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ABSTRACT

THE SWAPPING HEURISTIC

By

Brian Zulawinski

In a grouping problem, a set must be partitioned subject to problem-specific

constraints. The Swapping Heuristic (SH) is a family of local search heuristics for

solving grouping problems. In this paper we apply the SH to two classic grouping

problems: the Bin Packing Problem and the Minimum Makespan Problem. We show

that the SH outperforms previously published methods for solving these two problems

in a wide variety of situations.
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1. Introduction

In a grouping problem, a set must be partitioned subject to problem-specific

constraints. The Swapping Heuristic (SH) is a family of local search heuristics for

solving grouping problems. In this paper we discuss the SH as applied to two classic

grouping problems: the Bin Packing Problem and the Minimum Makespan Problem.

Research on these problems falls into two distinct categories: theoretical and

practical. Theoretical research focuses on determining the computational complexity

and proving bounds on the worst-case performance. These analyses are usually

limited to simple deterministic algorithms and approximations schemes. The simple

algorithms do not produce high quality approximations. The approximation schemes

are difficult to implement and require unreasonable execution times for solutions with

small error. Practical research focuses on search tools including simulated annealing,

genetic algorithms, heuristics, and various combinations of these methods. These

methods are difficult to analyze theoretically but produce good results with practical

execution times. These methods are often complex and involve “tweaking” many

parameters. The SH is a practical approximation scheme that produces high quality

results in short amounts of time. The SH is also easier to implement than other

complex solutions found in the literature.

2. The Bin Packing Problem and the Minimum Makespan

Problem

Figure 1 defines the Bin Packing Problem (BPP), a well-studied grouping

problem. Figure 2 describes the Minimum Makespan Problem (MMP), the dual of the

Bin Packing Problem. In the Bin Packing Problem, the size of the bins is fixed and the



number of bins is minimized. In the Minimum Makespan Problem, the number of

machines (bins) is fixed and the makespan (size of the bins) is minimized.

 

 

Given:

. Identical bins of capacity C

. A set W = {1,2,...,n} of n objects with sizes s,, 1' EW such that each s, s C

Constraints:

. Each object in W is assigned to exactly one bin.

0 The sum of the object sizes of the objects assigned to any bin does not exceed the

bin capacity C.

Goal:

- Find an assignment of the objects to bins such that the number of bins, m, is

minimized.

 

Figure 1: The Bin Packing Problem

 

 

Given:

. a set of n jobs with designated integral processing times p}.

. m identical machines.

A schedule of jobs is an assignment of the jobs to the machines, so that each machine

is scheduled for a certain total time, 1,. The maximum time that any machine is

scheduled for is called the makespan of the schedule. Therefore,

Makespan = max,=,',,, {1, }.

Goal:

. Find a schedule that minimizes the makespan.

 

Figure 2: The Minimum Makespan Problem

3. Theoretical Background and Limitations

The time requirements of an algorithm are expressed in terms of the “size” of a

problem instance [Garey and Johnson, 79]. The relative difficulty of problem instances

varies with several factors, including their size. The size of an instance of the BPP is

the number of objects. The size of an instance of the MMP is the number of jobs. The

time complexity function for an algorithm expresses its time requirements by giving, for

 

 



each possible input size, the largest amount of time needed by the algorithm to solve a

problem instance of that size. A polynomial time algorithm has a polynomial time

complexity function. An algorithm that cannot be bounded by a polynomial time

complexity function is a superpolynomial time algorithm. The computational time

required for superpolynomial time algorithms grows far more rapidly than polynomial

time algorithms with respect to the input size. Therefore, superpolynomial time

algorithms are impractical for large problem instances.

To date there is no known polynomial time algorithm for solving the BPP or the

MMP. Furthermore, these problems belong to the class of NP-Complete problems. No

member of the class of NP-Complete problems has a known polynomial time algorithm.

In addition, if a polynomial time algorithm is found for any member of the class of NP-

Complete, every problem in NP-Complete would also be solved in polynomial time.

Currently, all algorithms which produce optimal solutions for any NP-complete problem

are superpolynomial time algorithms.

Since superpolynomial time algorithms are impractical for large problem

instances, the focus turns to finding near-optimal solutions that require less time. There

are simple, practical algorithms which achieve small constant approximation ratios.

However, we often require optimal or extremely close to optimal solutions. Another

approach is polynomial approximation schemes. For any bounded error, there is a

polynomial time algorithm which can guarantee solutions within that error bound.

These schemes have a high-order polynomial complexity for small error and are often

not feasible for practical problems. These algorithms are also complex and difficult to

implement. Thus, practitioners have often turned to other methods which do not have

provable worst-case guarantees, which do not have provable running times, but which

empirically produce good results quickly. Our work presents a newer algorithm along



these lines which is simpler, often runs faster, and often produces better solutions than

these previously used practical algorithms.

4. Known Methods for the Bin Packing Problem

4. 1 Theoretical Results

4.1.1 First Fit

First Fit is arguably the simplest approach for the BPP.

First Fit (FF): For each object, place the object in the first bin it fits. If no such bin

exists, start a new bin and place the object in the new bin.

FF has a time complexity function 0(n2). For any instance I , the number of

bins used by FF is upper bounded by Equation 1 [Garey and Johnson, 79].

Equation 1

FF(I) s (%)0pt(l) + 2

FF(1): Number of bins used by First Fit on Instance I

0pt(1): Minimum number of bins required for Instance 1

4.1.2 First Fit Descending

First Fit Descending improves on FF by sorting the objects in descending order

before they are assigned to the bins.

First Fit Descending (FFD): Sort the objects in descending order. For each object,

place the object in the first bin into which it fits. If no such bin exists, start a new bin

and place the object in the new bin.



FFD also has a time complexity function 0(n2). For any Instance I , the

number of bins used by FFD is upper bounded by Equation 2 [Garey and Johnson, 79].

Equation 2

FFD(I) s gown) + 4

FFD(I): Number ofbins used by First Fit Descending on Instance I

0pt(l): Minimum number of bins required for Instance I

4.1.3 Best Fit

Best Fit tries to improve on FF by placing each object into the bin with the

minimum available space that can still accommodate the object. The bin meeting this

criterion is said to have the “best” fit for the object.

Best Fit (BF): For each object, place the object in the bin that has current contents

closest to, but not exceeding C — 3,. If no such bin exists, start a new bin and place the

object in the new bin.

BF has a time complexity function 0(n2). BF's worst-case performance is

identical to FF.

4.1.4 Best Fit Descending

Best Fit Descending improves on BF by sorting the objects before they are

assigned to the bins.

Best Fit Descending (BFD): Sort the objects in descending order. For each object,

place the object in the bin that has current contents closest to, but not exceeding

C — 3,. If no such bin exists, start a new bin and place the object in the new bin.



BFD also has a time complexity 0(n2). Surprisingly, BFD’s worst case

performance is identical to FFD.

4.2 Approximation Schemes

For any relative bounded error a, polynomial approximation schemes provide an

algorithm with a polynomial time complexity function. The time complexity functions for

small I»: are high order polynomials, making these schemes computationally infeasible

for practical problems.

4.2.1 Asymptotic Polynomial Approximation Scheme

An asymptotic polynomial approximation scheme (APAS) is a family of

algorithms {A€|e> 0} such that each A, runs in polynomial time with respect to the

length of the input and A‘(I) S(1+£)°Opt(I) as the length of the input goes to

infinity. [Vega and Lueker, 81] identify an APAS which runs in linear time but is

severely exponential in 3. Their method produces solutions that are upper bounded by

Equation 3.

