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ABSTRACT

THE ASYMPTOTIC BEHAVIOR
OF STOCHASTIC EVOLUTION EQUATIONS

By

Ruifeng Liu

The purpose of this work is to study the asymptotic behavior of the solutions of
Stochastic Evolution Equations. More precisely, we investigate the stability of and
the invariant measures for the mild and strong solutions of the equations.

A sufficient condition for such asymptotic behavior is the ultimate boundedness
of the solutions. In the first part this concept is studied for the strong solution
under coercivity condition with an eye towards applications to stochastic PDE’s. In
fact, under ultimate boundedness, we get recurrence behavior for the solution in the
second part. Finally, we study asymptotic behavior of the mild solution through
approximation by a sequence of strong solutions.

The main technique used is the construction of a Lyapunov function for linear
equation and use it for non-linear equation through first order approximation. This
makes our results applicable to stochastic PDE’s. We derive asymptotic behavior

specifically for Navier-Stokes, Parabolic Ito and random heat equations.
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Introduction

The purpose of this work is to study the asymptotic behavior of the solutions of
stochastic evolution equations. More specifically, we study the stability of and the
invariant measure for the mild solution and the invariant measure for the strong
solution. In the case of the strong solution, one needs coercivity condition on the
coefficients if the initial value is "non-smooth”, thus making the results applicable to
stochastic partial differential equations (SPDEs). On the other hand, in the case of
the mild solution, we can dispense with the coercivity condition.

In the case of the finite-dimensional stochastic differential equation (SDE), Won-
ham, Zakai and Miyahara have considered ultimate boundedness of the solution which
guarantees not only the existence of an invariant measure, but also weak recurrence of
the solution to closed bounded, thus compact sets. We study the above problems by
considering ultimate boundedness of the solution of the SPDE. We use the method of
Lyapunov functions for both the mild and strong solutions. This allows us to derive
the known results in a very simple manner.

In the first part of this dissertation, we study ultimate boundedness and the
existence of the invariant measure for the solution of the SPDE. In the work of Khas-
minskii and Mandrekar [15] and the work of Mandrekar [17], the exponential stability
of the zero solution of the stochastic evolution equation was studied and a Lyapunov
function was constructed under this condition. It is clear that exponential stability
of the zero solution implies that the system has an invariant measure degenerate at

zero. Thus two questions arise:



1. What is a general condition (less restrictive than exponential stability) under

which one can construct a Lyapunov function?

2. Can one consider conditions under which a non-trivial finite invariant measure

exist?

Following the ideas of Wonham [27] and Zakai [29], Miyahara [18] introduced the
concept of exponential ultimate boundedness in mean square sense (m. s. s.) and
constructed a Lyapunov function for the finite dimensional case. We generalize his
work to the linear case for stochastic evolution equations and study the nonlinear
case through first order approximation. We also give sufficient conditions in terms
of a Lyapunov function for a weaker concept, namely, ultimate boundedness in the
m. s. s.. This latter concept implies under appropriate condition on the Gelfand
Triplet, the existence of invariant measures of the solutions and can be used along
with the generalization of another theorem of Miyahara ([19], Th. 2) to obtain the
boundedness of the second moment of the invariant measures.

The invariant measures for the mild solutions of stochastic evolution equations
in the infinite-dimensional case was studied by Ichikawa [12] and was systematically
taken up by Da Prato and Zabczyk [6], where the reader can find additional references.
However, we use techniques of Ethier and Kurtz ([8], Ch.IV, Sec.9) to show the
existence of invariant measures for the strong solutions. As special cases, we derive
recent results on the invariant measures for Navier-Stokes equation [1], Parabolic Ito
equation [3] and an improved version for stochastic heat equation([20], [25]), we also
get the existence of invariant measure in the case of multiplicative noise for the random
motion string introduced by Funaki [9]. In fact, we prove the ultimate boundedness
of the solutions in these cases.

The weak recurrence property to a bounded set was studied by Miyahara [18] for
the solutions of the stochastic differential equations in the finite dimensional case.
For the solutions of stochastic evolution equations in a Hilbert space, Ichikawa [12]

indicated that the same theorem held under the same condition as in Miyahara [18].



In the second part, we study the weak recurrence property to a compact set for the
strong solutions of stochastic evolution equations under the coercivity condition in a
Hilbert space. Under appropriate condition on the Gelfand Triplet, we conclude that
the solution is weakly recurrent to a compact set if it is ultimately bounded in m.
s. s. and weakly positive recurrent to a compact set if it is exponentially ultimately
bounded in m. s. s.. These results extend the work of Miyahara [18], Wonham [27]
and Zakai [29]. Using the results in chapter 2, we can give conditions in terms of a
Lyapunov function for the weak and weakly positive recurrence to a compact set.
The purpose of the third part is to study the stability and ultimate boundedness
of the mild solutions of stochastic semilinear evolution equations. The pioneering
work in the field was done by Haussmann [10] in the linear case and Ichikawa [12, 11]
for the semilinear case. A good exposition can be seen in book of Prato and Zabczyk
[6]. The methods used by them were a direct attack on the problems. In [2], Chow
suggested the use of Lyapunov functions in the study of the stability for the strong
solution. However, this is not appropriate for the mild solution, furthermore, the
Lyapunov function suggested by him for the linear problem in Haussmann [10] is
not bounded below. In [15], Khasminskii and Mandrekar produced the correct Lya-
punov function for the strong solution under coercivity condition and showed that
non-linear problem could be studied through the first order linear approximation. It
was shown in Mandrekar [17] that the sufficient conditions of Ichikawa for mild solu-
tion could be derived through a strong solution approximation. This also led to the
study of stability in probability. We remove in this dissertation the coercivity condi-
tion. Through the strong solution approximation, we study the stability, exponential
ultimate boundedness and stability in probability for the the mild solution. The main
technique is again to construct an appropriate Lyapunov function. Once this is done,
we can exploit the methods developed in [15] and the first part of this dissertation to
obtain results for the mild solutions. As a consequence, we get simplified proofs of

the results of Haussmann [10], Ichikawa [11, 12], Da Prato, Gatarek and Zabczyk [5].



Chapter 1

Preliminaries and Notations

The purpose of this chapter is to provide background material for the subsequent

chapters.

1.1 Nuclear and Hilbert-Schmidt Operators

Let E, G be Banach spaces and let L(E;G) be the Banach space of all linear bounded
operators from F into G endowed with the usual operator norm ||-||. We denote by E*
and G* the continuous dual spaces of E and G respectively. An element T € L(E, G)
is said to be a nuclear operator if there exist two sequences {a;} C G,{p;} C E*
such that T has a representation
Tz =) ajpi(z), z€E.
=1

with

3 llasl - llesll < o0

—

The space of all nuclear operators from E into G , endowed with the norm

ITlh = inf{Y_ lla;ll - losll : Tz = 3~ ajp;()},

1=1 j=1

is a Banach space, and will be denoted by L,(E, G).

4



Let H be a separable Hilbert space and let {e;} be a complete orthonormal system
in H. We denote by (-,-) the inner product in H. If T € L,(H, H) then we define

trace of T':
oo

tr(T) =Y (Tej,€;)).

=1
Proposition 1.1.1 If T € L\(H, H), then tr(T) is a well-defined number indepen-

dent of the choice of the orthonormal basis {e;}.

Note also that
[tr(T)| < ||T||x, T € Li(H).

Corollary 1.1.1 IfT € L,(H,H) and S € L(H,H), then TS,ST € L,(H,H) and
tr(T'S) = tr(ST) < ||T[h]|S]-

Proposition 1.1.2 A nonnegative operator T € L(H, H) is nuclear if and only if

for an orthonormal basis {e;} on H

oo

> (Tej,e;) < .

j=1
Moreover in this case tr(T) = ||T||1.

Because of this fact, we call a nuclear operator a trace class operator in this case.

Now, we introduce the Hilbert — Schmidt operator.

Let E and F be two separable Hilbert spaces with complete orthonormal bases
{ei} C E,{f;} C F. A linear bounded operator T : E — F is said to be Hilbert —
Schmudt if

S ITel? < oo

i=1
Since
YoNTell? =322 [(Tei f)IP = 2T £l
i=1 i=1j=1 7=1
the definition of Hilbert - Schmidt operator, and the number

IT)l2 = (I Tell®)'/*

i=1

is independent of the choice of the basis {e;}. Moreover ||T||; = ||T*|2-



1.2 Hilbert Space Valued Wiener Processes

In this subsection, we will give the definition of a Wiener process on a separable
Hilbert space K.

Throughout this dissertation, we assume that all the random variables, stochastic
processes, probability measures are defined on a probability space (2, F, P) with a
filtration {F;}:>0. Let K be another real separable Hilbert space.

We start with the definition of a Gaussian probability measure on the Hilbert

space K.

Definition 1.2.1 A probability measure u on a Hilbert space (K, B(K)) is a Gaussian

measure with mean m and covariance Q, if for arbitrary k € K and A € B(R?),
pl{z € K : (k,z) € A} = N((m, k), (Qk, k))(A),

where N((m, k), (Qk,k))(A) is a non degenerate Gaussian distribution with mean
(m, k) and variance (Qk, k).

Proposition 1.2.1 If u is a Gaussian measure on a Hilbert space (K,B(K)) with

mean m and covariance ), then
(i) Ji(k, 2)pde) = (m, k), Vk € K,
(") fK(kl,m)(k27x)#(d$) - (m»kl)(m”Q) = (le,k2), VklykZ € K.

Proposition 1.2.2 Let u be a Gaussian probability measure with mean 0 and covari-

ance Q, Then Q is a nonnegative symmetric trace class operator on K.

Now we introduce the Wiener process on K.

Definition 1.2.2 Suppose Q is a nonnegative symmetric trace class operator. A K-
valued stochastic process W(t),t > 0, is called a Q-Wiener process or a Q-Brownian

motion with respect to {Fi}eso, if



() W) =0,
(i1) W has a continuous trajectories,
(i11) W(t) is adapted to F; Nt >0,
(iv) W has independent increments,
(v) LW () = W(s)) = N(O,(t — )Q),¥ £ >5>0.

Since K is separable, there exists a complete orthonormal system {e;} in K, and

a bounded sequence of nonnegative real numbers A; such that
Qe; = /\,-ei,z' = ].,2,' v
We also have a similar decomposition for W(t).

Proposition 1.2.3 Assume () is a nonnegative symmetric trace class operator. The

following statements hold.
(i) EW(t))=0,Cov(W(t))=tQ V t2>0,
(ii) E(W(t),k1)(W(s),k2) = (t As)(Qkir, k), Yk, k2 € K,
(iii) For arbitrary t, W has the expansion

W) = i\/x_iﬂ,-(t)ei

where

are real valued Brownian motions mutually independent on (0, F, P) and the series

in (1.2.8) is convergent in L*(Q, F, P).
On the other hand, we have the following proposition:

Proposition 1.2.4 For an arbitrary nonnegative symmetric trace class operator on

a separable Hilbert space H, there exists a Q-Wiener process W(t),t > 0.



1.3 Definition of Stochastic Integral

Suppose K and H are two separable Hilbert spaces. In this subsection, we will

construct the following stochastic integral:

/0 “B(s)dW (s),t € [0, T]

where W(t) is a K-valued Q-Brownian motion with respect to F; as defined in the
last subsection, and ® is a process with values that are linear but not necessarily
bounded operators from K to H. Let us fix T < 0o, and let T = [0, T

We define the stochastic integral in several steps.

A process ®(t),t € T in L(K, H) is called simple if it takes only a finite number
of values, i. e., there exists a sequence 0 = ¢ < ¢t; < --- < tx = T and a sequence
&y, ®y,---, Py of L(K, H)-valued random variables such that ®,, is F;, -measurable
and

Q(t):@m, for te (tmytm-i-l],m:o,].,--',k—l.

For a simple process ® we define the stochastic integral by the formula:

t
/0 ®(s)dW(s) Z ®m(Weryint = W)

m=0
and denote it by & - W(t),t € T
Now we introduce a Hilbert space Ko = Q'/?(K) of a subspace of K which endowed
with the inner product

k), ) = (@7, (@77,

k17k2 E

i=1

Let LY = Ly(Ko, H) be the space of all Hilbert - Schmidt operators from Ko to
H. It is also a separable Hilbert space, equipped with the norm

1912 = S fE = 3 Al(we, £)P

i,j=1 1,J=1

= QP = tr(¥Q¥)



where {g;} with g; = \/Ae;, {e;} and {f;} are complete orthonormal bases in Ko, K
and H respectively. Clearly, L(K,H) C L3, but not all operators in L can be
regarded as restrictions of operators in L(K, H). The space L% contains genuinely
unbounded operators on K.

Let ®(t),t € T be a measurable L—valued process, we define the norms

l2llle = {E [ 18()Z;ds}”2 = {E [ tr((@()Q® x (s))ds}"”
forteT.

Proposition 1.3.1 If a process ® is simple and |||®|||r < oo, then the process ® - W

is a continuous, square integrable H—valued martingale on [0,T] and
Ele-WPP=l|®|ll;, 0<t<T

Remark 1.3.1 Note that the stochastic integral is an isometric transformation from
the space of all simple processes equipped with the norm ||| - |||r into the space of all

H —valued martingales.

To extend the definition of the stochastic integral to more general processes it is
convenient to regard integrands as random variables defined on the product space
Do = [0,00) X Q (resp. Qr = [0,T) x N), equipped with the product o—field:
B([0,00)) x F (resp. B([0,T)) x F). The product of Lebesgue measure on [0,T)
(resp. [0,T])) and the probability measure P is denoted by P, (resp. Pr ).

For the o—field introduced just above, we consider the sub o—field generated by
the adapted simple processes, this sub o—field is called the predictable o—field, we
denote it by P., (resp. Pr). It turns out that the proper class of integrands are
predictable processes with values in LY, more precisely, measurable mappings from

(Roo, Poo) (resp. (7, Pr)) into (L, B(LY)).

