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ABSTRACT

THE CONCENTRATION PRINCIPLE FOR DIRAC OPERATORS

By

Manousos Maridakis

The symbol map σ of an elliptic operator carries essential topological and geometrical

information about the underlying manifold. We investigate this connection by studying

Dirac operators with a perturbation term. These operators have the form Ds = D+ sA :

Γ(E) → Γ(F ) over a Riemannian manifold (X, g) for special bundle maps A : E → F

and their behavior as s → ∞ is interesting. We start with a simple algebraic criterion

on the pair (σ,A) that insures that solutions of Dsψ = 0 localize as s → ∞ around the

singular set ZA of A. Under certain assumptions of A, ZA is a union of submanifolds,

and this gives a new localization formula for the index of D as a sum over contributions

from the components of ZA. We give numerous examples.
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Introduction

Many problems in geometric analysis involve studying solutions of first-order elliptic sys-

tems Dψ = 0 for operators

D : Γ(E)→ Γ(F )

between bundles over a Riemannian manifold (X, g) . Given such an operator D, one can

look for zeroth-order perturbation A such that all finite-energy solutions of the equation

Dsψ = (D + sA)ψ = 0 (0.0.1)

concentrate along submanifolds Z` as s → ∞ in a precise sense. There are several

examples of this in the literature, the most well-known occurring in Witten’s approach to

Morse Theory. The aim of this thesis is to find a general setting for such concentration

phenomenon.

We start with a simple criterion that insures concentration : D + sA localizes if

the composition A∗ ◦ σD(α) of the adjoint of A with the symbol of D is self-adjoint

(Definition (1.0.1)). It is natural to regard D as a Dirac operator; its symbol is then
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Clifford multiplication c and the concentration condition becomes

A∗ ◦ c(u) = c(u)∗ ◦ A for every u ∈ T ∗X.

This simple algebraic condition implies the analytic fact that solutions concentrate(in the

precise sense of Proposition 1.0.4).

This thesis has two main results. The first is a Spectral Decomposition Theorem for

operators that satisfy the concentration condition and three transversality conditions. It

shows that:

• The eigenvectors corresponding to the low eigenvalues of D∗sDs concentrate near

the singular set of the perturbation bundle map A as s→∞.

• The eigenvalues of D∗sDs corresponding to the eigensections that do not concentrate

grow as at least O(s) as s→∞.

• The perturbation A determines submanifolds Z` and each determines an associated

decomposition of the normal bundle to the Z` giving a specific asymptotic formula

for the solutions of (0.0.1) for large s.

Our second main result is an Index Localization Theorem (Theorem 1), which follows

from the Spectral Decomposition Theorem. It describes how the Atiyah-Singer index

formula for the index of D decomposes as a sum of local indices associated with specific

operators on bundles over the submanifolds Z`.

I. Prokhorenkov and K. Richardson [PR] previously found the concentration condition

(1.0.1), but found few examples because they assumed A to be complex-linear and found
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concentration only at points. Their list of examples does not include most of the’ examples

given in Chapter 2. The reason is that they assumed that A is self-adjoint and complex-

linear, while in many of our examples A is conjugate-linear or has no complex structure

and in some examples concentration occurs along submanifolds i.e. the zero set of a

spinor. Thus it is essential to study (0.0.1) as a real operator.

This thesis has six chapters. Chapter 1 introduces the Concentration Condition, de-

scribes some elementary consequences, and states the main results, which are proved in

later sections. An important part of the story is the vector bundles K` and K̂` over the

sub manifolds Z` that are introduced in Chapter 1 and described in detail later.

Chapter 2 presents many examples, some already known, and some new. The point

here is to search for real linear perturbations on reducible Clifford bundles. The first

example is probably classical, but it already illustrates the idea that concentration occurs

when a complex operator is perturbed by a conjugate-linear operator. Example 2 stems

from an observation of Taubes. Taubes used a concentrating family of operators to give an

interesting new proof of the classical Riemann-Roch Theorem for line bundles on complex

curves; our Example 2 extends this to higher-rank bundles over curves. Example 3 is

Witten’s Morse Theory operator, which we show fits into the general setup of Chapter 1.

The next set of examples is more interesting because the singular set zA arises as the

zero set of a spinor on X. In these examples, D acts on “spinor-form pairs ”, meaning

sections of a subbundle of W ⊕Λ∗(T ∗X) where W is a bundle of spinors, a Spinc bundle

and Λ∗T ∗X the bundle of forms. These examples are most natural in low dimensions, es-

pecially in dimension four. In particular, Examples 5 and 6 are linearizations of operators
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that occur in Seiberg-Witten theory.

In Chapter 3 we examine the geometric structure of D+ sA near the singular set ZA

of A. We first examine the perturbation term A, regarding it as a section of a bundle

of linear maps, and requiring it to be transverse to certain subvarieties, where the linear

maps jump in rank. This transversality condition, allows us to write down a Taylor series

expansion of A in the normal directions along each connected component Z` of ZA, and

this gives a similar expansion of the coefficients of the operator D.

The technical analysis needed to prove the Spectral Separation Theorem is done in

Chapters 4 and 5. We use a maximum principle argument to obtain decay estimates

on the concentrating eigensections, and we use the Taylor expansions from Chapter 3 to

decompose D into the sum of a “vertical” operator DV that acts on sections along each

fiber of the normal bundle, and a “horizontal” operator DH that acts on sections of the

bundles K` on each component Z` of ZA. We then define a space of approximate eigensec-

tions, and work through estimates needed to show that these approximate eigensections

are uniquely corrected to true eigensections.

Chapter 6 heads in a new direction. It describes a simple “non-linearization” procedure

that associates to each operator (0.0.1) a non-linear elliptic system whose linearization

is (0.0.1). We show how this non-linearization procedure produces, quite automatically,

two famous non-linear elliptic systems: the Vortex equations in dimension two and the

Seiberg-Witten equations in dimension four. In these cases, concentration phenomena

are well-known as seen, for example, in the work Bradlow, Garcia-Prada, and Taubes.

One of the interesting consequences of this thesis is that the concentration that occurs in
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these examples, which many believe to be a reflection of nonlinearity, appears instead to

be a result of an algebraic interplay between first and zeroth order terms that is already

present in the linearized equations.

Finally, we provide an appendix with the structure of the subvarieties that produce

the singular set of A in Chapter 3. A good reference is [K]. The extensive study of their

topology is crucial in the study of the localizing Dirac type operators.
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Chapter 1

The Concentration Principle

The section describes some very general conditions in which one has a family Ds of first

order elliptic operators whose low eigenvectors concentrate around submanifolds Z` as

s → ∞. At the end of the section, we state the main theorem of this thesis. We also

state one important corollary, which shows how the index of D decomposes as a sum of

indices of operators on the submanifolds Z`.

Let (X, g) be a closed Riemannian manifold and E, F be real vector bundles over X.

Suppose that

• D : Γ(E)→ Γ(F ) is a first order elliptic differential operator with its symbol σ.

• A : E → F is a real bundle map.

From this data we can form the family of operators

Ds = D + sA

where s ∈ R. Furthermore, assuming that the bundle E and F have metrics, we can form

the adjoint A∗, and the formal L2 adjoint D∗s = D∗ + sA∗ of Ds. The symbol of D∗ is

−σ∗. The main point of this thesis is that such a family Ds is especially interesting when
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A and the symbol σ are related in the following way.

Definition 1.0.1 (Concentrating pairs). In the above context, we say that (σ,A) is a

concentrating pair if it satisfies the algebraic condition

A∗ ◦ σ(u) = σ(u)∗ ◦ A for every u ∈ T ∗X. (1.0.1)

Lemma 1.0.2. A pair (σ,A) is concentrating if and only if the operator

BA = D∗ ◦ A+A∗ ◦D

has order 0, that is, is a bundle map. If so, then for each ξ ∈ C∞(E),

‖Dsξ‖22 = ‖Dξ‖22 + s2‖Aξ‖22 + s〈ξ, BAξ〉 (1.0.2)

where these are L2 norms and inner products.

Proof. Given a tangent vector u ∈ T ∗pX, choose a smooth function f with df |p = u. Then

for any smooth section ξ of E,

BA(fξ) = D∗(fA(ξ)) + A∗(D(fξ)) = −σ∗(df)Aξ + fD∗Aξ + A∗σ(df)ξ + fA∗Dξ

=
(
− σ∗(u)A+A∗σ(u)

)
ξ + fBA(ξ).

Thus (1.0.1) holds if and only if BA(fξ) = fBA(ξ), which means that BA is a zeroth
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order operator. To obtain (1.0.2), expand |D + sA|2 and integrate; this gives

‖Dsξ‖22 = ‖Dξ‖22 + s2 ‖A(ξ)‖22 + s 〈Dξ,Aξ〉 + s 〈Aξ,Dξ〉

where, after integrating by parts, the last two terms are equal to s 〈ξ, BAξ〉. 2

Remark 1.0.3. Given D and A as above, one can always form the self-adjoint operators

D =

 0 D∗

D 0

 and A =

0 A∗

A 0

 .

Then (σD,A) is a concentrating pair when σD(u) ◦ A = −A ◦ σD(u), u ∈ T ∗X. This

implies that both (σ,A) and (−σ∗, A∗) are concentrating pairs.

The assumption that D : Γ(E) → Γ(F ) is elliptic mans that the bundles E and F

have the same rank. Thus a generic bundle map A : E → F is an isomorphism at almost

every point. In the anyalsis of the family D+sA, a key role will be played by the singular

set of A, defined as

ZA :=
{
x ∈ X | kerA(x) 6= 0

}
,

that is, the set where A fails to be injective.

The following theorem shows the importance of the concentrating condition 1.0.1.

It shows that, under Condition 1.0.1, all solutions of Dsξ = 0 concentrative along the

singular set ZA. More generally, it shows that all solutions of the eigenvalue problem

Dsξ = λ(s)ξ with λ(s) = O(s) also concentrate along ZA.
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Fix δ > 0, set Z(δ) be the δ-neighborhood of ZA and let Ω(δ) = X \ Z(δ) be its

complement.

Theorem 1.0.4 (Concentration Principle). There exist C ′ = C ′(δ,A, C) > 0, such that

whenever ξ ∈ C∞(E) is a section with L2 norm 1 satisfying ‖Dsξ‖22 ≤ C|s|, one has the

concentration estimate ∫
Ω(δ)
|ξ|2 dvg <

C ′

|s|
. (1.0.3)

Proof. By equation (1.0.2) and ξ as in assumption we get

C|s| ≥ ‖Dsξ‖22 ≥ s 〈ξ, BAξ〉 + s2 ‖A(ξ)‖22.

By Lemma 1.0.2, BA is a tensor and compactness implies that M1 = supX |BA| is finite

hence by Cauchy-Schwartz

|〈ξ, BA(ξ)〉| ≤ M1

∫
X
|ξ|2 dvg = M1.

Also for each x ∈ X \ZA, A is injective on fibers, so there is a positive constant κ(x) with

|A(ξ)| ≥ κ(x)|ξ|. By compactness, those inequalities hold with a constant κ > 0 uniform

on the closure of Ω(δ) and therefore

s2 ‖A(ξ)‖22 ≥ κ2s2
∫

Ω(δ)
|ξ|2 dvg.
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Consequently

∫
Ω(δ)
|ξ|2 dvg ≤

M1 + C

κ2|s|
.

2

Remark 1.0.5. The above proof can be refined if one has an estimate of the form

|A(ξ)|2 ≥ ra|ξ|2 on a tubular neighborhood of ZA, where r is the distance from ZA

and a > 0; this gives a bound on how the constant C ′ in (1.0.3) depends on δ. Assump-

tion (1.0.9) below gives such an estimate with a = 2. Later, in Chapters 4 and 5, we will

develop better estimates that show that the eigensections of Ds with low eigenvalues are

well-approximated by Gaussians as s→∞.

It is convenient to work in the context of Dirac operators. Recall that a vector space V

is a representation of the Clifford algebra C(Rn) if there is a linear map c : Rn → End(V )

that satisfies the Clifford relations

c(u)c(v) + c(v)c(u) = −2〈u, v〉 Id. (1.0.4)

for all u, v ∈ V . We will often denote u· = c(u).

Lemma 1.0.6. The concentration condition (1.0.1) with σ = c is equivalent to

c(u) ◦ A∗ = A ◦ c(u)∗ ∀u ∈ T ∗X. (1.0.5)

Hence D + sA concentrates if and only if the adjoint operator D∗ + sA∗ does.
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Proof. Multiplying (1.0.1) on the left by c(u) and on the right by c(u)∗ we get

|u|2A ◦ c(u)∗ = c(u) ◦ A∗|u|2

which gives (1.0.5). The proof in the opposite direction is similar. 2

Dirac Operator Assumptions:

1. We assume that E,F are of equal rank, E ⊕ F admits a Z2 graded Spinc structure

induced from the symbol c and a Spinc connection preserving the grading so that

∇c = 0.

2. (c,A) is a concentrating pair: A∗c(u) = c(u)∗A for every u ∈ T ∗X.

Then the composition D = c ◦ ∇ is a Dirac operator

D : Γ(E)→ Γ(F ). (1.0.6)

We also impose two further conditions on A that will guarantee that the components

Z` of the singular set ZA are submanifolds and that the rank of A is constant on each

Z`. For this, we regard A as a section of a subbundle L of Hom(E,F ) as in the following

diagram:

L � � //

��

Hom(E,F ) ⊇ F l

(X, g)

A

BB (1.0.7)
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Here L is a bundle that parameterizes some family of linear maps A : E → F that satisfy

the concentration condition (1.0.1) for the operator (1.0.6), that is, each A ∈ L satisfies

A∗ ◦ c(u) = c(u)∗ ◦A for every u ∈ T ∗X. Inside the total space of the bundle Hom(E,F ),

the set of linear maps with l-dimensional kernel is a submanifold F l; because E and

F have the same rank, this submanifold has codimension l2. Assume that L ∩ F l is a

manifold for every l (see the Appendix).

Transversality Assumptions:

3. As a section of L, A is transverse to L∩F l for every l, and these intersections occur

at points where L ∩ F l is a manifold.

4. Z` is closed for all `.

As a consequence of the Implicit Function Theorem A−1(L ∩ F l) ⊆ X will be a sub-

manifold of X for every l. The singular set decomposes as a union of these submanifolds,

and even further as a union of connected components Z`:

ZA =
⋃
l

A−1(L ∩ F l) =
⋃
`

Z`. (1.0.8)

By Assumption 3, A has constant rank along each Z`, so kerA and kerA∗ are bundles

over Z`.

Our final assumption is a statement about the Taylor expansion of A.

Non-degeneracy Assumption:

12



5. Let K be the bundle obtained by parallel translating kerA → Z` along geodesics

normal to Z` in a tubular neighborhood of the singular set ZA. We require

A∗A|K = r2M +O(r3) (1.0.9)

where r is the distance function from ZA, and M is a positive-definite symmetric

endomorphism of the bundle K.

Now fix a point p ∈ Z` and choose an orthonormal frame {eα} of the normal bundle

N` → Z` at p with dual frame {eα}. In Chapter 4 Lemma 4.1.1 we prove that the matrices

Mα = −c(eα)∇eαAp : kerAp → kerAp (1.0.10)

are a collection of commuting isomorphisms, and that each is self-adjoint (by Condition

1.0.1), and its spectrum is real, symmetric, and does not contain 0 (by Assumption 5).

Hence there exist a common decomposition into eigenspaces kerAp =
⊕

iKi that simul-

taneously diagonalizes the family {Mα}. In this decomposition, it is the eigenspaces with

positive eigenvalue that are important — this positivity ultimately translates into the fact

that there are L2 concentrating sections in these directions.

Definition 1.0.7. For each component Z` of ZA, let K` → Z` be the bundle whose fiber

at p ∈ Z` is

K`|p = span

ϕ ∈ kerAp

∣∣∣∣∣ ϕ a common eigenvector of {Mα} with every eigenvalue

positive

 .
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There is a similar bundle K̂` → Z` defined in the same way with the matrices Mα replaced

by M̂α = −c(eα)∇αA∗|p : kerA∗p → kerA∗p.

In Chapter 4 Proposition 4.1.5 we use assumption 5 to prove that K and K̂ are bundles

over each component of ZA. Also in Proposition 4.1.6 of the same chapter, we show that,

for each component Z`, the bundle K`⊕K̂` is associated with a canonical Spinc structure

c` on Z` i.e the restriction of the Spinc structure on (X, g).

Finally we look at the pullback connection of the bundles

((E ⊕ F )|Z` , ∇̄) (E ⊕ F, ∇)-

?

Z`

?

X-

In Chapter 3, we show that this connection preserves the sub-bundle K`⊕K̂` (see Propo-

sition 4.1.5 and Proposition 4.1.6). We can compose this connection with Clifford multi-

plication to construct Dirac operators for the bundles K` and K̂` over Z`.

Definition 1.0.8. On each component Z`, we define

D` = c` ◦ ∇̄ : Γ(Z`, K`)→ Γ(Z`, K̂`).

and we denote its adjoint by D̂`.

In this definition, the Clifford multiplication c` is compatible with the Levi-Civita

connection on X, not with the Levi-Civita connection of the induced metric on Z` (the

two differ by a term involving the second fundamental form of Z`).
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The main result of this thesis is a converse of Theorem 1.0.4. Recall that Theorem 1.0.4

shows that, for each C, the eigensections ξ satisfying D∗sDsξ = λ(s)ξ with |λ(s)| ≤ C,

concentrate around
⋃
Z` for large s. The following Spectral Separation Theorem shows

that these localized solutions can be reconstructed using local data obtained from ZA.