Equation 3

A£(I) s(1+g)-0pt(1)+1

AU) 3 (1+ 5) as n goes to infinity

n: Number of objects

A; (I): Number of bins used by A: on instance I

0pl(I): Minimum number of bins required for Instance I

4.2.2 Asymptotic Fully Polynomial Approximation Scheme

An asymptotic fully polynomial approximation scheme (AFPAS) is a family of

algorithms {Aslg > 0} such that each A; runs in polynomial time relative to the length



of the input and %. while A£(I) 3 (1+ e)-0pt(l) as the length of the input goes to

 infinity. [Karmakar and Karp, 82] propose a AFPAS with running time 0("'°,3"). The
S

algorithms produce solutions that obey Equation 4.

Equation 4

A,(1)s(1+g)-0pz(1)+—12—+3

8

148(1) 3 (1+ £)-0pt(I) as It goes to infinity

n: Number of objects

A: (I): Number of bins used by A: on instance I

0pt(I): Minimum number of bins required for Instance I

4.2.3 Near-Absolute Approximation Scheme

The Near-Absolute Approximation Scheme is a modification of the work of

Karmakar and Karp [Johnson, 82]. This AFPAS has absolute error bounded by a

polylogarithmic function of the optimal solution. The solutions obtained with this

method are upper bounded by Equation 5.

Equation 5

NAAS(I) s 0pt(I) + 0(log2 0pt(I))

NAAS(I): Number of bins used by the Near - Absolute

Approximation Scheme for instance I

0pt(1): Minimum number of bins required for instance I



4.3 Practical Results

4.3.1 Open Loop Hybrid Algorithm

[Bilchev, 94] proposes an Open Loop Hybrid Algorithm (OLHA) consisting of a

Genetic Algorithm (GA) and a Multi-agent System (MAS). In order to describe the

system, the MAS and the GA are described first.

The MAS performs exchanges of objects between two bins that increase the

value of the objective function given by Equation 6.

Equation 6

fblAS : A.Aspace +BA

A: Positive Constant

num of objects

B: Positive Constant

Aspace = (Size of more full bin)flm, — (Size of more full bin)

A

initial

m“0me = (Num of objects in less full bin)final - (Num of objects in less full bin),m,,,,

A genetic algorithm is a search algorithm based on natural selection and natural

genetics [Goldberg, 89]. GAS are more robust than conventional search methods. GAS

can be applied to a wide array of problems and produce near-optimal solutions on

difficult search-spaces.

GAs require the problem’s parameter set to be coded as a finite-length string

over some finite alphabet. The strings are commonly called chromosomes, their

analogue in biology. Each chromosome represents a complete solution to the problem.

The mapping of the parameters onto the chromosome is called the representation.

GAs directly manipulate the chromosomes, not the parameters themselves.

Each chromosome has a corresponding fitness, a scalar measure of the quality

of the chromosome. GAs make use of an objective function, a function that evaluates



the fitness of a chromosome. GAs sample the search-space using only fitness values

of the samples to guide the search. GAs are said to be blind since they require no

knowledge other than fitness values. Since every problem has some metric for

evaluating the quality of a solution, GAs can be applied to many problems.

GAs search using a set of chromosomes called a population. A population of

chromosomes enables a GA to search many regions of the search-space

simultaneously, a desirable characteristic for searching multi-modal search-spaces. A

set of chromosomes contains more information than the chromosomes themselves.

Similarities among the chromosomes and their relationship to fitness values can be

analyzed. Important similarities among highly fit chromosomes are called schema or

building blocks. Building blocks are small parts of a complete solution. The GAs

implicitly analyze and process schema by using a survival of the fittest and a structured

yet randomized information exchange between chromosomes.

GAs start with an initial population of chromosomes and create subsequent

generations from the previous generation. The search is performed using three

fundamental operators: reproduction, crossover, and mutation. Reproduction randomly

copies individual chromosomes into the new generation with a probability increasing

with increasing objective function value. After reproduction, crossover randomly

combines building blocks of two chromosomes (parents) to produce two new

chromosomes (children). One example of crossover is called one-point crossover.

One-point crossover selects a single crossover point at random dividing each parent

into two parts. The left part of parent1 is combined with the right part of parent2 to

create a child. Likewise, the right part of parent1 is combined with the left part of

parent2 to create another child. Crossover recombines schema present in the parents

and passes them to the children. Mutation randomly changes a chromosome enabling
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the introduction of schema not present in the population. Although mutation plays a an

important role in GAs, it is typically used much less frequently than crossover. High

mutation rates are disruptive to the GA. Since crossover and mutation have a random

component, they are said to be stochastic operators. GAs are useful since they

preserve and recombine building blocks of solutions to make new solutions.

The GA representation of the OLH is an ordering of the objects. The first gene

represents the first object in the list, the second gene represents the second object, etc.

Each object occurs exactly once in the chromosome. This representation is referred to

as a permutation. Figure 3 shows an example of a permutation chromosome. The

objects are given to First Fit in the order specified by the chromosome. The crossover

used in this approach differs from other permutation crossovers. The placement of

each object under First Fit depends on the placement of all objects appearing to the left

in the chromosome. The crossover preserves schemata of the left side of the parent

chromosome and passes them to the children as the left part of the chromosome. The

GA uses Equation 7 as the objective function.

Equation 7

a
 

fGA :m+ m

Z(fi_11-fi11.)2

m: Number of bins

a: A positive constant

fill,: The sum of the object sizes of the objects in bin 1'

——l M

fill—mzfiu,

r=I
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A (I

l I- Object1 is fourth

Object 3 is third

Object 0 is second
 

  
Object 2 is first

Figure 3: Permutation Chromosome Representation

The Open Loop Hybrid Algorithm is composed of the GA and the MAS. The GA

is employed for several generations until it produces a solution of desirable quality.

The MAS further optimizes the solution to produce the final solution. Figure 4 shows the

OLHA.

 

 

     

Initial GA

Solution MAS I I

Solution

 

   
   

Figure 4: Open Loop Hybrid Algorithm

4.3.2 The Reduction Method

The Reduction Method is a powerful algorithm that produces near-optimal

solutions to the BPP proposed by [Martello and Toth, 90]. In order to describe the

algorithm, several definitions are necessary.

Feasible set: A feasible set of objects is defined as any subset of the objects W whose

sizes sum to less than or equal to the bin capacity C.
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Fis a feasible set rffF ; Wand XS, 3 C

ieF

W = {1,2,...,n} The set of all objects

3, is the size of object 1'

C is the bin capacity

Consider an instance consisting of a set of objects W. If a feasible set F is

assigned to a bin, then the instance W is reduced to an instance W— F .

Dominance: Given two feasible sets F, and F2, F, dominates F2 iff the number of bins

for the optimal solution of the reduced instance W — F, is not greater than the number

of bins required for the optimal solution of the reduced instance W— F2.

Dominance criterion: Given two distinct feasible sets F, and F2, if there exists a

partition P: {P, ,...,P,} of F2 and a subset {i,,...,i,} of F, such that s“ 2 s, for
kgp,

h = 1,...1, then F, dominates F2. Figure 5 clarifies this definition.

