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ABSTRACT

OPTIMAL BOUNDING ELLIPSOID ALGORITHMS

WITH

AUTOMATIC BOUND ESTIMATION

By

Tsung-Ming Lin

This research is concerned with new Optimal Bounding Ellipsoid algorithms with

Automatic Bound Estimation (OBE-ABE) that can be applied to model parameter

estimation, system identification, and related topics. To achieve convergence, conven-

tional OBE algorithms require the a priori knowledge of the noise bounds which are

unavailable in most real-world applications. It has been found that the exact knowl-

edge of the noise bounds is essential to the performance of OBE algorithms. The

new OBE-ABE algorithm, its computationally efficient version, Sub-OBE—ABE al-

gorithm, and an adaptive version, Adaptive Sub-OBE—ABE algorithm, introduced in

this dissertation do not require this knowledge. With the help of the automatic bound

estimation (ABE) procedure, the new algorithms have excellent performance with re-

spect to convergence, speed of convergence, computational efficiency, and tracking

capability.

Another excellent feature of the new algorithms is the convergence in colored

noise, or even non-stationary noise environments, which is theoretically impossible

for other well-known algorithms, e.g., Recursive Least Square (RLS), Least Mean

Square (LMS), and the Kalman-Bucy Filter. Due to these distinctive features, the

new algorithms are expected to have wider applications than others.



Rigorous proofs for the almost sure convergence and convergence in probability

of the new algorithms are provided for the cases of iid, mixing, ergodic, and non-

stationary noises. Simulations in these noise cases are presented to support the proven

convergence and to demonstrate other properties. The new algorithms are successfully

applied to solve two real-world problems, the linear prediction analysis of speech and

the blind-deconvolution problem.
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Chapter 1

Introduction and Background

 

1.1 Introduction

From engineering to social science, people use modeling to help understand and de-

scribe observed phenomena. For example, in economics, modeling is usually used

to predict inflation and study the trend of stock markets. In engineering fields, a

dynamic system or signal is usually modeled before further analysis or processing. In

general, a model can be described as in Fig. 1.1 in which the noise (or disturbance or

model-error) sequence {v,,} is unobservable.

Modeling is usually classified into two categories: Nonparametric and parametric

[42]. A nonparametric model is described by a curve, table or function. Transient

analysis and correlation analysis are two well-known methods for studying nonpara-

metric models. A parametric model is usually described by difference equations (or

differential equations in continuous time) with system parameters. Typical paramet-

ric models are the auto regressive with exogenous input (ARX), auto regressive moving

average with exogenous input (ARMAX) and the state-space structure.

Basic laws from physics or science are usually employed to construct a parametric

model. However, in many applications, the dynamic systems are too complex to

model using only physics laws.



 

  % HfZ) >

   

Figure 1.1: Block diagram of a model for a dynamic system.

Hence, numerous system—identification or parameter-estimation techniques have

been developed to estimate the unknown parameters in a model. Some well-known

methods are briefly reviewed in the next section.

The main objective of this research is to devise a new algorithm, optimal bounding

ellipsoid with automatic bound estimation (OBE-ABE) algorithm and its variants for

the estimation of model parameters. The new algorithms require less restrictive a

priori knowledge and conditions than conventional methods for the convergence (or

consistency) of the estimator. In addition, the performance of the new algorithms

with respect to speed of convergence, computational efficiency, and tracking capability

is superior to conventional methods.

1.2 Methods for Parameter Estimation

There are varieties of methods for estimating the model parameters. Among those are

minimum mean square error (MMSE), maximum likelihood (ML), and least square

error (LSE), etc. [22, 42]. They are all batch methods.



Well-known recursive (or real-time) methods are the recursive least square (RLS)

[22], least mean square (LMS) [22], instrumental variable (IV) [42], Kalman-Bucy

filter [42], and optimal bounding ellipsoid (OBE) [8, 11, 14, 20, 35] algorithms. One

of the most popular methods in engineering applications is the LSE or its recursive

counterpart, RLS, since they require only the whiteness of the noise sequence {v,,} for

convergence and have simple structure with well-understood convergence performance

under regular conditions [i.e., wide-sense stationarity (WSS) and second-moment er-

godicity (SME)]. RLS has been modified to a weighted RLS (WRLS) [22, 42] using a

forgetting factor for tracking time-varying parameters.

Since its invention fifteen years ago, OBE has attracted attention from people

in real-time signal processing [11, 15], system identification [3, 10], adaptive control

[24], and other fields in which computational efficiency and speed of convergence are

critical, and the statistics of the inputs and noise are unknown. However, its advan-

tages (over those of popular RLS) with regard to computational efficiency and faster

speed of convergence in some noise cases (see Chap. 4) are offset by the requirement

of known noise bounds which are unavailable in most applications. Without a priori

knowledge of the exact noise bounds, the performance of OBE suffers (Chap. 4). This

is why OBE has been rarely found in real-world applications.

1.3 Review of OBE Algorithms

In 1968, Schweppe introduced the first bounding ellipsoid algorithm (BE) [41] for

estimating the states of a state space model with the assumption of bounded inputs

and bounded noises. With this assumption, BE algorithm produces at each step a

feasible set in state space instead of a single point which is normally produced by

other well-known methods, e.g., the Kalman-Bucy filter. The BE algorithm has a set

of recursive formulae similar in structure to the Kalman-Bucy filter. Without a priori

3



knowledge of the statistics of the inputs and the noise which are usually required by

other methods, BE has potential for wider applications. However, as pointed out

by Schweppe, he feasible set of the algorithm at each step is usually impractical to

calculate. He did not provide the convergence analysis of BE algorithm either.

Thereafter, Witsenhausen [47], Bertsekas and Rodes [4] published set-membership

(SM) algorithms based on the same bounded-input and bounded-noise assumptions.

Although SM has a smaller feasible set (convex polytope, see Chap. 2) at each step,

the mathematical analysis of SM is more complicated than that of BE.

In 1979, Fogel published a BE algorithm [19] for the identification of the ARX

model with the implicit assumption that the noise sequence {v,,} has an asymptotically—

known accumulative energy bound. With this knowledge and the assumptions of the

white noise {v,,}, the regular WSS, and SME, Fogel has shown, in a deterministic

way, the convergence of his BE algorithm. In other words, the sequence of the ellip-

soids of BE algorithm is shown to asymptotically reduce to a point (the true model

parameter vector). Although the recursive formula of BE is similar in structure to

RLS , the computation is less efficient than RLS.

In 1982, Fogel and Huang published the first OBE algorithm (F/H OBE) [20]

which featured selective updating to ignore “redundant” data (in the OBE sense).

This innovative feature improves the computational efficiency of Fogel’s BE algorithm.

However, F/H OBE algorithm still has 0(m2) computational complexity due to the

check for selective updating at each step (Chap. 2). Selective updating is achieved

by variably weighting the incoming data for an optimal (maximum reduction in size)

ellipsoid at each step. The optimization is based on the assumption that the noise

bounds are known pointwise. If incoming data set does not help shrink the ellipsoid,

the weighting is set to zero, i.e. the incoming data set is “redundant” and hence

discarded. In contrast to OBE, Fogel’s BE algorithm has constant data weights



(= 1). Detailed formulation of OBE algorithms can be found in the next chapter.

Fogel and Huang also provided a proof of convergence of OBE based on the as-

sumption that the noise sequence is white and its pointwise upper bounds are known

in addition to the regular WSS and SME. However, the correctness of the proof is

arguable (also see [13, p.1913]) because the authors use in the proof the questionable

assertion that convergence of Fogel’s BE implies convergence of OBE. In fact, the

whiteness of the noise is neither sufficient nor necessary for the convergence of the

OBE algorithm. Theorem 3.4 and 3.6 in Chap. 3 validate this assertion.

In 1987, Dasgupta and Huang published another version of OBE (D/H OBE) [8]

and showed the “convergence” of its estimator to a non-infinitesimal region of the

true parameter vector under the same assumptions. An interesting and practically

important feature of the algorithm is that it has an efficient 0(m) check for innovation

instead of 0(m“) in F/H OBE. However, comments are found in literature [14, 37]

on the lack of interpretability of its optimization criterion [14], i.e., it minimizes, at

each step, a quantity which is not directly related to the “size” of the ellipsoids.

Thereafter, other versions of OBE algorithm, e.g. set-membership weighted recur-

sive least square (SM-WRLS) [11, 15, 37], and set-membership stochastic-approximation

(SM-SA) [11, 27, 35], were developed by Nayeri, Deller, and their students. SM-WRLS

is the first algorithm to clearly relate the OBE philosophy and conventional WRLS

(see [11]). They also showed that all versions of OBE algorithm based on the same

optimization criterion of minimizing the ellipsoid at each step, are basically the same

algorithm [14]. Specifically, F/H OBE, SM-WRLS, and SM-SA, though different in

their weighting policies and computational complexities, have identical estimators,

ellipsoids, selected data, and convergence performance. A suboptimal check for inno-

vation is introduced to SM-WRLS that results in a computationally efficient version

of “interpretable” OBE algorithm [13, 37]. Further, using SM-SA, the first proof



of convergence in probability (p. convergence) [17] for OBE algorithms were accom-

plished under the assumptions of independent identically distributed (iid) noise and

symmetric bounds.

The last OBE-like algorithm Seeking to improve the performance of OBE in this

review is optimal volume ellipsoid (OVE) algorithm proposed by Cheung et a1. [7] in

1991. The algorithm uses an affine transformation [21] to get the smallest ellipsoid

at each step. The simulations in [7] show that the ellipsoid at each step is smaller

than those of OBE. However, the estimator of OVE, at the expense of computational

cost, does not show significant improvement over those of OBE’s (also see [27, p.6]).

A proof of “convergence” of OVE similar to that of D/H OBE was provided in [7].

In 1991, Veres and Norton published a paper [44] presenting the first p. conver-

gence (under very general conditions) of the exact polytope algorithm (EPA) which

is an SM algorithm with a polytope feasible set at each step. Although they also

provided a proof of almost sure (a.s.) convergence (or strong convergence in their

notation with equivalent definition) for the EPA, the justification is arguable. What

they have proved for as. convergence [on a probability space ((1, f, P)] is:

P(U:.“;1{w= no. — o.” < .}) = P(,,]i_{IgO(U$."=1{w= no. - o." < ch) = 1. v: > o (1.1)

or, equivalently, after suppressing w for brevity,

manna. - a.“ > e» = ammunua — a.“ > e») = o. v . > o (1.2)

which are not sufficient to imply a.s. convergence. This becomes evident upon com-

paring (1.1) with (3.3), or (1.2) with (3.6).



1.4 Motivation for New Algorithms

Despite their superiority over RLS in computational efficiency and speed of conver-

gence in many noise cases, OBE algorithms have been rarely found in real-world

applications. The main reason is that the assumption of the known noise bounds,

while less restrictive (without the knowledge of statistics of noise, e.g., mean, variance,

probabilistic distribution, etc.), is often impractical. Lack of proof of convergence for

OBE in more realistic noise cases (than symmetric iid noise) is another (minor) rea-

son.

Since the noise sequence {v,,} is usually unobservable in practice, exact noise

bounds are not available in most applications. Without the knowledge of exact noise

bounds, the performance of convergence and the speed of convergence of OBE suffers.

If one or more bounds are underestimated, i.e., v: < 7,, at one or more 11, then the

algorithm is no longer theoretically valid. Simulations reveal that the underestimation

of the noise bounds results in an inconsistent [17, 42] or diverging estimator.

A conservative sequence of bounds {7n} (overestimated bounds) will assure a

meaningful ellipsoid at each 11. However, recent work of Nayeri et al. [27, 35] has

demonstrated that the estimator may be very imprecise, even asymptotically, if the

bounds are too “loose.”

To illustrate the effects of incorrectly estimated error bounds, an AR(3) model for

Fig. 1.1 is constructed as follows:

ya = 03X" + ”n (1.3)

in which x,, = [y,,_1 , y,,_2, y,,_3]T is a sequence of observable vectors, 0.. = [2, —1.48, 0.34]T

is the unknown parameter vector to be identified, and the unobservable noise sequence

{v,,} is uniformly distributed and iid with constant bound 7.. = 1. Figure 1.2 shows
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Figure 1.2: OBE algorithm with 7,, = 0.8 (underestimated) on model (1.3). v,, ~

U(— 1 , 1).

the simulation result of OBE (SM-SA) algorithm (see Chap. 2 for details of the formu-

lation) identifying this AR(3) model with under-estimated error bound 7,, = 0.8 for

all n. As seen in the figure, the volume of the ellipsoid becomes negative quickly and

the estimator diverges. This is the result of violating the underlying noise-bounding

assumption of the algorithm. On the other hand, the simulation result of the algo-

rithm using over-estimated error bound 7,, = 1.2 Vn is shown in Fig. 1.3. As seen in

the figure, the estimator does not converge well to the true parameter (a, = 2 in the

figures) even after 10,000 iterations.

The speed of convergence of OBE becomes slower if a looser overbounding se-

quence is employed. This is observed in Fig. 1.4 which shows the simulation results

of 100 runs of the OBE algorithm on model (1.3). The numbers on the figure beside

each dashed line are the estimated noise bounds.

In this dissertation, a new algorithm, OBE-ABE, and its variants are devised to

improve the applicability of OBE algorithms while preserving or improving the supe-

rior performance of OBE algorithms in real-world applications. Proofs of as. conver-
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Figure 1.3: OBE algorithm with 7,, = 1.2 (overestimated) on model (1.3). v,, ~

U(—1,1).
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Figure 1.4: Volumes of ellipsoids (after 100 runs) of SM-SA with 7,, = 1,1.1,1.5

respectively, and OBE-ABE (70 = 1.5) on model (1.3). v,, ~ U(—l, 1).



gence and p. convergence of the new algorithms in the cases of iid, mixing, ergodic,

and non-stationary noise with asymmetric bounds are provided. The new algorithms

have efficient computation, excellent convergence performance and tracking capabil-

ity. The details of the new algorithms are found in the subsequent chapters. A

summary of the major contributions of this research is found in Chap. 7.
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Chapter 2

OBE Algorithms with

Automatic Bound Estimation

 

2.1 Introduction

In this chapter, the new algorithms, OBE-ABE, Sub-OBE-ABE, and the adaptive

versions of these two algorithms are introduced. The algorithmic steps are listed in

Tables 2.1 — 2.3. More details of these algorithms are found in subsequent chapters.

