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ABSTRACT

SPECTROSCOPIC STUDIES OF SOLUTION PHASE SELF-ASSEMBLY
PHENOMENA USING “TAILOR-MADE IMPURITY” PROBE MOLECULES

By

Jeffrey Paul Rasimas

Despite the fact that solutions are the medium of choice for many chemical
processes, our fundamental understanding of the intermolecular interactions that give rise
to this phase of matter are limited. Interactions between individual molecules in solution
occur frequently, and are characterized by short persistence times and short interaction
distances. A useful approach to understanding fundamental solvation and solution phase
processes has involved using a spectroscopically active probe molecule to infer
information about the surrounding medium from its transient optical response. Such
methods allow accessing the dynamical behavior of the probe molecules on short time
(10" - 10? s) and length scales (1-30 A) that are chemically relevant in these systems.
The majority of studies using probe molecules to understand solvation effects have
focused on neat solvents. Such studies have provided much useful information but are
limited in their ability to discern organization by the absence of any driving force for
long-range order within the system. The focus of this dissertation is on more complex

binary systems, selected for their ability to self-assemble under appropriate conditions.
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Aqueous f-D-glucose solutions are used to develop an understanding of solution
phase microstructure. This model system is useful for elucidating the processes involved
during the crystallization of compounds from solution, a phenomenon that remains
understood to a limited extent. The relationships between molecular aggregation,
mesoscopic solution organization and macroscopic crystal growth remain to be made.

This dissertation reports on the use of dual-function probe molecules which
possess a glycoside moiety attached to selected fluorophores. These “tailor-made
impurity” molecules ensure participation of the optically active specie in molecular
aggregation that occurs in subsaturated, saturated and supersaturated aqueous glucose
solutions. The data facilitate fundamental understandings of the optical responses of the
A “tailor-made impurities” and provide information on the existence and lifetime(s) of pre-
crystalline aggregates in concentrated aqueous glucose solutions. This dissertation sets
the foundation for a widely applicable, “lock-and-key” approach to the study of

crystallization from a molecular, rather than bulk, perspective.
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Chapter 1

Introduction

Despite the fact that solutions are the medium of choice for many chemical
processes, our fundamental understanding of the intermolecular interactions that give rise
to this phase of matter remains limited. There has been significant research interest in
liquid phase molecular interactions, and much of this work is focused on neat solvents
because they are believed to be a simple starting point for these studies. The interactions
that occur between individual molecules in solution occur frequently, and are
characterized by short persistence times and short interaction distances. Therefore, a
common approach to understanding solvation and solution phase processes has involved
using a spectroscopically active probe molecule to infer information about the
surrounding medium from its transient optical response.'™ These studies provide
methods to access the dynamical behavior of the probe molecule on time scales (1077 -
10 s) and length scales (1-30 A) that are chemically relevant in liquids.** However, a
majority of these studies have involved using a probe molecule in simple solvent systems,
where the chromophore is present in low concentration in a neat solvent. It is assumed
that, by using a low probe molecule concentration, the pertubations imposed on the
system are small. For example, typical probe concentrations are 6 to 8 orders of
magnitude lower than the surrounding medium, making this assumption reasonable.
Studies on simple systems have been useful in developing an understanding of the probe

behavior, yet there is not necessarily a direct correlation between these systems and more
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2
complicated matrices. There have been a limited number of studies where a probe

molecule is used to interrogate the properties of comparatively simple binary systems,**
50 and, while leading, it is clear that without additional information on the location of the
probe molecule with respect to local inhomogeneities within the system, the information
content of such measurements is limited. It is the purpose of this dissertation to advance
the present understanding of more complex liquid systems, with special focus on those in
which one of the constituents self-assembles into a crystalline solid at sufficiently high
concentration.

The processes involved during the crystallization of compounds from solution are
poorly understood. There have been some previous efforts to understand the
relationship between the structure of supersaturated solutions and crystal nucleation and
growth.*'®" These studies were based largely on diffusion in aqueous solutions where a
drop in the constituent diffusion coefficient was associated with the formation of
aggregates of unknown composition. Other studies demonstrated that crystallization
from other aqueous systems formed glass-like solids at high supersaturations.®'** A
conclusion from that work was that the ability or inability of a solution to nucleate must
be related to the “structure” associated with the supersaturated solution, with the
formation of nuclei being solvent-mediated. Despite this indication of cooperative
molecular organization, there remains a significant regime of uncertainty between the
spontaneous formation of molecular aggregates and the precipitation of macroscopic
crystals. There have been attempts to correlate macroscopic solution properties to

changes in solution microstructure,®®’ however, no macroscopic property has been

shown to predict the microscopic changes of interest accurately. There remains the need
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3
to develop techniques which provide direct information about local organization in

binary liquid systems. The relationships between molecular aggregation, mesoscopic
solution organization and macroscopic crystal growth remain to be made.

Probe molecules have been used in the work described in this dissertation to
understand molecular-scale organization in complex binary liquid systems. There are
several ambiguities inherent in such an approach, and these can be addressed in a
systematic manner. Most notable is the uncertainty associated with the location of the
probe molecule in the solution. The probes used are typically fluororphores (e.g. laser
dyes or polycyclic aromatic hydrocarbons) which do not, in general, possess the chemical
functionality required to associate with the crystallizing species. One approach to
eliminating the uncertainty of the location of the spectroscopic probe as is “reads” the
solution is to modify the chemical identity of the probe molecule to include a pendant
functionality able to interact directly with the species of interest.”® This approach relies
on the structural similarity of an “impurity” molecule with respect to the solute of
interest, which provides a “lock-and-key” methodology to study liquid phase self-
assembly phenomena. It is important to note that the concentration of the probe be
sufficiently small that its presence does not perturb the properties of the solution.

In this dissertation, the use of “tailor-made impurity” probes possessing a
covalently bonded glycoside moiety is explored. The pendant glycoside functionality
allows probe participation in molecular aggregation or clustering that may occur in
saturated and supersaturated aqueous [-D-glucose solutions.  The fundamental
spectroscopic and dynamical behavior of glycoside based chromophores have not been

I 69-71
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4
developing the “lock-and-key” methodology of studying solution phase self-assembly.

The experiments focus on understanding three chromophores; carminic acid, resorufin,
and glycosyl-resorufin. Each probe molecule accesses different properties of the matrix.
There are several families of fundamental questions addressed in this work to evaluate

the utility of the “lock-and-key” strategy:

1. What are the electronic properties of these glycosylated chromophores,
especially relative to their non-glycosylated analogs?

2. If the chromophore has acid/base or ionic character, what role do equilibria
associated with the chromophore play in the spectroscopic behavior?

3. What is the dynamical behavior of the “tailor-made impurity” molecule in
simple systems, where aggregation is precluded?

4. Does the “tailor-made impurity” incorporate into f3-D-glucose crystals as a
“lock-and-key” probe, without affecting the overall crystal structure
measurably?

5. Does the structure and functionality of the “tailor-made impurity”
chromophore affect formation of aggregates?

6. Can aggregation be observed spectroscopically using this approach?

Each of these questions is addressed in this dissertation.