Checking if one feasible set F, dominates another feasible set F2 requires

either solving the reduced instances W -F, and W—F2 or using the dominance

criterion. Solving the reduced instances requires exponential-time. Using the

dominance criterion is computationally less intensive since only the objects in the two

feasible sets are examined.

The Reduction Method makes use of the dominance criterion. This procedure

reduces the size of an instance of BPP by considering all feasible sets, finding one (call

it F) dominating all of the others, assigning F to a new bin and removing F from the

set of remaining objects W. Since that leaves fewer objects to consider (W —F), the

problem is reduced. The cardinality of the feasible sets considered are limited and

checking for dominance is done only through the dominance criterion. If no set

dominating all others can be found, the problem is relaxed by removing the smallest
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F. F.

 

Object 1

Object 2 Object 4 p

< : : 7 1

Object 5

Object 3 Object 6 I P2

The size ofP, is less than or equal to the size of Object 2.

 

 

  
  

    
 

  
The size of P2 is less than or equal to the size of Object 3.
 

F, dominates F2    
Figure 5: Dominance Criterion

object among those which are not yet assigned to any bin. These relaxed objects are

later inserted with a different method such as FFD.

4.3.3 The Hybrid Grouping Genetic Algorithm

Traditional GAs are ill-suited for grouping problems. Consider the

representation using one gene per object as shown in Figure 6. Chromosomes using

this representation exhibit redundancy. Many chromosomes describe the same

solution. For example, the chromosomes AABB and BBAA have a group comprised of

objects 0 and 1 and a group comprised of objects 2 and 3. Since the names of the

groups are irrelevant, the two chromosomes are equivalent. The redundancy can grow

exponentially as the number of objects increases. An exponential factor of redundancy

drastically enlarges the search space. Traditional crossover, such as one-point

crossover, does not pass meaningful information from parents to children. In the
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example of Figure 7, none of the groups in the children exist in the parents. Infeasible

solutions (overfilled bins) and poor solutions dominate the search-space.

§~Object 3 is in Group B

Object 2 is in Group B

Object 1 is in Group A

Object 0 is in Group A

Figure 6: Traditional Chromosome Representation

Parent 1: ABC|ABC

Parent 2: AABIBCC

Child 1: ABCBCC

Child 2: AABABC

Figure 7: Traditional Crossover

Emanuel Falkenauer proposes a particular adaptation of GAs for grouping

problems that is better suited for grouping problems than traditional GAs [Falkenauer,

92],[Falkenauer, 94A],[Falkenauer, 94B],[Falkenauer, 95]. He developed one of the

most powerful methods known for solving the BPP, and it provides the basis for our

work. Falkenauer identifies the schemata of grouping problems as the groups. He

defines a representation, crossover operator, and a mutation operator that work with

groups as the building blocks. He calls the modified GA a Grouping Genetic Algorithm

(GGA). Crossover and mutation produce children with each object assigned to exactly

one bin and no bin is overfilled. The GGA, therefore, is restricted to working only with

feasible solutions.
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The GGA’s chromosomes are composed of two parts: the object part and the

group part. The object part has one locus for each object. The object part identifies

which objects form which group. In Figure 8, the first object (Object 0) is in the group

specified by the first gene (Group A). The group part lists each group exactly once in

any order. Crossover and mutation work with the group part directly and use the object

part indirectly. The group part is necessary to allow linkage among the groups under

crossover. Groups listed near each other in the group part of the Chromosome are

more likely to remain together after crossover. In Figure 8, the chromosome represents

a configuration with three groups. The first group (Group B) is “closer” to the second

group (Group A) than it is to the third group (Group C), in strength of linkage. Groups

having strong linkage are more likely to remain together under crossover. Since the

number of groups is not constant, the chromosomes can have different lengths.

The goal of the GGA’s crossover is to pass possibly linked groups from parents

to the children. Crossover is performed as follows [Falkenauer, 94A]:

1) Select at random two crossing sites in the group part, delimiting the crossing

Object part Separator Group part

\I/
: BAC

Object 3 is in

Group C

Object 2 is in

Group B

Object l is in

Group A

Object 0 is in

Group A

Figure 8: Chromosome Representation of the Grouping Genetic Algorithm



2)

3)
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section, in each of the two parents.

Inject the contents of the crossing section of Parent 1 at the first crossing site of the

Parent 2. This means injecting some of the groups from Parent 1 into Parent 2.

Eliminate all items now occurring twice from the groups of which they were

members in Parent 2. The ‘old’ membership of these items gives way to the

membership specified by the ‘new’ injected groups. Some of the ‘old’ groups

coming from the second parent are thus altered: they do not contain all the same

items anymore, since some of those items had to be eliminated. Remove these

groups from the group part of Parent 2 and place objects belonging to these groups

in a queue of objects lacking membership in a group.

4) Assign each object in the queue to a group. The algorithm used is problem-

5)

specific. For the BPP, the objects are reinserted using FFD.

Perform Steps 2 through 4 on the two parents with their roles reversed in order to

generate the second child.

Example: Groups from Parent 1 are injected into Parent 2. Parent 2 is represented by

small letters so that it can be differentiated from Parent 1.

(Parent 1) AABCC:ACB

(Parent 2) abcbczcab

After step 1:

(Parent 1) AABCC:|A|CB

(Parent 2) abcbc:c|ab|
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Injected Group

   

 

 

 

   
  

  
 

  

Old Group

From Parent 2 2

 

   
 

   

   

 

Figure 9: Crossover Example

After step 2:

(Parent 1) AABCC:|A|CB

(Parent 2) abcbcchab

After step 3:

(Parent 1) AABCC:|A|CB

(Parent 2) AAc®c:cA

Queue = {object 2}

Mutation in the GGA is performed as follows:

1) Select at random several groups to eliminate.

2) Place the objects in these groups into the queue.

3) Reinsert the objects in the queue into the solution. The algorithm used is problem-

specific. For the BPP, the objects are reinserted using FFD.

Falkenauer uses Equation 8 as the objective function for the BPP. Since the

GGA’s crossover and mutation operators create only feasible solutions, the objective
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Equation 8

fill-2

fBPP : 1:1sz

m: the number of bins being used

 

fill,: the sum of the sizes of the objects in bin,

C: the bin capacity

function does not need a penalty factor to discourage constraint violations.

[Falkenauer, 92] and [Falkenauer, 94B] present results on the BPP as a graph.

Falkenauer varied the difficulty of the problems by selecting object sizes so that an

optimal solution can have some empty space remaining in each bin. The empty space

is called leeway. Although the GGA outperformed FFD, better methods for the BPP

exist such as the Reduction Method. Since the GGA utilizes FFD in crossover and

mutation, Falkenauer compares the performance of the GGA to that of FFD to show

that the better performance of GGA is the result of processing schemata.

Falkenauer later added a heuristic hill-climber inspired by the Reduction Method

to the GGA. He calls the new system the Hybrid Grouping Genetic Algorithm (HGGA).
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Figure 10: GGA vs. FFD
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The HGGA produces far more competitive results with the addition of the heuristic hill-

climber. The heuristic is valid only for the BPP. The heuristic is added to the crossover

and mutation operators. In both operators, the heuristic is inserted before using FFD to

reinsert the objects from the queue. The heuristic performs a local optimization as

follows: For each bin already in the solution, replacements of up to three objects in the

bin by one or two objects in the queue are performed if they make the bin fuller without

exceeding the bin capacity.

   

 

  

   

Group 1 Group 2 Group 3

Group A 1 2 3

,W;................ .5. ..................... 6..........