Proposition 1.3.2 The following statements hold:
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(i) If a mapping ® from Qr into L(K,H) is L(K, H)-predictable, then it is also

LY-predictable. In particular, simple processes are L3-predictable.

(ii) If ® is a L3-predictable process such that |||®|||r < oo then there ezists a se-

quence {®,} of simple processes such that |||® — ®,|||r — 0 as n — co.

Now we are able to extend the definition of the stochastic integral to all L3 pre-
dictable processes ® such that |||®|||r < oo. Note that they form a Hilbert space, we
denoted it by N2, (0,T; L3), and by the above proposition, simple processes are dense
in N%(0,T; LY), by proposition (1.3.1), the stochastic integral ® - W is an isomet-
ric transformation from that dense set into the space of all H—valued martingales.
Therefore, the definition of the stochastic integral can be immediately extended to

all elements of N3%(0,T; LY).

1.4 General Stochastic PDE

Let (9, F, P) be a probability space with a filtration {F;};>0, K a real separable
Hilbert space and {W(t),t > 0} a K-valued {F;}:>0-adapted, @Q—Brownian motion
defined on (2, F, P).

Let V C H be two real separable Hilbert spaces such that V C H is dense and
V < H is continuous, We identify H with its dual space, and denote by V* the dual

space of V, therefore, we have

VCHCV™

Denote by || - ||v, || - ||# and || - ||ve the norms in V| H and V* respectively, by <:,->
the duality product between V and V*. In addition, we assume that for v € V and
v* € H, <v,v*> = (v,v*). The above triplet V C H C V* is called a Gelfand triplet.

Let M2%(0,T;V) denote the space of all V-valued measurable processes satisfying:

(i) u(t,-) is Fi-measurable; and,

(i) E ST |lu(t,w)|?dt is finite.
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We first study the following equation:

u € M?*0,T;V)
du(t) = A(u(t))dt + B(u(t))dW (t) (1.1)
u(0) = ¢.

where ¢ € H, A : V — V* is an operator with ||A(u)|lve < a1||u|lv, B(u) €
L(K,H) and ||B(u)||lL(k,H) < billu|lv for u € V, where L(K, H) is the space of
all bounded linear operators from K to H. Here A, B are in general nonlinear, a,, b,

are constants.

For the existence of solutions of the above equation, we need the following crucial
condition:

coercivity condition: Ja > 0, and 4, such that for Vv € V|
2<v, A(v)> + tr(B(v)QB*(v)) < Aol — ellvlly + 1, (1.2)
and monotonicity condition: for Vu,v € V,
2<u — v, A(u) — A(v)> + tr((B(v) — B(v))Q(B(v) — B(v))") < AMlu — vl

Theorem 1.4.1 Under the above coercivity condition and monotonicity condition,

equation (1.1) has a unique solution {u®(t),t > 0} satisfying
w? € L*(Q,C(0,T; H)) (| M*(0,T; V).

Furthermore, the solution is Markovian ([23],Ch. 3) and the corresponding semigroup
is Feller.

The above solution is called a strong solution.
The major tool to study stochastic differential equation is Ito’s formula, we quote
it here for the ease of reference [21].

Let ¥ : H — R be a function satisfying:
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(i) ¥ is twice (Frechet) differentiable with ¥’ and ¥” locally bounded.

(i1) ¥, ¥’ are continuous on H

(1.3)

(iii) For all trace class operators T, tr(T'¥'(-)) is continuous on H — R.
(iv) If v € V then ¥'(v) € V,u — <¥'(u),v*> is continuous for each v* € V*.
(v) [|¥'(v)|lv € Co(1 + ||v||v) for some Cy > 0,Vv € V.

Theorem 1.4.2 (Ito’s formula):Suppose ¥ : H — R satisfies the above conditions
and {u®(t),t > 0} is a solution of (1.1) with uv¥ € L*(Q,C(0,T; H))N\M?(0,T;V).
Then

V(1) = Up) + [ £ U ()ds + [ (W((s)), B@(s)dW(s).  (1.4)

where £ ¥(u) = <¥'(u), A(u)> + 3tr(9"(u)B(u)QB*(u)).

1.5 Semilinear Stochastic PDE

When A is a semilinear operator, equation (1.1) is reduced to the following semilinear

stochastic evolution equation on H:

{ du = (Au+ F(u))dt + B(u)dW (t) (1.5)

u(0) = .
where A is the infinitesimal generator of a Cy-semigroup S(t),t > 0 on H satisfying

IIS(t)|| £ e“* for some real number w, F and B are in general nonlinear mappings

from H to H and H to L(K, H) satisfying the Lipschitz condition:

I1F(y) - F(2)Il + 1 B(y) — B(2)ll < dlly — =],
IF@)I + 1Bl < d(1 +[lyl))-

for some constant ¢ and all y,2 € H.

(1.6)

Besides the concept of a strong solution, for the semilinear case, we have the

concept of mild solutions following [11]:
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Definition 1.5.1 A stochastic process u(t),t € Z, is a mild solution of (1.5) if
(i) u(t) is adapted to F,,
(i1) u(t) is measurable and [T ||u(t)]|?dt < co w.p. I and
(iii) u(t) = S(t)p + fo S(t — s)F(u(s))ds + Jy S(t — s) B(u(s))dW (s)
forallt >0 w.p. 1.

In general the strong solution is rather stronger than the mild solution, for the

relationship of these two solutions, we have the following propositions: [11]:

Proposition 1.5.1 Ifu(t),0 <t < oo, is a strong solution of equation (1.5), then it

is a mild solution.

On the other hand, under some sufficient conditions, a mild solution can be a

strong solution [11]:
Proposition 1.5.2 Suppose that

(a) u(0) € D(A)w.p.1,S(t — r)F(u) € D(A),S(t — r)B(u)k € D(A) VYu€ H,k €
K, and t>r,

(b) |AS(t —r)F(u)|| < gi(t = r)llull, g1 € £:(0,T),
(c) |AS(t —r)B(u)|l < ga(t — r)llull, g2 € L2(0,T).
Then a mild solution u(t) is also a strong solution.
For the existence of the mild solution of equation (1.5), we have [11]:

Theorem 1.5.1 Let ¢ be Fo measurable with E||¢||? < oo for some integer p > 2.
Under the hypothesis (1.6), (1.5) has a unique mild solution u®(t) in C(0,T; L,(Q, F, u; H)).

Corollary 1.5.1 If ¢ is nonrandom, then there ezists a unique mild solution of (1.5)

in C(0,T; L,(Q,F,p; H)) for all p > 2.
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Without loss of generality, we assume the initial value ¢ is nonrandom throughout
the dissertation.

Since we reduced the solution of equation (1.5) to H, the Ito’s formula has a
simpler form. Let’s see the Ito’s formula in this case.

Let C*(H) denote the space of all real-valued functions ¥ on H with properties:

(i) ¥(z) is twice (Frechet) differentiable,

(ii) ¥'(z) and ¥"(z)z, for each z; € H are continuous.

By CZ(H) denote the space of all functions in C?( H) with the first two derivatives
bounded. We have the following Ito’s formula [11]:

Theorem 1.5.2 (Ito’s formula):Suppose ¥ € C*(H) and {u®(t),t > 0} is a strong
solution of (1.5). Then

Y(u(t) = ¥e) + [ £ Wu(s)ds + [ (V(u(s), B()dW(s).  (1L7)
where £ ¥(z) =< ¥'(z), Az+ F(z) > +1tr(¥"(z) B(z)Q B*(z)) is called the infinites-

imal generator of equation (1.5).

Since Ito’s formula is only applicable to the strong solution of (1.5), we introduce

the approximating systems:

{ du = Au + R(n)F(u(t))dt + R(n)B(u)dW (t) w8
u(0) = R(n)ep.

where n € p(A), the resolvent set of A and R(n) = R(n,A) = (n — A)~'. The

infinitesimal generator £, corresponding to this equation is £, ¥(z) =< ¥'(z), Az +

R(n)F(z) > +5tr(¥"(z)R(n) B(z)Q(R(n)B(z))")
Theorem 1.5.3 Under the hypotheses of Theorem 1.1, equation (1.8) has a unique

strong solution u?(t) in C(0,T; L,(Q, F,u; H) for all T and p > 2. Moreover, u¥(t)
converges to the mild solution u®(t) of (1.5) in C(0,T; L,(Q, F,pu; H) asn — oo, i.e.:

lim sup E(||u®(t) — ug(¢)|[’) =0 (1.9)
% telo0,T)



Chapter 2

Ultimate Boundedness and
Invariant Measures of the Strong

Solution

In this chapter we study necessary and sufficient conditions for exponentially ultimate
boundedness of the strong solution of the stochastic evolution equation in terms of
a Lyapunov function. We will explicitly construct the Lyapunov function in the
linear case and derive sufficient conditions for the non-linear case through the first
order approximation. We also will give conditions for ultimate boundedness of the
solution of SPDE’s and study the problem of the existence of invariant measures and
their second moment. As application of our general result, we obtain recent results

mentioned in the introduction.

15
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2.1 Exponentially Ultimate Boundedness and Lya-
punov Function

In [15], exponential stability in m. s. s. of the zero solution of (1.1) was considered
and in the linear case a Lyapunov function was constructed. This function was then
used to consider the stability through the first order approximation, in the nonlinear

case. Following (18], we define

Definition 2.1.1 The solution {u®(t),t > 0} of (1.1) is ezponentially ultimately

bounded (in || - |i) in m. s. s. if there exist positive constants c, 3, M such that
Ea?(Oll} < ce il + M. for Vg € H. (2.1)

Remark 2.1.1 If M = 0 we say that the zero solution is ezponentially stable in m.

S. S..

Theorem 2.1.1 Consider equation (1.1) satisfying the coercivity condition (1.2),
and let {u®(t),t > 0} be its solution. If there exists a function A : H — R which

satisfies the following conditions:

(i) condition (1.3),

(it) aeillellly — k1 < Ale) < esllollly + ks, Vo € H,
(i6i) LA(p) < —caA(g) + b, Vo €V,

where ¢;(> 0),c2(> 0),c3(> 0),k1,k2 and ks are constants, then {u®(t),t > 0} is

exponentially ultimately bounded in m. s. s.

Proof: Since A(y) satisfies (1.3), apply Ito’s formula (1.4) to it and take expecta-

tion, we get

EA(w®(t)) - EAw?(t) = E /t't,CA(u"(s))ds

INA

/:(—QEA(u"’(s)) + ky)ds
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Let ®(t) = EA(u®(t)) and use the fact that ®(t) is continuous in ¢ we have

Hence

k k

®(t) < = +(8(0) — )™,

C2 C2

1e.,
EA@(0) < 22 4+ (A(g) - B2y
C2 C,
Using (i), we have
@ 2 @ k2 k2 —cat
aEllu(t)|ly — ki < EA(u?(t)) < pals (Alp) = )e™® (2.2)
2

IA

k k
=+ (callellly + ks — =)ee2t.
C C2
From the above inequality we get
Ellu*(t)|f < ce™|lellfy + M for Vo € H,

for some constants ¢, 3 and M. So u¥(t) is exponentially ultimately bounded in m.

S. S.
We note that (2.2) gives

Corollary 2.1.1 If A: H — R satisfy (1), (112) in Theorem 2.1 and
(i) allelly —k < Alp) Ype H

for some constants ¢;(> 0) and k,, then

limsup E|[u?(t)||% < — (k1 + kz).
t—+o00

1

(5] Ca
If {u¥(t),t > 0} satisfies the above condition, we say it is ultimately bounded in m.
s. s.. The function A(yp) defined above is called a Lyapunov function. We now will

construct a Lyapunov function if the solution of (1.1) under coercivity condition (1.2)

is exponentially ultimately bounded in m. s. s..
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Suppose the solution {u®(t),t > 0} of (1.1) is exponentially ultimately bounded

in m. s. s., i.e., we suppose (2.1) holds. Let

Mo) = [ ([ Blue(s) o) (2.9

where T is a positive constant to be determined later.
Applying Ito’s formula (1.4) to ||¢||%, taking expectation and applying coercivity
condition (1.2), we get

t
Ellu? @)} — llella /0 EL||u*(s)l}ds

Y " El|u(s)|[%ds — a / *Elu*(s)|2ds + 1t
0 H 0 v

IN

hence
t ]. t
[ Bl s)lids < (0 [ Blus(o)liyds + el + ).

Since {u”(t),t > 0} is exponentially ultimately bounded and it satisfies (2.1)

t 1. c|A _
[ Elwro)lids < ——'ﬂ—'(l—e el + el + INME + 4]
c|A N+ AM
< (B Dol + LM, (2.4)
Therefore,
T rt
M) = /0 (] Ellu*(s)lids)dt
o, THIAM
< .
< (+ SPTlelly + 50T (2.5)
Now for v € V,
Llvlll = 2<v, Av)> + tr(B(v)QB"(v))
SO

INA

ILllollEl < 2allelly + 1B z.mytr(Q)
2a,|[o][} + bitr(Q)]0IIY

llolly

IN

IN
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for some positive constant ¢’.
hence

LllolE = =lvlly.