Chapter 2 describes a semi-empirical computational study of glycosylated

chromophores. This work predicts the spectroscopic properties of the molecules
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5
carminic acid, glycosyl-oxazine, glycosyl-phenoxazine, glycosyl-oxazone, and glycosyl-

phenoxazone. It was found that addition of a glycoside to a chromophore does not
affect its linear response substantially, and that the rotational isomerization of the
glycoside about its tethering bond to the chromophore can result in formation of
isomeric forms of the “lock-and-key” molecule.

Chapter 3 describes a study of solution phase ionic association and dissociation
using the sodium/resorufin complex. It was found that solvent mediated charge-transfer
species form rapidly (<50 ps). This work demonstrates the important role of pre-
associative complex formation and its effects on the overall dynamics of ionic
chromophores. The dynamics of resorufin in aqueous glucose will be described in
Chapter 7.

Chapter 4 details a study of the “tailor-made impurity” chromophore carminic
acid in a series of n-alcohols. It was found that the fluorescence lifetime behavior can be
understood using the calculated properties detailed in Chapter 2.  This work also
provided a baseline understanding of the previously unstudied and complex dynamical
behavior of this pH-sensitive chromophore. This dynamical behavior of carminic acid
was found to be useful as a microscopic probe of local polarity.

Chapter S is a study of carminic acid and its use as a “lock-and-key” probe of the
formation of pre-crystalline aggregates in aqueous glucose solutions. This chapter
describes the pH-dependence of its linear response, as well as its picosecond dynamics.
The data indicated that the “lock-and-key” methodology is viable for studying solution
microstructure. It was found that there is significant short-range structure in

supersaturated glucose solutions. Pre-crystalline aggregate lifetimes were short (<1 ns),
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and this suggested that the kinetic contributions to crystallization are expected to play a
dominant role in solution.

Chapter 6 describes a comparison between the spectroscopic behavior of
resorufin and glycosyl-resorufin in aqueous glucose solutions. The response of resorufin
indicated a non-specific interaction with glucose, however glycosyl-resorufin interacted
with glucose in a “lock-and-key” fashion to show inclusion into pre-crystalline
aggregates. These results, when compared to analogous data for carminic acid,
underscore the important role of protons in determining the stability of pre-crystalline
aggregates. In addition, this comparison implicates glycosyl-resorufin as a site about
which aggregation occurs in solution.

Chapter 7 summarizes the use of “tailor-made impurity” probe molecules as
spectroscopic probes of glucose pre-crystalline aggregate formation and describes the
future directions and generality of the “lock-and-key” approach to studying solution

microstructure.
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2.1. Introduction

Research into understanding the interactions between dissimilar molecules has
provided a great deal of information on structure and reactivity in both the solid and gas
phases. A significant factor in achieving this progress has been the comparatively well
defined nature of intermolecular interactions in these two phases. In sharp contrast,
achieving a fundamental understanding of intermolecular interactions in liquids and
solutions has proven to be extremely difficult, primarily because of the short time and
length scales over which molecular organization persists in this phase. The majority of
experiments that provide information on the nature of intermolecular interactions in the
liquid phase have used optical spectroscopy because of the short time scale(s) on which
any organization is present in such systems. For these experiments, it is possible to
examine neat liquids using stimulated transient Raman techniques'” or, more typically, a
probe molecule is used to “read” information out of a solution.’” The use of probe
molecules for this purpose has found wide acceptance and, in many instances, it is
assumed that the probe molecule is a passive monitor of the surrounding medium, i.e.
probe molecule intramolecular processes are well understood and that there are no site-
specific intermolecular interactions between the probe molecule and its surroundings.
Both of these assumptions serve, of course, to simplify data interpretation and in many
cases they have turned out to be valid, but there exist a variety of experiments and
classes of probe molecules for which one or both of these assumptions have proven to be

limiting.*>** Understanding the optical and chemical properties of the probe molecule
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are therefore necessary prerequisites for the successful interpretation of transient

spectroscopic data used in understanding molecular scale interactions in the liquid phase.

The very properties that make probe molecules useful, such as a prominent
optical response at frequencies accessible to short pulse lasers or a large change in dipole
moment on excitation, can also serve to complicate the optical response of the molecule
and thus obviate straightforward data interpretation in terms of local organization.
Indeed, there is a large body of information in the literature indicating the important role
that intramolecular processes play in the transient optical response of certain probe
molecules, and that the transient absorption and/or emission characteristics of a given
probe molecule may not be related to the local environment of the probe molecule in a

3-5.8.28

straightforward way. Our previous work on several families of probe molecules

demonstrates that there is an excellent correspondence between experimental data and

#1014 For example, the state-dependent reorientation

semiempirical calculations.
dynamics measured for oxazines and thiazines in polar protic solvents were consistent
with a site-specific solvent-solute interaction, and semiempirical calculations indicated
that, on excitation, the oxazine chromophore accumulated significant electron density at

"33 In addition, the transient optical response of the

its heterocyclic nitrogen.
coumarins has been shown recently not to be accounted for simply by the presence of a
single, uniform (shifting) electronic state.® In that work, semiempirical calculations
predicted the existence of several excited electronic states in close energetic proximity,

and those predictions provided an explanation consistent with a large body of

experimental data. Thus, there is compelling experimental evidence that validates the
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qualitative predictive power of semiempirical calculations for moderately large polar

organic molecules.

Most examinations of solvent-solute interactions have been performed in binary
systems, i.e. dilute solutions of a probe molecule in a single organic solvent. Our present
interest lies in understanding local structure in ternary systems where, in addition to the
solvent and the solute, there is a third constituent that exhibits limited solubility in the
solvent. Specifically, this work will be used toward developing an understanding of
molecular organization associated with the onset of crystallization in sugar solutions.'®"
In order to examine these systems, a family of probe molecules containing a glycoside
moiety to facilitate the incorporation of the probe molecule into local structure(s) formed
in the sugar solutions will be utilized. The first step in this research program is to
develop a detailed understanding of the probe molecules and address several basic
questions that cannot be answered directly by experiment. This chapter reports a
semiempirical computational study of three classes of molecules, carminic acid,

glycosyloxazines and glycosyloxazones (Figure 2.1). The questions addressed regarding

these molecules are:

e Can a simple linear optical response be expected from these molecules or might
intramolecular relaxation effects be expected to play an important role in the

experimental data?

e How does the pH of the solution affect the optical response and state ordering of

carminic acid?
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e For oxazines and oxazones, how does the addition of a glycoside moiety affect the

optical response of the chromophore?

e Will rotation of the chromophore about its bond to the glycoside moiety affect its

optical response?

