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ABSTRACT

APPLICATION OF E-PULSE AND CEPSTRAL ANALYSIS TO RADAR TARGET
DETECTION AND DISCRIMINATION

By

Glen Stuart Wallinga

This thesis addresses several topics related to the use of ultra-wideband radar for
target detection and discrimination. A new method to determine the scattered field from
an infinite length, perfectly-conducting, periodic sea-surface has been formulated. This
method is based on a periodic surface-current representation. The motivation for doing
this work is to create a computationally efficient method for determining the scattered
field from periodic surfaces.

An enhanced detection algorithm for radar-target detection in a sea-clutter
environment has been formulated using the E-pulse method. The theory behind this new
method is discussed, several static test cases presented, and a dynamic test case presented
showing the functionality of the detection algorithm for a target moving over an evolving
sea-surface. The effect of different target types on the detection algorithm has been
tested. Also, the effect of multipath on the detection algorithm has been investigated.
Finally, the new method has been compared to a simple detection algorithm based on
clutter reduction using coherent signal processing.

A target discrimination scheme using only the magnitude of its spectral response
has been devised based upon real cepstral analysis. Basic cepstral analysis techniques and

the minimum-phase condition are discussed. A discrimination scheme based upon
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the E-pulse method was used. A library of E-pulse waveforms was generated from the
time-domain scattered return of each anticipated target type. The time-domain
representation of an unknown target was generated using the minimum-phase
reconstruction method. The target discrimination algorithm was used to identify an
associated geometry in the target library file. Test cases included: a) thin-wire scattering

geometries using a theoretical scattering program, and b) actual anechoic chamber

measurements of small-scale aircraft and missiles.
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Chapter 1

Introduction

Detecting the presence of small targets in a nonstationary clutter background is a
fundamental problem in radar detection and tracking scenarios. The detection of both low
altitude and low cross section antiship missiles is of prime concern to the navy, and early
detection becomes critical to a ship’s survival by successfully tracking and engaging the
missile. A radar detection system that provides clutter suppression and fine range
resolution offers a significant advantage over systems which lack these capabilities.

Interest in ultra-wideband (UWB) radar systems arises in their potential use for
target identification and for low altitude, low radar cross section target detection over
water [1]. Compared with conventional continuous wave (CW) radars, UWB radars are
characterized by very large relative bandwidth and fine range resolution [1]-[2]. Another
major advantage offered by UWB radar technology is its clutter suppression capability,
therefore making it useful for detecting low-flying missiles and aircraft in sea clutter
environments [1]-[3].

Within the electromagnetics laboratory (EM Lab) at Michigan State University
(MSU), a great deal of effort has been devoted to problems in the area of target detection
and discrimination using UWB radar returns. One proposed discrimination scheme, called
the "Extinction-pulse" or "E-pulse" technique, has been applied to a large number of
problems. Early development in this area can be found in the work of Baum [4] and

Rothwell [5]. Several other authors have contributed to further research in this area [6] -
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[8]. A major portion of this thesis will be devoted to new detection and identification
schemes using the E-pulse method.

This thesis will cover a wide range of topics involving the use of UWB radar for
target detection and discrimination. In this respect, the present work will be an extension
of previous work done by previous MSU researchers. In chapter 2, a new method to
determine the scattered field from an infinite-length, periodic, perfectly electric conducting
(PEC) sea-surface has been formulated. This method is based on a periodic surface
current representation. The motivation for doing this work is to create a computationally
efficient method for determining the scattered field for periodic surfaces. This is
important in that the scattered return from a sea-like surface can be theoretically
computed and later used for testing different detection algorithms.

An enhanced algorithm for radar target detection in a sea clutter environment has
been formulated using the E-pulse scheme. Chapter 3 discusses basic E-pulse
formulation, electromagnetic scattering calculations, and target detection. This chapter
serves as a review and a starting point for the work on the enhanced detection algorithm.

Chapter 4 develops a new approach used to detect targets in a sea clutter
environment. This approach, rooted in the basic E-pulse detection scheme, overcomes
some of the difficulties encountered when using the E-pulse method. After discussing the
theory for detection enhancement, some time will be devoted to the numerical methods
required to solve the detection problem. One particular area requiring considerable
computational time is E-pulse construction. The construction of an optimal E-pulse

involves a global minimization scheme. A convenient approach is to use a genetic
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algorithm. Implementation of the genetic algorithm will be discussed in detail.

To verify the new enhanced detection technique, several approaches will be taken.
First, a stationary sea-surface will be tested. Next, a simulated dynamic sea surface will
be examined. In the latter case, the scattered field from a changing sea surface will be
computed as a function of time. The effect on target detection from target and sea
surface interaction will also be investigated. Finally, this new technique will be compared
to a coherent processing clutter reduction algorithm.

One area that is common to all aspects of this research is the use of signal
processing in one form or another. Most analyses will numerically generate a set of radar
data in the frequency domain and transform this information to the time domain. This
effort may require some careful planning in order to avoid problems normally associated
with discrete data sets. This is especially true when requiring a transient response with
a high signal to noise ratio obtained from data measured in the frequency domain. Since
most frequency data contain both magnitude and phase information, the transient response
can be obtained with a minimum of effort by using an inverse Fourier transform. On the
other hand, under certain conditions the phase information might be absent. In this case
it still may be possible to obtain a transient response that can be used in a target
discrimination scheme using the E-pulse method. A great deal of time is spent on this
topic, and several chapters in this thesis will be devoted to UWB signal reconstruction
using the method of cepstral analysis.

An overview of cepstral analysis will be presented in chapter 5. Using this

method an attempt will be made to reconstruct a radar target transient response from the
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magnitude of its frequency-domain spectrum. Theoretical discussion will include the
important topics of minimum phase conditions and minimum phase energy relations. The
energy relation will provide some physical insight into signal characteristics and the
minimum phase condition. Minimum phase reconstructed signals for the early and late-
time components of a target’s transient signal will be discussed. Many examples will be
presented illustrating the use of cepstral reconstruction. Finally, the separation of the
early and late-time signal in both the frequency and time domain will be discussed using
the minimum phase reconstruction algorithm.

The motivation behind cepstral reconstruction is the application to target
discrimination. Chapter 6 will present a simple automated discrimination algorithm using
the E-pulse method [9] and the ideas presented in chapter 5. In this detection scheme,
a library of E-pulse waveforms associated with different target geometries will be
constructed. The E-pulse waveform will be generated from time-domain data that has
been constructed using both the frequency-domain magnitude and phase information. The
time-domain representation of an unknown target will be generated using the cepstral
reconstruction method. The target discrimination algorithm will attempt to identify an
associated geometry in a target library file. Test cases include: a) thin-wire scattering
geometries using a theoretical scattering program, and b) actual anechoic chamber
measurements of small-scale aircraft and missiles.

