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ABSTRACT

MODELING THERMOMECHANICAL PHASE TRANSFOR-
MATIONS BETWEEN AUSTENITE AND A TWO VARIANT
MARTENSITE

By Xiaochuang Wu

Both austenite/martensite transformations and martensite/martensite variant reorienta-
tion are central to shape memory actuation and pseudoelasticity. The approach is to aug-
ment conventional continuum mechanical descriptions with internal variables that track
fractional partitioning of the material between austenite and the various martensite vari-
ants. A three-species model involving austenite and two complementary martensite vari-
ants provides sufficient generality to capture the variant distributions that underlie shape
memory, and the strain-accommodation associated with pseudoelasticity. Transformations
between any of these species can be tracked on the basis of triggering algorithms and
kinetic continuation that reflect both transformation hysteresis and the variation of trigger-
ing stress and temperature, as given by the Clausius-Clapeyron relation. The particular
algorithm that we describe here is for temperature- and stress-dependent response. It
requires only the following experimental parameters: the four transformation temperatures
Mg My, A,, Ag, the crystallographic transformation strain, the Young’s modulus and the
transformation latent heat. The martensite flow and finish stresses are also introduced. As
an application of the model, Two Element Thermal Engine (TSTE) is investigated to pre-
dict a reciprocal movement upon thermal heating/cooling pulses controlled for example by

an electrical signal.
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1 INTRODUCTION

1.1 Background to This Work

As materials that have many active and interesting properties, shape memory alloys
(SMA ) have received more and more attention both theoretically and practically in recent
decades. Their many employments in various sensitive areas, which include: the driving
force in heat cycle engines (Banks and Weres, 1976), orthopedic devices for securing frac-
tured bones (Wayman, 1980), integrated actuator/sensor fibers in special composite sys-
tems for active control of dynamic and structural behavior (Rogers et al., 1989), blood clot
filters and displacement sensors (Takeda et al., 1986), and many more all attribute greatly
to their enchanting qualities. Although many inventions have been made, potentials of
shape memory alloys still hold great chances for more implementation and further devel- -
opment. Shape memory alloys associated with martensitic phase transformation are char-
acterized by first-order solid to solid transformation without atomic diffusion. Their most
important properties are the shape memory effect (SME) and pseudoelastic effect which
are responsible for many iﬁnovative applications. Thus it has become necessary to have an
accurate understanding of the thermomechanical behavior of the shape memory alloys.

There are plenty of literature on modeling the behavior of the shape memory alloys,
and what we are going to-discuss in the following are the most representative approaches

that we have reached. Based on Landau-Devonshire’s theory, Falk (1980) illustrated the
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stable phase transition between austenite and two martensite variants in a single crystals
by minimizing non-convex type of Helmholtz free energy, which can either describe stress
induced or thermal induced phase transformations strategically. In Falk’s model, charac-
terized by the equality of the phase transformation stress and the Maxwell stress, basic
features of SMAs, such as pseudoelasticity, lattice softening and shape memory effect
(SME) presented, are qualitatively agreeable with experimental works in some sense.

Achenbach et al. (1986) derived rate-dependent types of model, from statistical
mechanics and thermodynamics point of views, to rehearse the plane-strain responses of a
polycrystalline object under biaxiel loading. In this publication they took the polycrystal-
line body as a three-phase configuration of austenite and martensite twins, and operated
the fractions of the three phases as internal variables which were parametrized by the
assumed continuous distribution of orientations of lattice layers for any instant.

By incorporating uses of Helmholtz free energy and dissipation potential, Tanaka
(1986) came up with a rate-type constitutive and an evolutionary equations which could
represent the pseudoelasticity and shape memory effect again under the condition of one-
dimensional tensile only for stress induced martensite transformations in a polycrystal,
which the new nucleation and the growth of the martensite may be understood to be fully
governed by macroscopic transformation kinetics. The internal variable that depends on
stress and temperature is the phase fraction of martensite. Liang and Rogers (1990), based
on the integrated form of Tanaka’s equation, presented a thermomechanical constitutive
model. In their study, a rate-independent type of equation was proposed to fit the marten-
site fraction and temperature relations in order to predict pseudoelasticity and shape mem-
ory behavior. The results from this model had good coincidence with experimental

observations made by them.
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As far as pseudoelasticity is concerned, Muller and his colleagues made an extensive
investigation. For example, with the consideration of non-monotone load-deformation
curves generated from non-convex energy forms which are the type deliberate in Falk’s
model (1980), Muller and Xu (1991) developed Falk’s model by taking into account the
dissipative effects from interfaces and coherency. They gave a thorough description of
pesudoelasticity loops for a single crystal, in which a width of a hysteresis loop of stress-
strain relation depends on interfacial energy of phases rather than depends on the tempera-
ture, and the hysteresis loop maintains metastable states which loose their stability on a
line defining phase equilibrium. Based on the mixture approach of the work done by
Muller (1979), and Muller and Xu (1991), Fedelich and Zanzotto (1991) extrapolated the
isothermal hypotheses to nonisothermal conditions by contemplating the hardening obser-
vation of stress-strain relation with increasing temperature. Only for two-phase situations
where the stress and temperature are high enough, they found out, that the elongation rates
have a significant influence on phase transformations in a bar, and the slope of the slanted
sides of deformation-temperature loops is rate dependent, which was given a reasonable
explanation.

In Leo et al’s macroscopic descriptions of two phase system (1993), they assumed the
austenite to martensite transition stress to be equal to the Maxwell stress plus an additional
constant stress equal to half the height of the isothermal hysteresis loop which accounts
for dissipative processes associated with the phase transformation. They also incorporated
the temperature and stress dependence of energy with heat transfer associated with austen-
ite/martensite single interface. With this model they explained a phenomenon that the hys-
teretic stress-strain curves depend strongly on the strain rates at which the wire is

extended.
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Brinson (1993) modified the works by Tanaka & Iwasaki (1985); Tanaka (1986);
Liang & Rogers (1990) to describe the SME below a martensite start temperature by split-
ting the martensite phase fraction into temperature-induced and stress-induced parts. This
subdivision is justified by the micromechanical behavior of SMAs and is effected such
that the stress-induced martensite fraction represents the extent of transformations of the
material into a single martensite variant. This model can well capture the main conducts of
either phase transformation between austenite and over all martensite variants in higher
temperature ranges .(pseudoelasticity), or conversion of all martensite variants in lower
temperature ranges (SME), with the suggested equilibrium phase diagram. Latter on, in
the study by Bekker and Brinson (1994), more detailed discussions on the this phase dia-
gram were made to generalize the problem.

In all, energy consideration has been the most concentration point in these works men-
tioned above. From plasticity point of view, Bondaryev and Wayman (1988) combined the
plasticity flow theory and the change of Gibbs free energy to narrate phase transformations
in the biaxial case. The idea is cast terms of the change of Gibbs free energy of phase tran-
sition or detwinning processes to determine the threshold stress for the changes and then
using the plastic flow rule to set up the stress-strain relations during the two processes.
This model can also recite the phenomena of pseudoelasticity at high temperature and fer-
roelasticity at low temperature.

The work of Graesser and Cozzarelli (1991) utilized Bonc-Wen type’s model of rate
independence. It employs the dynamic analysis (Wen, 1976), to generate one-dimensional
evolutionary equations of plasticity to modify the macroscopic stress-strain character of
SMAs. Later on, they extended the one-dimensional model to three-dimensional cases by

means of the agreement of volume preserved between the plastic flow and martensitic
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phase transformations. This model was able to offer some helpful theoretical results for
different loading conditions with properly choosing parameters to modify the plastic flow
theory and then to describe the behavior of SMAs.

All the modeling investigations mentioned above can reflect the most basic character-
istics of SMAs to some degree. However, most of them in general are focuseﬁ on some
specific aspects. When more features of SMAs are needed to be described, it follows that
the constitutive equations are usually needed to be changed. For instance, Achenbach et
al’s work (1986) can hardly be used to describe plane stress problems, neither is it easily
applicable in engineering; Tanaka and his colleaques’s works (or Liang and Rogers’s
work) are well suitable for the isothermal stress-induced martensitic transformations or
reverse u'ansfonnations; but they are short of enough descriptions of adiabatic, convective,
as well as thermal-induced situations of martensite transformations. Muller and other’s
studies (or Fedelich and Zanzotto’s work) have their most concentration on pseudoelastic-
ity but little focus on other properties. Some of the above investigations, such as plastic
type of modeling, are in some way or the other in a difficult condition with respect to
_ parameter choosing, physical understanding, or practical engineering. Thus, a more com-
plete model which is easily applied, as well as supported by a accurate theoretical
resources, is the motivation of the current study.

Recently, on the basis of the work done by Coleman & Hodgdon (1986 & 1987),
Ivshin and Pence furthered the Duhem-Madelung Model for magnetic hystetesis to the
constitutive relations of shape memory alloys (Ivshin & Pence, 1994 a,b) to describe the
macroscopic behavior of SMAs from the hysteresis, thermodynamics and continuum
mechanics point of view. In the study of Ivshin & Pence (1994 a), a model for rate inde-

pendent hysteresis was examined. The evolution equations for phase fractions of austenite
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and one martensite variant was derived by considering temperature as the only driving
forces. Several restrictions on the hysteresis envelopes, which are the maximum and mini-
mum values of austenite phase fraction during phase transformations, were given to ensure
monotonicity, containment and orientation requirements. Later in the approach made by
Ivshin & Pence (1994 b), evolution equations were developed to govern the time history of
shape memory alloys under changes in stress, strain and temperature for one martensitic
variant problems. In addition to that, Ivshin and Pence also presented simulations of the
relations of stress and strain in either isothermal or adiabatic conditions and internal hys-
teresis transition loops. Comparison, made by Brinson and Huang (Brinson and Huang,
1996), between this model and Tanaka’s model, yields nearly identical results if both mod-
els are used with the same kinetic law. However, Ivshin and Pence’s model gives more
flexibility in a variety situations varying from isothermal to adiabatic conditions. To
extend one variant model to two variant model, a basic analysis for two variant martensite
problems was given in the work by Pence et al. (1994). They began from the discussion of
“triple point organizational kernel”, and then explored the idea to the mixture of coexist-
ence and hysteresis unfoldings. Lateral pseudoelasticity associated with phase transforma-

tions was obtained under cyclic loading in high temperature regions.

1.2 Scope of This Work

The present study will give a relatively complete description to the two variant marten-
site model by refining and extending the one-dimensional work of Pence et al. (1994). We
consider a two-phase material which consists of a high temperature austenite phase A and

two symmetric variants of a low temperature martensite phases M, and M_ which could
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be treated as twin related. The first of these two variants M is favored in positive stress
(Tt>0) and the second M _ is favored in negative stress (T < 0). We assume that, the for-
ward (austenite to martensite) transition temperatures M, and M £ and backward (marten-
site to austenite) transition temperatures A, and A f, could be measured by decreasing and
increasing the temperature at zero-load. In the present study we are going to employ a
phase fraction triple {§_,§,, &, } as internal variables, while temperature T and stress T

are driving forces. Here €4 indicates the phase fraction of austenite, while &, and §_

indicate the phase fractions of the two martensite variants. We treat the situation in which
the temperature and stress vary with time in some prescribed fashion. This generates paths
in a (1, T )-plane, which will be referred to as the state plane. Pairs (T, T ) will be referred
to as states, and continuous paths (T(z), 7(f) ) in the state plane will be referred to as state
paths. The main purpose of this research is to study, refine and apply an algorithm for
phase transformations between the three species A, M, and M_ as the state of the system
varies. Thus we seek to determine the values of £,,&, and §_ on state paths. Hysteresis
in these transformations indicate that §,, &, and &_ will not in general be state functions,
that is, the instantaneous value of (T, T ) does not determine the values of £,,&, and &_.
Rather we study an algorithm which determine these values on the basis of known initial
values for ,,&, and &_, and knowledge of the subsequent state path. At each instant of

time, the three phase fractions satisfy the following balance relation
EAD+E(MD+E() = 1 (120.1)

To achieve the purpose, various kinds of state plane partitions into M_, A, M, regions
(X-unfolding, pY-unfolding, Y-unfolding) are developed from a thermodynamic restric-

tion which ensures that Gibbs free energy satisfies the second law of thermodynamics.
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These partitions are different unfoldings of a standard triple point phase diagram. Charac-
teristic curves in the state plane are obtained which govern processes A <> M, and
A © M_ respectively, in a way that is similar to (Pence et al. 1994). Descriptions of the
M, M_ process are then developed by modifying the two austenite/martensite pro-
cesses. The characteristic curves act as nuetrality curves which classify both austenite/
martensite phase transformations and detwining processes (M, <> M_) by regions in the
(1, T)-plane. They also enter the evolution equations for the phase fraction triple {£_, &4,
E,} as an internal variable. Internal variable descriptions for thermodynamic behavior are
common, for example, Coleman and Gurtin (1967) employed thermomechanical and
internal variables together to generaliie dissipation problems.

In section 2, we begin by extending the triple point phase diagram (Pence et al., 1994)
to an X-unfolding by taking thermodynamic considerations on the three species M_, A and
M,. The nuetrality curves, describing phase transformations between austenite/martensite
at high temperature, are modified as detwinning nuetrality curves, when they enter into
non-austenite regions. That means the Clausius-Clapeyron relation for austenite/marten-
site is used to describe the detwinning process, which is not exactly the case. To justify
this point, the entropy of austenite is replaced by that of martensite in the Clausius-Clap-
eyron relation so as to generate constant stress nuetrality curves for detwinning, in which
the detwinning flow and finish stresses are predicted as a consequence of this procedure.
Eiperimentally, it is often the case that the detwinning flow and finish stresses are smaller
that the ones predicted by the X-unfolding., If the detwinning flow and finish stresses are
instead treated as material constants, a Y-unfolding is suggested.

In Section 3, we first define all transition possibilities (transition types) when tempera-

ture and stress trigger the transformations. Then criteria for different transition types are
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derived based on the nuetrality curves, which are useful for us to determine what kinds of
transition types occur at any point on a given path in (1, T )-plane. These criteria have an
explicit geometric illustration. An example of how to use these criteria is given at the end
of this section.

Chapter 4 opens with a brief review of one variant model (Ivshin and Pence, 1994, a,
b). To extend the model to two martensite variants M_ and M, we introduce a concept of
constitutive functions of austenite which is similar to that of the one variant case. We then
work on the extension of algorithms from one variant to two variant. Numerous possible
algorithms in the two variant case make the problem difficult, but with the symmetry of
two martensite variants and the coherence of phase transition possibilities, we arrive at a
unique algorithm for each transition possibility. The extension is verified by considering
the self-accommodated process in the two models.

In chapter 5, based on the algorithm arrived in the previous section, the solutions of
phase fractions for each transition type are calculated. This permits further analysis of the
stress-strain relation. The phase fraction evolution depends on the state and the state-path
orientation in the (t, T)-plane. Conditions that would ensure path independent algorithms
for the various transition possibilities are derived mathematically. However analysis of the
path‘-indcpendent conditions shows that path independence within a transition type is
often not the case.

In chapter 6, several numerical results in stress-strain-temperature relations are given.
Pseudoelasticity, shape memory and the features of the associated internal hysteresis loops
are thoroughly studied. Some isothermal behaviors between the temperatures A; and M;
are also conducted for different initial conditions. Finally, comparisons with other models

are made at the end of this section.
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As an application of this model, a prediction on reciprocal motions of two element
devices made of shape memory alloys is analyzed in chapter 7. The analysis focuses on
the prediction of phase fraction changes inside the device due to temperature pulses that
alternate between the two elements. The result show that a stable cyclic linear motion can
be reached after several repititions of the temperature pulses.

Conclusions and possible ideas for future work are presented in Chapter 8.

An appendix is also given for the inverse issue of Chapter 2. In the previous study, it
begins with considering the second law of thermodynamics to create the phase diagram.
Linear stress-strain relations of each phase are assumed during this process. The predic-
tion for the phase diagram is usually different with experimental observations. Therefore,
it naturally arises an inverse problem to determine the stress-strain relation under the same
thermodynamic regard and a given phase diagram by experimental measurements. In the
appendix, a problem related with the above consideration is well posed. Nonlinear stress-
strain relations are obtained corresponding to the given phase diagram. The solution also

shows that the two issues are coincident under the same phase diagram.



2 FORMATION OF A TWO VARIANT PHASE DIAGRAM

In this study we begin with assuming that phase transformation triggered by tempera-
ture and stress satisfy the second law of thermodynamics. According to this point, charac-
teristics of a differential equation, obtained from increments of Gibbs free energy of the
three species system obeying the Maxwell relation, are derived in association with both
the process A <> M_ and A <> M_. Those characteristics are interpreted as nuetrality
curves in the state plane and govern as a “modifier” transformation between austenite and
the martensite variants within the system. At low temperatures they are reinterpreted in
te;ms of a direct M_<> M_ process. Then considerations of consistency between these
new process interpretation and the Gibbs/Maxwell argument, modify the low temperature
characteristic. This then adjusts the mathematical treatment of the M_<> M detwining

process.

2.1 Concept of Nuetrality Curves

First of all, we recall some thermodynamic views introduced in the work by Pence et al.
(1994) to describe the phase transformations. Entropy and strain of the fine mixture of the
three species system are extensive variable counterparts to the temperature T and shear
stress 7. High temperature and low stress corresponds to a situation of high entropy and

low strain (austenite favored); low temperature and high stress is consistent with a condi-

11
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tion of low entropy and high strain (martensite favored). Under a rule of mixtures, these

extensive variables are defined by
n=§mu+En,+En., (2.1.0.1)

Y= a4 +8. 7, +E Y. (2.1.0.2)

Here, n,,, and v,,, are entropies and strains of pure phases, and are assumed to be state
functions of the driving forces (T, T). The increments of Gibbs free energy G of the mix-

ture of the three species are required to obey the relation
dG = —ndT -vydr. (2.1.0.3)

Here (1, T) and (, 1) each form a conjugate pair of thermodynamic variables. The math-
ematical development is general enough to include both the case where (7, T) are regarded
as shear variables and are regarded as normal variables. Of course in making contract with
experiment, the sense in which (7, T) are to be regarded must be specified.

To avoid any violation with the second law of thermodynamics, Gibbs free energy G
must be a state function of temperature and stress, so that the overall entropy and strain

satisfy the Maxwell relation

(2.1.04)

S1E

% _
oT
Under the assumption that entropies and strains of pure phases are state functions,

which means the Maxwell relation is satisfied in each pure phase, and abides by the law

(1.2.0.1) of the balance of the three species, the above relation gives
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%“(m -14) +§'m. M) = gET-*m-m +-§E,-<y. -Y) . (2105)
which is a thermomechanical restriction on the system. To interpret the physical meanings
of the equation, we are going to consider the phase transformations among the three spe-
cies.

Changes of temperature and stress in (T, T )-plane drive transformations between the
three phasesM_, A and M, . Let us first classify the phase transformations into two
courses A <> M_ and A & M_. There are two transition directions in each course. The
classification remains potentially incomplete until a process is given for describing
M, & M_. For the present we only contemplate the first two processes and later on Sec-
tion 2.2.3 the third course M, <> M_ will be introduced in terms of the work by
Wasilewski (a,b,c, 1971).

In process A <> M_, beginning at any initial point in the (T, T )-plane it is assumed
that certain paths away from this point will favor the transformation of A to M,
(A = M.,). Paths in the opposite direction would then favor the transformation of M , into
A (M_— A). It is assumed that there exists exactly one neutral direction (including its
opposite direction) away from the initial point in which neither an A - M_ nor an
M_— A transformation is favored. The curve traced out as one travels in this neutral
direction is an A/M, nuetrality curve which will be discussed next.

In the above we assumed that the overall phase transitions obey the Maxwell relation
(2.1.0.5). In particular, this equation must hold for A <> M, process in which the phase
fraction £_ does not change. For such a virtual process the thermomechanical restriction

(2.1.0.5) on the whole system specializes to
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9%, +
£. M,-My) = gg—T(y+-'yA) . (2.1.0.6)

The characteristic equation associated with this differential equation is the following

dr Ye—Ya

dt N,-MN,

(2.1.0.7)

which, in turn, gives the , nuetrality curves for the process A > M, . This is familiar as
the Clausius-Clapeyron equation for process A <> M, . Following a similar procedure one

finds that the Clausius-Clapeyron equation for process A «> M _ is

dar Y.—Ya
S =- i 2.1.0.8
dt N.-Ny ( )

Integration of the Clausius-Clapeyron equations (2.1.0.7) and (2.1.0.8) yields a param-
etrization of nuetrality curves in the form of B)(t,T) = C* and B (t,T) = C  for the
two processes. Here C* and C™ are integration constants which locate the individual
curves that make up the two families for A <> M_ and A <> M _ respectively. The develop-
ment so far has made no assumption as to the symmetry of the variants M, and M_. For
simplicity we consider a situation in which these two variants are symmetric with respect
to stress, that is, the effect of a particular value 7, in triggering M_ is identical to the
effect of —t, in triggering M_ (all other factors being equal). This requires that
Y, T) = =y (-, T) and n (7, T) = n_(=, T). This symmetry assumption implies ten-
sion/compression symmetry where (Y, T) are regarded as normal components. On a finer
crystallographic scale where the shear interpretation may be useful, this implies that M,

and M. represent variants with equal and opposite lattice shears.
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These symmetries give B;(*t, T) = B,(-t, T) and implies nuetrality curves that are
symmetric about T = 0. It is often convenient to choose this parametrization so that
B.(0,T) = T = B(0, T) and we shall choose this convention. Then B, and B, play the
role of a generalized temperature. Therefore, we let increasing C'and C correspond to
M,_,— A and M_— A transformations respectively, and decreasing C" and C corre-
spond to A—>M_ and A — M_ transformations re;spectively. Setting B)(t, T) and
B,(t, T) equal to the four transition temperatures M M, A, and Ay, gives eight canonical
nuetrality transition curves. We name these eight curves the terminal nuetrality curves in

the rest of this study.

2.2 Special Nuetrality Curves and the X-unfolding

2.2.1 Unfolding the Basic Three Species Phase Diagram

Before we find the nuetrality curves it is helpful to recall the unfolding of the standard
triple point phase diagram introduced in the approach by Pence et al. (1994). Figure 1 is
the standard triple point diagram which most simply categorizes the system of the three
species of austenite and martensite two variants. In this phase diagram, all phase transfor-
mations of austenite/martensite and reorientations of the two variants are abrupt so that
either {§, €5, §,}=(1,0, O}. {0, 1, 0} or {0, 0, 1}; these correspond respectively to pure
M. martensite, pure austenite, or pure M, martensite (Figure 1). If a continuous path
(1(2), T(2)) is prescribed, then the austenite/martensite phase transformations or the mar-
tensite/martensite reorientations take place whenever the path either crosses one of the

dual species transformation curves, or else crosses the triple point (0, T‘). The same
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transformation curves operate in each process direction, so that these processes are also
not hysteretic. To build a natural hysteresis and coexistence of SMAs in the model, we
may unfold this triple point phase diagram by the thermodynamic derivations obtained in

the last section following Pence et al. (1994).

A<>M. A T
transition curve

Sa({0,1,0})

A<>M,

transition curve

Sp+({0,0,1})

S1.({1,0,0}) (0,T*)

L -

M,<->M.
transition curve

Figure 1. Triple point phase diagram for a transformation that neither admits hysteresis nor
stable phase mixtures. Values for the phase fraction triple {£_, E4, &,} are restricted to the
three types shown.

2.2.2 Formation of X-unfolding

To unfold the triple point phase diagram, it is necessary to determine the form of the
characteristics or those nuetrality curves from the Clausius-Clapeyron equations. Integra-

tion of equations (2.1.0.7) and (2.1.0.8) gives
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(t7)

1
Byt N=—— [ (My-M)dT +(v,-7,)dt (222.1)
Ma- n+(o, T,)
1 (tT)
Bt D=—— [ (My-M)dT+(y,-v.)dt 2222)
Ma—-MN. (0, To)

where, T, is a fixed reference temperature, 1 = 10, T,) are zero-stress reference
entropies at this temperature for i = -, A, +. In particular if the stress-strain behavior is lin-
early elastic and temperature independent in each pure phase with moduli M,

(1, = B = py)ie,
Ya = Vs Y, =T/ HM ""Y‘ » Y. = /Iy "Y‘ , (2.2.2.3)
and if the entropies of the three species are simply expressed as
n; = CIn(T/T,) +n;, (2.2.2.4)

where C is a common specific heat for the all three species with 'q: = n?, then the same

results as in the approach by Pence ez al. (1994) gives

2
- T .
Bot, D) =T+ — o((" ;’u t AT r), (2225)
2
- . ( - T .
Bt =T +— 0( s ;’u t‘) +y r). (22.2.6)
T|A—T|_ AVM

Note that, in each phase/species (M, A, M) that (2.2.2.3) and (2.2.2.4) are consistent with
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the Maxwell relation (2.1.0.4). Here 'y. is the zero-load transformation strain. For exam-
ple, a system with: moduli of austenite and martensite, p, = 50, 000, u,, = 20, 000
MPa, the difference of the reference entropies between austenite and martensite,
Na-TNg = Na-N. = 0.7 106 j/m3 °K), and transformation strain is assumed

'y' = 0.07, gives the nuetrality curve parametrization

Bl T) = T-1x10"'1-214x 1077, (222.7)

B, T) = T+1x10"'1-2.14x107¢%, (2.2.2.8)

Continuing with this example, suppose A, = 42, A, = 13, M g =1 and M, = 22 °C.
Then, each of equations (2.2.2.7) and (2.2.2.8) gives 4 curves passing through those 4 tem-
peratures, and so that eight terminal nuetrality curves: A, A

S+ Mf+’ M Af-’ As-’

s+
M;,M,_ are obtained, which, together, generate an “X-shape” in the (1, T )-plane (Figure
2). This formally unfolds the triple point phase diagram by separating both the A & M,
and A & M_ phase transformation curves. Compared to the triple point phase diagram in
Figure 1, this unfolding bifurcates the triple point (0, T') into (O, Mﬁ, 0, A)), (0, M) and
(0, Ap, and extends A <> M, and A &> M_ processes into negative and positive stress
areas respectively. We temporarily ignore any unfolding of the M <> M _ transformation
curve and instead focus on the formal extensions of the terminal nuetrality curves back-
wards into the low temperature region of phase diagram. This, rather questionable, scheme
will be called the X-unfolding. We will discuss this unfolding in its own right, and then

show how an additional modification can be used to account for an unfolding of the

M, & M_ curve associated with martensite variant reorientation processes.
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T
% 106 bs_\v
ﬁ 806 s"
o Pos"‘
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Figure 2. The terminal nuetrality curves in the X-unfolding given by (2.2.2.7) and (2.2.2.8)
for a material with transformation temperatures: Af = 42, As = 13, Mf = -7,
M = 22 °C; moduli of austenite and martens*ite: By = 50,000 MPa, By = 20, 000
MPa; transformation - strain Yy =007; entropy difference:
n:—nz = n;-n? = 0.7x 106.Since Ha# By these curves are not linear.