2.2 Formulation of OBE algorithms

A dynamic system or signal can often be modeled by a linear-in-parameters model

1.1: = 0331.. + v. (2.1)

in which 0... = [a1., - . - ,ap., b0.., b1..., - - . , b,,,..]T is the unknown parameter vector to be

identified; {x,,} is a sequence of observable vectors of dimension m = p + q + 1;

and {v,,} is an unobservable noise or model-error sequence. An important special

case is the auto-regressive with exogenous input (ARX) [42] model in which x,, =

11



[y,,_1, - . - ,y,,_p,u,,, - . - ,u,,_,,]T is the observed data set composed of samples of the

observable input sequence {u,,} and output sequence {yn}.

All versions of OBE algorithms [8, 11, 14, 20, 35] are based on the premise that

v,, has a pointwise bound that is known a priori,

v: S 7,,, Va 6 N. (2.2)

Let A,- denote the parameter set at time i such that all elements in A,- are feasible

parameter estimates consistent with (2.2). In conjunction with (2.1), it is clear that

A,- is a (hyper-) strip region which can be expressed as

A; = {i9 2 0 E Rm, (3]; — 0TXi)2 S. 7i}

As time i goes from 1 to n, the feasible set at time n, B,,, is the intersection of Ag,

Vi E [1,n], i.e.,

B" = (dz-21A,.

In general, 8,, is a convex (hyper-) polytope in R“ which is mathematically difficult

to track. Some SM algorithms are based on minimizing B,, at each step while OBE

algorithms are based on minimizing a (hyper-) ellipsoid E',, [see (2.3)] which is a

superset of B,,.

It can be shown [14] that the ellipsoid associated with any OBE algorithm is given

by

E, ‘1—3‘ {9 : (o — 0..)T P;1 (a — 0,.) < 1...} (2.3)

where 0“, 11,, and the matrix P,, are computed recursively using

an = XnTPn_1Xn (2.4)
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5,, = y,-93f_,x,, (2.5)

 

1 ,BnPn—lxnanPn-l

p, = _ pn_ _ 2.
(Yul 1 an'l'flnGn l ( 6)

0,, = on-l'l’flnpnxngn (27)

2

a,, 1157,

11.. = 0111..-: +fln7n-fim- (2.8)

Recursions (2.4) — (2.8) comprise a general OBE algorithm. The ellipsoid center 9,,

can be used as an estimator of the parameters 0... at each n. The matrix P? satisfies

the following recursion:

P;1 = a,, P3, + fin xnxz. (2.9)

The OBE algorithm is usually initialized with 00 = 0, no = p and P0 = L151, where p

is a small number, typically 10‘3. In almost every OBE algorithm, the nonnegative

data weights {0,} and {fin} are calculated according to an optimization criterion

which minimizes the “size” of the set E,, at each iterationl. When such optimal

weights do not exist, the updating need not take place. This prominent feature is

called selective updating.

OBE algorithms are distinguished from one another by the choices of weighting

sequences {a,,} and {Ba} [14]. For example, the SM-SA algorithm has a,, = 1 — )1,,

and [3,, = An in which A" is given by

-bn+\/b3,-4ancn

2a” , if c,,<0

‘)
An:

0, if 6,,20

where

a,, = m7,, — meg, + mGi7n — 2mG,,7,, — n,,_1G,, + n,,-1 G: + Gn7n — 03,7“ — 520,,

b,, = 2me,“, - 2m7,, + 2mG,,7,, + 2n,,..1G,, — rc,,_1 Gi — 0,7,, + 6:0,,

 

1The exception is the D/H OBE algorithm [8] in which a,, is minimized at each iteration.

13



c,, = m7,, — me: — n,,..1G,,. (2.10)

2.3 OBE-ABE Algorithm

While OBE algorithms require a priori knowledge of exact noise bounds to achieve

convergence and fast speed of convergence (see Fig. 1.4 and Theorem 3.6 in Chap. 3),

the new algorithm, OBE-ABE, does not require this knowledge. OBE-ABE theoreti-

cally requires a lower bound of tail probability but practically does not (see Remark 2

after Theorem 3.3). Initialized with any overestimated noise bound, OBE-ABE au-

tomatically (or blindly) updates its estimated noise bound 7,, to the unknown true

bound 7..., while concurrently shrinks the ellipsoids to get a consistent estimate. The

OBE-ABE algorithm is found in Table 2.2. As seen in the table, the ABE procedure

(below “otherwise”) features selective updating and is computationally negligible,

hence preserves the computational efficiency of OBE. Further, the ABE procedure

guarantees the convergence of the estimator, increases the speed of convergence, and

increases the efficiency of updating the estimator (see Chap. 4). The convergence

analysis of OBE-ABE algorithm is found in Chap 3.

2.4 Sub-OBE-ABE Algorithm

In optimal form, all versions of the OBE algorithm except D/H OBE have an 0(m2)

check for innovation at each step. Hence, the computational complexity of OBE

algorithms is similar to the popular RLS. To fully benefit from the selective updating

feature and achieve superior computational superiority over RLS, a modification of the

check for innovation to an 0(m) operation is necessary. One approach is developed by

Deller et al. [11, 13]. The modified OBE algorithm (Sub-OBE algorithm) in [11, 13]

are 0(pm2) complexity with p indicating the fraction of data found to be innovative.
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I. Initialization:

1. 00 = 0, 1130 = u and P0 = 313-1, where p is a small number, typically 10‘3.

2. 70 = any overestimated bound.

3. Choose 6 (small positive number), M and N (see Remark 2 following

Theorem 3.3).

II. Recursion:

For n = 1 : N

If a,, < 0

Execute recursions

Gn = xzpn-lxn

5n = yn — 01113—1391

,BnPn-lxnanPn—l

an + 31101:

9n = 071-1 '1' ,BnPanEn

 

1

P11 = anpn-l - ]

anflnsi

CIn '1' flnGn .

A:11 = annn—l + iBn'Vn —'

Otherwise,

If a time interval I of length M over which c,, 2 0 is found,

7n={7,,_,—dJ, 11dJ>o

7,,..1 , otherwise,

where d; déf 111-1GJ/m — e(2,/7,,_1 — e) and J = arg maxnel 5,2,.

 

Table 2.1: The OBE-ABE algorithm.
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Hence, for small m (<10), the Sub-OBE algorithm is an 0(m) algorithm since p is

typically near 0.1 for a uniformly distributed {v,,}.

However, the same 0(m) formula for checking of the Sub-OBE algorithm cannot

be applied directly to the OBE-ABE algorithm, since the ABE procedure will fail

[(3.61) no longer holds]. Hence, the Sub-OBE—ABE algorithm is endowed with another

0(m) checking formula for innovation:

—- 2 T

where d,, has the recursion“:

T

dn = andn—l + flnxnxno

Justification of this check is found in Chap. 3. The steps of Sub-OBE—ABE algorithm

are shown in Table 2.2. The Sub-OBE—ABE algorithm is compared to the OBE-

ABE algorithm with regard to speed of convergence and computational complexity

in Chap. 4.

2.5 Adaptive Sub-OBE-ABE

Tracking performance of adaptive OBE algorithms to time-varying parameters have

been investigated in [11, 37, 38]. In those papers, adaptive OBE algorithms have been

shown to have superior tracking capability to RLS, LMS, and their variants.

In [38], Rao and Huang modified D/H OBE algorithm by resetting n,,..1, when-

ever n,, < 0, to a value C + K, or C + K2, where K1, and K2 are two positive values

obtained from the algorithm’s parameters and data at time n, and C is a “safety fac-

 

2Preliminary version of Sub-OBE—ABE algorithm computes 1/d,, to be the minimum eigenvalue

of P,, that features selective updating. Nayeri modifies it to this 0(m) recursion.
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I. Initialization:

1- 90=oaflo=flado=glnandpo=firli

where p is a small number, typically 10‘3.

2. 70 = any overestimated bound.

3. Choose 6 (small positive number), M and N (see Remark 2 following

Theorem 3.3).

II. Recursion:

For n = 1 : N

Ha<0

Execute recursions

G,, = xZPndxn

5n = 3111 - OZ-IXH

1 ,BnPn-lxnanPn—l

Pn = '— Pn- '—

an[ 1 0,; + flnGn

0n = on-l + ,BnPanEn

 

]

0.1.3.163,

an + .BnGn

dn = andn-l ‘1' flnxzxrv

”11 = CYawn-1 + fln7n "

Otherwise,

If a time interval I of length M over which E,, Z 0 is found,

,7 ={ 771-1—dJ9 ifdJ>0

7,,..1 , otherwise,

where d,, déf n1_1x§xJ/(d1_1m)—e(2, /7,,_1-e) and J = arg maxnel 53,.

 

Table 2.2: The Sub-OBE—ABE algorithm.

17

 



tor” chosen to be 1. Equivalently, their adaptive OBE algorithm is obtained through

modifying D/H OBE algorithm to include the resetting of 11"-, to a value greater

than 1 whenever 11,, < O. Resetting r1,,-1 is equivalent to expanding the ellipsoid.

In [11, 37], Deller et al. basically proposed three methods, windowing, graceful

forgetting and selective forgetting, for modifying OBE algorithms to be adaptive to

time-varying parameters. The basic spirit of those modifications is the various ma-

nipulations of forgetting factors (data weightings) similar to those of adaptive RLS

(or WRLS). Among those methods, it is observed in [11, 37] that the best policy

regarding tracking performance is the selective forgetting method which back-rotates

previously accepted data sets when 11,, < 0 until 11,, > 0. This is equivalent to the

expansion of the ellipsoid according to a systematic criterion.

In this dissertation, an adaptive Sub-OBE—ABE algorithm is presented by modify-

ing Sub-OBE-ABE to include the resetting of 11,, = 0.1 whenever 11,, < 0. Despite its

simplicity and computational efficiency, the adaptive Sub-OBE-ABE algorithm has

shown excellent tracking performance in both slow and fast time-varying parameter

cases (see Chap. 4). The steps of adaptive Sub-OBEABE algorithm are shown in

Table 2.3.
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I. Initialization:

I. 00:0,110=p,do=;1;,andPo=:l;-I,

where p is a small number, typically 10"“.

2. 70 2 any overestimated bound.

3. Choose 6 (small positive number), M and N (see Remark 2 following

Theorem 3.3).

II. Recursion:

For n = 1 : N

Ha<0

Execute recursions

Gn : ann—l x11

 

6,, = y,, — 03:43:"

1 flnPn—lxnanPn—l

Pu = —' Pn- _

afll 1 an + 31101: ]

on = on-l + flnpnxnsn

anflnesi
Km — OnKn—l + 51.77: -m

dn = andn-l + flnxzxn-

If 11,, < 0, set 11,, = 0.1.

Otherwise,

If a time interval I of length M over which E,, Z O is found,

,7 ={ 7n—1-dJ, ifd.1>0

7,,-1 , otherwise,

where d,, 212 11J_1x§xJ/(dJ-1m)—e(2,/7,,..1 —e) and J = arg maxflel 6:.

 

Table 2.3: The Adaptive Sub-OBE—ABE algorithm.
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Chapter 3

Convergence Analysis

 

3.1 Introduction

This chapter provides proofs of as. convergence and p. convergence of OBE-ABE

and Sub-OBE-ABE in the cases of iid, mixing, ergodic, and non-stationary noises.

Throughout this chapter, the model considered is a stable ARX model

11.. = 03x. + v. (3.1)

in which 0.. = [a1., - . - ,a,,.., b0.., b1.., - - - , b,...] is the unknown parameter vector to be

identified; {x,,} = [y,,_1, - - - , y,,_,,, a,,, - - - , u,,_,,] is a sequence of observable data sets

composed of the observable input sequence {u,,} and output sequence {y,,}. The

dimension of {x,,} is m = p+q+ 1. The unobservable noise (or model-error) sequence

{v,,} is assumed to be asymmetrically bounded with unknown least upper bound fl

or greatest lower bound —\/7—... for all n. The results of this chapter are generalizable

to cases in which y,, and v,, are vectors (e.g., [11, 37]).

For stochastic analysis, v,,, u,,, and y,,, etc., are modeled as random variables (r.v.)

defined on a probability space (0,.7, P) where fl is a sample space, .7: a o-field, and
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P a probability measure. Clearly, for the ARX model, if we let

In déf a{vma u,,,+1,m S n},

then x,, is fad-measurable.

Note that the usual assumptions of WSS, SME, and whiteness of {v,,} which are

essential for the convergence of RLS, LMS, IV, etc., are not needed for OBE-ABE

and its variants.

3.2 Definitions

For the concise statement and analysis of new theorems, the following definitions are

introduced. Most definitions are cited from the literature. The first two below define

the convergence of a random sequence to a random variable. These two types of

convergence are treated in this dissertation.

Definition 3.1 [17, 42]. An estimator 0,, is called p. consistent, or p. convergent

(convergent in probability) if for all e > 0,

£1310 P(||0,, — 0..” > e) = 0 (3.2)

where I] - || denotes any valid norm.

Note that p. convergence implies (is stronger than) weak convergence or, alternatively,

convergence in distribution.

Definition 3.2 [17, 42]. An estimator 0,, is called as. consistent, or as. convergent

(convergent almost surely) if

P( lim 0,, = 0...) = 1. (3.3)
”#00

21



Note that (3.3) is equivalent to

P(||6,, — 0..” > e i.o.) = 0, V e > 0 (3.4)

in which i.o. denotes infinitely often with respect to 11..

Comparing (3.2) with (3.4), it follows that as convergence implies p. convergence.

Equation (3.4) can be written as

P(US.°=1 02:... (H91: - 91H > 5)) = 0, V 6 > 0 (3-5)

or equivalently,

P0315130 nggmuw, — o.“ > 6)) = o v e > o. (3.6)

Since the sets ng°=m(||9,, — 0...” > e) is increasing with m, (3.6) can be written as

41130 P(flf,°=m(||0,, — 0..” > 6)) = 0 V e > 0. (3.7)

Although surely convergence [17] is theoretically stronger than as. convergence, the

latter is regarded as the strongest type of convergence employed in practice (called

strong convergence in some literature).

Definition 3.3 A random sequence {v,,} is called asymptotically independent if

3112) |P((v,- E A)fl (12.4,, 6 B)) — P(v,- E A) - P(v,-+,, E 3)] = 0, Vi andV A,B E 1:.

For convenience, let us denote e-neighborhoods of noise bounds as

Df=lfi-€,x/i:l
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and

D? = l‘fia-fii’fl-

The following definition is seen in [44] which is a sufficient condition employed in

their convergence analysis of the EPA algorithm.