Due to the extensive use of scattering measurements, a section in the appendix has
been devoted to this topic. Topics covered will include measurement systems, procedures,

and windowing functions. Measurement systems will examine the physical setup and
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description of measurements made in the anechoic chamber at the EM Lab. The
procedure section will review the steps necessary to obtain reliable measurements.

Finally, the most common windowing functions used in this thesis will be discussed.
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Chapter 2

Scattering from a Periodic Surface Using a Periodic Current
Function
2.1  Introduction
A great deal of effort has been devoted to the numerical solution of
electromagnetic scattering from ocean-like surfaces [10]-[11]. One of the problems
frequently encountered is the physical constraints imposed by the amount of computer
memory required and the computer processing speed available. In the MSU EM Lab, a

great deal of research has been devoted to the study of scattering from various sea surface

wave models. This research has included both theoretical scattering and experimental

measurements in an anechoic chamber. All the wave models used are constrained to
surface roughness in one dimension. For example, a simple sinusoid surface has a height

z that various as a function of x but the wave height is invariant in the y direction.

Theoretical study of scattering from these surfaces involves the numerical solution of an
electric field integral equation using the method of moments. Most often this is
computationally expensive for a general surface and forces the use of a finite extent
surface. However, this leads to problems associated with edge effects. Often the problem
can be simplified by putting some constraints on the surface.
For periodic infinite surfaces, the scattered fields can be determined in a more
| efficient way. Norman has done extensive research in this area [12]. The purpose of this
chapter is to propose another method whereby the current and scattered fields can be

calculated for an infinite periodic surface. The approach described in this chapter is

6
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similar to a periodic-surface moment method described by Chen and West [13].

This chapter is divided in the following manner. First, a detailed discussion of
theory will be covered. Several sections will be devoted to this. Next, some simple
computer scattering examples will be computed using this new method. These examples
will provide both comparisons to other methods, and illustrate scattering from various
types of surfaces. Since researchers in the EM lab have typically calculated scattered
fields from rather small surfaces ( typical wavelength of surface is about 4 inches ), some
time is devoted to larger surfaces using the new method. A final discussion will also be

included focusing on the advantages and shortcomings of this new method.

22 Theory
2.2.1 Scattered field - simple expansion

Figure 2.1 shows a plane wave, having propagation constant k, impinging on a 2-d
periodic surface of wavelength D. The polarization of the electric field is parallel to the
crests of the surface and the angle between the horizon and the propagation vector k is
given by ¢,. A surface current K(x) = 2K (x) will be induced by the electric field.

Furthermore, due to the periodic nature of the surface, a periodic surface current can be

modeled with the following expression

K = Y, K,(x-nD) PP 2.1
where ne-co
K(x) ——D—s x 52 2
Ko(x)={ x), 5 5 2.2)
0 elsewhere
B, = nkcosd, 2-3)
7
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The scattered field from the induced current is given by [14]

By = -5 [KG) Bl G (0 f@D) | Lahar @9

where Héz) represent a Hankel function of the second kind. The surface height and
differential line element length are given by f(x) and L(x)dx respectively. m is the
intrinsic impedance of the medium. Using the periodic surface current given by (2.1) and

making the substitution u = x’- nD yields the following form for the scattered field

D2 o
El(xy) = -kT" [ X K@e™ HP(le/ (e ~u=nDY + (f(x) ~f(u +nD)? )L (u +nD) du (2-5)
-Dp "=

The periodic nature of the scattering surface can be used to simplify (2.5). The

periodicity yields two useful relations

f(u+nD) = f(x) 2.6
L(u+nD) = L(u)

Using the above relations, the scattered field can be written in terms of a kernel K(x,x”)

for the periodic surface

ES(ty) - —."Z- [ KGOK(xx)LEd @.7)

where 2
K(x,x') = i ejp"dHéz)(k\/(x——x’—nD)2 + (fO) —f(x"))? ) (2.8)
en by (2.8)

To numerically compute the kernel the convergence of the series giv

can be accelerated. One way of doing this is given by Kummer’s method [15]. In this

method like terms from the series are added and subtracted in hopes of yielding a new

relation that can be more easily computed. If (2.8) is expanded and like terms are added

8
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and subtracted the following relation is formed

Kenx') = HO /G -x+ (F&) -fx)? )

D { MO P /(D - -x N+ (F0) FN? ) - A4, (xx")
n=1
(2.9)

e PO O k[(nD + (x-x ) + (F) -f(x)? ) - A, (xx)) }
o YA xx) v Y A,Ex)
n=1 n=1
Next, the forms for A, and A, must be determined. If the series given by (2.9) is to
converge the terms given by A, and A, should approach the value of the Hankel

function for large arguments. The Hankel function enclosed within the braces of (2.9)

has arguments involving the following term

P I 10 Gl e i WP Y 2.0 (2.10)
(nD)? nD

which for large values of n can simply be written as

s* =nD + (x —x') (2.11)
Furthermore, for large arguments the Hankel function can be written as
H@ = 2 @.12)

Vz
Next, the Hankel function argument involving the term given in (2.11) can be substituted
for the exponential term in (2.12). The denominator argument can be replaced by knD.
If the terms within the braces of (2.9) are compared then the following relation is

obtained
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- inkD -jknD _—
AfGx,x) = |[L gt £ gukcex) (2.13)

knD
Some simplifying yields
Ant - ‘/I e:jk(x—x’) (Zo) (2“14)
nkD \/’_1
where
7t - o Tk = cosdy) (2.15)

With the form of A, chosen, the last two sums in (2.9) can be evaluated. Letting

S*(x,x’) = iA,f(x,x’) (2.16)
n=1

and substituting (2.14) into the above relation yields

n-1
S0 - [ e 7 E (Zo) 2.17)

A change of index in the summation gives

St(x,x/) - /n e kG- x’) Z Z \(/ZO_

This sum can be written in terms of the "Lerch transcendent”, which is given by [16]

(2.18)

D(z,5,v) = Y, (v+n)~ 2 (2.19)
n=0
Comparing (2.18) and (2.19) allows the sum to be expressed as
E _ [2 pwHka-x) 7t t 1 (2.20)
S (x,x/) = ;klI; e¥ ZO (D(Z() 92’1)

The Lerch transcendent, given by an infinite summation, can be written 1n terms of an

integral as [16]

10
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1 1
2G5 -
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Due to the singularity of the integrand for t = 0, the above integral is difficult to solve
numerically. To evaluate this integral, like terms are added and subtracted to form the

following relation

“ar @Q22)

7

1 —
q)(z, ;, 1) -

=
o——13
| -

|
e
| |
N -~

o~

1
N |-

Q

o~

+
3l=

—_
|_.
o~— 3

to

ol -t . L.zl d (2.23)
2 Z 0

The advantage of the above relation is that the integral in this form converges much better

since the integral argument is proportional to the square root of t for small arguments.

