
’ J": at“.

"3:5: i7:

,
n
g
u

:
4
x
‘

.
:

.
.

n
r
\
k
a
l
v
.
2
.
.
.

a
)
z
l
t
t
s
n
t
a

.
7
.
.

2
2
.
1
.
1
.
-
.

,
‘
:
J
:
x
a

‘

l

‘
V

.
.
:
I
v
a
r
-
:
3
3
}

,

a
r
fi
x
a
fi
J
1
4
.
.
§

.

:
9
.

.
r
.
r
r
r
v
L
i
t
.

u

7
:
7
3
.
)
.
.
3
3
.
.
.

a

5
.
3
.
1
.
.
I

I
.
.
.
3
:
.

M
a
n
n
}
.
1

:
v
,
5
!
)
.
.
.
v

.
f
)
.
a
.
r
l
.
u
.
.
:
5
r
.

.
‘

u
.
I
l
a
‘
L
i
i
b
p
‘
I
-
I
a

l
I
.

.
t

l

1
.
1
.
3
:
.
.
.
5
1
.
?
.
I

L
t
.
.
.
:
.
.
i
-
l
f
.
u
~
l

I
v
t
h
x
h
.
|
~
\
l
s
|
v

.
l
P
t
p
.

‘
i
.

as...
n

,x.

v»...

.s
{
:
1

.
.

:
3
5
!

3
3
:
1
:

.

5
3
.
5
1

c
,
2
:

#
3
.
»
.
.
.
1
2
.
.
.

‘

1
.
1
1
:
.
.
.

t
:

r
3
1
5
}
-
.
.

,

i
n
t

x

(
t

A
V
q
u
¢
I
f

1
5
$
?
9
.
1
:
!

{
1
‘
5
3
}

\
i
‘
V
A
|
.
C

.
.
.
\
L

.
\
I
L
|
.
.
r
|
.
|

7
.
.
.
.
.
.
-

.

i
i
i
-
3
‘
1
:

.
1
1
:

\
w

.
r
5
.
1
.
»

.
‘

t
h

I
.

.
.
.
‘
.
|
;
\
”
U
S
$
5
2

1

r
t
.
»
I
:
’
V
-
\
.
.
5

.
1
!

x
:

.
7
.

J
.
.
l
!
.
1
1
1
«
1
1

»
\
y
V
V
.
»
:
a
.
u
w
.
\
A

i
.
t
o
:

|
I
a
l
h
x
t
'
.

.
l
/
[
2
.
x
F

.
c

(
a

.
r

‘

r
t

.
1

9
8
1
2
/
.

y
.
.
I
r
i
fi
n
y
i
t
u
i

5
.
2
9
:
,

. ~. -‘ ‘

0" S

{\ffi ;_'_::a‘\

3 1293 01563 4805

This is to certify that the

dissertation entitled

Computer Simulations

of High-Energy Heavy Ion Collisions

presented by

Gerd Kortemeyer

has been accepted towards fulfillment

of the requirements for

PhD degree in Phys iC S

a' pro gor-

Date pfl‘NWQo 23‘ 3?

MSU is an Affirmative Action/Equal Opportunity Institution 0-12771

LIBRARY

Michigan State

University

PLACE IN RETURN sex to remaite this checkout trim} your record.

TO AVOID FINES return on or before date due.

DATE DUE DATE DUE DATE DUE

MSU Is An Affirmative Action/Equal Opportunity Institution

CMWWM‘WDJ

COMPUTER SIMULATIONS OF HIGH-ENERGY HEAVY ION COLLISIONS

By

Gerd Kortemeyer

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Physics and Astronomy

1997

ABSTRACT

COMPUTER SIMULATIONS OF HIGH-ENERGY HEAVY ION COLLISIONS

By

Gerd Kortemeyer

One of the still most challenging questions in nuclear physics is that of the equation

of state (EOS) of nuclear matter — how does nuclear matter change its properties

under different temperatures and pressures? Is there a phase transition to quark

gluon plasma? Heavy-ion collisions are of great importance in this study; when two

large nuclei collide, the nuclear matter is compressed, and due to two—body collisions

of the nuclear constituents the temperature rises. Unlike for macroscopic matter, for

nuclear matter this state is unfortunately not directly observable: both the length

and the time scale of nuclear collisions prohibit probing nuclear matter while it is

Still at high temperature and density. Instead, the nuclear matter already cooled,

expanded, and formed more stable configurations before detection.

However, these late reaction products still carry information that helps to recon-

struct What happened in the early stages of the collision. It is the task of simulations

to aid the reconstruction of the reaction mechanism and conditions from the late

reaction products.

In this theSiS, Computer simulation tools for nuclear reactions are used to examlne

the - . . .
COnWlllences of different microscoplc models.

To my wife Anna

iii

Contents

LIST OF TABLES
viii

LIST OF FIGURES ix

1 Introduction

1.1 Intermediate Energy

1.1.1 Percolation Models

1.1.2 Transport Models

1.2 Ultrarelativistic Regime

1.2.1 Experimental Efforts

1.2.2 Parton—Cascades #
C
I
O
O
D
M
I
—
“
i
—
‘
l
-
I

2 ISOSPin dependent multi-fragmentation in 112Sn + 112Sn and 124Sn +

124Sn collisions

2.1 Introduction 6

2.2 Implementation of the Isospin Dependent Percolation Model 10

2.3 Results and Conclusions 14

3 Nuclear Flow in Consistent Boltzmann Algorithm Models 20

3.1 Introduction 20

3.2 Theoretical Background 24

3-3 Results and Conclusion 30

3.4 Outlook 36

4 Causality Violations in Cascade Models of Nuclear Collisions 38

4.1 Introduction 38

42 Macroscopic Causality Violations ,. - 40

4-3 Microscopic Causality Violations 45

4-4 Flame-Dependencies and Time—Ordering 47

iv

4.4.1 The Transformation Equations 48

4.4.2 Finding the Boost Parameters 49

4.4.3 Transformation of Momenta and Energy 49

4.4.4 Transformation of the Relative Positions 49

4.4.5 Ways to Calculate the Positions of the Partons in the Next

Timestep 50

4.4.6 Consequences 55

4.5 The Parton Model 59

4.6 Comparison of Methods for Dealing with Superluminous Signals . . . 61

4.6.1 Model A: Restrictions on the Signal Velocity 71

4.6.2 Model B: Suppressing of Low Energy Collisions 71

4.6.3 Model C: First Steps Towards a Retarded Interaction 72

4.6.4 Model D: Downscaling the Cross Sections 73

4.6.5 Model E: Wee-Partons 74

4.6.6 Model F: Proper time approach 75

4.7 Conclusions 77

A The Parton Cascade Program
79

A.1 Flow chart 79

A2 Test runs 79

A3 Scattering 81

A4 Assignment of the particles to the boxes 82

A5 Checking for collisions 82

A6 Decay of particles 83

A7 Creating and deleting particles 84

B PrOgram listing 85

B.1 STDEC 85

B.1.1 Physics parameters 85

B.1.2 Other parameters 86

B.1.3 Particle data 86

B.1.4 Other parameters 88

B.1.5 Grid information 89

B.1.6 Initialization parameters 90

B.1.7 Information block for the initialization methods 90

13-1-8 Data for two particles that are scattering candidates ----- 90

B19 Already scattered 92

v

B.1.10 Statistics 92

B.1.11 Information for particles to be created 92

B112 Permutation 93

B.1.13 Timing information 93

B.1.14 Controls 93

B.1.15 Charges 93

B.1.16 Cross sections 93

B.1.17 Parameters for the cross sections 94

B.1.18 Causality information 94

B.2 The main file 94

B.2.1 Local variables 94

B22 Some initializations 94

B23 The end 98

B24 The include section 99

B.3 INIT 100

B.3.1 Subroutine init 101

B.3.2 Subroutine makenucleus 103

B.3.3 Subroutine initflag 104

B.3.4 Subroutine initcharge 104

B.3.5 Subroutine initcheck 105

B.3.6 Subroutine initperm 105

B.3.7 Subroutine initcross 106

8.3.8 Subroutine rancor 109

B.3.9 Subroutine restat 109

BA INITMETHl 110

B.4.1 Local variables 111

B.4.2 Initialization of the particles 111

8.4.3 Creating particles 112

B.4.4 The end 114

B.5 MOVE 114

B.5.1 Local variables 114

B.5.2 Determining the new gridsize 115

B.5.3 Moving the particles 115

B.5.4 Assigning the particles to the boxes 117

B.5.5 The end 118

B6 SCATTER 118

Vi

B.6.1 Local variables 118

B.6.2 Initialization of variables 119

B.6.3 Choosing the boxes 119

B.6.4 Combination of all particles from the boxes 121

B7 CAUSCATTER 122

B.7.1 Local variables 122

B.7.2 Combination of all particles from the boxes 123

B8 COLLIDE 123

B.8.1 Subroutine collide 124

B.8.2 Subroutine outchannel 132

B.8.3 Subroutine totalcross 135

B.8.4 Subroutine xsecentry 136

B9 TWOTOTWO 139

B.9.1 Subroutine twototwo 139

B.9.2 Subroutine montecarlo 144

B.10 NEWMOMENTA 145

B.10.1 Local variables 145

B.10.2 Construction of a coordinate system 146

B.10.3 Getting the angle (,0 146

B.11 DECAY 148

B.11.1 Local variables 148

B.11.2 Decaying of the particles 148

B.12 CREDEL 149

B.12.1 delpar 149

B.12.2 crepar 152

B.12.3 checknumbers 154

B.13 PERMUTE 156

B.13.1 Local variables 156

B.13.2 Permutation 156

3.14 DISTRI 157

C Index 160

List of Tables

3.1 Impact Parameter Averaged Analysis (b S 5 fm) and Experimental Data 35

4.1 Parameters used for the comparisons 64

viii

List of Figures

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

Average number of intermediate mass fragments (IMFs) versus number

of charged particles (left panels) and neutrons (right panels). The

full circles denote the experimental results (Kun96] for a 12‘1Sn+12‘1Sn

collision, the open circles the results for a 1 2Sn+1128n collision, both

at 40 MeV/A. The solid lines represent percolation simulation results

for the heavier isotopes, the dashed lines for the lighter ones. The

top row was calculated without any stability mechanism, in the second

row, an evaporation mechanism is employed, in the third row a fission

mechanism, the fourth row was achieved with a combination of both.

BUU simulations of the 40 MeV/A Sn—collisions at different impact

parameters. The top plot was done with b = lfm, the middle one with

b = 3fm, and the bottom one with b = 5fm. The left plots show the

initial configuration, the right plots the same scenario 200 fm/c later.

The nucleons in the participant (overlap) zone of the nuclei are dis-

tributed on a rectangular lattice. Bonds within the participant region

are randomly broken, for the resulting fragments, different stability

mechanisms are employed.

Experimental data [Tsa93] and percolation results for a 197Au+197Au

collision. The experimental data is given for E/A=100, 250 and 400

MeV, the theoretical predictions refer to different bond—breaking prob—

abilities p0.

Results of a simulation with different bond-breaking probabilities for

equal and different nucleon bindings (PM = 0.6; p08 2 0.9).

Overview of techniques to simulate heavy—ion collisions.........

12

17

23

Additional displacement of scattering partners due to their finite volume 25

Reduced volume due to finite particle radius. In previous implementa-

tions, the testparticles were pointlike (left), which left more free space

between the particle. The current implementation (right) takes into

account the volume taken up by the testparticles.

Screening effect due to the finite volume of the testparticles. On the

left, the pointlike particles 1 and 2 could scatter with each other, par—

ticle 3 is not “in the way.” On the right, due to the finite volume, they

are prevented from scattering, particle 1 would scatter with particle 3

first.

3.5 The scattering enhancement factor YE as a function of the average

cross section. Shown is YE for g = 1, 2, 390.

3.6 The nucleon configuration in the reaction plane at different times dur-

ing the collision, shown is the nuclear density g(z, y = 0, z)

3.7 Collision rate for a 250 and 400 MeV (Au,Au) collision with b : 3 fm

versus time.

3.8 Average final transverse momentum versus reduced rapidity of the pro-

tons in a 250 MeV (left panel) and 400 MeV (right panel) (Au,Au)

collision with b = 3 fm...........................

4.1 One particle coming from the left scatters with another particle coming

from the right. The information from this event is rapidly passed on

through a chain of subsequent scattering events.

4.2 Distance d of scattering events versus simulation time at constant cross

sections of a 20.1, 0.2 and 0.5 fm2.

4.3 Lightcone and 3—dimensional hyperplane (2—dimensional illustration) .

4.4 Minkowski Plot. Highlighted is the timestep in which the particles

are at the point of closest approach. Note the time-order of the four

events “Particle 1(2) at the beginning(end) 0f the timestep” in the

c.m.-frame. These points in time are given by the intersection of the

c.m.~t axis with the dot-dashed lines that are parallel to the c.m.—z axis.

4.5 Minkowski Plot. Highlighted is the second timestep after the particles

had reached their point of closest approach. Note the the time-order of

the four events “Particle 1(2) at the beginning(end) of the timestep”

in the c.m.-frame has changed.......................

4.6 Two partons passing their point of closest approach in the c.m.—frame.

4.7 Possible discrepancies in the time-ordering of scattering processes that

are usually prevented by the spacelike distance of the scattering partners.

4.8 Typical contributions to the gluon-gluon cross section. The four point

diagram on the far right leads to divergencies in the cross section that

cannot be handled by phenomenological cut-off masses.

4.9 Example of partial cross sections being used versus the c.m.—energy.

4.10 Total number of scattering events versus timestep length used for the

simulation. The dashed line interpolates the results from simulations of

(La,La) collisions, the dotted line from (Cu,Cu) collisions. The symbols

denote the actual data points generated in the respective simulations.

4.11 In the left panel the projection of the initial parton configuration on the

x, z-plane is depicted. The highly Lorentz-contracted proton is moving

to the left into the equally contracted gold nucleus which is moving to

the right. The right panel shows the configuration 1 fm/c later.

4.12 Results of simulations with different mechanisms to suppress superlu-

minous signal transport (Part 1).

4-13 Results of simulations with different mechanisms to suppress superlu-

minous signal transport (Part 2).

X

32

34

41

43

46

53

54

56

57

60

61

62

63

66

68

4.14 A first step to the introduction of retarded interactions......... 73

4.15 Initial configuration and configuration after 2 fm/c for a simulation

with wee-partons.............................. 75

A.1 BUU program flow chart 80

xi

Chapter 1

Introduction

1.1 Intermediate Energy

1.1.1 Percolation Models

In intermediate energy heavy—ion collisions, the production of complex fragments still

is a puzzling aspect of nuclear physics research. Experiments have been conducted

both with proton and with heavy-ion beams, and several seemingly different phe-

nomena, such as evaporation, spallation, fission and multi—fragmentation have been

observed.

In multi-fragmentation scenarios, the hot nuclear system tends to decay into mul-

tiple intermediate mass (3 3 Z s 20) fragments (IMFs). Significant differences in

the relationships between fragment, neutron, and charged particle multiplicities were

found between 112Sn+1128n and 124Sn+mSn collisions at 40 MeV/A [Kun96]. The re-

sults are incompatible with a universal scaling of the average number of intermediate

mass fragments versus the number of charged particles and neutrons, respectively,

and in Chapter 2, the possibility to explain this phenomenon in the framework of

percolation models is explored. It was found that the results are only reproducible in

part, which indicates contributions of nuclear phenomena beyond geometrical frag—

mentation schemes.

1.1.2 Transport Models

For a long time, simulations of heavy-ion collisions have been rather phenomenological

in nature, which somewhat corresponded to early experiments being conducted in

an inclusive way - phenomenological models, even if based on different assumptions,

would predict the inclusive data with oftentimes almost equal quality. As experiments

became more sophisticated and exclusive, the need for advanced simulation methods

arose. This was when microscopic models became more popular: one has to be able

to dynamically simulate the collisions without any assumption concerning thermal

equilibrium — transport models are one of those microscopic dynamical models.

Boltzmann—Uehling-Uhlenbeck (BUU) (also called Landau—Vlasov) codes are semi-

classical simulations, in which as an ansatz for the Wigner-function a product of

Delta-functions is used. Each Delta-function can be associated with a localized “test—

particle.” Inserting this ansatz into the Boltzmann equation results in equations of

motion for the testparticles that are governed by two terms: a smooth modification of

the trajectories resulting from a mean—field term, and a collision term that describes

two-particle collisions between testparticles. The actual solution of the Boltzmann

equation is achieved by evolving the testparticle essemble in phase—space according

to the equation of motion rather than solving a partial differential equation. Chapter

3gives a more detailed overview of this mechanism.

The semiclassical transport codes work reliably at energies beyond 100 MeV per

nucleon. Below this energy, quantum effects are too pronounced to be neglected.

The BUU codes followed earlier transport codes, so—called cascades,[Cug81] which

did I10t have a mean-field term yet. This approximation is only appropriate at even

higher energies, above around 1 GeV per nucleon (Appendix A describes the details

Ofa Cascade code). At lower energies, many two-body collisions are blocked due to

phase-space considerations, so that the mean-field term becomes dominant. At higher

energies, Pauli—blocking is not so much of an issue anymore, since a large phase—space

volume is available, which strengthens the influence of the collision term. At the

same time, because the particles have larger momenta, the mean-field becomes less

influential.

Transport models have successfully described many aspects of intermediate en—

ergy heavy-ion collision dynamics. One of the observables in heavy-ion collisions is

the collective flow of the reaction products, it contains information about the com—

pressibility of nuclear matter. However, it was indicated [Ale95] that within current

implementations of BUU simulations the equation of state is not implemented in a

consistent way. In Chapter 3, a hard core equation of state for the nuclear matter is

implemented and its effect on the simulated collective flow is explored.

1.2 Ultrarelativistic Regime

1.2.1 Experimental Efforts

Currently, two colliders are planned for the acceleration of heavy—ions to ultra—relativistic

energies. The Relativistic Heavy-ion Collider (RHIC), presently under construction

at Brookhaven National Laboratory in New York, is a dedicated heavy-ion collider

planned for experiments in 1999. RHIC will accelerate and collide ions from protons

to heavy nuclei, such as Au, at cm. energies up to 500 GeV for protons and 100 GeV

per nucleon for Au+Au collisions. The luminosity for Au+Au will be 2 x 1026 cm“2

3‘1- Near head-on collisions of Au+Au at RHIC are expected to produce from 500

t01500 charged particles per unit pseudorapidity at midrapidity in a single collision.

Large detector systems are being constructed to analyze the products of these

inteFactions to observe indications of the possible formation of a quark—gluon plasma

andaPOSSIble chiral Phase transition.

Heavy—ion physics research will also be an integral part of the program for the

Large Hadron COllider (LHC), to be constructed at CERN, the European Centre for

Nuclear Physics, in Geneva, Switzerland. For Pb nuclei, the cm. energies at the

LHC Will be 5-4 TeV per nucleon pair with luminosities of 1027 cm“2s“1. Predictions

for the charged particle densities at the LHC for near head-on collisions of Pb+Pb

range from 2000 to 8000 per unit pseudorapidity. The large uncertainty in these

numbers arises primarily from the present lack of information on the distributions of

soft gluons in nuclei.

1.2.2 Parton—Cascades

It has been indicated that RHIC and LHC run into somewhat of a “theory-vacuum.”

The interpretation of these complex collisions and the possible generation of a quark—

gluon plasma pose a major problem: what are the experimental signatures? Currently,

several possible signatures are in discussion:

0 Kinematic effects of a first-order phase transition.

0 Electromagnetic probes e+e’, ifiu‘, 7 measure the early phase of quark and

gluon distributions and content.

0 Hadronic probes of deconfinement and chiral symmetry restoration

J/i/J ——> 6+ 5 (Up, \I” suppression)

gg —> 35 (strangeness enhancement)

None of these possible signatures have been commonly acknowledged as reliable. In

an effort to aid the answering of this question, a theoretical model for the collision

processes that goes beyond a phenomenological description must be developed. One

5

POSSlble microscopic approach is to extend the semiclassical transport theory to high-

energy physiclea193, 80189.1, Sor89.2, Gei92.1, Gei94.1, Gei92.2, Gei93], which leads

to so-called “Dalton Cascade” codes. As the energies increase in these models to the

ultrarelativistic regime, Lorentz covariance and causality are not strictly respected.

The standard argument is that such effects are not important to final results; but

they have not been seriously considered at high energies. In Chapter 4, it is pointed

out how and Why these happen, how serious of a problem they may be and ways of

reducing or eliminating the undesirable effects are suggested. The appendix gives a

commented listing of the major sections of the parton cascade code that was developed

as part of this thesis.

Chapter 2

lsospin dependent

multi—fragmentation in 112Sn —|—

112st; and 124Sn + 124sn collisions

2.1 Introduction

Percolation models have proven highly successful in the simulation of multi—fragmen—

tation reactions in the past [Bau84, Cam85]. Within these models, fragmentation is

described by first distributing a set of points or sites, each representing a nucleon,

on a 3—dimensional lattice, which represents the bonds between the sites. In the

case of a simple rectangular lattice, each site is connected to six nearest neighbors,

however, it has been shown that the model is to a large degree independent of the

lattice structure [Bau84, Sta79]. In the second step, randomly some lattice bonds

are broken with a probability that in non—isospin dependent percolation models is

the only free parameter. The remaining connected clusters are identified with the

fragments of the reaction, the bond-breaking probability with the excitation energy

per nucleon [Con79].

In this chapter, the percolation model of Bauer et a1. [Bau84] is modified by

the explicit inclusion of isospin degrees of freedom, i.e., the lattice is comprised of

7

protons and neutrons inStead of just nucleons, in an attempt to reproduce the experi-

mental data gained in the comparison of the multi—fragmentation in 112Sn+112Sn and

124Sn+124Sn 0011-1310118 [Kun96]. We especially focus on the average number of inter-

mediate mass fragments (IMFs, 3 3 Z S 20) (NIMF) versus the number of charged

partiCleS No (Fig. 2.1, left panels), and versus the number of neutrons Nn (Fig. 2.1,

right panels) detected. The full circles denote the results for the 124Sn+1248n reac-

tion, the circles the results for the 112Sn+1128n reaction. The striking feature about

these distributions is the “Splitting” of (NIMF)(NC), and the position of the maxima in

(N,MF)(N,,). Both do not agree with common multi-fragmentation models, in which

the distributions (N,MF)(NC) should lie on top of each other, and the positions of the

maxima in (Nu/IF) (Nu) Should simply correspond to the ratio of neutron abundances

in the respective isotopes.

Figure 2.1: Average number of intermediate mass fragments (IMFs‘) versus number of

charged particles (left panels) and neutrons (right panels). The full circles denote the

experimental results [Kun96] for a 124Sn-i—1248n collision, the open circles the results

for a 112Sn—i—“ZSn collision, both at 40 MeV/A. The solid lines represent percolation

simulation results for the heavier isotopes, the dashed lines for the lighter ones. The

top row was calculated without any stability mechanism, in the second row, an evap-

oration mechanism is employed, in the third row a fission mechanism, the fourth row

was achieved with a combination of both.

Figure 2.1

:
_
:
:
_
_

0
5
4

2
1
0

2
3
$

A
h
—
Z
C
Q
V

10

2.2 Implementation of the Isospin Dependent Per-

colation Model

For each simulated collision event, first the impact parameter is randomly selected.

Then With a Simple Monte Carlo integration, the number of protons and neutrons in

the overlap zone of the two nuclei is determined. We employ an approximation in

which the nucleons outside the overlap zone are neglected — we found this approxima-

tion to be appropriate by studying Boltzmann-Uehling—Uhlenbeck (BUU) simulations

[Bau86] of the collisions at different impact parameters, which clearly showed distinct

spectator regions in the final state even for small impact parameters. Figure 2.2 shows

the outcome of the BUU simulations at different impact parameters. The simulations

were run with b = 1, 3, and 5 fm, respectively, and the spectator regions were observed

even 200 fm/c later.

11

_ I I 1 I _

I . . . | | i i . . | . . i . | .

O 10 20 30 4O

_ I 'fi ' I l I ' ' I

__ -» - ' ‘O- . , _3

. l i I i I . I

O 10 20 30 40

' I ' ' l ' ' I ' ' l

I I | I

Flgllre 2.2: BUU simulations of the 40 MeV/A Sn-collisions at different impact pa-

:fimeters. The top plot was done with b = lfm, the middle one with b = 3fm, and

16 bottom one with b = 5fm. The left plots show the initial configuration, the right

D 0t8 the same scenario 200 fm/c later.

‘
P
e
a
u
t
o
r

12

3
I:

“0%

' I a;

$53

. <
E /

4.)

5

3'
U

33

it
04

F
r
a
g
m
e
n
t
s

S
p
e
c
t
a
t
o
r

Figure 2.3: The nucleons in the participant (overlap) zone of the nuclei are distributed

‘le a rectangular lattice. Bonds within the participant region are randomly broken,

or the resulting fragments, different stability mechanisms are employed.

13

The nucleons in the overlap zone are randomly distributed on a rectangular lattice

(see Figure 2.3).

The lattice bonds are then broken with a probability p, which we determined

intwo diflerent ways: in one method we set it equal to a parameter p0 which we

obtain by fitting to the experimental data [Kun96], in the second method we choose 1)

according to a Gauss distribution around p0, i.e., for each simulation, p varies slightly

in order to simulate excitation energy fluctuations. A comparison between both

methods showed no significant difference in the outcome except for better statistics in

the latter method for higher event multiplicities as large bond-breaking probabilities

were included. Since we find the inclusion of excitation energy fluctuations to be

more realistic, we settled for the latter method.

We then identify clusters of nucleons which are still connected with each other.

However, since those clusters are not necessarily a stable configuration of protons

and neutrons, we experimented with several different algorithms to achieve fragment

stability (see Fig, 2.3). Methods included a re-distribution of protons and neutrons

between the fragments, further fission of the fragments, evaporation of protons and

neutrons from the fragments, and simulations with no additional stability criteria

applied. Also, the definition of stability is not obvious: the experimental lifetime

data applies to nuclei in their ground state and is not directly transferable to the

fragments of a multi-fragmentation reaction. Since we found the outcome to only be

slightly dependent on the definition used, we settled on a stability criterion where

the fragments are required to have a ground state lifetime that is long enough for

them to reach the detectors. As an unfortunate side effect of fission and evaporation

mechanisms, however, the relationship between the bond breaking probability p0 and

the excitation energy is not obvious anymore, rather the combination of the initial

bond-breaking and further mechanisms leads to an effective bond-breaking probability

197Au + 197Au

12 I I I I I I I I I I I I I12 I I I I I I

- 0.8 -

E/A=1oo uev

10“ — 10 — — — 0.7 —

— — — - - 0.65 _.__ —

8— J 8 _ 0.6 _./-'/ ’2‘: \—

5 _ /\ _ '2 _
.iiifii 57-: 0.5 f,

6- 'i i; — a 6 —
i i z

tfil" ii 250 - V _

4— 4' ii — 4—
I I5 I

. C _. ._

C

-. 400

._ f .. _ 2
HI .. - ' . ' _.

6IIIllIllllIlllIlll o'I-I'IIIIIIIIIIIIIIII

o 20 4o 6O 80 100 o 20 4o 60 BO 100

Nc NC

Figure 2.4: Experimental data [Tsa93] and percolation results for a 197Au+197Au col—

lision. The experimental data is given for E/A:100, 250 and 400 MeV, the theoretical

predictions refer to different bond—breaking probabilities p0.

that is higher than 190 — therefore, p0 sets a lower limit for the excitation energy.

0f the order of 106 — 107 events were simulated for each set-up; for each individual

event the number of charged particles, neutrons and IMFs was recorded, where in

accordance with the experimental data we employed detector efficiencies of 0.9 for all

Charged particles and 0.65 for neutrons.

2.3 Results and Conclusions

The code was first applied to the experimental results of Ref. [Tsa93]. Figure 2.4

shows the the average number of intermediate mass fragments (3 3 Z s 20) versus

the number of charged particles ((N,Mp)(Nc)) for 197Au+l97Au collisions. The exper-

imental results in the left panel refer to different energies per nucleon [Tsa93], the

curves in the right panel to percolation simulations at different bond—breaking proba—

15

bilities 100- It had been found earlier [Pha92] that percolation codes generally slightly

underpredict the number of intermediate mass fragments, which was attributed to

the possible existence of non-compact decay geometries. Overall, however, the model

was found to reproduce the data reasonably well.

In the next step, we address the question of the reproducibility of the isospin—

dependence found in Ref. [Kun96]. The top row of Fig. 2.1 shows the result of a

simulation with a bond—breaking probability distribution centered around p = 0.7

and a half-width of 0.1. In this simulation, no stability mechanism is applied. The

solid line corresponds to the simulation for the heavier isotope (experimental data

indicated by full circles), the dashed line to the lighter isotope (open circles). The

difference between the isotopes in the average number of IMFs versus the number of

charged particles could not be reproduced, the outcome basically reflects the trivial

autocorrelation that every IMF is a charged particle, the slope is determined by the

ratio of IMFs versus lighter fragments. The linear relationship will eventually break

down in events with high multiplicities when more and more fragments are smaller

than lMFs. The experimental data shows that in the heavy isotope relatively fewer

fragments with Z < 3 are formed, a trend that cannot be seen in the simulation. The

difference in the average number of IMFs versus number of neutrons (right panel)

can be reproduced, which, however, is not surprising: in the collision of the neutron-

richer isotopes, more neutrons are emitted. The positions of the maxima, i.e., at 25

and 29 neutrons, respectively, correspond to the ratio of neutrons in the isotopes,

62 and 74, respectively (25/29 x 0.86; 62/74 x 0.84). In the experimental data the

maxima are at 25 and 40 neutrons, the ratio of z 0.63 is in—compatible with the simple

explanation above. At high neutron numbers, statistics get rather unsatisfactory, and

we do not reproduce the high neutron multiplicities seen in the experiment for the

heavy isotope.

16

The second row 0f Fig. 2.1 shows the outcome of a simulation with an evaporation

mechanism to achieve fragment stability: protons and neutrons are broken off the

fragments until the remainder is stable. In the simulation shown, in case of N > Z,

neutrons are broken off, and vice versa. In another simulation, protons and neutrons

had been broken off randomly, which lead to slightly less IMFs. Again, differences

inthe IMF—distribution versus number of charged particles (left panel) could not be

observed, however, for both isotopes, in comparison to the simulation without stability

criterion,the ratio of IMFs to lighter particles decreased. In the IMF distribution

versus number of neutrons (right panel), naturally higher neutron multiplicities are

observed, the ratio of the maxima positions (32/40:0.8) remains compatible with the

ratio of neutrons between the isotopes, though.

The third row of Fig. 2.1 results from a simulation a fission mechanism: an unsta-

ble fragment is broken into two fragments, if such a secondary fragment is unstable, it

isagain broken up into two fragments, and so on, until only stable fragments remain.

The distribution of the secondary fragment sizes is chosen to be centered around 0.5

and falls off quadratically towards 0 at 0 and 1; a simulation with a flat distribution

yielded similar results, it had only very slightly less lMFs. Both these mechanisms fit

the IMF distribution versus number of neutrons rather well, the ratio of the positions

of the maxima, 31/41 R: 0.7 is half-way between the expected 0.83 and the experi—

mental 0.6, however, the different heights of the maxima could not be reproduced.

The IMF-distribution versus charged particles again fails to show differences between

the isotopes.

The forth row finally shows the result for a combination of the two mechanisms

above, each unstable fragment undergoes evaporation or fission with equal probability.

