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ABSTRACT
THE CONCENTRATION PRINCIPLE FOR DIRAC OPERATORS
By

Manousos Maridakis

The symbol map o of an elliptic operator carries essential topological and geometrical
information about the underlying manifold. We investigate this connection by studying
Dirac operators with a perturbation term. These operators have the form Dy = D + sA :
['(E) — I'(F) over a Riemannian manifold (X, g¢) for special bundle maps A : £ — F
and their behavior as s — oo is interesting. We start with a simple algebraic criterion
on the pair (o,.A) that insures that solutions of Dg1) = 0 localize as s — oo around the
singular set Z4 of A. Under certain assumptions of A, Z 4 is a union of submanifolds,
and this gives a new localization formula for the index of D as a sum over contributions

from the components of Z 4. We give numerous examples.
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Introduction

Many problems in geometric analysis involve studying solutions of first-order elliptic sys-
tems D1 = 0 for operators

D :T(E) = T'(F)

between bundles over a Riemannian manifold (X, g) . Given such an operator D, one can

look for zeroth-order perturbation A such that all finite-energy solutions of the equation
Dsp = (D+sA)p = 0 (0.0.1)

concentrate along submanifolds Z, as s — oo in a precise sense. There are several
examples of this in the literature, the most well-known occurring in Witten’s approach to
Morse Theory. The aim of this thesis is to find a general setting for such concentration
phenomenon.

We start with a simple criterion that insures concentration : D + sA localizes if
the composition A* o op(a) of the adjoint of A with the symbol of D is self-adjoint

(Definition (1.0.1)). It is natural to regard D as a Dirac operator; its symbol is then



Clifford multiplication ¢ and the concentration condition becomes

A*oc(u) =c(u)*o A  for every u € T*X.

This simple algebraic condition implies the analytic fact that solutions concentrate(in the
precise sense of Proposition 1.0.4).

This thesis has two main results. The first is a Spectral Decomposition Theorem for
operators that satisfy the concentration condition and three transversality conditions. It

shows that:

e The eigenvectors corresponding to the low eigenvalues of D} Dy concentrate near

the singular set of the perturbation bundle map A as s — oc.

e The eigenvalues of D} D, corresponding to the eigensections that do not concentrate

grow as at least O(s) as s — 0.

e The perturbation A determines submanifolds Z, and each determines an associated
decomposition of the normal bundle to the Z, giving a specific asymptotic formula

for the solutions of (0.0.1) for large s.

Our second main result is an Index Localization Theorem (Theorem 1), which follows
from the Spectral Decomposition Theorem. It describes how the Atiyah-Singer index
formula for the index of D decomposes as a sum of local indices associated with specific
operators on bundles over the submanifolds Z,.

I. Prokhorenkov and K. Richardson [PR] previously found the concentration condition

(1.0.1), but found few examples because they assumed A to be complex-linear and found



concentration only at points. Their list of examples does not include most of the’” examples
given in Chapter 2. The reason is that they assumed that A is self-adjoint and complex-
linear, while in many of our examples A is conjugate-linear or has no complex structure
and in some examples concentration occurs along submanifolds i.e. the zero set of a

spinor. Thus it is essential to study (0.0.1) as a real operator.

This thesis has six chapters. Chapter 1 introduces the Concentration Condition, de-
scribes some elementary consequences, and states the main results, which are proved in
later sections. An important part of the story is the vector bundles Ky and Ky over the
sub manifolds Z, that are introduced in Chapter 1 and described in detail later.

Chapter 2 presents many examples, some already known, and some new. The point
here is to search for real linear perturbations on reducible Clifford bundles. The first
example is probably classical, but it already illustrates the idea that concentration occurs
when a complex operator is perturbed by a conjugate-linear operator. Example 2 stems
from an observation of Taubes. Taubes used a concentrating family of operators to give an
interesting new proof of the classical Riemann-Roch Theorem for line bundles on complex
curves; our Example 2 extends this to higher-rank bundles over curves. Example 3 is
Witten’s Morse Theory operator, which we show fits into the general setup of Chapter 1.

The next set of examples is more interesting because the singular set z 4 arises as the
zero set of a spinor on X. In these examples, D acts on “spinor-form pairs ”, meaning
sections of a subbundle of W @& A*(T*X) where W is a bundle of spinors, a Spin® bundle
and A*T* X the bundle of forms. These examples are most natural in low dimensions, es-

pecially in dimension four. In particular, Examples 5 and 6 are linearizations of operators



that occur in Seiberg-Witten theory.

In Chapter 3 we examine the geometric structure of D + sA near the singular set Z 4
of A. We first examine the perturbation term A, regarding it as a section of a bundle
of linear maps, and requiring it to be transverse to certain subvarieties, where the linear
maps jump in rank. This transversality condition, allows us to write down a Taylor series
expansion of A in the normal directions along each connected component Z, of Z 4, and
this gives a similar expansion of the coefficients of the operator D.

The technical analysis needed to prove the Spectral Separation Theorem is done in
Chapters 4 and 5. We use a maximum principle argument to obtain decay estimates
on the concentrating eigensections, and we use the Taylor expansions from Chapter 3 to
decompose D into the sum of a “vertical” operator DV that acts on sections along each
fiber of the normal bundle, and a “horizontal” operator DH that acts on sections of the
bundles Ky on each component Z, of Z 4. We then define a space of approximate eigensec-
tions, and work through estimates needed to show that these approximate eigensections

are uniquely corrected to true eigensections.

Chapter 6 heads in a new direction. It describes a simple “non-linearization” procedure
that associates to each operator (0.0.1) a non-linear elliptic system whose linearization
is (0.0.1). We show how this non-linearization procedure produces, quite automatically,
two famous non-linear elliptic systems: the Vortex equations in dimension two and the
Seiberg-Witten equations in dimension four. In these cases, concentration phenomena
are well-known as seen, for example, in the work Bradlow, Garcia-Prada, and Taubes.

One of the interesting consequences of this thesis is that the concentration that occurs in



these examples, which many believe to be a reflection of nonlinearity, appears instead to
be a result of an algebraic interplay between first and zeroth order terms that is already

present in the linearized equations.

Finally, we provide an appendix with the structure of the subvarieties that produce
the singular set of A in Chapter 3. A good reference is [K]. The extensive study of their

topology is crucial in the study of the localizing Dirac type operators.



Chapter 1

The Concentration Principle

The section describes some very general conditions in which one has a family Dg of first
order elliptic operators whose low eigenvectors concentrate around submanifolds Z, as
s — o0o. At the end of the section, we state the main theorem of this thesis. We also
state one important corollary, which shows how the index of D decomposes as a sum of

indices of operators on the submanifolds Z,.

Let (X, g) be a closed Riemannian manifold and F, F be real vector bundles over X.

Suppose that
o D:I'(FE)— I'(F) is a first order elliptic differential operator with its symbol o.
e A:FE — Fis a real bundle map.

From this data we can form the family of operators

where s € R. Furthermore, assuming that the bundle £ and F' have metrics, we can form
the adjoint A*, and the formal L? adjoint D} = D* + sA* of Dg. The symbol of D* is

—o*. The main point of this thesis is that such a family Dy is especially interesting when



A and the symbol o are related in the following way.

Definition 1.0.1 (Concentrating pairs). In the above context, we say that (o, A) is a

concentrating pair if it satisfies the algebraic condition

A*oo(u)=c(u)* oA  for everyu € T*X. (1.0.1)

Lemma 1.0.2. A pair (0,.A) is concentrating if and only if the operator

Bp=D"oA+A* oD

has order 0, that is, is a bundle map. If so, then for each & € C°°(E),

IDsll = IDES + s*IAENG + (€, Bag) (1.0.2)

where these are L? norms and inner products.

Proof. Given a tangent vector u € Ty X, choose a smooth function f with df|[p = u. Then

for any smooth section & of F,

Ba(f§) = D(FA(S)) + AX(D(fS)) = —o"(df)AS + fD"AL + A%o(df)§ + fATDE

= (—o* (W) A+ A*o(u))E + FBAE).

Thus (1.0.1) holds if and only if B4(f¢) = fB4(£), which means that B4 is a zeroth



order operator. To obtain (1.0.2), expand |D + 3A|2 and integrate; this gives

IDs€13 = [DEN5 + s* MAE)IIZ + s (DE,AL) + s (AL, DE)

where, after integrating by parts, the last two terms are equal to s (§, B4¢). O

Remark 1.0.3. Given D and A as above, one can always form the self-adjoint operators

0 D* 0 A*
D = and A =
D 0 A 0

Then (op,.A) is a concentrating pair when op(u) o A = —Aoop(u), u € T*X. This

implies that both (o, A) and (—c*, A*) are concentrating pairs.

The assumption that D : T'(E) — T'(F) is elliptic mans that the bundles £ and F
have the same rank. Thus a generic bundle map A : E — F is an isomorphism at almost
every point. In the anyalsis of the family D+ sA, a key role will be played by the singular
set of A, defined as

Zy = {xe X|ker A(z) # 0},
that is, the set where A fails to be injective.

The following theorem shows the importance of the concentrating condition 1.0.1.
It shows that, under Condition 1.0.1, all solutions of Ds¢ = 0 concentrative along the
singular set Z 4. More generally, it shows that all solutions of the eigenvalue problem
D& = A(s)§ with A(s) = O(s) also concentrate along Z 4.
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Fix 0 > 0, set Z(J) be the d-neighborhood of Z 4 and let Q(d) = X \ Z(0) be its

complement.

Theorem 1.0.4 (Concentration Principle). There exist C' = C'(5,.A,C) > 0, such that
whenever ¢ € C®(E) is a section with L? norm 1 satisfying || Ds€||3 < C|s|, one has the

concentration estimate
!

C
24 = 1.0.3
/Q((S) |£‘ Vg < |s| ( )

Proof. By equation (1.0.2) and ¢ as in assumption we get

Cls| > |Ds€|13 > s(€, Bag) + s [lA©)]3.

By Lemma 1.0.2, B 4 is a tensor and compactness implies that My = supx |B 4| is finite

hence by Cauchy-Schwartz

(€. BA©)] < My /X €2 dvg = My,

Also for each x € X'\ Z 4, A is injective on fibers, so there is a positive constant x(z) with
|A()] > k(x)|£]. By compactness, those inequalities hold with a constant £ > 0 uniform

on the closure of €2(J) and therefore

PIAQIF = w25 [ el duy,
Q(9)



Consequently

M+ C
£ dvy < .
/Q(é)H g K2|s]

Remark 1.0.5. The above proof can be refined if one has an estimate of the form
|A()]? > 7%/€|?> on a tubular neighborhood of Z 4, where r is the distance from Z4
and a > 0; this gives a bound on how the constant C’ in (1.0.3) depends on §. Assump-
tion (1.0.9) below gives such an estimate with a = 2. Later, in Chapters 4 and 5, we will
develop better estimates that show that the eigensections of Dg with low eigenvalues are

well-approximated by Gaussians as s — oo.

It is convenient to work in the context of Dirac operators. Recall that a vector space V'
is a representation of the Clifford algebra C'(R") if there is a linear map ¢ : R"” — End(V)

that satisfies the Clifford relations
c(u)e(v) + c(v)e(u) = —2(u,v) Id. (1.0.4)

for all u,v € V. We will often denote u. = c(u).

Lemma 1.0.6. The concentration condition (1.0.1) with o = ¢ is equivalent to
c(u)yo A" = Aoc(u)* VueT"X. (1.0.5)

Hence D + s A concentrates if and only if the adjoint operator D* 4+ s A* does.

10



Proof. Multiplying (1.0.1) on the left by ¢(u) and on the right by c(u)* we get
[ul? Ao c(u)* = e(u) 0 A*[uf?
which gives (1.0.5). The proof in the opposite direction is similar. O

Dirac Operator Assumptions:

1. We assume that E, F' are of equal rank, ¥ & F admits a Zo graded Spin® structure

induced from the symbol ¢ and a Spin® connection preserving the grading so that

Ve=0.
2. (¢, A) is a concentrating pair: A*c(u) = c(u)* A for every u € T*X.

Then the composition D = co V is a Dirac operator

D :T(E) — I(F). (1.0.6)

We also impose two further conditions on A that will guarantee that the components
Zy of the singular set Z 4 are submanifolds and that the rank of A is constant on each

Zy. For this, we regard A as a section of a subbundle £ of Hom(FE, F') as in the following

diagram:

L ——Hom(E,F)D F! (1.0.7)

()

(X, 9)

11



Here £ is a bundle that parameterizes some family of linear maps A : £ — F that satisfy
the concentration condition (1.0.1) for the operator (1.0.6), that is, each A € L satisfies
A*oc(u) = c(u)* o A for every u € T*X. Inside the total space of the bundle Hom(E, F),
the set of linear maps with [-dimensional kernel is a submanifold F ; because E and
F have the same rank, this submanifold has codimension 2. Assume that £ N F' is a

manifold for every [ (see the Appendix).

Transversality Assumptions:

3. As a section of £, A is transverse to £LNF' for every [, and these intersections occur

at points where LN F I'is a manifold.

4. Zy is closed for all /.

As a consequence of the Implicit Function Theorem A~1(£ N F') C X will be a sub-
manifold of X for every [. The singular set decomposes as a union of these submanifolds,

and even further as a union of connected components Z:

Zy =AM enF) =z (1.0.8)
l l

By Assumption 3, A has constant rank along each Z,, so ker A and ker A* are bundles

over Zy.

Our final assumption is a statement about the Taylor expansion of A.

Non-degeneracy Assumption:

12



5. Let K be the bundle obtained by parallel translating ker A — Z; along geodesics

normal to Z; in a tubular neighborhood of the singular set Z 4. We require

A*Alg = M +0(r3) (1.0.9)

where 7 is the distance function from Z 4, and M is a positive-definite symmetric

endomorphism of the bundle K.

Now fix a point p € Z; and choose an orthonormal frame {es} of the normal bundle

Ny — Z; at p with dual frame {e®}. In Chapter 4 Lemma 4.1.1 we prove that the matrices

My = —c(e*)Vey Ap - ker Ay — ker A, (1.0.10)

are a collection of commuting isomorphisms, and that each is self-adjoint (by Condition
1.0.1), and its spectrum is real, symmetric, and does not contain 0 (by Assumption 5).
Hence there exist a common decomposition into eigenspaces ker A, = @; K; that simul-
taneously diagonalizes the family { M, }. In this decomposition, it is the eigenspaces with
positive eigenvalue that are important — this positivity ultimately translates into the fact

that there are L2 concentrating sections in these directions.
Definition 1.0.7. For each component Zy of Zy, let Ky — Zy be the bundle whose fiber

atp € Zy is

¢ a common eigenvector of { My} with every eigenvalue
KC¢lp = span ¢ ¢ € ker Ay,

positive

13



There is a similar bundle kg — Zy defined in the same way with the matrices My, replaced

by Mo = —c(e®) V. A*|p : ker A, — ker A5

In Chapter 4 Proposition 4.1.5 we use assumption 5 to prove that K and K are bundles
over each component of Z 4. Also in Proposition 4.1.6 of the same chapter, we show that,
for each component Zy, the bundle Ky ® I@g is associated with a canonical Spin® structure
¢y on Zy i.e the restriction of the Spin® structure on (X, g).

