
v‘. ...

THESIS
NSTATE UNI

II‘IIIIjIIII‘III[Ill1ll’lllillllllIIIIII

* LIBRARY l

Michigan Slate

Unwors

Lian—- Ity

This is to certify that the

dissertation entitled

Instrumentation System Design, Modeling,

and Evaluation

presented by

Abdul Waheed

has been accepted towards fulfillment

of the requirements for

Ph.d. degree in Electrical Engineering

me 1 flow”!

Major professor

9/I/q7
Date

MSU is an Affirmative Action/Equal Opportunity Institution 0- 12771

PLACE IN REI’URN BOX to remove this Montfrom yourrocord.

TO AVOID FINES Mum on or before date duo.

r-—————_——————1

DATE DUE DATE DUE DATE DUE

=3J——:_L___L___lm'l——l_

_ Lj—
_ ———[—j__

MSU lsAn Affirmative Action/Emu Opportunity Intuition

W

”8-9.1

Instrumentation System Design, Modeling, and Evaluation

BY

Abdul Waheed

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering

1997

ABSTRACT

Instrumentation System Design, Modeling, and Evaluation

BY

Abdul Waheed

An instrumentation system (18) is defined by this research as a set of modules and services

for collecting, forwarding, managing, processing, consuming, and reacting to runtime

information about a parallel or distributed system. Runtime information is essential for a

variety of multidisciplinary applications of parallel and distributed computing, such as

measurement-based tool environments, resource management for distributed real-time

systems, adaptive control of distributed embedded systems, management of

telecommunication networks, and administration of transaction processing systems.

Despite fundamental differences among these application domains in terms of consuming

runtime information, a number of features, requirements, services, and design principles

of underlying IS modules are common. Recognition of these commonalities allows the IS

taxonomy deveIOped in this dissertation to represent a unified view of the IS design and

modeling-based evaluation process. This unified view is essential to provide feedback to

the system developers at an early stage and may result in a better understanding of

distinctive 18 features by the users of that system.

This research is the first to apply well-known computer system performance modeling and

evaluation techniques to design and manage an IS. In addition, we develop and apply a

Resource OCCupancy (ROCC) modeling technique, which facilitates IS modeling and

captures the inter-dependences of multiple, interacting workloads. We apply the IS

taxonomy and modeling-based evaluation approach to three extant ISs: PICL, Paradyn,

and JEWEL. Evaluation of their alternative configuration options and management

policies not only provides performance feedback to the developers but also substantiates

the feasibility of the modeling-based IS evaluation methodology. Finally, we present the

Vista IS, which is an outcome of the design, modeling, and evaluation techniques

developed by this dissertation research.

To my parents

iv

ACKNOWLEDGMENTS

I would sincerely like to thank my advisor, Dr. Diane Rover for her guidance and

assistance throughout my Ph.D. program. The accomplishment of this work would not

have been possible without her openness toward innovative ideas and encouragement to

undertake collaborative research efforts. In addition to directing my research, she provided

me with excellent opportunities for my professional development. It has been a valuable

experience to work under her supervision.

I thank the other members of my committee, Dr. Michael Shanblatt, Dr. Lionel Ni, Dr.

Philip McKinley, and Dr. Vincent Melfi for their feedback about my research and other

efforts on my behalf.

I would like to thank Defense Advanced Research Project Agency (DARPA), National

Science Foundation (NSF), and Department of Electrical Engineering for funding this

research.

I wish to thank my family for their love and support. Successful completion of my efforts

as a PhD. student is an accomplishment for my parents also. I am grateful for their

exceptionally strong support for all of my academic goals. I am also grateful to my wife,

Tabassum, for her love, encouragement, and cooperation. I wish to thank our seven

months old daughter, Haiba, for filling our lives with joy.

My colleague, Ken Wright, helped me to edit and improve the readability of this

dissertation. I would like to thank for his efforts.

