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ABSTRACT

MODELING THERMOMECHANICAL PHASE TRANSFOR-

MATIONS BETWEEN AUSTENITE AND A TWO VARIANT

MARTENSITE

By Xiaochuang Wu

Both austenite/martensite transformations and martensite/martensite variant reorienta-

tion are central to shape memory actuation and pseudoelasticity. The approach is to aug-

ment conventional continuum mechanical descriptions with internal variables that track

fractional partitioning of the material between austenite and the various martensite vari-

ants. A three-species model involving austenite and two complementary martensite vari-

ants provides sufficient generality to capture the variant distributions that underlie shape

memory, and the strain-accommodation associated with pseudoelasticity. Transformations

between any of these species can be tracked on the basis of triggering algorithms and

kinetic continuation that reflect both transformation hysteresis and the variation of trigger-

ing stress and temperature, as given by the Clausius-Clapeyron relation. The particular

algorithm that we describe here is for temperature- and stressdependent response. It

requires only the following experimental parameters: the four transformation temperatures

Mf, Mr A,, Af, the crystallographic transformation strain, the Young’s modulus and the

transformation latent heat. The martensite flow and finish stresses are also introduced. As

an application of the model, Two Element Thermal Engine (TSTE) is investigated to pre-

dict a reciprocal movement upon thermal heating/cooling pulses controlled for example by -

an electrical signal.
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Figure 20

Figure 21

Figure 22

Figure 23

For the case A, > M,, three path-dependent zones d2, d3 and d, are

separated in OT . g, and a, are path—dependent in d2 if transition type

(TI‘2) occurs (S-paths). 5A and §_ are path-dependent in d3 if transition

type (TT3) occurs (W-paths). £1, and §, are path-dependent in d, if

transition type (1T4) occurs (E-paths)-------- - ---------------- - -----89 

For the case A, < M,. six path-dependent zones a2, a3, a4, a23, a24 and

am are separated in OT . The situations occurring in a2, a3 and a, are the

same with those in d2, (1;; and d4 of the case A, > M, shown in Figure 20.

In a23, if transition type (T12) is in process then the phase fractions §_ and

g, are path-dependent, while if (TT3) occurs then EA and §_ are path-

dependent. In a24, the condition is similar to that in a23 under interchange

of('I'T3)and(‘I'T4)aswellas iand§,.1na234,§and§,arepath-'

dependent if ('I'T2) occurs, §A and §_ are path-dependent if (TT3) occurs,

and, §A and §, are path-dependent if ('I'T4) is in process..........................92

Three paths 1,, 12 and 13 go from (r, o) = '(o, M,) to (o, M,.) in the path-

dependent zone of transition type ('I'T2) with initial condition {§., §A,

§,}={0, 1, 0}. Transition type ('l'T2) occurs on all three paths. Path 12

consists of two straight segments which meet at point

MEI-EM“-Mf), %(MJ +Mf) ). Path 13 is similar. The phase fractions

E. and §, are path dependent while §A is not. The values of the triple {§,,

fiA, §,} at the ends of the three paths are listed in TABLE 7.....................95

Pseudoelastic behaviors in both tension and compression conditions at

test temperature 1', = 335. In r > o, A (-) M, processes are involved with

the loading/unloading, while, in 1: < 0, A (—) M_ processes are involved

with the opposite loading/unloading. ------------- -100 



Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Figure30

Pseudoelastic behaviors for M, < A, at different temperature levels: T, =

315, 325, 335 °K, all of which are greater than Af= 308 °K. .................. 100

By Falk’s model (1980), austenite transforming to martensite occurs at the

highest point on the left ascending branch (top dashed line) upon loading.

The reverse transformation, martensite to austenite occurs at the lowest

point on the right ascending branch upon unloading. - -- - - - - 102 

By Landau-Devonshire’s model, load-deformation diagrams in three

different temperatures (T1 < T2 < T3) show that the heights of the

hysteresis loops decrease with the temperature increase. ----- -- -102 

A dead zone between the top and bottom bands in the stress-strain

diagram is illustrated. This dead zone corresponds to the portion between

points 2 and 3 in the phase diagram. Points f and g correspond in stress-

strain diagram to points 1 and 4 in the phase diagram. The internal loop

formation condition is that unloading has to reach the bottom band and

loading has to reach the top band shown as a-d-b-c-h path. .................... 104

The stress-strain trajectory approaches a stable internal loop in the stress-

strain diagram with oscillating scope of stress between points a and b

(between 1" and 1‘ in stresses) in the phase diagrarn.- - 106 , 

Cycling loadsareappliedbetweent=1b<tMAandt=f>rAMattest

temperature T > Afto form internal hysteresis loops. It can be seen that

the top and bottom bands are covered inside the cycling range............... 107

Shape memory effects occur during loading-unloading-heating-cooling

processes. - - -- - _109
 

xiv



Figure 31

Figure 32

Figure 33

Figure 34
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as the test temperature decreases. - ----- - - - -- - - =-112 

Ferroelastic behaviors in both tension and compression conditions at test

temperature T, = 200. In 1: > 0, M_ ->M, process is involved with the

transformation, while, in t < 0, M, -> M_ process is involved with the
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Initial conditions are obtained by cooling the temperature from above A,

to the test temperature in a stress free circumstance (CFAF). General

features of the transfonnation process for loading/unloading were
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partial reverse transformation M, -) A which gives a certain amount of
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Figure 35 -

detwinning M_ -) M,; 4 -) 5: M, elastic deformation; 5 —> 6: M, elastic

unloading. Since the phase fraction of M, is small, there is no significant

change in segments 1 -) 2 , 2 —> 3 and 3 -) 4. In (d) the initial condition

, is {0.222, 0.556, 0.222}. 1 -) 2: phase transformation A -> M,; 2 -) 3:

elastic twinned martensite; 3-94: detwinning M-—)M,; 4->5: M,

elastic deformation; 5 -9 6: M, elastic unloading. In (b), (c) and (d) the

residual strains are the phase transformation strain 7‘. -115 

Initial conditions are obtained by heating the temperature from below Mf

to the test temperature in a zero-stress condition (HFMF). General

features of the transformation process for loading/unloading were

described in Figure 15. In (a) the initial condition is {0.2801, 0.4397,

0.2801}. 142: phase transformation M_ -)A; 2-—)3: elasticity of

combined austenite and right-shear martensite; 3 —> 4: phase

transformation A ->M,; 4—>5: M, elasticity; 5—)6: elastic M,

unloading; 6 —> 7: partial reverse transformation M, -) A upon

continuous unloading which gives a certain amount of residual strain left

at the end of the unloading. In (b) the initial condition is {0.5, 0, 0.5}

which is also the initial conditions for (c), (d) and (e). 1-) 2: fully

twinned martensite elasticity; 2 -> 3: phase transformation M_ —) A;

3 —> 4: elasticity of combined austenite and right-shear martensite;

4->5: phase transformation A—rM,; 5—>6: M, elasticity; 6—>7:

elastic M, elastic unloading. In (c) 1—> 2: elasticity of twinned

martensite; 2 —) 3: combined phase transformation M_ -) A and

A-)M,; 3->4: phase transformation A—>M,; 4-95 and 6-97 are
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twinned martensite; 2 -) 3: combined phase transformation M_ -) A and

A-rM,; 344: detwinning M,-)M,; 4-)5 and 5-96 are similarto

the corresponding sections in (c). The only difference of (c) with (d) is

that there is only one section to conduct detwinning M_ -> M,, which is
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Six (0', TI)-path segments and their connecting points related with the first

stroke (heating/cooling element (1)) are schematically presented in the

phase diagram for o > 0. .......................................................................... 140

Temperature pulses applied on the two elements. The maximum
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(0’, T)-paths for the first stroke for element (I) (a) and for element (II) (b).
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1 INTRODUCTION

1.1 Background to This Work

As materials that have many active and interesting properties, shape memory alloys

(SMAs) have received more and more attention both theoretically and practically in recent

decades. Their many employments in various sensitive areas, which include: the driving

force in heat cycle engines (Banks and Weres, 1976), orthopedic devices for securing frac-

tured bones (Wayman, 1980), integrated actuator/sensor fibers in special composite sys-

tems for active control of dynamic and structural behavior (Rogers et al., 1989), blood clot

filters and displacement sensors (Takeda er al., 1986), and many more all attribute greatly

to their enchanting qualities. Although many inventions have been made, potentials of

shape memory alloys still hold great chances for more implementation and further devel- '

opment. Shape memory alloys associated with martensitic phase transformation are char-

acterized by first-order solid to solid transformation without atomic diffusion. Their most

important properties are the shape memory effect (SME) and pseudoelastic effect which

are responsible for many innovative applications. Thus it has become necessary to have an

accurate understanding of the therrnomechanical behavior of the shape memory alloys.

There are plenty of literature on modeling the behavior of the shape memory alloys,

and what we are going to-discuss in the following are the most representative approaches

that we have reached. Based on Landau-Devonshire’s theory, Falk (1980) illustrated the
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stable phase transition between austenite and two martensite variants in a single crystals

by minimizing non-convex type of Helmholtz free energy, which can either describe stress

induced or thermal induced phase transformations strategically. In Falk’s model, charac-

terized by the equality of the phase transformation stress and the Maxwell stress, basic

features of SMAs, such as pseudoelasticity, lattice softening and shape memory effect

(SME) presented, are qualitatively agreeable with experimental works in some sense.

Achenbach et al. ( 1986) derived rate-dependent types of model, from statistical

mechanics and thermodynamics point of views, to rehearse the plane-strain responses of a

polycrystalline object under biaxiel loading. In this publication they took the polycrystal-

line body as a three-phase configuration of austenite and martensite twins, and operated

the fractions of the three phases as internal variables which were parametrized by the

assumed continuous distribution of orientations of lattice layers for any instant.

By incorporating uses of Helmholtz free energy and dissipation potential, Tanaka

(1986) came up with a rate-type constitutive and an evolutionary equations which could

represent the pseudoelasticity and shape memory effect again under the condition of one-

dimensional tensile only for stress induced martensite transformations in a polycrystal,

which the new nucleation and the growth of the martensite may be understood to be fully

governed by macroscopic transformation kinetics. The internal variable that depends on -

stress and temperature is the phase fraction of martensite. Liang and Rogers (1990), based

on the integrated form of Tanaka’s equation, presented a thermomechanical constitutive

model. In their study, a rate-independent type of equation was proposed to fit the marten-

site fraction and temperature relations in order to predict pseudoelasticity and shape mem: -

cry behavior. The results from this model had good coincidence with experimental

observations made by them.
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As far as pseudoelasticity is concerned, Muller and his colleagues made an extensive

investigation. For example, with the consideration of non-monotone load-deformation

curves generated from non-convex energy forms which are the type deliberate in Falk’s

model (1980), Muller and Xu (1991) developed Falk’s model by taking into account the

dissipative effects from interfaces and coherency. They gave a thorough description of

pesudoelasticity loops for a single crystal, in which a width of a hysteresis loop of stress-

strain relation depends on interfacial energy of phases rather than depends on the tempera-

ture, and the hysteresis loop maintains metastable states which loose their stability on a

line defining phase equilibrium. Based on the mixture approach of the work done by

Muller (1979), and Muller and Xu (1991), Fedelich and Zanzotto (1991) extrapolated the

isothermal hypotheses to nonisotherrnal conditions by contemplating the hardening obser-

vation of stress-strain relation with increasing temperature. Only for two-phase situations

where the stress and temperature are high enough, they found out, that the elongation rates

have a significant influence on phase transformations in a bar, and the slope of the slanted

sides of deformation-temperature 100ps is rate dependent, which was given a reasonable

explanation.

In Leo er al ’s macroscopic descriptions of two phase system (1993), they assumed the

austenite to martensite transition stress to be equal to the Maxwell stress plus an additional

constant stress equal to half the height of the isothermal hysteresis 100p which accounts

for dissipative processes associated with the phase transformation. They also incorporated

the temperature and Stress dependence of energy with heat transfer associated with austen-

ite/martensite single interface. Mth this model they explained a phenomenon that the hys-

teretic stress-strain curves depend strongly on the strain rates at which the wire is

extended.
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Brinson (1993) modified the works by Tanaka & Iwasaki (1985); Tanaka (1986);

Liang & Rogers (1990) to describe the SME below a martensite start temperature by split-

ting the martensite phase fraction into temperature-induced and stress-induced parts. This

subdivision is justified by the micromechanical behavior of SMAs and is effected such

that the stress-induced martensite fraction represents the extent of transformations of the

material into a single martensite variant. This model can well capture the main conducts of

either phase transformation between austenite and over all martensite variants in higher

temperature ranges .(pseudoelasticity), or conversion of all martensite variants in lower

temperature ranges (SME), with the suggested equilibrium phase diagram. Latter on, in

the study by Bekker and Brinson (1994), more detailed discussions on the this phase dia-

gram were made to generalize the problem.

In all, energy consideration has been the most concentration point in these works men-

tioned above. From plasticity point of view, Bondaryev and Wayman (1988) combined the

plasticity flow theory and the change of Gibbs free energy to narrate phase transformations

in the biaxial case. The idea is cast terms of the change of Gibbs free energy of phase tran-

sition or detwinning processes to determine the threshold stress for the changes and then

using the plastic flow rule to set up the stress-strain relations during the two processes.

This model can also recite the phenomena of pseudoelasticity at high temperature and fer-

roelasticity at low temperature.

The work or Graesser and Cozzarelli (1991) utilized Bonc-Wen type’s model of rate

independence. It employs the dynamic analysis (Wen, 1976), to generate one-dimensional

evolutionary equations of plasticity to modify the macroscopic stress-strain character of

SMAs. Later on, they extended the one-dimensional model to three-dimensional cases by

means of the agreement of volume preserved between the plastic flow and martensitic
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phase transformations. This model was able to offer some helpful theoretical results for

different loading conditions with properly choosing parameters to modify the plastic flow

theory and then to describe the behavior of SMAs.

All the modeling investigations mentioned above can reflect the. most basic character-

istics of SMAs to some degree. However, most of them in general are focused on some

specific aspects. When more features of SMAs are needed to be described, it follows that

the constitutive equations are usually needed to be changed. For instance, Achenbach er

al’s work (1986) can hardly be used to describe plane stress problems, neither is it easily

applicable in engineering; Tanaka and his colleaques’s works (or Liang and Rogers’s

work) are well suitable for the isothermal stress-induced martensitic transformations or

reverse transformations, but they are short of enough descriptions of adiabatic, convective,

as well as therrnal—induced situations of martensite transformations. Muller and other’s

studies (or Fedelich and Zanzotto’s work) have their most concentration on pseudoelastic-

ity but little focus on other properties. Some of the above investigations, such as plastic

type of modeling, are in some way or the other in a difficult condition with respect to

' parameter choosing, physical understanding, or practical engineering. Thus, a more com-

plete model which is easily applied, as well as supported by a accurate theoretical

resources, is the motivation of the current study.

Recently, on the basis of the work done by {Coleman & Hodgdon (1986 & 1987),

Ivshin and Pence furthered the Duhem-Madelung Model for magnetic hysteresis to the

constitutive relations of shape memory alloys (Ivshin & Pence, 1994 a,b) to describe the

macroscopic behavior of SMAs from the hysteresis, thennodynamics and continuum

mechanics point of view. In the study of Ivshin & Pence (1994 a), a model for rate inde-

pendent hysteresis was examined. The evolution equations for phase fractions of austenite
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and one martensite variant was derived by considering temperature as the only driving

forces. Several restrictions on the hysteresis envelopes, which are the maximum and mini-

mum values of austenite phase fraction during phase transformations, were given to ensure

monotonicity, containment and orientation requirements. Later in the approach made by

Ivshin & Pence (1994 b), evolution equations were developed to govern the time history of ‘

shape memory alloys under changes in stress, strain and temperature for one martensitic

variant problems. In addition to that, Ivshin and Pence also presented simulations of the

relations of stress and strain in either isothermal or adiabatic conditions and internal hys-

teresis transition loops. Comparison, made by Brinson and Huang (Brinson and Huang,

1996), between this model and Tanaka’s model, yields nearly identical results if both mod-

els are used with the same kinetic law. However, Ivshin and Pence’s model gives more

flexibility in a variety situations varying from isothermal to adiabatic conditions. To

extend one variant model to two variant model, a basic analysis for two variant martensite

problems was given in the work by Pence er al. (1994). They began from the discussion of

“triple point organizational kernel”, and then explored the idea to the mixture of coexist-

ence and hysteresis unfoldings. Lateral pseudoelasticity associated with phase transforma-

tions was obtained under cyclic loading in high temperature regions.

1.2 Scope of This Work

The present study will give a relatively complete description to the two variant marten-

site model by refining and extending the one-dimensional work of Pence et al. (1994). We

consider a two-phase material which consists of a high temperature austenite phase A and

two symmetric variants of a low temperature martensite phases M, and M_ which could
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be treated as twin related. The first of these two variants M, is favored in positive stress

(1: > 0) and the second M_ is favored in negative stress (1: < 0 ). We assume that, the for-

ward (austenite to martensiti:) transition temperatures M, and Mf, and backward (marten-

site to austenite) transition temperatures A, and Af, could be measured by decreasing and

increasing the temperature at zero-load. In the present study we are going to employ a

phasefraction triple {§., fiA, §,} as internal variables, while temperature T and stress 1

are driving forces. Here §A indicates the phase fraction of austenite, while g, and §_

indicate the phase fractions of the two martensite variants. We treat the situation in which

the temperature and stress vary with time in some prescribed fashion. This generates paths

in a (1:, T )-plane, which will be referred to as the state plane. Pairs (t, T) will be referred

to as states, and continuous paths (1:(t), T(t)) in the state plane will be referred to as state

paths. The main purpose of this research is to study, refine and apply an algorithm for

phase transformations between the three species A, M, and M_ as the state of the system

varies. Thus we seek to determine the values of Q, E, and g, on state paths. Hysteresis

in these transformations indicate that Q, §, and §_ will not in general be state functions,

that is, the instantaneous value of (t, T) does not determine the values of 5,, g, and §_ .

Rather we study an algorithm which determine these values on the basis of known initial

values for Q, g, and E, , and knowledge of the subsequent state path. At each instant of

time, the three phase fractions satisfy the following balance relation

6A0) +§,(t) + 5-0) = 1 (1.2.0.1)

To achieve the purpose, various kinds of state plane partitions into M,. A, M, regions

(X-unfolding, pY-unfolding, Y-unfolding) are developed from a thermodynamic restric-

tion which ensures that Gibbs free energy satisfies the second law of thermodynamics.
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These partitions are different unfoldings of a standard triple point phase diagram. Charac-

teristic curves in the state plane are obtained which govern processes A <-> M, and

A <—) M_ respectively, in a way that is similar to (Pence et al. 1994). Descriptions of the

M, <--) M, process are then developed by modifying the two austenite/martensite pro—

cesses. The characteristic curves act as nuetrality curves which classify both austenite]

martensite phase transformations and detwining processes (M, <—) M_) by regions in the

(t, T)—plane. They also enter the evolution equations for the phase fraction triple {§_, §A,

Q} as an internal variable. Internal variable descriptions for thermodynamic behavior are

common, for example, Coleman and Gurtin (1967) employed thermomechanical and

internal variables together to generalize dissipation problems.

In section 2, we begin by extending the triple point phase diagram (Pence et al., 1994)

to an X-unfolding by taking thermodynamic considerations on the three species M., A and

M,. The nuetrality curves, describing phase transformations between austenite/martensite

at high temperature, are modified as detwinning nuetrality curves, when they enter into

non-austenite regions. That means the Clausius-Clapeyron relation for austenitelmarten-

site is used to describe the detwinning process, which is not exactly the case. To justify

this point, the entropy of austenite is replaced by that of martensite in the Clausius-Clap-

eyron relation so as to generate constant stress nuetrality curves for detwinning, in which

the detwinning flow and finish stresses are predicted as a consequence of this procedure.

Experimentally, it is often the case that the detwinning flow and finish stresses are smaller

that the ones predicted by the X—unfolding., If the detwinning flow and finish stresses are

instead treated as material constants, a Y-unfolding is suggested.

In Section 3, we first define all transition possibilities (transition types) when tempera-

ture and stress trigger the transformations. Then criteria for different transition types are
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derived based on the nuetrality curves, which are useful for us to determine what kinds of

transition types occur at any point on a given path in (t, T )-plane. These criteria have an

explicit geometric illustration. An example of how to use these criteria is given at the end

of this section.

Chapter 4 opens with a brief review of one variant model (Ivshin and Pence, 1994, a,

b). To extend the model to two martensite variants M. and M,, we introduce a concept of

constitutive functions of austenite which is similar to that of the one variant case. We then

work on the extension of algorithms from one variant to two variant. Numerous possible

algorithms in the two variant case make the problem difficult, but with the symmetry of

two martensite variants and the coherence of phase transition possibilities, we arrive at a

unique algorithm for each transition possibility. The extension is verified by considering

the self-accommodated process in the two models.

In chapter 5, based on the algorithm arrived in the previous section, the solutions of

phase fractions for each transition type are calculated. This permits further analysis of the

stress-strain relation. The phase fraction evolution depends on the state and the state-path

orientation in the (1:, T)-plane. Conditions that would ensure path independent algorithms

for the various transition possibilities are derived mathematically. However analysis of the

path-independent conditions shows that path independence within a transition type is -

often not the case.

In chapter 6, several numerical results in stress-strain—temperature relations are given.

Pseudoelasticity, shape memory and the features of the associated internal hysteresis loops

are thoroughly studied. Some isothermal behaviors between the temperatures Af and Mf

are also conducted for different initial conditions. Finally, comparisons with other models

are made at the end of this section.
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As an application of this model, a prediction on reciprocal motions of two element

devices made of shape memory alloys is analyzed in chapter 7. The analysis focuses on

the prediction of phase fraction changes inside the device due to temperature pulses that

alternate between the two elements. The result show that a stable cyclic linear motion can

be reached after several repititions of the temperature pulses.

Conclusions and possible ideas for future work are presented in Chapter 8.

An appendix is also given for the inverse issue of Chapter 2. In the previous study, it

begins with considering the second law of thermodynamics to create the phase diagram.

Linear stress-strain relations of each phase are assumed during this process. The predic-

tion for the phase diagram is usually different with experimental observations. Therefore,

it naturally arises an inverse problem to determine the stress-strain relation under the same

thermodynamic regard and a given phase diagram by experimental measurements. In the

appendix, a problem related with the above consideration is well posed. Nonlinear stress-

strain relations are obtained corresponding to the given phase diagram. The solution also

shows that the two issues are coincident under the same phase diagram.



2 FORMATION OF A TWO VARIANT PHASE DIAGRAM

In this study we begin with assuming that phase transformation triggered by tempera-

ture and stress satisfy the second law of thermodynamics. According to this point, charac-

teristics of a differential equation, obtained from increments of Gibbs free energy of the

three species system obeying the Maxwell relation, are derived in association with both

the process A (—) M, and A <-) _M_ . Those characteristics are interpreted as nuetrality

curves in the state plane and govern as a “modifier” transformation between austenite and

the martensite variants within the system. At low temperatures they are reinterpreted in

terms of a direct M_ <—) M, process. Then considerations of consistency between these

new process interpretation and the Gibbs/Maxwell argument, modify the low temperature

characteristic. This then adjusts the mathematical treatment of the M_ H M, detwining

process.

2.1 Concept of Nuetrality Curves

First of all, we recall some thermodynamic views introduced in the work by Pence et at.

(1994) to describe the phase transformations. Entropy and strain of the fine mixture of the

three species system are extensive variable counterparts to the temperature T and shear

stress 1:. High temperature and low stress corresponds to a situation of high entropy and

low strain (austenite favored); low temperature and high stress is consistent with a condi-

ll
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tion of low entropy and high strain (martensite favored). Under a rule of mixtures, these

extensive variables are defined by

n = Erna + in. + 5-11- . (2.1.0.1)

7 = §A7A+§+Y++§-Y-- (2.1.0.2)

Here, nub and 7,“, are entropies and strains of pure phases, and are assumed to be state

functions of the driving forces (1:, T). The increments of Gibbs free energy G of the mix-

ture of the three species are required to obey the relation

d0 = - ndT — 7dr. (2.1.0.3)

Here (11, T) and (y, 1:) each form a conjugate pair of thermodynamic variables. The math-

ematical development is general enough to include both the case where (y, t) are regarded

as shear variables and are regarded as normal variables. Of course in making contract with

experiment, the sense in which (7, t) are to be regarded must be specified.

To avoid any violation with the second law of thermodynamics, Gibbs free energy G

must be a state function of temperature and stress, so that the overall entropy and strain

satisfy the Maxwell relation

(2. l .0.4)

$
3
”

37:
it

Under the assumption that entropies and strains of pure phases are state functions,

which means the Maxwell relation is satisfied in each pure phase, and abides by the law

(1.2.0.1) of the balance of the three species, the above relation gives
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gm), -n,,) +§annn> = 3%(Yt-Yn) +3510- ’YA) . (24-0-5)

which is a thermomechanical restriction on the system. To interpret the physical meanings

of the equation, we are going to consider the phase transformations among the three spe-

cies.

Changes of temperature and stress in (t, T)-plane drive transformations between the

three phasesM_ , A and M, . Let us first classify the phase transformations into two

courses A <—> M, and A H M,. There are two transition directions in each course. The

classification remains potentially incomplete until a process is given for describing

M, (—-) M_. For the present we only contemplate the first two processes and later on Sec-

tion 2.2.3 the third course M, (—> M, will be introduced in terms of the work by

Wasilewski (a,b,c, 1971).

In process A <—) M,, beginning at any initial point in the (t, T)-plane it is assumed

that certain paths away from this point will favor the transformation of A to M,

(A —) M,). Paths in the opposite direction would then favor the transformation of M, into

A (M, —> A). It is assumed that there exists exactly one neutral direction (including its

opposite direction) away from the initial point in which neither an A -> M, nor an

M, —> A transformation is favored. The curve traced out as one travels in this neutral

direction is an A/M, nuetrality curve which will be discussed next.

In the above we assumed that the overall phase transitions obey the Maxwell relation

(2.1.0.5). In particular, this equation must hold for A H M, process in which the phase

fraction 5, does not change. For such a virtual process the thermomechanical restriction

(2.1.0.5) on the whole system specializes to
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mi. 3§+
3.1:. (11+..nA) = BTW+_YA) . (2.1.0.6)

The characteristic equation associated with this differential equation is the following

dT 7+ " YA

dt n,—nA’

 (2. 1.0.7)

which, in turn, gives the g, nuetrality curves for the process A HM,. This is familiar as

the Clausius-Clapeyron equation for process A H M, . Following a similar procedure one

finds that the Clausius-Clapeyron equation for process A HM_ is

dT 'Y- " YA
— = — . 2010008

‘11: IL ’ TIA ( )

 

Integration of the Clausius-Clapeyron equations (2.1.0.7) and (2.1.0.8) yields a param-

etrization of nuetrality curves in the form of B:(1:, T) = C+ and 6;,(1, T) = C' for the

two processes. Here C+ and C' are integration constants which locate the individual

curves that make up the two families for A H M, and A HM_ respectively. The develop-

ment so far has made no assumption as to the symmetry of the variants M, and M-. For

simplicity we consider a situation in which these two variants are symmetric with respect

to stress, that is, the effect of a particular value to in triggering M, is identical to the

effect of -ta in triggering M_ (all other factors being equal). This requires that

y,(t, T) = -'y,(—t, T) and 11,(t, T) = 111—1, T) . This symmetry assumption implies ten-

sion/compression synunetry where (y, 1:) are regarded as normal components. On a finer

crystallographic scale where the shear interpretation may be useful, this implies that M,

and M, represent variants with equal and opposite lattice shears.
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These symmetries give B:('t, T) = B;(-t, T) and implies nuetrality curves that are

symmetric about t = 0 . It is often convenient to choose this parametrization so that

{32(0, T) = T = 0;,(0, T) and we shall choose this convention. Then B: and {3; play the

role of a generalized temperature. Therefore, we let increasing C+ and C- correspond to

M, -) A and M_ -> A transformations respectively, and decreasing C+ and C' corre-

spond to A -> M, and A -) M_ transformations respectively. Setting [3:01; T) and

3;,(1, T) equal to the four transition temperatures Mf M,, A, and Af, gives eight canonical

nuetrality transition curves. We name these eight curves the terminal nuetrality curves in

the rest of this study.

