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ABSTRACT

COMPACT COMPOSITION OPERATORS ON SOME

MOBIUS INVARIANT BANACH SPACES

By

Maria Tj ani

Let 8,, (1 < p < 00) be a Besov space and B the Bloch space. We give Carleson

type measure characterizations for compact composition operators C4, : Bp —> Bq

(1 < p S q < 00), C.» : Bp —+ BMOA, and Cd, : B —> VMOA. We show that if Cd,

is bounded on some Besov space then Cd, is compact on larger Besov spaces if and

only if it is compact on the Bloch space. Also, if d) is a boundedly valent holomorphic

self-map of the unit disc U such that q5(U) lies inside a polygon inscribed in the unit

circle, then C.» is compact on BMOA, and on VMOA if and only if it is compact on

the Bloch space.
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Introduction

Let 45 be a holomorphic self-map of the open unit disc U, H2 the Hilbert space of

functions holomorphic on U with square summable power series coefficients. Associate

to <15 the composition operator C4, defined by

C¢f=f0¢,

for f holomorphic on U. This is the first setting in which composition operators were

studied. By Littlewood’s Subordination Principle every composition operator takes

H2 into itself.

A natural question to ask is which composition operators on H2 are compact.

Shapiro in [31], using the Nevanlinna counting function, characterized the compact

composition operators on H2 as follows: 0,, is a compact operator on H2 if and only

if

N¢>(w)

[ml-+1 —log |w| —

A natural follow up question is about the boundedness and compactness of compo—

sition operators on other function spaces. we know the answer to this question in a

variety of spaces.

MacCluer in [20], Madigan in [21], Roan in [25], and Shapiro in [30] have charac—

terized the boundedness and compactness of C¢ in “small” spaces.

In “large” spaces, MacCluer and Shapiro show in [19] that 0,, is compact on

Bergman spaces if and only if d) does not have an angular derivative at any point of
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EU. The angular derivative criterion is not sufficient, in general, in smaller spaces

unless we put extra conditions on the symbol. For example they showed that it is

sufficient on Hardy spaces, if the symbol is boundedly valent.

The Bloch space 3 is the space of holomorphic functions f on U such that [I f [I 3 =

supzeU |f’(z)|(1—|z|2) < 00. It becomes a Banach space with norm |f(0)| + Ilfllg. A

linear subspace X of B with a seminorm ||.||x is Mo'bius invariant if for all Mobius

transformations ab and all f 6 X, f o <13 6 X and ||f o ¢||X = ||f||x, and there exists

a positive constant c such that HfHB _<_ llfllX- It is easy to see that B is a Mobius

invariant space.

A Mo'bius invariant Banach space X is a Mobius invariant subspace of the Bloch

space with a seminorm ||.||X, whose norm is f —> ||f||x or f -—> |f(0)|+ llfllX- Rubel

and Timoney showed in [26] that B is the largest Mobius invariant Banach space that

possesses a decent linear functional. Other Mobius invariant Banach spaces include

the Besov spaces, the space of holomorphic functions with bounded mean oscillation

BM0A, and the space of holomorphic functions with vanishing mean oscillation

VMOA. We will define and discuss properties of these spaces in chapter 1.

Madigan and Matheson show in [22] that Cd, is compact on the Bloch space if and

only if

|¢’(Z)l(1-|Z|2)
1m 2 0.

I¢><z)I->1 1 - |<15(Z)|2

 

They also show that if Cd, is compact on B then it can not have an angular derivative

at any point of 8U.

In this thesis we study the compact composition operators on B1,, (1 < p < 00),

on BM0A, and on VMOA. For the rest of this introduction let X denote one of

these spaces, unless otherwise stated. One way to approach this problem is to relate

it to properties of 45. That is to see how fast or how often ¢(U) touches 8U. In

every function space that compact composition operators have been studied, the first



3

class of examples were provided by symbols 4) such that ¢(U) is a relatively compact

subset of U. For the spaces that we study this is not an exception. Moreover, if C,

is compact on X then 0,, can not have an angular derivative at any point 8U since,

if Ca is compact on X then C, is compact on the Bloch space (see Proposition 3.2).

In Chapter 2, using counting functions, we give a Carleson measure character-

ization of compact operators 0,, : B? —-> 8,, (1 < p S q < 00) and C.» : Bp —>

BM0A (1 < p S 2). MacCluer and Shapiro give in [19] Carleson measure char-

acterization of compact composition operators on the Dirichlet space D, which is a

Besov space (p = 2). Let a) (A E U) be the basic conformal automorphism defined

by a,\(z) = $33. We prove the following theorems.

Theorem 2.7 Let 1 < p S q < 00. Then, the following are equivalent:

1. Cd, : 8,, —-> 3., is a compact operator.

2. Nq(w,¢)dA(w) is a vanishing q-Carleson measure.

3. ||C¢aA||Bq —-> 0, as IA] —> 1.

Theorem 2.8 The following are equivalent:

1. Cd, : D —> BMOA is a compact operator.

2. ”Czar“... —> 0, as [A] —> 1.

The main steps in the proof of the two theorems above are the following. First we

characterize the vanishing p-Carleson measures (see Proposition 2.5). Then we give a

general characterization of compact composition operators on certain Banach spaces

of analytic functions in terms of bounded sequences that converge to 0 uniformly on

compact subsets of U (see Lemma 2.10 and Lemma 2.11). Lastly a technique given

by Arazy, Fisher, and Peetre in [2] and by Luecking in [17] and [18].
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In Chapter 3 we first give another characterization of compact composition ope-

rators on the Bloch space. We prove the following theorem.

Theorem 3.1 Let a5 be a holomorphic self-map of U. Let X = Bp (1 < p < oo),

BMOA, or 8. Then C¢ : X —> B is a compact operator if and only if

lim ||C¢aA||3 = 0.

[Al-+1

Next we show that if Q, : X —-> X is compact then so is Cg, : B —-> [3. Moreover

we give conditions on the symbol under which the converse is valid as well. If X is a

Besov space then the converse holds if we suppose that 0,, is bounded on a smaller

Besov space. We prove the following theorem.

Theorem 3.7 Let 1 < r < q, 1 < p S q, suppose that Q, : B, —-) B, is a bounded

operator. Then the following are equivalent:

1. Ca, : B —> B is a compact operator.

§
e

Q
S

: 3,, -—> B, is a compact operator.

3. Ca, : D —> BMOA is a compact operator.

4. Cd, : Bp ——> BMOA is a compact operator.

Next we describe the proof of the theorem above. At this point we have all the tools

we need (see Lemma 2.11, Theorem 2.7, Theorem 2.8, and Theorem 3.1) to prove

that 2, 3, 4—) I. The hypothesis that C.» : B, —+ B, is a bounded operator is not

needed for these implications. To prove the rest of the implications we first give a

partial case. We show that if cf) is a univalent function and 0.), is a compact Operator

on the Bloch space then 0,, : B,, —> 8., (q > 2, 1 < p S q) is compact as well (see

Theorem 3.5). Then we provide a general proof of this result for any C), such that
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Cd, : B, —-> B, (1 < r < q) is bounded (see Proposition 3.6). The proof of Theorem

3.7 will now follow easily.

We next note that a theorem of Arazy, Fisher and Peetre (see Theorem F) can

be used to characterize the boundedness of composition operators with domain the

Bloch space and range inside a variety of spaces. For example in any Besov space, in

BM0A, and in H2 (see Proposition 3.8). Moreover we note that the integral condition

of Shapiro and Taylor characterizing the Hilbert-Schmidt composition operators on

the Dirichlet space (see [29]) also characterizes the bounded operators C¢ : B —> D.

We show that such operators are compact on BMCA. More general examples of

compact Q, on BM0A are provided by integral conditions of this type. We prove

the following proposition.

Proposition 3.9 Let (b be a holomorphic self-map of U. Then,

I. If1<p<oothen

 

l¢'(z )(|”1-|Z|2)”2

/ ((1-l¢2)|2)” dA(z)<°°

if and only if C,» : B —> B, is a compact operator (hence Cd, : 8—) BMOA is a

compact operator as well).

2. If

 

[95,03 [2(21‘aq( )l2 )

Iqi—n/u (1)—|d>)l") (W): 0

then 0,, : B —> BMOA is a compact operator.

Next we give a characterization of compact operators C¢ : X —> VMOA, where X

is a Mobius invariant subspace of the Bloch space. We prove the following theorem.

Theorem 3.11 Let qb be a holomorphic self-map of U, and X a Mb'bius invariant
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Banach space. Then Cd, : X —> VMOA is a compact operator if and only if

lim sup /(If’(¢(2 ))||d>’((z)|(1—|aq(z)|")dA(z)=0-
|<I|‘+l llfllx<1

IEX

Next we give an integral condition characterization of compact C¢ : B —-> VMOA.

The proof is similar to the one given by Arazy, Fisher, and Peetre in [2, Theorem 3] for

characterizing Bloch Carleson measures. The main tools are Kintchine’s inequality

for gap series and Theorem 3.11. We prove the following theorem.

Theorem 3.13 Let gb be a holomorphic self-map ofU. Then the following are equiva-

lent:

1. C4, : B —> VMOA is a compact operator.

 
|¢’(z) 2(1-( [09(75 U2)

Iq1311/(('|1_¢WH dA(z)— 0.

Next we show that if <15 is a boundedly valent holomorphic self-map of U such that

(15(U) lies inside a polygon inscribed in the unit circle then the compactness of C, on

Besov spaces, BM0A, and VMOA is equivalent to the compactness of C, on the

Bloch space. More precisely we prove the following theorem.

Theorem 3.15 Let (b be a boundedly valent holomorphic self-map of U such that ¢(U)

lies inside a polygon inscribed in the unit circle. Then the following are equivalent:

1. Cd, : B —) VMOA is a compact operator.

2. C, : B —> BMOA is a compact operator.

3. Cd, : BMOA —) BMOA is a compact operator.

4. Cd, : B —-> B is a compact operator.
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.5. Ca, : 30 —> 80 is a compact operator.

6. C¢ : VMOA —-> VMOA is a compact operator.

The main tools of the proof are the following. First there is Madigan and Math—

eson’s characterization of Bloch and little Bloch compactness. Next that boundedly

valent holomorphic functions on the little Bloch space must belong to VMOA. Fi—

nally, we use Proposition 3.12 and Theorem 3.13.

In chapter 4 we give some final remarks and questions.



