

THESIS

LIBRARY
Michigan State
University

This is to certify that the

thesis entitled

Affect and Organizational Justice: an Empirical Assessment of the Influence of Mood on Fairness Perceptions

presented by

David Michael Waldschmidt

has been accepted towards fulfillment of the requirements for

M.A. degree in Psychology

Major professor

Date September 20, 1996

MSU is an Affirmative Action/Equal Opportunity Institution

O-7639

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due.

H	DATE DUE	DATE DUE
MAR 1 3 2000		

MSU is An Affirmative Action/Equal Opportunity institution coincidatedus.pm3-p.1

AFFECT AND ORGANIZATIONAL JUSTICE: AN EMPIRICAL ASSESSMENT OF THE INFLUENCE OF MOOD ON FAIRNESS PERCEPTIONS

By

David Michael Waldschmidt

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF ARTS

Department of Psychology

1996

ABSTRACT

AFFECT AND ORGANIZATIONAL JUSTICE: AN EMPIRICAL ASSESSMENT OF THE INFLUENCE OF MOOD ON FAIRNESS PERCEPTIONS

By

David Michael Waldschmidt

The present article explores the impact of individuals' positive/negative affective states on perceptions of fairness. It was hypothesized that perceptions of fairness and the weighting of information would be congruent with the individual's currently experienced affective state. It was also hypothesized that individuals experiencing negative affective states would use more information when making fairness judgments. To test these hypotheses, a study was conducted in which subjects' moods were manipulated through the visualization of affectively charged life experiences. These subjects were then asked to judge the fairness of events in several written scenarios. Results did not support the stated hypotheses. Results provided limited support for the statement that individuals — regardless of affective state — weighted positive information more heavily when making an overall judgment of procedural fairness. Implications of these findings are discussed, and recommendations for future research are made.

My favorite dedication was written by clinical psychologist George A. Kelly, who dedicated his book A Theory of Personality with the following:

To a lot of people I know, and some I don't, most of whom I like, and some I don't, but acquaintances or strangers, friends or scoundrels, I must confess I am indebted to them all.

The acquaintances, strangers, friends, and scoundrels in my life have been as important to me as they were to Dr. Kelly. However my thesis is dedicated not to them, but to the One who created them. This thesis -- like its author -- is dedicated to God the Father, God the Son, and God the Holy Spirit, through the intercession of Mary, the Mother of God.

ACKNOWLEDGMENTS

It seems to me that there are many different ways that one can approach the writing of an acknowledgments section. Since this is the one area of a thesis that is left solely to the discretion of the author, this section provides the reader with a nice little glimpse into the life of the person responsible for the document about to be read. Some have used this opportunity to write commentaries on life and brief political discourses, while others have chosen the more simple (and boring) approach of presenting a laundry list of names of individuals affiliated with the project. I have chosen an approach that lies somewhere in between these two, minus the political rhetoric.

The faculty members who served on my thesis committee were extremely helpful, and their assistance throughout this process has been greatly appreciated. Neal Schmitt -- who chaired my thesis committee -- deserves first mention. His patience, his supportiveness, his accessibility, the level of his expertise, and his style of mentorship were outstanding. If it weren't for Neal, I would be coding data until the next millennia. Thanks for everything Neal. Dan Ilgen's insight into the research design led to a number of changes. In addition Dan's generosity

and patience were commendable. Galen Bodenhausen's recommendations concerning mood manipulations were also valuable. It was from Galen's class on emotions that I derived the basic idea which became this thesis. In addition to the above three faculty members. I also owe a great deal to the remaining faculty members in Michigan State's Industrial/Organizational psychology program: Kevin Ford, Steve Kozlowski, and Rich DeShon all taught classes and answered questions which informed and sharpened this study. John Hollenbeck from the Organizational Behavior program also served in this capacity. I am also indebted to my fellow graduate students in the I/O program. It was always nice to run a question or two by them prior to presenting it to a faculty member. Faculty members at Marquette University (where I did my undergraduate work) -especially Ed Inderrieden and Tony Kuchan -- should also be mentioned, for they played the critical role of nurturing in me a desire to pursue graduate studies in Industrial psychology.

The individuals who helped me collect my data also need to be thanked.

Dennis Devine, Holly Makimaa, and Lisa Copeland all gave their time and energy to this study, and their willingness to help made this a much more pleasant experience. The secretarial staff at Michigan State -- especially Suzy Pavick -- were also very helpful and made everything much easier.

My family has been extremely supportive throughout this process, and this acknowledgments section would be remiss if it did not recognize the social (and

sometimes financial) support that they provided. I have been blessed with a fantastic family. I thank my mom and dad for their unconditional love, their generosity, their advice, and their tolerance of loud music when I was growing up. I thank my brothers Geoff and Steve and my sister Hilde Ann for their friendship and for their willingness to do stuff with their youngest brother. I could not hope for a better family. Thank you, and I love you all very much.

At this point I would also like to thank the members of my extended family -- my friends. During this thesis journey I became close to several people at St. John's Student Parish: Brad Ferrari, Luis Cardenas, Holly Makimaa, Stephanie Crandall, Scott Fisher, and many others who participated in fellowship groups and retreats. These individuals provided me with spiritual camaraderie and friendship, and I consider myself a better person for having met them. Similarly I would like to thank those who were a part of Circle A Ranch -- Skip and Susan Ross, my fellow counselors, and all the campers who went there. It was at this positivethinking, motivational camp that I recognized the importance of faith, and I realized that I could accomplish whatever I put my heart to. I would also like to thank a number of other friends -- especially Huong Nguyen, John and Amy Faubl, Linda Juang, and Bill Rogers -- who each helped to keep me sane as I plodded through what felt like a never ending project. Thanks also go to Lorilee Sandmann -- for her friendship and for the assistantship which kept me going financially.

I would very much like to thank someone who came along late in the process, but whose companionship has meant so much to me -- Marge Schultz. I must confess that I don't know quite how to put into words how exactly to thank her. All I can say is that the world looks like a very different place since I met her. Thanks Marge.

Finally and most importantly I thank my Creator. I thank God the Father, God the Son (Jesus), and the Holy Spirit for giving me the skills and abilities necessary to do this kind of work. I also thank Mary, the Mother of God, for her intercession in my life and for always pointing me back to God.

TABLE OF CONTENTS

LIST OF TABLES	
LIST OF FIGURES	хi
INTRODUCTION	1
Why is this Topic Important?	3
The Nature and Structure of Affect	6
The Role of Affect in Cognition	14
Network Theory	15
Positive and Negative Affect and Decision Making	19
Affective Experience in Organizations	20
Organizational Justice Research and Issues	22
Procedural Justice Rules	24
Fairness Perceptions and Affect	26
Research Hypotheses	31
METHOD	37
Subjects	37
Procedures	38
Measures	47
RESULTS	50
Manipulation Check	50
Descriptive Statistics	52
Hypotheses	59
DISCUSSION	68
Limitations	70
Future Research Directions	73

APPENDIX A: Experiment Stage One	78
Overview and Informed Consent Form	
Instructions for Policies and Procedures Manual	79
Policies and Procedures Manual	81
Policies and Procedures Manual Test	
APPENDIX B: Experiment Stage Two	89
Background Information	89
Instructions for Negative Mood Induction	91
Instructions for Neutral Mood Induction	94
Instructions for Positive Mood Induction	97
Larsen & Diener Affect Circumplex Scale	101
APPENDIX C: Experiment Stage Three	103
Instructions for the Scenarios	103
Scenarios, Fairness Ratings, and Fairness Essays	106
Instructions for Overall Ratings	
Overall Ratings for Scenarios	124
APPENDIX D: Experiment Stage Four	129
Probe for Suspicion	
APPENDIX E: Experiment Stage Five	130
Debriefing Form	130
APPENDIX F: Scoring Keys and Procedural Justice Rule Scale Information.	133
Answering Key for Policies and Procedures Manual Test	133
Larsen & Diener Affect Circumplex Scale Scoring Key	134
Procedural Justice Rule Violation Scales and Items	135
APPENDIX G: Tables (see LIST OF TABLES)	137
LIST OF REFERENCES	166

LIST OF TABLES

Table 1:	Means, Standard Deviations, and Coefficient Alphas	137
Table 2:	Correlations among Study Variables	141
Table 3:	ANCOVAs Examining the Influence of Affective State on Justice Rule Ratings across Scenarios	153
Table 4:	ANCOVAs Examining the Influence of Affective State on Perceptions of Overall Procedures across Scenarios	158
Table 5:	ANCOVAs Examining the Influence of Affective State on Perceptions of Overall Outcomes across Scenarios	159
Table 6:	Within Scenario Regressions of Perceived Fairness of Overall Procedures on Violation and Nonviolation Measures	160
Table 7:	Within Scenario Stepwise Regressions of Perceived Fairness of Overall Procedures on Procedural Justice Rules	164
Table 8:	Correlations between Justice Rules and Overall Scenario Procedural Fairness Measure within Experimental Condition	165

LIST OF FIGURES

Figure 1:	The Two Factor Structure of Affect (Watson & Tellegen, 1985)	9
Figure 2:	The Self-Report Affect Circumplex (Larsen & Diener, 1992)	11
Figure 3:	Taxonomy of Organizational Justice Theories with Corresponding Predominant Exemplars (Greenberg, 1987)	24

INTRODUCTION

"Love is stronger than justice."

Gordon Matthew Sumner

There is something very basic and very primal about an individual's sense of justice. As far back as memory permits, many of us can picture a time in which our sense of justice was violated. Whether this violation was the result of an intentional act of someone older and more powerful than ourselves, or whether the violation was simply due to another's oversight, many can remember that peculiar gnawing sensation, and that feeling of raw discontent produced by the incident. The emotions which accompanied the transgression are likely to have left an indelible imprint in the mind. What may not have been clear at the time was the influence those emotions had upon the judgment of the violation. The present article explores the impact of affective states on individual perceptions of fairness.

¹ The present author can recall heated arguments arising from the amount of dessert put on the plate by a caregiver, as compared to the amount put upon the plate of a sibling.

a series of hypotheses is offered.

This paper is not intended to serve as a review of the literatures on affect and justice perceptions, nor are the hypotheses offered intended to address all of the issues surrounding the relationship between affect and justice. It is intended to increase our understanding of the unique influence that individuals' emotional states have on perceptions of fairness. The paper is organized in the following manner: First, material will be presented regarding why this topic is an important one, and why researchers and practitioners should be interested in the issues discussed. Next, definitions for the relevant affective constructs will be presented. after which the role of affective states in memory, cognitive organization, and information processing will be examined. The discussion will then move to issues surrounding the role of affective states in individual cognitive style and decision making, and to recent research relevant to affective experience in organizations. Having explored the ways in which affective states color generic informational and interpretive processes, we next examine the literature dealing with a specific interpretive process -- the cognitive appraisal of the fairness of environmental events. To this end, organizational justice constructs will be defined and relevant research findings and issues will be discussed. Having discussed the relevant literatures, a number of hypotheses are presented and an empirical study designed to investigate the phenomenon of interest is described. Results of this study are presented, and the implications of these findings are discussed. Concluding the

paper are recommendations for future research.

Why is this Topic Important?

The stakes involved in employee fairness perceptions can be quite high for organizations. Organizational justice issues are involved in virtually every phase of the employee-employer relationship (cf. Moorman, 1991). Likewise, the effects of justice perceptions can be felt at every phase as well, and those effects can permeate the organization and penetrate its very core. Schmitt & Gilliland (1992), for example, note that perceptions of fairness can have an impact on organizational recruitment, organizational reputation, and organizational turnover. Fairness perceptions have even been linked to employee theft (Greenberg, 1990, 1993). In addition, and perhaps most importantly, organizations should be sensitive to fairness perceptions of employees for moral and ethical reasons related to employee health and well being (Robertson & Smith, 1989; Herriot, 1989).

Due to the incredible complexity present in organizational systems and in their participants, it is undoubtedly the case that elements of that system will never be universally perceived as being fair; since individuals use different interpretive frameworks when observing and analyzing situations (e.g. see Leventhal, 1980), a lack of consensus on fairness perceptions is virtually guaranteed. Exacerbating the problem for organizations is the fact that individuals typically employ an egocentric bias in their interpretations of what is fair and unfair (Greenberg, 1983;

Thompson & Lowenstein, 1992).

Given this situation, it is important for organizations to be able to identify factors (i.e. personal characteristics, environmental conditions, etc.) that contribute to judgments of fairness. Gilliland (1993) agrees and points out that this is an area in which we need to advance. With such knowledge, organizations would have a better sense of how and when to respond to disgruntled employees, and they would be in a much better position to attempt some form of "damage control." If it were known when justice violations were becoming apparent to individuals, then organizations could do something to help manage the situation. Gilliland (1993) and Organ and Konovsky (1989) suggest that organizations could try to make a particular unviolated standard of justice more visible to individuals, and thereby decrease the effect that a violated standard had on individuals' overall perceptions of fairness.² Organizations would also have a better sense of when to solicit the opinions of their constituents in an attempt to give them a greater voice in valued decision making processes. This might help to offset the effects of violations on overall fairness perceptions. The present study attempts to identify one possible causal antecedent to an individual's perception of a justice violation -- the affective state of the individual.

In 1981, Tomkins predicted that "the next decade or so belongs to affect"

² Gilliland does note, however, that this could potentially backfire and make the violation even more visible.

(p.314). In 1985, Watson and Tellegen affirmed Tomkins' prediction and noted that "psychology has rediscovered affect" (p.219). Recent findings concerning the role of affect in information processing, cognitive style, and decision making may contribute to our understanding of how fairness perceptions arise. From the standpoint of the organization, much could be done if affect plays a substantial part in determining fairness perceptions (and if fairness perceptions are viewed as being important to organizational operations (e.g. in union environments)). Organizations could hire individuals who have a predisposition to experience a particular affective state (this could potentially lower the total number of grievances), they could train individuals to be aware of their current affective state and recognize its influence on thought processes (thereby helping the individual to make more accurate attributions and realize that a negative mood (perhaps due to a problem at home) can make them oversensitive to minor aspects of working conditions), and they could train individuals to recognize environmental factors that trigger particular affective states (thus inoculating them and preparing them to deal with the effects of the mood on thought processes). Organizations could also structure the task environment to maximize the probability that desirable states will be experienced.

We have discussed a number of reasons why this topic is an important one, and we have noted that organizations have within their ability the means to address some of these potential concerns. As of yet, no empirical evidence has been

perceptions, nor have theoretical arguments been made concerning this matter. Empirical and theoretical support will be provided shortly. Before we can intelligently discuss the literature on affect, however, we must first outline and define the relevant affective constructs and provide some indication of the structure of affect. We now turn to a discussion of this research.

The Nature and Structure of Affect

There is a lack of consensus among researchers as to the proper definition of the terms affect, mood, and emotion, with the result being significant differences in how they are used in the literature (Forgas, 1991; Batson, Shaw, & Oleson, 1992). For example, some use the word "affect" to connote a global description of the full range of emotional experiences which avail themselves to human beings (e.g. Petty, Gleicher, & Baker, 1991). Others sharply restrict the term, using it only to describe an individual's momentary positive or negative reaction to a perceived stimulus event (e.g. Niedenthal & Showers, 1991). The global definition of affect as presented by Batson, et al. (1992) holds promise for organizing and discriminating among these constructs. Batson et al. treat affect as a general, superordinate construct which possesses a valence (positive or negative) and an intensity level. Mood and emotion are identified as specific forms of affect. Moods are conceptualized as being diffuse and transient valenced states

which fluctuate around an equilibrium point which is set by the individual's affective predisposition. These states occur as the individual fine tunes his or her general expectations about the future based on current conditions. Emotions, on the other hand, are viewed as being highly charged valenced states of much shorter duration which take place in reference to how circumstances influence a specific goal in the present. Batson et al.'s presentation of these constructs will serve as a reference point for the use of these constructs in the current paper. Reflecting their use in much of the literature, the terms affect and emotion are used interchangeably in this paper and refer to the general definition of affect as presented by Batson et al.. Where the literature distinguishes between these two constructs, this paper will attempt to do so as well. The definitions of affective state and mood as used in this paper are consistent with the definition of mood presented above. This definition is used because it is consistent with how researchers have measured and discussed affective state and mood in the literature to be discussed.

Watson and Tellegen (1985) examined the underlying structure of affect across numerous research instruments and studies and concluded that the structure of affect could be adequately described in reference to a circumplex containing two robust, independent, unipolar factors - positive and negative affect.³ The

³Larsen and Diener (1992) define circumplex in the following manner: "A circumplex is a two-dimensional, circular structure in which single attributes (continued...)

upper end of each of these scales signifies emotional arousal, while the lower end signifies a lack of arousal. Individuals experiencing high positive affect are characterized as being active, enthusiastic, excited, and strong, while individuals experiencing low positive affect are characterized as being drowsy, dull, sluggish, and sleepy. Individuals experiencing high negative affect are characterized as being distressed, nervous, and hostile, while individuals experiencing low negative affect are characterized as being calm, placid, and relaxed. Figure 1 provides a visual aid of this circumplex. Watson and Tellegen suggest that "mood assessment and mood research should reflect the structure of emotional experience" (p.233). Because positive and negative affect define that structure, researchers need to measure these factors in order to adequately capture an individual's mood.

Although Watson and Tellegen's model of the structure of affect has been quite influential, researchers have not yet reached a consensus regarding the factors to be derived from this circumplex. Recently Burke, Brief, George, Roberson, and Webster (1989) have challenged Watson and Tellegen's claim that mood is best represented by a two factor model. They present data from three samples which supports a four factor model consisting of the following: Positive Arousal, Negative Activation, Low Arousal, and Low Activation. More severe

³(...continued)

correlate highly with those attributes nearby on the circumference of the circle, correlate near zero with those attributes one-quarter way (90°) around the circle, and correlate inversely with those attributes directly opposite on the circle" (pp. 25-26).

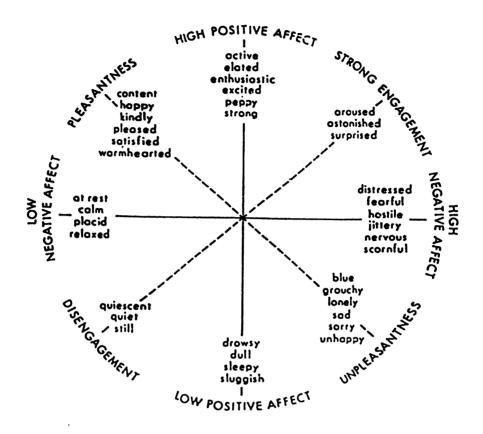


Figure 1: The Two Factor Structure of Affect (Watson & Tellegen, 1985)

criticisms of the Watson and Tellegen model have been levelled by Larsen and Diener (1992). Larsen and Diener argue convincingly that the positive and negative affect factors are bipolar (not unipolar as indicated by Watson and Tellegen), and that these two factors are misnamed. They point out that many of the descriptors on the low end of the positive affect dimension (e.g. dull, sluggish) are typically viewed as being "negative," while descriptors on the low end of the negative affect dimension (e.g. relaxed, calm) are typically viewed as being "positive." In short, the positive affect and negative affect dimensions each

contain both negative and positive elements (indicating bipolarity). In addition, descriptors which are typically associated with positive mood states are notably absent from the high end of the positive affect dimension (e.g. happy, pleased, content) and descriptors which are typically associated with negative mood states are absent from the high end of the negative affect dimension (e.g. unhappy, sad). Further complicating matters is the fact that Watson and Tellegen's portrayal of positive and negative affect contains an activation component within each positive or negative component. Thus the factor labels "positive affect" and "negative affect" do not adequately represent the content which has been measured.

Larsen and Diener take note of the circumplex structure of mood, and propose a very simple solution to this problem. By employing a different rotation of the axes on the circumplex, they obtain a pleasant-unpleasant dimension, and a high-low activation dimension which are conceptually much purer and representative of their content than were the positive and negative affect dimensions put forth by Watson and Tellegen. They defend their rotation by noting that "any rotation is mathematically defensible because no rotation can offer superior accountability for variance in a truly circumplex attribute set." They supplement their argument with evidence from Ketelaar (cited in Larsen & Diener, 1992) which provides additional support for the circumplex structure of affect. Larsen and Diener's affect circumplex is presented in Figure 2, and this figure indicates the descriptors for the above dimensions.

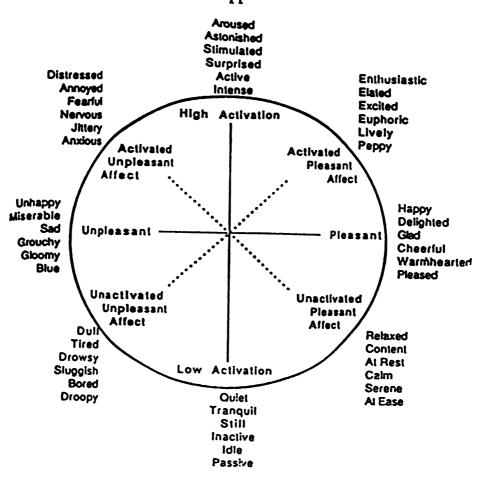


Figure 2: The Self-Report Affect Circumplex (Larsen & Diener, 1992)

Larsen and Diener note the bipolarity of dimensions in their discussion of the circumplex.^{4,5} Because positive and negative affect represent opposite poles on

⁴ On a side note, Cudeck (1986) and Mayer, Salovey, Gomberg-Kaufman, and Blainey (1991) point out that LISREL and other covariance modeling techniques have problems fitting negative covariances in bipolar models. Application of these techniques to bipolar dimensions results in solutions which split each bipolar dimension in half. Mayer et al. and Larsen and Diener argue that this is the reason why Burke et al. obtained four factors from a scale based on Watson and Tellegen's two factors. Burke et al. did not include measures of the pleasant-unpleasant or high-low activation dimensions in their analysis.

⁵ Larsen and Diener seem to have made a slight oversight here. The high-low (continued...)

a single dimension, it is impossible for an individual to experience high positive and high negative affect at the same time (this is possible within the Watson and Tellegen framework).

These two perspectives on the structure of affect have been presented in order to note a potential source of confusion. While a number of researchers have applied Watson and Tellegen's formulation of positive and negative affect and derived a number of scales based upon this formulation (e.g. The Positive Affect Negative Affect Schedule (PANAS), the Job Affect Scale (JAS)), a number of other researchers have defined and operationalized positive and negative affect in a manner that is more consistent with the Larsen and Diener pleasant-unpleasant dimension. Some researchers have operationalized their measures in accordance with the Watson and Tellegen formulation of affect, but discussed positive and negative affect in a manner that is more consistent with the pleasant-unpleasant dimension of Larsen and Diener and glosses over or does not address the activation component in this measure (e.g. Brief & Roberson, 1989; Burke, Brief, George, Roberson, & Webster, 1989; George, 1989, 1990, 1991; Organ & Konovsky, 1989).

The majority of the research to be discussed in this paper has examined positive and negative affect from a perspective that is consistent with Larsen and

⁵(...continued) activation dimension would appear to be unipolar.

Diener's bipolar pleasant-unpleasant dimension. The labels positive and negative affect will continue to be used in this document (as opposed to using the terms "pleasant" or "unpleasant affect"), however, because the literature to be discussed has specifically used these terms and because these terms reflect the way that individuals commonly refer to these affective states. Unless it is explicitly stated otherwise, the reader should assume that the term "positive affect" refers to the experience of happiness and cheerfulness, while the term "negative affect" refers to the experience of unhappiness and sadness.

At this point it is necessary to make a distinction between the affective state currently experienced by the individual (state affect), and the individual's predisposition to experience that particular state (trait affect). Trait affect is viewed as a relatively stable individual difference variable, while state affect is much more variable and changes over time. While recognizing this distinction between trait and state affect, it is also necessary to recognize that the current affective state often reflects the affective levels typically experienced by the individual (Costa & McCrae, 1980). Trait affect influences state affect, although state affect is also influenced by situational factors and the interaction between the person and the situation (George, 1991). State affect typically accounts for a much larger proportion of variance than does trait affect, when researchers have examined how an individual reacts in a particular situation (George, 1991). This distinction has been made to clarify our discussion of this research. The

individual's currently experienced affective state is the focus of this paper.

Having discussed the nature and structure of affect, we are now in a position to examine research dealing with the role of affect in information processing, cognitive style, and decision making. As will be discussed in greater detail later, fairness perceptions involve a cognitive appraisal of perceived events in reference to applied standards of justice. Fairness perceptions are thus influenced by factors which bias this cognitive appraisal, influence the selection of standards, and warp the perception of events. To the extent that affective states are capable of influencing cognitive appraisals, the selection of standards, and the perception of stimulus events, they should also influence individual perceptions of fairness.

The Role of Affect in Cognition

Affective states have been found to influence the encoding, retrieval, and interpretation of information in memory (see Blaney, 1986 for a review).

Although the mechanisms through which affect has its influence have not been clearly identified by empirical work (Blaney, 1986), its influence cannot be denied. Blaney points out that the majority of research dealing with the influence of affect on memory has taken place under the umbrella of network theory.

Network Theory

Proponents of network theory argue that emotions have complex linkages in memory structures (Bower, 1981, 1991). According to this view, each emotion is represented by a node within the memory structure, and these nodes are linked to each other, to particular events relevant to the emotion, and to particular interpretive rules which are used to understand the social environment. When an emotion is experienced, both the node associated with it and its linkages become activated. Conversely, nodes associated with dissimilar emotions and their linkages become inhibited. Information located in activated areas of the network becomes much more accessible to conscious thought, while information located in inhibited areas becomes difficult to uncover. Fundamentally, this means that information which surfaces in working memory will be largely congruent with the individual's affective state.

Not only is the information in working memory biased towards the affective state, but affective states also can influence the search for additional information from the environment. Bower (1983) suggests the following:

... We can thus expect the emotional person to use top-down or expectation-driven processing of his social environment. That is, his emotional state will bring into readiness certain perceptual categories, certain themes, certain ways of interpreting the world that are congruent with his emotional state; these mental sets then act as interpretive filters of reality and as biases in his judgments. (p. 395)

The information which passes this filter and becomes available to conscious

thought -- the information which subsequently will be used in decision making -- is inherently biased in content by the direction of the affective state.

Thus, in making a judgment or decision, network theory suggests that the "emotional" individual relies upon two sources of information -- past experiences and perceptions of the current situation -- both of which have been subject to an affective filtering process.⁶ This information is then further affectively censored by mood congruent interpretive processes which attempt to synthesize the available data into a form that is closely aligned with the affective state. The net result of all this is a tunnel vision brand of decision making. The propositions of network theory have been generally supported by research (Bower, 1991; Forgas & Bower, 1988; Clore & Parrott, 1992). Empirical evidence for selective exposure to mood congruent information, biased attention towards and perception of mood congruent information, and learning and recall of mood congruent information has been demonstrated (Bower, 1991), although some have noted that the effects are not as clear for negative moods (Isen & Daubman, 1984).

The influence of mood on memory and information processing is not restricted to a drive for mood congruency. Evidence also exists that individuals

⁶This not meant to imply that these are the only sources of information available to the individual. Other sources are also available (e.g. other individuals), and are probably influential as well. However, these additional sources will likely be subject to the same scrutiny by the affective filters Bower (1983) mentions.

attempt to regulate their affective states (Morris & Reilly, 1987), and under such circumstances, they may engage in mood incongruent recall (Parrott & Sabini, 1990). Mood incongruent recall can occur when individuals attempt to regulate their affective states by inhibiting their current mood. For example, individuals who are experiencing negative affective states may attempt to recall mood incongruent information in order to repair their mood and move to a more pleasant affective state (Blaney, 1986). The reasons for inhibiting a bad mood or maintaining a good mood are intuitively obvious. Less obvious are reasons why an individual might be motivated to inhibit a good mood, or to maintain a bad mood. Parrott (1993) has presented numerous reasons why individuals may forego the hedonistic value of an affective state in order to achieve a particular goal. For instance, an individual could inhibit a good mood in order to protect him or herself against future disappointment, or to behave appropriately in a social setting (e.g. a funeral). An individual could maintain a bad mood in order to motivate him or herself to work harder, or to aid him or her in influencing the mood of another. Certainly the mood incongruency perspective must be taken into account. While the vast majority of research on mood and memory has focused on mood congruency, researchers are becoming more and more mindful of factors that may produce the opposite result.

In addition to the previously discussed sources of information, research also suggests that the affective state itself serves as an informational cue to the individual (Schwarz & Clore, 1983; Clore & Parrott, 1992; Niedenthal & Showers, 1992; Schwarz & Bless, 1992) The influence of the affective state, however, is limited by the state's apparent relevance to the judgment to be made (Schwarz & Bless, 1992). Schwarz and Clore (1988) argue that individuals often interpret their current affective state in an effort to assist them in forming complex, evaluative judgments. Employing a functionalist approach to emotion, Schwarz and Bless (1992) propose that emotions provide individuals with valuable information about their situation. Positive emotions inform one that the current situation is a safe one, while negative emotions inform one that the current situation is laced with danger. Schwarz and Bless are not alone in their opinions (cf. Clore & Parrott, 1992). Some even go a step further and claim that "emotions exist for the sake of signalling states of the world that have to be responded to, or that no longer need response and action" (Frijda, 1988, p. 354). Research on the role of affect in decision processes has been used to lend credence to this perspective. Schwarz and Bless (1992) argue that a psychological "fine tuning" takes place, in which thought and decision processes are brought into alignment with the demands of the situation. Research on positive and negative affect would seem to corroborate this view.

Positive and Negative Affect and Decision Making

Isen (1993) suggests that individuals' cognitive processing styles are influenced by the valence of their current affective state. Positive affective states were found to promote cognitive flexibility and increase breadth of stimulus categorization (Isen & Daubman, 1984; Isen, Niedenthal, & Cantor, 1992), to stimulate innovation and creativity in problem solving (Isen, Daubman, & Nowicki, 1987), to increase the integration and elaboration of positive or neutral material (Isen, 1987), to cause individuals to exert less cognitive effort and rely on heuristics in making social judgments (Bodenhausen, Kramer, and Süsser, 1994), and they have been found to promote more heuristic processing (as opposed to systematic processing) of persuasive messages (Mackie & Worth, 1991). In addition, positive affect appears to increase intrinsic motivation (Isen, Shalker, Clark, & Karp, 1978; Estrada, Young, & Isen, 1992) and the efficiency of decision making in certain situations (Forgas, 1991). Individuals who are experiencing positive affect are also motivated to maintain their positive state (Isen & Simmonds, 1978; Bowers, 1991). Isen (1993) notes that positive affect appears to influence the very context in which individuals are situated. All of the above has impact on individual performance and decision making in a variety of ways, depending upon the task and its importance, situational characteristics, and the way in which the situation has been framed (Isen, 1993).

Negative affect has a substantially different impact. Individuals

experiencing negative affect were found to generate more causal explanations for poor performance, and to employ greater intensity in their causal reasoning (Bohner, Bless, Schwarz, & Strack, 1988). Negative mood inductions caused individuals to exert greater effort (Bless, Bohner, Schwarz, & Strack, 1990), to use more information in decision making (Sinclair, 1988), and to make fewer associations and perceive fewer similarities when clustering items in a memory test (Schwarz & Bless, 1991). In addition, negative affect caused individuals to be more analytical and detail oriented in their thinking (Schwarz, 1990), more task oriented and focused (Schwarz & Bless, 1991), and more realistic and accurate in their judgments (Wegner & Vallacher, 1986).

Affective Experience in Organizations

Recently Weiss and Cropanzano (1996) have articulated a theory of affect in the workplace. Affective Events Theory (AET) targets the "structure, causes and consequences of affective experiences at work." According to this view, environmental features set the stage for work events, which are the proximal determinants of affective reactions in the workplace. These affective reactions then influence work attitudes and "affect driven" behaviors (e.g. helping behaviors, coping strategies, etc.). Affective dispositions are posited to directly influence affective reactions, and they also moderate the relationship between work events and affective reactions. Certainly AET holds promise for organizing the way we

think about affect in the workplace. As yet, however, a number of its propositions have not been tested.

Bodenhausen (1993) has distinguished between two different types of affect which have relevance to the work environment. Integral affect refers to affective states which are elicited by the immediate context that the individual finds him or herself in. In a work environment this would include affective reactions to factors such as physical working conditions, coworker relations, organizational climate, culture, etc.. On the other hand, incidental affect refers to affective states which have been elicited by factors and situations which are external or unrelated to the present context. The individual who is experiencing affective reactions which have their genesis in a situational context that is different from the current one is experiencing incidental affect. This distinction between integral and incidental affect is an important one, and the form of the affect experienced has strong implications for how organizations respond to issues that may arise. The employee who has difficulty concentrating on work due to negative affective states produced by family problems (incidental affect) must be handled differently from an employee who finds it difficult to concentrate due to negative affective reactions produced by working with an abrasive coworker (integral affect).

To summarize some of the main points so far, affective states have been found to have an influence on cognitive organization, information retrieval, and

information processing and interpretation -- all of which can then have an impact on judgment and decision making. In the workplace, organizational events are likely to be a proximal cause of affective reactions. As was mentioned earlier, fairness perceptions are viewed as being the result of a cognitive appraisal of these perceived events in reference to a standard. The literature just presented has indicated that affective states have profound effects on cognition and perception. To the extent that affective states are capable of influencing cognitive appraisals, the selection of standards, and the perception of stimulus events, they should also influence individual perceptions of fairness. We are now ready to consider issues in the organizational justice literature.