Finally we look at the pullback connection of the bundles
(E® F)|z,,V) (EoF, V)

Z — X

In Chapter 3, we show that this connection preserves the sub-bundle Ky & I@g (see Propo-
sition 4.1.5 and Proposition 4.1.6). We can compose this connection with Clifford multi-

plication to construct Dirac operators for the bundles K, and I@g over Zy.

Definition 1.0.8. On each component Z,, we define

De = (o @ : F(Zg, Kg) — F(Zg, /@g)

and we denote its adjoint by Dt

In this definition, the Clifford multiplication ¢, is compatible with the Levi-Civita
connection on X, not with the Levi-Civita connection of the induced metric on Z, (the

two differ by a term involving the second fundamental form of Z;).

14



The main result of this thesis is a converse of Theorem 1.0.4. Recall that Theorem 1.0.4
shows that, for each C, the eigensections ¢ satisfying Di Dy = A(s)€ with |A(s)| < C,
concentrate around | J Z, for large s. The following Spectral Separation Theorem shows

that these localized solutions can be reconstructed using local data obtained from Z 4.

Spectral Separation Theorem. Suppose that Ds = D + s A satisfies Assumptions 1-5
above. Let E\ be the \-eigenspace of the operator DiDg and F\ the corresponding space
for DgDY¥. Then the low eigenspaces split according the decomposition (1.0.8): there exist

Ao > 0 and sg > 0 so that for every s > sq, there exist vector space isomorphisms

D Ex — Prer D
/

ASAO

and

Il

@ Fy — @kerf)g.
14

ASAO

In particular, if a component Zy of Z 4 is a point p, then DY =o.

As a corollary we get the following localization for the index :

Index Localization Theorem. Suppose that Dgs = D + sA satisfies Assumptions 1-5

above. Then the index of D can be written as a sum of local indices as
index D = Z index D'
¢

Proof. By the Spectral Separation Theorem there exist A\g > 0 and sg > 0 so that for

15



every s > s

index Dy = dimker Dg — dim ker D;k = dim ker D;k Dg — dim ker DSD;k

= dlm@ E)\—dim@ F)\

)\S)\O )\S)\O

= Z index D'

!

where the third equality holds because D} Dg and DgD} have the same spectrum and
their eigenspaces corresponding to a common non zero eigenvalue are isomorphic. Since
Dg and D differ by a compact perturbation they have the same index. This finishes the

proof. O

16



Chapter 2

Examples

The concentration condition (1.0.1) is clearly an algebraic condition on the symbol ¢ of
the Dirac operator D. The existence of the perturbation term A and the construction
of interesting examples of concentrating pairs (c,.A) is an algebraic problem about rep-
resentations of Clifford algebras and their connection with geometry. In the next several

sections, we start with basic examples and progressively built more elaborate ones.

2.1 First Examples

Our first two examples are in dimension two. These have the form Dy = D + sA where
D is a 0 operator and A is a conjugate-linear zeroth-order operator. Thus Dy is a real

operator, although in the examples it is convenient to write it using complex notation.

Example 1: For functions f,g: C — C, consider the operators
Dsf =0f +szf and Dig= —0g+ sz3.

These have the form D + sA where A is the self-adjoint real linear map Af = zf. Using

17



Lemma 1.0.2, the calculations

By = (0FA+ AD)f = —0(z2f) —20f = —f

and

By = (0A = AD)f = 0(zf) —20f = 0 (2.1.1)

show that both (op,.A) and (o, A*) are concentrating pairs. Theorem 1.0.4 then shows
that as s — oo, all solutions of Df = 0 and D’g = 0 concentrate around the zero set of

A, which is the origin. For these equations, we can find the solutions explicitly:

e Equations (1.0.2) and (2.1.1) show that any solution of D’g = 0 satisfies

%
0=[[8"g + sA*g|3 = |9g|13 + s*[.A*g|3.

This means that g is an anti-holomorphic function that vanishes for z # 0, so g = 0.

Thus ker D, = 0 for all s # 0.

o If f satisfies Dgf = 0, we can apply the operator —0 to get —90f —sf+s2|z|2f = 0.

Writing f = f1 + i f2, the imaginary part fo satisfies

—00fy + sfo + 32\z|2f2 =0.

Taking L? inner product with fo and integrating by parts, we see that fo = 0, so

18



f = f1 is a real-valued function. Finally, by completing the differential, we obtain
— 2
a1y = 0.

2
But the a real-valued holomorphic function is constant, so f(z) = Ce™® 21 for some
C € R. Thus ker Dy is real and one-dimensional, and the non-zero solutions of

Dgf = 0 clearly concentrate at the origin as s — oo.

Similarly the problem 0f + sZf = 0 has trivial solutions and its adjoint has a real

one-dimensional kernel.

It is more interesting to consider real Dirac operators on Riemann surfaces. In Section 7

of [T1], C. H. Taubes showed a concentration property for perturbed d-operators on
complex line bundles over Riemann surfaces. The following example generalizes Taubes’
observation to higher rank bundles.
Example 2: Let (3, g) be a closed Riemann surface with anticanonical bundle K, and
let E be a holomorphic bundle of rank r with a Hermitian metric (-,-) conjugate linear
in the second argument. The direct sum of the d-operator 0 : I'(E) — I'(KE) and its
adjoint is a self-adjoint Dirac operator

0 o _ _
D= I'(E® KE) - T(E®KE).

19



The symbol of D, applied to a (0, 1)-form w is
c(u)(€) = uné — s E€EQKE. (2.1.2)

One checks that this satisfies the Clifford relations (1.0.4), so defines a Clifford bundle

structure on E @ K E. Now choose
nel (X, K ®c Sym(%:E).

Combined with the conjugate linear isomorphism F = E* defined by the hermitian metric,

overliney becomes a conjugate linear map i : £ — KE. Set

Ju _
A= € Endg(E @ KE).

Lemma 2.1.1. (¢, A) is a concentrating pair.

Proof. It suffices to fix a point p € ¥ and verify that c(u)o A = —Aoc(u) for all u € T;3.

This is equivalent to proving that p and it’s adjoint p©* satisfy the two identities

w(p)) = p(uné) and  wApt(n) = plwn))

for all ¢ in the fiber E}, and 1 in (K ® E)p. Choose orthonormal bases {e;} of E, and

k of K. Then i = ku'le; ® ej € K®¢ Sym%(E) corresponds to the map p: E — KE

20



defined by

w(€) = kle;, OHu'le;.

Thus for u = Mk, we have
Lapt(€) = Mg (kpt (e, €))e; = i (e;, E)e;
and

PEUNE) = (W), ee; = (WNE, plej)e; = \i (kej, kE)e;.

These are equal since ¥/ = 1iJ*. The second identity is proved from the first one using

Lemma 1.0.6. O

Lemma 2.1.1 shows that Theorem 1.0.4 applies. Thus as s — oo the low eigensections
of the operator

Ds = D+sA: T(E®© KE) - T(E® KE)

concentrate on the singular set Z 4. The following lemma describes the structure of Z 4.

Lemma 2.1.2. For generic u, Z 4 is a finite set of oriented points {py}. Furthermore,
o At each positive py, Ky = R and R’g =0, and
o At each negative py, Ky = 0 and Ky = R.

Proof. The singular set of A is the set of points in ¥ where 1 : E — KFE fails to be an

isomorphism. Thus Z 4 is the zero set of det u: A"E — A" (KE). Using the isomorphism

21



A"E = ATE* of the induced hermitian metric on A"E, this becomes a complex map

A"E* — AT(KE), or equivalently a section

detp e I'(L)

of the complex line bundle

L=K ®c\NE®cAE. (2.1.3)

Note that while L is a holomorphic bundle, this section is only assumed to be smooth. For
a generic choice of u, the section det p will have only transverse zeros, which are therefore
isolated points. By compactness the set {py} of zeros is finite. At each py, the derivative
(Vdet p1) is an isomorphism from 7, py> to the fiber of L at p. Both of these spaces are
oriented; py is called positive if this isomorphism is orientation-preserving and is called
negative if orientations are reversed.

Let z be a local holomorphic coordinate on ¥ centered at p € {py}. Because det u has
a zero at p, there is a non-vanishing section e of E so that u(eq) vanishes at z = 0. Since
i is conjugate-linear, the section e = iey also satisfies pu(eg) = 0 at z = 0. Hence we can

choose real local framings of F and K F in which x has the local expansion

where * denotes an invertible (n — 2) x (n — 2) real matrix and

H : ker g — ker ).

22



is the real 2 x 2 matrix that corresponds to multiplication by f — (az + 3Z)f under the
identification C = R2.

For a generic section we have |«| # |3]. Tt follows that det u has a positive zero at p
if |a] > |B|, and a negative zero if |a| < |f].

Suppose |a| < |f|. By changing coordinates if necessary, we may assume that o« = 0
and = 1. One then sees that A*A has the expansion (1.0.9), so all of the assumptions of
the Spectral Separation Theorem hold. Write z = z + iy, and use the basis {e1, e5 = ieq}

of ker pg and {dzeq, dzea} of ker pufj to write f = (f1, f2) € ker ju9. Then

1 J1
H(z,y) = (zA; +yAy) ,
—f2 fo
where
1 0 0 -1
A= and Ag =
0 -1 -1 0

In this basis, one can calculate that the Clifford multiplication (2.1.2) is given by

1 0
c(dx) = _\/T§ and c(dy) = %5 ,

01 1 0

B

where these are maps ker pg — ker pg. The corresponding matrices (1.0.10) are therefore

1 0 -1 0
and My = —c(dy)Ag = ‘/Ti

E
|

|
20
QL
=
I
g
|
o
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Applying Definition 1.0.7, one then sees that K, = 0 in this case. Analoguous calculations

show that

Mlzé/; and Mgz%ﬁ ,

and hence I€p is one dimensional.
The case || > |B] is similar.

O

Corollary 2.1.3. (Riemann-Roch) If E is a rank v holomorphic bundle over a complex

curve C', then

indexdp = 2c1(E)[Z] —rx(2). (2.1.4)

Proof. Lemma 2.1.1 and the proof of Lemma 2.1.2 show that so all of the assumptions
of the Index Localization Theorem 1 hold. In this case, Z = {py} is the set of zeros of a
generic section det y of the complex line bundle L defined by (2.1.3). By Lemma 2.1.2,
each positive zero has local index D! = dim Kp—dim IQ = 1, and similarly each negative
zero has index D! = —1. The Index Localization Theorem therefore says that index D is

given by the Euler number
indexdp = x(L)[X] = e1(L)[X].
This Riemann-Roch formula (2.1.4) follows because

cA(NE@c N"(K ®@c E) = 2¢1(A"E) —c1(K") = 2¢1(E) —rei(K)
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and c1(K)[X] = x(2). O

Example 3: On a closed Riemmanian manifold (X, g) the bundle E & F = AT*X &

AT X g a Clifford algebra bundle in two ways:

c(v) =vA—tu and c(w) =wA+e 4 (2.1.5)

for v,w € T*X. One checks that these anti-commute:

c(v)é(w) = —é(w)e(v). (2.1.6)

Note that D = d + d* is a first-order operator whose symbol is ¢. Fix a 1-form ~ with
transverse zeros and set Ay = ¢(y). Then Theorem 1.0.4 shows that the low eigenvectors
of

Ds =D+ sAy = (d+d") + sé(y) : Q°(X) — QOdd(X)

concentrate around the zeros of 7.

This is the localization in E. Witten well-known paper on Morse Theory [W1]. After
fixing a Morse function f € C°°(X) setting Dg = d + d* + s¢(df), Witten considered the
corresponding Laplacian Ay = DiDgs + DD on the space Q*(X) of differential forms
on X. He showed that the g-forms are low eigenvectors of Ay concentrate at the index ¢
critical points of f as s — oo. In fact, using the natural Z-grading on Q*(X), Witten is
able to prove a refined localization of the low eigenvectors: the low eigenvectors of Ag on

Q9(X) localize around the critical points of f with index q.
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Let {py} be the set of critical points of f and choose one of them Py, = p with index .
In Morse coordinates around p, df has the form > 1y % dz® whereng = 1fora=1,...q

and 1o = 1 for a > g. Then
My = —nac(de®)é(dz®) - AT X — ATy XVa

are invertible self-adjoint matrices with symmetric spectrum of eigenvalues +1 that com-

mute with each other. In particular if ¢ belongs in the +1- eigenspace of M, then
KF ={c(daD)p : |I|= evena ¢ I} and K, = {c(dz')p : |I|= even a € I}

Lemma 2.1.4. o At each positive pp, Ky = R and f(g =0, and
o At each negative py, Ky =0 and Kg = R.
o Ifpy has index qp then a basis element for IKCp & IQ s a qp-form.

Proof. The proof of the first two bullets is a verbatim of the proof of Lemma 2.3.7.
For the last bullet, suppose p is a positive zero of index ¢ and ¢ € K is a basis vector.
@ is an even form and we use the notation a € ¢ to denote that when ¢ = ¢ Ide then

a € . Using (2.1.5)

¢ = Map = —nac(dz®)e(dz®)e = —na(dz® A (1g,0) — o, (dz™ A )
—Nap, ifacyp

= Nalp — 2dz™ A (19,0)) = {
Nap, ifage
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where in the fourth equality we used the Cartan’s identity. Hence we must have that
a€{l,...,q}if and only if o € p i.e. ¢ has to be a ¢- form. A similar calculation shows

© to be a g-form when p is a negative zero. O

The Index Localization Theorem then shows the well-known fact that the index of
d+d* : Q°(X) — Qo%4(X) is the Euler characteristic x(X). Witten further showed how
the Morse flow gives rise to “tunneling” maps between the spaces of low eigenvectors, and

how this data enables one to compute the total homology of the manifold.

