron microscope at the Center
for Electron Optics, Michigan State University.

Terminology follows Wood (1991), Sinclair et al. (1994) and Cumming et al.
(1995) unless noted otherwise. For the purpose of discussion, orientation of the

phallus is fully extended posteriorly.

Description

Genitalia was examined from 278 specimens in 90 species (Table 1). The following
description is based on these examinations.

Segments 1—5 (Preabdomen). Terga 1 and 2 are fused and form syntergum 1+2
(tergites 1 and 2). The<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>