'.1. A.;.::..u..r. . :33... . . 9-K}? a1 _. 2.": ..x.‘.....mn.a.....a.... 1...: 3.11.135. : 3.3. x91... 5.. c a .. .. x .11.. .1 1 . , In}. {it a l 1 33:3}. és.l)\.§:i {.55. stvk\l\1xvr 51...?! r z 1\ q . . . «1...... . vuyIVIXu v.11 . , ‘ ‘ ‘ .1... 11.2.11?“ _5! i .31... r L\. ; usnhvx... :3. l .1 171...... 131:! 5:11.25: ‘ . $ .1... 1.)\ 1.... 12.1.. x 5; {1‘ 3 : .7hv 1x11 .31... 22:1... 11....) :‘Ir .5. 15 .n:1§h»11.§|t|\ . z ...!;>..\1‘ a). i \i?! :3)? 9413:4138) . ktifi {LI 119....) ,1113x17...r.|\\2 t I .1515; p7:)qa\tlv. >1 ,1): :1. :7)... y..\\x)..7)1x..:. III: :9")... :71»; I...\ v. .35.! it; ‘(.Ivua i:::...91 xxx y‘all) b ..:.......1fin{..v~l. .zwsleyly... lave-12x rial; v 1? ‘ 5: . x:..).~::.yl.1.{.. \ ‘xl 1: i3. 1‘3... . .5311 3.3.1; 1.? (5:11., p 5.!!! 3:31.,1? hi): \nX...PL..! 5.! teases ’W J llillflllil|U|||H||||HN||||lllllHlllllllllllllHlHllHllil 31293 01563 5745 This is to certify that the dissertation entitled Reai-Time Anaiysis of Light Aikenes at Eievated Temperatures and Pressures by Fiber Optic Near Infrared Spectroscopy presented by Engin Deniz Yaivac has been accepted towards fulfillment of the requirements for Ph.D. degree in Chemistry Major professor Date /2//,/.7( MSU is an Affirmative Action/Equal Opportunity Institution 042771 LIBRARY Michigan State University PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. fig DATE DUE DATE DUE DATE DUE ll MSU Is An Affirmative Action/Equal Opportunity Institution abimmpms-m REAL-TIME ANALYSIS OF LIGHT ALKENES AT ELEVATED TEMPERATURES AND PRESSURES BY FIBER OPTIC NEAR INFRARED SPECTROSCOPY By Engin Deniz Yalvac A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirement for the degree of DOCTOR OF PHILOSOPHY Department of Chemistry 1996 Copyright by Engin Deniz Yalvac 1997 ABSTRACT REAL-TIME ANALYSIS OF LIGHT ALKENES AT ELEVATED TEMPERATURES AND PRESSURES BY FIBER OPTIC NEAR INFRARED SPECTROSCOPY By Engin Deniz Yalvac This study had as its goal, the simultaneous determination of ethylene and monoalkylated light alkenes at elevated temperatures and pressures via fiber Optic Fourier Transform Near Infrared (FT -NIR) Spectroscopy to enable the in situ, real-time monitoring of these compounds. This goal was accomplished in two stages: First the simultaneous determination of ethylene and monoalkylated light alkenes at room temperature and pressure was studied. Then, the effects of elevated temperature and pressure were investigated. Ethylene and monoalkylated light alkenes namely, propylene, l-butene, l-pentene, 1— hexene, l-Octene, l-decene, were selected for the determination. Various other alkylated alkenes, i.e., 1,1 dialkylated, cis, trans dialkylated, and trialkylated alkenes were investigated to determine the effects of the molecular structure for this analysis. The first overtone of the asymmetric =CH2 stretch of the monoalkylated alkenes was found to be unique for the light alkenes in the NIR region. This region of the Spectrum was used to built a model based on Classical Least Squares (CLS) regression to demonstrate the feasibility of the determination at room temperature and pressure. Ethylene and l-octene solutions in Isopar B were studied as example. Concentrations of the alkenes were determined with an error less than 1 wt %. In the second stage of the study, the effects of elevated temperature and pressure on the spectra were investigated via fiber Optic FT-NIR spectroscopy. The effects of elevated pressures in the range studied (> 500 psi) on spectra are found to be insignificant for these compounds. However, the temperature effects are critical, especially for the lighter molecules such as ethylene and propylene. Therefore, the determination of these compounds at elevated temperatures (25-140 °C) requires the incorporation of the temperature effects into the calibration model. An apparatus to collect the spectra of these compounds at elevated temperatures and pressures by fiber optic FT -NIR spectroscopy was constructed. The determination of ethylene and l-octene was evaluated. Calibration models were built using partial least-squares (PLS) regressions. Predictive ability of the model, expressed as standard error of prediction (SEP), was less than 0.5 wt % for both ethylene and l-Octene and the absolute error of determination for alkenes is expected to be less than i 0.75 wt %. Dedicated to my parents; my husband, Selim; my son, Arda. .. ACKNOWLEDGMENTS The author would like to express her gratitude to the following people and institutions who have generously contributed to the completion of this thesis. To Professor Stanley R. Crouch for his invaluable assistance and advice throughout the course of this work. To the other members of the doctoral committee, Professor Kris Berglund, Professor George E. Leroi, Professor John L. McCracken for their interest and assistance. To Dr. L. David Rothman of the Dow Chemical Co. for his help and support as on-site advisor. My co-workers are also an intricate part of this research, without their contributions this publication couldn't be possible. Among them I would like to thank Dr. Mary Beth Seasholtz and Dr. Randy J. Pell for their assistance with chemometric tools, Dr. M. Anne Leugers for her help with my endless questions in vibrational spectroscopy, Dr. Mark Beach for building the high temperature, pressure apparatus. All the others: Dr. J. Paul Chauvel, Dr. Del Lafevor, Dr. Mark Dittenhaffer, Dr. Bill Heeschen, Dr. Dave Albers, Dr. Mark LaPack, Mr. Robert A. Bredeweg, Mr. Jeff Larson, Dr. Richard Hamer, thanks for being available for many fruitful discussions. Finally, I would like to thank the Dow Chemical Co. as the sponsor of this research and allowing me fulfill a personal dream. "IT'S NEVER TOO LATE!" vi TABLE OF CONTENTS LIST OF TABLES ................................................................................................................................ ix LIST OF FIGURES ............................................................................................................................... x CHAPTER 1 .......................................................................................................................................... 1 INTRODUCTION ................................................................................................................................. 1 In situ Real-Time Analysis ............................................................................................................. l Near-Infrared vs Mid-Infrared Analysis .......................................................................................... 2 Why Fourier Transform Near-IR .................................................................................................... 5 Historical Background .................................................................................................................... 6 In situ, Real-Time Determination of Alkenes by Vibrational Spectroscopy ............................. 6 Determination of Alkenes in Mid IR Range Using Modified Reactors as IR Cells ................... 6 Determination of Alkenes in Mid IR Range Using Internal Reflectance Crystals ..................... 7 Determination of Alkenes in Mid IR Range Using Attenuated Total Reflectance Element ....... 8 Determination of Alkenes in Mid IR Range Using Flow-Through IR Cells .............................. 9 Determination of Alkenes by Near IR Spectroscopy .............................................................. 13 Chemometrics for Near-IR Spectroscopy ...................................................................................... 16 Goal of This Research ................................................................................................................... 23 CHAPTER 2 ....................................................................... 25 THEORETICAL BACKGROUND ...................................................................................................... 25 Effect of Temperature and Pressure on Vibrational Spectroscopy ................................................. 25 Pressure or Temperature Induced Phase Transition ................................................................ 26 Frequency Shifts Due to Pressure and Temperature ............................................................... 28 Band Shape and Intensity Changes ........................................................................................ 30 Splitting of Degenerate Vibrations ......................................................................................... 34 Doubling of Absorption Vibrations ........................................................................................ 34 Sensitivity of Vibrations to Expansion of Molecular Volume ................................................. 35 Multivariate Calibration Techniques ............................................................................................. 36 Classical Least Square Regression ......................................................................................... 36 Partial Least Square Regression ............................................................................................. 38 vii CHAPTER 3 ........................................................................................................................................ 42 QUANTITATIVE ANALYSIS OF LIGHT ALKENES BY FT -NIR SPECTROSCOPY: ROOM TEMPERATURE PRESSURE FEASIBILITY STUDIES ................................................................... 42 Experimental Procedures .............................................................................................................. 43 Materials ............................................................................................................................... 43 FT -NIR System ..................................................................................................................... 45 Fiber Optic Cell Assembly .................................................................................................... 47 Calibration Standards ............................................................................................................ 48 Data Analysis and Results ............................................................................................................ 49 Interpretation of Spectra ........................................................................................................ 49 Quantitative Determination ................................................................................................... 64 Summary ............................................................................................................................... 68 CHAPTER 4 ........................................................................................................................................ 70 IN SITU REAL-TIME DETERMINATION OF ALKENES BY FIBER OPTIC FT—NIR SPECTROSCOPY AT ELEVATED TEMPERATURES AND PRESSURES ...................................... 70 Experimental Procedures .............................................................................................................. 71 High Pressure Temperature Apparatus ................................................................................... 72 Pressure Vessel ........................................................................................................ 72 Expansion Containment Chamber ............................................................................ 73 Head Space Assembly ............................................................................................. 73 Fiber Optic Probe-Holder Assembly ........................................................................ 74 Single Sided Transmission Probe ............................................................................. 74 Pressure Measurement and Control .......................................................................... 75 Forced Air Oven ...................................................................................................... 76 Temperature Measurement and Control ................................................................... 76 FT-NIR Spectrometer and the Detector .................................................................... 77 Determination of Vessel and Head Space Volume ................................................................. 79 Experimental Design ............................................................................................................. 79 Experiments for the Determination of Pressure Effects on Spectra ........................................ 82 FT-NIR Calibration Procedure ............................................................................................... 82 Data Analysis and Results ............................................................................................................ 83 Effects of Pressure on Spectra ................................................................................................ 83 Effects of Temperature on Spectra ......................................................................................... 85 Calculation of Liquid Phase Concentration at Each Temperature Setting ............................... 86 Calibration Models ................................................................................................................ 99 viii Determination of PLS Model Rank ........................................................................ 104 Examination of Outliers ......................................................................................... 107 Examination of Spectral Residuals ......................................................................... 110 Model Prediction Errors ......................................................................................... 113 Summary ............................................................................................................................. 116 CHAPTER 5 ..................................................................................................................................... 1 17 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH ................................. 117 Conclusions ................................................................................................................................ 1 17 Recommendations for Future Research ....................................................................................... 120 APPENDIX A: FT-NIR Spectra of Light Alkenes Used in the Study ................................................. 122 APPENDIX B: Excel Spread Sheets Showing the Calculation of Liquid Phase for Each Run ........... 142 APPENDIX C: Data File Names and Their Correlating Concentrations ............................................ 182 LIST OF REFERENCES ................................................................................................................... 185 LIST OF TABLES Table l: Ethylene and Monoalkylated Alkenes .......................................................... 44 Table 2: Cis and Trans Dialkylated Alkenes .............................................................. 44 Table 3: 1,1 Dialkylated Alkenes and Trialkylated Alkenes ...................................... 45 Table 4: Characteristic IR Frequencies (cm-1) of Alkylated Ethylenes ...................... 59 Table 5: Shift of location of first overtone of asymmetric =CH2 stretch of monoalkylated alkenes ................................................................................................ 61 Table 6: Predicted Concentrations of l-Octene and Ethylene ..................................... 67 Table 7: Experimental Design Versus Actual Experiments ........................................ 81 Table 8: Antoine Constants for l-octene and Isopar E ............................................... 88 Table 9: Literature Values for Constants in Temperature Dependent Density Equation ................................................................................................................................... 90 Table 10: Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # 26 ..................................................................................................................... 93 Table 11: Concentrations of Liquid Phase for Standards Containing Ethylene in 1- Octene, or Isopar E ..................................................................................................... 95 Table 12: Concentrations of Liquid Phase for Standards Containing 1-Octene in Isopar E ................................................................................................................................ 96 Table 13: Concentrations of Liquid Phase for Standards Containing Ethylene, l-Octene, and Isopar E ............................................................................................................... 97 Figure 1: Figure 2 Figure 3 Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: LIST OF FIGURES Schematic diagram of the FT-NIR Set-up .................................................... 46 Schematic Diagram of the Fiber Optic Cell .................................................. 47 Spectra of 98 wt %. l-Pentene, l-Hexene, l-Octene, l-Decene and Ethylene, Propylene, l-Butene Solutions in Isopar E (monoalkylated alkenes) in 6,080 to 6,150 cm-l Region in Overlaid Format at Room Temperature and Pressure .......................................................................................................... 50 Spectra of 98 wt %. Pure Octene Isomers (cis 2-octene, cis 3-octene, cis 4- octene and trans 2-octene, trans 3-octene, trans 4-octene) (cis and trans dialkylated alkenes) in 6,080 to 6,150 cm-l Region in Overlaid Format ..... 51 Spectra of 98 wt %. Pure Trialkylated Alkenes (cis 3-methyl-3-heptene, trans 3-methyl-3-heptene) in 6,080 to 6,150 cm—l Region in Overlaid Format 52 Spectrum of 98 wt %. Pure 2-Ethyl-1-Hexene (1,1 dialkylated alkene) and Octane in 6,080 to 6,150 cm-l Region in Overlaid Format ........................... 53 Spectra of 98 wt %. l-Pentene, l-Hexene, 1-Octene, 1-Decene and Ethylene, Propylene, l-Butene Solutions in Isopar E (monoalkylated alkenes) in 4,800 to 4,850 cm-l Region in Overlaid Format ......................................................... 54 Spectra of 98 wt %. Pure Octene Isomers (cis 2-octene, cis 3-octene, cis 4- octene and trans 2-octene, trans 3-octene, trans 4—octene) (cis and trans dialkylated alkenes) in 4,800 to 4,850 cm-l Region in Overlaid Format ...... 55 Spectra of 98 wt %. Pure Trialkylated Alkenes (cis 3-methyl-3-heptene, trans 3-methyl-3-heptene) in 4,800 to 4,850 cm-l Region in Overlaid Format. 56 Figure 10: Spectrum of 98 wt %. Pure 2-Ethyl-1-Hexene (1,1 Dialkylated alkene) and Octane in 4,800 to 4,850 cm-l Region in Overlaid Format .......................... 57 Figure 11: Spectrum of 10 wt % l-Octene, 1-2wt % Ethylene (20 times enlarged) and Pure Isopar E in 6,080 to 6,150 cm-l Region in Overlaid Format at Room Temperature and Pressure .............................................................................. 65 Figure 12: Measured and Estimated Pure Spectra for l-Octene and Isopar E in 6,080 to 6,150 cm-l Region in Overlaid Format at Room Temperature and Pressure .......................................................................................................... 65 xi Figure 13: Schematic Diagram of the High Temperature, Pressure Apparatus .......... 72 Figure 14: Schematic Diagram of the High Temperature, Pressure Vessel ................ 73 Figure 15: Guided Wave Single Sided Transmission (SST) Probe ............................ 75 Figure 16: Schematic Diagram of the FT-NIR Set-up; Spectrometer, Detector, Fiber Optic Probe, and Probe Holder Assembly .................................................. 78 Figure 17: Effect of Pressure on Spectra of Ethylene in Isopar E ............................. 85 Figure 18: Estimated Pure Ethylene, Propylene, and l-Octene Spectra as a Function of Temperature ............................................................................................... 86 Figure 19: Corrected Liquid Phase Concentrations at Each Temperature for All Runs. ....................................................................................................................................... 98 Figure 20: Full Data Used in PLS Modeling of Ethylene and 1-Octene ................... 102 Figure 21: Second Derivative of the Data used in PLS Model ................................. 103 Figure 22: PLS Ethylene Model PRESS and SEP vs Number of Principal Component Factors ...................................................................................................... 106 Figure 23: PLS l-Octene Model PRESS and SEP vs Number of Principal Component Factors ...................................................................................................... 106 Figure 24: Ethylene PLS Model Outliers ................................................................. 109 Figure 25: l-Octene PLS Model Outliers ................................................................ 109 Figure 26: Ethylene PLS model spectral Residuals ................................................. 111 Figure 27: l-Octene PLS Model Spectral Residuals ................................................ 112 Figure 28: PLS Fit Errors for Ethylene Over All Temperatures .............................. 114 Figure 29: PLS Fit Errors for l-Octene Over All Temperatures .............................. 115 xii Chapter 1 INTRODUCTION In situ, Real-Time Analysis In situ,, real-time monitoring of the chemical and physical changes that occur during processing of chemicals enables the processes to be optimized and controlled."2‘3’4’5 Information collected in situ by sensors is transmitted in, real-time to the process control computers which compare the state of the process to the desired state and take corrective action. Chemical information obtained by chemical analyzers, is invaluable in process control along with the information obtained from physical sensors.6’7 Benefits of closed loop process control where chemical analyzers are used are not limited to better process control or optimum operating conditions. Closed loop process control with feedback from chemical analyzers eliminates delays and the hazards of manual sampling and analysis.8’9‘10 An additional benefit for the environment is waste reduction or control in many instances. ' 1.12.13 Optimization studies in research and development areas also benefit from, real-time in situ monitoring via chemical analyzersm’IS These tasks often require investigation of numerous conditions such as different process parameters or raw materials, solvents etc. In situ monitoring via chemical analyzers can lead to faster and fewer numbers of experiments and thus to more rapid reaction or process optimization.””17 Another area that in situ, real-time monitoring excels is where the reaction or the process conditions prevent the use of an alternative analysis via conventional samplinglg'19 Unstable intermediates or products that cannot be determined under any conditions other than the reaction conditions are good examples of these cases.20 Often, the, real-time analysis required for fundamental research falls into the category of in situ monitoring.” Various chemical analysis techniques are available for in situ, real-time monitoring.22’23’24’25 Among a host of spectroscopic, separation based, dielectric and acoustic monitoring techniques, vibrational spectroscopy represents a particularly attractive choice owing to the unparalleled breadth and wealth of the molecular level information that can be obtained.26’27'28'29 Near-Infrared vs Mid-Infrared Analysis The NIR region contains weaker overtones of the fundamental absorptions and encompasses bands that result from the harmonic overtones of fundamental and combination bands associated with hydrogen atoms. Therefore, the compounds containing O—H, N—H, and/or C-H bonds lend themselves favorably to analysis by NIR spectroscopy. The first overtone of a fundamental stretching vibration generally appears at a location approximately equal to twice the fundamental frequency plus a relatively small shift to a , l h30 3 32 longer wavelengt which depends on structural and/or ambient conditions. However, this prediction rule does not always hold.33’34’35 For instance, the systems characterized by the presence of more complex combination bands, where a variety of fundamental and overtone transitions occur simultaneously, are among these unpredictable cases.36’37'38 The vibrational spectra of liquid solutions appear as broad bands rather than the narrow lines associated with the spectra of gaseous compounds, and these bands get broader with increasing energy, leading to substantial spectral overlapping problems in the NIR region. In these instances, it is difficult to distinguish overtones of fundamental stretching and/or overtones of combination bands for a meaningful study of molecular structure or for quantitative analysis. Due to the severe overlapping of broad bands, historically, the NIR region of the infrared spectrum was considered of little utility in molecular structure determination, and little attention has been paid to it until the last couple of decades. Only after the development of fiber optic technology and the implementation of some of the statistical tools for quantitative analysis, did N IR spectroscopy start to find more applications especially in in situ,, real-time analysis. One of the most important instrumental advantages of the N IR range over the MIR range is the fact that the inexpensive and readily available silica-type optical fibers can be used. The fibers, available in the MIR range are not as convenient and inexpensive as the silica- type optical fibers. They are quite brittle requiring stainless steel meshing as cladding to prevent breakage. Alternatives to optical fibers in the MIR, such as ATR (Attenuated Total Reflectance) probes via light pipes, suffer from similar problems especially for in situ,, real-time applications of process monitoring and control in manufacturing environments. Therefore, while MIR offers advantages in spectra] interpretations, N IR is exponentially more robust. The NIR range is characterized by lower absorptivities than the MIR range and is, hence, conducive to measurements of thicker samples or to the use of longer pathlengths. This is considered another advantage of N IR over MIR for in situ,, real-time analysis applications since the use of small pathlengths in process analysis is troublesome. Many processes contain solid particles which cause plugging of the small pathlength (> 1 mm) IR cells. Straightforwardness of the sample interfaces, such as fiber optic light transmission probes in the NIR region, is the reason for these devices to be commercially available at affordable prices; thus their popularity in use for in situ,, real-time analysis. Transmission and reflectance probes are commonly used sample interfaces in the N IR region. Despite numerous designs, the principles of transmission and reflectance probes are all based on the absorption of the sample according to Beer’s law. The use of these types of probes in systems where the analysis needs to be done under process conditions opened invaluable opportunities for the investigations of high temperature and pressure systems and/or systems involving reactivity or flammability hazards when sampled conventionally. Why Fourier Transform Near-IR? Although the superiority of FT-IR over conventional dispersive IR analyzers has been well accepted for some time, FT-NIR has a more recent history.39’4o’41 The grating or dispersive NIR analyzers suffer less compared to their MIR counter parts due to having more sensitive detectors and more energetic light sources in the NIR region. Recently, NIR instruments have begun to be used in process analysis applications where stability and the reproducibility are critical. Vibration and temperature fluctuations in these areas are a few of the causes of instability. In order to make more stable NIR instruments manufacturers have started to move towards FI‘ technology. FT-NIR also benefits from Fellgett's advantage (multiplex advantage) and J acquinot's advantage (throughput advantage) as is the case in the MIR region. Additionally, the Connes advantage (accurate frequency scale) leads to a stable wavelength axis in FT-IR or FT-NIR compared to scanning or grating instruments. All modern FI‘ instruments employ a high accuracy laser in the interferometer where all frequencies can be mathematically related to the laser frequency leading to a very accurate frequency scale. Hence, FT-NIR instruments are advantageous over dispersive NIR instruments for in situ,, real-time monitoring applications. Historical Background In situ, Real-Time Determination of Alkenes by Vibrational Spectroscopy Historically, the use of conventional (off-line) vibrational spectroscopy to study chemical systems has been popular; recently, the use of vibrational spectroscopy for in situ monitoring of processes is making inroads in, real-time analysis. In the MIR range in situ determinations are mostly restricted to modified cells where the chemical reaction takes place and the reaction mixture is monitored in, real-time. Another alternative is to have a flow-through cell where the reaction mixture or the sample can flow through enabling, real-time monitoring. This option, while, it is pretty popular with the analysis of gaseous samples, it can be quite troublesome with liquid samples due to the possibility of having different phases (solid particles, gas bubbles) and the coating of the cell windows. Moreover, none of these cells lend themselves to use at high temperatures and pressures without extensive modifications. Regardless, they have been used in the laboratory environment, with extensive modifications, quite successfully. Determination of Alkenes in Mid IR Range Us_in_g Modified Reactors as IR Cells Among the applications performed in the laboratory environment, the ones pertaining to the determination of alkenes can be considered precedent to this study. For example, Karge and Bolding42 studied the reactions of olefins by in situ IR using a zeolite catalyst. An IR cell was modified which simultaneously served as the fixed-bed flow reactor. Similarly, hydroformylation of olefins were studied by a number of different groups where the IR cell functioned as the reaction chamber as well. Yin et a1. 