2.2 Clifford Pairs

Examples 1-3 can be extended and placed in a general context by working with Clifford
algebra bundles. A bundle W — X is called a Clifford algebra bundle if it is equipped
with a a bundle map ¢ : CI(T*X) — End(W) that is an algebra homomorphism, meaning
that it satisfies the Clifford relation (1.0.4). For each connection V on W, there is an
associated Dirac operator D = co V on I'(W) whose symbol is ¢. This section shows
how interesting examples arise by taking W to be the direct sum of two Clifford bundles
associated with different representations of the groups Spin(n) or Spin€(n).

To describe the general context, let (E,c) and (E’, ¢/) be two Clifford algebra bundles

on (X, g) with connection and with corresponding Dirac operators D and D’. Suppose
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there is a bundle map P : E/ — E: one can then consider the diagram

(2.2.1)

for each v € T*X. Then the perturbed operator

Ds=D+sA:T(EQE)—>T(EaE)

with

D 0 o P

0 D -P* 0

satisfies the concentration principle if and only if Diagram (2.2.1) is commutes for every
v € T*X. Furthermore, if £ and E’ are reducible Clifford bundles, then one can restrict

Ds to sub-bundles to produce additional examples of concentrating pairs.

The examples in this section are special cases in which we take E and E’ to be of
the form W @ A*(T*X) where W is a bundle of spinors. We next describe this setup,
beginning with some linear algebra.

Let A be the fundamental Spin® representation of the group Spin€(n); A is irreducible
for n odd and the sum AT @ A~ of two irreducible representations for n even. Clifford

multiplication is a linear map ¢ : R — End¢(A); we will often use Hitchin’s “lower dot”
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notation

v = c(v)(p).

There is also a Clifford algebra map ¢ : R” — End (A*R") given by

o0) = 0gy s (v) = (WA ) — ().

Lemma 2.2.1. Clifford multiplication extends to a Spin®(n)-equivariant linear map c :

A*R"™ — Endg(A) that satisfies

vhap = (é(w)b).  for allv € R™, b e A*R"™ and ¢ € A. (2.2.2)

Proof. Define the extension ¢ : A*R™ — Endg(A) using the standard basis {e/} of R by

cle' Ao neP) = el P (2.2.3)

for each p-tuple (i1,...,4p) with ¢; < --- <i,. This map is Spin(n)-equivariant because

for every g € Spin(n), n € A*X we have that

c(Ad(g)*n) = g.c(n)g*

Indeed if n = e! A --- A €P then according to (2.2.3) and since {ad(g)*e’} is also an
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orthonormal coframe with the same orientation

c(Ad(g)*n)(g.¥) = c(Ad(g)*e )c(Ad(g)*e?) ... c(Ad(g)*eP)(g.)

{(elAel/\'.'/\e“'wv if | >k
(Dl A Aeb A Ak Y if1<I<k
{(el/\el/\~~~/\ek).w, it 1>k

—(e (et A AR, T < T <k

= é(el)(el JARERW)N €k).1/}

Because of Spin€(n)-equivariance, the map of Lemma 2.2.1 globalizes. Let (X, g) be
an oriented Riemannian n-manifold with a Spin® bundle W and Hermitian metric (-, -)
conjugate linear in the second factor and determinant bundle L = detg(W). Clifford

multiplication defines bundle maps
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c: N*T*X = Ende(W)  and  é:7*X — End (A*T*X) (2.2.4)

that satisfy (2.2.2). Given a Hermitian connection A on L with curvature F4 we get an
induced spin covariant derivative vA on W compatible with the Levi-Civita connection

V on T*X and a Dirac operator D4 on W.

Example 4: Spinor-form pairs

In the above context, consider the map
P:W — Home (A*T(’;X, W) L s (). (2.2.5)
For v a spinor on W we consider the operator
Ds=D+sAy, :I(Wea ACT*X) = T(W @ AT X)

with

Dy 0 0 Py

0 d+d* —Plp* 0

where P,,* denotes the complex adjoint of Py,

Lemma 2.2.2. (op, Ay) is s concentrating pair.
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Proof. The symbol of D, applied to a covector v, and his adjoint are given by

Formula (2.2.2) expresses the fact that the diagram

woo_cv) W
Pw[ [Pw

AN X AN X

~

¢(v)

commutes for every v € T* X, which means that (op, Ay) is s concentrating pair. O

Unfortunately, Lemma 2.2.2 does not automatically mean that the theorems in the
introduction apply to general spinor-form pairs. The difficulty is seen when one examines
the singular set

Zpg = {r € X| ker Py, # 0}.

The dimension of the exterior algebra A*(R") is 2", and the fundamental representation
n
of Spin(n) has complex dimension ol3] (see the chart). Thus if whenever dim X > 2,
every map Py : A*(T*X) — W has a non-trivial kernel at each point, so Z 4 is all of X.
n 2 3 4 5 6 7

dimg A*(R") 4 8 16 32 64 128
dimgW 4 4 8 8 16 16

Table 2.1: Dimension count
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To avoid this difficulty, we look for sub-bundles £ of Hom(A*(7T*X), W) as in dia-

gram (1.0.7). One way to obtain such sub-bundles is via bundle involutions.

T 0

Suppose that T' = is a metric invariant bundle involution on F @ F' so that
0 7
op(v)tr = £7op(v) and VT =0 (2.2.6)

for every covector v. Let E = E* ® E~ and F = F™ @ F~ be the decompositions into
+1 eigenspaces of 7 and 7 with p = %(1E:l:7') :E — E* and pt = %(1Fj:%) ' F — F*

the corresponding projections. Set

Dt =opop™V|gy and AT =pTA| 4

the restrictions of D and A to ET with values in F™ or F'~ depending on the sign of

(2.2.6).

Lemma 2.2.3. If Dy satisfies the concentration condition (1.0.1), then so does

Df = DVt 4+ sAT . T(ET) - TD(FF). (2.2.7)

Proof. The operator p* V| p+ defines a metric compatible connection on sections of ET =

X. Also

(AT op)| g+ + (op)| g1 ) AT =pH(A*op(v) + o (0)A)| gt =0
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for every v € T*X. O

In the examples below, we will build involutions by combining three bundle maps. All

three are defined when X is an oriented Riemannian n-manifold.
e The parity operator (—1)P that is (—1)PId on p-forms.
e The Hodge star operator, which satisfies > = (—1)p("_p).

e Clifford multiplication by the volume form dvol, which satisfies (dvol).2 = (—1)["/2].

The parity involution. When dim X = 2n is even, the endomorphism
7 =7 =i"dvol. & (—1)P" € End(W @ ALX)
is an involution; its 1 eigenbundles are
Et=wTeAfX  and FT =W~ ®A¥X,
and opx(v)T = —Top(v). Furthermore, the restriction of (2.2.5) decomposes as
W* = Homg (ATEX, W) @ Home (A*MTEX, W),

Thus for any ¢ € T(W™), we can write Py = P{ZU + Pq/ojdd under this decomposition, and

set

Al = : (2.2.8)



Then by Lemma 2.2.3 the operator
Dy =D" +s A TW' o AGLXY 5 (W™ @ AP X)

satisfies the concentration condition (1.0.1).

The self-duality involution. In even dimensions there is a second self-duality invo-
lution on the bundles W= & A((Ojdd/ ““X namely 7 = Id @ . The self-duality involution

preserves the eigenspaces of the parity involution and the two involutions commute. Then

opx(v)T = Top(v) and .qu*r = T*qu for ¢» € W in this case. Hence

DT 4 s AT T(E) = T(F) (2.2.9)

(&

satisfies the concentration condition (1.0.1), where

k k-1
E=wte Y AP 'x and  F=W~-a AT Xe Y A¥X
p=1 p=0
when dim X = 4k, and
k k
E=Wwte AT xeY AP X and  F=W~"a@ | AFX
p=1 p=0

when dim X = 4k + 2. In the next section, we will use these involutions to construct
spinor-form pairs that display the concentrating property with a non-trivial singular set

Z 4.
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2.3 Self-dual spinor-form pairs in dimension 4

When X is an oriented Riemannian 4-manifold, the self-duality involution produces a
Dirac operator (2.2.9) with the concentration property and with a singular set Z 4 that,
we will show next, is not all of X.

In dimension four, the self-dual spinor-form spaces from section 2.2 are

E=WtaAl'X and F=W~ &A@ A>TX)

and the concentrating pair is given by

c(v) 0 0 P;;dd
op(v) = and Ay =
0 ¢(v) —Pqi”* 0

where ¢(v) is the symbol map of the Dirac operator v/2d™ + d*. In order for the diagram
wt v | owe

ev odd
Fy W ) ‘P W
A0 @ A2+ 4v) Al

to commute and the concentration condition to hold, we have to slightly modify A, from

(2.2.8) by defining

_ 2
P@dd:Al — W™, b bt and 13177};/\0@/\@’+ —wt (p 9)|—>(p+\%9).¢.

Lemma 2.3.1. W is a Clifford bundle for the bundle of Clifford algebras CI(A*>T(X)).
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Proof. Tt suffices to show this at a point p € X. Let now {e’} be an orthonormal coframe

and define A%+ (X) = span{ng, n1, 72} where

ny = \%(el/\eQ—ke?’/\ell), n = \%(el/\eg—i—ell/\eQ), Ny = \/Li(el/\ezl—i—eQAei;)
are orthonormal. Note that
n-nj. + NN = 2(n;, 7}j>(dVOl. — Idwy) (2.3.1)

for every i, j and so the same identity holds for every other two forms in A2+ (X). Re-

stricted to W we get

n.0. + 0.n. = —4n, O)Idy,+ (2.3.2)

for every 7, # € A®T(X) which is an analog of the Clifford relation for the self dual

2-forms acting on W. This finishes the proof. O

Remark 2.3.2. Choose 1 € WT\{0}. Then from the above proof it follows that the set

{¢, .0} € W is orthogonal and ny.1m;.1) = —2¢ which implies |n;.9|> = 2[¢|?. Both

2
E and F' are 8-dimensional real vector bundles. The volume form acts on £ = € kEp
b
¥ . 1 . .
by dvol.§ = . Hence choosing|p| = |b] = 75 the Clifford action produces an
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orthonormal basis for Ep and Fj so that

E, = span{e,lﬁ : [even string} and F) = span{efjf : Jodd string }.

Regard now W™ as a real vector bundle of rank 4 with the induced metric. By
considering the negative definite quadratic form produced by that metric we can form the

algebra bundle C1%*(W¥). The perturbation Ay enjoys the following property:

0 A"
Lemma 2.3.3. The map W' — End(E®F) : ¢ v defines a representation
.Aw 0

of the real Clifford algebra bundle C1%*(W™) on E.

Proof. Fixy € Wp+. By the Clifford relations, the sets {e¥1)} ¢ W~ and {¢, .0} ¢ Wt

are orthogonal. Therefore for b € AL,
PO o poa(p) = by P9 o PSM(el) = Ry, Fy)bet = [vl%
and similarly for (p,0) € Ag & Ag

* ev 1 1 1
PP o B0 0) = o B0 )+ ol miic+
1
= p|zZJ|2 + §<77k~7/’a77k~w>9k77k

= [0F(p,0).
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This proves that
Ajo Ay = [YfPIdg  and  Ayo Al = ¢ Idp.
Finally, polarization gives the relations
Ay 0 Ayy + Ay 0 Ay = 2R, ¥o)ldp
and
Apy 0 Ay + Ayy 0 Ay = 2R, o) Idp

for every 11,19 € WT. Hence get a well defined algebra map

0 A
COAWT) 5 End(E@ F) : ¢ — v
.A¢ 0

The result follows. O
Corollary 2.3.4. The mapping ¢ — Ay, defines an injection W™ — Isom(E, F).

Proof. Let ¢ € E. Then by Lemma 2.3.3

Agél? = [€2]v)2.

implying that if € ker A, is nontrivial then 1) = 0. Therefore ¢ # 0 if and only if Ay,

is non singular which implies the corollary. O
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Example 5: We would like to the study the operator D + SAQ/,. Choosing a transverse
section ¥ : X — WT the singular set of A¢ will be a finite set of oriented points.
Let p € X be such a point and let a coordinate chart (U, {zq}) with z4(p) = 0 and

tangent frame and coframe {ey} and {e“} respectively. Expanding we get sections

Y(x) = vt + O<‘$’2)

for some elements ¢, € W]j' . Extend these smoothly to sections, still called v, of WT

near p. By transversality at p we have Y x4 # 0 for all  # 0. Setting

Aa = VQQAw — AwON

we see that

A

TaAa : Kp = ker(Ayp,)) — coker (Ay,)) = Kp (2.3.3)

is an isomorphism for every z € T, X — {0}.

The following technical lemma assures that A¢ can be perturbed to satisfy the non-

degeneracy assumption (1.0.9).

Lemma 2.3.5. We can modify 1 without changing its zero set Z(1)) to insure that {tq}

are orthonormal.

Proof. Let H : WZ;L — WJ be a real orientation preserving linear isomorphism with

eigenvalues {/i } such that { Hi,} is an orthonormal basis for W*. We may assume that
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H has no real eigenvalues otherwise replace H by A\H where A € S 1 such that none of the

numbers {Apq} is real. As a consequence there exist constant C' > 0 such that

inf tH(zaa) + (1 — t)zatha| > C.
(t,x)eRxS3

Let B(0,2R) C U and p be a smooth cutoff function with supp(p) C B(0,2R) and

plpo,r) = 1. We redefine ¢ in (U, z) as

U(z) = Y(x) + p(e)(H = Id)(zata) = p(z)(H = Id)(zaha) + Tata + O(|z]).

where |O(|z|?)| < C1|z|? for € U. Clearly ¥ has a transverse zero at p and satisfies the

conclusion of the lemma at p. Chossing R < % we get that for x € B(0,2R)\{0}

[O(*)|

Loy Ty
7] <201R < C < p(x)H(m¢a) + (1 _p(x))m¢a

therefore there are no other zeros of ¥ in U except at p. Repeating this proccess for each

of the finitely many zeros of the original 1) we are done. O

Recall the matrices My = —e®Ay € End(Kp) and My, = —e®A € End(f(p). Let
K, (f and K, Cf be the positive/negative eigenspaces of M, and M, respectively. We are

interested in describing their common positive eigenspaces
ICp:(]KC;F and Iép:ﬂf(gj.
« «

Lemma 2.3.6. The eigenvalues of My are A\, = £1 and the corresponding eigenspaces
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can be described as

K, = span cbe AN Xy and K, = span be X
b b

for every .