Therefore, we have

Bl ()l = llelly = [ BLIuw()lyds

t
> ¢ [ Ellu*(s)|ds
0
hence,
’ t 2 2 2
¢ [ Blus(s)lids > llely - Bl
> el = M — ey
= (1—ce™)llplll - M
therefore,

Mo) = [ ([ Bl (s)lfds)at

1 T 2 -p0t
> S llellf(t - cedt - MT]

1 MT
= ;[T - ,%(1 — e )lelly - o
1 MT
> ;,-(T - %)”99”?1 -

this proves (i1) if T > 5.
Now we need the following lemma to continue:

Lemma 2.1.1 If f >0, and f € L'[0,T] for any T > 0, then

) T ftt-l-At f(S)dS T f‘t+At f(s)ds T
fim ) P em = ) S

Proof: We are going to use Fubini theorem to change the order of integrals:

T t+At f(S)dS
gt ST
b —a

(2.6)
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1 T t+At
- /0 ( /t F(s)ds)dt
- i[ / * [ ssrads + [ " [ f(s)de)ds + /TTW( /:At f(s)dt)ds]
= é[/t;ms ds+/ f(s)Atds+/ s)(T+At—s)ds]
< —Al—t[At % 15 ds+At/ £(s ds+At/ £(5)ds]

= /omf(s)ds+/m ds+/ f(s

the first and the third term go to zero as At — 0, so

t+At
lim ____f(s)ds

At—0Jo At

dt < /OT F(t)dt.

the other direction of the inequality follows from Fatou’s lemma easily. This proves

the lemma.

Let’s now suppose that A(y) satisfies (1.3). To prove the converse of Theorem

2.1, it remains to prove (iiz). Observe
T [t
¥ - u®(r) 21,9
ENw? () = E [ [ B0 (s))1} () dsdt
But by the Markov property of the solution of (1.1), this equals
T [t v
[ [ BB s) 1) dsdt
o Jo
where F* = o{u¥(7),7 < r}. The uniqueness of the solution implies
E(|[u*" ()77 = E([lu’(s + r)ll} |F7).
Hence
EA@e(r) = [ ([ Bl +s)3dsyde = [ ([ Bllue(s) 3 ds)

Therefore,

LA) = (EAW(r)))l=o
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EA(u?(r)) — EA()

r—0 r
T (r+t @ 2 _rt @ 2
= iy [T B Glds — 5 Bl (o) de
r—0 o r
r+t @ 2 _fr 7] 2
. Ellu*(s)llyds — 5 Ellu(s)llfds ,
r—0 0 T
"‘H ¢ r
= lim Bl s)||vds lmz/ E||u®(s)||}ds
r—0Jo r 0r Jo
= L+1 (2.7)

From the above lemma and (2.4)

T r+t 7 2
I Bl ds

h= o 0 r
T
= [ Bl
c|A v+ [AM
< (G Dol + LR (2.8)

and since V — H is continuous, there exists a positive constant ag, such that ||v||%} <

ao||v]|? for all v € V, so
L<-— lim——/r E|[u®(s)||%ds

and by the continuity of the map s — E|[u®(s)||% we have I, < —alo||<p||},

therefore,

A
LA < (D + 2 = lelfy +

Let T > ao( + 1), then —%1 +1- Z.% < 0, then we get (i17)

WT (2.9)

Up to now, we have proved the following theorem:

Theorem 2.1.2 Consider the equation (1.1) satisfying (1.2),let the solution {u®(t),t >
0} of it be exponentially ultimately bounded in m. s. s.. Suppose

M) = [ ([ Blue(s)Ids)e

satisfies condition (1.3). Then A(p) satisfies the conditions in theorem 2.1, i.e., there

exist constants ¢;(> 0), co(> 0),¢c3(> 0), k1, k2 and ks, such that
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allell =k < Ale) < csllelly + ks. for Vo € H

and

LA(p) < —c2A(p) + k2. forVo e V

Remark 2.1.2 In addition, if s — E||u®(s)||% is continuous for Vo € V, then I, =
~T|lell%, using (2.8) and by the fact that ||v||} < ao||v||? for all v € V, we have

clA v+ |AIM
h < ao( L+ Dol + TE
therefore,
Al 1T A\M
ea) a4 Lo Dy 4 My g cv 2a0)
af o o a

IfT > ao(ﬁa'%l + 1), then %;;[ + 31— alo < 0 and use the fact ||v||%} < ao||v||} for all
v € V again, we also have

c|A| _1_
aﬁ a
Unfortunately, we do not know at this moment if A(p) = [ (J¢ E||u®(s)||?ds)dt

_ w

£a) < (G5 -

ellz + T forpeV

satisfies condition(1.3) or not. Now we will restrict our consideration to the following

linear SPDE:
u € M?*0,T;V)

\ du(t) = Aou(t)dt + Bou(t)dW (t) (2.11)
u(0) =

We suppose the linear operators Ao, By satisfy the same conditions as A, B in equation

(1.1) with the same constants and the same coercivity condition, that is:
2<v, Agv> + tr(BovQBjv) < A||v||3 — a|lv||¥ + 4. (2.12)
Denote the solution of (2.11) by {u§(t),t > 0} and let

T [t \
A0(<P)=/o (/0 llug(s)||ids)dt for some T.
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Theorem 2.1.3 If {uf(t),t > 0} is exponentially ultimately bounded in m. s. s.,
then Ao(yp) defined above satisfies condition (1.3).

Proof: Suppose {ug(t),t > 0} is exponentially ultimately bounded in m. s. s. and it

satisfies (2.1). From the computation of (2.5), we have

c|A v+ |AM
Moo < 5+ Ly + T 7
If lellf; = 1, then N A
c ¥+ 2
<
Mo(e) < (5 + Lhr 4 M

Since u(t) is linear in ¢, for any positive constant K, we have
k
up” (t) = kug(t)
Hence,
Ao(kp) = k*Ao(p)

Therefore, for any ¢ € H

clAl
lle |I of3

Let ¢ = (L + LT + ZLMT? then Ao(p) < ¢llpll} for Ve € H. And let

v+ [AIM

— )T+ —— %

— T el

Ao(#) = llellfAo(7— _[( +

T(p,%) = /0 " /0 " B<ul(s), ul(s)>vds)dt for o, € H

Then T is a bilinear form on H, and by using Schwartz inequality, we get

T (,%)| = |/T /tE<u§s uy(s)>vds)dt|
< [ EIRSENHEE () )Eds)e
< [T Bl s} ([ Bl (o)1} d)bat
<

([ ([ Bl ds)aey / ([ Ellud ()l ds)ee)
Ao(ep )‘Ao(¢)

< llellm - ¥l
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Hence there exists a continuous linear operator C : H — H, such that

T(e,¥) = (Co,¥), (2.13)

and
ICllerm=  sup  |(Co,9)| < "
llella=1,ll¢lla=1
Since Ao(v) = T (p,¢) = (Cp,¢), s0
Ao(¢) = 2Cp and Ag(p) = 2C
Hence, Ao, A} and Aj are locally bounded on H , Ag and A} are continuous on H and

[Ao()] < Clem.mllelly, and

IAo(@)ll = 12Cella < 2||C||LamllellH

This proves (2), (¢2) of (1.3). And for trace class @, QA" = 2QC and trace(QC) being
constant is continuous, hence (::z) of (1.3) holds.

To prove (iv) of (1.3), we observe |T (¢, 9)| < "[l¢|lull¥lla and ||} < aollell}
for any ¢, € V. This implies |T (¢, ¢)| < "agl|¢||lv||¢|lv. Because T (¢, ) is bilinear

on V x V, there exists a continuous operator C : V — V, such that

T (o, %) = (Cp,¥) for all ¢, € V. (2.14)

Hence A'(p) = 2Cp € V for p € V and ¢ — Co is continuous on V — V. Since

1N (e)llv = 21Cellv < 2/Cllwmliellv < 21 Ly (lellv +1)

for any ¢ € V, therefore, we have proved A satisfies (v) of (1.3) and proved the

theorem.

Therefore, we have the following theorem:

Theorem 2.1.4 Consider the linear equation(2.11) satisfying (2.12). Its solution
{ug(t),t > 0} is ezponentially ultimately bounded in m. s. s. if and only if there

exists a function A : H — R satisfying
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allelly =k < A(p) < csllelly + ks, Yo € H

and

LoA(gO) S —C2A((P) + kg, VSD € | %
for some constants c¢;(> 0),c2(> 0),c3(> 0), k1, k2 and k3. where
! 1 ! »
LoA(p) = <A'(¢), Aol)> + 5tr(A"() Bo()Q Bs ())-

Furthermore, if we set To = ao(%’l’—;l +2) + 5, then Ao(p) = To( [ E||ug(s)||Zds)dt

will be such a function.

Now, we will consider the nonlinear case by linear approximation in case (2.3) does
not satisfies (1.3). where {u¥(t),t > 0} is the solution of the nonlinear equation (1.1).

We need the following lemma ([24], PP. 39):

Lemma 2.1.2 Suppose X is a Hilbert space, T € L(X,X) is a trace class operator.
Define 7(T) = tr(TT")%, then it has the following properties:

a) [tr(T)| < =(T),
b) 7(TS) < ||S||7(T) and 7(ST) < ||S||7(T) for all S € L(X, X).

Theorem 2.1.5 Suppose the linear equation (2.11) satisfies coercivity condition (2.12)
and its solution {uf(t),t > 0} is ezponentially ultimately bounded in m. s. s.. Let
{u®(t),t > 0} be the solution of the nonlinear equation (1.1). Furthermore, we sup-
pose A(v) — Agv € H for allve V. If forveV,

2|jvllxl| A(v) = Aovllw + T(B(v)QB"(v) — Bov@Bgv) < wllvllf; + & (2.15)

with w,k constants and

c

w < .
aoBl(L + (L + L+ g) + BRAML 4 By )2

(2.16)

Then {u®(t),t > 0} is ezponentially ultimately bounded in m. s. s.
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Proof: Let Ao(p) = [Fo(JE E||ug(s)||?ds)dt, where Ty = ao(ial%l +5)+ £, then Ao(¢p)
satisfies (1.3), and

eillely — k1 < Ao(9) < callllyy + ka. for Vip € H
for some constants ¢;(> 0),c3(> 0),k;,and k3 . It remains to show
LAo(p) < —cA(p) + ko for Vo € V
for constants cy(> 0), ky. Since A(p) — Aop € H, we have
LAo(p) = LoAo(p)
= <A(), Alp) — Anp> + 3tr(AY(2)(B(£)QB"(¢) — BopQB3p))
= (A4(e), Alp) ~ Ao) + 5tr(A(L)BIL)QB (%) — Bow@B3e))

with Ag(p) = 2Cy,and Ag(p) = 2C for ¢ € V, where C as defined in (2.13) is a

bounded positive operator from H to H, and

Al

MM
+cl ¥+ [l
af

2a

)To + To2

1
C < (=
NCllL(am) < (a

with T, defined as above. Hence,

LAo(¢) = LoAo(p) = 2(Cp, A(p) — Aop) + tr(C(B(p)QB*(¢) — BopQBg))

Using the above lemma, we obtain:

LAo(p) < LoAo(w) + 2)|CllummllellullAle) — Aoplla
+7(C(B(»)Q@B(#) — BopQBge))
< LoAo(e) + ICllLeaa 2llel | Alp) — Aoplln
+7(B(¢)Q@B" () — BopQBj))

From the computation of (2.9), when T = Tp,

MM
Loho(p) < —— ||z + 2 ANM 7,
005
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therefore
c v+ |AM
Lholy) < —=lolly + T 4 jCllmmeliolly + 0
c + [A|M
< (=5 4 elClummlloly + kIl + LM g,
0/ a

Since —agt w||C |1y < 0 when w satisfies (2.16), we get the required inequality.

This proves the theorem.

Corollary 2.1.2 Suppose the linear equation (2.11) satisfies coercivity condition (2.12)
and its solution {uf(t),t > 0} is ezponentially ultimately bounded in m. s. s.. Let
{u®(t),t > 0} be the solution of the nonlinear equation (1.1). Furthermore, we sup-
pose forv € V, A(v) — Aov € H, and

1A(v) = Aovll}; + 7(B(v)QB"(v) — BovQBgv) < K(1 + [Jv]l})
for some constant K > 0. If forv € V, as ||v||g — oo
1A(v) = Aovlls = o(llv]l#) and 7(B(v)QB"(v) — BovQBgv) = o([|v]|3)
then {u®(t),t > 0} is ezponentially ultimately bounded in m. s. s.

Proof: By theorem 2.5, we just need to show that (2.15) holds for some constants w

and k with w satisfying (2.16). Since for v € V, as ||v||g — oo.
IA(v) = Aovlly = o([|v]lx) and 7(B(v)QB*(v) — BovQBgv) = o([|vll%)
For any fixed w satisfying (2.16), there exists an R > 0, such that
2|lvll#llA(v) = Aovlla + T(B(v)QB*(v) — BovQBgv) < wllv|l
for Vv € V and ||v||g > R. For v € V but ||v||y £ R, by assumption, we have
2||vllnllA(v) — Aovlln + 7(B(v)QB*(v) — BovQBgv)
< lolif + 1 A(v) = Aovllf + 7(B(v)@B*(v) — BovQBgv))

llollf + K (1 + [lll%)
K + (K +1)R?

IN

IN
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Therefore, for Vv € V
2[ollullA(v) = Aovlla + 7(B(v)QB™(v) — Bov@QBgv) < wllvll}y + (K + 1)R* + K
This proves (2.15) with w satisfying (2.16), thus the assertion holds.

Theorem 2.1.6 Suppose the linear equation (2.11) satisfies coercivity condition (2.12)
and its solution {uf(t),t > 0} is ezxponentially ultimately bounded in m. s. s., fur-
thermore, we suppose t — E||uf(t)||? is continuous for all o € V. Let {u®(t),t > 0}
be the solution of the nonlinear equation (1.1). If forv € V,

2[lvllvllA(v) = Aovllv+ + T(B(v)Q@B*(v) — BovQBgv) < wllvlly, + & (2.17)

with w, k constants and

c
w<
(a0 + DA + LG + 55 + 5) + TG + 5 + 5)7)

(2.18)

then {u®(t),t > 0} is exponentially ultimately bounded in m. s. s.