These calculations indicate that all of the chromophores selected will exhibit a
reasonably straightforward linear optical response, with the potential for intersystem
crossing being the most significant concern. The deprotonation of carminic acid is
calculated to cause a spectral blue shift, and move the first triplet state into close
energetic proximity to the first excited singlet state. For the oxazones, it is calculated
that the addition of the glycoside moiety will affect the optical response of the
chromophore to only a small extent, while for the oxazines it is noted, in addition to the
previously reported accumulation of charge at the ring bound nitrogen on excitation, the
formation of a stable twisted internal charge transfer conformation in the S, state that
arises from steric hindrance due to the presence of the glycoside moiety. This steric
hindrance also gives rise to a substantial (~10%) blue shift of the Sy <> S, transition.
Importantly, for all of the chromophores, rotation about the chromophore-glycoside
bond does not affect the energy of the S, <> S, transition, and therefore there is no need
to be concerned about any conformation-specific contributions to the linear response.
These calculations serve to predict the qualitative features of the optical response(s) of
these molecules and to answer fundamental questions about the effects of substitution on
chromophores that, in their native forms, have received significant experimental

attention. In addition to the uses for these probe molecules, similar glycosylated
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chromophores have found application in fluorescent immunoassays and other biologically

important fluorescence-based measurements.'*'

2.2. Experimental

Semiempirical calculations were performed using the Austin Model 1 (AMI1)
parameterization running on Hyperchem software (Release 3.0; Autodesk, Inc.) on an
IBM compatible PC (Gateway 2000 486-66V). The AMI parameterization > is a

25-26 .
that is more accurate for polar

modification of the MNDOQO parameterization
molecules and transition states. The calculation strategy for the molecules shown in
Figure 2.1 was to perform an initial optimization of the structures using a molecular
mechanics routine (MM+),”” followed by geometry optimization at the semiempirical
level using an SCF algorithm. Two structures for carminic acid were calculated, the fully
protonated form (H4CA), and the singly deprotonated form, (H;CA’). HiCA™ was
formed by removing the acidic proton from the carboxylic acid functionality.
Semiempirical optimization was performed until the lowest energy conformation for each
molecule was attained. Electronic energy calculations were performed on the
geometrically SCF-optimized molecules. For these calculations, the ground state
optimized geometry was used and RHF closed-shell calculations were performed for
single configuration interaction (CI) with 100 microstates.  Previously, similar
calculations using a large number of CI states were believed to provide a fair
approximation of correlation effects in coumarins,”® and it is believed that this condition

will hold for these calculations as well. It is important to recall that these calculations

assume the molecules are isolated and in an absolute vacuum.
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2.3. Results and Discussion

Carminic Acid. Calculations on carminic acid were performed to understand the
electronic properties of both HyCA and H;CA™ as well as to determine isomerization
barriers for rotation of the glycosyl moiety about its bond to the chromophore.
Understanding the pH dependence of the optical response of this fluorophore is
important because pK,, = 2.8 (deprotonation of the carboxylic acid) for carminic acid.
Additionally, carminic acid possesses three other labile phenolic protons®>*? with pK., =
5.43, pK.: = 8.10 and pK., = 13. We discuss in this work only the protonated form,
H4CA and the monodeprotonated form, HiCA", for reasons detailed below. Table 2.1
reports a summary of the electronic properties calculated for both the neutral H;CA and
the negatively charged HiCA™ molecules. The dipole moments calculated for H;CA
show a trend of decreasing polarity as the molecule is excited to higher electronic states.
While it is typically held that the ground electronic states of polar organic molecules
possess a smaller permanent dipole moment than the first excited electronic singlet
states, it is entirely possible that the excited states of certain molecules will have a
permanent dipole moment smaller than that of the ground state, owing to the change in
charge distribution caused by excitation. The permanent dipole moments calculated for
H;CA™ are physically unrealistic. It is believed that these large calculated dipole
moments result from limitations inherent to the AMI parameterization and to -the
necessarily discrete way in which such calculations account for the presence of charges
within the molecule. Despite these limitations, the qualitative trends predicted for other

singly charged species have been proven correct by experimental data, and therefore it is
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believed that the data reported here for both H,CA and H;CA' are useful in a qualitative

sense.

Figure 2.2 shows the energy level diagrams for H{CA and H:CA™ determined
from AM1 calculations using configuration interaction (CI). The ordering of the energy
states is quite different for the two species, with H,CA having two triplet states (AE(T)-
So) = 19951 cm™, AE(T,-S,) = 22852 cm™"), between the ground and first excited singlet
state (AE(S;-Sy) = 28355 cm’'). The monodeprotonated species has a triplet state
(AE(T;-So) = 29858 cm') in close energetic proximity to the first excited singlet state
(AE(S;-So) = 30140 cm™). State ordering for higher excited states also differs for the
two forms, with the most dramatic difference being that HiCA™ has triplet states slightly
lower in energy, but always in close proximity to higher excited singlet states, suggesting
the possibility of efficient coupling between the singlet and triplet manifolds for this
species. These calculations agree with observed spectroscopic properties of H{CA and
H;CA', as studied by Stapelfeldt er a/."”*" and serve to provide a mechanistic explanation
for their observations. Their experimental data showed that the fluorescence intensity of
an aqueous solution of carminic acid at basic pH is less than the emission intensity of
neutral or acidic solutions. As shown in Figure 2.2, there is a triplet state (T,) slightly
lower in energy than the first excited singlet state (S;) for H:CA", with no analogous
state near the S, for HiCA. The lower fluorescence intensity observed for H3CA’
suggests that depopulation of the S, state occurs through efficient intersystem crossing
to the T, state. Stapelfeldt er al.*" suggest that the main depopulation pathway for

deprotonated forms involves an intersystem crossing to T, followed by photo-oxidation
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Figure 2.2. AMI/CI semi-empirical energies calculated for carminic acid in its fully
protonated (HsCA) and singly deprotonated (H;CA") forms.
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and subsequent depopulation of triplet state H3;CA". These calculations of electronic

state ordering for H;CA™ show that this singlet deactivation route is likely, although
speculation on photo-oxidation subsequent to intersystem crossing is well outside the
scope of this work. The larger energy separation between S, and the triplet states T, and
T, for H,CA suggests that depopulation of the S, state through intersystem crossing in

the fully protonated species is less likely to be efficient.

In understanding how a probe molecule will interact with its surroundings, it is
important to consider how the electron distribution differs among the electronic states.
Figure 2.3 shows the calculated change in electron density (p.4) between the S, and S,
states (Aped = Pea(S1) - pea(So)) at each atom for HyCA (Fig. 2.3a) and H:CA™ (Fig. 2.3b).
For H4CA, the changes in electron density upon excitation occur within the
anthraquinone chromophore while the glycoside group does not experience any
significant change in electron density. The primary implication of this result is that the
molecular orbitals responsible for the optical response of HyCA are not associated with
the glycoside moiety, and this finding is intuitively reasonable. The absorption maximum
of HyCA is ~550 nm in polar organic solvents, indicating a highly conjugated
chromophore. Because the glycoside group does not possess m orbitals that are
conjugated with the m orbitals of the chromophore, it is expected the glycoside group to
produce steric, rather than electronic, perturbations to the optical response of this
molecule.