2.2.3 Building Detwinning into the X-unfolding

It is convenient to define eleven zones in (7, T )-plane associated with this X-unfold-
ing, which are indicated in Figure 3 and Figure 4 for the separate cases of material obeying

A, > M, and A < M, respectively. Formally these regions are given by
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QI ={(n T)|M,<PB(t, T)SA, M<B (r, T)SA;),
Q", ={ (v T)|B;x. V> A, M, <P (1, 7) SAq ),

Q} ={ (4 T)|B, T)>A, M, <BiTTISA, ),

Q; ={(v DB, <M, A, <P, DSAf),

Q; ={(t, |A,SB,(n. <A, BT <M,),

Suo = {(u DB T) <M, B (v, T)<M,},
Sue={(t. T)|B;(x, T) <M, M, <B (1, T)<A,),

Su+=((T. DB <My, M <B (1, T)<A,),
Sa=l (L DB (. D >AL B (1, T)>A[),
S+ = (L DB D> A, B (T, I<M,),

Sy =L DB D<M, B, )>A[).

Those regions defined in the above way are shown in the following two graphs for materi-

als obeying either A; < M, (Figure 3) or A; > M (Figure 4).
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Figure 3. X-unfolding of the triple point for materials obeying A; < M,. The S-regions are
stable zones in which transitions do not occur so that the triple {£_, €4, £, } is static on these
regions. The 3-regions allow for changes in the phase fraction triple as (%, T) changes. For
example, transitions A - M, can occur in that portion of QT and QT which is between
M;, and Mg,. Similarly, M, - A can occur in the above two regions between A,, and Ag,.
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Figure 4. X-unfolding of the triple point for the case of A; > M,. In contrast to the case
described in Figure 3, here the region of Q] between M, and A,, does not admit
transformations and so is, formally, a stable zone. For simplicity the Q notation is retained
and the region is referred to as a dead zone. A similar dead zone exists in Q, .

The X-unfolding, preserves the three stable phase zones Sy, Sy, and S)4_ in which the
phase fraction triple is {0, 1, 0}, {0, 0, 1} and {1, O, O} respectively. Since this develop-
ment treats A <> M, and A & M_ nuetrality curves, but neglects a direct M_ <> M_ pro-
cess, one identifies the top half of the “X” with the unfoldled Ac> M, and A M.
transition curves of Figure 1. Actually, A <> M, and A <> M_ may be active in Q; and
Q, respectively while in QT both processes may be active. However the bottom half of
the “X” does not, at present, permit an obvious correspondence with the M_ <> M _ trans-
formation curve of Figure 1. One goal is to naturally develop this correspondence. To do

| so we identify the region between the two lower branches of the “X” as a region of stable
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M /M, mixture, which would likely exist in a crystallographically twinned state. For rea-
sons outlined below, this region naturally extends to the regions Sy, and Sy,.,. The auste-
nite phase is not present in the zones Sy, , , S),, and S,,, , and so that the phase fraction
triple must be of the form {€, 0, £, }. The values £, and &_are determined by how a state
path enters into this combined area. The values €, and &_ are then static so long as the driv-
ing force path ((t), I(t)) does not exit S, , U §,,, U Sy, . We now consider transforma-
tions between the six stable regions: S4, Sp4, Spr.» Spor Sy4- and Sy ., due to driving
force paths (1(r), T(f)) which connect them via the five active regions: Q}, Q}, Q7, Q;,
Q;.

We first examine connection paths that avoid the central region QT . Consider eight
special paths: py, P2, P3. P4 P1» P3> P3. P3 (Figure 5), which are organized here into pairs of
opposite direction (e.g. (P1, P2)s ---» (P3, P7))- They are also taken to be orthogonal to the
various nuetrality curves, and so are referred to as transformation flux paths; consequently,
they will have the greatest transformation gradient. The general case of an arbitrary path
can be approximated by infinitesimal path segments that then alternate between the local

nuetrality curve direction and the local transformation flux direction.
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Figure 5. Transition paths are shown in X-unfolding for A; < M,. Solid lines indicate active

transformation while dash or dot lines indicate inactive transformation.

Consider the path p; going from S, to S, corresponding to transition direction
M_— A. Note that the portion between nuetrality curves M. and A,_ (dash line) is inac-
tive while the portion between A, and Ay is active (solid line). The opposite path p, run-
ning from S, to Sy indicates transition direction A — M_ in which the portion between
Ag and M,_(dash line) is inactive while between nuetrality curves M;_and Mf_ (solid line)
is active. Both of the two paths could be active in the area between nuetrality curves A,
and M,_. Flux paths p3 and p, in QT are similar to that of paths p; and p,, where now M,
replaces M.. It should be noted that processes A<>M_  and A& M. méy operate simul-
taneously in Q] , which implies the possibility of phase fraction triples {£_, E,, £,} in

Q" with0<&, &, &, < 1. Incontrast €, =0in Q; and & =0in Q;.
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Paths: py, P2, P3. P4, Operate above both My, and M. For states (t, T) undemeath
 either My, or Mg, the associated transition of the form A - M, or A & M_ has already
gone to completion, so that there is no austenite in the corresponding area. Any austenite
that would be predicted by a formal algorithm immediately transforms to M, if T > 0
(A = M) and immediately transforms to M_ if T <0 (A = M_). This will be referred to
as an “instability transformation”. It is reminiscent of Wasilewski, who introduced
assumptions on the reorientation of martensite variants in non-austenite regions
(Wasilewski, a, b, c, 1971), such that the austenite state serves as an instantaneously inter-
mediary status to “switch” the reorientations of martensite variants. In the present study
this suggests that, transition direction M_— A indicated by flux path py between A;. and
Ar (solid line in Figure 5) should be replaced by M_— (A) => M_, whichis M_—> M.
We will refer here to direct martensite/martensite reorientation transformations from
mixed martensite variant fraction {£_, 0, £,} to one that involves only one variant as a
“detwinning process”. Since path py (dot line) was originally inactive between My and A
, No transition occurs on py in Syy,.. On the other hand, path p3 for transition direction
A - M_ (dot line) is completely inactive because of the absence of austenite below Mﬂ_.
Similarly, the active part of path p3 (solid line), indicating transition direction M, — A
between A,, and Ag,, should be replaced by M, — (A) = M_ or detwinning process
M, — M_, while path p3 (dot line) is completely inactive between My, and A,,. Path pg,
like path p3, is inactive, because of the absence of austenite. Consequently, the terminal
nuetrality curves A, and A,, become detwinning flow curves at sufficiently low tempera-
ture. Likewise, the terminal nuetrality curves A £- and A f+ become detwinning finish
curves at sufficiently low temperature. Thus far, two new transition directions have been

set up in low temperature regions Q; and Q,, in which detwinning processes will be trig-
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gered by increasing or decreasing the stress and temperature. Further, since paths py is
inactive between M. and A, and path p3 is inactive between M, and A, we verify the
earlier claiﬁ that the stable mixed martensite variant zone Sy, extends to regions Sy,
and Sy_,.

In conclusion, in Q, = Q; U Q] U Q] , the X-unfolding retains the original features
of the previous unfolding by Pence et al. (1994). These include the coexistence of the
phase triple {€, &4, £, }away from T = 0 in QT. and the triggering of the transition
direction M_— A, for example, by increasing the stress in T> 0 at a constant tempera-
ture. In addition to that, in Q; and Q,, detwinning process M, «> M_ is modified by
M,— A and M_— A austenite/martensite phase transformations, and the two variant
martensites would be coexistent in Sy, (= Sy, U Sy, U Spr,.)» Q5 and Q. In the latter
two areas detwining processes are acknowledged to occur. It is obvious that the detwin-
ning process in this X-unfolding come from allowing M_— A and M — A to extend into
the areas where there is no austenite, therefore, the corresponding detwinning flow and
finish can be obtained directly from the phase transformation flow and finish in the non-
austenite areas Q, and Q,. However, in Q, and Q;, one should note that the X-unfold-
ing has the property that increasing temperature at a constant stress can trigger the detwin-
ning process. This is caused by the specified driving path crossing what are now
detwinning nuetrality curves that continue to depend on both temperatures and stresses
inherited from the original austenite/martensite transformation curves. This dubious phe-
nomenon will be amended naturally in following further investigations on the unfoldings

at the beginning in section 2.3.
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2.2.4 Isothermal Behavior of X-unfolding

At the present stage, strategically, one can contemplate the transformation behavior
under the X-unfolding. We here consider only the isothermal behaviors in view of the
detwining difficulty mentioned gbove. Variable temperature and stress paths will be
addressed in chapter 6. To see the problem clearly we define the following temperature

ranges shown in Figure 6,
Tpy={T>As},

T

sm

T, = {M;ST<T,},

T

se

{T<M,}.

Here, T is the intersection temperature for nuetrality curve M 7+ With nuetrality curve
Af. Similarly T fs is the intersection temperature for nuetrality curve M £+ With nuetrality
curve A, . Consider constant temperature loading and unloading paths that increase stress
from t = 0 to a stress value in Sj4,., this ensures complete transformation to M, in the load-
ing process. This is then followed by an unloading process that decreases the stress back to
T=0. It is assumed that all initial conditions are given in status of a general mixture of the
three species as allowed by the temperature under consideration. The following isothermal

transformation possibilities are arrived for either M, > A  or M < A, in TABLE 1.
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TABLE 1. Transformation Possibilities for Isothermal Loading and Unloading

TRANSFORMATION | TRANSFORMATION
TEMPERATURE POSSIBILITIES  |POSSIBILITIES DURING| THERMO-MECHANICAL
RANGES DURING LOADING UNLOADING BEHAVIOR
TeT,, A-M,. M, oA pscudoclasticity
‘1 M_._.)Al, *4 M+_)A8, if My > A,, then shape memory
effect with residual strain associ-
2 9 ated with some more M., and less
TeTy, A-M. " A-M " M. left; if M, < A,, then only with
some M, left at higher tempera-
tures, 100% M, left at lower tem-
peratures.
2 M. A3 5 M, ->A", if M, > A,, then shape memory
effect with residual strain associ-
4 1 ated with some M, and M_ left for
TeT,, A-M,7, A->M . T > A, and 100% M, left for T <
Ag if M, < A,, then with M,
M-S M+5. 100% left only.
*3 A—> M+6, shape memory effect with 100%
Te Tsl M, left.

NOTES

. If My > Ag, then 1 occurs first when T > M,, and 1, 2 occur simultaneously
when T < M,. If M, < A,, then 1 always occurs before 2.

. If M; > A,, then 3 and 4 occur simultancously when T > A, 4 occurs before 3

when T < A,, and § is the last one to occur. If M, < A,, then 4 always occurs
before 3, and § is the last.

. 6 occurs always before 7.

. If My > A,, then 8 would not complete, and 9 is active only when T < M,. If M,

< A,, then 8 is active only when T > A; and would not complete. 9 is inactive.
For both the two cases, 8 occurs always before 9 in the sense of 8 supports 9
by creating A.

. If M;> A, then 10 and 11 are active when T > A, with 10 supporting 11 by cre-

ating A. If M; < A,, then 10 and 11 are inactive.
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(a)

Figure 6. Temperature segments for cases M, > A, (a) and A; > M, (b) in X-unfolding.

2.3 Modified Nuetrality Curves and the pY-unfolding

2.3.1 Thermodynamic Considerations for Detwinning and a Primitive Y-
unfolding

In the approach of the previous section, the X-unfolding naturally gives rise to detwin-
ning process by first allowing martensite/austenite phase transformations to enter non-aus-
tenite areas, and second transforming the obtained austenite into martensite variants
immediately in terms of Wasilewski’s assumptions involving an instability transformation
of austenite. An issue that must now be addressed is that the slope of these detwinning
process nuetrality curves was determined on the basis of a Clausius-Clapeyron relation for
austenite/martensite transformations. However, in 25 and Q, the processes are now asso-
ciated w.ith martensite detwinning. Thus, the Clausius-Clapeyron argument requires modi-

~ fication. Based on (2.1.0.5), now the Clausius-Clapeyron equation for the detwinning
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process in Q, and Q;, becomes

dT Y-o-"Y-
o (23.1.1)

BT
In particular, if entropies of martensite variants are assumed identical, so that
N, -1. = 0, then the slopes of the nuetrality curves parametrizing detwinning processes
lie parallel to the T-axis. The condition 1, —~7_ = O is met for the example material char-
acterized by (2.2.2.3) and (2.2.2.4) with n; = n’. Note that this condition need not be
met for more generalized models, such as those with temperature dependent elastic mod-
uli, since then the individual phase Maxwell relation (2.1.0.4) would in general give a
stress dependence on the martensite variant entropy functions 1, and n_, which would, in
turn, break the relationn, = 1n_.

For the realistic special case with 1, = 1_, the above analysis implies that the detwin-
ning flow and finish lines are independent of the temperature, which is agreeable to the
approach by Krishnan, et. al (1971) and Brinson (1993). Under this scheme, the detwin-
ning flow stress, say 1,, could be naturally determined by identifying the stress of the inter-
section point between nuetrality curves Mg, and A;.. In the same manner the detwinning
finish stress, named 1 is naturally resolved by identifying the stress of the intersection
point of nuetrality curve M, and with nuetrality curve Az.. These two special stresses are
illustrated in Figure 7. This gives a primitive Y-unfolding, referred to as the pY-unfolding;
it is shown in Figure 7 and Figure 8 for the case of a material obeying M; > A;. In this sit-
uation, zones S, and Q, are the same in the X- and pY-unfoldings, however, zones Q,
Q,, Sy, and S, in the X-unfolding change to zones Q;, Q'z, 3M+ and Sy. in the pY-

unfolding (Figure 8) respectively while S,, turns to Sm. We no longer display the trans-



31
formation nuetrality curves for A — M, and A — M_in 0 and Q) in view of the previ-

ous discussion where it was shown that these two processes are not active in the area

below Q, .
A T
% hyx
.3 bsX
K \ / "

Figure 7 pY-unfolding is obtained by modifying the X-unfolding with eight specified
nuetrality curves: Af+, M., A, Mﬂ, Af_. M., A, Mf-. The former four are
“bent” to vertical positions in T< 0 upon encountering M. and the latter four are similarly
“bent” in T 20 upon encountering My,. Here A; < M; materials with A; > M, are treated
similarly.
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Figure 8. Phase transformation active and inactive zones are shown in the pY-unfolding,
which is obtained by modifying the X-unfolding below My, and M;.

2.3.2 Mathematical Description of pY-unfolding

With the above discussion we now describe the modified nuetrality curves below Mg,
and My. The primary nuetrality curves B:('r, T) and B,(t, T), remain suitable in Q,
(above M. and Mﬁ), Below M;. and Mf+ these curves are modified so as to be parallel to
the T-axis under the thermodynamic assumption 1, = 7M_ taken in the last section. For
example, for any temperature C” obeying M ;< C" < A, one can always find the intersec-
tion point (1, f(t) ) of nuetrality curve B:(t, T) = C* with B,(.T) =M - In particular,
the intersection point value of T, corresponding to C* = A, is the detwinning flow -T; in
this pY-unfolding. The detwinning finish stress -7, comes from this same procedure with

C= Ag The area between the nuetrality curves T = -T; and T = -Tis renamed Q. Since
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the nuetrality curves are vertically described. Substituting T = f(t) into B:(t, T) gives
the modified nuetrality curves B,(t, T) = B,(t, f(t)) below M;. with T < 0, which is
active only in €. Thus, the nuetrality curves of process A <> M, in Q, and M, > M_

below Mf_ with T < 0 can be written as

B,m.T)  for Bn.TH2M;

pran =14 | _ .
B,(t. f®)  for B, TI<M,

(2.3.2.1)

Similarly, for process A > M_in Q, and M_— M, below M, with T> 0, the nuetrality

curves are found as

) B,(x. for By, TV2M,
BT = ) (2322)

B,(t.8(1)  for By, V<M,

Here (7,g(t)) is the intersection point of nuetrality curves B (t,T) = C with
B, (v, T) = M,.

Let (2.3.2.1) and (2.3.2.2) be equal to the four transition temperatures respectively,
eight nuetrality curves are obtained. Four of these are associated with A; and A, in 0;
and €3, and will be naturally interpreted as detwinning flow and finish lines respectively.
The other four associated with M, and M ; below M. and M, are not significant for any
phase transformation process. The parts of the eight nuetrality curves in 2, remain the
same functions with those in the X-unfolding.

Example

Under the material description assumptions given by (2.2.2.3) and (2.2.2.4), the modi-
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fied forms of (2.2.2.5) and (2.2.2.6) for this pY-unfolding

can be obtained by following the

above procedures. This evaluates (2.3.2.1) and (2.3.2.2) into the particular forms

.

2
1 (Rpy -y *
+ T+ 0 0( 2u 1] =Y T)
B(r.T=1 n,4-n, AbM

| My- @y /(g -

2
T+ 1 (Hp—HQT ""Y.T
y = 0 _n% 2uum
B("-"T) ] Ny—-MN. ACM

M+ 27 /(-

for B;(T’T)ZM_{ (23.2.3)

for B, D<M

for By, T2 M,
. (2324

for Byt <M,

Especially, in general the detwinning start and finish stresses are naturally determined by

. - (A-Mpm;-nD)
s - . ’
2y

and

_ (A -Mpmi-nd)
27‘

Tf

respectively for this pY-unfolding.

(2.3.2.5)

(2.3.2.6)
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2.4 Refined pY-unfolding Associated with Experiments

2.4.1 Experimental Justification on Detwinning

An obvious feature of the pY-unfolding as discussed so far is that the detwinning flow
stress T, and the detwinning finish stress T, are a consequence of the nuetrality curve
geometry of the original X-unfolding. However, the two stresses determined in this way
might not match those found by experiment. For example, the values of T, and'tf given by
the formulae ((2.3.2.5), (2.3.2.6)) are larger that those observed in the experiments by Hou
and Grummon (1995), and Miyazaki et al. (1991). An improved model would allow these
two stresses to be specified as. material properties. Here we continue to neglect any fem—
perature influence on both of the flow and finish, which is consistent with the detwinning
processes in pY-unfolding. Often the stress of detwinning flow is easily obtained directly
from experiments. However, the stress of detwinning finish is more difficult to obtain
experimentally. Nevertheless, in T > 0, we assume that the detwinning flow stress T, and
finish stress 1 f (both of them are positive) are known for M_— M . Consequently, in T <
0, these two are given by T, = -7, and T, = -1, for M, — M_ under the symmetry
assumptions of the material, so as to determine the two corresponding nuetrality curves
vertically (Figure 9).

Both the active detwinning nuetrality curves and the inactive nuetrality curves will be
vertically modified by the flow stress 1T, and the finish stress 1 ¢ to satisfy the condition of
the instability transformation of austenite and its associated Clausius-Clapeyron relation
(2.3.1.1). Recall also that detwinning process M_— M is obtained by modifying the pro-
cess M_— A below Mg, this naturally requires that\thc two corresponding nuetrality

curves connect to each other on My,. A similar requirement is made for processes
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M,—>M_and M, — A on M. We call this kind of requirement a consistency condition,
namely that: (1) the nuetrality curve Ay, continues from T > 0 to the curve T = -T¢ below
Mf_; (2) the nuetrality curve A, continues from T > 0 to the curve T = -, below Mf_; (3) the
nuetrality curve Af_ continues from T < O to the curve T = T below Mf+; (4) the nuetrality
curve A;. continues from T < 0 to the curve T = T, below M,. There are many ways to
accomplish these procedures, the method taken here is to “bend” each of the nuetrality
curves Ag,, Ay, Ar and A;_twice. As an example, Ay, is bent once at point (0, Ag on the T-
axis, and again at its intersection point with M. This allows Ay, : to remain as it was in the
X-unfolding for T > 0, to be given by T = -t,below M, and to have a straight line connec-
tion on the resulting boundary of QT . The remaining three nuetrality curves can be modi-
fied similarly. Once the above procedures are completed, all the other nuetrality curves
must then be modified accordingly. In this refined pY-unfolding, called simply the Y-
unfolding in what follows, we still use the notations of the pY-unfolding for a definition of

zones (Figure 10).
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Figure 9. Refined pY-unfolding, say, Y-unfolding, improves upon the pY-unfolding by
allowing the detwinning flow stress T, and finish stress T, to be specified as additional
material properties. This diagram is for the case of M, > A,. In the present development, the
terminal nuetrality curves undergo abrupt slope changes upon crossing T = 0 and upon
meeting the nuetrality curves M. and M.
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-400

Figure 10. Active and inactive zones in Y-unfolding corresponding to Figure 9.
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2.4.2 Mathematical Formulation of the Y-unfolding

In general, for constructing modified nuetrality curves of the Y-unfolding suitable to
meet the temperature independent detwinning flow and finish stresses, one must match the
two lines T = T, and T = T, with the two stipulated nuetrality curves B'(t, T) = A, and
Bp(t,T)=A 7 on the terminal nuetrality curve My,. The nuetrality curves inside Q;
could be simulated by linear interpolation between A 1 and A; associated with the detwin-
ning flow and finish stresses. Nuetrality curves, trivial for M_— M_ in Sus and Sy
(©>0), are all vertical lines corresponding to any temperatures in T >A sand M <T<A
respectively. Based on the consistency condition introduced in section 2.4.1, each such
nuetrality curves should connect with a nuetrality curve of M_<> A at the point on M f+
corresponding the same temperature parameter. This naturally continues B°(t, T) beneath
the terminal nuetrality curve M, in 1> 0.

As discussed above, since B (t, T) remains unchanged in T <0, the consistency con-
dition restricts the connection between the two nuetrality curve sets of M_<> A for T<0
and M_— M_ for T>0 to describe process M_«> A for T>0. At present stage, we
ignore the thermodynamic consideration connected with this part, ie. process M_«> A for
7> 0. Appropriate thermodynamic refines to the problem are discussed in the Appendix.
Geometrically, instead, there are many ways to link the two parts. The obvious way men-
tioned in the previous section involves using straight lines to continue those nuetrality
curves with C° smooth assumptions (Figure 9, Figure 10), which gives an approximate
description for process M_<> A . Note that this modifies thc‘: slopes of the nuetrality curves
in region Q" for 7> 0.

Because of this, it is convenient to decompose the portion of QT in T > 0 into subre-
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gions R; and R,. The region R; is that portion of QT above A,_and the region R is that
portion of QT below A,.. In addition, let R3 be the region above A. and Mg, in T > 0.
Symmetry determines the corresponding regions in T < 0. Mathematically, the three

regions are expressed as the following shown in Figure 11,
R, = {(xD|1>0,p . N<A, B, H2M,},
Ry = {(t. T|t>0,A,<P(r, <A, B'(r, D2M,},
Ry = {(t, T|t>0,p(r, N 2A,B"(r, ) 2 M,}.

We now discuss this particular construction for our standard model involving pure spe-
cies strains as given by (2.2.2.3) and the pure species entropy as given by (2.2.2.4). The
straight line slope of Az in T > 0 above Mg, , which satisfies the consistency condition, is

then found to be

2
A-M -k, t,-k,T
f ff 2f(<0)_

k; = (2.4.2.1)
s T
Here, k; and k, are given by,
. ()
k, =y /(M3-n3) GO), k,= A_M___ (>0). (2.42.2)

21,1 (Ma -17)

The straight line slope of A;. in T> 0 above Mg, which satisfies the consistency condition,

is then found to be

Z (<0), (24.2.3)
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for the same k; and k;. Thus, Az and A;_are given by

T- k}'t = Ay fort>0, (24.24)

T-k1 = A, fort>0, (24.2.5)

respectively above M,.

Figure 11. Subdomains R, R; and R3 are shown in T > O for materials obeying M, > A;.

Since detwinning flow and finish stresses 7, and t,are now regarded as determined by
experimental measurements, k; and k, are fully settled for this standard model. Three
possibilities might be encountered, ie., either k> k;, k; = k; or k <k,. In the first
case, the straight line extensions to A; and A;_that bound R, would intersect at a point &,

obeying T < 0. In the last case, this intersection would occur at a point %, obeying T > 0
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(Figure 12). The coordinates for this intersection point are found to be

Ak —-AcKk,
= L=, 1, =L =] (2.4.2.6)
K-k, K-k
Note that k; and k; are negative, so that condition k> k; makes (2.4.2.6) correspond to
a point &, and condition k, < k; makes (2.4.2.6) correspond to a point 7t,. The intermedi-

ate case k'f = k, gives parallel lines and so corresponds to an intersection point at infinity.

Figure 12. Intersecting points of nuetrality curves of detwinning flow and finish for k ;> k
(a) and for k-f <k, (b).

