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ABSTRACT

OPTIMAL BOUNDING ELLIPSOID ALGORITHMS
WITH
AUTOMATIC BOUND ESTIMATION

By

Tsung-Ming Lin

This research is concerned with new Optimal Bounding Ellipsoid algorithms with
Automatic Bound Estimation (OBE-ABE) that can be applied to model parameter
estimation, system identification, and related topics. To achieve convergence, conven-
tional OBE algorithms require the a priori knowledge of the noise bounds which are
unavailable in most real-world applications. It has been found that the exact knowl-
edge of the noise bounds is essential to the performance of OBE algorithms. The
new OBE-ABE algorithm, its computationally efficient version, Sub-OBE-ABE al-
gorithm, and an adaptive version, Adaptive Sub-OBE-ABE algorithm, introduced in
this dissertation do not require this knowledge. With the help of the automatic bound
estimation (ABE) procedure, the new algorithms have excellent performance with re-
spect to convergence, speed of convergence, computational efficiency, and tracking
capability.

Another excellent feature of the new algorithms is the convergence in colored
noise, or even non-stationary noise environments, which is theoretically impossible
for other well-known algorithms, e.g., Recursive Least Square (RLS), Least Mean
Square (LMS), and the Kalman-Bucy Filter. Due to these distinctive features, the

new algorithms are expected to have wider applications than others.



Rigorous proofs for the almost sure convergence and convergence in probability
of the new algorithms are provided for the cases of iid, mixing, ergodic, and non-
stationary noises. Simulations in these noise cases are presented to support the proven
convergence and to demonstrate other properties. The new algorithms are successfully
applied to solve two real-world problems, the linear prediction analysis of speech and

the blind-deconvolution problem.
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Chapter 1

Introduction and Background

1.1 Introduction

From engineering to social science, people use modeling to help understand and de-
scribe observed phenomena. For example, in economics, modeling is usually used
to predict inflation and study the trend of stock markets. In engineering fields, a
dynamic system or signal is usually modeled before further analysis or processing. In
general, a model can be described as in Fig. 1.1 in which the noise (or disturbance or
model-error) sequence {v,} is unobservable.

Modeling is usually classified into two categories: Nonparametric and parametric
[42]. A nonparametric model is described by a curve, table or function. Transient
analysis and correlation analysis are two well-known methods for studying nonpara-
metric models. A parametric model is usually described by difference equations (or
differential equations in continuous time) with system parameters. Typical paramet-
ric models are the auto regressive with ezogenous input (ARX), auto regressive moving
average with ezogenous input (ARMAX) and the state-space structure.

Basic laws from physics or science are usually employed to construct a parametric
model. However, in many applications, the dynamic systems are too complex to

model using only physics laws.



> H(z) >

Figure 1.1: Block diagram of a model for a dynamic system.

Hence, numerous system-identification or parameter-estimation techniques have
been developed to estimate the unknown parameters in a model. Some well-known
methods are briefly reviewed in the next section.

The main objective of this research is to devise a new algorithm, optimal bounding
ellipsoid with automatic bound estimation (OBE-ABE) algorithm and its variants for
the estimation of model parameters. The new algorithms require less restrictive a
priori knowledge and conditions than conventional methods for the convergence (or
consistency) of the estimator. In addition, the performance of the new algorithms
with respect to speed of convergence, computational efficiency, and tracking capability

1s superior to conventional methods.

1.2 Methods for Parameter Estimation

There are varieties of methods for estimating the model parameters. Among those are

minimum mean square error (MMSE), mazimum likelihood (ML), and least square

error (LSE), etc. [22, 42]. They are all batch methods.



Well-known recursive (or real-time) methods are the recursive least square (RLS)
[22], least mean square (LMS) [22], instrumental variable (IV) [42], Kalman-Bucy
filter [42], and optimal bounding ellipsoid (OBE) [8, 11, 14, 20, 35] algorithms. One
of the most popular methods in engineering applications is the LSE or its recursive
counterpart, RLS, since they require only the whiteness of the noise sequence {v,} for
convergence and have simple structure with well-understood convergence performance
under regular conditions [i.e., wide-sense stationarity (WSS) and second-moment er-
godicity (SME)]. RLS has been modified to a weighted RLS (WRLS) (22, 42] using a
forgetting factor for tracking time-varying parameters.

Since its invention fifteen years ago, OBE has attracted attention from people
in real-time signal processing [11, 15], system identification [3, 10], adaptive control
[24], and other fields in which computational efficiency and speed of convergence are
critical, and the statistics of the inputs and noise are unknown. However, its advan-
tages (over those of popular RLS) with regard to computational efficiency and faster
speed of convergence in some noise cases (see Chap. 4) are offset by the requirement
of known noise bounds which are unavailable in most applications. Without a priori
knowledge of the exact noise bounds, the performance of OBE suffers (Chap. 4). This

is why OBE has been rarely found in real-world applications.

1.3 Review of OBE Algorithms

In 1968, Schweppe introduced the first bounding ellipsoid algorithm (BE) [41] for
estimating the states of a state space model with the assumption of bounded inputs
and bounded noises. With this assumption, BE algorithm produces at each step a
feasible set in state space instead of a single point which is normally produced by
other well-known methods, e.g., the Kalman-Bucy filter. The BE algorithm has a set
of recursive formulae similar in structure to the Kalman-Bucy filter. Without a priori

3



knowledge of the statistics of the inputs and the noise which are usually required by
other methods, BE has potential for wider applications. However, as pointed out
by Schweppe, he feasible set of the algorithm at each step is usually impractical to
calculate. He did not provide the convergence analysis of BE algorithm either.

Thereafter, Witsenhausen [47], Bertsekas and Rodes [4] published set-membership
(SM) algorithms based on the same bounded-input and bounded-noise assumptions.
Although SM has a smaller feasible set (convex polytope, see Chap. 2) at each step,
the mathematical analysis of SM is more complicated than that of BE.

In 1979, Fogel published a BE algorithm [19] for the identification of the ARX
model with the implicit assumption that the noise sequence {v,} has an asymptotically-
known accumulative energy bound. With this knowledge and the assumptions of the
white noise {v,}, the regular WSS, and SME, Fogel has shown, in a deterministic
way, the convergence of his BE algorithm. In other words, the sequence of the ellip-
soids of BE algorithm is shown to asymptotically reduce to a point (the true model
parameter vector). Although the recursive formula of BE is similar in structure to
RLS , the computation is less efficient than RLS.

In 1982, Fogel and Huang published the first OBE algorithm (F/H OBE) [20]
which featured selective updating to ignore “redundant” data (in the OBE sense).
This innovative feature improves the computational efficiency of Fogel’s BE algorithm.
However, F/H OBE algorithm still has O(m?) computational complexity due to the
check for selective updating at each step (Chap. 2). Selective updating is achieved
by variably weighting the incoming data for an optimal (maximum reduction in size)
ellipsoid at each step. The optimization is based on the assumption that the noise
bounds are known pointwise. If incoming data set does not help shrink the ellipsoid,
the weighting is set to zero, i.e. the incoming data set is “redundant” and hence

discarded. In contrast to OBE, Fogel’s BE algorithm has constant data weights



(= 1). Detailed formulation of OBE algorithms can be found in the next chapter.

Fogel and Huang also provided a proof of convergence of OBE based on the as-
sumption that the noise sequence is white and its pointwise upper bounds are known
in addition to the regular WSS and SME. However, the correctness of the proof is
arguable (also see [13, p.1913]) because the authors use in the proof the questionable
assertion that convergence of Fogel’s BE implies convergence of OBE. In fact, the
whiteness of the noise is neither sufficient nor necessary for the convergence of the
OBE algorithm. Theorem 3.4 and 3.6 in Chap. 3 validate this assertion.

In 1987, Dasgupta and Huang published another version of OBE (D/H OBE) [§]
and showed the “convergence” of its estimator to a non-infinitesimal region of the
true parameter vector under the same assumptions. An interesting and practically
important feature of the algorithm is that it has an efficient O(m) check for innovation
instead of O(m?) in F/H OBE. However, comments are found in literature {14, 37]
on the lack of interpretability of its optimization criterion [14], i.e., it minimizes, at
each step, a quantity which is not directly related to the “size” of the ellipsoids.

Thereafter, other versions of OBE algorithm, e.g. set-membership weighted recur-
sive least square (SM-WRLS) [11, 15, 37], and set-membership stochastic-approzimation
(SM-SA) [11, 27, 35], were developed by Nayeri, Deller, and their students. SM-WRLS
is the first algorithm to clearly relate the OBE philosophy and conventional WRLS
(see [11]). They also showed that all versions of OBE algorithm based on the same
optimization criterion of minimizing the ellipsoid at each step, are basically the same
algorithm [14]. Specifically, F/H OBE, SM-WRLS, and SM-SA, though different in
their weighting policies and computational complexities, have identical estimators,
ellipsoids, selected data, and convergence performance. A suboptimal check for inno-
vation is introduced to SM-WRLS that results in a computationally efficient version

of “interpretable” OBE algorithm [13, 37]. Further, using SM-SA, the first proof



of convergence in probability (p. convergence) [17] for OBE algorithms were accom-
plished under the assumptions of independent identically distributed (iid) noise and
symmetric bounds.

The last OBE-like algorithm seeking to improve the performance of OBE in this
review is optimal volume ellipsoid (OVE) algorithm proposed by Cheung et al. [7] in
1991. The algorithm uses an affine transformation [21] to get the smallest ellipsoid
at each step. The simulations in [7] show that the ellipsoid at each step is smaller
than those of OBE. However, the estimator of OVE, at the expense of computational
cost, does not show significant improvement over those of OBE’s (also see [27, p.6]).
A proof of “convergence” of OVE similar to that of D/H OBE was provided in [7].

In 1991, Veres and Norton published a paper [44] presenting the first p. conver-
gence (under very general conditions) of the ezact polytope algorithm (EPA) which
is an SM algorithm with a polytope feasible set at each step. Although they also
provided a proof of almost sure (a.s.) convergence (or strong convergence in their
notation with equivalent definition) for the EPA, the justification is arguable. What

they have proved for a.s. convergence [on a probability space (2, F, P)] is:
P(UsZ{w : |0 = 6.]| < €}) = P( lim (Ur_;{w: |0 — 6.l < €})) =1, Ve >0 (1.1)
or, equivalently, after suppressing w for brevity,
P(N7L1 (10 — 6u]| > €)) = P(im (M7, (|0n — 6.]| > €))) =0, Ve>0  (1.2)

which are not sufficient to imply a.s. convergence. This becomes evident upon com-

paring (1.1) with (3.3), or (1.2) with (3.6).



1.4 Motivation for New Algorithms

Despite their superiority over RLS in computational efficiency and speed of conver-
gence in many noise cases, OBE algorithms have been rarely found in real-world
applications. The main reason is that the assumption of the known noise bounds,
while less restrictive (without the knowledge of statistics of noise, e.g., mean, variance,
probabilistic distribution, etc.), is often impractical. Lack of proof of convergence for
OBE in more realistic noise cases (than symmetric iid noise) is another (minor) rea-
son.

Since the noise sequence {v,} is usually unobservable in practice, exact noise
bounds are not available in most applications. Without the knowledge of exact noise
bounds, the performance of convergence and the speed of convergence of OBE suffers.
If one or more bounds are underestimated, i.e., v2 < 4,, at one or more n, then the
algorithm is no longer theoretically valid. Simulations reveal that the underestimation
of the noise bounds results in an inconsistent [17, 42] or diverging estimator.

A conservative sequence of bounds {v,} (overestimated bounds) will assure a
meaningful ellipsoid at each n. However, recent work of Nayeri et al. [27, 35] has
demonstrated that the estimator may be very imprecise, even asymptotically, if the
bounds are too “loose.”

To illustrate the effects of incorrectly estimated error bounds, an AR(3) model for

Fig. 1.1 is constructed as follows:
Yn = 07 Xn + vn (1.3)

in which X, = [Yn-1,Yn-2, y,._3]T is a sequence of observable vectors, 8. = [2,—1.48, 0.34]T
is the unknown parameter vector to be identified, and the unobservable noise sequence

{vn} is uniformly distributed and iid with constant bound 4. = 1. Figure 1.2 shows
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Figure 1.2: OBE algorithm with 4, = 0.8 (underestimated) on model (1.3). v, ~
U(-1,1).

the simulation result of OBE (SM-SA) algorithm (see Chap. 2 for details of the formu-
lation) identifying this AR(3) model with under-estimated error bound +, = 0.8 for
all n. As seen in the figure, the volume of the ellipsoid becomes negative quickly and
the estimator diverges. This is the result of violating the underlying noise-bounding
assumption of the algorithm. On the other hand, the simulation result of the algo-
rithm using over-estimated error bound 4, = 1.2 Vn is shown in Fig. 1.3. As seen in
the figure, the estimator does not converge well to the true parameter (a; = 2 in the
figures) even after 10,000 iterations.

The speed of convergence of OBE becomes slower if a looser overbounding se-
quence is employed. This is observed in Fig. 1.4 which shows the simulation results
of 100 runs of the OBE algorithm on model (1.3). The numbers on the figure beside
each dashed line are the estimated noise bounds.

In this dissertation, a new algorithm, OBE-ABE, and its variants are devised to
improve the applicability of OBE algorithms while preserving or improving the supe-
rior performance of OBE algorithms in real-world applications. Proofs of a.s. conver-
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Figure 1.3: OBE algorithm with 54, = 1.2 (overestimated) on model (1.3). v, ~
U(-1,1).
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Figure 1.4: Volumes of ellipsoids (after 100 runs) of SM-SA with v, = 1,1.1,1.5
respectively, and OBE-ABE (o = 1.5) on model (1.3). v, ~ U(-1,1).



gence and p. convergence of the new algorithms in the cases of iid, mixing, ergodic,
and non-stationary noise with asymmetric bounds are provided. The new algorithms
have efficient computation, excellent convergence performance and tracking capabil-
ity. The details of the new algorithms are found in the subsequent chapters. A

summary of the major contributions of this research is found in Chap. 7.
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Chapter 2

OBE Algorithms with
Automatic Bound Estimation

2.1 Introduction

In this chapter, the new algorithms, OBE-ABE, Sub-OBE-ABE, and the adaptive
versions of these two algorithms are introduced. The algorithmic steps are listed in

Tables 2.1 — 2.3. More details of these algorithms are found in subsequent chapters.