Apparently, this mechanism produces too many light fragments, both charged parti-

cles and neutrons. The ratio of the maxima in the IMF distribution versus number

L—_____,_

l ' 'F I l l I l l *7 l

5 —— 0124811 ”flu-'3 __ _

112 .9

A4— —--- S .O. 699955830 ,”I/

Elli .. see /’///’3: ..0 see , / ’ ’ ,

2' .0. ’/ I

l‘ .99998

0 I; l . I l

0 10 20 30 40

NC

Figure 2.5: Results of a simulation with different bond-breaking probabilities for equal

and different nucleon bindings (P04 : 0.6; p06 2 0.9).

of neutrons is 33/4420.75.

ln deviation from the established percolation models, we also worked with dif—

ferent break—up probabilities for bonds between protons and protons, neutrons and

neutrons, and protons and neutrons, that is, a probability pee for equal pairings, and

aprobability pad for unequal pairings, 3906 2 120,1. As it turns out, in this method the

outcome depends significantly on the distribution of protons and neutrons on the lat-

tice; in the case of a highly ordered configuration where except for the excess neutrons

both types of nucleons are distributed in an alternating way (“salt crystal”), i.e. in

general every proton has six neutrons as nearest neighbors and vice versa, the ex-

cess neutrons being put in randomly as “impurities,” one notes significant differences

between both Sn—isotopes in the distribution of intermediate mass fragments versus

charged particles — however, these are still much smaller than in the experiment, as

Fig. 2.5 illustrates this for pee = 0.9 and pod = 0.6. Even though this effect leads to

aslightly closer resemblance of the experimental data, we consider it to be an artifact

since it nearly completely vanishes with a purely random distribution of protons and

neutrons on the grid. We attribute this effect to the fact that in a pure “salt-crystal”

18

configuration every bond has the break-up probability Poa; every impurity will in gen—

eral lead to the introduction of six bonds with break-up probability p05, and therefore

11353 large impact. As a result, disregarding surface effects, in the collision between

the lighter isotopes about 79% of the bonds are of type Poa and 21% of type p05, while

for the heavier isotopes the percentages are 61 and 39, respectively. In the random

configuration, however, there is no such amplification, the percentages are 58 versus

42 for the lighter isotope, and 56 versus 44 for the heavier isotope.

Also, simulations were run with a “neutron skin,” which influenced the ratio

of protons and neutrons in the overlap zone for different impact parameters: for

small impact parameters the ratio of neutrons to protons was higher than for large

impact parameters, the size of the neutrons skin were determined by a Hartree—Fock

calculation[Br096] . However, also these simulations could not improve the agreement

with experimental data.

In conclusion, the experimental results could only be reproduced in part. The

main discrepancies are:

0 The difference between the two isotopes in the average number of IMFs versus

number of charged particles could not be reproduced.

o The difference in the maximum values of the IMF distributions versus number

of neutrons could not be reproduced.

o The experimental positions of the maximum number of IMFs versus number

of neutrons is in-compatible with the trivial shifting due to higher neutron

abundance that is found in the simulation.

The discrepancies found between the data and this basically geometrical approach

indicate that effects outside of percolation theory are important. The nuclear struc—

19

ture 0f the fragments as well as sequential feeding might play a role. Most important

however seems the role of preequilibrium emission which may not only effect the

sorting axis but as well determines the N/Z composition of the fragmenting system.

Chapter 3

Nuclear Flow in Consistent

Boltzmann Algorithm Models

3.1 Introduction

Heavy-ion collisions are of great importance in answering the question how nuclear

matter changes its properties under different temperatures and pressures.[Cze86]

When two large nuclei collide, the nuclear matter is compressed, and due to two—

body collisions between nuclear constituents also the temperature rises to about 50 —

100 MeV (about 5 to 10 times 1011 Kelvin). Unlike for macroscopic matter, for nu-

clear matter possible phase transitions etc. are unfortunately not directly observable:

both the length (about 10 fm=10‘14 m) and the time scale (about 60 fm/c =2 x 10‘22

seconds) of nuclear collisions prohibit probing the nuclear matter while it is still at

that high temperature and density. Instead, the nuclear matter has already cooled

down, expanded, and formed more stable configurations before it hits the detectors;

every observation can only be indirect.

However, these late reaction products still carry information that helps to recon-

Struct what happened in the early stages of the collision. For example, the collective

flow of the reaction products contains information about the compressibility of nu-

clear matter. With the exception of the merely theoretical case of a head—on collision

20

21

0f the two nuclei (Vanishing impact parameter), from straightforward considerations

itisexpected that in the collision nuclear matter of the two partners is pushed out-

wards perpendicular to the beam within the plane defined by the impact parameter.

The harder in the sense of compressibility the nuclear matter would be, the stronger

this effect would be expected to be. Also, from this very simple consideration one

would expect the flow to always increase with the beam energy. However, since the

interaction between nucleons in addition to a short range repulsion has a long range

attraction, this Simple picture does not hold true: at low energies, the long range part

of the nuclear interaction dominates, the nucleons are attracted, and flow is gener—

ated by the nucleons being scattered towards each other. At energies around 70—140

MeV/nucleon depending on the mass of the reaction partners both effects cancel out

each other, the flow disappears in the experiment; simulations to—date tend to under-

predict that value.[Wes86] At high energies, the nucleons collide at short range, and

the mechanism for flow indeed corresponds to the simple consideration above.

To extract quantitative information about and gain insight into the microscopic

processes within nuclear matter, however, it is necessary to have a dynamical model to

simulate the collisions themselves. Comparision between the predictions for the final

stage gained by the Simulation on the one hand, and the actual experimental results

on the other hand are used to refine the model for the early stages. The simulation

of heavy-ion collisions unfortunately is equivalent to solving a quantum—mechanical

many-body problem, which to date is not fully possible. Difierent approaches have

been made to nevertheless approximate the solution. Early approaches were based

on hydrodynamics, they used a nuclear equation of state, but the mean free path

of the nucleons was assumed to be so small that the nuclei in the collision merely

resembled splashing droplets. At the other extreme, there were models that due to

their extremely long mean free path basically resembled colliding gas clouds.[Da593]

in-

22

To model the situation more realistically, testparticle based models were devel—

oped. Here, a nucleon and other nuclear constituents are represented by a number

of testparticles, their individual trajectory is followed rather than being concerned

only with the global properties of some nuclear “fluid” or “gas.” Obviously, these

microscopic methods, which can be implemented in different ways, have the general

property of being computationally more intense than the macroscopic ones.

One method is that of Molecular Dynamics,[Aic91] in this method both the long-

range attractive (soft) and the short-range repulsive (hard) part of the particle interac—

tion is parametrized by potentials, the trajectories of the testparticles are continously

updated in response to the local potential.

Another semi-classical particle-based method is the Boltzmann-Uehling-Uhlen-

beck (BUU) approach. Here the soft part of the interaction is represented by mean

fields, while the hard part is given by an explicit collision term. The collision term

itself can again be represented in different ways, especially the criteria for a collision

to happen are model dependent. In many codes, this decision is based on geometrical

considerations, for example, a collision is generated at the point of closest approach

between two particles. The BUU method is being used by various groups.[Ber88,

Aic96, Bau86]

One particular implementation of the collision term in BUU codes is the Direct

Simulation Monte Carlo approach (DSMC), see for example Lang et al.,[Lan93] and

Danielewicz.[Dan95] In this approach, collisions between the testparticles are not gen—

erated through geometrical and particle—trajectory based criteria, but stochastically

in a way that the correct collision rate is reproduced. In a collision only momenta

and energy of the particles are changed, while the particles themselves stay in place

until the next advection step a the particles are assumed to be pointlike.

23

macroscopic Hydrodynamic models etc. I

Molecular Dynamics

Geometric scattering

criterium

Hard-sphere

Hard interactions

through

potentials

microscopic

Explicit collision

Stochastic

scattering criterium equation of state

Figure 3.1: Overview of techniques to simulate heavy—ion collisions.

It was suggested that in order to reproduce a Hard-Sphere Boltzmann Equation,

the DSMC approach should be extended by an additional advection that should

take place after any collision,[Ale95] and by a modification the collision probability

itselfiAle95, Res77] (Enskog Theory).

Figure 3.1 summarizes these different techniques.

This advection is supposed to push the collision partners away from each other

according to their hard-sphere radius, and the collision probability is adjusted to take

into account the excluded volume of the hard spheres and screening and shadowing ef-

fects. The modified DSMC method is called Consistent Boltzmann Algorithm (CBA).

The modifications ensure a non-vanishing second virial and change the equation of

state for the scattering process from that of an ideal gas to that of a hard-sphere gas;

their effect on the calculated value of directed nuclear collective flow in heavy ion

collisions is analysed, and it is found that the flow slightly increases.

«~AM

24

3.2 Theoretical Background

In the DSMC approach, the positions and momenta of the particles are evolved in

a two-step process, namely advection and collisions, corresponding to one timestep

of the simulation. During the advection step the particles are propagated according

to their momenta. During the collision step first the particles are sorted into spatial

cells of volume V. Then out of the n particles within a given box, at random, m

combinations are chosen and scattered with the probability

o(\/§)v,e1At n(n — 1)/2
W:

NV m ’

(3.1)

where o(\/§) is the energy-dependent elementary hadron-hadron cross section, N is

the number of testparticles representing one nucleon in a full—ensemble testparticle

algorithm [Wel89], At is the timestep length, and vrel is the relative velocity of the

particle pair [Lan93]. In the limit V —> 0, At —> 0, N —> 00, the solutions of this

method have been shown to converge to the exact solution of the Boltzmann equation

(without mean field contribution)[Bad89],

8

atfl + ’U ' 'af—rl = (atf1)coli ‘ (3-2)

Here, f1(r, 'v; t) is the one particle distribution function , which, according to Boltz—

mann, is defined in such a way that

f1(r,v;t) d'r do

is the number of particles that at a time t are within a volume element dr around 7'

and have a velocity do around '0. The infinitisimal volume elements have to be taken

with a grain of salt, since taken literally, within a mathematically infinitisimal volume

element, f1 could either be ’1’ or ’0’ v the pointlike particle could either be inside the

infinitisimal volume, or not. Rather, the volume element has to be a physical element

‘Qx

Figure 3.2: Additional displacement of scattering partners due to their finite volume

that is microscopically infinite — small enough so that physical properties do not vary

appreciably over its extension, but big enough to contain a large number of particles.

This approach does not take into account the finite size of the nucleons; the

testparticles are point-like, and if it was not for the contribution of the mean field, they

would be following an ideal gas equation of state. It has therefore been suggested by

Alexander et a1. [Ale95] to include an extra displacement d of the collisions partners,

1 vi" _ v?” 0(\/§) (33)

:2|v’T—v,| 7r ’

v, = '01 — 112 being the velocity difference before, and v’, : v’1 — v’2 being the velocity

difference after the collision. Particle 1 is displaced by d and particle 2 by —d. This

additional advection pushes the nucleons apart according to their hard-sphere radius.

Figure 3.2 illustrates this mechanism.

Within the Boltzmann equation, this displacement corresponds to change of the

collision term

(atf1,2)c011=/dv1/dvg/dviw(v2ivlivl2avi) [fi,2fi,1 — f1,2f1,1] , (3.4)

26

W again being the scattering probability, and the f ’s being the respective one-particle

distribution functions before and after the scattering for the two particles, i.e.,

f1,1 = f1(r,v1;t), ff), = f1(r,'v’1;t) for Particle 1, (3.5)

and f1,2 = f1(r,'v2;t), fig 2 f1(r,v’2;t) for Particle 2. (3.6)

With the additional displacement, it is

f1 (r,v2; t) f1 (7301) —> f1(r + d,v2;t)f1(r — d, '01; t) . (3.7)

The same replacement has to be done with d —> —d for the inverse term f{)2f{,1.

It is not obvious right away how this displacement scales with N. However, as

in the mean free path 1/((o/N)(Ng)) of a testparticle, 9 being the nuclear density,

there is no N dependence, the average number of collisions that a certain testpar-

ticle is involved in is independent of N. Therefore, in order to achieve the same

total displacement during the course of the simulation, the individual displacement

per collision should not depend on N either. The testparticles are therefore pushed

apart according to the nucleonic radius, and not according to the effective testparticle

radius.

The finite radius of the particles also makes it impossible for one particle to be

within the “hard core” of the others, and thereby from the available volume V a

fraction

% - giro3 = Vg- gm? (3.8)

is occupied, where a is the average “hard core radius” of the nucleon, and n/N is

the number of nucleons in the respective box. If one only looks at the centers of the

nucleons, they cannot be closer together than 2a ~ in that respect, another view of

the scenario would be to assign each “point nucleon” a “sphere of influence” with

radius 2a. We obtain a by randomly picking it particle combinations for a respective

box and calculating their cross sections o,(\/s—,).

27

The Pauli principle is approximately taken into account in the following way:

since collisions between particles from the same nucleus that had never scattered

before are assumed to be Pauli-forbidden, in the determination of the average cross

section only particle combinations with partners that are not from the same nucleus,

unless at least one of them had scattered before, are taken into account. According

to the Golden Rule, the cross section is proportional to the available phase space,

however, since the particle combinations chosen for the determination of the average

cross section were chosen without any further restrictions, a momentum space volume

of 4/37r(p3 +pp)3, where p3 is the momentum of the beam per nucleon, and pp is the

Fermi momentum, was implicitly assumed. In reality, the two nuclei occupy part of

the momentum space, namely, 2-4/37rp32. Thus, we adopt the following approximation

for the effective radius a, i.e.,

. = iii (ggwa) . (1 _ 2(———~)—) . (3.9)

For small Ebb, this effective radius is about 0.84 fm, in the range between 100—400

MeV it is about 0.47 fm. This is slightly larger than what has recently been suggested

in Ref. [Dan96], there, the effective radius derived from delays in elementary processes

is about 0.6-0.8 fm and 0.15-0.3 fm, respectively.

Due to the reduced volume

V = (1— g- grail) V (3.10)

alone, a modified higher scattering probability

W: ZW (3.11)

V

has to be used — the particle have less free space between them and therefore scatter

more often, see Figure 3.3.

28

Figure 3.3: Reduced volume due to finite particle radius. In previous implementa-

tions, the testparticles were pointlike (left), which left more free space between the

particle. The current implementation (right) takes into account the volume taken up

by the testparticles.

However, the scattering probability is lowered again by another effect: the particles

are screening each other. A particle might not be available for scattering with another

particle because there might be a third particle in between, an effect that is illustrated

in Figure 3.4.

Through this effect, a portion AS of the total 2—dimensional surface projection

S = 7r(2a)2 = 47ra2 of the “spheres of influence” of the particles is not available for

scattering, which lowers the collision frequency by a factor (1 — A—S/S), where A—S is

the average screened surface area. With :1: being the distance of the center of spheres

1 and 3 in Fig. 3.4. Allowing the distance to vary, within a range (as: + dzr), the

average number of “No. 3 - spheres” is 47rgzczd1r, each of them screening a surface

ring area 27ra(a — :1: / 2) of sphere 1. Therefore, the average screened area is

_ 2a 11 2 5

AS =/ dx 47rgm2 - 27m (a — g) 2¥ . (3.12)

Recalling the change in collision frequency, this effect leads to a reduction of the

29

3 5 . 3

J

1 .

2 1 2

Figure 3.4: Screening effect due to the finite volume of the testparticles. On the left,

the pointlike particles 1 and 2 could scatter with each other, particle 3 is not “in the

way.” On the right, due to the finite volume, they are prevented from scattering,

particle 1 would scatter with particle 3 first.

scattering probability by a factor of

<1 — g) = (1 — 9- EMS) . (3.13)

Again, the product g - a3 is independent of the number of testparticles per nucleon

N. Including this factor, the modified scattering probability is

W’ = YEW , (3.14)

where

1— g- flm3 1—11bEg/8 2
E _ 12 __ E _ 3

y _ 1_ Q. §Wa3 __ 1* 2bEg , b — 37m , (3.15)

b5 being the second virial coefficient as yielded by the Enskog Theory of the dense

hard-spheres fluid [Res77]; see figure 3.5.

The implementation of the modifications makes the second virial of the hard part

of the interaction non-vanishing; bE is positive and therefore leads to an increase in

preasure. This is partly compensated by the negative virial b5 that is due to the soft

(mean field) part of the interaction; see for example [Dan96]. The equation of state

_ I r T j I I ‘1' IV 1' 1" 4

4 L a

J

3 — —<

m

>4 i

2 C— _

1 ; —

> I l I I I I l I I I I l I I I I I I l I I I I I

0 20 40 60 BO 100

Average Cross Section (mb)

Figure 3.5: The scattering enhancement factor YE as a function of the average cross

section. Shown is YE for g = 1, 2, 3m.

deviates from that of an ideal gas by both contributions, i.e.,

P = air (1 + 9(bE + as) + . . .) . (3.16)

One should note at this point that the Enskog Theory is non-relativistic; both the

advection vector (1 and the excluded volume, therefore also YE, are calculated in a

frame-dependent way.

3.3 Results and Conclusion

Our numerical calculation is based on the MSU BUU-code by Bauer et a1. [Bau86]

which was modified from a geometrical formulation of the collision term to a stochastic

formulation according to Ref. [Lan93]. Only NN collisions were taken into account,

which for the energies considered turned out to be a justified approximation. A full-

ensemble and a parallel—ensemble implementation proved to have similar results; re-

sults for different systems were compared with both Refs. [Bau86] and Ref. [Dan95];

they were found in satisfactory agreement. An interesting side-result at this stage

31

however was that changing the algorithm from geometrical to stochastic scattering

increased the frame—of-reference dependence of the result: when running the simu—

lation Within the lab-frame we found an asymmetry in the flow which we attribute

to the fact that in this frame the projectile is Lorentz-contracted and the target is

not. Therefore within a spatial box inside of the overlap—zone of the two nuclei there

are many more testparticles originating from the projectile than from the target, re-

sulting in an asymmetry of the respective scattering rates. We are currently trying

to overcome this problem by y-dependent modifications of the scattering probabil-

ities, however, so far with only little success. The flow—asymmetry vanishes when

the calculation is performed in the c.m.-frame, which is what we did in this work.

The geometry-based code did not appear to be sensitive to this asymmetry, however,

Lorentz invariance certainly still is an issue, see Chapter 4. Finally the full—ensemble

version of the stochastic code was modified according to Ref. [Ale95], and the scaling

of the collision rate and the flow with the number of testparticles N was checked.

We simulated an (Au,Au)—collision at projectile energies of 250 and 400 MeV

per nucleon, and b : 3 fm over a total time of 70 fm/c. These energies are large

enough so that the repulsive (hard) part of the interaction dominates, but, as already

pointed out, low enough so that inelastic NN scattering can still be neglected. The

timestep length was 0.1 fm/c, the volume V was approximately 1.8 fm3, the number

of testparticles per nucleon N was 250, m in equation (3.1) was chosen to be n2,

and we used a soft momentum—dependent equation of state. Figure 3.6 shows the

evolution of the configuration in the reaction plane.

32

m o

—25o MeV

400 Mév

Figure 3.6: The nucleon configuration in the reaction plane at different times during

the collision, shown is the nuclear density 9(m, y = 0, z).

33

60:"“l""l""|"": ."r'TfifiHF'H'IH'i

so;— 250 MeV —; 60-. 400 MeV _

E 40:— —. I

\ : : -

8 30} —j 40.— ‘

43 : I

S 20:— i -

U : 20f —

10.— i I

0'.i.... 1. 0.11 . A...

O 20 4O 60 O 20 4O 60

t (fm/c) t (fm/c)

Figure 3.7: Collision rate for a 250 and 400 MeV (Au,Au) collision with b = 3 fm

versus time.

The result for the unmodified algorithm is shown on the left, the result for the

modified algorithm on the right, respectively. As expected, the nuclei disintegrate

slightly more violently due to the additional advection, resulting in a lower nuclear

density. A calculation with the additional advection alone revealed that therefore

also the collision rate decreases. However, this is partly compensated by the modified

scattering probability Eq. (3.15). On the other hand, a calculation with the modified

scattering probability alone shows a strongly enhanced collision rate, as expected.

The left panel of figure 3.7 illustrates this for the 250 MeV collision, the right panel

shows the collision rates for the 400 MeV collision. The solid curve refers to the

unmodified simulation, the dashed curve to the modified one. For the 250 MeV

collision two dotted lines were added, the upper line refers to a calculation where only

the scattering enhancement was taken into account, the lower line to a calculation

that only incorporated the additional advection.

Figure 3.8 shows the average final transverse momentum versus the reduced rapid-

34

9 ,,,,, _ 11111

§ r(Au,Au), b=3 fm, 250 MeV ,E ' '(Au,Au), b=3 fm, 400 MeV m, ,nr‘
v ,_

e 100— “i“ilooe .. —
:1 t zo ' l’ /

+3 M

e ‘ u ‘ i
g _ i

2 o 0

vi ' / e

g
.. . _

E—l ' O ‘ " II ‘

go —1001§:I! i—IOO" mg —

H —
’Emflx

_

d.) » l _

> f

< 1....11..l l ..|.. .[....l.. | l

—l.O —0.5 0.0 0.5 1.0 —l.0 —0.5 0.0 0.5 1.0

Reduced Rapidity (COM) Reduced Rapidity (COM)

Figure 3.8: Average final transverse momentum versus reduced rapidity of the protons

in a 250 MeV (left panel) and 400 MeV (right panel) (Au,Au) collision with b = 3

fm.

ity as an indicator for nuclear flow. The reduced rapidity is the rapidity ch devided

by the rapidity of the beam, which for the 250 MeV collision is approximately 0.36,

and for the 400 MeV collision approximately 0.45. From the slope of a linear fit

around the origin, one can determine the nuclear flow. The circles and the solid fit

refer to the unmodified, the stars and the dashed fit to the modified algorithm.

For the 250 MeV collision, at b = 3 fm the flow is z 147 MeV/(c-Unit of Red.

Rap.) for the unmodified, and z 170 MeV/(c-Unit of Red. Rap.) for the modified

algorithm. A calculation that only took into account the scattering enhancement

resulted in z 166 MeV/(c-Unit of Red. Rap), a calculation that only incorporated

the additional advection in z 159 MeV/(c-Unit of Red. Rap). For the 400 MeV

collision, at b = 3 fm the flow for the unmodified algorithm is z 185 MeV/(c-Unit of

Red. Rap); for the modified algorithm it is z 195 MeV/(c-Unit of Red. Rap).

One concludes that in this specific simulation the flow increases by approximately

16% for the 250 MeV collision, and 5% for the 400 MeV collision, with the introduction

of the new algorithm. Introducing only the additional advection, as already pointed

35

Table 3.1: Impact Parameter Averaged Analysis (b S 5 fin) and Experimental Data

Nuclear Flow

Energy Unmodified Modified Plastic Ball[Gus88] EOS[Par95]

(MeV) (MeV/(c-Unit of Reduced Rapidity))

250 132 148 130 119

400 166 185 169 151

out, the collision rate slightly decreases, however, the nuclear flow increases by about

8% for the 250 MeV collision. With the introduction of the modified scattering

probability alone, the flow increases by about 13%. The fact that the contributions

from both modifications do not “add up” indicates that a perturbative approach to

their representation would not be justified.

An impact parameter averaged analysis for 250 MeV collisions with b g 5 fm

resulted in approximately 132 MeV/(c-Unit of Reduced Rapidity) nuclear flow for the

unmodified, and 148 MeV/(c-Unit of Reduced Rapidity) for the modified algorithm

(12% increase). The Plastic Ball data indicate approximately 130 MeV/(c-Unit of

Red. Rap.) [Gus88] nuclear flow, the EOS data only 119 MeV/(c-Unit of Red. Rap.)

[Par95]. For 400 MeV collisions the same calculations resulted in in approximately 166

MeV/(c-Unit of Red. Rap.) nuclear flow for the unmodified, and 185 MeV/(c-Unit

of Red. Rap.) for the modified algorithm (11% increase; Plastic Ball: % 169 MeV/

(c-Unit of Red. Rap.) [Gus88]; E08: 3 151 MeV/(c-Unit of Red. Rap.) [Par95]).

Table 3.1 summarizes these results.

Overall we found the effect of the additional advection and the modified scatter-

36

ing probability to be significant, but not crucial. Their implementation moves the

outcome of the simulations away from the experimental results. This indicates th<

need for an in-medium reduction of the NN cross section. This type of reduction was

first found to be needed in studies of the disappearance of flow [Wes86] and later alsr

in theoretical studies based on thermodynamic T-matrix theory at finite temperaturr

[Alm95]. These results were obtained by algorithm with closest approach techniques

If one wishes to address the question of the nuclear equation of state with a DSMC

algorithm, however, the corrections discussed in the present paper should be taker

into account.

3.4 Outlook

In this chapter, the virial corrections to heavy ion collisions in analogy with the theory

of gases have been studied numerically.

Recently, Morawetz [Mor97] introduced a more complete set of effective shifts that

represent mean values of various non—localities of the scattering integral. These shift:

enter the scattering integral in a form known from the theory of gases, however, th<

set of shifts is larger than the one intuitively expected. “Particle diameters” an(

other non-localities of the scattering integral are given in form of derivatives of tilt

phase shift in binary collisions. It can be shown that the shifts reduce to a “particlt

diameter” d for the classical limit of hard spheres collisions. In the case of nuclea

matter, the three distinguished space shifts maintain.

The derived nonlocal shifts are possible to be interpreted within a classical picturv

of scattering:

0 As already indicated in this chapter, one can imagine that a hard sphere shif

Ad has to be included in order to simulate hard sphere behaviour of the collidin;

37

particles, because the two particles cannot approach each other nearer than the

hard core distance Ad.

Next one has to account for the delay of asymptotic scattering with respect

to the real trajectory of two colliding particles. Danielewicz and Pratt have

recently discussed these time delays for equilibrium processes [Dan96]. This

leads us to the picture of two particle sticking together and moving as a molecule

with their center of mass velocity for a time A).

The two particles are forming a molecule which can rotate during their corre-

lated motion. This gives rise to an additional rotational shift A).

An extension of the above approach to incorporate the additional shifts is desirable.

Chapter 4

Causality Violations in Cascade

Models of Nuclear Collisions

4.1 Introduction

Experiments like the upcoming nucleus—nucleus collisions at Brookhaven’s Relativistic

Heavy Ion Collider (RHIC) will without doubt open new possibilities to study the

properties of nuclear matter at extreme pressures and temperatures. One major

focus of the research is the question of whether or not there is a phase transition

between hadronic and quark-gluon matter. The major open question that comes

with this undertaking is: If there is a quark—gluon plasma, what will it look like in

the detectors? What are its experimental signatures? The latter question can only be

answered reliably if a theoretical model for the collision processes that goes beyond

a phenomenological description is in place. One possible microscopic approach is to

extend the semiclassical transport theory (as for example described in Chapter 3) to

high-energy physics[Ka193, Sor89.1, Sor89.2, Ge192.1, Gei94.1, Gei92.2, Gei93].

Simulations of ultrarelativistic heavy ion collisions inevitably involve both soft and

hard processes. Below some energy scale, soft or nonperturbative phenomena neces-

sitate phenomenological description. Uncertainty is duly noted but for the foreseeable

future a rigorous theory for soft physics is beyond understanding. However, through-

38

39

out much of the collision hard processes dominate which are described by elementar

interactions between quarks, antiquarks and gluons (partons) as essentially semiclassi

cal particles. After parton initialization according to some reasonably chosen nucleo

structure functions, spacetime propagation is accomplished by discretizing time int

units Atstep and updating phase space densities according to relativistic transpor

equations including a crucial collision term.

Scattering processes in this theoretical framework are assumed to be non-retarde

which, on a microscopic level, leads to information transport with velocities that ca

approach fi/Atstep, where o is the parton-parton cross section. That is, it can in

crease without reasonable bound. As energies for the individual interactions decreas

the corresponding cross sections increase. The timestep Atstep is for reasons of con

vergence chosen to be less than the parton mean free paths divided by their velocities

of the order a few thousandths of a fm/c. Two problems occur immediately: On

macroscopic level a series of subsequent causality violating interactions can lead t

shock-waves propagating faster than the speed of light. This is clearly unphysica

On a microscopic level the time-ordering of the incoming and outgoing partons of

scattering process becomes frame-dependent and Lorentz covariance is lost — this als

is unphysical. These two problems are especially serious in ultrarelativistic part0

cascades since collision rates are high, and the mean free paths approach the inter

particle distance. Problems arise from describing quantum-dynamical processes in

semi-classical picture, and from the demand of Lorentz—invariance in an equal-time

character simulation. Where is an acceptable compromise? And what does acceptabl

mean?

This chapter is organized in the following way: In Sect. 4.2 the origin of super

luminous information transport on a macroscopic scale is described in some deta

and some first steps to eliminate it are being suggested. Sect. 4.3 moves towar

40

microscopic physics and provides mathematical details for origins of unphysical ef-

fects. Whenever cross sections are finite and action-at-a—distance influences particle

trajectories these problems inevitably arise. Sect. 4.4 deals with the resulting frame-

of—reference dependence of the simulation. In Sect. 4.5 the used version of a parton

cascade implementation is described. Then in Sect. 4.6 several different schemes

which reduce or eliminate superluminous transport are compared. Methods include

simply blocking collisions or truncations, scaling the cross sections downward while

increasing the number of particles, and suppressing low-energy collisions. We also

consider so-called wee-partons as a different way to define the initial conditions of

the simulation, and point out how much this scheme affects causality violating mech-

anisms. Finally, Sect.4.7 concludes by briefly summarizing, and by discussing the

outlook for future studies.

4.2 Macroscopic Causality Violations

Superluminous macrosc0pic information transport occurs mainly in the transverse

(perpendicular to the beam) direction. The signal can travel over the diameter of

the cross section a in a single timestep and then continue this propagation from

timestep to timestep. Transverse signal velocities can therefore reach fi/Atstep over

several timesteps, one is reminded of a chain of falling dominoes. The situation is

depicted in Figure 4.1 for such a transport. As part of the model the two initially

scattered particles cannot scatter again in this timestep. However, one timestep later

that scattered particle from the right scatters with another particle coming from the

right. As a result information from the first scattering, such as particle momenta and

type, has travelled to the second one. This is a general problem of all transport

codes, and is worsened because the gluon-gluon cross section becomes rather large for

low energies (instead of vanishing). Along with the large gluonic cross sections are

41

V Signal

' . _ N CAtstep
\ V .

c { '--~7r ' .

Figure 4.1: One particle coming from the left scatters with another particle comir

from the right. The information from this event is rapidly passed on through a cha

of subsequent scattering events.

relatively large gluon densities which result in very high probabilities for scatterir

in subsequent timesteps. Therefore information transport could be supported OVI

relatively large distances without damping.

In many existing cascade codes first steps for dealing with the problem of supe

luminous signals have been taken: Most of the codes, including the one presentei

allow only one interaction per particle per timestep. This restriction is conseque1

and clearly justified since a timestep is the shortest scale in the model. This restrictic

prevents signals from avalanching over huge volumes within only one timestep.

A second restriction implemented in many codes is the “closest approach” crit

rion. For a scattering process it demands in addition to “spatial distance within tot

cross section” also “the two particles have reached their point of closest approai

assuming their current trajectories”. Usually one would look at |r“:r,,| with 33,, beii

the four—vector distance between the two particles involved, and demand that th

quantity is minimal. As the two particles’ positions are taken in the same timesti

this quantity reduces to the spatial distance squared. Even though this looks li

a Lorentz-invariant criterion, it is not, since the conceptual necessity of taking bo

42

particles’ position at the beginning of a timestep (i.e. with vanishing time-separation

in the lab-frame) is a non-Lorentz invariant restriction, see section 4.4. Nevertheless,

the “closest approach” restriction prevents causality violating signal transport in the

longitudinal (parallel to the beam) direction, but unfortunately has no effect on the

transverse direction.

To demonstrate those causality violating shock-waves, the parton cascade simu-

lation of a 100 GeV/nucleon (p,Au)-collision was run with different constant cross

sections and S—wave scattering, the distance of of scattering events from the beam

axis versus the simulation time is shown in Figure 4.2. The solid line indicates the

distance that could be reached by a signal that travels with the speed of light. One

can clearly see the outwards travelling shock-wave and how it gets damped out with

time. For the smaller cross sections the causality violation is rather small and only

present in the initial stages of the interaction. One should note that for realistic

energy-dependent cross sections the initial scattering events take place with a lower

cross section than the later ones because the c.m.-energy is much higher.