Organizational Justice Research and Issues

Moorman (1991) defines organizational justice as the following:

Organizational justice is the term used to describe the role of fairness as it directly relates to the workplace. Specifically, organizational justice is concerned with the ways in which employees determine if they have been treated fairly in their jobs and the ways in which those determinations influence other work-related variables. (p. 845)

As is evident from this definition, organizational justice issues are ubiquitous in an employee's relationship with his or her employer. Organizational justice researchers have examined issues related to selection (see Gilliland, 1993 for a review), job satisfaction (McFarlin & Sweeney, 1992), performance appraisals (Greenberg, 1986), and job termination (Rousseau & Aquino, 1993).

In an effort to bring order and parsimony to a diverse research base. Greenberg (1987) developed a taxonomy for organizational justice theories. Greenberg suggested that theories of justice could be categorized as being either reactive or proactive, and that they could be further classified according to their focus upon issues of process or content. This categorization scheme is depicted in Figure 3. Reactive organizational justice theories examined individual responses to perceptions of injustice, while proactive theories examined individuals' attempts to generate fair and just conditions. Process organizational justice theories concerned themselves with the fairness of the procedures and mechanisms used to allocate valued resources (i.e. procedural justice), while content theories focused on the fairness of resultant outcome distributions (i.e. distributive justice). Greenberg provided examples of theories for each of the four classes presented in his taxonomy. However, an in depth examination of each of these classes of justice is beyond the scope of this paper. The primary focus of this paper concerns issues that have arisen from Gerald Leventhal's work in the proactive-process (procedural justice) areas.

Leventhal (1976, 1980) proposed that individuals assessed the fairness of situations through a justice judgment model. The justice judgment model stipulates that individual perceptions of fairness are based upon results from the application of distribution justice rules and procedural justice rules. This paper

Reactive- Proactive Dimension	Content-Process Dimension	
	Content	Process
Reactive	Reactive Content Equity theory (Adams, 1965)	Reactive Process Procedural justice theory (Thibaut & Walker, 1975)
Proactive	Proactive Content Justice judgment theory (Leventhal (1976a, 1980)	Proactive Process Allocation preference theory (Leventhal, Karuza, & Fry, 1980)

Figure 3: Taxonomy of Organizational Justice Theories with Corresponding Predominant Exemplars (Greenberg, 1987)

and the study described will focus on matters concerning procedural justice and procedural justice rules.

Procedural Justice Rules

Procedural justice rules concern the fairness of procedures involved in the allocation of valued outcomes. Leventhal identified six such rules: the consistency rule, the bias-suppression rule, the accuracy rule, the correctability rule, the representativeness rule, and the ethicality rule. These rules are described here

briefly. The consistency rule states that allocative procedures should be consistently applied both over time and across persons. The bias-suppression rule states that allocative procedures should be completely free from the influence of personal interest and "doctrinaire views" (p. 41). The accuracy rule states that allocative procedures should rely on information that is as accurate and appropriate as possible. The correctability rule states that decisions made during allocation procedures should be open to appeals, and amenable to change in the event of an error. The representativeness rule states that the interests, concerns, and values of the parties involved should be taken into account by the allocation procedures. Finally, the ethicality rule states that allocative procedures should be consistent with the "fundamental moral and ethical values accepted by that individual" (p. 45).

Other researchers have identified additional rules by which individuals evaluate the fairness of procedures. Thibaut and Walker (1975) noted that procedures are judged as being more fair if the individuals involved are given a "voice" -- an opportunity to express one's self before a decision is reached. Tyler and Bies (1990) point out that the provision and nature of feedback (i.e. its timeliness, informativeness, etc.) influence perceptions of fairness. Bies and Moag (1986) argue that interpersonal treatment is also important (i.e. treating the individual with respect and compassion). While researchers have invested considerable time identifying and investigating these rules, we currently know very

little about when a particular justice rule will be used by an individual, and we know even less about how these rules will be weighted as an individual forms his or her overall perception of fairness (Gilliland, 1993).

Fairness Perceptions and Affect

Very little empirical research has directly assessed the relationship between an individual's emotional state and his or her perceptions of the fairness of an event, despite a recent call for research addressing this relationship (Sinclair & Mark, 1991). In contrast to the research on positive and negative affect cited earlier, research relevant to this topic is largely based on Watson and Tellegen's (1985) conceptualization of positive and negative affect (recall our earlier discussion, which indicated that these labels appear inappropriate in light of how these variables are operationalized). Thus positive and negative affect are measured as two separate factors (as opposed to being measured by a single scale, with positive and negative affect representing opposite poles). The information that has been presented on this topic often occurs as a side note in articles, and is often somewhat tangential to the main thrust of the research presented. For example, Organ and Konovsky (1989) recently sought to determine whether the performance of organizational citizenship behaviors (OCB's) was dominated by a cognitive or an affective component. Based on their analyses, Organ and Konovsky concluded that OCB's were primarily driven by cognitions. While the

direct relationship between affect (positive and negative) and fairness perceptions was not discussed, relevant variables were measured in this study. Digging through the correlation matrix presented, we find that positive affect was correlated .23 with pay cognitions, and .44 with job cognitions. Negative affect was correlated -.21 with pay cognitions, and -.33 with job cognitions. These variables were coded so that a positive correlation indicated perceived fairness, while a negative correlation indicated perceived unfairness. All four correlations were significant. Organ and Konovsky's cognition measures focused on comparing personal job and pay outcomes with those of various referent individuals, so it would seem reasonable to consider these measures as indices of distributive justice based on equity theory.

George (1991) criticized Organ and Konovsky's findings and argued that they had used a measure of trait affect when it would have been more appropriate to use a measure of state affect. George conducted a follow up study and -- using a measure of state positive affect -- obtained very different results; she concluded that both state positive affect and cognitions contributed to prosocial behaviors. Again, while the direct relationship between affect (positive only) and fairness perceptions was not discussed, relevant variables were measured. Digging through George's correlation matrix, we find that positive mood was correlated .33 (sig) with a measure of distributive justice, .13 (sig) with a measure of supervisor fairness, and .34 (sig) with a measure of store management fairness. The trait

affect measure -- positive affectivity -- was correlated -.06 (ns) with the measure of distributive justice, -.12 (sig) with supervisor fairness, and .01 (ns) with store management fairness. For the distributive justice measure, these variables were coded so that a positive correlation indicated perceived unfairness, while a negative correlation indicated perceived fairness. For the supervisor and store management fairness measures, the reverse was true.

Together these two studies paint a confusing picture about the relationship between fairness perceptions and affect; the correlations presented by Organ and Konovsky indicate a positive association between fairness and positive affect, and a negative association between fairness and negative affect. The correlations presented by George indicate a negative association between perceived distributive fairness and positive state affect, but positive associations between the other measures of fairness and positive state affect. The trait measure of positive affect had negative or null associations with measures of fairness. George did not assess negative affect, and neither study was able to address causal issues between these variables. Both studies had used measures of positive and negative affect derived from Watson and Tellegen's model of the affect circumplex. Given the activation component embedded in these measures of positive and negative affect, an additional level of complexity is added to our interpretational problem.⁷

⁷The interpretational problem due to the pleasant mood-activity level confound extends into the major variables examined in these studies. Would a positive (continued...)

Sinclair and Mark (1991) and O'Malley and Davies (cited in Sinclair & Mark, 1991) have more directly investigated the relationship between affective states and fairness perceptions than have Organ and Konovsky and George. Sinclair and Mark (1991) examined the influence of affective states on preferences for particular outcome distributions. They found that individuals in positive moods were more likely to endorse an equal distribution of outcomes (equality rule) across recipients than were individuals in negative moods. Unfortunately, Sinclair and Mark's measure of mood does not appear to have been guided by the mood circumplex, and consequently their results are questionable. They used a single index of mood which was the mean of several items addressing positive affect and negative affect (using Watson and Tellegen's framework), pleasantunpleasant affective states (Larsen and Diener's framework), and other items of uncertain background. Given this state of affairs, it is difficult to accept the conclusions drawn from this study.

O'Malley and Davies found that subjects in negative moods were more likely to perceive outcomes distributed according to individual contributions

⁷(...continued)

correlation between positive affect and organizational citizenship behaviors indicate that 1) people who are in a pleasant state perform more organizational citizenship behaviors, or would this indicate that 2) people who are more active perform more of these behaviors? As operationalized, the measure of positive affect seems more heavily tied to activity level, and thus it would seem to address the second issue to a greater degree than it does the first (although the authors appear more interested in testing the first).

(equity rule) as being fair, and they were more likely to distribute outcomes in this manner. Information regarding the nature of their negative mood measure was not available. Results from the Sinclair and Mark and O'Malley and Davies studies were interpreted in light of the research presented earlier on the impact of mood on categorization breadth, information search strategies, and on the tendency for individuals in positive moods to prefer decision making strategies which require less cognitive effort. Neither study examined fairness perceptions dealing with the procedures by which resources were allocated.

Clearly research in this area is in its beginning phases, and it is much too early to begin to draw conclusions. Additional research guided by strong theory is required, and it is hoped that the present study can help to fill in this gap.

Consistent with the treatment of this topic by others (cf. Adams, 1965 and Leventhal, 1980), fairness perceptions have been conceptualized in this paper as the result of a cognitive appraisal of perceived events. In day to day activity, individuals collect pieces of information and observe events in their environment. This information is then evaluated in light of specific justice standards or rules (Leventhal, 1980). The perceived congruency of perceived stimulus events with adopted rules constitutes the fairness perception. Stimulus events that are not perceived cannot contribute to an evaluation. Similarly, perceptions of stimulus events that are biased by apperceptive filters should yield skewed perceptions of

fairness. The literature presented earlier indicated that affective states have profound effects on cognition. A substantial body of literature has demonstrated that affective states influence cognitive organization, information retrieval, information processing and interpretation, and cognitive style -- all of which are critical to making cognitive appraisals. Given this impressive literature base to rely upon, the present study did not directly assess the linkages between affective states and the cognitive processes mentioned in the previous sentence. As stated previously, to the extent that affective states influence cognitive appraisals and the perception of stimulus events, they should also influence individual perceptions of fairness

Research Hypotheses

The literature presented earlier indicated that affective states have profound impact on information processing, such that individuals exhibit selective exposure to mood congruent information, biased attention towards and perception of mood congruent information, and better learning and recall of mood congruent information (Bower, 1991). Thus, positive sources of information should be more visible to individuals experiencing positive affective states, while negative sources of information should be more visible to individuals experiencing negative affective states. Furthermore, this mood congruency perspective argued that interpretation of this information should also be consistent with the currently

experienced affective state. It seems reasonable to extend these arguments to the organizational justice literature. Thus, individuals who are evaluating the fairness of a particular event are likely to be more cognizant of situational features which are consistent with their current affective state, and they are more likely to interpret this information in a manner harmonious with this state. It is therefore likely that individuals will tend to perceive specific justice rule violations in a manner that is congruent with their current affective state (positive or negative). Similarly, when reaching overall conclusions regarding fairness these same processes should operate and result in overall fairness perceptions that are also congruent with the individual's current affective state. Given the theoretical and empirical support mentioned, a number of hypotheses can be offered. Again, positive affect within these hypotheses refers to the experience of happiness and cheerfulness, while negative affect refers to the experience of unhappiness and sadness. The reader is also reminded that positive and negative affect as conceptualized here represent opposite poles on a single dimension.

- H1: Perceptions of fairness will tend to be congruent with the individual's currently experienced affective state.
- H1a: Individuals experiencing a positive affective state will perceive justice rule violations/nonviolations as being less unfair than will individuals who are in a negative affective state.
- H1b: Individuals experiencing a positive affective state will perceive procedures as being more fair overall than will individuals who are in a negative affective state.
- H1c: Individuals experiencing a positive affective state will perceive outcomes as being more fair overall than will individuals who are in a negative affective state.

Hypotheses 1 through 1c are based on network theory and examine the influence of affective states on fairness perception outcomes. Hypothesis 1a focuses on perceptions of the violation/nonviolation of specific justice rules (e.g. consistency, accuracy, correctability, etc.), while Hypotheses 1b and 1c focus on individuals' overall perceptions of fairness. Additional support for these hypotheses is also obtained from studies which indicate that people who typically experience negative affect tend to complain more (cf. Brief, Burke, George, Robinson, & Webster, 1988 and Watson & Pennebaker, 1989).8

Network theory is also informative with regard to issues surrounding the influence of affective states on the processes by which individuals' overall fairness perceptions are formed. More specifically, from network theory we can derive several hypotheses which indicate how individuals weight violation information when arriving at overall fairness perceptions. These hypotheses follow:

- H2: When reaching overall conclusions regarding the fairness of procedures, individuals will weight rule violation information that is congruent with their affective state more heavily than rule violation information that is not congruent with their affective state.
- H2a: Individuals experiencing positive affective states will weight rule nonviolations more heavily in their overall evaluations of procedural fairness than they will weight rule violations.
- H2b: Individuals experiencing negative affective states will weight rule violations more heavily in their overall evaluations of procedural fairness than they will weight rule nonviolations.

⁸ This second source of support is attenuated due to the fact that the research cited has adopted the Watson and Tellegen (1985) definition of positive and negative affect (and therefore affect is confounded with activation level), and due to the fact that trait affect and not state affect was examined.

Hypotheses 2, 2a, and 2b are supported by the same research base as Hypotheses 1, 1a, 1b, and 1c. There exists a separate stream of research that makes a different prediction, however.

Gilliland (1993) points out that impression formation and decision making research indicate that negative information may be more conspicuous and have higher visibility than neutral or positive information (Fiske & Taylor, 1984).

Gilliland argues (Proposition # 6 in his article) that individuals who are making a fairness evaluation may employ a noncompensatory decision strategy in which rule violations receive a greater weight than rule nonviolations (which would be less apparent to the individual). His proposition (in slightly modified form) appears below.

H3: Rule violations will be more highly correlated with overall evaluations of procedural fairness than will rule nonviolations.

Gilliland's proposition makes no note of the influence of the individual's current affective state.

The research presented earlier on the influence of positive and negative affect on cognitive styles and decision making is also relevant to understanding the process by which individuals form fairness perceptions. Recall that this research indicated that individuals experiencing negative affect were more analytical, more task oriented, displayed more cognitive effort, were more accurate, and used more information when making decisions (Bless, Bohner, Schwarz, & Strack, 1990; Bohner, Bless, Schwarz, & Strack, 1988; Schwarz, 1990; Schwarz & Bless, 1991;

Sinclair, 1988; Wegner & Vallacher, 1986). In light of this information, the following hypothesis can be offered.

H4: Individuals in negative affective states will consider more justice rule violation information when reaching an overall evaluation of procedural fairness than will individuals experiencing a positive affective state.

Additional support for this hypothesis is obtained from literature indicating that affective states influence breadth of categorization (Isen and Daubman, 1984; Isen, Niedenthal, & Cantor, 1992; Sinclair, 1988). Sinclair (1988) found that individuals experiencing positive affective states showed greater halo effects when making a performance appraisal than individuals who were experiencing negative affective states. This implies that there was less differentiation of performance across rated dimensions for positive individuals; a few pieces of information were dominating judgments of performance across a number of dimensions. Support for this hypothesis would indicate that individuals experiencing negative affective states would be more likely to have accurate perceptions of the fairness of conditions (since they are using more information to make an evaluation and are differentiating among pieces of information).

⁹ The concerns stated earlier regarding the particular operationalization of positive and negative affect used in the Sinclair & Mark (1991) study are present in this study as well. These concerns are slightly mitigated with Sinclair (1988) due to the fact that two scales derived from a factor analysis were used to represent the variables "affect" and "activity" (in comparison, Sinclair & Mark (1991) had used several multidimensional items to form a single "affect" scale). The labels used for these factors appear questionable in light of the items which they are based upon, however.

In summary, several different hypotheses have been offered. Research on network theory was used to support hypotheses indicating that perceptions of fairness will tend to be congruent with the individual's currently experienced affective state (H1, H1a, H1b, H1c). Network theory also provides support for hypotheses which indicated that individuals will weight rule violation information that is congruent with their affective state more heavily than rule violation information that is not congruent with their affective state when arriving at an overall procedural fairness perception (H2, H2a, H2b). On the other hand, research on impression formation and decision making suggests that rule violations may be the critical factor; regardless of the individual's affective state, overall evaluations of procedural fairness may be more highly correlated with rule violations than with rule nonviolations (H3). Finally, research on the role of positive and negative affect in decision making was used to support the hypothesis that individuals in negative affective states will consider more justice rule violation information when reaching an overall evaluation of procedural fairness than will individuals experiencing a positive affective state (H4).

We now consider research designed to investigate the phenomena of interest.

METHOD

Subjects

Research participants were male and female introductory psychology students at a large Midwestern university. A power analysis was conducted based on expected medium effect sizes (r=.30, d=.5, q=.30, R²=.13) (Cohen, 1977, p80, p26, p115, p413)), a significance level of .05 (one tailed), and statistical power set to .80.¹⁰ This analysis indicated that approximately 170 usable subjects would be necessary for this study. A total of 256 subjects actually participated in the study, and 178 of these provided usable data points. The 78 subjects who had provided unusable data were removed for the following reasons: Forty-three were removed due to the fact that a probe for suspicion revealed that the use of deception within the study had failed (i.e. the subject believed that the two experiments might be

obtained by George (1991) between affective state and fairness perceptions (mean r = .27). In comparison, Organ and Konovsky (1989) had obtained an average correlation (absolute value) of .30, although their measure of affective state may have actually measured trait affect (see George, 1991). As noted earlier, the measure of positive affect used by George (positive affect in the Watson & Tellegen framework) differs from the one used in the present study (pleasant/unpleasant affective state in the Larsen & Diener framework). However, given the close proximity of these moods on the mood circumplex, these measures should be positively correlated. Taking note of the scarcity of research on this topic, the correlations obtained by George would seem to represent the best available data upon which to base a power analysis. George collected her data in a field setting and did not manipulate mood. Thus .30 is likely to be a conservative estimate of what will be found in a lab setting in which an affective state will be induced.

related in some way; this point is discussed in greater detail later in this paper). An additional fifteen subjects were removed due to the fact that their response to the probe was somewhat ambiguous, but could potentially have indicated that the deception had failed. Twenty subjects were removed because they had either failed to complete a large number of items in the fairness survey, or because their pattern of responses indicated that they were not taking the task seriously. Of the 178 subjects that were included in analyses, 130 were female and 48 were male. Eighty three percent of these subjects were White, 8% were African American, and 9% were members of various other minority groups (e.g. Asian, Hispanic, Middle Eastern).

Procedures

Upon entering the research laboratory, subjects were informed that they would be participating in two separate studies. Two separate experimenters were present, each of whom briefly introduced himself or herself to the subjects.

An argument could be made that the fifty-eight individuals who were removed from the present study because of the probe could be different in same way from the individuals who were retained. These differences could then have an effect on the dependent variables of interest. To determine if this was the case, all analyses were conducted twice -- once using data obtained from the "usable" subjects, and a second time using data from "usable" subjects plus the fifty eight who had been dropped. Across these two sets of analyses, results did not differ appreciably. Thus, the results which are reported are based on the trimmed sample which -- for the reasons indicated in the main document -- is likely to provide a more accurate test of the stated hypotheses.

Subjects were told that the first study examined perceptions of important events within organizations, and perceptions of the match between a company's established policies and the day to day realities that individuals experienced within those organizations. They were told that they would be playing the part of an objective observer whose job involved evaluating events which had occurred in an organization. Subjects were told that the second study was being conducted in order to collect data on the circumstances surrounding major life events. Subjects were also told that during the session they would be switching back and forth between the two experiments. The reason provided for this was that pilot testing had shown that participants appreciated the variety when portions of the two studies were mixed together, instead of each study being presented in a single time block. Subjects received two separate folders, one of which was labelled "Experiment 1," the other of which was labelled "Experiment 2." A maximum of thirty subjects were run in each experimental session. The overview and informed consent form appears in Appendix A.

The experiment occurred in five separate stages. Within each stage, subjects performed tasks associated with only one of the two studies purportedly being run. The experimenter who was responsible for that study provided all instructions to the subject during that stage. After each stage was completed, the experimenter formally handed control over to the other experimenter, who asked the subjects to set aside the current experimental folder and take out the folder for

the other experiment.

During the first stage subjects focused on the organizational events study, and they were trained on matters concerning the policies and procedures of the organizations which they would be evaluating. Each subject was given ten minutes to read and examine a three page policies and procedures manual which was created by using excerpts from policies and procedures manuals of existing organizations. After this training period was over, the manual was removed and subjects were given a policies and procedures manual test to measure their knowledge of this information. Materials administered to subjects in stage one are contained in Appendix A.

The second stage focused upon the life events study, and involved the collection of subject demographic information, a mood manipulation, and a state affect measure. Three experimental conditions existed: a negative mood condition, a positive mood condition, and a neutral mood condition. After subjects had provided information regarding their demographic characteristics, they underwent either a negative, a positive, or a neutral mood induction procedure. Given the nature of the induction procedure used (which will be discussed momentarily), all three mood conditions could be run simultaneously within the same experimental session. Once this procedure was completed, the experimenter administered a state affect scale as a manipulation check (to insure that the mood induction was successful — research has shown that subjects may

attempt to resist a negative mood induction). All materials administered to subjects in stage two are contained in Appendix B.

A number of mood induction procedures have been successfully used to alter individual's affective states. Researchers have presented subjects with assorted musical passages and films, given subjects gifts, given subjects experiences of success or failure, hypnotized subjects, and asked subjects to visualize affectively charged life events in order to bring them into a particular mood state (Gerrards-Hesse, Spies, & Hesse, 1994). Baker and Guttfreund (1993) have presented evidence that the visualization of affectively charged autobiographical life events can be very effective in inducing mood states. Their autobiographical mood induction procedure generated significant differences (pre and post tests) for subjects who underwent either a positive or negative mood induction. Their procedure for positive and negative mood inductions was used in the present study (with minor modifications to ensure that subjects entered a mood state consistent with Larsen & Diener's pleasant/unpleasant affect dimension). This induction procedure involved asking subjects to take ten minutes to reflect on two significant events that occurred in their lives. Positive mood subjects were asked to reflect on the two happiest experiences of their lives, while negative mood subjects were asked to reflect on their two saddest experiences. Baker and Guttfreund indicated that their neutral mood induction involved having subjects read a brief geographical essay on a particular region in the United States. While

this particular task may be effective in inducing neutral moods, it is qualitatively different from the task engaged in by subjects in the positive and negative conditions. To avoid potential problems due to task differences, the present study adapted the neutral mood induction technique of Bodenhausen, Kramer, and Süsser (1994) to the present study. Bodenhausen, Kramer, and Süsser had asked neutral condition subjects to recall and write about small and common events from the previous day. The present study simply asked neutral condition subjects to visualize these mundane events. Directly following the mood manipulation task, all subjects were asked several basic questions about the events that they had visualized. These questions helped increase involvement in the mood induction exercise (Baker & Guttfreund, 1993), and they also served to disguise the purposes of the mood induction procedure thus making it less likely that subjects would see a connection between the two studies.

Experiments involving mood induction procedures can generate strong demand characteristics. In order to effectively elicit a particular mood, the induction must be fairly strong; the fact that mood states are being manipulated is sometimes recognized by research participants. The second experimenter who was responsible for conducting the life events study in this experiment was used in order to help offset the effects of these characteristics. By presenting the whole experiment as if it were two independent and unrelated studies, the demand characteristics of the experimental setting should have been reduced. This

presentation technique has been successfully used by others (Bodenhausen, Kramer, and Süsser, 1994).

The third stage of the experiment shifted the focus back to the organizational events study. Subjects were presented with further instructions and four separate scenarios which were counterbalanced in two blocks which each contained two scenarios. ¹² Each scenario depicted individuals in work environments with various justice violations occurring, the degree of which varied by scenario. After subjects had read a given scenario they were presented with a series of statements assessing the fairness of the scenario in regard to the nine procedural justice rules discussed earlier. They were also asked questions concerning their overall perceptions of procedural and distributive fairness, and they were asked to indicate (in essay format) which factors in the scenario were most important in making an overall evaluation regarding procedural fairness. An

Block 2 Ross Power Co./Kenico Engineering

The counterbalance blocks were as follows:

Counterbalance A

Order Scenarios
Block 1 Ross Power Co./Kenico Engineering
Block 2 ACME Vacuum/Chapman Automotive

Counterbalance B

Order Scenarios
Block 1 ACME Vacuum/Chapman Automotive

example scenario follows:

ACME Vacuum

Joe Gilbert had been working for ACME Vacuum for ten years. Joe liked working for ACME -- ACME was a small organization with a union-free work environment, and it was a top company in the vacuum and rug shampooer industry. Joe was always considered to be a good employee, and in his last three annual performance reviews he had received the highest possible rating. In the most recent of these reviews Joe's supervisor wrote the following:

Joe consistently does excellent work. He is knowledgeable about his job, highly productive, quality conscious, and he is well liked by customers and coworkers. Joe is a tremendous asset to our department.

Two weeks ago, Joe's name was entered on a list of employees under consideration for a promotion. In the past, promotions were always awarded to employees on the basis of length of employment with the company and quality of service. By both standards, Joe was the top employee on the list. Joe's name remained on the list until three days ago. At that time, an employee named Mark Sarell informed management that Joe was a union supporter. Joe was removed from the list, and a day later the promotion was given to an employee with 7 years of experience and a mediocre work record. When Joe learned of the situation from a coworker he was furious, and he immediately went to his supervisor to see what could be done. Unfortunately the promotion decision could not be changed. Ironically, Joe had always voted against unionizing ACME Vacuum, and he had never been a union supporter. Management had made no attempt to verify the information provided by Mark Sarell.

In this situation, several possible procedural violations are present. For example, the promotion procedures used inaccurate information (accuracy rule), were inconsistent in their application of standards (consistency rule), and the decision itself could not be changed despite the fact that an error had been made (correctability rule).

After subjects had read and evaluated all four scenarios, they were given further instructions which asked them to briefly review the short essays they had written. These instructions then asked subjects to make a summary rating indicating how important each procedural justice rule was to their overall evaluation of the fairness of the procedures within each scenario. Once subjects had completed these items, stage three ended. All materials administered to subjects in stage three are contained in Appendix C.

The fourth stage of the experiment brought subjects back to the life events study. An argument could be made that the scenarios that subjects were given in stage three could have altered their moods, since subjects were asked to read about negative events in the form of justice violations. This would have the effect of causing subjects in each condition to report more negative moods after they had completed stage three. To evaluate whether this had occurred, in stage four the state affect scale was readministered. After subjects had completed this scale, all subjects (regardless of experimental condition) were given the positive mood induction task in order to bring them into a positive mood at the conclusion of the experiment. Following this induction procedure, subjects were asked questions about the events that they had just visualized, and they were also probed for suspicions about the purpose of the life events study. Administered materials

which are unique to this stage are contained in Appendix D.13

Stage five dealt with the organizational events study, and involved a single task: the debriefing of the subject with regard to this study. Due to the existence of other studies running concurrently which also involved mood manipulations, subjects were not debriefed about the mood induction nor the use of deception in the present study. Thus the debriefing discussed issues regarding procedural justice, but did not mention anything regarding the hypothesized influence of affective states on procedural justice perceptions. After subjects had finished reading the debriefing form (contained in Appendix E) they were awarded their experimental credit and the experiment was concluded. The entire session lasted a total of two hours, with approximately twenty minutes spent in stage one, twenty minutes in stage two, fifty minutes in stage three, twenty minutes in stage four, and ten minutes spent in stage five.

¹³The state affect scale administered to subjects in stage two was virtually identical to the one presented in stage four (the only difference being the numbering of the items, which were presented in the same sequence but were numbered 49 through 96). For negative and neutral mood subjects, the positive mood induction procedure was identical to the one presented to positive mood subjects in stage two. For positive mood subjects, the positive mood induction procedure was virtually identical to the one administered in stage two. The only difference was that these subjects were asked to recall "two *more* of the happiest events" in their lives. To avoid needless duplication of materials, the reader is referred back to Appendix B for these items.

Measures

State Positive/Negative Affect. The state positive/negative affect scale was created using the adjective descriptors from the pleasant-unpleasant dimension of Larsen & Diener's (1992) affect circumplex. Subjects indicate on a five point response scale the extent to which they were currently experiencing a particular positive or negative affective state (e.g. happy, sad, delighted miserable, etc.). Subject responses were summed (adjectives representing the Unpleasant pole were reverse scored) to form a single state positive/negative affect score. The scoring key for this scale is contained in Appendix F. (This measure was used in testing Hypotheses 1a, 1b, 1c, 2a, 2b, 4).

Perceptions of Procedural Justice Rule Violations. Perceptions of procedural justice rule violations were assessed through subject responses to statements which covered the justice rules discussed earlier. Subjects indicated on a 7 point Likert scale (with scale anchors ranging from Strongly Disagree (1) to Strongly Agree (7)) whether a procedural justice violation occurred in terms of the procedures being Consistent (3), Accurate (2), Bias-Free (2), Correctable (2), Representative (1), Ethical (1), and whether individuals involved were given Voice (1), Feedback (2), and Fair Treatment (1). The number which appears in parentheses denotes the number of scale items used to assess each of these types of rule violations within each scenario. The goal of the researcher was to create scales containing items which adequately tapped the domain of the justice rule while simultaneously

minimizing the amount of work subjects had to do (in order to minimize subject fatigue). Where possible a single item was used to represent the domain. Since there were four separate scenarios, four sets of nine scales were obtained. The items used to represent each scale are presented in Appendix F. (Used in testing Hypotheses 1a, 2a, 2b, 3, 4).

Perceived Overall Fairness (Procedures and Outcomes). The perceived overall fairness of events was assessed through responses to two global questions (using the same seven point Likert scale mentioned above) concerning the overall fairness of procedures used in the scenario, and the overall fairness of the final outcome in the scenario. Since there were four separate scenarios, four sets of two items were obtained. (Used in testing Hypotheses 1b, 1c, 2a, 2b, 3, 4).

Perceived Procedural Justice Rule Importance. Perceptions of procedural justice rule importances were assessed through subject responses to nine items which addressed each of the justice rules discussed earlier. These nine ratings were made for each scenario, using the same seven point Likert scale discussed earlier. Subjects made a summary rating indicating how important each of the procedural justice rules was to them as they made their overall evaluation of the fairness of the procedures in a given scenario. In order to minimize subject fatigue, a single item was used to represent each justice rule within each scenario. Four sets of nine ratings were obtained. (Used in testing Hypothesis 4).

Justice Rule Violations/Nonviolations. The justice rule violation/nonviolation measure was created by examining the perceptions of procedural justice rule violations (see above) of neutral condition subjects. Within each scenario, the nine justice rules were ranked according to the degree to which subjects perceived that the scenario satisfied the justice rule. Within each scenario, the three justice rules which were perceived as being the least violated were used to create the justice rule nonviolation variable for that scenario. The mean of these three least violated justice rules was used to represent this nonviolation measure. Similarly, the three justice rules which were perceived as being the most violated were used to create the justice rule violation variable for that scenario. The mean of the three most violated justice rules was used to represent this violation measure. Thus, four sets of two variables were obtained. (Used in testing Hypotheses 2a, 2b, 3).

Procedural Rules:

Ross Power Co.

Violation: Voice, Treatment, Representative. No Violation: Bias-Free, Consistent, Information.

Kenico Engineering

Violation: Voice, Ethical, Representative.

No Violation: Correctable, Information, Consistent.

ACME Vacuum

Violation: Information, Voice, Bias-Free.

No Violation: Representative, Feedback, Consistent.

Chapman Automotive

Violation: Treatment, Correctable, Voice. No Violation: Bias-free, Consistent, Information.

¹⁴ Thus, the violation/nonviolation measures were operationally defined by the following procedural justice rules:

Differential Knowledge. If subjects possessed differential knowledge concerning the basic material for evaluation, this could have influenced the quality of their subsequent decision making. This differential knowledge could have been due to differences in how thoroughly subjects examined the material upon which decisions were based (motivational explanation), and it could also have been influenced by the level of cognitive ability the subject possessed (ability explanation). In either case, the influence of differential knowledge would have operated as an extraneous source of variance in the present study. To avoid possible alternative interpretation of results, subjects' motivation and ability levels were controlled statistically. Prior to the mood induction procedure, subjects were given a knowledge test of the policies and procedures manual to determine the thoroughness with which they had approached the experimental task. Scores on this test (which consisted of 14 true/false items) served as a covariate in analyses. Scores on the knowledge test were considered to be a function of individual motivation and ability. The scoring key for the policies and procedures manual test is contained in Appendix F. (Used in testing all hypotheses).

