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ABSTRACT

RELATEDNESS OF BIOLOGICAL SEQUENCES USING

ALIGNMENT AND RESTRICTION MAP DATABASES

By

Jz'n Kim

Comparative analysis of DNA and protein macromolecules has been an important

component of biological research. Sequence alignment and restriction map compari-

son, in particular, have been useful in the study of molecular evolution, RNA folding,

and protein structure-function relationships. In this thesis, we have investigated mul-

tiple alignment problems involving RNA and protein sequences, and the methods to

infer relatedness between sequences using restriction patterns and restriction map

databases.

We first consider the multiple sequence alignment problem. Multiple sequence

alignment is used to discover an optimal alignment based on defined criteria. Vari-

ations of dynamic programming provide most commonly used tools for multiple se-

quence alignment methods. However, the biggest obstacle to using dynamic program-

ming for multiple sequence alignment has been the high computational complexity.

Due to this high computational complexity, dynamic programming cannot be effec-



tively used to align more than three sequences and to apply certain types of cost

functions. To overcome the limitations of dynamic programming, an algorithm called

MSASA, based on simulated annealing, was developed. MSASA can overcome these

limitations.

We then consider the multiple RNA sequence alignment problem to identify pos-

sible RNA secondary structures. An algorithm called RNASA, based on simulated

annealing, is suggested for multiple RNA sequence alignment. In this algorithm, RNA

sequences are aligned based on primary sequence similarity and then realigned based

on secondary structure information. Dot matrices generated from intra-sequence com-

parisons are used to obtain possible common secondary structures. Several strategies

to reduce the simulated annealing time are suggested.

Sequence database searches have been used for identifying unknown macro-

molecules. The whole or a part of the primary sequence information is required

to do the sequence database search. However, sequencing a macromolecule is expen-

sive and time consuming. A more crude but faster method, without sequencing an

unidentified macromolecule, has been developed. The method is based on restriction

patterns of an unknown isolate and restriction map databases. We use a three-phase

approach. In the first phase, we obtain a restriction pattern of the unknown organism

while analytically deriving the corresponding restriction maps of the sequences in the

database. In the second phase, we identify a set of sequences, S, which have restric-

tion maps that are most similar to the unknown macromolecule’s restriction pattern.

Maximum Site Matching Problem (MSMP) is defined and is proved to be in the class

of NP-complete problems. In the third phase, we use the set S to infer biological in-



formation about an unknown macromolecule. We demonstrate the usefulness of this

approach by applying it to the rRNA sequences of the Ribosomal Database Project

(app).
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Chapter 1

Introduction

1.1 Basic Concepts

1.1.1 Sequences

A sequence is a linear array of elements that are symbols or letters of an alphabet. Let

K={a1,a2, - - -,a;} be an alphabet ofl symbols. Then 3 = blbz - - ~b,, is a sequence

where b,- E K. For DNA (RNA) sequences, the alphabet is K = {A,T(U), G, C} where

’A’ for adenine, ’T’ for thymine (or ’U’ for uracil), ’G’ for guanine, ’C’ for cytosine.

For protein sequences, the alphabet contains 20 symbols which represent 20 types of

amino acids.

To sequence a long fragment of DNA, it must be cut into small fragments, as

present techniques do not permit the sequencing of fragments of more than a few

hundred bases. At first the DNA is cut into overlapping fragments. These are then se-

quenced individually, before being reassembled by searching for the overlapped edges,

1



to reconstruct the whole sequences.

1.1.2 Similarity of Macromolecules

When two or more sequences are compared, it is not so obvious how to assess the

similarities between them. This requires some sort of natural biological metric which

is a measure of the similarity. AS an alternative to similarity, one can score the

distance between two sequences in a particular alignment based on a metric. Many

different alignments can be generated from multiple sequences maps. We seek an

alignment with an optimal score from these alignments. This optimal alignment gives

us the ability to estimate the biological relatedness between sequences. There are two

issues to identify the similarity of sequences.

1. Score function: It should be clear that appropriate similarity scores can only be

calculated from a specific model of similarity. The user must either develop his

own, or more likely use a set which is already developed. The score function

should reflect the specific types of similarity between sequences. For example, if

we want to identify the primary similarity of sequences, the optimal alignment

based on the score function should give us the best picture of the primary

similarity.

2. Algorithm to optimize score function: There are several types of algorithms to

score alignments. Exhaustive methods guarantee an optimal alignment. Heuris-

tic methods are used to find, within reasonable time, good alignments that are

not necessarily optimal. Users should decide the algorithm to be applied for a
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score function based on their application.

1.1.3 Alignment

The term alignment is used to refer to a particular arrangement of two or more se-

quences in sequence comparisons. It is a pattern matching process that finds a corre-

spondence among the elements of the sequences. Any two macromolecular sequences

in a homologous group are usually not identical due to substitutions, insertions or

deletions of the elements of the set of macromolecular sequences.

Example 2. Let sl=AATAG and 32=AATCAG be two DNA sequences. A possible

alignment of 31 and 32 is

sl=AAT-AG

32=AATCAG

where ’-’ represents an insertion. This alignment represents one possible event in

evolution.

1.1.4 Restriction Patterns and Restriction Maps

A restriction enzyme typically cleaves a fragment of DNA at specific subsequences.

A restriction map is a set of ordered integers which gives the fragment length along

the strand of the restriction sites at which a restriction enzyme cleaves the DNA.

Example 1. Let s=AGCCCGGCCAAGGCCAA be a DNA sequence. Enzyme Hoe

III identifies the substring GGCC and cleaves in the middle of GGCC. If Hoe 111 is

applied to the sequence 8, s is cleaved to a set of fragments { AGCCCGG. CCAAGG.
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CCAA }. Then the restriction map for s is {7, 6, 4}.

Restriction maps are usually constructed prior to sequencing of DNA and many

mapped DNAs have never been sequenced. One or more restriction enzymes are

applied to cleave the macromolecule into many fragments. At this time only the

lengths of the fragments can be identified. This set of unordered integers which gives

the fragment length is called restriction pattern. The lengths of these fragments can

be determined by separating them by electrophoresis on a polyacrylamide gel.

1.2 Problem Definitions

1.2.1 Multiple Sequence Alignment

The comparison of more than two sequences of number or letters is common in sev-

eral fields, such as molecular biology, speech recognition. Sequence comparison is

particularly important in molecular biology where it has been critical in the study

of evolution and in the analysis of protein structure/function relationships. Multiple

sequence alignment is used to find an optimal alignment based on certain criteria.

There may be several different sets of optimality. These are definitions for the mul-

tiple sequence alignment.

Definitions

A gap is the symbol ”-”.

Analphabet K=01,02,"',0118388t0fl '

symbols containing gaps. it can be nucleic acid or amino acid sequences.
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An element is a member of the alphabet K.

A sequences = blbz - - b, is a strings of alphabet if b,- E K for i = l, 2, - - - , n.

A multiple sequence alignment 3 = {31, 32, - - - , sh} is a set of sequences of K.

sl=b},b;,..-,b,l,

32=b¥,b§,...,bi

31 =bfrbgr'nrb:

where bf 6 K for j = 1,2,---,n and i = l,2,---,k. An alignment of the sequences

31, - - - , s. is another set of sequences, SI, - - - , s: is obtained from s,- by inserting gaps in

positions where some of the other sequences have a non-blank character. There exist

many different possible alignments. The multiple sequence alignment problem is to

find out the optimal alignment based on a certain score function for the optimality of

an alignment. However, different authors may have different sets of score functions for

the optimality of an alignment. Sometimes authors have to generate their own score

functions for their own purposes. To identify the primary similarity of the sequences,

the score function to reflect the primary similarity among sequences should be used.

To identify common secondary structures of the sequences, the score function to

reflect the common secondary structures among sequences is used.

Authors have been focused in solving the problem by comparing the N sequences

simultaneously by dynamic programming using an N dimensional matrix. However,
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the complexity of the problem restricts this approach to N g 6 and n,- = 200 ~ 300.

Hence various heuristic (possibly sub-optimal) approaches are explored to solve the

problem.

1.2.2 Restriction Map Database Searches

Sequence database search is a standard tool in the identification and characterization

of new organisms. However, there are many situations in which sequencing of new

organisms is not practical. One simple method to substitute sequence database search

is to use restriction patterns and restriction map databases. Maximum number of

common restriction sites between a new organism and database sequences is calculated

and used as a measure of similarity. To compare restriction patterns and restriction

maps in the restriction map database, a problem called Maximum Site Matching

Problem (MSMP) is defined in this thesis. MSMP is the problem to find maximum

common sites between a restriction pattern and a restriction map. In the MSMP, we

have as data the restriction pattern from a new organism a a restriction map from a

sequence b in a sequence database when a same enzyme is used, say,

Restriction pattern A = {a,- : 1 S i 5 n} from the digest of sequence a

Restriction map B = {b,- : l S i S m} from the nucleotide sequence b

A will be an unordered set, B will be an ordered set. In general A,B will be

multi-sets; that is, there may be values of fragment lengths that occur more than

once. Also,

2 -= Z ,-=L (1.1)
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Given the above data the problem is to find orderings for the restriction pattern A

such that the number of common sites implied by this ordering is maximum.

1.3 Previous Studies

1.3.1 Multiple Sequence Alignment Based on Primary Sim-

ilarity

Existing methods of multiple protein sequence alignment based on primary similar-

ity have time complexity varying from 0(Nn2) to 0(nN where N is the number of

sequences and n is the length of the sequences. Most of the methods attempt to find,

within a reasonable time, good alignments that are not necessarily optimal. Some

methods guarantee optimal alignment in accordance with some pre-specified criteria.

The three major multiple sequence alignment methods may be summarized as follows.

The main issue in these methods is how to optimize a score function.

Clustering

This approach either constructs an approximate phylogenetic tree to guide the align-

ment process or arranges the sequences into some sequential order of alignment. Sev-

eral methods [12, 36, 34] adopt the same hierarchical clustering procedure but ues a

different score measure for tree construction. The methods of Feng and Doolittle [20]

and Taylor [78, 79] use less rigorous clustering procedures for tree construction. The

methods of Barton and Sternberg [7] and Martinez [52] arrange the sequences into a
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certain order based on that the sequences are aligned one by one.

Dynamic Programming

This approach refers to the simultaneous comparison of N sequences using an N-

dimensional dynamic programming matrix. For example, the algorithm of Needleman

and Wunch [59] had been extended directly to the comparison of three sequences using

a three-dimensional matrix [43]. However, Murata et al. [58] showed that the time

complexity of this direct extension would be 0(n5) for three sequences of length n

but they were able to reduce it to 0(n3) by using two three-dimensional matrices. A

difl'erent dynamic programming algorithm of 0(n3) running time for three sequences

was also presented by Fredman [26]. Both algorithms use a gap weight (penalty) which

is independent of gap length. However, this drawback is removed by Gotoh [28] whose

algorithm runs in 0(n3) time and uses a linear gap weighting function.

The algorithm of Murata et al., [58] and the algorithm of Gotoh [28] explicitly

specify the weight of simultaneous comparison of three residues. Such a criterion can

be extended to the evaluation of an alignment of N sequences, i,e. the cost of aligning

the N sequences is taken as the sum of the cost of aligning the N(N — 1)/2 pairs of

sequences. This measure of cost is called the SP measure (Sum of Pairs measure) [49].

The algorithm [22] for two sequences looks for the Optimal path within a strip of

the two-dimensional matrix as defined by an upper bound of the cost of the optimal

path. Based on the SP measure, Carrillo and Lipman [10] have proposed a strategy

for the alignment of N sequences which is similar to that of Fickett’s algorithm. Given

the upper bound of the cost of a multiple sequence alignment, Carrillo and Lipman
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showed that the upper bound of the alignment cost of each pair of the sequences can

be obtained. The upper-bound of the alignment cost of two sequences, say :I: and

y, defines a region on the two-dimensional plane, say (2:, y), of the two sequences.

Within this region lies the projection of the optimal path of the N sequences onto

(2:, y). The regions on all two-dimensional planes in turn define the region in which

the Optimal path in the N-dimensional space would be located. Therefore, the search

of the optimal path of N sequences is limited in a certain region of the N-dimensional

matrix and the search time is cut down.

The algorithm of Lipman et al., [49] adopts the aforementioned strategy of Carrillo

and Lipman. it uses a heuristic procedure to obtain an initial alignment based on

which the upper bounds of the pairwise alignment costs can be set. Alternatively,

the users may specify any set of bounds. The algorithm has two specific features.

One is the use of quasi-natural gap costs as proposed by Altschul [l] and the other

is the option of either a weighted SP measure or an unweighted SP measure. In the

weighted SP measure, different weights are assigned to the pairwise alignment costs

following the methods proposed by Altschul et al. [1]. The purpose is to discount the

dominance of a set of very similar sequences in the multiple sequence alignment. The

algorithm of Lipman et al. [49] can align six to eight sequences of 200-300 residues

which renders it superior to the foregoing three-sequence methods.

The biggest obstacle to using dynamic programming for multiple sequence align-

ment is its computational requirements of the method. Given these difficulties, heuris-

tics and modified cost function are applied to dynamic programming.
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Simulated Annealing

SA is a good heuristic approach to solve combinatorial optimization problems. SA

is a version of a successful statistical model of thermodynamic processes for growing

crystals that has been transformed into computational terms.

A perfectly homogeneous crystal lattice represents a configuration of solid state

material at a global minimum of energy. The solid state material is heated to a high

temperature until it reaches an amorphous liquid state. Then, it is cooled very slowly

and according to a specific schedule of decreasing the temperature. If the cooling is

perfect, then the atoms will arrange themselves in a pattern that closely resembles

the global energy minimum of the perfect crystal. Thermodynamics teaches that the

thermal equilibrium at temperature T is a probability distribution in which a state

with energy E is attained with the Boltzmann probability

e-‘l‘.

In a theoretical model of what occurs inside the material during the annealing process,

states are continually perturbed by the introduction of small random changes of the

positions of atoms in the matter. If the result is a state of lower energy, then the

state perturbation is unconditionally accepted. If not, then the state perturbation

may still be accepted with a probability of eAE/T. This probability decreases with

the temperature.

Several authors have suggested simulated annealing as an alternative approach to

overcome the limitations of dynamic programming. Lukashin et al. [50] applied SA to

human intro sequences with entrapy as a cost function. Ishikawa et al. [38] applied
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SA to align protein sequences the same cost function as that used in Gotoh [28].

1.3.2 Multiple Sequence Alignment Based on Secondary

Structures

It is well-known that secondary structures of RNA are assumed to play an important

physiological role. The main issues in multiple RNA sequence alignment is how to

generate a score function. Currently, there is no clear global score function for multiple

RNA sequence alignment. Most of methods predict local secondary structures and

sometimes there is no way to to know the optimality of the alignment obtained.

Manual Method

This approach needs an alignment based on primary similarity. Then, base changes

between the compared sequences are noted. And the places where compensating

base changes maintain Watson-Crick complementarity between two potential pairing

regions is taken as evidence for the existence of a true stem at that position. This

method is done by hand [11, 32, 54, 63].

Context flee Grammar Method

Stochastic context-free grammars are applied to the problems of multiple alignment

of RNA families [18, 70, 73]. This approach is related to use of Hidden Markov Models

(HMMs) to model E.coli DNA. It incorporates elements of both the thermodynamic

and phylogenetic approaches, with emphasis on the latter. The method of Sakakibara

et. al [70] requires initial knowledge of secondary structures. In contrast, Eddy and
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Durbin [18] derive the structure of the grammar directly from unaligned sequences

and estimate the probability parameters of the resulting grammar using Expectation

Maximization (EM).

1.3.3 Restriction Map Database Search

Some work has been done on constructing restriction maps from restriction pat-

terns [64, 24, 47, 17, 8, 30, 89], but this work typically assumes that there are over-

lapping fragments.

Several authors [15, 19, 37, 60, 76] studied the restriction site matching probability

with given primary similarity of the two sequences. Also simple fragments pattern

matching method is used for identification of query sequences. However, this simple

pattern matching does not work in some cases. No rigorous works for restriction map

searches using restriction patterns have been done.

1.4 Our Studies

1.4.1 Multiple Sequence Alignment

In this thesis, we propose two algorithms, MSASA for protein sequences and RNASA

for RNA Sequences, based on simulated annealing. In chapter 2, multiple sequence

alignment for protein sequences is studied. In MSASA, two cost functions, natural

gap costs and quasi-natural gap costs, for protein sequence alignment are discussed as

well as the relationships between two methods and two cost functions. We analyzed
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the solution sets of multiple sequence alignments and suggest a technique to reduce

converging time by confining the solution sets. Another speedup strategy is suggested

that involves using fast heuristic algorithm as the high temperature phase. 'II'ansi-

tion rules to get a new alignment for simulated annealing are generalized, pointin-

gout that any new alignments can be obtained by applying those transition rules.

Speedup strategies related to length of the alignment and high temperature phase are

discussed. We implement MSASA and Show SA can overcome the limitation of dy-

namic programming by comparing the output alignment from MSASA and dynamic

programming

In chapter 3, multiple sequence alignment for RNA sequences is studied. We

proposed an algorithm RNASA to align multiple RNA sequences to identify possi-

ble secondary structures. Dot matrix generated from intro-sequence comparison is

expanded to find alignments with maximally overlapped potential secondary struc-

tures. When the bases are compared, a certain probability of assigning a hit. This

probability is used to make a score function. We use a different transition rule called

a double shufl‘le in RNASA, which can generate faster convergence to optimal. We

show the usefulness of RNASA with experimental results.

1.4.2 Restriction Map Database Searches

In chapter 4, we study the problem of obtaining biological information about a macro-

molecule isolate using only the restriction patterns of unknown macromolecules and

restriction map databases. We propose a three step approach to solve this problem.
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In the second step We formulate a maximum site matching problem , show this prob-

lem is in the class of NP-complete problems, and suggest a heuristic approach to

attack this problem. We demonstrate that this three step approach can be used to

infer the identification of an unknown macromolecule.



Chapter 2

Inferring Relatedness of Sequences

based on Primary Similarity using

Multiple Sequence Alignment

Multiple sequence alignment is a useful technique for studying molecular evolution

and analyzing structure-sequence relationships. Dynamic programming of multiple

sequence alignment has been widely used to find an optimal alignment. However,

dynamic programming does not allow for certain types of gap costs, and it limits the

number of sequences that can be aligned due to its high computational complexity.