In the lower right panel the maximum distance dmax from the beam axis at which

a scattering event occured during the simulation is plotted versus the cross section 0.

The horizontal line indicates a distance that during the simulation time could only

be reached with the speed of light.

 in1|I..rerruulvvvulnuvulvviv

4 0:0.1 fmg

’

W.l .‘.1...-.l..'.0’ . .

0.0 0.5 1.0 1.5 2.0 2.5

time (fm/c)

.1

i

1
.
l
.

 n

3.0

 lllil!VVV[VVVVIVIIYIIVIIIVII

0.0 0.5 1.0 1.5 2.0 2.5 3.0

time (fm/c)

43

 IllvllililiilllIlYT‘l'liiiKill

4 0:0.2 fmz —

1.

time (fm/C)

vavuluuuulviriliuuv'vvv’rlr‘l

/_

T23 fm/c_

11111

0.0 0.1 0.2 0.3 0.4 0.5

Cross Section (fmg)

|
.
.
;

Figure 4.2: Distance d of scattering events versus simulation time at constant cros.

sections of o 20.1, 0.2 and 0.5 fmz.

.

44

While during the initial stages of the collisions the outmost scattering events

occur at distances larger than those allowed by causality arguments, the information

transport soon appears to be damped. It turns out that this phenomenon is not — as

one would expect — mainly due to a dropping of the collision rate, but rather to a form

of random-walk: only a fraction of the individual signal propagations lead outwards,

others have the opposite effect, which results in an effective damping. In fact it

turns out that the expectation value of the distance of scattering events from the

beam axis is roughly proportional to the square—root of the simulation time, which

is a characteristic feature of random-walk mechanisms, compare the top panels of

Figure 4.2. This mechanism is a valid description until the cross sections are so large

that the parton distribution basically appears solid, in that limit the information

travels outwards proportional to the simulation time, see the panel for a = 0.5 fmz.

By the nature of random-walks, the information expands fastest in the initial phase

of the collision. With realistic energy—dependent cross sections however, those initial

scattering events happen at lower cross sections than the ones in the later stages due

to the higher c.m.-energy, which partly suppresses this initial outburst. Overall for

020.2 fm2 the causality violations are still rather moderate, for 0.5 fm2 the effect

becomes dominant.

As already pointed out, Figure 4.2 also shows the maximum distance of scattering

events from the beam axis as they occurred for different cross sections. As it turns

out, this value depends linearly on the cross section for an extended range, beyond

a z 0.4 fm2 the outmost scattering events occur at a distance that can only be

reached with superluminous signal velocities.

45

4.3 Microscopic Causality Violations

In addition to macroscopic causality violations such as superluminous shock-waves,

both the non-retarded interactions and the model inherent propagation of the whole

particle configuration from one timestep to the next lead to causality violations on

the level of elementary scattering processes.

A Lorentz-invariant simulation of parton scattering would require a truly 4—dimen—

sional configuration space, in which an interaction can be established between any

space-time point of one parton’s trajectory and any other space—time point on another

parton’s trajectory. In the framework of classical fields, the scattering of two particles

would be represented by their continuous change of trajectory in the retarded field of

the respective other particle.

The actual realization of scattering events in the simulation only agrees in a certain

limit with this model, namely if the two partons are coming from infinity with infinite

rapidity and opposite directions: with increasing rapidity, in the lab-frame the fields

are distorted to pancakes with an orientation perpendicular to the trajectory, reducing

the dominant part of the interaction between the particles to a shorter and shorter

region along their trajectories. In the limit of infinite rapidity, the interaction between

two partons travelling with a non-vanishing impact parameter in opposite directions

would be reduced to a momentary interaction at the point of their closest approach,

making them change their trajectories at equal-times. This interaction would take

place at a spacelike distance equal to the impact parameter , why does this not violate

causality? The reason is, that the parton’s field—pancake e even though it is travelling

along with its present position — is build up from contributions out of the parton’s

past, the respective other parton does not scatter from the field generated at the first

parton’s present position, but from a field component that was generated along the

46

Figure 4.3: Lightcone and 3—dimensional hyperplane (2-dimensional illustration)

first parton’s trajectory at a lightlike distance.

This limit agrees both with the claim of Refs. [Sor89.1, Sor89.2] that the interac-

tion distance should be spacelike, because otherwise an interaction would influence

the absolute past of one of the partons, and with the actual realization of scattering

processes in the simulation: in the framework of a 3+1 dimensional transport simula—

tion the distance of the testparticles is by the model itself determined to be spacelike:

The information available at the beginning of a timestep is no more than the points

of the trajectories on a certain any, z-hyperplane, as well as the corresponding mo—

mentum 4—vectors of the particles, also only at that time-coordinate. The lightcone

of any one particle extends both before and after that hyperplane (see Fig. 4.3), but

has no extension into that hyperplane itself, causing all other particles present in the

simulation to have a spacelike distance from it.

But this limit soon loses its applicability: Staying in the model of interactions

between the partons due to classical fields, as already pointed out, the field trav-

elling with the partons is in fact build up from contributions out of their history,

which for partons coming from infinity results in Lorentz-contracted field-pancakes.

47

But in a cascade simulation it is highly unlikely that seen from a parton A, parton

B already was on the same trajectory a lightlike distance ago. In fact, as the par-

tons are nearly travelling with the speed of light themselves, spacetime points with

lightlike distances along their trajectories can happen to be very long ago, which in

connection with the high interaction rates makes the idealized picture of the field

pancakes inapplicable. Changes in trajectories can make more than one point along

the trajectory of parton B have a lightlike distance to parton A, the acceleration

connected to the changes in trajectory of parton B generates additional fields. Even

worse, through the mechanism of parton generation and absorption, parton B might

not even have existed at lightlike distances from parton A, still within the framework

of the transport simulation, scattering would be possible — and causality violating.

Also, as in the idealized picture the c.m.-frame is moving parallel to the partons’

trajectories and perpendicular to their distance at the point of closest approach, the

equal-time character is true in both the lab- and the c.m.-frame. As soon as the two

partons are not travelling into opposite directions, their spacial distance also leads to

a time-separation, making the scattering time different in the lab- and c.m.-frame.

4.4 Frame-Dependencies and Time-Ordering

An obvious consequence of the model’s causality violations is its frame-of-reference

dependence: The simulation will for example certainly lead to different results when

run in the rest-frame of the target. This was already shown for the example of a

12C'+12(3' internuclear cascade calculation in Ref. [Kod84], the authors demonstrated

that both the total number of collisions and the individual time-ordering of given

collisions were frame-dependent. As obvious as that seems from the simple problems

pointed out in sections 4.2 and 4.3, for a parton cascade it is not yet the whole story:

48

The simulation cannot even be run in the rest-frame of any one nucleus, because there

is no possibility to create appropriate initial conditions. The parton distribution in

nucleonic matter is frame-dependent, the higher the energy of a nucleon the higher

the number of virtual partons. To put it in other words, usually components of the

nucleonic wavefunction are considered a parton if they carry a momentum fraction

beyond a threshold given by a minimum art-value, the latter one being a parameter

of the model. However, by boosting the nucleonic wavefunction into an accelerated

frame of reference, a procedure described by the model—parameter Q2 of the parton

distribution function f (:3, Q2), more and more components of it cross that threshold

m-value, leading to higher and higher parton numbers.

Therefore, when asking questions about how the collision of two partons looks in

their rest-frame as compared to the lab-frame, another valid question is: Do those

two partons even exist in the other frame? Or are in that frame other partons around

that the collision partners would be much more likely to scatter with instead?

However, as this question cannot be addressed within the framework of a transport

simulation, it is worthwhile to study the effects of a transformation of two given

partons into their c.m.-frame.

4.4.1 The Transformation Equations

The transformation of a four vector ((10, a) with a boosting vector ,6 and '7 2: V1]?

is given by the following set of equations:

(10m = 7(001ab — Balab) (4-1)

acm = alab + 75—21(16alab)13 _ VIBGOlab (42)

aOlab : 7(a0cm + ,Ba'cm) (4'3)

alab = acm + %(fiacm)fi + 7fi00cm (44)

49

4.4.2 Finding the Boost Parameters

The c.m.-frame is defined by

pem,1 : ~pcm,2 ’ (4'5)

pm],l and pm,2 being the momenta of the partons in the c.m.—frame. This leads to

._ P1ab,1 + P1ab,2

.-~ . 4.6

Elab,1 + Elab,2 ()

4.4.3 Transformation of Momenta and Energy

Using equation (4.1) with ,3 from equation (4.6) gives the energies of the partons in

the c.m.-frame:

E1cm,1 : 7(Elab,1_flplab,1) (4'7)

Ecm,2 = ”7(E1ab,2 “ 511mm) - (4-8)

The relative momentum can be calculated by means of equation (4.2) with both plab,1

and plam, however, parton 1 is chosen:

”y — 1

pcm :2 plab,1 + 7(fiplab,l)fl _ VIBEIabJ (4-9)

The total energy \/E in the c.m.-frame is given by means of equation (4.3) and the

four vector of the total momentum in the c.m.—frame (Em), + Ecmg, pom1 + pcm,2) 2:

(Ecm, 0):

_ Elab,l + Elab,2

\/E :2 Ecm — (4.10)

4.4.4 Transformation of the Relative Positions

The spatial distance between the two partons is defined as the vector from parton 2

to parton 1. The time separation is to be assumed between zero and the timestep

L:

50

length:

Arlab I= 7'1ab,1 — ’f‘iab,2 (4-11)

0 S Atlab S Atstep (412)

If however one assumes the particles’ positions to be taken at a certain moment inside

of the timestep interval, for example at the beginning, the time separation Atlab is

zero .

The distance vector in the c.m.-frame is then given by

AT‘cm = Arlab + ’7/6—2 1(fiA7‘1abM'3 - (4-13)

In addition to that, the partons will now have a time separation in the c.m.-frame:

Atcm : _716Arlab (414)

As soon as this time-separation is larger than the transformed timestep length,

Lorentz-invariance is clearly violated: The partons’ positions are not taken within

the same timestep inside the c.m.-frame anymore.

4.4.5 Ways to Calculate the Positions of the Partons in the

Next Timestep

Propagation Within the c.m.-Frame

A first idea is to propagate the partons in their c.m.-frame. The distance vector then

changes to

Ar’cm : Arm, + (15$ + Pc_m> Atstepycm . (4.15)

cm,1 Ecm ,2

In order to have the time Atstepycm correspond to a four vector with the time compo-

nent Atstep in the lab frame, one has to choose

At 6

Atsteppm : _,:l_t_p , (4.16)

51

and therefore

Arém 2 Arm + ($7 + %> Atstep . (4.17)

cm, cm,

This strategy however completely neglects the spatial components of the timestep

that occur during the reverse transformation.

Propagation Within the Lab—Frame

A more refined strategy is the propagation of the partons in the lab-frame and subse—

quent transformation of the new positions to the c.m.—frame. The propagation vectors

for the partons take the form

P i

(Atstep: figAtstep> -

With Aao(a) being the spatial Lorentz-transformation into the c.m.-frame for a

vector (a0, a), one gets

I plab,1

Arcm = A0+Atstep—0—Atstep (rlabd + E

 P
Atstep _ rlab,2 _ Elab,2 Atstep) (418)

ab,1 lab,2

 _ Arm, + A0 <Plab,1 Atstep _ Piab,2 Atstep)

Elab,1 ElabZ
Y

— A"hem ‘1' A0 (‘ZflAtstep> _ A0 (MAtstep> -

lab,1 17,2

Ela

Because of

A0(plab,i) : AElab,i(plab,i) + VfiElabfi : pcm,i + VIBElabJ (419)

the result is

P P
Ar'm = Arc + < m + m > At, 6 . 4.20

C m 7(Ecm,1 + fipcm) 7(Ecm2 ‘- Ichm) t P ()

The following Minkowski plots again show the above in one dimension. The dashed

lines denote the world lines of the two partons, in one dimension their closest approach

52

can only be an intersection. The two solid lines denote the coordinate system in the

partons’ c.m.—frame.

53

zlab [fm]

.10 rP .03 .00

o o O c_>

'4 r '3 aO O

| | I I z
00 03 CO 00 ,_a.

0° 5

x I \ I :5:
\\ \ 2

to \ \ U)

C? \ W
l—¥ _ 1—1-

0|
w E

O

:s <-+-

O

s. N _ a
O

. E
.. 2

75 o
r.535 B m

...C.’
m (D

99 E; _ m

i ,1, fi

g“ >

\oo “C

&o "d

c. _ r1

0| 0

w 5%
:3”H

'<.> \ ~-

3— \ \T D

I "* \

N o \ |—‘

n E, \\ 9
in H' '

t;_ E \ _ B

0| o \ (D

N H \ :5

I \ 3

O

:3

Figure 4.4: Minkowski Plot. Highlighted is the timestep in which the particles are at

the point of closest approach. Note the time-order of the four events “Particle 1(2)

at the beginning(end) of the timestep” in the c.m.-frame. These points in time are

given by the intersection of the c.m.-t axis with the dot-dashed lines that are parallel

to the c.m.-z axis.

54

2 lab [fm]

.N 51‘ .03 .00

C? Q 0 C?
H H I—x H

o o o o

| I I I g

to co on no ,_..

O DO
\

\ \ l W

O
\ \

\ 2
_N \ \ U)

C? \ w
H __ \ \ _ l-"

l O \ \

l \ "U
to \ ._.

\ \ O

11> \ \ ri-

C.’ \ \

... _ \\ N — 9s

0I \ °

to \\ B Q

\. \\ '2 O

f"' g \'\ \ \ a U)

n—a - \ \ \ (D

a s - w
h 3,, fi
...,

a >

\oo "C

&Q "d

... ’1

CI 0

w g
_.. tr

.0
H

O D

(L, I—x

,_. U

19 H'
H B
C; (D

N b

9.

O

D

Figure 4.5: Minkowski Plot. Highlighted is the second timestep after the particles

had reached their point of closest approach. Note the the time-order of the four events

“Particle 1(2) at the beginning(end) of the timestep” in the c.m.—frame has changed.

I,

I 55

‘, The time step length in these examples is 2 - 10‘3 fm. The dot—dashed lines run

1 through simultaneous time-space points in the respective frames. In figure 4.4 the

time step with the point of closest approach is selected, one can clearly see the time

separation of the two partons both at the beginning and at the end of the time

step — this separation is rather small compared to the transformed time step length.

However, two time steps (see Fig. 4.5) later those two time separations overlap, in the

c.m.-frame the faster parton has reached it’s position at the end of the lab frame’s

time step before the slower parton has reached it’s position at the beginning of the lab

frame’s time step. The smaller the lab frame’s time step the more likely this happens,

which is counterintuitive to the usual fact that a simulation gets better with smaller

timestep lengthes. In one dimension this reversed time-ordering is impossible in the

time step of closest approach. In two or three dimensions this configuration can occur

c.a.
as soon as Z c at the point of the closest approach distance [Arc'a' in other

Cm—

words, in two or three dimensions the reversed time-ordering is a problem even at the

critical timestep of closest approach.

4.4.6 Consequences

As it had turned out, by boosting the partons with ,8 into their c.m.—system, there

they have a time—separation of

Atom : “VIB'A’rlab ' (4-21)

The partons’ positions, being taken at equal time in the lab—frame, will, unless fl

and Ahab are perpendicular, not be at equal time in their c.m.—frame and vice versa.

The construction of a “Lorentz-invariant CMS distance” as in Refs. [Sor89.1, Sor89.2]

seems doubtful. This time-separation can very well be larger than the transformed

timestep length, leading to a situation where the partons’ positions are not taken

56

pom. pc rn

Aram. Artm.

_pc.m. _pc.m.

Figure 4.6: Two partons passing their point of closest approach in the c.m.-frame.

within the same timestep within the c.m.-frame anymore. As a result, the closest

approach criterion can only provide a means to get an averaged point in time for an

actual scattering event.

For this criterion, described in section 4.2, one can choose to define it either in

the particles’ c.m.—frame or in the lab-frame (a third approach will be described in

subsection 4.6.6). Because of the non—vanishing time—separation of the partons in

their c.m.—frame, the two possibilities are not equivalent. Both methods had been

compared, but nevertheless no significant change in the collision rate was found, even

though the individual collisions happening in both simulations are different. For

further simulations the c.m.-frame was chosen, since intuitively this frame seems to

be more significant for the individual scattering events. In this frame, the scalar

products of the momentum and the distance vector both at the beginning and at

the end of the timestep are to be calculated. If this scalar product changes sign,

the position of closest approach is reached within this timestep. In Figure 4.6 Arm,

denotes the distance vector at the beginning of the timestep, Ar’cm at the end. The

criterion is (pcm - Arcm)(pcm ' Artm) S 0-

The non-vanishing c.m.-time-separation unfortunately also makes the calculation

of Arém ambiguous.

57

2!

A
—t—>

Lab—Frame c . m. -Fram9

Figure 4.7: Possible discrepancies in the time-ordering of scattering processes that

are usually prevented by the spacelike distance of the scattering partners.

In the model used, the c.m.-positions at the end of the timestep are calculated

by propagating the partons within the lab-frame and boosting the result into the

c.m.-frame. The result, expressed in c.m.-quantities, is

Ar’
Cm

: Arcm
(4.22)

pcm pcm

+ + Ats e -

(fl/(Ecmfi + g ' pcm) 7(Ecm,2 _ :6 ' pom)) t P

Due to the spacelike distance of the partons however, the definition of “beginning”

and “end of a timestep” becomes frame-dependent.

Consider a process where the partons A and B scatter and produce a parton pair

C and D, see Figure 4.7. In the lab-frame this happens within one timestep, at

the beginning of the lab-frame’s timestep (denoted by thin vertical lines in the left

panel) partons A and B are present, at the end partons C and D. In the transformed

timestep within the c.m.-frame however (denoted by thin vertical lines in the right

panel), this set-up can easily be distorted to a situation where in the beginning of

that timestep partons B and C are present, and at the end partons C and D. Seen

from yet another frame, in the beginning A and D could exist.

One consequence is that in the simulation re-scattering processes have to be ex-

58

plicitly forbidden: In spite of the closest-approach criterion re-scattering would still

be possible if two partons are scattered towards each other — as the distance between

partons involved in a scattering event can very well be greater than Atstepc, it is

possible for those two scattered partons to again reach a point of closest approach in

a later timestep. In the case of a retarded interaction, this would not be possible.

More relevant then the time-scale given by the timestep, which is a model-depen-

dent parameter, is the time—seale given for example by the time it takes for the two

nuclei to cross through each other, which is about 0.2 fm/c. This time-interval corre—

sponds to an impact parameter of 0.2 fm beyond which the time-ordering of scattering

events is frame-dependent. As the interactions in question happen between particles

travelling into the same direction, those would also be low-energy interactions with

cross sections very well in the range of such impact parameters. The effects of this

frame-dependent time-ordering of the incoming and outgoing particles of a scattering

event have to be subject of extensive examination.

An interesting approach is that of Refs. [Lan93, Dan95]: In this method, con-

figuration space is divided into boxes. Within the boxes the scattering partners are

randomly chosen according to a probability that is a function of the cross section —

convergence of this method towards the solution of the Boltzmann equation for an

infinitely small box size and timestep length, as well as an infinite number of test-

particles, is shown in Ref. [Bad89]. The code of Rev. [Dan95] was successfully made

more efficient by only considering a fraction of the possible pair combinations within

each box, and compensating the otherwise resulting loss in collision rate by an en-

hanced probability for the collision of the chosen pairs. The authors of Ref. [Lan93]

claim that this stochastic method of formulating the collision term is covariant since

it is dealing with transition rates instead of geometrical interpretations, therefore no

problems connected with the time-ordering of processes would occur. In fact, since in

59

the model the time—order of processes is chosen randomly anyway, the model has no

“right” time-order that could be distorted by relativistic effects. However, this new

approach does not overcome the problem of superluminous shock-waves. Within a

given cell of longitudinal size 67‘“ and perpendicular size 671 any two particles have a

chance of colliding. Since the subsequent advection step may carry some of these into

neighboring cells, the maximum transverse velocity for information transport will be

(Sn/Atstep. Since in general 67% is several times larger than the cross section a, the

resulting maximum possible causality violations in transverse direction are even larger

than in the method discussed above. In addition, the stochastic method also allows

for superluminous information propagation in longitudinal direction, with velocity

6T||/Atstep-

4.5 The Parton Model

Classical simulations, which have been successfully applied to heavy ion collisions

at intermediate energies [Ber88], are now [Ka193, Sor89.1, Sor89.2, Gei92.1, Gei94.1,

Gei92.2, Gei93] being extended to high energies. The main step in the extension of

this microscopic model is using a parton based picture of the nuclei rather than a

hadronic picture; consequently the interactions between the testparticles are to be

described in the framework of QCD, leading to so-called parton cascades.

The code works in 3+1 dimensions using fully relativistic kinematics for the par-

tons, where the quarks are consequently treated as massive particles. Both quarks

and gluons can be off—shell. The initial conditions are determined by standard parton

distribution functions f (2:, Q2) [Bot93], where the value for Q2 and the minimum :1:

are parameters of the model. Technically stability of the incoming nuclei is guaran-

teed both by a coherent motion of all partons in longitudinal direction, and by the

60

Figure 4.8: Typical contributions to the gluon-gluon cross section. The four point

diagram on the far right leads to divergencies in the cross section that cannot be

handled by phenomenological cut—off masses.

restriction that particles from the same nucleus cannot scatter with each other before

at least one of them has scattered with a particle from the other nucleus.

In this preliminary version of the code only QCD processes with two partons

in the incoming and two partons in the outgoing state are implemented [Mur93].

Phenomenological screening or cut-off masses have been added into the propagators

to avoid divergent total cross sections. However, the gluon—gluon scattering cross

section includes a four point diagram which does not contain a propagator, Fig. 4.8

shows typical contributions to the gluon-gluon cross section.

This means that the divergence in this cross section must be handled differently

from the other cross sections. One usually regularizes the gluon—gluon cross section

by setting it to a constant value below a certain cut-off energy, in this case a a cutoff

of s z 0.25 GeV2 has been chosen corresponding to a S 0.45 fm2. This cutoff seems

appropriate because it agrees both with a reasonable c.m.—energy below which Per-

turbative QCD loses validity, and with the limiting cross section for superluminous

shock-waves found in section 4.2. Other methods of cutting off these cross sections

while maintaining the correct physics are being investigated. Also, no medium mod-

61

100 I I I I l I I I I I I I I I I I I I I I

k "rig—>99

119—>719

uu—>uu

118—>115“

ufi—Iufl

ufi—Igg

ggeufi

It'll—>55

 lo—B I I I I l I I I I l I I I 1 l I I I I l 1 1 I I

O 2 4 6 8 10

\/s

Figure 4.9: Example of partial cross sections being used versus the c.m.—energy.

ifications to the elementary cross sections are taken into account. Figure 4.9 shows

the cross sections being used. The analytic expressions for cross sections have been

checked in the massless quark limit against results from the literature [Com77], some

of them also in the massive case [Eic84].

4.6 Comparison of Methods for Dealing with Su-

perluminous Signals

This section contains a comparison of different methods for dealing with the problem

of superluminous signal transport and is the outcome of simulating central collisions

of a 100 GeV proton on a 100 GeV per nucleon gold nucleus.

62

Effect of Timestep Length

25000 | l Illllll I I IIIIIII | I IIIIIII I I IIIIIII I I | Illll

I +____ :

20000— D ‘W--—»1\+ _

:3 : :
\

If: ' \ ‘
DD .. \\ _

E 15000— \ —I

0 _ \ a

3 - \ .

(2‘3 _ \+ a

u—u F ID\ ‘

0 10000— x —

t ' \ ‘
.0 — E _

E! _ o o o _

2 — x x x _

5000—— —

I x I

0"] I llIlIII I IIIIIIII I I IIIIIII I I IIIIIIl I llllllf‘

10—5 10‘4 10'3 10'2 10—1

Timestep Length [fm/c]

Figure 4.10: Total number of scattering events versus timestep length used for the

simulation. The dashed line interpolates the results from simulations of (La,La)

collisions, the dotted line from (Cu,Cu) collisions. The symbols denote the actual

data points generated in the respective simulations.

63

x
(
f
m
)

 I.

.|....|.I..|....|....|..

—-3| —2 —l 0 l 2 I '25 —3J

2 (fm)

Figure 4.11: In the left panel the projection of the initial parton configuration on

the x, z-plane is depicted. The highly Lorentz-contracted proton is moving to the left

into the equally contracted gold nucleus which is moving to the right. The right panel

shows the configuration 1 fm/c later.

This set—up seems suitable since it allows observation of the information transport

from the incoming (comparably small) particle in nuclear matter. Table 4.1 summa-

rizes the parameters used for the simulations. The timestep length of 0.0002 fm/c was

determined by running the simulation with different timestep lengths and observing

the total number of collisions. Figure 4.10 shows the outcome of those simulations,

0.0002 fm/c can be identified as the longest timestep length possible without leaving

the plateau of nearly constant total collision numbers. Choosing the longest possi—

ble timestep length for which the simulation still converges minimizes the effect of

causality violations due to “instantaneous” reactions over a finite distance.

With the values chosen for Q2 and the minimum m—value approximately 9000

partons per testrun are generated. For the following calculations, the longitudinal

extent of the nuclei in the model is determined by the Lorentz—contraction only,

Figure 4.11 shows the initial configuration in the lab-frame and 1 fm/c later.

The effects of “wee-partons” are examined in the last subsection. The cross sec-

64

Table 4.1: Parameters used for the comparisons

Parameter Chosen Value

Total time of simulation 3 fm/c

Timestep length 0.0002 fm/c

Number of timesteps 15000

Proton energy 100 GeV

Energy per nucleon Au 100 GeV

Impact parameter 0 fm

Minimum m-value for f (3:, Q2) 0.005

Q for f(:I:, Q2) 25 GeV

Bag—radius for nucleons 0.9 fm

as 0.2

Cut—off mass for gluon propagators 1.0 GeV

Cut—off mass for quark propagators 0.2 GeV

Number of parallel test runs 5

tions were energy-dependent according to section 4.5 and Figure 4.9.

The simulation was first run for S—wave scattering in the expectation that this

would be the worst case. Compared to the realistic forward peaked angular distribu—

tions, S—wave scattering favors transverse signal propagation. However, it turned out,

that the angular distribution hardly makes any difference as far as causality violating

effects are concerned, the only noticeable change was in the rapidity distributions,

where it turned out that the gap in rapidity between unscattered and scattered par-

tons was wider for S-wave scattering: the partons lose more units of rapidity in

the initial collisions. The small effect of the angular distributions is understandable

from the fact that even isotropic distributions in the c.m.-frame are strongly forward

peaked in the lab-frame.

The top row of Figures 412,413 summarizes the results for a simulation with

65

a realistic angular distribution. The top left histogram of Figure 4.12 shows the

signal velocity distribution regarding directly subsequent collisions, see Figure 4.1. In

other words, with T5, being the position of the ith collision of the nth particle, the

distribution of

U501: 7') :2 ITnJ _ I"71,z'—lI/(tn,z' " tn,i—1) (423)

for all n and i > 1 is shown. The solid histogram shows the radial component of those

velocities, the dashed histogram includes the longitudinal component — the strong

peak at 0 results from processes for which the signal transport was dominated by the

partons’ motion with the respective nuclei. On the order of 50 isolated scattering

events with velocities from 500 up to 13600 have been suppressed in the plot.

66

Figure 4.12: Results of simulations with different mechanisms to suppress superlumi-

nous signal transport (Part 1).

67

VA/C

0.4 1.0

vS/c

0.4 1.0

Figure 4.12

1O.0.1

R
e
f
e
r
e
n
c
e

M
o
d
e
l
A

M
o
d
e
l
C

M
o
d
e
l
D

M
o
d
e
l
E

4.0 10.0 40.0

0.4 1.0

4.0 10.0 40.0

4.0 10.0 40.00.4 1.0 4.0 10.0 40.0

vA/c

0.1

vS/c

0.1

68

Figure 4.13: Results of simulations with different mechanisms to suppress superlumi-

nous signal transport (Part 2).

Figure 4.13

<
v
>
/
c

<
v
>
/
c

<
v
>
/
c

<
v
>
/
c

<
v
>
/
c

<
v
>
/
c

Nurnber of Events

0 51015 20

69

I T' *“T'

10.0

5.0 -

Number of Events

R
a
d
i
a
l

D
i
s
t
a
n
c
e

R
a
d
i
a
l

D
i
s
t
a
n
c
e

R
a
d
i
a
l

D
i
s
t
a
n
c
e

R
a
d
i
a
l

D
i
s
t
a
n
c
e

r
N

U
‘

C

\
>
;
:
§
§
§
i
é
l
l
\

|
l

.

R
a
d
i
a
l

D
i
s
t
a
n
c
e

R
a
d
i
a
l

D
i
s
t
a
n
c
e

tnne(hn/®

oo 05 10 15 20 25 ao
2.5 _ I I I I I _

.
.
.

0
1 | I

.1
"

U
I I I

 1.0 fix I I I I

25 '

I

1.0
W

2.5 — i

1.0

2.5

2.0

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

tune(fin/®

C
I
I
G
P
O
I
A
I

O
I
G
P
O
W

H
I
Q
P
O
I
A
I

V
I
Q
P
O
I
A
I

9
9
H
9
1
3
J
9
H

fl
[
9
P
O
I
A
I

70

The right panel shows a more general impression of the signal velocities. Instead

of just taking into account the signal velocity occurring within one single scattering

event, in this histogram the signal velocity from the very first to the very last scat-

tering event that a parton was involved in is calculated. With the notation from

above and N(n) being the number of collisions that the parton n was involved in, the

distribution of

11,407.) :: Irn,N(n) _ rn,1I/(tn,N(n) _ tn,1) (4.24)

for all n is shown. Again, the solid histogram shows the radial component of the signal

velocities, the dashed histogram also takes into account the longitudinal components.

Because of damping effects the average velocities are much smaller than the Veloc-

ities from one event to the next, the left panel of Figure 4.13 shows how subsequent

scattering events are leading to this overall damping of peak velocities occurring in

single scattering events: again starting from the very first scattering event of a parton,

the signal velocity to the ith following scattering event of the partons

’U(’I’L, Z) = Irmi - THAI/(117,”, — tn,1) (4.25)

is calculated, and the average (v)(z') over all particles n that had an 2th collision

is shown; again both the total and only the radial component of the velocities are

plotted.

Finally, the right panel shows how information is travelling outwards. The outer

boundary of its spreading is after a very fast expansion in the first few tenth of a

fm/c travelling with approximately 0.170. The maximum distance of a scattering

event from the beam axis is 2.5 fm. A more detailed analysis of the overlay of the

average c.m.-energy and the distance of scattering events from the beam axis shows

that the expansion of a shock-wave begins rapidly immediately after the c.m.-energies

get smaller, but then is damped out — only the initial stages of the collision seem

71

to be problematic. However, one should note that in the later stages the individual

collisions happen with very high signal velocities, and that it is rather by the random-

walk character of the signal propagation over longer distances that the information

does not travel with the same high velocity, compare Sec. 4.2.

4.6.1 Model A: Restrictions on the Signal Velocity

An obvious way to avoid superluminous signal velocities is to systematically suppress

all scattering events that would lead to signal velocities faster than the speed of light,

the second row of Figures 412,413 summarizes the results of this simulation.

It is not surprising that the velocity restriction leads to a huge reduction in the

collision rate: While in the first stages of the collision the collision rate drops to

fourtynine percent of the original rate, it drops in the later stages to only about eight

percent of the original rate, there is no outwards travelling information at all — it

would be unwise to apply such an unjustified prescription given the huge effect, even

more so, as from the extrapolation of intermediate energy results one would expect a

rather strong outgoing effect of the proton impact.

