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ABSTRACT

STRUCTURE AND EVOLUTIONARY DYNAMICS IN FITNESS
LANDSCAPES

By

Anuraag R. Pakanati

Evolution can be conceptualized as an optimization algorithm that allows populations to

search through genotypes for those that produce high fitness solutions. This search process is

commonly depicted as exploring a fitness landscape, which combines similarity relationships

among genotypes with the concept of a genotype-fitness map. As populations adapt to their

fitness landscape, they accumulate information about the fitness landscape in which they live.

A greater understanding of evolution on fitness landscapes will help elucidate fundamental

evolutionary processes.

I examine methods of estimating information acquisition in evolving populations and find

that these techniques have largely ignored the effects of common descent. Since information

is estimated by measuring conserved genomic regions across a population, common descent

can create a severe bias by increasing similarities among unselected regions. I introduce a

correction method to compensate for the effects of common descent on genomic information

and empirically demonstrate its efficacy.

Next, I explore three instantiations of NK, Avida, and RNA fitness landscapes to better

understand structural properties such as the distribution of peaks and the size of basins of

attraction. I find that the fitness of peaks is correlated with the fitness of peaks within their

neighborhood, and that the size of peaks’ basins of attraction tends to be proportional to the

heights of the peaks. Finally, I visualize local dynamics and perform a detailed comparison

between the space of what evolutionary trajectories are technically possible from a single

starting point and the results of actual evolving populations.
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Chapter 1

Introduction

The evolution of populations of organisms is a topic of great interest; long before Darwin

described the finches of the Galapagos, scientists had observed how well organisms are adapted

to their specific environments. Organisms incorporate information about the environment

into their genetic blueprints to create adaptive physical and behavioral characteristics. A

greater understanding of how populations of organisms explore their genetic landscapes and

accumulate information can help us better understand the process of evolution in natural

populations.

A deeper understanding of fitness landscapes and the processes that lead to effective

solutions will also benefit evolutionary computation. Fitness sharing, novelty search, and other

similar techniques are all built around finding better solutions by avoiding the classical pitfall

of climbing a fitness gradient until permanently stuck in a local optimum. Understanding how

solutions cluster and populations traverse paths between optima can help lead to improved

search techniques.
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1.1 Chapter Overview

Biological complexity has been described in [Adami, 2002] as a measure of how much in-

formation an organism stores about its environment in its genome. It is theorized that

natural selection increases complexity in a static single niche environment. Sequence com-

plexity is frequently measured by subtracting the summation of per-site entropies from the

maximum possible entropy. Entropy is a measure of how ‘random’ a value is when drawn

from a distribution as rigorously defined in [Shannon, 1948] and applied to genomes in

[Schneider et al., 1986] and [Adami et al., 2000]. Sequence complexity tends to reflect other

measures of complexity, such as structural and functional complexity, but has the advantage

that it is straightforward to evaluate using accessible population measures.

Previous work in measuring complexity commonly overlooks the biases imposed by com-

mon descent. Coalescent theory predicts that an asexual population will often have a relatively

recent common ancestor. As a consequence of this fact, many estimates of biological com-

plexity often attribute a lack of variation due to common descent as being due to selective

pressure. In Chapter 2, I explore some of the limits of existing biological information estimates,

examine commonly used correction methods, show how they fail to correct for the problem,

propose a correction that accounts for the effect of common descent, and demonstrate the

utility of this correction experimentally.

Fitness landscapes have been widely used to conceptualize the relationship between the

genotypes and their associated phenotypes. The structure of fitness landscapes in biological

organisms is still largely unknown and varies immensely from environment to environment.

Even so, these fitness landscapes carry important consequences for evolution. For example,

in the context of protein folding, peaks tend to exhibit strong local clustering, suggesting

that a stable configuration will often have other stable configurations in the neighborhood.

This clustering would allow evolution to have an easier time to find new stable configurations

than if these variants were randomly distributed throughout the genotype space. Thus, a
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concrete understanding of peak distribution in the fitness landscape would be relevant to

genetics and medicine since one might better predict when it is productive to restrict the

search for fit sequences to the immediate area around already known configurations. Chapter

3 exhaustively examines peak distributions in three very different types of landscapes—NK,

Avida, and RNA, each with length 18 genomes and four possible alleles at each site, which

is a scale beyond any that have been systematically explored to date.

Peaks can attract evolutionary trajectories from nearby regions of the fitness landscape.

When an evolutionary trajectory has reached a peak, it can be challenging to leave that peak

again since it requires unlikely valley crossings or simultaneous mutations to escape. This

gravitational quality of peaks is often characterized as each peak exerting a ‘basin of attraction’

on the nearby genotypes. [Kauffman, 1993] and [Ochoa et al., 2008] have examined basin

size experimentally and find that basin size increases exponentially with the fitness of a

peak in NK landscapes. The strength of this relationship is naturally dependent upon the

amount of epistasis in the landscape; epistatic environments tend to be more rugged and

the number of local maxima tends to increase with increasing epistasis. Basins may also

exist on different evolutionary time scales; trivially, given an infinite amount of time and the

possibility of simultaneous mutations, every evolutionary trajectory will eventually find the

global maximum. In Chapter 4, I use my three model landscapes to experimentally investigate

the nature of basins of attraction and their relationship to peaks.

When populations evolve, the fine structure of the landscape is important; the mutational

neighborhood of a genotype naturally determines what innovations are easily reachable and

which are not. Previous experimental work has often focused on a particular gene complex

and the evolutionary trajectories to get there. For instance, [Poelwijk et al., 2007] looked

at adaptation of the bacterial β-lactamase to cefotaxime, to which the bacteria had not

previously had exposure. In this case, the five mutations conferring antibiotic resistance were

already known, but they were able to measure intermediates and found that it was necessary

for mutational combinations to traverse a valley to reach the resistant solution.
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In Chapter 5, I focus on visualization techniques for fitness landscapes that allow us to

look exhaustively at the neighborhood of points as well as repeated trajectories originating

from these points. In each of the three study landscapes (NK, Avida, RNA), I select 2,000

neighborhoods to study, half around random points and half around peaks. I visualize each

study neighborhood up to five mutations out and compare these results to the first five

mutations that occur in real evolutionary trajectories. As such, I compare all possible routes

with the realized evolutionary routes. In RNA and NK landscapes, I further compare these

results to evolutionary trajectories where the strength of selection is increased dramatically,

demonstrating a qualitatively different result.

1.2 Contributions

The contributions of this work include:

(1) A demonstration of the role that common descent plays in biasing genomic

estimates of entropy and complexity, along with a correction method to compensate

for common descent, which I validate experimentally.

(2) An exhaustive exploration and structural analysis of instantiations of three

very different landscapes: NK, Avida, and RNA, that are each are of genome-length

18 with 4 alleles for a total of 68 billion genotypes, allowing us to identify both generalizations

about these landscapes as well as distinctions. In all three landscapes, I demonstrate that

peaks of higher fitness tend to have higher fitness peaks in their neighborhood. I also found

that peaks are connected in the Avida and NK landscapes, whereas in the RNA landscape,

peaks tend to be isolated. Similarly, in the Avida and NK landscapes, autocorrelation between

peaks with regard to distance is high at low distances and eventually becomes negative. The

RNA landscape has the interesting result that the autocorrelation becomes positive again at

distance 18, which may point to the complement of the sequence being stable.

(3) A novel structural method for measuring basins of attraction based on the
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Page Rank algorithm, allowing us to confirm prior results about NK landscapes in a more

thorough way. I found that as in previous work, basin size correlated exponentially with

fitness and that increasing K increased the size of the average basin while decreasing the size

of the largest basins. I also applied my new method to NKp variants of NK landscapes with

neutrality and detected that neutral networks can retain significant numbers of trajectories

over long periods. Finally, I linked peaks with two-mutant valley crossings and showed that

this increases the strength of the exponential relationship between fitness and basin size.

(4) An identification of basin structure obtained by experimental evolution and

analysis of the relationship between peaks and basins. There was an exponential

relationship between basin size and fitness in the NK and RNA landscapes, but not in the

Avida landscape. I further show that the final fate of an evolutionary trajectory had very

little to do with its starting point—trajectories in all three landscapes ended at a distance

from the origin similar to the average distance of all genotypes. Additionally, I found that the

concept of peaks play an important role in evolutionary trajectories—in all three landscapes,

a significant proportion of trajectories were in the vicinity of a peak.

(5) A new visualization technique to show landscape structure within a neighbor-

hood and a comparison of possible routes to realized routes in both random points and

peaks.

In order to achieve the contributions above, these analyses were performed at a scale

exceeding that previously systematically undertaken. The data alone encompasses over 250

GB, even with compression, hashing, and binary encoding schemes. High performance clusters

and 100,000 hours of computing time went into collecting and analyzing this data.
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Chapter 2

Estimating Complexity in Finite

Populations

2.1 Motivation

Various methods have been proposed to measure biological complexity. Some complexity

estimates focus on a mathematical definition of complexity, like Kolmogorov Complexity,

which measures complexity by how much a sequence can be compressed. By this measure, a

completely random sequence would have maximal complexity, as it could not be compressed

at all. However, as in [Adami, 2002], from a biological perspective, I am interested primarily

in the information the genome contains about the environment as a measure of complexity.

Other methods have been proposed to measure biological complexity as a proxy for adaptation

to an environment, as well as for understanding how many sites actively convey an adaptive

benefit, versus those that are selectively neutral. I focus on methods that measure complexity

without additional manipulations, as this is more tractable in real populations, but is subject

to biases, described further below.

For the purposes of this work, I will be focusing on ideas that treat the genome as
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an information channel, with noise produced by mutation and reduced by selection. These

ideas operate on the assumption that natural selection in a single niche environment will fix

adaptive mutations, while permitting non-informative sites to drift randomly, which allows

us to search for sites that contain information by examining genomic commonalities within

a population.

A flaw of the analysis is linkage—it is possible for neutral or even detrimental mutations

to hitchhike along with other mutations that are sufficiently adaptive, that they cause a sweep.

This is recognized for instance in [Adami et al., 2000] as adaptive sweeps cause temporary

spikes in apparent complexity, but these spikes are clearly spurious. Asexual populations,

ignoring mechanisms such as horizontal gene transfer, necessarily contain maximal linkage.

Sweeps thus result in distortions during which the diversity of the population is reduced.

Likewise, common descent would be expected to cause similar effects; any population will

have a most recent common ancestor. Therefore, some of the variation in sites, and therefore

entropy measured, can be attributed to this process. Estimates for biological information do

not currently take into account neutral processes such as common descent. A large confound-

ing factor in the use of such complexity estimates is that their theoretical assumption of

infinite population does not hold for natural populations. If the populations are large enough,

statistically, such an assumption might introduce relatively little error, but for those where

the population size is greatly dwarfed by the genotypic space (as occurs in virtually every

natural population), there will be some distortion driven by coalescence and neutral processes.

At the core, this is my primary claim; that given an asexual population with a common fitness

function, the population itself is biased relative to the fitness landscape. This means that

not all of the traits expressed are necessarily of adaptive value. It is unknown, however, what

that limit may be, and one of the goals of this work is to explore this phenomenon further.

This phenomenon of complexity being overestimated because of common descent has not

been generally examined in the literature. Primarily, complexity is not itself a directly useful

metric to many practitioners, whereas mutual information can provide important cues as to
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identifying functionally important or related sites, which can in turn yield useful targets for

drugs or therapy. However, it is still important to those who want to quantify the information

that an organism might hold about its environment.

Because of common descent, I would expect to see a lack of variation on many sites for a

population with a large enough genome. Commonly-used information measures overestimate

the amount of information in the genome, where the information content or lack of entropy

is assumed to be driven by natural selection. But in fact, it may be constrained primarily by

neutral processes. For a population of size 10000, there may be variation on only
√

10000 = 100

sites at a time, following work by [Zhang et al., 1990] on the diffusion of random walkers

in space. This does not imply that the remaining sites are being selected for or in any way

contribute directly to the fitness or complexity of an organism. Naturally, this bias would

be potentially problematic for complexity estimation. One of the goals of this work is to

investigate the strength of this effect and to ultimately compensate for it.

2.2 Related Work & Mathematical Theory

In this section, I discuss related work beginning with early work in information theory and

then introducing biological complexity concepts, before delving into common descent. These

techniques are sensitive to finite sample sizes, and I discuss common correction mechanisms.

Finally, I discuss concepts in neutral theory, linkage, coalescence, and models of evolution.

2.2.1 Information Theory & Complexity

Information theory was first developed by Shannon in [Shannon, 1948], in the context of

communication theory. At the time, relatively little was known about the limits of communi-

cation channels with regards to transmitting messages across noisy channels, although there

was some work by Nyquist and Hartley, both of whom heavily influenced Shannon.

Figure 2.1 shows Shannon’s abstraction of a communication system. The information
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Figure 2.1: Figure 1 from [Shannon, 1948] demonstrating a conceptualization of a communication
system.

source contains a message, whether it be a sequence of characters as in a written message

or a function encoding such as a function description or parameters. The transmitter is

responsible for wrapping the information source into a transmittable signal. On the other

end, the receiver decodes the transmitted signal into something meaningful for the destination

which is the ultimate recipient of the message. In between the transmitter and the receiver

is the channel, which can be any communication medium, including wires and radio signals.

The channel is subject to noise and may cause part of the message to become corrupted.

Shannon represented discrete information sources as a Markov process, with the Markov

property that each state is conditionally independent of all history except the immediate

predecessor state. He looked at the uncertainty in predicting the next symbol from the point

of view of the receiver. If the symbol is perfectly constrained by the current state, there

should be no uncertainty; and therefore the transmission of the next symbol provides no

‘surprise’. The surprise is highest when the chance of observing each symbol in the alphabet

is equiprobable. This basic concept was used by Shannon to define a formula for entropy as

in equation 2.1.
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H(X) = −
N∑
i=1

pi log2 pi (2.1)

X is a random variable with N possible states in Equation 2.1. The use of base 2 assigns

units of bits to the uncertainty; another common unit is mers which uses the same base as

the alphabet size. This function also corresponds to the average number of yes-no questions

that would be necessary to ascertain the state of a random variable.

Shannon then defined the joint entropy of a system with two random variables X and Y,

denoted H(X,Y). This measures the uncertainty over each of the N ·M possible states for

{X, Y }. This can be seen in equation 2.2.

H(X, Y ) = −
∑

{x,y}∈{1,...,N}×{1,...,M}

p{x,y} log p{x,y} (2.2)

The conditional entropy of X given Y then is a measure of the uncertainty of Y given

the knowledge of X. This is equal to the difference of the joint entropy of X and Y and the

entropy of Y. This is defined in equation 2.3.

H(X|Y ) = H(X, Y )−H(Y ) (2.3)

From this came the concept of Shannon Information, which describes the information

gained from knowing random variable X about the random variable Y. This is often expressed

I(X;Y) and may be seen in equation 2.4.

I(X;Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X, Y ) (2.4)
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2.2.2 Biological Complexity

Schneider in [Schneider et al., 1986] and others have suggested that the information content

of a site can be quantified in aligned sequences as in equation 2.5.

I = −L logA−
A∑
i=1

pi log pi (2.5)

The basic idea underlying this equation is that in an infinitely large population, a site with

no selective advantage would be predicted to have frequencies of 1
A

if there are A candidates

for that site. Therefore any difference between the site’s entropy and one determined by a

completely uniform and random assumption should reflect a measure about the information

contained in the population about the genetic landscape. [Adami and Cerf, 2000] characterize

this assumption as ‘invoking the principle of insufficient reason’. This approach is used by

[Adami et al., 2000] to obtain estimates of complexity over whole genomes by summing the

per-site information. It is also the approach I will take for this proposal.

It is also worth noting that the complexity measure provided by [Adami et al., 2000] is

usually an underestimate of the true complexity. This understimation is caused because

estimate subtracts off the entropy between each site individually without regard to the

mutual information between sites. One correction, as provided by [Strelioff et al., 2010] and

in [Adami, 2004] is to add the mutual information between sites back for an improved estimate.

This 2nd-order correction of course still cannot compensate for the interactions between three

or more sites, and may still contain error in either direction.

There also exist many alternative ways of estimating biological complexity; for instance,

[Huang et al., 2004] examines a single genome and, by classifying the one- and two-point

mutants around it as beneficial or deleterious, comes up with an estimate of the complexity

of a single genome. This is robust to phenomena such as neutral hitchhiking which emerge

during sweeps in population-based measures, but by its nature only involves a single genotype
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and a potentially expensive analysis of the local landscape. This may be intractable in

natural organisms, since even in computational systems this can become challenging. For

instance, for an organism of length 100 with 28 possible instructions per site, there are

100C2 272 = 3, 608, 550 double mutants. There are also other measures of complexity—the

functional information measure proposed by [Hazen et al., 2007], or the usage of the ev model

to study the accumulation of information and estimate rates of evolution in the context of

coevolving binding sites in [Schneider, 2000] or what [Weinberger, 2002] calls pragmatic

information.

For this work, I focus on the simple definition in [Adami et al., 2000].

2.2.3 Entropy Correction

It is well known that when N << LA, where N is the finite population size, L, the length

of the genome, and A the number of alleles, that the entropy is poorly estimated since the

population size cannot adequately cover the genotypic space. This limitation has spawned a

number of estimators that seek to correct for the issue of biased sampling.

The most basic of these is the Maximum Likelihood Estimator (MLE) and can be seen

in Equation 2.6.

Ĥ(θ) = −
∑
p∈P

θp log θp (2.6)

where θp = pn
N

The MLE Estimator does poorly in the N << LA case since it will estimate many

probabilities at zero as a population can cover only a tiny fraction of possible genotypes.

Another common family of approaches is Bayesian Estimators. [Minka, 2000] The basic

idea is to estimate the probability of the entropy using a Bayesian prior, often the Dirichlet

distribution. As with Bayesian approaches in general, the choice of an unbiased prior distri-
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bution is nontrivial and a considerable number of different priors have been proposed, with

varying results. This can be seen in Equation 2.7

Ĥ(θ) = −
∑
p∈P

θp log θp (2.7)

where θp = pn+α
N+α|n| , where n is the number of categories and α is a parameter determining

the prior.

One frequently used form is the Laplace Estimator: θp = pn+1
N+n

.

More advanced estimators have also been developed; for instance, [Nemenman et al., 2002]

improves on methods that use prior Dirichlet uniforms and instead tries to estimate the charac-

teristics of the distribution from looking at coincidental samples. [Hausser and Strimmer, 2009]

also discusses the efficacies of various methods of entropy estimation, including the NSB esti-

mator from [Nemenman et al., 2002], maximum likelihood, the Chao-Shen estimator proposed

by [Chao and Shen, 2003], and the James-Stein estimator under a variety of distributions and

sampling counts. [Paninski, 2003] also compiled several solutions to correct bias in entropy

inherent in using MLE estimation methods.