CHAPTER 1

Besov spaces, BMOA, and VMOA

Let U be the open unit disc in the complex plane and BU the unit circle. The one-to-

one holomorphic functions that map U onto itself, called the Mb'bius transformations,

and denoted by C, have the form

Aap

where A E 0U and a, is the basic conformal automorphism defined by

_ 19“"

—1—pz

 

012(2)

for p 6 U. It is easy to check that the inverse of a, under composition is a,

0,, o ap(z) = z

for z E U. Also,

 

I ~ _ ITIPI2

iap("')i _ |1_-p-z|2

and

2 _ (1 -|P|2)(1-|Z|2) I
1— Iap(z)I — I, _W = (1— |2I2)|a,(z)l (1.1)

for p,z E U.
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The Bloch space 3 of U is the space of holomorphic functions f on U such that

HfHB = sup(1— lzl2)lf’(z)I < oo.

zEU

It is easy to see that I f(0)I+ I I f I I 3 defines a norm that makes the Bloch space a Banach

space. Using (1.1) it is easy to see that B is invariant under Mobius transformations,

that is, if f E B then f o (15 E B, for all (b E G. In fact,

llfO ¢|ls = llflls.

The polynomials are not dense in the Bloch space. The closure of the polynomials

in the Bloch norm is called the little Bloch space, denoted by 30. In [34, page 84] is

shown that

f 6 [30 if and only if|1]m1(l — IzI2)If'(z)I = 0.
z-i

A linear space X of holomorphic functions on U with a seminorm IIII X is Mb'bius

invariant if

1. X C B and there exists a positive constant c such that for all f E X,

llfllzs S Cllfllx-

2. ForalquEG'andalleX,foquXand

Hf0¢llx = llfllx.

A Mo'bius invariant Banach space is a Mobius invariant linear space of holomorphic

functions on U with aseminorm II.|IX, whose norm is f —> IIfIIX or f —-> If(0)I+IIfIIX.

For 1 < p < 00, the Besov space E, is defined to be the space of holomorphic
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functions f on U such that

Ilfllf’g, / lf’(z)|”(1-|z|2)"‘2dA(z)

/ |f’(z)l"(1-|zl2)”dA(z) < oo
U

where dA(z) is the Mobius invariant measure on U, namely

1

0””) = (T—Tzn’
dA(z).

It is easy to see that If(0)I + IIflpr is a norm on B, that makes it a Banach space.

It is easy to see that log(1 — z) E 8. Moreover Holland and Walsh show in

[13, Theorem 1] that if 1 < p < 00, and 7 < i (q is such that fi+ % = 1) then

 (log 2 )7 6 BP. Other examples of functions in 3,30, and B, (1 < p < 00) are
l-z

provided by gap series. Let

f(2) = Zanzha

n=0

where (An) is a sequence of integers satisfying

An+l

An

 2A> 1, (1.2)

where A is a constant and n E N. Anderson, Clunie, and Pommerenke show in [1,

Lemma 2.1] that f E B if and only if an = 0(1), as n —) 00, and that f 6 80 if and

only if an —+ 0, as n —-> 00. Moreover, a description of Besov spaces that Peller gives

in [23, page 450] easily yields that f E B, if and only if 2:0 AkIakIp < 00.

Let

be a holomorphic function on U. The Hardy space H2 is the collection of functions f
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holomorphic on U for which

def. 00

IIfIIIII2 : 2 [an]2 < 00-

n=0

The Dirichlet space is the collection of functions f holomorphic on U for which

00

d f.

llfllzp é Enlanl" < oo.

71:]

N
I
-
fi

Both H2 and D become Hilbert spaces with norms IIfIIH2 and (If(0)I2 + IIfII%)

respectively. It is easy to see, using polar coordinates, that f E D if and only if

/ |f’(z)|"’dA(z) < oo.
U

Thus, the Besov-2 space is the Dirichlet space and 82 = D C H2.

Let const. denote a positive and finite constant which may change from one occurence

to the next but will not depend on the functions involved. Unlike the Hardy and

Bergman spaces the Besov space with a smaller index lies inside the Besov space with

a larger index.

Lemma 1.1 For1< p < q, B, C B, C B, andfor any f 6 BP,

llfllzs S const-llfllsq S constllfllay

Proof. First, let us show that each Besov space lies inside the Bloch space. Fix

p > 1, let f 6 B,; then,

co > [U lf’(z)l”(1—lzl)2)”‘2dA(z)
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> [I/QTM ‘6)Ipd6}<1 ,2,._2,.d,.Te — '-

" R 0 27r

1 2n

2 f I] |f’(Re‘9)|”é£}(1—r"’)’"2rdr
R 0 2a

2a . d0 1

___ I :0 p__ _ 2 p—2 (l

/0|f(Re)|2,T/R(1r) rr

1 2n .9 pdg l—R2 p—2

= _ I z _ d

2/0 If(Re)I,,/o r r

> l2” If'(Re‘9)IP-‘£9(1 —
RV“

where c is some positive constant, and 0 < R < 1. Above we used the fact that the

integral means of an analytic function f, Mp(R, f) = {2—11; 02" If(Re‘glpdd} (0 < p <

00), are a non- decreasing function of R (Hardy’s Convexity Theorem [11, page 9]).

Thus,

1 1

M (R,f) S const.——_—l = —-——,-.

” (1—R)“’T 0—H)"F

Then by the Hardy-Littlewood theorem ([11, Theorem 5.9, page 84]), the infinity

means of f’,

MOO(R,f') = max If’(Rei9)I,

OSO<2u

can not grow faster than

1 1

(1—R)‘-‘s+% l—R

 

that is

 

- l

su ' Re'g < c96[0.I21r] If ( )I _ 1_ R

for some positive constant c. Now, it is easy to see that this implies that f belongs
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to the Bloch space, and

llfll’é, ZCIIflls.

Therefore, B, C B for any p > 1.

Next, for the containment among Besov spaces, fix p and q such that 1 < p < q

and let f 6 BP. Then,

Ilfll‘lg, = flf’(z)|"(1—lz|2)"dk(z)

= f|f’(z)|”(1—IzIz)”(lf’(z)l(1—|zl2))‘°"’dA(z)

S CllfIIEJPIIfIIZ, < 00-

Thus, B, C B]. This finishes the proof of the lemma. CI

Lemma 1.2 For 1 < p < 00, B, is a Mo'bius invariant Banach space.

Proof. Let f E 8,, q E U. Then,

Ilfoaqll’i'a,
: ./U|(f ° aql'(2)|"(1- |Z|2)p’2dA(z)

[U If’(aq(z))lpla;(z)lp(1 — Izl2)”‘2dA(z)

= [U lf’(w)”|a;(aq(w))|”(1 — laq(w)12)”‘2|a;(w)|2dA(w)

= /U |f’(w)|”—-1——(1-lwl2)”‘2|a;(w)|”‘2la;(w)l2dA(w)
|01£,(W)|p

= llf’(w)|”(1—Iw|2)"‘2dA(w) = “flit.-
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Above we made the change of variables aq(z) = w and used basic properties of

the M6bius transformations. This shows that B, is invariant under Mobius transfor-

mations. Thus, by Lemma 1.1, B, is a Mobius invariant Banach space. CI

A holomorphic function f on U belongs to BM0A, the holomorphic members of

BMO, if

llfHG=sug||f00q(Z)-f(61)llm <00- (1-3)
06

Under the norm I f(0)I + II f”G BM0A becomes a complete normed linear space.

This is not the traditional definition of BM0A, it is actually a corollary of the John-

Nirenberg theorem [4, page 15]. By the Littlewood—Paley identities (see [34, page

167]) and the fact that log Til ~ 1 — IzI2, for z away from the origin we see that a

seminorm equivalent to the one defined in (1.3) is

Ilfllf = sup/|()’(2)foaq WWI—(2|)A(z)
QEU

= sup/lf((((naqzWllaw(1—I~|)dA(z)

Thus after the change of variables aq(z) = w we obtain

llfllf—- sup/(|f’(w (1— laq(w)! )dA(w). (1.4)

Notation S(h,6) : {z E U: Iz — ewI < h}, where 0 E [0, 27r), h 6 (0,1)}.

Let A and B be two quantities that depend on a holomorphic function f on U.

We say that A is equivalent to B, we write A ~ B, if

const. A S B S const. A.

The notion of BMOA first arose in the context of mean oscillations of a function
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over cubes with edges parallel to the coordinate axes or equivalently over sets of the

form S(h,0) ([28, pages 36-39]). That is,

2 1 I 2 2

llfll. ~ sup , [M If(z)| (1 — lzl >dA(z). (1.5)
he(0,1)

06[0,21r)

The function log(1 — z) E BMOA. In fact if f is any holomorphic, univalent,

and zero free function then log f 6 BM0A. (this result first appeared in [3] and

[6]). Other examples of BMGA functions include the following. If (an) is a bounded

sequence then 220:0 fianz" E BMOA, and if 22:0 IanI2 < 00 then 220:0 an:‘\" 6

BMOA, where the sequence (An) satisfies (1.2).

One of the many similarities between the Bloch space and BM0A is that poly-

nomials are not dense in either space. The closure of the polynomials in the BMGA

norm forms VMOA, the space of holomorphic functions with vanishing mean oscil-

lation. The space VMOA can be characterized as all those holomorphic functions f

on U such that

lim L lf’(w)|2(1-laq(w)l2)dA(w) = o (1.6)
lei-*1

(the “little-oh” version of (1.4) ). Moreover the “little-oh” version of (1.5) is equivalent

0 (1.6) ([28, pages 36-37, page 50]).

An easy way to see that BMOA is a subspace of the Bloch space is the following:

|f’(0)| S llfllm

for any f holomorphic on U; therefore,

|(f 00p - f(P))'(0)| S ||fO 0p - f(p)llm

S Ilfllc
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hence

If'(ap(0)lla;(0)l S const-IIfIL

that is

If'(P)I(1-IPI2) S COIrlst-IIfII--

thus,

IIfIIB S const-Ilflla-

Therefore, BMGA C B.

Let H°° denote the space of bounded holomorphic functions on U.

Lemma 1.3 The space VMOA fl H°o is closed under pointwise multiplication.

Proof. Let f,g E VMOA fl H°°. Then,

/ I( fg)’( 1(— Iaq(z II )dA(z)

=/|fW()VzI|gz(1(—laq(2r (z)+flg’()"’()zllfz|2((1—|a((2I(IIdAzI

S const {/11 If’2( (1- Iaq(2 )|)dA(2)+/UI9’(Z)|2(1 - laq(Z)I2)dA(z)} -

The righthand side of the above equation tends to zero as IqI ——> 1, since f, g 6

VMOA. Hence, fg E VMOA. El

Lemma 1.4 For any p > 1, B, is a subspace of VMOA.