The focus of this paper is to use simulated annealing as the basis for developing an effi-

cient multiple sequence alignment. An algorithm called Multiple Sequence Alignment

using Simulated Annealing (MSASA). The computational complexity of MSASA is

significantly reduced by replacing the high temperature phase of the annealing pro-

15
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cess by a fast heuristic algorithm. This heuristic algorithm facilitates in minimizing

the solution set of the low temperature phase of the annealing process. Compared

to the dynamic programming approach, MSASA can (a) use natural gap costs which

can generate better solution (b) align more sequences (c) take less computation time.
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2.1 Introduction

Sequence alignment methods are useful tools to obtain regions of sequence similar-

ities of particular interest. Pairwise alignment has been widely used in sequence

alignment, but multiple alignment reveals more information than pairwise alignment.

After Needleman and Wunch [59] introduced dynamic programming into pairwise

alignment, efforts were made to apply dynamic programming to multiple Sequence

alignment.

Multiple sequence alignment methods can be divided into two different types

of algorithms; heuristic algorithms and exhaustive algorithms. Heuristic algo-

rithms [7, 6, 12, 21, 20, 29, 33, 34, 36, 42, 52, 71, 77, 83] try to find out good but

not necessarily optimal alignments within a reasonable time. Most of these heuristic

algorithms construct a phylogenetic tree for the alignment of the sequences or assign

the sequences to a particular order. The sequences are aligned one by one related to

the order.

The exhaustive approach [16, 23, 26, 28, 35, 58, 72, 74] based on dynamic program-

ming tries to compare sequences simultaneously. This approach refers to the simul-

taneous comparison of N sequences using an N-dimensional dynamic programming

matrix [86]. For example, the algorithm of three sequences using a three-dimensional

matrix [43].

The algorithm of Pickett [22] for two sequences looks for the Optimal path within

a strip of the two-dimensional matrix as defined by an upper bound of the cost of the
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optimal path., Carrillo and Lipman [10] have proposed a strategy for the alignment Of

N sequences which is similar to that Of Fickett’s algorithm. Given the upper bound

of the cost of a multiple sequence alignment, Carrillo and Lipman showed that the

upper bound Of the alignment cost of each pair of the sequences can be obtained. The

upper bound of the alignment cost Of two sequences, say a and b, defines a region on

the two—dimensional plane, say (a, b), Of the two sequences. Within this region lies

the projection Of the optimal path of the N sequences onto (a, b). The regions on

all two-dimensional planes in turn define the region in which the optimal path in the

N-dimensional space would be located. Therefore, the search of the Optimal path Of

N sequences is limited in a certain region of the N-dimensional matrix and the search

time is cut down. This approach guarantees Optimal alignment. Although variations

of dynamic programming have been widely used to derive optimal alignments, there

are certain limitations.

One important problem in multiple sequence alignment is to define substitution

costs and gap costs. In pairwise alignment, researchers define substitution costs and

gap costs and try to minimize or maximize the total cost. Gap costs and substitution

costs in multiple sequence alignment should be defined by using the same rationale

as used in pairwise alignment. Altschul [1] analyzed several types Of gap cost and

substitution cost for multiple alignments. He pointed out that previously defined

gap costs in a multiple alignment were not clearly tied to their substitution costs.

He suggested a natural gap cost which was clearly related to its substitution cost.

Lipman et al. [49] implemented the Multiple Sequence Alignment (MSA) program
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to align more than three sequences using dynamic programming. In MSA, quasi-

natural gap costs were used instead Of natural-gap costs because natural gap costs

for dynamic programming require impractically long computation time [1] . Due to

the type of gap costs used, MSA cannot guarantee producing an optimal multiple

alignment in some special cases.

Another problem in expanding dynamic programming to multiple sequence align-

ment is its high computational complexity. In pairwise alignment, the computational

complexity is 0(m-n) where m, n are the lengths of the sequences. But when dynamic

programming is used for multiple sequence alignment, its computational complexity

becomes proportional to the product of the lengths of the sequences to be aligned.

Therefore the exponential growth in computational complexity makes dynamic pro-

gramming impractical for aligning more than three sequences [27, 58]. Lipman [49]

has applied dynamic programming to MSA by reducing the solution space using a

heuristic algorithm. By confining the solution space, the MSA program can align four

to six sequences of length 200-300 residues using rigorous bounds.

Several authors [38, 50] have suggested simulated annealing (SA) as an alternative

approach to overcome the limitations of dynamic programming. SA is a good heuristic

method to solve combinatorial optimization problems [46]. Ishikawa et al. [38] applied

SA to align protein sequences with the same cost function as that used in Gotoh [28].

To reduce the long computation time, they utilized a parallel computer for faster

convergence to Optimal solution, and discussed temperature parallel algorithm which

does not require any temperature scheduling. Lukashin et al. [50] applied SA to
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human intron sequences with entropy as a cost function.

In this study, we developed a method for multiple sequence alignment called Mul-

tiple Sequence Alignment using Simulated Annealing (MSASA). Simulated annealing

is a good heuristic method to solve combinatorial Optimization problems [46]. Be-

cause traditional simulated annealing requires long computation time, several speedup

strategies have been incorporated into MSASA. The results generated from MSASA

were compared to those from MSA. By applying these speedup strategies we show

that MSASA can overcome the problems of high computational complexity and the

inability to use natural gap costs in MSA.

2.2 Algorithm

2.2.1 Simulated Annealing

Simulated annealing (SA), introduced by Kirkpatrick [46], is a probabilistic ap-

proach that can be used to find a global minimum of a function in combinatorial

Optimization problems. To apply this algorithm to an optimization problem, a state

space X ={z1,---,:r,,} and a cost function 0 : X -> R, where R is the set of real

number, should be defined. A real value 0(X) should be assigned tO each state m.

The goal of the Optimization problem is to find the Optimal state 2:9,, whose score is

min(ma:r){2,- | 1 5 i 5 n}. Simulated annealing continuously generates a new state

2,... from a current state same,“ by applying transition rules and acceptance rules
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proposed by Metropolis (1953). The criteria Of the acceptance rules are:

1. If AB 5 0, accept a new state raw.

2. If AE > 0, accept a new state mm,” with probability P(AE) = e‘AE/T where

T is a temperature and AE = C(znm) — C(swam) is a cost difference.

Probability P(AE) prevents fixation at local minimum. A state 2:me is called local

minimum if there is no state mm in X that is generated from the state Emma, by

applying the single transition rule and that has a lower cost than that Of the scam"...

Temperature T controls a probability to accept a new state 2m. Initially, T

starts from a high temperature and after every iteration, T decreases to become zero

by applying an annealing schedule. The probability of accepting a new state with a

higher cost than that Of the current state also decreases as temperature T decreases.

If a careful annealing schedule and number Of iterations are given, SA converges to

a global minimum state mm. The main disadvantage of SA is its requirement for a

large amount of computation time. Because SA is based on Monte-Carlo methods

which allow for a new state with a higher cost than that of a current state. To reduce

this computation time, speedup strategies are used in MSASA.

2.2.2 Cost Function

To be used in sequence alignment, a cost function should be explicitly defined as

a measure Of overall alignment quality. Altschul (1989) classified several global cost
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functions for multiple sequence alignment. These cost functions were composed of

substitution costs and gap costs.

Substitution Costs

Substitution costs are the costs for aligning n number Of sequences which include costs

for aligning letters which represent amino acids with nulls. The algorithm Of Murata

et al. [58] and the algorithm of Gotoh [28] explicitly Specifly that the weight of the

simultaneous comparison of three residues is the sum Of the weights Of the pairwise

comparisons of the three residues. Such criterion can be extended to the evaluation

Of an alignment Of N sequences, i.e. the cost Of aligning of N sequences is taken as

the sum of the costs Of aligning the N(N — 1)/2 pairs Of sequences. This measure of

cost is called the SP mwsure (Sum of Pairs measure) [49]. Substitution costs used in

this study were sum Of pairs (SP) substitution costs [5, 28, 58]. In MSA and MSASA,

SP substitution costs were used.

Gap Costs

Gaps are maximal strings Of consecutive nulls (’-’) in one sequence aligned with

letters in the other sequences. Gap costs are assessed separately from null costs. Null

costs are the substitution costs for aligning individual letters with nulls.

The alignment Of two sequences, 3,- and sj, derived from a multiple sequence align-

ment 0 is referred as the projection Of 0: onto 3,- and s,- [1, 3]. If the number Of gaps

in a is defined as the total number of gaps in all the projections of alpha and each
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gap is assigned as the total number of gaps in all the projections Of a and each gap

is assigned a constant cost, then the total gap cost of a will be called a natural gap

cost [1]. Natural gap costs are defined based on the same rationale that is commonly

adOpted in defining substitution costs. Altschul [1] points out that previously defined

gap costs of multiple sequence alignments are proposed independently of the substitu-

tion costs. He argues that, since gap costs and substitution costs together determine

an Optimal alignment, they should be defined based on the same rationale. He sug-

gested the natural gap cost as a gap cost which is clearly related to the substitution

cost.

But the amount Of information to keep in a cell with dynamic programming tO

apply natural gap costs increases 0([n/ln(2)]"\/h') where n is the number of se-

quences [1]. He defined quasi-natural gap costs similarly to natural gap costs except

for some special cases that massively reduce the amount of information to keep in a

cell. Quasi-natural gap costs were used in MSA instead of natural gap costs.

One important advantage of MSASA over the dynamic programming approach

used in MSA is its ability tO apply any gap costs, including natural gap costs, in

multiple sequence alignment. This is because, unlike dynamic programming MSASA

does not require space to keep the information. After applying the transition rule

to a current alignment, a completely new alignment can be Obtained and all the

information to be applied to any specific gap costs can be identified. In contrast,

any complete alignment can not be obtained in dynamic programming until all Of the

computations are finished.
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Transition Rule

Several Operations can be applied to a current alignment to generate a new candidate

alignment. Basically, all the Operations are related to change the positions of the

nulls (’-’) in the sequences. The basic operations are as follows.

e Insertion (i, j, 1:, direction): This Operation inserts the lc number of consecutive

nulls from the left/right (direction) Of column j in the sequence i.

e Deletion (i, j, 1:, direction): This Operation deletes the 1: consecutive number of

nulls from the left/right (direction) Of column j where columns j -— a through

j + E (a, ,6 Z 1:) make a gap where there are consecutive nulls in a sequence.

0 Shuffle (i, j, 1:, direction): This Operation shuffles the left/right (direction) nulls

from the null column j (including null j) in the sequence i and its left/right

(direction) 1: consecutive characters.

Figure 2.1 shows examples of the move sets. By modifying these move sets, effective

A1

HKQIGGAHGSLA--

HKKIGGATGALG--

HK---IGGAHGSLA

A3

HKQIGG--AHGSLA

HKKIGGATGAL --

HK-IGGAHGSLA--

Figure 2.1: Examples of the move sets.

alignment A2 after Insertion(1,6, 2, right) to A1.

A2

MKQIGG--AHGSLA

HKKIGGATGALG--

HK---IGGAHGSLA

A4

HKQIGGA--HGSLA

HKKIGGATGAL --

HK-IGGAHGSLA--

(a) original alignment A1. (b) new

(c) new alignment A3 after

Deletion(3, 5, 2, left) to A2. (d) new alignment A4 after Swap(1, 7, 1, right) to A3.
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move sets for a different type Of multiple sequence alignment problem can be Ob-

tained. Also move sets can be applied to the different sequences simultaneously. The

parameters i, j and direction in the move set rules may be randomly determined.

But It may be determined by a certain distribution function, for example uniform

distribution or inverse function related to the size of It. Only experiment can tell

which is the best distribution function for It.

Only one basic operation swap is used as a transition rule in MSASA. This Oper-

ation generated a new alignment from the current alignment.

2.2.4 Solution Set

Definition 1 An alphabet is a finite set of characters and null(’-’).

A sequence is a finite string of characters.

A pseudo-sequence is a finite string of characters and nulls.

A pseudo-alignment of the sequence a1, a2, - - ~ , an is a set of padded pseudo-sequences

dual), - - - , a; of equal length and the removal of the nulls from a; generates a,-.

A null column is a column whose elements are all nulls.

A character column is a column such that at least one of its elements is a character.

An alignment is a pseudo-alignment whose columns are only character columns.

Let 1., be a length of a sequence a,-. The range Of the length l of an alignment of

the sequences a1, a2, - - - , an can be calculated by the definition of an alignment. The
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range l is

2...... = manta“) g z s 1...... = in“) (2.1)
i=1

In this paper the length of the pseudo-alignment Of the sequences a1,a2, - - - ,a,, is

confined by the above equation.

Definition 2 Let S; be the set of all alignments with the same set of sequences, and

each alignment in the S; has its own cost, and the length of each alignment is I. Then

the multiple sequence alignment problem is defined as finding the alignment with the

smallest cost in the solution set S,:::(= U‘minslslmcc 5.).

In the SA process, the new pseudo-alignment generated from the current pseudo-

alignment, using the transition rule, may have null columns. These null columns do

not afiect the cost of a pseudo-alignment. Figure 2.1 shows how the null columns can

be generated during the SA process. These null columns cannot simply be deleted

during the SA process. The removal of the null columns during the SA process re-

duces the length Of the pseudo-alignment and it decreases the size of the solution set.

Therefore optimal solution may be removed from the solution set. The null columns

can be removed only after the SA process.

Lemma 1 Let P; be a set of pseudo-alignments with the same set of sequences such

that the length of any alignment in H is I. Let p; be a member of the set R. Any

pseudo-alignment p[ in H can be generated from a pseudo-alignment p; by applying a

finite number of swap operations.

Proof: The swap Operation does not decrease or increase the number of nulls. It only

changes the positions of the nulls in the alignment. Any pseudo-alignment p[ in the
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H has same finite length l and same finite number of nulls in each sequence. Only

the positions Of the nulls in each sequence are different from each other. The nulls

in p; can be moved to the positions of the nulls in p[ within a finite number Of swap

Operations. So the pseudo-alignment p; can be transformed to any pseudo-alignment

p[ in the set P; by applying the swap Operations. 0

Lemma 2 The set of alignment Sim with same set of sequences can be generated

from any alignment p; by applying a finite number of swap operations.

Proof: From the lemma 1, H can be generated from any p. by applying the swap Op-

erations. The set of pseudo-alignments which have no null columns in P; is equivalent

to $1. And the set Of pseudo-alignments which have I: null columns in P; is equivalent

to 8;... The maximum of k is l — lm,,,. Therefore eliminating the null columns from

the pseudo-alignments in P; generates Sim. . CI

Theorem Let two pseudo-alignments with same set of sequences be p;, and p1, where

II > la. The alignment set, 52".”, obtained from the alignment p;, by applying the

swap operations is the superset of the set, 52...: obtained from the alignment pi, by

applying limited number of swap operations.

Proof: From the Lemma 2, the set 3;, and 8;, can be generated from the alignment

pg, and p;, by applying the swap Operations. The set 5,2.“ can be formed

Slim = Slim U SE,“ (2'2)

Therefore the set 3a,. is the superset of the set 3‘:.’....- C]

In MSASA, the solution set 5:33 is generated from an initial pseudo-alignment
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pgm by applying the swap operations. The theorem shows that the longer initial

alignment generates the bigger solution set by applying the swap operations. This

bigger solution set increases the probability to find an Optimal solution.

2.2.5 Speedup Strategies in MSASA

Heuristic Algorithm as The First Phase

Simulated annealing is composed of roughly two phases : a high-temperature phase

and a low-temperature phase. In the high temperature phase, SA gives a high proba-

bility to all the states with higher costs than that Of a current state. This allows any

state in the solution set to be a current state. At a lower temperature phase, SA gives

a high probability to states with a lower or not much higher temperature than that Of

a current state. This allows only the states near a current state to be a current state.

The high-temperature phase is similar to a random search, and the low-temperature

phase is similar to a greedy local search. Several authors [31, 69, 68, 67] suggest good

heuristic algorithm as a first phase and a simulated annealing approach as a second

phase for fine Optimization to the standard-cell-placement algorithm.

In MSASA, the same approach is used. The output alignment generated from

the same heuristic algorithm used in MSA is used as the first phase. This heuristic

algorithm is similar to progressive pairwise alignment used in the studies of Water-

man and Perlwitz [85], Feng and Doolittle [20]. MSASA can eliminate the high-

temperature phase and reduce annealing time by using the output alignment gener-
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ated from the heuristic algorithm. Figure 2.2 shows the annealing curve and different

starting points. SA time P can be saved when the system starts from point B which

 

Energy

A 1

 

   
|«-—u[ Iteration

P

Figure 2.2: Annealing curve (Energy vs. Iteration). A is the starting point in the

traditional SA approach. B is the starting point Obtained from the fast heuristic

approach. C is the minimal point.

is obtained from the fast heuristic approach instead Of point A. It is clear that SA

time can be reduced if point A is closer to the optimal point C. When the alignment

is Obtained from the heuristic approach, the initial temperature should be lower than

the initial temperature when traditional SA is applied.

Confined Solution Set

To apply dynamic programming for aligning n sequences, a fixed amount Of compu-

tation is required for each cell of the n-dimensional lattice. The total computational

time in dynamic programming is proportional to the product of a and fl, a-fi, where a

is the fixed number Of computations for each cell and fl is the size Of the n-dimensional

lattice. These two factors, a and fl, limit the usage of dynamic programming in mul-

tiple sequence alignment. Natural gap costs make the factor a too large for aligning



30

more than five sequences. The factor fl becomes too large for aligning more than

three sequences with average protein length (about 200-300 residues).

Fickett [22] suggested a way to reduce the solution space in pairwise alignment. He

searched the Optimal path within a diagonal band Of the two—dimensional matrix as

defined by an upper bound of the cost of the optimal path. Carrillo and Lipman [10])

expanded the idea to reduce the solution space for aligning n sequences. They cal-

culated the upper bounds of the alignment cost of each pair of the sequences and

confined the solution between each pair of the sequences using those upper bounds.

Therefore, they could reduce the computation time by applying dynamic program-

ming in only the limited solution space in an n-dimensional lattice.