There have also been attempts to correct for bias in sample selection, which assume there

is some systematic differences between the sample to be studied and the population it is

drawn from. Examples include [Dudk et al., 2005] who propose three approaches to correct

bias, motivated partly by the problem of habitat estimation. [Dudk et al., 2005] points out

that sampling distribution is driven by human factors driving ease of access such as roads,

proximity of cities, and rivers, whereas species distribution is likely to be at least somewhat

independent of those same factors. As such, these biases may cause species to be systematically

oversampled in the case of species that prefer such environments or undersampled in the

case of species that do not, which may easily lead to estimation errors for statistics such as

population size.
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I seek to show in the course of this work that the entropy distortion caused by common

descent can, under many conditions, dwarf the error caused by finite sampling bias. This

bias from common descent thus has implications for estimation of information in genomic

contexts. Further, I demonstrate that this can be a proxy for estimating neutrality.

2.2.4 Neutral Theory & Evolution

In his seminal work on neutral theory, [Kimura, 1968] observed that the rate of molecular

evolution seemed high compared to what would be predicted from the deleterious effects

of most gene mutations. This led Kimura to propose that most molecular mutations may

actually be neutral in nature and that the force of random genetic drift is more important

than previously thought. The theory generated significant interest from researchers over

following years and provided an influential null-model of evolution; focus was directed to

whether neutral evolution could explain observed outcomes, with the goal of distinguishing

functional parts of the genome and those under active selection from those under no selection,

and understanding what types of selection may be at play. The relevance of this theory

to complexity estimates is that neutral evolution allows multiple mutations to persist at a

site, thereby increasing entropy at that site and decreasing information estimates. The null

hypothesis for information estimates used by [Adami and Cerf, 2000] utilizes the assumption

that given an infinite population, neutral evolution would cause a non-contributing site’s

fitness to be maximally divergent. For a given neutral site, one would expect 0 information,

since Hmax = logA = H and therefore the complexity estimate C = Hmax−H = 0. I further

investigate what this means for finite cases later in this work.

2.2.5 Coalescence

If one looks at the population as a whole and traces the phylogenetic tree back in time,

eventually the population ‘coalesces’ at a common ancestral organism in asexual populations.

This important fact underlies the foundation of coalescent theory. There are some well-known

14



results about the statistical properties of the distribution and timeline of how individuals

are related. Understanding and incorporating these results will allow us to reexamine our

complexity estimates, providing clues to how many sites are fixed by chance and relatedness

as compared to sites that are fixed by selection.

[Derrida and Peliti, 1991] examined the process of evolution in flat fitness landscapes.

Evolution on flat fitness landscapes is important because it helps shed light on variation caused

by drift and coalescent processes. This better informs our understanding about the process

of evolution in the presence of selection. Following their derivations, when the population

size stays constant, each individual leaves one offspring on average, which implies a Poisson

distribution of mean 1, at least where the population size M >> 1. The probability that an

individual leaves behind m offspring is shown in Equation 2.8.

pm =
e−1

m!
(2.8)

[Derrida and Bessis, 1988] showed that, given the definition that two individuals belong

to the same family if they have a common ancestor within a specified time window, the

distribution of the sizes of the families is equiprobable given the number of families that

currently exist in flat fitness landscapes So, if there are K families, all possible ways to

allocate the individuals of the population into those K families are equally likely.

2.2.6 Linkage Disequilibrium

Linkage disequilibrium (LD) refers to a non-independent association of alleles at different

loci. LD may be driven by selection; for instance, a maladaptive mutation at a particular site

may be consistently remedied by a compensatory change at another site. LD may also be

driven by shared inheritance. It is frequently used in terms of studying sexual populations,

since alleles that are physically close to each other on a genome are less likely to be broken

up by recombination. In asexual populations, there is maximal linkage disequilibrium, since
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there is no recombination to break up associations between alleles, which can result in the

accumulation of neutral or even deleterious mutations via hitchhiking.

Following [Balding, 2006], there is no direct quantitative way to calculate LD, but three

well-known proxy measures are D, D′ and r2.

The D statistic is a measure of the deviation of the observed frequencies of a genotype

from the expected quantity. An example of such a calculation for a simple two-locus two-allele

model can be found in equation 2.9, where Xi1,j1 is the count of genomes with alleles i1 and

j1 at loci i and j and pi1 and pj1 are the probabilities of the respective alleles appearing at

those sites. The D’ statistic rescales D by dividing it by its theoretical maximum. D′ is again

shown for the two locus, two allele case in equation 2.10. However, as [Balding, 2006] notes,

these statistics are more likely to take on extreme values when allele frequency is low and are

often not directly comparable between loci unless the frequency distribution is similar. The

r2 statistic is the correlation coefficient between the pair of loci and can be seen for instance

in Equation 2.11.

These measures all use two loci; they can be summarized for a region through simple averag-

ing, or through more complex techniques such as the LD map proposed by [Maniatis et al., 2002]

which uses an exponential decay function of the local distance to fit a summary LD estimate.

D = Xi1,j1 − pi1pj1 (2.9)

D′ =


D

min pi1pj1 ,pi2pj2
if D > 0

D
min pi1pj2 ,pi2pj1

if D < 0
(2.10)

r2 =
D

√
pi1pi2pj1pj2

(2.11)
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Figure 2.2: Figure 1A from [Wang and Lee, 2007] demonstrating background linkage disequilib-
rium. The covariation of mutation A and R in the sequence alignment is caused by common descent.
This can be seen in the phylogenetic tree.

A related concept is background linkage disequilibrium (BLD), which can be thought of as

linkage disequilibrium that is driven primarily by inheritance. [Wang and Lee, 2007] outlined

this problem, describing it as the problem of distinguishing covariation due to selection from

covariation due to common descent. Their formulation can be seen in Figure 2.2. They

investigated synonymous and nonsynonymous mutations and measured a low rate of linkage

disequilibrium in the HIV virus that decays with site distance due to recombination events.

[Korber et al., 1993] also examined mutual information between sites in the V3 loop of

HIV and hypothesized that the covariance may be explained in part by a shared evolutionary

heritage. [Bickel et al., 1996] continued the analysis of the data of [Korber et al., 1993] and

proposed that it may be possible to compensate for the effects of shared ancestry by examining

the similarity of sequences within suspected clades. [Service et al., 2001] estimated BLD in

human genomes from a small subpopulation and found that although genetic distance strongly

modulates BLD, its distribution is nonetheless nonuniform. This kind of analysis is potentially

significant for researchers since it can help to identify functional sites that could be targets

for drug development.

2.2.7 Models of Evolution

There are several models that have been developed in order to study evolutionary dynamics,

including the Wright-Fisher model [Wright, 1931, Fisher, 1930] and the Moran model, among
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others. However, for the purposes of this work, I focus on sequence evolution in asexual

organisms. As such, I utilize the quasispecies model, also known as the Eigen model. I also

discuss common assumptions used in mathematical simplifications and their use in deriving

mathematical results about evolution in these domains.

2.2.7.1 Eigen Model

The discrete-time Eigen model, developed in [Eigen, 1971] and [Eigen and Schuster, 1977]

and further applied in [Eigen et al., 1988] and [Eigen et al., 1989] is a discrete formulation

of the quasispecies model devised in order to study sequence evolution. The quasispecies

concept relates to the idea that given that a population is in equilibrium in the presence of

mutation and selection, there may be stable molecules of lower fitness maintained by muta-

tion, particularly if they are close to a local molecule of high fitness. The maintenance of such

quasispecies would have an effect on information estimates utilizing sequence information.

This equation is reproduced in Equation 2.12. Here Qij is the probability of mutating between

genotype j and genotype i, Ai is the fitness-driven replication rate of genotype i, and xi is

the frequency of genotype i in the population. There has been some debate about whether

the quasispecies models and more traditional population genetics models are distinct, but

some, such as [Wilke, 2005] believe that they are in fact studying the same phenomena and

are not contradictory. The Eigen model is the primary model I use for experimental evolution.

Previous work such as [Adami et al., 1995] and [Bedau and Brown, 1999] have examined fre-

quency distributions in instantiations of the quasispecies model. [van Nimwegen et al., 1999]

explored the neutral evolution of mutational robustness in neutral plateaus.

ẋi(t) = [AiQii − E(t)]xi(t) +
∑
j 6=i

AjQijxj(t) (2.12)
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2.2.7.2 Infinite Alleles Model

The infinite alleles model relies on the idea that genes tend to be composed of large segments

of nucleotides [Hartl and Clark, 2006]. Thus, any new mutation is likely to create a new allele

that does not exist in the population. [Ewens, 1972] derived the result that the expected

number of alleles k is related to the sample size, n. This can be seen in Equation 2.13.

E[k] = 1 +
θ

θ + 1
+

θ

θ + 2
+ ...

θ

θ + n− 1
(2.13)

The relevance of this particular model to information estimates may be in analyzing real

data where the maximum number of alleles is not known. This expected number of alleles

then can be used as a proxy for the amount of information contained within a gene, since

this provides us with an estimate of how many alleles there ought to be in the complete

absence of selection. The main mathematical advantage in this assumption is simply that

every mutation is necessarily novel, so accounting for repeated mutations or back mutations

can be disregarded.

2.2.7.3 Infinite Sites Model

The infinite sites model considers an infinite sequence of loci. With an infinite-length genome,

any novel mutation necessarily alters a different site. The infinite sites model is a popular

choice for studying DNA sequence evolution at least partially because it offers certain math-

ematically attractive qualities. For instance, the probability of the same site being mutated

twice is zero with infinite sites from which to pick, which means that any mutation may

be treated as novel. There has been some relevant work focused on trying to find analytic

formulations for the numbers of neutral sites.

[Watterson, 1975] was one of the many early attempts to distinguish between alleles

experiencing neutrality and those undergoing active selection. The Watterson estimator
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estimates the amount of segregating sites that would be expected given a certain mutation

rate in the infinite sites model.

One of the applications of the Watterson estimator is to estimate the mutation rate given

real data, as given in Equation 2.14. Here Sn is the number of segregating sites, θ is the

population mutation rate, and hn is the harmonic series. For instance, in [Durrett, 2008], an

example is given with data from from Ward et al., 1991, in which 63 human mitochondrial

sequences were sequenced, which yielded a count of 26 segregating sites. It was then possible

to solve for θ in the equation, which works out to be 26
h63

= 5.5173. Dividing this by 360

sequences gives a population mutation rate per base of 0.0153.

E[Sn] = θhn,where hn =
n−1∑
i=1

1

i
(2.14)

[Watterson, 1977] also examined distributions with the goal of trying to distinguish neu-

trality from heterosis. Watterson uses the order-statistics distribution. This defines the r

most numerous allele frequencies, ranked in decreasing order. Specifically, Equation 2.1.12

from [Watterson, 1977] can be seen in Equation 2.15. He also uses the truncated distribution,

which is the same as above, except with only frequencies above a certain threshold considered.

x1 ≥ x2 ≥ x3 ≥ ... ≥ xr ≥ 0,with
r∑
i=1

(xi) ≥ 1 (2.15)

Estimators such as the Watterson Estimator provide a compelling theoretical framework

for assessing the expected number and variance of segregating sites in a population under

the presence of no selection. These estimators provide a useful baseline for investigating

fixation and distinguishing between neutral processes and the influence of natural selection.

For example, suppose using the estimator, I predict that there should be X segregating sites

in the population. Instead, there are Y < X sites. It may be possible to conclude then within

some degree of certainty that several sites are maintained by active pressure of selection.
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However there are potential pitfalls here as well—for instance, the maintenance of two or

more coexisting subtypes may cause systematic divergence across an array of sites. This

divergence would have the effect of increasing the observed number of segregating sites. This

scenario similarly confounds Shannon-Information-based complexity estimates, but may be

detectable with an analysis of site frequency distributions.

[Tajima, 1989] built on the work by Watterson and suggested that the difference between

the estimate of mutation rate derived from segregating sites and an estimate of the mutation

rate, Θ, derived from the average number of pairwise mismatches, Π. At steady state, the

average number of pairwise mismatches follows the direct formula: Equation 2.16

E[Π] = Θ (2.16)

This provides a D statistic in Equation 2.17

D =
Π− Sn

hn√
Var(Π− Sn

hn
)

(2.17)

[Fu and Li, 1993] also introduced a test statistic, G, that compares the difference of the

two estimates of the mutation rate in order to measure the fit of a segment of genetic

material to a neutral infinite-sites model at steady state. Here they utilize the structure of a

genealogy without recombination, and divide the phylogenetic tree into internal and external

branches, where external branches emerge from an internal node and terminate at a sequence,

and internal branches connect internal nodes, which correspond to reconstructed ancestors.

The expected time for the sum of the external branches is 4Ne where Ne is the effective

population size. The significance of the external branches, following [Hartl and Clark, 2006]

is that mutations along them result in a singleton nucleotide that is most likely not replicated

anywhere else (by the infinite sites assumption). They produced the G statistic, which again
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examines the difference of two estimates of Θ seen in Equation 2.18, where ηe is the number of

mutations along external branches and ηi is the number of mutations along internal branches.

[Fu, 1995] further investigated statistical properties of segregating sites by expanding on this

idea of using the internal and external branches. He found, using the Wright-Fisher model,

and that the expected number of mutations of size i,ζi can be given by Equation 2.19. This

expectation holds true for the infinite alleles model and holds true asymptotically for the

infinite sites model. In addition, he derived values for the variance of the size of the expected

number of mutations and the covariance between expected numbers of mutations of different

sizes.

νe − ηi
hn−1√

ηe − ηi
hn−1

(2.18)

E[ζi] =
1

i
θ (2.19)

[Zhang et al., 1990] examines populations as a collection of N random walkers (organisms)

in a d-dimensional space (genetic lattice). They showed that over time, with a low mutation

rate, the populations tended to congregate in small regions of genotypic space, even given

an initial uniform distribution. They found that the population evolving on a d-dimensional

lattice in equilibrium would have an actual dimension proportional to
√
N where N is the

size of the population. If N << D, then this is in fact a significant divergence from a uniform

distribution; in other words, one expects to find convergence within a relatively small area,

even with a complete absence of selection.

2.3 Approach

In order to illustrate the influence of coalescent processes on complexity estimates in finite

populations, I conducted a series of experiments. I did not make any mathematical assump-
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tions like the infinite sites / infinite alleles approaches outlined above, and instead rely on

experimental data.

2.3.1 Methods

The primary experimental model I am using to evaluate the effects of neutral processes on

information and complexity estimates is a string model based on the discrete Eigen model. In

this model, a population with N individuals is maintained, each with L loci, each of which can

take on one of A values. Every generation, N new individuals are sampled with replacement

as parents from the population, proportionally to fitness, and mutation is applied to their

offspring. This model can be used to study both genes with alleles abstracted at a single

locus and more complex phenomena such as genes with fitness driven by contributions from

multiple sites.

To isolate the baseline effects of population dynamics on calculated information, it is

necessary to understand how these dynamics work in the absence of selection. Thus, for this

work, I studied first flat fitness landscapes where mutations provide neither fitness benefit

nor penalty, and all individuals have the same fitness and the same probability of producing

offspring— 1
N

where N is the population size. This landscape would be expected to produce

the most extreme complexity estimate distortion due to shared descent.

I used Gibbs sampling here, with an interval of 100 generations between samples for

independence. The populations start from a common ancestor and 10,000 generations exe-

cuted to allow the starting population to fan out from a single starting genotype with all

zeros. The burn-in time is sufficient time to allow the population to no longer have any

discernible bias towards zero, over other alleles. I sample the H1 estimate of complexity as in

[Adami and Cerf, 2000] at every time step. I did this for A = 4 and A = 20 alleles, consistent

with DNA/RNA and amino acids in proteins.
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2.3.2 Common Descent Biases Complexity Estimates

2.3.2.1 Rank Order Analysis

Similar to the analysis done in [Watterson, 1977], it is possible at any given time point at a

site to rank the count of loci in numerical order of appearance. There appears to be a fairly

stable distribution that is roughly length-independent, but that does vary with mutation rate

and population size. For length 100, the rank-order distribution can be seen in Figure 2.3. The

same plots can be seen for N = 1000 in Figure 2.4. These figures of rank-order distribution

show what the averaged site frequency order statistics look like through time, although it is

crucial to note that individual samples do in fact deviate from this distribution.

Figure 2.3: Frequency rank order for population size of 100. On the x-axis for each plot is length.
At each sample in each run, allele frequency per site is ranked and averaged. This is then averaged
across all samples per run to condense into a single figure per run. This shows that on average, even
in the absence of selection, an imbalance exists on sites due to common descent. Colors come from
rank ordering, e.g. in these plots the frequency of the most common allele appears in lime green at
the top.

(a) Mutation rate 0.001 (b) Mutation rate 0.01 (c) Mutation rate 0.1

Both increasing population size and increasing mutation rate will, in turn, increase the

diversity of the visible alleles at each site and this, in turn, increases the entropy. Although this

aggregate distribution is stable, this is a summary result; sites are not actually in equilibrium

on average as one would expect in a regime without selection. Measurements can and do vary

from time slice to time slice and sometimes drastically.
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Figure 2.4: Frequency rank order for population size of 1000. On the x-axis for each plot is length.
At each sample in each run, allele frequency per site is ranked and averaged. This is then averaged
across all samples per run to condense into a single figure per run. This shows that on average,
even in the absence of selection, an imbalance exists on sites due to common descent. This effect is
reduced, compared to the smaller population size of 100 in Figure 2.3

(a) Mutation rate 0.001 (b) Mutation rate 0.01 (c) Mutation rate 0.1
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2.3.2.2 Complexity Estimates

My results show that in the absence of selection, this estimate still suggests that there is a

considerable amount of complexity depending upon the experimental parameters, as might be

expected from the divergence from uniform visible in the rank-order distributions. Figure 2.5

contains complexity distributions for three experimental conditions with increasing mutation

rate from left to right. These experiments were conducted with four possible alleles per locus

and fixed length, for many different values of length. Length plays a directly linear role in

the complexity estimates, leading to a virtually constant per-site estimate, likely due to the

fully asexual descent in these populations; in other words linkage is complete between any

pair of sites.

Figure 2.5: Complexity Estimates for population size of 100 in the presence of no selection. On
the x-axis is length and on the y-axis is information estimates. Each plot represents the distribution
of information samples over a single run. The sample size increases with increasing length, leading
to less uncertainty over the estimate.

