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ABSTRACT

CHARACTERIZING THE LOW-ORDER FRICTION DYNAMICS IN

A FORCED OSCILLATOR

By

Jin-Wei Liang

This thesis is devoted to the study of low-order friction dynamics. It applies an

air-track system for isolating the source of friction and compares direct and indirect

friction measurements, which are the two most common measuring methods. It has

shown that the air-track system can efficiently isolate friction source. The compar-

ison between direct and indirect friction measurements indicates that the indirect

approach reveals more transient dynamics and random sound noise caused by the air-

track system. However, both friction measurements are consistent in the macroscopic

motion features as well as the friction level.

A compliant, massless contact model is then used to describe the friction dynamics

of the direction-reversal event for a steel-on-steel contact problem. We analytically

predict elasto—frictional behaviors in both macroscopic pure-sliding and stick-slip mo-

tions. The compliant contact model captures most of the direction-reversal friction

dynamics of our experimental system, including the spring-like feature in the macro-

scopic sliding motion and the transition oscillation during a macroscopic stick-slip

process. The wavelet transform is then applied to characterize the transition behav-

iors of a stick-slip process for both experimental and simulated acceleration signals.

The thesis then investigates the sliding instability that induces frictional noise. An



experimental linear-bearing system is adOpted for this study. We first identify damp-

ing characteristics of the linear-bearing system by proposing a decrement method.

The new decrement method can simultaneously estimate viscous and Coulomb damp-

ing. Numerical and experimental verifications show the reliability and feasibility of

this decrement method. The squeak of a rubber-on-steel contact problem is explored

using the linear-bearing system. A basic squeak mechanism for this rubber-on-steel

contact problem is proposed based on the experimental observations.



Jin-Wei liang 1996
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CHAPTER 1

INTRODUCTION

1.1 Contributions of This Thesis

The most important contribution of this thesis is the development of an experi-

mental approach that can be used to investigate frictional problems. This approach

is applied to systematically explore the frictional dynamics of a two-directional forced

oscillator. The contributions include the following:

e Isolating source of friction using an air-track system that generates an excellent

environment for friction study and provides a single degree-of—freedom oscillator

(Chapter 2)

e Validation of the measurement of friction through the comparison of two common-

accepted approaches (Chapter 2)

e A thorough study of the effects of the tangential, contact stiffness on a har—

monically forced oscillator focusing on the direction-reversal event (Chapters 3

and 4)

e Successful establishment of a detecting tool (wavelet analysis) that can iden-

tify the occurrence of the elasto-frictional behaviors during a stick-slip process

(Chapter 5)
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e Development of a new decrement method that can simultaneously estimate dry

and viscous damping from a combined-damping system (Chapter 6)

e Development of another anti-friction slider system with damping characteristics

provided (Chapter6)

e Suggesting a basic squeak mechanism for a rubber-on-steel contact problem

(Chapter 7)

1.2 Thesis Overview

The ultimate goal of this thesis is to experimentally characterize the friction-

induced noise problem using the friction-velocity plot. In order to achieve this, a

reliable friction measurement is required which calls for a good friction testing setup

and a reliable friction record technique.

To isolate the external friction, we introduced an air-track system that possesses

extremely low damping. Thus, the external friction that is added to the air-track

system can be considered as an isolated force. Damping characteristic of this exper-

imental setup is addressed in Chapter 2. In the same chapter, we also compare two

friction measurements, including the application of load cell and the calculation of

friction force from the system’s ordinary differential equation, to validate the friction

measurement that is used in the subsequent studies.

In Chapters 3 and 4, we focus on the interpretation of friction measurement

observed in the friction-velocity plot. Two special elasto-frictional phenomena are

discussed: the spring-like behavior during the pure-sliding motion and the transition
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oscillation during a stick-slip process. These phenomena relate with the direction-

reverSal event and experience low relative velocity in frictional interface. Thus, the

study presented in Chapters 3 and 4 can be treated as investigations of friction in

the low-velocity range.

To explain the elasto-frictional behavior in the low-velocity range, an idealized

tangential, contact model is examined analytically and numerically. Comparisons

between the results of the modeling and the experiment are accomplished. We also

explore the state-variable friction model; which over some parameter ranges can

generate the transition oscillations. The idealized tangential, contact model can

efficiently describe the elasto-frictional behaviors observed, but the state-variable due

to the lack of a physical mechanism cannot completely capture the elasto-frictional

behavior of the real system.

An important elasto-frictional feature during a stick-slip process is the high-

frequency transition oscillation. In order to detect the occurrence of this event,

we apply wavelet analysis on the numerical and experimental stick-slip data. This

analysis is presented in Chapter 5. The result shows that wavelet analysis is very

efficient in detecting the occurrence and representing the features of the transition

oscillations.

To continue the development of the experimental friction approach, we proceed

to study the friction dynamics in the sliding regime, which has the relative velocity

much larger than zero. Because the ultimate application is a noise problem, the

air—track system is no longer applicable. This is due to the inherent noise problem

of this air-track system. Hence, we develop another anti-friction slider (liner-bearing



system) for the frictional noise study.

Although the linear-bearing system is designed to be free of friction, it contains

both dry and viscous damping. To characterize the damping of the linear-bearing

system, we propose a new decrement method in Chapter 6. This chapter shows the

analytical, numerical and experimental investigations of the new decrement method.

Through the study, damping information of the linear-bearing system is identified.

Chapter 7 performs the investigation of the friction dynamics in the sliding

regime. The study explores the squeak noise generated in a rubber-on-steel con-

tact due to the sliding instability. Different parameters are varied to examine the

possible mechanism that causes the unstable sliding motion. Finally, we suggest a

basic squeak mechanism for this rubber-on—steel contact problem.

In Chapter 8, conclusions of this research and several directions of future work

are summarized.

1.3 General Statements

Friction is important in many dynamical engineering applications, including those

associated with servo-control problems in machine tools and robotics; noise problems

in railway, brake, or automobile suspension systems; and wear and heat problems

in manufacturing processes or in anti-friction mechanical components. Recent sur-

vey articles by Armstrong-Hélouvery et al. [3], Ibrahim [32], [33], and Oden and

Martins [54] relating dynamical systems with friction contain hundreds of references.

Research activities in this field can be divided into different categories. For exam-

ple, people in the control community either want to dispose of friction or request
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a reliable and simple friction model such that a high-performance controller can be

implemented. In contrast, researchers in tribology (lubrication) are interested in un-

derstanding the physical process occurring at the friction interface. Their results can

be applied to achieve design criterion for improving the performances of mechani-

cal components such as cutting tools or bearings but may be too complicated to

be incorporated with control schemes. On the other hand, dynamicists, who know

little about tribology, focus on the investigation of the coupling between mechanical

systems and friction process. Research results from this field can hopefully help fill

the gap between control applications and lubrication studies.

This dissertation belongs to the dynamical regime. It studies the dynamics of

mechanical systems with dry friction, with the intent of extracting information about

friction dynamics.

The experimental system in this study, in general, has a steel-on-steel contact

with engineering finishes and is subjected to two-directional, harmonic excitations.

Although most of the previous friction studies that can be found in the survey pa-

pers by Armstrong-Hélouvery et al. [3], Ibrahim [32], [33], and Oden and Martins [54]

concentrated on unidirectional problems, close-loop control systems often involve os-

cillating motion with direction reversals. Some but not many two-directional friction

studies were reported in the literature; which include, for instance, the experimental

works by Den Hartog [15], Marui and Kato [44], and Wojewoda et al. [80] and the

analytical works by Den Hartog [15], Hundal [30], and Shaw [69] etc. It is of interest

to understand the dependences of friction behaviors on the direction of motion as

well as the oscillation frequency.
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1.4 Modeling of Dry Friction in Mechanical Systems

While dry friction has been studied for centuries by researchers in different com-

munities through various methods, the process occurring at the friction interface is

not yet completely understood. Due to the complexity of the friction process, it is

believed that a single and universal friction law is almost impossible to attain. Fric—

tion modeling is more-or-less system and task dependent. General considerations

address the materials, the geometry, the chemical process, and the motion scale at

the friction interface. Research in this area begins with Leonardo da Vinci (1452-

1519), who defined friction laws based on direct measurements and addressed the

concept of coefficients of friction. Coulomb [12], on the other hand, observed that

both static and kinetic friction exist and found that they are almost identical for the

metallic contacts. The terms static and kinetic coefficients of friction were proposed

by Morin [48].

Even though the Coulomb friction model is reliable in describing some macro-

scopic frictional behaviors such as the stick-slip phenomenon (Den Hartog [l5], Hun-

dal [30], Shaw [69], and Marui and Kato [44]), it is not able to model subtle friction

features. These include (1) the frictional memory effect or hysteresis characteristic

in the sliding regime (Ibrahim [32], [33], Ruina [66], Dieterich [17], [16]); (2) rate and

time dependencies of the static friction (rising static coefficient of friction) (Kato

et al. [36], Armstrong-Hélouvry et al. [3]); and (3) influences of normal vibrations

(e.g. Tolstoi [75], Oden and Martins [54], Tworzydlo and Becker [76], Tworzydlo et

a1. [77]).

To supplement the Coulomb friction law, different friction models have been re-
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cently proposed. For example, state-variable and time-delay friction models were pro-

posed to accommodate the frictional memory effects (Ruina [66], Hess and Soom [28],

and Dieterich [17], [16]). The frictional memory effect manifests itself in a loop struc-

ture seen in friction-velocity plot such that the friction in the accelerating phase is

higher than that in the decelerating phase during a single motion cycle. An explana-

tion of this phenomenon suggested by Rabinowicz [60] stated that friction is possibly

memory dependent. If the steady—state friction decreases as the sliding velocity in-

creases; then during the accelerating phase, the averaged velocity over a proceeding

critical distance will be larger than that in the decelerating phase, centering at the

same steady-state sliding velocity (Ibrahim [32]). Oden and Martins [54] took the

normal vibrations into consideration and developed an elastic constitutive relation-

ship in the friction interface. A striking feature of the resulting friction model is

that there will be no loop structure in the friction-velocity relationship if the friction

coefficient is taken as the instantaneous ratio of friction force to normal force. In

other words, the frictional memory effect vanishes if the dynamics in the normal

direction is considered. Some numerical studies applying Oden and Martins’ friction

model predicted the occurrences of sliding instability caused by the coupling between

tangential, normal, and rotational dynamics (Twozrydlo et al. [76], [77]).

New friction models are still developing. For example, Polycarpou and Soom [57]

proposed a two-dimensional friction model that included both tangential and normal

dynamics. This model was developed according to the observations made from a

specific system. Canudas de Wit et al. [10] suggested a friction model that treats

the friction interface as the contact between bristles. This model can capture fric-
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tion phenomena such as Stribeck effect, spring-like sticking characteristic and the

hysteresis effect in sliding regime. Hsu [29] applied identification techniques to a hy-

draulic actuator system and developed a parameterized friction model. This model

can account for unmodeled dynamics caused by the inaccuracy of the physically

based equations, the inherent stochastic mechanisms, and the measurement noises

that can occur in a real friction process.

Although we will apply a massless, compliant contact model to interpret some

experimental friction observations, the main focus of this dissertation is in the study

of dynamic friction behaviors rather than the friction modeling.

1 .5 Stick-Slip Process

Stick-slip alone is a very important feature of dry friction and has been the focus

of many works. It occurs when the relative velocity at sliding interface is zero. The

motion tends to be intermittent such that during the sticking phase the static friction

balances other forces present, and sliding motion resumes when the static friction

cannot sustain the resultant force. The occurance of a stick-slip limit cycle is unde-

sirable in control applications since it may cause the deterioration of controller per-

formance, particularly in the high-accuracy regulating and the low-velocity tracking

problems (Armstrong-Héluovry [3], Radcliffe [61], Dupont [19], Southward et al. [70],

Brandenburg and Schafer [8], Suzuki and Tomizuka [73], Canudas de Wit et a1. [10],

Canudas de Wit and Seront [10], and Maqueria and Masten [43]). Furthermore,

stick—slip is also a suspected mechanism of high-frequency frictional noise occurring

in railway and automobile systems (Nakai and Yokoi [51], Ibrahim [32], [33]).
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Many researchers have studied stick-slip phenomenon analytically. For a har-

monically excited single degree of freedom (DOF) system with Coulomb friction,

Den Hartog [15] solved the steady-state periodic solutions. The steady-state so-

lutions consist of stick-slip processes with various numbers of sticking events per

forcing cycle (Den Hartog [15]). Hundal [30] investigated a similar system with har-

monic base—excitation motion. His work, incorporated with the Coulomb friction

model, yielded closed form solutions with a stable stick-slip process. More recently,

Shaw [69] determined the stability of the steady-state periodic solutions and con-

ducted bifurcation studies of system parameters. It is of interest to note that the

mechanical friction systems generate not only the stable stick-slip motion but also

chaotic behaviors. For example, Popp and Stelter [58] numerically studied a uni-

directional belt-drive system incorporated with nonlinear friction characteristic and

found a chaotic attractor in their system. The route to chaos in that study tends

to be intermittency. Conversely, Feeny and Moon [25] investigated a system with a

linearly displacement-dependent friction characteristic. This system, when subjected

to harmonic excitations, can exhibit chaotic behaviors with period doubling as the

route to chaos. Nevertheless, even a regular stick-slip process can possess abundant

dynamics especially at the onset of sticking.

1.6 The Comparison of Direct and Indirect Friction Measurements

Among many techniques that can be used to record friction, the direct employ-

ment of load cell and the computation of friction force in accordance with the system’s

ODE are commonly accepted in literature. However, commercial load cells are lim-
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ited by resolution and frequency response. They are unable to account for all of the

events occurring in the friction interface. The friction signal registered by the load

cell is usually attenuated over the high-frequency range since the load cell acts like

a low-pass filter.

In contrast to the direct approach, calculating the friction force incorporated with

the system’s ODE requires more than one transducer. Such a computation approach

is called the AVD method by K0 and Brockley in [38] because it involves the direct

measurements of acceleration, velocity, and displacement of the moving specimen.

This method is liable to error because different sensors typically respond at different

speeds leading to a phase shift among transducers. Although the phase shift among

different transducers can be regulated by careful calibration work, regarding these

two approaches, some interesting issues arise. What will be the difference between

the resulting friction signals obtained from direct and indirect methods? Moreover,

will the phase shift among transducers depend on the frequency contents of the

signal?

These questions will be answered partially in Chapter 2. In order to successfully

measure the friction force, the source of friction must be isolated. Isolating friction

is nontrivial. To achieve it, we introduce the air track system, which has very small

dry-friction effect. The mass of the main system will therefore glide on this air

track with an external friction source. Guidelines for interpreting friction signals are

obtained through this investigation.
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1.7 Effects of Tangential Contact Stiffness on a Harmonically Forced Os-

cillator: Pure Sliding Motion

Friction depends on several parameters, including relative velocity, normal load,

time, temperature, materials, geometry, and roughness of the sliding surfaces. The

Coulomb friction model states that the friction force of constant magnitude will

alternate sign depending on the direction of the relative velocity of sliding surfaces.

In the real world, the friction contact can have compliance at the asperity joints or

at the surrounding structures. As a result, there might be an elastic deformation

period prior to the sliding motion. This elastic characteristic is termed a “spring-like”

sticking behavior by Canudas de Wit et al. [14]. The displacement induced by this

elastic deformation is typically small (of the order of a micron) and was denoted as

“preliminary displacement”, “micro displacement”, or “presliding displacement” in

the literature (Oden and Martins [54], Canudas de Wit [l4], and Harnoy et al. [26]).

Although many previous experimental results have indicated its existence, the origin

of this elastic component is not clear. It could be the elastic deformation of the

specimen or that of the testing apparatus (Oden and Martins [54]).

According to our preliminary experimental experiences, the occurance of the “mi-

cro displacement” was observed. Associated with this micro displacement in a har-

monically forced system there is certain velocity at which the transition between

micro and gross sliding displacements takes place. This specific velocity is shown to

be dependent on the oscillation frequency in the case of harmonic excitation. The

elasto-frictional (spring-like) characteristic occurring at low velocity manifests itself

in a hysteretic structure in friction-velocity plot.
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To further study this “spring-like” sticking behavior, a simple compliant contact

model is investigated in Chapter 3. Focusing on pure-sliding motion, geometric

analysis leads to quantitative and qualitative sticking features. These predictions

are verified by experiments and numerical simulations.

1.8 Effects of the Tangential Contact Stiffness on a Harmonically Forced

Oscillator: Stick-Slip Motion

Experimental studies on the stick-slip phenomenon often reveal oscillations during

the transition from sliding to sticking. The measurements of Marui and Kato [44]

showed an oscillation of friction force during the transition phase of stick-slip process,

which suggested a dynamical friction behavior. A similar oscillation was observed in

a boundary-lubricated system measured by Polycarpou and Soom [56], where both

the acceleration and friction force exhibited oscillations in the transition phase. K0

and Brockly [38] focused on measuring dry friction with a unidirectional pin-on-

disk apparatus and found such oscillations in their velocity signal. The key feature

was that there were high-frequency oscillations superimposed on a low-frequency

periodic stick-slip signal. The low-frequency stick-slip response can be obtained by

considering a mass-spring system incorporated with a Coulomb friction model. Based

on this model, the acceleration response is zero during the sticking interval and has a

jump event at each onset of sticking. However, there is no high-frequency transition

oscillation occurring in this model. In the real system, the jump in the friction

force due to the sticking feature acts like a pulse or step input to the mass-spring

system with frictional contact and can excite the coupling dynamics between the
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main system and contact point. This feature is evident when the contact possesses

tangential compliance.

Moreover, a specific state-variable friction model incorporated with the system’s

ODE can generate similar transition oscillations over some parameter ranges. Fea-

tures of the simulated transition oscillation of this friction mode resemble those

observed in experiments. It appears that the state—variable may be able to capture

the transition features of a real system.

In Chapter 4, we apply the massless tangential contact model to interpret the

transition oscillation that has been observed in the experimental system. A free-

vibration test was conducted to measure the frequency of this transition oscillation.

It was found that this experimentally observed frequency matched the prediction

based on the tangential, contact model. Furthermore, a double stick-slip event was

revealed in both the experimental data and the numerical simulations of the tangen-

tial, contact model. This event illustrates the coexistence of the macroscopic and

microscopic stick-slip process. Numerical studies focusing on the tangential, contact

model can reasonably describe the experimental sticking behaviors, qualitatively and

quantitatively.

1.9 Characterizing Stick-Slip Process Using Wavelet Transform

There are modern signal processing techniques that are efficient in dealing with

the signals containing both high and low frequency components. Among these tech-

niques, the short-time Fourier transform (STFT) uses a translational window in the

time domain and expands the frequency contents with respect to the signal inside
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the window (Allen and Rabiner [1], Portnoff [59]). Therefore, it can be interpreted as

a general Fourier transform with time localization. Due to the uncertainty principle,

the resolution in time and frequency of this approach cannot be arbitrarily small and

limits the application of this method (Vetterli [78]). The wavelet transform is an-

other candidate for extracting time-frequency information from a signal with a wide

range of frequency components (Rioul and Vetterli [64], Williams [79]). The advan-

tage of wavelet transform over the STFT is that it uses a varying window length

depending on the frequency contents of the signal, such that it is possible to zoom

into different structures in both time and frequency domains. This technique has

been introduced in the vibration studies recently and was showed to be efficient for

some cases (e.g. Onsay and Haddow [55], Newland [52], [53], Chen and Wang [10],

Mooney and Soom [47], Hunt [31], Kishimoto et al. [37]).

Due to the facts that the stick-slip acceleration data have high-frequency events

superimposed on the low-frequency periodic response, and the wavelet transform is

efficient in extracting time-frequency informations of signals with a wide range of

frequency components. An important question is, “Can the wavelet transform be

used as a tool to characterize the transition behaviors of stick-slip motion so that the

occurance of subsystem/coupling dynamics can be detected?”

An investigation focusing on this question is presented in Chapter 5.

1.10 A Decrement Method for the Simultaneous Estimation of Coulomb

and Viscous Friction

One of the motivations of this thesis is the investigation of frictional noise. To
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study a noise problem, a quiet environment is required. The air track that we intro-

duced for isolating friction is no longer applicable since there is inherent noise caused

by the air sound. This inherent air noise is irreducible because some threshold air

pressure is necessary for supporting the sliding mass. Another low—friction element

applied widely in friction study is the linear bearing system (Dweib and D’Souza [20],

[18] and Aronov et al. [6], [4], [5]). This system is also used in many control applica-

tions, particularly in the high-speed position control. We adopt this element for the

study of the frictional noise problem. A linear bearing, while designed to be friction-

less, is not friction free. In order to identify the dry friction and viscous damping

existing in this linear bearing system, a decrement method is proposed in Chapter

6.

The logarithmic decrement method was formulated by Rayleigh in 1877 [62]. The

idea, however, goes back to Hermann Helmholtz [27], who applied the logarithmic

decrement to determine frequency information in musical tones in 1863. This decre-

ment method can be used to estimate the linear viscous damping effect. In contrast,

the constant decrement in free-vibration response due to Coulomb friction was ad-

dressed by Lorenz in 1924 [41]. The method considers the constant decrement in

successive oscillation amplitudes so as to determine the sliding friction characteris-

tic. Both of these estimation algorithms can be found in a modern vibration textbook

such as Meirovitch [46]. However, an analytical prediction algorithm for a system

possessing both dry friction and viscous damping effects has not yet been seen. Es-

timating damping characteristics from this combined-damping system is important

since many control schemes call for thorough modeling information, particularly in
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the applications of model-referenced adaptive control (Ioannou and Sun [34]). Lack

of modeling information certainly deteriorates the performance and robustness of the

controller.

Following the existing ideas, a decrement method is developed in Chapter 6 to

simultaneously estimate the dry-friction and viscous—damping effects. Numerical and

experimental investigations validate this proposed method. The damping character-

istics of the linear bearing system are estimated.

1 . 1 l Squeak Criterion

Among the various undesirable friction-induced problems, squeak and squeal in

automobile brake and suspension systems have drawn particular attention. This

problem is important because the annoyance of the high-frequency noise decreases

the enjoyment of driving and ultimately the profits of the automakers. The frictional

noise problems are difficult to be solved or prevented because unclear mechanisms

and irrepeatability are generally involved in the frictional noise problem.

Various types of frictional noise can be observed in sliding systems. For example,

the noise caused by the random surface roughness is usually of low level and is similar

to rubbing noise (Nakai and Yokoi [51]). The noise of more importance in applica-

tions is the one of high level, referred to as a “screaming noise”. This kind of noise

is believed to be caused by the friction-induced self-excited vibrations (Nakai and

Yokoi [51], Dweib and D’Souza [20], [18], and Aronov et al. [6], [4], [5]). Many mech-

anisms are suspected to be responsible for friction-induced vibration including stick-

slip, sprag-slip, negative slope in the friction-velocity relationship and coupling of
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degrees of freedom. (Dweib and D’Souza [20], [18], Nakai and Yokoi [51], Tworzydlo

et al. [77], Aronovet al. [6], [4], [5], Earles and Lee [21], Spurr [71], Ibrahim [32],

[33]). However, the experimental observations reported in literature indicated that

the coupling between different degrees of freedom system is prevalent during the oc-

currence of the sliding instability. This observation is somewhat consistent in the

works of Dweib and D’Souza, Aronov et al., Nakai and Yokoi, and Tworzydlo et al.

The previous studies also concentrated in the investigations of unidirectional system.

A two-directional, harmonically excited system is considered in Chapter 7. The

system has rubber-on-steel contact. Observations focusing on the squeak generation

are made to reveal the possible mechanism or criterion for this noise problem. This

study is motivated by the squeak problem observed in a automobile stabilizer bar

which has a rubber-on-steel contact. Coupling between different degrees of freedom

was observed during the squeak generation. Moreover, the negative slope in friction-

velocity plot seems to correspond to the existence of sliding instability and frictional

noise.



CHAPTER 2

THE COMPARISON OF DIRECT AND INDIRECT

FRICTION SIGNALS

2.1 Introduction

Two techniques are commonly adopted for recording friction forces. These are the

direct employment of load cell signal and the calculation of friction force from sys-

tem’s governing equation incorporated with the measured motion signals. Installing

a load cell to frictional systems is equivalent to adding a mass-spring subsystem to

the main system. The dynamical effect of this extra degree of freedom seems to be

insignificant because commercial load cells are usually stiff compared to the mechan-

ical friction systems. However, every load cell has its own natural frequency and

bandwidth and acts as a low-pass filter on the friction signal. The measured friction

force signal will be more or less attenuated over the high-frequency range. Thus, the

signal obtained from a load cell may not be able to completely depict actual friction

forces.

On the other hand, calculating the friction force from the system’s ordinary differ-

ential equation (ODE) requires more than one transducer. This approach is therefore

liable to parasitic interference and calibration errors. These problems occur because

each transducer has it own response which does not coincide absolutely with the

18



19

responses of other transducers (Antoniou [2]). Moreover, a smoothening algorithm

is often required to handle digital data (e.g. Sakamoto [67], [68], and Dupont and

Dunlap [19]) and may affect the apparent friction characteristics.