Proof. Fix p > 2; first we will show that B, C H2. Let f E 8,. Then,

flf’(2)l2(1-lz|2 /=|f()zl(“1—1—Iz|)(—I2~I )sz)
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_2_ —2

s |lf|l23p( [U (1 — I2I2)P-2d/\(z))LP‘

by Holder’s inequality. Since,

—:523;L2d/\z= —22i1—3dAz 00[yo III (I [(1 III (I<
U

for any p > 2,

/UIf’(Z)I2(1—Izlz)dA(z) < 00.

Therefore, 8,, C H2, for any p > 2. Since D C H2,if1< p S 2 then, Bp E D C H2.

Therefore Bp C H2, for any p > 1.

By the Mobius invariance of Besov spaces we obtain

IUOGm-fMHfizSdUbOa-fMH%;=dUWE

for some positive constant c and for any q E U. Therefore,

IIfII3 S cIIfII'Zc;,,- (1-7)

This shows that Bp C BM0.4.

Next we show that polynomials are dense in Bp. This together with (1.7) then

shows that 8,, C VMOA. Let f E Bp,

f(2) = Zanz"

and 0,,(f) the n-th Fejer mean of f, that is:

" I/\| A 2" ‘9 d9
= ' K, 0 —

1:0 n+1)a*z 0 (26 ) I )27r
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where Kn(0) is Fejer’s kernel,

K..(0) = Z (1 — Eli—IT)6_M‘ (1.9)

We will show that 0,,(f) —> f in Bp; Fubini’s theorem yields,

IIa.(fI — flI’E, = [U lan(f)’(z) — f’(z)l”(1 — lzlz)p‘2dA(z)

21r . _ d0

s /U / Ie’of’(ze"') — f’(z)lpKn(9)§7;(1 — Izlz)”‘2dA(z)

21r . d0

= / ||f(ze'9)-f(z)II’iapKn(0)§;

27r . d0

= / g(e'g)l1’n(0)2—7r

where g(e‘9) = ||f(ze‘9) — f(z)||’gp. It is easy to see that g is a continuous function on

8U. Therefore, by Theorem 2.11 in [14, page 15]

lim max |0n(g)(eit) — g(e“)| = 0.
n—ioo OStSZW

Hence, 0n(g)(1) —+ 9(1) 2 0, as n —> 00. Thus (1.10) yields,

3320 IIa.(fI —fII'2.,, = .

Therefore we obtain that Bp C VMOA. CI
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We have shown that for p < q

3,, c B, c: VMOA c BMOA c 8.

Similarly to Lemma 1.2 we can show that BM0A and VAIOA are also Mobius

invariant Banach spaces. In fact, the reason for insisting that a Mobius invariant

Banach space be a subspace of the Bloch space is that Rubel and Timoney proved in

[26] that if a linear space of analytic functions on U with a seminorm IIHX is such

that for all f E X, fo (b 6 X and ||fo qux = ||f||x, and it has a non-zero linear

functional L that is decent (that is L extends to a continuous linear functional on

the space of holomorphic functions on U) then, X has to be a subspace of the Bloch

space and the inclusion map is continuous.



CHAPTER 2

Carleson measures and compact composition operators on

Besov spaces and BMOA

If o is a holomorphic self-map of U, then the composition operator Cd,

C¢f = f 0 <19

maps holomorphic functions f to holomorphic functions.

Shapiro and Taylor show in [29], using the Riesz Factorization theorem and Vitali’s

convergence theorem that Cd, is compact on Hp , for some 0 < p < 00 if and only if C,»

is compact on H2. Moreover, Shapiro solves the compactness problem for composition

operators on H1!) in [31] using the Nevanlinna counting function

N¢(w)= Z —log[w|.

d>(z)=w

The following theorem is proved there;

Theorem A Let (I) be a holomorphic function on U. Then Gas is a compact operator

on H2 if and only if

lim N¢(w) — 0.

[wI-H —log [w] _

Madigan and Matheson characterize compact composition operators in the Bloch

space in [22]. The following theorem is proved there;

20
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Theorem B Let to be a holomorphic function on U. Then, Cd, is a compact operator

on B if and only if

 

lcb’(z)l(1—|z|2) _

win”; 1- we)? ‘ 0'

In this chapter we will use some Nevanlinna type functions to characterize the compact

composition operators on Besov spaces BM0A, and VMOA.

Definition 2.1 The counting function for the p-Besov space is

Np(w,¢> = Z {l<25’(z)|(1—lzl‘*)}”_2

¢(z)=w

foerU,p>1.

Definition 2.2 The counting functions for BMOA are

N<w,q,¢) = Z (1—laq(z)l2)

d>(z)=w

for w,q E U.

The above counting functions come up in the change of variables formula in the

respective spaces as follows:

First, for f 6 Bp and p > 1

||C¢f||iap = (f 0 ¢)’(Z)|p(1-|z|2)p‘2dA(z)l
U

= Llf’(¢(z))l”l¢’(z)lp(1-Izl2)""2dA(z). (2.1)

By making a non-univalent change of variables as done in [32, page 186] we see that

Howl's, = fu lf’(w)l”Np(w,¢)dA(w). (2.2)
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Similarly, for BMOA

IICifllf = sup / |()’(fo¢ l—laqz)l )dA(:)
qu

= su — a z 2 dA z ..et’f'fW11¢)I(1 |q()l) ()

Thus,

IIC¢f||3=supf lf’(w)|2N(w,q,¢)dA(w)- (2.3)
qu U

Arazy, Fisher, and Peetre prove in [2, Theorem 12] that composition operators

in BM0A are bounded for any holomorphic self-map of U, and they are bounded

on VMOA if and only if the symbol belongs to VMOA. Next, we provide a proof

similar to their proof.

Theorem C Let (b be a holomorphic self-map of U. Then,

1. Cd, is a bounded operator on BMOA.

2. C¢(VMOA) c VMOA if and only M e VMOA.

Proof of (1.) Suppose that (b is a holomorphic self-map of U and f E BMOA.

If (15(0) = q E U then (b = (1,, o it» for some holomorphic self-map if) of U such that

2M0) = 0. Then Littlewood’s Subordination Principle (see [32, page 13]) yields

|lf0<f>-f(q)||H2 = llfoaczOd’-f(€1llly2

S llfoaq - f(q)||n2 S ||f||-- (2-4)

Thus replacing (b in (2.4) with (poaq yields [|f0gboaq —f(q)||H2 g ||f||. for all q E U.

Thus,

|f(¢(0))| + llf 0 ¢|l. S must-(If(0)I + ||f||-),
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for all f E BMOA. This shows that Cd, is a bounded operator on BMOA.

Proof of (2.) First suppose that C¢ : VMOA —+ VMOA is a bounded ope-

rator. Then since the identity function f(2) = 2: belongs to VMOA, f 0 ab =

(b E VMOA. Conversely, suppose that 45 E VMOA. Then, by Lemma 1.3,

{¢" 6 VMOA : n E N} C VMOA. Therefore {p(¢) :p polynomial} C VMOA.

Since polynomials are dense in VMOA part (1) above yields that f 0 ab 6 VM0A,

for any f E VMOA. This completes the proof of the theorem. C]

Now consider the restriction of Cd, to Bp. Then 0,), is a bounded operator if and

only if there is a positive constant c such that

||C¢f||i§p S cllfllia.

for all f E Bp or equivalently by (2.2)

[U lf’(w)|”Np(w,¢)dA(w) s cllfllfi.

for all f 6 BP. This leads, as in [2], to the definition of Carleson type measures. Since

we are interested in characterizing the compact composition operators we will also

talk about vanishing Carleson measures. We would like to use the following operator

theoretic wisdom;

If a “big-oh” condition characterizes the boundedness of an operator then the cor-

responding “little-oh” condition should characterize the compactness of the operator.

Definition 2.3 Let p be a positive measure on U and let X = Bp (1 < p < oo),

BMOA, or 8. Then p is an (X, p)-Carleson measure if there is a constant A > 0 so
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that

[U lf’(w)|”du(w) s Allflli’x»,

for alleX.

In view of (2.2) and (2.3) above we see that C¢ is a bounded operator on 3,, if and only

if the measure Np(w, ¢)dA(w) is a (Bp, p)-Carleson measure, and Cd, is a bounded ope-

rator on BMOA if and only if N(w,q, ¢)dA(w) are uniformly (BMOA,2)- Carleson

measures.

Arazy, Fisher, and Peetre gave the following characterization of (8,, p) Carleson

measures in [2, Theorem 13] (the equivalence of (I) and {2) was given by Cima and

Wogen in [7]).

Theorem D For 1 < p < 00, the following are equivalent:

1. p is a (Bp,p)-Carleson measure.

2. There exists a constant A > 0 such that

u(5(h,9)) S Ah”

for all 0 E [0,27r), all h E (0,1).

3. There exists a constant B > 0 such that

/ Ia;(z)|”du(z) s B
U

for all q E U.

Hence Theorem D yields,

Theorem E Let (f) be a holomorphic function on U. Then Cd; is a bounded operator
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on Bp {l < p < 00) if and only if

SUP HC¢aqlpr < 00 -

QEU

We prove a similar theorem for compact composition operators on Besov spaces.

Definition 2.4 Forl < p < 00, u is called a vanishing p-Carleson measure if

r #fiwflh
1m sup _— = 0 .

h—+O gelo’zfl) hp

Note It is easy to see that if,u is a vanishing p—Carleson measure then it is a (Bp,p)-

Carleson measure.

The proposition below characterizes vanishing p-Carleson measures. The proof is

similar to the one for Carleson measures on H2 (p = l), as given by Garnett in [12]

and by Chee in [5].

Proposition 2.5 For 1 < p < 00, the following are equivalent:

1. p is a vanishing p-Carleson measure.

2. fU Ia;(w)lpdp(w) -—> 0, as |q| —+ 1.

Proof. First, suppose that {2) holds. Then, given an e > 0 there is a (5 > 0 such

thatfor1—5<|ql<1

/ Ia;(w)l”d#(w) < e.
U

Fix 6 > 0 and let 5 > 0 be as above. Consider any 0 < h < 6, 0 E [0,27r), let

q = (1 — h)ei9 and w E S(h,0). Then,

I-MP

u—amz

l—U—hY

|1-—(1-—Ine-wu42

I%WM
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h(2 — h)

|6‘6 - (1 — hlwl2

h(2 — [2.)