(a) Mutation rate 0.001 (b) Mutation rate 0.01 (c) Mutation rate 0.1

The complexity varies by mutation rate. This result is not surprising, since with a lower

mutation rate, there is less of an opportunity for sites to diverge after the most recent

coalescent event. The result is that many sites are fixed. As the mutation rate increases,

there is more diversity at each site, which reduces the entropy, which increases the complexity

estimate. The complexity estimate can be sizable; for instance, the maximum entropy for
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length L is log2 4 = 2 bits per site, or log4 4 = 1 mer per site. Thus, with a mutation rate

0.001, nearly 80% of the maximum complexity estimate would appear, on average, even in

the absence of any selective pressure. This ‘spurious complexity’ decreases as the mutation

rate increases, with a mutation rate of 0.1 per site yielding a less than 5% total estimate of

maximum complexity.

The effect also appears to be linear with respect to the L parameter within each condition.

This is consistent with the theoretical literature, since the number of segregating sites is

tied to θ, the whole genome mutation rate. Since there is a per-site contribution, the whole

genome mutation rate is driven by the length of the genome.

It is also interesting to contrast the results shown in Figure 2.5 and Figure 2.6. The

information estimates in the population size of 1000 are noticeably smaller compared with

those with the population size of 100. In a larger population, the time from the most recent

coalescence will be longer on average, and the population has thus had more time to diverge

relative to this event. This increases the entropy and thereby decreases the complexity

estimate, making it closer to the true complexity of 0 when no selection is present.

Figure 2.6: Complexity Estimates for population size of 1000 in the presence of no selection. On
the x-axis is length and on the y-axis is information estimates. Each plot represents the distribution
of information samples over a single run. The sample size increases with increasing length, leading
to less uncertainty over the estimate.

(a) Mutation rate 0.001 (b) Mutation rate 0.01 (c) Mutation rate 0.1
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The complexity graph from evolving a population of 3600 organisms [Adami et al., 2000]

of length 100 can be seen in Figure 2.7. There are some differences between the models; in

this work, simultaneous replacement per generation is used, whereas the Avida model used

by [Adami et al., 2000] tends to replace individuals continuously.

Figure 2.7: Comparison of complexity estimates from [Adami et al., 2000] and expected complexity
in mers from neutrality and resulting rank order frequency distribution for corresponding neutral
landscapes of length 100 with 28 bases per site. In 2.7a, the complexity is measured over time, from
[Adami et al., 2000]. In 2.7b is the distribution of information estimates that occur in a size 3600
population with 28 alleles with no selection. In 2.7c is the distribution of rank ordered alleles, which
clearly deviates from the uniform 1

28 .

(a) Complexity over time,
[Adami et al., 2000] (b) complexity, neutral (c) rank order, neutral

This result implies that a completely neutral distribution would register roughly 6.6 mers

of information. The complexity estimates in [Adami et al., 2000] are well in excess of that

figure, but nonetheless this could be as much as 10% of the final complexity estimate in an

experimental model with a fairly robust population size. Thus, it does suggest that there is

room for improvement in refining some of these complexity measures, even in relatively large

populations.

2.4 Finite Size Correction

As discussed previously in this chapter, there are a variety of entropy estimators that attempt

to control for finite population size. I demonstrate in this section that the effect observed is
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not simply due to choice of the naive estimator. The naive estimator is always an underesti-

mate of the total amount of entropy present at each site [Schürmann and Grassberger, 2002].

Therefore, I look at the Laplace estimator (which is likely to be an overestimate) and the

Chao-Shen estimator. The key takeaway here is that using a better estimator is not going to

substantially change the necessity for correcting for common descent.

In order to demonstrate this problem, I first look at the complexity estimates for both four

and twenty alleles to enable comparisons against RNA and Proteins respectively. Figure 2.8

and 2.9 show a cross section of the complexity estimates along with the true entropy (known

a priori to be exactly 1 mer by the simple fact that there is no selection in the system).

Figure 2.8: Per-site complexity estimates for neutral populations without selection of size 100 with
4 alleles per site for three different estimators. On the x-axis is mutation rate and on the y-axis is
information estimates. Each plot represents the distribution of information samples over a single
run. The line represents the ‘true’ entropy from the underlying distribution which should be 1 since
there is no selection. The mutation rates vary from 0.0001 on the left to 1 on the right, with semilog
scaling.

(a) Naive Estimator (b) Laplace Estimator (c) Chao-Shen Estimator
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Figure 2.9: Per-site complexity estimates for neutral populations without selection of size 100 with
20 alleles per site for three different estimators. On the x-axis is mutation rate and on the y-axis is
information estimates. Each plot represents the distribution of information samples over a single
run. The line represents the ‘true’ entropy from the underlying distribution which should be 1 since
there is no selection. The mutation rates vary from 0.0001 on the left to 1 on the right, with semilog
scaling.

(a) Naive Estimator (b) Laplace Estimator (c) Chao-Shen Estimator
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This pattern stays consistent across the entire sample set. Figures 2.10 and 2.11 demon-

strate this. The error is less with the number of alleles

Figure 2.10: Relative error compared to true entropy for neutral populations for three different
estimators. On the x-axis is length and on the y-axis is information estimates. Each point represents
the distribution of information sample means over a single run.

(a) Naive Estimator (b) Laplace Estimator (c) Chao-Shen Estimator

Figure 2.11: Relative error compared to true entropy for neutral populations for three different
estimators with 20 alleles. On the x-axis is length and on the y-axis is information estimates. Each
point represents the distribution of information sample means over a single run.

(a) Naive Estimator (b) Laplace Estimator (c) Chao-Shen Estimator
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The takeaway is that current entropy correction schemes do not correct for the issue of

common descent. All three, unsurprisingly, do better as population size and mutation rate

both increase. This means that the choice of entropy bias correction method is itself unlikely

to help significantly in correcting for spurious complexity deriving from common descent and

does not matter that much in this particular case as the vast majority of the error is not

coming from entropy estimation error or simple biased sampling. The sample is always biased

by selection.

2.5 Correcting for Common Descent

In the previous section, I raise the question of how common descent affects results, exam-

ine entropy correction methods, and demonstrate that existing methods do not correct for

common descent. In this section, I seek to correct calculations of entropy and information to

control for common descent given a priori knowledge about the fitness landscape. For any

population-based calculations, I must assume a single niche environment and a population

at equilibrium. In order to determine the idealized dynamics for maximum and minimum

entropy at a site, I define two types of sites, informative sites, at which selection is acting,

and neutral sites, which are not directly subject to selection. I define p as the proportion of

the genome containing neutral sites. I further designate Hn as cumulative entropy from all

non-informative (neutral) sites and Hs as entropy from informative (selected) sites. Earlier in

this chapter, I have seen that Hn will be non-maximal because of coalescence. And in finite

populations, Hs will be nonzero, due to mutation-selection balance.

I can then write total entropy as:

Hm = p(Hn) + (1− p)(Hs) (2.20)

For my correction, I first must estimate p and then use the formula to estimate the amount
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of entropy Hc attributable solely to neutral sites.

Hc = p(Hn) (2.21)

2.5.0.3 Methods

To test this correction, I used a royal road landscape where every allele provides a selective

factor of twice the fitness. Parameter sweeps provided us with the Hs estimate for use in the

formula above. I analyzed both 4-allele and 20-allele test conditions.

Next, I examined a landscape where precisely half of the sites were selected and half were

completely neutral. This leads us to an expectation of L
2

log2A bits of complexity for each

genome, which in turn leads to an average per-site expected complexity of log2 A
2

. For each

estimate, I used Gibbs sampling, again measuring the entropy every 100 generations. For

all these results, I focused on the naive entropy estimate, since I previously established that

other corrections do not correct for common descent. The actual value gives us Hm which is

our measured estimate for the half-selected landscape.

Finally, from my results before with completely flat landscapes, I have estimates for Hn.

For each mutation rate & population size for both the 4-allele and 20-allele cases, there are

three quantities: Hm, Hn, and Hs. I then apply Equation 2.20 to obtain an estimate for p

and Equation 2.21 to obtain a new entropy.

2.5.1 Discussion

The results of our correction are summarized in Figure 2.12 and Figure 2.13.
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Figure 2.12: Entropy, Naive & Corrected, 4 Alleles
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Figure 2.13: Entropy, Naive & Corrected, 20 Alleles
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For both allele counts that I tested, some common trends emerge. The correction performs

very well at low to moderate mutation rate <= 0.01 and corrects for the effect of common

descent. Beyond that threshold, however, the correction begins to perform poorly—even doing

worse than the naive estimate. It is likely that the core assumption behind this correction,

namely that sites that are actively selected do not hold entropy, is being violated. Selected

sites begin to hold entropy because it is difficult for evolution to stay on a fitness peak as

mutation rate increases past the error threshold, thereby maintaining both variance and

entropy. It is likely possible to correct for this phenomenon, but we do not attempt to do so

in this work.

In the real world, however, certain assumptions are not likely to hold—for instance a

selected RNA site that may contain either a G or a C would constitute a selected site with

nonzero entropy. Additionally, and perhaps more seriously, estimating Hs could be challenging

since, of course, perfect fitness landscape information would not be available. It may also

be possible to obtain an estimate for Hs using a known subset of the genome that is highly

conserved. Hn, by contrast, can be obtained by virtue of simulation rather readily given

allele count, mutation rate, and population size. Second, this particular analysis is specifically

done in asexual populations—dynamics and numbers will be different in sexual populations,

although a similar analytic approach should hold.

In conclusion, the contributions of this work are a demonstration that complexity from

shared descent exists and can be substantial, a technique to compensate for the effects of

common descent when calculating entropy or complexity, and a demonstration of its usage

on an evolving population.
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Chapter 3

Fitness Landscapes– Peaks, Ridges,

and Plateaus

Fitness landscapes represent the underlying genetic structure on which populations evolve.

As such, understanding this structure can help us better understand the process of evolution.

More broadly, there is continued debate on the structure of fitness landscapes in biology, with

consequences for how and if populations cross valleys. In this chapter, I present some of the

related theory of fitness landscapes and demonstrate some preliminary data using the fitness

landscapes from a theoretical NK landscape, a genetic programming Avida landscape, and

an RNA folding landscape.

Before a meaningful discussion of fitness landscapes can take place, the term fitness must

first be defined. Unsurprisingly, fitness can mean different things in different contexts, and

to different people. I adopt the following definition from [Kauffman, 1993] for Chapter 3. In

future chapters, I tie my fitness concept to the replication rate of organisms for the purpose

of studying evolutionary dynamics.

Before continuing, I must clarify what I mean by a fitness landscape. For an

evolutionary biologist, “fitness” applies principally to an entire organism. It has
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components of fecundity, fertility, and other factors, leading to reproductive success

(Crow and Kimura 1965, 1970; Ewens 1973). These include complex issues such as

the frequency of each genotype variant in a region, and even the entire ecosystem

with which each organism interacts (S. A. Levin 1978). Therefore, in the general

context, it is difficult to assign a fitness to a gene or even to a genotype, since all

these factors depend upon the other organisms in the population.

For the purposes of the present chapter, I shall use the term “fitness landscape”

in a much more restricted sense to refer to any well-defined property and its

distribution across an ensemble. For example, the capacity of each protein in

protein space to catalyze a specific reaction under specified conditions is, in

principle, a well-specified property. The velocity of the reaction catalyzed by each

protein can then be defined as the fitness of that protein. Then the distribution

of velocities across the space of proteins constitutes the fitness landscape with

respect to that defined function...

3.1 Fitness Landscapes

The concept of a fitness landscape was first elucidated by Wright in [Wright, 1931] and

[Wright, 1932]. It refers to the idea that genetic adaptations may confer a fitness benefit (or

penalty) in a reliable way, most often due to adjustment to the environment, and that the

possible neighbors that a given population may explore are constrained by the current location

in genotypic space that the population occupies. This limitation is for the simple reason that

offspring are more likely to have mutations into neighboring regions of the landscape, at least

for reasonably low mutation rates where evolution could be studied.

Fitness landscapes can be vast. As Wright points out in his seminal work, if there are

1000 genes, each with 10 possible alleles, there would be 101000 possible combinations of

genes. If each of these combinations solely determined fitness, the fitness landscape would
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Figure 3.1: Figure 2 from [Wright, 1932] with original caption.

then also consist of 101000 mappings between genotypes and fitness. This number is well

in excess of the 1080 estimated number of atoms in the universe. Estimates of the number

of genes in the human genome further exceed this number; for instance [Roest et al., 2000]

estimates the number at 28,000-34,000, although this exact number has been the focus of

intense interest and revisions and more recently been estimated at 19,000 protein coding genes

[Ezkurdia et al., 2014]. Regardless, the fitness landscape, even if it were purely determined

by the genome, which it most assuredly is not, would be immense. Furthermore, even at

very large population sizes, only a small number of possible genotypes can be sampled, when

confronted with such vast landscapes. Wright visualized these combinations as representing

a gene field in two dimensions. A 2D contour plot visualization of a fitness landscape from

[Wright, 1932] is shown in Figure 3.1.

On the subject of the relationship between evolution and fitness landscapes, Wright wrote:

... With something like 101000 possibilities, it may be taken as certain that there

will be an enormous number of widely separated harmonious combinations. The

chance that a random combination is as adaptive as those characteristic of the

species may be as low as 10−100 and still leave room for 10800 separate peaks, each
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Figure 3.2: Figure 4 from [Wright, 1932] with original caption. Here, 4NU refers to the genome
wide mutation rate, whereas 4NS refers to the selective pressure. D and E are relevant for sexual
populations and F corresponds to an island model. As Wright points out, differential selection on
different islands in F may form the basis for or contribute to the process of speciation.

surrounded by 10100 more or less similar combinations. In a rugged field of this

character, selection will easily carry the species to the nearest peak, but there

may be innumerable other peaks which are higher but which are separated by

“valleys”. The problem of evolution as I see it is that of a mechanism by which the

species may continually find its way from lower to higher peaks in such a field.

[Gavrilets, 2004] further distinguished between two conceptions of fitness landscape that

often appear in the literature. The first is that the fitness landscape is determined by the

fitness of gene combinations. This is the view described by Wright above as he explicitly

defines fitness as determined by gene combinations. An alternative formulation that Gavrilets

outlines and which often appears in the population genetics literature is that the fitness

landscape is the relationship between gene frequencies and the mean fitness of a population.

This formulation begins to suffer in multilocus systems where genes may have complex

epistatic interactions that are not simply additive.

There are other conceptions of fitness landscapes that Gavrilets points out. For instance,
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fitness landscapes may be visualized in terms of continuous quantitative traits. This can

be useful in understanding the selection pressures on these traits, and is commonly used in

quantitative biology to visualize selection on traits and investigate evolutionary tradeoffs.

Another area of broad interest in fitness landscapes is that of frequency dependence in

which the fitness of an organism is not dependent mainly on the fitness lattice, but also on

the distribution of other individuals within the population. Negative frequency dependent

selection is often driven by predators or disease. An example would be a virus that becomes

common and causes a host population to develop immunity–new variations to which the host

was not immune would have higher fitness and thereby spread rapidly. Positive frequency

dependent selection can be observed in the study of cooperators and cheaters, among other

domains–a certain level of cooperation is required for cooperation to become a viable strategy.

For the purposes of this work, I focus on fitness landscapes as gene combinations. Epistasis

plays an important role and is crucial in determining the landscape structure. However, I

will ignore cross-organism interactions such as frequency dependence, which are much harder

to represent in traditional landscapes, and move the fitness into an even higher dimension

making it a function of both genotype and environment.

3.2 The Structure of Fitness Landscapes

The distribution of peaks in fitness landscapes is an open problem, with consequences in-

cluding the likely distribution of viable protein sequences and the distribution of viable

RNA/DNA sequences for viruses. Peak distribution is also important in the evolutionary

computation space; the goal is to find the best solutions possible, which correspond to local

optima or peaks, so improved understanding of evolutionary processes will also be useful.

Kauffman in [Kauffman, 1993] stated:

... Depending upon the distribution of the fitness values, the fitness landscape
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can be more or less mountainous. It may have many peaks of high fitness flanked

by steep ridges and precipitous cliffs falling to profound valleys of very low fitness.

Or it may be, like the gentle Normandy countryside, smoothly rolling with low

hills and gentle valleys.

Kauffman introduced his NK model of fitness landscapes, which is explored in more detail

in the next chapter. A significant finding from analyses of these landscapes was the realization

that peaks were not distributed randomly in genotype space, but rather more closely packed

than should be expected by chance. That is to say, there was global structure within the

fitness landscape. Kauffman wrote:

... Like the alps, our landscape here possesses a kind of Massif Central, or high

region, of genotype space where all the good optima are located...

Kaufmann analyzed the structure of the fitness landscape empirically by measuring ran-

dom walks starting from random initial genotypes in the landscape. The correlation structure

was measured by using a technique adapted from [Weinberger, 1991], which appears in equa-

tion 3.1. Here, ft is the fitness at step t in the random walk, and ft+s is the fitness s steps

later.

R(t, s) =
E(ft · ft+s)− E(ft) · E(ft+s)

var (f)
(3.1)

As a result of this work, the claim that peaks tend to be clustered globally in the landscape

is often referred to as the Massif Central Hypothesis. However, Kauffman describes what he

calls a ‘complexity catastrophe’ that occurs in increasingly rugged landscapes. A depiction

of the complexity catastrophe can be seen in Figure 3.3.

However, this view of fitness landscapes and their underlying structure is not undisputed.

Gavrilets in [Gavrilets, 2004] had this to say at the beginning of his chapter on nearly neutral

networks:
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Figure 3.3: Figure 3.1 from [Kauffman, 1993]

... Indeed, everybody knows from his or her own hiking experience that it is

impossible to get from the top of one hill to another without having to descend

to a kind of valley or depression between them. Our intuition tells us that things

will stay the same in landscapes with many more dimensions than the three

we are so well familiar with, and that extended ridges or chains of very shallow

valleys connecting high-fitness genotypes are improbable. If the fitness landscape

is constant (in space and time), then stochastic fluctuations in the population

genetic structure must be a major mechanism for crossing the valleys. However, the

main conclusion of the previous chapter is that there is no satisfactory solution to

the problem of stochastic transitions across even moderately deep valleys in static

landscapes. Only if the valleys are very shallow, can stochastic transitions happen

on a time scale short enough to be of biological significance. But both speciation
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and diversification seem to require crossing deep valleys in static landscapes

describing RI. A logical conclusion is that speciation and diversification on rugged

landscapes are impossible. There must be some kind of an error or a weakness in

the chain of arguments presented in the previous paragraph...