Spectral Separation Theorem. Suppose that Ds = D + sA satisfies Assumptions 1-5

above. Let Eλ be the λ-eigenspace of the operator D∗sDs and Fλ the corresponding space

for DsD
∗
s . Then the low eigenspaces split according the decomposition (1.0.8): there exist

λ0 > 0 and s0 > 0 so that for every s > s0, there exist vector space isomorphisms

⊕
λ≤λ0

Eλ
∼=−→
⊕
`

kerD`

and ⊕
λ≤λ0

Fλ
∼=−→
⊕
`

ker D̂`.

In particular, if a component Z` of ZA is a point p, then D` = 0.

As a corollary we get the following localization for the index :

Index Localization Theorem. Suppose that Ds = D + sA satisfies Assumptions 1-5

above. Then the index of D can be written as a sum of local indices as

indexD =
∑
`

indexD`.

Proof. By the Spectral Separation Theorem there exist λ0 > 0 and s0 > 0 so that for

15



every s > s0

indexDs = dim kerDs − dim kerD∗s = dim kerD∗sDs − dim kerDsD
∗
s

= dim
⊕
λ≤λ0

Eλ − dim
⊕
λ≤λ0

Fλ

=
∑
`

indexD`

where the third equality holds because D∗sDs and DsD
∗
s have the same spectrum and

their eigenspaces corresponding to a common non zero eigenvalue are isomorphic. Since

Ds and D differ by a compact perturbation they have the same index. This finishes the

proof. 2
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Chapter 2

Examples

The concentration condition (1.0.1) is clearly an algebraic condition on the symbol c of

the Dirac operator D. The existence of the perturbation term A and the construction

of interesting examples of concentrating pairs (c,A) is an algebraic problem about rep-

resentations of Clifford algebras and their connection with geometry. In the next several

sections, we start with basic examples and progressively built more elaborate ones.

2.1 First Examples

Our first two examples are in dimension two. These have the form Ds = D + sA where

D is a ∂ operator and A is a conjugate-linear zeroth-order operator. Thus Ds is a real

operator, although in the examples it is convenient to write it using complex notation.

Example 1: For functions f, g : C→ C, consider the operators

Dsf = ∂f + szf̄ and D′sg = −∂g + szḡ.

These have the form D + sA where A is the self-adjoint real linear map Af = zf̄ . Using

17



Lemma 1.0.2, the calculations

BA = (∂
∗A+A∗∂)f = −∂(zf̄)− z∂f = −f̄

and

B′A = (∂A∗ −A∂)f = ∂(zf̄)− z∂f = 0 (2.1.1)

show that both (σD,A) and (σD′ ,A
∗) are concentrating pairs. Theorem 1.0.4 then shows

that as s → ∞, all solutions of Df = 0 and D′g = 0 concentrate around the zero set of

A, which is the origin. For these equations, we can find the solutions explicitly:

• Equations (1.0.2) and (2.1.1) show that any solution of D′sg = 0 satisfies

0 = ‖∂∗g + sA∗g‖22 = ‖∂g‖22 + s2‖A∗g‖22.

This means that g is an anti-holomorphic function that vanishes for z 6= 0, so g = 0.

Thus kerD′s = 0 for all s 6= 0.

• If f satisfies Dsf = 0, we can apply the operator −∂ to get −∂∂f−sf̄+s2|z|2f = 0.

Writing f = f1 + if2, the imaginary part f2 satisfies

−∂∂f2 + sf2 + s2|z|2f2 = 0.

Taking L2 inner product with f2 and integrating by parts, we see that f2 ≡ 0, so

18



f = f1 is a real-valued function. Finally, by completing the differential, we obtain

∂(es|z|
2
f) = 0.

But the a real-valued holomorphic function is constant, so f(z) = Ce−s|z|
2

for some

C ∈ R. Thus kerDs is real and one-dimensional, and the non-zero solutions of

Dsf = 0 clearly concentrate at the origin as s→∞.

Similarly the problem ∂f + sz̄f̄ = 0 has trivial solutions and its adjoint has a real

one-dimensional kernel.

It is more interesting to consider real Dirac operators on Riemann surfaces. In Section 7

of [T1], C. H. Taubes showed a concentration property for perturbed ∂-operators on

complex line bundles over Riemann surfaces. The following example generalizes Taubes’

observation to higher rank bundles.

Example 2: Let (Σ, g) be a closed Riemann surface with anticanonical bundle K̄, and

let E be a holomorphic bundle of rank r with a Hermitian metric 〈·, ·〉 conjugate linear

in the second argument. The direct sum of the ∂-operator ∂ : Γ(E) → Γ(K̄E) and its

adjoint is a self-adjoint Dirac operator

D =

0 ∂̄∗

∂̄ 0

 : Γ(E ⊕ K̄E)→ Γ(E ⊕ K̄E).
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The symbol of D, applied to a (0, 1)-form u is

c(u)(ξ) = u ∧ ξ − ιuξ, ξ ∈ E ⊕ K̄E. (2.1.2)

One checks that this satisfies the Clifford relations (1.0.4), so defines a Clifford bundle

structure on E ⊕ K̄E. Now choose

µ ∈ Γ(Σ, K̄ ⊗C Sym2
CE).

Combined with the conjugate linear isomorphism E ∼= E∗ defined by the hermitian metric,

overlineµ becomes a conjugate linear map µ : E → K̄E. Set

A =

0 µ∗

µ 0

 ∈ EndR(E ⊕ K̄E).

Lemma 2.1.1. (c,A) is a concentrating pair.

Proof. It suffices to fix a point p ∈ Σ and verify that c(u)◦A = −A◦c(u) for all u ∈ T ∗pΣ.

This is equivalent to proving that µ and it’s adjoint µ∗ satisfy the two identities

ιu(µ(ξ)) = µ∗(u ∧ ξ) and u ∧ µ∗(η) = µ(ιu(η))

for all ξ in the fiber Ep and η in (K̄ ⊗ E)p. Choose orthonormal bases {ei} of Ep and

k̄ of K̄. Then µ = k̄µijei ⊗ ej ∈ K̄ ⊗C Sym2
C(E) corresponds to the map µ : E → K̄E
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defined by

µ(ξ) = k̄〈ei, ξ〉µijej .

Thus for u = λk̄, we have

ιuµ(ξ) = λ ιk̄(k̄µij〈ei, ξ〉)ei = λµij〈ei, ξ〉ej

and

µ∗(u ∧ ξ) = 〈µ∗(u ∧ ξ), ei〉ei = 〈u ∧ ξ, µ(ej)〉ei = λµij〈k̄ej , k̄ξ〉ei.

These are equal since µij = µji. The second identity is proved from the first one using

Lemma 1.0.6. 2

Lemma 2.1.1 shows that Theorem 1.0.4 applies. Thus as s→∞ the low eigensections

of the operator

Ds = D + sA : Γ(E ⊕ K̄E)→ Γ(E ⊕ K̄E)

concentrate on the singular set ZA. The following lemma describes the structure of ZA.

Lemma 2.1.2. For generic µ, ZA is a finite set of oriented points {p`}. Furthermore,

• At each positive p`, K` ∼= R and K̂` = 0, and

• At each negative p`, K` = 0 and K̂`
∼= R.

Proof. The singular set of A is the set of points in Σ where µ : E → K̄E fails to be an

isomorphism. Thus ZA is the zero set of detµ : ΛrE → Λr(K̄E). Using the isomorphism
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ΛrE ∼= ΛrE∗ of the induced hermitian metric on ΛrE, this becomes a complex map

ΛrE∗ → Λr(K̄E), or equivalently a section

detµ ∈ Γ(L)

of the complex line bundle

L = K̄r ⊗C ΛrE ⊗C ΛrE. (2.1.3)

Note that while L is a holomorphic bundle, this section is only assumed to be smooth. For

a generic choice of µ, the section detµ will have only transverse zeros, which are therefore

isolated points. By compactness the set {p`} of zeros is finite. At each p`, the derivative

(∇ detµ) is an isomorphism from Tp`Σ to the fiber of L at p. Both of these spaces are

oriented; p` is called positive if this isomorphism is orientation-preserving and is called

negative if orientations are reversed.

Let z be a local holomorphic coordinate on Σ centered at p ∈ {p`}. Because detµ has

a zero at p, there is a non-vanishing section e1 of E so that µ(e1) vanishes at z = 0. Since

µ is conjugate-linear, the section e2 = ie1 also satisfies µ(e2) = 0 at z = 0. Hence we can

choose real local framings of E and K̄E in which µ has the local expansion

µ =

H 0

0 ∗

 + O(|z|2)

where ∗ denotes an invertible (n− 2)× (n− 2) real matrix and

H : kerµ0 → kerµ∗0.
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is the real 2× 2 matrix that corresponds to multiplication by f 7→ (αz + βz̄)f̄ under the

identification C = R2.

For a generic section we have |α| 6= |β|. It follows that detµ has a positive zero at p

if |α| > |β|, and a negative zero if |α| < |β|.

Suppose |α| < |β|. By changing coordinates if necessary, we may assume that α = 0

and β = 1. One then sees that A∗A has the expansion (1.0.9), so all of the assumptions of

the Spectral Separation Theorem hold. Write z = x+ iy, and use the basis {e1, e2 = ie1}

of kerµ0 and {dz̄e1, dz̄e2} of kerµ∗0 to write f = (f1, f2) ∈ kerµ0. Then

H(x, y)

 f1

−f2

 =
(
xA1 + yA2

)f1

f2

 ,

where

A1 =

1 0

0 −1

 and A2 =

 0 −1

−1 0

 .

In this basis, one can calculate that the Clifford multiplication (2.1.2) is given by

c(dx) = −
√

2
2

1 0

0 1

 and c(dy) =
√

2
2

0 −1

1 0

 ,

where these are maps kerµ∗0 → kerµ0. The corresponding matrices (1.0.10) are therefore

M1 = −c(dx)A1 =
√

2
2

1 0

0 −1

 and M2 = −c(dy)A2 =
√

2
2

−1 0

0 1

 .
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Applying Definition 1.0.7, one then sees that Kp = 0 in this case. Analoguous calculations

show that

M̂1 =
√

2
2

−1 0

0 1

 and M̂2 =
√

2
2

−1 0

0 1

 ,

and hence K̂p is one dimensional.

The case |α| > |β| is similar.

2

Corollary 2.1.3. (Riemann-Roch) If E is a rank r holomorphic bundle over a complex

curve C, then

index ∂̄E = 2c1(E)[Σ]− rχ(Σ). (2.1.4)

Proof. Lemma 2.1.1 and the proof of Lemma 2.1.2 show that so all of the assumptions

of the Index Localization Theorem 1 hold. In this case, Z = {p`} is the set of zeros of a

generic section detµ of the complex line bundle L defined by (2.1.3). By Lemma 2.1.2,

each positive zero has local index D` = dimK`− dim K̂` = 1, and similarly each negative

zero has indexD` = −1. The Index Localization Theorem therefore says that indexD is

given by the Euler number

index ∂̄E = χ(L)[Σ] = c1(L)[Σ].

This Riemann-Roch formula (2.1.4) follows because

c1(ΛrE ⊗C Λr(K̄ ⊗C E) = 2c1(ΛrE)− c1(Kr) = 2c1(E)− rc1(K)
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and c1(K)[Σ] = χ(Σ). 2

Example 3: On a closed Riemmanian manifold (X, g) the bundle E ⊕ F = ΛevT ∗X ⊕

ΛoddT ∗X is a Clifford algebra bundle in two ways:

c(v) = v ∧ −ι
v# and ĉ(w) = w ∧+ι

w# (2.1.5)

for v, w ∈ T ∗X. One checks that these anti-commute:

c(v)ĉ(w) = −ĉ(w)c(v). (2.1.6)

Note that D = d + d∗ is a first-order operator whose symbol is c. Fix a 1-form γ with

transverse zeros and set Aγ = ĉ(γ). Then Theorem 1.0.4 shows that the low eigenvectors

of

Ds = D + sAγ = (d+ d∗) + sĉ(γ) : Ωev(X)→ Ωodd(X)

concentrate around the zeros of γ.

This is the localization in E. Witten well-known paper on Morse Theory [W1]. After

fixing a Morse function f ∈ C∞(X) setting Ds = d+ d∗ + sĉ(df), Witten considered the

corresponding Laplacian ∆s = D∗sDs + DsD
∗
s on the space Ω∗(X) of differential forms

on X. He showed that the q-forms are low eigenvectors of ∆s concentrate at the index q

critical points of f as s → ∞. In fact, using the natural Z-grading on Ω∗(X), Witten is

able to prove a refined localization of the low eigenvectors: the low eigenvectors of ∆s on

Ωq(X) localize around the critical points of f with index q.
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Let {p`} be the set of critical points of f and choose one of them p`0 = p with index q.

In Morse coordinates around p, df has the form
∑
ηα x

α dxα where ηα = 1 for α = 1, . . . q

and ηα = 1 for α > q. Then

Mα = −ηαc(dxα)ĉ(dxα) : ΛevT ∗pX → ΛevT ∗pX∀α

are invertible self-adjoint matrices with symmetric spectrum of eigenvalues ±1 that com-

mute with each other. In particular if ϕ belongs in the +1- eigenspace of Mα then

K+
α = {c(dxI)ϕ : |I| = even α /∈ I} and K−α = {c(dxI)ϕ : |I| = even α ∈ I}.

Lemma 2.1.4. • At each positive p`, K` ∼= R and K̂` = 0, and

• At each negative p`, K` = 0 and K̂`
∼= R.

• If p` has index q` then a basis element for K` ⊕ K̂` is a q`-form.

Proof. The proof of the first two bullets is a verbatim of the proof of Lemma 2.3.7.

For the last bullet, suppose p is a positive zero of index q and ϕ ∈ K is a basis vector.

ϕ is an even form and we use the notation α ∈ ϕ to denote that when ϕ = ϕIdx
I then

α ∈ I. Using (2.1.5)

ϕ = Mαϕ = −ηαc(dxα)ĉ(dxα)ϕ = −ηα(dxα ∧ (ι∂αϕ) − ι∂α(dxα ∧ ϕ)

= ηα(ϕ − 2dxα ∧ (ι∂αϕ)) =

{
−ηαϕ, if α ∈ ϕ

ηαϕ, ifα /∈ ϕ
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where in the fourth equality we used the Cartan’s identity. Hence we must have that

α ∈ {1, . . . , q} if and only if α ∈ ϕ i.e. ϕ has to be a q- form. A similar calculation shows

ϕ to be a q-form when p is a negative zero. 2

The Index Localization Theorem then shows the well-known fact that the index of

d+ d∗ : Ωev(X)→ Ωodd(X) is the Euler characteristic χ(X). Witten further showed how

the Morse flow gives rise to “tunneling” maps between the spaces of low eigenvectors, and

how this data enables one to compute the total homology of the manifold.

2.2 Clifford Pairs

Examples 1-3 can be extended and placed in a general context by working with Clifford

algebra bundles. A bundle W → X is called a Clifford algebra bundle if it is equipped

with a a bundle map c : Cl(T ∗X)→ End(W ) that is an algebra homomorphism, meaning

that it satisfies the Clifford relation (1.0.4). For each connection ∇ on W , there is an

associated Dirac operator D = c ◦ ∇ on Γ(W ) whose symbol is c. This section shows

how interesting examples arise by taking W to be the direct sum of two Clifford bundles

associated with different representations of the groups Spin(n) or Spinc(n).

To describe the general context, let (E, c) and (E′, c′) be two Clifford algebra bundles

on (X, g) with connection and with corresponding Dirac operators D and D′. Suppose
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there is a bundle map P : E′ → E; one can then consider the diagram

E E-

6

E′

P

c(v)

6

E′

P

-
c′(v)

(2.2.1)

for each v ∈ T ∗X. Then the perturbed operator

Ds = D + sA : Γ(E ⊕ E′)→ Γ(E ⊕ E′)

with

D =

D 0

0 D′

 and A =

 0 P

−P∗ 0



satisfies the concentration principle if and only if Diagram (2.2.1) is commutes for every

v ∈ T ∗X. Furthermore, if E and E′ are reducible Clifford bundles, then one can restrict

Ds to sub-bundles to produce additional examples of concentrating pairs.

The examples in this section are special cases in which we take E and E′ to be of

the form W ⊗ Λ∗(T ∗X) where W is a bundle of spinors. We next describe this setup,

beginning with some linear algebra.

Let ∆ be the fundamental Spinc representation of the group Spinc(n); ∆ is irreducible

for n odd and the sum ∆+ ⊕∆− of two irreducible representations for n even. Clifford

multiplication is a linear map c : Rn → EndC(∆); we will often use Hitchin’s “lower dot”
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notation

v.ϕ := c(v)(ϕ).

There is also a Clifford algebra map ĉ : Rn → End (Λ∗Rn) given by

ĉ(v) := σd+d∗(v) = (v ∧ ·)− ιv(·).

Lemma 2.2.1. Clifford multiplication extends to a Spinc(n)-equivariant linear map c :

Λ∗Rn → EndC(∆) that satisfies

v.b.ψ = (ĉ(v)b).ψ for all v ∈ Rn, b ∈ Λ∗Rn and ψ ∈ ∆. (2.2.2)

Proof. Define the extension c : Λ∗Rn → EndC(∆) using the standard basis {ej} of Rn by

c(e1 ∧ · · · ∧ ep) = e1
· . . . e

p
· (2.2.3)

for each p-tuple (i1, . . . , ip) with i1 < · · · < ip. This map is Spin(n)-equivariant because

for every g ∈ Spin(n), η ∈ Λ∗X we have that

c(Ad(g)∗η) = g·c(η)g−1
·

Indeed if η = e1 ∧ · · · ∧ ep then according to (2.2.3) and since {ad(g)∗ei} is also an
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orthonormal coframe with the same orientation

c(Ad(g)∗η)(g·ψ) = c(Ad(g)∗e1)c(Ad(g)∗e2) . . . c(Ad(g)∗ep)(g·ψ)

= c(Ad(g)∗e1)c(Ad(g)∗e2) . . . (g·(c(ep)ψ)

= . . . = g·(c(e1)c(e2) . . . c(ep)ψ

= g·(c(η)ψ).