(leg - w| + I’w -(1— hlwll2

h(2 - h)

(h + hlwl)2

2 — h

h(1-i-Iw|)2

l

4h°

 

 

I
V

I
V

I
V

Hence, w E S(h,0) implies that Ia’ (w )I” Z 4—17,”. Then by our hypothesis,

 

1

> ' pd >/ pd _ Sh,0 .e fumwn u- wlagww)| u> W( ( >)

This proves (1)

Conversely, suppose that (1) holds. Then, given an e > 0 there is a 6 > 0 such

that for any 0 < h < 6 and any 0 E [0,27r),

”(502m) < ch”. (2.5)

Fix 6 > 0, let 6 be as above. Fix ho < 6 such that (2.5) holds. Also, fix q = lqleia E U

with Iql > 1 — bf. We will show that for q large,

/ la;(w)lpdu(w) < e
U

Let E = {w E U: Ie'i‘9 — Iqlwl 2 54“}. Then for each q E U,

/ Ia;(w )(tvlpdu)=/ Ia;(w )(tvlpdu)+/ la;(w)(|de(w.) (2.6)
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We will estimate each of the integrals above. First if w G E,

1-lql"’ P 1—lq|2 P
' p = . < 42 —— <

”9”” (le‘g-Iqle) - h: "

for q large. Therefore (2.7) yields that for q large,

 

/IQ;(w)|pdu(w) < (ME) S ,u(U)e < const. 6.

E

Let N = N(q) be the smallest positive integer such that

2N(1—lQI)< ho S 2N+l(1"l9l)-

We will show that

EC C 5(2N(1 — |q|),0) C S(ho,0).

Let w E E“. Then,

w - 6”I = lw - 6‘9 + Iglw - lqlwl

S |w — IQle + It?” 461le

%

4

< 1- lql + 2""‘(l - lql)

<1—lql+

|
/
\

2N(1-I<I|)-

(2.7)

(2.9)

This proves that EC C S(2N(1— |q|),9). Next let w E 5(2N(1—|q|),0). Then, by (2.9)

lw - eml S 2N(1 - M) < ho.

Hence S(2N(1 — |q|,0)) C S(ho.0). Thus, (2.10) is proved.
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Let Ek = S(2k(l — |q|),0), k = 0,1,...N. It is clear that

E0 C E1 C C EN C S(ho,0).

Then,

la;(w)l”du(w) s / la;(w)|”du(w)
Ec 3(2N(1-|<I|).9)

= /+/ +...+/ la;(w)|pdp(w). (2.11)

E0 E1\EO EN\EN—1

We will estimate each of the integrals above.

First, if U) E E0 then Iw — ewl < 1—|q| and

_2

1|61|<2

'“q‘wl' gW- W'

Since 1 — |q| < ho < 6, (2.5) yields

 

 

 

2p

la'(w)l”du(w) S ———-#(E )
[:30 q (1 - MI)" 0

S const. 6.

Next if to E E1. \ Ek_1 for some k = 2,3, ..., N,

1_ q 2 1_ 2

Ia;(w)l = i9 I I 2 S i6 I‘ll 2
le - IQIWI (lw — 6 |-|w|(1— Igll)

const. 1

< — , 9

‘ 1- Iql 4" (2'1“)
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Hence, (2.5), (2.9), and (2.12) yield

const. 1
I P < ___ E

Lk\Ek—l laq(w)| duh”) — (1 — igllp 4kp #( k)

const. 1 k

1 I

= const. -2k—p e. (2.13)

Therefore (2.8), (2.11), (2.12), and (2.13) imply that

N 1
/ la;(w)|Pdp(w) < const. 6 + (Z 55) const. 6

U k=0

< const.e

for q large. This proves (2) . [Z]

Note In the proof above it was essential that

°° 1
Zfi<00,

k=0

since N depends on q.

The following is a corollary of the proof of Proposition 2.5. We will use it in the

proof of Theorem 2.8.

Corollary 2.6 Let {#A : /\ E I} be a collection of positive measures. Then for

1 < p < 00 the following are equivalent:



30

1.

11m sup — 0 .

h-)0 ge[o,21r) hp

A61

2.

lim sup Ia;(w)|pdp),(w) = 0.

IQI-+1 AeI U

The following two theorems give a characterization of compact composition ope-

rators between Besov spaces, and from ’D to BM0/1.

Theorem 2.7 Let 1 < p S q < 00. Then, the following are equivalent:

1. C,» : 3,, —+ BCI is a compact operator.

2. Nq(w,¢)dA(w) is a vanishing q-Carleson measure.

3. IIC'¢,a,\||Bq —> 0, as |/\| —-> 1.

Theorem 2.8 The following are equivalent:

1. C¢ : ’D —+ BMOA is a compact operator.

2. ||C¢cu||.. —> 0, as |/\| —) 1.

In the proof of the two theorems above we will need the following lemmas.

Lemma 2.9 Let X = 3,, (1 < p < oo), BMOA, or 3. Then,

1. Every bounded sequence (fn) in X is uniformly bounded on compact sets.

2. For any sequence (fn) on X such that llfnllX -> 0, fn - fn(0) —> O uniformly

on compact sets.

Proof. In [34, page 82] is shown that a Bloch function can grow at most as fast as

log film, that is

1

|f..(z)-fn(0)| s consult”. 1°81_|.| 
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l

1—|z|.

 

S const.||f,,||x log

Hence the result follows.
C]

Lemma 2.10 Let X,Y be two Banach spaces of analytic functions on U. Suppose

that

1. The point evaluation functionals on X are continuous.

The closed unit ball ofX is a compact subset ofX in the topology of uniformf
6

convergence on compact sets.

3. T : X —> Y is continuous when X and Y are given the topology of uniform

convergence on compact sets.

Then, T is a compact operator if and only if given a bounded sequence (fn) in X such

that fn ——> 0 uniformly on compact sets, then the sequence (Tfn) converges to zero in

the norm on.

Proof. First, suppose that T is a compact operator and let (fn) be a bounded

sequence in X such that fn —) 0 uniformly on compact sets, as n —> 00. For the rest

of this proof let |.|y denote the norm of Y. If the conclusion is false then there exists

an e > 0 and a subsequence in < n2 < 723 < such that

len,lY _>_ e, for all j = 1,2,3,... (2.14)

Since (fn) is a bounded sequence and T a compact operator we can find a further

subsequence n,, < n], < and f E Y such that

len,, — NY -> 0. (2.15)
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as k —-> 00. By (1) point evaluation functionals are continuous, therefore for any

2 E U

|(Tfan — f)(z)| S const.|Tfan —- fly. (2.16)

Hence (2.15) and (2.16) yield,

Tfnu — f —> 0 (2.17)

uniformly on compact sets. Moreover, since fn1* —> 0 uniformly on compact sets , (3)

yields, Tfnjk —> 0 uniformly on compact sets. Thus by (2.17) f = 0. Hence (2.15)

yields ITfanly ——> 0 as k —> 00, which contradicts (2.14). Therefore we must have

ITfnly —> O, as n —-> 00.

Conversely, let (fn) be a bounded sequence in X. We will show that the sequence

(Tfn) has a norm convergent subsequence. Without loss of generality (fn) belongs

to the unit ball of X. By (2) there is a subsequence n1 < n2 < such that f") —) f

uniformly on compact sets, for some f 6 X. Hence, by our hypothesis, ITfnJ —Tf ly —>

O, as j —-> 00. This finishes the proof of the lemma. CI

Note (=>) Only uses (1) and (3). (4:) Only uses (2).

Lemma 2.11 Let X,Y = 8,, (1 < p < 00), BNIOA, or 3. Then C43 : X —> Y is

a compact operator if and only if for any bounded sequence (fn) in X with fn -—+ 0

uniformly on compact sets as n —> oo, ||C¢fn||y —-> 0, as n ——> 00.

Proof. We will show that (I), (2), (3) of Lemma 2.10 hold for our spaces. By

Lemma 2.9 it is easy to see that (1) and (3) hold. To show that (2) holds, let (fn)

be a sequence in the closed unit ball of X . Then by Lemma 2.9, (fn) is uniformly

bounded on compact sets. Therefore, by Montel’s Theorem ( [8, page 153]), there is

a subsequence n1 < n2 < such that fnk -> g uniformly on compact sets, for some

g E H(U). Thus we only need to show that g E X.
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(a)IfX=B,,(1<p<oo),

/ Ig'(z)IP(1—IzIP)P-PdA(z) = / ,le|f.’..(z)|"(1-|z|2)”’2dA(z)
U

U 00

3 mm) |f...)l”(P1-||")”

= liminf||fnk||g <00

k—too P

by Fatou’s Theorem and our hypothesis.

(b) If X = BMOA,

[Ulg’PMl2(21"laq( )l2dA(z) = ngglfhkw22H (l—laq(~)leA((3)

S liminf/ |f,’,k() 2(1— |aq(z )I2dA(z)
k—roo

|
/
\

liminfllfnkllf < oo

k—too

by Fatou’s Theorem and our hypothesis.

(c) If X = B,

|g’(z)|(1-|z|2)=,}grglf.’..(z)l(1—|2l2)_<_,}gn;o|lfn.lls < oo

by our hypothesis. Therefore Lemma 2.10 yields that 0,), : X —> Y is a compact

operator if and only if for any bounded sequence (fn) in X with f,, —> 0 uniformly

on compact sets as n —> oo, lfn(¢(0))l + I|C¢fn||y —> 0, as n ——> 00. Which is clearly

equivalent to the statement of this lemma. This completes the proof of the lemma.

C]
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An immediate corollary of Lemma 2.11 is the following.

Corollary 2.12 Ifqb is a holomorphic self-map ofU such that Ilgblloo < 1 then C¢ is

compact on every Besov space, and on BMOA.

Proof. First, let us show that C4, is compact on the Besov space Bp. Let (fn) be

a bounded sequence in 8,, such that fn —> 0 uniformly on compact subsets of U.

Suppose that e > 0 is given. Since EU)- is a compact subset of U, there exists a

positive integer N such that if n 2 N then |f,’,(gb(z))|p < e, for all z 6 U. Then by

(2-1),

||C¢fn||f9p < ellcbll’gp < const. 6.

Thus, ||C¢fn||3p —> 0, as n —> 00, and Lemma 2.11 yields that C), is a compact

operator on Bp. The proof of the BM0A compactness of Cd, is similar to the proof

above. [I]

Now we are ready to prove Theorem 2.7 and 2.8. The technique is similar to the

one given by Arazy, Fisher, and Peetre in [2, Theorem 13] and Luecking in [17], and

[18].

Proof of Theorem 2.7. By (2.2),

Mowing = [U la&(w)l"N.‘i(w)dA(w)-

Thus Proposition 2.5 yields (2) 4:} (3).