Table of Contents

List of Figures xi

Chapter 1

Introduction and Motivation 1

1.1 Introduction .. l

1.2 Problem Statement ...2

1.3 Motivation toward Solving the Problem ..5

1.4 Objectives, Criteria, and Contributions ..7

1.4.] Objectives of the Research 7

1.4.2 Contributions of the Research 8

1.5 Overview of Dissertation ...9

Chapter 2

Background and Related Work 13

2.1 Introduction .. 13

2.2 Historical Background ... 15

2.3 An Overview of IS Development and Usage ... 18

2.3.1 High Performance Scientific and Engineering Applications 19

2.3.1.1 Research and Development 21

2.3.1.2 Usage of Instrumentation Systems 22

2.3.1.3 Example of an IS for an Integrated Parallel Programming Environment............22

2.3.2 Commercial Transaction Processing Applications 23

2.3.2.1 Research and Development 24

2.3.2.2 Usage of Instrumentation Systems 25

2.3.2.3 Example of an 18 for a Commercial Transaction Processing System25

2.3.3 Distributed Real-Time Computing Applications 27

2.3.3.1 Research and Development 28

2.3.3.2 Usage of Instrumentation Systems 29

2.3.3.3 Example of an IS for a Military Control System 31

2.4 An Overview of Computer System Modeling Techniques33

2.4.1 Markov Models 34

2.4.2 Queuing Models 17

2.4.3 Petri Nets 39

2.4.4 Simulation Modeling 41

2.4.5 Workload Characterization 41

2.5 Related Work ...42

2.5.1 IS Characterization 43

2.5.2 IS Design and Development Efforts 47

2.5.3 IS Modeling and Evaluation 50

vi

Chapter 3

Reference Instrumentation Systems 53

3.1 PICL IS ..53

3.1.1 Overview of Functionality - 53

3.1.2 Domain-Specific Requirements 55

3.2 Paradyn IS ..55

3.2.1 Overview of Functionality 56

3.2.2 Domain-Specific Requirements 57

3.3 JEWEL IS ..57

3.3.1 Overview of Functionalin 58

3.3.2 Domain-Specific Requirements - 61

Chapter 4

Instrumentation System Characterization, Design, and Synthesis63

4.1 A Taxonomy of IS Modules and Services ...64

4.1.1 Sensors ---

4.1.2 Local Instrumentation Servers 67

4.1.3 Instrumentation System Manager 68

4.1.4 Instrumentation Data Consumers 69

4.1.5 Transfer Protocols 69

4.1.6 Instrumentation System Agents 70

4.2 Design Specifications ...71

4.3 Design and Synthesis Decisions ..72

4.3.1 Selection of an Instrumentation Data Format 72

4.3.2 Sampling-Driven vs. Event-Driven Data Collection 73

4.3.3 Global Time and Event Ordering 74

4.3.4 Hard-Coded vs. Application-Specific Synthesis 76

4.4 Reflections on the Design and Synthesis of Reference 183..............................77

4.4.1 PICL IS 77

4.4.2 Paradyn IS 78

4.4.3 JEWEL IS 79

4.4.4 Overview of other 185 - - 80

Chapter 5

Instrumentation System Modeling, Management, and Workload

Characterization 82

5.1 Instrumentation System Modeling Issues ..83

5.1.1 Abstraction and Objectives of Instrumentation System Modeling 83

5.1.2 System Level Considerations 84

5.1.3 Data Flow Patterns 85

5.1.3.1 IID Arrivals 85

5.1.3.2 Bursty Arrivals 86

5.1.3.3 Correlated Arrivals 87

5.1.4 Metrics 37

vii

5.2 Instrumentation System Management Issues ...89

5.2.1 Scheduling of IS-Related Tasks - _89

5.2.2 IS Adaptability 90

5.3 Resource Occupancy Modeling ...91

5.3.1 Components of a ROCC Model 93

5.3.1.1 Resources 93

5.3.1.2 Requests 94

5.3.1.3 Management Policies 95

5.3.1.4 Interacting Workloads 95

5.3.2 Characterization of the Queuing Network - 96

5.3.3 Dealing with Concurrence 96

5.4 Workload Characterization ..98

5.5 Results: Modeling and Management of Reference 18599

5.5.1 PICL IS _- 100

5.5.1.1 IS Modeling Issues 100

5.5.1.2 IS Management Issues 101

5.5.1.3 IS Model 101

5.5.1.4 Workload Characterization 102

5.5.1.5 Performance Metrics 103

5.5.2 Paradyn IS 104

5.5.2.1 IS Modeling Issues 104

5.5.2.2 IS Management Issues 106

5.5.2.3 IS Model 107

5.5.2.4 Workload Characterization 109

5.5.2.4.] Process Model 109

5.5.2.4.2 Distribution of Resource Occupancy Requests 111

55.2.5 Model Pararneterization and Validation 112

5.5.2.6 Performance Metrics 114

5.5.3 JEWEL IS 115

5.5.3.1 18 Modeling Issues 115

5.5.3.2 18 Management Issues 116

5.5.3.3 IS Model 119

5.5.3.4 Workload Characterization 120

5.5.3.5 Model Pararneterization 125

5.5.3.6 Performance Metrics 125

Chapter 6

Instrumentation System Evaluation 129

6.] Evaluating a System Model ... 129

6.2 Evaluation of the PICL IS °. ... 131

6.2.1 Analytic Calculations 131

6.2.1.1 Definitions and Preliminary Results 131

6.2.1.2 Comparison of the Management Policies 137

6.2.1.3 Summary of 18 Management Policies 140

6.2.2 Simulation-Based Experiments 141

6.2.2.1 Experimental Setup 141

6.2.2.2 Principal Component Analysis 141

6.2.2.3 Investigation of Management Policies 143

6.2.3 Feedback to the Developers 145

viii

6.3 Evaluation of the Paradyn IS ... 146

6.3.1 Analytic Calculations . 146

6.3.1.1 The NOW Architecture 147

6.3.1.2 The SMP Architecture 150

6.3.1.3 The MPP Architecture 151

6.3.1.4 Summary of Analytic Calculations for Paradyn IS 153

6.3.2 Simulation-Based Evaluation 155

6.3.2.1 Experimental Setup 155

6.3.2.2 Principal Component Analysis 157

6.3.2.3 Investigation of “what-if” Questions 160

6.3.3 Feedback to the.Developers 171

6.3.4 Experimental Validation - 172

6.3.4.1 Experimental Setup 172

6.3.4.2 Evaluation 173

6.4 Evaluation of the JEWEL IS .. 175

6.4.1 Analytic Calculations 176

6.4.1.1 Calculation of IS-Related Metrics 176

6.4.1.2 Summary of Analytic Results 177

6.4.2 Simulation-Based Evaluation....... 178

6.4.2.1 Experimental Design 178

6.4.2.2 Principal Component Analysis 179

6.4.2.3 Investigation of “what-if" Questions 180

6.4.3 Feedback to the Developers 190

6.4.4 Experimental Validation 191

6.4.4.1 Experimental Setup 191

6.4.4.2 Evaluation 191

6.5 Summary of IS Evaluation Results and Discussion of Methodology 192

6.5.1 Summary 193

6.5.2 Discussion 193

Chapter 7

Deliverables of the Research 197

7.1 IS Evaluation Methodology ... 198

7.2 The ROCC Simulator ... 199

7.3 The Vista IS ..200

7.3.1 Overview of Vista IS 201

7.3.2 Domain-Specific Requirements of the Vista IS 203

7.3.3 Design of the Vista IS 203

7.3.4 Vista IS Modeling and Evaluation 205

7.3.4.1 18 Modeling Issues 206

7.3.4.2 18 Management Issues 206