2.2 Special Nuetrality Curves and the X-unfolding

2.2.1 Unfolding the Basic Three Species Phase Diagram

Before we find the nuetrality curves it is helpful to recall the unfolding of the standard

triple point phase diagram introduced in the approach by Pence et al. (1994). Figure 1 is

the standard triple point diagram which most simply categorizes the system of the three

species of austenite and martensite two variants. In this phase diagram, all phase transfor-

mations of austenite/martensite and reorientations of the two variants are abrupt so that

either {§_, EA, fi,}={ 1, 0,0}, {0, 1, 0} or {0, 0, 1}; these correspond respectively to pure

M_ martensite, pure austenite, or pure M, martensite (Figure 1). If a continuous path

(t(t), T(t)) is prescribed, then the austenite/martensite phase transformations or the mar-

tensite/martensite reorientations take place whenever the path either crosses one of the

dual species transformation curves, or else crosses the triple point (0, T. ). The same
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transformation curves operate in each process direction, so that these processes are also

not hysteretic. To build a natural hysteresis and coexistence of SMAs in the model, we

may unfold this triple point phase diagram by the thermodynamic derivations obtained in

the last section following Pence et al. (1994).

A<—>M, ‘T

transition curve

   

     

A <->M,

transition curve

 
SALE-({0, or 1})

SM.({19 0, 0})
(0,T*)

 

>t

transition curve

Figure 1. Triple point phase diagram for a transformation that neither admits hysteresis nor

stable phase mixtures. Values for the phase fraction triple {§_, SA: 5,,} are restricted to the

three types shown.

2.2.2 Formation of X-unfolding

To unfold the triple point phase diagram, it is necessary to determine the form of the

characteristics or those nuetrality curves from the Clausius-Clapeyron equations. Integra-

tion of equations (2.1.0.7) and (2.1.0.8) gives
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1530. 775 , 0 j (n.-n.)dT+(vr-r.)dt (2.2.2.1)

"A " 11410.70)

1 (T. T)

B;(t. 1) a o a j (11,, — n,)dT + (y, -y,)dt (2.2.2.2)

“A - Ti. (0’ To)

where, To is a fixed reference temperature, 11? = n,(0, T0) are zero-stress reference

entropies at this temperature for i = -, A, +. In particular if the stress-strain behavior is lin-

early elastic and temperature independent in each pure phase with moduli It,

(Ill. = I1. = “111) ie.,

7.. = W... i. = ‘r/lwv’. Y- = min-r". (2.2.2.3)

and if the entropies of the three species are simply expressed as

Tl.- = Cln(T/To) + 11?. (2.2.2.4)

where C is a common specific heat for the all three species with 11: = 11?, then the same

results as in the approach by Pence et al. (1994) gives

 

  

2

( - )1 .

Blane“ 01 0[ "‘2‘“ :1“ -y t], (2.2.2.5)

2

- ' ( " )1 e

B,(t.D.--T+ 01 0[ "g" t‘ +71). (2.2.2.6)

Note that, in each phase/species (M, A, M,) that (2.2.2.3) and (2.2.2.4) are consistent with
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the Maxwell relation (2.1.0.4). Here 7. is the zero-load transformation strain. For exam-

ple, a system with: moduli of austenite and martensite, u, = 50, 000 , it“ = 20, 000

MPa, the difference of the reference entropies between austenite and martensite,

112—112 = 112-1]? = 0.7x 10‘5 j/(m3 °K), and transformation strain is assumed

7‘ = 0.07 , gives the nuetrality curve parametrization

(331,1) -_.- T- 1 x 10"r—2.14 x 10’5t2, (2.2.2.7)

B;(r, T) = T + 1 x 10“r — 2.14 x 10‘5r2. (2.2.2.8)

Continuing with this example, suppose Af = 42, A, = 13 , Mf = —7 and M, = 22 °C.

Then, each of equations (2.2.2.7) and (2.2.2.8) gives 4 curves passing through those 4 tem-

3+9 3+,
peratures, and so that eight terminal nuetrality curves: Af,, A Mf,, M Af_, A,-,

Mf_, M,_ are obtained, which, together, generate an “X-shape” in the (1:, T )-plane (Figure

2). This formally unfolds the triple point phase diagram by separating both the A H M,

and A HM_ phase transformation curves. Compared to the triple point phase diagram in

Figure 1, this unfolding bifurcates the triple point (0, T‘) into (0, M,), (0, A,), (0, M,) and

(0, Af), and extends A H M, and A HM, processes into negative and positive stress

areas respectively. We temporarily ignore any unfolding of the M, HM_ transformation

curve and instead focus on the formal extensions of the terminal nuetrality curves back-

wards into the low temperature region of phase diagram. This, rather questionable, scheme

will be called the X-unfolding. We will discuss this unfolding in its own right, and then

show how an additional modification can be used to account for an unfolding of the

M,HM. curve associated with martensite variant reorientation processes.
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Figure 2. The terminal nuetrality curves in the X—unfolding given by (2.2.2.7) and (2.2.2.8)

for a material with transformation temperatures: Af = 42, A, =13, Mf = -7,

M, = 22 °C; moduli ofaustenite and martensite: “A = 50,000 MPa, ”M = 20,000

MPa; transformation ~ strain 7 = 0.07 ; entropy difference:

112—112: 112-1]? = 0.7x106.Since "A #uM thesecurvesarenotlinear.

2.2.3 Building Detwinning into the X-unfolding

It is convenient to define eleven zones in (1:, T)-plane associated with this X-unfold-

ing, which are indicated in Figure 3 and Figure 4 for the separate cases of material obeying

A, > M, and A, < M, respectively. Formally these regions are given by
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QT={(I. T)|M,sB;(t,r)5Af,MfsB;(r,nsAf},

9.} ={ (T, T)IB:(T. 71M). MISBJLDSAf }.

9? ={(1.T)|B;(1.D>A,,M,s B:(t, DSA, },

a; ={(r, r)|pj;(t, n<M,,A,sB;(t, T)SAf},

52', ={(r, T)|A,SB:(1:, 1) sA,, 13;,(t, r) <Mf ),

Sn. = {(1. Tllflzc. 1) <M,. m. I) <M,}.

sM,={(r,T)|B;(t, n<Mf,M,sp;(t, T)<A,},

sM_,=((r,T)|p;(r,1) < M,, Mfg egg, 7') < A, ),

S,=l(t.T)|B:(t.1)>A,.B;,(t. T)>Af}.

Spam. T)|B;(r. n > A,. 63o. T) <M, l.

. SM-={r. T)|(B;(t. 7) < M,. 331.7“) > A,1.

Those regions defined in the above way are shown in the following two graphs for materi-

als obeying eitherA, < M, (Figure 3) or A, > M, (Figure 4).
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Figure 3. X-unfolding of the triple point for materials obeying A, < M,. The S-regions are

stable zones in which transitions do not occur so that the triple {§., §A, §,} is static on these

regions. The D-regions allow for changes in the phase fraction triple as (1:, T) changes. For

example, transitions A —> M, can occur in that portion of Q: and QT which is between

M,, and Mf,. Similarly, M, -> A can occur in the above two regions between A,, and A,,.
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Figure 4. X-unfolding of the triple point for the case of A, > M,. In contrast to the case

described in Figure 3, here the region of of between M,, and A,, does not admit

transformations and so is, formally, a stable zone. For simplicity the Q notation is retained

and the region is referred to as a dead zone. A similar dead zone exists in Q} .

The X-unfolding, preserves the three stable phase zones SA, 5”,, and SM_ in which the

phase fraction triple is {0, l, 0}, {0, 0, 1} and {1, 0, 0} respectively. Since this develop-

ment treats A H M, and A HM- nuetrality curves, but neglects a direct M,HM_ pro-

cess, one identifies the t0p half of the “X” with the unfolded A H M, and A HM_

transition curves of Figure 1. Actually, A H M, and A HM_ may be active in Q: and

(2’, respectively while in 9;” both processes may be active. However the bottom half of

the “X” does not, at present, permit an obvious correspondence with the M, HM- trans-

formation curve of Figure 1. One goal is to naturally develop this correspondence. To do

so we identify the region between the two lower branches of the “X” as a region of stable
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MJM, mixture, which would likely exist in a crystallographically twinned state. For rea-

sons outlined below, this region naturally extends to the regions 5”,, and SM-+- The auste-

nite phase is not present in the zones SM_, , SM, and SM,_ , and so that the phase fraction

triple must be of the form {§_, 0, §,}. The values fi, and E, are determined by how a state

path enters into this combined area. The values 5,, and §_ are then static so long as the driv-

ing force path (t(t), T(t)) does not exit SM_, U SM,, U SM,_ . We now consider transforma-

tions between the six stable regions: SA, 3”,, SM, 5M0, 51“,, and SM,,, due to driving

force paths (t(t), T(t)) which connect them via the five active regions: (2}, (2:, (IT, (2'2 ,

52;.

We first examine connection paths that avoid the central region 0;". Consider eight

special paths: p1, p2, p3, p4, p-f, p5, p3, p3 (Figure 5), which are organized here into pairs of

opposite direction (e.g. (p1, p2), ..., (p3, pz)). They are also taken to be orthogonal to the

various nuetrality curves, and so are referred to as transfonnationfluxpaths; consequently,

they will have the greatest transformation gradient. The general case of an arbitrary path

can be approximated by infinitesimal path segments that then alternate between the local

nuetrality curve direction and the local transformation flux direction.
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Figure 5. Transition paths are shown in X-unfolding for A, < M,. Solid lines indicate active

transformation while dash or dot lines indicate inactive transformation.

Consider the path p1 going from SM_ to 8,, corresponding to transition direction

M_ -9 A. Note that the portion between nuetrality curves Mf, and A,, (dash line) is inac-

tive while the portion between A,, and Af, is active (solid line). The opposite path p2 run-

ning from SA to SM, indicates transition direction A —) M- in which the portion between

Af, and M,, (dash line) is inactive while between nuetrality curves M,_ and M,; (solid line)

is active. Both of the two paths could be active in the area between nuetrality curves A,_

and M,_. Flux paths p3 and p, in Q; are similar to that of paths p1 and p2, where now M,

replaces M,. It should be noted that processes A H M, and A HM_ may operate simul-

taneously in OT , which implies the possibility of phase fraction triples {§_, 9, 5,,} in

(If with0<§,§A,§,<1.Incontrast§,=0in (2'1 andE,=0in 0:.
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Paths: p1, p2, p3, p4, operate above both Mf, and Mf,. For states (I, T) underneath

' either M,, or M,,, the associated transition of the form A -> M, or A -) M- has already

gone to completion, so that there is no austenite in the corresponding area. Any austenite

that would be predicted by a formal algorithm immediately transforms to M, if 1: > 0

(A = M,) and immediately transforms to M, ift < 0 (A = M,). This will be referred to

as an “instability transformation”. It is reminiscent of Wasilewski, who introduced

assumptions on the reorientation of martensite variants in non-austenite regions

(Wasilewski, a, b, c, 1971), such that the austenite state serves as an instantaneously inter-

mediary status to “switch” the reorientations of martensite variants. In the present study

this suggests that, transition direction M_ -> A indicated by flux path p1- between A,, and

Af, (solid line in Figure 5) should be replaced by M_ —) (A) =9 M, , which is M_ —) M, .

We will refer here to direct martensite/martensite reorientation transformations from

mixed martensite variant fraction {§,, 0, §,} to one that involves only one variant as a

“detwinning process”. Since path p1- (dot line) was originally inactive between M,; andA,,

, no transition occurs on p1 in Sm.-. On the other hand, path p: for transition direction

A —-) M. (dot line) is completely inactive because of the absence of austenite below Mf,.

Similarly, the active part of path p3 (solid line), indicating transition direction M, -) A

between A,, and A,,, should be replaced by M, —> (A) :9 M- or detwinning process

M, -> M_, while path p5 (dot line) is completely inactive between Mf, and A,,. Path p3,

like path p5, is inactive, because of the absence of austenite. Consequently, the terminal

nuetrality curves A,_ and A,, become detwinningflow curves at sufficiently low tempera-

ture. Likewise, the terminal nuetrality curves Af, and Af, become detwinning finish

curves at sufficiently low temperature. Thus far, two new transition directions have been

set up in low temperature regions (2; and Q; , in which detwinning processes will be trig-
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gered by increasing or decreasing the stress and temperature. Further, since paths p-f is

inactive between M,; and A,, and path p; is inactive between Mf, and A,,, we verify the

earlier claim that the stable mixed martensite variant zone SM, extends to regions 51",,

and SM,

In conclusion, in (21 = Q] U at U Q: , the X—unfolding retains the original features

of the previous unfolding by Pence et al. (1994). These include the coexistence of the

phase triple {§_, fiA, §,}away from 1: = 0 in OT, and the triggering of the transition

direction M. —> A , for example, by increasing the stress in t > 0 at a constant tempera-

ture. In addition to that, in Q; and 9'2, detwinning process M,H M_ is modified by

M, -> A and M -> A austenite/martensite phase transformations, and the two variant

martensites would be coexistent in SM (= SM,, U SM, U SM, ), Q; and Q; . In the latter

two areas detwining processes are acknowledged to occur. It is obvious that the detwin-

ning process in this X-unfolding come from allowing M_ -) A and M, -) A to extend into

the areas where there is no austenite, therefore, the corresponding detwinning flow and

finish can be obtained directly from the phase transformation flow and finish in the non-

austenite areas (I; and 0'2. However, in Q; and 0'2 , one should note that the X-unfold-

ing has the property that increasing temperature at a constant stress can trigger the detwin-

ning process. This is caused by the specified driving path crossing what are now

detwinning nuetrality curves that continue to depend on both temperatures and stresses

inherited from the original austenite/martensite transformation curves. This dubious phe-

nomenon will be amended naturally in following further investigations on the unfoldings

at the beginning in section 2.3.
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2.2.4 Isothermal Behavior of X-unfolding

At the present stage, strategically, one can contemplate the transformation behavior

under the X-unfolding. We here consider only the isothermal behaviors in view of the

detwining difficulty mentioned above. Variable temperature and stress paths will be

addressed in chapter 6. To see the problem clearly we define the following temperature

ranges shown in Figure 6,

1p, {T>Af},

1,, = {TffsTsAf},

T
srn

{Tf,ST<Tff},

T
SC

{T<Mf}.

Here, Tff is the intersection temperature for nuetrality curve Mf, with nuetrality curve

Af, Similarly Tf, is the intersection temperature for nuetrality curve Mf, with nuetrality

curve A,_ . Consider constant temperature loading and unloading paths that increase stress

from t = 0 to a stress value in SM,, this ensures complete transformation to M, in the load-

ing process. This is then followed by an unloading process that decreases the stress back to

t = 0. It is assumed that all initial conditions are given in status of a general mixture of the

three species as allowed by the temperature under consideration. The following isothermal

transformation possibilities are arrived for either M, > A, or M, < A, in TABLE 1.



28

TABLE 1. Transformation Possibilities for Isothermal Loading and Unloading

 

TRANSFORMATION TRANSFORMATION

 

 

 

 

 

  

TEMPERATURE POSSIBILITIES POSSIBILITIES DURING THERMOMECHANICAL

RANGES DURING LOADING UNLOADING BEHAVIOR

Te Tpd A->M,. M,—)A. Mdoelasticity

" M_)Al, '4 M+—)A8, ifM,>A,,thenshapememory

' effect with residual strain associ-

2 9 ated with some more M,,and less

T5 T3}; A_)M+ - A—’M- - M.lefi;ifM,<A,,thenonlywith

some M, lefi at higher tempera-

tures, 100% M, left at lower tem-

peratures.

‘2 M_)A3, ‘5 M,.—9A"), ifM,>A,,thenshapememory

' effect with residual strain associ-

4 ‘1 atedwith someM,andM, leftfor

TE Tsrn A'9M+ . A—’M- - T>A,and100%M,leftforT<

A,; if M, < A,, then with M,

M _) M,_s, 100% left only.

*3 A .9 M+6, shape memory effect with 100%

T E T.“ M, left.

M_ —) M,7.

TE Tu M_—)M+, samewiththeabove.

‘1. HM, >A,, then 1 occurs first when T> M,, and l, 2 occur simultaneously

when T < M,. IfM, < A,, then 1 always occurs before 2.

’2. If M, > A,, then 3 and 4 occur simultaneously when T > A,, 4 occurs before 3

when T < A,, and 5 is the last one to occur. If M, < A,, then 4 always occurs

before3,and5isthelast.

NOTES ‘3. 6 occurs always before 7.

'"4. HM, > A,, then 8 would not complete, and 9 is active only when T < M,. IfM,

< A,, then 8 is active only when T > A, and would not complete. 9 is inactive.

For both the two cases, 8 occurs always before 9 in the sense of8 supports 9

by creating A.

‘5. IfM,>A,, then 10and 11 are active when T>A, with 10 supporting 11 by cre-

atingA. IfM,<A,, then 10and 11 areinactive.
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Figure 6. Temperature segments for cases M, > A, (a) and A, > M, (b) in X-unfolding.

2.3 Modified Nuetrality Curves and the pY-unfolding

2.3.1 Thermodynamic Considerations for Detwinning and a Primitive Y-

unfolding

In the approach of the previous section, the X-unfolding naturally gives rise to detwin-

ning process by first allowing martensite/austenite phase transformations to enter non-aus-

tenite areas, and second transforming the obtained austenite into martensite variants

immediately in terms of Wasilewski’s assumptions involving an instability transformation

of austenite. An issue that must now be addressed is that the slope of these detwinning

process nuetrality curves was determined on the basis of a Clausius-Clapeyron relation for

austenite/martensite transformations. However, in Q; and (2'2 the processes are now asso-

ciated with martensite detwinning. Thus, the Clausius-Clapeyron argument requires modi-

' fication. Based on (2.1.0.5), now the Clausius-Clapeyron equation for the detwinning
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. + -

process m (22 and (22 becomes

 2L: “’7', (2.3.1.1)

In particular, if entropies of martensite variants are assumed identical, so that

n, - TL = 0 , then the slopes of the nuetrality curves pararnetrizing detwinning processes

lie parallel to the T—axis. The condition 11, — 11- = 0 is met for the example material char-

acterized by (2.2.2.3) and (2.2.2.4) with n: = nf’. Note that this condition need not be

met for more generalized models, such as those with temperature dependent elastic mod-

uli, since then the individual phase Maxwell relation (2.1.0.4) would in general give a

stress dependence on the martensite variant entropy functions 11, and TL , which would, in

turn, break the relation 11, = TL.

For the realistic special case with 11, = TL , the above analysis implies that the detwin-

ning flow and finish lines are independent of the temperature, which is agreeable to the

approach by Krishnan, et. al (1971) and Brinson (1993). Under this scheme, the detwin-

ning flow stress, say 1,, could be naturally determined by identifying the stress of the inter-

section point between nuetrality curves Mf, and A,_. In the same manner the detwinning

finish stress, named 1,; is naturally resolved by identifying the stress of the intersection .

point of nuetrality curve Mf, and with nuetrality curve Af_. These two special stresses are

illustrated in Figure 7. This gives a primitive Y-unfolding, referred to as the pY-unfolding;

it is shown in Figure 7 and Figure 8 for the case of a material obeying M, > A,. In this sit-

uation, zones SA and Q, are the same in the X- and pY-unfoldings, however, zones 0; ,

0'2 , SM, and SM. in the X-unfolding change to zones OE, Q; , SM, and 3’”. in the pY-

unfolding (Figure 8) respectively while SM turns to SM. We no longer display the trans-
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formation nuetrality curves for A -) M, and A -) M- in O; and Q} in view of the previ-

ous discussion where it was shown that these two processes are not active in the area

below 91.

 

 

 

'1 ‘ T
J: by:

0'. bsx

(a.\ /$9

+

I

Is

Tr

r    

Figure 7 pY-unfolding is obtained by modifying the X-unfolding with eight specified

nuetrality curves: A,,, M,,, A,,, M,,, A,-_, M,_, A,_, Mf_. The former four are

“bent” to vertical positions in 1 S 0 upon encountering M,; and the latter four are similarly

“bent” in 1 2 0 upon encountering Mf,. Here A, < M,; materials with A, > M, are treated

similarly.
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Figure 8. Phase transformation active and inactive zones are shown in the pY-unfolding,

which is obtained by modifying the X-unfolding below M,, and M,,.

2.3.2 Mathematical Description of pY-unfolding

With the above discussion we now describe the modified nuetrality curves below Mf,

and M,,. The primary nuetrality curves [33“, r) and B;(r,1), remain suitable in a,

(above Mf, and M,,), Below Mf, and Mf, these curves are modified so as to be parallel to

the T-axis under the thermodynamic assumption 1], = 1']. taken in the last section. For

example, for any temperature C’ obeying Mf < C- < Af , one can always find the intersec-

tion point (1, f(1)) of nuetrality curve B:(1, T) = C+ with 5;,(1, T) = Mf. In particular,

the intersection point value of 1, corresponding to C" = A,, is the detwinning flow -1, in

this pY-unfolding. The detwinning finish stress -1, comes from this same procedure with

C" = A1: The area between the nuetrality curves 1 = -1, and 1 = 4,: is renamed (2'2 . Since
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the nuetrality curves are vertically described. Substituting 1 = f(t) into [3;(t, 1) gives

the modified nuetrality curves {3;(1, 1) = [3:0, f(1)) below M,. with 1 < 0, which is

active only in Q} . Thus, the nuetrality curves of process A H M, in Q, and M, —> M_

below Mf, with 1 < 0 can be written as

1320.1) for 13:11.1) 2M,

BT17) = + _ .

B,(I.f(1:)) for Ban, 1) <M,

(2.3.2.1)

Similarly, for process A HM_ in Q, and M- —) M, below M,, with 1 > 0, the nuetrality

curves are found as

BAH) for 1331,1121",

1311.1) = - + .

841.3(1)) for Ban, 1) < Mf

(2.3.2.2)

Here (1, g(1)) is the intersection point of nuetrality curves B;(1, T) = C- with

B;(t, 1) = MI.

Let (2.3.2.1) and (2.3.2.2) be equal to the four transition temperatures respectively,

eight nuetrality curves are obtained. Four of these are associated with A, and Af in Q;

and (2.2 , and will be naturally interpreted as detwinning flow and finish lines respectively.

The other four associated with M, and Mf below M,, and Mf, are not significant for any

phase transformation process. The parts of the eight nuetrality curves in 91 remain the

same functions with those in the X-unfolding.

Example

Under the material description assumptions given by (2.2.2.3) and (2.2.2.4), the modi-
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fied forms of (2.2.2.5) and (2.2.2.6) for this pY-unfolding can be obtained by following the

above procedures. This evaluates (2.3.2.1) and (2.3.2.2) into the particular forms

 

 

 

r 2

1 (”M ' "A” t -

T + - 1 ,(1, T) 2M

5+“, 1) = t 1191- all 21‘4”!" Y ] for B f , (2.3.2.3)

,Mf-(zthni-nint for B;<t.1)<M,

T + 1 [(11114 " "A)1:2 + 7.1:] for 5:“, T) Z Mf

B'(t. 7) = 4 113-11? Zion” . (2.3.2.4)

_M,+(2v‘/(ni-n:))r for 82(1.1')<My 

Especially, in general the detwinning start and finish stresses are naturally determined by

 

, _ (A,-M,)(n3 ~11?)
, (2.3.2.5)

2‘!

and

 

= (Af-foliZ-nf’)

27‘

1! (2.3.2.6)

respectively for this pY-unfolding.
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2.4 Refined pY-unfolding Associated with Experiments

2.4.1 Experimental Justification on Detwinning

An obvious feature of the pY-unfolding as discussed so far is that the detwinning flow

stress 1, and the detwinning finish stress 1f are a consequence of the nuetrality curve

geometry of the original X-unfolding. However, the two stresses determined in this way

might not match those found by experiment. For example, the values of 1, and1fgiven by

the formulae ((2.3.2.5), (2.3.2.6)) are larger that those observed in the experiments by Hou

and Grummon (1995), and Miyazaki et al. (1991). An improved model would allow these

two stresses to be specified as. material properties. Here we continue to neglect any tem-

perature influence on both of the flow and finish, which is consistent with the detwinning

processes in pY-unfolding. Often the stress of detwinning flow is easily obtained directly

from experiments. However, the stress of detwinning finish is more difficult to obtain

experimentally. Nevertheless, in 1 > 0, we assume that the detwinning flow stress 1, and

finish stress 1,. (both of them are positive) are known for M_ —> M,. Consequently, in 1 <

0, these two are given by 1, = —1, and 1,. = —1f for M, ->M_ under the symmetry

assumptions of the material, so as to determine the two corresponding nuetrality curves

vertically (Figure 9).

Both the active detwinning nuetrality curves and the inactive nuetrality curves will be

vertically modified by the flow stress 1, and the finish stress 1, to satisfy the condition of

the instability transformation of austenite and its associated Clausius-Clapeyron relation

(2.3.1.1). Recall also that detwinning process M. —) M, is obtained by modifying the pro-

cess M_ —-) A below Mf,, this naturally requires that\the two corresponding nuetrality

curves connect to each other on Mf,. A similar requirement is made for processes
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M, -9 M, ' and M, -—) A on Mf_. We call this kind of requirement a consistency condition,

namely that: (1) the nuetrality curve Af, continues from 1 > 0 to the curve 1 = -1f below

Mf_; (2) the nuetrality curve A,, continues from 1 > 0 to the curve 1 = -1, below Mf,; (3) the

nuetrality curve Af_ continues from 1 < 0 to the curve 1 = 1fbelow M,,; (4) the nuetrality

curve A,, continues from 1 < 0 to the curve 1 = 1, below Mf,. There are many ways to

accomplish these procedures, the method taken here is to “bend” each of the nuetrality

curves Af,, A,,, Af, and A,_ twice. As an example, Af, is bent once at point (0, Af) on the T-

axis, and again at its intersection point with Mf_. This allows A,,: to remain as it was in the

X-unfolding for 1 > 0, to be given by 1 = —1f below M,;, and to have a straight line connec-

tion on the resulting boundary of QT . The remaining three nuetrality curves can be modi-

fied similarly. Once the above procedures are completed, all the other nuetrality curves

must then be modified accordingly. In this refined pY-unfolding, called simply the Y-

unfolding in what follows, we still use the notations of the pY—unfolding for a definition of

zones (Figure 10).
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Figure 9. Refined pY-unfolding, say, Y-unfolding, improves upon the pY-unfolding by

allowing the detwinning flow stress 1, and finish stress 1f to be specified as additional

material properties. This diagram is for the case ofM, > A,. In the present development, the

terminal nuetrality curves undergo abrupt slope changes upon crossing 1 = 0 and upon

meeting the nuetrality curves M,, and Mf,.
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Figure 10. Active and inactive zones in Y-unfolding corresponding to Figure 9.
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2.4.2 Mathematical Formulation of the Y-unfolding

In general, for constructing modified nuetrality curves of the Y-unfolding suitable to

meet the temperature independent detwinning flow and finish stresses, one must match the

two lines 1 = 1, and 1 = 1,- with the two stipulated nuetrality curves B'(1, T) = A, and

B'(1, T) = Af on the terminal nuetrality curve Mf,. The nuetrality curves inside Q;

could be simulated by linear interpolation between Af and A, associated with the detwin-

ning flow and finish stresses. Nuetrality curves, trivial for M_ -> M, in SM, and SM

(1>0), are all vertical lines corresponding to any temperatures in T S Af and Mf < T < A,

respectively. Based on the consistency condition introduced in section 2.4.1, each such

nuetrality curves should connect with a nuetrality curve of M, H A at the point on Mf,

corresponding the same temperature parameter. This naturally continues B'(1, T) beneath

the terminal nuetrality curve Mf, in 1 > 0.