The intersection point 1t , which is the intersection of the extension of nuetrality curves
Ar. and Ay, can now be used to organize all the remaining nuetrality curves B in Ry, R,
and Rj corresponding to the process A <> M_. The nuetrality curves, trivial for A & M _
in the region R;, are assumed to be straight with slope value k'f. Similarly, the nuetrality

curves for A = M_ in the region R (A — M_ may be active in a part of R) if A; > M) are



42
assumed to be straight with slope value k. In the intermediate region Ry, it is natural to
assume that the nuetrality curves are determined by linear interpolation between the
M_— A nuetrality curves A¢ and A, .

Therefore, taken together, the nuetrality curves can be expressed as
BAt,T) = T-k,tinR,, (2.42.7)

t,T)=T-k1tinR,, (24.2.8)
s s 1

respectively. And, the nuetrality curves in R, can be obtained as

T(A/~A)+T(AK;-Ak)

Bt T) = —
(A=A +1(k;-k)

R,, (2.4.2.9)

by being assumed to be straight lines with slopes determined by linear interpolation
between k} and k.. This algebraic construction corresponds geometrically to one in
which straight rays are drawn from =, if k> k; or 7, if k , < k, which then fill in section
R,.

Finally, the nuetrality curves for detwinning in T > 0 below M, are given as
Buft. 1) = M+ (ky—kp)T+kyt" in S, (2.4.2.10)

Byt T) = M+ (ky —k))T+kyt° in Sy, (2.4.2.11)

(A=A M+ kT +k,1) + (A K- Ak o

Barss® T) = — inQ;. (24212
* Ag—A+ (K-
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Thus, taking together all of the above results, the characteristics for phase transforma-

tion M_<> A and detwinning process M_— M_ are summarized as

(B,5. 1), v <0
BT D), V (vT)eR,
Byt T, V (nT)eR,
B(r.T) = {Bt, D, . V (,T)eR, : (2.4.2.13)
Bay(t. 1), V (t,T)e Sy,
Barss (T, T, V el
Bars(%. ), V (1,T)e Sy(t>0)

If we use R;, R, and R; to indicate the reflection of the areas of R, R, and R; with
respect to the T-axis and follow the same analysis for formulating B'(t, T), then the char-

acteristics for phase transformation M, <> A and detwinning process M, — M_ can be

written as

’B;(‘t, ), VY 1>0

Bt D, V (1,T)eR

BT, 1), V (t,T)e R,

B, 1) = {Bi(x, ), V (1, T)e R, : (2.4.2.14)

Byt D), V (t,T)e Sy.

Baesf (T, T, V (.Ted;
| Baws(t. 1. V (5T)eSu(r<0)

Here, all the components of B*(t, T) are decided as the same fashion as those of B'(t, T)
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but associated with equation (2.2.2.6) and the slopes

k;=-k;, k;=-k;. (2.4.2.15)

2.4.3 Summary

For sufficiently low temperatures, the pY-unfolding and Y-unfolding involve vertical
(temperature independent) detwinning flow and detwinning finish terminal nuetrality
curves. These are obtained by assuming 1 (T, T) = n_(t, T) for (t, T) values that trigger
detwinning under all circumstances. From the above discussions, this pY-unfolding, being
another extension of the triple point phase diagram, not only takes over all the features of
X-unfolding in Q, but also reflects the detwinning process between the two martensite
variants. In the description of detwinning, since the detwinning nuetrality curves are now
all vertical, temperature increase at a constant stress does not traverse nuetrality curves, so
that temperature changes no longer trigger reorientation. However, the pY-unfolding com-
pletely determines the detwinning flow and finish lines by naturally extending the high
temperature phase transformation nuetrality curves. In general, the detwinning flow stress
of the pY-unfolding is smaller than that of the X-unfolding, both of which are larger than
those determined by experimental measurements (Hou and Grummon, 1995; Miyazaki et |
al. 1991). This motivated the further modification of the pY-unfolding into the Y-unfold-
ing where the detwinning flow stress and detwinning finish stress are taken as material
properties.

It is important to point out that, in general, the detwinning flow stress is found to obey

a mild temperature dependence. This phenomenon was, for example, observed in a tension
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experiment of a bulk (the size of the specimens were 1 mm x 1.5 mm x 15 mm at 50.0,
50.5 51.0, 51.5, and 52.0 at%Ni) by Miyazaki, et al. (1986, 1991), in which the slope of
detwinning flow line is -0.385 °K/MPa. This kind of phenomenon was explained in terms
of a thermally activated effect (Miyazaki and Otsuka, 1984). Also, in the tension test of
NiTi thin film by Hou & Grummon (1995), the slope of detwinning flow line is measured
-5.41 °K/MPa. Such a tiny temperature influence on the detwinning flow is also observed
in the work by Dye (1990). Furthermore, in two other experimental studies (wire speci-
mens with diameters 0.9 mm and 1.0 mm at Tis¢Nis7Fe3 and Ti-49.8 at. pct Ni (or Ti-50.6
at pct Ni) respectively) by Miyazaki and Otsuka (1984, 1986), they also found that the
slopes of detwinning flow lines changed slightly with temperatures. Actually, for most
shape memory alloys, the detwinning flow stress may increase when temperature
decreases (Miyazaki, Kohiyama and Otsuka, 1991). The explanation in terms of a thermal
activation effect is that at lower temperatures the molecules of the material are less active
than at higher temperatures, which makes the detwinning process more difficult at lower

temperatures.

2.5 Analysis of Isothermal Loading/Unloading Processes

With this Y-unfolding so far, we can illustrate various isothermal behaviors of shape
memory alloys, such as pseudoelasticity at high temperatures, shape memory effect at low
temperatures, or some propefties between the two. Since the phase diagram depends upon
parameters: phase transformation temperatures A; A, M, and Mg detwinning flow stress
T, and finish stress T4 shear moduli p, and py; reference entropy difference between aus-

tenite and martensite An°, phase transformation strain y° and density p. Here, these are
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determined with reference to work of Hou and Grummon (1995), which are given in the

following table.

TABLE 2 Simulation Parameters

Ar A, M, M, Ba Bm An P Ts Y Y
308 295 263 235 | 3*10* | 3*10* | 414695 | 6.5%10° 1500 | 2000 | 0.06
°K °K °% | kK |MPa |MPa |JVm*K |Kg/m® MPa | MPa

Here, An is determined by relation An=AH/T, where AH=17.8 J/g and T,=279 °K. An Y-

unfolding for T > 0 is obtained as shown in Figure 13. It has straight nuetrality curves for

the parameters given above, since the condition L, = ) annihilates the 12 terms in the

various B-functions (see (2.2.2.5), (2.2.2.6)).

Recall that Ty and T were previously defined for the X-unfolding. For convenience,

we now define two more special temperatures T;; and Tgs This gives four intersection tem-

peratures that distinguish transformation areas in T > 0, which are expressed in the follow-

ing,

- - 2
K—ky 4 (k) + 4ky(A,~ M)

T, = A +k, T
2

$S )

- - 2

Ty = Aj+kg,

(2.5.0.1)

(2.5.0.2)

(2.5.0.3)
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Tyg=Ac+ k}‘t Iz (2.5.04)

Here, the first subscripts are adopted from the first subscripts of nuetrality curves M, and
My, and the second are come from the first subscripts of nuetrality curves A;_and Ag. The
values k; and k, were in general defined previously in (2.4.2.2), and, k}- and k, are given
by (2.4.2.1) and (2.4.2.3) respectively. These four temperatures are in general dependent
on the shear moduli of austenite and martensite in virtue of k,. The corresponding coordi-
nates on 7-axis are Ty, Ty Tg and T¢ In the present situation, the four temperatures are

found as in TABLE 3,

TABLE 3. Temperatures Corresponding to Points a, b, c and d in Figure 13

T, Ty Ty Ty

274.6 °K 280.8 °K 256.7 °K 263.9 °K

Comparing with the four transformation temperatures, shows that
A>A ST ST >Te>M>T >M,, (2.5.0.5)

for these particular values of the material parameters.
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Figure 13. Y-unfolding for T > 0 with k, = 0. Four intersection points a, b, c and d are shown
as: a (Tgg, Ty), b (1 Tep, € (%5, Tgs), d (T4 Tpp.

The loading/unloading behaviors strongly depend upon the initial phase fraction. To
briefly view the problem, we here consider two type initial conditions which were consid-
ered by Wasilewski (1971 d). The first one is that the austenite phase fraction is maximum,
which is obtained by cooling the material from a temperature that is above Asdown to the
test temperature (CFAF). The second one is that the martensite (with two symmetric vari-
ants) phase fraction is maximum, which is obtained by heating the material from a temper-
ature that is below My up to the test temperature (HFMF). There are four loading types p;,
P2, P3 and p4 (accounted from decreasing temperature direction) in the initial condition
case of maximum austenite (CFAF), which are located by the temperature ranges:
T>M, M >T>T;, T;>T>M;, T <M, respectively, shown in Figure 14. There
are six loading types p;, P2, P3. P4, Ps and pg (accounted from increasing temperature |

direction) in the initial condition case of maximum martensite (HFMF), which are located
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at temperature ranges: T<T., Tp>T>T,, T, ,>T>Tg, A>T>T,,
A;>T>A;, T>Ag,shown in Figure 15. Conversely, there are three unloading types p;,
p; and p; in both of the two initial condition types, which are located at temperature
ranges: T>A;, A;>T>A,, T <A, shown in Figure 16.

It is noted for both the CFAF and the HFMF conditions that the austenite phase is gen-
erated in certain temperature regimes when the stress increases. For CFAF initial condi-
tion, if the test temperature is between M and T, a stress-assisted austenite is formed
from process M_— A (for example, between points 1 and 2 on path p, in Figure 14) by
increasing the stress. Simultaneously, both the new generated and the original austenite
transform into the variant M,, during the stress increase. Below T; any stress-assisted aus-
tenite is subject to the instability transformation A = M_ and so immediately experiences
a transient phase shift to the variant M, (as used to describe detwinning in section 2.2.3).
For HFMF initial- condition, (stable) stress-assisted austenite can be generated from
M_— A when stress increases between temperature range Arand . It is obvious that the
temperature range to induce the (stable) stress-assisted austenite of the latter case is wider
than that of the former case, ie., the martensite variant M_ of HFMF can be initially present
up to a temperature T < A This kind of transition mechanism, a stable stress-assisted aus-
tenite from some special orientations of martensite (special variants), has been suggested
by Wasilewski (1971 d). The present model can give detailed predictions about the tem-
perature ranges of the specific transformation upon isothermal loading.

More general loading behaviors occur for other initial conditions, but the limiting
cases addressed here give the general flavor of the model. Finally, the example discussed
here and shown in Figure 14 to Figure 16 involved a material with M, < A;. Similar analy-

sis can be carried out for a material with A; < M.
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- — — - pure elastic
single transformation
L - = double transformation
initial conditions mnmng
Wi
(0. 1,0} g = p,
d /
}
(8.8a.84) (0.0,1)
(;’ gAv §+} |
{0.5,.0,0.5)
.
o T, T 1

Figure 14. Loading behavior for initial conditions corresponding to initial conditions of
maximum austenite, CFAF (equal amount of martensite two variants). For T > M, the initial
condition is {&_, €4, £,}=({0, 1,0} and for T < M;itis {§, &y, §,)=(05,0,0.5}. For My< T
< M the initial condition is a more general {&_, E4, £,} with & = E,. The four associated
transition paths p,, p,, p; and p4 go from left to right. On p,, so that T> M., segments 01, 12
and 23 indicate austenite elastic, single transformation A — M_ and pure elastic M,
deformations respectively. On p,, so that Ty, < T < M, segment 01, 12, 23, 34 represent
single transformation A — M _, double transformation A 5> M, & M_— A, detwinning
M_— M_ and elastic M, deformations. On p3, segments 01, 12, 23 and 34 indicate single
transformation A — M _, two variant martensite elastic, detwinning M_ — M_ and elastic
M, deformations. On p4, segments 01, 12 and 23 represent two variant martensite elastic,
detwinning M_ — M and elastic M, deformations.
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- — — - pureelastic
‘T —— single transformation
initial conditions M e double transformation
{0, 1,0} .
L MIRN]
{0.5,0, 0.5}
{0.5,0,0.5}{
{0.5,0,0.5)
{0.5,0,0.5})
>
(o) T

Figure 15. These six transition paths p;, p2, P3, P4, Ps and pg associated with maximum
martensite initial conditions, HFMF (equal amount of martensite two variants) go from left
to right. On pl, segments 01, 12 and 23 indicate two variant martensite elastic, detwinning
M_— M and right-shear martensite elastic deformations. On p,, segments 01, 12, 23 and
34 represent two variant martensite elastic, double transformation M. > A & A5 M,
detwinning M_— M and elastic M, deformations. On p;, the first two segments 01 and
12 are the same with those on p,, segment 23 and 34 indicate single transformation
A = M and elastic M, deformations. On py4, segments 01, 12, 23, 34 and 45 represent two
variant martensite elastic, single transformation M_— A, double transformation M_— A
& A—-> M, single transformation A 5 M, and elastic M, deformations. On ps,
segments 01, 12, 23 and 34 indicate single transformation M_— A, austenite and M,
elastic, single transformation A — M, and elastic M, deformations. On pg, segments 01,
12 and 23 represent austenite elastic, single transformation A — M_ and elastic M,
deformations.
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- - — - pure elastic
single transformation

initial conditions

{0,1,0}}
{0,84.84)

{0,0,1}

Figure 16. These three unloading paths go from the right to left with initial condition of
100% M.. All the dashed lines on p,, p; and p; indicate M, elastic deformations, except the
portion to the left of Az, on p; which represents elastic austenite. All the solid lines on p;
and p, indicate single transformation M, — A deformations.

2.6 Transformation of a Special Variant

Other than the above isothermal features of the Y-unfolding, it is interesting to look at
some different characters of this Y-unfolding. Since the observed detwinning flow stress T
is, in general, smaller than the extrapolated value from the pY-unfolding (Hou and Grum-
mon, 1995), it follows that the nuetrality curve for the reverse transformation M_— A for 4
7> 0 is below that of the pY-unfolding. Regarding to the continuous assumption between
nuetrality curves of M_— A and M_— M on the terminal nuetrality curve Mg, (see sec-
tion l2.4.2), this implies that the start temperature for M_— A is lowered. The above
extrapolation reflects a transformation mechanism that the martensite variant M_ becomes

more unstable in the Y-unfolding for T > 0. In other words, the energy barrier for M_ — A
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is decreased in T > 0. Phenomenally, this decrease tendency of M_— A flow coincides
with the postulation made by Wasilewski (1971, c, d). Based on an asymmetric isothermal
stress-strain relation of a tension-compression experiment conducted below My
(Wasilewski, 1971 c), Wasilewski concluded that the yield point for a special martensite
variant transforming to a transient austenite phase that shifts to a martensite variant simul-
taneously is lower than others’s yield point in a different stress circumstance. Protracting
the above issue to a test temperature range between Agand M where the transformed aus-
tenite is no longer a transient phase but stable, (Wasilewski, 1971 d) deduces a similar
phenomenon with that from the present model mentioned above (Delaey, et al., 1974).

Further, since the transformation M_ — A occurs only in the darker zone R, of Figure
17 for T > 0, one concludes that the lowest temperature and the largest stress for conduct-
ing process M_— A in T > 0 are T and 7 respectively at points ¢ and d. Regarding the
detwinning process in Q; , the highest temperature and lowest stress for conducting
detwinning process M_ — M, in T > 0 are T and T, respectively at points d and c. The
two processes M_— A and A - M, may occur simultaneously inside the zone abcd
(which is part of R, in Figure 17). Another interesting character is that three processes
M —>5A,A-> M, and M_— M_ can be triggered in a same temperature level between
Ty #nd T upon loading. First, process A — M, proceeds in a small stress range. Second,
processes M_— A and A — M take place together once the stress increases past the ter-
minal nuetrality curve A;_. The third, detwinning M_— M_ occurs once the stress further
increases beyond the terminal nuetrality curve My,. Those are illustrated in Figure 17.

Similar results are obtained for M, - A and M, - M_int<0.
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Figure 17. For © > 0, the lowest temperature and largest stress for conducting M_— A are
T; and 14 and the highest temperature for conducting M_— M, is Ty



3 TRANSITION TYPES FOR THE PHASE FRACTION
EVOLUTION

In chapter 2, phase diagrams were discussed based on certain thermodynamic consid-
erations, which gave rise to different phase transition zones. As shown in figures Figure 14
and Figure 15 for isothermal loading, various double transformations can occur in the
region QT corresponding to the unfolded triple point of Figure 1. In this section we are
going to investigate different single and double transformation possibilities in the different
transition zones, as well as the corresponding criteria for determining the associated trans-
formation possibilities, which will be organized into transition types in the following

study.

3.1 Transition Types

In general, when temperature and stress trigger the phase transformations in the fine
mixture of the three species, austenite and martensite two variants, both of the two trans-
formation processes A <> M, and A <> M_ might occur simultaneously in £, . Therefore,
at each instant of time, it is assumed that there is either a net transformation from A - M,
or else a net transformation from M, — A. Concurrently, it is assumed at each instant of
time that there is either a net transformation from A — M_ or else a net transformation

from M_— A . Taken together, in , , they give the following four combination transition
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types:
(TT1: M, —>AM —-A;
(TT2): A->M_ ,A-M;
(TT3): M, —>AA-M;
(TT4: M. > A A-M,.

For relatively high temperatures, transition type (TT1) is that which occurs under pure
temperature increase; transition type (TT2) is that which occurs fo; pure temperature
decrease. Transition types (TT3) and (TT4) are those which occur for pure stress decrease
and increase respectively. With these four transition types, pseudoelastic behavior can be
simulated when the temperature is relatively high (in Q,) (see Pence et al., 1995). For
combined changes in temperature and stress (processes that are not pure), the particular
transition type will depend on the local orientation of the state path in the stress-tempera-
ture plane. On the other hand, to complete the model when the temperature is relatively
low (below Mf,, and Mf_), the detwinning process M <> M_ must also be accounted for.
Recall the discussion in section 2.2 to 2.4, this detwinning process is modified by
M —->A=>M, and M, - A= M_ in terms of Wasilewski’s instability transformations
when one formally continues A <> M_ and A & M_ transformations in the zones where
austenite is unstable. Therefore, for X-unfolding in Q; , we have transition type

(TTS): M-oM,
and in Q, we have transition type
(TT6): M, ->M..
For the Y-unfolding and the pY-unfolding, the only modification to this X-unfolding

description is that transition types (TT5) and (TT6) operate in fl; and Q) respectively.



57

3.2 Criteria for Determining Transition Type

As mentioned above, phase transformation and detwinning are triggered by changes in
temperature T and stress T as the state path is executed in the (T, T )-plane. The particular
transition type that is operating may change at distinct points (t,7) on the state path. These
points occur when the state path is instantaneously aligned with one of the two nuetrality
curves that pass though the point. In other words, several transition types may occur suc-
cessively along a given state path. In Q, , if the local orientation of the state path crosses
the A/M_ nuetrality curves so as to make dB* >0, then transition M, — A occurs. Con-
versely if path orientation with respect to the A/M_ nuetrality curves give df 20, then
transition M_— A takes place. Thus, the signs of dB* and dB can be used to determine
the operative transition type.

Recall the discussions in the above, there are totally six transition types introduced in
the two variant problems. These transition types hold régionally, i.e., transition types
(TT1) to (TT4) apply in Q,, and transition types (TTS) and (TT6) hold away from L, .
Thus, the criteria for the different transition types are going to be treated separately in the
two regions. In these treatments, it is convenient to introduce the following notations:

B;=%‘;-, B}=g%. BI=§—E, B;=gg. (3.2.0.1)

3.2.1 Algebraic Description

The criteria for distinguishing between the four transition types are shown as the fol-

lowing based on the nuetrality curves,
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(TT1) if dp*>0 and dp >0, (3.2.1.1)
(TT2) if dp*<0 and dB <O, (3.2.1.2)
(TT3) if dp*>0 and dp <O, (32.1.3)
(TT4) if dB* <0 and dB >0. (3.2.1.4)

To see more clearly the above conditions, they can be expressed by means of the tan-
gent of the given state path curve. From simple derivations on (3.2.1.1) and (3.2.1.2), we

have that the following transition types occur:

r

+ -
d—T>max —E‘-,-& V d&t>0
dt Br Br
(TT1) if ¢ . ) ; (3.2.1.5)
£<min{—&, -&} V dt<0
dt + n-
| B} B;

. .
d—T<min{-E, —&} V dt>0
(TT2) if ¢ ) ; (3.2.1.6) |
—>max{——, -—} V dt<0

— =< - V d&t>0

(TT3) if ’ T : (G2.1.7)
—C = —— V dt<0




[ - +
—%<%—Z<—% V dt>0
(TT4) if f T . (32.1.8)
—B—:<%<-BT‘- YV dt<0
B B

Note:

(1) If any one of dt, B; and B is equal to zero, then we can check the condition directly
from (3.2.1.1) to (3.2.1.4).

(2) Based on the deﬁfliﬁons of B*(t, T) and B(t, T) given in (2.2.2.5) and (2.2.2.6) for
the X-unfolding, it follows that B; and B are positive in the whole plane; however, based
on (2.4.2.13) and (2.4.2.14) for Y-unfolding, it follows that ﬁ; and B are positive in Q;
and zero below M, and Mg, respectively.

(3) In either expression (3.2.1.7) or (3.2.1.8), there is only one criterion that is true because

they are mutually exclusive.

3.2.2 Geometric Illustration

To interpret the meanings of those criteria in £, , let us consider the nuetrality curves
defined by (2.3.2.3) and (2.3.2.4) with equality of moduli of austenite and martensite in
either the X-unfolding or pY-unfolding. At a point, say p in £, , of a given path in (7, T)-
plane, the four criteria (3.2.1.5) to (3.2.1.8) define four open cone zones: N, S, W and E,
which indicate the zones of North, South, West and East. They are formed by the two par-
ticular nuetrality curves passing through point p (Figure 18). If the forward direction of the

path at point p enters into the open cone zone N in next time increment, then transition



type (TT1) is in progress, and so on.

In this particular equal moduli example, the nuetrality curve slopes do not change with
point p so that the four open cone angles remain fixed in 2, . More generally, the cone
angles depend upon temperature and stress according to the general forms of B+('r, T) and
B'(z, T) in (2.3.2.3) and (2.3.2.4) involving p, and p,,. For the Y-unfolding, the four
open cone areas also loose symmetry in the north-south and west-east directions, because
the nuetrality curves for AOM. in T> 0 and for A & M_ in T < 0 are modified by the

detwinning flow and finish stresses.

r N

k = 'y‘/An
A /]

o)

\\\\\\§ (E)

N

\ 7

)

5 va ¢ > 1

Figure 18. Four open cone areas at a point p in £, for X- and Y-unfolding show the
transition possibilities when a path passes through this point. If the path passing through p
proceeds into N (S, W and E), then transition type (TT1) ((TT2), (TT3) and (TT4)) is in
progress. :



61

3.3 Criteria for Detwinning Transition Types

Recall the considerations in section 3.1, (TT5) comes from M_— A and is active in
Q; while (TT6) comes from M, — A and is active in Q°2 for X-unfolding. Thus, criteria

for (TTS) and (TT6) could be expressed as

(TTS) if dBp">0in Q,, (33.0.1)

(TT6) if dB*>0in Q;, (3.3.0.2)

respectively. Furthermore (3.3.0.1) and (3.3.0.2) give

ats) if I > vasomal, (33.03)
Br
ar _ B:

ey if 91 <-B_: V dt<0in Q. (33.04)
T

One should note in conditi(;n (3.3.0.3) that the case dt <0 is ignored. Similarly, in
(3.3.0.4) the case for dt > 0 is ignored. The reason is that both (TT5) and (TT6), associ-
ated with detwinning, are modified by transition directions M_ — A amd M_ — A, which
correspond to increasing stress and decreasing stress processes respectively. Therefore, the
direction of stress increasing/decreasing should coincide with that of the detwining direc-
tion. The other important point that one should note is that criteria (3.3.0.3) and (3.3.0.4)
apply only to the X-unfolding. For the pY- and Y-unfoldings, because B; and Py are
equal to zero, one can directly use B - ¢t 20 to check (TT5) in €}; and B} - dt20 fo

check (TT6) in Q} . This gives
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(TTS) B,>0  V dt>0in 3, (3.3.0.5)

(TT6) B;<0  V d1<0in ;. (3.3.0.6)

In the Y-unfolding, all of the nuetrality curves in Q; and Q, become perpendicular to
the 1 -axis. Hence temperature changes at constant stress does not cause detwinning. This
contrasts with the X-unfolding, where temperature increase at constant stress causes

detwining processes to occur in , and Q; .

3.4 Example

Assume that B*(t, T) and B'(z, T) are given as (2.3.2.3) and (2.3.2.4) with equality of
moduli of austenite and martensite for pY-unfolding. Here k; (>0) is given (2.4.2.2). If the
state-path is an ellipse in the (T, T )-plane in Figure 19, we can then determine the transi-
tion types on the different parts of the ellipse state-path as follows.

With (3.2.0.1), we find -B;/By = k;, -B./B; = -k, in Q,,and B7 = 0,B; = 0
B: = —2k, and B = 2k, in €, and Q3. tl, 12, 13 and t4 indicate the tangent points
where the path is tangent to the nuetrality lines respectively. Based on (3.2.1.5) to (3.2.1.8)
and the discussions on (TTS) and (TT6) for pY-unfolding, it follows that: from point t2 to
t3 the transition type (TT3) occurs in £, ; from 3 to e the transition type (TT2) occurs in
Q,;in Q;, Sy, Sm. and Sy, there is no phase transformation; from point b to ¢ the tran-

| sition type (TTS5) occurs in Q;.
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Figure 19. This graph shows that how the transition types occur when one follows a counter-
clock wise ellipse in the (T, T )-plane. From point t2 to t3: (TT3) occurs; from t3 to e: (TT2)
occurs; from point b to c: (TTS) occurs; in all other parts there is no transformation.