4.6.2 Model B: Suppressing of Low Energy Collisions

Once a parton has scattered with a parton from the other nucleus it can scatter with

fellow partons from the same nucleus at much lower c.m.-energies. Soft processes

between partons from the same nucleus are problematic since the elastic gluon-gluon

cross sections at low energies are large; systematically suppressing these reactions by

placing a c.m.-energy cut-off on the scattering events should also suppress high signal

velocities. For this model calculation the cross sections are set to zero below 0.4 GeV,

see the third row of Figures 412,4.13. The outcome of this simulation proves that

indeed the shock-wave travels outwards through those low energy collisions, only the

72

initial outburst remains.

In fact this model provides a way to address the problem of the energy-dependent

parton resolution described in the beginning of Sec. 4.4: Disregarding interactions

below a certain c.m.-energy cutoff could also be viewed as disregarding the interaction

partners. By smearing out the step-function of the cutoff to a smoother function that

determines the probability of scattering events in dependence of the c.m.-energy, one

could try to simulate the behavior of the parton distribution function in dependence

of the resolution parameter Q2. However, other physics would have to take the place

of the QCD interactions, in this lower-energy regime nucleonic interactions take over

and hadronization patterns must be applied.

4.6.3 Model C: First Steps Towards a Retarded Interaction

As already pointed out, the main reason for the superluminous signal velocities is

the instantenous character of the elementary interactions. To consequently overcome

this problem no theoretical framework with time delays has been developed so far for

parton systems, although some simple hadronic examples have been worked out. To

estimate the effects of retardation it nevertheless seems appropriate to introduce a

simple - but unphysical — way of time delay in the interactions: After an interaction

took place the momentum transfer to both partons involved is delayed by lArlabl / (2c),

where Ahab is the distance vector in the lab frame. In the meantime the partons

are considered not being able to interact, see Figure 414. A technical problem in

the calculations however is that the time delay has to be implemented for integer

numbers of timestep lengths and therefore does not necessarily fully correspond to its

supposed length.

It turns out that the propagation of the outgoing shock-wave becomes more ho-

mogeneous, the initial outburst is suppressed while the distances of the outmost

73

Figure 4.14: A first step to the introduction of retarded interactions.

scattering events are comparable to the simulations with instantaneous interactions,

see the forth row of Figures 412,413.

4.6.4 Model D: Downscaling the Cross Sections

The maximum signal velocity is proportional to the maximum cross section. Down-

scaling the cross sections to 1 /nth of its original value and compensating this by the

initialization of n times as many testpartons leads to a reduction of the maximum

signal velocity by 1 /\/17. Due to limitations given by the increasing computation time,

for this model calculation a factor of only 71. = 5 has been chosen which corresponds

to a reduction of the maximum signal velocity by a factor of a: 0.45.

It turns out that this technique radically changes the characteristics of the sim-

ulation, the outgoing shock-wave is strongly suppressed, see the fifth row of Fig—

ures 412,413. This outcome is surprising, since Ref. [Wel89] found that for internu—

clear cascade codes the outcome of this “full-ensemble” method (n times as many test

particles) is comparable the usual “parallel-ensemble” method (77. parallel test runs).

In the case of parton cascades apparently this does not hold true anymore due to the

reduction of superluminous signals.

74

Before favoring a method however that leads to such strong changes in the outcome

of the simulation, further analysis is mandatory.

4.6.5 Model E: Wee-Partons

When initializing the parton configuration the Lorentz-contraction leads to very thin

pancakes of nuclear matter, the contracted thickness of a nucleon is around 8 - 10’3

fm, that of the gold nucleus 6 - 10’2 fm. Thereby the z-coordinate of the partons

is fixed rather precisely. However, the momentum of the low—as-components of the

nucleonic wave-function is also determined within the order of a few hundred MeV.

This leads to a violation of the uncertainty principle, which lead to the suggestion

that in any frame of reference the nucleonic wave-function should be smeared out to

a pancake thickness of at least approximately 1 fm, where the low-x-components are

situated further outside and only the valence-quarks are actually within the highly

contracted pancake [Gei92.1, Gei94.1, Gei92.2, Gei93, Gei942, Mc182]. Applying this

kind of initial configuration naturally leads to a smaller parton density; in this case

approximately by a factor of 20. Figure 4.15 shows the parton configuration both at

the beginning of the simulation and at 2 fm/c.

One’s hope can be that the increased width and smaller parton density of the nu-

clei compared to the fully Lorentz-contracted model helps to eliminate some causality

violating effects, see the bottom row of Figures 412,413: The initial outburst of a

shock-wave at impact is eliminated because the nuclei enter each other rather gradu-

ally, an outgoing shock-wave within the respective nuclei is stronger damped because

of a decrease in collision rate, and finally time-ordering problems on the scale of the

time the nuclei are passing each other are rarified because that time-scale becomes

much longer.

However, there are now other inconsistencies: Although this concept given by the

75

- I I I I I . ' I ' I I I I ' -

_ fi -4

5 — —1 5 p— --I

A h
: .fi; ::2 i

E ';E I? i 315;}

«... ° _ T o _ :' 3:5 —
v I .. 5.31:2"

' air-in?"-
X ‘it' ‘ - £17113]:

-5 I— —1 -5 — —.

. ,
‘ _

‘ '
.1

l l l I l l l l I l J L LI I J l l I l l l l I l l I l l l l l I I I l l I l 1 #1 L i 1 J 1 I 1 l L l I l l l I

-7.5 -5.0 —2.5 0.0 2.5 5.0 7.5 —7.5 —5.o —2.5 0.0 2.5 5.0 7.5

2 (fm) z (fIn)

Figure 4.15: Initial configuration and configuration after 2 fm/c for a simulation with

wee-partons.

uncertainty relation is truly valid in any frame of reference, within this model there

is no way of implementing it in a Lorentz—invariant way. In reality the components of

the wave-functions transform, in different frames different components of the wave-

function are considered a parton. In the model used only the parton coordinates and

momenta transform, while the partons themselves, once generated, exist in any frame.

While for the initial collisions the c.m.-frames of individual parton collisions nearly

coincides with the lab-frame, in subsequent collisions the c.m.-frames are closer to the

rest-frames of the respective nuclei —- in its rest-frame however, a nucleon, smeared

out to 1 fm in the lab—frame, has a longitudinal radius of 100 fm.

4.6.6 Model F: Proper time approach

As already pointed out, a fully covariant description of a particle collisions would

require a fully 4—dimensional configuration space. This is not possible without giving

up the equal-time character of the simulation. Ref. [Kod84] however proposes a

causality preserving scheme that while retaining the unique global time character of

the simulation minimizes the frame-dependence of the choice of collision partners for

76

the particles, but not the frame-dependent time-ordering of those collisions. Each

particle i is considered to have its own clock showing its proper time 7,,

d7,- = dtI/l — [3.20), 7.0:) = /0tdt’ 1 — 530) . (4.26)

Since the particles do not change their momenta between collisions, the above integral

can be reduced to a sum of products of the type fimAta- With 736(3) being the proper

i-time of the collision of particle 2' with particle j, and 7,0 being the proper i-time of

the most recent collision of particle i, let

674]) :2 Tic(j) — 7'10 (4.27)

be the proper time distance between those two events, a Lorentz-invariant quantity.

The collision instant 736(3) is defined individually within the rest-frame of particle i

through the closest approach to particle j — in the other methods, the closest ap-

proach is defined either within one frame, usually the lab—frame or the c.m.-frame

of the nuclei, or within the respective c.m.-frame of a particle pair. In the previous

discussions, the latter mechanism had been chosen. To co—relate the individual clos-

est approach tests, for collisions only the particle pairs (2', j) are considered for which

both

673(3) =Min {6T,-(l) >0, l=1,...,N;l;éi} (4.28)

and

67,71): Min {6T,-(l) > 0, I = 1,. . .,N;l :fij} , (4.29)

N being the total number of particles in the simulation. Through the restriction

67 > 0 only collisions in the absolute future of each particle are considered. What the

two above conditions mean is that for particle i the very next possible collision (in

the sense of proper time) is with particle j and vice versa. This algorithm only allows

collisions that have no risk of not happening in another frame. Suppose particle 1

77

has a minimum proper time distance to particle 2, but particle 2 has its minimum

proper time distance to particle 3, then no collision will take place at all.

The search for the very next collision partner of every particle in the simula-

tion is an un-avoidable N2-problem. Since each of these tests involves a change of

coordinate system, this mechanism is computationally very intense. Therefore, it

was only possible to simulate the initial stages of one single (p,Au)-collision. It was

observed that the number of collisions in this phase dropped dramatically, in this

testrun to about 10% of the number in the other simulations; due to computational

limitations however one is not able to claim significant statistics on this percentage.

This outcome is compatible with the conjecture of the authors of Ref. [Kod84] that

the mechanism might underestimate the number of collisions [Kod94]. In smaller

simulations of (p,p)-collisions situations were observed where particle 1 had particle

2 as its closest collision partner, particle 2 had particle 3, and particle 3 again had

particle 1. “Ring”-configurations like this, possibly spanning over even more parti-

cles, might lead to the underestimation of the collision rate. This effect might have

been enhanced by the high particle density and the extreme Lorentz-contraction of

the nucleons as compared to lower energy internuclear cascades the mechanism was

developed for. Further investigation of this method is required, but due to computa-

tional limitations was not possible within this work. It is however not expected that

the above mechanism can overcome the macroscopic problem of shock-waves.

4.7 Conclusions

The influence of superluminous signal velocities on the signal propagation in parton

cascade codes was found to be smaller than expected. This is mainly due to two

effects: In the initial stages of the interaction the energy-dependent cross sections

78

tend to be small. Without this beneficial effect the signal propagation has a threshold

in the region between 0.4 and 0.5 fm2 from where on the velocity of the outgoing

shock-wave reaches the speed of light. In the later stages of the interaction shock-

waves get damped out not because of a lack of interactions but because of signal

propagation that resembles a random walk: not every collision actually leads to an

outward propagation, in fact, the equally probable inward propagation leads to a

virtual damping of the shock-wave.

APPENDIX

Appendix A

The Parton Cascade Program

A. 1 Flow chart

After initialization of the two pancakes by placing the test particles into the con—

figuration space and setting their initial momenta, the program mainly repeats the

steps

0 Moving the particles according to their momenta

0 Checking for collisions between the particles.

0 Decaying of particles.

This is done for a given amount of timesteps.

The program structure is shown in the flow chart Figure A.1.

A.2 Test runs

The program is able to simulate the behaviour of more than one particle system at

a time. Each of the particle systems is called a ’test run’. Since scattering is done

by Monte Carlo methods each of the configurations which are initially similar will

behave differently on the long run. The test runs however are set up to start with

slightly different initial conditions, too.

The test runs can be used to find averaged properties of the systems. They

can also be used to calculate mean fields for the particles, but this is not currently

implemented. As long as no mean field is taken into account, the test runs are

independent from each other.

79

80

No formal

reasons against

scattering.

Read parameters

|

Initialization

I

Outputs

I

 Check constants

Permutations

Move particles

according to

momenta and

put them into

boxes

Detemiine first box I

l

Determine second box

Already checked?

Check all

narticle comb.

All neighbor boxes?

no es

no All boxes checked?

yes

Time for outputs?

no yes

I Outputs

/

structure
 I

/ [Check particle data

I

 I Check constants

no

Multistage

decision

They will collide

Collide particles

I

Set flags

_____ _____._______-..__

Creating

and deleting

particles

BUU for high energy

collisions

01/31/94

More timesteps? > Ready

Figure A.1: BUU program flow chart

81

A.3 Scattering

As already explained running the simulation consists mainly of two steps: Moving

the particles according to their momenta as one step, scattering the particles as

another step. An additional step can be the decaying of partons. In principle the

scattering step involves the examination whether or not scattering takes place for

every particle pair in the test runs. This would result in an N2-time dependence of

this step. However since the spatial range of the interactions taken into consideration

is limited, most of the time particle pairs that will never have a chance of being

scattered would be examined.

To overcome this waste of time the coordinate space is divided into boxes con-

structed in a way such that only particle combinations with members of the same

or neighboring boxes have to be taken into account. The boxes establish a grid in

configuration space.

This implies that initialy in the ac and y direction the edges of the boxes have

0

to be longer than 2‘/-BEE With amax being the max1mum cross section taken into

7r

account. In the z direction the edges have to be longer than 2tstep - c with tstep being

the timestep length. During program execution the 2 extension has to be adjusted as

particles are scattered from their original z or —z direction respectively. With gmax

being the maximum angle any one particle has from the initial direction, the grid

. 0 .

extension in z direction is adjusted to 2tstep - c + 2‘/ max Sln(9max).

II

The total extension of the grid has to be chosen such that during the whole

simulation no particle leaves the grid, the latter has to be checked during the particles

are moved. The assignment of the particles to the boxes is also done during the move-

step.

In the scattering step all box combinations between neighboring boxes have to be

selected, and for each box combination all particle combinations have to be examined.

This is done in the following way:

To prevent the occurence of preferential directions always first one box is chosen

at random, then in a random order one of the neighboring boxes or itself is chosen as

a second box. It is made sure that each box combination is only taken into account

once. Then all particle combinations with one particle from the first box and the

other one from the second box are checked.

Before the physics of a possible scattering is checked, a few formal knock out

criteria are applied:

0 Neither of the particles has already scattered in this timestep. This is done

to avoid possible violations of causality: One timestep length is considered the

smallest scale on which any one thing can happen to a particle.

0 Not both of the particles have had the respective other one as their last scatter—

ing partner. This is done to avoid multiple scattering, a phenomenon already

taken into account on the level of elementary processes.

82

0 Not both of the particles haven’t scattered with a particle from the respective

other nucleus of origin before. This is done to prevent scattering between parti-

cles from the same nucleus before any collision with the other nucleus had taken

place — since no mean field guarantees the stability of an unperturbed nucleus,

stability is provided in this artificial way by the lack of any interaction. In prin-

ciple the same effect can be achieved by having a cutoff energy that suppresses

interactions with a too small c.m.-energy.

A.4 Assignment of the particles to the boxes

Since during the scattering process always first the boxes are chosen, it is necessary

that, given a box number, all particles in that box can be accessed rapidly. However,

since the particle data is stored independently of any box membership, assignment

to the boxes is rather done by a pointer structure being established each time new

when the particles are moved.

This movement of the particles is done in a random order; each box possesses one

pointer that points to the first particle being found in the box area after moving, or

to nowhere if the box area turned out to be empty.

Each particle itself possesses a pointer that points to the next particle being found

in the same box, or to nowhere if it was the last particle being found there.

As a result all particles in a certain box can be accessed by following this chain of

pointers, starting with the boxes’ own pointer and continuing through the particles’

’next-particle’-pointer, until any of those points to nowhere.

A.5 Checking for collisions

After two particles have been admitted for scattering by formal reasons (see A.3 on

page 81) the physics criteria for scattering or not are checked, in particular:

0 Are the two particles close enough for the particular c.m.-energy dependent

total cross section of the reaction?

0 Have they reached their point of closest approach in the c.m.-system?

While the first condition can be checked very quickly, performing the other two tests

takes much more computation time since it involves a transformation into the c.m.-

system of the two particles.

To avoid this as long as possible, a multistage decision is applied: Weaker cri-

teria which take less computation time are checked first, the decision sequence is

immediately aborted as soon as one of its requirements is not met.

83

A.6 Decay of particles

Off-shell particles that don’t belong to a certain nucleon anymore and haven’t collided

with another particle in the actual timestep are assumed to be able to decay. Due to

the uncertainty relation

AE - At ~ 1

their lifetime tlife is to be chosen according to

Am ' tlife N 1. .

Am is the off-shellness of the particle and calculated according to

Am = II/PuP" — mon-shelII -

momsheu is the on-shell mass of the particle, 19,, its four momentum.

In order to find the probability p for them to decay in the actual timestep the

livetime tlive is assumed to be the expectation value of possible lifetimes:

00

Z: pnntstep

- n=0

tlive = 00

Z 1)..

n=0

Here pn is the probability for the particle to survive It timesteps with a total lifetime

of ntstep. This must be equal to the probabilty of being not “killed” in n timesteps:

pn = (1 _ 19)"

Therefore

in _t 2(1 -p)”n
1e "‘ t *—8 ep 2(1 _ p)"

and with

1 (9 a:

n = — => " = —— < 1

:1: l—zr’ 8:1: 237” (1—a:)2 I33I

finally

1 _

tlive = tstep—p

and

_ Amtstep

p 1+Amt,,e,, '

In the decay step for all particles in question, a random number between 0 and 1 is

determined and compared to p. If it is smaller than p the particle decays into two

other particles.

84

A.7 Creating and deleting particles

Since during execution oftentimes particles are created or deleted, an efficient method

had to be found for this.

As all particle information is stored in static fixed-size arrays, the simplest way

would be to always have those arrays filled up to a variable index. This maximum

index would be stored elsewhere. Whenever a new particle is created, it would be

placed on top of the others and the maximum index would be increased, whenever a

particle is deleted, the stack above it would have to fall down and fill the gap, and

the maximum index would have to be decreased by one. However the “falling down”

involves a lot of copying, also, a lot of pointer information would have to be updated.

The other extreme would be not to care about maximum indices and instead

only to provide a flag for each array entry whether or not it is used. When a new

particle is to be created one would use some free entry in the array, write in the

information and flag it ’used’. Deleting a particle would simply be done by marking

the corresponding entry ’unused’. No pointer structures would be updated, one would

always run through the whole array or pointer chains and just skip ’deleted’ particles.

However, if the arrays are only filled rarely, this would be a waste of time.

So a combination of both methods is chosen:

0 The array entries can be marked ’unused’.

o The maximum used index number is stored elsewhere, all loops only have to

run up to this index.

0 The pointer chain for the box contents is updated.

When a particle is created, beginning from the bottom of the array the first unused

position is searched for and the information written to it. The entry will be marked

’used’. If it is above the maximum index so far (which can only be by ’1’) the

maximum index is updated. The new particle is not incorporated into any pointer

structures since as it already had interacted it would not take part in any other

interaction in this timestep anyway.

When a particle is deleted its array position is marked ’unused’. The particle is

removed from the box pointer chains, the maximum array index is updated.

Appendix B

Program listing

This is not a complete listing of the program, but only a selection of the most relevant

subroutines and files.

B.1 STDEC

Gerd Kortemeyer

Last revision of file: 08/31/94

This is the include file with all declarations of the common blocks used for communication between

the subroutines.

It also sets

c Type check on

implicit none

c

which forces the programmer to declare any local variables explicitly. Some physics parameters are

also set.

The standard declarations are to be included in any subroutine that is supposed to manipulate

global data. This is done simply by adding

include ’stdec.for’

Parts of this file should not be copied directly into subroutines since this might result in a lot of

confusion if at some stage the definition of common-blocks is changed in the standard declarations

file. The compiler will not be able to figure out that the definition of some common block is different

in different subroutines and map the variables wrong.

B.1.1 Physics parameters

The include file defines the following constants:

85

86

c Mass of nucleon [GeV/c**2]

double precision manuc

parameter (manuc=0.939)

c hbar*c [GeV*fm]

double precision hbc

parameter (hbc=0.197327)

c r0 [fnfl

double precision r0

parameter (r0=1.2)

B.1.2 Other parameters

Parameters for the dimensions of arrays:

0
0
0
0

Maximum number of quarks

integer mquark

parameter (mquark=15000)

c Maximum number of test runs

integer mtest

parameter (mtest=5)

c Grid-dimensions

integer mgridxy,mgridz

parameter (mgridxy=20)

parameter (mgridz =250)

c Dimensions for cross section array

integer maxpoints

parameter (maxpoints=3000)

double precision sqstep

parameter (sqstep=1000./(maxpoints-1.)**4)

c Maximum particle type index

integer maxtype

parameter (maxtype=6)

c Maximum number of channels

integer maxchannel

parameter (maxchannel=6)

c Very small number

double precision eps

parameter (eps=.0000000001)

c The number PI

double precision pi

parameter (pi=3.1416)

B.1.3 Particle data

In the common block particles all information that goes with each of the single particles is collected.

The particles are identified by two numbers: The number of the test run they are in, ranging from

1 to mtest, and the particle number in that run, ranging from 1 to mquark.

87

As the arrays are dimensioned staticly the two variables ntr and nq(mtest) are included. ntr (int)

holds the number of test runs really active, it is set in subroutine parmin from the information in

the parameter file.

nq(mtest) (int) gives the maximum particle-index per test run. It is first set in subroutine init,

but can vary when new particles are produced or other particles are absorbed. This is done in the

procedures crepar (see B.12.2, p. 152) and delpar (see B.12.1, p. 149).

So if one wants to construct a loop over all particles a typical structure would be

do 10 test=1,ntr

do 20 particle=1,nq(test)

This doesn’t necessarily mean that all array entries between 1 and nq(test) are actually used.

The particle information includes

a tq(mtest ,mquark) (int), the parton type. This is 0 for gluons, 1 for up-quarks, 2 for down—

quarks, 3 for strange-quarks, 4 for charm-quarks, 5 for bottom-quarks and 6 for top—quarks.

The accompaining anti—quarks have got the same but negative number, so for example -1

stands for anti—up. This parton code corresponds to the codes defined in the CTEQ—routines

for parton-distributions.

rq (mtest ,mquark , 3) (double), the position of the particles. The last array index corresponds

to the z, y and 2 components of the position vector respectively. The unit is fm. The time

component of the position is defined by the time step.

pq(mtest,mquark,3) (double), the momentum of the particles. Again the last array index

corresponds to the spatial components of this vector. The unit of the spatial components is

GeV/c. The energy component is given separately by the array eq(mtest ,mquark) (double),

its unit is GeV.

nnq (mtest ,mquark) (int), the number of the nucleon the particle was assigned to during the

initialization. The total number of nucleons is given by nntar and nptar for the number of

neutrons and protons in the target, and by nnpro and nppro for the number of neutrons and

protons in the projectile. The numbers nntar etc. are set in parmin by the user, nnq is set

in init.

A particle that was scattered by subroutine collide will have nnq=0 afterwards, a particle

created by subroutine crepar will have nnqz-l.

fq(mtest,mquark) (int) is a flag wether the particle belongs to the projectile (fqz—l) or

to the target (fqzl), they are first set in subroutine init. This flag is used in subroutine

scatter to prevent particles from the same nucleus to scatter with each other before at least

one of them has scattered with a particle from the other nucleus. After their first scattering

with any particle their flag is set to fq=0. A particle with fq=0 can then scatter with any

other particle.

last (mtest ,mquark) (int) is a pointer to the particle in the same test run the actual particle

has last scattered with, so values for last naturally range from 1 to mtest.

But last has a second usage: last=-1 means that the particle has been deleted in the last

interaction. So last also flags empty array positions.

However particles that haven’t scattered before carry last (i , j)=j as preset by the subrou-

tines init or crepar.

So to write a loop over all existing particles one should code

do 10 test=1,ntr

do 20 particle=1,nq(test)

if (last(test,particle).ne.-1) then

88

The values for last are set in subroutine collide and used in subroutine scatter to prevent

particles from being engaged in multiple scattering with each other. Two subsequent scatter-

ing events between the same particles are forbidden, however it is possible to scatter particles

1 and 2, then 2 scatter with 3, finally 1 again with 2. This results in a kind of 3-body-force.

nextgrid(mtest ,mquark) (int) points to another particle of the same test run that is in the

same space box as itself. If it is the last particle in that chain the value for nextgrid is -1.

The procedure is decribed in the section for procedure move, B.5 on page 114.

lastpoint (mtest ,mquark , 3) (double) The most recent point in the lab frame that the parton

scattered at. The scattering point is assumed in the middle between both partons involved.

1asttime(mtest ,mquark) (int) The most recent timestep-number that the parton scattered

in. Both lastpoint and lasttime are needed to calculate the signal velocity from one

scattering event to the next.

fdue (mtest,mquark) (int), feq(mtest,mquark) (double), qu(mtest,mquark,3) (double)

This is data for experiments with retarded interactions, fdue is the amount of timesteps that

the parton is considered to be involved in the interaction, feq and qu are the energy and

the momentum that the parton is supposed to get.

B.1.4 Other parameters

In the common block others control parameters for the program run are collected.

In particular there are

nt ime (int) The actual number of the timestep being executed at the moment.

timstp (double) The length of one timestep in fm/c. This value is read from the parameters

file.

proxO (double) The a: coordinate in fm of the projectiles starting position, defined in the

parameters file.

pron (double) The 2 coordinate in fm of the projectiles starting position, defined in the

parameters file.

iseed (double) The starting number for the random number generator, defined in the pa-

rameters file.

nmts (int) The total number of timesteps to be performed, defined in the parameters file.

whenout (int) The number of timesteps to be performed between two ’big’ outputs, for ex-

ample plots of the particle position in coordinate Space, output of statistics. . .. Read from

the parameters file.

elabpnpro (double) The kinetic energy in GeV per nucleon of the projectile, defined in the

parameters file.

elabpntar (double) The kinetic energy in GeV per nucleon of the target, defined in the

parameters file.

maxsig (double) The maximum total cross section in fm2 as being found during the initial-

ization of the cross section tables xsec. . . , see subroutine initcross (B.3.7, p. 106).

gridspxy (double) The a; and y length in fm of the box edges. The value is determined

according to the maximum cross section maxsig.

89

o gridspz (double) The 2 length in fm of the box edges. The value is re-determined after every

timestep according to the maximum angle a parton is headed away from it’s forward direction

in connection with maxsig and the timestep length timstp. This is done in subroutine move

(see B.5 on page 114):

gridspz=2 . * (t imstp-I-sqrt (maxsig/pi) *sin (mtheta))

o gridz (double) is the bin-width for configuration plots.

The items elabtar and elabpro became obsolete and were removed with the introduction of a new

initialization method for the particles. The item lowcut became obsolete with a new treatment of

low energy collisions.

B.1.5 Grid information

In the common gridinfo information for the spatial grid is stored.

In the integer array

gridroot (mtest,-mgridxy:mgridxy,-mgridxy:mgridxy,-mgridz:mgridz)

the pointers to the first particles found in the boxes are stored. A ’-1’ stands for ’no particle’,

meaning ’the box is empty’.

The first index represents the test run number, the following indizes the box coordinate. In the

a: and y direction the boxes are numbered from -mgridxy to mgridxy with box number -mgridxy

being the leftmost or lowest boxes respectively. The 2 coordinate is described by the last index.

The integer arrays

permx (-mgridxy :mgridxy) , permy (-mgridxy :mgridxy) , permz (-mgridz : mgridz)

are permutations of the numbers from -mgridxy to mgridxy or from -mgridz to mgridz respectively

and are used to have access to the boxes in a random way.

Instead of accessing gridroot (test , i , j ,k) during scattering rather

gridroot(test,permx(i),permy(j),permz(k))

is accessed. The random order of accessing the boxes is necessary because with each box also the

neighboring boxes will be accessed and a fixed order for that would result in preferential directions.

The integer arrays

deltx(3),delty(3),deltz(3)

have the same function for accessing the neighboring boxes in a random way, they have a permutation

of the numbers from —1 to 1.

90

B.1.6 Initialization parameters

In the common block initparms information concerning the different methods of initialization are

stored as they are being read from the parameter file.

B.1.

initmeth (int) In this variable the number of the initialization method to be used is stored.

It is read in parmin and used in makenucleus (see B.3.2 on page 103).

initxmin (double) The minimum a: value to be used in the parton distribution function

f(:r, Q2), see B.14 on page 157.

initqsq (double) The Q2 value to be used in the parton distribution function f(:1:, Q2), see

B.14 on page 157.

initrnuc (double) The nucleon (’bag’) radius assumed.

7 Information block for the initialization methods

In the common block create all necessary information for the different initialization methods is

stored It has to be filled before makenucleus is called. In particular:

B.1.

crelabpn (double) The kinetic energy per nucleon of that nucleus in the lab frame.

crexO (double) The initial 3: position of the nucleus’ center in the lab frame.

crezo (double) The initial 2 position of the nucleus’ center in the lab frame. The y position

is chosen to be zero always.

crenp (int) The number of protons in the nucleus.

crenn (int) The number of neutrons in the nucleus.

cremodir (double) The direction for the momentum: ’1’ means ’travelling in positive 2 di-

rection’, ’-1’ means ’travelling in negative 2 direction’.

creflag (double) The flag the particles from this nucleus should have. This corresponds to

the array fq in the particle data block.

8 Data for two particles that are scattering candidates

In the common block twopart gradually information about two particles that are defined by sub-

routine scatter (B.6, p. 118) for being candidates for scattering is collected.

The data is mainly set and used in subroutine collide (B.8, p. 123), but also in twototwo (B.9,

p. 139).

In particular the entries are

tppl (int) The number of the first particle being chosen.

tpp2 (int) The number of the second particle being chosen.

tprn (int) The number of the test run the particles are from.

tpsq (double) The total energy squared in GeV2 0f the two particles in their c.m.-system.

tpr1(3) (double) The distance vector of the two particles in the lab frame in fm.

tpeql , tpeq2 (double) The energies of the two particles in GeV in the c.m.—system.

91

tpmol (3) (double) The vector of momentum in the c.m.-system for the first particle in fm/e

before scattering.

tpbeta (double) The transformation vector 3 to enter the c.m.-system.

tpeql (double) The total energy of the two particles in the lab frame.

tpbq (double) The value of [32.

_ 1
o tpgamma (double) The value 7 — M.

o tpsigma (double) The total cross section of the two particles in fm2 as being set by subroutine

totalcross (B.8.3, p. totalcross). However, for technical reasons after xsecentry (B.8.4,

p. 136) has been called, the variable includes the partial cross section for the specified process.

tpgambet (double) The value of 3331.

tptd (double) The time difference between the two particles when seen in the c.m.-frame.

tprc(3) (double) The spatial distance vector in the c.m.-frame.

tpcos (double) The cosine of the scattering angle 0 in the c.m.-frame.

tpsc1(3) (double) The momentum vector of the first particle in the c.m.-system after scat-

tering. It is produced from tpmo1 by subroutine newmomenta.

tpsceql, tpsceq2 (double) The energies of the two particles after scattering.

tpchin (int) The channel number of the two incoming particles. The channels are coded in

the following way:

Channel number | particle content

99

‘19

qq

qt?

qq’

q’ tj’ — outgoing channel only

0
3
0
1
;
:
m
e

The prime denotes a quark different from the unprimed quark, the bar denotes the respective

antiparticle.

tpchout (int) The channel number of the two outgoing particles.

tpcrindex (int) The energy index for the arrays xsec. . ., see B.1.16 on page 93.

tpdq (double) The squared distance in fm2 between the two particles in the lab frame.

tpdqc (double) The squared distance in fm2 between the two particles in the c.m.-frame.

tinl , tin2 (int) The parton types of the two incoming partons as being set in totalcross

(B.8.3, p. 135).

toutl , tout2 (int) The parton types of the two outgoing partons as being set in outchannel

(B.8.2, p. 132).

The item tpeql became obsolete.

92

B. 1.9 Already scattered

In the common block already there is only one array alr (mtest ,mquark) (int) that flags for each

particle if it had already been scattered in this timestep or not. ’1’ denotes ’scattered’, ’0’ denotes

’not scattered’.

It is reset in subroutine scatter, set in twototwo and used in both scatter and decay.