Group B §

Group C 7 8 9

 

Figure 11: Example Demonstrating Mutation-like Behavior of the GGA’s Crossover

The GGA’s crossover operator exhibits a mutation-like behavior. Crossover

combines schemata from two parents to form children. The GGA’s crossover uses

groups as the schemata. Unless the two parents are similar, the objects in a particular

group in parent1 are spread among several groups in parent2.

Figure 11 illustrates that the preservation of each group in one parent can inhibit the

preservation of many groups from the other parent. Only a small portion of the groups

present in the children can be obtained from the parents. A heuristic, such as FFD in

the case of the BPP, assembles the remainder of the groups. Since a large portion of

the schemata in the children is not present in the parents, the crossover operator
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exhibits a mutation-like property. Figure 11 demonstrates that the preservation of

groups in one parent can inhibit many groups in the other parent. Any crossover

operator that works with groups as schemata exhibits this mutation-like behavior.

5. The Swapping Heuristic Applied to the Bin Packing Problem

5.1 Rationale for the Swapping Heuristic

The Swapping Heuristic (SH) is the product of extensive work with Falkenauer’s

HGGA. The solutions obtained with the HGGA are simply not attainable without the

use of the Martello and Toth Heuristic. The heuristic, therefore, must be processing

domain specific knowledge to help produce these solutions. Is the Martello and Toth

Heuristic the best way to utilize this additional knowledge? This question began the

work leading to the SH. The SH was designed as another heuristic for use in the

HGGA either in conjunction with the Martello and Toth Heuristic or as a replacement.

The SH became powerful enough to produce quality solutions on its own, making the

GGA unnecessary.

Falkenauer’s objective function (Equation 9) provided the GGA a metric for

guiding the search. The same metric can be utilized directly by a local search

technique. Exchanges can sometimes be found between two bins such that one bin

after the exchange is fuller than either bin was before the exchange. These exchanges

always increase the value of Falkenauer’s objective function. To prove this, there are

two possible cases to consider: the number of bins remains the same (Case 1) and the

number of bins decreases by one (Case 2).
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Equation 9

ifiuf
Falkenauer's objective function for BPP: ———-’='

 

 

 

 
 

 
 

        
  

 

X: the set of objects staying in

Y: the set of objects staying in bmr

A: the set of objects moving from binx to 1’1"?

B: the set of objects moving from bm’ to me

C2m

5.1.1 Case 1: The Number Of Bins Stays The Same

A

A B Exchange

_———’ B

Y Y

X X

me b172,, bmx bin,

binx.

  
 

Figure 12: Case 1 Exchanges

Under what conditions isfBPP (Before Exchange) < fBPP (After Exchange)?

  

m m I

II2 + II2 + 11.2 < [I2 + II2 + II.2fix fi. 215% fi. fi. Zfi C.m

ixl' iael’

fill}, + fill,2 < fill}, + fill,2

Before Exchange: fillx = (x+a), fill, = (y+b)

After Exchange: fillX = (x+b), fill, = (y+a)

(x+a)2 +(y+b)2 <(x+b)2 +(y+a)2

xz +2ax+¢2 +y2 +2by+ll2 <x2 +2bx+ll2 +y2 +2ay+a2
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ax + by < bx + ay

ax — ay < bx - by

0(x -y) < b(x -y)

Dividing both sides by (x — y)

If (x — y) > 0 then the value of the objective function increases for a < b

If (x — y) < 0 then the value of the objective function increases for a > b

Ifa resulting bin is filled more than both starting bins, the objective function

always increases.

5.1.2 Case 2: The Number Of Bins Decreases

 

 

  

         
 

Removed

Exchange 3

-——>

B

X X

bin, bm, bm, bzn,

 

X: the set of objects staying in binx.

Y: the set of objects staying in bin,

A: the set of objects moving from bin, to bin,

B: the set of objects moving from bi’h to bin,   

Figure 13: Case 2 Exchanges

Under what conditions isf3,, (Before Exchange) < fBPP (After Exchange)?

__L_

C2(m—1)

 fill} + fillfi + Zfill,2 C2 < fill; + Zfill,2

3:5. ’" 13:5.
ratl’

2 2 1 2 I

(fill, +fill,)— <(1211,)—

m m—l

Before Exchange: fill, :2 x, fill, =b

After Exchange: fill, = (x+b), bin, is removed.
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(x2 +b2) < (x+b)2

  

m m—l

x2 +b2 < x2 +2xb+b2

m m—l

Value of Falkenauer's objective function increases for all x and b.

(x and b are positive values)

Falkenauer utilizes a genetic algorithm to optimize bin packing solutions relative

to the objective function. It is shown that exchanges of objects between groups can be

identified that increase the value of the objective function. Pairs of bins can be

examined until no more of these exchanges can be found. This serves as the basis for

the SH.

5.2 Description of the Swapping Heuristic Applied to the Bin Packing

Problem

Section 5.1 shows that gains which result from exchanges of objects between

two bins can be used to optimize a solution to the BPP. The objective function value

increases if, after an exchange, a resulting bin is fuller than each of the starting bins.

Any solution to the Bin Packing Problem can possibly be made better by performing a

local optimization. The local search is done by performing exchanges between any two

bins such that after the exchange, one bin is fuller (the other is less full) than either bin

was before the exchange. The less full bin often benefits the overall solution since it is

easier to eliminate by moving the objects into other bins and has added room to

accommodate more objects making the elimination of another bin easier. The SH can

start with any solution and improve it. Thus, it can be used to enhance the

performance of any other bin packing algorithm.

An iteration is a pass through every pair of bins. The stopping criterion is a limit

to the number of iterations performed in which no beneficial exchange has been
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start with any initial solution

counter=0;

while (counter<number_of_tries)

{

counter++;

for (i=1; i<m—l; i++)

for (j=i+l;j<m-l;j++)

{

exchange (bin, ,bin,)

if progress has been made then

counter=0; /* Reset Counter */

void exchange (bin, ,bin,)

1. Let 0 be the union of the set of Objects from bht and the set

of Objects from bhy.

. Compute the sizes Of the elements of all binary partitions of

(I which do not exceed (I.

. Select a partition: If there is exactly one partition from

step 2, select it. If there are more than one partition from

step 2, select one at random.

. Using the selected partition from 4, place the Objects in the

larger element in bht, and the Objects in the smaller element

in bhy.
 

Figure 14: Basic Description of the Swapping Heuristic

performed. This allows the heuristic to continue working as long as it continues making

progress. In our experiments, we used twenty as the limit. The basic algorithm for the

SH is given in Figure 14.

The function exchange takes two bins and determines the combination of

objects from the two bins with the maximum sum that is less than or equal to the bin

size. This is accomplished by computing all of the possible sums the objects can
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produce. This requires 22 sums where z is the number of objects in the two bins. This

requires exponential time with respect to z. This is practical only for instances with

small 2. In order to produce a heuristic of reasonable complexity when zis large,

several objects are treated as one, putting an upper limit on the number of sums

computed. Figure 14 describes the exchange function.

