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ABSTRACT

ANALYSIS OF MULTIRATE DIGITAL CONTROL BASED ON HIGH
GAIN OBSERVER AND SINGULAR PERTURBATION THEORY

By

Muhammad Yasin

A multirate control structure allows the designer to accommodate multiple
information rates and implement required control computations within the finite
computational capabilities of an onboard computer. The purpose of this study was to
analyze the multirate scheme of a stable, linear, and time invariant system. The output
feedback control is so designed that it uses a very high gain observer in its feedback path.
The dynamics of the control are slow as compared to the dynamics of the observer. The
behavior of the system is also analyzed using singular perturbation theory to see how the
fast and slow modes behave in first cycle. Also, singular perturbation theory is used to
show that the performance of the system under state feedback control can be recovered by
using the output feedback control which uses a very high gain observer in its feedback
path. The performance of the system is also studied by changing different parameters
like, initial conditions, value of €, and sampling times. In computer simulations, it is seen
that saturating the control helps in reducing the peaking phenomenon, that occurs due to

different initial conditions.
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CHAPTER 1

INTRODUCTION AND HISTORICAL BACKGROUND

1.1 INTRODUCTION

Multiple sample-rate digital control systems are of prominent interest in current
control research, development and applications. A multirate control structure allows the
designer to accommodate multiple information rates and implement required control
computations within the finite computational capabilities of an onboard computer.
Multirate digital control is a significant area of research and applications that is motivated
by practical implementation techniques. The motivation for multirate control has
traditionally been in aerospace applications where guidance and control laws must be
designed to accommodate multiple rates of sensor measurements and finite throughput
capabilities of onboard computers. Modern aerospace vehicles and systems are described
by high order dynamic models which typically include phenomena covering a wide range
of characteristic frequencies and instrumentation measurements available at multiple
rates. Multirate design techniques should soon find further utility in control application
for highly distributed systems, such as, communication networks, and power plant /
power distribution networks where the characteristic frequencies and time constants of a
local station’s dynamics may differ significantly from those of the network as a whole.
The historical development of multirate digital control and singular perturbation theory is

outlined in next section.



1.2 HISTORICAL BACKGROUND
1.2.1 Multirate Digital Control

The use of digital control, or more precisely, sample data control, originated in
radar applications in world war II. Because the rotating antenna of a radar system
illuminates a target intermittently, early radar aided tracking and fire control systems had
to be designed to utilize data in sampled form. Methods of effective design of control
systems using sampled data were under initial development during the later 1940’s, and
multirate system theory followed these efforts in the early 1950’s. Initially, researchers
developed multirate techniques as a method of evaluating more conventional types of
controllers such as continuous systems and single rate sampled data systems. For
example, one could study the inter sample behavior of a signal or output of a single rate
control system by introducing a phantom sampler, i.e., a fictitious sampler that operates at
a rate some integer ratio higher than that of the controller. A significant early contribution
to this general method of analysis, known as frequency decomposition, was made by
Shlansy and Ragazzini [1], who described the use of this technique in error sampled
control system development. Shortly following the origin of the frequency decomposition
technique, a similar frequency domain technique, known as switch decomposition, was
developed.

The switch decomposition technique, attributed to Kranc [2], provided a means of
representing a multirate control structure as an equivalent single rate controller, this

representation accomplished , the controller could be designed and analyzed using single
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rate technique. In the late 1960’s Jury [3] showed an equivalence of the switch

decomposition technique and the frequency decomposition technique.

Time domain methods of multirate stability analysis and design were initiated by
Kalman and Bertram [4] with the publication of their state space stability analysis
technique in 1959. Barry [5] published a paper in 1975 in which he described the design
of multirate regulator and showed that its performance was superior to a single rate
regulator having the slow sampling rate. During 1979-81, research at “ The Analytic
Sciences Corporation ” ( TASC ) developed a new multirate control design technique
based on an optimal estimation and control formulation. In parallel with the work at
TASC, Amit and Powel [6], independently investigated a similar optimal control
formulation, among other things, some practical considerations for implementing
multirate control laws and a highly efficient method for solving periodic Riccatti equation
related to the design technique. Different design techniques for multirate digital control

are discussed in [7].

1.2.2 Singular Perturbation Theory

Singularly perturbed systems, and more generally, multi time scale systems, often
occur naturally due to the presence of small parasitic parameters, typically small time
constants, or masses etc., multiplying time derivatives, or in more disguised form due to
the presence of large feedback gains and week coupling. While singular perturbation
theory, a traditional tool of fluid dynamics and nonlinear mechanics, embraces a wide
variety of dynamic phenomenon possessing slow and fast modes, its assimilation in

control is recent and rapidly developing. The methods of singular perturbation for initial
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and boundary value problem approximations and stability were already largely

established in 1960’s, when they first became a means for simplified computations of
optimal trajectories. It was soon recognized that singular perturbations are present in most
classical and modern control schemes based on reduced order models which disregard
high frequency parasitics.

This led to the development of time scale methods for a variety of applications
including state feedback, output feedback, filter and observer design. Singular
perturbation methods also proved useful for the analysis of high gain feedback systems
and interpretation of other model order reduction techniques. More recently they have
been applied to modeling and control of dynamic networks and certain classes of large
scale systems. This versatility of singular perturbation methods is due to their use of time
scale properties which are common to both linear and nonlinear dynamic systems.

The first survey [8] of control theory applications of singular perturbations in
1976, included 130 references. The period of 1976-83 have witnessed an even faster
growth of this research area both in theoretical depth and breadth of applications, as
evidenced by surveys and books given in section A of the references of [9]. A brief
overview of the 80 years of traditional singular perturbations by O’Malley (1982A), [10],
lists 64 major references during that period. An analysis of singularly perturbed adaptive

system appears in loannou and Kokotovic (1983A), [11].
1.3 OBJECTIVES OF THE THESIS

I was assigned to accomplish the following objectives.

a. Design a state feedback control using slow sampling period.
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b. Design of observer based output feedback control using the multirate scheme.

c. Carry out analysis of multirate scheme using singular perturbation theory.

d. Study the behavior of the system under output feedback control.

e. Study the effect of changing different parameters in multirate implementation.

f. Study the effect of saturation of the output feedback control.

g. Study the behavior of slow and fast variables using singular perturbation
theory.

h. Study the behavior of slow and fast variables in one cycle while keeping the

control constant.
1.4 SCHEME OF THE THESIS

Chapter 1 deals with the general introduction and background of multirate digital
control and singular perturbation theory. In chapter 2, design of high observer is
discussed. Also the peaking phenomenon and its remedies are discussed in the same
chapter. In chapter 3, analysis of multirate scheme, using singular perturbation theory, is
done. First the system is brought into standard singularly perturbed form, and then the
approach of [12] is followed to study the behavior of slow variables for one cycle. It is
also shown that the output feedback control recovers the performance under state
feedback control using singular perturbation theory. Chapter 5 deals with the simulations

and their results, and finally the recommendations and conclusion is given.



CHAPTER 2

HIGH GAIN OBSERVER

2.1. OBSERVERS IN GENERAL
2.1.1 Introduction

One of the objectives in control systems design is the achievement of suitable
eigenvalue locations in order to ensure satisfactory dynamic performance. In modern
control theory, linear state feedback provides an appropriate compensation technique to
meet this objective under the assumption that all state variables can be used in forming
feedback signals. Unfortunately, this assumption is not always valid in practice. A well
known approach to overcome this difficulty is to generate the feedback control law via an
estimate of the state vector. The estimation is performed using an asymptotic state
estimator, called an observer, which employs only the available directly measurable input
and output signals. Hence, the problem of designing controllers for systems with
incomplete state measurements is equivalent to constructing observer based controllers.

The idea of observability and controllability was introduced by R.E Kalman in
the 1950’s. Proceeding from a figurative description, it can be said that a system is
observable if it is possible to observe the states by using the output of the system, that is,
to look inside the system from the output. That means, all the states must have a
connection to the output. A system is said to be completely observable if all of its states

are observable. It is some times advantageous to have an observable system, especially
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when the system to be controlled has unstable states. Of course, an observable system is
innocuous if the system is asymptotically stable.