Proof: The proof is similar to that of the above theorem. Let

Ao(p) = [To(f2 E||ug(s)||}ds)dt, where To = ao(fal%l + 1)+ 5. We just need to show
£A0(30) < —CQA((,O) + kz for V (NS | %4

for constants c(> 0), k,. Since

LAo(p) — LoAo(p) = <Ag(p), A(®) — Aop)> + %tr(Aﬁ(tp)(B(w)QB‘(‘P) — BopQBgp))

with Ah(¢) = 2Cep,and Al(e) = 2C for ¢ € V, where C and C as defined in (2.14)
and (2.13) are bounded positive operators from V to V and from H to H respectively,

and
Al
af

1 A
< (=4 22
||C|lL(H.H)_(a+ oB )To +

v+ [AIM
2a

7+ |AIM
2a

~ 1
1€z < eol(Z + —5)To + T3);

TS
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with T defined as above. Hence,

LAo(p) = Loho(p) = 2<Cop, A(p) — Aop)> + tr(C(B(9)QB*(¢) — BopQBjyp)).

Using lemma 2.2, we get:

LAo(p) < Loo(¢) + 2lIC Nl liellvIAlp) — Aopllv-
+7(C(B(p)@B™(¢) — BorQBgy))
LoAo(#) + 2/ICllvm e llv I Ap) — Aopl
HIClle(rmmr(B(p)QB™(¢) — BowQ Bgep)
LoAo() + (ICllwwy + IC |uem)@lellvIAle) = Aopllv-
+7(B(p)QB"(¢) — BowQBge)).

IN

Ve

IN

Since t — E||ug(t)]|? is continuous for all ¢ € V, from the computation of (2.10),
when T =Ty,

¥+ [AIM

c
LoAo(p) < —B”‘P“%/ + To,

therefore

v+ [AM

C ~
LAo(p) < —Ellvllff + To + (ICllLvivy + ICILam)@llelly, + k)

c N
< (=5 +wlClliyy + IClmmDliely

. + MM
Ry + Il + T2,

Since —5 +w(||Cllevvy + IC]lLem.my) < 0 when w satisfies (2.18), we get the required

inequality. This proves the theorem.

Corollary 2.1.3 Suppose the linear equation (2.11) satisfies coercivity condition (2.12)
and its solution {uf(t),t > 0} is ezponentially ultimately bounded in m. s. s., fur-
thermore, we suppose t — E||u(t)||} is continuous for all p € V. Let {u®(t),t > 0}

be the solution of the nonlinear equation (1.1). If forv € V, as ||v||lv — oo
[ A(v) = Aovllv+ = o(|lvllv) and T(B(v)QB"(v) — BovQBgv) = o(|[v]l})

then {u®(t),t > 0} is exponentially ultimately bounded in m. s. s.
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Proof: By theorem 2.6, we just need to show (2.17) holds for some constants w, k

with w satisfying (2.18). Since for v € V, as ||v|]|v — oo,
IA(v) = Aovllv+ = o(|[v]lv) and 7(B(v)QB*(v) — BovQBgv) = o(||v]},)
For any fixed w satisfying (2.18), there exists an R > 0, such that
2|lollvllA(v) = Aovllve + 7(B(v)QB*(v) — BovQBgv) < wllvlly,
for all ||v]|lv > R. By the assumption,
[A(@)llv+,  [[Aov|lve < ailfv]lv and
1 Bo)llowe.rys 1 BovllLire.mry < ballvllv,
thus for v € V and ||v||v < R,
2|vllv[|A(v) — Aovllve + 7(B(v)QB"(v) — BovQ@Bgv)
< 2pllv([A()llve + llAov]lv+) + 7(B(v)QB*(v)) + 7(BovQ Bgv))
< day|lv|l} + “B(U)H%,(K,H)T(Q) + ||Bov||%(1\',H)T(Q)
< dai|lolly + 2637(Q)llvll

< (day + 2617(Q))ll0IY
< (day + 2617(Q)) R?

Therefore, for Vv € V
2ollvIIA(v) — Agvllv- + 7(B()@QB"(v) — Bw@Bgv) < wilvll} + (41 + 262r(Q)) R?
This proves (2.17) with w satisfying (2.18), thus the assertion holds.
Example 2.1.1 Consider the following stochastic evolution equation:
du(t) = Aou(t)dt + F(u(t))dt + B(u(t))dW, (2.19)

with initial condition
u(0)=p€eH

Suppose Ao, F and B satisfy the following conditions:
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(i) Ag:V — V* is coercive so that there ezist constants a > 0 and X, for Vv € V,
2<v, Agw> < Alolll — allvlly
(it) F:H — H and B: H — L(K, H) satisfy: forv € H.
IF@)IE + I B Lm < K1+ [IvllE)
(iii) For u,v € H,
I1F(u) = F(o)l} + tr((B(u) = B(v))Q(B*(v) — B*(v))) < Allu — vl

If the solution {uo(t),t > 0} of du(t) = Aou(t)dt is exponentially stable( or even

ezponentially ultimately bounded), and as ||v||g — oo

IE(@)lla = olllvllu), |1 B()l|ow.my = ol[vlln)-

then the solution {u(t),t > 0} of (2.19) is ezponentially ultimately bounded in m. s.

s.
Proof: Let A(v) = Aov + F(v) for v € V. Since F(v) € H,

2<v, A(v)> + tr(B(v)@B*(v))

= 2<v, Agv> + 2<v, F(v)> + tr(B(v)@QB*(v))

= 2<v, Agv> + 2(v, F(v)) + tr(B(v)@Q@B*(v))

< Mol = ellvlly + 2llvllg | F ()l + | Bo)l| Lk mtr(Q)

< Nollf = ellolly, +
for some constants A’ and <, hence equation (2.19) is coercive. Under additional
assumptions (it), (i1), the strong solution {u(t),t > 0} of (2.19) exists ([21], Th 3.1).

By assumption (2)

IF@)E+7(B@)QB(v)) < IF©)k+ I1B)LkmT(@)
< (T+7(@)KQ+olE)
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and since

IF (@)l = o(l[vlla), T(B(v)QB*(v)) < I B(0) Lk, 1y7(@) = o(llvllF)
as ||v]|g — oo, the assertion follows from corollary 2.2.

Remark 2.1.3 the above ezample extends to infinite dimensions the corresponding

results in Zakai [29] and Miyahara [18]. As an application, we derive the following.

Example 2.1.2 Stochastic heat equation. Let S be the unit circle and W(-,-) a

Brownian sheet on [0,00) x S'. We consider the following stochastic heat equation:

aX(t) . PX(t) *w
5 (€)= a6 —aX(O(O) + [XOE) +HX OO g0 (2:20)

with initial condition

X(0)() = =(-) € L*(S),

where o is a constant and f,b are real-valued functions.
Let
52
H = L2(Sl), V= WI'Z(SI), Ao(])) = (8—62 - a):z:,

and F and B given for £ € S! and z,y € L?(S!) are defined by

F(@)(6) = £(z(6), B(@)ls)(€) = H=(€)u(6)
Let

lalln = ([, o*de)f  forceH

lelly = ([, + (Gt forzeV.
Then

2 < 2, Aoz >= —2||z||}; + (=20 + 2)l2|lfy < —2llzllf + (—2a + 2) ||z} = —2al|z]lk-
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Therefore, by Theorem 2.1.1 and Remark 2.1.1 the solution of dz(t) = Apz(t)dt is
exponentially stable if @ > 0. furthermore, if, in addition we assume f and b are both
Lipschitz continuous and bounded, then from Example 2.1.1, the solution of (2.20) is

exponentially ultimately bounded in m. s. s..

Example 2.1.3 Consider the following SPDE:

,0%u

92 +ﬂ +7“+g( ))dt+(0121£+02u)dW(t)

dyu(t,z) = (a® e

with initial condition
u(0,z) = ¢(z) € L*(—00,00) (L' (—00,00),

where W (t) is a one-dimensional standard Brownian Motion.

Let
H = L*(-oo, oo) V = Hy(—00,0)
(92 Ou
A(u) = a’ o 2+B +'yu+g B(u)=ala—x+agu

lullg = (/ u2d1)2 forue H
e Ou 1
_ 2, (YU, 1
lully = ([ @+ (Gt forueV
Suppose g(z) € L*(—o0,00) N L' (—00,0). For v € V.
2<v, A(v )>+tr(BvQB" )
—2/ +ﬂ +7v+gdz+/ (al +agv)2da:
= (202 +o¥)||vuv +@y+ol+2 = oDl +2 [ (v,9)ds
1
< (=2a" + a))olly + (27 + 07 +20° — o + )lollh + gl
for Ve > 0. Similarly for u,v € V,

2<u — v, A(u) — A(v)> + tr(B(u — v)@B*(u — v))
= (=2a" + o})llu = vll}, + (27 + 0 + 20 — o) |lu - vl
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By ([21], Th. 3.1), if —2a? + ¢ < 0, there exists a unique strong solution
u?(t) € L*(Q,C(0,T; H)) () M*(0,T : V).

Now we want to find its Lyapunov function explicitly. Taking Fourier transform of

the SPDE:
dei(t, ) = (—a2M%i(t,A) +iMBd + it ) + §(N))dt
= (=a®X +iAG+7)u(t,\) +g(N))dt

F(io ) + o2)di(t, \)dW (2)

Now for fixed A, let

a = -2 4+i\3+7n
b = g(X)
c = A+ o0,

By the result in the appendix,
_ . bb + b3(A)(a + @ + cc) e
2 — 2 (a+a+cc)t
Blat ) = (BRI + 2Re(- 2 et e

B(aB(\) +5) oy ope
a(@ + cc) )+ 2Re(

—2Re( )

a(a + @+ cc)
By the Plancheral theorem, with H = L?(—o00, 00)

llu?(t, I = a2, )

Hence

Elu*()lf;, = Ela@ly =E [ la(t, )P

/°° E|a(t, A)[2d)

Ou®(t)
Oz

Bl @I} = Bl ()l + Bl =21 = [ (1+ X)Ela(t, )
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For a suitable T > 0,
T jt
= ¥ 2
A(p) A /OEllu (s)llvdsdt
T rt p4o00
_ 2\ (A 2
_ /O /0 /_w (14 A2)E|a(t, \)|*d)dsdt

[7awn [ [ i, aPdsaray

e o]

The above computation of the Lyapunov function is very complicated, but if we use
Corollary 2.3, we just need to compute the Lyapunov function of the linear SPDE,

which is much simpler. let {ug(t),¢ > 0} be the solution of

5?
diu(t, ) = (aza—; + 5% + yu)dt + (alg—:— + ou)dW(t)

then
diuo(t, A) = atip(t, A)dt + clig(t, A)dW (t)

a, c are defined as above. We can solve 4y(¢, A) explicitly:
Uo(t, A) = uo(0, A)e“‘—%62f+cw(t) — @(A)ea!—%czt+cW(t)
Elo(t, M) = [B(3)Pele+7+
It is easy to see

+00 o
t= BN} = [ (1) [p) ey

is continuous for Vy € V, and

|A(v) = Ao(v)llv- = llg]
7(B(v)@B*(v) — Bov@QBgv) = 0

ve = o[ollv) as flvflv = +oo

since B is linear. Therefore if {ug(t),t > 0} is exponentially ultimately bounded in m.
s. s., the Lyapunov function Ag(¢) of the linear system is also a Lyapunov function

of the nonlinear system , and for a suitable 7' > 0,

M) = [T 4N /OT /otElao(t,A)Pdsdtd/\

—00
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I~ AD)[B(N)? el(-207+01)X+2v+03}T
: -
[-oo( + )l‘P( )I ({(_202_'_0-%),\2-{-2‘7‘*‘0'%}2
(—202 +o})\2+ 2y +0F  {(—207 + 0})M + 27 + o3}

)dX

Therefore the solution of the nonlinear system SPDE is also exponentially ultimately

bounded in m. s. s..

Remark 2.1.4 From the above computation we see, if we replace E||u®(s)||? by

E||lu?(s)||4 in Ao(y), then the leading term of Ao(ip) is

|G(A)]?
T / ¢ dA.

a?—03)A? - 2y — 03

this does not satisfy the first inequality of (ii) of theorem 2.1.1.

2.2 Ultimate Boundedness and Invariant Measures
In the previous section, we considered ultimate boundedness:
limsup E||u®(t)||} < M for Vo € H (2.21)
t—+4o00

for the solution of (1.1) and gave a sufficient condition for (2.21) in terms of a Lya-
punov function in Corollary 2.1.1. In this section will study the existence of invariant
measures for {u(¢)} under ultimate boundedness. First we will see the result in
H=R".

Let Ir(z) denote the indicator function of the set{z € H,||z||z > R}, with R > 0,
we have the following result, see ([13], PP 72):

Theorem 2.2.1 If H = R", and a Markovian semigroup (P;) is Feller, then an

invariant measure u for (P,) ezists if and only if for some element z € H,

. e e
it [ o=
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the key in the proof of the sufficient condition of this theorem is that {z €
H,|z|lg £ R} is compact when H = R", but this fails to hold when H is a Hilbert
space. But if
Vo H

is compact, then {z : ||z|]|v < R} is compact in H, therefore, we can have the following

counterpart result in Hilbert spaces as in R".

Theorem 2.2.2 Let Ip(z) denote the indicator function of the set {z € H,||z||v >
R}, with R > 0. Suppose V — H is compact and a Markovian semigroup (P;) is
Feller. Then a sufficient condition for an invariant measure u for (P,) exists is there

exists some element p € H, such that

lim llmmf— / PIr(¢)dt = 0. (2.22)

R—+4oco T—4c0 T

On the other hand, if there ezists an invariant measure p for (P;) with support in V,

then (2.22) is also necessary.