2.2.2  Scattered field - higher order expansion

The convergence rate of (2.9) is determined by the forms of A, . To increase the
rate of convergence higher order terms in both the Hankel function argument and the
asymptotic form of the Hankel function itself must be considered. The preceding section
developed simple relations given by (2.11) and (2.12). This section will develop the

higher order terms necessary to increase the rate of convergence. The terms developed

] . . . N -1/2
for A* in the preceding sections contains a summation index n dependence of n"** . The

goal of this section is to show a development that has an index dependence for terms up

11
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ton”> Although the development is lengthy, the extra terms derived will greatly increase
the rate of convergence for the series in (2.9).
The argument to the Hankel function given in (2.9) is proportional to
s = nDyT™& @24)

where

_ x-xV (), 2x-x) (2.25)
(nD)2 - nD .

Expanding the square root in (2.24) to include higher order terms gives

s=nD(1 +tu-L1u?2+ Ly3 -2yt 0) (2.26)
2 8 16 128 i

Substituting for u and keeping terms only up to (nD) yields

(f_f/)2 . (x_x/)(f_f/)Z . l(-x_x/)2(f'f/)2 B l(f_f/)zt (2.27)
2nD 2(nD) 2 (nD) 8 (nD)’

s=nD + (x-x') +

The asymptotic form for the Hankel function is given by [17]

82 28 1307275 | 98304 0

By i 225 1 11025 1 .

“L.
N||'_'

with z = ks , (2.28) becomes

Wiy - | M| L, j 19 L ;25 1L, “025_1L+...} (2.29)
’ ok LTm T BksM 128k2s™ 30724 s 98304 k4 5%

To evaluate the above relation, appropriate terms must be found for the exponential and

the terms involving inverse powers of s. Using the relation given for s in (2.27) the

exponential term can be approximated as

12
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e Ik = @ TknD g 3jk(x-x") 5 -jka (2.30)

where

SNV ? DS € 2o 20 it 0 S W €Vt 0 i 10 MR T
2nD 2(nD)? 2 (D) 8 (nD)?

A simple expansion of the exponential term containing the inverse powers of n yields

2 3
21 - jka Ka? 4 jE g0 2.32)
2 6

e -jka

Since o contains terms up to (nD)? , no higher order terms than those shown in (2.32)
should be used. To see this, a substitution for o into the second term of (2.32) yields
terms up to (nD)® whereas a term proportional to o' will yield terms with (nD)*.
Hence, in order to expand the complex exponential to include additional terms, more
terms should be included in the evaluation of a.. With terms up to (nD)?, the exponential
expansion can be written as

- - sik(x-x’ 1 1. 2
Jks jknD , s jk(x-x") 1 - Yik _ gl
ek = e nDe {1 - = (kG

e L Lk - RGO

(nD)? (2.33)

o kxR Lk
(nD)S 2
sk (x-x)(F-f SIEU-F) }

To attack the problem of finding relations for the inverse powers of s, the inverse of

(2.24) can be expanded to give

1. _1_(1 +u) (2.39)
s nD
Thus
1 _ 1 L oue 1 Sl 5,0 15 s,y
o apyr apyn' 4t 3" s

13




Tokeep only terms up to (nD)”* only
wdlobe used. A quick review of (
mportionel to 0D and (nD) . and e
ain. The Hankel function in (2.29)
o with the inverse power terms

apoential (i, the uniy term) by th
k10 bave the ™

“Tequirement, Al

Thefore, the POWer terms can be rey

s
s e
$ (nD)
1
= —
(nD)"
1
B (
(nDy?
el
s (nD)’”

i
Lh\phtalmn of the complex exp
on

iy
Ml e ot needeq iy the fip



1 1 ( ) = 1 q-3,.21,,_ 77 u?

= 1 + (a-= —

s (nD)" (nD)¥2 4 32 128 )

1 1 - 1 5 45 195
= (1 +u)™" = 1 - Su+ —u? - 243+ 235
o wp T T e T Y T s ) 39
Aol gawpyme L T, T2 3855, )

s (nD)'"? (nD)'™? 4 32 128

To keep only terms up to (nD)” only a limited number of terms in the above relations
need to be used. A quick review of (2.25) and (2.33) shows that u has terms inversely
proportional to nD and (nD)? , and e 7** has terms inversely proportional to unity, n, n?,
and n’. The Hankel function in (2.29) is formed by multiplying the complex exponential
term with the inverse power terms. By multiplying the first term in the complex
exponential (i.e. the unity term) by the s term the highest power of u must be u’ in

order to have the n”? requirement. Also the highest power of u for s* term must be u’.

Therefore, the power terms can be rewritten as

1 1 (1 __1_ i 2 _ £u3 )
gl (nD)l/2 4 32 128
1 1 §. + g_l_ u 2)
312 32 4 32
s (nD) (2.36)
1 1 5

U
1
|
<
~

Multiplication of the complex exponential term and the power terms will introduce

. . -9/2
additional terms not needed in the final expression. In this case, terms such as (nD)™,
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(nD)"", ... will of course be dropped.
At this point a relation exists for the Hankel function (2.29), the exponential term
(2.33), and the power terms (2.36). Next, (2.33) and (2.36) are substituted into (2.29) and

only terms up to n”’” are retained. Avoiding the pages of algebra, the final result is

(03] Nt~ _2j ,-jknD , 3jk(x-x 1 L

Hy'x)" =\ 5e e K 1/251/2 2D R
(2.37)
. 1 £ 1 . 1 1 }
16D2 52 n5/2 256D3 2 n7/2
where

‘51/2 =1

6y = Fx-x)) kS - L

£y = 662 ~ 3¢ ® L x) + kGG

9 2k2(f-f))* (2.38)
8k?
45 . 60 15] /N2
& = i’—z(JC—x/) +17(x“x/) ¥ 80(x-x')’ - -5

+ 60kj(F-f)* £ 120G -x)(~F') - 3041k(x-x’)2(f—f’)2
225 +11—6k3(f -f)°
T2

+ 96k2(x-x")(f-f)* —j

With the above result the asymptotic forms for A, can be derived using the relation given

by (2.9). Using the relation for Z, given by (2.15), the higher order forms for A, are

Al = [[2 gwikix- "/)(Z )"{ 1] Ep * _1_53/2_% + 76—10—255,2#
e £ 2D n (2.39)

IE—L}

" 256D P
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The evaluation of (2.16) using the expanded form for A, is given by

S(x,x)t = /%e:jk(x-x')zo* { £,,9(Z,1/2,1) + 553/2@(2(;’3/2’1)

(2.40)
1 +
= 2.zmcp(z(,,s/z 1) + 256D3gm<1>(z(,,7/2,1)}
where the integral forms for the Lerch transcendent are
Togn
®(z,32,1) = = f (2.41)
n e —Z
3R
L (2.42)
3/7 0
PR 7)
®72.1) = —> [ (2.43)
15\/E 0 e’

2.2.3 Electric Field Integral Equation (EFIE) solution
The scattered field written in terms of the kernel for the period surface is given

by (2.7). To determine the surface current the following boundary condition must be
applied at the surface of the perfectly conducting surface