As discussed above, since B'(1, T) remains unchanged in 1 S 0 , the consistency con-

dition restricts the connection between the two nuetrality curve sets of M_ H A for 1 S 0

and M_ —) M, for 1> 0 to describe process M- H A for 1 > 0. At present stage, we

ignore the thermodynamic consideration connected with this part, ie. process M, H A for

1 > 0. Appropriate thermodynamic refines to the problem are discussed in the Appendix.

Geometrically, instead, there are many ways to link the two parts. The obvious way men-

tioned in the previous section involves using straight lines to continue those nuetrality

curves with C0 smooth assumptions (Figure 9, Figure 10), which gives an approximate

description for process M, H A . Note that this modifies the slopes of the nuetrality curves

in region (If for 1 > 0.

Because of this, it is convenient to decompose the portion of Q: in 1 > 0 into subte-
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gions R1 and R2. The region R2 is that portion of Q:— above A,, and the region R1 is that

portion of QT below A,,. In addition, let R3 be the region above A,, and Mf, in 1 > 0.

Symmetry determines the corresponding regions in 1 < 0. Mathematically, the three

regions are expressed as the following shown in Figure 11,

R1 = {(1, T)|1>0, B'(1, T) s A,, B+(1, T) ZMf} .

R2 = {(1, T)|1>0, A,< B'(1, T) <Af, {5+(1, T) ZMf},

R3 = {(1,T)|1>0, B'(1, T)2Af,B+(1,T)2Mf}.

We now discuss this particular construction for our standard model involving pure spe-

cies strains as given by (2.2.2.3) and the pure species entropy as given by (2.2.2.4). The

straight line slope of Af, in 1 > 0 above Mf,, which satisfies the consistency condition, is

then found to be

2

 

, A —M -k 1 —k 1

kf= f f I" 21(<0). (2.4.2.1)

I

Here, It, and k2 are given by,

e (11 -l'l‘ )

k, = 7 «113—113) (> 0), k2 = A M (>0). (2.4.2.2) 

21511151013” 71:)

The straight line slope ofA,_ in 1 > 0 above M,,, which satisfies the consistency condition,

is then found to be

 i (< 0), (2.4.2.3)
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for the same It] and k2. Thus, A,_ andA,, are given by

T - k'ft = Af for 1 > 0, (2.4.2.4)

T - k,1 = A, for 1 > 0, (2.4.2.5)

respectively above Mf,.

 

    

Figure 11. Subdomains R1, R2 and R3 are shown in 1 > 0 for materials obeying M, > A,.

Since detwinning flow and finish stresses 1, and 1fare now regarded as determined by

experimental measurements, It, and k} are fully settled for this standard model. Three

possibilities might be encountered, ie., either k} > k, , It} = k, or k} < k,. In the first

case, the straight line extensions to Af, and A,, that bound R2 would intersect at a point 111

obeying 1 < 0. In the last case, this intersection would occur at a point 112 obeying 1 > 0
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(Figure 12). The coordinates for this intersection point are found to be

1 _ E _, 1 =Atk,-A,k'[.
, - _ _, , _ _ (2.4.2.6)

k,-kf k,-kf

Note that k} and k, are negative, so that condition It} > k, makes (2.4.2.6) correspond to

a point 111 and condition k} < k, makes (2.4.2.6) correspond to a point 7% The intermedi-

ate case k} = It, gives parallel lines and so corresponds to an intersection point at infinity.

 
   
 

Figure 12. Intersecting points of nuetrality curves of detwinning flow and finish for k} > k,

(a) and for k} < k, (b).

The intersection point it , which is the intersection of the extension of nuetrality curves

Af, and A,_, can now be used to organize all the remaining nuetrality curves 3' in R1, R2

and R3 corresponding to the process A HM,. The nuetrality curves, trivial for A HM-

in the region R3, are assumed to be straight with slope value It} . Similarly, the nuetrality

curves for A —) M- in the region R] (A -) M_ may be active in a part ofR] ifA, > M,) are
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assumed to be straight with slope value k, . In the intermediate region R2, it is natural to

assume that the nuetrality curves are determined by linear interpolation between the

M_ -) A nuetrality curves Af, and A,,.

Therefore, taken together, the nuetrality curves can be expressed as

WI. T) = T - 16,1 in R3. (2.4.2.7)

531.1) = T — k;1 in R1. (2.4.2.8)

respectively. And, the nuetrality curves in R2 can be obtained as

 

T(Af — A,) + 1(A,k'f - Afk,) in

13;,(1. 7) = _ _

(Af-A,)+r(k,—k,)

R2 , (2.4.2.9)

by being assumed to be straight lines with slopes determined by linear interpolation

between E, and k,. This algebraic construction corresponds geometrically to one in

which straight rays are drawn from 111 if k} > k, or it; if k} < k, which then fill in section

R2.

Finally, the nuetrality curves for detwinning in 1 > 0 below Mf, are given as

53,,(1. 1) = M, +(k1- k'f)t +k212 in 3”,, (2.4.2.10)

139,411) = Mf+(k1-k,)1 +k212 in 8M, (2.4.2.11)

2 - .

A—A M+k1+k1 +Ak-Ak 1 ..

(f ‘X f ‘ 2_) _( ‘f ") inn; (2.4.2.12) 

BUtsfct’ T) =
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Thus, taking together all of the above results, the characteristics for phase transforma-

tion M_ H A and detwinning process M_ —> M, are summarized as

 

r 0;,(1, T), V 1 s O

B}(1, T). V (1, T) e R1

B,f(1, T). V (1, T) e R2

Wt. 1) = t B;(t,1). , v (1, T) e R3 . (2.4.2.13)

B;,f(1, T). V (1, T) 5 SM,

Bane. 7). v (t. T) e 02'

Pan“. T). V (1'. T) 6 Sun: > 0)

If we use R1, R2 and R3 to indicate the reflection of the areas of R1, R2 and R3 with

respect to the T-axis and follow the same analysis for formulating B'(1, T) , then the char-

acteristics for phase transformation M, H A and detwinning process M, -> M, can be

 

written as

’13:“. T). V 1 > O

B)“, T). V (1, T) e R,

BIAT. 7). v (1, T) 6 it,

3+“, 77 = * BI“, 73. V (1. De R3 . (2.4.2.14)

BEAT. 7). v (1, T) 5 SM,

651.10.?) v (1, 1) 6 Q;

the. 73. V (r, T) e 3,,(150).

Here, all the components of fl+(1, T) are decided as the same fashion as those of B'(1, T)
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but associated with equation (2.2.2.6) and the slopes

k} = -k',, k: = -k,. (2.4.2.15)

2.4.3 Summary

For sufficiently low temperatures, the pY—unfolding and Y-unfolding involve vertical

(temperature independent) detwinning flow and detwinning finish terminal nuetrality

curves. These are obtained by assuming 1|,(1, T) = n,(1, T) for (1, T) values that trigger

detwinning under all circumstances. From the above discussions, this pY—unfolding, being

another extension of the triple point phase diagram, not only takes over all the features of

X-unfolding in Q1 but also reflects the detwinning process between the two martensite

variants. In the description of detwinning, since the detwinning nuetrality curves are now

all vertical, temperature increase at a constant stress does not traverse nuetrality curves, so

that temperature changes no longer trigger reorientation. However, the pY-unfolding com-

pletely determines the detwinning flow and finish lines by naturally extending the high

temperature phase transformation nuetrality curves. In general, the detwinning flow stress

of the pY—unfolding is smaller than that of the X-unfolding, both of which are larger than

those determined by experimental measurements (Hou and Grummon, 1995; Miyazaki et I

al. 1991). This motivated the further modification of the pY-unfolding into the Y-unfold-

ing where the detwinning flow stress and detwinning finish stress are taken as material

properties.

It is important to point out that, in general, the detwinning flow stress is found to obey

a mild temperature dependence. This phenomenon was, for example, observed in a tension
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experiment of a bulk (the size of the specimens were 1 mm x 1.5 mm x 15 mm at 50.0,

50.5 51.0, 51.5, and 52.0 at%Ni) by Miyazaki, et al. (1986, 1991), in which the slope of

detwinning flow line is -0.385 °KIMPa. This kind of phenomenon was explained in terms

of a thermally activated effect (Miyazaki and Otsuka, 1984). Also, in the tension test of

NiTi thin film by Hou & Grummon (1995), the slope of detwinning flow line is measured

-5.41 °K/MPa. Such a tiny temperature influence on the detwinning flow is also observed

in the work by Dye (1990). Furthermore, in two other experimental studies (wire speci-

mens with diameters 0.9 mm and 1.0 mm at T150Ni47Fe3 and Tr-49.8 at. pct Ni (or Ti-50.6

at pct Ni) respectively) by Miyazaki and Otsuka (1984, 1986), they also found that the

slopes of detwinning flow lines changed slightly with temperatures. Actually, for most

shape memory alloys, the detwinning flow stress may increase when temperature

decreases (Miyazaki, Kohiyama and Otsuka, 1991). The explanation in terms of a thermal

activation effect is that at lower temperatures the molecules of the material are less active

than at higher temperatures, which makes the detwinning process more difficult at lower

temperatures.

2.5 Analysis of Isothermal Loading/Unloading Processes

With this Y-unfolding so far, we can illustrate various isothermal behaviors of shape

memory alloys, such as pseudoelasticity at high temperatures, shape memory effect at low

temperatures, or some properties between the two. Since the phase diagram depends upon

parameters: phase transformation temperatures A}; A,, M, and Mr; detwinning flow stress

1, and finish stress 1f; shear moduli 11A and 11M; reference entropy difference between aus-

tenite and martensite A110, phase transformation strain 7' and density p. Here, these are



46

determined with reference to work of Hou and Grummon (1995), which are given in the

following table.

TABLE 2 Simulation Parameters

 

A] A: Mr M] "A “M A71 P I: 1f 7

 

308 295 263 235 3'10‘ 3*10‘ 414695 6.5‘103 150.0 200.0 0.06

°K°K°K.°KMPaMPaJ/m3°KKg/m3MPaMPa

          
 

Here, A1] is determined by relation A11=AHITo where AH=17.8 Hg and To=279 °K. An Y-

unfolding for 1 > 0 is obtained as shown in Figure 13. It has straight nuetrality curves for

the parameters given above, since the condition 11A = 11M annihilates the 12 terms in the

various B—functions (see (2.2.2.5), (2.2.2.6)).

Recall that Tfir and Tf, were previously defined for the X-unfolding. For convenience,

we now define two more special temperatures T,, and T,,: This gives four intersection tem-

peratures that distinguish transformation areas in 1 > 0, which are expressed in the follow-

ing,

 

 

- - 2

_k -k + k -k +4k A -—M

Tss=As+k s 1 J( s 1) 2( s s),
, 2,2 (2.5.0.1)

 

. 2

2k2 ’
 

TSf = A] + k} (2.5.0.2)

Tf, = A,+k,1,, (2.5.0.3)
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Tf = Af + k}1f . (2.5.0.4)

Here, the first subscripts are ad0pted from the first subscripts of nuetrality curves M,, and

M,, and the second are come from the first subscripts of nuetrality curves A,, and Af_. The

values It, and k2 were in general defined previously in (2.4.2.2), and, k} and k, are given

by (2.4.2.1) and (2.4.2.3) respectively. These four temperatures are in general dependent

on the shear moduli of austenite and martensite in virtue of k2. The corresponding coordi-

nates on 1-axis are 1,,, 1,1, 1, and 1,: In the present situation, the four temperatures are

found as in TABLE 3,

TABLE 3. Temperatures Corresponding to Points a, b, c and d in Figure 13

 

T,, T,,. T,, T17-

 

274.6 °K 280.8 °K 256.7 °K 263.9 °K

   
 

Comparing with the four transformation temperatures, shows that

Af>A,>T,f>T,,>Tff>M,>Tf,>Mf, (2.5.0.5)

for these particular values of the material parameters.
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Figure 13. Y-unfolding for 1 > 0 with k; = 0. Four intersection points a, b, c and d are shown

as: a (1,,, T,,), b (1,,, T,,), c (1,, Tf,), d (1f, TI?"

The loading/unloading behaviors strongly depend upon the initial phase fraction. To

briefly view the problem, we here consider two type initial conditions which were consid-

ered by Wasilewski (1971 d). The first one is that the austenite phase fraction is maximum,

which is obtained by cooling the material from a temperature that is above Afdown to the

test temperature (CFAF). The second one is that the martensite (with two symmetric vari-

ants) phase fraction is maximum, which is obtained by heating the material from a temper-

ature that is below Mfup to the test temperature (I-IFMF). There are four loading types p2 ,

p2, p3 and p4 (accounted from decreasing temperature direction) in the initial condition

case of maximum austenite (CFAF), which are located by the temperature ranges:

T > M,, M, > T > Tf,, Tf, > T> Mf, T <Mf respectively, shown in Figure 14. There

are six loading types pl, p2, p3, p4, p5 and p6 (accounted from increasing temperature

direction) in the initial condition case of maximum martensite (I-IFMF), which are located
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at temperature ranges: . T< Tf,, T,,> T) T,,, T,,> T> Tff, A,> T) T,,,

Af > T > A, , T > Af , shown in Figure 15. Conversely, there are three unloading types p1,

p2 and p3 in both of the two initial condition types, which are located at temperature

ranges: T>Af, Af> T>A,, T<A,, shown in Figure 16.

It is noted for both the CFAF and the I-IFMF conditions that the austenite phase is gen-

erated in certain temperature regimes when the stress increases. For CFAF initial condi-

tion, if the test temperature is between M, and T,,, a stress-assisted austenite is formed

from process M_ —-) A (for example, between points 1 and 2 on path p2 in Figure 14) by

increasing the stress. Simultaneously, both the new generated and the original austenite

transform into the variant M, during the stress increase. Below Tf, any stress-assisted aus-

tenite is subject to the instability transformation A =9 M, and so immediately experiences

a transient phase shift to the variant M, (as used to describe detwinning in section 2.2.3).

For I-IFMF initial. condition, (stable) stress-assisted austenite can be generated from

M- -> A when stress increases between temperature range Afand T,,. It is obvious that the

temperature range to induce the (stable) stress-assisted austenite of the latter case is wider

than that of the former case, ie., the martensite variant M, of HFMF can be initially present

up to a temperature T < Af. This kind of transition mechanism, a stable stress-assisted aus-

tenite from some special orientations of martensite (special variants), has been suggested

by Wasilewski (1971 d). The present model can give detailed predictions about the tem-

perature ranges of the specific transformation upon isothermal loading.

More general loading behaviors occur for other initial conditions, but the limiting

cases addressed here give the general flavor of the model. Finally, the example discussed

here and shown in Figure 14 to Figure 16 involved a material with M, < A,. Similar analy-

sis can be carried out for a material with A, < M,.
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- - — - pureelastic

single transformation

. . . . . — double transformation

initial condruons __ detwinning

1M"

(0,1,0)- %..... —>3 p1

d/

l
(Lillie. {0.0.1,

{in §A9 go} '

{0.5, 0, 0.5}

§

0 1, If 1'

Figure 14. Loading behavior for initial conditions corresponding to initial conditions of

maximum austenite, CFAF (equal amount of martensite two variants). For T) M, the initial

condition is {§., §A, §,}={0, 1, 0} and'for T< Mfit is {§_, EA, §,}={0.5, 0, 0.5}. For Mf< T

< M, the initial condition is a more general {§_, fiA, §,} with i. = §,. The four associated

transition paths p1, p2, p3 and p4 go from left to right. On p], so that T> M,, segments 01, 12

and 23 indicate austenite elastic, single transformation A -> M, and pure elastic M,

deformations respectively. On p2, so that T,, < T < M,, segment 01, 12, 23, 34 represent

single transformation A -) M, , double transformation A —) M, & M_ -) A , detwinning

M_ —) M, and elastic M, deformations. On {13, segments 01, 12, 23 and 34 indicate single

transformation A -) M, , two variant martensite elastic, detwinning M_ —) M, and elastic

M, deformations. On p4, segments 01, 12 and 23 represent two variant martensite elastic,

detwinning M_ —) M, and elastic M, deformations.
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- - - - pureelastic

AT — single transformation

initial conditions M" — double transformation

‘ 1 . .

2 1M" ,
{0,1,0} - /_..... 9 P6

15.. t... t.)- .......... .>‘ p,

{0.5, 0, 0.5} - 2

{0.5, 0. 0.5} .

{0.5.0.05}
4 {0 0 1}

{0.5, 0, 0.5] o 
  
  

Figure 15. These six transition paths p1, p2, p3, p4, p5 and p5 associated with maximum

martensite initial conditions, HFMF (equal amount of martensite two variants) go from left

to right. On p1, segments 01, 12 and 23 indicate two variant martensite elastic, detwinning

M- —) M, and right-shear martensite elastic deformations. On p2, segments 01, 12, 23 and

34 represent two variant martensite elastic, double transformation M- -) A & A —) M, ,

detwinning M_ —) M, and elastic M, deformations. On p3, the first two segments 01 and

12 are the same with those on p2, segment 23 and 34 indicate single transformation

A -> M, and elastic M, deformations. On p4, segments 01, 12, 23, 34 and 45 represent two

variant martensite elastic, single transformation M_ -) A , double transformation M_ —> A

& A -> M, , single transformation A -) M, and elastic M, deformations. On p5,

segments 01, 12, 23 and 34 indicate single transformation M- —)A, austenite and M,

elastic, single transformation A —) M, and elastic M, deformations. On p6, segments 01,

12 and 23 represent austenite elastic, single transformation A -) M, and elastic M,

deformations.
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- - — - pure elastic

single transformation
 

 

initial conditions

(0. 1, 0) .

{0. :11. i.)

{0.0. ll

   
 

Figure 16. These three unloading paths go from the right to left with initial condition of

100% M,. All the dashed lines on p1, p2 and p3 indicate M, elastic deformations, except the

portion to the left of A,, on p1 which represents elastic austenite. All the solid lines on p1

and p2 indicate single transformation M, —) A deformations.

2.6 Transformation of a Special Variant

Other than the above isothermal features of the Y-unfolding, it is interesting to look at

some different characters of this Y-unfolding. Since the observed detwinning flow stress 1,

is, in general, smaller than the extrapolated value from the pY-unfolding (Hou and Grum-

mon, 1995), it follows that the nuetrality curve for the reverse transformation M, -) A for t

1 > 0 is below that of the pY-unfolding. Regarding to the continuous assumption between

nuetrality curves of M, -> A and M_ —-> M, on the terminal nuetrality curve Mf, (see sec-

tion 2.4.2), this implies that the start temperature for M- -—> A is lowered. The above

extrapolation reflects a transformation mechanism that the martensite variant M, becomes

more unstable in the Y-unfolding for 1 > 0. In other words, the energy barrier for M_ —) A
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is decreased in 1 > 0. Phenomenally, this decrease tendency of M_ —> A flow coincides

with the postulation made by Wasilewski (1971, c, d). Based on an asymmetric isothermal

stress-strain relation of a tension-compression experiment conducted below Mf

(Wasilewski, 1971 c), Wasilewski concluded that the yield point for a special martensite

variant transforming to a transient austenite phase that shifts to a martensite variant simul-

taneously is lower than others’s yield point in a different stress circumstance. Protracting

the above issue to a test temperature range between Afand M,, where the transformed aus-

tenite is no longer a transient phase but stable, (Wasilewski, 1971 d) deduces a similar

phenomenon with that from the present model mentioned above (Delaey, et al., 1974).

Further, since the transformation M, -> A occurs only in the darker zone R2 of Figure

17 for 1 > 0, one concludes that the lowest temperature and the largest stress for conduct-

ing process M_ -) A in 1 > 0 are T,, and 1,— respectively at points c and d. Regarding the

detwinning process in a; , the highest temperature and lowest stress for conducting

detwinning process M- -) M, in 1 > 0 are Ti and 1, respectively at points (1 and c. The

two processes M_ —> A and A —) M, may occur simultaneously inside the zone abcd

(which is part of R2 in Figure 17). Another interesting character is that three processes

M_ —) A , A -) M, and M, -> M, can be triggered in a same temperature level between

T17and Tf, upon loading. First, process A —> M, proceeds in a small stress range. Second,

processes M_ -> A and A —-) M, take place together once the stress increases past the ter-

minal nuetrality curve A,_. The third, detwinning M- —) M, occurs once the stress further

increases beyond the terminal nuetrality curve Mf,. Those are illustrated in Figure 17.

Similarresultsareobtainedfor M,—>A and M,->M_ in1<0.
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Figure 17. For 1 > 0, the lowest temperature and largest stress for conducting M- -) A are

T}, and 1}, and the highest temperature for conducting M_ -) M, is T17"



3 TRANSITION TYPES FOR THE PHASE FRACTION

EVOLUTION

In chapter 2, phase diagrams were discussed based on certain thermodynamic consid-

erations, which gave rise to different phase transition zones. As shown in figures Figure 14

and Figure 15 for isothermal loading, various double transformations can occur in the

region QT corresponding to the unfolded triple point of Figure 1. In this section we are

going to investigate different single and double transformation possibilities in the different

transition zones, as well as the corresponding criteria for determining the associated trans-

formation possibilities, which will be organized into transition types. in the following

study.

3.1 Wfion Types

In general, when temperature and stress trigger the phase transformations in the fine

mixture of the three species, austenite and martensite two variants, both of the two trans-

formation processes A H M, and A HM_ might occur simultaneously in Q, . Therefore,

at each instant of time, it is assumed that there is either a net transformation from A -) M,

or else a net transformation from M, -> A . Concurrently, it is assumed at each instant of

time that there is either a net transformation from A -—) M, or else a net transformation

from M, —-) A . Taken together, in Q1 , they give the follOwing four combination transition

55
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types:

(TTl): M,->A,M-—>A;

(TT2): A —>M,,A—)M,;

(TT3): M,—>A,A—)M_;

(TT4): M-—)A,A—>M,.

For relatively high temperatures, transition type ('I‘I‘l) is that which occurs under pure

temperature increase; transition type (TT2) is that which occurs for pure temperature

decrease. Transition types (TT3) and (TM) are those which occur for pure stress decrease

and increase respectively. With these four transition types, pseudoelastic behavior can be

simulated when the temperature is relatively high (in Q1) (see Pence et al., 1995). For

combined changes in temperature and stress (processes that are not pure), the particular

transition type will depend on the local orientation of the state path in the stress-tempera-

ture plane. On the other hand, to complete the model when the temperature is relatively

low (below Mf, and M14), the detwinning process M, H M_ must also be accounted for.

Recall the discussion in section 2.2 to 2.4, this detwinning process is modified by

M_ —-) A =9 M, and M, —> A :9 M_ in terms of Wasilewski’s instability transformations

when one formally continues A HM- and A H M, transformations in the zones where

austenite is unstable. Therefore, for X—unfolding in Q; , we have transition type

(1T5): M_ -) M, .

and in Q; we have transition type

(IT6): M, —-) M-.

For the Y-unfolding and the pY—unfolding, the only modification to this X-unfolding

description is that transition types (115) and (U6) operate in (23’ and 1‘); respectively.
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3.2 Criteria for Determining Transition Type

As mentioned above, phase transformation and detwinning are triggered by changes in

temperature T and stress 1 as the state path is executed in the (1, T )-plane. The particular

transition type that is operating may change at distinct points (1,1) on the state path. These

points occur when the state path is instantaneously aligned with one of the two nuetrality

curves that pass though the point. In other words, several transition types may occur suc-

cessively along a given state path. In Q1, if the local orientation of the state path crosses

the AIM, nuetrality curves so as to make dB+ > 0 , then transition M, -) A occurs. Con-

versely if path orientation with respect to the AlM, nuetrality curves give (13’ 2 0 , then

transition M_ -—) A takes place. Thus, the signs of dB+ and (13' can be used to determine

the operative transition type.

Recall the discussions in the above, there are totally six transition types introduced in

the two variant problems. These transition types hold regionally, i.e., transition types

(TT1) to ('I'T4) apply in Q1, and transition types (TTS) and (1T6) hold away from Q,.

Thus, the criteria for the different transition types are going to be treated separately in the

two regions. In these treatments, it is convenient to introduce the following notations:

Bi=%BT-. B'r=-g%. BI=%%. 51:32: (3.2.0.1)

3.2.1 Algebraic Description

The criteria for distinguishing between the four transition types are shown as the fol-

lowing based on the nuetrality curves,
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(TTl) if dB+>0 and dB'>O, (3.2.1.1)

(112) if dB+<O and dB'<O, (3.2.1.2)

(TT3) if dB+>0 and dB’<O, (3.2.1.3)

(114) if dp*<0 and dB'>0. (3.2.1.4)

To see more clearly the above conditions, they can be expressed by means of the tan-

gent of the given state path curve. From simple derivations on (3.2.1.1) and (3.2.1.2), we

have that the following transition types occur:

£>max -E,-E V d1>0

6"” 6; Br
(T'Tl) if 4 + - ; (3.2.1.5)

£2< min{-Et-, --B-E} V d1 < 0

dt + -

_ is. is. 

 

d—T < rnin{-E, -E} V d1 > O

‘1‘ ii; B'r
(T12) if < + - ; (3.2.1.6) ,

g>max{-E§,-E} V dT<0

. Br 37

—B—: < 31 < ..2} v (It > 0_

. Br 1 Br .
(TT3) if 4 - + ; (3.2.1.7)

_E, < g; < ”a, v d1 < 0

L B [3 



- +

-E<-d—T<-E Vd1>0

is} d‘ a;
(1T4) if 4 B+ B- . (3.2.1.8)

1 (IT 1
--B—+-<aTt-<-B:- Vd1<0

 

Note:

(1) If any one of d1 , B; and B} is equal to zero, then we can check the condition directly

from (3.2.1.1) to (3.2.1.4).

(2) Based on the definitions of B+(1, T) and B'(1, T) given in (2.2.2.5) and (2.2.2.6) for

the X-unfolding, it follows that B; and 51 are positive in the whole plane; however, based

on (2.4.2.13) and (2.4.2.14) for Y-unfolding, it follows that B;- and B}. are positive in Q1

and zero below Mf_ and Mf, respectively.

(3) In either expression (3.2.1.7) or (3.2.1.8), there is only one criterion that is true because

they are mutually exclusive.

3.2.2 Geometric Illustration

To interpret the meanings of those criteria in Q1, let us consider the nuetrality curves

defined by (2.3.2.3) and (2.3.2.4) with equality of moduli of austenite and martensite in

either the X-unfolding or pY-unfolding. At a point, say p in Q1 , of 'a given path in (1, T)-

plane, the four criteria (3.2.1.5) to (3.2.1.8) define four open cone zones: N, S, W and E,

which indicate the zones of North, South, West and East. They are formed by the two par-

ticular nuetrality curves passing through point p (Figure 18). If the forward direction of the

path at point p enters into the open cone zone N in next time increment, then transition



type (ITl) is in progress, and so on.

In this particular equal moduli example,the nuetrality curve slopes do not change with

point p so that the four open cone angles remain fixed in Q1. More generally, the cone

angles depend upon temperature and stress according to the general forms of B+(1, T) and

B'(1, T) in (2.3.2.3) and (2.3.2.4) involving 11., and it”. For the Y-unfolding, the four

open cone areas also loose symmetry in the north-south and west-east directions, because

thenuetralitycurvesforAHM_ in1>0andforAHM, in1<0aremodifiedbythe

detwinning flow and finish stresses.