Proof. By relation (1.0.1) and Corollary 2.3.4

M2 = " Ape®Aq = AL Ay = Id

(67

i.e. M, has eigenvalues £1. Let now ¢ = € Ky is a A\q- eigenvector of M. Then
b
—c(e®) 0 b.yp £
Myp = —e%Anp = — “ = A\ : (2.3.4)
0 —c(e®) —P;ZZ* b

By comparing the first rows of (2.3.4) we see that
]' « «
§ = —€bYg = Aae™ - bapy (2.3.5)

Aa

since )\g[ = 1. It remains to show that given b € /\1X , the above choice of £ gives equality
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of second rows of (2.3.4). Using (2.2.4)

—e(e)Pe = (Phlé(e”) Aae?btba = Aa(b.e?Pgr é(e”)) Ya
= _)\a(Pqigé(b))*@ba

Also for every n € AVX @ A>T X

0 ifnpeA>TX
§R<77> Peg*¢a> = §R<77~¢aa %Ua) =

n ifne AVX

showing that Pig*@/)a = 1. Hence

proving equality of the second rows of (2.3.4). O

In Chapter 4 we prove that the families { My} and {M,} are related as

eI M, = —NMyel if acl and el My, = Myel if « g1 (2.3.6)

for every string I of odd length. It follows

el e Hom(KX, KJ) if ael and e € Hom(KEX, KF) if a¢l
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Lemma 2.3.7. The spaces (), K& and (, K& are at most one dimensional. If V) :
TpX — W5 preserves orientation then Kp = (), K is non trivial and Kp=No K& =

{0}. If V4 reverses orientation then (\, K& = {0} and N, K3 is nontrivial.

Proof. Let ¢ € (), K7 . Then for every even string I and « € [

Mae-ISO = _6-180

which implies that el € K. By Remark 2.3.2 E), = span{elp : I = even} therefore
Na Kb = (©) is at most one dimensional. The case with (), K7 is analogous.
Suppose now that J is a string and ¢ € <ﬂa€J K;) N (ﬂaeJC K[{) is a nontrivial

vector.

e J is an even string if and only if

(J ) e/ Myp = el ifa ¢ J
My(e?p) =

—e/Myp = elp iftacJ

for every a so that (", K = (e o).

e J is an odd if and only if

(J \ e/ Myp = el ifa g J
My(erp) =

—e/Myp = ep iftaecJ

for every a so that (), K& = (¢/¢p).
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This dichotomy shows also that either (), K1 or (), IA(J' should be nontrivial at each

zero of 1. Say that a ~ fiff a, 5 € J or o, f € J°. By Lemma (2.3.6) if « ~ § we
+eb1bg +ePbag

can write @ = = for some common b € A'X and if o £ 8

b b
eb.1)q —e.ﬁb.wﬁ

then ¢ = = for the same b € ALX. In particular we have a
b b

description of the orthonormal basis {¢)q} in terms of 11 and b as

beelbyy;  ifa~1
@Da =
—b.eelbapy ifatl

But |J| + |J€| = 4 hence J, J¢ are both even or both odd. Therefore {1} is positively

oriented in WJ for J even and negatively oriented for J odd. O

Corollary 2.3.8. As a consequence of Spectral Separation Theorem the index of D :

['(E) — ['(F) is the signed count of the zeros of 1 i.e.
indexD = co(WT)[X]
the second Chern class of the bundle W™ evaluated on the fundamental class of X.

Example 6: J-holomorphic curves in symplectic four-manifolds.
Recall the philosophy of Diagram 1.0.7: if we can find a sub-bundle £ of Hom(FE, F)
whose sections satisfy the concentration condition, then we obtain concentrating operators

Dg with singular sets Z 4 of possibly different dimensions. This example illustrates this
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phenomenon in dimension four, by showing how a sub-bundle £ can be constructed from
a symplectic structure.

Let (X 4 w) a closed symplectic manifold with a complex hermitian line bundle L and
a section ¢ € I'(L) whose zero set is a transverse disjoint union Zy, = UyZy of symplectic
submanifolds of X. Let N, be the symplectic normal bundle of Z,. Choose an almost
complex structure J and a Riemannian metric ¢ on X so that (w,.J,g) is a compatible
triple and each Zp is J-holomorphic; the symplectic and metric normal bundles of Z, are
the same.

As usual, write TX ® C = T10X @ 791 X and define the canonical bundle to be the
complex line bundle K = A20X. In this context, the direct sum W = W+ @& W™ of the

complex rank 2 bundles

Wt =La&LK, W™ =LoAbXx

has a Spin® structure and a Clifford multiplication T*M ®@ W — W from wedging and
contracting (0,1) forms as in formula (2.1.2).

Let VX be a hermitan connection on L and VX the Levi-Civita connection on X.
These can be used to build a Spin© connection V = vie VIE on W, There is also the
projection to the (0,1) part of T*X of VL namely 974 = %(VLw +iVEy o J). Then a

Dirac operator is defined by

D=v20;+0;): L& KL - A" X @ L.
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We would like to study the perturbed operator D + sAw. Fix one component Z = Z,
with normal bundle N = N,. By the transversality of 1, the map VLQ/J :N — Lisan R
linear isomorphism.

In order for the nondegeneracy condition (1.0.9) to hold we need the following:

Lemma 2.3.9. We can change ) without changing its zero set so that VL¢ N — L

becomes orthogonal.

Proof. We consider the bundles N with the induced metric and L|; as a real vector
bundle with the induced metric h from the hermitian metric. Let O(N,L|y) = {H €
Hom(N, L|z)|H*h = g}, a deformation retraction of Hom(N, L|7). Therefore there is a
smooth path of bundle maps [0,1] 3 t — Hy € Hom(N, L|z) so that Hy = VX4 and
Hy € O(N, L|yz). This path can be chosen so that Hy is invertible for every ¢ € [0,1]. As
a consequence there exist constant C' > 0 such that

inf H
ot ] >

where S' is the unit sphere bundle of the normal bundle N.

Now use the exponential map on the normal bundle N of Z to define a tubular neig-
broorhood N, a parallel transport map 7 : L|; — L|y along normal geodesics and set
x = exp(v). Let B(Z, R) C N and p be a smooth cutoff function with supp(p) C B(Z,2R)

and p|p(z r) = 1. We redefine ¢ in B(Z,2R) as
U(v) = $(v) + 7(Hy)(0) = Vilz).
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Note that

[(v) = TV Yzl = O(jvf*) < Cilol?

for v € N. Clearly ¥ has also transverse intersection with the zero section at Z and
satisfies the conclusion of the lemma at Z. Choosing R < %I we get that for v €

B(Z,2R)\{0}
O(lv?)]

o SR <0< ]THp(U)(i)]

|v]
therefore there are no other zeros of ¥ in U except at p. Repeating this proccess for each

component of the singular set of the original ¢/ we are done. O

Fix now p € Z and local coordinates {z;} in X so that Z = {x1 = 29 = 0} and
orthonormal frames {eq,ea = J(e1)} and {e3,eq = J(e3)} trivializing N and T'Z respec-
tively around p. By the Lemma {v; = VeLiw} is an orthonormal frame trivializing L|z
around p and we extend it to the normal directions to a frame trivializing L. Then ¢

expands in the normal directions of Z as
Y =211 + 2902 + O(|2[?).

Denote V¢, Ay = A A;.

L prm—
viy
We now have to consider the matrices My, = —e®Aqy, a = 1,2 and their common

positive spectrum. By Lemma 2.3.6 the positive eigenspaces are given by

e*b.1)q,

K= span{
b

: beAlx}, a=1,2
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There are two cases:

e The map vi Y N — L|yz preserves the natural orientations as an R linear map. Then
e2=J(e1) and Vi =i =ity =iV

so that elpy + €2y = Dip|; = 0|7 = 0. Then

0 W VL
K_Kme;_span{ 1, ? }_{ ot :veN*}:N*. (2.3.7)

1 2

€ (& (%

Also
K = span{e?K, e*K} ~ orthogonal complement of w in A>*X ~ KX|, ~ T*Z @ N*.
Hence the local operator is
DZ =y« : T(N*) = I(T*Z; © N¥)
and by Riemann-Roch
index DZ = 2N? —2(g— 1) = (L|4)?> = 2(g — 1) where g = genus of Z.

Also if since VL?/)l 7+ N — L|z preserves orientation then the adjunction formula applies
to give

2(g — 1) = (L|z)* + L|zK.
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Figure 2.1: The zero set of ¢

Hence index DZ = (L| ;)2 — K|z - L|; in this case.

o If VLQM 7 reverses orientation then adjunction formula gives
29—1)=(Llg)* + KLz = (L|z)* = K - Ll

and a similar calculation computes the operator in this case D% = 9* : T*Z — C. By

Riemann-Roch we then have
. 7z - 2
index D* =2(g—1) = (L|Z2)* - K- L|z.

Applying the Index Localization Theorem and using the contributions of the local indices

from all the components Z, with L, = L|Z£ we get

co(WH)[X] =indexD =Y (Lj — K- Ly) = L* - KL.
l

This is a familiar formula is SW theory. It describes the dimension of the SW moduli
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space in terms of the bundled K and L.

Example 7: Spinor/form pairs twisted by SU(2)-bundles.

Let (X, g, W=, ¢()) be a Riemmannian manifold with a Spin- structure and (E, h) —
X be a Hermitian SU(2) - bundle. Set also su(E) := {A € End¢(E) : A+A* =0, trcA =
0} where A* is the Hermitian adjoint of A. Differences of Hermitian connections on E
are sections of A'X ® su(E). Equip E with a Hermitian connection Vg and W with a
Spin¢ connection. We get induced connections VW®E on W& F and V on A*X ®su(E).

The symbol maps ¢ and ¢ extend as
c(v)Ridg : WTQE - W™ @F and &(v)®idg,p) : A%X @su(E) — A“X @su(E).
Finally we get operators
Dp = (c®idg)o VWV and dp+dj; = (¢ ®idgy(g)) 0 V.
We define a Clifford multiplication cg to include End(£)- valued forms by

cp: A" (X)®End(E) — End(W® E) (2.3.8)

NRA —» nA
The restriction of cg to the subspace A*(X) ® su(FE) defines maps

P? . Wt ® E — Home (A“(X) @ su(E), W e E)
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and

Podd . W+ @ B s Home (AOdd(X) ®su(E), W™ E)
both given by ¥ ® e — cg(-)Y ® e.

Proposition 2.3.10. For firted WV € W+ ® E the perturbed operator
Dy=D+sAy : T(WT®E)® Q%X su(E)) > T(W™ ® E) ® Q(X, su(E))

with

Dgp 0 0  podd
D = and  Ayge = v
0 dg+ d*E —P\iv* 0

satisfies the concentration relation 1.0.1. Here Pg’* denotes the adjoint of Pg'.

Proof. 1t suffices to show the proposition for ¥ = ¢ ® e. The symbol of D, applied to a

covector v, and his adjoint are given by

c(v) ®idg 0
op(v) =
0 é(v) ® idﬁu(E)
and
. —c(v) ®idg 0
op(v)" =
0 —é(U) & idﬁu(E)
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Checking the concentration relation is just proving the identity
e © (6(v) @ idgy ) = (c(v) ®idp) o P,
By linearity it is enough to check the identity for b ® B € A°¥X @ su(E). Then
(c(v) @ idp) o PY%L(b® B) = (c(v) @ idp)(c(b)¢ @ B(e)) = (c(v)e(b)y)) @ Be)
and

Pﬁ%e o (

o>

(v) @ idgy(p)) (b ® B) = Pz (é(v)b@ B) = (c(é(v)b)¢) @ Ble)

= (c(v)e(b)y) © Ble)

where in the third equality we used relation (2.2.2). O
Finally the map cg has an interesting property:

Lemma 2.3.11. On A*(X) ® End(E) the bracket

[m ® Ay, 2 ® Ag] = é(n1)m2 @ A1Aa — &(n2)m @ Ay (2.3.9)

defines a Lie algebra structure. The map cg becomes then a Lie algebra homomorphism.

Proof. On A*X the bracket

(m, m) — e(m)nz — é(m)m
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defines a Lie algebra structure. Then [-,-] is an extended Lie algebra from A*(X) and

End(£). Using (2.3.9) we see that

cp(lm ® A1, o ® Ag]) = cp(m ® A1) ocp(ne ® Ag) — cp(n2 ® Ag) ocp(m ® Aq).

Example 8: Witten’s deformations twisted by SU(2)-bundles.

Let (X,g) closed Riemannian and, as in the previous example, (F,h) — X be a

Hermitian SU(2) - bundle with Hermitian connection Vg and set
Sym(F) :={A € End¢(FE) : A= A"}

a subspace of End(F) with the trace product. Recall the two Clifford representations ¢

and ¢ of A*(X) described in (2.1.5) and extend them to maps
o(v) = c(v) @ idgyg(p) : A%(X) @ End(E) — A®(X) @ End(E)

and, fixing a x A € Al(X) ® Sym(E)

Apoa s A(X)®End(E) — A®(X)® End(E)

B® B = éw)B®AoB

for every v € T*X and A € Sym(FE). Finally the induced connection V on A*(X) ®
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End(E) gives operator

Dp =00V :D(A°Y(X)®End(E)) — T'(A®(X) ® End(E)).

Proposition 2.3.12. The perturbed operator

satisfies the concentration condition (1.0.1).

Proof. By linearity it is enough to check the identity for b® B € A°4X @ End(FE). Then

(c(v)* @ idppq ) © Aasab ® B) = (c(v)* & idpyq(p)(é(c)8 ® AB)

= c(v)*é(a)B ® AB

and

A © (€(v) @ idggE)(b® B) = Asgalc(v)b® B)

= ¢(a)*c(v)b® A*B.

Since A* = A and by relation (2.1.6) the two lines are equal. O
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Chapter 3

Transverse Concentration

3.1 Structure of A near the singular set

In proving the Spectral Separation Theorem we will have to analyze the geometry of the
operator

Ds=coV+sA:T'(E)—=T(F)

near the singular set Z4. The idea is to expand into Taylor series along the normal
directions of each component Z; of the singular set Z 4.