For equation (1.1), the semigroup

Pf(x) = [ f@)plt,z,v)dy

is Markovian and Feller, therefore, we can apply the above theorem to the solutions

of (1.1) and get:

Theorem 2.2.3 Suppose V — H is compact. Then a sufficient condition for an
invariant measure pu for the solutions of (1.1) exists is there exists some element
¢ € H, such that

T
lim liminf = / P{|lu*(t)|lv > R}dt = 0. (2.23)
T Jo

R—+400 T—+o0

On the other hand, if there exists an invariant measure p for the solutions of (1.1)

with support in V, then (2.23) is also necessary.
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Now if we use the coercivity condition, we can get the following sufficient condition

for the existence of invariant measures of the solutions of (1.1):

Theorem 2.2.4 Suppose V — H is compact, and the solution {u(t),t > 0} of (1.1)
under coercivity condition (1.2) is ultimately bounded (in || - ||g norm ). Then there

exists an invariant measure u for {u(t),t > 0}

Proof: Applying Ito’s formula (1.4) to ||¢||%, taking expectation and applying coer-
civity condition (1.2), we get

t
Bl — Il = [ ELIue(s)lhds

A]’ ElJu®(s)|[%ds — a/' E|lu?(s)|[ds + ¢
0 H 0 v

IN

hence
t @ 2 1 ¢ @ 2 2
[ Bl (s)lfpds < =1 [ Ellus(s) yds + el + 1),
0 « 0

therefore,
l/T P{|lu*(t)|lv > R}dt
T Jo
1 (T EJu?@)ll}
<o [ 2D g,
SIS
1 AT 2 el
< ¢ .
< —= (o [ Bl @)ldt + 25 + )

Since we assume {u¥(t),t > 0} is ultimately bounded, for fixed ¢o, there exist two

constants Ty and M, such that
Elu® ()|} < M for t > Ty
Therefore,

oo 1T o
erfwlil‘rglgf A P{Jlu*(t)|lv > R}dt

IAI 1 ®Yo 2
<R£T00111'T+1-g>fa_R2T E||u ()| dt

L B ¥o %o 2
< Jim tmint L[ Bl @lde+ [ Bl (@)l

—_— ¥o
< Jim tmint BE2( Bl Ol + M(T - T)

=0
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Therefore the assertion of the theorem follows.

For the application of the above theorem, let us see the following example.

Example 2.2.1 (Stochastic Navier-Stokes Equation [26]) Let D C R? be a bounded

domain with smooth boundary 0D. Consider the equation:

{ __(_)au.az,m +TL 1”]3_;; = 12t 4 v¥ia ar 2 to W‘( )

p Oz,

2 % 9, zeD,i=12 v>0

=1 9z,
Let C° = {v € [CP(D))? : V-v =0} (V. is gradient) and H the closure of C$° in
[L3AD))?, V = {v € [HY(D)])?: V-v = 0}. It is known [26] that

[L¥D)? = H® H*
Where H* is the orthogonal complement of H characterized by
H* = {v=V(p), forsome pe H'(D)}
Denote by II orthogonal projection from [L?(D)]? to H* and define for v € C®,
B(v) = vIlAv — TI[(v - V)]

Then B can be extended as a continuous operator on V to V*,;and V C H C V* is
a Gelfand Triplet with V — H compact. The equation can be recast as a stochastic

evolution equation in the form:
du(t) = B(u(t))dt + cdW(t)
u(0) = ¢, EeV a.e.
where W(t) is a H-valued Q-Brownian Motion. We observe ([26],PP. 347) that the

above equation has an unique strong solution {uf(t),t > 0} satisfying:

t)

T
I}dt < E|l¢|lF + Str(Q)

Bl +vE [ 312 ;

1=1

Hence using the fact that ||ué(¢)||v is equivalent to (32, ||6—;i-('9||§,)% , we get

llmlnf / (lut(®))|3dt < 2—”'(@)
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where c is a constant. Using Chebychev’s inequality we get

1T
Jim llﬁgfil P(lé(t)lv > R)dt =0

By the above remarks we get that invariant measure exists and the support of it is

inV.

The idea used in the above example is the relationship between ultimate bound-
edness of {u¥(¢)} in H—norm and boundedness of %foT E(||u®(t)||%dt in addition to

the compactness of embedding of V «— H.

Remark 2.2.1 As a consequence we easily get a result on the ezistence of the in-
variant measure of the stochastic heat equation ([20], [25]). As we see in Ezample
2.2, the solution of the stochastic heat equation is ultimately bounded in m. s. s., and
since V — H is compact by Sobolev embedding theorem, the existence of a invariant

measure follows.
Example 2.2.2 We consider the equation of the form:

du(t) = —Au(t)dt + F(u(t))dt + B(u(t))dW(t), u(0)=¢p € H,
where F, B satisfy the conditions in Example 2.1.1.

The above model with A = —A occurs in the work of Funaki [9] on the random
motion of string problem. Funaki gave an explicit form of the invariant measure
in the case B = 1. However since A is coercive [14], we get that the solution is
ultimately bounded in m. s. s.. In view of the fact that A has pure point spectrum
with eigenvalues A, ~ —k?, we get by [12] that it has an invariant measure.

Furthermore, we get conditions on the finiteness of the second moment of invariant

measures as in the following theorem.

Theorem 2.2.5 Suppose V «— H is compact, and the solution {u(t),t > 0} of (1.1)

under coercivity condition (1.2) is ultimately bounded (in || - ||g norm ). Then any
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invariant measure p of {u(t),t > 0} satisfies

[, el ude) < oo

Proof: Let f(z) = ||z||}, and fu(z) = X[o,n)(f(x)), where x is a characteristic function.
We note that f,(z) € L'(V,u), By the use of Ergodic theorem for Markov process
with invariant measure([28],PP. 388), there exists the limit

lim —/ P, f.(z)dt = fi (=) (n—a.e.)

T—too T

and
Euf;: = Eufm

where E, f, = [y fo(z)p(dz).

From the assumption of ultimate boundedness of {u®(t),t > 0}, there exists a

positive constant M > 0, such that
limsup E||u(t)||% < M for Vz € H.
t—4o00

By the same argument as in the above theorem, we have

imsup 1 [* B0l de < timsup 25 [ Bl o + 1R 1) < M2
hence,
1 T
falz) = TL'TOOT/ P fu(z dt(l}nlf;pT A P f(z)dt

. 1 - M|\
= llmsupT— A E||u @)% dt < olz |

T—+00

therefore, the fact that f,(z) T f(z) implies

M|
Buf = lim Buf = lim B,f; < 22

This proves the assertion.

This improves the result in [3] on the parabolic Ito equation and gives more
information about the invariant measure studied in ([25], [20]). The existence of
invariant measure for parabolic Ito equation can be proved using Corollary 2.1.1 with

A(v) = ||¢l|% and Theorem 2.2.4.



Chapter 3

Weak (Weakly Positive)

Recurrence of the Strong Solution

In this chapter, we will study the weak recurrence and weakly positive recurrence
properties to compact sets for the strong solution of the stochastic evolution equation
(1.1) under the the condition of ultimate boundedness. Using the results in Chapter

2, we study the problem in terms of Lyapunov functions.

3.1 Ultimate Boundedness and Weak Recurrence

In this section, we study weak (positive) recurrence of the solution of (1.1) to a
compact set under the condition that it is (exponentially) ultimately bounded in m.

S. S..

Definition 3.1.1 A stochastic process X(t) defined on H is weakly recurrent to a

compact set if there exists a compact set C, such that
P {w: X(t) € C for somet >0} =1 forVz € H.

where P, stands for the conditional probability under the initial condition X(0) = «,

the set C is said to be a recurrent region.

42
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Remark 3.1.1 Throughout this paper, weakly (positive) recurrent means weakly (pos-

itive) recurrent to a compact set, instead of to a bounded set as in [18, 12].

Theorem 3.1.1 Suppose V — H is compact, and the solution {u(t),t > 0} of (1.1)
under coercivity condition (1.2) is ultimately bounded in m. s. s.. Then {u(t),t > 0}

is weakly recurrent.
This theorem is proved through a series of lemmas

Lemma 3.1.1 Let X(t) be a strong Markov process on H, if there ezist a positive
Borel measurable function p(z) defined on H, a compact set C' and a positive constant
6, such that

PAw: X(p(z)) €C}>26>0 for Vze H. (3.1)

then the process X(t) is weakly recurrent and C is a recurrent region.
Proof: For fixed z € H, let

n = p(z),

O ={w:X(n) ¢C},
T2 = 11+ p(X(11)),

U = {w: X(n) ¢ C},
73 = 12 + p(X(72)),
U3 = {w: X(r5) ¢ C},

"8 .

Do = [ | Q.

..
1
—

Since {w : X(t,w) ¢ C for any t > 0} C Q, it is sufficient to show P;(f0) = 0. By
the assumption,

Pz(Ql)Sl—6<l»
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and since p : H — R is Borel measurable, 7; is a stopping time for each i, by the use

of strong Markov property, we have

P( Q) = E*(E*(xayx0,|Fr))
= E*(xa,E*(xa,|%n))
= E%(xa, E*(xa,|1X(11)))
= E%(xa,Px(m){w: X(p(X(n1))) ¢ C}).

By assumption (3.1),

Px(my{w : X(p(X(n1))) ¢ C} <134,

hence
P.( ﬂQz) <(1- )%

In the same manner,
PN <1=-68)"—-0 as n — oo.
This proves P;(€o) = 0 and X(t) is weakly recurrent.

Lemma 3.1.2 Let X(t) be a continuous strong Markov process on H, if there ezist
a positive Borel measurable function y(z) defined on H, a closed set C and a positive
constant §, such that
v(z)+1
[(m P{w: X(t)€C} 26> 0 forVz € H. (3.2)

then there erists a positive Borel measurable function p(z) defined on H, such that
v(z) < p(z) <7y(z)+1, and

P{w: X(p(z)) €C}>6>0. for Vze€ H.



45

Proof: By (3.2), j:((x)“ P{w : X(t) € C} > 8 > 0 for Vz € H, hence there exists

z)

t: € [y(z),v(x) + 1), such that
Pw:X(t:) € C} >6.

Define
p(z) = inf{t € [y(z),y(z) + 1), P-{w : X(t) € C} > §}.
Since the characteristic function of a closed set is upper semicontinuous and ¢t — X(t)
is continuous, t — P.{w : X(t) € C} is upper semicontinuous for each fixed z € H,
therefore,
Pr{w: X(p(z)) € C} 2 6.
Now what we need to show is ¢ — p,(z) is Borel measurable.

For each t > 0, define B,(H) = B(H). For any fixed T > 0, since X(t) is a
Markov process, the map (¢t,z) — P.{w : X(t) € C} of [0,T] x H into (R',R!)
is B([0,T]) x B(H) measurable, hence it is B([0,7]) x Br(H) measurable, therefore
(t,z) = Po{w: X(t) € C} is a progressive process w. r. t. {B:(H)}:>0, by ([7], Cor.

1.6.12), £ — pn(z) is Borel measurable. This proves the lemma

Let D, = {z : ||z||y < r} for any real number r and let D, be the closure of D, in

(H,||-||), D? the interior of D, in (H, ||-||i), and D¢ = H — D,, then (D, )¢ = (D?)°.

Lemma 3.1.3 Suppose the solution {u(t),t > 0} of (1.1) under coercivity condition
(1.2) is ultimately bounded in m. s. s., i.e., (2.21) holds. Let My = M +1, then there

ezxists a positive Borel measurable function p(p) defined on H, such that
c\o 1
Pyl s u(p(p) € (DS} < —5(INIM: + My +) (33)
for any positive number r and any ¢ € H.

Proof: Since limsup E*||u(t)||} < M < M, for Vy € H, hence for each ¢ € H, there
t—o0

exists a positive number T, such that

E?||lu(t)||} < M, for t>T,.
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Let
() = inf{t : E®llu(s)||ly < My forall s>t}

Since t — E“||u(s)||% is continuous, E*||u(y(®))||4 < M, and

{¢: E||u(s)|l} < My for alls > t}

= (1 {e: E®lus)llE < M}

s>t,3€Q

{p:7(p) <t}

and since ¢ — E¥||lu(s)||% is Borel measurable, {¢ : v(¢) < t} € B(H), therefore,
¢ — ¥(¢) is Borel measurable.
Now we apply Ito’s formula (1.4) to ||z]|%, take expectation and make the use of

coercivity condition (1.2), we get

E?llu(v(e) + DIl — E¢llu(y()E

v(p)+1 2
= [ BLllu(s)|ds
v(¥)

v(0)+1 5 v(e)+1 )
Mo Bl s — e [ Eelu(s)[fds +
2107

7(¥)

IN

hence

¥(p)+1 v ) 1 (o) +1 0 v
[ Elueids < S  Elus)lds + B uCr(@)I + 1)

'—‘Q

< =(1AIMy + My + [7])

R

Using Chebychev’s inequality we get

(o3+ v(e)+1 E®||u(t
/’7 @ Po{w : ||u(t)|lv > r}dt < /( | ”’:g )"th
(e

7(¥)
1
< —
< —5 (MM + My + []),

hence

~¥(w)+1 oo 1
L777 Potw u(t) € (D)t < —5(NM; + Ms + 1)),

(v)

therefore

v(0)+1 — 1
/ P {w:u(t) € D,}dt > 1 — —(]\IMy + My + |)).
() ar



47

By Lemma 2.2, there exists a positive Borel measurable function p(y) defined on H,

such that
Y(p) < p(p) <v(p) +1, and
—_ 1
Po{w:u(p(p)) € D,} >1— F(I/\IMI + M; +|y]) for Ve € H. (3.4)
Therefore

c\o 1
Pofw : ulplp) € (DS} < —5(IAM: + My + )
for any positive number r and any ¢ € H.

Proof of Theorem 3.1.1: From (3.4), we can choose r large enough such that:

Po{w:u(p(¢)) € D;} > - for Ve H.