In MSASA, the solution set is confined to 3:33 . Therefore, if the length of the

optimal solution is larger than l,-,,,-., the Optimal solution can not be found in the

solution set. It is clear that an Optimal solution can be found if the solution set

5,3: is used. This solution set can be obtained from a pseudo-alignment p1,", by

applying the swap Operations. Due to its long SA time, it is not practical to use a

pseudo-alignment p1,.“ as an initial alignment. Instead of a pseudo-alignment p1,“,

the alignment generated by the progressive pairwise algorithm is used as an initial

alignment. The solution set 8:3; can be expanded with longer initial alignment. Once

the final alignment which has null columns found in a given solution set is achieved,

increasing the solution set further rarely leads to improvement. Such an alignment is

Optimal for the given solution set.
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begin ,

current.pseudo.alignment (— Output generated from the heuristic algorithm;

T ‘- Tinitial;

Eamm (— C(current.pseudo_alignment) where C is a cost function;

final.pseudo.alignment (— current.pseudo_alignment;

while (T > T1,“)

:1: (— random(column(1..l)) ;

for each sequence i in the current.pseudo.alignment

if column :I: is a null, then apply the swap operation;

if column :1: is a character, than do nothing;

end for;

Em (— C(new.pseudo.alignment);

if ((Em < Emma.) then

current_pseudo_alignment (— new.pseudo.alignment;

Ecurrcnt *— Enew;

if (Em < Emu) then

Ernin +— Enew;

final.,pseudo.alignment (— current.pseudo.alignment;

end if;

end if;

T(-'y-T,0<'y< 1;

end while;

Remove null columns from the final.pseudo.alignment;

Return finalhlignment and minimal cost Ema, as an optimal alignment;

end  
 

Figure 2.3: The MSASA algorithm

2.2.6 The MSASA Algorithm

The simplest data structure for sequences is an array. An alignment is a two

dimensional array Of symbols in which each row is a one-to-one collinear representation

of a molecular sequence. When a swap Operation is applied to sequences, only the

positions of the nulls are changed in an alignment. MSASA does not require any

complicated data structures. The algorithm for MSASA is presented in Figure 2.3.

The space complexity of MSASA is 0(n - l), where l is the length of the sequence
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and n is the number of sequences. In each iteration the time to apply swap Operations

to each sequence is 0(n - Al) where n is the number of the sequences and Al is the

changed part of the alignment when swap operations are applied.

++

tittttt

HKQIGGA--MGSLA- HKQIGGA--HGSLA-

HKK---IGGATGALG HKKIGGA---TGALG

(a) (b)

Figure 2.4: Example of the Operation swap. (a) original alignment (b) alignment

after swap(2, 4, 3, right) operation. (*) shows the changed part (Al) of the alignment

and (+) shows the null columns.

Figure 2.4 (b) showed the changed part (Al) in the alignment. Only the difference

of the current costs and new costs of the columns which are affected by the changed

part is used to compute new costs. Al could be referred to as a constant because it is

not changed by the number Of sequences or length of the sequences to be aligned. The

time to calculate the cost of the changed part takes (n - (n — l) - Al). Therefore, the

time complexity of MSASA is 0(n2 - k) where k is the number Of iterations. The time

complexity Of MSASA does not depend on the length of the sequences in alignment

but to the number of sequences n and the number of iterations k.

2.3 Implementation

The program in this paper was implemented and tested on a Sun SPARC2 running

Solaris 2.2 which is a UNIX Operating system. The MSASA algorithm was coded in

ANSI C (SPARC compiler C 2.0.1). MSASA and MSA were tested and compared

in the same environment. MSASA was implemented to produce multiple alignments
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and was compared to MSA. The experiments were performed on three serine protease

families - chymotrypsin, trypsin and elastase.

Natural gap costs are used as gap costs in MSASA whereas quasi-natural gap costs

are used in MSA. The cost of one gap was 8. In MSASA, the PAM-250 matrix [14],

derived from a study of amino acid replacements in homologous proteins, was used for

substitution costs. The modified substitution costs (17 minus the values in the PAM-

250 matrix) were used in both algorithms. The SP substitution costs in MSA have

two options, weighted SP substitution costs and unweighted substitution costs. In

the weighted SP substitution costs, weights are applied to the pairwise alignments in

order to reduce the effect Of the dominance of a set of similar sequences in the multiple

sequence alignment. In MSASA, both Options could be applied. For easy comparison

of the two algorithms, only unweighted SP substitution costs were considered.

The alignment from the heuristic procedure of MSA was used as an initial align-

ment in MSASA. Only the number of nulls Of each sequence in the initial alignment

are allowed to generate a new alignment. In the swap Operation, the maximum value

Of the parameter I: was initially set at 10. The initial temperature T; was decided by

previous experience. At the final temperature, the probability to accept a new state

with a higher cost is

e-AE/TI = e (2.3)
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where 0 < e < 1. This equation is simplified to

T, = —-AE/log(e) (2.4)

The minimum cost change, —AE, resulting from a swap operation is l. Empirically,

c“ is set to the total number of iterations 1:. Therefore the final temperature becomes

T, = l/log(k) (2.5)

The schedule implemented in MSASA is T, = Tra" where "y is a constant for reducing

the temperature. 7 can easily be calculated from T}, T, and k

'7 = (TI/T1)“ (2.6)

2.4 Results

2.4.1 Initial Alignment

A good initial alignment, whose length and cost are as similar as possible to those

of an Optimal alignment, is crucial to MSASA. In the experiment, the length of the

initial alignment generated from the heuristics was longer than that Of the Optimal

alignment. When the final pseudo-alignment did not have null columns, the l,-,,,-, was

increased and the SA process was applied again. One way of increasing the length Of
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an initial alignment is to use a lower gap cost than the gap cost to be applied. If the

same final output alignment is obtained, the alignment is the Optimal solution within

the solution set 5:3“: . A lower gap cost (3) than the gap cost (8) to be applied in

the SA process is used to get a longer initial alignment when aligning the sequences

in Figure 2.5. The length Of the initial alignment is 277 with gap cost (8) and is 281

with gap cost (8). The longer initial alignment is used to show this method. In the

Figure 2.8 thru 2.10, the null columns are not removed from the alignments to Show

the positions of the final alignments and the lengths of the initial alignments.

Too lower gap costs generates an initial alignment whose length is longer than

that of the Optimal alignment. MSASA with this longer initial alignment requires

longer SA time. Because the solution set becomes bigger and the cost Of the initial

alignment becomes higher than those Of the initial alignment Obtained by the gap

cost to be applied.

2.4.2 'D'ansition Rules

The Operation swap in MSASA is used to change the position Of the nulls in the

alignment. This Operation does not change the number Of nulls in the alignment in

the SA process. The null columns in the alignment gave the effect that the operation

could reduce the nulls. Therefore any alignment whose length is between l,,,,-,, and

l,-,,,-¢ could be generated.

The Operation insertion which could insert the nulls and the operation deletion



 

lC
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which could delete the nulls in the alignment were implemented and tested. These

Operations were possible to change the number of nulls in the alignment. But these

Operations required too much SA time (order of hours) so that it was not practical

to use these operations in MSASA.

2.4.3 Cost Comparison

Quasi-natural gap costs prevent MSA from generating Optimal alignment. When a

series Of nulls with left and right letters completely imposed on the series of nulls in

other sequences, quasi-natural costs count one more gap than natural gap costs do

(Altschul, 1989). These additional counts prevent generating Optimal alignment from

MSA. There are no additional counts in MSASA because the natural gap costs were

used in MSASA.

MSA and MSASA generate same alignment in some cases. When quasi-natural

gap costs are used in both algorithms, both generate the same alignments. And even

when natural gap costs are used in MSASA, if there are no completely imposed nulls

in the Optimal alignment, both algorithms generate the same alignment.

A comparison of the output alignments using the same sequences generated from

MSASA and MSA is presented in Figure 2.5.

The alignment Al was generated from MSA and the alignment A2 was generated

from MSASA. The score (9645) of the alignment A2 from MSASA is lower than

that (9668) Of the alignment A2 from MSA. The marked (*) parts show the difference
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A1

eeeeeeeeee (9663)

IIGGVESIPHSRPYHAHLDIVTEKGLRVICGGFLISRQFVLTAAHC

IVGGTNSSHGEHPWQVSLQVKLTAQR-HLCGGSLIGHQHVLTAAHC

IVNGEEAVPGSHPHQVSLQ--DKTGF-HFCGGSLINENHVVTAAHC

IVGGYTCGANTVPYQVSLN----SGY-HFCGGSLINSQHVVSAAHC

VVGGTEAQRNSHPSQISLQYRSGSSHAHTCGGTLIRQNHVHTAAHC

VVGGTRAAQGEFPFHVRLS--------HGCGGALYAQDIVLTAAHC

A2

sseeeeeess (9648)

IIGGVESIPHSRPYHAHLDIVTEKGLRVICGGFLISRQFVLTAAHC

IVGGTNSSHGEHPHQVSLQVKLTAQ-RHLCGGSLIGHQWVLTAAHC

IVNGEEAVPGSUPHQVSLQDKTG---FHFCGGSLINENHVVTAAHC

IVGGYTCGANTVPYQVSLNSG-----YHFCGGSLINSQHVVSAAHC

VVGGTEAQRNSHPSQISLQYRSGSSHAHTCGGTLIRQNUVHTAAHC

VVGGTRAAQGEFPFHVRLSMG--------CGGALYAQDIVLTAAHC

Figure 2.5: Alignments of rat mast cell proteinase II, human plasma kallikrein, bovine

chymotrypsin, bovine trypsin, pig elastase, and Streptomyces griseus trypsin. A1 is

the alignment generated from MSA and A2 is generated from MSASA. The score of

A1 is 9663 and the score of A2 is 9648. (*) shows different alignments generated from

MSA and MSASA.

 

 

 

 

 

sequences MSA MSASA

score time score time iteration(million)

4 21244 20 sec 21244 5 min 40 sec 1.3

5 35853 48 min 54 sec 35845 10 min 26 sec 2.0

6 54054 3 hour 18 min 37 sec 54050 16 min 40 sec 2.0       
 

Table 2.1: Comparison of computation time and score in MSA and MSASA

between MSASA and MSA. The difference is due to the different gap costs in MSASA

and MSA.

The results of the alignments of the same set Of four to six sequences generated

from MSA and MSASA are shown in Figure 2.7 through Figure 2.10, and the related

scores and rlmning times are in Table 2.1.

The alignment Of four sequences (Figure 2.5) does not have the regions creating

additional counts for MSA. MSASA and MSA generated the same output in this
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IhlSllSJLtumdihdSAL

IVGGTNSSWGEHPWQVSLQVKLTAQR-HLCGGSLIGHQWVLTAAHCFDGLPLQDVHRIYSGILNLSDITKDTPFSQIKEI

IVNGEEAVPGSHPHQVSLQDK--TGF-HFCGGSLINENHVVTAAHCGVT-TSD---VVVAGEFDQGSSSEKIQKLKIAKV

IVGGYTCGANTVPYQVSLN----SGY-HFCGGSLINSQHVVSAAHCYKS-GIQ----VRLGEDNINVVEGNEQFISASKS

VVGGTEAQRNSWPSQISLQYRSGSSHAHTCGGTLIRQNHVMTAAHCVDR-ELT--FRVVVGEHNLNQNNGTEQYVGVQKI

IIHQNYKVSEGNH--DIALIKLQAPLNYTEFQKPICLPSKGDTSTIYTNCWVTGHGFSK-EKGEIQNILQKVNIPLVTNE

FKNSKYNSLTINN--DITLLKISTAASFSQTVSAVCLPSASDDFAAGTTCVTTGWGLTRYTNANTPDRLQQASLPLLSNT

IVHPSYNSNTLNN--DIHLIKLKSAASLNSRVASISLPTSCA--SAGTQCLISGWGNTKSSGTSYPDVLKCLKAPILSDS

VVHPYHNTDDVAAGYDIALLRLAQSVTLNSYVQLGVLPRAGTILANNSPCYITGHGLTR-TNGQLAQTLQQAYLPTVDYA

ECQKR-YQDYKITQRHVCAGYKEGGKDACKGDSGGPLVCKHNGHHRLVGITSWCE--GCARREQPGVYTKVAEYHDHILE

NCKK--YHGTKIKDAHICAG--ASGVSSCHGDSGGPLVCKKNGAHTLVGIVSVCS--STCSTSTPGVYARVTALVNHVQQ

SCKSA-YPG-QITSNHFCAGYLEGGKDSCQGDSGGPVVC--SG--KLQGIVSWGS--GCAQKNKPGVYTKVCNYVSVIKQ

ICSSSSYWGSTVKNSHVCAG-GNGVRSGCQGDSGGPLHCLVNGQYAVHGVTSFVSRLGCNVTRKPTVFTRVSAYISUINN

KTOSS

TLAAN

TIASN

VIASN

Figure 2.6: Alignment Of human plasma kallikrein, bovine chymotrypsin, bovine

trypsin, and pig elastase generated from MSA and MSASA.

case. Because this alignment does not have completely imposed nulls. But in the

cases Of five sequences and six sequences (Figure 2.6 through Figure 2.10), MSASA

can generate the alignment with a lower cost than that of MSA.

2.4.4 Time Comparison

If the lengths of the sequences are short, the number of sequences is small, and the

optimal alignment of the sequences does not have regions making additional counts,

MSA may generate an optimal alignment faster than MSASA. One Of these cases is

shown in Figure 2.6. In this case, MSA took a shorter running time than did MSASA.

But in the case of five and six sequences, MSASA required a smaller running time
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IVGGTNSSUGEHPWQVSLQVKLT-AQRHLCGGSLIGHQHVLTAAHCFDGLPLQDVWRIYSGILNLSDITKDTPFSQIKEI

IVNGEEAVPGSWPWQVSLQDKTG---FHFCGGSLINENUVVTAAHCGVT----TSDVVVAGEFDQGSSSEKIQKLKIAKV

IVGGYTCGANTVPYQVSL--NSG---YHFCGGSLINSQHVVSAAHCYKS-----GIQVRLGEDNINVVEGNEQFISASKS

VVGGTEAQRNSHPSQISLQYRSGSSHAHTCGGTLIRQNUVHTAAHCVDR---ELTFRVVVGEHNLNQNNGTEQYVGVQKI

VVGGTRAAQGEFPFHVRL--SHG------CGGALYAQDIVLTAAHCVSG----SGNNTSITATGGVVDLQSAVKVRSTKV

IIHQNYKVSEG--NHDIALIKLQAPLNYTEFQKPICLPSKGDTSTIYTNCHVTGHGFSK-EKGEIQNILQKVNIPLVTNE

FKNSKYNSLTI--NNDITLLKISTAASFSQTVSAVCLPSASDDFAAGTTCVTTCWGLTRYTNANTPDRLQOASLPLLSNT

IVHPSYNSNTL--NNDIHLIKLKSAASLNSRVASISLPTSCASAG--TQCLISGHGNTKSSGTSYPDVLKCLKAPILSDS

VVHPYUNTDDVAAGYDIALLRLAQSVTLNSYVQLGVLPRAGTILANNSPCYITGWGLTR-TNGQLAQTLQQAYLPTVDYA

LQAPGYNGT----GKDHALIKLAQPINQPTLKIATTTAYNQGTFT------VAGHGANR-EGGSQQRYLLKANVPFVSDA

ECQKR-YQDYKITQRHVCAGYK-EGGKDACKGDSGGPLVCKHN-GHHRLVGITSUGE--GCARREQPGVYTKVAEYHDHI

NCKK--YVGTKIKDAHICAG---ASGVSSCHGDSGGPLVCKKN-GAHTLVGIVSHGS--STCSTSTPGVYARVTALVNHV

SCKSA-YPG-QITSNHFCAGYL-EGGKDSCQGDSGGPVVCSGK-----LOGIVSHGS--GCAQKNKPGVYTKVCNYVSHI

ICSSSSYHGSTVKNSMVCAGG--NGVRSGCQGDSGGPLHCLVN-GQYAVHGVTSFVSRLGCNVTRKPTVFTRVSAYISUI

ACRSA-YGNELVANEEICAGYPDTGGVDTCOGDSGGPHFRKDNADEUIQVGIVSVGY--GCARPGYPGVYTEVSTFASAI

LEKTDSS

QQTI-MN

KQTIASN

NNVIASN

ASAARTL

Figure 2.7: Alignment of human plasma kallikrein, bovine chymotrypsin, bovine

trypsin, pig elastase, and Streptomyces griseus trypsin generated from MSA.
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+ ++

IVGGTNSSHGEHPHQVSLQVKLTAQR-HLCGGSLIGHQHVLTAAHCFDGL-PLQDVHRIYSGILNLSDITKDTPF--SQI

IVNGEEAVPGSVPHQVSLODKTGF---HFCGGSLINENHVVTAAHCGVT-----TSDVVVAGEFDQGSSSEKIQX--LKI

IVGGYTCGANTVPYQVSLN--SGY---HFCGGSLINSQHVVSAAHCYKS------GIQVRLGEDNINVVEGNEOF--ISA

VVGGTEAQRNSHPSQISLQYRSGSSHAHTCGGTLIRQNHVMTAAHCVDR----ELTFRVVVGEHNLNQNNGTEQY--VGV

VVGGTRAAQGEFPFHVRLS--MG------CGGALYAQDIVLTAAHCVSG-----SGNNTSITATGGVVDLQSAVK--VRS

KEIIIBQNYKVSEGNH--DIALIKLQAPLNYTEFQKPICLPSKGDTSTIYTNCUVTGHGFSK-EKGEIQNILQKVNIPLV

AKVFKNSKYNSLTINN--DITLLKISTAASFSQTVSAVCLPSASDDFAAGTTCVTTGWGLTRYTNANTPDRLQQASLPLL

SKSIVHPSYNSNTLNN--DIHLIKLKSAASLNSRVASISLPTSCASAG--TOCLISGHGNTKSSGTSYPDVLKCLKAPIL

QKIVVHPYHNTDDVAAGYDIALLRLAQSVTLNSYVQLGVLPRAGTILANNSPCYITOUGLTR-TNGQLAQTLQQAYLPTV

TKVLQAPGYNGTG--K--DHALIKLAQPINQPTLKIATTTAYNQGTFT------VAGHGANR-EGGSQQRYLLKANVPFV

+

TNEECQ-KRYQDYKITDRHVCAGY-KEGGKDACKGDSGGPLVCKHNG-HHRLVGITSHGE---GCARREQPGVYTKVAEY

SNTNCK--KYHCTKIKDAHIGAG---ASGVSSCHEUSGGPLVCKKNG-AWTLVGIVSHGS---STCSTSTPGVYARVTAL

SDSSCK-SAYPG-QITSNHFCAGY-LEGGKDSCQGDSGGPVVCSGK-----LQGIVSHGS---GCAQKNKPGVYTKVCNY

DYAICSSSSYHGSTVKNSHVCAG--GNGVRSGCQGDSGGPLHCLVNG-QYAVHGVTSFVS-RLGCNVTRKPTVFTRVSAY

SDAACR-SAYGNELVANEEICAGYPDTGGVDTCQGDSGGPHFRKDNADEHIQVGIVSHGY--~GCARPGYPGVYTEVSTF

HDHILEKTDSS

VNUVQQTLAAN

VSUIKQTIASN

ISHINNVIASN

ASAIASAARTL

Figure 2.8: Alignment of human plasma kallikrein, bovine chymotrypsin, bovine

trypsin, pig elastase, and Streptomyces griseus trypsin generated from MSASA. The

null columns (+) are not removed intentionally.