T 4‘
  

  

  

A k = yt/An
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. \ /
o 7 (S) \ b 1
 

  

Figure 18. Four open cone areas at a point p in Q, for X— and Y-unfolding show the

transition possibilities when a path passes through this point. If the path passing through p

proceeds into N (S, W and B), then transition type (IT1) ((112), (TT3) and GT4» is in

progress.
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3.3 Criteria for Detwinning Transition Types

Recall the considerations in section 3.1, ('I'T5) comes from M_ -> A and is active in

Q; while (’I'T6) comes from M, -—> A and is active in Q; for X-unfolding. Thus, criteria

for ('TTS) and (IT6) could be expressed as

(115) if dB'>0in 12;, (3.3.0.1)

(TT6) if da” > 0 in (2'2, (3.3.0.2)

respectively. Furthermore (3.3.0.1) and (3.3.0.2) give

(115) if 2L: >1} v d1>0 in (1;, (3.3.0.3)

131

dT 13“
(1'16) if E < —B—: )1 d1 < 0 in 9'2. (3.3.0.4)

1'

One should note in condition (3.3.0.3) that the case d1 < 0 is ignored. Similarly, in

(3.3.0.4) the case for d1 > 0 is ignored. The reason is that both (IT5) and (1T6), associ-

ated with detwinning, are modified by transition directions M. —) A amd M, -9 A , which

correspond to increasing stress and decreasing stress processes respectively. Therefore, the

direction of stress increasing/decreasing should coincide with that of the detwining direc-

tion. The other important point that one should note is that criteria (3.3.0.3) and (3.3.0.4)

apply only to the X-unfolding. For the pY— and Y-unfoldings, because B; and B} are

equal to zero, one can directly use B;-d120 to check (TTS) in Q; and B:-d1201'o

check (IT6) in Q; . This gives
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(1'15) [3; > 0 V dc > 0 in (2;, (3.3.0.5)

(1T6) a; < 0 V (II < 0 in 1°25. (3.3.0.6)

In the Y-unfolding, all of the nuetrality curves in Q; and Q} become perpendicular to

the 1 -axis. Hence temperature changes at constant stress does not cause detwinning. This

contrasts with the X-unfolding, where temperature increase at constant stress causes

detwining processes to occur in Q; and Q; .

3.4 Example

Assume that B+(‘t, 1) and int, 1) are given as (2.3.2.3) and (2.3.2.4) with equality of

moduli of austenite and martensite for pY-unfolding. Here It, (>0) is given (2.4.2.2). If the

state-path is an ellipse in the (1, T )plane in Figure 19, we can then determine the transi-

tion types on the different parts of the ellipse state-path as follows.

With (3.2.0.1), we find 43:43; = 1:1, —B;/B', = -k, in a, , and a; = 0, B“, = 0

a: = —2rtI and B; = 2kl in ft; and 1°13. t1, t2, t3 and t4 indicate the tangent points

where the path is tangent to the nuetrality lines respectively. Based on (3.2.1.5) to (3.2.1.8)

and the discussions on (TT5) and (1T6) for pY—unfolding, it follows that: from point t2 to

t3 the transition type (TT3) occurs in Q1 ; from t3 to e the transition type (1T2) occurs in

QI ; in Q} , 8M , SM- and SM, there is no phase transformation; from point b to c the tran-

. sition type (TT5) occurs in Q;
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Figure 19. This graph shows that how the transition types occur when one follows a counter-

clock wise ellipse in the (1, T )-plane. From point t2 to t3: (TT3) occurs; from t3 to e: (112)

occurs; from point b to c: ('I'I‘S) occurs; in all other parts there is no transformation.



4 THE HYSTERESIS ALGORITHMS

This chapter will extend the hysteresis algorithm of the one-variant martensite case

given in the work by Ivshin and Pence (1994 b) to a two-variant martensite case on the

basis of the two-variant analysis (Pence et al., 1994). For this reason it is useful to briefly

summarize the one-variant model (Ivshin and Pence, 1994 b). The extending work begins

from the analysis of the envelope functions and the algorithms presented in (Pence et al.,

1994). If only one transition is active then the extension of the algorithm can be expressed

by different equivalent forms. However if two transitions are active, then these different

forms are no longer equivalent. Thus an examination on combinations of various transition

directions from different transformation processes becomes necessary for detemrining the

proper extension of the one-variant model into the two-variant regime.

4.1 Brief Review of the Previous One-variant study

4.1.1 One Variant Algorithm

The one-variant model studied in the work (Ivshin and Pence 1994 b) involves transi-

tion between a high-temperature/low-stress austenite phase A-and a low temperature/high-

stress martensite phase M. In the present three species model, this is as if two martensite

variants are treated together as one martensite species (Q, = 5,, + §_) and only A HM

64
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takes place on each state path. At any instant, either there is a net transformation tendency

for A —) M (so that fig 5 0) or else a net transformation tendency for M —) A (so that

g, 2 0). Note that the nuetral tendency fig = 0 can be regarded as either a trivial A —> M

tendency or else a trivial M -) A tendency. Thus the state path (1(t), T(t)) is partitioned

into segments on which either the A -) M or the M -—> A transformation tendency occurs.

If this partitiOning is known, the transformation is governed by the following equations

(see equations (30) and (32) of the work by Ivshin and Pence (1994 b):

 g?“ = “A 3“ D-%GA_,M(1.T) rorA—aM, (4.1.1.1)
_’ r

d§ é
27M = I.“ ”(1 no%aM_,A(1,T) forM—rA. (41.1.2)

M—rA ’

 

Here fiA = l-fiM is phase fractions of austenite, orA _,M(1, T) and 01,, _,A(1, T) are

constitutive functions; they were given the respective symbols (1,,,,(1, T) and (1,,,-"(1, T)

in (Ivshin and Pence, 1994 b), but the symbols used in (4.1.1.1) and (4.1.1.2) will be more

convenient for the present discussion. The equations (4.1.1.1) and (4.1.1.2) ensure that the

transformation proceeds at a pace that is proportional to the phase that is transforming (A

in (4.1.1.1) and M in (4.1.1.2)) and is independent of the phase that is experiencing a net '

increase. In the event that the A -) M transformation begins from pure austenite

(fi, = 1), then the transformation governed by (4.1.1.1) gives an fiA(t) that coincides

with (I, _, ”(1(t), T(t)). Similarly fiA(t) = (1M _, A(1(t), T(t)) for M —> A transformations

that start with pure martensite fi, = 0.
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4.1.2 Envelope Function

As discussed in the approach by Ivshin and Pence, (1994 b), equations (4.1.1.1) and

(4.1.1.2) give immediate integrals. There are however practical advantages to operate with

the differential equations (4.1.1.1) and (4.1.1.2). The constitutive functions are required to

obey (1A _, ”(1, T) 2 01M _, A(1, T) . Both A —) M transformations that start at some initial

time to with fiA S a, _, ”(1(t), T(t,)) S 1, and M -9 A transformations that start with

fiA 2 (1M _, A(1(t,), T(t,)) 20, are required to generate phase fraction trajectories fiA(t)

obeying (1M _, A(1(t), T(t)) S fiA(t) S at, _, ”(1(t), T(t)) . In fact, as shown in (Ivshin and

Pence, 1994 b), the above containment requirement are not ensured by (4.1.1.1) and

(4.1.1.2) alone, but are guaranteed if the constitutive functions or, _, M and (1M _, A obey

certain additional containment restrictions. This justifies the terminology envelope flinc-

tions‘ for a, _, M and at” _, A. The special situation involving equality of the envelope

functions ensures that fiA(t) coincides with the new single “envelope function” so that

fiA(t) is a state function of (1, T); hysteresis is not present in this special situation (A, =

M], M, = A,). Envelope functions that are step functions between 0 and 1 give abrupt trans-

formations at the locus (1, T) where the step takes place (A, = Af, M, = Mf). Thus, in com-

bination, identical envelope functions that involve only a step between 0 and 1 on some

(1, T ) curve gives the standard notion of abrupt nonhysteretic phase transitions (Mf= M, =

A, = A!" However, unequal envelope functions that smoothly vary between 0 and l gener-

ate the hysteretic mixtures which were the focus of the work by Ivshin and Pence (1994 b).

Finally it is to be pointed out that the issue of determining whether an A -> M or an

M -) A transformation tendency operates is resolved by requiring algorithmic consistency '

in (4.1.1.1) and (4.1.1.2). Narnely at each instant of time (4.1.1.1) and (4.1.1.2) should
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both give that either fig < 0 or fig > 0 . In the former event then fiA (or fiM) is to be deter-

mined from (4.1.1.1) and in the latter event then fi, (or fiM) is to be determined from

(4.1.1.2). As shown in (Ivshin and Pence, 1994 b), this requires that at, __,M(1, T) and

or” _, A(1, T) display dependence on (1, T ) by means of a characteristic function B(1, T)

in the following fashion:

01,... ”(1. 7) = 61......(136. 1)) and «M44171 = (immune. 7)). ' (4.1.2.1)

Therefore characteristic functions that describe nuetrality arise naturally in models of the

type presently under study. If the state path (1(t), T(t)) ever coincides with the curves

B(1, T) = C (constant), then fiA(t) is constant as long as the coincidence is maintained.

Here it is to be emphasized that firm, and (1,,,, are functions of a single argument which

can be determined by experimental measurements at free-stress circumstance. Thus they

obey

O S 6‘min(l3) S 61mm)
5 1

flair-"(13) = {(1) ii: :2:

61mm) = {I if B 2 Ms ' .
(4.1.2.2)

0 if B sM,

60mm) 2 0

d'mw) 2 0

Additional conditions on rim-,(B) and am,(B) which ensure trajectory containment
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and trajectory orientation requirements can be. found in the work by Ivshin and Pence

(1994 a). Normalization B(0, T) = T gives

u,_,,,(0, 1) = own) and aM,,(0, 1) = (1,,,-,(1). (4.1.2.3)

4.2 Two Variant Constitutive Functions

To develop the two variant model on the basis of one variant model by Ivshin and

Pence (1994 b), there are two things important to be considered, one of them is the exten-

sion of the constitutive functions while the other is the extension of the algorithms for

phase fraction evolution during transformation.

4.2.1 Constitutive Function Extension

In the high temperature two variant study (Pence, et. al., 1994), OtA,(1, T) and

at,A(1, T) are used as constitutive functions to describe A -) M, and M, -) A phase

transformations, respectively; while aA_(1, T) and a-A(1, T) are used to as constitutive

functions to describe A -) M_ and M_ -> A phase transformations respectively. When the

AIM, neutrality curves are parametrized by the nuetrality function B+(1, T) introduced in

(2.4.2.14) for the Y-unfolding, then the A H M, constitutive functions are of the form:

t +

aA+(T’ T) 5 (1A _) M,(Ts T) = amax(B (t, ”)9 (4'2'1 '1)

a.,(t.1)sa..,_,,(t.1) = 61,...(B+(t.7)). (4.2.1.2)

for constitutive functions (im,(x) , armor) of a single variable. More than this, since
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detwinning process M, —9 M, is considered, 0t,A(1, T) is also the M, —-) M. constitutive

function below M,;. Based on the symmetry of the two martensite variants, when the AIM,

nuetrality curves are parametrized by the nuetrality function B'(1, T) introduced in

(2.4.2.13) for the Y-unfolding. The constitutive functions for A HM_ are defined as

01,111. 7) a a, _, Mir. 7) = 61......(1311. T». (4.2.1.3)

01-),(1. 7) a 01”,, g(T. 7) = 61......(311. 7)). (4.2.1.4)

Similarly, a_A(1, T) is also the M_ -> M, constitutive function below Mf,. Under normal-

ization B+(0, T) = B'(0, T) = T, we have the following relations,

aA,(0, T) :—: aA_(0, T) = dm,,(T) and (1,,,(0, T) a a_A(0, T) = emu). (4.2.1.5)

The relations corresponding to (4.1.2.2) in the two variant case are

0 s 01,,(1, T) 501A_(1, T) 31, O s a,A(1, T) S 01A,(1, T) S]

1 if B'ZAf 1 if B'ZM,

a_A(‘t, n = 5 “A11: T) =

0 if B' S A. 0 if 13' SM, . (4.2.1.6)

1 if BIZAf 1 if B+2M,

a+A(Tr T) = _ 9 “Anita D =

0 if W54, 0 if [3“st
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4.2.2 Possible Extension of the Algorithm to the Two Variant Problem

After the analysis about the characteristics and constitutive functions, it is necessary to

introduce a calculation system into the two variant model, which is a group of algorithms

to determine the phase fractions associated with different transition directions in two vari-

ant problems. '

For purposes of developing the appropriate extensions of the algorithms, the discus-

sion is initially confined to phase transformations A H M, and A HM, without the

detwinning. Since am“) can be interpreted as the maximum value of austenite phase

fraction during phase transformations from 100% austenite to overall martensite, and,

B+(1, T) and B'(1, T) parametrize the phase transformation families of A H M, and

A HM_ respectively, constitutive functions aA,(1, T) and ctA_(1, T) would be deci-

phered as state functions of austenite narrating phase transformations from 100% austenite

to individual martensite variants respectively. In a similar fashion, since armor) is the

minimum value of austenite phase fraction during phase transformations from 100% over-

all martensite ~to austenite, constitutive functions or,A(1, T) and (1,,,(1, T) indicate state

functions of austenite phase fraction describing the transformation from 100% individual

martensite variant to austenite. Before extending the one variant algorithms (4.1.1.1) and

(4.1.1.2), we consider in what follows the observation that each of (4.1.1.1) and (4.1.1.2)

can be rewritten in three extra forms with fiA and fiM . These four equations are equiva-

lent for either A —-> M or M —) A in the one variant case, but extensions to the two-variant

case are sensitive to the form of the one-variant equations that are used before the exten-

sion.

To get insight into this problem, note since 5,, + fiM = 1, that all of the following
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forms are equivalent to (4.1.1.1) for governing an A -> M transition direction:

 

 

3.?" = “Hinn-%a,_m(t,1), (4.1.1.1)a

4% l-§ d
EM: O‘HMf’n-Eothmu), (4.1.1.1)b

1..

dg‘ — g” d (4.1.1.1)c 

H7 - aA_,M(1,T)'Ea“’M(T’n°

A similar four way equivalence holds for (4.1.1.2) with respect to M —> A transition

direction. The extra three are expressed as

 

 

dgA §M

-d—t- = 1_aM_,A(1:, T) 'EanACt, 1.), (4.1.1.2)3

dgM I'SA d
. _d_t = l—aM Act 1') .EaMfiACt’ T), (4.1.1.2)!)

_, 1

(18.4 IT§A d
-d-t- = 1_aM_,A(T’n.-J;aM-’A(T’no (4.1.1.2)0
 

When multiple martensite species (only two in this study) are present, this kind of

equivalence no longer holds. For example, suppose that an A —> M, transformation occurs

in concert with either an A —-) M_ transformation (TT2) or an M- -) A transformation

(1T4). Then fi_ + fi, + fi, = 1 and the A -—> M, transition might arguably be governed by,

any one of the four possibilities (see (4.1.1.1)):
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3% = «___..i:1) j:4M“ 73

21-? = 51%5iadr
—W“ T)

3% = arr-iii. :i. 2».

dgA - l___—E— d4A1
“: T)

37 - aA,(1,1') d1

(4.2.2.1)

(4.2.2.1)a

(4.2.2.1)b

(4.2.2.1)c

Since in the two variant approach, coefficient 1 - fi, no longer indicates fi,l in process

A —> M,, the last two equations (4.2.2.1)b and (4.2.2.1)c in the set of (4.2.2.1) are not

consistent with the viewpoint that this coefficient should give the phase fraction of the pre-

cursor phase and so will not be considered in the further study.

In a similar fashion, an A —> M_ transition in ('I'T2) and (TT3) might similarly be gov-

erned by any one of four equations, only two of which are reasonable,

d§- _ _§___g

E - 01,,(1T)dtMAT).

dig _ __§_A

27 01,,(1,T) dt_a'wAfiT)

(4.2.2.2)

(4.2.2.2)a

The martensite to austenite transformation admit to similar interpretation. For transi-

tion direction M, -) A the possible algorithms for use in (U1) and (TT3) are (see

(4.1.1.2)):
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3‘? = 1 05;“ 1) 54,:_afl,“ 1') (4.2.2.3)

%A_ 1 (1:61: T) :11:4m“ T) , (4.2.2.3)a

g. = 1:31) 1) 57“,,“ 1'), (4.2.2.3)b

‘19-]g, ‘1 (4.2.2.3)c
2? 1--a,A(1, 1) d:“I’M“ 7)

Coefficient 1 — 1;, in equations (4.2.2.3))b and (4.2.2.3)c no longer indicates fi, in pro-

cess M, —) A , so that these two expressions will be eliminated since it is again not consis-

tent with a coefficient factor that is proportional to the precursor phase. .

Following the same manner as the above gives two remaining candidate algorithms for

transition direction M_ —) A :

 

 

3%-]: 43(1d1).dt—0A(T’ T), . (4.2..24)

$.41: ‘41:.“ T) j!_aA“ T) (4.2.2.4)3

The elimination of the “b” and “c” governing equation possibilities for each single

process indicates for each two process transition type: (TN) to (TT4) in Q1, there now

remain four combination possibilities. For example, the combined A —> M,, A —) M- pro-

cess of transition type (TT2), might possibly be governed by either (4.2.2.1) or (4.2.2.1)a

in conjunction with either (4.2.2.2) or (4.2.2.2)a. In addition there are still two possibilities -

for each detwinning transition in Q; and Q2 . Here it is interesting to note that the less

complete model employed in the work by Pence et al. (1994) only allowed for transition
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type (‘I'I' l) and (T12) in the notation employed here. There, of the four combination possi-

bilities for (TT2), the particular combination ((4.2.2.1), (4.2.2.2)} was employed for

A —) M+, A —9 M_. Similarly, the particular combination ((4.2.2.3), (4.2.2.4)} was

employed for M+ -9 A , M, —) A (transition type (IT1)). We now inquire into the proper

combination possibilities, and in this process arrive at those used in (Pence et al., 1994)

for ('I'I‘l) and ('I'I‘2).

4.3 Analysis on the Algorithm Associated with Transition Types

4.3.1 Unique Algorithm

Discussions in section 4.2.2 lead us to the observation that there remain four possible

algorithms for each two process transition type in Q, ('ITl to TM) and two for each

detwinning transition in Q; and 9.2 . From many reasonable solicitudes, such as symme-

try, basic assumptions on phase transformation, etc., most of them can be excluded as we

are going to see next. Here we give two separate lines of argument. The first is based on

symmetry and mathematical well-posedness. The second is based on an assumption

regarding the transformation process.

The first argument begins with a symmetry consideration between M+ and M, in the

pair combination governing (1T1) and (112). This immediately reduces the pair combina-

tion in the following way:

('I'I‘l): ((4.2.2.3), (4.2.2.4)} or {(4.2.2.3)a, (4.2.2.4)a}.

(TT2): ((4.2.2.1), (4.2.2.2)} or ((4.2.2.1)a, (4.2.2.2)a}.

The other two transition types (TT3) and (TT4) lose MJM, symmetry and so do not neces-
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sarily allow for such reductions. Returning now to transition types (TN) and (1T2), we

note for (1T2) that the pair combination {(4.2.2.1)a, (4.2.2.2)a} overdetermines Q, and

does not determine EA, and 5, individually. Hence one may conclude that (112) is governed

by the pair ((4.2.2.1), (4.2.2.2)}. For transition type (IT1), it can be shown that the pair

{(4.2.2.3)a, (4.2.2.4)a} admits an explicit solution for 5,0), §A(t), 8,,(t). This solution is

found to have the property that é, depends on the constitutive function (1+A(T, T) and §+

depends on the constitutive function a,A(1, T) . This statement implies that the determina-

tion of §, and g, depends on processes M+ -9 A and M- -> A respectively, which does

not seem reasonable, so that it is preferable to use { (42.2.3), (42.2.4)}.

Recall that the basic one variant phase transformation rule cited in the approach by

Ivshin and Pence (1994 b) is that phase transformation proceeds at a pace that is propor-

. tional to the phase that is transforming and is independent of the phase that is experiencing

a net increase. For ('I'I‘l) the A—phase is experiencing a net increase and so this gives an

independent and purely physical argument against equations involving S—EA in (TN).

However this same assumption for (1T2) would argue against equations involving 3+

45
and E- in (TT2), which is in contradiction to the pair combination that we have obtained

here. This provides a hint that the pair equation governing (TF2) may require some further

modification, as we shall show in the next section.

For (IT3), the combined M+ —-> A and A —> M_ process, it can be argued that the pos-

sible algorithms associated with (4.2.2.2)a should be excluded since the phase fraction of

austenite §A should involve dependence on both of the phase fractions 5,, and §,. On the

other hand, the algorithm for process M+ —> A has ken chosen as (4.2.2.3) in (1T1).

Hence for the purpose of consistently using the same algorithm in all transition types, one

must select ((4.2.2.3), (4.2.2.2)}. Transition type (TT4), the combined M,—9A and
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A -)M+ process is similar to (TT3), The selected algorithm for (TT4) is ((42.2.1),

(42.2.4)}.

Because there is no austenite in the detwinning processes (ITS) and (1T6) in Q; and

9'2 respectively, we do not need to contemplate those algorithms associated with the

phase fraction of austenite. Thus, for the coherence considerations between the algorithms

of M_ —-)A (M+ ->A) and M_ —)M+ (M+ —> M_), in the whole (I, T)-plane, the algo-

rithm selected for ('I'I’S) is (4.2.2.4); the algorithm selected for ('I'l‘6) is (4.2.2.3).

4.3.2 Algorithm Consistency between One and Two Variant Problems

So far, we have selected equations for governing the transition types in the two-variant

model. However, the extension of the algorithms from one-variant to two-variant models

needs further investigations to ensure that the extended algorithms can describe both one-

variant and two-variant situations for a self-accommondated process. To examine the con-

sistency between one-variant and two-variant models, let us consider a loading path of

increasing/decreasing temperature at zero-load in the two variant model, for conditions

involving symmetric martensite variants. The corresponding transition types from section

3.1 are (TH) and (TT2) for temperature increase and temperature decrease respectively.

We begin with temperature decrease starting at T> Afso that the MM, symmetry in ini-

tial conditions keeps M,./M, symmetry for all time. In this case one should note that

Q, = §++ §_ = 2E+ = 2§,. For this zero-load case of temperature decrease, algorithm

((4.2.2.1), (4.2.2.2)} for transition type (TT2) can be rewritten in terms of §M as

d§M 2§A d
E — m'aa DfOTAéM, (4.3.2.1)MA
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if equation (4.2.1.5) for ('I'I‘2) is used. Similarly, for temperature increase, algorithm

{(4223), (42.2.4)} for transition type (“IT1) can be rewritten as

d‘éM _ gu da _ l-flmin(T(t)) . admina') for M -) A , (4.3.2.2) 

if equation (4.2.1.5) for ('I'I‘2) is used again.

Therefore, comparisons for M -> A between the governing equation (4.1.1.2) of the

one-variant and the governing equation (4.3.2.2) of the two-variant models show agree-

ment. However comparisons for A -—> M between governing equation (4.1.1.1) of the one-

variant and the governing equation (4.3.2.1) of the two-variant models show disagreement

by a factor 2. This disagreement induces us to review the explanation of those constitutive

functions at the beginning of section 4.2.2. It is noted that constitutive functions aA+(1:, T)

and orA-(‘t, T) indicate state functions of austenite phase fractions narrating phase trans-

formations from 100% austenite to each individual martensite variant respectively. Fur-

thermore, when temperature decreases from areference either above or below Afat stress-

free condition, the austenite phase is always evenly transformed into equal amounts of M.

and M+ martensite variants. However in section 4.2.2, this effect was not reflected in the

set of (4.2.2.1) and (4.2.2.2). Therefore, to build this reasonable extrapolation into the

extended governing algorithms of the two-variant model during the extension, the selected

governing equations (4.2.2.1) and (4.2.2.2) for A -) M+ and A —) M_ should be modified

by

d§+ 5.4 d

2; -mramnM-»M+. (43-2-3)
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respectively.

The equations governing each transition type are summarized in TABLE 4. This algo-

rithm, for the six transition types in either X-unfolding, pY-unfolding or Y-unfolding,

ensures consistency within the two-variant model, and properly reduces to the one-variant
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model in the zero-load situation.

d
— —m"d-t'aA_(T, D fOI'A ARI-9

TABLE 4. Transition Types with Their Algorithm

 

 

 

 

 

 

  

AREAS TRANSITION TYPE ALGORITHM

(’I'I‘l) M+ -) A, M, -9 A ((4.2.2.3), (4.2.2.4))

(21 (112) A -) M,,, A -+ M_ ((43.2.3), (43.2.4))

('I'I3) M+ —> A, A —) M_ ((4.2.2.3), (4.3.2.4))

(Tr4) M_ —> A, A -) M+ ((4.2.2.4), (43.2.3))

9; or (”2; I (’I'I‘S) M_ -+ M+ (4.2.2.4)

9', or (‘2'; I (rrs) M+ -) M_ (4.2.2.3)

BALANCE I 5110) +§+(:) +§,(:) = 1 (1.2.0.1)

 

 



5 INTEGRABILITY AND PATH DEPENDENCE

The phase fraction evolution of the three species, which describes transformations

between austenite and martensite or detwinning processes between the two martensite

variants, is determined on the basis of the ordinary differential equations listed in the

TABLE 4. The overall balance requires that the phase fractions satisfy relation (1.2.0.1).

For this process, we assume that T(t) and T(t) are given functions, ie., (1(t), T(t)) forms a

state-path in which time t varies from a beginning time t,- to an arbitrary future time I so

long as the transition type remains the same. General analytical solutions for the phase

fractions can be given in terms of path integrals. These integrals along the state path may,

or may not, be evaluatable in terms of the path endpoints. Equivalently, the algorithm

within a transition type may, or may not, be path-independent. In this section we investi-

gate the solution for each transition type as well as conditions which indicate path-inde-

pendence within the transition type. Some of the precursor studies, which guide some

aspects of this section’s development, were suggested by Ivshin in unpublished work.

5.1 Integration of The Hysteresis Equations for The Phase Fractions

There are totally six transition types in the Y-unfolding: (I'Tl) to (TT4) which hold in

Q, , ('I'I'S) which holds (2; and (”6) which holds in (2.2 . In the following we are going

to present a solutions for the phase fraction evolution during a time interval [ti, t], in which
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one of the six transition types occurs.

5.1.1 Integration of Transition Type ('ITl)

If in a time interval [1), 1] transition type ('I'I’l) M+ —) A, M_ -) A occurs, then the

governing equations are (4.2.2.3), (4.2.2.4) and (1.2.0.1) (see TABLE 4). Through drop-

ping dt in equations (4.2.2.3) and (4.2.2.4), and then integrating the two, we obtain

§+(t) = E(t,-) - (l — or+A(1:(t), T(t))) , (5.1.1.1)

§_(t) = D(t,-) - (l - or,A(1:(t), T(t))) , (5.1.1.2)

where, the coefficients are determined by

 

_ §+(ti)

50,.) - “a“(10:), T(ts))' (5.1.1.3)

D(t,-) = 5,0,.) (5.1.1.4) 

1 - a_A(‘t(ti). T(t.))'

Hereupon, the corresponding austenite phase fraction is obtained from the balance equa-

tion (1.2.0.1).