4 THE HYSTERESIS ALGORITHMS

This chapter will extend the hysteresis algorithm of the one-variant martensite case
given in the work by Ivshin and Pence (1994 b) to a two-variant martensite case on the
basis of the two-variant analysis (Pence et al., 1994). For this reason it is useful to briefly
summarize the one-variant model (Ivshin and Pence, 1994 b). The extending work begins
from the analysis of the envelope functions and the algorithms presented in (Pence et al.,
1994). If only one transition is active then the extension of the algorithm can be expressed
by different equivalent forms. However if two transitions are active, then these different
forms are no longer equivalent. Thus an examination on combinations of various transition
directions from different transformation processes becomes necessary for determining the

proper extension of the one-variant model into the two-variant regime.

4.1 Brief Review of the Previous One-variant study

4.1.1 One Variant Algorithm

The one-variant model studied in the work (Ivshin and Pence 1994 b) involves transi-
tion between a high-temperature/low-stress austenite phase A-and a low temperature/high-
stress martensite phase M. In the present three species model, this is as if two martensite

variants are treated together as one martensite species (§yy =&, + £) and only A & M
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takes place on each state path. At any instant, either there is a net transformation tendency
for A—> M (so that §,1 <0) or else a net transformation tendency for M — A (so that
E4 20). Note that the nuetral tendency €4 = O can be regarded as either a trivial A — M
tendency or else a trivial M — A tendency. Thus the state path (1(), T(r)) is partitioned
into segments on which either the A — M or the M — A transformation tendency occurs.
If this paftitibning is known, the transformation is governed by the following equations

(see equations (30) and (32) of the work by Ivshin and Pence (1994 b):

%M = D i’:(t T)-%aA_,M(‘r,T) forA - M, (4.1.1.1)
- ’

;_f” = 1-aM§M T T)-%aM_M(t,T) forM - A. (4.1.1.2)
=A%

Here §, = 1-§,, is phase fractions of austenite, o, _, ,,(t, T) and o), _, 4(t, T) are
constitutive functions; they were given the respective symbols a, , (T, T) and a.,,;,(T, T)
in (Ivshin and Pence, 1994 b), but the symbols used in (4.1.1.1) and (4.1.1.2) will be more
convenient for the present discussion. The equations (4.1.1.1) and (4.1.1.2) ensure that the
transformation proceeds at a pace that is proportional to the phase that is transforming (A
in (4.1.1.1) and M in (4.1.1.2)) and is independent of the phase that is experiencing a net '
increase. In the event that the A - M transformation begins from pure austenite
(E4 = 1), then the transformation governed by (4.1.1.1) gives an §,(#) that coincides
with o, _, p(T(1), T(?)). Similarly § ,(t) = a,, _, 4(2(¢), T(?)) for M — A transformations

that start with pure martensite §, = 0.



4.1.2 Envelope Function

As discussed in the approach by Ivshin and Pence, (1994 b), equations (4.1.1.1) and
(4.1.1.2) give immediate integrals. There are however practical advantages to operate with
the differential equations (4.1.1.1) and (4.1.1.2). The constitutive functions are required to
obey ) _, p(T, T) 20ty _, 4(T, T). Both A — M transformations that start at some initial
time ¢, with §,Sa, _, \(t(t), T(t,))S1, and M — A transformations that start with
E A2 0y, A(T(t), T(2,)) 20, are required to generate phase fraction trajectories EA(D
obeying oy, _, o(%(?), T(1)) SE4(0) S @y _, p(T(1), T()) . In fact, as shown in (Ivshin and
Pence, 1994 b), the above containment requirement are not ensured by (4.1.1.1) and
(4.1.1.2) alone, but are guaranteed if the constitutive functions o, _, ,, and a,, _, , obey
certain additional containment restrictions. This justifies the terminology envelope func-
tions for o, _, 5, and o, _, 4. The special situation involving equality of the envelope
functions ensures that £ ,(f) coincides with the new single “envelope function” so that
E 4(?) is a state function of (1, T'); hysteresis is not present in this special situation (A; =
Mg, M, = Ap). Envelope functions that are step functions between 0 and 1 give abrupt trans-
formations at the locus (T, T') where the step takes place (A; = As My = Mp). Thus, in com-
bination, identical envelope functions that involve only a step between 0 and 1 on some
(1, T) curve gives the standard notion of abrupt nonhysteretic phase transitions (Mf= M=
A, = Ap. However, unequal envelope functions that smoothly vary between 0 and 1 gener-
ate the hysteretic mixtures which were the focus of the work by Ivshin and Pence (1994 b).
Finally it is to be pointed out that the issue of determining whether an A — M or an
M — A transformation tendency operates is resolved by requiring algorithmic consistency

in (4.1.1.1) and (4.1.1.2). Namely at each instant of time (4.1.1.1) and (4.1.1.2) should
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both give that either §A <0 or §A > 0. In the former event then §, (or &,,) is to be deter-
mined from (4.1.1.1) and in the latter event then £, (or §,,) is to be determined from
(4.1.1.2). As shown in (Ivshin and Pence, 1994 b), this requires that o, _, ,(7, T) and
oy, _, 4(t, T) display dependence on (7, T') by means of a characteristic function B(t, T)

in the following fashion:

oy (%) = 6, BN anday_, 7 = 6&,,»BxT).  @l2.1)

Therefore characteristic functions that describe nuetrality arise naturally in models of the
type presently under study. If the state path (t(¢), T(f)) ever coincides with the curves
B(t, T) = C (constant), then § 4(?) is constant as long as the coincidence is maintained.
Here it is to be emphasized that &,,,, and &,,;, are functions of a single argument which
can be determined by experimental measurements at free-stress circumstance. Thus they

obey

0< amiu(ﬂ) s dmax(ﬂ) <1

R
Gpge(B) = {l if p2M,. 4.1.2.2)
0 if BsM,
& min(B) 20
& max(B) 20

Additional conditions on &,,;,(B) and &,,,.(B) which ensure trajectory containment
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and trajectory orientation requirements can be found in the work by Ivshin and Pence

(1994 a). Normalization B(0, T) = T gives

0y 50 T) = 6,0 (T) and 0y, 4(0, T) = 8,yin(T). (4.12.3)

4.2 Two Variant Constitutive Functions

To develop the two variant model on the basis of one variant model by Ivshin and
Pence (1994 b), there are two things important to be considered, one of them is the exten-
sion of the constitutive functions while the other is the extension of the algorithms for

phase fraction evolution during transformation.

4.2.1 Constitutive Function Extension

In the high temperature two variant study (Pence, et. al, 1994), o, (1, T) and
0, A(T, T) are used as constitutive functions to describe A - M_ and M, — A phase
transformations, respectively; while o, (T, T) and o (T, T) are used to as constitutive
functions to describe A — M_ and M_— A phase transformations respectively. When the
A/M  neutrality curves are parametrized by the nuetrality function B*(, T) introduced in

(2.4.2.14) for the Y-unfolding, then the A <> M constitutive functions are of the form:
Up T =0,y (4. T) = 6,, B, 1)), 42.1.1)

AT D=0y |4 D = 6,31, 7)), (4.2.12)

for constitutive functions &,,,(x), &,;,(x) of a single variable. More than this, since
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detwinning process M, — M _ is considered, o (7, T) is also the M, — M _ constitutive
function below M. Based on the symmetry of the two martensite variants, when the A/M_
nuetrality curves are parametrized by the nuetrality function P’(t, T) introduced in

(2.4.2.13) for the Y-unfolding. The constitutive functions for A <> M _ are defined as

et D=0, 4T = &,, B (1), (4.2.1.3)

a-A(T7 T) = aM_ _)A(rv T) = &min(B.(Tr T))' (4-2‘1'4)

Similarly, a_,(t, T) is also the M_ — M constitutive function below Mg,. Under normal-

ization B+(O, T) = B(0,T) = T, we have the following relations,
0,,00,N=0a, (0, 7) = G,,(7) and &, ,(0, N =0 0, T) = G,,;,(T). (42.1.5)
The relations corresponding to (4.1.2.2) in the two variant case are

0o (T, NS0, (T, )S], 0o (T, TS0, (f,1)<]

1 if B2A; 1 if P2M,
a.A(t’ T) = ’ aA-(tr T) =
0 if P<A 0 if Bs<M, 4216
1 if B*24, 1 if B'2M,
ot T) =4 y 0 (T T)=

0 if B*<A, 0 if <M,
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4.2.2 Possible Extension of the Algorithm to the Two Variant Problem

After the analysis about the characteristics and constitutive functions, it is necessary to
introduce a calculation system into the two variant model, which is a group of algorithms
to determine the phase fractions associated with different transition directions in two vari-
ant problems. |

For purposes of developing the appropriate extensions of the algorithms, the discus-
sion is initially confined to phase transformations A <> M, and A <> M_ without the
detwinning. Since &,,,,(x) can be interpreted as the maximum value of austenite phase
fraction during phase transformations from 100% austenite to overall martensite, and,
B*(t, T) and B'(t, T) parametrize the phase transformation families of A <> M, and
A © M_ respectively, constitutive functions o, (T, T) and o, (t,7) would be deci-
phered as state functions of austenite narrating phase transformations from 100% austenite
to individual martensite variants respectively. In a similar fashion, since &,,;,(x) is the
minimum value of austenite phase fraction during phase transformations from 100% over-
all martensite to austenite, constitutive functions &, ,(T, T) and a_,(t, T) indicate state
functions of austenite phase fraction describing the transformation from 100% individual
martensite variant to austenite. Before extending the one variant algorithms (4.1.1.1) and
(4.1.1.2), we consider in what follows the observation that each of (4.1.1.1) and (4.1.1.2)
can be rewritten in three extra forms with §, and &,,. These four equations are equiva-
lent for either A — M or M — A in the one variant case, but extensions to the two-variant
case are sensitive to the form of the one-variant equations that are used before the exten-
sion.

To get insight into this problem, note since £, +&,, = 1, that all of the following
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forms are equivalent to (4.1.1.1) for governing an A — M transition direction:

G, - Ea d

-d_t = m‘#A*M(T’D, 4.1.1.1)a
3 1-§ d

o = ‘m%'ﬁ'ﬁ“‘-’”“’n’ (4.1.1.1)b
a5, _ 1-8y d

-d—t = m'#A_’M(T,D. 4.1.1.1)

A similar four way equivalence holds for (4.1.1.2) with respect to M — A transition

direction. The extra three are expressed as

dg, Em d
-d—t = l—aM_’A(‘t, 1,) .EGM_’A(T’ n, (4.1.1.2)a
dSy 1-&, d
& = o, D) '#M—DA“’ 7, 4.1.1.2)b
- ’

Gy _ 1-E, d

dt 7~ 1-0y, 41, T) aM- A D

4.1.1.2)c

When multiple martensite species (only two in this study) are present, this kind of
equivalence no longer holds. For example, suppose that an A — M transformation occurs
in concert with either an A — M_ transformation (TT2) or an M_— A transformation
(TT4). Then & +&,+&, = 1 and the A — M transition might arguably be governed by

any one of the four possibilities (see (4.1.1.1)):



d§+ - §A d
il vy B NG (42.2.1)
Tro_5_dy am, 422.1)a

dt = o, (T, T) dt

d§+ - 1- §+ d
yrii —mz—,) . a—t(lA_',(T, 7, (4221)b

d&A - l-§+ d
3 = m‘#"+(1’n. (42.2.1)C

Since in the two variant approach, coefficient 1 &, no longer indicates £, in process
A — M, the last two equations (4.2.2.1)b and (4.2.2.1)c in the set of (4.2.2.1) are not
consistent with the viewpoint that this coefficient should give the phase fraction of the pre-
cursor phase and so will not be considered in the further study.

In a similar fashion, an A — M _ transition in (TT2) and (TT3) might similarly be gov-

emed by any one of four equations, only two of which are reasonable,

:_? = ‘a_j:, T ‘%“A-(T’ 1), | 4222)
%A = a A_% T '%“A-(” 7). (422.2)a

The martensite to austenite transformation admit to similar interpretation. For transi-
tion direction M, — A the possible algorithms for use in (TT1) and (TT3) are (see

4.1.1.2)):
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&, g, 4,
il m T —0a,.(t, T), (4.2.2.3)
dgA §+ d

- W yr ot 1), (4.2.2.3)a

d§+_ 1-§, d

7 = Toaan aa® D (4.2.2.3)b

dE-'A_ 1-§, d

& - Toa,mn aA®D - 42.2.3)c

Coefficient 1-&, in equations (4.2.2.3))b and (4.2.2.3)c no longer indicates &, in pro-

cess M, — A, so that these two expressions will be eliminated since it is again not consis-

tent with a coefficient factor that is proportional to the precursor phase. .
Following the same manner as the above gives two remaining candidate algorithms for

transition direction M_— A :

& &

5 = m dt =0 A1, T), _ (4.2.24)

g, _ . d

R R (4.2.2.4)a

The elimination of the “b” and “c” governing equation possibilities for each single
process indicates for each two process transition type: (TT1) to (TT4) in £, , there now
remain four combination possibilities. For example, the combined A > M_, A - M _ pro-
cess of transition type (TT2), might possibly be governed by either (4.2.2.1) or (4.2.2.1)a
in conjunction with either (4.2.2.2) or (4.2.2.2)a. In addition there are still two possibilities -
for each detwinning transition in fl; and flz Here it is interesting to note that the less

complete model employed in the work by Pence et al. (1994) only allowed for transition
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type (TT1) and (TT2) in the notation employed here. There, of the four combination possi-
bilities for (TT2), the particular combination {(4.2.2.1), (4.2.2.2)} was employed for
A->M_, A— M_. Similarly, the particular combination {(4.2.2.3), (4.2.2.4)} was
employed for M, - A, M_— A (transition type (TT1)). We now inquire into the proper
combination possibilities, and in this process arrive at those used in (Pence et al., 1994)

for (TT1) and (TT2).

4.3 Analysis on the Algorithm Associated with Transition Types

4.3.1 Unique Algorithm

Discussions in section 4.2.2 lead us to the observation that there remain four possible
algorithms for each two process transition type in Q; (TT1 to TT4) and two for each
detwinning transition in Q; and Q; . From many reasonable solicitudes, such as symme-
try, basic assumptions on phase transformation, etc., most of them can be excluded as we
are going to see next. Here we give two separate lines of argument. The first is based on
symmetry and mathematical well-posedness. The second is based on an assumption
regarding the transformation process.

The first argument begins with a symmetry consideration between M, and M_ in the
pair combination governing (TT1) and (TT2). This immediately reduces the pair combina-
tion in the following way:

(TT1): {(4.2.2.3), (4.2.2.4)} or {(4.2.2.3)a, (4.2.2.4)a}.
(TT2): {(4.2.2.1), (4.2.2.2)} or {(4.2.2.1)a, (4.2.2.2)a}.

The other two transition types (TT3) and (TT4) lose M,/M_symmetry and so do not neces-
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sarily allow for such reductions. Returning now to transition types (TT1) and (TT2), we
note for (TT2) that the pair combination {(4.2.2.1)a, (4.2.2.2)a} overdetermines &, and
does not determine &, and £_individually. Hence one may conclude that (TT2) is governed
by the pair {(4.2.2.1), (4.2.2.2)}. For transition type (TT1), it can be shown that the pair
{(4.2.2.3)a, (4.2.2.4)a} admits an explicit solution for & (£), E4(?), €,(#). This solution is
found to have the property that £ depends on the constitutive function a_,(t, T) and &,
depends on the constitutive function &_,(T, 7). This statement implies that the determina-
tion of & and &, depends on processes M, - A and M_— A respectivély, which does
not seem reasonable, so that it is preferable to use {(4.2.2.3), (4.2.2.4)}.

Recall that the basic one variant phase transformation rule cited in the approach by
Ivshin and Pence (1994 b) is that phase transformation proceeds at a pace that is propor-
‘ tional to the phase that is transforming and is independent of the phase that is experiencing
a net increase. For (TT1) the A-phase is experiencing a net increase and so this gives an
independent and purely physical argument against equations involving ig" in (TT1).

dt
However this same assumption for (TT2) would argue against equations involving E+

dg

and E. in (TT2), which is in contradiction to the pair combination that we have obtained
here. This provides a hint that the pair equation governing (TT2) may require some further
modification, as we shall show in the next section.

For (TT3), the combined M, — A and A — M _ process, it can be argued that the pos-
sible a].gorithms associated with (4.2.2.2)a should be excluded since the phase fraction of
austenite £, should involve dependence on both of the phase fractions &, and .. On the
other hand, the algorithm for process M, — A has béen chosen as (4.2.2.3) in (TT1).

Hence for the purpose of consistently using the same algorithm in all transition types, one

must select {(4.2.2.3), (4.2.2.2)}. Transition type (TT4), the combined M_— A and
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A — M_ process is similar to (TT3), The selected algorithm for (TT4) is {(4.2.2.1),
4.2.24)}.
Because there is no austenite in the detwinning processes (TTS) and (TT6) in Q; and
Q, respectively, we do not need to contemplate those algorithms associated with the
phase fraction of austenite. Thus, for the coherence considerations between the algorithms
of M 5A M, —>A)and M > M_ (M, — M), in the whole (1, T)-plane, the algo-

rithm selected for (TTS) is (4.2.2.4); the algorithm selected for (TT6) is (4.2.2.3).

4.3.2 Algorithm Consistency between One and Two Variant Problems

So far, we have selected equations for governing the transition types in the two-variant
model. However, the extension of the algorithms from one-variant to two-variant models
needs further investigations to ensure that the extended algorithms can describe both one-
variant and two-variant situations for a self-accommondated process. To examine the con-
sistency between one-variant and two-variant models, let us consider a loading path of
increasing/decreasing temperature at zero-load in the two variant model, for conditions
involving symmetric martensite variants. The corresponding transition types from section
3.1 are (TT1) and (TT2) for temperature increase and temperature decrease respectively.
We begin with temperature decrease starting at T > Agso that the M /M. symmetry in ini-
tial conditions keeps M /M_ symmetry for all time. In this case one should note that
Ey = &, +E& = 2E, = 2&_. For this zero-load case of temperature decrease, algorithm

{(4.2.2.1), (4.2.2.2)} for transition type (TT2) can be rewritten in terms of £, as

&y _ 28,

s .%amm forA— M, (43.2.1)
max
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if equation (4.2.1.5) for (TT2) is used. Similarly, for temperature increase, algorithm

{(4.2.2.3), (4.2.2.4)} for transition type (TT1) can be rewritten as

3 - Em d
i o ol Fi0min(T) for M > 4, 4.3.22)

if equation (4.2.1.5) for (TT2) is used again.

Therefore, comparisons for M — A between the governing equation (4.1.1.2) of the
one-variant and the governing equation (4.3.2.2) of the two-variant models show agree-
ment. However comparisons for A — M between governing equation (4.1.1.1) of the one-
variant and the governing equation (4.3.2.1) of the two-variant models show disagreement
by a factor 2. This disagreement induces us to review the explanation of those constitutive
functions at the beginning of section 4.2.2. It is noted that constitutive functions o, (%, T)
and o, (T, T) indic#te state functions of austenite phase fractions narrating phase trans-
formations from 100% austenite to each individual martensite variant respectively. Fur-
thermore, when temperature decreases from a‘ reference either above or below Arat stress-
free condition, the austenite phase is always evenly transformed into equal amounts of M_
and M, martensite variants. However in section 4.2.2, this effect was not reflected in the
set of (4.2.2.1) and (4.2.2.2). Therefore, to build this reasonable extrapolation into the
extended governing algorithms of the two-variant model during the extension, the selected
governing equations (4.2.2.1) and (4.2.2.2) for A - M_ and A — M_ should be modified

by

d§+ §A d
:i—t = —m . EaA+(t, n forA—> M+, (4.3.2.3)
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dg. €4 d
d_l = —m . a—t-aA_(‘t, T) forA— M_, 4.3.24)
respectively.
The equations governing each transition type are summarized in TABLE 4. This algo-
rithm, for the six transition types in either X-unfolding, pY-unfolding or Y-unfolding,

ensures consistency within the two-variant model, and properly reduces to the one-variant

model in the zero-load situation.

TABLE 4. Transition Types with Their Algorithm

TRANSITION TYPE

TTH)M,>A M > A ((4.2.2.3), (4.2.24))

Q, (MTHA->M,A->M_ | (43.23),(43.24)
(TT3M, 5> A A->M_ | (4223),(4324)
TTHM. > A,A>M, | (4224),83.23)

QoQ; | TTHM oM, (4.2.2.4)

(TTO) M, > M.

(4.2.2.3)

EJ0+E,M+E() =1(1.20.1)




S INTEGRABILITY AND PATH DEPENDENCE

The phase fraction evolution of the three species, which describes transformations
between austenite and martensite or detwinning processes between the two martensite
variants, is determined on the basis of the ordinary differential equations listed in the
TABLE 4. The overall balance requires that the phase fractions satisfy relation (1.2.0.1).
For this process, we assume that T(f) and (¢) are given functions, ie., (t(¢), 7(#)) forms a
state-path in which time ¢ varies from a beginning time ¢; to an arbitrary future time ¢ so
long as the transition type remains the same. General analytical solutions for the phase
fractions can be given in terms of path integrals. These integrals along the state path may,
or may not, be evaluatable in terms of the path endpoints. Equivalently, the algorithm
within a transition type may, or may not, be path-independent. In this section we investi-
gate the solution for each transition type as well as conditions which indicate path-inde-
pendence within the transition type. Some of the precursor studies, which guide some

aspects of this section’s development, were suggested by Ivshin in unpublished work.

5.1 Integration of The Hysteresis Equations for The Phase Fractions

There are totally six transition types in the Y-unfolding: (TT1) to (TT4) which hold in
Q,, (TTS) which holds fl; and (TT6) which holds in fl'z. In the following we are going

to present a solutions for the phase fraction evolution during a time interval [t;, 7}, in which

79



80

one of the six transition types occurs.

5.1.1 Integration of Transition Type (TT1)

If in a time interval [¢;, #] transition type (TT1) M, — A, M_— A occurs, then the
governing equations are (4.2.2.3), (4.2.2.4) and (1.2.0.1) (see TABLE 4). Through drop-

ping dt in equations (4.2.2.3) and (4.2.2.4), and then integrating the two, we obtain

£, = E@) - (1-0,,(t(0), T()), (5.1.1.1)

E(0 = D(t) - (1 -0 ,(x(®), T(®)) (5.1.1.2)

where, the coefficients are determined by

§+(ti)
E@t) = . .1.1.
@) = T ), Ta) (5.1.13)
D) 5. (5.1.1.4)

T 1o 0,(0), T@)

Hereupon, the corresponding austenite phase fraction is obtained from the balance equa-

tion (1.2.0.1).
Ea) = 1-E(1)- (1 -0, ,(t(®), T(®)) - D(t) - (1 -a_p(2(0), T())) . (5.1.1.5)

For this situation, &,, &, and &_ are all path-independent in the (1, T )-plane. That is,
beginning at known values &,(z), €,(t,) and §(z,) at the initial time ¢;, the values of

EA(0), E,() and & (1) at any future time f depend only upon the current values of the state
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(T(1), T(#)) and not upon the path connecting (1(¢;), T(t,)) to (1(#), T(t)). Of course here it

is required that the path only involves transition type (TT1) M, 9> A,M_—A.

5.1.2 Integration of Transition Type (TT2)

For a time interval [¢;, f] in which (TT2) A—> M_, A — M_ occurs, the governing
equations for this transition type are (4.2.2.1), (4.2.2.2) and (1.2.0.1). With a proper deri-

vation on the three equations we arrive at

E40) = F(t) - Jop (50, T®) - 0p, (30, 7). (5.1.2.1)

where the coefficient F(t,) is given by

§A(f )

F@) = .
JOA (T2, T(2)) - &y (31, T(2)

(5.1.2.2)

Substituting (5.1.2.1) into (4.2.2.1) and (4.2.2.2) generates upon integration:

"(~F(t) ,a ), T(t
E.n = I( 5 L. aA-((‘t((t)) T((z)))) -%a,dt(t), T(t)))dt+§+(t,-), (5.1.2.3)
A+ ’

L.

1

‘(-F(, ,a 1), T(t
E® = I( 3 ), a’:“((t((t)) T((:)))) -%QA_(T(t), T(t))}it+§_(t,-). (5.12.9)

4

Here the derivatives in the above integration are

%a A+ (T, T(®) = Va, (t(t), T(2)) - ditr(t) , (5.1.2.5)
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%%(f(t), T@) = Vo, (1@, T@) - %r(t). (5.1.2.6)

where
) = wne, +T(ey, (5.12.7)
via D = Lo+ Loy, (5.12.8)

&, and &, are unit vectors along T and T axes.

Result (5.1.2.1) shows that £, is path-independent, since it depends only upon the ini-
tial and the final values of temperature and stress. However expressions (5.1.2.3) and
(5.1.2.4) indicate that phase fractions &, and §_ are, in general, path-dependent. This is
because the two integrals cannot generally be evaluated in terms of their endpoints in
(7, T )-plane, unless special restrictions are put on the envelope functions.

To see this, assume that §, and §_are path-independent, then their expressions
(5.1.2.3) and (5.1.2.4) have to satisfy Cauchy-Riemann condition (Apostol, 1962), which

give
Va, (t,T)- Vo, (t,T) = Vo, ,(t,T)- Vo, (7, 7) = 0 , (5.1.29)
Here the operator with hyper bar is defined as
= _ Of, Of
Vf(z,T) = 572, atér. (5.1.2.10)

The scalar form of equation (5.1.2.9) is



83

20,0 D 2@ D = 20, 6D 20, D). (5.12.11)

The path-independent condition (5.1.2.9) (or (5.1.2.11)) will be further discussed in sec-

tion 5.1.6, where it is shown that this condition can not be satisfied.