The idea of observability is explained with the help of figure 2.1. The figure
describes a system with input u, output y and two subsystems with the states x; and x; .
The subsystem Su, is observable because the state x; has a connection to the output of the
system, whereas the subsystem Su, is not observable because the state x, is not connected

to the output of the system.
2.1.2 Formal Definition

The formal definition of observability is as given below:-
“ A linear system is said to be observable at time t, if x(t;) can be determined from the
output function y(t, , t) within a finite time interval t; < T < t;. If this is true for all t and
x(t), then the system is said to be completely observable.” Referring to the formal
definition of observability, it is clear that the observability depends on the output y and
the state x.

An equivalent definition of observability states that:-
“A system is observable on interval [t, , t] if any x(t;) is uniquely determined by the

corresponding response y(t) for t < [ty , t;] , where t;> t,.”

2.1.3 Mathematical Description of Observability

The observability phenomenon can be described mathematically by using the
theorem given below. The theorem states that, given the system:-
x(t) = Ax(t) + Bu(t) (1)

y(1) =Cx(1) )



Figure 2.1:

System with an observable subsystem S,; and an unobservable
subsystem S,
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The system (1) - (2) is observable on interval [ty, t; ], if and only if, the observability

grammian

M(t,,t,) = ]@T(t,to)CT(t)C(t)(l)(t,to)dt

l
is invertible ( i.e. nonsingular ). Also M( t,, t;) is symmetric and positive semi definite.
Now consider the output given by :-
y(t) = CO(t,15) x(,)

and assume that the matrix M( t;, t;) is noninvertible ( i.e. singular ). If this is true, there
will exist an initial state x(t;) different from zero which can produce a zero output for
interval of any length. Therefore, the matrix C® (t, t;) is not of full rank n, the order of
the system. Therefore, all the states are not transferred to the output and the system is not
observable.

In most cases, the calculations of the observability grammian is very complicated.
Therefore, as an alternate method, we can use a simpler algebraic theorem to test the

observability of the system. The theorem states that a linear time invariant system

x(t) = Ax(1)
with the output given by:-
() =Cx(1)

is observable, if and only if, the rank r(N) of the observability test matrix, given by:-
N=[AT ATcT —-——(A"_I)TCT]

is equal to n, the order of the system.
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2.2. OBSERVERS IN LINEAR SYSTEMS

2.2.1 Task of Observer

The basic task of an observer is to reconstruct one or more missing states of a
given system by using the system output, provided that the system is completely
observable. The observer has to estimate the state such that the error between the actual
state x(t) and the estimated state x(¢), that is

e(r) = x(r) - x(1) 3)
tends to zero. To build up an observer, a second dynamic system S, is connected to the
output of the original system S, . Such a system is shown in figure 2.2. The system S, has
almost the same structure as the original system S, . Both S, and S, are assumed to be
linear and time invariant. The output of the system S, is y, which is the input of the
second system S, , u is the input to the system S, . The output of the system S, is called

the estimated state x.

2.2.2 Observer Design

Consider following linear, time invariant system S, , derived from (1)-(2)
x(1) = Ax(t) 4)
when system S, is added to S, , it becomes
x(1) = AZ(t) + LCx(¢) (5)
with y(t) = Cx(t) and L is an n x 1 gain matrix. Now suppose the transformation T, which

satisfies

LC =TA- AT (6)
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u y=x

Figure 2.2: Two connected dynamic systems: S, the original system
and S, the observer.
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Also if x(0) = T'x(0) then x(¢) = Tx(¢). The general solution of (5) is given by:-

£(t) = Tx(t) + e (£(0) - Tx(0)) (7)
To prove this solution subtract (4), after premultiplying by T, from (5), we get
X(1)=Tx(t) = A%(1) + LCx(t) - TAx(t) ®)

now using (6) in (8), we get

x(t) - Tx(t) = AZ(@t) - Tx(1)) )
The solution of differential equation (9) is given with (7).
Now for a forced system, apply the transformation T on the input u. So we get
x(t) = AZ(0) + LCx(t) + TBu(r) (10)
The system S, given by equation (5) or (10) is called as an observer and the matrix L is
called the observer gain. The poles of the observer should be chosen on the following
basis:-
a. They should be chosen arbitrarily.
b. They are independent of the poles of the original system.
c. They should be chosen so as to be in the left half of the s-plane, or
equivalently, inside the unit circle of z-plane, to meet the stability conditions.
d. They should be placed at such locations so that the observer system is faster
than the control.
To get an observer with the same order as that of the original system, we let the

transformation T be the identity matrix I. Therefore, (10) becomes:-

x(1) = AZ(t)+ LCx(t) + Bu(r) an
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2.2.3 Determination of System Matrices of The Observer

To determine the system matrices A , B and the gain matrix L, we consider the

error ¢(t) defined by (3) . Taking derivative of (3), we get

é(t) = x(1) - X(1) (12)

Substituting (1) and (11) in (12) , we get
é(t) = Ax(t) + Bu(t) - [2&(:) + LCx(t) + Bu(z)]
or
é(t) = Ax(1) + Bu(t) — A%(t) = LCx(1) - Bu(1)
Now substituting £(s) from (3) in above, we get
é(1) = Ax(r) + Bu(t) — A(x(t) - e(t)) — LCx(1) — Bu(r)
or
é(t) = Ae(t) + (A —A- LC)x(t) +(B - B)u(r) (13)

When the error e(t) tends to zero, the coefficient matrices of (13) must also be zero,

therefore,

A-A-LC=0
which gives

A=4-IC (14)
and B-B=0

which gives

B=8B (15)
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It is seen that B is the matrix B of the original system. The observer gain L can be
chosen arbitrarily to get the desired eigenvalues of the system. The matrix L can be
determined by control design methods, e.g., pole placement.

Now substituting (14) and (15) in (11), we get the observer equation depending on the
system matrices of the original system.

x(1) = (A4 - LO)R(t) + LCx(t) + Bu(t) (16)
or

X(f) = A%(t) + Bu(r) + L(y(t) - CZ(1)) (17)
The block diagram showing implementation of (17) is shown in figure 2.3.

2.3. HIGH GAIN OBSERVER

2.3.1 Output Feedback Control
Consider a fully linearizable system, refer to [13], represented by:-
x(1) = Ax(1) + B[ f,(x) + G, (x)u(1)] (18)
y(1) = Cx(1) (19)

In equation (18), the input term is a function of the state x and the input u(t) with a
coefficient matrix G,(x). The basic structural property of a linearizable system is the fact
that it can be transformed into coordinates where the nonlinearity of the system ( or a part
of it ), satisfies the matching conditions. This permits the cancellation of the nonlinearity
by the state feedback. However, exact cancellation is almost impossible due to parameter
uncertainty, model simplification etc. The fact that the nonlinearity satisfies the matching

condition implies that error in modeling the nonlinearity will also satisfy the matching
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>

Figure 2.3: Block diagram showing implementation of equation (17).
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condition. Therefore, robust control techniques like variable structural control, min-max
control, and high gain feedback can be used to robustify the linearization.

To implement controllers using output feedback, we need to estimate the
unmeasured state variables. The state estimators will have to be designed to preserve the
robustness achieved with state feedback. The output feedback controller is designed in
two steps. In first step, a state feedback control is designed to achieve the control task,
and in the second step, an observer is designed to recover the performance achieved with
state feedback. To get a description of the system which can be treated well, it is assumed
that the system can be linearized perfectly at a chosen state depending upon system

requirements. The linearizing state feedback control:-

u=G'(x)[-f,(x)+V] (20)
cancels the nonlinearity of the system. This cancellation, however requires perfect
knowledge of the nonlinearities f;(.) and G,(.). Since perfect knowledge is almost
impossible, it is more realistic to assume that we only know the models f,,(.)and G,,(.)
of the actual nonlinearities f;(.) and G,(.). To consider the nonlinearity, a perturbation
term & (x,u), depending on the state x and the input u is added. Therefore, the system
(18) can be represented as:-

(1) = Ax(1) + B[- f,,(x) + G,, (x)u(1)] + BS (x,u) (1)
The key feature of this perturbation is the fact that it satisfies the matching conditions,
that is, it enters the state equation exactly at the same point where the control enters.