RESULTS

Manipulation Check

Three t-tests for independent samples were performed and paired comparisons made to verify that the mood induction procedure was successful, and

that significant differences existed in the positive/negative affect scores for the three mood conditions. Subjects in the positive (N=58, M=3.25, SD=0.78), neutral (N=61, M=2.95, SD=0.69), and negative (N=59, M=2.68, SD=0.76) mood conditions did indeed differ significantly on this scale. Subjects in the positive mood condition significantly differed from neutral subjects (t(117) = -2.16, p<.05, two-tailed), and from negative subjects (t(118) = -3.99, p<.05, two-tailed). Subjects in the negative mood condition also significantly differed from neutral subjects (t(118)=-2.07, p<.05, two-tailed). To assess the possibility that the scenarios themselves had negatively influenced subjects' moods a t-test for paired samples was performed between subject positive/negative affective state before and after the scenarios were administered. According to this test, subjects' positive/negative affect scores after viewing the scenarios were not significantly different from their scores prior to viewing the scenarios (t(176)= .74, ns, twotailed). To assess the possibility that subjects' in the negative mood condition were engaging in mood repair behaviors, a t-test for paired samples was performed on subjects in the negative mood condition. This test revealed that negative mood subjects had indeed repaired their affective states (t(58)=-2.13, p<.05, two-tailed). There were no significant differences in positive/negative affect scores among any of the experimental groups in the post-scenario positive/negative affect scale. Subjects in the positive (N=57, \underline{M} =2.92, \underline{SD} =0.74), neutral (N=61, \underline{M} =2.92, SD=0.73), and negative (N=59, M=2.90, SD=0.73) mood conditions did not differ

significantly on this scale (Negative vs Neutral t(118)=-.15, ns, two-tailed; Negative vs Positive t(114)=-.15, ns, two-tailed; Neutral vs Positive t(116)=-.01, ns, two-tailed). By the end of the experiment, all subjects appeared to be in a relatively neutral affective state.

Descriptive Statistics

Means, standard deviations, and reliabilities for study variables are presented in Table 1. Correlations among study variables are presented in Table 2. Table 1 and Table 2 -- and all other tables presented in this document -- can be found in Appendix G.

Examination of the Table 1 group means (adjusted for the covariates) for the nine justice rules is informative. In two of the four scenarios (i.e. the Ross Power Co. and ACME Vacuum scenarios), individuals who were in negative affective states viewed scenario events as being *more* fair for eight of the nine justice rules, than did individuals who were in positive affective states. In one scenario (i.e. the Kenico Engineering scenario) this trend was reversed, as individuals who were experiencing positive affective states viewed scenario events as being more fair for eight of the nine justice rules. However, in all cases the differences among experimental conditions were fairly small and generally represented less than a third of a standard deviation of difference. The trends for the violation and nonviolation measures mirror the trends mentioned above for the

justice rules (since these two scales are based on the justice rule scales, it is logical that we would find this also). In terms of both procedures and outcomes (using both the perceived overall fairness of procedures and outcomes measures, and based on the mean fairness rating across all procedural justice rules within a scenario), the Chapman Automotive scenario was viewed by all experimental conditions as being the most fair, while the ACME Vacuum scenario was viewed as being least fair. Across the four scenarios, subjects rated scenario events to be the most fair with regard to the Consistency justice rule, while scenario events associated with the Voice justice rule were rated as being the least fair. Examination of the means also indicates that the experimental groups were roughly equivalent at the outset with regard to sex composition, age, and policies manual score (this information is contained on the last page of Table 1). With regard to internal consistency reliability the coefficient alphas for the procedural justice rule scales were generally good; they ranged between .46 and .94, with a mean of .75. Similarly, the violation scale coefficient alphas ranged between .60 and .77 with a mean of .71, and the nonviolation scale alphas ranged between .49 and .75 with a mean of .68. The weakest internal consistency reliabilities were found in the ACME Vacuum scenario; subject ratings showed the least variance for this scenario.

Table 1 also provides descriptive information regarding the subject's selfratings of the importance of each of the specific justice rules for their ratings of the overall fairness of procedures. Generally speaking, subjects believed that all of the justice rules were "Important" or "Very Important" in making this overall procedural fairness decision. Across the four scenarios, subjects -- regardless of experimental condition -- felt that it was most important that procedures were based on accurate information, implemented in a bias-free manner, and implemented in a consistent manner. Subjects -- regardless of experimental condition -- also felt that it was least important (relatively speaking) that procedures match the subject's own values and ethical standards, and that the individuals involved receive feedback which was timely and informative. Again however, the differences among justice rule importance ratings were small (the difference between ratings for the most important and least important justice rule represented roughly half a standard deviation of difference).

Examination of the correlations contained in Table 2 is also informative. This table is driven by the variables which appear in the columns, and it is organized as follows: four basic sections exist in the table, each of which corresponds to one of the four scenarios. Within each scenario section, two separate blocks exist. The first block contains correlations between the nine scenario procedural justice rule scales (appearing in the columns) and all study variables. The first block begins with the within scenario correlations among procedural justice rules, followed by correlations between the nine rules and the (within scenario) rule importance variables, we next move through the

intercorrelations among the focal scenario justice rules and all of the variables from the other three scenarios, and we end this block with the correlations among the nine justice rules and the experimental condition, subject demographic information, counterbalance order, and policies and procedure manual variables. The second block contains the correlations associated with the violation and nonviolation measures, and the rule importance variables (these variables all appear in the columns). The correlations are presented in the same order as they were in the first block, but no correlations are duplicated between blocks (thus the within scenario correlations between the nine justice rules and the importance scales are not included, since they were already presented in the first block). After this second block is completed, we move to the next scenario and the cycle repeats. A given correlation will not appear if it was presented in a previous block, and thus each scenario section is shorter than the one preceding it due to the fact that fewer and fewer correlations remain to be presented.

Several things are noteworthy in Table 2. It is perhaps helpful to think of the correlations among justice rules as representing a pseudo multitrait multimethod matrix, in which the justice rules correspond with "traits," and the scenarios correspond with "methods." Examination of the within scenario justice rule intercorrelations (the first correlations appearing on the first page of each scenario section) reveal that there are substantial correlations among the different justice rule scales within a given scenario. The average correlation between two

different justice rules that were based on the same scenario (e.g. the correlation between the fair treatment and the voice justice rules, within the Ross Power Co. scenario) was .39, and correlations ranged between .14 and .58 (this corresponds to a heterotrait monomethod triangle). The average correlation between the same justice rule across two different scenarios (e.g. the correlation between the fair treatment justice rule in the Ross Power Co. and Kenico Engineering scenarios) was approximately .14, and ranged between -.10 and .47 (monotrait heteromethod -- i.e. the validity diagonals). The average correlation between two different justice rules from two different scenarios (e.g. the correlation between the fair treatment rule in the Ross Power Co. scenario, with the voice justice rule in the Kenico Engineering scenario) was approximately .08, and ranged between -.15 and .39 (heterotrait heteromethod). Evaluating the matrices according to Campbell and Fiske's criteria, we note the following: 1) while most of the correlations found in the validity diagonals are greater than zero, a few (approximately 13%) are actually less than zero, and about a third are less than .10. In particular, evidence for convergent validity for the information accuracy justice rule across scenarios is poor (50% of the validities associated with this rule were less than zero). 2) Values in the heterotrait heteromethod triangles often exceed values in the validity diagonals. 3) Values in the heterotrait monomethod triangles generally exceed the values in the validity diagonals. This suggests the existence of method bias, which is probably due to halo in justice rule ratings. 4) Different patterns of

correlations appear in comparable triangles. Our evaluation according to criteria 2, 3, and 4 indicate that we have poor evidence of discriminant validity. In summary, the results from our evaluation of the justice rule matrix as a multitrait multimethod matrix indicate that we have poor evidence of construct validity. Clearly the scenarios themselves are driving the variance in the matrices. This suggests that we should be viewing justice rule results from each scenario independently, since there is little correspondence across scenarios. The information we have obtained from our multitrait multimethod evaluation indicates that we have much to learn regarding the subtleties of how justice rules operate.

To summarize some of the information in Table 2, the following is provided: 1) within a given scenario, the overall mean correlation between perceptions of the fairness of procedures overall and justice rule ratings ranged (across scenarios) between .04 and .74, with an average mean correlation of .45.

2) Within a given scenario, the overall mean correlation between perceptions of the fairness of outcomes overall and justice rule ratings ranged (across scenarios) between .07 and .73, with an average mean correlation of .43. 3) Within a given scenario, the correlation between perceptions of overall procedures and overall outcomes ranged between .76 and .91, with an overall mean correlation (across scenarios) of .83. 4) Within a given scenario, the correlation between the violation measure and the overall procedural fairness measure ranged between .30 and .62, while the correlation between the violation measure and the overall

outcome fairness measure ranged between .32 and .60. In both cases the average correlation across scenarios was .51. 5) Within a given scenario, the correlation between the nonviolation measure and the overall procedural fairness measure ranged between .31 and .69, while the correlation between the nonviolation measure and the overall outcome fairness measure ranged between .22 and .72. The average correlation across scenarios was .59 for the overall procedural fairness measure, and .56 for the overall outcome measure.

6) Within a given scenario, the correlation between subject experimental condition, subject age, subject policies and procedures manual score, and subject sex was extremely small (the average correlation for these variables across scenarios was less than .10, and was generally closer to .02. 7) Within a given scenario, the correlation between the subject's counterbalance condition and the nine justice rules ranged between -.40 and .03, with an average correlation across scenarios of -. 16 (please note that correlations with absolute values greater than or equal to .15 were significant at p<.05). This indicates that subjects who experienced the scenario sequence "Ross-Kenico-ACME-Chapman" typically viewed justice rule information as being less fair than did subjects who viewed the scenario sequence "ACME-Chapman-Ross-Kenico" (please note that there were only two counterbalance orders presented to subjects). Recall that the ACME Vacuum scenario was viewed by subjects as being the least fair overall. It is possible that subjects who viewed the ACME scenario first were explicitly or

implicitly comparing subsequent scenarios with this scenario, and then providing more favorable evaluations of the later scenarios as a result.

As was stated above, examination of the correlations among perceived justice rule violations within and across scenarios revealed that the scenarios themselves accounted for the majority of the variance. Based on this information, separate data analyses for each hypothesis were conducted for each scenario. In addition, regressions were run to follow up on the finding that scenario counterbalance order had an impact on dependent measures. As mentioned previously, two counterbalance conditions existed, and thus the counterbalance order variable was a dichotomous variable that indicated which of the two counterbalance conditions the subject had been exposed to. Several of these regressions were significant, indicating that order effects did exist. In order to provide a more accurate and powerful test of the stated hypotheses, the impact of scenario counterbalance order was partialled out by entering this variable into the first step of all hierarchical regressions.

Hypotheses

The original intention of the author was to test Hypothesis 1a using nine separate repeated measures ANCOVAs. The dependent variable in each ANCOVA was to be the perceived fairness of one of the nine justice rules, and the repeated measures factor was to reflect the order of scenario presentation. Thus,

each ANCOVA would have examined the perceived fairness of a particular justice rule across four scenario time blocks. A similar analysis was planned for Hypotheses 1b and 1c. However, given the low intercorrelations among identical justice rules across scenarios, this plan was abandoned. The following analyses are presented as a better means of maintaining the integrity of the data.

Hypothesis 1a was tested by using nine separate ANCOVAs within each scenario. The dependent variable in each ANCOVA was the perceived fairness of one of the nine justice rules. Subject policy and procedure manual test score and counterbalance order served as covariates for the ANCOVAs. The independent variable of interest was the categorical variable reflecting subject affective state (positive, negative, or neutral). Prior to investigating the results of these analyses, a word of caution should be given. Examination of the intercorrelations among the justice rules within scenarios revealed that many of the justice rules had substantial correlations with each other, and thus results from each of these ANCOVAs within a given scenario were not truly independent of each other. Results from the ANCOVAs are presented in Table 3.

Across the nine procedural justice rules and across the four scenarios, the main effect for affective state failed to achieve significance. Thus, Hypothesis 1a was not supported. It does not appear that individuals experiencing a positive affective state perceive justice rule violations/nonviolations as being less unfair than do individuals who are in a negative affective state (Hypothesis 1a). The

main effect for counterbalance condition which achieved significance for some of the justice rules and some of the scenarios indicated that subjects who experienced the scenario sequence "Ross-Kenico-ACME-Chapman" viewed justice rule information as being less fair than did subjects who viewed the scenario sequence "ACME-Chapman-Ross-Kenico." As was mentioned previously, it is possible that subjects who viewed the ACME scenario (the "least fair" scenario) first were explicitly or implicitly comparing subsequent scenarios with this scenario, and then providing more favorable evaluations of the later scenarios as a result. Consistent with this suggestion is the finding that this effect was especially prevalent on the Ross Power Co. scenario -- ratings for eight of the nine Ross Power Co. justice rules were significantly affected by this covariate. The main effect for policy manual score which was significant for some of the justice rules and some of the scenarios appeared to be primarily driven by the scenario. When this effect was significant for the ACME Vacuum, Ross Power Co., and the Kenico Engineering scenarios, it indicated that people with higher policy manual scores rated the scenario procedures as being less fair according to this justice rule. When this effect was significant for the Chapman Automotive scenario, it indicated that people with higher scores perceived the scenario as being more fair. When this effect was significant, it was typically significant for either the ACME Vacuum or the Chapman Automotive scenarios (this was true 85% of the time). As was mentioned previously, the majority of subjects had rated the ACME

Vacuum scenario as being the least fair. It can thus be argued that the negative features of this scenario were more salient, and less cognitive processing was probably necessary in order to make fairness evaluations. Since the policy manual score was intended to measure motivation and ability, the ACME scenario seems to have been a relatively easy scenario to evaluate. Thus subjects who were less cognitively complex and less motivated reacted to the blatancy of the violations. The Chapman Automotive scenario dealt with complex issues and required more cognitive processing; subjects with the motivation and ability may have noted the complexity present, and thus gave the organization the benefit of the doubt when rating this scenario.

Hypothesis 1b and 1c were tested in a manner similar to that used in testing Hypothesis 1a. Each of these two hypotheses was tested with four ANCOVAs. The dependent variable in each ANCOVA was the perceived fairness of overall procedures for one of the four scenarios (Hypothesis 1b), or the perceived fairness of overall outcomes for one of the four scenarios (Hypothesis 1c). Subject policy and procedure manual test score and counterbalance order served as covariates for the ANCOVAs. The independent variable of interest was the categorical variable reflecting subject affective state (positive, negative, or neutral). Tables 4 and 5 provide the results of these analyses.

As was the case for Hypothesis 1a, the main effect for affective state failed to achieve significance in any of these ANCOVAs. Thus, Hypotheses 1b and 1c

were not supported; individuals experiencing a positive affective state did not perceive procedures as being more fair overall than did individuals who were in a negative affective state (Hypothesis 1b). Individuals experiencing a positive affective state also did not perceive outcomes as being more fair overall than did individuals who were in a negative affective state (Hypothesis 1c). The covariates which achieved significance in these analyses followed the same patterns as was found in Hypothesis 1a. The author's explanations for their significance remains the same as well.

Hypotheses 2, 2a, 2b, and 3 were tested by four separate hierarchical regressions (one for each scenario) using the within scenario perceived overall procedural fairness measure as the dependent variable for each regression. In each of these regressions, subject counterbalance order, subject policy and procedure manual test score, and subject experimental condition¹⁵ (positive, negative, or neutral) were entered in the first step. The first two variables served

Positive/Other Negative/Other
Positive mood subjects: 1 0
Negative mood subjects: 0 1
Neutral mood subjects: 0 0

¹⁵For all regression analyses, subject experimental condition was represented in the data by two dummy coded independent variables. The first independent variable contrasted the positive mood condition with the neutral and negative mood conditions, while the second independent variable contrasted the negative mood condition with the neutral and positive mood conditions. These variables were coded in the data as follows:

as covariates in the analysis; the third and fourth variables (experimental condition, represented by two dummy coded variables) were entered in this step in order to later examine interactions involving these variables. Subject overall mean justice rule violation score and overall mean justice rule nonviolation score were entered in the second step of each regression. The interactions between experimental condition and rule violation score, and the interactions between experimental condition and rule nonviolation score were entered in the third step of each regression. Examination of the interactions in the third step of these regressions yields information regarding Hypotheses 2a and 2b; the interactions containing the rule violation measure yields information concerning the differential weighting of rule violation information based on subject experimental condition, while the interactions containing the rule nonviolation measure yields information concerning the differential weighting of rule nonviolation information based on experimental condition. Table 6 provides the results of these analyses.

With regard to Hypotheses 2a and 2b, Table 6 indicates that there is little support. Across the four scenarios the interactions between experimental condition and the violation and nonviolation measures were either nonsignificant, or only marginally significant (e.g. the Ross Power Co. scenario yielded three beta weights that were significant at p<.10). In only one case (i.e. Kenico Engineering scenario) was an interaction term significant at p<.05. When these results were plotted, it was found that three out of four of these interactions were in the

hypothesized direction (results obtained for the three marginally significant Ross Power Co. interactions were consistent with the hypotheses). However, in all cases adding the interaction term between experimental condition and the violation/nonviolation measures only made an incremental contribution of roughly 1% to the R². Thus, it does not appear that subjects were weighting justice rule violation information in a manner that was congruent with their current affective state (Hypotheses 2a and 2b).

Table 6 also presents information which is relevant to Hypothesis 3. The within scenario partial regression coefficients for the rule violation and nonviolation measures that were obtained in step two of these regressions were used to test Hypothesis 3. These coefficients indicated the degree to which subjects weighted rule violation and rule nonviolation information. After obtaining these coefficients, a t-test was conducted to determine the significance of the difference between the partial regression coefficients of the violation and nonviolation measures (see Cohen & Cohen, 1983, p479). The formulas used are as follows:

S.E.<sub>$$\beta_i$$
- β_j</sub> =Square Root ($(1-R^2_{y.1...k})(r_{ij}+r_{jj}-2r_{ij})$)
n-k-1

$$t=\underline{\beta_{i}}-\underline{\beta_{j}}$$

S.E._{\betai-\betaj}

where R^2 is the multiple R from the regression, r_{ii} , r_{jj} , and r_{ij} are obtained from the

inverse of the correlation matrix of the independent variables in the regression, n refers to the sample size, and k refers to the number of independent variables in the regression.¹⁶ Values that were placed in this equation were based on the second step of the four regressions. In other words, the value of the multiple R that was placed in this equation was obtained from the multiple R in the second step of each of the regressions. Likewise k reflected the number of independent variables in the second step (i.e. six independent variables), β_i , and β_i were obtained from this step, and the inverse of the correlation matrix was calculated based on the correlation matrix for the six independent variables which were present in the regression during the second step. Results from the regressions and the significance of the differences among violation and nonviolation beta weights appear at the bottom of each within scenario regression in Table 6. Across the four scenarios the differences in partial regression coefficients were significant in two of the four scenarios, and in both cases the beta weights for the nonviolation measure were larger than the beta weights for the violation measure. This result is in the opposite direction from that predicted in Hypothesis 3 -- Hypothesis 3 had predicted that subjects would weight rule violations more heavily in their overall evaluations of procedural fairness than they would weight rule nonviolations. In two of the four scenarios, subjects weighted rule nonviolations more heavily in their overall evaluations of procedural fairness than they weighted rule violations.

¹⁶The inverse correlation matrices are available from the author upon request.

Hypothesis 3 was not supported.

Hypothesis 4 was tested by using two separate stepwise regressions (one regression for the positive mood condition, and one for the negative mood condition) for each scenario. The dependent variable in this regression was the perceived overall fairness of procedures measure, and the independent variables were the nine perceptions of procedural justice rule violation scales. The number of justice rule violation variables which were added to the regression (indicating the statistical significance of each of these predictors) served as an index of the number of pieces of justice rule violation information that subjects were actually using when assessing the overall fairness of procedures. Table 7 provides the results of this analysis.

In two of the four scenarios, the same number of variables entered the regression for both mood conditions. In the remaining two regressions, a tradeoff occurred; in one scenario the positive mood condition had an additional variable achieve significance, while in the other scenario the negative mood condition had an additional variable achieve significance. Thus, no strong pattern of results emerged and Hypothesis 4 was not supported. It does not appear that individuals experiencing negative affective states use more justice violation information in making overall judgments of procedural fairness than do individuals who are experiencing positive affective states. It should be noted, however that there are two competing explanations as to why a variable may have entered these

regressions. The first explanation recognizes that the zero order correlations of the rule violation measures could be differentially correlated with overall procedural fairness. The second explanation recognizes that the intercorrelations among rule violations differs. Examination of the correlation matrix within positive and negative mood conditions revealed that -- for three out of the four scenarios, and for both mood conditions -- the order in which justice rules entered into the regression was virtually identical to the rank order of the validity coefficients between the within scenario justice rules and the overall procedural fairness measure. In other words, the justice rules which entered the regressions did so in an order which reflected the justice rule's correlation with the overall procedural fairness measure. The relevant sections from the within mood condition correlation matrices are presented in Table 8.

DISCUSSION

Several different hypotheses were tested, and the results presented. In general, results did not support the tenets of network theory, which states that individuals process information in a manner that is congruent with their current affective state. Perceptions of fairness did not tend to be congruent with the individual's currently experienced affective state (H1, H1a, H1b, H1c). Likewise, individuals did not appear to weight rule violation information in a manner that was congruent with their current affective state when arriving at an overall

procedural fairness perception (H2, H2a, H2b). Subjects in the present study also defied the literature base on impression formation and decision making; overall evaluations of procedural fairness were not more highly correlated with rule violations than they were with rule nonviolations (H3). In fact, it appears that subjects in the present study were more likely to weight rule nonviolation information more heavily than rule violation information.

Finally, the data did not suggest that individuals in negative affective states were considering more justice rule violation information when reaching an overall evaluation of procedural fairness than were individuals who were experiencing a positive affective state (H4).

Of course, findings from the present study should not be overemphasized; null results were obtained, and certainly if recent developments such as meta-analysis have taught us anything, they have taught us that it is inappropriate to place too much weight on null results. Since a power analysis was conducted prior to running the experiment, it is not likely that the culprit was a lack of experimental power (although one could argue that perhaps this analysis should have been based on a small effect size, rather than a medium effect size. With statistical power set to .80, a significance level of .05, and with d=.30 (reflecting the 1/3 of a standard deviation of difference that was noted between the group means discussed earlier), we would require 420 (one-tail test) or 540 (two-tail test) subjects to detect these differences). There are a number of possible reasons why

nonsignificant results were obtained. We now turn to a general discussion of the limitations in this study. After this discussion, the paper will conclude with suggestions for future research in this area.

Limitations

The current research design has a few limitations. Most notably, method variance is a problem. The majority of the data that were collected were self report (with the exception of subject experimental condition), and thus this study has the problems typically associated with this type of research. In addition, it could be argued that -- by the nature of the experimental design -- the study created conditions in which fairness issues and violations were made salient to subjects. Subjects were asked questions that specifically asked them to consider issues of fairness, and thus they were forced to examine and discuss fairness information. In an organizational context, an individual might never even consider the question of whether procedures or outcomes were fair, and thus he or she might never begin a search for this information, much less examine or discuss it. This is a valid point. The forced saliency of fairness issues does not, however, seriously impair the study's ability to address the research question. While the questions asked of subjects do generate a global awareness of fairness issues, they did not identify specific violations for the subject. The subject was also free to specify for him or herself what constitutes relevant information for a particular

evaluative decision. The literature presented earlier in this paper indicated that affective states have strong influences on information processing and cognitive style. This influence occurs at both a macro and a micro level. While the present study is hindered in its examination of the macro level, it is certainly still capable of addressing issues at the micro level. In short, while the forced macro-level saliency might act to reduce the size of the overall relationship observed, it should not prevent the relationship from being observed in the first place. Results from this study may simply be an underestimate of what would be found in an actual organizational context.

Another criticism of this study deals with the choice of students as subjects, and the fact that these subjects are assessing scenarios involving "paper people." It could be argued that actual workers observing real people in real organizations might view justice violations differently. This is also a valid criticism. However, the theoretical constructs which have been discussed are common to human experience. There is no reason to expect that the cognitive and affective processes discussed would operate differently between a student and a worker population. Recognized differences between the two populations does not imply that a treatment by subject interaction exists. There were many advantages to the current experimental design, not the least of which was the fact that observing behavior in a controlled setting permitted much greater confidence in the inferences made. Given the emphasis on theory, it seems reasonable that external validity played

second fiddle to the demands of internal validity in this study (cf. Berkowitz & Donnerstein, 1982; Cook & Campbell, 1979; Mook, 1983). With regard to the "paper people" issue, although this study used fictional individuals as stimuli, it is unclear how this would affect the results. Similarly, subjects who are evaluating the fairness of events that are occurring to third parties are likely to perceive those events differently when those same events are occurring to themselves. The present study was capable of addressing issues related to the former case, but it cannot address issues related to the latter case. Along this line of reasoning, potential inquiries could be made into the possibility of a betrayal effect; people who are in a good mood who have severe justice violations revealed to them may respond to these violations in a more severe manner than their negative mood counterparts. This could be termed the "I trusted you, and you stabbed me in the back!" phenomenon.

An additional criticism could be made regarding the scope of the primary independent variables. It is perhaps the case that the positive/negative affect scale that was used was too global. Perhaps focusing on specific positive and negative emotions would have generated better results. For example, perhaps anger and fear would influence fairness perceptions, whereas sadness might not be as relevant.¹⁷

¹⁷Reexamining the affect circumplex, it is noted that these emotions are located in the activated unpleasant octant -- what Watson and Tellegen referred to as (continued...)

Future Research Directions

An important area of future research concerns the structure of procedural justice perceptions. The present study examined procedural justice from the perspective that there were nine rules influencing overall fairness perceptions. However, it is perhaps the case that individuals typically consider only three or four global dimensions when arriving at an overall perception of fairness. Alternatively, individuals may have nine rules in their fairness perception repertoire, but might only use three or four of these when making decisions. The situation itself might drive which of these justice rules the individual attended to, or intraindividual factors might take precedence. Results from the present study can inform future research which examines these issues. Results from Hypothesis 4 are consistent with the hypothesis that affective states influence which justice rules are attended to. Subjects in positive moods differed from subjects experiencing negative moods in terms of the actual justice rules which they appeared to be using when reaching an overall perception of procedural fairness. Looking within each scenario, an average of only 41% of the justice rules which

^{17(...}continued)
negative affectivity. This relationship could thus be observed by examining the interaction of positive/negative affect with activation level. My comments here should not be construed as taking away from my earlier criticisms of the affectivity constructs. As I mentioned earlier, I agree with Larsen and Diener's conclusion that these constructs are flawed.

reached significance managed to do so for subjects in both positive and negative affective conditions (i.e. there was a 41% overlap). Looking across the four scenarios, there was a match between six of the thirteen rules which entered the regressions (46%). Across all four scenarios, subjects in the positive mood condition significantly weighted a total of six of the nine justice rules, while subjects in the negative mood condition significantly weighted a total of seven of the nine rules. Subjects who were experiencing positive moods significantly weighted the Fair Treatment, Consistency, Representativeness, and Feedback justice rules in more scenarios than did subjects who were experiencing negative moods. On the other hand, subjects who were experiencing negative moods significantly weighted the Bias-Free, Ethical, Information Accuracy, Correctability, and Voice justice rules in more scenarios than did subjects who were experiencing positive moods.

Perhaps certain affective states or emotions influence perceptions of certain procedural justice rule violations, and not others. Researchers have identified several external correlates for the different octants in the affect circumplex (Larsen & Diener, 1992). For example, the activated pleasant octant is highly correlated with sociability and extraversion. Given this situation, it seems plausible to suggest that individuals who are experiencing positive mood states may have a propensity to attend to social information cues, and they might thus be more likely to apply justice rules that consider this type of information (e.g. the fair treatment

rule, etc.). The above stated results are fairly consistent with this interpretation. Similarly, since these individuals demonstrate greater reliability on heuristics, perhaps they will apply justice rules which require less cognitive processing.

Future research should also begin to examine the influence of integral and incidental affect on fairness perceptions. As mentioned earlier, integral affect refers to affective states which are elicited by the immediate context that the individual finds him or herself in. Incidental affect refers to affective states which have been elicited by factors and situations which are external or unrelated to the present context (Bodenhausen, 1993). If affect does influence fairness perceptions in some way, people may perceive their mood as providing information about their work setting and would thus be likely to make misattributions and perceive incidental affect as being work related. Thus, both integral and incidental affect would influence fairness perceptions.

Future research should also conduct in depth examinations of the influence of affective states on perceptions of distributive justice. Earlier in this discussion it was argued that affective states may influence the application of procedural justice rules. This argument can be extended to the realm of distributive justice. For example, in situations in which an individual has a negative affective state, he or she may be subconsciously *motivated* to shift his or her distributive justice standard in order to obtain mood congruent information (cf. Bower, 1991). A simple shift in the distributive justice rule applied can force a categorical

reorganization of fairness perceptions. An individual using a contributions justice rule, for example, could shift to an equality or needs distributive justice rule in order to find justice violations and thus obtain mood congruent information.¹⁸

Again, the motivation to make this shift would probably not result from a conscious process per se, but it might stem from the subconscious drive for mood congruity.

Another area for future research deals with the determination of when fairness perceptions have behavioral consequences, and when they lack this causal power. It seems reasonable to suggest that the influence of justice perceptions on behavior may depend upon the individual's current emotional state. It may be the case that when emotions die down, justice perceptions are capable of accounting for much less variance in behavior than when the emotions are present. This would suggest to researchers that the time of measurement may greatly influence results. Weiss and Cropanzano (1996) also point out the criticality of timing when examining affective reactions and their implications.

Another avenue for future research deals with mood and the egocentric bias in fairness perceptions. Fairness perceptions appear to contain two separate

¹⁸The contributions distribution rule dictates that fair outcome distributions result from the allocation of resources according to individual contributions (cf. equity theory, Adams, 1965). The equality distribution rule states that fair outcome distributions result from the allocation of resources in equal shares to all involved parties. The needs distribution rule states that fair outcome distributions result from the allocation of resources in proportion to the needs of individuals.

components; on the one hand, we have an individual's (or group's) behaviors and attitudes which are directed at the organization. On the other hand, we have the organization's actions which affect the individual (or group). Fairness perceptions take both into account, but given the egocentric bias of individuals' fairness perceptions (Thompson & Lowenstein, 1992)) perhaps the weighting becomes even more disproportionate (in favor of the individual) when the individual is experiencing a particular mood. Future research should explore this issue.

Given the findings presented in this paper, there does not appear to be much support for the statement that "love is stronger than justice."

APPENDIX A

Experiment Stage One

Overview and Informed Consent Form

Thank you for coming! This sheet of paper is intended to give you an overview of what you will be doing today. In the next two hours you will be participating in two separate studies. In the first study, we will be collecting data about the circumstances surrounding major life events. In order to obtain this information, we will be asking you to recall certain major events in your life and answer questions about them. The second study is quite different from the first. In the second study we are interested in learning more about perceptions of important events within organizations. Specifically, we are interested in your perceptions concerning the day to day realities that individuals experience within those organizations. In this experiment you will play the part of an objective observer whose job involves evaluating events which have occurred in an organization. For this study you will be given a copy of an employee policies and procedures manual to read. After you have read this manual, you will be presented with a number of different scenarios, each of which discusses an event that has occurred within a particular organization. You will need to remember the information in the manual in order to properly evaluate these events.

Your participation in these experiments is voluntary. While little discomfort or risk to you is foreseen, you may choose not to participate or you may stop participating at any time and without penalty or loss of benefits to which you are otherwise entitled. You indicate your voluntary agreement to participate by signing and returning this informed consent form. By signing this form you indicate that you are freely consenting to participate. By signing this form you indicate that this experiment has been explained to you, that you understand it, and that you understand the risks. All information collected will be kept strictly anonymous, such that neither your name nor any identification will be associated with the data. If you have any questions or concerns regarding either of these studies, please feel free to contact Dave Waldschmidt (room 20 in Baker Hall, phone # 353-9166).

Thank you for your cooperation.

Name (printed)	ID#	Signature	

Instructions for Policies and Procedures Manual

The following pamphlet outlines the policies and procedures used by all of the organizations that we will be considering. Each of the employees that you will read about has read these policies and procedures, and agreed to all of the terms before accepting a job. In essence, the policies and procedures of the company represent a contract between the organization and its employees. This means that the employee has certain responsibilities towards the organization, and that the organization has certain responsibilities towards the employee. Both parties should observe the terms of their agreement. If one party fails to observe part of the agreement, then that party should be held accountable for breaking that section of the contract.

You will have 10 minutes to examine this manual; AFTER 10 MINUTES, THIS MANUAL WILL BE TAKEN AWAY. It is important that you read this manual thoroughly and commit as much of this information as possible to memory. IN 10 MINUTES YOU WILL BE TESTED ON THE INFORMATION IN THIS MANUAL. In about half an hour you will be presented with a number of different scenarios, each of which discusses an event that has occurred within a particular organization. You will need to remember the information in the manual in order to properly evaluate these events.

STOP! Please wait for the

experimenter before continuing.

Policies and Procedures Manual

Get Acquainted Period

At this organization, we set high expectations that motivate us to perform at our top potential. We want you to set high performance expectations for yourself. To be successful and to continue employment, your performance must meet the company's needs and the requirements of the job. To give you and the company a chance to determine whether we meet each other's employment expectations, the first 90 days is a "Get Acquainted Period." During this time, your supervisor will closely monitor and evaluate your performance. If you have any questions, please don't hesitate to ask your supervisor.

Equal Opportunity Employer

Every job is open to the most qualified person without regard to race, religion, color, national origin, sex, age, ancestry, citizenship, marital status, sexual orientation, personal beliefs, group membership, or any other reason prohibited by law. If you believe that you have a disability requiring an accommodation in order to do your job, you should make this known to your supervisor or your human resources representative.

Safety

Your health and safety are important to us. Creation and maintenance of a safe and healthy working environment is critical to accomplishing our goals of productivity, quality, and profitability. Your organization provides the tools, facilities, training, and supervision necessary to achieve these goals in a safe and healthy manner, and your participation in these efforts is equally important.