  
B
r
r
r
r
o
v
w
v

T
.
I
F
T
.
.
.
.
V
L

V
H
E
T
S
A
A
 



41

MSA

IIGGVESIPHSRPYHAHLDIVTEKGLRVICGGFLISRQFVLTAAHCKGR-EIT----VILGAHDVRKRESTQQKIKVEKQ

IVGGTNSSWGEHPHQVSLQVKLTAQR-HLCGGSLIGHQHVLTAAHCFDGLPLQDVHRIYSGILNLSDITKDTPFSQIKEI

IVNGEEAVPGSHPHQVSLQ--DKTGF-HFCGGSLINENHVVTAAHCGVT-TSD---VVVAGEFDQGSSSEKIQKLKIAKV

IVGGYTCGANTVPYQVSLN----SGY-HFCGGSLINSQHVVSAAHCYKS-GIQ----VRLGEDNINVVEGNEQFISASKS

VVGGTEAQRNSUPSQISLQYRSGSSHAHTCGGTLIRQNHVHTAAHCVDR-ELT--FRVVVGEHNLNQNNGTEDYVGVQKI

VVGGTRAAQGEFPFHVRLS--------HGCGGALYAQDIVLTAAHCVSG-SGN---NTSITATGGVVDLQSAVKVRSTKV

IIHESYNS--VPNLHDIHLLKLEKKVELTPAVNVVPLPSPSDFIHPGAHCUAAGHGKTG-VRDPT-SYTLREVELRIHDE

IIHQNYKV--SEGNHDIALIKLQAPLNYTEFQKPICLPSKGDTSTIYTNCHVTGHGFSK-EKGEI-QNILQKVNIPLVTN

FKNSKYNS--LTINNDITLLKISTAASFSQTVSAVCLPSASDDFAAGTTCVTTCHGLTRYTNANT-PDRLQQASLPLLSN

IVHPSYNS--NTLNNDIHLIKLKSAASLNSRVASISLPTSCA--SAGTQCLISGHGNTK-SSGTSYPDVLKCLKAPILSD

VVHPYHNTDDVAAGYDIALLRLAQSVTLNSYVQLGVLPRAGTILANNSPCYITGHGLTR-TNGQL-AQTLQQAYLPTVDY

LQAPGYNG----TGKDHALIKLAQP------INQPTLKIATTTAYNQGTFTVAGHGANR-EGGSQ-QRYLLKANVPFVSD

KACVD--YRYYEYKFQ~VCVGSP-TTLRAAFHGDSGGPLLCAGV-----AHGIVSYGH----PDAKPPAIFTRVSTYVPT

EECQKR-YQDYKITORHVCAGYK-EGGKDACKGDSGGPLVCKHN-GHHRLVGITSUGE--GCARREQPGVYTKVAEYHDH

TNCKK--YWGTKIKDAHIGAG---ASGVSSCHGDSGGPLVCKKN-GAHTLVGIVSHGS--STCSTSTPGVYARVTALVNH

SSCKSA-YPG-QITSNHFCAGYL-EGGKDSCQGDSGGPVVCSGK-----LOGIVSUGS--GCAQKNKPGVYTKVCNYVSH

AICSSSSYHGSTVKNSHVCAGG--NGVRSGCQGDSGGPLHCLVN-GQYAVBGVTSFVSRLGCNVTRKPTVFTRVSAYISH

AACRSA-YGNELVANEEICAGYPDTGGVDTCQGDSGGPHFRKDNADEHIQVGIVSHGY--GCARPGYPGVYTEVSTFASA

INAVI--N

ILEKTDSS

VQQTLAAN

IKQTIASN

INNVIASN

IASAARTL

Figure 2.9: Alignment of rat mast cell proteinase 11, human plasma kallikrein, bovine

chymotrypsin, bovine trypsin, pig elastase, and Streptomyces griseus trypsin gener-

ated from MSA.
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MSASA

+

IIGGVESIPHSRPYMAHLDIVTEKGLRVICGGFLISRQFVLTAAHCKGREI-----TVILGAH-DVRKRESTQQKIKVEK

IVGGTNSSHGEHPHQVSLQVKLTAQ-RHLCGGSLIGHQUVLTAAHCFDGLPLQDVURIYSGIL-NLSDITKDTPFSQIKE

IVNGEEAVPGSHPHQVSLQDKTC---FHFCGGSLINENUVVTAAHCGVTTSD----VVVAGEF-DQGSSSEKIQKLKIAK

IVGGYTCGANTVPYQVSLNSG-----YHFCGGSLINSQHVVSAAHCYKSGI-----QVRLGED-NINVVEGNEQFISASK

VVGGTEAQRNSWPSQISLQYRSGSSHAHTCGGTLIRQNWVHTAAHCVDRELT---FRYVVGEH-NLNQNNGTEQYVGVQX

VVGGTRAAQGEFPFHVRLSHG--------CGGALYAQDIVLTAAHCVSGSGN---NTSITATG-GVVDLQSAVK-VRSTK

+

QIIHESYNSVPNL--HDIHLLKLEKKVELTPAVNVVPLPSPSDFIHPGAHCUAAGHGKTGVRDPT--SYTLREVELRIHD

IIIHQNYKVSEGN--HDIALIKLQAPLNYTEFQKPICLPSKGDTSTIYTNCHVTCHGFSKEKGEI--QNILQKVNIPLVT

VFKNSKYNSLTIN--NDITLLKISTAASFSQTVSAVCLPSASDDFAAGTTCVTTCWGLTRYTNAN-TPDRLQQASLPLLS

SIVHPSYNSNTLN--NDIHLIKLKSAASLNSRVASISLPTSCA--SAGTQCLISGHGNTKSSGTS-YPDVLKCLKAPILS

IVVHPYUNTDDVAAGYDIALLRLAQSVTLNSYVQLGVLPRAGTILANNSPCYITGHGLTRTNGQL-~AQTLQQAYLPTVD

VLQAPGYNGTG----KDHALIKLAQP------INQPTLKIATTTAYNQGTFTVAGHGANREGGSQ--QRYLLKANVPFVS

EKACVD--YRYYEYKFQ-VCVGS-PTTLRAAFHGDSGGPLLCAG-----VAHGIVSYGH----PDAKPPAIFTRVSTYVP

NEECQK-RYQDYKITDRHVCAGY-KEGGKDACKGDSGGPLVCKHNG-HHRLVGITSVGE--GCARREQPGVYTKVAEYHD

NTNCKK--YHGTKIKDAHICAG---ASGVSSCHGDSGGPLVCKKNG-AHTLVGIVSHGS--STCSTSTPGVYARVTALVN

DSSCKS-AYPG-QITSNHFCAGY-LEGGKDSCDGDSGGPVVCSG-----KLQGIVSHGS--GCAQKNKPGVYTKVCNYVS

YAICSSSSYHGSTVKNSHVCAG--GNGVRSGCQGDSGGPLHCLVNG-QYAVHGVTSFVSRLGCNVTRKPTVFTRVSAYIS

DAACRS-AYGNELVANEEICAGYPDTGGVDTCQGDSGGPHFRKDNADEHIQVGIVSHCY--GCARPGYPGVYTEVSTFAS

TINAVI--N

UILEKTDSS

UVQQTLAAN

HIKQTIASN

HINNVIASN

AIASAARTL

Figure 2.10: Alignment of rat mast cell proteinase II, human plasma kallikrein, bovine

chymotrypsin, bovine trypsin, pig elastase, and Streptomyces griseus trypsin gener-

ated from MSASA. The null columns (+) are not removed intentionally.
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Figure 2.11: Running time for 4 to 20 sequences (1 million iterations)

than that of MSA. The running time to get an Optimal alignment in MSASA was

not clearly related to the number of sequences. In MSASA, usually 1 to 2 million

iterations which took 5 to 16 minutes were enough to get an Optimal alignment for

four to six sequences.

MSA took an impractically long time to align more than six sequences on a per-

sonal workstation. Therefore, it could not be directly compared to MSASA for more

than six sequences. In MSASA, 1 to 3 million iterations were enough to get a near-

optimal solution when aligning up to twenty sequences. Figure 2.1 1 illustrates the

computation time to run 1 million iterations for aligning several numbers of sequences.

It took about 17 minutes to run 1 million iterations for aligning 10 sequences and

about 76 minutes to run 1 million iterations for aligning 20 sequences. Therefore, the

running time to align more than six sequences in MSASA is more practical than that

in MSA. To reduce the computation time, well-conserved regions may be fixed and
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only the regions between the fixed regions can be annealed. By using this divide-and-

conquer type approach, the computation time could be greatly reduced.

2.5 Conclusion

It is shown that MSASA based on simulated annealing is more powerful than MSA

based on dynamic programming. MSASA could apply natural gap costs, which can

generate a better alignment, while MSA could not. MSASA could generate alignments

faster and with more sequences than MSA.



Chapter 3

Inferring Relatedness of Sequences

based on Secondary Structure

using Multiple Sequence Alignment

Multiple sequence alignment has been a useful technique for identifying RNA sec-

ondary structures. In this paper, an algorithm for aligning multiple RNA sequences

to identify possible secondary structures is presented. In this algorithm, dot matri-

ces generated from intro-sequence comparisons are used to obtain possible common

secondary structures. A hit probability for dot matrices is calculated and a score

function based on this hit probability is defined. Simulated annealing is applied to

Optimize the score. A solution set for a multiple sequence alignment is introduced

and how the number of nulls and length of an alignment affect the solution set is

analyzed. A method to reduce the computation time is applied to multiple sequence

45
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alignment based on this solution set. Also several strategies to reduce the simulated

annealing time is suggested. Double shufl‘le is used as a transition rule instead of

single shuffle. This move set generates faster convergence to Optimal. This algorithm

was used to find possible common secondary structures in RNA sequences.
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3.1 Introduction

Just as the evolutionary relationship in proteins is Often seen more in tertiary struc-

ture than primary sequence, RNA molecule relatedness is often seen in preserved

secondary structures. Much effort has been devoted to finding structural features

of RNA. Predictions of RNA secondary structure give useful information about the

mechanisms of gene expression, gene evolution and the functions of ribosomes. Sev-

eral approaches have been used for finding secondary structural features. Phylogenetic

analysis of homologous RNA sequences identifies secondary structures which are con-

served during evolution [25, 40, 87]. Another approach is to apply thermodynamics to

compare the free energy of alternative structures [39, 62, 80, 90]. Context-Flee Gram-

mars have been applied to the problems of statistical modeling, multiple alignment,

discrimination and prediction of the secondary structures of RNA families [18, 70, 73].

However, RNA secondary structure prediction is not at a stage where perfect predic-

tion is possible. Zuker and Stiegler [90] pointed out that ’A program based solely

on conformational rules and thermodynamics will not yield a biologically meaningful

folding Of a molecule on its own... More and difierent kinds of additional information

must be incorporated into the algorithm as well’. Users need to choose between sev-

eral methods, each with its own advantages and disadvantages, the one that best fits

their particular problem.

Multiple sequence alignment has been a useful tool for identifying sites important

in enzyme activity and in gene regulation and in phylogenetic comparisons [72, 84].

Dot-matrix methods have been simple and useful tools for examining sequence simi-
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larities. Several multiple sequence alignment methods [4, 81, 82] are dot-matrix based.

The dot matrix derived in these methods is from inter-sequence comparison based on

primary sequence similarity and additional properties Of molecular similarity. How-

ever, when RNA sequences are distantly related, sequences can not be aligned by just

primary sequence similarity. Secondary structure similarity needs to be considered.

A dot-matrix generated by intro-sequence comparison is one way to identify possible

RNA secondary structures in a single molecule [66].

In this paper, we have extended dot-matrix methods based on intra-sequence com-

parison to find alignments with maximally overlapped potential secondary structures.

Individual dot matrices for each sequence are generated and overlapped. Correctly

aligned structures appear as diagonal regions with hits in most matrices. When the

bases are compared, there is a certain probability of assigning a hit even if the base

pairs do not exist as an actual secondary structure. This noise can hide real RNA

secondary structures. A sliding diagonal window is applied to reduce noise in the

dot matrix. The probability of Obtaining an observed number of hits in a cell in a

completely unaligned set of sequences can be calculated from the RNA base-pairing

relationships. The probability of finding an Observed pattern for a window in a com-

pletely unaligned set Of sequences can be obtained from the hit probability of the cells

in the window. This probability was used to design a score function.

Multiple RNA Sequence Alignment using Simulated Annealing (RNASA) is pro-

posed to optimize the score of RNA sequence alignments. Lukashin et al. [50] in-

troduced the simulated annealing (SA) technique to multiple sequence alignment for
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nucleotide sequences. He discussed the cost function and several other important as-

pects of SA for multiple sequence alignment. Several authors [38, 45, 44] ) extended

SA to multiple sequence alignment Of amino acid sequence. The SA method was

introduced by Kirkpatrick et al. [46]. It is a probabilistic approach that can be used

to find an Optimal state of a function in combinatorial Optimization problems. SA

starts from an initial state with high temperature. By applying the transition rules

and acceptance rules proposed by Metropolis [53], simulated annealing continuously

generates a new state from a current state. The criteria of the acceptance rules are:

1. If AC 5 0, accept a new state saw.

2. If AC > 0, accept a new state saw with probability P(AC) = e’AC/T where T

is a temperature and score difference AC = C(sm) - C(swfim).

Probability P(AC) prevents a system from fixing at a local minimum. Temperature

T affects the probability of accepting a new state 3m. In the beginning Of the SA

process, T starts at a high temperature and T gradually decreases iteration by itera-

tion to become zero by applying an annealing schedule. The probability of accepting

a new state with a higher score also gradually decreases as temperature T goes down.

The SA process converges to a global minimum state when a careful annealing

schedule and number of iterations are given. The main disadvantage Of SA is its need

for a large amount Of computational time because SA is based on Monte-Carlo meth-

ods. To reduce this huge computational time, several speedup strategies including an

efficient transition rule, are applied in RNASA. Finally, experimental results Obtained
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from RNASA are presented.

3.2 Algorithm

3.2.1 Determination Of Score Function

Base Pair

The following algorithm aligns conserved regions Of possible secondary structure.

It does not attempt to determine the lowest energy secondary structure, or chose

among conflicting secondary structure possibilities in a specific alignment. Instead it

is based on finding an alignment where the possible secondary structure motifs are

conserved between sequences. For the purposes Of this work, we define a base pair

possibility as two positions capable Of forming any of the canonical Watson-Crick base

pairs (A-U, C-G. G-C. or U-A) along with the common non-canonical (Hi and 11-6

base pairs. In addition to these common base pairs, RNA secondary structures also

contain less common base pairs (e.g. A-G , A-A etc.). Current secondary structure

prediction methods do not efiectively cover these rare base pairs. Their positions

are best established either from the X-ray crystallographic data or from analysis

Of compensatory changes in unambiguously aligned homologous sequences. In the

present alignment method, these rare base pairs are ignored. Since these base pairs

are rare by definition, this simplification seems a reasonable compromise.
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Dot Matrix

'Il'aditionally a dot matrix for a given RNA sequence is obtained by a square matrix

with a dot at the intersection of row i and j (1 S i < j g n) for the bases i and

j Of the- sequence. A dot matrix from intra-sequence comparison is used to depict

the common RNA secondary structures in the sequences to be aligned. This is a

rectangular array whose rows and columns are labeled with the bases of a sequence.

A dot matrix with I‘m-t x l,-,,,-¢ is used in RNASA. Length l,-,,,-, is the length of the

input alignment, obtained from a progressive pairwise alignment method based on

primary sequence similarity. We define a hit (1) if the base pair i and j in a RNA

sequence in an alignment is one of these base pairs (A-U, C-G , G-C , U-A, G-U, and

11-0); otherwise the pair is defined as a miss (0).

Individual dot matrices from each aligned sequence in an alignment are generated

and the cells in each individual matrix are calculated. The total number Of hits, h,,

in an aligned sequence, 3, of an alignment is

h. = (IAI X IUI) + (IGI X IC'I) + (IGI X IUI) (3-1)

where |A|, [U], I0] and [C] are numbers of each bases in a sequence. The values of

each cell (i, j) in the individual matrices are summed and the sum of each cell (i, j)

is recorded in cell (i, j) of a matrix called the sum matrix. Clearly the value Of cell

(i, j) in the sum matrix cannot be larger than the number of sequences n. In the sum

matrix, the number of hits, m, in a cell represents the degree of potential common
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secondary structure. The larger the number of hits, the higher the possibility Of

 

 

common secondary structure. Figure 3.1 shows an alignment and its sum matrix.
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Figure 3.1: Example of an alignment and its sum matrix.

Average Hit Probability

The total number of hits in an aligned sequence is given by equation (1). These

hits can be regarded as distributed at random except in regions of real secondary

structure. The probability p, of a hit occurring by chance at any cell (i, j) in an

individual matrix of the aligned sequence 3 is approximately

 O S p. = ’2 < l (3.2)

where l is the length Of the sequence 3. For the present study, we use the average

probability

p = (fps/n (3.3)
s=1
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where n is the number Of sequences in an alignment as the base pair probability in

all the aligned sequences in an alignment. The value Of p is less than 1/2 for most

RNA sequences.

When individual matrices are overlapped to form a sum matrix, the number Of

hits at position (i, j) in the sum matrix is between 0 and the total number of bases,

11,-, in column i Of the alignment. This n,, may be less than the total number of

sequences, N , since some of the sequences may have nulls at position i. We can

then approximate the probability of randomly finding that m Of n,- bases at a specific

position, i, have base pair possibilities (hits) at some other position as:

. "i .

P(z, m) = -p"‘ - (1 - p)"""' (3-4)

The value of P(i, m) becomes smaller as m goes to n,- or m goes to 0. This means

the probability that a position will have no potential base pairs is relatively low, as

is the probability that a position will have all base pairs.