Definition 3.4 [44]. A random sequence {v,,} is called uniformly conditionally heav-

ily tailed (UCHT) if there exist Cl > 02 > 0 and an infinite subsequence {t,-} C N,

such that, with any sufliciently small 6 > 0,

C, e S P(v,, E (D: U 0:) I}— -1) S C26 a.s. Vn 6 {t,}. (3.8)

Definition 3.5 A random sequence {v,,} is called uniformly conditionally tailed

(UCT) if given 6 > 0, there exist a 6 > 0 and an infinite subsequence {t,} C N,

such that

P(v,, E (D: U D?) [7,,4) > 6 a.s. Vn 6 {t,}. (3.9)

Note that, throughout the dissertation, the assumption that {v,,} is asymmetri-

cally bounded with the UCT condition means that either

P(v,, E D: I fwd) Z 6 a.s. and P(v,, 6 D: I f -1) = 0 a.s.

01‘

P(v,, E D: I .7: -1) = 0 a.s. and P(v,, E D: I .7: -1) Z 6 a.s.

holds for all 11. Also, the assumption that {v,,} is symmetrically bounded with UCT

condition means that the following condition holds:

P(v,, E D: I fad) Z 61 a.s. and P(v,, E D: I .7: -1) Z 62 a.s.
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Definition 3.6 A random sequence {v,,} is called uniformly tailed (UT) if given

6 > 0, there exist a 6 > O and an infinite subsequence {t,} C N, such that

P(v,, E (D;+ U D:)) > 6 a.s. Vn E {t,}. (3.10)

Note that UT and UCT conditions are less restrictive than UCHT. For example,

“triangle” or “bounded-Gaussian” distributed iid sequence satisfies UCT and UT

conditions but not UCHT.

The following definition of almost periodic function (a.p.) which is due to Bohr

[6], and a lemma (Lemma A3 in Appendix) which relates the type of random variable

to an a.p. function are introduced for the proof of main theorems.

Definition 3.7 [1, 6]. A continuous function (P(t) is almost periodic (a.p.) if given

6 > 0, there exists a length l(e) such that every interval of length 1(6) contains at least

a number 1', and |<I>(t + r) — <I>(t)| < e, Vt E R.

The set of real numbers 1', {r},, defined above is called relatively dense [6]. Note

that l(e) exists if and only if there do not exist arbitrarily large gaps among the

numbers 1'. Clearly, a continuous periodic function is also a.p.

For the following definitions and some lemmas in the Appendix, let K (i-if N or Z,

RK {lg {(---,x1,x2,---):x,- E R, Vi E K},

and

BKié‘{(.--,A,,A,,m):A,eB, Vie K}

where B is the Borel set.
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Definition 3.8 [17]. {X}, : l1 6 K} is stationary if

("’7X11X27'”)g('°'1Xl¢1Xk+lt°”)1 VkEK

where 2 denotes equality in distribution.

Definition 3.9 [17]. The measurable transformation T : Q —+ Q is called a measure

preserving transformation (m.p.t.) ifP o T‘1 = P, i.e., P({w : T(w) E A}) = P(A).

Definition 3.10 [17]. A set A E .7: is called invariant {or T-invariant) if A =

T'1(A), i.e., A = {w : T(w) E A}.

Definition 3.11 [17]. The invariant set I drc-f {A E f: T'1(A) = A] is called trivial

ifP(A) 6 {0,1} VA 6 I.

Definition 3.12 [17]. The m.p.t. T is called ergodic ifI is trivial.

Definition 3.13 [17]. The m.p.t. T is called mixing if

”lira, |P(A n T‘"(B)) — P(A) - P(B)| = o v 11,3 6 f. (3.11)

Note that the analogous definitions of mixing and ergodicity for a stationary

sequence can be infered from Definition 3.12, Definition 3.13, and Lemma A.5. By -

Definition 3.13, a stationary sequence is mixing if and only if it is asymptotically

independent. Also, by Lemma A.6, mixing implies ergodicity.

3.3 Persistency of excitation condition

Persistency of excitation (PE) (defined below) is a necessary condition [5, 31, 42]

for the convergence (consistency) of recursive algorithms such as LMS, RLS, and
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their variants. For SM algorithms that assume bounded noise, PE is at least one

of the sufficient conditions for convergence (see theorems in this chapter and [44]).

Simulations even show [32] that PE is necessary for the consistency of the estimator

of OBE algorithms.

The following definitions of PE that appear in literature are rewritten and related.

The first definition is the most general one employed in proofs of the new theorems.

Definition 3.14 [44]. A sequence of random vectors, {x,,}, is called persistently

exciting (PE)3 or omni-directional iffor any nonsingular cone

K = {X2X=0181 +"'+amema det(ela"'aem)7£01 ai >0,Vi},

there exist p1 and p2 such that

li’mgfiPun E K [3.4) 2 p1 > 0 a.s., (3.12)

and

E(||x,,|] I}. -2) 2 p2 > 0 a.s. V n. (3.13)

The condition (3.12) means that the orientation of x,, is sufficiently varied in a

conditional-probability sense while the condition (3.13) means that the magnitude of

x,, cannot be too small on average. These conditions imply the following conditions

which constitute another PE definition frequently used in the convergence analysis of

conventional LSE recursive algorithms.

Definition 3.15 [31]. A sequence of random vectors, {x,,}, is called PE if there exist

p1 and p2 such that

liflgifEknxz pa.-.) 2 p11 > o a.s. (3.14)

 

3Please read “PE” as “persistency of excitation” or “persistently exciting” as appropriate in

context.
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and

E(||x,,|| If -2) 2 p2 > 0 a.s. V n. (3.15)

Violation of (3.14) is effectively a.s. restriction of x,, to a proper subspace of R”.

This justifies the assertion that (3.12) implies (3.14). Also note that the assumption

of stability imposes an upper bound on (3.14).

The fact that

1”3(1*3(an171~ Via-2)) = 13(an3),

leads to an equivalent definition of PE:

Definition 3.16 A sequence of random vectors, {x,,}, is called PE if there exist p1

and p2 such that

liflgfflxan) 2 ml > 0 a.s. (3.16)

and

E(||x,,|| I fn_2) 2 p2 > 0 a.s. V n. (3.17)

Condition (3.16) means that the autocorrelation matrix of x,, is positive definite

asymptotically. For the stationary case, it becomes positive definite for all n as in

condition (3.18) below.

Deterministic approaches to convergence analysis assume the stationarity and er-

godicity (or at least WSS and SME) of the signals. In this case, Definition 3.16 is

equivalent to the following.

Definition 3.17 [5]. A stationary (or at least WSS) sequence of random vectors,

{x,,}, is called PE if there exist p1 and p2 such that

E(x,,x:) 2 p11 > O a.s. V n (3.18)
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and

E(||x,,|| I]: -2) 2 p2 > 0 a.s. Vn. (3.19)

By the Ergodic Theorem [17], Definition 3.17 is equivalent to the following.

Definition 3.18 [5, 42]. A stationary and ergodic (or at least WSS and SME) se-

quence of random vectors, {x,,}, is called PE if there exists an N1 6 N and p1, p2 > 0

such that for all n

n+N1

Z XkaT 2 p11 > 0, (3.20)

k=n+l

and

”x,,” 2 p2 > O Vn. (3.21)

Note that the stability assumption imposes an upper bound on (3.20). Using matrix

algebra, Definition 3.18 can be shown to be equivalent to the following.

Definition 3.19 [5]. A stationary and ergodic (or at least WSS and SME) sequence

of random vectors, {x,,}, is called PE if for any unit vector e E R'”, and for all 11,

there exist N1 6 N and p1, p2 > 0, all independent of e, such that

n+N1

Z ||xfe|| 2 p, > 0, (3.22)

k=n+l

and

“x,,” 2 p2 > o v n. (3.23)
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3.4 Lemmas

The following lemmas and those in the Appendix (cited from the literature) are

essential for the proofs of the main theorems in this work. For convenience, define

c,,, ifc,,<0

0 , otherwise.

c,,, if c,,ZO
=
+

0 , otherwise.

where c,, is the check for innovation (2.10). Then, by Lemma A.2, lirr1,,_.,,o c; = 0.

However, since c,, is a random variable,

lim,,_.co c; = 0 does not imply lim,,_.¢.o P(c,, < 0) = O. For example, let

1 , with probability 0.5

Cu:

—1/n , with probability 0.5.

Then, lim,,_.°° c; = 0 while lim,,_..x> P(c,, < O) = 0.5. Hence, the following lemmas

are needed for the proof of Lemma 3.3 which, in turn, is essential for the proofs of

the main theorems.

Lemma 3.1 Let X,Y be random variables. If X is continuously distributed, then

X + Y is continuously distributed. If, in addition, Y 7’: 0, then XY is continuously

distributed.

Proof: Let Z = X + Y, then,

12(z)= ”mm—mun ”faunas—zine»
_m -00
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where f denotes the various probability density functions. By assumption, fx(x) does

not contain a Dirac delta function, so fz(z) does not. Hence, X + Y is continuous.

Let W = XY, then,

°° 1 w °° 1 w w

fw(w) = /_00 mfxr (5,11) 613/ = [00 mfx (y) fylx (31,?)‘131-

Since Y 75 O and fx(-‘;—’) does not contain a Dirac delta function, it follows that fw(w)

does not contain a Dirac delta function. Hence, XY is continuous. Cl

Lemma 3.2 Assume that model (3.1) is a stable ARX model, and {11,,} and {v,,}

are bounded. If both {a,,} and {v,,} are asymptotically independent sequences, and

{a,,} is independent of {v,,}, then y,, converges to a continuous random variable as

12—900.

Proof: First, rewrite (3.1) as

P 9

ya — Z ajyn—j = Z bjun—j + v,,. (3.24)

i=1 i=0

Let

9

V,, d—i-f z b,u,,_j + v,,.

i=0

Note that {V,,} is an asymptotically independent random sequence. Let h,, be the

discrete-time impluse response of the system (3.24), i.e., y,, = h,,, if V,, is a Kronecker

delta function. Then,

.11.. = Z hm-.. (3.25)

i=0

By the Lebesgue Decomposition Theorem [17], a random variable can be decomposed

into a discrete part and a continuous part. However, by (3.25) and Lemma 3.1, y,, is

continuous if K, is continuous. Hence, V,, can be assumed discrete for the remainder
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of the proof. That is, assume

P(Vnzqk)=p;,>0, k=1,2,...,K (3.26)

where q), is bounded since V,, is bounded by assumption.

Let <I>vn(t) denote the characteristic function of V,,. Then, from (3.26),

K

<I>V,,(t) = 219,61“, where i = \/—1.

k=1

Hence

K

<11.v.-.(t)= 2 me“""’*- (327)
k=l

Note that efthf‘": is a periodic function of t with primary period 73 = 27r/hj91: for all

j,lc, in which h,- 96 0 and q), 7i 0. Since h,- is a stable infinite impulse response, it

follows that limjnoo hj = 0. Hence, given 61 > 0,3there exists an N such that for all

j > N, [th < 61 and there existsj > Nsuch that [th > 0. Hence, 7,, = 2n/hnq), —+ 00

as n —+ 00. This means that as n —1 co, the set {1'}, of <I>hjvn_,.(t) is not relatively

dense. That is, there does not exist an l(e) for $1,111,“, (t) to satisfy Definition 3.7 as

n —1 00. Hence, TNT/11-1”) is a non-a.p. function as n —1 00.

For finite n, (P,,, is a.p. by Lemma A.3 since y,, is discrete by (3.25). Hence, (1),,” is

non-a.p. as n —1 00 by the asymptotic independence of {V,,}. Thus, by Lemma A.3,

y,, is continuous as n -1 00. [3

Note that, by Lemma 3.1, if {a,,} or {v,,} or both are continuously distributed,

the assumptions that {a,,} and {v,,} are asymptotically independent sequences and

the independence between {a,,} and {v,,} are not required in the above lemma.

The following lemma asserts that if the noise bounds are overestimated, then the

time between updates becomes infinite as n —+ oo.
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Lemma 3.3 Assume that model (3.1) is a stable ARX model, and {u,,} and {v,,} are

bounded. If PE holds, both {a,,} and {v,,} are asymptotically independent sequences,

{u,,} is independent of {v,,}, and the noise bounds are overestimated for OBE al-

gorithms, i.e., if there exists an 61 > 0 and an N E N such that for all n > N,

7,, -— v,,2 > 61, then the expected updating interval of the estimator 0,, approaches

infinity as it approaches infinity.

Proof: Let (3,, = 0,, — 0... From (2.2) and (2.5),

7.. - 63. = 7n - (y: - 93.1%)” = 7.. - (vn - iii—1m)2

Hence, from (2.10),

AV

c,, : m7,, — 177,5?1 — “in—1G1; = m7,, — m(v,, - 0£_1Xn)2 — E,,_IG,,. (3.28)

Let

¢n (LEI 171(1),, ‘- é:_1xn)2 + Kn_1Gn Z 0. (3.29)

From (3.28),

c,, = m7,, — d,,. (3.30)

From Lemma A.2, it follows that

1133ng c,, = liflglfic: + c; ) 2 0.

This means that, for any 6 > 0, there exists an N such that for all n > N,

c,, > —me. (3.31)
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It follows from (3.30) and (3.31) that, for all n > N,

(h,, < m(7,, + e). (3.32)

From (3.30) and (3.32), it follows that

P(c,, < 0) = P(m7,, < 45,, < m(7,, + 6)) V n > N. (3.33)

This probability approaches zero as e —> 0, hence as n —+ 00. To prove this, first note

that, as n -1 00, y,, in (3.1) is continuous by Lemma 3.2. From (2.4),

P q

_ T _ 2 2

Gr: — xn Pn-lxn — Z Vn,iyn_,‘ + Z Vn,i+p+1 a,,—i

i=1 i=0

where V,,,,- > 0, Vi, are the eigenvalues of the positive-definite matrix P,,-l. Hence,

by Lemma 3.1, G,, is continuous as n -—1 00. Also, from Lemma 3.7 (to follow), 11,,

does not converge to zero since 7,, are overestimated V n > N by assumption. Thus,

it follows from Lemma 3.1 that 11,,-1G,, is continuous as n -+ 00. Finally, from (3.29)

and Lemma 3.1, 45,, is continuous as n —1 00. This proves that the probability in

(3.33) approaches zero as n -> 00.

Since an OBE algorithm updates its estimator only when c,, < O, the probability

of an update diminishes as n —+ 00. This implies that the expected updating interval

approaches infinity as time increases indefinitely. Ci

Note that, if {a,,} or {v,,} or both are continuously distributed, the assumptions

that {a,,} and {v,,} are asymptotically independent sequences and the independence

between {a,,} and {v,,} are not required in the above lemma.