Identification and communication of unsafe or hazardous conditions in your work environment are essential. If you feel such conditions exist, notify your supervisor immediately. Additionally, if you believe you have been injured or suffered any illness as a result of your job, report this to your supervisor immediately.

We have developed safety and health rules for your protection. We do not want you to risk your health or safety by performing an unsafe act, no matter how urgent the need may seem at the time. You are expected to follow these rules, obey warning signs and perform your job in a safe manner at all times. Failure to do so may lead to disciplinary action, up to and including dismissal. By following all safety procedures, we make your organization a safer place to work.

Conduct and Behavior

Your organization has high quality standards. It is expected that employees will conduct themselves with the appropriate behavior required to meet these standards. Activities inappropriate in our business environment include, but are not limited to, possession of weapons, gambling, fighting, horseplay, harassment of other employees, vandalism, falsification of time cards or company documents, and other activities that common sense tells us are improper. While we will help employees learn our procedures, failure to follow them may result in termination. We need employees who have the self respect and maturity to be responsible to themselves, their jobs, their coworkers and our customers.

Drugs

It is the policy of your organization to maintain a work environment free of the unlawful use of controlled drugs. Employees may not work with unlawful controlled drugs in their system while on company premises or while engaged in the conduct of company business. This includes improper use or abuse of a valid prescription.

Employees may continue to work while properly using a valid prescription, subject to approval of their personal physician and the Employee Health department. Some drugs have side effects that make certain jobs more dangerous for the user to perform.

Employees with substance abuse problems are encouraged to seek help by contacting their supervisor, Human Resources, Employee Health, or the Employee Assistance Program. Counseling and referral for treatment if indicated will be provided on a confidential basis.

Management may require drug testing of an employee in the event of job accidents, reports of use, erratic behavior, deteriorating performance, return from leave, etc. Employees found to have unlawful drugs present in their system by such testing will be subject to discipline or discharge.

Diversion, theft, or trafficking in controlled drugs on or off company premises will be grounds for discharge. Possession or use on company premises will be grounds for discharge.

Our policy concerning drugs may be changed or amended at any time.

Employee Theft

Employees who steal any company assets including, but not limited to, money, tools, equipment, products, etc. are subject to criminal prosecution and civil court action as well as dismissal.

Any employee who obtains information about illegal involvement with controlled substances, the disclosure of confidential information, or the misappropriation of company assets is urged to contact his or her supervisor or the local police.

Confidential Information

While working for this organization, some employees have access to confidential information about the company. Confidential information includes all information about company plans and operations that are not disclosed to the general public.

It is each employee's personal responsibility to see that this information is not disclosed to anyone outside the company. Information including, but not limited to, procedures, formulas or recipes, data, plans, lists, employee information, etc. should never be discussed with anyone who you are not certain is entitled to know. This is because any leak of confidential information could benefit one of the company's competitors, and that would damage this organization and affect all of its jobs.

Any employee or former employee who discloses confidential information about this organization violates the company's confidential information policy and employment agreement. Violations may be grounds for dismissal and/or legal action.

If you are unsure as to whether certain information is confidential, contact your supervisor, your human resources representative, or the company legal department.

At-Will Employment Status

Nothing contained in this policy manual is intended or should be construed to create any legal obligation between your organization and its employees, or to limit the right of your organization or its employees from terminating the at-will employment relationship, at any time without restriction. This means that your organization is free to terminate its relationship with you at will, and you are free to terminate your relationship with your organization at will also.

This policy manual reflects your organization's practices and policies at the time of

publication. Your organization reserves the right to amend or modify its corporate and human resources policies and practices at any time without notice. It should be noted that mere company policies or practices including, but not limited to, the presence of a disciplinary procedure (such as warnings or probation) do not waive or alter the at-will status of your employment with your organization.

This At-Will section is intended as the complete statement on your At-Will employment status. No other agreements, side-deals, company policies or practices, or other portions of this manual can vary your basic At-Will employment status.

STOP! Please wait for the experimenter before continuing.

Using the scale below, indicate the extent to which you agree with the following statement. Record your answer on the bubble sheet provided.

IMPORTANT: PLEASE NOTE THAT THE FOLLOWING QUESTION

IS #119, AND #119 SHOULD BE FILLED IN ON YOUR BUBBLE SHEET. We will return to question #1 after this

item has been completed.

Strongly Disagree		ewhat agree	Neither Nor Disa	_	Somewhat Agree	Strongly Agree
1	2	3	4	5	6	7

119. The policies and procedures of these organizations are fair.

Policies and Procedures Manual Test

Please indicate your response on the answer sheet provided (1 = True, 2 = False). If any part of a statement is incorrect, the entire statement should be considered as being "False."

- 1. The "Get Acquainted Period" (during which the organization evaluates its new employees to determine their fit with the organization) lasts for 60 days.
- 2. The organization is an equal opportunity employer.
- 3. If an employee commits an unsafe act, he or she may be fired for doing so.
- 4. The organization has the right to modify or change its policy on drugs without providing any notice to its employees.
- 5. Employees are forbidden from using any type of drug while working, including valid prescriptions.
- 6. The organization may fire the employee at any time, without providing a reason.
- 7. Employees who discover illegal activities at work are urged to contact the local police.
- 8. If an employee feels ill because of work performed on his or her job, he or she should report this to a supervisor immediately.
- 9. Employees who quit working for this organization are still required to keep organizational operations confidential, or they risk legal action against them.
- 10. Information which is supposed to remain confidential includes data, formulas and recipes, public announcements, and company procedures.
- 11. If an employee is placed in a position in which work urgently needs to be done, but working conditions are somewhat unsafe, then that employee should perform the work and immediately afterwards inform the supervisor about the problem.

- 12. In hiring individuals or promoting them, preference is given to individuals belonging to minority groups.
- 13. If an employee has a substance abuse problem and requires counseling, his or her supervisor will be notified of the problem.
- 14. The policy manual did not address employee attendance.

APPENDIX B

Experiment Stage Two

Background Information

The items below ask some basic questions about yourself. Please complete all items as indicated. All information that you provide will be kept strictly confidential. You may write on this sheet.

1. Age (in years):	
2. Gender (check one): Male	Female
B. Ethnic background (check one):	
African American Asian Hispanic	
Native American	
White (Caucasian)	
Other (please specify)	

Please wait for instructions from the experimenter before going on to the next page

Instructions for Negative Mood Induction

1N

I would now like to ask you to take a few minutes to look into your past and think about what have been the two saddest events in your life. When you finish reading these instructions, take 10 minutes to think of these events. I will tell you when the time is over. I would like you to try and think of all the details of what was happening at the time, to the point that you could imagine this happening to you right now. Think about how old you were, who were the people or events involved, and what your feelings were.

When the time is over, I will ask you to answer a few questions related to the images you thought of. It is very important that you take this reflection exercise seriously. Think of those events that made you feel sad, unhappy, gloomy, or miserable. Please sit back, close your eyes, put your head down or get into a position that will best allow you to get in touch with your feelings. Take your time and think about these sad events. Start now.

Please wait for instructions from the experimenter before going on to the next page

Please answer the following questions.

	Event One	Event Two
Approximately how old were you at the time of this event?		
In what city did this happen?		
What season was it? (winter, spring, summer, fall)		
What was the weather like at the time?		
How long did the event last?		
Which event was the saddest of the two? (Please make a check under the event.)		

Instructions for Neutral Mood Induction

1U

I would now like to ask you to take a few minutes to think about the small, everyday events in your life. Specifically, I would like you to recall two of these events that happened to you yesterday. When you finish reading these instructions, take 10 minutes to think of these events. I will tell you when the time is over. I would like you to try and think of all the details of what was happening at the time, to the point that you could imagine these events happening right now. Think about the circumstances surrounding the situation, the people involved, and what your feelings were.

When the time is over, I will ask you to answer a few questions related to the images you thought of. It is very important that you take this reflection exercise seriously. Think of those small, everyday events that are so common in life. Please sit back, close your eyes, put your head down or get into a position that will best allow you to get in touch with your feelings. Take your time and think about these common events. Start now.

Please wait for instructions from the experimenter before going on to the next page

Please answer the following questions.

	Event One	Event Two
How often does this event usually occur?		
In what city did this happen?		
What was the weather like at the time?		
How long did the event last?		
Do you think that other people experience this event, or is this experience unique to you?		

Instructions for Positive Mood Induction

1P

I would now like to ask you to take a few minutes to look into your past and think about what have been the two happiest events in your life. When you finish reading these instructions, take 10 minutes to think of these events. I will tell you when the time is over. I would like you to try and think of all the details of what was happening at the time, to the point that you could imagine this happening to you right now. Think about how old you were, who were the people or events involved, and what your feelings were.

When the time is over, I will ask you to answer a few questions related to the images you thought of. It is very important that you take this reflection exercise seriously. Think of those events that made you feel happy, delighted, glad, or cheerful. Please sit back, close your eyes, put your head down or get into a position that will best allow you to get in touch with your feelings. Take your time and think about these happy events. Start now.

Please wait for instructions from the experimenter before going on to the next page

Please answer the following questions.

	Event One	Event I wo
Approximately how old were you at the time of this event?		
In what city did this happen?		
What season was it? (winter,spring,summer,fall)		
What was the weather like at the time?		
How long did the event last?		
Which event was the happiest of the two? (Please make a check		

under the event.)

Please wait for instructions from the experimenter before going on to the next page

Larsen & Diener Affect Circumplex Scale

Please answer the following questions. Each item that appears below fills in the blank in the statement provided. For example, the first statement would be "At the present moment I feel distressed." Use the scale below to indicate your response to this statement. If you currently felt not at all distressed, you would fill in the oval marked "1" on your answer sheet. If you currently felt distressed to a great extent, then you would fill in the oval marked "4" on your answer sheet.

Not At All	To A Slight Extent	To Some Extent		-
1	2	3	4	5

At the present moment I feel _____

1. Distressed 2. **Enthusiastic** 3. Relaxed 4. Dull 5. Aroused 6. Happy 7. Quiet 8. Unhappy 9. Annoyed 10. Elated 11. Content 12. **Tired** 13. Astonished 14. Delighted 15. **Tranquil** 16. Miserable 17. Fearful 18. **Excited** 19. At Rest 20. **Drowsv** 21. Stimulated 22. Glad 23. Still

24.

Sad

- 25. Nervous 26. **Euphoric** 27. Calm 28. Sluggish 29. Surprised Cheerful 30. 31. Inactive 32. Grouchy 33. **Jittery** 34. Lively 35. Serene 36. **Bored** Active
- 37. **38**. Warmhearted **39**. Idle 40. Gloomy 41. **Anxious** 42. Peppy 43. At Ease 44. Droopy **45**. Intense 46. Pleased

Passive

Blue

47.

48.

Please wait for instructions from the experimenter before going on to the next page

C(V) pr

ea stu cor the det

APPENDIX C

Experiment Stage Three

Instructions for the Scenarios

In this experiment you are to play the part of an objective observer whose job involves evaluating events which have occurred in an organization. You will now be presented with several different scenarios, each of which provides a description of a company and a recent decision that was made regarding a certain member or members of its workforce. As you look at these scenarios and answer questions about them, there are a number of distinctions that should be kept in mind. Some of the questions will ask you to evaluate the **procedures and inputs** which were used to generate the decisions, while other questions will ask you to evaluate the **decision** itself or **outcomes** associated with that decision.

A brief example scenario follows:

Bryan Erickson and Roger Beyson had both worked at Sterles Realty for five years. Bryan consistently lead the office in total sales, while Roger consistently placed 4th out of 7 employees. Over the course of those five years, both individuals had freely taken office supplies from the company and used them at home for personal use. When this fact was discovered, management at Sterles Realty promptly fired Roger. Because of his exemplary record, management decided not to fire Bryan and instead opted to place him on probation.

Outcome(s): Roger was fired. Bryan was placed on probation.

In this example, the firing of Roger and the disciplining of Bryan are considered outcomes. In terms of the procedures which led to these outcomes, you might note that Roger's exemplary work record was taken into account when management made its decision about him. Similarly, you might note that company procedures were applied inconsistently -- one individual was fired, and another was put on probation for performing the same action (stealing office supplies). In each scenario, the outcome(s) will be clearly identified. For purposes of this study, it may be helpful to simply think of inputs and procedures as factors that contribute to the occurrence of the outcome(s). In evaluating each scenario, use the information you obtained in the Policies and Procedures manual to help determine the fairness of what has occurred.

After you have read each scenario you will be presented with a series of questions which ask you to consider whether the inputs and procedures in the scenario met certain standards. Next you will be asked three questions which assess your major overall impression of the fairness of the events depicted in the scenario. You will be asked to rate both the overall fairness of the procedures, and the overall fairness of the outcome(s) in the scenario.

Please answer all questions on the answer sheet which is provided.

STOP! Please wait for the

experimenter before continuing.

Scenarios, Fairness Ratings, and Fairness Essays

Ross Power Co.

Ross Power Co. had supplied power to Macan County for nearly half a century. During that time period, Ross heavily relied on technology which used coal. As more and more people moved into the county, it became clear that current equipment could no longer keep pace with the demand. In order to meet increasing demands, company officials made the decision to move from coal to nuclear power. As a result of this decision, many changes were required: a new power plant had to be built, current workers needed to be trained to use the new technology, and additional workers needed to be hired to smooth the transition. Several policy changes were also necessary. In order to ensure the safety of workers and local townspeople, employees who oversaw operations or worked with hazardous materials were selected at random to undergo drug testing. Individuals who were selected for testing were to be escorted by an armed security guard to a bathroom monitored by security cameras. Urine samples were to be taken, and they were to be analyzed in the company laboratory. No advance warning of this policy change was provided to employees.

Jack Stuart was among the first to be tested. Jack was responsible for monitoring plant operations during the late shift (1:00am to 9:00am). He had been an occasional drug user for several years, but had never come to work under the influence. Jack and his wife were experiencing marital difficulties at home, and for the last several weeks Jack had been using drugs after work to help himself deal with the stress. When the results of the testing came back from the company laboratory, Jack was informed that he had tested positive for drug use. He was fired on the spot.

Peter Gibbens was also responsible for monitoring plant operations. He worked during the evening shift (5:00 pm to 1:00 am). Peter was a recreational drug user, but (like Jack) he had never come to work under the influence. When Peter heard that Jack had been fired, he became extremely nervous. Carefully considering all his options, Peter decided that the safest thing that he could do was to immediately check into the company drug rehabilitation program. Two days after he had checked into the program, Peter was informed that he had been randomly selected to undergo drug testing. Soon after the tests had been run, he received word from the lab that he had tested positive for drug use. However, since he had previously enrolled in the rehabilitation program, his job was secure. Peter was not penalized in any way for his drug use.

OUTCOME(S) TO BE EVALUATED:

Jack Stuart was fired, Peter Gibbens was allowed to continue working.

Strongly Disagree			Neither Ag	•	Somewhat Agree	Strongly Agree
1	2	3	4	5	6	7

Ross Power Co.

- 15. The procedures which are being used are consistently applied over time.
- 16. The procedures which are being used are consistently applied across different people.
- 17. The procedures which are being used are consistent with company policy as stated in the policy manual.
- 18. The information upon which decisions are based is accurate.
- 19. The information that is used when making decisions is appropriate and complete (factors that are relevant to the decision are considered).
- 20. The individuals who are making decisions are objective and not biased.
- 21. The individuals who are making decisions are open minded and do not possess narrow views.
- 22. Individuals who are affected by the decisions being made have the opportunity to appeal these decisions.
- 23. The decisions that are being made are able to be changed in the event that an error has been made.
- 24. The procedures that are being used take into account the interests, concerns, and values of the individuals who are being affected.
- 25. The procedures which are being used to make decisions are consistent with my values and the code of ethics I follow.
- 26. The individuals involved have an opportunity to express themselves and provide relevant information before a decision is reached.
- 27. The individuals affected by decisions are informed about the results of these decisions in a timely manner.

Strongly Disagree			Neither A	_	Somewhat Agree	Strongly Agree
1	2	3	4	5	6	7

- 28. The feedback individuals receive is informative.
- 29. The individuals involved are treated with respect and compassion throughout the process.
- 30. In general, the procedures and inputs used to make decisions in this scenario were fair.
- 31. The final outcome in the scenario was fair.

Ross Power Co.

A question on the preceding page asked you to make an OVERALL EVALUATION of the fairness of the procedures and inputs that were used to make decisions in this scenario. What factors in the scenario were most important to you in arriving at this overall evaluation? Please write your answer neatly.

Kenico Engineering

Over the past several years, Kenico Engineering had been experiencing severe financial problems. In an attempt to save the company from financial ruin, Senior Vice-President Bob Walker made the decision to lay off 35% of their workforce. The layoffs were primarily targeted at individuals who had just started working for the company or who were below average performers, and Vice-President Walker personally identified which individuals to let go. Three months after the workforce had been reduced, it became apparent that more needed to be done to restore the company, and so Vice-President Walker decided to let another 5% of the workforce go. Sheila Tate, who had just returned from maternity leave, was among those who were scheduled to be dismissed. In reviewing the files of those who were to be fired, Vice-President Walker provided the following reasons for his decision regarding Sheila:

"While Sheila has been a good employee for Kenico, it is my opinion that she has not demonstrated the level of commitment and loyalty to our company that is needed in these rough financial times. I wish her success in her next job."

Three days later Sheila was told that she had lost her job, and that her position was being eliminated. Kenico Engineering gave her two weeks to find a new job.

To say the least, Sheila was shocked at this news. Her gut feeling told her that she had been fired because of the time she had spent away from work while on maternity leave. With nothing to lose, Sheila stormed past a receptionist and into Vice-President Walker's office and demanded to know the truth about her situation. Vice-President Walker, somewhat flustered by the

whole event, quickly rummaged through his file cabinet and found Sheila's file. After glancing through her previous performance reviews and refamiliarizing himself with her case, he was able to piece together what had happened and provide an explanation. Vice-President Walker denied that her dismissal had anything to do with the maternity leave. He pointed to a number of incidents on company record where Sheila had arrived at work late. He also pointed out that the company was reorganizing, and that there would no longer be any need for someone to perform the job duties that she had performed. Vice-President Walker assured Sheila that she would find a new job in no time. Sheila remained visibly upset.

After spending an hour trying to convince her that there had been no wrongdoing, Vice-President Walker changed his strategy; he called in a member of the Human Resources Department to see if they could provide her with some assistance in finding a new job with a different organization. Sheila accepted the help, but deep down inside she still felt that she had been wrongfully dismissed from Kenico.

OUTCOME(S) TO BE EVALUATED:

Sheila Tate was fired.

3.

3

3.

30

3:

3:

39

4(

4]

42

43,

44.

Strongly Disagree			Neither A	_	Somewhat Agree	Strongly Agree
1	2	3	4	5	6	7

Kenico Engineering

- 32. The procedures which are being used are consistently applied over time.
- 33. The procedures which are being used are consistently applied across different people.
- 34. The procedures which are being used are consistent with company policy as stated in the policy manual.
- 35. The information upon which decisions are based is accurate.
- 36. The information that is used when making decisions is appropriate and complete (factors that are relevant to the decision are considered).
- 37. The individuals who are making decisions are objective and not biased.
- 38. The individuals who are making decisions are open minded and do not possess narrow views.
- 39. Individuals who are affected by the decisions being made have the opportunity to appeal these decisions.
- 40. The decisions that are being made are able to be changed in the event that an error has been made.
- The procedures that are being used take into account the interests, concerns, and values of the individuals who are being affected.
- 42. The procedures which are being used to make decisions are consistent with my values and the code of ethics I follow.
- 43. The individuals involved have an opportunity to express themselves and provide relevant information before a decision is reached.
- 44. The individuals affected by decisions are informed about the results of these decisions in a timely manner.

Strongly		Neither Agree	Somewhat	Strongly
Disagree		Nor Disagree	Agree	Agree
1	2 3	4 5	6	7

- 45. The feedback individuals receive is informative.
- 46. The individuals involved are treated with respect and compassion throughout the process.
- 47. In general, the procedures and inputs used to make decisions in this scenario were fair.
- 48. The final outcome in the scenario was fair.

Kenico Engineering

A question on the preceding page asked you to make an OVERALL EVALUATION of the fairness of the procedures and inputs that were used to make decisions in this scenario. What factors in the scenario were most important to you in arriving at this overall evaluation? Please write your answer neatly.

ACME Vacuum

Joe Gilbert had been working for ACME Vacuum for ten years. Joe liked working for ACME -- ACME was a small organization with a union-free work environment, and it was a top company in the vacuum and rug shampooer industry. Joe was always considered to be a good employee, and in his last three annual performance reviews he had received the highest possible rating. In the most recent of these reviews Joe's supervisor wrote the following:

Joe consistently does excellent work. He is knowledgeable about his job, highly productive, quality conscious, and he is well liked by customers and coworkers. Joe is a tremendous asset to our department.

Two weeks ago, Joe's name was entered on a list of employees under consideration for a promotion. In the past, promotions were always awarded to employees on the basis of length of employment with the company and quality of service. By both standards, Joe was the top employee on the list. Joe's name remained on the list until three days ago. At that time, an employee named Mark Sarell informed management that Joe was a union supporter. Joe was removed from the list, and a day later the promotion was given to an employee with 7 years of experience and a mediocre work record. When Joe learned of the situation from a coworker he was furious, and he immediately went to his supervisor to see what could be done. Unfortunately the promotion decision could not be changed. Ironically, Joe had always voted against unionizing ACME Vacuum, and he had never been a union supporter. Management had made no attempt to verify the information provided by Mark Sarell.

OUTCOME(S) TO BE EVALUATED:

Joe Gilbert was not promoted.

Strongly Disagree			Neither Ag	•	Somewhat Agree	Strongly Agree	
1	2	3	4	5	6	7	

ACME Vacuum

- 49. The procedures which are being used are consistently applied over time.
- 50. The procedures which are being used are consistently applied across different people.
- 51. The procedures which are being used are consistent with company policy as stated in the policy manual.
- 52. The information upon which decisions are based is accurate.
- 53. The information that is used when making decisions is appropriate and complete (factors that are relevant to the decision are considered).
- 54. The individuals who are making decisions are objective and not biased.
- 55. The individuals who are making decisions are open minded and do not possess narrow views.
- 56. Individuals who are affected by the decisions being made have the opportunity to appeal these decisions.
- 57. The decisions that are being made are able to be changed in the event that an error has been made.
- 58. The procedures that are being used take into account the interests, concerns, and values of the individuals who are being affected.
- 59. The procedures which are being used to make decisions are consistent with my values and the code of ethics I follow.
- 60. The individuals involved have an opportunity to express themselves and provide relevant information before a decision is reached.
- 61. The individuals affected by decisions are informed about the results of these decisions in a timely manner.

Strongly		Neither Agree	Somewhat	Strongly
Disagree		Nor Disagree	Agree	Agree
1	2 3	4	5 6	7

- 62. The feedback individuals receive is informative.
- 63. The individuals involved are treated with respect and compassion throughout the process.
- 64. In general, the procedures and inputs used to make decisions in this scenario were fair.
- 65. The final outcome in the scenario was fair.

ACME Vacuum

A question on the preceding page asked you to make an OVERALL EVALUATION of the fairness of the procedures and inputs that were used to make decisions in this scenario. What factors in the scenario were most important to you in arriving at this overall evaluation? Please write your answer neatly.

Chapman Automotive

Chapman Automotive was an automobile repair shop located in Tammake, Texas that specialized in small to mid-size foreign cars. Chapman Automotive was owned and operated by Lucas Chapman. The shop had been in business for 20 years, and had established a local reputation for being an honest place of business. Customers knew that they were being charged reasonable prices for services, and they knew that the mechanics at Chapman were excellent at diagnosing problems with automobiles. While customers received good quality work from Chapman, the working climate for Chapman employees was somewhat oppressive. Employees were overworked, they received little guidance from their supervisors, and the pay was mediocre.

Roger Endison had been working for Chapman Automotive for over 15 years. For the past 3 of these years, Roger had been supplementing his weekly salary by stealing spark plug wires and brake pads and selling them to a local competitor. Martin Sembic also worked at Chapman Automotive, and worked side by side with Roger. Martin knew that Roger was stealing from the company, and he knew that what Roger was doing was dishonest and wrong. However, Martin's personal dislike of his supervisor and his dislike of Lucas Chapman prevented him from telling them about the stolen equipment.

One night after work, Roger and three of his friends went to a local tavern to drink and shoot pool. After buying numerous rounds of drinks, and after having consumed a large amount of alcohol, Roger started to brag to his friends about how he was "robbing Chapman blind." An off duty police officer overheard the comments, and discussed the matter the following day with Lucas Chapman. After taking inventory of various parts, it was discovered that a large quantity of brake pads and spark plug wires could not be accounted for. In order to obtain additional information, the police scheduled interviews with every employee at Chapman. Eventually they met and talked with Martin Sembic. Martin verified that Roger had been stealing from Chapman for some time, and he was able to tell them exactly how Roger had done it.

When Lucas heard about this ongoing theft, he was furious. He fired Roger Endison for stealing, and he fired Martin Sembic for not informing his supervisor about the situation. Charges were pressed against Roger Endison, and he was found guilty in a court of law. Martin had been a key witness in the trial. After the hearing, Martin approached Lucas to discuss the possibility of getting his job back. Lucas informed Martin that he had broken company policy by not telling his supervisor about the theft, and that such behavior was unacceptable for a Chapman employee. He refused to hire Martin back. In light of the help Martin had provided with the court case, however, Lucas offered to help Martin locate a new job. After making some inquiries with a few friends in the business, Lucas was able to get Martin a job at a local auto body shop.

OUTCOME(S) TO BE EVALUATED:

Roger Endison and Martin Sembic were fired.

Strongly Disagree			Neither A Nor Disag	_	Somewhat Agree	Strongly Agree
1	2	3	4	5	6	7

Chapman Automotive

- 66. The procedures which are being used are consistently applied over time.
- 67. The procedures which are being used are consistently applied across different people.
- 68. The procedures which are being used are consistent with company policy as stated in the policy manual.
- 69. The information upon which decisions are based is accurate.
- 70. The information that is used when making decisions is appropriate and complete (factors that are relevant to the decision are considered).
- 71. The individuals who are making decisions are objective and not biased.
- 72. The individuals who are making decisions are open minded and do not possess narrow views.
- 73. Individuals who are affected by the decisions being made have the opportunity to appeal these decisions.
- 74. The decisions that are being made are able to be changed in the event that an error has been made.
- 75. The procedures that are being used take into account the interests, concerns, and values of the individuals who are being affected.
- 76. The procedures which are being used to make decisions are consistent with my values and the code of ethics I follow.
- 77. The individuals involved have an opportunity to express themselves and provide relevant information before a decision is reached.
- 78. The individuals affected by decisions are informed about the results of these decisions in a timely manner.

Strongly	Somewhat	Neither Agree	Somewhat	Strongly
Disagree	Disagree	Nor Disagree	Agree	Agree
1	2 3	4 5	6	7

- 79. The feedback individuals receive is informative.
- 80. The individuals involved are treated with respect and compassion throughout the process.
- 81. In general, the procedures and inputs used to make decisions in this scenario were fair.
- 82. The final outcome in the scenario was fair.

Chapman Automotive

A question on the preceding page asked you to make an OVERALL EVALUATION of the fairness of the procedures and inputs that were used to make decisions in this scenario. What factors in the scenario were most important to you in arriving at this overall evaluation? Please write your answer neatly.

STOP! Please wait for the experimenter before continuing.

Instructions for Overall Ratings

Earlier you were asked to make an OVERALL EVALUATION of the fairness of the procedures and inputs that were used to make decisions in each of the scenarios. You were next asked to write down in essay form which factors were most important to you in arriving at this overall evaluation. At this point I would like to ask you to again think about how you made these overall evaluations. For each of the four scenarios, you are asked to rate a number of factors in terms of their importance to you in arriving at your overall evaluation of the procedures. This set of questions differs from the previous set in an important way. Whereas before you were asked whether a particular problem existed, you are now asked to indicate how much that problem (or lack thereof) affected your overall judgment of the fairness of procedures. As you make your ratings, you may find it helpful to briefly look over the scenario again. It may also be helpful for you to look at the short essay you wrote. Use the scale provided to answer each question.

Overall Ratings for Scenarios

Ross Power Co.

Not Important		ewhat rtant	Important	Very Important		Extremely Important
1	2	3	4	5	6	7

Please rate the following factors in terms of their importance to you in arriving at your overall evaluation of the procedures.

- 83. The consistency with which the procedures were implemented, and the consistency of company policy with the behavior of company officials.
- 84. The accuracy and appropriateness of information that was used.
- 85. The individuals who were making decisions were objective and not biased.
- 86. The decision was able to be changed if an error was made.
- 87. The procedures that were being used took into account the interests, concerns, and values of the individuals who were being affected.
- 88. The procedures which were being used to make decisions were consistent with my values and the code of ethics I follow.
- 89. The individuals involved had an opportunity to express themselves and provide relevant information before a decision was reached.
- 90. The individuals affected by decisions were informed about the results of these decisions in a timely manner, and the feedback was informative.
- 91. The individuals involved were treated with respect and compassion throughout the process.

Kenico Engineering

Not Important	-	ewhat rtant	Important	Ve:	ry rtant	Extremely Important	
1	2	3	4	5	6	7	

Please rate the following factors in terms of their importance to you in arriving at your overall evaluation of the procedures.

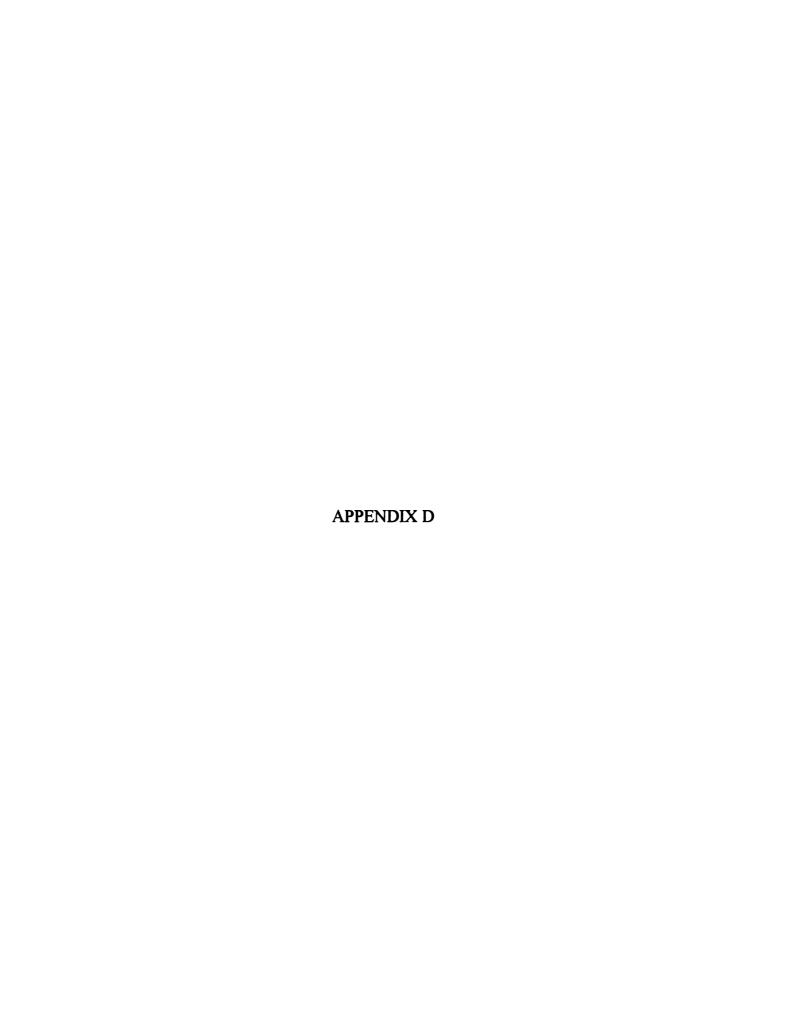
- 92. The consistency with which the procedures were implemented, and the consistency of company policy with the behavior of company officials.
- 93. The accuracy and appropriateness of information that was used.
- 94. The individuals who were making decisions were objective and not biased.
- 95. The decision was able to be changed if an error was made.
- 96. The procedures that were being used took into account the interests, concerns, and values of the individuals who were being affected.
- 97. The procedures which were being used to make decisions were consistent with my values and the code of ethics I follow.
- 98. The individuals involved had an opportunity to express themselves and provide relevant information before a decision was reached.
- 99. The individuals affected by decisions were informed about the results of these decisions in a timely manner, and the feedback was informative.
- 100. The individuals involved were treated with respect and compassion throughout the process.

ACME Vacuum

Not Important		ewhat rtant	Important	Ve:	ry rtant	Extremely Important
1	2	3	4	5	6	7

Please rate the following factors in terms of their importance to you in arriving at your overall evaluation of the procedures.

- 101. The consistency with which the procedures were implemented, and the consistency of company policy with the behavior of company officials.
- 102. The accuracy and appropriateness of information that was used.
- 103. The individuals who were making decisions were objective and not biased.
- 104. The decision was able to be changed if an error was made.
- 105. The procedures that were being used took into account the interests, concerns, and values of the individuals who were being affected.
- 106. The procedures which were being used to make decisions were consistent with my values and the code of ethics I follow.
- 107. The individuals involved had an opportunity to express themselves and provide relevant information before a decision was reached.
- 108. The individuals affected by decisions were informed about the results of these decisions in a timely manner, and the feedback was informative.
- 109. The individuals involved were treated with respect and compassion throughout the process.