5.40) = 1 - E(t.-) - (1 - 01.410). T(t))) - DU.) - ( 1 - CLAW). T(t))) - (5- 1-15)

For this situation, 5.4, Q and g are all path-independent in the (t, T)—plane. That is,

beginning at known values §A(t,-) , §+(t,-) and §_(ti) at the initial time ti, the values of

§A(t) , §+(t) and §-(t) at any future time t depend only upon the current values of the state
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(1(t), T(t)) and not upon the path connecting (1:01.), T(ti)) to (1(t), T(t) ). Of course here it

is required that the path only involves transition type (1T1) M+ —> A, M_ -> A .

5.1.2 Integration of Transition Type (TT2)

For a time interval {t}, t] in which (’I'I‘2) A -) M+, A -> M- occurs, the governing

equations for this transition type are (4.2.2.1), (4.2.2.2) and (1.2.0.1). With a proper deri-

vation on the three equations we arrive at

 

EN) = F(1,.) ° Jot/(170). T(t)) - OLA.(T(t). T(t)). (5.1.2.1)

where the coefficient F(‘1) is given by

i) = €40.) . (5.1.2.2)Fa

JaA-(T(t,-). T(t))) - GA+(’€(I;). T(t)))

 

Substituting (5.1.2.1) into (4.2.2.1) and (4.2.2.2) generates upon integration:

 

 

‘ —F(t-) a tt,Tt

§,(t) = II-TL J“:((12)) T((t)))) :11:—aA+(r(t), T(t))]dt-I-l;(t), (5.1.2.3)

‘i

 

 

' -F t- a r t , T t *
§_(:) = II_;_2 ([05:18 T8. 5:_MA((t), T(t))Id:+§,(t,.). (5.1.2.4)

‘1

Here the derivatives in the above integration are

%“A+“(‘)’ T(t)) = VaA+(r(t), T(t))-£10), (5.1.2.5)
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£42m). m» = Va..-(r(r). T(t)) - $40. (5.1.2-6)

where

r(t) = 1(:)a,+r(r)e,., (5.1.2.7)

Vf(t. T) = aiéfig§ép (5.1.2.8)

3, and a, are unit vectors along 1: and T axes.

Result (5.1.2.1) shows that §A is path-independent, Since it depends only upon the ini-

tial and the final values of temperature and stress. However expressions (5.1.2.3) and

(5.1.2.4) indicate that phase fractions Q. and §_ are, in general, path-dependent. This is

because the two integrals cannot generally be evaluated in terms of their endpoints in

(1:, T )-plane, unless special restrictions are put on the envelope functions.

To see this, assume that §+ and §_ are path-independent, then their expressions

(5.1.2.3) and (5.1.2.4) have to satisfy Cauchy-Riemann condition (Apostol, 1962), which

give

VaA_(r, T) - V01A((1; T) = VaA+(1:, T) - VaA_(1:, T) = 0 , (5.1.2.9)

Here the operator with hyper bar is defined as

—— a a

Vf(1:, r) = 5%, -391. (5.1.2.10)

The scalar form of equation (5.1.2.9) is
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£301.11. 1) $374.41. 2) = 337a.-(r.1)-aa—TaA.(r. 2). (5.1.2.11)

The path-independent condition (5.1.2.9) (or ($12.11)) will be further discussed in sec-

tion 5.1.6, where it is shown that this condition can not be satisfied.

5.1.3 Integration of TransitionW (113)

If transition type (TT3) M+ —>A, A -> M_ occurs in a time interval [t,-, t], then, the

governing equations are (4.2.2.3), (4.2.2.2) and (1.2.0.1). The solution of equation

(4.2.2.3) again gives the result (5.1.1.1), so that Q, is path-independent in (I, T) -plane.

With equations (4.2.2.3), (4.2.2.2) and result (5.1.1.1), one can obtain

I

int) = JaA-(r(r). T(t)) - I

‘1

150,.)

Jews). T(t))

 

 

dormer“), T(t)) +
 

(5.1.3.1)

£1195) .

A/‘1A17“1‘), T“1))

 

 

JOLAATO). T(t)) 

Plugging (5.1.1.1) and (5.1.3.1) into (1.2.0.1) then gives the phase fraction §_.

In general, §A and E, are path-dependent in the (1:, T) -plane. We can find the condi-

tion for path-independence from the expression (5.1.3.1) by applying Cauchy-Riemann

condition to it. This gives the condition

VaAjt, T) - Va+A(t, T) = Va+A(1:, T) - VaA_(r, T) = 0 , (5.1.3.2)

its scalar form is expressed as
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a a a a ’
37011.“. 1) 5701.41. 7) = 3705.11. 73-5-601+A(1. T) . (5.1.3.3)

This condition, which is similar to (5.1.2.11), will also be discussed in section 5.1.6.

5.1.4 Integration of Transition Type (TT4)

Transition type (TT4) M_ -) A, A -) M+ is similar to (1T3) under interchange of §+

and §_ . The governing equations are (4.2.2.1), (4.2.2.4) and (1.2.0.1) for transition type

(TT4). The solution of equation (4.2.2.4) again gives (5.1.1.2), which indicates that §, is

path-independent. The phase fraction of austenite can be found by solving equations

(4.2.2.1) and (4.2.2.4) with the consideration of result (5.1.1.2), that is

‘ B(1,.)

:0) = a .(10). 10»- da- (m). T(t))+

" ‘l " Ijamm, T(t)) "

 

 

 

(5.1.4.1)

 540;) .

JaAJTUi), T(t)))

 

 $1,141“). T(t))

And by use of (1.2.0.1), (5.1.1.2) and (5.1.4.1), one then obtains §+.

The phase fractions of austenite and M+ martensite are in general path-dependent in

(1:, T)—plane in general. Applying Cauchy-Riemann condition to (5.1.4.1) gives the Special

path-independent condition of the two variables as

V01A+(r, T) - Va_A(1:, T) = Va_A(r, T) - VaMfl, T) = 0 , (5.1.4.2)

and its scalar form is



85

a 3 a 3

5‘1“”? 0) ' 5741-110: 0) = b—T-GAJT. 6) ~53a,A(T. 0). (5.1.4.3)

Again the above condition will also be further considered in section 5.1.6.

5.1.5 Integration for Detwinning Process

. All the solutions and path-independent conditions obtained above are suited to the dual

process region 91 . In the detwinning zones 0; and Q} , without any austenite, the only -

active transition types are (ITS) and (1T6) respectively. For transition type (TTS)

M, -) M+, the governing equations are (422.4) and (1.2.0.1) with Q = 0. Thus result

(5.1.1.2) is the solution of §_ , which gives

:0) = D(ti) - (1 - a_A(‘t(t), T(t))) , (5.1.5.1)

§+(t) = 1 — (D(t,-) - (1 — a,A(1.'(t), T(t)))) . (5.1.5.2)

For transition type ('IT6), the governing equations are (4.2.2.3) and (1.2.0.1) again with

EM = O. The expression (5.1.1.1) gives the solution of §+ as

§+(t) = E(t,-) - (1 - or+A(1(t), T(t))) , (5.1.5.3)

§,(t) = l — (B(ti) - (l - a+A(r(t), T(t)))) . (5.1.5.4)

The phase fractions in both (US) and (1T6) are path-independent.
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5.1.6 Path Independence of the depleted Species within a 'II'anSition Type

For transition types ('1'1‘ 1), (TTS) and (1T6), all of the phase fractions §_(t) , 90) and

Q0) are path-independent in the sense that, once the initial conditions are specified, they

depend on only the current values of (1:, T). However for the remaining three transition

types ('IT2), (TT3) and (TT4), only one of the phase fractions has been shown to display

such path-independence, namely: austenite phase fraction EA in (TT2), positively oriented

martensite phase fraction Q in (TT3) and negatively oriented martensite phase fraction

§_ in (TM). These are precisely the phase species that are being absolutely depleted. For

example, transition type (TT3) involves M+ -9 A and A -9 M_, thus the M+ species is

being absolutely depleted, the M- species is being absolutely augmented, and the A spe-

cies is influx (whether it is depleted or augmented depends on which of the two transitions

M+ -> A and A -) M. is stronger). As regards transition type (1T1), here both M+ and

M, are being absolutely depleted, and, consistent with the above comments, the associ-

ated phase fractions are path independent. The path independence of Q for transition type

('IT1) can then be regarded as a consequence of the overall balance (1.2.0.1).

5.2 Path Dependence and Path Independence within a 'IIansition Type

5.2.1 General Path-Independent Condition

So far we have arrived at three path-independent conditions (5.1.2.9), (5.1.3.2) and

(5.1.4.2) in transition types (1T2), (1T3) and (TT4) respectively. However, in view of the

fact that the envelope function dependency on (t, T) is mediated by the B-function that

describe the nuetrality curves (see (4.2.1.1) - (42.1.4)), condition (5.1.2.9) for ('IT2) can
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be rewritten as

a'....(B*) - a'mtfi') - (131- B;- B: - 3'.) = 0. (5.2.1.1)

and (5.1.3.2) for (TT3) and (5.1.4.2) for (TT4) can be rewritten as

a’max(fl-) ' a’min(B+) ' (B; ' B; - B: ' 3.1) = O 3 (5.2.1.2)

a’mw“) . new) ~ (131- B; - B: - 6}) = 0. (5.2.1.3)

respectively.

Recall from Section 4.1.2 that 61'”, and d’m-n are equal to zero if (1:, T) are in the

zones that are inactive for the process under consideration, that is the transitions either

have not began or have gone to completion. Our interest is thus the case when neither

fit’mJlr nor fit’min vanishes. The three path-independent conditions then simplify to

VB"(r, 1) - VB'(1,1') = 0. (5.2.1.4)

It will be Shown in the next section that this condition can never be satisfied by the present

Bofunctions.

5.2.2 Path-dependent Analysis for the case ofA, > M,

In this section all discussion is confined to the pY-unfolding with identical moduli of

austenite and martensite, and confined to a material with Ms < A3 . The other case

(M3 > A,) is treated in the next section. Materials obeying M5 < A3 involve a dead zone in

the temperature driven (zero-load) transformation hysteresis. This gives certain simplifica-
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tions. It is important to note that all the possibly path—dependent cases occur in certain

parts of region QT , and that the associated special condition for path-independence is the

requirement (5.2.1.4) on the nuetrality curves. As mentioned above, we are interested in

the path-independent conditions in areas where the first derivatives of the two envelopes

do not vanish. In transition type (TT2), the domain on which d’mx is nonzero is

d2 = {(1, T)|Mf< [3“(1, 1) < M,, Mf< B(1, T) < Ms}.

In domain d2 (Figure 20) the path-independent condition of §+ and 5, is given by

(5.2.1.4). However, since B; > 0 , B}. > 0 , B; > O and B: < 0 , it follows that

131- E43? B'T>0. (5.2.2.1)

in d2. Hence transition type ('IT2) in d2 as determined by equations (4.3.2.3) and

(4.3.2.4) generates path-dependent values for E”. and §_

Turning to transition types ('IT3) and (TT4), the areas of nonzero fit’mx and Gt'm-n are

given by

d. = {(1.T)|M,sB'(r.DSM..A,sB*<r.nsAf},

d4 -_-{(1,T)|M,sB*(r,7)5M,,A,sB‘(1,DSAf},

respectively (Figure 20). For both of these two transition types, the path-independent con-

dition (5.2.1.4), for Q and §_ of ('IT3) as well as for Q and Q of (TF4), can never be

satisfied in d3 and d4 severally because relation (5.2.2.1) is held again. Thus, for transition

type (TT3) §A and 5. are path-dependent in d3 while for transition type (TT4) 55A and

§+ are path-dependent in d4.



89

 

  
Figure 20. For the case A, > M,, three path-dependent zones d2, d3 and d4 are separated in

of. 2,, and a, are path-dependent in d2 iftransition type (112) occurs (S-paths). g. and a

are path-dependent in d3 if transition type (TT3) occurs (W-paths). EA and L, are path-

dependent in d4 if transition type ('IT4) occurs (IS-paths).

Recall in QT that the determination of transition types correlates with state path

directionality in a way that is geometrically associated with compass headings: N, E, S, W.

Geometrically we have shown that: §+ and Q are path-dependent in d2 for S-paths, 5A

and §_ are path-dependent in d3 for W-paths, Q and Q, are path-dependent in d4 for E-

paths. All the above conclusions can be viewed in TABLE 5.



TABLE 5. Path-dependent Category for M, < A,

 

PATH-DEPEDENT PATH-DEPENDENT PATH-DEPENDENT

ZONES TRANSITION TYPES DIRECTIONS

 

 

     

5.2.3 Path-dependent Analysis for the case ofM, > A,

The more complicated situation M3 > As will be discussed in this section. Again, the

pY-unfolding with identical shear moduli of austenite and martensite is considered here.

The path~dependent condition is still (5.1.2.4) for transition types (1'12), (113) and (TT4),

and the definitions for the three path-dependent zones remain unchanged as in the last sec-

tion. The difference for the present circumstance is that the absence of a dead zone means

that the three path-dependent zones d2, d3 and d4 overlap each other (Figure 21), which

creates certain overlapping areas where either two or three transition types may simulta-

neously involve path-dependence.

For convenience, we define following six subdomains to further investigate the path-

dependent condition,

dz = dz-d3’d4, a3 = d3-d2-d4, a4 = d4-d2’d3,

023 = d20d3-d4, 024 = dznd4—d3, 0234 = dznd3nd4,
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which are shown in Figure 21. Mth a similar discussion as that in section 5.2.2 the path-

dependent zones, transition types and corresponding direction cones are listed in TABLE

6. Each transition type can only be triggered by the corresponding transition path, ie.,

('ITl) is ignited by N-paths and so on. It is observable from TABLE 6 and Figure 21 that

in the relative stability zone for M_, such as d3, the possibility for phase fraction §_ being

path-dependent is larger than the others. A similar result can be observed for phase frac-

tion 5,, in d4.

TABLE 6. Path-dependent Category for M, > A,

 

 

 

 

 

 

PATH-DEPEDENT PATH-DHENDENT PATH-DEPENDENT

ZONES TRANSITION TYPES DIRECTIONS

“2 (TF2) S-paths

a3 (1T3) W—paths

(14 _(TI'4) E-paths

a23 (TT2), (TT3) S-, W-paths

a24 (TT2), (1T4) S-, E-paths

 

(1234 m2), (1T3)! (TT4) 8" W's E’Paths    
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Frgure 21. For the case A, < M,, six path-dependent zones a2, a3, a4, (123, an and am are

separatedin Qr.'I‘hesimationsoccurringinaz,a3anda4arethesamewiththoseind2,d3

andd4ofthecaseA,>M, shown in Figure 20. Inaz3, iftransitiontypeCI'I‘2)isinprocess

then the phase fractions 5,, and g, are path-dependent, while if (113) occurs then §A and E,

are path-dependent. In a24, the condition is similar to that in a23 under interchange of (T13)

and (TT4) as well as g and §. In a234, &, and L are path-dependent if (TT2) occurs, 5A

and a are path-dependent if (TT3) occurs, and, §A and g, ... path-dependent if ('IT4) is in

process.

5.3 Example

To illustrate this path dependence, consider a material with M, < A, and contemplate

three separate stable paths in d2, all of which involve only transition type ('IT2) through-

out. The three paths: ’1 , 12 and 13 are shown in Figure 22. They all start at point (1:, a) =

(O, M,) with initial conditions {§,, EM, §}={O, l. 0} and end at point (1:, o) = (O, Mf). The

three state paths are the forms of
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11: {(1,1)11 = 0};

M +M

12: {(1,1)10’ = -ak,r+M,.M,2Tz—‘—2—i);

Al+bl

(T = nklr+M,,Mfsrs——i‘2 )1.

M +M

13: {(r, T)|(T = nk,r+M,,M,2Tz’—2—I);

 

M,+Mf

respectively. Where, I) is a real number which must be greater that l to stay in d2. It is

desired to find the phase fractions {§_, Q, L} at the end point (0, M!) on the three different

paths. '

The nuetrality functions that we use here are (2.3.2.3) and (2.3.2.4) for pY-unfolding

with equality of the moduli of austenite and martensite, where k1 = Y. = 0.1 m3
0 0

. nA-nM

°K/J (Ivshin and Pence, 1994 b). Thus, all the three paths are inside domain d2 for any

 

(2 > 1 and the directions (derivative Z—Z ) of all the points on the three paths are confined

to the open cone zone S. The envelope functions used here are linear piecewise defined as

the following:



0, v (35114,

* - Mf— VM 5 SM 5301
amax(B)"1Ms_-Mfr f B 3 9 (°°°)

1, vpzu, 

 

' 0, v [35A,

B-As

amin(B) = 4 Af—As, V A‘SBSAI . (5.3.0.2)

1, v (32.4, 

Based on the definitions (4.2.1.1) to (4.2.1.4), the functions aA+(1:, T) , 01+A('c, T) ,

aA_(r, T) and 0t_A(1:, T) can be found by substituting (2.3.2.3) and (2.3.2.4) into

(5.3.0.1) and (5.3.0.2). It is then desired to determine phase fractions (5..., Q, §+} at the

end point (t, T) = (0, Mf) on the three paths, each as a function of Q . A mathematical

reduction leads to complicated integral expressions that can formally be integrated with

the help of either handbooks or symbolic algebra. Numerically, these phase fractions for

different values of Q are found and given in TABLE 7. Since path 12 and path 13 are sym-

metric with respeet to T-axis, so that the values of g, and §_ corresponding to path l2 and

path (3 switch each other. These results also confirm that EA is path-independent, g, and

§_ are path-dependent in transition type (TT2).
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Figure 22. Three paths I], l; and 13 go from (r, o) = (0, M,) to (0, M,) in the path-dependent

zone of transition type ('IT2) with initial condition (g, Q, §}={0, l, 0}. Transition type

('I'I'Z) occurs on an three paths. Path 12 consists of two straight segments which meet at

point mafims—Mf), gm: + Mf) ). Path 13 is similar. The phase fractions 1; and

5,, are path dependent while §A is not. The values of the triple 19,514, §+} at the ends of the

three paths are listed in TABLE 7.
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TABLE 7. Phase Fractions at the End (0, Mf) of the Three Paths: ll, 12, I3

 

 

 

 

 

 

 

 

 

 

 

_l___,. . ,3
lI——{0.,5 0,.05} {0,0,1} {1,0,0}

1.01 I {0.50, 0.5} {0.036752, 0, 0.963248} {0.963248, 0, 0.036752}

1.1 I {0.5, 0, 0.5} {0.120019, 0, 0.879981} {0.879981, 0, 0.120019}

1.5 I {0.5, 0. 0.5} {0250921, 0, 0.749079} {0.749079, 0, 0.250921}

2 I {0.5, 0, 0.5} {0.319921, 0, 0.68009} {0.68009, 0, 0.319921}

5 I {0.5.0, 0.5} {0.430292, 0, 0.569708} {0.569708, 0, 0.430292}

20 I {0.5,0, 0.5} {0.482665, 0, 0.517335} {0.517335, 0, 0.482665}

100 I {0.5, 0, 0.5} {0.495634, 0, 0.503466} (0.503466, 0, 0.495634}

lOOOI {0.5, 0, 0.5} {0.499653, 0, 0.500347} {0.500347, 0, 0.499653}

20000 I {0.5, 0, 0.5} {0.499983, 0, 0.500017} {0.500017, 0, 0.499983}

no I {0.5, 0, 0.5} {0.5, 0, 0.5} {0.5, 0, 0.5}   
 

5.4 Discussions on the Solutions

 
The phase fraction evolution for different transition types obtained in section 5.1 are

suimd to the X-unfolding, pY-unfolding and Y-unfolding. Because different nuetrality

curves produce different responses to the envelope functions, the phase fraction evolution
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in X, pY and Y-unfolding could be different corresponding to the same transition types

and the same thermomechanical circumstances. Obviously, in I), both of the X- and pY-

unfolding generate the same results for the phase fractions because the nuetrality curves

for the two unfolding are identical in (21 . However, for the Y-unfolding, since the detwin-

ning flow and finish are independently specified, the description of phase transformations

A (951,111 T<0 and A (—> M_ in ‘t>0 are different from the description ofthe other two

unfoldings. Predominantly, the Y-unfolding decreases stress ranges of existence of M, in

1.” < 0 and of M_ in r > 0, which is caused by the smaller detwinning flow and finish

stresses 1, and “If found in the experimental literature compared to the “natural values”

associated with the X- and pY-unfoldings.

All phase fraction solutions are determined in an infinitesimal time interval where only

one of those transition types occurs. Chasing a given state path in (T, T)-plane, phase frac-

tions vary in one transition type for a segment on the path, and then may change to another

transition types for the following segment on the path. All the three phase fractions {§,,

fiA, §,} are path-independent for transition type (TT1), ('I'I‘S) or (1T6), which means that

they can be uniquely determined at a point in (r, T)-plane provided initial conditions are

given. In addition to this, Q in (112), §_ in (1T3) and g, in ('IT4), which represent con-

sumed phases in each of the three transition types, are path-independent. On the other

hand, phase fractions of transformed phases U5“. in (T12), §A/§ in (TT3) and §A/§+ in

('IT4) are path-dependent in the areas as shown in Figure 20 and Figure 21.



6 BEHAVIOR OF THE MODEL

After a careful discussion on the algorithms and associated studies, we now turn to

view the macroscopic thermomechanical behavior of the two variant model by considering

some numerical simulations. We emphasize that these simulations are only suited to a case

of one dimensional behavior for a material containing only austenite and two martensite

variants. This could include a compatible twin structure that is imagined as a symmetric

lattice structure in which one lattice is sheared in one direction and the corresponding lat-

tice is sheared in the opposite direction. Phase transformation occurs between austenite

and martensite variants in (21 , and detwinning occurs between the two symmetric marten-

. . .. + a -

srte structures In 02 and £22.

6.1 Isothermal Behavior

In this section, we are going to confine all simulations for isothermal mechanical pro-

cesses. This includes isothermal loading/unloading at high (above Af) and low (below Mf)

temperatures, in which pseudoelastic and shape memory behaviors will be generated.

More than this, certain loading/unloading processes at some temperatures between Afand

Mf are also considered. Further, internal hysteresis loops will be conducted at the end of

this section.

All the simulation parameters are taken from TABLE 2 of Section 2.5 except

98
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p, = 4.0 x 104 and ti” = 2.5 x 104 MPa are going to be employed here. In particular,

M, < A, for this material. The phase diagram used here is Y-unfolding. The envelope func-

tions are the piecewise forms of one argument as given in the following,

 

 

r .0 I B < Mf

- . 1 .521; '01M,(B) _ 2(1— cos(M’_Mf)1t) M, s B 514,, (6.1.0.1)

L 1 B>Ag

‘ 0 B<A,

_ l B-A:

(1,,,-"(13) - 1 2(1 - cos(Af _ A,)") A, s [3 s A, (6.1.0.2)

, 1 B>Af 

6.1.1 Pseudoelastic Behavior

Pseudoelasticity occurs when loading in the high temperature austenite phase gener-

ates biased martensite, subsequent unloading causes complete reversion of the biased mar-

tensite to austenite provided T > A]. This kind of behavior has been investigated in many

works, such as by Fu, et al. (1993), Ivshin and Pence (1994 b), etc.. Here, as one of many

basic features of the two variant model, pseudoelastic behaviors in both tension and com-

pression at test temperature T, = 335 °K are given in Figure 23. Three such behaviors at

three different test temperature levels: T, = 315 °K, T, = 325 °K and T, = 335 °K are pre-

sented (calculated by Mathematica) in Figure 24 for ‘t > 0. In each complete hysteresis

loop the lateral slopes are different because of the different moduli of austenite and mar-

tensite.
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-625  

Figure 23. Pseudoelastic behaviors in both tension and compression conditions at test

temperature T, = 335. In t > 0, A HM, processes are involved with the loading!

unloading, while, in 't < 0, A HM_ processes are involved with the opposite loading/

unloading.

I (MPa) t 1:

C)

500 315 °K 600 325 °K 600 335 K

500 500 500

100 400 “,0

300 300 300

200 200 200

100 100 100

   

0.02 0.04 0.06 6.08 0.02 0.04 0.06 0.08

Figure 24. Pseudoelastic behaviors for M, < A, at different temperature levels: T, = 315,

325, 335 9K, all of which are greater than Af= 308 °K.

Since M, < A, for the material considered here there is dead zone between the flow

stresses of A -> M, and M, -) A (Figure 27). The height A17 of the dead zone at test
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temperature TI is determined by the following formula,

11‘ = 2(A,-M,)

\ Jkl +4k2(T,-M,) + Jk1+4k2(T,—A,)

 (6.1.1.1)
  

Here (2.4.2.2) gives ’61 = 0.144 rn3°1</J,k2 = 0.362x10"4 m3°K/(J MPa) for this par-

ticular material. Since k2 > 0, it follows that the height ATT of the dead zone decreases with

test temperature T, increase and vice versa for T, > Af (see Figure 24). The reason for this

phenomena in the present model is that ILA it It” through parameter k2 determined by

equation (2.4.2.2). In the special case of equal shear moduli (ILA = It” ), one finds k2 = 0,

which indicates that ArT = 2(A, - M,)/(2717,).

Comparing with the other models, this one is similar to Falk’s model (1980) but is

much more general. In Falk’s energy model, forward transformation A —> M happens

along the top dashed line when the applied load reaches the maximum of the left ascend-

ing branch (elastic loading of austenite) of the load-deformation diagram (Figure 25). The

reverse transformation M -) A occurs along the bottom dashed line when the unload

reaches the minimum of the right ascending branch of the same diagram. Consequently, a

pseudoelastic hysteresis loop is formed between the ascending branches and the two-

dashed lines, which indicates the energy dissipation during the process. The present

model, which can cover all the above description if one treats the top and bottom dashed

lines as the same as top and bottom bands, can generally describe the deformation related

to both phase transformation and elasticity simultaneously. In addition, the height ATT

decrease with temperature increase could reflect some experimental measurements such as

those illustrated in the work by Funakubo, (1987). This trend is also predicted by Landau-

Devonshire’s model (Muller and Xu, 1991), for which the load-deformation diagrams in
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different temperatures are shown in Figure 26. However, in Muller and Xu’s work (1991),

an opposite phenomenon was observed experimentally, which shown the loop height

slightly increases with the temperature increase. Therefore a corresponding model was

suggested to describe this in their approach.

‘P

  

Figure 25. By Falk’s model (1980), austenite transforming to martensite occurs at the

highest point on the left ascending branch (top dashed line) upon loading. The reverse

transformation, martensite to austenite occurs at the lowest point on the right ascending

 
     

branch upon unloading.

P
P

P

A ‘ 1
T, 7'2 T3

’ d > d > d

o o o .

Figure 26. By Landau-Devonshire’s model, load-deformation diagrams in three different

temperatures (T, < T; < T3) Show that the heights of the hysteresis loops decrease with the

temperature increase.
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6.12 Internal Hysteresis Loops

Internal hysteresis loops are an important behavior. For the specified material with M,

< A,, we will study how the internal hysteresis loop is conducted in the present model. In

particular, we retrieve the results similar to those of the work by Ivshin and Pence (1994 b)

from their one variant investigation and in so doing provide a mathematical treatment of

an intensity filtering phenomenon.

For illustration we employ the pseudoelastic behavior at test temperature T, = 335 °K

> A, (Figure 27). The A —> M, and M, —. A start stresses are denoted as Na) and

rMA(T,) respectively, so that the top band and bottom band of the dead zone are defined by

 

2

- k, + fl, - 4k2(M, - 1,)TAM(T‘) = 2k

2

 (6.1.2.1)

 

,MAUt) =
 

2

— k, + Jk, -4k2(A, - 1,)
21:2 (6.1.2.2)

respectively. With respect to Figure 27, loading from pure austenite to point a (above the

stress I = tAM(T,) but below the stress at which the A -9 M, transformation is complete)

gives a mixed state of A and M,. Then unloading remains elastic until point b on the bot-

tom band. The slope value of this unloading portion from a to b is between that of elastic

austenite (on the left side) and elastic martensite (on the right side) because the material

state is a mixture of austenite and martensite (in general It, > p.” ). Further unloading

from point b leads the curve to point C, during which process M, —> A occurs. Point c

coalesces with point f if the unloading is large enough to cause M, —) A to go to comple-

tion.
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If reloading from point b, then the curve goes back elastically to point (1 on the Same

track as the unloading. This would be followed by A -) M, processes during loading to

point e. Point e approaches point g if the loading causes A —> M, to go to completion.