In an effort to understand any potential steric effects that the glycoside group

may produce in the optical response of carminic acid, the isomerization barriers for
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Figure 2.3. Calculated change in electron distribution between the singlet excited state
(S)) and the ground state (S,) for carminic acid. Structure (a) is for neutral
carminic acid, while (b) is for the singly deprotonated (-1 charge) form. A
positive sign indicates a decrease in electron densty upon excitation from the
So to S, electronic states. Protons are not shown, nor are values less than
+0.01.
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rotation of the glycoside moiety about its bond with the chromophore for the ground

state, first triplet state, and first excited singlet state of both H;CA and H;CA™ have been
calculated. These data are shown in Figure 2.4. The isomerization barriers are similar
for the two forms of carminic acid, with the minimum energy of both species occurring
at a glycoside-chromophore dihedral angle of 55°. The calculated barrier height reaches
a local maximum of ~90 kcal/mole at 155° for HyCA and ~68 kcal/mole for H;CA". At
310°, the barrier height is calculated to be ~180kcal/mole for HyCA and ~127 kcal/mole
for H;CA". The heights of these barriers indicate that the glycoside moiety of carminic
acid will be constrained to a relatively narrow range of angles and will not rotate freely.
It is equally significant that the angular dependence of the isomerization barriers are
virtually identical for all the electronic states calculated. These calculations indicate that
the linear optical response of the chromophore will not depend on the dihedral angle it
makes with the glycoside group, and therefore there is little or no information about this
isomerization process available from electronic absorption or emission spectra. There
are several points in the calculation of HiCA’ isomerization barrier that failed to
converge. This failure serves as another indication that the AMI parameterization does
not calculate charged species as effectively as neutral species. Additionally, the overall
form of the isomerization barrier calculated for H;CA is similar to the barrier calculated
for H3CA", indicating that the isomerization coordinate(s) of this motion are sterically,
rather than electronically, mediated. It should be noted that these calculations were
performed using a calculation routine that determined the energy at a given dihedral
angle without minimization of the complete structure. Recent advances in calculation

routines allow minimization of the overall structure at each dihedral angle, and
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recalculated data (not shown) for carminic acid provide qualitatively similar data to that

discussed here. None of the results discussed are affected by this change in the

calculation routine.

Oxaczines and Phenoxazines. The electronic properties of oxazine, phenoxazine,
2-glycosyl and 18-glycosyl oxazine and phenoxazine as well as the rotational
isomerization barriers for the latter two compounds have been calculated using the AM1
parameterization. These calculations include unsubstituted oxazine and phenoxazine in
the series so that effects of glycosylation on the electronic properties of the chromophore
could be understood clearly. There have been reports of semiempirical calculation
results for several of these molecules using the MNDO parameterization,™ and the data
presented here serve as a direct comparison of AM1 and MNDO parameterizations for
complex polar organic molecules. In the previous work, heats of formation (AHy) of 187
and 203 kcal/mole were calculated for oxazine and phenoxazine, respectively. These
values are in qualitative agreement with the values presented in this work, (208 kcal/mol
and 233 kcal/mol, respectively) with the small differences being due to the different
parameterizations used. Table 2.2 contains a summary of the electronic properties
calculated for the unsubstituted chromophores as well as the 2- and 18-glycosylated
species (Figure 2.1 c-f). The electronic properties for two isomers of glycosyloxazines
and phenoxazines were calculated because both of these compounds are being
synthesized and will be used in future experimental studies of crystallization phenomena.
These synthetic efforts may ultimately include several different species with slightly
different substituents, and we have chosen to calculate the properties of the

unsubstituted chromophores to maximize the utility of these results. Previous
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calculations have shown that small modifications of oxazines and phenoxazines have
minimal effect on their calculated properties. The dipole moments we have calculated for
oxazine and phenoxazine show a trend of increasing polarity as the molecule is excited to
higher electronic states, in agreement with previous experimental examinations of these
molecules.!""* However, upon glycosylation , the dipole moments of the ground state
are found to be, in general, larger than those calculated for excited states, a trend that it
is also observed in carminic acid. This prediction is important in the sense that it implies
that the sensitivity of the glycosylated chromophore(s) to polar environments will be

different than that of the native chromophore.

Figure 2.5 illustrates the results of AMI/CI calculations of energy levels for
oxazine and glycosyoxazine. Electronic state ordering is similar for the three molecules.
The most striking difference between the oxazine and glycosyloxazine is that the energy
of the Sy & S, transition in the native chromophore is lower than that of the glycosides.
This calculation, which is consistent with the calculated results for isomerization of the
glycosylated species (vide infra), implies that the glycosyl moiety plays little or no role in
detecting the S, <> S, transition energy and that its dominant contribution to the optical
response of the chromophore is sterically based. The blue shift calculated on substitution
is due to steric interactions of the glycosyl moiety with the neighboring amino group that
serves to twist the amino group away from the orientation it prefers in the native
chromophore. The close energetic proximity of the S, and T, states in both the native
and glycosylated oxazine suggests the possibility of efficient intersystem crossing. The

energies of the T, and S, states are calculated to be the same (E=S, + 20292 cm'), and
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in the glycosylated oxazines the calculated energy difference is negligible (AE (S;-T) =

32 cm™). While this is obviously a negligible energy difference from an experimental
standpoint (kT = 200 cm™ at 300 K), two sources of uncertainty in the calculations serve
only to reinforce the assertion that these two states are functionally degenerate. First,
these calculations rely on parameterizations derived from ground state experimental data,
and thus the estimation of excited state parameters necessarily involves significant
uncertainty. Secondly, where transition energies are considered, it is important to realize
that the excited state calculations are based on a molecule whose ground state geometry
is optimized. There are many polar organic molecules that exhibit significant changés in

8.10,28 and

geometry on excitation, as evidenced by their large steady-state Stokes shifts,
these calculations do not account for such changes. Substituted polar organic molecules
are likely to exhibit different excited state geometries than that of the pative
chromophore, especially when the substitution gives rise to significant steric hindrance of
a functionality that is part of the conjugated chromophore. These calculations, in effect,

compare individual points on two different surfaces, and cannot provide information on

the locations of the minima of these two surfaces.

Figure 2.5 shows that the energy difference between the first excited state and
the first triplet state for oxazine (AE(S,-T\) = 7932 cm’) is different from 2-
glycosyloxazine (AE(S;-T,) = 8248 cm™') and 18-glycosyloxazine (AE(S;-T;) = 7333 cm’
'). These energy differences are all large enough so that energy transfer from the S, to
the T, state will be inefficient. Figure 2.6 displays energy level diagrams calculated for

phenoxazine and glycosylated phenoxazines. In all three species, the state ordering is
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similar, with a triplet state between the ground and first excited state. Additionally, the

S, state for all species is well separated energetically from triplet states. The energy
difference between the S, and T, states for the glycosyloxazines are also similar (AE(S,-
T) = 7979 cm’ for 2-glycosylphenoxazine, AE(S,-T;) = 7727 cm’ for 18-

glycosylphenoxazine).