Gavrilets presented an alternative view of the structure between peaks; namely that peaks

are connected by ‘ridges’ that are composed of neutral and nearly neutral genotypes. He

called these ‘holey landscapes’. His arguments for this view of fitness landscapes are motivated

by percolation arguments; namely that at a certain threshold of connectedness, there is a

tendency for all elements to be connected. A visual example of this from [Gavrilets, 2003]

can be seen in Figure 3.4. He carries this same basic core argument into higher dimensions

as justification for the idea of neutral networks.

Among the evidence [Gavrilets, 2004] cited for the existence of neutral networks is the

NK family of models, although he relies primarily on variants like the NKp model by

[Barnett, 1998] for formulating his arguments.

3.3 Evolutionary Implications of Fitness Landscapes

So far, two models of fitness landscapes have presented quite differing views on how fit-

ness landscapes may be arranged. These have strong biological implications that affect how

populations might be able to evolve on them.

In Kauffman’s conception of rugged fitness landscapes, the complexity catastrophe implies

that as an adaptive walk progresses, further improvements become harder and harder to obtain;

in fact these innovations become exponentially harder to cross as fitness peaks are achieved

since larger and larger valleys need to be crossed. In the competing view outlined by Gavrilets,

continuous improvement is permitted via these incredibly long neutral networks, making it

unnecessary for the process of evolution to cross deep valleys.
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Figure 3.4: Figure 4 from [Gavrilets, 2003] with original caption.
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There has been some work on evaluating the structure of fitness landscapes in a biological

context. For instance, [Fontana et al., 1993] examines correlation and local structure in an

RNA-folding landscape where the objective is to minimize free energy on a variety of alphabets

and found that RNA landscapes correspond roughly to a K of 8 in the NK landscape, and

also that there exist neutral networks in the vicinity of peaks, in contrast to NK landscapes.

[Stadler et al., 2001] investigated the topology and evolutionary implications thereof in RNA

landscapes.

[Kryazhimskiy et al., 2009] classifies fitness landscapes by looking at the rate of adaptation

along fitness trajectories and tying this to real microbial data from long term evolutionary

studies. There have also been limited fitness landscape mappings, such as the analysis done

by [St Onge et al., 2007] and [Poelwijk et al., 2007] which have helped to provide real data

on the nature of fitness landscapes for gene clusters and enzymes, respectively.

3.4 Model Systems

For my evaluation of fitness landscapes, I examine three different model systems in order to

study structural properties of the landscapes. I perform exhaustive genotype-to-phenotype

mappings for each of these environments. Each landscape examined was of length 18 with

four possible alleles per site, constituting a fitness landscape with 418 = 68, 719, 476, 736

genotypes. To my knowledge, no systematic and exhaustive analysis of landscapes this large

has been conducted prior to this work. I choose a common length and number of alleles to

eliminate confounding factors on evolution from structure and make the landscapes more

easily comparable.

The three model systems are NK, which is a theoretical family of landscapes commonly

used in the discussion of fitness landscapes, Avida, which provides us with a genetic program-

ming landscape where genotypes map on to functional computer programs, and an RNA

landscape where the fitness is of a genotype is determined by its free energy after folding. This
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provides us with a theoretical landscape widely used to study evolution and optimization,

a genetic programming language, and a biologically-derived landscape. The purpose of this

work is to study some of the structural properties of these landscapes. It is also important to

note that these are instantiations of each type of landscape: there are many variants of each,

and it may not be possible to generalize. Nevertheless, they provide a useful starting point

for the systematic investigation of landscapes, and I introduce them in more detail below.

3.4.1 NK

The NK fitness landscape, originally introduced in [Kauffman and Levin, 1987], is a biologically-

inspired model of a fitness landscape, in which an organism’s fitness is determined by N genes,

each with K other interacting loci. This model has been used to study properties of adaptive

walks and the influence of epistasis on rugged landscapes. This K parameter tunes the amount

of epistasis in the landscape; as K increases, the amount of epistasis increases as does the

number of local optima.

At K=0, there is a single peak in the landscape, and it is a trivial problem for evolution to

solve since each site may be optimized independently. At K=N-1, the landscape is completely

uncorrelated and any mutation effectively randomizes the organism’s fitness. As in the original

NK model, I calculate fitness by using the arithmetic mean of the fitness contributions from

each of the N sites as in Equation 3.2. Furthermore, I also use the default nearest adjacency

model of the NK landscape, where each gene is epistatic with K adjacent genes.

F (G) =
1

N

N∑
i

f(Gi)

where f(Gi) = f(gi,0, ..., gi,K) ∼ U(0, 1)

(3.2)

Here, gi,j denotes the j-th neighbor of site i.
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For consistency with other landscapes studied, I use four alleles per site and I set the

parameter of K = 4 to achieve a nontrivial amount of epistasis.

3.4.2 Avida

Avida is a software system that has been used to study biological evolution. [Ofria, 2004] Each

“digital organism” in Avida is a program that is executed in a virtual computer, complete

with its own registers and stacks. The programs may, among other things, execute logic tasks,

for which they receive a reward that translates to an execution speed boost relative to their

competitors. The relative execution speed is called ‘merit’ and corresponds to a metabolic

rate. Fitness is calculated as merit divided by the gestation time. Fitter organisms are those

that are able to reproduce themselves fastest, which equates to selective pressures to increase

execution speed or improve the efficiency of replication.

Although no exhaustive mapping of this size has been done to study the fitness landscape

of the Avida genome, there has been considerable previous work that informs about the

nature of Avida fitness landscapes. [Lenski et al., 1999] sampled the landscape up to ten

mutations away from simple and complex digital organisms and found that not only are

complex organisms more robust to the generally deleterious effects of point mutations, but

that there is significant epistasis in the mutational landscape as measured by comparing the

fitness of mutational combinations with single point mutational fitness effects. There were also

differences in the fragility of organisms and the fitness effects of mutations when comparing

simple and complex organisms. [Lenski et al., 2003] suggested that rewarding intermediate

logic functions is important to the evolution of EQU (the bitwise equals logic operator) with

the implication that complex features often coopt simpler features in the process of evolution.

This result is partly because higher-order logic tasks can be composed of lower order ones.

The Avida landscape I study is a reduced version of the default instruction set with only

four instructions: IO, nand, nop-C, and swap. Organisms automatically reproduce at the end,
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so all genotypes are technically viable. This model is a highly simplified compared to the

full Avida model in many ways. The default Avida instruction set has 26 instructions and

organisms must deal with the complexity of maintaining a copy loop in order to reproduce

(the organism must copy over each instruction). This requirement of maintaining the copy

loop has several consequences for the resulting fitness landscape. Primarily, the vast majority

of random sequences are dead since they cannot produce viable offspring, whereas in the

reduced instruction set, this is not the case. However, even in the reduced instruction set,

the landscape is similar in that the vast majority of random sequences still are on the lowest

fitness levels. Furthermore, even small genome sizes are difficult to exhaustively analyze with

26 possible instructions per site. A length 18 organism, which would still be a small organism

by Avida standards, would have 2618 possible genotypes, which is roughly a landscape of size

2 · 1025. Clearly, a landscape this immense would defy exhaustive analysis. And this is still a

small genome at a much reduced scale compared to biological entities or proteins which often

have sequence lengths well above the hundreds. Exhaustive enumeration of such entities may

never be completely possible given the sheer exponential (with length) scale of the size of the

fitness landscape. Indeed, the fitness landscapes that I am considering here with 68 billion

states (four possible instructions at each of 18 sites) is already pushing the current limits of

hardware in terms of both storage and computing power.

In this work, I use Avida not as the experimental evolution platform that it undoubtedly

is, but specifically to evaluate the fitness of an input genomic string by executing the string

and determining what logic tasks, if any, it can perform and what its gestation time would

be. This genotype-to-phenotype mapping is what provides us with the fitness landscape. For

the purposes of this work, I will be examining the repeated tasks environment, in which

organisms may be rewarded for performing the same tasks multiple times.

Avida uses a concept of ‘merit’ to determine relative CPU speed. Merit is awarded by

organisms successfully performing tasks; I use the default Avida logic-9 environment. In

this environment, nine logic tasks are rewarded exponentially in order of rough complexity.
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Specifically, NAND and NOT are rewarded by a factor of 2, AND and ORN (or-not) by a

factor of 4, OR and ANDN (and-not) by a factor of 8, NOR and XOR by a factor of 16, and

EQU (XNOR) by a factor of 32.

Organisms also have variable gestation times, since nop-C can be a modifying argument

to an instruction. If this occurs, the nop-C itself is not executed by Avida and thus does not

count towards the total execution length.

3.4.3 RNA

The third and final landscape I examine is the result of RNA folding of length 18 sequences

using the Vienna RNA Package created by [Lorenz et al., 2011]. I examine two different

RNA fitness landscapes generated by two functions: fold, which computes the minimum free

energy of an RNA sequence, and pf fold, which returns the Gibbs free energy of the folding

ensemble.

Figure 3.5 shows a comparison of the two landscapes. Since pf fold is based on the energy

of the ensemble of possible folds, there is more variation in the fitness values than fold which

only looks at the most likely candidate. Nonetheless, the discretization in Figure 3.5 implies

that the landscapes are broadly similar. For the rest of this work, I use the results of pf fold

to denote the RNA landscape. This also has the side effect of decreasing the amount of

neutrality in the landscape, as well as reducing the amount of extremely low fitness genomes

while spreading the mass along the rest of the landscape, compared to the fold landscape.

Previous work has found neutrality in RNA landscapes, but in this instantiation there is

little–likely because of the decision to use the ensemble rather than the most likely sequence

when calculating free energy. [Fontana et al., 1993]

50



Figure 3.5: Comparison of RNA pf fold and fold landscapes. In Figure 3.5a, raw data for each
landscape is plotted, with each fitness, count pair plotted separately. In Figure 3.5b, I discretize
fitnesses of pf fold by rounding fitness to the nearest tenth. The landscapes are highly similar as
would be expected since they are both mappings of fold energy within the RNA landscape.

(a) Raw data (b) Discretizing pf fold
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3.5 Landscape Summaries

3.5.1 Methods

In order to understand the structural properties of each landscape, I started by examining

the distribution of fitnesses. With length 18 and four alleles per site, this works out to almost

69 billion possible genotypes. For each of the genotypes in each of the three landscapes, I

look at the corresponding phenotype, which is tied simply to fitness in each landscape: an

instantiation of an NK landscape with K=4, logical tasks performed in Avida, and the free

energy of the ensemble of folding sequences in the RNA landscape.

As part of each landscape summary, I also examine properties of peaks within the land-

scape. Here, I present two definitions, that of a ‘true peak’ and a ‘neutral peak’. A ‘true peak’

is a genotype with a fitness that is strictly greater than the fitness of each of its neighbors.

This is a local optimum on the fitness landscape. I also define a ‘neutral peak’ as a genotype

with an associated fitness that is greater than or equal to the fitness of each of its neighbors.

Neutral peaks can be on plateaus or ridges in genotype space. Counterintuitive behavior can

occur when the edge of a ridge or plateau adjoins a higher peak—the edge point would be

considered neither a peak nor a true peak since there would be at least one genotype with

higher fitness next to it, although it may neighbor other points with identical fitness that are

still considered neutral peaks. The neutral peak dataset is a superset of the true peak dataset.

This concept proves useful when looking at landscapes with large amounts of neutrality, such

as the Avida landscape, since the highest points are rarely true peaks.

I exhaustively looked at each genotype to obtain the data in this chapter. I accomplished

this by splitting the genotype space into several (usually 1024 or 4096) smaller chunks. Each

chunk was then evaluated, and summary information generated for the chunk, as well as

candidate ‘true peaks’ and ‘neutral peaks’. These individual chunks were later combined to

provide us with a list of all the peaks in as well as complete summary information for the
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landscape. I used several techniques including binary encoding, hashing, and compression in

order to deal with the dataset sizes.

3.5.2 NK

The NK landscape pictured in Figure 3.6 features a normal distribution, centered at a fitness

of 9. This distribution is the consequence of the fact that each of the eighteen genes has a

uniform distribution with an expectation of 0.5, and the result of this summation creates a

normal distribution. The theoretical interval that fitnesses can take is [0,18], but I do not see

values at either extreme, again due to the normal nature of the underlying distribution. The

peaks also appear to follow a normal distribution, centered a little higher than 12 for this

particular landscape instantiation. There is some, but very little, neutrality, and therefore

few neutral peaks that were not peaks in this landscape. The neutrality itself is caused by

the fact that I have only 32 bits of precision. Figure 3.7 shows the distribution of fitnesses

for all genotypes and peaks in the landscape.
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Figure 3.6: Phenotypic Summary, NK Landscape. X-axis is fitness, Y-axis is the count of the
number of genotypes with that fitness. The neutral peaks line in green is overlaid by the peaks in
blue since because there is so little neutrality in the landscape, the two sets are essentially identical.
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Figure 3.7: Box & violin plots of genotype fitness values on the NK landscape for all genotypes,
peak genotypes.
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3.5.3 Avida

Figure 3.8 is the summary of the reduced-instruction Avida landscape. The fitness structure

of this landscape is exponential, so I take the logarithm of fitness when interacting with the

Avida landscapes. There are only 1108 possible fitness levels in the Avida landscape, which is

significantly fewer than the numbers observed in the RNA and NK landscapes which are more

or less continuous. Figure 3.9 shows a summary of the Avida landscape. Another pattern

that can be clearly seen is a wave structure. This appears to be connected to the structure

of the landscape itself—in Figure 3.10, the phenotypic structure of the landscape is visible.

Notable is the gestation structure—different amounts of optimization with the nop-C create

a step-like structure. There are 98,120 true peaks in total and 86,100,995 peaks in the Avida

data. I thresholded the peak data set by fitness to make it more tractable for the analyses

used in the rest of the chapter, which resulted in 4.5 million peaks.
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Figure 3.8: Phenotypic Summary, Avida Landscape. X-axis is fitness, Y-axis is the count of the
number of genotypes with that fitness.
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Figure 3.9: Box & violin plots of genotype fitness values on the Avida landscape for all genotypes,
peak genotypes.
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Figure 3.10: Phenotype of fitness values on the length 18, reduced instruction set landscape.
Phenotypes are ordered by fitness. The blue line is log fitness of the phenotype. The green line is
the gestation time. The red line is the number of genotypes. The general pattern observable is that
for each level of merit, there are several optimizations using nop-C that reduce the execution time
and thereby the gestation time, improving fitness. On the bottom, logic tasks performed by each
ranked genotype are shown in the following order from bottom to top: NAND, NOT, AND, ORN,
OR, ANDN, NOR, XOR, EQU. It can be seen that the most fit organisms perform several tasks
rather than doing EQU.
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3.5.4 RNA

The RNA landscape can be seen at a high level in Figures 3.11 and 3.12. As in the Avida

landscape, there is a large preponderance of genotypes that do not fold particularly well.

Also, similarly to the NK landscape, the fitness values range from 0 to 18. There are 184,020

neutral peaks and 58,024 peaks in this landscape, which indicates some clustering of the high

regions in genotypic space, which will be explored further in following sections.

Figure 3.11: Phenotypic Summary, RNA Landscape. X-axis is fitness, Y-axis is the count of the
number of genotypes with that fitness.
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Figure 3.12: Box & violin plots of genotype fitness values on the RNA landscape for all genotypes,
peak genotypes.
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3.6 Peaks and Nearby Peaks

An analysis by [Østman et al., 2010] looked at the critical properties of true peaks in the

NK landscape. One of the properties they measured was true peak fitness vs the average

fitness of true peaks at a distance of two, which they call ‘cluster mean fitness’. The key

question here is whether more highly fit peaks correlate with more highly fit neighborhoods.

[Østman et al., 2010] used a binary NK landscape for length 20 genomes and different Ks.

They also performed a random assignment between genotypes and fitnesses as a control to

ensure the relationship was not spurious. They found a correlation between higher fitness of

a peak and higher cluster mean fitness as seen in Figure 3.13.

I perform a similar analysis here in each of the three model landscapes. I use the

neutral peaks dataset to perform this analysis. One distinction from the methodology in

[Østman et al., 2010] is that since my data set includes ‘neutral peaks’, I must count the

neighborhood as being within a distance of two or less to include neighboring ‘neutral peaks’.
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Figure 3.13: Figure 4 from [Østman et al., 2010] with original caption
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3.6.1 NK

My NK landscape is qualitatively different from that in [Østman et al., 2010], it has length 18,

but four alleles per site, rather than two alleles per site. The results can be seen in Figure 3.14

and show a strongly correlated peak fitness with cluster mean fitness.
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Figure 3.14: NK data, Fitness vs Cluster mean fitness. Each neutral peak fitness along with its
neighborhood fitness is shown as a dot. The colored hexagons overlay show density (count of points)
and the red line shows the fit. The correlation and line fit can be seen at the top of the graph.

(a) Fitness vs Cluster mean fitness

(b) Control, with fitnesses randomly assigned to
genotypes.
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3.6.2 Avida

The results of the analysis on the Avida data can be found in Figure 3.15. Although a bit

more visually confusing than the NK landscape due to the tiered structure of the Avida

landscape, there is nonetheless, a strongly correlated positive relationship between the fitness

of a peak and the height of any peaks in the neighborhood, and this relationship disappears

completely when the genotypes are randomly assigned fitness.
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Figure 3.15: Avida data, Fitness vs Cluster mean fitness. Each neutral peak fitness along with its
neighborhood fitness is shown as a dot. The colored hexagons overlay show density (count of points)
and the red line shows the fit. The correlation and line fit can be seen at the top of the graph.

(a) Fitness vs Cluster mean fitness

(b) Control, with fitnesses randomly assigned to
genotypes.

67



3.6.3 RNA

The results of the analysis on the RNA data can be found in Figure 3.16 and the same

relationship holds; there is a similar positive and strong relationship between peak fitness

and the fitness of peaks in their neighborhood.
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Figure 3.16: RNA data, Fitness vs Cluster mean fitness. Each neutral peak fitness along with its
neighborhood fitness is shown as a dot. The colored hexagons overlay show density (count of points)
and the red line shows the fit. The correlation and line fit can be seen at the top of the graph.

(a) Fitness vs Cluster mean fitness

(b) Control, with fitnesses randomly assigned to
genotypes.
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3.7 Percolation

Another structural property of interest is percolation. Percolation theory is often used to

model fluid flow and is particularly concerned with the connectedness of a graph. This is

the key property that Gavrilets postulated might allow evolution to perform walks across a

fitness landscape as in 3.4. The core argument is that as you add dimensions, the probability

of there being an interconnected pathway may increase. If peaks are close to each other, even

by small jumps, then it should be easier for evolution to walk from peak to peak, compared

with the alternative where peaks might be interspersed by wide valleys.