Fix a Zy) =: Z an m-dimensional submanifold of the n dimensional manifold X. Let
7w : N — Z be the normal bundle of Z in X with py : TX|; - TZ and pyy : TX|7; = N
the orthogonal projections along Z. The Levi-Civita connection VX, when restricted
on sections of T'X |, decomposes to pZV¥X and pVVX ie. the Levi Civita connection
VZ of Z and a connection V¥ of the normal bundle respectively. Our first task is to
understand the perturbation term A on a tubular neighborhood N of Z. For that purpose
we introduce the following coordinates:

Fix normal coordinates (U, {z;}) centered at p € Z and choose orthonormal moving

frames {eq} parallel at p with respect to V& on N|;. The frame {eq} at z identifies an

open subset N, C N, with an open subset of AV, C R"™"" with coordinates {yo}. We get
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the chart
UxNp—= Ny CX, (2,9) = exp.(Yaca) (3.1.1)

with tangent frame and coframe {0;} and {dz;} and on the normal fibers {04} and {dyq}
so that Jgry {0} = €a and il « {0} =: €;. These are normal coordinates, the distance
function r from Z writes in this chart r(z,y) = (3_, 22)1/2 and g = exp® gx has the form
9o = dap + O(2, 72) in normal directions.

The Levi Civita connection from X pullback to U x N and writes

X ' B
V5,00 = I 0;+T%.,05.

o

where Ffa =0 at p.

Next introduce the rank [ - subbundles
K, =kerA, < FE, and K, = ker A < F,

of F|z and F|; as z runs in Z. By VE- parallel transporting along the normal fibers
of NV we create subbundles K C E| N and K C F|pr. Recall now the non-degeneracy
assumption

A*Alg = M +0(r3)

where M is positive definite and symmetric. We choose orthonormal frame {o}} that

diagonalize M at Ej and extend locally in U C X to a parallel frame trivializing F|;; =
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(Ke K J-)|U. Extend over N by parallel transporting along the normal radial geodesics.

Since index A = 0 a consequence of the concentration condition (1.0.1) is
K L &L

for every u € T*X|. In particular the bundle (K @& K)|; over Z has a natural Zso- graded

Spin® structure. Derivating relations (1.0.1) and (1.0.5) along Z we also get
uVoeAd=-VoA*u. and ViAu = —u.Vy,A* (3.1.3)

for every u € T*X|,. Transversality condition (see Appendix) of A along the normal

directions of U C Z gives
VoA(K|p) C K|y and VoA (K|y) € K|y

Here the second relation is obtained by the first one using (3.1.3). Hence

@ 1 > oL
VQA: 2(KEBK )‘U%(K@K )U'
0 x(z)

Hence the Taylor expansion with respect to the decompositions E|yy = K & K L and

Fly = K @ K+ of the perturbation term A along the normal directions of Ny write

1
A=Ay + Yo + UaysVaVgA + O(r3)(2) (3.1.4)
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where Ay = is the evaluation of A at z € Z. We have the very useful technical
0 *(z)

lemma:

Lemma 3.1.1. The restriction of VE and V¥ to Z c X preserve the splittings £ =
KKt and F = KoK+, Since VA preserves those splittings all the covariant derivatives

vk A preserve these splittings.

Proof. Let £ € T(N, K) with ¢|; € K|z. By (3.1.4) at p

AVEe) = VE(UAE) — (VaA)E = An6 — An = 0

and since A¢|; =0

AVEE) = —(ViA)E = 0

ie. ng lp € Kp for A =14, a. But the last conclusion is an independent statement of the
frame hence it holds in Z. Also the Riemannian metric on F is parallel with respect to
VE therefore VE satisfies the same property with the bundle K+. The case where E is

replaced by F'is the same. O

Proposition 3.1.2. The 2 -jets of A* A and A along Z satisfy

V2, (A A >0, V2, (AA)gk=0 and VI, Ag=0  (3.15)

for every uw € TZ and v,w € N\{0} with v L w. The 1- jet of the perturbation A along
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Z NNy satisfies
Ag €lsom(K, K),  AjAa=ARAg,  and  ALAz+ A5A=0  (3.1.6)

for every i, o, B with o # .

Proof. The first couple of relations are a direct consequence of the assumption of (1.0.9).

Now if R denotes the curvature on End(E, F)
RY(9;,00)(A) = (R(9;,00)A) + AR (01, 0a)8).

By Lemma 3.1.1 RP(e;,eq)élp € Klp and A&y = 0 hence (R(e;, eq)A)lp = 0. Also

(Vi A)Elp = 0 and [e;, eq]|p = [0;, 0a]lp = O therefore
0 = (Rlei,ea) A)elp = (ViVaA)elp = (Vi ,A)Gp.

This proves the last relation of the Hessian of A.

For relations on the 1 -jet we just notice by using (3.1.4) to expand A* A
A Aa = V5 o (A" A > 0
s0 Aq is invertible for every a. Also eq + eg are orthogonal and the relations (3.1.5) give

0 = VearesVeaes( A Al = V2 (A Al — V354 Ak = AfAa — A5A5.
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Similarly by (3.1.4)

0=V2 gAlg = Ay Ag + A Aq
i.e the last relation. O
Finally we can change A so that the following happens :

Lemma 3.1.3. We can choose our perturbation A so that V%70A|Z =0 for every u,v €

N.

Proof. According to properties (3.1.6) of the family {A,} we see that

(yaAa)*(yﬁA/j) = Z(A AB + AﬁA + Z?/QA* Ag = 29214*
a7 p

and since A}, A is positive definite for every a there exist C' > 0 so that

[vaAas| = Clyll¢]

for every £ € K|z. In particular yoAq : K|z — K | 7 is an isomorphism for every y # 0

and

C
A) < =
|(yoz oz) |— |y|

Hence there exist €; > 0 so that for every 0 < |y| < ¢;

Ap+yaVaA: Elg = Flg
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is invertible with
C

|(A0 + yOéVOéA>71| S |y’ '

Introduce now a cut off function supported on N, a tubular neighborhood around Z
of radius € to be chosen later. Let j : [0,00) — [0,1] smooth cut off with p~1({0}) =
)

[1,00), p~L({1}) = [0,1/2] and strictly decreasing in [1/2, 1], define p(q) = p(“L) on N

€

and extend as 0 on X — N. We can form the bundle map

B . E — F, B(q) - @V%{U-/AUZ; q= eXpZ(U)'

Derivating relation (3.1.3) we get that

hence

u.B=—B*u.

for every u € T*X|,. Hence A — B satisfies (1.0.1) and using (3.1.7) on N

A—B = Ay + yaVad + 2P0 0 G054 + Oy e).

Choose 0 < € < €1 so that for every 0 < |y| < e

1 11—
y>yay5VaV5A + O(lyl*)] < % < 5140+ yaVald) 1

=
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Then A — B is invertible on N’ — Z and agrees with A outside N therefore Z 45 = Z 4.
Also by construction

V2 (A=B)=0:E|z - Flg

for every u,v € N. Finally we have only changed the 2-jet of A around Z to produce
A — B. Hence condition (1.0.9) still holds for .A — B since it relates only to the 1-jet of A

on Z. Replacing A with A — B on every component Z of Z 4 we are done. O

According to Lemma 3.1.3 on a sufficiently small tubular neighborhood N around Z

A=Ay + ya + O(r3)(2) (3.1.7)

3.2 Structure of D + sA along the normal fibers

Our next task is understanding Dy near the set Z. Denote by ¢Z and ¢”V the metric
gX restricted on 77 and on N respectively. Recall the chart (3.1.1) centered at p € Z
with ({z;}, {ya}) being the horizontal and vertical coordinates respectively and the frame
{01} on E| Apy- Denote by dV/H the local directional derivatives of those vertical and
horizontal tangent frames in this chart.

Except for the tangent frame on TN we can parallel transport the local frames {eq}

and {e;} from U to N|y along the normal radial geodesics using VX to construct new
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frames {75} and {7;} with dual frames 7@ and 7° respectively.

Comparing the parallel frame with the tangent frame at p we see
Ta—0a =002 +00HH  and  1—-09;, =002 +0(r)H
hence, action on the local differentials will write
Or = 00 +O(r?)0Y + 0?0 and 0, = 9; + 0(r*)0" + O(r)o" (3.2.1)

where the symbols O(r)" and O(r)H are used to denote decomposition in the vertical

and horizontal frames respectively of order r. Also
V%(fffk) = (Oryf)o) + folyo
for A = i, a and note that the Taylor expansions of the connection components is
Wi = O(r?) and Wi = w?k + O(r).
Definition 3.2.1. The dilation operators from T'(N, E|pxr) — T(N, F|pr) are defined as
DN = T,O‘V% and D — T,ivg.

Those are globally defined operators on the tubular neighborhood N of Z independent of

the choice of the above frames and D = DN + DH . Also for fized = € Z, the Euclidean
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Clifford action e® : E, — F, induce a Euclidean Dirac operator

Do =e"0y : T(N,, E,) — T(N,, F).

Finally observe that the coframe {e'} acts on (E® F)| making it a Zs - graded Spin®

bundle over Z. The restriction of the connection components {w;;} on U give rise to

connections denoted both as V;0}, = w?k regarded otherwise as the pullback connections

of the bundles

(m*(E]2). V) (E|z.V) (Bl V5)

Definition 3.2.2.

D? :T(N,7*(E|z)) = T(N,7*(F|z)) : € €' V€.

The definitions for DZ is analogous.

Notice that DYV and D are only defined on sections & : N — E| s while ) and DZ
are defined on sections ¢ : N — 7*(E| ). In order to relate DV with [y and D to DZ
we introduce the parallel transport map along the radial geodesics of N,

T TN (E@®F):) — TN (EoF)|,) (3.2.2)

f(z,w)ak(z,O) = f(z,w)ak(z,w)

for every z € Z. Hence 7T operates from sections of 7*(E @ F)|z to give sections of
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(E & F)|p. Also since the symbol map is V. parallel
(T.AUk)(Z,U) = T(e.Aak(z, 0), A=a,i

for every (z,v) € N where 7 is the parallel transport map defined by (3.2.2).

Proposition 3.2.3. Let £ : N — 7*(E|g). We have the relations
DN (7€) = 7Iho¢ + O(r?0" + r20" +12)7¢
and
DH(r¢) = rD%¢ + 0(r*0Y +ro" +r)r¢

Proof. By linearity and compactness it suffices to work in the chart Nj; centered at p € Z
with 7§ = foy. Since the rates of the Taylor expansion do not depend on the choice of

the frame we can restrict our calculations at p and use (3.2.1).

For the vertical operator DV = T.O‘V% we estimate

DN(r&) = t(0af)oy + O (Y f) + 1207 f) + r2f)oy)

= 1ot + 0020V + 20" +?)re.
Also

DH(r¢) = 7IVE(E) = TH(0if)ok + frafy + OG0V [)+r(@" ) +rf)oy)

= D%¢ + 0?0V + rofl +r)r¢.
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Combining Proposition 3.2.3 with expansion 3.1.7 we get:

Corollary 3.2.4. Dg expands along the normal directions of the singular set Z with

respect to the decompositions E|yr = K & K+ and Fly = KoK+ as

(D + sA)re = 7(Ds + D)E + sAgrE + 020V +rof 1+ sr¥)re.

Here

JDS = e%0n + SYa

The same construction holds for the dual operator D} : T'(F|n) — [(E|p) with the

normal and horizontal operators denoted as ID: and D% respectively.

Proposition 3.2.4 shows the rates of each of the horizontal and vertical derivatives
along Z as s >> 0. In particular, for large s, sections (£1,&) : N — K @ K- satisfying

&1
Dy =0

3

are well-approximated by sections & = (£1,0) of the bundle K in ker I) N ker DZ. We
will construct approximate solutions of Dgé = 0 by finding solutions to the first order

approximation

(Ds + DY)e1 =0

where &1 : N — 7%(K|z). Solving the first order approximation is the next main topic.
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Chapter 4

Constructing approximate solutions

In this chapter we explicitly describe solutions to

(Bs + D?)g =0

where £ : NV — 7*(K|z). By Proposition 4.2.1 this amounts to finding solutions of the

system

D=0 and DZ¢ = 0.

Freezing z € Z the first equation can be solved in sections &, : N, — K, since we have
only derivatives in the normal directions of Z. The family of solutions spaces over z € Z
form the so called bundle of vertical solutions and can be constructed using the bundle
K — Z introduced in Definition 1.0.7. An analogue bundle is constructed in the dual case
of I} using K — Z introduced in the same definition. Then DZ restricts to the sections
of those solution bundles to give Dirac type operator there. The second equation can be

interpreted as the kernel of that operator.
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4.1 The bundle of vertical solutions

Recall the normal coframe {e*} on N|y introduced in Section 3.land the terms A, =
Veo Al in the Taylor expansion of A around Z. For this section we will be using w
coordinates moving in the whole fiber of the normal bundle N. One can think of those
coordinates as the blown up coordinates w = /sy when s = oo (compare with Remark
1.0.5).

Fix z € U. The Euclidean Clifford action e® : K, — K » induce Euclidean Dirac

operators
Do :T(N., K.) = T(N,, K2), by Poé = (€0a)¢ (4.1.1)

and
D :T(N: K2) - T(N2, K2), by PE = (e200)€ + waAaf. (4.1.2)

The purpose of this section is to count the dimension of decaying solutions & : N, — K,

of the equation

DE=0 (4.1.3)

and show that they form a bundle as z varies in Z.
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We start by noticing that { A} is a family of invertible matrices satisfying the relations
e Aq + A%el =0, AfAq=A5A5, Va,b and ALAg+ AjAq =0, a #b. (4.1.4)

The first of these is obtained by differentiating the concentration condition (1.0.1), while

the other two are due to Proposition 3.1.2.

Lemma 4.1.1. Under the relations (4.1.4) the set of matrices
{My = —€e*Ve, Al } C End(K;)
constitutes of commuting invertible self-adjoint endomorphisms satisfying
e,o‘e.ﬁMﬁ = Mge. e and M2 = Mg (4.1.5)

for every a,, B. Each My has symmetric spectrum and opposite eigenvalues have the same

multiplicity. Furthermore for every string I of even length el satisfies
el e Hom(KE, KF) if a¢l  and el e Hom(KiE, KJ) if ael. (4.1.6)

where K§ denote the eigenspaces of My corresponding to the s - eigenvalues respec-

tively.

Proof. The first and second of relations (4.1.4) directly imply the first and second relations

of (4.1.5) respectively and show that M, is self-adjoint. Finally the third of relations
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(4.1.4) implies that {M,} is a commuting family. Also
O‘e.ﬁM = ¢ 676567M~y = Mye'yeafﬂeﬁ M, P
for «v, 8 # ~. This imply the relations
Moel =efM, if a¢l and  elMy=—-Mye!l if acl

showing (4.1.6). O

Remark 4.1.2. 1) Relations (4.1.4) show that {e%¢, App}, g is a family of orthogonal
vectors when ¢ € K is non trivial.