E (x,y) + Ezi(x,y) =0 x,y € surface (2.44)

where Ezi(x,y) represents the incident electric field. Combining (2.44) with (2.7) yields

D/2 4 .
[ KGN Ky Lxhdx' = E} (x,f(x)) (2.45)
-D/2

The surface current K (x’) can be expanded as a finite series of terms taking the form

N
K=Y a KG&) (2.46)

n=1
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where K (x’) represents the current basis function. Next, point-matching is applied at N
discrete points X, in the interval from -D/2 to D/2. The integral equation in (2.45) can

now be written as

N D2
Y o, [ KG) K Lahdx! = 2 Bl fx) m=1,..N (247
n=l  _pp kn

The above equation can be written in matrix form as

N
Y a A, =b, m=1,...,N (2.48)
n=1
where
DJ2
A,, = [ KG&)K@x,x)Lx)dx! 2.49)
-Df2
by = — E! (1 f(5,) (2.50)
kn

If the interval between -D/2 and D/2 is divided into N segments of length A and center

X,, @ pulse basis function can be defined as

A
<X <X, t—

1 n” 2 @2.51)

n

A
K,(x') = 2

0 elsewhere

With the pulse-basis function defined in (2.51) the matrix term given by (2.49) becomes

4,,= [ KG,x)L&"Hax (2.52)

vl

The self-term (m = n) can be approximated by assuming that the segment between points

is a straight line with width w,, given by

Wy = (B L5, 3) ) T

(2.53)
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The kernel can be written in terms of the Hankel function. Hence, (2.52) becomes
w2

Ay = [ HP(k|x']) dx’ (2.54)
w12
The Hankel function can be evaluated using the asymptotic expression for small
arguments as [18]
HPu) =1 - j %ln(%) for u<l (2.55)
where y = 1.781. Evaluation of the integral in (2.54) becomes

Apm = W1 Y m(-’ilwm) - 1] (2.56)
14 4

mm

For non-diagonal elements, the expression given by (2.52) can be approximated using
rectangular rule integration as

A, = K(x,,x,)L(x,)A (2.57)
where the expression for the kernel must be determined as discussed in the previous

section.

2.24 Electric Field Scattering Solution in the Far Field

A solution to the matrix equation (2.48) yields values for the unknown current

coefficients a,. These values can be used to obtain an expression for the scattered field.

First, consider the scattered field due to the surface current from a single period of the

infinitely periodic structure. For this case the scattered field is given by
D2

EX(p) = -5 [ K,y HY(k[F -5/ D LG d
-Df2

(2.58)

where the field and source points are
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p = pcosa £ + psina y (2.59)

p/ =x'% + f(x)y (2.60)

In the above relation p and o represent the distance and scattering angle to the field point.
The Hankel function argument can be written in terms of the parameters given in (2.59)

and (2.60) as

k|p - p'| = kp(l - g(Jc’cosoc + f(x")sine) + x2_+f_2(xl )3l (2.61)
p P

For the far-field p >> p’, and (2.61) can be simplified by dropping the quadratic term and

expanding. The simplification becomes

k|p -p'| =k(p - (x'cosa + f(x')sina) ) (2.62)

Next, for large arguments the Hankel function can be expanded with the following

relation

HO W) = [Z et (2.63)

Substituting (2.62) into (2.63) and using only the p dependence for the amplitude

argument yields

j ke 1 ‘cosa + f(x)sina .
Héz)(klﬁ _ B = 2j e g Hik(x/cosa v f(x")sina) (2.64)

kn\/a

Substituting the relations given by (2.46), (2.51), and (2.64), the scattered field in (2.58)

is

—  _ap N "2 .
Es(_.) . ;]ﬁ e Jkp E a f ejk(x’cosa + f(x")sina) L(x/)dx/ (2.65)
(P n 3 n

n

v | >

The relation given by (2.65) provides an expression for the scattered field from a single
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period of the infinitely periodic surface. Next, consider the contribution from 2M
additional periods of the surface. In this case M periods appear to the left of the central
scattering period and M periods are on the right. With the surface period given by D, the

total field can be written as

N ik et ‘X Ik
) = -n | I (oot
8n 1=-M

X,

N
Y a, f K (& +D)cosa + feysine ] [ 31y g/ }
n=1 &

S

(2.66)

IS

" 2

Some simplification of the above relation yields the following expression

= ik e ' D (cosa + cost,)
E:(P)="fl é_n e\/— E & cosa + cos
=M
F s
2

(2.67)

wle

The first summation term given by the preceding form simply yields an array factor

contribution which can be put in a more useful form

M 2M
E e,kp(cosa + cosd,)l _ 2 -jkMD(cosa + cosd,) EeJkD(msm + cos )l (2.68)
] 0

The summation on the right hand side of (2.68) is just a geometric series of the form

k+1
il IT‘L_ (2.69)
-

M=~

S

With (2.69) the array factor in (2.68) becomes
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kD ! AMD 1 - JjkD(2M +1)(cosa +cosd,)
e’ (cosa + cosd,)! _ e-J (cosa + cosd,) e (2.70)

1 - ejkD(cosa +cosd,)

Simplifying (2.70) yields

sin[%l—)-(ZM+ 1) (cosa +cosd,)]

ejkD(cosa +cosdy)l _ (2.71)
l=-M sin[kTD(cosa +cos¢,) |
Thus, the scattered field is given by
" sin[—@(ZM+l)(cos¢o+cosa)]
s, = l jk e™*P 2
E/(p) = -n —8; \/__ D
Y in(— (cos¢$_+cosa
sin| =5 (cos, ) @.72)
N Fa't %
{ Z an f ejk[x’cosa + f(x')sina ] L(x/) dx/ }
n=1 A

X5

2.3  Discussion
2.3.1 Comparison with other methods

In the previous sections, the theoretical aspects of TE incident plane wave
scattering from a conducting periodic surface was considered for the infinite case. The
purpose of those sections was to develop a method which is computationally efficient and
hence would allow the determination of the scattered fields from larger surfaces. To test
the validity of the developed theory several comparisons will be made with a model
previously developed by A. Norman [12]. Norman has developed a rigorous and general

treatment for the scattering of plane waves from a perfectly electric conducting (PEC)
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periodic surface. An integral-operator-based analysis has been employed and is referred
to as the electric field integral equation method of moments (EFIE-MOM). The currents
induced on the PEC surface are calculated as solutions to an EFIE with a periodic Green’s
function (PGF) kernel. With the surface currents known, it is then possible to determine
the scattered fields once again making use of the PGF.

The goal of using Norman’s model was to compare the surface current over a
periodic structure at different frequencies. In addition to analyzing the currents generated
by the new model several experiments were done to calculate the scattered fields from
various periodic surfaces. The calculation of scattered fields from a finite periodic surface
has been done extensively in the past. Solutions to these fields is a computationally
intensive task requiring the calculation of the scattered field at every frequency point,
windowing the data, and then performing an inverse discrete Fourier transform (via a fast
Fourier transform) to determine the transient scattered field. The new method would also
require these steps but the calculation of the current and field at each frequency point
should require far less computer processing time. Although one case is based upon a
finite surface a comparison between the transient scattered fields should shed a great deal
of light on the usefulness of the periodic current model.