Next we show that (1) => (3). We assume that Cd, : 8,, —> B9 is a compact

operator. Note that {01.x : /\ E U} is a bounded set in 8,, since,

llaxllap = |le culls. = llzllsp,
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and the norm of cm in Bp is

lai(0)l + llaillsp <1+llzllsp < 00-

Also Ox — /\ —> O, as [/\I —-> 1, uniformly on compact sets since,

1— [M2

[l -Xz|.

 

[CUM — /\| = lzl

Hence, by Lemma 2.11, [|C¢,(a,\ -— A)||Bq —> 0, as [M —> 1. Therefore ||C¢a,\[|3q -—> 0,

as [A] —> 1.

Finally, let us show that (2) => (1). Let (fn) be a bounded sequence in HP, that

converges to 0, uniformly on compact sets. Then the mean value property for the

holomorphic function f,’, yields,

4

,',w-———— 'szz. 2.18f() l. f() () < >
— 7r(1—- lwl)2 w—z|<‘—‘§2L n

Therefore by Jensen’s inequality ([27, Theorem 3.3, page 62] and (2.18)),

lf.’.(w)l" < 4_ml _.|<l_:_|t_ul If;(z)[qu(z). (2.19)

Then by (2.19) and Fubini’s Theorem ([27, Theorem 8.8, page 164]),

Hanna: [U If.’.(w)l"Nq(w,¢)dA(w)

4 , q

S lW(him 'fP‘“)' W”) NPWP‘l’W‘w)

4 , q 1
= ;L|fn(z)| (fu mx{z:lw_zl<x__2m}(z)Nq(w,¢)dA(w)) dA(zI2.20)
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Note that if [w — 2| < l—j—ul then w E S(2(1—|z|),0), where I. 2 Isle”, since

1— |w|

2

 + [fl — 2| < 2(1— Isl).[iv—em] S [2 —w|+ [em—2| <

 lwl then . Therefore (2.20) yields.S const.    Moreover, if w 1l (1-—IzI_TP(1- [wl)——_2-

‘7 cons lf’( z)|q ( w w) ..

IlC¢anBP S t°/u(1--—_(—_|Zl) /S(2(1—|z|).9)Nq( “Md“ ) (MM

= _|___f’(z|"( N d ,) ~

Con“(/|z|>1—-+/|‘z|<1————(——_(1-lz)l) ./S(2(1-|z|,a) Q(w,¢) AW) dA(~))

= const.(1 + II) , (2.21)

forany0<5<1.

Fix 6 > 0 and let 6 > 0 be such that for any 0 E [0,27r] and any h < 6

/ Nq(w,qb)dA(w) < eh". (2.22)

S(h,0)

By (2.21) and (2.22)

I S 296/ M(1—|z|2)qd/i(2)

zl>l—- (1—[Z[2)2

S const.e||f,,||‘[3q < const. 6. (2.23)

By (2.21),

11 S const./“<1“é |f;(z)|q (L Nq(w,q‘>)dA(w)) dA(z)
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= ./|| , 6 |f,’,(z)|q||¢[|§3qu(z) < const. 6 (2.24)

251—5

for n large enough, since f; —) 0 uniformly on compact sets. Combining (2.21),

(2.23) and (2.24) we obtain that [[C¢fn[[3q < const. 6 for n large enough. Therefore

||C¢fn||Bq —-> 0, as n —> co and Lemma 2.11 yields, 0,, : B,, —> B, is a compact

operator. This finishes the proof of Theorem 2.7. C]

Proof of Theorem 2.8. (1) => {2). Since a; is a bounded set in D and a), — /\ —> 0

uniformly on compact sets, as [Al ——> 1, Lemma 2.11 yields |[C¢ayll. —) 0, as [Al —> 1.

(2) => (1). The proof is similar to the proof of Theorem 2.7. We will use Lemma

2.11. Let (fn) be a bounded sequence in ’D such that fn —> 0 uniformly on compact

sets. Our hypothesis is that |[C¢a,\||.. —+ 0, as [Al —-> 1. That is

sup / |a&(w)I2N(w,q,¢)dA(w) a o
qu U

as [Al —-> 1. Hence, Corollary 2.6 yields

1

lim su —- N ,, dA =0.

’1‘“) web) ft? 501.9) (wqu) (w)
06[0,21r)

Fix an e > 0 and let 5 > 0 be such that for any 0 E [0,27r) and any q E U, if h < 6

then

/ N(w, q, ¢)dA(w) < chz. (2.25)

S(h,6)

Fix q E U. Then by (2.19),

[U If.’.(w>IPN(w,q,¢)dA(w)

4 I 2
SAW (,/|w_z|<1_2£l lfn(z)l (114(2)) N(waqa ¢)dA(w)
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cons _If,’,(z)|2 ( w d w) .. ‘S ti/f;(1—-|z|)2 [9(2(1_|2l)fl)N( ,q,d>) A( ) dA(/.). (2.26)

The proof of (2.26) is the same as the proof of (2.21) in Theorem 2.7. Next split the

integral in (2.26) into two pieces, one over the set {2 E U : |z| > 1 — g} and the other

over the complementary set . Then ,

lf.’.(~"3)|2 (
w) 7

‘/|;I>1—g(1"|2l)2
[5(2(1_|2D’6)N(w,q,¢

)dA( ) dA(~)

lfr';(2)l2 _ 22 7

< A»; (1 — |z|)"~’4(1 '2' l “‘A‘”)

< const. e||f,.||';’, < const. 6 , (2.27)

and

|fh(z)l2 ( , w w ) 7

LISl-g-(l—IZI)2 /SI2I1-I2I).a)M ’q’¢)dA( ) dA(~)

3 mt (sup [U N(w,q,¢)dA(w)) [HM If.’.(z>IPdAIz)
qu

S const. 6, (2.28)

for 72 large enough since (I) E BMOA and f,’, —> 0 uniformly on {2 E U: |z| S 1-— g}.

Therefore (2.26), (2.27), and (2.28) yield that

supL |f,’,(w)|2N(w,q,q§)dA(w) < const. 6

QEU

for n large enough. Thus ||C¢fn||. —> O, as n —> 00. Hence by Lemma 2.11, (1) holds.
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This finishes the proof of the theorem. C]

Note It is easy to see that Theorem 2.8 yields that C4, : 8,, ——> BM0A is a compact

operator if and only if ||C¢a,\|l. —> 0 as [Al -—) 1, for 1 < p S 2. Moreover in chapter

three we will show that if Cd, is bounded on some Besov space then this is valid for

anyp> 1.

The following is a corollary of the proof of the Theorem 2.8.

Corollary 2.13 If supqeu fula’,(w)l3N(w,q,¢)dA(w) —> 0, as [M -—> 1, then Cc. :

BMOA —> BMOA is a compact operator.

Note Similarly to the proof of the above theorems we can easily see that, the above

sufficient condition for BM0A compactness is equivalent to at : H2 —) BM0A

being a compact operator.



CHAPTER 3

Besov space, BMOA, and VMOA compactness of Cd, versus

Bloch compactness of C¢

In this chapter we give conditions that relate the compact composition operators on

Besov spaces, BM0A, and VMOA with those on the Bloch space, and the little

Bloch space. Recall the characterization of compact composition operators on the

Bloch space that Madigan and Matheson give in [22, Theorem 2].

Theorem B Let (I) be a holomorphic self-map of U. Then, Cd; is a compact operator

on B if and only if

. I¢’(z)I(1—I2IP)_

23$: i—I¢(2)IP ‘0'

 

Next we give another characterization of compact composition operators on the Bloch

space.

Theorem 3.1 Let (b be a holomorphic self-map of U. Let X = 8,, (l < p < oo),

BMOA, or [3. Then C¢ : X —> B is a compact operator if and only if

I. C = 0.Mllgll || Mulls

Proof. First, suppose that C2,, : X —> B is a compact operator. Then {cu : A E U}

is a bounded set in X, and a) — A —+ 0 uniformly on compact sets as [M —> 1. Thus

40
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by Lemma 2.11

11m llCaSaAllB = 0-
|A|->l

Conversely, suppose that lIml|C¢OA|l5 = 0, as [/\l —> 1. Let (fn) be a bounded

sequence in X such that fn —> 0 uniformly on compact sets, as n —> 00. We will show

that

Jig; llC¢fnllB = 0-

Let c > 0 be given and fix 0 < 6 <1 such that if [M > 6 then |lC¢aAH3 < 6. Hence

for any 20 E U such that [¢(zo)l > 6, [[C¢,a¢,(zo)[[3 < e. In particular,

lain.)(¢(20))l |¢'(Zo)|(1 - IZoI2) < 6

that is,

l¢’(zo)l

1 ‘ [4420”2

Then (3.1) yields that for any n E N and 20 E U such that [¢(zo)[ > 6,

(1 — [20m < e. (3.1)

[(fn0¢)'(zo)[(1—l20[2) = |fl.(¢(Zo))ll¢'(Zo)I(1-|Zo|2)

< If.'.(¢(Zo))|(1 - |¢(Zo)l2)€

S llfnllBC

S llfnllX e < const.c . (3.2)

Since the set A = {w : [wl S 6} is a compact subset of U and f,’, —> 0 uniformly on

compact sets,

suplf,’,(w)[ -~>0, asn—>oo.

wEA

Therefore we may choose N large such that |f,’,(q$(z))[ < e, for any n 2 N and any

T
7

’

 

\
r
—
F
W
I
—
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z E U such that |q§(z)[ S 6. Then, for all such z,

|(fn°<l>)'(z)|(1—|z|2) = |f.’.(¢(z))||¢'(z)|(1-Isl?)

< C|<t>'(z)|(1—lzl2)

< ll¢ll3€, (3.3)

where n 2 N. Thus, (3.2) and (3.3) yield

“fr. 0 (bllg < const. e, for n 2 N. (3,4)

Thus (3.4) yields that [|C¢fn[[3 —-> O as n —> 00. Hence by Lemma 2.11 C¢ : X -—> B

is a compact operator. E]

Notes (a) It is easy to see that the proof of Theorem 3.1 yields that

1° C = 0”[1331” Willis

if and only if

m |¢’(z)|(1-|z|2) : 0.

l¢>(z)I-+1 1 - |<15(Z)|2

 

Therefore we obtain another proof of Theorem B.

(b) The above theorem is valid for any Banach subspace X of the Bloch space such

that the point evaluation functionals on X are continuous and the closed unit ball of

X is compact in the topology of uniform convergence on compact sets.

An immediate consequence of Theorem 3.1 along with Lemma 2.11 and Theorems

2.7 and 2.8 is the following proposition.