5.1.3 Integration of Transition Type (TT3)

If transition type (TT3) M, — A, A — M_ occurs in a time interval [¢;, 7], then, the
governing equations are (4.2.2.3), (4.2.2.2) and (1.2.0.1). The solution of equation
(4.2.2.3) again gives the result (5.1.1.1), so that &, is path-independent in (t, T') -plane.

With equations (4.2.2.3), (4.2.2.2) and result (5.1.1.1), one can obtain

t
Eo) = Jor, (00, T -

E(t)
y O (T, T()

do, A(T(2), T(2)) +

(5.1.3.1)

t.
St Joa ), T)

JoA (), T@)

Plugging (5.1.1.1) and (5.1.3.1) into (1.2.0.1) then gives the phase fraction & _.
In general, §, and &_ are path-dependent in the (1, T) -plane. We can find the condi-
tion for path-independence from the expression (5.1.3.1) by applying Cauchy-Riemann

condition to it. This gives the condition

Va, (1, 7)-Va,,(t,T) = Va,,(t,)-Va,(t,T) =0 , (5.1.3.2)

its scalar form is expressed as
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, d 3 d |
EaA.(t’ T) : ﬁa+A(11 T) = ﬁaA.(Tv T) : Ea.',A(T) T) . (5°1-3'3)

This condition, which is similar to (5.1.2.11), will also be discussed in section 5.1.6.

5.1.4 Integration of Transition Type (TT4)

Transition type (TT4) M_— A, A — M _ is similar to (TT3) under interchange of E,
and E_. The governing equations are (4.2.2.1), (4.2.2.4) and (1.2.0.1) for transition type
(TT4). The solution of equation (4.2.2.4) again gives (5.1.1.2), which indicates that §_ is
path-independent. The phase fraction of austenite can be found by solving equations
(4.2.2.1) and (4.2.2.4) with the consideration of result (5.1.1.2), that is

D(t)

t
EA(1) = Jou, (x(®), T(1)) - da_,(x(0), T(1) +
4 A ,I CACON ) I

(5.14.1)

t)
o4 JOA (@), T()

SO, T@)

And by use of (1.2.0.1), (5.1.1.2) and (5.1.4.1), one then obtains & .
The phase fractions of austenite and M, martensite are in general path-dependent in
(1, T )-plane in general. Applying Cauchy-Riemann condition to (5.1.4.1) gives the special

path-independent condition of the two variables as

Va,,(r,T)-Va ,(t,T) = Va ,(t,T)-Va, (t,T) = 0 , (5.14.2)

and its scalar form is
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552+, 0) 50 A(T, 0) = =1, (T, 0) - w1 4T, 0).. (5.14.3)

Again the above condition will also be further considered in section 5.1.6.

5.1.5 Integration for Detwinning Process

All the solutions and path-independent conditions obtained above are suited to the dual
process region £, . In the detwinning zones Q; and Q;, without any austenite, the only
active transition types are (TTS) and (TT6) respectively. For transition type (TTS)
M_— M_, the governing equations are (4.2.2.4) and (1.2.0.1) with §, = 0. Thus result

(5.1.1.2) is the solution of &_, which gives
E® = D@t)-(1-a (0, T®)), (5.1.5.1)
E,(0 = 1-(D(t) - (1-0_,(t(®), T(®)))). (5.1.5.2)

For transition type (TT6), the governing equations are (4.2.2.3) and (1.2.0.1) again with

4 = 0. The expression (5.1.1.1) gives the solution of £, as
E.0) = Et) - (1-a,,t®,T@)), (5.1.5.3)
E@® = 1-(E@) - (1-a,,(tx(), T(1))). (5.1.54)

The phase fractions in both (TTS5) and (TT6) are path-independent.



86

5.1.6 Path Independence of the depleted Species within a Transition Type

For transition types (TT1), (TT5) and (TT6), all of the phase fractions& (#) , € ,(#) and
E.,(1) are path-independent in the sense that, once the initial conditions are specified, they
depend on only the current values of (T, T ). However for the remaining three transition
types (TT2), (TT3) and (TT4), only one of the phase fractions has been shown to display
such path-independence, namely: austenite phase fraction §, in (TT2), positively oriented
martensite phase fraction €, in (TT3) and negatively oriented martensite phase fraction
E_ in (TT4). These are precisely the phase species that are being absolutely depleted. For
example, transition type (TT3) involves M, — A and A — M, thus the M species is
being absolutely depleted, the M _ species is being absolutely augmented, and the A spe-
cies is in flux (whether it is depleted or augmented depends on which of the two transitions
M,— A and A — M_ is stronger). As regards transition type (TT1), here both M, and
M _ are being absolutely depleted, and, consistent with the above comments, the associ-
ated phase fractions are path independent. The path independence of §, for transition type

(TT1) can then be regarded as a consequence of the overall balance (1.2.0.1).

5.2 Path Dependence and Path Independence within a Transition Type

5.2.1 General Path-Independent Condition

So far we have arrived at three path-independent conditions (5.1.2.9), (5.1.3.2) and
(5.1.4.2) in transition types (TT2), (TT3) and (TT4) respectively. However, in view of the
fact that the envelope function dependency on (t, 7) is mediated by the B-function that

describe the nuetrality curves (see (4.2.1.1) - (4.2.1.4)), condition (5.1.2.9) for (TT2) can
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be rewritten as

&' max(B) - & max(B) - (B7- BBz -B7) = O, (52.1.1)

and (5.1.3.2) for (TT3) and (5.1.4.2) for (TT4) can be rewritten as
6 paxB) - &' pyinB") - (Br - B —B: - Br) = 0, (5.2.1.2)

& paxB) - & pin(B) - (Br- B =B:-By) = O, (5.2.1.3)

respectively.

Recall from Section 4.1.2 that &’,,,, and &’,,;, are equal to zero if (t, T) are in the
zones that are inactive for the process under consideration, that is the transitions either
have not began or have gone to completion. Our interest is thus the case when neither

6o DOr &, vanishes. The three path-independent conditions then simplify to

V', T)-VB(t,T) = 0. (5.2.1.4)

It will be shown in the next section that this condition can never be satisfied by the present

B-functions.

5.2.2 Path-dependent Analysis for the case of A; > M,

In this section all discussion is confined to the pY-unfolding with identical moduli of
austenite and martensite, and confined to a material with M <A,. The other case
(M, > A,) is treated in the next section. Materials obeying M, < A, involve a dead zone in

the temperature driven (zero-load) transformation hysteresis. This gives certain simplifica-
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tions. It is important to note that all the possibly path-dependent cases occur in certain
parts of region QT , and that the associated special condition for path-independence is the
requirement (5.2.1.4) on the nuetrality curves. As mentioned above, we are interested in
the path-independent conditions in areas where the first derivatives of the two envelopes

do not vanish. In transition type (TT2), the domain on which &’,,,, is nonzero is
dy = {(. DM <P (, D<M, M; <Pz, T)<M,}.

In domain d, (Figure 20) the path-independent condition of &, and &_ is given by

(5.2.1.4). However, since B7>0, B;>0, B.>0 and B; <0, it follows that

Br-B.-B:-Br>0, (5.2.2.1)

in d,. Hence transition type (TT2) in d, as determined by equations (4.3.2.3) and
(4.3.2.4) generates path-dependent values for €, and &
Tumning to transition types (TT3) and (TT4), the areas of nonzero &’,,,, and &’,,;, are

given by
dy = {(t. M sPTNSM, A SB (T, I<SA[},
dy = {(t. )M, <B"(t, NSM,A,<P(r, T)SAf},

respectively (Figure 20). For both of these two transition types, the path-independent con-
dition (5.2.1.4), for £, and §_ of (TT3) as well as for £, and §, of (TT4), can never be
satisfied in d; and d, severally because relation (5.2.2.1) is held again. Thus, for transition
type (TT3) €, and &_ are path-dependent in d; while for transition type (TT4) £, and

€, are path-dependent in d.
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Figure 20. For the case A; > M,, three path-dependent zones d,, d; and d, are separated in
Q] .&, and £ _are path-dependent in d, if transition type (TT2) occurs (S-paths). £, and &
are path-dependent in dj if transition type (TT3) occurs (W-paths). £, and &, are path-
dependent in d, if transition type (TT4) occurs (E-paths).

Recall in Qr that the determination of transition types correlates with state path
directionality in a way that is geometrically associated with compass headings: N, E, S, W.
Geometrically we have shown that: £, and §_ are path-dependent in d, for S-paths, §,
and &_ are path-dependent in d3 for W-paths, £, and &, are path-dependent in d, for E-

paths. All the above conclusions can be viewed in TABLE S.



TABLE 5. Path-dependent Category for M, <A,

PATH-DEPEDENT || PATH-DEPENDENT PATH-DEPENDENT

ZONES TRANSITION TYPES DIRECTIONS
d; (TT2) S-paths
d; (TT3) W-paths
d, (TT4) E-paths

5.2.3 Path-dependent Analysis for the case of M; > A,

The more complicated situation M, > A, will be discussed in this section. Again, the
pY-unfolding with identical shear moduli of austenite and martensite is considered here.
The path-dependent condition is still (5.1.2.4) for transition types (TT2), (TT3) and (TT4),
and the definitions for the three path-dependent zones remain unchanged as in the last sec-
tion. The difference for the present circumstance is that the absence of a dead zone means
that the three path-dependent zones d,, d; and d, overlap each other (Figure 21), which
creates certain overlapping areas where either two or three transition types may simulta-
neously involve path-dependence.

For convenience, we define following six subdomains to further investigate the path-

dependent condition,
02 = dz—d3—d4, a3 = d3-d2—d4, a4 = d4—d2"d3,
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which are shown in Figure 21. With a similar discussion as that in section 5.2.2 the path-
dependent zones, transition types and corresponding direction cones are listed in TABLE
6. Each transition type can only be triggered by the corresponding transition path, ie.,
(TT1) is ignited by N-paths and so on. It is observable from TABLE 6 and Figure 21 that
in the relative stability zone for M_, such as d;, the possibility for phase fraction & being
path-dependent is larger than the others. A similar result can be observed for phase frac-

tion &, in dj.

TABLE 6. Path-dependent Category for M; > A,

PATH-DEPEDENT PATH-DEPENDENT PATH-DEPENDENT
ZONES TRANSITION TYPES DIRECTIONS
az (TT2) S-paths
as (TT3) W-paths
a, (TT4) E-paths
ax; (TT2), (TT3) S-, W-paths
axy (TT2), (TT4) S-, E-paths

a4 Jl(m). (TT3),(TT4) |  S-, W-, E-paths




92

Figure 21. For the case A; < M,, six path-dependent zones a,, a3, a4, a3, ay4 and ay34 are
separated in QT.Thesimationsoccurringinaz.a3anda4arethesarnewiththoseind2,d3
and dj of the case A; > M, shown in Figure 20. In a,3, if transition type (TT2) is in process
then the phase fractions £_and &, are path-dependent, while if (TT3) occurs then £, and &
are path-dependent. In a4, the condition is similar to that in a53 under interchange of (TT3)
and (TT4) as well as & and &,. In aj34, € and &, are path-dependent if (TT2) occurs, &,
and £_ are path-dependent if (TT3) occurs, and, £, and &, are path-dependent if (TT4) is in
process.

5.3 Example

To illustrate this path dependence, consider a material with M; < A; and contemplate
three separate stable paths in d,, all of which involve only transition type (TT2) through-
out. The three paths: I, I, and /; are shown in Figure 22. They all start at point (T, 6) =
(0, M,) with initial conditions {& , E,, €,}=(0, 1, 0} and end at point (t, 6) = (0, Mp). The

three state paths are the forms of
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L:{(nTHt=0)

M, +M
L: {(t, T = -Qk;t+M, M, 2T2——1

2);

M, +M
(T = Qkyt+M M sT<s—— 57—

M, +M
L (6 TIT = Qk,t+M,,M,szs_2£);

M +M,

respectively. Where, Q is a real number which must be greater that 1 to stay in d,. It is
desired to find the phase fractions {£_, &4, £, } at the end point (0, My on the three different
paths.

The nuetrality functions that we use here are (2.3.2.3) and (2.3.2.4) for pY-unfolding

with equality of the moduli of austenite and martensite, where k, = = X ~ = 0.1m3
. Ma— My

°K/J (Ivshin and Pence, 1994 b). Thus, all the three paths are inside domain d, for any

€ > 1 and the directions (derivative Z—Z ) of all the points on the three paths are confined

to the open cone zone S. The envelope functions used here are linear piecewise defined as

the following:
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0, vV BsM,
& _|B-M, V M,SB<M 5.3.0.1
max(B)-<M’_Mfr fSB s (...)
1, VB2M,

[0, V BsA,
& _ B4 A.<B<A 5.3.0.2
m,n(ﬁ)—-1A!—A’, s B f. (...)
1, VB24,

Based on the definitions (4.2.1.1) to (4.2.1.4), the functions 0, (T, T), & A(T,T),
o, (t,T) and a,(t,7) can be found by substituting (2.3.2.3) and (2.3.2.4) into
(5.3.0.1) and (5.3.0.2). It is then desired to determine phase fractions {£ , £, E,} at the
end point (t, T) = (0, Mf) on the three paths, each as a function of 2. A mathematical
reduction leads to complicated integral expressions that can formally be integrated with
the help of either handbooks or symbolic algebra. Numerically, these phase fractions for
different values of Q are found and given in TABLE 7. Since path [, and path /5 are sym-
metric with respect to T-axis, so that the values of £, and &_ corresponding to path /5 and
path /3 switch each other. These results also confirm that §, is path-independent, §, and

E_ are path-dependent in transition type (TT2).
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Figure 22. Three paths /,, I, and /5 go from (1, 6) = (0, M) to (0, Mp) in the path-dependent
zone of transition type (TT2) with initial condition {£_, &, &,}=(0, 1, 0}. Transition type
(TT2) occurs on all three paths. Path /; consists of two straight segments which meet at
point pzdﬁ(Ms—Mf), %(Ms + Mf) ). Path /5 is similar. The phase fractions £_and
E, are path dependent while £, is not. The values of the triple {£, £, £, } at the ends of the
three paths are listed in TABLE 7.
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TABLE 7. Phase Fractions at the End (0, Mp) of the Three Paths: I, I, I3

1 {0.5,0,0.5} {0,0, 1} {1,0,0}

1.01 {0.5,0, 0.5} {0.036752, 0, 0.963248} {0.963248, 0, 0.036752}
1.1 {0.5,0, 0.5} {0.120019, 0, 0.879981} {0.879981, 0, 0.120019}
1.5 {0.5,0, 0.5} {0.250921, 0, 0.749079} {0.749079, 0, 0.250921}

2 {0.5,0,0.5} {0.319921, 0, 0.68009} {0.68009, 0, 0.319921}

5 {0.5,0,0.5} {0.430292, 0, 0.569708} {0.569708; 0, 0.430292}

20 {0.5,0,0.5} {0.482665, 0, 0.517335} {0.517335, 0, 0.482665}

100 {0.5,0,0.5} {0.495634, 0, 0.503466} {0.503466, 0, 0.495634}

1000 {0.5,0, 0.5} {0.499653, 0, 0.500347} {0.500347, 0, 0.499653}

20000 {0.5,0, 0.5} {0.499983, 0, 0.500017} {0.500017, 0, 0.499983}
oo {0.5,0, 0.5} {0.5,0,0.5} {0.5,0,0.5}

5.4 Discussions on the Solutions

The phase fraction evolution for different transition types obtained in section 5.1 are
suited to the X-unfolding, pY-unfolding and Y-unfolding. Because different nuetrality

curves produce different responses to the envelope functions, the phase fraction evolution
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in X, pY and Y-unfolding could be different corresponding to the same transition types
and the same thermomechanical circumstances. Obviously, in £, both of the X- and pY-
unfolding generate the same results for the phase fractions because the nuetrality curves
for the two unfolding are identical in Q, . However, for the Y-unfolding, since the detwin-
ning flow and finish are independently specified, the description of phase transformations
Ao M, int<0Oand A & M_ in 1> 0 are different from the description of the other two
unfoldings. Predominantly, the Y-unfolding decreases stress ranges of existence of M, in
T <0and of M_in T > 0, which is caused by the smaller detwinning flow and finish
stresses T, and T¢ found in the experimental literature compared to the “natural values”
associated with the X- and pY-unfoldings.

All phase fraction solutions are determined in an infinitesimal time interval where only
one of those transition types occurs. Chasing a given state path in (T, T)-plane, phase frac-
tions vary in one transition type for a segment on the path, and then may change to another
transition types for the following segment on the path. All the three phase fractions {£_,
Ea, &, ) are path-independent for transition type (TT1), (TTS5) or (TT6), which means that
they can be uniquely determined at a point in (T, 7)-plane provided initial conditions are
given. In addition to this, €4 in (TT2), & in (TT3) and &, in (TT4), which represent con-
sumed phases in each of the three transition types, are path-independent. On the other
hand, phase fractions of transformed phases & /€, in (TT2), Eo/E. in (TT3) and /L, in

(TT4) are path-dependent in the areas as shown in Figure 20 and Figure 21.



6 BEHAVIOR OF THE MODEL

After a careful discussion on the algorithms and associated studies, we now turn to
view the macroscopic thermomechanical behavior of the two variant model by considering
some numerical simulations. We emphasize that these simulations are only suited to a case
of one dimensional behavior for a material containing only austenite and two martensite
variants. This could include a compatible twin structure that is imagined as a symmetric
lattice structure in which one lattice is sheared in one direction and the corresponding lat-
tice is sheared in the opposite direction. Phase transformation occurs between austenite
and martensite variants in £, , and detwinning occurs between the two symmetric marten-

. . A+ -
site structures in £, and ;.

6.1 Isothermal Behavior

In this section, we are going to confine all simulations for isothermal mechanical pro-
cesses. This includes isothermal loading/unloading at high (above Af) and low (below Mﬁ
temperatures, in which pseudoelastic and shape memory behaviors will be generated.
More than this, certain loading/unloading processes at some temperatures between A¢and
Mg are also considered. Further, internal hysteresis loops will be conducted at the end of
this section.

All the simulation parameters are taken from TABLE 2 of Section 2.5 except

98
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p, = 4.0x 10* and My = 25X 10* MPa are going to be employed here. In particular,
M, < A, for this material. The phase diagram used here is Y-unfolding. The envelope func-

tions are the piecewise forms of one argument as given in the following,

0 5<Mf
- B-My -

Cprga(B) = 2(l-cos(M’_Mf)n) M, <BSM,, (6.10.1)

1 B>M,

0 B<A,

_ 1 B—As

0pin(B) = i(l—cos( rye A,)n) A,SBsA, (6.1.0.2)

1 B>A,

6.1.1 Pseudoelastic Behavior

Pseudoelasticity occurs when loading in the high temperature austenite phase gener-
ates biased martensite, subsequent unloading causes complete reversion of the biased mar-
tensite to austenite provided T > A¢ This kind of behavior has been investigated in many
works, such as by Fu, et al. (1993), Ivshin and Pence (1994 b), etc.. Here, as one of many
basic features of the two variant model, pseudoelastic behaviors in both tension and com-
pression at test temperature T, = 335 °K are given in Figure 23. Three such behaviors at
three different test temperature levels: T, = 315 °K, T, = 325 °K and T, = 335 °K are pre-
sented (calculated by Mathematica) in Figure 24 for T > 0. In each complete hysteresis
loop the lateral slopes are different because of the different moduli of austenite and mar-

tensite.
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Figure 23. Pseudoelastic behaviors in both tension and compression conditions at test
temperature T, = 335. In © > 0, A e> M_ processes are involved with the loading/
unloading, while, in T < 0, A ¢> M_ processes are involved with the opposite loading/
unloading.

T (MPa) 1 1

o
600 315 °K 600 325°K 600 357K
500 500 500
400 00 0
300 300 300
200 200 200

100 100 100

0.02 0.04 0.06 ¢.08 0.02 0.4 G.06 0.08

Figure 24. Pseudoelastic behaviors for M, < A; at different temperature levels: T, = 315,
325, 335 °K, all of which are greater than A= 308 °K.

Since M, < A; for the material considered here there is dead zone between the flow

stresses of A— M, and M, —> A (Figure 27). The height At of the dead zone at test
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temperature 7, is determined by the following formula,

T 2(A,-M,) _

(6.1.1.1)

Here (2.4.2.2) gives k, = 0.144 m3°K/J, k, = 0.362x 10~ m?°K/(J MPa) for this par-
ticular material. Since k; > 0, it follows that the height AtT of the dead zone decreases with
test temperature T, increase and vice versa for T, > A¢(see Figure 24). The reason for this
phenomena in the present model is that p, #p,, through parameter k; determined by
equation (2.4.2.2). In the special case of equal shear moduli (u, = H,,), one finds k; =0,
which indicates that A" = 2(A,-M,)/(2 Jic-l ).

Comparing with the other models, this one is similar to Falk’s model (1980) but is
much more general. In Falk’s energy model, forward transformation A — M happens
along the top dashed line when the applied load reaches the maximum of the left ascend-
ing branch (elastic loading of austenite) of the load-deformation diagram (Figure 25). The
reverse transformation M — A occurs along the bottom dashed line when the unload
reaches the minimum of the right ascending branch of the same diagram. Consequently, a
pseudoelastic hysteresis loop is formed between the ascending branches and the two
dashed lines, which indicates the energy dissipation during the process. The present
model, which can cover all the above description if one treats the top and bottom dashed
lines as the same as top and bottom bands, can generally describe the deformation related
to both phase transformation and elasticity simultaneously. In addition, the height At
decfease with temperature increase could reflect some experimental measurements such as
those illustrated in the work by Funakubo (1987). This trend is also predicted by Landau-

Devonshire’s model (Muller and Xu, 1991), for which the load-deformation diagrams in
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different temperatures are shown in Figure 26. However, in Muller and Xu’s work (1991),
an opposite phenomenon was observed experimentally, which shown the loop height
slightly increases with the temperature increase. Therefore a corresponding ﬁlodel was

suggested to describe this in their approach.

AP

Figure 25. By Falk’s model (1980), austenite transforming to martensite occurs at the
highest point on the left ascending branch (top dashed line) upon loading. The reverse
transformation, martensite to austenite occurs at the lowest point on the right ascending

branch upon unloading.

P

P
P
A A A
T| Tz T3
» d » d » d

o o o .

Figure 26. By Landau-Devonshire’s model, load-deformation diagrams in three different
temperatures (7} < T, < T3) show that the heights of the hysteresis loops decrease with the
temperature increase.
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6.1.2 Internal Hysteresis Loops

Internal hysteresis loops are an important behavior. For the specified material with M,
< A,, we will study how the internal hysteresis loop is conducted in the present model. In
particular, we retrieve the resﬁlts similar to those of the work by Ivshin and Pence (1994 b)
from their one variant investigation and in so doing provide a mathematical treatment of
an intensity filtering phenomenon.

For illustration we employ the pseudoelastic behavior at test temperature T, = 335 °K
> Ay (Figure 27). The A—> M, and M, — A start stresses are denoted as TAM(T,) and

tMA(T,) respectively, so that the top band and bottom band of the dead zone are defined by

_ky+ [k -8ky(M, - T))

tAM(T‘) _ -
2

(6.1.2.1)

MA

3
~k,+ ,Jki-4k, (A -T
MAqy = h «/1 2(A; r)’

2k,

(6.1.2.2)

respectively. With respect to Figure 27, loading from pure austenite to point a (above the
stress T= TAM(T,) but below the stress at which the A — M transformation is complete)
gives a mixed state of A and M. Then unloading remains elastic until point b on the bot-
tom band. The slope value of this unloading portion from a to b is between that of elastic
austenite (on the left side) and elastic martensite (on the right side) because the material
state is a mixture of austenite and martensite (in general p, > p,, ). Further unloading
from point b leads the curve to point c, during which process M, — A occurs. Point ¢
coalesces with point f if the unloading is large enough to cause M, — A to go to comple-

tion.
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If reloading from point b, then the curve goes back elastically to point d on the ;ame
track as the unloading. This would be followed by A — M_ processes during loading to
point e. Point e approaches point g if the loading causes A — M, to go to completion.
This is a behavior different from the plastic hardening in which reloading from point b will
return elastically to point a.

On the other hand, if reloading from point c, then the behavior is elastic to point h with
a mixture state of austenite and martensite inherited from point c. It then travels from h

toward g monotonically during which A - M occurs.

top band

bottom band

>y

Figure 27. A dead zone between the top and bottom bands in the stress-strain diagram is
illustrated. This dead zone corresponds to the portion between points 2 and 3 in the phase
diagram. Points f and g correspond in stress-strain diagram to points 1 and 4 in the phase
diagram. The intemal loop formation condition is that unloading has to reach the bottom
band and loading has to reach the top band shown as a-d-b-c-h path.

It is conspicuous from the above analysis for the material obeying M; < A, that for-

ward transformation A - M ,,' can only occur once the load reaches the top band T =
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‘rAM(T,). The reverse transformation M, — A can only occur once the unloading reaches
the bottom band t = ™A(T, ). Any loading/unloading wholly between the two bands is
conducted elastically at the modulus associated with the mixture. Consequently, a neces-
sary condition for a an internal loop formation is that a cycling load has to have the maxi-
mum load larger than the top band and have the minimum load smaller than the bottom
band. This is different with the model made by Muller and his colleagues (1991, 1993), in
which the internal transformation is governed by a straight line connecting the martensite
start stress and the austenite start stress in the stress-strain hysteresis loop. Another
approach by Tanaka et al. (1994) involves internal transformation that is governed by two
curved lines, one of which is connected with the martensite start stress and controls trans-
formation A — M for loading internal paths. The other is connected with the austenite
start stress and controls transformation M — A for unloading internal paths. The reason
for the curved internal transformation lines is that they believe that the formation of the
internal loops (subloops) depends upon the prior transformation through the dependence
of internal transformation stresses on the transformation history. In the present model, the
evolution of internal loops depends on the transformation history but the internal transfor-
mation stresses are taken as constants which implies that the phase diagram is fixed.