To verify (2.2.2) note that for all k, l

el·(e
1 ∧ · · · ∧ ek)·ψ = el·e

1
· . . . e

k
· ψ

=

{
(el ∧ e1 ∧ · · · ∧ ek)·ψ, if l > k

(−1)l(e1 ∧ · · · ∧ êl ∧ · · · ∧ ek)·ψ if 1 ≤ l ≤ k

=

{
(el ∧ e1 ∧ · · · ∧ ek)·ψ, if l > k

−(ι
el

(e1 ∧ · · · ∧ ek))·ψ, if 1 ≤ l ≤ k

= ĉ(el)(e1 ∧ · · · ∧ ek)·ψ

2

Because of Spinc(n)-equivariance, the map of Lemma 2.2.1 globalizes. Let (X, g) be

an oriented Riemannian n-manifold with a Spinc bundle W and Hermitian metric 〈·, ·〉

conjugate linear in the second factor and determinant bundle L = detC(W ). Clifford

multiplication defines bundle maps
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c : Λ∗T ∗X → EndC(W ) and ĉ : T ∗X → End (Λ∗T ∗X) (2.2.4)

that satisfy (2.2.2). Given a Hermitian connection A on L with curvature FA we get an

induced spin covariant derivative ∇A on W compatible with the Levi-Civita connection

∇ on T ∗X and a Dirac operator DA on W .

Example 4: Spinor-form pairs

In the above context, consider the map

P : W → HomC
(

Λ∗T ∗CX, W
)

: ψ 7→ c(·)ψ. (2.2.5)

For ψ a spinor on W we consider the operator

Ds = D + sAψ : Γ(W ⊕ Λ∗CT
∗X)→ Γ(W ⊕ Λ∗CT

∗X)

with

D =

DA 0

0 d+ d∗

 and Aψ =

 0 Pψ

−Pψ∗ 0



where Pψ
∗ denotes the complex adjoint of Pψ.

Lemma 2.2.2. (σD,Aψ) is s concentrating pair.
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Proof. The symbol of D, applied to a covector v, and his adjoint are given by

σD(v) =

c(v) 0

0 ĉ(v)

 and σD(v)∗ =

−c(v)(·) 0

0 −ĉ(v)



Formula (2.2.2) expresses the fact that the diagram

W W-

6

Λ∗X

Pψ

c(v)

6

Λ∗X

Pψ

-
ĉ(v)

commutes for every v ∈ T ∗X, which means that (σD,Aψ) is s concentrating pair. 2

Unfortunately, Lemma 2.2.2 does not automatically mean that the theorems in the

introduction apply to general spinor-form pairs. The difficulty is seen when one examines

the singular set

ZA = {x ∈ X | kerPψ 6= 0}.

The dimension of the exterior algebra Λ∗(Rn) is 2n, and the fundamental representation

of Spin(n) has complex dimension 2[n2 ] (see the chart). Thus if whenever dimX > 2,

every map Pψ : Λ∗(T ∗X)→ W has a non-trivial kernel at each point, so ZA is all of X.

n 2 3 4 5 6 7

dimR Λ∗(Rn) 4 8 16 32 64 128

dimRW 4 4 8 8 16 16

Table 2.1: Dimension count
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To avoid this difficulty, we look for sub-bundles L of Hom(Λ∗(T ∗X),W ) as in dia-

gram (1.0.7). One way to obtain such sub-bundles is via bundle involutions.

Suppose that T =

τ 0

0 τ̂

 is a metric invariant bundle involution on E ⊕ F so that

σD(v)τ = ± τ̂σD(v) and ∇T = 0 (2.2.6)

for every covector v. Let E = E+ ⊕ E− and F = F+ ⊕ F− be the decompositions into

±1 eigenspaces of τ and τ̂ with p± = 1
2(1E±τ) : E → E± and p̂± = 1

2(1F ± τ̂) : F → F±

the corresponding projections. Set

D+ = σD ◦ p+∇|E+ and A+ = p̂±A|E+

the restrictions of D and A to E+ with values in F+ or F− depending on the sign of

(2.2.6).

Lemma 2.2.3. If Ds satisfies the concentration condition (1.0.1), then so does

D+
s = D+ + sA+ : Γ(E+)→ Γ(F±). (2.2.7)

Proof. The operator p+∇|E+ defines a metric compatible connection on sections of E+ →

X. Also

(A+)∗σD(v)|E+ + (σD(v)|E+)∗A+ = p+(A∗σD(v) + σ∗D(v)A)|E+ = 0
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for every v ∈ T ∗X. 2

In the examples below, we will build involutions by combining three bundle maps. All

three are defined when X is an oriented Riemannian n-manifold.

• The parity operator (−1)p that is (−1)pId on p-forms.

• The Hodge star operator, which satisfies ∗2 = (−1)p(n−p).

• Clifford multiplication by the volume form dvol, which satisfies (dvol).2 = (−1)[n/2].

The parity involution. When dimX = 2n is even, the endomorphism

τ = τ̂ = indvol· ⊕ (−1)p+1 ∈ End(W ⊕ Λ∗CX)

is an involution; its ±1 eigenbundles are

E+ = W+ ⊕ ΛoddC X and F+ = W− ⊕ ΛevC X,

and σD∗(v)τ = −τσD(v). Furthermore, the restriction of (2.2.5) decomposes as

W+ → HomC
(

ΛevT ∗CX, W
+
)
⊕ HomC

(
ΛoddT ∗CX, W

−
)
.

Thus for any ψ ∈ Γ(W+), we can write Pψ = P evψ + P oddψ under this decomposition, and

set

A+
ψ =

 0 P oddψ

−P ev∗ψ 0

 . (2.2.8)
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Then by Lemma 2.2.3 the operator

D+
s = D+ + sA+

ψ : Γ(W+ ⊕ ΛoddC X)→ Γ(W− ⊕ ΛevC X)

satisfies the concentration condition (1.0.1).

The self-duality involution. In even dimensions there is a second self-duality invo-

lution on the bundles W± ⊕ Λ
odd/ev
C X namely τ = Id ⊕ ∗. The self-duality involution

preserves the eigenspaces of the parity involution and the two involutions commute. Then

σD∗(v)τ = τσD(v) and A+∗
ψ τ = τ∗A+

ψ for ψ ∈ W+ in this case. Hence

D++ + sA++
ψ : Γ(E)→ Γ(F ) (2.2.9)

satisfies the concentration condition (1.0.1), where

E = W+ ⊕

 k∑
p=1

Λ
2p−1
C X

 and F = W− ⊕

Λ
2k,+
C X ⊕

k−1∑
p=0

Λ
2p
C X

 .

when dimX = 4k, and

E = W+ ⊕

Λ
2k+1,+
C X ⊕

k∑
p=1

Λ
2p−1
C X

 and F = W− ⊕

 k∑
p=0

Λ
2p
C X

 .

when dimX = 4k + 2. In the next section, we will use these involutions to construct

spinor-form pairs that display the concentrating property with a non-trivial singular set

ZA.
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2.3 Self-dual spinor-form pairs in dimension 4

When X is an oriented Riemannian 4-manifold, the self-duality involution produces a

Dirac operator (2.2.9) with the concentration property and with a singular set ZA that,

we will show next, is not all of X.

In dimension four, the self-dual spinor-form spaces from section 2.2 are

E = W+ ⊕ Λ1X and F = W− ⊕ (Λ0 ⊕ Λ2,+X)

and the concentrating pair is given by

σD(v) =

c(v) 0

0 ĉ(v)

 and Aψ =

 0 P oddψ

−P evψ
∗ 0



where ĉ(v) is the symbol map of the Dirac operator
√

2d+ + d∗. In order for the diagram

W+ W−-

6

Λ0 ⊕ Λ2,+

P evψ

c(v)

6

Λ1

P oddψ

-
ĉ(v)

to commute and the concentration condition to hold, we have to slightly modify Aψ from

(2.2.8) by defining

P oddψ : Λ1 → W−, b 7→ b·ψ and P evψ : Λ0⊕Λ
2,+
C → W+ (ρ, θ) 7→ (ρ+ 1√

2
θ)·ψ.

Lemma 2.3.1. W+ is a Clifford bundle for the bundle of Clifford algebras Cl(Λ2,+(X)).
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Proof. It suffices to show this at a point p ∈ X. Let now {ei} be an orthonormal coframe

and define Λ2,+(X) = span{η0, η1, η2} where

η0 = 1√
2
(e1∧e2 + e3∧e4), η1 = 1√

2
(e1∧e3 + e4∧e2), η2 = 1√

2
(e1∧e4 + e2∧e3)

are orthonormal. Note that

ηi·ηj· + ηj·ηi· = 2〈ηi, ηj〉(dvol· − IdW ) (2.3.1)

for every i, j and so the same identity holds for every other two forms in Λ2,+(X). Re-

stricted to W+ we get

η·θ· + θ·η· = −4〈η, θ〉IdW+ (2.3.2)

for every η, θ ∈ Λ2,+(X) which is an analog of the Clifford relation for the self dual

2-forms acting on W+. This finishes the proof. 2

Remark 2.3.2. Choose ψ ∈ W+\{0}. Then from the above proof it follows that the set

{ψ, ηk·ψ} ⊂ W+ is orthogonal and ηk·ηk·ψ = −2ψ which implies |ηk·ψ|2 = 2|ψ|2. Both

E and F are 8-dimensional real vector bundles. The volume form acts on ξ =

ϕ
b

 ∈ Ep
by dvol·ξ =

−ϕ
b

. Hence choosing|ϕ| = |b| = 1√
2
, the Clifford action produces an
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orthonormal basis for Ep and Fp so that

Ep = span{eI· ξ : I even string } and Fp = span{eJ· ξ : J odd string }.

Regard now W+ as a real vector bundle of rank 4 with the induced metric. By

considering the negative definite quadratic form produced by that metric we can form the

algebra bundle Cl0,4(W+). The perturbation Aψ enjoys the following property:

Lemma 2.3.3. The map W+ → End(E⊕F ) : ψ 7→

 0 A∗ψ

Aψ 0

 defines a representation

of the real Clifford algebra bundle Cl0,4(W+) on E.

Proof. Fix ψ ∈ W+
p . By the Clifford relations, the sets {ek· ψ} ⊂ W− and {ψ, ηk·ψ} ⊂ W+

are orthogonal. Therefore for b ∈ Λ1
C,

P oddψ
∗ ◦ P oddψ (b) = blP

odd
ψ
∗ ◦ P oddψ (el) = <〈el·ψ, ek· ψ〉blek = |ψ|2b

and similarly for (ρ, θ) ∈ Λ0
C ⊕ Λ

2,+
C

P evψ
∗ ◦ P evψ (ρ, θ) = ρ|ψ|2 +

1√
2
θl〈ηl·ψ, ψ〉+

1√
2
ρ〈ψ, ηk·ψ〉ηk +

1

2
θl〈ηl·ψ, ηk·ψ〉ηk

= ρ|ψ|2 +
1

2
〈ηk·ψ, ηk·ψ〉θkηk

= |ψ|2(ρ, θ).
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This proves that

A∗ψ ◦ Aψ = |ψ|2IdE and Aψ ◦ A∗ψ = |ψ|2IdF .

Finally, polarization gives the relations

A∗ψ1
◦ Aψ2

+ A∗ψ2
◦ Aψ1

= 2<〈ψ1, ψ2〉IdE

and

Aψ1
◦ A∗ψ2

+ Aψ2
◦ A∗ψ1

= 2<〈ψ1, ψ2〉IdF

for every ψ1, ψ2 ∈ W+. Hence get a well defined algebra map

Cl0,4(W+)→ End(E ⊕ F ) : ψ 7→

 0 A∗ψ

Aψ 0

 .

The result follows. 2

Corollary 2.3.4. The mapping ψ 7→ Aψ defines an injection W+ → Isom(E,F ).

Proof. Let ξ ∈ E. Then by Lemma 2.3.3

|Aψξ|2 = |ξ|2|ψ|2.

implying that if ξ ∈ kerAψ is nontrivial then ψ = 0. Therefore ψ 6= 0 if and only if Aψ

is non singular which implies the corollary. 2
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Example 5: We would like to the study the operator D + sAψ. Choosing a transverse

section ψ : X → W+ the singular set of Aψ will be a finite set of oriented points.

Let p ∈ X be such a point and let a coordinate chart (U, {xα}) with xα(p) = 0 and

tangent frame and coframe {eα} and {eα} respectively. Expanding we get sections

ψ(x) = xαψα +O(|x|2)

for some elements ψα ∈ W+
p . Extend these smoothly to sections, still called ψα, of W+

near p. By transversality at p we have
∑
xαψα 6= 0 for all x 6= 0. Setting

Aα := ∇eαAψ = Aψα ,

we see that

xαAα : Kp = ker(Aψ(p))→ coker (Aψ(p)) = K̂p (2.3.3)

is an isomorphism for every x ∈ TpX − {0}.

The following technical lemma assures that Aψ can be perturbed to satisfy the non-

degeneracy assumption (1.0.9).

Lemma 2.3.5. We can modify ψ without changing its zero set Z(ψ) to insure that {ψα}

are orthonormal.

Proof. Let H : W+
p → W+

p be a real orientation preserving linear isomorphism with

eigenvalues {µα} such that {Hψα} is an orthonormal basis for W+. We may assume that
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H has no real eigenvalues otherwise replace H by λH where λ ∈ S1 such that none of the

numbers {λµα} is real. As a consequence there exist constant C > 0 such that

inf
(t,x)∈R×S3

∣∣∣tH(xαψα) + (1− t)xαψα
∣∣∣ > C.

Let B(0, 2R) ⊂ U and ρ be a smooth cutoff function with supp(ρ) ⊂ B(0, 2R) and

ρ|B(0,R) ≡ 1. We redefine ψ in (U, x) as

Ψ(x) := ψ(x) + ρ(x)(H − Id)(xαψα) = ρ(x)(H − Id)(xαψα) + xαψα + O(|x|2).

where |O(|x|2)| ≤ C1|x|2 for x ∈ U . Clearly Ψ has a transverse zero at p and satisfies the

conclusion of the lemma at p. Chossing R < C
2C1

we get that for x ∈ B(0, 2R)\{0}

|O(|x|2)|
|x|

≤ 2C1R < C <
∣∣∣ρ(x)H(

xα
|x|
ψα) + (1− ρ(x))

xα
|x|
ψα

∣∣∣
therefore there are no other zeros of Ψ in U except at p. Repeating this proccess for each

of the finitely many zeros of the original ψ we are done. 2

Recall the matrices Mα = −eα· Aα ∈ End(Kp) and M̂α = −eα· A∗α ∈ End(K̂p). Let

K±α and K̂±α be the positive/negative eigenspaces of Mα and M̂α respectively. We are

interested in describing their common positive eigenspaces

Kp =
⋂
α

K+
α and K̂p =

⋂
α

K̂+
α .

Lemma 2.3.6. The eigenvalues of Mα are λα = ±1 and the corresponding eigenspaces
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can be described as

K+
α = span

{eα· b·ψα
b

 : b ∈ Λ1X

}
and K−α = span

{−eα· b·ψα
b

 : b ∈ Λ1X

}

for every α.

Proof. By relation (1.0.1) and Corollary 2.3.4

M2
α = eα· Aαe

α
· Aα = A∗αAα = Id

i.e. Mα has eigenvalues ±1. Let now ϕ =

ξ
b

 ∈ Kp is a λα- eigenvector of Mα. Then

Mαϕ = −eα· Aαϕ = −

−c(eα) 0

0 −ĉ(eα)


 b·ψα

−P ev∗ψα
ξ

 = λk

ξ
b

 . (2.3.4)

By comparing the first rows of (2.3.4) we see that

ξ =
1

λα
eα· b·ψα = λαe

α · b·ψα (2.3.5)

since λ2
α = 1. It remains to show that given b ∈

∧1X, the above choice of ξ gives equality
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of second rows of (2.3.4). Using (2.2.4)

−ĉ(eα)P ev∗ψα
ξ = (P evψα ĉ(e

α))∗λαeα· b·ψα = λα(b·eα· P
ev
ψα
ĉ(eα))∗ψα

= −λα(P evψα ĉ(b))
∗ψα

= λαĉ(b)P
ev∗
ψα

ψα.

Also for every η ∈ Λ0X ⊕ Λ2,+X

<〈η, P ev∗ψα
ψα〉 = <〈η·ψα, ψα〉 =


0 if η ∈ Λ2,+X

η if η ∈ Λ0X

showing that P ev∗ψα
ψα = 1. Hence

λαĉ(b)P
ev∗
ψα

ψα = λαĉ(b)1 = λαb

proving equality of the second rows of (2.3.4). 2

In Chapter 4 we prove that the families {M̂α} and {Mα} are related as

eI·Mα = −M̂αe
I
· if α ∈ I and eI·Mα = M̂αe

I
· if α 6∈ I (2.3.6)

for every string I of odd length. It follows

eI· ∈ Hom(K±α , K̂
∓
α ) if α ∈ I and eI· ∈ Hom(K±α , K̂

±
α ) if α 6∈ I.
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Lemma 2.3.7. The spaces
⋂
αK

+
α and

⋂
α K̂

+
α are at most one dimensional. If ∇ψ :

TpX → W+
p preserves orientation then Kp =

⋂
αK

+
α is non trivial and K̂p =

⋂
α K̂

+
α =

{0}. If ∇ψ reverses orientation then
⋂
αK

+
α = {0} and

⋂
α K̂

+
α is nontrivial.

Proof. Let ϕ ∈
⋂
αK

+
α . Then for every even string I and α ∈ I

Mαe
I
· ϕ = −eI· ϕ

which implies that eI· ϕ ∈ K−α . By Remark 2.3.2 Ep = span{eIϕ : I = even} therefore⋂
αK

+
α = 〈ϕ〉 is at most one dimensional. The case with

⋂
α K̂

+
α is analogous.