Proposition 3.2 Let 1 < p S q S 00. Then:

1. If C), : Bp —> 3,, is a compact operator then so is C,» : B —> B.
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2. For1<pS2,

if C¢ : BP —2 BMOA is a compact operator then so is C), : B —-) B.

3. If C) : BMOA —-> BMOA is a compact operator then so is C), : B ——> B.

The following proposition gives a sufficient condition for a composition operator

to be compact on a Besov space.

Proposition 3.3 Let 1 < p S q < 00. If

lim N4(w9 ¢)

[wl—)1 (1 — [wl”)‘l‘2

=0 

then C¢ : 8,, —> B, is a compact operator.

Proof. Let (fn) be a bounded sequence in 3,, such that f... -—) 0 uniformly on

compact sets as n —-> 00. Let c > 0 be given and fix 6 > 0 such that if 1 — 6 < [wl < 1

then

N,(w,¢) < C(1_|w|2)q—2. (3.5)

By (2.2)

“ennui. = / lf.’.(w)l"Nq(w,¢)dA(w)

= + ’ w qu w, dA w[WW lwlSl_5If.( )l ( d») (>

= [+11
(3.6)

By (3.5),

I < e / |f.’.(w)l"(1 — IwIP)P-PdA(w)
l—6<Iw[<l
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< Cllfnlquq < e const. (fn is bounded in 8,0) (3.7)

Since [f,’,[" —) 0 uniformly on {w E U : [wl S 1 — 6}, we can find a positive integer N

such that

[I S e/ Nq(w,q5)dA(w) < 6 const. , (3.8)

lwl<1—6

for n 2 N, since

/ N.(w.¢)dA(w) s II¢IIB. < oo.
[wl<l—6

By (3.6), (3.7), and (3.8) ”0.»ntqu < econst. for n 2 N. Therefore, [[C¢,fn[[3q —+ 0

as n ——) 00. Hence Lemma 2.11 yields Cd, : 8,, —> B, is a compact operator. Cl

Composition operators on Besov spaces are not bounded for all holomorphic self-

maps of U. But if the Besov space contains the Dirichlet space and the symbol is

boundedly valent then the induced composition operator is bounded.

Lemma 3.4 Let qb be a boundedly valent holomorphic self-map of U, 2 S q < 00,

and 1 < p S q. Then Cd, : B,, —> 8,, is a bounded operator.

Proof. Let f E B,, (1 < p < 00). Applying the Schwarz Lemma ([27, page 254]) to

the function (12 o 45 0 mm) yields

|¢'(2)l(1-|2l2)51-|¢(2)|2,

for any 2 E U. Hence by (2.2),

IIcifIIPB, = fl] lf’(w)l" Z (I¢'(2)I(1—IzIP)°‘2dA(w)
6(2):!”

3 const./U If’(w)l" Z (1—|¢(z)|2)"’2dA(w).

¢(z)=w
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Therefore,

[[C¢f[|qu S const.] [f'(w)lq(1— |w[2)q'2dA(w) S COHSt-llflliap

U

for any holomorphic function f on U. Thus, Cd, : Bp —) B, is a bounded operator. C1

The following theorem and proposition give conditions under which compactness

in the Bloch space is equivalent to compactness from a Besov space to some larger

Besov space.

Theorem 3.5 Let qb be a univalent holomorphic self-map of U. Then, for q > 2,

Cd, : B, -—> B, is a compact operator if and only if C.) : B —-> B is a compact operator.

Proof. First, suppose that Q, is a compact operator on the Bloch space. The

sufficient condition of Besov space compactness in Proposition 3.3 for a univalent

function is

 

lim

[wl—+1

{|d>’(d>‘1(w))l(1—le“(w)|2}q_2 = 0
1— [wl2

or equivalently,

|¢’(Z)|(1-l2|2)
1m 2

wen-+1 1 - |¢(2)l

 

=0.

Which is a compactness condition for the composition operator on the Bloch space

(Theorem B). Hence, by our assumption, C4, : B, —> 8,, is a compact operator.

The converse follows from Proposition 3.2. This finishes the proof of the theorem.

Note Theorem 3.5 is not valid when q = 2. There exists a univalent holomorphic

self-map of U such that C), is compact on the Bloch space but not on the Dirichlet

space. To describe such an example we will need some preliminaries. First, the Koebe

Distortion Theorem (see [32, page 156]) which asserts that if d) is a univalent function
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on U then for any 2 E U

5¢(v)(¢(2)) ~ |¢'(Z)|(1—lzl2),

where 6¢(U)(q’>(z)) is the Euclidean distance from (6(2) to 8¢(U). Thus the Madigan

and Matheson condition of Bloch compactness for a univalent d) is equivalent to

5¢(U)(¢(Z)) _

willln 1 _ |¢(z)|2 — 0'
(3.9)

Let D(0,a) denote the disc centered at 0 of radius a. A nontangential approach

region (to, (0 < a < 1) in U, with vertex C 6 (9U is the convex hull of D(0,a) U {C}

minus the point C.

If 11) is a univalent holomorphic self-map of U such that I,b(U) = QC, (0 < a < 1)

then infzeuW > 0. Thus by (3.9) Cd, is not compact on 8. But if we delete

certain circular arcs from 00, then for the Riemann map (b from U onto the induced

domain G, C), is compact on B. Let L, = {z E (to, : [z — 1| S 1,]; (n 2 1). Then

L1 3 L2 3 L3 3 Remove from L, \ Ln.“ (n 2 1) arcs centered at 1, with one

end point at (900,, in such a way so that the succesive radii are less than 5‘; apart,

and the distance of each arc to 600, is less than 3%. Then the distance from each

.2 6 Ln \ Ln.” to the boundary of the induced subdomain, Gn, of Ln \ Ln“ is less

than 31—". Let G = UnzlG'n. Then, as [2] -—) 1, 60(2) = o(1—|z[). Therefore by (3.9)

Cd, is compact on 8. Moreover Cd, is not compact on the Dirichlet space. This follows

from Theorem 2.7.

The theorem above is a special case of the following proposition. We show that if Cd,

is bounded on some Besov space then the compactness of Cd, on larger Besov spaces

is equivalent to the compactness of C.) on the Bloch space. This result is similar to

the compactness of C.) on weighted Dirichlet spaces Do, (a > —1). These are spaces
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of holomorphic functions f on U such that [f(0)[2 + fulf'(z)|2(1—[z[2)°dA(:) < oo.

MacCluer and Shapiro show in [19, Main Theorem, page 893] that if C4, is bounded

on some weighted Dirichlet space Do then the compactness of C¢ on larger weighted

Dirichlet spaces is equivalent to ct having no angular derivative at each point of UU.

Proposition 3.6 Let 1 < r < q, 1 < p S q. Suppose that C4, : B, —> B, is a bounded

operator. Then, C¢ : B,D —> B, is a compact operator [if and only if C¢ : B —-> B is a

compact operator.

Proof . First, suppose that Cd, is a compact operator on the Bloch space. For any

AEU,

IlcialIIPB, = [Iag(¢<z>)IPI¢'<z)IP(1—IzIP)P-PdA(z> (3.10)

= [U la’.\(¢(z))l’l¢’(z)l'(1-|zl2)"2(Ia&(¢(z))ll¢'(z)l(1-|z|2))°‘”dA(z)

< llC¢OAIIb_rllC¢OA|  

,.

B.

S const.][C¢,a,\[[‘£’;r (by Theorem E and since C.» : B, —+ B, is bounded) .

Therefore (3.10) and Theorem 3.1 yield that llC¢aAlleq -> 0 as [Al —-> 1. Thus by

Theorem 2.7, Cd, : B,D —-) B, is a compact operator. The converse follows from

Proposition 3.2. This finishes the proof of the proposition. C]

The following theorem summarizes the above. If a composition operator is

bounded on some Besov space then the compactness of the operator on larger Besov

spaces, and from any Besov space to BM0A, is equivalent to the Bloch compactness

of the operator.
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Theorem 3.7 Let 1 < r < q, 1 < p S q, suppose that Cd): B, —-> B, is a bounded

operator. Then the following are equivalent:

1. C¢ : B —) B is a compact operator.

{
e

O
6

: B, -> B, is a compact operator.

3. Cd, : D —> BMOA is a compact operator.

4. C, : B, -—> BMOA is a compact operator.

Proof. The previous proposition yields (1) 41> (2). Proposition 3.2 yields (3 ) =>

(1). Theorems 2.7 and 2.8 yield (2) => (3). Theorem 2.8 yields (3) (it (4), if

1 < p < 2. pr > 2 then (4) => (3)lS trivial, since the inclusion map,i :Bp —> D, is

bounded. Moreover (2 ) => (4) follows as well (when p > 2) since the inclusion map,

i: B, —> BMOA, is bounded. We have shown (3) => (1) (it (2) => (3) 4:) (4). This

completes the proof of the theorem. E]

Arazy, Fisher, and Peetre prove the following theorem in [2, Theorem 16].

Theorem F Let p be a positive measure on U, 0 < p < 00. Then,

/ (#42) < 00

v (1 - [lelp

if and only if there is a positive constant e such that

/ |f’(~ )(lpdit)< cIIfIIB.

for all f E 3.

Note The proof of Theorem F can be used to show that a similar result holds for a
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collection of positive measures {ftq : q E U}. That is, if 0 < p < 00, then

d/iq
sup/ —— < oo

q€U U (1 — [z[2)P

if and only if

sup / If(P )Ipduq s cIIfIIs
QEU

for all f E B.

These results, along with a non-univalent change of variables, yield the following

characterizations of bounded composition operators from the Bloch space to Bp (1 <

p < oo), BMOA, and H2.

Proposition 3.8 Let (,b be a holomorphic self-map of U.

1. C¢ : B —> D is a bounded operator if and only if

M w z I¢’(z)|2 z 00

/u(1—IwI'P’)2dA() L(1-l¢(z)|2)2dA()< ,
 

where n(¢;w) denotes the number of times (b takes the value w. Ifw is not in

¢(U) then let 17(4); w) = 0.

2. C,» : B —> Bp (1 < p < 00) is a bounded operator if and only if

N100”I<l>’(ZI”IZ2I)”’2 -

/(1—IwI2lpdAw):/U(1—I¢TZ)I) dA(‘)<°°‘

3. C45 : B —> BMOA is a bounded operator if and only if

Nw,,) ’( —aq311p/U___(q Wieu/ulqshzll:1¢(z)I ()])dA()<00.

qu (1 “‘ |w|2)2d “22)
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4. C¢ : B ——> H2 is a bounded operator if and only if

M w = I<b’(z)l’(1-lz|2)dA w 00

L(1_lw|2)2dA( ) /U (1-[qb(z)|2)2 ( )< . 