Suppose now that a state feedback control has been designed as:-
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u(t) = G, (x)[-£,,(x) + D1, x)] (22)

where ®(¢,x) is linear or nonlinear control that ensures robust stabilization or tracking in
the presence of the uncertainty & . Now substituting (22) in (21), we get

x(t) = Ax(t) + BO(t,x)+ Bd (x,u) (23)
Next task is to estimate the state x. Consider the full order observer given by:-

x(t) = A%(1) + B[ f,,(2) + G, (®)u(0)] + L(y(t) - CX(1)) (24)
which reflects the nominal nonlinear model of the state equation together with an error
driving term. Now using the estimate x , (22) can be written as:-

u(t) = G, ()~ fin (D) + (1, 5)] (25)
Substituting (25) in (24) , we get

X(1) = AR(t) + BO(t,%) + L(y(t) - CE(1)) (26)
Defining the estimation error as:-

e(t) = x(t) - X(t) @27)
gives

é(t) = x(1) - x(1) (28)
Substituting (23) and (26) in (28), we get

é(r) = Ax(1) — AZ(t) + BO(t,x) - BO(t,%) + BS (x,u) - L(y — Cx(1)) (29)
We see that the term Bd(¢,x) and Bd(t,x) do not cancel each other perfectly like they
do in linear control. Therefore, we define another term &, dependent on time , the state
of the original system, and the state of the observer as:-

8,(1,x,%) = ®(t,x) - D(1, %) (30)
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Thus, using (30) and (27), (29) can be written as:-

é(t) = (A4 - LC)e(t) + B[S (x,u) +5,(,x,%)] 31)
where 8 (x,u) is the perturbation term which represents uncertainty in state equation,

and &, (,x,X) is an error induced by the presence of the nonlinearities.

2.3.2 Design of Observer Gain Matrix, L

We need to design the observer gain matrix L to stabilize the matrix (A-LC) while
rejecting the effect of the perturbation term. This is ideally achieved if we could design L
such that the transfer function of the observer given by:-

H(s)=(sI- A+ LC)"'B (32)
is identically zero. Since this ideal situation can be achieved under very restrictive
conditions, we try to design L as a function of some parameter €, (¢ > 0 ), such that
H(s) approaches zero asymptotically as € tends to zero, point wise ins.

The challenging task in nonlinear problems is performing closed loop stability
analysis with such observer design to ensure that the closed loop system with the
observer recovers robustness properties achieved with state feedback. In [14] and [15]
Esfandiari and Khalil use singular perturbation to design the observer gain L. The
singular perturbation analysis will be discussed in chapter 3. By representing the closed
loop system as a singularly perturbed one, they show the recovery of robustness
properties in the presence of nonvanishing perturbations. In particular, they show that the
output feedback controller recovers ultimate boundedness achieved under state feedback

control. Saberi and Sannuti [16] use singular perturbations and show recovery of robust
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global stabilization of the origin. Petersen and Holot [17] use an H_ approach to design

L. Gibbens and Fu [18] also use the idea of Petersen and Holot to show the recovery of
robust tracking in the presence of nonvanishing perturbations. Teel and Praly [19] use
singular perturbation approach to achieve semi global stabilization.

A common feature of all these observer designs, when the relative degree of the
system is higher than one, is that they are asymptotic approximators of the output
derivatives. Now consider a second order system having system matrices, A as 2x 2,
and C as 1x 2 , and let the observer gain for this system be given by:-

L=[a 8]
For (A-LC) to be Hurwitz, we must choose a and b to be positive. The transfer function
H(s), given by (32), approaches zero asymptotically, if and only if, its H_ norm does so.
By calculating the H_ norm of H(s), it can be seen that a necessary condition for making
the norm arbitrarily small is that b >> a >> 1. The various observer designs reviewed
earlier arrive at this condition using different procedures. The singular perturbation

approach of [14] and [16] starts from the outset by choosing the observer gain L as :-

L=L2[a8:l
e | 1

for some a >0 .

All the procedures used achieved the condition b >> a >> 1 by choosing a = O(1/¢) and

b=0(/¢?) for a small positive parameter €. To see that these observers are

approximate differentiators, refer back to the observer equation (26), and notice that for
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sufficiently large a and b/a , the transfer function from @ to x is almost zero while the

transfer function from y to x is given by:-

-1 1 Terr| [0
(sI-A+LC) L=——|} ~
sP+ s+l S s

where the approximation is valid on any compact frequency interval for sufficiently large

Qe |
S N

a and b/a. Keeping in view the above discussion, for our thesis we design the observer

gain for second order system as:-

1 17
L=|- —
[e 82]

We use this form of observer gain matrix, which can produce very large numbers. That is

why, it is called as high gain observer.

2.4. THE PEAKING PHENOMENON

2.4.1 Reasons of peaking

There are some intrinsic difficulties with controllers which use high gain
observers. First, such controllers amplify measurement noise. Second, they produce large
overshoots in the transient response of the closed loop system, which we refer to as
peaking phenomenon. These large overshoots, in the transient response, can even
destabilize the system completely.

The observer gain L is designed to bring the transfer function H(s), given by (32),
as close to zero as possible. This requires the observer gain to be very large. The high
gain L assigns the eigenvalues of (A-LC) far to the left in the left half of the s-plane.

Typically, L depends on a small parameter € , such that as € tends to zero, the eigenvalues
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approach infinity. The corresponding modes in the state transition matrix exp[(A-LC)t]

take the form exp(-at/e) for some o > 0. Hence they decay to zero with in an O(g) time
interval. For a relative degree one system, the coefficients of these exponential modes
will be bounded as L approaches infinity because the initial states are totally bounded.

For the systems of relative degree higher than one, the coefficients of the
exponential modes are necessarily driven to infinity as L increases towards infinity. Let
us use the second order system, considered previously, to illustrate this point. We already
know that reducing the transfer function H(s) to zero requires designing the observer gain
L=[a b]" suchthatb>>a>>1. By calculating the state transition matrix, it can be seen
that the 2-1 element is given by:

) 2
—b e 2 sin(db—‘—l—}
2 4

p-2
4

when 4b > a’ , and

when 4b < a.

The magnitude of the coefficient of the exponential mode is greater than Jb in
the first case and b/a in the second case. Thus, as we increase a and b/a , we drive this
coefficient towards infinity. This causes an impulsive behavior in the transient response

of the estimation error. It is to be mentioned here that, the peaking phenomenon is
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associated with the process of designing L to reduce H(s) to zero, irrespective of the

particular design procedure used to design L.

2.4.2 Methods to Reduce Peaking

Following methods help in reducing the peaking phenomenon.

a. In the presence of peaking, we have a bigger incentive to use singular perturbation
theory. This process involves scaling some of the variables by € dependent factor.
Once the system is brought into the standard singularly perturbed form, then it is
known from singular perturbation theory that, there is no peaking when the initial
states are of the order of O(1). Peaking 1is induced only by initial conditions
which are of the order of O( g’ ) with B > 0. Thus the mechanism, through which
the peaking is induced, has been represented as the value of the initial conditions
of some of the state variables. Knowing the scaling factor used to arrive at the
singularly perturbed form, we can clearly see how the initial conditions are scaled.
Through this process we can see how the region of attraction of the origin will
shrink as € decreases. We also see that any destabilization effect, as € tends to
zero, will be induced by initial conditions of the fast variables which take the form
O( g P ). Although the results of singular perturbation theory are limited to cases
when the initial states are of order O(1), realizing the role of the initial conditions
of the fast variable points in the direction which lead to the breakthrough result on
globally bounded control.

b. We can drive the controller and/or the observer into saturation so that it does not

exceed a certain value. But the limits of saturation will have to be defined very
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carefully. The bounded output feedback control recovers the performance of the

bounded state feedback controller as € tends to zero.
As a second possibility, we can use multirate sampling where we use, in digital

control, different sampling times for the control and the observer.



CHAPTER 3

ANALYSIS BASED ON SINGULAR PERTURBATION

3.1. INTRODUCTION

The singular perturbation approach to the analysis design of continuous time
systems possessing multiple time scales has matured over the past 25 years. Recently,
there has been interest in extending singular perturbation ideas to multiple time scale
discrete time systems. Singularly perturbed systems, and more generally, multi time scale
systems often occur naturally due to the presence of small parasitic parameters, typically
small time constants, or masses etc., multiplying time derivatives, or in more disguised
form, due to the presence of large feedback gains and weak coupling.