The SH can get “stuck” on a non-optimal solution. This is commonly caused by

many small objects forming a well filled bin too early. The objects in a well-filled bin are

difficult to break apart. Small objects are often the easiest to pack since they fit in the

spaces left after packing the large objects. The SH can prevent many small objects

from forming a well-packed bin too early by first limiting the number of objects allowed

in a bin and then relaxing that restriction in a stepwise fashion. Figure 15 incorporates

the object limit into the SH.
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Calculate or read final_object_limit, number_of_tries

Place each object in its own bin

for(object_limit=2; Object_limit<=final_object_limit; Object_limit++)

counter=0;

while(counter<number_of_tries)

{

counter++;

for(i=l; i<=number_of_bins-l; i++)

for(j=i+1; j<=number_of_bins; j++)

I

large=max(bm, ,bin,};

exchange (bin,,bin,) ;

if ( max{bin, ,bin,}>large)

counter=0;

void exchange (bin,,bin,)

1. Let 0 be the union of the set of Objects from bht and the set

of Objects from bhy.

2. Compute the sizes of the elements of all binary partitions of

0 which do not exceed C and the number Of objects in the

element satisfies the following condition:

(number of objects in 0 — object limit) 3 (number of objects) 3 (object limit)

1. Select a partition: If there is exactly one largest partition

from step 2, select it. If there is more than one largest

partition from step 2, select one at random.

2. Using the selected partition from step 3, place the Objects

in the larger element in bht and the objects in the smaller

element in bhg.

 

Figure 15: Swapping Heuristic with Object Limit
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5.3 Worst-Case Performance

Research involving algorithms focuses on determining and proving bounds on

worst-case performance. This includes the worst-case quality of solution and the wost-

case execution time. The worst-case solution is expressed in terms of the optimal

solution. Figure 16 shows the instance giving rise to the currently known worst-case

solution for the SH. The objects in the optimal arrangement require three bins. The

objects in the arrangement produced by the SH require four bins. If this instance is

proven to be the worst-case example for the SH, the performance of the SH would

obey Equation 10. The worst-case performance, if proved, would be better than that of

FFD and other simple methods but not the approximation schemes. Since the SH

searches using a single point, the SH working alone can be deceived by such an

instance. The SH working in conjunction with a GA can search more thoroughly and

would less likely be deceived by such an instance.

(:4) (:4) (:3)

B * G)
en), em) 6+2)

Optimal Arrangement

        
 

(T) 1+2, (gun)

l-i-I (:23 (gs...) (g-..)

(l-l g...)             

Arrangement Produced by SH

Figure 16: Worst Known Case for the SH
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Equation 10

SH(I)s30pt(l)+l

SH(I): Number of bins required by the SH for instance I

0pt(l): Minimum number of bins required for instance I

The worst-case execution time is expressed in terms of the size of the instance.

The size of an instance of BPP is n, the number of objects. The SH’s counter makes

determining the worst-case execution time difficult. Several runs have been performed

to provide some indication of how the execution time increases as the number of

objects increases. The runs use objects selected in the range [1,10000] and have bin

capacity 10000. The execution times are the product of two parts: the number of

iterations and the average time required for each iteration. Figure 19 shows the

execution time per iteration of the runs to increase as a function of r22. The number of

bins grows proportionally to the number of objects for the same bin capacity. An

iteration involves working with every pair of bins. For m bins, (11,359 pairs of bins are

analyzed in each iteration. Therefore, the time for each iteration is expected to

increase as a function of n’. The number of iterations required are experimentally

shown to increase approximately linearly as the number of objects increases. The third

column in Table 1 shows that the number of iterations divided by the number of objects

generally decreases and the number of objects increases.
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Table 1: Execution Times for Increasing Number of Objects

 

 

n

Numflteranons w

I'VTjglfTIBTgiiIi, ..,.“,.,., ,TIQOQH (53‘¥3!3551;IF3F?LJ>'fi1

 

Obiects Iterations 5"“

VerTm—e
. .. x 1000
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n

 

1000 119 119 267 €i44

 

2000 135 6715 1223 Ei35

 

3000 167 551' 3461 £104

 

4000 217 5433 8077 £102

 

5000 347 69A1 20259 £i45

 

6000 282 471) 24116 4182

 

7000 336 481) 39340 4L86
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Figure 17: Execution Time vs. Number of Objects
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Figure 18: Number of Iterations vs. Number of Objects
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Figure 19: Time per Iteration vs. Number of Objects

5.4 Results: Bin Packing Problem

5.4.1 Comparison to Standard Methods

Table 2 compares the performance of the SH to that of FF, FFD, BF, and BFD.

The runs use 1000 objects with integer object sizes selected uniformly random in the

given range. Equation 11 provides a lower bound for runs 1 through 9. The

performance bound of FFD (Equation 2) provides a tighter lower bound for run 10.

These lower bounds may not be achievable.
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Table 2: Results, Bin Packing Problem, Comparison to Standard Methods

 

Numberofems

 

   
 

 

 

 

 

 

 

 

 

           

1 [1,1000] ' '2ooo ’ "2‘51”” ' :47 "251 247 247" "247

2 [1 .1000] 2500 200 198 200 198 198 198

3 [1,1000] 3000 166 165 166 165 165 165

4 [200, 1 000] 2000 309 302 308 302 297 297

5 [200,1000] 2500 245 240 245 240 238 238

6 [200.1000] 3000 203 201 203 201 198 198

7 [500,1000] 2000 422 417 422 417 400 375

8 [500,1000] 2500 323 313 323 31 3 300 300

9 [500,1 000] 3000 268 267 268 267 250 250

10 [800,1000] 2500 474 457 474 457 446 371

 

Equation 11

Lower Bound = ——

  

5.4.2 Comparison to Reduction Method and Hybrid Grouping Genetic

Algorithm

Martello and Toth tested the Reduction Method using various ranges and bin

capacities and found instances with bin capacity C = 150 and integer object sizes

selected uniformly random in the range [20,100] to be the most difficult. Falkenauer,

however, wanted to know the optimal number of bins for each instance. He
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accomplished this by using a procedure that selects object sizes so that they exactly fill

the bins. Most object sizes are selected uniformly random in the range [20,100]. Some

object sizes are selected in the range [20,100] so that they fill the bins completely

leaving no space. All bins are full except possibly the last. Figure 20 describes the

procedure in detail. Falkenauer generated 20 instances of the ‘Uniforms’ with 1000

objects.

For each instance, Falkenauer ran the HGGA until it obtains the optimal number

of bins and recorded the time. The SH , similarly, was run until it reaches the optimal

number of bins. The HGGA, like the SH, is not guaranteed to determine the optimal

number of bins in a finite amount of time.

Table 3 and Table 4: use the following:

. Theo: Theoretically minimum number of bins required for the instance

. Loss: Number of bins in solution minus theoretically minimum number of bins

. Eval: Number of objective function evaluations performed by the HGGA.

. Time: Execution time in seconds on the machine indicated by footnotes.

. Backs: Number of iterations performed during the reduction method.

. Passes: Number of passes through the bins.

. Speed-Up: HGGA execution time divided by the SH execution time
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C=150; /* C is the Bin Capacity */

SzC; /* Initialize S, the available to the bin capacity */

for(i=1,i<=rLi-F+)

I

repeat

R= random number generated in the range [20,100];

until (RZS) or (S-RZZO)

if (RZS)

{

s,=S;

S=C;

}

if(S—Rszd

{

.3 =R;

SzS—R

 

Figure 20: Procedure for Creating Instances of the ‘Uniforms’

Table 3 compares the executions times of the SH and the HGGA on the

‘Uniforms’ with 1000 objects. The SH is executed with the following parameter settings

on the ‘Uniforms’: Starting object limit = 6, Final object limit=6, number of tries = 20.