As a result, the comparison between friction signals from both direct and indi-

rect friction measurements becomes an important issue. While neither method can

represent the absolute story of the friction process occurring at the interface, they

each partially reveal the process. By combining specific features associated with

individual techniques, guidelines for interpreting signals from these methods can be

made, as will be the completeness of friction-process information. Such a comparison

is carried out in this chapter.

This chapter is organized as follows. The next section describes the experimental

instrumentation. In Section 2.3, some vibration tests in the absence of frictional

contact were conducted in order to investigate the phase shift between sensors. This

information is necessary for the indirect calculation of the friction force. Section

2.4 compares friction signals obtained from direct and indirect techniques. Exam-

ined cases include one stick-slip motion and three pure sliding cases with different

excitation frequencies. The friction interface is steel-on-steel. The consistencies

and discrepancies between the two approaches are demonstrated. In Section 2.5,

a frequency response approach is adopted to investigate dynamics associated with

different sensors and mountings. Through this investigation, discrepancies occurring

in the comparison of direct and indirect friction signals can be explained. Section

2.6 concludes this chapter with some discussions regarding the impact of this study

on friction applications.
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2.2 Apparatus and Instrumentation

A schematic diagram of the apparatus is presented in Figure 2.1. The apparatus

consists of a sliding mass, helical springs, and the friction-contact mechanism. The

sliding mass, comprising mostly the inertia of the accelerometer, moves in an air

track. Motion in the air track is almost friction free, with a nondimensional vis-

cous damping factor equal to 0.0008. The friction-contact mechanism consists of a

pinched-flange structure which is designed for balancing the normal loads on both

sliding surfaces.
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© normal load
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air curtain friction contacts
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Figure 2.1: Schematic diagram of the experimental apparatus.

The displacements of both the sliding mass and the base excitation were sensed by

linear variable differential transformer (LVDT). This LVDT was made by Rabinson—

Halpern Co. (Model 210A-0500) and had a resolution of 2.5 pm after quantization
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in the digital data acquisition process. The seismic accelerometer (PCB, Model

3930) was adopted to record the acceleration signal. This accelerometer had a

frequency range from 0.025 to 800 Hz with 5% transverse sensitivity. The nominal

sensitivity of the accelerometer was 1 volt/g with a resonant frequency of 3.5 kHz.

The friction force was measured by a piezoelectric load cell (PCB, Model 208B) which

had 0.0002 lb resolution in a range of 10 lb in both tension and compression. The

nominal sensitivity was 500 mvolt/lb with a stiffness of 10 lb/pin. The discharge

time constant of this load cell was 50 sec and the resonant frequency was 70 kHz.

x103
2

U

 

 

IIIIIIIIIII I]

x
(
t
)
(
0
m
m
)

II]I [III]I]![II]I [[IIIIII]II WI]‘UI[]]I [III II]I [IIIIIIIIIIIII ]

I

 

 

t (see)

Figure 2.2: Free vibration response for a mass-spring system without

external friction and base excitation.

The system was driven by an electromagnetic shaker (LDS, Model 400) associ-

ated with a power amplifier/signal generator. This unit was capable of producing

a harmonic signal to excite the sliding mass. The lowest operating frequency for

which the shaker can produce satisfactory harmonic signal was 1 Hz. The maximum

displacement amplitude of the shaker was 8 mm. The friction contact was steel-on-
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steel. The planner surfaces were ground and rubbed with 400-grit, silicon-carbide

paper. The other contact surfaces had hemispherical geometry and were lathed with

an engineering finish then rubbed by the same type of paper. Finally, the surfaces

were cleaned by a degreaser (Measurement Group, Inc., Model CSM-l). The surfaces

were then engaged in sliding motion for at least 30 minutes to attain a steady-state

friction characteristic before the data were recorded.
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Figure 2.3: Free vibration results without external friction and exci-

tation, f1: the experimental spring force=k31 (1!); f2: the

experimental inertial force=m52(t + 7').

In order to gain an idea of how the air track can affect the friction investigation,

a free-vibration test, with the base fixed, was carried out in the absence of frictional

contact. The result is presented in Figure 2.2. The damping of the mass/spring

in the air track is nearly viscous with very little dry friction effect. According to

the logarithmic decrement algorithm, the damping factor of the mass and spring

in the air track is 0.0008. The spring may also possess internal damping. Thus,



the damping effect shown above can be induced by either the air damping or the

material damping. Nevertheless, the damping is quite small and we will neglect

this effect in the subsequent studies. Moreover, because the inherent damping of

this air-track system is so insignificant compared to the external friction exerted by

the pinched-flange mechanism, we will consider that the latter friction is an isolated

friction source.

(a)

Figure 2.4:

2.3 Phase Relationships between Accelerometer and LVDT Signals

Phase shifts between different sensors is always an issue in experimental work. For

instance, K0 and Brockly [38] observed a 1-degree phase shift between the accelera-

tion and displacement signals (the response speeds vary among various commercial
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Forced vibration results without external friction, ex-

citation frequency = 3 Hz; f1: the experimental

spring force=kSl(t); f2: the experimental inertial

force=m.S'2(t + 7'); f3: the experimental excitation

force=k53(t).
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transducers). To investigate the phase shift between signals from the accelerometer

and LVDT, a free-vibration test for the mass-spring system with the air track was

conducted with the base constrained. The results are shown in Figure 2.3. In this

figure, the natural frequency (can) of the system is 30.91 rad/sec. The damping in

this system is the same as that of Figure 2.2. Due to the small damping effect, the

amplitude of oscillation in Figure 2.3(a) decreases slowly.

This free-vibration test involved the balancing of experimental inertial and spring

forces. Figure 2.3(a) presents experimental inertial and spring forces during the

vibrating process, whereas Figure 2.3(b) presents the resultant force, namely m52(t+

r) + lcS'l(t). The measurements of displacement and acceleration are labeled as 51(t)

and 52(t) respectively. There was a phase shift of 45 = 0.0389 radians by which the

accelerometer signal leads the LVDT signal. This phase angle was converted to a

time shift using 7' = o/wn, and it was chosen such that the resultant force was close

to zero with some random noise. The random noise could be induced by the sound

and the pressure fluctuation of the air track or another source. In order to have

a clearer representation, we smoothened the resultant force signal in Figure 2.3(b)

by applying a five-point, moving-average algorithm (see Appendix A) and obtained

the data shown in Figure 2.3(c). Both raw and smoothened data illustrate the

cancelation of spring and inertial forces.

A reasonable question for this investigation might be, “Can this force balance hold

for a wide range of excitation frequency? In other words, will the time {phase) shift be

affected by excitation frequency?” It is conceivable that such a phase shift will depend

on the excitation to some extent. However, by carefully calibrating the transducers,
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Figure 2.5: Forced vibration results without external friction, ex-

citation frequency : 10 Hz; f1: the experimen—

tal spring force=lc51(t); f2: the experimental iner-

tial force=m52(t + 7'); f3: the experimental excitation

force=kS3(t).

the results are promising. Figures 2.4-2.6 present three cases in which harmonic base

excitations were applied without the presence of external dry friction. Under these

situations, the equation which we are trying to balance is m52(t + T) + k31(t) z

k33(t), where 53(t) denotes the measurement of the base-excitation motion with

different frequencies (3, 10, 20 Hz here). As with the case shown in Figure 2.3,

experimental force components such as inertial, spring, and excitation forces are

shown in Figures 2.4-2.6(a). The resultant forces, kS3(t) -— kSl(t) — mS'2(t + r), for

different excitation frequencies, are presented in Figures 2.4-2.6(b). There was no

smoothing process applied to these data and the same time shift, T, was employed

in the calculation of resultant forces.

Observations made from Figures 2.4-2.6 imply that the dependence of the phase
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shift on the excitation frequency is not serious over a reasonable range. The LVDT

chosen in this study is incorporated with signal conditioner. The response speed

of LVDT itself over a reasonable frequency range is therefore a constant. Without

signal conditioning, the response speed of LVDT cannot be controlled, thus there

will be no guarantee for a constant phase angle. On the other hand, the phase angle

of accelerometer can be presumed to be approximately equal to zero if one consid-

ers that the resonant frequency of the accelerometer is 3.5 kHz and the operating

frequency range for this study is limited to 20 Hz. We did not check excitation fre-

quencies higher than 20 Hz because that the actuator was not able to sustain a large

enough response in Sl(t) required for quantization purposes during high-frequency

excitations.
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Forced vibration results without external friction, ex-

citation frequency : 20 Hz; f1: the experimen-

tal spring force=k51(t); f2: the experimental iner-

tial force=m52(t + 1'); f3: the experimental excitation

force=k53(t).
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Figure 2.7: Time domain comparison of direct and indirect fric-

tion measurements, excitation frequency = 3.5 Hz,

stable pure sliding case, in (a) f1: the experimen-

tal spring force=lcSl(t); f2: the experimental iner-

tial force=m52(t + 1'); f3: the experimental excitation

force=k53(t); (b) F(t) is the calculated friction force; (c)

Fl(t) is the averaged version of F(t); (d) F2(t) represents

the load cell measurement after averaging.

2.4 The Comparison of ‘Friction Signals

As mentioned in Section 2.1, the friction force can be acquired either from the

direct employment of a load cell or the indirect calculation based on the system’s

ODE. For direct measurements, a piezoelectric load cell which had resonant frequency

at 70 kHz was applied. Since this load cell has a high resonant frequency, zero

phase shift between acceleration and friction signals is assumed in implementing the

comparison between the two approaches. The external friction source induced by

the pinched-flange mechanism will be exerted on the mass-spring system during the

test process hereafter.
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Figure 2.8: Time domain comparison of direct and indirect fric-

tion measurements, excitation frequency = 5.5 Hz,

stable pure sliding case, in (a) f1: the experimen-

tal spring force=k51(t); f2: the experimental iner-

tial force=m52(t + 7'); f3: the experimental excitation

force=kS3(t); (b) F(t) is the calculated friction force; (c)

Fl(t) is the averaged version of F(t); (d) F2(t) represents

the load cell measurement after averaging.

To calculate friction force from system’s equation of motion, namely F(t) =

k53(t) -— kSl(t) — mSg(t + r), motion signals such as 81(t),52(t), and 53(t) are

required. An accelerometer and two LVDTS are used for such measurements. System

parameters have the values m = 2.42 kg and k = 2310 N/m. The phase shift between

51(t) (or 33(t)) and 52(t) (or F2(t)) are the same as in previous case, i.e 45 = 0.0389

radians. Four frictional vibration tests were carried out for the comparison. These

include one stick-slip process and three pure-sliding cases with different excitation

frequencies. Results are presented in Figures 2.7-2.10.

Figure 2.7(a) illustrates the time-domain histories of the experimental inertial

forces, m52(t + r) , spring force, k51(t), and the base-excitation force, kS3(t). The
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Figure 2.9: Time domain comparison of direct and indirect fric—

tion measurements, excitation frequency = 7.5 Hz,

stable pure sliding case, in (a) f1: the experimen-

tal spring force=k51(t); f2: the experimental iner-

tial force=m52(t + 7'); f3: the experimental excitation

force=kS3(t); (b) F(t) is the calculated friction force; (c)

F1(t) is the averaged version of F(t); (d) F2(t) represents

the load cell measurement after averaging.

frequency of harmonic excitation is 3.5 Hz. The response of the slider is a stable pure-

sliding motion. It is followed by Figure 2.7(b) in which the calculated friction force

is presented and denoted as F(t) Random noise caused mostly by the air track was

superimposed on the calculated friction signal. To reduce this effect, a smoothening

algorithm (five-point moving average) was applied to this signal to generate the data

shown in Figure 2.7(c) and denoted as Fl(t). Next, the friction force obtained from

the direct measurements of the load cell after the same smoothening process (for

comparison) is illustrated in Figure 2.7(d) as F2(t). The signal F2(t) is obtained

by subtracting the inertial component on the load cell due to the mass of the flange

from the readout of the load cell. Moreover, the raw version of F2(t) is very much
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Figure 2.10: Time domain comparison of direct and indirect fric-

tion measurements, excitation frequency = 3.5 Hz,

stick-slip motion case, in (a) f1: the experimen-

tal spring force=k51(t); f2: the experimental iner-

tial force=m52(t + 7‘); f3: the experimental excitation

force=lc53(t); (b) F(t) is the calculated friction force; (c)

Fl(t) is the averaged version of F(t); (d) F2(t) represents

the load cell measurement after averaging.

the same as the averaged version since it does not register much transient dynamics

as in the computation case.

Three observations are made from Figures 2.7(b), (c) ,and (d). (1) During the

whole test, the friction-force magnitudes are more-or-less constant. (2) Both methods

are consistent regarding the macroscopic dynamics friction feature. (3) There are

subtle difference between two approaches which occur at the onset of a change in

sliding direction. Regarding observation (3), we note that more dynamics, especially,

high-frequency dynamical response, are registered in the calculated friction force

than in the directly measurement friction force. This observation agrees with our
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Figure 2.11: Results of impact test: (a) acceleration response; (b) fric-

tion force response; (c) power spectrum of acceleration

response; ((1) power spectrum of friction response.
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prediction that the load cell, acting as a low-pass filter, will attenuate high-frequency

signal. Furthermore, some high-frequency oscillation is evident in the calculated

friction signal immediately following a velocity reversal. In order to explain this

phenomenon, more insight associated with sensor dynamics is required. A detail

discussion of this issue is included in the next section.

Similar to above case, two other stable pure-sliding cases are shown in Figure 2.8

and Figure 2.9 in which the excitation frequencies are 5.5 and 7.5 Hz respectively.

Consistencies and discrepancies between the two approaches are preserved in these

tests. Since the same phase relationship was employed between the sensors at each

excitation frequency, the consistent results indeed illustrate the reliability of the

indirect approach over a reasonable frequency range.

Next, we illustrate a case that has stick-slip motion, shown in Figure 2.10. The

excitation frequency is 3.5 Hz. Due to the presence of stick-slip, features of the



32

friction force are different, especially during the transition of sliding to sticking. A

high-frequency transition oscillation caused by the coupling effect between frictional

contact and main system appears. A more complete discussion of this transition

oscillation is included in Chapter 4.

2.5 Sensor Dynamics

This section investigates subsystem and coupling dynamics that could occur dur-

ing the transition of stick-slip process or at the turning points of a pure-sliding

motion. An abrupt force change usually occurs at the onset of the sticking phase in

the stick-slip process and at the onset of the directional reversal in the pure-sliding

motion. Such an abrupt force change can excite different subsystem dynamics or

coupling dynamics.

In order to understand the possible subsystem and coupling dynamics, we first

conducted an impact test on the experimental system with the friction contact en-

gaged. In this test, the base was constrained and the impact excitation was given at

the slider end. The responses were sensed by both the accelerometer and the load

cell. Time-domain and frequency-domain responses corresponding to this test are

illustrated in Figure 2.11. In Figures 2.11(a) and (b), the acceleration and friction

time traces are presented. Figures 2.11(c) and (d) show the power spectra of the ac-

celeration and friction signals. A harmonic at 47 Hz is contained Figures 2.11(c) and

(d). This harmonic corresponds to the frequency of the transition oscillation seen

in Figure 2.10. Moreover, the power spectrum of the acceleration signal registers

two more spikes which correspond to 125 Hz and 250 Hz respectively. Other impact
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tests show that the 125 Hz harmonic corresponds to the fundamental frequency of

the accelerometer with its mounting and the 250 Hz harmonic is the fundamental

frequency of the load cell and its mounting.

To this end, we have investigated the frequency responses of the accelerometer

and load cell subjected to an impact excitation through the slider. Recall from the

previous results of pure—sliding motion, the accelerometer addressed more transient

dynamics at the onset of the direction reversal. These transient signals were sus-

pected to be induced by the dynamics of the accelerometer subsystem (including

mounting) since the dominate frequency of these transient signals was on the order

of 100 Hz (Figures 2.7-2.9 (c)) which is close to the fundamental frequency of the

accelerometer subsystem.

2.6 Conclusions

In this study, we compared friction measurements computed from motion sensors

with those obtained directly from a load cell. We measured the friction applied to

a mass gliding in an air track. The air track provided an excellent environment for

isolating the friction force. Phase relationships among different transducers were

investigated to implement the indirect calculation of friction force from system’s

ODE. Upon careful calibration of the transducers, force balances were achieved in

free-vibration and forced-vibration tests. Both direct and indirect friction measure-

ments were conducted and compared when the system was exerted by dry friction.

Comparisons of these techniques showed that, although load cell can register most

of the friction dynamics, its high-frequency contents will be attenuated to some ex-
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tent. The calculated friction addressed more complete details over the low and high

frequency ranges and also captured the noise generated by the air track. Oscilla-

tions occurring in the friction signal at velocity reversals were shown to be caused

by sensor/mounting dynamics.



CHAPTER 3

THE EFFECTS OF TANGENTIAL CONTACT

STIFFNESS ON A HARMONICALLY FORCED

OSCILLATOR: PURE SLIDING MOTION

3.1 Introduction

Chapters 3 and 4 focus on the investigations of two experimental phenomena

observed in mechanical friction systems. This chapter is devoted to the investigations

of hysteresis phenomenon which is also called “spring-like” sticking behavior in the

literature (Canudas de Wit et al. [10]), whereas the next chapter studies the stick-slip

phenomenon as well as the transition oscillations.

Experimental investigations on the spring-like phenomenon were reported by

Dahl [14] and Courtney—Pratt and Eisner [13]. Both of these studies concluded

that a junction, acting like a spring during a stick, induces presliding displacement

before breakaway occurs.

Efforts for modeling elastic contact problems have been put forth by many re-

searchers. Due to the fact that the displacement change in this elasto-frictional event

is so small, it has been called “preliminary displacement”, “micro displacement”,

or “presliding displacement” in the literature (Oden and Martins [54], Canudas de

Wit [10], and Harnoy [26]). However, we will denote this motion as “microsticking”

35
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so that it is consistent with our modeling details. Previous modeling works regard-

ing this problem include Dahl [14], Canudas de Wit et al. [10], and Harnoy [26] etc.

Dahl’s model is equivalent to Coulomb friction model incorporated with a lag in

friction force change when the direction of motion reverses. This model is therefore

suitable for describing the system possessing both contact compliance and Coulomb-

like slipping behaviors. Canudas de Wit et al. [10] proposed a friction model which

treats the friction interface as a contact between bristles. Such a model can numer-

ically generate “spring-like” behaviors during a stick. It can also describe Stribeck

and frictional memory effects in the sliding regime. Our tangential contact model is

similar to their linearized model taken with respect to the undeformed position.

Harnoy et al. [26] proposed a compliant-contact model incorporated with an-

other hydrodynamic sliding model to study a journal bearing problem. Numerical

simulations of a lubricated journal bearing system were given even though the pro-

posed model was not limited to a specific system. Several important friction features

were revealed in their simulation results including “Dahl effect” (presliding or elastic

deformation motion), the hysteresis in sliding motion (frictional memory), and the

effect of coupling between presliding and sliding modes (Harnoy et al. [26]). How-

ever, their results did not include quantitative verifications in a real system, nor the

investigation of the sticking dynamics. In our study, details of the presliding motion

and the sticking dynamics will be addressed.

3.2 A Harmonically Forced Coulomb Oscillator

A mass-spring system on a rigid surface with Coulomb friction can have sta-
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ble pure-sliding and stick-slip motions when subjected to harmonic base excitation

(Hundal [30], Shaw [69], Marui and Kato [44]). These motions will be denoted as

“macroscopic” sliding and stick—slip motions in contrast with the “spring-like micro”

motion that occurs in the elastic contact point during a stick. The study of the

existence and stabilities of these macroscopic motions can be found in the literature

(e.g. Den Hartog [l5], Shaw [69], Hundal [30], Marui and Kato [44]). The model of

this system consists of a second-order differential equation which is piecewise linear

and solvable. In fact, the solution to the steady-state, pure-sliding motion contains

sinusoidal terms with both the forcing frequency and the natural frequency, and a

friction term with an alternating sign depending on the sliding direction (Shaw [69]).

This pure-sliding motion is sometimes called continuous motion to distinguish it from

the stick-slip motion that contains at least one stop per forcing cycle.

If one conducts an FFT on a macroscopic, pure-sliding displacement response with

small friction, the resulting spectrum is dominated by a harmonic corresponding to

the forcing frequency. Therefore, this pure-sliding motion will be approximated as a

harmonic sliding input to the compliant-contact problem discussed in this chapter.

In the next section, an idealized compliant contact model is added to the harmon-

ically forced Coulomb oscillator. Due to the compliance of the friction contact, elastic

deformations (or microsticking events) will take place when sliding mass changes its

direction of motion.

3.3 The Idealized Tangential Contact Model

The model investigated here concerns the compliance effect of the frictional con-
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tact. A schematic diagram illustrating the forced Coulomb oscillator together with

the idealized contact model is presented in Figure 3.1, where x(t) and z(t) represent

the displacements of sliding mass and base excitation respectively, y(t) denotes the

displacement of the hypothetical contact surface, and Ky represents the stiffness of

the contact joint. Friction will be assumed to be Coulomb friction model without

difference between static and kinetic friction, namely f, = fk. The mass motion,

x(t), is approximated by a harmonic function. The experiment performed later in

this chapter will confirm that the above approximation is reasonable in a specific

compliant-contact problem.

x(t)

z(t) '—

O—jl/Wl/lA— m f(t) K

Figure 3.1: A schematic diagram showing the massless compliant

contact model.
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y(t)

During the sliding interval, the mass moves relative to the contact surface. The

contact surface is assumed to be motionless during such interval so that y(t) is a

constant, i.e. :tYm E :1:fk/Ky. There is no dynamics in y during sliding. The “mi-

crosticking” starts when the relative velocity is zero, or :i:(t) = 0. During microstick-

ing, both the sliding mass and the contact surface undergo the same motion, namely

.i:(t) = y(t). This relationship holds until the static friction force can no longer sus-

tain the stiffness force exerted by the compliant contact joint, i.e. [Kyy(t)| > fk. The
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motion is called “microsticking” since when K3, is large, both the sticking interval

and the elastic displacement are small.

Figure 3.2:

x(t)

(81)

km

 
 

(b)

y(t)

(C)

f(t)

(d)

 
Hypothetical responses of the idealized model. Dashed

lines indicate the gross sliding phase and solid lines cor-

respond to the microsticking phase.

Hypothetical time-domain traces of x(t),:i:(t),y(t), and f(t) are shown in Fig-

ure 3.2, where f(t) depicts the friction force occurring at the friction interface. The

dashed lines in this figure represent macroscopic sliding motion, whereas the solid

lines denote the elastic deformation or the microsticking motion. According to Fig-

ure 3.2, microsticking commences at the onset of each direction reversal. Upon this

microsticking, the contact joint deforms in a linearly elastic manner such that the

friction force equals the spring force exerted by the effective contact stiffness. Hence,
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f(t) = Kyy(t). The schematic representations of a:(t),y(t) and f(t) possess similar

features during the microsticking interval. On the other hand, a constant kinetic

friction force is assumed during the sliding interval.
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Figure 3.3: A schematic diagram showing the f-a: relationship in an

“ideal” compliant contact during harmonic motion of the

sliding mass. Dashed and solid lines correspond to sliding

and microsticking phases.

Because of the contact compliance, microsticking events replace the instantaneous

jump events (which are caused by the discontinuity feature of the Coulomb law) seen

during pure sliding against a rigid contact. This “microsticking” event occurs right

after the mass changes its sliding direction but before sliding resumes. At the onset

of sliding, the mass will have certain velocity which will be denoted as the “transition

speed”.

Based on the information collected from Figure 3.2(a) and (d), a qualitative f—x

characteristic can be established and is illustrated in Figure 3.3. As can be seen

in this plot, a constant friction force, fk, is assumed during the sliding, while the

friction force evolves in a linearly elastic way during the microsticking. The slope of

the straight lines AB and CD in the f-a: plot depicts the effective contact stiffness,
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Figure 3.4: A schematic diagram showing the f-ci: relationship in a

compliant contact during harmonic motion of the sliding

mass. Dashed and solid lines correspond to sliding and

microsticking phases.

Ky. In addition, the micro displacement in the sticking interval is twice the amplitude

of the contact motion. Thus, 2Ym = 2fk /Ky. The amplitude of harmonic motion of

the sliding mass is Xm.

The effective stiffness of the contact joint, Ky, can be estimated from the slope of

the straight lines in the f—a: plot. This will be used later in the experimental study.

Next, we consider the f-i: characteristic. By manipulating features in Fig-

ure 3.2(b) and (d), a plot which dictates f-a': relationship for the harmonic sliding

motion can be derived, as shown in Figure 3.4.