2.2 Formulation of OBE algorithms

A dynamic system or signal can often be modeled by a linear-in-parameters model
Yn = azxn+vn (2’1)

in which 0, = [@1ey**,@pey Bous b1ay -+ -, bgu]T is the unknown parameter vector to be
identified; {x,} is a sequence of observable vectors of dimension m = p + ¢ + 1;
and {v,} is an unobservable noise or model-error sequence. An important special

case is the auto-regressive with ezogenous input (ARX) [42] model in which x, =

11



[Un=1y**s¥n—psUn,** yUn—q]T is the observed data set composed of samples of the
observable input sequence {u,} and output sequence {y,}.
All versions of OBE algorithms [8, 11, 14, 20, 35] are based on the premise that

v, has a pointwise bound that is known a priori,
v2 <7, VneN. (2.2)

Let A; denote the parameter set at time ¢ such that all elements in A; are feasible
parameter estimates consistent with (2.2). In conjunction with (2.1), it is clear that

A; is a (hyper-) strip region which can be expressed as
A.‘ = {0 : 0 € Rm, (y.- - 0TX|’)2 S ’)’,‘}

As time ¢ goes from 1 to n, the feasible set at time n, B,, is the intersection of A;,
Vi € [1,n], i.e.,

B, = ﬂ?=l A;.

In general, B, is a convex (hyper-) polytope in R™ which is mathematically difficult
to track. Some SM algorithms are based on minimizing B, at each step while OBE
algorithms are based on minimizing a (hyper-) ellipsoid E, [see (2.3)] which is a
superset of B,.
It can be shown [14] that the ellipsoid associated with any OBE algorithm is given
by
E,E{0:(0-0.)"P;'(6-6,) < Ka} (2.3)

where 8,, £, and the matrix P, are computed recursively using
Gn = XnTPn—IXn (2-4)

12



€n = Yn—0n_Xn (2.5)

1 ﬂnpn—lxnanPn-—l
P, = = [Pp1— :
an[P ! an + ,BnGn ] (2 6)
on = on—l + ﬂnpnxnen (27)
anﬂnez
Kn = QpKp-1 + ,3,,’7,. - m (28)

Recursions (2.4) - (2.8) comprise a general OBE algorithm. The ellipsoid center 6,
can be used as an estimator of the parameters 8. at each n. The matrix P satisfies

the following recursion:

P! = 0, P}, + BoxaxT. (2.9)

The OBE algorithm is usually initialized with 6o = 0, ko = p and Pg = ;‘;I, where p
is a small number, typically 10~3. In almost every OBE algorithm, the nonnegative
data weights {a,} and {8,} are calculated according to an optimization criterion
which minimizes the “size” of the set E, at each iteration’. When such optimal
weights do not exist, the updating need not take place. This prominent feature is
called selective updating.

OBE algorithms are distinguished from one another by the choices of weighting
sequences {a,} and {f5,} [14]. For example, the SM-SA algorithm has o, =1 - ),
and B, = A, in which A, is given by

—bn+4/b2—4ancn

A\ = 2an

, if ex<0

0, if ¢,20

where

a, = My, — me: + mG3.7n - 2mGn7n - nn—lGn + Kn—lG,Q, + Gn7n - G3;7n - 5:Gn

b, = 2me2 —2my, + 2mGpn + 260-1Gn — £n-1G2 — Guvn + eiG,,

1The exception is the D/H OBE algorithm [8] in which «,, is minimized at each iteration.
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ch = MY, — mef‘ — Kp-1Ghn. (2.10)

2.3 OBE-ABE Algorithm

While OBE algorithms require a priori knowledge of ezact noise bounds to achieve
convergence and fast speed of convergence (see Fig. 1.4 and Theorem 3.6 in Chap. 3),
the new algorithm, OBE-ABE, does not require this knowledge. OBE-ABE theoreti-
cally requires a lower bound of tail probability but practically does not (see Remark 2
after Theorem 3.3). Initialized with any overestimated noise bound, OBE-ABE au-
tomatically (or blindly) updates its estimated noise bound 7, to the unknown true
bound 4., while concurrently shrinks the ellipsoids to get a consistent estimate. The
OBE-ABE algorithm is found in Table 2.2. As seen in the table, the ABE procedure
(below “otherwise™) features selective updating and is computationally negligible,
hence preserves the computational efficiency of OBE. Further, the ABE procedure
guarantees the convergence of the estimator, increases the speed of convergence, and

increases the efficiency of updating the estimator (see Chap. 4). The convergence

analysis of OBE-ABE algorithm is found in Chap 3.

2.4 Sub-OBE-ABE Algorithm

In optimal form, all versions of the OBE algorithm except D/H OBE have an O(m?)
check for innovation at each step. Hence, the computational complexity of OBE
algorithms is similar to the popular RLS. To fully benefit from the selective updating
feature and achieve superior computational superiority over RLS, a modification of the
check for innovation to an O(m) operation is necessary. One approach is developed by
Deller et al. [11, 13]. The modified OBE algorithm (Sub-OBE algorithm) in [11, 13]

are O(pm?) complexity with p indicating the fraction of data found to be innovative.
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I. Initialization:
1. 6o = 0, ko = p and Po = I, where p is a small number, typically 1073,
2. 70 = any overestimated bound.
3. Choose € (small positive number), M and N (see Remark 2 following

Theorem 3.3).
I1. Recursion:
Forn=1:N
Ifc, <0
Execute recursions
Gn = X P, 1X,
En = y'l - og;_lxn

1 ,Bnpn-lxnanPn-l
Pn = - Pn— -

aﬂ[ ! Qay + ﬂnGn
0n = On_1+ BuPaxnen

]

anﬂnei
a, + ﬂnGn |

Kn = QpKpy+ ﬂn'}'n -

Otherwise,
If a time interval I of length M over which ¢, > 0 is found,

%={%4-¢,ﬂ¢>o

Yn-1, oOtherwise,

where dj def k3-1G1/m — €(2,/Fn-1 — €) and J = arg max, ¢ 2.

Table 2.1: The OBE-ABE algorithm.

15




Hence, for small m (<10), the Sub-OBE algorithm is an O(m) algorithm since p is
typically near 0.1 for a uniformly distributed {v,}.

However, the same O(m) formula for checking of the Sub-OBE algorithm cannot
be applied directly to the OBE-ABE algorithm, since the ABE procedure will fail
[(3.61) no longer holds]. Hence, the Sub-OBE-ABE algorithm is endowed with another

O(m) checking formula for innovation:

- 2 T
Cn = MYp — ME, — Kn—1Xp Xn/dn-1,

where d,, has the recursion?:

d, = apd,_y + ﬂnxzxn-

Justification of this check is found in Chap. 3. The steps of Sub-OBE-ABE algorithm
are shown in Table 2.2. The Sub-OBE-ABE algorithm is compared to the OBE-
ABE algorithm with regard to speed of convergence and computational complexity

in Chap. 4.

2.5 Adaptive Sub-OBE-ABE

Tracking performance of adaptive OBE algorithms to time-varying parameters have
been investigated in [11, 37, 38]. In those papers, adaptive OBE algorithms have been
shown to have superior tracking capability to RLS, LMS, and their variants.

In [38], Rao and Huang modified D/H OBE algorithm by resetting x,-;, when-
ever K, < 0, to a value {( + K; or { + K;, where K, and K, are two positive values

obtained from the algorithm’s parameters and data at time n, and ( is a “safety fac-

2Preliminary version of Sub-OBE-ABE algorithm computes 1/d, to be the minimum eigenvalue
of P, that features selective updating. Nayeri modifies it to this O(m) recursion.
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I. Initialization:
1. 00=0,K0=[l,do=;l§',a.ndpo=7};l,
where y is a small number, typically 10~3.
2. 90 = any overestimated bound.
3. Choose € (small positive number), M and N (see Remark 2 following
Theorem 3.3).

II. Recursion:
Forn=1:N
Ife, <0
Execute recursions

Gn = xfpn—l Xn

En = Yn-— 93-1*»

1 ﬂnPn—lxnanPn—l
P, = — [Pno1—

aﬂ[ ! a, + ﬂnGn ]
on = 01;-1 + ﬂnannen

anﬂnei
Kn = OnKkn_i+ PnYn— m
dn = andn—l + ﬂnx,{‘xn-
Otherwise,

If a time interval I of length M over which ¢, > 0 is found,

Y ={v,.-1—dJ, ifdy >0

Yn-1, Otherwise,

where d; & K1-1X3%7/(ds-1m)—€(2\/Fn1—€) and J = arg max,¢; €2.

Table 2.2: The Sub-OBE-ABE algorithm.
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tor” chosen to be 1. Equivalently, their adaptive OBE algorithm is obtained through
modifying D/H OBE algorithm to include the resetting of x,-; to a value greater
than 1 whenever £, < 0. Resetting x,-, is equivalent to expanding the ellipsoid.

In [11, 37], Deller et al. basically proposed three methods, windowing, graceful
forgetting and selective forgetting, for modifying OBE algorithms to be adaptive to
time-varying parameters. The basic spirit of those modifications is the various ma-
nipulations of forgetting factors (data weightings) similar to those of adaptive RLS
(or WRLS). Among those methods, it is observed in [11, 37] that the best policy
regarding tracking performance is the selective forgetting method which back-rotates
previously accepted data sets when %, < 0 until k, > 0. This is equivalent to the
expansion of the ellipsoid according to a systematic criterion.

In this dissertation, an adaptive Sub-OBE-ABE algorithm is presented by modify-
ing Sub-OBE-ABE to include the resetting of k, = 0.1 whenever x,, < 0. Despite its
simplicity and computational efficiency, the adaptive Sub-OBE-ABE algorithm has
shown excellent tracking performance in both slow and fast time-varying parameter
cases (see Chap. 4). The steps of adaptive Sub-OBE-ABE algorithm are shown in
Table 2.3.
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I. Initialization:
1. 00=0,NO=F’d0=;lfaa'ndP0=;lTI’
where p is a small number, typically 1073.
2. 70 = any overestimated bound.

3. Choose ¢ (small positive number), M and N (see Remark 2 following
Theorem 3.3).

II. Recursion:
Forn=1:N
Ife, <0
Execute recursions

Gn = ann—lxn
En = Yn— BS_IX,.
1 ﬂnPn—lxnanPn—l
Pn = - Pn— -
an[ ! ay, + ,BnGn
an = on—l + ﬂnannen

]

anfBneld
an + B:.Gn
dn = andn—l + ﬂnxzxn-

Kn = QpKkp- + ﬂn')'n -

If k, <0, set k, =0.1.
Otherwise,
If a time interval I of length M over which ¢, > 0 is found,

7n={7,._,-d1, ifd; >0

Yn-1, oOtherwise,

where d; qef K1-1%X3Xy/(dj-1m)—€(2\/Fn1—€) and J = arg MmaX,ey €2.

Table 2.3: The Adaptive Sub-OBE-ABE algorithm.
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Chapter 3

Convergence Analysis

3.1 Introduction

This chapter provides proofs of a.s. convergence and p. convergence of OBE-ABE
and Sub-OBE-ABE in the cases of iid, mixing, ergodic, and non-stationary noises.

Throughout this chapter, the model considered is a stable ARX model

Yn = 0Txn + v, (31)
in which 6. = [aj., -, @pa, Do, b1e, - - -, bga] is the unknown parameter vector to be
identified; {Xn} = [yn-1,"*»¥n—p>Un,***,Un—q) 18 a sequence of observable data sets

composed of the observable input sequence {u,} and output sequence {y,}. The
dimension of {X,} is m = p+¢+ 1. The unobservable noise (or model-error) sequence
{vn} is assumed to be asymmetrically bounded with unknown least upper bound /7.
or greatest lower bound —, /7. for all n. The results of this chapter are generalizable
to cases in which y, and v, are vectors (e.g., [11, 37]).

For stochastic analysis, v,, u,, and y,, etc., are modeled as random variables (r.v.)

defined on a probability space (2, F, P) where (2 is a sample space, F a o-field, and
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P a probability measure. Clearly, for the ARX model, if we let
fn C_|__e_f a{vm7um+l’m S n},

then x, is F,-1-measurable.
Note that the usual assumptions of WSS, SME, and whiteness of {v,} which are
essential for the convergence of RLS, LMS, IV, etc., are not needed for OBE-ABE

and its variants.

3.2 Definitions

For the concise statement and analysis of new theorems, the following definitions are
introduced. Most definitions are cited from the literature. The first two below define
the convergence of a random sequence to a random variable. These two types of

convergence are treated in this dissertation.

Definition 3.1 [17, 42]. An estimator 0, is called p. consistent, or p. convergent

(convergent in probability) if for all € > 0,
Jim P(]|6n — 0.]| > €)= 0 (3.2)

where || - | denotes any valid norm.

Note that p. convergence implies (is stronger than) weak convergence or, alternatively,

convergence in distribution.

Definition 3.2 (17, 42]. An estimator 0, is called a.s. consistent, or a.s. convergent

( convergent almost surely) if

P(lim 6, =6,) = 1. (3.3)
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Note that (3.3) is equivalent to

P(|[6n — 6.]| > € i.0.) =0, Ve> 0 (3.4)

in which i.o. denotes infinitely often with respect to n.
Comparing (3.2) with (3.4), it follows that a.s. convergence implies p. convergence.

Equation (3.4) can be written as

P(Uz_ N3 (|0n — 6.] > €)) =0, Ve>0 (3.5)
or equivalently,
P("!l_r.rgo Moz ([|0n — 6.]| > €)) =0V e> 0. (3.6)

Since the sets N2 .. (||6» — 6.]| > ¢€) is increasing with m, (3.6) can be written as
dim P(N7L,,.(/|0n — 6.]| > €)) =0V e > 0. (3.7)

Although surely convergence [17] is theoretically stronger than a.s. convergence, the
latter is regarded as the strongest type of convergence employed in practice (called

strong convergence in some literature).

Definition 3.3 A random sequence {v,} is called asymptotically independent if
lim |P((vi € A)N (vign € B)) — P(vi € A)- P(viyn € B)| =0, ViandVA,B€F.

For convenience, let us denote e-neighborhoods of noise bounds as

Df = [V — & V7
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and
Dc_ = [—'\/‘7_'"_\/:7:4' C]'

The following definition is seen in [44] which is a sufficient condition employed in

their convergence analysis of the EPA algorithm.