7.3.4.3 18 Model 207

7.3.4.4 Workload Characterization 207

7.3.4.5 Performance Metrics 207

7.3.4.6 18 Evaluation 208

7.3.4.7 Summary 213

ix

Chapter 8

Conclusions, Contributions, and Future Work 215

8.1 Contributions..215

8.1.1 A Taxonomy for 183 216

8.1.2 The ROCC Modeling Technique - 716

8.1.3 Modeling and Evaluation of Real 185 217

8.1.4 IS Management Policies 217

8.2 Future Work ..218

8.2.1 Design and Evaluation of 18$ for Emerging Applications 219

8.2.1.1 Distributed Real-Tune Adaptive Control Systems 219

8.2.1.2 Commercial Transaction Processing Systems 220

8.2.1.3 Distributed Embedded Systems 221

8.2.2 IS Testing 222

8.2.2.1 Models for IS Testing 222

8.2.2.2 Synthetic Workload Generation- 223

8.2.3 IS Development 225

8.2.3.1 Plug-and-Play IS Modules 226

8.2.3.2 Configurable IS Kernels - 226

8.2.3.3 IS Interfaces 226

8.2.4 Resource Management Using ROCC Modeling Technique 227

8.3 Concluding Remarks..228

Bibligoraphy 229

Figure 2-1.

Figure 2-2.

Figure 2-3.

Figure 2-4.

Figure 2-5.

Figure 2-6.

Figure 2—7.

Figure 2-8.

Figure 2-9.

Figure 3-1.

Figure 3-2.

Figure 3-3.

Figure 3-4.

Figure 3-5.

Figure 3-6.

Figure 4-1.

Figure 4-2.

Figure 5-1.

Figure 5-2.

Figure 5-3.

Figure 5-4.

Figure 5-5.

Figure 5-6.

Figure 5-7.

Figure 5-8.

Figure 5-9.

List of Figures

Various stages of design and usage of a typical general-purpose

instrumentation system. ... 14

ParAide integrated tool environment for Intel Paragon [165]24

AT&T’s Signal Operation Platforms-Provisioning (SOP-P)

architecture for network management and operations support[13].27

Aegis weapon system based on HiPer-D shipboard computing

system [79,221]. ...32

Phases of an analytical study of a parallel system.34

Markov Chain representation of the system-program behavior.36

Ingredients of a basic queuing model. ...38

Example of a Petri net..40

Universal Measurement Architecture (UMA) layers and interfaces..........48

Overview of PICL IS functionality. ...54

Example of a PICL trace file..55

An overview of the Paradyn IS [136]. ...57

Modules of JEWEL measurement and visualization system.59

Architecture of the JEWEL IS to support a measurement-based

experiment in a distributed, heterogeneous system.60

Overview of JEWEL IS functionality for adaptive control of a video

conferencing application. ...61

Two levels of a structured 18 development approach.................................64

Components of a typical instrumentation system supporting an

integrated tool environment. ..66

IID arrivals at an IS buffer..86

Bursty arrivals at an IS buffer. ...86

An example of a correlated pattern of instrumentation data arrivals

at an LIS. ..88

A generic model of an adaptive controller for managing an IS.91

A Resource OCCupancy (ROCC) model consisting of shared

resources, occupancy requests, management policies, and interacting

workloads. ..92

Model for a concurrent program instrumentation facility. 102

Histogram of inter-arrival times for PICL trace records at a

particular nCUBE-Z node. ... 103

A model for the Paradyn IS with considerations of overall,

system-level details. The distributed system consists of P nodes

and each node may have up to n instrumented application processes. .105

TWO policies for scheduling data collection and forwarding:

(a) collect-and-forward (CF) and (b) batch-and-forward (BF). 106

Figure 5-10.

Figure 5-11.

Figure 5-12.

Figure 5-13.

Figure 5-14.

Figure 5-15.

Figure 5-16.

Figure 5-17.

Figure 5-18.

Figure 5-19.

Figure 5-20.

Figure 6-1.

Figure 6—2.

Figure 6-3.

Figure 6-4.

Figure 6-5.

Figure 6-6.

Two configurations for data forwarding for an MPP implementation

of the Paradyn IS: (a) direct forwarding and (b) binary tree

forwarding. ... 107

The resource occupancy model for the Paradyn IS with (a) local

and (b) global levels of detail... 108

Detailed process behavior model in an environment using an

instrumentation system. ... 109

A process model based on alternating computation and

communication states of two types of interacting workloads. 110

The ROCC simulation model corresponding to the alternating

process model, shown in Figure 5-13. ... 111

Histograms and theoretical pdfs of the lengths of (a) CPU and

(b) network occupancy requests from the application process.

QQ plots represent the closest theoretical distributions. 113

Resource occupancy model for the video application with real-time

adaptive control and instrumentation. .. 120

Characterization of the server process of the application. (a) Process

behavior and (b) ROCC model of the server and other interacting

processes. ... 122

Histograms and theoretical probability distribution function for CPU,

network, and I/O occupancy time for frame input, frame display,

frame compression, and frame multicast states of the server process. 123

Characterization of a client process. (a) Behavior of a client process

and (b) ROCC model for the client and Jewel sensor and Visualizer

processes that interact with it. .. 124

Histograms and theoretical probability distribution function for CPU

and network occupancy times for (a) frame receive and (b) frame

uncompress states of a client process... 125

Arrivals of trace records at a local buffer in the concurrent system. 132

Regenerative process of buffer fillings and flushings. 136

Comparison of trace stopping times for the FOF and FAOF policies. Trace

stopping time is in microseconds for three arrival rates,

(a) a1=0.00006 and (b) a2=0.007. .. 144

Comparison of buffer flushing frequencies of the POP and FAOF

policies. Buffer flushing frequencies are given for three arrival rates,

(a) a1=0.00006 and (b) a2=0.007. .. 144

Analytic calculations of the effects of varying number of nodes and

sampling periods on metrics with respect to CF and BF data

forwarding policies (logarithmic horizontal scale in (b)). 149

Analytical calculations of the effects of multiple Paradyn daemons on

two metrics (number of nodes = 16, number of application

processes = 32, BF policy). 18 CPU utilization represents the

combined CPU utilization due to Paradyn daemons and the main

Paradyn process. .. 151

Figure 6-7.