The following lemma asserts that the sum of two independent, ergodic, stationary

sequences is stationary and ergodic.
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Lemma 3.4 If both {Xi : k E K} and {Yk : k E K} are ergodic, stationary sequences,

and {X}, : l1 6 K} is independent of {Y}, : l1 6 K}, then (Z), = X), + Y), : k E K} is

also stationary and ergodic.

Proof: Since {Xn} and {Y,,} are stationary, by Definition 3.8, there exist sets A, B,

C, and D such that

A = {L122(°°°,X_1,X0,X1,"°)EC} (3.34)

= {w i ( ° ° :Xn—laXnaXn+la' ' °) 6 C}, (3.35)

and

B : {W:('”:Y-11)/01Y11”')€D}
(3.36)

= {wz(---.Y..-1,Y..,Y..+1,---)eD}. (3.37)

Hence, A and B are invariant sets by Definition 3.10. Also, by the ergodicity of {X,,}

and {Y,,}, Definition 3.11, and Definition 3.12,

P(A) 6 {0,1} and P(B) 6 {0,1}.

By (3.34) and (3.36), let F be such that

F=AnB={w:(°°°1X—11X01X11°°°)600(H'1Y-13Y09Y11'”)€D}

Then, there exists an E such that

F = {WIW'(,(X_1+Y_1),(Xo+I/o),(X1+Y1),')€E}

{w:(---,Z_1,Zo,Zl,---)€ E}. (3.38)
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Similarly, by (3.35) and (3.37),

F = {w : ("1Z"-11vazfl+11”) E E}. (3.39)

Thus, by (3.38), (3.39), and Definition 3.10, F is shift-invariant with respective to

{Zn}. Also, by the independence of {Xn} and {Y,,},

P(F) = P(A r) B) = P(A) - P(B) 6 {0,1}.

Hence, by Definition 3.11, F is trivial. Therefore, by Definition 3.12, {Zn} is station-

ary and ergodic. D

3.5 Almost Sure Convergence of OBE-ABE

In this section, the theorems of a.s. convergence of the OBE-ABE algorithm are

introduced and proven in iid, mixing, and ergodic noise cases. For a.s. convergence,

both the input sequence {a,,} and the noise sequence {v,,} are assumed stationary, and

{a,,} is assumed independent of {v,,}. However, for p. convergence, the stationarity

of {a,,} and {v,,} are not required. Further, if {11,,} or {v,,} or both are continuously

distributed, the conditions for a.s. and p. convergence can be further relaxed. The

following is the main theorem for a.s. convergence in the mixing case.

Theorem 3.1 Assume that the stationary sequences {a,,} and {v,,} are independent.

If PE holds, UCT holds, and {u,,} and {v,,} are mixing, then the estimator of the

OBE-ABE algorithm is a.s. convergent.
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Proof: Since PE (3.12) and UCT (3.9) hold, there exists an infinite subsequence

{t,~} E Z such that for all n 6 {t,}, (3.9) and

P(Xn E K If -2) 2 p1 > 0 a.s., (3.40)

hold where K is defined in (3.12). Throughout the proof, all 11 considered are in

{t,-}. For convenience, let {n} replace {t,} as the time coordinate in the proof. The

meaning of time intervals, for example, should change accordingly.

Let {v,, : l1 6 Z} denote the noise sequence and (u), : k E Z} the input sequence

of model (3.1). Rewrite (3.1) as

P 9

yn _ z ajyn-j = Z bjun—j + vn- (3.41)

j=1 j=0

Let

(i f 11

w,, é Zb,u,,_,-, (3.42)

i=0

and V,, déf 111,, + v,,. Then, (3.41) becomes

.21.: Z h..-,-V,- (3.43)

j=-oo

where h,, is the infinite impulse response, y,,, if V,, is set to a Kronecker delta function.

Note that, by Lemma A.7, {w,,} is stationary and ergodic. Also, by Lemma 3.4, {V,,}

is stationary and ergodic.

Let {Ik} be a sequence of time intervals of length M over which the OBE—ABE

algorithm does not update its estimator. Then, for each 11 = 1, 2, ' - - , K,

«9 “-—°=‘ [9(1) 0(2) o<m>1
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is a constant vector for all n in each 1),. Hence, by (2.5),

5n = yn- on—lxn = 3171— 20(2)z)yn-i—— Zea)z)yn-ii (3-44)

i=1 i=0

where 0(0)dé1. From (3.43) and (3.44), it follows that

n—t

=2 2 9( h,,_,_,-V
1=OJ——oo

By changing the order of summations, this equation becomes, for all n > m,

”-1

6,, = Z V Z0(i)h,,_,-_, +712? V Z0(i)h,,_,-_,-.

j=n—m+1 i=0 j=—oo i=0

Letting p = n — j,

111-1 9 co m m—l oo

= 2 v.-. Ewan—1+ 5: 11.23111.-.- 1;. >2 Vn--91+ 2 v1-32- (145)
=0P=0 i=0 1):"! i=0 p=m

Note that both g1 and g; are independent of 11. Hence, (3.45) can be written as

5n = 9(Vn1 Vn-la Via—27 ° ° ) (346)

where g : RK —1 R is measurable and independent of 11. Hence, by Lemma A.7, {a,,}

is stationary and ergodic as M —> 00.

Now, for each I: = 1, 2, - - - ,K, it follows from (2.10) that

611 = m(7n —' 53,) — 511-1071 2 0: V17. 6 LP (3'47)

Also from (2.5) and letting 0,, déf 0,, — 0...,

e: = (y. - 15.11.)” = (.... - 9,1,...) . (3.48)



Let A; be the event that v,, 6 D; and 0,191,, > 0. Let A; be the event that

v,, 6 D2“ and 0?: 13% < 0. Also, let A,, (ETC-f A; U A; and denote by Af, the complement

of A,,. Also note that 0£_lxn is fn-1-measurable.

Let 3;, denote the event that A,, occurs at least once in 1),. Then, for all n E 1),...1,

B), E 7,,_2. Hence, it follows from (3.40) that

P(0Z_,x,, Z O IBk) 2 p1 > p > O (3.49)

and

P(i§_,x, < o |B,.) 2 p2 > p > 0. (3.50)

Since B), E .7: -2 C 7""-1 and 0£_,xn is fn_1-measurable, it follows from UCT (3.9)

that

P(v,, e (11:11 1);) |5§_,x,, 2 0,13,.) 2 6, > g > o (3.51)

and

~ 6
P(v,, e (D: u 1);) |93,'_,x, < 0,3,.) 2 a, > 3 > o. (3.52)

Since A; and A; are mutually exclusive for sufficiently small 6, it follows from (3.49),

(3.50), (3.51), (3.52), and the notes below (3.9) that

P(A. (3..) = P(A; (3.) + P(A; IB.)

= P(v,, e 0361,31,, 2 0,3,.) - P(i§_,x, 2 o |B,.)

+P(v,, e D:|53,‘_,x,, < 0,3,.) . P(6§_,x, < 0 |B,.)

> P(v,, e 0351,11,, 2 o, B.) - p + P(v,, e D:|5§_,x,, < 0,13,.) . p

> 6 > 0. (3.53)
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Then, by (3.53) and the definition of A,,, it follows that

P(lenl > fi— 5 |B,,) 2 P(An |B,,) > 6 > 0. (3.54)

Thus, by the Poincaré Recurrence Theorem (Theorem A.1) and (3.54),

P(|€,,| > 7.. — e i.o. |Bk) =1 as M —+ 00.

It follows that, for sufficiently large M and conditionally on Bk-“ the following

inequality holds with probability 1:

max 63, 2 (J7: — c2)2 = 1.. — 6(2fi— c) _>_ 7... — 42¢): — c). (3.55)
7161;,

Now, let J), = arg maxnelk 52n. Then, by letting n = Jk, (3.47) can be written as

(replacing J), by J for simplicity)

7,; — 53 — nJ_1GJ/m 2 0. (3.56)

By (3.55) and (3.56),

7.1 — 7:- 2 KJ-lGJ/m — 5(2\/7,,—_f — €)- (3.57)

Let

d,, ‘1-5‘ nJ_1GJ/m — 6(2\/'7,,—_1 — e). (3.58)

Hence, by (3.57), 7,, is updated (whenever an interval 1;, is found at time n) by the

recursion

,_ —d, ifd >0

7,,: 7 1 J J , (3.59)

7,,-1 , otherwise
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is an upper bound of 7. a.s. for each 1:.

Note that PE and the mixing of {a,,} and {v,,} implies that, for overestimated 7,,,

Lemma 3.2 and then Lemma 3.3 hold. Hence, intervals I), exist i.o. It follows that,

with e —> 0, (3.59) and Lemma 3.7 imply that 7,, would continue to be updated by

the OBE-ABE algorithm until (1] —+ 0 and 7,, —* ’7... as n —-+ 00. Thus, m —> 0 when

6 —+ 0 since 0,, > 0 due to PE and the stability assumption. Hence, a,, —> 0 due to

its non-increasing property. Therefore,

P(w : ”13210 0,, = 0..) = 1.

This completes the proof of a.s. convergence. E]

For p. convergence, the mixing assumptions of both {a,,} and {v,,} in the above

theorem can be relaxed to the requirements that both {a,,} and {v,,} are asymptoti-

cally independent sequences (see Theorem 3.3). Further, if {a,,} or {v,,} or both are

continuously-distributed random sequences, then the mixing condition in the theo-

rem above can be relaxed to an ergodic condition for a.s. convergence. The following

theorem validates this assertion.

Theorem 3.2 Assume that the stationary sequences {a,,} and {v,,} are independent.

If {a,,} or {v,,} or both are continuously-distributed random sequences, PE holds, UCT

holds, and {a,,} and {v,,} are ergodic, then the estimator of the OBE-ABE algorithm

is a.s. convergent.

Proof: Continuously-distributed {v,,} or {a,,} or both implies that Lemmas 3.2 and

3.3 hold without the assumption that v,, and {a,,} are asymptotically independent

sequences. The theorem is then proved by following the same steps as in the proof of

Theorem 3.1. D
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For p. convergence, the assumptions that {a,,} and {v,,} are independent and

stationary, and that {a,,} and {v,,} are ergodic are not required (see Theorem 3.4).

The following corollaries are iid noise cases for a.s. convergence. They are special

cases of Theorem 3.1 and 3.2, respectively.

Corollary 3.1 Assume that the stationary sequences {a,,} and {v,,} are independent.

IfPE holds, UT holds, {a,,} is mixing, and {v,,} is iid, then the estimator of the OBE-

ABE algorithm is a.s. convergence.

Proof: Since UT and UCT imply each other with the iid assumption, and iid implies

mixing, a.s. convergence follows immediately from Theorem 3.1. D

Corollary 3.2 Assume that the stationary sequences {a,,} and {v,,} are independent.

If {v,,} or {a,,} or both are continuously-distributed random sequences, PE holds, UT

holds, {a,,} is ergodic, and {v,,} is iid, then the estimator of the OBE-ABE algorithm

is a.s. convergent.

Proof: Since UT and UCT imply each other with the iid assumption, and iid implies

ergodic, a.s. convergence follows immediately from Theorem 3.2. CI

The following corollaries assert the a.s. convergence of the OBE—ABE algorithm

when the probability distribution of the noise sequence {v,,} is known.

Corollary 3.3 Assume that the stationary sequences {a,,} and {v,,} are independent.

If PE holds, {a,,} is ergodic, and {v,,} is iid with uniform distribution, then the

estimator of the OBE-ABE algorithm is a.s. convergent.

Proof: For a uniform distribution, P(v,, E (D: U D; )) Z 2%.; > 0. So, UT holds.

By Corollary 3.2, the estimator is a.s. convergent. Cl
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Corollary 3.4 Assume that the stationary sequences {a,,} and {v,,} are independent.

IfPE holds, {a,,} is mixing, and {v,,} is iid with binary Bernoulli distribution: P(v,, =

W) > 6 or P(v,, = —\/'K) > 6, Vn, then the estimator of the OBE-ABE algorithm

is a.s. convergence.

Proof: Since UT holds in this case, a.s. convergence follows from Corollary 3.1. E!

Corollary 3.5 Assume that the stationary sequences {a,,} and {v,,} are independent.

If PE holds, {a,,} is ergodic and continuously distributed, and {v,,} is iid with binary

Bernoulli distribution: P(v,, = W) > 6 or P(v,, = —fi) > 6, Vn, then the

estimator of the OBE-ABE algorithm is a.s. convergent.

Proof: Since UT holds in this case, the a.s. convergence follows from Corollary 3.2.

CI

Note that all the theorems and corollaries in this section are also valid for con-

ventional OBE algorithms (and the EPA algorithm) with a known exact noise bound

7,. or —fl, because, for the OBE-ABE algorithm, 7,, —> 7... as n -—> 00 as seen in

the proof of Theorem 3.1.

3.6 Convergence in Probability of OBE-ABE

Although a.s. convergence implies p. convergence, the sufficient conditions for a.s. con-

vergence can be relaxed for p. convergence. Specifically, in addition to other relax-

ations in some cases, the stationarity of {a,,} and {v,,} are not required for p. con-

vergence. The main theorem for p. convergence of OBE-ABE algorithm is in the

following.

Theorem 3.3 Assume that the sequences {v,,} and {a,,} are independent. If PE

holds, UCT holds, and {a,,} and {v,,} are asymptotically independent sequences, then
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the estimator of the OBE-ABE algorithm is p. convergent.

Proof: Since PE (3.12) and UCT (3.9) hold, there exists an infinite subsequence

{t,} 6 2 such that for all n 6 {ii}, (3.9) and

P(xn E K Ifn_2) 2 p1 > 0 a.s., (3.60)

hold where K is defined in (3.12). Throughout the proof, all n considered are in

{lg}. For convenience, let {n} replace {t,-} as the time coordinate in the proof. The

meaning of time intervals, for example, should change accordingly.

Let {1),} be a sequence of time intervals of length M E N over which the OBE-

ABE algorithm does not update its estimator. Then, for each I: = 1,2,- - - ,K, it

follows from (2.10) that

c,, = m(7,, — 6,2,) — x,,_1G,, 2 0, Vn E 1),. (3.61)

Also from (2.5),

2 ” 2

e. = (y. — 6.1.x»? = (v. — 0.1.x.) . (3.62)

Let A; be the event that v,, 6 D: and 5Z_,x,, Z 0, and A; be the event that

v,, 6 Dj’ and 03:43:" < 0. Also, let A, 91—3! A; UA;, and denote by A5, the complement

of A,,. Also note that dilxn is fn_1-measurable.