43 used Rh-based supported liquid phase catalysts in heterogeneous hydroformylation of olefins at 50-150 °C by using a stainless steel tube (6 mm diameter 350 mm long) as the reactor /IR cell and monitored the reaction mixture, real-time. Chuang and Pien44 studied hydroformylation of ethylene on rhodium/silica catalysts and monitored the reaction mixture by in situ IR spectroscopy. Xia et al.45 demonstrated that the hydroformylation of olefins is faster with a rhodium-phosphine complex catalyst in 2-ethylhexanol using in situ IR spectroscopy. Garland and Bor46 in another study of hydroformylation of olefins with rhodium containing catalyst used 3,3-dimethyl-l-butene, and monitored the reaction intermediates via in situ,, real—time IR analysis. Hydroformylation of propylene was studied similarly under high temperature and high pressure (up to 17 atm) at reaction conditions by Pan et al.47 using in situ IR. Cobalt catalysts were used by Mirbach et a1. 48 for the hydroformylation of 1-octene in hydrocarbon solvents and the in situ IR spectroscopy revealed that excess l-octene is isomerized to internal olefins under these conditions, but not hydroformylated. Determination of Alkenes in Mid IR Range Using Internal Reflectance Crystals A similar hydroformylation study was carried out by Moser et a1.49 However, a different cell design was used in this study to monitor 1-hexene and its conversion products. The reactor was embedded with a cylindrical internal reflectance crystal (CIR) which was coupled with the FT-IR system (CIR-FTIR). These type of reactors, embedded with the internal reflectance crystal have been popular in in situ monitoring of reactions where a sample can not be removed from the system. Several examples can be found in literature . . . . . . . o, 1. 2 about their implementauons in areas concerning other than olefinic compounds.5 5 5 An alternative way of using an internal reflectance crystal is to install it into a probe tip or in a flow-through cell. The connection to the spectrometer and the detector is in this case accomplished by either the light pipes or the fibers that can transmit in IR region of the electromagnetic spectrum. One of the best example applications of this type of instrument design is given by Moser et a1.53 describing the CIR-FT IR system using chalcogenide glass optical fibers between the cylindrical internal reflectance element and the FT-IR. Remote analysis in this fashion provides more flexibility between the FT-IR and the reaction chamber. In this paper cobalt catalyzed hydroformylation of olefins described where CIR containing reaction chamber was operated under high temperature (90°C) and high pressure (750 psi) quite successfully. Determination of Alkenes in Mid IR Using Attenuated Total Reflectance Elements Comparable to CIR, Attenuated Total Reflectance (ATR) elements can be used embedded in either reactors, in flow-through cells or at the tip of the probes for in situ monitoring of various reactions. Altman and Jalkian54 describe in a patent where an ATR element was installed in a flow-through cell to follow alkylation of olefins. A stream of olefins and a stream of isobutanes are contacted in the reactor in the presence of an HF acid catalyst. Further, the information obtained from the analyzer was used in controlling the HF, water, and sulfolane feed streams to the reactor. Rekoske and Barteau55 used the ATR element in a probe to monitor the carbonyl coupling in liquid-solid and gas-solid reactions with reduced titanium reagents. They coupled the ATR probe with a FF-IR system and monitored the olefins formed as intermediate compounds. The signal strength and background response are some of the concerns that both the ATR and the CIR element coupled systems encounter leading to lower signal to noise and lower sensitivity when compared with conventional IR or FT-IR instruments. Determination of Alkenes in Mid IR Range Using Flow-Through IR Cells Among the in situ IR techniques the most popular ones are where flow-through cells are used. This is especially practical with gas phase reactions. Several applications involving determination of alkenes via in situ IR or FT-IR coupled with flow—through 1.56 monitored the cells at various pathlengths can be found in the literature. Atkinson et a gas phase reactions of alkenes with ozone by using in situ FI-IR. 1-pentene, l-hexene, 1- heptene, l-octene, 2,3—dimethyl—1-butene, cyclopentene, and 1-methylcyclohexene were investigated at room temperature and under slight vacuum (740 Torr). Intermediate compounds of the reaction was determined as well which led to defining the reaction mechanisms for these reactions. An earlier study by the same research group57 was conducted for the gas phase reactions of a series of l-alkenes and l-methylcyclohexene with the OH radical in the presence of N O. 1-pentene, l—hexene, l-heptene, 1-octene, 2,3-dimethyl-1-butene, cyclopentene, and 1-methylcyclohexene were investigated at similar conditions using in situ FT-IR where this time a gas chromatograph is used to correlate and confirm the IR results. The mechanism of the Wacker Oxidation of alkenes over Cu-Pd-Exchanged Y Zeolites 158 was investigated by Espeel et a where an in situ IR analyzer is used for the determination of the effects of reactant partial pressure in the rate of oxidation. Jiang et 10 al.59 used in situ FT -IR similarly to study the surface oxidation of light hydrocarbons on prseodymium where the reaction temperatures reached to 573 °K. They demonstrated that having a flow-through cell allows the cooling of the reaction products and that the determination of the reaction products under reaction conditions is not always necessary. Products and the mechanism of the gas-phase reactions of alkenes and N 03 was investigated by Cariati and Rindone60 by using an in situ IR in a 480 L reactor. Products were also investigated using gas chromatography by sampling the gas mixture periodically. These authors demonstrated the value of in situ,, real-time monitoring with almost instantaneous results over the sampling techniques with some response time. Martens and Crouset61 used an in situ IR as an on-line analyzer for the monitoring and control of the manufacturing of olefins and diolefins by steam cracking of hydrocarbons. The reaction mixture of the steam cracking contains paraffinic hydrocarbons, naphthenic hydrocarbons, and aromatic hydrocarbons, and the cracking temperature was controlled by the response obtained from the on-line IR analyzer based on the concentrations of naphthenic compounds which were monitored in the range of 0.8-2.6 pm. The mechanism of selective oxidation reactions of 1-butene, 1,3-butadiene to maleic anhydride was studied by Wenig62 using in situ IR spectroscopy. In this extensive study other analytical techniques such as x-ray diffraction, laser Raman spectroscopy, SEM, X- ray energy dispersive spectroscopy were also used for the determination of the catalyst and the reactions that take place on the surface of the catalyst. Similarly, Moser63 studied the selective oxidation of olefins and paraffins to maleic anhydride using in situ IR and in 4 . k, 6 ’65'66 studied the same situ Raman techniques. Wenig and Schrader, in earlier wor reaction at elevated temperatures (up to 300 °C) where reaction products were determined in a flow-through FT-IR cell. Another implementation of IR or FT-IR flow-through cells has been in the area of coupling with other analytical tools such as Gas, Liquid or Super Fluid Chromatography (GC, LC, SFC). Infrared spectroscopy can be used as the detection system for these techniques; the column effluent is interfaced with the IR via a flow-through cell. Infrared spectroscopy or the FT—IR enhances the versatility of these separation techniques. Several examples of the determination of alkenes can be found in the literature as described below. For instance Koizumi et a1.67 separated gasoline over a silica gel column (Devosil-60, 5 pm particle size, 25 cm long, 4.6 mm ID) and determined groups of hydrocarbons (alkanes, alkenes, and aromatic hydrocarbons) by using FT-IR as the detector. Column effluent was pumped through a flow cell (24 uL with 0.3 mm path length) where the FT- IR determination was accomplished. First the alkanes then the alkenes eluted from the column and the aromatics were back-flushed in order the reduce the analysis time. Another LC-IR determination of alkenes was accomplished by Dobrov et al.68 for the monitoring of the phenol alkylation process by olefins. A silica gel column (particle size 0.074-0.088 mm) was used and the mobile phase was optimized for the separation of paraffinic and olefinic hydrocarbons. 12 In the area of GC-IR and GC/FT-IR coupling, several applications can be found concerning alkenes. Sojak and co-workers69 combined a capillary gas chromatography with a FT-IR and a Mass Spectrometric Detector (MSD) for the identification of isomers of n-nonadecenes. A mesogenic stationary phase was found to be better than a nonmesogenic stationary phase for the separation of 17 possible isomers of n—nonadecene. Identification of compounds was confirmed both by the IR and the MSD where IR provided distinctly different spectra for the geometrical isomers. Two separate groups Listemann et al.70 and Gurka et a].71 similarly studied number of compounds linked with environmental extracts including numerous alkenes via GC/FT-IR/MSD. In one of these studies 106 compounds were identified many of them jointly based on functional groups. FT-IR/MSD detector combination was found to be invaluable in enhancing the detection and reinforcing the identifications. Implementation of FT -IR via a flow-through cell as the detection system in SFC has also been quite popular since the determination of high molecular weight compounds or thermally labile compounds where SFC excels has always been in need of better detection techniques. Unfortunately, many of the modifiers used in SFC interfere with the IR determination. However, there are still several IR vibrations such as the C=O or the C=C stretching that are interference free. Moreover, the use of deuterated solvents as modifiers allows the detection of OH stretching vibrations while the use of chlorinated solvents (e.g., CCl4) preserves the fingerprint region.72 However, determination of light l3 alkenes is not commonly investigated by SFC since less complicated alternative techniques are available. The biggest disadvantage of flow-through cells is the fact that solids cannot be easily analyzed. Diffuse reflectance IR spectroscopy can be used for in situ monitoring of solid surfaces. The best examples of these type of applications pertaining to determination of alkenes are in the area of catalytic reactions of alkenes on surface of solid catalysts. For instance, using in situ diffuse reflectance FT-IR, Takeuchi et a1.73 studied the noble metal promoted (Co/Si02), selective vapor phase hydroformylation of ethylene and obtained strong absorption bands of linear and bridged CO species under the reaction conditions. In the course of the reaction, changes observed in these bands suggested that the linear CO species plays a major role in the CO insertion process to ethylene. Johnson et al. used diffused reflectance IR in determination of hydrocarbons for the catalytic studies of molecular sieve. Along with a gas chromatograph which was used in injections of samples collected during the course of the reaction, diffuse reflectance IR monitored the C-H stretching of the hydrocarbons that formed in the channels and pores of the molecular sieve.74 Determination of Alkenes by Near IR Spectroscopy Relatively fewer number of vibrational spectroscopic determinations of alkenes have been reported using the Near-IR (NIR) region and as in situ measurements.75’76’77’78’79’80’81 Maggard,82 in a patent describes the determination of PIANO compounds (paraffin, isoparaffin, aromatics naphthenes, and olefins) in fuel streams using NIR spectral region. 14 The technique uses 1672-1698 and/or 1700-1726 nm for naphthenes, 1622-1650 and/or 2064-2234 nm for olefins, 1092-1156 and/or 822-884 nm for aromatics, and 880-974 nm and/or 1152-1230, 1152-1230, 1320-1380, 1470-1578, 1614—1644, 1746-1810, 1946- 1810, 1940-2000, and/or 2058-2130 nm for paraffins and isoparaffins. The statistical treatment of the data such as multiple regression has been used to help the determination of these families of hydrocarbons as well. This technique is especially designed to aid in blending of fuels such as diesel fuels. A similar fuel analysis, determination of octane number of gasoline is described by Parisi et al.83 This analyzer was used on-line via fiber optic cables and the NIR cell was installed in a side stream of the process. The method checked well with the values measured by conventional techniques. Ethylene was determined by NIR spectroscopy to monitor its polymerization reaction induced by an exciplex laser at high pressure (3200 bar), and high temperature (190-230 °C) in gas phase in a study by Breckemann et. al.84 A kinetic scheme was presented which adequately describes the polymerization kinetics as a function of temperature, overall density, laser pulse energy, and conversion. Buback and Tups85 in an earlier work studied the high pressure co-polymerization of ethylene and carbon monoxide via IR and NIR spectroscopy. The reaction was monitored in a stainless steel cell. Laser light was used for the photochemical initiation of the polymerization likewise. Lysaght86 describes a field portable fiber optic near infrared spectrometer for fuel analysis applications. This is a short wavelength (700-1100 nm) NIR instrument designed to be light weight (slightly larger than a briefcase) where the instrument is controlled by a 15 laptop computer. All of the components of the analyzer are chosen with this criterion in mind. A tungsten lamp was used as the light source. A thermal electric cooled 1024 element silicon photodiode array detector was used along with a holographic grating for wavelength dispersion. Volume percent ratios of aromatic and saturated compounds in fuel were determined as an example application. Chemometric data treatment was used for this determination. All of the NIR applications discussed above are used for the general determinations of olefins as a group of compounds and that they do not distinguish among its members. In this research, an attempt to determine ethylene and the other monoalkylated light alkenes simultaneously at elevated temperatures and pressure has been attempted for the first time in the NIR spectral range. Ethylene and monoalkylated light alkenes are industrially important compounds used in manufacturing of polyethylene and similar polymeric materials. The use of on-line, at- line and off-line vibrational spectroscopy for the control and monitoring of polyethylene solution processes has been investigated earlier. Lange et al.87 described an on-line FT- IR analyzer for the simultaneous determination of ethylene and l-octene in the MIR spectral range where ethylene was determined at 1909 cm‘1 and l—octene at 1829 cm". The information obtained from the analyzer is used in control of the feed addition to the polyethylene solution process. Other on-line measurements such as density, viscosity, melt index, and gas chromatography have also been studied for monitor and control of P01yethylene manufacturing processes.”89 l6 Chemometrics for N ear-IR Spectroscopy The application of multivariate statistical calibration and prediction methods to quantitative FT-NIR spectroscopy has been one of the most important reasons for its popularity today. Chemometrics can be broadly defined as the application of statistical and mathematical methods for the design or optimization of chemical experiments and for the efficient extraction of information from chemical data.90 Multivariate data analysis has been shown to improve precision, accuracy, reliability and applicability of infrared spectral analysis relative to conventional univariate methods of data analysis. Multivariate methods drive their power from the simultaneous use of multiple intensities (i.e. multiple variables) in each spectrum. Thus, the problem of spectral interferences can be eliminated with the use of any one of a number of multivariate calibration and prediction methods.9l’92 These methods include classical least squares (CLS), inverse least squares (ILS), q—matrix, partial least squares (PLS), and principal component regression (PCR). Correlation and Kalman filter methods have received less attention in the infrared spectrosc0py therefore, and will not be described here. PLS and PCR exhibit the greatest range of applicability and are attracting the most attention in the NIR applications. In spectroscopy, CLS is a multivariate least-squares procedure based directly on Beer's law. Infrared spectroscopists have sometimes referred to this method as the K—matrix method.”94 The CLS model accounts for errors in the spectral measurements. CLS can accommodate spectral intensities at all frequencies for all calibration samples. In general, 17 all overlapping spectral components should be known for optimal performance of CLS. By being a full-spectrum method, CLS has the ability to achieve improved precision since there is a signal averaging effect when many or all the spectral intensities are included in the analysis.95 The ILS method is a least-squares method [sometimes called P-matrix, or multiple-linear regression (MLR) when applied to near-infrared]. It uses the inverse of the Beer's law as its model. That is, concentration is modeled as a linear combination of absorbances. The ILS model accounts for errors in the reference concentrations. The ILS technique is a frequency-limited method and, therefore, is not capable of the precision improvements of CLS from signal averaging of multiple intensities. However, ILS can often be a useful method even if only one component is known for the calibration samples.96 The factor analysis methods of PLS and PCR are capable of being full-spectrum methods. Like ILS, PLS and PCR can be employed even when only one component is known in the calibration samples. Both PLS and PCR methods factor the spectral data calibration matrix into the product of two smaller matrices. This amounts to a data compression step where the intensities at all frequencies used in the analysis are compressed to a small number of intensities in a new full-spectrum coordinate system. This new coordinate system is composed of loading vectors that can be used to represent the original spectral data. The intensities in the new full—spectrum coordinate system (called scores) are then used in a model where concentration is presumed to be a linear function of these intensities. Thus, PLS and PCR are methods that are concerned with modeling both spectra and concentrations during calibration. PCR performs the factoring of the spectral data matrix without using information about the concentrations. Therefore, there is no guarantee that the full-spectrum basis vectors that are associated with PCR are relevant for concentration prediction. PLS, on the other hand, performs the spectral factoring trying to account for the spectral variation while assuring that the new basis vectors relate to the calibration concentrations. Thus, PLS sacrifices some fit of the spectral data relative to PCR in order to achieve better correlation to concentrations during predictions.97 The diversity of multivariate methods available for application to quantitative spectroscopy can create problems in terms of which one to use. The choice of multivariate method for NIR spectroscopy often depends on the particular data set. Therefore, the spectroscopist usually is faced with comparing the predictive ability of a couple of different algorithms. However, lately more significant comparisons of these methods from a statistical point of view have been made and methods were compared. One of the best examples of this kind of comparison was made by Thomas et al.98 The quantitative prediction ability of the four most heavily used multivariate calibration methods in infrared spectroscopy (CLS, ILS, PLS, and PCR) have been compared by using extensive Monte Carlo simulations. The simulations were performed assuming that Beer's law holds and that spectral measurement errors and concentration errors associated with the reference method are normally distributed. Eight different factors that could affect the relative performance of the calibration methods were varied in a two-level, eight—factor experimental design in order to evaluate their effect on the prediction abilities of the four methods. It was found that each of the three full spectrum methods has its range of superior performance. The frequency-limited ILS method was never the best method, although in the presence of relatively large concentration errors it sometime yields comparable analysis precision to the full-spectrum methods for the major spectral component. Among the full-spectrum methods, PCR and PLS were found to be very similar. The major difference between these two methods was that PLS seems to predict better than PCR in the cases when there are random linear baselines or independently varying major spectral components which overlap with the spectral features of the analyte. This result was not surprising when one considers the fact that the PCR decomposition is based entirely on spectral variation without regard to component concentrations while the PLS decomposition is dependent on the component concentrations. Because the spectral variations caused by the presence of a random linear base line or major spectral components can be reasonably large, the PCR decomposition is significantly influenced by variations which have no relevance to the analyte concentrations. Therefore, PCR is not able to predict as well as PLS in these situations. It was also found that the differences between CLS and PLS are more numerous and complex, but are also affected by the algorithms used in the analysis. The PLS method was the optimal performer or close to optimal over the wide range of conditions COHSidered in this study. Unlike CLS, all overlapping spectral components do not have to 20 be known, nor does the spectral base line have to be explicitly modeled. It seems that the only inherent dangers of using PLS result from over- or underfitting by an inappropriate number of factors. It is important to realize that factors other than prediction ability often need to be considered when choosing a calibration method. For example, the estimated pure- component spectra generated by CLS contain significant qualitative information which is very useful for the determination. The PLS method can also yield qualitative information of better quality than is generally possible with PCR, but of poorer quality than CLS. However, it should be noted that this study assumed that Beer's law holds. The biggest problem comes in real-life applications where the concentrations of the components are high enough to be outside the linear range of Beer's law. In these instances the choice is usually PLS. It seems that there are certain applications that CLS will be preferable not because its predictive ability is superior, but it can provide quick, qualitative information. One example of such a case can be a feasibility study in the laboratory environment where several different chemical systems are being screened. The advantage of CLS in this case would be the number of standards needed to build the model, since in CLS, one can built a reasonable model by only using the pure spectra of the components. However, robust models to be implemented in process analysis applications would always have to be built with a sufficient number of standards drawn from careful 21 experimental design schemes representing the concentration ranges used in the application. These types of models also need to be cross validated before they can be implemented in process analysis applications which will require preparation of an adequate number of standards. Therefore, for such process analysis application CLS would lose its advantage in terms of a lower number of standards. Numerous applications have appeared in the literature in last five years that compared CLS and PLS. The PLS method has been the choice, overwhelmingly, for applications in process analysis due to its robustness and ability to deal with possible sample matrix changes from chemical interferences or temperature effects along with non-linearities from Beer's law. For instance: Marjoniemi and Mantysalo99 compared PLS, PCR, ILS and CLS to measure dye components in the visible region and PLS gave the best results. Lin and Brown100 measured the salinity of sea water in NIR (680-1230 nm) again PLS calibration produced a better predictive model. Ortho and metha cresol in water was determined for an array of four piezoelectric crystals by Wei.101 et a1. PLS performed better than CLS because there was some co-linearity problem with the data. In another study, PLS gave somewhat better results than CLS in the determination of ascorbic acid in pharmaceutical preparations, but only in the more complex samples.102 Slightly better 3 a visible results for PLS were also obtained in a NIR tobacco analysis investigation,10 absorption measurement of myoglobin oxygen saturation,'04 and in on-line analysis of sugars in a fermentation process.105 The PLS method was said to offer a more workable approach than CLS in the analysis of mixtures, due to the mixture constraint.106 It was also claimed that PLS could take nonlinear effects into account better than CLS.107 22 N i,108 has studied the reaction of the trace metals Co, Ni, Cu, Zn, and Fe with a chromogenic reagent in the visible region with multivariate calibration methods. He found that PLS performed better than CLS. Van de Voort and co-workers109 used FT-IR for the analysis of milk and found a viable technique for this purpose when it was used with PLS. Miller in a NIR study combined the first overtone and the second overtone regions with the multivariate methods of PLS and CLS for the analysis of EPDM (ethylene-propylene-dien monomers) polymers. The PLS coefficient spectra and the CLS reconstructed spectra obtained from the calibrations were used to determine the sources of the unknown spectral effects. Results indicated that the combination, first overtone, and second overtone regions of the spectrum can be used to determine ethylene and propylene concentrations in the terpolymers, and the combination region can be used to determine diene concentrations. Because the unknown interaction effects are present in the spectra of these materials, the PLS calibration method gives more accurate calibrations than CLS.l ‘0 On the other hand, some studies indicated that CLS and PLS results were equivalent for their sample sets, which included the determination of cadmium by inductively coupled [11 plasma mass spectrometry, the determination of aromatics and saturates in aviation fuel by NIR,112 and the estimation of crude lipid content in trout by NIR.113 23 Goal of This Research The overall goal of this study was to find distinguishable features for ethylene and monoalkylated light alkenes in the NIR region, so that fiber optic probes could be used for the simultaneous, in situ,, real—time determinations of these compounds at elevated temperatures and pressures. The first part of this research is involved with measurements made at room temperature and pressure to establish the feasibility of the analysis. The in situ measurements for the determination of the effects of the temperature and pressure on this analysis was done in a separate system where a high pressure, temperature apparatus was coupled with the fiber optic FT-NIR spectrometer. An FT-NIR instrument incorporating a sample cell via fiber optic cables was used for the feasibility study. Ethylene and monoalkylated light alkenes namely propylene, l-butene, l-pentene, 1-hexene, l—octene, and l-decene were used in this determination, Various other alkylated alkenes (e.g., 1,1 dialkylated, cis, trans dialkylated, and trialkylated alkenes) were investigated to determine the effects of molecular structure on this determination. The first overtone of the asymmetric =CH2 stretch of the monoalkylated alkenes (6,080- 6 150 (:rn~ 1) was found to be unique for alkenes, and was used to build a model based on ClaSsical Least Squares (CLS) regression. A mixture of ethylene and l—octene was taken th example mixture to prove feasibility at room temperature and pressure. The as e 24 reliability of the results was tested using the residual spectra which were obtained by subtracting the estimated spectra from the measured spectra. In the second part of this research the effects of elevated temperature and pressure for the determination of light alkenes were investigated, and calibration models were developed using high pressure, temperature apparatus. The ethylene and l-octene system, evaluated during the feasibility study was investigated at elevated temperatures and pressures to provide continuity from the feasibility study. Considerable difficulties are involved in preparing well-known mixtures of the components to build calibration models for accurate quantitative determination at elevated temperatures and pressures. Consequently, for this particular work, in situ fiber optic probe technology was essential. A special apparatus was built to obtain the spectra of known concentration mixtures at varying temperatures and pressures. A high pressure vessel was modified to incorporate a fiber optic probe which was coupled to the FT-NIR spectrometer. The high pressure vessel was placed in an oven. Calibration standards were prepared gravimetrically and the concentration of the liquid phase was corrected for each temperature setting. Calibration models were built using partial least-squares (PLS) regression to predict the concentrations of these compounds at varying temperatures and pressures. Chapter 2 THEORETICAL BACKGROUND Effects Of Temperature And Pressure On Vibrational Spectroscopy The effects of temperature and pressure on electronic and vibrational spectroscopy have been studied in solids more than other phases since these effects can be investigated over a wide temperature and pressure range without observing too many phase changes.m'”5" 16 Effects of either high pressure or temperature on vibrational modes are mostly due to changes relative to spin states, oxidation states, and changes in geometry.”7’118 However, all the general changes in vibrational spectroscopy can be listed as follows: 1. Pressure or temperature induced phase transitions, 2. Frequency shifts due to pressure and temperature, 3. Band shape and intensity changes, 4. Splitting of degenerate vibrations, 5. Doubling of absorption vibrations, 6. Sensitivity of vibrations to expansion of molecular volume. 