Figure 6-8.

Figure 6-9.

Figure 6-10.

Figure 6-11.

Figure 6-12.

Figure 6-13.

Figure 6-14.

Figure 6-15.

Figure 6-16.

Figure 6-17.

Figure 6-18.

Figure 6-19.

Figure 6—20.

Figure 6-21.

Figure 6-22.

Analytical calculations of the effects of varying number of nodes with

respect to direct and tree forwarding policies. (sampling period = 40

msec, BF policy, logarithmic horizontal scale) .. 153

Results of principal component analysis of four factors and their

combinations for the NOW system] ...58

Results of PCA for (a) SMP and (b) MPP architectures for four

factors and their combinations. .. 160

Effects of varying number of system nodes on the metrics with

respect to the CF and BF policies (sampling period = 40 msec). 161

Effects of varying the sampling periods on the metrics with respect

to the CF and BF data forwarding policies (number of nodes = 8,

contention-free network). ... 162

Effects of varying the size of batch of samples to be forwarded from

Paradyn daemon to the main Paradyn process on 18 performance

metrics (number of nodes = 8, contention-free network). 164

"Effects of multiple Paradyn daemons on two metrics (number of

nodes = 16, application processes = 32, BF policy, duration of

simulation = 100 sec, logarithmic horizontal scale).165

Effects of multiple Paradyn daemons on the metrics with respect to

CF and BF data forwarding policies (sampling period = 40 msec,

number of nodes = 16, BF policy, duration of simulation = 100 sec)...... 167

Effects of varying sampling periods with respect to direct or tree

forwarding on the 18 performance metrics (number of nodes = 256,

BF policy, logarithmic horizontal scale). ... 168

Effects of varying frequency of barrier operations (number of

nodes = 256, sampling period = 40 msec, BF policy, logarithmic

scales for barrier periods)... 170

Measurement-based experiment setup for Paradyn IS on an SP—2. 173

Comparison of CPU overhead measurements under the CF and BF

policies using two sampling period values for (a) Paradyn daemon

and (b) main Paradyn process. ... 174

Paradyn IS testing results related to (a) Paradyn daemon and

(b) main Paradyn process. .. 175

Results of principal component analysis of four factors and their

combinations for the metrics of interest for JEWEL 18 case study. 180

QoS and IS metrics for variable ring buffer polling periods under the

CF and BF policies of forwarding instrumentation data to the

JEWEL collector (number of nodes = 8, rings buffer size = 4000,

simulation time = 100 sec, logarithmic scale for ring buffer sampling

period). ... 182

IS metrics for variable ring buffer sizes under the CF and BF

policies of forwarding instrumentation data to the JEWEL collector

(ring buffer sampling period = 1000 msec, number of nodes = 6,

simulation time = 100 sec, logarithmic horizontal scale). 183

xiii

Figure 6—23.

Figure 6-24.

Figure s25.

Figure 6—26.

Figure 7-1.

Figure 7-2.

Figure 7-3.

Figure 7-4.

Figure 7-5.

Figure 7-6.

Figure 7-7.

Figure 7-8.

Figure 7-9.

Figure 8-1.

QoS and IS metrics for variable controller sampling periods under

the BF policy of forwarding instrumentation data to the JEWEL

collector (number of nodes = 8, ring buffer size = 4000, simulation

time = 100 sec, logarithmic scale for sampling period). 185

QoS and IS metrics for variable initial ring buffer polling periods

using static and dynamic adaptation policies under centralized and

distributed scheduling (number of nodes = 8, controller sampling

period = 1 msec, ring buffer size = 4000, BF policy, simulation

time = 100 sec, logarithmic scale for ring buffer polling period). 187

Performance of the adaptive control system using the SPP and DPP

adaptation policies under (a) centralized scheduling and

(b) distributed scheduling (number of nodes = 8, ring buffer polling

period = 1 msec, controller sampling period = 1 msec, simulation

time = 1 sec)... 189

Comparison of JEWEL sensor CPU overhead measurements under

the CF and BF policy using two polling period values. (total

measurement time = 100 sec) .. 192

Design of a ROCC simulator using the task library.201

Overview of Vista 18 functionality to support data collection needs

of an integrated tool environment for testing distributed, real-time

systems. ..202

Abstract and base classes in the Vista framework.204

Tool development using Vista framework and class library.....................205

Models for the 8150 and MISO configurations of the Vista ISM.207

Comparison between the SISO and MISO ISMs in terms of average

data processing latencies and input buffer lengths...................................209

Frequency distribution of two arrival processes to the Vista ISM

from (a) communication-intensive and (b) compute-intensive

master/slave PVM programs. ...211

Frequency distribution of the service processes for the

communication-intensive program at the Vista ISM using (a) 8180

and (b) MISO configurations. ..212

Frequency distribution of the service processes for the

compute-intensive example program at the Vista ISM using

(a) $180 and (b) MISO configurations. ...212

Approach adopted for workload characterization and testing of an

instrumentation system. ...225

xiv

Chapter 1

Introduction and Motivation

1.1 Introduction

Parallel and distributed computing is a cost-effective means of achieving high

performance. A number of challenging scientific and engineering problems require an

amount of computation that cannot be performed on sequential computing systems within

a reasonable amount of time; these problems benefit from the high performance of parallel

and distributed systems [40,226]. Use of parallel and distributed systems is not restricted

to solving scientific and engineering problems; these systems are being used for

multidisciplinary applications, such as those found in commercial transaction processing

systems, multimedia systems, real-time systems, and embedded control systems.