Definition 3.4 [44]. A random sequence {v,} is called uniformly conditionally heav-
ily tailed (UCHT) if there ezist Cy > C2 > 0 and an infinite subsequence {t;} C N,

such that, with any sufficiently small € > 0,

Cie < P(v, € (DFUD]) |Fazh) < Cr€ a.s.Vn € {t;}. (3.8)

Definition 3.5 A random sequence {v,} is called uniformly conditionally tailed
(UCT) if given € > 0, there ezist a 6 > 0 and an infinite subsequence {t;} C N,
such that

P(v, € (D} U D) |Fnoh) > 6a.s.Vne{t}. (3.9)

Note that, throughout the dissertation, the assumption that {v,} is asymmetri-

cally bounded with the UCT condition means that either

P(v, € D} | Fam1) > 6as. and  P(v, € D | Faoy) =0 as.

or

P(va, € D} | Faoi) =0as. and P(v, € D] | Fauy) 2 b as.

holds for all n. Also, the assumption that {v,} is symmetrically bounded with UCT

condition means that the following condition holds:

P(v, € D} | Foo1) > 6 as. and P(v, € D] | Fusy) > 6, ass.
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Definition 3.6 A random sequence {v,} is called uniformly tailed (UT) if given

€ > 0, there ezist a § > 0 and an infinite subsequence {t;} C N, such that
P(v, € (D} U D)) > 6as.Vne{t}. (3.10)

Note that UT and UCT conditions are less restrictive than UCHT. For example,
“triangle” or “bounded-Gaussian” distributed iid sequence satisfies UCT and UT
conditions but not UCHT.

The following definition of almost periodic function (a.p.) which is due to Bohr
[6], and a lemma (Lemma A.3 in Appendix) which relates the type of random variable

to an a.p. function are introduced for the proof of main theorems.

Definition 3.7 [1, 6]. A continuous function ®(t) is almost periodic (a.p.) if given
€ > 0, there ezists a length l(€) such that every interval of length l(€) contains at least

a number 7, and |®(t +7) — ®(t)| <¢, V€ R.

The set of real numbers 7, {7}, defined above is called relatively dense [6]. Note
that I(¢) exists if and only if there do not exist arbitrarily large gaps among the
numbers 7. Clearly, a continuous periodic function is also a.p.

For the following definitions and some lemmas in the Appendix, let K <IN or Z,
RK déf{(...,zhzz,---) :z; €R, VieK},

and

BKdéf {("')A17A2a"'):A"eB’ Vie K}

where B is the Borel set.
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Definition 3.8 [17]. { X\ : k € K} is stationary if
(- X0, Xzy ) B (o, Xky Xkp1s+-+), VEEK

where 2 denotes equality in distribution.

Definition 3.9 [17]. The measurable transformation T : Q — Q is called a measure

preserving transformation (m.p.t.) if PoT~! = P, i.e., P({w : T(w) € A}) = P(A).

Definition 3.10 [17]. A set A € F is called invariant (or T-invariant) if A =
T-'(A), i.e, A={w:T(w) € A}.

Definition 3.11 [17). The invariant set T % {A € F : T~1(A) = A} is called trivial
if P(A) € {0,1} VAeT.

Definition 3.12 [17]. The m.p.t. T is called ergodic if T is trivial.

Definition 3.13 [17]. The m.p.t. T is called mixing if

lim |[P(ANT™"(B)) - P(A)- P(B)| =0 VA,B€F. (3.11)

Note that the analogous definitions of mixing and ergodicity for a stationary
sequence can be infered from Definition 3.12, Definition 3.13, and Lemma A.5. By
Definition 3.13, a stationary sequence is mixing if and only if it is asymptotically

independent. Also, by Lemma A.6, mixing implies ergodicity.

3.3 Persistency of excitation condition

Persistency of ezcitation (PE) (defined below) is a necessary condition [5, 31, 42]

for the convergence (consistency) of recursive algorithms such as LMS, RLS, and
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their variants. For SM algorithms that assume bounded noise, PE is at least one
of the sufficient conditions for convergence (see theorems in this chapter and [44]).
Simulations even show [32] that PE is necessary for the consistency of the estimator
of OBE algorithms.

The following definitions of PE that appear in literature are rewritten and related.

The first definition is the most general one employed in proofs of the new theorems.

Definition 3.14 [44]. A sequence of random vectors, {x,}, is called persistently

exciting (PE)® or omni-directional if for any nonsingular cone

K={x:x=aje;+:-++ anen, det(e;, --,en) #0, a; > 0,Vz},

there exist p, and p; such that

ln’{rlglfP(x,. €EK |fn..2) >p >0as., (312)
and
E(||xn]| |[Fn=2) = p2 > 0 a.s. Vn. (3.13)

The condition (3.12) means that the orientation of x, is sufficiently varied in a
conditional-probability sense while the condition (3.13) means that the magnitude of
X, cannot be too small on average. These conditions imply the following conditions
which constitute another PE definition frequently used in the convergence analysis of

conventional LSE recursive algorithms.

Definition 3.15 [31]. A sequence of random vectors, {X,}, is called PE if there ezist

p1 and pa such that

liminf E(x.X; |Fa-2) > il > 0 a.s. (3.14)

3Please read “PE” as “persistency of excitation” or “persistently exciting” as appropriate in
context.
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and

E(||%n]l |Faz2) 2 p2 >0 a.5. V¥ n. (3.15)

Violation of (3.14) is effectively a.s. restriction of x, to a proper subspace of R™.
This justifies the assertion that (3.12) implies (3.14). Also note that the assumption
of stability imposes an upper bound on (3.14).

The fact that

E(E(xnXy |Faz2)) = E(xaX7),

leads to an equivalent definition of PE:

Definition 3.16 A sequence of random vectors, {x,}, is called PE if there ezist p,

and p, such that

lim inf E(x.x5) > p1I > 0 a.s. (3.16)

and

E(||xa]| | Frn=2) = p2 > 0 a.s. V n. (3.17)

Condition (3.16) means that the autocorrelation matrix of x, is positive definite
asymptotically. For the stationary case, it becomes positive definite for all n as in
condition (3.18) below.

Deterministic approaches to convergence analysis assume the stationarity and er-
godicity (or at least WSS and SME) of the signals. In this case, Definition 3.16 is

equivalent to the following.

Definition 3.17 [5]. A stationary (or at least WSS) sequence of random vectors,

{x,}, is called PE if there ezist p, and p, such that

E(xxT) > pI>0as.Vn (3.18)
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and

E(||xn]| | Fn=2) 2 p2 >0 a.5. Vn. (3.19)

By the Ergodic Theorem [17], Definition 3.17 is equivalent to the following.

Definition 3.18 [5, 42]. A stationary and ergodic (or at least WSS and SME) se-
quence of random vectors, {X,}, is called PE if there exists an Ny € N and p1,p2 > 0

such that for all n
n+N;

Z kakT > pll >0, (320)
k=n+1
and
Ixa]] = p2 >0 Vn. (3.21)

Note that the stability assumption imposes an upper bound on (3.20). Using matrix

algebra, Definition 3.18 can be shown to be equivalent to the following.

Definition 3.19 [5]. A stationary and ergodic (or at least WSS and SME) sequence
of random vectors, {x,}, is called PE if for any unit vector e € R™, and for all n,

there ezist Ny € N and py,p; > 0, all independent of e, such that

n+N;

> lixfell > >0, (3.22)
k=n+1
and
|Xa]| = p2 >0 Vn. (3.23)
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3.4 Lemmas

The following lemmas and those in the Appendix (cited from the literature) are

essential for the proofs of the main theorems in this work. For convenience, define

cn, if cp <0

0, otherwise.

Ca, if 420

s

0, otherwise.

where c, is the check for innovation (2.10). Then, by Lemma A.2, lim, ¢, = 0.
However, since ¢, is a random variable,
lim, . ¢; = 0 does not imply lim,_.o, P(c, < 0) = 0. For example, let

1, with probability 0.5

Cph =

—1/n, with probability 0.5.

Then, lim, . ¢; = 0 while lim,—o, P(c, < 0) = 0.5. Hence, the following lemmas
are needed for the proof of Lemma 3.3 which, in turn, is essential for the proofs of

the main theorems.

Lemma 3.1 Let X,Y be random variables. If X is continuously distributed, then
X +Y is continuously distributed. If, in addition, Y # 0, then XY is continuously

distributed.

Proof: Let Z= X +Y, then,

f26)= [ fav(e,z—a)dz= [ fx(@)fx(z - 2lo)dz,

-00
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where f denotes the various probability density functions. By assumption, fx(z) does
not contain a Dirac delta function, so fz(z) does not. Hence, X + Y is continuous.

Let W = XY, then,

Sfw(w) = /_: ﬁfxv (%,y) dy = /_: ﬁfx (%) frix (y, %) dy.

Since Y # 0 and fx(%) does not contain a Dirac delta function, it follows that fw(w)

does not contain a Dirac delta function. Hence, XY is continuous. (m]

Lemma 3.2 Assume that model (3.1) is a stable ARX model, and {u,} and {v,}
are bounded. If both {u,} and {v,} are asymptotically independent sequences, and

{un} is independent of {v,}, then y, converges to a continuous random variable as

n — o0.

Proof: First, rewrite (3.1) as

P q
Yn — Z ajYn—j = E bjtin_j + vn. (3.24)

=1 7=0

Let

9
Va def z: bjun_j + vy.

Jj=0
Note that {V,} is an asymptotically independent random sequence. Let h, be the
discrete-time impluse response of the system (3.24), i.e., y, = hy, if V,, is a Kronecker

delta function. Then,

Yn = Ehjvn-jo (3.25)

Jj=0
By the Lebesgue Decomposition Theorem [17], a random variable can be decomposed
into a discrete part and a continuous part. However, by (3.25) and Lemma 3.1, y, is

continuous if V,, is continuous. Hence, V, can be assumed discrete for the remainder
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of the proof. That is, assume
P(Vn=qk)=pk>0, k=l,2,...,K (3.26)

where ¢; is bounded since V,, is bounded by assumption.

Let ®v,(t) denote the characteristic function of V,. Then, from (3.26),

K
®v,(t) =D pre™, where i =+v/-1.

k=1

Hence

K
Dn,v,_, (1) = D pre’thi, (3.27)
k=1

Note that e'**s% is a periodic function of ¢ with primary period 7; = 27 /h;q; for all
J,k, in which h; # 0 and gx # 0. Since k; is a stable infinite impulse response, it
follows that lim;_ h; = 0. Hence, given ¢; > 0, there exists an N such that for all
j > N, |hj| < € and there exists j > N such that |k;| > 0. Hence, 7, = 27 /hnqr — 00
as n — oo. This means that as n — oo, the set {7}, of ®,v,_;(t) is not relatively
dense. That is, there does not exist an I(¢) for ®4;v,_;(t) to satisfy Definition 3.7 as
n — oo. Hence, ‘I’h,-v,.-,-(t) is a non-a.p. function as n — oo.

For finite n, ®,, is a.p. by Lemma A.3 since y, is discrete by (3.25). Hence, ®,,, is
non-a.p. as n — oo by the asymptotic independence of {V;;}. Thus, by Lemma A.3,

Yn 18 continuous as n — oo. ]

Note that, by Lemma 3.1, if {u,} or {v,} or both are continuously distributed,
the assumptions that {u,} and {v,} are asymptotically independent sequences and
the independence between {u,} and {v,} are not required in the above lemma.

The following lemma asserts that if the noise bounds are overestimated, then the

time between updates becomes infinite as n — oo.
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Lemma 3.3 Assume that model (3.1) is a stable ARX model, and {u,} and {v,} are
bounded. If PE holds, both {u,} and {v,} are asymptotically independent sequences,
{un} is independent of {v,}, and the noise bounds are overestimated for OBE al-
gorithms, i.e., if there exists an ¢ > 0 and an N € N such that for alln > N,
Tn — U2 > €, then the expected updating interval of the estimator 0, approaches

infinity as n approaches infinity.
Proof: Let 8, = 0, — 0.. From (2.2) and (2.5),
Yo =€ = Tn = (¥n = 07_1%n)" = Tn = (vn = O7_1%n)’
Hence, from (2.10),
Cn = MY — ME2 = kn_1Gpn = My, — m(vy — 07_ %)% — K1 Gh. (3.28)

Let

bn X m(vn — 0T_ %)% + Kn-1Gn > 0. (3.29)

From (3.28),

Cp = MYy — P (3.30)

From Lemma A.2, it follows that
liminfe, = liminf(c} + ¢;) 2 0.
This means that, for any € > 0, there exists an N such that for all n > N,

Cn > —me. (3.31)
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It follows from (3.30) and (3.31) that, for alln > N,

¢n < m(Yn + €). (3.32)

From (3.30) and (3.32), it follows that
P(cn <0) = P(mYn < ¢n < m(1n+€)) Yn > N. (3.33)

This probability approaches zero as € — 0, hence as n — oco. To prove this, first note

that, as n — 00, y, in (3.1) is continuous by Lemma 3.2. From (2.4),

P q
T 2 2
Gn = Xn Pn-lxn = E Un,iYn—i + z: Unit+p+1Uy,_;

i=1 1=0

where v,; > 0, Vi, are the eigenvalues of the positive-definite matrix P,—;. Hence,
by Lemma 3.1, G, is continuous as n — oco. Also, from Lemma 3.7 (to follow), «,
does not converge to zero since v, are overestimated V n > N by assumption. Thus,
it follows from Lemma 3.1 that x,_,G, is continuous as n — oo. Finally, from (3.29)
and Lemma 3.1, ¢, is continuous as n — oco. This proves that the probability in
(3.33) approaches zero as n — oo.

Since an OBE algorithm updates its estimator only when ¢, < 0, the probability
of an update diminishes as n — oo. This implies that the expected updating interval

approaches infinity as time increases indefinitely. m]

Note that, if {u,} or {v,} or both are continuously distributed, the assumptions
that {u,} and {v,} are asymptotically independent sequences and the independence
between {u,} and {v,} are not required in the above lemma.

The following lemma asserts that the sum of two independent, ergodic, stationary

sequences is stationary and ergodic.
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Lemma 3.4 If both {X; : k € K} and {Y} : k € K} are ergodic, stationary sequences,
and {X : k € K} is independent of {Yi : k € K}, then {Zy = Xx +Yi : k € K} is

also stationary and ergodic.

Proof: Since {X,} and {Y,} are stationary, by Definition 3.8, there exist sets A, B,
C, and D such that

A= {w:(-,X,X0,X, ) €C} (3.34)
= {w: (""Xn—la Xru Xn+l," ) € C}$ (335)
and
B = {w:("'ay—l,YO,Yh"')eD} (336)
= {w : ( o ,Yn—layna Yﬂ+17 .. ) € D} (337)

Hence, A and B are invariant sets by Definition 3.10. Also, by the ergodicity of {X,}
and {Y,}, Definition 3.11, and Definition 3.12,

P(A) € {0,1} and P(B)e {0,1}.