Various mathematical forms have been used to represent a two time scale discrete
time systems. Discretization and sampled data control of systems described by singularly
perturbed differential equations result in singularly perturbed difference equations.
Singularly perturbed difference equations might also arise naturally in inherently discrete
time systems. In this chapter, the two time scale nature of the system is exploited to
represent the system in the singularly perturbed form. At the end of the chapter, it
confirms the intuitive idea that the slow variables can be measured at a rate slower than

that of fast variables without degrading the performance of the system.

24
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3.2. DERIVATION OF SINGULARLY PERTURBED SYSTEM

3.2.1 Continuous Time Singularly Perturbed System

To motivate the form of the singularly perturbed difference equation, we start by
considering its continuous time analog first. Consider the continuous, linear, time
invariant system defined as:-

x(t) = Ax(t) + Bu(t) (1

y(t) = Cx(1) )
and the state feedback control is given by:-

u(t) = —Kx(t) + Nr(t) 3)
where A, B, C are system matrices in canonical form. A is nxn, B is nxm, and C is
p x n. K is the gain matrix. Now consider the observer equation

X(r) = AR(r) + L(y(r) - CX(1)) 4)
and the output feedback control, given by:-

u(t) = —Kx(t) + Nr(t) )
where x(1) is the estimate of x(t). Now consider the error difference between the actual
and the estimated states, given by:-

e(r) = x(1) - (1) 6
which gives

é(t) = x(t) — x(1) @
Using (1) and (4) in (7), we get

é(r) = Ax(r) + Bu(t) — A%(t) — L(y(1) - CX(1))
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Now using (2) in above equation, we get
é(t) = Ax(t) + Bu(t) — Ax(t) — LCx(t) + LCx(t)
or
é(r) = (4 - LC)(x(r) — 2()) + Bu(1)
Now using (6) in above equation, we get
é(t)=(A- LC)e(t) + Bu(t) 3)
The system matrix A can be written as:-
A=A, +BA ®)
where A is in canonical form of nxn,and A is some arbitrary matrix.
Therefore
A-LC=(A,+BA)-LC
using above equation in (8), we get
é(t) =(A, + BA- LC)e(t) + Bu(t) (10)

Now choose D(g) such that D"(e) exists and € > 0 is a small parameter. In general

e"_| 0 cee eee ees O

0 :

po-| L
e O

| 0 . 0 1]
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pe=| .

0

0
1

om[.—-

where n is the order of the system. We define another variable as

z(t)= D' (g)e(r) (11)
Taking derivative of (11), we get

#(t)= D' (e)é(r) (12)
Substituting (10) in (12), we get

2(t) = D™'(e)[(A, + BA - LC)e(t) + Bu(1)]
Using (11) in above equation, we get

2(t) = D' (e)[(A, + BA - LC)D(g)z(t) + Bu(1)]
or

#(t) = D' (e)(A, — LC)D(g)z(t) + D' (¢) BAD(g)z(t) + D' (g) Bu(t) (13)

Also choose the observer gain matrix L, such that (A-LC) is Hurwitz. ( The design

procedure for L has already been discussed in chapter 2 ). In general,

T
L= %% L %
- 2 n
€ € €

The general canonical form of the system matrices is:-



[0 1 0 0
0 0 1 0
A = :
1
_0 : 0_
C=[10 0]
Therefore
(o,
€
-,
0 1
8-2
A-LC=]| "
=10
L €
o

D™ (e)(4, - LC) D(e) = %

Similarly we can prove that:-

DEB=| | o

om|._.

_— O

(14)

(15)
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Using the results (14) and (15) in (13), we get

#(t) = éAOz(t) + BAD(g)z(t) + Bu(f)

or
e 2(r) = (4, + & BAD(g)) z(t) + € Bu(t) (16)

Now writing (1) and (16) in matrix form, we get

()] [4 0 xo],[B],, 7

ety |0 4, +eBaDG) || 20y |Fle B[ 17
or

()] |4 y %AD [x(l) B

L,(t)]—[o o"'ee (¢) | 20) +[BJu(1) (18)

Equations (17) and (18) are the standard form of continuous time singularly perturbed
system. x(t) is the slow variable and z(t) is the fast variable. Now we define output

feedback control that consists of both slow and fast variables. Using (6) in (5),we get
u(t) = —K(x(1) - e(t)) + N r(t) (19)
substituting (11) in (19),we get
u(t) = —K(x(t) - D(e )z(t)) +Nr(t) (20)
3.2.2 Discretization of Singularly Perturbed System
We can write equation (18) in the form:-

%(t) = A%(t)+ Bu(t) Q1)

_ |4 0 _ [B
where A = 0 AO +€ BAD(E) B :[ ]
- B
€
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EG _ o [x
£0) - Lm] £(1) = Lm]

Now we discretize (21) at a fast sampling period €T, to get

and

X(n+1)= A, x(n)+ B, u(n)
where n is the fast time scale and A, and B, are discrete time matrices . In general
A, =e

T,

B, = je"dt B

0

Therefore, using above equations, we get

exp(4e T) 0 |

A, =exp(AeT) = { 0 exp((4, +€ BAD(E))T)J

Now taking these matrix elements one by one:-

exp(de T) = I +¢ [Ana ‘Az?z e }
or we can write this as:-

exp(Ae T) = I +€ 4,(g)
From (23), we have

A, (0=AT
Similarly, we get

exp((4, +€ BAD(e))T)=e*" + O(¢)

Therefore,

(22)

(23)

24
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[IH»:A,(S) 0 ]
A, = ,
0 e*” +0(e)

Now consider By, given by:-

el
Ie"dtB

— 0
Bd_ eT

e (222291

0

Consider the first matrix element of B,

eT T
fe*diB=¢ [e**dsB=cB, (25)
0 0
where
T
B, = [e*dsB (25A)
0
Similarly
el T
Iexp((w) t) dtB=¢ Iexp((AO +€& BAD(e))s)ds B=¢ B, (26)
0 € 0
where
T
B, = [exp((4, +€ BAD(e))s)ds B (26A)

0

Therefore By is written as:-

I:e Bljl
B, =
€ B,

Substituting A4 and By in (22), we get
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[x(n + 1)] ) [1 +€ A, (e) T 0 ][x(n)] .\ [e B, ]u(n) @
z(n+1) 0 e*" +0) || z(n)| |eB,

or we can write it as

x(n+1) = (I +¢ 4,(g))x(n) +€ B, u(n) (28)

2n+1)= (e‘*’ Ty 0(8))z(n) +€ B, u(n) 29)
where

u(n) = —K(x(n) - D(e)z(n)) + N r(n) (30)

Equation (27) is the discrete time version of (18) sampled at a fast sampling period €T,
with the output feedback control given by (30). x(n) is called slow variable and z(n) is
fast variable. Equation (27) is expressed in fast time scale n and is called as singularly
perturbed difference equation. Equation (27) shows that the eigenvalues of the system

take the form:-
Ai(e)=1+¢€p,(e) i=1,2,0 m,
Ao (8) =4, (&) j=1,2,em,
where p,(g)and g,(¢) are continuous at € = 0 and g,(0) are the eigenvalues of e,

SinceReA(A4,)< 0, then P» (e™ )|< 1, the fast modes in (27) are asymptotically stable

and reach steady state.

3.3. Mu

It is possible to obtain a description of the system in a slow time scale if the fast

modes are asymptotically stable, see [12]. A slow time scale k is defined by the
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relationship n= k/g, where k = 0,1,2,---. Now consider the interval E <n< ﬂ such
€ €

that the control (30) is kept constant over this interval. Then for this interval, the control

law is written as:-

ucky = —K[x(% - D(s)z(i)]+ ) 31
4 € € €
and
u(n) = u(%) kenc k! (2)
€ € €

Now substituting (31) in (28) and (29), respectively, results in a closed loop system,

described for the given interval, given by

x(n+1) = (I +€ 4,(€))x(n) +¢ B, [—K{x(f) - D(s)z(f)} + Nr(f)] (33)

Now starting from K , we calculate the state at k+1 , therefore (33) gives
€ >

k
’l—l

(k;'l) (1 +e4,(¢)) x(§)+£2(1+eA(e)) " ¢B,

J=
€

[—K{x(f) _Dee )z(f)} + N,(E)]
£ 14 €

k+l_I

=|(I+s4,c)" - Z(1+eA<e>) "eBKx( A

j=
€

b

Z(I+8A(e)) "aBKD(e) z( )+

st
€
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k+1 .