The state dependent electronic distributions for oxazine, phenoxazine, and the
glycosylated species have also been calculated. Figure 2.7 shows the change in electron
density upon excitation, where the changes are defined as the difference between the
excited and ground electronic singlet states. A negative sign represents an increase in
electron density upon excitation. Figure 2.7a represents the change in calculated
electron density in oxazine. The heterocyclic nitrogen gains electron density and its
neighboring carbons lose electron density upon excitation. The other atoms do not show
similarly large changes. It has been previously determined that the nitrogen heteroatom
in oxazine becomes negatively charged upon excitation, and this state dependent
accumulation of electron density can be used as a probe of local solvent structure and

""15 1t is hoped to use glycosylated oxazine as a probe of local polarity and

polarity.
hydrogen bond formation in the crystallization of sugars. Calculated excitation-
dependent changes in electron density distribution for 2-glycosyloxazine and 18-
glycosyloxazine are shown in Figure 2 7b and 2.7c, respectively. The addition of the
glycoside moiety to the oxazine chromophore affects the electron distribution similarly
for both molecules. The heterocyclic nitrogen gains electron density upon excitation, as

was observed in the “bare” oxazine. The amine nitrogen closest to the glycoside moiety

loses significant electron density on excitation. This large change in electron density is



(c)

Figure 2.7. Calculated change in electon distribution between the singlet excited state
(S1) and the ground state (S,) for oxazine and glycosyloxazines. Structure
(a) is for oxazine, structure (b) is for 2-glycosyloxazine, and structure (c) is
for 18-glycosyloxazine. A positive sign indicates a decrease in electron
density upon excitation from the S, to S, electronic states. Protons are not
shown, nor are values less than +£0.01.
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likely due to the steric constraints placed on this amino group by the presence of the

glycoside functionality. The excited state accumulation of charge at a (twisted) amino
group is often referred to as a twisted internal charge transfer (TICT) S, state.>**® The
prediction of a TICT S, state for modified oxazines and phenoxazines is important
because the existence of such a state could serve to influence the polarity dependence of
the chromophore spectroscopic response substantially. The prediction of this TICT state
is consistent with the data shown in Figures 2.5 and 2.6, where the Sy <> S, transition
energies of these molecules increase with modification. The electron density distribution
data for the phenoxazine and glycoside modified phenoxazines are presented in Figure
2.8. Figure 2. 8a is unsubstituted phenoxazine, and we calculate that, like the oxazine,
the nitrogen heteroatom accumulates electron density on excitation. The TICT state that
was observed for the glycosyloxazines is also seen for the glycosylphenoxazines,
consistent with the similarity of the unsubstituted chromophores. The glycoside moiety
does not exhibit any change in electron distribution on excitation for either the modified
oxazine or phenoxazine. Thus steric rather than electronic factors will determine any
change in optical response associated with the modification of these chromophores, just

as for carminic acid.

As for carminic acid, the isomerization barriers for rotation of the glycoside
group about its bond with the oxazine chromophore have been determined. These
calculations were also performed for the modified oxazine. It is expected that the
isomerization barriers observed for the oxazine will be similar to that for the modified
phenoxazine. These calculations are presented in Figure 2.9 for 2-glycosyloxazine (Fig.

2.9a) and 18-glycosyloxazine (Fig. 2.9b). These data are qualitatively similar, with
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Figure 2.8. Calculated change in electron distribution between the singlet excited state
(S1) and the ground state (S,) for phenoxazine and glycosylphenoxazines.
Structure (a) is for phenoxazine, structure (b) is for 2-glycosylphenoxazine,
and structure (c) is for 18-glycosylphenoxazine. A positive sign indicates a
decrease in electron density upon excitation from the Sy to S, electronic
states. Protons are not shown, nor are values less than £0.01.
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Figure 2.9. Calculated energy dependence of the glycosyl group rotation for the S, (O),

T: (0), and S, (O) states of glycosyl substituted oxazines. Tracings (a) are
for 2-glycosyloxazine, and (b) are for the 18-glycosyl isomer. The dihedral
angle is the angle made by the glycosyl group with respect to the oxazine
chromophore. Missing points indicate a failure of the calculation to
converge at the given dihedral angle. Relative energies at a given dihedral
angle were S;>T,>So.
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minima occurring at a 50° glycoside- chromophore dihedral angle in both isomers. The

calculated barrier height reaches a local maximum of ~167 kcal/mole at 155° for 2-
glycosyloxazine and ~37 kcal/mole for 18-glycosyloxazine. At 325° the barrier height is
calculated to be ~121 kcal/mole for 2-glycosyloxazine and ~136 kcal/mole for 18-
glycosyloxazine. The heights of these barriers indicate that the glycoside moiety will be
constrained to a relatively narrow range of angles and will not rotate freely. It is also
significant the state ordering is consistent throughout the range of dihedral angles
calculated, indicating that the linear optical response of the chromophore will not depend
on the dihedral angle it makes with the glycoside group. It is noted that these
calculations were performed using a calculation routine that determined the energy at a
given dihedral angle without minimization of the complete structure. Recent advances in
calculation routines allow minimization of the overall structure at each dihedral angle,
and recalculated data provide qualitatively similar data to that discussed here. As
previously discussed, it will not be possible to determine the position of the glycoside
moiety through electronic absorption or emission experimental data. None of the results

discussed are affected by this change in the calculation routine.

Oxazones and Phenoxazones. The electronic properties for oxazone, 2-glycosyl-
and 18-glycosyloxazone, phenoxazone, 2-glycosyl and 18-glycosylphenoxazone and the
rotational isomerization barriers for the glycosylated species have been computed. As
for the oxazines and phenoxazines, oxazone and phenoxazone were calculated as a
reference point to determine the effect of the addition of the glycoside moiety to the

chromophore backbone. Table 2.3 shows the calculated properties for unsubstituted
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oxazone and phenoxazone and the glycosylated chromophores. The calculated dipole

moments for these molecules follow a trend of increasing polarity on excitation, except
for 2-glycosyloxazone, where the S, state is calculated to have a smaller dipole moment
than the ground state. The calculated dipole moment of the triplet state in these
molecules has the largest value in the oxazone calculations, but examination of the
charge distribution of the T, state does not reveal a substantial charge accumulation for
any of the heteroatom sites. Glycoside substitution at both the 2- and 18- positions
causes an increase in the magnitude of the dipole moment compared to the unsubstituted

chromophores.

The AMI/CI calculated electronic state orderings for oxazone, 2-
glycosyloxazone, and 18-glycosyloxazone are shown in Figure 2.10. In contrast to the
oxazines, the increase in the calculated Sy <> S, transition energy on substitution for the
oxazone chromophore is comparatively small, despite the sterically mediated formation
of a twisted terminal amino group in the glycosylated species. The increase in transition
energy on substitution indicates that the rotated amino group does in fact play a small
role in the transition, but because of the inherent asymmetry in the chromophore, the
amino group plays a comparatively smaller role in determining the energy of the S, state
than for the oxazine species.” Oxazone and substituted oxazones have similar state
ordering, with the triplet state T, being found between the ground (So) and excited
singlet state (S,). For all species, the energy separation between the S, and S, states is
large (AE(S2-S)) = 4181 cm’' for oxazone, 4044 cm™' for 2-glycosyloxazone, 3801 cm’

for 18-glycosyloxazone), so that the dominant optical transition will be Sy <> S,. The
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energy separation between the S, and T, states is large (AE(S,-T,) = 8000 + 100 cm' for

all species), so that intersystem crossing from the S, to T, state not expected, but, as for
the oxazines, the T is in close energetic proximity to S;. In oxazone, AE(S,-T,) = 302
cm’, in 2-glycosyloxazone the AE(S;-T;) = -243 cm™ and in 18-glycosyloxazone the
AE(S;-T2) = 60 cm™. In close analogy to the oxazines, these values indicate that for all
species the S; and T, electronic states are essentially degenerate. The phenoxazone and
glycosylated phenoxazones exhibit state ordering similar to that for the oxazones, but the
energy separations between states is greater than for the oxazone series (Figure 2.11).
The phenoxazone species have a T, state between S, and S,, with AE(T,-S,) =20662 cm’
', 20802 cm”, and 21129 cm for phenoxazine, 2-glycosylphenoxazone and 18-
glycosylphenoxazone, respectively. The energy differences between S, and S, are also
similar, with AE(S;-Sy) = 27872 cm’', 27778 cm’', and 28212 cm’' respectively. For the
phenoxazones, the T state is higher in energy than the S, state and is also separated by a
larger energy than is seen for the oxazones. These calculations suggest that glycoside
modification of phenoxazone does not affect the electronic state ordering substantially,
and that the optical response of all species will be largely similar, irrespective of the
steric constraints imposed by the glycosyl moiety. This prediction is in significant

contrast to that for the oxazines.