This is a behavior different from the plastic hardening in which reloading from point b will

return elastically to point a.

On the other hand, if reloading from point c, then the behavior is elastic to point h with

a mixture state of austenite and martensite inherited from point c. It then travels from h

toward g monotonically during which A -> M, occurs.

top band

bottomband 

 

    
Figure 27. A dead zone between the top and bottom bands in the stress-strain diagram is

illustrated. This dead zone corresponds to the portion between points 2 and 3 in the phase

diagramPointsfandgcorrespondinstress-straindiagramtopoints 1 and4inthephase

diagram. The internal loop formation condition is that unloading has to reach the bottom

band and loading has to reach the top band shown as a-d-b-c-h path.

It is conspicuous from the above analysis for the material obeying M, < A, that for-

ward transformation A —) M,1 can only occur once the load reaches the top band 1 =
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TAM(T,). The reverse transformation M, -) A can only occur once the unloading reaches

the bottom band 1: = TMA(T,). Any loading/unloading wholly between the two bands is

conducted elastically at the modulus associated with the mixture. Consequently, a neces-

sary condition for a an internal 100p formation is that a cycling load has to have the maxi-

mum load larger than the top band and have the minimum load smaller than the bottom

band. This is different with the model made by Muller and his colleagues (1991, 1993), in

which the internal transformation is governed by a straight line connecting the martensite

start stress and the austenite start Stress in the stress-strain hysteresis loop. Another

approach by Tanaka et al. (1994) involves internal transformation that is governed by two

curved lines, one of which is connected with the martensite start stress and controls trans-

formation A -) M for loading internal paths. The other is connected with the austenite

start stress and controls transformation M —-) A for unloading internal paths. The reason

for the curved internal transformation lines is that they believe that the formation of the

internal loops (subloops) depends upon the prior transformation through the dependence

of internal transformation stresses on the transformation history. In the present model, the

evolution of internal loops depends on the transformation history but the internal transfor-

mation stresses are taken as constants which implies that the phase diagram is fixed.

It can be also shown with the present model that, if loading from pure austenite state to

a point above the top band, again say, point a, is followed by unloading to any point aboVe

point (1, then oscillating the load in a small domain around the selected point will eventu-

ally eliminate all austenite phase and end up with pure M+ phase. Similarly, an oscillation

of loads in a small domain around a point on or below the bottom band will eliminate all

the M, phase and end up with pure austenite phase A. This concludes that the top and bot-

tom bands work, in a certain sense like, a phase filter to sift austenite A and M+ variant
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respectively when the specified oscillating load is applied away from the two bands.

Finally oscillating around a point between the bands will give convergence to a mixture

state that is independent of initial conditions. This phenomenon is connected with the

infinitesimal loop behavior discussed in Ivshin and Pence (1994 a).

 

 
 

 

   T;  
-

. . L -b

3250:4114. M, M, o 0.02 0.04 0.05 0.00 7

Figure 28. The stress-strain trajectory approaches a stable internal loop in the Stress-strain

diagram with oscillating scope of sness between points a and b (between 1:" and 1‘ in

stresses) in the phase diagram.

As a Simulation result, an internal saturated hysteresis loop (Figure 28) is obtained at

r, = 325 °K under three cycles between Tb = 160 and t' = 560 MPa in stress. It can be

observed from Figure 28 that the internal loops drift to the right with respect to the origi-

nal one, and quickly approach a firm position.This corresponds to a tendency that strains

in a same stress level may initially vary with the cycle number, but then quickly settle to a

stable internal loop after several cycles. We are going to prove this point in the following

for a stress oscillation Th 5 1: S “It where 1:b < 1"“ and ‘1:l > 1"“ as shown in Figure 29.
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1‘ A 1 2 3 n A-7M+ ifstressincrease

...- _ ---A 11

...... A17 cyclinssoope
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O 0 \M,.>Aifstressdecrease

Figure29.CyclingloadSareappliedbetweent=1b<rMAandr=1f>rAMattest

temperature T> A,to form internal hysteresis loops. It can be seen that the top and bottom

bands are covered inside the cycling range.

It should be noted that T >,Af and t > 0 imply that §_ = 0 so that only transformations

A H M, are involved in the particular loading/unloading process. Based on equation

(4.3.2.3) the right-shear martensite phase fraction is generated for A -) M, when the

stress increases between 1: = 1“” and 1: = 1‘ MPa,

g 1_ (tom
é, —— or ,.W.-.”

Here (9)9 = 1 and n (=1, 2, 3,, ...) indicates the point numbers on the lower stress line at

(6.1.2.3)

1: = 1:" MPa. Since all the points n-l are on t = 1:" < TMA, it follows that all the valuesof

((1,,,,)n_l = 1 . Based on equation (4.2.2.3) the austenite phase fraction is found as the

following for M, -) A when the stress decreases between 1: = 1M0 and 1: = 1:",
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(to,

5.4 = l_1-(00,A)n
(1 " (AA) . (6.1.2.4)

here n (=1, 2, 3, ...) indicates the point numbers on the upper stress line at r = 426.6 MPa.

Since all the point n are on 1: = 426.6 MPa > TAM, it follows that all of the values of

(11M)n = 0. Thus the values of i, at each top peak for 1: = 1." are

(§,)n = 1- (§A)n-1 I(01A,)n while the values of Q, at each bottom peak on 1: = 1b are

(gnu = 1-(§,)n(l _(a+4)n)' Since 01A, is simply a function of ‘t and T, all the

(05“,)u are equal, as are all (00%)“. For convenience, let (11A,)n = u and (“+400 = v

(n =1, 2, 3, and n =1, 2, 3, ...). Therefore, the M+ phase fraction at point 11 on 1: = 1‘ can

bewrittenas

(1%,)n = [Z (uv)"‘I(§,),. (6.1.2.5)

.g 1

Since the cycling load/unload conducts an incomplete transformation for both forward and

reverse transitions A (-) M, , we have 0 < u, v <1. Thus (6.1.2.5) converges to a limit

_ (531 1’4];

- l—uv l—uv’
(5.)...
  (6.1.2.6)

which is larger than (i+)1 . By (6.1.2.4) and (6.1.2.6) the austenite phase fraction on 1: = Tb

converges to a limit

(9.4)., = 1‘11:J;(1-V)- (6.1.2.7) 

uv

The overall strain expression based on (2.1.0.2) can be rewritten,
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‘L' 1: T "

= —+ ———+ , 6.1.2.8r (“M 11.1 r)§. ( )

for this particular loading/unloading condition. Thus the strain converges to fixed values

on both top and bottom peaks of the cycling which means that the internal loops in this

example move to the right and approach a saturated position. The “right move” tendency

corresponds to a situation for phase transformations that more martensite (or twins) is

(are) generated during the cyclic load before the saturation is reached. This is similar to

the softening feature of materials under high temperature creep.

6.1.3 Shape Memory Effect and Isothermal Behavior belowAf

Shape memory effects occur when the alloy is deformed into a biassed martensite

phase and does not revert to a self-accommodated morphology upon unloading. Its initial

shape is recovered when heated into the stable austenite regime, and then cooled back to

the original temperature.

‘T(MPa)

200_ Loading\

150 *

. unloading

100 - /

SOP

200 0 .‘02 0 .‘04 :E‘> 7

heating
308

hm

 

 

Figure 30. Shape memory effects occur during loading-unloading-heating-cooling

processes.
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Here the test temperature of loading/unloading T, = 200 °K which is below Mf (= 235

°K). After unloading the temperature is then increased to A}: The initial phase fraction

condition used in the present case is obtained by decreasing the temperature from above Af

to the test temperature under a free-stress situation (CFAF), thus it is random martensite E

= {0.5, 0, 0.5}. Upon loading (Figure 30) equal elastic deformation occurs in the two mar-

tensite variants for stress below the detwinning flow t,=150 MPa. This is followed by a

detwinning process M_ —> M, which involves the migration of twinning interfaces within

the two martensite variant mixture. This kind of motion of twinning interfaces needs grad-

ual increases of external driving forces to overcome the interface resistance to motion.

This process is complete at 1: = If. Further loading then involves pure elastic behavior of

the fully detwinned martensite (M,,) (the tail part on Figure 30). Unloading from the max-

imum sness point to a stress free condition makes the stress/strain relation track on a lin-

ear path with the martensite modulus as the slope. This gives a residual strain equal to the

phase transformation strain upon unloading to zero stress. Heating the specimen to the

temperature A, transforms M, —) A and so eliminates all the residual strain. Cooling

again gives random martensite and so leaves the strain unchanged.
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Figure 31. 'IVvo different procedures recover the residual strain. (a) shows the residual Strain

recovered upon heating, (b) shows that the residual strain can be recovered by further _

unloading. Here the test temperature is 301 °K during the loading/unloading process and the

original phase fraction is 5 = {0, l, 0}.

In general, the residual strain associated with unloading is caused by certain special

martensite variants remaining, and it can be recovered upon heating to above Af Discus-

sions related with this issue have been conducted by either experimental measurements

and theoretical approaches (Funakubo, 1987). In addition, the present model not only

gives strain annihilation by heating/cooling (as just shown) but also illustrates that the

residual strain can he recovered by “further unloading”. Here the unloading is always with

respect to loading, for example, at certain temperature levels, increasing the stress causes

A -—) M, to become active, which is the loading process. In the opposite, decreasing the

stress causes M, -> A to become active, which is the unloading process. When the stress

returns to zero, process M, —) A may or may not be complete. The complete case com-

ports to pseudoelasticity while the incomplete case remains at residual strain. Based on the



112

present model, any such remaining strain can be recovered by heating and cooling (a to b

in Figure 31. (a)). Conversely, further unloading, which means continuous decrease of the

stress to negative values, is an alternative way to either complete or partially complete the

process M, -9 A (a to b in Figure 31. (b)). Actually, this further unloading is an opposite

loading with respect to the loading of increase Stress, which is favored for the growth of

martensite variant M,. Thermodynamically, this corresponds to a situation for which the

energy barrier for phase transformation M, —> A is smaller than that of detwinning

M, —-) M_ in the temperature range between Afand Tf, (see section 2.6). A similar condi-

tion is held for M_ -> A when stress increases to a positive value smaller than “If

I (MPa) 1 (MP8)

285 °K ‘°°’ 275 °K

300'

A

300:

200’

200:

100’

100» . a

- - 2 7 0.02 0.404 0 06 1‘ 7

0.02 0.04 06 0.09 4

4—96 -100.

(a) (b)

 

 

 -100F"  

Figure 32. The residual strains are recovered by further unloading (a —> b -) c). The

plateau of the transformation A -) M, decreases with the test temperature decrease. In the

opposite, the yielding plateau of the reverse transformation M, -) A increases in the

negative direction of the T-axis as the test temperature decreases.

To demonstrate this phenomenon, consider an example with a initial condition {§_, Q,

5,, }={0, 1, 0} at test temperature T, = 301 °K below A,(=308 °K). Two stress/strain behav-
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iors are obtained for the residual strain recovery by either heating or by further unloading

(Figure 31). If the test temperature is now decreased then the stress/strain profiles move

down along ‘t-axis (Figure 32). This Bauschinger efect type of phenomenon can be

observed in a certain test temperature range (Figure 32 (a)). which is a concept from clas-

sical plastic theory to reflect an experimental observation that, after a certain amount of

forward plastic deformation in tension or compression, the material yields at a lower stress

when the direction of loading is reversed than for continued forward deformation.

Ferroelastic behaviors (Bondaryev and Wayman, 1988) are simulated at test tempera-

ture T, = 200 °K with initial condition § = {0.5, 0, 0.5} (Figure 33).
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Figure 33. Ferroelastic behaviors in both tension and compression conditions at test

temperature T, = 200. In 1: > 0, M_ -) M, process is involved with the transformation,

while, in 1: < 0, M, -) M, process is involved with the transformation.

In addition to pseudoelasticity and shape memory, there are other isothermal behaviors

between Af and Mfof interest. Since the initial conditions have a large effect on the ensu-

ing stress/strain relation associated with loading and unloading, in the following we will

show two groups of graphics regarding the two kinds of initial conditions CFAF and
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I-IFMF introduced in Section 2.5. Recall that CFAF is obtained by cooling the temperature

from above A, to the test temperature, which corresponds to an initial condition of maxi-

mum austenite (Figure 34). The other (HFMF) is obtained by heating the temperature

from below Mfto the test temperature, which corresponds to an initial condition of maxi-

mum equal amount martensite (Figure 35). It is noted that the model allows for transfor-

mations M_ -) A to occur in 1: > 0, and also allows for transformation M, —> A to occur

in ‘t < 0. Increasing the stress to cause M, -> A in t > 0 could beregarded as further

unloading with respect to decreasing the stress (loading) to cause A —) M, in t < 0 at the

same temperature level. A similar discussion for M, —> A to occur corresponding to

decreasethestressint<0canbearrivedtoo.
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Figure 34. Initial conditions are obtained by cooling the temperature from above Afto the

test temperature in a stress free circumstance (CFAF). General features of the

transformation process for loading/unloading were described in Figure 14. In (a) the initial

condition is {0, 1, 0}. l —> 2: austenite elastic deformation: 2 -) 3: phase transformation

A ->M,; 3 -)4: M, elastic deformation; 4-35: M, elastic unloading; 5 -)6: partial

. reverse transformation M, —) A which gives a certain amount of residual strain left at the

end of the unloading. In (b) the initial condition is still {0, l, 0} because 270 °K > M, (=263

°K). l —> 2 -> 3 —> 4: conduct the same deformation mechanism as those segments in (a)

correspondingly: 4 —> 5 : M, elastic unloading. In (c) the initial condition is {0.0135, 0.973,

0.0135}. 1 —) 2: phase transformation A -) M,; 2 -) 3 : combined transformations

A -)M, and M,—)A; 3—)4:detwinning M_—)M,; 4-95:M,elasticdeformation;

5 -) 6: M, elastic unloading. Since the phase fraction of M, is small, there is no significant

change in segments 1 -) 2 , 2 —) 3 and 3 -) 4 . In ((1) the initial condition is {0.222, 0.556,

0.222}. 1 -) 2: phase transformation A —) M,; 2 -) 3: elastic twinned martensite;

3 ->4: detwinning M_ ->M,; 4 -)5: M, elastic deformation; 5 -)6: M, elastic

unloading. In (b), (c) and (d) the residual strains are the phase transformation strain 7'.
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Figure 35. Initial conditions are obtained by heating the temperature from below M, to the

test temperature in a zero-stress condition (I-IFMF). General features of the transformation

process for loading/unloading were described in Figure 15. In (a) the initial condition is

{0.2801, 0.4397, 0.280] }. l -) 2: phase transformation M. -—> A; 2 —> 3: elasticity of

combined austenite and right-shear martensite; 3 —) 4: phase transformation A -> M+;

4 --) 5 : M, elasticity; 5 -> 6: elastic M, unloading; 6 -) 7: partial reverse transformation

M, -) A upon continuous unloading which gives a certain amount of residual strain left at

the end of the unloading. In (b) the initial condition is {0.5, 0, 0.5} which is also the initial

conditions for (c), (d) and (e). 1 -) 2: fully twinned martensite elasticity; 2 —> 3: phase

transformation M_ -) A; 3 -) 4: elasticity of combined austenite and right-shear

martensite; 4 -5 5: phase transformation A —)M,; 5 —56: M, elasticity; 6—57: elastic

M, elastic unloading. In (c) 1 -> 2: elasticity of twinned martensite; 2 -5 3: combined
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phase transformation M_ -9A and A —)M,; 3 —54: phase transformation A -)M,;

4—)5 and 6—57 are similar to 5-56 and 6—)7 in (b) respectively. In (d) 1—)2:

elasticity of twinned martensite; 2 —) 3: combined phase transformation M- -) A and

A—5M,; 3-54: detwinning M-—>M,; 4-)5 and 5—)6 are similar to the

corresponding sections in (c). The only difference of (e) with (d) is that there is only one

section to conduct detwinning M- —> M+, which is 2 -> 3. In (b), (c), (d) and (e) the

residual strains left are phase transformation strain 7".

6.1.4 Load Cycling and Saturation

Based on the present model, saturated hysteresis loops usually occur in dual direction

transformations where two or more phases compensate each other and eventually reach a

balanced state of associated phases for the oscillating load process. This behavior, for

example, was observed in the process A HM, at high temperature oscillating of loads in

Section 6.1.2. A oscillated stress-strain behavior with 0 S 1: S 150 (MPa) is simulated at T

= 270 °K < A, (Figure 36). In this process with HFMF initial condition (é = { 0.5, 0, 0.5}),

all the three phases M,, A and M, are involved in different periods. Since the oscillated

load is operated in t > 0, M_ -) A and A -—) M, occur during loading while only elastic '

relaxation takes place in the mixture state during unloading. M. phase is roughly devoured

out after the fourth cycle, while A phase remains until the tongue-shape response reaches

the far right lateral straight line (Figure 36 (b)). There is no stable saturated loop because

there is no phase compensation in the unloading process. The yielding point on the outside

profile (the same with Figure 35 (c)) is higher than the internal yielding points. This is

because there is no austenite involved with the transformation at the very first loading so

that the yielding does not occur until the path hits the nuetrality curve A,,. This triggers

M_ -) A which then supplies austenite for the immediate A —> M, process. Since austen-
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ite has been generated during the first cycle, the yielding occurs at lower stress in the fol-

lowing cycles as shown in Figure 36. The phase fraction distributions at the beginning of

each cycle are listed in TABLE 8. The austenite reaches its maximum value right after the

 

 

 

   

firstcycle.

T ) T=270°K

1 2 3 4

150

T(MPa)

4 ..4

25 2,0, T=270°K

i 200’

t

3: 150} ————— — — -

3.!- —5004» l 2 3 4

-5 =- ----- - - - -la— 01 Y

b o 0.01 0:02 0.03 0.04 0.05 0.06 0.0?

(b) 
Figure 36. Isothermal response (b) under cyclic loads (a) at test temperature T= 270 °K (M,

< 270 °K < A,). The initial condition is from HFMF with g = {0.5, 0, 0.5}. The outside

profile is the same with Figure 35 (c). M. —) A and A —) M, occur upon loading while

elastic relaxations in mixture phase states occur upon unloading. M, phase is roughly

consumed out after the fourth cycle. Austenite remains until the tongue-shape stress-strain

response reaches the far right lateral straight line of the outside profile.
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TABLE 8. Phase Fraction Distributions

 

 

 

 

 

 

 

 

 

 

 

1 {0.5000, 0.0000, 0.5000}

2 {0.1012, 0.3403, 0.5585}

3 {0.0205, 0.2940, 0.6855}

4 {0.0042, 0.2084, 0.7874}

5 {0.0000, 0.1414, 0.8586}

6 {0.0000, 0.0935, 0.9065}

7 {0.0000, 0.0617, 0.9383}

8 {0.0000, 0.0407, 0.9593}

co {0.0000, 0.0000, 1.0000}    
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6.2 Differences between Loading-Cooling and Cooling-Loading Paths

According to Duerig, et al., 1988, “For reasons which are not entirely clear, plastic

defamation will occur below the martensitic yield strength in many materials if one

applies the load while cooling through M,” (pp. 183-184). We now show that behavior of

this type arises naturally in the present model. The essential feature of this argument were

presented in the approach by Wu, Pence and Grumman (1996). In particular we consider

two routes for obtaining oriented martensite (M,) at a low temperature and high stress

beginning from stress-free austenite at high temperature. Here the high temperature is

taken to be T: 325 °K (> A,) and the low temperature is taken as T: 225 °K (< M,). Vari-

ous final values of stress 1:,- will be considered. For each such stress value, one of the two

routes involves loading at T: 325 °K from 1: = 0 to 1;, followed by cooling at t = 1:,- from T

= 325 °K to T: 225 °K. The other route involves cooling at 1: = 0 from T: 325 °K to T:

225 °K, followed by loading at T= 225 °K from 1: = 0 to 1,. We refer to these two routes as

loading-cooling and as cooling-loading paths respectively (Figure 37). In all cases the

final phase fraction state is martensitic: {§_, Q, E,,} = {§_, 0, §,}. However for a certain

range of 1:, namely 1 < “9:, one obtains that the value of §, generated by the loading-cooling

path is greater than that generated by the cooling-loading path.

The envelope functions to be used in the following are of the forms (6.1.0.1) and

(6.1.0.2). All the material properties are given by TABLE 2 of section 2.5.
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Figure 37. No groups of driving paths starting at point (0, 325) on T-axis with initial

condition {0, 1, 0} go to point (20, 220), (40, 220), (68.9, 220), (110, 220), (150, 220), (160,

220), (170, 220), (180, 220), (190, 220) respectively.

Following the above two kinds of driving paths the model predicts a natural path-

dependent phenomenon of shape memory materials. In the loading-cooling paths, the

loading portion triggers trivial (TT4), so as to only conduct austenite elastic deformations,

and the cooling portion triggers (1T2). Since 1: > 0 transformation A —> M, occurs earlier

than A —-> M, upon cooling, therefore, at the end of the driving path the phase fraction 5,

is larger than phase fraction E, (and Q, = 0). There is a critical stress 1:. (= 1:3) that is the '

intersection stress between nuetrality curves M,;, andM ,:

 

 

I. = —(k, -k;)+,/(kl—k;)2+4k2(M,-Mf)
2k2 (6.2.0.1)

For the present parameters used here (TABLE 2 of Section 2.5), this critical stress 1'. =
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68.9 MPa. 11' r, < t‘, then further cooling to temperature 220 °K will generate both of the

martensite variants. If the stress surpasses 1:" during loading, then further cooling to tem-

perature 220 °K will generate 100% M, martensite ({0, 0, 1}) because transformation

A 4—> M, upon cooling can only be conducted in a stress domain [0, t.) in 1: > 0.

In the cooling-loading driving paths, (TT2) is triggered by the cooling portion and

(TTS) is triggered the loading portion. Cooling from temperature 325 °K to 220 °K along

T-axis is a self-accommondated process, so as to produce an equal amount of the two vari-

ants of martensite. Then loading at temperature 220 °K will only cause elastic deforma-

tions of this equal self-accommodated martensite until the detwinning flow stress 1,.

Increasing the stress beyond 1:, then induces the detwinning process M_ -9 M, .

The unequal final amounts of the phase fractions of the martensite variants produced

by the two different kinds of the driving paths are illustrated in Figure 38. On the other

hand, since the loading-cooling paths generate more M, if t < If they give a larger defor-

mation than the cooling-loading paths. In other words, the first process of loading-cooling

only generates an elastic deformation in the austenite. The following process (cooling)

generates a deformation associated with phase transformation A -9 M, which is larger

than the elastic deformation. However, following the cooling-loading driving paths, there

is no deformation in the self-accommondated cooling process. The loading portion then

will only generate an elastic deformation of martensite before the stress reaches the

' detwinning stress 1,.
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Figure 38. Phase fractions of the martensite variant M, upon driving paths of loading-

cooling (upper point plot) and cooling-loading (lower point plot). Here 1:. = 68.9, 1:, =150

and If: 200 MPa.

6.3 Comparison with Other Models

In Brinson’s approach (1993) martensite phase fractions are distinguished as stress-

induced martensite Md (favored at a specified stress) and thermo-induced martensite M',

the latter of which is regarded as self-accommondated. This contrasts to the model under

consideration here in which the martensite phase fractions are distinguished in terms of

variant structures. Note, however, that a connection between these two viewpoints is estab-

lished by grouping our minority variant with an equal amount of the majority variant to

obtain a self-accommondated martensite structure that can be identified with Bekker and

Brinson’s thermo—induced martensite. Then the excess majority variant is identified as

purely stress induced martensite. That is, one takes
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i, = 2min(§.. 6). id = 8;, + §,-§,. (6.3.0.1)

To illustrate this transformation, we define two sets of portions of all state paths. The

first one P, is a set of all portions of the state paths along which the relation g, > L is held.

The other one P, is a set of all portions of the state paths along which the relation 5, < E, is

held. If a state path or part of the state path belongs to P,, following it M, is the majority

variant, so that

g, .-. 25, g, = 5,, - g, (6.3.0.2)

or in the reverse forms

i=éfl. §=§a+§fl (6.3.0.3)

The governing equations corresponding the above situation for all the six transition

types, in terms offi, and gel are:
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(TTl):

§r_ iflnEd 1( 5; )flll.A-l(2§d+§,)ilfr+A

dt " 1-00Adr ’dt =21-0t,Adt 21-a,Adt '

(TT2):

  

3%: ___ _(1 (E: 50%!14 g4,_ (1"zirAigrEA-_(1‘2:::§r)§‘m.

(TI’3):

  

d_§r _ _(1 ’gd’grflk Ed _ (1 ”gd-grygA-_l(2§d+§l)flx+A

dt - or, dt ’dt ' 2a,, dt 2 l-or,A dt '

  

 

     

 

(TT4):

d“-A dad 1 gr da-A 1" éd gr dam-

l-a..4)— ’dt 41—00925 ( 200,, )tTt

(1T5):

1—a§"

(TT6):

d—gt Z-g, da+A

dt=(1-a,A dt ’54 =15,,

(6.3.0.4)

(6.3.0.5)

(6.3.0.6)

(6.3.0.7)

(6.3.0.8)

(6.3.0.9)
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The path-independent issue about the above symbolic description can be obtained by

expression (6.3.0.2) and the previous achievement in Section 5.1. Thus Q, .54 and Q are

path independent for transition type (1T1), (T15) and ('IT6), whereas only Q is path

independent for (TT2). Note now, however, for (TT3), where only §, is path independent,

that this is insufficient to give path independence for either Q, Q or Q A similar lack of

any path independent component Q, Q and fi, occurs for (TT4).

It should be noted that the above equations or their solutions corresponds to a situation

that 5,, is rich. Following a continuous state path in the (a, T)-plane, the sovereign phase

between 5, and a may exchange each other. If in some portions that §_ is rich, one should

use another group of governing equations for the six transition types, which are modified

by the following relation based on the rule (6.3.0.1).

E: = 2i... 2;; = i - 1;. (6.3.0.10)



7, APPLICATION OF THE MODEL TO AN ACTUATOR

DESIGN

As illustrated in the previous chapters, shape memory alloys conduct many interesting

and useful behaviors under thermomechanical loads. One of these, shape memory, is pri-

marily responsible for many smart device designs. Actually, the shape memory effect is an

ability of a material to recover a significant inelastic deformation upon heating (Figure

30). This significant inelastic deformation is caused by either phase transformations

between austenite and martensite or martensite variant reorientations. Based on this kind

of deformation mechanism, functional thermomechanical devices are designed for various

purposes in different aspects. In the following we are going to model the behavior of a

potential reciprocal device, Two-Stroke Thermal Engine (TSTE), with the present two

variant model. This contraption is designed to carry out a reciprocal movement upon ther- I

ma] heating/cooling pulses controlled for example by an electrical signal. These trigger

austenite martensite transformations and martensite variant reorientations in the device.