25 26 Other effects of pressure, such as the effects on hydrogen-bonded systems and mode softening, will not be discussed here. Additionally, the effects of temperature and pressure on the vibrational spectroscopy of liquids and dissolved gases in liquids are the focus rather than gas phase (only) or solid phase (only) systems. However, where there are similarities no differentiation will be made. For instance, some of the effects are either the same or very similar for solids and liquids. Similarly, effects can be the same for gaseous compounds and their solutions in liquids. Pressure or Temperature Induced Phase Transitions If the applied pressure or the temperature causes a phase change, substantial differences can be observed in the vibrational spectra. This is a consequence of the differences between the selection rules for the two different phases.l 19"” A change in the molecular symmetry of the compound would be the most important reason for substantial changes in spectra. However, spectral changes occur during phase changes where there are no known changes in the molecular symmetry of the molecule. These changes are due to a change in the distance between molecules in going from gas to liquid and to solid phase. When the molecules are closer together more molecular interactions occur which may effect the vibrational energy levels of the molecule. The molecular interactions may be in the form of collisions. Two types of collisions are described in literature: adiabatic and diabatic. After an adiabatic collision the molecule is left in the same energy level that it had before the collision. With diabatic collisions, 27 there is a change in the energy level of the molecule. This type of energy changes which may be caused by temperature or pressure changes will influence the vibrational energy levels of the molecule since AE = hcfi and may cause frequency shifts, intensity changes, and band broadening. ”"122 Mixtures behaves similar to the pure compounds when there is a phase transfer from vapor to liquid phase. Additional intermolecular interactions are expected between the compound and the solvent molecules which will affect the vibrational spectra. A good example was reported by Morin and co-workers123 using supercritical carbon dioxide and liquid carbon dioxide as solvent. Spectra of numerous compounds were collected in the gas phase, in supercritical carbon dioxide, and in the liquid carbon dioxide. Substantial frequency shifts were observed for the (C-H), (C=C), (C-H out of plain), (C-H), and (C=O) vibrations studied. The frequency shifts from gas phase to solutions of the compounds of interest in the supercritical phase observed were 1-3 cm’1 less than the shifts observed from supercritical fluid to liquid phase (3-23 cm"). This illustrates the temperature, pressure induced phase changes on spectral shifts due to the increased molecular interactions. Another example of intensity and band shape changes and frequency shifts in vibrational SpeCtrosc0py because of phase changes is given by Taha and Tosson.124 The intensity and frequency of N-O stretching mode of crystalline Ba(NO3)2 was monitored. When the phase changed from ordered (I) to disordered (11) between 25-400°C, changes in band shape, intensity and frequency shifts were observed. These spectral changes due to phase 28 change were explained similarly by density changes of the compound which affect intermolecular interactions. The light alkenes investigated in this study mostly remain in one phase under the experimental conditions used. Thus, no phase shift transitions are expected to be observed for these compounds. Frequency Shifts Due to Pressure and Temperature Pressure and temperature can induce other changes in the geometric configuration of the 126J27 compounds, (e. g., conformational changes, isomerizations,‘25 deformation, and 128 reorientations). When this happens substantial changes can occur in vibrational frequencies. There are numerous studies that indicate conformational changes and related 129J30 IR or Raman frequency shifts in liquids, gases,I31 and lately with biochemical compounds such as proteins.132 One of these applications given by Kato et al. '33 investigates the temperature, pressure and solvent effects on the 1,3 dichloropropane conformational equilibrium between the trans-gauche and gauche-gauche conformations and provides a correlation between enthalpy differences due to pressure and temperature changes and the frequency shifts of the C-Cl stretching mode. Other frequency shifts due to temperature occur with the thermochromic compounds.134 The cause of this type of effect is usually associated with the intramolecular proton or 135 l. electron transfer. One case is described by Hoshino et. a where they studied the thermally induced proton transfer in N,N'-bis(salicylidene)—p-phenylenediamine crystals. 29 The O—H vibrational stretch was monitored in the IR region showing considerable broadening and a frequency shift toward lower energy. For molecules that are not undergoing a phase transition or a conformational change, the normal coordinates of the vibration remain unchanged. Since the masses also remain unchanged, any frequency shifts are due to changes in force constants.136‘137 Sherman has developed a model to determine the effect of pressure on force constants and thus, frequencies.138 According to this model, a molecule can be described by a potential V=A-Br'n+Cr'In [1] where A, B, C, n, and m are constants and r is the interatomic distance. The rate of change of the force constant k with r is given by dk/dr = -(n + m + 3) kO/ro [2] where kg and r0 are the ambient pressure values of k and r. A Lennard-J ones potential shows a force constant change of dk/ko= -21 (If/1'0 [3] which amounts to a 21% increase in k for 1% decrease in r. 30 Pressure effects for solids cause changes for both inter- and intramolecular interactions. This is illustrated by the examination of the equation kE/drE = kl/drl [4] where kE is the external force constant and k1 is the internal force constant. The values rE and rI represent the respective compression. The order of frequency shifts with pressure is 1-3 cm'1 kbar'l for external modes. For internal bond-stretching modes, the range is 0.3-1 cm'l kbar’l. Bond-bending modes are less affected and are on the order of 0.1-0.3 cm'1 kbar’l. These estimates are for average behavior and there are exceptions which do not follow the general trends. Since the pressures required for these types of effects (~14,000 psi) are much higher than these employed in this study (max experimental pressure < 750 psi), no frequency shifts are expected for the first overtone of the asymmetric =CH2 stretch of ethylene and the monoalkylated alkenes. Band Shape And Intensity Changes It is known that band shape and intensity changes occur as well as frequency shifts due to temperature changes in vibrational spectroscopy. These changes can be described by the Boltzmann distribution functionm’140 The relative populations of the various energy levels are calculated by: 31 n. _1 : e—(Ei—EoflkT [5] no Where 11, and no are the numbers of molecules in the ith and zero energy levels, (Ei-Eo) is the energy difference between the levels, k is Boltzmann’s constant and T is the absolute temperature. For vibrational spectroscopy, the lowest possible energy level is where v=0. If we substitute the energy term AB = th)’ into equation [5], we obtain _i _ e—hCB/kT [6] As can be seen from this equation at higher temperatures the number of molecules at zero energy level will decrease since a fraction of the molecules will be at v: 1, and a smaller fraction in v=2, etc. This will result in a decrease in the absorbance since the absorbance is proportional to the population of molecules in the v=0 level according to the Beer's law. In the liquid phase, a general broadening in the shape of the band occurs along with a decreased intensity of the band when temperature is increased. Several different studies relate the shape of the band to experimentally measurable physical parameters such as temperature, area or height of the absorbance band. One of these techniques is called the correlation-function approachm’142 According to the correlation-function calculations the shape of a spectral band can, in general be defined by band moments M(n). 32 M(n) = j (to — m0)“ I(u))d(o [7] —@ where n = 0,1,2. . ., (1) = 21w , I((i)) is the height of the band at the angular frequency (1) of the vibration (for instance I = ((00) is the height of the band at the center). These band moments can be expended in a Taylor-series. However, only the first few moments can be evaluated experimentally and related to temperature changes.143 For example M(2) = 2kT/I where T is the absolute temperature, and I is the moment of inertia of the linear solute molecule for two atomic molecules such as HCl or DC]. Other methods correlating the band shape to the experimentally measurable parameters use mostly least-squares fitting via computer programs.144 The cause of band shape changes can be explained by population changes in the rotation-vibrational energy levels. The temperature changes are similar to those observed with vibrational energy levels and can be explained by Boltzmann statistics too. The light source in vibrational spectroscopy causes an excitation of the rotational energy levels along with the vibrational excitation levels. The fine structure of the rotational vibrations are more visible in the vibrational spectra of gas phase compounds. In the liquid phase or with solutions of gases in liquids, the rotational energy levels between the vibrational energy levels are closer together, and often the rotational fine structure is lost. 33 In the liquid phase, a general broadening in the shape of the band occurs along with a decreased intensity of the band maximum. Several studies relate the shape of the band to physical parameters such as temperature.'45‘l46 Band shape changes can be explained by a population change in the rotation-vibrational energy levels which are influenced by temperature similarly to the vibrational energy levels. The radiation source in vibrational spectroscopy causes excitation of the rotation—vibrational energy levels as well. This rotation-vibrational fine structure is more visible in the spectra of gas phase compounds. In the liquid phase or with solutions of gases in liquids, the rotation-vibrational levels are effected more than gases due to collisions between the molecules. In the liquid phase, the distance between the molecules get smaller leading to increased number of collisions. Therefore, in condensed phase, the rotational structure is blurred by frequent molecular collisions and IR vibrational bands are broad with no rotational structure.147 Solutions of small molecules carries the characteristics of the gas phase more than the liquid phase. Thus, For solutions of small gas molecules such as ethylene and propylene, fewer collisions occur compared to the condensed phase. Therefore, more pronounced population change in the rotation-vibrational energy levels is observed compared to the condensed phase which will lead to more significant broadening in the band due to the temperature change. This is why a more pronounced temperature effect can be seen in the vibrational spectra of solutions of ethylene and the other gas members of monoalkylated light alkenes (propylene, l-butene) compare to the liquid members. Overall, the increased temperature tends to decrease the band intensity and increase the width of the band. 34 Splitting of Degenerate Vibrations A loss in the degenerecy of E- or F- type vibrations with pressure is also possible. In some cases, this may be due to a lowering of the symmetry of the molecule where a compound may have two or more molecules per unit cell. It is possible that the vibrations in the unit cell might couple, causing a factor-group splitting, or Davydov splitting. '48’149 Dovydov splitting (also known as crystal field splitting) is observed in solids with a crystalline structure. Wu C.K. et a1.150 studied the infrared active rocking modes of crystalline polymethylenes in orthorhombic and monoclinic structures. Also, instances are possible whereby unallowed vibrations may become allowed by application of pressure.15 ' No such observations are expected for ethylene and the monoalkylated alkenes since no symmetry changes are predicted to be induced under the experimental conditions used and these compounds are not crystalline. Doubling of Absorption Vibrations In the course of various studies it is observed that a doubling of bands can occur with pressure or temperature.15 2"5 3 This may be due to a lowered site symmetry. Alternatively, two accidentally overlapping vibrations may occur at the same frequency. These may be induced to separate because of a difference in the pressure dependencies manifested by the two vibrations, or separate due to factor—group splitting.‘54 Fermi . . . 1 5 resonance can also cause some band doubling as the pressure 1S increased. 5 35 It is also possible that at high pressure and temperature, normally forbidden modes might become allowed (in a lower site symmetry) due to structural interconversions.156 No such observations are predicted for ethylene and monoalkylated alkenes due to changes in pressure and temperature, since no site symmetry changes are expected to be induced under the experimental conditions employed. Sensitivity of Vibrations to Expansion of Molecular Volume Generally, for complexes, molecular expansion is expected to affect the molecular symmetry which can lead to different vibrations and the disappearance of some and '57 Additional changes are observed due to molecular volume appearance of others. changes caused by bond distance changes. The bond distance changes that do not affect the molecular symmetry will shift the vibrational bands to higher energy.158 A correlation between the vibrational energy levels and the molecular volume changes due to temperature or pressure can be given in the following equations!”160 AV = RTnO / P [8] Substituting no from the Boltzmann equation AV = RTn, /1>e-"°“"‘T [9] 36 No frequency changes for the first overtone of the asymmetric =CH2 stretch caused by structural interconversions due to temperature and pressure are predicted for ethylene and the monoalkylated alkenes under the experimental conditions employed. Multivariate Calibration Techniques Classical Least Square Regression Classical Least Squares (CLS) regression in general describes the procedure where the calibration model represents the physical law which relates the variation in the spectra with composition, i.e., Beer’s law where spectral absorbance is represented as a linear function of component concentration. '6' Since CLS explicitly uses a Beer’s law model, it is referred as a hard model or explicit model method.162 Although the CLS method is less flexible than soft modeling methods such as PLS and PCR, it provides greater qualitative information in the range that it is defined.163 However, lack of fit can occur due to deviations from Beer’s law such as curvature in the absorbance versus concentration plot, or the existence of interactions between components in a mixture.164 CLS assumes that the mixture spectrum is a linear combination of the pure component spectra. Therefore, a mixture spectrum A, based on Beer’s law can be written as a combination of all pure-component spectra, K.165 A: CK+E [10] 37 where A is the m by n matrix consisting of the absorbances of each of the m samples at n frequencies. C is the m by 1 matrix of the 1 component concentrations in the m samples, and K represents the [by n matrix of pure-component spectra. E is the m by n matrix of spectral noise or model error present in the spectra. During calibration, the least-squares solution for the pure-component spectra K is: K = (C'C)"C'A [11] Where K is used to represent the least-squares estimate of the matrix K that minimizes the sum of squared spectral errors in equation [10]. C' is the transpose of matrix C. During prediction, the unknown sample spectrum vector a is equal to: a=K'c+e [12] where c is the unknown concentration vector and e is the error vector and K' is the transpose of matrix K.. Note the order of matrix multiplication is reversed from that of equation [10] since vectors are being represented as column vectors. The least-squares solution for the component concentrations of the unknown is obtained by using K from equation [11]. 38 c=(f light (wear Fiber < E > Opt: / Collirmting Lens Focusing Lens A 5 mm path length cell was used in this study to obtain about 0.3 absorbance units (a.u.) for the first overtone (6,120 cm") of the asymmetric =CH2 stretch of l-octene at a concentration of 10% by weight. Background spectra were obtained with empty clean optical cells for all of the absorbance measurements. »a— - .— _—.\.__ .. 48 The fiber optic cables were 550 um, low OH content fibers supplied by SpecTran Specialty Optics (Avon, CT). The cable was purchased as bulk fiber, and the fiber optic connectors were installed by using a termination kit supplied by SpecTran, at the end of the fibers, after cutting to the required length. About 20 feet of fiber optic cable was used to connect the cell assembly and the spectrometer/detector. Calibration Standards The spectra of the most of the monoalkylated ethylenes and di and tri alkylated alkenes were collected in pure form (98% or more purity) and in solutions using Isopar E as solvent. All solutions were prepared at room temperature and pressure except for the ethylene and propylene solutions in Isopar E which were prepared at 4 °C. For this purpose, the gas (ethylene or propylene) was bubbled into Isopar E in a small vial placed in an ice bath. This solution was quickly weighed and transferred to the optical cell where the spectrum was obtained immediately. The l-butene solution in Isopar E was prepared at room temperature due to the higher solubility of l-butene in Isopar E. Additionally, mixtures of 2%, 4%, 6%, and 10% by weight of l-octene and the other alkenes were prepared. The spectra obtained from these mixtures were used in checking the validity of the calibration model. The spectra of all of these compounds were obtained at 4 cm‘1 resolution and as an average of 64 scans from 4,000 to 12,000 cm". 49 Data Analysis and Results Interpretation of the Spectra Despite the immense amount of information in the literature for assigning the ‘ ' ° . . . . 4, fundamentals of alkenes 1n the rmd-IR reglon,170171 '72 ‘73 ‘7 ‘75 there is comparatively little information for the assignments of the first overtones in the NIR region. Therefore, to be able to find distinct bands that can be related to alkenes in the NIR range, the overtones of the fundamentals had to be estimated. A coarse inspection of the NIR spectra obtained from mono, di and trialkylated alkenes reveals that there are two main regions where differences in spectra occur. These are the 6,100 cm‘l region and the 4,750 cm'l region. Figures 3 through 6 show the 6,100 cm'l region of the spectra, for ethylene and monoalkylated alkenes (Figure 3), cis and trans dialkylated alkenes (Figure 4), trialkylated alkenes (Figure 5), and 1,1 dialkylated alkenes (Figure 6) in overlaid mode. The 4,750 cm'l region of the spectra for these groups of compounds, similarly, are shown in Figure 7, Figure 8, Figure 9, and Figure 10. Additionally the full NIR spectra of all compounds used in the study are given in the Appendix A Figures A1 through A17. 50 9E8 59635225 onwoo omow onwrw om—w onwmo ammo 0 25.305 lo 0 l c a In. D ..x. .— ocoooa; . \ ..c. o \ ..c. L m 885:; ..\ e 0:200; .. ...4 m; < M) --\f . . . 225m-— .2335 use 2383th Eoom 3 358m @8130 E =o_wom 7:8 o2 .o 8 owed E Amuse—E cofigfioaofiv m Emofl E masts—ow 25:5; Jae—30E dam—bum can 258D; .2580-— .ocoxoZL .ocoEom; so :5 ma mo 88on um 9.53m 51 ?Eov 89.5562, omen 88 38 85 £5 8% ammo III“. .ll . . OCOuooonem—hflhh M o W ocoaooéocahh / - no u o:200-~.mc2._. K a r . a . W .l N. D _ .— . 2.28.456 o m I. V. D 9.300.?«6 < I. Q. .8385 28 2380359 :53. 8 “£50m @8130 E :2me .-Eo c2 .c 9 owed 5 32—8.? noun—5.36 max: 28 £8 3:28 -v was: .ocouoom we“: .o:88-~ mag 98 25803 m6 6:384” m8 .o:28-~ $8 $088— 2880 85 do 3» mm mo .88on "v 9.5»?— 52 S-E$ 338.5335 one- as .38 gm .. one . ..eme . one..- . _ 38. o. T. . it- o ocouuoréifioséécufi o i i l I l: illio : a .— oeoao:.n._>5o2.n.o_o 1N. e m no. a < TV. '0. .2335 can 05:23:89 800% “a 588m @8130 E 530% _-Eo 02.0 2 08.0 E Aocoaozmaxfiofié was: .ocofionAAzfiufié mmov mosey—2 coax—33th. 8?— do :5 ma Lo «.5on “m 95$..— 53 ...E3 coop—5:263 £8 8.8 85 8.8 8-3 omme £8 £8 lN.u 2.300.: \ I I ... ... l t l llllllllllllllllllllllll o u I .... o ..N. = a 1v. a .— ...o. o f m eeeso=.~._§m-~ . im a m < l _ .8885 use 2280585. 8005 3 88:5 2256 E commom ..Eo cad 2 256 E 2880 28 856:“ 3812sz :v 0:283-— -.»5m-~ 25 .Qe :5 mo 50 828on 6 9.53m 54 $-63 5953833 ommv owov omrov oats omhv 2me owwv ommv ... 883.5; 8.2585 ..... . ....... no ......... s.-- .. . s o w c . l a .. n .. .— \.fl .. . l m.w O . 8580-— 2. ...... m ... 888:-— a .1L\\ rm < 0880; ... . lop—8:5-— “ lmd .8985 new 83838.5. 885 3 2285 228.50 E 5885 .-Eo omw.v 9 08% 5 $88.? eBflEEocoEv m 8385 E 80:28 88.5; 88.505 8835.".— eca 8880; .8880; 8.88:; .8885-— .8 “3 mm «o 888m K 9:.me 55 :83 8983583 ommv 9.5V owhv omuwv ommv m #414...) .... l... i .. . . . 5.x»! ._ .. 1......... 1.. .. .. . ... ... ....l ...Ib...h...r......q.:.ao «r... .. ill-.... 1.. ......tuiuthd) . N- 3800.938... Will I I “Ni O N 3809985.... I u ... ...... o M e M 4/ . m 2.200.888... a '0. .— W \ O y o o o . \ m \ c o \...~. \..‘ ...” to. n s .. 2.200.820 < . \ 8.800.920 . \ . . 8234.20 ... . s . ~ I w .8385 use 83885th 885 um 3:85 68:85 5 =885. -Eo omwd 2 83. S A8855 882.336 8a: 25 23 3880 -v 8...: .288 m 8.8 .888- N 88 can 888. v 8 .0880. m 90 .888- N 88 88:83 8.800 85 68 “3 ma .8 8885.015 2&5 56 $.83 eons—.582, owov of? ombu ommv ommv oomv ommv ocoao:.m._>£o2.n.o_o -m. Expansion Containment Chamber The high pressure vessel contains a safety relief valve rated at 2000 psi which is connected to a six liter, high pressure, stainless steel vessel (rated at 3000 psi). In case of an unexpected temperature increase or an unexpected reaction which would increase the pressure of the vessel above 2000 psi, the expansion would be contained in this chamber. Head Space Assembly The high pressure vessel is connected to a circulation loop consisting of a probe/holder assembly, circulation pump, and a variety of pressure transducers. The circulation loop 74 employs a Ruska brand name (Model 23 30-802) magnetic circulation pump to recycle the contents of the vessel through the loop where the sample and spectrometer interface is located. The head space is also connected to a vacuum pump to evacuate the system when needed, and to a distributor assembly to discharge nitrogen and ethylene into the system. Fiber Optic Probe-Holder Assembly The fiber optic probe assembly is a modified 3A" stainless steel tee. High temperature, pressure connections are welded on both sides of the Tee to provide inlet and outlet ports; a 3%" Swagelok fitting is welded on the third side to seal the probe into the holder. The probe attaches to this assembly with 3%" Swagelok nut and ferrules. The probe is inserted into the holder such that the sample gap is in the middle of the circulating stream. Single Sided Transmission Probe: The Single Sided Transmission (SST) probe is manufactured by UOP/Guided Wave (El Dorado Hills, CA). It is a Visible/NIR transmission probe with the transmission Slit on the side as shown in Figure 15. The probe internally contains a pair of 500 pm in diameter fibers to provide the light interface at the windows. All of the optics are installed in a 34 inch O.D., 15 inch long 316 stainless steel body. Two sapphire windows, sealed by gold brazing, provide the sample interface. Two fiber optic connectors at the end of the probe connect the probe to the spectrometer and the detector via fiber optic cables. 75 Figure 15: Guided Wave Single Sided Transmission (SST) Probe. Probe BOdY Protective Cover for Fiber Connections Water-Tight Seal/Strain Relief Fiber Optic Cables —1 0 I II 0.69" I4 12.0" > ... ,4 19.7" > Pathlength 10mm The Guided Wave SST probe is available from the manufacturer in 2 mm, 5 mm, 10 mm and 20 mm fixed pathlengths. The optimum probe pathlength for the experimental concentrations of ethylene and l-octene is chosen as 10 mm, deduced from the feasibility study. The fiber Optic cables used to connect the SST probe to the interferometer and to the detector are 500 um, low hydroxyl fibers supplied by SpecTran Specialty Optics. About 20 feet of fiber optic cable is used to connect the SST fiber optic probe and the spectrometer/detector set up. The fiber optic cable carries the light from the spectrometer to the probe and from the probe to the detector. Pressure Measurement and Control Pressure measurements are done with one of the following pressure transducers depending on the pressure of the system (Maximum 750 psi): MKS Model 315BA- 76 25,000 (0.1% accuracy), and GP250 Model 33 l-RM-GP/GJ/GX (0.25% accuracy), or Setra C206 (0.13 % accuracy). Each transducer is calibrated against a digital pressure gauge with an accuracy of 0.01%. Pressure calibrations are performed at several pressures at each temperature set point. Before performing a calibration the pressure transducers are allowed to equilibrate for at least two hours at each temperature setting. Forced Air Oven A Hotpack (Philadelphia, PA) model 212034 forced-air oven is used with a 9.5 cubic feet internal volume. Oven walls are modified to establish several external connections such as vacuum lines, pressure transducer signal lines, magnetic stirring driver. This floor stand type oven has a 25"x22"x30" door which enables the removal of the pressure vessel conveniently and easy operations and modifications of the system. The solid-state electronics with multi-mode control option provides a remote access set point with an accuracy of i 2°C from the Camile data acquisition and control system. The internal oven temperature gradient below 200 °C is less than 0.9 °C. The Hotpack model 212034 oven contains a 4.4 watt 230V heating element with a 3 oC per min heating rate. Temperature Measurement and Control Temperature measurements are made with a Burns 12092 Platinum Resistance Thermometer (PRT) connected to a Hewlett-Packard HP34401A digital multimeter. This PRT is calibrated against another calibrated Fluke Model 2189A platinum resistance thermometer. Several PRT’S are installed in the system to obtain the temperature of the head space, liquid phase and different locations of the oven. 77 FT-NIR Spectrometer and the detector: The Diamond 20 model FF-NIR spectrometer manufactured by KVB/Analect (Pasadena, CA) is used in these experiments. The spectrometer is coupled with a Single Sided Transmission (SST) fiber optic probe manufactured by UOP Guided Wave via optical fibers as illustrated in Figure 16. The Diamond 20 FT-NIR system has a 1.5 cm”1 transept IV hermetically sealed interferometer. NIR CaF2 optics are used for the 12,000 to 1,200 cm’l region. The spectrometer includes an internal source and all optical control electronics. It is controlled by a 66 MHz 486 based data system operated under MS DOS/Windows 3.1. The spectrometer and the data station are interfaced with an interface card provided by the manufacturer. The system includes the manufacturer’s FX-70, DOS based software program, and FX-80, Windows 3.1 based software for the control and Operation of the analyzer. 78 Figure 16: Schematic Diagram of the FT-NIR Set-up; Spectrometer, Detector, Fiber Optic Probe, and Probe Holder Assembly. Launcher FTNIR SPECTROMETER 1 OPTICAL FIBERS Receiver i Detector Fiber Optic Probe Holder The spectrometer is coupled with a three stage, Indium—Arsenide (InAS), SP-2426 model detector repackaged and sold by KVB/Analect. The detector is cooled with a thermoelectric cooler. Radiation is carried from the spectrometer to the fiber optic probe and back to the detector with fiber optic cables. A fiber optic receiving module is used at the interferometer outlet and at the detector inlet. The spectrometer is coupled to the Camile process control computer by an input/output (I/O) hardware. Via this connection, the data collection by the FT-NIR spectrometer is triggered whenever the system reaches equilibrium under the desired conditions. An analog signal (4—20 ma) from Camile is sent to the FT—NIR PC to initiate the data collection. 