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ABSTRACT

COMPACT COMPOSITION OPERATORS ON SOME
MOBIUS INVARIANT BANACH SPACES

By

Maria Tjani

Let B, (1 < p < o©) be a Besov space and B the Bloch space. We give Carleson
type measure characterizations for compact composition operators Cy : B, — B,
(l<p<Lg<®),Cs:B, > BMOA, and Cy : B =+ VMOA. We show that if Cy
is bounded on some Besov space then Cy is compact on larger Besov spaces if and
only if it is compact on the Bloch space. Also, if ¢ is a boundedly valent holomorphic
self-map of the unit disc U such that ¢(U) lies inside a polygon inscribed in the unit
circle, then Cy is compact on BMOA, and on VMOA if and only if it is compact on

the Bloch space.
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Introduction

Let ¢ be a holomorphic self-map of the open unit disc U, H? the Hilbert space of
functions holomorphic on U with square summable power series coefficients. Associate

to ¢ the composition operator Cy defined by
Cof =fod,

for f holomorphic on U. This is the first setting in which composition operators were
studied. By Littlewood’s Subordination Principle every composition operator takes
H? into itself.

A natural question to ask is which composition operators on H? are compact.
Shapiro in [31], using the Nevanlinna counting function, characterized the compact
composition operators on H? as follows: Cy is a compact operator on H? if and only
if

No(w) _
lw|=+1 — log |w|
A natural follow up question is about the boundedness and compactness of compo-
sition operators on other function spaces. We know the answer to this question in a
variety of spaces.

MacCluer in [20], Madigan in [21], Roan in [25], and Shapiro in [30] have charac-
terized the boundedness and compactness of Cy in “small” spaces.

In “large” spaces, MacCluer and Shapiro show in [19] that Cy is compact on

Bergman spaces if and only if ¢ does not have an angular derivative at any point of
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OU. The angular derivative criterion is not sufficient, in general, in smaller spaces
unless we put extra conditions on the symbol. For example they showed that it is
sufficient on Hardy spaces, if the symbol is boundedly valent.

The Bloch space B is the space of holomorphic functions f on U such that ||f||zg =
sup,eu | f'(2)](1 = |2|?) < oco. It becomes a Banach space with norm |f(0)|+ || f||s. A
linear subspace X of B with a seminorm ||.||x is Mébius invariant if for all Mobius
transformations ¢ and all f € X, fo¢ € X and ||f o ¢||x = || f||x, and there exists
a positive constant ¢ such that ||f||s < ||f]||x. It is easy to see that B is a Mobius
invariant space.

A Mébius invariant Banach space X is a Mobius invariant subspace of the Bloch
space with a seminorm ||.||x, whose norm is f = ||f||x or f — |f(0)| +||f]|x. Rubel
and Timoney showed in [26] that B is the largest Mdbius invariant Banach space that
possesses a decent linear functional. Other Mébius invariant Banach spaces include
the Besov spaces, the space of holomorphic functions with bounded mean oscillation
BMOA, and the space of holomorphic functions with vanishing mean oscillation
VMOA. We will define and discuss properties of these spaces in chapter 1.

Madigan and Matheson show in [22] that Cy is compact on the Bloch space if and

only if
()L - [=) _

im 0.
l6(2)l»1 1 —|@(2)?

They also show that if Cy is compact on B then it can not have an angular derivative
at any point of dU.

In this thesis we study the compact composition operators on B, (1 < p < o),
on BMOA, and on VMOA. For the rest of this introduction let X denote one of
these spaces, unless otherwise stated. One way to approach this problem is to relate
it to properties of ¢. That is to see how fast or how often ¢(U) touches 8U. In

every function space that compact composition operators have been studied, the first
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class of examples were provided by symbols ¢ such that ¢(U) is a relatively compact
subset of U. For the spaces that we study this is not an exception. Moreover, if Cy
is compact on X then Cy can not have an angular derivative at any point U since,
if C4 is compact on X then Cy is compact on the Bloch space (see Proposition 3.2).

In Chapter 2, using counting functions, we give a Carleson measure character-
ization of compact operators Cy : B, - B, (1 < p < ¢ < o0)and Cy : B, —
BMOA (1 < p £ 2). MacCluer and Shapiro give in [19] Carleson measure char-
acterization of compact composition operators on the Dirichlet space D, which is a
Besov space (p = 2). Let a) (A € U) be the basic conformal automorphism defined

by ax(z) = IL_“;"‘; We prove the following theorems.

Theorem 2.7 Let 1 < p < g < 00. Then, the following are equivalent:
1. C4 : B, =& By is a compact operator.
2. Ny(w,¢)dA(w) is a vanishing g-Carleson measure.
3. ||CsarllB, = 0, as |A| = 1.
Theorem 2.8 The following are equivalent:
1. C4:D — BMOA is a compact operator.
2. ||Csanr|l« = 0, as |A| = 1.

The main steps in the proof of the two theorems above are the following. First we
characterize the vanishing p-Carleson measures (see Proposition 2.5). Then we give a
general characterization of compact composition operators on certain Banach spaces
of analytic functions in terms of bounded sequences that converge to 0 uniformly on
compact subsets of U (see Lemma 2.10 and Lemma 2.11). Lastly a technique given

by Arazy, Fisher, and Peetre in (2] and by Luecking in [17] and [18].
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In Chapter 3 we first give another characterization of compact composition ope-

rators on the Bloch space. We prove the following theorem.

Theorem 3.1 Let ¢ be a holomorphic self-map of U. Let X = B, (1 < p < o0),
BMOA, or B. Then Cy: X = B is a compact operator if and only if

lim ||C¢a,\||3 =0.
JA|=1

Next we show that if C4 : X — X is compact then so is Cy : B — B. Moreover
we give conditions on the symbol under which the converse is valid as well. If X is a
Besov space then the converse holds if we suppose that Cy is bounded on a smaller

Besov space. We prove the following theorem.

Theorem 3.7 Let 1 <r < q, 1 < p < gq, suppose that C, : B, = B, is a bounded

operator. Then the following are equivalent:
1. C4: B — B is a compact operator.
2. Cy : B, =& By is a compact operator.
3. C4: D — BMOA is a compact operator.
4. C4: B, > BMOA is a compact operator.

Next we describe the proof of the theorem above. At this point we have all the tools
we need (see Lemma 2.11, Theorem 2.7, Theorem 2.8, and Theorem 3.1) to prove
that 2, 3, 4 1. The hypothesis that C, : B, — B, is a bounded operator is not
needed for these implications. To prove the rest of the implications we first give a
partial case. We show that if ¢ is a univalent function and Cy is a compact operator
on the Bloch space then Cy : B, & B, (¢ > 2, 1 < p < q) is compact as well (see

Theorem 3.5). Then we provide a general proof of this result for any Cy such that
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Cs : B, = B, (1 < r < q) is bounded (see Proposition 3.6). The proof of Theorem
3.7 will now follow easily.

We next note that a theorem of Arazy, Fisher and Peetre (see Theorem F) can
be used to characterize the boundedness of composition operators with domain the
Bloch space and range inside a variety of spaces. For example in any Besov space, in
BMOA, and in H? (see Proposition 3.8). Moreover we note that the integral condition
of Shapiro and Taylor characterizing the Hilbert-Schmidt composition operators on
the Dirichlet space (see [29]) also characterizes the bounded operators Cy : B — D.
We show that such operators are compact on BMOA. More general examples of
compact Cy on BMOA are provided by integral conditions of this type. We prove

the following proposition.

Proposition 3.9 Let ¢ be a holomorphic self-map of U. Then,

1. If 1 < p < oo then

¢ (2)IP( 1—|2| )
/ 0= 1902) dA(z)<oo

if and only if Cy : B — B, is a compact operator (hence Cy : B+ BMOA is a

compact operator as well).

2. If

|¢'(2) l—aq( )‘2) R
Iqw/ (1 “le(mpe  AE)I=0

then Cy : B - BMOA is a compact operator.

Next we give a characterization of compact operators Cy, : X - VMOA, where X

is a Mébius invariant subspace of the Bloch space. We prove the following theorem.

Theorem 3.11 Let ¢ be a holomorphic self-map of U, and X a Mobius invariant
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Banach space. Then Cy: X = VMOA is a compact operator if and only if

lim sup /lf () PI ()P = lagl2))dA() = 0

lal=1 1711 x <1
feX

Next we give an integral condition characterization of compact Cy : B =+ VMOA.
The proof is similar to the one given by Arazy, Fisher, and Peetre in (2, Theorem 3] for
characterizing Bloch Carleson measures. The main tools are Kintchine’s inequality

for gap series and Theorem 3.11. We prove the following theorem.

Theorem 3.13 Let ¢ be a holomorphic self-map of U. Then the following are equiva-

lent:

1. C4: B—> VMOA is a compact operator.

|¢'(2) '2 1 — |ag(z )' ) _
IqI-H/ = 162)1)° dA(z) =0.

Next we show that if ¢ is a boundedly valent holomorphic self-map of U such that
@(U) lies inside a polygon inscribed in the unit circle then the compactness of Cy on
Besov spaces, BMOA, and VMOA is equivalent to the compactness of C, on the

Bloch space. More precisely we prove the following theorem.

Theorem 3.15 Let ¢ be a boundedly valent holomorphic self-map of U such that ¢(U)

lies inside a polygon inscribed in the unit circle. Then the following are equivalent:
1. C4: B—> VMOA is a compact operator.
2. Cy: B —= BMOA is a compact operator.

3. C4: BMOA — BMOA is a compact operator.

4. C4: B > B is a compact operator.
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5. C4: By = Bp is a compact operator.
6. C4: VMOA - VMOA is a compact operator.