By (3.34) and (3.36), let F' be such that

F=ANB={w:(---,X_1,X0,X1,--) €CN(--+,Y.1,Yo, V1, --) € D}

Then, there exists an E such that

F = {w:("'a(x-l+Y—l)a(X0+Y0)’(X1+Yl)a"')€E}

{w : ( * "Z—laZ07Z1" : ) € E} (338)
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Similarly, by (3.35) and (3.37),
F={w:(-",2Zn-1y2Zny2Zn41, --) € E}. (3.39)

Thus, by (3.38), (3.39), and Definition 3.10, F is shift-invariant with respective to
{Z,}. Also, by the independence of {X,} and {Y,},

P(F) = P(AN B) = P(A)- P(B) € {0,1}.

Hence, by Definition 3.11, F is trivial. Therefore, by Definition 3.12, {Z,} is station-

ary and ergodic. m]

3.5 Almost Sure Convergence of OBE-ABE

In this section, the theorems of a.s. convergence of the OBE-ABE algorithm are
introduced and proven in iid, mixing, and ergodic noise cases. For a.s. convergence,
both the input sequence {u,} and the noise sequence {v, } are assumed stationary, and
{u,} is assumed independent of {v,}. However, for p. convergence, the stationarity
of {u,} and {v,} are not required. Further, if {u,} or {v,} or both are continuously
distributed, the conditions for a.s. and p. convergence can be further relaxed. The

following is the main theorem for a.s. convergence in the mixing case.

Theorem 3.1 Assume that the stationary sequences {u,} and {v,} are independent.
If PE holds, UCT holds, and {u,} and {v,} are mizing, then the estimator of the
OBE-ABE algorithm is a.s. convergent.
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Proof: Since PE (3.12) and UCT (3.9) hold, there exists an infinite subsequence
{t:} € Z such that for all n € {t;}, (3.9) and

P(x, € K |Fasz) > p1 > 0 ass,, (3.40)

hold where K is defined in (3.12). Throughout the proof, all n considered are in
{t:}. For convenience, let {n} replace {¢;} as the time coordinate in the proof. The
meaning of time intervals, for example, should change accordingly.

Let {vx : k € Z} denote the noise sequence and {uy : k¥ € Z} the input sequence
of model (3.1). Rewrite (3.1) as

p q
Yn — Z AjYn—j = 2 bjun—; + vn. (3.41)
Jj=1 j=0
Let
def g
Wp = ijun_j, (342)
j=0

and V, def Wy, + vn. Then, (3.41) becomes

Yn = Z hn-jvj (3.43)

j=—oc0

where h,, is the infinite impulse response, y,, if V,, is set to a Kronecker delta function.
Note that, by Lemma A.7, {w,} is stationary and ergodic. Also, by Lemma 3.4, {V,}
is stationary and ergodic.

Let {Ix} be a sequence of time intervals of length M over which the OBE-ABE

algorithm does not update its estimator. Then, for each k =1,2,---, K,

0= [6(1) 6(2) -+ 6(m)]
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is a constant vector for all n in each I;. Hence, by (2.5),

€n =Yn — 0 1Xn = 20(’ yn—t Zo(i)yn-i’ (3-44)

=0
where 6(0) %' 1. From (3.43) and (3.44), it follows that

n—i

Z Y 0(8)hai;V;

1=0 j=—o00
By changing the order of summations, this equation becomes, for all n > m,

n n—] n—m

en= 3, V;d 0@ hnii+ X V; ZO(z)h,,_._J
j=n—-m+1 1=0 j=—o00 1=0
Letting p =n — 3,
m-1
= Vn—pzo(’)hp—t'*' Z Vap Zo(z)hp_, d—ef Z Vap- g1+ Z Vap-g2. (3.45)
p=0 1=0 p=m 1=0 p=0 p=m

Note that both g, and g; are independent of n. Hence, (3.45) can be written as
En = g(Vm Vn-la Vn-—27 . ) (346)

where g : R* — R is measurable and independent of n. Hence, by Lemma A.7, {¢,}
is stationary and ergodic as M — oo.

Now, for each k =1,2,.--, K, it follows from (2.10) that

cn = m(7n — €2) — kpe1 G 20, Vn € . (3.47)

Also from (2.5) and letting 0, o, —9.,

€2 = (yn — 07_,xn)" = (vn — 07_,x,)". (3.48)
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Let A7 be the event that v, € D] and 67_,x, > 0. Let A} be the event that
va € DF and 67_ x, < 0. Also, let A, & A+ U A7 and denote by A the complement
of A,. Also note that 5{_1)(,. is F,_1-measurable.

Let By denote the event that A, occurs at least once in I;. Then, for all n € Iy,

By € Fn_2. Hence, it follows from (3.40) that
P(OT_ %, >0|B)>p1>p>0 (3.49)

and

P(6T_,xn, < 0|Bx) > p2 > p > 0. (3.50)

Since By € Fn_2 C Fn-1 and 5,7,'_1xﬂ is F,—1-measurable, it follows from UCT (3.9)
that

P(v, € (D} U D) |5,T_1x,. >0,By) > 6, > % >0 (3.51)

and

~ 6
P(v, € (D} U D) |6T_,x, < 0,By) > 6, > P > 0. (3.52)

Since A} and A are mutually exclusive for sufficiently small ¢, it follows from (3.49),

(3.50), (3.51), (3.52), and the notes below (3.9) that

P(An |Bi) = P(A; |Bx)+ P(A] |Bx)
= P(v, € D7 |67_,x, > 0,B:)- P(67_,x, >0 |Bx)
+P(v, € D}|6T_,x, < 0,By) - P(6T_,x, < 0 |By)
> P(vn € D |67_,x, > 0,Bi) - p+ P(vy, € DF|67_,x, < 0,By) - p

> §>0. (3.53)
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Then, by (3.53) and the definition of A,, it follows that

P(lenl > VA= — € |Bx) > P(An |Bi) > 6 > 0. (3.54)

Thus, by the Poincaré Recurrence Theorem (Theorem A.1) and (3.54),

P(len]| > /7= —€i0. |Bk) =1 as M — oo.

It follows that, for sufficiently large M and conditionally on By_,, the following

inequality holds with probability 1:

max €2 > (7 — €)= 7. — €2y — €) 2 7. — €(2y/n-1 — €). (3.55)

nelk

Now, let Ji = argmax,;, €2. Then, by letting n = Ji, (3.47) can be written as

(replacing Jix by J for simplicity)

Y5 — €5 —K31Gy/m > 0. (3.56)
By (3.55) and (3.56),
Y7 =Y 2 K3-1Gy/m — €(2y/7n=1 — €). (3.57)
Let
dy ¥ ky1Gs/m — €271 — €). (3.58)

Hence, by (3.57), 4» is updated (whenever an interval I is found at time n) by the

recursion

n-1—dy, ifd; >0
" Tn-1 J J , (3.59)

Yn-1, otherwise
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is an upper bound of «, a.s. for each k.

Note that PE and the mixing of {u,} and {v,} implies that, for overestimated v,
Lemma 3.2 and then Lemma 3.3 hold. Hence, intervals I exist i.0. It follows that,
with € — 0, (3.59) and Lemma 3.7 imply that 4, would continue to be updated by
the OBE-ABE algorithm until d; — 0 and v, — 4. as n — oo. Thus, x; — 0 when
e — 0 since G, > 0 due to PE and the stability assumption. Hence, k, — 0 due to

its non-increasing property. Therefore,
P(w: lim 6, = 6.) = 1.

This completes the proof of a.s. convergence. ]

For p. convergence, the mixing assumptions of both {u,} and {v,} in the above
theorem can be relaxed to the requirements that both {u,} and {v,} are asymptoti-
cally independent sequences (see Theorem 3.3). Further, if {u,} or {v,} or both are
continuously-distributed random sequences, then the mixing condition in the theo-
rem above can be relaxed to an ergodic condition for a.s. convergence. The following

theorem validates this assertion.

Theorem 3.2 Assume that the stationary sequences {u,} and {v,} are independent.
If {un} or {v,} or both are continuously-distributed random sequences, PE holds, UCT
holds, and {u,} and {v,} are ergodic, then the estimator of the OBE-ABE algorithm

is a.s. convergent.

Proof: Continuously-distributed {v,} or {u,} or both implies that Lemmas 3.2 and
3.3 hold without the assumption that v, and {u,} are asymptotically independent
sequences. The theorem is then proved by following the same steps as in the proof of

Theorem 3.1. o
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For p. convergence, the assumptions that {u,} and {v,} are independent and
stationary, and that {u,} and {v.} are ergodic are not required (see Theorem 3.4).
The following corollaries are iid noise cases for a.s. convergence. They are special

cases of Theorem 3.1 and 3.2, respectively.

Corollary 3.1 Assume that the stationary sequences {u,} and {v,} are independent.
If PE holds, UT holds, {u,} is mizing, and {v,} is iid, then the estimator of the OBE-

ABE algorithm is a.s. convergence.

Proof: Since UT and UCT imply each other with the iid assumption, and iid implies

mixing, a.s. convergence follows immediately from Theorem 3.1. 8]

Corollary 3.2 Assume that the stationary sequences {u,} and {v,} are independent.
If {vn} or {u,} or both are continuously-distributed random sequences, PE holds, UT
holds, {u,} is ergodic, and {v,} is iid, then the estimator of the OBE-ABE algorithm

ts a.s. convergent.

Proof: Since UT and UCT imply each other with the iid assumption, and iid implies

ergodic, a.s. convergence follows immediately from Theorem 3.2. a

The following corollaries assert the a.s. convergence of the OBE-ABE algorithm

when the probability distribution of the noise sequence {v,} is known.

Corollary 3.3 Assume that the stationary sequences {u,} and {v,} are independent.
If PE holds, {u,} is ergodic, and {v,} is iid with uniform distribution, then the

estimator of the OBE-ABE algorithm is a.s. convergent.

Proof: For a uniform distribution, P(v, € (D} U D)) > 75 > 0. So, UT holds.

By Corollary 3.2, the estimator is a.s. convergent. 0
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Corollary 3.4 Assume that the stationary sequences {u,} and {v,} are independent.
If PE holds, {u,} is mizing, and {v,} is iid with binary Bernoulli distribution: P(v, =
V=) > 6 or P(v, = —\/7.) > 6, Vn, then the estimator of the OBE-ABE algorithm

iS a.8. convergence.
Proof: Since UT holds in this case, a.s. convergence follows from Corollary 3.1. 0O

Corollary 3.5 Assume that the stationary sequences {u,} and {v,} are independent.
If PE holds, {u,} is ergodic and continuously distributed, and {v,} is iid with binary
Bernoulli distribution: P(v, = \/7.) > 6 or P(v, = —\/7.) > 6, Vn, then the
estimator of the OBE-ABE algorithm is a.s. convergent.

Proof: Since UT holds in this case, the a.s. convergence follows from Corollary 3.2.

0

Note that all the theorems and corollaries in this section are also valid for con-
ventional OBE algorithms (and the EPA algorithm) with a known exact noise bound
¥» or —,/7., because, for the OBE-ABE algorithm, 7, — 7. as n — oo as seen in

the proof of Theorem 3.1.

3.6 Convergence in Probability of OBE-ABE

Although a.s. convergence implies p. convergence, the sufficient conditions for a.s. con-
vergence can be relaxed for p. convergence. Specifically, in addition to other relax-
ations in some cases, the stationarity of {u,} and {v,} are not required for p. con-
vergence. The main theorem for p. convergence of OBE-ABE algorithm is in the

following.

Theorem 3.3 Assume that the sequences {v,} and {u,} are independent. If PE

holds, UCT holds, and {u,} and {v,} are asymptotically independent sequences, then
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the estimator of the OBE-ABE algorithm is p. convergent.

Proof: Since PE (3.12) and UCT (3.9) hold, there exists an infinite subsequence
{t:} € Z such that for all n € {¢;}, (3.9) and

P(x,. €EK |fn_2) >p >0 as, (360)

hold where K is defined in (3.12). Throughout the proof, all n considered are in
{t;}. For convenience, let {n} replace {t;} as the time coordinate in the proof. The
meaning of time intervals, for example, should change accordingly.

Let {I;} be a sequence of time intervals of length M € N over which the OBE-
ABE algorithm does not update its estimator. Then, for each k¥ = 1,2,---, K, it
follows from (2.10) that

cn=m(Yn —€2) = kne1Gn 20,  Vn € I (3.61)

Also from (2.5),

€2 = (yn — 07_,%n)" = (va — 07_,x,)". (3.62)

Let A7 be the event that v, € D] and §7_,x, > 0, and A} be the event that
v, € D} and éf_lx,, < 0. Also, let A, & A}YUA;, and denote by A¢ the complement
of A,. Also note that 5,7;_1x,, is F,_1-measurable.

Let By denote the event that A, occurs at least once in I;. Then, for all n € Iy,

Bi € F,—-2. Hence, it follows from (3.60) that
POT_,x, >0 |Bi)>p1>p>0 (3.63)

and
P(6F_,x, <0|By) > p2>p>0. (3.64)
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Since By € Fn_2 C Fpn-1 and 0~$_lxn is Fn_1-measurable, it follows from UCT (3.9)
that

P(v, € (DY UD7) |6F_,x, > 0,Bi) > & > i >0 (3.65)

and

§
P(v, € (D} U D) |0T_ %, < 0,B;) > 65 > S >0 (3.66)

Since A} and A, are mutually exclusive for sufficiently small ¢, it follows from

(3.63), (3.64), (3.65), and (3.66) that

P(A. |Bx) = P(A; |Bi)+ P(A} |Bi)
= P(va € D7 |T_xn > 0, By) - P(6T_x > 0 |By)
+P(v, € D}|07_,x, < 0,By) - P(67_,x, < 0|B)
> P(vn € D7 |6%_1%n > 0,B:) - p+ P(vn € DF|6%_%, < 0,Bi) - p

> (514 6) pEé>0. (3.67)

Hence,

P(A; |Bx) =1—P(A, |By) <1-6.

Similarly, since AS_, € Fn_3, it follows that

P(AY|A] 2, Br) = 1= P(An|A] 3, Bi) = 1 [P(A;|A;_;, Bi) + P(A7|A; 3, Bi)]

1 - {P(vn e D | n_lxn Z 0 Aﬂ 29 Bk) P(on lxn > OlAn_z, Bk)
+ P(vn e D+|0 1xn < 0 An_z, Bk) P( lxn < OIAn_z,Bk)}

< 1-6.