79 Determination of Vessel and Head Space Volume In order to determine the total volume of the apparatus (vessel plus the head space) a calibration vessel with a volume of 144.37 ml is used. This calibration vessel is connected to the system and to the pressure transducers via a specially designed valve assembly. The calibration vessel is pressurized and its pressure is measured at constant temperature. By opening the valve connecting the calibration vessel and the system, the entire system is pressurized and the new pressure is measured. Since the initial volume and the pressure are known and the second pressure is measured, the second volume is calculated from: V2=P1V1/P2 at constant temperature. During the course of the experiments several modifications were made to the head space assembly which required the determination of the system volume each time. The system volume used in the experiments ranged from 249 ml to 264 ml. Experimental Design The number of standards needed to develop a representative calibration model for multivariate calibration techniques is an important factor in experimental design. The concentration range of the standards and the similarity of the standards to the unknown sample matrix are also factors that contribute to the accuracy of the model. The concentration range of ethylene was chosen as 0.5 to 7.5 percent weight in solution, and the range of 1-octene was selected as 2 to 30 percent weight in Isopar E for these experiments. PLS models require the number of standards to be higher than the number of variables in the system. However, the more data , the higher the confidence in the 80 analysis and in the statistics. Since the concentration range of l-octene was at least twice the concentration range of ethylene, a rectangular two factorial experimental design was used to represent the concentration range of the each component. For l-octene a 4 level, and for ethylene a 3 level concentration design was configured. Thus, the experiments consisted of three concentration levels of ethylene and four concentration levels of 1- octene. Each run was performed at five different temperature (25, 60, 85, 110, 140 °C) since the temperature constitutes another factor in the experimental design. Table 7 shows the experimental design layout and the target concentrations for each run. The same table also lists the actual concentrations (liquid plus gas phase) and temperatures. The experimental difficulties in addition of ethylene into the system resulted in slightly different concentrations for the components than the targeted concentrations. However, achieving actual concentrations around the targeted concentrations was sufficient for the calibration purposes. Several runs were aborted due to experimental or equipment problems. Ten to twelve spectra were collected for every run at each temperature once equilibrium is established 81 m— ..aacm— fl 3:25: ... 03 .0: .00 .00 .3 $5: $3.00 mm 03 .0: .3 .00 .mm $3.0 $00.0 R 03 .0: .3 .00 .3 $000— $00.0m 0m 03 .0: .3 .00 .3 $36 $3.3 0m 03 .0: .00 .00 .3 $00.m $000.6. 0— 03 .0: .3 .00 .mm $wm._ $3.0m nN 03 .0: .3 .00 .mN $000 $000— w— 03 .0: .3 .00 .mm $2.0. $8.0m em 03 .0: .3 .00 .mN $00.0_ $000— 5 03 .0: .3 .00 .3 $86 $3.: mm 03 .0: .3 .00 .mm $00.m $00.0— 2 03 .0: .3 .00 .8 $0_._ $05.: mm 03 .0: .3 .00 .mm $0m.0 $00.2 m— 03 .0: .nw .00 .3 $20 $50.2 a 03 .0: .3 .00 .mm $00.0_ $00.0 3 03 .0: .00 .00 .mm $98 $0m.0 M: 03 .0: .00 .00 .3 $006 $00.0 m— 0: .0: .3 .00 .mm $30.— $0w0 S 03 .0: .3 .00 .3 $000 $00.0 N— 03 .0: .3 .00 .mm $.04v $Nh.0 2 03 .0: .3 .00 .mm $00.0_ $00.N 2 0v. .0: .2 .00 .mm $3.5 $3: 2 03 .0: .3 .00 .nm $00.m $00.N 0— 03 .0: .00 .00 .nm $00.m $8; 3 03 .0: .3 .00 .mm $0m.0 $00.N 0 03 .0: .3 .00 $mm._ $00; 2 03 .0: .2 .00 .mm $00.0 $00.0m w 03 .0: .3 .00 $00.0 $00.0m S 03 .0: .3 .00 .mN $00.0 $00.9 h 03 .0: .3 .00 $00.0 $00.9 Z 03 .0: .3 .00 .mm $00.0 $00.0 0 0300 1mm $00.0 $00.5 0— 03 .0: .3 .00 .mm $00.0 $00.N m 0.2.0— fimw $00.0 $00.N 0 03 .0: .3 .00 .mm $00.0_ $00.0 v 03.0— 1mm $000— $00.0 mwo 03 .0: .00 .00 .mm $00.m $00.0 m 03.0.12 $wm._ $00.0 <00 03 .0: .3 .00 .3 $0m.0 $00.0 N 0.1.02.3 $00.0 $00.0 h 03 .0: .3 .00 .mm $00.0 $00.0 _ Away—afl—RHJHV $ .—.>> $ .5.» Amh.v.—..m.—..N.H.~HV $ E?» $ P3 De Jar—Ema. Hzmawlkm HZWHUOA #23”— Ue mflfiDfiéflm—th films—VIBE film—H.004 #7::— mZOEkJ—PZMUZOU J :wmmon— Rucofitomxm uh 035,—. 82 Experiments for the Determination of Pressure Effects on Spectra Since the experiments are run at as high as 140 °C, the system pressure is expected to reach several hundred psi due to the vapor pressure of ethylene, with the exact pressure dependent on the ethylene concentration in the solution. Preliminary experiments were conducted to determine the effects of pressure on the spectroscopic bands of interest. Separate runs were prepared with 1-octene in Isobar E and ethylene in Isobar E at constant temperature where the system was pressurized with nitrogen at several different pressures (300 psi, 400 psi, 485 psi). Spectra were collected under each set of conditions. FT-NIR Calibration Procedure Several standards were prepared for the ethylene, l-octene system targeting the experimental design. The actual ethylene concentrations ranged from 0.5 wt % to 13 wt % and l-octene ranging from 0.5 wt % to 30 wt %. These standards were prepared gravimetrically in the high pressure vessel at room temperature. The amount of each component added was determined by mass difference. The vessel was first evacuated via the vacuum pump, valves were closed and disconnected from the apparatus. After weighing the empty vessel, the l-octene/Isopar E mixture, prepared in advance, was loaded into the vessel using a 100 ml glass syringe. A 15 gauge syringe needle was modified to fit to the high temperature, pressure connector of the vessel inlet. The vessel was weighed again after degassing it under vacuum for several minutes. Next ethylene was charged into the vessel, from a small (5 lb) cylinder via a distribution system allowing the evacuation of the lines from cylinder to the vessel. After the ethylene addition, the vessel was weighed and reconnected to the apparatus. 83 The apparatus was heated and allowed to equilibrate at the required temperature set point. When temperature equilibrium was reached, the vessel pressure remained constant. At each temperature set point, 10-12 spectra were obtained of the liquid phase. The system pressure and temperature at equilibrium were recorded in order to calculate the vapor phase composition, which was used to correct the liquid phase concentration of each component. Data Analysis and Results Effects of Pressure on Spectra According to theory, the effects of pressure in vibrational spectrosc0py are significant when there is a phase change and/or a change in the symmetry group of the compound due to the applied pressure. Either situation requires application of significant amounts of pressure. The experimental conditions used during this study did not cause phase changes or lead to a change in the symmetry group. The system pressure originates from the vapor pressure of ethylene at the set-point temperature. At the highest concentrations of ethylene ( 13 wt % at room temperature) and the highest temperature set-points (140 °C), the vapor pressure of the system is less than 750 psi. The supercritical temperature (Tc) and pressure (PC) of ethylene are 10 °C and 52.2 atm (762 psi), respectively. Since all experimental temperatures are above the supercritical temperature of ethylene, ethylene is in the supercritical phase in this matrix. Furthermore, monoalkylated alkenes, under the experimental conditions used, are in the liquid phase and, thus, no phase 84 transitions are expected. Also, according to theory, high pressures (~14,000 psi) are necessary before starting to change the symmetry group of molecules. Hence, no change in the first overtone of the asymmetric =CH2 stretch of the monoalkylated alkenes is predicted. Results of the experiments correlate well with predictions. Figure 17 shows the spectra of 6.31 wt % ethylene in Isobar E (at room temperature) in the 6100 cm'1 region at several different pressures. If any effects of pressure on band shape or frequency shifts do occur in this system it would be most observable for ethylene. As seen in Figure 17, spectra of ethylene solutions collected at different pressures showed no difference from each other in the region where the first overtone of the asymmetric stretch of =CH2 is monitored. Pressures above the vapor pressure of ethylene were obtained by pressuring the system with nitrogen at constant temperature. After these experiments, the remainder of the calibration was carried out at system pressure. 85 Figure 17: Effect of Pressure on Spectra of Ethylene in Isopar E. 0.6 1— —— 485 si 0.5 —- p . vapor pressure — 400 psi .. 300 psi Absorbance -o.1 1 1 1 1 + + 1 : 6400 6350 6300 6250 6200 61 50 6100 6050 6000 Wavenumber Effects of Temperature on Spectra The determination of the effect of temperature on the C—H stretch in NIR range for ethylene and monoalkylated ethylenes was accomplished by varying the temperature from room temperature to 140°C (25°C, 60°C, 85°C, 110°C, 140°C) for ethylene, propylene and l-octene. A known concentration of ethylene in Isobar E was prepared and spectra were collected at these 5 different temperatures. The spectra were corrected for concentration changes due to the temperature/density changes. When these bands of interest were overlaid, significant differences were observed on band shape. Mainly, bands become broader and showed decreased peak intensity at elevated temperatures. Similar experiments were done with propylene and 1-octene in Isobar E. The effect 86 observed on the band of interest by temperature gets smaller and becomes less significant with increasing chain length. The effect on band shape is much more significant for ethylene than is for 1-octene. These effects are shown in Figure 18 for ethylene, propylene and l-octene for the first overtone of the asymmetric stretch of =CH2. Figure 18: Estimated Pure Ethylene, Propylene, and 1-Octene Spectra as a Function of Temperature. Ethylene, 25 °C .15 Ethylene, 140 °C A \\ b S l. o O r 1 Propylene, 65 C / b / a I, \ n Propylene, 125 C ’ . \ 7 '. k C 05 I - ' Ar e 1 -Octene, /' 25-140°C / , ' /’ , \~\-€\- 62 - o 6 20 6160 6130 61'20 61'00 Wavenumber cm'1 Calculation of Liquid Phase Concentration at Each Temperature Setting Due to thermal expansion, a volume for expansion of the liquid needs to be left in the vessel where the liquid is heated. If the head space volume is significant relative to the total volume, the partitioning of the compounds between the liquid and the gas phase will 87 be important affecting the concentration of the liquid phase. When the vessel is heated to higher temperatures, there will be more number of molecules in the gas phase than there are at lower temperatures. Consequently, the concentration of the liquid phase will be changed at each temperature setting. This is particularly significant with volatile compounds such as ethylene. In order to account for this change, and to be able to calculate the liquid phase concentrations accurately, the concentration of the gas phase was estimated using experimental parameters such as temperature and the pressure of the head space and the vapor pressures of the compounds from physical property tables. Then, the calculated vapor phase amount was subtracted from the initial concentration of the liquid. The accuracy of the calibration model will directly be related to the accuracy of the standards and the accuracy of the experiments. In order to calculate the head space concentration, head space volume had to be calculated. This requires an estimation of the liquid volume and the solution density at each temperature set point since vvapor phase = Vtotal ' vliquid Vapor phase concentration is calculated according to the Ideal Gas Law by using each component’s partial pressure. The number of moles of each component in the vapor phase is (niv): 88 nY= ‘ mm The partial pressure of the components in the vapor phase (Piv ) for l-octene and Isobar E are determined from the pure component vapor pressure of the compound (Pf) at that temperature, by using the Raoult's Law. Since the total vapor phase pressure is measured and known, ethylene’s partial pressure can be determined from the difference according to the following equation. PC2 = PTm — PC8 — P Meas lsoparE UN Pure component vapor pressures of l-octene and Isobar E at room temperature were obtained from physical property tables and corrected for temperature by using the Antoine equation. ”38"” B 1 I>=A————- m 0a ) T+C 1] Antoine constants are given in the following Table 8 for l-octene and Isobar E.188 Table 8: Antoine Constants for l-octene and Isopar E A B C Isopar E 3.40926 1 185.31 222.048 l-octene 4.05935 1358.21 213.311 89 Using the pure component vapor pressure, the partial pressures of l-octene and Isopar E are given by Raoult’s Law: Pi = xiPi" [19] where X, = the liquid mole fraction of component i. In addition, the vapor or head space volume is required (VV) in equation [16]. This is determined by subtracting the liquid volume which is sum of the volume of each liquid L T component, Vi , from the total vessel volume, V . vv = vT — Enfvf [20] Where V, = the molar volume of component i in cc/mol (or partial molal volume for ethylene), In order to find the liquid volume at each temperature set point, the liquid phase solution density must be calculated. An overall solution density is obtained by dividing the total molar mass of the material by the overall molar volume. The overall molar volume of the solution is the sum of the molar volumes of each component, the latter are calculated by 90 dividing the masses of each component (number of moles of each component times their molecular weight) by their pure component densities. The pure component density is calculated at each set point temperature by equation [21]: pi =A1+BiT [21] where pi = the density of component i in g/cc, T = the temperature in degrees °C. Ai= Experimental constants (literature values) for component i. Bi: Experimental constants (literature values) for component i. Literature values of A, B, and M, (molecular weight for component i) are given in Table 9 for l-octene, Isobar E and ethylenezlgg’189 Table 9: Literature Values for Constants in Temperature Dependent Density Equation Mi Ai Bi 123.00 0.73468 -8.245E-4 1 12.215 0.73502 -9.167E-4 28.054 0.46757 0 After obtaining the overall molar volume, an overall density can be calculated by dividing the overall mass by the overall molar volume. This density can be used for calculation of the liquid volume by dividing the total mass originally loaded in the vessel by the overall density (assuming that all the components are in the liquid phase). After calculating this approximate liquid phase volume, the volume of the vapor phase and the number of 91 moles in the vapor phase can be calculated according to equations [16] and [21]. The number of the moles in liquid phase is equal to the difference between the total number of moles (n?) and the number of moles in the vapor phase (niV ). n.L = n.T°‘ — n." [22] xL = ' [23] This calculation process summarized in Eq. [16]-[23] is repeated until the calculated system pressure (PiTOt ) which is equal to: P,” = PC2 + PC8 + PI [24] soparE converges with the measured system pressure (PTOI ). It was found that the iteration Meas converged after one pass. An example of this calculation for one of the runs of the experiment is shown in Table 10. For this calculation process, the system is assumed to exhibit ideal behavior (fugacity is equal to the partial pressure). 92 _ 50500.0 N0 053.00: 0000; 0005.0 00.05 $00.00— 0K5 O5 .EN».V0« w2340> 4mmmm> V0020. «0005.0 00 «050.00 0000.0 v5«¢.0 50.«0 $00.00 5:02:00: vo-wm«.0. 00:05.0 m 5:02:09 v05«.0« 0«0«.0 000«.0 00.«« $««.0« 00 00.0 05.: NO m < V0000. 0:«.0 000—0 056 $00.0 NO 00.00 p.050; $53 a .0062: _ r 0 _ 0:500:00 \ «2:29. 000:: :0: .«0 2: :0 2:002: 2220:» :0:0::0 00: 2: :0 220 :50: A: 2.52:0 002:: :9. S «u :0 022: :0 0 2: 2 .202 «0 520:3. «205.030.: \ 00> 02.2% :2. . 20:02 2: :0 .02: .020 00:00:: 00: 2: :0 220 :50: :0 005200 000:: :9. S 20:02 :0 022: :0 .0 2: 2 .0050 5:332 :O:<> 9195003250529. 000:: .02. . 00 2: :0 .02: 20:: 5:00:00 00: 2: :0 220 2:0: 5.: 005200 000:: :2. 5 2.200.. :0 022: :0 a 2: 2 .52 00 55:3. _ _ 000:: 2:0: 2: :0 2:29.- .0002. 2: :0 2:29. :22». :23: 000:: 2259. 2: :0 020.5: _ 0 0:28: .3 02.32. 22.: 350:0 2: :0 82: .20." 022.: 20:: 032.. 2: :0 0:39. «503‘ n: :23? 0 2: 5: 2022:2000 2:29. :22: :22 2: A: 00030: 002: :22: 2: :0 002200 222.: 2: :0 5552:: 1:50:00 2: 5.: 02:00: 22: :22: 2:20:20: :000 2: :0 E0» 50: :02200 «20:02 60.30 2:232:00 2: :0 2:29. :22: 2: :0 2:0 30:00. :0 200.252.220-500 :0 2:32: 20:22:22 2: 2 20:00 2 : .«o :0 2:32: 2220: 2: 2 25 < .0: «0 20:02 :0 00:02:05.~m:0:02 :0 :00 n 20:02 :0 2:32: 2220: 2: 2 25 1.0: 23:02 :3 a 8.32 803.: 00 _ 00 :0 00:02:08.0...» :0 :50... 8 32:32: 3:2. 2: a. :5 < .0: 00 0v0.««« 8.00: 0«000. 0 m :<:02 00 0. 22:20 0220200 20:02 :0 2:32: 20:2. 2: 2 =5 2:: 23:02 0 m L1 .20 2.200.: 2:. 0.2.02 .2 0 2.5. 05230200 02552.; 0 0 _ 0 050322.000.— 2 022000: 2:20:00 01:22:: :20: :0 0220200 20:20:52 :50: :00 2: .0 00 :0 2032: 20:2. 2: 2 =5< :> 00 _ _ _ _ _ _ _ ...:q :0 2:0: :2 2:32: 00:02:00 2 25.x :0 25:00:20 30:23«5:210:000005: 2:002: 2: :0 :0:2:l:00 2: 0. 0220000 2:32: 2:202:00 2 Sm: : 52:00 _ _ 20:20:82 :50: :0» 09.0 2: 2 50:5 23:02.0: 2:32: 0:300 2: :0 000002 2: 2 25:00:: 30:00:02 2:32.32: 2: :0 30:02 2: 2 .5005: 3000.0 530.0 3 80.0 5«0 . .0 5 E ..0 300.0 «.00: 50.5: 0000.0 3000.0 0«0«.. 0 — «0.. 00.0. 0.05« 5.50. «0.05« 00.03 00000.0 05«00.0 50500.0 5«nr.0 03.0 0000.0 «. 00— 00. 5. 0000.0 0«000 505«.— 00—0.: 05.0— 0.V5« 00.00.. 00.00« mm.50« «0500.0 00 50.0 05000.0 0505.0 055.0 :0«0.0 v. 00: 00. 0. 5000.0 005 —.0 0000.0 0000.0 00.0.. 0.02 00.005 v«.5m« «0.00« 00500.0 00 50.0 05000.0 059.0 053.0 :0«0.0 0.03 50.0— 0000.0 505 —.0 0000.0 0500.0 00.0: 0. on« 0000— 00.58 «0.08 3500.0 0900.0 05000.0 059.0 03.0 50«0.0 «.00: 00.0: 0000.0 0.5—.0 0000.0 0000.0 00....— m. 08 00.00: 0«.58 «0.08 00000.0 00000.0 00000.0 000 F .0 009.0 0000.0 0.00: 0«.? 000 p .0 0050.0 v9.0.0 0« 5.0 05...? «.mm— 0«.00 3.. .8 00.08 50000.0 00000.0 00000.0 003.0 002.0 0000.0 0. v0. 0«.? 503.0 5050.0 «03.0 0«50 00.0. «.00: 0«.-:0 :0. 50« 00.00« 00000.0 00000.0 00000.0 00»~ 5.0 vn«p.0 0500.0 0 00— 0«.? 0005.0 0050.0 030.0 005.0 00.9 5.00— 00.3 «0. :8 «0.00« 0300.0 00000.0 0—0000 3.3.0 00«5.0 0000.0 0. on. 0«. 3 500.0 0000.0 mow—.0 0««—.0 «0. C 0.00— 5.00 00.50— 5060— «3000 3000.0 0500.0 3.3.0 820 0000.0 0. on: 0.. 2 0000.0 0000.0 «02.0 m««..0 5.: «.00: 00.00 0«.50: 5060— 000000 3000.0 0800.0 3.3.0 00: ..0 0000.0 m. on: 3.: 5000.0 5000.0 003.0 0««.. 0 00.: 2.00. 00.3 0:05 5060. 5000.0 v .0000 3000.0 003.0 mm. — ..0 0000.0 0. m: 8.0 «0«00 «000.0 030.0 5:.«0 0 v0.0 0.««— 50.0« :0.««— 5.0: 0030.0 «500.0 00000.0 003.0 cm: ..0 2.00.0 v.3; 00.5 3.00 0000.0 600.0 50—0. 0 50.5 p.53 5«.«« 00.5: «0.0: .002 s .002 0 :02 9. 0 $5 .0 .3 42mm 5 =5: .0: 25... .0: =5: .0: 25¢ .:> 25.: W: 25< .: Sm: : 5%: 5:02: 50005: «0 53:02 00 02: 40> 02:09. 55:02:: #00 «o :<:OM: 00 :1:02 00 5:00 53:3. MOSS :lo:<> 0«0200 0m 2.. 00m :00 20020030 0002008000 000:: 2:05 0.: 053000 002.0 00200 Boxm 0m 030,—. 93 2:002: :20002: 2: 2 0022.26 22...: 20:02 :00 00 .00 2: .0 020002: .2t2w 2: .0 5:0 2: 2 3.51 ~: 0..<0 _ _ «0 .0 2.82.3528 .0 :...u «o .8582: 5:2. 2.. 0. ...... < .0: «0 20:02 .0 5:02. 3:220:02 .0 :>.n20:02 :0 2:002: .220: 2: 2 25< .0: :<:o.m... 00 .0 00.32.35.200 .0 2.... 00 .8522: 2:2. 2.. a. :5... .0... 00 0.0.... ... 20......» .o 5:8: .2: 2.. a. u. ..0... 00 0.00... 2...... ... 20:8. .o 00:8: .2: 2.. 2 ... ..02 03.02 0.00... :30: ... 2.200.: :0 20:02: .2: 2: 2 u. do: 00 930... 0.0.... ... 20.2.0 .0 E82. 2.0.9: 2.. 0. .02: «o 0.00... 2...... ... .223. .0 38.»: 2.0.2. 2.. u. 0:... 5.000. 0.00... 0.0.... ... 228.. .o .522. £22. 2.. u. .2... 00 0.00: 0:20.50 .0 30.0.: 2:022: 2: .....s 002.: 2:0: 2: :. 0:0. ...0 :0 00.2: .0 202:0: 0.: 0:: .::.:E .3 :02200 02...: 20.... :. 0:03.50 .0 2.0.2:. 2: 2 0 «0 0.00... 20:02 .0 30.0.... 3300.2: 2: 2...... 000:: 2:0: 2: :. 20:02 .0 022: .0 .025... 2: 0:13.22: .3 :02200 002.: 2:0: ... 20:02 .0 2.0.0:. 2: 2 0 5::00. 0.00... 4 0:200 .0 20.2.. 22:00.2: 2: .....s 002.: 20.... 2: :. 0:200: .0 00.2: .0 32:0: 2: 0:32:20 .3 :02200 002.: 2:2. :. 0:200: .0 50.0... 2: 2 0 00 0.00... — .00 .0 00.2: .0 0 .22 2: E2: 000:: 02.2. 2: :. 2.22:0 .0 00.2: .0 0 2: 05.02300 :0 2.2200 002.: 2:0: :. 2.22:0 .0 00.2: .0 0 2: 2 ..02 «.0 0.00... 20:02 .0 00.0.: .0 ... .22 2: E2. 000020202. 2: :. 20:02 .0 00.2: .0 0 2: 02.02300 N: :02200 002.: 2:2. :. 20:02 .0 00.2: .0 0 2: 2 ..02 :560. 0.00.... 2.0.00 .0 022: :0 .0020: .20. 2: 52. 002.5302... 0.: 0. 0:200: .0 00.2: .0 ..0050: 2: 02.02300 ...: 2.22:0 002.: 200.. :. 0:209: ..0 00.2: :0 ..02::: 2: 2 20:. 00 0.00... 00.0: 00.0: 00.5: who 00.0 050 5 .0 5500.0 0050.0 $00.0 $00.50 $00.00 205.0 00.00 00.00 0000.0 5000.0 000: .0 05.0: 05.0: 00.5: E 00.0 E .0 0500.0 0050.0 $00.0 $ 50.50 $00.00 05.0 v0.00 00.00 5000.0 5000.0 0005.0 00.0: 00.0: :00— 00.0 0 5 .0 000 5 .0 0000.0 :0500 $00.0 $00.50 $00.00 00.0 00.00 3.00 0 :0 : .0 0000.0 0000.0 00.0: 00.0: 00.0: 00.0 0:0 000 p .0 5000.0 :0500 $00.0 $00.50 $00.00 00.0 00.00 00.00 0 :0 : .0 000:0 0000.0 00.0: 00.0: 00.0: 00.0 0 _. .0 :00 5 .0 5000.0 :0500 $00.0 $00.50 $00.00 00.0 00.00 00.00 0:0 _. .0 0000.0 0000.0 00.0: 00.0: 50.0 : 00.0 00.0 00: : .0 0000.0 0050.0 $55.0 $00.50 $50.00 v0.0 00.00 00.00 500 : .0 0000.0 0000.0 00.0: 00.0: 50.0: 00.0 00.0 «03.0 0000.0 0050.0 $55.0 $00.50 $50.00 00.0 00.00 0:00 500:.0 000:0 0000.0 00.0: 00.0: 00.0: 00.0 00.0 :0: : .0 0000.0 0050.0 $55.0 $00.50 $50.00 00.0 00.00 00.00 500 : .0 0000.0 0000.0 00. 5: 00. : p 0 5 .: — 00.0 00.0 00: : .0 0050.0 0050.0 $00.0 $00.50 $00.00 50.0 :0.00 0.00 000 _. .0 0000.0 0000.0 :0. 3 :0.:: 0:. S. 00.0 00.0 00:. : .0 0050.0 «050.0 $00.0 $00.50 $00.00 50.0 :000 :000 000 : .0 0000.0 0000.0 00. :5 00. 5: 55.: 00.0 00.0 003.0 0050.0 0050.0 $00.0 $00.50 $00.00 50.0 :000 :000 000—0 0000.0 0000.0 00.0 00.0 50.0 00.0 :00 000—0 0050.0 0000.0 $00.: $00.50 $05.00 00.0 00.00 00.00 00: :.0 0500.0 5000.0 50.5 50.5 00.5 [00.0 50.0 :00 : .0 0 :50.0 0000.0 $00.: $00.50 $05.00 00.0 00.00 00.00 50: :.0 0500.0 500%] 35¢. a: =5< ... 35¢ 0: =5< 20.: 3.51 .0: ... ..OE .... ..OE ... 403 $52 05.5.: 8.5.: u a u .2 u .. do: . ...OE . 403 . aim: 0.:‘0 NO 5.3.00. 00 NO I (:00. 00 00 25:00. 00 NO 11:00. 00 NO 15:00. 00 05:0... @003 £00... 0500... 05:0... £0... 05:0... £00... 05:0... 0.00... 0.00... 0.00... 00:00.: .0: 02.23.00 00.02.5050 80:: 2:05 0:: 00.3000 .0000 002:0 68:0 “3:000 0: 050,—. 94 The results of the calculations for each run are tabulated and the corrected liquid phase concentrations (in mole fraction) for each component are given in Table 11 (standards containing ethylene and Isopar E), in Table 12 (standards containing l-octene and Isopar E), and in Table 13 (standards containing all three components). Additionally, calculated liquid phase concentrations are plotted at each temperature and shown in Figure 19. The Excel spreadsheets showing the calculations of liquid phase concentrations of each run are given in Appendix B Tables B1 through B20. 95 00 0000.0 080.0 530.0 $00.00 $00.0 $.00 $00.00 $8.0 $00.9 0.509 00.50.. (835$ 00 030.0 080.0 .0900 $3.00 $00.0 $8.0 $8.00 $8.0 $00.— 0. 909 00. 00.. <8u75m 90 0000.0 080.0 50 5.0 $3.00 $00.0 $0v.0 $8.00 $00.0 $00.9 04.9 00.3 (00345 00 09 0005.0 080.0 80.0 $00.3 $00.0 $00.0 $8.90 $8.0 $3.0 N 0 S. 8.50.. 50.95.“. 9 035.0 080.0 .0000 $030 $8.0 $50.0 $8.5 $00.0 $v0.0 0.50 00.89 50075”. 5.. 085.0 0000.0 0800 $8.3 $00.0 $05.0 $8.90 $8.0 $.00 5.58 3.3 5025 9 5005.0 080.0 0900 $8.3 $00.0 $00.0 $8.90 $00.0 $v0.0 0.000 00.00 502i 0.. 0055.0 080.0 5000 $00.00 $00.0 $00.0 $8.5 $8.0 $3.0 0.509 00.00 5025 S. 0.. 9005.0 080.0 050.0 $8.8 $00.0 $05.0 $00.00 $00.0 $8.9 0.8V 00.509 08.345 0.. 0005.0 080.0 3.00 $9.00 $8.0 $50.0 $00.00 $8.0 $8.9 0.03. 00.89 0895a 2. 0005.0 080.0 05.0.0 $3.00 $00.0 $00.0 $00.00 $00.0 $8.9 0.08 004.0 08075”. 0.. 0 0.00.0 8.0 .0500 $50.00 $00.0 $00...N $ 90.00 $8.0 $00.0 00.80 8.89 5007-5 0 00.0.0 080.0 59.0 $00.00 $00.0 $000 $ 90.8 $00.0 $00.0 0.080 05.00 502.3 5 .... 49... k g l 492 $5) $5) $.5— $§ $5. $3. <2 E (El .l 58>... 0 $18. 8 00 S18. 8 8 $18. 8 00 8 g 0 050: 0302 Q30... Q8: Q8... 950: as: as: Q30: v 055.4% Egnam .3238 0 0 mag. «5 W658 Z. 8 “6% .. O z s. v. 0 . G u. m _ D O m _ < m $08. 8 .2530... 5 28.5.3. 0558on $50530 80 SEE 2:05 0o 82.8.5800 u: v.05. 96 09 900.0 500 90.0 $50.05 $00.00 00.05 00.00 50.00 05.509 0:.me 0300.0 500 90.0 $90.05 $00.00 00.05 00.00 00.9 00.09 02.23.“. 50000.0 00900 $00.05 $00.00 00.05 00.00 00.0 00.3 02.23.”. 05000.0 000 90.0 $00.05 $50.00 00.05 00.00 00... 00.00 02.22. 9000.0 00009.0 $5.00 $00.3 00.00 00.09 50.00 50.509 92.2.3 300.0 00.90 $00.00 $00.3 00.00 00.09 0.0:. 00.09 92.23.". 00500.0 90009.0 $90.00 $00.3 00.00 00.09 3.0 0.03 302.5 00500.0 09009.0 $00.3 $5.0— 00.00 00.0.. 09.0 00.00 3075.". 00000.0 00v50.0 $09.00 $50.0 00.00 00.5 00.00 00.509 02.23.“. 00000.0 00050.0 $00.00 $00.0 00.00 00.5 00.: 09.09 902...... 50 900.0 0.0500 $5.00 $00.0 00.00 00.5 3.0 _.0.3 9..me 90050.0 00000.0 $0.200 $3.9 00.00 00.0 00.00 00.509 09.23.“. 00050.0 09000 $00.00 $00.9 00.00 00.0 ..0. C 09.09 00.23.". 00050.0 05900.0 $90.00 $00.. 00.00 00.0 3.0 90.3 00%23fl ... ..03. n. ..03 u. .63. $5.: $.5— $5§ $.50 $53 $5.: 3”. m. 5mg... 3.“. 53.00. 8 N0 5.3.00. 8 00 5.5.00. 8 8 5.28 Q59... DEG... 930... 9:0... 938... Q50... Q50... 5.50... 950... EDEQZSOW EDENUSGN 43530.0 wmaaw w £65.00. 2. 8 m..O 2052.230 m. 308. a. 0:200... 055850 830530 .0. 85.0 2:03 0o 2008:8280 ”N. 203,—. 97 Table 13: Concentrations of Liquid Phase for Standards Containing Ethylene, l-Octene, and Isopar E. Figure 19: Corrected Liquid Phase Concentrations at Each Temperature for All Runs. 1-Octene Concentratlons 98 35.0% 30.0% H m 25.0% -~ 20.0% .. 15.0% fl 10.0% ‘- 5.0% -~ X X“ 0.0% -—X 0.0% IO *4 Xi‘. X‘O X/.I 2.0% 025C I60C BSC X110C X140C XX I 9 X:/ I % fine We ; % 4.0% 6.0% 8.0% 10.0% Ethylene Concentrations 12.0% 99 Calibration Models The most popular Chemometrics method for quantitative analysis, partial (PLS) least squares regression has been investigated for the determination of light alkenes at elevated temperatures and pressures. The classical least squares has been the choice earlier in proving the feasibility of the work due to its simplicity. However, partial least squares is needed for modeling the data obtained at elevated temperatures (see discussions on multivariate calibration techniques in Chapter 2). The goal in this regression technique is to find a mathematical relation between two data sets. In spectroscopy one of these data sets represents concentrations and the other the spectra. The spectra and the known composition concentrations of the standards form the calibration set (also known as the training set) from which the calibration equations (calibration model) are built. Once the calibration equations or the model is created, predictions of the concentration values from measuring the spectrum of the unknown can be accomplished. During the initial study, CLS was chosen to investigate the feasibility of the analysis, and the goal was not to develop highly accurate models but provide qualitative analysis. However, for the second part of the study the goal was to be able to do the analysis accurately at elevated temperatures and pressures. All of the chemometric techniques were screened for this purpose and PLS was chosen as the most promising technique. Models were developed using this technique for ethylene and l-octene separately. Extensive investigation of the spectra and the spectral features of the light alkenes in the NIR region was reported in Chapter 3. Unique bands (first overtone of asymmetric 100 stretch of =CH2) were classified for the identification of these compounds. Using this unique region (6268 to 6071cm-l) of the spectrum with the regression techniques produces accurate models. For many of the chemometric techniques (e. g., CLS and PLS), the whole spectrum can be and sometimes should be utilized in the model in order to obtain information about the impuritieslgo'191 However, in other cases, as is the case with light alkenes, utilizing the whole spectrum does not produce the best model.192 For instance, in the NIR spectrum of these compounds highly absorbing bands in the C-H stretching region are observed due to the high concentration of paraffinic hydrocarbons. Therefore, in the multivariate data modeling in this study, only the 6,268 to 6,071 cm-l spectral region is included. The spectra are baseline corrected at 7,650 cm'1 during these studies by subtracting the absorbance at 7,650 cm-l. One way to validate the predictive ability of the calibration model is to perform a cross validation. One of the popular methods of cross validation is done by leaving one-sample or a selected small group of samples out of the model, building a new model, and predicting the concentration of the left out sample or samples. For the PLS cross validation, the models are estimated by leave-one sample out cross validation technique as well. PLS models for the ethylene and l-octene system was accomplished by using Pirouette (Trademark of Infometrix, Inc.) software. Two separate PLS models were built for prediction of ethylene and l-octene. Additionally models that excluded some outlier data were also generated and the best predictive model was chosen. 10] A mean centering preprocessing technique was used in modeling via Pirouette software. Mean centering involves subtraction of the mean of the column in a data matrix from each entry in the column. This technique helps take care of the intercept term in the regression model and helps stabilize the regression. It is recommended that mean centering should always be performed as the preprocessing technique for PLS.I89 Figure 20 shows the full data set used in building this model. Also in Appendix C the data file numbers and correlating concentrations used in construction of the PLS model for both ethylene and l-octene are given in Table C1 The second derivative of the data is used as the smoothing/transformation technique in building the PLS model. Figure 21 shows the second derivative of the full data used in the model. 102 9.5.0 wmmm232m><>> -—: LLZ'9809 3— 98681709 -- 689'L909 -— 898'6909 —— 2901909 ~— LBA'VLOQ I 96172809 -- 608'0609 -— 8261609 :— LSQ'SOLQ -- lSS'SLLQ —— 990mg —— GLA'BZLQ :— caveats .Z 20217149 —~ lZG'LSLQ « 989'69L9 " 617819 L9 : 8909219 —- 6L6'9089 -‘* SSQ'SLZQ y -- L617'06L9 :- 1-— 902'96L9 mN 0580; can ecu—Eam mo 3:082 me E comb San. 25m 5N v.5»:— EONVQHOSGV €28 mummzaz m>§> mod. i lLZ'9809 ? 6891909 I l l ‘ i l 1 l L 6966909 1 l r {:9 1.901909 103 m m m m m. w w. w 9 I. 8 6 .w. m .0 .1. z .9 z .0 I. .7 Z 6 8 0 .7 8 6 0 Z, v 9 6 l 9 6 8p 6 8 l little-1.101313. . a u. i in E- n . .x‘ ........ fl“ I'll-[Ill [VII 1 “““ \\\ I fl‘.\ 1 \\\ / \\ /t x /l\ 903'86 L9 6 l6'9089 8898 189 -1 v0.0- + mod. : No.0. ... 5.? o u. l.” n It“: )D.l.lun..nil .r 3.0 1. No.0 no.0 (.53 4.5“.— “.0 m>_._.<>_m_mo 0200mm 3.002 mam 5 now: «an 2: no 038330 vacuum 3N 0.53.”— BONVBUOSEV 104 Determination of PLS Model Rank As it was discussed in Chapter 2, one of the difficult tasks in PLS is determining the correct number of loading factors to model the data. One of the most effective ways of determining these factors and the predictive ability of the model is to calculate the Prediction Residual Error Sum of Squares (PRESS) for every possible factor.193’194 The PRESS is calculated by building a calibration model with a number of factors, then predicting some samples of known concentration (usually the "leave one out cross validation" method for PLS) against the model. 