Figure 3.4 addresses that the maximum velocity of sliding is Vm. The “transition

speed”, which distinguishes microsticking and sliding, is labeled as V,. The slanted

curves AB and CD describe microsticking motion and the horizontal lines depict

sliding motion. The relationship between the transition speed, V,, the friction force

level, fk, the oscillation frequency of sliding mass, w, and the amplitude of the

oscillation, Xm, will be analyzed in the next section. Moreover, plots in Figure 3.3
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Figure 3.5: A schematic diagram showing the f-a: relationship in a

compliant contact during harmonic motion of the sliding

mass, for f, > fk. Dashed and solid lines correspond to

sliding and microsticking phases.

and Figure 3.4 are for the case in which there is no difference between the static and

kinetic friction forces. The effect of f, > fk is taken into account in the f—m and f-a':

plots shown in Figure 3.5 and Figure 3.6. A jump occurs at each onset of sliding due

to the transition from f, to fk.

An example which includes the Stribeck effects is shown in Figure 3.7(a), in which

1), represents the relative velocity at the sliding interface. Over the low velocity range,

this friction characteristic has a negative slope, which usually induces instability in

a friction system. This friction characteristic has been experimentally observed in

many frictional systems including dry friction and boundary-lubricated systems (Bell

and Burdenkin [7], Hess and Soom [28]). If we substitute this relationship into the

compliant-contact model, the resulting f-a': and f-a: plots can be obtained as in

Figure 3.7(b) and (c).



 

 

  
Figure 3.6: A schematic diagram showing the f-a': relationship in a

compliant contact during harmonic motion of the sliding

mass, for f, > fk. Dashed and solid lines correspond to

sliding and microsticking phases.

3.4 'h'ansition Features in f-ic Plots

The transition speed V, is the velocity of the mass when sliding begins. Focusing

on the sticking interval in Figure 3.4, we note that the mass sticks at point “C”

which corresponds to the time instant t = t1, so that :i:(t1) = 0 and x(tl) = —Xm.

The contact then starts to deform elastically until sliding initiates at point “D”

corresponding to t = t2 (at which the transition speed is defined). Nearly harmonic

motion will be assumed to be preserved during this deformation process. Thus, for

t > t1, the following equation is assumed:

x(t) = —Xm cosw(t — t1). (3.1)

Next, we consider the conditions that are required at the point “D”. The increment

in displacement of the sliding mass during the interval CD is 2fl, /K3,. Thus,

2

$(t2) = — m + iii—’9 2 —Xm cosw(t2 — t1). (3.2)

y



44

(a)
fk\

 

Vr

 
(b) fA D
 

 
 

(c) f

 

 

 
Figure 3.7: Schematic diagrams showing (a) the Stribeck friction

characteristic for a rigid contact, and (b) the f-a': rela-

tionship and (c) the f-a: relationship in an “ideal” compli-

ant contact during harmonic motion of the sliding mass.

Dashed and solid lines correspond to sliding and micro-

sticking phases.
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Figure 3.8: Experimental sliding motion with 5.61Hz excitation:

time-domain responses of (a) displacement, (b) velocity,

(c) friction force, and (d) acceleration.

Furthermore, V, E :i:(t2), which is expressed as

V, = me sinw(t2 — t1). (3.3)

Squaring and adding “w times equation (3.2)” and “equation(3.3)”, and solving for

V, , yields

 

  

_ mek fl: 2

mm] K, -(K,)' (3.4)

This expression shows that the transition speed is proportional to the frequency of

the harmonic oscillation. Additionally, since the contact stiffness is typically large,

so that the ratio fk/Ky is small, the transition speed is approximately proportional

to «113;. The qualitative and quantitative features of the expressmn (3.4) Wlll be

investigated experimentally in Section 3.5.

Another specific feature of the idealized model is the horizontal tangency of f-
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Figure 3.9: Experimental sliding motion with 5.61 Hz excitation: (a)

time-domain response of displacement, (b) power spec-

trum of the displacement response shown in linear scale,

and (c) power spectrum shown in logarithmic scale.

:13 plot in the transition from sliding to microsticking at points “C” and “A” in

Figure 3.4. This characteristic is due to the fact that, during a stick, f(t) = Kyy(t).

More specially,

f(t) = Kw“) = Knymsign(i(t1—))+ x - X3}, (35)

where X, represents the displacement of the mass when microsticking starts and t1

corresponds to the time instant at which the mass sticks. From the above equation,

we can write

#_#fl_KJ

dd: ‘ Zt'da ‘ ”35' (3'6)

Differentiating x(t) in Eq. (3.1) and substituting :i:(t) and {f(t) into the above equa-

tion, we have

df Kyd:

g = w\/X.%.w2 _ $2. (3.7)
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t (sec)

Figure 3.10: Experimental sliding motion with 8.7 Hz excitation: re-

sponses of (a) displacement, (b) velocity, (c) acceleration,

and (d) friction force.

Thus, there is a horizontal tangency at the onset of microsticking, i.e. % =0.
Ii']=0+ 

3.5 Experiments in Macroscopic Sliding Motion

The experiment system was the same as the one applied in Chapter 2. The veloc-

ity signal was obtained by differentiating the displacement signal then smoothened

out the resulted signal with a five-point moving average. Although we applied the

smoothening algorithm to reduce the irregularity associated with differentiation pro-

cess, considerable noise was still present in the smoothened velocity signal. During

the whole experiment process, the nominal normal load was 3.53 N.
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Figure 3.11: Experimental sliding motion with 11.1Hz excitation: re-

sponses of (a) displacement, (b) velocity, (c) acceleration,

and (d) friction force.

3.5.1 Extraction of the Contact Stiffness

Although we neglect the modeling details of our experimental system, the system

can generate both the macroscopic stick-slip and pure sliding motions.

Several experiments were carried out to validate the compliant contact model.

These experiments concentrated on the macroscopic sliding motion in response to the

harmonic base excitation with different frequencies. To verify that the displacement

responses of these pure macroscopic sliding motions were close to harmonic functions,

the power spectrum of the displacement signal of the sliding mass corresponding to

5.61 Hz excitation was examined and is presented in Figure 3.9. On a linear scale, the

only harmonic present corresponds to the forcing frequency as shown in Figure 3.9(b).

However, other high-order harmonics show up on a logarithmic scale (Figure 3.9(c)).
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Table 3.1: Extraction of the Effective Contact Stiffness.

 

 

 

 

sliding frequency If, a

(.0 (Hz) (x104N/m) (x104N/m)

5.61 20.1 2.63

8.7 18.1 2.51

11.1 19.4 2.72        

The amplitude associated with the fundamental frequency is almost 100 times larger

than that of the second harmonic. Therefore, it is reasonable to approximate the

macroscopic sliding motion as a pure harmonic so that results in section 3.3 and 3.4

can be applied.

The first task is the extraction of the effective contact stiffness, Ky, from the ex-

perimental f-x plots. Plots from various excitation frequencies demonstrate similar

microsticking characteristics; the slopes of sticking straight lines are almost indis-

tinguishable. This implies that, during the microsticking, the contact deforms in a

nearly linearly elastic manner.

Table 3.1 includes the effective contact stiffness, Ii'y, and its associated standard

deviation 0.

The estimated effective contact stiffnesses are taken as the average slope of the

nearly vertical portion of the f—rr plots. A least-squares, linear fit was used to deter-

mine the slope. At each sliding frequency, more than 10 sliding cycles were applied

to this averaging process to obtain the averaged slope and standard deviation, which

are listed in Table 3.1. The overall contact stiffness, Ky, from Table 3.1, is 192000
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N/m which is taken as the mean value of Ify for different cases.

3.5.2 The Estimations of the 'It'ansition Speeds
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Figure 3.12: Experimental f-x and f-i: characteristics for 5.61Hz ex-

citation: (a) detail of sticking in f-zc plot, (b) f-a: char-

acteristics, (c) detail of sticking in f-a': plot, and (d) f-a':

characteristics.

Given the experimental effective stiffness, we proceed in the investigations of the

transition speed, V,. Recalling from Section 3.4, the transition speed depends on the

oscillation frequency, amplitude, the friction level, and the effective contact stiffness.

This relationship (Eq. (3.4)) is based on the assumption of perfect harmonic sliding.

The computation required in expression (3.4) calls for an estimate of the average

friction level, fk, over the whole sliding period.

Based on the f-a': plots from each case, the parameters for the computation pro-

cess in the expression (3.4) are shown in Table 3.2. In this table, the effective contact
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Figure 3.13: Experimental f-a: and f-i: characteristics for 8.7 Hz ex-

citation: (a) detail of sticking in f-a: plot, (b) f-a' char-

acteristics, (c) detail of sticking in f-ri: plot, and (d) f-a':

characteristics.

stiffnesses are taken to be the same as the estimated values listed in Table 3.1. The

amplitudes of sliding motion were made similar in each case for demonstration pur-

poses. The estimates of the transition speeds, V,, were obtained by directly applying

the estimated parameters such as w, fk, Ry, and Xm, to equation (3.4). Thus, these

transition speed estimates are based on analysis of the ideal model. We would like

to compare these values with the experimentally observed transition speeds in Fig-

ure 3.12(c), 3.13(c), and 3.14 (c). In these figures, the band of slanted trajectories,

that denote the microsticking, correspond to the curves AB and CD of the ideal

model (Figure 3.4). The degree of slanting increases with the excitation frequency.

This trend is consistent with the results in equation (3.4) and the simulation results

in Harnoy (1994). The microstick—slip transitions (corresponding to points B and

D) are approximately centered at the estimated transition speeds from Table 3.2.
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Figure 3.14: Experimental f-x and f-a'c characteristics for 11.1 Hz ex-

citation: (a) detail of sticking in f—a: plot, (b) f-a: char-

acteristics, (c) detail of sticking in f-a': plot, and (d) f-i

characteristics.

These results are consistent in different excitation cases. The randomness surround-

ing these trends is likely caused by surface roughness or the differentiation noise of

the velocity signal. Nevertheless, the main trends of the experimental data show

some consistency with the ideal model.

In order to have a closer comparison, data in Figures 3.12(c), 3.13(c), and 3.14(c)

was averaged. In each case, many forcing cycles were averaged so that a single-

curve f-zi: relationship was obtained. The result is presented in Figure 3.15. From

this figure, transition speeds, corresponding to different sliding frequencies, were

measured which were treated as the “measured transition speeds” and denoted as

“V,.,” (in Table 6.2). They are 0.0035 m/sec (w=5.61 Hz), 0.0058 m/sec (w=8.7 Hz),

and 0.0080 In/sec (w=11.1Hz). Associated with these values, standard deviations are

0.0021, 0.0018, and 0.0014 (m/sec) respectively. These measured transition speeds
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Figure 3.15: Experimental f-x and f—a} characteristics for 11.1 Hz ex-

citation: (a) detail of sticking in f-x plot, (b) f-a: char-

acteristics, (c) detail of sticking in f—:i: plot, and (d) f-a':

characteristics.

are consistent with the estimations (V,.) based on the analysis.

The tangency during the transition from sliding to microsticking is not clear in

the experimental f-a': plots. Again, the randomness in the velocity signal and surface

properties distorts this transition behavior.

In summary, we have shown that the ideal compliant contact model can effectively

describe the experimental characteristics for the macroscopic sliding motion. In the

following section, numerical studies are included to validate the contact model.

3.6 Numerical Studies

From the investigations above, we recognize that the tangential contact stiffness

can induce a microsticking event. This spring-like event demonstrates itself as a

slanted hysteretic structure in the f-:i: plot. The following illustrates some numerical
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Table 3.2: Estimation of the transition speed based on the analysis

in Section 3.4

 

 

 

 

sliding freq. f), If, Xm 17, 17m

w (Hz) (N) (x104N/m) (x10’3m) (m/sec) (m/sec)

5.61 1.06 20.1 0.49 0.0036 0.0035

8.7 1.10 18.1 0.485 0.0060 0.0058

11.1 1.28 19.4 0.48 0.0079 0.0080             

investigations based on the proposed tangential contact model. The system parame-

ters in simulations correspond to the experiment data such that the results between

numerical and experimental studies can be compared.

According to the idealized tangential contact model, the system in Figure 3.1 can

be represented as

m5: + kr(t) + f(t) = kZ, cos(wt) (3.8)

where Zc is the amplitude of the harmonic base motion. Based on the modeling de-

tails in Section 3.3, f(t) E f(i) = fksign(:i:) in the sliding regime, and f(t) = K,y(t)

during the microsticking event. The system moves from microsticking into sliding

when the magnitude of Kyy(t) is greater than the static friction, fk. Furthermore,

it is reasonable to incorporate damping into the contact structure. The appearance

of damping will be further verified in the observations made from the experimen-

tal stick-slip signal which is presented in Chapter 4. The magnitude of the viscous

damping coefficient was determined so that the simulation of stick-slip is similar to

the experimental stick-slip signal. Different degrees of damping will be chosen in

Chapter 4 in order to illustrate its effect on the response. However, in this section,
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we will use a damping coefficient that has a nondimensional viscous damping factor

equal to 0.0174. This damping effect will only be added to the contact model, i.e.

f(t) = Kyy(t)+cy(t). In addition, from Section 3.3, we know that y(t) = f(t) during

the microsticking interval, thus the model becomes

0 during sliding

mi + kr(t) + fksign(:i:) = ch,3 cos(wt) (3.9)

0 during microsticking

mfi + ka‘(t) + of: + Kyy(t) = 162, cos(wt) (3.10)

y(t) = Ymsign(.i:(tl-)) + x(t) — X, (3.11)

where Ym (positive number) is the maximum deflection of the contact and X, (num-

ber with a sign) is the displacement of the mass before microsticking begins. t1

represents the time instant at which the mass sticks. The switching between micro-

sticking and sliding motion occurs when the magnitude of f(t) = Kyy(t) + cy(t) is

greater than fk. Based on this model, the numerical simulations can be carried out.

System parameters in the numerical studies are tuned such that both experimen-

tal and simulated results possess same macroscopic motion features. Nevertheless,

there are small discrepancies between the amplitudes of excitation, i.e. Z,, and

consequently the amplitude of response, Xm, particularly for the case of 5.61 Hz

excitation frequency and the stick-slip case. These discrepancies may be due to flaws

in the friction modeling or the imperfection of the excitation force provided by the

electromagnetic shaker. They can also be the result of other experimental errors.
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Figure 3.16: Numerical simulations of the pure sliding motion (w=5.61

Hz) with the tangential contact model, responses of: (a)

displacement, (b) velocity, (c) acceleration, and (d) fric-

tion force.

Except for the excitation amplitude Z,, parameters such as Ky, m, k, fk are the same

as those estimated from experimental studies. Table 3.3 shows the excitation ampli-

tudes of different cases in both experimental and numerical studies. It also contains

the parameter values for the simulations of stick-slip process and the state-variable

friction model that will be addressed later in Chapter 4.

Shown in Figures 3.16-3.18 are the time-domain simulated responses for different

excitation frequencies. These plots correspond to the experimental results illustrated

in Figures 3.8, 3.10 and 3.11. The simulated results are very consistent with the

experimental results. The consistencies exist not only in the macroscopic motion

features but also in the response magnitudes. In Figures 3.19-3.21, the slanted hys-

teretic structure is seen in the numerical versions of f-zi: plots. These figures can be
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Figure 3.17: Numerical simulations of the pure sliding motion (w=8.7

Hz) with the tangential contact model, responses of: (a)

displacement, (b) velocity, (c) acceleration, and (d) fric-

tion force.

compared to Figures 3.12-3.14. Because the idealized model does not account for the

randomness of the surface roughness as well as the differentiation noise of velocity

signal, the slanted structure appears as a single curve instead of banded structure

as in the experimental f-a': plots. Nevertheless, the slanted structure in numerical

studies matches experimental results closely, particularly in the trend of frequency

dependence of the transition speed, V,. Furthermore, the magnitude of V, agrees with

the prediction given in the expression (3.4) very well. There may be a small deviation

caused by the presence of viscous damping which was absent in the derivations of

expression (3.4). Since V, is defined as the velocity at which K,y(t) + cy(t) = fk, the

presence of viscous damping will affect the evolution of y(t), and consequently, V,.

Moreover, the horizontal tangency exists in the numerical versions of the f—a': plots

during the transition from sliding to microsticking.
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Figure 3.18: Numerical simulations of the pure sliding motion ( 211.1

Hz) with the tangential contact model, responses of: (a)

displacement, (b) velocity, (c) acceleration, and (d) fric-

tion force.

According to the above observations, the tangential contact model can indeed

describe the experimental system qualitatively and quantitatively well when the mo-

tion is a macroscopic pure sliding. In the next section conclusions regarding the

study on the pure sliding motion are given.

3.7 Summary

An idealized tangential contact model was used to interpret the hysteretic be-

havior in the f-i measurements. A geometric analysis led to the qualitative and

quantitative elasto—frictional characteristics in the f-rr and f-a': plots. These charac-

teristics include a transition speed between microsticking and sliding motion and a

method for estimating the effective tangential contact stiffness.
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Table 3.3: Amplitudes of harmonic base excitation (Z,1 and Z; rep-

resenting the simulation values of the tangential contact

model and the state—variable model, whereas 2, denoting

the experimental values)

 

 

 

 

 

     

sliding freq. Z61 232 Z,

w(Hz) (x10'3m) (x10’3m) (X10‘3m)

2.5 (stick-slip motion) 0.65 0.6 0.6

5.61 (pure sliding motion) 0.6 0.6 0.51

8.7 (pure sliding motion) 1.1 1.1 1.1

11.1 (pure sliding motion) 2.0 * 2.0    

Experimental studies were carried out to demonstrate that this idealized model

can reasonably describe elasto-frictional behaviors in a real system. Consistencies

between the analytical predictions and experimental observations of the microsticking

characteristics were illustrated through macroscopic sliding experiments. Numerical

simulations of the tangential contact model reproduced the hysteresis in the f—i:

plot. Qualitative and quantitative consistencies were shown between numerical and

experimental results.
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Figure 3.19: Simulation of tangential contact model (w=5.61 Hz), nu-

merical versions of: (a) zoom-in detail of sticking in f-a:

characteristic, (b) f-a: plot, (c) zoom-in detail of sticking

in f-a': plot, and (d) f-i: characteristic.
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Simulation of tangential contact model (w=8.7 Hz), nu-

merical versions of: (a) zoom-in detail of sticking in f-a:

characteristic, (b) f-a: plot, (c) zoom-in detail of sticking

in f-i: plot, and (d) f-i: characteristic.
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Figure 3.21: Simulation of tangential contact model ( 211.1 Hz), nu-

merical versions of: (a) zoom-in detail of sticking in f-x

characteristic, (b) f-a' plot, (c) zoom-in detail of sticking

in f-a': plot, and (d) f-i characteristic.



CHAPTER 4

THE EFFECTS OF TANGENTIAL CONTACT

STIFFNESS ON A HARMONICALLY FORCED

OSCILLATOR: STICK-SLIP MOTION

4.1 Introduction

This chapter gives detailed investigations of the transition oscillation. Although

there has been considerable progress in the study of the dynamical friction prob-

lems, detailed discussion of the transition oscillations in a stick-slip process has not

been offered. During the transition from slip to stick, oscillations have often been

observed (Marui and Kato [44], Polycarpou and Soom [56], K0 and Brockley [38],

Rorrer [65]). These transition oscillations are believed to result from the coupling

between the contact subsystems and main system. Here, the contact subsystem

refers to the contact point as well as the surrounding structure. The main system,

in contrast, consists of a mass-spring system with known parameters. Polycarpou

and Soom [56] investigated a boundary lubricated system. The transition oscillations

occurred in their friction force and acceleration signals and were interpreted as the

natural response of the combined system which was composed of rider subsystem

and rotating disk. Ko and Brockley [38] focused on dry friction measurements in

a pin-on-disk apparatus. The velocity signal during a unidirectional stick-slip mo-

tion possessed a similar transition. According to their investigation, this oscillation
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was caused by the coupling between disk and pin dynamics. More recently, Ror-

rer [65] used multi-DOF systems to model the high-frequency transition oscillations

observed experimentally in a specific system. By matching up frequency-domain

information between the simulated and measured friction responses, the appropri-

ate system order was determined and the transition oscillation was observed in the

simulated responses. Nevertheless, these studies, concentrating on the unidirectional

pin-on-disk problems, did not include detailed discussions of how system coupling

effects relate to the transition oscillations.

In this study, we show that the averaged tangential contact stiffness, Ky, esti-

mated in Chapter 3, when coupled with the main system parameters, can produce

the high-frequency transition oscillations. The frequency content of the transition

oscillation is first experimentally observed. This observed frequency is found to be

similar to the one predicted using the characteristic of the idealized tangential con-

tact model and the average contact stiffness Ky. In the numerical simulations of the

tangential contact model, a “microscale” stick-slip event was shown to occur during

the transition of the numerical stick-slip process. The friction-force response con-

firms this event in the experiment system. This phenomenon is termed “microscale”

stick—slip since many short-period slipping events take place during a high-frequency

sticking oscillation. As a result, the response contains two different scales of stick-

slip, i.e. macroscopic and microscale stick-slip. Therefore, this process will be called

a double stick-slip event. The presence of microscale stick-slip event during a

macroscopic sticking interval indicates that the transition oscillation can be more

general than a purely harmonic oscillation.
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The organization of this chapter is as follows. An experimental stick-slip process is

presented in the next section so are the results of a free-vibration test. The frequency

contents of the transition oscillation is explored in this section. Section 4.3 describes

the numerical studies of stick-slip phenomenon focusing on the tangential contact

model. During the investigations, a double stick-slip event is revealed. The friction—

force response confirms this event in the experiment system. The mechanism of this

event is also discussed. In Section 4.4, we focus on the numerical studies of the state-

variable friction model. Over some parameter ranges, the state-variable model can

depict the transition oscillation during a stick-slip process. Examined cases including

macroscopic stick-slip and pure-sliding motions. Features in both the time-domain

responses and the f-x and f—:i: plots are compared to those of the experimental results

and the simulations of tangential contact model. Section 4.5 investigates a compliant

contact model which includes the effect of inertia. Under the harmonically imposed

motion, this model demonstrates microscale stick-slip motion. Numerical simulations

are conducted in order to show features of microscale stick-slip in both time-domain

histories and phase portraits. Section 4.6 summarizes the study of the transition

oscillation and double scale stick-slip motion. It also gives a brief conclusion of the

investigations in Chapters 3 and 4.

4.2 The Transition Oscillations in a Experimental Stick-Slip Process

As mentioned in Section 4.1, many previous works have reported the occurrence

of high-frequency oscillations in experimental acceleration and friction signals. To

demonstrate this phenomenon, we conducted an experiment with a macroscopic
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stick-slip process as shown in Figure 4.1. The experimental setup was the same

as that used in Chapter 3. The frequency of the base-excitation motion in this test

was 2.5 Hz.
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Figure 4.1: Experimental stick-slip motion with 2.5 Hz excitation:

time-domain responses of (a) displacement, (b) velocity,

(c) acceleration, and (d) friction force.

In Figure 4.1, transition oscillations are evident in the acceleration and friction

signals. Small amplitude ripples also occurred during the macroscopic sticking inter-

val of the velocity and displacement time histories, although they can barely be seen.

In this investigation, the frequency of the transition oscillation is studied first. To

examine the frequency of the transition oscillation, a free-vibration test was carried

out on the mass when stuck to the friction contact (Figure 4.2). This experiment

was performed by releasing the sliding mass from an initial position. The presence

of dry friction stopped the mass after some motion.

Figure 4.2(a) demonstrates the friction force trace in response to the initial dis-





 

   
   

 

 

  
 

66

(a) 2 . .

] 111111111 " iA
.Hu] 1',’ (“A ,

'g o . [)[mlm1HivleM/WWWWV.-.w;............ . - .

-2 1 1 1 1 1 1

0 0.2 0.4 0.6 0.8 1 1 2 1 4 1 6 1 8 2

(b) r r t(sec)

a 1 1. ....................
. . '. ..... ............ ...... ..... ..... 4

E),
. i I i I

2x
. i i ' '-1 .. ,. , , . ., , . . . . . , . . .L. .,

o , 0.2 0.4 0.5 0.8 1 1 2 1 4 1.6 1.8 2

(c) x 10 . . . ”5“) 

        s
p
e
c
t
r
u
m

o
f

1
(
1
)

0 1o 20 30 40 so so 70 so 90 100
Hz

Figure 4.2: Results of free-vibration test: (a) friction force time-

domain response, (b) acceleration time-domain response,

and (c) power spectrum of friction force signal.

placement. In this case, the motion of the sliding mass changed its direction twice

before it stuck. Moreover, at the onset of sticking, a high-frequency oscillation oc-

curred. Due to the discharge characteristic associated with the load cell, the DC

level of the friction signal slowly drifted. A similar transition oscillation occurred

in the acceleration signal which is presented in Figure 4.2(b). In order to get rid of

air noise, the acceleration signal has been smoothened by the moving-average algo-

rithm. An FFT of the friction signal is illustrated in Figure 4.2(c). The frequency

of this transition oscillation is 47.0 Hz. The low-frequency components correspond

to the nonperiodic transients of the friction signal. Both the friction force and ac-

celeration signals contain the same frequency content in the transition oscillations.