2) Using (4.1.5), and the commutativity of { M}

Z(wﬁAﬁf, waAa)) = Zwawﬁ (€. Mﬂg, e* M) Zwawﬁ Mqe® eﬂMﬁf W)

a,B o.p @B
= = wawgle’ e Mo Mge, 0) + Zwi(Mia V)
aFB
— Zw wﬂe eﬂ[Ma, Mﬂf ¢ +Zwa 02167 w>
a<f

for every w € N, and every £,1 € K|z. In particular, if the M, commute then

(waAn)* (ngﬁ)f = wa { (4.1.7)

Let @ K; be the decomposition of K, into the common eigenspaces of the family

{My}. Hence K; = K when viewed as eigenspace where M, has a positive eigenvalue
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or i; = K otherwise.
Since MO% = ME the eigenvalues p,; of My on K; are equal in absolute value to a

common number y;. Fixing now a summand K; let tr; be the normalized trace over

End(K;). We have the following:

Lemma 4.1.3 (Exponential decay estimates). Set

My = — ZwawgeQ(VeﬁAﬂK € End(K,),
a,fB

and let € : N, — K; be a C? section, decaying at infinity and satisfying (4.1.3). Then

there exist a constant My > 0 such that
L7, (M)
[§(w)] < Moe2 ™70/,

Proof. Let A denote the analyst’s Laplacian on N, ~ R~ " and V the Euclidean gradi-

ent. Applying * to equation 4.1.3 and using Remark 4.1.2 (2), we obtain

0 = (D*DE €) = (PHDoE, &) + (ea-Aak, €) + [waAall®
= (V*VE &) = (Mo, &) + ) wi|Magl?

«
= (V*VE &) + ) (wanl; — nai)l*.
(67
Therefore

Al = 2VEl? — 2R(V*VE, €) = 2|VE] + 2D (wapd; — pad)lé®. (4.18)
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Combining with the identity
AlEPP =" 0;(21E0;18) = 21¢lAlg] + 2|vI¢|)?
j

and Kato’s inequality |V|¢]| < [VE| gives

EIALEl > (wanud; — pai)lE*.

(07

Fix now € > 0 and define
Liv- 1
F:N, >R, F(w)= M2 "%

where M, is to be defined. Assuming {o;} is an orthonormal base for K; and using

Remark 4.1.2 (1) we calculate

try My = —wawgR(e* Agoy,07) = —w2R(e® Apoy, 07) (4.1.9)

2
= TWaloi-

Therefore

AF = (wipd; — nai)F

(67

and the difference satisfies:

EIAE — [€)) < D (wara; — Hai)l€I(F = [€]): (4.1.10)
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Now set

L p2
R=2L(3" lnai)'? and Me= (e s ¢[)e2tiR
« w|=R

When |w| = R

tri(Mw) + MiRQ > ng(‘ﬂai’ _,uaz'> >0

SO (F—\f])hw':R > € > 0 and when |w| > R the term Za(wauii—uai) is strictly positive.

Set V :={w:|w| > R, |{(w)| > F(w)}, an open set that satisfies the properties:
(i) Vn{lw| = R} =0

(ii) |¢] > 0 on V. Enlarging slightly V we may assume that OV is smooth, properties (i)

and (ii) are satisfied, and furthermore

(it}) (F — |¢)]yy > 0.

Suppose that V' # (. If F — |¢| had a negative minimum wqy € V' then, by (4.1.10) and the
maximum principle, F'(wg) > [¢(wqg)| which is a contradiction. By Property (iii) above
and the assumption that & decays at infinity, the function F'— |£| cannot attend a negative
minimum in the boundary of V or at infinity, if V is unbounded, therefore V = () and

Lip.
E(w)] < MezTiMw g5, every € > 0 and |w| > R and the result follows. O

Denote by K, is the sum of those K;’s where Moz|Ki = ,ui[dKl. for every a. This will

essentially be the space of L2 solutions of the equation (4.1.3):
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Theorem 4.1.4. Suppose that X = R" with coordinates {wq} and Ay is a collection of

matrices satisfying (4.1.4). All L2 solutions of the equation

D (%00 + wada)é =0 (4.1.11)

(07

are linear combinations of sections of the form
_L w2
gi(w) = e 24Ty

where ¢ : N, — K; C K, is a constant section.

Proof. Given & € I'(IV,, K ;) using (4.1.7) we compute

DTRE = DolPoé + e¥Ank + wawg Ay AgE

= DoPos — > Mo + Y wiM2e. (4.1.12)

Now when ¢ is a L2 solution of (4.1.11) then by regularity £ is a C? decaying solution
and equivalently £ evaluates the above presentation to 0. Since M, are all simultaneously
diagonalizable we can decompose £ = ), §; according to the decomposition K, = @ Kj.
Because of linear interdependency & : N, — K; will be an L2 solution of (4.1.11) for
each ¢ and we can assume that £ = &; for some 1.

Str; (M)

Now recall F(w) = e : N; — R and note that by calculation (4.1.9) F satisfies
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the system OnF + pq;waF = 0 for every a. Replacing & by F¢ we calculate

DES) = 3 (" 0a(FE) + wae® Ma(FS)) = Y (9F + wapaiF )€™ + FIDoS

(%

= FIot.

Hence if € : N, — K obey (4.1.11)

0 = P& = D(FF 1) = FPo(F L)

ie. lDO(Fflf') = 0. But by Lemma 4.1.3 the section F~1¢ is bounded and harmonic on
the entire N, in the Euclidean sense hence F~1¢ = ¢ € K is a constant vector and so
¢ =Fyp: N, —» K; where ¢ now is viewed as a constant section. This section belongs in

L% iff o = 0 or if K; C K. In the later case tr;(My) = —p;|w|?. O

Proposition 4.1.5. The spaces {K : z € Z} are independent of the choice of {e“}, and

they form a subbundle of K over Z.

Proof. Let {el,} be a second orthonormal frame of N, with {M/} the corresponding

family of commuting self-adjoint matrices:

Claim: When all {M,} have same eigenvalue +p; on K; then all {M],} have the same

eigenvalue on K;.

Suppose e}, = dapep for some orthogonal matrix d and let o € K; so that Mqo = p;o
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for every a. Then d,gd,5 = da~ and therefore

M&a = —daﬁdaye.ﬂe.vaa = uiZdiﬁa — I Z daﬁdafye.ﬂe7o = ;o
B p#y

for every M!,. This proves the claim.

Suppose now p € Z and that K; C ICp, so that the { M} have common eigenvalue
on K;. To construct local bundles recall chart 3.1.1 with U C Z a geodesic ball of center p
with orthonormal frame {eq} of Nj. This induce the family {M,} C End(K)) and {o}}
of Kp so that the set partition to orthonormal frames of each K;. We extend both frames
to moving frames over U centered at p and we extend the family {M,} accordingly by
means of {eq}. Let v(t) be a geodesic of U with v(0) = p and 4(0) € T),Z. Fix a parallel

local section o so that o(p) € K;. By the last relation of (3.1.5)
E 2
V’y(t)<MaO_) = —ea(v,}/(t)Aa>U = _e'a(v"y(t),aA)o— =0

i.e. Myo is also parallel hence a linear combination of {o}.}. Since at the origin Myo =
pio this equality holds in U proving that M, has constant spectrum over U with {o}.}
being the eigenvectors. Hence each K; C K) extend over U providing a local bundle of
solutions. But by the previous claim in the intersections of the various U’s each local
version K; is independent of the frame {eq} used and the various local versions of the K;
patch together to give a global bundle K; over Z. Hence also K is a well defined bundle

of solutions along Z, and a subbundle of K|;. O

In the dual case K = ker A* and we define similarly M, = —e%AY, = e Mpe® €
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End(K). Then the family {M,} satisfy the same relations as the family {M,} and give

rise to a well defined bundle K of solutions of .
Proposition 4.1.6. K ® K is a Zs-graded Spin® bundle over Z.

Proof. To start we define similarly K (f to be the +pu,-eigenspaces of M, for every « and

notice that the frame {e1}, A = i, o acts analogously to relations to (4.1.6)

eIMy = —Muel it ael  and €My =Mye! it agl  (4.1.13)

for every string I of odd length implying that M, has the same spectrum and multiplicities

as Ma and furthermore

el e Hom(KEX, KF) if a¢l and ¢ e Hom(KEX, KJ) if acl

In particular K@K C (K@ K)| 4 is preserved by the Clifford action of the tangent coframe

{e'} to Z thus being a Zs- graded Spin®bundle over Z. O

Remark 4.1.7. We end up this paragraph with a remark. The non - degeneracy as-
sumption (1.0.9) can be weaken for the proof of the Spectral Separation Theorem. It is
included for making the construction of the bundle of solutions simpler. In general one has
to examine the various normal vanishing rates of the eigenvalues of A*A. In particular
the bundles of solutions examined here will have a layer structure corresponding to those

rates and possibly will have a jumping locus in their dimension.
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4.2 The operators D? and D?

Recall the Spin® bundle

T(E® F)lz - N

with connection V introduced in Section 2.2. In view of Lemma 3.1.1, this connection

restricts to a connection of the bundle 7*(K @& K)|; — N. Accordingly, the restrictions
D:T(N,, K,) > T(N,,K,), VzeZ

and
D? :T(N,7*(K|z)) = T(N,7*(K]|z))
are well-defined with adjoints )" and DZ and satisfy the following:

Proposition 4.2.1. For every section £ : N — 7*(K|z), we have
(P"D? + D?P)¢ =0,

and therefore

I( + D?)¢|l3 = || PElI3 + | DZ¢)3.

Proof. Recall the chart (3.1.1) centered at p with tangent frame {J4}, A = i, so that
Jd4l = ea and the parallel frame {0y} on E\NU so that Vo, = 0; + w?k,. Then by

(2.2.2) e?V;Xe?‘ = (d+d*)e® = ((d+d*)dya|y). = 0. Moreover the last relation of (3.1.5)
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evaluated at p gives V; A, = 0. Hence if £ = foy. at p

D'D7E = (%00 +wadl)e' V€
= —e'Vi(€®(Oaf)op + (Vi e®).(Dnf)op
— wae?vi(Aafak) + wae?(ViAa)fak

- —D7pe

Since p was arbitrary this holds everywhere. The last identity follows since the cross terms

are zero by the first. O

Note that V is really a restriction of V to sections of the above bundles and that
and K can be viewed as subbundles. Recall the construction of the bundles K;, KZ from
Proposition 4.1.5. It follows that V preserves them inducing in that way a connection
on sections of K; & K; and hence a well defined connection on their direct sum bundle
K & K — Z. This connection will not in general be compatible with the Spin® structure

on K @ K unless the second fundamental form of the embedding Z < X is trivial.

Definition 4.2.2. The restriction operator

D? = ¢V, :T(Z,K) = I(Z,K)

1s well-defined Dirac operator.

Hence solutions £ : N — 7*(K|z) of the equation

(lps + Dz)g =0
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are explicitly given in terms of the distance r from Z by
Ly, .2
=) e 2Ty, (4.2.1)
7

where p; > 0 and where ¢; € T'(Z, K;) satisfies D% w; = 0. In Chapter 5 we use these
Gaussian sections (see Definition 5.1.2) to construct a space of approximate solutions of

the equation
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Chapter 5

Approximate eigenvectors

5.1 Low-High separation of the spectrum

Our main goal for this chapter is to prove the Spectrum Separation Theorem stated in
the introduction. For that purpose we will use the bundles Ky introduced in Chapter
1 and define a space of approximate solutions to the equation Dg& = 0. The space of
approximate solutions is linearly isomorphic to a certain “thickening” of ker Dy by “low”
eigenspaces of D} D; for large s. The same result will apply to ker D}. The “thickening”
will occur by a phenomenon of separation of the spectrum of D} Dy into low and high

eigenvalues for large s. The following lemma makes this idea precise:

Lemma 5.1.1. Let L : H — H’' be a densely defined closed operator with between the
Hilbert spaces H, H' so that L*L has descrete spectrum. Denote E,, the u- eigenspace of

L*L. Suppose V is an k- dimensional subspace of H so that
Lo < C1uf, Yo e V and |Lw|? > Colw|?, Vw e V.

Then there exist consecutive eigenvalues i1, g of L*L so that pp < C1, pg > Coy and if
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i addition 4C1 < Cy, the orthogonal projection

P: P E.—~V
H<pq

18 an isomorphism.

Proof. Let p1 be the k-th eigenvalue of the self-adjoint operator L*L with counted mul-

tiplicity and po be the next eigenvalue. Denote by Gj(H) the set of k- dimensional

subspaces of H and set W = &<, £y, also k-dimensional. By the Rayleigh quotients

we have
Ho = max { inf |Lv\2} > inf  |Lv|? > Oy,
SeGL(H) * pesd juj=1 veVL juj=1
and also
{1 =  max { inf |Lv|2}.
SeG_1(H) *pest =1

But for any k — 1-dimensional subspace S C H there exist a unit vg € ST NV so

< max {Lv 2}§C.
111 5l | Lvg| 1

Finally, given w € W write w = vy + vy with vg = P(w) and vy € VL. Then

Colw — P(w)[* = Cylvy[* < |Lvy|* < 2(|Lw|? + [Lvg|?) < 2(py + C1)|w]? < 4C [w]?

and so |idy — PJ? < 4%. If additionally 4C1 < C9 and P(w) = 0 for some w # 0 then

[wf? = Jw = P(w)|? < fidy, — P*|w]® < ]
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a contradiction. Hence P is injective and by dimension count an isomorphism. O

We have to construct an appropriate space V' that will be viewed as the space of
approximate solutions to the problem L& = Dg& = 0. It is enough to describe the
construction for a fixed m - dimensional component Z = Z;,. For this purpose we introduce
a cutoff function p near Z.

Let N' = Ny, be the tubular neighborhood of radius 2¢ around Z. The exponential map
N — exp(N), is a radial isometry along the vertical directions and the distance function

r from Z. Let p: [0,00) — [0,1] be a smooth cut off with 5~1({0}) = [1,00), p~1({1}) =

[0, %] and strictly decreasing in [%, 1] with |p/| < 3 and define

{ ﬁ(@) p =exp(z,v) € exp(N)

0 p € X\ exp(\N).

Let Ky be the bundle over Z, as in Definition 1.0.7; Ky is the direct sum of common
eigenspaces K; of the family {M, = —e®A,} of positive common eigenvalues p;. As in
Definition 4.2.2, the Dirac operator DY acts on sections of ICp along each component Z,

of Z 4.