The state dependent electron density distributions for oxazone, phenoxazone, and
the glycosylated forms of these chromophores have been determined. Figures 2.12 and
2.13 show the change in electron distribution for the oxazone series and phenoxazine

series, respectively. It is important to note that these molecules do not undergo state
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+0.07  +0.20

Figure 2.12. Calculated change in electron distribution between the singlet excited state
(S1) and the ground state (S,) for oxazone and glycosyloxazones. Structure
(a) is for oxazone, structure (b) is for 2-glycosyloxazone, and structure (c)
is for 18-glycosyloxazone. A positive sign indicates a decrease in electron
distribution upon excitation from the Sy to S, electronic states. Protons are
not shown, nor are values less than £0.01.
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Figure 2.13.

(a)

-0.08 -0.08

+0.03

1-0.02

-0.02

Calculated change in electron distribution between the singlet excited
state (S;) and the ground state (S,) for phenoxazone and
glycosylphenoxazones. Structure (a) is for phenoxazone, structure (b) is
for 2-glycosylphenoxazone, and structure (c) is for 18-
glycosylphenoxazone. A positive sign indicates a decrease in electron
density upon excitation from the S, to S, electronic states. Protons are
not shown, nor are values less than £0.01.
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dependent charging on atoms in the chromophore or in the glycoside moiety. The

oxazone chromophore (Fig. 2.12a) does not exhibit a significant spatial modulation of
electron density on excitation, and the glycosyl modified chromophore (Fig. 2.12b,c),
behaves similarly. The phenoxazone calculations, (Figs. 2.13) predict behavior
consonant with that of the oxazones. As with carminic acid and the oxazines, the
glycoside moiety does not undergo any change in electron density distribution upon
excitation, and thus the role of this substituent in determining the optical response of

these molecules is steric rather than electronic.

The isomerization barrier of the glycoside moiety about its bond with the
oxazone chromophore is qualitatively similar to that of the oxazines. Figures 2.14 show
the calculated isomerization barriers for 2-glycosyloxazone (Fig. 2.14a) and 18-
glycosyloxazone (Fig. 2.14b). For these molecules, the energetic minima occur at a ~50°
glycoside-chromophore dihedral angle. The barrier height reaches a local maximum of
~184 kcal/mole at 155° for 2-glycosyloxazone and ~40 kcal/mole for 18-
glycosyloxazone. At a dihedral angle of 325°, the barrier height is calculated to be ~125
kcal/mole for 2-glycosyloxazone and ~134 kcal/mole for 18-glycosyloxazone. The
magnitude of these barriers indicate that the glycoside moiety is constrained to a narrow
range and will not freely rotate, as was observed in the oxazine calculations. As seen in
the oxazine calculations, the state ordering is constant throughout the range of dihedral
angles calculated, with T, being between S, and S, in both oxazone isomers. It is noted
that these calculations were performed using a calculation routine that determined the
energy at a given dihedral angle without minimization of the complete structure. Recent

advances in calculation routines allow minimization of the overall structure at each
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AH c (kcal/mole)

glycosyl twist angle (degrees)

Figure 2.14. Calculated energy dependence of the glycosyl group rotation for the So
(0), T: (©), and S, (D) states of glycosyl substituted oxazones. Tracings
(a) are for 2-glycosyloxazone, and (b) ar for the 18-glycosyl isomer. The
dihedral angle is the angle made by the glycosyl group with respect to the
oxazone chromophore. Missing points indicate a failure of the calculation
to converge at the given dihedral angle. Relative energies at a given
dihedral angle were S,>T;>S,.



fedral ang!
10 that discy]
chromophore

the results d:




47

dihedral angle, and recalculated data for carminic acid provide qualitatively similar data
to that discussed here. These data indicate that the linear optical response of the
chromophore will not depend on the rotational position of the glycoside group. None of

the results discussed are affected by this change in the calculation routine.
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2.4. Conclusions

In this chapter, the electronic properties of several unsubstituted and
corresponding glycosylated chromophores have been calculated. The results for all
molecules predict that the main spectroscopic features that will be observed arise from
the So «> S, transition, and that other transitions originating from S, to higher excited
singlet states will not be overlapped with the Sy <> S, transition. The linear optical
response of carminic acid is pH dependent”*? due to reordering of electronic states
associated with the extent to which the molecule is protonated. These calculations
predict that glycosylated oxazines will exhibit state dependent dynamical behavior arising
from an excitation-induced accumulation of electron density at the heterocyclic nitrogen.
The formation of a TICT S, state in the glycosylated oxazines is a direct result of steric
interference between the terminal amino group and the glycoside moiety. These
calculations predict that the optical and dynamical response of glycosylated oxazones
will not depend on state-dependent changes in electron density distributions in the same
way as do the glycosylated oxazines. The presence of the glycoside moiety on these
chromophores will affect their linear response through steric rather than electronic
factors. An important consequence of this calculated prediction is that the optical
responses of these chromophores will not depend on the dihedral angle between the

chromophore and the glycoside substituent.
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Chapter 3

A Time Resolved Spectroscopic Study of Solution Phase Ionic
Association and Dissociation

Summary

Ultrafast kinetic spectroscopies have been used to study the ionic exchange behavior of
the fluorescent probe molecule resorufin in a binary solution of n-butanol and ¢-butanol.
The resorufin chromophore, an organic anion, is associated with its sodium counter-ion
(NaR) in #-butanol and is fully dissociated (R’) in n-butanol. In a binary solution of the
two solvents, both the associated and dissociated forms are present. The linear
responses of these two species differ significantly and the populations of the two forms
of the chromophore can be excited and monitored selectively. It has been shown that the
signals recovered from ground state recovery and spontaneous emission lifetime
measurements can be explained quantitatively using a kinetic model that accounts for
ionic association and dissociation in both the ground and excited electronic states of the
chromophore. The rates of this dissociation are qualitatively similar to protonation and
deprotonation times reported for a variety of other polar organic molecules, implying the

significant role of a pre-dissociative complex in the equilibrium system.
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3.1. Introduction