Sliding Windows on a Sum Matrix

Now the most basic secondary structure motif consists of one or more contiguous base

pairs with non-pairing bases at each end. The probability Of randomly finding such

a conserved motif in the alignment at positions i through i-i- w - 1 with w positions
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at another location is simply:

=10

<I> = H P(a: + k — l,mk) (3.5)

k=1

where M = (m1, . . . , In"). The number of hits will be equal to n,- for absolutely

conserved base pairs, and equal to 0 for positions with no base pair possibility, such

as the first non paring position defining the end Of a stem region. For incompletely

conserved structures, the Observed values will be between 0 and n,- and thus the prob-

ability of Observing such an incompletely conserved motif will be higher. The method

we use to Optimize the alignment on secondary structure is to find an alignment with

a high number Of low probability windows.

A window with size w is slid on the diagonals of the sum matrix for this purpose.

For example, ifthe diagonally adjacent cells (i,j), (i+1,j— 1), - - - , (i+w—1,j—w+ 1)

make a window, then the diagonally adjacent cells (i + 1, j - 1), (i + 2, j - 2), - - - , (i +

w, j — w) make the next window.

Determination of Score Function

To be used in sequence alignment, a score function should be explicitly defined as

a measure Of overall alignment quality. A score function must include important

secondary structure information so that if the score function is mimmized/maximized,

the complete secondary structure in the alignment will be identified.

In RNASA the sum of the reciprocal of the probability <I> for all possible windows
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On a sum matrix is calculated as a scoring function for simulated annealing as follows.

1

C"...§...W ‘3‘”

The §<I>(:r, w, M) values for regions of conserved potential secondary structure are

so much larger than the expected (random) %<I>(:r, w, M) value that they dominate

such a sum. A good alignment will have relatively more of these conserved potential

secondary structures and will thus have a relatively large C value. The sum 0 is

used as a score function in RNASA. In RNASA, at each iteration, a new alignment

is generated and C is calculated to find an alignment with maximum score. The goal

for RNASA is

mazimize(C) (3.7)

3.2.2 Simulated Annealing to Optimize the Score Function

Heuristic Algorithm as the High-temperature Phase

SA progresses from a high temperature phase that approximates a random search

to a lower temperature phase approximating a greedy local search. Several au-

thors [38, 45, 44] suggested a good heuristic algorithm could replace the high tem-

perature phase of simulated annealing and provide a substantial speed increase. In

the present algorithm, a heuristic primary sequence alignment method similar to the

progressive pairwise method [20, 77, 84] is used to provide a preliminary alignment

and to partially substitute for the high temperature phase. This preliminary align-
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ment can also be used to manually select regions of long RNA sequences that are not

well aligned by primary sequence similarity.

Double Shuffle as a 'ITansition Rule

In a RNASA process, new alignments are created from an existing, possibly subopti-

mal, alignment by introducing random changes according to an Optimized transition

rule (Figure 3.2).

 

begin doubleshufllefi)

for j = 1,2

:I: +— random(1 . . . l); randomly select a column

while column(:c) are null

scan left -or— right; (is a: (— a: — 1 or a: + 1)

wrap around if necessary;

return if no nulls are found in sequence i;

end while;

y (— random(:r+movm---z -movm);

shift right columns a: - 1 thru y

-Or- shift left columns a: + 1 thru y;

column(y) (— null;

end for;

end doubleshufllc  
 

Figure 3.2: The transition rule double shuffle

The rule used in the current algorithm allows changing one randomly chosen

sequence in the alignment with each iteration. A gap in the sequence is selected and

moved to a new position. This process is repeated on the chosen sequence a second

time. After both shuflles, the score function is recalculated. The reason for applying

two shuffles to a sequence in each iteration is to allow both sides Of a stem structure

to adjust in tandem. This efl'ectively lowers the energy barrier between local points
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and allows the system tO converge in fewer iterations. If the chosen sequence in the

alignment has no null characters, the iteration is skipped. Occasionally, the same gap

will be chosen for both shuffle Operations, producing the equivalent Of a single shuffle

move.

Solution Set

The SA process starts from an alignment with length I...“ produced by the heuristic

algorithm. The length l of new alignments produced from the current alignment does

not change during the SA process due to the properties Of the double shuffle transition

rule. Therefore RNASA only generates alignments with length l.-,.,-..

If I... is the length of sequence a,-, the range Of potential lengths of an alignment

of the sequences a1, a2, - - - , a,. can be calculated. The range I is confined as below.

1...... = mama...) g l g 1...... = 20...) (3.8)

i=1

Let S; be the set of all alignments Of length l with same set of sequences. Each

alignment in the S; has its own score and the length Of each alignment is identically I.

Then the multiple sequence alignment problem can be defined as finding the alignment

with an optimal score in the solution set St:(= Ujmmswm 5;).

There will be alignments which contain columns whose elements are all nulls (null

columns). If these null columns are removed from an alignment, the length,l', of the

alignment is reduced (l’ < l). Also, this alignment is a member of the solution set
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Sy. Thus, the set S; is a superset of the set Sp where l’ < l (Kim et al., 1994).

The number of alignments in S; can be calculated. Let N be the number of

sequences. Let n,— be the number Of nulls placed into the sequence a,- to bring it up

to the alignment length, 1. That is n,- = l — la... The total number of alignments S in

S; is

3m = ° : - ° (3.9)

"1 n2 "N

PTom equations (9) the number of alignments ,8 increases rapidly with each of

n.,l, and N.

To find the Optimal alignment, all the alignments in 51,“, should be investigated.

However, the sheer size of Si,” prohibits checking all possible alignments. Therefore,

if the length of the optimal alignment is larger than 1...“, the optimal alignment can

not be found in 51,”. In that case, the final alignment from RNASA is near optimal.

Solution set can be expanded with longer initial alignment. Increasing the solution

set further rarely leads to improvement, so such an alignment is generally optimal for

the given solution set. A2 and A4 in Figure 3.7 are the examples.

The SA time can be reduced by this approach.

Schedule for Temperature.

The schedule implemented in RNASA is T = T; - e‘ where e is a constant defining

the rate Of annealing, i the iteration number, T1 the initial temperature, and T the
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current temperature. The value Of 6 can easily be calculated from the total number

of iterations, k, the final temperature,T,, and T1:

«2 = (Ti/Tl)“ (3.10)

3.2.3 The Complexities of RNASA

Figure 3.3 shows the block diagram of RNASA.

The sum matrix in RNASA is of size l2. Therefore the space complexity of RNASA

is 00"). In each iteration, the sum matrix must be updated in the region correspond-

ing to the columns modified by the double shuffle Operation. The values of all sliding

windows covering these columns must be recalculated. The number of these windows

is approximately 1 times the number of affected columns. In the experiments pre-

sented here, the maximum number of columns affected by each shuffle is limited to 10

(Figure 3.2). Since the number Of columns affected is essentially constant, the time

complexity per iteration is 0(l). It should be noted, however, that the number of

iterations necessary to assure convergence is dependent on several factors, including

l.

3.3 Results

RNASA was implemented and tested on a DEC alpha workstation 3000/400 with

32MB main memory size and DEC OSF/l V2.0 which is a UNIX Operating system.
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begin RNASA

current.alignment (— Output generated by the heuristic algorithm;

/* Generate initial matrix and sum matrix */

For i=sequence 1 to n

For each nucleotide pair (j,k) in the sequence i

matrix(i, j, k) = 1 if pair(i,j) is in complementary set

matrix(i, j, k) = 0 if pair(i,j) is in not complementary set

summatrix(j, k) = sumJnatrix(j, k) + matrix(i, j, k)

end for;

end for;

/* Calculate the score of the sum matrix*/

Cinit = Z score(window)

/* Initialize parameters */

finalnlignment (— initial.alignmcnt;

Cmax ('- Ciniti C.curr'ent ‘- Cliniti T *- Tatar-ti

/* Annealing process */

while (T > Tm)

i (— random(sequence(1..n));

doubleshufl‘lefi) in Figure 3.2;

Calculate individual matrix i;

Calculate sum matrix;

Cm (— C(sum matrix);

if Metropolice conditions are satisfied then

current.alignment (- new.alignment;

if (Cm... > Cm) then

Cm {— Cm;

finalnalignment (— current.alignment;

end if;

end if;

T4—7-T,0<'7< 1;

end while;

Return finaLalignment, maximum score Cm and sum matrix ,-

end RNASA

 

Figure 3.3: The RNASA algorithm
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RNASA was written in programming language ANSI C (DEC OSF/1 C compiler).

The program will be available on request.

RNASA was implemented to produce multiple sequence alignments for RNA se-

quences. Experiments were performed on segments of bacterial 16S RNA sequences.

rRNA sequences consist of highly conserved regions separated by variable regions.

In these variable regions, secondary structure is often more conserved than primary

sequence similarity. Several such variable regions were chosen for testing RNASA.

A window size of four was applied in all experiments except 8., Ba, Ba, and B4 in

Figure 3.7.

3.3.1 Alignment and Secondary Structure.

Figure 3.4 shows an alignment of segment Of 16S RNA sequences and their possible

secondary structures. Three stem regions (A-A’ , B-B’ , C-C’) could be identified.

This alignment is close to the hand alignment in the RDP [51]. From the final sum

matrix, we could identify the common secondary structure (Fig 3.5 (b)) and could

overlay each aligned sequence onto this common secondary structures. Figure 3.4

(c) and (d) are the possible secondary structures of the sequence Ehr .bovis and

Hir .baltic in the alignment. These possible secondary structures are compared to

the proposed secondary structure Of Ag . tumefa7 [32] which is close to the aligned

sequences. These structures are matched well.

Figure 3.5 (a) shows an alignment Of a segment of ten 16S RNA sequences. The



Ehr.bovis

Sym.Mscfu

Sym.Trgr1

Sym.Trgr5'

Sym.Trgr6

Par.denitr

Ros.denitr

Hir.ba1tic

Erb.1ongus

R.sa1exige

Ps.diminut

Caw.FwC2

Afp.felis

Afp.c1eve

Figure 3.4: (a) Alignment Of segments of 15 163 RNA sequences and possible sec-

ondary structures. This region corresponds to nucleotides 996 to 1044 in E. coli 168

RNA. Left ( (, [, {) and right 0, ], }) parts of the alignment Show the possible

stem regions (A-A’ , B-B’ , C-C’). (b) Possible common secondary structure from

the alignment (a). (c) Secondary structure of Ehr.bovis based on (b). (d) Sec-

ondary structure of Hir.ba1tic based on (b). The symbol (0) indictes a G-U base

pair and (I) indicates A-U and G-C base pairs. Note that the length of the loop and
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A B B’ C C’ A’

(((((((< [[[fiif 111111] {{{{ }}}}))))))))

aUGAAGAUUagaUCCUCCUuaacAGGAGGGchAGch-gGCUGGGUCUUgCA

aUGGAAAUUauaCCUAUUCgaagGGAUAGGguCGGUuc-gGCCGGGUUUCaCA

aUGGAAAUCauaCCUAUUCgaagGGAUAGGgu-CchucggCGCGAUUUUaCA

aUGGAAAUCauaCCUAUUCgaagGGAUAGGguCGGUuc-gGCCGGAUUUUaCA

aUGGAAAUCauaCCUAUUCgaagGGAUAGGguCGGch-gGCCGGAUUUUaCA

aUCCCAGG-acc-GGCCCGgagaCGGGUC-uuUCACuucgGUGA-CCUGGaGA

aUCCUGUG-cua-ACCCNAgagaUCGGGN-guUCUCgcaaGAGA-CGCAGuGA

aUCCUAUG-cu-NACUCCAgagaUGGAGUA--U-C-uucg-G-A-CAUAGuGA

aUCCUAGGAcgguUUCUG-gaga-CAGACuccUUCCcuchGGGaCCUAGuGA

aUCCCGGGAcgacUUCCA-gage-UGGAUuuuUUCAcuchGUGACCCGGnGA

aUGCCUGG-a-cNGCCACGgagaCGUGGCUu—UCCCuucgGGGA-CUAGGaCA

aUGCCUGG-a-cCGCCACAgagaUGUGGNNu—UCCCuucgGGGA-CCAGGaCA

aUGUCCAGGaccGGUCGCAgagaUGUGACC--UUCUcuchGAGCCUGGAgCA

aUGUCCAGGaccGGUCGCAgagaUGUGACC--UUCUcuchGAGCCUGGAgCA

(a)

U A

0‘ A

c c\ A C

CungG U

, c . C. ‘A

A A

51‘??in E. 09699999 :
Accyucuas a"? ohAUAc- A,U-

39 U [G 3' U . Ic-

c O” U G. U

G C Gizu

k) ' is

base pair regions are variable for each sequence.



63

A I C C' I’ D D’ I l’ A’

«(tum « mm 1111)] >> > '«<««« »»»»> «(it )in) 111111)}

(((fiifimlflflf 111111!'I’I'I'I'I'I'I'<«««« >»»»» ((((( 1))” 11111111

3-P1will“

sec60001GGUUgGGgeIegCCCAUOgeeeClUGOGgueanaCCgAeugagCUCUAUGUAC~ugug-OUGUAUAGAG-gseaAGGGCInugGCCCU-GCCUUGAGen

3 1.bejece

azucuuooclflcgccgeuegcccA00gussetUGGGgIeeeeccgCeuaagCUlUlUUAUUCeueaaAGUO10161G-geaeGGCBCIuegOCOUCgIPCCULAGeg

Spi. splat:

uscCCCCUUGUUUGGgInagCUUGUOgeeaCAUAAGguaaaecCUAengegalflCUUUUAUCenaaBAUAAUAGAAggeeeGGCGCUouechCGUCGCAAGGGGen

Trp.Insole

uecCcUUUG6eUgGGgInagCCGGOAgeAAUACCGGguaanaCCgleueeggUCGGUl60cacggae-GCCACCGAgg-eeeGCGGCIIcgGCCGCg-CCBLAGGee

Trp. spat

useCCUUAGGeDgGGgauagCCACUIgeaaUAGUGGguaanaccgleugnggOUACCGGGC-ugug-GCCUIGUIAag-eeaflGAGCarunGCUCCgeCCUBAGGen

Spt. stones

uncCUUUAGGUUgGGgInagCCAUUAgseeULGOGGguaauaccgleuguggOUGCGGGGC-oung-GCCUUGUAAag-eeafidlc-snag-CUCC-GCCDGAAQen

Trpplus-d

useCCUUAAGeUgGGgIne¢CUCCUAgalanineAGguaaueCCgAenec-gCUUAUACGOenaeagCCGUIUAAOga-eeeBAGGCIgsgGCCllg-Cuuclccen

183

LP. .P gflGgaaaaCLCABAgaAAUUUGUngaenICDglengugecccuuccucoguag-CAGGipUUGguneee-GCA-gees-06c-GCUUUUAGen

Lpn.1111:1

ugcCCACGGAUG‘66gen-eccuuucgeeaGGAAGGgueauaccgCeueecACCAUOGUUACsac3601100100605:see-GCA-gcearOOC-¢UCUGUGOA‘

8p1.eurent

ugcCUGeCOGeDgGGganagCUUCUGgeesCACAGGguaaneccglenge-ACUGACGAGACunngGUUUUGUUAGU-eeeGGUOCIIcgOCACCgRQCBeCLceg

(a) l .

 

   

3. 5

A3 .A

E' C:

E a. v III.

0' I)

(b)

Figure 3.5: (a) Alignment of segments Of ten 16S RNA sequences and possible sec-

ondary structures. This region corresponds to nucleotides 133 to 229 in E. coli 16S

RNA. Left ( (, <, [, { ) and right ( ), >, ], } ) parts of the alignment show the

possible stem regions. (b) Real common secondary structure from the RDP. There

are different possible secondary structures in the Region B (in the Box). Note that

the length of the loop and base paired regions are variable for each sequence.
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possible secondary structure was compared to the proposed secondary structure of

Spi . aurant [32] which is closely related to the aligned sequences. ( second line in

the Figure 3.5 (a) ). The third line shows the possible secondary structure from the

alignment. A secondary structure diagram based on Spi . aurant is shown in Figure

3.5 (b). Fl'om the alignment and dot matrix, stem regions (A-A’ , C-C’ . D-D’ , E-E’

) were correctly aligned. However, in the region (B-B ’ ), there are different possible

stem regions with length=2.

3.3.2 Identification of Secondary Structures

An RNASA generated alignment of one variable region from eight 16$ RNA sequences

is shown in Figure 3.6. This region corresponds to nucleotides 61 to 106 in E. coli 163

RNA [32, 61, 88, 87].