Chapman Automotive

Not Important		ewhat rtant	Important	Vei	ry rtant	Extremely Important
1	2	3	4	5	6	7

Please rate the following factors in terms of their importance to you in arriving at your overall evaluation of the procedures.

- 110. The consistency with which the procedures were implemented, and the consistency of company policy with the behavior of company officials.
- 111. The accuracy and appropriateness of information that was used.
- 112. The individuals who were making decisions were objective and not biased.
- 113. The decision was able to be changed if an error was made.
- 114. The procedures that were being used took into account the interests, concerns, and values of the individuals who were being affected.
- 115. The procedures which were being used to make decisions were consistent with my values and the code of ethics I follow.
- 116. The individuals involved had an opportunity to express themselves and provide relevant information before a decision was reached.
- 117. The individuals affected by decisions were informed about the results of these decisions in a timely manner, and the feedback was informative.
- 118. The individuals involved were treated with respect and compassion throughout the process.

STOP! Please wait for the experimenter before continuing.

APPENDIX D

Experiment Stage Four

Probe for Suspicion

What do you think was the purpose of this experiment? Why do you think this?

APPENDIX E

Experiment Stage Five

Debriefing Form

Thank you very much for your help with this study, your participation has been greatly appreciated. Now that you are done with this experiment, you may be wondering what information we hoped to obtain. The experiment you have just completed dealt with issues surrounding individual perceptions of fairness. In our day to day interactions with the people around us, we are constantly making judgments and evaluating the way in which we are treated. In particular researchers have found that individuals are often concerned with the procedures which are used to allocate valued resources among people, and individuals are concerned with the resulting distribution of these resources. Research which focuses on perceptions of resource allocation procedures has been labelled "procedural justice," while research which focuses on perceptions of resource distributions has been labelled "distributive justice." Within each of these two topic areas, Leventhal (1980) has proposed that individuals use particular standards (which he calls "justice rules") to evaluate and make sense of events around them.

Distribution justice rules concern the standard of fairness that is applied when valued resources are handed out. While Leventhal identified eight such rules, he believed that three of them were particularly important for individuals: the contributions rule, the equality rule, and the needs rule. The contributions distribution rule dictates that fair outcome distributions result from the allocation of resources according to individual contributions. In other words, people will perceive resource distributions as being fair if outcomes are distributed in proportion to individual inputs (cf. equity theory, Adams, 1965). The equality distribution rule states that fair outcome distributions result from the allocation of resources in equal shares to all involved parties. The needs distribution rule asserts that fair outcome distributions result from the allocation of resources in proportion to the needs of individuals. Leventhal notes that these rules can become visible to different people at different times, and that this has considerable implications for fairness perceptions. An outcome distribution that matches the needs of the individual will be viewed as fair by those individuals for whom the needs rule is visible, but the same outcome distribution will be perceived as unfair by those for whom a contributions or equality rule is visible.

Procedural justice rules concern the fairness of procedures involved in the

allocation of valued outcomes. Leventhal identified six such rules: the consistency rule, the bias-suppression rule, the accuracy rule, the correctability rule, the representativeness rule, and the ethicality rule. The consistency rule states that allocative procedures should be consistently applied both over time and across persons. The bias-suppression rule states that allocative procedures should be completely free from the influence of personal interest and "doctrinaire views;" in other words, key decision makers should remain impartial and objective. The accuracy rule states that allocative procedures should rely on information that is as accurate and appropriate as possible. The correctability rule states that decisions made during allocation procedures should be open to appeals, and should be able to be changed in the event of an error. The representativeness rule states that the interests, concerns, and values of the parties involved should be taken into account by the allocation procedures. Finally, the ethicality rule states that allocative procedures should be consistent with the "fundamental moral and ethical values accepted by that individual" (p. 45).

Other researchers have identified additional rules by which individuals evaluate the fairness of procedures. Thibaut and Walker (1975) noted that procedures are judged as being more fair if the individuals involved are given a "voice" -- an opportunity to express one's self before a decision is reached. Tyler and Bies (1990) point out that the provision and nature of feedback (i.e. its timeliness, informativeness, etc.) influence perceptions of fairness. Bies and Moag (1986) argue that interpersonal treatment is also important (i.e. treating the individual with respect and compassion). While researchers have invested considerable time identifying and investigating these rules, we currently know very little about when a particular justice rule will be used by an individual, and we know even less about how these rules will be weighted as an individual forms his or her overall perception of fairness (Gilliland, 1993).

This is where the study in which you have just participated comes in. In this experiment, we are particularly interested in issues of procedural justice and the procedural justice rules which people use. We are interested in learning which justice rules are most important to individuals, and we are interested in determining factors which might influence how people perceive and interpret fairness related information. The scenarios you were provided with were carefully constructed so as to provide information about particular justice rule violations. The questions which you answered were likewise linked to each of the procedural justice rules discussed earlier.

If you are interested in reading more about this subject area, the articles listed on the following page would prove to be very informative. In addition, if you would like to discuss this area further or have any questions about this study, feel free to contact me (Dave Waldschmidt) in Room 20 of Baker Hall. I can also be reached at 353-9166.

Thank you very much for participating in this experiment. I ask that you

please do not talk to others about this experiment, as what you say might influence how those individuals approach the experimental task (if the individual you spoke with were to participate in this study at a later time). Talking about this experiment with a future participant might invalidate some of the data obtained.

Again, thank you and good luck in your studies here at MSU!

References

- Adams, J.S. (1965). Inequity in social exchange. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 2, pp. 267-299). New York: Academic Press.
- Bies, R.J., & Moag, J.S. (1986). Interactional justice: Communication criteria of fairness. Research on Negotiation in Organizations, 1, 43-55.
- Gilliland, S.W. (1993). The perceived fairness of selection systems: An organizational justice perspective. <u>Academy of Management Review</u>, <u>18</u>, 694-734.
- Leventhal, G.S. (1980). What should be done with equity theory? New approaches to the study of fairness in social relationships. In K.J. Gergen, M.S. Greenberg, & R.H. Willis (Eds.), <u>Social exchange: Advances in theory and research</u> (pp. 27-55). New York: Springer-Verlag.
- Thibaut, J., & Walker, L. (1975). <u>Procedural justice: A psychological analysis</u>. Hillsdale, NJ: Erlbaum.
- Tyler, T.R., & Bies, R.J. (1990). Beyond formal procedures: The interpersonal context of procedural justice. In J.S. Carroll (Ed.), <u>Applied social psychology and organizational settings</u> (pp. 77-98. Hillsdale, NJ: Erlbaum.

APPENDIX F

Scoring Keys and Procedural Justice Rule Scale Information

Answering Key for Policies and Procedures Manual Test

1	F	90 days.
2	T	
3	T	
4	T	
5	F	Employees may use valid prescriptions, provided they have received approval from their personal physician and Employee Health.
6	T	
7	T	
8	T	
9	T	
10	F	Public announcements are not classified as confidential information.
11	F	Employees should never engage in unsafe behavior, regardless of how urgent the work may seem.
12	F	Positions are open to the most qualified person, regardless of group membership.
13	F	Counseling for substance abuse problems is completely confidential.
14	T	- · · ·

Larsen & Diener Affect Circumplex Scale Scoring Key

Octants

Bipolar Scale

AU = Activated Unpleasant

AP = Activated Pleasant

UU = Unactivated Unpleasant

UP = Unactivated Pleasant

HA = High Activation Activation Scale
P = Pleasant Pleasant Scale

U = Unpleasant Scale (Reverse scored)
LA = Low Activation Activation Scale (Reverse scored)

1. (AU)	Distressed	25. (AU)	Nervous
2. (AP)	Enthusiastic	26. (AP)	Euphoric
3. (UP)	Relaxed	27. (UP)	Calm
4. (UU)	Dull	28. (UU)	Sluggish
5. (HA)	Aroused	29. (HA)	Surprised
6. (P)	Нарру	30. (P)	Cheerful
7. (LA)	Quiet	31. (LA)	Inactive
8. (U)	Unhappy	32. (U)	Grouchy
9. (AU)	Annoyed	33. (AU)	Jittery
10. (AP)	Elated	34. (AP)	Lively
11. (UP)	Content	35. (UP)	Serene
12. (UU)	Tired	36. (UU)	Bored
13. (HA)	Astonished	37. (HA)	Active
14. (P)	Delighted	38. (P)	Warmhearted
15. (LA)	Tranquil	39. (LA)	Idle
16. (U)	Miserable	40. (U)	Gloomy
17. (AU)	Fearful	41. (AU)	Anxious
18. (AP)	Excited	42. (AP)	Peppy
19. (UP)	At Rest	43. (UP)	At Ease
20. (UU)	Drowsy	44. (UU)	Droopy
21. (HA)	Stimulated	45. (HA)	Intense
22. (P)	Glad	46. (P)	Pleased
23. (LA)	Still	47. (LA)	Passive
24. (U)	Sad	48. (U)	Blue

Larsen & Diener Affect Circumplex Scale Scoring Key

Octants Bipolar Scale

AU = Activated Unpleasant

AP = Activated Pleasant

UU = Unactivated Unpleasant

UP = Unactivated Pleasant

HA = High Activation Activation Scale P = Pleasant Pleasant Scale

U = Unpleasant Scale (Reverse scored)
LA = Low Activation Activation Scale (Reverse scored)

1. (AU)	Distressed	25. (AU)	Nervous
2. (AP)	Enthusiastic	26. (AP)	Euphoric
3. (UP)	Relaxed	27. (UP)	Calm
4. (UU)	Dull	28. (UU)	Sluggish
5. (HA)	Aroused	29. (HA)	Surprised
6. (P)	Нарру	30. (P)	Cheerful
7. (LA)	Quiet	31. (LA)	Inactive
8. (U)	Unhappy	32. (U)	Grouchy
9. (AU)	Annoyed	33. (AU)	Jittery
10. (AP)	Elated	34. (AP)	Lively
11. (UP)	Content	35. (UP)	Serene
12. (UU)	Tired	36. (UU)	Bored
13. (HA)	Astonished	37. (HA)	Active
14. (P)	Delighted	38. (P)	Warmhearted
15. (LA)	Tranquil	39. (LA)	Idle
16. (U)	Miserable	40 . (U)	Gloomy
17. (AU)	Fearful	41. (AU)	Anxious
18. (AP)	Excited	42. (AP)	Peppy
19. (UP)	At Rest	43. (UP)	At Ease
2 0. (UU)	Drowsy	44. (UU)	Droopy
21. (HA)	Stimulated	45. (HA)	Intense
2 2. (P)	Glad	46. (P)	Pleased
2 3. (LA)	Still	47. (LA)	Passive
2 4. (U)	Sad	48 . (U)	Blue

Procedural Justice Rule Violation Scales and Items

Strongly Disagree			Neither A	_	Somewhat Agree	Strongly Agree
1	2	3	4	5	6	7

Consistent

The procedures which are being used are consistently applied over time.

The procedures which are being used are consistently applied across different people.

The procedures which are being used are consistent with company policy as stated in the policy manual.

Accurate

The information upon which decisions are based is accurate.

The information that is used when making decisions is appropriate and complete (factors that are relevant to the decision are considered).

Bias-Free

The individuals who are making decisions are objective and not biased.

The individuals who are making decisions are open minded and do not possess narrow views.

Correctable

Individuals who are affected by the decisions being made have the opportunity to appeal these decisions.

The decisions that are being made are able to be changed in the event that an error has been made.

Strongly Disagree			Neither Agre		Somewhat Agree	Strongly Agree
1	2	3	4	5	6	7

Representative

The procedures that are being used take into account the interests, concerns, and values of the individuals who are being affected.

Ethical

The procedures which are being used to make decisions are consistent with my values and the code of ethics I follow.

Voice

The individuals involved have an opportunity to express themselves and provide relevant information before a decision is reached.

Feedback

The individuals affected by decisions are informed about the results of these decisions in a timely manner.

The feedback individuals receive is informative.

Fair Treatment

The individuals involved are treated with respect and compassion throughout the process.

APPENDIX G

Tables

Table 1: Means, Standard Deviations, and Coefficient Alphas.

Ross Power Co. Scenario

		N	EGATIV	ÆÞ	N	EUTRAL	c	POSITIVE ^d			
	αª	mean	SD	admn	mean	SD	admn	mean	SD	admn	
Fairness Scales											
CONSISTENT	.67	4.39	1.51	4.38	4.25	1.63	4.25	4.24	1.58	4.25	
INFO ACCURACY	.76	4.58	1.86	4.58	4.27	1.66	4.26	4.25	1.80	4.26	
BIAS-FREE	.85	4.19	1.89	4.20	4.11	1.69	4.11	3.62	1.76	3.62	
CORRECTABLE	.67	3.77	1.52	3.78	3.48	1.67	3.48	3.43	1.66	3.43	
FEEDBACK	.51	4.18	1.48	4.18	3.74	1.55	3.73	3.94	1.59	3.94	
REPRESENTATIVE		3.15	1.72	3.16	2.85	1.61	2.84	3.09	1.97	3.09	
ETHICAL		3.88	1.97	3.88	3.62	1.90	3.61	3.74	1.89	3.75	
VOICE		3.08	1.94	3.10	2.70	1.83	2.70	2.67	1.96	2.66	
TREATMENT		2.86	1.65	2.88	2.79	1.43	2.78	2.83	1.63	2.83	
PROCEDURES		3.63	2.16	3.63	3.72	1.90	3.71	3.53	2.05	3.54	
OUTCOMES		3.42	2.24	3.43	2.97	1.91	2.96	3.12	2.08	3.13	
VIOLATION	.73	3.03	1.38	3.04	2.78	1.31	2.77	2.86	1.54	2.86	
NO VIOLATION	.73	4.38	1.42	4.39	4.21	1.29	4.20	4.04	1.43	4.04	
Importance of j	ustice	rule t	o over	all eva	aluation	of p	rocedure	ев			
CONSISTENT		4.83	1.68	4.83	5.07	1.41	5.06	5.21	1.58	5.21	
INFO ACCURACY		5.14	1.47	5.14	5.08	1.49	5.08	5.30	1.48	5.30	
BIAS-FREE		5.24	1.52	5.24	4.77	1.43	4.77	4.86	1.65	4.86	
CORRECTABLE		4.88	1.75	4.89	4.34	1.73	4.34	4.53	1.85	4.53	
REPRESENTATIVE		4.85	1.63	4.85	4.51	1.61	4.51	4.64	1.77	4.63	
ETHICAL		4.58	1.84	4.58	4.43	1.96	4.43	4.10	1.89	4.10	
VOICE		4.93	1.61	4.94	4.62	1.59	4.62	4.74	1.78	4.73	
FEEDBACK		4.49	1.61	4.50	4.43	1.70	4.43	4.31	1.71	4.30	
TREATMENT		4.76	1.64	4.77	4.54	1.67	4.54	4.55	1.84	4.55	

[&]quot;N size ranges between 177 and 178.

^bN size ranges between 58 and 59.

N size ranges between 59 and 61.

^dN size ranges between 57 and 58.

Table 1 (cont'd).

Kenico Engineering Scenario

		N	EGATIV	ÆÞ	N	EUTRAL	c	POSITIVE ^d		
	αª	mean	SD	admn	mean	SD	admn	mean	SD	admn
Fairness Scales										
CONSISTENT	.78	3.85	1.45	3.85	4.09	1.58	4.09	4.30	1.35	4.31
INFO ACCURACY	.80	3.64	1.63	3.63	3.86	1.68	3.86	3.91	1.61	3.91
BIAS-FREE	.90	3.23	1.57	3.23	3.42	1.61	3.41	3.52	1.68	3.52
CORRECTABLE	.80	3.58	1.74	3.59	3.81	1.70	3.81	4.03	1.59	4.03
FEEDBACK	.74	3.60	1.55	3.61	3.80	1.77	3.80	3.89	1.82	3.88
REPRESENTATIVE		2.68	1.75	2.69	3.31	2.05	3.30	3.17	1.78	3.17
ETHICAL		3.03	1.80	3.03	3.19	1.57	3.17	3.21	1.51	3.21
VOICE		3.08	1.97	3.10	2.61	1.54	2.61	2.93	1.99	2.92
TREATMENT		3.51	1.96	3.52	3.77	1.85	3.78	3.76	1.84	3.75
PROCEDURES		3.54	1.99	3.54	3.35	1.82	3.35	3.88	1.86	3.89
OUTCOMES		3.52	2.10	3.52	3.40	1.86	3.40	3.90	1.95	3.90
VIOLATION	.77	2.93	1.57	2.94	3.04	1.48	3.03	3.10	1.42	3.10
NO VIOLATION	.73	3.69	1.26	3.69	3.92	1.42	3.92	4.08	1.15	4.08
Importance of j	ustice	e rule t	o ove	call eva	aluation	of pr	rocedure	es		
CONSISTENT		5.05	1.76	5.05	5.05	1.65	5.05	5.00	1.52	5.00
INFO ACCURACY		5.19	1.50	5.18	5.21	1.45	5.21	5.24	1.42	5.25
BIAS-FREE		5.31	1.45	5.30	5.13	1.53	5.13	5.57	1.71	5.57
CORRECTABLE		4.97	1.65	4.98	4.72	1.65	4.72	4.97	1.66	4.95
REPRESENTATIVE		4.73	1.77	4.73	4.98	1.71	4.98	5.09	1.85	5.09
ETHICAL		4.47	1.73	4.47	4.52	1.68	4.52	4.14	1.97	4.14
VOICE		5.12	1.60	5.12	5.15	1.47	5.15	4.97	1.76	4.96
FEEDBACK		4.73	1.73	4.74	4.82	1.67	4.82	4.67	1.77	4.67
TREATMENT		5.17	1.72	5.17	5.26	1.37	5.26	4.95	1.81	4.95

[&]quot;N size ranges between 177 and 178.

^bN size ranges between 58 and 59.

N size ranges between 59 and 61.

N size ranges between 57 and 58.

Table 1 (cont'd).

ACME Vacuum Scenario

		N	EGATIV	ÆÞ	N	EUTRAL	c	POSITIVE ^d		
	αª	mean	SD	admn	mean	SD	admn	mean	SD	admn
Fairness Scales										
CONSISTENT	.46	2.71	1.22	2.72	2.68	1.11	2.68	2.80	1.23	2.80
INFO ACCURACY	.83	1.78	1.15	1.79	1.51	1.06	1.51	1.52	0.96	1.50
BIAS-FREE	.79	1.62	0.94	1.62	1.64	0.97	1.64	1.45	0.78	1.44
CORRECTABLE	.77	2.10	1.58	2.12	2.06	1.55	2.06	1.99	1.58	1.97
FEEDBACK	. 64	2.64	1.43	2.64	2.56	1.40	2.56	2.21	1.28	2.20
REPRESENTATIVE		2.02	1.58	2.03	2.18	1.80	2.18	1.66	1.25	1.64
ETHICAL		1.64	1.26	1.65	1.80	1.34	1.80	1.55	1.13	1.55
VOICE		1.92	1.62	1.93	1.52	1.25	1.52	1.50	1.35	1.48
TREATMENT		1.97	1.40	1.98	1.79	1.20	1.78	1.67	1.15	1.67
PROCEDURES		1.25	0.54	1.26	1.18	0.47	1.18	1.33	1.02	1.32
OUTCOMES		1.19	0.47	1.19	1.13	0.39	1.13	1.21	0.91	1.20
VIOLATION	.60	1.77	1.00	1.78	1.56	0.74	1.56	1.49	0.80	1.48
NO VIOLATION	.49	2.45	0.95	2.46	2.47	1.03	2.47	2.22	0.95	2.21
Importance of j	ustice	rule t	o over	all eva	aluation	of pr	rocedure	в		
CONSISTENT		5.03	1.71	5.03	4.95	1.44	4.95	5.04	1.74	5.04
INFO ACCURACY		5.29	1.82	5.28	5.69	1.35	5.69	5.59	1.77	5.60
BIAS-FREE		5.19	1.76	5.18	5.25	1.41	5.25	5.36	1.74	5.37
CORRECTABLE		5.08	1.88	5.08	5.26	1.66	5.26	5.17	1.78	5.18
REPRESENTATIVE		5.03	1.61	5.03	4.93	1.46	4.94	5.02	1.83	5.02
ETHICAL		4.32	1.97	4.32	4.57	1.86	4.58	3.96	2.00	3.97
VOICE		4.98	1.82	4.98	5.33	1.66	5.33	5.26	1.66	5.26
FEEDBACK		4.53	1.70	4.53	4.44	1.49	4.44	4.61	1.83	4.61
TREATMENT		4.97	1.70	4.97	4.82	1.54	4.82	4.90	1.86	4.89

^{*}N size ranges between 177 and 178.

^bN size ranges between 58 and 59.

N size ranges between 59 and 61.

^dN size ranges between 57 and 58.

Table 1 (cont'd).

Chapman Automotive Scenario

		N	EGATIV	ÆÞ	N	EUTRAL	c	POS	ITIVE	
	α•	mean	SD	admn	mean	SD	admn	mean	SD	admn
Fairness Scales										
CONSISTENT	.79	5.36	1.24	5.36	5.57	1.34	5.56	5.39	1.19	5.40
INFO ACCURACY	. 94	5.99	1.19	5.99	6.00	1.29	5.99	5.91	1.33	5.92
BIAS-FREE	.88	5.24	1.66	5.24	5.09	1.53	5.08	5.10	1.47	5.11
CORRECTABLE	.72	4.53	1.40	4.53	4.33	1.52	4.32	4.22	1.65	4.23
FEEDBACK	.78	4.83	1.46	4.83	4.89	1.35	4.89	5.07	1.33	5.08
REPRESENTATIVE		4.47	1.66	4.47	4.57	1.72	4.57	4.86	1.69	4.88
ETHICAL		5.24	1.62	5.23	5.28	1.54	5.27	5.21	1.46	5.22
VOICE		4.76	1.74	4.76	4.48	2.01	4.47	4.59	1.78	4.59
TREATMENT		4.49	1.71	4.49	4.23	1.66	4.23	4.64	1.52	4.64
PROCEDURES		5.58	1.57	5.57	5.64	1.59	5.63	5.57	1.62	5.58
OUTCOMES		5.54	1.60	5.54	5.82	1.55	5.81	5.66	1.58	5.66
VIOLATION	.75	4.60	1.30	4.59	4.34	1.49	4.34	4.48	1.28	4.49
NO VIOLATION	.75	5.53	1.11	5.53	5.55	1.18	5.55	5.47	1.06	5.48
Importance of j	ustice	rule t	o over	all eva	aluation	of pr	cocedure	es		
CONSISTENT		5.24	1.49	5.23	5.47	1.38	5.46	5.43	1.53	5.45
INFO ACCURACY		5.44	1.25	5.43	5.45	1.41	5.44	5.51	1.54	5.53
BIAS-FREE		5.22	1.50	5.22	4.95	1.49	4.95	5.59	1.40	5.59
CORRECTABLE		4.73	1.68	4.73	4.67	1.50	4.67	4.64	1.95	4.63
REPRESENTATIVE		4.85	1.49	4.85	4.66	1.41	4.66	5.10	1.54	5.10
ETHICAL		4.71	1.79	4.71	4.56	1.71	4.56	4.57	1.97	4.57
VOICE		5.05	1.56	5.06	4.64	1.57	4.64	4.88	1.75	4.88
FEEDBACK		4.73	1.56	4.74	4.28	1.46	4.28	4.55	1.78	4.54
TREATMENT		4.92	1.69	4.91	4.38	1.65	4.38	4.84	1.92	4.85
AFFECT PRE	.89	2.68	0.76		2.95	0.69		3.25	0.78	
AFFECT POST	.87	2.90	0.73		2.92	0.73		2.92	0.74	
SEX		1.71	0.46		1.70	0.46		1.78	0.42	
AGE		19.39	3.01		19.75	2.71		19.76	4.88	
COUNTERBAL		2.53	1.51		2.48	1.51		2.50	1.51	
POLICY MANUAL	.79	11.39	1.78		11.36	1.78		11.26	1.53	<u> </u>

^{*}N size ranges between 177 and 178.

^bN size ranges between 58 and 59.

N size ranges between 59 and 61.

^dN size ranges between 57 and 58.

Table 2: Correlations among Study Variables.

	In	formati	on Co	rrectal	ole Rep	resenta	tive	Voice	P	rocedur	es
	onsiste		ias-Fre		Feedbac		Ethical		reatmen		utcomes
DOGG DOLLED GO											
ROSS POWER CO Fairness Sc											
Consistent	ales 1.00	0.47	0.38	0.14	0.35	0.35	0.39	0.32	0.35	0.54	0.48
Information	0.47	1.00	0.57	0.19	0.41	0.38	0.51	0.35	0.40	0.53	0.56
Bias-Free	0.38	0.57	1.00	0.19	0.44	0.30	0.51	0.42	0.58	0.60	0.58
Correctable	0.38	0.19	0.32	1.00	0.29	0.45	0.32	0.38	0.37	0.00	0.26
Feedback	0.14	0.19	0.32	0.29	1.00	0.30	0.44	0.38	0.47	0.45	0.41
Representativ		0.38	0.30	0.45	0.30	1.00	0.40	0.48	0.44	0.37	0.38
Ethical				0.30	0.44	0.40	1.00	0.39	0.43	0.56	0.60
	0.39 0.32	0.51 0.35	0.52 0.42	0.30	0.44	0.48	0.39	1.00	0.43	0.40	0.39
Voice Treatment	0.32	0.40	0.42	0.38	0.47	0.44	0.33	0.49	1.00	0.50	0.58
Procedures	0.35	0.53	0.50	0.37	0.45	0.37	0.43	0.40	0.50	1.00	0.79
Outcomes	0.48	0.56	0.58	0.26	0.45	0.37	0.60	0.39	0.58	0.79	1.00
Violation	0.42	0.46	0.58	0.50	0.50	0.80	0.50	0.39	0.38	0.79	0.54
								0.45	0.76	0.69	0.67
No Violation	0.74	0.85	0.82	0.27	0.50	0.42	0.59	0.45	0.56	0.63	0.67
Rule Import	ance Sc	ales	•								
Consistent	0.11	0.21	0.12	0.06	0.15	0.05	0.10	0.00	0.05	0.13	0.09
Information	0.17	0.21	0.23	0.03	0.16	0.06	0.13	0.09	0.09	0.18	0.18
Bias-Free	0.11	0.04	0.02	0.07	0.12	0.01	0.02	0.01	0.02	0.09	0.10
Correctable	-0.07	0.04	0.09	0.01	0.15	-0.01	0.06	0.02	0.02	0.06	0.09
Representativ	e-0.03	-0.06	-0.04	-0.03	0.04	0.01	0.06	-0.06	-0.02	-0.06	0.01
Ethical	0.05	0.09	0.09	0.00	0.19	0.07	0.20	0.12	0.12	0.09	0.13
Voice	-0.09	-0.06	0.12	-0.01	0.00	0.05	0.08	0.09	-0.06	-0.07	0.00
Feedback	-0.01	-0.03	0.10	0.13	0.05	0.21	0.14	0.18	-0.01	0.01	0.03
Treatment	0.02	0.01	0.09	0.05	0.09	0.15	0.10	0.18	0.04	0.02	0.05
KENICO ENGINE	ERING										
Fairness Sc											
Consistent	0.12	0.00	-0.07	0.03	0.02	0.04	0.10	-0.01	0.01	0.06	0.03
Information	-0.03	0.12	0.06	0.02	0.08	0.04	-0.01	0.06	0.08	0.07	0.07
Bias-Free	-0.04	0.05	0.06	0.09	0.08	0.08	0.00	0.02	0.14	0.01	0.01
Correctable	-0.02	0.02	-0.01	0.11	0.10	0.05	-0.02	0.08	0.02	0.02	-0.01
Feedback	0.03	0.13	0.22	0.20	0.39	0.15	0.10	0.33	0.18	0.13	0.15
Representativ		0.12	0.16	0.09	0.29	0.10	0.03	0.19	0.16	0.13	0.06
Ethical	-0.01	0.09	0.02	0.01	0.22	0.04	0.02	0.15	0.04	0.09	0.06
Voice	0.06	0.06	0.07	0.13	0.26	0.22	0.08	0.39	0.14	0.07	0.08
Treatment	0.07	0.14	0.19	0.17	0.23	0.17	0.18	0.24	0.21	0.21	0.18
Procedures	0.07	0.13	0.02	0.01	0.14	0.12	0.07	0.06	0.07	0.13	0.13
Outcomes	0.07	0.12	0.06	-0.01	0.12	0.10	0.02	0.10	0.07	0.14	0.13
Violation	0.04	0.11	0.11	0.09	0.31	0.15	0.06	0.30	0.14	0.12	0.08
No Violation	0.02	0.06	0.00	0.07	0.09	0.05	0.03	0.06	0.04	0.06	0.04
Rule Import	2200 Co	2100									
Consistent	0.04	0.18	0.12	0.01	0.20	0.15	0.15	0.10	0.06	0.12	0.16
Information	0.09	0.13	0.09	-0.09	0.07	0.04	0.12	-0.02	-0.04	0.07	0.09
Bias-Free	0.11	0.08	0.05	-0.10	0.19	-0.03	0.14	-0.01	0.00	0.07	0.05
Correctable	-0.02	0.13	0.09	-0.01	0.09	0.09	0.00	0.02	0.03	0.05	0.03
Representativ		0.06	0.03	0.05	0.20	0.11	0.03	-0.02	-0.03	-0.01	-0.03
Ethical	0.14	0.10	0.06	0.12	0.12	0.20	0.16	0.12	0.16	0.16	0.17
Voice	0.02	-0.01	0.05	-0.11	-0.02	0.00	0.00	-0.04	-0.15	-0.04	-0.07
Feedback	0.00	0.07	0.14	-0.01	0.09	0.07	0.14	0.07	-0.03	0.08	0.02
Treatment	0.04	0.08	0.13	-0.01	0.15	0.10	0.18	0.08	0.05	0.05	0.09

Correlations with absolute values greater than or equal to .13 are significant at p<.10 Correlations with absolute values greater than or equal to .15 are significant at p<.05 Correlations with absolute values greater than or equal to .19 are significant at p<.01 Correlations with absolute values greater than or equal to .25 are significant at p<.001

N sizes ranged between 174 and 178

Table 2: Correlations among Study Variables.

~		ormati		rectak		esenta		Voice		rocedur	
C	onsisten	<u> </u>	ias-Free	<u> </u>	Feedback		Ethical	1	'reatmen		utcome
ROSS POWER CO	_										
Fairness Sca	_										
Consistent	1.00	0.47	0.38	0.14	0.35	0.35	0.39	0.32	0.35	0.54	0.48
Information	0.47	1.00	0.57	0.19	0.41	0.38	0.51	0.35	0.40	0.53	0.56
Bias-Free	0.38	0.57	1.00	0.32	0.44	0.30	0.52	0.42	0.58	0.60	0.58
Correctable	0.14	0.19	0.32	1.00	0.29	0.45	0.30	0.38	0.37	0.27	0.26
Feedback	0.35	0.41	0.44	0.29	1.00	0.30	0.44	0.44	0.47	0.45	0.41
Representative	0.35	0.38	0.30	0.45	0.30	1.00	0.40	0.48	0.44	0.37	0.38
Ethical	0.39	0.51	0.52	0.30	0.44	0.40	1.00	0.39	0.43	0.56	0.60
Voice	0.32	0.35	0.42	0.38	0.44	0.48	0.39	1.00	0.49	0.40	0.39
Treatment	0.35	0.40	0.58	0.37	0.47	0.44	0.43	0.49	1.00	0.50	0.58
Procedures	0.54	0.53	0.60	0.27	0.45	0.37	0.56	0.40	0.50	1.00	0.79
Outcomes	0.48	0.56	0.58	0.26	0.41	0.38	0.60	0.39	0.58	0.79	1.00
Violation	0.42	0.46	0.53	0.50	0.50	0.80	0.50	0.84	0.78	0.52	0.54
No Violation	0.74	0.85	0.82	0.27	0.50	0.42	0.59	0.45	0.56	0.69	0.67
Rule Importa	ance Sca	les									
Consistent	0.11	0.21	0.12	0.06	0.15	0.05	0.10	0.00	0.05	0.13	0.09
Information	0.17	0.21	0.23	0.03	0.16	0.06	0.13	0.09	0.09	0.18	0.18
Bias-Free	0.11	0.04	0.02	0.07	0.12	0.01	0.02	0.01	0.02	0.09	0.10
Correctable	-0.07	0.04	0.09	0.01	0.15	-0.01	0.06	0.02	0.02	0.06	0.09
Representative	9-0.03	-0.06	-0.04	-0.03	0.04	0.01	0.06	-0.06	-0.02	-0.06	0.01
Ethical	0.05	0.09	0.09	0.00	0.19	0.07	0.20	0.12	0.12	0.09	0.13
Voice	-0.09	-0.06	0.12	-0.01	0.00	0.05	0.08	0.09	-0.06	-0.07	0.00
Feedback	-0.01	-0.03	0.10	0.13	0.05	0.21	0.14	0.18	-0.01	0.01	0.03
Treatment	0.02	0.01	0.09	0.05	0.09	0.15	0.10	0.18	0.04	0.02	0.05
KENICO ENGINE											
Fairness Sca											
Consistent	0.12	0.00	-0.07	0.03	0.02	0.04	0.10	-0.01	0.01	0.06	0.03
Information	-0.03	0.12	0.06	0.02	0.08	0.04	-0.01	0.06	0.08	0.07	0.07
Bias-Free	-0.04	0.05	0.06	0.09	0.08	0.08	0.00	0.02	0.14	0.01	0.01
Correctable	-0.02	0.02	-0.01	0.11	0.10	0.05	-0.02	0.08	0.02	0.02	-0.01
Feedback	0.03	0.13	0.22	0.20	0.39	0.15	0.10	0.33	0.18	0.13	0.15
Representative		0.12	0.16	0.09	0.29	0.10	0.03	0.19	0.16	0.13	0.06
Ethical	-0.01	0.09	0.02	0.01	0.22	0.04	0.02	0.15	0.04	0.09	0.06
Voic e	0.06	0.06	0.07	0.13	0.26	0.22	0.08	0.39	0.14	0.07	0.08
Treatment	0.07	0.14	0.19	0.17	0.23	0.17	0.18	0.24	0.21	0.21	0.18
Procedures	0.07	0.13	0.02	0.01	0.14	0.12	0.07	0.06	0.07	0.13	0.13
Outcomes	0.07	0.12	0.06	-0.01	0.12	0.10	0.02	0.10	0.07	0.14	0.13
Violation	0.04	0.11	0.11	0.09	0.31	0.15	0.06	0.30	0.14	0.12	0.08
No Violation	0.02	0.06	0.00	0.07	0.09	0.05	0.03	0.06	0.04	0.06	0.04
_		_									
Rule Importa											
Consistent	0.04	0.18	0.12	0.01	0.20	0.15	0.15	0.10	0.06	0.12	0.16
Information	0.09	0.13	0.09	-0.09	0.07	0.04	0.12	-0.02	-0.04	0.07	0.09
Bias-Free	0.11	0.08	0.05	-0.10	0.19	-0.03	0.14	-0.01	0.00	0.07	0.05
Correctable	-0.02	0.13	0.09	-0.01	0.09	0.09	0.00	0.02	0.03	0.05	0.03
Representative		0.06	0.03	0.05	0.20	0.11	0.03	-0.02	-0.03	-0.01	-0.03
Ethical	0.14	0.10	0.06	0.12	0.12	0.20	0.16	0.12	0.16	0.16	0.17
Voice		-0.01	0.05	-0.11	-0.02	0.00	0.00	-0.04	-0.15	-0.04	-0.07
	0.00	0.07		-0.01		^ ^ 7	0.14	0.07	-0.03	0.08	0.02
Feedback Treatment	0.04	0.08	0.14 0.13	-0.01	0.09 0.15	0.07 0.10	0.14	0.08	0.05	0.05	0.02

N sizes ranged between 174 and 178

Table 2 (cont'd).