Furthermore, frequency estimations can also be accomplished by directly measuring

the periods of oscillations in the acceleration/friction signals shown in Figure 4.1(c)

and ((1). These frequency estimations are consistent with the results from the FFT.
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Thus, we have experimentally evaluated the frequency of the transition oscillation.

In order to investigate the relationship between this oscillation frequency with the

coupling effects, the main system parameters are required. These parameters are m =

2.42 kg and k = 2310 N/m. According to the sticking condition and the structure

of the experimental apparatus, during sticking, the sliding mass is supported by the

spring of the main system and an equivalent spring provided by the contact point.

Therefore, a simple model for calculating the fundamental frequency during a stick

will be a one-DOF system connected to two springs. Based on the averaged contact

stiffness, Ky, which has been determined to be 192000 N/m in Section 3.5, and

main system parameters, the coupled fundamental frequency is equal to 45.1 Hz.

This value is very close to the result from the free-vibration test. It seems that the

transition oscillation is a high-frequency, nearly harmonic oscillation. Nevertheless,

the numerical simulations carried out in the next section dictate that more dynamics

can take place during a macroscopic sticking interval.

Next, we explore the f-a: and f-:i: characteristics associated with the macroscopic

stick—slip process. The key point is to check whether the features in these plots,

with the stick-slip event, are consistent with those in the macroscopic sliding cases.

The f-a: and f—a': characteristics of experimental stick-slip process are illustrated in

Figure 4.3. It is evident that sticking features are different. The occurance of the

transition oscillation gives rise to the tangle structures during the sticking regions in

both f-x and f-:i: plots. A more careful observation in the f-sr plot (Figure 4.3(a))

shows that friction actually fluctuates before it moves from one extreme value to

the other. This is again caused by the transition oscillation. Thus, the transition
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Figure 4.3: Experimental f—a: and f-a': characteristics with stick-slip

process: (a) zoom-in detail of sticking in f-a: plot (b) f-x

characteristics (c) zoom-in detail of sticking in f-i: plot

((1) f-:i: characteristics.

features in the f-a: characteristic are different from the linearly elastic nature shown

in the pure sliding case. This specific observation will be further discussed in the

next section. Conversely, the randomness of surface roughness, differentiation noise

of velocity signal, and tangled structure completely conceal the transition behaviors

in the f-a': plot.

The following section addresses the numerical investigations of the stick-slip pro-

cess. In the simulations, parameter values are chosen to match the experimentally

observed stick-slip process. Friction models include the compliant tangential-contact

model with different viscous damping effects. In addition to macroscopic stick-slip

process, over some system parameter range, the compliant tangential-contact model

can produce a microscale stick-slip process. This phenomenon possessing two differ-

ent scales of stick-slip is termed a double stick-slip process.
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4.3 Numerical Investigations of Stick-Slip Phenomenon

The numerical model for stick-slip simulation is the same as that addressed in

Section 3.6. The excitation amplitudes input to the numerical model is listed in

Table 3.3, Chapter 3. From the experimental stick-slip data shown in Figure 4.1, the

appearance of viscous damping can be justified since the amplitudes of transition

oscillation decay. Thus, it is reasonable to add damping to the contact model. The

amount of damping added is chosen so that the simulation and experimental results

are comparable.
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Figure 4.4: Numerical simulations of stick-slip phenomenon with

tangential contact model, case 1, responses of: (a) dis-

placement, (b) velocity, (c) acceleration, and (d) friction

force.

The simulation results corresponding to a viscous-damping factor of 0.0558 are

shown in Figure 4.4 and 4.5. This simulation example is denoted as case 1. Compar-

ing these plots with the equivalent experimental results shown in Figures 4.1 and 4.3,
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Figure 4.5: Simulation of tangential contact model, case 1, numerical

versions of: (a) zoom-in detail of sticking in f—x charac-

teristic, (b) f-a: plot, (c) zoom-in detail of sticking in f-:i:

plot, and (d) f-a': characteristic.

the following observations can be made. (1) The numerical model seems to match

the experiment system well, particularly in the macroscopic motion features of the

friction and acceleration histories. For example, macroscopic stick-slip occurs with

the the transition oscillation. However, a faster decaying speed appears in the sim-

ulated transition signal. This implies that a lower viscous damping is required for

properly describing the contact dynamics. (2) Numerical results in the f-a: charac-

teristics depict the transition features observed in experimental data. This includes

the fluctuations of friction force during the sticking interval, which can be observed

in Figure 4.5(a) as a darker portion in the lower part of the transition line. On

the other hand, a multiple-loop structure present in the f-a': characteristic manifests

the transition oscillation. The presence of this multiple-loop structure replaces the

slanted hysteretic structure occurring in the pure sliding case. This loop structure
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also states the existence of the oscillation ripple in the velocity response. In the

experimental case, these loops may be complicated by noise in the :11: signal.
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Figure 4.6: Numerical simulations of stick-slip phenomenon with

tangential contact model, case 2, responses of: (a) dis-

placement, (b) velocity, (c) acceleration, and (d) friction

force.

Since the simulation of case 1 does not capture the complete transition charac-

teristic of the experimental stick-slip process, i.e. the “double stick-slip” event, we

performed another simulation with lower viscous-damping coefficient. This simula-

tion has a damping factor equal to 0.0174 and will be referred to as case 2. The

numerical simulations are shown in Figures 4.6 and 4.7. Responses in acceleration

and friction force illustrated in Figure 4.6 match the experimental data very well.

The amplitudes of the transition oscillation registered in the acceleration signal are

especially comparable to those in Figure4.1(c). Furthermore, the simulation demon-

strates that instead of the purely decaying motion as in case 1, a microscale stick-slip

Occurs in this lower-damping case. This event is evident because the friction force,
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Figure 4.7: Simulation of tangential contact model, case 2, numerical

versions of: (a) zoom-in detail of sticking in f-a: charac-

teristic, (b) f-a: plot, (c) zoom-in detail of sticking in f-a':

plot, and (d) f—i characteristic.

during the transition, temporarily reaches its maximum value couple times before it

finally stays at that value for a macroscopic sliding phase. Similarly, the accelera-

tion signal demonstrates some distortions corresponding to these “friction-bouncing”

events.

Compared to the numerical results, it seems that randomness of the friction pro-

cess and velocity signal conceal part of the experimental transition features. However,

the friction signal in Figure 4.1(d), particularly in the transition regions, actually

reached its static friction level during the transition region, which indicates that

microscale stick-slip did occur in the experiment. Therefore, the sticking dynam-

ics during a macroscopic sticking period is more general than a purely harmonic

oscillation since microscale stick-slip event is involved.

The mechanism of this event can be roughly described as follows. At the onset of
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the macroscopic sticking, the contact point (y(t)) is at its maximum deflection, i.e.

y(tl) = Ym, if t1 corresponds to the instant that the mass gets stuck and :i:(t1_) > 0.

Then, the contact starts to recoil from this extreme deflection and experiences the

high-frequency transition oscillation as a mass/spring main system with an extra

spring/damper system, Kyy + cy. This transition oscillation is also influenced by the

low-frequency excitation of the base. When the overall force exerted by the contact

point, Kyy(t) + cy(t), during this transition oscillation, exceeds the static friction

force, the mass will temporarily undergo a “micro slip”. This micro slip takes place

for a very short duration because during a micro slip, the behavior reverts from that

of the sticking equation (3.10) to the slip equation (3.9), which is independent of the

compliance and damping of the contact. An important property of equation (3.9) is

that it has sticking regions in the zero-velocity plane (Shaw [69]). An interpretation

of this sticking region is that, both below and above the in = 0 plane, the vector field

points toward the .i: = 0 plane (Feeny [23]). Thus, during a micro slip in the vicinity

of the sticking region, the velocity is small and the vector field quickly pushes the

oscillator back to zero velocity, where it may stick again. When :1: and at are no longer

near the sticking region, a tiny slip leads to a macro slip.

Next, we examine the features present in the f-x and f-i: plots with the double

stick-slip process. The corresponding f—z and f-:i: plots are shown in Figure 4.7.

There is no more detail in the f-x plots compared to Figure 4.5. Although concep-

tually, when micro slip occurs the mass should gain some cumulative displacement

(i.e. x(t) should evolve), the numerical resolution limits the registration of this event.

Similarly, the friction fluctuation during the transition should have different level (in
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Figure 4.7(a)) from those of case 1. However, this can hardly be detected in Fig-

ure 4.7 for the same reason. In addition, as can be expected, the f—a': plot in Figure 4.7

contains the multiple-loop structure depicting the transition oscillation. Unlike the

f-(b plot in case 1, more loops have connected themselves with the sliding-friction

levels in both signs. This again illustrates the feature of micro stick—slip event.

We have shown the occurance of a double stick-slip event in both the simulation of

case 2 and the experimental test. In the next section, we focus on the numerical study

of the state-variable friction model which, over some parameter ranges, can depict the

transition oscillation that takes place during a macroscopic stick-slip process. The

goal is to understand if this friction model is able to describe both the transition

oscillation and spring-like behaviors of the experimental system.

4.4 Numerical Investigations of the State-Variable Friction Model

Many state-variable friction models exist in the literature for describing the fric-

tional memory effect (e.g. Ruina [66], Rice and Ruina [63], Dieterich [17]). These

state-variable friction models were based on the observations of friction measure-

ments of sliding rocks. While these friction models have been developed from fric-

tion experiments of rocks, their properties have recently been observed for a range

of materials (Dieterich [17], [16], Dupont and Dunlap [19]). Moreover, Feeny and

Moon [25] proposed their state-variable friction model to accommodate the friction

behaviors observed in a dry-friction test. The general idea of state-variable friction

model states that there exists an additional friction state which evolves dynamically

about some backbone friction characteristics. Therefore, additional dynamics can
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be addressed by this friction state. The backbone friction characteristics can be, for

instance, Stribeck effect, Coulomb model or others. The Stribeck backbone friction

characteristic, incorporated with state-variable law, is often used in the modeling

of boundary-lubricated systems (Armstrong-Hélouvery et al. [3]). In this study, we

adopt Coulomb law as the backbone friction characteristic. This choice was based on

the preliminary experimental observations which indicated that no obvious velocity

dependency was involved in the experimental friction behaviors. Similar choice has

been made by Dahl in his state-variable model [14].
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Figure 4.8: Numerical simulations of stick-slip phenomenon with the

state-variable friction model, responses of: (a) displace-

ment, (b) velocity, (c) acceleration, and (d) friction force.

According to our simulation experiences, the state-variable friction model chosen

in this study, when incorporated with the system’s ODE, can generate transition os-

cillations during the stick-slip process. This model draws our attention since it might

be able to not only describe transition oscillations but also the spring-like behavior
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Figure 4.9: Numerical simulations of stick-slip phenomenon with the

state-variable friction model, numerical versions of: (a)

zoom-in detail of sticking in f-a: characteristic, (b) f-a:

plot, (c) zoom-in detail of sticking in f-a': plot, and (d)

f-a': characteristic.

of the experimental system. Therefore, we conduct several numerical simulations

focusing on this friction model.

In simulation, we first tuned the parameters so that the transition oscillation in

the stick-slip process can be observed, then simulations of pure-sliding motion were

carried out. The state-variable friction model with the system’s ODE can be written

as

mfi' + k:r(t) + 0(t) = kZ, cos wt (4.1)

and

19(1) = —m{0(t) — f(t)} (4.2)

where 0(t) denotes the friction state that tracks the backbone, steady-state friction

characteristic f(:c) This friction state, 0(t), will be treated as friction force in this
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section. Therefore, the friction responses will be labeled with 0(t) rather than f(t)

The backbone friction characteristic, describing the steady-state friction-velocity re-

lationship, is further chosen to be a smoothened Coulomb friction model, namely

f(i) = tanh(a:i:). Although the discontinuous Coulomb friction model can be a

proper candidate, the smooth version of Coulomb model, tanh(ai:), with a large a

can catch most of the features of the discontinuous Coulomb model and is convenient

for implementing the simulation.

In simulation, the value of a was chosen as 3000. Additionally, the parameter 7

that dictates the speed at which 0(t) follows f(2:) asymptotically was tuned so that,

in a macroscopic stick-slip motion, the transition oscillation emerges. The value of '7

was determined to be 100. The other system parameters such as m, k,w and f), were

the same as those in the experimental results and previous simulations of tangential

contact model. Values of the excitation amplitude, Xe, were listed in Table 3.3.

Figures 4.8 and 4.9 show the simulations of a macroscopic stick-slip process. In

Figure 4.8(c) and (d), the transition oscillation can be observed. However, subtle

details are different from the experimental data. For example, the frequency content

of the transition oscillation seems to be different from the previous study. The os-

cillation in Figure 4.8 actually tends to be different from a harmonic one. Because

there is no physical mechanism involved in this friction model, it is difficult to con-

clude the cause of this transition oscillation. For different model parameters (a and

’7), this transition oscillation may not occur. Thus, this transition phenomenon does

not necessarily involve a definite relationship with the apparent frequency. Further-

more, there is no evidence in Figure 4.8 that points to the occurrence of macroscopic
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sticking event. The motion is only a near stick-slip process in the macroscopic sense.
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Figure 4.10: Numerical simulations of pure-sliding motion with the

state-variable friction model, on = 5.61 Hz, responses of:

(a) displacement, (b) velocity, (c) acceleration, and (d)

friction force.

Next, Figure 4.9 illustrates the f-a: and f—:i: characteristics of the state—variable

law. It can be seen in Figure 4.9(a) that during the direction-reversal process, the

evolution of displacement is nonlinear and larger than the previous results, i.e. the

results in both experiment and simulations of the tangential contact model. The f-.i:

plot shows the loop structure in the transition between near stick and slip. It seems

that this model is not able to completely describe the macroscopic stick-slip process

of the experimental system.

To further demonstrate features associated with this friction model, two macro-

scopic pure-sliding cases are examined in numerical simulations and the results are

shown in Figures 4.10-4.13. These simulations have excitation frequencies equal to

5.61 Hz and 8.7 Hz.
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Figure 4.11: Simulation of the state-variable friction model, pure-

sliding motion, to = 5.61 Hz, numerical versions of: (a)

zoom-in detail of sticking in f-a' characteristic, (b) f-x

plot, (c) zoom-in detail of sticking in f-i: plot, and (d)

f-a': characteristic.

Comparing these plots to their corresponding experimental result, the follow-

ing observations arise. (1) While the model can describe the macroscopic feature

of sliding motion, details are missing in the simulations. For instance, due to the

characteristic of the state-variable friction model, the friction state, 0(t), will lag,

but exponentially follow the instantaneous friction change (such friction change is

depicted by the steady-state friction characteristic). Therefore, no abrupt friction or

acceleration jumps can be observed in the simulated response shown in Figures 4.10

and 4.12. Instead, the friction response tends to follow the Coulomb friction behav-

iors asymptotically and exponentially. This feature can be seen in Figures 4.10(d) and

4.12(d). (2) In numerical versions of f-a: plots which are presented in Figures 4.11(a)

and 4.13(a), transition features are different from experimental data and numerical
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Figure 4.12: Numerical simulations of pure—sliding motion with the

state-variable friction model, w = 8.7 Hz, responses of:

(a) displacement, (b) velocity, (c) acceleration, and (d)

friction force.

results of the tangential contact model. Much larger cumulative displacements (com-

pared to the experimental investigations or the simulations of the tangential contact

model) are involved in the direction reversal events. This indicates that the micro-

sticking event is not responsible for the features of the state-variable friction model.

Moreover, the evolution of the displacement during the direction change tends to be

nonlinear. (3) While the slanted hysteretic structure appears in Figures 4.11(c) and

4.13(c), there is no horizontal tangency at the onset of stick. This feature is different

from the simulation of the tangential contact model in which horizontal tangency

shows up in the slip-stick transition of the f-i: plots. This different feature is again

caused by the “lag” feature of the state—variable law. Since there is no microsticking

event, the transition of direction reversal in backbone friction-velocity characteristic

(the smooth Coulomb model) is abrupt.
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Figure 4.13: Simulation of the state-variable friction model, pure-

sliding motion, a: = 8.7 Hz, numerical versions of: (a)

zoom-in detail of sticking in f-x characteristic, (b) f-a:

plot, (c) zoom-in detail of sticking in f-i plot, and (d

f-i: characteristic.

The slanted hysteretic structure in f-i: plot is a typical characteristic in this state-

variable friction model since it follows the stationary friction-velocity relationship.

Based on this tracking feature, it is reasonable to speculate that for a constant 7, the

friction state, 0(t) will deviate more from the backbone function as the excitation fre-

quency increases. The speculation is based on the fact that the instantaneous friction

changes more rapidly during a higher oscillation frequency while the tracking rate is

kept the same. This can be verified by comparing the f-:ic plots in Figures 4.11(c) and

4.13(c), where the latter has higher oscillation frequency, and consequently possesses

a larger deviation between the backbone function and the trace of friction state,

0(t). This result also implies that in Figure 4.13(c), a longer lag occurs between the

instantaneous friction change and friction state 0(t).
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In accordance with the numerical investigations of the state-variable friction

model, we realize that although this model somehow can depict the transition os—

cillation during the stick-slip process, the model cannot completely capture micro

elasto-frictional behaviors that occurs in the direction reversal of pure sliding motion

and in the transition of macroscopic stick-slip process. This is likely due to the fact

that there is no physical mechanism involved in this friction model, which however

is required to describe the sticking characteristics in a elasto-frictional system.

In what follows, we investigate a simple compliant-contact model with an inertial

effect. The study starts from the description of a hypothetical compliant-contact

model with imposed motion. After a coordinate transformation, the system becomes

a regular forced oscillator with dry friction which is solvable and has been studied

by many researchers. In the transformed problem, sticking conditions and system

behaviors can be found in literature. Numerical simulations are performed to show

the occurrence of microscale stick-slip phenomenon. Features in phase portraits are

also discussed.

4.5 Micro Stick-Slip in a Compliant Contact with Inertia

4.5.1 Modeling of the Compliant-Inertial Contact Problem

In this section, a contact model with both compliance and inertial effects is

considered. A schematic diagram is shown in Figure 4.14 where x(t) represents the

imposed displacement at the contact and m and la denote the stiffness and inertia of

the contact point. The friction at the interface will be modeled as Coulomb friction
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Figure 4.14: A schematic diagram showing a contact with both com-

pliance and inertia effects.

without a difference between static and kinetic friction. Therefore, f(t) E fk(v,(t)) =

f): sign(v,.(t)),V v,(t) # 0, and —fk < f(0) < f1, where v,(t) represents the relative

velocity in the friction interface, so that v,.(t) = y(t) —;i:(t). Next, we assume that the

contact is subjected to a harmonically imposed motion, namely x(t) = Xm cos wt.

Based on this assumption, the system in Figure 4.14 can be modeled as

m111+ kW) + fk(vr(t)) = 0 (4-3)

Letting

f(t) E Mt) = f(t) - f(t)=1)(t)+ mesinwta (4-4)

equation (4.3) can then be recast, using the relative coordinate 5 (t), into

ms" + 115(1) + 1545(1)) = Xm1mw’ — k) coswt (45)

Considering T = wnt, so that 5 = wné’,£ = 1.025” in which 5’ = dfi/dr,€” = dz/de,

and to: = k/m and substituting these relationships into equation (4.5), we have

6" + {(7') + -———-fk(€l;(T)) = X,,,(f12 — 1) cos 97', (4.6)

where Q is the ratio between the frequency of harmonic-input motion and the natural

frequency of the contact (note that unlike the previous compliant contact model, this
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model has both inertia and stiffness effects and consequently, a natural frequency),

i.e. Q = w/wn. We then normalize the above equation with z(T) = k{(T)/fk, yielding

z” + 2(7') + f(z'(r)) = Xf—"ffllz - 1) cos 91', (4.7)

where f(z’(T)) = sign(z’(r),‘v’z’(r) 76 0, and -1 < f(0) < 1, for z’(r) = 0, denoting

a normalized Coulomb friction model. Thus in the relative coordinate, this contact

problem becomes a regular Coulomb oscillator. Many investigations focusing on this

oscillator have been put forth including stability analysis of the steady-state solutions

and a criterion for sticking (Den Hartog [15], Shaw [69], and Hundal [30]). According

to the above equation, the sticking region of this problem can be represented as

—1+acosflr < Z(T)<1+QCOSQT, (4.8)

where a = ka/fkfll2 — 1) represents the excitation amplitude in the normalized

coordinate. Sticking occurs when the inequality is satisfied by some 2(7), and z’(r) =

0.

Depending on values of system parameters, the steady-state solution of this sys-

tem can exhibit either continuous motion (or called macroscopic pure-sliding motion),

stick-slip motion, or a permanent stop (see e.g. Shaw [69]). However, in this sec-

tion, we will concentrate on the stick-slip case with many stops per forcing cycle.

According to the literature, this corresponds to a case that has small frequency ratio

9 (Shaw [69], Den Hartog [15], Hundal [30]). The physical interpretation of this

condition depicts a contact with high stiffness and small inertial effect subjected to

a low-frequency imposed motion. Because z(T) represents the normalized relative

motion between y(r) and x(r), y(r) can exhibit microscale stick-slip motion when

the motion feature of z(r) is a stick-slip process with multiple stops.
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Figure 4.15: Numerical simulations of micro-scale stick-slip phe-

nomenon, responses of the normalized: (a) relative dis-

placement, (b) relative velocity, (c) displacement of the

contact, and (d) velocity of the contact; case 1

In the next section, numerical simulations are presented to illustrate microscale

stick-slip features in this compliant contact problem.

4.5.2 Numerical Simulations of Microscale Stick-Slip Motion

The values of system parameters in this section are nondimensional and normal-

ized. Parameter values are determined so that the microscale stick—slip will occur

in the response of y(r). For simplicity of numerical simulation, the smooth version

of Coulomb friction is adopted, i.e. f(z’(r)) = tanh(az’(r)), where a is chosen to

be 5550 and the common parameters are D = 0.0555, f)c = 5.0, and k = 1.0. More-

over, Xm is equal to 20 in case 1 and 10 for case 2. Results are presented in the
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Figure 4.16: Numerical simulations of micro-scale stick-slip phe-

nomenon, responses of the normalized: (a) relative dis-

placement, (b) relative velocity, (c) displacement of the

contact, and (d) velocity of the contact; case 2

nondimensional time coordinate “7'”.

Figures 4.15 and 4.16 present the simulation results for this compliant contact

problem corresponding to different excitation amplitudes. In each plot, (a) and (b)

show the multiple-stop, stick-slip motion in the normalized relative coordinate 2(7')

and z'(r). The multiple-stop feature is evident in the displacement and velocity re-

sponses of coordinate z(r). For instance, if the macroscopic sticking event occurs,

the displacement of z(r) is a constant which equals to the maximum displacement

(Z007~ — Z0), whereas z’(r) is zero. In contrast, during the sliding phase, the relative

velocity z’(r) is nonzero and undergoes a high-frequency oscillation with a constant

sign. Due to the constant sign of this high-frequency oscillation, there will be no

direction reversal in this motion. There are some stops in the sliding interval corre-
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sponding to z'(T) = 0. A specific feature of these stops is that the motion will resume

in the same direction. The stop occurs during the sticking interval such that the mo-

tion resumes in the same direction was called an “abnormal” stop by Makris and

Constantinou [42]. In contrast, if the stop involves direction reversal, it was termed

“normal” stop. In [42] numerical studies were performed to analyze the motion with

multiple stops per forcing cycle.

When the motion in z(T) has multiple stops per forcing cycle, microscale stick-slip

feature appears in the responses of the contact motion, i.e. y(r) and y’(T) These

responses are illustrated in Figures 4.15 and 4.16(c) and (d). In both cases, y(r) has

two DC positions (positive and negative) which represent correspond to maximum

static deflections of the contact. At these biased positions, the high-frequency sliding

motion are occurring. In the same figure, the low-frequency harmonic curves depict

the macroscopic sticking motions. The contact moves from one extreme deflection to

the other when macroscopic sticking occurs. The high-frequency sliding oscillation

starts right after the contact point switches its DC displacements. Similarly, in the

time histories of y’(T), evident features exist to describe the macroscopic sticking,

high-frequency sliding, and microscale sticking events. A striking feature in y’(7')

response shows that both the macroscopic and microscale sticking events follow the

same sticking boundary.

A simple description of the microscale stick—slip mechanism follows. Assuming

that the relative motion, 2(1'), undergoes a macroscopic sticking process, which im-

plies that during this sticking interval z(T) is a constant represented as z(T) = :tZo.

This macroscopic sticking feature of 2(7) can be seen in Figure 4.l5(a) in which iZo
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are positions corresponding to the normal stops. During these sticking intervals,

motions in both x(r) and y(T) are exactly the same such that the normalized rela-

tive displacements iZo are constants. Due to the fact that x(r) is a low-frequency

harmonic function in this macroscopic sticking motion, y(T) depicts part of a low-

frequency function as well. This event can be observed in Figure 4.15(a) and (c).