Despite the potential for high performance, it is not trivial to achieve such high

performance simply by executing an application program on a concurrent (parallel or

distributed) system [57]. Measurement-based evaluation of an application can help users

identify and remove performance bottlenecks; thus improving its performance. In addition

to the so called grand challenge problems in science and engineering [70], measurement-

based evaluation is being used for performance modeling and prediction [17,37], program

debugging [8,25,52,90,]05], scientific visualization [20,22,28,29,75,110,135,209], real-

time application steering [15,65,71,111], testing of distributed real-time control systems

[79], resource management for real-time systems [132], and administration of enterprise-

wide transaction processing systems [13]. Measurement-based techniques involve

collecting runtime information from a system and using this information to serve diverse

needs such as system analysis, visualization, and control by using appropriate software

tools. A common denominator among these tools is the need for collecting runtime

information from the target system.

Evaluation and/or control of parallel and distributed systems is considered a difficult

problem due to complex nature of the interactions among system components. In order to

collect runtime information from a concurrent system, software modules are inserted into

the target system or system under test (SUT). These modules execute concurrently with

the target system and require runtime management of their operation. Therefore, insertion

of instrumentation to a concurrent target system often increases its complexity. In this

dissertation, we use the term instrumentation system (IS) to describe modules and services

for collecting, managing, forwarding, processing, consuming, and reacting to runtime

information in a concurrent system. Design, modeling, management, and evaluation of

instrumentation systems is the primary focus of this research.

1.2 Problem Statement

It is a well-known fact that inserting instrumentation to obtain measurements from a

system can adversely affect the behavior of the target system. Several terms are commonly

used to describe this phenomenon, such as intrusion, perturbation, or pmbe-efi‘ect of

instrumentation. The amount of intrusion is believed to increase with the amount of

information extracted from a program; thus the problem of intrusion is considered

analogous to the Heisenberg problem after the physicist who demonstrated that observing

a phenomenon changes its nature [224]. Since measurement-based tools for parallel or

distributed systems rely on runtime observations, the problem cannot be solved by

reducing or eliminating the instrumentation; it has to be solved by minimizing intrusion

without compromising the observability of the target system. The notion of observability

comes from Systems Theory, which relates the design of a system to its other desirable

characteristics, such as controllability and testability [27,175,180,232]. Design, modeling,

management, and evaluation of instrumentation systems to minimize their overhead and

intrusion to the target system is the primary problem that we have addressed in this

dissertation.

There are no universal measures to determine the amount of intrusion due to

instrumentation. In the case of conventional uniprocessor computing systems, intrusion

can generally be measured as the amount of excess time to execute instrumentation code

inserted in the actual application program. However, in the case of a parallel or distributed

system, intrusion becomes a compounded problem. Correctness and performance of an

application executing on a parallel or distributed system relies on message-passing and

synchronization events that must occur in a specific order. The effect of any delay or

deadlock due to IS tasks on one or multiple nodes can potentially cascade to other nodes,

which may adversely impact the application behavior in an unpredictable manner. In fact,

it is not practical to define a universal measure that quantitatively determines the amount

of intrusion relevant in all cases. A performance study based on a model of the

instrumentation system and its interactions with the target system can make the problem

more manageable by allowing the system analyst to focus on the interesting behavior at a

desired level of detail. Therefore, we develop models for instrumentation systems to

determine their intrusion in the context of their domain-specific usage and requirements.

In addition to addressing the domain-specific requirements of the target system and

application, a particular design of an instrumentation system may contribute to its

intrusion and overhead. The design of a parallel or distributed instrumentation system is

not restricted to merely interconnecting software modules to collect, buffer, and/or

consume the runtime information. It also includes the development of one or more

management policies to schedule IS-related tasks, configure the IS to allow interactions

among its modules as needed, and maintain a steady flow of runtime information to the

tools or applications that may need to consume this information. IS management and

configuration policies have to be selected on the basis of their impact on intrusion and

overhead to the actual application. Empirical comparison among possible 18 management

options may be canied out at an early stage of development but is not guaranteed to be

reliable or accurate. This research shows the use of IS models and their (analytical or

simulation-based) evaluation for comparison among management policies in a rigorous

manner and guidance to system developers to choose a policy that incurs minimum

intrusion.

Despite its intrusion and complex interactions with the target system, an instrumentation

system is often developed in an ad hoc fashion, without considering the impact of

intrusion. In a favorable case, the overhead due to an IS may be restricted to degrading

performance of instrumented applications (in terms of their execution time) from 10% to

more than 50%, according to various measurement-based studies [71,134]. Unfortunately,

the IS can perturb the behavior of the application [88,125,229], and data collected from

such experiments may lead the users to incorrect conclusions. The user may be unaware of

the impact of the perturbation resulting from contention for computing resources among

application and instrumentation system processes.

Problems related to intrusion of an IS on the target system and to dynamic management of

shared system resources are the main issues that motivate the research presented in this

dissertation. Specific problems and issues addressed in this dissertation are summarized in

the following thesis statement.

Thesis Statement: Computer system performance modeling and evaluation techniques

may be applied in a novel mannerfor design and runtime management ofinstrumentation

systems (ISs). In particular; traditional. computer system modeling techniques can be

refined to facilitates the IS modeling efi’ort and capture the inter-dependences ofdifi'erent

types of interacting workloads often found in real systems. In addition, modeling-based

evaluation is usefid for the developers to make appropriate choices from a set of

alternative IS configurations and potential management policies.

In the following section, we discuss the motivation for adopting a modeling-based

approach for designing and evaluating an IS.