It can be also shown with the present model that, if loading from pure austenite state to
a point above the top band, again say, point a, is followed by unloading to any point above
point d, then oscillating the load in a small domain around the selected point will eventu-
ally eliminate all austenite phase and end up with pure M, phase. Similarly, an oscillation
of loads in a small domain around a point on or below the bottom band will eliminate all
the M, phase and end up with pure austenite phase A. This concludes that the top and bot-

tom bands work, in a certain sense like, a phase filter to sift austenite A and M, variant
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respectively when the specified oscillating load is applied away from the two bands.
Finally oscillating around a point between the bands will gi\}e convergence to a mixture
state that is independent of initial conditions. This phenomenon is connected with the

infinitesimal loop behavior discussed in Ivshin and Pence (1994 a).

TQ——C:C ; \ . —

325°kAr A, M, M; o 0.0 0.04 006 o008 Y

Figure 28. The stress-strain trajectory approaches a stable internal loop in the stress-strain
diagram with oscillating scope of stress between points a and b (between ™ and ¢ in
stresses) in the phase diagram.

As a simulation result, an internal saturated hysteresis loop (Figure 28) is obtained at
T, = 325 °K under three cycles between 1 = 160 and ' = 560 MPa in stress. It can be
observed from Figure 28 that the internal loops drift to the right with respect to the origi-
nal one, and quickly approach a firm position. This corresponds to a tendency that strains
in a same stress level may initially vary with the cycle number, but then quickly settle to a
stable internal loop after several cycles. We are going to prove this point in the following

for a stress oscillation T < T <" where t° < ™A and 7 > ™M as shown in Figure 29.
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Figure 29. Cycling loads are applied between T = T° < ™A and T = ¢ > ™M at test
temperature T > A, to form internal hysteresis loops. It can be seen that the top and bottom
bands are covered inside the cycling range.

It should be noted that T > Arand t > 0 imply that E_= 0 so that only transformations
A& M_ are involved in the particular loading/unloading process. Based on equation
(4.3.2.3) the right-shear martensite phase fraction is generated for A — M_ when the

stress increases between T =M and T = ' MPa,

6y

N

Here (§ A)(_) = 1 andp (=], 2, 3, ...) indicates the point numbers on the lower stress line at

Joa, - (6.1.2.3)

1= 1° MPa. Since all the points n-1 are on © = ™ < ™A, it follows that all the values of
(op +)n-l = 1. Based on equation (4.2.2.3) the austenite phase fraction is found as the

following for M, — A when the stress decreases between t=tA and 1=,
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(8.,

IEICTN

Ea =1 (1-a,,), (6.1.2.4)

here n (=1, 2, 3, ...) indicates the point numbers on the upper stress line at T = 426.6 MPa.
Since all the point n are on T = 426.6 MPa > 7AM, it follows that all of the values of
(0t,), = 0. Thus the values of §, at each top peak for T = 7 are
(§+)n =1- (&A)u_1 /(aM)ll while the values of &, at each bottom peak on T = 1> are
(§A)n = 1—(§+)n(l-(a+A)n). Since a,, is simply a function of T and 7T, all the
(cy,), are equal, as are all (a+A)n. For convenience, let (a,,) = # and ((1\,,\)n =y
(n=1,2,3,...andn=l1,2,3,..). Therefore, the M, phase fraction at point n on T = t' can

be written as

), = LZ (uv)"“](éo,. (6.1.2.5)
i=1

Since the cycling load/unload conducts an incomplete transformation for both forward and

reverse transitions A «> M, , we have 0 < i, v <1. Thus (6.1.2.5) converges to a limit

_ &), _1-Ju

T l-uv  1-w’

(E,).

(6.1.2.6)

which is larger than (§ ,)] . By (6.1.2.4) and (6.1.2.6) the austenite phase fraction on T = g

converges to a limit

1-Ju

1-uv

(Ba). = 1- (1-v). (6.1.2.7)

The overall strain expression based on (2.1.0.2) can be rewritten,
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T T T .
y= e[y, 6.1.2.8
(HM Ha )E""' ( )

for this particular loading/unloading condition. Thus the strain converges to fixed values
on both top and bottom peaks of the cycling which means that the internal loops in this
example move to the right and approach a saturated position. The “right move” tendency
corresponds to a situation for phase transformations that more martensite (or twins) is
(are) generated during the cyclic load before the saturation is reached. This is similar to

the softening feature of materials under high temperature creep.

6.1.3 Shape Memory Effect and Isothermal Behavior below A,

Shape memory effects occur when the alloy is deformed into a biassed martensite
phase and does not revert to a self-accommodated morphology upon unloading. Its initial

shape is recovered when heated into the stable austenite regime, and then cooled back to

the original temperature.
A‘t (MPa)
200} Loading -
150
unloading
100} -~
50}
200 0.02 0.04 ke =7
Y 7CK)

Figure 30. Shape memory effects occur during loading-unloading-heating-cooling
processes.
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Here the test temperature of loading/unloading T, = 200 °K which is below My (= 235
°K). After unloading the temperature is then increased to Ay The initial phase fraction
condition used in the present case is obtained by decreasing the temperature from above A¢
to thé test temperature under a free-stress situation (CFAF), thus it is random martensite
= {0.5, 0, 0.5}. Upon loading (Figure 30) equal elastic deformation occurs in the two mar-
tensite variants for stress below the detwinning flow T,=150 MPa. This is followed by a
detwinning process M_ — M_ which involves the migration of twinning interfaces within
the two martensite variant mixture. This kind of motion of twinning interfaces needs grad-
ual increases of external driving forces to overcome the interface resistance to motion.
This process is complete at T = T Further loading then involves pure elastic behavior of
the fully detwinned martensite (M, ) (the tail part on Figure 30). Unloading from the max-
imum stress point fo a stress free condition makes the stress/strain relation track on a lin-
ear path with the martensite modulus as the slope. This gives a residual strain equal to the
phase transformation strain upon unloading to zero stress. Heating the specimen to the
temperature Ay transforms M, — A and so eliminates all the residual strain. Cooling

again gives random martensite and so leaves the strain unchanged.
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Figure 31. Two different procedures recover the residual strain. (a) shows the residual strain
recovered upon heating, (b) shows that the residual strain can be recovered by further
unloading. Here the test temperature is 301 °K during the loading/unloading process and the
original phase fraction is § = {0, 1, 0}.

In general, the residual strain associated with unloading is caused by certain special
martensite variants remaining, and it can be recovered upon heating to above Az Discus-
sions related with this issue have been conducted by either experimental measurements
and theoretical approaches (Funakubo, 1987). In addition, the present model not only
gives strain annihilation by heating/cooling (as just shown) but also illustrates that the
residual strain can be recovered by “further unloading”. Here the unloading is always with
respect to loading, for example, at certain temperature levels, increasing the stress causes
A — M_ to become active, which is the loading process. In the opposite, decreasing the
stress causes M, — A to become active, which is the unloading process. When the stress
returns to zero, process M, — A may or may not be complete. The complete case com-

ports to pseudoelasticity while the incomplete case remains at residual strain. Based on the
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present model, any such remaining strain can be recovered by heating and cooling (ato b
in Figure 31. (a)). Conversely, further unloading, which means continuous decrease of the
stress to negative values, is an alternative way to either complete or partially complete the
process M, — A (ato b in Figure 31. (b)). Actually, this further unloading is an opposite
loading with respect to the loading of increase stress, which is favored for the growth of
martensite variant M_. Thermodynamically, this corresponds to a situation for which the
energy barrier for phase transformation M, — A is smaller than that of detwinning
M, — M_ in the temperature range between Arand T (see section 2.6). A similar condi-

tion is held for M_— A when stress increases to a positive value smaller than 1

i (MPa) 4‘ (MPa)
“00 285 °K 400 275 °K
300
300
200
200
100
100 . a
_ay 0.02 0.04 0/06 -7
0.02 0.04 1506 0.0 -100 é
-IOOCP" 3
(a) ®

Figure 32. The residual strains are recovered by further unloading (a = b — c¢). The
plateau of the transformation A — M decreases with the test temperature decrease. In the
opposite, the yielding plateau of the reverse transformation M_ — A increases in the

negative direction of the T-axis as the test temperature decreases.

To demonstrate this phenomenon, consider an example with a initial condition {&_, &,,

£.)=({0, 1, 0} at test temperature T, = 301 °K below A(=308 °K). Two stress/strain behav-
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iors are obtained for the residual strain recovery by either heating or by Mer unloading
(Figure 31). If the test temperature is now decreased then the stress/strain profiles move
down along t-axis (Figure 32). This Bauschinger effect type of phenomenon can be
observed in a certain test temperature range (Figure 32 (a)), which is a concept from clas-
sical plastic theory to reflect an experimental observation that, after a certain amount of
forward plastic deformation in tension or compression, ;he material yields at a lower stress
when the direction of loading is reversed than for continued forward deformation.

Ferroelastic behaviors (Bondaryev and Wayman, 1988) are simulated at test tempera-

ture T, = 200 °K with initial condition & = {0.5, 0, 0.5} (Figure 33).

100

0.02 0.04 0,06 Y

100
225 - — — M 200

Figure 33. Ferroelastic behaviors in both tension and compression conditions at test
temperature 7, = 200. In T > 0, M_— M _ process is involved with the transformation,

while, in T <0, M_ — M_ process is involved with the transformation.

In addition to pseudoelasticity and shape memory, there are other isothermal behaviors
between A and M of interest. Since the initial conditions have a large effect on the ensu-
ing stress/strain relation associated with loading and unloading, in the following we will

show two groups of graphics regarding the two kinds of initial conditions CFAF and
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HFMF introduced in Section 2.5. Recall that CFAF is obtained by cooling the temperature
from above Ay to the test temperature, which corresponds to an initial condition of maxi-
mum austenite (Figure 34). The other (HFMF) is obtained by heating the temperature
from below My to the test temperature, which corresponds to an initial condition of maxi-
mum equal amount martensite (Figure 35). It is noted that the model allows for transfor-
mations M_— A to occur in T > 0, and also allows for transformation M, — A to occur
in T < 0. Increasing the stress to cause M_— A in T > 0 could be regarded as further
unloading with respect to decreasing the stress (loading) to cause A — M_ in T <0 at the
same temperature level. A similar discussion for M, = A to occur corresponding to

decrease the stress in T < 0 can be arrived too.
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Figure 34. Initial conditions are obtained by cooling the temperature from above Ay to the
test temperature in a stress free circumstance (CFAF). General features of the
transformation process for loading/unloading were described in Figure 14. In (a) the initial
condition is {0, 1, 0}. 1 — 2: austenite elastic deformation; 2 — 3 : phase transformation
A—->M_; 3-4: M, elastic deformation; 4 — 5: M, elastic unloading; 5 — 6: partial
- reverse transformation M, — A which gives a certain amount of residual strain left at the
end of the unloading. In (b) the initial condition is still {0, 1, 0} because 270 °K > M, (=263
°K). 1 = 2 = 3 = 4: conduct the same deformation mechanism as those segments in (a)
correspondingly; 4 — 5 : M, elastic unloading. In (c) the initial condition is {0.013S, 0.973,
0.0135}. 1—2: phase transformation A - M_; 2 —3: combined transformations
A->M_and M_— A;3—>4:detwinning M_— M _; 4 -5 5: M, elastic deformation;
5 = 6: M, elastic unloading. Since the phase fraction of M_ is small, there is no significant
change in segments 1 -2, 2 = 3 and 3 — 4. In (d) the initial condition is {0.222, 0.556,
0.222). 1 > 2: phase transformation A -5 M +3+ 2 3: elastic twinned martensite;
34: detwinning M_ > M_; 4—55: M, elastic deformation; 5 — 6: M, elastic
unloading. In (b), (c) and (d) the residual strains are the phase transformation strain y‘.
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Figure 35. Initial conditions are obtained by heating the temperature from below M to the
test temperature in a zero-stress condition (HFMF). General features of the transformation
process for loading/unloading were described in Figure 15. In (a) the initial condition is
{0.2801, 0.4397, 0.2801}). 1 — 2: phase transformation M_— A; 2 — 3: elasticity of
combined austenite and right-shear martensite; 3 — 4 : phase transformation A = M ;
4 - 5: M, elasticity; 5 — 6: elastic M, unloading; 6 — 7: partial reverse transformation
M — A upon continuous unloading which gives a certain amount of residual strain left at
the end of the unloading. In (b) the initial condition is {0.5, 0, 0.5} which is also the initial
conditions for (c), (d) and (e). 1 — 2: fully twinned martensite elasticity; 2 — 3 : phase
transformation M_— A; 3 —54: elasticity of combined austenite and right-shear
martensite; 4 — 5 : phase transformation A = M _ ; 5 — 6: M__ elasticity; 6 — 7: elastic
M, elastic unloading. In (c) 1 — 2: elasticity of twinned martensite; 2 — 3 : combined
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phase transformation M_— A and A = M_; 3 — 4: phase transformation A - M ;
455 and 6 > 7 are similar to 556 and 6 > 7 in (b) respectively. In (d) 1 5 2:
elasticity of twinned martensite; 2 — 3: combined phase transformation M_— A and
A->M,_; 354: detwinning M > M_; 455 and 5—6 are similar to the
corresponding sections in (c). The only difference of (e) with (d) is that there is only one
section to conduct detwinning M_— M +» Which is 2 3. In (b), (c), (d) and (e) the
residual strains left are phase transformation strain .

6.1.4 Load Cycling and Saturation

Based on the present model, saturated hysteresis loops usually occur in dual direction
transformations where two or more phases compensate each other and eventually reach a
balanced state of associated phases for the oscillating load process. This behavior, for
example, was observed in the process A <> M at high temperature oscillating of loads in
Section 6.1.2. A oscillated stress-strain behavior with 0 £t < 150 (MPa) is simulated at T
=270 °K < A, (Figure 36). In this process with HFMF initial condition (§ = {0.5, 0, 0.5}),
all the three phases M_, A and M, are involved in different periods. Since the oscillated
load is operated in 1> 0, M_— A and A — M, occur during loading while only elastic
relaxation takes place in the mixture state during unloading. M_ phase is roughly devoured
out after the fourth cycle, while A phase remains until the tongue-shape response reaches
the far right lateral straight line (Figure 36 (b)). There is no stable saturated loop because
there is no phase compensation in the unloading process. The yielding point on the outside
profile (the same with Figure 35 (c)) is higher than the internal yielding points. This is
because there is no austenite involved with the transformation at the very first loading so
that the yielding does not occur until the path hits the nuetrality curve A;.. This triggers

M_— A which then supplies austenite for the immediate A — M_ process. Since austen-
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ite has been generated during the first cycle, the yielding occurs at lower stress in the fol-
lowing cycles as shown in Figure 36. The phase fraction distributions at the beginning of

each cycle are listed in TABLE 8. The austenite reaches its maximum value right after the

first cycle.
T ) T=270°K
12 3 4
150
t
! - T (MPa)
o A 0*
T=270°K
1 2 3/
- - Y
0.01 0.02 0.03 0.04 0.05 0.06 0.0'P
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Figure 36. Isothermal response (b) under cyclic loads (a) at test temperature T = 270 °K (M,
< 270 °K < A,). The initial condition is from HFMF with £ = {0.5, 0, 0.5}. The outside
profile is the same with Figure 35 (c). M_— A and A = M_ occur upon loading while
elastic relaxations in mixture phase states occur upon unloading. M_ phase is roughly
consumed out after the fourth cycle. Austenite remains until the tongue-shape stress-strain
response reaches the far right lateral straight line of the outside profile.
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TABLE 8. Phase Fraction Distributions

1 {0.5000, 0.0000, 0.5000}
2 {0.1012, 0.3403, 0.5585)
3 {0.0205, 0.2940, 0.6855}
4 {0.0042, 0.2084, 0.7874)
5 {0.0000, 0.1414, 0.8586}
6 {0.0000, 0.0935, 0.9065}
7 {0.0000, 0.0617, 0.9383}
8 {0.0000, 0.0407, 0.9593}
oo {0.0000, 0.0000, 1.0000}
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6.2 Differences between Loading-Cooling and Cooling-Loading Paths

According to Duerig, et al., 1988, “For reasons which are not entirely clear, plastic
deformation will occur below the martensitic yield strength in many materials if one
aﬁplies the load while cooling through M,” (pp. 183-184). We now show that behavior of
this type arises naturally in the present model. The essential feature of this argument were
presented in the approach by Wu, Pence and Grummon (1996). In particular we consider
two routes for obtaining oriented martensite (M,) at a low temperature and high stress
beginning from stress-free austenite at high temperature. Here the high temperature is
taken to be T=325 K (> Ap and the low temperature is taken as T = 225 °K (< Mﬁ. Vari-
ous final values of stress T; will be considered. For each such stress value, one of the two
routes involves loading at T = 325 °K from T =0 to T;, followed by cooling at T =1; from T
=325 °K to T = 225 °K. The other route involves cooling at T=0 from T=325°%K to T =
225 %K, followed by loading at T =225 °K fromt=0to ‘ri.' We refer to these two routes as
loading-cooling and as cooliné-loading paths respectively (Figure 37). In all cases the
final phase fraction state is martensitic: {€_, &4, &,} = (€., 0, &, }. However for a certain
range of T, namely T < T one obtains that the value of €, generated by the loading-cooling
path is greater than that generated by the cooling-loading path.

The envelope functions to be used in the following are of the forms (6.1.0.1) and

(6.1.0.2). All the material properties are given by TABLE 2 of section 2.5.
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Figure 37. Two groups of driving paths starting at point (0, 325) on T-axis with initial
condition {0, 1, 0} go to point (20, 220), (40, 220), (68.9, 220), (110, 220), (150, 220), (160,
220), (170, 220), (180, 220), (190, 220) respectively.

Following the above two kinds of driving paths the model predicts a natural path-
dependent phenomenon of shape memory materials. In the loading-cooling paths, the
loading portion triggers trivial (TT4), so as to only conduct austenite elastic deformations,
and the cooling portion triggers (TT2). Since T > 0 transformation A — M occurs earlier
than A — M_ upon cooling, therefore, at the end of the driving path the phase fraction £,
is larger than phase fraction &_(and £, = 0). There is a critical stress T (= 13) that is the ‘

intersection stress between nuetrality curves Mg, and M, :

.=t —K) + J(ky ~K)” + 4ky(M, - M)

7%, (6.2.0.1)

For the present parameters used here (TABLE 2 of Section 2.5), this critical stress T =
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689 MPa. If 1; < 1, then further cooling to temperature 220 °K will generate both of the
martensite variants. If the stress surpasses T~ during loading, then further cooling to tem-
perature 220 °K will generate 100% M, martensite ({0, O, 1}) because transformation
A — M_ upon cooling can only be conducted in a stress domain [0, 7)int>0.

In the cooling-loading driving paths, (TT2) is triggered by the cooling portion and
(TTS) is triggered the loading portion. Cooling from temperature 325 °K to 220 °K along
T-axis is a self-accommondated process, so as to produce an equal amount of the two vari-
ants of martensite. Then loading at temperature 220 °K will only cause elastic deforma-
tions of this equal self-accommodated martensite until the detwinning flow stress ;.
Increasing the stress beyond T, then induces the detwinning process M_ — M _ .

The unequal final amounts of the phase fractions of the martensite variants produced
by the two different kinds of the driving paths are illustrated in Figure 38. On the other
hand, since the loading-cooling paths generate more M, if T < T, they give a larger defor-
mation than the cooling-loading paths. In other words, the first process of loading-cooling
only generates an elastic deformation in the austenite. The following process (cooling)
generates a deformation associated with phase transformation A — M, which is larger
than the elastic deformation. However, following the cqoling—loading driving paths, there
is no deformation in the self-accommondated cooling process. The loading portion then
will only generate an elastic deformation of martensite before the stress reaches the

detwinning stress T,.
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Figure 38. Phase fractions of the martensite variant M, upon driving paths of loading-
cooling (upper point plot) and cooling-loading (lower point plot). Here 1 =689, T, =150
and ;=200 MPa.

6.3 Comparison with Other Models

In Brinson’s approach (1993) martensite phase fractions are distinguished as stress-
induced martensite Md (favored at a specified stress) and thermo-induced martensite M ',
the latter of which is regarded as self-accommondated. This contrasts to the model under
consideration here in which the martensite phase fractions are distinguished in terms of
variant structures. Note, however, that a connection between these two viewpoints is estab-
lished by grouping our minority variant with an equal amount of the majority variant to
obtain a self-accommondated martensite structure that can be identified with Bekker and
Brinson’s thermo-induced martensite. Then the excess majority variant is identified as

purely stress induced martensite. That is, one takes
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E-n = 2mi”(§+' g-) ’ &d = §+ + E.v- = gt . (6-3-0-1)

To illustrate this transformation, we define two sets of portions of all state paths. The
first one P, is a set of all portions of the state paths along which the relation §, > &_is held.
The other one P. is a set of all portions of the state paths along which the relation &, <& _is
held. If a state path or part of the state path belongs to P, following it M is the majority

variant, so that
&= 2§ 8a=8&:-&, (6.3.0.2)
or in the reverse forms
§ =842, & =84+&/2. (6.3.0.3)

The governing equations corresponding the above situation for all the six transition

types, in terms of &, and &, are:



125
(TT1):

d_§: _ & )d_a-A d_ad _ 1( & )d_a-A_l(zéd"'gr)d_am
dt — \l-a,jdt *dt ~2\l-a,Jdt 2\l1-a,jdt

(TT2):

5: = _(l "21’ §,)%1A_, Z_?d'___ (1 -2%; gt)%!A-_(l -zi‘:: §t);?A+.

(TT3):

& _ _(l-gd“ét)fk By _ (1-54-5,)9A._ 1(2§4+§.)§gﬂ
dt ~ a, Jdt 'dt ~\ 2a, Jdt “2\l-a,jdt

(TT4):
do, d&&; 1 & \doxa (1-§,-8)doy,
1-o )_z ' dt ‘2(1-aA)'¢17 '( 20, )E
(TTS):
{l_a = k=18,
(TT6):

2- do
dé: ( — §t )_+A éd = l-—&,.
dt 1-a,,/dt

(6.3.0.4)

(6.3.0.5)

(6.3.0.6)

(6.3.0.7)

(6.3.0.8)

(6.3.0.9)
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The path-independent issue about the above symbolic description can be obtained by
expression (6.3.0.2) and the previous achievement in Section 5.1. Thus &4, _éd and &, are
path independent for transition type (TT1), (TT5) and (TT6), whereas only &, is path
independent for (TT2). Note now, however, for (TT3), where only &, is path independent,
that this is insufficient to give path independence for either &, &, or ;. A similar lack of
any path independent component &4, &, and &, occurs for (TT4).

It should be noted that the above equations or their solutions corresponds to a situation
that &, is rich. Following a continuous state path in the (o, T)-plane, the sovereign phase
between &, and & may exchange each other. If in some portions that &_is rich, one should
use another group of governing equations for the six transition types, which are modified

by the following relation based on the rule (6.3.0.1).

&=28, &=&-&, (6.3.0.10)



7 APPLICATION OF THE MODEL TO AN ACTUATOR
DESIGN

As illustrated in the previous chapters, shape memory alloys conduct many interesting
and useful behaviors under thermomechanical loads. One of these, shape memory, is pri-
marily responsible for many smart device designs. Actually, the shape memory effect is an
ability of a material to recover a significant inelastic deformation upon heating (Figure
30). This significant inelastic deformation is caused by either phase transformations
between austenite and martensite or martensite variant reorientations. Based on this kind
of deformation mechanism, functional thermomechanical devices are designed for various
purposes in different aspects. In the following we are going to model the behavior of a
potential reciprocal device, Two-Stroke Thermal Engine (TSTE), with the present two
variant model. This contraption is designed to carry out a reciprocal movement upon ther-
mal heating/cooling pulses controlled for example by an electrical signal. These trigger

austenite martensite transformations and martensite variant reorientations in the device.

7.1 Analysis on Basic Structure of TSTE

The TSTE is made of two identical SMA elements which are confined between fixed
frame constraints so that the overall length is constant. We use (I) and (II) to indicate the

left and right elements respectively (Figure 39). Normalize the two lengths of the two ele-
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ments by characteristic lengths which are taken to be the length of the element in a state of
stress-free austenite, séy, l; for the element (I) and /, for the element (II). Thermal expan-
sion effects are neglected. At any point in the operation, the strain in each element is
assumed to be uniform, and is due both to elastic stress and to transformation strains asso-
ciated with the phase variant state of the element, E! = { §f, §;, §i }and €l = {§F, gﬂ, §E }.
The phase fractions in each element obey the phase balance condition (1.2.0.1).

The reference configuration is obtained by the following three steps: (1) cooling both
elements to a temperature T, below M so as to transfer all austenite phase to random mar-
tensite phase, (2) stretching element (I) to a fully detwinned martensite phase (positively
oriented) and then releasing the force, (3) connecting the two elements by a thickless rigid
thermal isolation to form a interface between the two elements. This generates a stress-
free reference configuration with element (I) positively oriented and element (II) fully
twinned. The initial phase fractions corresponding to the reference state are El={0,0,1)
and E1 = {0.5,0, 0.5}.

The stress here is therefore regarded as a normal stress that is associated with normal
strain caused by the interface movement due to the thermal heating/cooling pulses. To
emphasize this feature we replace {7, v, u} by {c, €, E}. Therefore, we use o1 and o
(instead of Ty,p) to indicate the normal stresses in elements (T) and (II) respectively, and e* -
(instead of Y') to indicate the corresponding transformation strain. Since there is as yet no

external load to be carried, the stresses equilibrate: 6; = o = 0.
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Figure 39. Structure of the TSTE confined in a fixed frame.