Conversely, when z(T) experiences the macroscopic sliding motion, there will be

multiple abnormal stop events involved in an otherwise sliding motion as shown

in Figure 4.15(a). Hence, motion features of y(T) during such interval include a

high-frequency oscillation with some distortions. The distortions result from the

appearances of the microscale sticking events. Because these microscale sticking

trajectories follow a slow harmonic instead of fast harmonic as in the high—frequency

oscillation, the apparent motion features are different.

In order to demonstrate the boundaries for the macroscopic and microscale stick-

ing events, the following are considered. According to the literature (Shaw [69],

Hundal [30]), during a macroscopic sticking interval, displacement z(T) is a con-

stant, i.e. 2(7) = :tZo. The magnitude of Z0 can be determined numerically if

values of system parameters are known (Shaw [69] and Hundal [30]). Based on Z0

and the definition of the normalized relative coordinate z(T), we have

3],.(7) = :tZoIki + Xm cos QT (49)

Here, 3],,(1') represents the boundary of y(T) during a macroscopic sticking event, and

the subscript “3” denotes the macroscopic sticking condition. This subscript distin-

guishes it from the microscale sticking condition in which subscript “ms” is adopted.

A plot illustrating this macroscopic sticking boundary, g,(‘r), as well as the contact



89

displacement y(r) (corresponding to case 2) are shown in Figure 4.17(a). Appar-

ently, during the macroscopic sticking interval, y(T) follows the sticking boundary

perfectly.
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Figure 4.17: Sticking boundaries and double sticking events, (a)

macroscopic sticking boundary, 63(7) (dashed line), and

y(r) (solid line) and (b) microscale sticking boundary

37;,”(7) (dashed line) and y’(7') (solid line); case 2.

To search for microsticking boundary, we realize that when the microsticking

process happens, there will be different positions of z(T), denoted as 201, associ-

ated with these microscale events. These definite positions of z(T) can be observed

in Figures 4.15 and 4.16(a). The subscript “i” indicates the appearance order of

these abnormal stick events. As with the idea in the macroscopic sticking case, the

boundaries for different microsticking events can be generalized as

3],”,(7') = iZo,‘% + Xm cos 97' (4.10)

Equation (4.10) depicts a family of boundary curves with different parameter values
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20;. Although it seems to be difficult to solve for the microsticking displacements

Zog, the velocity of contact y’(7') follows the derivative of 37m,- which is a single

“i” has been dropped since there is nocurve and denoted as gm, (the subscript

difference between different microsticking events for this velocity boundary). Thus,

the velocity boundary of microscopic sticking process can be represented as 37;“,(1') =

—XmQ sin 91'. Features of micro sticking and its velocity boundary are presented in

Figure 4.17(b). In this figure, y’(7') matches 3):,”(7’) exactly during the occurrence of

microsticking events.

In summary, we have shown that the microscale stick-slip event can occur in a

compliant contact with inertia effect. The complete response of the contact includes

two scales of sticking events and a high-frequency sliding process. Features of this

motion resembles the double stick-slip process addressed earlier in this chapter.
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Next, we show some phase portraits. In figures 4.18 and 4.19, phase portraits

are presented. In each figure, (a) demonstrates the phase portrait in z coordinate

and (b) shows the phase portrait in y coordinate. Phase portraits in z coordinate

provide some useful information. For instance, the number of microscale sticking

events can be found in Figure 4.18(a) where points A, B and C correspond to micro-

sticking events and point D represents a macroscopic sticking event. Additionally,

the displacement of point D equals +Zo and displacements of points A, B, and C are

equal to +Zo.- with 2' = 1,2,3. Therefore, one can justify the occurrence of double

sticking event from this phase portrait.

In contrast, the phase portrait in y possesses more physical informations. As

can be seen in Figures 4.18 and 4.19(b), two well-like structures emerge with centers

at two DC displacements (:l:5) which represent the static deflections of the contact.
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Centering at the DC displacements, the high-frequency microscale stick-slip process

occur. The high-frequency, microscale sliding process depicts itself in a well-like.

structure, consisting of swirling ellipses, with part of its trajectory involving the

microsticking events. These microsticking events, shown as segments pq and rs in

Figure 4.18(b), follow a family of large ellipses which are not presented in this figure.

There are two curves connecting the well-like structures. These curves represent the

macroscopic sticking motion.

In what follows, conclusions are given for the investigations of sticking dynamics

as well as different scales of stick-slip processes.

4.6 Conclusions

In this chapter, we experimentally observed a macroscopic stick-slip process. A

free-vibration test was conducted for identifying the frequency of oscillation while

stuck. This frequency matched the transition-oscillation frequency during the stick-

slip process. Furthermore, it agreed with the predicted frequency based on the

contact stiffness found in Chapter 3. Thus, oscillations occurring during stick-slip

transitions are likely to be caused by contact compliance.

A double stick-slip event has been confirmed to occur in the experimental stick-

slip process. Through numerical simulations using the compliant tangential contact

model, the double stick-slip event was further demonstrated. It was found that

the transition oscillation occurring during a macroscopic stick-slip process is not

necessarily a purely harmonic oscillation. It can be more complicated due to the

presence of a microscale stick-slip phenomenon.
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The investigations of the state-variable friction model indicate that because of

lack of a physical mechanism, this model cannot completely describe the transition

behaviors in either macroscopic pure-sliding motion or macroscopic sticks-lip process.

However, a slanted hysteretic feature was found in the f-a': plot for the simulation

in pure-sliding motion. The slanted degree increases with the excitation frequency if

the other system parameters are kept the same.

Numerical studies of a compliant contact with the inertial effect are conducted

to illustrate microscale stick—slip process. The microscale stick-slip occurs when the

frequency of harmonical-imposed motion is much lower than the natural frequency

of the contact. Characteristics in both time-domain response and phase portrait are

addressed.

Regarding the investigations of the compliant-contact problem discussed in Chap-

ters 3 and 4, a single, tangential compliant contact model was used to interpret two

experimentally observed friction phenomena of a real system. Both the spring-like

sticking behavior in a macroscopic sliding motion and the transition oscillation dur-

ing a macrosc0pic stick-slip process can be modeled using this compliant contact

model.

In the case of pure—sliding motion, a geometric analysis revealed a transition speed

which depends on the amplitude/frequency of oscillation, the friction level, and the

contact stiffness. It also provided a means of experimentally estimating the contact

stiffness. The spring-like sticking behavior manifested itself in a slanted hysteretic

structure which was predicted in the analysis, observed in sliding experiments, and

reproduced in numerical simulations. The study showed the ability of the complaint
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contact model to describe the spring-like friction behavior of a real system.

The same contact model was used to estimate the frequency of the transition os-

cillation during a macroscopic stick-slip process. It was found that the predicted fre-

quency based on the compliant contact model agreed with the experimental-observed

frequency which was confirmed by a free-vibration test. Furthermore, a double stick-

slip event was illustrated in the experiment system. Numerical simulations, using the

idealized compliant contact model incorporated with damping, were used to further

illustrate the mechanism of this double stick-slip event.



CHAPTER 5

WAVELET ANALYSIS OF STICK-SLIP IN AN

OSCILLATOR WITH DRY FRICTION

5.1 Introduction

In this chapter, we characterize the stick-slip motion which has been shown to

exist in a frictional oscillator numerically and experimentally in the previous chapters.

Our approach is to apply the wavelet transform for the time-frequency analysis of

stick-slip transition behaviors. Numerical and experimental acceleration signals will

be analyzed. The goal is to explore the time/frequency transition features associated

with different friction models. These wavelet transition features can be used as a tool

in analyzing the experimental stick-slip signals.

The wavelet transform has attracted the attention of vibration researchers. For

example, Newland [52], [53] developed discrete wavelet transform maps and studied

some transient vibration signals. Onsay and Haddow [55] used wavelet transform

to analyze the transient wave propagation behavior of beam vibration in dispersive

medium in which the Morlet wavelet was adopted. Kishimoto et al. [37] applied

wavelet transform to study a similar dispersive wave propagation problem in a flexible

beam vibration where the Gabor wavelet was employed. Liang and Feeny [40] used

wavelet transform to detect the existence of subsystem dynamics occurring during

95
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the transition of stick-slip friction process. The Morlet wavelet was employed in

that study. Applications of wavelet transform are also found in the defect detection

of mechanical components or machine tools (Li and Ma [39], Tansel et al. [74] and

Pandit et al.). In the longterm the wavelet transform may help in the study of stick-

slip, perhaps in understanding the connection between the normal-directional motion

and tangential sliding behavior, which was emphasized by Oden and Martins [54].

Evidence shows that the normal-directional motion has frequency contents much

higher than the tangential ones, such that it might be possible to distinguish the

individual effect in different directional dynamics through the use of the wavelet

transform. Moreover, it is known that a controlled dither input can eliminate stick-

slip (Armstrong-Hélouvry et al. [3]). Through the identification of frequency contents

in transition behaviors, some insight might be obtained for choosing the appropriate

dither signals.

There are other modern signal-processing techniques which can deal with the

signals containing a wide range of frequency components. For example, the short-

time Fourier transform (STFT) uses a translational window in the time domain and

expands the frequency contents with respect to signal inside the window (Allen and

Rabiner [1], Portnoff [59]). Thus, the STFT can be interpreted as a general Fourier

transform with time localization. Due to the uncertainty principle, the resolutions

in time and frequency of this approach cannot be arbitrarily small, which limits the

application of this method (Vetterli [78]). The wavelet transform is an alternative to

the STFT. In contrast to the STFT, which uses complex sinusoids as basis functions

and averages the signal over a constant-length time window for obtaining frequency
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information, the wavelet transform uses a “mother wavelet” associated with different

window sizes and time locations to generate its basis functions. The time-frequency

resolution of the wavelet transform involves a different trade-off to the one by the

STFT: at high frequencies the wavelet transform is sharper in time, while at low fre-

quencies, the wavelet transform is sharper in frequency. Thus, a particular property

of this transform is its ability to identify and isolate the fine temporal, high-frequency

structure of a signal.

The high-frequency transition oscillation associated with the low-frequency stick-

slip response suggests that a stick—slip signal is a good candidate for applying the

wavelet transform. We will compare the simulated stick-slip data with the exper-

imental ones. Three friction models are examined in the numerical study which

include the Coulomb law, the state-variable law, and the compliant tangential con-

tact model. For some parameter ranges, the state-variable law used in this study has

been shown to cause the transition oscillations in the stick-slip acceleration signal.

In contrast, if we consider a forced mass-spring system with dry friction modeled

by the Coulomb law, abrupt jumps occur in the friction force and acceleration at

the instant that the mass sticks. This jump event dictates the high-frequency com-

ponents. Furthermore, features of the experimental data as well as the simulations

of tangential contact model showed not only the transition oscillations but also the

double stick-slip event. Wavelet transition features associated with different friction

models are the focus of this study.

The organization of this chapter is as follows. Section 5.2 gives a brief review

of the wavelet transform. It includes the numerical algorithm which is validated
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with some benchmark examples. In Section 5.3, wavelet transform is applied to

the numerical stick-slip acceleration signals to generate wavelet contour plots and

corresponding transition features of different friction models. These results are then

compared to the experimental ones. This chapter is concluded in the Section 5.4 in

which observations made from the wavelet contour plots are addressed with regard

to the coupling dynamics and double scale stick-slip process.

5.2 Wavelet Transform

The mathematical definition of continuous wavelet transform is given as an inner

product of a signal and a particular set of functions

CWT$(a,b)= /°° x(t) ;,,(t)dt. (5.1)

where h“(t) represents the conjugate of h(t). Equation (5.1) measures the “similarity”

between the signal x(t) and the basis functions

1 t — b

h(

lal “

  

ha.b(t) : ) (52)

called wavelets, in which a, b 6 R, a 75 0, and the constant 1/‘/ [a] is used for energy

normalization. The parameters a and b determine the dilation and translation of the

mother wavelet which is chosen here as the Morlet wavelet (Morlet and Arens [49],

[50], Onsay and Haddow [55]) and is given by

h(t) = 7r'1/4(e-“"°t —- e'WZ/2)e't2/2, (5.3)
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H(w) = 7r'1/4[e’(“”“’°)2/2 — 6"”3/26'W2/2] (5.4)

where we is the center frequency of the mother wavelet. H(w) represents the Fourier

transform of h(t). The wavelet basis functions have no DC component, i.e. H(w)

evaluated at w = 0 is zero. The second term in the bracket on the right-hand side

of Eq. (5.3) exists for the purpose of reconstructing (or inverse) process. In practice,

it can be neglected (Onsay and Haddow [55]). Therefore, it will not be included in

our calculations.

The analyzing wavelet function, h(t) (H (1.12)), can also be considered as a window

function both in time and frequency domain. Equations (5.3)and (5.4) state that

the time window h(t) is centered at t = 0, whereas the frequency window H(w) is

centered w = we. To show this feature, time and frequency domain representations

of the Morlet wavelet are presented in Figure 5.1 in which the parameters are a =

1, b = 0,wc = 4. When the translation and dilation actions are switched on, the time

window will be centered at t = b and the frequency window at w = we/a as shown

in equation (5.2).

In order to implement the calculation of the wavelet transform, a sublattice is

constructed by discretizing the values of a and b. Fixing the dilation and translation

step sizes to ac and be, and defining

a = as"; b = nboag‘ (5.5)

with m,n E Z, results in

hmn(t) = a?” h(agmt — n50). (5.6)
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Figure 5.1: Representations of Morlet wavelet function: (a) real part

of h(t) (b) imaginary part of h(t) (c) Fourier transform

H(w)

Based on equation (5.5), the translation step 6 depends on the dilation step a. This

choice is natural, since long wavelets will then advance by large steps and short ones

by small steps. On this discrete grid, the wavelet transform is thus

WTr(m,n) = 113"”? [w h‘(a5mt — nbo):r(t)dt. (5.7)

Of particular interest is the discretization on a dyadic grid which occurs for a0 = 2,

60 = 1 and is used in this study. A schematic diagram illustrating the grid structure

on the time—frequency plane for Fourier transform, STFT, and wavelet transform is

presented in Figure 5.2. It can be observed from this figure that different window

lengths are used in these transform methods. For instance, Fourier transform uses

only one long window to capture the frequency contents of the input signal. The

STFT translates a fixed-length window into different time locations to measure the
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frequency contents of signal inside the window. In contrast to these two approaches,

wavelet transform employs various window lengths in accordance with the frequency

contents of the signal and also translates windows along the time axis.

Fourier Transform

(a)

 

h(t) Short-Time Fourier Transform

 

h(t) Wavelet Transform

 

 

Figure 5.2: Window representations in the time-frequency plane: (a)

Fourier transform (b) STFT (c) wavelet transform.

To implement the calculation of wavelet coefficients, WT$(m,n), the numerical

integration scheme is adopted. This algorithm may not be efficient in the compu-
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tation sense. However, the number of data points in this study is not huge. Same

algorithm was used by Kishimoto et al. [37] successfully in studying a flexible beam

vibration problem and by Liang and Feeny [40] for a transient friction vibration in-

vestigation. There are other algorithms which can be found in the signal processing

literature (Onsay and Haddow [55]; Newland [52], [53]).

If we apply this computation scheme to the benchmark signals such as sinusoids

and impulses, it gives reasonable results. For example, in Figure 5.3 an impulse sig-

nal was used to conduct the wavelet transform. The results of wavelet transform is

presented in Figure 5.3(b) by a contour plot in which 12 contour curves are used to

span the distance between the maximum wavelet coefficient and a threshold value.

This threshold is a small positive constant, and it was chosen so that any wavelet

coefficient less than this number is made to be equal to it. In contour plot, this

threshold value corresponds to the blank region. Therefore, the contour plot essen-

tially demonstrates the wavelet coefficient distribution above the threshold plane.

Heights of different contour surfaces are showed in the logarithmic scale. Further-

more, while the subtle contour structure might be different when the threshold value

is changed, the main contour structure will not change dramatically. This feature

will be addressed more later in this chapter. The center frequency we is 4.5 hereafter.

In Figure 5.3, the contour plot captures most of the impulse properties in time

and frequency domains. These features include the broad frequency content of the

impulse signal which is illustrated by a vertical banded contour crossing the entire

frequency range at the middle of the time axis. Additionally, the vertical contour

structure points correctly at the occurrence of the impulse in the time axis. This
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demonstrates the zooming ability of wavelet transform in isolating the fine temporal

event. The spread-out feature in contour plot indicates the trade-off resolution re-

lationship between time and frequency domains, i.e. higher frequency resolution in

the low-frequency ranges and higher time resolution in the high-frequency ranges.
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Figure 5.3: Wavelet transform of an impulse signal: (a) input signal

(b) wavelet contour plot.

Another example exhibiting a low-frequency sinusoidal function superimposed by

an impulse at the middle is shown in Figure 5.4(a). Wavelet transform conducted

with respect to this signal is presented in Figure 5.4(b) in which the wavelet contour

plot is able to detect different frequency contents of this combined-frequency signal.

For instance, a horizontal banded structure, corresponding to the frequency of the

input sinusoidal function, occurs over the entire time axis. In contrast, the vertical

spike points to the occurrence of impulse signal. The blurred structure at both ends

of the time axis are resulted from the zero elements padded outside the time window

for the computing process.
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Figure 5.4: Wavelet transform of a sinusoidal function carrying an

impulse signal: (a) input signal (b) wavelet contour plot.

Through the tests on benchmark signals, we have shown that wavelet transform

can efficiently detect time/frequency informations of a input signal. In the next

section, this method will be used to investigate both simulated and experimental

acceleration signals that contain stick-slip motion.

5.3 Wavelet Transform of Stick-Slip Signals

This section includes numerical examples of stick-slip accelerations and their cor-

responding wavelet transforms. Parameter values are the same as those given in

Chapter 4. The simulations of the tangential contact model and state-variable model

have been conducted in Chapter 4. Hence, signals of these two models will be ap-

plied directly in this chapter, whereas the following describes the simulation of the

Coulomb law.

Numerical integration of the Coulomb friction model is difficult because of the
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Figure 5.5: Wavelet analysis of the simulated stick-slip acceleration,

Coulomb friction model: (a) time-domain response, and

(b) wavelet contour plot.

discontinuity feature at zero velocity. Many researchers have proposed different pre—

scriptions for solving this problem (e.g. Shaw [69]; Feeny and Moon [25]; Mei-

jaard [45]). Our approach follows the method used in Shaw [69] and Feeny and

Moon [25]. A fifth—order Runge-Kutta algorithm was chosen to implement the inte-

gration of system’s ODE.

A stick-slip acceleration signal, corresponding to Coulomb friction feature, is

presented in Figure 5.5(a) in which jump event occurs at each onset of sticking.

This jump is a high-frequency event. Moreover, during the sticking interval, the

acceleration is zero. These events will address different characteristics in the wavelet

contour plot. For instance, in Figure 5.5(b), the wavelet contour plot shows many

spikes which dictate the occurrences of jump events. While it is not clear, the

maximum wavelet coefficient occurs at the forcing frequency (2.5 Hz). There are
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Figure 5.6: Wavelet analysis of the simulated stick-slip acceleration

signal, state-variable friction model: (a) time-domain re-

sponse, and (b) wavelet contour plot.

18 contour curves spanning the distance of 80 dB between the maximum wavelet

coefficient and the threshold. In what follows, we will apply a constant span (80 dB)

for different simulation cases and the experimental data, so that the global contour

structure can be compared.

The simulation and wavelet results focusing on the state-variable friction model

are presented in Figure 5.6. Unlike the Coulomb case, no abrupt jump event occurs

in the acceleration response. Consequently, the wavelet contour plot does not register

the pronounced spike similar to the Coulomb model case. Instead, the transition os—

cillations occur during the sticking interval which are depicted by the less-pronounced

spike structures.

Compared to the Coulomb and state-variable friction models, the simulations of

the tangential contact model illustrates more interesting transition features. Fig-
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Figure 5.7: Wavelet analysis of the simulated stick-slip acceleration,

tangential contact model, case 1: (a) time-domain re-

sponse, and (b) wavelet contour plot.

ure 5.7 demonstrates the stick-slip acceleration of the tangential contact model cor-

responding to a higher damping case (case 1) in Chapter 4. According to the investi-

gation performed in Chapter 4, we know that there is no micro slip event involved in

this case. Thus, the time-domain transition oscillation (Figure 5.7(a)) is very much

like a damped sinusoidal function. Figure 5.7(b) illustrates this transition oscillation

by two striking features. First, a local maximum of wavelet coefficients emerges in

the transition contour structure. This local maximum manifests itself in a circle-like

shape centering about 47 Hz. Secondly, only one major spike appears in every tran-

sition from sliding to sticking. These features indicate that the transition oscillation

in this case resembles a single harmonic function with 47 Hz oscillation frequency.

The wavelet contour plot of this case is different from those of the state-variable and

Coulomb cases in which no local maximum exists during the stick-slip transition.
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Figure 5.8: Wavelet analysis of the experimental stick-slip accelera-

tion: (a) time-domain response, and (b) wavelet contour

plot.

Therefore, we have shown the wavelet transition features of the Coulomb, the

state-variable, and the tangential contact model of case 1. It can be summarized

that if the transition oscillation is close to a sinusoidal one, there will be a local

maximum corresponding to the oscillation frequency. Based on this, the transition

oscillation occurring in the state-variable model case is not close to a sinusoidal

function. Additionally, the wavelet contour plot in Figure 5.5(b) does reflect the fact

that there is no oscillation involved, during the transition phase, of the Coulomb

friction case. The samll circle-like structure is called the local maximum because

the global maximum is a 2.5 Hz plead existing along the entire time axis which

corresponds to the low—frequency forced response.

Next, we show the experimental acceleration and its wavelet contour plot in Fig-

ure 5.8. Similar local maximum structure appears in Figure 5.8(b) depicting a nearly
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Figure 5.9: Wavelet analysis of the simulated stick-slip acceleration,

tangential contact model, case 2: (a) time-domain re-

sponse, and (b) wavelet contour plot.

sinusoidal oscillation. The ungrouped contour structures, existing around t = 1 sec

and t = 1.45 sec, are the results of the irregularities in response. These are possi-

bly caused by the surface roughness. Furthermore, there are several grouped spike

structures occurring during each transition phase. The grouped spikes are resulted

from two possible mechanisms including the micro slip event and the irregularity of

response. A detail investigations focusing on the spike structure caused by micro slip

event is concerned next.

To explore the grouped spike structure associated with the micro slip event, we

show the simulation acceleration and its corresponding wavelet plots in Figure 5.9.

This simulation case is equivalent to the tangential contact model with light damping

which was denoted as case 2 in Chapter 4. Similar to the experimental and simulation

of tangential contact model, case 1, there are local maximum structures occurring in
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Figure 5.9(b). This local maximum contour describes the nearly sinusoidal feature

of the transition oscillation in Figure 5.9(a). In addition, several grouped spikes

occur during each transition interval illustrating the micro slip events. Before we

further verify this statement, we would like to point out that the grouped spike

structures are more-or-less consistent with those of the experimental case. The pres-

ence of randomness on the experimental signal conceals its wavelet representation,

hence, quantitative comparison between Figures 5.8(b) and 5.9(b) is not a trivial

task. Nevertheless, the qualitative characteristics of these two wavelet contour plots

definitely show some consistencies.
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Figure 5.10: Detailed wavelet analysis of micro stick-slip event, tan-

gential contact model, case 1: (a) time-domain response,

and (b) wavelet contour plot.

Although we pointed out above that the grouped spike structures in Figures 5.9(b)

and 5.8(b), especially in Figure 5.9(b), are resulted from the occurrences of micro slip

events, the spikes in these plots actually did not point toward the exact locations of
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Figure 5.11: Detailed wavelet analysis of micro stick—slip event, tan-

gential contact model, case 2: (a) time-domain response,

and (b) wavelet contour plot.

micro slip events. This is due to the fact that a large threshold (or small span) and

a low frequency range were used in Figure 5.9(b), which affect the representations

of the small wavelet coefficients structure. If we reduce the threshold (increase the

span between the maximum and minimum values of wavelet coefficients) and increase

the investigated frequency range, the results corresponding to the simulations of

tangential contact model, caseI and case 2, can be obtained in Figures 5.10 and

5.11.

Recalling from the previous discussions, we know that the acceleration response

of the tangential contact model, case 1 does not involve micro slip event, whereas the

case 2 has two short micro—slip durations during each macroscopic sticking interval.

These features are addressed in both Figures 5.10 and 5.11. They are particularly

clear in the wavelet contour plots. For example, two large spikes exist during each
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transition phase in Figure 5.10(b), representing the time-frequency properties of the

macroscopic “sticking” and “sliding” events respectively. Between these two major

spikes, there is not much high-frequency contour occurring which again dictates the

sinusoidal characteristic of this transition oscillation.