Despite the fact that solutions are the medium of choice for many industrial- and
research-scale chemical processes, our fundamental understanding of the intermolecular
interactions that give rise to this phase of matter remains limited. There has been
extensive research interest in liquid phase molecular interactions over the past two
decades and much of this work has focused on neat solvents because they are widely
held to be the simplest starting points for such investigations. Because the interactions
between individual molecules in solution occur frequently and have short persistence
times, the most common approach to the examination of solvation and solution phase
relaxation processes has been to use a spectroscopically active probe molecule and infer
information about the surrounding medium from its transient optical response. Virtually
all of our present understanding of solution phase dynamics stems from spectroscopic
experiments on (dilute) probe molecules. Depending on the structural and/or optical
properties of the probe molecule, intermolecular interactions can be probed over
distances ranging from several A up through the longest dimension of the probe
molecule,"? and even toward SO A for experiments that are sensitive to electronic
excitation transport.’ In addition to the large body of experimental data on single
solvents, there is also a less extensive literature concerned with binary solvent and

*1° These studies on the more complex binary solutions

electrolyte containing systems.
have shown that the bulk properties of binary solvent systems, such as viscosity or

dielectric constant, are not necessarily good indicators of the molecular scale interactions

responsible for the dynamical behavior of dissolved probe molecules. This is not a
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surprising result because the discrete molecular nature of the solvent can give rise to a
significantly non-uniform environment over the length scale sensed by the probe
molecule. Much of the present effort in research on solvent-solute interactions is
focused on understanding organization and relaxation on this very short length scale.
Recently, it has been shown that, if the binary system is chosen carefully, there is
a significant amount of information on local organization that can be derived from
transient spectroscopic experiments.'’ In the work reported here, the binary n-butanol/t-
butanol system has been investigated using the well-characterized fluorescent probe

molecule resorufin '*?'

The primary motivation for this work is to understand the
association and dissociation kinetics of this probe molecule so that we can use it to
examine the molecular onset of crystallization from solution.'" Resorufin exists in its
dissociated form, as the free anion R™ in primary alcohols, with an absorption maximum
centered at ~ 580 nm and a prominent emission band centered at ~ 600 nm. In ¢-butanol,
resorufin is almost completely associated with its Na' counter-ion (NaR). The
associated form of resorufin is characterized by a broad absorption band centered at ~
470 nm and a comparatively less intense emission maximum at ~ 550 nm. The two
forms of this probe molecule are spectroscopically resolved well enough so that direct
kinetic measurements can be made on each specie. In the binary n-butanol/t-butanol
system, both R” and NaR are present, and through a family of transient spectroscopic
measurements, we can determine the ionic association and dissociation rate(s) for this
molecule in both the ground and excited electronic states of the chromophore. The data

reported here indicate that the time constants for association and dissociation of this

molecule depend on the electronic state of the chromophore but lie within the 10" s -
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10° s window. Interestingly, these time constants are entirely consistent with a large
number of reports on solution phase protonation/deprotonation of a variety of organic
acids and bases.”> Presented below are the experimental methods used to extract the
kinetic information as well as the model used to interpret these data. These results are
discussed and compared to the equilibrium information on this system available from
steady state absorption measurements. The comparison of kinetic and equilibrium data
points to the role of a pre-dissociative complex between the Na“ cation and the resorufin

anion.

3.2. Experimental

Steady state absorption and emission specitra: Absorption spectra were acquired
using a Hitachi U-4000 UV-Visible absorption spectrometer operating with a 2 nm
bandpass. Emission spectra were recorded on a Hitachi F-4500 fluorimeter using 10 nm
excitation and emission bandpasses. The absorption and emission spectra of resorufin in
the binary butanol solvent are shown in Figure 3.1.

Picosecond Pump-Probe Spectroscopy. The spectrometer used to measure the
ground-state recovery times of NaR and R™ has been described in detail previously,” and
only an outline of the system is presented here. A schematic of the spectrometer is
shown in Figure 3.2. The light source is a mode locked CW Nd:YAG laser (Coherent
Antares 76-S) that produces 30 W average power at 1064 nm with 100 ps pulses at 76
MHz repetition rate. The 1064 nm light is frequency doubled to produce > 3 W average
power at 532 nm. The second harmonic and residual fundamental light are mixed to

produce ~1.2 W average power at 355 nm with the same pulse width and repetition rate
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Figure 3.1.  The linear absorption and emission spectra observed for 25 uM resorufin
in butanols. Figure 3.1(a) are the absorption spectra for resorufin in neat
t-butanol (dotted tracing), in neat n-butanol (dashed tracing), and in the
mixed butanols (solid tracing). Figure 3.1(b) are the fluorescence spectra
for resorufin in neat r-butanol (dotted tracing), neat n-butanol (dashed
tracing), and in the mixed butanols (solid tracing). All spectra are
normalized for presentation purposes.
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as the fundamental. The second and/or third harmonic output of the source laser is used

to pump two dye lasers synchronously (Coherent 701-3). For dye laser operation near
470 nm, Stilbene 420 dye (Exciton) pumped with 355 nm light is used. For operation
near 580 nm the dye used is Rhodamine 6G (Kodak) and it is pumped with 532 nm light.
Because the pump and probe dye lasers can be operated in either the 470 nm - 475 nm
range or in the 580 nm - 585 nm range independent of one another, the complete matrix
of ground state recovery measurements on the R/NaR system can be executed. Both
dye lasers are cavity dumped at ~8 MHz and the pulses from each yield second order
autocorrelation traces of ~7 ps FWHM. The time resolution of this spectrometer is
determined by the cross-correlation of the two laser pulse trains, which is typically 10 ps
FWHM. Detection of the transient depletion signals generated by the ~ nJ laser pulses is
accomplished using a radio- and audio-frequency triple modulation, shot noise limited
signal encoding scheme.?*** For all ground state recovery measurements, the probe laser
polarization is set to 54 7° with respect to the pump laser polarization to ensure the
absence of rotational diffusion contributions to the data. Ground state recovery
experiments were performed using a pump laser operating at either 470 nm or 580 nm
with average powers of 20 - 25 mW at the sample (~15 um focused beam diameter), and
the probe laser operating at either 475 nm or 585 nm with ~150 uW average power co-
focused with the pump laser.

Time Correlated Single Photon Counting (1CSPC) Spectrometer:  The
spectrometer used to measure the spontaneous lifetimes of NaR and R™ has also been

27.28

described in detail before. A schematic diagram of this system is shown in Figure

3.3. For excitation at 470 nm, light pulses from the UV pumped dye laser described
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above are used with a cavity dumping rate of 4 MHz. For excitation at 580 nm, the light

pulses used to excite the sample are generated by a cavity-dumped, synchronously
pumped dye laser (Coherent 702-2) excited by the second harmonic of the output of a
mode-locked CW Nd:YAG laser (Quantronix 416). Excitation at 580 nm was
accomplished using Rhodamine 6G (Kodak). For both excitation wavelengths, emission
was collected at 550 nm and at 600 nm. For all samples, fluorescence was collected
using a 10 nm (FWHM) detection bandwidth at a polarization of 54.7° with respect to
the polarization of the excitation pulse. The typical instrument response function is ~40
ps FWHM for this system, and the measured fluorescence lifetimes vary from ~300 ps to
~1 ns. The experimental excited state lifetime data are not obscured significantly by the
instrumental response function.