Let 8,, denote the event that An occurs at least once in 1),. Then, for all n E 1),“,

B), 6 f'n_2. Hence, it follows from (3.60) that

P(5£_,x,, 2 0 IB),) 2 p1 > p > 0 (3.63)

and

P(d:_,x,, < 0 I81.) 2 p2 > p > 0. (3.64)
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Since 3;, E 3.4 C .77 -1 and §:_1Xn is fn_1-measurable, it follows from UCT (3.9)

that

.. 5

P(v,, e (D: u 3;) |6,?_,x,, 2 0, 3,) 2 51 > 6 > 0 (3.65)

and

5
P(v,, e (D: u D;- ) |6',?_,x,, < 0, 3,) 2 5, > 6 > 0. (3.66)

Since A; and A; are mutually exclusive for sufficiently small 6, it follows from

(3.63), (3.64), (3.65), and (3.66) that

P(An lBk)
P(A; )3).) + P(A: |BI.)

= P(v,, e D,- |6',?,,x,, 2 0, 3,) P(6’,?_,x,, 2 0 |3,,)

+P(v,, e D+|6,?_,x,, < 0,3,.) - P(6,?_,x,, < 0 )3.)

> P(v,, e D;|6,?_,x, 2 0, 3,) . p + P(v,,eeD+|6,?_,x,, < 0, 3,.)-p

> (51 + 5,) p—dé‘ 5 > 0. (3.67)

Hence,

P(Af, |3,,)=1— P(A, )3.) < 1 — 5.

Similarly, since Af,_2 E 57",.-2, it follows that

P(A:IA°-2,Bk) = 1- P(AnlAi-2,81.) = 1 - [P(A..IA..-2,BI=)+P(A.T|Af.-2,Bk)]

= 1 - {P(v,, e D,- |6,?_,x, 2 0, A;_,,3,,) - 3(6?_,x, 2 0|Af,_,,3,,)

+ P(v,,eeD+|6,?_<,x,<,0 Af,_2,3,.) P(6',?_,x, <0|A:,_2,3,,)}

<1—6.

Thus,

P(A: fl Ai—z '31:): P(Af,_2 lBk)' P(Ac lAn-2’ Bk) < (1 _ (5)2.
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Similarly,

P(Af,|Af,_,A° 3,) < 1 — 5.
71-4

Hence,

man/12-20.45.318» = P(A° As.-. warms/1:214:38»n-2

< (1—6)2o(1—6)= (1-6)3.

By induction, (for notational simplicity, let M be even)

P(nfiézAz. IBt) < (1— 0“”.

Thus,

P(B)c | B),_1) = P(An occurs at least once in I), | B),_1) = P(UZIA, IBk_1)

1— P(nfilA: I BM) 2 1— P(nW’Aa. I 3._,)i=1

> 1— (1 — 6)M/2.

Note that by (3.62), the fact that A,, occurs at least once in 1), implies that

maxne1,, 63, 2 (fl — c)2. Hence, from (3.62) and (3.68), it follows that

max 63. 2 (WT - 6)2 = 7. - 6(2t/7—t - 6) Z 7. - C(Zx/Vn-l - 6)
n61];

with probability 1 -— (1 - 5)M/2 ( > 0.99995 if 5 = 0.01 and M > 2000).

(3.68)

(3.69)

In the case of iid noise and the assumption that {v,,} is independent of {a,,}, the

conditional probabilities in the above derivation are not required and can be replaced

with marginal probabilities. Hence, (3.69) holds with probability 1 - (l — 6)” in this

case.
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Let J), = arg maxneh 5,2,. Then, by letting it = Jk, (3.61) can be written as

(replacing J), by J for simplicity.)

7,1 — 5:3 — nJ_lGJ/m Z 0. (3.70)

By (3.69) and (3.70),

'71 - ’7:- Z NJ—lGJ/m — 6(2\/’7n—-1 — 6)- (3-71)

Let

5, “é‘ nJ_,GJ/m — ism/77.: — e). (3.72)

Hence, by (3.71), 7,, is updated (whenever an interval 1;, is found at time n) by the

recursion

,_ —d , ifd >0

7,,: 7 1 J J , (3.73)

7,,-1 , otherwise

is an upper bound of 7,. with probability 1 — (1 — (5)1‘4/2 for each 10.

Since the a-fields .77., increase with n, i.e., .‘Fn_1 C 1"”, it follows from (3.68) that,

for each h,

P(Blek_1Bk_2 ' ° ° 81)) 1 — (1 -' (”M/2.

Hence,

P(flf=,B),) = P(Blek_lBk-2 - - - Bl) - P(Bk_1|Bk_2Bk_3 - - - Bl) - - - P(leBl) - P(Bl)

> [1 — (1 — 5%)". (3.74)

The assumptions that PE holds, the independence between {un} and {v,,}, and

that both {a,,} and {v,,} are asymptotically independent sequences, imply that, for
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overestimated 7,,, Lemma 3.2 and then Lemma 3.3 hold. Hence, intervals I). exist i.o.

It follows that with e -t 0, (3.73) and Lemma 3.7 imply that 7,, would continue to

be updated by the OBE-ABE algorithm until d,, —) 0 and 7,, —> 7... as n -+ 00. Thus,

x,, —» 0 when 6 —> 0 since Gn > 0 due to PE and the stability assumption. Hence,

5,, —> 0 due to its non-increasing property.

Note that K < N/M where N is the total “time” (number of data sets). Let

M = [V2N] + l where [] denotes the integer part. Then, (3.74) becomes

P(nf=,3,) > [1 — (1 — 5)"§t]t'r 2 [1 — (1 — 5)\/"’/"’]\/"’/2 -» 1 as N a 00.

This is verified by applying L’Hopital’s rule as shown below to find that (1 —q")" -+ 1,

asn—+oo,where0§q<1:

lim (1 — qn)“ = ”an30 exp[n ln(1 — q“)] = exp[lim nln(1— q”)]

 

 

 

 

q" l ,, "1n

= exp(lim fl-1——2)--exp(11m-—l-q Ci q)
73—900 n n-voo —-’;}-

2 2nlnq

= exp 11m = exp 11m ——
(ft-900 q‘nn_ql) (nLOO__q-n lnq)

2n

= ex 11m — -— ex 11mp(,,_,,, _q_,,,,—) p(,,_,°, q-.. 1,, q)

= exp(O) = 1.

Thus,

713% P(||0,, — 0,.” > e) = 0.

This completes the proof of p. convergence. D

Remark 1: Theoretically, instead of the a priori knowledge of 7,. to achieve a.s. or

p. convergence, the OBE-ABE algorithm requires only a lower bound, 6(6), of the
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e-tail probability of v,, [see (3.10)].

Remark 2: For the application of the OBE-ABE algorithm, since N is finite, an e

is first arbitrarily chosen to be a small positive number (KN decreases with 6). Given

this 6, a 6 is estimated. Any lower bound satisfying UT (3.10) (in the iid case, for

example) will work. Then, a large enough N and M(= [W] + 1, for example)

are chosen so that the probability [1 - (1 - 6)M]iv? is close to one. For example,

if 6 = 0.1, choose M = 101 and N = 10,000, for example, to get the probability

[1 - (1 —6)M]% > 0.997. If 6 = 0.02, choose M = 601 and N = 360,000, for example,

to get the probability [1 — (1 —6)M]7}VVI > 0.996. Since the probability [1 - (1 — 6)M]fi is

the most conservative value, if N is fixed in practice and is not too large (N < 10, 000,

for example), M can be simply chosen large enough to make 1 - (1 — 6)“ close to

one. If, in a real-world application, 6 is still difficult to estimated after choosing c,

then simply start the OBE-ABE algorithm with a small M (M = 20 for example)

and then increase M after each trial if necessary. The negativity of x,, can serve as an

indication of a too small M. The algorithm is guaranteed to be p. convergent (with

probability close to 1) if M is large enough when sufficient conditions (PE, UCT) are

satisfied.

If {a,,} or {v,,} or both are continuously-distributed random sequences, then the

requirements that both {a,,} and {v,,} be asymptotically independent sequences, and

that {a,,} be independent of {v,,} are not required for p. consistency. The following

theorem validates this assertion.

Theorem 3.4 If {un} or {v,,} or both are continuously-distributed random sequences,

PE holds, and UCT holds, then the estimator of the OBE-ABE algorithm is p. con-

vergent.
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Proof: Continuously-distributed v,, implies that Lemmas 3.2 and 3.3 hold without

the assumption that both {a,,} and {v,,} are asymptotically independent sequences,

and that {un} is independent of {v,,}. The theorem is then proved by following the

steps of the proof of Theorem 3.3. D

The following corollaries involve iid noise cases for p. convergence. They are

special cases of Theorems 3.3 and 3.4, respectively.

Corollary 3.6 Assume that the sequences {a,,} and {v,,} are independent. If PE

holds, UT holds, {a,,} is asymptotically independent, and {v,,} is iid, then the esti-

mator of the OBE-ABE algorithm is a.s. convergent.

Proof: Since UT and UCT imply each other with the iid assumption, and iid implies

asymptotically independent, p. convergence follows immediately from Theorem 3.3.

D

Corollary 3.7 If {a,,} or {v,,} or both are continuously-distributed random sequences,

PE holds, UT holds, and {v,,} is iid, then the estimator of the OBE-ABE algorithm

is p. convergent.

Proof: Since UT and UCT imply each other with the iid assumption, p. convergence

follows immediately from Theorem 3.4. CI

The following corollaries assert the p. convergence of the OBE—ABE algorithm

when the probability distribution of the noise sequence {v,,} is known.

Corollary 3.8 If PE holds, and {v,,} is iid with uniform distribution, then the esti-

mator of the OBE-ABE algorithm is p. convergent.

Proof: For a uniform distribution, P(v,, 6 (Dj’ U D; )) 2 N677 > 0. So, UT holds.

By Corollary (3.7), the estimator is p. convergent. D
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Corollary 3.9 Assume that the sequences {a,,} and {v,,} are independent. If PE

holds, {a,,} is asymptotically independent, and {v,,} is iid with binary Bernoulli dis-

tribution: P(v,, = fl) > 6 or P(v,, = —\/T) > 6, Vn, then the estimator of the

OBE-ABE algorithm is a.s. convergent.

Proof: Since UT holds in this case, the p. convergence follows from Corollary 3.6. CI

Corollary 3.10 If PE holds, {a,,} is continuously distributed, and {v,,} is iid with

binary Bernoulli distribution: P(v,, = (fly—...) > 6 or P(v,, = —\/'y_,.) > 6, Va, then the

estimator of the OBE-ABE algorithm is p. convergent.

Proof: Since UT holds in this case, the p. convergence follows from Corollary 3.7. D

Note that all the theorems and corollaries in this section are also valid for con-

ventional OBE algorithms (and the EPA algorithm) with a known exact noise bound

7.. or —fi, because, for the OBE-ABE algorithm, 7,, —+ 7.. as n —t 00 as seen in

the proof of Theorem 3.3.

3.7 Almost Sure and Probability Convergence of

Sub-OBE-ABE

All the convergence theorems developed in previous sections are valid for Sub-OBE-

ABE algorithm in various noise cases with the same sufficient conditions respectively.

The sketch of proofs of all the theorems for Sub-OBE—ABE is in the following. The

algorithmic steps of the algorithm are found in Table 2.3.

For convenience, let us rewrite the optimal check coefficient c,,, suboptimal check

coefficient E,,, and recursion formula for d,, here:

c,, = m7,, — meg, -- x,,_1G,, (3.75)
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E,, = m7,, — m5: — x,,_1x:x,,/d -1 (3.76)

d,, = a,,dn_1 + B,,xzxn. (3.77)

Also, define

c,, , if E,, < 0

a; = (3.78)

0 , otherwise.

and

ca, iféaZO
.4.

cu

0 , otherwise.

Hence, c,, = E; + E; . The following lemmas are needed for the proof of the main

theorem.

Lemma 3.5 E,, < 0 implies c,, < 0

Proof: Since the matrix P,, is real symmetric,

1

G1; = XiPn—lxn Z ijn(Pn-1 )szn =m

x?x,, (3.79)

where um() and Vmu(°) denote the minimum and maximum eigenvalues, respec-

tively. Also, as in (2.9)

-1 -l T

Pn = anPn_1 + IBanxno

This implies

tr(P;l) = a,,tr(P;1,) + 6,x?x,,. (3.80)

Since P;l is positive definite,

tr(Pr-:1) Z Vmax(P;l)
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That is,

l l

6(1):) 3 may) (3'81)

Comparing (3.80) and (3.77), we see that d,, = tr(P;1). Also, by (3.79) and (3.81),

0,, Z x,,xZ/dnd . (3.82)

Hence, by (3.75), (3.76) and (3.82), the lemma is proved. . D

Note that a version of Lemma A.2 is valid for Sub«OBE—ABE as is stated in

Lemma 3.6 below. The proof is the same except that c; in the original proof [27] is

replaced by E; .

Lemma 3.6 For Sub-OBE-ABE algorithm, lim,,_,°° E; = 0, where E; is defined in

(3.78).

Theorem 3.5 All the convergence theorems of OBE-ABE are valid for Sub-OBE—

ABE with the same respective conditions.

Proof: That Lemma 3.3 is valid for Sub-OBE—ABE is shown by substituting c; and

c; in the proof with E; and E; , respectively. Also note that P(Efl < 0) S P(c,, < 0)

which is implied by Lemma 3.5. Since other lemmas (including Lemmas 3.5 and 3.6)

which are necessary for the proof of the main theorems of Sub—OBE—ABE algorithm

are not affected by the suboptimal check E,,, it follows that the proofs of convergence

for OBE-ABE are also valid for Sub-OBE—ABE provided that c,, and G" in the proofs

are changed to E,, and xzxn/d,,_1, respectively. D
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3.8 A Necessary Condition

All convergence theorems in the previous sections have two common sufficient condi-

tions: PE and UCT (or UT in the iid case). PE has been shown to be a necessary

condition [5, 31, 42] for the convergence of any LSE algorithm. Another necessary

condition for the convergence of those algorithms is the whiteness of the noise se—

quence. This is a logical result since white noise carries the least power of all WSS

noises.

SM algorithms are based on minimizing the feasible set (polytope or ellipsoid)

according to assumed known noise bounds. Although some SM algorithms (especially

OBEs) have similar recursion formulae to RLS, a LSE algorithm, the convergence of

SM algorithms does not rely on the whiteness of the noise sequence. Even in the

white noise case, the estimator of an OBE algorithm (i.e. the center of ellipsoid at

each step) may be biased away from the true parameter vector due to the optimal

data weighting process. This is reasonable since whiteness is an “average” property,

not a pointwise property (e.g. UCT and UT are pointwise properties).