Again, [Østman et al., 2010] explored percolation in the NK landscape, which can be seen

in Figure 3.17. The basic approach is to add a fitness threshold on peaks and examine the

spatial relationships of the remaining genomes. Peaks of distance no more than two apart

are connected and belong to the same cluster. The same cluster may contain peaks of more

than 2 distance apart due to a chain of connected peaks.

For this work, I follow a similar regime. I measure clusters and connectedness for increasing

fitness thresholds for peaks. Here, I measure the size of the largest connected cluster. For the

RNA and NK landscapes, which are continuous, I set threshold increments of 0.1. For Avida,

since there are a finite number of phenotypes, I used the possible fitness levels as thresholds.
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Figure 3.17: Figure 6 from [Østman et al., 2010] with original caption
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3.7.1 NK

The analysis for the NK data set can be seen in Figure 3.18. As in the [Østman et al., 2010]

work, there appears to be an orderly phase transition from where most of the peaks are

connected in the largest cluster, to where the largest cluster is significantly smaller.

3.7.2 Avida

The percolation graph for Avida can be seen in Figure 3.19. In the Avida landscape, the

peaks start out almost completely connected. The horizontal leveling is tied to the phenotypic

structure, since there are only 1108 possible fitness levels in the Avida landscape and these

are distributed in a step-like fashion.
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Figure 3.18: NK data, peak percolation, neighbors joined within distance 2. Visible are all points
above the fitness threshold and the size of the largest connected cluster.
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Figure 3.19: Avida data, Peak Percolation with neighbors joined within distance 2. Visible are all
points above the fitness threshold and the size of the largest connected cluster.
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3.7.3 RNA

The percolation for the RNA dataset can be found in Figure 3.20. Most neutral peaks are

not connected; even at a fitness threshold of zero (allowing all peaks to be considered), I

see that only a few hundred out of 184,020 neutral peaks are actually connected to begin

with. The lack of connectedness in the graph suggests that, in the RNA data set, peaks are

often isolated. The percolation pattern and connectedness is in sharp contrast to the pattern

observed in the Avida and RNA datasets.
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Figure 3.20: RNA data, peak percolation, neighbors joined within distance 2. Visible are all points
above the fitness threshold and the size of the largest connected cluster.
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3.8 Autocorrelation of Peaks

Finally, one last analysis I performed was similar to the autocorrelation analysis proposed

by [Weinberger, 1991], except rather than measuring random walks, I measured a structural

property of the landscape pertaining to peaks: namely peak fitness correlates with distance

between peaks. In Equation 3.3, I reproduced equation 4 from [Barnett, 1998] and originally

formulated by [Eigen et al., 1989]. Here, the autocorrelation at distance d is represented by

ρ(d), g and g′ are two points within the landscape. QN(d) represents points d distance apart,

f̄ is the average fitness, and σf
2 is the variance of the fitnesses of the points in the collection.

In order to collect this data, I needed to look at all-pairs distances, which proved especially

challenging when there were millions of data points as in the Avida set.

ρ(d) =
1

σf 2
1

|QN(d)|
∑

g,g′∈QN (d)

(f(g)− f̄)(f(g′)− f̄) (3.3)

3.8.1 NK

The autocorrelation in the NK landscape can be seen in Figure 3.21. There appears to be

an exponential response of autocorrelation to distance.
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Figure 3.21: NK peak autocorrelation
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Figure 3.22: Avida thresholded peak autocorrelation

3.8.2 Avida

The resulting autocorrelation in Avida can be seen in Figure 3.22. At distance zero, there is

full autocorrelation, since each peak’s fitness correlates fully with itself. Similarly, at distance

one, only neutral peaks neighbors may exist in the peak data set, which by definition have

the same fitness, so the autocorrelation is one. After this, the autocorrelation drops off in

what appears to be a very smooth exponential or power distribution.
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3.8.3 RNA

Figure 3.23 shows the autocorrelation of peaks. Once again, there is full autocorrelation at

distance one from the neutral peaks. As in the other landscapes, when peaks are close, the

correlation in fitness is high. The correlation goes negative as distance increases and then

finally becomes weakly positive at distance near 18. This last phenomenon may be due to

the fact that if a given sequence is stable, its complement is also likely to be stable.

Figure 3.23: RNA peak autocorrelation
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3.9 Discussion and Conclusions

I have presented a comprehensive investigation of several structural properties in length 18

genomes spanning NK, Avida, and RNA landscapes comprising 68,719,476,736 genotypes each.

Landscapes of this size have not been previously studied so systematically. For each landscape

instantiation, I did an exhaustive genotype to phenotype analysis. This investigation provides

us with insight into theoretical landscapes often used to study evolution, genetic programming,

and RNA sequences. The fitnesses found within the NK landscape follow a normal distribution,

as do the peak fitnesses within the NK landscape. The RNA and Avida landscapes in contrast

are mostly dead—that is most genotypes have minimal fitness due to the phenotypic nature

of these landscapes. On the contrary, the expectation for a random NK landscape sequence

is a fitness of 9—exactly at the 50th percentile. This is one important difference between

NK landscapes and the landscapes I see in nature. The peaks in Avida and RNA landscapes

skew towards the tail of higher fitnesses, but in RNA it is even more pronounced than in

Avida due to the large prevalence of neutrality in Avida landscapes.

For all three instantiations of landscapes, peaks tend to cluster near other peaks; in

Section 3.6, I found that there is a clear positive relationship between the fitness of a peak

and the fitness of peaks within a neighborhood of two. This relationship held across all three

types of landscapes. For NK, this effect has already been demonstrated in previous work,

but the broader generality of this finding is novel with its expansion to larger NK landscapes

as well as for both Avida and RNA landscapes. These results provide strong quantitative

evidence that peaks are not distributed randomly throughout the landscape, but do indeed

tend to cluster.

For both the NK and Avida landscapes, the autocorrelation starts high and drops rapidly,

eventually going below zero as the distance approaches 18. The RNA landscape has a higher

autocorrelation for longer, but also eventually declines and then, surprisingly, goes positive

for large distances. This effect at high distances is potentially because my fitness function is
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tied to the folding energy, and the complement of a sequence that is stable is also likely to

be stable. Such a complement could only appear in regions at the maximum distance of 18.

This result may indicate a certain amount of symmetry in the RNA landscape that does not

exist in the other two model landscapes—namely if you locate a peak in RNA space, it is

profitable to search regions around the complement.

Percolation (an indication of the ability for evolution to navigate to wide ranging peaks

through intermediate peaks) is only present in the Avida and NK landscapes—the RNA

landscape, in contrast, starts with only a small fraction of peaks connected. This result implies

that nearly neutral pathways that connect clusters of peaks may not exist on RNA landscapes.

Conversely, these pathways may exist on Avida and NK landscapes. This difference implies

that evolution may work differently in these landscapes, a hypothesis I investigate further in

future chapters.
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Chapter 4

Basins of Attraction

4.1 Introduction

High fitness peaks dominate their local neighborhoods in genotypic space by allowing organ-

isms to outcompete their neighbors, thus attracting and trapping evolutionary trajectories.

These peaks are are often referred to as ‘basins of attraction’ because it is easier for evolution

to permit a transition from a relatively unfit genotype to a relatively fit genotype, whereas

the opposite transition is actively opposed by the process of natural selection. In general, the

longer upward trajectories are that lead towards a peak, the larger the associated basin is

likely to be.

In this chapter, I explore questions of predictability and evolvability within rugged adaptive

landscapes by examining the size and distribution of basins of attraction. These properties

of basins have implications for biological evolution since natural selection drives populations

towards higher levels of fitness, so an improved understanding of how trajectories evolve on

fixed fitness landscapes may help us understand how they evolve in nature.

83



4.2 Background

[Kauffman, 1993] was the first to examine basins of attraction in the context of NK landscapes,

and he measured basin size by counting the number of random walks ending up at each

optimum. Similarly, [Ochoa et al., 2008] examined NK fitness landscapes by exhaustively

enumerating instantiations of these landscapes across a variety of K values for N = 16 and N

= 18. Basins of attraction were determined for each point by starting a walk at each genotype,

and picking the neighbor with the highest fitness until a local optimum was reached. If a

tie for neighbor of highest fitness occurred (which may occur due to rounding error or when

NKp landscapes with neutrality are used), the next step was chosen between them at random.

Trajectories were then binned into genotypes which permitted them to make many conclusions

about basins of attraction in NK landscapes. Among their conclusions, they found a positive

exponential correlation between the fitness values of maxima and basin size. They also found

that as K increased, the size of the largest fitness basin shrunk as a proportion of the fitness

landscape.

[Ochoa et al., 2010] used the same technique, but instead of each walk favoring the most fit

neighbor, it would choose any neighboring point with greater fitness. This technique resulted in

a similar relationship between fitness and proportion as in [Ochoa et al., 2008], but randomly

walking across neighbors tended to increase the size of smaller basins while decreasing the

size of the largest basins. Additionally, they found that a genotype at N=16,K=4 may reach

as much as 70% of the available basins, but at K=14, a solution may reach as little as 30%.

[Tomassini et al., 2008] measured transition probabilities between basins by examining

the ‘edges’ of basins, defined as those points that belong to a basin that are one mutational

step away from points that belong to other basins. The authors assembled a network upon

the basins by examining the ratio of outgoing links to within-basin links.

[Vérel et al., 2011] extends the methodology of [Ochoa et al., 2008] to look at NKp neutral
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networks. The hill-climbing algorithm for determining basins was altered by performing a

random walk to points greater than or equal to the max fitness bordering any given point.

The final points were then used to construct neutral networks by examining edges, with single

peaks corresponding to a neutral network of size one.

4.3 Measuring Basins

In this section, I present a new method for measuring the size of basins, the Basin Flow

Algorithm.

4.3.1 NK Fitness Landscape Variants

In the previous chapter, the standard form of the NK landscape family, with a genome of

length N with K interacting genes, was introduced. A modified version of the NK landscape

was proposed by [Østman et al., 2010], where instead of using the arithmetic mean, the

geometric mean is preferred. The biological justification is that it simulates the effects of

lethality—the expression of a single bad gene is enough to drop fitness substantially.

(
f(G) =

N∏
1

fi(G)

) 1
N

where f(Gi) = f(gi,1, ..., gi,k) ∼ U(0, 1)

(4.1)

The NK landscape contains almost no neutrality since the probability of obtaining two

random numbers of the same exact fitness is near zero since neutrality is possible due to

finite precision. [Barnett, 1998] introduced the NKp landscape where there is a p probability

that a given allele contribution will produce a gene with zero fitness, introducing neutrality.

Similarly, I introduce a probability that a given allele contribution will produce a gene with a

one fitness contribution. This probability has the secondary effect of increasing fitness values

of the distribution due to the geometric mean.
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4.3.2 Basin Flow Algorithm

I seek to measure basins of attraction by looking at where population centroids would ‘flow

towards’, given a uniform initial distribution across the entire fitness landscape. I take broad

inspiration for this idea from the page rank algorithm, [Page et al., 1999] originally employed

by Google, and which seeks to establish the relative importance of a web page by examining

the properties of its links. Internet surfers are modeled as random walkers who make decisions

about where to navigate next based on outgoing links from the current page they are visiting.

The page rank seeks to identify nodes where surfers spend the most time.

Similarly, here, I model the centroids of populations as random walkers on a fitness

landscape and seek to identify which nodes they are drawn towards by examining one point

mutational neighbors. By centroid, I mean the approximate center of the population on the

genotypic lattice. Neighbors that are greater than or equal to are analogous to ‘outgoing

links’ in the page rank algorithm. The accumulation of random walkers ultimately identifies

nodes that are either local maxima or part of locally maximum neutral networks, or ‘sinks’.

Unlike the page rank algorithm, these are treated as true sinks.

This methodology differs from mutation-selection-balance population genetic models since

rather than competing genotypes among populations or competing populations against each

other, I am instead measuring random walks of population centroids. This method is a

fixed structural measure of the fitness landscape. Previous work in this domain has focused

on sampling trajectories, whereas my approach represents a belief of basin density over all

genotypes in the fitness landscape. A genotype is then potentially simultaneously a member

of multiple basins by distributing flow over all qualifying neighboring genotypes. I assume

a uniform starting distribution, which admittedly is not the only prior belief one can have

about populations upon the landscape, but is a straightforward choice. In reality, of course,

finite populations necessarily cannot start with such a distribution and are already trapped

in one small area of the landscape, because of both common descent (see Chapter 2) and
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selection. With this method, I then explore the entire landscape without bias, which differs

from sampling methods which are necessarily biased from the initial sample points.

Additionally, I seek to examine the effect that resulting network structure has on the

process of evolution. To do this, I apply a secondary analysis to measure transience of basins

by allowing jumps between genotypes two mutations apart. This secondary analysis provides

insight into what the basin structure might look like on an evolutionary time scale when

double mutations may be regularly explored.

In this work, I use an instantiation of the NK landscape described in the previous chapter,

with length = 20 and two alleles per site. I use a modified version of the NKp landscape using

the geometric mean as identified earlier in Equation 4.1 and where p, rather than a gene

having a probability of adding 0 fitness, has a probability of multiplying by 1. As mentioned

earlier, this NKP variant causes further skew to the right in NKp landscapes, as the geometric

mean will be larger when a 1 is substituted rather than a random number between 0 and 1.

To measure basins, I assign a density value to each genotype. The density represents the

proportion of population trajectories at each genotype in the landscape. I start with a uniform

initial density of 1
aL

, where a is the number of alleles and L is the length of the genome. I

establish directional links between genotypes that may distribute density to neighboring geno-

types, based on relative fitness and the local structure of the neighborhood. This transition

probability represents the chance that a population centered at a given site may evolve to a

neighboring site. There is some literature pertaining to competition in the context of clonal in-

terference between beneficial mutations as in [Gerrish and Lenski, 1998], [Desai et al., 2007],

and [Wilke, 2004], but I opt to use two simple treatments instead described below. There is

no coherent view of what timescale an update corresponds to in this work, since selection

strength would be varied, so I am more interested in the convergent dynamics than in the

transient dynamics; after 1,000 updates, I measure the density in genotypes as an estimate

of the size of basin of attraction.
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In the ProbGE treatment, I constructed an outgoing edge e(A,B) from genotype A to

genotype B with weight w(A,B) as follows:

w(A,B) =


0 if F (A) < F (B)

f(B)∑
n∈NA∪{a} I(F (n)≥F (A))F (n)

if F (A) ≥ F (B)

(4.2)

In this equation, F (A) represents the fitness of genotype A, NA is the neighborhood of one

point mutations surrounding A, and I is the indicator function that enforces that these points

have greater than or equal fitness relative to point A. The biological assumption underlying

this treatment is that neighboring points have a chance of receiving a trajectory equivalent

to their fitness divided by the total neighboring fitness of all neighboring candidates.

The second treatment is the FlatGE treatment, in which I constructed an outgoing edge

from genotype A to genotype to B with weight w(A,B) as follows:

w(A,B) =


0 if F (A) < F (B)

1∑
n∈NA∪{a} I(F (n)≥F (A))

if F (A) ≥ F (B)

(4.3)

In other words, all outgoing links have equal weight in the second treatment, whereas they

are weighted by relative fitness in the first. After 1,000 updates, I examine the distribution

of the density in points that are above a threshold of 0.00001. The key biological assumption

under this treatment is that if mutations are rare enough, the population is small enough, or

the selection coefficient is strong enough, sweeps may occur sufficiently fast relative to the

appearance of new competitive types that the first beneficial or neutral mutation may sweep.

In both models, I make the following assumptions: (1) mutations within the neighborhood

are equiprobable, (2) double mutations do not occur, (3) likewise, the population centroids,

or centers of mass on the genotype space, may not take more than one step at once, and

(4) natural selection prevents populations from taking downward steps. These assumptions
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of course do not necessarily hold in natural populations, but they do make the model much

more tractable, and I explore relaxation of the double mutation assumption next.

As I saw in the previous chapter, [Kauffman, 1993] described a feature common to the NK

family of landscapes that he termed the ‘Massif Central’, which referred to the observation

that peaks tend to cluster close to each other, as opposed to being randomly distributed across

the landscape. [Østman et al., 2010] provides evidence that peaks tend to be clustered in the

particular NK landscape I use. This idea, that peaks are not necessarily far from each other,

lends itself to a secondary analysis, whereby I evaluate the idea that trajectories can and do

escape local peaks during the process of evolution. This treatment relaxes the assumptions

that double mutations do not occur and that natural selection prevents populations from

taking downward steps. The basic assumption is that most peaks are themselves transient

phenomena in an evolutionary trajectory, albeit those likely to have a longer waiting time

to escape. In fact, since the density I measure represents population centroids, it would not

be that difficult to cross a double mutation valley. Simultaneous mutations, compensatory

mutations through a valley crossing, and even drift provide mechanisms whereby populations

may evacuate regions of the fitness landscape altogether and accumulate in more highly fit

regions.

In my secondary treatment, after running the first 1,000 steps as above, I run another

1,000 steps where in addition to percolation every update, I perform an additional calculation:

I allow points with a density over threshold δ = 0.00001 to lose mass to genotypes that are two

steps out, again obeying the above equations, with the caveat that NA instead represents the

2-step mutational neighborhood of genotype A. The density threshold permits us to ignore

the vast majority of points underneath the threshold, which is a relatively useful optimization

since there are L(L−1)
2

2-step mutants for each genotype, and the vast majority of genotypes

already contain negligible or no mass. This threshold cuts down on the processing requirement

at the potential cost of sacrificing some accuracy.
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Finally, I examine the effects of neutrality on basin size. The exact role of neutral net-

works is still far from understood; such regions may serve as conduits to higher regions of

the landscape or as sinks where trajectories get stuck or both. The distribution of neutral

regions also may play a significant role; it might be imagined that a large multidimensional

neutral region surrounded primarily by deleterious genotypes may retain a lot of mass sim-

ply because trajectories are randomly walking around in this neutral region. There is some

evidence for ‘survival of the flattest’ or the notion that even in the absence of fitness benefits,

populations may evolve towards genotypes with fewer neutral neighbors as in [Wilke, 2001]

and [Wilke et al., 2001].

4.3.3 Discussion

I perform both the ProbGE and FlatGE treatments in a length N=20 landscape for K = 2,

5, 8, 11, 14, 17, and 20 with p=0, p=0.2, p=0.5, and p=0.8. For each treatment, I generate

five random landscapes. I store only genotypes above a threshold of 0.00001.

Figure 4.1 shows these results for the no neutrality case (p=0.0).