Suppose now that J is a string and ϕ ∈
(⋂

α∈J K
−
α

)
∩
(⋂

α∈Jc K
+
α

)
is a nontrivial

vector.

• J is an even string if and only if

Mα(eJ· ϕ) =


eJ· Mαϕ = eJ· ϕ ifα /∈ J

−eJ· Mαϕ = eJ· ϕ ifα ∈ J

for every α so that
⋂
αK

+
α = 〈eJ· ϕ〉.

• J is an odd if and only if

M̂α(eJ· ϕ) =


eJ· Mαϕ = eJ· ϕ ifα /∈ J

−eJ· Mαϕ = eJ· ϕ ifα ∈ J

for every α so that
⋂
α K̂

+
α = 〈eJ· ϕ〉.
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This dichotomy shows also that either
⋂
αK

+
α or

⋂
α K̂

+
α should be nontrivial at each

zero of ψ. Say that α ∼ β iff α, β ∈ J or α, β ∈ Jc. By Lemma (2.3.6) if α ∼ β we

can write ϕ =

±eα· b·ψα
b

 =

±eβ· b·ψβ
b

 for some common b ∈ Λ1X and if α 6∼ β

then ϕ =

eα· b·ψα
b

 =

−eβ· b·ψβ
b

 for the same b ∈ Λ1X. In particular we have a

description of the orthonormal basis {ψα} in terms of ψ1 and b as

ψα =


b·eα· e

1
· b·ψ1 ifα ∼ 1

−b·eα· e1
· b·ψ1 ifα 6∼ 1

.

But |J | + |Jc| = 4 hence J, Jc are both even or both odd. Therefore {ψα} is positively

oriented in W+
p for J even and negatively oriented for J odd. 2

Corollary 2.3.8. As a consequence of Spectral Separation Theorem the index of D :

Γ(E)→ Γ(F ) is the signed count of the zeros of ψ i.e.

indexD = c2(W+)[X]

the second Chern class of the bundle W+ evaluated on the fundamental class of X.

Example 6: J-holomorphic curves in symplectic four-manifolds.

Recall the philosophy of Diagram 1.0.7: if we can find a sub-bundle L of Hom(E,F )

whose sections satisfy the concentration condition, then we obtain concentrating operators

Ds with singular sets ZA of possibly different dimensions. This example illustrates this
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phenomenon in dimension four, by showing how a sub-bundle L can be constructed from

a symplectic structure.

Let (X4, ω) a closed symplectic manifold with a complex hermitian line bundle L and

a section ψ ∈ Γ(L) whose zero set is a transverse disjoint union Zψ = ∪`Z` of symplectic

submanifolds of X. Let N` be the symplectic normal bundle of Z`. Choose an almost

complex structure J and a Riemannian metric g on X so that (ω, J, g) is a compatible

triple and each Z` is J-holomorphic; the symplectic and metric normal bundles of Z` are

the same.

As usual, write TX ⊗ C = T 1,0X ⊕ T 0,1X and define the canonical bundle to be the

complex line bundle K = Λ2,0X. In this context, the direct sum W = W+ ⊕W− of the

complex rank 2 bundles

W+ = L⊕ LK̄, W− = L⊗ Λ0,1X

has a Spinc structure and a Clifford multiplication T ∗M ⊗W → W from wedging and

contracting (0, 1) forms as in formula (2.1.2).

Let ∇L be a hermitan connection on L and ∇X the Levi-Civita connection on X.

These can be used to build a Spinc connection ∇ = ∇L⊕∇LK̄ on W+. There is also the

projection to the (0, 1) part of T ∗X of ∇L namely ∂Lψ := 1
2(∇Lψ + i∇Lψ ◦ J). Then a

Dirac operator is defined by

D =
√

2(∂L + ∂
∗
L) : L⊕ K̄L→ Λ0,1X ⊗ L.
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We would like to study the perturbed operator D+ sAψ. Fix one component Z = Z`

with normal bundle N = N`. By the transversality of ψ, the map ∇Lψ : N → L is an R

linear isomorphism.

In order for the nondegeneracy condition (1.0.9) to hold we need the following:

Lemma 2.3.9. We can change ψ without changing its zero set so that ∇Lψ : N → L

becomes orthogonal.

Proof. We consider the bundles N with the induced metric and L|Z as a real vector

bundle with the induced metric h from the hermitian metric. Let O(N,L|Z) = {H ∈

Hom(N,L|Z)|H∗h = g}, a deformation retraction of Hom(N,L|Z). Therefore there is a

smooth path of bundle maps [0, 1] 3 t → Ht ∈ Hom(N, L|Z) so that H0 = ∇Lψ and

H1 ∈ O(N,L|Z). This path can be chosen so that Ht is invertible for every t ∈ [0, 1]. As

a consequence there exist constant C > 0 such that

inf
(t,v)∈[0,1]×S

∣∣∣Ht(v)
∣∣∣ > C

where S is the unit sphere bundle of the normal bundle N .

Now use the exponential map on the normal bundle N of Z to define a tubular neig-

broorhood N , a parallel transport map τ : L|Z → L|N along normal geodesics and set

x = exp(v). Let B(Z,R) ⊂ N and ρ be a smooth cutoff function with supp(ρ) ⊂ B(Z, 2R)

and ρ|B(Z,R) ≡ 1. We redefine ψ in B(Z, 2R) as

Ψ(v) := ψ(v) + τ(Hρ(v)(v) − ∇Lv ψ|Z).
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Note that

|ψ(v)− τ∇Lv ψ|Z | = O(|v|2) ≤ C1|v|2

for v ∈ N . Clearly Ψ has also transverse intersection with the zero section at Z and

satisfies the conclusion of the lemma at Z. Choosing R < C
2C1

we get that for v ∈

B(Z, 2R)\{0}
|O(|v|2)|
|v|

≤ 2C1R < C <
∣∣∣τHρ(v)(

v

|v|
)
∣∣∣

therefore there are no other zeros of Ψ in U except at p. Repeating this proccess for each

component of the singular set of the original ψ we are done. 2

Fix now p ∈ Z and local coordinates {xi} in X so that Z = {x1 = x2 = 0} and

orthonormal frames {e1, e2 = J(e1)} and {e3, e4 = J(e3)} trivializing N and TZ respec-

tively around p. By the Lemma {ψi = ∇Leiψ} is an orthonormal frame trivializing L|Z

around p and we extend it to the normal directions to a frame trivializing L. Then ψ

expands in the normal directions of Z as

ψ = x1ψ1 + x2ψ2 +O(|x|2).

Denote ∇eiAψ = A∇Li ψ
= Ai.

We now have to consider the matrices Mα = −eα· Aα, α = 1, 2 and their common

positive spectrum. By Lemma 2.3.6 the positive eigenspaces are given by

K+
α = span

{eα· b·ψα
b

 : b ∈ Λ1X

}
, α = 1, 2.
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There are two cases:

• The map ∇Lψ : N → L|Z preserves the natural orientations as an R linear map. Then

e2 = J(e1) and ∇LJ(e1)ψ = ψ2 = iψ1 = i∇Le1ψ

so that e1
· ψ1 + e2

· ψ2 = Dψ|Z = ∂Lψ|Z = 0. Then

K = K+
1 ∩K

+
2 = span

{ψ1

e1

 ,

ψ2

e2

} =

{∇Lv]ψ
v

 : v ∈ N∗
}
' N∗. (2.3.7)

Also

K̂ = span{e3
·K, e4

·K} ' orthogonal complement of ω in Λ2,+X ' KX |Z ' T ∗Z ⊗N∗.

Hence the local operator is

DZ = ∂̄N∗ : Γ(N∗)→ Γ(T ∗Zi ⊗N∗)

and by Riemann-Roch

indexDZ = 2N2 − 2(g − 1) = (L|Z)2 − 2(g − 1) where g = genus of Z.

Also if since ∇Lψ|Z : N → L|Z preserves orientation then the adjunction formula applies

to give

2(g − 1) = (L|Z)2 + L|ZK.
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X Z
2

Z
3

Z
1

Figure 2.1: The zero set of ψ

Hence indexDZ = (L|Z)2 −K|Z · L|Z in this case.

• If ∇Lψ|Z reverses orientation then adjunction formula gives

2(g − 1) = (L̄|Z)2 +KL̄Z = (L|Z)2 −K · L|Z

and a similar calculation computes the operator in this case DZ = ∂̄∗ : T ∗Z → C. By

Riemann-Roch we then have

indexDZ = 2(g − 1) = (L|Z)2 −K · L|Z .

Applying the Index Localization Theorem and using the contributions of the local indices

from all the components Z` with L` = L|Z` we get

c2(W+)[X] = indexD =
∑
`

(L2
` −K · L`) = L2 −KL.

This is a familiar formula is SW theory. It describes the dimension of the SW moduli
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space in terms of the bundled K and L.

Example 7: Spinor/form pairs twisted by SU(2)-bundles.

Let (X, g,W±, c(·)) be a Riemmannian manifold with a Spinc- structure and (E, h)→

X be a Hermitian SU(2) - bundle. Set also su(E) := {A ∈ EndC(E) : A+A∗ = 0, trCA =

0} where A∗ is the Hermitian adjoint of A. Differences of Hermitian connections on E

are sections of Λ1X ⊗ su(E). Equip E with a Hermitian connection ∇E and W with a

Spinc connection. We get induced connections ∇W⊗E on W ⊗E and ∇ on Λ∗X⊗ su(E).

The symbol maps c and ĉ extend as

c(v)⊗ idE : W+⊗E → W−⊗E and ĉ(v)⊗ idsu(E) : ΛoddX⊗su(E)→ ΛevX⊗su(E).

Finally we get operators

DE = (c⊗ idE) ◦ ∇W⊗E and dE + d∗E = (ĉ⊗ idsu(E)) ◦ ∇.

We define a Clifford multiplication cE to include End(E)- valued forms by

cE : Λ∗(X)⊗ End(E) → End(W ⊗ E) (2.3.8)

η ⊗ A 7→ η· ⊗ A

The restriction of cE to the subspace Λ∗(X)⊗ su(E) defines maps

P ev : W+ ⊗ E → HomC
(

Λev(X)⊗ su(E), W+ ⊗ E
)
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and

P odd : W+ ⊗ E → HomC
(

Λodd(X)⊗ su(E), W− ⊗ E
)

both given by ψ ⊗ e 7→ cE(·)ψ ⊗ e.

Proposition 2.3.10. For fixed Ψ ∈ W+ ⊗ E the perturbed operator

Ds = D + sAΨ : Γ(W+ ⊗ E)⊕ Ωodd(X, su(E))→ Γ(W− ⊗ E)⊕ Ωev(X, su(E))

with

D =

DE 0

0 dE + d∗E

 and Aψ⊗e =

 0 P oddΨ

−P ev∗Ψ 0



satisfies the concentration relation 1.0.1. Here P ev∗Ψ denotes the adjoint of P evΨ .

Proof. It suffices to show the proposition for Ψ = ψ ⊗ e. The symbol of D, applied to a

covector v, and his adjoint are given by

σD(v) =

c(v)⊗ idE 0

0 ĉ(v)⊗ idsu(E)


and

σD(v)∗ =

−c(v)⊗ idE 0

0 −ĉ(v)⊗ idsu(E)

 .
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Checking the concentration relation is just proving the identity

P evψ⊗e ◦ (ĉ(v)⊗ idsu(E)) = (c(v)⊗ idE) ◦ P oddψ⊗e.

By linearity it is enough to check the identity for b⊗B ∈ ΛoddX ⊗ su(E). Then

(c(v)⊗ idE) ◦ P oddψ⊗e(b⊗B) = (c(v)⊗ idE)(c(b)ψ ⊗B(e)) = (c(v)c(b)ψ)⊗B(e)

and

P evψ⊗e ◦ (ĉ(v)⊗ idsu(E))(b⊗B) = P evψ⊗e(ĉ(v)b⊗B) = (c(ĉ(v)b)ψ)⊗B(e)

= (c(v)c(b)ψ)⊗B(e)

where in the third equality we used relation (2.2.2). 2

Finally the map cE has an interesting property:

Lemma 2.3.11. On Λ∗(X)⊗ End(E) the bracket

[η1 ⊗ A1, η2 ⊗ A2] = ĉ(η1)η2 ⊗ A1A2 − ĉ(η2)η1 ⊗ A2A1 (2.3.9)

defines a Lie algebra structure. The map cE becomes then a Lie algebra homomorphism.

Proof. On Λ∗X the bracket

(η1, η2) 7→ ĉ(η1)η2 − ĉ(η2)η1
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defines a Lie algebra structure. Then [·, ·] is an extended Lie algebra from Λ∗(X) and

End(E). Using (2.3.9) we see that

cE([η1 ⊗ A1, η2 ⊗ A2]) = cE(η1 ⊗ A1) ◦ cE(η2 ⊗ A2) − cE(η2 ⊗ A2) ◦ cE(η1 ⊗ A1).

2

Example 8: Witten’s deformations twisted by SU(2)-bundles.

Let (X, g) closed Riemannian and, as in the previous example, (E, h) → X be a

Hermitian SU(2) - bundle with Hermitian connection ∇E and set

Sym(E) := {A ∈ EndC(E) : A = A∗}.

a subspace of End(E) with the trace product. Recall the two Clifford representations c

and ĉ of Λ∗(X) described in (2.1.5) and extend them to maps

σ(v) = c(v)⊗ idEnd(E) : Λodd(X)⊗ End(E) → Λev(X)⊗ End(E)

and, fixing α× A ∈ Λ1(X)⊗ Sym(E)

Aα⊗A : Λodd(X)⊗ End(E) → Λev(X)⊗ End(E)

β ⊗B 7→ ĉ(v)β ⊗ A ◦B

for every v ∈ T ∗X and A ∈ Sym(E). Finally the induced connection ∇ on Λ∗(X) ⊗
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End(E) gives operator

DE = σ ◦ ∇ : Γ(Λodd(X)⊗ End(E)) → Γ(Λev(X)⊗ End(E)).

Proposition 2.3.12. The perturbed operator

Ds = DE + sAα⊗A

satisfies the concentration condition (1.0.1).

Proof. By linearity it is enough to check the identity for b⊗B ∈ ΛoddX ⊗End(E). Then

(c(v)∗ ⊗ idEnd(E)) ◦ Aα⊗A(b⊗B) = (c(v)∗ ⊗ idEnd(E)(ĉ(α)β ⊗ AB)

= c(v)∗ĉ(α)β ⊗ AB

and

A∗α⊗A ◦ (c(v)⊗ idEnd(E))(b⊗B) = Aα⊗A(c(v)b⊗B)

= ĉ(α)∗c(v)b⊗ A∗B.

Since A∗ = A and by relation (2.1.6) the two lines are equal. 2
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Chapter 3

Transverse Concentration

3.1 Structure of A near the singular set

In proving the Spectral Separation Theorem we will have to analyze the geometry of the

operator

Ds = c ◦ ∇+ sA : Γ(E)→ Γ(F )

near the singular set ZA. The idea is to expand into Taylor series along the normal

directions of each component Z` of the singular set ZA.

Fix a Z` =: Z an m-dimensional submanifold of the n dimensional manifold X. Let

π : N → Z be the normal bundle of Z in X with pZ : TX|Z → TZ and pN : TX|Z → N

the orthogonal projections along Z. The Levi-Civita connection ∇X , when restricted

on sections of TX|Z decomposes to pZ∇X and pN∇X i.e. the Levi Civita connection

∇Z of Z and a connection ∇N of the normal bundle respectively. Our first task is to

understand the perturbation term A on a tubular neighborhood N of Z. For that purpose

we introduce the following coordinates:

Fix normal coordinates (U, {zi}) centered at p ∈ Z and choose orthonormal moving

frames {eα} parallel at p with respect to ∇N on N |U . The frame {eα} at z identifies an

open subset Nz ⊂ Nz with an open subset of Np ⊂ Rn−m with coordinates {yα}. We get
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the chart

U ×Np → NU ⊂ X, (z, y)→ expz(yαeα) (3.1.1)

with tangent frame and coframe {∂i} and {dxi} and on the normal fibers {∂α} and {dyα}

so that ∂a|U×{0} = eα and ∂i|U×{0} =: ei. These are normal coordinates, the distance

function r from Z writes in this chart r(z, y) = (
∑
α z

2
a)1/2 and g = exp∗ gX has the form

gαβ = δαβ +O(z, r2) in normal directions.

The Levi Civita connection from X pullback to U ×Np and writes

∇X∂i∂α = Γ
j
iα∂j + Γ

β
iα∂β .

where Γ
β
iα = 0 at p.

Next introduce the rank l - subbundles

Kz := kerAz ≤ Ez and K̂z := kerA∗z ≤ Fz

of E|Z and F |Z as z runs in Z. By ∇E- parallel transporting along the normal fibers

of N we create subbundles K ⊆ E|N and K̂ ⊆ F |N . Recall now the non-degeneracy

assumption

A∗A|K = r2M +O(r3)

where M is positive definite and symmetric. We choose orthonormal frame {σk} that

diagonalize M at Ep and extend locally in U ⊂ Σ to a parallel frame trivializing E|U =

57



(K⊕K⊥)|U . Extend over NU by parallel transporting along the normal radial geodesics.

Since indexA = 0 a consequence of the concentration condition (1.0.1) is

u·K|Z = K̂|Z and u·K⊥Z = K̂|⊥Z (3.1.2)

for every u ∈ T ∗X|Z . In particular the bundle (K⊕K̂)|Z over Z has a natural Z2- graded

Spinc structure. Derivating relations (1.0.1) and (1.0.5) along Z we also get

u·∇αA = −∇αA∗u· and ∇αAu· = −u·∇αA∗ (3.1.3)

for every u ∈ T ∗X|Z . Transversality condition (see Appendix) of A along the normal

directions of U ⊂ Z gives

∇αA(K|U ) ⊆ K̂|U and ∇αA∗(K̂|U ) ⊆ K|U .