B.1.10 Statistics

The common block stat includes some statistics information that is being printed out to the protocol

file during ’output’.

minsigma, maxsigma (double) The minimum and maximum values in fm2 for the cross

sections occurred between the outputs.

minsq, maxsq (double) The minimum and maximum values for the c.m.-energy squared in

GeV2 occurred between the outputs.

mincos, maxcos (double) The minimum and maximum cosine of the scattering angle in the

c.m.—frame as determined by the montecarlos.

nstaO (mtest) , . . . , nsta4 (mtest) (int) Counters for the multistage check: They are incre-

mented each time one particle combination passes the first, second,. . . stage of the test. This

can be used to supervise the efficiency of the test. For each testrun there exists a separate

counter.

timefault (int) This counter is incremented each time the time-distance between two par-

ticles that occurres during transformation to the c.m.-system is bigger than the transformed

timestep length.

anglestat (maxchannel,6) (int) With this array the c.m. angular distribution of scattering

events in the respective output channels is examined. The second index belongs to bins with

cos 6 from -1 to —%, —% to —%, . . . The contents of this array are written to the protocol file

at every ’big’ output.

labang1e(6) (int) With this array the lab angular distribution of scattering events is exam-

ined. The index belongs to bins with c030 from —1 to —%, ~37 to —%, ...The contents of

this array are written to the protocol file at every ’big’ output.

chscat (maxchannel,maxchanne1 (int) In this array the scattering events from the channel

number in the first index to the channel number in the second index are counted.

It also includes information about the number of particles created or deleted:

B.1.

crenumber, delnumber (int) The number of particles created/deleted since the last output.

lastnumber (int) The number of particles at the previous output, used for checks.

11 Information for particles to be created

The common block newpart has to be used when a new particle is to be created by subroutine

crepar, see B.12.2 on page 152.

In particular the following information has to be provided: The position nequ(3), the momentum

newpq(3), the energy neweq, the parton type newtq, and the testrun newtest that the particle

should be created in.

The item newpscat became obsolete with the removal of the array pointscat.

93

B.1.12 Permutation

The common block perm only has one entry, the array perm(mquark) (int). It is initialized to hold

all numbers from 1 to mquark, but in a permuted way. This array can be used to access the particles

in a random way by first building a subpermutation with the appropriate number of particles and

then accessing the particles always through the subpermutation, see B.5.3 on page 116.

B.1.13 Timing information

The common block time has the variable to (real) that can be used to find the total CPU-time so

far by calling secnds (t0).

B.1.14 Controls

The common block control has integer entries determining wether or not certain outputs are writ-

ten. ’0’ means ’no’, ’1’ means ’yes’. The values are read from the parameters file. In particular these

are

0 ploto (int) Wether or not the configuration and rapidity plots are done.

a scattering (int) Wether or not information about scattering events is written out, see sub-

routine twototwo on page 139.

Both the items causalpl and velocitypl became obsolete with the introduction of scattering.

B.1.15 Charges

In the common block charges there is one array charge that has the charge in units of the electron

charge for every parton type.

B.1.16 Cross sections

In these arrays the partial cross sections for different processes are stored. The entries are of type

double precision:

xsecgg22(maxpoints),

xsecqq22(maxtype,maxpoints),

xsecqg22(maxtype,maxpoints),

xsecqu22(maxtype,maxpoints),

xsecqqp22(maxtype,maxtype,maxpoints),

xsecqugg(maxtype,maxpoints),

xsecggqu(maxtype,maxpoints),

xsecquqqup(maxtype,maxtype,maxpoints)

The last index always refers to the energy mesh the cross sections are tabulated on. The preceding

indices refer to the parton types involved. The channel combination is coded in the name of the

arrays. For a description of these cross section arrays see B.3.7 on page 106.

For the incoming channel 99 the open output channels are 99 or qq. The partial cross sections

for two incoming gluons are added up in the order gg —> 99 (xsecgg22), gg —> mi, 99 —> dd, ...,

gg —> tt- (xsecggqu).

94

For the incoming channels qg and qq only the elastic channel is open.

For the incoming channel qrj the partial cross sections are added up in the following order: qrj —) qr]

(xsecqu22), qtj —> gg (xsecqugg), qrj —) q’q’ (xsecquqqup). The cross section array entries for

(16 —> q’ (7’ are added up in the order ch —) m], qrj —> dd and set to zero when q = q’.

As one can see, the partial cross sections always add up to the total cross section in the last entry

of that sequence, the difference between the entries and therefore the relative probabilty for the

channel are the partial cross sections themselves. For the initialization of the xsec. . . arrays see

B.3.7 on page 106.

B.1.17 Parameters for the cross sections

The following parameters are read from the parameters file and used in the cross section and mon-

tecarlo routines:

0 cm (double) is the cutoff for the gluon propagator in the t and u channels.

0 cm (double) is the cutoff for the gluon propagator in the 3 channels

0 crk (double) is the cutoff for the quark propagators in any channels

0 cralphas is the value for as.

B.1.18 Causality information

The common block causal with the items steps, stymax, stcount, veymax, vc(0 :mvelocity) and

vgrid became obsolete.

B.2 The main file

Gerd Kortemeyer

Last revision of the file: 04/27/94

This file consists the main program and includes the other major parts.

B.2. 1 Local variables

c Date/Time

character dat*9,tim*9

c Output-Counter, do variables

integer outp, i, j

c For initialization of random number generator

double precision dummy

B.2.2 Some initializations

First, date and time are read out and the timer for the CPU-seconds is reset

95

c Get date/time

call date(dat)

call time(tim)

c Reset timer

t0=secnds(0.0)

Next, the protocol file is opened:

c

c File for all control outputs

c

open(1,file=’buu_protocol.dat’,status=’unknown’)

c

write(1,*) ’ *** BUU for high energy collisions ***’

write(1,*) ’ ’

write(1,*) ’National Superconducting Cyclotron Laboratory’

write(1,*) ’G.K. 1993, 94’

write(1,*) ’Date: ’,dat,’ Time: ’,tim

write(1,*)

& i)

The parameters are read in from the parameter file:

c

c Initialization of commons

c

call parmin()

Now, the random number generator is initialized with the iseed given in the parameter file. The

random number generator is designed to start a new sequence of numbers when a negative value is

given as the argument:

c

c Reset random numbers

c

iseed=~abs(iseed)

dummy=ran1(iseed)

The particle data and some other data is initialized by subroutine init.

c

c Initialization of particle data

c

call init()

The arrays for the causality and velocity plots are reset:

steps=int(nmts/50.)

stcount=0

stymax=0

c Reset causal information

100

96

do 100 i=0,mgridxy

nc(i)=0

continue

vgrid=mvelocity*timstp/sqrt(maxsig/pi)

veymax=0

c Reset velocity information

110

do 110 i=0,mvelocity

vc(i)=0

continue

The graphics output files belonging to the output options given in the parameters file are opened:

C

c File for graphics output

C

if (ploto.ne.0) then

open(3,fi1e=’buu_plots.plt’,status=’unknown’)

write(3,*) ’SET STORAGE X Y Z SIZE=1000OOO’

endif

if (causalpl.ne.0) then

open(4,file=’buu_causal.plt’,status=’unknown’)

write(4,*) ’NEW FRAME’

write(4,*)

& ’TITLE 1 9.7 SIZE 2 ”HIGH ENERGY BUU ’,dat,’ ’,tim,’CAUSALITY”’

write(4,*) ’CASE ” LLL LLLLL ’,

&’ LLLLLLLL”’

write(4,*) ’SET FONT DUPLEX’

write(4,*) ’SET LABELS SIZE=2’

write(4,*) ’READ MESH’

write(4,*) ’FOR Y=’,(i*gridspxy,i=0,mgridxy)

endif

if (velocitypl.ne.0) then

open(5,file=’buu_velocity.plt’,status=’unknown’)

write(5,*) ’NEW FRAME’

write(5,*)

& ’TITLE 1 9.7 SIZE 2 ”HIGH ENERGY BUU ’,dat,’ ’,tim,’VELOCITY”’

write(5,*) ’CASE ” LLL LLLLL ’,

&’ LLLLLLL”’

write(5,*) ’SET FONT DUPLEX’

write(5,*) ’SET LABELS SIZE=2’

write(5,*) ’READ MESH’

write(5,*) ’FOR Y=’,(i/vgrid,i=0,mvelocity)

endif

The procedure plotout is called to plot a picture of the initial particle distribution in configuration

space and the initial rapidity distribution:

if (ploto.ne.0) call plotout()

97

The procedure constant calculates some constants of motion and writes them to the protocol file:

call constant()

Now the big loop over all timesteps starts. The counter outp counts the timesteps since the last

’big’ output, the parameter whenout determines after how many steps output is done.

c

c Loop for all timesteps

c

outp=1

c

write(*,*) ’Starting: ’,dat,’, ’,tim

c

do 10 ntime=1,nmts

c

This is the kernal of the loop: Calling move, scatter and decay. However, since 1 —) 2 parton

processes are not yet implemented, the corresponding call statement is commented out.

call permute()

call move()

call scatter()

* call decay()

Now it is checked if it is time for ’big’ output:

c Graphics and other output?

if (outp.eq.whenout) then

c

call date(dat)

call time(tim)

c

write(*,*) ’Timestep’,ntime,’ of’,nmts,’: ’,dat,’, ’,tim

c

write(1,*)

&’ l

write(1,*)

&1)

write(1,*) ’Timestep:’,ntime

write(1,*) ’Date: ’,dat,’ Time: ’,tim,’ CPU:’,secnds(t0)

write(1,*) ’-’

if (ploto.ne.0) call plotout()

write(1,*) ’-’

write(1,*) ’Multistage collision check statistics:’

do 20 i=1,ntr

write(1,*) ’Multistage: ’,

& nsta0(i),nsta1(i),nsta2(i),nsta3(i),nsta4(i)

20 continue

write(1,*) ’-’

write(1,*) ’Channel combinations:’

do 30 i=1,maxchannel

98

write(1,*) (chscat(i,j),j=1,maxchannel)

30 continue

write(1,*) ’Angular distributions, cos(theta) in c.m.framez’

do 40 i=1,maxchannel

write(1,*) ’ --------------------------------------- ’

write(1,*) ’Outchannel’,i,’:’

write(1,*) ’-’

write(1,*) (anglestat(i,j),j=1,6)

40 continue

write(1,*) ’Angular distributions, cos(theta) in lab frame:’

write(1,*) (labangle(j),j=1,6)

write(1,*) ’Timefaults ’,timefault

write(1,*) ’Min/Max cm sq.: ’,minsq,maxsq

write(1,*) ’Min/Max Sigma : ’,minsigma,maxsigma

write(1,*) ’Min/Max Cosine: ’,mincos,maxcos

write(1,*) ’Gridspacing z : ’,gridspz

The procedure checknumbers prints out statistics about particle numbers and checks them. It is

also able to track particles in the grid chains, but this feature is not used here. The procedure

restat resets the statistics and is part of the init major file.

call checknumbers(0,0,0)

call restat()

call constant()

outp=0

endif

outp=outp+1

c

10 continue

B.2.3 The end

Now a few final plot commands are produced:

if (causalpl.ne.0) then

write(4,*) ’SET LIMITS Y FROM 0 TO’,(stymax+1)*gridspxy

write(4,*) ’CONTOUR LABEL=OFF’

write(4,*) ’CONTOUR 1 LABEL=OFF DOTDASH’

write(4,*) ’PLOT AXES’

write(4,*) ’TITLE X CENTER ”TIME IN FM/C”’

write(4,*) ’TITLE Y CENTER ”SQRT(X*X+Y*Y) IN FM”’

endif

if (velocitypl.ne.0) then

write(5,*) ’SET LIMITS Y FROM 0 TO’,(veymax+1)/vgrid

write(5,*) ’CONTOUR LABEL=0FF’

write(5,*) ’CONTOUR 1 LABEL=0FF DOTDASH’

write(5,*) ’PLOT AXES’

write(5,*) ’TITLE X CENTER ”TIME IN FM/C”’

write(5,*) ’TITLE Y CENTER ”VELOCITY IN UNITS OF C”’

endif

99

c

call date(dat)

call time(tim)

write(1,*) secnds(t0),’: *** Program successfully terminated ***’

write(1,*) ’Date: ’,dat,’ Time: ’,tim

c

stop ’That”s all folks!’

end

B.2.4 The include section

The major parts of the program are included here. The following example is taken from a test

version of the program:

Includes

0
*
*
*

Procedure to read parameters

include ’parmin.for’

Procedure to init particle data

include ’init.for’

include ’testinit.for’

Procedure to plot data

include ’plotout.for’

Procedure to move all particles according to their momenta

include ’move.for’

0
0
*

0

c Procedure to check for scattering

c with causality violation ...

* include ’scatter.for’

c and without

include ’causcatter.for’

c Procedure for particle decay

include ’decay.for’

Function to calculate on-shell masses

include ’mshell.for’

Procedure that decides wether or not two particles scatter - and scatters

include ’collide.for’

include ’testcollide.for’

Procedure that completes two to two scatterings

include ’twototwo.for’

* include ’testtwototwo.for’

Procedure to randomly exchange entries in permutation array

include ’permute.for’

Procedure to set new momenta in c.m. frame according to scattering angle

include ’newmomenta.for’

include ’testnewmom.for’

Procedure to calculate random numbers

include ’random.for’

Parton distribution function

include ’distri.for’

Procedure to check constants

include ’constant.for’

c Procedure to remove and create particles

0
0

0
0

0
0

0
0

100

include ’credel.for’

This is where new initialization methods have to be linked:

c Initialization procedures

include ’initmeth1.for’

include ’initmeth2.for’

include ’initmeth3.for’

c Gauss Legendre Weights and Abscissae

include ’gauleg.for’

Procedures that calculate total cross sections depending on c.m. energy

Test versions

include ’testsigqq.for’

include ’testsigqqp.for’

Procedures doing the Monte Carlo, Testversions

include ’testmonqq.for’

include ’testmonqqp.for’

Procedures for total cross sections and Monte Carlos by Joelle

include ’MONTEGG.FOR’

include ’MONTEGGQQB.FOR’

include ’testmonteggqu.for’

include ’MONTEQG.FOR’

* include ’testmontqu.for’

include ’fmontqu.for’

include ’MONTEQQ.FOR’

include ’MONTEQQB.FOR’

include ’MONTEQQBGG.FOR’

include ’MONTEQQBP.FOR’

include ’MONTEQQP.FOR’

include ’TSIGGG22.FOR’

* include ’tsiggg2205.for’

include ’TSIGGGQQB.FOR’

include ’TSIGQG22.FOR’

include ’TSIGQQ22.FOR’

include ’TSIGQQBQ2.FOR’

include ’TSIGQQBGG.FOR’

include ’TSIGQQBQPQBP.FOR’

include ’TSIGQQP22.FOR’

0
*
*
0
*
*
0
0

*
1
-

B.3 INIT

(lerd I(ortenieyer

Last revision of file: 07/21/94

In this file there are most of the routines for the initialization of the particle data except for the

routine that creates the particles. This exception was made to make it possible to have more than

one way of initialization.

Also the permutation arrays and other control data are initialized here.

From outside this file only the subroutine init is called.

101

B.3.1 Subroutine init

In the subroutine init first the number of particles for all the testruns nq(test) is set to zero:

c

c No particles so far

c

do 10 test=1,ntr

nq(test)=0

10 continue

Then the particles for the target are initialized by the subroutine makenucleus (see B.3.2 on page

103). All the data necessary for the initialization of this nucleus is first to be stored in the common

block create.

This is

o The kinetic energy per nucleon of that nucleus in the lab frame.

0 The initial :1: position of the nucleus’ center in the lab frame.

0 The initial 2 position of the nucleus’ center in the lab frame. The y position is chosen to be

zero always.

0 The number of protons in the nucleus.

0 The number of neutrons in the nucleus.

0 The direction for the momentum: ’1’ means ’travelling in positive 2 direction’, ’-1’ means

’travelling in negative 2 direction.

0 The flag the particles from this nucleus should have. This corresponds to the array fq in the

particle data block.

c

c Initialize target

c

write(1,*) ’ —————————————————— TARGET ____________________ >

c

crelabpn=e1abpntar

crex0=0.

crezO=O.

crenp=nptar

crenn=nntar

cremodir=1.

creflag=1

c

call makenucleus ()

The same procedure for the projectile:

c

c Initialize projectile

c

write(1,*) ’ ---------------- PROJECTILE —————————————————— ’

102

crelabpn=e1abpnpro

crex0=prox0

crezO=pron

crenp=nppro

crenn=nnpro

cremodir=-1.

creflag=-1

call makenucleus()

Now the following particle data should have been initialized:

rq, pq, eq, tq, fq and nnq

Also nq should give the correct number of particles per test run.

The next thing is to initialize the other flags that are independent of the initialization mechanism:

c Set some flags

call initflag()

These are

last,qqznuipointscat

The charge-array is initialized in the subroutine initcharge:

c Initialize chargearray

call initcharge()

As small checks charge and mass of the two nuclei are calculated from the particle data and compared

to values calculated from the parameter file values:

c Small checks

call initcheck()

The permutation arrays perm, permx, permy, permz, deltx, delty and deltz are initialized:

c Initialize permutations

call initperm()

The cross section tables xsec. . . are initialized:

c Initialize cross section table

call initcross()

The statistics with maxsigma, minsigma, timefault, . . . are reset:

c Reset statistics

call restat()

103

The initial gridspacings are set:

c

gridspxy=2.*sqrt(maxsig/pi)

c

write(1,*) ’Gridspacing xy [fm]:’,gridspxy

write(1,*) ’(Gridextension xy +/-’,gridspxy*mgridxy,’ fm)’

c

The gridspace in z-direction however should be at least 20 times the initial spacing between the

nuclei:

gridspz=2.*timstp

if (gridspz*mgridz.le.20.*abs(pron)) gridspz=20.*pron/mgridz

write(1,*) ’Gridspacing z [fm]:’,gridspz

write(1,*) ’(Gridextension z +/-’,gridspz*mgridz,’ fm)’

For plots the z-spacing gridz will be used:

write(1,*) ’*** This gridextension will be set for all plots ***’

gridz=gridspz

Finally the timestep number nt ime is set to zero:

c

c Time step zero

c

ntime=0

c

write(1,*) secnds(t0),’: Init finished’

write(1,*)

& 2 __ 2

c

return

end

B.3.2 Subroutine makenucleus

This subroutine is calling the initialization method chosen by the user from the parameter file. It

first prints the initialization values to the protocol file.

write(1,*) ’Nucleus initialization, method ’,initmeth,’ :’

write(1,*) ’ Kin. energy per nucleon, lab. [GeV]:’,crelabpn

write(1,*) ’ Position x in lab frame [fm] :’,crex0

write(1,*) ’ Position 2 in lab frame [fm] :’,crezO

write(1,*) ’ Number of protons :’,crenp

write(1,*) ’ Number of neutrons :’,crenn

write(1,*) ’ Momentum direction (forward/backw.):’,cremodir

write(1,*) ’ Parton flag :’,creflag

104

Now the call of the chosen initialization method is performed. This list has to be expanded as soon

as a new initialization method is to be implemented:

if (initmeth.eq.1) call initmeth1()

B.3.3 Subroutine initflag

In this subroutine the last scattering partner is set to ’itself’, and the last scattering point is set to

’nowhere’:

write(1,*) secnds(t0),’: Setting flags and charges’

c For all test runs

do 10 test=1,ntr

c

c For all existing particles in test run

do 20 i=1,nq(test)

c Last scattering with itself

1ast(test,i)=i

c Not scattered before

pointscat(test,i)=-1

20 continue

Also, for unused entries of the particle arrays the entry last is set to ’-1’. This is done for creating

and deleting particles, see B.12 on page 149.

c

c Set remaining particle flags to ’not existing’

c These entries are flaged ’last=-1’

c

do 30 i=nq(test)+1,mquark

last(test,i)=-1

30 continue

c

c Number of particles

c

lastnumber(test)=nq(test)

c

10 continue

c

return

end

B.3.4 Subroutine initcharge

In this subroutine the array charge is initialized:

charge(0)= 0.

charge(1)= 2./3.

105

charge(-1)=-2./3.

charge(2)=-1./3.

charge(-2)= 1./3.

charge(3)= 2./3.

charge(-3)=-2./3.

charge(4)=-1./3.

charge(-4)= 1./3.

charge(5)= 2./3.

charge(-5)=-2./3.

charge(6)=—1./3.

charge(—6)= 1./3.

B.3.5 Subroutine initcheck

This subroutine calculates the total charge and the total mass of all particles and compares it to the

values being calculated from the data in the parameter file:

write(1,*) secnds(t0),’: Checking charge and mass’

do 10 test=1,ntr

qchar=0.

mass=0.

do 200 i=1,nq(test)

qchar=qchar+charge(tq(test,i))

mass=mass+sqrt(eq(test,i)**2

& —pq(test,i,1)**2-pq(test,i,2)**2-pq(test,i,3)**2)

200 continue

c

write(1,*) ’Check charge :’,qchar,’ (’,nptar+nppro,’)’

write(1,*) ’Check mass :’,mass,’ (’,

& (nptar+nppro+nntar+nnpro)*manuc,’)’

10 continue

B.3.6 Subroutineinitperm

This subroutine initializes the permutation arrays by setting each entry to its own index number.

do 400 i=1,mquark

perm(i)=i

400 continue

do 410 i=-mgridxy,mgridxy

permx(i)=i

permy(i)=i

410 continue

do 420 i=—mgridz,mgridz

permz(i)=i

420 continue

do 430 i=1,3

deltx(i)=2-i

delty(i)=2-i

deltz(i)=2—i

430 continue

106

B.3.7 Subroutine initcross

In this subroutine the cross section arrays xsec and the maximum cross section maxsig are initialized.

The cross sections are calculated on a mesh with meshpoints eps+sqstep* (i-1) **4, where i is the

index of the mesh point. All together the mesh has maxpoints points.

integer i,j,k

c

write(1,*) secnds(t0),’: Initializing cross sections’

c

write(1,*) ’Max. energy [GeV**2]:’,

& sqstep*(maxpoints-1.)**4

c

c Maximum total cross section to be found:

maxsig=0.

The cross section arrays are first set to the corresponding partial cross sections. The variables tin1,

tin2 and tout1 are used by the cross section routines to determine the on-shell masses of the partons

involved.

The big loop runs over all mesh point indices:

c

c First calculate cross sections

c

do 20 i=1,maxpoints

The energy corresponding to the index is calculated using the above formula:

tpsq=eps+(i-1.)**4*sqstep

call tsiggg22()

xsecgg22(i)=tpsigma

The next loop runs over all possible incoming quark types:

do 20 tin1=1,maxtype

call tsigqq22()

xsecqq22(tin1,i)=tpsigma

if (tpsigma.gt.maxsig) maxsig=tpsigma

call tsigqg22()

xsecqg22(tin1,i)=tpsigma

if (tpsigma.gt.maxsig) maxsig=tpsigma

call tsigqu22()

xsecqu22(tin1,i)=tpsigma

call tsigqugg()

xsecqugg(tin1,i)=tpsigma

For tsigggqu the varible tout1 has to be set according to the types of the outgoing partons:

tout1=tin1

call tsigggqu()

xsecggqu(tout1,i)=tpsigma

107

In the following cross sections two different quark types are involved. For tsigqqp22 those two

different quarks are in the incoming channel, so also tin2 has to be set, for tsigquqqup one

quark type has to be set for the incoming channel and one for the outgoing channel.

20

do 20 j=1,maxtype

if (tin1.ne.j) then

tin2=j

call tsigqqp22()

xsecqqp22(tin1,tin2,i)=tpsigma

tout1=j

call tsigquqqup()

xsecquqqup(tin1,tout1,i)=tpsigma

else

xsecqqp22(tin1,j,i)=0.

xsecquqqup(tin1,j,i)=0.

endif

continue

The partial cross sections at the minimum and maximum energy of the mesh are written to the

protocol file:

C

c Control output

C

30

4O

50

60

7O

write(1,*) ’-’

write(1,*) ’Parton label (6, 5, 4, 3, 2, 1, O, -1, , -6)’

write(1,*) ’ for (t, b, c, s, d, u, g, u_bar, ..., t bar)’

write(1,*) ’-’

write(1,*) ’Elastic channels at min/max energies [fm**2]:’

write(1,*) ’ ------------------- -- ---’

write(1,*) ’gg->gg’,xsecgg22(1),xsecgg22(maxpoints)

write(1,*) ’qq->qq’

do 30 i=1,maxtype

write(1,*) i,xsecqq22(i,1),xsecqq22(i,maxpoints)

continue

write(1,*) ’qg->qg’

do 40 i=1,maxtype

write(1,*) i,xsecqg22(i,1),xsecqg22(i,maxpoints)

continue

write(1,*) ’qu->qu’

do 50 i=1,maxtype

write(1,*) i,xsecqu22(i,1),xsecqu22(i,maxpoints)

continue

write(1,*) ’qqp->qqp’

do 60 i=1,maxtype

do 60 j=1,maxtype

write(1,*) i,j,xsecqqp22(i,j,1),xsecqqp22(i,j,maxpoints)

continue

write(1,*) ’Inelastic channels at min/max energies [fm**2]:’

write(1,*) ’ --- ’

write(1,*) ’qu->gg’

do 70 i=1,maxtype

write(1,*) i,xsecqugg(i,1),xsecqugg(i,maxpoints)

continue

108

write(1,*) ’gg->qu’

do 80 i=1,maxtype

write(1,*) i,xsecggqu(i,1),xsecggqu(i,maxpoints)

80 continue

write(1,*) ’qu->qqup’

do 90 i=1,maxtype

do 90 j=1,maxtype

write(1,*) i,j,xsecquqqup(i,j,1),

& xsecquqqup(i,j,maxpoints)

90 continue

Now for a given combination of incoming partons the partial cross sections for all combinations of

outgoing partons are added up in a certain sequence. Finally the entry for a certain partial cross

section is the cross section in question plus the sum of all preceeding cross sections in that sequence.

For the incoming channel 99 the open output channels are 99 or ch. The partial cross sections

for two incoming gluons are added up in the order 99 -—> 99 (xsecgg22), 99 ——> ml, 99 —> dd, ...,

gg-—)tf(xsecggqu).

For example in xsecggqu(3,en_ergy) one will find the partial cross section for gg —> 35 plus the

partial cross sections for 99 —> dd, 99 —) mi and 99 —> 99.

For the incoming channels qg and qq only the elastic channel is open.

For the incoming channel qc'j the partial cross sections are added up in the following order: qrj —) qrj

(xsecqu22), qr‘j —) gg (xsecqugg), qrj —-> q’ (j’ (xsecq_qbqqup). The cross section array entries for

qr‘j —> q’q" are added up in the order qr] —) ml, ch —> dd and set to zero when q = q’.

As a final example in xsecquqqup(2 ,4,e_nergy) one will find the partial cross section_for dd ——> bf)

plus the following_partial cross sections: dd —> as and dd —> mi from xsecquqqup, dd —> 99 from

xsecqugg and dd —) dd from xsecqu22.

As one can see, the partial cross sections always add up to the total cross section in the last entry

of that sequence.

c

c Now pile them up

c

c Elastic channels first, then inelastic

c

do 100 i=1,maxpoints

xsecggqu(1,i)=xsecggqu(1,i)+xsecgg22(i)

do 110 j=2,maxtype

xsecggqu(j,i)=xsecggqu(j,i)+xsecggqu(j-1,i)

if (xsecggqu(j,i).gt.maxsig) maxsig=xsecggqu(j,i)

110 continue

do 120 j=1,maxtype

xsecqugg(j,i)=xsecqugg(j,i)+xsecqu22(j,i)

xsecquqqup(j,1,i)=xsecquqqup(j,1,i)+xsecqugg(j,i)

do 120 k=2,maxtype

xsecquqqup(j,k,i)=xsecquqqup(j,k,i)+

& xsecquqqup(j,k-1,i)

if (xsecquqqup(j,k,i).gt.maxsig)

& maxsig=xsecquqqup(j,k,i)

1 20 cont inue

1 00 continue

109

The total cross sections, again at minimum and maximum mesh energy, are given out to the protocol

fikx

c

c Control output

c

write(1,*) ’Total cross section at min/max energies [fm**2]:’

write(1,*) ’ -- ’

write(1,*) ’gg->anything’,

& xsecggqu(maxtype,1),xsecggqu(maxtype,maxpoints)

write(1,*) ’qu—>anything’

do 200 i=1,maxtype

write(1,*) i,xsecquqqup(i,maxtype,1),

& xsecquqqup(i,maxtype,maxpoints)

c

200 continue

c

write(1,*) ’Maximum total cross section found [fm**2]:’,maxsig

c

return

end

B.3.8 Subroutine rancor

This subroutine randomly chooses as, y and 2 such that

rr+f+¢2gl,

0323.31.231.

subroutine rancor(x,y,z)

double precision x,y,z

10 x=1.-2.*ran1(iseed)

y=1.-2.*ran1(iseed)

z=1.-2.*ran1(iseed)

if (x*x+y*y+z*z.gt.1.) goto 10

return

end

B.3.9 Subroutine restat

This subroutine resets the statistics values being written to the protocol file whenever there is a ’big’

output.

c

c Reset min/max

c

maxsigma=0.

minsigma=maxsig

110

maxsq=0.

minsq=1000000000.

mincos=1.

maxcos=-1.

c

c Reset multistage and credel statistics

c

do 300 i=1,ntr

nsta0(i)=0

nsta1(i)=0

nsta2(i)=0

nsta3(i)=0

nsta4(i)=0

crenumber(i)=0

delnumber(i)=0

300 continue

The scattering channel statistics chscat are reset. In this array scattering events in the different

channel combinations will be counted:

do 310 i=1,maxchanne1

do 310 j=1,maxchannel

chscat(i,j)=0

310 continue

The angular distribution bins are emptied:

do 410 i=1,maxchannel

do 410 j=1,6

anglestat(i,j)=0

410 continue

do 420 j=1,6

labangle(j)=0

420 continue

The impact parameter statistics are reset:

do 500 i=0,20

impact(i)=0

500 continue

Finally, the number of timefaults is set to zero:

timefau1t=0

B.4 INITMETHl

Gerd Kortemeyer

Last revision of the file: 01/20/94

111

This subroutine is an example for what requirements an initialization routine for nuclei must meet.

It represents a very simple version that only initializes the valenz quarks and can be used as a primer

when a more sophisticated initialization routine is to be written.

In general, an initialization routine must set the following variables:

rq, Pq, eq, tq, fq and nnq

Also nq must give the correct number of particles per test run.