Norman has used a geometry model from a sinusoidal surface defined in
Figure 2.2. As can be seen, this geometry is slightly different from that shown in
Figure 2.1. Major difference include the angle of incidence and the sinusoidal surface
placement with respect to the origin. The results of this study will use Norman’s

definition (forcing the author to make small changes in his program). Several frequency
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points were chosen for the current comparison. The author selected to use an incident
field with frequency points at 2.95, 5.00, and 9.00 GHz., while the angle of incidence was
at 85 degrees (near grazing). The incident field polarization was parallel to the wave
crests (TE polarization). The surface has a period length (L) of .1016 meters and wave
height of .0127 meters. The induced surface currents on one period of the infinite
conducting surface are shown in Figure 2.3 -Figure 2.5. Each figure shows the real and
imaginary parts of the calculated current as a function of normalized surface position.
As can be seen in each of these figures, there is excellent agreement between the surface
currents calculated using the new method and those calculated by Norman’s EFIE-MOM.
Since Norman’s method has been extensively researched and used , the good comparison
validates the new method.

The spectral domain scattered fields and their associated transient fields were
calculated for several periodic surfaces. The scattered field was calculated with the far
zone approximation using two different methods: (1) a 2-d finite length scattering model
based upon the solution of an EFIE using the method of moments, and (2) a scattering
model using the periodic current generated from an infinite surface. The latter model uses
the periodic current only over a finite number of periods to generate the scattered field.
In this respect we can see that the periodic current model is a hybrid model. The effect
of this type of model is to multiply the scattered field from a single period by an array
factor.

The spectral domain scattered fields from a 9-period conducting sinusoidal surface

(L = .09 meters, h = .0254 meters) generated by a TE plane wave with incidence and
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scattering angle of 30 degrees from the horizon (see Figure 2.1) have been calculated in
the far zone as a function of frequency over the bandwidth .8 - 12.98 GHz at .01 GHz
step size. The spectral amplitude of the backscattered field is computed using the finite
length and infinite period current models. The results are shown in Figure 2.6 and
Figure 2.7.
To find the transient scattered field from the conducting sinusoidal surface created
by a short pulse, the spectral results of the scattered field are windowed using a 1/8
cosine taper function (see Appendix A) and then inverse Fourier transformed. The 1/8
cosine taper window corresponding to the spccﬁal band from .8 to 12.98 GHz is shown
in Figure 2.8. A short pulse is synthesized by applying an inverse Fourier transform to

this window. The synthesized incident pulse is shown in Figure 2.9.

The time-domain scattered fields created by the short pulse for both scattering
methods are shown in Figure 2.10. It is observed in this figure that the backscattered
response for both cases agree quite well. Exceptions to this agreement occur at the leading
and trailing edge of the surface. This is to be expected since the finite (non-periodic)
current model is an exact solution with edge discontinuities, whereas the periodic current
model is not an exact solution.

A second scattering surface, known as a Stoke’s surface, is shown in Figure 2.11.
The period of this surface is 17.78 ¢cm and wave height is 4.96 cm. A Stoke’s wave

profile to fourth order [19] can be expressed mathematically by

kx = B ksin(®) + 0 @.73)
y = -Bcos(®) + —§k3(ﬁ-§ﬁ3)cos(2kx) 2.74)
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where y is the vertical displacement of the surface and x is the horizontal displacement.
0 is the parameter of the parametric curve, while k and 3 are wave shaping variables. A
simple cycloid can be generated by dropping the second term on the right hand side of
(2.74) and setting k = B = 1. The wave profile shown in Figure 2.11 was generated using
(2.73) and (2.74) for the simple cycloid case and then scaling in the x-y direction for the
given height and wavelength.

The frequency-domain scattered field for the 11 period Stoke’s wave is shown in
Figure 2.12. The scattered field was generated using a TE wave having incident and
scattering angles of 30 degrees. The frequency range was from .8 to 12.86 GHz at .01
GHz step size. The solution method used an EFIE using only a finite length surface (i.e.
no periodicity in the current). Figure 2.13 shows the periodic current solution for a 11
period Stoke’s wave illuminated under the same conditions. The transient fields were
generated by windowing the magnitude of the frequency-domain data with a 1/8 cosine
taper waveform and then applying an inverse Fourier transform. Figure 2.14 shows the
transient fields using both the periodic and non-periodic solutions. The inset shows a
larger view of the scattering between the crests. As can be seen, even with a difference
in the scattering solution techniques there is remarkable agreement between the two

solutions, except at the front and back of the wave.

2.3.2 Large surface
The spectral domain scattered field from 11 periods of a large conducting

sinusoidal surface generated by a TE plane wave with an incidence and scattering angle
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of 30 degrees is calculated using the periodic current model. The wavelength and height
of the surface are 1.0 and .25 m respectively. The frequency band is from .5 to 3.0 GHz
with a frequency step size of .005 GHz. The spectral amplitude of the total scattered
field is shown in Figure 2.15. |

To find the time-domain scattered fields due to a short pulse, the frequency data
is Fourier transformed after being windowed. A short pulse is synthesized by inverse
Fourier transforming a uniform spectral response over a bandwidth .5 - 3.0 GHz that has
been weighted with a 1/8 cosine taper window. Figure 2.16 and Figure 2.17 show the
cosine taper widow and the synthesized short pulse respectively. The time-domain
scattered field created by the short pulse can be obtained by applying the same window
to the data in Figure 2.15 and then taking the inverse transform. The transient field is
shown in Figure 2.18.  The frequency-domain scattered field shows remarkable
resemblance to those generated from a smaller sinusoidal surface in Figure 2.6 and
Figure 2.7. Similarly the transient scattered field shown in Figure 2.18 can be compared

to the transient scattered field from the smaller sinusoidal surface in Figure 2.10.

24  Computational Considerations

The amount of computational effort can be greatly reduced using the new periodic
current model algorithm. As indicated in Figure 2.12 the scattered field from a 11 period
Stoke’s wave was generated using an EFIE computational solution. The scattered field

data was generated over a 20 hour period using a Pentium 100 computer with 8§
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megabytes of memory. In contrast, the scattered field data represented in Figure 2.13 was
generated in approximately 1 hour using the same computer. This significant increase in
speed indicates the usefulness of this algorithm.