In order to examine the effects of fitness and treatment condition (ProbGE = 0, FlatGE

= 1) on the basin size, I fit the model

log10B = β0 + β1(F ) + β2(T ) + β3(FxT ) (4.4)

Here, B is basin density, F is fitness, and T is treatment condition. I fit this model across

each pair of fitness landscapes; i.e. for each K, the same five landscapes are used in both

the ProbGE and FlatGE treatments. The reason I prefer this type of pairwise analysis is

that the landscapes in question change significantly as K increases. In particular, increased

epistasis permits more combinations, which increases the maximum fitness possible. The

results of this can be seen in Table 4.1. To summarize, the log of the basin size is predicted by

fitness (p < 4.85∗10−31) for all cases. Additionally, this relationship decreases with increasing
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Table 4.1: Coefficients of log10B = β0 + β1(F ) + β2(T ) + β3(F x T ). p-values are in parentheses.

K Intercept Fitness Type Fitness x Type
2 -2.482 ( 1.56e-252 ) 9.284 ( 4.85e-31 ) 0.06139 ( 0.301 ) -0.9195 ( 0.391 )
5 -4.629 ( 0 ) 6.841 ( 0 ) 0.07802 ( 8.39e-06 ) -0.3776 ( 3.74e-05 )
8 -5.819 ( 0 ) 6.215 ( 0 ) 0.08586 ( 1.86e-15 ) -0.2649 ( 9.05e-14 )
11 -6.464 ( 0 ) 5.62 ( 0 ) 0.09555 ( 2.01e-26 ) -0.2349 ( 9.46e-25 )
14 -6.608 ( 0 ) 4.634 ( 0 ) 0.1113 ( 2.77e-33 ) -0.2375 ( 1.5e-32 )
17 -6.265 ( 0 ) 3.201 ( 0 ) 0.08976 ( 1.61e-21 ) -0.1687 ( 1.31e-20 )
20 -6.004 ( 0 ) 2.365 ( 0 ) 0.05122 ( 1.73e-07 ) -0.08538 ( 8.43e-07 )

K, which is unsurprising since the additional epistasis caused by a higher K increases the

number of optima in the landscape. Both the association with fitness size and basin size and

the effect of increasing K on decreasing this association are consistent with the results of

[Ochoa et al., 2008]. Secondly, I find that the FlatGE condition produces larger basin sizes

than the ProbGE treatment. Furthermore, there is a negative interaction between fitness and

treatment; which is to say that the maximum density of peaks in the FlatGE case was less

than that in the ProbGE case. This interaction also seems analogous to previous work done

by [Ochoa et al., 2010], who found a difference between taking the best neighboring point

and taking the first neighboring point increased average basin size but decreased the largest

basin sizes. The ProbGE treatment, by weighting fitness proportionately, does not exactly

correspond to the best point, but it is likely a less biased version of the same effect; with

equal weights, more trajectories are drawn towards local maxima. This effect also seems to

decrease with increasing K, likely as a consequence of increasing ruggedness in the landscape.

Next, I examine the effects of the secondary network analysis on the basin size. Allowing

valley crossings which permit basins to empty into higher nearby points results in a reduction

of between 74% and 82% of all basin points above the threshold for the non-neutral case. This

can be seen in Table 4.4. Table 4.2 and Table 4.3 show regression data for the ProbGE and

FlatGE treatments, respectively. In both of these treatments, the slope of the fitness increases

after the second order manipulation. The effects of the second order network can be seen in

that it has an increasingly negative effect on basin size as K increases (when controlled for

the range of fitnesses), but there is a large fitness x second treatment interaction term. In

other words, higher fitness basins tend to get bigger and lower fitness basins are more likely

to disappear via drainage.
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Table 4.2: Coefficients of log10B = β0+β1(F )+β2(S)+β3(F x S) for ProbGE treatment. p-values
are in parentheses.

K Intercept Fitness Second Fitness x Second
2 -2.482 ( 7.21e-182 ) 9.284 ( 3.84e-28 ) 0.9298 ( 4.67e-15 ) -4.544 ( 0.00205 )
5 -4.629 ( 0 ) 6.841 ( 0 ) 0.3553 ( 9.47e-20 ) 0.04766 ( 0.775 )
8 -5.819 ( 0 ) 6.215 ( 0 ) 0.05732 ( 0.015 ) 0.6512 ( 4.28e-22 )
11 -6.464 ( 0 ) 5.62 ( 0 ) -0.1768 ( 3.7e-21 ) 0.9685 ( 1.08e-112 )
14 -6.608 ( 0 ) 4.634 ( 0 ) -0.3357 ( 2.96e-74 ) 1.138 ( 2.32e-211 )
17 -6.265 ( 0 ) 3.201 ( 0 ) -0.5051 ( 5.79e-157 ) 1.375 ( 0 )
20 -6.004 ( 0 ) 2.365 ( 0 ) -0.7414 ( 2.18e-290 ) 1.691 ( 0 )

Table 4.3: Coefficients of log10B = β0+β1(F )+β2(S)+β3(F x S) for ProbGE treatment. p-values
are in parentheses.

K Intercept Fitness Second Fitness x Second
2 -2.42 ( 3.48e-179 ) 8.365 ( 5.12e-24 ) 0.8822 ( 6.17e-14 ) -3.773 ( 0.00993 )
5 -4.551 ( 0 ) 6.463 ( 0 ) 0.2978 ( 1.43e-13 ) 0.3277 ( 0.0572 )
8 -5.733 ( 0 ) 5.95 ( 0 ) -0.007231 ( 0.765 ) 0.8528 ( 7.43e-35 )
11 -6.368 ( 0 ) 5.385 ( 0 ) -0.2472 ( 1.33e-37 ) 1.143 ( 3.35e-147 )
14 -6.496 ( 0 ) 4.397 ( 0 ) -0.4013 ( 6.49e-100 ) 1.282 ( 1.51e-253 )
17 -6.175 ( 0 ) 3.033 ( 0 ) -0.532 ( 4.51e-169 ) 1.43 ( 0 )
20 -5.952 ( 0 ) 2.28 ( 0 ) -0.7332 ( 5.29e-279 ) 1.678 ( 0 )

Table 4.4: This table shows the number of basins before and after the secondary analysis is
performed, as well as the mean. Each cell in the table has two entries—the first represents the value
for the initial treatment with flow only to mutational neighbors, and the second represents the value
of the secondary treatment with flow to genotypes two mutational steps away.

K ProbGE-Points ProbGE-Means FlatGEPoints FlatGEMeans
2 302 / 53 0.047 / 0.072 302 / 53 0.047 / 0.072
5 6581 / 1190 0.183 / 0.234 6581 / 1190 0.184 / 0.234
8 28290 / 5995 0.299 / 0.354 28298 / 5995 0.299 / 0.354
11 64672 / 15422 0.390 / 0.442 64811 / 15422 0.389 / 0.442
14 110800 / 29011 0.461 / 0.508 111482 / 28986 0.460 / 0.508
17 157246 / 41099 0.518 / 0.563 157671 / 40989 0.517 / 0.563
20 179852 / 44384 0.565 / 0.610 179377 / 44217 0.565 / 0.610
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Figure 4.3 and Figure 4.4 show the single mutation and double mutation results for an

NKp landscape of p = 0.2. Figure 4.5 and Figure 4.6 show the single mutation and double

mutation results for a NKp landscape of p = 0.5. Figure 4.7 and Figure 4.8 show the single

mutation and double mutation results for a NKp landscape of p = 0.8. For the p = 0.5

neutrality landscape, for the K=2 and the K=5 cases, there appear to have been several cases

where the neutrality in the landscape did not successfully drain all the basins. This is visually

apparent in the first four boxes of Figures 4.5 and 4.6. Several basins in the first analysis

drop in proportion but do not disappear. The likely conclusion is simply that 1000 updates is

not enough to allow trajectories to escape these regions. An alternative hypothesis might be

that some of these are new points that did not appear previously due to being beneath the

threshold. This phenomenon does appear to occur at a low level, reaching up to 15% of the

points in the second order analysis in the K=20 case, where thresholding plays a larger role

due to a higher incidence of peaks. However, at low K, this incidence was negligible, with,

for example, two points for K=2 and no points for K=5 in the p=0.2 case, and two points

each for K=2 and K=5 for the p = 0.5 case. The slow drainage of mass from certain basins

thus appears to be a consequence of the neutrality in the landscape.
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Figure 4.1: Log(basin proportion) as a function of fitness, p = 0.0, Single Mutations. Here density
flows only to single mutant neighbors.
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Figure 4.2: Log(basin proportion) as a function of fitness, p = 0.0, Double Mutations. Here density
flows to single mutant neighbors as well as double mutants after 1000 updates.
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Figure 4.3: Log(basin proportion) as a function of fitness, p = 0.2, Single Mutations. Here density
flows only to single mutant neighbors.
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Figure 4.4: Log(basin proportion) as a function of fitness, p = 0.2, Double Mutations. Here density
flows to single mutant neighbors as well as double mutants after 1000 updates.
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Figure 4.5: Log(Basin Proportion) as a function of fitness, p = 0.5, Single Mutations. Here density
flows only to single mutant neighbors.
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Figure 4.6: Log(Basin Proportion) as a function of fitness, p = 0.5, Double Mutations. Here density
flows to single mutant neighbors as well as double mutants after 1000 updates.
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Figure 4.7: Log(basin proportion) as a function of fitness, p=0.8, Single Mutations. Here density
flows only to single mutant neighbors.
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Figure 4.8: Log(basin proportion) as a function of fitness, p=0.8, Double Mutations. Here density
flows to single mutant neighbors as well as double mutants after 1000 updates.
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I have shown, using a method similar to page rank, that basin size in NK landscapes

is exponentially correlated with fitness. This finding is consistent with previous work such

as [Ochoa et al., 2008]. I set up two treatments, ProbGE in which genotypes are linked to

neighboring genotypes of equal or greater fitness and distribute mass proportionately to

fitness, and FlatGE in which genotypes are linked to neighboring genotypes of equal or

greater fitness and distribute mass evenly without regard to fitness. I demonstrated that

these treatments have an effect on the size of basins; the FlatGE treatment increases the

average size of basins while decreasing the maximum size of basins relative to the ProbGE

treatment. This result was reminiscent of that obtained in [Ochoa et al., 2010], comparing

the accumulation of best vs. first improvement walks.

I also apply a secondary analysis where trajectories may escape local peaks by permitting

them to move two mutational steps. The allowance of two mutant traversals has the effect

of eliminating between 74% and 80% of peaks and increases the overall relationship between

fitness and density of those that remained. This result shows that over evolutionary time,

higher fitness basins tend to become even larger by cannibalizing nearby lower fitness basins.

Finally, I examined the effects of neutrality. I detected the presence of neutral networks

that retain mass over large periods of evolutionary time, which functionally may act as sinks;

even though there are exits from the network, they leak only slowly.

One confounding factor with this work would be the effect of the threshold on the interpre-

tation of the data. Even in the K=20 case, only about 3.5% of the total genotypes appeared

in the peaks data. It may be that the threshold was not low enough to capture all of the

peaks in the landscape. This thresholding could result in very small basins being ignored for

this analysis. This would likely skew the data reported in two ways: first, these basins would

be of lower fitness and would not drain properly into nearby basins since the double mutant

step was applied only above the threshold. If this skew does occur, when corrected, would

only increase the reported effect of the secondary analysis of concentrating mass in larger
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basins.

In this section, I have presented a novel method for evaluating fitness landscapes using

the Basin Flow Algorithm and I demonstrated its usage and applicability on a simple NK

landscape. This method produces comparable results to other methods of assessing basin

size and is in line with previous work on NK landscapes. It also has the advantage of not

being biased by starting location and provides a snapshot of ’true’ relationships that might

occur via transient dynamics.

4.4 Basins in Landscapes

In the previous chapter, I had explored complete landscapes of up to length 18 for the NK,

Avida, and RNA landscapes. I sought to investigate the transient dynamics in these landscapes

to see how trajectories accumulate in progressively higher peaks over time. Additionally, I

was interested in measuring the amount of overlap between trajectories to get a sense for the

size of basins in these landscapes.

I measured the size of fitness basins obtained by evolution by using a genetic algorithm to

sample evolutionary trajectories I used a population size of 25 and 0.5 expected mutations on

every division and sampled 100,000 runs, each originating from a different random genotype.

Genotypes were sampled proportionately to fitness. Every update, in addition to mutation

and selection steps, I record the genotype and fitness of the most common genome in the

population, or ‘dominant’.

I found that a population size of 25 was not sufficient to reliably overpower selection

strength in the NK and RNA landscapes, which resulted in trajectories not accumulating

in basins, as it was relatively difficult for them to stay in a peak. Therefore, I increased the

strength of selection by applying the exponential transformation f(x) = 2x for the fitnesses

in the RNA and NK landscapes to make these landscapes more readily comparable with the

exponential Avida landscape and examine the basin distribution. This treatment preserves
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the relative relationships of points—namely, peaks remain peaks, but the strength of selection

is drastically increased. In this section, I will present both the untransformed and exponential

for the NK and RNA landscapes.

4.4.1 Trajectories Over Time

I looked at the 100,000 collected trajectories at five update intervals: 1, 10, 100, 1000, and

10000 to see how the fitness of trajectories shifts over time in each of the three landscapes.

4.4.1.1 NK

NK basins over time can be observed in Figure 4.9. All of the distributions have a long

tail—some trajectories continue to be trapped in local minima even 10,000 generations in.

The resulting distributions appear to be normal or nearly-normal at any time, and as time

elapses, the mean shifts upwards.
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Figure 4.9: Distribution of fitnesses in evolutionary trajectories starting from 100,000 random
points in the NK landscape at each of five exponential time points, as a measure of adaptation in
basins over time.
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Figure 4.10: Distribution of fitnesses in evolutionary trajectories starting from 100,000 random
points in the NK Exponential landscape at each of five exponential time points, as a measure of
adaptation in basins over time.
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4.4.1.2 Avida

In order to thoroughly test evolutionary trajectories in Avida I used two distinct evolutionary

mechanisms: the same GA that I used for NK landscapes and the Avida digital evolution

platform itself. The Avida system features continuous reproduction similar to a Moran model

with overlapping generations, as opposed to the synchronized generations used in the GA.

The two methods both produced strikingly similar results, and so for the purpose of this text,

I present the Genetic Algorithm implementation for consistency with the other landscapes.

The results can be seen in Figure 4.11. Again, the distribution shifts clearly towards

peaks with higher fitness as more updates elapse. The tiered availability of phenotypes is

also highly visible, in contrast to the continuous nature of the other landscapes. This is also

visible in the Avida landscape summary in Figure 3.9 in Chapter 3.
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Figure 4.11: Distribution of fitnesses in evolutionary trajectories starting from 100,000 random
points in the Avida landscape at each of five exponential time points, as a measure of adaptation
in basins over time.
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Figure 4.12: Distribution of fitnesses in evolutionary trajectories starting from 100,000 random
points in the RNA landscape at each of five exponential time points, as a measure of adaptation in
basins over time.

4.4.1.3 RNA

RNA basins over time can be observed in Figure 4.12. The basin fitness seems to stop

improving between updates 1,000 and 10,000.
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Figure 4.13: Distribution of fitnesses in evolutionary trajectories starting from 100,000 random
points in the RNA Exponential landscape at each of five exponential time points, as a measure of
adaptation in basins over time.
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Figure 4.14: NK, 100,000 random points, basin size after 10,000 updates. This plot, as exciting as
it appears, is not an accident. There are simply 100,000 unique basins as measured by the endpoints
of the trajectories.

4.4.2 Basin Size

The next question I investigated was the basin size after 10,000 updates. The final genotype

of the 100,000 trajectories after 10,000 updates serves as a proxy for basin size. This analysis

gives us an idea about the distribution of the sizes of the basins of long term evolutionary

attractors.
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Figure 4.15: NK Exponential, 100,000 random points, basin size after 10,000 updates. The colored
hexes represent binnings of points and are used to delineate areas of high density, where many points
may be stacked.
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Figure 4.16: Avida, 100,000 random points, basin size after 10,000 updates. The colored hexes
represent binnings of points and are used to delineate areas of high density, where many points may
be stacked.
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Figure 4.17: RNA, 100,000 random points, basin size after 10,000 updates. Similar to the NK
landscape, most points are not accumulating in basins; over 98,000 trajectories ended in unique
genotypes, with the rest accumulating in basins of size no more than four.
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Figure 4.18: RNA Exponential, 100,000 random points, basin size after 10,000 updates. The
colored hexes represent binnings of points and are used to delineate areas of high density, where
many points may be stacked.
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4.4.3 Basin Size Relation With Fitness

Previous work on the NK landscape including that in 4.3 has shown an exponential relation-

ship between basin fitness and size. We seek to investigate whether this relationship holds in

larger landscapes when evolution is the main determinant of basins. Here I use the trajectory

count as a proxy for basin size.
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Figure 4.19: NK, 100,000 random points, basin size vs basin fitness at 10,000 updates. The colored
hexes represent binnings of points and are used to delineate areas of high density, where many
points may be stacked. The red line and equation represent the exponential curve fit. Due to weak
selection strength, there is not much relationship between the fitness and basin size.
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Figure 4.20: NK Exponential, 100,000 random points, basin size vs basin fitness at 10,000 updates.
The colored hexes represent binnings of points and are used to delineate areas of high density, where
many points may be stacked. The red line and equation represent the exponential curve fit.
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Figure 4.21: Avida, 100,000 random points, basin size vs basin fitness at 10,000 updates. The
colored hexes represent binnings of points and are used to delineate areas of high density, where
many points may be stacked. The red line and equation represent the exponential curve fit. Avida
seems to have a positive relationship with fitness but the fit is very poor.
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Figure 4.22: RNA, 100,000 random points, basin size vs basin fitness at 10,000 updates. The
colored hexes represent binnings of points and are used to delineate areas of high density, where
many points may be stacked. The red line and equation represent the exponential curve fit. Due to
weak selection strength, there is not much relationship between the fitness and basin size.
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Figure 4.23: RNA Exponential, 100,000 random points, basin size vs basin fitness at 10,000 updates.
The colored hexes represent binnings of points and are used to delineate areas of high density, where
many points may be stacked. The red line and equation represent the exponential curve fit.
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Figure 4.24: NK, fitness for trajectories from 100,000 starting random points, fitness over 10,000
updates. In gray is the area between the 5th and 95th quantiles.

4.4.4 Fitness Over Time

This section shows the fitness over time of 100,000 trajectories starting at random points

in each of the environments. These are useful mostly to visualize the adaptation of the

trajectories and understand on what time scales the trajectories experience improvement.