The main tools of the proof are the following. First there is Madigan and Math-
eson’s characterization of Bloch and little Bloch compactness. Next that boundedly
valent holomorphic functions on the little Bloch space must belong to VMOA. Fi-
nally, we use Proposition 3.12 and Theorem 3.13.

In chapter 4 we give some final remarks and questions.



CHAPTER 1

Besov spaces, BMOA, and VMOA

Let U be the open unit disc in the complex plane and QU the unit circle. The one-to-
one holomorphic functions that map U onto itself, called the Mébius transformations,
and denoted by G, have the form

Aa,
where A € QU and ¢, is the basic conformal automorphism defined by

_p=z
T 1-pz

ap(2)
for p € U. 1t is easy to check that the inverse of a, under composition is o,
ap00p(2z) =z

for z € U. Also,

Y 1_|P|2
|Op(.;)| - |1 —ﬁ2|2

and

o (=PI = Jef?) _

1= fey() [ = (= [=P)lej(2) (1.1)

for p,z € U.
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The Bloch space B of U is the space of holomorphic functions f on U such that

If1ls = sup(1 — |2[*)|f'(2)] < oco.
zeU

It is easy to see that | f(0)|+]|f||z defines a norm that makes the Bloch space a Banach

space. Using (1.1) it is easy to see that B is invariant under Mobius transformations,

that is, if f € B then fo ¢ € B, for all ¢ € G. In fact,

|1f o 8lls = I f]ls-

The polynomials are not dense in the Bloch space. The closure of the polynomials
in the Bloch norm is called the little Bloch space, denoted by Bo. In (34, page 84] is

shown that

f € By if and only if'l}ml(l - 1z13)|f'(2)| = 0.
zZ|—=

A linear space X of holomorphic functions on U with a seminorm ||.||x is Mébius

invariant if

1. X C B and there exists a positive constant ¢ such that for all f € X,
1flls < ellfllx.
2. Forall¢ e Gandall fe X, fop e X and

1S o dllx = Ifllx

A Mobius invariant Banach space is a Mobius invariant linear space of holomorphic
functions on U with a seminorm ||.||x, whose norm is f — ||f||x or f = |£(0)|+]fl|x.

For 1 < p < oo, the Besov space B, is defined to be the space of holomorphic
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functions f on U such that

1, = [ 1700 - l=fy-rda)

- /U F(2)P(1 = [2P)PdA(z) < oo

where d\(z) is the Mobius invariant measure on U, namely

1

A= Ty

dA(2).

It is easy to see that |f(0)| + ||f||B, is a norm on B, that makes it a Banach space.
It is easy to see that log(l — z) € B. Moreover Holland and Walsh show in

(13, Theorem 1] that if 1 < p < o0, and v < % (g is such that :;+ % = 1) then

(log 2 )" € B,. Other examples of functions in B, By, and B, (1 < p < oo) are

1-2

provided by gap series. Let

where (A, ) is a sequence of integers satisfying

An+l
An

>A>1, (1.2)

where A is a constant and n € N. Anderson, Clunie, and Pommerenke show in [I,
Lemma 2.1] that f € B if and only if a, = O(1), as n = oo, and that f € By if and
only if a, — 0, as n = oo. Moreover, a description of Besov spaces that Peller gives
in [23, page 450] easily yields that f € B, if and only if 3_po, Ak|ax|P < oco.

Let

©O

flz) =) anz"

n=0

be a holomorphic function on U. The Hardy space H? is the collection of functions f
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holomorphic on U for which
def. =
£l ) laal® < oo
n=0

The Dirichlet space is the collection of functions f holomorphic on U for which

[eo}

def.
£ =) nlanl* < co.

n=1

|-

Both H? and D become Hilbert spaces with norms ||f||z= and (|f(0)|2 + ||f]|5)

respectively. It is easy to see, using polar coordinates, that f € D if and only if

/ /() dA(z) < oo.
U

Thus, the Besov-2 space is the Dirichlet space and B, = D C H2.

Let const. denote a positive and finite constant which may change from one occurence
to the next but will not depend on the functions involved. Unlike the Hardy and
Bergman spaces the Besov space with a smaller index lies inside the Besov space with

a larger index.

Lemma 1.1 For1 <p<gq, B, C B, C B, and for any f € B,,

I7lls < const.||f||, < const.||f]|s,.

Proof. First, let us show that each Besov space lies inside the Bloch space. Fix

p>1,let f € By; then,

o > /U F(2)P(1 = |21))P2dA)
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/Rl {/02 |f'(re‘0)|"gg} (1 — r?)P~2rdr
[A[ e o -y
Ay e
=%AhwmﬁW§A%WW%r

2r
c / F(ReO)PE (1~ Ry,
0 2m

v

v

v

where c is some positive constant, and 0 < R < 1. Above we used the fact that the
integral means of an analytic function f, My(R, f) = {2% 02” [f(Rei9|”d0} 0<p<
00), are a non- decreasing function of R (Hardy’s Convexity Theorem [11, page 9]).

Thus,

1 1
M,(R, f) < const. - = -
’ (1-R)% (1-R)'

Then by the Hardy-Littlewood theorem ([11, Theorem 5.9, page 84]), the infinity
means of f’,

ML (R, f') = max |f'(Re")),

0<6<2r

can not grow faster than

that is

. 1
su "(Re®)| < ¢
ee[ogﬂ |f'(Re”)| < T—R

for some positive constant c. Now, it is easy to see that this implies that f belongs
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to the Bloch space, and

1f1I5, = cllflls -

Therefore, B, C B for any p > 1.
Next, for the containment among Besov spaces, fix p and g such that 1 < p < g

and let f € B,. Then,
- / PP = [2)dA(2)
- /U PP = PPUFEI = 2)P2dAz)

< Il B, < oo

Thus, B, C B,. This finishes the proof of the lemma. 0O
Lemma 1.2 For 1 < p < oo, B, is a Mobius invariant Banach space.

Proof. Let f € B,, ¢ € U. Then,

If o aglly, = /Ifoaq 2P(L — |2[?)P2dA(z)
- /U | (aa(2)) Pl ()P (L = |=[2)P2dA(z)

- /U'f "(w)Plag(ag(w))P(1 = |ag(w)[2)P~?| oy (w) 2dA(w)

1 p 1 p=2] 1 p—2( .1
15 0P o 1 = 1Pl )l ) A

/U F@)P(L - [wl)-2dA(w) = [IfI5,
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Above we made the change of variables a,(z) = w and used basic properties of
the Mobius transformations. This shows that B, is invariant under Mobius transfor-

mations. Thus, by Lemma 1.1, B, is a Mobius invariant Banach space. O

A holomorphic function f on U belongs to BMOA, the holomorphic members of
BMO, if
HfHG=Slelg||f°aq(z)‘f(Q)”H2 < oo. (1.3)
q

Under the norm |f(0)| + ||f|lc BMOA becomes a complete normed linear space.
This is not the traditional definition of BMOA, it is actually a corollary of the John-
Nirenberg theorem [4, page 15|. By the Littlewood-Paley identities (see [34, page
167]) and the fact that log i—i—] ~ 1 — |z|, for z away from the origin we see that a

seminorm equivalent to the one defined in (1.3) is

A2 = sup/lfoaq 21 - |2[*)dA(2)

sup [ | (ol Pla) ()1 - =P)dA(2)
Thus after the change of variables a,(z) = w we obtain
AR = sup [ 17/)P(1 = foy(w))dA(w). (1)

Notation S(h,0) = {z € U : |z — €| < h}, where 6 € [0,27), h € (0,1)}.
Let A and B be two quantities that depend on a holomorphic function f on U.

We say that A is equivalent to B, we write A ~ B, if
const. A < B < const. A.

The notion of BMOA first arose in the context of mean oscillations of a function
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over cubes with edges parallel to the coordinate axes or equivalently over sets of the

form S(h, ) (|28, pages 36-39]). That is,

1 !
B~ s 5 [ 1R - [=P)AG) (1.5)
h€(0,1) S(h.8)
6€[0,2r)

The function log(1 — z) € BMOA. In fact if f is any holomorphic, univalent,
and zero free function then log f € BMOA. (this result first appeared in [3] and
[6]). Other examples of BMOA functions include the following. If (a,) is a bounded
sequence then Y - 1a,z" € BMOA, and if } > |an|* < oo then ) 72 a,z'" €
BMOA, where the sequence (),) satisfies (1.2).

One of the many similarities between the Bloch space and BMOA is that poly-
nomials are not dense in either space. The closure of the polynomials in the BMOA
norm forms VMOA, the space of holomorphic functions with vanishing mean oscil-
lation. The space VMOA can be characterized as all those holomorphic functions f

on U such that
lim [ 1)1 = log(w))dAw) = 0 (1.6)
U

lql—1

(the “little-oh” version of (1.4) ). Moreover the “little-oh” version of (1.5) is equivalent
o (1.6) ([28, pages 36-37, page 50]).

An easy way to see that BMOA is a subspace of the Bloch space is the following:

£ O)] < [If] =

for any f holomorphic on U; therefore,

[(foay = £(P))(0)] < If oap = f(P)lln2

< iflle
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hence

|/ (ap(0)]]e,(0)] < const.||f][-
that is

| (p)I(1 — |p|?) < const.||f]|
thus,

|l fllz < const.||f]]. .

Therefore, BMOA C B.

Let H* denote the space of bounded holomorphic functions on U.
Lemma 1.3 The space VMOA N H*® is closed under pointwise multiplication.

Proof. Let f,g€ VMOAN H*. Then,

/ (£9)(=)12(1 = Jag(2)[2)dA(2)

/lf )I*lg(z (1—laq(2)|2)dA(2)+/UIg’(Z)IQIf(Z)I""(l—Ia'q(2)|2)dA(~’)

< const. { [ 171~ 21 + [ IGIF = lag()P)AG)}

The righthand side of the above equation tends to zero as |g| — 1, since f, g €
VMOA. Hence, fg € VMOA. O

Lemma 1.4 For any p > 1, B, is a subspace of VMOA.