	Informa				resenta		Voice		rocedur	
Consi	stent	Bias-Fre	e	Feedbac	К	Ethical		reatmen	it C	utcome
ACME VACUUM										
Fairness Scales						0.00			0 04	
Consistent 0.			0.01	0.12	0.07	0.06	0.04	0.02 0.16	-0.04 0.02	-0.02
Information 0.			0.10	0.05	0.06	-0.06	0.19			-0.03
Bias-Free 0.			0.16	0.07	0.06	0.05	0.22	0.09	0.09	0.06
Correctable -0. Feedback 0.			0.33	-0.05 0.30	0.10	0.01 0.16	0.15 0.25	0.08 0.14	-0.06 0.09	-0.03 0.15
eedback 0. epresentative 0.			0.13	0.30	0.13	0.16	0.16	0.14	0.13	0.13
thical 0.			0.13	0.19	0.09	0.07	0.10	0.20	0.13	0.11
oice 0.			0.26	0.03	0.16	0.09	0.26	0.20	0.02	0.06
reatment 0.			0.27	0.03	0.16	0.05	0.28	0.27	0.11	0.09
rocedures 0.			-0.06	-0.01	-0.03	-0.01	0.05	0.09	0.07	0.06
outcomes 0.			0.05	0.04	-0.02	-0.02	0.11	0.11	0.01	0.07
iolation 0.			0.24	0.06	0.14	0.04	0.30	0.21	0.05	0.04
To Violation 0.			0.15	0.30	0.13	0.14	0.21	0.21	0.10	0.12
Rule Importance	Scales									
Consistent -0.			-0.09	-0.06	0.02	0.03	-0.01	-0.03	-0.10	-0.08
information -0.			-0.13	-0.02	-0.07	0.03	-0.14	0.01	-0.04	-0.05
Bias-Free 0.			-0.06	-0.01	0.02	-0.04	-0.09	-0.08	-0.07	-0.06
Correctable -0.			-0.08	-0.04	0.01	0.02	-0.14	-0.15	-0.02	-0.08
Representative-0.	10 0.0	-0.06	-0.08	-0.05	-0.02	0.05	-0.12	-0.19	-0.05	-0.05
Ethical 0.	00 -0.0		-0.04	-0.07	0.03	0.07	-0.07	0.00	-0.04	-0.02
Voice -0.	LO -0.04	-0.05	-0.07	-0.11	0.00	-0.05	-0.15	-0.17	-0.10	-0.14
Feedback -0.			-0.06	-0.11	-0.08	-0.04	-0.13	-0.21	-0.08	-0.12
Treatment -0.	0.0	-0.05	0.03	-0.08	0.14	0.09	0.07	-0.02	-0.04	-0.04
HAPMAN AUTOMOTIV Fairness Scales										
Consistent 0.		0.16	0.15	0.12	0.11	0.16	-0.08	0.03	0.15	0.10
Information 0.			0.16	0.12	0.14	0.22	0.01	0.11	0.21	0.16
Bias-Free 0.			0.24	0.30	0.16	0.17	0.22	0.24	0.24	0.25
Correctable 0.	16 0.1	0.22	0.25	0.39	0.10	0.11	0.19	0.20	0.25	0.22
Feedback 0.	L9 0.0	0.17	0.24	0.47	0.13	0.17	0.17	0.19	0.20	0.16
Representative 0.	l3 0.10	0.07	0.23	0.21	0.10	0.15	0.13	0.20	0.22	0.19
Ethical 0.	19 0.19	0.17	0.27	0.29	0.09	0.28	0.15	0.26	0.24	0.22
Joice 0.	L6 0.0°	0.22	0.22	0.32	0.14	0.14	0.20	0.30	0.21	0.17
reatment 0.	29 0.13	0.17	0.23	0.31	0.10	0.19	0.15	0.34	0.25	0.17
Procedures 0.			0.24	0.23	0.09	0.22	0.14	0.19	0.28	0.20
outcomes 0.			0.26	0.26	0.12	0.25	0.14	0.23	0.27	0.22
iolation 0.			0.28	0.41	0.14	0.18	0.22	0.35	0.29	0.23
o Violation 0.	23 0.20	0.26	0.23	0.23	0.17	0.22	0.08	0.17	0.25	0.21
Rule Importance										
onsistent 0.			0.07	0.11	0.12	0.13	-0.09	0.05	0.06	0.09
nformation 0.			0.01	0.16	0.03	0.21	-0.06	0.14	0.11	0.20
ias-Free 0.			0.01	0.02	0.07	0.09	0.03	-0.02	-0.02	0.09
orrectable 0.			0.06	0.11	0.11	0.16	0.00	0.13	0.09	0.15
Representative 0.			0.02	0.11	0.19	0.04	0.09	0.00	0.02	0.01
thical 0.			-0.01	0.11	0.11	0.20	0.05	0.15	0.10	0.14
oice 0.			0.00	0.10	0.11	0.13	0.00	0.01	0.00	0.05
${f reatment} {f -0}.$			0.06 0.05	0.14 0.10	0.07 0.16	0.15 0.25	-0.01 0.13	0.01 0.09	0.02 0.02	0.04
os/Othr (dmy)-0.	3 -0.0	-0.14	-0.06	0.00	0.02	0.00	-0.05	0.00	-0.03	-0.02
eg/Othr (dmy) 0.			0.09	0.10	0.02	0.05	0.10	0.02	0.00	0.09
ffect (pre) -0.			0.03	0.10	0.04	-0.02	0.06	0.11	-0.04	0.03
Affect (pre) -0.			0.02	0.07	0.04	0.08	0.03	0.15	0.01	0.05
Sex -0.			0.04	-0.07	0.02	-0.04	-0.07	-0.04	0.00	-0.04
ige 0.			-0.09	-0.13	-0.04	-0.02	-0.12	-0.07	-0.07	-0.08
Counterbalance-0.			-0.14	-0.23	-0.28	-0.19	-0.22	-0.40	-0.19	-0.21
Policy score 0.										
COLICA RCOLE OF		. ∪.∪∠	-0.02	0.06	0.01	0.10	-0.13	0.02	0.08	0.06

Table 2 (cont'd).

			1	over				ral rul		dures	
	Ma	Violati		formati	an Ca	rrectab	.1.	Ethical		eedback	
vi	NO Lolatio		on, in onsiste		ias-Fre				Voice		atment
	COLACIO		OMBIBLE			C NOL	A C D CAAC S	<u></u>	10100		WO INDIANO
ROSS POWER CO.											
Violation	1.00	0.58	0.04	0.10	0.02	0.01	-0.03	0.13	0.04	0.17	0.16
No Violation	0.58	1.00	0.18	0.25	0.06	0.03	-0.05	0.09	-0.01	0.03	0.05
Rule Importa											
Consistent	0.04	0.18	1.00	0.56	0.30	0.17	0.27	0.06	0.19	0.18	0.19
Information	0.10	0.25	0.56	1.00	0.37	0.38	0.27	0.22	0.37	0.30	0.34
Bias-Free	0.02	0.06	0.30	0.37	1.00	0.48	0.43	0.35	0.31	0.27	0.35
Correctable	0.01	0.03	0.17	0.38	0.48	1.00	0.42	0.42	0.53	0.26	0.39
Representative		-0.05	0.27	0.27	0.43	0.42	1.00	0.43	0.44	0.35	0.37
Ethical	0.13	0.09	0.06	0.22	0.35	0.42	0.43	1.00	0.36	0.21	0.36
Voice	0.04	-0.01	0.19	0.37	0.31	0.53	0.44	0.36	1.00	0.49	0.50
Feedback	0.17	0.03	0.18	0.30	0.27	0.26	0.35	0.21	0.49	1.00	0.56
Treatment	0.16	0.05	0.19	0.34	0.35	0.39	0.37	0.36	0.50	0.56	1.00
KENICO ENGINER											
Consistent	0.02	0.02	0.22	0.01	0.04	-0.04	0.07	0.03	-0.07	-0.01	-0.03
Information	0.07	0.06	0.17	0.02	-0.02	0.02	-0.05	-0.11	-0.12	-0.10	-0.12
Bias-Free	0.09	0.03	0.20	-0.02	0.00	0.01	-0.02	-0.02	-0.04	-0.13	-0.07
Correctable	0.06	0.00	0.18	0.10	-0.09	0.03	-0.01	-0.04	0.01	-0.02	0.01
Feedback	0.28	0.16	0.12	0.07	0.06	0.10	-0.01	-0.01	0.05	0.03	0.06
Representative	0.19	0.14	0.20	0.13	0.04	0.05	0.08	0.05	0.05	0.07	0.10
Ethical	0.10	0.04	0.10	-0.02	0.11	0.03	0.04	-0.04	-0.04	-0.02	-0.04
Voice	0.32	0.08	0.00	0.10	0.05	0.01	0.02	0.02	-0.04	0.05	0.06
Treatment	0.26	0.17	0.22	0.11	0.11	0.04	0.07	-0.05	-0.02	0.01	-0.02
Procedures	0.10	0.09	0.16	-0.05	0.13	0.00	0.06	-0.06	-0.14	-0.14	-0.15
Outcomes	0.11	0.11	0.09	-0.04	0.08	0.02	-0.03	-0.06	-0.10	-0.13	-0.11
Violation	0.25	0.11	0.13	0.09	0.07	0.04	0.06	0.02	0.00	0.05	0.05
No Violation	0.06	0.03	0.24	0.06	-0.04	0.00	0.00	-0.06	-0.07	-0.06	-0.06
Rule Importa	ance Sc	ales									
Consistent	0.14	0.14	0.48	0.40	0.32	0.18	0.39	0.25	0.27	0.32	0.24
Information	-0.01	0.13	0.48	0.60	0.36	0.35	0.35	0.25	0.38	0.24	0.35
Bias-Free	-0.02	0.10	0.39	0.34	0.40	0.29	0.33	0.21	0.28	0.15	0.31
Correctable	0.06	0.08	0.37	0.38	0.35	0.50	0.35	0.20	0.39	0.24	0.34
Representative	0.02	0.06	0.46	0.34	0.24	0.23	0.45	0.26	0.36	0.34	0.45
Ethical	0.20	0.12	0.13	0.18	0.26	0.27	0.24	0.67	0.14	0.14	0.31
Voice	-0.07	0.02	0.32	0.38	0.30	0.37	0.30	0.16	0.47	0.40	0.43
Feedback	0.05	0.09	0.34	0.28	0.30	0.40	0.43	0.30	0.43	0.54	0.45
Treatment	0.09	0.10	0.21	0.29	0.26	0.38	0.38	0.37	0.40	0.37	0.64
ACME VACUUM Fairness Sca											
Consistent	0.05	0.13	-0.04	0.01	0.10	0.15	0.09	0.07	0.01	0.02	0.15
Information	0.17	0.03	-0.14	-0.01	0.03	0.12	-0.16	-0.08	-0.03	-0.02	0.08
Bias-Free	0.16	0.05	-0.16	-0.02	0.05	0.11	-0.15	0.05	0.03	0.05	0.10
Correctable	0.14	-0.08	0.01	-0.15	-0.04	-0.18	0.01	-0.08	-0.02	0.06	-0.01
Feedback	0.22	0.24	0.04	0.03	0.01	-0.06	-0.04	0.02	-0.07	-0.11	-0.03
Representative	0.20	0.20	-0.06	-0.08	0.01	-0.13	-0.10	-0.17	-0.18	-0.14	-0.03
Ethical	0.23	0.15	-0.09	-0.09	-0.05	-0.09	-0.06	-0.15	-0.18	0.03	-0.04
Voice	0.26	0.02	-0.20	-0.18	-0.16	-0.09	-0.02	-0.07	-0.01	-0.01	-0.03
Treatment	0.30	0.09	-0.10	-0.11	-0.05	-0.04	-0.12	-0.05	-0.09	-0.14	-0.03
Procedures	0.04	0.02	-0.10	-0.14	-0.08	-0.09	-0.01	-0.04	-0.04	-0.05	-0.09
Outcomes	0.08	-0.04	-0.15	-0.19	-0.06	-0.03	-0.05	-0.05	0.01	-0.01	-0.10

N sizes ranged between 174 and 178

Table 2 (cont'd).

ROSS POWER CO.

				over				ıral rul irness o		dures	
	No	Violati	on In	formati	on Co	rrectab	al e	Ethical	F	eedback	
	Violatio		Consiste		ias-Fre		resenta		Voice		atment
ACME VACUUM Fairness S	cales										
Violation	0.27	0.04	-0.22	-0.11	-0.06	0.04	-0.13	-0.05	-0.01	0.00	0.05
No Violation		0.27	-0.03	-0.03	0.05	-0.04	-0.04	-0.05	-0.13	-0.11	0.03
Rule Impor	tance Sc		. •								
Consistent	-0.01	0.05	0.37	0.32	0.18	0.16	0.20	0.02	0.21	0.26	0.19
Information	-0.09	0.02	0.39	0.35	0.22	0.13	0.23	0.13	0.16	0.08	0.13
Bias-Free	-0.07	0.02	0.25	0.35	0.33	0.19	0.28	0.21	0.23	0.17	0.2
Correctable	-0.11	-0.05	0.29	0.29	0.25	0.33	0.29	0.16	0.28	0.17	0.2
Representati	ve-0.13	-0.06	0.22	0.21	0.28	0.27	0.39	0.23	0.29	0.23	0.3
Ethical	-0.02	-0.01	0.02	0.10	0.19	0.30	0.29	0.60	0.23	0.24	0.2
Voice	-0.13	-0.07	0.20	0.29	0.20	0.17	0.28	0.10	0.34	0.26	0.2
Feedback	-0.17	-0.16	0.07	0.15	0.22	0.32	0.26	0.20	0.31	0.36	0.3
Treatment	0.08	-0.05	0.09	0.25	0.31	0.26	0.34	0.31	0.30	0.28	0.5
CHAPMAN AUTO Fairness S		•									
Consistent	0.02	0.21	0.23	0.13	0.02	0.01	0.08	0.00	0.04	0.12	-0.0
Information	0.10	0.28	0.20	0.15	0.06	0.01	0.12	0.18	0.10	0.16	0.0
Bias-Free	0.25	0.26	0.14	0.13	0.02	-0.01	0.07	0.07	0.07	0.15	0.0
Correctable	0.20	0.21	0.19	0.19	0.02	0.10	0.12	0.05	0.01	0.13	0.0
Feedback	0.20	0.18	0.20	0.20	-0.03	0.03	0.08	0.03	0.02	0.14	0.0
Representati		0.12	0.21	0.15	0.02	0.04	0.15	0.07	-0.01	0.06	0.0
Ethical	0.20	0.21	0.18	0.10	-0.01	0.03	0.11	0.14	0.01	0.03	0.0
Voice	0.26	0.19	0.16	0.12	0.01	0.09	0.11	0.05	-0.01	0.10	0.0
Treatment	0.24	0.24	0.17	0.14	0.08	-0.06	0.07	0.02	0.01	-0.01	0.0
Procedures	0.17	0.23	0.16	0.11	-0.05	-0.02	0.04	0.04	-0.04	0.01	-0.0
Outcomes	0.20	0.26	0.14	0.08	-0.02	0.00	0.04	0.03	-0.03	0.00	-0.0
Violation	0.29	0.26	0.14	0.18	0.04	0.06	0.12	0.05	0.00	0.09	0.0
No Violation		0.31	0.22	0.17	0.04	0.00	0.11	0.10	0.09	0.18	0.0
Rule Impor	tance Sc	ales									
Consistent	0.03	0.06	0.44	0.22	0.18	0.14	0.19	0.15	0.09	0.14	-0.0
Information	0.04	0.20	0.46	0.37	0.31	0.24	0.30	0.17	0.09	0.11	0.0
Bias-Free	0.03	0.05	0.27	0.34	0.26	0.29	0.27	0.20	0.32	0.20	0.2
Correctable	0.09	0.10	0.28	0.36	0.42	0.59	0.37	0.33	0.32	0.31	0.3
Representati		0.02	0.19	0.32	0.14	0.24	0.27	0.20	0.31	0.23	0.2
Ethical	0.12	0.10	0.10	0.13	0.27	0.23	0.32	0.70	0.11	0.18	0.3
Voice	0.05	0.11	0.14	0.33	0.24	0.49	0.27	0.27	0.45	0.39	0.4
Feedback	0.03	-0.01	0.12	0.15	0.18	0.31	0.20	0.27	0.24	0.40	0.2
Treatment	0.16	0.13	0.06	0.26	0.07	0.26	0.19	0.28	0.28	0.29	0.3
Pos/Othr (dm	v)-0.01	-0.09	0.08	0.06	-0.04	-0.02	-0.01	-0.10	-0.01	-0.04	-0.0
Neg/Othr (dm		0.09	-0.09	-0.02	0.13	0.12	0.08	0.08	0.07	0.03	0.0
Affect (pre)		-0.04	0.11	0.04	-0.03	0.00	-0.06	0.01	0.04	-0.11	-0.0
Affect (post		0.04	0.05	0.06	0.02	-0.03	-0.06	0.04	-0.03	0.02	0.0
Sex	-0.04	-0.05	0.13	0.13	0.02	0.12	0.17	-0.02	0.17	0.10	0.1
Age	-0.10	-0.03	0.01	0.07	0.14	0.12	0.15	0.14	0.10	0.12	0.1
nge Counterbalan		-0.25	-0.12	-0.10	0.11	-0.07	-0.07	0.02	-0.03	-0.11	-0.1
Policy score		0.11	0.05	0.01	-0.06	-0.04	-0.06	-0.02	-0.13	-0.14	-0.0

N sizes ranged between 174 and 178

Table 2 (cont'd).

^		formati			le Rep			Voice	_	rocedur	
<u>C</u>	onsiste	ent E	ias-Fre	<u> </u>	Feedbac	<u>K</u>	Ethical		reatmen	<u>E</u> C	utcomes
KENICO ENGINE	ERING										
Fairness Sc		•									
Consistent	1.00	0.49	0.50	0.45	0.32	0.39	0.43	0.21	0.43	0.54	0.40
Information	0.49	1.00	0.75	0.48	0.51	0.55	0.68	0.48	0.60	0.73	0.73
Bias-Free	0.50	0.75	1.00	0.45	0.47	0.51	0.63	0.43	0.63	0.73	0.66
Correctable	0.45	0.48	0.45	1.00	0.42	0.54	0.46	0.43	0.40	0.38	0.37
Feedback	0.32	0.51	0.47	0.42	1.00	0.60	0.53	0.58	0.62	0.47	0.52
Representativ	e 0.39	0.55	0.51	0.54	0.60	1.00	0.66	0.48	0.55	0.46	0.43
Ethical	0.43	0.68	0.63	0.46	0.53	0.66	1.00	0.46	0.63	0.74	0.67
Voice	0.21	0.48	0.43	0.43	0.58	0.48	0.46	1.00	0.50	0.39	0.43
Treatment	0.43	0.60	0.63	0.40	0.62	0.55	0.63	0.50	1.00	0.65	0.58
Procedures	0.54	0.73	0.73	0.38	0.47	0.46	0.74	0.39	0.65	1.00	0.86
Outcomes	0.40	0.73	0.66	0.37	0.52	0.43	0.67	0.43	0.58	0.86	1.00
Violation	0.42	0.68	0.62	0.58	0.69	0.87	0.84	0.79	0.67	0.62	0.60
No Violation	0.79	0.82	0.70	0.81	0.52	0.62	0.66	0.47	0.59	0.68	0.62
Rule Import	ance Sc	ales									
Consistent	-0.03	0.13	0.08	0.02	0.17	0.13	0.09	0.10	0.16	0.06	0.08
Information	-0.02	-0.01	0.00	0.03	0.04	0.08	0.00	0.07	0.07	-0.08	-0.05
Bias-Free	0.00	-0.11	-0.02	0.06	0.00	0.01	0.01	-0.03	0.06	-0.03	-0.04
Correctable	0.05	0.07	0.00	0.11	0.04	0.09	0.06	0.05	0.10	0.03	0.03
Representativ	e 0.10	-0.10	-0.03	0.13	-0.03	0.12	-0.12	-0.02	-0.03	-0.16	-0.23
Ethical	-0.01	-0.10	0.02	0.02	-0.05	-0.01	-0.10	0.09	-0.06	-0.09	-0.04
Voice	0.10	-0.06	-0.04	0.09	-0.04	0.01	-0.07	0.09	-0.02	-0.10	-0.11
Feedback	0.08	0.04	0.10	0.15	0.09	0.19	0.09	0.10	0.17	0.07	0.00
Treatment	0.02	-0.04	0.01	0.09	0.15	0.14	-0.04	0.12	0.11	-0.02	0.00
ACME_VACUUM	- 7										
Fairness Sc			0.04	0 00	0 01	0.10	0.05	0 04	0.05	0 00	0.05
Consistent Information	0.18	0.00 -0.05	-0.04 -0.06	0.02 0.07	0.01 0.02	0.10 0.06	0.05 -0.07	0.04 0.10	-0.05 -0.01	-0.02 0.01	-0.05 0.02
	0.04										0.02
Bias-Free Correctable	-0.01	-0.02 -0.03	0.03	0.01	0.12 0.09	0.10	-0.01	0.10 0.22	0.14 0.08	-0.02 -0.01	-0.01
Feedback	0.00	-0.03	0.05 -0.03		0.09	0.09 0.10	-0.02 -0.02	0.22	0.08	-0.01	-0.04
Representativ		0.10	0.05	0.09 0.10	0.29	0.16	0.14	0.19	0.16	0.03	0.02
Ethical	0.00	-0.02				0.14	0.05	0.15	0.18	-0.06	-0.07
Voice	-0.03	-0.02	-0.12 0.05	-0.02	0.17 0.14	0.14	0.05	0.15	0.08	-0.00	-0.07
Treatment	-0.03	-0.03	0.05	0.12 0.05	0.14	0.10	0.05	0.25	0.07	0.01	-0.03
Procedures	0.10	-0.01	0.07	-0.03	-0.02	0.10	0.03	-0.01	0.01	0.01	0.02
Outcomes	0.10	-0.01	0.01	-0.12	0.02	0.02	-0.02	-0.06	0.01	0.03	-0.03
Violation	-0.01	-0.03	0.00	0.10	0.13	0.11	-0.02	0.22	0.08	-0.01	0.00
No Violation	0.15	0.03	0.01	0.10	0.13	0.17	0.08	0.18	0.10	0.02	0.02
NO VIOIGCION	0.13	0.03	0.00	0.10	0.21	0.17	0.00	0.10	0.10	0.02	0.02
Rule Import											
Consistent	0.06	0.06	0.03	-0.09	-0.06	0.05	0.00	-0.05	-0.01	-0.06	-0.09
Information	0.12	-0.07	-0.01	-0.03	-0.10	0.03	0.00	-0.29	0.02	-0.06	-0.16
Bias-Free	0.06	-0.14	-0.10	0.04	-0.07	0.02	-0.10	-0.13	-0.03	-0.17	-0.22
Correctable	0.03	-0.04	-0.02	0.06	-0.08	0.09	0.01	-0.11	0.00	-0.08	-0.10
Representativ		-0.07	-0.09	0.00	-0.10	-0.01	-0.09	-0.16	-0.03	-0.10	-0.16
Ethical	-0.04	-0.22	-0.08	-0.05	-0.17	-0.07	-0.11	-0.10	-0.16	-0.18	-0.23
Voice	0.01	-0.20	-0.13	-0.05	-0.11	-0.08	-0.18	-0.17	-0.04	-0.23	-0.25
Feedback	-0.08	-0.26	-0.20	-0.07	-0.14	-0.10	-0.15	-0.13	-0.17	-0.22	-0.29
Treatment	0.00	-0.16	-0.08	-0.04	-0.07	-0.04	-0.14	0.00	0.02	-0.09	-0.15

N sizes ranged between 174 and 178

Table 2 (cont'd).

		format		rrectal		resenta		Voice	_	rocedu	
	Consiste	ent I	Bias-Fre	c	Feedbac	:k	Ethical		reatmer	<u>ıt</u>	Outcome
CHAPMAN AUT	COMOTIVE										
Fairness	Scales										
Consistent	0.13	0.03	-0.03	0.06	0.01	-0.01	-0.04	-0.13	0.00	-0.02	-0.04
Information	0.05	-0.07	0.00	-0.01	0.05	0.02	-0.15	-0.08	0.01	-0.05	-0.09
Bias-Free	-0.04	0.01	0.04	0.09	0.19	0.09	0.00	0.07	0.05	0.00	0.07
Correctable	-0.01	-0.02	-0.03	0.26	0.19	0.14	0.03	0.09	0.07	0.01	-0.04
Feedback	0.00	-0.02	-0.01	0.12	0.24	0.15	-0.03	0.15	0.05	-0.05	-0.01
Representat	ive-0.04	-0.07	-0.05	0.11	0.05	0.00	-0.09	0.00	-0.01	-0.06	-0.09
Ethical	0.01	-0.08	-0.03	0.01	0.12	-0.03	-0.07	-0.02	-0.02	-0.04	0.00
Voice	-0.02	-0.04	-0.04	0.11	0.20	0.14	-0.04	0.16	0.08	-0.04	-0.02
Treatment	0.03	-0.04	0.00	0.06	0.00	0.06	-0.08	0.00	0.03	-0.08	-0.10
Procedures	0.08	-0.03	-0.01	0.09	0.11	0.03	-0.06	0.02	0.02	0.01	-0.01
Outcomes	0.08	-0.03	-0.01	0.11	0.14	0.06	-0.06	0.02	0.02	0.01	0.01
Violation	0.00	-0.04	-0.03	0.17	0.17	0.14	-0.04	0.11	0.08	-0.05	-0.06
No Violatio	on 0.05	-0.01	0.00	0.06	0.11	0.05	-0.08	-0.05	0.03	-0.03	-0.02
Rule Impo	ortance Sc	ales .	_								
Consistent	0.11	0.01	0.06	0.04	-0.03	-0.06	-0.10	-0.07	0.02	-0.01	-0.07
Information	0.04	0.04	0.05	0.06	0.02	-0.02	0.02	-0.06	0.10	0.04	-0.02
Bias-Free	-0.06	-0.08	-0.04	0.01	0.01	-0.03	-0.13	-0.01	0.01	-0.06	0.04
Correctable	0.01	0.02	0.03	0.09	-0.01	0.07	0.01	0.02	0.05	0.03	-0.01
Representat	ive-0.20	-0.08	-0.09	0.00	-0.07	-0.03	-0.12	0.04	-0.06	-0.13	-0.13
Ethical	0.02	-0.14	-0.05	-0.07	-0.04	-0.06	-0.11	0.05	-0.07	-0.08	-0.10
Voice	-0.10	-0.05	-0.04	-0.09	-0.01	0.03	-0.10	-0.01	-0.05	-0.08	-0.03
Feedback	-0.08	-0.04	-0.04	-0.02	-0.04	0.04	-0.03	0.07	-0.04	-0.08	-0.13
Treatment	-0.07	-0.07	-0.09	0.02	-0.03	0.06	-0.13	0.07	-0.08	-0.11	-0.05
Pos/Othr (d	lmy) 0.11	0.04	0.06	0.09	0.05	0.04	0.03	0.02	0.03	0.11	0.10
Neg/Othr (d		-0.07	-0.07	-0.09	-0.07	-0.14	-0.05	0.08	-0.06	-0.02	-0.03
Affect (pre		0.06	0.15	-0.04	0.10	0.07	0.05	-0.02	0.13	0.07	0.08
Affect (pos		-0.02	0.04	-0.05	0.02	0.06	0.03	-0.03	0.11	0.00	
Sex	-0.03	-0.13	-0.08	0.00	-0.09	-0.02	-0.11	-0.15	0.00	-0.10	
Age	0.20	-0.14	-0.10	-0.16	-0.17	-0.03	-0.11	-0.13	-0.16	-0.11	-0.12
Counterbala		-0.12	-0.12	-0.09	-0.12	-0.24	-0.11	-0.16	-0.13	-0.06	-0.08
Policy scor		0.09	0.06	0.00	-0.05	-0.01	0.07	-0.13	-0.04	0.10	

Correlations with absolute values greater than or equal to .13 are significant at p<.10 Correlations with absolute values greater than or equal to .15 are significant at p<.05 Correlations with absolute values greater than or equal to .19 are significant at p<.01 Correlations with absolute values greater than or equal to .25 are significant at p<.001

N sizes ranged between 174 and 178

Table 2 (cont'd).

				over				iral rul irness o		dures	
	No	Violati	on Ir	formati	on Co	rrectab	le	Ethical	F	eedback	.
v	iolatic		onsiste			e Rep			Voice		atment
KENICO ENGINE Fairness Sc	ERING	•									
Violation	1.00	0.70	0.14	0.06	0.00	0.09	0.01	-0.01	0.02	0.16	0.10
No Violation	0.70	1.00	0.05	0.00	-0.03	0.10	0.05	-0.04	0.05	0.11	0.03
Rule Import						0.36	0.30	0.24	0.24	0.20	0.37
Consistent	0.14 0.06	0.05	1.00 0.62	0.62 1.00	0.39 0.58	0.36 0.56	0.30	0.34 0.35	0.34	0.38	0.37
Information Bias-Free	0.00	-0.03	0.82	0.58	1.00	0.42	0.51	0.33	0.40	0.41	0.37
Correctable	0.09	0.10	0.36	0.56	0.42	1.00	0.49	0.23	0.56	0.48	0.36
Representativ		0.05	0.30	0.45	0.51	0.49	1.00	0.34	0.55	0.43	0.41
Ethical	-0.01	-0.04	0.34	0.35	0.22	0.23	0.34	1.00	0.28	0.23	0.35
Voice	0.02	0.05	0.34	0.54	0.40	0.56	0.55	0.28	1.00	0.55	0.49
Feedback	0.16	0.11	0.38	0.44	0.41	0.48	0.43	0.23	0.55	1.00	0.58
Treatment	0.10	0.03	0.37	0.46	0.37	0.36	0.41	0.35	0.49	0.58	1.00
ACME VACUUM	_										
Fairness Sc					0 00			0 00	0 00	0.05	0.06
Consistent	0.08	0.08	-0.09	0.01	0.08	0.08	0.15	0.02	0.08	0.05	-0.04
Information	0.04	0.01	-0.23	-0.15	-0.03	0.07	-0.08	0.01			
Bias-Free	0.08	0.02	-0.11	-0.08	-0.11	-0.06	-0.08	0.16	0.00	-0.04	-0.04
Correctable	0.13	0.07	0.04	-0.07	-0.09	-0.04	-0.09	-0.03	-0.15 -0.03	0.10 -0.15	0.01
Feedback	0.12	0.02	0.06	0.00	0.07	-0.04	0.04	0.07	-0.03	-0.15	-0.02
Representativ Ethical	0.14	0.14 -0.02	-0.14 -0.13	-0.19 -0.15	-0.09 -0.07	-0.08 -0.07	-0.12 -0.08	-0.12 -0.06	-0.10	-0.11	-0.10
Voice	0.14	0.03	-0.13	-0.13	-0.18	-0.07	-0.14	0.03	-0.10	0.03	0.00
Treatment	0.15	0.00	-0.11	-0.11	-0.11	-0.05	-0.20	-0.03	-0.19	-0.04	-0.13
Procedures	0.01	0.00	-0.15	-0.18	-0.08	-0.11	-0.15	-0.13	-0.09	-0.10	-0.19
Outcomes	-0.03	-0.05	-0.11	-0.17	-0.09	-0.08	-0.14	-0.13	-0.10	-0.10	-0.14
Violation	0.13	0.03	-0.19	-0.17	-0.15	-0.01	-0.14	0.08	-0.06	0.01	-0.03
No Violation	0.18	0.11	-0.09	-0.10	0.02	-0.03	0.02	-0.02	-0.02	-0.11	-0.04
Rule Import	ance Sc	ales	•								
Consistent	0.00	0.01	0.34	0.33	0.20	0.23	0.27	0.03	0.31	0.23	0.18
Information	-0.11	0.01	0.24	0.34	0.31	0.15	0.31	0.03	0.16	0.17	0.15
Bias-Free	-0.08	-0.02	0.14	0.31	0.38	0.20	0.45	0.14	0.28	0.18	0.14
Correctable	0.00	0.02	0.26	0.35	0.33	0.37	0.44	0.15	0.28	0.28	0.26
Representativ		0.00	0.22	0.30	0.39	0.33	0.52	0.22	0.31	0.33	0.23
Ethical	-0.11	-0.13	0.16	0.18	0.14	0.10	0.22	0.54	0.21	0.21	0.31
Voice	-0.16	-0.10	0.23	0.35	0.31	0.31	0.50	0.11	0.42	0.22	0.23
Feedback Treatment	-0.15 -0.06	-0.17 -0.09	0.02 0.19	0.16 0.26	0.24 0.29	0.22 0.28	0.37 0.42	0.09 0.34	0.26 0.30	0.39 0.26	0.29 0.47
<u>CHAPMAN AUTOM</u> Fairness Sc	ales										
Consistent	-0.06	0.09	0.16	0.18	0.03	0.12	0.18	0.09	0.23	0.21	0.15
Information	-0.07	-0.02	0.18	0.19	0.09	0.08	0.17	0.17	0.10	0.23	0.23
Bias-Free	0.07	0.03	0.12	0.16	0.09	0.03	0.13	0.09	0.07	0.11	0.15
Correctable	0.11	0.10	0.12	0.13	0.15	0.03	0.19	0.04	0.08	0.12	0.12
Feedback	0.12	0.05	0.22	0.21	0.15	-0.01	0.23	0.10	0.12	0.09	0.20
Representativ		0.00	0.11	0.11	0.16	-0.02	0.16	0.08	-0.02	0.17	0.09
Ethical	-0.04	-0.02	0.13	0.12	0.12	0.00	0.14	0.15	0.02	0.02	0.17 0.23
Voice	0.12	0.02	0.11	0.17	0.16	0.07	0.15	0.13	0.03	0.11	0.23
Treatment	0.00	0.02	0.16	0.13	0.18	-0.03	0.23	0.13	0.03	0.0 4 0.07	0.07
Procedures	0.01	0.06 0.07	0.03	0.04	0.04	-0.04 0.01	0.12 0.12	0.08 0.07	0.07 0.03	0.07	0.11
Outcomes	0.02	0.07	0.04	V.U3	0.04	0.01	0.12	0.07	0.03	0.03	0.10

N sizes ranged between 174 and 178

Table 2 (cont'd).