195 "96'197 The sum of the squared difference between the predicted and known concentrations give the PRESS value for that rnodel.l69,l98.l99 PRESS = gimp” — C,,)2 [25] i=1 j=l Where n is the number of samples in the training set, and m is the number of constituents. Cp is the matrix of predicted sample concentrations from the model, and C is the matrix of known concentrations of the samples. The smaller the PRESS value, the better the model is able to predict the concentrations of the calibrated constituents. Another useful tool in determining the prediction ability of the model and the number of factors in PLS is the standard error of prediction SEP. 105 NI— SEP = ‘=‘ [26] where 6, is the predicted concentration of analyte in sample 1' with the use of a calibration model that excludes sample 1', c, is the known concentration, and N is the number of calibration sampleszoo’zm 202 Both SEP and PRESS values were calculated using the “leave one sample out” cross validation technique for ethylene and l-octene separately. Figure 22 and Figure 23 show the error prediction of the model (both SEP and PRESS) versus the number of loading factors (principle components) for ethylene and l-octene models. As can be seen for the ethylene model, the error prediction after the 3rd principle component of the variance remains practically unchanged. Hence, this number was taking as the rank of the ethylene model. In the same way, rank of 6 was chosen for the l—octene model 106 Figure 22: PLS Ethylene Model PRESS and SEP vs Number of Principal Component Factors. C2 MODEL ERRORS 0.025 . SEP 3 0.02 ----- Press Val in E 0.015~ O z < 0.01- e. 6 0.005— 0 i """F""""'¥"":""%""f““ v- N (0 V In (D l\ CO 0) O O O O 0 O O 0 O O *— (L CL 0. a n. 11 CL 0. a. 8 NUMBER OF PRINCIPAL COMPONENTS Figure 23: PLS l-Octene Model PRESS and SEP vs Number of Principal Component Factors. C8 MODEL ERRORS 0.1 . 0.09 SEP -. 0'08 .. ------- Press Val 3 0.07 -» . E 0.06 -. O 3 0.05 -~ l 0.04 - 3 0.03- 0.02 ~- 0.01 .- 0 ‘1 r . 5 1'. _[ .— r _% '- N CO V I!) (D N Q 0') O O O O O O 0 O O O ‘- 0. 0. 0. 0. CL 0. CL 0. a. 8 W85? OF PRINCIPAL COM PONWS 107 Examination of Outliers A number of different aspects in PLS can also shed light into the selection of the proper rank for the model. Pirouette offers outlier plots. Monitoring the spread of outliers within the concentration space is a good way of providing confidence in the model. If an unusual spread of data is observed, it can indicate an improper rank choice or there might be problems with the data which may require pretreatment. However, the latter is not expected in this study since these are synthetic samples which were prepared based on an experimental design. Pirouette provides outlier plots showing the leverage of the sample against the residual distances. Influential or high leverage samples are of particular interest in model development. If a sample's profile differs greatly from the average training set profile, it will have a great influence on the model, drawing the model closer to its location in factor space. A sample's influence is quantified by its leverage, which represents a sample's distance from the centroid of the training set. As the model size grows, the leverage increases until all samples have equal influence on the model. However, influential samples are not always outliers. If a sample lies a large distance from the center of the training set because it has an extreme value of the dependent variable, it contributes important information to the model. In examining outliers the leverage is usually plotted against studentized residuals instead of Y-residuals since studentized residuals takes leverage into account. The studentized residuals weigh the value of the residuals by taking into account the greater precision near the middle of the 108 data set versus the extremes. The studentized residuals tend to be distributed according to the student t distribution. Therefore, when eliminating outliers a good reason associated with the outlier needs to be present. Only three samples were eliminated from this model. These were the samples with very low ethylene concentration in which the errors involved with their preparation were significant due to the lower limit of the balance used. Measurement of a small amount of ethylene (less than 0.5 g) was not accurate enough. Figure 24 and Figure 25 show the outliers for ethylene and the l-octene models with no apparent outliers. Two samples in the ethylene model and one sample in the l-octene model appearing far out on the leverage axis are not outliers. They are the samples with extreme concentrations. STU RESIDUAL STU RESIDUAL 109 Figure 24: Ethylene PLS Model Outliers C2 MODEL OUTLIERS :0 ‘M 1 . i i . ' t l 0... was 9 0.1 : .015 0.2 0.25 0.3 6. -‘” O 900 O 0.35 0 LEVERAGE Figure 25: l-Octene PLS Model Outliers CB MODEL OUTLIERS 9 ¢ J "I' 0.2 0.3 0.4 0.5 0.6 LEVERAGE 110 Examination of Spectral Residuals Examining the spectral residuals also provides information about the model. For instance, if the spectral residuals present a spectrum looking structure it indicates problems with the model, since they should look like random noise if the model is adequate. Figure 26 and Figure 27 show the enlarged spectral residuals with no particular spectra structure. F>CU~VJM7~5 111 Figure 26: Ethylene PLS model spectral Residuals C2 MODEL RESIDUALS 10 20 30 40 50 Variable Number mF>CIUHmFJW 112 Figure 27: l—Octene PLS Model Spectral Residuals C8 MODEL RESIDUALS 10 20 30 40 50 Variable Number 113 Model Prediction Errors Obtaining the correlation between the calculated versus measured concentrations is the ultimate indication of the model's predictive ability. Usually measured values (actual values) are plotted against the difference between the predicted and the measured (predicted-measured) values. These plots are given for ethylene and l-octene in Figure 28 and Figure 29. As it can be clearly seen from these plots, the absolute errors in the PLS model for both ethylene and l-octene were less than i 0.5 wt %., and :I: 0.75 wt % (absolute) respectively. As a result the predictions of both (ethylene and 1-octene) models were found satisfactory when tested using the training set (cross validation). PLS will be a robust model for the real-life samples as well since it can tolerate the existence of impurities and/or changes in the Isobar E composition. Additionally, since PLS includes the temperature and density effects in the model, it will not necessitate the measurement of the sample temperature. 114 Figure 28: PLS Fit Errors for Ethylene Over All Temperatures. MEASURED- PREDICTE ETHYLENE MODEL PREDICTION ERRORS 0.80% O 0.60% o , o 0.40% o 3 O O o 0.200/0 . e o ,9 o 0 9’ o . 0.00% 0 . fi' 6 t .9 t i I 0.00%.. 2.00% ’ 04.00% 6.00% 8.00% 100090 12.00% 8 O . . o 9 -o.20% ~- .0 09 0 ° . o o 9’ -0.40% 4- .. o -0.60% .. o -0.80% M EASLBEJ CONCENTRATIONS WT % 115 Figure 29: PLS Fit Errors for l—Octene Over All Temperatures. MEASURED-PREDICTE 1-OCTENE MODEL PREDICTION ERRORS 0.60% - 0.5070 0 0.40% o ’ o 0.30% . . 0.20% 9 . o o 0.10% , o ’ 3 O :0 0.0070 T i v 9 —IL I i 0. 76‘ 5.00%: 10.00% 15.00% 3 20.00% 25.00% 30.00% 35.00% -O.10°/o Q : 9 O 9 '0.20°/o O O ‘ -0.30% , . M EASLIE) CONCBTI'RATIOINS WT % 116 Summary Determination of light alkenes via fiber optic FT-NIR spectroscopy at elevated temperature (140 °C) and pressure (500 psi) has been demonstrated. The effects of elevated pressures on spectra were found to be insignificant for these compounds. However, the temperature effects are critical, especially for the lighter molecules such as ethylene and propylene. Temperature effects on spectra decrease with increasing chain length among the light members of monoalkylated alkenes. Calibration models were constructed incorporating the temperature effects. Calibration standards were prepared and spectra obtained at elevated temperatures and pressures. An apparatus for this purpose was built and used for the collection of spectra. The determination of ethylene and 1-octene was used as the example system. Partial least-squares regression was investigated for both ethylene and 1-octene. The calibration covered the range of about 1- 13 wt % ethylene, and 2-30 wt % l-octene over the temperature range of 25 to 140 °C. Absolute prediction errors are expected to be less than i- 0.75 wt % for both ethylene and 1-octene. CHAPTER 5 CONCLUSIONS AND RECOMNIENDATIONS FOR FUTURE RESEARCH A viable method has been developed to achieve the simultaneous determination of ethylene and monoalkylated light alkenes at elevated temperatures and pressures via fiber optic Fourier Transform Near Infrared (FT -NIR) spectroscopy for in situ, real-time monitoring of these compounds. An additional goal of the study, to evaluate the effects of molecular structure of the monoalkylated light alkenes on this determination, has also been accomplished. In addition, the effects of elevated temperature and pressure on the vibrational spectroscopy of the light alkenes in the NIR region were investigated. Conclusions By far the most important result of this investigation is the development of a method for the simultaneous determination of ethylene and monoalkylated light alkenes at elevated temperatures and pressures via FT-NIR spectroscopy for in situ,, real-time monitoring of these compounds. Also, the effects of molecular structure on this determination have been shown along with the effects of elevated temperatures and pressures. Other conclusions drawn from this study are summarized below: 117 118 . NIR spectroscopy is a viable tool for in situ,, real-time monitoring of systems both in the laboratory environment and in process analysis. . Coupling NIR spectroscopy with fiber optic probes enables the in situ, real-time monitoring of systems especially for process analysis applications. . FT-NIR spectroscopy is more stable and a more reliable tool than conventional NIR spectroscopy. . NIR has many advantages over MIR for in situ,, real-time monitoring. . The first overtone of the asymmetric stretch of =CH2 is unique to ethylene and monoalkylated light alkenes. Thus, the simultaneous determination of several light alkenes in presence of di and tri alkylated alkenes is possible in the NIR region. . The first overtone of the asymmetric stretch of =CH2 for ethylene and the monoalkylated light alkenes shifts towards lower energy with an increasing number of carbon atoms in the molecule. This shift is significant enough to allow for the simultaneous determination of these compounds in the NIR region. . The intensity of the first overtone of the asymmetric stretch of =CH2 for monoalkylated light alkenes decreases with increasing molecular weight. . Simultaneous determinations of ethylene and monoalkylated light alkenes are more feasible for those compounds with the biggest shift difference between them. For instance, the determination of ethylene and any other monoalkylated light alkene in a mixture is possible. However, determination of 1-pentene through l-decene in a mixture may be difficult with this technique due to the spectral overlap. 9. 10. 11. 12. 13. 14. 15. 16. 119 Additional features other than the first overtone of the asymmetric stretch of =CH2 (use of different regions of NIR spectrum such as 4,800 cm'l region) can be an aid for determination of these compounds in presence of interferences such as that from 2- ethyl- l-hexene in this determination. Multivariate data analysis is necessary in NIR studies. Classical least square regression is an adequate tool to use as a multivariate data analysis tool in NIR spectroscopy. Its simplicity makes it the preferred tool for qualitative laboratory feasibility studies. Pressure in the range used in this study (less than 750 psi) has no effect on vibrational spectroscopy of the light alkenes in terms of absorption intensity, band shape changes, or the vibrational frequency. Temperature effects are significant for the gas phase molecules or their solutions in liquids. The smaller members of the light alkenes (ethylene, propylene, and l-butene) are more influenced than the heavier members of the light alkenes. Within the temperature range (25-140°C) implemented in this study the effects of temperature are enough to influence the determination of light alkenes at elevated temperatures. Temperature effects on the first overtone of the asymmetric stretch of the =CH2 decrease with increasing molecular weight among the light alkenes. Temperature effects in the range studied (25-140°C) for the light alkenes are in the form of decreased intensity and broadened absorption bands for the first overtone of the asymmetric stretch of the =CH2. The effects of temperature on the intensity of the absorption band for the first overtone of the asymmetric stretch of =CH2 can be explained by the population 120 changes in the energy levels. With increased temperature the population of the molecules at ground vibrational energy level decreases since some of the molecules are elevated to the first vibrational energy level. 17. The effects of temperature on the shape of the absorption band for the first overtone of the asymmetric stretch of =CH2 can be explained by a change in the energy distribution among the rotational energy levels which are located between the vibrational energy levels. Since rotation vibrational energy levels are also excited by the radiation. A similar redistribution of the population of the rotational energy levels will influences the shape of the band. 18. Partial least squares regression can be used for modeling the training set for the simultaneous determination of light alkenes in NIR region. The absolute errors predicted by this model are less than i 0.75 wt % for ethylene and l-octene Recommendations for Future Research The feasibility of simultaneous determination of light alkenes in situ,, real-time at elevated temperatures and pressures opens several areas of investigation. First of all via this technique even higher temperatures and pressures can be studied to determine their effects on the vibrational spectroscopy of these molecules. Secondly, ethylene as a supercritical fluid at the elevated temperatures and pressure can be investigated in terms of its supercritical properties such as its solvation power or its intermolecular interactions. 121 The development of this type of in situ, real-time analysis technique via fiber optic probes can be implemented in other systems with distinguishable features in NIR. For instance the similar hydrocarbons (paraffinic, olefinic, aromatic) can be investigated. Expansion of this determination to simultaneous determination of similar compounds along with light alkenes, such as the determination of di or trialkylated light alkenes should also be feasible. The possibilities of using this tool in process analysis in similar applications for process optimization and control will benefit the control of manufacturing chemicals in industry. Thus, further research should seek to implement NIR spectroscopy for process analysis of many other compounds. APPENDICES APPENDIX A APPENDIX A This appendix contains the FF-NIR spectra (2,500-12,000 cm'l) of ethylene, mono alkylated alkynes, cis and trans dialkylated alkenes, trialkylated alkenes, 1,1 dialkylated alkenes, n-octane and the Isopar E used in this study. All of the spectra were obtained with 4 cm'1 resolution and with a 5 mm long pathlength at room temperature and pressure. 122 123 LIST OF SPECTRA Figure A-30: FT-NIR Spectrum (4,000 12,000 cm-l)of Ethylene in Isopar E Solution Figure A-31: FF-NIR Spectrum (4,000 — 12,000 cm-1)of Propylene in Isopar E Solution Figure A-32: FT-NIR Spectrum ( 4,000 - 12,000 cm—1)of l-Butene in Isopar E Solution Figure A-33: FT-NIR Spectrum (4,000 - 12,000 cm—l) of l-Pentene 99.9 % pure Figure A-34: FI-NIR Spectrum (2,500— 12,000 cm-l) of 1-Hexene 99.9 % pure Figure A-35: FT-NIR Spectrum (2,500- 12,000 cm— 1) of l-Octene 99.9 % pure Figure A-36: FT—NIR Spectrum (2,500- 12,000 cm-l) of 1-Decene 99.5 % pure Figure A-37: FT-NIR Spectrum (2,500— 12,000 cm-l) of Trans—2—Octene 98 % pure Figure A-38: FT-NIR Spectrum (2,500- 12,000 cm-l) of Trans-3-Octene 99 % pure Figure A-39: FT-NIR Spectrum ( 4,000 - 12,000 cm-l) of Trans-4-Octene 99 % pure Figure A-40: FT-NIR Spectrum ( 2,500 — 12,000 cm-l) of Cis-2-Octene 96 % pure Figure A-4l: Ff—NIR Spectrum ( 2,500 - 12,000 cm-l) of Cis-3-Octene 96 % pure Figure A-42: FT-NIR Spectrum ( 2,500 - 12,000 cm-l) of Ciss-4-Octene 98 % pure Figure A-43: FT-NIR Spectrum ( 2,500 - 12,000 cm-l) of Cis—3-Methyl 3-Heptene 98 % pure Figure A-44: FT-NIR Spectrum ( 2,500 - 12,000 cm-l) of Trans-3-Methyl 3-Heptene 98 % pure Figure A-45: FT-NIR Spectrum ( 2,500 - 12,000 cm-l) of Isopar E Figure A-46: FT -NIR Spectrum ( 2,500 - 12,000 cm-l) of n-Octane 99 % pure Figure A-47: FT-NIR Spectrum ( 2,500 - 12,000 cm-l) of 2-Ethy1—1-Hexene 99 % pure 124 8:28 m 982 a 225m its 25.2 Sci 9.58% 524.2 .84. 6.5»:— 125 8:38 a 238— ... 26.22.. «2.5 98.2 . 25.3 .5586 «2.: :3. 26mm :. L 2 w m 1 26 1:35“ ..w Egan—em H 538— E 2.8.5; “21:5 22.3“ . 256 v Baboon—m %.,—h “NM < 0.3mm 127 2.... as 5.5 225: 5 :56 25.5 . 25.5 5.58% 22.2.2 63. 2.55 FT-NIR Spectrum (2,500- 12,000 cm‘l) of l-Hexene 99.9 % pure 0 - Figure A-34 129 6.5.. as 35 2.35; 5 26...... 25.2 25.8 52.8% 22.2..— 53. 2.52 130 2. mg 6582.2 .5 p.86 25.2 25.5 52.8% 22 .E 53. 252 131 2.... 2. .5 65.5.2222. 5 26.5 25.2 25.5 5.58% 22.: 23. 252 132 2.... 66 a 65.55.22... 5 29.5 25.2 25.8 9.58.5 22.2.... 53. 2.52 52:. . . ..........<... 133 9:5 6.5 a 02899....522B we 9.25 aqua . :25; 2.2.5925 Hula—rm an)» 23E 134 2.5 as 5 2650.38 5 26.5 25.2 . 25.u 5 5.5855 Ez E 53. 2.5.5 FT NIR Spectrum ( 2,500 - 12,000 cm") of Cls-3-0ctene 96 % pure Figure A-4l 135 .«y .1: .»x t .« 136 2.... as 5 2.38-926 5 26:6 25.2 . 25." V 55855 Ez .E u2..< 2.52 137 222 .2. no oEfi—oflé E:~o§.m.£0 no 9.59 25.2 .. 8m.n V 25.5925 Mid—h ”91" 85mm"— 138 (2: .. .. .4. ‘ .V _. g 9“.» 2.... 95 a Suaié .282 was; .... A15 25.2 . 83 V 52.8% Ez ,E «I» 0.5mm A: E 2, 31.3.5. 2,73,3“V n m w t w x 139 » '4! m 5.8— % $5 25.2 . 83 V 5.58% «Eur.— nmv< 25mm 140 9:5 § as 2380.: ac A159 Exams .. Sm." v 5.58.5 mnzéh “31‘ 253m 141 9::— § 3 2.86:. vixen .... $5 25.2 . Sm.” V 5.58% m EE— §1< 2:me APPENDIX B APPENDIX B This section contains the excel spread sheets showing the calculations of the liquid phase concentration for each run. 142 Table B- 1: Table B-2: Table B-3: Table B—4: Table B-5: Table B-6: Table B-7: Table B-8‘: 143 LIST OF TABLES Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # O7 Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # 08A Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # 08B Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # O9 Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # 10 Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # 11 Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # 12 Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # 13 Table B-9: Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # 14 Table B-lO: Table B-1 1: Table B-12: Table B-13: Table B-l4: Table B-lS: Table B-l6: Table B-17: Table B-18: Table B- 19: Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # 15 Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # 17 Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # 18 Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # 2] Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # 22 Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # 23 Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # 24 Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # 25 Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # 27 Excel Spread Sheet Showing the Liquid Phase Concentration Calculations for Run # 28 144 22.8. F 2883 2.8 F .25» as 8.8“ M23? dam; «838 2283 8.0 3.2 .283 m «View. o o o o o 8 o :3 8 28.3 2226 $820 5m 0582 8 o 3.2 $8.30 5.32 402 2:05. a .32. «Es 25 m .352 28 . 05.8% .0 \ 2:29. 32.: :2. .No 2: :0 2:32: 3:22 c2328 an: 2: 3 22m :15»: a: 322:: 82.: :2. 2 No :o «22: :o a 2: 2 .5: «o :0:§ 05.3%.: 1.2. 82:12:. . 22:02 2: :0 d2: .32 5:230 23. 2: :o 22» us»: an 322:0 023: :2 S .2302 :0 .22: :0 : 2: 2 40.: :<:o2 :o:<> 9:50:2222223 32:: :2. . 00 2: :0 62: 5:2 .223? 23. 2: 3 22a :2»: A: 322:: 323‘ :2. 2 2.23.: :0 922: :o a 2: 2 .53 :0 :O:§ 2.6:: 22V: 2: :0 2:22.- 382. 2: B 2:29. 22 "$23: 82:: 3:2. 2: :0 $5.5: 22% a: 32%: use: Earle 2: 3 82: 32 ... :2: 82: 2a: 2: :o 2:39. Dbl: u: 5:2. o 2: a: :22332 2:29. 222: 22 2: A: 32:2: 32: 222: 2: N: 522:0 2:32 2: :o tfizmn 5:28: 2: A: :223: 32: 222: 2:26:88 :23 2: :0 =5» 59: 322:0 «2302 60.92 2:30:53 2: :o 2:29. :22: 2: :0 Sam 33:3: :0 2:32: 3:32-80 :0 2:32: 222.3122: 2 23:0 2 2 No :0 2:32: Eta: 2: 2 32.1 am: «0 23:2 :9 20:92:02.~m2::o2 :0 :i n 98:02 :0 2:82: 22:: 2: 2 2.36: 23:02 :38 5.82 823 8 _ 8 3 328235.90 3 2V... 8 28582: 2:2: as 2 =5. .0: 8 2.0.08 5.3: 803.0 m :<:02 :0 2 22:5» b22223 2:32 :o 2:32: 3:2 2: 2 2.52:: 53:02 0 m < "a. 2.23.. Ea 22.8. .2 .o .22 9:55.28 mz_o»z<_ _ _ _ _ «02.292353 2 9.2288 2:22.00 222.3 :2»: A: :22:2uo 2:33:52 :29: .8 2: .u :0 :o 2:32: 3:2. 2: 2 3:1 C: :0 _ _ _ _ _ _ _ 2:: :0 2:5 2 2:32: :20230 2 2:: M: 2:93 :o 32.22. 2223:: 32:23: 2:32: 2: so 5:223: 2: 2 2:230: 2:32: :2823 2 Sm: .: :moo _ _ 222322 .50: :8 :25 2: 2 5.2:. 282.32. 2:32: 2808 2: :0 32:2 2: 2 :03»: 32522. 2:82: :2: 2: :0 3282 2: 2 9:5.“ 00:00.0 00 50.0 km. F0 m9q — .0 080.0 mdmp and: mm 5.0 0000.0 095.0 5.3 0.55 v0.00— mw. EN 00:00.0 00 50.0 mm. to 53.0 030.0 mdm— mmdp 35.0 0000.0 02.0.0 5.0— QRN 8.00— mm. 5N 00000.0 00 50.0 09 2.0 53.0 080.0 909 5.9 005.0 0000.0 «v5.0 00.0? v.08 00.00.. 0508 530.0 00 50.0 09 —.0 000 —.0 55.0 —.mm. 0.5.. 008.0 0000.0 080.0 Qum— fi 5w 5.5 50.va 530.0 00 50.0 00. 2.0 000 F .0 85.0 fimm— 0«.? «08.0 0000.0 830 Sam. m. 5w 5.5 0v.vmm 0300.0 00 50.0 09 2.0 000 «.0 35.0 «.09 L99 38.0 0000.0 93.0 may. «.08 0.2.5: 5.00m .20.: s 40.: > .52 > 41$ a .3 «EH > 2:: 6: =2: .0: 2.: .o: 2...: .:> 2.; .:> 2.2.-‘1: Sm: .: 5MB. :62: 9:12.: :0 $202 8 $5.5: MEI: 40> \CEZIMQ Sam «0 5:02 00 :<:02 :0 ::00 L053 20:3. 50:3.— 52::— 5 :2 :3: :0: 2.0025250 55:50:00 023: 2:03 20 22328 Beam 085m 30%: ”Tm 2an 145 3:0: 5 2:209: :0 50:02: :2: 2:: 2 k 40:: 00 922.: 030: s 08:50 :0 88:2: 30:0: 2:: 0: 5.: 8 0:00: 030:: 5 20:8: :0 3080: 80:0: 2:: 0: .2: $800: 080: 030:: s 20:00.: :0 8020: 30:0: 2:: 0: 2:: 8 0:0: 0:03.50 :0 30:02 88020:: 2: 5:: 002:: 2:0: 2: :: 0:0: 50 :0 020:: :0 82:5: 05 01:: :52: :0 005030 002:: 030:: 5 32:50 :0 30:2. 2:: 0: 0 8 050: 20:02 :0 50:03 88022: 05 5:: 002:: 2:0: 2:: 5 20:02 :0 022: :0 8.5:: 05 0:00:52: :0 85200 002:: 2:0: :: 20:02 :0 50:2: 0:: 0: 0 $500: :50: 0:200 :0 30:2: 85020:: 05 5:: 002:: 2:0: 05 :: 08:00.: :0 00:2: :0 805:: 2: 0:00:52: :0 85200 002:: 2:0: 5 08:00.: :0 50:2: 05 2 0 00 9:0: NO :0 00:2: :0 : :20: 2: 50:: 002:: 8:00 2: :: 0:03.50 :0 020:: :0 0. 05 05:02:80 N: 85030 002:: 2:0: 5 0:00:50 :0 022: :0 ... 2: 2 40:: No :30: 20:02 :0 020:: :0 ... :20: 05 50:: 82:30:00 2: :: 20:02 :0 020:: :0 a 05 05:02:58 :3 :05200 002:: 2:0: :: 98:02 :0 020:: :0 ... 2: 2 :03: $502 :30: 0:0:00 :0 022: :0 828: :20: 05 50:: 000:: 8:00 2: :: 08:00.: :0 00:2: :0 805:: 05 05:02:80 :0 005200 002:: 2:0: 5 08:00.: :0 022: :0 805:: 2: 2 .53: :0 050:: mmdw mmd 5: p .0 mowwd 20mm: {ammuma 5.0 a —.N0 mm: 9.0 500.0 00.2 00.0 :28 020.0 0.00... .8000 S... 2.00 23.0 68.0 :02 00.0 023 22.0 0.8.: .280 8.0 2.00 83.0 88.0 3.2 2.0 82.0 a .8 .08.: 28.8 0:. 2.00 23.0 800.0 3.2 2.0 82.0 28 28... 28.8 3... 800 5.8 800.0 00.9. 0N6 :0 w .0 mm 5.0 2000.0 o\oow.m0 m ....w wNNo 0.3. v.0 mlwmwd :2 .0: :8. .0: :2 0: ..: 00: ... .8: n: 00: 02: E .2: 0 .: 0 .: 0.: 00:: 00:: 00:: 8 03:00: 8 8 5.000: 00 8 2800: 8 8 03:00: 8 8 2800: 8 030: 2:03 0.80: R00: 2:0: 050: 0:00: 2:0: 2:0: 0:00: 0I::0: :50: 00 t :3: :0: 000020200 00000000000 08:: 2:05 2: 9:325 805m 082$ 38:: ”3:00: Tm 030.0 146 _ _ «aw—N: _. N8 35d Nfim — 442.0... 4.: oudmu w2340> Amwwm> 080...“: mgmvmd 5980.0 cm amwmomd m m<:0w_ o o o o o 00 0 N4 N0 vans—0.. :monmod mkwvod N; web—dd NO d on :<:Ow_:m0 20:05:: .52 wMJOE d .mwSz .x....>> 29:5 9 .wm<2, . $5.003. .0 \ «2:22. 32:: .:s. .NO 2: :0 2:32: :2::::: :0::::0 3m 2: :0 0:20 :50: A: 32:30 32:: .:s. 5 N0 :0 020:: :0 ... 2: 2 20:: «0 05:3. 0:530:20 1:0: 32:: :2. . 2:02 2: :0 .02: :2: :0::::0 3m 2: :0 22019:»: A: :05030 32:: .:s. .: 20:02 :0 3:2: :0 ... 2: 2 40:: :<:02 :Q:<> 05.83.2222? 32:: .:s. . no 2: :0 3:: 3:: :0:0::0 30. 2: :0 22.350: :0 352:0 32:: .:s. S 2200.: :0 3:2: :0 :: 2:2 .53: :0 :O:§ 32:: :32: 2: :0 2:22.. :32. 2: :0 2:29. :20: u «:23: 32:: 3:2. 2: :0 2:320: 22% a: 323: :32. :ato 2:: :o 8.5 :50: u :23: 82:: :30: 2:: :o 2:32. D93: u: :0:0: 0 2: :0 3:22:00: 2:22. :22: :20: 2: A: 3:30: 32: :22: 2: :0 :02200 222.: 2: :0 Ptmzmn 23:0: 2: :3 3:30: 32: :22: 25:02:00 :03 2: :0 2:» 20:: 352:0 @6202 60.8: 2:262:00 2: :0 2:29. :22: 2: :0 :3» «2.302 :0 2:32: 2:02.30 :0 2:32: 2:02:22: 0: 23:0 2 :: No :0 2:32: Etc: 2: 2 =5: .0: N0 .2302 :0 :0:02::0E.~m:::02 :0 :>: n 20:02 :0 2:32fl2ta: 2: 2 2.220: m:<:o2 :02: 8.82 880.: 00 :0 :0 8202:0530 :0 2:" :0 32:82: it»: 2:: 2 =5: .0: :0 2.0.3“ 5.3: 800.3 :<:o2 00 0: 3:23 3:23:00 96:02 :0 2:32: 3:2. 2: 2 3:. «1:: m:<:o2 0 m < a... 228-. :5 mags. 3: .0 .25 32.25200 .265: d _ _ ~0+:.:xm. :0 _ _ _ _ _ 2:0 :0 2E: :: 2:32: :20230flH—v4“ E:mv:: :0 30:22: 2.22.2: :00::0:2: 2:32: 2: :0 :0:20::0 2: 0: 3:20:00 2:32: 3:02:00 2 Sm: .: 5:00 _ _ 05:20:20: :50: :3 :26 2: 2 Eu»: 333:2: 2:32: ::003 2: :0 50:02 2: 2 :63 33:22: 2:32: :2: 2: :0 30:3: 2: 2 9:22.: mvmmod 330.0 B: :d Ev :d 55d «.00: and 068.— 38.: 003.: end— mfim: 3.59 02mm— vamod 830.0 :m: :d F S. :d om Ed «.00: 0nd new”: 0000.: momma: cud: msm: 00.8— 02mm: mvmmod 830.0 E: :d F 3: :d 5 5d Ndm: omd mmmmé among 83.: Ed: m.:.m: 3.an 02mm— mo 50d mvmood wow : d can :d N 36.0 08.. 5d mmmod mused nvond mad m. 5: 8.8: Edo— mwpmod memood Nowpd 000 :d N 30.0 0mm: 5.0 800.0 92.0.0 medhd mad m. 8: dude: undo— 00500 3.80.0 «02.0 000 ..0 0 30.0 0.00. 8.0 2.8.0 350.0 0860 3.0 m. 8: 3.00: 55.00: 0580.0 0:: Edd mvw F d m :w :d 0 Food as: end nomad Bmmd as Ed m :5 mid: 8.5 3.3 033.0 0: Sod mvw : d 0 5 :d 0 Emd 0N: nod 008.0 «08.0 3 5d a Pd 0. :0 no.5 2.: 530.0 mm Sod mvm : .0 m Pm : .0 P 50.0 QR: and nomad mmvmd mm 5.0 00.: odd: 92.: mod: :03: > .53: > .53: > .: :S ..: :3 45mm > 3.5: .0: 3:.< :0: E<:0F: 2.5: .:> 3:: W: E< .: 3%: Nn: :MMFE :03: 3:33.: «0 5:02 :0 mi: :0: m2b20> >226: 3.8% No :<:o2 8 :<:o2 :0 5:00 :0: S. :O:§ 50:5. «60:23: 002:0 .000 . 00 2: :0 .020 :00: 00:0000 000 2: :0 220 00:00 .3 002200 002:0 .000 0: 00200.: :0 00:20 :0 0 2: 0: 40:0 00 0003. l _ 002:0 0:02: 2:: :0 0:00:00. :0000> 2: :0 200:0; :20: u «:23: 00000 :000> 2: :0 3.3.5:. 7 0:22. :0 00000:. 030:: 0.50:8 2:: :o 02.8 :02 n 0000:8004 0:00: 2:: :o 000 00:. an 00:00 0 2: :0 0220200: 200:0: :200: :20: 2: .3 0000.00 0020 :0:20 2: :0 002200 20020 2: :0 Emzma 0.00000 0:: .3 0000.00 0020 :200: 200000200 0000 2: :0 E00 20:: 002200 «20000: 60.00: 200002000 0.: :0 200:0; :0:20 2: :0 30m _ _ _ 20002—3 00:00::—:00:.~m:02_00: :0 2.: M 20000: :m: 200020 :0:::00 2: 0: 3:0. (.00 mm<0OMh : :00 :0 5.80: 088.0 00 _ 00 :0 0008038000 3 0:0“ 00 :85820 0:02: 2:: 0: 0:0 6.: 00 00920 3.00 :: 880.0 5:000: 00 0: :0:::0:0 0220200 20000: :0 200020 :000> 2: 0: 20:00:: 23.00%: 0 0 <_ a... 2.28.: 05 0.2.8. B: .0 .25: 0:25.028 026:2: _ _ _ J «01.203 0.: 2 0220000 2020000 00:20< 00:00 :3 0220200 2220202 :0:00 :00 2: :0 00 :0 200020 :0000 2: 0: :20. .00 00 _ _ _ _ _ _ _ .000 :0 0::00 0: 200020 0202:0flqm. 2.05:0: :0 :00025: «02.0.3.0: :0000000: 200020 2: :0 00:22:00 2: 0: 0220000 200020 00:02:00 0: (:00 .0 0000 : _ 2220200: :0:00 :00 0000 2: 0: 5% :0000002: 200020 000000 2: :0 :00002 2: 0: 06050 :0000002: 200020 :00: 2: :0 :00000: 2: 0: 9:00:31: «88.0 mm :86 @000 ovu :0 mowed :3: 0 Km: 88.0 88.: 83.: mm.— dem 00.5: 00.3 00.8 «88.0 3:80 08:0 ovm :.o mowed 0.3: 003.: 88.0 8.8.: 0000.: 00.: «0.9.: 00.8: made 00.8 «008.0 8:80 «B :.o :vu :d Bumd 0.3: 003.: 9.8.0 «08.: 030.: am.— Nm.m~ 00.8: mmdm 3.8 «080.0 088.0 0:30 mo. : :6 03.0.0 mdm: 800.0 00 5.0 008.0 08:6 Mb :0. :: o :00: 00.0: mu. :: «88.0 038.0 m :0 : .0 mm : :0 03.0.0 0.8: vowed :0 5.0 «05.0 :. :o:..o mmd :o. : : 8.8: 3.0: mm. :: «008.0 «38.0 0:30 00 : :6 030.0 0.00: 0000.0 «05.0 83.0 0000.0 W6 :0. :: 2.00: ~00: 002:: 2.50.0 $08.0 W030 mm : :.o 2.8.0 :00: amend 88.0 0000.0 00:00 00.0 00.0 5.00 3.0 00.0 :0 :80 m 88.0 00:. : .0 mm : :0 008.0 000: a 3.0.0 008.0 800.0 mm :00 5.0 00.0 8.00 :.~.m 00.0 mm :86 508.0 mmv : .0 mm : :.o «08.0 0.3: 0000.0 008.0 09.0.0 0000.0 Wad 00.0 5.00 W0 8...: 00:: 0 .53: 0 .: .00 a .:0 000m 0 ::_:.:.< .00 2.; .00 8:.< N0 32% 0.0 E< .0 (:00 .0 5&0.» 062.0 02.0% 03000: 00 E0400 E400 Emzumn Elam 0(000: 00 00.002 00 E8 I000 <0 #0003: 00020:: mo 0 00M :0: 000020200 00000000000 00000 2005 2:: 90.52% :000m 002% Boxm ”Ym 050:. 151 200020 0200020 2: 0: 0020:. 000 00.0.: 20000: 000 00 .«0 2: :0 0200020 :2200 2: :0 E00 2: 0: ELQ .0 0.:10 «00:. . _ _ . 0:000? :0 00:00:: 20.36000: :0 0>wnm:0000: :0 200020 .2000 2: 0: 3:8. .00 5.000: 00 :0 =0..00.:.o=..:00 :0 0...... 00 .8508... 0.000.... 0. 0:0 .00 00 _ . . . _ 00... 0:00.: 0: 20000: :0 00:00:: :00. 2: 0: 0 :03: 01002032.: 0:00“: 0: 000:00_.: :0 0000—2: :20 2:— 0: 0 :00: WEDGE 0.0.... 0: 2008. :0 .0022. 0.0.0... 2.. 0. .0... 00000. 0.00... 00...... 0. 0028... :o .0940 :30... fl... 0. 0:... .00 0.00... 00.00: :0 2:20.... :0:000:20 2: 5:0. 000020.02: 2: 0: 0:080: :0 00:20 :0 :02000 2: 00:22:00. ...0 002200 00000 0:00.: 0: 0:280: :0 0:20.: 2: 0: m 0<000: 0:02.: 00200 :0 30:00. :0:000:20 2: 5:... 002:0 0:02: 2: 0: 00200.: :0 00:20 :0 :00050 2: 00:22:20 :0 005200 00000 0:00.: 0: 00200.: :0 0:20.: 2: 0: m 00 050:: _ . _ _ . 0 00: :0 0_0:20 :0 0 :20: 2:: 0.0:: 00000 300.. 2: 0: 20000: ::_: 00:20 :0 :0 2: 000000000 .3 000.200 002:0 0:000: 0: 0:0000w :0 00:20 :0 0 2: 0: :03 5:000: 0:000: 0 :02000 .20: 2: :02: 00000 :0000 2: 0: 00200.: :0 00:20 :0 :02000 2: 00002300 2: 002200 00005202: 0. 00200.: :0 00:20 :0 :02000 2: 0: :0: :0 n.:|:.:0:.: 8.0:. 00.: «88.0 0«86 0000.0 080.0 0«.: 00.0 00.: 8.: 003.0 88.0 $2.00 $00.: 00...: 00.: «80.0 0«80 08.: 00.: «80.0 m«8.o 088.0 080.0 0«.: 00.0 08.: 8.: 090.06 8«o.o $080 $8.: 00.00 00.: «80.0 0«80 00.: 0...: «80.0 0«86 0800.0 080.0 0«.: 8.0 00.: 8.: 008.0 :80... $880 $8.: 08...: 00.: «88.0 0«80 8.0:. 