Proof. Fix p > 2; first we will show that B, C H?. Let f € B,. Then,

/Ulf( (1= [2)dA(z) /lf 31— |2[22(1 - J22)dA (=)
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p=2
P

< U1, [ (1= 1= Pr:)
by Hélder’s inequality. Since,

[a-pEane = [ - rFaac) < o
U

U

for any p > 2,
[ ir@ra - 1) < o

Therefore, B, C H?, for any p > 2. Since D C H? if 1 < p <2then, B,CDcC H2.
Therefore B, C H?, for any p > 1.

By the Mobius invariance of Besov spaces we obtain

|If 0 aq = f(@)llfr2 < cllf 0 ag = f(@)I, = cllfII3,

for some positive constant ¢ and for any q € U. Therefore,

IFIIZ < cll£115, (1.7)

This shows that B, C BMOA.
Next we show that polynomials are dense in B,. This together with (1.7) then
shows that B, C VMOA. Let f € B,,

f(2) =) anz"
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where R,(0) is Fejer’s kernel,

K.(0)= ) (1- ;1—|-i-|—1)e-‘*". (1.9)

A=—n

We will show that o,(f) — f in Bp; Fubini’s theorem yields,

loaf) = fll5, = [ loalsY(2) = FIP(L = £PP2dAC)
r ) do
< [ [t - FePE @ T 0~ PYAR)
= [ st - e, Fa0)5
2r ) da

- [ aeika03

= oalg)1), (1.10)
where g(e') = || f(ze*) — f(2)|[B,- It is easy to see that g is a continuous function on

0U. Therefore, by Theorem 2.11 in [14, page 15]
lim max |o,.(g)(e") — g(e')| = 0.

n—oo 0<t<2n

Hence, o,(g)(1) = ¢g(1) =0, as n = oo. Thus (1.10) yields,

lim |joa(f) = fIlf, = 0.

Therefore we obtain that B, C VMOA. O
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We have shown that for p < q

B, C B,C VMOA C BMOA C B.

Similarly to Lemma 1.2 we can show that BMOA and VMOA are also Mobius
invariant Banach spaces. In fact, the reason for insisting that a Mobius invariant
Banach space be a subspace of the Bloch space is that Rubel and Timoney proved in
[26] that if a linear space of analytic functions on U with a seminorm ||.||x is such
that for all f € X, fo¢ € X and ||f o ¢||x = ||f]|x, and it has a non-zero linear
functional L that is decent (that is L extends to a continuous linear functional on
the space of holomorphic functions on U) then, X has to be a subspace of the Bloch

space and the inclusion map is continuous.



CHAPTER 2

Carleson measures and compact composition operators on

Besov spaces and BMOA

If ¢ is a holomorphic self-map of U, then the composition operator C
Cof=fod

maps holomorphic functions f to holomorphic functions.

Shapiro and Taylor show in [29], using the Riesz Factorization theorem and Vitali’s
convergence theorem that C, is compact on HP, for some 0 < p < oo if and only if C,
is compact on H?. Moreover, Shapiro solves the compactness problem for composition

operators on H? in [31] using the Nevanlinna counting function

No(w) = >, —log|u

o(2)=w

The following theorem is proved there;

Theorem A Let ¢ be a holomorphic function on U. Then Cy4 is a compact operator

on H? if and only if

lim _De(w) _ o
lwj=1 — log |w|

Madigan and Matheson characterize compact composition operators in the Bloch

space in [22]. The following theorem is proved there;

20
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Theorem B Let ¢ be a holomorphic function on U. Then, Cy is a compact operator

on B if and only if

18(2)](1 — |2]2)
: =0.
b1 1= |o(z)]?

In this chapter we will use some Nevanlinna type functions to characterize the compact

composition operators on Besov spaces BMOA, and VMOA.

Definition 2.1 The counting function for the p-Besov space is

Np(w,0) = > {I6/(2)I(1 = |z}~

o(z)=w
forwe U,p>1.

Definition 2.2 The counting functions for BMOA are

N(w,q,6) = Y (1= |ay(2)?)

#(z)=w

forw,q € U.

The above counting functions come up in the change of variables formula in the
respective spaces as follows:

First, for f € B, and p > 1

ICsfll5, = Ul(f°¢>)'(2)|”(1—IZIZ)”""dA(z)

=Auwmmwmm—MW%mn (21)

By making a non-univalent change of variables as done in [32, page 186] we see that

n@ma=mewmmwmw» (2.2)
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Similarly, for BMOA

ICofI? = sup / 1(F 0 8V ()1 = lag(2)P)dA(=)

qeU

— sup / F(S(2) 1 ()L = |ag(2)P)dA(z)
qeU
Thus,
ICofII2 = sup / | (w) 2N (w, g, $)dA(w). (2.3)
qeU JU

Arazy, Fisher, and Peetre prove in [2, Theorem 12] that composition operators
in BMOA are bounded for any holomorphic self-map of U, and they are bounded
on VMOA if and only if the symbol belongs to VMOA. Next, we provide a proof

similar to their proof.
Theorem C Let ¢ be a holomorphic self-map of U. Then,

1. Cy is a bounded operator on BMOA.

2. Co(VMOA) C VMOA if and only if ¢ € VMOA.

Proof of (1.) Suppose that ¢ is a holomorphic self-map of U and f € BMOA.
If #(0) = q € U then ¢ = a, o ¢ for some holomorphic self-map ¥ of U such that
¥(0) = 0. Then Littlewood’s Subordination Principle (see [32, page 13]) yields

Ifod—f(Plluz = [Ifoagod — f(g)lln

< |Ifoag = f(@lluz < ISl (2.4)

Thus replacing ¢ in (2.4) with ¢o a, yields [|fopoa, — f(q)||x2 < ||f||. for all g € U.
Thus,

|f(8(0))] + 11 o l]. < const.(|f(0)] + [ f]].)
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for all f € BMOA. This shows that Cy is a bounded operator on BMOA.

Proof of (2.) First suppose that Cy : VMOA = VMOA is a bounded ope-
rator. Then since the identity function f(z) = z belongs to VMOA, fo¢ =
¢ € VMOA. Conversely, suppose that ¢ € VMOA. Then, by Lemma 1.3,
{¢" € VMOA :n € N} C VMOA. Therefore {p(¢):p polynomial} C VMOA.
Since polynomials are dense in VMOA part (1) above yields that f o ¢ € VMOA,

for any f € VMOA. This completes the proof of the theorem. O

Now consider the restriction of Cy to B,. Then Cy is a bounded operator if and

only if there is a positive constant ¢ such that

ICs A1, < cllfIl,

for all f € B, or equivalently by (2.2)

/U | ()P Ny(w, )dA(w) < el|fII5,

for all f € B,. This leads, as in [2], to the definition of Carleson type measures. Since
we are interested in characterizing the compact composition operators we will also
talk about vanishing Carleson measures. We would like to use the following operator

theoretic wisdom;

If a “big-oh” condition characterizes the boundedness of an operator then the cor-

responding “little-oh” condition should characterize the compactness of the operator.

Definition 2.3 Let p be a positive measure on U and let X = B, (1 < p < o0),

BMOA, or B. Then p is an (X, p)-Carleson measure if there is a constant A > 0 so
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that
/U F/(w)Pdu(w) < AlIFIE,

forall f € X.

In view of (2.2) and (2.3) above we see that Cy is a bounded operator on B, if and only
if the measure N,(w, $)dA(w) is a (B, p)-Carleson measure, and Cy is a bounded ope-

rator on BMOA if and only if N(w, q,$)dA(w) are uniformly (BMOA,2)- Carleson
measures.

Arazy, Fisher, and Peetre gave the following characterization of (B,,p) Carleson
measures in [2, Theorem 13| (the equivalence of (1) and (2) was given by Cima and

Wogen in [7]).
Theorem D For 1 < p < oo, the following are equivalent:
1. u is a (Bp,p)-Carleson measure.

2. There ezxists a constant A > 0 such that
p(S(h,0)) < ARP

for all 8 € [0,27), all h € (0,1).

3. There erists a constant B > 0 such that

[ 1 rdutz) < B
U

JorallqgeU.
Hence Theorem D yields,

Theorem E Let ¢ be a holomorphic function on U. Then Cy is a bounded operator
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on B, (1 < p < oo) if and only if

sup||Coarqlls, < 0o
qeU

We prove a similar theorem for compact composition operators on Besov spaces.

Definition 2.4 For1 < p < oo, p is called a vanishing p-Carleson measure if

I u(S(h,0))
im sup ————

=0.
h—0 6€[0,2r) he

Note It is easy to see that if u is a vanishing p—Carleson measure then it is a (B,, p)-

Carleson measure.

The proposition below characterizes vanishing p-Carleson measures. The proof is
similar to the one for Carleson measures on H? (p = 1), as given by Garnett in [12]

and by Chee in [5].

Proposition 2.5 For 1 < p < 0o, the following are equivalent:
1. p is a vanishing p-Carleson measure.
2. fU o (w)[Pdp(w) — 0, as |q] — 1.

Proof. First, suppose that (2) holds. Then, given an € > 0 there is a § > 0 such

that for 1 — 8 < |q| < 1

[ e wPduto) < e
U

Fix ¢ > 0 and let § > 0 be as above. Consider any 0 < h < 4, 6 € [0,27), let
q=(1-h)e* and w € S(h,0). Then,

1—qf

1 - qu|?
1—(1—h)?