Violati n C . 0.06 0.04 ales 0.07	0.16 0.19	ont B		rrectab	ole	Ethical Ative 0.12 0.14	-	'eedback	0.17 0.21
n C . 0.06 0.04 ales 0.07	0.16 0.19	0.18 0.21	0.21	e Rep	0.23	0.12	Voice 0.05	0.11	0.17
0.06 0.04 ales 0.07	0.19	0.21							
0.06 0.04 ales 0.07	0.19	0.21							
0.04 ales 0.07	0.19	0.21							
ales 0.07			0.09	0.09	0.19	0.14	0.16	0.22	0.21
0.07									
	0.36								
0 06		0.25	0.24	0.17	0.29	0.25	0.26	0.25	0.16
v. 06	0.33	0.39	0.41	0.34	0.33	0.19	0.27	0.32	0.19
-0.05	0.32	0.41	0.43	0.29	0.29	0.24	0.33	0.25	0.28
0.05	0.24	0.38	0.36	0.47	0.30	0.34	0.34	0.37	0.35
-0.11	0.26	0.27	0.18	0.33	0.37	0.28	0.32	0.27	0.28
-0.08	0.19	0.14	0.16	0.05	0.22	0.66	0.18	0.26	0.31
-0.10	0.29	0.39	0.23	0.41	0.32	0.25	0.43	0.41	0.46
-0.06	0.25	0.20	0.19	0.22	0.25	0.27	0.29	0.47	0.26
-0.05	0.21	0.23	0.11	0.15	0.24	0.30	0.29	0.31	0.47
0.10	-0.01	0.01	0.11	0.04	0.06	-0.09	-0.05	-0.03	-0.08
-0.11	0.01	-0.01	-0.01	0.04	-0.08	0.03	0.02	-0.01	0.02
0.04	0.04	0.08	0.04	-0.01	0.05	0.05	-0.11	-0.12	-0.06
0.01	-0.02	0.05	-0.04	0.05	0.06	0.03	-0.02	-0.02	-0.02
-0.07	0.16	0.22	0.15	0.23	0.17	0.04	0.22	0.17	0.20
-0.05	-0.04	0.06	0.09	0.06	0.09	0.04	0.04	0.09	0.10
-0.08	-0.09	-0.05	0.01	-0.06	-0.04	-0.01	-0.06	-0.07	-0.08
0.05	0.00	0.08	0.01	-0.14	0.03	-0.02	-0.08	-0.08	-0.01
	0.05 -0.11 -0.08 -0.10 -0.06 -0.05 0.10 -0.11 0.04 0.01 -0.07 -0.05 -0.08	0.05 0.24 -0.11 0.26 -0.08 0.19 -0.10 0.29 -0.06 0.25 -0.05 0.21 0.10 -0.01 -0.11 0.01 0.04 0.04 0.01 -0.02 -0.07 0.16 -0.05 -0.04 -0.08 -0.09	0.05 0.24 0.38 -0.11 0.26 0.27 -0.08 0.19 0.14 -0.10 0.29 0.39 -0.06 0.25 0.20 -0.05 0.21 0.23 0.10 -0.01 0.01 -0.11 0.01 -0.01 0.04 0.04 0.08 0.01 -0.02 0.05 -0.07 0.16 0.22 -0.05 -0.04 0.06 -0.08 -0.09 -0.05	0.05 0.24 0.38 0.36 -0.11 0.26 0.27 0.18 -0.08 0.19 0.14 0.16 -0.10 0.29 0.39 0.23 -0.06 0.25 0.20 0.19 -0.05 0.21 0.23 0.11 0.10 -0.01 0.01 0.11 -0.11 0.01 -0.01 -0.01 0.04 0.04 0.08 0.04 0.01 -0.02 0.05 -0.04 -0.07 0.16 0.22 0.15 -0.05 -0.04 0.06 0.09 -0.08 -0.09 -0.05 0.01	0.05 0.24 0.38 0.36 0.47 -0.11 0.26 0.27 0.18 0.33 -0.08 0.19 0.14 0.16 0.05 -0.10 0.29 0.39 0.23 0.41 -0.06 0.25 0.20 0.19 0.22 -0.05 0.21 0.23 0.11 0.15 0.10 -0.01 0.01 0.11 0.04 -0.11 0.01 -0.01 -0.01 0.04 0.04 0.04 0.08 0.04 -0.01 0.01 -0.02 0.05 -0.04 0.05 -0.07 0.16 0.22 0.15 0.23 -0.05 -0.04 0.06 0.09 0.06 -0.08 -0.09 -0.05 0.01 -0.06	0.05 0.24 0.38 0.36 0.47 0.30 -0.11 0.26 0.27 0.18 0.33 0.37 -0.08 0.19 0.14 0.16 0.05 0.22 -0.10 0.29 0.39 0.23 0.41 0.32 -0.06 0.25 0.20 0.19 0.22 0.25 -0.05 0.21 0.23 0.11 0.15 0.24 0.10 -0.01 0.01 0.11 0.04 0.06 -0.11 0.01 -0.01 -0.01 0.04 -0.08 0.04 0.04 0.08 0.04 -0.01 0.05 0.01 -0.02 0.05 -0.04 0.05 0.06 -0.07 0.16 0.22 0.15 0.23 0.17 -0.05 -0.04 0.06 0.09 0.06 0.09 -0.08 -0.09 -0.06 -0.04	0.05 0.24 0.38 0.36 0.47 0.30 0.34 -0.11 0.26 0.27 0.18 0.33 0.37 0.28 -0.08 0.19 0.14 0.16 0.05 0.22 0.66 -0.10 0.29 0.39 0.23 0.41 0.32 0.25 -0.06 0.25 0.20 0.19 0.22 0.25 0.27 -0.05 0.21 0.23 0.11 0.15 0.24 0.30 0.10 -0.01 0.01 0.11 0.04 0.06 -0.09 -0.11 0.01 -0.01 0.01 0.04 0.04 0.08 0.03 0.04 0.04 0.08 0.04 -0.01 0.05 0.05 0.01 -0.02 0.05 -0.04 0.05 0.06 0.03 -0.07 0.16 0.22 0.15 0.23 0.17 0.04 -0.05 -0.04 0.06 0.09	0.05 0.24 0.38 0.36 0.47 0.30 0.34 0.34 -0.11 0.26 0.27 0.18 0.33 0.37 0.28 0.32 -0.08 0.19 0.14 0.16 0.05 0.22 0.66 0.18 -0.10 0.29 0.39 0.23 0.41 0.32 0.25 0.43 -0.06 0.25 0.20 0.19 0.22 0.25 0.27 0.29 -0.05 0.21 0.23 0.11 0.15 0.24 0.30 0.29 0.10 -0.01 0.01 0.11 0.04 0.06 -0.09 -0.05 -0.11 0.01 -0.01 0.04 -0.08 0.03 0.02 0.04 0.04 0.08 0.04 -0.01 0.05 0.05 -0.11 0.01 -0.02 0.05 -0.04 0.05 0.06 0.03 -0.02 -0.07 0.16 0.22 0.15	0.05 0.24 0.38 0.36 0.47 0.30 0.34 0.34 0.37 -0.11 0.26 0.27 0.18 0.33 0.37 0.28 0.32 0.27 -0.08 0.19 0.14 0.16 0.05 0.22 0.66 0.18 0.26 -0.10 0.29 0.39 0.23 0.41 0.32 0.25 0.43 0.41 -0.06 0.25 0.20 0.19 0.22 0.25 0.27 0.29 0.47 -0.05 0.21 0.23 0.11 0.15 0.24 0.30 0.29 0.31 0.10 -0.01 0.01 0.11 0.04 0.06 -0.09 -0.05 -0.03 -0.11 0.01 -0.01 0.04 0.04 -0.08 0.03 0.02 -0.01 0.04 0.04 0.04 -0.08 0.03 0.02 -0.01 0.01 0.05 0.05 -0.11 -0.12

Correlations with absolute values greater than or equal to .13 are significant at p<.10 Correlations with absolute values greater than or equal to .15 are significant at p<.05 Correlations with absolute values greater than or equal to .19 are significant at p<.01 Correlations with absolute values greater than or equal to .25 are significant at p<.001

N sizes ranged between 174 and 178

Table 2 (cont'd).

ACME VACUUM

	In	formati	on Co	rrectak	ole Rep	resenta	tive	Voice	F	rocedur	es
Cor	nsiste		ias-Fre		Feedbac		Ethical		reatmen	t o	utcomes
ACME VACUUM											
Fairness Scal	les										
Consistent	1.00	0.29	0.23	0.01	0.23	0.15	0.11	0.04	0.12	0.25	0.25
Information	0.29	1.00	0.52	0.14	0.23	0.29	0.33	0.32	0.33	0.32	0.30
Bias-Free	0.23	0.52	1.00	0.09	0.33	0.32	0.29	0.27	0.44	0.24	0.29
Correctable	0.01	0.14	0.09	1.00	0.23	0.16	0.27	0.60	0.44	0.04	0.07
Feedback	0.23	0.23	0.33	0.23	1.00	0.35	0.40	0.35	0.51	0.15	0.11
Representative		0.29	0.32	0.16	0.35	1.00	0.41	0.24	0.45	0.25	0.12
Ethical	0.11	0.33 0.32	0.29 0.27	0.27	0.40 0.35	0.41 0.24	1.00 0.36	0.36 1.00	0.46 0.55	0.26 0.15	0.15 0.17
Voice Treatment	0.04	0.32	0.44	0.44	0.33	0.45	0.46	0.55	1.00	0.13	0.17
Procedures	0.25	0.32	0.24	0.04	0.15	0.25	0.26	0.15	0.24	1.00	0.76
Outcomes	0.25	0.30	0.29	0.07	0.11	0.12	0.15	0.17	0.20	0.76	1.00
Violation	0.22	0.77	0.72	0.42	0.40	0.36	0.43	0.78	0.60	0.30	0.32
No Violation	0.59	0.38	0.42	0.20	0.75	0.76	0.45	0.31	0.53	0.31	0.22
Rule Importa	naa C-										
	-0.04	ales -0.12	-0.09	-0.17	-0.12	-0.17	0.01	-0.19	-0.20	-0.08	-0.04
	-0.03	-0.12	-0.17	-0.14	-0.12	-0.17	-0.14	-0.13	-0.23	-0.16	-0.16
	-0.03	-0.15	-0.11	-0.15	0.01	-0.18	-0.06	-0.20	-0.21	-0.14	-0.18
	-0.05	-0.17	-0.14	-0.17	-0.11	-0.10	-0.14	-0.15	-0.23	-0.19	-0.17
Representative-		-0.13	-0.12	-0.08	-0.05	-0.04	-0.07	-0.09	-0.17	-0.15	-0.13
Etĥical	0.03	-0.03	0.04	-0.10	-0.03	-0.26	-0.08	-0.03	-0.17	-0.02	-0.01
Voice	0.00	-0.14	-0.01	-0.15	-0.05	-0.12	-0.19	-0.16	-0.24	-0.15	-0.15
Feedback	0.05	-0.05	-0.02	0.00	-0.18	-0.20	-0.11	-0.04	-0.18	-0.10	-0.10
Treatment	0.04	0.04	0.08	0.00	-0.06	-0.06	-0.08	-0.07	-0.12	-0.12	-0.14
CHAPMAN AUTOMO	TIVE										
Fairness Scal	les										
	-0.02	-0.09	-0.07	-0.05	-0.08	0.03	0.03	-0.13	-0.13	-0.04	-0.08
	-0.02	-0.10	-0.01	0.10	0.06	-0.02	0.07	-0.01	0.02	-0.09	-0.16
	-0.10	-0.07	-0.01	0.06	0.07	0.02	0.13	0.01	0.03	-0.09	-0.09
	-0.02	0.01	0.01	0.01	0.06	0.08	0.09	-0.02	-0.04	-0.02 0.03	-0.02
Feedback Representative	0.06	0.00 0.03	0.02 0.01	0.02 0.18	0.14 0.01	0.05 -0.03	0.13 0.21	0.06 0.07	-0.01 0.10	0.03	-0.02 0.01
•	-0.05	-0.07	-0.06	0.11	0.13	0.02	0.06	0.11	0.10	-0.05	-0.05
Voice	0.02	0.08	0.05	0.13	0.11	0.02	0.17	0.08	0.15	0.02	0.01
Treatment	0.14	0.04	-0.02	0.05	-0.02	0.09	0.02	-0.05	0.03	0.02	-0.02
Procedures	0.00	0.01	0.00	0.05	0.10	0.01	0.13	0.04	0.04	-0.04	-0.10
Outcomes	0.03	0.07	0.07	0.13	0.16	0.09	0.17	0.07	0.07	-0.04	-0.05
Violation	0.06	0.05	0.02	0.08	0.06	0.11	0.12	0.01	0.07	0.01	-0.01
No Violation	-0.06	-0.10	-0.03	0.05	0.02	0.01	0.10	-0.05	-0.03	-0.09	-0.14
Rule Importan	nce Sc	ales									
-	-0.10	-0.19	-0.17	-0.07	-0.01	-0.22	-0.05	-0.13	-0.21	-0.14	-0.18
	-0.05	-0.22	-0.18	-0.08	0.05	-0.06	0.02	-0.11	-0.14	-0.18	-0.26
	-0.07	-0.20	-0.15	-0.04	0.00	-0.25	-0.11	-0.13	-0.17	-0.16	-0.14
Correctable	0.07	-0.05	-0.03	0.00	-0.02	-0.17	-0.16	0.01	-0.12	-0.23	-0.18
Representative		-0.11	-0.07	0.07	-0.03	-0.21	-0.14	0.01	-0.09	-0.24	-0.18
Ethical	0.09	-0.02	0.07	-0.03	0.10	-0.09	0.02	-0.02	-0.02	0.04	-0.04
Voice	0.10	-0.07	0.07	-0.03	0.01	-0.20	-0.14	0.06	-0.09	-0.12	-0.10
Feedback	0.04	-0.06	0.13	0.15	-0.03	-0.15	-0.02	0.10	-0.02	-0.06 -0.18	-0.05
Treatment	0.06	-0.12	0.02	0.04	0.03	-0.19	-0.11	0.05	-0.10	-0.18	-0.13
Pos/Othr (dmy)		-0.06	-0.09	-0.03	-0.13	-0.13	-0.07	-0.07	-0.08	0.07	0.04
Neg/Othr (dmy)		0.12	0.04	0.02	0.09	0.03	-0.01	0.13	0.09	0.00	0.01
Affect (pre)	0.09	0.01	0.12	0.11	0.11	0.01	0.16	-0.03	0.15	0.07	0.14
Affect (post)	0.07	0.08	0.19	0.16	0.13	0.21	0.24 -0.12	0.11	0.19 -0.14	0.08 -0.10	0.08 -0.13
Sex - Age	-0.01 0.24	-0.0 <u>4</u> -0.06	-0.07 -0.09	0.02	-0.17 -0.11	-0.11 -0.07	-0.12	-0.04 -0.10	-0.14	0.05	0.11
Counterbalance		-0.10	0.01	-0.12	-0.11	-0.24	-0.19	-0.23	-0.08	-0.21	-0.10
	-0.09	-0.30	-0.19	-0.24	-0.09	-0.14	-0.08	-0.24	-0.11	-0.18	-0.23
-											

Table 2 (cont'd).

ACME VACUUM

				over				iral rul		dures	
	No	Violati		formati	on Co	rrectab	1.	Ethical	100	eedback	
	Violatio		Consiste		ias-Fre		resenta		Voice		atment
	11016010	****	VIIDIDEC		TOD TI	C NCD	1 CBCMC	ACT VC	YVICE		a cilicia ci
ACME VACUUM Fairness S	cales										
Violation	1.00	0.48	-0.19	-0.27	-0.21	-0.20	-0.14	-0.01	-0.15	-0.05	0.01
No Violation	0.48	1.00	-0.17	-0.12	-0.10	-0.13	-0.05	-0.14	-0.08	-0.17	-0.05
Rule Impor	tance Sc	ales									
Consistent	-0.19	-0.17	1.00	0.46	0.43	0.33	0.26	0.21	0.34	0.21	0.28
Information	-0.27	-0.12	0.46	1.00	0.68	0.57	0.47	0.35	0.55	0.30	0.38
Bias-Free	-0.21	-0.10	0.43	0.68	1.00	0.57	0.53	0.36	0.61	0.43	0.48
Correctable	-0.20	-0.13	0.33	0.57	0.57	1.00	0.64	0.36	0.64	0.46	0.52
Representati	ve-0.14	-0.05	0.26	0.47	0.53	0.64	1.00	0.30	0.51	0.39	0.56
Ethical	-0.01	-0.14	0.21	0.35	0.36	0.36	0.30	1.00	0.34	0.41	0.42
Voice	-0.15	-0.08	0.34	0.55	0.61	0.64	0.51	0.34	1.00	0.55	0.51
Feedback	-0.05	-0.17	0.21	0.30	0.43	0.46	0.39	0.41	0.55	1.00	0.51
Treatment	0.01	-0.05	0.28	0.38	0.48	0.52	0.56	0.42	0.51	0.51	1.00
CHAPMAN AUTO		•									
Consistent	-0.13	-0.03	0.15	0.11	0.13	0.08	0.07	0.00	0.14	0.05	-0.01
Information	-0.05	0.01	0.07	0.11	0.12	0.13	0.08	0.08	0.16	0.07	0.13
Bias-Free	-0.03	0.00	-0.04	-0.01	0.08	0.03	-0.04	-0.07	0.04	-0.03	0.03
Correctable	0.00	0.06	0.05	0.11	0.09	0.09	0.04	0.02	0.09	0.02	-0.03
Feedback	0.04	0.12	0.06	0.00	0.07	0.04	-0.04	-0.06	0.13	0.06	-0.02
Representati	ve 0.06	-0.03	-0.03	0.02	0.07	0.03	0.05	-0.02	0.01	0.12	0.02
Ethical	0.01	0.05	-0.02	0.06	0.03	0.03	0.00	0.02	0.03	-0.01	0.03
Voice	0.10	0.11	0.05	-0.01	-0.03	0.02	-0.03	-0.05	0.03	0.00	0.04
Treatment	-0.02	0.09	0.02	0.05	0.04	0.00	0.05	-0.12	0.00	-0.05	0.06
Procedures	0.03	0.05	0.02	0.02	0.07	-0.01	-0.04	-0.08	0.04	0.01	0.07
Outcomes	0.09	0.14	0.01	0.01	0.08	0.03	-0.03	-0.05	0.08	0.03	0.07
Violation	0.03	0.11	0.05	0.06	0.04	0.05	0.02	-0.06	0.05	-0.01	0.03
No Violation	-0.08	-0.01	0.06	0.08	0.13	0.09	0.04	0.00	0.13	0.03	0.06
Rule Impor	tance Sc	ales									
Consistent	-0.21	-0.17	0.39	0.25	0.28	0.17	0.13	0.18	0.17	0.10	0.03
Information	-0.21	-0.03	0.22	0.39	0.34	0.31	0.25	0.13	0.23	0.18	0.12
Bias-Free	-0.20	-0.16	0.26	0.18	0.33	0.26	0.22	0.04	0.21	0.16	0.22
Correctable	-0.02	-0.07	0.19	0.21	0.28	0.34	0.31	0.27	0.22	0.32	0.32
Representati	ve-0.06	-0.15	0.15	0.09	0.21	0.24	0.33	0.12	0.18	0.14	0.34
Ethical	0.01	0.03	0.03	0.03	0.16	0.12	0.13	0.61	0.05	0.22	0.27
Voice	0.03	-0.06	0.20	0.13	0.18	0.31	0.26	0.19	0.30	0.30	0.26
Feedback	0.08	-0.08	0.08	0.00	0.07	0.14	0.20	0.22	0.07	0.38	0.19
Treatment	-0.01	-0.07	0.09	0.01	0.08	0.13	0.17	0.20	0.05	0.15	0.34
Pos/Othr (dm		-0.12	0.01	0.03	0.04	0.00	0.01	-0.12	0.03	0.04	0.00
Neg/Othr (dm)	y) 0.14	0.05	0.01	-0.10	-0.03	-0.04	0.02	0.01	-0.09	0.00	0.03
Affect (pre)	0.03	0.10	0.08	0.04	0.00	-0.13	-0.08	-0.13	-0.11	-0.13	0.03
Affect (post)	0.16	0.20	0.11	0.09	0.00	-0.10	-0.01	-0.09	-0.06	-0.05	0.04
Sex	-0.06	-0.14	0.08	0.16	0.10	0.12	0.18	-0.06	0.20	0.11	0.15
Age	-0.11	0.01	0.11	0.13	0.11	0.08	0.08	0.16	0.04	0.13	0.08
	ce-0 16	-0.23	-0.03	0.06	0.10	0.07	0.12	0.04	0.09	0.08	0.08
Counterbalan	CC 0.10	V.23	0.03	0.00	0.10	0.07	0.12	0.01	0.05	0.00	0.00

N sizes ranged between 174 and 178

151

Table 2 (cont'd).

CHAPMAN AUTOMOTIVE

		formati		rrectal		resenta		Voice		rocedui	
	Consiste	nt E	ias-Fre	<u>e</u>	Feedbac	k	Ethical	1	reatment		utcomes
CHAPMAN AUTO	OMOTIVE										
Fairness											
Consistent	1.00	0.55	0.36	0.36	0.34	0.35	0.45	0.29	0.33	0.50	0.50
Information	0.55	1.00	0.62	0.31	0.38	0.45	0.58	0.36	0.37	0.66	0.69
Bias-Free	0.36	0.62	1.00	0.50	0.58	0.51	0.59	0.48	0.49	0.55	0.57
Correctable	0.36	0.31	0.50	1.00	0.58	0.57	0.43	0.59	0.46	0.47	0.46
Feedback	0.34	0.38	0.58	0.58	1.00	0.59	0.61	0.63	0.55	0.56	0.53
Representat:		0.45	0.51	0.57	0.59	1.00	0.56	0.53	0.49	0.59	0.58
Ethical	0.45	0.58	0.59	0.43	0.61	0.56	1.00	0.52	0.46	0.72	0.72
Voice	0.29	0.36	0.48	0.59	0.63	0.53	0.52	1.00	0.45	0.46	0.44
Treatment	0.33	0.37	0.49	0.46	0.55	0.49	0.46	0.45	1.00	0.50	0.47
Procedures	0.50	0.66	0.55	0.47	0.56	0.59	0.72	0.46	0.50	1.00	0.91
Outcomes	0.50	0.69	0.57	0.46	0.53	0.58	0.72	0.44	0.47	0.91	1.00
Violation	0.40	0.43	0.60	0.82	0.72	0.65	0.58	0.85	0.77	0.58	0.56
No Violation		0.87	0.83	0.49	0.54	0.54	0.66	0.47	0.49	0.69	0.72
					• • • • •			• • • •			
Rule Impor	rtance Sc	ales									
Consistent	0.34	0.27	0.19	0.17	0.27	0.23	0.23	0.13	0.21	0.25	0.23
Information	0.28	0.27	0.25	0.20	0.24	0.30	0.30	0.21	0.15	0.23	0.21
Bias-Free	0.12	0.23	0.25	0.13	0.19	0.19	0.24	0.15	0.17	0.16	0.16
Correctable	0.08	0.13	0.14	0.25	0.12	0.14	0.15	0.17	0.13	0.10	0.12
Representat:	ive 0.00	0.07	0.05	0.04	0.05	0.08	0.01	0.05	0.10	0.05	0.00
Ethical	0.02	0.15	0.06	-0.02	0.05	0.10	0.13	0.05	0.00	0.00	0.00
Voice	0.05	0.15	0.13	0.13	0.17	0.05	0.10	0.25	0.05	0.08	0.07
Feedback	0.08	0.10	0.03	0.14	0.11	0.16	0.08	0.15	0.13	0.08	0.05
Treatment	0.00	0.17	0.13	0.00	0.11	0.04	0.12	0.08	0.15	0.10	0.06
Pos/Othr (dr		-0.03	-0.02	-0.07	0.07	0.09	-0.02	-0.01	0.08	-0.01	-0.01
Neg/Othr (dr		0.01	0.04	0.08	-0.05	-0.07	0.00	0.06	0.02	-0.01	-0.06
Affect (pre		0.02	0.05	-0.10	0.04	0.04	0.09	0.01	0.15	0.07	0.05
Affect (post		0.05	-0.02	0.02	0.08	-0.05	0.01	0.05	0.11	0.03	0.02
Sex	0.12	0.12	0.00	0.04	0.08	0.08	0.01	0.11	0.12	0.10	0.02
Age	0.05	0.01	-0.22	-0.14	-0.20	-0.18	-0.02	-0.08	-0.12	-0.05	-0.05
Counterbala		-0.16	-0.15	-0.10	-0.21	-0.12	-0.16	-0.17	-0.08	-0.15	-0.16
Policy score	e 0.22	0.19	0.12	0.16	0.17	0.19	0.18	0.08	0.09	0.17	0.08

Correlations with absolute values greater than or equal to .13 are significant at p<.10 Correlations with absolute values greater than or equal to .15 are significant at p<.05 Correlations with absolute values greater than or equal to .19 are significant at p<.01 Correlations with absolute values greater than or equal to .25 are significant at p<.001

N sizes ranged between 174 and 178

Table 2 (cont'd).

CHAPMAN AUTOMOTIVE

			Importance of procedural rule to overall evaluation of fairness of procedures								
	No	Violati	on In	formati	on Co	rrectab	le	Ethical	F	eedback	:
V	olatio	$n \mid C$	onsiste	nt E	ias-Fre	e Rep	resenta	tive	Voice	Tre	atment
CHAPMAN AUTOMO	ייי ז ער.										
Fairness Sca											
Violation	1.00	0.59	0.21	0.23	0.18	0.22	0.08	0.02	0.18	0.17	0.09
No Violation	0.59	1.00	0.32	0.32	0.25	0.15	0.05	0.09	0.14	0.08	0.12
Rule Importa	unce Sc	ales									
Consistent	0.21	0.32	1.00	0.64	0.49	0.42	0.19	0.26	0.21	0.20	0.11
Information	0.23	0.32	0.64	1.00	0.51	0.47	0.15	0.27	0.30	0.25	0.16
Bias-Free	0.18	0.25	0.49	0.51	1.00	0.53	0.33	0.18	0.40	0.24	0.38
Correctable	0.22	0.15	0.42	0.47	0.53	1.00	0.41	0.28	0.57	0.50	0.38
Representative	0.08	0.05	0.19	0.15	0.33	0.41	1.00	0.18	0.46	0.47	0.53
Ethical	0.02	0.09	0.26	0.27	0.18	0.28	0.18	1.00	0.24	0.33	0.34
Voice	0.18	0.14	0.21	0.30	0.40	0.57	0.46	0.24	1.00	0.60	0.58
Feedback	0.17	0.08	0.20	0.25	0.24	0.50	0.47	0.33	0.60	1.00	0.55
Treatment	0.09	0.12	0.11	0.16	0.38	0.38	0.53	0.34	0.58	0.55	1.00
Pos/Othr (dmy)	0.00	-0.03	0.03	0.02	0.16	-0.02	0.11	-0.02	0.01	0.02	0.05
Neg/Othr (dmy)	0.06	0.01	-0.07	-0.01	-0.01	0.02	-0.01	0.04	0.09	0.09	0.08
Affect (pre)	0.03	0.01	0.07	0.04	0.13	-0.07	0.00	-0.04	-0.08	-0.10	-0.06
Affect (post)	0.07	0.01	-0.04	0.05	-0.10	-0.08	-0.02	-0.04	0.02	-0.01	-0.01
Sex	0.11	0.09	0.09	0.13	0.15	0.09	0.20	-0.21	0.15	0.07	0.06
Age	-0.14	-0.07	0.04	-0.01	0.03	0.13	-0.04	0.14	0.12	0.02	0.04
Counterbalance	-0.15	-0.18	0.02	-0.04	0.05	0.02	0.05	-0.06	-0.08	0.02	-0.01
Policy score	0.13	0.21	0.20	0.23	0.07	-0.04	-0.02	-0.01	-0.04	-0.13	0.05

Dummy c Exper. N		fect eg Scal	e	Counterbalance			
Pos/Oth	r	Pre	Post	Sex	Age	F	ol. score
Pos/Othr (dmy) 1.00	-0.49	0.26	0.01	0.07	0.02	0.00	-0.03
Neg/Othr (dmy)-0.49	1.00	-0.25	-0.01	-0.03	-0.05	0.01	0.02
Affect (pre) 0.26	-0.25	1.00	0.57	0.13	0.11	0.00	-0.03
Affect (post) 0.01	-0.01	0.57	1.00	-0.02	0.07	-0.01	0.01
Sex 0.07	-0.03	0.13	-0.02	1.00	-0.03	0.00	0.00
Age 0.02	-0.05	0.11	0.07	-0.03	1.00	-0.02	-0.03
Counterbalance 0.00	0.01	0.00	-0.01	0.00	-0.02	1.00	-0.03
Policy score -0.03	0.02	-0.03	0.01	0.00	-0.03	-0.03	1.00

Correlations with absolute values greater than or equal to .13 are significant at p<.10 Correlations with absolute values greater than or equal to .15 are significant at p<.05 Correlations with absolute values greater than or equal to .19 are significant at p<.01 Correlations with absolute values greater than or equal to .25 are significant at p<.001

N sizes ranged between 174 and 178

Table 3: ANCOVAs Examining the Influence of Affective State on Justice Rule Ratings across Scenarios.