Definition 5.1.2. For each component Zy of Z 4, set
s D 7
V7 =span{p-e 2" 1o | p; € T(Zy, K;), pi > 0, D7l =0},
where T is the parallel transport map defined by (3.2.2). Taking the direct sum over all
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components of Z 4 we construct the space of approximate solutions along Z 4

V=PV cLM(X E).
12

and denote by VSL the closure of its L?-perpendicular in the LY2-norm:
il Lr2 1,2
V= Vg NL (X, E).

Notice that VZSl is L2-perpendicular to V282 for Z1 # Zy since their corresponding
sections have disjoint supports. There are completely analogous constructions of the

spaces VZSE, Vs for D¥ and LV2(X, F) =V, & Vit

Theorem 5.1.3. There exist an sg > 0 and constants C; = Cj(sg) > 0, i = 1,2 so that

when s > sg

(a) For everyn € Vs,
Cq
1Dl < Ll G.1)
(b) For everyn € V-,

|Dsnll3 > Calln|3: (5.1.2)

The same estimates hold for the L?-adjoint operator D}.

In proving estimate (5.1.1) we will use the following growth rates of Lemma 5.1.4. The
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proof of estimate (5.1.2) will be given in the next section.

Lemma 5.1.4. For every k > 0 there exist a constant C > 0 depending on the eigenvalues

{;} of the family { My} so that for every p - & approzimate solution with ||€||o = 1
[ We? + ey < 57 and [ PV ePaya: < 05
N N

Furthermore there exist an sy = sg(€) so that

[ ot Pz > 5

for every s > sg uniformly on ||€||o = 1. Here r = |y| is the distance from the singular

set Z 4.

Proof. We write

n—m —lsu'7“2
Ezy)=s & Y e 2y,

7

with DZgoi = 0 and p; > 0 for all 7. Denote by Vj,—;, the measure of the n —m — 1 -

dimensional unit sphere. Then there exist C' > 0 with

[ owPhigtagse = TS [ e aya:
N ~ N
ke o 2%—1 2 2
= s Vn_mZ/ plm M=l o= dr/ lpil|“d=
~ Jo Z
7

o0 2
< CS_kVn—m E / P Ml dT/ |90i|2dz
— J0 Z
i

- CsF
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and

o0 2
/’y\%!@‘/ﬂ?dydz = sl_kVn—mE / p2p i nomeaLo—pr d?"/ [pildz
N ~Jo Z
1

o 2
< O Mo Y / P!l gy / il dz
A 4
2

— sl Fk

Elliptic regularity gives

/ 0% i2d= < ¢y / oif2dz
A A

for every i. Using 2ab < a2 + b2

00 Hithj o
/ ly|?* 108 ¢ Pdydz < SkVan/ phtn—m=l =y dr/((?(pi,f)goﬁdz
—k * n—m—1 —,u~r2 2
< Cs Vn—mz ; r e " dr Z|g0i| dz

7

— CsF,

For the last part we change to w-variables and estimate

2 _ 2( W \ie12 2
Jeeveeora = [ PCmerhz [ el

s
2

6\/§ 2
b [ [ o
)

<

where N (y/s) denote the tubular neighborhood in the normal bundle of radius e4/s. But
2 2
there exist sg = sg(€) so that foe\/g pmm=le =i qp > b [0 pnmm=le=ii g for every i

and every s > sg. The result follows. O
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Proof of estimate (5.1.1) in Theorem 5.1.3. Recall the tubular neighborhood N of Z, the

chart (N, {z, ya}) described at (3.1.1), the frames {0;|y = e€;}, {0aly = ea}, the

parallel transport map 7 and the bundles K = ker A and K = ker A* from Chapter 2.
Choose i) = p-& € Vs with ||€]|o = 1. With respect the decompositions E|y = K & K=+

and Fly =K @& K+

The Taylor expansion from Corollary 3.2.4 gives

1,02
(D+sA)y = dp& + p-e 2" D%y,

2
A 0 e 2%Hi" o
+ p'7'<€-aaa + SYa ) )
0 x(2) 0
+ p- O(r26V +rof 4 serd)e
= dp& + p-O(r20Y +rof 4+ 53¢ (5.1.3)

Because dp has support outside the e‘/Tg—neighborhood of Z 4, the L? norm of the first

term on the right hand side is bounded as

0 2
dp.€2dydz < C Pl gy < g
N €v/s 3
) 2

Also, by Lemma 5.1.4 the squared L?- norm of the error term on the right hand side of

(5.1.3) is bounded by % Furthermore, there is an sy > 0, independent of that choice of
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7, so that HnH% > % for every s > sg. This proves the result. O

Applying Lemma 5.1.1 we get a proof of Spectrum Separation Theorem stated in the

Introduction:

Proof of Spectral Separation Theorem. Choose sy > 0 so that the constants of Theorem
5.1.3 satisfy 4% < (9 for every s > sg. Then apply Lemma 5.1.1 for L = Dg with

H = IL*(X,E), H = L?(X, F) and Vs constructed above. But by construction

Vi, = ker{ D%t : T(Zy,Kg) — T(Zp, Ky)}

VZSK ~ ker{D?0 : T(Z;,Ky) = T(Zy, Kp)}

for every ¢. This completes the proof. O

Remark 5.1.5. Combining Theorem 5.1.3 with the proof of Lemma 5.1.1 we actually

get the stronger statement that if ||£]|s = 1 and Dg& = 0 then

4Cq
- P < — )
e~ PO 0 as 5o

5.2 A Poincaré-type inequality

This section is entirely devoted to the proof of estimate (5.1.2) of Theorem 5.1.3. Recall

the tubular neighborhood A and the chart (3.1.1). A is a Riemannian manifold with
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X

two equivalent metrics: ¢< and gZ X gN . These induce two different densities |dvol|

and dzdy which, under the exponential map, are related by |dvol| = kdzdy for some

map k : N — RT. Henceforth we will be using the density dzdy and the constants

of equivalence will be suppressed in the calculations. Note that when w = /sy then
n—m

dzdw =s 2 dzdy.

For the proof of estimate (5.1.2) Theorem 5.1.3 we need the following lemma:

Lemma 5.2.1. If estimate (5.1.2) is true for n € V- supported in N' = N (2€), a tubular

neighborhood of Zy, then it is true for every n € VSL.

Proof. Let py : X — [0, 1] a bump function supported in B(Zy, 2¢) with pg = 1in B(Zy, €).
Write n = pgn+ (1 — pg)n = 11 +ne with supp 11 C B(Zy, 2¢) and supp 72 C X\B(Zy, €).

Then

HDanQ = ||Ds771||2 + ||Ds772||2 + 2<D3771a Ds772>- (5~2~1)

Since pyg - p = p we have n; € VSl and by assumption there exist Cy = Cy(e) > 0 and

so = sp(€) > 0 so that

2 2
[Dsmill7o = Collmll7 o

for every s > sg. Also since 79 is supported away of Z 4, by Proposition 1.0.2

1Dsnal® > %[ An2 || = s|(na, Bama)| > (s°k* — sM)||ma|>
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To estimate the cross terms we calculate

Dsm = paDsn + (dpy).n, Dgsny = (1 = pa)Dsn — (dps).n

and hence

2
(Dsm, Dsn2) = /Xp4(1—p4)|Ds77! dvg+/X(1—2p4)<(dp4)-n,Dsn>dvg

2 1 3
- /X}(dm)-nl dvg > —§||Ds77||2—§/X\(dp4)-n|2dvg

for every s,e > 0. We used that |ab| < %(a2 +b%) and that (1 —2p4)? < 1. But (dpy).n

is supported in X B(Z,¢) hence by Proposition 1.0.2 applied again

2 2 Ce 2 1 2
dpg).n| dvg < C, dvg < ———1||D < —||D
JlamaPa <o [ nfany < gt < gDl
for s large enough. Hence
(Dsm. Dsi) > ~|[Dsnl3
Substituting to (5.2.1) and absorbing the first term in the left hand side there is an

s1 = s1(€) with

3|Dsnl> > | Dsm|? + (s*k%€% — sM)||m®

2 2
> Colllml2s + Inel5)

v

2
Collnll
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for every s > s1. O

Since L2-norms are additive on sections with disjoint supports it is clear that we can
work with n € VSL so that supp n € N for some individual tubular neighborhood of some

individual singular component Z, = Z.

Proof of estimate (5.1.2) in Theorem 5.1.3. This is a Poincaré type inequality and we
prove it by contradiction. Suppose there exist s sequence {Sj} — 00 of positive numbers
with no accumulation point and a sequence {n;} C LY2(WN, E|)r) so that nj € VZSj has
[n;ll2 =1 and HDsjUj”% — 0 as s; — o0.

Recall the tubular neighborhood N' = B(Z,2¢) of Z, the chart (Ny, {z;, ya}) in
(3.1.1). In this chart we have the frames {0;|y = ¢;} and {04|y = ea}, the parallel
transport map 7, and the decompositions E|; = (K @ K1)|, and F|,; = (K & K1)|,

from Chapter 2. Introduce

m—-n

i) = s, 1oy (%) and €7 (2, w) = (2w (s w) with ~(zw) = p ()
for T'> 0 in w =, /s;y coordinates. We have the decomposition ng = §jT1 + §JT2 where

I B(Z,T)—n*(K d ¢ Bz, T)— K+

§i1: B(Z,T) = 7" (Klz) and &y : B(Z,T) = 7 (K~|gz)

both supported on B(Z,T).
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Now in w-coordinates

= /5 (%0uy + waVaA)] (2,w)

T
= \/%(lbfj )(va)'
Hence in w-coordinates Corollary 3.2.4 shows that

1
sjA0(Efa) + (/5P + DP)E] = Dy (€]) + ﬁo(WaV + w|o + |w])¢] (5.2.2)

for every |w| < T. The L? norm of the left hand side is

/|sjAo(§]T2) + (\/S_le+DZ)€jT|2dwdz = /|(sz40 + \/S_le+DZ)£jT2|2dwdz
+ /\(\/S_jerDZ)ﬁjTﬂzdwdz. (5.2.3)

But by the concentration condition (1.0.1) for Ay there is a C7 so that
(Va7 + D?)"Ag + A5(y/550 + DAl < 5;Calgfl*.

Also there exist Cy > 0 so that |A0§%|2 > Og|§f2|2. Hence there exist C3 > 0 so that

for all large s;

/ (5540 + (v/5;+ D7)y Pdwdz > s5Cs / ]y [Pdwdz + / (/5 D+D?)elo P dwdz.
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Substituting back to (5.2.3)

/ |5 40(Shy) + (/5710 + DY)l Pdwdz > s3Ch / €]y Pdwdz (5.2.4)

+ /|(\/s—jlﬁ + DP)¢] Pdwdz.
By ellipticity of 1) + DZ the L? norm of the error term of (5.2.2) is bounded by
[O(w 0" + wlo™ + [wl)¢f 15 < Cr(I(2+ DY) 115 + 1€ 1)

Therefore, taking L? norms of (5.2.2), substituting (5.2.4), using Proposition 4.2.1 and

absorbing terms in the left hand side, one obtains

: L2 Cr T2 CT\I D2 T2
C L 2dwdz + (s, — D)DETNE + (1 SL)|DZeT3 (525
55 3/B(Z’T) €l dwdz + (s; =7 DE; 5 + ( DIDZef 13 (5.25)

€2

2 2
< 3 [ ldpgPazduw + 1Dyl

By assumption, the right hand side is bounded in j, hence ||§jT2||2 — 0, ||lD§;‘F||2 — 0, and

the sequence

I + D)l |13 (5.2.6)

is uniformly bounded in j. By elliptic regularity for the operator ) + DZ, the sequence
v = 12 is bounded. By Rellich Theorem there is a subsequence, denoted again as
J

{ng}, that converges to &1 : B(Z,T) — n*(K|z),where &I is a compactly supported

section with [|€7]|a < 5||&]l2 = 5 . By the weak compactness of the unit ball in L2,
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we can also assume that SZ-T — §T weakly in LY2. In this context, (5.2.5) shows that for

every smooth section 1

[ 0% deds = [ (D jduds = tim [ (] DPg)dud:
B(Z,T) B(Z,T) i JB(zT)

~ lim / (DZET pydwdz < lim | DZET ]|l
vt JB(ZT) ¢

Ce
< — .
<
Therefore ¢1 satisfies
C
D%l < o5 BT =0 and (€72 <5

for every T' > 0. Now notice that when 77 > T then ST/ agrees with ¢7 in B(Z, %) Hence
there is a well-defined section £ : N — n*(K|,) with ¢ = ¢7 on every neighborhood

B(Z, %) C N. Furthermore, by Lemma 5.2.2 below, there is an estimate

I 2 < OO+ DA + 1€71) < € (G5 +5) (5:27)

where the constant C' is independent of 7. Letting T" — oo we see that £ is in fact an

LY2_section satisfying
DPE=0 and DZ¢=0. (5.2.8)

Claim : £ =0

By assumption 7; L VZSi. Using Definition 5.1.2 this condition translates in w = /s;y
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coordinates as

n—m

1 2 1 2
mLpes; e 2y = g Ly ey

for every section ¢ : Z — K with D%y = 0.

The sequence £Z.T is supported in B(Z,T) and since ||;|l2 = 1

/ Psi 'ei%u|w|2<§f’¢>dwdz - / Ps; * ei%mw@(ﬁ? — &, )dwdz
B(Z,T) B(Z,T)

= [ e P - g vduds
B(Z,T)

1 2
/ e~ 2hlvl 2 dzdw
B(Z.T/2)¢

IN

for every i, T. Hence passing to the L? limit as i — 0o

/ 20 (€T pyduds < / ey 2z,
B(Z,T) B(Z,T/2)¢

Lowl2
Letting T — oo we see that € is L2 orthogonal to e~ 2Hlvl Y. But € is in L12 and satisfies
(5.2.8) therefore, by (4.2.1) £ = 0. This proves the claim.

It now follows that for every T' > 0, as i — oo

lim nil2dydz = lim &2 dwdz = / £]2dwdz = 0.
i—00 JB(Z,5L=) i—00 JB(Z,T/2) B(Z.T)2)
(25 75 /

Finally, we obtain a contradiction from the concentration estimate. By the nondegeneracy

assumption (1.0.9) the bundle map A satisfies A*A|x = |y|>M + O(|y|3). Hence by the
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proof of Theorem 1.0.4 we estimate

1Dl = 2 [ AR = Cusy [ Py
B(Z7787) B(Z7757.)
Co 2 2
> g (V72 .
2 P [ Py

72\/§
C
= 5(22T —Cp)(1 - / \m|2dydz).
4 B(Z.3 )
(3

But then for a fixed T > 0 large enough, as i — oo we have liminf; [[Ds;n;l2 = oo

contrary to our original assumption that || Dgn;ll2 — 0. O
The following Lemma was used above to obtain estimate (5.2.7).