11— (1= h)ew)?

|ag (w)]
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h(2 = h)
le?® — (1 — h)wl|?
h(2 — h)
(le —w| + Jw — (1 = h)wl)?
h(2 — k)
(h + hlw|)?
2—h
h(1 + |w|)?
1

4h -

v

v

v

Hence, w € S(h,0) implies that |a}(w)[? > ;5 - Then by our hypothesis,

1
€ al (w)|? a P )).
> [lepdz [ lewibds 2 gmusin.0)

This proves (1).
Conversely, suppose that (1) holds. Then, given an € > 0 there is a § > 0 such

that for any 0 < h < § and any 6 € [0,27),
u(S(h,0)) < €h*. (2.5)

Fix € > 0, let & be as above. Fix ho < & such that (2.5) holds. Also, fix g = |g|e® € U

with |g| > 1 — 2. We will show that for q large,

[ et uirdut) <
U

Let E={we U:|e’ - |qglw| > %} . Then for each q € U,

[ iswpaute) = [ leqordata) + [ lewrdu). 20
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We will estimate each of the integrals above. First if w € E,

, 1-lq* \* 1-lq*\" -
Iaq(w)|p = (m < 42 B2 <e€ (2!)

for q large. Therefore (2.7) yields that for g large,

/ o (w) [Pdpu(w) < eu(E) < p(U)e < const. €. (2.8)
E
Let N = N(q) be the smallest positive integer such that

2¥(1 —lql) < ho <2V} (1 - |ql) . (2.9)

We will show that

Ecc S(2N(1 - |q|),0) C S(ho,0) . (2.10)

Let w € E°. Then,

w—e’] = |w—e’+|glw - [glu]

< Jw = |qlw] + [ - |g|w]
ho
4
< 1—|g/+2""(1-Iq|)

2V(1 - |q]).

< 1-—|q|+

IN

This proves that E<C S(2¥(1—]q]|),8). Next let w € S(2N(1-|q]),8). Then, by (2.9)

lw— e <2V(1—q|) < ho.

Hence S(2V(1 — |q|,8)) C S(ho.8). Thus, (2.10) is proved.
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Let Ex = S(2¥(1 —|q|),8), k = 0,1,...N. It is clear that
Eo CE, C...C EnC S(ho,0).

Then,

/ o (w)Pdu(w) < / o (w) Pds(w)
Ec S(2N(1-|q]).6)

_ /+ / ot / ol (w)Pdu(w) . (2.11)
Eo El\Eo EN\EN—I

We will estimate each of the integrals above.

First, if w € Fy then |w — €| < 1 — |q| and

1—qf? 2
(1—1ql)? = 1—1q|

|ag(w)] <

Since 1 — |q| < ho < 4, (2.5) yields

9P
o (w)Pdp(w) < —————u(FE
L leiwPdutu) < s
< const. €.
Next if w € E; \ Ex_, for some k = 2,3,..., N,
' 1—|qf 1 —|qf?
|log(w)] = — < :
! e — |g|w]? (Jw — €| = |w|(1 - |q]))?
const. 1

INA

=rEE (2.12)
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Hence, (2.5), (2.9), and (2.12) yield

const. 1
/ p < — 0 —— ulE
/Ek\Ek—l |aq(w)| du(w) - (1 - IQI)p 4kp ”( k)

const. 1

—————(1 — lq')p Zk—p C?kp(l - |q!)p
= g, L (2.13)
= cons .%6. .

Therefore (2.8), (2.11), (2.12), and (2.13) imply that

N
1
/Ulcx;(w)|”du(w) < const. €+ (E 2Tp) const. €

k=0

< const. €

for g large. This proves (2) . O

Note In the proof above it was essential that

— 1
E 5‘;<OO,
k=0

since N depends on gq.

The following is a corollary of the proof of Proposition 2.5. We will use it in the

proof of Theorem 2.8.

Corollary 2.6 Let {uy : A € I} be a collection of positive measures. Then for

1 < p < 0o the following are equivalent:
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1.
L o AS(RO)
im sup =0.
h—=0 6€(0,27) hp
el
2.

lim sup [ |ag(w)[Pdur(w)=0.
lal=1 xel JU

The following two theorems give a characterization of compact composition ope-

rators between Besov spaces, and from D to BMOA.
Theorem 2.7 Let 1 < p < g < 0o. Then, the following are equivalent:
1. Cy: B, = By is a compact operator.
2. Ny(w,$)dA(w) is a vanishing g-Carleson measure.
3. ||CsarllB, = 0, as |A| = 1.
Theorem 2.8 The following are equivalent:
1. C4 : D — BMOA is a compact operator.
2. ||Csar]le = 0, as [A] = 1.
In the proof of the two theorems above we will need the following lemmas.

Lemma 2.9 Let X = B, (1 < p< o0), BMOA, or B. Then,

1. Every bounded sequence (f,) in X is uniformly bounded on compact sets.

2. For any sequence (f,) on X such that ||fa]|x = 0, fu — f.(0) = 0 uniformly

on compact sets.

Proof. In [34, page 82] is shown that a Bloch function can grow at most as fast as

log 17, that is

1

a(2) = SO < const.llflls log 7=
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1
< COIlSt.”anx log 1——_—I—| .

jod
~

Hence the result follows. 0

Lemma 2.10 Let X,Y be two Banach spaces of analytic functions on U. Suppose

that

1. The point evaluation functionals on X are continuous.

2. The closed unit ball of X is a compact subset of X in the topology of uniform

convergence on compact sets.

3. T : X =Y is continuous when X and Y are given the topology of uniform

convergence on compact sets.

Then, T is a compact operator if and only if given a bounded sequence (f,) in X such
that f, — 0 uniformly on compact sets, then the sequence (T f,) converges to zero in

the norm of Y.

Proof. First, suppose that T is a compact operator and let (f,) be a bounded
sequence in X such that f, — 0 uniformly on compact sets, as n — oo. For the rest
of this proof let |.|y denote the norm of Y. If the conclusion is false then there exists

an € > 0 and a subsequence n; < n; < n3 < ... such that
IT fo,ly > €, forall j =1,2,3,... (2.14)

Since (f,) is a bounded sequence and T a compact operator we can find a further

subsequence n;, < nj, < ... and f € Y such that

T fn,, — fly =0, (2.15)
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as k = oo. By (1) point evaluation functionals are continuous, therefore for any

zeU
(T fn,, — )(2)] < const.|Tfn, — fly. (2.16)

Hence (2.15) and (2.16) yield,
Tfu, —f =0 (2.17)

uniformly on compact sets. Moreover, since f, — 0 uniformly on compact sets , (3)
yields, T f, — 0 uniformly on compact sets. Thus by (2.17) f = 0. Hence (2.15)
yields |T fa, |y — 0 as k — oo, which contradicts (2.14). Therefore we must have
|T fuly — 0, as n — oo.

Conversely, let (f,) be a bounded sequence in X. We will show that the sequence
(T f,) has a norm convergent subsequence. Without loss of generality (f,) belongs
to the unit ball of X. By (2) there is a subsequence n; < n; < ... such that f, — f
uniformly on compact sets, for some f € X. Hence, by our hypothesis, |T f, =T f|y —

0, as 7 — oo. This finishes the proof of the lemma. O

Note (=) Only uses (1) and (3). (<) Only uses (2).

Lemma 2.11 Let X,Y = B, (1 < p < o0), BMOA, or B. Then Cy : X = Y is
a compact operator if and only if for any bounded sequence (f,) in X with f, = 0

uniformly on compact sets as n — oo, ||Cyfolly = 0, as n = co.

Proof. We will show that (1), (2), (8) of Lemma 2.10 hold for our spaces. By
Lemma 2.9 it is easy to see that (1) and (3) hold. To show that (2) holds, let (f,)
be a sequence in the closed unit ball of X . Then by Lemma 2.9, (f,) is uniformly
bounded on compact sets. Therefore, by Montel’s Theorem ([8, page 153]), there is
a subsequence n; < n; < ... such that f,, — g uniformly on compact sets, for some

g € H(U). Thus we only need to show that g € X.
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(a) f X = B, (1 < p<o0),
[wera-iriaa = [ lim £GP0 - PR
U U —00
< timint [ 17, (2)P(1 = 2P
k—o0 U
= li,{ninf||fnk||pBP < o0

by Fatou’s Theorem and our hypothesis.
(b) If X = BMOA,

[10@ra - laraae) = [ im 17, @F0 - lo(e)Paa)
U U o

< liminf [ 157, (2)(1 = lag(2) FdA(2)
—00 U

IN

lim inf || fo, ||2 < o0
k—o0

by Fatou’s Theorem and our hypothesis.
(c) If X =B,

g1 = |2) = Jim [f2, (D1 = 1217 < lim ||fulla < o0

by our hypothesis. Therefore Lemma 2.10 yields that Cy : X — Y is a compact
operator if and only if for any bounded sequence (f,) in X with f, — 0 uniformly
on compact sets as n — 00, |fn(#(0))| + ||Cofully = 0, as n — oco. Which is clearly

equivalent to the statement of this lemma. This completes the proof of the lemma.

0



34

An immediate corollary of Lemma 2.11 is the following.

Corollary 2.12 If ¢ is a holomorphic self-map of U such that ||¢|| < 1 then Cy is

compact on every Besov space, and on BMOA.

Proof. First, let us show that Cy is compact on the Besov space B,. Let (f,) be
a bounded sequence in B, such that f, — 0 uniformly on compact subsets of U.
Suppose that € > 0 is given. Since ¢(U) is a compact subset of U, there exists a
positive integer N such that if n > N then |f!(¢(z))]P < ¢, for all z € U. Then by
(2.1),

ICs fall, < €lldllh, < const.e.

Thus, ||CsfnllB, = 0, as n — oo, and Lemma 2.11 yields that Cy is a compact
operator on B,. The proof of the BMOA compactness of Cy is similar to the proof

above. O

Now we are ready to prove Theorem 2.7 and 2.8. The technique is similar to the
one given by Arazy, Fisher, and Peetre in [2, Theorem 13] and Luecking in [17], and
[18].