Here the second relation is obtained by the first one using (3.1.3). Hence

∇αA =

Aα 0

0 ∗(z)

 : (K ⊕K⊥)|U → (K̂ ⊕ K̂⊥)U .

Hence the Taylor expansion with respect to the decompositions E|N = K ⊕ K⊥ and

F |N = K̂ ⊕ K̂⊥ of the perturbation term A along the normal directions of NU write

A = A0 + yα

Aα 0

0 ∗(z)

 +
1

2
yαyβ∇α∇βA + O(r3)(z) (3.1.4)
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where A0 =

0 0

0 ∗(z)

 is the evaluation of A at z ∈ Z. We have the very useful technical

lemma:

Lemma 3.1.1. The restriction of ∇E and ∇F to Z ⊂ X preserve the splittings E =

K⊕K⊥ and F = K̂⊕K̂⊥. Since∇A preserves those splittings all the covariant derivatives

∇kA preserve these splittings.

Proof. Let ξ ∈ Γ(N , K) with ξ|Z ∈ K|Z . By (3.1.4) at p

A(∇Eα ξ) = ∇Fα (Aξ) − (∇αA)ξ = Aαξ − Aαξ = 0

and since Aξ|Z ≡ 0

A(∇Ei ξ) = −(∇iA)ξ = 0

i.e. ∇EAξ|p ∈ Kp for A = i, α. But the last conclusion is an independent statement of the

frame hence it holds in Z. Also the Riemannian metric on E is parallel with respect to

∇E therefore ∇E satisfies the same property with the bundle K⊥. The case where E is

replaced by F is the same. 2

Proposition 3.1.2. The 2 -jets of A∗A and A along Z satisfy

∇2
v,v(A∗A)|K > 0, ∇2

v,w(A∗A)|K = 0 and ∇2
u,vA|K = 0 (3.1.5)

for every u ∈ TZ and v, w ∈ N\{0} with v ⊥ w. The 1- jet of the perturbation A along
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Z ∩NU satisfies

Aα ∈ Isom(K, K̂), A∗αAα = A∗βAβ , and A∗αAβ + A∗βAα = 0 (3.1.6)

for every i, α, β with α 6= β.

Proof. The first couple of relations are a direct consequence of the assumption of (1.0.9).

Now if R denotes the curvature on End(E,F )

RF (∂i, ∂α)(Aξ) = (R(∂i, ∂α)A)ξ + A(RE(∂i, ∂α)ξ).

By Lemma 3.1.1 RE(ei, eα)ξ|p ∈ K|p and Aξp = 0 hence (R(ei, eα)A)ξ|p = 0. Also

(∇iA)ξ|p = 0 and [ei, eα]|p = [∂i, ∂α]|p = 0 therefore

0 = (R(ei, eα)A)ξ|p = (∇i∇αA)ξ|p = (∇2
i,αA)ξp.

This proves the last relation of the Hessian of A.

For relations on the 1 -jet we just notice by using (3.1.4) to expand A∗A

A∗αAα = ∇2
α,α(A∗A)|K > 0

so Aα is invertible for every α. Also eα± eβ are orthogonal and the relations (3.1.5) give

0 = ∇eα+eβ
∇eα−eβ (A∗A)|K = ∇2

α,α(A∗A)|K − ∇2
β,β(A∗A)|K = A∗αAα −A∗βAβ .
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Similarly by (3.1.4)

0 = ∇2
α,βA|K = A∗αAβ + A∗βAα

i.e the last relation. 2

Finally we can change A so that the following happens :

Lemma 3.1.3. We can choose our perturbation A so that ∇2
u,vA|Z ≡ 0 for every u, v ∈

N .

Proof. According to properties (3.1.6) of the family {Aα} we see that

(yαAα)∗(yβAβ) =
∑
α 6=β

(A∗αAβ + A∗βAα) +
∑
α

y2
αA
∗
αAα =

∑
α

y2
αA
∗
αAα

and since A∗αAα is positive definite for every α there exist C > 0 so that

|yαAαξ| ≥ C|y||ξ|

for every ξ ∈ K|Z . In particular yαAα : K|Z → K̂|Z is an isomorphism for every y 6= 0

and

|(yαAα)−1| ≤ C

|y|
.

Hence there exist ε1 > 0 so that for every 0 < |y| < ε1

A0 + yα∇αA : E|Z → F |Z
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is invertible with

|(A0 + yα∇αA)−1| ≤ C

|y|
.

Introduce now a cut off function supported on N , a tubular neighborhood around Z

of radius ε to be chosen later. Let ρ̂ : [0,∞) → [0, 1] smooth cut off with ρ̂−1({0}) =

[1,∞), ρ̂−1({1}) = [0, 1/2] and strictly decreasing in [1/2, 1], define ρ(q) = ρ̂(
r(q)
ε ) on N

and extend as 0 on X −N . We can form the bundle map

B : E → F, B(q) =
ρ(q)

2
∇2
v,vA|Z , q = expz(v).

Derivating relation (3.1.3) we get that

u·∇α∇βA = −∇α∇βA∗u·

hence

u·B = −B∗u·

for every u ∈ T ∗X|Z . Hence A− B satisfies (1.0.1) and using (3.1.7) on NU

A− B = A0 + yα∇αA +
1− ρ(y)

2
yαyβ∇α∇βA + O(|y|3)(z).

Choose 0 < ε < ε1 so that for every 0 < |y| < ε

∣∣1− ρ(y)

2
yαyβ∇α∇βA + O(|y|3)

∣∣ < |y|
2C

<
1

2

∣∣(A0 + yα∇αA)−1
∣∣−1

.
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Then A−B is invertible on N − Z and agrees with A outside N therefore ZA−B = ZA.

Also by construction

∇2
u,v(A− B) ≡ 0 : E|Z → F |Z

for every u, v ∈ N . Finally we have only changed the 2-jet of A around Z to produce

A−B. Hence condition (1.0.9) still holds for A−B since it relates only to the 1-jet of A

on Z. Replacing A with A− B on every component Z of ZA we are done. 2

According to Lemma 3.1.3 on a sufficiently small tubular neighborhood N around Z

A = A0 + yα

Aα 0

0 ∗(z)

 + O(r3)(z) (3.1.7)

3.2 Structure of D + sA along the normal fibers

Our next task is understanding Ds near the set Z. Denote by gZ and gN the metric

gX restricted on TZ and on N respectively. Recall the chart (3.1.1) centered at p ∈ Z

with ({xi}, {yα}) being the horizontal and vertical coordinates respectively and the frame

{σk} on E|NU . Denote by ∂V/H the local directional derivatives of those vertical and

horizontal tangent frames in this chart.

Except for the tangent frame on TN we can parallel transport the local frames {eα}

and {ei} from U to N|U along the normal radial geodesics using ∇X to construct new
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frames {τa} and {τi} with dual frames τα and τ i respectively.

Comparing the parallel frame with the tangent frame at p we see

τα − ∂α = O(r2)V +O(r2)H and τi − ∂i = O(r2)V +O(r)H

hence, action on the local differentials will write

∂τα = ∂α +O(r2)∂V +O(r2)∂H and ∂τi = ∂i +O(r2)∂V +O(r)∂H (3.2.1)

where the symbols O(r)V and O(r)H are used to denote decomposition in the vertical

and horizontal frames respectively of order r. Also

∇EτA(fσk) = (∂τAf)σk + fωlAkσl

for A = i, α and note that the Taylor expansions of the connection components is

ωαk = O(r2) and ωik = ω0
ik +O(r).

Definition 3.2.1. The dilation operators from Γ(N , E|N )→ Γ(N , F |N ) are defined as

DN = τα· ∇Eτα and DH = τ i·∇Eτi .

Those are globally defined operators on the tubular neighborhood N of Z independent of

the choice of the above frames and D = DN + DH . Also for fixed z ∈ Z, the Euclidean
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Clifford action eα· : Ez → Fz induce a Euclidean Dirac operator

/D0 = eα· ∂α : Γ(Nz, Ez)→ Γ(Nz, Fz).

Finally observe that the coframe {ei} acts on (E⊕F )|Z making it a Z2 - graded Spinc

bundle over Z. The restriction of the connection components {ωik} on U give rise to

connections denoted both as ∇̄iσk = ω0
ik regarded otherwise as the pullback connections

of the bundles

(π∗(E|Z), ∇̄) -

-

(E|Z , ∇̄) (E|N ,∇E)-

??

ZN

?

N-
π

Definition 3.2.2.

DZ : Γ(N, π∗(E|Z))→ Γ(N, π∗(F |Z)) : ξ 7→ ei·∇̄iξ.

The definitions for D̂Z is analogous.

Notice that DN and DH are only defined on sections ξ : N → E|N while /D0 and DZ

are defined on sections ξ : N → π∗(E|Z). In order to relate DN with /D0 and DH to DZ

we introduce the parallel transport map along the radial geodesics of Nz

τ : Γ(Nz, (E ⊕ F )z) → Γ(Nz, (E ⊕ F )|Nz )

f(z, w)σk(z, 0) 7→ f(z, w)σk(z, w)

(3.2.2)

for every z ∈ Z. Hence τ operates from sections of π∗(E ⊕ F )|Z to give sections of
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(E ⊕ F )|N . Also since the symbol map is ∇X - parallel

(τA· σk)(z, v) = τ(eA· σk(z, 0)), A = α, i

for every (z, v) ∈ N where τ is the parallel transport map defined by (3.2.2).

Proposition 3.2.3. Let ξ : N → π∗(E|K). We have the relations

DN (τξ) = τ /D0ξ + O(r2∂V + r2∂H + r2)τξ

and

DH(τξ) = τDZξ + O(r2∂V + r∂H + r)τξ

Proof. By linearity and compactness it suffices to work in the chart NU centered at p ∈ Z

with τξ = fσk. Since the rates of the Taylor expansion do not depend on the choice of

the frame we can restrict our calculations at p and use (3.2.1).

For the vertical operator DN = τα· ∇Eτα we estimate

DN (τξ) = τα· ((∂αf)σk + O(r2(∂V f) + r2(∂Hf) + r2f)σk)

= τ /D0ξ + O(r2∂V + r2∂H + r2)τξ.

Also

DH(τξ) = τ i·∇Eτi(τξ) = τ i· ((∂if)σk + fτω0
ik + O(r2(∂V f) + r(∂Hf) + rf)σk)

= τDZξ + O(r2∂V + r∂H + r)τξ.
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2

Combining Proposition 3.2.3 with expansion 3.1.7 we get:

Corollary 3.2.4. Ds expands along the normal directions of the singular set Z with

respect to the decompositions E|N = K ⊕K⊥ and F |N = K̂ ⊕ K̂⊥ as

(D + sA)τξ = τ( /Ds +DZ)ξ + sA0τξ + O(r2∂V + r∂H + r + sr3)τξ.

Here

/Ds := eα· ∂α + syα

Aα 0

0 ∗(z)

 .

The same construction holds for the dual operator D∗s : Γ(F |N ) → Γ(E|N ) with the

normal and horizontal operators denoted as /D
∗
s and D̂Z respectively.

Proposition 3.2.4 shows the rates of each of the horizontal and vertical derivatives

along Z as s >> 0. In particular, for large s, sections (ξ1, ξ2) : N → K ⊕K⊥ satisfying

Ds

ξ1
ξ2

 = 0

are well-approximated by sections ξ = (ξ1, 0) of the bundle K in ker /D ∩ kerDZ . We

will construct approximate solutions of Dsξ = 0 by finding solutions to the first order

approximation

( /Ds + DZ)ξ1 = 0

where ξ1 : N → π∗(K|Z). Solving the first order approximation is the next main topic.
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Chapter 4

Constructing approximate solutions

In this chapter we explicitly describe solutions to

( /Ds + DZ)ξ = 0

where ξ : N → π∗(K|Z). By Proposition 4.2.1 this amounts to finding solutions of the

system

/Dsξ = 0 and DZξ = 0.

Freezing z ∈ Z the first equation can be solved in sections ξz : Nz → Kz, since we have

only derivatives in the normal directions of Z. The family of solutions spaces over z ∈ Z

form the so called bundle of vertical solutions and can be constructed using the bundle

K → Z introduced in Definition 1.0.7. An analogue bundle is constructed in the dual case

of /D
∗
s using K̂ → Z introduced in the same definition. Then DZ restricts to the sections

of those solution bundles to give Dirac type operator there. The second equation can be

interpreted as the kernel of that operator.
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4.1 The bundle of vertical solutions

Recall the normal coframe {eα} on N |U introduced in Section 3.1and the terms Aα =

∇eαA|K in the Taylor expansion of A around Z. For this section we will be using w

coordinates moving in the whole fiber of the normal bundle N . One can think of those

coordinates as the blown up coordinates w =
√
sy when s = ∞ (compare with Remark

1.0.5).

Fix z ∈ U . The Euclidean Clifford action eα· : Kz → K̂z induce Euclidean Dirac

operators

/D0 : Γ(Nz, Kz)→ Γ(Nz, K̂z), by /D0ξ = (eα· ∂α)ξ (4.1.1)

and

/D : Γ(Nz, Kz)→ Γ(Nz, K̂z), by /Dξ = (eα· ∂α)ξ + wαAαξ. (4.1.2)

The purpose of this section is to count the dimension of decaying solutions ξ : Nz → Kz

of the equation

/Dξ = 0 (4.1.3)

and show that they form a bundle as z varies in Z.
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We start by noticing that {Aα} is a family of invertible matrices satisfying the relations

e
β
· Aα + A∗αe

β
· = 0, A∗αAα = A∗βAβ , ∀a, b and A∗αAβ + A∗βAα = 0, a 6= b. (4.1.4)

The first of these is obtained by differentiating the concentration condition (1.0.1), while

the other two are due to Proposition 3.1.2.

Lemma 4.1.1. Under the relations (4.1.4) the set of matrices

{Mα = −eα· ∇eαA|K} ⊆ End(Kz)

constitutes of commuting invertible self-adjoint endomorphisms satisfying

eα· e
β
· Mβ = Mβe

β
· e
α
· and M2

α = M2
β (4.1.5)

for every α, β. Each Mα has symmetric spectrum and opposite eigenvalues have the same

multiplicity. Furthermore for every string I of even length eI· satisfies

eI· ∈ Hom(K±α , K
±
α ) if α 6∈ I and eI· ∈ Hom(K±α , K

∓
α ) if α ∈ I. (4.1.6)

where K±α denote the eigenspaces of Mα corresponding to the ±µα - eigenvalues respec-

tively.

Proof. The first and second of relations (4.1.4) directly imply the first and second relations

of (4.1.5) respectively and show that Mα is self-adjoint. Finally the third of relations
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(4.1.4) implies that {Ma} is a commuting family. Also

eα· e
β
· Mγ = eα· e

γ
· e
β
· e
γ
· Mγ = Mγe

γ
· e
α
· e
γ
· e
β
· = Mγe

α
· e
β
·

for α, β 6= γ. This imply the relations

Mαe
I
· = eI·Mα if α 6∈ I and eI·Mα = −Mαe

I
· if α ∈ I

showing (4.1.6). 2

Remark 4.1.2. 1) Relations (4.1.4) show that {eα· ϕ, Abϕ}α,β is a family of orthogonal

vectors when ϕ ∈ Kz is non trivial.

2) Using (4.1.5), and the commutativity of {Mα}

∑
α,β

〈wβAβξ, wαAαψ〉 =
∑
α,β

wαwβ〈e
β
· Mβξ, e

α
· Mαψ〉 = −

∑
α,β

wαwβ〈Mαe
α
· e
β
· Mβξ, ψ〉

= −
∑
α 6=β

wαwβ〈e
β
· e
α
· MαMβξ, ψ〉 +

∑
α

w2
α〈M2

αξ, ψ〉

=
∑
α<β

wαwβ〈eα· e
β
· [Mα, Mβ ]ξ, ψ〉 +

∑
α

w2
α〈M2

αξ, ψ〉

for every w ∈ Nz and every ξ, ψ ∈ K|Z . In particular, if the Mα commute then

(wαAα)∗(wβAβ)ξ = w2
αM

2
αξ. (4.1.7)

Let
⊕

Ki be the decomposition of Kz into the common eigenspaces of the family

{Mα}. Hence Ki = K+
α when viewed as eigenspace where Mα has a positive eigenvalue
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or Ki = K−α otherwise.

Since M2
α = M2

β the eigenvalues µαi of Mα on Ki are equal in absolute value to a

common number µi. Fixing now a summand Ki let tri be the normalized trace over

End(Ki). We have the following:

Lemma 4.1.3 (Exponential decay estimates). Set

Mw = −
∑
α,β

wαwβe
α
· (∇eβA)|K ∈ End(Kz),

and let ξ : Nz → Ki be a C2 section, decaying at infinity and satisfying (4.1.3). Then

there exist a constant M0 > 0 such that

|ξ(w)| ≤M0e
1
2 tri(Mw).

Proof. Let ∆ denote the analyst’s Laplacian on Nz ' Rn−m and ∇ the Euclidean gradi-

ent. Applying /D
∗

to equation 4.1.3 and using Remark 4.1.2 (2), we obtain

0 = 〈 /D∗ /Dξ, ξ〉 = 〈 /D∗0 /D0ξ, ξ〉+ 〈eα·Aαξ, ξ〉 + |wαAαξ|2

= 〈∇∗∇ξ, ξ〉 −
∑
α

〈Mαξ, ξ〉+
∑
α

w2
α|Mαξ|2

= 〈∇∗∇ξ, ξ〉 +
∑
α

(w2
αµ

2
αi − µαi)|ξ|

2.