00.: «08.0 008.0 008.0 88.0 80.0 «0.0 000 00.0 008.0 0890 $00.00 $00.: 000:. 00.: «08.0 008.0 mod: on: «08.0 88.8 wooed 88.0 88.0 8.8 who 8.0 888.0 08.08 $80.88 $80.: 860 00.: «08.0 008.0 00.0: 0...: «08.0 008.0 0000.0 88.0 08.0 8.0 000 8.0 88.0 0800 $80.00 $80.: 00.8: 00.: «08.0 008.0 8.0:. 00.: n: 8.0 008.0 080.0 800.0 8.0 8.0 80.0 00.0 «08.0 0:«o.o $8.00 $00.: 0«.0: 08.: u: 8.0 008.0 ..«.0:. «0.: m: 8.0 008.0 080.0 «80.0 00.0 8.0 :0... 00.0 008.0 n:«o.o $8.00 $00.: 0«.»: «0.: s: 8.0 808.0 0«.0: 8.: 0: 8.0 88.0 :. 806. 080.0 00.0 8.0 00.0 8.0 88.0 0:«o.o $00.00 $00.« 8.0: 8.: 0: 8.0 8 8%] I0 .: u : :03: : 003:: 003:0 00:... 2.2: .00 3.2: .00 3.0.0. .0 25.0 .0 0 00:... 0 40:: $.05 $.5— 0 .: 0.: 000:: :03: 01000: 00 0.0000: 00 5:000: 00 Weiom: 00 «(0‘3 0.:10 5.000: 00 00.000: 00 0<000: 00 01000: 00 [P503 £02.: GEO: @000: m00§ 000$. P303 0:02.: MSG: MEG: 2.00:: 0%: go: 050:: mo 0 =3. .0: 0:00.233“: 02.2.0850 00...... 0.0.0... 0... 8.325 .028 2.2% .086 .3000. ..-m 0.2.... _ 30306 N0 635 :.«N: 668. : mane. o 60.: 6666: 40.0.0: ...... 63. :33 wining Awwmw> 3.22.- 88:... 00 88...: 88... 88. o 8.: 8.8 00000. _ 8.000... 88:... 000000 0.....de 8528...... 0...... 8... 00 8... 8.... 00 0 0W 88.2 88.288. o 8... 8... 00 8.: ... .... 0000.00 2.0.0 8.08.. 0.08.. ......om. 200000.30... 00.0... 0 .000... 0.0: 0...... 0 ..000... 0000.0 \ :00 00000 .00.. . .0000: 0.: :0 .020 000: 02.0000 00 0.: :0 20.0 00:00 :0 002200 00000 .2... 0: 0.0000: :0 00:0... :0 0 2: 0: ..02 00000: 0003. 05.008.000.029. 00000 .00.. . 00 0.: :0 .020 000. 02.0000 003 0.: :0 20.0 30:00 00 002200 00000 .20.. 0: 00200. : :0 00:00. :0 0 0.: 0: :02 00 00000 _ 00000 0.0:... 0.: :0 200.0... .0002. 0.: :0 00.0.9. :22 u 00...: 00000 0000.. 0.: :0 N20020:. _ 0.800 .... 000.30 0.0:... 00.0.... 2.. .o 82.. .32 ... 02.... 8...... 00...... 2.. .o 03.0 ..0.. 152 «0 00:09 0 0.: .3 020.0200: 00.0.0: .200. :22 0.: :0 0000.00 0000. 00.0.0 0.: .40 000.200 20.0.0. 0.: :0 E0200 2.0000 0:: 00 000:..00 0000. 00:00. 200000.000 0000 0... :0 0.00 0.0.: 000.200 3.0000: .00.«0.10:00000.000 0:: :0 00.0.00 .20... 0.: :0 2B _ _ _ : _ _ _ _ 0.0000: :0 00:02:00.. 9.0000: :0 00: a 0.0000: :0 200020 .2000 2: 0: 200.00 00.0000: :0... .0 .082 088... 00 _ 00 .0 8080.08.00 .0 0...u 00 .8508... .00.... 2.. 0. E0 .0... 00 88.««« 8.8:: 836...“ 00000: 00 0. .0:.E:0 020.0200 0.0000: :0 200020 .009. 0.: 0. 2.: 0.00 000000: 0 ...... 2.28.: 0.... 0.2.8. 3. o .....0 0:20.828 025:2... _ _ _ _ ~0+.:..\m.:nm:0:00: :0 2000023220: 2:: 0: Sb: .0: 0:00:00: 00 :0 308035.30 :0 min 00 32:32.: 00:2: 20 a: 0.: < .0: 00 _ _ _ _ _ 00+: 0:00: :: 002:00: :0 :0:02: :2: 2: 0: u: :03: meiom: O59: 0:02: :: 0:23.: :0 :0:02: :2: 2:: 0: n: :9: 00 @009: _ : _ r _ 0:02: :: 20:00: :0 300:0: 2:203 2: 0: 2:: 0:360: O59: 0:000 0: 0:28.: :0 .520: 30:3 2:: 0: 2:. 00 0:00: _ _ : _ : :00: :0 30:00. 20022: 2: 5:0. 002:: 200:: 2: :: 20:02 :0 00:2: :0 02:0: 2:: 0:32:08 0.: 00::2:0 002:: 200:: :: 90:00: :0 30:0: 2: 0: 0 03:00.: O39: 0:200 :0 30:00. 20022: 2: 2:0. 002:: 0:00: 2: :: 0:202: :0 00:2: :0 :02:0: 2: 0:32:02: 0: 002030 002:: 0:00: :: 0:209: :0 2:200. 2: 0: 0. 0o O59: _ _ _ _ _ _ _ _ _ _ _ _ _ :0:00: :0 022: :0 0 :20: 2: 80:: 002:: :0:00 2: :: 22:00: :0 00:2: :0 0 2: 02:02:00 0.: 002200 002:: 0:02: :: 90:00: :0 020:: :0 0 2: 0: :03: m<100:OSO:: 0 02:0: :20: 2: 50:: 002:: :0:00 2: :: 0:209: :0 022: :0 02:0: 2: 3:002:00 0.: 005200 002:: 0:00: :: 0:209: :0 020:: :0 02:0: 2: 0: :03: :0 @003 00. K 00.0 000.0 0000.0 0000.0 0 :00.0 00.: 0:.0 00.: 00.: 0000.0 03.0.0 A00:00 A000.0 00. K 00.0 00:00 K0000 00. K 00.0 000.0 0000.0 0000.0 0 50.0 :0: 0:.0 00.: 00.: 0000.0 0000.0 A00:00 6000.0 00. K 00.0 00:00 K0000 00. K 00.0 005.0 K0000 0000.0 080.0 :0.: 0:.0 00.: 00.: 0000.0 003.0 $3.00 00.00.0 00. K 000 020.0 000.0 00. K 00.0 0000.0 Kvod 0000.0 0000.0 00.0 00.0 K0 00.0 0000.0 K0000 n000.00 0000.0 00. K 00.0 0000.0 K30 00. K 00.0 0000.0 030.0 0000.0 0000.0 00.0 00.0 Kd 00.0 0000.0 K0000 $00.00 n000.0 00. K 00.0 0000.0 030.0 00. K :00 0000.0 050.0 0000.0 K0000 00.0 00.0 K0 :00 300.0 0080 A$00.00 $00.0 0.0. K 0.0 0000.0 02.0.0 00. K 0:..0 0000.0 :0000 200.0 0000.0 00.0 00.0 00.0 00.0 0000.0 :0K0.0 oxo :000 0000.0 0K. K 0:..0 0000.0 :0:00 0:.. K 9.0 0000.0 :0000 200.0 0000.0 00.0 00.0 00.0 00.0 0000.0 :0K0.0 $5.00 .0000 0:.. K 00.0 0000.0 :0000 0K. K 00.0 0000.0 :0000 200.0 0000b 00.0 I000 00.0 W00 0000.0 :0000 n0:000 o000.0 0K. K 00.0 0000.0 :030 0. : 0.: :92: :02: :Ost. :O:.:> E; .0: 3:1 .0: Eu: .: 3.; .: u: :02 ..: :03: 02.3 00.5. 0. : u: :03: :02: .0330: 00 0:00:00: 00 0:530: 00 0:530: 00 0 002:: :0: . 00 2: :0 .02: .:0 :0::0:::0 00: 2: :0 0:0:0 050: :3 005200 002:: :0: 5 00200.: :0 00:2: :0 0 2: 0: .53: 0o :0:<> 002:: 5:0: 2: :0 2:52.. :0000: 2: :0 2:52. :20: n «:23: 002:: :0:0> 2: :0 $0340: 0:000: 0: 0000.00 030:: 350:0 2:: :0 000:: :80: ... :23: 80:: 0:00: 2: :0 0230: n: :0:0: 2: A: :0:0::0:00: 2:52. :22: :0:0: 2: .3 :0::>0: 000.: :22: 2: .3 :05030 2:35 2: :0 E022: 50:0: 0:: N0 :0::>0: 000:: :22: 0::0:0:Eo0 :000 2: :0 5:0 50:: :05200 020:8: 60.00: 0::0:0N::00 2: :0 0550:. :0:0:: 2:: :0 :30 «20:00: :0 2:002: 35:5. «00 :0 2:002: :0:::0::.:0:0:: 0: :0:00 0: :: .00 :0 0::002: 3:0: 2: 0: :E. < .0: 00 20:00: :0 :0:00:::0:: «20:00: :0 :>: n 20:00: :0 2:002: 320: 2: 0: 5.510: 33:00]: $0.20 3.82 088.0 00 _ 00 :0 02:03:35.:00 :0 0:0" 00 32:80:: 300: 2:: 0: :20 .0: 00 000.000 .0030: 00000.0 :0:00: 00 0: :0::E:0 :0:0::0:00 20:00: :0 0::000:m:0m0> 2: 0: :_:.:.< :> 2:00:00: 0 .2. 2.300.: 0... 22:8. 3: 0 2:: 00250200 026021 _ _ :0+§B. 40:: a .: :2. .: 3 08mm : 3.2: .0: 3.3: .0: 35‘ .m: :E. 5:ng Elam :<:om.: 00 5:00: 00 E000 06:5. :93: 202:: Z :0 00m .5: 00000—0200 00000000000 000:: 20:03 2:: 05398 Beam wwoam BBQ 60: 030.0 155 6.580.... 02:82.. 2.. 0. 80.0.. :8 8...... 92.8. 2.0 00 2.. .0 8.082.. .202. 2.. .0 5:0 2.. a. 2.; .0. 0.30 0.... _ _ _ _ _ . N880. .0 00000... .05. @8000. .0 q>vum.2.02 .0 9.080... .202. 2.. 0. 0...... 6.. SRO“. 8 .o 22.02.3528 .o ...0" 8 .8508... .202. 2.. 2 =5. .2. 8 _ _ _ . «.03. 2:2. ... 22.8. .o 02.8.. .2: 2.. 2 h. ..00. 5&8. 0.00... 0.00”. ... 2.0.2“. .o 00.8%.. .0... 0.... 0. ... ..Os. 00 0.00... 2:2. ... 238. .o .522. 20.2: 2.. 2 2E 010020.00... 2:0... 2. 2.23... .0 28.12.20: M... 2 2.5 8 0.00... %2 .o 20.2: .2322: 2.. 5.... 82... 2:2. 2.. c. 22.02 .0 3.2.. .o .380: 2.. 0:32.38 .3 .3228 82... 2:2. 0. 0.88. 3 £0.03 2.. 2 0 05.00. 0.00... 2.200 .0 2.0.2: .2820... 2.. 0...: 82... 0.00.. 2.. ... 2.2.8.. .0 8.2.. .0 .0080: 2.. 00.03.35 .3 000.200 82... 0.00.. ... 2.200.. .0 0.0.9: 2.. n. 0 00 0.00... _ 0 _ _ 2.00. .0 ...—0.0... .0 .. .20. 2.. Em... 002.308.. 0... 0“ .0880. .0 8.0:. .0fiocyz..0§08 .3 000.200 82.0 0.00..— ... 9.2.00. .0 8.0:. .0 0. 2.. n. .5... 50.00. 0.00... o .0050: .20. 2.. E0... 82... .08.. 2.. ... 2.200.. .0 00.2.. .0 .0050: 2.. 05.02.08 .3 80.200 82.... 0.00.. ... 2.200.. .0 8.2.. .0 80:5: 2.. a. do... 00 0%.. 00.00 00... 0000.0 0.0..0 0000.0 0 .000 00.. 00.0 00.. 00.. .0000 000.0 $. .00 $00.... 0...... 00... 0000.0 0.0..0 8.8 00. .. 0000.0 0.0..0 00000 0 .000 00.. 000 00.. «0.. .080 08.0 $. .00 $00.... 8.3 v0. .. 8000 0.0.0 8.00 00. .. 00000 0.0..0 00000 0 .000 00.. 00.0 00.. 00.. .080 000.0 $. ..00 $00.... 8.00 we. .. 8000 0.0..0 00.00 0... .. .0000 0 5.0 0000.0 0 .000 00.0 ...0 0.0 00.0 0800 0.0.0 $00.00 $00.... 00.00 3.... .0000 0.0..0 00.00 3.. .. .0000 000 ..0 0000.0 0000.0 00.0 ...0 ...0 00.0 800.0 0 .0.0 $00.00 $00.... 00.00 3.... .0000 000.0 00.00 0... .. 0000.0 000.0 0000.0 0000.0 00.0 ...0 ...0 00.0 8000 0.0 .0 $00.00 $00.... 00.00 0... .. 0000.0 000.0 00.00 .0. . . 00000 000 . .0 0 .000 .0000 00.0 00.0 000 000 8000 000 ..0 $ .000 $00.0. 00.00 .0. . . 00000 000 ..0 0000 .0. .. 0000.0 |mmb.0 0 .000 00000 mm... 000 mmb ..00 0.00.0.0! :wa3 $800 $00.0. 00.00 .0... 00000 000.0 00.00 .0... 0000.0 000.0 0.000 00000 00.0 00.0 00.0 ..00 0000.0 000 ..0 $ .000 $00.... 00.00 .0... 00000 000.0 00.00 ..0. .. 0.000 000 ..0 00000 .0000 0.0 000 v.0 0.0 0080 000 ..0 $00.00 $.00. 00.00 v0. .. 300.0 000.0 00.00 00.. . 0.000 000.0 0000.0 .0000 0.0 00.0 ...0 0.0 008.0 000 .0 $00.8 $.00. 0.0.00 .0... 300.0 000 .0 00.00 00. .. 0.000 000.0 0000.0 .0000 0.0 00.0 N . .0 M .0 0.000 000.0 $00.8 $.00. 00.00 00. .. 0.000 000.0 0. .. 0. . .50.. .33.. 00:... 00:... =h<4mm E1 6.. Ev. ... 2.5. ... ... .5: u. .52 E 3...... 0. .. 0. .53.. .52. 5.100. 00 03.00. 00 $0.00. 00 0.3.00. 00 «<0... 0.08 0.3.00. 00 50.00. 00 23.00. 00 0.3.00. 00 [9:003 E030... @002 0.00... tons. E3. E0... p00... E... 0.00... 0.00... 0.00... 0.00... 0.00... __ ~ 0... 05M .5.“ mags—00:00 GomawbcoocoU mesm @394 05 WEBOSW “005% Cucumw 30me ”AJCOUV Gum 03.0% 156 8806 No 888:: 88.: 8:66 8.:.:. 8.8: :50: com: :8. «68:6 00 88.8 386 886 06.8 86:. m Siom: com—8.0. 8086 mEPm: 88.8 856 886 0:8 8.8 8 86 86 mu m < 886 88.6 886 86 86 NO 8.8 «.5: 3:02:00 $2.0": 00:00:00 8000 05 :0": 20:00:“: .62 800:: 0 80:: 2:: 25. m .802 0806 x :2: 0023 i0: . :0:000: 2: :0 .02.: :02 :0:0000 00 2: :0 20:0 :52. N: 005030 002:: 2:00 5 82:00: :0 00:05 :0 :: 0.: 0: 40:: 5:000: mom—S 9:.:.8N0.0\«0E=:0> 002:: 2:2. . 00 2: :0 .02.: :02 00:00:00 00: 2:: :0 20:0 :50: .3 005030 002:: .23 5 00200.: :0 00:2: :0 : 2: 0: 40:: 00 g: S: 002:: 0:00: 2: :0 2:52.- 3000:. 2: :0 2:50) :20: u «:23: 000cm 3&2. 2: :0 NE: 40:. 50:00 .3 000300 0:00: 050.00 2:: :0 80:0 :80: n 00::.:: 82:2 0.50: 2:: :0 .25 40:. an: 00:00 2: 2: 00:53:00: 2:50: :52: :20: 2: 2: 000:>00 002: :0:05 2: .3 005030 225:: 2: :0 :CBZNQ 2:0:00 0:: .3 000300 000:: :52: 2:238:00 :000 2: :0 5:0 50:: 005030 3:80: .033: 2:288:00 2: :0 2:59. :52: 2: :0 Sam 0:0:00:_:0 00:05:08.:200r: :0 :0: n 20:00: :0 203.2: 5:00 new: 0:: 0.0.: 000000: : :8 :0 5.08: 0.8.8.: 00 _ 00 :0 5:02:3580 :0 .8" 00 32082: 3:00 2:: a: 2:0. .00 00 mvo.««« 5.8:: 88:8 8:109 00 0: :0:::::0 00:58:00 82:00: :0 20000:: :23. 2: 0: 3:: «12: 8:362 o m < :20 0:209: 0:0 H230. :0: .0 .25 2.225200 mlz.o.:z<_ : ~0+.::\n. 40:: > .: c5 443 .:::N > 2.340.: :E.< .0: :E.< .2. 3:0. .2. 35¢ m: (:9: .1 5m?— 163Q 85:: 523%: 00 m8 40> 85 40> :8sz 23m m<10m: :0 5:10»: 8 5:00 IMOKS: EOQS. «32:: «: :: :3: :0: 80303030 8:228:00 08:: 03:05 0:: 83:25 :88 002% 700%,“: ”Wm 030:. 157 630002: 0030005 2: 0: 000:2. :00 00:5: 92:00: 2:0 00 2: :0 0030002: 3:22: 2: :0 500 2: 0: E0< .1 0:06 9:0 _ _ _ : A : 92:00: :0 50:00:: :05. «22:00: :0 §:nm:2:00: :0 030002: 3:02: 2:0: 20:0 .0: 0:10:00: 00 :0 5080:8200 :0 00:“ 00 323020 30.3: 2:: 0: E0 6.: 00 _ _ _ 0:03. 030:: 0: 022:00: :0 00:00:: :05 2: 0: h: :03: 50:00: 930:: 032—: 0: 00200.: :0 00:00:: :05 2:— 0: ..: :03: :00 900:: 030:: c: 2008: :0 50200 20:9: 2:: 0: E0000: 0000:: 035—: 0: 00200.: :0 500:2: 30:00. “a: 0: 00:2 _00 930:: 00:00: :0 E :02 2:300:05 2: 5:: 002:: 030:: 2:: c: 92:00: :0 00:05 :0 :0052: 2: 00:33:35 :0 005030 002:: 030:: 0: 9:00:00: :0 2:030. 2:: 0: 0 5:100: 930:: 00200 :0 30:00. 2:300:05 2:: 2:3. 002:: 030:: 2: c: 28:00.: :0 00:05 :0 :0050: 2:: 00:03:35 :3 005200 002:“: 030:: 0: 28:00.: :0 30:00. 2: 0: 01 0o :59: 5&0: :0 0_0:05 :0 0 “0:0: 2: 52—2: 002:: 00000 2: 0“ 22:00: :0 00:05 :0 m: 2: 0:30—2:30 0.0 00:00:00 002:: 030:“ :: u:0000w:0 00:05 :0 0 2: 0: we: EEO“: 900:: 0 :0052: :20: 2:: 50:: 002:: 0000:. 2: 0: 00200.: :0 00:05 :0 .8052: 2: 00:02:30 0.: 00:00:00 002:: 030:: 0: 28:00.: :0 00:05 :0 00050: 2: 0: :0! :0 OM30: 5.00 00.00 0000.0 0000.0 0000.0 0000.0 00.0 00.0 00.0 00.0 200.0 00.0.0 0000.00 60.00.00 5.00 00.00 0000.0 0000.0 00.00 00.00 0000.0 0000.0 0000.0 0000.0 00.0 00.0 00.0 00,— 300.0 00:0.0 e000.00 e0.00.00 0.00 00.00 0000.0 0000.0 00.00 00.00 500.0 . 0000.0 0000.0 0000.0 00.0 00.0 00.: 00,— 200.0 00:0.0 60.00.00 A0900.00 .000 00.00 :0000 0000.0 00.00 00.00 0000.0 0000.0 000.0 080.0 00.0 00.0 00.0 00.0 0000.0 00 :00 00.5.00 6000.00 00.00 00.00 0000.0 0000.0 00.00 00.00 0000.0 0000.0 :0000 080.0 00.0 00.0 00.0 00.0 0000.0 00:0.0 e0.6.00 9000.00 00.00 00.00 0000.0 0000.0 00.00 00.00 0000.0 0000.0 :0000 080.0 00.0 00.0 00.0 00.0 0000.0 00 :00 90.5.00 e0.00.00 00.00 00.00 0000.0 0000.0 00.00 00.00 300.0 0000.0 0 50.0 0000.0 00.0 00.0 00.0 00.0 0000.0 00 :00 60.00.00 o0.00.00 00.00 00.00 600.0 0000.0 TEm 0000 EmFlbmpmd 0000.0 #9000 00.0 2.0 bub 00.0 00.0.0.0 0900 $00.00 nx.00.0.le.0[0.00 0:00 FEE 00.00 00.00 600.0 0000.0 0 80.0 0000.0 00.0 00.0 00.0 00.0 0000.0 00 :00 200.00 n$00.00 00.00 00.00 0000.0 00000 00.00 00.00 500.0 0000.0 0 50.0 0000.0 2.0 00.0 00.0 0:.0 0000.0 00 :00 A0000.00 0000.00 00.00 00.00 800.0 00000 00.00 00.00 800.0 0000.0 0.00.0 0000.0 3.0 00.0 00.0 00.0 0000.0 00 :00 60.00.00 Av0.00.00 00.00 00.00 500.0 0000.0 00.00 00.00 2000.0 0000.0 0 Bob 0000.0 2.0 00.0 00.0 M0 080.0% 00 :00 60.00.00 o\w0.F0.00 00.00 00.00 .000 P 0000.E 0. : 0.: :03: :90: :03 > :03: > 000010..“ 0:01.01 301(40 :0: m: n: :03: ..: :90 000:: 00.02 0 : 0: :03: :03: 0:330: 00 23:60: 0.0 0:330: 00 0:10:00: 00 «(mi 0:3: 0:00:00: 00 5030: 00 13:00: 00 0:00:00: 0.: EDGE 950:: MOSS: 9030:: :19: 08 mom—0:: £39: 550:: £39: £39: 530:: 930:: 0.859: 330:: 0: 0 :3: :0: 00000320“: 0000050000 002:: 030:: 05 053000 .0000 000000 :00xm: ”3:00: Wm 200:. : 31:85 00 0.80:: 88.: 88.0 8.5 0.8.8: .50: .2. 8:8 L205? 0008; ENE. 883 00 82...: 28.0 ~82. 8.0.0. 0.8.8 00200: 3.0.8.0. 082.0 00000: 88.0. 88.0 3.56 5.: $8.: 00 8.0 .00.: 00 m L0 0.3.: 28.0 88.0 8.: 0.8.: 00 8:: 6.8 $60000 £20 04:88 002—2 055: 2000000 000 @300 0 .0000 2:: 0:0: 0 .0050 _ _ 0:032:00 .0 1200?: 002:0 .00: . 0 2: :0 20002d :0:::00: 00:00:00 000 2: :0 0:0:0 00:00 :0 00:00:00 002:0 .00: 0: 00 :0 00:00: :0 0 2:: 0: :03: 00 0003: 9:50:00 .0 \ «:0: 002:0 .00: 00000: 2: :0 .020 .000: 00:00:00 000 2: :0 0:20 00:00 :0 00:00:00 002:0 .Nm: 0: 000000: :0 00:00: :0 0 2: 0: :02 0(000: 000$: 900.0000 002020: 002.:0 i0: . 00 2:: :0 .020 .000: 00:00:00 000 2:: :0 20:0 00:00 :0 000:0:00 002:0 .00: 0: 00200.: :0 00:20 :0 0 2:: 0: 00:: 00 0003: 00000 0:00: 00: :0 20:00:. :0000: 00: :0 200:0: :20: n 00:3: 00000 0000: 00: :0 03300: 002.00 :0 22:00 00.:: 05000 .5 :o 82.. :02 u 08:: 82:0 032.: 20 :0 000.00: «0.0.20 n0 00:00 2:: 00 0220200: 200:0: 00:20 :20: 2:: :0 0000.00 0020 00:20 2:: N0 00:00:00 20000: 2:: :0 26200 00000:: 0:: :0 000::00 000:0 00:20 200000200 0000 2: :0 0:00 :02: 020030 «20000: 60.00: 200000.000 2:: :0 200:0: :0:00: 2:: :0 :50 «000000: :0 200020 0:00:00 :0 200020 :0:::00:.:0:0:0 0: :0000 0: :: .00 :0 200020 :0:00 2:: 0: s: < 60$. 000000: :0 00:02:20. «000000: :0 5:: u N00000: :0 200020 :0:000 2: 0: E<.00 $3000: 30.0 :N 5P9 00000.0 00 _ 00 :0 00:02:05.3“: :0 0::u 00 :0200020 :0:00 2:: 0: 32¢: N00 00 000.wa 5.00:. 0080.0 0:000: 00 0: 00000 3:030:00 000000: :0 200020 :000: 00: 0: 2.50.0: 050000: 0 0 .20 2.28.: 0... 0.3.8. 3: .0 .55: 2.25.0200 02.0.51 _ _ : _ «0+ :0. u~< 0.: 20520000 8020000 0:00:00 00:00 :0 02:00:00 22200.00: :0:00 :00 2:: :0 00 :0 200020 :000: 2:: 0: :20. 0: 00 _ _ _ _ _ _ _ .000 :0 0:00 0: 200020 00:02:00§ E0002: :0 30022: «03:00:: 00000002: 200020 2:: :0 00:20:00 2:: 0: 0520000 200020 00:02:00 0: (:00 .0 0000 _ _ 20200.00: :0:00 :00 00:0 00: 0: :MMIIE. 158 00.3‘0200: eagohq 3.00000 0:: :0 :DOUQOL on: 0‘ 10:94th 00000002: 200020 :2: 2:: :0 :00002 2: 0: kmmmfi Foowoo @008. o Npooo. o 8:... fio owmwo 0056 wow: nod mmoué pmmoo woos.— Lmlhvm... 5.0 «Kb 00.:.me 5.09 8.0. vmowod 808. o N 58. o 8N fio own 9 .o 00 ..oo coop mod «mom; «mood mmmmé 80m... and 0.8 «0.09. whoo— 00.0. cmowoo «008.0 N 58.0 vow —.o a 5 p .0 mo 56 $62 was.” vuow... owmoo Saw; movmé 3.0 0.8 8.2: whoop ovo. vww —o.o hemooo oooood 3.0 «d anpo n 30.0 Emo— mwé «ammo m0 8. o 35.0 mnmoo 8.0 o.~n made No.2 med. v 5 —o.o 0886 @8006 :5 fio «mm P .o :. 39o Ema: vwé mowmo mv 5. o 50.0. o 030. o 8.0 h. K undo: 00.00 36. o 5 poo 088. o oooood va P .o NNN F .o a 3:06 0.69 0N0 —~No.o 3.. so mono. o wmmo. o 8.0 h. 7:. undo: ohms N :6 5m 56 mm —oo. o mooood mum _..o vowfio 0 506 ad: and Sand ooooo vomm. 0 on 5. o med 0mm moém o flow 00mm Fom—oo $506 0886 mum—.o 08—6 93:: «db— Nod vvmmd 886 300.0 «056 mod Nam $.00 o—dm «Nam 8 5.0 8 :8 o 88.0 22.0 :83 m :86 «.2: 8.0 8.8.0 88.0 28.0 8 .2. 8.0 08 8.8 2.8 2.8 805.0 R80. 0 .886 236 8 : ..o N :80 0.00.: 8.: 83¢ 88.0 82.0 :28 8.: :0 8.8 0.. z. 2.8 8: 8.0 :88. o .880 m z. 3 8 : ..o 0. :80 Q2: 8.: :88 88.0 82.0 82.0 8.: 3.0 8. 8 8. z. 2.8 I005: #080 .880 23.0 S P ..o m :80 0.2: :0: 23.0 88.0 :88 «:2. 0 4mm.“ :0 8. 8 :0. S 5.8 000 : .000 : 00:: : .0 ...: .: 0: 03:0} : 0:0 .00 0:0 .00 0:0 .00 :5. .m: :5. .m: :5. .0 S00 .0 60.2 002ml. 00020 00 00000: 00 E000: E000: 200200 F00 00 00000: 00 05:00: 00 0000 I002: 00%.: 0000: 0:0:I0M m: 0 :3: :0: 000003200 00000000000 00000 20:05 05 2:325 325 002.5 3020 ”3:00: w-m 0300. 159 2000200200005 2: 0: 000.0500 00:5: 05000: 000 00 .00 05:0 0050020 :0:00 2:: :0 500 2: 0: 3:: < .0 0:30 : 00 :0 0282:3508 :0 00:» 00 3200020 00:00 2:: 0: 0E: .00 00 0:250: :0 00:00:: :05. @0000: :0 0>:nm:0000: :0 2000232000 2:: 0: 3:0 .00 03:00: 00 :0 02:02:08.5 :0 0:? 00 :8:=00o:0 00:2: 2:: 0: :23: 3.: 00 0:00: 0: 0:00:50 :0 00:00:: :05 0n: 0: n: 40:: N0 050:: 0:00: 0: 0:00:00: :0 00:00:: :2: 05 0: n: :0: 5:000: 0:003 0:00: 0: 00800.: :0 00:00:: :05 0:: 0: u: 40:: 9.0 0:003 0:00: 0: 0:00:50 :0 2:00:00 2:002 05 0: 02:. N0 050:: 0:00: :0: N508: :0 :0020WES02 0:.:: 0: 20:). 10.000: 050:.— 0:::0:: 0: 00800.: :0 2:00:00 2:90): 2:: 0: «at: 8 0:00:.: 2:00:50 :0 50:00. 0:000:05 05 5:3 002:0 0:00: 2:: 0: 0:0: 50 :0 00:05 :0 :0050: 2: m5: :0:00... :0 08:22. 32:0 030:: s 80:50 :0 H000 2:: 0: 0 00 0:00: $0000: :0 50:00. 5:000:05 2: 5:2 002:0 0:00: 2: 0: 0.0000: :0 00:05 :0 :00500 2: 05:00:05 :0 005200 002:0 0:00: 0: E0000: :0 50:03 2: 0: 0 5:000: 030:: fl 5200 :0 50:00. 0:000:05 2: 5:0. 002:0 0:00: 2: 0: 20:00.: :0 00:05 :0 :00500 2:: m0::.:0:::05 :0 005200 002:0 0:00: 5 20:00.: :0 30:2: 05 0: 0 00 050:: _ Ill .00 :0 00:05 :0 0 :20: 2: 50:: 002:0 500:. 2:: 0: 2:00:50 :0 00:05 :0 0 2: 05005000 :3 005200 002:0 0:00: 0: 0:00:50 :0 00:05 :0 0 05 0: :03: No 050:: 90000: :0 00:05 :0 0 :20: 05 50:: 002:0 :0000 05 0: .0008: :0 00:05 :0 0 05 05005000 :0 005200 002:0 0:00: 0: 90000: :0 00:05 :0 0 2:: 0: 00:: 03:00.: 050:: 00300 :0 00:02: :0 000500 :50: 2:: 50:: 000.:Q :0Q0) 2:: 0: 00200.: :0 00:02: :0 000500 2:: %fiknau NO 000:0:00 0000:: 0:00: 0: 0:00:09: :0 00:02.: :0 .8050: 2:: 0: do: 8 Q::.:°:-: $3 63 $3 .0: 83 $033 .833 :83 .:.$3 0.9.3 .33.. $3 $2 8.: $83 283 $63 $3 $3 33 a: $3 383 $83 3333 0.303 .303 .33.: $3 $2 8.: $83 283 $83 $3 $3 $.0 .0: $3 3233 $33 383 .:.$3 .303 .33.: $3 $2 8.: $53 283 $63 $3 83 $3 $3 53 $83 $23 233 0.333 0.3.3 .33.: $3 $2 8.: 283 $83 $83 $3 $3 $3 $3 83 .233 $333 283 0.33 0.33.3 0.33.: $3 $2 6.: 283 $333 $53 $3 $3 2.. $3 :33 $33 $83 3:83 0.33 0.3.3 .33.: $3 $2 6.: 283 $83 3:33 mod mmd No.0 and 5.0 nmwod 500.0 N 50.0 2090.0 oxamnfim o\omo. _. mmd 8.00 5. w oomod moved 9. p 0.0 $3 $3 $3 $3 :33 383 3.33 283 .:.$3 .:.$.3 .33.: $3 $2 6.: 833 333 $53 $3 $3 $3 $3 :33 $83 333 283 .333 .:.$3 .33.: $3 $2 5.: 3833 3:03 $63 $3 $3 33 23 83 $83 $33 :83 0.33 0.33 0.33.: $3 $2 6.: .233 3.33 3.63 $3 $3 $3 23 333 $333 $33 :83 .383 0.3.3 0.8.: $3 $2 3.: $83 3:33 .333 $3 2 3 3.0 23 83 $333 $33 :83 0.33 0.3.3 0.33.: $3 $2 3.. $033 353 .333 :2“... :5 .0 :20 0.: 0.5 3.: 05 3.: 0 .0: 0 :00 ..: :00 .5: :20 .20 0 .: 0 .: 0 : 00:: :00: :00: 03.0.: 0.: <0 00 05:00: 00 :0 05:00: 00 00 0.0.00: 00 00 50:00: 00 00 05:00: 00 2:200. @003 E00: E00: E00: P020 2003 @003 K00: 2003 R00: @003 0:00: m: 0 00m :0: 000020230 00030000000 32:0 2005 05 mEBQE 82% 00025 Boxm ”3:00: w-m 030:. 160 _ _ _ :22... 00 22.8. 88.: sum? 8.0: 0.8.8: .30: E 8.50 @239 ..mwmml> 3.0%? 802.0 00 22.8. 88.0 B80 5.: 22.2.. 02:00: 3.02.0. 022.0 22090: 38.: 85.0 88.0 8.: 28.. 00 8.0 2.0 00 0 0%: ~82. 82.0 mo. 8 2.0 28.0 00 8.: 02 5:00:00 £2": 8:28 00%: 2% 20:02:: 000 00000 0 .000: 0:: 0.95. 0 .002: _ A $5.88.: \ «050:0; 002:: dds . o 2: :0 20000:: 520:: :0:0000 000. 2: :0 0:20 0500 :0 005200 . 52:: :00 :: N0 :0 00:2: :0 :: 2:: 0: 40:: N0 t0:<> «5.5.88.0 \ :00 002:: :2. . :0:00: 2: :0 00:88:: :0:0000 00: 2: :0 0:20 0500 :3 005200 002:: :00 5 m:0:00: :0 00:2: :0 0. 2: 0: 40:: :0:00: mo:<> ~5b00~00x~0550> 002:: :00 . 00 2: :0 00:: 00:: :0:0000 00: 2: :0 0:0:0 0500 :3 005030 002:: :00 5 0:209: :0 00:05 :0 a 2: 0: .55 00 :O:§ _ 002:: 0:00: 2: :0 2:59.. :0000> 2: :0 050:9. :20: u «:23: 002:: :0:00 2: :0 $5300 _ 3:0:0: :3 0000.00 0:00: 359:0 2: :0 002: :20: n «:23: 002:: 0:05.: 2: :0 m5: .5: Dm+< u: :0:00 0 2: A: 00:202m: 200:0:— :0:0:: :20: 2: :0 00:30: 002: :0:0E 2: :0 005200 0:002: 2: :0 xtmzm: 50:00 0:: :0 0000.00 002: :0:05 25:02:00 :000 2: :0 500 50:: 005200 3:0:00: 60.00: 2:000:53 2: :0 2:500 :22: 2: :0 =50 3:0:00: :0 200008333100 :0 20000:: :0::0::.:0:0:: 0: :0000 0: :: No :0 20000:: 3:20 2:: 0: :21 :0: No m:0:00: :0 :0:00:::0E. 3:0:00: :0 :0: n m:0:00: :0 20000:: :53: 2: 0: 5.210: N50200: :02: 5.002 088.0 00 _ 00 :0 02:02:05.8 :0 2:" 00 30332: :0:00: 2:: 0: :3 08.80 5.00: 0080.0 :0:00: 00 0: :0::E:0 00:23:00 m:0:00: :0 200023020. 2: 0: s: <.:> 2:00:00: 0 0 “W0 3... 2.200.: Emacs 3: .0 .25 00250200 02.05: : A _ _ ~0+t\m. 00 _ _ 4 _ H _ _ :50 :0 0:::0 5 20000:: 00:00::00flhlclm 2:95: :0 3000:»: «03:52:: :0000002: 20000:: 2: :0 :0::0:0::00 2: 0: 0503000 20000:: 00:00:00 0: $0: .: 5:00 Jr : _ 0:220:50: :50500 :000 2: 0: 59:. :0000002: 20000:: 000000 2: :0 :00000: 2:: 0: “GE :000:0:0:: 20000:: :0::: 2: :0 :00000: 2: 0: .500»: 528.0 808.0 28.0 :08 088 858 0.05 3.0 Rub. : 008.0 88.: 88.— 6.0 0.09 8.8: :83 vmd 088.0 0 38.0 208.0 m 68 088 00:08 0.0: 00.0 008.: 008.0 0:8.— mo~0.: 00.0 0.09 0 £9 :0. SF «No 088.0 «88.0 088.0 808 508 008.0 .85 8.0 «000.0 858 38.0 008.0 00.:. 0.8— 8.8: 3.0: 8.0 808.0 2&88 088.0 «00 8 608 008.0 :82 8.0 800.0 85.0 500.0 008.0 00.:. 0.8: 00.03 8.0: vwd 088.0 038.0 880.0 «8 8 88 008.0 No: 8.0 800.0 mm 5.0 0088 0808 00.:. 0.8: 3.8.. was: cud 8088 8 :88 0888 .30 8 o 58 ovmwd 0.00: 00.0 888 0088 800.0 8 5.0 3.0 2.0 00.00 8.8 «8 808.0 00 :88 088.0 .30 8 o E 8 008.0 0.00: 8.0 88.0 008.0 0000.0 85.0 8.0 0.8 5.00 «:00: «8 0008.0 00 :88 88.0 000 8 m E 8 300.0 0.00: 00.0 0808 008.0 R008 35.0 00.0 0.5 8.00 8.02 N8 «0088 28.0 808.0 ~98 8: 8 85.0 N. we: 8.: 0008 88.0 088 80.8 5.0 0.8 «0.00 8.2 «8 Emma: 888 68.08 «00 8 8: 8 88.0 m. 8: 00.0 «on 8 .388 4.808 «mm 8 I000 0.8 8.00 J 008:. end .50: > 00:: :. .53: 0 .: .00 .: .S .05.: > 5.; .0: 5:: .0: 5.20 q0: 32.1 NS 5.5: .:> E< .: Sm: .: ENE. :00»: 025:: «o 50:90.: 00 E400 E049: :Crmkm: fin: no :<:o.m:: 00 530%: 00 E00 L033 :0:§ :0:<> 20234:. E :: =3: :0: 80:28:00 8300:0080 002:: 0:85 05 852$ 02% 002% :00xm 5A: 033.. 161 20000:: E05002: 2: 0: 00900000 02:... 22:00: 0:0 00 .«0 2: :0 00.0.0002: .222: 2: :0 :50 2: 2 SE: .1 0.3.0 _ _ «0 :0 02.02.352.00 :0 0...». «0 .8308... .2000 2.. 0. E: .00 «0 90:00: :0 00:00:: 3.0.3.300: :0 manning: :0 03000:... .030: 2: 2 3.; .00 59:00: 00 :0 02.000.05.80 :0 0..." 00 .8582: .200: 2.. .... E: ...0 00 330:: S 0.3350 :0 52:00:: :05 05 a: l 40:: N0 050: 03.... ... 2008. :0 02.02: .2: 2:. 0. ..: ..0: 0:000. 0.00... 3%: E 23:09:. :0 52:00:: :02: 05 a: u: do: no 9303 03.... 5 000......» :o .0802. 20.2. 2.. 0. ...0 «0 0.00... 0.2... 0. 2008. :o .0080: 30.00 2.. 0. 2:. 0:000. 030... 030.. ... 0:23-. :0 .0800: 0.0.0.: 0:. 0. a... 00 050... 000350 :0 30:2: 22:020.: 2: 5:... 00003.30: 2: 0: 0:2 0:0 :0 020.: :0 .0050: 2: m0: .003... .0 000.030 000:: 030.. 0. 000.050 .6 .039: 2.. 0. 0 «0 0:00... 9&9: :0 2:20.. :0:000:20 2: 5:: 002:: 202: 2: :: H.230: :0 020.: :0 32:0: 2: 9.32:2: :0 300.030 002:: 20:: 0: 92:00: :0 230.: 2: 0: m 5:002 930:: 0:200 :0 220.: :0:000:20 0.: 5:: 0000.: 2:2: 2: :: 00200.: :0 020.: :0 32:0: 2: 0:32:30: ...0 00:20:00 002:: 2:2: 0: 00200.: :0 0:20... 2: 0: u 00 2:0: .NO :0 020.: :0 ... :20: 2: 50:: 000.3%00 2: 0: 000150 :0 020.: :0 ... 2: 3:00:00... .3 000.200 002:: 2:2: 0: 2.25:0 :0 020.: :0 ... 2: 0: .53: N0 930:: 9.0000: :0 020.: :0 ... :20: 2: 80:: 002:: :0:00 2: 0: 22:00: :0 020.: :0 0 2: 05.02300 :0 000.200 0000.: 2:2: 0: 92:00: :0 00:2: :0 ... 2: 0: 40:: 5:102 052.: Otbuuo ‘0 Q20:— \0 kOQEDC inc» 0:: 59¢ OhQCQ LOQQ) 0C: a: 0:200... \O MO~OE so :OQESC Ont MC-OQ§Q=Q Mn przfiuho OMQCQ B‘s-U: a: OCG~OOoh .3 OO~OE ‘0 :OQEDC on: Q: 40: $0 E~d .0... .0... 8... m... 8... 0...... 8...... as... $2.“ «.50.. .03.. ....m 8.: «0.. 2...... 0.8... 00...... ...... 2.... a... N... 8... 0...... 88... 3...... 0.20 0.0.0.0.. 2...... ....N 8.... «0.. R8... 28... 00...... 0... 0... 8... ...... ...... ...... .... .08... .... ...... ......00 ...... ...... $3.. 0«.... .0... «0.. 08.... 88... 00...... .... c... 8... 00... ...... 9...... .000... .... ...... 0.2.0 ......8 0.3.. 8.0 00.: «0.. 08.... 88... 8...... 0:. 0:. ...... 00... ...... 8. .... 00...... a ...... 0.8.... ......00 o...... 000 00.... «0.. 88... 88... 8...... .....0 3.0 8... 8... ...... 0.. .... 88... 0.. ...... $80 ..00.... 0.3.. 00.0 2.... «0.. .08... 28... .... ...... 8.0 8.0 00.0 8... ...... 0...... .80... 8...... ...0...“ $8.00 00...... .0... 2.: am... 008... 28... 8...... :96 wad mod and 5.0 how pd omood mm 8.0 .xme $uo.mm o\ovm. _. m0.~ 053.. um... omwod whom... on 5.0 5.: 5.: 50.: v — .o 8.6 mam — .o ohmwd Na 5.0 o\oN w .m o\ovm.vm o\ovm.w ovd when mm... onwod omowd cm 5.0 ...... ...... 00... ...... 8... 08.... 20.... N05... ...0... 00.0.3 .....0. S: 2.... 00.. 5...... 88... 8 .mwl E: .0 E: .0 3...: ...0 E: ...0 E: ...0 0 ..0... ... ..0: ... ..0... 0...... ...0. E 0 .. ... .. 0. ..00. 00:: 00.... 0:0... 00:0 0.0 0:000. 00 «0 0:000. 00 «0 0:000. 00 8 0:000. 00 «0 0:000. 00 0.000... 0.....0... 0.00... £00... £9.00... R00... 2.00... E00... 0.50... 0.00... 2.00... 0.00... E :0 :3. :0: 002.0320“: 02.2.08on 00...... 2:3..— 0... mcmaonm .028 008.5 30%. ”3:00. m-m 030,—. 162 _ _ _ :m:r0...0 00 82.8 88.. 008... E0 088. ..0:0: 0.58.08 M239 .8008 00.2.0. 88:... 00 .088 82.0 8.0.0 8.0: .0.0.8 00000. _ 8.88.... 88:... 0.000. .22.. 8.0.0 8.0.0 ...... .08.. 00 8.0 00.0 00 0 LMI 88.: 8.8.0 28.0 8... 6:8.: 00 8.: 0:: 0000000 .028. 00:88 0080 050... 2000000 .00 00.00 0 .0000 0:0: 020. 0 .000... 65.0000: \ «200:9. 0023 is. .00 2: :0 200003 :0:03: 00:00:00 000. 2: :0 0:0:0 00:00 3 000:030 0023 i§ 0: «0 :0 00:00: :0 ... 0:: 0: 40:: NO 1900.: «05.00006 \ «:00 0023 is. . :300: 2:: :0 .020 03: 00:00:00 00:: 2: :0 0:0:0 0500 3 000:030 0023 is. 0: 2300: :0 00:20 :0 0 2: 0: .6: 5300: 0003: 9530006305030 0000i is. . 00 2: :0 .003 .:0 : 00:00:... 000 2: :0 0:0:0 :0:00 3 000:030 0023 is. 0: 00200.: :0 00:20 :0 0 0.: 0: .53: 00 09:3: _ _ 0000:0030: 0.: :0 0:00:00. :00000 2:: :0 200:2. :20: u «:0::.:: 0000i :03: 0:: :0 90:30:. 4 _ 0.0000 00 0000.00 0.00:: .05000 0.0 :0 80.0 :00: u 00.:: 002.0 0.00... 0.0 :0 0:00:00 DQ+< :6 00:00 2:: 3 0220200: 200:0: :0:00: :0:0: 2: 3 0000.00 0000: :0:00: 00: 3 005030 20:50: 2: :0 3.52%: 50000 0:: :3 0000.00 0000: :0:00: 20003500 0000 2: :0 E00 50:: 005030 «22:00: 60.00: 200002000 2:: :0 200:2. :0:00: 2: :0 35m «0:300: :0 200003 :0:00i:.«00 :0 200003 :0:00i:.:0:0:i 0: :0000 0: :: No :0 20002:: :0:03 2: 0: 3:: 1 «oi «0 2300: :0 00:00:::0.0.«m:0i00: :0 i0: .0. m:0i00: :0 200023 :0:00i 2: 0: :E. (6:: NERO“: .888 8.08. 880.0 00 _ 00 :0 00008000080 :0 0:0... 00 :0:000:20 0.000 2:: 0. .20 .00 00 03.08... 5.00: 083.0 00000.: 00 0: :0::E:0 0220200 20000: :0 200003 :25. 2:: 0: 2.3.0:: 53000: 0 m < .20 2:800.— 000 W000: :0: .0 it: 3.23.0200 mz_o.pz< «o...:.::m. .: .3. .. .0. g 0 0:0 .00 0:0 .00 0:0 .00 :00 .s. :00 .0: 000.0 .000 .0 .08.: 000:0 8.00:0 00 00000. 00 E000 E0000. 2.10.30 #00 00 00000. 00 00000. 00 0000 ..lmo0§ 000.0. 0003. 0.0200 m— t. 63% :0.“ mflOUfl—SO—QU GOUNbGDOGOU Owasm 6:37—1— 05 wCMBOa—m Hoop—m Gavan” ~00Km ”O: ..m 3an 163 630020 0200020 2: 0: 00030000 003:: $0000: 000 00 .00 2: :0 00.50020 5000 2: :0 0:00 2: 0: SE: .0 0.30 00 :0 02:80:05.3 :0 0:0 00 30:082.: 5000 2:: 0: =5: .00 00 E0060: :0 00:00:: 3003:0000: :0 0003:0000: :0 200020 2000 2: 0: 3:50: .00 5:000: 00 :0 00:08:05.5 :0 00:... 00 3000023000: 2:: a: 0:0 .00 00 0:00: 0: 0:25.50 :0 00:00:: :00: 2:: 0: ..: 40:: N0 930:: 0:00: 0: 03000: :0 00:00:: :00: 05 0: k 40:: thOm: 630:.— USE: 0: 23:00.: :0 £02000: :05 2:: 0.: n: 40:: 00 930: 030:: 0: 30:00. :0 08:00 30:2. 2:: 0: 00:. 00 0:00: 0:00: 0: 0:008: :0 002.0 30:9... 2:: 0: :00 00000: 0:00: :0:00: 0: 00030.: :0 3003:3032: 2:: 0: $3. 00 030:: 002050 :0 30:03 :0:000:20 2: 5:0. 002:0 0:00: 2: 0: 000: 50 :0 00:00: :0 :00500 2: 00:: :0:00: :0 005030 32:0 030:: 0: 22.000 :o 30.00 2:: 0: 0 00 0:00: E0300: :0 36:00. :0:000:20 2: 5:0. 002:0 0:00: 2: 0: M00000: :0 02203 :02000 2: 00:30:30: 50 005030 002:0 0:00: 0: M00000: :0 30:00. 2: 0: 0 5:000: 0:000: 00200 :0 30:03 :0:000:20 2: 5:: 002:0 0:00: 05 0: 00200.: :0 00:00: :0 :00500 2: 00:30:33 5:: 000:030 002:0 0:00: 0: 00200.: :0 30:00. 2: 0:0 00 050:: .00 :0 00:00: :0 0 :20: 2: 30:: 002:0 :0000 2:: 0: 002050 :0 00:00: :0 0 2: 0032300 50 005030 002:0 0:00: 0: 00233 :0 020.0 :0 0 2: 0: 40:: 00 050:.— m:0000: :0 00:20 :0 0 :03: 2: 50:: 002:0 :0000 05 0: 92:00: :0 00:00: :0 :__ 2: 0502300 :0 000:030 002:0 0:00: 0: M3000: :0 00:00: :0 0 2:: 0: 40:: 03:00.: 030:: 00200 :0 00:00: :0 :00500 :20: 05 50:: 002:0 :0000 2: 0: 00200.: :0 00:20 :0 :0:0000 05 0502300 :0 000:030 002:0 0:00: 0 _ 00200.: :0 00:00: :0 :02000 2: 0: 40:: 00 030:: modN 666N :66N 06.: 666 mom :6 6 :666 65:66 $65.: $ :666 $66. : on.” N :65 mm... 656 : .6 56 :66 66 :66 666N 66.6N :6.mN 06.: 666 666:6 6:666 65:6.6 $65.: $ 5.66 $66.: 66.6 N:.m5 8.: .0596 56:66 66:66 666N 06.6N oo.mN 06.: 66.6 666:6 6 :666 65:66 $65.0 $ :666 $66.: 666 N:.m5 6m: .0596 66:66 on :66 N66N N66N ovNN :66 :66 N56 :6 :6656 65 :66 $66.6 $6 :66 $66. : 06.0 :665 vm. : :vv : .6 MN :66 56 :66 N6.6N N66N vaN 06.6 :66 :56 :6 5656 65 :66 $66.6 $6 : .66 $66.: 06.0 5.65 06.: :3: : .6 6N :66 56 :66 66.6N 66.6N ovNN om6 :66 :56 :6 565.6 65 :66 $66.6 $6 : .66 $66.: 06.0 N665 vm: :3: : .6 MN :66 56 :66 66.6: m6.6: 56.6: 6N6 :66 6:6 :6 6565.6 65 :66 $VN6 $56.N6 $66. : mN.v N065 06.: o :m : .6 N6 :66 56 :66 .066: 66.6: 56.6: 6N6 :66 96:6 @5656 65 :66 $0N.m $56.N6 $66.: mN.:. N065 0m... 6:6 :6 N6 :66 56 :66 66.6: 66.6: 66.6: 5N6 :66 606 : .6 6565.6 65 :66 $0N.m $56.N6 $66.: 6N.:. N165 06.: 5:6 :6 No :66 56 :66 6N6: 6N6: m :6: N:6 66.6 666N6 66556 05:66 $666 $wm.N6 $66.: :90 60.65 06.: 666:6 on :66 56 :66 6N6: 6N6: o :6: N : .6 66.6 666N6 5055.6 05 :66 $66.6 $wm.N6 $66.: :60 60.65 06.: 566 :6 on :66 56 :66 0N6: 0N6: :6: N:.6 F666 666N6 @655b 05:66 $666 $wm.N6 $66.: 5.0 60.65 3.: 666 :6 66:66 56:66 EQ C 3.51 :0 EQ _0n: EQ 00:: =5< ~00 n: 40: ...: do: u: 40:: E E E u .: 0 .: q: 403: 40:: 403: m .000? amt... ~82... 00 92.8 :53 3:3 8. K .0008 00:00: vomlmwo. 85:... 0.000: :8.: $8... 23... :3 0.2.0 00 8... 8.0 00 0 <_ 8.3 .08.... :33 8.0 0.8.0 00 8.: 00:. 0:00:00 5+0": ::.—0.38 0.4% 2.. :0... 20003”: .00 00.00: 0 .0000: .00: 0.0:. 0400.0: _ _ 95.0000 6 \ «0:00:00 002:: :00 . 0 2:: :0 20000:: :0:::0:: 00:00::0 00: 2: :0 0:0:0 00:00 06 005030 002:: :00 0: N0 :0 00:00: :0 0 2:: 0: :03 «0 20:3: O:l:«:.00~0 6 1:00 002:: .30.. :0:00: 2:: :0 .02: 00:: 00:00:00 000 2:: :0 20:0 60:00 ::.: 00:00:00 002:: :00 0: 0:0:00: :0 00:00: :0 0 2:: 0: :00: m<:om: :0:00: 0:052:00. 