Proof of Theorem 2.7. By (2.2),
ICoanllh, = [ le(wl*N(w)dAw).

Thus Proposition 2.5 yields (2) & (3).
Next we show that (1) = (8). We assume that C, : B, — B, is a compact

operator. Note that {a) : A € U} is a bounded set in B, since,

llaxlls, = Ilz 0 aslls, = lIzlls,,
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and the norm of ay in By is

lax(0)] + [laalls, <1+ |z]|B, < oco.

Also ay — A = 0, as |A| = 1, uniformly on compact sets since,

1
I

|AI”
Az|

Jor(2) = M = [z ==
Hence, by Lemma 2.11, [|Cy(ax — A)||B, = 0, as |A| = 1. Therefore ||Cyar||s, — 0,
as [A| = 1.

Finally, let us show that (2) = (1). Let (f,) be a bounded sequence in B,, that

converges to 0, uniformly on compact sets. Then the mean value property for the

holomorphic function f} yields,

! - 4 / z .
70 = o [ A (2.18)

Therefore by Jensen’s inequality ([27, Theorem 3.3, page 62] and (2.18)),

| (w)]? < ——

< STl o ValEIPAC) (2.19)

Then by (2.19) and Fubini’s Theorem ({27, Theorem 8.8, page 164]),

ICofulls, = [ 1fatw)lNy(w, 0)dA(w)

4 ()| z w )
S/{;W (‘/|w_z|<’—‘2|ﬂl|f"(~)l dA( )) Ny(w, ¢)dA(w)

LI ATy O S AN (w w .
L1 ([ ooy (I )i ) da1220

s
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Note that if |w — z| < —M then w € S(2(1 — |z]),0), where z = |z|e*, since

1 - |w z
2' L1 2 — o< 20— 2.

,‘y|
z

|w— €| < |z —w| + e — 2| <

Moreover, if |w — z| < 1%'“" then (TW < const.(l—_?zw- . Therefore (2.20) vields.

, THBL ~
ICe full, < const./ = |z|) (/5(2(142“‘9) M,(w,qb)dA(w)) dA(z)

= const. ( / o /| o 2 ( /S(m-p..e) w0, 8)dA(w) ) dA: ))

= const.(I +I1), (2.21)

forany 0 < 6 < 1.

Fix ¢ > 0 and let é > 0 be such that for any 8 € [0,27] and any h < §

/ Ny(w, ¢)dA(w) < eh’. (2.22)
S(h,8)
By (2.21) and (2.22)

|f’( )| 2
I 9 — |z q z
=2 6/!2!)1—5 (1—[2[?)? (1 =Py dA(z)

< const.€|| fa||, < const. €. (2.23)

By (2.21),

Il < const. /||<1 _If' 2 (/N ¢)dA(w )> dA(z)
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= [l -, |fn(2)°]l¢l|5,dA(z) < const. € (2.24)
251—5

for n large enough, since f, — 0 uniformly on compact sets. Combining (2.21),
(2.23) and (2.24) we obtain that ||Cyfn||B, < const. € for n large enough. Therefore
[|ICsfrllB, = 0, as n — oo and Lemma 2.11 yields, Cy : B, = B, is a compact

operator. This finishes the proof of Theorem 2.7. a

Proof of Theorem 2.8. (1) = (2). Since a, is a bounded set in D and ay—A = 0
uniformly on compact sets, as |A\| = 1, Lemma 2.11 yields ||Cga,||. = 0, as [A] = 1.

(2) = (1). The proof is similar to the proof of Theorem 2.7. We will use Lemma
2.11. Let (fs) be a bounded sequence in D such that f, — 0 uniformly on compact

sets. Our hypothesis is that ||Cyay||. — 0, as |A| = 1. That is

sup / oy ()2 N (w, g, $)dA(w) = 0
qe€U JU

as |A| = 1. Hence, Corollary 2.6 yields

1

1i — N(w,q,¢)dA =0.

h30 S::lelz? h? /s(h.o) (w9, @)dA(w)
0€l0,27)

Fix an € > 0 and let § > 0 be such that for any 6 € [0,27) and any g € U, if h < §

then

/ N(w,q,¢)dA(w) < eh®. (2.25)
S(h.6)

Fix ¢ € U. Then by (2.19),

/U |F1(w)PN (w, ¢, 6)dA(w)

4 ! 2
< /U g ( /.w-,K o 1) dA(z)) N(w,q,$)dA(w)
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ons M N d4w)dAz 2.26
< const. [ AL (/S(m_lzlm (0,9, 6)dA(w) ) dA:) . (2.26)

The proof of (2.26) is the same as the proof of (2.21) in Theorem 2.7. Next split the
integral in (2.26) into two pieces, one over the set {z € U : |z| > 1 — g} and the other

over the complementary set . Then ,

gy ¢ Vs
/|2|>1-%(1—|z|)2 ~/S(2(l—|zl),0) (w, g, 9)dA(w) | dA(2)

< c/' _|_f,’,(z_)|24(1 — |2|})2%dA(z2)

z|>1-% (1 - |2|)2
< const. €||fn||5 < const. €, (2.27)

and

el ( N dA(w ) dA(z
‘/|;|Sl‘% (1 - |z|)2 /S(Z(l-lzl),a) (w,q,9) (w) A(z)

< const. (sup/UN(w,q,qS)dA(w)) /||<1 , If1(2)2dA(z)

qeU
< const. ¢, (2.28)

for n large enough since € BMOA and f, — 0 uniformlyon {2 € U : |z| < 1 - ‘%}
Therefore (2.26), (2.27), and (2.28) yield that

sup/ | fr(w)|®N(w, q, )dA(w) < const.
q€U JU

for n large enough. Thus ||C4f.||. = 0, as n — co. Hence by Lemma 2.11, (1) holds.
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This finishes the proof of the theorem. a

Note It is easy to see that Theorem 2.8 yields that Cy : B, & BMOA is a compact
operator if and only if ||Csay|l. = 0 as |A| = 1, for 1 < p < 2. Moreover in chapter
three we will show that if C, is bounded on some Besov space then this is valid for

any p > 1.

The following is a corollary of the proof of the Theorem 2.8.

Corollary 2.13 If sup ¢y [, o\ (w)*N(w, q,¢)dA(w) — 0, as [A| = 1, then C, :
BMOA — BMOA is a compact operator.

Note Similarly to the proof of the above theorems we can easily see that, the above
sufficient condition for BMOA compactness is equivalent to Cy : H> - BMOA

being a compact operator.



CHAPTER 3

Besov space, BMOA, and VMOA compactness of C, versus

Bloch compactness of C,;

In this chapter we give conditions that relate the compact composition operators on
Besov spaces, BMOA, and VMOA with those on the Bloch space, and the little
Bloch space. Recall the characterization of compact composition operators on the

Bloch space that Madigan and Matheson give in [22, Theorem 2].

Theorem B Let ¢ be a holomorphic self-map of U. Then, Cy4 is a compact operator

on B if and only if
¢ ()1 = |2*) _
o 1=@E

Next we give another characterization of compact composition operators on the Bloch

space.

Theorem 3.1 Let ¢ be a holomorphic self-map of U. Let X = B, (1 < p < o),
BMOA, or B. Then Cy: X — B is a compact operator if and only if

li C =0.
Jim, [|Coas||s

Proof. First, suppose that Cy : X — B is a compact operator. Then {ay: A € U}

is a bounded set in X, and a) — A — 0 uniformly on compact sets as |A\| = 1. Thus

40
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by Lemma 2.11

lim ||Cyay]|s = 0.
|A]=1

Conversely, suppose that lim ||Cga,||s = 0, as |A\| = 1. Let (f.) be a bounded
sequence in X such that f, — 0 uniformly on compact sets, as n — co. We will show
that

lim [|Cs falls = 0.

Let € > 0 be given and fix 0 < § < 1 such that if |A\| > & then ||Csa, ||z < €. Hence

for any 2o € U such that |¢(zo)| > 6, ||Cs0g(z)||8 < €. In particular,

|gz0) (B(20))] |8/ (20)|(1 = |20]*) < €

that is,
_ (=)l
1 — |é(20)/?

Then (3.1) yields that for any n € N and zo € U such that |¢(z0)| > 6,

(1—|20)*) <e. (3.1)

|(fn08)'(20)I(1 = l20l*) = |fa((20))]18'(20)I(1 = |0]")
< 1fa(é(20)I(1 = [6(20)]%) €
|fnlls €

< ||fallx € < const.c. (3.2)

IA

Since the set A = {w : |w| < 8} is a compact subset of U and f. — 0 uniformly on
compact sets,

sup |fi(w)] = 0, as n = 0.
w€EA

Therefore we may choose N large such that |f.(#(z))| < ¢, for any n > N and any
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z € U such that |#(z)| < 4. Then, for all such z,

(fa0 @) ()1 = [2) = Ifa(@()I'(2)(1 = |2]%)
< €lg'(2)I(1 = |2[7)

< |l¢llse, (3.3)
where n > N. Thus, (3.2) and (3.3) yield
||fn 0 ¢||8 < const. ¢, for n > N. (3.4)

Thus (3.4) yields that ||Cyf.||s = 0 as n = co. Hence by Lemma 2.11 C4 : X — B

is a compact operator. m]
Notes (a) It is easy to see that the proof of Theorem 3.1 yields that

lim ||C =0

Aim, ICserlls

if and only if
|¢'(2)I(1 — |2]*)
=0.
|¢(:)r|n—»1 1—|¢(2)]2

Therefore we obtain another proof of Theorem B.
(b) The above theorem is valid for any Banach subspace X of the Bloch space such
that the point evaluation functionals on X are continuous and the closed unit ball of

X is compact in the topology of uniform convergence on compact sets.