1
2
Since V — H is compact, D, is a compact set in H, by Lemma 3.1.1, u(t) is weakly

recurrent to D,.

now we consider weakly positive recurrence of the solution of (1.1) to a compact

set under the condition that it is exponentially ultimate boundedness in m. s. s..

Definition 3.1.2 A stochastic process X (t) defined on H is weakly positive recurrent
to a compact set if there ezists a compact set C, such that X(t) is weakly recurrent

to C and the first hitting time to C has finite ezpectation for any z = X(0) € H.

Theorem 3.1.2 Suppose V — H is compact, and the solution {u(t),t > 0} of (1.1)
under coercivity condition (1.2) is exponentially ultimately bounded in m. s. s.. Then

{u(t),t > 0} is weakly positive recurrent.

Proof: Since the solution {u(t),t > 0} of (1.1) is exponentially ultimately bounded
in m. s. s., we suppose (2.1) is satisfied. Let M; = M + 1, then it is easy to see if

t > Lin(1 + c||o|%), then E®||u(t)|% < Mi. Let

1
= s

w(l) = %ln(l + cl?),
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then W () satisfies:
E¥llu(®)y < My for Vg € H and t > W(]lglln),

and

> — 7 <™ for any N > 0. (3.5)

Let

) 1
K = =M+ M+ (1 + o)
E() = D-K
E; = Dusyk — Dik = Duynk [ )(Dig)° for 1>1,
W) = W(Kao)+ 1 (3.6)

where aq is the constant such that |[z||g < ao||z||v for Vz € V. As in the proof of

Lemma 2.3, there exists a Borel measurable function p(y) defined on H, such that

Wiieln) < plp) < Wllglla) +1  and
Pofwu(pl9) € (D)} € Zss(AIMy + My + 1)
1
= m for VQOEH. (37)

Let

n = p(z),

z1(w) = u(m,w),

M ={w: z1(w) € Eo},
72 =71 + p(z1(w)),
z2(w) = u(r2,w),

0y = {w: z2(w) ¢ Eo},
3 = T2 + p(z2(w)),

r3(w) = u(m,w),
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N3 = {w: z3(w) ¢ Eo},

oo =] Q.

D8

.
I
—-

By the proof of Lemma 3.1.1, when ¢ > 0, we know

P‘p(ﬂ N,)=0
1=1
therefore,
Q=% =J{w:zi(w) € Eo} a.e. (Pyp).
1=0 1=0

Let

i-1 i-1

A= X-U% = 4NN
1=0 1=0
= {w : xl(w) ¢ EO" ot »Ii—l(w) ¢ EQ,(IJ.‘(W) € EO}

then

Q=> A a.e. (Py,).

1=0

For : > 2, let’s further divide A; as

A; = Z At’.ln.-".l.—1

e dioi 21

where Ay, ..i_, = {w:z1(w) € Eyy, -+ ,zim1 € Ei,_,,2i(w) € Ep}.
Let 7(w) be the first hitting time to Fy, then for w € A; = Qf,

7(w) < plp) < W(llolln) +1,

for w € Ay iy

T(w) £ 7i(w) = Tica(w) + p(Tiza(w)).

Since when w € Ay, .. ii_ys

zi-1(w) € Ei,_, € Dy,_, +1)k>
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hence
[zic1 (W)l < aollzii(w)llv < ao(li-1 + 1)K

then

p(zica(w)) S W(ll(zica(W)lla) +1 < W(ao(lics + DK) +1 = W(liog +1)

then
T(w) < 7icy + W(lici + 1),

Therefore by induction, for w € A; .1,
(W) S W(llella) + 1+ Wi+ 1) +--- + W(liza + 1).
On the other hand, by the strong Markov property

Po(Aiiyiiy)

Po{w : z1(w) € Eiy, -+, zima(w) € By, wi(w) € Eo}
Pw:zy(w) € Eyyy- -+ 1 (w) € By}

P({w: 21(w) € Eyyyo -+, 2ina(w) € Ei Ly} (Ww t 2ima(w) € By, })

E“’{X{w:xl(w)eg,l,...,1-,-_2(w)eE,i_2} : Pr.‘_z(w){w’ : u(p(a:g_z(w),w') € E’-’-l }}

IAIN

Since Ei,_, = Dq,_,+1yx N(D§_ k)°, by (3.7) we have

P e tu(p(zizz(w),w') € Ey_, }

Py _yw){w' s u(p(zi-2(w),w’) € (Dj_ k)°}
1
l?—l(l + €)? ’

IN

INA

hence

1
PSO(Aiyll""'Ii—l) < m : Pw{w : xl(w) € Elu tee ’mi—Q(w) € Eli—Z}’

by induction,
1 1
EP O

Po(Aipy,tiny) <
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and
P,(A;) < 1.
Therefore,
E?[r]
< X RlAuea Wl + 14 W/ 1) 44 Wiy + 1)
idy iz 21
1
< Wlelln) +1+Zﬂ_)z'(,—r)
Wilella) + 1+ W/(h+1) +---+ W/(lia +1)
2 Eop
I, 1._121 1 1—-1
1
= 1 —_— (W 1 —_—
(”‘P”H) +1+ g (1 Te 2(,_1){( (HSOHH) + )Ih"’EIZI l% - 'la‘2-l
: W'l +1
+(l — 1) Z —17.(.1.1—2)
Iy, di>1 1 i-1
> 1 ; . i
= W(lellw) +1+3 m{(W(N‘P”H) +1)A" + (i - 1)A'?B)
1=2
ad A - B & A :
— W 1(1 -1 =20,
Wl + D0+ L) ™)+ e a6 =)

where A= Y72, 7 and B = ¥, 5W’(l + 1) which is convergent by (3.5) and (3.6).
Hence we see if we choose € large enough, E¥[7] is finite. Since V — H is compact,

Ey is compact, the assertion of the theorem holds.

3.2 Weak Recurrence and Lyapunov Functions

In chapter 2, we studied the relationship of ultimate boundedness and Lyapunov
functions. Combining Theorem 2.1.5, 2.1.6 and the corollaries there and Theorem
3.1.1, 3.1.2 here, we immediately get the following results, these results give conditions

in terms of Lyapunov function for weak and weakly positive recurrence.

Theorem 3.2.1 Suppose V — H is compact. Let {u(t),t > 0} be the solution of
equation (1.1) satisfying coercivity condition (1.2). If there ezists a function A : H —
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R satisfying the following conditions:

(i) A satisfies (1.3),

(ii) allelly — ki < A(p) < asllellly + ks, for Vo € H,
(i1i) LA(p) < —c2A(p) + ks, for Vo €V,

where ¢1(> 0),c2(> 0),¢3(> 0), k1, k2 and ks are constants. Then {u(t),t > 0} is

weakly positive recurrent.

Theorem 3.2.2 Let A satisfy (1), (111) in Theorem 3.1 and

(it)” aillelty — ki < A(p) forVo € H

for some constants ¢;(> 0) and ky, then {u(t),t > 0} is weakly recurrent.

The weakly positive recurrence of the solution of the nonlinear equation (1.1) can also
be studied through its first order approximation. Let {ug(t),t > 0} be the solution
of the linear SPDE (2.11). We suppose that the linear operators Ag, By satisfy the

coercivity condition (2.12) and the other conditions posted there.

Theorem 3.2.3 Suppose V — H is compact and the solution {ug(t),t > 0} of the
linear equation (2.11) satisfying coercivity condition (2.12) is exponentially ultimately
bounded in m. s. s.. Let {u(t),t > 0} be the solution of the nonlinear equation (1.1).
Furthermore, we suppose A(v) — Agv € H for allve V. If forve V,

2llvllallA(v) = Aovllr + 7(B(v)QB™(v) — Bov@Bgv) < wllvlly + & (3.8)

with w, k constants and

c

w< - - . (3.9)
aof(3+ 553+ 55 + 5+ HEHG + 95 + 97

Then {u(t),t > 0} is weakly positive recurrent.
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Corollary 3.2.1 Suppose V — H is compact and the solution {uo(t),t > 0} of the
linear equation (2.11) satisfying coercivity condition (2.12) is exponentially ultimately
bounded in m. s. s.. Let {u(t),t > 0} be the solution of the nonlinear equation (1.1).
Furthermore, we suppose for v € V, A(v) — Agv € H, and

IA(v) = Aovl|f; + 7(B(v)QB*(v) — Bow@Bgv) < K(1 + [v]l%)
for some constant K > 0. If forv e V, as ||v||y = o0
IA(v) = Aovllw = o(|[v|lrr) and 7(B(v)QB*(v) — BovQBgv) = o(|[v][};)-
Then {u(t),t > 0} is weakly positive recurrent.

Theorem 3.2.4 Suppose V — H is compact and the solution {uo(t),t > 0} of the
linear equation (2.11) satisfying coercivity condition (2.12) is exponentially ultimately
bounded in m. s. s.. Furthermore, we suppose t — E||uo(t)||? is continuous for all

@ € V. Let {u(t),t > 0} be the solution of the nonlinear equation (1.1). If forv € V,

2||vllv]|A(v) = Agv|

v- + 7(B(v)QB"(v) - BwQBsv) < wlvll} +k  (3.10)

with w, k constants and

c

w< .
(a0 + DA+ TG+ +5) + TR (G + 55 +5)7

(3.11)

Then {u(t),t > 0} is weakly positive recurrent.

Corollary 3.2.2 Suppose V — H is compact and solution {uo(t),t > 0} of the
linear equation (2.11) satisfying coercivity condition (2.12) is ezponentially ultimately
bounded in m. s. s.. Furthermore, we suppose t — E||uo(t)||% is continuous for all
p € V. Let {u(t),t > 0} be the solution of the nonlinear equation (1.1). If forv € V,

as |lvllv — oo
IA(v) = Aovllv- = o(|lvllv) and 7(B(v)QB"(v) — Bow@QBgv) = o(||v|1})-

Then {u(t),t > 0} is weakly positive recurrent.
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3.3 Parabolic Ito Equations and Examples

Let D C R" be a bounded domain with smooth boundary @D, r be a positive integer.
Let
vV =W"}(D), H = W%(D).

By Sobolev imbedding theorem, V «— H is compact.

Let
o a°n
A - o e e y .
0($) |a|z<:2,.a (m)am;n axﬁ" (3 12)
where a = (a1, -+, 0y) is a multiindex and |a| = a1 + -+ - + ap.

Garding’s inequality ([22], Th. 7.2.2) says that if Ao is a strongly elliptic operator,

then it is coercive.

Example 3.3.1 Consider the parabolic Ito equation of the form:

du(t,z) = Aou(t,z)dt + f(u(t,z))dt + B(u(t,z))dW(t)
u(0,z) =p € H (3.13)

ulaD =0

where Ao, f and B satisfy the following conditions:
(i) Ao:V — V* is a strongly elliptic operator
(1) f: H— H and B: H — Ly(K, H) satisfy: forve H.
1F @ + I BNy < K1+ [lollE)
(iii) For u,v € H,

1£(w) = f)| + tr((B(u) = B(v))Q(B'(u) = B*(v))) < Allu — vl

If the solution of equation du(t,z) = Aou(t,z)dt is ezponentially ultimately bounded

inm. s. s., and as ||v]||g — o©

£ )la = o(llolla),  |B()lleekm = olllvlla),
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then the solution {u(t),t > 0} of (3.13) is ezponentially ultimately bounded in m. s.

s.(ezample 2.1.1), hence it is weakly positive recurrent.

Example 3.3.2 Consider the following 1-dimensional parabolic Ito equation:

du(t,z) = (a222?“ + 8% + yu + g(z))dt + (0122 + oqu)dW (1)
u(0,z) = ¢(z) € L3 D)N LY(D) (3.14)

ulap = 0
where D = [0,1] C R, W(t) is a I-dimensional standard Brownian Motion. Let
V = W¥(D), H = W¥(D).
Suppose g € L*(D)( L*(D). Take A(z) = ||z||% for z € H, for v € V,
LA(v) = 2<v,A(v)> + tr(BvQB"v)
0? 0 Ov

_ 207 L0 ov 2

= 2 matas 4 Bt 40+ [ (15 +ow)da

= (<207 +oDloll} + (27 + oF + 20 — D)ol +2 [ (v,9)de

1
S (=22° +a)lolly + (27 + 07 + 20" — of + €)llollE + gl

for Ve > 0. Hence if —2a% + 02 < 0, then the coercivity condition (1.2) satisfied.

Furthermore,

Ov 1
LA@) < (=20 + o)l -llE + (27 + o2 + O)llvlll + Zllglls

by Poincare Lemma, || 2¥||%, > 8]|v||%, thus,

1
LA(v) < (—16a” + 807 + 27 + o3 + €)|[vl[E + Zllall%,
Therefore if
—160% + 802 + 2y + 02 <0

then Theorem 3.2.1 says that the solution {u(t),t > 0} of (3.14) is weakly positive

recurrent.




Chapter 4

Stability and Ultimate
Boundedness of the Mild Solution

In this chapter we will study the stability, exponentially ultimate boundedness and
stability in probability for the the mild solution of the stochastic semilinear evolution
equation. The main technique is to construct an appropriate Lyapunov function.
Once this is done, we will exploit the methods developed in chapter 2 of this disser-

tation and those in [15] to obtain results for the mild solution.