Conversely, while the two spikes corresponding to the macroscopic sticking and

sliding events are still observed, two more spikes occur during the sticking interval

in Figure 5.11(b). These two extra spikes, occurring between the spikes caused by

macroscopic motion features, point exactly to the locations at which the micro slip

take place. This verifies that the micro slip event can introduce a spike structure in

wavelet contour plot. Furthermore, the micro slip event is responsible for at least

some of the spike structure appearing in Figure 5.9. The distortions occurred in

Figure 5.9, so that spikes did not point toward the occurrences of micro slip events,

were the results of the high threshold and the low investigated frequency range.

Thus, we have shown that the wavelet transition features of the experimental data

are in accordance with those of the simulations of tangential contact model, case2.

The consistencies include the local maximum contour structure, representing a nearly

sinusoidal transition oscillation, and the grouped spike structure which demonstrate

the micro stick-slip event. These observations are based on the qualitative com-

parisons. The presence of randomness in friction process makes the quantitative

comparison to be difficult.

In the next section, we give a brief conclusion of this study.
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5.4 Conclusions

In this investigation, the wavelet transform was used to explore time-frequency

transition features of the numerical and experimental stick-slip signals. Evident

wavelet features associated with various friction models were obtained and com-

pared to a real stick-slip data. While many simulations can depict the transition

oscillations, only the tangential contact model with light damping captures most of

the characteristics of the experimental results. This was further verified by the com-

parisons between features of corresponding wavelet contours. Representations of the

nearly sinusoidal transition oscillation and micro slip event illustrate the similarities

of these two stick-slip data. Different wavelet features achieved from mathematical

friction models can be applied as a tool for interpreting the real stick-slip behaviors.



CHAPTER 6

ESTIMATING COULOMB AND VISCOUS FRICTION

FROM FREE-VIBRATION DECREMENTS

6.1 Introduction

One of the motivations of this thesis is the investigation of friction-induced noise,

particularly the study of the automotive “squeak” problem. Squeak is a high-

frequency frictional noise caused by unstable sliding motion. To study this problem,

a quiet experimental environment is important. The air-track system which we intro-

duced in previous chapters is no longer applicable due to the inherent acoustic noise

caused by the air. This air noise is irreducible since some threshold air pressure is

necessary for supporting the sliding mass. Hence, we will apply another anti-friction

system in the squeak study. Among anti-friction systems, the linear-bearing sys-

tem has been employed in many friction investigations (see for instance, Dweib and

D’Souza [20], [18], Aronov et al. [6], [4], [5]). The linear-bearing system has both vis-

cous damping and dry friction. In order to understand the damping characteristics

of the linear-bearing system, an identification is conducted in this chapter.

Methods of estimating damping effects in mechanical systems have long existed.

For example, in systems with viscous damping, the logarithmic decrement method

is often applied to the displacement trace of a free-vibration test such that vis-

cous damping can be estimated. The idea goes back to Hermann Helmhotz [27],

114
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who used the logarithmic decrement to determine frequency information in musical

tones. Rayleigh [62] formulated the idea using the term “logarithmic decrement”.

This method is accomplished by considering that amplitude decay in a free—vibration

test, of a viscously damped system, is exponential in nature. In contrast, if Coulomb

friction is the only damping present in the system, the decay of amplitudes tends

to be linear. This property was found in Lorenz’s work as early as 1924 [41]. Cal-

culating the amplitude decrement for consecutive cycles gives an estimation of the

dry-friction effect. The theoretical analysis of both estimation approaches can be

found in a modern vibration textbook, e.g., Meirovitch [46]. An analytical predic-

tion method for systems with both viscous and dry friction damping has not yet been

seen. However, it is reasonable to presume that multiple damping parameters can

be obtained from general nonlinear parametric identification schemes, such as Stry

and Mook [72].

An algorithm for estimating viscous damping and dry friction in a combined-

damping system is of importance because control applications often require com-

plete information of a frictional system to implement a high-performance controller.

Particularly, in the applications of model-referenced control schemes, accurate mod-

eling is critical to the controller’s performance [34]. Lack of information in different

damping sources certainly increases the difficulty of modeling a frictional system.

This chapter continues the work of Feeny and Liang [24] in which a method for

estimating viscous and dry-friction damping was proposed. More thorough inves-

tigations, including the application of the method to an industrial system and the

analysis of the effects of measurement error on the estimations are included. The
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method separates viscous damping from dry friction. Estimation of dry friction effect

can then be obtained based on the estimated viscous damping. Systems with solely

viscous damping or dry friction can be considered as a special case of this study.

The organization of this chapter is as follows. The next section addresses the

solution to the free-vibration of a one-DOF system with dry friction. Decrement

equations relating viscous damping to oscillation amplitudes can be derived for the

combined-damping system. In Section 6.3, the validation of this approach is illus-

trated by some numerical studies. Section 6.4 verifies the proposed method exper-

imentally by investigating a fundamental system which has a controllable friction

source. It is followed by Section 6.5 in which an industrial system is examined.

Damping characteristics of this system are completely unknown before the estima-

tions were performed. Section 6.6 investigates the effects of different types of mea-

surement errors on the estimation results. This chapter is concluded in Section 6.7.

6.2 E‘ee Vibration with Coulomb and Viscous Damping

We consider a mechanical system modeled as a mass-spring-damper with dry

friction (MKCF). By Newton’s second law, the equation of motion can be written as

mfé+cit+kx+f(:i:) =0, (6.1)

where 2: denotes the displacement of the mass and spring from the unstretched

equilibrium position, m,c,k represent the mass, viscous damping coefficient, and

the spring stiffness. The dry friction is modeled as f(i) = fksign(:i:),5: 74 0, and

—f, S f(0) S f,. By assuming the existence of of a coefficient of friction, such

that f(:13) = Ny(i), where N is the normal load and p is the coefficient of friction
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consisting of a static coefficient, 11,, and a kinetic coefficient of friction, pk, then this

friction law corresponds to Coulomb’s law. Nevertheless, we loosely refer to f( .r) as

Coulomb friction.

The equilibrium solution of this equation of motion can be obtained by letting

:ii = j: = 0. This gives rise to a locus of equilibria, i.e. —:r, S a: S :r,, where

:r, = f,/k. Equation (6.1) is piecewise solvable and can be recast as

51': + 2Cwni + 1.021: = —w,2,:ck, i > 0, (6.2)

and

51': + 2Cwn5c + 1.032: = +6021}, :i: < 0, (6.3)

where 112,2, 2 k/m,2Cwn = c/m, and :51, = fk/k.

If we begin with initial conditions x(to) = X0 > :L‘, and f(to) = 0, then motion

starts with :i: < 0. The response to equation (6.3) has the form

x(t) = (X0 — xk)e"(“’"(t"°)(cos wd(t — to)

+3 sin wd(t — to)) + $1,, (6.4)

where wd = cum/m7 and B = (W. This equation is valid until i = 0 at which

time t = t1 = to + 7r/wd and X1 = x(tl) = —e'fi"Xo + (e‘f37r + l)a:k. If X1 < —:r,,

then the mass will reverse direction and continue sliding with :i: > 0 according to

equation (6.2). The solution for this interval of motion is

x(t) = (X1 + :rk)e-<”"(t"t1)(cos wd(t — t1)

+6 sinwd(t — t1)) — 13],, (6.5)

which is valid until :i: = 0, at which time t = t2 = t1 + w/wd and X2 = $(t2) =

—e‘”"X1 — (e‘fi’r + I)“. If X2 > x,, motion will continue.
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This process can be iterated until -:r, S Xn S x,, at which time the motion

stops. This iterated process leads to a recursive relation for the successive peaks and

valleys in the oscillatory response:

X; = —e-fi”X,-_1 + (—l)"1(e_”" +1)“, i=1,2, ...,n. (6.6)

From this evolution of decaying peaks and valleys, we can isolate the viscous effect

and then extract the Coulomb effect. A sum of consecutive extreme displacement

values cancels out the dry-friction contribution. Taking the ratio between successive

sums yields

Xi + Xi“ —e-’6”. (6.7)

X1—1 + X1 _

Thus, a logarithmic decrement reveals the viscous dependence:

X1+ X1+1
log(————X._1+ X- ) = —fi7r. (6.8)

Once the quantity ,3 has been estimated, we can estimate C, and also the dry-

friction parameter $1, from equation (6.6).

A fundamental problem in an experimental system is that, because of the locus

of equilibria, it may be difficult to determine the position in which the spring is

unstretched. Thus, measurement may have a constant bias with respect to our

formulation. There is a simple way to deal with this. If the biased measurement

is y = a: + c, we remove the bias 6 by subtracting two measured peaks (or valleys)

Y}. Since Y, — Y} = X, — Xj, we can work with the difference between two recursive

relations (6.6) such that

X341 — X.‘ = —6_B”(X,' — Xi_1) + 2(-l)i(6-fi” +l)1‘k,

i: 1,2, ...,n —1 (6.9)
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By summing the equation for X,-+1 — X,- with that of X,- — X,_1, we eliminate

dry—friction contribution. An alternate decrement equation is thus

X1+1 - Xi—l -3
= — ” 6.10X.- _ X14 6 1 ( )

 

or

X1+1 - Xi-l

log(— X1 - X1-2

 )= —fl7r. (6.11)

 

 

  

    
Figure 6.1: Simulated response of MKCF system, solid line: displace-

ment response of MKCF system; dashed line I: amplitude

envelopes of the purely viscous system; dashed line II:

amplitude envelopes of the purely dry-friction system.

In what follows, we will apply this decrement idea numerically and experimentally

to estimate both linear viscous-damping factor and the kinetic friction quantity :r;c =

fk/k.

6.3 Numerical Solutions

This section illustrates numerical experiments for a MKCF system. The inte-
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Table 6.1: Extreme excursions in Figure 6.1

 

disp. peaks X0 X1 X2 X3

 

magnitude 1.00000 -0.86728 0.74711 -0.63832

 

disp. peaks X4 X5 X6 X7

 

magnitude 0.53981 -0.45063 0.36989 ~0.29678

 

disp. peaks X3 X9 X10 X11

 

magnitude 0.23059 -0.17067 0.11641 -0.06729      
 

gration algorithm was a fifth order Runge-Kutta method. The discontinuity of dry

friction was handled in the same way as in Shaw (1986) and Feeny and Moon (1994).

The parameter values are m = 10,19 = 10.0,c = 0.2, and f}, = 0.2. The initial

conditions are 33(0) = 1.0 and 33(0) = 0. The displacement response subjected to the

initial condition for this MKCF system is shown in Figure 6.1. The response of this

system resembles neither the purely viscous or dry-friction system. Furthermore, the

amplitudes of this combined-damping system decay faster than the systems with a

single form of damping.

In order to estimate the nondimensional viscous damping factor, C, and the dry-

friction parameter, ark, we measured the displacement peaks of the simulated response

in Figure 6.1. These values are listed in Table 6.1.

From these data, the estimated viscous damping factor, C, can be obtained using

equation (6.7). From

 

AX10 _ X10 + X11 _ e403,,

AXO — ——Xo+ X1 — , (6.12)
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Figure 6.2: Exponential decay of amplitude difference in the sim-

ulated MKCF system, dashed lines: exponential en-

velopes; “o”: amplitude differences AXg.

we obtain, 6 = 0.0316, and C = 0.0316. These values are consistent with the values

calculated directly from system parameters m, k, and c. Estimation of dry-friction

parameter, 5131,, can be accomplished by substituting the values of 6 and X,- into

equation (6.6). The extracted 5:], is found to be 0.02, which is identical to the given

values of fk/k. Moreover, if one plots the amplitude differences, AX,- E X,- + Xg+1,

versus index i, the result shows that amplitude differences decay exponentially as

shown in Figure 6.2. This result dictates that two types of damping have been

successfully separated. Figure 6.2 depicts the pure viscous-damping effect.

Thus, we have shown that this approach works well in a numerical experiment.

How applicable will this method be in a real system? This will be answered by

investigating two real systems. In what follows, system I has a source of dry friction

that can be switched on and off, and the friction characteristic resembles the Coulomb
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air curtain

/

   

A-A sectional View

Figure 6.3: Schematic diagram of system I.

friction model. During the investigations of system I, the system configuration having

only viscous damping will be termed the MKC system, whereas the configuration

that contains only dry-friction effect will be called the MKF system. In contrast

with system I, system II has the inherent damping with no modeling information

known a priori. Its presence in the system cannot be controlled either.
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Figure 6.4: Experimental displacement response of system I (the

MKF system), case 1.

6.4 Experiments on System I

6.4.1 Experiments on MKC and MKF Systems

Figure 6.3 illustrates a schematic diagram of system I which consists of mass,

spring, damper and friction surfaces. The mass slides on a nearly frictionless air

track. This air track has very small damping. A free-vibration test was conducted to

determine the damping factor due to the air track and spring. The associated viscous

damping factor was found to be 0.0008 based on logarithmic decrements with very

little dry-friction effect.

An eddy—current viscous damper was used to provide additional viscous damping.

Coiled wires are used to produce a magnetic field, which interacts with a steel flange

attached to the mass to provide damping. The dry friction was applied by packing
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Figure 6.5: Experimental displacement response of system I (the

MKF system), case 2.

paper between the electromagnets and the sliding mass. Therefore, the friction

contact was paper-on-steel. The displacement response were sensed by linear variable

differential transformer (LVDT) which had resolution of 0.01 mm after quantization

step in the data-acquisition process.

In order to understand the dry friction properties, two free-vibration tests of

MKF system were conducted. The displacement responses of these experiments

are shown in Figures 6.4 and 6.5. These displacement traces decay nearly linearly,

which suggests that the friction is nearly constant. The dry-friction forces, when

converted into the equivalent displacements, are 231,1 = 0.1318 mm and 2:1,; = 0.1142

mm respectively, where the subscripts “1” and “2” correspond to different testing

conditions that will be addressed later. These values were calculated according to the

linear-decay characteristic of dry friction, which basically states that the amplitudes

decrease by “41:1,” every cycle of oscillation (Meirovitch, 1986). In the computation of
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Table 6.2: Estimations of MKCF systems (0 represents the standard

deviation of each estimated and measured values)

 

 

 

C1 0 C1 0 error%

case 1 0.0276 0.0021 0.0269 0.0033 2.5%

151:1 0 $33111 a error%

 

0.1318 (mm) 0.0187 (mm) 0.1309 (mm) 0.0015 (mm) 0.7%

 

 

 

C2 0 C2 0 error%

case 2 0.0631 0.0050 0.0632 0.0061 0.2%

131:2 0 in a error%

 

0.1142 (mm) 0.0105 (mm) 0.1086 (mm) 0.0046 (mm) 4.9%          
131,, we calculated $kj (where the subscript “j” represents a calculation trial along the

time-domain trace) based on every two consecutive amplitudes with the same sign.

This calculation procedure goes through the whole trace. Thus, several calculated

:rkj were obtained to achieve a mean value, 31:1,, and a standard deviation 0 which

are listed in Table 6.2. The dry-friction parameters, and and 17kg measured in this

section will be used as reference values to be compared to values estimated from

combined-damping systems that have same system configurations with additional

viscous damping effects. Estimations obtained from the combined-damping systems

will be denoted as in and 5:1,; in the next section.

Next, we consider the MKC systems. There are two testing conditions, which

correspond to different degrees of viscous damping and are called “case 1” and “case

2”. Initial conditions were applied by displacing the sliding mass to stretched posi-

tions prior to release. Displacement responses of these two viscously damped systems
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are presented in Figures 6.6 and 6.7. Also presented in these figures are the expo-

nential decay envelopes. These envelopes are generated according to the estimated

damping factors as well as the initial conditions. The damping factors corresponding

to these systems are obtained by applying the logarithmic decrement method to the

experimental data in Figures 6.6 and 6.7. The computation process is the same as

that in the dry-friction case. Thus, there are several calculated C,- for each case and

the mean value and standard deviation are listed in Table 6.2.
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Figure 6.6: Experimental displacement response of system I (the

MKC system), case 1.

Figures 6.6 and 6.7 indicate that both systems are damped quite viscously in

the sense that envelopes match the decay amplitudes very well. The corresponding

damping factors for these two tests are C1 = 0.0276 and C2 = 0.0631. Based on

the agreements between experimental responses and decay envelopes, these damping

factors will be used as reference values for evaluating results from combined-damping

systems.
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Figure 6.7: Experimental displacement response of system I (the

MKC system), case 2.

In the following section, this method is applied to the MKCF system. The MKCF

systems have “combined damping effects” which individually correspond to the cases

addressed above.

6.4.2 Identification of the MKCF Systems

Figure 6.8 presents the displacement response for the MKCF system of case 1

subjected to initial displacement disturbance. The estimations of nondimensional

damping factor, C1, and dry-friction parameter, in, are listed in Table 6.2. In

obtaining these estimations, we calculated C from every four consecutive extreme

excursions and equation (6.10) so that different estimations were obtained through

the whole time-domain trace. Then, the mean value and standard deviation were

computed and listed in Table 6.2. Once C was determined, a similar procedure was
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Figure 6.8: Experiment displacement response of system I (the

MKCF system), case 1.

adopted for the estimation of dry-friction from equation (6.9). The estimation errors,

based on reference values from previous section, are 2.5% and 0.7% respectively. The

accuracy of the damping factor estimation can be judged from Figure 6.9 in which

the amplitude differences are compared to the exponential decay envelopes. This

plot is based on equation (6.10) and the measured amplitudes in Figure 6.8. Since

equation (6.10) describes the viscous-damping effect, deviations between amplitude

differences (AXg) and exponentially decaying envelopes can be treated as perfor-

mance index of system’s viscous behavior.

In contrast, the larger deviation of the dry-friction estimation may be attributed

to the uncertainty associated with friction modeling or any measurement error.

Next, we consider case 2, which has higher viscous damping effect. Figures 6.10

and 6.11 show the displacement response and amplitude decay for this case. The

estimations for different parameters are listed in Table 6.2. Observations similar to
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Figure 6.9: Experiment results showing the exponential decay of am-

plitude differences, system I (the MKCF system), case 1.

case 1 can be obtained from Table 6.2 and Figures 6.10 and 6.11. These include

better accuracy in the damping-factor estimation, consistent exponential decay of

amplitude differences, and lower accuracy in the estimation of dry friction. In order

to further evaluate the estimations made on this case, we numerically integrated

the system equation of motion with the estimated parameters and initial conditions.

Figure 6.10 demonstrates the comparison between experimental and numerical time-

domain responses. It is evident that estimations from the proposed method are able

to catch most of the response features.

Although the estimation of the friction force may not be highly accurate, the

proposed approach is very efficient in separating individual damping effects from

a combined-damping system. This may be attributed to the ability of isolating

the friction source. In many industrial systems, this is almost impossible. The

following section gives a case study for a typical industrial system in which the

 '&
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Figure 6.10: Experimental displacement response of system I (the

MKCF system), case 2. Comparison between experimen-

tal and identified results (solid line: experimental result;

dotted line: identified result).

friction characteristics are unknown.

6.5 Experimental System II: A Linear-Bearing System

This section investigates a system with unknown viscous and dry damping coef-

ficients. The system consists of two linear bearings with very low viscous and dry

friction effects. The linear bearings were made by Thomson Industries, Inc. (Model,

1CC-08-HAA). In order to compare the estimated results to the data provided by the

linear bearing company, the seals at both ends of the linear bearings were removed.

A sliding table mounted on the top of linear bearings is connected by three helical

springs. The schematic diagram is shown in Figure 6.12. Linear bearings are widely

used in high-speed position control systems. It is important to quantify the friction
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Figure 6.11: Experiment results showing the exponential decay of am-

plitude differences, system I (the MKCF system), case 2.

contribution to provide modeling information for control engineers.

To investigate damping characteristics of this system, initial conditions were ap-

plied to conduct a free-vibration test. Figures 6.13 and 6.14 show the displacement

response and the decay trend of amplitude differences respectively. The estimations

of system parameters are 83 = 0.0177, C3 = 0.0177(0 = 0.0164), and fl = 0.413 N

(a = 0.0249 N).

Figure 6.14 suggests that the system has low viscous damping because the en-

velopes bend slightly and the deviations of amplitude differences from two envelopes

are quite small. To check the validity of our model, we numerically simulated the

system response by applying the estimated parameters. The mass and stiffness were

determined: m = 1.92 kg and k = 2310 N/m. These parameters were incorporated

with the estimated damping information for accomplishing the numerical simula-

tion. The initial conditions in simulation were identical to those of experimental

W
m
“

.
-
_
o
‘
4
-
_
4
_
3
“
!
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linear bearing 
Figure 6.12: A schematic diagram showing the experimental setup of

system 11.

study. The comparison between numerical and experimental displacement responses

is presented in Figure 6.15. Figure 6.15 shows that the numerical result catches most

of the features of the experimental data. Based on the recovered system parameters,

the modeling of this industrial system is feasible. To compare the estimated damping

information with those provided by linear bearing company, we divided the estimated

friction force by the weight of sliding table. The coefficient of sliding friction was

found to be 0.022, which is about 10 times greater than the value provided by the

company. The reason for this discrepancy calls for further investigation.

In the next section, an analysis of the effects caused by measurement error on

the estimation is included.

6.6 Error Analysis

The experimental implementation of this proposed method involves measure—

ments of the oscillation amplitudes. The reliability of the estimation depends on

the accuracy of the measurements. According to sampling theorem, digital errors



133

15 1 1 v 1 

l H .

 

 

   
     
 

"e"

.5,
a o

S?

-5. U .

-10- U U .

_15 l 1 l 1

o 0.5 1 1.5 2 2.5

1(sec)

Figure 6.13: Experimental displacement response of system 11.

during data acquisition process are inevitable. These include the quantization error

and error due to the sampling process in which the first one is caused by the dis-

cretization of signal’s magnitude and the latter one is by the discretization of time.

There might be other sources of error involved in experiment including the random

error that caused by manual reading process from readout device and the noise on

the transducers’ responses. It is of interest to understand how measurement errors

affect the estimation accuracy.

6.6.1 Bounds on Estimation Errors

If the measured amplitudes are represented by X;,z' = 1,2,...,n, then X,- =

X,- + 6;,2' = 1, 2, ..., n, where 6, is the error associated with different amplitude mea-

surements and X,- represents the real or physical amplitudes. We assume that 6,-

contains different types of errors including digital error, random error, and trans-
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Figure 6.14: Experiment results showing the exponential decay of am-

plitude differences, system II.

ducer noise etc. Equations (6.10) and (6.11) are the crux of the proposed decrement

method for experimental systems. In order to study the effects of measurement error,

we extend the idea of equation (6.10) into

 

Xi+m+l - Xi+m—1 .. .
z —1 m8 fimn 2 21,2, ..,n,

X1+1 — Xi—l ( )

and m=1,2,..,n—i—1, (6.13)

where “m” represents the number of extreme excursions accumulated for the estima-

tion process. If the estimated nondimensional viscous-damping parameter B (note in

previous sections this magnitude was called 3) were calculated from equation (6.13)

using the measured amplitudes X,, then

X1+m+1 — X.+m_1 _—
_ _ : —1 me fim” 6.14

X.-+1 - X14 ( ) ( )
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Figure 6.15: Comparison between experimental and identified dis-

placement responses of system 11 (solid line: experimen-

tal result; dashed line: identified result).

We relate the estimated and real damping parameters such that 6 = 6 + 66,

where 66 represents the estimation error.

It is of importance to understand how the magnitude of estimation error in

viscous-damping parameter, I66 I, depends on the measurement error. Therefore,

equations (6.13) and (6.14), and expressions X,- = X.- + 6,, and 6 = 6 + 66 must be

considered. If we expand equation (6.13) into a Taylor series and consider only the

first-order terms, the following equation can be achieved:

6i+m+1 - 6i+m-l = mW(—1)m+1€—flmw(Xi+1 — X14063

+(—1)me‘3m“(6.+1 — 5-1), (6.15)

where 6g+m+1, 6g+m_1, 6;-1, 6;“ are measurement errors associated with different am-

plitudes. We next assume that there exists an upper bound “6” which confines all
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the deviations in amplitude measurements, namely 6,- S 6 Vj = 1, 2, ..., n and 6 > 0.

Based on this assumption and taking the bounds of both sides of equation (6.15), an

expression which relates the magnitude of estimation error [66 | to the upper bound

of measurement error 6 can be obtained as follows:

2(1 + 8'3"”)6
6 < _ _ = . 6.16

l 6] _ mac—3m"]X,+1 — X,-_1| a ( )

 

This expression suggests that the bound of the estimation error, a, is directly

proportional to the bound of the measurement error 6, and a can be minimized by a

clever choice of m. For example, if 6 is small, the optimal choice of m will be large.

Additionally, to increase IX,“ — X,_1| so as to reduce a, the first couple cycles of

a free-vibration response is recommended because larger amplitude difference with

the same sign can be achieved.