An immediate consequence of Theorem 3.1 along with Lemma 2.11 and Theorems
2.7 and 2.8 is the following proposition.

Proposition 3.2 Let 1 < p < q < oo. Then:

1. If C4 : B, = By is a compact operator then so is Cy : B — B.
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2. For1<p<2,

if Cy : B, &> BMOA is a compact operator then so is Cy : B — B.
3. IfCy: BMOA — BMOA s a compact operator then so is Cy : B — B.

The following proposition gives a sufficient condition for a composition operator

to be compact on a Besov space.

Proposition 3.3 Let 1 <p<g<oo. If

lim Nq(w, ¢)

Ly
lwl=1 (1 — |w]|?)9-2
then Cy : B, — B, is a compact operator.

Proof. Let (f,) be a bounded sequence in B, such that f, — 0 uniformly on

compact sets as n — oo. Let € > 0 be given and fix § > 0 such that if 1 -4 < |w| < 1

then
Ny(w, ) < (1 — Juf?)"2. (3.5)
By (2.2)
ICotillh, = [ 1wy, 8)dA(w)
U
- / 4 / ()] Ny (1, 8)dA(w)
1-8<|w|<1 jw|<1-8
= I[+1I (3.6)
By (3.5),

I<e / £ (w)[*(1 = Jw]?)2dA(w)
1-é6<|w|<1
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< ¢€||fallp, < € const. (fn is bounded in B;) (3.7)

Since |f.|? = 0 uniformly on {w € U : |[w| < 1 — §}, we can find a positive integer N
such that
Il < c/ N, (w, ¢)dA(w) < € const. (3.8)
Jw|<1-8

for n > N, since

/ N, (w, $)dA(w) < ||6]]3, < oo.
jwl<1-6

By (3.6), (3.7), and (3.8) ||CsfnllB, < €const. for n > N. Therefore, ||Cyfn||lp, = 0

as n — oo. Hence Lemma 2.11 yields Cy : B, — B, is a compact operator. O

Composition operators on Besov spaces are not bounded for all holomorphic self-
maps of U. But if the Besov space contains the Dirichlet space and the symbol is

boundedly valent then the induced composition operator is bounded.

Lemma 3.4 Let ¢ be a boundedly valent holomorphic self-map of U, 2 < q < oo,

and 1 < p<gq. Then Cy : B, = B, is a bounded operator.

Proof. Let f € B, (1 < p < 00). Applying the Schwarz Lemma ([27, page 254]) to

the function a. o ¢ 0 ay(,) yields
[#'(2)I(1 = [2]*) < 1= o(2)P%,

for any z € U. Hence by (2.2),

ICs 1115, /U Pl Y (810 - 127)" dA(w)

#(z)=w

< cont. [ IF ) 30 (1= 16(:)F) 7 dA(w).

é(z)=w
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Therefore,
1CS1lh, < const. [ 1 )*(1 = ful)~?dAw) < const |,

for any holomorphic function f on U. Thus, Cs : B, = B, is a bounded operator. O

The following theorem and proposition give conditions under which compactness
in the Bloch space is equivalent to compactness from a Besov space to some larger

Besov space.

Theorem 3.5 Let ¢ be a univalent holomorphic self-map of U. Then, for ¢ > 2,

Cs : B, = B, is a compact operator if and only if Cy : B — B is a compact operator.

Proof. First, suppose that Cy is a compact operator on the Bloch space. The
sufficient condition of Besov space compactness in Proposition 3.3 for a univalent

function is

lim
lwl—1

{|¢'<¢-l(w))|<1 - |¢_1(w)|2}q—2 o

1 — |w|?

or equivalently,
|¢'(2)I(1 = |=]?)
im 5
lo(a)l1 1 —|o(2)]

=0.

Which is a compactness condition for the composition operator on the Bloch space
(Theorem B). Hence, by our assumption, Cy : B, — B, is a compact operator.

The converse follows from Proposition 3.2. This finishes the proof of the theorem.

Note Theorem 3.5 is not valid when ¢ = 2. There exists a univalent holomorphic
self-map of U such that Cy is compact on the Bloch space but not on the Dirichlet
space. To describe such an example we will need some preliminaries. First, the Koebe

Distortion Theorem (see [32, page 156]) which asserts that if ¢ is a univalent function
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on U then for any z € U
Sawy(8(2)) ~ 1'(2)I(1 — |z]%),

where d,u)(#(z)) is the Euclidean distance from ¢(z) to 9¢(U). Thus the Madigan

and Matheson condition of Bloch compactness for a univalent ¢ is equivalent to

o)1 % =0 (39)
Let D(0,a) denote the disc centered at 0 of radius a. A nontangential approach
region Qo (0 < a < 1) in U, with vertex ( € 9U is the convex hull of D(0,a) U {(}
minus the point (.

If ¥ is a univalent holomorphic self-map of U such that (U) = Q. (0 < a < 1)
then inf,ecy ’w—(wz()rz)l > 0. Thus by (3.9) Cy is not compact on B. But if we delete
certain circular arcs from {2, then for the Riemann map ¢ from U onto the induced
domain G, Cy is compact on B. Let L, = {z € Q4 : |z — 1| < 55} (n > 1). Then
Ly DLy DLy D.... Remove from L, \ L.y (n > 1) arcs centered at 1, with one

1

end point at 0€1,, in such a way so that the succesive radii are less than 3; apart,

and the distance of each arc to 9, is less than 3% Then the distance from each
z € L, \ Lp4; to the boundary of the induced subdomain, Gy, of L, \ L,4; is less
than 3;. Let G = Un»1Gn. Then, as |z| & 1, dg(2) = o(1 — |z|). Therefore by (3.9)
C4 is compact on B. Moreover Cy is not compact on the Dirichlet space. This follows

from Theorem 2.7.

The theorem above is a special case of the following proposition. We show that if Cy
is bounded on some Besov space then the compactness of Cy on larger Besov spaces
is equivalent to the compactness of Cy on the Bloch space. This result is similar to

the compactness of C, on weighted Dirichlet spaces D, (a > —1). These are spaces
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of holomorphic functions f on U such that | f(0)|* + [, [f'(2)1*(1 — |z|*)7dA(z) < .
MacCluer and Shapiro show in [19, Main Theorem, page 893] that if C; is bounded
on some weighted Dirichlet space D, then the compactness of Cy on larger weighted

Dirichlet spaces is equivalent to ¢ having no angular derivative at each point of 9U.

Proposition 8.6 Let1 <r < gq,1< p <gq. Suppose that Cy: B, = B, is a bounded
operator. Then, Cy : B, = B, is a compact operator if and only if C4 : B — B is a

compact operator.

Proof . First, suppose that Cy is a compact operator on the Bloch space. For any

reU,

ICserlll, = /U 0 (S(2))FI¢(2)9(1 — [2P)72dA(z) (3.10)

/U (SN IIF NI = 1212~ (lab(@(=)] 1)1 = |=%)" " dA(2)
< 1ICsanllylIComll,

< const.||Cpanr||f " (by Theorem E and since Cy4 : B, = B, is bounded) .

Therefore (3.10) and Theorem 3.1 yield that ||Csenlls, = 0 as [A| = 1. Thus by
Theorem 2.7, Cy : B, — B, is a compact operator. The converse follows from

Proposition 3.2. This finishes the proof of the proposition. )

The following theorem summarizes the above. If a composition operator is
bounded on some Besov space then the compactness of the operator on larger Besov

spaces, and from any Besov space to BMOA, is equivalent to the Bloch compactness

of the operator.
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Theorem 3.7 Let 1 <r < q, 1 < p < q, suppose that Cy : B, — B, is a bounded

operator. Then the following are equivalent:

1. Cy4 : B — B is a compact operator.

1SS

Cs : B, = B, is a compact operator.
3. C4:D - BMOA is a compact operator.
4. C4: B, - BMOA is a compact operator.

Proof. The previous proposition yields (1) < (2). Proposition 3.2 yields (3) =
(1). Theorems 2.7 and 2.8 yield (2) = (3). Theorem 2.8 yields (8) & (4), if
1 <p<2 If p>2then (4) = (3) is trivial, since the inclusion map, i : B, =& D, is
bounded. Moreover (2) = (4) follows as well (when p > 2) since the inclusion map,
1: B, & BMOA, is bounded. We have shown (8) = (1) & (2) = (3) & (4). This

completes the proof of the theorem. O

Arazy, Fisher, and Peetre prove the following theorem in [2, Theorem 16].

Theorem F Let p be a positive measure on U, 0 < p < oo. Then,

du(z)
/Uu — 2Py <

if and only if there is a positive constant ¢ such that
[ irerdue) < elislle

for all f € B.

Note The proof of Theorem F can be used to show that a similar result holds for a
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collection of positive measures {y, : ¢ € U}. That is, if 0 < p < oo, then

dyq
sup/ —— <
geU Ju (1 —|z]?)?

if and only if
sup / 1F/(2)Pdug < Il

qeU JU
for all f € B.
These results, along with a non-univalent change of variables, yield the following

characterizations of bounded composition operators from the Bloch space to B, (1 <

p < 0o), BMOA, and H2.
Proposition 3.8 Let ¢ be a holomorphic self-map of U.

1. C4 : B = D is a bounded operator if and only if

o) o [ @R
/U(l—|w|2>2d’“ )‘/U(l—lqb(av)z"“‘”< !

where n(¢; w) denotes the number of times ¢ takes the value w. If w is not in

@(U) then let n(¢;w) = 0.