7.1 Analysis on Basic Structure of TSTE

The TSTE is made of two identical SMA elements which are confined between fixed

frame constraints so that the overall length is constant. We use (I) and (II) to indicate the

left and right elements respectively (Figure 39). Normalize the two lengths of the two ele-

127
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merits by characteristic lengths which are taken to be the length of the element in a state of

stress-free austenite, say, 11 for the element (I) and 12 for the element (11). Thermal expan-

sion effects are neglected. At any point in the operation, the strain in each element is

assumed to be uniform, and is due both to elastic stress and to transformation strains asso—

ciated with the phase variant state of the element, 8 = {i Q, £1 } and fin = {a}, a}, :2 }.

The phase fractions in each element obey the phase balance condition (1.2.0.1).

The reference configuration is obtained by the following three steps: (1) cooling both

elements to a temperature To below Mfso as to transfer all austenite phase to random mar-

tensite phase, (2) stretching element (I) to a fully detwinned martensite phase (positively

oriented) and then releasing the force, (3) connecting the two elements by a thickless rigid

thermal isolation to form a interface between the two elements. This generates a stress-

free reference configuration with element (I) positively oriented and element (II) fully

twinned. The initial phase fractions corresponding to the reference state are El = {0, 0, l}

and g“ = (0.5, 0, 0.5}.

The stress here is therefore regarded as a normal stress that is associated with normal

strain caused by the interface movement due to the thermal heating/cooling pulses. To

emphasize this feature we replace {1, y, u} by {6, e, E}. Therefore, we use 0'} and on

(instead of 1,,,.) to indicate the normal stresses in elements (I) and (II) respectively, and e. -

(instead of 7') to indicate the corresponding transformation strain. Since there is as yet no

external load to be carried, the stresses equilibrate: 61 = on = a.
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Figure 39. Structure of the TSTE confined in a fixed frame.

We will always operate the detwinned element (operating element) by applying a heat-

ing/cooling pulse while the other random twin element (response element) is passively

driven due to the perfect interface bounding. Heating causes the oriented martensite to

transform to austenite so as to annihilates the detwinning strain, which then pulls on the

other element causing it to now detwin. Cooling the transformed austenite converts it to

random martensite while the other element, now detwinned, undergoes elastic relaxation.

Therefore, after a heating/cooling operation on one element, the states of the two elements

should exchange with each other. An ideal operation involves a perfect switch between the

two elements at the end of each operation. As we will see below, elastic deformation

causes a departure from the ideal behavior. The switching of the state of the two elements

supplies an initial condition for the following heating/cooling pulse on the other element.

Repeatedly inputting a temperature pulse to the current detwinned side will generate some

kind of cyclic response. In this study we want to characterize the limiting cyclic output. A

similar study has been conducted by Ivshin and Pence (l992), in which a limit cyclic

response of two-way shape memory effect was simulated when a laminated sample with
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residual stresses was considered. That study, however, only involved a one variant marten-

site model, and also did not involve alternating reciprocal action.

7.2 Deformation Consistency

The temperatures T; and TH in the two elements are regarded as explicit input vari-

ables, while stress 6, along with phase fractions 3 and fin, are treated as output variables.

Note since § = {Q Q, Q} that there are totally seven output variables. The phase fraction

balance gives two equations: 6 + 53,-1- E: = l , a] + Q: + 51,] = l . There are two evolu-

tion equations governing the phase fractions 3 for the element (1), and two governing fin

for the element (II). The particular evolution equations to be used for each element will

depend upon the transition type in action. So far there are six equations and seven

unknowns, which is not a well posed problem. The final equation comes from the con-

straint condition for the movement of the perfectly bonded interface which involves all the

input and output variables. This equation can be expressed as the following by setting the

overall displacement away from stress-free austenite equal to the original displacement

due to stress-free transformation strain in element (I),

1,{§{, 5],, :1} - {e_, a, e,} +12{§f‘, $1.61} . {e_, e, e,} = 112‘, (7.2.0.1)

where

0' "' 0’ O’ ‘

e_,e ,c,} = ——e ,—,—+e . (7.2.0.2)

{ A {EM EA EM }

The interface displacement from its original location is determined by
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8 = 0164:1621}. {s-.e,,.e.}). (7.2.0.3)

in terms of element (1), or

8 = 12{§E15 g2: :2} ° {8-1 6A5 8+} 9 ‘ (7°2°0-4)

in terms of element (11).

Determinations of :1 = {£1 Q, g‘, } and :11 = {6, 5,3, €11 } depend upon the state path

(a, T) through transition type criteria and the evolution equations, where the temperature T

as an input is given, and the stress a needs to obey equation (7.2.0.1). Therefore, the

imposed procedure is fully coupled. To solve this problem an initial judgement based upon

the input information has to be made for choosing the transition type or the particular evo-

lution equation for those phase fractions. This process will be seen in the following sec-

tion.

Here, we only consider two elements with equal lengths in the stress-free austenite

state, ie., I] = 12 = 1. Thus, equation (7.2.0.1) along with equation (7.2.0.2) becomes

(i-e‘)(§f+§f‘)+§—<§l+§l>+(—+e)(§1+§i‘)=e‘. (72-05)
EM EM

The linear piecewise envelope functions as shown in equations (5.3.0.1) and (5.3.0.2),

and the Y-unfolding derived in section 2.4.2 are going to be employed in the forthcoming

analysis.
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7.3 Heat-le Element(I): The First Stroke

In this section we will discuss the stress-temperature relation during the first heating/

cooling (the first stroke) on the element (I) with a the special initial condition £1: {0, 0, l}

and :11 = {0.5, 0, 0.5 }. The specialty of this initial condition is that, the operating element .

which is under heating/cooling is fully detwinned, and the response element which is in a

constant temperature is in an even random martensite state. It will be seen that the initial

condition for the following stroke will be 5," = (A, 0, l-A} and :1: {0.5-A, 0, 0.5+A} with

A > 0. There are three processes in the heating and three in the cooling, which are distin-

guished by either different transformation type or the absence of a phase transformation.

Actually, the major displacement of the interface between the two elements is caused in

the heating portion. However, a small displacement recovery takes place in the cooling

portion.

7.3.1 Heating Process

We are now going to determine state paths (0', TI) and (0', Tu) on the phase diagram.

The initial conditions ofE = {0, 0, l} and €11 = {0.5, 0, 0.5 } give that initially A = 0. Heat-

ing element (1) causes the state path (a, T1) for element (I) to increase up the T—axis from

the initial point (a, T1) = (0, To =.Mf) to the point (0, A,) while the state path (6, Tu) for

element (11) stays at the initial point (0, Tu) = (0, To = M,). In this process for T1 < A, there

is no movement of the interface between the two elements because of the absence of phase

transformations and the neglect of thermal expansion effects.

Heating T1 > A, in an infinitesimal temperature range [A,, T9] (the corresponding

stress range is [0, ai]) initiates ('IT 1) in element (1), which increases the stress 0' in the two
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elements since the active M, -> A makes element (1) shorter so as to drag the interface

toward the left (M_ -> A is inactive since gf = 0 ). An analytical solution for T1 and a can

be found for this process segment based on the length constraint (7.2.0.5) and the phase

evolution equations ((4.2.2.3), (4.2.2.4)) of (IT1) for the phase fraction i1 (note the ele-

ment (1]) is in elastic with a constant temperature To so that fin = {0.5, 0, 0.5}):

25.101f-A,)o
 

 

r, = A,+k,o+k202+ , . (7.3.1.1)

EAEMe +(EA-EM)0

Since the first derivative of (7.3.1.1) with respect to stress 0

JT 25215 e‘ A -A
5' = t,+2k,o+ A M ( i ’) (7.3.1.2)

e 2

[EAEMe + (E, -EM)o]

satisfies the ('I'Tl) criteria (3.2.1.5) for do > 0 in the whole domain [0, 0‘], further heating

T1 beyond this infinitesimal temperature range [A,, Tli] continues to trigger (TT1) in ele-

ment (1), so that expression (7.3.1.1) tracks the response 0 until either the process goes to

completion or the stress 0’ reaches the detwinning flow 6,.
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o

*   

Figure 40. The path segment p52 has three possibilities: I, 2, 3, as shown in the above. Path

3 is the desired situation and approachable for many shape memory alloys, which will be

discussed in the following. '

The stress 0 inside the two elements increases, and may or may not reach the detwin-

ning flow stress a, before the completion of M, —> A in element (I). This implies that

continued T1 increase will cause the state path (a, T1) to follow a path of the form of either

path 1, 2 or 3 as shown in Figure 40. Simultaneously, the state path (a, Tn) is horizontal in

the (a, ”plane since the temperature Tn is held fixed in element (II). Useful device

response requires a situation where the M, —) A process in element (I) is sufficient to

cause detwinning in element (11). This will happen if the elastic strains are insufficient to

relieve the original transformation strain, that is if the following requirement is satisfied



e. > a; + 2;, , (7.3.1.3)

where,

3 _ as S _ as

e, - EA,EM - 511' (7.3.1.4)

The physical interpretation of expressions (7.3.1.3) and (7.3.1.4) can be viewed in Fig-

ure 41. Generally, the TlNi allay gives 8‘ » 81+ 8;, (Hou and Grumman, 1995), so that

continuous heating to trigger process M, —> A will cause the stress 0’ to surpass a, so as

to initiate detwinning in element (II).

 
  

Figure 41. A physical interpretation for the condition that ensures that detwinning occurs

during heating in a stroke.

Condition (7.3.1.3) indicates that the state path (a, TI) follows a path of the farm of A

path 3. Continued heating with T1 > T2 now triggers detwinning in element (11). Since the
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detwinning provides a softening process, the motion of the interface between the two ele-

ments will dramatically increase with this T1> T2 increase, which in turn, causes the state

path (a, T1) to veer away from the nuetrality curve A,, towards the nuetrality curve Af,

which it encounters at point (03, T3). This process will be derived in the following discus-

sion.

The phase evolution equations ((4.2.2.3), (4.2.2.4)) for the phase fraction £1 under

(TI‘2), the phase evolution equation (4.2.2.4) for the phase fraction fin under (ITS), along

with the length constraint (7.2.0.5) gives the following state path of a and T1 for

a,<o<af:

 

 

2 2EA(Af-A,)o

TI = A,f(a,Tu)+klo+kza + , , (7.3.1.5)

EAEMe +(EA-EM)o

where,

‘B-(05T )

f(o. T") = , ,‘ , (7.3.1.6)

EAEMe +(EA-EM)o

and

2 . -

, A-A M+ko+ka+Ak-Aka

B(0.Tn)=( ’ ,)( f ' 2 ) (’1 f‘) . (7.3.1.7) 

Af—A,+(k}—k;)a

The parameters It} and k; in the above equation are determined by (2.4.2.1) and (2.4.2.3)

respectively in section 2.4.2.

This description holds until its intersection (03, T3) with the nuetrality curve Af,. Solv-
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ing T, = Af + klo + [(262 and (7.3.1.5) coincidentally gives

for the intersection point. This implies that B(o, T") can reach Af only if 0' -) 0 , which

does not occur in the present situation. Since BIO, Tn) is the nuetrality curve to describe

the detwinning process, element (II) does not fully detwin, ie. 0'3 < of (Figure 40). In

addition, the phase fractions of the two elements at point (03, T3) are :1 .= (0, 1, 0} and g“

= {An , 0, l-Aa }. Continued heating with TI > T3 results in the path (a, T1) becoming ver-

tical due to stress that is maintained at 0'3 and the element (11) state path (0', Tu) would

remain stalled at its endpoint (63, To). Hence any heating beyond T3 does not contribute

any additional device actuation. It is also important to note that A“ is unchanged during

the subsequent cooling process of the element (I).

7.3.2 Cooling Process _

When cooling T; from T3 the state path (a, T1) starts as a vertical line involving a = 03

since initially there are no transformations to relieve the stress. This persists until the ver-

tical element (I) stroke path encounters the nuetrality curve M,, at point (04, T4) where 04

= 63. Now further cooling will trigger A -> M, in element (I). This also gives elastic

relaxation in element (II) in a infinitesimal temperature range [T4, T11] (the corresponding

stress range: [04, 01]). The relation between T1 and a can be found by use of the constraint

equation (7.2.0.5) and phase evolution equation (4.3.2.3) for £1 (note that phase fraction §n

is unchanged in the form of :11 = {A0 , 0, l-Aa } in this infinitesimal range),
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‘ 2

25 o-l-E E e 1-2A

TI=Mf+k1o+k2o2+(M,—Mf)[ " A M ( ‘9]. (7.3.2.1)

EAEMe‘ + (EA — EM)o

Since the first derivative of expression (7.3.2.1) with respect to o

”1

(7.3.2.2)

e 3

 2(M,-Mf) E,EMe‘us, + 5,, + 2(5, -EM)Aa]

satisfies the (T12) criteria (3.2.1.6) for do < 0 in the whale domain [0, oi], further cooling

TI beyond this infinitesimal temperature range [T4, T11] continues to trigger (TT2)

(A -> M,) in element (1). This indicates that the expression (7.3.2.1) applies to the cool-

ing procedure until the state path (o, TI) reaches the nuetrality curve M,, at the point (o5,

T5).

Further cooling of temperature TI below T5 triggers (TT2) in element (1) involving

both A -) M, and A —) M_ processes. Substituting phase fraction expressions (5.1.2.3)

and (5.1.2.4) for (TT2) into (7.2.0.5) gives

} 2's «his . when _ L. 321- . ad‘s-3:1 ..., .
a! 03 57, do a! Go 37, do

o, M» A-

2 I II (E +5 )0 (E -E )0 l 1

[l-AQ- 5" A M. ' A Ms (l‘Fs aA+aA-)

EAEMe EAEMe

, (7.3.2.3)
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At; = (tbs-(53),,

II

5 (abs-($55"= (€474- (é-1).: = 1-2Aas

“1+ = “A,_(O, T1) = (B4165 T])-Mf)/(MS_Mf)’

01;, = aA,(o, T1) = (BIO: Tr) ’ M1V(Ms ' M!) ’

 

F5 '3 JaA+(05, T5)/J(IA,(O'5, T5)aA_(65, T5) = l (GA-‘65, T5) = 1 ).

Taking the first derivative ta (7.3.2.3) with respect to stress 6 generates

  

‘17 l r
P(o,1‘,)%I = Q(o, T,)+cl -2C2,/aA,aA_, (7.3.2.4)

where

E -E

C1 = 4 t’ C2 = A ‘1’

FSEMe EAEMe

P T (1;, 3&1, aA+aaA— C alA- B(1,“... “Ara“;-

(0'1" 5'37, Tar-7+2“T37, “Tim:
A+ “A- A-

I I ' ' I I l 1

Q“, T) = 2533‘“. - a—AiaaM- C o “_Alaa‘“ + Eta—a”

“A-
aA‘F

(1A,
(1A-

The state path (o, T1) in this portion is governed by the ODE (7.3.2.4) and the correspond-

ing initial condition. T‘la = T,,. The path segment starts at (o, T) = (o5, T5). An

'005

important issue is the stress associated with cool-down to T1 = M,; In the next section it is

shown that o = 0 at T1 = Mfso that this segment p56 has the form shown in Figure 42.
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Figure 42. Six (0, T1)-path segments and their connecting points related with the first stroke

(heating/cooling element (1)) are schematically presented in the phase diagram for o > 0.

7.3.3 An Uniqueness Point for the Solution of the Equation (73.2.4)

In this section we will focus on the state path p56 as governed by equation (7.3.2.4). It

is shown that this path concludes at the point (0, Mf) with o decreasing monotonically

from the initial value o = o5. The demonstration holds for the linear envelope functions

(5.3.0.1) and (5.3.0.2) and the constitutive functions (4.2.1.1) to (4.2.1.4), and the Y-

unfolding derived in section 2.4.2. To show that the solution is monotone, (73.2.4) is

reformed as

do PW. Tl) , (7.3.3.1)
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the above P and Q functions are

 
 

  

  

  

1+Czo B(o, Tr)‘Mf+ Czo- l B(o, T1)-M,

P(6’T1)’M-M +,M-M
x f B(o, T,)— M, f B(o, T,)-M,

(1+Czo)(k1+2kzo) B(o, TI)- Mf+ k,(Czo- 1) B(o, T1)— M,

Q(0.T1)= M-M M-M

f 8(6 7”,)-M, f B(o, rp—M,

Since it is always true that B(o, Tl) > B+(o, Tr) in the triangle zone enclosed by the T-

axis, Mf, and M,,, one has P(o, T1)) 0 for all o > 0. On the other hand, in this triangle

zone it is also true that o < 1/C2 = (EAEMe‘yw, - EM) which implies Czo — l < 0.

Note that k; < 0 , kl > 0 and k2 > 0 . Therefore, one has Q(o, TI) > 0 for all o > 0. Finally,

since as 701,01}, 51, one has C1—2C2,/atk,at;- > 0 (F5: 1). Taken together, it is

concluded that the solution of equation (7.3.2.4) (or (7.3.3.1)) is monotone.

The solution curve can not penetrate the terminal nuetrality curve M,,. To verify this,

assume that the solution curve 71(0) goes toward M,,. It is seen that there is a singularity

for the solution of (7.3.2.4) on the terminal nuetrality curve Mf, since «3,, M = 0 . The

f+

. . th.
llnutof— is

do

. th -
llm (—) = k1 + 2kzo , (7.3.3.2)

0*(0, 1,)» M, d

which is equal to the slope of the terminal nuetrality curve M,,. This indicates that the

path ps6 can never penetrate M,,.

Finally, the path p56 T1(o) definitely goes through the paint (0, M,). To prove this,

assume that there is a limit of the solution TI(o):
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lim T,(o) = L. (7.3.3.3)
o—)O+

This limit exists because T1(o) is monotone. If L > M, then the limit of the right hand

side of (7.3.2.4) is

0'1“ '
lim P(o, T,)—' = 0, (7.3.3.4)

o —) 0+ do

which is not equal to the limit of the left hand side of (7.3.2.4):

lim [Q(o, 1,) + C1-2C2 a},af,,] = ‘ + C1¢0. (7.3.3.5)
040+ M,;—MI

 

Thus, it must be L = M, which implies that the solution T1(o) definitely goes through

the point (0, M,). The proof is thus complete.

The above proven conclusion illustrates that the stress between the two elements is

erased at the end of the cooling (or when TI reaches the temperature M,). This shows that

the elastic deformation of the element (II) of a martensite state upon heating the element

(1) can be recovered by subsequently cooling the element (I) to the temperature Mf Since

during the whole cooling process the phase fraction of the element (11) remains constant:

:11 = {A0 , 0, l-Aa }, the phase fraction of the element (1) could be determined as E = {0.5- ‘

A, , 0, 0.5+Aa } by means of the consistency requirement (7.2.0.5).

7.4 Later Heat-le Strokes

The first stroke, as discussed above, is special, since it is the only stroke starting from

a fully detwinned state of the element (I) and random martensite state of element (II): :1 =
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{0, 0, l} and fin = {0.5, 0, 0.5 }. All other strokes involving heating/cooling of the element

(1) will start from :1: {A, 0, l-A} amd :11 = {0.5-A, 0, 0.5+A} for some positive A. Simi-

larly, all strokes involving heating/cooling of element (11) will start from £1 = {0.5-A, 0,

0.5+A} and :11 = {A, 0, l-A} for some positive A. Let the corresponding sequence in A so

generated be: A], A2, A3, A,,... where A1 = A, and add subscripts correspond to end-of-

stroke states after heating/cooling of element (1) and even subscripts correspond to end-of-

stroke states after heating/cooling of element (II).

The analysis of any one of those strokes, taking A,- ta A,,, can be treated in a similar

fashion to the initial stroke involving the six path segments: p51, p52, ps3, ps4, ps5, p56, in

the particular element that undergoes heating/cooling. Each such segment will involve dif-

ferent phase fraction values that lead off each of the segments. Otherwise, the only major

qualitative difference involves the analysis of the segment ps2 (ps1 is trivial transformation

during heating process so that it is a vertical line along Tlaxis from (0, T0=Mf) to (0, A,)).

On segment psz, the initial value é, = Ai in the active element now causes a M_ -) A trans-

formation in addition to the M, -) A transformation; this alters the previous description

of the p82 segment given in (7.3.1.1). In particular, this path segment is no longer straight

even if the elastic moduli of austenite and martensite are equal. This dual transformation

in the heated element continues until the path encounters the terminal nuetrality curve A,,.

Certain phase diagrams might allow detwinning in the response element before comple-

tion of M_ —-> A in the active element. This corresponds to materials that have the follow-

ing relation between material parameters

A,+k',o, >A,+klo,+ kzof, (7.4.0.1)

ie., the temperature on nuetrality curve Af, is larger than that an nuetrality curve A,, at the
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same stress level o = 68 for o > 0. With the material parameters used here, an opposite

condition of (7.4.0.1) is found, so that M_ -> A completes in the active element before

detwinning occurs in the response element. Thus, in the simulation results presented

below, we find that M_ -> A occurs on the segment p52, which is consequently split into

two subpaths ps2a and p52,, The latter path ps2b involves only M, —> A transformation in

the heated element, and so is described by the same equations that were used for the treat-

ment of the primary ps2 path for the active element (see equation (7.3.1.1)).All subse-

quent details are qualitatively the same. Especially, full austentization of the heated

element occurs before full detwinning of the constant temperature element, thus giving

A,,] > 0.

7.5 Limit Analysis on Thermal Cycles

A simulation involving concrete parameters will be conducted in this section. The

complication of starting states with nonzero A, and different moduli of austenite and mar-

tensite prompt us to consider a fully numerical treatment. The convergence of A after sev-

eral thermal strokes applied on the two elements is reached for different values of the

austenite and martensite moduli. This in turn generates a stable path-loop in the (t, T)-

plane and the (6, T)—plane, where 8, the displacement, is given by either (7.2.0.3) or

(7.2.0.4).

7.5.1 Numerical Convergence on Residual Phase Fraction

Linear envelope functions: (5.3.0.1) and (5.3.0.2), and the Y—unfolding are taking into
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account for the present simulation. The pararneters employed here are from the TABLE 2

except for the moduli. The temperature pulse, as an input applied an the two elements, is

illustrated in Figure 43 where T,, = M, The ultimate temperature must be sufficient to fully

austenitize the operating element under the constraint stresses generated by the process.

These ultimate temperatures are different in each stroke but tend to an asymptote. The val-

ues of A corresponding to end-af-stroke states for different combination selections of the

austenite and martensite moduli are given in TABLE 9 to TABLE 12. These A values can

be obtained without considering the state path of full cycles or full strokes. They are deter-

mined by the canstraint equation (7.2.0.5) and the fact that the phase fraction of the

response element remains unchanged during cooling processes. This is completed by a

sample Mathematica program. By doing this, first, general heating state paths are updated

by the value of A corresponding to the previous stroke. Second, the intersection point

between the updated heating state path and nuetrality curve Af, is found to determine the

phase fractions at this point. Finally, by use of the constraint condition (7.2.0.5) to con-

clude the A at the end of the current stroke. It is seen in all cases that the values of A rap-

idly converge to a stable value A”.



146

TI

    

    

element‘ (I) ‘ element (11)

stroke 2

stroke 1 stroke 3
stroke 4

, Ar I

A! " . A! '

> t b t

0 t1 t2 t3 0 t1 t2 t3

Figure 43. Temperature pulses applied on the two elements. The maximum temperature in

heating must be sufficient to fully austenitize the operating element.

The following TABLES show that the limit values A,, tend to decrease with an

increase of the moduli. This corresponds to a condition that the response element experi-

ences greater detwinning because an increased stiffness gives a relatively small elastic

deformation so that more of the deformation is related with the phase transformations.

Based on the conditions of TABLE 9 and TABLE 12 both of which have the same sum of

the moduli of austenite and martensite, it is also observed that the equal moduli situation

gives more detwinning for the response element than the uneven moduli situation.

Since A is nonzero, the device as described here has not recovered the prevailing state

at the very beginning of the operation: :1: {0, 0, 1}, g" = (0.5, 0, 0.5}. Hence the

response is not a true “cycle” in the first couple strokes. Continued operation will always

involve end-of—stroke states involving same A remnant that is not fully detwinned on the

nominally oriented element. Repeatable or true cyclic behavior only occurs if the same A
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remnant occurs at the end of each two-stroke cycle. In fact, for symmetric device-

described here (11 = 12 = I), the same A remnant must occur at the end of every stroke,

albeit interchanged between the two elements. The question thus arises as to whether or

not there is such a stable cycle, ie. an A, which gives cyclic behavior. Here smallness of A

is a measure of the closeness to ideal behavior in terms of stroke distance. That is A,, = 0

gives ideal behavior (maximum stroke), while, at the other extreme A,, = 1/4 gives 8 = §n

= {0.25, 0, 0.75} at the end of each stroke, corresponding to zero interface movement.

This point can be viewed in the following discussion.

To clearly see the problem, we consider the displacement at the end of each stroke.

With (7.2.0.3) and (7.2.0.4) employed here, the displacements at the end of each stroke

with respect to the reference position are found as the following,

50 = 0:

51 = Kl-ZAOE‘I;

82 = ZIAZE‘;

1(1—2A,)e' if i is odd

21A,.e' if i is even

Then the effective stroke distances between two connected strokes are
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sdl = [81-60] = I(l-2A,)e’;

sd2 |82-6,| = 1271—2112—2731);

sd ,. [6,-6,_,| = le‘(1-2A,—2A,_,);

When enough temperature pulses are operated on the two elements (i —> oo ), our numeri-

cal results show that lim A, = .lim A,_l = A... Therefore, the limiting effective stroke

4 -) ’0 l -) 0°

distance is obtained as

sd, = zc'(l — 4A,). (7.5.1.1)

Thus, A,. = 0 represents a maximum stroke situation that the prevailing state: 3 = {0, O,

l} and El = {0.5, 0, 0.5} can be recovered at the end of each stroke, while A,, = 1/4

indicates a useless situation. A measure of the ultimate stroke quality is thus

Q = l—4A”. Note that Q = 0.5398, 0.6206, 0.6574, 0.5865 for the cases given in

TABLE 9 to TABLE 12 respectively.
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TABLE 9. [IA = 4.0*1004; itM = 2.0*10I~4 MPa

 

 

 

 

 

 

 

 

 

 

  

operating A ofresponse elements at ultimate temperatures

elements strokes end-of-stroke (”K)

(I) I 1 0.1171521977252063 335.123647800

(II) I 2 0.1 150009266592965 334.622190725

(I) I 3 0.1150510309196698 334.633789633

(II) I 4 0.1150498696891485 334.633520813

(I) I 5 0.1 150498966052308 334633527044

(II) I 6 0.1 150498959813465 334.633526900

(I) I 7 0.1 150498959958073 334.633526900

(II) I 8 0.1 150498959954724 334.633526900

(I) I 9 0.1 150498959954803 334.633526900

(II) I 10 0.1 150498959954798 334.633526900

(I) I 1 l 0.1 150498959954798 334633526900

limit I on A,_ a: 0.1 150499 334.633526900  
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TABLE 10. 11A = 4.0*10"4; int = 2.8*10"4 MPa

 

 

 

 

 

 

 

 

   

‘ operating A of response elements at ultimate temperatures

elements strokes end-of-stroke (°K)

(I) I l 0.095965644548003 335.433784391

(II) I 2 0.094826994366186 335.117197237

(I) I 3 0.094843410530481 335.121891685

(II) I 4 0.094843174457726 335.121824177

(I) I '5 0.094843177852696 335.121825147

(II) I 6 0.094843177803873 335.121825133

(I) I 7 0.094843177804575 335.121825134

(II) I 8 0.094843177804565 335.121825134

(I) I 9 0.094843177804565 335.121825134

limit I no A,, z 0.09484318 335. 121825134 
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TABLE 11. [IA = 4.0*10"4; um = 3.451004 MPa

 

 

 

 

 

 

 

 

   

operating A of response elements at ultimate temperatures

elements strokes end-of-stroke (”K)

(I) I 1 0.086460055018001 335.588237493

(II) I 2 0.085641 127661279 335327082388

(1) I 3 0.085650372005167 335330032150

(II) I 4 0.085650267840977 335329998912

(1) I 5 0.085650269014702 335329999287

(II) I 6 0.085650269001486 335329999283

(I) I . 7 0.085650269001635 335329999283

(11) I 8 0.085650269001633 335329999283

(1) I 9 0.085650269001633 335.329999283

limit I no A,, z 0.08565027 335329999283 
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TABLE 12. 11A = 3.031004; (1,, = 3.0*10"4 MPa

 

 

 

 

 

 

 

 

 

  

operating A of response elements at ultimate temperatures

elements strokes end-of-stroke (°K)

(I) I 1 0.104853194379462 335307846732

(II) I 2 0.103344420472474 334914231932

(1) I 3 0.103371280735037 334921227214

(II) I 4 0.103370804176779 334.921103103

(I) I 5 0. 103370812632450 334.921 105305

(II) I 6 0. 103370812482419 334.921 105266

(I) I 7 0.103370812485081 334.921105266

(II) I 8 0. 103370812485033 334.921 105266

(I) I 9 0.103370812485035 334.921105266

(II) I 10 0.103370812485035 334.921105266

limit I oo A,, = 0. 10337081 334.921 105266    
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7.5.2 Stable Response Loops

We now consider more detailed numerical simulations of (o, D—paths for a particular

case involving equal moduli. The parameters to be used in the following simulation are all

listed in TABLE 2. Following the previous analysis of Sections 7.3 and 7.4, the (o, T)-

curves corresponding to the first stroke, are presented (by lighter dots) for both the ele-

ments in Figure 44. The (o, T).curves for the consequent stroke are given (by darker dots)

in Figure 45. Note that the (o, T1)-curves for the response element is always a straight back

and forth horizontal line. The difference between the first and the second strokes is that

both M_ -> A and M, —) A are involved in the p52 process of the second stroke, while

only M, -) A is involved in the ps2 process of the first stroke (refer to Figure 42), since

the initial condition of the first stroke involved é, = 0 in the operating element.