Therefore

∆|ξ|2 = 2|∇ξ|2 − 2<〈∇∗∇ξ, ξ〉 = 2|∇ξ|2 + 2
∑
α

(w2
αµ

2
αi − µαi)|ξ|2. (4.1.8)
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Combining with the identity

∆|ξ|2 =
∑
j

∂j(2|ξ|∂j |ξ|) = 2|ξ|∆|ξ| + 2|∇|ξ||2

and Kato’s inequality |∇|ξ|| ≤ |∇ξ| gives

|ξ|∆|ξ| ≥
∑
α

(w2
αµ

2
αi − µαi)|ξ|2.

Fix now ε > 0 and define

F : Nz → R, F (w) = Mεe
1
2triMw ,

where Mε is to be defined. Assuming {σl} is an orthonormal base for Ki and using

Remark 4.1.2 (1) we calculate

triMw = −wαwβ<〈eα· Aβσl, σl〉 = −w2
α<〈eα· Aασl, σl〉 (4.1.9)

= −w2
αµαi.

Therefore

∆F =
∑
α

(w2
αµ

2
αi − µαi)F

and the difference satisfies:

|ξ|∆(F − |ξ|) ≤
∑

α
(w2
αµ

2
αi − µαi)|ξ|(F − |ξ|). (4.1.10)
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Now set

R = 1
µi

(
∑
α

|µαi|)1/2 and Mε = (ε+ sup
|w|=R

|ξ|)e
1
2µiR

2

When |w| = R

tri(Mw) + µiR
2 ≥ w2

α(|µαi| − µαi) ≥ 0

so (F−|ξ|)
∣∣
|w|=R ≥ ε > 0 and when |w| > R the term

∑
α(w2

αµ
2
αi−µαi) is strictly positive.

Set V := {w : |w| > R, |ξ(w)| > F (w)}, an open set that satisfies the properties:

(i) V̄ ∩ {|w| = R} = ∅

(ii) |ξ| > 0 on V̄ . Enlarging slightly V we may assume that ∂V is smooth, properties (i)

and (ii) are satisfied, and furthermore

(iii) (F − |ξ|)
∣∣
∂V > 0.

Suppose that V 6= ∅. If F −|ξ| had a negative minimum w0 ∈ V then, by (4.1.10) and the

maximum principle, F (w0) > |ξ(w0)| which is a contradiction. By Property (iii) above

and the assumption that ξ decays at infinity, the function F−|ξ| cannot attend a negative

minimum in the boundary of V or at infinity, if V is unbounded, therefore V = ∅ and

|ξ(w)| ≤Mεe
1
2triMw for every ε > 0 and |w| > R and the result follows. 2

Denote by Kz is the sum of those Ki’s where Mα|Ki = µiIdKi for every α. This will

essentially be the space of L1,2 solutions of the equation (4.1.3):
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Theorem 4.1.4. Suppose that X = Rn with coordinates {wα} and Aα is a collection of

matrices satisfying (4.1.4). All L1,2 solutions of the equation

∑
α

(eα· ∂α + wαAα)ξ = 0 (4.1.11)

are linear combinations of sections of the form

ξi(w) = e−
1
2µi|w|

2
ϕ

where ϕ : Nz → Ki ⊂ Kz is a constant section.

Proof. Given ξ ∈ Γ(Nz, Kz) using (4.1.7) we compute

/D
∗ /Dξ = /D

∗
0 /D0ξ + eα· Aαξ + wαwβA

∗
αAβξ

= /D
∗
0 /D0ξ −

∑
α

Mαξ +
∑
α

w2
αM

2
αξ. (4.1.12)

Now when ξ is a L1,2 solution of (4.1.11) then by regularity ξ is a C2 decaying solution

and equivalently ξ evaluates the above presentation to 0. Since Mα are all simultaneously

diagonalizable we can decompose ξ =
∑
i ξi according to the decomposition Kz =

⊕
Ki.

Because of linear interdependency ξi : Nz → Ki will be an L1,2 solution of (4.1.11) for

each i and we can assume that ξ = ξi for some i.

Now recall F (w) = e
1
2tri(Mw) : Nz → R and note that by calculation (4.1.9) F satisfies
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the system ∂αF + µαiwαF = 0 for every α. Replacing ξ by Fξ we calculate

/D(Fξ) =
∑
α

(
eα· ∂α(Fξ) + wαe

α
· Mα(Fξ)

)
=
∑
α

(
∂αF + wαµαiF

)
eα· ξ + F /D0ξ

= F /D0ξ.

Hence if ξ : Nz → Ki obey (4.1.11)

0 = /Dξ = /D(FF−1ξ) = F /D0(F−1ξ)

i.e. /D0(F−1ξ) = 0. But by Lemma 4.1.3 the section F−1ξ is bounded and harmonic on

the entire Nz in the Euclidean sense hence F−1ξ = ϕ ∈ Ki is a constant vector and so

ξ = Fϕ : Nz → Ki where ϕ now is viewed as a constant section. This section belongs in

L2 iff ϕ = 0 or if Ki ⊂ Kz. In the later case tri(Mw) = −µi|w|2. 2

Proposition 4.1.5. The spaces {Kz : z ∈ Z} are independent of the choice of {eα}, and

they form a subbundle of K over Z.

Proof. Let {e′α} be a second orthonormal frame of Nz with {M ′α} the corresponding

family of commuting self-adjoint matrices:

Claim: When all {Ma} have same eigenvalue ±µi on Ki then all {M ′α} have the same

eigenvalue on Ki.

Suppose e′α = dαβeβ for some orthogonal matrix d and let σ ∈ Ki so that Maσ = µiσ
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for every α. Then dαβdγβ = δαγ and therefore

M ′ασ = −dαβdαγe
β
· e
γ
· Mγσ = µi

∑
β

d2
αβσ − µi

∑
β 6=γ

dαβdαγe
β
· e
γ
· σ = µiσ

for every M ′α. This proves the claim.

Suppose now p ∈ Z and that Ki ⊂ Kp, so that the {Mα} have common eigenvalue µi

on Ki. To construct local bundles recall chart 3.1.1 with U ⊂ Z a geodesic ball of center p

with orthonormal frame {eα} of Np. This induce the family {Mα} ⊂ End(Kp) and {σk}

of Kp so that the set partition to orthonormal frames of each Ki. We extend both frames

to moving frames over U centered at p and we extend the family {Mα} accordingly by

means of {eα}. Let γ(t) be a geodesic of U with γ(0) = p and γ̇(0) ∈ TpZ. Fix a parallel

local section σ so that σ(p) ∈ Ki. By the last relation of (3.1.5)

∇Eγ̇(t)(Mασ) = −eα· (∇γ̇(t)Aα)σ = −eα· (∇2
γ̇(t),αA)σ = 0

i.e. Mασ is also parallel hence a linear combination of {σk}. Since at the origin Mασ =

µiσ this equality holds in U proving that Mα has constant spectrum over U with {σk}

being the eigenvectors. Hence each Ki ⊂ Kp extend over U providing a local bundle of

solutions. But by the previous claim in the intersections of the various U ’s each local

version Ki is independent of the frame {eα} used and the various local versions of the Ki

patch together to give a global bundle Ki over Z. Hence also K is a well defined bundle

of solutions along Z, and a subbundle of K|Z . 2

In the dual case K̂ = kerA∗ and we define similarly M̂α = −eα· A∗α = eα· Mαe
α
· ∈
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End(K̂). Then the family {M̂α} satisfy the same relations as the family {Mα} and give

rise to a well defined bundle K̂ of solutions of /D
∗
.

Proposition 4.1.6. K ⊕ K̂ is a Z2-graded Spinc bundle over Z.

Proof. To start we define similarly K̂±α to be the ±µα-eigenspaces of M̂α for every α and

notice that the frame {eA}, A = i, α acts analogously to relations to (4.1.6)

eI·Mα = −M̂αe
I
· if α ∈ I and eI·Mα = M̂αe

I
· if α 6∈ I (4.1.13)

for every string I of odd length implying that Mα has the same spectrum and multiplicities

as M̂α and furthermore

eI· ∈ Hom(K±α , K̂
±
α ) if α 6∈ I and eI· ∈ Hom(K±α , K̂

∓
α ) if α ∈ I.

In particular K⊕K̂ ⊂ (K⊕K̂)|Z is preserved by the Clifford action of the tangent coframe

{ei} to Z thus being a Z2- graded Spinc-bundle over Z. 2

Remark 4.1.7. We end up this paragraph with a remark. The non - degeneracy as-

sumption (1.0.9) can be weaken for the proof of the Spectral Separation Theorem. It is

included for making the construction of the bundle of solutions simpler. In general one has

to examine the various normal vanishing rates of the eigenvalues of A∗A. In particular

the bundles of solutions examined here will have a layer structure corresponding to those

rates and possibly will have a jumping locus in their dimension.
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4.2 The operators DZ and D̂Z

Recall the Spinc bundle

π∗(E ⊕ F )|Z → N

with connection ∇̄ introduced in Section 2.2. In view of Lemma 3.1.1, this connection

restricts to a connection of the bundle π∗(K ⊕ K̂)|Z → N . Accordingly, the restrictions

/D : Γ(Nz, Kz)→ Γ(Nz, K̂z), ∀z ∈ Z

and

DZ : Γ(N, π∗(K|Z))→ Γ(N, π∗(K̂|Z))

are well-defined with adjoints /D
∗

and D̂Z and satisfy the following:

Proposition 4.2.1. For every section ξ : N → π∗(K|Z), we have

( /D
∗
DZ + D̂Z /D)ξ = 0,

and therefore

‖( /D +DZ)ξ‖22 = ‖ /Dξ‖22 + ‖DZξ‖22.

Proof. Recall the chart (3.1.1) centered at p with tangent frame {∂A}, A = i, α so that

∂A|U = eA and the parallel frame {σk} on E|NU so that ∇̄iσk = ∂i + ω0
ik. Then by

(2.2.2) ei·∇Xi e
α
· = (d+d∗)eα· = ((d+d∗)dyα|U )· = 0. Moreover the last relation of (3.1.5)
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evaluated at p gives ∇iAα = 0. Hence if ξ = fσk at p

/D
∗
DZξ = (eα· ∂α + wαA

∗
α)ei·∇̄iξ

= −ei·∇̄i(eα· (∂αf)σk + ei·(∇Xi e
α)·(∂αf)σk

− wαe
i
·∇̄i(Aαfσk) + wαe

i
·(∇iAα)fσk

= −D̂Z /Dξ

Since p was arbitrary this holds everywhere. The last identity follows since the cross terms

are zero by the first. 2

Note that ∇̄ is really a restriction of ∇ to sections of the above bundles and that K

and K̂ can be viewed as subbundles. Recall the construction of the bundles Ki, K̂i from

Proposition 4.1.5. It follows that ∇̄ preserves them inducing in that way a connection

on sections of Ki ⊕ K̂i and hence a well defined connection on their direct sum bundle

K ⊕ K̂ → Z. This connection will not in general be compatible with the Spinc structure

on K ⊕ K̂ unless the second fundamental form of the embedding Z ↪→ X is trivial.

Definition 4.2.2. The restriction operator

DZ = ei·∇̄i : Γ(Z,K)→ Γ(Z, K̂)

is well-defined Dirac operator.

Hence solutions ξ : N → π∗(K|Z) of the equation

( /Ds + DZ)ξ = 0
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are explicitly given in terms of the distance r from Z by

ξ =
∑
i

e−
1
2sµir

2
ϕi (4.2.1)

where µi > 0 and where ϕi ∈ Γ(Z,Ki) satisfies DZϕi = 0. In Chapter 5 we use these

Gaussian sections (see Definition 5.1.2) to construct a space of approximate solutions of

the equation

Dsξ = 0.
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Chapter 5

Approximate eigenvectors

5.1 Low-High separation of the spectrum

Our main goal for this chapter is to prove the Spectrum Separation Theorem stated in

the introduction. For that purpose we will use the bundles K` introduced in Chapter

1 and define a space of approximate solutions to the equation Dsξ = 0. The space of

approximate solutions is linearly isomorphic to a certain “thickening” of kerDs by “low”

eigenspaces of D∗sDs for large s. The same result will apply to kerD∗s . The “thickening”

will occur by a phenomenon of separation of the spectrum of D∗sDs into low and high

eigenvalues for large s. The following lemma makes this idea precise:

Lemma 5.1.1. Let L : H → H ′ be a densely defined closed operator with between the

Hilbert spaces H,H ′ so that L∗L has descrete spectrum. Denote Eµ the µ- eigenspace of

L∗L. Suppose V is an k- dimensional subspace of H so that

|Lv|2 ≤ C1|v|2, ∀v ∈ V and |Lw|2 ≥ C2|w|2, ∀w ∈ V ⊥.

Then there exist consecutive eigenvalues µ1, µ2 of L∗L so that µ1 ≤ C1, µ2 ≥ C2 and if
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in addition 4C1 < C2, the orthogonal projection

P :
⊕
µ≤µ1

Eµ → V

is an isomorphism.

Proof. Let µ1 be the k-th eigenvalue of the self-adjoint operator L∗L with counted mul-

tiplicity and µ2 be the next eigenvalue. Denote by Gk(H) the set of k- dimensional

subspaces of H and set W = ⊕µ≤µ1
Eµ, also k-dimensional. By the Rayleigh quotients

we have

µ2 = max
S∈Gk(H)

{
inf

v∈S⊥,|v|=1
|Lv|2

}
≥ inf
v∈V⊥,|v|=1

|Lv|2 ≥ C2.

and also

µ1 = max
S∈Gk−1(H)

{
inf

v∈S⊥,|v|=1
|Lv|2

}
.

But for any k − 1-dimensional subspace S ⊂ H there exist a unit vS ∈ S⊥ ∩ V so

µ1 ≤ max
S∈Gk−1(H)

{
|LvS |2

}
≤ C1.

Finally, given w ∈ W write w = v0 + v1 with v0 = P (w) and v1 ∈ V ⊥. Then

C2|w − P (w)|2 = C2|v1|2 ≤ |Lv1|2 ≤ 2(|Lw|2 + |Lv0|2) ≤ 2(µ1 + C1)|w|2 ≤ 4C1|w|2

and so |idW − P |2 ≤ 4
C1
C2

. If additionally 4C1 < C2 and P (w) = 0 for some w 6= 0 then

|w|2 = |w − P (w)|2 ≤ |idW − P |2|w|2 < |w|2
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a contradiction. Hence P is injective and by dimension count an isomorphism. 2

We have to construct an appropriate space V that will be viewed as the space of

approximate solutions to the problem Lξ = Dsξ = 0. It is enough to describe the

construction for a fixed m - dimensional component Z = Z`. For this purpose we introduce

a cutoff function ρ near Z.

LetN = N2ε be the tubular neighborhood of radius 2ε around Z. The exponential map

N → exp(N ), is a radial isometry along the vertical directions and the distance function

r from Z. Let ρ̂ : [0,∞)→ [0, 1] be a smooth cut off with ρ̂−1({0}) = [1,∞), ρ̂−1({1}) =

[0, 1
2 ] and strictly decreasing in [1

2 , 1] with |ρ̂′| ≤ 3 and define

ρ(p) =

{
ρ̂(
r(p)
ε ) p = exp(z, v) ∈ exp(N )

0 p ∈ X\ exp(N ).

Let K` be the bundle over Z` as in Definition 1.0.7; K` is the direct sum of common

eigenspaces Ki of the family {Mα = −eα· Aα} of positive common eigenvalues µi. As in

Definition 4.2.2, the Dirac operator D` acts on sections of K` along each component Z`

of ZA.

Definition 5.1.2. For each component Z` of ZA, set

V s` = span
{
ρ · e−

1
2sµir

2
τϕi

∣∣ ϕi ∈ Γ(Z`, Ki), µi > 0, DZ`ϕi = 0
}
,

where τ is the parallel transport map defined by (3.2.2). Taking the direct sum over all
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components of ZA we construct the space of approximate solutions along ZA

Vs =
⊕
`

V s` ⊂ L1,2(X,E).

and denote by V ⊥s the closure of its L2-perpendicular in the L1,2-norm:

V ⊥s := V
⊥
L2

s ∩ L1,2(X,E).

Notice that V sZ1
is L2-perpendicular to V sZ2

for Z1 6= Z2 since their corresponding

sections have disjoint supports. There are completely analogous constructions of the

spaces V̂ sZ`
, V̂s for D∗s and L1,2(X,F ) = V̂s ⊕ V̂ ⊥s .

Theorem 5.1.3. There exist an s0 > 0 and constants Ci = Ci(s0) > 0, i = 1, 2 so that

when s > s0

(a) For every η ∈ Vs,

‖Dsη‖22 ≤
C1

s
‖η‖22. (5.1.1)

(b) For every η ∈ V ⊥s ,

‖Dsη‖22 ≥ C2‖η‖22. (5.1.2)

The same estimates hold for the L2-adjoint operator D∗s .

In proving estimate (5.1.1) we will use the following growth rates of Lemma 5.1.4. The
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proof of estimate (5.1.2) will be given in the next section.

Lemma 5.1.4. For every k > 0 there exist a constant C > 0 depending on the eigenvalues

{µi} of the family {Mα} so that for every ρ · ξ approximate solution with ‖ξ‖2 = 1

∫
N
|y|2k(|ξ|2 + |∂Hξ|2)dydz ≤ Cs−k and

∫
N
|y|2k|∂V ξ|2dydz ≤ Cs1−k

Furthermore there exist an s0 = s0(ε) so that

∫
N
|ρ(z, y) · ξ(z, y)|2dydz ≥ 1

2

for every s > s0 uniformly on ‖ξ‖2 = 1. Here r = |y| is the distance from the singular

set ZA.