If UCT or UT does not hold, then the ellipsoid of SM algorithms will not shrink to

a point, hence convergence is not guaranteed. The following lemma which is extended

from Lemma A.1 by considering an almost sure (a.s.) w-set in its proof, validates this

assertion.

Lemma 3.7 Assume that the PE (3.12) holds. If there exists an e > 0 and N E N,

such that 7,, - v,,2 > e, Vn > N, a.s., then the sequence of the ellipsoids of OBE

algorithms does not asymptotically shrink to a point a.s.

Theorem 3.6 Assume that PE holds. Then, UCT is a necessary condition for the

sequence of the ellipsoids of any OBE algorithm to shrink to a point a.s.

Proof: Suppose that UCT does not hold. Then, considering the notes below (3.9),
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there exist an e > 0 and an N E N such that, for all n > N, P(v,, E Dflf' -1) =

0 and P(v,, 6 DH? -1) = 0 a.s. Hence, 7,, — v3, > e, Vn > N a.s. Thus, by

Lemma 3.7, the sequence of the ellipsoids does not shrink to a point a.s. Cl
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Chapter 4

Simulation Studies

 

4.1 Introduction

In this chapter, the performance of each of the new algorithms is investigated through

simulations. Although the algorithms have been proven to be convergent in iid,

mixing, ergodic, and non-stationary noise cases in the previous chapter, simulations

can provide other characteristics which are not explicitly inferred from theoretical

analysis. For example, simulations can illustrate how the speed of convergence of

OBE-ABE algorithm is affected by the ABE procedure. Simulations also reveal that

the suboptimal check in Sub-OBE—ABE does not slow down the speed of convergence.

This is not surprising since the the noise bounds estimated by the ABE procedure are

not affected by the suboptimal check. Simulations also reveal the effect of asymmetric

noise bounds on the performance of convergence.

The version of OBE algorithms used in this dissertation is SM—SA algorithm due

to its interpretable optimization criterion and numerical stability. Colored noise cases,

in addition to iid cases, are also demonstrated.
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4.2 IID Noise Cases

In this section, the performance of OBE-ABE, Sub-OBE-ABE, and conventional OBE

are compared in iid noise cases with symmetric and asymmetric bounds. Comparisons

of performance of OBE-type algorithms with RLS in the iid case are found in [27].

Hence, they are omitted here. When compared to RLS, OBE algorithms have better

speed of convergence in many noise cases.

Throughout this section, an AR(3) model is simulated as follows:

311: : altyn—l + 02-3/n-2 + aSIUn-ZB + ”it (4'1)

where a,,. = 2,a2. = —1.48,a3.. = 0.34 are unknown parameters to be identified.

Three types of noise sequences {v,,} are employed to generate three observable out-

put sequences {y,,}. Specifically,

CASE 1: AR(3) model as (4.1). v,, ~ B(—1, 1) is iid and non-zero-mean with binary

Bernoulli distribution.

1, with robabilit 0.7

p y (4.2)vn

—1 , with probability 0.3.

CASE 2: AR(3) model as (4.1). v,, ~ U(—1, 1) is uniformly distributed on [-1,l].

The following is a case of asymmetric noise bounds:

CASE 3: AR(3) model as (4.1). v,, ~ B(—0.5, 1) is iid, non-zero—mean, asymmetri-
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cally bounded with binary Bernoulli distribution. Specifically,

I , with probability 0.7

vn

II

A

5
'
“

C
1
0

V

—0.5 , with probability 0.3.

The following case is constructed for the illustration of the final ellipsoid of the algo-

rithm and the trajectory of the estimator.

CASE 4: AR(2) model is constructed as follows:

ya = —0.1yn—l + 0.56ya_2 + ”11 (4.4)

in which v,, is as in CASE 1, (4.2).

Note that the noise bound (7... = 1) and the non-zero mean of v,, are assumed unknown

in these cases.

4.2.1 OBE-ABE vs. OBE

In this subsection, OBE-ABE and OBE are compared with regard to the speed of

convergence and computational efficiency using CASES 1 — 3. These results support

the validity of the theorems in the previous chapter.

For CASE 1, the simulation results of OBEABE (70 = 1.5, e = 0, and M = 20)

and OBE (70 = 1.5) are shown in Figs. 4.1 - 4.3. As seen in the figures, neither

estimator is affected by the non-zero mean of v,, and both algorithms converge to

the true parameter (a,,. = 2). This supports the assertions of related theorems in

Chap. 3.

However, with the help of automatic bound estimation, OBE-ABE converges faster
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(as seen in Fig. 4.1) than OBE. This result is not unexpected in light of Lemma 3.7

and related theorems in Chap. 3.

For CASE 2, the simulation results of OBE-ABE (70 = 1.5, e = 0.05, and M = 50)

and OBE (70 = 1.5) are shown in Figs. 4.4 - 4.6. The difference of convergence

performance between OBE-ABE and OBE is similar to those of CASE 1.

Further, a comparison between CASE 1 and CASE 2 shows that the speed of

convergence of both algorithms is proportional to the e-tail probability, 6, defined in

UT (3.10) or UCT (3.9).

For CASE 3, the simulation results of OBE-ABE (70 = 1.5, e = 0, and M = 70)

and OBE (70 = 1.5) are shown in Figs. 4.7 — 4.9. As seen in the figures, the con-

vergence of (overestimated) OBE is affected by the asymmetry of noise bounds while

OBE-ABE converges consistently as estimated bounds 7,, automatically converge to

the true bound (= 1).

For CASE 4, the final ellipsoid of OBE-ABE ('70 = 1.5, e = 0, and M = 20) and

the trajectory of the estimator after 1000 steps are shown Fig. 4.10. The trajectory

of the estimator starts from the 17th step. The ellipsoid does not degenerate to a

line segment. This conforms to the positiveness of P,, and 76,, under PE and stable

assumptions.

These simulations show that the number of updates for the estimator of OBE-ABE

algorithm is smaller than that of the (overestimated bound) OBE algorithm if both

algorithms terminate at same ellipsoidal volume. This means that OBE-ABE shrinks

the volumes of ellipsoids more drastically than OBE each time that the updating

occurs. The improved computational efficiency of OBE-ABE is not surprising since

the ABE procedure, having trivial computational cost as seen in CASE 1 through

CASE 3, blindly gets more correct information (noise bound) than those of OBE.
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Figure 4.1: Estimators of a1... = 2. CASE 1 : v,, ~ B(—1,1) is non-zero mean for

model (4.1).
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Figure 4.2: CASE 1 : v,, ~ B(—l, 1) is non-zero mean for model (4.1).
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Figure 4.8: CASE 3 : v,, ~ B(-0.5,1), (4.3), for model (4.1).
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Figure 4.9: CASE 3 : v,, ~ B(—0.5, 1), (4.3), for model (4.1).

 

0.8 )-

0.6 -

0.4 ~

0.2 -

  L 1 l l

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

a_1

 

Figure 4.10: CASE 4 : The final ellipsoid and the trajectory of the estimator. v,, ~

B(-—1,1), (4.2), for model (4.4).
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4.2.2 Sub-OBE-ABE vs. OBE-ABE

In this subsection, Sub-OBE—ABE and OBE-ABE are compared with regard to the

speed of convergence and computational efficiency using CASEs 1 and 2. These

convergence results support the validity of the theorems in the previous chapter.

For CASE 1, the simulation results of OBE-ABE (70 = 1.5, e = 0, and M = 20)

and Sub-OBE-ABE (70 = 1.5, e = 0, and M = 20) are shown in Figs. 4.11 and 4.12.

As seen in the figures, neither estimator is affected by the non-zero mean of v,,, and

both algorithms converge to the true parameter (a,,. = 2).

In this case, Sub-OBE-ABE, which selects 18% of the data, has similar convergence

performance to OBE-ABE which selects 50% of the data. This reveals that the

excellent performance of ABE procedure is not affected by the suboptimal check.

For CASE 2, the simulation results of OBE-ABE (70 = 1.5, e = 0.05, and M = 50)

and Sub-OBE—ABE (‘70 = 1.5, e = 0.05, and M = 30) are shown in Figs. 4.13 and

4.14. As seen in the figures, neither estimator is affected by the non-zero mean of

v,, and both algorithms converge to the true parameter (a1... = 2). Sub-OBE—ABE

which selects very few (1.5%) data in this case has similar convergence performance to

OBE-ABE which selects 5% of the data. However, both in CASEs 1 and 2, the speed

of convergence of Sub-OBE—ABE in the beginning (e.g. first 150 steps) is slower than

that of OBE—ABE. This is because, in that stage, Sub-OBE—ABE has big ellipsoids

and is busy updating the estimator using the suboptimal check without updating the

estimated noise bound using the ABE procedure.

4.3 Colored Noise Cases

In this section, the performances of OBE—ABE, Sub-OBE-ABE, and conventional

OBE are compared in colored noise cases with symmetric and asymmetric bounds.
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Figure 4.11: Estimators of a1... = 2. CASE 1 : v,, ~ B(—1,l) is non-zero mean for

model (4.1).
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Figure 4.13: Estimators of al.. = 2. CASE 2 : vn ~ U(—1,1) for model (4.1).
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Figure 4.14: CASE 2 : 12,. ~ U(—1,1) for model (4.1).
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Four colored noise cases are constructed as follows:

CASE 5: AR(3) model as (4.1). v,, is a colored non-zero-mean noise sequence related

to a colored sequence {wn} as follows:

1, ifwn>—1

”n (4.5)

—1 , otherwise

in which the colored sequence {wn} is generated by a uniformly-distributed iid white

noise sequence 2,. ~ U(—1, 1) as follow:

wn = —0.8wn-1 + Zn.

CASE 6: vn is the same as in CASE 5, (4.5), while the order of the AR model increases

to 12. Specifically, a stable AR(12) model is employed in this case as follows:

311: = altyn-l + 02.31.14 + ° ' ° + a12.yn—12 + vn (4.6)

where a1... = —O.l,a2,.. = 0.9175, a3. = —0.191,a4... = —0.2253,a5. = 0.2601,a6. =

0.0046, a7... = —0.0367,081.1 = "-0.0209,(191.1 = —0.0082,a10.1 = 0.0095, (1111.. = -0.0052,

and an». = -0.0041 are unknown parameters to be identified.

CASE 7: AR(3) model as (4.1). on is a colored non-zero—mean noise sequence with

asymmetric bounds generated by a colored sequence {wn}, i.e.,

l , if w. > —1

vn = (4.7)

—0.5 , otherwise

The following case is constructed for the illustration of the final ellipsoid of the algo-
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rithm and the trajectory of the estimator in colored noise case.

CASE 8: AR(2) model as in CASE 4, (4.4). v,, is as in CASE 5, (4.5).

4.3.1 OBE-ABE vs. OBE

In this subsection, OBE—ABE and OBE are compared with regard to the speed of

convergence and computational efficiency using CASEs 5 — 7. These results support

the validity of the theorems in the previous chapter.

For CASE 5, the simulation results of OBE-ABE ('70 = 1.5, e = 0, and M = 40)

and OBE ('70 = 1.5) are shown in Figs. 4.15 — 4.17. A seen in the figures, neither

estimator is affected by the color of v,, and both algorithms converge to the true

parameter (a1. = 2). This supports the assertions of related theorems in Chap. 3.

For CASE 6, the simulation results of OBE-ABE (70 = 1.5, e = 0, and M = 40)

and OBE (70 = 1.5) in this case are shown in Figs. 4.18 — 4.20. A seen in the figures,

the slow speed of convergence of OBE due to overestimated noise bound results in poor

convergence, while OBE-ABE converges very well to the true parameter (0;. = —0.1).

This shows that the excellent convergence performance is not affected by model order

while (overestimated bound) OBE is.

For CASE 7, the simulation results of OBE-ABE (70 = 1.5, e = 0, and M = 250)

and OBE (70 = 1.5) are shown in Figs. 4.21 - 4.23. As seen in the figures, the con-

vergence of (overestimated) OBE is affected by the asymmetry of noise bounds while

OBE-ABE converges consistently as estimated bounds 7,, automatically converge to

the true bound.

For CASE 8, the final ellipsoid of OBE—ABE (70 = 1.5, e = 0, and M = 40) and

the trajectory of the estimator after 1000 steps are shown in Fig. 4.10. The trajectory
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Figure 4.15: Estimators of a1. = 2. CASE 5: v,, is colored in (4.5) for model (4.1).

of the estimator starts from the 17th step. The ellipsoid does not degenerate to a

line segment. This conforms to the positiveness of P,, and 10,, under PE and stable

assumptions.

4.3.2 Sub-OBE-ABE vs. OBE-ABE

In this subsection, Sub-OBE—ABE and OBE-ABE are compared with regard to the

speed of convergence and computational efficiency using CASEs 5 and 6. These

results support the validity of the theorems in the previous chapter.

For CASE 5, the simulation results of OBE—ABE (70 = 1.5, e = 0, and M = 20)

and Sub-OBE—ABE (‘70 = 1.5, e = 0, and M = 20) are shown in Figs. 4.25 and 4.26.

As seen in the figures, neither estimator is affected by the color and non-zero mean

of v,, and both algorithms converge to the true parameter (al.. = 2). This supports

the assertions of related theorems in Chap. 3.

In this case, Sub-OBE-ABE, which selects 15% of the data, has similar convergence

performance to OBE—ABE which selects 45% of the data. This reveals that the
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Figure 4.16: CASE 5 : v,, is colored in (4.5) for model (4.1).
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Figure 4.17: CASE 5 : v,, is colored in (4.5) for model (4.1).

70



 

   
 

 

 

-0.1' ........ ......

u u .1. . . . .

0‘5... ............. . ,. .v, .....,.........,
I 1

. . . . . . 1 . .

   
'02 200400 000 000100012001400100013002000

Tlmo(n)

 

Figure 4.18: Estimators of a]... = —0.1. CASE 6: v,, is colored in (4.5) for model (4.6).
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Figure 4.19: CASE 6 : v,, is colored in (4.5) for model (4.6).
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Figure 4.21: Estimators of al.. = 2. CASE 7 : Colored noise vn ~ B(—0.5, 1), (4.7),

for model (4.1).
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Figure 4.23: CASE 7 : Colored noise vn ~ B(—0.5, 1), (4.7), for model (4.1).
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Figure 4.24: CASE 8 : The final ellipsoid and the trajectory of the estimator. 22,, ~

B(—1,1), (4.5), for model (4.4).

excellent performance of the ABE procedure is not affected by the suboptimal check.