Z(1+8A (e)) ljﬁBN r( )

("”) T+ + 1 (34)
€

Now solving for I, I, III separately. Rewriting I, we get

k+1
k+1

I=|(I+e4,))" +SZ(1+8A(8)° A(—B,K)J x(f) (35)

14

The expressions given below, which have been used in [12],

(I+€A4())'" =e* +0(e) (36)
5_' 1 !

ed (I+edE): " = je"‘o"dt+0(e) (37)
Jj=0 0

hold for any matrix A that is analytic at € = 0. Now using (36) and (37), equation (35)

gives:-

1
I= |:(e 4O 4+ O(e)) + { fetorar + 0(8)}30])«5)
0 €

where B,=-BK

Now using the fact that A;(0) = AT, we have e”” =¢"" and therefore, we have
1 1 N
jeA' o 1 Ie‘“’dt

0 0

and after making change of variables, we get

j 4O gy = lrj"dt
TO



Therefor

i

Now &

wher

Now

or

Wher,

Now
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Therefore, I can now be written as:-

I=[(e‘"+0(e))+{%;[ ”“dt+0(a)} }x( )

or
T
I= [e’” +% fe*arB, + 0(8)};:(5) (38)

Now take the second part of (34), i.e., II, and using the same procedure as before, we get

-

I = {l Ie"dz + O(s)}B,KD(S)JZ(E)
T €

L

B k
or 1= ?Ie dth+0(s)]z(;) (39)

L 0
where B;=B,KD(g)

Now consider III of (34) and use (37) as before; we get
1l = [ l} “dt + O(e) } B,N r( )
T 0

)
or i = [ Ie"dt B + 0(8)}(5) (40)
0 €

~ |-

where B;=B|N

Now substituting (38) , (39) , and (40) in (34), we get
T
x(k—+—l) [ AT lj’ A dt B, +0(8)]x( Y+
€ T

lf[e"dtB +O(g) z(£)+ lT[e"dtB.+0(8) r(-k-) 41)
T d e |T,; ' €
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Taking into account the fast variable z(n), substituting (31) in (29) results in closed loop

system:-

2(n+1)= (e o7y O(e))z(n) +€B, [—K{x(f) - D(s)z(f)} + Nr(f)] (42)

As before, starting from E , we calculate the state at k—+—] .

€ €
k+l_I rol
A+1) [ ar te k. & (4T S
z( - ) (e*" + o) z(£)+§(e +0@)* eB,
[—K{x(ﬁ) - D(e )z(£)¥ + Nr(ﬁ)]
€ € €
k+1
r le E ! T ’”I-‘f k
- (e"' +0(e)) + Z(e”" +0(e))= € B,KD(e) [2(2) +
,=k

k+1

e ! ) Sy k

Y (e* +0)) * a(-BzK)Jx(g)+

.=k
[ k+1 T

e ] 'Hl—l—j k

Y(e*" +0E):  e(B,N) )
-, J

z(ﬂ) =I+11+1 (43)
€

Now consider I, 11, III separately.

—k”—l
" k+1

I=|(e"® +0@))  + 3 (e*" +0()) = e B,KD() z(f)
k

J=:
€
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Since ReA(4,) <0, exp(AyT) is bounded, and the fact that:-

1”(e""’+0(t:))lt”sly'°skl 0<e<eg, O<y<l
€ £

is established, therefore,

(e""r + 0(8))| = 0(e)

Now for the second part of I, we let e*’ + O(e) = 4, i=j- k , SO we get
£

k+1
! k+

€ AT .
Zk (e + 0(8)

J=
€

T L
V-S4 =0 £ 0
i=0

Therefore,

k+l

2 (47 +0@) ¢ "¢ B,KD(e) = Oe)

So for I, we get
k k
1=(0) + 0(e))z(;) =0(e)2()

Now consider part II of equation (43), i.e.,

k+l_l -I

€ k+1

H=| Y (e* +0())

-k
Jj=
€

" e(-B,K) x(f)

and using the same argument as above, we get
k
II = O(g)x(—)
£

and proceeding in similar way for III, we get

(44)

(45)
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I = O(S)r(S) (46)
Now substituting (44), (45), and (46) in (43), we get
(":‘) Oy (E 5+ 0@y + 0 )r(S) (47)

Now writing (41) and (47) in matrix form, we get

k+1 17 17 k
| e + 2 [e*diB, +0() ~ [edrB, +0) | )
k+1 T3 T kT
z(——) O(¢) O(g) z(;)
l]e"dtB. +0(e) | k
T, ' f(;)
O(e)
or
x5
=|:A,,+0(e) A,2+O(e)] c +[B”+0(8)]r(£) 5
O(¢) O(e) 2(5) O(e) €
€
where
r 1
A, =e +?6|’e dtB, (49)
1 T
Ay =7 fe*arB, - (50)
0
17
Bi=— [e*arB, (51)
0

For sufficiently small € , equation (48) can be written as slow sub system, given by:-



_k+1 k
= _[4, Au] Q) +[B“]r(5) (52)

with same initial conditions.

Sampling (18) at fast sampling period €T resulted in (48) where the control is

kept constant over the interval k <n< k+l . However dropping the O(g) term from (48)
€ €

results in (52) which is almost same system, with some error, that can be obtained by
sampling the original system (1)-(3) at slower sampling period T. That is, the singularly
perturbed system (18) sampled at fast sampling period €T is O(g)+v close to the slow

system (1)-(3) sampled at slow sampling period T, i.e.,
k. _k
x(=)-x(=)=0()+v k>0 (53)
€ €

where v is the error term given by A, .

For zero initial conditions, there is no error and the difference between the two
models, the model under state feedback and the model under output feedback, is exactly
O(g). However, for different initial conditions, the error v is induced which is given by
A,, . To see as to why this error is induced, consider the first cycle, i.e., the interval from
0 to 1/e. Due to different initial conditions, the two models start from different states
having more difference, and by the time they reach 1/¢ from 0, the difference between the
two states will have decreased, thus decreasing the error. Now, the starting conditions for
the two models will almost be same but not exactly the same. In fact, after one cycle the

difference between the two models will be O(T,), i.e.,



40

1 1
X (;) state feedback — X (g) output feedback = 0( 7:‘ ) (S 4)

This is an error which will be carried along after one cycle. However, this error can be
reduced significantly by having small values of T, and € . Therefore, for smaller values of
T, and &, the error induced will be very small and we shall have closeness between the
two models. To see the closeness between the two models we proceed as following:-

From (48) , we have

k+1
( - ) (4, + O(e)x( =)+ (4, + O(e))z( )+(B,, + 0(8))r( ) (55)
and z( A 1) is given by (47). Now tracing back the different matrices we get
, ] T T
A, = — e “’dt( fe "”ds) BK
T 0 0
l T
A= !e“’dtB, KD(g)
and

B, = % Tje"dt( Ije “”ds]BN

0 0

Substituting the expressions of A, , A|; and B,; in (55) and rearranging, we get

T T
("”) ex(Xy+ L fe "dt[ fer=asr x(X)+ jef'°‘dsBNr(£)]+
€ 8 T € 0 €

[lT fe#ars KD(S)]Z(E) + 0 )[x(ﬁ) vz ,(5)] (56)
: £ £ £ €

Now for small values of € , i.e., for € tending to zero, we drop out the O(g) term, and
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T
fe**ds=T  D(e) = D(0)
0
Therefore, (56) now becomes:-
T T
x(ﬁ—l) = e”x(f) + [etdr B[-Kx(ﬁ) + Nr(ﬁ)] + [l [e*arB, KD(O)]z(f) (57)
£ e 3 € € T €

Now using (3) fort =k / € in (57), we get

x(u) = e’"'x(£) + }e A dt Bu(E) + [l ]'e “'dtB, KD(O)jIz(E) (58)
€ € g > T €

Looking at (58), the first two terms represent the same model that is obtained by
sampling (1) at slower sampling period T. The third term in (58) represent the error v
present due to fast variable having different initial conditions. Now since | A (eAT) | <1,

and | A (exp(AyT))| < 1, the system (48) is asymptotically stable for sufficiently small € .