Thus,
P(AS N AS_y |By) = P(AS_y |By) - P(AS | A5gy By) < (1 - 6)2
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Similarly,
P(ACIAu—2 n—4B") <1l-

Hence,

P(A N A, ,NAL_,|B) = P(A;_;A; 4 |Bi)- P(A]A] By)

n—-2 n-4

< (1-62-(1-8)=(1-6)>
By induction, (for notational simplicity, let M be even)
P(NM2 A2 |By) < (1 - 6)M/2,
Thus,

P(Bi | Bi-1) = P(A, occurs at least once in I} | By-1) = P(UM, A; | Bx-1)

1— P(NM,AZ | Bioy) > 1 — P(NMAS; | Bioy)

> 1-(1-68M2 (3.68)

Note that by (3.62), the fact that A, occurs at least once in I implies that
maxnes, €2 > (y/7- — €)?. Hence, from (3.62) and (3.68), it follows that

max €2 > (V= — €2 = 7. — €(2y/7 — €) = 7o — €(2y/Fn-1 — €) (3.69)

nely

with probability 1 — (1 — §)M/2 (> 0.99995 if § = 0.01 and M > 2000).

In the case of iid noise and the assumption that {v,} is independent of {u,}, the
conditional probabilities in the above derivation are not required and can be replaced
with marginal probabilities. Hence, (3.69) holds with probability 1 — (1 — &)™ in this

case.
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Let J, = argmax,c; €2. Then, by letting n = Ji, (3.61) can be written as

(replacing Jx by J for simplicity.)

vy — €2 —Kkj-1Gy/m > 0. (3.70)
By (3.69) and (3.70),
V1=V 2 K121G/m — €(2y/ 1 —€). (3.711)
Let
d; = k1_1Gy/m — €2/ — €). (3.72)

Hence, by (3.71), v, is updated (whenever an interval I; is found at time n) by the

recursion

no1—dy, ifd;>0
p={ Y 7o (3.73)

Yn-1, Otherwise

is an upper bound of 4. with probability 1 — (1 — §)™/2 for each k.
Since the o-fields F,, increase with n, i.e., F,_1 C Fy, it follows from (3.68) that,
for each k,

P(Blek_lBk_g-"Bl) >1-— (1 - 6)M/2.

Hence,

P(ni;lBk) = P(Blek_lBk_z e B]) . P(Bk_l IBk—ZBk—S e Bl) s P(leBl) . P(Bl)

> [1-(1-6%K. (3.74)

The assumptions that PE holds, the independence between {u,} and {v,}, and

that both {u,} and {v,} are asymptotically independent sequences, imply that, for
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overestimated «,, Lemma 3.2 and then Lemma 3.3 hold. Hence, intervals I exist i.o.
It follows that with ¢ — 0, (3.73) and Lemma 3.7 imply that 4, would continue to
be updated by the OBE-ABE algorithm until d; — 0 and 4, — 7. as n — oo. Thus,
xky — 0 when ¢ — 0 since G, > 0 due to PE and the stability assumption. Hence,
kn — 0 due to its non-increasing property.

Note that K < N/M where N is the total “time” (number of data sets). Let
M = [V2N] + 1 where [] denotes the integer part. Then, (3.74) becomes

M

PN B)>1--80FF>n1-1-6VVVN2Z 1 a5 N o oo

This is verified by applying L’Hopital’s rule as shown below to find that (1—¢")" — 1,

as n — 0o, where 0 < ¢ < 1:

lim(1-¢")" = lim exp[rnln(l - ¢")] = exp[lim nln(1 — ¢")]

_ . In(1-¢"), . —m=¢"Ing
= exp(fig, =) = exp(fig, ——3—)
. n?lng . 2nlnq
= exp(lim =) = exe(lim — =5 )
. 2n . 2
= exp(lim —=7) = exp(lim ~=5-)
= exp(0) =1.
Thus,
'}Lrgxo P(||6, — 6.]| > €) = 0.
This completes the proof of p. convergence. o

Remark 1: Theoretically, instead of the a priori knowledge of 4. to achieve a.s. or

p. convergence, the OBE-ABE algorithm requires only a lower bound, 6(¢), of the
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e-tail probability of v, [see (3.10)].

Remark 2: For the application of the OBE-ABE algorithm, since N is finite, an ¢
is first arbitrarily chosen to be a small positive number (kx decreases with €). Given
this ¢, a 6 is estimated. Any lower bound satisfying UT (3.10) (in the iid case, for
example) will work. Then, a large enough N and M(= [V/N] + 1, for example)
are chosen so that the probability [I — (1 — §)¥ ]1’5 is close to one. For example,
if § = 0.1, choose M = 101 and N = 10,000, for example, to get the probability
n-Q1 —6)M]% > 0.997. If 6§ = 0.02, choose M = 601 and N = 360, 000, for example,
to get the probability [1 —(1—6)M]# > 0.996. Since the probability [1—(1— &)™ |% is
the most conservative value, if N is fixed in practice and is not too large (N < 10,000,
for example), M can be simply chosen large enough to make 1 — (1 — §)™ close to
one. If, in a real-world application, é is still difficult to estimated after choosing e,
then simply start the OBE-ABE algorithm with a small M (M = 20 for example)
and then increase M after each trial if necessary. The negativity of x, can serve as an
indication of a too small M. The algorithm is guaranteed to be p. convergent (with
probability close to 1) if M is large enough when sufficient conditions (PE, UCT) are

satisfied.

If {un} or {vn} or both are continuously-distributed random sequences, then the
requirements that both {u,} and {v,} be asymptotically independent sequences, and
that {u,} be independent of {v,} are not required for p. consistency. The following

theorem validates this assertion.

Theorem 3.4 If{u,} or {v,} or both are continuously-distributed random sequences,
PE holds, and UCT holds, then the estimator of the OBE-ABE algorithm is p. con-

vergent.
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Proof: Continuously-distributed v, implies that Lemmas 3.2 and 3.3 hold without
the assumption that both {u,} and {v,} are asymptotically independent sequences,
and that {u,} is independent of {v,}. The theorem is then proved by following the

steps of the proof of Theorem 3.3. O

The following corollaries involve iid noise cases for p. convergence. They are

special cases of Theorems 3.3 and 3.4, respectively.

Corollary 3.6 Assume that the sequences {u,} and {v,} are independent. If PE
holds, UT holds, {u,} is asymptotically independent, and {v,} is iid, then the esti-

mator of the OBE-ABE algorithm is a.s. convergent.

Proof: Since UT and UCT imply each other with the iid assumption, and iid implies

asymptotically independent, p. convergence follows immediately from Theorem 3.3.

a

Corollary 3.7 If {u,} or {v,} or both are continuously-distributed random sequences,
PE holds, UT holds, and {v,} is iid, then the estimator of the OBE-ABE algorithm

s p. convergent.

Proof: Since UT and UCT imply each other with the iid assumption, p. convergence

follows immediately from Theorem 3.4. m]

The following corollaries assert the p. convergence of the OBE-ABE algorithm

when the probability distribution of the noise sequence {v,} is known.

Corollary 3.8 If PE holds, and {v,} is iid with uniform distribution, then the esti-

mator of the OBE-ABE algorithm is p. convergent.

Proof: For a uniform distribution, P(v, € (D} U D)) >

= > 0. So, UT holds.

By Corollary (3.7), the estimator is p. convergent. ()
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Corollary 3.9 Assume that the sequences {u,} and {v,} are independent. If PE
holds, {u,} is asymptotically independent, and {v,} is iid with binary Bernoulli dis-
tribution: P(v, = \/7.) > 6 or P(v, = —\/7.) > 6, Vn, then the estimator of the

OBE-ABE algorithm is a.s. convergent.
Proof: Since UT holds in this case, the p. convergence follows from Corollary 3.6. O

Corollary 3.10 If PE holds, {u,} is continuously distributed, and {v,} is iid with
binary Bernoulli distribution: P(v, = \/7.) > 6 or P(v, = — /%) > 6, Vn, then the

estimator of the OBE-ABE algorithm is p. convergent.

Proof: Since UT holds in this case, the p. convergence follows from Corollary 3.7. O

Note that all the theorems and corollaries in this section are also valid for con-
ventional OBE algorithms (and the EPA algorithm) with a known exact noise bound
Y. or —,/7., because, for the OBE-ABE algorithm, v, — 7. as n — 00 as seen in

the proof of Theorem 3.3.

3.7 Almost Sure and Probability Convergence of
Sub-OBE-ABE

All the convergence theorems developed in previous sections are valid for Sub-OBE-
ABE algorithm in various noise cases with the same sufficient conditions respectively.
The sketch of proofs of all the theorems for Sub-OBE-ABE is in the following. The
algorithmic steps of the algorithm are found in Table 2.3.

For convenience, let us rewrite the optimal check coefficient c¢,, suboptimal check

coefficient ¢,, and recursion formula for d, here:

Cn = MYy — Me2 — Ky 1Gp (3.75)
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Cn = MYn — MEE — K1 XT X, /dny (3.76)

dn = Qndn_y + BnXIXy. (3.77)

Also, define

e, if G, <0
& = ¢ (3.78)

0, otherwise.

and

E:=J Cn, if ¢a2>0

0, otherwise.

\

Hence, ¢, = ¢t + ¢;. The following lemmas are needed for the proof of the main

theorem.
Lemma 3.5 ¢, < 0 impliesc, <0

Proof: Since the matrix P, is real symmetric,

1
Gn = XTPp_1X, > umi,,(P,._l)xfx,. = mx{xn (3.79)

where Vmin(:) and vmax(-) denote the minimum and maximum eigenvalues, respec-
tively. Also, as in (2.9)

-1 -1 T
P." =P, + BuxnX;.

This implies
tr(P;!) = antr(P;2,) + BaxTx,. (3.80)

Since P! is positive definite,

tr(PY) 2 vmax(P77)
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That is,
1 1
< .
tr(P;1) = vmax(P;1)

(3.81)

Comparing (3.80) and (3.77), we see that d, = tr(P;!). Also, by (3.79) and (3.81),

Gn > XoXT /dy_y. (3.82)

Hence, by (3.75), (3.76) and (3.82), the lemma is proved. : m]

Note that a version of Lemma A.2 is valid for Sub-OBE-ABE as is stated in
Lemma 3.6 below. The proof is the same except that ¢ in the original proof [27] is

replaced by c;.

Lemma 3.6 For Sub-OBE-ABE algorithm, lim,_., ¢, = 0, where ¢, is defined in
(8.78).

Theorem 3.5 All the convergence theorems of OBE-ABE are valid for Sub-OBE-

ABE with the same respective conditions.

Proof: That Lemma 3.3 is valid for Sub-OBE-ABE is shown by substituting ¢} and
¢, in the proof with ¢} and ¢, respectively. Also note that P(¢, < 0) < P(¢, < 0)
which is implied by Lemma 3.5. Since other lemmas (including Lemmas 3.5 and 3.6)
which are necessary for the proof of the main theorems of Sub-OBE-ABE algorithm
are not affected by the suboptimal check é,, it follows that the proofs of convergence
for OBE-ABE are also valid for Sub-OBE-ABE provided that ¢, and G, in the proofs

are changed to ¢, and xen/ d,_1, respectively. (]
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3.8 A Necessary Condition

All convergence theorems in the previous sections have two common sufficient condi-
tions: PE and UCT (or UT in the iid case). PE has been shown to be a necessary
condition [5, 31, 42] for the convergence of any LSE algorithm. Another necessary
condition for the convergence of those algorithms is the whiteness of the noise se-
quence. This is a logical result since white noise carries the least power of all WSS
noises.

SM algorithms are based on minimizing the feasible set (polytope or ellipsoid)
according to assumed known noise bounds. Although some SM algorithms (especially
OBEs) have similar recursion formulae to RLS, a LSE algorithm, the convergence of
SM algorithms does not rely on the whiteness of the noise sequence. Even in the
white noise case, the estimator of an OBE algorithm (i.e. the center of ellipsoid at
each step) may be biased away from the true parameter vector due to the optimal
data weighting process. This is reasonable since whiteness is an “average” property,
not a pointwise property (e.g. UCT and UT are pointwise properties).

If UCT or UT does not hold, then the ellipsoid of SM algorithms will not shrink to
a point, hence convergence is not guaranteed. The following lemma which is extended
from Lemma A.1 by considering an almost sure (a.s.) w-set in its proof, validates this

assertion.

Lemma 3.7 Assume that the PE (3.12) holds. If there ezists an € > 0 and N € N,
such that v, — v,2 > ¢, Vn > N, a.s., then the sequence of the ellipsoids of OBE

algorithms does not asymptotically shrink to a point a.s.

Theorem 3.8 Assume that PE holds. Then, UCT is a necessary condition for the

sequence of the ellipsoids of any OBE algorithm to shrink to a point a.s.

Proof: Suppose that UCT does not hold. Then, considering the notes below (3.9),
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there exist an € > 0 and an N € N such that, for all n > N, P(v, € D}|F,_,) =
0 and P(v, € D|F,-1) = 0 a.s. Hence, 7, — v2 > ¢, Vn > N as. Thus, by

Lemma 3.7, the sequence of the ellipsoids does not shrink to a point a.s. 0
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Chapter 4

Simulation Studies

4.1 Introduction

In this chapter, the performance of each of the new algorithms is investigated through
simulations. Although the algorithms have been proven to be convergent in iid,
mixing, ergodic, and non-stationary noise cases in the previous chapter, simulations
can provide other characteristics which are not explicitly inferred from theoretical
analysis. For example, simulations can illustrate how the speed of convergence of
OBE-ABE algorithm is affected by the ABE procedure. Simulations also reveal that
the suboptimal check in Sub-OBE-ABE does not slow down the speed of convergence.
This is not surprising since the the noise bounds estimated by the ABE procedure are
not affected by the suboptimal check. Simulations also reveal the effect of asymmetric
noise bounds on the performance of convergence.

The version of OBE algorithms used in this dissertation is SM-SA algorithm due
to its interpretable optimization criterion and numerical stability. Colored noise cases,

in addition to iid cases, are also demonstrated.
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4.2 IID Noise Cases

In this section, the performance of OBE-ABE, Sub-OBE-ABE, and conventional OBE
are compared in iid noise cases with symmetric and asymmetric bounds. Comparisons
of performance of OBE-type algorithms with RLS in the iid case are found in [27].
Hence, they are omitted here. When compared to RLS, OBE algorithms have better
speed of convergence in many noise cases.