For CASE 6, the simulation results of OBE-ABE (’70 = 1.5, c = 0, and M = 30)

and Sub-OBE-ABE (70 = 1.5, e = 0, and M = 30) are shown in Figs. 4.27 and 4.28.

As seen in the figures, neither estimator is affected by the non-zero mean of v,, and

both algorithms converge to the true parameter (al. = 2). However, Sub-OBE-ABE,

which selects very few (1.5%) data in this higher order case, has slower speed of

convergence in 2000 steps than OBE-ABE which selects 5% of the data.

4.4 Tracking Performance of Adaptive Sub-OBE-

ABE

In this section, tracking performance of Sub-OBE-ABE algorithm is illustrated through

study of two examples of time-varying systems: one gradually changing, the other

abruptly changing. Specifically, an AR(2) model with time-varying parameters is
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constructed as follows:

yn = altyn—l + aZtyn—Z + ”71 (4.8)

in which a2. = —0.68 and a1... varies between —1.6 and 1.6 (the same as in [11]).

This is equivalent to varying the system’s conjugate poles 0.8 :i: j0.2 to and from

—O.8 :l: 10.2. The variations of al.. (abruptly or gradually) are shown as dashed lines

in Figs. 4.31 and 4.39. The noise sequence {v,,} is iid and uniformly distributed on

[-1,l].

Although “non-adaptive” OBE algorithms are well-known to have good tracking

capability in slowly time-varying systems, they eventually lose tracking capability.

This result is shown in Fig. 4.29 and 4.30 (7,, = 1.5).

On the other hand, the adaptive Sub-OBE-ABE algorithm ('70 = 1.5, e = 0.02,

M = 70), which selects 4.5% and 3% (p in each figure) of the data, respectively, keeps

track of the varying parameters very well, as shown in Figs. 4.31 and 4.32.

To further investigate its tracking capability, faster-varying systems are simulated

as in Figs. 4.33 — 4.36. As shown in the figures, the adaptive Sub-OBE—ABE algorithm

(’70 = 1.5, e = 0.02, M = 70), which selects no more than 7.5% of the data, keeps

track of these faster time-varying parameters equally well.

Comparing these diagrams with those in [11, 37, 38] shows that the adaptive

Sub-OBE—ABE algorithm has better tracking capability.

The tracking capability of the Sub-OBE—ABE (or any OBE) algorithm is propor-

tional to the tail probability of noise. This is a natural result since the larger the tail

probability, the more frequent Sub-OBE—ABE updates its estimator. To demonstrate

this, a much faster time-varying systems with the same uniformly distributed noise v,,

is simulated as shown in Fig. 4.37. As shown in the figure, the tracking performance

is not as good as in previous cases. However, if vn is now binary Bernoulli distributed

with 0.5 tail probability, the tracking performance is improved as shown in Fig. 4.38.
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Figure 4.29: Non-adaptive OBE algorithm on the time-varying system (4.8). 7,, = 1.5.

An even faster time—varying system with the same binary Bernoulli distributed noise

is shown in Fig. 4.39. As shown in the figure, the tracking performance of Sub«0BE—

ABE algorithm is still excellent in this case. In these cases, Sub-OBE—ABE selects,

on average, 32% of the data.
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Figure 4.30: Non-adaptive OBE (SM-SA) algorithm on the time—varying system (4.8).

7,, = 1.5.

 

 

   
10002000300040005000600070008000900010000

Tlmo(n)

Figure 4.31: Adaptive Sub-OBE-ABE algorithm on the time-varying system (4.8).

p = 4.5%.
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Figure 4.33: Adaptive Sub-OBE-ABE algorithm on the time-varying system (4.8).

p = 5.5%.
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Figure 4.34: Adaptive Sub-OBE-ABE on the time-varying system (4.8). p = 3.5%.
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Figure 4.35: Adaptive Sub-OBE—ABE on the time-varying system (4.8). p = 7.5%.
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Figure 4.36: Adaptive Sub-OBE—ABE on the time-varying system (4.8). p = 5.5%.
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Figure 4.37: Adaptive Sub-OBE-ABE on the time-varying system (4.8). p = 10%.
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Figure 4.38: Adaptive Sub-OBE-ABE on the time-varying system (4.8) (v,, ~

B(-1,1)). p = 31%.
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Figure 4.39: Adaptive Sub-OBE—ABE on the time—varying system (4.8) (vn ~

B(—l,l)). p = 33%.
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Chapter 5

Application to Linear Prediction

Analysis of Speech

 

5.1 Introduction

OBE-ABE algorithm and its variants presented in the previous chapters are proven

in Chap. 3 to be a.s. and p. convergent under various conditions including colored and

non-stationary noise cases. These algorithms have excellent performance in simula-

tions which are designed to satisfy the sufficient conditions of convergence. However,

in real-world applications where model structures or noise characteristics are not ideal

as in simulations, the performance of most algorithms suffer. In order to further inves-

tigate the performance of the new OBE-ABE algorithms in real-world applications,

they are applied to the linear prediction (LP) analysis of speech [12, 40] in this chapter

and to the blind-deconvolution problem in the next chapter.

5.2 LP model of speech

Speech is a very dynamic signal. Even a short frame (e.g., 25.6 msec) of speech can

be regarded as quasi-stationary at best. However, for analytical tractability, a short

84



frame of 25.6 msec (256 points for 10 kHz sampling rate) speech signal is usually

modeled as an AR(m) process as follows:

yn = Zaityn-i + vn = 03X" "1’ ’0". (5.1)

i=1

0? = [al. - - oam...] is the vector of unknown LP coefficients to be identified and the

unobservable excitation input sequence {v,,} is a white noise for unvoiced sounds and

a quasi-periodic pulse train of appropriate pitch for voiced sounds.

The LP model has been the industry standard for decades in speech analysis be-

cause of its mathematical tractability and acceptable results for processing or recog-

nition purposes. Although cepstral coefficients [12] or temporal cepstral derivative

[40] are employed in some speech recognition systems for robustness or improved

performance, they are often derived from LP coefficients.

The autocorrelation method using the Levinson-Durbin algorithm [12, 40] to

achieve an 0(m) [0(3m) if overlapped frames are taken into account] computation

has been the industry standard for identifying the LP coefficients {a,,...}. It is a batch

method based on LSE optimization. Its recursive counterpart is the widely-used RLS.

Both algorithms work very well on identifying LP coefficients as shown in the figures

in the following sections. However, RLS has 0(m2) computational complexity since

it uses 100% of the data to update the estimator.

Any recursive algorithm must converge fast enough in, for example, 256 steps in

order to be successfully applied to LP analysis of speech. Known to have fast speed of

convergence and efficient computation [0(pm2)], OBE algorithms (with suboptimal

checking), besides RLS, is another candidate for this purpose.
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5.3 LP analysis using OBE-ABE

The first attempt to applying OBE algorithm to LP analysis of speech is performed by

Deller and Luk [15]. This attempt reveals the fact that the convergence performance

of OBE is seriously affected by the precision of the estimated noise bounds which are

not available in most real-world applications.

With the ABE procedure, the OBE-ABE algorithm makes possible the application

of OBE to real-world applications including LP analysis of speech. Due to OBE-

ABE’s fast speed of convergence, robustness to measurement noise (see Chap. 6)

and non-stationarity, and blind-deconvolution capability in colored noise, the results

shown below are comparable to those of RLS or the autocorrelation method.

Theoretically, OBE-ABE can be initialized with any overestimated bound 70,

small 6, and large enough M. Since each speech frame in the LP model is typically

only 256 points (for 10 KHz sampling rate) and quasi-stationary, the initialization

must be deliberately chosen to assure convergence. To this purpose, several speech

signals which are drawn from TIMIT (Texas Instruments and Massachusetts Insti-

tute of Technology) speech database [18] are employed in determining the optimal

initialization. Also, each frame of speech is normalized to have maximum unity mag-

nitude. However, no windowing (e.g., Hamming window) is needed. An acceptable

initialization is 70 = 1.5, e = 0.25, and M = 12, for both voiced and unvoiced sounds.

This makes the application of OBE-ABE straightforward, without requiring a priori

knowledge of the voice/unvoiced status of the frame. This initialization produces

acceptable results using only, on average, 12% of the data for voiced sounds and 8%

for the unvoiced. By experimentation, an excellent initialization is found (70 = l,

e = 0.01, and M = 20) for all the voiced and unvoiced. This initialization results in

excellent spectral envelopes of LP coefficients which are comparable to those of the

autocorrelation method and RLS. The data selected in this case are, on average, 25%
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for voiced sounds and 60% for the unvoiced.

As typical examples of LP analysis, the first set of spectra of LP coefficients for

vowels /I/ (voiced phoneme, from utterance “six”), /E/ (from “seven”), and /u/ (from

“two”) are shown in Figs. 5.40 - 5.42, and for unvoiced plosive /t/ (from “two”), /f/

(from “four”), and /s/ (from “six”) are shown in Figs. 5.43 — 5.45. The upper portions

of the figures show the spectra of the speech frames themselves based on a 512-point

FFT. The lower portions show the spectra of LP coefficients (m = 14) obtained by

autocorrelation method (solid line), and OBE—ABE (dashed line). As seen in the

figures, OBE-ABE produces similar spectra to those of conventional batch method.

The second set of spectra of LPG coefficients for vowels /I/ (voiced phoneme, from

utterance “six”), /E/ (from “seven”), and /u/ (from “two”) are shown in Figs. 5.46

— 5.48, and for unvoiced plosive /t/ (from “two”), /f/ (from “four”), and /s/ (from

“six”) are shown in Figs. 5.49 - 5.51. Similar to the first set, the upper portions of

the figures show the spectra of the speech frames themselves based on a 512-point

FFT. The lower portions show the spectra of LP coefficients (m = 14) obtained by

RLS (solid line), and OBE—ABE (dashed line). As seen in the figures, OBE—ABE

produces similar spectra to those of RLS while selects, on average, no more than half

as many data as RLS.

To further investigate OBE-ABE’s capability, a simulated speech frame (256

points) of phoneme /u/ is generated by the LP model (5.1) using a pulse train (pulses

separated by 80 points, amplitude 0.5, and first pulse located at the 10th point) as

the excitation {v,,}. Both OBE-ABE and autocorrelation method are applied to this

case for the identification of the LP coefficients. The results are shown in Fig. 5.52.

As seen in the figure, OBEABE produces better result since its LP spectrum is more

resemblant to that of the simulated speech itself. This conforms to the fact that

OBE-ABE converges consistently in colored noise case while other algorithms based
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Figure 5.41: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra

based on OBE—ABE (dashed line), and autocorrelation (solid line).

88



‘ Mind/U

 
 

0 0.1 0.2 0.3 0.4 0.5 0.0 0.7 0.8 0.9 1

 

 

  
 

0 0.1 0.2 0.3 0.4 0.5 0.0 0.7 0.8 0.0 1

ManWm:5 PI

Figure 5.42: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra

based on OBE-ABE (dashed line), and autocorrelation (solid line).

 

o Sputum 011V

10 fir I I f I I T 1

1o"

-2 u

‘° . 1.
104i 1

10"

104 l I 1 1 J_

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 

 

  L l l 1 A L 1 l

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RadonMmnorm-Izod to PI

 

"o 01

Figure 5.43: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra

based on OBE-ABE (dashed line), and autocorrelation (solid line).
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Figure 5.46: Spectra of voiced /I/ phoneme. Upper graph: Direct 512-point FFT

spectrum. Lower graph: Spectra based on OBE-ABE (dashed line), and RLS (solid
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based on OBE-ABE (dashed line), and RLS (solid line).
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based on OBE-ABE (dashed line), and RLS (solid line).
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Figure 5.50: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra

based on OBE-ABE (dashed line), and RLS (solid line).
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Figure 5.51: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra

based on OBE-ABE (dashed line), and RLS (solid line).
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on LS concept (e.g., LS, RLS, LMS) are inconsistent.

5.4 Sub-OBE-ABE and computational complexity

The Sub-OBE—ABE algorithm has been shown in Chap. 4 to have similar speed of

convergence to OBE-ABE while having more efficient 0(pm2) computation. However,

within short periods of 256 steps, Sub-OBE—ABE does not converge as well as OBE-

ABE with the same initialization, due to the suboptimal check for innovation. This

phenomenon has been explained in Chap. 4 for Fig. 4.12 and 4.14.

Through experiments, two set of initializations of Sub-OBE-ABE algorithm are

found respectively for the voiced and unvoiced sounds. For voiced sounds, OBE-ABE

initialized with 70 = 0.25, e = 0.0001, and M = 12 has excellent results as shown in

Figs. 5.53 — 5.55. Seven percent of the data is selected in the voiced case on average.

For unvoiced sounds, the initialization is 70 = 0.5, e = 0.0001, and M = 8. The

results for unvoiced sounds are shown in Figs. 5.56 - 5.58. Thirteen percent of the

data is selected in the unvoiced case on average.

As seen in the figures, Sub-OBE—ABE achieves similar spectra to those of RLS

or the autocorrelation method while selecting, on average, only 10% of the data.

Since the number of LPG coefficients, m, is on the order of 10 [12, 40] for most

speech applications, Sub-OBE—ABE is virtually an 0(m) recursive algorithm in this

application.
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Figure 5.56: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra

based on Sub-OBE—ABE (dashed line), and autocorrelation (solid line).
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Figure 5.57: Upper graph: Direct 512-point FFT spectrum. Lower graph: Spectra

based on Sub-OBE-ABE (dashed line), and autocorrelation (solid line).
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Chapter 6

Application to Blind

Deconvolution

 

6.1 Introduction

The blind-deconvolution problem [23] has attracted intensive research in recent years

in the fields of data communications, adaptive filtering, and signal processing. A typi-

cal block diagram for the blind-deconvolution problem is shown in Fig. 6.1. The input

{v,,} and the noise {10”} in the figure are assumed unobservable. In data communi-

cations, the unknown input data are recovered using the output data received from a

noisy and distorted channel (e.g., satellite, cellular or optical fiber). Another example

of a blind-deconvolution problem is the LP analysis of a speech signal corrupted by

unknown measurement or environmental noise.

Several well-known estimation methods have been applied to solve the blind-

deconvolution problem. Bayesian estimation [23] (batch method) and LMS (recursive)

are two popular methods. However, both of those methods require that the input {v,,}

and the noise {wn} be white for convergence since they are based on the LSE op-

timization. This seriously restricts the application scope since input data ({v,,}) in

most engineering applications (e.g., the previous two examples) are not always white.
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Figure 6.1: Model of the received signal in the blind—deconvolution problem.