We proceed to investigate the estimation of the dry-friction effect. In order

to investigate this issue, equation (6.9) is of concern. As with the study of the

viscous-damping estimation, the Coulomb friction parameter can be written as at}, =

17:}, + 63:1,. Moreover, suppose equation (6.9) is expressed in a Taylor series, the

following equation can be obtained after neglecting the high-order terms:

5,1, — 5.- = 7113-5102,- — 55-065 — e'fi"(6,- — 61-1)

+2(—1)‘+1(1e-flr)5155 + 2(—1)"(1 + e-fi'wzk (6.17)

Rearranging and taking bounds in the above equation yields

Ne-BWUX; — X;_1] + 2ik)

6 < _I 1.1- ,(1 +61.) mm + 6 = 11; (6.18)

Applying the bound of the error on 6 derived for general value of m (inequal-
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ity (6.16)) to the above equation, and taking m = 1, leads to

[Xi - Xi—l] + 257k

|X1+1 — Xi-ll

 

l6xk| S {1+ 16 = 7 (6-19)

The first inequality above relates magnitude of the estimation error in dry-friction

effect, namely |6ku, to different quantities including the bound of measurement error,

6, magnitude of the estimation error in viscous-damping effect, [66], magnitude of

measured dry-friction effect, 57:1,, and the span between a consecutive peak and valley,

IX,- — 212.1]. The bound on [63:1,], 1/2, is proportional to I66] and 6, and nonlinearly

dependent on 6. Given 6 and 171,, 16 decreases if values of 6, [66], or IX,- — 23,21] are

small. To reduce 6, a high-precision quantization machine with fast sampling rate

and a noise-free experimental environment are required. Procedures of making [66]

small have been discussed. To achieve small magnitude of Mfg-22,21 I, the amplitudes

of the last couple oscillatory cycles are recommended.

In contrast, inequality (6.19) suggests that for given 6 and 5:1,, if 6 were estimated

according to four consecutive extreme excursions, 7 decreases when 6 increases. This

is true because the quantity IX,“ — X,_1|, representing the amplitude difference

between two consecutive peaks (or valleys) and appearing in the denominator of

equation (6.19), increases as 6 increases. Similarly, the magnitude IX,- — X,_1|,

corresponding to a span between peak and valley in one cycle, decreases as the

viscous damping increases, which will reduce 7 as well.

Thus, we have shown that bounds on [66 I and [6ku depend directly on the mea-

surement error 6. If the viscous damping is small, a cumulative selection of ampli-

tudes reduces the error bound of viscous-damping estimation. In addition, the error

bound of the dry-friction estimation, 1,6, depends on the estimation error of the vis-
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Table 6.3: Extreme excursions in Figure 6.16 (6 = 0.005)

 

 

 

 

 

 

disp. peaks X0 60 X1 61 X2 62 X3 63

magnitude 1.0023 -0.0023 -0.8723 0.0050 0.7513 -0.0042 -0.6417 0.0034

disp. peaks X4 64 X5 65 X6 66 X7 67

magnitude 0.5436 -0.0038 —0.4551 0.0045 0.3743 -0.0044 -0.3012 0.0044

disp. peaks X8 63 X9 69 X10 610 X11 611

magnitude 0.2351 -0.0045 -0.1752 0.0045 0.1213 -0.0049 -0.0721 0.0048           
 

cous damping. Inequality (6.19) shows that smaller 7 can be achieved if the viscous

damping is large and is estimated from four consecutive extreme excursions.

The following section gives some numerical examples which describe the relation-

ships between different types of measurement errors and estimation results.

6.6.2 Numerical Examples

In this section, we perform several numerical experiments. We will treat the

simulation data shown in Figure 6.1 as a perfect case, namely the free-vibration

response is treated as the real response (without any type of error). First, a random

signal with a known bound, 6, will be superimposed on this perfect signal to simulate

the possible random type of error occurring in the experimental process. The signal

with noise is shown in Figure 6.16 where the bound of measurement error is taken

as 6 = 0.005 which is equal to the bound of random numbers superimposed on the

pure simulation data shown in Figure 6.1.
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Figure 6.16: Simulation of effects of random error: (a) displacement

response and (b) zoom-in detail of random error

From Section 6.3, we realize that the real viscous-damping parameter 6 can be

assumed to be “0.0316” and the real dry friction parameter wk is “0.02”. Next,

we calculate the estimated values of 6 in accordance with the measured amplitudes

listed in Table 6.3. Including in the same table are the measurement errors associated

with different extreme excursions, namely 6,. If we choose 2' = 2, estimations of the

viscous-damping effect can be calculated, using equation (6.14), as

om=1

 

— X

01 = —log - - 2) = 0.0333 (6.20)

 

:_11 —(X6 - X4)
= 3“ 0g (X3— X1) 20.0328 (6.21)



Table 6.4: Estimation errors and bounds for the case of random er-

ror (6 = 0.005)
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m 3 WI ”Bl/6070) a

6 1 0.0333 0.0017 5.3 0.0291

(0.0316) 3 0.0328 0.0012 3.8 0.0109

5 0.0321 0.0005 1.6 0.0073

7 0.0321 0.0005 1.6 0.0060

m i), 6:13;c |6xk|/:rk(%) ll)

2,. 1 0.0182 0.0018 9.0 0.0070

(0.02) 3 0.0188 0.0012 6.0 0.0064

5 0.0197 0.0003 1.5 0.0057

7 0.0197 0.0003 1.5 0.0056

. m=5

6.:‘1 _(X8_X6)=0.0321
57 °g (X3 -x1)

(6.22)

The values of m shown above represent the number of extreme excursions accumu-

lated for the estimation process. From equations (6.20)-(6.22) and the known 6

value, estimation errors |66 I for different cases can be obtained. Furthermore, the

bound of the viscous-damping estimation, 0, can be computed from equation (6.16).

Results including the estimation error |66| and its bound a for different m values

are listed in Table 6.4.

We then proceed to estimate the dry-friction parameter 56),. The calculation of

it), follows equation (6.9). The following illustrates a typical calculation
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[(XB _ X2) + e-O.03331r(X2 _ X1 )1

2(1 + e—O.03337r)

 

51:1 = = 0.0182 (6.23)

Similarly, if values of 6 corresponding to different m were substituted into the

above equation, the other estimations of ark can be achieved. Conversely, the bound

of the estimation error in dry friction can follow inequality (6.18) or (6.19), depending

on the value of m. Here, we compute bounds using inequality (6.18). Estimation

results of dry friction are also listed in Table 6.4.

According to Table 6.4, estimations of viscous damping are more accurate com-

pared to those of dry friction. Moreover, despite the fact that the bounds on both

viscous-damping and dry-friction estimation errors are conservative, they indeed con-

fine the actual estimation errors. This shows the reliability of error analysis per-

formed in the previous section. The source of random error can either be the noise

problem associated with transducer/environment or results from the manual reading

process of readout device.

Another example, illustrating the effect of measurement error induced by quanti-

zation, is given next. Quantization is unavoidable in digital data acquisition process,

and can give rise to measurement error due to the resolution problem. The upper

bound of measurement error in this example is 0.001 which equals to the quanti-

zation step size. The signal with this lower quantization resolution (compared to

Figure 6.1) is shown in Figure 6.17. Based on this figure, different amplitude mea-

surements were taken and listed in Table 6.5. Calculations can then be carried out

and the results are shown in Table 6.6. Some observations are made from Table 6.6.

These include: (1) The bound of viscous-damping error (or) decreases as m increases,
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which follows the results of equation (6.16). Furthermore, the magnitudes of a are

smaller compared to the previous case since the upper bound 6 is smaller in this

case. (2) Although the bound of viscous-damping decreases when the value of m

increases, the actual error I66 I does not follow the same trend. This is due to the

fact that equation (6.16) addresses nothing about the actual estimation error. More

specially, the actual estimation is affected by the effect of different types of errors

on the individual amplitudes. (3) The estimation errors of dry friction are less accu—

rate compared to those of viscous damping, and the bound 1,!) depends on the actual

estimation error of viscous damping. This agrees with equation (6.18).
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Figure 6.17: Simulation of effects of quantization error: (a) displace-

ment response and (b) zoom-in detail of quantization er-

ror.

Finally, we show the measurement error caused by the sampling process. This

type of error occurs because of the discretization in time. Showing in Figure 6.18

is a numerical data having a more sparse sampling interval. The upper bound of
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Table 6.5: Extreme excursions in Figure 6.17 (6 = 0.001)

 

 

 

 

 

 

 

disp. peaks X0 60 X1 61 X2 62 X3 63

magnitude 1.0 0.0000 -0.8670 -0.0003 0.7470 0.0001 -0.6380 -0.0003

disp. peaks X4 64 X5 65 X6 66 X7 67

magnitude 0.5400 -0.0002 -0.4510 0.0004 0.3700 -0.0001 -0.2970 0.0002

disp. peaks X8 68 X9 69 X10 610 X11 611

magnitude 0.2310 -0.0004 -0.1710 0.0003 0.1160 0.0004 -0.0670 -0.0003         

Table 6.6: Estimation errors and bounds for the case of quantization

 

error (6 = 0.001)

 

 

 

 

 

  

 

 

  
 

m [3 l5fl| léfll/M‘VO) a

6 1 0.0322 0.00055 1.74 0.0059

(0.0316) 3 0.0316 0.00001 0.03 0.0022

5 0.0318 0.00018 0.58 0.0015

7 0.0313 0.00028 0.88 0.0012

m 5,. Mn] (am/24%) 6

5,. 1 0.0194 0.00058 2.91 0.0017

(0.02) 3 0.0201 0.00005 0.26 0.0010

5 0.0198 0.00015 0.75 0.0012

7 0.0204 0.00039 1.96 0.0013       
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this case was determined to be 0.0038 which is the maximum of the measurement

errors associated with different amplitudes. Same procedure was used to calculate

various estimations, their corresponding error magnitudes, and the error bounds.

The results are presented in Table 6.8, whereas Table 6.7 gives the measurements of

the displacement extrema. In accordance with Table 6.8, observations similar to the

quantization case can be obtained.
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Figure 6.18: Simulation of effects of error of sampling process: (a)

displacement response and (b) zoom-in detail of sampling

error

To this end, we have shown that the error analysis carried out in the previous

section indeed provides bounds on the estimation errors. While the actual error may

not have a certain pattern subjected to different types of error, the bound confines

all of the estimation errors. Numerical examples show that the bound seems to be

conservative. However, it becomes less conservative when the effective bound on the

measurements of extreme excursion, 266“, (instead of the upper bound 26 shown in
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Table 6.7: Extreme excursions in Figure 6.18 (6 = 0.0038)

 

 

 

 

 

 

         

disp. peaks X0 60 X1 61 X2 62 X3 63

magnitude 1.0 0.0000 -0.8662 -0.0011 0.7453 0.0018 -0.6359 -0.0024

. disp. peaks X4 64 X5 65 X6 66 X7 67

magnitude 0.5368 0.0030 -0.4472 -0.0034 0.3662 0.0037 -0.2930 -0.0038

disp. peaks X3 68 X9 1 69 X10 610 X11 611

magnitude 0.2270 0.0036 -0.1676 -0.0031 0.1140 0.0024 -0.0659 —0.0014
 

Table 6.8: Estimation errors and bounds for the case of sampling-

type error (6 = 0.0038)
 

 

 

 

 

 

  

 

 

 

 

m 3 I531 1551/5070) 0

6 1 0.0317 0.0001 0.32 0.0221

(0.0316) 3 0.0318 0.0002 0.63 0.0082

5 0.0321 0.0005 1.58 0.0056

7 0.0324 0.0007 2.21 0.0046

m it), |6xk| |6xk|/:vk(%) 16

wk 1 0.0204 0.0004 2.00 0.0039

(0.02) 3 0.0202 0.0002 1.00 0.0041

5 0.0199 0.0001 0.50 0.0044

7 0.0196 0.0004 2.00 0.0048        
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Table 6.9: Estimation errors and bounds for the case of random er-

 

ror (6 = 0.005)

 

 

 

 

  

m 3 léfll 0. a

6 1 0.0333 0.0017 0.0047 0.0291

(0.0316) 3 0.0328 0.0012 0.0018 0.0109

5 0.0321 0.0005 0.0012 0.0073

7 0.0321 0.0005 0.0010 0.0060          

equation 6.16) is used to calculate the bound of estimation error. The explanation

of this follows.

Considering equation (6.15) and taking an effective bound (268”) which is equal

to the maximum of |6g+m+1 — 6g+m_1| and l6,~+1 — 6,_1| yields

m7r(—1)m+1(X,-+1 — X,_1)66 S 2(1+(—1)m+le—ém“)6eff (6.24)

From this equation, we define an effective bound on the estimation error of viscous

damping, namely

2(1 +(-1)m+1€'fim")5en _
5 < _ _ _ .1

I 61 _ m“(‘1)m+l|Xi+1 “Xi-ll a

 (6.25)

In some cases, the effective bound on the measurements 266;; is significantly

smaller than the upper bound 26. In these cases, the effective bound of the estimation

error in viscous damping (as) is smaller compared to a. In other words, this effective

bound is less conservative. However, in the real situations, the 266;; may not be

known while 26 is more feasible. In order to illustrate this, numerical examples

for different types of measurement error are revisited and the results are shown in

Table 6.9-6.11.



147

Table 6.10: Estimation errors and bounds for the case of quantization

error (6 = 0.001)
 

 

 

 

 

       

m B |5fl| a. a

6 1 0.0322 0.00055 0.00088 0.0059

(0.0316) 3 0.0316 0.00001 0.00011 0.0022

5 0.0318 0.00018 0.00022 0.0015

7 0.0313 0.00028 0.00048 0.0012  
 

Table 6.11: Estimation errors and bounds for the case of sampling-

type error (6 = 0.0038)
 

  

 

 

 

 

     

m 6 |66| 0., a

6 1 0.0317 0.0001 0.0038 0.0221

(0.0316) 3 0.0318 0.0002 0.0014 0.0082

5 0.0321 0.0005 0.0010 0.0056

7 0.0324 0.0007 0.0008 0.0046
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match perfectly with the simulated data. Two types of real systems were investigated

in experimental studies, including a system which has a controllable friction source.

Consistencies were shown in both the comparison between numerical simulations and

experimental results, and the low estimation errors.

An industrial system was investigated to estimate the damping characteristics.

Although there is no damping information provided for this system, the numerical

simulation of identified model captures most of the features of the experimental

results.

An error analysis addressed the effect of measurement error on the estimations.

A cumulative-based approach is recommended for reducing bounds of estimations in

viscous damping when this damping is small. The error bound of the dry-friction

estimation depends on the estimation of viscous damping. Bounds of both estimation

errors are proportional to measurement error. Numerical examples have shown the

validity of error analysis results. They also showed that the bounds on the estimation

errors are conservative compared to the actual estimation errors.



CHAPTER 7

SQUEAK MECHANISM OF A RUBBER-ON-STEEL

CONTACT

7. 1 Introduction

This chapter describes experimental investigations of the friction-induced noise

problem with a rubber-on-steel contact. The study is motivated by the high-frequency

“squeak” problem seen in the automobile stabilizer bar which has rubber bushings

mounted on an epoxy-coated steel bar. Under some circumstances, this rubber-on-

steel contact generates an annoying high-frequency frictional noise which we called

squeak. A rough definition of squeak is as follows. A squeak is a high-frequency

frictional noise induced by low-frequency sliding excitation. Its appearance tends to

be of short-duration and intermittent which distinguishes squeak from brake squeal,

which is a sustained noise.

While dry friction often generates a dissipative damping force, in some cases it is

the cause of self-excited vibrations in mechanical systems such as brakes and clutches.

The friction force, under some conditions, transfers energy from the steady-state

sliding motion to excite and sustain limit-cycle oscillations (Dweib and D’Souza [20]).

It is conceivable that the frictional noise results from resonation of the structure by

means of the unstable sliding at the frictional interfaces. We will concentrate on the

case where a high-pitched screaming noise occurs.
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According to literature, there are many mechanisms that are suspected to be

responsible for sliding instability (or self-excited vibration). These include stick-slip,

sprag-slip, negative slope in the friction-velocity characteristic, and the coupling of

degrees of freedom (D’Souza and Dweib [18]). A “stick-slip” self-excited vibration

occurs typically in a single DOF, unidirectional belt-driven system incorporated with

a specific friction property in which the kinetic coefficient is less than the static

coefficient. Thus, during the sticking phase, the relative velocity at the frictional

interface is zero and the elastic energy associated with the slider stiffness is stored.

The energy discharges quickly during the slipping phase. As a result, the stick-slip

displacement is seen as a saw-tooth waveform, as observed by K0 and Brockley [38].

The “sprag-slip” mechanism was observed by Spurr [71]. The self-excited vibrations,

according to this mechanism, are induced by a “digging-in” action of the slider into

the sliding interface. During the sprag phase, the slider is forced to move with the

sliding surface because of the digging action. The slip commences when the friction

reduces its magnitude due to the change of the inclination angle [71].

Depending on the contact materials, it is possible that the kinetic coefficient can

possess a “negative slope” in a certain velocity region. For instance, Kaidanovsky and

Haiken, as reported in [9], have observed the existence of a negative-slope region when

sliding surface undergoes friction-induced vibrations. The negative slope can cause

a stable steady sliding to become unstable, or even self-excited vibrations. Another

mechanism that can induce self—excited vibration is the “coupling” of degrees of

freedom. Phase angle differences can exist among the responses of different degrees

of freedom. Experimental friction studies by Jarvis and Mills [35], Earles and Lee [21],
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Aronov et al. [6], [4], [5], and Dweib and D’Souza [20] have illustrated that frictional

sliding instability can arise due to the effect of coupling between subsystems including

the tangential, normal, and torsional degrees of freedom.

Most of the previous studies on the sliding instability problems, however, adopted

the unidirectional, constant-velocity sliding input. The approach also involved gradu-

ally increasing normal load. General observations from the literature can be described

as the following (Aronov et al. [6], Dweib and D’Souza [20], Nakai and Yokoi [51],

Tworzydlo et al. [77]). (1) The instability of sliding motion occurred when the nor-

mal load reached certain level (Aronov et al. [6], Dweib and D’Souza [20], Nakai

and Yokoi [51], Tworzydlo et al. [77]). (2) Different friction behaviors can be ob-

served depending on the magnitudes of normal load. These include the stable sliding

motion characterized by small-amplitude random vibrations (light normal load), in-

termittent sliding motion which is characterized by irregular and short occurrences

of self—excited vibrations (medium normal load), and self-excited vibrations with vi-

bration amplitudes that are much larger than the other sliding motions (high normal

load). (3) Associated with the unstable sliding motion, coupling between subsystems

was often observed. (4) The magnitude of friction force changes in the transition from

intermittent sliding motion to self-excited vibration. However, the change tends to

be system dependent. For example, more abrupt drop of friction force was observed

in the work of Aronov et al. [4], but not in the Dweib’s study [20].

In accordance with these observations, a large normal load seems to be critical in

generating the sliding instability. Furthermore, since these experiments focused on

the unidirectional, constant—velocity input, the friction-velocity characteristics have
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not been examined carefully (except for the study in [51], which was a study on a

metallic contact problem with unidirectional sliding input). Correlations between

sound and oscillations were seldom addressed in previous investigations except for

the one accomplished by Nakai and Yokoi [51]. In this chapter, we generate the

unstable sliding motion with a reasonable normal load and two-directional harmonic

excitations. The friction-velocity features during the unstable sliding motion will be

addressed, so will be the noise-dynamics correlations.

Regarding the stabilizer bar problem, investigations have been put forth by De

Togni et al. [22] in which a real system, consisting of the rubber bushing and the

epoxy-coated shaft, was directly employed to study the frictional dynamics over dif-

ferent system parameter ranges. However, a unidirectional excitation was considered

and no correlation between the noise level and dynamical responses was reported

in the study. Our approach adopts the experiment system developed in this thesis

which has simpler geometry in the friction contact. The study of this fundamental

system can hopefully provide some guidelines for exploring the real stabilizer bar

problem which possesses more complicated contact geometry and excitations.

This chapter is organized as follows. In the next section, we illustrate some ex-

perimental sliding responses and the friction-displacement and friction-velocity char-

acteristics. These experimental results were obtained from both stable and unstable

sliding conditions. We use moisture as a parameter for changing the friction charac-

teristics and sliding stability. According to the reports in automakers, humidity is one

of the important parameters in generating squeak noise. Section 7.3 focuses on the

dynamical responses of unstable sliding motion. Time-domain traces are illustrated
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to show the correlations between dynamical responses and sound measurements. Ev-

idence of coupling between tangential, normal, and torsional degrees of freedom are

illustrated using time-domain signals. In section 7.4, a brief conclusion is given to

conclude this chapter.

7.2 Features in f-ci: plots

 

(a)

 

 

(b)

 
 

 

(c)

 

 

(d)    
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 (sec)

Figure 7.1: The stable sliding motion in rubber-on-steel contact, high

normal—load and dry friction interface case (nominal nor-

mal load=6.13 N), w = 5 Hz, response of (a) displace-

ment, (b) velocity, (c) acceleration, and (d) friction force.

The experimental system used in this chapter is the same as that in Chapter 2,

except that two hemispheric natural-rubber contact were used to substitute for the

steel ones which were used in the studies of Chapters 2, 3, and 4. Moreover, the

air-track system is replaced by the linear—bearing system. The nominal normal load

of the experiments addressed in this section was 6.13 N which was sensed by strain
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Figure 7.2: The unstable sliding motion in rubber-on-steel contact,

high normal—load and wet friction interface case (nominal

normal load=6.13 N) = 5 Hz, response of (a) displace-

ment, (b) velocity, (c) acceleration, and (d) friction force.

gauges (Measurement Group, Inc., type CEA-13-250UW-350). These strain gauges

were incorporated with a signal conditioning system (Measurement Group, Inc., type

2200) and a full Wheatstone bridge configuration. The frequency of the base-motion

excitation was 5.0 Hz.

According to the reports from the automakers, the squeak problem often occurs

during high humidity; rubber slides on rigid and smooth surface often generates the

screaming noise if the interface is wet. This agrees with our daily experience. Water

was also employed as a lubricant in many friction investigations. See for instance,

Aronov et al. [6], Ibrahim [33]. Therefore, we first examine the rubber-on-steel

contact problem with different humidity conditions, including the one without water

denoted as case 1, and the other one with the presence of water in the friction

interface denoted as case 2.
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Figure 7.3: Comparison of the f-a: and f—a': plots between the sta-

ble and unstable sliding motions for nominal normal

load=6.13 N, (a) f-x and (b) f—a': characteristics of the

stable sliding (dry friction interface), (c) f-a: and (d) f-i:

characteristics of the unstable sliding motion (wet fric-

tion interface).

In this section, we compare features of stable and unstable sliding motions seen in

the f-i plots for dry and wet cases. Figures 7.1 and 7.2 show two sliding experiments

in which Figure 7.1 corresponds to case 1, and Figure 7.2 shows the results of case 2.

The sliding motion in Figure 7.1 is stable, and that of Figure 7.2 is unstable. During

the unstable sliding motion, the screaming noise occurred. Correlations between

noise and dynamics will be addressed in the next section.

Although the excitations in Figures 7.1 and 7.2 are not identical, the magnitudes

of motion responses (:6, :i:(t), Ei(t)) are comparable. Conversely, the friction forces of

these two experiments, resulting from the same nominal normal load, are completely

different. Furthermore, high-frequency vibrations appear during the sliding phase

of case 2, and are evident in the acceleration and friction force traces. These high-
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frequency vibrations depict the unstable sliding motion.
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Figure 7.4: The stable sliding motion in rubber-on-steel contact, low

normal-load and dry friction interface case (nominal nor-

mal load=1.23 N), w = 5 Hz, response of (a) displace-

ment, (b) velocity, (c) acceleration, and (d) friction force.

In order to further demonstrate changes of the friction behaviors due to moisture,

we plot the friction-velocity characteristics as shown in Figure 7.3 in which plots (a)

and (b) present the results of case 1, whereas (c) and (d) show the results of case 2.

Based on Figure 7.3, the following observations arise. (1) The average friction level

decreases dramatically with the presence of water. (2) A negative slope emerges

in the f-i' plot of case 2, and the case 1 has positive slope. (3) High-frequency

vibrations occur during the sliding phase in case 2. This can be seen in the f-a: plots

shown in Figure 7.3(c). (4) The dry friction of the “linear-bearing” system is 0.413

N (Section 6.5), which is about 1 /50 of the friction magnitude in case 1 and 1 /20

in case 2. Moreover, the viscous damping effect of linear-bearing system is not only

A

small (C = 0.0177, in Section 6.5), its effect in the f-:i: plot will produce a positive
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Figure 7.5: The stable sliding motion in rubber-on-steel contact, low

normal-load and wet friction interface case (nominal nor-

mal load=1.23 N), w = 5 Hz, response of (a) displace-

ment, (b) velocity, (c) acceleration, and (d) friction force.

slope. But, the viscous damping effect of the linear-bearing system does not affect

the fact that the slope in the f-i: plot changes from positive to negative due to the

presence of water in the friction interface.