We will always operate the detwinned element (operating element) by applying a heat-
ing/cooling pulse while the other random twin element (response element) is passively
driven due to the perfect interface bounding. Heating causes the oriented martensite to
transform to austenite so as to annihilates the detwinning strain, which then pulls on the
other element causing it to now detwin. Cooling the transformed austenite converts it to
random martensite while the other element, now detwinned, undergoes elastic relaxation.
Therefore, after a heating/cooling operation on one element, the states of the two elements
should exchange with each other. An ideal operation involves a perfect switch between the
two elements at the end of each operation. As we will see below, elastic deformation
causes a departure from the ideal behavior. The switching of the state of the two elements
supplies an initial condition for the following heating/cooling pulse on the other element.
Repeatedly inputting a temperature pulse to the current detwinned side will generate some
kind of cyclic response. In this study we want to characterize the limiting cyclic output. A
similar study has been conducted by Ivshin and Pence (1992), in which a limit cyclic

response of two-way shape memory effect was simulated when a laminated sample with
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residual stresses was considered. That study, however, only involved a one variant marten-

site model, and also did not involve alternating reciprocal action.

7.2 Deformation Consistency

The temperatures T} and Ty in the two elements are regarded as explicit input vari-
ables, while stress ¢, along with phase fractions §I and £, are treated as output variables.
Note since § = {&_, &4, £, } that there are totally seven output variables. The phase fraction
balance gives two equations: §' + §: + §l+ =1, §f1 + §H + §l+l = 1. There are two evolu-
tion equations governing the phase fractions §I for the element (I), and two governing gl
for the element (II). The particular evolution equations to be used for each element will
depend upon the transition type in action. So far there are six equations and seven
unknowns, which is not a well posed problem. The final equation comes from the con-
straint condition for the movement of the perfectly bonded interface which involves all the
input and output variables. This equation can be expressed as the following by setting the
overall displacement away from stress-free austenite equal to the original displacement

due to stress-free transformation strain in element (I),

L{ELELE Y {e e,  + {8 ENENY - {e g0} = e, (7.20.1)
where
g * 0 O .
€,€4 8} ={=—-€,=—, = +E ;. 7.20.2

The interface displacement from its original location is determined by
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8= l(e —{ELEEL} - {e,e0E,]), (7.2.0.3)

in terms of element (I), or

d= lz{EaEl, §2, 52} : {8-7 €y, €+} ’ . (7-2'0'4)

in terms of element (II).

Determinations of &I = {éf, §f4, §1 } and E = {Efl, §2, §l+l } depend upon the state path
(o, T) through transition type criteria and the evolution equations, where the temperature T
as an input is given, and the stress ¢ needs to obey equation (7.2.0.1). Therefore, the
imposed procedure is fully coupled. To solve this problem an initial judgement based upon
the input information has to be made for choosing the transition type or the particular evo-
lution equation for those phase fractions. This process will be seen in &e following sec-
tion.

Here, we only consider two elements with equal lengths in the stress-free austenite

state, ie., l; = I, = l. Thus, equation (7.2.0.1) along with equation (7.2.0.2) becomes
(E_ -€ )(é +§ )+ — E (§A +§A) +(— +€ )(§+ +§L') =¢. (7.2.0.5)
M A Ey

The linear piecewise envelope functions as shown in equations (5.3.0.1) and (5.3.0.2),
and the Y-unfolding derived in section 2.4.2 are going to be employed in the forthcoming

analysis.
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7.3 Heat-Cool Element(I): The First Stroke

In this section we will discuss the stress-temperature relation during the first heating/
cooling (the first stroke) on the element (I) with a the special initial condition §I ={0,0, 1}
and §n = {0.5, 0, 0.5}. The specialty of this initial condition is that, the operating element
which is under heating/cooling is fully detwinned, and the response element which is in a
constant temperature is in an even random martensite state. It will be seen that the initial
condition for the following stroke will be E_,n = {A,0, 1-A} and ﬁl = {0.5-A, 0, 0.5+A} with
A > 0. There are three processes in the heating and three in the cooling, which are distin-
guished by either different transformation type or the absence of a phase transformation.
Actually, the major displacement of the interface between the two elements is caused in
the heating portion. However, a small displacement recovery takes place in the cooling

portion.

7.3.1 Heating Process

We are now going to determine state paths (o, T1) and (G, Tyy) on the phase diagram.
The initial conditions of &! = {0, 0, 1} and E! = {0.5, 0, 0.5} give that initially A = 0. Heat-
ing element (I) causes the state path (o, Ty) for element (I) to increase up the T-axis from
the initial point (o, Tp) = (0, T, = My to the point (0, A,) while the state path (o, Tyy) for
element (II) stays at the initial point (0, Tyy) = (0, T, = My). In this process for Tj < A; there
is no movement of the interface between the two elements because of the absence of phase
transformations and the neglect of thermal expansion effects.

Heating 77 > A; in an infinitesimal temperature range [A;, Tli] (the corresponding

stress range is [0, ci]) initiates (TT1) in element (I), which increases the stress o in the two
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elements since the active M, — A makes element (I) shorter so as to drag the interface
toward the left (M_— A is inactive since §E = 0). An analytical solution for 7} and 6 can
be found for this process segment based on the length constraint (7.2.0.5) and the phase
evolution equations ((4.2.2.3), (4.2.2.4)) of (TT1) for the phase fraction §I (note the ele-

ment (II) is in elastic with a constant temperature T, so that §n ={0.5,0, 0.5}):

2E,(A;-A,)C

T, = A, +k,0+k,6° + L : (1.3.1.1)
Since the first derivative of (7.3.1.1) with respect to stress

dT 2EXE, € (A,-A

T by 2kyo b —oaouE By 4) (73.1.2)

. 2
do (EEp€ +(E, - Ep)0]

satisfies the (TT1) criteria (3.2.1.5) for do > 0 in the whole domain [0, ci], further heating
T; beyond this infinitesimal temperature range [A;, Tli] continues to trigger (TT1) in ele-
ment (), so that expression (7.3.1.1) tracks the response G until either the process goes to

completion or the stress G reaches the detwinning flow G,.
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o
-

Figure 40. The path segment ps, has three possibilities: 1, 2, 3, as shown in the above. Path
3 is the desired situation and approachable for many shape memory alloys, which will be
discussed in the following. '

The stress o inside the two elements increases, and may or may not reach the detwin-
ning flow stress o before the completion of M, — A in element (I). This implies that
continued T} increase will cause the state path (G, T) to follow a path of the form of either
path 1, 2 or 3 as shown in Figure 40. Simultaneously, the state path (G, Tyy) is horizontal in
the (o, T)-plane since the temperature Ty is held fixed in element (II). Useful device
response requires a situation where the M, — A process in element (I) is sufficient to
cause detwinning in element (II). This will happen if the elastic strains are insufficient to

relieve the original transformation strain, that is if the following requirement is satisfied
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£ > €4 +Ep (7.3.1.3)
where,
s _ O, s - O,
€y = EA’EM =E, (7.3.14)

The physical interpretation of expressions (7.3.1.3) and (7.3.1.4) can be viewed in Fig-
ure 41. Generally, the TiNi alloy gives € » €}, + €}, (Hou and Grummon, 1995), so that
continuous heating to trigger process M, — A will cause the stress G to surpass O so as

to initiate detwinning in element (II).

Figure 41. A physical interpretation for the condition that ensures that detwinning occurs
during heating in a stroke.

Condition (7.3.1.3) indicates that the state path (G, Tj) follows a path of the form of

path 3. Continued heating with T; > T, now triggers detwinning in element (II). Since the
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detwinning provides a softening process, the motion of the interface between the two ele-
ments will dramatically increase with this 77 > T, increase, which in turn, causes the state
path (0, T}) to veer away from the nuetrality curve A;, towards the nuetrality curve Ag,
which it encounters at point (03, T3). This process will be derived in the following discus-
sion.

The phase evolution equations ((4.2.2.3), (4.2.2.4)) for the phase fraction §I under
(TT2), the phase evolution equation (4.2.2.4) for the phase fraction §n under (TTS), along
with the length constraint (7.2.0.5) gives the following state path of ¢ and Tj for

G,<0<0j:

2E,(A,-A)G

T, = A, f(o, Tu)+k,c+k202+ :

) (7.3.1.5)

where,
BT
E E\c B(A ")+(EA—EM)0
fe, T, = = , (7.3.1.6)
E,Eye +(E,-Ey)o
and

(A;-A) M +k,G+k,07) + (A K, -A K)o
As-A+ (K -k)o

B(o, Ty = (7.3.1.7)
The parameters k'f and k_ in the above equation are determined by (2.4.2.1) and (2.4.2.3)
respectively in section 2.4.2.

This description holds until its intersection (03, T3) with the nuetrality curve A, .. Solv-
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ing Ty = Ap+k0+ k20’2 and (7.3.1.5) coincidentally gives

EEye (A;-B(0, Ty)) = (A;-A)(E,+Ey)0 (7.3.1.8)

for the intersection point. This implies that (0, Ty;) can reach A¢only if 6 — 0, which
does not occur in the present situation. Since (o, T';) is the nuetrality curve to describe
the detwinning process, element (I) does not fully detwin, ie. 63 <G, (Figure 40). In
addition, the phase fractions of the two elements at point (03, T3) are El={0,1,0) and EX
={4A,,0, 1-A, }. Continued heating with Ty > T; results in the path (o, T}) becoming ver-
tical due to stress that is maintained at 65 and the element (II) state path (o, Ty;) would
remain stalled at its endpoint (63, T,). Hence any heating beyond T35 does not contribute
any additional device actuation. It is also important to note that A, is unchanged during

the subsequent cooling process of the element (I).

7.3.2 Cooling Process

When cooling T} from T the state path (o, Tj) starts as a vertical line involving 6 = 03
since initially there are no transformations to relieve the stress. This persists until the ver-
tical element (I) stroke path encounters the nuetrality curve M, at point (G4, 74) where G,
= 3. Now further cooling will trigger A — M_ in element (I). This also gives elastic
relaxation in element (II) in a infinitesimal temperature range [T}, le] (the corresponding
stress range: [0y, o']). The relation between T1 and © can be found by use of the constraint
equation (7.2.0.5) and phase evolution equation (4.3.2.3) for E! (note that phase fraction £l

is unchanged in the form of §II ={4,,0, 1-A, } in this infinitesimal range),
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. 2
2E,c+E E, e (1-2A
Ty = M;+k0+ky0” + (M, - Mf)[ A __AM ( “)] (7.3.2.1)
E,Eye +(E,-Ey)o
Since the first derivative of expression (7.3.2.1) with respect to
dI|
(73.2.2)

2EA0+EAEMe (1- 2A)
[EAEM(-: +(EA—EM)0']

satisfies the (TT2) criteria (3.2.1.6) for do <0 in the whole domain [0, oj], further cooling
T; beyond this infinitesimal temperature range [T}, Tri] continues to trigger (TT2)
(A = M) in element (I). This indicates that the expression (7.3.2.1) applies to the cool-
ing procedure until the state path (o, T7) reaches the nuetrality curve M,_ at the point (Gs,
Ts).

Further cooling of temperature Tj below T triggers (TT2) in element (I) involving
both A—> M_ and A — M_ processes. Substituting phase fraction expressions (5.1.2.3)

and (5.1.2.4) for (TT2) into (7.2.0.5) gives

J. aA amM dctl dT, (iaaf\. daLy dT, do =
3_ toT, o | QL-E toT, do

1 n (Ex+Ey)o (E,-Ey)c
_F[I-Ags—AgS - 4 Ma - A M‘ (l FS A+aA.)
5 E E,¢c E E, ¢t

, (7.3.2.3)

where,
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AES = (ED)s—(&Ds,
Agll
5

aiw = 0,0, T) = (B"'(o', T - Mf)/(M:—Mf) ,

(§ )5 (§ (§ )4 (g )4 = 1"'2Aa,

oy = 0,6, T) = (B0, T-M))/(M,- M),

F 5= JaA+(05’ TS)/ ,/GA+(O'5, Ts)aA.(OSo Ts) =1 (u'A-(GS’ T5) = 1).

Taking the first derivative to (7.3.2.3) with respect to stress G generates

dT
P@©, T = 00, T +C - 2C,Job ol , (132.4)
where
E,-E
Cl - —i—.’ Cz A M.'
FSEMS EAEME
aA+ aA aaA+ aA+
rem -‘J aTl »J 9T, +C2° J [ o7, ,J aTl )’
I | 1 | ( 1 I 1)
oo Ty = [PAdn_ [Oadon o of and,  fondon
o I do 1 96 2 o c
aA- (IA+ \ aA-'- aA_ )

The state path (0, T7) in this portion is governed by the ODE (7.3.2.4) and the correspond-

ing initial condition: T‘Io . = Ts. The path segment starts at (0, 7) = (Gs, Ts). An
=05

important issue is the stress associated with cool-down to T = M. In the next section it is

shown that 6 = 0 at T = My so that this segment psq has the form shown in Figure 42.
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Figure 42. Six (o, Tj)-path segments and their connecting points related with the first stroke
(heating/cooling element (I)) are schematically presented in the phase diagram for ¢ > 0.

7.3.3 An Uniqueness Point for the Solution of the Equation (7.3.2.4)

In this section we will focus on the state path ps¢ as governed by equation (7.3.2.4). It
is shown that this path concludes at the point (0, My with o decreasing monotonically
from the initial value 6 = 05. The demonstration holds for the linear envelope functions
(5.3.0.1) and (5.3.0.2) and the constitutive functions (4.2.1.1) to (4.2.1.4), and the Y-
unfolding derived in section 2.4.2. To show that the solution is monotone, (7.3.2.4) is

reformed as

El _Q,T)+C, - 2C2./ak+ai\_
dG - P(G’ T]) ’

(713.3.1)
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the above P and Q functions are

1+C (6, T)-M, C,6-1 [B*(c,Tp-
P(o,T) = M+- ;16 J B+(G Lk +M2(jM JB.(G - ,
s f B(C:Tl)—Mf s f B(G»T])-Mf
(1+ C,0)(k, +2k,0) |B(0, TPD-M,; k(C6-1) [B*(c,T)-M
§ f B(chl)-Mf s f ﬂ(G’T])—Mf

Since it is always true that B(, T;) > B*(c, T}) in the triangle zone enclosed by the T-
axis, Mf+ and M;_, one has P(c, T}) >0 for all 6 > 0. On the other hand, in this triangle
zone it is also true that 6 < 1/C, = (E,Ey€ )/(E, - E,;) which implies C,6-1<0.
Note that k, < 0, k; >0 and k, > 0. Therefore, one has Q(c, T) > 0 for all ¢ > 0. Finally,
since 0< Jol\ b <1, one has C, -2C,Jol .0} >0 (F = 1). Taken together, it is
concluded that the solution of equation (7.3.2.4) (or (7.3.3.1)) is monotone.

The solution curve can not penetrate the terminal nuetrality curve My, . To verify this,

[}
assume that the solution curve T(G) goes toward Mg, . It is seen that there is a singularity

for the solution of (7.3.2.4) on the terminal nuetrality curve Mf+ since ak + = 0. The
. dTy ‘
limit of — is
do
. dT| ‘
_ lim (E) = k, +2k,0, (1332)
B'c.T) =M,

which is equal to the slope of the terminal nuetrality curve Mg,. This indicates that the
path ps¢ can never penetrate My, .
Finally, the path-psg T((0) definitely goes through the point (0, M. To prove this,

.assume that there is a limit of the solution T((0):
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lim Ty(o) = L. (13.33)

c -0+

This limit exists because 7T,(c) is monotone. If L>M f then the limit of the right hand

side of (7.3.2.4) is

dT '
lim P(o, Tp—— =0, (1.33.4)
c -0+ do

which is not equal to the limit of the left hand side of (7.3.2.4):

1-k
M=, C,#0. (7.33.5)

lim [Q(0, Ty + C; - 2C,, ol 0 ] =
-0+

Thus, it must be L = M, which implies that the solution T'(c) definitely goes through
the point (0, My). The proof is thus complete.

The above proven conclusion illustrates that the stress between the two elements is
erased at the end of the cooling (or when T} reaches the temperature Mf). This shows that
the elastic deformation of the element (II) of a martensite state upon heating the element
(D) can be recovered by subsequently cooling the element (I) to the temperature My Since
during the whole cooling process the phase fraction of the element (II) remains constant:
E0={A,,0, 1-A, }, the phase fraction of the element (I) could be determined as £ = {0.5-

A,,0,0.5+A, } by means of the consistency requirement (7.2.0.5).

7.4 Later Heat-Cool Strokes

The first stroke, as discussed above, is special, since it is the only stroke starting from

a fully detwinned state of the element (I) and random martensite state of element (II): §' =
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{0,0, 1} and ¥ = {0.5, 0, 0.5}. All other strokes involving heating/cooling of the element
() will start from E! = {A, 0, 1-A} amd &I = {0.5-A, 0, 0.5+A} for some positive A. Simi-
larly, all strokes involving heating/cooling of element (IT) will start from & = {0.5-A, 0,
0.5+A} and EI = {A, 0, 1-A} for some positive A. Let the corresponding sequence in A so
generated be: A, Aj, A3, Ay,... Where A} = A, and odd subscripts correspond to end-of-
stroke states after heating/cooling of element (I) and even subscripts correspond to end-of-
stroke states after heating/cooling of element (II).

The analysis of any one of those strokes, taking A; to A;, ; can be treated in a similar
fashion to the initial stroke involving the six path segments: psy, ps;, ps3, PS4. PSs, PS¢, in
the particular element that undergoes heating/cooling. Each such segment will involve dif-
ferent phase fraction values that lead off each of the segments. Otherwise, the only major
qualitative difference involves the analysis of the segment ps, (ps; is trivial transformation
during heating process so that it is a vertical line along T-axis from (0, T,=Mp to (0, A))).
On segment ps,, the initial value & = A, in the active element now causes a M_— A trans-
formation in addition to the M, — A transformation; this alters the previous description
of the ps, segment given in (7.3.1.1). In particular, this path segment is no longer straight
even if the elastic moduli of austenite and martensite are equal. This dual transformation
in the heated element continues until the path encounters the terminal nuetrality curve A;.
Certain phase diagrams might allow detwinning in the response element before comple-
tion of M_— A in the active element. This corresponds to materials that have the follow-

ing relation between material parameters
A +k,G, > A+ k0, + k0], (1.4.0.1)

ie., the temperature on nuetrality curve Ay is larger than that on nuetrality curve A,, at the
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same stress level 6 = ¢, for 6 > 0. With the material parameters used here, an opposite
condition of (7.4.0.1) is found, so that M_— A completes in the active element before
detwinning occurs in the response element. Thus, in the simulation results presented
below, we find that M_— A occurs on the segment ps,, which is consequently split into
two subpaths ps,, and psy;,. The latter path ps,y, involves only M, — A transformation in
the heated element, and so is described by the same equations that were used for the treat-
ment of the primary ps, path for the active element (see equation (7.3.1.1)). All subse-
quent details are qualitatively the same. Especially, full austentization of the heated
element occurs before full detwinning of the constant temperature element, thus giving

Al'+l >0.

7.5 Limit Analysis on Thermal Cycles

A simulation involving concrete parameters will be conducted in this section. The
complicatioh of starting states with nonzero A; and different moduli of austenite and mar-
tensite prompt us to consider a fully numerical treatment. The convergence of A after sev-
eral thermal strokes applied on the two elements is reached for different values of the
austenite and martensite moduli. This in turn generates a stable path-loop in the (T, 7)-
plane and the (§, T)-plane, where J, the displacement, is given by either (7.2.0.3) or

(7.2.0.4).

7.5.1 Numerical Convergence on Residual Phase Fraction

Linear envelope functions: (5.3.0.1) and (5.3.0.2), and the Y-unfolding are taking into
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account for the present simulation. The parameters employed here are from the TABLE 2
except for the moduli. The temperature pulse, as an input applied on the two elements, is
illustrated in Figure 43 where T, = Mz The ultimate temperature must be sufficient to fully
austenitize the operating element under the constraint stresses generated by the process.
These ultimate temperatures are different in each stroke but tend to an asymptote. The val-
ues of A corresponding to end-of-stroke states for different combination selections of the
austenite and martensite moduli are given in TABLE 9 to TABLE 12. These A values can
be obtained without considering the state path of full cycles or full strokes. They are deter-
mined by the constraint equation (7.2.0.5) and the fact that the phase fraction of the
response element remains unchanged during cooling processes. This is completed by a
sample Mathematica program. By doing this, first, general heating state paths are updated
by the value of A corresponding to the previous stroke. Second, the intersection point
between the updated heating state path and nuetrality curve Ay, is found to determine the
phase fractions at this point. Finally, by use of the constraint condition (7.2.0.5) to con-
clude the A at the end of the current stroke. It is seen in all cases that the values of A rap-

idly converge to a stable value A_, .
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Figure 43. Temperature pulses applied on the two elements. The maximum temperature in
heating must be sufficient to fully austenitize the operating element.

The following TABLEs show that the limit values A_ tend to decrease with an
increase of the moduli. This corresponds to a condition that the response element experi-
ences greater detwinning because an increased stiffness gives a relatively small elastic
deformation so that more of the deformation is related with the phase transformations.
Based on the conditions of TABLE 9 and TABLE 12 both of which have the same sum of
the moduli of austenite and martensite, it is also observed that the equal moduli situation
gives more detwinning for the response element than the uneven moduli situation.

Since A is nonzero, the device as described here has not recovered the prevailing state
at the very beginning of the operation: &! = {0, 0, 1}, EI = {0.5, 0, 0.5}. Hence the
response is not a true “cycle” in the first couple strokes. Continued operation will always
involve end-of-stroke states involving some A remnant that is not fully detwinned on the

nominally oriented element. Repeatable or true cyclic behavior only occurs if the same A
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remnant occurs at the end of each two-stroke cycle. In fact, for symmetric device
described here (/; = I, = I), the same A remnant must occur at the end of every stroke,
albeit interchanged between the two elements. The _question thus arises as to whether or
not there is such a stable cycle, ie. an A, which gives cyclic behavior. Here smallness of A
is a measure of the closeness to ideal behavior in terms of stroke distance. Thatis A_ =0
gives ideal behavior (maximum stroke), while, at the other extreme A_ = 1/4 gives E! = I
= {0.25, 0, 0.75} at the end of each stroke, corresponding to zero interface movement.
This point can be viewed in the following discussion.

To clearly see the problem, we consider the displacement at the end of each stroke.
With (7.2.0.3) and (7.2.0.4) employed here, the displacements at the end of each stroke

with respect to the reference position are found as the following,

& =0;
81 =1(1-2A)e’;

8, =2IA¢";

I(1-24)  if i is odd

21Ai£. if i is even

Then the effective stroke distances between two connected strokes are
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sdy = [8,-8| = I(1-24))¢’;

sdy = 8,-8)| = le'(1-24,-24));

sd; = [8;,-8;_| = le'(1-24,-24;_);

When enough temperature pulses are operated on the two elements (i — o), our numeri-
cal results show that lim A; = lim A;_; = A_,. Therefore, the limiting effective stroke
i—> oo i—>oo

distance is obtained as

sd_ = I (1-4A_). (7.5.1.1)

Thus, A_ = O represents a maximum stroke situation that the prevailing state: §I = {0, 0,
1} and §n = {0.5, 0, 0.5} can be recovered at the end of each stroke, while A_ = 1/4
indicates a useless situation. A measure of the ultimate stroke quality is thus
Q = 1-4A_. Note that Q = 0.5398, 0.6206, 0.6574, 0.5865 for the cases given in

TABLE 9 to TABLE 12 respectively.
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TABLE 9. i, = 4.0*10°4; iy = 2.0*10°4 MPa

operating A of response elements at | ultimate temperatures
elements strokes end-of-stroke C°K)
0.1171521977252063 335.123647800 |
(¢19) 2 0.1150009266592965 334.622190725
1)) 3 0.1150510309196698 334.633789633
I 4 0.1150498696891485 334.633520813
@ 5 0.1150498966052308 334.633527044
a 6 0.1150498959813465 334.633526900
) 7 0.1150498959958073 334.633526900
(I 8 0.1150498959954724 334.633526900
)] 9 0.1150498959954803 334.633526900
(I 10 0.1150498959954798 334.633526900
0.1150498959954798 334.633526900

A_ =0.1150499

334.633526900
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TABLE 10. py = 4.0*10M; pyy = 2.8*10"4 MPa

operating A of response elements at | ultimate temperatures
elements end-of-stroke (°K)
() 0.095965644548003 335.433784391
(In 0.094826994366186 335.117197237
@D 0.094843410530481 335.121891685
(11y] 0.094843174457726 335.121824177
1) 0.094843177852696 335.121825147
(I 0.094843177803873 335.121825133
@D 0.094843177804575 335.121825134
(I 0.094843177804565 335.121825134
) 0.094843177804565 335.121825134
= S — —
limit A_=0.09484318 335.121825134
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TABLE 11. i, = 4.0¥10°4; 1y, = 3.4*104 MPa

operating

elements

A of response elements at

end-of-stroke

0.086460055018001

ultimate temperatures

CK)

335.588237493

(I 2 0.085641127661279 335.327082388
4y 3 0.085650372005167 335.330032150
(41y] 4 0.085650267840977 335.329998912
4y 5 0.085650269014702 335.329999287
(In 6 0.085650269001486 335.329999283
D 7 0.085650269001635 335.329999283
a 8 0.085650269001633 335.329999283

0.085650269001633

A, = 0.08565027

335.329999283

335.329999283
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TABLE 12. i, = 3.0¥104; 1)y = 3.0¥10°4 MPa

A of response elements at ultimate temperatures
end-of-stroke CK)
0.104853194379462 335.307846732
0.103344420472474 334.914231932
0.103371280735037 334.921227214
0.103370804176779 334.921103103
0.103370812632450 334.921105305
0.103370812482419 334.921105266
0.103370812485081 334.921105266
0.103370812485033 334.921105266
0.103370812485035 ' 334.921105266
0.103370812485035 334.921105266
A, =0.10337081 334.921105266
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7.5.2 Stable Response Loops

We now consider more detailed numerical simulations of (o, T)-paths for a particular
case involving equal moduli. The parameters to be used in the following simulation are all
listed in TABLE 2. Following the previous analysis of Sections 7.3 and 7.4, the (G, T)-
curves corresponding to the first stroke, are presented (by lighter dots) for both the ele-
ments in Figure 44. The (0, T)-curves for the consequent stroke are given (by darker dots)
in Figure 45. Note that the (0, T)-curves for the response element is always a straight back
and forth horizontal line. The difference between the first and the secohd strokes is that
both M. — A and M, — A are involved in the ps, process of the second stroke, while
only M, — A is involved in the ps, process of the first stroke (refer to Figure 42), since
the initial condition of the first stroke involved &_ = 0 in the operating element.