One area of interest is the number of terms to be used for the approximations
given by (2.39). Table 2.1 shows the matrix fill time associated with using different
number of approximation terms. The data corresponds to a subset of frequency points
computed for the Stoke’s surface as shown in Figure 2.13. In most cases the
computational speed improves as more terms are added, although the improvement in
going from 3 to 4 terms is not highly significant. Some improvements may be expected
by adding more terms, but it must be kept in mind that more terms will also require more
processing time. At some point the processing time to compute those extra terms will not
improve the speed of the overall computation. One significant feature of Table 2.1 is the
amount of processing time required to compute the matrix fill for the 10.0 GHz point.
For 1 and 2 term approximations, there was some difficulty in obtaining a converging
solution. The addition of the third term overcame this problem. In this respect the extra

terms are significant.

24 Conclusions

In this chapter a new radar scattering method has been developed and tested. This
new method was compared to several established methods in order to validate this new
technique. Several cases were run and findings indicated that the results of the new

method agreed quite well with previous methods. The utility of this new method is that
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the scattering problem from an infinite surface can be solved in a more efficient manner.
The results obtained can then be used in conjunction with testing different target-detection

algorithms.

28




Fre 21 Scattering geometry

fi
Rire 2,) Infinjge, conducung N



Vv

—
X

D
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Table 2.1 Matrix fill time comparison for Stoke’s scattering problem.

Fill Time (secs) for Different Number of Terms

Freq. (GHz) 1 2 3 4

I S R N R

1.0 10.65 3.57 2.03 1.76

2.0 9.78 3.13 1.05 1.26

3.0 9.43 3.02 1.70 1.32

4.0 9.83 3.02 1.70 1.36

5.0 10.49 3.02 1.75 1.43

6.0 10.22 3.13 1.82 1.43

7.0 10.38 3.18 1.85 1.43

8.0 10.55 3.35 1.87 1.48

9.0 10.88 3.40 1.92 1.48

10.0 71.67 33.89 1.93 1.48

11.0 11.64 3.40 1.92 1.53

12.0 11.97 3.68 1.98 1.59
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Chapter 3

Review of Target Detection and Scattering Techniques

3.1 Introduction

Considerable effort by researchers at MSU has been devoted to the detection and
discrimination of radar targets using the extinction pulse (E-pulse) technique [3]-
[4],[9],[20]-[22]. This chapter will review the E-pulse discrimination scheme as
implemented at MSU. Particular attention will be placed on the detection of radar targets
in a sea clutter environment using a stepped-frequency ultra-wideband (UWB) radar in
conjunction with the E-pulse technique. Several new examples will be presented to
illustrate and validate the E-pulse detection technique. The purpose of this review is to
lay the foundation for the material in chapters 4 and 6. In chapter 4 the E-pulse method
will be used for a new target detection algorithm. Chapter 6 will use the E-pulse method
in conjunction with cepstral analysis for target identification.  In section 3.4 a review
of the numerical methods to determine the electromagnetic scattered fields for perfectly-
conducting, 2-dimensional, finite-length surfaces will also be reviewed.

Section 3.2 of this chapter reviews the theoretical foundation of the E-pulse
method for radar target detection in a sea clutter environment. In section 3.3 several
examples for a band-limited signal will be used to illustrate this technique. The final
section will present the theoretical methods that will be used for calculating the induced
current on, and scattered field, from a perfectly conducting sea-like surface of finite

length. Difficulties such as computer memory limitations and computational speed will
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be discussed.

3.2  Review of Target Detection Using the E-pulse Method

Detection of objects located above a disturbed sea surface has been studied in
considerable detail at MSU. Detection, using conventional radar, becomes difficult when
the clutter signal from the ocean surface becomes large compared to the target return.
Interest in UWB radar for target detection arises from the ability to reduce the
background clutter and enhance the overall resolution capabilities of the radar [23]. With
a high-resolution, time-domain radar, the dominant scattering events can be separated,

thus allowing the clutter signal to be reduced and the target signal to be extracted. By

using a UWB system, the periodic nature of the sea clutter return can be reduced,

increasing the probability of target detection.

For a surface profile that is approximately periodic in nature the time-domain
scattered field response from the surface is also approximately periodic. If a radar
measurement is made at time T and the two-way transit time across the range bin is T,
then the scattered field will be available in the time range T <t<T +T,. The clutter
signal from the surface profile in this time range bin can be modeled as a sum of N

damped sinusoids [4]

N
r(t) = Y ae’cos(w,t+9,) t<t<t+T, G.1)
n=1

where a, and ¢, represent the amplitude and phase of the nth scattering mode,
S,=0,+jw, represents the complex frequency of the nth mode. By using the

approximately periodic nature of this waveform, a clutter reducing transmit waveform
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(CRTW) [3] can be created which, when either transmitted or used in post-processing,
will reduce the background clutter yet preserve the target signal.
A CRTW e(t) is a waveform of finite duration T that, when convolved with the
sea surface clutter return r(t), results in a null response given by
T+Ty

c(t) = e(t)*r(1) = f r(t')e(t-t')dt' =0 T+Tp<t<t+T, (3.2)

T

Application of the Laplace transform to (3.2) leads to the following condition for creating

the CRTW

C(s) = E(s)R(s) =0 (3.3)

where E(s) and R(s) are the Laplace spectra of e(t) and r(t) respectively. Hence a

condition for creating the CRTW [24] is

E(s=s)=E(s=s5,)=0 n=12,..N 3.9

where s, is the complex conjugate of s,.
Numerical construction of the CRTW is performed by expanding the waveform

e(t) in a set of K basis functions as [20]

K
e(r) = Y o, g,(0) (3:5)
k=1

where {g,(t)} is an appropriate set of basis functions. Substituting the expansion from
(3.5) into the convolution integral of (3.2) and taking inner products with a set of

weighting function {W,} gives
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T t+T,

iak f f gt r(t-t"YW (¢r)dtdt’ = 0 m=1,2,.,M (.6)
k=1 i_g ©+T,
Using (3.6), a solution for a, for almost any choice of T ("forced" E-pulse solution) can
be found by choosing M = 2N and K = 2N+1. For this condition (3.6) becomes an
inhomogeneous matrix equation with solution for any choice of T that does not cause the
matrix to be singular. Furthermore, the evaluation of the integral in (3.6) can be
simplified by using rectangular pulse basis functions and weighting impulse functions.
Different values for T result in significantly different CRTW waveforms. The
choice of T can have a significant effect on the constructed E-pulse and the extracted
resonant frequencies [4]. A suitable choice of Ty is one that yields the minimum squared
error per point between the original data r(t) and a reconstructed waveform 7(¢) . In this

situation, the following must be minimized over the sample interval

€ = |r(t)-F()| = Z[r(t") -F(2)T? 3.7)
where

N J ~
F(t) = Y d e’ cos(,t+,) (3-8)
n=1

The extracted frequencies §, = 6, + jo, can be found by solving for the E-pulse basis
amplitudes in (3.6) and then using the relation given by (3.4). This leads to a polynomial
equation of the form

IN+1

Y 0,25 =0 (3.9)

k=1
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where Z = e 2 and A is the basis function width.