Justice Rule: Consistent

Scenario F Values							
Source	df	ROSS	KENICO	ACME	CHAPMAN		
Counterbalance	1	0.84	0.22	0.50	2.89ª		
Policy Score		3.45°	0.26	1.45	8.44°		
Affective State	2	0.16	1.41	0.16	0.46		
		Scenari	o residu.	al mear	n square		
Residual	173	2.44	2.17	1.40	1.51		

Justice Rule: Accuracy of Information

	Scenario F Values						
Source	df	ROSS	KENICO	ACME	CHAPMAN		
Counterbalance		7 276	2.52	2.40	4. 22h		
Policy Score	1 1	7.27° 2.42	2.52 1.48	2.40 18.59°	4.32 ^b 6.56 ^c		
Affective State	2	0.65	0.48	1.58	0.06		
		Scenari	o residu	ıal mean	square		
Residual	173	3.00	2.67	1.01	1.53		

N=178.

F Values from Type III Sums of Squares are reported.

a = p < .10

b = p < .05

c = p < .01

Table 3 (cont'd).

Justice Rule: Bias Free

Scenario F Values								
Source	df	ROSS	KENICO	ACME	CHAPMAN			
Count orbal on as		20.025	2.55	0.00	3. 0.Ch			
Counterbalance	1 1	20.82°	2.55 0.52	0.00	3.96 ^b 2.27			
Policy Score								
Affective State	2	1.95	0.49	0.92	0.16			
		Scenari	o residu	al mean	square			
Residual	173	2.86	2.60	0.79	2.37			

Justice Rule: Correctability

	Scenario F Values							
Source	df	ROSS	KENICO	ACME	CHAPMAN			
					780.			
Counterbalance	1	3.54ª	1.53	1.75	1.55			
Policy Score	1	0.12	0.00	11.49°	4.33 ^b			
Affective State	2	0.80	1.04	0.13	0.62			
		Scenari	o residu	ual mean	square			
Residual	173	2.60	2.83	2.32	2.27			

N=178.

F Values from Type III Sums of Squares are reported.

a= p<.10

b = p < .05

c = p < .01

Table 3 (cont'd).

Justice Rule: Feedback

			Scenario	F Valu	nes	
Source	df	ROSS	KENICO	ACME	CHAPMAN	
Counterbalance	1	9.55°	2.50	6.03 ^b	7.65°	
Policy Score	1	0.60	0.40	1.99	5.32 ^b	
Affective State	2	1.34	0.40	1.77	0.57	
		Scenari	o residu	al mear	n square	
Residual	173	2.26	2.94	1.82	1.79	

Justice Rule: Representative

Scenario F Values								
Source	df	ROSS	KENICO	ACME	CHAPMAN			
Counterbalance	1	15.39°	10.69°	11.03°	2.28			
Policy Score	1	0.00	0.05	4.38b	6.47°			
Affective State	2	0.57	1.89	1.96	0.97			
Scenario residual mean square								
Residual	173	2.91	3.32	2.28	2.75			

N=178.

F Values from Type III Sums of Squares are reported.

a= p<.10

b = p < .05

c= p<.01

Table 3 (cont'd).

Justice Rule: Ethical

			Scenario	F Valu	ıes
Source	df	ROSS	KENICO	ACME	CHAPMAN
Counterbalance	1	6.56°	2.23	7.03°	4.29 ^b
Policy Score	1	1.50	0.81	1.24	5.32b
Affective State	2	0.30	0.19	0.65	0.02
		Scenari	o residu	al mear	square
Residual	173	3.55	2.64	1.50	2.28

Justice Rule: Voice

			Scenario	o F Valu	ıes	
Source	df	ROSS	KENICO	ACME	CHAPMAN	
Counterbalance	1	9.34°	4.74 ^b	10.92°	5.23b	
Policy Score	1	3.57ª	3.17ª	12.06°	1.13	
Affective State	2	1.01	1.14	2.02	0.40	
		Scenari	o resid	ual mear	square	
Residual	173	3.44	3.28	1.79	3.32	

N=178.

F Values from Type III Sums of Squares are reported.

a = p < .10

b= p<.05

c = p < .01

157

Table 3 (cont'd).

Justice Rule: Fair Treatment

	o F Valu	lues			
Source	df	ROSS	KENICC	ACME	CHAPMAN
Counterbalance	1	33.22°	2.97°	11.52°	1.18
Policy Score	1	0.01	0.35	2.85ª	1.51
Affective State	2	0.08	0.34	0.98	1.02
		Scenari	o resid	lual mear	n square
Residual	173	2.09	3.52	1.47	2.65

N=178.

F Values from Type III Sums of Squares are reported.

a= p<.10

b = p < .05

c= p<.01

Table 4: ANCOVAS Examining the Influence of Affective State on Perceptions of Overall Procedures across Scenarios.

			Scenario	F Valu	ies
Source	df	ROSS	KENICO	ACME	CHAPMAN
Counterbalance	1	6.67°	0.60	9.13°	3.81 ^b
Policy Score	1	1.11	1.90	6.67°	5.21 ^b
Affective State	2	0.11	1.24	0.64	0.03
		Scenari	o residu	al mear	square
Residual	173	4.03	3.58*	0.47	2.44

N=178.

F Values from Type III Sums of Squares are reported.

^{*} The Residual df was 172 for this analysis

a= p<.10

b = p < .05

c = p < .01

Table 5: ANCOVAs Examining the Influence of Affective State on Perceptions of Overall Outcomes across Scenarios.

	Scenario F Values						
Source	df	ROSS	KENICO	ACME	CHAPMAN		
Counterbalance	1	8.19°	1.05	2.05	4. 69 ^b		
Policy Score	1	0.60	0.01	9.59°	1.08		
Affective State	2	0.81	1.00	0.22	0.45		
		Scenari	io residu	al mear	square		
Residual	173	4.16	3.92*	0.38	2.44		

N=178.

F Values from Type III Sums of Squares are reported.

^{*} The Residual df was 171 for this analysis

a= p<.10

b = p < .05

c= p<.01

Table 6: Within Scenario Regressions of Perceived Fairness of Overall Procedures on Violation and Nonviolation Measures.

Ross Power Co.

Beta	weights at	each step
1	2	3

Variable	1	2	3	
				
Step 1				
Counterbalance	19	.03	.04	
Policy Manual	.08	.03	.02	
Positive/Other	04	01	17	
Negative/Other	02	07	28	
Step 1 R ² =.04	1 5ª			
Step 2				
Violation		.20°	.41°	
NonViolation		.58°	.36°	
Step 2 $R^2 = .50$) 4 °			
Step 3				
Pos/Other x Violati	on		34ª	
Neg/Other x Violati	on		26	
Pos/Other x NonViol			.46ª	
Neg/Other x NonViol	ation		.47ª	
Step 3 R ² =.53	16°			

Differences between Violation and NonViolation Beta Weights at Step 2

t value df 3.19922° 171

n=178 for Ross Power Co., ACME Vacuum, and Chapman Automotive scenarios. n=177 for Kenico Engineering scenario.

Note: Results reported here are from four separate, within scenario hierarchical regressions.

a = p < .10

b = p < .05

c = p < .01

Table 6 (cont'd).

Kenico Engineering

Beta weights at each step

	Beta we:	ignts at e	acn step	
Variable	1	2	3	
Step 1				
Counterbalance	06	.04	.06	
Policy Manual	.10	.09ª	.08	
Positive/Other	.13	.09	15	
Negative/Other	.05	.09	20	
Step 1 R ² =.028	3			
Step 2				
Violation		.31°	.41°	
NonViolation		.46°	.29 ^b	
Step 2 R ² =.52	1°			
Step 3				
Pos/Other x Violatio	n		04	
Neg/Other x Violatio			27	
Pos/Other x NonViola			.30	
Neg/Other x NonViola			.55 ^b	
Step 3 R ² =.534	1 °			

Differences between Violation and NonViolation Beta Weights at Step 2

<u>t value df</u> 1.03677 170

n=178 for Ross Power Co., ACME Vacuum, and Chapman Automotive scenarios.

n=177 for Kenico Engineering scenario.

Note: Results reported here are from four separate, within scenario hierarchical regressions.

a = p < .10

b = p < .05

c = p < .01

Table 6 (cont'd).

ACME Vacuum

Beta weights at each	Beta	weights	at	each	step
----------------------	------	---------	----	------	------

DC	La WE	ignes at e	ach step	
Variable	1	2	3	
Step 1				
	22°			
Policy Manual	19°	10	10	
Positive/Other .	09	.12	06	
Negative/Other .	05	.04	32	
Step 1 R ² =.088°				
Step 2				
Violation		.15ª	.20	
NonViolation		.19 ^b	.23ª	
Step 2 R ² =.165°				
Step 3				
Pos/Other x Violation			01	
Neg/Other x Violation			06	
Pos/Other x NonViolation			.09	
Neg/Other x NonViolation			27	
Step 3 R ² =.180°				

Differences between Violation and NonViolation Beta Weights at Step 2

t value df 0.290188 171

n=178 for Ross Power Co., ACME Vacuum, and Chapman Automotive scenarios. n=177 for Kenico Engineering scenario.

Note: Results reported here are from four separate, within scenario hierarchical regressions.

a = p < .10

b = p < .05

c= p<.01

Table 6 (cont'd).

Chapman Automotive

Beta weights at each step	Beta	weights	at	each	step
---------------------------	------	---------	----	------	------

	Deta we	ignes at e	acn scep	
Variable	1	2	3	
Ch 1				
Step 1				
Counterbalance	14ª	01	01	
Policy Manual	.17 ^b	.03	.03	
Positive/Other	01	01	05	
Negative/Other	02	04	03	
Step 1 R ² =.051 ^a				
Step 2				
Violation		.27°	.31°	
NonViolation		.53°	.49°	
Step 2 R ² =.528°				
Step 3				
Pos/Other x Violation			15	
Neg/Other x Violation			03	
Pos/Other x NonViolatio	m		.18	
Neg/Other x NonViolatio			.02	
neg/other x nonviolatio	,11		.02	
Step 3 $R^2=.530^\circ$				

Differences between Violation and NonViolation Beta Weights at Step 2

t value df 2.19951^b 171

n=178 for Ross Power Co., ACME Vacuum, and Chapman Automotive scenarios. n=177 for Kenico Engineering scenario.

Note: Results reported here are from four separate, within scenario hierarchical regressions.

a = p < .10

b = p < .05

c = p < .01

Table 7: Within Scenario Stepwise Regressions of Perceived Fairness of Overall Procedures on Procedural Justice Rules.

			10510	.110	oss Power Co. Positive Mood						
Beta	R ²	ΔR ²	Variable	Beta	R²	ΔR²					
.47°	.49°	.49°		.39°	.42°	.42° .15°					
.57		.00	Ethical	.19*	.60°	.02					
	7.	Zonico D									
ive Mod		Cenico E									
Beta	R ²	ΔR²									
.36°	.62°	.62°									
.15ª	.71°				-	. – -					
	•					.04°					
				•		.04°					
.24°	.76 .81°	.03°	Consistent	.20	.02	.03					
		A COMP. ST.									
ive Mod	od	ACME V		ive Mo	od						
Beta	R ²	ΔR^2	Variable	Beta	R ²	ΔR²					
.34b	.22°	.22°	Fair Treatment Consistent	.26ª	.10 ^b	.10 ^b					
	.47°.37° ive Mod Beta .36°.15°.35°.24° ive Mod Beta	.47° .49° .37° .57° ive Mood Beta R² .36° .62° .15° .71° .13° .74° .35° .76° -23° .78° .24° .81° ive Mood Beta R²	Kenico E	.47° .49° .49° Consistent .37° .57° .08° Information Ethical Kenico Engineering ive Mood Posite Beta R² ΔR² Variable .36° .62° .62° Fair Treatment .15° .71° .09° Ethical .13° .74° .03° Representative .35° .76° .02° Feedback .23° .78° .03° Consistent .24° .81° .03° ACME Vacuum ive Mood Posite Beta R² ΔR² Variable	A7°	.47° .49° .49° .08° Information .38° .58° Ethical .19° .60° Kenico Engineering Positive Mood					

<u>Chapman Automotive</u> Negative Mood Positive Mood							
Variable	Beta	R ²	ΔR^2	Variable	Beta	R ²	ΔR^2
Ethical Information Correctable	.33° .36° .29°	.50° .62° .67°	.50° .12° .05°	Ethical Information Fair Treatment	.46° .30° .21 ^b	.53° .59° .63°	.53° .06° .04 ^b

n=59 for the negative mood condition. n=58 for the positive mood condition.

Note: Results reported here are from four separate, within scenario stepwise regressions. Variables are listed in order of entry in the regression. Variable entry and exit tolerance was set at .10.

Beta weights reported were obtained from the final step of the regression.

a= p<.10 b= p<.05 c= p<.01

Table 8: Correlations between Justice Rules and Overall Scenario Procedural Fairness Measure within Experimental Condition.

NEGATIVE	POSITIVE
MEGMITAR	10011112

Overall Scenario Procedural Fairness Measure

ROSS KENICO ACME CHAPMAN ROSS KENICO ACME CHAPMAN

RUSS PUWER CU.								
Consistent	0.45	0.12	0.10	0.09	0.65	0.15	0.05	0.19
Information	0.54	0.03	-0.19	0.29	0.64	0.27	-0.02	0.13
Bias-Free	0.69	-0.05	-0.07	0.14	0.57	0.17	-0.06	0.11
Correctable	0.17	-0.09	-0.02	0.23	0.24	0.22	-0.14	0.11
Feedback	0.43	0.07	-0.23	0.22	0.54	0.33	-0.05	0.24
Representative	0.35	0.00	-0.15	0.04	0.32	0.19	-0.08	0.10
Ethical	0.66	0.07	-0.23	0.07	0.56	0.19	0.11	0.42
Voice	0.32	0.17	-0.20	0.13	0.34	0.04	0.15	0.05
Treatment	0.49	-0.06	0.06	0.23	0.54	0.27	0.05	0.16
VENTO ENGINEED	TNC							
KENICO ENGINEERI		0.60	0 10	0 01	0.16	0.40	0 00	0 10
Consistent	-0.02	0.60	0.10	-0.01	0.16	0.49	0.08	0.19
Information	-0.01	0.79	-0.07	0.10	0.13	0.65	-0.08	-0.08
Bias-Free	-0.07	0.70	-0.01	0.09	0.17	0.70	-0.03	0.07
Correctable	0.08	0.40	0.04	0.23	0.02	0.31	-0.21	-0.09
Feedback	0.12	0.39	-0.12	0.18	0.22	0.56	-0.10	0.11
Representative	0.05	0.52	-0.15	0.25	0.14	0.42	0.00	-0.16
Ethical	0.06	0.72	-0.13	0.07	0.18	0.75	0.07	-0.05
Voice	-0.05	0.37	-0.17	0.01	0.14	0.33	-0.01	0.08
Treatment	0.24	0.66	-0.09	0.18	0.22	0.76	0.03	-0.02
ACME VACUUM								
Consistent	-0.25	0.02	0.14	0.06	0.13	-0.12	0.29	0.05

0.46

0.26

0.12

0.02

0.28

0.41

0.12

0.06

0.08

0.00

0.28

0.03

0.10

0.08

0.09 -0.20 0.24

-0.10

0.00

-0.01

0.03

0.21

-0.01

0.16

0.21

0.24

0.20

0.08 -0.11

0.10 -0.05

0.03

0.33

0.18

0.27

0.08

-0.02

0.08

-0.08

-0.13

0.05

0.03

Treatment	-0.01	0.21	0.19	0.16	0.20	-0.10	0.32	-0.17
CHAPMAN AUTOMOTI	VE							
Consistent	0.18	-0.16	0.16	0.45	0.02	0.25	-0.24	0.35
Information	0.28	-0.03	-0.08	0.69	0.16	0.02	-0.16	0.63
Bias-Free	0.13	-0.17	-0.22	0.62	0.34	0.25	-0.11	0.48
Correctable	0.22	-0.13	0.10	0.66	0.19	0.27	-0.11	0.18
Feedback	0.09	-0.24	0.06	0.65	0.35	0.17	-0.06	0.54
Representative	0.16	-0.12	0.05	0.60	0.34	0.13	0.02	0.43
Ethical	0.26	0.08	-0.01	0.70	0.24	0.14	-0.11	0.73
Voice	0.12	-0.22	0.01	0.46	0.17	0.06	-0.06	0.33
Treatment	-0.04	-0.12	0.03	0.49	0.40	0.06	-0.12	0.48

Correlations with absolute values greater than or equal to .22 are significant at p<.10 Correlations with absolute values greater than or equal to .26 are significant at p<.05 Correlations with absolute values greater than or equal to .33 are significant at p<.01 Correlations with absolute values greater than or equal to .41 are significant at p<.001

-0.18

-0.17

-0.13

-0.05

-0.01

-0.16

-0.09

0.07

-0.03

0.08

-0.01

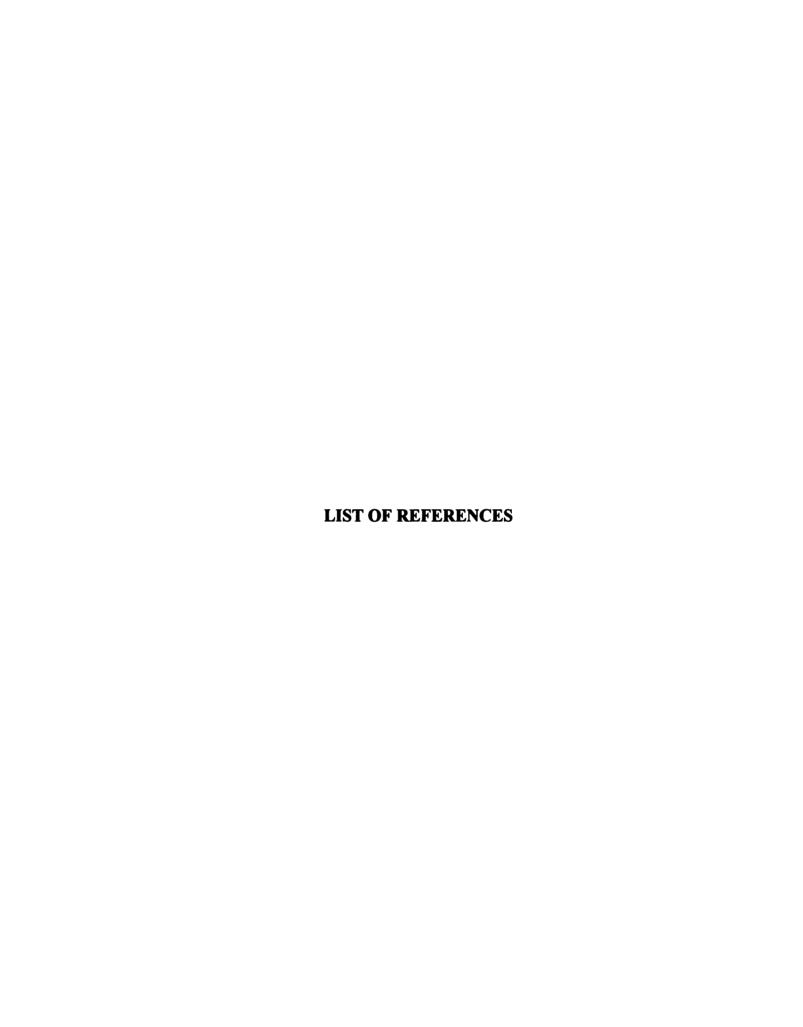
0.21

-0.07

0.02

ROSS POWER CO.

Information Bias-Free


Correctable

Ethical

Feedback Representative

Voice

N sizes ranged between 58 and 59

LIST OF REFERENCES

- Adams, J.S. (1965). Inequity in social exchange. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 2, pp. 267-299). New York: Academic Press.
- Baker, R.C., & Guttfreund, D.G. (1993). The effects of written autobiographical recollection induction procedures on mood. <u>Journal of Clinical Psychology</u>, 49, 563-568.
- Batson, D.C., Shaw, L.L., & Oleson, K.C. (1992). Differentiating affect, mood, and emotion. In M.S. Clark (Ed.), Emotion. Newbury Park, Ca: Sage.
- Berkowitz, L., & Donnerstein, E. (1982). External validity is more than skin deep. American Psychologist, 37, 245-257.
- Blaney, P. H. (1986). Affect and memory: A review. <u>Psychological Bulletin</u>, <u>99</u>, 229-246.
- Bless, H., Bohner, G., Schwarz, N., & Strack, F. (1990). Mood and persuasion: A cognitive response analysis. <u>Personality and Social Psychology</u> <u>Bulletin</u>, 16, 331-345.
- Bodenhausen, G.V. (1993). Emotions, arousal, and stereotypic judgments: A heuristic model of affect and stereotyping. In D.M. Mackie & D.L. Hamilton (Eds.), Affect, cognition, and stereotyping. San Diego, CA: Academic Press.
- Bodenhausen, G.V., Kramer, G.P., & Süsser, K. (1994). Happiness and Stereotypic Thinking in Social Judgment. <u>Journal of Personality and Social Psychology</u>, <u>66</u>, 621-632.
- Bohner, G., Bless, H., Schwarz, N., & Strack, F. (1988). What triggers causal attributions? The impact of valence and subjective probability. <u>European Journal of Social Psychology</u>, 18, 335-345.

- Bower, G.H. (1981). Mood and memory. American Psychologist, 36, 129-148.
- Bower, G.H. (1991). Mood congruity of social judgments. In J.P. Forgas (Ed.), <u>Handbook of emotion and memory</u>. Hillsdale, NJ: Erlbaum.
- Bower, G.H. (1983). Affect and cognition. <u>Philosophical Transactions of the Royal Society of London, Series B, 302, 387-402.</u>
- Brief, A.P., & Roberson, L. (1989). Job attitude organization: An exploratory study. <u>Journal of Applied Social Psychology</u>, 19, 717-727.
- Burke, M.J., Brief, A.P., George, J.M., Roberson, L., & Webster, J. (1989). Measuring affect at work: Confirmatory analyses of competing mood structures with conceptual linkage to cortical regulatory systems. <u>Journal of Personality and Social Psychology</u>, <u>57</u>, 1091-1102.
- Brief, A.P., Burke, M.J., George, J.M., Robinson, B.S., Webster, J. (1988). Should negative affectivity remain an unmeasured variable in the study of job stress? <u>Journal of Applied Psychology</u>, 73, 193-198.
- Cook, T.D., & Campbell, D.T. (1979). Quasi-experimentation: Design and analysis issues for field settings. Boston: Houghton Mifflin.
- Clore, G.L., & Parrott, G. (1991). Moods and their vicissitudes: Thoughts and feelings as information. In J.P. Forgas (Ed.), Emotion and social judgments. New York: Pergamon Press.
- Cohen, J. (1977). Statistical power analysis for the behavioral sciences. New York: Academic Press.
- Cohen, J. & Cohen, P. (1983). <u>Applied multiple regression/correlation analysis for the behavioral sciences</u>. Hillsdale, NJ: Lawrence Erlbaum.
- Cudeck, R. (1986). A note on structural models for the circumplex. Psychometrika, 51, 143-147.
- Estrada, C.A., Young, M.J., & Isen, A.M. (1992). Positive affect influences reported source of practice satisfaction in physicians. <u>Clinical Research</u>, 40(3), 768A. (Abstract).

- Fiske, S.T., & Taylor S.E. (1984). <u>Social cognition</u>. New York: Random House.
- Forgas, J.P. (1991). Affect and social judgments: An introductory review. In J.P. Forgas (Ed.), Emotion and social judgments. New York: Pergamon Press.
- Forgas, J.P. (1991). Affective influences on partner choice: Role of mood in social decisions. Journal of Personality and Social Psychology, 61, 708-720.
- Forgas, J.P., & Bower, G.H. (1988). Affect in social and personal judgments. In K. Fiedler and J.P. Forgas (Eds.), Affect, cognition, and social behavior, pp. 183-208. Toronto: Hogrefe.
- Frijda, N.H. (1988). The laws of emotion. <u>American Psychologist</u>, 43, 349-358.
- George, J.M. (1989). Mood and absence. <u>Journal of Applied Psychology</u>, <u>74</u>, 317-324.
- George, J.M. (1991). Personality, affect, and behavior in groups. <u>Journal of Applied Psychology</u>, 75, 107-116.
- George, J.M. (1991). State or trait: Effects of positive mood on prosocial behaviors at work. <u>Journal of Applied Psychology</u>, 76, 299-307.
- Gerrards-Hesse, A., Spies, K., & Hesse, F.W. (1994). Experimental induction of emotional states and their effectiveness: A review. <u>British Journal of Psychology</u>, <u>85</u>, 55-78.
- Gilliland, S.W. (1993). The perceived fairness of selection systems: An organizational justice perspective. <u>Academy of Management Review</u>, <u>18</u>, 694-734.
- Greenberg, J. (1983). Overcoming egocentric bias in perceived fairness through self-awareness. <u>Social Psychology Quarterly</u>, <u>46</u>, 152-156.
- Greenberg, J. (1986). Determinants of perceived fairness of performance evaluations. <u>Journal of Applied Psychology</u>, 71, 340-342.
- Greenberg, J. (1987). A taxonomy of organizational justice theories. Academy of Management Review, 12, 9-22.

- Greenberg, J. (1990). Employee theft as a reaction to underpayment inequity: The hidden cost of pay cuts. <u>Journal of Applied Psychology</u>, <u>75</u>, 561-568.
- Greenberg, J. (1993). Stealing in the name of justice: Informational and interpersonal moderators of theft reactions to underpayment inequity.

 Organizational Behavior and Human Decision Processes, 54, 81-103.
- Herriot, P. (1989). Selection as a social process. In M. Smith & I.T. Robertson (Eds.), Advances in selection and assessment (pp. 89-112). Chichester, England: Wiley.
- Isen, A.M. (1987). Positive affect, cognitive processes, and social behavior. In L. Berkowitz (Ed.), <u>Advances in experimental social psychology</u> (Vol. 20, pp. 203-253). New York: Academic Press.
- Isen, A.M. (1993). Positive affect and decision making. In M. Lewis & J.M. Haviland (Eds.), <u>Handbook of emotions</u>. New York: Guilford Press.
- Isen, A.M., & Daubman, K.A. (1984). The influence of affect on categorization. Journal of Personality and Social Psychology, 47, 1206-1217.
- Isen, A.M., Daubman, K.A., & Nowicki, G.P. (1987). Positive affect facilitates creative problem solving. <u>Journal of Personality and Social Psychology</u>, <u>52</u>, 1122-1131.
- Isen, A.M., Niedenthal, P.M., & Cantor, N. (1992). An influence of positive affect on social categorization. <u>Motivation and Emotion</u>, 16, 65-78.
- Isen, A.M., Shalker, T.E., Clark, M.S., & Karp, L. (1978). Affect, accessibility of material and behavior: A cognitive loop? <u>Journal of Personality and Social Psychology</u>, <u>36</u>, 1-12.
- Isen, A.M., & Simmonds, S.F. (1978). The effect of feeling good on a helping task that is incompatible with good mood. <u>Social Psychology Quarterly</u>, <u>41</u>, 345-349.
- Ketelaar, T. (1989). Examining the circumplex model of affect in the domain of mood-sensitive tasks. Unpublished master's thesis, Purdue University, IN.

- Larsen, R.J., & Diener, E. (1992). Promises and problems with the circumplex model of emotion. In M.S. Clark (Ed.), <u>Emotion</u>. Newbury Park, Ca: Sage.
- Leventhal, G.S. (1980). What should be done with equity theory? New approaches to the study of fairness in social relationships. In K.J. Gergen, M.S. Greenberg, & R.H. Willis (Eds.), Social exchange: Advances in theory and research (pp. 27-55). New York: Springer-Verlag.
- Mackie, D.M., & Worth, L.T. (1991). Feeling good but not thinking straight: The impact of positive mood on persuasion. In J.P. Forgas (Ed.), Emotion and social judgments. New York: Pergamon Press.
- Mayer, J.D., Salovey, P., Gomberg-Kaufman, S., Blainey, K. (1991). A broader conception of mood experience. <u>Journal of Personality and Social Psychology</u>, 60, 100-111.
- McFarlin, D.B., & Sweeney, P.D. (1992). Distributive and procedural justice as predictors of satisfaction with personal and organizational outcomes. Academy of Management Journal, 35, 626-637.
- McFatter, R.M. (1994). Interactions in predicting mood from extraversion and neuroticism. <u>Journal of Personality and Social Psychology</u>, <u>66</u>, 570-578.
- Mook, D.G. (1983). In defense of external invalidity. American Psychologist, 38, 379-387.
- Moorman, R.H. (1991). Relationship between organizational justice and organizational citizenship behaviors: Do fairness perceptions influence employee citizenship? <u>Journal of Applied Psychology</u>, 76, 845-855.
- Morris, W.N., & Reilly, N.P. (1987). Toward the self-regulation of mood: Theory and research. Motivation and Emotion, 11, 215-249.
- Nemanick, R.C., & Munz, D.C. (1994). Measuring the poles of negative and positive mood using the Positive Affect Negative Affect Schedule and Activation Deactivation Adjective Check List. <u>Psychological Reports</u>, 74, 195-199.
- Niedenthal, P.M., & Showers, C. (1991). The perception and processing of affective information and its influences on social judgment. In J.P. Forgas (Ed.), Emotion and social judgments. New York: Pergamon Press.

- O'Malley, M.N., & Davies, D.K. (1984). Equity and affect: The effects of relative performance and moods on resource allocation. <u>Basic and Applied Social Psychology</u>, 5, 273-282.
- Organ, D.W., & Konovsky, M. (1989). Cognitive versus affective determinants of organizational citizenship behavior. <u>Journal of Applied Psychology</u>, 74, 157-164.
- Parrott, W.G. (1993). Beyond hedonism: Motives for inhibiting good moods and for maintaining bad moods.
- Parrott, W.G., & Sabini, J. (1990). Mood and memory under natural conditions: Evidence for mood incongruent recall. <u>Journal of Personality and Social Psychology</u>, <u>59</u>, 321-336.
- Paulhus, D.L. (1991). Measurement and control of response bias. In J.P. Robinson, P.R. Shaver, & L.S. Wrightsman (Eds.), Measures of personality and social psychological attitudes (pp. 17-59). San Diego: Academic Press.
- Petty, R.E., Gleicher, F., & Baker S.M. (1991). Multiple roles for affect in persuasion. In J.P. Forgas (Ed.), Emotion and social judgments. New York: Pergamon Press.
- Robertson, I.T., & Smith, M. (1989). Personnel selection methods. In M. Smith & I.T. Robertson (Eds.), <u>Advances in selection and assessment</u> (pp. 89-112). Chichester, England: Wiley.
- Rousseau, D.M., & Aquino, K. (1993). Fairness and implied contract obligations in job terminations: The role of remedies, social accounts, and procedural justice. Human Performance, 6, 135-149.
- Schmitt, N., & Gilliland, S.W. (1992). Beyond differential prediction: Fairness in selection. In D.M. Saunders (Ed.), New approaches to employee management: Fairness in employee selection (Vol. 1, pp. 21-46). Greenwich, CT: JAI Press.
- Schwarz, N. (1990). Feelings as information. Informational and motivational functions of affective states. In R. Sorrentino and E.T. Higgins (Eds.), Handbook of motivation and cognition, (Vol. 2, pp. 527-561). New York: Guilford Press.

- Schwarz, N., & Bless, H. (1991). Happy and mindless, but sad and smart? Impact of affective states on analytical reasoning. In J.P. Forgas (Ed.), Emotion and social judgments. New York: Pergamon Press.
- Schwarz, N., & Clore, G.L. (1983). Mood, misattribution, and judgments of well being; Informative and directive functions of affective states. <u>Journal of Personality and Social Psychology</u>, 45, 513-523.
- Schwarz, N., & Clore, G.L. (1988). How do I feel about it? Informative functions of affective states. In K. Fiedler and J.P. Forgas (Eds.), <u>Affect</u>, cognition, and social behavior. Toronto: Hogrefe.
- Sinclair, R.C. (1988). Mood, categorization breadth, and performance appraisal: The effect of order of information acquisition and affective state on halo, accuracy, information retrieval, and evaluations. <u>Organizational Behavior and Human Decision Processes</u>, 42, 22-46.
- Sinclair, R.C., & Mark, M.M. (1991). Mood and the endorsement of egalitarian macrojustice versus equity-based microjustice principles. <u>Personality and Social Psychology Bulletin</u>, 17, 369-375.
- Thompson, L., & Lowenstein, G. (1992). Egocentric interpretations of fairness and interpersonal conflict. <u>Organizational Behavior and Human Decision Processes</u>, 51, 176-197.
- Watson, D., Clark, L.A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. <u>Journal of Personality and Social Psychology</u>, <u>54</u>, 1063-1070.
- Watson, D., & Pennebaker, J.W. (1989). Health complaints, stress, and distress: Exploring the central role of negative affectivity. <u>Psychological Review</u>, <u>96</u>, 234-254.
- Watson, D., & Tellegen, A. (1985). Toward a consensual structure of mood. Psychological Bulletin, 98, 219-235.
- Wegner, D.M., & Vallacher, R.R. (1986). Action identification. In R. Sorrentino and E.T. Higgins (Eds.), <u>Handbook of motivation and cognition:</u> Foundations of social behavior. New York: Guilford Press.

Weiss, H.M., & Cropanzano, R. (1996). Affective events theory: A theoretical discussion of the structure, causes and consequences of affective experiences at work. In B.M. Staw and L.L. Cummings (Eds.), Research in Organizational Behavior. Greenwich, CT: JAI Press.

MICHIGAN STATE UNIV. LIBRARIES
31293015592466