The execution times listed for the Reduction method and the HGGA in Table 3 are

obtained from [Falkenauer, 94A]. The instances are those created by Falkenauer.

Falkenauer identifies the ‘Triplets’ as another difficult set of bin packing

instances. The ‘Triplets’ object sizes are selected so that three objects exactly fill a bin.

The first object size is drawn uniformly from the range [380,490]. That leaves a space

S remaining in the bin. The second object is drawn uniformly from [250,S/2). The third
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object is chosen so that it completely fills the remaining space in the bin, leaving no

leeway. These data sets are designed to be extremely difficult bin packing problems.

Falkenauer generated 20 instances of ‘Triplets’ of 501 objects. Table 4 compares the

execution times of the SH and the HGGA on the ‘Triplets’ instances with 501 objects.

The ‘Triplets’ are run with the following parameters: starting object limit = 2, final object

limit = 6, number of tries = 20.

The instances used in Table 3 and Table 4 are part of a set of Operations

Research benchmarks maintained at the Imperial College of Management

(http:l/mscmga.ms.ic.ac.uk/info.html). These benchmark instances are available to all

researchers to provide a way to compare methods. To date, the SH is the only known

method capable of solving these instances in less time than the HGGA, and the time

difference is very large.
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Table 3: Results, Bin Packing Problem, ‘Uniforms’

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

1 399 0 2211 2924.7 4 3.5M 3279.0 0 2 16.78 174.3

2 406 0 2948 4040.2 4 5M 4886.6 0 2 16.73 241.5

3 411 0 4958 6262.1 5 8.5M 6606.1 0 2 13.81 359.0

4 411 0 35376 32714.3 5 50M 40285.6 0 14 52.90 618.4

5 397 0 8844 1 1862.0 4 20M 20689.8 0 2 18.25 650.0

6 399 0 2948 3774.3 3 5M 4216.3 0 2 16.80 224.7

7 395 0 2010 3033.2 3 3M 3449.7 0 2 20.58 147.4

8 404 0 7303 9878.8 2 12.5M 12674.4 0 3 19.11 516.9

9 399 0 4355 5585.2 3 4.5M 6874.0 0 2 19.81 281.9

10 397 0 6968 8126.2 5 12.2M 9568.2 0 2 18.12 448.5

11 400 0 2278 3359.1 4 4M 3542.8 0 2 20.29 165.6

12 401 0 6700 6782.3 3 8.1 M 7422.4 0 2 15.26 444.4

13 393 0 1943 2537.4 3 3.2M 2714.0 0 2 20.49 123.8

14 396 0 14137 11828.8 5 20M 23319.4 0 2 17.41 679.4

15 394 0 5762 5838.1 5 5M 6770.9 0 4 25.00 233.5

16 402 0 13802 12610.8 5 20M 20458.4 0 5 24.12 522.8

17 404 0 2278 2740.8 3 3M 3139.6 0 2 14.83 184.8

18 404 0 2077 2379.4 3 3M 2506.4 0 2 18.72 127.1

19 399 0 1005 1329.7 4 1.5M 1353.2 0 2 14.70 90.5

20 400 0 2680 3564.2 5 3M 4109.6 0 2 14.82 240.5

Ave 7058.6 19.9
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Table 4: Results, Bin Packing Problem, Triplets Distribution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

‘z‘fs‘iiz Reduct

' 1 ' 167 i 0 3752 I 1806.7 I '17 I 1.5M 5828.9 0 56 40.62 44.5

2 167 0 3551 1582.2 14 1.5M 3437.4 0 87 67.18 23.6

3 167 0 1809 1234.5 10 1.5M 2358.7 0 44 31.87 38.7

4 167 0 3082 1821.9 13 1.5M 3398.0 0 94 73.49 24.8

5 167 0 5360 2355.2 14 1.5M 3709.8 0 81 62.76 37.5

6 167 0 2881 1424.0 16 1.5M 10624.4 0 89 67.70 21.0

7 167 0 1809 1161.4 16 1.5M 5788.5 0 119 91.80 12.7

8 167 0 2613 1503.7 16 1.5M 5798.9 0 164 128.68 11.7

9 167 0 3685 2138.4 10 1.5M 2991.3 0 52 36.78 58.1

10 167 0 3082 1550.1 18 1.5M 5626.3 0 51 35.98 43.1

11 167 0 2010 1052.9 12 1.5M 3771.4 0 68 50.12 21.0

12 167 0 2814 1334.9 11 1.5M 3063.7 0 128 99.41 13.4

13 167 0 3216 1502.2 20 1.5M 5787.1 0 33 21.17 71.0

14 167 0 5293 1951.0 14 1.5M 4494.9 0 148 108.40 7.8

175 142.33

15 167 0 3216 1473.9 16 1.5M 5929.5 0 151 120.11 12.3

16 167 0 4623 2350.6 14 1.5M 5306.9 0 57 41.53 56.6

17 167 0 2613 1178.8 16 1.5M 5522.0 0 129 110.28 5.2

136 115.63

18 167 0 3551 1754.2 16 1.5M 6277.2 0 203 160.38 10.9

19 167 0 3484 1775.5 13 1.5M 4164.2 0 117 93.33 19.0

20 167 0 4288 2307.2 21 1.5M 6519.4 0 122 98.92 16.9

52 37.23

Ave 1663.0 91.8              
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5.4.3 Comparison to the Open Loop Hybrid Algorithm

Bilchev presents results using instances that demonstrate the worst-case

performance of First Fit Descending. Five instances are created using m = 1,2. . .,5

0bjectsize(i) = %+ a for 1 S i S 6m

objectsie(i)-— %+ 23 for 6m <i < 12m

objectsi~e(i)—- :1; + a for 12m <i < 18m

objectsize(i) = %+ a for 18m < i 3 30m

5:0.01

Table 5: Results, Bin Packing Problem, Bilchev Instances 1

 

  

 

 

 

 

      

Numberof """FirstF‘t"""""Mufti-agent""""""Genetic""" Swapping Swapplng""""""Optimal"""

------Objectsjfingescendmg System‘ Algorithm Heuristic""‘Heunstic Solution

. :gsggQNl-Imbef 01‘ Numberof Numberof Numberof Execution Numberof

' ’ Binsg9, _“Bins, ,. Bins Bins Time Bins.....
..... ~ -.,.,,.,:,3 __ ,5: ‘ , (Spare10 5,5,,

........... CPU

...... seconds)

30 1 1 9.1 9 9 0.25 9

60 22 18.4 18 18 0.76 18

90 33 27.6 27 27 1.91 27

120 44 36.3 36 36 3.06 36

150 55 45.3 45 45 5.20 45   
 

The second set of instances Bilchev used to report results have 50 objects with

object sizes selected in the range [0.05065], with a resolution of 300. Bilchev gave no

reasoning for choosing this configuration. The lower bounds of these instances are

determined by Equation 12.
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Equation 12

Lower Bound = ——

  

Table 6: Results, Bin Packing Problem, Bilchev Instances 2

 

 

 

 

 

{ . A Swapping swappm was...“"""

Run 9 HeurIstic HeurIstrc99999 , NumberofBins

’ ' ' ' NumberofBins Execution Tlme Reqwed

ReqUIredA}j~;j;_(Sparc10CPU w ..

-_:......... "” :5seconds)

1 19 0.45 19

2 20 0.46 20

3 20 0.47 20      
 

The SH obtained the optimal solution on these three instances with an

execution time under a second. Bilchev achieved the optimal answer on the majority of

the runs. Bilchev does not comment on execution times.