The new OBE-ABE algorithms presented in this dissertation are good candidates

to solve this difficulty since they converge in colored noise cases as demonstrated in

the previous chapters. Although the model of blind deconvolution shown in Fig. 6.1

is not an ARX model, OBE-ABE algorithms show excellent results in this application

due to their robustness to the measurement noise.

The block diagram in Fig. 6.2 is one of the application structures for blind de-

convolution and is employed in this chapter. The parameters of the inverse filter

H‘1(z) are estimated by OBE-ABE using output data {y,,}. The detector in the

figure has known transfer functions for the recovery of the input data using {13,,}.

The unknown H(z) is simulated as HR (infinite impulse response) and FIR (finite

impulse response) filters, respectively. The unknown input {v,,} is simulated as an

iid or a colored digital data stream. The noise {ion} is independent of {v,,} and is iid

with uniform distribution specified in the following sections.
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6.2 IID input and HR filter

In this section, the HR filter in Fig. 6.2 is assumed to be:

H(z) = 1/(a1...z’1 + 02.2-2 + a3..z"3) (6.1)

where the unknown parameters al.. = 2, a2... = —l.68,a3... = 0.34, the input {v,,} is

iid with equally distributed discrete values {-1, -0.5, 0, 0.5, 1}, and the noise {wn} is

iid and uniformly distributed on [-0.05, 0.05]. In this case, the signal to noise ratio

(S/N) [ignoring the gain of H(2)] is 42.5 dB. The order of the inverse filter f1“1(2)

in this case is three. The application results of OBE-ABE and conventional OBE

algorithms in this case are shown in Fig. 6.3 and 6.4, respectively. As seen in Fig. 6.4,

the ellipsoidal volumes of OBE algorithm (77. = 1) quickly become negative because

of the added noise {wn}, while the volume of the OBE-ABE algorithm (70 = 10, e =

0.5, and M = 80) converges to zero. Figure 6.3 shows the estimator of the first

parameter both algorithms. As seen in the figure, the OBE estimate diverges due

to the negativity of ellipsoidal volumes, while OBE-ABE algorithm converges to the

theoretical values ([al,ag,a3] = [1.9930, —1.4676,0.3332]) calculated by the Wiener

optimization method [23]. Simulations show that OBE-ABE algorithm is robust to

the noise {wn} while OBE is not.

Simulations also show that, using OBE—ABE in this case, the output of the detec—

tor, {13n}, recovers the unknown input data {v,,} with a 99% success rate. Figure 6.5

shows the first 100 samples of v,,, 13,,, and i)... The 1% wrong data can be easily

recovered using some error-correction techniques in data communications.

Simulations also show that the performance of OBE-ABE algorithm in the noise-

corrupted case is not affected by the order of H(2) However, when the S/N decreases

(e.g. increases the bound of the noise {wn}), the success rate decreases due to the
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biased estimator which can be theoretically calculated by the Wiener optimization

method. This can be seen in Figs. 6.6 and 6.7 which are the simulation results of the

above model except that now wn ~ U(—0.1,0.1) (S/N = 36.5 dB). As seen in the

figures, the estimator of OBE-ABE is biased (theoretical values of the estimator in

this case are [01,02,03] = [1.9724, —1.4315,0.3133]), and the success rate is 91%.

6.3 IID input and FIR filter

In this section, the FIR filter in Fig. 6.2 is assumed to be:

11(2) = ale-z-l + a2ez_2 + 03.2-3

where the unknown parameters a1... = 0.7,a2. = 05,03... = —0.336, the input {v,,}

is iid with equally distributed discrete values {—1, -0.5, 0, 0.5, 1}, and the noise

{wn} is iid and uniformly distributed on [-0.05, 0.05] (S/N = 42.5 dB) and [-0.1,0.1]

(S/N = 36.5 dB), respectively. In this FIR case, the performance of OBE-ABE

algorithm is still excellent if the order of the inverse filter H‘1(z) increases from 3 to

10. The results are shown in Figs. 6.8 — 6.9. As seen in the figures, OBE-ABE shows

excellent performance with 99% success rate in the case of S/N = 42.5 dB (Fig. 6.8)

and 93% success rate in the case of S/N = 36.5 dB (Fig. 6.9).

6.4 Colored Input and HR Filter

In this section, the HR filter in Fig. 6.2, H(z), is the same as in (6.1) and the input

{v,,} is colored as in (4.5), and the noise {tan} is iid and uniformly distributed on

[—0.1, 0.1] (S/N = 36.5 dB) or [-0.5,0.5] (S/N = 22.5 dB). The application results of

OBE-ABE in these cases are shown in Figs. 6.10 and 6.11. As seen in the figures,
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Figure 6.2: Block diagram of the blind-deconvolution problem.
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Figure 6.3: Estimates of al.. of OBE (7,, = 1) and OBEABE (70 = 10) for Fig. 6.2

(iid-11R, S/N = 42 dB).
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Figure 6.5: First 100 samples of 13,, (top), in. (middle), and on (bottom) using OBE-

ABE (70 = 10) in Fig. 6.2 (iid-HR, S/N = 42.5 dB).
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Figure 6.7: First 100 samples of 13,. (top), 13,. (middle), and vn (bottom) using OBE-

ABE ('70 = 10) in Fig. 6.2 (iid-IIR, S/N = 36.5 dB).
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Figure 6.8: First 100 samples of 13,. (top), 13,, (middle), and 12,, (bottom) using OBE-

ABE (’70 = 10) in Fig. 6.2 (iid-FIR, S/N = 42.5 dB).
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Figure 6.10: First 100 samples of 53,, (top), 13,, (middle), and 12,, (bottom) using OBE-

ABE (70 = 10) in Fig. 6.2 (Colored—11R, S/N = 36.5 dB).

OBE-ABE shows excellent performance,achieving 100% success rate in the case of

S/N = 36.5 dB (Fig. 6.10) and 90% success rate in the case of S/N = 22.5 dB (Fig.

6.11). This demonstrates the excellent blind-deconvolution performance of OBE-ABE

algorithm in the colored-input case.
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Figure 6.11: First 100 samples of 13,, (top), 13,, (middle), and 0,. (bottom) using OBE-

ABE (70 = 10) in Fig. 6.2 (Colored-HR, S/N = 22.5 dB).
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Chapter 7

Conclusions

 

7.1 Concluding Remarks

This research has been concerned with an innovative parameter-estimation technique,

the OBE algorithm, which is based on a bounded-noise assumption. The OBE algo-

rithms employ selective updating to improve computational efficiency (using subop-

timal check) while having excellent speed of convergence. However, this advantage

is offset by the impractical assumption of known noise bounds. Hence, despite those

superiorities, OBE algorithms have rarely been found in real-world applications.

The new algorithms, OBE-ABE and their variants, introduced in this dissertation

do not require the knowledge of the noise bounds, while preserving or improving,

virtually without cost, the inherently superior performance of OBE algorithms with

regard to convergence, speed of convergence, computational efficiency, and tracking

capability. The new algorithms also converge in colored noise and non-stationary noise

cases — a feat that is theoretically impossible for other popular techniques like RLS,

LMS, Kalman-Bucy filter, etc. Hence, the popularity of the new algorithms in real-

world applications is promising. A summary of the contributions of this dissertation

appears in the next section.
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7.2 Contributions and further work

The major contributions of this dissertation are summarized as follows: This research

has

1. Produced an algorithm (OBE-ABE) which theoretically relaxes and practically

releases the unavailable prerequisite (known noise bounds) of all SM (and OBE)

algorithms while preserving and improving their inherently superior perfor-

mance.

2. Produced a computationally efficient version of the new algorithm (Sub-OBE-

ABE) without any sacrifice of performance. This efficient Sub-OBE—ABE algo-

rithm has similar performance to the original OBE-ABE with respect to con-

vergence, speed of convergence, and tracking capability.

3. Produced an adaptive version of Sub-OBE-ABE (and OBEABE) to track time-

varying parameters. The tracking performance of the algorithm is excellent

while its computation is very efficient.

4. Proved the a.s. convergence and the p. convergence of OBE-ABE and Sub-

OBEABE in iid, mixing, ergodic, and non-stationary noise cases by employing

the analytical techniques from probability theory and measure theory. Several

theorems (with very general conditions) provide the theoretical foundations for

the analysis and applications of OBE—ABE (and hence all SM) algorithms.

5. Provided extensive simulations which reveal some not-clearly-known behaviors

or characteristics of OBE-type (hence SM) algorithms.

6. Applied the new algorithms successfully (due to their intensionally-devised flex-

ibility and the resulting robustness) to real-world problems of speech analysis
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and blind deconvolution. The application results have demonstrated the poten-

tial of the new algorithms.

As seen in the theorems and in simulation studies, the excellent convergence per-

formance of all SM algorithms depends on UCT (3.9) or UT (3.10) condition of the

noise sequence. Hence , an interesting open research problem is as follows:

e Devise an algorithm which has similar performance and a priori knowledge to

the OBE—ABE’s, and still converges consistently and quickly when UT (3.10)

or UCT (3.9) is not satisfied.
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APPENDIX



Appendix A

The following lemmas from the literature are essential for the proofs of new theo-

rems. Original proofs of some of those lemmas are listed here for better understanding

those lemmas and the proofs of the new theorems in this dissertation. Please refer to

Chap. 3 for the notation.

Lemma A.1 (Proof: [27, 35]). Assume that condition PE (3.12) holds. If there

exists an e > 0 and N E N, such that 7,, - v,,2 > e, Vn > N, then the ellipsoids of

OBE algorithms do not asymptotically shrink to a point.

Lemma A.2 (Proof: [27]). Let c; and c: be the negative and positive parts ofcn, re-

spectively, where c,, is defined in (2.10). That is c; = {c,,, if c,, < 0; 0, otherwise},

and c: = {c,,, if c,, 2 0; 0, otherwise}. If PE holds, then limnnoo c; = 0.

Lemma A.3 [46, p.120], [16, p.35]. A discrete random variable has an almost peri-

odic characteristic function, and the converse is also true.

Lemma AA [17]. If {X}, : k E K} is stationary and g : RK -+ R is measurable,

then {Y}, = g(Xk,Xk_1, - - .) : k E K} is also stationary.

Proof: Let a: E RK, B E BK, and y,, = g(:ck,a:k_1,- - ). Also, let

A = {x 1 (90(33lag-1($),°“) E B}-
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Then, stationarity of {Xk} implies

P(UJ:(YE),Y_1,'”) E B) P(U) 2 (X0,X_1,°") E A) = P(w I (Xk,Xk_1,"') E A)

P(w : (Yk,Y),_1, - ~ ) 6 B).

Hence, by Definition 3.8, {Y,,} is stationary. [3

Lemma A.5 [17]. Let X), d-Ef X o Tk‘l, V k E K where X is a r.v. on (Q,f, P). If

T is an m.p.t., then, {X}, : k E K} is a stationary sequence.

Proof: The lemma is proved by observing that, for B E BK and

Adi! w : (---,X1,X2,---) e B},

P((- - . ,Xk,Xk+1,°”) e B) = P(Tk‘1(w) e A) = P(w e A)

= P((--°,X1,X2,---)EB).

Lemma A.6 [17]. If m.p.t. T is mixing, then T is ergodic.

Proof: Let A E I. Then, T‘1(A) = A,~--,T"‘(A) = A, V k. Hence, by defini-

tion 3.13,

P(A) = P(A n A) = P(A n T-"(A)) _. P(A) . P(A) as n _. 00.

So, P(A) = [P(A)]z. Thus, P(A) E {0,1}. Hence, I is trivial. Therefore, T is

ergodic. [3

Lemma A.7 [17]. If {X}, : k E K} is an ergodic stationary sequence, and g : RK —>

R is measurable, then {Y1c = g(Xk,X),_1, - - -) : k E K} is also stationary and ergodic.
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Proof: Let X0,X_1,-- - be defined on sequence space 9 = RK with Xk(w) == 02),,

where w = (---w-1,wo,w1,-- ) 6 it. Since {Y,,} is stationary by Lemma A.4, let

B 6 3K be such that

{w : (Y0,Y_1,---) E B} = {w: (Yk,Yk_1,~-) 6 B}.

then, by Definition 3.10, A die! 02 : (Y0,Y_1,~ - .) 6 B} is shift invariant. So, by the

ergodicity of {X1},

P(A) = P({w = (Xo.X—1,-°') 6 A}) E {0,1}-

Therefore, {Y,,} is ergodic by Definitions 3.11 and 3.12. CI

Note that {X1} and {Y,,} in the above lemma can be one-sided infinite sequences.

Also, the mapping g which is independent of index k can also be any finite-length

moving function.

Theorem A.1 (Poincaré Recurrence Theorem) [17]. Let T : (2 —-1 it be an

m.p.t. and A E .7. Define TA = inf{n Z 1 : T"(w) 6 A}. Then,

(i) TA < oo a.s. on A, i.e., P(w 6 A : 714(0)) = 00) = 0.

(ii) A C {02 : T"(w) E A i.o. }.

(iii) If T is ergodic and P(A) > 0, then P(w : T"(w) 6 A i.o. ) = 1.

Proof:

(i) Let B = {w E A : 731(0)) = 00}. Ifw E T‘1(B), then T(w) E A, T2(w) ¢ A,

T3(w) ¢ A, - - -.

Ifw E T“2(B), then T2(w) E A, T3(w) ¢ A, T°(w) ¢ A, 2 - o.
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Hence, T‘1(B), T’2(B), T'3(B), - - - are pairwise disjoint. Since T is m.p.t.,

it follows that P(B) = P(T'1(B)) = P(T"2(B)) = Thus, P(B) = 0.

(Otherwise, P(Q) 2 22:0 P(T'k(B)) = 00.)

(ii) For any h E N, since T is m.p.t., it follows from (i) that

0=P(w€A:T""(w)¢A, Vn21)2P(w€A:T"‘(w)¢A, VmZk).

This inequality implies that the last probability is 0 for all lc. Hence, P(w E A :

Tm(w) 6 A i.o.) = 1. Thus, A C {0.2 : T"(w) i.o. }.

(iii) By Definition 3.10, The set C gr (.0 : T"(w) E A i.o.} is an invariant set. Since

T is ergodic, it follows from Definition 3.12 that P(C) 6 {0,1}. Also, by (ii),

C D A. Hence, P(C) 2 P(A) > 0 by assumption. Therefore, P(C) = 1. Cl
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