1.3 Motivation toward Solving the Problem

Runtime measurements are used by many multidisciplinary applications of parallel and

distributed computing systems. Despite differences in how those application domains use

measurement-based information, a number of features, requirements, services, and design

principles of the underlying IS are common. Although it is beneficial to recognize the

commonalities among 18s for multidisciplinary parallel and distributed applications, no

such effort aimed at unifying the design and evaluation of 185 is reported in the literature.

The following are compelling advantages of unifying the design and evaluation process

for 18s:

1. Recognition of commonalities among IS modules and services for different types of

applications enhances the understanding of domain-specific requirements and related

design issues.

2. Instead of designing a customized IS, it is possible to design a set of configurable IS

components and an infrastructure to customize them as an IS for a specific application.

3. Individual modules can be evaluated with respect to domain-specific needs for improv-

ing their design and providing the application developers with useful information about

the behavior of the IS.

4. A standard IS interface can facilitate the development of a number of measurement-

based tools and applications.

This dissertation research is motivated due to the above potential benefits of unifying the

design, evaluation, and usage of an IS for a given application. This research effort

progressed on two tracks: the first track is related to synthesizing the insights about IS

development and usage in diverse disciplines; and the second track involves original work

in design, modeling, evaluation, and management of specific 185. While the work on the

first track contributed to our unified view of an IS for any application domain, the second

track served as a “reality-check” on the insights gleaned from the first.

A number of experienced tool developers use empirical evaluation of IS design and

management policies to develop the IS. While this approach may work in simple cases, it

has a potential cost involved with it: if a performance bottleneck is discovered in an IS

during production stage, it will have to undergo time-consuming upgrades and alterations.

This issue is of growing important for commercial tool developers who are reluctant to

invest in tools for high-performance parallel and distributed systems [151]. It also

motivates the need for evaluating the system at an early stage of development, which

serves as a basis for the IS modeling proposed by this research.

Instrumentation systems used for applications in different disciplines have domain-

specific requirements and constraints. For instance, an IS that collects performance data

for a bottleneck searching tool is required to incur minimum overhead to an application

process due to sharing of system resources. On the other hand, an 18 that collects runtime

information from the sensors of a distributed real-time control system is required to

exhibit predictable behavior. Sirrrilarly, ISs used for embedded systems, pattern

recognition systems, and commercial transaction processing systems have to address other

domain-specific constraints. It is difficult to guarantee that an IS can meet the domain-

specific requirements without carrying out a detailed performance study. System models

with appropriate levels of detail can be used to analyze a system for its compliance to

domain-specific constraints, even at an early design stage.

Currently, several 185 are developed as commercial, off-the-shelf software systems that

can be used with a multitude of applications and tools [15,114]. The intrusion and

overhead of these tools are not analyzed and documented under various possible operating

conditions. The task of a tool developer using an off-the-shelf 18 becomes harder in the

absence of a performance study conducted on that IS. A performance study of an 18 can

help design test suites and benchmarks to investigate its operating characteristics.

Application and tool developers can use this information to determine the suitability of an

off-the-shelf IS for a particular application.

This research is also motivated by increasing sophistication of concurrent system software

technologies (such as multithreading [159] and microkemels [200]). An IS-related task (a

separate process or a thread) is expected to manage and regulate its use of the shared

system resources [162,163]. We model and evaluate an IS using a high-level workload

characterization technique that adequately captures the non-deterministic interactions

among IS and application tasks. We also apply established experiment design techniques

to solve these models using simulation.

1.4 Objectives, Criteria, and Contributions

This section presents the objectives of this research and a strategy to evaluate its

outcomes. These issues were considered at the time of planning and proposing this work

and are noted here to serve as background information to interpret the results and their

impact on the state-of-the-art. We also summarize the results and contributions of this

work.

1.4.1 Objectives of the Research

Four objectives of the research presented in this dissertation are:

1. To characterize instrumentation systems used in a wide range of application areas in

terms of generic data collection components and services. This enables tool developers

and users to view an 18 as a subsystem of a tool and is a prerequisite to understanding

the intrusion of an IS to the target system and evaluating it.

2. To model and evaluate several 183 for investigating their performance under different

operating conditions and intrusion to the target system. A model for an IS should be

able to capture non-deterministic interactions among 18, target system, and application

components and inter-dependences of their behavior.

3. To address the domain-specific requirements and constraints of an IS during evaluation

so that results have relevance in practice. One of the goals of the evaluation process is

to assist the investigations of “what-if” questions and scenarios regarding IS configura-

tion, behavior, and performance.

4. To provide feedback and recommendations to the developers at an early stage of tool

design and development. This feedback, regarding the 18 performance and intrusion

under alternative options for managing and configuring it, should assist the developers

in making design decisions.

These objectives represent a balance between issues of academic interest, such as 18

characterization, and issues of practical interest, such as addressing domain-specific

constraints and feedback to tool developers. In order to assess the success in meeting these

objectives, we set forth the following criteria:

- Acceptability of the approach by tool developers: We decided to apply the IS model-

ing and evaluation approach to the 183 of state-of-the-art parallel tools. On the one

hand, our objective was to provide feedback to the tool developers. On the other hand,

we wanted to put the modeling and evaluation approach into practice to determine its

effectiveness over the current ad hoc IS development approaches. Having the approach

and the results for a particular tool well-received by the deve10pers indicates the prom-

ise of this approach in practice.

0 Ability to represent complex behavior and flexibility to analyze it: The characteriza-

tion and modeling of the 18 must be able to represent the complex behavior of the IS

under realistic operating conditions, providing insight into behavior not trivial to under-

stand otherwise. Moreover, the evaluation approach should provide flexible support to

analyze the behavior.