6. Known Methods for Minimum Makespan Problem

6. 1 Theoretical Results

6.1.1 Longest Job First

Longest Job First (LJF) is a simple approach to the MMP that produces

approximate solutions.
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Longest Job First (LJF): Sort the jobs in decreasing order. For each job, place the job

on the machine with the shortest schedule.

[Graham, 69] proved the LJF always produces a schedule obeying Equation 13.

Equation 13

L1F(1)s(§— 31— 0121(1)

LJF(I): Makespan of scheduled produce by [JF on instance I .

0pt(1): Theoretically minimum makespan possible for instance I .

6.1.2 Multifit Algorithm

The Multifit Algorithm is an iterative algorithm that performs a binary search

guided by the well-known First Fit Descending Algorithm for the Bin Packing Problem

[Coffman, Garey and Johnson 78]. The Multifit Algorithm computes an upper bound

CU and a lower bound C, on the makespan. It calculates the midpoint C of the two

bounds and determines if the First Fit Descending Algorithm is capable of packing all of

the objects into M or fewer bins of capacity C. If FFD(C) succeeds, C is used as the

new upper limit. If FFD(C) fails, C is used as the new lower limit. The binary search is

continued for a specified number of iterations. Figure 21 defines the Multifit Algorithm.

The worst case performance of the Multifit Algorithm, given by Equation 14, is better

than that of LJF.

Equation 14

72
MA(I) 3 (3T) 0pt(l)

MA (I): Makespan ofthe schedule produced by the Multifit Algorithm on instance I

0pt(1): Minimum makespan of instance I
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 r n

2p.-

Calculate the starting lower bound: CL = maxi L, max,1,,__,, {p, } >

m

  L

22 p.

i=l
 Calculate the starting upper bound: Cu 2 maxi , maxms, {p,} )

  

2p, is the sum of all the job lengths.

f=I

max ,5,“ {p, } is the maximum job length of the instance.

Perform a binary search with k iterations.

for(I=1; Isk; I=I+l)

 

{

C C

Calculate the midpoint: C = _LTZ_U

if (FFD(C) s m)

CU : C;

else

CL = C;

} 
 

Figure 21: The Multifit Algorithm

6.2 Dual Approximation Schemes

The Dual Approximation Schemes [Hochbaum and Shmoys, 87] provide a

polynomial time algorithm with performance given by Equation 15 for any bounded

relative error a.
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Equation 15

DAA(I) 3 (1+ £)Opt(l)

DAA(I): Makespan of the schedule produced by the Dual Approximation Algorithm

8: Relative error

0pt(1): Minimum makespan of instance 1.

Although these algorithms do run in polynomial time, they have computation

I

‘2

complexity of QUE) ] for relative error at most a. For relative error of at most 10%

a

a = 0.1, their algorithm would run in 001“”). For relative error of at most 5%, their

algorithm would run in 0014”"). Although these algorithms have polynomial execution

times for any given bounded error, these algorithms are not practical for large n. Their

paper outlines the implementation of two methods, 3:1 and e=%. The latter

algorithm is non-trivial to implement and its worst case bound is only slightly better than

the Multifit Algorithm's. The implementation of the algorithms with smaller 3 are even

more difficult.

6.3 Practical Methods

Simulated annealing is a common practical search tool. [Rao and lyengar, 94]

published results on a variation of the MMP using simulated annealing. Rather than

trying to minimize the makespan, they minimize the cost function given by Equation 16.

Simulated Annealing initializes the temperature parameter T to a high value

Tm. The temperature parameter is gradually decreased until a small enough value for

the temperature is reached. At each temperature, the system is perturbed several

times. At the end of each set of perturbations, the new configuration is accepted or

rejected. The new configuration is always accepted if it has a lower cost function. If



the configuration has a higher cost function, the configuration is accepted with

probability that decreases by the amount the cost function increases. The probability is

42

Equation 16

f... = in, J):

m: The number of machines

1,: The sum of the processing times ofjobs scheduled to machinej

.. l "'

t-ngi

p, : Processing time ofjob 1'

Equation 17

-AC/T

Paccept = 8

AC = Cfinal — C‘inrrral

given by Equation 17.

A new configuration is generated by pertubating the current configuration.

Pertubations for this problem are done using one of these two methods:

1.

assignments of the two jobs.

Randomly select a job. Relocate the job from the machine in which it is currently

assigned to a randomly selected machine. These exchanges coursely optimize the

solution.

Randomly select two jobs currently assigned to different machines. Exchange the

solution.

These exchanges make fine adustments to the
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Generate a Random Configuration C

r=r,,

While 73>R do

I

repeat

I

generate new configuration (7;

AC:/(C')—f(C);

n = uniformly random number in the range [0,1)

if (AC< 0 0r 17< e'AC/T)

(?=(7;

}

until thermal equilibrium is reached;

T=F(T);

}

output (2  
 

Figure 22: Description of the Simulated Annealing Algorithm

7. The Swapping Heuristic applied to the Minimum Makespan

Problem

7.1 Rationale for the Swapping Heuristic

Section 5.1 provided the basis for applying the SH to the BPP. An approach

similar to the one used for the BPP exists for the MMP. In order to reduce the

makespan of a schedule, the longest individual machine schedule must be made

shorter by rescheduling jobs. Thus, a reasonable strategy is to identify the machines

with the longest schedules and attempt to shorten their schedule by exchanging jobs
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with other machines. This strategy provides the basis for the application of the SH to

the MMP.

7.2 Description of the Swapping Heuristic Applied to the Minimum

Makespan Problem

The SH for the MMP is similar to the SH for the BPP. The SH uses a counter as

the stopping criterion. If a successful exchange is performed, the counter is reset. A

successful exchange is an exchange between two machines such that at least one

machine has a schedule of length r, = Makespan before the exchange and both

machines have a schedule of length r, < Makespan after the exchange. Resetting the

counter allows the heuristic to continue working as long as it makes progress. The

description of the SH applied to the MMP is provided In Figure 23.
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Use Longest Job First Heuristic or any other method to produce starting

solution.

counter=0;

while (counter<=number_of_tries)

I

counter++;

makespan=determine_makespan();

for (i=1; i<=number_of_bins-l; i++)

for (j=i+1; j<=number_of_bins; i++)

l

i f ( max {machine, , machine, } ==ma ke span)

{

exchange ( machine, ,machine, ) ;

if ( max{machine, ,machine, } <makespan)

counter=0;

void exchange (machine, ,machine,)

1. Let 0 be the union of the set of jobs from machine, and the set of

jobs from machine,.

Find the binary' partition(s) of CI such that the size of both

elements is less than the current makespan. IIf no such partitions

exist, find the partition(s) such that the size Of both elements is

less than or equal to the current makespan. There exists at least

one partition.

Select a partition: If there is exactly one partition from step 2,

select it. If there is more than one partition from step 2, select

one at random.

4. Using the partition from step 3, place the jobs in the larger element

on machine, and the jobs from the smaller element on machine,.

 

Figure 23: The Swapping Heuristic for the Minimum Makespan Problem
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7.3 Results: Minimum Makespan Problem

7.3.1 Comparison to Longest Job First and the Multifit Algorithm

The SH currently has no theoretical worst-case performance results. Table 7

compares the performance of the SH to LJF and the Multifit Algorithm. The runs use

instances with 1000 jobs with processing times selected uniformly from the job ranges

specified in the table. Equation 18 provides a lower bound for all the runs. An analysis

of the instance bounds run 22 tighter. These lower bounds might not be reachable.