Hence, the difference in deviation from steady state will become zero, i.e.,

Y(E)—)O E(EJ—)O as koo
€ €

That means:-

) . ) k k+1
Since we have considered an interval —
€

<n<—— , during which x(n) and z(n) are
€

bounded functions of x(E) and z(E) , therefore
> €

X(n)—>0 Z(n)>0 a n— o

Hence, x(n) and z(n) are also bounded forall n>0 .
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As a result of all this discussion, we conclude that we can recover the performance
of the system under state feedback using output feedback control. We see that the
system is also asymptotically stable and bounded and reach steady state value after the

first cycle. However, the closeness of the two systems is followed after first cycle when

the initial conditions are different.



CHAPTER 4

SIMULATION RESULTS

In this chapter, the formulation of the state feedback control, output feedback
control using high gain observer, and results of different simulations are discussed. The
concept of multirate control is used to design output feedback control. Then the effects of
changing different parameters like initial conditions, €, and sampling time are discussed.
Also the peaking phenomenon and saturation of control is discussed. Finally the results,

and future recommendations are given at the end.

4.1 CONSTRUCTION OF THE SYSTEM

4.1.1 The Controlled System: A dc Servomotor

For my thesis, I took the dc servomotor as the system to be controlled [20]. The
motor can be described as a linear, time invariant system. We have the following second

order model for the dc servomotor:
0, =0() )

¢(r)=—%gl+-',:-¢:ﬁ
b m

m

2

where
®,,(t) = position of the motor
u,(t) = input voltage

o (t) = angular velocity
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J = moment of inertia of motor and load

: 26x107° Kgm?

R = Resistance : 1.6 ohms
K, = Back emf constant :0.0782 Vs
K = Torque constant of motor :0.076 Nm/A
. JR
1, = Mechanical time constant of motor : KK
biMT
Now writing (1) and (2) in matrix form, we get
: 0 1 0
o,
[e.“(')]= o L [ ! )]+ ! luau) €)
0)([) Tm (.O(I) Kbtm J
CHG)
n=|1 ol " 4
0 =| ][mmJ “

It is to be noted that there is only one output of the motor,®, . Now replacing the
variables by their specific values of the motor, (3) is written as:

AR g R
o(t) 0 -14286| o() 1826.85

4

or, we may write (4) and (5) in the standard form of state space model, given by:

x(t) = Ax(t) + Bu(t) (6)
(1) = Cx(1) )
where
w=| @O [HO
EIONIEAO)
P RO EI0
| o(r) | | x,(1)]
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and the system matrices are given by:

0 1 0
A = B =
0 -14286 1826.85

C=1[1 0] D= [0]
Equations (6) and (7) represent continuous time state space model. To get a discrete time
model, we have to discretize the given system. Now selecting ‘ zero order hold ¢ and the
sampling time as T, = 5 ms, and using the Matlab command ‘ c2dm ’, we get the
discretized system as given below:

x(k +1) = ax(k) + bu(k) (8)

y(k) = cx(k) ©)

where a, b, and c are discrete time matrices, and are given by:
|1 00036 B 0.0182
“Zlo 04895 ~ | 65277
c=1[1 0]

4.1.2 Poles of The System

In control system design, we can use the pole placement method to place our
poles, if all the states are available. However , even if some of the states are not available,
we can use an observer in the feedback path. Using pole placement allows us to choose
the poles anywhere in the s-plane or z-plane, depending on the desired behavior of the
system. To find the pole location, we assume a second order system with the following

transfer function:
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(1)2

G(s) = " 10
() §*+280,5+0} (19)

where & is the damping ratio and ®, is the undamped natural frequency. Now if we

specify the relative overshoot to be maximum 5%, then using the relation:
-E&n

og?
rel. overshoot = e*'™

the damping ratio is found to be & = 1 . Also, for the system, the settling time is

Np)

assumed to be t, = 1s. For a second order system, we have

and after substituting the values, we get @, = 65~'. Now the poles can be calculated by

setting the characteristic equation of our assumed transfer function (10) to zero. With the

above results, we get

1
s?+2.—-65+(6)2 =0
5 o5+

which gives

(8o

The poles s, , lie on 45 degree axis, in the left half of s-plane, so they meet the stability

criterion. Now the poles can be discretized using the z-transform relation:

z=e'l

By specifying the values, Matlab directly calculates the poles in z-transform. The discrete

time poles are given by:
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z,, = 09788 + j0.0208

For using in Matlab program, we define the pole vector as:

P = [0.9788+j0.0208 0.9788-j0.0208]

4.1.3 Design of State Feedback Control

The assumed control law is given by:

u(t) = —Kx(t) + Nr(t) (1)
This is for continuous time system. Since we are dealing with discrete time system, so the
control law for such system is defined as:

u(k) = —Kx(k)+ Nr(k) (12)
where K is a 1x 2 gain matrix, x(k) is 2 x 1 state matrix. The state matrix contains two
states x; and x, . State x, is the output which is the difference between the reference
position and the actual position of the motor, and state x, is the angular velocity o . The
Nr(k) is the weighted step forward function, which is needed to force the tracking error to
zero when the motor reaches the steady state value.

Now the gain K has to be designed such that the matrix (a-bK) meets the Hurwitz
stability criterion. Matlab command ‘place’ is used to calculate the gain K. We have
found out the gain K to be:

K=[0.0270 -0.0718]

The eigenvalues of (a-bK) are by:
eig(a-bK) =09788 + j0.0208

which lie inside the unit circle of the z-plane.
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To find the value of N, consider a discrete system with a transfer function H(z)

and step input r(k) with its z-transform given by:

r(z)=i-r
z—1

To force the output Y(z) to approach the value of the step input for discrete time k — oo,

that is, }im Y(k) , we get the following equation:

lim ¥(k) = lim(z - )¥(2) = lim(z - 1) H(z) —ZT r
—® —® > z—-

= H()r (13)

To reach now the value of the step input, we have to multiply the step output r by the
inverse of the limit of the transfer function, which is H(l)". Now substituting (12) in (8),
we get

x(k +1) = (a—bK)x(k) + bN r(k) (14)
Now applying z-transform, we get

zlx(z) = (a - bK)x(z) + bN r(2)
Solving this equation for x(z) and then substituting in (9), we get

Y(2) =c(zl —a+bK)"'bN r(2)
Now taking limits, we get

l:i_r’rllY(z)=c(1—a+bK)"bNr(l) (15)
Now comparing (15) with (13), we get

N =HQW)™" = (c(/ - a+bK)"'b)" (16)

And after substituting the values, we get N = 0.0270.
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4.1.4 Construction of an Observer

To check, whether our system is observable or not, we use the method described

in chapter 2. We find the rank of observability test matrix given by:
N=[47 a7

Now using the given matrices of the plant, we get

volo 1

It is obvious that the rank of N is 2, equal to the order of the system, therefore, the given
system is completely observable.
The observer structure has the same order as the original system. Therefore, the

observer equations are given by:

~ ~ a ~
e, =w+:‘(®m—®,,) (17)
6="%(e,-6,) (18)

The parameters a; and a, are chosen to be one. The observer gain matrix L is chosen to

The equations (17) and (18) can be written in matrix form as:

J3 _l ] A l
Oll = ]+ ¢ le (19)
0] -— ol|l@ —

g’ g’
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where ©,, is the output of the motor. Now if we choose the value of € = 0.01667, which

corresponds to 1 = 60, the gain matrix L is given by L = [60 3600]" which corresponds
€

to very high gain. With this value of €, (19) can be written as:

o| [ 60 17é] [ 60
[(3}—[—3600 0][6)]+|:3600]®"' 20

The reason for choosing this value of € are:
a. The poles of the high gain observer are located relatively farther to the left in the
left half of the s-plane than the poles of the control. This means that the convergence of
the estimation error is faster than the actual control. The characteristic equation of the
unforced observer system is given by:

det[s] — A] = 5* +60s + 3600 = 0
Therefore, the poles of the observer are located at:

5., = =30 j303
b. Increasing the gain, that is making € — 0, means also increasing the frequency
band of the observer. Practical experience shows that the frequency of the observer
should be at least 10 times smaller than the sampling frequency. We assume that f,; = 60
Hz. The sampling frequency is assumed to be f, = 2000 Hz, which corresponds to a
sampling time of 0.5 ms. Therefore, f,,; << f, . We denote the sampling time of the

observer by T, , then T, = 0.5 ms. Comparing the sampling time T, of the control, and T,
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of the high gain observer, we see that the ratio is given by n = % =10. Thus, each tenth

o

observer update is pushed to the control.