0 Accuracy vs. early feedback: Workload characterization involves a trade-off between

accuracy of the model and early feedback to the developers. Simple, yet adequate work-

load characterization is desirable for the success and acceptability of this research. Sim-

ple workload characterization is appropriate at an early stage of system development

when extensive measurements are not available to complement this process. On the

other hand, detailed measurements result in more accurate workload characterization

and model-based evaluation. A proper balance should support the first two criteria.

We have applied these criteria throughout this research and in specific case studies.

1.4.2 Contributions of the Research

This research has made four notable contributions to the state-of-the-art in IS development

and usage. These contributions are highlighted in this subsection:

1. IS Characterization and Taxonomy: We introduced a characterization of an instru-

mentation system consisting of six building blocks: sensors and actuators, local instru-

mentation servers, instrumentation system managers, instrumentation data consumers,

transfer protocol, and instrumentation system agents. We also developed a taxonomy

for instrumentation systems in terms of their on-line or off-line usage; hard-coded or

application-specific design; and static, adaptive, or user-defined management policies

[213]. This characterization helped spawn other research efforts in the tool community

to explore the feasibility of designing a generic, extensible, and retargettable IS that

could be interfaced to heterogeneous measurement-based parallel tools.

2. Resource Occupancy Modeling: We developed a generic instrumentation system

modeling approach based on the idea of resource occupancy to incorporate non-deter-

ministic sharing of resources among different types of processes. The Resource OCCu-

pancy (ROCC) models were applied to investigate intrusion of instrumentation system

tasks to the target applications on several computer systems [214]. This modeling

approach is a trade-off between (1) the ability to rapidly model complex dependences

among IS and application processes in the absence of detailed measurements and, (2)

the accuracy of conventional computer system modeling approaches based on extensive

workload characterization [47,94].

3. Evaluation of Extant ISs: We carried out model-based evaluation of a number of

instrumentation systems. To the best of our knowledge, this is the only documented

effort in the current literature that models and evaluates several existing instrumentation

systems according to their domain-specific constraints and features.

4. IS Management Policies: During modeling and evaluation of instrumentation systems

that were at different stages of their development, we proposed several management

policies in the context of domain-specific needs of these 183. These policies were mod-

eled and evaluated; feedback to the tool developers often resulted in actual implementa-

tion of a suitable policy.

Some of these contributions are in the context of modeling and evaluation of specific ISs.

Nevertheless, we consider them as contributions to the state-of-the-art due to two reasons:

(1) although a computer system performance study may be specific to a particular system,

findings of one study are often applicable to other systems having similar characteristics;

and (2) despite differences in architectures, operating systems, and domain-specific

requirements of computer systems, runtime data collection and its intrusion is a common

issue. Therefore, the contributions of this work add to the general knowledge in the field.

In fact, this work is the first to study and optimize 183 using performance modeling.

1.5 Overview of Dissertation

In this dissertation, we address three specific areas that are of interest to developers and

users of measurement-based tools and applications: IS design, modeling, and evaluation.

Although the scope of our discussion is general, we focus on the instrumentation systems

for parallel, distributed, and real-time system tools and applications as our case studies. As

10

noted in Section 1.3, use of these case studies is essential to illustrate the applicability of

our modeling and evaluation approach to real systems.

The dissertation is organized into eight chapters. In this chapter, we presented an

introduction to the problem and issues related to IS develOpment and usage that are

addressed in this dissertation. This chapter also outlined our approach to tackle the

problem, criteria to evaluate the results based on this approach, and a summary of

contributions of this work.

Chapter 2 presents the background of this research and other efforts related to IS

development and usage. This chapter presents a historical perspective on the ISs that have

been used in different areas. We discuss important issues related to IS design,

implementation, and usage with respect to a broad range of current tools and applications.

Related work presents the IS evaluation and modeling efforts that are of interest to this

research.

Throughout this dissertation, we use three instrumentation systems as our reference

systems that we have modeled and evaluated so far. These are: PICL, Paradyn, and

JEWEL 188. Chapter 3 presents an overview of these instrumentation systems in the

context of their specific applications. PICL, Paradyn, and JEWEL 18s are considered in

the following contexts: parallel program visualization; measurement-based identification

of performance bottlenecks in parallel or distributed applications; and monitoring of

distributed applications and adaptive control of real-time systems, respectively.

Chapter 4 focuses on characterization, design, and synthesis of instrumentation systems. It

begins with a generic model and a taxonomy to describe and analyze an IS. Then we

reflect on a number of design options that are available to the developers and require

decision-making effort on their part to implement a particular IS. The generic IS model is

11

applied to the reference 185 to present their specifications and identify their components

using our taxonomy. Topics of this chapter appeared in [212], [213], and [217].

Chapter 5 presents the resource occupancy (ROCC) modeling technique in terms of

occupancy requests, shared system resources, management policies, and interacting

workloads. We address general issues related to modeling an IS and demonstrate their

relevance in the context of modeling three reference ISs. In addition to presenting models

for the reference systems, we identify objectives of modeling in each case and present a

set of metrics relevant for an IS and its specific domain of application. We introduced the

ROCC modeling technique in [214].

Models for the reference 185 are evaluated in Chapter 6. We introduce the experiment

design used in each case and setup of the simulation experiments. We use a ROCC

simulator written in CH» with task library to model concurrent processes. Whenever

feasible, we validate the simulation-based evaluation results using actual measurements.

However, in certain cases when measurements are not possible because the system is not

at prototyping stage, we use operations analysis techniques to provide back-of-the-

envelope analytic results for comparison [117]. Some of the results presented in this

chapter appeared in [211], [218], and [219].

Chapter 7 summarizes the outcome of this dissertation research in terms of three

deliverables: modeling-based evaluation of the reference 185, the ROCC simulator, and the

Vista IS. In particular, we provide design and implementation details of the ROCC

simulator and 7 Vista IS. This information is beneficial for the potential users of the

simulator and the IS to extend this dissertation research effort to other related areas. Parts

of this chapter appeared in [215] and [216].