Alignment A1 in Figure 3.6 was generated by a progressive pairwise alignment

method and used as an initial alignment for RNASA. This method aligns the se-

quences by primary sequence similarity. Therefore when the sequences are distantly

related, an alignment by this method does not show the secondary structure simi-

larity of the sequences. A2 in Figure 3.6 shows the final alignment obtained from

RNASA from initial alignment A1 . The primary similarity of the final alignment

Obtained from RNASA was much worse, but the secondary structure similarity Of the

final alignment was better than that of the input alignment. The final sum matrix

from the output alignment could be used to identify the secondary structures by in-

SPGCtion. This possible secondary structure was compared to the one of My: . xanthu



A1

Organism

Dsb.postga

Dss.variab

Dsn.acetox

Dnn.tiedje

ny.xanthu

Cys.fuscus

Con.crocat

Nan.exeden

A2

Organism

Dsb.postga

Dss.variab

Dam.acetox

Dmn.tiedje

ny.xanthu

Cys.£uscus

Con.crocat

Nan.exeden

A3

Dsb.postga

Dss.variab

Dsn.acetox

Dnn.tiedje

ny.xanthu

Cys.1uscus

Con.crocat

Nan.exeden

A4

Dsb.postga

Dss.variab

Dsm.acetox

Dnn.tiedje

ny.xanthu

Cys.£uscus

Con.crocat

Nan.exeden

Figure 3.6: Alignment Of segments of 168 RNA sequences. The names Of the used

16S RNA sequences are from RDP. This region corresponds to nucleotides 61 to

106 in E. coli 16S RNA. A1 is the alignment generated by the progressive pairwise

algorithm. A; is the final alignment generated by initial alignment A. using RNASA

with window size=4. A3 is a longer alignment generated by the progressive pairwise

algorithm. A. is the final alignment generated by the initial alignment A3 using

RNASA with window size=4. Left (D and right (]) parts of possible stem regions

(A, A’ , B . B ’) are symmetric. Upper case characters indicate possible secondary
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GUCGaacgagaaaGGGAUUGcuugCAAUCCCgaguagagUGGC

GUCGUacgagaacGCUCUAGcuugCUAGAGCaaguaaaGUGGC

GUCGaacgagaaaGUU---UCchgGGAAAUgaguagagUGGC

GUCGUacgagaaaCAUAUCNuuchGGUAUGgaguaaaGUGGC

GUCGagcgcgaaUAGG------GGcaaCCCUUAguagagCGGC

GUCGagcgcgaauGGA--------gcaaUCCuaguagagCGGC

GUCGUgcgagaaaGGG------CuuchCCchguaaaGCGGC

GUCGaachGCUAgca--------aUAGUC-------agUGGC

[[[[[ [[[[[[[ 111111] 111]]

GUCGaacgagaaaGGGAUUGcuugCAAUCCCgaguagagUGGC

GUCGUacgagaacGCUCUAGcuugCUAGAGCaaguaaaGUGGC

GUCG-aacgagaaaGUUUCch-gGGAAAUgaguagag-UGGC

GUCGUacgagaaaCAUAUCNuucgGGGUAUGgaguaaaGUGGC

GUCG-agcgcgaa-UAGGGGc-aaCCCUUA-g-uagag-CGGC

GUCG-agcgcgaau-GGA--gcaa--UCC-uaguagag-CGGC

GUCGUgcgagaaa--GGGC-uucg-GCCC--cgguaaaGCGGC

GUCG-a--ac--g-GGCUA-gcaa-UAGUC-a-----g-UGGC

GUCGaacgagaaa-G-GGA-UUGcu-ugc-AAUCCCgaguagagUGGc

GUCGUacgag-aacG-CUC-UAGcu-ugCUAGAGC-aaguaaaGUGGC

GUCGaacgagaaa-GUUUC-ngcG--GA-AAU---GaguagagUGGC

GUCGUacgagaaaCAUAUCNuucgG--GG-UAU-G-gaguaaaGUGGC

GUCGagcgcg-aa-------UAGGG--Gc-aaCCCUUAguagagCGGC

GUCGagcgcg-aa-------u-GGA-gc-aaUCC-uaguagagCGGC

GUCGUgcgag-aa-------a-GGGCuuc-gGCCC-cgguaaaGCGGC

GUCGaacg-G-GC 3 A--gc-aaU----AGU-CagUGGC
 

[[[H [[[[[[E 111111] 111]]

GUCG-aacg-agaaaGGGAUUGcu--ugCAAUCCCgaguagag-UGGC

GUCGUa-cga-gaacGCUCUAch-~ugCUAGAGCaagu-aaaGUGGC

GUCG-aacg-agaaa-GUUUCch---gGGAAAUGaguag-ag-UGGC

GUCGUa-cga-gaaaCAUAUCNuu--chGGUAUGgarguaaaGUGGC

GUCG-agcg-cgaa--UAGGGGc---aaCCCUUA-gu--agag-CGGC

GUOG-agcg-cgaau---GGA-gca--a-UCC---uaguagag-CGGC

GUCGUg-c-gagaaa--GGGC-nuc-g-GCCC--c-gguaaaGCGGC

GUCG-aac---g-----GGCUAgc-a-aUAGUC--------ag-UGGC

structure regions.
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whose secondary structure is known already and matched well.

3.3.3 Initial Alignment

Alignment A3 in Figure 3.6 was Obtained by progressive pairwise alignment. A3

is longer than A; because a lower penalty for nulls was applied in the progressive

pairwise alignment. Alignments A4 is the final alignment using RNASA with input

alignment A3. Alignment A. has more nulls than A2 and these additional nulls give

clearer resolution Of stem and loop regions. When an initial alignment is not long

enough, certain columns in a final alignment may contain bases in loop regions and

stem regions. Thus, it is important to ensure that the length of the initial alignment is

appropriate, based on the output alignment. Ishikawa et al. [38] and Kim et al. [45, 44]

have shown the advantages of using an initial alignment Obtained by heuristics in SA.

3.3.4 Window Sizes

Figure 3.7 shows the alignments obtained with different window sizes.

The alignments Bl, Ba, Ba and B4 in Figure 3.7 and A2 in Figure 3.6 were all

Obtained from the same initial alignment (A1 in Figure 3.6) by applying different

window sizes. Clearer separation of paired and unpaired regions was Obtained at

window sizes Of 4 to 5. The alignment A2 is the best match to the known alignment.

By increasing the window size, more weight can be given to windows having diagonally

consecutive hits. Therefore the efi'ect Of noise can be reduced.
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Bl

GUCGaacgagaaaGGGAUUGcuugCAAUCCCgaguagagUGGC

GUCGUacgagaacGCUCUAGcuugCUAGAGCaaguaaaGUGGC

GUCGaacgagaaa-GUUUC-chgGGAA-AUgaguagagUGGC

GUCGUacgagaaaCAUAUCNuucgGGGUAUGgaguaaaGUGGC

GUCGagcgcgaa-----UAGGG-GcaaCCCUUAguagagCGGC

GUCGagcgcgaa-----uG--GAgcaaUCC-uaguagagCGGC

GUCGUgcgagaaaGGGCuu-c--g--GCC-chguaaaGCGGC

GUCGaacg-G-GC----U-A---gc-aaU---AGU-CagUGGC

B2

GUCGaacgagaaaGGGAUUGcuugCAAUCCCgaguagagUGGC

GUCGUacgagaacGCUCUAGcuugCUAGAGCaaguaaaGUGGC

GUCGaacgagaaaGUUUC--chg-GGAAAUgaguagagUGGC

GUCGUacgagaaaCAUAUCNuucgGGGUAUGgaguaaaGUGGC

GUCGagcgcga-aUAGGG-Gc--aaCCCUUA--guagagCGGC

GUCGagcgcgaau-GGA--gc---aa-UCCua-guagagCGGC

GUCGUgcgagaaa--GG--GCuuch-CC-chguaaaGCGGC

GUCGaacg-GGC---UA--gc--aa--UA----GUCa-gUGGC

BS

GUCGaacgagaaaGGGAUUGcungCAAUCCCgaguagagUGGC

GUCGUacgagaacGCUCUAGcuugCUAGAGCaaguaaaGUGGC

GUCGaacgagaaa-GUUUC-chgGGAAAU-gaguagagUGGC

GUCGUacgagaaaCAUAUCNuucgGGGUAUGgaguaaaGUGGC

GUCGagc-gcgaa-UAGGG-GcaaCCCUUA--gu-agagCGGC

GUCGagc-gcgaau-GGA--gc-aa-UCC-uagu-agagCGGC

GUCGUgcgagaaa--GGGC-uucg-GCCC-c-gguaaaGCGGC

GUCGaa---cg---GGCUA-g-caaUAGUC------a-gUGGC

B4

GUCGaacgagaaaGGGAUUGcungCAAUCCCgaguagagUGGC

GUCGUacgagaacGCUCUAGcuugCUAGAGCaaguaaaGUGGC

GUCC-aacgagaaaGUUUCU-ucgGGAAAUgaguagag-UGGC

GUCGUacgagaaaCAUAUCNuucgGGGUAUGgaguaaaGUGGC

GUCG-agcgcgaa-UAGGGG-caaCCCUUA--guagag-CGGC

GUCC-agcgcgaa-u-GGA-gcaa-UCCua--guagag-CGGC

GUCGUgcgagaaa--GGGC-uucg-GCCC--cgguaaaGCGGC

GUCG----aacg--GGCUA-gcaa-UAGUC-ag------0660

Figure 3.7: Alignment Of segments of 168 RNA sequences with difierent window

sizes. Each alignment was Obtained after 300000 iterations. BI is the alignment with

window size=1. B: is the alignment with window size=2. 83 is the alignment with

window size=3. A2 in Figure 3.6 is the alignment with window size=4. B4 is the

alignment with window size=5. A2 in Figure 3.6 gives the best match to a known

smructure.
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3.3.5 Effect of Double Shuffle

To compare the efficiency Of the double shuffle and single shuflie, RNASA with double

shuflle and RNASA with single shuffle were tested with initial alignment A1 in Figure

3.6. Figure 3.8 Shows the annealing curves with single Shuffle and double shuffle.
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RNASA with single shufiie took longer to converge to the global maxima score

and had a tendency to stick to local maximum, even with a very large number Of

iterations.
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3.3.6 Speed of Convergence

The converging time necessary to get satisfactory alignment in RNASA is generally

tied to the number of sequences, length of sequences and heuristic algorithm.

e The length of alignment. It is clear that the converging time for longer align-

ments is longer than that of shorter alignments from equation (9). For example,

it took 12 minutes ( 0.3 million iterations ) to get A, and 1 minute ( 10,000

iterations ) tO get the alignments in Figure 3.7.

It took less than 10 minutes ( .3 million iterations ) to align first 10 sequences

in Figure 3.4 (a) (length-=53). However, it took 2hours ( 2 million iterations )

to align in Figure 3.5 (a) (length=107).

e The quality of initial alignment. The quality of initial alignment affects the

converging time. If the initial alignment is closer to the Optimal, it will require

less converging time. Figure 3.6 shows the importance of a good heuristic

algorithm.

e The number of sequences. It is clear that longer SA time is required for a larger

number Of sequences from equation (9). To align 14 sequences in Figure 3.4 (a),

it took approximately 20 minutes ( .5 million iterations ).

TO reduce the computational time, well-conserved regions may be fixed and only the

regions between the fixed regions annealed. Also, by eliminating well aligned regions

the length of long RNA sequences can be shortened and can then be aligned.
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3.4 Conclusion

In this paper, we describe a method to align RNA sequences and identify possible

secondary structures using Simulated annealing. In our approach, sequences were first

aligned based on primary sequence similarity and then realigned based on secondary

structure information. Dot matrices from intra-sequence comparison are generated

and overlapped to form a sum matrix. We built a clearly defined score function for

this sum matrix based on the probability of finding the Observed pattern in completely

unaligned sequences. We were able to reduce SA time by reducing the search space

as well as using the double shuflle move set. We showed that RNASA can generate

alignments with clear secondary structure identification.

The main advantage of RNASA is its ability to align conserved secondary struc-

tures in distantly related sequences. One potential disadvantage of this method is

that is is not based on finding the lowest energy secondary structure (via thermody-

namic energy rules). However, RNASA is able tO handle pseudoknotted structures

and conserved alternative foldings, both of which are not modeled well by most energy

based methods.

 



Chapter 4

Inferring Relatedness Of a

Macromolecule to a Sequence

Database Without Sequencing

Sequence database searches with unidentified sequence data have been a source of

useful information of identifying the biological information Of a macromolecule iso-

late. TO do the sequence database searches, the whole or part Of the primary sequence

information is required. However, in some situations, sequencing a macromolecule is

not practical. We need more crude but faster methods without sequencing an uniden-

tified macromolecule to identify the relatedness between database sequences and an

unidentified macromolecule. TO achieve this goal, we study the problem of Obtain-

ing biological information about a macromolecule isolate using only the restriction

pattern Of that isolate Obtained from digestion with enzymes and a database D of

71
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sequences. We investigate a three step approach to solving this problem. (1) we Ob-

tain a restriction pattern of the isolate while analytically deriving the corresponding

restriction maps of the sequences in the database. (2) We identify a set S Q D of

sequences which have restriction maps that are most similar to the unknown isolate’s

restriction pattern. This task is complicated by the fact that we have only approxi-

mate fragment lengths for the unknown isolate and that we do not know the actual

ordering of the unknown isolate’s fragments. Despite these difficulties, we derive

experimental results which indicate maximum matching techniques are efi'ective in

identifying the correct set most of the time. In this step we introduce Maximum Site

Matching Problem (MSMP) and show MSMP is in the class of NP—complete problems

which are conjectured to have no polynomial time solution. (3) We use the set S to

infer biological information (such as sequence information or hierarchical classifica-

tion information) about the unknown isolate. We demonstrate experimentally that

the closeness Of the sequences in the set S to each other can be used to infer the

relatedness of the unknown isolate to the sequences of the set S.
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4.1 Introduction

Sequence database searches have become a normal first step in the identification

and characterization of new macromolecule isolates. The information Obtained from

such database searches and comparisons Often yields novel insights into isolate origin,

function, and evolution. A number Of very good tools exist for searching sequence

databases, for example BLAST [2] and FASTA [65]. These tools can be very powerful

in rapidly discovering even weak similarities to a query. However, all of these database

search tools require that the molecular sequence Of the query be known.

Even though improvements in methods for nucleic acid and protein sequencing

have substantially reduced the cost Of Obtaining sequences, there are many situations

in which sequencing costs are still too high or the required specialized equipment is

just not available. Often, a researcher is able to Obtain more macromolecule isolates

than it is practical to sequence. Many of these isolates may be identical, and some

rapid method is needed to Obtain a set of unique isolates.

One simple method Of categorizing multiple isolates is to use the restriction pattern

obtained from digestion with certain enzymes (proteases and restriction endonucle-

ases). These enzymes typically cleave the macromolecular substrate at specific sub-

sequences. By comparing the pattern Of fragment lengths produced by the isolates,

sets Of non-identical patterns can be selected for further study.

At a further level of sophistication, the number of matching (same size) fragments

between patterns may be used to calculate a measure of (phylogenetic) relatedness
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between isolates [60, 76, 48]. If the positions of cleavage sites along the molecule

(cleavage site map) are known as well as the fragment sizes, then several more accurate

methods exist for estimate the relatedness between isolates [60, 15, 19, 37]. Some work

has been done on constructing cleavage site maps from digestion patterns [64, 24, 47,

17, 8, 30, 89], but this work typically assumes that there are overlapping fragments.

In our case, there are no overlapping fragments to guide us in constructing a cleavage

site map.

Cleavage site maps can be computed easily from molecular sequences. We are

interested in how such maps generated from a sequence database might be used to

help characterize a molecular isolate. Assume a cleavage pattern for a query molecu-

lar isolate (measured experimentally to within some expected limit of accuracy) and

a database containing sequences with varying degree Of sequence similarity to the

query isolate. We would like to be able tO extract the set of sequences with cleavage

site maps most similar to the (unknown) map of the isolate. A maximum number

of common sites between cleavage site maps is used as a measure of similarity. We

formalize this problem as Maximum Site Mapping Problem (MSMP) and demon-

strate the MSMP to lie in the class Of NP-complete problems conjectured to have

no polynomial time solution. To overcome this difficulty, we suggest a heuristic ap-

proach to solve a confined version of the problem. In addition, we would like some

estimate of how closely related these sequences are to our query molecule in terms of

sequence similarity or other biological measures. Related work has also been done in

identifying the location of restriction maps Of short query probes in longer restriction
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maps [56, 55]. However, this problem differs from ours in that the ordering of the

query fragments is known.

Grouping isolates by cleavage site maps may not be useful in itself, unless this

grouping implies some more standard measure Of relationship, such as primary se-

quence similarity. Although primary Similarity between two sequences can be used

to directly estimate the expected fraction Of shared enzyme sites, sequence similar-

ity can not be accurately estimated from the fraction of matching sites alone. Any

attempt at performing the reverse calculation requires some knowledge of the under-

lying distribution of similarity in the pool from which the two sequences were drawn.

This leads us to use experimental results for evaluating the effectiveness of different

methods of inferring information about a query isolate.

Similar work has been done in classifying unknown peptides by using mass pro-

files where the unknown peptide is digested by enzymatic or chemical means and the

masses Of the resulting fragments are determined by mass spectrometry [41, 75, 13].

However, when dealing with peptides, several problem parameters are quite different

than when dealing with nucleotides. First, the masses Of the resulting fragments can

be Obtained with essentially no error. Second, the masses reveal significant informa-

tion about the amino acid composition Of each fragment.

We perform our experiments using the Ribosomal Database Project (RDP)

database of bacterial 168 rRNA gene sequences [51]. This database is a member Of

a class Of databases containing sequences derived from that of an unknown common

evolutionary ancestor. In addition, the phylogenetic relationships of the sequences in
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the database have been estimated and are available from the RDP, as is a biological

classification scheme based on these relationships. Also, comparison of restriction

fragment patterns Of rRNA genes (rDNA) is an accepted method of discerning relat-

edness between isolates in micro-biological studies [57].

In this work, we present a method for finding the set Of database sequences with

the most sites in common with a query restriction fragment pattern. This method

uses sequences in the database as templates to assemble the fragments into putative

restriction site maps. The results Of this method are shown to be similar to results

Obtained when the exact fragment order is known for both the query isolate and the

database sequences. Also, a method to estimate the sequence similarity between the

query and database result set is presented. In addition, we demonstrate that the

results can be used to place the query in an existing biological classification scheme.

4.2 Methods

4.2.1 Overview

Our basic problem is to determine biological information such as primary sequence

information about an unknown query isolate q using a database D sequences. Fur-

thermore, we do not allow biological sequencing of the unknown query isolate q.

An overview Of the approach to solve this problem is given in Figure 4.1.

1. We use enzymes to obtain a restriction pattern Of the query isolate q. Simulta-
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Figure 4.1: The overall process of solving the problem.

neously, we analytically compute restriction maps Of all the sequences 8 6 D.

2. We then compute the closeness of the restriction map Of each sequence 3 E D

to the restriction pattern of q.

3. This closeness information is then used to infer biological information about q.

We describe each of these steps in more detail in the following sections.

We note here that our methods for completing each step, particularly the third

step, are dependent on the characteristics Of the database D. We first show that

analytical methods to infer the primary sequence similarity between the query isolate

q and any sequence 3 E D require a priori knowledge Of the relationship of the

underlying probability distribution Of the primary sequence similarity of any sequence

3 E D to the sequence of isolate q. Straightforward analytic methods are further

handicapped by the assumption that for closely related sequences 3, s’ 6 D, the

relationship of the restriction map of s to the restriction pattern of q is independent

of the relationship of the restriction map of s’ to the restriction pattern of q. As a

result, we experimentally evaluate different methods for inferring information about
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the query isolate q. Our experimental results demonstrate that effective inference

techniques do exist which utilize the set S Q D of sequences which have restriction

maps closest to the restriction pattern of q. This result has good consequences for

step two of our approach where we show that computing how close the restriction

map of any sequence 3 E D to the restriction pattern Of q may be computationally

difficult but that determining whether the restriction map of a sequence 3 6 D is

extremely close to the restriction pattern of q is computationally tractable.

4.2.2 Obtaining Restriction Patterns and Restriction Maps

The basic biological processing we perform on the isolate q is digestion by enzymes

which produces a restriction pattern of q. At the same time, we analytically compute

the restriction maps of all sequences 3 e D that would have been formed if we had

digested these sequences with the same enzymes. To facilitate later comparison of the

restriction pattern of q to the restriction maps of s 6 D, we assume that the database

sequences represent molecules with ends at positions homologous to the ends of the

query molecule. In practice, the end points of query molecules may be known if, for

example, they are produced by the PCR reaction using primers to conserved regions.