2. Cy:B = B, (1 < p< o) is a bounded operator if and only if

Nowd) o [P0 =[PP,
= iy A )‘/U 0= o)y A < oo

3. Cy: B - BMOA is a bounded operator if and only if

[ N(w.g.9) 1#(2) 1—|aq(z>|2)
q‘e‘B/ (1—|w| qu/ 1—|¢ dA(w) < 0.
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4. Cy: B — H? is a bounded operator if and only if

Nw0.) ,, [P ER,
/u<1—|w|2)2d’“‘”)‘/u (= Je@p)e Al <o

Shapiro and Taylor characterize the Hilbert-Schmidt composition operators on the

Dirichlet space in [29, Proposition 2.4]. The following proposition is proved there.

Proposition G Cy is a Hilbert-Schmidt operator on D if and only if

R
/U(1—|¢<z)|2)2"’“)< ‘

In view of the two propositions above, the Hilbert-Schmidt composition operators on
the Dirichlet space are precisely those composition operators that are bounded from
the Bloch space to the Dirichlet space. The next result shows that every bounded
composition operator from B to D, and more generally from B to B, (1 < p < o), is

compact.

Proposition 3.9 Let ¢ be a holomorphic self-map of U.

1. If 1 < p< oo then

|¢'(2)IP(1 — |2|*)"~*
/ 0= 1602))? dA(2) < o©

if and only if Cy : B — B, is a compact operator (hence C, : B+ BMOA is a

compact operator as well).

2. If

6(2 (2)7)
.w/ 1—|¢(z oy dA() =0

then Cy : B - BMOA is a compact operator.
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Proof of (1). Let (f,) be a bounded sequence in B such that f, — 0 uniformly on

compact sets, as n — oo. Then,

ICsfullp, = /U | fa(8(2))P18'(2)IP(1 = |2[*)"~*dA(<)

N / */ I£2(8(2))IP16'(2)IP(1 = |2[2)P~2dA(2)
{z€U:8<|#(2)|<1} {z€U:|¢(z)|<8}

= I+1I (3.11)

for any 0 < 4 < 1. Then

|¢'(2)IP(1 = |2[*)P~2
r<iifl | dA(z), (3.12)
171l (zevia-s<iamicty (1= 18(2)1?)?
for any § > 0. Hence, as § = 0, I — 0 by the Lebesgue Dominated Convergence

Theorem ([27, Theorem 1.34, page 26]) and our hypothesis. Let ¢ > 0 be given.
Choose § € (0,1) such that if A < § then I < €. For such an A,

r =/ |6/ (2)P1fa($(2))P(1 = |2])""2dA(2) < ellgllB, (3.13)
{z€U:18(2)|<h)

for n large enough, since f. — 0 uniformly on {z € U : |¢(z)| < h}. Thus (3.11)
and (3.13) imply that there exist a positive integer N such that if n > N then
[|CsfnllB, < const.e. Thus, ||Cyfn||B, = 0, as n = oo, and Theorem 2.11 yields that
Cy : B — B, is a compact operator. The converse follows from Proposition 3.8.
Proof of (2). Let (f,) be a bounded sequence in B such that f, — 0 uniformly

on compact sets as n — co. Let ¢ > 0 be given. Then by our hypothesis there is a
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4 > 0 such that if |g| > 1 — 4 then

()1 — Iaq )
/ A (3.14)
Fix q € U such that |q| > 1 — 4. Then
/U FAS) 1B ()  lag(=)P)dA(2)
B @PA = lag(2)P)
/ a0 ) e 2AC)
S o)
AL / ( SOPLdA() (by (3.14)
< const. €. (3.15)
If |gf <1 — 6 then
/U £ (@D (2) (L — |eg(2)P)dA(2)
= [1neEre@rt D ) gy o)
U |1 —gz|
cons Z - VA |q|2
< const. [ IGGEDISER0 - PG (12 <2) g

Since

[Eara—in
1_ )

lim I¢’(Z)l (1-]z2%)
h=0 Jigz)>1-n (1 — |@(2)]?)?

dA(z) =0.
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Therefore without loss of generality

|¢'(2)1(1 = |=]%) ) -
/é(Z)I>1—6 (1—1o(2)]?)? <€ ( )

Using (3.17) it is easy to see, similarly to the proof of part (1), that

/u DPIS () — |2[?)dA(2)

=/ +/ |£a(6(2)) P16/ (2)*(1 — |2[*)dA(2)
|o(z)|>1-6 |¢(2)I<1-6

< const. € (3.18)

for n large. Then (3.15), (3.16), and (3.18) yield

sup/ If2(#(2)) %18 (2) (1 = |ag(2)]*)dA(2) < const. €.

Therefore by (2.3), ||Csfalls < const.e. Thus, ||Csfnll« = 0 as n — oo, and Lemma
2.11 implies that Cy : B -+ BMOA is a compact operator. This finishes the proof of
the proposition. a

In view of Propositions 3.8 and 3.9 we obtain the following corollary.

Corollary 3.10 For 1 < p < 0o, every bounded composition operator from B to B,

1s compact.

Corollary 3.10 also follows from some nontrivial Banach space theory. Here is an
outline of the argument. First, B, is isomorphic to [?, since the L? Bergman space of
U is isomorphic to [? (see [15, Theorem 6.2, page 247]). Next B is isomorphic to [*°,
since B is isomorphic to the dual of the L' Bergman space of U (see [10, Theorem

10 page 49]), which in turn is isomorphic to [*°. Moreover, if 1 < p < oc then every



54
bounded linear operator T : [P — [! is compact (see [16, Proposition 2.c.3, page 76]).
Thus, T* : [*® — [9 is compact for any ¢ € (1,00). Also a bounded operator is an
adjoint if and only if it is weak-star continuous. It is not difficult to show that if
Cs : B = B, is bounded, then it is weak-star continuous, and hence by the above
argument, also compact.

Next we give a characterization of compact composition operators whose range is

a subset of VMOA.

Theorem 3.11 Let ¢ be a holomorphic self-map of U, and X a Mobius invariant

Banach space. Then Cy : X - VMOA s a compact operator if and only if

lg5ﬁ3L/Wf¢u IS )L ~ lag(z) P)A(2) = 0.
Proof. First suppose that Cy : X — VMOA is a compact operator. Then A =
cd({fope VMOA: ||f||x <1}), the VMOA closure of the image under Cy of the
unit ball of X, is a compact subset of VMOA. Let ¢ > 0 be given. Then there is a
finite subset of X, B = {fi, f2, f3, ..., fn}, such that each function in A lies at most ¢

distant from B. That is, if g € A then there exists j € J = {1,2,3,..., N} such that

llg = fi 0 ¢ll. < 5. (3.19)

Since {fjo¢ : j € J} C VMOA, there exists a § > 0 such that for all j € J and

[ﬂﬁoquu—muwwma< (3.20)

¢
e
By (3.19) and (3.20) we obtain that for each |g| > 1 — ¢ and f € X such that

[|flllx <1 there exists j € J such that

_/|o¢ (1 = Jag(2)[2)dA(z)
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<2 ; [(fod— fio@)IP(1 = lag(2)[*)dA(2) + 2 , |(f5 0 8)(2)P(1 = lag(2)[*)dA(=)

€

<2
4

€
2- =e.
+4c

This proves one direction.

In order to prove the converse, let (f,) be a sequence in the unit ball of X. By
Lemma 2.9 and Montel’s Theorem there exists a subsequence n; < n, < ... and a
function g holomorphic on U such that f,, — g uniformly on compact sets, as k — oo.
By our hypothesis and Fatou’s Lemma it is easy to see that C4g € VMOA. We will
show that ||Cy¢(fn, — 9)||l« = 0, as k = oco. In order to simplify the notation we will
assume, without loss of generality, that we are given a sequence (f,) in the unit ball

of X such that f, — 0 uniformly on compact sets, as n = co. We will show that
lim [[Cofull. =0. (3.21)

To prove (3.21) we will use the equivalent BMOA norm as given by (1.5). Thus, our

hypothesis is equivalent to

. 1
lim sup —/ I(f o ¢)(2)*(1 - |z|*)dA(z) = 0. (3.22)
h=0  geoom R S(h.6)

{fex:|Ifllx<1}

Let € > 0 be given. By (3.22), there exists a § > 0 such that if n € N, 6 € [0,2n7),
and h < é then
1

7 A0 d) () - 2P)dAG) < e. (3:23)
S(h,8)

Fix hg < 4,0 € [0,27), n € N, and h > 6. It is easy to see that there exists
{01,02,...,0N} C [0,27) such that S(h,6) is the union of the sets {S(ho,8;) : j =
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1,2,...,N} and K, a compact subset of U. Hence,

1 ’ 2 2
— 0d)(z 1—]z]*)dA

N 1 1
E — +— 2 06) (2)*(1 — |z|*)dA(z

=1+11. (3.24)
Since f! — 0 uniformly on K, as n — oo, there exists an N € N such that forn > N

I1 < £ (1 —|z|*)dA(z) < const. . (3.25)
ho Jk

Moreover (3.23) yields,

€ = const. €. (3.26)

~
IN
M=

1

<.
1]

Hence (3.23), (3.24), (3.25), and (3.26) yield (3.21). Thus Lemma 2.11 yields that

Cy: X - VMOA is a compact operator. =]

There are symbols ¢ such that Cy is compact on BMOA but not on VMOA. For

1 exp{Zt1}. Since ||¢||o < 1, Corollary 2.12

example, consider the self-map ¢(z) =
yields that C, is a compact operator on BMOA. Moreover since ¢ & By, Cy is not
even bounded on VMOA (Theorem C, page 22).

If ¢ € VMOA then compactness of Cy on BMOA implies the compactness of Cy
on VMOA. If T is a compact operator on a Banach space X, and Y is an invariant

subspace of X such that T : Y — Y is bounded, then T : Y — Y is a compact

operator as well. Thus we obtain the following proposition.
Proposition 3.12 Let ¢ be a holomorphic self-map of U. Then,

Z.If¢ € VMOA and C, : BMOA - BMOA is a compact operator then Cy :
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VMOA - VMOA is a compact operator.