Throughout this section, an AR(3) model is simulated as follows:

Yn = Q1aYn-1 + A2.Yn-2 + A3sYn-3 + Un (41)

where a,. = 2,a;. = —1.48,a3. = 0.34 are unknown parameters to be identified.
Three types of noise sequences {v,} are employed to generate three observable out-

put sequences {y,}. Specifically,

CASE 1: AR(3) model as (4.1). v, ~ B(—1,1) is iid and non-zero-mean with binary

Bernoulli distribution.

1, with probability 0.7

Un

(4.2)
—1, with probability 0.3.
CASE 2: AR(3) model as (4.1). v, ~ U(—1,1) is uniformly distributed on [-1,1].

The following is a case of asymmetric noise bounds:

CASE 3: AR(3) model as (4.1). v, ~ B(—0.5,1) is iid, non-zero-mean, asymmetri-
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cally bounded with binary Bernoulli distribution. Specifically,

1, with probability 0.7

Un

(4.3)
—0.5, with probability 0.3.

The following case is constructed for the illustration of the final ellipsoid of the algo-

rithm and the trajectory of the estimator.

CASE 4: AR(2) model is constructed as follows:

Yn = —0.1yn-1 + 0.56yn_2 + v, (4.4)

in which v, is as in CASE 1, (4.2).

Note that the noise bound (7. = 1) and the non-zero mean of v, are assumed unknown

in these cases.

4.2.1 OBE-ABE vs. OBE

In this subsection, OBE-ABE and OBE are compared with regard to the speed of
convergence and computational efficiency using CASEs 1 — 3. These results support
the validity of the theorems in the previous chapter.

For CASE 1, the simulation results of OBE-ABE (1 = 1.5, ¢ = 0, and M = 20)
and OBE (4 = 1.5) are shown in Figs. 4.1 — 4.3. As seen in the figures, neither
estimator is affected by the non-zero mean of v, and both algorithms converge to
the true parameter (a;. = 2). This supports the assertions of related theorems in
Chap. 3.

However, with the help of automatic bound estimation, OBE-ABE converges faster
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(as seen in Fig. 4.1) than OBE. This result is not unexpected in light of Lemma 3.7
and related theorems in Chap. 3.

For CASE 2, the simulation results of OBE-ABE (v = 1.5, ¢ = 0.05, and M = 50)
and OBE (v = 1.5) are shown in Figs. 4.4 - 4.6. The difference of convergence
performance between OBE-ABE and OBE is similar to those of CASE 1.

Further, a comparison between CASE 1 and CASE 2 shows that the speed of
convergence of both algorithms is proportional to the e-tail probability, , defined in
UT (3.10) or UCT (3.9).

For CASE 3, the simulation results of OBE-ABE (7o = 1.5, ¢ = 0, and M = 70)
and OBE (4o = 1.5) are shown in Figs. 4.7 - 4.9. As seen in the figures, the con-
vergence of (overestimated) OBE is affected by the asymmetry of noise bounds while
OBE-ABE converges consistently as estimated bounds 7, automatically converge to
the true bound (= 1).

For CASE 4, the final ellipsoid of OBE-ABE (v = 1.5, ¢ = 0, and M = 20) and
the trajectory of the estimator after 1000 steps are shown Fig. 4.10. The trajectory
of the estimator starts from the 17th step. The ellipsoid does not degenerate to a
line segment. This conforms to the positiveness of P, and x, under PE and stable
assumptions.

These simulations show that the number of updates for the estimator of OBE-ABE
algorithm is smaller than that of the (overestimated bound) OBE algorithm if both
algorithms terminate at same ellipsoidal volume. This means that OBE-ABE shrinks
the volumes of ellipsoids more drastically than OBE each time that the updating
occurs. The improved computational efficiency of OBE-ABE is not surprising since
the ABE procedure, having trivial computational cost as seen in CASE 1 through

CASE 3, blindly gets more correct information (noise bound) than those of OBE.
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Figure 4.1: Estimators of a;. = 2. CASE 1 : v, ~ B(—1,1) is non-zero mean for
model (4.1).
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Figure 4.2: CASE 1 : v, ~ B(—1,1) is non-zero mean for model (4.1).
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Figure 4.3: CASE 1 : v, ~ B(—1,1) is non-zero mean for model (4.1).
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Figure 4.4: Estimators of a;. = 2. CASE 2 : v, ~ U(-1,1) for model (4.1).

60



10 ——

-1

10F.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 4.5: CASE 2 : v, ~ U(-1,1) for model (4.1).
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Figure 4.6: CASE 2 : v, ~ U(-1,1) for model (4.1).
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Figure 4.7: Estimators of a;. = 2. CASE 3 : v, ~ B(—0.5,1), (4.3), for model (4.1).

Volumes of Ellipsoids

OBE-ABE

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (n)

Figure 4.8: CASE 3 : v, ~ B(—0.5,1), (4.3), for model (4.1).
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Figure 4.9: CASE 3 : v, ~ B(-0.5,1), (4.3), for model (4.1).
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Figure 4.10: CASE 4 : The final ellipsoid and the trajectory of the estimator. v, ~
B(-1,1), (4.2), for model (4.4).
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4.2.2 Sub-OBE-ABE vs. OBE-ABE

In this subsection, Sub-OBE-ABE and OBE-ABE are compared with regard to the
speed of convergence and computational efficiency using CASEs 1 and 2. These
convergence results support the validity of the theorems in the previous chapter.

For CASE 1, the simulation results of OBE-ABE (v = 1.5, ¢ = 0, and M = 20)
and Sub-OBE-ABE (4 = 1.5, ¢ = 0, and M = 20) are shown in Figs. 4.11 and 4.12.
As seen in the figures, neither estimator is affected by the non-zero mean of v,, and
both algorithms converge to the true parameter (a;. = 2).

In this case, Sub-OBE-ABE, which selects 18% of the data, has similar convergence
performance to OBE-ABE which selects 50% of the data. This reveals that the
excellent performance of ABE procedure is not affected by the suboptimal check.

For CASE 2, the simulation results of OBE-ABE (4o = 1.5, € = 0.05, and M = 50)
and Sub-OBE-ABE (9o = 1.5, € = 0.05, and M = 30) are shown in Figs. 4.13 and
4.14. As seen in the figures, neither estimator is affected by the non-zero mean of
v, and both algorithms converge to the true parameter (a;. = 2). Sub-OBE-ABE
which selects very few (1.5%) data in this case has similar convergence performance to
OBE-ABE which selects 5% of the data. However, both in CASEs 1 and 2, the speed
of convergence of Sub-OBE-ABE in the beginning (e.g. first 150 steps) is slower than
that of OBE-ABE. This is because, in that stage, Sub-OBE-ABE has big ellipsoids
and is busy updating the estimator using the suboptimal check without updating the

estimated noise bound using the ABE procedure.

4.3 Colored Noise Cases

In this section, the performances of OBE-ABE, Sub-OBE-ABE, and conventional

OBE are compared in colored noise cases with symmetric and asymmetric bounds.
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Figure 4.11: Estimators of a;. = 2. CASE 1 : v, ~ B(—1,1) is non-zero mean for
model (4.1).
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Figure 4.12: CASE 1 : v, ~ B(—1,1) is non-zero mean for model (4.1).
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Figure 4.13: Estimators of a;. = 2. CASE 2 : v, ~ U(-1,1) for model (4.1).
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Figure 4.14: CASE 2 : v, ~ U(-1,1) for model (4.1).
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Four colored noise cases are constructed as follows:

CASE 5: AR(3) model as (4.1). v, is a colored non-zero-mean noise sequence related

to a colored sequence {w,} as follows:

1, fw,>-1

Un

(4.5)

—1, otherwise

in which the colored sequence {wy,} is generated by a uniformly-distributed iid white

noise sequence z, ~ U(—1,1) as follow:

wy, = —0.8w,_1 + z,.

CASE 6: v, is the same as in CASE 5, (4.5), while the order of the AR model increases

to 12. Specifically, a stable AR(12) model is employed in this case as follows:

Yn = G1aYn—1 + G2.Yn-2 + -+ + G12.Yn-12 + Uy (46)

where a;. = —0.1,a7. = 0.9175,a3. = —0.191,a4. = —0.2253,a5. = 0.2601,as. =
0.0046, a7, = —0.0367, as. = —0.0209, ag. = —0.0082, a;p. = 0.0095, a;;. = —0.0052,

and a;2. = —0.0041 are unknown parameters to be identified.

CASE 7: AR(3) model as (4.1). v, is a colored non-zero-mean noise sequence with
asymmetric bounds generated by a colored sequence {w,}, i.e.,

1, fw,>-1
Up = (4.7)

—-0.5, otherwise

The following case is constructed for the illustration of the final ellipsoid of the algo-
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rithm and the trajectory of the estimator in colored noise case.

CASE 8: AR(2) model as in CASE 4, (4.4). v, is as in CASE 5, (4.5).

4.3.1 OBE-ABE vs. OBE

In this subsection, OBE-ABE and OBE are compared with regard to the speed of
convergence and computational efficiency using CASEs 5 — 7. These results support
the validity of the theorems in the previous chapter.

For CASE 5, the simulation results of OBE-ABE (7o = 1.5, ¢ = 0, and M = 40)
and OBE (4o = 1.5) are shown in Figs. 4.15 — 4.17. A seen in the figures, neither
estimator is affected by the color of v, and both algorithms converge to the true
parameter (a;. = 2). This supports the assertions of related theorems in Chap. 3.

For CASE 6, the simulation results of OBE-ABE (7o = 1.5, ¢ = 0, and M = 40)
and OBE (4o = 1.5) in this case are shown in Figs. 4.18 — 4.20. A seen in the figures,
the slow speed of convergence of OBE due to overestimated noise bound results in poor
convergence, while OBE-ABE converges very well to the true parameter (a;. = —0.1).
This shows that the excellent convergence performance is not affected by model order
while (overestimated bound) OBE is.

For CASE 7, the simulation results of OBE-ABE (7o = 1.5, ¢ = 0, and M = 250)
and OBE (o = 1.5) are shown in Figs. 4.21 - 4.23. As seen in the figures, the con-
vergence of (overestimated) OBE is affected by the asymmetry of noise bounds while
OBE-ABE converges consistently as estimated bounds «, automatically converge to
the true bound.

For CASE 8, the final ellipsoid of OBE-ABE (y = 1.5, ¢ = 0, and M = 40) and

the trajectory of the estimator after 1000 steps are shown in Fig. 4.10. The trajectory
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Figure 4.15: Estimators of a;. = 2. CASE 5: v, is colored in (4.5) for model (4.1).

of the estimator starts from the 17th step. The ellipsoid does not degenerate to a
line segment. This conforms to the positiveness of P, and x,, under PE and stable

assumptions.

4.3.2 Sub-OBE-ABE vs. OBE-ABE

In this subsection, Sub-OBE-ABE and OBE-ABE are compared with regard to the
speed of convergence and computational efficiency using CASEs 5 and 6. These
results support the validity of the theorems in the previous chapter.

For CASE 5, the simulation results of OBE-ABE (v = 1.5, ¢ = 0, and M = 20)
and Sub-OBE-ABE (v, = 1.5, ¢ = 0, and M = 20) are shown in Figs. 4.25 and 4.26.
As seen in the figures, neither estimator is affected by the color and non-zero mean
of v, and both algorithms converge to the true parameter (a;. = 2). This supports
the assertions of related theorems in Chap. 3.

In this case, Sub-OBE-ABE, which selects 15% of the data, has similar convergence

performance to OBE-ABE which selects 45% of the data. This reveals that the
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Figure 4.16: CASE 5 : v, is colored in (4.5) for model (4.1).
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Figure 4.17: CASE 5 : v, is colored in (4.5) for model (4.1).
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Figure 4.18: Estimators of a,. = —0.1. CASE 6: v, is colored in (4.5) for model (4.6).
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Figure 4.19: CASE 6 : v, is colored in (4.5) for model (4.6).
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Figure 4.20: CASE 6 : v, is colored in (4.5) for model (4.6).

Figure 4.21: Estimators of a;. = 2. CASE 7 : Colored noise v, ~ B(-0.5,1), (4.7),
for model (4.1).
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Figure 4.22: CASE 7 : Colored noise v, ~ B(—0.5,1), (4.7), for model (4.1).
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Figure 4.23: CASE 7 : Colored noise v, ~ B(—0.5,1), (4.7), for model (4.1).
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Figure 4.24: CASE 8 : The final ellipsoid and the trajectory of the estimator. v, ~
B(-1,1), (4.5), for model (4.4).
excellent performance of the ABE procedure is not affected by the suboptimal check.
For CASE 6, the simulation results of OBE-ABE (v = 1.5, ¢ = 0, and M = 30)
and Sub-OBE-ABE (4o = 1.5, ¢ = 0, and M = 30) are shown in Figs. 4.27 and 4.28.
As seen in the figures, neither estimator is affected by the non-zero mean of v, and
both algorithms converge to the true parameter (a;. = 2). However, Sub-OBE-ABE,
which selects very few (1.5%) data in this higher order case, has slower speed of

convergence in 2000 steps than OBE-ABE which selects 5% of the data.

4.4 Tracking Performance of Adaptive Sub-OBE-
ABE

In this section, tracking performance of Sub-OBE-ABE algorithm is illustrated through
study of two examples of time-varying systems: one gradually changing, the other

abruptly changing. Specifically, an AR(2) model with time-varying parameters is
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Figure 4.25: Estimators of a;. = 2. CASE 5: v, is colored in (4.5) for model (4.1).

10! Volumes of Eliipecids
10' !' 1
10° r 1

200 400 600 800 1000 1200 1400 1600 1800 2000
Time (n)

Figure 4.26: CASE 5 : v, is colored in (4.5) for model (4.1).
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Figure 4.27: Estimators of a;. = —0.1. CASE 6: v, is colored in (4.5) for model (4.6).
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Figure 4.28: CASE 6: v, is colored in (4.5) for model (4.6).
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constructed as follows:

Yn = G1aYn-1 + A2+Yn-2 + v (48)

in which a2, = —0.68 and a,. varies between —1.6 and 1.6 (the same as in [11]).
This is equivalent to varying the system’s conjugate poles 0.8 + j0.2 to and from
—0.8 & j0.2. The variations of a,. (abruptly or gradually) are shown as dashed lines
in Figs. 4.31 and 4.39. The noise sequence {v,} is iid and uniformly distributed on
[-1,1].