These runs showed the SH to be dramatically better than LJF and MA.

Equation 18

I!

2P1

Lower Bound = "'

m
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Table 7: Results, Minimum Makespan Problem, Comparison to Standard Methods
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1 [1 ,1000] 300 1742 1647 1646

2 [1 ,1000] 250 2002 1975 1975

3 [1,1000] 200 2538 2469 2468

4 [1,1000] 150 3331 3291 3291

5 [1 ,1000] 100 4963 4936 4936

6 [1 ,1000] 50 9883 9871 9871

7 [200,1000] 300 2084 2013 1977

8 [200,1000] 250 2387 2398 2373

9 [200, 1009] 200 3028 3003 2965

10 [200,1009] 1 50 4072 3989 3954

1 1 [200,1000] 100 5957 5965 5930

12 [200,1000] 50 1 1872 1 1906 1 1860 1 1860

13 L500,10001 300 2806 2612 2501 2499

14 [500,1000] 250 3018 3177 2999 2999

1 5 [500,1000] 200 3793 3907 3749 3749

16 [500,1000] 150 5176 5180 4999 4999

17 [500 , 1 000] 100 7507 7639 7498 7498

18 [500,1000] 50 15002 15167 14995 14995

19 [800,1000] 300 3518 3440 3352 3352

20 [800,1000] 250 3600 3800 3597 3597

21 [800,1000l 200 4513 4800 4497 4496

22 [800.1000] 1 50 6271 6420 6081 6081

23 [800,1000l 100 8995 9374 8992 8992

24 [800,1000] 50 17986 18382 17984 17984
 

Table 8 provides execution times of the Swapping Heuristic for various numbers

of jobs and numbers of machines. Objects were selected at uniform random in the

given range. The lower bounds are determined using Equation 19. Since the lower

bounds may be less than the optimal answers, they may not be achievable.
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Equation 19

Lower Bound =

  

Table 8: Results, Minimum Makespan Problem, Uniform Distribution

 

 

  
 

15:-{jifRange

WessmgNumb"°'

  

  

ISwapping

JobFirst

Makespan

Heuristic1Heuristic

Makespan nme

 

 

[2000 10000] 500 23588 28474 109.74 23473

 

[2000,10000] 400 29878 29341 214.51 29341

 

[2000,10000] 300 40164 39121 307.88 39121

 

[2000,100001 200 58781 58681 86.58 58681

 

[2000,10000] 100 1 17439 117361 29.73 117361

 

[2000,10000] 50 234770 234722 6.47 284722

 

[2000,10000] 500 47295 47256 184.42 47256

 

[2000,10000] 400 59145 59069 426.78 59069

 

[2000,10000] 300 80031 78759 273.30 78759

 

[2000,10000] 200 118191 118138 90.87 118138

 

[2000,10000] 100 236336 236276 28.60 286276

   [2000,10000]  50  472560 472552  10.11  472552  
 

 

1 Sparc 10 CPU seconds
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Table 9 compares the performance of the SH relative to LJF and Multifit on

instances with discrete distributions. These instances are created by randomly

selecting ten processing times in the range [500.1000] and making 100 jobs with each

of these processing times. The lower bounds are determined using Equation 20.

Since the lower bounds may be less than the optimal answers, they may not be

achievable.

Equation 20

- n .

2P,
i=1

m

Lower Bound =

  

Table 9: Results, Minimum Makespan Problem, Discrete Distribution
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1 000 [500.1000] 2349 2531 2262 2210

 

1 000 [500,1000] 3542 3319 3318 3315

 

1 000 [500, 1000] 2644 2694 2468 2391

 

 1 000  [500.1000]   3717  3599  3588  3586

  
7.3.2 Comparison to Simulated Annealing

Table 10 and Table 11 compare the Swapping Heuristic to Simulated Annealing.

The tables list the values of the objective function obtained with LJF, Simulated

Annealing, and the SH. The SH is run until it reaches the maximum number of tries

rather than stopping when the lower bound of the makespan is reached. This is



50

required to optimize their cost function rather than finding only the minimum makespan.

The SH is not altered in any other way. [Rao and lyengar, 94] do not provide the

execution times required to obtain their results, but kindly furnished the data files they

used. For all runs except one, the SH produces an arrangement with an objective

function value less than or equal to that of the simulated annealing.

Table 10: Results, Minimum Makespan Problem, Uniform Distribution

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

1:11:11.- ..‘fl0biectiveFunction4 4;:.-.£i:~;§i;:§;5.51;: 7 7 3

Value *

10 2.4 2.4

20 3.2 3.2 3.2

40 9.6 9.6 9.6

60 19.7 1 3.7 1 1 .7

80 62.8 14.8 12.8

100 361.0 29.0 23.0

120 77.9 25.9 13.9

140 964.1 36.1 30.2

160 326.4 34.4 14.4

180 673.9 47.9 43.9

200 4967.5 47.5 43.5

300 10654.3 86.3 74.3      
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Table 11: Results, Minimum Makespan Problem, Normal Distribution
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zis-Longest‘Jbb‘Farstir .A;;$'_'7‘”."?'t°d SwappingHeuristicNumberof 3“..................................... j . ,Annea'mg 4.,

ObjectiveFunction ,_;;0bjectiveFunction

ObjectiveFunction “ . .

. . _ , . .. .. . ‘ """"""" ., ,. .. . . Value '

10 100.9 0.9

20 21 1.0 6.9 5.0

40 1 074.9 8.9 8.0

60 1053.2 19.3 9.0

80 480.3 22.3 18.5

100 1079.2 27.2 25.0

120 1484.1 26.1 10.0

140 4584.7 38.7 10.1

160 7186.1 40.1 34.7

180 5458.9 35.0 35.7

200 4967.5 47.5 38.0

300 14742.3 42.3 41.0     
 

8. Conclusion

In a grouping problems, a set must be partitioned subject to problem specific

constraints. Two classic examples of grouping problems are the BPP and the MMP.

Since these problems are NP-Complete, finding optimal solutions for large instances is

computationally infeasible. Approximation schemes provide high order polynomial time

algorithms that are unreasonable for practical problems. For computationally feasible

methods, the focus tums to finding practical methods that require less time.

The SH stemmed from Falkenauer’s work on the HGGA. The SH is family of

local search heuristics that produce near-optimal solutions for many grouping problems.

The SH was originally designed for use as a new heuristic in the HGGA. The SH,
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however, is powerful enough to be used alone. The SH to date has been applied to the

BPP and the MMP.

In the BPP, Falkenauer's objective function provides a metric to guide the GGA.

A local search can also use this metric. As applied to the BPP, the SH performs swaps

between groups that increase the objective function. The SH outperforms FF, FFD, BF,

and BFD on a wide range of instances. On Falkenauer’s difficult BPP benchmark

instances, the SH produces optimal solutions in far less time than Falkenauer’s HGGA.

As applied to the MMP, the SH identifies the machines scheduled for the

longest amount of time and attempts to shorten their schedule by exchanging jobs with

other machines. The SH produces significantly higher quality solutions than LJF and

the Multifit Algon‘thm as tested on a wide range of instances. On a problem similar to

the MMP, the SH produces higher quality results than simulated annealing as proposed

by Rao.
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