Now consider (20). This is a continuous time observer equation. We can write it

O(t) = A,0(t) + B,® (1) (1)

Y, (1) = C,0(1) (22)

where ‘O’ stands for observer state, and

o) = é(’) = Q'(t)

(o) ] LO)]

4

and o =|%0 |- 20
o()] LO(1))

Now we discretize the observer system (21) - (22) using ‘ zero order hold ‘ and sampling

time of T,= 0.5 ms, using the Matlab command ‘c2dm’. We get

O(k +1)=a,0(k) +5,0,,(k) (23)
y(k) = c,0(k) (24)
0.7042 0.0043 702955
where a, = b, = c, =[1 0]
-153134 09595 153134

4.1.5 Combined System - Single Rate Implementation

The term ¢ combined ° is used to indicate that the observer is brought into the
feedback loop, but both the control and the observer use the same sampling rate.

Equations (8), (9) and (12) are rewritten as:
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x(k +1) = ax(k) + bu(k) (8)
y(k) = cx(k) )]
u(k) = —Kx(k) + Nr(k) (12)

Now the output of the observer O(k) is used in the control law (12) instead of the state
x(k). Therefore, (12) takes the form of output feedback control given by:

u(k) = -KO(k) + Nr(k) (25)
In (23), ©,,(k) is the input to the observer. Since the input of the observer is, in fact,
output of the actual system, therefore, substituting (9) in (23), we get the observer
equation based on the output of the system as:

O(k +1)=b, cx(k) +a,0(k) (26)
Now substituting (25) in (8), we get the closed loop system as:

x(k +1) = ax(k) — bKO(k) + bNr (k) 27)

Now writing (26) and (27) in matrix form, we get

[x(k+1) _[a -bK|x(k)] [bN . -8
Lotk +1)~|b,c a, Jouy T o [P (28)
and
k
y(k) =[c 0{2((]‘))] (29)

or it can be written as a new closed loop system as:
H(k+1)= AAH(k)+ BBr(k) (30)
y(k) = CC H(k) (31)

where
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Ok +1)

x(k +1)
H(k +1) = [ ] o)

H(k) = [x(k)]

and after substituting the values, we get

] 00036 -0.0005 0.0013

e 0 04895 -01762 0.4685

“1 02958 0 0.7042  0.0043

153134 0 -153134 09595
[0.0005
0.1762

BB = 0 cC=[1 0 0 0]

0

It is to be seen that zero padding is done in BB and CC to make the dimensions

compatible with the system, since the order of the combined system is 4.
4.2 SIMULATIONS

After constructing the system, now we go to the computer simulations. I used

UNIX system to implement all the simulations.
4.2.1 State Feedback Contro]

The Matlab program, that implements the state feedback control discussed in
section 4.1.1 - 4.1.3, is given in Appendix A. In this Matlab program, the continuous time
system matrices are defined first, then the system is discretized at sampling time T, = 5
ms, and using the Matlab command ‘c2dm’. Then the poles are calculated using z-
transform formula z = exp(sT,). The gain matrix K is then calculated based on the poles
calculated earlier, by using the Matlab command °‘place’. The weighting factor N is

calculated. Then the matrices for the closed loop system are defined as A1 and B1. Then
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defining r as a step input for k = 1000, (or it can be varied), the closed loop system is
implemented using ‘dstep’ command from Matlab. The output y and the states x,; and x,
are stored in a vector [y,x]. The state feedback control is then calculated using the state
vector x. To fix the x-axis to time scale, a time vector is defined, and finally the ‘plot’
command is used to get the plots for desired states / output.

The resulting plots for the control U, and the states x; and x, and the output y are
given in Appendices Al, A2, A3 and A4, respectively. Looking at the plot for U, we see
that it has a spurious peak in the transient period, it reaches steady state value after about
1s, which is very close to our assumption of t, = 1s as given in section 4.1.2. The control
finally settles down to zero. Note that the maximum amplitude reached by the control in
its transient period is about 0.22. Now looking at the plot for the state x,, which is the
same as the output y, we see that this also reaches its steady state value after about 1s,
which means that the output is exactly tracking the input which is a step input in this
case. The state x, is following the control U, except for the difference in the transient

period, where the amplitude of x, is much more than the amplitude of control U.

4.2.2 Combined System - Single Rate Implementation

The Matlab program that implements the combined system, discussed in section
4.1.5, is given in Appendix B. In addition to the explanation given in section 4.2.1, the
continuous time observer matrices dependent on €, given by A, , B, ,C, and D, are also
defined. For single rate implementation, both the control and the observer are discretized
at the same sampling time T_ , by using the Matlab command ‘c2dm’. Then the closed

loop system, with the observer placed in the feedback path, is simulated using ‘dstep’
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command from Matlab. The output y and the states x, , x, , O, , O, are stored in a vector
[y,x]. The states x; and x, are the states of the controller, and O,, O, are the states of the
observer which represent the estimates of the states x; and x, , respectively. Time vector
is also defined for x-axis, and finally the ‘plot’ command is used to get the desired graphs
of the states.

The resulting plots for the output feedback control U, states x,, x,, O,, O, and the
output y are given in Appendices B1, B2, B3, B4, B5 and B6, respectively. Looking at
the graph for U, we see that it attains its steady state value after about two seconds, and
finally settles down to zero. This delay in settling time is caused by the observer in the
feedback path. However, it is to be noted that this control graph is almost similar to the
one described in section 4.2.1. Now looking at the graph for state x;, which is also the
output of the system, it is seen that it also reaches its steady state value of one after about
two seconds. Comparing this one, with the graph for x, of section 4.2.1, we note that both
are similar except for the small difference in the overshoots in transient period and
difference in settling time. The state x, is following the control U, with large overshoot in
the transient period. The plots for O, and O, are same as that for x, and x,, since O is the
estimate of x, and O, is the estimate of x,. This is because the initial conditions for both
are the same and also the sampling time is the same. The point to note is that, the
performance under output feedback control using single rate implementation is similar to
the performance under state feedback control. Since zero initial conditions are assumed
for both the systems, no peaking is observed in this implementation. The peaking will be

observed when the initial conditions are different, as already discussed in chapter 2.
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4.2.3 Multirate Implementation

Now we develop a Matlab program that will simulate the system (30) - (31) using
two different sampling rates. The dynamics of the control are slow and the dynamics of
the observer are fast. The Matlab program that simulates this scheme is given in
Appendix C. Note that the two sampling times are now different, the dynamics of the
observer are ten times faster than that of the control. The value of € is assumed to be
0.01667 as before. Now since the dynamics of the control and the observer are different,
so they cause an unstable behavior of the system. Therefore, before they enter the plant,
both should have the same (fast) dynamics. To cater for this point, we sample the actual
system given by continuous time matrices A, B, C, and D, at fast sampling period T, .
Therefore, we get discrete time matrices a,, b;, ¢, and d,, and

x(k +1)=ax(k)+bu(k) (32)
and (26) will now become:

O(k +1)=b, c,x(k)+a,O(k) (33)
with u(k) defined by (25), the output feedback control. Now we want to keep the control
(25) constant for ten points and after the tenth point, we want to update the control, while
the states of the observer are calculated at every point. So we define ‘n’ as fast time scale,

and select ‘n’ as a ratio of the sampling time of the control to the sampling time of the

. T . .
observer, i.e., n= ?‘ . Since T, = 5 ms and T, = 0.5 ms, therefore the ratio comes out to

o

be n = 10. Also we define k as the slow time scale. The choice for the number of points k

depends on how long it takes for the output feedback control to reach its steady state
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value. In our case, we have chosen the number of points of k for multirate to be equal to
the number of points used for the state feedback control. Then we need to make a loop in
the Matlab program, which, will carry out nx k calculations using (25), (32) and (33).
The Matlab command ‘dlsim’ is used to implement this scheme. The initial conditions are
also required to run the loop, and these initial conditions are defined as x, and O, for the
control and the observer, respectively. The results are stored in a vector [h,g], where h is
the output and g represents the states.