4.1 Exponential Stability in the Mean Square Sense

The exponential stability in the mean square sense of the mild solution of (1.5) was
undertaken in a systematic manner in [10, 2, 6], and was continued in [15] for the
strong solution under coercivity condition. An example was given in [15] to show that
the usual Lyapunov function was not bounded below. In this section, we construct a
new Lyapunov function and show that the existence of such a Lyapunov function is
a necessary and sufficient condition for the mild solution of (1.5) to be exponentially
stable in the m. s. s.. Then we use this bounded below Lyapunov function to study

the problem of the stability in probability, we conclude that exponential stability in

56
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the m. s. s. implies stability in probability for the mild solution of the semilinear
evolution equation (1.5).
Let us assume that u?(t) is the mild solution of (1.5), we say it is exponentially

stable in the m. s. s. if there exist positive constants ¢, 3, such that
E||u?(t)||* < ce™PY|p||?>. forall p € Hand t > 0. (4.1)

The next theorem gives a sufficient condition for u¥(t) to be exponentially stable

in the m. s. s., it was proved in [11], we quote it here for the ease of reference.

Theorem 4.1.1 The mild solution u¥(t) of (1.5) is exponentially stable in the m. s.
s. if there exists a function C2(H) > A : H — R satisfying the following conditions:

(@) allel’ < M) < ellel?, (4.2)
(ii) LA(p) < —cA(p), (4.3)

for Yo € H, where ¢, ¢z, c3 are positive constants.

Proof: Apply Ito’s formula (1.7) to e®?*A(p) and u,(t) and take expectation, where
u,(t) is the strong solution of (1.8), then

e EAQuE(1)) — A@f(0)) = B [ e (ca + La)A(u(s))ds
By (i7),
c2aA(p) + LaA(p) £ —LA(p) + LaA(p)
= < A(¢),(R(n)—IF(p) > +%tr(A"(‘P)(R(n)B(<P)Q(R(n)3(<f>))' — B(¢)@B*(¢)))
therefore,
e EA(ug(t)) — A(u$(0))
E /0 (< A'(u?(s)), (R(n) — I)F(u¢(s)) >

+ %tr(A"(ui’(S))(R(n)B(u,’;(S))Q(R(n)B(uf(S)))' — B(ug(s))Q@B"(ur(s)))))ds.

IA
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Let n — oo, by the dominated convergence theorem and Theorem 1.5.3, we get
e EA(u®(1)) < A(w),
hence by(z), we have:
aElu?(t))? < EA(u®(t)) < €7 A(p) < cae™ ||

This proves the theorem.

Now we want to construct a Lyapunov function if the solution u®(t) of (1.5) is
exponentially stable in the m. s. s..

First, let us consider the following linear case. Suppose FF = 0 and B = By is

linear, Then equation (1.5) has the following form:

{ du = Audt + BoudW (1) )

u(0) = ¢.
We assume || Boz|| < d||z|| for Vz € H and the solution of this equation is u§(¢). The

infinitesimal generator £y corresponding to this equation is Lo A(p) =< A'(p), Ap >
+3tr(A"(¢) BopQ(Bop)*)-

Theorem 4.1.2 If the solution uj(t) of equation (4.4) is exponentially stable in the
m. s. s., then there ezits a function Ag € CZ(H) satisfying (4.2) and (4.8) with L
replaced by Lo.

Proof: Let
Molp) = [ Ellug(®)ldt + allell (4.5)

where a is a constant to be determined later. Since u§(t) is exponentially stable
in the m. s. s., [5° E||uf(¢)||’dt is well defined and there exists a symmetric and

nonnegative operator R € L(H) [6], such that

| Elug @t =< e, >
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and
Lo < Rp,p >= —|lo|.
Hence,
Ao(p) =< Rp,¢ > +allpl|®. (4.6)

It is obvious that Ag € CZ(H) and «a||¢||> < Ao(p) < (|| R||+a)|l¢||?, this proves (4.2).
To prove (4.3) with £ replaced byLy, we note that A is the infinitesimal generator of
a Co-semigroup S(t) satisfying ||S(t)|| < e**, there exists a constant )\, without loss

of generality, we assume it is positive, such that < ¢, Ap >< A||¢||? ([12]), hence we

have,
Lollell* = 2 < ¢, > +tr(BopQ(Bop)*) < (24 + d*tr(Q)) |l lI*. (4.7)
Hence,
Lol\o(‘ﬁ) = Lo< Rp, ¢ > +Ot£o||90||2
< —llel® + a2) + (@)l
< (=1+a(2) + d*tr(Q)))llell*. (4.8)

Therefore, if a is small enough, (4.3) holds with £ replaced byLy. This proves the

theorem.

Remark 4.1.1 In [10], Haussmann proved a stability theorem under conditions H, :
Jc > 0,7 > 0 such that ||S(t)|| < ce™* for ¥Vt > 0 and H, : || [;° S;A(I)Sdt|| < 1,
where < A(I)p, v >=tr(B(¢)QB*(¢)).

Deﬁné Ao(p) = [5° E||ud(t)||dt + alll||?, This is well defined because of H, and

H,. From our theorem, use Ao(p) as a Lyapunov function, the result follows.

For the nonlinear equation (1.5), to assure zero is a solution, we need to assume
F(0) = 0, B(0) = 0. If the solution u¥(t) is exponentially stable in the m. s. s., we

can still construct a Lyapunov as in (4.5):

M) = [ Ellur®)l*dt + allpl?
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But it may not be in C(H). If we assume it is in CZ(H), we claim that it satisfy
(4.2) and (4.3). Now, let us prove this claim.

Since u®(t) is exponentially stable in the m. s. s., we assume it satisfies(4.1), hence
Jo© Ellu®(t)||?dt < §llpl|? for all z € H, therefore al|p||* < Ao(p) < (5 +a)ll¢l|?, this
proves (4.2).

To prove (4.3), let

Ue) = [ Ellue(t)|d.
0
Observe
“(1) = E [ Bl O(s)]Plu(r))ds
But by the Markov property of the solution of (1.5), this equals
| EEQ )17 ds
where F¢ = o{u?(7),7 < r}. The uniqueness of the solution implies
E([lu*" O (s)I?1F?) = E(l[u®(s + r)|I*|F¥).
Hence
EV(u?(r)) = / Z Eju?(r + 5)||%ds = /  E|[u®(s)||*ds. (4.9)
0 r

By the continuity of t — E|ju®(?)||?, we get:
d

LYU(p) = —(EY(u?(r)))lr=o0
_ i PYEO(r) — ¥(e)
= tim—+ [ Bl (s)ds
= —llel®
Therefore,
LA(p) = LU(p)+ Ll

—liell* + a(2 < z, Az + F(¢) > +tr(B(9)Q(B(#))")
~llell® + 2ale]|* + a(2 < z, F() > +tr(B(£)Q(B(#))")-

INA
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Since we assume F'(0) = 0, B(0) = 0, using the Lipschitz condition (1.6), we get
LA(P) < —llell” + a(2X + 2d + d*tr(Q)) o]

Hence if a is small enough, A(p) satisfies (4.3). Therefore, we have proved the

following theorem:

Theorem 4.1.3 If the solution u¥(t) of (1.5) is exponentially stable in the m. s. s.,
furthermore, F(0) = 0,B(0) = 0, and ¥(p) = [5° E||u®(t)|*dt is in C3(H). Then
the function A(p) constructed above satisfies (4.2) and (4.3).

As in the case of strong solution, we also have difficulty to show ¥(yp) € CZ(H). We
thus turn to use the first order approximation to study the exponential stability in

the m. s. s. of the solution of the nonlinear equation (1.5).

Theorem 4.1.4 Suppose the solution uf(t) of the equation (4.4) is ezponentially
stable in the m. s. s., and it satisfies ({.1). Then the solution u¥(t) of (1.5) is

exponentially stable in the m. s. s. if

2llellll F (@)l + m(B(#)Q(B(#))” — BopQ(Bop)") < gIISOII2 (4.10)

Proof: Let Ao(¢) =< Ry, > +al|¢||? as defined in (4.6). Since u(t) satisfies (4.1),
||| < 5. Since Ao(p) € C}(H) and satisfies (4.2), if we can show that Ao(p) satisfies
(4.3), then by using Theorem 4.1.1, we are done. Since

LAo(p) — LoAo(e)

< Ky(0), F(p) > +5tr(A(e)(BO)QB())" ~ BowQ(Bog)"))
2<(R+a)z, F(p) > +ir((R+ a)(B(p)Q(B(¢))" — BopQ(Bop)"))
2Rl + @)l F(e)ll + (1] + 0)(B(#)QUB(¢))" ~ BopQ(Bog)")
(IRl + )l P+ 7(B)QB2)" ~ BopQ(Bog)).  (411)

IA I

here we used lemma 2.1.2. By (4.8) and the assumption (4.10), LAo(yp) satisfies (4.3)

if we choose a small enough. This proves the theorem.
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The following example shows that the usual Lyapunov function is not bounded

below.

Example 4.1.1 Consider the following SPDE:

62

diu(t,z) = (o? 9

+ ﬁ + yu)dt + oudW (t)
with initial condition

u(0,z) = ¢(z) € L*(—00,00)[ ) L' (—00,00).

where W(t) is a one-dimensional standard Brownian Motion.

Let
0%*u Ou
_ o2 _ 207U ou
H = L*(—o00,00), A(u) a az2+ﬂ6$+'yu,
Blu) = ou, lell = (f wido)h.

Now we compute E|[u®(t)||? explicitly. Taking Fourier transform of the SPDE:

diai(t,\) = (—a®A\2a(t,A) +iABa(t, A) + va(t, \))dt + oti(t, A)dW ()
= (=) 4 A3 + y)a(t, N)dt + oi(t, \)dW ().

Solving the equation we get for each fixed A:
E[a(t,A)]* = [$(A) P2 ¥+,
By Plancheral theorem, with H = L?(—o00, 00)

lu?(t, N? = [la(t, )11

we have

Bl = El@*@I*=E [ la(t,)PdA
— /oo |2 (- 2a7/\2+2'y+02)td/\
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If we assume 2y + 0% < 0, then we get
Ellu®(t)]]* < ||]%e®T+Y,

hence the solution of the SPDE is stable. But,

) 0o . 1
[ 2 _ 2
LB = [ 1800 sy

thus the usual Lyapunov function [*°  E||u®(t)||*dt is not bounded below.

4.2 Stability in Probability

Stability in probability is studied in [15] for the strong solution under coercivity
condition. The key in [15] is the construction of a bounded below Lyapunov function.
In this chapter, we will use the bounded below Lyapunov function constructed in the
previous section to study the problem of the stability in probability. We conclude
that the exponentially stable in the m. s. s. implies the stability in probability for
the mild solution of (1.5). We first present a general result following [15].

Theorem 4.2.1 Let u¥(t) be the solution of equation (1.5). If there exists a function
A(p) € CZ(H) having the following properties:

(i) Alp) 20 as ||l =0,

(i) infjp>e A(p) = Ac > 0,
(iii) LA(p) < 0 when ||g|| < 6 for some small 6.
Then

lim P{sup ||u®(t)|| > €} = 0 for eache > 0
llell—0 t

i.e., zero solution of equation (1.5) is stable in probability.
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Proof: We first obtain the inequality

P{sup ||[u®(t)|| > €} < -/l/(\—‘p—)forcp € H.
t

To prove this, let O, = {z € H : ||¢|| < €},7 = inf{t : ||[u®(t)|| > €}. Using the same

technical as in Theorem 4.1.1 and condition (z), (i7), we get
A(p) 2 EA(u?(t A 7)) 2 AP(1e < 1).

this proves the inequality. Now let z — 0, we get the assertion.
The function constructed in Theorem 2.2 for the linear equation (4.4) satisfies the

conditions of Theorem 2.5, hence we get the following theorem.

Theorem 4.2.2 The solution uj(t) of the linear equation (4.4) is stable in probability

if it is exponentially stable in the m. s. s..

For the stability in probability of the zero solution of the nonlinear equation (1.5),

we have the following theorem.

Theorem 4.2.3 If the solution uf(t) of the linear equation ({.4) is ezponentially

stable in the m. s. s., and

20lelllF (@)l + 7(B(£)Q(B(9))" = BopQ(Bop)*) < wliell? (4.12)

for w small enough in a sufficiently small neighborhood of ¢ = 0. Then the zero

solution of the nonlinear equation (1.5) is stable in probability.

Proof: Since the solution uf(t) of the linear equation (4.4) is exponentially stable
in the m. s. s., we define Ag(p) =< Ry, > +al|p||® as in (4.6). By (4.11) and

assumption(4.12), we get

LAo(p) <0.

Obviously, Ag(¢p) satisfies the other conditions of Theorem 2.4, therefore our assertion

holds.
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4.3 Exponentially Ultimate Boundedness in the Mean
Square Sense

Exponentially ultimate boundedness in the m. s. s was studied by Wonham [27], Za-
kai [29] and Miyahara [18] in terms of a Lyapunov function for the finite dimensional
case, and Miyahara constructed a Lyapunov function if the solution of the stochastic
differential equation is exponentially ultimately bounded. Ichikawa [12] gave a suf-
ficient condition for the mild solution of a semilinear stochastic evolution equation
to be exponentially ultimately bounded in terms of a Lyapunov function. In chapter
2 of this dissertation, we studied the same problem for the strong solution of SPDE
under coercivity condition, and get a necessary and sufficient condition in terms of a
Lyapunov function for the linear case and use the first order approximation to study
the nonlinear case. In this section, we study this problem for the mild solution of (1.5)
and also give a necessary and sufficient condition in terms of a Lyapunov function for
the linear case and use the first order approximation to study the nonlinear case.
For exponential ultimately boundedness in the m. s. s. we have a similar result

as Theorem 4.1.1 for exponential stability in the m. s. s..

Theorem 4.3.1 The mild solution u¥(t) of (1.5) is exponentially ultimately bounded
in the m. s. s. if there exists a function CZ(H) > A : H — R satisfying the following

conditions:
(1) allell’ -k < Alp) < alloll® - ks, (4.13)
(i1) LA(p) < —cA(p) + ks, (4.14)

for Vo € H, where ¢;(> 0),ca(> 0),c3(> 0), k1, k2 and ks are constants.