Shapiro and Taylor characterize the Hilbert-Schmidt composition operators on the

Dirichlet space in [29, Proposition 2.4]. The following proposition is proved there.

Proposition G Q, is a Hilbert-Schmidt operator on D if and only if

I¢'(z)IP

l.) (1- I¢(z)|2)2dA(z) < “3'

 

In view of the two propositions above, the Hilbert-Schmidt composition operators on

the Dirichlet space are precisely those composition operators that are bounded from

the Bloch space to the Dirichlet space. The next result shows that every bounded

composition operator from B to D, and more generally from B to B,, (1 < p < 00), is

compact.

Proposition 3.9 Let 43 be a holomorphic self-map of U.

1.1f1<p<oothen

 

I¢'(Z)I”(1-IZI)”2
f (1_ I¢((pleQ) dA(z) < 00

if and only if C¢ : B —> B, is a compact operator (hence C¢ : B—> BMOA is a

compact operator as well).

I¢’(z aqz( )I)

Iqi->I/U(()]1-(I¢()I) (buzz) 0

then Cd, : B ——> BMOA is a compact operator.

2. If
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Proof of (1). Let (fn) be a bounded sequence in B such that f,, ——> 0 uniformly on

compact sets, as n —> 00. Then,

“0.).“ng = flf.’.(¢ z))|”l<1’>(z”)I(1-I2I2)”‘2dA(z)

= f + / If.’.(¢(z))l”l¢’(z)l”(1—Iz|2)”‘2dA(z)
{zEU:6<ld>(z)|<1} {z€U:|¢(z)[S6}

= [+11 (3.11)

for any 0 < 6 <1. Then

, |¢’(z)l”(1-Izl2)P‘2dA ,, 3 ,,

“Hf"“P/ceu.was...) (1—I¢(2)IP)P (”)’ I' )
 

for any 6 > 0. Hence, as 6 —> 0 , I —> 0 by the Lebesgue Dominated Convergence

Theorem ([27, Theorem 1.34, page 26]) and our hypothesis. Let c > 0 be given.

Choose 6 6 (0,1) such that if h < 6 then I < e. For such an h,

11 = / I¢'(2)IPIf:.(¢(2))IP(1—I2IP)P-PdA(2) < e||¢IIEp (3.13)
{zeU l¢>(z)l<h}

for n large enough, since f’ —~> 0 uniformly on {2 E U: [qb( 2)] S h}. Thus (3.11)

and (3.13) imply that there exist a positive integer N such that if n 2 N then

[[C¢fn|[3p < const. 6. Thus, [lC¢,fn|[3p -—> 0, as n -> 00, and Theorem 2.11 yields that

C4, : B -) Bp is a compact operator. The converse follows from Proposition 3.8.

Proof of (2). Let (fn) be a bounded sequence in B such that fn —> 0 uniformly

on compact sets as n —) 00. Let c > 0 be given. Then by our hypothesis there is a
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6 > 0 such that if [ql > 1 — 6 then

|¢'(z)I(1 " Ioqu:
/((Ml—I4) )< e. (3.14) 

Fix q E U such that [ql > 1 — 6. Then

[If.'.(2)2))PII2)(21-Ia.()I)dA(2)

 

_ I z 2 _ z 22I¢'(2)I2(1-Iaq(le2l 7

— [U If.(¢( ))I (1 W )I) (,_l¢(z,l,). 2121(2)

 

|¢’(z)l2 —Ia.(2 )IP )
_<IIntI123/ WW 221(2) (by (3.14))

S const. 6. (3.15)

If [ql S 1 —6 then

 

 

/ If:.(2) 2))IP (2(2 P(1— Ia.(2 )IP)dA(2)

—IqIP)(1 — W)
=/ If.’.(¢ 2))I I2)(zl1_.,zl, 2121(2) (by (1.1))

S const. / [f l[(15 l—[l)dA(2) 61:2]; S g) . (3.16)

Since

 

/|¢’(z2)IIP)(1—I2 00

((1—I2)2)IP)P ’

,,m I2)'(2)IP (1 — I2IP )

11-20 (.22).).-. (1-I<)(2)IP)P “(2):“
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Therefore without loss of generality

|¢'(P)|2(1-Iz|2) C 3.17

/I(2)I>1_5 (1-|¢(Z)|"’)2 <'
l )

 

Using (3.17) it is easy to see, similarly to the proof of part (I), that

/ |f.’.(¢ )I'(I2(2)I(1—I2IP)2A(2)

= f + / |f.’.(¢(z))l2|¢’(z)|2(1—I2|2)dA(z)

I2)(z)|>1—5 |¢(z)|Sl—6

< const. 6 (3.18)

for n large. Then (3.15), (3.16), and (3.18) yield

sup/UM)|f,’,(d> 2))I |¢'( )2)2 (1 — |aq(z)|2)dA(z) < const. 6.

Therefore by (2.3), HC¢ntI. < const. 6. Thus, ||C¢fn||. —> O as n —+ 00, and Lemma

2.11 implies that Cd, : B —-> BM0A is a compact operator. This finishes the proof of

the proposition. [3

In view of Propositions 3.8 and 3.9 we obtain the following corollary.

Corollary 3.10 For 1 < p < 00, every bounded composition operator from B to Bp

is compact.

Corollary 3.10 also follows from some nontrivial Banach space theory. Here is an

outline of the argument. First, Bp is isomorphic to 1", since the LP Bergman space of

U is isomorphic to I” (see [15, Theorem 6.2, page 247]). Next 8 is isomorphic to l°°,

since [3 is isomorphic to the dual of the L1 Bergman space of U (see [10, Theorem

10 page 49]), which in turn is isomorphic to l°°. Moreover, if 1 < p < 00 then every
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bounded linear operator T : l” —> I1 is compact (see [16, Proposition 2.c.3, page 76]).

Thus, T“ : l°° —+ l" is compact for any q 6 (1,00). Also a bounded operator is an

adjoint if and only if it is weak-star continuous. It is not difficult to show that if

Cd, : B —+ 3,, is bounded, then it is weak-star continuous, and hence by the above

argument, also compact.

Next we give a characterization of compact composition operators whose range is

a subset of VMOA.

Theorem 3.11 Let (b be a holomorphic self-map of U, and X a M5bius invariant

Banach space. Then Cd, : X —> VMOA is a compact operator if and only if

pgfigL/UPWWlw2nu—2mam2%o=a

Proof. First suppose that C¢ : X —> VMOA is a compact operator. Then A =

cl({f o q) E VMOA : ||f||x < 1}) , the VMOA closure of the image under 0,, of the

unit ball of X, is a compact subset of VMOA. Let c > 0 be given. Then there is a

finite subset of X, B = (fl, f2, f3, ..., fN}, such that each function in A lies at most 6.

distant from B. That is, ifg E A then there exists j E J = (1,2,3, ..., N} such that

Im-toat<§. (aw)

Since (f, o (6 : j E J} C VMOA, there exists a 6 > 0 such that for all j E J and

.LKEMWRWU—kMflVMMfl< (2m)
6

4.

By (3.19) and (3.20) we obtain that for each [ql > 1 — 6 and f E X such that

Hflllx < 1 there existsj E J such that

./|(fo¢MW1~fiad)lwAk)
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s 2 U |(f o d> - f. o ¢)’|2(1—Iaq(z)|2)dA(-:)+ 2 U |(f. o ¢)’(z)|2(1-laq(z)|2)dA(:)

e e

— 2—=.<24+4 c

This proves one direction.

In order to prove the converse, let (fn) be a sequence in the unit ball of X. By

Lemma 2.9 and Montel’s Theorem there exists a subsequence n; < n2 < and a

function g holomorphic on U such that fn,‘ —+ g uniformly on compact sets, as k —) 00.

By our hypothesis and Fatou’s Lemma it is easy to see that 04,9 6 VMOA. We will

show that ||C¢(fnk — g)“. —) O, as k —> 00. In order to simplify the notation we will

assume, without loss of generality, that we are given a sequence (fn) in the unit ball

of X such that fn —> O uniformly on compact sets, as n —> 00. We will show that

"15120 ||C¢fn||. = 0. (3.21)

To prove (3.21) we will use the equivalent BM0A norm as given by (1.5). Thus, our

hypothesis is equivalent to

. 1

llm sup 3] |(f o ¢)’(z)|2(1 — |z|2)dA(z) = 0. (3.22)

h"0 Helm») 301,9)

UGX:|UHX<1}

Let c > 0 be given. By (3.22), there exists a 6 > 0 such that if n E N, 0 6 [0,271’),

and h < 6 then

1
E/SW) |(f,, 04)) (2)} (1 — |z| )dA(z) < e. (3.23)

Fix ho < 6, 0 E [0,27r), n E N, and h 2 6. It is easy to see that there exists

{91,02,...,QN} C [0,27r) such that S(h,0) is the union of the sets {5(h0,0,-) : j =
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1,2, ..., N} and K, a compact subset of U. Hence,

1 1
_ +—— ,,o 'zzl—zszz

S E /S(ho.0,) |(f ¢)( )I( l l) ( )

= I + II. (3.24)

Since f,’, —> O uniformly on K, as n —> 00, there exists an N E N such that for n 2 N

11 g i (1 — |z|2)dA(z) 3 const. 6. (3.25)

Moreover (3.23) yields,

N

I S 2 c = const. 6. (3.26)

Hence (3.23), (3.24), (3.25), and (3.26) yield (3.21). Thus Lemma 2.11 yields that

0,), : X —> VMOA is a compact operator. [:1

There are symbols ¢ such that C,» is compact on BMCA but not on VMOA. For

example, consider the self-map (15(2) = %exp{%}. Since ll¢lloo < 1, Corollary 2.12

yields that C4, is a compact operator on BM0A. Moreover since (1) g [30, Ct, is not

even bounded on VMOA (Theorem C, page 22).

If (I) E VMOA then compactness of C2,, on BM0A implies the compactness of C,»

on VMOA. If T is a compact operator on a Banach space X, and Y is an invariant

subspace of X such that T : Y —-> Y is bounded, then T : Y —> Y is a compact

operator as well. Thus we obtain the following proposition.

Proposition 3.12 Let qS be a holomorphic self-map of U. Then,

I. If(b E VMOA and C¢ : BMOA —+ BMOA is a compact operator then C,» :
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VMOA —-) VMOA is a compact operator.

2. Ifd> 6 Bo and C¢ : B —> B is a compact operator then C45 : 80 —> 30 is a compact

operator.