Now one cycle consists of ten such calculations before the control is updated for
the next cycle. Therefore, there is a need to store the results for each cycle. The program
is so designed such that after the very first cycle, the last value of each cycle becomes the
initial conditions for the next cycle. Therefore, to avoid double value storage in the
vectors gg and uu, we leave the last value of the results of each cycle and store them up to
n-1 values. By this way, we shall be stacking the results of all the cycles in one vector
without having any of the double values. However, there is a problem observed in this
procedure, that is, instead of storing ten values for each cycle, we are, in fact, storing nine

values. That way, we loose information which corresponds to one complete cycle of fast

sampling period, i.e., T, . To take care of this problem, we choose n = %4—1 , so that,
now after storing n-1 points, we shall have stored, in fact, ten points for each cycle,

instead of storing nine points for each cycle as previously. This procedure is shown in

Appendix C6.
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This Matlab program for multirate scheme is run for same initial conditions for
both the control and the observer. The initial conditions x, and O, are assumed to be zero
in this case. We can see, from Appendices C1, C2, C3, C4, and CS, that the behavior of
the output feedback control uu, and the states x, , x,, O, and O, is exactly the same as it
was for single rate implementation of the combined system discussed in section 4.2.2,
which means , that, for same (zero) initial conditions, the performance under output
feedback control using multirate scheme, is same as the performance under state feedback

control using single rate scheme.
4.2.4 Performance of Multirate Scheme Under State Feedback Control

This Matlab program can be modified to obtain the results if we use state
feedback control instead of the output feedback control inside the loop of the program. To
implement this scheme, we replace the equation for u, inside the loop, by the equation:

u,=—Kx, + Nr (34)
This scheme is shown in Appendix D. This program is run for the same (zero) initial
conditions for both the systems. Now looking at the Appendices D1, D2, D3, D4, and D5,
we observe that these graphs are very much similar, in fact, the same, to the one obtained
by the state feedback control designed in section 4.2.1. This was the case when the initial
conditions are the same and assumed to be zero for both systems. The effects of different

initial conditions will be discussed later in this chapter.

4.2.5 Behavior of Multirate Scheme in First Cycle

Now to see the behavior of multirate scheme in first cycle, we modify the Matlab

program given in Appendix C. We keep n = 10 and change k from k = 100 to k = 1, so
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that the output feedback control is constant over this one cycle. We also assume that the

initial conditions are the same (zero) for both systems. This scheme is shown in Appendix
E. We see from the Appendix El that the control is constant for one cycle. The
Appendices E2, E3 show that the states x, and X, are rising in the first cycle. From
Appendix E4, ES it can be seen that the state O, is trying to follow the state x,, but state
O, has more steeper trajectory; however it is also rising to attain its maximum value. The
important point to be noted here is that all the states attain very low amplitude value in

the first cycle.
4.3 EFFECTS OF CHANGING DIFFERENT PARAMETERS

All the cases discussed in section 4.2 correspond to the same (zero) initial
conditions, the value of € = 0.01667 and T, = 5 ms, T, = 0.5 ms. Now let us see as to

what happens if we change these parameters.

4.3.1 Effects of Changing the Initial Conditions
4.3.1a Performance of Multirate Under State Feedback Control
Now the initial conditions are made different for the plant and the observer, i.e.,
X=[0;0] and O,=[1;1]

This scheme is shown in Appendix F. The resulting graphs for uu, x; , X, , shown in
Appendices F1, F2, and F3, respectively, are similar to the one for the case when the
initial conditions were the same (zero). However, we can notice the change in the
behavior of O, and O, given in Appendices F4, F5, respectively. We can see the change

in the transient period of both the observer states. This is, because the initial conditions
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for the observer are different from the initial conditions of the plant, O, = [1 ; 1] in this
case. The two systems starting at different initial states will naturally exhibit different
behavior. The overshoots in the transient response of O, and O, do not cause any change
in the control uu, and the states x,; and x, , because the control law (34) is not using any
of the states O; and O, , i.e., the observer is bypassed. However, it is seen that all the

states reach their steady state values after about 1s. The overshoots in the transient period

of O, is of the order of O(l).
£

4.3.1b Performance Under Output Feedback Control

The performance of the system under output feedback control, with the same
(zero) initial conditions, was discussed in section 4.2.3. In this section, we consider the
performance of the same system, but with different initial conditions for the two systems.
The initial conditions for the observer are assumed to be O, = [1 ; 1], whereas the initial
conditions for the plant are x, = [0 ; 0]. This scheme is represented in Appendix G, and
the resulting graphs for control uu, and the states x, , x, , O, , and O, are given in
Appendices G1, G2, G3, G4, and GS, respectively. Now the results are quite different
from all the previous cases. From the graphs, we can observe the large overshoots in the
transient response, which we call as peaking phenomenon, which was discussed in
chapter 2. Now since the initial conditions for the observer are O, = [1 ; 1], there is an
impulsive behavior, i.e., large overshoot, in the transient period. These overshoots are fed
to the control given by (25). Therefore, the control (25) also exhibits the large overshoot

in its transient period, which is obvious from the graph for uu, given in Appendix GI.
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These overshoots are then fed to the plant via the control (25), which causes the states x,
and x, to exhibit peaking in their transient period. Looking at the graphs for different
states, it can be seen that the transient response of O, is transmitted to state x, and the
transient response of O, is transmitted to state x, . Since the output of plant is the input to
the observer, these states disrupted with peaking are fed to the observer, which like
before, enter the plant via the control (25). This process continues and we observe very

large overshoots in the transient period. The overshoots in the states x, and O, are of the
1

order of O(—).
£

However, all the states reach the steady state value after the first cycle. This is
because, the fast modes, i.e., O, and O, decay rapidly in the first cycle as discussed in
chapter 3. After the first cycle, the response of the system is due to the slow modes, i.e.,
X, and x, . The behavior of the system in the first cycle, for different initial conditions, is
given in Appendix H. We can see from Appendices H4 and HS, that the fast modes are
decaying rapidly from their starting position. This proves the idea discussed in chapter 3,
where we used singularly perturbed approach to prove that, the response of the system,

after first cycle, is due to the slow modes as the fast modes decay to zero in first cycle.

4.3.2 Effects of Saturating The Control

As discussed earlier in chapter 2, we can reduce peaking by saturating the control.
In this scheme, we set the limits of output feedback control so that it can swing between
specified values. This scheme of saturating the control is shown in Appendix I. A subloop

is inserted in the outer loop of the Matlab program, and the maximum swing limits are set
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to £0.5. This value of swing limits is chosen keeping in view the maximum swing of the
state feedback control. After setting the saturation limits of the output feedback control,
the program is run.

The resulting graphs for saturated control, and the states are given in Appendices
I1, 12, I3, 14 and IS, respectively. Looking at the graph for control, we see that, the
maximum swing has been limited to +0.5. It is important to note the behavior of the
output x, . Due to the output feedback control saturated, the negative part of overshoot,
which had an amplitude of about -5 in case of nonsaturated control, has been significantly
reduced to an amplitude of -0.4. Also the positive part of overshoot has been reduced to
about 1.3 from about 2.5. As a result of saturation, the graph for x, has come closer to the
one obtained under state feedback control. Similarly, due to saturation, the overshoots in
the transient period of x, has been reduced significantly. Also, the behavior of x, under
saturated output feedback control is close to the one under state feedback control. The
effect of saturation is also obvious on the observer state O, , which exhibits similar
behavior as state x;, . However, the observer state O, , refer to Appendix 15, does not
saturate much as the negative part of overshoot remains unch<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>