Proof: The proof of this theorem is similar to that of Theorem 4.1.1.
For the converse problem, we first see the linear equation (4.4). We have the

following theorem.
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Theorem 4.3.2 If the solution uf(t) of equation (4.4) is exponentially ultimately
bounded in the m. s. s., then there ezits a function Ao € C?(H) satisfying (4.13) and
(4.14) with £ replaced by Lo.

Proof: Suppose the solution ug(t) of (4.4) is exponentially ultimately bounded in m.

s. s., 1.e., we suppose (2.1) holds. Let

Aolp) = [ Ellug(s)IPds + ol (4.19)

where T is a positive constant to be determined later.

First Let us show Ag € CZ(H). let

T
Voly) = [ Ellug(®]at
Using (2.1), .
C
Wo(p) = [ (ce ]l + M)dt < Sl + MT. (4.16)

If ||¢||* =1, then
Uo(p) < % + MT.

Since ug(t) is linear in z, for any positive constant k, we have
k
ug”(t) = kug(t)

hence,
Wo(kep) = k*Wo(p)
therefore, for any ¢ € H

T
llell

Let ¢ = £+ MT then Wo(p) < ¢'|||* for Vo € H.
Let

Yo(p) = ||l ¥o(i—r) < (% + MT)||p||

T 7] Y
(o) = [ E<uf(s)ul(s) > ds for o, € H
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then 7 is a bilinear form on H, and by using Schwartz inequality, we get
T Y
T )l = | [ E<uf(s),ul(s) > ds|

T 1
< [ (EIgEIMHEN )P s

T T
< ([ Bl$@)ltds) ([ Ellud(s)ds)*
= Uo(p)iWo(y)?
< dlell- 1%l

Hence there exists a continuous linear operator C € L(H, H), such that

T(p,¥) = (Co, ).

and

ICII= sup |(Cp,¥)| <
llell=1.lli=1

Since Yo(p) = T (v, ¢) = (Cop,¢), s0
Uo(p) = 2Cpand ¥'(p) = 2C

Hence, ¥y € CZ(H) and A(p) € CZ(H).
By (4.16) and the fact that Ao(p) > af|¢||?, (4.13) satisfies.

By the same reason as we get (4.9), we have
T 2 T+r B
Eo(uf(r)) = [ Ellug(r+s)ltds = [ Ellug(s)|ds.

By the continuity of t — E|[u§(t)||?, we get:

d

Lo¥o(p) = E‘-(E\Ilo(ug(r)))lmo

o EXo(u5(r) = E¥o(y)

r—0 r

Lo ez L AR
~ [ Bllug(s)lds +~ [ Ellug(s)|*ds)
~llell? + ENlug (D))

~llpll? + ce Tl + M

(<14 ce™ )l + M

I
P
-

4

|
|

IA I

IA

(4.17)
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Thus, using (4.7),

Loho(p) = Lo¥o(p) + alolle|®
< (=14 ce™™)lel* + a(2X + &tr(Q))||¢l* + M. (4.18)

Therefore, if T > I"Tc, then we can choose a small enough such that Ag(y) satisfies(4.14)
with £ replaced by L.

Consider the solution of the nonlinear equation (1.5). If it is exponentially ulti-
mately bounded in m. s. s., using ideas similar to the stability problem, we can still
construct the Lyapunov function as A(¢) = [T E||[u®(s)||?ds + a||¢||?, but it may not
be in CZ(H). But if it is in CZ(H), follow the proof of this theorem and Theorem 2.3,

we can show it satisfies (4.13) and (4.14). Therefore, we have the following theorem.

Theorem 4.3.3 If the solution u¥(t) of (1.5) is exponentially ultimately bounded in
the m. s. s., and (o) = I E|[u?(t)||%dt is in CZ(H) for some big T > 0, then there
exits a Lyapunov function for u®(t) satisfies (4.13) and (4.14).

Now we use the first order approximation to study the properties of exponentially
ultimate boundedness in the m. s. s. of the solution of the nonlinear equation based
on the same property of the solution of the linear equation. As in Theorem 2.5, we

have the following theorem.

Theorem 4.3.4 Suppose the solution uj(t) of the equation (4.4) is ezponentially
ultimately bounded in the m. s. s., and it satisfies (2.1). Then the solution u®(t) of

(1.5) is ezponentially ultimately bounded in the m. s. s. if

2l F (@)l + T(B()Q(B())" — BowQ(Bog)™) < wllel|l* + My (4.19)

for any constant M, and

1 —ce P
w < max

—ce”™ 4.20
a>'ip9- %"'MS ( )
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Proof: Let Ao(p) be the Lyapunov function as defined in (4.15) with T' > l% such
that (4.20) gets its maximum at T. We just need to show that Aq(¢) satisfies (4.14).
Since Ao(p) = (Cop, ¢ + al|g||? for some C' € L(H, H) with ||C|| < §+ MT and

a very small. Following (4.11) we have

LAo(p) — LoAo(p)

(ICH + a) el F ()1l + 7(B(2)Q(B(9))" — BopQ(Bop)*))

g + MT + o)(w|lp|® + My).

IN

< |
Using (4.18),

LAo(p)
< (1+ce™)lel? + a(2X + &tr(Q))|lel* + M
+(§ + MT + a)(w||e|l? + My)

= (14ceT +w(§ + MT))]¢|?

+a(2X + d*tr(Q) + w)llell* + M + (

e
g
Since w satisfies (4.20), —1 + ce=#T +w(5+ MT) <0, we can choose o small enough

such that (4.14) is satisfied.

+ MT + o) M,

Corollary 4.8.1 Suppose the solution uf(t) of equation (4.4) is exponentially ulti-

mately bounded in the m. s. s.. If as ||¢|| = oo

IF()ll = o(liell) and 7(B(9)QB™(¢) — BopQ(Boy)") = o(ll¢ll*)

then the solution u®(t) of (1.5) is exponentially ultimately bounded in the m. s. s

Proof: Since as ||¢|| = oo

IF()ll = o(llell) and 7(B()QB"(¢) — BopQ(Bow)") = oll¢ll*)

For any fixed w satisfying (4.20), there exists an K > 0, such that

20l F(p)ll + T(B(9)QB*(#) — BowQ(Bop)) < wllell?
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for all ||¢|| > K.
But for ||¢|| < K, by the Lipschitz condition,

2/lpllllE () + 7(B(p)@B™(¢) — BopQ(Boy))

< lell* + IIF ()N + 7(B(¢)@B*(¢)) + 7(BowQ(Boy)™)
< el + IF@I + (1B@)I? + | Bo(9)lI?)tr(Q)

< llell® +2d°(1 + el )1 + 2tr(Q))

< K?+2d%(1 + K*)(1 +2tr(Q)).

Therefore,

2/l F(@)lI+7(B(#)QB ()~ BopQ(Boyp)*) < wllpl|*+ R?+2d* (14 K?)(1+2tr(Q))-

The assertion follows from Theorem 3.4.



Chapter 5

Appendix

Computation of E|X(t)|? of the following stochastic differential equation:
dX(t) = (aX(t) + b)dt + cX(t)dW(t)

where a,b and ¢ are complex constants, W (t) is a standard one-dimensional real
Brownian Motion.

If b= 0, then X(¢) can be computed explicitly:
X(t) — X(O)eat-—;—czt-{-cW(t)‘
So we suppose b # 0. Since

dX(t) = (aX(t)+b)dt + cX(t)dW(t)

dX(t) = (aX(t)+b)dt+ecX(t)dW(t)

Where * means the complex conjugate. By Ito’s formula, we get

X = X()X(t)
= X(O)X© + [ ' X(s)dX(s) + / ‘X(5)dX(s) + / "d<X,X>,

= [XO)+(a+a+c) /0' X (s)[2ds + B/O' X(s)ds + b/o' X(s)ds
(c+2) [ 1X(s)PaW(s)

71
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Let p(t) = E|X(t)]?, take expectation to the above equation:
(1) = p(0) + (a + 7 + —)/' (s)ds+5/tEX( )d +b/tEX( Yd
= a+a+cc s)ds
p(t) =¢ z A | EX(s)ds
Lemma: If ﬂd(tﬂ = ay(t) + g(t), then
t
y(t) = y(0)e + [ e0=g(s)ds
0

Proof: Proof is elementary.

Using this lemma, we have
- 6 - S
P(t) = p(0)el+ 4 [ ot FEX (5) + bEX(s))ds
0

- t - = -
= ¢(0)e(“+“+°°)'+2Re/ ele+a+ ) (=B B X (s5)ds

0

Now we compute EX(t), since
dX(t) = (aX(t) + b)dt + cX(t)dW (t)

X)) =X+ [ ‘(aX(s) + b)dt + / " X(s)dW (s)

hence

EX(t)= EX(0) +a [ "EX(s)dt + bt

Using the above lemma we get

b
EX(t) = —-g + (EX(O) + ;)eat
Thus
Lp(t) = <p(0)e(a+a+c2)t + 2Re{——i—(e(°+3+‘f)‘ _ 1)
a(a + @+ cc)
B(EX(O) + %) (a+a+cT)t at
TR )}
therefore

bb+bEX(0)(a + @+ €€), (ayase
2 __ 2 a+a+cc)t
EIX()|* = (E|X(0)|]°+ 2Re (cta+ D@+ Je

o BEXO D o,

a(a + @+ cc)



Bibliography

[1] S. Albeverio and A. B. Cruzerio, Global flows with invariant (Gibbs) measures
for Euler and Navier-Stokes two dimensional fluids, Comm. Math. Phys. 129
(1990), 432-444.

[2] P. L. Chow, Stability of Nonlinear Stochastic-Evolution Equations, J. of Math.
Analysis and Applications , 89 (1982) 400-419.

[3] P. L. Chow, Stationary solutions of parabolic Ito equations, Stochastic analysis
on infinite dimensional spaces, H. Kunita and H. H. Kuo (Eds.), Pitman Research
Notes in Mathematics Series, 310 (1994), Longman.

[4] P. L. Chow and R. Khasminskii, Stationary Solutions of Nonlinear Stochastic

Evolution Equations, Preprint.

[5] G. Da Prato, D. Gatarek and J. Zabczyk, Invariant Measures For Semilinear
Stochastic Equations, Stochastic Analysis and Applications, 10(4) (1992) 387-
408.

[6] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cam-
bridge Univ. Press, Cambridge, England, 1992.

[7) R. J. Elliott, Stochastic Calculus and Applications, Springer-Verlag, New York,
1982

73



74

[8] S. N. Ethier and T. G. Kurtz, Markov Processes, Characterization and conver-
gence. J. Wiley and Sons, New York 1986.

[9] T. Funaki, Random Motion of Strings and Related Stochastic Evolution Equa-
tions, Nagoya Math.J., 89 (1983) 129 - 193.

[10] U. G. Haussmann, Asymptotic Stability of the Linear Ito Equation in Infinite
Dimensions, J. of Math. Analysis and Applications , 65 (1978) 219-235.

[11] A. Ichikawa, Stability of Semilinear Stochastic Evolution Equations, J. of Math.
Analysis and Applications , 90 (1982) 12-44.

[12] A. Ichikawa, Semilinear Stochastic Evolution Equations: Boundedness, Stability

and invariant measures. Stochastic, 12 (1984) 1-34.

[13] R. Khasminskii, Stochastic Stability of Differential Equations, Sijthoff & Noord-
hoff, Netherlands, 1980

[14] N. V. Krylov and B. L. Rozovskii, Stochastic Evolution Equations, J of Soviet
Mathematics, 16 (1981), 1233-1277.

[15] R. Khasminskii and V. Mandrekar, On Stability of Solutions of Stochastic Evo-
lutions Equations, The Dynkin Festschrift(Ed. M. Freidlin) Birkhauser, Boston,
1994.

[16] R. Liu and V. Mandrekar, Ultimate Boundedness and Invariant Measures of

Stochastic Evolution Equations. to appear in Stochastic.

[17] V. Mandrekar, On Lyapunov Stability Theorems for Stochastic(Deterministic)
Evolution Equations, the Proc. of the NATQ-ASI School on Stochastic Analysis
and Applications in Physics, NATO-ASI Series (Ed. L. Skeit et al), Kluwer, 1994.

(18] Y. Miyahara, Ultimate Boundedness of the Systems Governed by Stochastic
Differential Equations,Nagoya Math.J., 47 (1972), 111-144.



75

[19] Y.Miyahara, Invariant Measures of Ultimately Bounded Stochastic Processes,
Nagoya Math.J.,49(1973),149-153.

[20] C. Mueller, Coupling and invariant measure for the heat equation with noise,

Preprint.

[21] E. Pardoux, Stochastic Partial Differential Equations and filtering of diffusion
Processes, Stochastics,3, (1979) 127-167.

[22] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential
FEquations, Springer-Verlag, New York, 1983.

(23] B. L. Rozovskii, Stochastic Fvolution Systems, Kluwer Academic Publishers,
Boston, 1990

[24] R. Schatten, Norm Ideals of Completely Continuous Operators, Springer-Verlag,
1970.

[25] R. Sowers, Large deviation for the invariant measure of a reaction-diffusion equa-
tion with non-Gaussian perturbations, Probab. theory Related Fields, 92 (1992)
393-421.

[26] M. J. Vishik and A. V. Fursikov, Mathematical Problems in Statistical Hydrome-
chanics, Kluwer Academic Pub. Dordrecht, The Netherlands, 1988.

[27] W. M. Wonham, Lyapunov Criteria for Weak Stochastic Stability, J. Diff. Eq.,
2 (1966), 195-207.

[28] K. Yosida, Functional Analysis, Springer-Verlag, 1965.

[29] M. Zakai, A Lyapunov Criterion for the Existence of Stationary Probability
Distributions for Systems Perturbed by Noise, SIAM J. Control, 7 (1969), 390-
397.



i