The primers define the query endpoints. For the specific RDP database, PCR is the

method of choice for isolating rRNA genes.

The two processes of Obtaining a restriction pattern of q and computing restric-

tion maps for s e D differ in their precision. Because computing the restriction

maps is analytical, we can compute the restriction maps exactly. However, while it
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is technically possible to measure the exact length of the restriction fragments of q,

the methods required are not suitable for a rapid, inexpensive screen. A more real-

istic assumption is that fragment sizes would be estimated by simple gel or capillary

electrophoresis; this leads us to assume that fragments f which have actual length If]

will be measured to have length between (1 - e)|f | and (1 + 6)]f |. In our experiments,

we estimate 6 to be 5%.

Definitions.

We now formally define the terms restriction map, restriction pattern, the closeness

Of two restriction maps, and the closeness of a restriction map to a restriction pat-

tern. We begin by defining restriction maps, restriction patterns, and the equivalence

relation that restriction patterns induce on restriction maps.

In the following definitions, 3 is a nucleotide sequence and z is an enzyme.

Definition 1 The restriction map M,(s) formed by digesting sequence 3 by enzyme 2

is the ordered multiset of fragment lengths where l,- > 0 for 1 g i _<_ n. We can obtain

the set of locations of cut sites

8: {s:s=2195,lj;1 S r 5 n}.

Definition 2 Let M,(s) = {11, lg, . . . , l,.}. We define the restriction pattern P,(s) to be

the unordered multiset Of fragment lengths {l1, l2, . . . , l,.}. We say that M,(s) yields

P,(3).

Note many different restriction maps yield the same restriction pattern. For exam-
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ple, if there are n different fragment lengths in P,(s), n! number of different restriction

maps can be generated from P,(s).

Definition 3 We define two restriction patterns to be isomorphic if they yield the same

restriction pattern. We denote the set of isomorphic restriction maps which yield the

restriction pattern P,(s) with the notation [P,(s)].

For example, the restriction map {100, 200,300} and {300, 200, 100} are isomor-

phic but neither is isomorphic to the restriction map {100, 200, 100, 200} It is not

hard to see that this isomorphic relation defines an equivalence relation on the set of

restriction maps.

We now define closeness metrics for restriction maps and restriction patterns.

First, we need some notation. Let sites(M, (3)) denote the number of cleavage sites

in the restriction map M,(s). Let sites([P,(s)]) denote the number Of cleavage sites

in any of the restriction maps in P,(s). Note sites(M,(s)) and sites([P,(s)]) is one

less than the number Of fragments in M,(s) and P,(s).

Definition 4 We define a common site in sequences a and b to be a cleavage site that

appears in the same nucleotide position in both a and b. Let common(M,(a), M,(b))

denote the number Of common cleavage sites in the restriction maps M,(a) and M,(b).

Let maxcommon(M, (a), P, (b)) denote the maximum number of common cleavage

sites in any restriction map in [P, (b)] and M,(a).

Definition 5

We define the closeness of the two restriction maps, denoted closeness(M,(s), M,(3’)),

to be max(sites(M, (3)), sites(M,(s’)))-common(M, (s), M,(3’)). We define the close-
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ness Of a restriction map to a restriction pattern, denoted closeness(M, (s), P,(s’)),

to be max(sites(M,(s), sites(P,(s’)))-

maxcommon(M,(s), P,(s’)).

Definition 6 We define the set of sequences 0(q, D, j) Q D to be the sequences 3 E D

such that closeness(M,(s), P,(q)) S j.

Example Figure 4.2 explains the above definitions. (a) shows the restriction map

M,(a) = {100,500, 400} for sequence a. (b) shows the restriction pattern P, (b) =

{100, 200, 300, 400} for b. max(sites(M,(a)),sites(M,(b))) is 3. (c) shows the

maxcommon(M,(a), P,(b)) = 2. Clearly, the closeness(M,(a), P,(b)) is 1.
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Figure 4.2: (a) Restriction map for a. (M,(s) = {100,500,400}. (b) Restriction

pattern for b. (P,(b) = {100, 200, 300, 400}. (c) maxcommon(M,(a), P,(b)) = 2 with

common sites c1 , 0,.

4.2.3 Computing Closeness

Step two Of our approach is computing closeness (M, (s), P, (q)) for each sequence

3 6 D. While we show that this problem appears to be a computationally intractable,
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we describe how we can efficiently determine if closeness(M,(s), P,(q)) = k where

k=0,l or 2. This allows us to compute the set C(q, D, k) which is sufficient for step

three Of our approach.

We first observe that the problem Of computing closeness(M,(sl),M,(sg))

reduces to the problem Of computing common(M,(sl), M,(sg)) and the prob-

lem of computing closeness(M,(sl), P,(sg)) reduces to that Of computing

maxcommon(M,(sl), [P,(32)]). We next note that the second problem, computing

maxcommon(M,(sr), [P,(s,)]), is NP—complete via a reduction from the 3-Partition

problem. The formal proof is as follows:

Maximum site matching problem: We have as data the restriction pattern

from a sequence a and restriction map from a sequence b when a same enzyme is

used, say,

Restriction pattern M(a) = {a,- : 1 g i S n} from the digest Of sequence a

Restriction map P(a) = {b.- : 1 s i 5 m} from the nucleotide sequence b

In general M(a), P(b) will be multisets; that is, there may be values of fragment

lengths that occur more than once. The lengths of sequences a and b is

= : a,-= Z 05 (4.1)

Given the above data the problem is to find orderings for the set M(a) such that the

number Of common sites implied by this ordering is maximum.

Let 5,. the set of all permutations Of M(a). For a 6 Sn calls a configuration. By
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ordering M(0) according tO a, we obtain the set Of locations of common cut Sites

S = {s : s = lejgagu) and s = Zlggmbjio _<_ r g n,0 S t 5 m}.

Since we want to record only the location of cut sites, the set S is not allowed

repetitions, that is, S is not a multi-set. Now label the elements Of S such that

S={3,-:Osj5k} (4-2)

with s.- g s, and 0 _<_ k _<_ min(m,n). The problem is to find a configuration with

maximum 1: common sites.

Theorem: Maximum site matching problem is NP-complete.

Proof: Assume k be the the number of maximum common sites between M(a) and

P(b). It is clear that the problem as described above is in NP, as a nondeterministic

algorithm need only guess a configuration a and check in polynomial time if 1: common

sites exist. The number of steps to check this is in fact linear. To show this problem

is NP complete we transform the 3-Partition problem to this problem.

In the 3-Partition problem, known to be NP-complete, we are given a finite

set M(a) Of 3m elements, a positive bound C, and a positive integer s(a) for

each a 6 M(a) such that C/4 < s(a) < C/2 and such that 2,61%.) s(a) =

mC. We wish to determine whether M(a) can be partitioned into m disjoint

sets M1(a),M2(a),...,M,,.(a) such that, for 1 5 i 5 m, Bag-M,(awm) = C. If

Eng-M(a) s(a) = L is not divisible by m, or |M(a)| is not divisible by three, there can

be no disjoint sets M1(a), M2(a), . . . , M...(a); else, consider as input to this problem
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the data

M(a) = {s(a,) :1 5 i 5 3m}

P(b) = {0,c,---,0}

This is simply this problem in the case when the set M(b) has m fragments of equal

length and maximum common sites I: = m — 1.

Heuristic Solution for MSMP.

As a result, we have focused on a restricted version Of this problem which can be

solved in polynomial time. In particular, we give a simple polynomial time algorithm

which solves the decision problem, “Is closeness(M, (s), [P,(q)]) = k?” where k=0,1,

or 2. We can apply this algorithm to all sequences 3 e D to efficiently compute the

set C(q, D, k).

We first simplify the problem by Observing the answer is no unless sites([P, (q)]) -

2 S sites(M,(s)) 5 sites([P,(q)]) + 2. In other words, we try to find the answer

for closeness(M,(s), [P,(q)]) = k where k = 0, 1,2. Thus, we need only consider

sequences s 6 D which satisfy the constraint sites([P, (q)]) - 2 5 sites(M,(s)) S

sites([P,(q)]) + 2. Next, if s and q have the same number of sites, say n, we Observe

that for these sequences 3, the answer is yes if and only if P, (s) is identical to P, (q)

assuming that the fragment lengths are exact. This is easily solved in 0(n log n)

time by sorting both multi-sets of fragment lengths and verifying that the if” shortest
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database fragment length matches the if” shortest query fragment length for 1 5

i 5 n. If the answer is yes, which means closeness(M,(s), [P,(q)]) = 0, we stop. If

the answer is no, any two fragments from P,(s) and P, (q) are selected and merged

into a longer fragment. Let P,(s)’ and P, (q)’ be new restriction patterns. Again

we observe the answer is yes if and only if P,(s)’ and P,(q)’. If the answer is yes,

which means closeness(M,(s), [P,(q)]) = 1, we stop. If the answer is no, any two

fragments from P, (s)’ and P, (q)’ are selected and merged into a longer fragment. Let

P,(s)” and P,(q)” be new restriction patterns from P,(s)’ and P,(q)’. We Observe

the answer is yes if and only if P,(s)” and P,(q)". If the answer is yes, which means

closeness(M,(s),[P,(q)]) = 2, we stop. If sites([P,(q)]) and sites(M,(s)) are not

same, fragments in a restriction pattern with a larger number of sites are merged

to be the same number of fragments for both patterns and the answer is checked.

Assume sites([P,(q)]) = n and sites(M,(s)) = m. The number of ways Of merging

n

the fragments into n - 1 is . The number of ways Of merging the fragments
2 .

n n - 1

into n — 2 is approximately . However, only consecutive fragments

2 2

in s can be merged into a single fragment. The number of ways Of merging the

fragments into m — 1 is (m — 1) . The number of ways of merging the fragments into

m - 2 is approximately (m - 1)(m - 2). Therefore in worst case, we have to examine

n n n - 1

closeness(M,(s), [P, (q)]) approximately 1+ x (n-l)+ x (n—

2 2 2

1)(n - 2) cases. These merging process and examining closeness(M,(s), [P,(q)]) = k

where I: = 0, 1, 2 require polynomial time.
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While we observe closeness(M,(s), [P,(q)]) = k, we assume the fragment length

in q are exact. However, while the set of fragment lengths for P, (s) where s 6 D may

be computed exactly, the fragment lengths for P, (q) are only approximate. We only

know that the actual length of fragment f ranges between (1 - e)|f | and (1 + 6)]f |.

Thus, we must relax our ”yes” condition. In particular, we must consider the length

of a query fragment f, to be identical to the length of any database fragment f, if

(1 - 6)]qu S f. .<. (1 + Ellfql-

Ideally, we would like to find the sequences 3 e D such that

closeness(M,(s), M,(q)) = 1:. However, our data is imprecise in two ways which

complicates this task. First, we have only P, (q), not M, (q). Second, we have only

the approximate lengths, not the exact lengths, of each query fragment. The natural

question to ask is, how much do these data imprecisions affect the correctness Of our

algorithm? We perform some experiments with the RDP database to show that these

imprecisions do not seriously affect the accuracy Of our algorithm. These experiments

and results are presented in section 1.5.

4.2.4 Inferring Information from Closeness

We now consider the problem Of inferring information about the isolate q from the

closeness information we have computed. We first describe analytic methods for

inferring information about q given closeness(M, (s), P,(q)) for any 8 E D. Unfor-

tunately, these techniques have three drawbacks which limit their applicability to

biological databases such as the RDP database. First, the analytical methods require
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some a priori knowledge on the relationship between q and D such as the distribution

of similarities between elements Of D and q. Second, the analytic methods typically

assume sequences evolve and change only through mutation or substitution; that is,

insertions and deletions of nucleotides are typically not modeled. Third, the analytic

methods typically assume that two sequences 3, s' E D vary from s(q) independently,

even if we know 3 and s’ are biologically similar. For these reasons, we are forced

to evaluate our methods of inference experimentally. We describe a basic heuristic

approach and experimentally verify the applicability Of this approach.

Theoretical Models.

In this section, we describe two methods for using closeness(M,(s), P,(q)) to infer

primary sequence information about q. In both methods, we assume that we actually

have closeness(M,(s), M,(q)) instead of closeness(M,(s), P,(q)).

1. Nei and Li’s approach. The first method is based upon the work Of Nei and

Li [60]. The basic assumption in this model is that all the sequences in D and

the underlying sequence s(q) of isolate q are derived from a common ancestor.

Sequences diverge over time via a Poisson process as nucleotides mutate. As

time goes on, the number of shared sites between q and s typically decreases

as more and more nucleotides mutate. Nei and Li developed methods for using

the number Of common sites present in s and s(q) to determine the amount Of

time that has progressed since 8 and s(q) shared a common ancestor. Using

the Poisson process, it is then possible tO compute the number of changes that
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have occurred in each nucleotide position from the common ancestor to both 3

and s(q). This can then be used to estimate the primary sequence similarity

between 3 and s(q).

. Bayesian analysis. The second method is based upon Bayesian analysis. Given

the primary sequence similarity a between 3 and s(q) and the assumption that

each nucleotide position in s is identical to the same nucleotide position in s(q)

with probability a, we can compute the probability distribution on the random

variable that represents the number of sites common to both restriction maps.

However, in our setting, we actually have the number of common sites shared

by the restriction maps of s and s(q), and we desire to compute the primary

sequence similarity or between 3 and s(q). If we are also given the fact that

the primary sequence similarity between 3 and s(q) is drawn from a known

probability distribution X, we can compute a probability distribution on or

using a Bayesian analysis. Detailed analysis is as follows.

Notations

q is the query sequence and d is a databwe sequence.

0: denotes the sequence similarity between q and d.

r is the length of the restriction enzyme used.

n, denotes the number of restriction sites in q. i n“ denotes the number Of

shared restriction sites in q and d.

p = a', where p is the probability of getting a same shared restriction site.
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The random variable n4... is simply the binomial random variable with parame-

ters (n,, p). Thus the mean Of n“ is simply pnq and the variance is nqp(1 — p).

We are more interested in the reverse direction which is deriving a value of

a given an Observed value b for a“. That is, we are interested in the condi-

tional random variable (a | n4... = b). We can apply Bayesian analysis to get a

probability distribution on this conditional random variable. That is, we know

that

P(nM = b I a = a) = (12') a‘b(l - a4)“"‘b.

Thus, the probability that a is in the range al to a; is simply

{:3 (mean - a4)"r"’da

It ('r)a“(1 — .4)..-th '

 

Unfortunately, both Of these methods have several flaws which limit their appli-

cability to biological databases such as RDP. First, the assumptions on evolution are

too restrictive. In both cases, only mutations are considered; insertions and deletions

are not allowed. Fhrthermore, both models assume that nucleotides mutate with a

given probability distribution which we have access to. This is an extremely strong

assumption which does not seem to be justifiable in a general setting. Finally, the

Bayesian analysis method does little to account for the fact that biologically similar

sequences s and s’ are likely to either both share a site with s(q) or both not share a

site with s(q). For these reasons, it seems unlikely either method can be used in gen-

eral database settings reliably. Indeed one fundamental assumption that is shared by
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both models is that the number of common sites Shared by sequences 3 and s(q) is a

binomial random variable with p based upon the primary sequence similarity between

3 and s(q). Our experiments with the RDP database in the results section indicate

the number of common sites does not seem to follow this binomial distribution.

As a result, we explore other methods for inferring information about s(q) and

use experimental means tO evaluate these methods.

Closest Sequence Methods.

In this section, we focus on using the set Of sequences C(q, D, lc) for lc=0,1 or 2 to infer

information about the query isolate q. The basic premise behind this method is that

sequences which have primary sequences that are most identical to s(q) are the ones

most likely to be in the set C(q, D, k). The extended premise is that the similarity

of s(q) to any sequence in C(q, D, k) is, with high probability, lower bounded by the

maximum pairwise dissimilarity between any two sequences in C(q, D, k).

We use this basic premise with two different biological metrics of similarity. The

first metric is primary sequence similarity. We say that two sequences 8 and s’ have

primary sequence similarity sim(s, s’) = a for 0 5 a 5 1 if lOOa% of the correspond-

ing nucleotide positions in s and s’ are identical. Define sim(q, C(q, D, k)) to be the

quantity min,ec(q,p,,) sim(q, 3).

Example Let q be the query and the set C(q, D, 0) = {31,32,33}. Assume 90% =

sim(q,sl), 80% = sim(q,s2), 85% = sim(q, s3). Then the lowest primary similarity

between q and C(q, D, 0) is sim(q, C(q, D, 0)) = 80%
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The second metric is a biological family similarity that is based on a biological

classification hierarchy for the database D. Each sequence in D is classified by an 2:

digit number for 1 5 x 5 5 (note each digit may have a different range of values).

In addition to the rRNA sequence database, the RDP also distributes phylogenetic

information inferred from these sequences. This includes a five level hierarchical

classification scheme consistent with the inferred phylogeny. For example, by this

classification scheme, E. coli is classified as:

e First level 2 BACTERIA

e Second level 2.13 PURPLEBACTERIA

e Third level 2.13.3 GAMMASUBDIVISION

e Fourth level 2.13.3.15 ENTERICSANDBELATIVES

e Fifth level 2.13.3.15.2 ESCHERICHIASALMONELLAASSEMBLAGE.

We say that two sequences s and s’ have level similarity level(3, s’) = i if

their classifications are identical to the i“ digit. Define level(C(q, D, k)) =

min..,,jgc(,,p,,) level(s,-, s,). Finally, we define level(q, C(q, D, k)) to be the quantity

min,gc(q,p,,) level(q, s). The extended premise implies that level(C(q, D, k)) lower

bounds level(q, C(q, D, k)) with high probability.

Example Let q be the query and the set C(q,D,0) = {31,32,33}. Let q be

a level 2.1.10.5 and level(sl)=2.1.7.5, level(s2)=2.1.7.1, level(sg)=2.1.7.6. Then

level(C(q, D, 0))=2.1.7 and level(q, C(q, D, 0))=2.1.
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If the extended premise is true and if both sim(C(q, D, k)) and level (C(q, D, k))

are high, we can, with high confidence, infer fairly precise primary sequence informa-

tion or classification information about q.