Although “non-adaptive” OBE algorithms are well-known to have good tracking
capability in slowly time-varying systems, they eventually lose tracking capability.
This result is shown in Fig. 4.29 and 4.30 (v, = 1.5).

On the other hand, the adaptive Sub-OBE-ABE algorithm (y, = 1.5, ¢ = 0.02,
M = 70), which selects 4.5% and 3% (p in each figure) of the data, respectively, keeps
track of the varying parameters very well, as shown in Figs. 4.31 and 4.32.

To further investigate its tracking capability, faster-varying systems are simulated
as in Figs. 4.33 - 4.36. As shown in the figures, the adaptive Sub-OBE-ABE algorithm
(70 = 1.5, € = 0.02, M = 70), which selects no more than 7.5% of the data, keeps
track of these faster time-varying parameters equally well.

Comparing these diagrams with those in [11, 37, 38] shows that the adaptive
Sub-OBE-ABE algorithm has better tracking capability.

The tracking capability of the Sub-OBE-ABE (or any OBE) algorithm is propor-
tional to the tail probability of noise. This is a natural result since the larger the tail
probability, the more frequent Sub-OBE-ABE updates its estimator. To demonstrate
this, a much faster time-varying systems with the same uniformly distributed noise v,
is simulated as shown in Fig. 4.37. As shown in the figure, the tracking performance
is not as good as in previous cases. However, if v, is now binary Bernoulli distributed

with 0.5 tail probability, the tracking performance is improved as shown in Fig. 4.38.
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Figure 4.29: Non-adaptive OBE algorithm on the time-varying system (4.8). v, = 1.5.

An even faster time-varying system with the same binary Bernoulli distributed noise
is shown in Fig. 4.39. As shown in the figure, the tracking performance of Sub-OBE-
ABE algorithm is still excellent in this case. In these cases, Sub-OBE-ABE selects,

on average, 32% of the data.
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Figure 4.30: Non-adaptive OBE (SM-SA) algorithm on the time-varying system (4.8).
T = L.5.
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Figure 4.31: Adaptive Sub-OBE-ABE algorithm on the time-varying system (4.8).
p = 4.5%.
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Figure 4.32: Adaptive Sub-OBE-ABE on the time-varying system (4.8). p = 3%.
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Figure 4.33: Adaptive Sub-OBE-ABE algorithm on the time-varying system (4.8).
p = 5.5%.
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Figure 4.34: Adaptive Sub-OBE-ABE on the time-varying system (4.8). p = 3.5%.
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Figure 4.35: Adaptive Sub-OBE-ABE on the time-varying system (4.8). p = 7.5%.
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Figure 4.36: Adaptive Sub-OBE-ABE on the time-varying system (4.8). p = 5.5%.
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Figure 4.37: Adaptive Sub-OBE-ABE on the time-varying system (4.8). p = 10%.
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Figure 4.38: Adaptive Sub-OBE-ABE on the time-varying system (4.8) (v, ~
B(-1,1)). p = 31%.
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Figure 4.39: Adaptive Sub-OBE-ABE on the time-varying system (4.8) (v, ~
B(-1,1)). p = 33%.
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Chapter 5

Application to Linear Prediction
Analysis of Speech

5.1 Introduction

OBE-ABE algorithm and its variants presented in the previous chapters are proven
in Chap. 3 to be a.s. and p. convergent under various conditions including colored and
non-stationary noise cases. These algorithms have excellent performance in simula-
tions which are designed to satisfy the sufficient conditions of convergence. However,
in real-world applications where model structures or noise characteristics are not ideal
as in simulations, the performance of most algorithms suffer. In order to further inves-
tigate the performance of the new OBE-ABE algorithms in real-world applications,
they are applied to the linear prediction (LP) analysis of speech [12, 40] in this chapter

and to the blind-deconvolution problem in the next chapter.

5.2 LP model of speech

Speech is a very dynamic signal. Even a short frame (e.g., 25.6 msec) of speech can

be regarded as quasi-stationary at best. However, for analytical tractability, a short
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frame of 25.6 msec (256 points for 10 kHz sampling rate) speech signal is usually

modeled as an AR(m) process as follows:

m
Yn = Zai—yn-i + v, = 9Z‘xn + . (51)

=1

6T = [a1.- - am.) is the vector of unknown LP coefficients to be identified and the
unobservable excitation input sequence {v,} is a white noise for unvoiced sounds and
a quasi-periodic pulse train of appropriate pitch for voiced sounds.

The LP model has been the industry standard for decades in speech analysis be-
cause of its mathematical tractability and acceptable results for processing or recog-
nition purposes. Although cepstral coefficients [12] or temporal cepstral derivative
[40] are employed in some speech recognition systems for robustness or improved
performance, they are often derived from LP coefficients.

The autocorrelation method using the Levinson-Durbin algorithm [12, 40] to
achieve an O(m) [O(3m) if overlapped frames are taken into account] computation
has been the industry standard for identifying the LP coefficients {a,.}. It is a batch
method based on LSE optimization. Its recursive counterpart is the widely-used RLS.
Both algorithms work very well on identifying LP coefficients as shown in the figures
in the following sections. However, RLS has O(m?) computational complexity since
it uses 100% of the data to update the estimator.

Any recursive algorithm must converge fast enough in, for example, 256 steps in
order to be successfully applied to LP analysis of speech. Known to have fast speed of
convergence and efficient computation [O(pm?)], OBE algorithms (with suboptimal

checking), besides RLS, is another candidate for this purpose.
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5.3 LP analysis using OBE-ABE

The first attempt to applying OBE algorithm to LP analysis of speech is performed by
Deller and Luk [15]. This attempt reveals the fact that the convergence performance
of OBE is seriously affected by the precision of the estimated noise bounds which are
not available in most real-world applications.

With the ABE procedure, the OBE-ABE algorithm makes possible the application
of OBE to real-world applications including LP analysis of speech. Due to OBE-
ABE’s fast speed of convergence, robustness to measurement noise (see Chap. 6)
and non-stationarity, and blind-deconvolution capability in colored noise, the results
shown below are comparable to those of RLS or the autocorrelation method.

Theoreticallyy, OBE-ABE can be initialized with any overestimated bound ~o,
small ¢, and large enough M. Since each speech frame in the LP model is typically
only 256 points (for 10 KHz sampling rate) and quasi-stationary, the initialization
must be deliberately chosen to assure convergence. To this purpose, several speech
signals which are drawn from TIMIT (Texas Instruments and Massachusetts Insti-
tute of Technology) speech database [18] are employed in determining the optimal
initialization. Also, each frame of speech is normalized to have maximum unity mag-
nitude. However, no windowing (e.g., Hamming window) is needed. An acceptable
initialization is 4o = 1.5, € = 0.25, and M = 12, for both voiced and unvoiced sounds.
This makes the application of OBE-ABE straightforward, without requiring a priori
knowledge of the voice/unvoiced status of the frame. This initialization produces
acceptable results using only, on average, 12% of the data for voiced sounds and 8%
for the unvoiced. By experimentation, an excellent initialization is found (v = 1,
€ = 0.01, and M = 20) for all the voiced and unvoiced. This initialization results in
excellent spectral envelopes of LP coefficients which are comparable to those of the

autocorrelation method and RLS. The data selected in this case are, on average, 25%
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for voiced sounds and 60% for the unvoiced.

As typical examples of LP analysis, the first set of spectra of LP coefficients for
vowels /1/ (voiced phoneme, from utterance “six”), /E/ (from “seven”), and /u/ (from
“two”) are shown in Figs. 5.40 - 5.42, and for unvoiced plosive /t/ (from “two”), /f/
(from “four”), and /s/ (from “six”) are shown in Figs. 5.43 - 5.45. The upper portions
of the figures show the spectra of the speech frames themselves based on a 512-point
FFT. The lower portions show the spectra of LP coefficients (m = 14) obtained by
autocorrelation method (solid line), and OBE-ABE (dashed line). As seen in the
figures, OBE-ABE produces similar spectra to those of conventional batch method.

The second set of spectra of LPC coeflicients for vowels /1/ (voiced phoneme, from
utterance “six”), /E/ (from “seven”), and /u/ (from “two”) are shown in Figs. 5.46
- 5.48, and for unvoiced plosive /t/ (from “two”), /f/ (from “four”), and /s/ (from
“six”) are shown in Figs. 5.49 — 5.51. Similar to the first set, the upper portions of
the figures show the spectra of the speech frames themselves based on a 512-point
FFT. The lower portions show the spectra of LP coefficients (m = 14) obtained by
RLS (solid line), and OBE-ABE (dashed line). As seen in the figures, OBE-ABE
produces similar spectra to those of RLS while selects, on average, no more than half
as many data as RLS.

To further investigate OBE-ABE’s capability, a simulated speech frame (256
points) of phoneme /u/ is generated by the LP model (5.1) using a pulse train (pulses
separated by 80 points, amplitude 0.5, and first pulse located at the 10th point) as
the excitation {v,}. Both OBE-ABE and autocorrelation method are applied to this
case for the identification of the LP coefficients. The results are shown in Fig. 5.52.
As seen in the figure, OBE-ABE produces better result since its LP spectrum is more
resemblant to that of the simulated speech itself. This conforms to the fact that

OBE-ABE converges consistently in colored noise case while other algorithms based
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Figure 5.40: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra
based on OBE-ABE (dashed line), and autocorrelation (solid line).
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Figure 5.41: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra
based on OBE-ABE (dashed line), and autocorrelation (solid line).
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Figure 5.42: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra
based on OBE-ABE (dashed line), and autocorrelation (solid line).
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Figure 5.43: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra
based on OBE-ABE (dashed line), and autocorrelation (solid line).
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Figure 5.44: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra
based on OBE-ABE (dashed line), and autocorrelation (solid line).
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Figure 5.45: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra
based on OBE-ABE (dashed line), and autocorrelation (solid line).
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Figure 5.46: Spectra of voiced /1/ phoneme. Upper graph: Direct 512-point FFT
spectrum. Lower graph: Spectra based on OBE-ABE (dashed line), and RLS (solid
line).
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Figure 5.47: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra
based on OBE-ABE (dashed line), and RLS (solid line).
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Figure 5.48: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra
based on OBE-ABE (dashed line), and RLS (solid line).
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Figure 5.49: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra
based on OBE-ABE (dashed line), and RLS (solid line).
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Figure 5.50: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra
based on OBE-ABE (dashed line), and RLS (solid line).
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Figure 5.51: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra
based on OBE-ABE (dashed line), and RLS (solid line).
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on LS concept (e.g., LS, RLS, LMS) are inconsistent.

5.4 Sub-OBE-ABE and computational complexity

The Sub-OBE-ABE algorithm has been shown in Chap. 4 to have similar speed of
convergence to OBE-ABE while having more efficient O(pm?) computation. However,
within short periods of 256 steps, Sub-OBE-ABE does not converge as well as OBE-
ABE with the same initialization, due to the suboptimal check for innovation. This
phenomenon has been explained in Chap. 4 for Fig. 4.12 and 4.14.

Through experiments, two set of initializations of Sub-OBE-ABE algorithm are
found respectively for the voiced and unvoiced sounds. For voiced sounds, OBE-ABE
initialized with 4o = 0.25, € = 0.0001, and M = 12 has excellent results as shown in
Figs. 5.53 - 5.55. Seven percent of the data is selected in the voiced case on average.
For unvoiced sounds, the initialization is 4o = 0.5, ¢ = 0.0001, and M = 8. The
results for unvoiced sounds are shown in Figs. 5.56 — 5.58. Thirteen percent of the
data is selected in the unvoiced case on average.

As seen in the figures, Sub-OBE-ABE achieves similar spectra to those of RLS
or the autocorrelation method while selecting, on average, only 10% of the data.
Since the number of LPC coefficients, m, is on the order of 10 [12, 40} for most
speech applications, Sub-OBE-ABE is virtually an O(m) recursive algorithm in this

application.
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Figure 5.52: Spectra of simulated voiced /u/ phoneme. Upper graph: Direct 512-
point FFT spectrum. Lower graph: Spectra based on OBE-ABE (dashed line), and
autocorrelation method (solid line).
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Figure 5.53: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra
based on Sub-OBE-ABE (dashed line), and autocorrelation (solid line).
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Figure 5.54: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra
based on Sub-OBE-ABE (dashed line), and autocorrelation (solid line).
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Figure 5.55: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra
based on Sub-OBE-ABE (dashed line), and autocorrelation (solid line).
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Figure 5.56: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra
based on Sub-OBE-ABE (dashed line), and autocorrelation (solid line).
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Figure 5.57: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra
based on Sub-OBE-ABE (dashed line), and autocorrelation (solid line).
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Figure 5.58: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra
based on Sub-OBE-ABE (dashed line), and autocorrelation (solid line).
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Chapter 6

Application to Blind
Deconvolution

6.1 Introduction

The blind-deconvolution problem [23] has attracted intensive research in recent years
in the fields of data communications, adaptive filtering, and signal processing. A typi-
cal block diagram for the blind-deconvolution problem is shown in Fig. 6.1. The input
{v.} and the noise {w,} in the figure are assumed unobservable. In data communi-
cations, the unknown input data are recovered using the output data received from a
noisy and distorted channel (e.g., satellite, cellular or optical fiber). Another example
of a blind-deconvolution problem is the LP analysis of a speech signal corrupted by
unknown measurement or environmental noise.

Several well-known estimation methods have been applied to solve the blind-
deconvolution problem. Bayesian estimation [23] (batch method) and LMS (recursive)
are two popular methods. However, both of those methods require that the input {v,}
and the noise {w,} be white for convergence since they are based on the LSE op-
timization. This seriously restricts the application scope since input data ({vs}) in

most engineering applications (e.g., the previous two examples) are not always white.
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—_— H(z)

Figure 6.1: Model of the received signal in the blind-deconvolution problem.

The new OBE-ABE algorithms presented in this dissertation are good candidates
to solve this difficulty since they converge in colored noise cases as demonstrated in
the previous chapters. Although the model of blind deconvolution shown in Fig. 6.1
is not an ARX model, OBE-ABE algorithms show excellent results in this application
due to their robustness to the measurement noise.