In summary, we have found that a negative slope in the f-:i: characteristic emerges

when the unstable sliding motion occurs under the wet friction interface. Associated

with this phenomenon is an dramatic decrease of the average friction force. The

reason for these two phenomena is not clear to this point. It can be either the

material change due to the presence of water or an apparent characteristic caused

by elastic interactions during unstable sliding motion.

In order to clarify the mechanisms of these phenomena, we reduced the nominal

normal load to 1.23 N, and conducted similar sliding experiments (with and without

the presence of water). Results of these light normal load experiments are shown in
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Figure 7.6: Comparison of the f—x and f-:i: plots between different

interface conditions for nominal normal load=1.23 N, (a)

f-x and (b) f-a': characteristics of the stable sliding mo-

tion (dry friction interface), (c) f-a: and (d) f-a': charac-

teristics of the stable sliding motion (wet friction inter-

face).

Figure 7.4-7.6. In Figures 7.4 and 7.5, we also show the sound pressure. Figure 7.4

corresponds to the case where the frictional interface is dry, whereas Figure 7.5 is

the case with wet sliding interface. It can be seen in these plots that although the

friction force does decrease because of the presence of water, there is no unstable

sliding involved. This can be justified by the sound pressure traces in Figures 7.5

and 7.4 where no bursting of sound signal was registered.

In contrast, Figure 7.6 illustrates that the slope in f-a': changes from positive to

negative in these two experiments without the occurrence of squeak. This result

suggests that the presence of water in the frictional interface is responsible for the

dramatical decreasing of average friction level and the negative slop observed in the

f-a'c plot. Furthermore, the negative slope in the f-i: characteristic is not a sufficient
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condition for the sliding instability or the squeak generation.

Based on the observations from our experiments with different normal loads, a

certain value of the normal load is required for the sliding instability to occur. This

normal-load dependence on the sliding instability actually agrees with the previous

studies which states that high normal load is a critical factor for the sliding instability

(Dweib and D’Souza [20], Aronov et al. [4], Nakai and Yokoi [51]).

In the next section, we illustrate the coupling between subsystems and the cor-

relations between dynamics and noise.

7.2 Coupling Between Subsystems

This section investigates the coupling between the dynamics of the normal, tan-

gential, and rotational DOF systems and the correlations between dynamics effects

and noise generation. In order to illustrate the existence of rotational dynamics, the

torsional velocity was measured. Additionally, the normal directional acceleration

was sensed by an accelerometer to show the dynamics in normal direction. Fig-

ure 7.7 depicts the configuration of these two transducers and the microphone which

was used to measure sound pressure.

The torsional velocity was sensed by the laser velocity transducer (B&K, type

3544) which picked up the velocity at the end of an attached beam. The readout

from the laser transducer actually has a factor relationship with the real torsional

velocity. Nevertheless, the purpose of this measurement is to qualitatively illustrate

the existence of the torsional dynamics during the unstable sliding motion. The data

of 0(t) presented below is the raw readout from the laser beam sensor. In contrast,
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Figure 7.7: A schematic diagram showing the transducers for mea-

suring normal and torsional vibrations, and sound pres-

sure.

the normal acceleration was measured by the accelerometer PCB 303 A02 which has

the nominal sensitivity of 10 mv/g. The sound pressure was sensed by a microphone

(B&K, type 4166) with an amplifier (B&K, type 2610). The sound pressure signal

was low-passed with a cut-off frequency equal to 5.0 kHz for the purpose of anti-

aliasing. The sampling rate in this section was 10 kHz.

In Figures 7.8 and 7.9, we show the time-domain responses of the friction force,

tangential acceleration, normal acceleration, torsional velocity, and sound pressure

of a unstable sliding motion. Because the data acquisition system adopted here only

allows for 4-channel simultaneous sampling, we recorded two sets of data separately.

As can be seen in these two figures, the coupling between various degrees of freedom

is evident. This feature was indicated by the fact that when the high-frequency
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Figure 7.8: Time-domain responses of (a) tangential acceleration

51°:(t), (b) friction force f(t), (c) sound pressure, and (d)

torsional velocity 0(t) during unstable sliding motion,

with high normal load and wet friction interface, 02 = 5

Hz, sampling rate=10 kHz, the sound pressure signal low-

passed with 5 kHz cut-off frequency.

vibration occurs in the tangential acceleration or friction force, high-frequency events

also took place in both normal and torsional signals. Moreover, the sound pressure

signal shows that correlation exists between the high-frequency dynamics and the

noise signal. Thus, we have demonstrated the existence of coupling between multiple

DOF system and the dynamics-sound correlation. Next, we investigate the frequency

contents of different signals.

A fast Fourier transform was applied to different measurements, and the results

are presented in Figures 7.10 and 7.11. According to these plots, there is a harmonic

below but close to 500 Hz which was registered by all spectra except the one of

torsional velocity. This frequency was verified to be one of the resonant bending

frequencies of the pinching beam that has friction contact engaged. Without the
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Figure 7.9: Time-domain responses of (a) normal acceleration 37(t),

(b) friction force f(t), (c) sound pressure, and (d) tor-

sional velocity 0(t) during unstable sliding motion, with

high normal load and wet friction interface, 1.0 = 5 Hz,

sampling rate=10 kHz, the sound pressure signal low-

passed with 5 kHz cut-off frequency.

friction contact, the fundamental bending frequency of this beam, in a clamped-free

configuration, is about 185 Hz. The beam with friction contact had many resonant

bending frequencies below 500 Hz, although none were obviously excited in this case.

On the other hand, a 250 Hz harmonic shows up in the measurement of 0(t). This

harmonic corresponds to the fundamental bending frequency of the attached beam

for mounting the reflector with the friction contact (shown in Figure 7.7). The

natural frequencies mentioned above (except for the 185 Hz one) were detected with

different sensors at positions shown in Figure 7.7 when harmonic excitations were

input. The maximum dB value of the sound, during a squeak condition, was about

110-120 dB (when the microphone was 1 in away from the sliding surfaces), whereas

the noise level of the environment was about 55 dB.
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Figure 7.10: Power spectrum of (a) 37(t) in Figure 7.9, and (b) 0(t) in

Figure 7.9.

There is no evidence which points to the occurrence of an obvious frequency re-

lationship between responses of different degrees of freedom, namely the oscillation

during the unstable motion does not resemble an almost purely harmonic motion

as seen in Dweib and D’Souza [20]. This differs from the investigations reported in

the literature (Dweib and D’Souza [20], Aronov et al. [6] etc.). Since the contact

involving the rubber has a highly nonlinear property (Rorrer [65]), it may contain

different modes and coupling effects compared to metallic contact problems as ad-

dressed in [20] and [6]. More investigation is required to conclude the reason for this

difference.

To this end, we have shown that the coupling effect indeed occurs with the ap-

pearance of unstable sliding motion, although simple harmonic-like motion is not

observed. Moreover, correlations exist between system dynamics and noise genera-

tion. In the next section, a brief conclusion is given to discuss the possible mechanism



165

 

(8)

  
 
 

 

(b)

  

  
'5 E E E E E

1 . . . . . . . . . . . . . . . . . . . .. . . , . . . . . . ........... ,. . . . . . . . . . , .........

(c) : : : : :

o .n .L4lldrpt...l. . .L .1 L1‘lu ..Ju.. “ 1 . .- in... Jun .1 I ...Jl- - ‘-I..nu

500 1000 1500 2000 2500 3000

freq. (Hz)

Figure 7.11: Power spectrum of (a) friction force in Figure 7.9(b),

(b) f(t) in Figure 7.8(a), and (c) sound pressure in Fig-

ure 7.9(c).

for the squeak generation in rubber-on-steel contact.

7.4 Conclusions

The observations during the occurrence of sliding instability and squeak can be

summarized as follows. (1) The frictional noise is speculated to be the result of

resonation of structure dynamics which is caused by sliding instability. (2) During

the unstable sliding motion, the occurrence of coupling between different degrees of

freedom can be observed. In order to excite this effect, a certain normal load level is

required to produce sufficient friction force. (3) The presence of water in the frictional

interface will facilitate the occurrence of sliding instability. The possible reason for

this phenomenon is that the critical normal load may be reduced in the presence of
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water. (4) Associated with this change of contact material, a dramatical decrease of

average friction force occurs and the negative slope in the f-a': plot emerges.



CHAPTER 8

CLOSING REMARKS

8.1 Conclusions

In this thesis, a comparison between two common friction measurements was con-

ducted in Chapter 2. Thorough investigations of effects of tangential contact stiffness

on a harmonically forced oscillator were accomplished in Chapters 3 and 4. Chapter

3 was devoted to study the effects of contact stiffness when the mass has pure-sliding

motion, whereas Chapter 4 focused on the exploration of transition oscillations and

sticking dynamics. Wavelet analysis was applied to acceleration signals to exam-

ine stick-slip, transition features associated with mathematical friction models and

experimental results. In Chapter 6, we proposed a new decrement method for the

simultaneous estimation of dry friction and viscous damping. Through this method,

damping information was identified for the linear-bearing system. The linear-bearing

system was used to conduct the squeak study of the rubber-on-steel contact. This

squeak problem was motivated by a frictional noise problem observed in an auto-

mobile stabilizer bar. A basic squeak mechanism for rubber-on-steel contact was

proposed in Chapter 7 based on experimental observations.

Through the comparison between direct and indirect friction measurements, we

have shown that while a piezoelectric load cell has been widely used in measuring

167
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friction, it is not able to completely reflect the dynamical friction. The load cell

may attenuate the high-frequency friction components to some degree. The compu-

tation approach, on the other hand, incorporating the system’s ODE with motion

measurements, requires more than one transducer. The drawback is that the phase

shift between various transducers must be taken care of. Through careful calibration

of sensors, reliable friction measurements over a reasonable frequency range can be

achieved from this method. However, the frequency response of an individual sensor

can always cause a phase angle when the operating range is significant compared

to the sensor’s resonant frequency. This phase angle may vary with the frequency

content of signal as well. Thus, both direct and indirect friction measurements have

limitations in application.

Among various friction isolating techniques, we adopted the air-track system in

our investigation. The equivalent viscous-damping effect of this air-track system was

estimated using the logarithmic decrement method. This damping effect was very

small, making the air track an excellent environment for isolating the friction source.

Nevertheless, there is random acoustic noise associated with the air-track system

that cannot be eliminated because a certain air pressure is required to support the

sliding mass. In order to study the frictional noise problem, a different anti-friction

device (linear-bearing system in this study) is required.

The existence of contact compliance has been reported in friction literature. We

have also observed this spring-like behavior in our experiment system. In Chapter

3, we analytically investigated an idealized compliant-contact model to predict the

detailed spring-like behaviors of a frictional system subjected to harmonic excita-
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tions. The transition features occurring during pure macroscopic sliding include the

preliminary displacement, the transition speed, and a slanted hysteretic structure

in the friction-velocity plot. The analytical predictions matched the experimental

results qualitatively and quantitatively. Numerical simulations, focusing on the ide-

alized tangential compliant-contact model, further demonstrated the reliability of

this model in describing the elasto-frictional behaviors of a real system. Both the

time-domain responses and the f-rz: and f-zi‘ features were discussed.

There have been experimental works on friction which reported the existences of

the transition oscillations during the stick-slip process. However, no detailed inves-

tigation has been offered. In Chapter 4, we first applied the tangential compliant-

contact model to predict the frequency of the transition oscillation. This predicted

frequency agreed with the measured frequency obtained from a free-vibration test

with the contact engaged. Therefore, the high-frequency oscillations occurring during

stick-slip transitions are likely to be induced by the contact compliance. Moreover,

a “double” stick-slip event took place in the experimental stick—slip data. Numer—

ical simulation based on the tangential compliant contact with light damping was

used to reproduce this double stick-slip event. The mechanism associated with this

double stick-slip event was discussed. The occurrence of this event implies that the

transition oscillations can be more complicated than a purely sinusoidal motion.

In order to illustrate the other possible mechanism of the microscopic stick-slip

process, numerical studies were given to investigate a compliant-contact problem in

which both the compliance and inertial effects were included in the contact model.

The contact was subjected to an imposed harmonic motion. Through simulations,
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the occurrence of a high-frequency micro stick-slip event was demonstrated in this

compliant contact problem. Characteristics in both time-domain responses and phase

portraits were discussed.

Numerical investigations of the state-variable friction model conducted in Chap-

ter 4 dictate that the state-variable friction model, over some parameter ranges, can

give rise to the transition oscillations during a stick-slip process. However, the oscil-

lation is not close to sinusoidal, which was observed in the experimental results as

well as the simulations of tangential compliant-contact model. Furthermore, during

the macroscopic sliding motion, the state-variable friction model cannot capture the

microsticking event that has been observed in the experiment in Chapter 3. Lacking

a physical contact mechanism, this model cannot completely describe the transition

oscillations observed in a real system during the macroscopic stick-slip process. Nev-

ertheless, a slanted hysteretic feature was found in the simulated f-a': plot. This

hysteretic feature resulted from the tracking property of state-variable model. It has

been shown that the degree of slanting increased with the excitation frequency if the

asymptotic tracking parameters were kept constant.

The wavelet transform was applied to analyze the stick-slip transition behaviors in

Chapter 5. Different transition features associated with various friction models were

distinguished in the wavelet transforms. The wavelet transform also characterized

the nearly sinusoidal transition oscillations and the microscale stick-slip event. A

local maximum in wavelet contour plot, during each transition phase, states the

nature of the nearly sinusoidal high-frequency transition oscillation. In contrast,

a grouped-spike structure in the contour plot during the transition represents the
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microscale stick-slip event. Comparison between the experimental stick-slip data

with the simulation of the tangential contact model with light damping demonstrated

good agreement in the wavelet contour plots. The efficiency of the wavelet transform

as an analyzing tool in detecting the occurrence and detailed features of the high-

frequency transition oscillations has been shown.

One of the motivations of this thesis is to understand the possible mechanism

of the squeak problem in the rubber-on-steel contact. In order to acquire a quiet

anti-friction slider system, we introduced the linear-bearing system to conduct the

squeak study. However, damping exists in this linear-bearing system. Thus, we pro-

posed a decrement method to simultaneously estimate the viscous and dry friction of

the linear-bearing system. We solve the piecewise linear differential equation of the

system first. A decrement equation, relating viscous-damping effect to amplitudes

of a free-Vibration test on this combined-damping system, was obtained. The dry

friction can then be estimated based on the information of the viscous-damping. To

validate the method, a numerical study was performed with known damping param-

eters. The damping estimations obtained from the numerical simulation matched

perfectly with the given parameter values.

Two types of real systems were investigated experimentally to further show the

reliability of this method. The real systems included a fundamental system and

an industrial system. The fundamental system had friction source that can be iso-

lated. In the industrial system (the linear-bearing system), in contrast, no damping

information was known a priori. Experimental results showed that this decrement

method is very efficient in estimating damping information from the fundamental



172

system. Consistencies appeared in the comparison between the experimental data

and the numerical simulations based on the estimated damping parameters. Fur-

thermore, low estimation errors occurred in the estimations of viscous damping. The

experiments of the linear-bearing system illustrated that this system has low viscous

damping with a certain amount of dry friction.

An error analysis was carried out to account for effects of measurement error on

the estimation results. Bounds on estimation error were achieved using Taylor series

expansions. Relationships between measurement error and bounds of estimation

error were studied. It was found that, for a low viscous damping case, a cumulative

selection of amplitudes gave a smaller bound of the estimation error in the viscous

damping factor. The error bound of the dry-friction estimation depends on the

viscous-damping estimation. Numerical experiments have been performed to validate

the results of error analysis. Reliabilities of different bounds were demonstrated, as

were the calculation procedures.

In Chapter 7, we focused on a rubber-on-steel contact problem in which the

frictional noise study was accomplished. This problem was motivated by the squeak

noise seen in stabilizer bar of automobile. Compared to the friction levels in the

squeak experiments, the dry friction effect of the linear-bearing system is negligible.

Moreover, the viscous damping effect did not affect the observations obtained in

the squeak investigations. Different moisture conditions were examined in order to

search for proper mechanism of squeak generation.

The frictional noise was found to be a result of structure resonation due to the

unstable sliding motion taking place in the frictional interface. There are many pos-
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sible mechanisms responsible for the unstable sliding motion, and the one that we

found in the rubber-on-steel contact was the coupling between different degrees of

freedom. To excite this coupling effect, a certain level of friction force is required.

This was shown by experiments with different normal loads, and consequently, dif-

ferent friction force levels. It ended up that the sliding motion with light normal

load was stable even though a negative slope appeared in the f-rc plot due to the

presence of water in friction interface. This result dictates that large friction force

is required to excite the coupling between subsystems, which is consistent with the

results addressed in the literature (Aronov [4], Dweib and D’Souza [20], Nakai and

Yokoi [51]).

Including water in friction interface dramatically decreased the friction level and

induced a negative slope in the f-3': plots. While neither the moisture nor the negative

slope in the f—:i: seemed to be a sufficient condition in generating the coupling between

different degrees of freedom, the moisture probably caused a change of the critical

normal load (or friction force) at which the instability occurred. Thus, the system

behaved differently with the presence of water. In summary, the frictional noise

resulted from the resonation of structure dynamics which in turn was caused by

the coupling between degrees of freedom. To excite this coupling, a certain level of

friction was required.

8.2 Future Studies

In the study of compliant-contact problem, we have shown the consistencies be-

tween analytical and experimental results for the harmonic excitation case. How-
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ever, the tangential contact model was incorporated with Coulomb law in the sliding

regime. Many boundary-lubricated systems may not possess such a friction charac-

teristic, it is therefore of interest to extend the idea of compliant contact to other

steady-state friction features such as the Stribeck law. Moreover, many previous

research works have also shown the existence of the frictional memory effect in the

sliding regime (Rice and Ruina [63], Hess and Soom [28] etc.). To describe the

frictional memory effect, either the state-variable or the time-delay friction model

is a possible candidate. Thus, the modeling efforts can integrate different steady-

state friction characteristics with the state-variable or time-delay friction model for

describing the boundary-lubricated systems.

The study of the compliant contact problem can also be extended to different

material combinations at the contact such as Teflon-on-steel, aluminum-on-steel etc.

The microsticking behaviors with different contact materials can be investigated. It

is conceivable that the elastic deformation process during the microsticking process

is not necessary to be nearly linear for different material combinations.

More work can be accomplished in the investigations of the high-frequency tran-

sition oscillations. For instance, different contact geometry and normal load may

affect the oscillation frequency and the appearance of micro scale stick-slip event. In

addition, the high-frequency microscale stick-slip event can conceptually be a mech-

anism of high-frequency frictional noise, while it calls for more investigations. The

study in transition oscillation can also provide selection considerations for the dither

signal which can be used to eliminate the stick-slip process in control applications.

In studying the frictional noise problem, an actuator capable of generating long-
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stroke harmonic functions in high normal load is important. As mentioned before,

a high normal load is critical for the occurrence of coupling effect between different

subsystems. Unfortunately, most of the commercial shakers can only provide short

strokes (about 1 in). In order to be able to generate long-stroke harmonic motions,

a motor-drive system incorporated with some mechanism for converting rotating

motion into rectilinear motion can be considered.

Regarding the squeak study in rubber-on-steel contact, modeling can include dif-

ferent degrees of freedom, such as tangential, rotational, and normal coordinates.

Although some work has been done by Dweib and D’Souza [20] to show the depen-

dence of stability on the normal load, the system considered in that study did not

have a negative slope in the friction-velocity relationship. It is of interest to under-

stand how the coupling effect between different subsystems can overrule the negative

damping effect in the tangential direction of motion, so that the sliding motion is sta-

ble when the normal load is low (Figures 7.4-7.6). Tworzydlo [77] applied Oden and

Martins’ friction model with coupling effects between different coordinates. While

this work can predict unstable sliding motion, the features seem to be different from

our study. For example, in [77], collapse of the natural frequency between rotational

and normal degrees of freedom was shown to be critical. However, we did not observe

this event in our experiments. Moreover, most of the previous research work focusing

on the metallic contact which is different from the contact in this study.
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APPENDIX A

THE MOVING AVERAGE METHOD

The moving average method has been broadly used in data filtering or smoothen-

ing applications (Dupont [19] and Sakamoto [67]). In this dissertation, we differen-

tiated displacement signal in order to obtain the velocity response. Due to the

quantization process and sampling theorem, noise associated with this differentia-

tion process is inevitable. Thus, a five-point moving algorithm was employed to

smoothen the signal after differentiation process. While many moving average meth-

ods exist, the five-point algorithm has been shown to have best compromise between

phase shift and smoothening effects (Sakamoto [67]). This method can be described

as follows.

For a data sequence y,,z' = 1, 2.., n, the equations for computing averages are

1 .

gi = '5—(yi—2 + yi—1 + M + yi+l + yg+2) z = 2,3, ...,n — 2

I

90 = 3(33/0 + 2311+ 312 - 3M)

1

311 43/0 + 3311 + 2.772 + 313) (A-l)
=fi(

_ 1

yn-l = 16(yn—3 + 2yn—2 + 3yn—l + 4yn)

l

3771 = g(_yn-4 + yn-Z + 2yn-l + 33/71)

Equation (A.l) shows that each averaged datum is the mean value of five sur-

rounding data points. There are special formulations for both the first and the last
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two points.

The moving average method can be considered as a low-passed filter. Thus, it

has frequency response and phase relationship between the input and output data.

In order to understand the frequency-domain characteristic of the five-point mov-

ing average method, a discrete-time Fourier transform is taken with respect to the

“'77

lformulation for a general data point to achieve

H(w) = 1/5(2 cos(2w) + 2cos(w)+1). (A2)

Based on this equation, the magnitude and phase responses can be depicted as

Figure A.1 in which the phase angle changes due to the fact that the magnitude of

H(w) has different sign.
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Figure A.1: Magnitude and phase response of five-point moving av-

erage method.

In Figure A.1, the frequency range is 2 kHz, which is called the folding frequency

and is equal to half of the typical sampling frequency (4 kHz) using in this thesis.
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As expected, the moving average method possesses a low-pass filter characteristic.

In addition, consider the facts that we applied this method to the velocity signal

which does not have very high frequency content, and the method causes zero phase

in the frequency range less than 750 Hz, it can be concluded that this method will

not introduce severe phase problem to the velocity data.



APPENDIX B

DISCHARGE CHARACTERISTIC OF LOAD CELL

B.1 Discharge Time Constant

In the application of piezoelectric load cell, a long discharge time constant (DTC)

is necessary for a low-frequency response. The DTC is defined as the time required

for a sensor or measuring system to discharge its signal to 37% of the original value

from a step change of the signal. This time constant directly relates to the low-

frequency measuring capacity for both transient and sinusoidal events. In order to

take full advantage of the long DTC built into the force sensor or the accelerometer,

it is best to DC couple from the sensor to the readout device. When DC coupling

a system, it is important to DC couple the entire system and not just the sensor to

the signal conditioner.

In our instrumentation, signal conditioner PCB482B was adopted for DC coupling

the load cell and the data acquisition unit (Masscomp, 5550). The DTC for the load

cell (PCB 208B) was 50 seconds. On the other hand, the signal conditioner (PCB

482A10) was used to DC coupling the accelerometer and the data acquisition unit.

In both cases, data acquisition unit were set to DC coupling mode so that there was

no AC coupling involved in the entire system.
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B.2 Decay Rate in the Low-Frequency Signal Measurement

input signal

output signal 1 1%V0

_1_

 
 

+11 vw0

°
<

(b)

  +11v .._:_.  W‘—
 

 to (0+0.01 TC

Figure B.1: A schematic diagram showing the discharge characteris-

tic.

Under the DC coupling of the measuring system, the signal will eventually decay

to zero. However, the decaying speed was kept as slow as possible to achieve a

good reading. For instance, in the load cell application, the rule of thumb for the

signal discharge is as follows. For the first 10% of the discharge time constant, the

signal lost is approximately proportional to the time elapsed. Which dictates that

if the DTC of the load cell is 50 seconds, the signal will lose approximately 10% of

its output level 5 seconds (10% of 50) after the application of a steady—state force

within the measuring range. A schematic diagram depicting this discharging event is

presented in Figure B.1 in which the 11 volt DC level represents the bias elimination

range to prevent the input DC bias.

In our experimental study, intervals of “steady” friction forces appeared in the

macroscopic stick-slip process. The lowest oscillation frequency of the stick-slip pro-
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cess was 2.5 Hz. Therefore, the maximum duration of a steady friction force interval

is 0.2 sec. Based on the DTC of the load cell (PCB 208B), this maximum duration

corresponds to 0.4% of the DTC. Thus, at most 0.4% of the original friction level

has drifted during a steady sliding interval. Consider a typical case in previous study

which has a friction force of 1 N. The drifted value of this case will be less than 0.004

N which is small. The acceleration measurement does not have similar interval of

steady response, so that there is no drift problem associated with it.
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