B.4.l Local variables

In addition to stdec . for the following variables are defined:

c Radius of nucleus in xy and 2

double precision radxy, radz

c Radius of nucleon in 2

double precision radnucz

c Momentum per nucleon

double precision monuc

c Total energy of nucleon in lab frame

double precision etlabn

c Momentum per quark

double precision moqua

c Energy per quark

double precision eqqua

c Beta and gamma for transformation from lab to rest

double precision beta, gamma

c Test run

integer test

c Nucleon counter

integer ncount

c do variables

integer i,j

c Coordinates

double precision x,y,z,xc,yc,zc

B.4.2 Initialization of the particles

First, it is important that the initialization routine clearly writes to the protocol file which kind of

initialization is chosen:

C

write(1,*) '>>> ___________________________________ :

write(1,*) ’>>> Initializing Valenz-Quarks only ...’

write(1,*) ’>>> ,

C

Now a few kinematical calculations are performed:

112

c =Ekin+m“2

etlabn=crelabpn+manuc

write(1,*) ’Total energy per nucleon, lab frame [GeV]:’,etlabn

c E‘2-p“2=m“2

c p“2=E“2-m“2

monuc=cremodir*sqrt(etlabn*etlabn-manuc*manuc)

write(1,*) ’Total momentum per nucleon, lab [GeV/c]:’,monuc

c beta=p/E

beta=monuc/et1abn

write(1,*) ’Beta for transformation from rest frame :’,beta

c gamma=1lsqrt(1-beta‘2)

gamma=1./sqrt(1.-beta*beta)

c r=r0*A“(1/3)

radxy=r0*(crenp+crenn)**(1./3.)

write(1,*) ’Radius of nucleus xy [fm]:’,radxy

c rz=r/gamma

radz=radxy/gamma

write(1,*) ’Radius of nucleus 2 (contracted) [fm]:’,radz

c

write(1,*) ’Radius of nucleon xy [fm]:’,initrnuc

radnucz=initrnuc/gamma

write(1,*) ’Radius of nucleon z (contracted) [fm]:’,radnucz

write(1,*) ’---’

c

eqqua=et1abn/3.

write(1,*) ’Energy per quark [GeV]:’,eqqua

c

moqua=monuc/3.

write(1,*) ’Momentum per quark [GeV/c]:’,moqua

B.4.3 Creating particles

Now for all testruns the particles are created:

c

c For all testruns

c

do 10 test=1,ntr

write(1,*) ’ ----- Testrun : ’,test

c Reset nucleon counter

ncount=0

From here on the initialization methods might differ. First, all protons are created, their constituents

are just being thrown into one and the same arrays — only the nucleon number nnq still identifies

which nucleon they belong to, while the flag fq identifies which of the two nuclei, target or projectile,

their nucleon belongs to:

c

c Do the protons

do 20 i=1,crenp

ncount=ncount+1

113

c Where to place nucleon?

call rancor(x,y,z)

xc=crex0+x*(radxy-initrnuc)

yc= y*(radxy—initrnuc)

zc=crezO+z*(radz -radnucz)

c xc, yo and zc are the center coordinates of the nucleon

c Now put 3 valenz quarks into nucleon

do 30 j=1,3

c One particle more

nq(test)=nq(test)+1

c Position

call rancor(x,y,z)

rq(test,nq(test),1)=xc+x*initrnuc

rq(test,nq(test),2)=yc+y*initrnuc

rq(test,nq(test),3)=zc+z*radnucz

c Momentum

pq(test,nq(test),1)=0.

pq(test,nq(test),2)=0.

pq(test,nq(test),3)=moqua

c Energy

eq(test,nq(test))=eqqua

c Flag

fq(test,nq(test))=cref1ag

c Nucleon number

nnq(test,nq(test))=ncount

30 continue

0 Now make them up and down

tq(test,nq(test)-2)=1

tq(test,nq(test)-1)=2

tq(test,nq(test))=1

20 continue

The creation of the neutrons of course is similar except for the valenz quark types:

c:

0 Do the neutrons

do 40 i=1,crenn

ncount=ncount+1

C Where to place nucleon?

call rancor(x,y,z)

xc=crex0+x*(radxy-initrnuc)

yc= y*(radxy-initrnuc)

zc=crezO+z*(radz -radnucz)

C 3x<=, yc and zc are the center coordinates of the nucleon

C NOW put 3 valenz quarks into nucleon

do 50 j=1,3

C One particle more

nq(test)=nq(test)+1

C Position

call rancor(x,y,z)

rq(test,nq(test),1)=xc+x*initrnuc

rq(test,nq(test),2)=yc+y*initrnuc

rq(test,nq(test),3)=zc+z*radnucz

114

c Momentum

pq<test.nq(test).1)=o.

qutest.nq(test),2)=o.

qutest,nq(test),3)=mo
qua

c Energy

eq(test,nq(test))=eqqua

c Flag

fq(test,nq(test))=creflag

c Nucleon number

nnq(test,nq(test))=ncount

50 continue

c Now make them up and down

tq(test,nq(test)-2)=2

tq(test,nq(test)-1)=1

tq(test,nq(test))=2

40 continue

c

10 continue

B.4.4 The end

Finally as a small check for the last testrun the number of created nucleons is compared to the

expected value:

c

write(1,*) ncount,’(’,crenp+crenn,’) nucleons.’

c

return

end

B.5 MOVE

Gerd Kortemeyer

Last revision of the file: 04/04/93

This subroutine moves all particles according to their momenta and also initializes the pointer

structure for the assignment of the particles to the boxes of the spatial grid.

B.5.1 Local variables

C Do variables

integer i,j,k,m,nx,ny,nz

C Permutation subset with numbers only from 1 to nq(test_run_number)

integer subperm(mquark)

C Array with current endparticles of gridboxes

integer endpart

.& (~mgridxyzmgridxy,-mgridxy:mgridxy,-mgridz:mgridz)

C Velocity 3 vector

real v(3)

c Counter for particles having left boxes

115

integer outb

c Maximum angle, angle

double precision mtheta,theta

B.5.2 Determining the new gridsize

In order to adjust the gridsize during runtime the greatest angle between the direction any particle

is moving in and the z-direction has to be determined:

c

c Determine new gridspacing

c

mtheta=0.

c

do 100 i=1,ntr

do 100 j=1,nq(i)

if (last(i,j).ne.-1) then

c Get angle

theta=abs(

& atan(sqrt(pq(i,j,1)*pq(i,j,1)+pq(i,j,2)*pq(i,j,2))/

& pq(i.j,3)))

if (theta.gt.mtheta) mtheta=theta

endif

100 continue

With theta: dmax being the maximum angle any particle has from the initial direction, the grid

extensron 1n 2 direction 18 adjusted to 2tstep ~ c + 2 max sm(6’max):

V r

gridspz=2.*(timstp+sqrt(maxsig/pi)*sin(mtheta))

B.5.3 Moving the particles

First the variable outb is set to zero here. It will count the particles that have left the grid area.

c

outb=0

c:

Over all there is a loop over all test runs:

c: Loop for all active test-runs:

do 10 i=1,ntr

For the respective test run the gridroots are set to ’empty box’.

C Reset gridroots and endpart

do 20 j=-mgridxy,mgridxy

do 20 k=-mgridxy,mgridxy

do 20 m=-mgridz,mgridz

gridroot(i,j,k,m)=-1

20 continue

116

In the integer array subperm the permuted numbers from 1 to nq(i) are initialized in the entries

1 to nq(i). i is the number of the test run, nq(i) is the number of particles in this run. This is

a ’subpermutation’ of the permutation perm that has the numbers 1 to mquark in the entries 1 to

mquark. subperm is designed for the random access of the nq(i) particles in the actual test run.

c Initialize permutation subset

j=1

do 30 k=1,mquark

if (perm(k).le.nq(i)) then

subperm(j)=perm(k)

j=j+1

endif

30 continue

If the subpermutation was initialized correctly, the value of j is nq(i)+1:

c Check subperm

if (j.ne.nq(i)+1) then

write(1,*) ’Sub-Permutation wrong, j=’,j

write(1,*) ’ Test-Run:’,i

write(1,*) ’ Number of particles:’,nq(i)

stop

endif

Now there is a loop over all particles in the test run, but the actual index j for the particle that

is to be moved is taken from the subpermutation. This is done in order to avoid that the chain of

pointers for the particles in the boxes has the same order in subsequent timesteps:

c Loop for all particles in that run:

do 10 m=1,nq(i)

c Particle numbers chosen from permutation array

j=subperm(m)

It then has to be checked if the particle is actually existing:

c Particle present?

if (last(i,j).ne.-1) then

See A.7 on page 84 and B.1.3 on page 87 for details.

The moving of the particle is done using

 m + At) 3 m) + m) - At = m) + E

c Loop for all components of the 3-vector

do 40 k=1,3

c

rq(i,j,k)=rq(i,j,k)+pq(i,j,k)*timstp/eq(i,j)

40 continue

117

B.5.4 Assigning the particles to the boxes

The indices of the box the particle is in now are calculated as the coordinate divided by the respective

gridspacing.

c In which box is the particle now?

c

nx=nint(rq(i,j,1)/gridspxy)

c

ny=nint(rq(i,j,2)/gridspxy)

c

nz=nint(rq(i,j,3)/gridspz)

Now it is to be checked if the particles left the grid area. If so, they are put into the outmost box

and the counter outb is incremented.

c Did particles leave the box?

if (nx.gt.mgridxy) then

nx=mgridxy

outb=outb+1

endif

if (nx.1t.-mgridxy) then

nx=-mgridxy

outb=outb+1

endif

if (ny.gt.mgridxy) then

ny=mgridxy

outb=outb+1

endif

if (ny.lt.-mgridxy) then

ny=-mgridxy

outb=outb+1

endif

if (nz.gt.mgridz) then

nz=mgridz

outb=outb+1

endif

if (nz.lt.-mgridz) then

nz=-mgridz

outb=outb+1

endif

Now the particle certainly has a valid box index it is time to incorporate it into the pointer structure.

The pointer array endpart is used to always point to the last particle being found in the respective

box during initialization of the pointer structure, it is not needed once the initialization is finished.

If the actual particle is the first particle found in its box both gridroot and endpart will be

initialized pointing to that particle.

If the box wasn’t empty the previously found particles pointer is set to the actual particle.

c Is it the first particle in that box?

if (gridroot(i,nx,ny,nz).lt.0) then

gridroot(i,nx,ny,nz)=j

118

endpart(nx,ny,nZ)=l

else

nextgrid(i,endpart(nx,ny,nz))=j

endif

Finally, the actual particles pointer is set to ’nowhere’ since it is not sure if there will be another

particle found. If there is one more particle in the box, the actual particles pointer will be set to it

at the time the next particle is found by the above statement nextgrid(i ,endpart

Also the endpart pointer is set to actual particle number.

c Set nextgrid to nowhere, endpart to j

nextgrid(i,j)=-1

endpart(nx,ny,nz)=j

B.5.5 The end

Now the if is closed and the label for the two loops over the test run and the particles is set:

endif

10 continue

Also a warning is given out if one or more particles left the grid:

c Write warnings

if (outb.ne.0) write(1,*)

& ’!!!’,outb,’ grid boundary violations in timestep’,ntime

c

Bye bye. . .

return

end

B.6 SCATTER

Gerd Kortemeyer

Last revision of file: 09/19/94

This subroutine is responsible for finding all particle combinations that are able to scatter. Can-

didates are delievered to subroutine collide where the physics tests for scattering are run and in

case the scattering is executed.

B.6. 1 Local variables

Besides stdec . for the following local variable definitions are made:

119

c do variables

integer i,j,k,1,m,n

c box numbers of center box

integer ni,nj,nk

c box numbers of second box

integer mi,mj,mk

c bases for linear index

integer base,basesq

c linear index of first and second box

integer linfirst,linsecond

c Data about first particle

integer 1astp1,flagp1

B.6.2 Initialization of variables

First the subroutine defines the variables

base=2*mgridxy+1

basesq=base*base

that will be used later to calculate an identification number for the boxes. The compiler will treat

both variables like constants.

B.6.3 Choosing the boxes

For choosing the boxes first a big loop over all test runs is executed. The loop variable is chosen to

be tprn so automatically the right test run number can be found in the common twopart.

c

c For all test runs active

c

do 10 tprn=1,ntr

The array alr, that is used to flag particles that already have scattered in this timestep, is set to

zero, meaning ’not scattered’

c No scattering so far in this run

do 20 j=1,nq(tprn)

alr(tprn,j)=0

20 continue

Next, all possible center boxes are looked at. The mapping from the do-variables i , j ,k to the box

indizes ni ,nj ,nk is done by means of the permutation arrays permx,permy,permz:

c Choose center box, not including outmost boxes

do 30 i=-mgridxy+1,mgridxy-1

do 30 j=-mgridxy+1,mgridxy-1

do 30 k=-mgridz+1,mgridz-1

ni=permx(i)

nJ' =permy (j >

nk=permz(k)

120

The outmost boxes are excluded from the loop. The mapping through permx, permy and permz

generates no problems here since it is taken care in subroutine permute that the indices for the

outmost boxes are not permuted.

Now gridroot (tprn,ni,nj ,nk) points to the first particle being found in that box. However, if

the box is empty the gridroot value is ’-1’. In this case it makes no sense to use this box as the

center box and the program jumps to label 40 that immediately preceeds the loop label 30: The

100p chooses the next center box.

c Center box empty?

if (gridroot(tprn,ni,nj,nk).lt.0) goto 40

Without further effort every box combination would be checked twice: One time when it is the

center box, the other time when it is the neighbor box of another center box. If the boxes had one

index instead of three the problem would be easy to solve: One could simply only use combinations

where the index of the first box is smaller than or equal to the index of the second box.

Nevertheless a single linear index can be produced by the following mapping:

c Calculating linear index of first box

linfirst=(nk+mgridz)*basesq

& +(nj+mgridxy)*base

& + ni+mgridxy

2-mgridxy+1 is chosen as base, basesq is basez. The adding of mgridz and mgridxy is done to

make for example nj +mgridxy range from 0 to 2-mgridxy.

Now a loop for all neighboring boxes is set up. All together there are 27 box combinations to be

checked. In order to do this in a random sequence the mapping via deltax ,deltay ,deltaz is used,

the indizes for the second box are mi ,mj ,mk afterwards:

c Second box

do 50 l=1,3

do 50 m=1,3

do 50 n=1,3

mi=ni+deltx(l)

mj=nj+delty(m)

mk=nk+deltz(n)

If the second box is empty the program jumps to label 60 that immediately preceeds the loop label

50 for the second box.

c Second box empty?

if (gridroot(tprn,mi,mj,mk).1t.0) goto 60

For this box also a linear index is calculated, afterwards the indizes are compared. If the first index

is bigger than the second index it is jumped to label 60 for the next second box:

c Calculating linear index of second box

1insecond=(mk+mgridz)*basesq

& +(mj+mgridxy)*base

& + mi+mgridxy

c Now we have two non-empty boxes with indices ni,nj,nk and mi,mj,mk.

c As you don’t want to check box combinations twice, check only the

c upper diagonal.

if (linfirst.gt.linsecond) goto 60

121

B.6.4 Combination of all particles from the boxes

As already explained the particles from the boxes are accessed by following a chain of pointers

starting with the gridroot. For the actual particle number directly the variables tppl and tpp2

from the common block twopart are used. The label 80 is used for a handmade loop that runs over

all tpp1, the label 70 is used for a loop over all tpp2.

The labels 90 for the first particle and 100 for the second particle are used to skip the respective

particle and go on with the next one.

c Combine all particles from one box with the other boxes particles.

tpp1=gridroot(tprn,ni,nj,nk)

80 continue

Now the formal reasons against scattering explained in A.3 on page 81 have to be checked. As

already explained in the array alr for particles not scattered in this timestep one can find ’0’, as

soon as they have scattered ’1’.

c Particle 1 has already scattered - next one!

if (alr(tprn,tpp1).ne.0) goto 90

lastp1=last(tprn,tpp1)

flagp1=fq(tprn,tpp1)

c

c Start loop for second particle

tpp2=gridroot(tprn,mi,mj,mk)

c Particle loop, tpp2

70 continue

c Particle 2 already scattered? Next particle!

if (alr(tprn,tpp2).ne.0) goto 100

In the array fq for all particles that never have scattered one can find ’-1’ if they originally belonged

to the projectile, and ’1’ if they originally belonged to the target. Scattered particles have fq=0.

c Same nucleus?

if (flagp1*fq(tprn,tpp2).eq.1) goto 100

In the array last the number of the last scattering partner of the particles can be found.

c Particle 2 scattered with 1 recently?

if (tpp2.eq.lastp1) goto 100

c Particle 1 scattered with 2 recently?

if (tpp1.eq.last(tprn,tpp2)) goto 100

c

If all this requirements are met the subroutine collide is called.

call collide()

if (alr(tprn,tpp1).ne.0) goto 90

122

After the particle combination is checked, the next particles are found by the latter particles’

nextgrid pointers. It is important that the procedures for creating and deleting particles which

might be called within collide do not change the nextgrid-pointers of the chosen particles, see

B.12 on page 149. If the nextgrid-pointers have the value ’-1’ no more particles are in the respective

box:

100 tpp2=nextgrid(tprn,tpp2)

if (tpp2.ge.0) goto 70

c

90 tpp1=nextgrid(tprn,tpp1)

if (tpp1.ge.0) goto 80

c

c Second box

60 continue

50 continue

C >

c Center box

40 continue

30 continue

c Test-Runs

10 continue

Goodbye:

return

end

B.7 CAUSCATTER

Gerd Kortemeyer

Last revision of file: 05/04/94

This subroutine is responsible for finding all particle combinations that are able to scatter. Can-

didates are delievered to subroutine collide where the physics tests for scattering are run and in

case the scattering is executed.

It is a blueprint of the subroutine scatter, see B.6 on page 118 with the exception, that collisions

that would lead to signal velocities faster than the speed of light are forbidden.

This file can be linked instead of scatter from the main file.

The differences are:

B.7.1 Local variables

c Scattering midpoint, velocity

double precision midp(3) ,velo

123

B.7.2 Combination of all particles from the boxes

As the last check before the collision routine is called, the signal speed is calculated for both partons

involved. If one of the signals would be too fast, the collision is forbidden.

The collision is assumed to take place in the middle between the partons:

c Okay, midpoint calculation

midp(1)=(rq(tprn,tpp1,1)+rq(tprn,tpp2,1))/2.

midp(2)=(rq(tprn,tpp1,2)+rq(tprn,tpp2,2))/2.

midp(3)=(rq(tprn,tpp1,3)+rq(tprn,tpp2,3))/2.

For the actual calculation the parton data entries lastpoint and 1asttime are used. In them the

midpoint coordinates of the most recent collision the parton was involved in are stored.

c Faster than the speed of light ... ???

c

c < ----

if (nnq(tprn,tpp1).eq.0) then

velo=sqrt((midp(1)-lastpoint(tprn,tpp1,1))**2

& +(midp(2)-lastpoint(tprn,tpp1,2))**2

& +(midp(3)-lastpoint(tprn,tpp1,3))**2) /

& ((ntime - lasttime(tprn,tpp1))*timstp)

if (velo.gt.1.) goto 100

endif

c

if (nnq(tprn,tpp2).eq.0) then

velo=sqrt((midp(i)-lastpoint(tprn,tpp2,1))**2

& +(midp(2)-lastpoint(tprn,tpp2,2))**2

& +(midp(3)-lastpoint(tprn,tpp2,3))**2) /

& ((ntime - lasttime(tprn,tpp2))*timstp)

if (velo.gt.1.) goto 100

endif

c -——- >

c

c ___

c Collide them!

B.8 COLLIDE

Gerd Kortemeyer

Last revision of file: 08/17/94

This subroutine decides wether or not two particles, that have been determined by the subroutine

scatter, will collide. It does this by performing a multistage check, the subroutine is left immedi-

ately if one of the requirements is not met. If the two particles scatter the output channel is chosen

and a corresponding other routine called.

124

B.8.l Subroutine collide

Local variables

The file stdec .for is included.

c Scalar product rp in cm-frame

double precision rpcm1,rpcm2

c Distance vector cm-frame one timestep later

double precision dvcm(3)

c Transformed time step

double precision cmtimstp

c Factors in transformation formula

double precision scalbetax,a

Checks in the lab frame

To check the multistage statistics everytime the routine is entered nstaO is increased:

c

c Statistics: entered routine

c

nstaO(tprn)=nsta0(tprn)+1

The first checks take place in the lab (or ’computer’) frame. The distance vector tprl is calculated

as the difference of the two particles coordinate vectors. tpdq is the square of the difference vector.

c

c Calculate distance vector lab and distance lab

C ——

c

tprl(1)=rq(tprn,tpp1,1)-rq(tprn,tpp2,1)

tprl(2)=rq(tprn,tpp1,2)-rq(tprn,tpp2,2)

tprl(3)=rq(tprn,tpp1,3)-rq(tprn,tpp2,3)

c

tpdq=tprl(1)*tpr1(1)+tprl(2)*tpr1(2)+tprl(3)*tprl(3)

Statistics for minimum and maximum distance in the lab frame are being set:

if (tpdq.le.mindq) mindq=tpdq

if (tpdq . ge .maxdq) maxdq=tpdq

It is of great importance that the spatial distance in the c.m.-frame is always bigger than distance

in lab-frame! This is because the time component of the distance is zero in the lab frame.

The spatial distance in the c.m.-frame is also always bigger than or equal to the impact parameter,

because the impact parameter vector is only a projection of the distance vector in the c.m.-frame.

But in case of a possible scattering event the point of closest approach has to be reached as another

condition, so if scattering is possible, the c.m.-distance equals the impact parameter and finally the

distance in the lab frame will be smaller than the impact parameter.

125

If however the distance in the lab frame is bigger than the maximum impact parameter given by

the maximum cross section maxsig, that is determined during the initialization of the cross section

table, no scattering is possible:

c

c

c lst check !!

c --------- !!

c Distance in c.m.-frame is always bigger than distance in lab-frame! !!

c Distance in c.m.-frame always bigger or equal impact parameter. !!

c Scattering only when closest approach in c.m.-syste ==> scatter !!

c only when c.m.-distance equals impact parameter. !!

c !!

if (tpdq.gt.maxsig/pi) return !!

If the first test was passed, the statistics for this test are incremented:

c Increase statistics: Passed first test in this test run !!

nstal(tprn)=nsta1(tprn)+1 !!

Finding the boost velocity

The transformation between c.m.- and lab frame are given by the following equations:

Ecm = 7(Elab - gfiab) (13:1)

_. _. 7 — 1 —9_. a —o

Pcm = Plab + 77(fip1abm - 7 E 03-?)

Elab = 7(Ecm + 35cm) (B3)

-0 -o 7 _ 1 #4 —o —o

plab = pcm + _,52 (,chmlfi ‘l‘ ’YfiEcm (BA)

The only question is what 6' for the intended transformation is. The c.m.-frame is defined by

51cm = ‘52cm a

51cm and 52cm being the momenta of the two particles in the c.m.-frame.

This leads to

3 = fiilab + 17sz

Ellab + E2lab

 (B.5)

In tpeql the sum of the lab energies is stored, in tpbeta the vector 6, tpbq is set to 62.

c

c Calculate beta-vector for transformation from lab-frame to cm.

tpeql = eq(tprn,tpp1) +eq(tprn,tpp2)

tpbeta(1)=(pq(tprn,tpp1,1)+pq(tprn,tpp2,1))/tpeql

tpbeta(2)=(pq(tprn,tpp1,2)+pq(tprn,tpp2,2))/tpeql

tpbeta(3)=(pq(tprn,tpp1,3)+pq(tprn,tpp2,3))/tpeql

c Calculate beta squared

tpbq=tpbeta(1)**2+tpbeta(2)**2+tpbeta(3)**2

126

For the total energy squared in the c.m.-frame tpsq equation (BB) is used. There the vector ficm is

the total momentum of the two particles in the c.m.-frame and therefore zero.

Division by '7 results in

E2

52 :2 E2", = jab = Efaba — 52) . (B.6)

2

c Calculate total energy c.m.

tpsq=tpeql*tpeql* (1 . -tpbq)

A few statistics are set for the total energy squared:

c Statistics

c

if (tpsq.lt.minsq) minsq=tpsq

if (tpsq.gt.maxsq) maxsq=tpsq

Further tests in the lab frame

After the distance in the lab frame had been compared to the maximum assumed cross section now

the comparision to the real cross section for the process is performed. The index tpcrindex is used

for looking up the cross section from the cross section arrays, see subroutine initcross in B.3.7 on

page 106.

sqstep is set in stdec, so is maxpoints as the maximum lookup-table index.

The rounding is done by truncation. This is important as otherwise it could happen that if the

energy-limit below which the collision is kinematically forbitten is just between the two indizes in

question, and rounding up leads to a forbidden collision.

c

c Calculate index for lookup table

c

tpcrindex=int(sqrt(sqrt((tpsq-eps)/sqstep)))+1

if (tpcrindex.gt.maxpoints) tpcrindex=maxpoints

c

The variables tinl and tin2 are set to the particle types of the incoming particles:

tin1=tq(tprn,tpp1)

tin2=tq(tprn,tpp2)

The total cross section tpsigma is looked up from the cross section tables, also the incoming channel

tpchinisseu

c Get total cross section

call totalcross()

The statistics for minsigma and maxsigma are set:

c

c Statistics

c

if (tpsigma.1t.minsigma) minsigma=tpsigma

if (tpsigma.gt.maxsigma) maxsigma=tpsigma

127

Now the distance is compared to the real cross section:

c 2nd check !!

c --------- !!

if (tpdq.gt.tpsigma/pi) return !!

c Increase statistics: Passed second test in this test run !!

nsta2(tprn)=nsta2(tprn)+1 !!

The transformation of the momenta to the c.m.-system

t amma is set to y = —1—. For the transformation the values of 37—31 and Eff“ are calculatedP8 VG:E§ g ab

in tpgambet and scalbetax respectively.

In case the two paricles already are nearly in their c.m.-system (lfil << 1), the non-relativistic limit

of the transformation is used:

c Now for the transformation to c.m. system!

c Calculate gamma

tpgamma=1./sqrt(1.-tpbq)

if (tpbq.gt.eps) then

tpgambet=(tpgamma-1.)/tpbq

c Transform momentum 1

scalbetax=tpbeta(1)*pq(tprn,tpp1,1)+

& tpbeta(2)*pq(tprn,tpp1,2)+

& tpbeta(3)*pq(tprn,tpp1,3)

The variable a is only an appreviation and can be used in equation (B.2) when 6 is written in front

of the two last terms:

a=tpgambet*scalbetax-tpgamma*eq(tprn,tppl)

Now for equations (B.1). . .

tpeql =tpgamma*(eq(tprn,tpp1)-scalbetax)

- . and (B.2):

tpmo1(1)=pq(tprn,tpp1,1)+a*tpbeta(1)

tpmol(2)=pq(tprn,tpp1,2)+a*tpbeta(2)

tpmol(3)=pq(tprn,tpp1,3)+a*tpbeta(3)

128

Now the same transformation could be done for particle 2, but the result of the momentum trans-

formation is clear: -—f)'2cm.

c Transform momentum 2

scalbetax=tpbeta(1)*pq(tprn,tpp2,1)+

& tpbeta(2)*pq(tprn,tpp2,2)+

& tpbeta(3)*pq(tprn,tpp2,3)

tpeq2 =tpgamma*(eq(tprn,tpp2)-scalbetax)

The momentum of course is not transformed.

The else branch of the condition does a non-relativistic transformation:

else

c

c Nonrelativistic transformation as limit for low beta

c

scalbetax=0.

tpeql =eq(tprn,tpp1)

tpm01(1)=(pq(tprn,tpp1,1)-pq(tprn,tpp2,1))/2.

tpmol(2)=(pq(tprn,tpp1,2)-pq(tprn,tpp2,2))/2.

tpmo1(3)=(pq(tprn,tpp1,3)-pq(tprn,tpp2,3))/2.

tpeq2 =eq(tprn,tpp2)

endif

C

A small check is done to the transformation by examining if the sum of the two particle energies

really equals the total energy previously calculated. If not, the program is aborted with a report

written to the protocol file:

c Small check

if (abs((tpeq1+tpeq2)**2-tpsq)/tpsq.gt.0.01) then

write(1,*) ’ERROR in Lorentztransformationz’

write(1,*) (tpeq1+tpeq2)**2,tpsq

write(1,*) ’1 : ’,

& eq(tprn,tpp1),pq(tprn,tpp1,1),Pq(tprn,tpp1,2),pq(tprn,tpp1,3)

write(1,*) ’Ml: ’,

sqrt(eq(tprn,tpp1)**2-pq(tprn,tpp1,1)**2

& -pq(tprn,tpp1,2)**2-pq(tprn,tpp1,3)**2)

write(1,*) ’2: ’,

& eq(tprn,tpp2),pq(tprn,tpp2,1),pq(tprn,tpp2,2),pq(tprn,tpp2,3)

write(1,*) ’M2: ’,

sqrt(eq(tprn,tpp2)**2-pq(tprn,tpp2,1)**2

& -pq(tprn,tpp2,2)**2-pq(tprn,tpp2,3)**2)

write(1,*) ’tpeq1/2: ’,tpeq1,tpeq2

write(1,*) ’tpmol :’

write(1,*) tpm01(1),tpmol(2),tpmo1(3)

write(1,*) ’M1tz’,

8
?

8
?

& sqrt(tpeq1**2-tpmol(1)**2-tpmol(2)**2-tpmol(3)**2)

write(1,*) ’M2t:’,

& sqrt(tpeq2**2-tpmo1(1)**2-tpmol(2)**2-tpm01(3)**2)

stop ’ERROR in Lorentztransformation’

endif

129

The transformation of the relative position to the c.m.-system

The distance vector of the two particles is also transformed with equations (B.1) and (B.2) used for

the position rather than the momentum. The time difference between the two particles in the lab

frame is zero. The time distance in the c.m.-frame is called tptd, the spatial distance tprc.

Again it has to be checked if a non-relativistic transformation should be used:

c

c Transform relative position

if (tpbq.gt.eps) then

scalbetax=tpbeta(1)*tprl(1)+

& tpbeta(2)*tprl(2)+

& tpbeta(3)*tprl(3)

a=tpgambet*scalbetax

tptd =tpgamma*scalbetax

tprc(1)=tprl(1)+a*tpbeta(1)

tprc(2)=tprl(2)+a*tpbeta(2)

tprc(3)=tpr1(3)+a*tpbeta(3)

In case no transformation is necessary the values are set directly:

else

scalbetax=0.

tptd=0.

tprc(1)=tprl(1)

tprc(2)=tprl(2)

tprc(3)=tprl(3)

endif

The transformation to the c.m.-frame is somewhat strange if afterwards the time distance between

the two particles is bigger than the transformed timestep length, called cmtimstp. cmtimstp is

calculated now by means of (8.3). . .

c

c Transform timestep-length

cmtimstp=timstp/tpgamma

. . . and compared to the time distance. If the time distance is bigger, the statistics counter timefault

is incremented:

c Time difference in c.m. frame > timestep length?

if (abs(tptd).gt.cmtimstp) timefault=timefault+1

The spatial distance squared is calculated and named tpdqc:

c Distance in c.m. frame

tpdqc=tprc(1)**2+tprc(2)**2+tprc(3)**2

130

Checks in the c.m.-frame

The condition ’c.m.-distance greater than cross section radius’ throws out more events than the

condition ’impact parameter greater than cross section radius’! Therefore it is more effective and

still correct because in the case when there really is scattering both conditions are equivalent — as

already pointed out because of the second condition ’closest approach’ the impact parameter equals

the distance.

3rd check
11

......... 1 1

0
0
0

The condition ’distance greater than cross section’ throws out !!

more events than the condition ’impact parameter greater than !!

cross section’! Therefore it’s more effective. !!

In the case when there is really scattering both conditions are !!

equivalent since ’impact parameter=distance’ for closest approach. !!

I I

0
0
0
0
0
0

if (tpdqc.gt.tpsigma/pi) return !!

c Increase statistics: Passed third test in this test run !!

nsta3(tprn)=nsta3(tprn)+1 !!

C

Now the ’closest approach’ test is performed.

It is done by calculating the scalar product of the distance vector with the momentum vector both

now and one timestep later. At the point of closest approach itself the scalar product is zero.

However the changing of the sign of the scalar product from now to the next timestep is taken as

an indication that the point of closest approach will be reached in this timestep.

The first scalar product can be calculated directly:

Closest approach test

Calculate scalar product of c . m . -distance and c . m. -momentum

(proportional to angle between them!)

rpcm1=tprc (1) *tpmol (1) +tprc (2) *tpmol (2) +tprc (3) *tpmo1 (3)

0
0
0
0
0

This is followed by the propagation of the partons in the lab-frame and subsequent transformation

of the new positions to the c.m.-frame. The propagation vectors for the partons take the form

P1 b,’

(Atstep, 'E—a'l‘Atstep) -

lab,1

With Aao(a) being the spatial Lorentz-transformation into the c.m.-frame for a vector ((10, a), one

gets

plab 2
I _ :

Arcm — AO+Atstep_O—Atstep (712,1); + —Eab 1 Atstep - rlab,2 - Elab 2

)

 Atstep) (B.7)

P1 b,1 P1 b,2

a , a)

131

Because of

Ao(P1ab,i) = Aliyah, (Plab,i) + 731531511); = Pcm,i + 7:6Elab,i (B-8)

the result is

Argm = Arcm + (Pcm + Pcm) Atstep . (B.9)

7(Ecm,1 + .chm) 7(Ecm,2 — fipcm)

c Calculate distance vector one timestep later

c

dvcm(1)=tprc(1)+

& (tpmol(1)/eq(tprn,tpp1)+tpmol(1)/eq(tprn,tpp2))*timstp

dvcm(2)=tprc(2)+

& (tpmol(2)/eq(tprn,tpp1)+tpmol(2)/eq(tprn,tpp2))*timstp

dvcm(3)=tprc(3)+

& (tpmol(3)/eq(tprn,tpp1)+tpm01(3)/eq(tprn,tpp2))*timstp

c Calculate same scalarproduct as before one timestep later

rpcm2=dvcm(1)*tpmol(1)+dvcm(2)*tpmol(2)+dvcm(3)*tpmol(3)

The closest approach test is now simply done by checking the sign of the product of the two scalar

products:

c

c

c 4th check !!

c --------- !!

if (rpcm1*rpcm2.gt.0.) return !!

c Increase statistics: Passed forth test in this run !!

nsta4(tprn)=nsta4(tprn)+1 !!