Once the natural frequencies are determined, a least-squares fitting routine is
applied to (3.7) and (3.8) to yield the amplitude and phase terms for the reconstructed
waveform. Different values of T will of course lead to values of € that differ. The value
of T¢ can be varied to construct the waveform that yields the smallest value of €. In this
process, the E-pulse amplitudes, frequencies, and best fit reconstructed waveform are

obtained.

3.3  E-pulse Target Detection Using Band-limited Signals

The use of the CRTW technique to detect the presence of a target embedded in
a sea surface clutter environment has previously been reported using a baseband
implementation [22]. The following examples will illustrate the validity of the technique
for the case of band-limited signals.

The theoretical pulse responses of two finite-length, perfectly-conducting, sea
surface models with surface profiles shown in Figure 3.1 were computed (see section 3.4)
for an incident wave whose electric field was polarized parallel to the surface crests (TE-
polarization). The incident and scattering angles were both 12.5 degrees with respect to
the horizon. The moment method was used to compute the frequency-domain response
in the frequency range 0 to 14 GHz. A stepped, ultra-wideband signal was simulated by
band limiting the scattered field spectra with a GMC window (f, = 11 GHz, T = .5 nsec,
see Appendix A) shown in Figure 3.3. This window limited the frequency response to

the band 9-14 GHz, with a 3 dB bandwidth of 1.2 GHz (about 11% of the center
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frequency of 11 GHz). The time-domain representation of the incident pulse, shown in
Figure 3.4, is obtained by applying an inverse fast Fourier transform (IFFT) to the tapered
frequency spectrum. The band limited spectra for the sinusoid and double sinusoid
surface are shown in Figure 3.5. Also, the size of the sea surface models was chosen to
allow comparison with measurements taken within an anechoic chamber, and do not
match the dimensions of actual sea surfaces.

After the time-domain signals for the surfaces were computed, the measured
response of a five inch long missile target was added. The missile amplitude was scaled
to produce a prechosen target-to-clutter ratio (TCR) defined as the ratio of maximum
target signal strength to maximum clutter signal strength (excluding the response from the
leading edge of the finite length surface). Figure 3.6 shows the superposition of the
missile and clutter signals for the two surfaces. From this figure it is obviously difficult
to discern the presence of any target from the band-limited background clutter. Using the
least-squares minimization fitting routine (section 3.2), the CRTWs created for each
surface are shown in Figure 3.7. The convolution of the CRTWs with the clutter/target
combinations are shown in Figure 3.8. The presence of the target is clearly enhanced
after application of the CRTW convolution. For each surface, the missile can easily be

discerned from the clutter background.

34  Review of Theoretical Scattering Methods for Finite-Length, Perfectly-
Conducting Sea Surfaces

This section reviews electromagnetic scattering from finite-length, perfectly-

conducting surfaces. The numerical solution of an electric field integral equation using
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the method of moments will be formulated for the case of scattering from surfaces having
surface roughness in one dimension.

Figure 3.9 shows a plane wave impinging on a perfectly conducting surface. The
polarization of the electric field is parallel to the crests of the surface (TE-polarization)
and the angle between the x-axis and the propagation vector is given by ¢,. The time-
varying electric field Ezi impressed upon the surface generates a z-directed induced
current K (x) on the conducting surface. These currents in turn generate a scattered

electric field E; given by [14]

L
E/(5) = S} [K.G) HP(k|p -5/ L(x")dx’ (3.10)
LI

Z

where Héz) represents a Hankel function of the second kind, p and g’ represent the field
and source points respectively, and K(x) represents the induced surface current density.
The propagation constant and impedance of the medium are symbolized by k and n
respectively. The differential line element length is given by L(x)dx and the limits of
integration for the surface are L, and L,. The field and source points can be written in
terms of their coordinates as

p = pcosa £ + psina y 3.11)

6/ = x'% + f(x)) (3.12)

where p represents the distance from the origin to the field point, o represents the
scattering angle measured from the x-axis, and f(x) represents the surface height. Finally,

the differential line element length can be written as
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L(x)dx' = /1 + f(x)? dx’ (3.13)

To determine the surface current, the following boundary condition must be

applied at the surface of the perfectly conducting surface

El(x,y) + E}(x,y) = 0 X,y € surface (3.14)

Combining (3.14) with (3.10) yields the following integral equation

L

[ k() HO(kJ(x-x'Y + (f(x) -A(x))* ) L(x") dx’
L,

3.15)
- L B (x5 Lysxsl,
kn

The surface current density can be expanded as a finite series of terms taking the form

N
K(x) =Y a K(x) (3.16)

n=1
where K (x”) represents the current basis functions. Next, point-matching is applied at
N discrete points x,, in the interval from L, to L,. The integral equation in (3.15) can

now be written as

V.
Y a, [ K, HP(kf(x, -3 + (fx,) -f(x)) ) L(x")d’

= (3.17)
- Y B f(r,) m=1,.N
kn
The above equation can be written in matrix form as
N
Y a4, -=b, m=1,...,N (3.18)
where
L2
- [ K, HP(k/(x, -5V + (F(x,) -f&)) )L(x)dx' (319
Ll
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b, = 2 E (x, f(x,)) (3.20)
kn

If the interval between L, and L, is divided into N segments of length A and center x,,

a pulse basis function can be defined as

A
1 x——2—sxsxn+—

K (x) = ’ 2 321

0 elsewhere

With the pulse-basis function defined in (3.21) the matrix term given by (3.19) becomes

.4
"2
Ay = [ HP(kf(x, %'V + (f(x,) -F(x)) )L(x") dx’ (3.22)
A
x"—z

The self-term (m = n) can be approximated by assuming that the segment between points

is a straight line having width w_, given by

) AN Ay 12 3.23
W = B+ [f(x,=3) = fO,+3) ] (3.23)
The relation in (3.22) for the self term becomes
w,/2
Amm - f HtEZ)(k'x/I) dx/ (3.24)
-w, /2

For small arguments the hankel function becomes [18]

H® ) = 1 - j% 1n(77“) for u<l (3.25)
where y = 1.781. Evaluation of the integral in (3.24) with the relation given by (3.25)
yields

A = w1 - j 2 (W) - 1] (3.26)
mm n 4

For non-diagonal elements, the expression given by (3.22) can be approximated by simple
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rectangular rule integration as

A, = Bk, =%, % + (Fx,) -f(x,) P ) Lx,) A (3.27)

Evaluation of the matrix elements in (3.26) and (3.27) is needed to solve the pulse
basis function amplitudes given by the solution of the matrix equation in (3.18). Once
the pulse basis function amplitudes are determined, the scattered electric field can be
evaluated using (3.16) and (3.10). However, to simplify the evaluation of (3.10) a far
field approximation should be considered. In this case, the Hankel function argument

can be expanded as

k|p -p'| =k(p - (x'cosa + f(x')sina) ) (3.28)

For large arguments the Hankel function can be expanded with the following relation

H;z)(u) ~ ‘/Ze‘ju (3.29)