2. If ¢ € Bop and Cy : B — B is a compact operator then Cy : By — By is a compact

operator.

Next we show that the sufficient condition of compactness of Cy : B - BMOA in
Proposition 3.9 is also necessary for the compactness of Cy : B &+ VMOA. We will
use Khintchine’s inequality for gap series (as done by Arazy, Fisher, and Peetre in [2,

Theorem 16]), and Theorem 3.11.

Theorem 3.13 Let ¢ be a holomorphic self-map of U. Then the following are equiva-

lent:

~

. Cyp:B—VMOA is a compact operator.

o

P = leg())
Iql—»l/ (1— |é(2)[?) dA(z) =0.

Proof. First, suppose that (1) holds. Then by Theorem 3.11 and since

for all 6 € [0,27) (see [1, Lemma 2.1]),

lim /
lgl—=1 oe[o 2«)

Let € > 0 be given. Then there exists a § > 0 such that for any ¢ € U with |¢| > 1§

2

N(w,q,¢)dA(w) = 0.

2211 2 -1

n=0

and any 6 € [0,27),

> (e

n=0

N(w,q,¢)dA(w) < €. (3.27)

def /
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Upon integrating (3.27) with respect to g—z and using Fubini’s Theorem, we obtain

— = netlet - N — <e. 2
/(; A927r /(; /(: ,?___0 2"e w 5 N(w,q,¢)dA(w) <e. (3.28)

Khintchine’s inequality (see [36, Theorem V.8.4]) for gap series yields that for any

positive integer N

/21r
0

Therefore (3.28) and (3.29) imply that

‘&
o~ > 2w, (3.29)

n=0

N
Z 2nei6(2"—1)w2"—1

n=0

T de = n+1
J {Zz”mz -2}N(w,q,¢)dA(w). (3.30)

n=0
It is shown in [2, Theorem 16] that

(e o]

2n 2n+l Const.
Z 27 w|* 2 aT=Top)?’ (3.31)
n=0

for any w € U such that |w| > 1. Hence (3.28), (3.30), and (3.31) yield

N(w,q,9) LU
—— < . had ' .
/U 1= 'w|2)2dA(w) < const /0 Aozﬂ_ < const. €, (3.32)

for any q € U with |¢| > 1 — 4, and any € > 0. Thus (3.32) yields (2).
Conversely, suppose that (2) holds. Fix f in the unit ball of the Bloch space.
Then,

/U F(B(2) IS ()1 = lag(2)P)dA(2)

s [ 1R = lagl2)P)
<l [ taae)
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()P = lay(2)1)
e a-@@re

(2)-

The righthand side of the above inequality tends to 0, as |g| — 1, by our hypothesis.
Hence Theorem 3.11 yields that Cy : B - VMOA is a compact operator. This

finishes the proof of the theorem. O

Proposition 3.14 Let ¢ be a holomorphic self-map of U. If Cy : BMOA - VMOA

is a compact operator then

|4'(2)[2(1 — |ag(2)?) _
|q|—»1/ 1—|é(2) dA(2) =

Proof. By Theorem 3.11 and since fp(2) = log ;—=s; € BMOA for all § € [0,27),

lim sup / F5(2)PN (0, ¢, )dA(z) = 0. (3.33)

lal—+1 g¢[0,2r)

Let € > 0 be given. Then there exists a § > 0 such that for any ¢ € U with |q| > 1§
and any 6 € [0,27),

4 = /U 5(2) PN (w, g, $)dA()

1

Integrating (3.34) with respect to 2 and Fubini’s Theorem yield

dé 27 1 d6
A a_ = e — —
A 92” v/U {VA II - e-fawIZ 27!‘} N(w’ q, ¢)dA(w) S €.
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Thus,
N(w,q,9)

dA <e,
b 1 up A <

for all |g| > 1 — 4, and all € > 0. Therefore

|¢, l (1 Iaq( I ) 2) =
Iql—’l/ 1 - |¢(2)[2 dA(z)=0.

Next we show that composition operators on BMOA and VMQOA, where the
symbol is a boundedly valent holomorphic function whose image lies inside a polygon
inscribed in the unit circle, are compact if and only if they are compact on the Bloch

space. We will use Propositions 3.9, 3.12, and the following theorem of Pommerenke

([24, Satz 1]).

Theorem H Let f be a holomorphic function on U such that

sup /lw—wo|<1 n(f,w)dA(w) < oo,

wo

where the supremum is extended over all points wo in the compler plane. Then,
feEBMOAS feB, feVMOA S feB,.

In page 46 we defined a nontangential approach region Q, (0 < a < 1) in U with
vertex ( € OU. The exact shape of the region is not relevant. The important fact
that we will use in the theorem below is that there exists 0 < r < 1 and ¢ > 0 such

that if z € Q, and |( — 2| < r, then

¢ — 2] < (1~ |2[*). (3.35)
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Theorem 3.15 Let ¢ be a boundedly valent holomorphic self-map of U such that
&(U) lies inside a polygon inscribed in the unit circle. Then the following are equiva-

lent:

1. C4: B> VMOA is a compact operator.

[
P
e

:B — BMOA is a compact operator.

3. C4: BMOA — BMOA s a compact operator.
4. C4 : B— B is a compact operator.

5. Cy : Bo = By is a compact operator.

6. Co,: VMOA - VMOA s a compact operator.

Proof. (1)=(2)=(3) is clear.

(3)=(4). This is valid for all holomorphic self-maps of U (Proposition 3.2).

(4)=(5). Since ¢ is a boundedly valent holomorphic self-map of U, ¢ € D C
VMOA C By. Thus ¢ € By. The compactness of Cy now follows from part (2) of
Proposition 3.12.

(5)=(1). By Madigan and Matheson’s Theorem 1 (see [22]) C; is a compact

operator on the little Bloch space if and only if

L 10 = =)

R s R

It follows that log w#_é € By for each w € dU. By Theorem H each boundedly valent
function in Bo must belong to VMOA, hence log -5 € VMOA for each w € 9U.

Thus
()
& v —9(2)

2
. ~ L B
|51§11 U (1 = eg(2)[*)dA(2) =0
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hence

|6'(2)12(1 = lag(2)I?) , 40y _
lim / |w ¢ A=) =0, (3.36)

for each w € oU.

Let {w; : 1 £ j < n} be the vertices of the inscribed polygon containing ¢(U).

Break the unit disc up into a compact set K and finitely many regions
Ei={z€U:|w;—¢(z)| <r}

where r is chosen so that the regions are disjoint, and so that
[w; — (2)] < const. (1 — |¢(2)[?)

for each z € E; and each j. Then for each q € U,

8P = e (2)]2) e I’ Jeg()P)
N G 5 5 e <°°“St/ o) AR

Hence

BP0 = lag(2)) , ,
/ 1—|¢z)|'~') dA(z)

-Z/ Rl e

1=1

<const. 3 [ BEFA—laa))

=1 YE lw; — ¢(2)]?

+ const. /U |8'(2)]2(1 = |ag(2)|?)dA(2) , (3.37)

for all ¢ € U.
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Any boundedly valent holomorphic self-map of U belongs to VM OA. Hence (3.36)

and (3.37) imply that

|¢'(2)(1 = Iaq( 2)[%) _
m_ﬂ/ T dA(z) = 0. (3.38)

By (3.38) and Theorem 3.13 we obtain that Cy : B -+ VMOA is a compact operator.
Proposition 3.12 yields (8) = (6). If (6) holds, that is Cy : VMOA —- VMOA is

a compact operator, then Cy is weakly compact on VMOA. Hence by Theorem VI

5.5 in [9, page 189], C4(BMOA) C VMOA. Thus log ;—;r € VMOA (w € o).
Thus by the proof of (5) = (1) we obtain (6) = (). This finishes the proof of the

theorem. 0

Definition 3.16 A region G C U is said to have a nontangential cusp at ( € OU if

lim [mz] _

241 |1 - z|
z€G

Note Theorem 3.5, Theorem 3.15 and Madigan and Matheson’s Theorem 5 (see [22,
page 2685]) yield that if ¢ is a univalent self-map of U such that ¢(U) has finitely
many points of contact with U and such that at each of these points ¢(U) has a

nontangential cusp, then Cy is a compact operator on B, (p > 2), on BMOA, and
on VMOA.




CHAPTER 4

Final remarks and questions

Madigan and Matheson showed that if Cy : By — By is weakly compact then it is
compact. Is a similar statement valid for Cy : VMOA — VMOA? That is, does
Cs(BMOA) C VMOA imply that Cy is a compact operator on VMOA?

In Theorem 3.15 we showed that for certain boundedly valent holomorphic self-
maps of U, compactness of Cy, on BMOA is equivalent to the compactness of Cy on
B. Is this true for all boundedly valent symbols?

In Theorem 3.15 we used that ¢ is boundedly valent to be able to conclude that

€ By then log —— € VMOA (w € 8U). We should mention here that

if log v

1
w—¢(z)
Stroethoff, using an area version of the BMOA counting functions, characterizes
exactly when a function ¢ € By belongs to VMOA. He showed in [33, page 78] that

a function ¢ € By belongs to VMOA if and only if for every § > 0
1
lim sup / tn(¢oa, —w,t)dt = 0.
|lp|—=1 w 0
[6(p)-w|>5

In Theorem 3.13 we showed that the compactness of Cy : B - VMOA is de-
termined by the “behavior” of {Cy Y (e*¢(2))?") : 8 € [0,27)}. Does a similar

statement hold for compact operators Cy : BMOA — VMOA? That is, is it true
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that Cy : BMOA - VMOA is a compact operator if and only if

2
(1= Jag(2)[*)dA(z) =07

(o8 =)

lim sup /
lel=1 g¢[0,27) JU
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