Not surprisingly, fitness increases over time, but in the RNA and NK environments, it levels off

and stops improving noticeably, whereas in the Avida, RNA Exponential, and NK Exponential

environments, the period during which fitness increases in aggregate is larger.
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Figure 4.25: NK Exponential, fitness for trajectories from 100,000 starting random points, fitness
over 10,000 updates. In gray is the area between the 5th and 95th quantiles.
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Figure 4.26: Avida, fitness for trajectories from 100,000 starting random points, fitness over 10,000
updates. In gray is the area between the 5th and 95th quantiles.
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Figure 4.27: RNA, fitness for trajectories from 100,000 starting random points, fitness over 10,000
updates. In gray is the area between the 5th and 95th quantiles.
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Figure 4.28: RNA, fitness for trajectories from 100,000 starting random points, fitness over 10,000
updates. In gray is the area between the 5th and 95th quantiles.
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Figure 4.29: NK, distance from origin for trajectories from 100,000 starting random points. In
gray is the area between the 5th and 95th quantiles.

4.4.5 Distance Traveled From Origin

This section shows distance traveled from the original genotype as time elapses. I measure

this in order to understand how far points travel on average to their final destinations relative

to their origin in the landscape. This is a proxy method for measuring the size and reach of

basins.
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Figure 4.30: NK Exponential, distance from origin for trajectories from 100,000 starting random
points. In gray is the area between the 5th and 95th quantiles.
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Figure 4.31: Avida, distance from origin for trajectories from 100,000 starting random points. In
gray is the area between the 5th and 95th quantiles.
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Figure 4.32: RNA, distance from origin for trajectories from 100,000 starting random points. In
gray is the area between the 5th and 95th quantiles.
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Figure 4.33: RNA Exponential, distance from origin for trajectories from 100,000 starting random
points. In gray is the area between the 5th and 95th quantiles.
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4.4.6 Peaks & Basins

In this section, I look at the proportion of each trajectory at each timestep that is a ‘peak’

as identified in the fitness landscapes in the last section. Note that for the exponential

treatments, the peaks remain the same since the exponential treatment alters the strength

of relative signal, but not the fitness valence relationship between neighboring points.
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Figure 4.34: NK, proportion of trajectories from 100,000 starting random points currently in
genotypes identified as peaks.
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Figure 4.35: NK Exponential, proportion of trajectories from 100,000 starting random points
currently in genotypes identified as peaks.
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Figure 4.36: Avida, proportion of trajectories from 100,000 starting random points currently in
genotypes identified as peaks.
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Figure 4.37: RNA, proportion of trajectories from 100,000 starting random points currently in
genotypes identified as peaks.
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Figure 4.38: RNA Exponential, proportion of trajectories from 100,000 starting random points
currently in genotypes identified as peaks.
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4.4.7 Discussion

I have presented an investigation of basin size in the three model landscapes introduced

in Chapter 3—the NK landscape, the Avida landscape, and the RNA landscape. For the

RNA and the NK landscapes, the selection strength was insufficient to obtain a meaningful

understanding of the landscape with a population size of 25. I therefore chose to increase

the selection strength by remapping them with the fitness transformation x = 2x. This

simple transformation preserves the peak structure in the landscape and the relationship

between nearby points and makes it easier for small populations to climb gradients and stay

on peaks. I present both this as well as 100,000 trajectories on the original untransformed

landscape. I did not perform this treatment for the Avida landscape since it already has an

exponential form, and a snapshot of basin structure successfully emerged from my sampling

of evolutionary trajectories.

All three landscapes exhibited increased fitness over time in the distribution of samples, as

might be expected. Early improvements along the line of descent allowed for rapid increases

in fitness, but eventually the rate of improvement slows down, although it never stops over the

measured interval. The distribution of the endpoints of each run is landscape specific—the

sparsity of phenotypes is visible in the Avida landscape, the normality of the fitnesses of

peaks in the NK landscape is highly apparent and seems to be preserved through time. The

exponential RNA and NK landscapes show continued improvement in marked contrast to the

stagnation visible after roughly Update 100 in their non-exponential RNA and NK cousins.

This difference in behavior is due to the strength of selection. I focus on the exponential

landscapes for the rest of the discussion, but it is worth noting that transforming the landscape

exponentially improved the solution quality for this particular parameter set quite drastically.

In evolutionary computation applications, small populations and low mutation rates may

benefit strongly from increased selection strength via transformation, such as my exponential

treatment, in that there may be better final solution quality, but this may also lead to adverse
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effects such as being trapped in local minima.

Next, I examined the frequency of each basin size. The NK and RNA landscapes both

did poorly here—Figure 4.14 for instance shows the result that there were 100,000 basins

of size one—i.e. every trajectory went its own way. The RNA landscape was very similar

with over 98,000 basins of size one, and a handful of size two, three, and four basins. The

exponential landscapes told a different story, however. In Avida, there were fewer than 10,000

unique basins of size one, which meant that the vast majority of measured basins had at

least two trajectories and there was at least one with 1000 trajectories. Since these were

unbiased random samples, these results indirectly point to genotypes in the landscape that

have basins that can attract 1% of the genotypes on the landscape. Likewise in RNA and

NK, the exponential treatments revealed similarly large attractors, with RNA having a point

with about 1.5% of the trajectories and NK having a maximum point attracting roughly 6%.

I measured the interaction of basin fitness and basin size. Previous related work has found

an exponential relationship in NK landscapes between basin fitness and basin size. While it is

debatable whether the exponential relationship is the most appropriate one—it does not seem

to apply strongly to the Avida landscape, but does do reasonably well in the exponential NK

and RNA landscapes. Nevertheless, the more general assertion that higher peaks have bigger

basins seems to be true.

Distance in all three landscapes was also of note. The average Hamming distance of

a genotype to all other genotypes is 13.5, and the numbers in all three landscapes quickly

approach that. In Avida, the mean distance from the origin at 10,000 updates was 12.565, with

the 5% quantile being 3 and the 95% quantile at 19. In RNA Exponential, the mean distance

was 13.135 after 10,000 updates, with the 5% quantile being 5 and the 95% quantile at 19.

And finally in the NK Exponential, the mean distance was 12.805, with the 5% quantile at 3

and the 95% quantile at 18. These results seem to imply that, on average, the starting point

in these landscapes has little relationship with the final destination—approaching average
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distance over evolutionary time. Basins over evolutionary time are thus not the closest local

optimum, as might be expected. One interpretation of these data is that a single genotype

may go into several basins, with historical contingency determining which one is the final

destination. This is the hypothesis I prefer since it does not impose other requirements on

the structure of the environment. A competing hypothesis is that the basins themselves have

long and narrow tendrils as opposed to being regular depressions with a certain radius.

I also looked at the fraction of trajectories currently in neutral peaks over time, where

neutral peaks are defined as points without one mutant neighbors that have higher fitness.

Throughout the 10,000 updates, the evolutionary trajectories in aggregate spent a large

proportion of time in peaks, regardless of landscape. All three landscapes experienced a large

boost in the first hundred updates, while presumably the process of evolution was locating

easily accessible innovations. After 100 updates, however, things tended to level off, and there

were qualitative differences between the landscapes in long term percentages in peaks; in the

NK Exponential landscape, the proportion in peaks slowly increased over time, in Avida, it

stayed more or less static, and finally in the RNA Exponential landscape, it decreased. The

RNA landscape’s behavior on this metric in particular is slightly puzzling—there may be

other mechanisms at play such as survival of the flattest or it may be our definition of peaks

that causes this unexpected slow decline over time. Nevertheless, it is clear that peaks as I

defined them play an important role throughout evolutionary time as trajectories naturally

find them and stay close to them when the selection strength is sufficient.

4.5 Conclusions

In this chapter I presented two broad investigations into the nature of basins of attraction

in fitness landscapes.

In the first investigation, in Section 4.3, I presented a novel method, the Basin Flow

Algorithm, for studying basins of attraction which was inspired by the Page Rank algorithm
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used originally by Google for web page ranking. Previous attempts at measuring basin size

had featured the use of trajectories and sampling to estimate the features of basins in NK

landscapes with N=20 with varying choice of K. In line with previous work, I found that

basin size was linked exponentially with fitness in NK landscapes, and that this relationship

decreases with increasing K.

I also tested increasing levels of neutrality using the NKp family of landscapes. I found

large neutral networks that occasionally were slow to drain, but it was difficult to compare

directly with the NK landscapes due to the differences in fitness range naturally induced by

these landscapes. I also investigated the effects of double mutations and demonstrated how

allowing basins to drain via double mutations—in other words, basins with lower fitness do

disappear and are absorbed into those of higher fitness, as might be expected.

In the second part of the chapter, I followed the three system approach introduced in Chap-

ter 3 and sampled 100,000 evolutionary trajectories starting at random points. I measured

properties of basins of attraction for each of the NK, Avida, and RNA landscapes. I treated

the NK and RNA landscapes with exponentiation in order to increase selection strength. This

treatment improved the solution quality in both landscapes and leads us to believe that similar

sorts of treatments could be generally applicable in evolutionary optimization—namely, small

population and a high mutation rate can be overcome by manipulating selection strength.

Tournament selection, for instance, may work well precisely because it is not sensitive to the

selection strength differential.

I also found that basins are strongly linked to our conception of peaks in Chapter 3, and

that over evolutionary time, trajectories starting from random points end up at a distance

from the origin that is, on average, close to the 13.5 average genotype Hamming distance in

all three landscapes. The high distance implies that basins for evolutionary purposes are not

at all localized, even though it is often a much shorter distance to the nearest peak. Historical

contingency may thus play the most important role in determining the ultimate fate of a
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population trajectory.

In the following chapter, I investigate the fate of trajectories starting at the same origin

and shift focus from global structure to local structure.
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Chapter 5

Visualization of Transient Dynamics

In the preceding chapters, I have examined evolutionary dynamics across three distinct and

widely used landscapes. Here, I will use visualization techniques to further compare these

landscapes, both in terms of local structure and the short-term evolutionary dynamics induced

by their structures.

5.1 Related Work

5.1.1 Replaying the tape of life

Steven Jay Gould in [Gould, 1989] famously posited the thought experiment of ‘replaying the

tape of life’, arguing that historical contingency and chance played a large role in evolution

potentially even surpassing that of adaptation. This classical thought experiment asks that if

it were somehow possible to rewind time and start over, how would things be different? The

tension between adaptationist, i.e. that selection would produce the same result, views and

those similar to Gould, favoring random chance, marked one of the important philosophical

questions in evolutionary biology.

[Travisano et al., 1995] sought to better understand the relationship between historical
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contingency, chance, and adaptation in a set of cleverly designed experiments. They took

clones from a historical ancestor to seed experimental populations across a set of differing en-

vironments, before putting them back into the ancestral environment. At the conclusion, they

were able to estimate using an ANOVA how much of the variance derived from history (the

choice of ancestor), chance (differences given the same ancestor), and adaptation (the influence

of a specific environment). Fitness was highly adaptive, as might be expected, but, another

phenotypic metric, cell size, demonstrated strong effects of history and chance, since cell size

is itself not adaptive. Related biological experiments following this experimental approach

can be found as in dinoflagellates in [Flores-Moya et al., 2012]. [Wagenaar and Adami, 2004]

performed similar experiments in Avida organisms, transplanting organisms from an envi-

ronment they evolved in into a novel environment. In similar environments, they found a

greater importance of shared history, whereas in more dissimilar environments, the effects of

adaptation dominated the variance. [Kryazhimskiy et al., 2014] also conducted a hierarchical

experiment in which they studied the effects of epistasis and historical contingency. They

found broad fitness-level convergence while at the same time encountering a high level of

randomness at the sequence level, with the surprising result that clones descended from the

same founders were not more likely to share mutations than those not sharing the same

founders.

5.1.2 Fitness Landscapes & Epistasis

There have been a number of investigations on fitness landscapes with regard to epistasis;

[Tufts et al., 2014] examines the mutational neighborhood of hemoglobin via site-directed

mutation and found sign epistasis in the mutations required for increased oxygen affinity

in high-altitude pikas. Similarly, [Podgornaia and Laub, 2015] mapped 160,000 variants of

PhoQ in E. Coli to identify 1659 functional variants, demonstrating significant epistasis in

the resulting landscape and postulating that this epistasis has severely limited the number of

orthologs observed. Similarly, [Poelwijk et al., 2007] examined adaptation on the bacterial β-
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lactamase to cefotaxime, to which they had not previously had exposure. In this case, the five

mutations conferring antibiotic resistance were already known, but they were able to measure

intermediates and found that it was necessary for mutational combinations to traverse a

valley to reach the resistant solution. Similarly, the fitness landscape in E. Coli has been

analyzed in [Beerenwinkel et al., 2007], which found a strong correlation between epistasis and

the amount of fitness loss inflicted by deleterious mutations. Similarly, [Covert et al., 2013]

demonstrated the importance of deleterious mutations to adaptive evolution in digital Avida

landscapes by comparing the achieved fitness of populations with normal adaptive evolution

against those where deleterious mutants were reverted.

[Szendro et al., 2013] performed a computational analysis of trajectories on the experimentally-

measured 8-locus fitness landscape from the fungus Aspergillus niger. They defined entropy

measures both on endpoints and on trajectories and found that the entropy of both of

these decrease with mutational supply and that larger populations become more greedy.

Similarly, [Handel and Rozen, 2009] found that larger populations evolve more determinis-

tically and can become trapped on local fitness peaks, whereas smaller populations may

be able to reach higher peaks because of their ability to traverse the landscape more ran-

domly. [Lobkovsky et al., 2011] proposed several landscape characteristics and linked them

to trajectories in 39 protein folding landscapes of size up to 12,969.

[Otwinowski and Plotkin, 2014] illustrates the biases often present in methodologies in-

volving inferring fitness landscape structure by sampling populations in both NK and RNA

populations. These biases are especially prevalent in living organisms due to selection pres-

sure.

5.2 Approach

My work seeks to investigate evolutionary trajectories against the backdrop of the fitness

landscapes explored in previous chapters. However, unlike much previous work, where often
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such an undertaking would be prohibitively expensive or impossible, I seek to exhaustively

enumerate the possibility space before examining real evolutionary trajectories. It has been

pointed out as in [Kogenaru et al., 2009] that mutational analyses restricted to only one area

of the genome may be compensated for in other areas and may be therefore irrelevant—an

exhaustive exploration avoids this potential issue.

In this work, I examine the mutational neighborhood of points out to five mutations out.

There are
(
18
5

)
35 = 2, 082, 024 points at exactly a mutational distance of five, and each of these

has 5! ways to achieve it, which yields 249,842,880 possible trajectories. Much previous work

has focused on a particular gene complex and analyzed the fitness of paths by measuring each

mutational combination along the way. My work differs in that I look at an unconstrained

mutational neighborhood, exploring all possible combinations of steps, not just limited to

specific target sequences.

The first segment of this work features an exploration of the local structure of several

sampled points, and the second part is results of repeated evolutionary trials to see what

actually happens as a result of evolution. It is worth noting that the evolutionary runs are

highly parameter dependent—the same fitness landscape may experience radically different

trajectories based on population size, mutation rate, and selection mechanism.

I visualize the potential trajectory space of 1,000 points for each of the three model

landscapes introduced in Chapter 2—the NK landscape, the Avida landscape, and the RNA

landscape. In order to accomplish this, for each sampled point, I calculated the fitness for all

points within a mutational distance of five. I keep track of rings, defined as all points of the

same Hamming distance from the source genotype—so for instance, all one-mutant neighbors

is a ring, all two-mutant neighbors another, and so on. I also keep track of links between the

origin genotype and one-step mutants, between one-step mutant and two-step mutants, and

continuing up to the links between four-step mutants and five-step mutants.

My data was far too complex to easily plot; each point, each generating 250 million
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trajectories is too much data for a traditional plotting program to visualize. Therefore, I

preprocessed the data to accomplish this visualization. I started with a numeric matrix, with

mutational distance on the x axis and fitness on the y axis. I used 100 pixels between each

mutational step for the x axis. For each starting point, I assign a starting point on the left of

the graph, with the y position determined by the fitness. I then find the possible endpoints;

there are 54 one-mutation steps to one-mutant neighbors. These are assigned an x position of

200, and a fitness according to the fitness of the corresponding genotype. I use Bresenham’s

Line Algorithm, originally outlined in [Bresenham, 1987], to determine the pixels along a line

and increase the density in the matrix for each of these. I then repeat the process linking

one mutation neighbors with each two mutation neighbor it may link to, and so on until I

finally connect the four and five-mutant points. After this process is completed, I renormalize

between each step before visualizing the data via a density heatmap. This technique is used to

produce the visualizations of both the local landscapes and trajectories out to five mutational

steps.