Substituting (3.28) into (3.29) and using only the p dependence for the amplitude

argument yields

i oIk o o

HOG|§ - p']) = || 2L £ ¢r/rorsoms o seomo (3:30)
T e

Substituting the relations given by (3.16),(3.21), and (3.30) the scattered field given by

(3.10) becomes

X,

v >

N

. -jkp s N
E () = —n\l‘é"f; e\/‘ Y a, [ eFtems sma [y gy (331)
P n=1

Xy~

A
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which for rectangular rule integration becomes

N

l ] AL jk(x cosa + sina
Ezs(p’) ~ _n ﬁ € E ane.’k(rz oS f(xn) )L(xn)A (3.32)
871: \/E n=1

The determination of the surface current involves finding a solution to a large
system of equations in many unknowns. A typical problem often encountered in the
solution of large linear systems is the memory constraint imposed by most desktop
computers. A typical linear system composed of 512 equations in 512 unknown variables
requires at least 2 Mbytes of real memory to store the matrix values for single precision
complex arithmetic and 4 Mbytes of memory for double precision complex arithmetic.
Doubling the number of equations and unknowns requires four times as much memory,
leading to memory resource problems for small systems. One solution to the problem is
to use some sort of virtual memory management scheme. However, this alternative is not
very attractive due to the large amount of time required to swap data between real
memory and that found on the hard disk. Another approach, taken here, is to solve the
problem using the spatial decomposition technique (SDT) [25].

If the process of calculating the matrix elements is fairly fast, it may not be
necessary to store the entire matrix. In the SDT method the scattering object is divided
into a number of subsections or subzones. Each subzone is considered a distinct
scattering object separated from its nearest neighbor by a virtual surface. Furthermore,
adjacent subzones carry tangential electric and magnetic virtual currents. The
electromagnetic field boundary conditions requires that the tangential virtual currents on

one side of the interface must be equal to, but opposite from the other side. An integral
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equation solution, using the method of moments, is applied to each subzone. An
approximate solution to the problem is determined by sequentially scanning through all
the subzones, and then the solution is refined through successive approximations until
some stopping criteria is satisfied.

Consider again the electric field integral equation formed by substituting (3.10)
into (3.14). A compact representation of this integral equation can be written with the

aid of the operator E.P,J / [25] as

@ [K,(x)] = E}(p) (3.33)
where

@ = [2HP(k(p-p")L(x") dx’ (3.34)
C

and C represents the contour of integration over the limits of the conducting surface. If
the surface is divided into N subzones, the electric field integral for the ith subzone can

be written as [25]

N
EXp) - ¥ ¢ 1Kk,,(:N = 9 [K,,(x))] (3.35)
n=1
where
@iy = [ 2 HG (k(p-5)L(x)dx’ (3.36)
C

n

Here, K (x') represents the surface current density over the nth subzone, C, represents
the contour of integration over the nth subzone, and p is located on subzone i. On the
left-hand side of (3.35) the total excitation on spatial subzone i is given by the plane-wave

excitation and the additional terms due to the other subzones. To implement the
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algorithm, the value of i starts at 1 and the current only on subzone 1 is calculated by the
method of moments. The algorithm then shifts to subzone 2 where the current on this
subsection is calculated. This process sequentially steps through each subzone until the
current for each subsection on the entire surface has been calculated. Once the full sweep
has been completed an approximate solution for the surface current has been obtained.
Successive sweeps across the surface lead to a convergent iterative process until some
stopping criteria is satisfied.

The advantage of the SDT method is that the current on electrically large objects
can be solved on a computer system with a modest memory capacity. For example, if
an electrically large scattering surface is broken into N, discrete points, then the system
matrix is of size N, x N,. However, by using the SDT method the surface can be broken
into N subsections of N, points, where N = N /N. Now the system matrix is of size N,
X Ni. Hence, the memory limitation problem can be managed nicely by breaking the
surface into enough subsections.

To illustrate the use of the above technique the scattered field from a simple
sinusoid surface was computed. The surface consists of 255 segments with the incident
wave and scattered field calculated at 30 degrees with respect to the horizon. The
polarization of the incident field was parallel to the crests of the surface (TE polarization).
The surface geometry consists of 11 periods, a period length of .1016 m, and a peak to
peak wave height of .0254 meters. The surface was divided into a different number of
sections to determine the number of iterations and computational time to solve for the

current.  All computations were performed on a Pentium-100 system (24 Mbytes). The
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iteration stopping criteria for all work was set at a relative tolerance of 10™. Table 3.1
shows the computational results for three different frequencies. The results of this
example illustrate the effectiveness of this technique. Dividing the surface into three or
five segments does not lead to longer computation time and requires less memory to do
the calculations. However, dividing the surface into too many segments can lead to
longer computation times. This can be seen for the case where the surface has been
divided into 15 segments.

A second example consists of dividing the same surface into 500 segments and
running the same test. Table 3.2 shows the computational results for three different
frequencies. The results in this table suggest that this technique is very effective for the
number of surface segments used. The computation time varies for different numbers of

surface segments but not enough to suggest any large increases in computation time.

3.5  Conclusions

This chapter reviewed two important topics which will be used throughout this
thesis. First, the E-pulse technique was presented. Several examples were presented
illustrating the application of the E-pulse method to the detection of target in a sea-clutter
environment. Next, the numerical solution to the electric field integral equation for
scattering from a finite-length, perfectly-conducting, 2-dimensional surface was reviewed.
The use of the spatial decomposition technique was presented and several sample test

cases were described. The spatial decomposition technique is extremely useful for

computer systems with a limited amount of memory.
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Table 3.1 Spatial decomposition iterative scheme efficiency results for scattering
from 255 segment sinusoid surface

N¢/N, num. of iters. \ comp. time matrix storage
7 (sec) (kbytes)*

f=3.0 GHz

1/255 1 15 1016

3/85 12 21 112

5/51 12 15 41

15/17 35 36 5
f=3.1 GHz

1/255 1 15 1016

3/85 11 19 112

5/51 13 17 41

15/17 29 31 5
f=3.2 GHz |

1/255 1 15 1016

3/85 11 19 112

5/51 14 19 41

15/17 34 35 5

* double precision complex arithmetic (16 byte arithmetic)
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Table 3.2 Spatial decomposition iterative scheme efficiency results for scattering
from 500 segment sinusoid surface
|
NN, num. of iters. comp. time matrix storage
(sec) (kbytes)*
f=3.0GHz
1/500 1 107 3906
2/250 5 81 977
4/125 15 103 244
5/100 16 94 156
10/50 23 104 39 .
f=3.1 GHz
1/500 1 108 3906
2/250 4 65 977
4/125 16 110 244
5/100 15 88 156
10/50 24 108 39
f=3.2 GHz
1/500 1 107 3906
2/250 5 80 977
4/125 15 103 244
5/100 15 88 156
10/50 24 109 39

* double precision complex arithmetic (16 byte arithmetic)
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