If the particles have passed all this test, they will scatter:

Scattering the particles

c

c

c Okay, scatter

c

But first it is made sure that the two particles really exist:

c Last check: ’last’ check

if ((last(tprn,tppl).eq.-1).or.(last(tprn,tpp2).eq.-1)) then

write(1,*) ’Trying to collide non-existing particles ...’

write(1,*) ’tprn:’,tprn

write(1,*) ’tpp1:’,tpp1,’ last:’,last(tprn,tpp1),’ nextz’,

& nextgrid(tprn,tpp1)

132

write(1,*) ’tpp2:’,tpp2,’ last:’,last(tprn,tpp2),’ nextz’,

& nextgrid(tprn,tpp2)

write(1,*) ’nq(tprn):’,nq(tprn)

call checknumbers(tprn,tppl,tpp2)

stop ’Trying to collide non-existing particles ...’

endif

Now the output channel is chosen by subroutine outchannel, see B.8.2 on page 132. The channel

number is stored in tpchout afterwards:

c

c Determine output channel tpcrout

call outchannel()

The subroutine xsecentry (see B.8.4, page 136) is called to check the cross section entry in the

arrays xsec. . .:

 c __

c Check cross section table !

call xsecentry() !

C ---- — — ———————————————————————————————————————

Since at the moment only 2 —> 2 processes are implemented, the subroutine twototwo is directly

called to complete this process. However, once 2 —> 1 processes are implemented, depending on

tpchout another routine could be called, too.

c

call twototwo()

c

return

end

B.8.2 Subroutine outchannel

The subroutine outchannel is responsible for choosing the output channel based on the relative

sizes of the partial cross sections:

c

C __

c Determines outgoing particles

c

subroutine outchannel()

c

include ’stdec.for’

c Random number

double precision rd

c Do variable

integer i

The following reminds the channel numbers as descripted in B.1.8 on page 91:

133

Channels:

- gs

- qs

- qq

qu

- qqp

qqup0
0
0
0
0
0
0
0

O
l
U
'
e
r
C
O
M
H

I
The following gives an overview of the cross section arrays:

c

c>> common /cross/ xsecgg22(maxpoints),

c>> & xsecqq22(maxtype,maxpoints),

c>> & xsecqg22(maxtype,maxpoints),

c>> & xsecqu22(maxtype,maxpoints),

c>> & xsecqqp22(maxtype,maxtype,maxpoints),

c>> & xsecqugg(maxtype,maxpoints),

c>> & xsecggqu(maxtype,maxpoints),

c>> & xsecquqqup(maxtype,maxtype,maxpoints)

For a description of this cross section arrays see B.3.7 on page 106.

A random number between 0 and the total cross section tpsigma is determined:

c

c Random number between 0 and total cross section

c

rd=ran1(iseed)*tpsigma

c

The variable tpchout will be set by this routine according to the output channel number determined.

It is preset to —1 to check later if a channel had been found:

tpchout=~1

The open output channels of course depend on the input channel, stored in tpchin and determined

by the subroutine totalcross, see B.8.3 on page 135:

if (tpchin.eq.1) then

Incoming channel 1 is 99, so the open output channels are gg or qr]. The partial cross sections for

two incoming gluons are added up in the order gg —+ 99, 99 —> ml, 99 —> dd, . . . , 99 —-> tf:

if (rd.le.xsecgg22(tpcrindex)) then

tpchout=1

tout1=tin1

tout2=tin2

else

do 10 i=1,maxtype

if (rd.le.xsecggqu(i,tpcrindex)) then

tpchout=4

134

tout1=i

tout2=~i

goto 30

endif

10 continue

endif

endif

Label 30 is just before final checks and exiting the routine. The variables tinl and tin2 are set

to the particle types of the incoming partons, tout1 and tout2 are to be set by this routine to the

parton types of the outgoing partons.

Incoming channel 2 is qg, only the elastic channel is open:

if (tpchin.eq.2) then

tpchout=2

tout1=tin1

tout2=tin2

endif

Incoming channel 3 is qq, again only the elastic channel is open:

if (tpchin.eq.3) then

tpchout=3

tout1=tin1

tout2=tin2

endif

Incoming channel 4 is qq, the partial cross sections are added up in the following order: qq —> qq,

ch —> gg_, qq —-) q’q’ . The cross section array entries for qq —> q’q’ are added up in the order qq —> ml,

qq' —> dd and set to zero when q = q’.

if (tpchin.eq.4) then

if (rd.le.xsecqu22(abs(tin1),tpcrindex)) then

tpchout=4

tout1=tin1

tout2=tin2

else

if (rd.le.xsecqugg(abs(tin1),tpcrindex)) then

tpchout=1

tout1=0

tout2=0

else

do 20 i=1,maxtype

if (rd.1e.xsecquqqup(abs(tin1),i,tpcrindex)) then

tpchout=6

tout1=i

tout2=~i

goto 30

endif

135

20 continue

endif

endif

endif

For the incoming channel 5, qq’, again only the elastic outchannel is open:

if (tpchin.eq.5) then

tpchout=5

tout1=tin1

tout2=tin2

endif

Label 30 is the exit-label:

c

30 continue

c

As a small check it is made sure that actually one outchannel had been found:

if (tpchout.1t.0.) then

write(1,*) ’No output channel found’

write(1,*) tin1,tin2,tpchin

stop ’No output channel found’

endif

return

end

B.8.3 Subroutine totalcross

This subroutine determines the total cross section from the cross section arrays. It is also responsible

for determining the incoming channel tpchin. As the partial cross sections have been added up by

the subroutine initcross, see B.3.7 on page 106, the total cross section is found in the entry for

the last partial cross section in this sequence:

c ..

c Determines total cross section

c

subroutine totalcross()

c

c Channels:

6 1-ss

6 2-qs

c 3-qq

c 4 - qu

C 5 ' qqp

c 6-qqup

c

c

include ’stdec.for’

136

The total cross section will be written to tpsigma, it is set to ——1 first for check purposes:

tpsigma=-1.

The variables tin1 and tin2 are set to the types of the incoming partons.

c

if (tin1.eq.tin2) then

if (tin1.eq.0) then

tpsigma=xsecggqu(maxtype,tpcrindex)

tpchin=1

else

tpsigma=xsecqq22(abs(tin1),tpcrindex)

tpchin=3

endif

else

if (tin1.eq.-tin2) then

tpsigma=xsecquqqup(abs(tinl),maxtype,tpcrindex)

tpchin=4

else

if ((tin1.eq.0).or.(tin2.eq.0)) then

tpsigma=xsecqg22(abs(tin1+tin2),tpcrindex)

tpchin=2

else

tpsigma=xsecqqp22(abs(tin1),abs(tin2),tpcrindex)

tpchin=5

endif

endif

endif

As small checks the total cross section is compared to the maximum cross section maxsig being de-

termined by the subroutine initcross, also, it is checked if the subroutine actually could determine

the cross section:

if (tpsigma.gt.maxsig) then

write(1,*) ’maxsig not maximal’

write(1,*) tin1,tin2,tpcrindex

stop ’maxsig not maximal’

endif

if (tpsigma.1t.0.) then

write(1,*) ’tpsigma not calculated’

write(1,*) tin1,tin2

stop ’tpsigma not calculated’

endif

return

end

B.8.4 Subroutine xsecentry

The subroutine xsecentry checks the validity of the cross section tables by calculating the partial

cross section for the given input and output channels and comparing them to the table entries. This

137

subroutine again reflects the structure of the cross section arrays, in order to get a partial cross

section for a process one has to subtract the previous entry in the cross section sequence from the

given one.

For a description of this cross section arrays see B.3.7 on page 106.

c

c __

c Calculate cross section for given channels and compare to table

c

subroutine xsecentry()

c

include ’stdec.for’

c

c Channels:

6 1-ss

6 2-qs

c 3-qq

c 4 - qu

c 5-qqp

c 6-qqup

c

c TSIGGG22.FOR;1 TSIGGGQQB.FOR;1 TSIGQG22.FOR;1 TSIGQQ22.FOR;1

c TSIGQQB22.FOR;1 TSIGQQBGG.FOR;1 TSIGQQBQPQBP.FOR;1 TSIGQQP22.FOR;1

c

c>> common /cross/ xsecgg22(maxpoints),

c>> & xsecqq22(maxtype,maxpoints),

c>> & xsecqg22(maxtype,maxpoints),

c>> & xsecqu22(maxtype,maxpoints),

c>> & xsecqqp22(maxtype,maxtype,maxpoints),

c>> & xsecqugg(maxtype,maxpoints),

c>> & xsecggqu(maxtype,maxpoints),

c>> & xsecquqqup(maxtype,maxtype,maxpoints)

c

double precision tabsig

c

if (tpchin.eq.tpchout) then

if (tpchin.eq.1) then

call tsiggg22()

tabsig=xsecgg22(tpcrindex)

endif

if (tpchin.eq.2) then

call tsigqg22()

tabsig=xsecqg22(abs(tin1+tin2),tpcrindex)

endif

if (tpchin.eq.3) then

call tsigqq22()

tabsig=xsecqq22(abs(tinl),tpcrindex)

endif

if (tpchin.eq.4) then

call tsigqu22()

tabsig=xsecqu22(abs(tinl),tpcrindex)

endif

if (tpchin.eq.5) then

call tsigqqp22()

138

tabsig=xsecqqp22(abs(tinl),abs(tin2),tpcrindex)

endif

else

if (tpchin.eq.1) then

call tsigggqu()

if (abs(tout1).gt.1) then

tabsig=xsecggqu(abs(tout1) ,tpcrindex)

-xsecggqu(abs(tout1)-1,tpcrindex)

else

tabsig=xsecggqu(1,tpcrindex)-xsecgg22(tpcrindex)

endif

endif

if (tpchin.eq.4) then

if (tpchout.eq.1) then

call tsigqugg()

tabsig=xsecqugg(abs(tin1),tpcrindex)

-xsecqu22(abs(tin1),tpcrindex)

endif

if (tpchout.eq.6) then

call tsigquqqup()

if (abs(tout1).gt.1) then

tabsig=xsecquqqup(abs(tin1),abs(tout1) ,tpcrindex)

-xsecquqqup(abs(tin1),abs(tout1)-1,tpcrindex)

else

tabsig=xsecquqqup(abs(tinl),1,tpcrindex)

-xsecqugg(abs(tin1),tpcrindex)

endif

endif

endif

endif

if (tpsigma.ne.0.) then

if (abs(tpsigma-tabsig)/tpsigma.gt..1) then

write(1,*)

& ’Table entry for cross section off by more than 10 percent’

write(1,*) ’tpsigma:’,tpsigma,’ tabsig:’,tabsig

write(1,*) ’tpsq:’,tpsq,’ tpcrindex ...:’,

eps+(tpcrindex-1.)**4*sqstep

write(1,*) ’tpchin/tpchout:’,tpchin,tpchout

write(1,*) ’tin1,2’,tin1,tin2,’ tout1,2’,tout1,tout2

stop

& ’Table entry for cross section off by more than 10 percent’

endif

else

if (tabsig.gt.1.e-4) then

write(1,*) ’Table entry for zero cross section .gt. 1.e-4’

write(1,*) ’tpsigma:’,tpsigma,’ tabsig:’,tabsig

write(1,*) ’tpsq:’,tpsq,’ tpcrindex ...:’,

eps+(tpcrindex-1.)**4*sqstep

write(1,*) ’tpchin/tpchout:’,tpchin,tpchout

write(1,*) ’tin1,2’,tin1,tin2,’ tout1,2’,tout1,tout2

stop ’Table entry for zero cross section .gt. 1.e-4’

endif

endif

139

return

end

B.9 TWOTOTWO

Gerd Kortemeyer

Last revision of file: 09/02/94

B.9.1 Subroutine twototwo

This subroutine completes the scattering of two particles into an output channel with also two

particles. It is called by collide.

c Causal index, angle index, D0 variable

integer ic,ia,i

c Factors in transformation formula

double precision scalbetax,a

c Middle point

double precision midp(3)

c Velocities, radius

double precision velol,velo2,radius

c Old momenta and energies, new momentum squared, scalar product

double precision msl,ms2,me1,me2,m1(3),m2(3),nmsl,nms2,scp

c Angle

double precision labang

Now the cosine of the scattering angle 0 tpcos is calculated by the appropriate routines. Setting

tpcos to ’1’ is only done for safety reasons if the monte carlos are commented out for test purposes.

c Get tpcos=cos(theta) for scattering

c ___________________________________

c Default: No scattering

tpcos=1.

c

c Do the Monte Carlo

c

call montecarlo()

c

A small check if the cosine is really between -1 and 1 is performed:

c Check cosine

if ((tpcos.ge.1).or.(tpcos.le.-1)) then

write(1,*) ’Error in Monte Carlo, rien ne va plus.’

write(1,*) ’tpcos:’,tpcos

write(1,*) ’tpchin,tpchout:’,tpchin,tpchout

stop ’Error in Monte Carlo, rien ne va plus.’

140

The angular distribution statistics are set:

ia=int(tpcos*3.)+4

if (tpcos.1t.0) ia=ia-1

anglestat(tpchout,ia)=ang1estat(tpchout,ia)+1

Now the parton types can be set according to tout1 ,2:

c

c Set types for output

C-u— ——————

tq(tprn,tpp1)=tout1

tq(tprn,tpp2)=tout2

c

The scattering itself is then done by subroutine newmomenta:

c Scatter according to tpcos

call newmomenta()

The subroutine newmomenta places the new momentum for the first particle into the vector tpscl

Some statistics for the scattering angle are set:

c

c Statistics

c

if (tpcos.1t.mincos) mincos=tpcos

if (tpcos.gt.maxcos) maxcos=tpcos

The backtransformations have to be done simply with the vector —[5’ instead of 6. However, first a

few values are stored for statistics and checks:

c

c Backtransformation

c Remember values for angle statistics and checks

c

mel=eq(tprn,tpp1)

me2=eq(tprn,tpp2)

msl=0.

ms2=0.

do 100 i=1,3

m1(i)=pq(tprn,tpp1,i)

msl=msl+m1(i)*m1(i)

m2(i)=pq(tprn,tpp2,i)

141

ms2=ms2+m2(i)*m2(i)

100 continue

c

scalbetax=-tpbeta(1)*tpsc1(1)

& -tpbeta(2)*tpsc1(2)

& -tpbeta(3)*tpsc1(3)

c Momentum 1

a=-tpgambet*scalbetax+tpgamma*tpsceq1

eq(tprn,tpp1) =tpgamma*(tpsceql-scalbetax)

pq(tprn,tpp1,1)=tpsc1(1)+a*tpbeta(1)

pq(tprn,tpp1,2)=tpsc1(2)+a*tpbeta(2)

pq(tprn,tpp1,3)=tpsc1(3)+a*tpbeta(3)

c Momentum 2

a=tpgambet*scalbetax+tpgamma*tpsceq2

eq(tprn,tpp2) =tpgamma*(tpsceq2+scalbetax)

pq(tprn,tpp2,1)=-tpsc1(1)+a*tpbeta(1)

pq(tprn,tpp2,2)=-tpsc1(2)+a*tpbeta(2)

pq(tprn,tpp2,3)=-tpsc1(3)+a*tpbeta(3)

The new lab momentum squared is calculated for various purposes:

c Calculate new momenta squared

nmsi=0.

nms2=0.

do 300 i=1,3

nmsl=nmsl+pq(tprn,tpp1,i)*pq(tprn,tpp1,i)

nms2=nms2+pq(tprn,tpp2,i)*pq(tprn,tpp2,i)

300 continue

The transformation is checked now by again calculating the total energy:

c Check transformation

tpeql = eq(tprn,tpp1) +eq(tprn,tpp2)

tpbeta(1)=(pq(tprn,tpp1,1)+pq(tprn,tpp2,1))/tpeql

tpbeta(2)=(pq(tprn,tpp1,2)+pq(tprn,tpp2,2))/tpeql

tpbeta(3)=(pq(tprn,tpp1,3)+pq(tprn,tpp2,3))/tpeql

tpbq=tpbeta(1)**2+tpbeta(2)**2+tpbeta(3)**2

if (abs(tpsq-tpeql*tpeq1*(1.-tpbq))/tpsq.gt.0.001) then

write(1,*) ’ERROR in Backtransformation or Scatteringz’

write(1,*) tpsq,tpeql*tpeq1*(1.-tpbq)

write(1,*) eq(tprn,tpp1),pq(tprn,tpp1,3)

write(1,*) eq(tprn,tpp2),pq(tprn,tpp2,3)

stop ’ERROR in Backtransformation or Scattering’

endif

C

Also, it is checked if the parton had gotten to large an ’imaginary mass’ during the transformation.

’Imaginary masses’ occur due to numeric precision problems if the parton had a very little mass

before the transformation which during the transformation calculations turned into a very little

imaginary mass:

142

if (eq(tprn,tpp1)*eq(tprn,tpp1)-nmsl.lt.-.05) then

write(1,*) ’Particle has non-negligible imaginary mass.’

write(1,*) ’Old/new energy:’,me1,eq(tprn,tpp1)

write(1,*) ’Old/new momentumz’

write(1,*) m1(1),m1(2),m1(3)

write(1,*) pq(tprn,tpp1,1),pq(tprn,tpp1,2),pq(tprn,tpp1,3)

write(1,*) ’Old real mass :’,sqrt(me1*me1-msl)

write(1,*) ’Imaginary massz’,

& sqrt(-eq(tprn,tpp1)*eq(tprn,tpp1)+nmsl)

write(1,*) ’tpsq :’,tpsq

write(1,*) ’tpcos:’,tpcos

stop ’Particle has non-negligible imaginary mass.’

endif

if (eq(tprn,tpp2)*eq(tprn,tpp2)-nms2.1t.-.05) then

write(1,*) ’Particle has non-negligible imaginary mass.’

write(1,*) ’Old/new energy:’,me2,eq(tprn,tpp2)

write(1,*) ’Old/new momentumz’

write(1,*) m2(1),m2(2),m2(3)

write(1,*) pq(tprn,tpp2,1),pq(tprn,tpp2,2),pq(tprn,tpp2,3)

write(1,*) ’Old real mass :’,sqrt(me2*me2-ms2)

write(1,*) ’Imaginary massz’,

& sqrt(-eq(tprn,tpp2)*eq(tprn,tpp2)+nms2)

write(1,*) ’tpsq :’,tpsq

write(1,*) ’tpcos:’,tpcos

stop ’Particle has non-negligible imaginary mass.’

endif

After having made sure that the correction is negligible the parton is artificially given an eps-mass:

c Artificially correct imaginary masses. Above check makes sure that the

c correction is not too big. Particle given eps-mass.

c

if (eq(tprn,tpp1)*eq(tprn,tpp1).1t.nmsl)

& eq(tprn,tpp1)=sqrt(nmsl)+eps

if (eq(tprn,tpp2)*eq(tprn,tpp2).lt.nms2)

& eq(tprn,tpp2)=sqrt(nms2)+eps

The lab angle statistics are set:

c

c Lab angle statistics

c

scp=0.

do 200 i=1,3 scp=scp+pq(tprn,tpp1,i)*m1(i)

200 continue

labang=scp/sqrt(nmsl*msi)

ia=int(labang*3.)+4

if (labang.1t.0) ia=ia-1

labangle(ia)=1abangle(ia)+1

143

scp=0.

do 210 i=1,3

scp=scp+pq(tprn,tpp2,i)*m2(i)

210 continue

labang=scp/sqrt(nms2*ms2)

ia=int(labang*3.)+4

if (labang.lt.0) ia=ia-1

1abangle(ia)=labang1e(ia)+1

Now that the particles are successfully scattered the flags have to be set accordingly. First the total

number of scattering events is increased by one, the channel statistics are updated:

c

c Particles successfully scattered, set flags

6 -_ _

c Total number

totscat=totscat+1

c Channel table

chscat(tpchin,tpchout)=chscat(tpchin,tpchout)+1

The variables fq are set to ’not belonging to the nucleus of origin anymore’, the flags alr are set to

’scattered’ and in the particle data last is set to the respectively other scattering partner.

c Don’t belong to certain nucleus anymore

fq(tprn,tpp1)=0

fq(tprn,tpp2)=0

c Particles scattered in this run

alr(tprn,tpp1)=1

alr(tprn,tpp2)=1

c Set last scattering partners

1ast(tprn,tpp1)=tpp1

last(tprn,tpp2)=tpp2

The middle point of the scattering is calculated in the lab frame:

c Calculate middle point of scattering

midp(1)=(rq(tprn,tpp1,1)+rq(tprn,tpp2,1))/2.

midp(2)=(rq(tprn,tpp1,2)+rq(tprn,tpp2,2))/2.

midp(3)=(rq(tprn,tpp1,3)+rq(tprn,tpp2,3))/2.

Then information about the distance of the scattering event from the beam axis and signal velocities

is calculated. The signal velocity can only be calculated if there had been a previous scattering event:

c Causal information

radius=sqrt(midp(1)**2+midp(2)**2)

c Velocity information

if (nnq(tprn,tpp1).eq.0) then

velol=sqrt((midp(1)-lastpoint(tprn,tpp1,1))**2

& +(midp(2)-lastpoint(tprn,tpp1,2))**2

& +(midp(3)-1astpoint(tprn,tpp1,3))**2) /

& ((ntime - 1asttime(tprn,tpp1))*timstp)

144

else

ve101=-1

endif

if (nnq(tprn,tpp2).eq.0) then

velo2=sqrt((midp(l)-lastpoint(tprn,tpp2,1))**2

& +(midp(2)-lastpoint(tprn,tpp2,2))**2

& +(midp(3)-1astpoint(tprn,tpp2,3))**2) /

& ((ntime - lasttime(tprn,tpp2))*timstp)

else

velo2=-1

endif

After the first scattering event the partons are not considered part of a certain nucleon anymore.

With nnq one can check that, ’1’ means ’belonging to a certain nucleon’, ’-1’ means just created in

a scattering process, ’0’ means ’already scattered itself’.

c Don’t belong to certain nucleon anymore

nnq(tprn,tpp1)=0

nnq(tprn,tpp2)=0

Finally, the information about the last scattering point is stored to the particle data:

c Set lastpoint

lasttime(tprn,tpp1)=ntime

lasttime(tprn,tpp2)=ntime

lastpoint(tprn,tppl,1)=midp(1)

lastpoint(tprn,tpp2,1)=midp(1)

lastpoint(tprn,tppl,2)=midp(2)

lastpoint(tprn,tpp2,2)=midp(2)

lastpoint(tprn,tpp1,3)=midp(3)

lastpoint(tprn,tpp2,3)=midp(3)

The infimation about the scattering event is written to the scattering data file:

c

if (scattering.ne.0) write(4,*)

& ntime*timstp,midp(3),radius,velol,velo2,sqrt(tpsq)

c

return

end

c

B.9.2 Subroutine montecarlo

This procedure calls the monte carlo routine belonging to tpchin and tpchout:

c Call right monte carlo

145

subroutine montecarlo()

include ’stdec.for’

C

c Channels:

6 1-ss

6 2-ss

0 3-qq

c 4 - qu

c 5-qqp

c 6-qqup

C

c TSIGGG22.FOR;1 TSIGGGQQB.FOR;1 TSIGQG22.FOR;1 TSIGQQ22.FOR;1

c TSIGQQB22.FOR;1 TSIGQQBGG.FOR;1 TSIGQQBQPQBP.FOR;1 TSIGQQP22.FOR;1

c MONTEGG.FOR;1 MONTEGGQQB.FOR;1 MONTEGG.FOR;1 MONTEQQ.FOR;14

c MONTEQQB.FOR;3 MONTEQQBGG.FOR;1 MONTEQQBP.FOR;3 MONTEQQP.FOR;11

C

if (tpchin.eq.tpchout) then

if (tpchin.eq.1) call montegg()

if (tpchin.eq.2) call montqu()

if (tpchin.eq.3) call monteqq()

if (tpchin.eq.4) call montequ()

if (tpchin.eq.5) call monteqqp()

else

if (tpchin.eq.1) call monteggqu()

if (tpchin.eq.4) then

if (tpchout.eq.1) call montequgg()

if (tpchout.eq.6) call montequp()

endif

endif

return

end

B.10 NEWMOMENTA
Gerd Kortemeyer

Last revision of the file: 10/ 19/93

The subroutine newmomenta is responsible to rotate the momentum vectors in the c.m.-frame ac-

cording to the given scattering angle c0319 stored in tpcos.

B.10.1 Local variables

double precision pxr(3),pxra,uperp(3)

double precision pxpxr(3),pxpxra,vperp(3),eperp(3)

double precision tpsin,tpmoa,scp,phi,siphi,cophi

146

B.10.2 Construction of a coordinate system

First the cross product of the distance vector and the momentum vector is calculated. This is turned

into a unit vector perpendicular to the momentum vector:

0 Calculate cross product of tprc and tpmol

pxr(1)=tprc(2)*tpmol(3)-tprc(3)*tpmol(2)

pxr(2)=tprc(3)*tpm01(1)-tprc(1)*tpm01(3)

pxr(3)=tprc(1)*tpmol(2)-tprc(2)*tpmol(1)

c

c Calculate length of this vector ...

c

pxra=sqrt(pxr(1)*pxr(1)+pxr(2)*pxr(2)+pxr(3)*pxr(3))

c

c ... and produce unit-vector

c

uperp(1)=pxr(1)/pxra

uperp(2)=pxr(2)/pxra

uperp(3)=pxr(3)/pxra

Now another unitvector is calculated which is perpendicular to both the first unit vector and the

momentum vector. It is in the plane of the momentum vector and the distance vector, and points

into the direction of the distance vector.

c

c Calculate cross product of tpmol and pxr.

c This vector is in the (tprc,tpmol) plane and perpendicular to tpmol,

c pointing away from tprc

c

pxpxr(1)=tpmol(2)*pxr(3)-tpm01(3)*pxr(2)

pxpxr(2)=tpm01(3)*pxr(1)-tpmol(1)*pxr(3)

pxpxr(3)=tpmol(1)*pxr(2)-tpm01(2)*pxr(1)

c

c Calculate length of this vector ...

c

pxpxra=sqrt(pxpxr(l)*pxpxr(1)+pxpxr(2)*pxpxr(2)+pxpxr(3)*pxpxr(3))

c ... and produce unit-vector

vperp(1)=pxpxr(1)/pxpxra

vperp(2)=pxpxr(2)/pxpxra

vperp(3)=pxpxr(3)/pxpxra

Now with uperp and vperp a coordinate system for the rotation is provided.

B.10.3 Getting the angle (,0

The angle (,0 is chosen randomly between 0 and 27r. siphi and cophi are used as appreviations for

sincp and coscp respectively:

147

c

c Get phi randomly between 0 and 2pi

c

phi=2.*pi*ran1(iseed)

siphi=sin(phi)

cophi=cos(phi)

Now with uperp and vperp as coordinate system a vector eperp which is perpendicular to tpmol,

but inclosing the angle <p with vperp, is constructed:

c

c Produce unit—vector with angle phi

c

eperp(1)=siphi*uperp(1)+cophi*vperp(1)

eperp(2)=siphi*uperp(2)+cophi*vperp(2)

eperp(3)=siphi*uperp(3)+cophi*vperp(3)

Calculate the sine of the scattering angle 6:

c

c Calculate sin(theta)

c

tpsin=sqrt(1-tpcos*tpcos)

Calculate the length of the momentum vector:

c

c Calculate length of momentum vector

c

tpmoa=sqrt(tpmoI(1)*tpmol(1)+tpm01(2)*tpmol(2)+tpmol(3)*tpmol(3))

Now everything is prepared for the rotation of the momentum vector. The rotated vector is called

tpsc1:

C

c Rotate momentum theta degrees in eperp-direction

C

tpsc1(1)=tpmol(1)*tpcos+tpmoa*eperp(1)*tpsin

tpscl(2)=tpmol(2)*tpcos+tpmoa*eperp(2)*tpsin

tpscl(3)=tpmol(3)*tpcos+tpmoa*eperp(3)*tpsin

Finally it is checked if the angle between tpmol and tpscl is really 19 degrees by calculating the

scalar product of them:

c

c Check rotation

c
scp=tpsc1(1)*tpmol(1)+tpsc1(2)*tpmo1(2)+tpsc1(3)*tpmol(3)

if (abs(scp/(tpmoa*tpmoa)-tpcos).gt.0.01) then

write(1,*) ’ERROR in rotation of momenta’

write(1,*) ’MO: ’,tpm01(1),tpm01(2),tpmol(3)

148

write(1,*) ’SC: ’,tpsc1(1),tpsc1(2),tpsc1(3)

write(1,*) scp/(tpmoa*tpmoa),tpcos

stop

endif

For this elastic scattering the energies didn’t change, so the energies of the scattered particles

tpeqscl and tpeqsc2 are set to the old values:

c

c Energies didn’t change

c

tpsceq1=tpeq1

tpsceq2=tpeq2

c

return

end

B.11 DECAY

Gerd Kortemeyer

Last revision of the file: 01/31 /94

This subroutine simulates the decay of particles. Besides move and scatter it is one of the main

routines of the program. See A.6 on page 83 for a description.

subroutine decay()

B.11.1 Local variables

c DO variables

integer test,i

c Difference from on-shell mass times timestep length

double precision ddx

c Function for on-shell masses

double precision mshell

B.11.2 Decaying of the particles

The subroutine checks all testruns and particles:

c All testruns, all particles

do 10 test=1,ntr

do 10 i=1,nq(test)

Particles in question are — of course — existing, they have not collided in the scatter step and don’t

belong to a certain nucleon:

c Not deleted, not already collided and not hadronized

if ((1ast(test,i).ne.-1).and.(alr(test,i).ne.1).and.

& (nnq(test,i).le.0)) then

149

The variable ddx represents the value of Amtstep:

c Calculate difference from on-shell mass times timestep length

ddx=abs(sqrt(eq(test,i) *eq(test,i)

-pq(test,i,1)*pq(test,i,1)

-pq(test,i,2)*pq(test,i,2)

-pq(test,i,3)*pq(test,i,3))

- mshell(tq(test,i))) * timstpfi
'
fi
fi
fi
'

The function mshell (tq(. . .)) provides the on—shell masses of the different parton types.

Now a random number is calculated and compared to the probability for decay, see A.6 on page 83.

If it is smaller, the subroutine delpar (see B.12.1 on page 149) is called to delete the particle:

c Delete particle?

if (ran1(iseed).lt.(ddx/(1.+ddx))) call delpar(test,i)

Now two other partons should be created, however, the theory for this is not yet worked out.

endif

10 continue

c

return

end

B.12 CREDEL

Gerd Kortemeyer

Last revision of the file: 02/25/94

The subroutines in this file are responsible for creating and deleting particles. Also, a routine to

check the validity of the particles data structure is included.

B.12.1 delpar

This subroutine is to be used when a particle should be deleted.

subroutine delpar(test,n)

The two parameters test and 11, both integer, specify the testrun and the particle number respec-

tively.

The local variables are

c DO variables

integer i,j,k

c Highest existing particle index

integer highexpar

c Found particle in nextgrid chain?

integer found

150

First it is checked if the particle to be deleted exists. This is done by means of the last-flag, see

BJSonpamSI

if (last(test,n).eq.-1) then

write(1,*) ’Trying to delete non-existing particle.’

write(1,*) ’test:’,test,’ n:’,n

call checknumbers(test,n,0)

stop ’Trying to delete non-existing particle.’

endif

The procedure checknumbers is described in B.12.3 on page 154.