A combined view of (o, T1)-and (o, Tn)-curves (the lighter dot is the (o, TI)-curve for

the first stroke) corresponding to the operating elements under ten cycles are shown in Fig-

ure 46. The moduli here are: it, = 3.0 x 104, It” = 3.0 x 104 MPa, so that the simula-

tion is that associated with TABLE 12. It is to be noted that, after the first stroke, the

various curves are indistinguishable (the darker dot curves), which indicates that the limit

cycle corresponding to A,, has been reached. These state paths are generated based on the

analysis in sections 7.3 and 7.4. The intercomparable (8, T)- and (5, o)-curves are illus-

trated in Figure 47 (a) and (b), which are obtained by use of equations (7.2.0.3) and

(7.2.0.4), as well as the derived (o, T) state paths. The lighter dot curves are again the dis-

placement against temperature and stress, corresponding to the first stroke, while the

darker dot curves correspond to the remaining nine strokes. The effective stroke distances

can be found from expression (7.5.1.1) and A,, listed in the above TABLES. For example,
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the effective stroke distance sd, = 0.5865Is for this particular case.

3.1 T1(°K) ...1. To (°K)

320. ............. i 2 320.

240

300’300. ;

200.‘ . . - 280.

240 ’

  0 5‘0 100 1 0 200 0  

Figure 44. (o, T)-paths for the first stroke for element (1) (a) and for element (II) (b). The

operating element here is element (I) with initial temperatme T0 = M,, which is equal to the

constant temperature of the response element (II) during this process. Here the material

properties come from TABLE 2. In particular the moduli are 11A = 11,, = 3.0x 104

MPa. The value of A at the beginning is A = 0, and at the end is A = 0.104853194379462.

320>

 

340$ Tn p52 3403 TI

b .

ps2, : 320-

300>300» m» 5

280>‘ ---- 280»

26°c5
2601

2403'
240.

  o 50 100 110 200 ’ 0

(a) 0' (MPa)

 
0» “(MW

Figure 45. (o, T)—curves in the second stroke are presented in (a) for the element (II) and in

(b) for the element (I). The operating element is element ([1) with initial temperature To =

M,, which is equal to the constant temperature of element (I) during this process. In the first

part of ps2 bath M_ -) A and M, -) A are involved in the phase transformation (refer to

Figure 42).The value ofA at the beginning is A = 0.104853194379462, and at the end is A =

0. 103344420472474.
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Figure 46. This graph shows (0, T)-curves of the operating elements in ten strokes. A stable

(o, T)—loop (the darker one) is reached after the first cycle (the lighter one).
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(LIWC—T a. 0—0—0—0- e—e‘...—...— _-

0.01 -

240 260 200 300

(a)

' Figure 47. The corresponding displacement against stress (a) and temperature (b) after ten

strokes. The lighter dots correspond to the first stroke. The darker dots correspond to the

following nine strokes, which are indistinguishable at this scale. The head down loops

correspond to operating element (11) while the head up loops correspond to operating

element (II) in both (a) and (b).
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7.6 Discussion

In principle, the deformation caused by thermal expansion is against that caused by

phase transformation. The thermal expansion coefficients of austenite and martensite can

be taken as 01,, = 11 x 10'6 ll°K and a.” = 6.6 x 10’6 ll°K respectively. To gauge its

effect, we choose the bigger one a = 11 x 10'6 l/K° a for both austenite and martensite.

The temperature change to actuate a stroke is likely to be on the order of 100 °K based on

the above simulation. Then the thermal expansion strain is about 0.0011 « e. = 0.06 .

Thus, we conclude that a reasonable approximation allows the thermal-expansion effect to

be neglected.

Based on the previous achievement, the final cyclic behavior corresponds to a repeat-

able limit cycle. Such limit cycles arise naturally in earlier models of SMA behavior given

by Ivshin and Pence (1992). Here a limit cycle means that cyclic input, such as repeated

alternating temperature pulse excursions TI(t) and Tn(t), generates cyclic output response,

here film and §n(t) and stroke 8. For a given cyclic input, the associated limit cycle or

cycles (if any exist) may be sought in two general ways. The first involves starting from

some initial condition of the output response, here 8(0) and 511(0), followed by perform-

ing a large number of input cycles. Limit cycles then arise as the possible large time con-

vergence of the functions §I(t) and 90) to a repeatable cycle with the same cyclic '

frequency. Here initial conditions of the output response that happen to be on a limit cycle

will generate output response that stays on the cycle, and, ideally, those initial conditions

not on a limit cycle will give output response that drifts towards a nearby limit cycle. This

was the method pursued above, where the limit cycle was essentially attained on the sec-

ond stroke (Flgure 44 to Figure 47). The other general method for determining limit cycles
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involves setting up a mapping between output response variables sampled at the cyclic fre-

quency and seeking fixed points of the mapping. Such fixed points give initial conditions

that are on a limit cycle. Although Ivshin and Pence were able to pursue such a direct fixed

point treatment in some of their previous studies (Ivshin and Pence, 1992), the more com-

plicated nature of the problem under study here (involving more than one martensitic vari-

ant, and more than one shape memory element) points to the usefulness of obtaining these

limit cycles by numerical simulation procedures.



8 CONCLUSION AND PROPOSED FUTURE WORK

The approach is to augment conventional continuum mechanical descriptions with

internal variables that track fractional portioning of the material between austenite and the

various martensite variants. A three-species model involving austenite and two comple-

mentary martensite variants provides sufficient generality to capture the martensite variant

distributions that underlie shape memory, and the strain-accommodation associated with

pseudoelasticity. Transformations between all of these species can be tracked on the basis

of triggering algorithms that reflect both transformation hysteresis and the variations of

phase fractions of triggering both stress and temperature.

Three phase diagrams are presented based on thermodynamic considerations and

experimental measurements. The X-unfolding, as a prototype, is first derived from allow-

ing phase transformation nuetrality curves to enter non-austenite areas to describe the

detwinning processes. The detwinning in this unfolding strongly depends upon both stress

and temperature. Further modification on the X-unfolding, about the entropy of austenite

replaced by that of martensite in the non-austenite areas, provides the pY-unfolding. An

interesting aspect of this phase diagram is that stresses associated with detwinning start

and finish are determined in terms of the other material parameters. Basically, this pY-

unfolding requires only the following experimentally determined parameters: the four

phase transformation temperatures, the transformation strain, the Young’s moduli of auste-

nite and martensite, and the transformation latent heat. Themore sophisticated phase dia-
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gram, Y-unfolding, is generated by specifying the detwinning start and finish stresses

independently based on experimental observations. The corresponding nuetrality curves of

phase transformations are consequently modified following this change. The comparison

of isothermal behaviors, between the theoretical prediction with the Y-unfolding and the

experimental measurements on thin films by Hou and Grumman, shows that the model

can well reflect the practical situation in some degrees (Grumman and Pence, 1996).

Discussions of the path-independent conditions in Chapter 5 reveal some fundamental

features of the two variant algorithms of the model. These features are responsible for the

hysteresis characteristics of shape memory alloys. The special behavior, discussed in

Chapter 6, according to loading/cooling and cooling/loading state paths shows potential

for the model to direct designing smart sensors. Pseudoelasticity, shape memory effects

and many isothermal behaviors are predicted in Chapter 6.

The application of the model in Chapter 7 shows two aspects. One is that the model

possesses both theoretical completeness in certain levels and potentiality to guide sample

engineering designs. The other is the potential engineering application of the two element

device (TSTE). A stable cyclic behavior is reached by performing the cyclic temperature

pulse on the device. Further investigation associated with carrying external loads can fol-

low up based on the present approach.

The interesting inverse problem investigated in the Appendix reflects another view on

the model itself. Relations between stress, strain, temperature and entropy for each species

are backed out of a three species phase diagram as given by experiment. We believe that

there are still certain amounts of work to be done on the thermodynamic issue related with

the choice of the particular entropy form of each individual phase. An example shows that

there is a consistency between the approach in Chapter 2 and the inverse issue in the



160

Appendix under the same phase diagram.

So far in this study, we only focus on l-D isothermal descriptions and some sample

behaviors associated with both stress and temperature changes, in which stress and tem-

perature are treated as an explicit input. More complicated situations, such as convective

and adiabatic processes, can be extended from the present approach by adding certain

thermodynamic considerations (Ivshin and Pence, 1994 b). In general, for the convective

and adiabatic condition, often the case is that only either stress or temperature, but not

both, are given as input and their relation is decided by extra thermodynamic equations

(e.g. joule heating, convection, physical constraint).

For more general modeling work, TiNi alloys considered usually have either 24 habit

plane martensite variants plus austenite, or 12 coherent martensite variants plus austenite,

which are distributed in 3-D scopes. Fellows as Patoor et al (1994), Son and Hwang

(1993), Boyd and Lagoudas (1994, 1996) contributed certain amount of work on the 3-D

modeling work in different aspects. For instance, Patoor et al have developed a constitu-

tive model to describe the transformation among all 24 martensite variants and austenite

phase based on free energy issue. The model was set up first for the single crystal and then

extended to the description of polycrystalline transformation by considering the self-con-

sistent micromechanics method. Son and Hwang have acquired a thermodynamic model

for both pseudoelasticity and shape memory effects. The transformation criteria of the

model is similar to plastic yielding’s in plasticity theories. Later, Boyd and Lagoudas have

also developed a microscope constitutive model to phenomenologically narrate the behav-

ior of pseudoelasticity and shape memory effects for polycrystalline shape memory alloys.

The model using a free energy function and a dissipation potential contains three descrip-

tions based on the combination number of internal state variables.
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Another challenge future work conjunct with the present study is how to extend the

present model to the more general case with multiple martensite variants and austenite in

3-D. This extension will include modifying the overall entropy and strain expressions

(2.1.0.1) and (2.1.0.2) respectively based on the compatibility theory (Bhattacharya and

Kohn, 1996). The corresponding 3-D criteria for phase transformations and reorientations

is another open question. The potential way to solve the problem is based on the relation

between 3-D stress distributions and orientations of various lattice structures of austenite

and martensite variants.
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10 APPENDIX

REFINEMENT OF THE TWO VARIANT PHASE DIAGRAM

As discussed in the chapter 2, under certain assumptions of entropy and strain of the

pure phase species, phase diagrams have been obtained based on thermodynamic consid-

erations. The Gibbs free energy is treated as though a state function of temperature and

stress in either an individual phase or a mixture phase, by which Clausius-Clapeyron rela-

tions are generated to describe transformations between any two species and further to

form phase diagrams. The phase diagram gained by this procedure is usually not exactly

the same with experimental observations, specifically, in a detwinning process. Thus, the

difference between theoretical derivations and experimental measurements supplies a

motivation to consider a reverse problem. That is, if a phase diagram is given, it is very

interesting to find the distribution forms of strain and entropy of the pure phases that pro-

vide the same thermodynamic consistency requirement. This problem is considered here.
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Figure 48. A given phase diagram as might be determined by experimental measurements.

R1 is the region above nuetralitycurve M,, for 't 20;R2istheregion between M,, and

M,_ for 1:>0; R3 is the region between M,. and T-axis for 1:20.fi, R2andR3-are

corresponding mirror images of R1, R2 and R3 about Tlaxis for 1' < 0 .

10.1 Clausius-Clapeyron Relations

If a phase diagram is given, shown as Figure 48, the slopes of each neutrality curves

are determined for the processes of martensitic transformations and martensite variant

reorientations. For convenience, three regions, R1, R2 and R3, are defined in the half-

plane 1:20,in whichA HM, and A HM_ occurian and M_—>M, occursinR2and

R3. The mirror images of R1, R2 and R3 about t = 0 axis are R1, R7 and R3.. It is sup-

posed that the Gibbs free energy is a state function of temperature and stress in both the

individual phases and in any mixture state. Thus, the following Clausius-Clapeyron rela-

tions have to be satisfied in the half-plane 12 0 if one notes (2.1.0.7), (2.1.0.8) and
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(2.3.1.1),

TIA-11, = —(yA-y,)/f,(‘t) forAHM, ian, (10.1.0.1)

TIA-TL = -('yA-‘y,)/f2(1:, T) for AHM_ ian, (10.1.0.2)

11,-n_ = —('y,-y_)/f3(t, T) for M_->M', inRZand R3. (10.1.0.3)

Here, fl(1:) , f2(1, T) and f3(1, T) are the slopes of each neutrality curve for A 4—) M,,

A HM_ and M_ -> M, respectively, which are regarded as experimentally supplied.

Similarly, in the corresponding mirror image regions in the half-plane t < 0 , R1, R2 and

R3, following Clausius-Clapeyron relations have to be obeyed,

111-11. = -(yA—'y_)/f1(1:) forAHM_ in iii, (10.1.0.4)

nA—n, = -(yA-y,)/f2('t, 7) for AHM, inR_l, (10.1.0.5)

1),-n- = -(y,—y,)/f‘3(t, 7) forM,—>M_ iniz’and f3. (10.1.0.6)

Here, 171(1) , f2(1, T) and f3(1, T) are the slopes of each neutrality curve for A (-) M- ,

A (—-) M, and M, -> M_ respectively for r < 0. The mirror image status of '18, Eandfi

that will hold in the event of symmetry requires the following relations, which are hence-

f0rth assumed:

f .(t) = -f1(4). (10.1.0.7)

f2(1. 1) = -f2(-Ts 1). (10.1.0.8)
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no.1) = -f'3(—t. 7). (10.1.0.9)

In this more general phase diagram, the entropy and strain may each depend on bath

temperature and stress. The entropies are written as the following in the present study

(Ivshin and Pence, 1994 b; Bekker and Brinson, 1994),

1110.77 = Cln(-TT-)+ni(t.1) . (10.1.0.10)

1141.7") = Cln(T£)+nZ(r,1), (10.1.0.11)

7111.1) = ClnITl)+nf’(t.1) . ' (10.1.0.12)

Here, the stress is appended in the reference terms of entrapy expressions. Since the heat

capacity is defined as T% , it follows that the heat capacities in the three phases are given

0

by C + Tit—2' , so that if I]? is independent of temperature then C is interpreted as actual

heat capacity.

The mathematical Maxwell relations of Gibbs free energy being a state function in

each pure phase gives the following

311,4_3Y,4 3n,__3¥, 3'1-_37-
3; -37, I)? -5,, a? -5,, (10.1.0.13)

Assume that the stress-strain relation for austenite satisfies Hooke’s law in all the cases,

ie.,
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“(A = 1. (10.1.0.14)

”A

which implies that 11; depends upon only temperature based on the Maxwell relation

(10.1.0.13). We presume that '1]; is constant for the rest of this Appendix.

10.2 Determination of Strain in A <—> M, Process

In R1, equations (10.1.0.1) and (10.1.0.13) give

3 1 a diiflm 0 0201
a—I-‘(YA-Y-r)+mfi(YA-Y+)-—%(YA-Y+) - . (1 ° ' ° )

for A (-—> M, process. The characteristic equation of (10.2.0.1) is

47' _2.1. _ flu), (10.2.0.2)

Assume that (10.2.0.2) is integrable and its integration form is

111(1, T) = C, (10.2.0.3)

with property mm, C) = C, M,S C SA,. To solve equation (10.2.0.1) the following

boundary condition on 1: = 0 has to be posed for 7,, and y, ,

YA |T = 0 = 72¢) and 7,], = 0 = 73%) . (10.2.0.4)

for M, s g s A,. Expression (10.1.0.14) implies that 7m) = 0. Therefore, the solution

of (10.2.0.1) with boundary condition (10.2.0.4) is found as
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l +f1(1)o

“(I’m 11,, ITO)+
”(HA T» 5 (10.2.0.5)

the superscript RI on the right head of 7, indicates the solution in region R1.

From ( 10.1.0.1), (10.1.0.10), (10.2.0.5) and (10.1.0.11), the following relation about

the entropies is derived,

. _ 73mm. 1))
 

 

trim, 7) = fr(0) . (10.2.0.6)

For A HM- process in RI, combining (10.1.0.4) and (10.1.0.13) follows

a %f1(1)

370..- r-)+ WWW-”(1,4,) (y, -7-) = o , (10.2.0.7)

with its characteristic equation

51: flat). (10.2.0.8)

Then, the following results are determined in a similar fashion (10.2.0.5) and (10.2.0.6),

rffi(r.1)= —+£L(—)‘Yo(fil(1. 7)) (10.2.0.9)

11A fl

. . rf’lfira. 7))
-(t, T) = — - , (10.2.0.10)

Tl “A f1(0)

 

if the boundary condition on 1: = 0 is given by
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7-| = 72¢). (10.2.0.11)
1:0

Here, I-Il(‘t, T) = l; for Mf S C S Af is the integration form of (10.2.0.8) with property

fil“), C) = C5

For the problem associated with two complementary martensite variants, it is natural

to impose the following relation,

713C) = -rf’(§). (10.2.0.12)

by a consideration of self-accommodated process. It is easy to prove that (10.2.0.12) is

equivalent to the following relation,

7516. T) = 43161. I). (10.2.0.13)

by the solutions (10.2.0.5), (10.2.0.9), and the fact of

111(1, 7) = fi1(—1:, 7). (10.2.0.14)

Example I

For A H M, process in R1, one considers a situation that the boundary condition for

y, is constant and equal to the transformation strain, ie.,

Y,| - ‘y . (10.2.0.15)

1:0 -

Assume also that

3.: = fl(1:) = “+3, (10.2.0.16)
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which implies that

rl,(t,7) = T—éAtz-BT.

Here, A and B are positive quantities. Solution (10.2.0.5) now gives

7510.7“) = 347'.
“M

where,

1 A r l
— = — +—

”M BY “A

Then (10.2.0.6) becomes

113’. = nit-31%-

Solving (10.2.0.19) and (10.2.0.20) gives

t

B: 07 oandA= “A-EMO.

TIA - 11+ . “Allufih - 11+)

  

(10.2.0.17)

(10.2.0. 18)

(10.2.0.19)

(10.2.0.20)

( 10.2.0.2] )

Thus, we formally obtain the same results as expressed in (2.2.2.3); and (2.2.2.5).

10.3 Determination of Strain in A H M, Process

In R1, combining (10.1.0.2) and (10.1.0.13) gives
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$7,,” +,(Tmin—y,)—:-:——::D(y,— y) = 0, (10.3.0.1)

where,

1120.7) = $1,547). (10.3.0.2)

The characteristic equation of (10.3.0.1) is

if = f,(r,7), (10.3.0.3)

which is assumed integrable. Integration of (10.3.0.3) is taken to have the form

1'12('c, T) = C, (10.3.0.4)

with property 112(0, C) = C, Mf S C S A,. Boundary condition for solving this problem

is given by (10.2.0.11) and “It -0 = 72(C) = 0. Consequently, the solution of

(10.3.0.1) under the above boundary condition is found as

R]
T

fa“! “2(11 T))dl

7' (T’ 7) = 17 ”RIB“, 7))e ° . (10.3.0.5)

A

Here,

82(15 3(15 C))

«(1.0 = f2(1. so. Q)’

(10.3.0.6) _

where, T = s(t, C) is a specified neutrality curve parametrized by C for Mf S C S Af.
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On the other hand, rm, 7) can determined by (10.1.0.2), (10.1.0.10), (10.1.0.12) and

( 10.3.0.5),

00. 112(1. Tndt

. ., 1311 (15.1))e °

Tl-(t.7)=n,,- 2 f2(T.T)

(10.3.0.7)

As the same manner, based on (10.1.0.5) and (10.1.0.13) for A H M, process in if,

we can obtain the following solutions

 

 

E T _ 50. fir“. 7))43

r. (1.7) = ,,—+72(I12(7.1))e ° . (10.3.0.8)

A

[610.020. Tndt

o o Via-=12“; ”)3 0

0,6. I) = n - _ (10.3.0.9)

" f2(T. 7)

where,

g = 30.7”). (10.3.0.10)

_ 82(1. 5(1. D)

an. 1;) = - . (10.3.0.11)

. f2(19 3(it, C))

(10.3.0.12)

, _ a _

82(177') = 'a‘i’fZCttnt

and T = 5(1, C) is a specified A HM, nuetrality curve in RI, pararneterized by C,

M,SCSA,. fi2(t,T) 2C is the integration form of (10.3.0.10) with property
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1.12“), C) = C

It can also be proven that (10.2.0.12) and (10.2.0.13) are equivalent by means of

(10.3.0.5), (10.3.0.8), and

112(r, 7) = I'm—t, 7). (10.3.0.13)

10.4 Determination of Strain in M_ —> M, Process

First of all, consider the situation in R2, by (10.1.0.3) and (10.1.0.13) the following

P.D.E. can be derived

a E __1_ 31+,7_83(TsT) _ '

where,

8

83(1. 7) = 37f3(1. 7). (10.4.0.2)

The characteristic equation of (10.4.0.1) can be written as

= f3(1:, 7). (10.4.0.3) .

Since M, —> M, is modified by M_ —->A , the nuetrality curves of M_ -) M, in R2 is a

extension of the nuetrality curves of M_ -—> A in R1. Thus, we are going to continuously

employ temperature parameter C (M, S C S A,) to parameterize the integration curves

(nuetrality curves) of (10.4.0.3) which start at M,, . Based on the above consideration, the
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integration form of (10.4.0.3) is written as

113(1, T) = C, (10.4.0.4)

which starts at the intersecting point (11? TC) on M,, . This point can be found by solving

equations (10.4.0.4) and M,, (T = M,,(1)) simultaneously, which gives

T; = h(C), T; = T(C) . (10.4.0.5)

The boundary conditions for solving this problem are posed as

r: = 7511.?) .7? = vil(t.1)| (10.4.0.6)

(1, T) e M,, (t,T)e M,,.

Along a specified M_ -> M, nuetrality curve T = s(1, C) that starts at (1;, TC) and goes

down to a lower area, boundary conditions ( 10.4.0.6),could be rewritten as

73 = 3.0;). Tf’ = BIC). (10.4.0.7)

Therefore, the solution of equation (10.4.0.1) under the above boundary condition is found

tobe

V(tr "3(10 1.))dt

15%. n-rf'za. 7) = (Bands. 1))—3,0130, 1))). “W . (10.4.0.8)

where,

83(15 3(1, 0)

f3(15 3(1, §)) .

 

' 141.0 = (10.4.0.9)
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Solution (10.4.0.8) implies that

R2 4m 0. nrw’ "’(t’ “W

7, (7.1) = 71(1.I)+B,(H3(7.1))e ’ , (10.4.0.10)

f V('r “3(10 ”)4!

46131:. 1))

75““. T) = 7.6. 7) + B-(H3(t. 7))e (10.4.0.11)

Here, 11(1, T) is any function that obeys boundary condition

71(7. DI, T) e 11,, = 0. (10.4.0.12)

which is explicit by (10.40.10), (10.4.0.11) and (10.4.0.6) if one assumes that the strains

of the two variant martensite satisfy (y,(t, 7), y,(t, 7)) e c“. By (10.1.0.3), (10.1.0.11),

(10.1.0.12) and (10.4.0.8), the following relation between the entropies is obtained,

. .. 3.0130. 7))-B,(n,(r, 1)) lm,...n,""- 0.0.01.1.
- = e .

n+ TL
f3(15 T)

 (10.4.0.13)

For more about the above specification, a particularly natural assumption is that

71(7. 7) E0. (10.4.0.14)

Then, solutions (10.4.0. 10) and (10.4.0.11) become

. hm (t. WWI. "311. T))dt

7520. 7) = 3,0130. 7))e ’ , (10.40.15)
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1

VO. 113(1. TDdt

Wu, 7) = B,(n3(t, T))e “"3“” , (10.4.0.16)

which would be deciphered as the natural extension of solutions (10.2.0.5) and (10.3.0.5)

in R1 into R2, if one notes (10.4.0.6) and (10.4.0.7).

For region R3, the only difference from that in region R2 is that the boundary condi-

tions are now given along T-axis, which are expressed as (10.2.0.4)2 and (10.2.0.11) for

CS M, . Thus, relations, from (10.4.0.1) to (10.4.0.4), still suit the present condition, but,

(10.4.0.4) has the property

113(0, C) = C for CS M,. (10.40.17)

Therefore, the difference between the strains in R3 is given by

t

R3 R3 0 a ‘1'“) 113(1, T))dt

7.. (177—7. (1. 7) = (7,0130. 1))-1.0136. 7)))e ° . (10.4.0.18)

Comparing (10.4.0.8) and (10.40.18) will conclude that the two solutions are identical

with each other along the boundary M,_ between R2 and R3 if one notes that 73C) and

f(C) are continuous along the T-axis with Co smooth.

Solution (10.4.0.18) implies that

R3 ‘ a rim, I13(1, T))dr

7,. (T. T) = 72(1. 7) + 7,013“. T))e ° . (10-4-0-19)

R3 0 V0. 113(1, T))dr

7- (1.7) = 72(7. 7) +T.(TI3(I. 7))e ° . (10.4.0.20)
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Here, 72(1, T) is any function in R3. And, on the other hand we have

a a 7:013“. T)) - 100130;, 1'))eJ:V(t. 113(1, T))dt

 

- = , 10.40.21

n+ n- f3(15 T) ( )

in R3.

If one assumes that the strains are Co along M,_ , then, 72(1, T) satisfies

72(7. Blame M,_ = 11(1. 7)](1’m M,_. (10.4.0.22)

by (10.2.0.5), (10.3.0.5), (10.4.0.6) and (10.4.0.7). Thus, we define an arbitrary C“ func-

tion, named 7(1, T) , in R2 U R3 , upon which, 71(1, T) in (10.40.10) and (10.40.11) as

well as 72(1, 7) in (10.4.0.19) and (10.40.20) can be replaced by y(t, 7) now. In 7112 and

E similar solutions can be obtained as we have illustrated above without any difficulty.