2:200:00 002.:: :00 00 2:: :0 .02: 00:: 00:00:00 000 2: :0 0:0:0 :0:00 :0 005200 002:: .50. 0: 00200.: :0 00:20 :0 0 2: 0: :00: 00 @0500 : _ 002:: 0:00: 2: :0 0:00:00. :00000 2: :0 00:0:00 :0:0:I I 00:3: 002:: :0:00 2: :0 $00400 H _ 0::0000 0.0 0000.00 0:00: :00:0::0 2:: :0 0000: :20: u :23: 002:: 0:02.: 00: :0 00:: :00 D03: 00 00::00 2:: 0.: 0203200: 0:00:00 :0:00: :20: 2:: :0 0000.00 0000: :20.0 2:: 0.0 005030 20000. 2: :0 0.20200 :::0000 0:: :0 000:000 0000: :0:00: 200002000 0000 2:: :0 0:00 0.0:: 005030 «0:0:00: 60.00: 200003000 2:: :0 0:00:00 :0:00: 2:: :0 2:0 38:00: :0 20000:: 00:00:18 :0 20000:: :0:00::.:0:0:: 0: :0000 0: :: .00 :0 0:0002: :0:00: 00: 0: 0:... .0: N0 00:3: :0 00:00:00.0. «0:0:00: :0 :0:n 0:0:00: :0 20002: :0:00: 2:: 0: ::.: <6: 05:00: ::n.m:N 8.86: 8080.0 00 _ 00 :0 00002000080 :0 :0:n 00 :020002: :0:00: 2:: 0: ::.: .0: 00 avoNNN 860:: 86006 :0:00: 00 0: :0::E:0 00:0:00:00 0:0:00: :0 20002: :0:00 2:: 0: ::.: < :0 05:00: 0 0 .2. 2.28.: .2... 02.8. a. 0 ...0: 0550200 W265: _ _ : : 0+::\N.: :00:...I: :mmflF N0 :0:00: 00 MR: :00 W00: :00 00.3%,: :00 «0 :<:00: 00 :<:00: 00! 5:00 :0:<0 m0:<0 :0:<0 0:023:— 0: 0 00m :0: 0000300000 00000000000 002:: 0:03:— 0:. $0505 .025 002:5 :0oxm .: Tm 030:. 20002: 020002: 2: 0: 0092500 :0:00. 22:00: 0:0 00 .00 2: :0 0200020 :0:00: 2: :0 E00 2: 0: 5.: .1 0.30 _ _ 00 :0 02:02:05.:«0 :0 0:0" 00 303820 :0:00 2:. 2 =5. .00 00 92:00: :0 00:02: :0E. «000000: :0 m>:um:0000: :0 20002.: :0:00“: 2: 0: 0.2—x .0: 0:360: 00 :0 02:80:35.:00 :0 ::.:u 00 323020 2:00 as a: 3:0 .00 00 0:00: 5 0:03.50 :0 50:00:: :05 2:: 0: u: .003 NO 9303 0:00: 5 0:00:00: :0 20:09:: :2: 2.: a: k 40:: I qwmwm> vo.w.:.:.m- «0000.5 :0 505.00: 0:095 $50.0 5.0:. $00. 5 E 0530000.: 1:0: 000:: :0: . :0:00: 2: :0 .02: 00:: :0:0:00 00: 2: :0 220 :20: :0 302200 000:: :0: :: 90:02 :0 020:: :0 0 2: 2 20:: 5200: 05:3: ~¥::.0000.0\~0E::0: 002:: :0: . 00 2: :0 .02: 00:: :0:0:00 00m 2: :0 20:0 :20: :0 302200 002:: :0: :: 2:209: :0 00:2: :0 0 2: 2 .53: 00 :0:00— _ _ 0023212: 2: :0 2:29.. :0000: 2: :0 2:20: :22 u :23: 002:: :0:00 2: :0 MR: .5: _ L 0.22. .3 02.3% 030:: 350:0 2: :0 8:: is u :03: 82:0 0:00: 2: :0 ms: .6: :03. u: :0:00 o 2: :0 08:00:00: 2:29. 50:. :20: 2:. :0 000300 002: 50.: 2: :0 02.500 2:00.: 2: :0 2:02.010 20:0: 2: A: 33:00: 002: :22: 25:02:00 :000 2: :0 E00 E02 302200 «20:02 00 00: 25:02:00 2: :0 2:22. :22: 2: :0 ::H0 3:02:00: :0 2:002: 3:202. .«00 :0 2:002: :0::0::.:22: 2 :0:00 2 :: .00 :0 2:002: 350.: 2: 0: ::.: .0:|l 0.0 90:02 :0 :0::00:::0E.«m:0:02 :0 :NT. m:0:02 :0 2:002: :0:.:0: 2:22.310: 33:0me :00 .0 0.82 088.0 00 2 00 :0 3002:3828 :0 3.:- 00 32:32: 5:2: 2: 0: =5: .0: 00 03.000 5.00: 0009.. 0 :0:00: 00 o: :0:00» 0:03:00 .2008: :0 2:002: 30:. 2: 0: :23: 00.200: 0 L: .2. 2.200.: 0... 0.2.8. 3: 0 .2: 0550200 02.92.; _ _ T ~0+t\m. 00:: > 20:: 0 q s: .: .S .:E\: > 2.2:: .0: ::.: :0: 2.: .0: 2.: .m: ESQ: ::.:«J: Sm: .: WM: 2.00:0: 500:: 00 03:00: 00 $2.30: M12340: 502%: :30 0. SEOJM: 0o :1:OM: 00 5:00 :0:§ 50:3. :0:§ 0:025 E 0 00m :0: 000320200 00300000000 80:: 2:05 2: 023000 000:0 00800 Boxm ”NTm 030:. 167 23823 32382: 2: 2 808388 :22: 08332 3.8 :0 .00 2: 8 823823 8:83 2: 8 Ea» 2: 2 25.x .3 0.30 _ _ 8 8 8:28:80 8 :32... 8 82:82: 583 2: 2 :8. .o: 8 08332 8 3283: 89:. «08302 8 330nm83o2 8 23823 8:83 2: 2 25.x .03 233003 8 8 88288.8 8 :8" 8 823823 283 2: 2 s: < .o: 8 030: S 28:50 3o 30:00:: BE 05 2 3 403 No 0303 283 s 288: 8 :28: BE 2: 2 m .8: 5.82 232L 030: E 2880.5 30 30:00.: BE 2: 2 .3 do: 00 9:0: 28: s 253:. 8 .528 £23 2: 2 at. «o 233: 22.: s 288. 8 .828 £22. 2: 2 8: 5.82 233: 28: s 228. to .528 .839: 2: 2 .8: 8 232.. 8:23.28 8 83.83. 88888 2: ::.: 823 233: 2: 5 8:2 :8 8 88.: 8 82:3: 2: 0:: 8:35 8 3.528 82:3 232: 5 82:8 8 222. 2: 2 m 8 23l.3: 08332 8 30.83. 8888.: 2: 2:: 823 233: 2: :3 083:2 8 888 8 82:3: 2: 0%:3338 .3 8:83: 823 233: 2 0882 8 :38: 2: 2 0 0(302 QSIIOZ _ 2888 8 :38: 82388.: 2: 2:: 88:3 233: 2: :2 8:28.. 8 88.: 8 82:3: 2: 0:33:88 :3 32:28 823 233: :3 3:28.. 8 238.: 2: 2 0 30 25F: _ .00 8 888 8 : 88. 2: :8: 823 .832. 2: E 823:8 8 88.: 8 ... 2: 058288 A: 8228 823 233: S 823:8 8 888 8 ... 2: 2 .302 00 Sis—'10: 08332 8 88.: 8 : 88. 2: .8: 823 832. 2: :: N838. 8 88.: 8 3 2: 028288 :3 32:28 823 233: :2 08302 8 888 8 ... 2: 2 .5: 5302 0503 3:28 8 88.: 8 82:3: 88. 2: :8.: 823832. 2: 5 2888.. 8 88.: 8 82:3: 2: 028283: .8 8:828 8225233: 2889. .8 88.: 8 82:3: 2: 2 .202 :0 050: 00.0 00.0 00.0 ENG: .300: Ema: Ema: Ema: Ema: Emma Emm: Emma Ema: Emma .Jmllw"; 00.05 000 El: 0000.0 003.0 0 ...0 0 p .0 03.». 00.0 00.0 003.0 0000.0 0050.0 .33. — $00.00 e5.00.0 Jvl0l. 0 00.0.5 50.0 00000 0 30.0 003.0 9.0 0.0 03.0 00.0 00.0 003.0 0000. 0 0050.0 n$3; a2900.00 95.00.0 30 00.05 50.0 0000.0 0300 0030 3.0 :0 536 00.0 00.0 003.0 0000. 0 0050.0 33.. 65.00.00 02.00.0 30 00.05 50.0 0000.0 030 0 003.0 3.3 3.0 0|5.0 3.0 00.0 003.0 5.00. 0 0050.0 93.00; 9:00. .0 e3.00.0 50.0 0— 65 0M0 02000 0000. 0 503.0 3.». :6 RM —00 00.0 0030 5300 0050.0 2.00; °5.00. .0 e\o000 500 0: .v5 00.0 0300 0000. 0 503.0 :6 — fie 05.0 3.0 00.0 003.0 5300 0050. 0 ..5.00.. o\o00. —0 n2900.0 50.0 0 :35 00.0 — F00. 0 0000.0 503. 0 50.0 50.0 0—0 30 3.0 053.0 0050.0 0050. 0 $9.— 280. —0 $00.0 ..00 00.3.5 00.0 0000. 0 00000 003. 0 50.0 50.0 0'0 3 .0 30 053.0 0050.0 0050.0 2.0 —. . 293. ,0 $00.0 3.0 0005 00.0 0000. 0 0000.0 003.0 50.0 50.0 0 —.0 3 .0 30 #0530 0050.0 0050.0 2.0 F .p $30. 3 Ax00 0 20.0 00. V5 00.0 0000.0 0000.0 0030 00.0 00.0 00.0 3.0 00.0 $000 00500 0050. 0 2900; .x00. —0 95.00. 0 00.0 00. 05 00.0 0000.0 0000.0 0030 00.0 00.0 00.0 3.0 00.0 900.0 5050.0 0050. 0 ..3.00.— 63.50. '0 93.00. 0 00.0 00. 35 00.0 000.0 0000 0 0030 3.0 3.0 00.0 3.0 00.0 0000.0 0050.0 v.0lm0. 0 210.— 2ol50. —0 0000.0 00.0 00.05 00.0 0000.0 0000. 0 0030 E5... .3 ::< .3 35.383 E53 «:3 35¢ ‘33 3 do: 3 302 3 30: $53 *5:- xts 0«.: u .3 0 4 40:: 40:: 30:: 0 0023 i2. . 0o 2: 3 .020 02: 3:250 000 2: 3 033 0:3: 3 02.330 0023 .00.. .0 2.200.: 3 003.: 3 0 2: 2 do: 00 mom—S _ _ 002R :30: 2: 3 08:30.. 3002. 2: 3 2:03.. 33: u «30.: 00ch 3&2. 2: 3 3.3.5: _ _ :0:00 .3 0.2.50 030: =59... 2: 3 002.. is a 03:0 8:3 030: 2: 3 0339 559; an :0:00 05%.: 00330300 0:53.. .33.: 33. 2: 3 00.0300 002: 33E 2: 3 000330 03:05 2: 3 0500,30 .0300: 0: .3 00030: 0020 .33.: 03232000 0000 2: 3 E00 E0: 000330 @3000: 60.0.00 03232000 2: 3 25.3: 33E 2: 3 SB $3000: 3 0.50003 3:30:00 3 030003 30:00:33.0 0. 30$ 0: : .00 3 030020 3:30 2: 00 32% .00 No .0332 3 00:00.:3E. @3000: 3 SC I m3m00. 3 030003 3.03: 2: 0.. E5010“. mm 00 _ _ _ H W _ _ .83 3 0:0: 0.. 050003 3.023010% 5.5.09.3 3 300030 3:550 300023: 050003 2: 3 00:03:00 2: 0. 0.0.3.3000 030003 00:00:00 0: 301 .0 $60 _ _ 0333202 33m .00 0000 2: 0: Fame. 300023: 050003 000000 2: 3 30002 2: 0: F5095. 30:00.3: 0.50003 30: 2: 3 30002 2: 0: 5.000%”: Emu: Emma 00000.0 00000.0 009.0 003.0 0000.0 0.00.. Em: 0000.0 0500.0 000NF 5500.F Ema.» Em": 00.59 00.000 00.000 FNF50.0 00 F000 0 5000 «00:0 000 F0 0500.0 0.50F 00. F0 0000.0 0000.0 0050.0 0500. 0 05. F0 0.90 00.09 05.000 00.000 0F F500 0050.0 0 F0000 009.0 000 F0 0500.0 0.59 F0. F0 F0000 5000. 0 0050.0 0000. 0 F5. F0 F0 F0 5509 00.000 00.000 F~F50.0 0080.0 0500.0 009. 0 000 3 0500.0 F.50F 0F. Fm 0000.0 0000. 0 «000.0 0000.0 00. F0 0.05 00.03 3.000 0 F000 00500.0 00000.0 50000.0 59. 0 009.0 0000.0 0.09 0F.0F F0000 «08.0 F F000 056.0 00.9 0.050 05.00 00.050 0350 00500.0 00000.0 50000.0 53. 0 000 3 0000.0 0.09 0F.0F 0000.0 008.0 0 F000 055.0 00.3 0.050 05.00 00.050 00. F50 00500. 0 00000. 0 50000.0 F00 F0 000 F0 0000.0 0.09 NF.0F 5000.0 55. 0 0000.0 F550 00.? 0.050 00.00 00. 050 00. F50 0900. 0 00000. 0 00000.0 00F F. 0 F00 3 0000.0 5.03 00...: 09 F0 0500. 0 ~00 F0 000 3 F F.0F F000 50.00 00. 000 00.000 0900. 0 00000 0 00000.0 00F F. 0 FO0F. 0 0000.0 5.03 00.0F 09 F0 0500.0 000 F0 meFd F F.mF Fdww «0.00 00. 000 00.000 F9000 00000.0 00000.0 00F F .0 FO0F. 0 F0000 5.03 50.3 09 3 0000.0 000 F0 mFmFd 00.9 0. F00 05.00 05.0 Fm 00.03 Fm F000 0 500.0 5000.0 05F F.0 NFnF. 0 0500.0 0.03 00.9 0000.0 0 80.0 0000.0 0000.0 05.9 «.52 F500 0003 05.00F 5060.0 0 500.0 5000.0 55F F0 05 F0 F5000 0.03 05 3 0000.0 080.0 0000.0 5000. 0 05. 0F 0.00F 00.00 00.03 8de 00000.0 0 F0000 5000.0 05F F.0 0FOF. 0 0000.0 5.03 00. F F [M0000 .mF00.0 I0000.0 0000. 0 00. FF 0.00F I550 0F. FmF 05.09 .3: ._ .3: > .3: > 44...... 0 .3 «EEI > :50 .00 :5. ...0 :50 .8 35.4% :50 ..5> .050 .0 S00 0 .00.: 00050 302% No 5.000. 00 m2: 40> NH: 40> Emzmo EM no 0308.. 00 21000: 00 E8 L003. No.33 mom—S 032::— 0_ 0. :3— 000 00000—0030 00000000000 000:0 03E..— 05 053000 30:0 000000 Boxm “07m 030,—. _ _ _ _ 0 _ _ _ _ _ _ 65002: 00.50005 2: 2 000.2. :00 :22: $2202 0:0 00 .00 2: B 020002: 22:00 2: B :50 2: 2 2.; .0 0.30 _ _ 00 3 808205.200 3 Sc" 00 32:82: 22:00 2: 2 =5. .0: 00 022202 B :0:00: BE. «0:032 B thum02202 B 20002: 22:0: 2:2 20¢. .0: 5x002 00 B usageskgo 0.0a 00 .8582: 20.0.5 2 Eq .8 00 3:0: :2 0:20.50 B :0:00: BE 05 2 m 203 N0 930: 030: S 0:232 B :0:00: BE 05 2 m .63 13.1002 900: 2:0: 5 0:200.— B :0:00: BE 05 2 l 20: 00 930: 2:2. 5 8225.. B .580: 322.. 2: 2 .23 00 050: use: 5 20002 B .522. £22. 2: 2 2.... 2202 050: 2:0: 5 2.28.. :o 3830 322. 2: 2 2:. 00 030: 0:20:00 B 2:022: 220022: 2: 5:: 000:: 200: 2: :2 0:2 50 B 022: B 202:0: 2: 0:: 22:2: 0: 002200 0023 200: :2 0:02:50 B 3020.: 2: 2 0 No 0303 002202 B 30.2: 20022: 2: 5:: 000:: 2:0: 2: :2 022202 B 022: B .0050: 2: 0:50:22: 00 002200 000:: 2:0: 2 20:02 B 322: 2: 2 0 25.02 0303 0:200 B 320.: 220022: 2: 2:3. 000:: 2:0: 2: :2 0:200; B 022: B .8080: 2: 0:30:22: 00 002200 000:: 2:0: :2 0:200.» B 0:20: 2: 2 0 00 0503 .No B 022: B ... BB. 2: :20: 00225622 2: :2 0:20.:0 B 022: B 0. 2: 02.002000 0: 002200 000:: 2:0: :2 0:20:20 B 0205 B 0 2: 2 20:. No 0503 9.2202 B 022: B ... .22 2: $0: 000:: :0:00 2: :2 0.0002 B 022: B 0 2: 05.02300 00 002200 002B 200: :2 9.2202 B 022.: B 0 2: 2 .5: $2302 050: 0:200 B 022: B 000:5: 222 2: 20: 000:: Bums 2: :2 0:200.“ B 022: B 002:0: 2: 02.002000 :0 005200 000:: 200: S 0:200; B 022: B :00—:0: 2: 2 do: 00 050: 169 00.0 00.0 00.0 00.0N 00.0N 00.0N 00.0 00.0 0N0...0 0000.0 NN00.0 $00.0 $00.00 $00.0 0N6 00.00 00.0 0N0—.0 0000.0 0N00.0 00. N 00. ..N 0 F. N 00.0 00.0 0000.0 0000.0 0—000 2900.0 o\oN0.00 e0.00.0 00.0 00.00 00.0 0000.0 0N00.0 —N00.0 0. —N ..0. N 0 0. N 00.0 00.0 000 p .0 0000.0 0 000.0 0000.0 o\oN0.00 o\o00.0 00.0 *0 00 00.0 000 _. .0 0N00.0 0N00.0 00. N 00. N 0 F. N 00.0 00.0 000 P .0 0000.0 0 50.0 $00.0 o\oN0.00 A$00.0 02v V0.0 00.0 000 0.0 0N00.0 0N00.0 00.00 00.00 0 F .0 p 0N.0 No.0 N 00 0.0 N0v0d 0 50.0 $0 —.0 o\o FN.00 $00.0 «0.0 N0.00 00.0 0 —0 0.0 0N00.0 NN00.0 00.09 00.0.. 0 0.0? 0N.0 No.0 N —0 —.0 N0v00 0 000.0 00.0 0.0 o\o FN.00 $00.0 v0.0 N000 00.0 0 F0 «.0 0N00.0 NN00.0 00.00 00.0— 0 —.0w 0N.0 No.0 N ..0 F .0 N000.0 0 000.0 2.0 p .0 o0 —N.00 $00.0 00.0 N000 00.0 0 00 F .0 0N00.0 NN00.0 F 0.00 3.00 00.3. N ...0 00.0 N00 0.0 0N00.0 0 000.0 .x. ..0.0 90.00.00 Av0.00.0 000 00.00 00.0 000 w .0 N000 0 NN00.0 P «.9 3.00 00.3 N —.0 00.0 900 0.0 0N00.0 0 000.0 o\o 00.0 G0.00.00 $00.0 00.0 00.00 00.0 N00 —.0 N000.0 NN00.0 00.0— 00.0w 00.: N 0.0 00.0 N00 _. .0 0N00.0 0 F000 o\o 00.0 e0.00.00 $00.0 00.0 00.00 00.0 000 0.0 N000.0 NN00.0 00.00 00.00 00.0— 00.0 00.0 PO0N.0 0000.0 0000.0 o0N0.0 e0.00.00 o\o—0.0 00.0 N000 00.0 0000.0 0000.0 0N00.0 00.00 00.9 00.00 00.0 00.0 000N .0 0000.0 0000.0 o0..N0.0 90.00. 00 00 00.0 00.0 N000 00.0 000 v.0 0000.0 0N00.0 00... F 00... — 00. p F 00.0 00.0 000N.0 0v00.0 0000b. °0.00.0 °0.00.00 $00.0 00.0 N000 00.0 0000.0 0000.0 0N00.0 E01 .1 E00. «l 0.00.: cm 20< .01 ER .01 k 203 u 402 k 40: E E 00.03 m 4 u .— u 4 403. 4032 20‘: 01m: 0.36 0‘ 003002 00 NO 211602 00 N0 0.23.2002 00 8 thOQ 00 N0 @3009 00 030: 10000: 2:03 200: .0000: R00: 030: 030: 030: 2.0000... E00: 050: I’ll M: 0 ::.m .80 28020200 200830250 0225 2:05 2: 053020 000:0 00200 385 ”3:000 070 030,—. 170 _ 0 _ 0003.0 00 550$ 88F .83... 2.3 2.8.8. 259 .5330 #02085 000% 3.02.0. «SRO 8 080.8 800.0 800.0 2.3.0.00k 0E8. 3W3? 853 $.62 300.2 :08 002.0 5.: $8.: 8 S... 3.. 00 m <_ 982 ~83 .83 8... 0.2.0 00 8.2 0.8 E0200 F0+h0200 #0230 a: .3 000300 3:: =22: 85:09:00 :23 05 F0 E00 E00 005800 «Home». .0000. 2:233:00 05 00 2:29.. 52: 20 0° :00 «03%: 00 2332: 3:20:00 F0 2032: 322028.50 2 F300 3 FF .00 3 9532.0 5:3 05 0F 3: 6m 00 0:332 Fo coaoEFFoEKmiqunF 00 at u minnow. so 2:303 Etna 0523101 00339 F F00 F0 F0002 0800... 8 _ no 3 coaoéaséo .0 90- 8 32:82.“. Sui as 2 E1 .8. 00 03.pr F000: 0008.0 0562 8 2 5:5» 0223:... 0:32 3 eaaei Bis. 2: 2 s: «ck. 05.62 0 m .2. 2.28; 2.. 0.2.8. .2 o .25 0530200 M265: _ _ _ J 40+t\0.0 02033.... 8322058 .500 «on 2: «a 00 F0 2038.0 333 2: 2 E: %— 00 _ F _ F _ _ _ ..50 3 8:5 5 2082.0 08023... 2 Es < .1 Bank: 00 3002-0 «59.590 30:02.2. 2:895 05 so coaqiahao 05 8 053080 20393 080230 2 3010.0 5000 _ _ 2222052 .520 F3 :98 05 3 F00?— 0800232 2:32: 0:38 2: io 30an 05 & F.meflufl 08:02.2. 2:320 F2: 05 0o 30qu 05% 00000.0 F0080 00000.0 009.0 003.0 F0000 0.09 00.9 09.0. 0 09.00 0000. F F000.F F 30 0.000 9.09 0.0000 00.000 00000.0 00 F000 00000.0 0F 2.0 009.0 900.0 0.09 00.9 000v. 0 009.0 0000.0 0000.0 .39 0.000 00.09 00.30 00.000 00000.0 F0 F00. 0 00000.0 9 F 3 0090 F F000 0.09 00.9 09.0 009.0 0000.0 900.0 0F .9 0.000 00.09 F0000 00.000 00000.0 00 F00. 0 00000.0 9 F 3 000 F0 0 F000 0.09 00.9 009.0 99.0 0000.0 0000.0 0F .9 0.000 00.09 00.30 00.000 00000.0 00000.0 0 F0000 03 F0 3.9.0 «050 0.00F FF..0F 0000.0 003. 0 0000.0 020. 0 00.9 F. F00 00.3— 0.0000 0009 00000.0 00000.0 0 F0000 00F F0 390 0000.0 0.9.9 3.9 0000.0 003. 0 0000.0 090. 0 00.9 F. F00 F0.F.0_ 9.000 0009 00000.0 00000.0 0 F0000 03 3 F00 3 090.0 0.09 3.9 0000.0 0000. 0 0900 00 F0. 0 00.9 F. 80 00.00 0v.000 00.09 00000. 0 00000.0 00000.0 005. 0 009.0 0000.0 0.09 9. FF 009.0 090. 0 009.0 000F. 0 001 FF 0.09 00.00 F009 0009 0.0000. 0 00000.0 00000.0 00 FF. 0 009.0 0000.0 0.F.0F 0F. FF 009.0 090. 0 009.0 009. 0 0NF F 0.09 00.00 00.09 00.0I0IF. 00000. 0 00000.0 00000.0 00F F. 0 009.0 0000.0 0.09 0 F. F F 009.0 00 F0. 0 009.0 000F.0 00. F F v.00F 00.00 00.09 00.00F 89.0.0 0 F0000 00000.0 0.0000 000F.0 0000.0 0.03 F0.» .0000 0000.0 v9.0.0 0000.0 00.x. 0.9 F 05.0 00. F9 00.09 F0900 0 F0000 00000.0 00000 009.0 0000.0 0.0! F00 .0000 0000.0 003.0 0000.0 v0.0 0.0: :60 00. F9 00.0.9 F0030 9000.0 00000.0 F0000 009.0 0000.0 0.03 F0.» 0000.0 0000.0 33.0 0000. 0 v0.0. 09 F M060 b0. FOF 00.09 40: > do: > do: > 4L8. .F .3 .FlExue > 35.0 on 00.00. .01 0:1 .20 ER .03! Ski at. fibflk 50.0 «1 “Wk—... Quit human No .0360. 00 mi: 40> m3: 40> >h02m0 3:0 0 5:30. 00 5062 00 S000 533» 0053 F6130 .0023: 0 0 FF :3. 80 mcozfisofiv 0000008000 000:."— 2005 05 053000 00020 00200 3810 ”E -m 0300. 171 _ _ _ _ _ _ _ 20000:: 020002: 2: 2 30:00:00 00:0... 90:00: 0:0 00 .00 2: :0 020002: 090: 2: :0 E00 2: 0: ::< .: 0.:(0 _ _ 00 :0 02:02:35.0“: :0 .00" 00 32082: :0:00: 20 a: 3.3 ...: 00 90:00: :0 00:00:: 35:90:00: :0 ::.: 90:00: :0 20000:: :0:00: 2: 0: ::.Q .0: 52:00: 00 :0 5002:3500 :0 00:" 00 3.582.: 00:2: .5 .: =5: ...: 00 0:00: 5 0000050 :0 00:00:: :2: 2:: 0: n: 400: N0 050:: 0:00: 0: 0:0:00: :0 00:00:: :2: 2.: 0: n: 400.: $5200: 050:: 030:: E 00200.: :0 00:00:: :2: 2.: 0: u: :0: 00 0:30: 2000 s 80:5. :0 2.2.: 20:00 .5 2 .2... 00 0:00: 0:000 0: 2.08: :0 0.8.2: 30...... 20 2 0:: :0:00: 0:00: 030:: t: 2:200.“ :0 300:2: Egg; 2:: 0: 02:: 00 930:: 000350 :0 30:2: :0:000:20 2: 0:0: 002:: 0:00: 2: 5 0:0: 0:0 :0 00:2: :0 :0050: 2: 05: :0:00... :0 020.30 ...0: 0300 s 2200:. :. 20:... 20 .0 0 00 0:00: 90:00: :0 50:2: 0:000:05 2: 5:: 002:: 0:00: 2: 5 90:00: :0 00:2: :0 :0050: 2: 05:05:05 :0 005200 002:: 0:00: 5 90:00: :0 E0020 2: 0: 0 50:00: 030:: 0:200 :0 50:2: 0:000:05 2: ::.: 002:: 0:00: 2: 5 00200.: :0 00:2: :0 :0050: 2: 0:005:05 :0 005200 0000: 0:00: 5 2200.: :0 2:002: 2: 2d 00 030:: .00 :0 00:2: :0 0 :20: 2: 50:: 0000: :0:00 2: 5 0:20.50 :0 00:2: :0 0 2: 0535000 :0 005200 002:: 0:00: 5 0:20.50 :0 00:2: :0 .0 .2: 0: 00:: 00 050:: 90:00: :0 00:2: :0 0 :20: 2: 50:: 002:: :0:00 2: 5 90:00: :0 00:2: :0 0 2: 05300000 :0 005200 0000: 0:00: 5 90:00: :0 00:2: :0 .0 2: 0: 00:: 02:00: 030:: 0:200 :0 00:2: :0 :0050: :20: 2: 50:: 002:: :0:00 2: 5 0:209: :0 00:2: :0 :0050: 2: 05:00:00» N0 005200 002:: 0:00: 5 00200.: :0 00:2: :0 .3050: 2: 0: 00:: 00 @003 00.0 00.0 00.0 2.00 2.00 00.0: 00. 0 00. 0 000:. 0 000:.. 0 00000 2.00.0 2.00.0: 2.00.: 00.0 3.00 0:..0: 009.0 0000.0 0.0—.0 2.0: 2.0: 00.0: :.0. 0 0:. 0 000: .0 0000. 0 000.0 2.00.0 2.2.2 2.002.: 00.0 00.:.0 00.0: 000:0 300.0 00000 .200 2.0: 00.0: 00.0 0.0 000:. 0 0000. 0 00000 2.00.0 2.2.? 2.00.: 00.0 00.00 00.0: 003.0 0000.0 .0000 2.0: 5.0: 00.0: 00.0 0.0 0000.0 0000.0 000.0 2.00.0 2.: 00:. 2.00.2 00.0 00.00 00.0: 003.0 0000.0 .0000 00.0: 00.0: 00.0: 00. 0 00.0 :00 P .0 0000.0 0:000 2.00.0 2.00.2 2.00.5 00.0 00.00 00.0: 009.0 0000.0 000 :0 00.00 00.00 00.0: 00. 0 00.0 0000.0 0000.0 0:.0 :.0 2.00.0 2.00.00 2.00.: 00.0 00.:.0 00.0— 0000.0 0000.0 00.0—.0 00.0: 00.0: 00.0: 00.0 00.0 00000 0000.0 0:0 :0 2.00.0 2.00.00 2.00.: 00.0 00.00 00.0: 0.80.0 0000.0 00000 00.: 00.: 0 0: 2.0 00.0 003.0 0000.0 000.0 2.00.0 2.00.2 2.00.: 3.0 00.00 00.02 00: :.0 0000.0 000:.0 00. S 00. F p 0:. 2 3.0 00.0 0:0 : .0 0000.0 000 :0 2.00.0 2.00.0» 2.00:.— 0:.0 00.00 00.0— :0: 0.0 0000.0 000 F0 00. 2 00.: p 0 0.: 2.0 00. 0 0:0 — .0 0000.0 000 :0 2.00.0 2.00.00 2.00.2 3.0 00.:.0 00.0: :0: :0 0000.0 000.0 00.:. 00.:. «0.0 00.0 00. 0 000: .0 0000 0 000:.0 2.00.0 2.0000 2.00.2 00 0 0:..:.0 00.0: 00000 0000.0 000.0 00.0 00.:. 00.:. 00.0 00.0 000:. 0 0000. o 000 «.0 2.00.0 2.00.00 2.00:.— 00. 0 00.00 00.3 000 —.0 0000.0 000 —.0 00K 00.:. 3:. 00. 0 00.0 000 p .0 0000. 0 000 :0 2.00.0 2.0:..0:. 2.00:.— 00.0 0:..:.0 00.0: 000 0.0 0000.0] 000 «.0 =22 ...: E< _: 05.010: ::.—2 .0:l|.1 =C< 0: ..: 00:: h: 00:: ..: 00:: E Rt: E 0 .: Um .: 0 .: 0000: .002: 003:: 00:90 0.30 00 52:00: 00 00 52:00: 00 00 £3.50: 00 00 21:00: 00 00 50:00: 00 @000 @502 H.003 P00: @002 #00:: P303 E03 @003 P500: P30: @000: :0 0 =3: :0: 000020200 0000008000 002:: 2003 2: 053000 00000 00200 305 ”30000 07m 050:. 172 — ban—Mote N0 hvmnd: : 080.: :thd oo.:o $8.8: #90:. .Euoéou W238 > ..mmmw> VOMfid. momohd 8 new“; 085d «:5. c coda o\oNO.:d m ”$309 vomlmmd. ooXKd ::.:(lom «moodw 3.9.0 :52. 3.3 33.5: 8 86 oo.: N0 m LN 38.: vmvod mmood oo.: o\od:.: NO 8.0: 0.8 (10950 hm+ 000:3 4:3. . no 0:: :0 .003 :3: :0:00—:0 03 0:: :0 0:80 9:0: :3 005200 0003 30:. :: 30:00.: :0 00:2: :0 a 0:: 0: :9: 00 moms. _ _ 82:: 2:9: 2:: :o 2:29.. :88: 2:: :o 2:29. :22 1:23:82: :85 2:: :o 0230:. _ _ 50:00 A: 3:30: 20:: :0::m.:0 0:: :0 000:: :0:0: u «:83: 0003 £03.: 0:: :0 “2:30:— Em}: A: :0:00 0:: A: 3:030:00: 050:0: :0:0E :80: 0:: a: 3:30: 000:: :0:0E 0:: :3 305030 0:03.: 0:: :0 Emzme 53:0: 0:: A: 30:30:: 000:: :0:0E 8:33.50 :30 0:: :0 :50 80:: 005030 0:300: 60.8: 0::0:3E00 0:: :0 050:9. :0:0E 0:: :0 Sam—w: 3:300: :0 20002303318 :0 050003 :0:t3:.:0:0:n: 0: 30:0 0: :: No :0 050003 :0:::3 0:: 0: ::.: :01 NO m:0%00:| :0 :0::00:::0E.«m:300: :0 3:: .- m:300: :0 050003 :0:::3 0:: 0: 2:10“: 3:369 :0mm 3.89 088... 8 _ 00 :o coco-::oEHFB ::.:u 00 32:32: Era: 2:: 0: 3% ovodmm 5.8:: 88:8 555%: no 0: :0::E:0 00:03:00 m:300: :0 200003 :38. 0:: 0: 323%: $3000: 0 0 Id“ .8. 2.23.: ::.. mica. 3: o .25: 0:250:00 mz_o.:z<_ _ «03:33.; 0.: 0: m:::::0000 2:80:00 0::0::< 9:03 A: :0:-:00:00§E0: :50: :00 0:: :0 no :0 050003 330:. 0:: 0: 3:1 1:: 8 _ _ H _ _ _ : .E:0 :0 0::: :: 20000.3 00:02:00§ 2.19:3: :0 30:25: «55:3: 30330:: 050003 0:: :0 :0::0::I::~0 0:: 0: w:::::0000 200003 00:00:00 0: Sm: .n: 550 H 0:::E3E0: 3:03 :00 :03 0:: 0: :mmP: 300005: 050003 ::0000 0:: :0 30:3: 0:: 0: Eng 30330:: 050003 :0:: 0:: :0 30:00: 0:: 0: mam—n: :8 5.0 508d mooood mm: :d «on :d we :md odd: and toad «womd 83.: 3mm: and odd VNNM: «odd: oodo :mo:o.o ommoo. o :88. o mm: :.o :83 o:. :oo 0.8: v0.0 823 386 moon: m :3: ood Q8 5.5: 3.3 moda— moflod no :8. o 9.08. o 2.: :d N :o: .o vovo. o o. :o: oo.: ow :md RN : .o :08. o ammo. 0 $6 «do Veda: undo Edm— oode 3 :oo. o 0:68. o o: :d ::o:.o move. 0 o. :o: oo.: no :md .RN : .0 mode 0 wood o co... «.8 3.8: 3.3 :odfl «856 2:86 9586 on: :.o :96 oovo. o m. 5: mod onomo «8:6 0:8. 0 Com. o no.0 0.5 3.69 no.8 omdm ooo:o.o o: :86 emooo. o o :m :.o «8:6 :68. o :.o:.: 3.0 :oowo osmo. o 9:3 0 on :3 mod mom 8.3: 8.3 code coo:o.o o: :oo.o vwooo. o o 53 ~33 mooo. o :.o:.: and 0086 2.8. 0 nova. o um :06 no.0 0.00 5.3 oo.? 8.9. com :3 0: :23 «~80. o m :N : .0 Km : .o noood :d:.: and woowd :30 0 did 00 :md mod odm No.3 mod: nwdv 03 5.0 880.0 o 58.0 omw :d vow : .o wooed ads: ::..N own :d owmo. o 89. 0 3w :d :o.~ Qwv 8.3 mon mwdw cum :od omoood o 58.0 com :d me:d ooood odn: ::..m omw :d mwmo. o «8:. o mum : .o :o.~ adv :bdm mmdm modm :o~:o.o omoooo o:ooo.o own 3 vowto ooooo o.o:.: Ed owm :.o ammo. o «8:6 mm“: o mod tmv moon omdo oudm o: : :o.o :.~ooo.o voodoo mom :6 mowfio 886 :08: :~.~ momoo «mood ooood 03o. o RN v.8 omsm omo: v0.0: ow: :od Roood 308.0 oowfio :om:d «mood vdo: Ed owned ooood mowed moved HEN v.8 :.~.:.o I and: cod: :0: .. 40:: > .6: > .: 8. .: .3 3:“ > :3 .9: :5. .o: :5. a: :5: ...:5 :5: ms :3... EM: .1 RM: 10:: $003 No 5300: 00 $5.39: min 40> 3%: Shaw «0 530m: 00 135%.: 00 thou 53$. tomes momS: «$23: an t :3: 8: 22:33:00 3:05.880“: 82: 20:03 0:: wagosm :oonm 329m Boxm 67m 033. 173 _ _ _ q _ _ 20002: 0200005 2: 0: 00900000 00:00. 00:00: 0:0 00 .8 2: :0 020002: :0:t0: 2: :0 500 0.: 0: ::.: .: 0.30 : 00 :0 0282:3800 :0 0:0... 00 3030020 :0:00: 05 0: ::.: .00 00 00:00: :0 00:00:: :05. 30:00: :0 :>:um:0:00: :0 20000:: :0:::2~2: 0: ::.; .0: 03:00: 00 :0 8080:0500 :0 ::.fia 320002: 0:02:05 0: 3E: .00 00 :0:00: 5 2:00:50 :0 :0:00: :05 0::: 0: n: 40:: N0 050:: 030:: 0: 0:2:00: :0 00:09:: :2: 2:: 0: n: :030:S:00: Q00: 0::—0:: 2: 0:209: :0 20:00:: :05 0::: 0: n: 40:: 00 030:: 030:: 5 05:50 :0 38:00 30:9: 2:: 0: 0.0: 00 030: 030:: 0: 0:008: :0 .0022: 30:9: 2:: 0: 0:3 5.000: 050: 030:: 0: 0:88.: :o 38:00 201:9: 2: 0: 0.3. 00 0:00: 000::50 :0 30:03 :0:000:20 2: 5:0. 002:: 0:00: 2: 5 0:0: ::0 :0 00:05 :0 0052: 2: 05: :0:00... :0 08:53 00000 030:: 0: 32:50 :0 30:0: 2:: 0: 0 00 0:00: 00:00: :0 50:03 :0:000:20 2: 5:3 002:: 0:00: 2: 5 00:00: :0 00:05 :0 .0052: 2: 02:05:05 :0 005200 002:: 0:00: 5 00:00: :0 530:: 2: 0: 0 :0:00: 050:: 02200 :0 50:00. :0:000:20 2: 5:2 002:: 50%: 2: 5 00200-: :0 00:05 :0 0052: 2: 02:05:35 :0 005200 002:: 0:00: 5 00200.: :0 30:00. 2: 0: 0 00 030:: .00 :0 00:05 :0 ... :20: 2: 50:: 002:: :0:00 2: 5 000::50 :0 00:05 :0 0 2: 05:00:03 :0 005030 002:: 030:: 5 22:50 :0 00:05 :0 0 2: 0: :03: «0 0:09.: 00:00: :0 00:05 :0 0 :20: 2: 50:: 002:: :0:00 2: 5 00:00: :0 00:05 :0 0 2: 05:02:30 :0 005030 002:: :0:00: 5 00:00: :0 00:05 :0 0 2:: 0: 40:: 03:00: 030:: 000:00 :0 00:02: :0 :0053: 3:0: 0::: 50:: 000:: :0Q0) 0::: F:: 00200.: :0 00:02.: :0 :00—00:: 0::: m:::00.::030 NO 000:0:00 000th: U:::U:: 0: 00300.: :0 00:02.: :0 :0083: 0::: 0: :0: EU Q:=°:n: 0n.o 0n.0 00.0 F0. F 0N0 0.00.0 000n.0 000 F0 $00.0 $00. F0 $00.nF 00.0 00.no 00.3 Fn 5.0 0000.0 NNO F.0 00.0 00.0 00.0 F0. F 0N0 300.0 moond 000F.0 $00.0 $00. F0 $00.nF 00.0 00.n0 00.3 Fn F00 0000.0 NNO F .0 00.0 00.0 00.0 N00 0 F0 NON0.0 0N0n.0 000 F .0 $00.0 $00. F0 $n0.n F 00.0 N0.n0 00.0 F 00N0.0 0 F000 nN0 F .0 00.:: 00.0 00.0 N00 0 F0 NON0.0 0N0n.0 000 F .0 $00.0 $00. F0 $n0.nF 00.0 N0.n0 00.3 00N0.0 0 F000 nNOF.0 No.0 No.0 n0.0 N00 0F.0 00N0.0 0N0n.0 000 F .0 $00.0 $00. F0 $n0.nF 00.0 00.n0 00.0F 00N0.0 :0 F000 nN0 F.0 no.0 no.0 00.0 nN.0 00.0 0000.0 N End 000 F .0 $0n.0 $00. F0 $n0.nF F0.0 N0.n0 F0.: 0 FN0.0 0N00.0 0N0 F.0 no.0 no.0 v0. 0 nN.0 00.0 0000.0 N F0n.0 000 F .0 $0n.0 $00. F0 $n0.nF F0.0 N0.n0 F0.: n FN0.0 NN00.0 0N0 F.0 00.0 00.0 N0. 0 nN.0 00.0 0000.0 N F0n.0 000 F .0 $0n.0 $00. F0 $n0.n F 6.0 00.no F0.F0 F 0 FN0.0 NN00.0 0N0 F.0 F0.N Ed on. N 0 F0 No.0 0N00.0 00nn.0 nn0 F .0 $nn.0 $00. F0 $00.n F 00.0 00.n0 00.:. F 0NN0.0 0N00.0 000 F0 F0.N F0.N on.N N F.0 No.0 0N00.0 00nn.0 nn0F.0 $nn.0 $00. F0 $00.n F 00.0 00.n0 00.3 0NN0.0 0N00.0 000F.0 00.N 00.N vnN N F.0 No.0 0N00.0 00nn.0 nn0F .0 $nn.0 $00. F0 $00.nF 00.0 00.n0 00. 0 F 00N0.0 0N00.0 000F.0 nN.N nN.N FN.N 00.0 5.0 0000.0 00nn.0 0n0F.0 $N0.0 $N0. F0 $00.: 00.0 00.00 00. 0F 00N0.0 F000. 0 FO0F.0 nN.N [nN.N l FN.N 00.0 5.0 0000.0 00nn.0 0n0 F .0 $N0.0 $00. F0 $00.n F 00.0 00.00 v0. 0 F 30th 0 F000. 0 F00 F.0 En< a: E< .: En< 6: ::.n< 0: E< .00: n: 403 n: 40:: n: :03 $.03 $.05 $.03 0 d u .: 01.: 40‘: : 40:0: : :03 : 00:03: 0.:(0 N0 03:00: 00 N0 03:00: 00 N0 ::(QOQ 00 «0 15:00: 00 N0 03:00: 00 030:: 0.50:: @003 0B: 0|:00:.: £00: 0'30: @503 0h00: @003 0B0: 0:003 , mm :: =3: :0: 28003200 5:238:00 002:: 2:05 on: 052650 32:0 00200 .081: ”3:00: 2-0 030:. 174 _ 0.0.3... 00 «03.8: 88.: 83.0 3.00 0.8.8: .50: .0003: M239 .0009 30:3. 883 00 28.8. :05... 900.0 8.0: 0.5.2 M00000: 8.03.... 8:03 00:00: :80... 82.0 ~83 5.2 0.8.: 00 8.0 8.0 00 0 < 3.3. 82.0 82.0 8.0 0.00.: 00 8.2 00: 3:00:00 Elfin 8:838 004% 2:: 0.: 2003:“: .62 00:03:, 0 00.5. 0::: 00s 0 .0002 : . 55.8.3: : \ «20:00:. 002:: :0: .«o 2:: :: : 05000:: :0:::0M:: 00:00:00 00: 0::: :0 0:20 :0:00 :0 005030 002:: .:0:. 0: No :0 00:00: :0 0 2:: 0: :02 no :O:<> Ottawa: 1:0: 002:: 05:. . :0:00: 0:: :0 00:: 00:: 00:00:00 00::q00: :0 0:20 :0:00 :0 000:0:00 002:: .:0:. 0: m:0:00: :0 00:00: :0 0 0::: 0: :00: :<:Om: 20:3: «05.000025520; 002:: .:0:. . 00 2: :0 00:: 00:: 00:00:00 00: 2: :0 0:0:0 :0:00 :0 000:0:00 002::: :0; 0: 00200.: :0 00:00: :0 0 2: 0: :00: 00 :O:§ _ _ 002:: 0.50:: 2: :0 0055:? 5000:. 2: :0 005:9. :20: n «:23: 002:: :0:00 2: :0 $5.30:— _ _ 0:82. 5 0.032. 030:: 050.00 2:: :o 00:: :30: u 0.5:: 82:0 0.50: 2:: :o 03:30:. 99;: In 00:00 2: :5 0205200: 005:9. 5:20 :20: 2: :0 0000.00 0020 :20:0 2: :0 000.330 0500.0 2: :0 ::.—:0:00 $0000 0:: :0 0000.00 0020 5:20 200002000 0000 2:: :0 050 80:: 005200 35:00: 60.00: 2:000:88 2:: :0 200:9. :0:00: 0::: :0 0:00 W5a0: :0 05000:: 5:05:00 :0 05000:: :0:00::.:0:0:: 0: :0:00 0.: :: .00 :0 05000:: :0:00: 0:: 0.: ::.: .0: «0 W550: :0 00:02:20. @550: :0 ::.: n 90:00: :0 05000:: :0:00: 0::: 0: 3:16: 33.3% :0... a .080: 088... 00 : 00 :0 00:80:05.5 :0 ::.:u 00 303002: :0:00: 2:: 0: ::.: < .00 00 03.3: 8.00:: 038.0 05:00.: 00 o: 5:80 :8.-30:00 00.08:: 2:002: :00: 2:: 0: 2:12. 000000: 0 0 < "2. 2.200.: a... 0.2.8. :o: .0 .50: 05.20200 02.0023 _ _ J _ «0+txmiN 0.: 0: 0:0:0000 0:00:0000 00:0:0< :0:00 :3 0205200 05:20:50: :50: :00 2: :0 00 :0 05000:: 5:2. 2: 0: ::.: .:> 00 W _ _ — _ _ _ _ ..0:0 :0 0:00 0: 05000:: 00:00:50 0.: 3:51 :: ::.:003 :0 50005:: «03009:: 5000000: 05000:: 2: :0 00:05:00 0:: 0: 0505000 05000:: 00:02:00 0: $0: .: ::00 I _ _ 05:05:80: :03: :00 0000 0::: 0.: ENE. 5000000: 05000:: 000000 0.: :0 50000: 0:: 0.: ::005: 5000000: 95000:: :0:.:: 0:: :0 50000: 2: 0: hwwflm Smuod 0008.0 8806 on: :0 at. to 8:06 0.02 00.0 3.5.0 836 38.: 0000.— ovs :00: 00.8: B. : 2 5.0:: vowwoo monooo 3086 o: :.o 2.36 oopoo mot go m :36 vao ommwé noon: 00.:. hoop vusm: 3. p S 5.0— — 880.0 R 80.0 380.0 «mm; :mio 080.0 0.00: 00.... 800.0 mm: ..o 83.0 0000.0 8.0 0.00 8.8: 8.02 0% moowoo stood vvoooo «mm to 30 to 5006 v.5— vod ommvo on: :.o good 386 omd moo o:..oo: 8.8— ow. 5— ooomoo mtooo evoooo mmmfio 536 owned n.5— mnd @036 on: :6 «wood oomoo and mom ovoo: 05.3. 3.8— oom So «986 mwoooo mom fio own :6 owmoo mdo— mm... 836 0 Foo 300.6 «and mod 0. E 00.3 nods oodo- oom So «986 «Noooo nomfio 896 owned mdo: no.0 336 n Boo 3006 «end mod 0. ::. 00.02 nods omdo mom —o.o Nowooo mmoooo momfio com :6 owmoo Duo: 5.0 $36 0 :mod 356 $56 mod 0. K 3.3— nodh oodo moo—co mmoooo 3086 «8.6 So :.o 336 Qum— mod owed oomoo : :96 5m :6 mod Yon No.8. 006m 3.: moo —o.o «moooo o woooo «on p .o 3.0 F .o o Koo 0.0m: and moo : .o oowoo woo : .o mum : .o 8.0 0.3 awn 00.8 are? 3856 $806 o—oooo mom—o :00 :.o ::.oo 0.59 mod woo—.o oomoo mooto ommfio mod 0.8 dem 3.0:... 3.00 ooopoo toooo Nooooo omm—o vamfio mmooo tum: mad 886 986 0366 mnwoo mod 0.0.: «now no.9. No.8 «an :o.o 0586 «886 omnfio own :6 £006 o. E: 3N. oomoo moooo mmvoo ImWNoo mad adv 0:..mw oodv No.8 :03: :. :03: :. :02 :. .: 9:. .: .5 .00 > E< .0: SE: .0: ::.: .0: 0::: _.:l:. 231:: ::.: :: 30: .m 5% ::.:wks: bumps: 00 5:00: 00 ME: 40:. W01: 40:. ::.»:umzrm: :30 «0 5:00: 00 :0:00: 00 PER: Imo:§ Lco:§ :O:§ 0002::— mm 0 =3: :0: 20:33:00 02.8.0850 0:00: 20:05 0::. 33.2% 30.5 002% Boxm ”o: ..m 030:. 175 6.30002: 00.0000... 2: 0: 000.0260 00:00. $0000: 000 00 $0 2: :0 00:032.: 3:30: 2: :0 .000 2: 0: 32%.... 0.3.0 _ _ 00 .0 20.80.000.200 .0 .....n 00 .0288... 0.085.. 0. =5. .00 «0 $0000: :0 00:00:: :05. 3.2000: :0 Q>:um.0m00: :0 03000:: :0:00: 2: 0: ::.—Q .00: ...—Row: 00 .0 00.00.008.00 .0 0...» 00 .00.:0020 0.000 2.. 0. 2:0 .00 00 0:03: 0: 000250 :0 :0:00: :02: 2:: 0: u: 403 N0 930: 0.00.. 0. 0.2.8. .0 00.80.. .0... 2.. 0. ... 00.0 03.00. 0.00... :0:00: ...: 0:200.» :0 00:00:: :08 0::: 0: u: 40:: no 9303 0:03: ...: 2.0350 :0 300:2: 2:90.: 0:: 0: 0&0: N0 930: 0.00.. ... 0.008. .0 .0022: .000... 2.. 0. 0:... 05.00. 0.00... 0:09: ...: 2.800.: :0 ::00:0@ 3%.: 0:: m: 02.: no 930:.— 0:00:50 :0 .0900. :0:000:20 2: 0::... 002::: 0.00:: 2: 52.0: 50 :0 00:05 :0 .0080: 2: m5. .003... :0 0050.00 000.... 0.0.0.. ... 05.3.0 .0 2.0.0... 2.. 0. 0. 00 0.00... 9.0000: :0 2.0.0.: :0:000:20 2:: ::.... 002::: 0.00:: 2: 5 9.0000: :0 00:05 :0 .0052. 2: 332.3... ...0 005200 002::: 0.00:: 5 92:00: :0 .0500. 0.: 0: a 50.002 0.00:: 2.0.00 :0 .090... :0:000:20 0.: 5:... 002::: 0.00:: 0.: 5 000.00.: :0 00:0... :0 :00500 2:: 0520::05 N0 005200 002::: 0.00:: 5 2.200-: :0 .020... 2: 0: m 00 0:00... No :0 00:0... :0 ... :20: 2:: .00.: 002::: .000: 0.: 5 2.03.50 :0 00:05 :0 ... 2:: 05:00:03 ...0 005200 002::: 0.0%.: 5 000:2:0 :0 00:0... :0 .0 2: 0: 005 No 900... 92:00: :0 00:05 :0 ... :20: 2: 50.: 002::: :0:00 0.: 5 9.0000: :0 00:0... :0 0 2: $4202.03 ...0 005200 002::: 0.00:: 5 mimom: :0 00:0... :0 ... 2: 0: .50: 25:02 050:0 QQOKVO ‘0 @022: \O MOO-=3: i=8 Otu EOL‘ OQQCEOQQ> Gt. 2: OCOuoonh ‘0 «6:0—5: ‘0 :QQEDE 0.2 Qttouhnam :AO UOC‘Q~OO OOQCQ U~=U= C: 020:9?“ \O QO~OE ‘0 :QOEDC Q9: 9‘ 40: Q0 Q~D°~d 8.: 8.: .00 8.0 8.0 .020 800.0 000.0 0.00 0.82 0.00:. 8.0 8.0: .02 8. ..0 0.:00 0:0..0 8.: 8.: .00 000 8.0 .020 .800 000 ..0 0.00 0.8.2 0.00:. 8.0 8.0: .02 8. ..0 0.:00 0:0..0 8.0 8.0 00.0 :...0 0.0 .030 .0000 000 ..0 0.000 0. .02 0.00:. 8.0 8.2 8.2 :0. ..0 8:00 ::0..0 8.0 8.0 00.0 8.0 0.0 .88 0000.0 000.0 0.00.0 0.00.2 0.00:. 8.0 8.2 8.0. :2.0 020.0 ::0..0 00.0 00.0 .00 8.0 ...0 .020 .0000 000.0 0.00.0 0.62 0.00:. 8.0 8.2 8.2 :2 ..0 8:00 ::0..0 00... 00... :00 8.0 00.0 ......0 080.0 000.0 0.:00 0.00.0: 0.00:. 8.0 .00: 8.2 02.0 00:00 000.0 00... 00... :0... 8.0 8.0 ......0 800.0 000.0 0.00 0.00.0: 0.00:. 8.0 .00: 8.0. 02.0 020.0 000.0 00... 00... :0... 8.0 8.0 ......0 080.0 000.0 0.00 0.00.0: 0.00:. 