Proof. We write

ξ(z, y) = s
n−m

4
∑
i

e−
1
2sµir

2
ϕi

with DZϕi = 0 and µi > 0 for all i. Denote by Vn−m the measure of the n − m − 1 -

dimensional unit sphere. Then there exist C > 0 with

∫
N
|y|2k|ξ|2dydz = s

n−m
2
∑
i

∫
N
|y|2ke−sµi|y|

2
|ϕi|2dydz

= s−kVn−m
∑
i

∫ ∞
0

rn−m+2k−1e−µir
2
dr

∫
Z
|ϕi|2dz

≤ Cs−kVn−m
∑
i

∫ ∞
0

rn−m−1e−µir
2
dr

∫
Z
|ϕi|2dz

= Cs−k.

86



and

∫
N
|y|2k|∂V ξ|2dydz = s1−kVn−m

∑
i

∫ ∞
0

µ2
i r

2k+n−m+1e−µir
2
dr

∫
Z
|ϕi|2dz

≤ Cs1−kVn−m
∑
i

∫ ∞
0

rn−m−1e−µir
2
dr

∫
Z
|ϕi|2dz

= Cs1−k.

Elliptic regularity gives ∫
Z
|∂Hϕi|2dz ≤ C1

∫
Z
|ϕi|2dz

for every i. Using 2ab ≤ a2 + b2

∫
N
|y|2k|∂Hξ|2dydz ≤ s−kVn−m

∑
i,j

∫ ∞
0

r2k+n−m−1e−
µi+µj

2 r2dr

∫
Z
〈∂ϕi, ∂ϕj〉dz

≤ Cs−kVn−m
∑
i

∫ ∞
0

rn−m−1e−µir
2
dr

∫
Z
|ϕi|2dz

= Cs−k.

For the last part we change to w-variables and estimate

∫
N
|ρ(z, y)ξ(z, y)|2dy =

∫
N (
√
s)
ρ2(

w√
s

)|ξ|2dw ≥
∫
N (

√
s

2 )
|ξ|2dw

= Vn−m
∑
i

∫ ε
√
s

0
rn−m−1e−µir

2
dr

∫
Z
|ϕi|2dz

where N (
√
s) denote the tubular neighborhood in the normal bundle of radius ε

√
s. But

there exist s0 = s0(ε) so that
∫ ε√s

0 rn−m−1e−µir
2
dr > 1

2

∫∞
0 rn−m−1e−µir

2
dr for every i

and every s > s0. The result follows. 2
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Proof of estimate (5.1.1) in Theorem 5.1.3. Recall the tubular neighborhood N of Z, the

chart (NU , {zi, yα}) described at (3.1.1), the frames {∂i|U = ei}, {∂α|U = eα}, the

parallel transport map τ and the bundles K = kerA and K̂ = kerA∗ from Chapter 2.

Choose η = ρ ·ξ ∈ Vs with ‖ξ‖2 = 1. With respect the decompositions E|N = K⊕K⊥

and F |N = K̂ ⊕ K̂⊥

η = ρ · ξ =

ρ · s
n−m

4 e−
1
2sµir

2
τϕi

0

 , DZϕi = 0.

The Taylor expansion from Corollary 3.2.4 gives

(D + sA)η = dρ·ξ + ρ · e−
1
2sµir

2
τDZϕi

+ ρ · τ
(
eα· ∂α + syα

Aα 0

0 ∗(z)

)
e−1

2sµir
2
ϕi

0


+ ρ ·O

(
r2∂V + r∂H + r + sr3)ξ

= dρ·ξ + ρ ·O
(
r2∂V + r∂H + r + sr3)ξ. (5.1.3)

Because dρ has support outside the ε
√
s

2 -neighborhood of ZA, the L2 norm of the first

term on the right hand side is bounded as

∫
N
|dρ·τξ|2dydz ≤ C

∑
i

∫ ∞
ε
√
s

2

rn−m−1e−µir
2
dr ≤ C

s
.

Also, by Lemma 5.1.4 the squared L2- norm of the error term on the right hand side of

(5.1.3) is bounded by C
s . Furthermore, there is an s0 > 0, independent of that choice of
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η, so that ‖η‖22 >
1
2 for every s > s0. This proves the result. 2

Applying Lemma 5.1.1 we get a proof of Spectrum Separation Theorem stated in the

Introduction:

Proof of Spectral Separation Theorem. Choose s0 > 0 so that the constants of Theorem

5.1.3 satisfy 4
C1
s < C2 for every s > s0. Then apply Lemma 5.1.1 for L = Ds with

H = L2(X,E), H ′ = L2(X,F ) and Vs constructed above. But by construction

V sZ`
' ker{DZ` : Γ(Z`,K`)→ Γ(Z`, K̂`)}

V̂ sZ`
' ker{D̂Z` : Γ(Z`, K̂`)→ Γ(Z`,K`)}

for every `. This completes the proof. 2

Remark 5.1.5. Combining Theorem 5.1.3 with the proof of Lemma 5.1.1 we actually

get the stronger statement that if ‖ξ‖2 = 1 and Dsξ = 0 then

‖ξ − P (ξ)‖2 ≤
4C1

sC2
→ 0 as s→∞.

5.2 A Poincaré-type inequality

This section is entirely devoted to the proof of estimate (5.1.2) of Theorem 5.1.3. Recall

the tubular neighborhood N and the chart (3.1.1). N is a Riemannian manifold with
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two equivalent metrics: gX and gZ × gN . These induce two different densities |dvol|

and dzdy which, under the exponential map, are related by |dvol| = kdzdy for some

map k : N → R+. Henceforth we will be using the density dzdy and the constants

of equivalence will be suppressed in the calculations. Note that when w =
√
sy then

dzdw = s
n−m

2 dzdy.

For the proof of estimate (5.1.2) Theorem 5.1.3 we need the following lemma:

Lemma 5.2.1. If estimate (5.1.2) is true for η ∈ V ⊥s supported in N = N (2ε), a tubular

neighborhood of Z`, then it is true for every η ∈ V ⊥s .

Proof. Let ρ4 : X → [0, 1] a bump function supported in B(Z`, 2ε) with ρ4 ≡ 1 in B(Z`, ε).

Write η = ρ4η+ (1−ρ4)η = η1 +η2 with supp η1 ⊂ B(Z`, 2ε) and supp η2 ⊂ X\B(Z`, ε).

Then

‖Dsη‖2 = ‖Dsη1‖2 + ‖Dsη2‖2 + 2〈Dsη1, Dsη2〉. (5.2.1)

Since ρ4 · ρ = ρ we have η1 ∈ V ⊥s and by assumption there exist C0 = C0(ε) > 0 and

s0 = s0(ε) > 0 so that

‖Dsη1‖2L2 ≥ C0‖η1‖2L2

for every s > s0. Also since η2 is supported away of ZA, by Proposition 1.0.2

‖Dsη2‖2 ≥ s2‖Aη2‖2 − s|〈η2, BAη2〉| ≥ (s2k2ε2 − sM)‖η2‖2.
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To estimate the cross terms we calculate

Dsη1 = ρ4Dsη + (dρ4)·η, Dsη2 = (1− ρ4)Dsη − (dρ4)·η

and hence

〈Dsη1, Dsη2〉 =

∫
X
ρ4(1− ρ4)

∣∣Dsη∣∣2dvg +

∫
X

(1− 2ρ4)〈(dρ4)·η,Dsη〉dvg

−
∫
X

∣∣(dρ4)·η
∣∣2dvg ≥ −1

2
‖Dsη‖2 −

3

2

∫
X

∣∣(dρ4)·η
∣∣2dvg

for every s, ε > 0. We used that |ab| ≤ 1
2(a2 + b2) and that (1 − 2ρ4)2 ≤ 1. But (dρ4)·η

is supported in X B(Z, ε) hence by Proposition 1.0.2 applied again

∫
X

∣∣(dρ4)·η
∣∣2dvg ≤ Cε

∫
B(Z`,ε)

c
|η
∣∣2dvg ≤ Cε

s2k2ε2 − sM
‖Dsη‖22 ≤

1

3
‖Dsη‖22

for s large enough. Hence

〈Dsη1, Dsη2〉 ≥ −‖Dsη‖22.

Substituting to (5.2.1) and absorbing the first term in the left hand side there is an

s1 = s1(ε) with

3‖Dsη‖2 ≥ ‖Dsη1‖2 + (s2k2ε2 − sM)‖η2‖2

≥ C0(‖η1‖2L2 + ‖η2‖2L2)

≥ C0‖η‖2
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for every s ≥ s1. 2

Since L2-norms are additive on sections with disjoint supports it is clear that we can

work with η ∈ V ⊥s so that supp η ⊂ N for some individual tubular neighborhood of some

individual singular component Z` = Z.

Proof of estimate (5.1.2) in Theorem 5.1.3. This is a Poincaré type inequality and we

prove it by contradiction. Suppose there exist s sequence {sj} → ∞ of positive numbers

with no accumulation point and a sequence {ηj} ⊂ L1,2(N , E|N ) so that ηj ∈ V
sj
Z has

‖ηj‖2 = 1 and ‖Dsjηj‖
2
2 → 0 as sj →∞.

Recall the tubular neighborhood N = B(Z, 2ε) of Z, the chart (NU , {zi, yα}) in

(3.1.1). In this chart we have the frames {∂i|U = ei} and {∂α|U = eα}, the parallel

transport map τ , and the decompositions E|Z = (K ⊕K⊥)|Z and F |Z = (K̂ ⊕ K̂⊥)|Z

from Chapter 2. Introduce

τξj(z, w) = s
m−n

4
j ηj

(
w√
sj

)
and ξTj (z, w) = ξj(z, w)γ(z, w) with γ(z, w) = ρ

(εw
T

)

for T > 0 in w =
√
sjy coordinates. We have the decomposition ξTj = ξTj1 + ξTj2 where

ξTj1 : B(Z, T )→ π∗(K|Z) and ξTj2 : B(Z, T )→ π∗(K⊥|Z)

both supported on B(Z, T ).
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Now in w-coordinates

( /Dsj
ξTj )(z, y) = (eα· ∂yα + sjyα∇αA)ξTj (z, y)

=
√
sj(e

α
· ∂wα + wα∇αA)ξTj (z, w)

=
√
sj( /Dξ

T
j )(z, w).

Hence in w-coordinates Corollary 3.2.4 shows that

sjA0(ξTj2) + τ(
√
sj /D +DZ)ξTj = Dsj (ξ

T
j ) +

1
√
sj
O
(
|w|2∂V + |w|∂H + |w|

)
ξTj (5.2.2)

for every |w| < T . The L2 norm of the left hand side is

∫
|sjA0(ξTj2) + (

√
sj /D +DZ)ξTj |

2dwdz =

∫
|(sjA0 +

√
sj /D +DZ)ξTj2|

2dwdz

+

∫
|(√sj /D +DZ)ξTj1|

2dwdz. (5.2.3)

But by the concentration condition (1.0.1) for A0 there is a C1 so that

|(√sj /D +DZ)∗A0 + A∗0(
√
sj /D +DZ)ξTj2|

2 ≤ sjC1|ξTj2|
2.

Also there exist C2 > 0 so that |A0ξ
T
j2|

2 ≥ C2|ξTj2|
2. Hence there exist C3 > 0 so that

for all large sj

∫
|(sjA0 + (

√
sj /D+DZ))ξTj2|

2dwdz ≥ s2
jC3

∫
|ξTj2|

2dwdx+

∫
|(√sj /D+DZ)ξTj2|

2dwdz.
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Substituting back to (5.2.3)

∫
|sjA0(ξTj2) + (

√
sj /D +DZ)ξTj |

2dwdz ≥ s2
jC3

∫
|ξTj2|

2dwdz (5.2.4)

+

∫
|(√sj /D +DZ)ξTj |

2dwdz.

By ellipticity of /D +DZ the L2 norm of the error term of (5.2.2) is bounded by

‖O
(
|w|2∂V + |w|∂H + |w|

)
ξTj ‖

2
2 ≤ CT

(
‖( /D +DZ)ξTj ‖

2
2 + ‖ξTj ‖

2
2

)
.

Therefore, taking L2 norms of (5.2.2), substituting (5.2.4), using Proposition 4.2.1 and

absorbing terms in the left hand side, one obtains

s2
jC3

∫
B(Z,T )

|ξTj2|
2dwdz + (sj −

CT
sj

)‖ /DξTj ‖
2
2 + (1− CT

sj
)‖DZξTj ‖

2
2 (5.2.5)

≤ ε2

T 2

∫
X
|dρ·ξj |2dzdw + ‖Dsjηj‖

2
2.

By assumption, the right hand side is bounded in j, hence ‖ξTj2‖2 → 0, ‖ /DξTj ‖2 → 0, and

the sequence

‖( /D +DZ)ξTj ‖
2
2 (5.2.6)

is uniformly bounded in j. By elliptic regularity for the operator /D + DZ , the sequence

{ξTj } ⊂ L1,2 is bounded. By Rellich Theorem there is a subsequence, denoted again as

{ξTj }, that converges to ξT : B(Z, T ) → π∗(K|Z),where ξT is a compactly supported

section with ‖ξT ‖2 ≤ 5‖ξi‖2 = 5 . By the weak compactness of the unit ball in L1,2,
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we can also assume that ξTi → ξT weakly in L1,2. In this context, (5.2.5) shows that for

every smooth section ψ

∫
B(Z,T )

〈DZξT , ψ〉dwdz =

∫
B(Z,T )

〈ξT , D̂Zψ〉dwdz = lim
i

∫
B(Z,T )

〈ξTi , D̂
Zψ〉dwdz

= lim
i

∫
B(Z,T )

〈DZξTi , ψ〉dwdz ≤ lim
i
‖DZξTi ‖2‖ψ‖2

≤ Cε
T
‖ψ‖2.

Therefore ξT satisfies

‖DZξT ‖2 ≤
Cε
T
, /DξT = 0 and ‖ξT ‖2 ≤ 5

for every T > 0. Now notice that when T ′ > T then ξT
′

agrees with ξT in B(Z, T2 ). Hence

there is a well-defined section ξ : N → π∗(K|Z) with ξ = ξT on every neighborhood

B(Z, T2 ) ⊂ N . Furthermore, by Lemma 5.2.2 below, there is an estimate

‖ξT ‖1,2 ≤ C(‖( /D +DZ)ξT ‖2 + ‖ξT ‖2) ≤ C

(
Cε
T

+ 5

)
(5.2.7)

where the constant C is independent of T . Letting T → ∞ we see that ξ is in fact an

L1,2-section satisfying

/Dξ = 0 and DZξ = 0. (5.2.8)

Claim : ξ ≡ 0

By assumption ηi ⊥ V
si
Z . Using Definition 5.1.2 this condition translates in w =

√
siy
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coordinates as

ηi ⊥ ρ · s
n−m

4
i e−

1
2siµ|y|

2
τψ ⇐⇒ ξi ⊥ ρsi · e

−1
2µ|w|

2
ψ

for every section ψ : Z → K with DZψ = 0.

The sequence ξTi is supported in B(Z, T ) and since ‖ξi‖2 = 1

∫
B(Z,T )

ρsi · e
−1

2µ|w|
2
〈ξTi , ψ〉dwdz =

∫
B(Z,T )

ρsi · e
−1

2µ|w|
2
〈ξTi − ξi, ψ〉dwdz

=

∫
B(Z,T )

ρsi · e
−1

2µ|w|
2
〈(γ − 1)ξi, ψ〉dwdz

≤
∫
B(Z,T/2)c

e−
1
2µ|w|

2
|ψ|2dzdw

for every i, T . Hence passing to the L2 limit as i→∞

∫
B(Z,T )

e−
1
2µ|w|

2
〈ξT , ψ〉dwdz ≤

∫
B(Z,T/2)c

e−
1
2µ|w|

2
|ψ|2dzdw.

Letting T →∞ we see that ξ is L2 orthogonal to e−
1
2µ|w|

2
ψ. But ξ is in L1,2 and satisfies

(5.2.8) therefore, by (4.2.1) ξ ≡ 0. This proves the claim.

It now follows that for every T > 0, as i→∞

lim
i→∞

∫
B(Z, T

2
√
si

)
|ηi|2dydz = lim

i→∞

∫
B(Z,T/2)

|ξi|2dwdz =

∫
B(Z,T/2)

|ξ|2dwdz = 0.

Finally, we obtain a contradiction from the concentration estimate. By the nondegeneracy

assumption (1.0.9) the bundle map A satisfies A∗A|K = |y|2M + O(|y|3). Hence by the
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proof of Theorem 1.0.4 we estimate

‖Dsiηi‖
2
2 ≥ s2

i

∫
B(Z, T

2
√
si

)c
|A(ηi)|2dydz − C1si

∫
B(Z, T

2
√
si

)c
|ηi|2dydz

≥ si(
C0

4
T 2 − C1)

∫
B(Z, T

2
√
s

)c
|ηi|2dydz

= si(
C0

4
T 2 − C1)

(
1−

∫
B(Z, T

2
√
si

)
|ηi|2dydz

)
.

But then for a fixed T > 0 large enough, as i → ∞ we have lim infi ‖Dsiηi‖2 = ∞

contrary to our original assumption that ‖Dsiηi‖2 → 0. 2

The following Lemma was used above to obtain estimate (5.2.7).

Lemma 5.2.2. For any compactly supported section ξ : B(Z, T )→ π∗(K|Z), there is an

elliptic estimate

‖ξ‖1,2 ≤ C(‖( /D +DZ)ξ‖2 + ‖ξ‖2)

for some constant C > 0 independent of T .

Proof. Recall the calculation (4.1.12)

/D
∗ /Dξ = −

∑
α

∂2
αξ −

∑
α

Mαξ +
∑
α

w2
αM

2
αξ
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where Mα are self-adjoint. Taking L2 inner products with ξ, we obtain

‖ /Dξ‖22 =
∑
α

‖∂αξ‖22 −
∑
α

∫
〈Mαξ, ξ〉dwdz +

∑
α

∫
w2
α|Mαξ|2dwdz (5.2.9)

≥
∑
α

‖∂αξ‖22 −
∑
α

∫
〈Mαξ, ξ〉dwdz

≥
∑
α

‖∂αξ‖22 − C1‖ξ‖22

with C1 independent of T . Also, there is a Weitzenbock identity for DZ : Γ(Z,K|Z) →

Γ(Z, K̂|Z) of the form

D̂ZDZξ = ∇̄∗∇̄ξ +Rξ

for some curvature term R. Again taking L2 inner products with ξ, there is a constant

C2 > 0 with ∫
Z
|∇̄ξ|2dz ≤ C

∫
Z

(|DZξ|2 + |ξ|2)dz.