The block diagram in Fig. 6.2 is one of the application structures for blind de-
convolution and is employed in this chapter. The parameters of the inverse filter
H-'(z) are estimated by OBE-ABE using output data {yn}. The detector in the
figure has known transfer functions for the recovery of the input data using {9,}.
The unknown H(z) is simulated as IIR (infinite impulse response) and FIR (finite
impulse response) filters, respectively. The unknown input {v,} is simulated as an
iid or a colored digital data stream. The noise {w,} is independent of {v,} and is iid

with uniform distribution specified in the following sections.
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6.2 IID input and IIR filter

In this section, the IIR filter in Fig. 6.2 is assumed to be:
H(z) = 1/(a1.27" + az.z7? + a3.272) (6.1)

where the unknown parameters a;. = 2,a;. = —1.68, a3, = 0.34, the input {v,} is
iid with equally distributed discrete values {-1, -0.5, 0, 0.5, 1}, and the noise {w,} is
iid and uniformly distributed on [-0.05, 0.05]. In this case, the signal to noise ratio
(S/N) [ignoring the gain of H(z)] is 42.5 dB. The order of the inverse filter H~1(z)
in this case is three. The application results of OBE-ABE and conventional OBE
algorithms in this case are shown in Fig. 6.3 and 6.4, respectively. As seen in Fig. 6.4,
the ellipsoidal volumes of OBE algorithm (v, = 1) quickly become negative because
of the added noise {w,}, while the volume of the OBE-ABE algorithm (o = 10,¢ =
0.5, and M = 80) converges to zero. Figure 6.3 shows the estimator of the first
parameter both algorithms. As seen in the figure, the OBE estimate diverges due
to the negativity of ellipsoidal volumes, while OBE-ABE algorithm converges to the
theoretical values ([a;,az,a3] = [1.9930,—1.4676,0.3332]) calculated by the Wiener
optimization method [23]. Simulations show that OBE-ABE algorithm is robust to
the noise {w,} while OBE is not.

Simulations also show that, using OBE-ABE in this case, the output of the detec-
tor, {n}, recovers the unknown input data {v,} with a 99% success rate. Figure 6.5
shows the first 100 samples of v,, ¥,, and 0,. The 1% wrong data can be easily
recovered using some error-correction techniques in data communications.

Simulations also show that the performance of OBE-ABE algorithm in the noise-
corrupted case is not affected by the order of H(z). However, when the S/N decreases

(e.g. increases the bound of the noise {w,}), the success rate decreases due to the
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biased estimator which can be theoretically calculated by the Wiener optimization
method. This can be seen in Figs. 6.6 and 6.7 which are the simulation results of the
above model except that now w, ~ U(-0.1,0.1) (S/N = 36.5 dB). As seen in the
figures, the estimator of OBE-ABE is biased (theoretical values of the estimator in
this case are [a,, a2, a3] = [1.9724, —1.4315,0.3133]), and the success rate is 91%.

6.3 IID input and FIR filter

In this section, the FIR filter in Fig. 6.2 is assumed to be:
H(Z) = al-z-l + a2‘z—2 + 03.2_3

where the unknown parameters a;. = 0.7,a2. = 0.5,a3. = —0.336, the input {v,}
is iid with equally distributed discrete values {-1, -0.5, 0, 0.5, 1}, and the noise
{w,} is iid and uniformly distributed on [-0.05, 0.05] (S/N = 42.5 dB) and [-0.1,0.1]
(S/N = 36.5 dB), respectively. In this FIR case, the performance of OBE-ABE
algorithm is still excellent if the order of the inverse filter H~1(z) increases from 3 to
10. The results are shown in Figs. 6.8 - 6.9. As seen in the figures, OBE-ABE shows
excellent performance with 99% success rate in the case of S/N = 42.5 dB (Fig. 6.8)
and 93% success rate in the case of S/N = 36.5 dB (Fig. 6.9).

6.4 Colored Input and IIR Filter

In this section, the IIR filter in Fig. 6.2, H(z), is the same as in (6.1) and the input
{vn} is colored as in (4.5), and the noise {w,} is iid and uniformly distributed on
[-0.1, 0.1] (S/N = 36.5 dB) or [-0.5,0.5] (S/N = 22.5 dB). The application results of
OBE-ABE in these cases are shown in Figs. 6.10 and 6.11. As seen in the figures,
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Figure 6.2: Block diagram of the blind-deconvolution problem.
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Figure 6.3: Estimates of a;. of OBE (v, = 1) and OBE-ABE (7o = 10) for Fig. 6.2

(iid-1IR, S/N = 42 dB).
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Figure 6.4: Volumes of ellipsoids of OBE (v, = 1) and OBE-ABE (v, = 10) for
Fig. 6.2 (iid-IIR, S/N = 42 dB).

Figure 6.5: First 100 samples of 9, (top), ¥, (middle), and v, (bottom) using OBE-
ABE (7 = 10) in Fig. 6.2 (iid-IIR, S/N = 42.5 dB).
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Figure 6.6: Estimates of a,. of OBE (v, = 1) and OBE-ABE (v, = 10) for Fig. 6.2
(iid-IIR, S/N = 36.5 dB).

v v v T T 1]
: : A : § :
: : H : ) :
: : H : H
: : H : H .
N . . . 1 .
| H : ' :
N N [ N . { . [l N
1 ' " '
. i B 1] H B i H H
: ' f H R H R i
: : : H . U : .
. . . [ . . .

10 20 30 40 50 60 70 80 90 100

Figure 6.7: First 100 samples of ¢, (top), v, (middle), and v, (bottom) using OBE-
ABE (v = 10) in Fig. 6.2 (iid-IIR, S/N = 36.5 dB).
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Figure 6.8: First 100 samples of ¥, (top), v, (middle), and v, (bottom) using OBE-
ABE (7 = 10) in Fig. 6.2 (iid-FIR, S/N = 42.5 dB).
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Figure 6.9: First 100 samples of ¥, (top), v, (middle), and v, (bottom) using OBE-
ABE (v = 10) in Fig. 6.2 (IID-FIR, S/N = 36.5 dB).
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Figure 6.10: First 100 samples of ¥, (top), ¥» (middle), and v, (bottom) using OBE-
ABE (4o = 10) in Fig. 6.2 (Colored-IIR, S/N = 36.5 dB).

OBE-ABE shows excellent performance,achieving 100% success rate in the case of
S/N = 36.5 dB (Fig. 6.10) and 90% success rate in the case of S/N = 22.5 dB (Fig.
6.11). This demonstrates the excellent blind-deconvolution performance of OBE-ABE

algorithm in the colored-input case.

107



1 i
10 20 30 40

T

i

;' rir M T | HM i W (
TN R

Figure 6.11: First 100 samples of ¥, (top), v, (middle), and v, (bottom) using OBE-
ABE (7 = 10) in Fig. 6.2 (Colored-IIR, S/N = 22.5 dB).
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Chapter 7

Conclusions

7.1 Concluding Remarks

This research has been concerned with an innovative parameter-estimation technique,
the OBE algorithm, which is based on a bounded-noise assumption. The OBE algo-
rithms employ selective updating to improve computational efficiency (using subop-
timal check) while having excellent speed of convergence. However, this advantage
is offset by the impractical assumption of known noise bounds. Hence, despite those
superiorities, OBE algorithms have rarely been found in real-world applications.
The new algorithms, OBE-ABE and their variants, introduced in this dissertation
do not require the knowledge of the noise bounds, while preserving or improving,
virtually without cost, the inherently superior performance of OBE algorithms with
regard to convergence, speed of convergence, computational efficiency, and tracking
capability. The new algorithms also converge in colored noise and non-stationary noise
cases — a feat that is theoretically impossible for other popular techniques like RLS,
LMS, Kalman-Bucy filter, etc. Hence, the popularity of the new algorithms in real-
world applications is promising. A summary of the contributions of this dissertation

appears in the next section.
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7.2 Contributions and further work

The major contributions of this dissertation are summarized as follows: This research

has

1. Produced an algorithm (OBE-ABE) which theoretically relaxes and practically
releases the unavailable prerequisite (known noise bounds) of all SM (and OBE)
algorithms while preserving and improving their inherently superior perfor-

mance.

2. Produced a computationally efficient version of the new algorithm (Sub-OBE-
ABE) without any sacrifice of performance. This efficient Sub-OBE-ABE algo-
rithm has similar performance to the original OBE-ABE with respect to con-

vergence, speed of convergence, and tracking capability.

3. Produced an adaptive version of Sub-OBE-ABE (and OBE-ABE) to track time-
varying parameters. The tracking performance of the algorithm is excellent

while its computation is very efficient.

4. Proved the a.s. convergence and the p. convergence of OBE-ABE and Sub-
OBE-ABE in iid, mixing, ergodic, and non-stationary noise cases by employing
the analytical techniques from probability theory and measure theory. Several
theorems (with very general conditions) provide the theoretical foundations for

the analysis and applications of OBE-ABE (and hence all SM) algorithms.

5. Provided extensive simulations which reveal some not-clearly-known behaviors

or characteristics of OBE-type (hence SM) algorithms.

6. Applied the new algorithms successfully (due to their intensionally-devised flex-

ibility and the resulting robustness) to real-world problems of speech analysis

110



and blind deconvolution. The application results have demonstrated the poten-

tial of the new algorithms.

As seen in the theorems and in simulation studies, the excellent convergence per-
formance of all SM algorithms depends on UCT (3.9) or UT (3.10) condition of the

noise sequence. Hence , an interesting open research problem is as follows:

e Devise an algorithm which has similar performance and a priori knowledge to
the OBE-ABE’s, and still converges consistently and quickly when UT (3.10)
or UCT (3.9) is not satisfied.
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Appendix A

The following lemmas from the literature are essential for the proofs of new theo-
rems. Original proofs of some of those lemmas are listed here for better understanding
those lemmas and the proofs of the new theorems in this dissertation. Please refer to

Chap. 3 for the notation.

Lemma A.1 (Proof: [27, 35]). Assume that condition PE (3.12) holds. If there
exists an € > 0 and N € N, such that v, — v,2 > ¢, Vn > N, then the ellipsoids of

OBE algorithms do not asymptotically shrink to a point.

Lemma A.2 (Proof: [27]). Let c; and c} be the negative and positive parts of c,, re-
spectively, where c, is defined in (2.10). That isc; = {ca, if ¢o <0; 0, otherwise},

and ¢} = {c,, if ¢, 20; 0, otherwise}. If PE holds, then lim,_, c; = 0.

Lemma A.3 [46, p.120], [16, p.35]. A discrete random variable has an almost peri-

odic characteristic function, and the converse is also true.

Lemma A.4 [17]. If {Xi : k € K} is stationary and g : R — R is measurable,
then {Yx = g(Xk, Xx-1,--*) : k € K} is also stationary.

Proof: Let z € RX, B € BX, and gx = g(zk,Zk-1,---). Also, let

A = {z : (90(), 9-1(),---) € B}.
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Then, stationarity of {X,} implies

P(w:(%ay—l"") € B) P(w:(XO)X—h'“) EA) =P(w:(Xk’X""l’.“)€ A)

P(w:(’/ka},k—l’”') € B)’

Hence, by Definition 3.8, {Yi} is stationary. o

Lemma A.5 [17]. Let X, X oTk1 VkeK where X isar.v. on QF,P). If

T is an m.p.t., then, {X) : k € K} is a stationary sequence.

Proof: The lemma is proved by observing that, for B € BX and
A¥{w:(--+, X1, Xa,-+) € B},

P(('”,kaxk-l-l,"') € B) = P(Tk-l(w) € A) = P(we A)

= P((...,Xl,Xz,...) € B).

Lemma A.6 [17]. If m.p.t. T is mizing, then T is ergodic.
Proof: Let A € I. Then, T"}(A) = A,---,T7%(A) = A, V k. Hence, by defini-
tion 3.13,

P(A)= P(ANA) = P(ANT¥*(A)) -» P(A)- P(A) asn — .

So, P(A) = [P(A)]®.. Thus, P(A) € {0,1}. Hence, 7 is trivial. Therefore, T is

ergodic. o

Lemma A.7 [17]. If {Xi : k € K} is an ergodic stationary sequence, and g :R¥ —

R is measurable, then {Yi = g(Xk, Xk-1,---) : k € K} is also stationary and ergodic.
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Proof: Let Xo,X_,--- be defined on sequence space @ = R* with X;(w) = wi,
where w = (-+-w_j,wp,w1, ) € Q. Since {Y;} is stationary by Lemma A.4, let

B € BX be such that

{w:(Yo,Y_y,---) € B} = {w: (Yi, Yk-1,---) € B}.

then, by Definition 3.10, A oo {w: (Yo,Y_q,---) € B} is shift invariant. So, by the

ergodicity of { Xy},

P(A) = P({w: (Xo, X_1,--) € A}) € {0,1}.

Therefore, {Yi} is ergodic by Definitions 3.11 and 3.12. (.

Note that { X} and {Y}} in the above lemma can be one-sided infinite sequences.
Also, the mapping g which is independent of index k can also be any finite-length

moving function.

Theorem A.1 (Poincaré Recurrence Theorem) [17]. Let T : @ — Q be an

m.p.t. and A € F. Define 74 = inf{n > 1: T™(w) € A}. Then,
(i) Ta <00 a.s.on A, ie, Plw€ A:Tp(w) =00)=0.
(i) AC{w:T"(w) € A t.0.}.

(i1i) If T is ergodic and P(A) > 0, then P(w: T"(w) € A i.0.) =1.

Proof:

(i) Let B = {w € A: 74(w) = o0}. If w € T7}(B), then T(w) € A, T*(w) ¢ A,
T3(w) & A, ---.
If we T7%(B), then T*(w) € A, T3(w) € A, T*(w) € A4, ---.
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Hence, T~'(B), T~%(B), T~3(B), --- are pairwise disjoint. Since T is m.p.t.,
it follows that P(B) = P(T"}(B)) = P(T"*\B)) = ---. Thus, P(B) = 0.
(Otherwise, P(Q) > Y2, P(T~*(B)) = .)

(ii) For any k € N, since T is m.p.t., it follows from (i) that
0=PweA:T*w)¢gA Vn21)>PweA:T™(w) €A, YVm >k).

This inequality implies that the last probability is 0 for all k. Hence, P(w € A :
T™(w) € Aio.) =1. Thus, A C {w: T*(w) i.0. }.

(iii) By Definition 3.10, The set C ] {w:T"(w) € A i.0.}is an invariant set. Since
T is ergodic, it follows from Definition 3.12 that P(C) € {0,1}. Also, by (ii),
C D A. Hence, P(C) > P(A) > 0 by assumption. Therefore, P(C) = 1. o
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