Next we show that the sufficient condition of compactness of Ca : B —> BM0/1 in

Proposition 3.9 is also necessary for the compactness of Cd, : B —+ VMOA. We will

use Khintchine’s inequality for gap series (as done by Arazy, Fisher, and Peetre in [2,

Theorem 16]), and Theorem 3.11.

Theorem 3.13 Let (f) be a holomorphic self-map ofU. Then the following are equiva—

lent:

N . C¢ : B —-+ VMOA is a compact operator.

N
)

 
|</>’()|(1—Iaq(z >12) , _

lclIlI-il,/U(
((1_'¢z)2I2) dA(4)—0.

Proof. First, suppose that (1) holds. Then by Theorem 3.11 and since

for all 9 E [0,27r) (see [1, Lemma 2.1)),

2

N(waq,<f>)dA(w) = 0-
f: 2n(ei0w)2"—l

lim sup /

|<1|-+l oe[o,21r) ":0

Let c > 0 be given. Then there exists a 6 > 0 such that for any q E U with lql > 1 — 6

  

and any 0 E [0,27r),

22%”
11:0

N(w,q,q5)dA(w) < e . (3.27)

0dc_f.A/
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Upon integrating (3. 27) with respect to—:and using Fubini8 Theorem, we obtain

 

d6 2" °° . .. .. 2 d6
f2" A9— =/ / Z2716“? 'llw2 ’1 -— N(w,q,¢)dA(w) S e. (3.28)

0 27r U 0 "=0 27r
 

Khintchine’s inequality (see [36, Theorem V.8.4]) for gap series yields that for any

positive integer N

/21r

0

Therefore (3.28) and (3.29) imply that

N

Z2nei0(2"—1)w2"-1

n=0

2d9 N
——~ 22nlw|2"“-2. (3.29)

  n=0

f0? A92—N [U {222%Vim-2} N(w,q,¢)dA(w). (3.30)

n-O

It is shown in [2, Theorem 16] that

00 2,, 2n+l const.

22 lwl 2 my; , (3-31)

11:0

for any w E U such that |w| Z %. Hence (3.28), (3.30), and (3.31) yield

N(w,q,¢) 2" d0
_— < . _ . .

/U (1 _ lwI2)2clA(w) _ const [0 A92” < const 6 , (3 32)

for any q E U with |q| > 1 — 6, and any 6 > 0. Thus (3.32) yields (2).

Conversely, suppose that (2) holds. Fix f in the unit ball of the Bloch space.

Then,

[1 |f’(¢(z))l2|¢’(z)|2(1 — Iaq(z)l2)dA(z)

 

we)|:(1|- laq(z)l"’)
<|lf|l§/(( WW), dA<z>
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|¢’(z)|2(1 -— laq(z)|2)

5 U (1—1¢(z>|2)2 0“

 

(z).

The righthand side of the above inequality tends to O, as |q| —> 1, by our hypothesis.

Hence Theorem 3.11 yields that C4, : B —+ VMOA is a compact operator. This

finishes the proof of the theorem. D

Proposition 3.14 Let <15 be a holomorphic self--map ofU. If C¢z BMOA —+ VMOA

is a compact Operator then

|¢'(z )l” (1 _
laq(z )lz) _

Iii-H/U
1_ l¢(z )l2 dA(z) _ 0 _ 

Proof. By Theorem 3.11 and since f9(2) = log 3% E BMOA for all 0 6 [0, 27r),

lim /Up|f9(z)|2N((w,q, gbz)dA()= 0. (3.33)

I‘ll—*1 9€S[0,21r)

Let c > 0 be given. Then there exists a 6 > 0 such that for any q E U with |q| > 1 — 6

and any 0 E [0,27r),

A. = [U |f5(z)I2N(w,q,¢)dA(z)

= /-————|-————1_ el"9w (w,,q ¢)dA(w)< (3.34)

Integrating (3.34) with respect to;—:and Fubini’5 Theorem yield

(10 27" 1 (19

A __ — _ _

/021r 92"- ./(ij{v/o l1 - 6"9wl2 2n} N(w,q, (Md/1h“) S 6-
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Thus,

/ WdA(w) < C ,

U 1— |w|2

for all lql > 1 — 6, and all e > 0. Therefore

. warm—lam?) Z _

IllTI/u 1-|¢(z)|2 “(l-0'

 

Next we show that composition operators on BM0A and VMOA, where the

symbol is a boundedly valent holomorphic function whose image lies inside a polygon

inscribed in the unit circle, are compact if and only if they are compact on the Bloch

space. We will use Propositions 3.9, 3.12, and the following theorem of Pommerenke

([24, Satz 1]).

Theorem H Let f be a holomorphic function on U such that

sup v/Iw—woKl 17(f,w)dA(w) < oo ,

wO

where the supremum is extended over all points wo in the complex plane. Then,

fEBMOAéfEB, fEVMOAfifEBo.

In page 46 we defined a nontangential approach region (to, (0 < a < 1) in U with

vertex C 6 3U. The exact shape of the region is not relevant. The important fact

that we will use in the theorem below is that there exists 0 < r < 1 and c > 0 such

that if z E (to, and IC — 2] < r, then

IC - 2| S c(1-|Z|2)- (3-35)
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Theorem 3.15 Let ¢ be a boundedly valent holomorphic self-map of U such that

¢(U) lies inside a polygon inscribed in the unit circle. Then the following are equiva-

lent:

1. C.» : B —> VMOA is a compact operator.

f
8

0
e

: B —-> BMOA is a compact operator.

3. Cd; : BMOA —-> BMOA is a compact operator.

4. C43 : B ——> B is a compact operator.

5. 0.1, : 80 —> 80 is a compact operator.

6. C¢ : VMOA —> VMOA is a compact operator.

Proof. (1)=> (2): (3) is clear.

(3)=>(4). This is valid for all holomorphic self-maps of U (Proposition 3.2).

(4): (5). Since gb is a boundedly valent holomorphic self-map of U, <15 6 D C

VMOA C 80. Thus (15 6 30. The compactness of 0,, now follows from part (2) of

Proposition 3.12.

(5)=>(I) By Madigan and Matheson’s Theorem 1 (see [22]) 0.), is a compact

operator on the little Bloch space if and only if

.m I¢’(z)l(1—lzI2) _

Ill»l 1-I<¢>(z)|2 ’0'

 

It follows that log If,» 6 30 for each w 6 EU. By Theorem H each boundedly valent

function in 130 must belong to VMOA, hence log 31:) E VMOA for each w E 8U.

Thus

<10 —1—->'gw—wo

2

. _ ~ , _

Iggy] U (1 |a,(.)| )dA(z) —0
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hence

 

|q$’(z Mia“)le ~ _
(q141/|w(—1(z¢)|2 dA(.)_o, (3.36)

for each w E 8U.

Let {wj : 1 S j S n} be the vertices of the inscribed polygon containing qb(U).

Break the unit disc up into a compact set K and finitely many regions

E: = {2 € U1 le -¢(Z)| < 7‘}

where r is chosen so that the regions are disjoint, and so that

M - 45(2)] S Coust-(l-|<15(Z)|2)

for each 2 6 EJ- and each j. Then for each q E U,

l¢’(Z)l2(1—laq(2)l2
) ons ]¢'(Z)]2(l _ laq(z)l2) ~

E: (1-l¢(zll2)2 dA(z) S C t. /E, ij — ¢(z)l2 CM“).

Hence

 

|¢’(z)|2(1-Iaq(z)|’) ,,

la (1—|¢(2)l2)2 dA‘“)

 

_Z/E++/h l¢'(z((1l:1|¢,—|a|q]:22)] )dA(z)

 

cons ]¢'(Z)l-l01q(z)]2) ~

< t ;E,Iw.(1—¢<zw M“)

+const. /U |¢'(z 2(1— laq(z )|2)dA(z) , (3.37)

for all q E U.
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Any boundedly valent holomorphic self-map of U belongs to VMOA. Hence (3.36)

and (3.37) imply that

l¢’(z)l(1—|aq(z )l2) 2 _
”El/U ((2)1_|¢ I”) dA( )_0. (3.38) 

By (3.38) and Theorem 3.13 we obtain that C,» : B —> VMOA is a compact operator.

Proposition 3.12 yields (3) => (6). If(6 ) holds, thatIS C¢: VMOA —> VMOA1s

a compact operator, then C), is weakly compact on VMOA. Hence by Theorem V1

5.5 in [9, page 189], C¢(BMOA) C VMOA. Thus log 6 VMOA (w E 8U).
1

w—d>(z)

Thus by the proof of (5) => (1) we obtain (6) => (1). This finishes the proof of the

theorem. D

Definition 3.16 A region G C U is said to have a nontangential cusp at C E 6U if

, lIsz

11m =
z-H ll — z]

260

 

Note Theorem 3.5, Theorem 3.15 and Madigan and Matheson’s Theorem 5 (see [22,

page 2685]) yield that if d) is a univalent self-map of U such that ¢(U) has finitely

many points of contact with 8U and such that at each of these points ¢(U) has a

nontangential cusp, then 0,), is a compact operator on 8,, (p > 2), on BMGA, and

on VMOA.

 



CHAPTER 4

Final remarks and questions

Madigan and Matheson showed that if Cd, : 30 —> [30 is weakly compact then it is

compact. Is a similar statement valid for C¢ : VMOA —-> VMOA? That is, does

C¢(BMOA) C VMOA imply that C), is a compact operator on VMOA?

In Theorem 3.15 we showed that for certain boundedly valent holomorphic self-

maps of U, compactness of Cd, on BM0/1 is equivalent to the compactness of C2), on

B. Is this true for all boundedly valent symbols?

In Theorem 3.15 we used that 45 is boundedly valent to be able to conclude that

if log 633(7) 6 80 then log w_.l¢,(z) E VMOA (w E 3U). We should mention here that 

Stroethoff, using an area version of the BM0A counting functions, characterizes

exactly when a function ab 6 Bo belongs to VMOA. He showed in [33, page 78] that

a function d 6 Bo belongs to VMOA if and only if for every 6 > 0

1

lim sup / tn(q§o ap — w,t)dt = 0.

o
[pl—)1 w

|¢(P)-wl25

In Theorem 3.13 we showed that the compactness of C4, : B —) VMOA is de-

termined by the “behavior” of {C¢z(e‘9¢(z))2n) : 0 6 [0,21r)}. Does a similar

statement hold for compact operators Cd) : BMCA —> VMOA? That is, is it true

64



65

that C¢ : BMOA —> VMOA is a compact operator if and only if

2

(1— Iaq(z)l2)dA(z) = o ?
 

1 I

(1031—47,) (‘2) 

lim sup /

lq|-+196[o,21r) U
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