8.0 .00: 8.0. 02.0 00:00 80.0 mod wad end :6 No.0 vmv P .o N 36.0 vow —.o o\o Cum okmadh 2°va— de finds. motm— mm: .6 unhmd 5m v.0 8.0 8. 00.0 ...0 00.0 80.0 0.000 000.0 0..:.0 0.00.0: 0.00:. 00.0 :00: 8.2 «2.0 :0:00 .020 00.0 8.0 00.0 ...0 000 80.0 0.000 000.0 0..:.0 0.00.0: 0.00:. 00.0 :00: 8.2 «2.0 :0:00 .020 8.0 8.0 8.0 00.0 00.0 08.0 .0000 000.0 020 08.0: 0.00:. 00.0 .00: 00.0. 08.0 ...:00 .020 NQN mod and .I no.0 I ood 03. —.o omwwd mmo _. .o o\omn.o 20805 2&0: and wwdh om.m— oomho Shmd Nam Pd .20. ... 0:0 ... .20 00.. 0:0 0.. 0:0. .00 h. 00.0 h. 00.. u. ..0: 0::... 0::... 005 0 .. 0 0 0 .. 00.... ..0... 00.... 2.0:: 0000 «0 03.00. 00 «0 03.00. 00 00 03.00. 00 «0 03.00. 00 00 00000. 00 200... 0:00... P00... P00... 200... $.50... $00... L060... E00... L200... 200... 900... mm ... =3: 00: 0:28—00:00 00:00:000000 002::: 03:05 2:. 9.355 002% 002% :00xm “3:00: 07m 030:. 176 _ _ 0:02.000 8 030.8 88.. 2.8.: 8.00 2.8.8. .300 .6363— 0239 .002; 3.02.0- «82.0 8 82.8 3:6 89.0 6.8 2.2.8 25.00: 8.03.0- 832.0 52% 82.8 82.0 3.80 8.9.... 2.8.8 8 8.0 8.: 8 0 Lm 83. : 080.0 8:3 00. : 2.8.2 8 8.8 ...0: 50028 23.8 5:28 002% as 3“: 295.2%: 00.20: 0 .002: at: at: a .09.: 0: 5.0000 .0 1022202. 002::: do; .00 2: :0 2:820 322:: 20:20:00 80 2: :0 220 02:»: N: 022200 . .220 .02. s 8 :o 3:2: :o 0 2:. 2 40: «0 20.3. 00.0.0000 .0 \ 00> 82:: .02. . 22:02 2: :0 .00:: 22:: 20:22.0 80 2: :0 220 02:00 :0 002:200 82:: .22. 2: $0000: :0 8:02: :0 ... 2: 2 40:: 0:350: @013. «¥:h.0000.0\~0\25:0> 82:: is. . 00 2: :0 .02.: 220: 20:38 80 2: :0 220 022. Am 005200 002:: .02. 2: 02200.: :0 020.2 :0 a 2: a: 40:: 00 comes 82:02:: 2: :0 2220). :88: 2: :0 2220:. :20: I 02:4: 82:9 :23. 2: :0 N25402: 002% .3 082% 033: 0502.0 .5 :o 8:: 28 u 02:: 82:2 2.2.: 22 :o 2.5 00> QD+< an 0020: 05 Na 2:030:00: 025:0:— .:0:0:: :30: 0::: NO 000300 002:: :0:05 05 000 005800 2005:: 0::: :0 EWZWQ 03200 2: .3 0002.00 322 2222 220200.200 2.80 2: :0 250 .20: 022200 «02:02 .0000E20200500 2: :0 2229. 2222 2: :0 :50 @8202 :0 2082.: 3220.80 :0 20823002022221 0: :0:00 2 2 .00 :0 2082.: 220% 2: 2 ::.Q 0% I 92:02 :0 20:02:02.. @8000: :0 «::.: n M8002 :0 2:32: :222: 2: 2 32.1.0: $3100: :83 5.002 088... 8 _ 8 2. 50823528 2. $0.. 8 32:82.: .228 as 2 a: 6.00% 000.000 :000 2 000010 50:00: 00 0: 8:200 022028 M8002 :0 20820 2002. 2: 22:1.Emcflom: 0 0 <40 "2. 2.28.: a... 0.2.8. 3: .o ...E: mpzfimzoo M2651 _ r «0+C\0. 40:: > 40:: > 4 05 4 .S 422.0 > 32:: ~02 2.: 00a: :21 .01 32.0. W> ::.... W: 2.3. .0 50.: m: ENE. 002.00 .50th 0.0 23:00: 00 ME: 40> m2: 40> 220% E00 00 23:0M 00 03:00: 00 5:00 :003. M003. moms. 00020.... 00 0 00m :0: 000020200 2000028230 3020 0:003 2: 053020 00020 00800 Boxm ”07m 200,—. 177 .2885 8.382: 2: 2 893:8 8:3. N882 28 :0 .No 2: 8 8882: Etna 2: 8 Eu» 2: 2 E»? .m 0.36 8 8 88285.8 .0 3:" 8 .8382: Eta: 2.. 8. ::.. 6.. 8 H.282 8 8:8: 8.53882 8 3.89.282 8 2582: 8:8: 2: 2 2.; .01 580.2 8 .6 8.8.85.8 8 min 8 .8582... 3:8 2.. 8. E... 6.. 8 Ban: 5 28:38 8 5285: BE 05 2 k 403 N0 0594 28.. s 288. .6 :88: BE 2.. a. u .82 2‘82 98: and: s 838.. .o :88: .6... 8. .... u .8: 8 98: 28.. s 08:5. .o .822... 38.2. 2.. a. $3. 8 Q8: .28.. s 288. .o .888 £92. 2.. a. $3 SE8. Q8: 28.. s 2.28-. B .828 £92. 2.. 2 $5 8 2:0: 2.22:8 8 332: 88822: 2: 53. 828 8:5: 2: S 22 So 8 88:. 8 82.5: 2: he: 3:38 .8 8.8.8 823 use: 5 2.2.38 3 299: 2: 2 a 8 28: $282 8 :88: 88885 2: 5:: 828 2g 2: S 9282 8 888 8 .285: 2: 9.32:2: a: 82:28 82K 23:: S 9282 8 2842: 2: 2 m 5802 9:0: 2.226 8 822: 88885 2: 5:: 828 ::.o: 2: S 2.28.. 8 885 8 82.5: 2: 832:2: €528 82:82.5: 5 2.200.. 8 892: 2: 2 n no 0303 N0 8 88:. 8 a .22 2: E9: 828 8:2. 2: E 2.22:8 8 885 8 ... 2: 0158288 .3 82:28 828 8:5: 5 2.22:0 8 88.: 8 .8 2: 2 .53. No 050: 9.302 8 885 8 ... .22 2: :8: 828 8:2. 2: 5 M882 8 888 8 u 2: 8:09.88 .3 8228 828 8:5: 5 widow: 8 88.: 8 8. 2: 2 .5: 5:32 9:03 2:28 8 88:. 8 .285: .22 2: So: 828 822. 2: S 2.28.. 8 88:. 8 82:2. 2: #158288 .3 8528 828 83:: 5 2:23.. .8 885 8 82.5: 2: 2 do: 8 9:03 86 86 66.6 8.3 3...... 8.2. 86 86 886 886 886 $8.8 $8.8 $2.8 8.8 8.8 8.8 886 886 886 8.8 8.8 8.8 86 26 286 82.6 886 $8.8 $8.8 $5.8 :8 8.8 8.8 886 82.6 886 8.8 8.8 8.8 86 26 286 886 886 $8.8 $8.8 $2.8 :8 8.8 8.8 886 886 886 8.8 8.8 8.8 86 26 286 886 886 $8.8 $8.8 $2.8 2.8 8.8 8.8 886 886 886 8.8 8.8 2.8 26 86 886 886 886 $86 $2.8 $8.8 88 3.8 8.8 886 2.86 886 8.8 8.8 2.8 26 86 886 886 886 $8.8 $3.8 $86.8 8.8 8.8 8.8 886 2.86 886 8.8 8.8 2.8 26 86 886 886 886 $8.8 $2.8 $86.8 8.8 3.8 8.8 886 2.2.6 886 8.8 8.8 8.8 86 86 886 82.6 886 $2.2 $8.8 $8.88 8.8 8.8 8.8 886 886 886 8.8 8.8 8.8 86 86 886 886 886 $2.2 $8.8 $8.8 8.8 8.8 8.8 886 886 886 8.8 8.8 8.8 86 86 886 82.6 886 $2.2 $8.8 $8.88 8.8 8.8 8.8 886 886 886 8.2 8.2 8.2 86 86 886 22.6 .886 $8.2 $8.8 $8.88 8.8 8.8 8.8 886 82.6 886 8.2 8.2 8.2 86 86 286 82.6 286 $8.2 $8.8 $8.8 2.8 8.8 8.8 886 2.86 886 8.2 8.2 8.: 86 86 886 83.6 286 $2.2 $8.8 $2.88 .8 8.8 8.8 886 2.86 886 2.3 ... ::.. ... =5: .8 =5. .3 =5. .8 m .6: ... .8: m .8: $8. $5 $2. a .. u .. u .. .83: 8:: 8:: 88:. 38 8 582 8 8 528. 8 8 582 8 8 5.82 8 8 8.82 8 8:52.. #8: go: £32.. @603, 2.8: 8:82.. 2.83 28: 2W8: :88: use: VN a. cam uOm mCOflw—So—wnv comm—NHHCOOGOU Owwnm U—SU—i— 05 mcmgonm “OOH—m UNOHQW EQXW “AJZOUV mhnm 296R. 178 mm # 5.x H8 macaw—5030 cogs—80:00 82m 2:34 2: wagonm Beam 38mm Boxm ume 2an 179 _ _ A r _ 68000:: 008820: 2: 0: 000.8280 22:0. W882 28 no .8 2: :0 0080020: 8:80: 2: :0 E8 2: 2 :21 .0: 0.30 _ 8 :0 0000220580 :0 min 8 8200020 02:23.: 2 :00—0 .00 8 M8102 :0 :0:00: 800N838: :0 0:388:02 :0 088000 8:80: 2: 2 ::.; .00 003002 8 :0 0000200508 :0 2:» 8 82000000 02000 05 2 :02 .00 8 200:: 0: 002050 :0 00:02: :20 05 2 0 020 8 052.: 3:5: 0:: 080:0»: :0 03:09:: :05 2:: a: k 402 t110QQSG: 00:00:: 0:: 28:00-0 :0 20:09:: :20: 05 a: k 40: Q0 9303 202: s 002050 :0 000200 30:00. 05 2 00:. 8 032.: 202: 0: 20002 :0 000200 80:00. 05 2 00:. 05002 032.: 200:: s 00200.: :0 000200 30:00. 05 2 00:. 8 052.: 2:20.50 :0 2:22: 88022: 2: 0::: 002::: :0:00: 2: 0:: 2:2 0:0 :0 022: :0 80:8: 2: We: 0020.0 00 002200 00000 202: s 002050 :0 E20... 05 2 0. 8 032.: N80200: :0 592: 88022: 2: 0::: 82:0: 20:0: 2: 0: N882 :0 0220: :0 82:2: 2: 9:32:00: :3 022200 002:: 0:02: 0: W882 :0 2:92: 2: 2 a 0:539 930:: 28:00 :0 2:92: 88022: 2: 0::: 002:: 0:00: 2: 0: 28:00.0 :0 0200: :0 82:2: 2: 8:52:08 03 020830 002:: 082: c: 28:00.: :0 28:2: 2: 2 m 8 039.: do :0 02000 :0 0. :20: 2: 80:: 82:: 88> 2: 0: 2:20.50 :0 0.22: :0 0. 2: 00:00:08 0.: 022200 82:0 032: 0: 202.38 :0 022: :0 :0 2: 2 .00:: «o 039.: .2882 :0 02000 :0 0 8:0: 2: 0:0: 82:: 88> 2: 0: M8002 :0 02000 :0 0 2: 20:00:08 0.0 002200 28:: :0:00: 0:: N882 :0 022: :0 0 2: 2 .00:: 15002 0:39.: Oflbuoo so mfisoe \O \OQEDC ‘fiuOu OE» 50.: QMfiCQ k0lfi> 00: Cu 0p3~00nh s0 OSOE ‘0 .EQEszL 0C: Mttufihhbm kn UO—éfiuflo OQNCQ b~30§ a: 020~00uh a0 Q0~OE \O kOQESC G2” 0‘ do: .wQ Q~3°~d 00.0 00.0 :0 00.0 00.0 0000.0 0000.0 020.0 2.000 2.00.00 2.00.00 00.0 0020 00.00 00.00 0000.0 000.0 00.0 00.0 :.0 00.0 00.0 0000.0 0000.0 000.0 2.00.0 2.00.00 2.00.00 00.0 00. .0 00.00 00.00 0000.0 000.0 00.0 00.0 00.0 00.0 00.0 0000.0 0000.0 00.00 2.000 2.00.00 2.00.00 00.0 00. .0 00.00 0000.0 0000.0 0000.0 00.0 00.0 00.0 00.0 00.0 0000.0 0000.0 00:00 2.000 2.00.00 2.00.00 00.0 00. .0 00.00 00.00 0000.0 0000.0 00.0 00.0 :00 00.0 0.0 0000.0 0000.0 020.0 2.000 2.00.00 2.00.00 00.0 00.00 00.00 00.00 0000.0 0000.0 00.0 00.0 00.0 00.0 0.0 0000.0 0000.0 0000.0 2.000 2.00.00 2.0000 00.0 00.00 5.00 0000.0 0000.0 000.0 00.0 00.0 :00 00.0 0.0 0000.0 0000.0 0000.0 2.00.0 2.00.00 2.00.00 00.0 00.00 00.00 00 5.0 .0000 000:0 00.0 00.0 00.0 00.0 00.0 0000.0 0000.0 0000.0 2.00.0 2.00.00 2.00.00 00.0 00.00 0.00 00 00.0 00000 000 :0 00.0 00.0 :00 :0 00.0 0000.0 0000.0 0000.0 2.00.0 2.00.00 °0.00.00 00.0 :00 00.00 200.0 0000.0 .0000 00.0 00.0 00.0 :0 00.0 0000.0 0000.0 0000.0 2.00.0 2.00.00 2.0000 00.0 :00 00.00 000.0 0000.0 000.0 00.0 00.0 00.0 :0 00.0 0000.0 0000.0 0000.0 2.00.0 2.00.00 2.0000 00.0 :00 00.00 000.0 0000.0 .0000 00.0 00.0 00.0 00.0 6.0 0000.0 0000.0 0000.0 2.00 2.00.00 2.00.00 00.0 00.00 00.00 0000.0 0000.0 00000 00.0 I000 00.0 00.0 00.0 0000.0 0000.0 0000.0 2.00 2.00.00 2.00.00 00.0 00.00 00.00 0000.0 0000.0 000 F 20.2 .0 200. .0 a: .00 :00. .00 000.0 .00 0 .0000 0 .8: 0 .8: 000.: 000:: 000.: 0 0 0 .2 0 .2 00:: .00:: 02.: 200:: 0.80 8 02002 8 8 02002 8 8 00.002 8 8 00.002 8 8 8002 8 E8: 0.0.2.020 E00: @520 PS2: 00:20 082.: £02.: Elia: 2:03 2.02.: 052.: mm 0: Si 00: 002003200 002000000000 00020 2:05 05 9:326 000$ 082$ Boxm ”3:00: me 030E 180 0.0.0006 N0 508.06: 88.: 0086 SINK 00.8.8: A 20.00:. 88.0mm ml55._0> dwwm> vomit? 0800.6 00 6866 866 886 86 00.86 W 0:000:02 vomlmwd. 802.6 N $0.102 306.06: 8006 886 86:. $8.00 00 86 6: No Q < 800.: 0866 0086 6: 00.00.— No 8.8: 0.6:. 300280 8.08 0000000 000000 28 2200200 .8: 00:0: 0. .002: 000:: 2.00. 0 .0002 «05.88.: \ «0822. 002:0: . 00 .NO 2: :0 0800000: 8:80: 8:080 00: 2: :0 0:08 2:00 8 8228 002:0: .80 c: No :0 0208 :0 ... 2: 2 .53: No 0.50:3. «0::. r886 \ «:0: 002:: .80 . 882 2: :0 .00:: .80: 8:080 00: 2: :0 0:08 88: N0 02:28 000cm .22. 0:: N882 :0 00:20: :0 :: 2:: 2 20:: 52:62 0:00:30 «2:882:6088200 002::: .80 . 00 2: :0 .0000: 80:: 8:080 00: 2: :0 0:08 8:2. 8 00528 002::: .80 0:: 28:00.: :0 020:: :0 t 2: 2 40:: 00 No.03. 002:: :28: 2.: :0 28:00. 8000:. 2: :0 28:00 :20: a «8:3: 002::: 88:. 2: :0 N3529— 0::0000 00 002000 200:: 022:0 05 :0 000.0 :20: u 02:: 00000 200: 05 :0 28.80 «5+1 nu 00:0: 0 2: 8 88:00:00: 2022. 8:08 :20: 2: 8 000800 82.: 8:08 2: 8 80:28 08:20: 2: :0 EmZNn 2:28: 0:: 8 00:80: 0020 8:08 2.88880 :08 2: :0 0080 80:: 82200 «N882 80.8: 2:888:00 2: :0 208:2. 8:08 2: :0 33m «N882 :0 080008 8:82.80 :0 088000: 8:82:22: 0: 880 2 :: .000 :0 0800000: 8:80: 2: 2 SE: .0m N0 N882 :0 8:02:08. «N882 :0 0::: n N882 :0 0800000: 8:80: 2: 2 3:100: 8:362 05.0 Fm 8609 088.0 00 _ 0o :0 8:000:08. «00 :0 W00:" 00 808808.822: 2:: 2 ::.;0 .00 00 86.000. 8.8: 00806 N $0002 00 0: 8:88 00:28:00 N882 :0 08000:: 008:. 2: 2 ::.: 00m: NISBN: 0 0 0. no... 00300.. 000 E00. .0: .0 .25 00250200 M25021 _ _ .u+.:.:\N. 20:. 48:: > 2.: .00: 3.: .00: 2.: .00: 3.; ...“: 05% 0m: E< .0: S2: .0: ENE. r588: 0Nm00m No 0:000:02 00 3.5.5:. N3549— Emzmn 33m «0 0:000:02 00 N352 00 5:00 0:903. no.3: 0:00:30 682:”: mN : =3: :0: 08:28:00 0200:8080 0025 E83 2: 836% 0028 08:05 885 ”m: -m 030,—. 181 200020 00:00.88 2:: 0: 0008080 00:00: N882 08 00 .00 2:: :0 0200020 8080 2:: :0 800 2:: 2 E; .0 0.:<0 _ _ 00 :0 0000200580 :0 0:0:" 00 80500230800 2:: 0: 0::... .00 00 N808: :0 02:00:: :08. «N808: :0 0>:nN882 :0 0:00.020 80882:: 2 8.0! .00 08.000: 00 :0 0000200580 :0 0:0:" 00 80.00008 .0800 0s 0: ::.... .00 00 0:03: 0: 0020.50 :0 00:00:: :08 2:: 0: n: .003 NO 930: 030:: 0: 08%02 :0 02:00:: :oE 2:: 0: u: 00: 0,0300%: Q50: 0:03: 0:: 28:00-: :0 :0200:: :05 0::: 0: .0 00:0 00 9:00: 0:000 0: 0000000 :0 800.00 .0000. 0s 0: 00:0. 00 0:00... 0:000 0: 0.01000: :0 800.000.0000. 0.0 0: 00.0. .8000: 0:02.: 0:000 0: 000.00.: :0 800.00 30:00. 0::: 0: .80. 00 0:00: 2:00:08 :0 80:9: 8:000:08 2:: 0::... 002:0 0:02: 2:: 0: 0:0: 0:0 :0 00:08 :0 8080: 2:: 0::: 00:00.0 00 000.030 000...: 0:00.: 0: 000.050 :0 0:200. 0::: 0: 0 00 0:00: N882 :0 084000 8:000:08 2:: 5:0. 002:0 0:02: 2:: 0: N882 :0 00:08 :0 8080:: 2:: 8:200:08 00 008200 002:0 0:02: 0: N882 :0 80:2: 2:: 2 0 0<002 030:0 28:00 :0 30.800 8:000:08 2:: 0:0: 002:0 0:02: 2:: 0: 28:00.: :0 00:08 :0 8080: 2::d0.50:0:::08 8 022200 002:0 0:02: 0: 28:00.: :0 30:00.. 2:: 2 0 00 030: .00 :0 00:08 :0 0: :20: 2:: 80:: 002:0 :080 2:: 0: 2:20.50 :0 00:08 :0 ... 2:: 05:02:00» 0.0 020200 002:0 0:02: 0: 2:20.50 :0 00:08 :0 ... 2:: 0: 00:: N0 030: N882 :0 00:08 :0 ... :20: 2:: 80:: 002:0 :0000 2:: 0: N882 :0 00:08 :0 ::. 2:: 08:02:08 00 008200 002:0 0:02: 0: N882 :0 00:08 :0 .0 2:: 2 00:: 00.000: 030:0 0:00:00 :0 OO:OE 00 00:20:30: 3:0: 002 :0:00: OWN—«Q kbnwfi) 0:: 0:: 00:800.: ‘0 Q3020 :0 0002230: 0:: Qantas; 0A0 tatsfiuao OWQCQ @205: 0:: 0000:0000 :0 @302: :0 00032:: 05 Q« do: 6.0 3:308: .00 .00 00..., 8.0 00.. 0000.0 88.0 0000.0 0.00.0 .0200 00.0 8.0 8.00 020.0 0000.0 .00 .00 00.... 8.0 0.... 0000.0 88.0 0000.0 .0000 0.00.00 00.0 8.0 8.0: 020.0 0000.0 0.0.0 00.: 00.0 8.0 0...: 0000.0 88.0 0000.0 .0000 0.00.00 «...0 8.0 6.2 020.0 0000.0 .00 ::.... 00.... 8.0 00.0 0000.0 88.0 0000.0 .0000 .0300 00.0 8.0 00.0: 006.0 00.0.0.0 :00 .00 00.0 8.0 00.0 800.0 88.0 0000.0 .000... 0.0.8 3.0 8.0 00.0: 008.0 0000.0 00.0 00.0 8.... 8.0 00.0 0000.0 88.0 0000.0 0000.0 .0300 00.0 8.0 00.00 020.0 0000.0 0:... 00... 00... 8.0 8.0 0000.0 88.0 0000.0 .0000 $00.00 0... 8.0 5.2 008.0 500.0 0:... 0:... 00... 8.0 8.0 0000.0 88.0 0000.0 0000.0 .0800 00.0 8.0 .00:. 00 6.0 .0000 00... 00.0 00... 8.0 8.0 0000.0 080.0 0000.0 .0000 0000.00 00.0 8.0 :02 005.0 .000... 00.0 00.0 00.0 8.0 2.0 0000.0 88.0 020.0 0.00.0 0000.00 5.0 8.0 5.00 66.0 0000.0 00.0 00.0 2.0 8.0 2.0 0000.0 88.0 0000.0 .0000 0.00.00 .00 8.0 8.2. .050 0000.0 00.0 00.0 00.0 8.0 2.0 0000.0 88.0 020.0 0000.0 0.00.00 :00 8.0 :02 .200 800.0 .00 :00 00.0 8.0 00.0 28.0 88.0 300.0 .0000 0.00.00 00.0 8.0 00mm 0.00.0 0000.0 0E: .0 ::.: .0 0.0.: .00 0:0 .00 0800M 0 .80: ... .80: 0 .80. 020. 0.000 020. 00: 0 .. 0 .: .00: .80: .82: 28:: 0.80 00 0.800: 00 00 .8000: 00 00 0.800: 00 00 50000: 00 00 8.80: 00 P30: E00: 0000: 0000: 0:00: 0000: 0:00: @003 :0:00: .0000: R00: 050: 00 0: :3: :0: 2500—00—00 0002800000 0800 00.03 2:: 053000 8000 000.00 Boxm ”3:00: 07m 030.0. APPENDIX C APPENDIX C This section contains the data used in PLS modeling concentration for each file number correlating to each run 182 183 Table C-l: Data Files and the Correlating Concentrations Used in PLS Model 184 Table C-l (Cont.): Data Files and the Correlating Concentrations Used in PLS Model LIST OF REFERENCES LIST OF REFERENCES Beebe, K.R., Blaser, W.W., Bredeweg, R.A., Chauvel, J.P., Harner, R.S., LaPack, M., Leugers, A., Martin, D.P. Wright, L.G. Yalvac, E.D. Anal.Chem., 1993, 65, 199R-216R. Yalvac, E.D. Paper No. 536, 16th Annual Meeting of the Federation of Analytical Chemistry and Spectroscopy Societies, 1989, Chicago, Illinois. Yalvac, E.D., Paper No. 209, 17th Annual Meeting of the Federation of Analytical chemistry and Spectroscopy Societies, 1990, Cleveland, Ohio. Yalvac, E.D., Bredeweg, R.A., Albers, D.R. Paper No. 66, 18th Annual Meeting of the Federation of Analytical Chemistry and Spectroscopy Societies, 1991, Anaheim, California, 1991. Yalvac, E.D., Bredeweg, R.A. Process Quality and Control, 1992, 6(2-3), 91-6. DesJardin, M.A., Doherty, S.J., Gilbert, J .R. LaPack, Shao, J ., Process Control and Quality, 1995, 6(4), 219-29. Aaljoki, K., Hukkanen, H., J okinen, P., Process Control and Quality, 1994, 6(2-3), 125-33. Mayes, D.M., Koza, D.S., Cavinato, A.G., Process Control and Quality, 1993, 5(1), 1-9. Babji, B.S., Saraf, S.N., Process Quality and Control, 1993, 4(3), 181-197. Heeschen, W.A., Greminger, D.C., Yalvac, E.D., Process Control and Quality, 1992, 2(3), 215-25. Cardis, T.M., Process Control and Quality, 1994, 6(2—3), 109—15. Nielsen, J ., Process Control and Quality, 1992, 2(4), 371-85. Morabito, P.L., Melcher, R.G., Process Control and Quality, 1992, 3(1-4), 35-43. Garrison, A.A., Moore, C.F., Roberts, M.J., Hall, P.D., Process Control and Quality 1992, 3(1-4), 57—65. 185 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30 31 32 33 34 35 186 Moessner, R.C., Process Control and Quality, 1992, 2(3), 237—49. O'Rourke, P.E., JNMM, 1989, 18(1), 85. Harner, R.S., Proc. SPIE-Int Soc. Opt. Eng., 1992, 1681 (Opt. Based Meth. Process Analysis), 256. Burgess, L.W., Afromowitz, M.A., Proc. SPIE-Int. Soc. Opt. Eng. 1992, 1637 (Environ. Process. Monit. Technol.), 118. Doyle, W.M., Proc. Control Qual.,l992, 2, 11. LaPack, M.A., Tou, J.C., Enke, C.G., Anal. Chem, 1991, 63(15), 1631. Srinivas, G., Chuang, S.C., J. Phys. Chem, 1994, 98(11), 3024-31. Callis, J .B., Illman, D.L., Kowalski, B.R., Anal. Chem., 1987, 59(9), 624A. Blaser, W.W., Ruhl, H.D., Bredeweg, R.A., Am. Lab., 1989, 21(1), 69. Clevett, K.J., Bioprocess Technol., 1990, 47. Guillemin, C.L., J. Chromatogr. 1988, 441(1), 1. Farquharson, S., Chauvel, J.P., J. proc. SPIE-Int. Soc. Opt. Eng., 1988, 918, 80. McPeters, H., Anal Chim. Acta., 1990, 238, 83. Doyle, W.M., Jennings, N., Spectroscopy, 1990, 5, 34. Saltzman, R.S., Mathews, M., Dell, C.D., ISA Calgary 89 Symp., 1989, 217. Herzberg, G., Infrared and Raman Spectra, D. Van Norstrand Co.: New York, 1945. Gordy, W., Martin, P. C., J. Chem. Phys. 1939, 7, 99-102. Gordy, W., Phys. Rev. 1946, 69, 604—607. Plyler, E. K., Benedict, W. 8., Ibid, 1952, 49, 1-6. Rank, D. H., Rix, H. D., Wiggins, T. A., J. Opt. Soc. Am. 1953, 43, 157-162. Wiggins, T. A., Shull, E. R., Rank, D. H., Ibid, 1953, 21, 1368—1373. 36 37 38 39 40 41 42. 43. 45. 46. 47. 48. 49. 50. 51. 52. 187 Goddu, F. R., Delker, D. A., Anal Cheml960, 32, 1, 140-141. Huges, R. H., Martin, R. J., Coggeshall, N. D., J. Chem. Phys., 1956, 24,489. Coggeshall, N. D., Anal. Chem, 1950, 22, 30, 381-395. Griffiths, P. R., deHaseth, J. A., Fourier Transform Infrared Spectrometry, John Wiley & SonszNew York 1986. Esposito. L. D., Koenig, J. L., Fourier Transform Infrared Spectroscopy, Academic Press:New York, 1978. Spiro, I. J. Schlessinger, M., Infrred Technology Fundamentals, Marcel Dekker: New York, 1989 Karge, H.G., Boldingh, E., Catal. Today, 1988, 3(5), 379-386. Yin, Y., Te, M.,Jiao, F., Su, G., Proc. Int. Conf. Pet. Refin. Petrochem. Process.,1991, 2, 614—20. Chuand, S.C., Pien, 8.1., J. Mol. Catal., 1989, 55(1-3), 12-22. Xia, C.,Sun, Y., Li, D., Fenzi Cuihua, 1989, 3(1), 62—71. Garland, M., Bor, G., Inorg. Chem, 1989, 28(3), 410-413. Pan, W., Liu, J .; Li, S.; Xia, Y.; Liu, D., (Dep. Chem. Chem. Eng, Qinghua Univ., Beijing, Peop. Rep. China). Gaodeng Xuexiao Huaxue Xuebao (Zhuankan), 1982, 107-13. Mirbach, M.J., Mirbach, M.F., Saus, A., Topalsavoglou, N., Tuyet, N.P., J. Am. Chem. Soc., 1981, 103(25) 7590-4 Moser, W.R.; Papile, C.J.; Brannon, D.A.; Duwell, R.A.; Weininger, S.J., J. Mol. Catal., 1987, 41(3), 271-92. Sheridan, R., Rein, A., Research and Development, 1991, 33(10). Landau, R.N., Rein, A.J., Research and Development, 1993, 35(13), 39-40. Giusto, R.A., Sevent RC User forum USA, Proceedings, Mettler-Toleddo, Inc, Hightstown, NJ, 1993. 53. 54. 55. 56. 57 58 59 60. 61. 62. 63. 65. 66. 67. 68. 69. 70. 71. 188 Moser, W.R., Berard, J .R., Peter, J .M., Burger, R.J., Applied Spec., 1992, 46(7), 1105-12. Altman, L.J., Jalkian, R., US Patent, 1993, Patent No., 5,407,830. Rekoske, J .E. Barteau, M.A., Ind. Eng. Chem. Res., 1995, 34(9), 2931-9. Atkinson, R., Tuazon, E.C., Aschmann, S.M., Environ. Sci. Technol., 1995, 29(9), 1860-6. Atkinson, R., Tuazon, E.C., Aschmann, S.M., Environ. Sci. Technol., 1995, 29(6), 1674-80. Espeel, P.H., De Peuter, G., Tielen, M.C., Jacops, P.A., J. Phys. Chem., 1994, 98(44), 11588-96. Jiang, S., Li, C., Xin, Q., Cuihua Xuebao, 1993, 14(3), 229-33. Cariati, F., Rindone, B., Phys.=CHem. Behav. Atmos. Polut., 1990, 400-7. Martens, A., Crouzet, P., Eur. Pat. Appl., 1989, EP-345182. Wenig, T.W.,Ames Lab Report, IS-T-1313; 1989, Order No. DE870109337, 220pp. Moser, T.P. Ames Lab. Report, IS-T—1307, 1987, Order No. DE87010935, 143pp. Wenig, T.W. Schrader, G.L., J. Phys. Chem.,1987, 91(22), 5674-80. Wenig, T.W. Schrader, G.L., J. Phys. Chem.,1987, 91(7), 1911—18. Wenig, T.W. Schrader, G.L., J. Phys. Chem.,1986, 90(24), 6480—8. Koizumi, H. Suzuki, Y., Bunseki Kagaku, 1983, 32(8), 489-93. Dobrov, V.S., Klimentko, P.L., Sopkina, A.K., Gordash, Y.T., Malova, L.G., Neftepererab. Neftekhim, 1980, 19, 41-5 Sojak, L., Ostrovsky, I., Kubinec, R., Kraus, A., J. Chromatogr., 1992, 609(1—2), 283-8. Listemann, M.L., Waller, F.J., Herman, F.L., Spectroscopy, 1993, 8(5), 40-5. Gurka, D.F., Titus, R., Anal Chem., 1986, 58(11), 2189—94. 72. 73. 74. 75. 76 77 78 79 80 81 82. 83. 84. 85. 86. 87 88 89 90. 189 Morin, P. Caude, M., Rosset, R., J. Chromatogr., 1987, 407, 87—108. Takeuchi, K., Hanaoka, T., Matsuzaki, T., Sugi, Y., Ogasawara, S., Abe, Y.,Misono, T., Stud. Surf. Sci. Catal., 1995, 92, 269-74. Johnson, S.A., Rinkus, R.M., Diebold, T.C., Maroni, V.A., Appl. Spectrosc., 1988, 42(8), 1369-75. Lachenal, G., Vibrational Spectroscopy, 1995, 9, 93—100. Khettry, A., Hansen, M. G., Antec, 1995, 2824-2831. DeThomas, F. A., Hall, J. W., Monfre, S. L., Talanta, 1994, 41, 3, 425—431. Mijovic, J ., Andjelic, S., Kenny, J ., Polymers for Advanced Technologies, 1995 Osborn, B. G., Feam, T., Near Infrred Spectroscopy in food Analysis, Wiley, New York, 1980. Watson, C. A., Anal. Chem., 1977, 49, 9, 835A-840A. Archibald, D., Miller, C. E., Lin, L. T., Honigs, D.E., Apl. Spectrosc., 1988, 42, 1549. Maggard, S.M., US Patent, 1990, Pat. No., 0,506,391. Parisi, A.F., Nogueiras, L., Prieto, H., Anal. Chim. Acta., 1990, 238(1), 95—100. Brackemann, H., Buback, M., Voegele, H.P., Makromol. Chem., 1986, 187(8), 1977—92. Buback, M., Tups, H., Physica B+C, 1986, 139—140(1-3), 626-8. Lysaght, M.J., Air Force Inst. of Tech., Report No., AIFT/CI/CIA—91—013D,l991, 258 pp. United States Patent, 1992, Pat. Num. 5,151,474. United States Patent, 1992, Pat. Num. 5,155,184. United States Patent, 1984, Pat. Num. 4,469,853. Sharaf, M.A., Illman, D.L., Kowalski, B.R., Chemometrics, 1986, John Wiley & Sons, New York. 190 91. Haaland, D.M., Thomas, E.V., Anal. Chem. 1988, 60, 1193. 92. Haaland, D.M., Thomas, E.V., Anal. Chem. 1988, 60, 1202. 93. Haaland, D.M., Anal. Chem. 1988, 60, 1208. 94. Brown, C.W., Spectroscopy, 1986, 1(4), 32. 95. Jackson, J E A User Guide to Principle Components, 1991, John Wiley, New York. 96. Massart, D.L., Brereton, R.G., Dessy, R.E., Hopke, P.K., Spiegelman, C.H., Wegscheider, W., Eds. Chemometrics Tutorials, 1990, Elsevier, Amsterdam. 97. Kowalski, B.R., Chemometrics, Mathematics and Statistics in Chemistry., 1983, D. Reidel Publishing Co., Dordrecht, Holland. 98. Thomas, E.V., Haaland, D.M., Anal. Chem., 1990, 62, 1091-99. 99. Marjoriemi, M., Mantysalo, E., J. Am Leather Chem. Assoc., 1992, 87, 249-58. 100. Lin, J ., Brown, C.W., Appl. Spectrosc. 1993,47, 239. 101. Wei, W., Mo, 2., Yao, S., Anal. Chim. Acta, 1991, 25, 143-8. 102. Blanco, M, Coello, J ., Iturriaga, H., Maspoch, S., de la Pezuela, C., Talanta, 1993, 40, 1671-6 103. Varadi, M., Hruschka, W., Norris, K.H., Acta. Aliment, 1992, 21, 95-106. 104. Arakaki, L.S.L., Burns, D.H., Appl. Spectrosc.,l992, 46(12), 1919-28 105. Bellon, V., Sens. Actuators, B 1993, 12, 57-64. 106. Kettaneh-Wold, N., Chemom. Intel]. Lab. Syst., 1992, 14, 57-69. 107. Gauglitz, G., Kraus, G., GIT Fachz. Lab. 1992, 36, 232-5, Chem. Abstr. 1992, 268, 115-22. 108. Ni. Y, Anal. Chim. Acta., 1993, 284(1), 199-205. 109. Van de Voort, F., Sedman, J ., Emo, G., Ismail, A.A., J. AOAC Int.,1992, 75(5), 780-5. 110. 11 p—- 112. 113. 114. 115. 116. 117. 118. 119. 120. 12. p—a 122. 123. 124. 125 126. 127. 128. 191 Miller, C.E., Appl. Spectrosc.,1989, 43(8), 1435-43. . Ketterer, M.E., Biddle, D.A., Anal. Chem, 1992, 64, 1819-23. Lysaght, M.J., Kelly, J.J., Callis, J.B., Fuel, 1993, 72, 623-31. Lee, M.H., Cavinato, A.G., Mayes, D.M., Rasco, B.A., J. Agric. Food Chem, 1992, 40, 2176-81. F. Seitz, Modern Theory of Solids, 1940 Me Graw-Hill, New York. Bridgman, P.W., Physics of High Pressure, 1949, G. Bell and Sons, Ltd., London. Frank, C.W., Electronic Transition and the High Pressure Chemistry and Physics of Solids, 1973, Chapman and Hall, London. Ferraro, J .R., Vibrational Spectroscopy at High External Pressures, 1984, Academic Press, Inc., New York. Griffith, J .S., The Theory of Transition Metal Ions, 1964, Cambridge University Press, London. Fisher, D.C., Drickamer, H.G., J. Chem Phys., 1971, 54, 4825. Bargeron, C.B., Drickamer, H.G., J. Chem Phys., 1971, 55, 3471. Drier, T., Schiff, G., J. Chem. Phys., 1994, 100(9), 6275-89. Ulivi, L., Lu. 2., Tabisz, G.C., Phys. Rev., A: Gen. Phys., 1989, 40(2), 642—51. Morin, P.H., Beccard, B., Caude, M., Rosset, R., J. of High Res. Chromatog. & Choromatog. Communications, 1988, 11, 697-705. Taha, S., Tosson, M., Thermochim. Acta, 1994, 236 (1-2), 217—226. Lin, S.B., Koenig, J.L., J. Polym. Sci., Polym. Phys. Ed., 1983, 21(10), 2067-83. Fernandez Bertran, J., La Serna, B., J. Mol. Struct., 1979, 56(2)283-8. Fukushima, K., Kawai, T.,J. Mol. Struct., 1984, 112 (1—2), 51-7. Campbell, J.H., Fisher, J.F., Jonas, J., J. Chem Phs., 1974, 61(1),346-60. 129. 130. 13. p— 132 133 134. 135. 136. 137. 138. 139. 140. 141 142 143 144 145 146 147. 148. 192 Karlsson, A., Klaeboe, P., Nielsen, C.J., J. Raman Spectrosc., 1992, 23(3), 167-80. Tanabe, K., Hiraishi, J., Tamura, T., J. Mol. Struct., 1976, 33(1), 19-37. Van der Veken, B.J.,Coppens, P., Sanders, R.S., Daeyaert, F.F., Durig, J .R., J. Mol. Struct. 1992, 272, 305-46. Femandez-Ballester, G., Castresana, J ., Arrondo, J .L.R., Ferragut, J .A., Gonzalez- Ros, J.M., Biochem. J., 1992, 288(2), 421-6. Kato, M., Taniguchi, Y., J. Phys. Chem., 1994, 98 (10), 2688-93. Carles, M., Eloy, D., Pujol, L., Bodot, H., J. Mol. Struct., 1987, 156(1-2), 43-58. Hoshino, N., Inabe, T., Mitani, T., Maruyama, Y., Bull. Chem. Soc. Jpn., 1988, 61(12), 4207-14. Minomura, S., Drickamer, H.G., J. Chem Phys., 1961, 35 903. Perez—Albueme, E.A., Drickamer, H.G, J. Chem Phys., 1965, 43, 1381. Sherman, W.F., Wilkinson, G.R., Advances in Infrared and Raman Spectroscopy, 1980, Heydon, London. Snyder, R.W., Sheen, C.W., Painter, P.C., Applied Spectroscopy, 1988, 42(3), 503— 8 Efimov, Y.Y., Naberukhin, Y.I., Opt. Spektrosk. 1982, 52(6), 999-1003. Gordon, I.G., Adv. Magnetic Resonance, 1968 3, 1. Gordon, R.G., J. Chem. Phys. 1963, 39, 2788. Arroume, M., Idrissi, A., Turrell, G., J. Molecular Struct., 1992, 266, 153-158. Sugitani, A, Ikawa, S., Konaka, S., Chem. Phys., 1990, 142, 423-30. Gordon, I.G., Adv. Magnetic Resonance, 1968 3, 1. Gordon, R.G., J. Chem. Phys. 1963, 39, 2788. Ingle, J.D., Crouch, S.R., Spectrochemical Analysis, 1988, Prentice Hall, New Jersey. McOmber, J .I., Shriver, D.F., Ratner, M.A., Ferraro, J .R., J. Phys. Chem. Solids, 1982, 43, 903. 149. 150 15. p..- 15. N 15. L») 154. 155. 156. 157. 15 00 159. 160. 16. p—g 162. 16. b.) 164. 165. 166. 167. 193 Adams, D.M., Tan, T.K., J. Phys. Chem. Solids, 1981, 42, 559. Wu, C.K., J .Polymer Science, 1974, 12, 2493-506. Adams, D.M., Ekejiuba, I.O.C., J. Chem. Soc. Faraday Trans, 1981, 77, 851. Ferraro, J.R., Coord. Chem. Rev., 1979, 29, 1. Adams, D.M., Sharma, S.K., J. Chem. Soc. Faraday Trans, 1978, 2 (74), 1355. Adams, D.M., Appleby, R., Inorg. Chim. Acta., 1978, 26, 643. Adams, D.M., Sharma, S.K., J. Mol. Struct., 1981,71, 121. Breitinger, D., Kirsten, U., J. Solid State Chem., 1977, 22, 233. Dultz, W., Krause, H., Winchester, L.W., J. Chem. Phys., 1977, 67, 2560. . Greig, D., Shriver, D.F., Ferraro, J.R., J. Chem. Phys., 1977, 66, 5248. Gardiner, D.J., Walker, N.A., Dare-Edwards, M.P., Spectrochimica Acta.,l987, 43A(1), 21-34. Gardiner, D.J., Walker, N.A., Dare-Edwards, M.P., Spectrochimica Acta.,l987, 43A(10), 1241-47. Haaland, D. M., Easterling, R. G., App1. Spec., 1980, 34, 539. Haaland, D. M., Easterling, R. G., App1. Spec., 1982, 36, 665. Haaland, D. M., Easterling, R. G., Vopicka, D. A., Appl. Spec., 1985, 39, 73. Brown, C. W., Lynch, P. F., Obremski, R. F., Lavery, D. S., Anal. Chem., 1982, 54, 1472. Haaland, D. M., Practical Fourier Transform Infrared Spectroscopy, Academic Press, Inc.: New York, 1990. Martens, H., Naes, T., Multivariate Calibration, Wiley, New York, 1989. Thomas, E. V., Anal Chem., 1994, 66, 795A 168. 169. 170. 17. p—d 172. 173. 174. 175. 176. 177. 178. 179. 180. 18 H 182. 183. 184. 185. 194 Brown, S.D., Blank, T.B., Sum, S.T., Weyer, L.G., Anal. Chem., 1994, 66 (12), 315R. User Guide, PLSplus/IQ, Galactic Industries Co. 1996, Salem, NH. Bellamy, L. J .; The Infrared Spectra of Complex Molecules, John Wiley & Sons, New York, 1975. Dollish, F. R., Fateley, W. G., Bentley, F. F. Characteristic Frequencies of Organic Compounds, John Wiley & SonszNew York, 1974. Nyquist, R. A. The Interpretation of Vapor-Phase Spectra, Group Frequency Data, Sadtler Research Laboratories, 1984. Pouchert, C. J ., The Aldrich Library of FT-IR spectra, Aldrich Chemical Company, Inc., 1985. Rea, D. G., Anal. Chem. 1960, 32, 1638. Crawford, Jr., B. L., Lancaster, J. E., Inskeep, R. G., J. Chem. Phys. 1953, 21, 678. Lin-Vien, D., Colthup, N. B., Fataley, W. G., Grasselli, J. G., The handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, Inc., San Diego, CA, 1991. Thompson, H. W., Torkington, P., Trans. Faraday Soc. 1945, 41, 246. Rasmussen, R. S., Brattain, R. R., J. Chem. Phys. 1947, 15, 120. Rasmussen, R. S., Brattain, R. R., J. Chem. Phys. 1947, 15, 131. Rasmussen, R. S., Brattain, R. R., J. Chem. Phys. 1947, 15, 135. . McMurray, H. L., Thornton, V., Anal. Chem., 1952, 24, 318. Colthup, N. B., Daly, L. H., Wiberley, S. E.; Introduction to Infrared and Raman Spectroscopy; Academic Press:San Diego, 1990. Struve, W. S.; Fundamentals of Molecular Spectroscopy, John Wiley & Sons: New York, 1989. Barrow, G. M.; Introduction to Molecular Spectroscopy, McGraw-Hill: York,l962. Kaye, W., Spectrochemica Acta, 1954, 6, 257-287. 186. 187. 188. 189. 190. 19. p—n 192. 193. 194. 195. 196. 197. 198. 199. 200 20 H 195 Gaytguer, G.; J .Phys. Radium, 1953, 14, 19-24. Mecke, R., Discuss. Faraday Soc., 1950, 9, 161-171. Vaan Ness, H.C., Abbott, M.M., Classical Thermodynamics of Nonelectrolyte Solutions, 1982, McGraw-Hill, New York. Reid, R.C., Prausnitz, J .M., Poling, B.E., The Properties of Gases and Liquids, 1987, 4th Edition, McGraw-Hill, New York. Navarro-Villoslada, F., Perez—Arribas, L.V., Leon—Gonzalez, M.E., Polo-Diez, L.M., Anal. Chim. Acta., 313, 1995, 93-101. Rohrback, B.G., Trends in Anal. Chem. 1991, 10(9), 269-261. Kelly, J.J., Barlow, C.H., Jinguji, T.M., Callis, J.B., Anal. Chem. 1989, 61(4), 313- 320. Malinowski, E.R., Factor Analysis in Chemistry, 1991, 2nd edition, Wiley, New York. Geladi, P., Anal. Chim. Acta., 1986, 185, 1—17. Haaland, D.M., Computer—Enhanced Analytical Spectroscopy, 1992, V3, 1-30, Plenum Press, New York. Harris, J.M., Frans, S.D., Poston, P.E., Wong, A.L., IN Computer-Enhanced Analytical Spectroscopy; Meuzelaar, H.L.C. Ed.,Plenun Press, New York, 1990, 2,3-36. Miller, J.N., Analyst, 1991, 116,3—14. Brown, P.J., Anal. Proc., 1990, 27,303-6. Mark, H., Anal. Chim. Acta, 1989, 223, 75-93. Adams, J .M., Chemometrics in Analytical Spectroscopy, The Royal Society of Chemistry, 1995, Cambridge, England. . Meloun, M., Militky, J ., Forina, M., Chemometrics for Analytical Chemistry, 1992, Ellis Horwood, LTD., West Sussex, England. 196 202. Brereton, R.G., Chemometrics Application of Mathematics and Statistics to Laboratory Systems, 1990, Ellis Horwood LTD., West Sussex, England. "111111111111111111111115