Chemicals: Sodium Resorufin was obtained from Aldrich (99+% purity) and
used without further purification. The n-butanol was obtained from Aldrich (99+%
purity) and used as received. The /-butanol was obtained from Columbus Chemical
Industries (CCI, 99% purity) and was used as received. All resorufin solutions used for
spectroscopic measurements were made to a total chromophore concentration of 25 uM.
The solvent system was a 60/40 (v/v) solution of n-butanol and 7-butanol. This system
was chosen because it produced similar concentrations of NaR and R™ as measured by
the steady state absorption responses of the two species (vide infra). For all ground
state recovery (pump-probe) experiments, the sample was flowed through a 1 mm
pathlength quartz flow cell to minimize thermal contributions to the signal. For time
correlated single photon counting experiments, a 1 cm pathlength quartz sample cuvette

was placed in a temperature-controlled heat sink (brass block). All experiments were



60

performed at 27°C, with the sample temperature being held constant to within + 0.5°C
(Neslab Endocal bath and RTE-110 cooler).

Data Reduction: Data from the pump-probe and TCSPC experiments were fit to
a sum of exponential decays using Microcal Origin software. The data were fit using the
following (general) procedure. First, the maximum value of the cross-correlation (CC,
pump-probe measurements) or instrumental response function (IRF, TCSPC
measurements) was used to establish the reference start time for each run. The
experimental signals (GSR or TCSPC) were registered in time to correspond with the
appropriate instrumental response to establish the time zero of the experiment. A
normalized data set was then fit to a sum of exponentials. The data were fit from a point
were the intensity of the CC/IRF was < 5% of the total signal to ensure that any
contribution to the signal from the instrumental response did not affect the fit. The data
have not been deconvoluted from the cross correlation or instrumental response function
because the ion exchange and population decay dynamics of interest here are

significantly longer than the response functions.

3.3. Kinetic Model

While there is a significant body of literature concerned with the thermodynamic
aspects of ionic association and dissociation, this chapter describes the direct
measurement of the kinetics of these processes. Accordingly, the resorufin/butanols
system is considered in the context of a set of coupled first order reactions.”> As shown

in Figure 3.4, there exists a series of rate constants associated with the depopulation of
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the excited states as well as an equilibrium between the ground state forms of resorufin.

The time course of each state in Figure 3.4 is described using the following expressions:

d

E"F"zr*’z +kq1-Ag—kia- A (3.1]
d
- = k33 A3~ (kay +k23)- 4, [3.2]
d
EA3="23'A2—(/‘32+"34)'A3 [3.3]
d
Tk ATk A kg Ay (3.4]
sA=1 [3.5]

where, for these experiments, ground state NaR corresponds to A, the NaR first excited
singlet state is A,, the first excited singlet state of R is A;, and ground state R™ is Ay
(Figure 3.4). Rate constants for ionic exchange and spontaneous population decay are
included in this scheme. For example, deactivation of A, to A, occurs at a rate
determined by the rate constant k>,, while excited state association/dissociation between
states A, and A: proceeds according to rate constants k,: and k:. Terms for the
excitation rate constants have not been included, since these processes are essentially
instantaneous and are determined by the laser pulses used (< 10 ps). This series of
coupled differential equations (3.1 - 3.5) represents a simplification of the general case
where there exist four species, each capable of interconversion with any of the others.”
For this system, the functional form of the population evolution for each state 4 will be a

sum of exponential decays,”
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A1) = 3B, exp(4,) [3.6]

r=1

where the subscript 7 indicates the coupling of species i to the other species r and the
terms A are permutations of the rate constants k. It is this same functional form to which
the experimental data are fit. For this system (Figure 3.4), the non-trivial terms A are

given by:

A =3 l=kyy ~ ka3~ k3y — k3

[3.7]
‘\/("21 +hy3 +hyy +kag)? — Aky kg + kykag +kyakag)]
Ay = 3[—kay = ka3 —k3z —kay
3 [3.8]
+ \/(kzl +koy+k3p +k3g)” —Akaksa +korkay +kazkiy)]
/1.3-:—/(]4—1(_“ [39]

It is these terms that are extracted from the experimental data and, from these A values,
the rate constants k, were determined. A prediction of this model is that, for all of the
measurements made, it is expected there to be only three time constants and, in fact, this

condition is observed experimentally.

3.4. Results and Discussion

The ground state recovery data and spontaneous emission decay data for the
resorufin chromophore in the binary butanol system offer a unique opportunity for
understanding the kinetics of solution phase ionic association and dissociation. Because
the absorption and emission responses of NaR and R’ are resolved from one another
sufficiently, it is possible to examine the population dynamics of all species (ground and

excited state NaR and R") as a function of initial population conditions. Specifically, the
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S, state of NaR can be populated by excitation at 470 nm and the spontaneous

depopulation of this state can be monitored by TCSPC, collecting at 550 nm, formation
and depopulation of S; R* (TCSPC, collection at 600 nm), population recovery of S,
NaR (GSR, probe at 475 nm) or population build-up of S R” (GSR, probe at 585 nm).
The initial population can be placed in S; R’, with monitoring of the population of the
other states. The data for two groups of experiments is presented below, where the
initial excitation condition is varied and the population evolution of all states is
monitored. The measurements reported below on resorufin in the binary butanol system
exhibit an apparently wide range of functionalities, depending on the species excited and
the state monitored. For all measurements, however, the functional form of the data can
be accounted for within the framework of the kinetic model presented above, where
there are three distinct regimes for the experimental decay time constants, A, A2, and A;.
Before discussing the measured kinetic responses, it should be made clear that
the chemical process monitored is not proton exchange, but counter-ion (Na') exchange.
This argument is based on the availability of protons in each of the solvents, the
concentration of the resorufin compared to the free proton concentration, and the
assignment of the absorption bands for this chromophore. The autoprotolysis constant
for n-butanol is 102"*, * implying that [#-BuOH,'] = 1.26x10"' M for the neat solvent.
By comparison, the autoprotolysis constant for ¢-butanol is 10°*°, *' yielding [+-BuOH,"]
= 5.62x10"° M. The presence of ~10° M Na" and R’ in solution will perturb the
equilibrium concentrations of the dissociated solvent species, but the extent of this
perturbation is not the focus of this work, nor is it believed that this effect contributes

measurably to the experimental data (vide infra). The important conclusion from these
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autoprotolysis data is that s-butanol is a significantly weaker acid than n-butanol, and

thus, greater protonation of the resorufin is expected in n-butanol than in #-butanol.
Simple pH-dependent measurements of resorufin in pH 3 and pH 10 water demonstrate
that the deprotonated form of resorufin, R’, absorbs at 580 nm, and the protonated form
absorbs at 470 nm. The absorption spectroscopic data in the alcohols indicate that the
free anion (R") dominates in n-butanol, and a specie with an absorption response identical
to the protonated form of resorufin is dominant in ¢-butanol. Given the low
concentration of labile protons in both n- and - butanol as well as their dielectric
constants (g9 = 12.7 for t-butanol and g, = 17.5 for n-butanol), it is believed that, in -
butanol, it is not the protonated form, HR, but the cation-associated form NaR, that is
responsible for the observed absorption resonance. The functional form of the
experimental linear resp<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>