In the next step the particle is deleted:

last(test,n)=-1

Instead of just marking the particle ’removed’ and then during scatter always to check if the chosen

particles exist it is faster to completely remove the particle from the nextgrid pointer structure.

This is simply done by having the previous particle in the chain point to the subsequent one. The

number of times the particle was found in the chain is counted in found. The result can only be ’1’

if it was inside of the chain, or ’0’ if it was a gridroot.

In addition to that in this loop the highest occupied array index is determined:

c Skip particle by removing it from the nextgrid chain.

c Find highest array index.

c

found=0

highexpar=-1

do 10 i=1,nq(test)

if (last(test,i).ne.-1) then

if (nextgrid(test,i).eq.n) then

nextgrid(test,i)=nextgrid(test,n)

found=found+1

endif

highexpar=i

endif

10 continue

Now if the loop was executed without finding the particle it must have been a gridroot. If so, the

gridroot is set to the subsequent particle:

c If the loop was executed without finding the particle ...

c

if (found.eq.0) then

c

c . maybe it was a gridroot?

c

do 30 i=—mgridxy,mgridxy

do 30 j=-mgridxy,mgridxy

do 30 k=-mgridz,mgridz

151

if (gridroot(test,i,j,k).eq.n) then

gridroot(test,i,j,k)=nextgrid(test,n)

found=1

goto 20

endif

30 continue

If the particle wasn’t a gridroot either there is a serious problem. One might think that it still could

be possible that the respective array position was deleted and than on the same position another

particle could have been created in the same timestep — this particle would not be member of any

particle chain, see B.12.2 on page 152. But a freshly created particle can not be deleted in the same

timestep because for this timestep it by definition has already interacted, so:

c Still searching? Well, there is a serious problem!

c

write(1,*) ’Particle to be deleted not found in nextgrid chain’

write(1,*) ’Testrun’,test,’, particle’,n

write(1,*) ’nq(test):’,nq(test)

stop ’Particle to be deleted not found in nextgrid chain’

The next endif belongs to the found.eq.0 condition.

endif

The next label is the one it is jumped to when the particle was found to be a gridroot. The program

is also running over this label when the particle was found as a nextgrid:

20 continue

The next run-time check is if the particle was found more than one time in the chains:

if (found.ne.1) then

write(1,*) ’Corrupted nextgrid chain.’

write(1,*) ’Particle’,n,’ test’,test,’ found’,found,’ times’

stop ’Corrupted nextgrid chain.’

endif

If no existing particle was found below nq there might be a problem with it:

if (highexpar.lt.0) then

write(1,*) ’nq(test) found corrupted while deleting particle’

write(1,*) ’Testrun’,test,’, nq(test)’,nq(test)

stop ’nq(test) found corrupted while deleting particle’

endif

As everything seems to be going pretty well, the highest particle index for this testrun is updated

according to highexpar:

nq(test)=highexpar

Finally, the number of deleted particles is updated:

152

c Statistics

c

delnumber(test)=delnumber(test)+1

Notice that the nextgrid pointer of the deleted particle is not changed! This is important because

otherwise things would get screwed up in subroutine scatter. The nextgrid of the deleted particle

still points to a valid member of the chain. The only thing that happened to the deleted particle:

It is not pointed to anymore.

return

end

B.12.2 crepar

This subroutine creates a particle with the information from the common newpart.

subroutine crepar()

Only one local variable is defined:

c DO variable

integer i

The procedure first searches for a free space in the particle arrays:

c Find empty entry

c

do 10 i=1,mquark

if (last(newtest,i).eq.-1) goto 20

10 continue

When the loop was fully executed, no free space was found:

c ... Array is full

write(1,*) ’Could not create particle, stack capacity exceeded.’

write(1,*) ’Testrun’,newtest,’, nq(newtest)’,nq(newtest)

stop ’Could not create particle, stack capacity exceeded.’

The label 20 is jumped to as soon as a free space is found:

20 continue

The free space could be a hole in the positions 1 to nq(test) or the first entry above nq(test). In

the latter case nq has to be updated. However, the new value can at most differ by one from the

old value:

153

if (i.gt.nq(newtest)) then

if (i-nq(newtest).ne.1) then

write(1,*)

& ’nq(newtest) found corrupted while creating particle’

write(1,*) ’Testrun’,newtest,’, nq(newtest)’,nq(newtest)

stop ’nq(newtest) found corrupted while creating particle’

endif

nq(newtest)=i

endif

The variable crenumber is updated:

crenumber(newtest)=crenumber(newtest)+1

The position now is marked ’used’ by setting the last scattering partner to ’itself’ instead of ’-1’:

last(newtest,i)=i

Now the remaining data from the common block newpart is written to the free position. The nnq

entry is set to ’-1’ meaning ’not belonging to a certain nucleon’.

c Position

rq(newtest,i,1)=nequ(1)

rq(newtest,i,2)=nequ(2)

rq(newtest,i,3)=nequ(3)

c Momentum

pq(newtest,i,1)=newpq(1)

pq(newtest,i,2)=newpq(2)

pq(newtest,i,3)=newpq(3)

c Energy

eq(newtest,i)=neweq

c Type

tq(newtest,i)=newtq

c Nucleon number

nnq(newtest,i)=-1

c Nucleus number for ’already scattered’

fq(newtest,i)=0

The updating of nextgrid will be done in the next move step.

Notice that thenextgrid pointer of the created particle is not changed! This is important because

it could very well happen that the created particle is on an array-position that was occupied by

a particle that has been deleted in the same collision. If the nextgrid pointer would have been

modified things would get screwed up in subroutine scatter. The nextgrid of the created particle

still points to a valid member of the deleted particles chain. But it is not pointed to. The new

particle must not be scattered in this timestep anyway, so. . .

return

end

154

B.12.3 checknumbers

This subroutine checks the validity of the particle data structures. It can also write information

about two particles chosen by the parameters to the protocol file - this option can be used for debug

purposes and had been very useful in the past.

subroutine checknumbers(test,n1,n2)

The parameters are the testrun number and the particle numbers of the two particles to be checked.

If the parameters are set to ’0’ no particles are checked:

c Parameters

integer test,n1,n2

c Do variables

integer i,j,k,1,m

c Count variables

integer pcount, tcount,typecount(-6:6)

The procedure itself is coded pretty straightforward:

do 10 i=1,ntr

c

c Count particles in data arrays

c

pcount=0

c

do 20 j=1,mquark

if (last(i,j).gt.0) pcount=pcount+1

20 continue

c

c Count particles in pointer chain

c

tcount=0

c

do 25 j=-6,6

typecount(j)=0

25 continue

c

do 30 j=-mgridxy,mgridxy

do 30 k=-mgridxy,mgridxy

do 30 l=-mgridz,mgridz

c

m=gridroot(i,j,k,l)

if (m.eq.-1) goto 40

c

if ((m.eq.n1).and.(i.eq.test)) then

write(1,*) ’ ------------------------------- ’

write(1,*) ’Particle ’,n1,’ is gridroot!’

endif

if ((m.eq.n2).and.(i.eq.test)) then

write(1,*) ’ ------------------------------- ’

write(1,*) ’Particle ’,n2,’ is gridroot!’

endif

155

50 tcount=tcount+1

typecount(tq(i,m))=typecount(tq(i,m))+1

if ((m.eq.nl)

write(1,*)

write(1,*)

write(1,*)

endif

if ((m.eq.n2)

write(1,*)

write(1,*)

write(1,*)

endif

.and.(i.eq.test)) then

3... ___________ ’

’Particle:’,n1

’Gridbox :’,j,k,l

.and.(i.eq.test)) then

i _______________________________)

’Particle:’,n2

’Gridbox :’,j,k,l

m=nextgrid(i,m)

if (m.ne.-1) goto 50

c

40 continue

30 continue

c

c Print out information

c

write(1,*)

& ’Number of particles cre/del: ’,crenumber(i),delnumber(i)

write(1,*)

& ’Total number of particles : ’,pcount

write(1,*)

& ’Grid box chains ’,tcount

write(1,*) ’Gluons:’,typecount(0)

write(1,*) ’u, ubar:’,typecount(1),typecount(-1)

write(1,*) ’d, dbar:’,typecount(2),typecount(-2)

write(1,*) ’s, sbar:’,typecount(3),typecount(-3)

write(1,*) ’c, cbar:’,typecount(4),typecount(-4)

write(1,*) ’b, bbar:’,typecount(5),typecount(-5)

write(1,*) ’t, tbar:’,typecount(6),typecount(-6)

c

c Right number of particles?

c

if (lastnumber(i)+crenumber(i)-delnumber(i).ne.pcount) then

write(1,*) ’Total number of particles incorrect.’

write(1,*) ’pcount: ’,pcount,’, lastnumber’,lastnumber(i)

stop ’Total number of particles incorrect’

endif

c

lastnumber(i)=pcount

c

10 continue

c

return

end

156

B.13 PERMUTE

(SendlKorunneyer

Last revision of the file: 12/7/93

This subroutine permutes the permutation arrays.

B.13.1 Local variables

Besides the variables from stdec.for the following local variables are defined:

c Main loop

integer k

c Entries to be exchanged

integer i,j

c Buffer

integer exch

B.13.2 Permutation

The permutation of the respective arrays is done simply by exchanging size of array times two entries

of the arrays.

First the array perm is permuted:

do 10 k=1,mquark

c Find entry numbers

i=1+int(ran1(iseed)*(mquark-1))

j=1+int(ran1(iseed)*(mquark-1))

if ((i.gt.mquark).or.(i.lt.1).or.(j.gt.mquark).or.(j.lt.1))

& then

write(1,*) ’Error in random numbers, i,j=’,i,j

write(1,*) ’mquark:’,mquark

stop

endif

c Exchange them

exch=perm(i)

perm(i)=perm(j)

perm(j)=exch

c

10 continue

Now permx and permy are permuted. One has to be careful not to permute the position of the

outmost boxes since they can not be used as center boxes in subroutine scatter and are taken

out of the 100p there by simply starting the 100p variable at for example -mgridxy+1. This simple

means of skipping the outmost boxes would not work if the index for mgridxy would also have been

permuted:

do 20 k=-mgridxy,mgridxy

c Find entry numbers, don’t permutate outmost boxes

i=int((1.-2.*ran1(iseed))*(mgridxy-2))

j=int((1.-2.*ranl(iseed))*(mgridxy-2))

157

c Exchange

exch=permx(i)

permx(i)=permx(j)

permx(j)=exch

c Find entry numbers, don’t permutate outmost boxes

i=int((1.-2.*ranl(iseed))*(mgridxy-2))

j=int((1.-2.*ran1(iseed))*(mgridxy-2))

c Exchange

exch=permy(i)

permy(i)=permy(j)

permy(j)=exch

20 continue

Since permz has another size than permx and permy it is permuted separately:

do 30 k=-mgridz,mgridz

c Find entry numbers, don’t permutate outmost boxes

i=int((1.-2.*ran1(iseed))*(mgridz-2))

j=int((1.-2.*ran1(iseed))*(mgridz-2))

c Exchange

exch=permz(i)

permz(i)=permz(j)

permz (j)=exch

30 continue

Finally deltax, deltay and deltaz are permuted:

i=1+int(3.*ran1(iseed))

j=1+int(3.*ran1(iseed))

exch=deltx(i)

deltx(i)=deltx(j)

deltx(j)=exch

i=1+int(3.*ran1(iseed))

j=1+int(3.*ran1(iseed))

exch=delty(i)

delty(i)=delty(j)

delty(j)=exch

i=1+int(3.*ran1(iseed))

j=1+int(3.*ran1(iseed))

exch=deltz(i)

deltz(i)=de1tz(j)

deltz(j)=exch

return

end

B.14 DISTRI

CTEQ Collaboration

158

Last revision of the file: 10/7/93

These subroutines calculate the parton distribution function ctq2pd as they will be used by init.

C

0
0
0
0
0
0

0
0
0
0

O
0

By:

To

FUNCTION th2Pd (Iset, Iparton, x, Q, Irt)

Version 2 CTEQ distribution function in a parametrized form.

J. Botts, H.L. Lai, J.G. Morfin, J.F. Owens, J. Qiu, W.K. Tung & H.Weerts

avoid the proliferation of parton distribution functions, we recommend that

these distributions should replace Version 1 CTEQ distributions for all general

usage.

The

(No data tables are needed.)

returned function value is the PROBABILITY density for a given FLAVOR.

A companion function (next module), which this one depends on,

th2df (Iset, Iparton, X, Q, Irt)

gives the VALENCE and SEA MOMENTUM FRACTION distributions.

Also included are two functions Prth2 & Wlamd2 which return relevant

QCD parameters associated with these parton distributions sets.(See below)

A parallel (independent) program th2Pds (not included in this file)

in Subroutine form is also available.

It returns ALL the parton flavors at once in an array form.

See details in that separate file if you are interested.

Since this is an initial distribution, and there may be updates, it is

useful for the authors to maintain a record of the distribution list.

Please do not freely distribute this program package; instead, refer any

interested colleagues to direct their request for a copy to:

Bottthades.ifh.de or Lachteq11.pa.msu.edu

If you have detailed questions concerning these distributions, direct inquires

to Botts, Lai (see above) or Wu-Ki Tung (Tunngsupa.pa.msu.edu).

This function returns the CTEQ parton distributions f‘Iset_Iprtn/proton

where Iset (= 1, 2, ..., 5) is the set label;

Name convention for CTEQ distributions: CTEQnSx where

n : version number (currently n = 1)

S : factorization scheme label: = [M D L] for [MS—bar DIS LO]

resp.

x : special characteristics, if any

(e.g. S(F) for singular (flat) gluon, L for "LEP lambda value")

Iprtn is the parton label (6, 5, 4, 3, 2, 1, O, -1, , -6)

for (t, b, c, s, d, u, g, u_bar, ..., t bar)

159

C X, Q are the usual x, Q; Irt is a return error code (not implemented yet).

C ——> Iset = 1, 2, 3, 4, 5 correspond to the following CTEQ global fits:

C cteq2M, cteq2MS, cteq2MF, cteq2ML, cteq2L respectively.

C --> QCD parameters for parton distribution set Iset can be obtained inside

C the user’s program by:

C Dum = Prctq2

C > (Iset, Iord, Ischeme, MxFlv,

C > Alam4, A1am5, A1am6, Amas4, Amas5, Amas6,

C > Xmin, Qini, Qmax, ExpNor)

C where all but the first argument are output parameters.

C They should be self-explanatory —- see details under ENTRY Prctq2.

C Since the QCD Lambda value for the various sets are needed more often than

C the other parameters in most applications, a special function

0 Wlamd2 (Iset, Iorder, Neff) is provided

C which returns the lambda value for Neff = 4,5,6 effective flavors as well as

C the order these values pertain to.

C The range of (x, Q) used in this round of global analysis is, approxi—

C mately, 0.01 < x < 0.75 ; and 4 GeV‘2 < 0‘2 < 400 GeV“2 for fixed target

C experiments and 0.0001 < x < 0.01 from preliminary data of HERA.

C The range of (x, Q) used in the reparametrization of the QCD evolved

C parton distributions is 10E—5 < x < 1 ; 1.6 GeV < Q < 1 TeV. The

C functional form of this parametrization is:

C A0 * x‘Al * (1-x)‘A2 * (1 + A3 * x“A4) * [log(1+1/x)]‘A5

C with the A’coefficients being smooth functions of O. For heavy quarks,

C a threshold factor is applied to A0 which simulates the proper Q-dependence

C of the QCD evolution in that region.

C Since this function is positive definite and smooth, it provides sensible

C extrapolations of the parton distributions if they are called beyond

C the original range in an application. There is no artificial boundaries

C or sharp cutoff’s.

Appendix C

Index

alr, 92, 119, 121, 143, 148

already, 92

anglestat, 92, 110, 140

base, 120

basesq, 120

Boltzmann equation, 20, 24

Boltzmann-Uehling-Uhlenbeck (BUU), 2

Bonds, 6

BUU, 10, 22, 30

buu scatteringdat, 144

c.m.—system, 82

Cascade codes, 2, 38

causal, 94

Causality information, 143

Causality violations, 38

causalpl, 93, 96

causcatter, 122

CBA, 23

Channels, 91, 132, 135, 137

charge, 93, 104

checknumbers, 98, 154

chscat, 92, 110, 143

Closest approach criterion, 41

Clusters, 13

cmtimstp, 129

collide, 121, 123

collisions, 82

Consistent Boltzmann Algorithm, 23

constant, 97

control, 93

CPU-time, 93

cralphas, 94

create, 90, 101

credel, 149

creflag, 90, 101

crelabpn, 90, 101

cremodir, 90, 101

crenn, 90, 101

crenp, 90, 101

crenumber, 92, 153, 154

crepar, 152

crex0, 90, 101

crezO, 90, 101

crk, 94

crm, 94

cm, 94

ctq2pd, 158

Cutoff, 94

decay, 97, 148

delnumber, 92, 151, 154

delpar, 149

deltax, 120, 157

deltay, 120, 157

deltaz, 120, 157

deltx, 102, 105

delty, 102, 105

deltz, 102, 105

Direct Simulation Monte Carlo, 22

Displacement, 25

160

distri, 157

DSMC, 22

elabpnpro, 88

elabpntar, 88

elabpro, 89

elabtar, 89

endpart, 117

Enskog theory, 23

E08, 20

eps, 86, 106, 126, 127, 142

eq, 87, 102, 111, 131

Equation of state, 20

Evaporation, 1, 13

Excitation energy, 13

fdue, 88

feq, 88

Fission, 1, 13

Flow, 20

qu, 88

fq, 87, 90, 101, 102, 111, 112, 143

Fragmentation, 6

Frame dependencies, 47

Full-ensemble testparticle algorithm, 24, 30

Gluon—gluon cross section, 40

graphics output, 93

grid, 81

grid boundaries, 81, 103

gridroot, 115, 121, 150, 154

gridspxy, 88, 103

gridspz, 89, 103, 115

gridz, 89, 103

161

Hard processes, 38

Hard-sphere Boltzmann equation, 23

Hard-sphere radius, 25

hbc,85

IMF, 1, 7

impact, 110

init, 95, 100

initcharge, 104

initcheck, 105

initcross, 106, 136

initflag, 104

initmeth, 90, 100, 103

initmethl, 104, 110

initparms, 90

initperm, 105

initqsq, 90

initrnuc, 90

initxmin, 90

Intermediate mass fragment, 1, 7

iseed, 88, 95

Isospin, 6

labangle, 92, 142

Landau—Vlasov, 2

last, 87, 102, 104, 121, 148, 153

lastnumber, 92

lastpoint, 88, 123

1asttime, 123

Lattice, 6

LHC, 4

Lightcone, 46

Lorentz invariance, 45

lowcut, 89

makenucleus, 90, 101, 103

manuc, 85

maxchannel, 86

maxcos, 92, 109, 140

maxdq, 124

maximum cross section, 81

maxpoints, 86, 106, 126

maxsig, 88, 106, 125, 136

maxsigma, 92, 102, 109, 126

maxsq, 92, 109, 126

maxtype, 86

mean field, 79, 82

mincos, 92, 109, 140

mindq, 124

minsigma, 92, 102, 109, 126

minsq, 92, 109, 126

Molecular Dynamics, 22

montecarlo, 144

move, 97, 114

move step, 81

mquark, 86

mtest, 86

multiple scattering, 81

nc, 95

Neutron skin, 18

neweq, 92

newfq, 153

newmomenta, 140, 145

newpart, 92, 152

newpq, 92, 153

newpscat, 92

nequ, 92, 153

newtest, 92

newtq, 92, 153

nextgrid, 88, 122, 150, 153, 154

nmts, 88

nnpro, 87

nnq, 87, 102, 111, 112, 144, 148, 153

nntar, 87

nppro, 87

nptar, 87

nq, 87, 101, 102, 111, 116, 151, 152

nsta, 92, 109

nstaO, 124

nstal, 125

ntime, 88, 103

162

ntr, 87

Nuclear flow, 20

One particle distribution function, 24

others, 88

outb, 115

outchannel, 132

Parallel-ensemble testparticle algorithm, 30

parameter file, 90, 95, 103

parmin, 87

Partial cross section, 40, 91, 93, 106, 135,

137

particles, 86

parton distribution, 39, 157

Pauli principle, 27

Percolation model, 6

perm, 93, 102, 105, 116, 156

permute, 156

permx, 102, 105, 119, 156

permy, 102, 105, 119, 156

permz, 102, 105, 119, 157

pi, 86

ploto, 93, 96

plotout, 96

pointer, 82

pointscat, 92, 102, 104

pq, 87, 102, 111

preferential directions, 81

projectile, 101

Proper time, 75

protocol file, 92, 95, 103, 128, 154

prox0, 88

pron, 88

qq, 102

Quark-gluon plasma, 4, 38

r0, 85

rancor, 109

Random walk, 44

Reduced volume, 27

restat, 98, 109

Retarded interaction, 72

RHIC, 4, 38

rq, 87, 102, 111

scalbetax, 127

scatter, 97, 118, 123, 156

Scattering, 81

scattering, 93

Scattering data file, 144

Screening, 28

Second virial coefficient, 29

Signal velocity, 143

Sites, 6

Soft processes, 38

Spacelike distance, 46

Spectator region, 10

sqstep, 86, 106, 126

stat, 92

stcount, 94, 95

stdec, 85

steps, 94, 95

stymax, 94, 95

subperm, 116

Superluminous signals, 40

t0, 93, 94

target, 101

test run, 79

timefault, 92, 102, 109, 129

Timestep length, 63

timstp, 88, 131

tinl, 91, 106, 126, 134, 136

tin2, 91, 106, 126, 134, 136

163

Total cross section, 91, 94, 108, 135

totalcross, 91, 133, 135

totscat, 143

tout1, 91, 106, 134, 140

tout2, 91, 134, 140

tpbeta, 91, 125

tpbq, 91, 125

tpchin, 91, 126, 133, 135, 144

tpchout, 91, 132, 133, 144

tpcos, 91, 139, 145

tpcrindex, 91, 126

tpdq, 91, 124

tpdqc, 91, 129

tpeq1,90

tpeq2, 90

tpeql, 91, 125

tpeqscl, 148

tpeqch, 148

tpgambet, 91, 127

tpgamma, 91, 127

tpmol, 91, 131

tpmo2, 131

tppl, 90

tpp2,90

tprc, 91, 129, 131

tprl, 90, 124

tprn, 90, 119

tpscl, 91, 140, 147

tpsceql, 91

tpsceq2, 91

tpsigma, 91, 126, 133, 136

tpsq, 90, 126

tptd, 91, 129

tq, 87, 102, 111, 140

Transformation equations, 48

Transport models, 3

twopart, 90, 119

twototwo, 132, 139

uperp, 146

164

vc, 94, 95

velocitypl, 93, 96

veymax, 94, 95

vgrid, 94, 95

Virial coefficient, 29

vperp, 146

Wee partons, 74

whenout, 88, 97

xsec..., 102, 106, 132

xsecentry, 91, 136

xsecgg22, 93, 108, 133, 137

xsecggqu, 93, 108, 133, 136, 137

xsecqg22, 93, 133, 136, 137

xsecqq22, 93, 133, 136, 137

xsecqu22, 93, 94, 108, 133, 134, 137

xsecqugg, 93, 94, 108, 133, 134, 137

xsecquqqup, 93, 94, 108, 133, 134, 136,

137

xsecqqp22, 93, 133, 136, 137

Bibliography

[Aic91]

[Aic96]

[Ale95]

[Alm95]

[Bad89]

[Bau84]

[Bau86]

[Ber88]

[Bot93]

[Bro96]

[Cam85]

J. Aichelin, Phys. Rep. 202, 233 (1991); H. Feldmeier, Nucl. Phys. A515,

147 (1990); A. Ono et al., Prog. of Theoret. Phys. 87, 1185 (1992); H.

Sorge, H. St6cker, and W. Greiner, Nucl. Phys. A498, 567C (1989); H.

Sorge, H. Stficker, and W. Greiner, Ann. Phys. 192, 266 (1989).

J. Aichelin, Phys. Rev. C33, 537 (1986); H. Stécker, and W. Greiner, Phys.

Rep. 137. 277 (1986); U. Mosel, Annu. Rev. Nucl. Part. Sci. 41, 29 (1991);

W. Bauer et al., Annu. Rev. Nucl. Part. Sci. 42, 77 (1992); P. Schuck et

al., Prog. Part. Nucl. Phys. 22, 181 (1989); Y. Pang, T. Schlagel, and S.

H. Kahana, Nucl. Phys. A544, 435C (1992); D. E. Kahana, D. Keane, Y.

Pang, T. Schlagel, and S. Wang, Phys. Rev. Lett. 74, 4404 (1995).

F. J. Alexander, A. L. Garcia, and B. J. Alder, Phys. Rev. Lett. 74, 5212

(1995)

T. Alm et al., Nucl. Phys. A587, 815 (1995)

H. Badovsky, Eur. J. Mech., B/Fluids 8, 41 (1989)

W. Bauer, D. R. Dean, U. Mosel, and U. Post, in Procedz'ngs of the 7th

High Energy Heavy Ion Study (Report GSI-85-10, 1984), 701; W. Bauer,

D. R. Dean, U. Mosel, an U. Post, Phys. Lett 150B, 53 (1985); W. Bauer,

U. Post, D. R. Dean, and U. Mosel, Nucl. Phys. A452, 699 (1986); W.

Bauer, Phys. Rev. C38, 1297 (1988); W. Bauer and A. Botvina, Phys.

Rev. C52, R1760 (1996).

W. Bauer, G. F. Bertsch, W. Cassing, and U. Mosel, Phys. Rev. C34,

2127 (1986); W. Bauer, Nucl. Phys. A471, 604 (1987); W. Bauer, G. F.

Bertsch, and H. Schulz, Phys. Rev. Lett. 69, 1888 (1992).

G. F. Bertsch and S. Das Gupta, Phys. Rep. 160, No. 4, 189 (1988)

Version 2 CTEQ distribution function in a parametrized form, J. Botts,

H. L. Lai, J. G. Morfin, J. F. Owens, J. Qiu, W.-K. Tung and H. Weerts,

CTEQ Collaboration.

Hartree-Fock Code DENS, B. A. Brown, priv. communication.

X. Campi and J. Debois, in Proceedings of the 23rd Bormeo Conference

(Ricerca Scientifica et Educatione Permanente, Milano, 1985), 497; T. S.

Biro, J. Knoll, and J. Richert, Nucl. Phys. A459, 692 (1986); X. Campi,

165

[Com77]

[Con79]

[Cug81]

[Cze86]

[Dan91]

[Dan95]

[Dan96]

[Da593]

[Eic84]

[Fie89]

[Gei92.1]

[Gei92.2]

[Gei93]

[Gei94.1]

[Gei94.2]

[Gus88]

[K3393]

[Kod84]

[Kod94]

166

J. Phys. A19, L917 (1986); J. Nemeth, M. Barranco, J. Debois, and C.

Ngf), Z. Phys. A325, 347 (1986); J. Debois, Nucl. Phys. A466, 724 (1987);

C. Cerruti, J. Debois, R. Boisgard, C. Ng6, J. Natowitz, and J. Nemeth,

Nucl. Phys. A476, 74 (1988); S. Das Gupta, C. Gale, and K. Haglin, Phys.

Lett. 302B, 372 (1993).

B. L. Combridge, J. Kripfganz and J. Ranft, Phys. Lett. 70B, No. 2, 234

(1977)

A. Coniglio, H. E. Stanley, and W. Klein, Phys. Rev. Lett. 42, 518 (1979);

D. W. Hermann and D. Stauffer, Z. Phys. B44, 339 (1981).

J. Cugnon, T. Mizutani, J. Vandermeulen, Nucl. Phys. A352, 505 (1981)

L. P. Czernai, and J. I. Kapusta, Phys. Rep. 131, 223 (1986); S. Das Gupta,

and G. D. Westfall, Physics Today 46(5), 34 (1993); R. Stock, Phys. Rep.

135, 259 (1986); H. Gutbrod et al, Rep. Prog. Phys. 52, 1267 (1989).

P. Danielewicz and G. F. Bertsch, Nucl. Phys. A533, 712, appendix (1991)

P. Danielewicz, Phys. Rev. C51, 716 (1995)

P. Danielewicz, and S. Pratt, Phys. Rev. CS3, 249 (1996)

S. Das Gupta and G. D. Westfall, G. D., 1993, Physics Today 46(5), 34

(1993)

E. Eichten, I. Hinchliffe, K. Lane and C. Quigg, Rev. Mod. Phys., Vol. 56,

No. 4, 579 (1984)

R. D. Field, Frontiers in Physics: Applications of Perturbative QCD,

Addison—Wesley 1989

K. Geiger and B. Miiller, Nucl. Phys. A544, 467C (1992)

K. Geiger and B. Miiller, Nucl. Phys. B369, 600 (1992)

K. Geiger, Phys. Rev. Lett. 71, No. 19, 3075 (1993)

K. Geiger, Phys. Rev. C49, 3234 (1994)

K. Geiger, private communication

H. A. Gustafson et (11. (Plastic Ball Collaboration), Mod. Phys. Lett. A 3,

1323 (1988)

U. Kalmbach, T. Vetter, T. S. Bird and U. Mosel, Nucl. Phys. A563, 584

(1993)

T. Kodama, S. B. Duarte, K. C. Chung, R. Donangelo and R. A. M. S.

Nazareth, Phys. Rev. C29, 2146 (1984)

T. Kodama, private communication

[Kor93]

u<un93

[Lan92]

[Lan93]

[Mcl82]

[Mor97]

[Mur93]

[Par95]

[Pha92]

[Res77]

[80189. 1]

[Sor89.2]

[Sta79]

[Tsa93]

[Wel89]

[VWssq

167

G. Kortemeyer, J. Murray, S. Pratt, K. Haglin and W. Bauer,

NSCL/Cyclotron Laboratory Annual Report 1993, 63, 65

G. J. Kunde et al., Phys. Rev. Lett 77 (1996), 2897.

A. Lang, H. Badovsky, W. Cassing, U. Mosel, H.—G. Reusch, and K. Weber,

J. Comp. Phys. 106, 391 (1993)

A. Lang, H. Badovsky, W. Cassing, U. Mosel, Hans-Georg Reusch and

Klaus Weber, J. Comp. Phys. 106, 391 (1993)

L. McLerran, Quark Matter and Heavy Ion Collisions; Bielefeld Workshop

1982, World Scientific, 63

K. Morawetz et al., Universitiit Rostock, in preparation.

J. Murray, G. Kortemeyer, S. Pratt, K. Haglin and W. Bauer,

NSCL/Cyclotron Laboratory Annual Report 1993, 61

M. D. Partlan et al. (EOS Collaboration), Phys. Rev. Lett. 75, 2100 (1995)

L. Phair et al., Phys. Lett. 285B, 10 (1992); L. Phair, W. Bauer and C.

K. Gelbke, Phys. Lett. 314B, 271 (1993).

P. M. Résibois, and M. De Leener, Classical Kinetic Theory of Fluids, p.

156, John Wiley & Sons, New York, 1977

H. Sorge, H. Stécker and W. Greiner, Nucl. Phys. A498, 5670 (1989)

H. Sorge, H. Stocker and W. Greiner, Ann. Phys. 192, 266 (1989)

D. Stauffer, Phys. Rep. 540, 1 (1979); J. W. Essam, Rep. Prog. Phys. 43,

883(1980)

M. B. Tsang et al., Phys. Rev. Lett 71, 1502 (1993)

G. Welke, R. Malflied, C. Grégoire, M. Prakash and E. Suraud, Phys. Rev.

C40, 2611 (1989)

G. D. Westfall et al., Phys. Rev. Lett. 71, 1986 (1993); D. Kakow, G.

Welke, and W. Bauer, Phys. Rev. C48, 1982 (1993).

lll