In general, it seems that sim(q, C(q, D, k)) and level(q, C(q, D, 1:» should increase

if the number of cleavage sites in P, (q) increases. That is, it seems unlikely that

dissimilar sequences will have restriction maps that are close to that of q. On the

other hand, it also seems likely that sim(q, C(q, D, k)) and level(q, C(q, D, 1:» will

decrease in size as the number of cleavage sites in q increases. These relationships,

however, are difficult to analyze mathematically, and thus it is difficult to generate

conditions where our technique will be effective. As a result, we experimentally

evaluate this basic procedure. As we see in the next section, our experiments indicate

this method can be used to efl'ectively infer useful information about roughly half the

sequences in RDP and that the error rate is quite small.

4.3 Results and Discussion

4.3.1 Experimental Procedure

The sequence data used in this study was Obtained from the Ribosomal Database

Project (RDP) (release number 5 of May 17, 1995 [51]). The RDP provides curated

databases of ribosomal RNA related information and analysis services. The database

used in this study was a subset Of the bacterial 16S rRNA database distributed
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by the RDP. This database contains 16S rRNA sequence information from about

3000 different bacterial isolates and environmental samples. These sequences are

distributed by the RDP as pre-aligned sequences with alignment gaps inserted so that

homologous residues appear at the same position in all sequences. This alignment

was produced by the RDP curators using, in addition to primary sequence similarity,

secondary structure and other higher-order information. Inspection of the alignment

indicates that highly diverged regions are often aligned tO conserve putative secondary

structures without regard to primary sequence. Most of the sequences in this database

are incomplete, usually at the two ends. TO construct the subset used here, incomplete

sequences were removed after first selecting the region corresponding to positions

46 through 1406 of E. coli [9]. The resulting database contained 1575 sequences.

Sequence similarity values were calculated for all pairwise combinations of the 1575

sequences. The similarity values clustered around the mean value of 72% identity,

with a tail stretching toward higher similarity values (Figure 4.3).
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Figure 4.3: Pairwise sequence similarity. The pairwise sequence similarity was de-

termined for all pairwise combinations of 1575 sequences in the test database. Only

sequence regions considered in further analysis were included. The similarity of the

aligned pairs was determined using the pre-aligned sequences supplied by RDP.
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site seq.no site seq.no site seq.no site seq.no

1 6 11 695 21 10 31

2 19 12 727 22 5 32 1

3 86 13 587 23 1 33

4 236 14 429 24 1 34

5 403 15 331 25 1 35

6 626 16 188 26 1 36

7 855 17 80 27 37

8 893 18 49 28 38

9 835 19 22 29 39

10 779 20 9 30 40         
 

Table 4.1: Sequences by number of sites

Five separate restriction map data sets were computer generated from the 1575

sequences. For each data set, positions matching recognition sites from two com-

mercial restriction enzymes were identified and the length between sites calculated

(after removing alignment gaps). Ambiguity codons in the database sequences were

treated as not matching any recognition site. The recognition sites (enzymes) chosen

to generate the five sets were: AGCT -i- CATG; CCGG + AATT; CTAG + GATC;

GTAC + TCGA; and TTAA + ATAT. The average number of sites in the combined

7875 digests was 9.74 with a median of 9 (Table 4.1).

The maps in a data set were chosen one at a time as queries and are considered as

restriction patterns. When a query had a result set C(q, D, 0), this query did not used

for the calculation Of C(q, D, 1). When a query did not have a result set C(q, D, 0),

this query was used as a query for the calculation OfC(q, D, 1). This process continued

until I: = 2 for single enzyme, 1: = 4 for multiple enzymes. To simulate experimental

data, the fragments sizes of the query were assumed to be accurate to only +/- 5%.

The result set of database sequences where all sites could be matched was deter-

mined for each query, assuming the fragment order for the query was known (ordered
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query). These result sets were compared with the expected results calculated using

the exact site positions from the aligned sequences. These ordered query result sets

were missing one or more sequences found using pre-aligned sequences in 836 of the

7875 trials (10.6%). In addition to base changes (point mutations), rRNA genes have

accumulated insertions and deletions over the course Of evolution. These insertions

and deletions may have caused homologous fragments to no longer have sizes within

the 5% error bound. The result of these size changes is apparently to cause pattern

mismatches over shorter evolutionary distances than would be predicted from site

conservation alone.

Another 580 of the 7875 trials (7.4%) produced result sets with extra sequences.

Some of these extra matches may be due to peculiarities in the RDP alignment

causing occasional site mismatch when comparing aligned sequences; however some

extra matches are probably due to matching Of non-homologous sites within the 5%

error bound for the ordered query tests. Even if all of the additional matches are due

to incorrectly pairing non-homologous sites, the percentage of query results affected

is still relatively small.

The trials were repeated without assuming the order of query fragments was known

(unordered query). Any difl'erences in result sets between ordered and unordered

queries represent incorrect pairing of non-homologous regions between query and

database sequences (incorrect ordering). Only 263 of the 7875 trials (3.3%) produced

result sets with extra sequences not in the ordered query result sets. However, if

mismatches were allowed in the site matching, the results deteriorated. When up
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to one query and/or database Site mismatch was allowed, 36.3% of the unordered

result sets contained sequences not in the ordered query result sets. When up to

two query and/or database Site mismatches were allowed the percentage Of result sets

with incorrect matches increased to 88.4%.

4.3.2 sim(q, C(q, D, 19))

Number of mismatches (k). The lowest primary similarities between query and

sim(q,C(q, D, k)) with k=0,1,2, were calculated as in Figure 4.4. The error bounds

were fixed with 5% for k=0,1,2 in the experiments. The values Of sim(q, C(q, D, k))

were dependent, as expected, on the number of sites in the query and the number

of mismatched sites, In, between query and result sets. The values increase when the

number of matched cleavage sites increases. The value Of sim(q, C(q, D, k)) with given

cleavage sites decrease when It increases. For example, the values Of sim(q, C(q, D, 0))

are higher than 90% when the number of cleavage sites is larger than 6. The numbers

of required cleavage sites for the values of sim(q, C(q, D, 0)) which is higher than 90%

are 12 for k=1 and no site for k=2.

Error bounds. sim(q, C(q, D, k)) for different error bounds (10%, 15%, 20%) was

calculated as in Figure 4.5. In the experiments, the value of I: was set to 0. The

values of sim(q, C(q, D, k)) were dependent, as expected, on the error bounds of the

query fragments. The values increase when the sizes of the error bound decrease.

For example, the values Of sim(q, C(q, D, 0)) for 5% error bound are higher than 90%

when the number Of cleavage sites is larger than 6. The numbers of required cleavage
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Figure 4.4: sim(q, C(q, D, k)) for k=0,1,2 with 5% error bound, These results are

shown by number of query sites as mean and range, after discarding the 5% highest

and lowest values. Bar chart at bottom indicates the number of queries with result

sets with size greater than one. The y axis of the first diagram shows the primary

similarity between query and result set. The y axis shows the number of query

sequences. A site with the number of query sequences 5 10 is eliminated.
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than one. A site with the number of query sequences 5 10 is eliminated.
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sites for the values of sim(q, C(q, D, 0)) 2 90% are 8 (for 10%), 10 (for 15%), 16 (for

20%).

Multiple enzymes. To increase the values of sim(q, C(q, D, 19)), multiple enzymes

were applied to each query. The result set for each enzyme is Obtained and C(q, D, k)s

for each result sets were calculated. Let C(q, D, k)A and Cg(q, D, k)g be the results

using two different enzymes A and B with same q and D. First, we calculate the

common set of C(q, D, k1)... and 02(q, D, k2)3, which is C(q, D, k1 + k2)AB. The

values Of k1 + k2 are 0 thru 4. Then we examine the value Of C(q, D, k1 + k2)“.

Figure 4.6 shows the results.
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Figure 4.6: sim(q, (C(q, D, k1 + k2))43 for k; + k2=0 thru 4 with 5% error bound and

two enzymes. These results are shown by number of query sites as mean and range

after discarding the 5% highest and lowest values. Bar chart at bottom indicates the

number of queries with result sets with size greater than one. A site with the number

of query sequences 5 10 is eliminated.

All the values of sim(q, (C(q, D, k. + k2)) are higher than sim(q, (C(q, D, k)), as

expected, when the values of k1 + kg and k are same.

4.3.3 level(q, C(q, D, k))

In addition to aligned rRNA sequence databases, the RDP also distributes phyloge-

netic information inferred from these sequences. This includes a hierarchical classi-

fication scheme consistent with the inferred phylogeny. At the most basic level, all



102

 

 

 

=0

x 1 2 3 4 5

t, 146 47 360 351 3065

r, 146 46 354 347 2898

hit ratio 100.0 97.9 98.3 98.9 94.6 ‘

k=1

 

 

x 1 2 3 4 5

t, 446 128 373 148 1239

446
 

 

 

r, 125 362 133 1036

hit ratio 100.0 97.? 97.1 89.9 83.6

=2

x 1 2 3 4 5

t, 552 97 140 39 340

r, 552 88 127 35 221

hit ratio 100.0 90.7 90.1 89.7 65.0

        
 

Table 4.2: Hit ratios for each It. 5% error bound. ~

sequences tested here are members of category 2, the Bacteria. There are 15 cate-

gories at the next level (2.1 through 2.15), 24 at the third level, 94 at the fourth, and

99 at the fifth and highest level. Not all sequences are categorized to all five levels,

we assumed an implied category of 0 for all undefined levels.

Number of mismatches (k). The minimum common digits in the levels Of q,

level(q, C(q, D, k)) with k=0,1 or 2, were calculated as in Table 4.2. The error

bounds were fixed with 5% for k=0,1,2 in the experiments. We define hit ratio

tO use as a measure of accuracy of this method. Let t, be the number of queries with

level(C(q, D, k)) = x and r, be the number of queries with level(q, C(q, D, k)) = x

Then hit ratio for xth level is

h, = (r,/t,) x 100(%) (4.3)

The hit ratio decreases when It increases. For example, the value of ha are 94.6% for

k=0, 83.6% for Ic=l, 65% for k=2.
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error bound=10%
 

I

3:

rx

1

453

453 .

2

128

120

342

332 328

2924

2731
 

hit ratio 100.0 97.9 98.3 98.9 94.6
 

error bound=15%
 

3

t:

r:

l

776

776

2

229

213

3

451

436

4

305

291

5

2809

2418
 

hit ratio 100.0 93.0 96.7 95.4 86.0
 

error bound=20%
 

x

t:

7':

l

1419

1419

2

399

353

3

539

507

4

278

257

5

2565

1919
 

hit ratio 100.0 88.5 94.1 92.4 74.8        
Table 4.3: Hit ratios for difl'erent error bounds.

Error bounds. Hit ratios for different error bounds (10%, 15%, 20%) were calcu-

lated as in Table 4.3. In the experiments, the value of I: was set to 0. It is clear that

the hit ratio decreases when the error bound increases. For example, the value of hr,

are 94.6% for 5%, 94.6% for 10%, 86% for 15%, 74.8% for 20%.

Multiple enzymes. To increase the values of level(q, C(q, D, 1:», multiple en-

zymes were applied to each query. The result set for each enzyme is Obtained and

C(q,D,k)s for each result sets were calculated. Let C(q, D, In)A and C(q, D, k2)3

be the results using two different enzymes with same q and D. First, we calculate

the commonly matched sequences C(q, D, k1 + k2)”. Then we examine the value Of

level(q, (C(q, D, k1 + kg”). Table 4.4 shows the results.

The hit ratio Of multiple enzymes is much higher than single enzyme as expected.

For example, the values of hr, for 0 thru 4 are 99.0%, 96.2%, 89.1%, 75.9% and 58.4%.
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k1 + k2 =0

:1: l 2 3 4 5

t, 4 53 4495

r, 4 53 4450

hit ratio l. 100 120‘ 99.0

k; + k2 =1 _— _

x 1 2 3 4 5

t, 4 3 132 180 3354

r, 4 3 132 179 3222

hit ratio 100.0 100 99.6 99.0 96.1

k1 + k2=2

x 1 2 3 4 5

t, 24 15 259 200 2178

r, 242 15 258 198 1940

hit ratio 100 100 99.6 99.0 89.1

k1 + k2=tll

x 1 2 3 4 5

t, 68 41 183 86 1093

r, 68 41 171 80 830 ‘

hit ratio 100 100 93.4 93.0 7—59‘

*1 "I" kg :4

x 1 2 3 4 5

t, 45 32 72 23 519

r, 45 26 61 15 303
        hit ratio 100 81.2 84.7 65.7 58.4

Table 4.4: Hit ratios for each k1 + kg. 5% error bound.
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4.3.4 Ordered. vs. Unordered

When we compute sim(q, C(q, D, k)) for It > 0 we allow the merges of fragments in q

and/or s E D to reduce the number Of fragments. We know the order of the fragments

in 8 while we don’t know the order Of the fragments in q (unordered). Only consecutive

fragments in s are allowed to be merged while any combination Of fragments in q are

allowed to be merged. This additional information (order of fragments) gives us more

accurate results. We compare sim(q, C(q, D, 2)) with two different cases. Let m be the

number Of fragments in q and n be the number of fragments in s. sim(q, C(q, D, 2))

can be calculated when m = n + 2 or n = m + 2. Let sim(q, C(q, D, 2),) be the

result by merging the fragments in q and sim(q, C(q, D, 2),) be the result by merging

the fragments in s. Figure 4.6 shows the difference between sim(q, C(q, D, 2),) and

sim(q, C(q, D, 2),). level(q,C(q,D,2),) and level(q,C(q,D,2),) are calculated by

 

   

100 r r r

95- . _-

90» q”—~
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75— _

7o- -

65

60 I I I

o 5 10 15 20
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Figure 4.7: sim(q, C(q, D, 2)), and sim(q,C(q,D,2llr with 5% error bound. The y

axis of the diagram shows the primary similarity between query and result set. The

curve ”8” is generated by merging s and the curve ”q” is generated by merging q.

doing same process. Hit ratio for each level is calculated. Table 4.5 show the hit

ratios of level(q, C(q, D, 2),) and level(q, C(q, D, 2).).



 

Table 4.5: Hit ratio of level(q, C(q, D, 2),) and level(C(q, D, 2),)

4.3.5 Simulation of Random Database

To confirm our method can be applied to other databases, we generated random

databases and applied our method and checked the results. To simulate the evolu-

tionary procedure, one original sequence, 8}, is generated randomly. 8: denotes xth

random sequence of yth level. Two random sequences, 9], sf are generated from so

with a similar to so. Again, four random sequences, 3;, ..., s; are generated from s], sf

with u percent similar to origin sequence. We call u as uniform edge length. This

process continues until 2048 (sh, ..., sfi“) random sequences are generated. The final

2048 random sequences are considered as database sequences. The whole random

sequences resemble binary tree structure. Ten random databases with uniform edge

length u are generated with different orders Of random seeds and different values of

u. get random database with different uniform primary similarity.

Same five set of enzymes as in experiment of RDP are applied to ten random

databases for each u. All 2048 random sequences in a DB are considered as query

sequences. Therefore total number of query sequences are 10240 (2048 x 5). For

each query, (CLOSE(q, D, 0) is calculated. To identify the properties of selected

database sequences, the value of sim(q, s) are accumulated instead of calculation Of

sim(q, (CLOSE(q, D, 0)). In this experiment error bound is zero percent. Figure
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4.7 shows the output Of this simulation with edge length 92% thru 98%. The edge

lengths u 5 98% are not enough to generate meaning output. Also u 5 90% are

not biologically meaningful. Therefore we only consider the random databases with

u 5 99%. Figure 4.8 shows the output u 5 99%.

5m I l I I I I I I I
 

8
8
8
8
8
8

150-

100-

wh

0

10098 96 94.92 90.88 86 84 82 80
Primarysumlanty(%)

    
Figure 4.8: Accumulation of sim(q, s) for random databases with edge lengths 98%,

96%, 94%, 92%. Bar charts for each diagram show the standard deviations. y shows

the total number of queries with output. x shows the primary similarity between

query and matched database sequences.
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First diagram in Figure 4.8 shows the total number of query sequences vs.

sim(q, d). The number Of matched database sequences rapidly decreases when

the primary similarity between query and database sequences decreases. The

value of sim(q,s) for most of s is greater than 90% which means the value of

sim(q, (CLOSE(q, D, 0)) is also greater than 90%. This diagram shows that our

method can be applied to other sequence databases. This diagram shows the useful-

ness Of our method.

The output in the first digram of Figure 4.8 is divided by two groups which are

forward and backward mutations. First, we check the first common ancestor, o, of the

q and d. Second, we check if q and o are matched. If q and d are matched, we consider

the output as forward. If not, we consider the output as backward. Second diagram

in Figure 4.8 shows the output with forward and third diagram in Figure 4.8 shows

the output with backward. The curves in second diagram are decayed rapidly while

the curves in third diagram are increased until some period and decayed. Phrther

study is required for more detailed analysis for these diagrams.
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Figure 4.9: Accumulation Of sim(q, s) for random databases with uniform primary

similarities 99.8%, 99.7%, 99.6%, 99.4%, 99.2%. Bar charts for each diagram show

the standard deviations.



Chapter 5

Conclusions

In this thesis, we proposed an algorithm called MSASA, which is based on simulated

annealing approach, to align multiple protein sequences. Dynamic programming of

multiple sequence alignment has been widely used to find an optimal alignment for

certain cost functions. However, it does not allow certain types Of cost function

including natural gap costs, and limits the number Of sequences that can be aligned

due to its high computational complexity. MSASA overcomes these problems because

it uses any gap costs which generates a better solution. It aligns more sequences,

and takes less computation time compared to a dynamic programming approach. A

solution set for a multiple sequence alignment problem is identified, and the multiple

sequence alignment problem is reformulated to find an Optimal alignment from this

solution set. The computational complexity Of MSASA is significantly reduced by

substituting the higher temperature phase of the annealing process by a fast heuristic

algorithm and confining the solution set.
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We then suggested an algorithm called RNASA, which is based on simulated an-

nealing, to align multiple RNA sequences. The output RNA alignment from RNASA

is used to identify possible secondary structures. A transition rule, based on double

shuffle, is proposed. This transition rule provides faster convergence to an optimal

solution. We Show that this new transition rule takes less convergence time than a

conventional transitiOn rule, based on single shuffle. RNASA is applied to the se-

quences from RDP and the results are compared to known secondary structures. The

usefulness of RNASA is supported with experimental results.

We then studied the problem of obtaining biological information about a macro-

molecule isolate using only restriction patterns and restriction map databases. Max-

imum site matching problem (MSMP) is defined in a formal way and proved to

be in NP-complete problems. We suggested a heuristic algorithm to solve MSMP. A

three phase approach to obtain relatedness Of unknown macromolecules and database

sequences is suggested. We demonstrate usefulness Of our approach using RDP

database.
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