Lemma 5.2.2. For any compactly supported section & : B(Z,T) — n*(K|y), there is an

elliptic estimate

I€ll12 < CUIP + D)2 + [1€]12)

for some constant C > 0 independent of T

Proof. Recall the calculation (4.1.12)

D PE=—3 0% =) Mag + > wiM3g
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where My, are self-adjoint. Taking L? inner products with &, we obtain

1pel3 = ZHEMH%—Z/(Mag,g>dwdz+Z/wgwag\?dwdz (5.2.9)
> S 10u¢l3 - Y [ (Mag §)dud:

> Y 110agl3 - arllel
[0

with Oy independent of T. Also, there is a Weitzenbock identity for DZ : T'(Z, K|;) —
I'(Z, K|z) of the form

D?ZD%¢ =V*VE + RE

for some curvature term R. Again taking L? inner products with &, there is a constant
Cy > 0 with

/ Ve2dz < © / (D% +1¢2)d.
A A

When ¢ is instead, a section supported in B(Z, T') we integrate this inequality with respect

to the w-variable to get

107 ¢)l2 < C(| D72 + |I€]l2) (5.2.10)

Combining (5.2.9) and (5.2.10) we get the result. O
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Chapter 6

Nonlinear concentration

6.1 The nonlinear model

There is a simple way to “nonlinearize” concentrating Dirac operators. Suppose

—~

Ds=D+ 8./4¢ : F(W) — F(W)

is a concentrating Dirac operator determined by ¢ € T'(£). Suppose that W decomposes
as a sum @;W; of bundles, one of which, say W7 = £. Then we can convert the linear

PDE

DE+sA =8  §=(&1,-,8k)

to a non-linear equation simply by taking v = £;1. The resulting equation
D¢ + sAc§ = &

is quadratic in £. It is interesting to study the concentrating properties of the solutions

to this problem.

For example, let (X, g, WT@W ™, ¢) a 2n-dimensional Spin® Riemannian manifold with
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determinant bundle L = detc(W ™). A fixed Hermitian connection Ag on L determines
a Dirac operator Dy acting on spinors. Fixing additionally ¢ € I'(W™), special instance

of the Clliford pairs example is

DE + %A¢g =& (6.1.1)

@
where & = e (Wt @ A%4X) and & € T(W™ & AU X). Since ¢, p € T(WT) we
(6]

can take 1 = ¢ to get a nonlinear example.

6.2 Examples

In examples 8-10 below, we take W7 to be a spin bundle and W5 to be a bundle whose
sections are connections, as in the linear examples 4 and 5 of Chapter 2. However, we
restrict the operators Piv/ 0dd ¢ the real subbundle A°V/0dd x ® iR of AcX and we treat

the term « of £ as a connection 1-form. Introduce a new connection A of L satisfying
1
A—Ag=a, FA—FAO:CZO( and DA_DA0:§O¢-

for a € Q1(X,iR).

Finally it worth to be noted than when we restrict PZU/ odd 1, nev/odd x 1 map
0 A
Wt = End(Et @ E7): ¢ v
./41/} 0
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defines a real Clifford representation of W7 to E.

Example 8: Let (X, w, J) be a closed Riemman surface with canonical bundle Ky, and a

holomorphic line bundle L giving a Spin¢ structure on ¥. Then WT =L, W~ = K 5 oL

_ 0
and Dy, = aAO' For &y = ‘ equation (6.1.1) is rewritten as

1

= 1
8A01/1 + §aw =0

1 .
(d + d)a = 5Py — %w + Fay = 0.
But for every p € R
(PE 0, (p, w)) = plol — iy

since w.y = 11). So P§U*¢ = |w\2—z’]w|2w and the projection to imaginary part is —i\¢|2w.

Therefore the above equations are rewritten as

ogp = 0

)
Fy o= b -
d*a = 0.

The first two equations are the r-vortex equations and the third one is a Coulomb condition
defining a slice of the U(1)- gauge action on I'(u(L)). Vortex equations have been studied
thoroughly over C by C. Taubes (see [JT]) and over closed Riemann Surfaces and more

general line bundles over closed Kéhler manifolds by O. Garcia-Prada (see [O]) and S.
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Bradlow (see [B]).

Example 9: On a symplectic 4-manifold (X,w, J), adopting the definitions of Example

0
4 of the linear case for D and Ay, using as §y = for r € R, equation

(611) 1s rewritten as

1
DAOw + §Oé’¢ =0

1 i
—+ * _  pevx o + _
(V2dT + d*)a SR+ ﬁw+¢§FAO 0.

However a simple calculation shows that P{Zl’*d) = /27 (1) ® ¢) therefore

Dap = 0 (6.2.1)
FA" = %(7’(1/} ® 1) — irw)
d*a = 0.

The first two are the perturbed symplectic Seiberg-Witten equations and the last one is

defining a slice of the U(1)- gauge action on I'(u(L)) as in the previous example. If (X, g)

0
is a 4-manifold with out a symplectic structure then for £y = we get the

—\/§FX0
unperturbed Seiberg-Witten equations.

Example 10: The following example is the next interesting perturbation on a non
Kahler complex surface with positive geometric genus. This case has been studied by

O. Biquard (see [OL]). If (X, J,g) is a complex surface with dim Hé’O(X) > 0 then
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we can choose a holomorphic section b of the anticanonical bundle K)_(l of X and take

0
& = . Equation (6.1.1) will then correspond to the equations

b+ b) — \/§FXO
Dgp = 0

d*a = 0.

Remark:(L2-concentmtion for the symplectic SW equations.) The perturbation irw by
the symplectic form was introduced by Witten for Kéahler manifolds, then studied in detail
by Taubes, who showed solutions localize as r — oo. We include this remark with the
L?-nonlinear concentration (see also [D]). For the subtle pointwise estimates see [T2] and
for the subtle behavior of the concentrating set see [T1] and [T2] This perturbation is
different from the perturbation s.A;, in the concentration Theorem 1.0.4.

In the following calculation we basically use a parameter  to interpolate between the
Weitzenbock formulas of nonlinear Examples 7 and 8. This enables one to analyze the

nonlinear concentration for the pair of equations (6.2.1).

With respect to an orthonormal basis {1, %dil A dzo}, we denote by (Fy), the part
of Fy parallel to w, FB{Q = (F2)%2dz A dz, B = %(B)dil A dZy and one can write

Y = /r(a,(B)) on WF = L® LK. Then

s(lal® = 18) a(p)

V@T — Llulrd =
a(B) 331812 = |al?)
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and

Equations (6.2.1) are then rewritten as

i(Falo = 72— la”+18) (6.22)

Fy? = Zap. (6.2.3)

r
2

If V4 and 04 are the connection with it’s (0,1) - part on L — X, then D4 = v/2(d4, o)

is the Dirac operator on W and we have the identities:

3124a = % 2’2a - i@AaoNJ (6.2.4)
D400 = %(vgvAa—i(FA)wa) (6.2.5)
0aT38 = GVAVABHi(R + 5Fa)ub (6.2.6)

Akl = 5= [ 5P nw = 5= [ (Faude, (6.2.7)

where R denotes the curvature of K . Observe that the difference in the i signs of formulas
(6.2.5) and (6.2.6) comes from the fact that w. has eigenspaces L and LK with eigenvalues
—21 and 27 respectively. Finally we compute:

. AV FiOaa + B4

—D Dyt = (Dga + 0345) = . (6.2.8)

2 I Pha  + 0,058

0 =

Taking L2 - product with a on the first row element of (6.2.8) and using (6.2.4) and
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(6.2.5), for 0 < § < 1:

~x = - ~ )
0 = (03040, a) +(F4946, a) = (1—0)[0aal® + §HVAGH2
10

7 | (Faolal*dvg + {3, Tha)

- ) . 10
= (1= )aal? + SIVaal — i [ (Faudvg + 5 [ (Falu2 = laPyivg
X X

1

1
5(&7 F2’26L> - Z<ﬁ7 aAaONJ>'

Using now equations (6.2.2), (6.2.3) and (6.2.7) and after a few calculations:

- ) rd r rd
0 = (1=)daal? + 5ITacl? + TUSIE + 52 Dasl + 7 [ @~ laf? Py

8 8
— ombey(L)w] — }lw, daa0 N, (6.2.9)

Similarly taking L? - product with 8 on the second row element of (6.2.8) and using

(6.2.4) and (6.2.6):

_ - 1 1 1
0 = (Bha, B) + (04048, 6) = 5(Fya. B) — 1(9aae Ny, B) + S|Vl

. 7
b [ Rolavg + 5 [ (FaualofPaug
X X

Using again equations (6.2.2) and (6.2.3) we conclude:

1 2 Tian2 o Tian2 o " 1 : 2
0 = SIVABI + J181 + Glasl? + § [ 11ty + i [ RolaPas,

— i(@Aa oNy, S). (6.2.10)
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Finally, adding up (6.2.9) and (6.2.10), the Weitzenbock formula from (6.2.8) will read:

. 5 1 r
(1= 0040l + SN0l + SIS + (1+8) 5817
T r
+ G- 0ghasl? + g [ (81 + 52 o))y
X

= 2mocy(L)[w] + %%(,3, dqao Nj) — i/XRw|/3|2dvg (6.2.11)

for every 0 < § < 1. On the other hand, there exist C' = C'(X,w, J) > 0 such that

1 , C o
FR(. 0400 Ns) = i [ RulpPavy < F1817 + Fl0aal® + CIAI?

C J
= 0SB + 2oaal?
Substituting to (6.2.11) and absorbing the terms to left hand side we get

- 1 C
(L= 0)daall + FIVaBI* + (1 +8)G = D8I + (8 = d)gllas]’
T

< 3 /X(|B|4 + 62— |a]®)?)dvg + 2mdeq (L)[w].

For r large and § = %, the terms in the left hand side are all positive and we get the
desired concentration when c¢j(L)[w] > 0 i.e. L — X is a nontrivial line bundle and the

zero set of it’s section a is nonempty. From this we see that as r — oo

1Bl 12 =0 sl 2 =0 2= 2 — 0.
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APPENDIX
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Manifold structures on the space of Fredholm opera-

tors

Let E, E' be separable Hilbert spaces over the field K = R or C. Let also B := B(E, E')
be the set of bounded linear operators, F := F(E, E’) the space of Fredholm operators
and F; := F;(E, E') the space of Fredholm operators of index i. Then F; are the open
connected components of the set F, an open subset of the set B. Then F; = >0 .7-"Z.k
where ]:ik are Fredholm operators with k - dimensional kernel and (k — i) - dimensional

cokernel (k > ).

Proposition .0.1. Fach FE s a k(k — i) - codimensional submanifold of F; and for

7

D e FF

TpFF ={P e B: P(ker D) C ImD}.

Proof. Let E = ker D@ ImD*, E' = ker D* ®ImD where D* is the corresponding adjoint

of D. Then with respect to this decomposition D and an arbitrary D’ will be written as

with d € Fg(ImD*, ImD). We would like to parametrize fl.k near D. To do that suppose
there exist kq : ker D — (ker D)+ = ImD* with adjoint ki and kg : coker D = ker D* —
ImD = (ker D*)* with adjoint k5. Then

{(z,k1 (7)) :z €kerD} =ker D'  and  {(y, k2(y)) : y € ker D*} = ker(D')*
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for some operator D’ € .Ff since given a pair of different finite dimensional subspaces
we can always construct operator having them as kernel and cokernel, a consequence of

Hahn -Banach Theorem. We also get the extra set theoretic relations

{(=k}(z),2)) : z € (ker D)} = (ker D')t and  {(—k3(y),v)) : y € ImD} = ImD’.

Since D’ : (ker D’)J- — ImD’ will be an isomorphism, for every y € ImD there exist

unique = € (ker D) with

o B [~K@) (k)
v 9 T Y

so we get
—aoki(x)+B(x) = —k3(y) (.0.1)
—yoki(x)+d(x) = y (.0.2)

and furthermore —y o kf + 0 : (ker D)= — ImD has to be isomorphism. Eliminating y

from (.0.1) and (.0.2) we get

—aoki+fB=kioyok] —kj00 (.0.3)
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on (ker D)*. On the other hand, for every z € ker D

a f x
=0
v 0 k1(z)
S0
a+pPok = 0 (.0.4)
y+doky = 0. (.0.5)
Substituting v from (.0.5) into (.0.2) we get
—yoki+d=2040(kyok]+id) (.0.6)

Furthermore substituting o and 7 from (.0.4) and (.0.5) respectively to (.0.3) we get

Bo(kyok]+id) =—k50do0 (kok]+id). (.0.7)

However since £ and E’ are separable and kj o k] is selfadjoint, by spectral theory,
k1 okt +id: (ker D)= — (ker D)* is an isomorphism. Therefore we get that

e using (.0.6) 6 : (ker D)+ — ImD is an isomorphism

e using (.0.7) B = —kj00
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Finally

, a f k5060k) —kgood
D = =
Y ) —do ]{:1 )
B —k5 k5 0 0 —ky1 id
id 0 0 0 0 0

If D' is close to D in the operator topology then we can see that ker D' and ImD’
can be described uniquely as graphs via some k1 and ko respectively giving the above

decomposition for D’ in terms of D. Conversely given
e ki € B(ker D, (ker D)1) C Gi(E)
o ky € B((ImD)*, TmD) € Gp_;(E')
e )€ fg((ker D)+, ImD)

we can form the map ®(kq, ko, d) = D" as described in the above decomposition with the
resulting D' € ‘Fik . This will be the required chart of the space Ff (E,E') around D.

Using this chart it is easy to verify the last description of the tangent space TD]:Z'k- O

Remark .0.2. 1. For £k =1 a complement of the space TD}"& is the family of spaces

CS = {PeB(E,E): P(ker D) = C}

for C' any 1 - dimensional complement of ImD in E'. If D € .7:11 then TD]:11 =B so

we have trivial complement in this case.
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2. In a sufficiently small neighborhood U C F(E, E’) of D, using the decompositions

E =ker D ® ImD* and E’ = ker D* @ ImD, the map
Fy, : U — Hom(ker D, ker D*) : D' = —» A—BoA 1ol
satisfies the relation Fk_l({O}) =Un ]:ik giving a local model structure of a sub-

variety to .Fik C F(E,E'). Actually the various {F}, : k > 1} give to U1 .7-"2-]‘5 the

structure of a stratified subvariety of B(E, E').
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