A combined view of (6, Tj)-and (G, Tyj)-curves (the lighter dot is the (G, Ty)-curve for
the first stroke) corresponding to the operating elements under ten cycles are shown in Fig-
ure 46. The moduli here are: p, = 3.0x 10°, My = 3.0x 10* MPa, so that the simula-
tion is that associated with TABLE 12. It is to be noted that, after the first stroke, the
various curves are indistinguishable (the darker dot curves), which indicates that the limit
cycle corresponding to A_ has been reached. These state paths are generated based on the
analysis in sections 7.3 and 7.4. The intercomparable (3, 7)- and (8, ©)-curves are illus-
trated in Figure 47 (a) and (b), which are obtained by use of equations (7.2.0.3) and
(7.2.0.4), as well as the derived (0, 7) state paths. The lighter dot curves are again the dis-
placement against temperature and stress, corresponding to the first stroke, while the
darker dot curves correspond to the remaining nine strokes. The effective stroke distances

can be found from expression (7.5.1.1) and A_, listed in the above TABLEs. For example,
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the effective stroke distance sd_ = 0.5865/¢ for this particular case.

wdh T (°K) 3“‘ Ty (°K)

20— ... o 320

300 ; 300

280 280

260 260

| o

(V) 50 100 1‘$o 240 > 0 50 100 1%0 240 >
(a) G (MPa) ®) O (MPa)

Figure 44. (0, T)-paths for the first stroke for element (I) (a) and for element (II) (b). The
operating element here is element (I) with initial temperature T, = My, which is equal to the
constant temperature of the response element (II) during this process. Here the material
properties come from TABLE 2. In particular the moduli are p, = j, = 3.0x 10*
MPa. The value of A at the beginning is A = 0, and at the end is A = 0.104853194379462.

340‘ TI
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Figure 45. (0, T)-curves in the second stroke are presented in (a) for the element (II) and in
(b) for the element (I). The operating element is element (II) with initial temperature T, =
Mf, which is equal to the constant temperature of element (I) during this process. In the first
part of ps; both M_ —> A and M_ — A are involved in the phase transformation (refer to
Figure 42).The value of A at the beginning is A = 0.104853194379462, and at the end is A =
0.103344420472474.
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Figure 46. This graph shows (0, T)-curves of the operating elements in ten strokes. A stable
(o, T)-loop (the darker one) is reached after the first cycle (the lighter one).
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" Figure 47. The corresponding displacement against stress (a) and temperature (b) after ten
strokes. The lighter dots correspond to the first stroke. The darker dots correspond to the
following nine strokes, which are indistinguishable at this scale. The head down loops
correspond to operating element (II) while the head up loops correspond to operating
element (II) in both (a) and (b).
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7.6 Discussion

In principle, the deformation caused by thermal expansion is against that caused by
phase transformation. The thermal expansion coefficients of austenite and martensite can
be taken as o, = 11x 10" 1/°K and a, = 6.6X 10° 1°K respectively. To gauge its
effect, we choose the biggerone a = 11 x 107 1/K® a for both austenite and martensite.
The temperature change to actuate a stroke is likely to be on the order of 100 °K based on
the above simulation. Then the thermal expansion strain is about 0.0011 « e = 0.06.
Thus, we conclude that a reasonable approximation allows the thennal‘cxpansion effect to
be neglected.

Based on the previous achievement, the final cyclic behavior corresponds to a repeat-
able limit cycle. Such limit cycles arise naturally in earlier models of SMA behavior given
by Ivshin and Pence (1992). Here a limit cycle means that cyclic input, such as repeated
alternating temperature pulse excursions Ty(t) and Ty(t), generates cyclic output response,
here EX(t) and ED(t) and stroke 8. For a given cyclic input, the associated limit cycle or
cycles (if any exist) may be sought in two general ways. The first involves starting from
some initial condition of the output response, here E_.I(O) and én(O), followed by perform-
ing a large number of input cycles. Limit cycles then arise as the possible large time con-
vergence of the functions EXt) and EU(t) to a repeatable cycle with the same cyclic
frequency. Here initial conditions of the output response th;it happen to be on a limit cycle
will generate output response that stays on the cycle, and, ideally, those initial conditions
not on a limit cycle will give output response that drifts towards a nearby limit cycle. This
was the method pursued above, where the limit cycle was essentially attained on the sec-

ond stroke (Figure 44 to Figure 47). The other general method for determining limit cycles
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involves setting up a mapping between output response variables sampled at the cyclic fre-
quency and seeking fixed points of the mapping. Such fixed points give initial conditions
that are on a limit cycle. Although Ivshin and Pence were able to pursue such a direct fixed
point treatment in some of their previous studies (Ivshin and Pence, 1992), the more com-
plicated nature of the problem under study here (involving more than one martensitic vari-
ant, and more than one shape memory element) points to the usefulness of obtaining these

limit cycles by numerical simulation procedures.



8 CONCLUSION AND PROPOSED FUTURE WORK

The approach is to augment conventional continuum mechanical descriptions with
internal variables that track fractional portioning of the material between austenite and the
various martensite variants. A three-species model involving austenite and tu?o comple-
mentary martensite variants provides sufficient generality to capture the martensite variant
distributions that underlie shape memory, and the strain-accommodation associated with
pseudoelasticity. Transformations between all of these species can be tracked on the basis
of triggering algorithms that reflect both transformation hysteresis and the variations of
phase fractions of triggering both stress and temperature.

Three phase diagrams are presented based on thermodynamic considerations and
experimental measurements. The X-unfolding, as a prototype, is first derived from allow-
ing phase transformation nuetrality curves to enter non-austenite areas to describe the
detwinning processes. The detwinning in this unfolding strongly depends upon both stress
and temperature. Further modification on the X-unfolding, about the entropy of austenite
replaced by that of martensite in the non-austenite areas, provides the pY-unfolding. An
interesting aspect of this phase diagram is that stresses associated with detwinning start
and finish are determined in terms of the other material parameters. Basically, this pY-
unfolding requires only the following experimentally determined parameters: the four
phase transformation temperatures, the transformation strain, the Young’s moduli of auste-
nite and martensite, and the transformation latent heat. The more sophisticated phase dia-

158
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gram, Y-unfolding, is generated by specifying the detwinning start and finish stresses
independently based on experimental observations. The corresponding nuetrality curves of
phase transformations are consequently modified following this change. The comparison
of isothermal behaviors, between the theoretical prediction with the Y-unfolding and the
experimental measurements on thin films by Hou and Grummon, shows that the model
can well reflect the practical situation in some degrees (Grummon and Pence, 1996).

Discussions of the path-independent conditions in Chapter S reveal some fundamental
features of the two variant algorithms of the model. These features are responsible for the
hysteresis characteristics of shape memory alloys. The special behavior, discussed in
Chapter 6, according to loading/cooling and cooling/loading state paths shows potential
for the model to direct designing smart sensors. Pseudoelasticity, shape memory effects
and many isothermal behaviors are predicted in Chapter 6.

The application of the model in Chapter 7 shows two aspects. One is that the model
possesses both theoretical completeness in certain levels and potentiality to- guide sample
engineering designs. The other is the potential engineering application of the two element
device (TSTE). A stable cyclic behavior is reached by performing the cyclic temperature
pulse on the device. Further investigation associated with carrying external loads can fol-
low up based on the present approach.

The interesting inverse problem investigated in the Appendix reflects another view on
the model itself. Relations between stress, strain, temperature and entropy for each species
are backed out of a three species phase diagram as given by experiment. We believe that
there are still certain amounts of work to be done on the thermodynamic issue related with
the choice of the particular entropy form of each individual phase. An example shows that

there is a consistency between the approach in Chapter 2 and the inverse issue in the
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Appendix under the same phase diagram.

So far in this study, we only focus on 1-D isothermal descriptions and some sample
behaviors associated with both stress and temperature changes, in which stress and tem-
perature are treated as an explicit input. More complicated situations, such as convective
and adiabatic processes, can be extended from the present approach by adding certain
thermodynamic considerations (Ivshin and Pence, 1994 b). In general, for the convective
and adiabatic condition, often the case is that only either stress or temperature, but not
both, are given as input and their relation is decided by extra thermodynamic equations
(e.g. joule heating, convection, physical constraint).

For more general modeling work, TiNi alloys considered usually have either 24 habit
plane martensite variants plus austenite, or 12 coherent martensite variants plus austenite,
which are distributed in 3-D scopes. Fellows as Patoor et al (1994), Son and Hwang
(1993), Boyd and Lagoudas (1994, 1996) contributed certain amount of work on the 3-D
modeling work in different aspects. For instance, Patoor et al have developed a constitu-
tive model to describe the transformation among all 24 martensite variants and austenite
phase based on free energy issue. The model was set up first for the single crystal and then
extended to the description of polycrystalline transformation by considering the self-con-
sistent micromechanics method. Son and Hwang have acquired a thermodynamic model
for both pseudoelasticity and shape memory effects. The transformation criteria of the
model is similar to plastic yielding’s in plasticity theories. Later, Boyd and Lagoudas have
also developed a microscope constitutive model to phenomenologically narrate the behav-
ior of pseudoelasticity and shape memory effects for polycrystalline shape memory alloys.
The mc;del using a free energy function and a dissipation potential contains three descrip-

tions based on the combination number of internal state variables.
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Another challenge future work conjunct with the present study is how to extend the
present model to the more general case with multiple martensite variants and austenite in
3-D. This extension will include modifying the overall entropy and strain expressions
(2.1.0.1) and (2.1.0.2) respectively based on the compatibility theory (Bhattacharya and
Kohn, 1996). The corresponding 3-D criteria for phase transformations and reorientations
is another open question. The potential way to solve the problem is based on the relation
between 3-D stress distributions and orientations of various lattice structures of austenite

and martensite variants.
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10 APPENDIX

REFINEMENT OF THE TWO VARIANT PHASE DIAGRAM

As discussed in the chapter 2, under certain assumptions of entropy and strain of the
pure phase species, phase diagrams have been obtained based on thermodynamic consid-
erations. The Gibbs free energy is treated as though a state function of temperature and
stress in either an individual phase or a mixture phase, by which Clausius-Clapeyron rela-
tions are generated to describe transformations between any two species and further to
form phase diagrams. The phase diagram gained by this procedure is usually not exactly
the same with experimental observations, specifically, in a detwinning process. Thus, the
difference between theoretical derivations and experimental measurements supplies a
motivation to consider a reverse problem. That is, if a phase diagram is given, it is very
interesting to find the distribution forms of strain and entropy of the pure phases that pro-

vide the same thermodynamic consistency requirement. This problem is considered here.
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Figure 48. A given phase diagram as might be determined by experimental measurements.
R1 is the region above nuetrality curve Mﬂ, for T 2 0; R2 is the region between Mf,,, and
M;_ for T>0;R3 is the region between M, and T-axis for ©20.RT,R2 and R3 are
corresponding mirror images of R1, R2 and R3 about 7-axis for T<0.

10.1 Clausius-Clapeyron Relations

If a phase diagram is given, shown as Figure 48, the slopes of each neutrality curves
are determined for the processes of martensitic transformations and martensite variant
reorientations. For convenience, three regions, R1, R2 and R3, are defined in the half-
plane ©20, in which A & M_  and A & M_occurinR1 and M_ - M__ occurs in R2 and
R3. The mirror images of R1, R2 and R3 about T = 0 axis are R1, R2 and R3. It is sup-
posed that the Gibbs free energy is a state function of temperature and stress in both the
individual phases and in any mixture state. Thus, the following Clausius-Clapeyron rela-

tions have to be satisfied in the half-plane T20 if one notes (2.1.0.7), (2.1.0.8) and
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(2.3.1.1),
Ny-N, = —(Y4-7,)/ f1(7) forA>M_inRl, (10.1.0.1)
Na-N. = —(Y4,-7.)/f,(t,T) for A& M_inRl, (10.1.0.2)
n,-Nn. = -(Y,-Y.)/f3%,T) for M_ = M_ inR2 and R3. (10.1.0.3)

Here, f,(7), fo(t, T) and f4(1, T) are the slopes of each neutrality curve for A & M,
Ao M_ and M_— M, respectively, which are regarded as experimentally supplied.
Similarly, in the corresponding mirror image regions in the half-plane T <0, R1, R2 and

R3, following Clausius-Clapeyron relations have to be obeyed,

Ny-MN. = (Y4 -7.)/f1(%) for A& M_inR], (10.1.0.4)
Ma-MNy = (Yo -7,)/F2t, T) for Ae> M, inRI, (10.1.0.5)
n,-n. = —(¥,-7.)/f3,T) for M, - M_inR2 and R3. (10.1.0.6)

Here, f(t), f2(t, T) and f3(t, T) are the slopes of each neutrality curve for A M_,
Ao M, and M, > M_ respectively for T < 0. The mirror image status of RT, R2 and R3
that will hold in the event of symmetry requires the following relations, which are hence-

forth assumed:
£1) = -f1-v), (10.1.0.7)

fonT) = =fy-1,T), (10.1.0.8)



170

f3T) = =f3(-1, T, (10.1.0.9)

In this more general phase diagram, the entropy and strain may each depend on both
temperature and stress. The entropies are written as the following in the present study

(Ivshin and Pence, 1994 b; Bekker and Brinson, 1994),

Na(n 1) = Cln(Tl)m"A(t,T) , (10.1.0.10)
n(7) = Cln(Tl)m‘l(t,D, (10.1.0.11)
Nt 7) = cm(Tl)mf’(t.D . © (10.1.0.12)

(]

Here, the stress is appended in the reference terms of entropy expressions. Since the heat
capacity is defined as T% , it follows that the heat capacities in the three phases are given
o

by C+ T-:—;.' , so that if 'q:-’ is independent of temperature then C is interpreted as actual
heat capacity.
The mathematical Maxwell relations of Gibbs free energy being a state function in

each pure phase gives the following

m, oy, om, I, o _ 3y
’JEA:bTA' = =T, s =, (10.1.0.13)

Assume that the stress-strain relation for austenite satisfies Hooke’s law in all the cases,

ie.,
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(10.1.0.14)

which implies that n: depends upon only temperature based on the Maxwell relation

(10.1.0.13). We presume that ni is constant for the rest of this Appendix.

10.2 Determination of Strain in A & M_ Process

In R1, equations (10.1.0.1) and (10.1.0.13) give

d

1 9 7o

0 _
57—-(7,4 -Y)+ fl('t)s'g(y“ -Y,) - f%(‘t) (Yo-7v,) =0,

for A <> M process. The characteristic equation of (10.2.0.1) is

dar _
at - [1@.

Assume that (10.2.0.2) is integrable and its integration form is

H](T9 T) = C,

(10.2.0.1)

(10.2.0.2)

(10.2.0.3)

with property I1,(0,8) = §, M,<{<A,. To solve equation (10.2.0.1) the following

boundary condition on T =0 has to be posed for Y, and vy,,

_ .0 _ 0
YA|T=0 - YA(C) and Y+|1=o - ‘Y.’.(C) ’

(10.2.0.4)

for M f <{<A s Expression (10.1.0.14) implies that ‘yoA(C) = 0. Therefore, the solution

of (10.2.0.1) with boundary condition (10.2.0.4) is found as
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T fl()o

a1 = Ol Y., (t, 7)), (10.2.0.5)

the superscript R/ on the right head of Y, indicates the solution in region R1.
From (10.1.0.1), (10.1.0.10), (10.2.0.5) and (10.1.0.11), the following relation about

the entropies is derived,

3t T) = Z—%@ 1 (10.2.0.6)
For A & M_ process in R1, combining (10.1.0.4) and (10.1.0.13) follows
3 f 1(7)
37Ya= 1)+ fl—()g—(n ¥.)- f_z( 5 (Ya-71) =0, (10.2.0.7)
with its characteristic equation
-Z—T fi(. (10.2.0.8)

Then, the following results are determined in a similar fashion (10.2.0.5) and (10.2.0.6),

Y@ = 5—+M7"(Hl( 1, 7)), (10.2.0.9)
Ba £1(0

o o ‘Y.o(ﬁ 1 (t’ n)
(T, = -— 10.2.0.10
&0 =m, 710 ( )

if the boundary condition on T = 0 is given by
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Y| _, =7O®. (10.2.0.11)
=0

Here, I1;(t,T) = { for M SE<A; is the integration form of (10.2.0.8) with property
ﬁl(o’ O =g,
For the problem associated with two complementary martensite variants, it is natural

to impose the following relation,

Y20 = YO, (10.2.0.12)

by a consideration of self-accommodated process. It is easy to prove that (10.2.0.12) is

equivalent to the following relation,

@D = 4N D, (10.2.0.13)
by the solutions (10.2.0.5), (10.2.0.9), and the fact of
M, 7 = -1, 1. (10.2.0.14)

Example 1
For A & M, process in R1, one considers a situation that the boundary condition for

Y, is constant and equal to the transformation strain, ie.,

*

T _ =7 (10.2.0.15)

1=0 -

Assume also that

.Z_: = f,(t) = AT+B, (10.2.0.16)
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which implies that

(5, T) = T- 347 - Br.

Here, A and B are positive quantities. Solution (10.2.0.5) now gives

R1 1 *
(T, = —+ ’
Y+ Ly Y
where,
1 A+ 1
—_ =Y +—.
Ky B K4
Then (10.2.0.6) becomes
n?=m-L.

B= T anaa = TAM
Ma—-N Hakp(My—7,)

(10.2.0.17)

(10.2.0.18)

(10.2.0.19)

(10.2.0.20)

(10.2.0.21)

Thus, we formally obtain the same results as expressed in (2.2.2.3), and (2.2.2.5).

10.3 Determination of Strain in A & M_Process

In R1, combining (10.1.0.2) and (10.1.0.13) gives
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5—(7,4 ¥.)+ 7 m—( A jj(T 7)( Y4-7.) = 0, (10.3.0.1)
where,
gt T) = g—tfz(t, n (10.3.0.2)
The characteristic equation of (10.3.0.1) is
d—: = f,(n. D), (10.3.0.3)

which is assumed integrable. Integration of (10.3.0.3) is taken to have the form
Iyt T = €, (10.3.04)

with property T1,(0,8) = §, M <{<A,. Boundary condition for solving this problem
is given by (10.2.0.11) and Y"lr-o = 'yoA(Q) = 0. Consequently, the solution of

(10.3.0.1) under the above boundary condition is found as

R1 T ru(t, Ny(t, T)Hds
Y. (¢, T) = H—+‘Y?(H2(T, T))e ° . (10.3.0.5)
A

Here,

4 2(1’ S(T: C))

0 = £ sw D)

(10.3.0.6) .

where, T = s(t, ) is a specified neutrality curve parametrized by { for M <L <A,.
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On the other hand, T\f’(t, T) can determined by (10.1.0.2), (10.1.0.10), (10.1.0.12) and

(10.3.0.5),

fa'(t' rlz('t, T))d‘
0

o o _ oo Ty, Te

(10.3.0.7)

As the same manner, based on (10.1.0.5) and (10.1.0.13) for A «> M__ process in R,

we can obtain the following solutions

R1 T 0,7 r &, Tz, Tds
Y. 7)) = u—+v+(ﬂz(t. T))e™’ , (10.3.0.8)
A
fa(:. fia(x, Tde
(4 ﬁ : 0
Nyt T) = n"A—Y“( 2T ?); D (10.3.0.9)
204,
where,
Z—Z = fot, D, (10.3.0.10)
- g 2(1’ E(ti C))
) = E—, 10.3.0.11
o0 £z, 5(z, ©) ( )
_ 9=
g, T = ﬁfz(f, DN, (10.3.0.12)

and T = 5(1,{) is a specified A & M, nuetrality curve in R1, parameterized by C,

M <{<A,. Tyt T) = is the integration form of (10.3.0.10) with property
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ﬁZ(Or §) = C
It can also be proven that (10.2.0.12) and (10.2.0.13) are equivalent by means of

(10.3.0.5), (10.3.0.8), and

,t, ) = My, 7). (10.3.0.13)

10.4 Determination of Strain in M_— M, Process

First of all, consider the situation in R2, by (10.1.0.3) and (10.1.0.13) the following

P.D.E. can be derived

1 9 &, T) _
3—(Y+ Y.)+ I7a Da_( Y)- f§(r, (v,-v) =0, (10.4.0.1)
where,
0
g3t T) = ﬁfﬂ, 7). (10.4.0.2)

The characteristic equation of (10.4.0.1) can be written as

= f40, T). (10403)

Since M_— M, is modified by M_— A, the nuetrality curves of M_— M, inR2 is a
extension of the nuetrality curves of M_— A in R1. Thus, we are going to continuously
employ temperature parameter { (M ,;<{<A/) to parameterize the integration curves

(nuetrality curves) of (10.4.0.3) which start at M fer Based on the above consideration, the
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integration form of (10.4.0.3) is written as
4y, T) = C, (10.4.0.4)

which starts at the intersecting point (T, T;) on M, . This point can be found by solving

equations (10.4.0.4) and M fe (T=M f +(7)) simultaneously, which gives
T = h@©), T ¢ = r{). (10.4.0.5)

The boundary conditions for solving this problem are posed as

=@ A =@ D)

(10.4.0.6)
(nT)eM,,

(LTeM,,

Along a specified M_— M, nuetrality curve T = s(t, {) that starts at (tC’ Tg) and goes

down to a lower area, boundary conditions (10.4.0.6)‘ could be rewritten as

Y = B8, ¥ = B®). (10.4.0.7)

Therefore, the solution of equation (10.4.0.1) under the above boundary condition is found

to be

v(¢, TIy(t, ))ds

Y0, 1) -y, T) = (B,(Iy(x, T) - B(y(x, TH)e > , (10.4.0.8)

where,

4 3(19 S(T’ Q)

v, 0) = m

(10.4.0.9)
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Solution (10.4.0.8) implies that

R i v, Ty(t, T))de
Y+ (T! D = ‘Y](tv T) + B+(H3(Tv T))e ’ ’ (10-4'0' 10)

_r w(t, TIy(t, T))dt
MTly(e, 7))

Y@, T) = 1,8, T) + B [ly(1, M)e (10.4.0.11)
Here, v,(%, T) is any function that obeys boundary condition
MDD .. M, " 0, (10.4.0.12)

which is explicit by (10.4.0.10), (10.4.0.11) and (10.4.0.6) if one assumes that the strains
of the two variant martensite satisfy (v,(t, 7),Y.(t, 7)) € Co. By (10.1.0.3), (10.1.0.11),

(10.1.0.12) and (10.4.0.8), the following relation between the entropies is obtained,

o o _ B4t 1)-B (I, n)erm;u-mw' My(t, T)de
n+ = f3(‘cs T) *

(10.4.0.13)
For more about the above specification, a particularly natural assumption is that

Y, T)=0. (10.4.0.14)

Then, solutions (10.4.0.10) and (10.4.0.11) become

(1, My, T))dt
h(ﬂ3(t. n

752(1, T) = B (IIy(7, N)e , (10.4.0.15)

Todamab
i S
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(¢, Iz, T))dt
YPa, 1) = B Tye " , (10.4.0.16)
which would be deciphered as the natural extension of solutions (10.2.0.5) and (10.3.0.5)
in R1 into R2, if one notes (10.4.0.6) and (10.4.0.7).
For region R3, the only difference from that in region R2 is that the boundary condi-
tions are now given along T-axis, which are expressed as (10.2.0.4), and (10.2.0.11) for
E<M Iz Thus, relations, from (10.4.0.1) to (10.4.0.4), still suit the present condition, but,

(10.4.0.4) has the property
I,0,8) = § for £ < M. (10.4.0.17)

Therefore, the difference between the strains in R3 is given by

R3 R3 0 0 VT T
Y, @D -7, T) = (Y,(dI3(t, 1)) - y-(TI5(x, )))e™° . (10.4.0.18)
Comparing (10.4.0.8) and (10.4.0.18) will conclude that the two solutions are identical
with each other along the boundary M f- between R2 and R3 if one notes that 'yi(l;) and
y%(0) are continuous along the T-axis with C° smooth.

Solution (10.4.0.18) implies that

- o fv(t, My, T))dt
Y, @ T) = 1,0, T) + ¥ ({15t e ° : (10.4.0.19)

R o w(t, I,(t, T))dr
Y71, T) = 1yt )+ Y. (@51, N)e* . (10.4.0.20)
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Here, ¥,(t, T) is any function in R3. And, on the other hand we have

o o  Yily(t, 1)) -y (Tl4(x, n)eJ:"’“' My(x, Tde

-n° = . 10.4.0.21
n+ n- f 3(1: T) ( )
in R3.
If one assumes that the strains are Co along M for then, y,(t, T) satisfies
YOD| oy = NED] (10.4.0.22)

by (10.2.0.5), (10.3.0.5), (10.4.0.6) and (10.4.0.7). Thus, we define an arbitrary C° func-
tion, named Y(t, T), in R2 UR3, upon which, v,(t, T) in (10.4.0.10) and (10.4.0.11) as
well as Y,(t, T) in (10.4.0.19) and (10.4.0.20) can be replaced by y(t, T) now. In R2 and

R3 similar solutions can be obtained as we have illustrated above without any difficulty.