When ξ is instead, a section supported in B(Z, T ) we integrate this inequality with respect

to the w-variable to get

‖∂Hξ‖2 ≤ C(‖DZξ‖2 + ‖ξ‖2) (5.2.10)

Combining (5.2.9) and (5.2.10) we get the result. 2
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Chapter 6

Nonlinear concentration

6.1 The nonlinear model

There is a simple way to “nonlinearize” concentrating Dirac operators. Suppose

Ds = D + sAψ : Γ(W )→ Γ(Ŵ )

is a concentrating Dirac operator determined by ψ ∈ Γ(L). Suppose that W decomposes

as a sum ⊕jWj of bundles, one of which, say W1 = L. Then we can convert the linear

PDE

Dξ + sAψξ = ξ0 ξ = (ξ1, . . . , ξk)

to a non-linear equation simply by taking ψ = ξ1. The resulting equation

Dξ + sAξξ = ξ0

is quadratic in ξ. It is interesting to study the concentrating properties of the solutions

to this problem.

For example, let (X, g,W+⊕W−, c) a 2n-dimensional Spinc Riemannian manifold with
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determinant bundle L = detC(W+). A fixed Hermitian connection A0 on L determines

a Dirac operator D0 acting on spinors. Fixing additionally ψ ∈ Γ(W+), special instance

of the Clliford pairs example is

Dξ +
1

2
Aψξ = ξ0 (6.1.1)

where ξ =

ϕ
α

 ∈ Γ(W+ ⊕ ΛoddX) and ξ0 ∈ Γ(W− ⊕ ΛevX). Since ψ, ϕ ∈ Γ(W+) we

can take ψ = ϕ to get a nonlinear example.

6.2 Examples

In examples 8-10 below, we take W1 to be a spin bundle and W2 to be a bundle whose

sections are connections, as in the linear examples 4 and 5 of Chapter 2. However, we

restrict the operators P
ev/odd
ψ to the real subbundle Λev/oddX ⊗ iR of Λ∗CX and we treat

the term α of ξ as a connection 1-form. Introduce a new connection A of L satisfying

A− A0 = α, FA − FA0
= dα and DA −DA0

=
1

2
α·

for α ∈ Ω1(X, iR).

Finally it worth to be noted than when we restrict P
ev/odd
ψ to Λev/oddX the map

W+ → End(E+ ⊕ E−) : ψ 7→

 0 A∗ψ

Aψ 0


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defines a real Clifford representation of W+ to E.

Example 8: Let (Σ, ω, J) be a closed Riemman surface with canonical bundle KΣ and a

holomorphic line bundle L giving a Spinc structure on Σ. Then W+ = L, W− = K−1
Σ ⊗L

and DA0
= ∂̄A0

. For ξ0 =

 0

ir
2 ω − FA0

 equation (6.1.1) is rewritten as

∂̄A0
ψ +

1

2
α·ψ = 0

(d + d∗)α − 1

2
P ev∗ψ ψ − ir

2
ω + FA0

= 0.

But for every ρ ∈ R

〈P ev∗ψ ψ, (ρ, ω)〉 = ρ|ψ|2 − i|ψ|2

since ω·ψ = iψ. So P ev∗ψ ψ = |ψ|2−i|ψ|2ω and the projection to imaginary part is −i|ψ|2ω.

Therefore the above equations are rewritten as

∂̄Aψ = 0

FA = − i
2

(|ψ|2 − r)ω

d∗α = 0.

The first two equations are the r-vortex equations and the third one is a Coulomb condition

defining a slice of the U(1)- gauge action on Γ(u(L)). Vortex equations have been studied

thoroughly over C by C. Taubes (see [JT]) and over closed Riemann Surfaces and more

general line bundles over closed Kähler manifolds by O. Garcia-Prada (see [O]) and S.
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Bradlow (see [B]).

Example 9: On a symplectic 4-manifold (X,ω, J), adopting the definitions of Example

4 of the linear case for D and Aψ, using as ξ0 =

 0

− ir√
2
ω −
√

2F+
A0

 for r ∈ R, equation

(6.1.1) is rewritten as

DA0
ψ +

1

2
α·ψ = 0

(
√

2d+ + d∗)α− 1

2
P ev∗ψ ψ +

ir√
2
ω +

√
2F+

A0
= 0.

However a simple calculation shows that P ev∗ψ ψ =
√

2τ(ψ ⊗ ψ̄) therefore

DAψ = 0 (6.2.1)

F+
A =

1

2
(τ(ψ ⊗ ψ̄)− irω)

d∗α = 0.

The first two are the perturbed symplectic Seiberg-Witten equations and the last one is

defining a slice of the U(1)- gauge action on Γ(u(L)) as in the previous example. If (X, g)

is a 4-manifold with out a symplectic structure then for ξ0 =

 0

−
√

2F+
A0

 we get the

unperturbed Seiberg-Witten equations.

Example 10: The following example is the next interesting perturbation on a non

Kähler complex surface with positive geometric genus. This case has been studied by

O. Biquard (see [OL]). If (X, J, g) is a complex surface with dimH
2,0
C (X) > 0 then

102



we can choose a holomorphic section b of the anticanonical bundle K−1
X of X and take

ξ0 =

 0

r√
2
(b+ b̄)−

√
2F+

A0

. Equation (6.1.1) will then correspond to the equations

DAψ = 0

F+
A =

1

2
τ(ψ ⊗ ψ̄) +

r

2
(b+ b̄)

d∗α = 0.

Remark:(L2-concentration for the symplectic SW equations.) The perturbation irω by

the symplectic form was introduced by Witten for Kähler manifolds, then studied in detail

by Taubes, who showed solutions localize as r → ∞. We include this remark with the

L2-nonlinear concentration (see also [D]). For the subtle pointwise estimates see [T2] and

for the subtle behavior of the concentrating set see [T1] and [T2] This perturbation is

different from the perturbation sAψ in the concentration Theorem 1.0.4.

In the following calculation we basically use a parameter δ to interpolate between the

Weitzenbock formulas of nonlinear Examples 7 and 8. This enables one to analyze the

nonlinear concentration for the pair of equations (6.2.1).

With respect to an orthonormal basis {1, 1
2dz̄1 ∧ dz̄2}, we denote by (FA)ω the part

of FA parallel to ω, F
0,2
A = (FA)0,2dz̄1 ∧ dz̄2, β = 1

2(β)dz̄1 ∧ dz̄2 and one can write

ψ =
√
r(a, (β)) on W+ = L⊕ LK̄. Then

ψ ⊗ ψ̄ − 1

2
|ψ|2Id =

1
2(|a|2 − |β|2) a ¯(β)

ā(β) 1
2(|β|2 − |a|2)


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and

c(F+
A ) =

−2i(FA)ω −4(FA)2,0

4(FA)0,2 2i(FA)ω

 .

Equations (6.2.1) are then rewritten as

i(FA)ω =
r

4
(2− |a|2 + |β|2) (6.2.2)

F
0,2
A =

r

2
āβ. (6.2.3)

If ∇A and ∂̄A are the connection with it’s (0,1) - part on L→ X, then DA =
√

2(∂̄A, ∂̄
∗
A)

is the Dirac operator on W+ and we have the identities:

∂̄2
Aa =

1

2
F

0,2
A a − 1

4
∂Aa ◦NJ (6.2.4)

∂̄∗A∂̄Aa =
1

2
(∇∗A∇Aa− i(FA)ωa) (6.2.5)

∂̄A∂̄
∗
Aβ =

1

2
∇∗A∇Aβ + i(R +

1

2
FA)ωβ (6.2.6)

c1(L)[ω] =
i

2π

∫
X

1

2
(FA)ωω ∧ ω =

i

2π

∫
X

(FA)ωdvg (6.2.7)

where R denotes the curvature of K̄ . Observe that the difference in the i signs of formulas

(6.2.5) and (6.2.6) comes from the fact that ω· has eigenspaces L and LK̄ with eigenvalues

−2i and 2i respectively. Finally we compute:

0 =
1

2
D∗ADAψ =

∂̄∗A
∂̄A

 (∂̄Aa + ∂̄∗Aβ) =

∂̄∗A∂̄Aa + ∂̄∗A∂̄
∗
Aβ

∂̄2
Aa + ∂̄A∂̄

∗
Aβ

 . (6.2.8)

Taking L2 - product with a on the first row element of (6.2.8) and using (6.2.4) and
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(6.2.5), for 0 < δ < 1:

0 = 〈∂̄∗A∂̄Aa, a〉 + 〈∂̄∗A∂̄
∗
Aβ, a〉 = (1− δ)‖∂̄Aa‖2 +

δ

2
‖∇Aa‖2

− iδ

2

∫
X

(FA)ω|a|2dvg + 〈β, ∂̄2
Aa〉

= (1− δ)‖∂̄Aa‖2 +
δ

2
‖∇Aa‖2 − iδ

∫
X

(FA)ωdvg +
iδ

2

∫
X

(FA)ω(2 − |a|2)dvg

+
1

2
〈β, F 0,2

A a〉 − 1

4
〈β, ∂Aa ◦NJ 〉.

Using now equations (6.2.2), (6.2.3) and (6.2.7) and after a few calculations:

0 = (1− δ)‖∂̄Aa‖2 +
δ

2
‖∇Aa‖2 +

rδ

4
‖β‖2 +

r

8
(2− δ)‖aβ‖2 +

rδ

8

∫
X

(2− |a|2)2dvg

− 2πδc1(L)[ω] − 1

4
〈β, ∂Aa ◦NJ 〉. (6.2.9)

Similarly taking L2 - product with β on the second row element of (6.2.8) and using

(6.2.4) and (6.2.6):

0 = 〈∂̄2
Aa, β〉 + 〈∂̄A∂̄∗Aβ, β〉 =

1

2
〈F 0,2
A a, β〉 − 1

4
〈∂Aa ◦NJ , β〉 +

1

2
‖∇Aβ‖2

+ i

∫
X
Rω|β|2dvg +

i

2

∫
X

(FA)ω|β|2dvg.

Using again equations (6.2.2) and (6.2.3) we conclude:

0 =
1

2
‖∇Aβ‖2 +

r

4
‖β‖2 +

r

8
‖aβ‖2 +

r

8

∫
X
|β|4dvg + i

∫
X
Rω|β|2dvg

− 1

4
〈∂Aa ◦NJ , β〉. (6.2.10)
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Finally, adding up (6.2.9) and (6.2.10), the Weitzenbock formula from (6.2.8) will read:

(1− δ)‖∂̄Aa‖2 +
δ

2
‖∇Aa‖2 +

1

2
‖∇Aβ‖2 + (1 + δ)

r

4
‖β‖2

+ (3− δ)r
8
‖aβ‖2 +

r

8

∫
X

(|β|4 + δ(2− |a|2)2)dvg

= 2πδc1(L)[ω] +
1

2
<〈β, ∂Aa ◦NJ 〉 − i

∫
X
Rω|β|2dvg (6.2.11)

for every 0 < δ < 1. On the other hand, there exist C = C(X,ω, J) > 0 such that

1

2
<〈β, ∂Aa ◦NJ 〉 − i

∫
X
Rω|β|2dvg ≤

C

δ
‖β‖2 +

δ

2
‖∂Aa‖2 + C‖β‖2

= (1 + δ)
C

δ
‖β‖2 +

δ

2
‖∂Aa‖2.

Substituting to (6.2.11) and absorbing the terms to left hand side we get

(1− δ)‖∂̄Aa‖2 +
1

2
‖∇Aβ‖2 + (1 + δ)(

r

4
− C

δ
)‖β‖2 + (3− δ)r

8
‖aβ‖2

≤ r

8

∫
X

(|β|4 + δ(2− |a|2)2)dvg + 2πδc1(L)[ω].

For r large and δ = 5C
r , the terms in the left hand side are all positive and we get the

desired concentration when c1(L)[ω] > 0 i.e. L → X is a nontrivial line bundle and the

zero set of it’s section a is nonempty. From this we see that as r →∞

‖β‖
L1,2 → 0 ‖∂̄Aα‖L2 → 0 ‖2− |α|2‖

L2 → 0.

�
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APPENDIX
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Manifold structures on the space of Fredholm opera-

tors

Let E, E′ be separable Hilbert spaces over the field K = R or C. Let also B := B(E,E′)

be the set of bounded linear operators, F := F(E,E′) the space of Fredholm operators

and Fi := Fi(E,E′) the space of Fredholm operators of index i. Then Fi are the open

connected components of the set F , an open subset of the set B. Then Fi =
⋃
k≥0Fki

where Fki are Fredholm operators with k - dimensional kernel and (k − i) - dimensional

cokernel (k ≥ i).

Proposition .0.1. Each Fki is a k(k − i) - codimensional submanifold of Fi and for

D ∈ Fki

TDFki = {P ∈ B : P (kerD) ⊆ ImD}.

Proof. Let E = kerD⊕ ImD∗, E′ = kerD∗⊕ ImD where D∗ is the corresponding adjoint

of D. Then with respect to this decomposition D and an arbitrary D′ will be written as

D =

0 0

0 d

 and D′ =

α β

γ δ



with d ∈ F0
0 (ImD∗, ImD). We would like to parametrize Fki near D. To do that suppose

there exist k1 : kerD → (kerD)⊥ = ImD∗ with adjoint k∗1 and k2 : cokerD = kerD∗ →

ImD = (kerD∗)⊥ with adjoint k∗2. Then

{(x, k1(x)) : x ∈ kerD} = kerD′ and {(y, k2(y)) : y ∈ kerD∗} = ker(D′)∗
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for some operator D′ ∈ Fki since given a pair of different finite dimensional subspaces

we can always construct operator having them as kernel and cokernel, a consequence of

Hahn -Banach Theorem. We also get the extra set theoretic relations

{(−k∗1(x), x)) : x ∈ (kerD)⊥} = (kerD′)⊥ and {(−k∗2(y), y)) : y ∈ ImD} = ImD′.

Since D′ : (kerD′)⊥ → ImD′ will be an isomorphism, for every y ∈ ImD there exist

unique x ∈ (kerD)⊥ with

α β

γ δ

 ·
−k∗1(x)

x

 =

−k∗2(y)

y


so we get

−α ◦ k∗1(x) + β(x) = −k∗2(y) (.0.1)

−γ ◦ k∗1(x) + δ(x) = y (.0.2)

and furthermore −γ ◦ k∗1 + δ : (kerD)⊥ → ImD has to be isomorphism. Eliminating y

from (.0.1) and (.0.2) we get

−α ◦ k∗1 + β = k∗2 ◦ γ ◦ k
∗
1 − k

∗
2 ◦ δ (.0.3)
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on (kerD)⊥. On the other hand, for every x ∈ kerD

α β

γ δ

 ·
 x

k1(x)

 = 0

so

α + β ◦ k1 = 0 (.0.4)

γ + δ ◦ k1 = 0. (.0.5)

Substituting γ from (.0.5) into (.0.2) we get

−γ ◦ k∗1 + δ = δ ◦ (k1 ◦ k∗1 + id) (.0.6)

Furthermore substituting α and γ from (.0.4) and (.0.5) respectively to (.0.3) we get

β ◦ (k1 ◦ k∗1 + id) = −k∗2 ◦ δ ◦ (k1 ◦ k∗1 + id). (.0.7)

However since E and E′ are separable and k1 ◦ k∗1 is selfadjoint, by spectral theory,

k1 ◦ k∗1 + id : (kerD)⊥ → (kerD)⊥ is an isomorphism. Therefore we get that

• using (.0.6) δ : (kerD)⊥ → ImD is an isomorphism

• using (.0.7) β = −k∗2 ◦ δ
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Finally

D′ =

α β

γ δ

 =

k∗2 ◦ δ ◦ k1 −k2 ◦ δ

−δ ◦ k1 δ



=

−k∗2 k∗2

id 0

 ·
δ 0

0 0

 ·
−k1 id

0 0

 .

If D′ is close to D in the operator topology then we can see that kerD′ and ImD′

can be described uniquely as graphs via some k1 and k2 respectively giving the above

decomposition for D′ in terms of D. Conversely given

• k1 ∈ B(kerD, (kerD)⊥) ⊆ Gk(E)

• k2 ∈ B((ImD)⊥, ImD) ⊆ Gk−i(E′)

• δ ∈ F0
0 ((kerD)⊥, ImD)

we can form the map Φ(k1, k2, δ) = D′ as described in the above decomposition with the

resulting D′ ∈ Fki . This will be the required chart of the space Fki (E,E′) around D.

Using this chart it is easy to verify the last description of the tangent space TDFki . 2

Remark .0.2. 1. For k = 1 a complement of the space TDF1
0 is the family of spaces

CCD = {P ∈ B(E,E′) : P (kerD) = C}

for C any 1 - dimensional complement of ImD in E′. If D ∈ F1
1 then TDF1

1 = B so

we have trivial complement in this case.
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2. In a sufficiently small neighborhood U ⊂ F(E,E′) of D, using the decompositions

E = kerD ⊕ ImD∗ and E′ = kerD∗ ⊕ ImD, the map

Fk : U → Hom(kerD, kerD∗) : D′ =

A B

Γ ∆

 7→ A−B ◦∆−1 ◦ Γ

satisfies the relation F−1
k ({0}) = U ∩ Fki giving a local model structure of a sub-

variety to Fki ⊂ F(E,E′). Actually the various {Fk : k ≥ 1} give to
⋃
k≥1Fki the

structure of a stratified subvariety of B(E,E′).
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