5.3 Local Landscapes—Random Points

I show the visualization for 1,000 random points selected from each of these landscapes in

this section, using the MLV method described above.
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Figure 5.1: NK Random Starting Points, counts of beneficial/neutral/deleterious mutations relative
to random starting genotype. Note that beneficial and deleterious mutations nearly overlap so only
two lines appear. This overlap is because choosing a large enough sample of random points in the
landscape should make beneficial and deleterious mutations nearly perfectly symmetric. At zero
distance, the point itself is classified as neutral.
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Figure 5.2: NK Random Starting Points, Path Counts Simplex. This diagram is a summary of all
of the possible five-mutation trajectories. To interpret the meaning of a point on this graph, go left
to find the number of neutral mutations, up and right to find the number of beneficial mutations,
and down and right to get the number of deleterious mutations. Since this is the NK landscape,
there is very little neutrality in this particular landscape.
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Figure 5.3: NK Random Starting Points, Landscape Visualization. This shows 1,000 NK landscapes
starting at random points. The normality of the fitness distribution of the NK landscape is clearly
visible and rare mutations in both directions appear at five mutations out.
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Figure 5.4: Avida Random Starting Points, counts of beneficial/neutral/deleterious mutations
relative to randomly-selected starting genotype. Note that beneficial and deleterious mutations
nearly overlap so only two lines appear. This overlap is because choosing a large enough sample of
random points in the landscape should make beneficial and deleterious mutations nearly perfectly
symmetric. At zero distance, the point itself is classified as neutral.
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Figure 5.5: Avida Random Starting Points, Path Counts Simplex. This diagram is a summary of
all of the possible five-mutation trajectories. To interpret the meaning of a point on this graph, go
left to find the number of neutral mutations, up and right to find the number of beneficial mutations,
and down and right to get the number of deleterious mutations.
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Figure 5.6: Avida Random Starting Points, Landscape Visualization. This shows 1,000 Avida
landscapes starting at random points. Rare high fitness states are revealed at a distance of five
mutations out.
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Figure 5.7: RNA Random Starting Points, counts of beneficial/neutral/deleterious mutations
relative to randomly-selected starting genotype. Note that beneficial and deleterious mutations
nearly overlap so only two lines appear. This overlap is because choosing a large enough sample of
random points in the landscape should make beneficial and deleterious mutations nearly perfectly
symmetric. At zero distance, the point itself is classified as neutral.
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Figure 5.8: RNA Random Starting Points, Path Counts Simplex. This diagram is a summary of
all of the possible five-mutation trajectories. To interpret the meaning of a point on this graph, go
left to find the number of neutral mutations, up and right to find the number of beneficial mutations,
and down and right to get the number of deleterious mutations.
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Figure 5.9: RNA Random Starting Points, Landscape Visualization. This shows 1,000 RNA
landscapes starting at random points. Rare high fitness states are revealed at a distance of five
mutations out.
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5.4 Local Landscapes—Peaks

Next, I apply the same treatment to peaks. I select my subset of peaks to study by first

sampling a random point, and then hill climb to a peak. This hill climbing is accomplished by

iteratively examining the one-mutation neighbors and taking the most fit among them. Up

to one hundred neutral steps are allowed, after which only positive steps are allowed, until

none are available. By the end of this process, the current genotype is guaranteed to be a

‘neutral peak’ as defined earlier in Chapter 3.
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Figure 5.10: NK Peaks, counts of beneficial/neutral/deleterious mutations relative to starting
genotype for each distance. At zero distance, the point itself is classified as neutral.
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Figure 5.11: NK Peaks, Path Counts Simplex. This is a summary of all the possible five-mutation
trajectories starting at each of 1,000 sampled peaks. This diagram is a summary of all of the possible
five-mutation trajectories. To interpret the meaning of a point on this graph, go left to find the
number of neutral mutations, up and right to find the number of beneficial mutations, and down
and right to get the number of deleterious mutations.
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Figure 5.12: NK Peaks, Landscape Visualization. This shows 1,000 NK landscapes starting at
peaks. A very few paths leading to higher fitness peaks can be seen.
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Figure 5.13: Avida Peaks, counts of beneficial/neutral/deleterious mutations relative to starting
genotype for each distance. At zero distance, the point itself is classified as neutral.
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Figure 5.14: Avida Peaks Path Counts Simplex. This diagram is a summary of all of the possible
five-mutation trajectories. To interpret the meaning of a point on this graph, go left to find the
number of neutral mutations, up and right to find the number of beneficial mutations, and down
and right to get the number of deleterious mutations.
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Figure 5.15: Avida Peaks Landscape Visualization. This shows 1,000 Avida landscapes starting
at peaks.
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Figure 5.16: RNA Peaks, counts of beneficial/neutral/deleterious mutations relative to starting
genotype for each distance. At zero distance, the point itself is classified as neutral.
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Figure 5.17: RNA Peaks Path Counts Simplex. This diagram is a summary of all of the possible
five-mutation trajectories. To interpret the meaning of a point on this graph, go left to find the
number of neutral mutations, up and right to find the number of beneficial mutations, and down
and right to get the number of deleterious mutations.
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Figure 5.18: RNA Peaks Landscape Visualization. This shows 1,000 RNA landscapes starting at
peaks.

166



5.5 Repeated Trajectories—Random Points Visualiza-

tion

For each of the 1,000 points previously landscaped, I now began a further experiment to

investigate what course evolution actually takes. To this end, I sample, 10,000 trajectories

from each starting point for 100 generations and look at where the trajectories leave the

five mutation radius. I examine the line of descent of the dominant genotype after 100

generations, and trace the unique genotypes along the line. I stop at five mutations out, for

effective comparison against the complete landscapes. To enforce this five-mutation limit, I

discard trajectories that skip a five distance mutant in the lineage through the simultaneous

acquisition of two or more mutations.

The matrices are arranged with mutational distance on the x axis and fitness on the y

axis. For each mutational step along the line of descent, I draw a line connecting the origin

fitness and the origin distance with the destination line and distance. I start with a numeric

matrix of zeros, and once again I use Bresenham’s Line Algorithm to determine the pixels

along the line and increase the density in the matrix. I normalize the entire data set at once

by the number of trajectories, unlike in the landscape analysis where it was necessary to

normalize between steps.

I show the visualization of trajectories for 1000 points for each of the landscapes.
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Figure 5.19: NK Random Points Evolutionary Trajectory Visualization. This shows 1,000 NK
collections of up to 10,000 evolutionary trajectories each, starting at the same points as the corre-
sponding landscape
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Figure 5.20: NK Random Points Exponential Evolutionary Trajectory Visualization. This shows
1,000 NK collections of up to 10,000 evolutionary trajectories each, starting at the same points as
the corresponding landscape
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Figure 5.21: Avida Random Points Evolutionary Trajectory Visualization. This shows 1,000
Avida collections of up to 10,000 evolutionary trajectories each, starting at the same points as the
corresponding landscape
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Figure 5.22: RNA Random Points Evolutionary Trajectory Visualization. This shows 1,000 RNA
collections of up to 10,000 evolutionary trajectories each, starting at the same points as the corre-
sponding landscape
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Figure 5.23: RNA Random Points Exponential Evolutionary Trajectory Visualization. This shows
1,000 RNA collections of up to 10,000 evolutionary trajectories each, starting at the same points as
the corresponding landscape
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5.6 Repeated Trajectories—Peaks Visualization

I sample trajectories in a similar method to the previous section, with the difference being

that these trajectories begin at the same peak points also used earlier in the landscaping.

Figure 5.24: NK Peaks Evolutionary Trajectory Visualization. This shows 1,000 NK collections
of up to 10,000 evolutionary trajectories each, starting at the same points as the corresponding
landscape
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Figure 5.25: NK Peaks Exponential Evolutionary Trajectory Visualization. This shows 1,000
NK collections of up to 10,000 evolutionary trajectories each, starting at the same points as the
corresponding landscape
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Figure 5.26: Avida Peaks Evolutionary Trajectory Visualization. This shows 1,000 Avida collec-
tions of up to 10,000 evolutionary trajectories each, starting at the same points as the corresponding
landscape
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Figure 5.27: RNA Peaks Evolutionary Trajectory Visualization. This shows 1,000 RNA collections
of up to 10,000 evolutionary trajectories each, starting at the same points as the corresponding
landscape
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Figure 5.28: RNA Peaks Exponential Evolutionary Trajectory Visualization. This shows 1,000
RNA collections of up to 10,000 evolutionary trajectories each, starting at the same points as the
corresponding landscape
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5.7 Repeated Trajectories Random Points—The fate

of trajectories

I examine the differences between the evolutionary trajectories obtained and the possibilities

in the landscape, within a five-mutation threshold. To do this, I examined for each mutational

step, the fitness of all points in the landscape at that mutational step. For each step, I record

the median, minimum, maximum, 5th quantile, and the 95th quantile in the landscape. I

combine the data from the 1,000 points by taking the median of each of these data points,

yielding the median-median, median-minimum, median-maximum, median-5th quantile, and

median-95th quantile. I similarly classify trajectories into points by distance, up to five, and

do a similar collection—first recording the same five statistics for individual trajectories, and

then combining the results by taking medians.
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Figure 5.29: NK Random Points Landscape and Trajectory Fitness. The landscape is in blue and
the trajectories are in green. The dotted lines are the median-minimum and median-maximum and
the shaded area for each is the region between the median-5th and median-95th quantiles. The
median-median is solid.
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Figure 5.30: NK Random Points Exponential Trajectory Visualization. The landscape is in blue
and the trajectories are in green. The dotted lines are the median-minimum and median-maximum
and the shaded area for each is the region between the median-5th and median-95th quantiles.
The median-median is solid. Here, selection strength results in a stronger improvement bias in the
trajectories relative to the NK Points Trajectory Visualization.
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Figure 5.31: Avida Random Points Trajectory Visualization. The landscape is in blue and the
trajectories are in green. The dotted lines are the median-minimum and median-maximum and
the shaded area for each is the region between the median-5th and median-95th quantiles. The
median-median is solid.
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Figure 5.32: RNA Random Points Trajectory Visualization. The landscape is in blue and the
trajectories are in green. The dotted lines are the median-minimum and median-maximum and
the shaded area for each is the region between the median-5th and median-95th quantiles. The
median-median is solid.
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Figure 5.33: RNA Random Points Exponential Trajectory Visualization. The landscape is in blue
and the trajectories are in green. The dotted lines are the median-minimum and median-maximum
and the shaded area for each is the region between the median-5th and median-95th quantiles. The
median-median is solid. Here, the higher selection strength results in a stronger improvement bias
in the trajectories relative to the RNA Points Trajectory Visualization.
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5.8 Repeated Trajectories Peaks—The fate of trajecto-

ries

I repeat the trajectory analysis, but this time for the analyses starting at peaks. Once again,

these graphs depict the possibility space compared to what the evolutionary trajectories

actually achieve.
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Figure 5.34: NK Peaks Landscape and Trajectory Fitness. The landscape is in blue and the
trajectories are in green. The dotted lines are the median-minimum and median-maximum and
the shaded area for each is the region between the median-5th and median-95th quantiles. The
median-median is solid.
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Figure 5.35: NK Peaks Exponential Trajectory Visualization. The landscape is in blue and the
trajectories are in green. The dotted lines are the median-minimum and median-maximum and
the shaded area for each is the region between the median-5th and median-95th quantiles. The
median-median is solid.
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Figure 5.36: Avida Peaks Trajectory Visualization. The landscape is in blue and the trajectories
are in green. The dotted lines are the median-minimum and median-maximum and the shaded area
for each is the region between the median-5th and median-95th quantiles. The median-median is
solid.
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Figure 5.37: RNA Peaks Trajectory Visualization. The landscape is in blue and the trajectories
are in green. The dotted lines are the median-minimum and median-maximum and the shaded area
for each is the region between the median-5th and median-95th quantiles. The median-median is
solid.
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Figure 5.38: RNA Peaks Exponential Trajectory Visualization. The landscape is in blue and the
trajectories are in green. The dotted lines are the median-minimum and median-maximum and
the shaded area for each is the region between the median-5th and median-95th quantiles. The
median-median is solid.
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5.9 Discussion

In this chapter, I examined the local dynamics of two datasets—random points and peaks

for each of the three model landscapes and two exponential variants with stronger selection.

I provide a technique for exhaustive landscape and trajectory visualization via the use of

Bresenham’s Line algorithm, which allows us to visualize these complex multidimensional

landscapes in a new way, which may be useful for building intuition about complex landscapes.

Features such as the normal distribution of fitnesses of the NK landscape in Figure 5.1

stand in stark relief to the Avida landscape in Figure 5.4 and the RNA landscape in Figure 5.7,

both of which feature a preponderance of low-fitness genotypes in the randomly selected points.

This result is not surprising—as seen in Chapter 3 and previous work that the most common

fitnesses in both Avida and RNA are extremely low, whereas in the NK landscape, the most

common fitnesses are also the median fitness (extremely low fitnesses in the NK landscape are

just as rare as extremely high fitnesses). These visualizations also show that most potential

trajectories emanating from random points in the Avida and RNA landscapes lead to equally

low fitness, whereas in the NK landscape, the most common potential trajectories lead

from median fitness to median fitness. The main differences among these random-starting-

point potential trajectories are obvious when the more extreme cases are examined; the

NK landscape contains equally rare potential trajectories to higher paths and lower paths.

Despite its prevalent use in studying epistasis due to the easy tuning parameter in K, this

result suggests that the NK landscape may not be the best choice to represent biological

systems. This problem is most severe when trying to represent organisms with phenotypic

complexity of any sort, simply because in such landscapes, most symbol sequences are of low

fitness by chance.

The degree of neutrality also distinguished the potential trajectory classifications among

the three landscapes. The most common potential trajectory classification in the Avida

landscape was three neutral, one beneficial, and one deleterious step. In contrast, as neutrality
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was rare in the NK and RNA landscapes, three beneficial and two deleterious and two

beneficial and three deleterious step pathways were about equally likely. Since these are

random points, and we would expect, a priori, no particular bias in either direction. This

prediction is borne out by the virtually identical beneficial and deleterious counts in Figure 5.1,

Figure 5.4, and Figure 5.7.

Starting from peaks the potential trajectories in all three landscapes revert to the mean.

For the NK landscape, this reversion is to the expected average fitness of 9, and for the

RNA and Avida landscapes, this reversion is towards the lowest fitness values. There are an

extremely small number of pathways to equal or higher fitness in each of the three studied

landscapes. From peaks, the most common potential trajectory type in the NK landscape

was five deleterious mutations, followed by four deleterious and one beneficial (again, neutral

mutations are unlikely). In Avida, the most common characterization was three deleterious,

one neutral, and one beneficial, followed by four deleterious and one beneficial. Finally, in

RNA, the most common potential trajectory configuration was four deleterious and one

beneficial, followed by five deleterious.

Next, I examined 10,000 evolutionary trajectories from random starting points in each of

the three aforementioned landscapes, as well as the exponential variants for the NK and RNA

landscapes as in Chapter 4. The results are visually striking and often distinguishable from

the full range of potential trajectories possible in each landscape. For the Avida and RNA

trajectories, the paths upward driven by evolution are clearly visible. This result contrasts

with the strong horizontal bias in the landscape visualizations. In evolutionary trajectories

on NK landscapes, the selective pressures skews the normality of the potential trajectories in

a distinctly upwards trajectory. This pattern is more strongly biased in the NK Exponential

and RNA Exponential as compared to the NK and RNA regimes, respectively.

Next, I generated an equivalent set of 10,000 evolutionary trajectories, this time starting

from peaks instead of random points. The weak selection in the NK and RNA landscapes
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is clearly evident as the fitness actually appears to decline over time in Figure 5.19 and

Figure 5.22 in the trajectory graphs. This effect largely disappears in the exponential variants

(Figure 5.25 and Figure 5.28). The Avida landscape, in contrast, has strong horizontal lines

with a slight bias upwards.

As should be expected, the trajectory visualizations are consistent with the combined

landscape-and-trajectory summaries; for instance in Figure 5.34; the NK low selection regime

trajectories do decline in fitness, whereas the NK exponential in Figure 5.35 does significantly

better—performing above the 95th quantile of the landscape. In general, also consistent with

expectations, evolution was favoring the top half of trajectories. Even with weak selection,

evolution seems to find improvements for random points, outperforming the landscape average.

However, in the case of peaks, strong selection was needed to avoid degradation of trajectories

along with the landscape.

In summary, I have presented new visualization techniques which provide insight into

the nature and structure of different landscapes and how evolutionary trajectories actually

navigate them.
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Chapter 6

Conclusions

Populations evolve in predictable ways because of common descent and the nature of fitness

landscapes. As populations adapt, they accumulate information about the fitness landscape

which they inhabit. In this work, I have used computational techniques to investigate the

process of evolution by studying the acquisition of information, the structure of fitness

landscapes, and the transient dynamics of evolving populations on these landscapes.

In Chapter 2, I established that error from common descent in complexity estimates can be

sizable, present a correction to compensate for its effects, and test the correction empirically.

I showed that the correction performed well in the presence of low mutation rates, but once

mutation rates increased past a per-site rate of 0.01 it started to do poorly, likely because of

the underlying assumption that informative sites have no entropy. This assumption breaks

as the mutation rate increases and it becomes increasingly hard for a population to stay on

a peak. A natural future direction for this work is to further refine the model so that it is

less sensitive to this condition, but the real prize would be in a closed form characterization

of the magnitude of this effect. A further important step would be to test this technique in

other systems as a prelude to demonstrating its utility in real biological systems.

In Chapter 3, I investigated instantiations of large NK, reduced-instruction Avida, and
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RNA fitness landscapes of 68 billion genotypes each and studied the landscape structure,

specifically peak structure and distribution. In all three landscapes, I found that peaks of

higher fitness tended to have higher peaks in their neighborhood. I also found that peaks

are connected in the NK and Avida landscapes but are not in the RNA landscape. Finally, I

found that while peak fitness is negatively autocorrelated at high distance in NK and Avida

landscapes, peaks in the RNA landscape at maximum distance are positively correlated.

This result may point to the fact that the complement of some stable RNA sequences may

be disproportionately likely to be stable themselves. In the future, I would like to extend

my analyses to more than just peak structure—other structural properties such as local

roughness have been proposed [Lobkovsky et al., 2011]. Also, a non-binary definition of peak

may be useful for structural understanding especially when there is substantial neutrality or

near-neutrality.

In Chapter 4, I studied the concept of basins of attraction. First, I presented a novel

structural method of measuring basins based on the Page Rank algorithm, which I applied

to NK landscapes. With this method, I confirmed previous findings that basin size increases

exponentially with fitness, and that as the K parameter increases, the average basin size

increases while the largest basins decrease. I also examined NKp variants of NK landscapes

with neutrality and detected neutral networks that can retain mass over time, and found that

linking double mutants with my method increased the strength of the exponential relationship

between fitness and basin size. In the second section, I experimentally derived basins by using

100,000 evolutionary runs starting at random points on each landscape. I again found an

exponential correlation between the peak fitness and basin size in both the NK and RNA

landscapes, but not in the Avida landscape. I also demonstrated that in all three landscapes,

the distance from the origin point approached the average distance of 13.5 between all pairs

of points in the landscape, which suggests either overlapping basins or that basins may have

long and narrow tendrils. Further investigation is needed to tease this particular distinction

apart. Finally, I showed that in all three model landscapes, evolutionary trajectories spend
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a disproportionate amount of their time in peaks. For this work, it is also natural to want

to adjust the evolutionary parameters of population size and mutation rate and understand

how that affects landscape traversal, the accumulation in basins over time, and final fitness,

which would have important consequences for both theoretical and applied work.

In Chapter 5, I looked at the local dynamics of fitness landscapes. Starting from both

random points and peaks, I exhaustively studied mutants up to five steps out from each

source genotype and then examined the results of 10,000 evolutionary runs originating from

each studied genotype. I provided a novel way to visualize both the roughly 250 million

potential trajectories out to length five, for each point in each treatment, and also applied this

visualization to evolutionary trajectories. There are many future directions for this particular

work; in the work presented here, I have focused on techniques and visualization, but the

next logical step would be to investigate epistasis and its relationship to the trajectories

realized by evolution. A further goal is to gain a more in-depth understanding about how

these different landscapes are both similar and different, and how sampling and full-structural

analyses might agree and disagree. There are likely some landscapes that defy exhaustive

analysis, or which are prohibitively expensive to test; so a broader understanding of how

these might contribute to mapping the global landscape would be useful. Finally, I hope

to understand more clearly how evolutionary pathways traverse from peak to peak. Peaks

play an important and consistent role in evolution through time: in Chapter 4, I saw that

fitness increases over time, which means that evolution must be finding pathways between

successively higher peaks.

To accomplish this work, I have relied heavily on computational techniques to produce

exhaustive analyses of the structure and consequences of fitness landscapes. As computational

power grows it should be possible to map increasingly large and realistic fitness landscapes

and provide more insight into the nature and workings of these landscapes and their relevance

for evolution.
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