We conclude with consideration of future directions of this work in Chapter 8. The areas

appropriate for the future extensions of this work include: design, modeling, and

12

evaluation of ISs for new applications, IS testing, adaptive control and management of ISs,

and developing configurable IS kernels.

Chapter 2

Background and Related Work

In this chapter, we present the background of IS development and usage for different types

of applications. Our primary objective is to systematically present some of the basic issues

involved in IS development and usage that motivated this research. In Section 2.1, we

introduce these issues to the reader. We present a historical background of instrumentation

systems in Section 2.2 and three examples of IS usage in Section 2.3. We present the

related work in Section 2.5, which has contributed not only to the maturity of the state-of-

the-art in IS development and usage, but also influenced the progress and direction of this

research.

A reader familiar with computer system modeling may choose to skip Section 2.4. The

sections of primary relevance to this research include 2.1 and 2.5.

2.1 Introduction

An instrumentation system (IS) is defined as a set of modules and services used for

collecting runtime information from parallel and distributed systems. This information

collected by an IS can serve various purposes, for example, evaluation of program

execution on high performance computing and communication (I-IPCC) systems [161],

monitoring of distributed real-time control systems [66,221], resource management for

real-time systems [132], and administration of enterprise-wide transaction processing

systems [13]. These, as well as other applications, may place domains-specific

requirements on the IS that directly impact its design, operation, and performance. This

dissertation is a result of research efforts that directly address the above issues related to

software 183 for multidisciplinary parallel and distributed applications.

13

14

Development of an IS can be considered as a two stage process (see Figure 2-1); the first

stage consists of IS design, software development, and testing, whereas the second stage

consists of evaluating the design and its prototype with respect to the system specifications

and requirements. The activities under the first stage are well-known software

development practices while those under the second stage are a consequence of this

research effort. Evaluation of alternatives for configuring modules, scheduling tasks, and

instituting policies for managing instrumentation tasks should occur early in IS

development. Next, testing validates the evaluation results from the first stage and

qualifies other functional and non-functional properties. Finally, the IS is built and used

for real applications. Evaluation requires a model for the IS and adequate characterization

of the workload that drives the model. During this phase, the model can be evaluated

analytically or through simulations to provide feedback to the IS developers. The model

and workload characterization also benefit testing by highlighting performance-critical

aspects identified during the IS evaluation phase.

T°°' Tool Tool
Software

epeclxflm —-’ development WW ‘—_’ deployment

deslm
by "'19 by "'00

developers users

Tool Development Stage

A

I"m Flnal spec’s

up! ac's leedback Measurements 01 the IS

IS muons —" Measurements

”Sum"; and evaluation at "‘9

of test results 97060000"

3399

IS Modeling and Evaluation Stages

Figure2-1.Veriousstagesofdesignandusageofatypicalgenerel~purpose

imtrumentationsystem.

An IS is an enabling technology for developing measurement-based tools for parallel and

distributed systems and is removed from the end-user. Tool developers can use the same IS

15

for various types of tools while hiding the implementation details from the users.

Although, the usability and extensibility of a tool is thoroughly scrutinized, the IS and its

overheads rarely receive any attention [213]. Consequently, an IS that is developed by

ignoring the modeling and evaluation stages shown in Figure 2-1, may not meet domain-

specific functional and performance specifications. Therefore, we consider the problem of

instrumentation system design, modeling, management, and evaluation in this dissertation.

2.2 Historical Background

Instrumentation and measurements are the core of every engineering and scientific

experiment. Measurements are made using suitable instruments in diverse scientific

disciplines, such as physics, chemistry, biology, agriculture, and so on. While the methods

and techniques of instrumentation and measurements may vary in different application

domains, many of the objectives, principles, problems, and solutions are similar.

Therefore, we present a unified treatment of instrumentation and measurement systems to

put their application to the field of parallel and distributed systems in proper historical

perspective.

We begin by introducing instruments and measurements in general terms, regardless of

any particular application area. Prensky and Castellucis [155] classify various types of

instruments as:

Instruments of many kinds have the common purpose of supplying information

concerning some variable quantity (sometimes called a parameter i.e., a quantity that

is experimentally varied in a series ofsteps) that is to be measured. This information is

generally obtained as a deflection of a pointer on a meter or in the form of a digital

readout, and in this general way the instrument performs an indicating function. In

many cases the instrument also provides a chart record of the instantaneous

indications, thus performing a recording function. A third important fitnction,

particularly in industrial-process situations, is accomplished when the information is

used by the instrument to control the original measured quantity.

16

Similarly, Schnell [184] characterizes the measurements and motivates the need for a

model of the system under test in the following manner:

Measurement in a general sense is the procedure of obtaining information about the

world by technical means. However; the surrounding world is extremely complex, and

it is not possible to deal with every detail. Therefore, science uses simplified

equivalents of real phenomena: it neglects unimportant aspects in order to catch the

essentialfeatures. This simplification is called modeling.

It is clear from the above excerpts that the measurements and measurement-based

experiments have strong dependences on the system under test and the model used for

representing the system. On the other hand, the characteristics of an instrument depend

only on its functionality rather than the system under test. Since we focus on

instrumentation systems in this dissertation, our discussion in this section is limited to

instruments.

A varying quantity can reliably be represented as an electrical signal as compared to other

means of representation such as mechanical. Due to remarkable advances in the

technologies necessary to build these electrical devices, the precision and accuracy of

processing these signals through electrical devices is far superior than any other means.

Therefore, the term “instrument” has become synonymous to an electrical instrument. In

case of quantities that are non-electrical, appropriate transducers are used to convert them

to an equivalent electrical signal to benefit from electrical processing.

The types of instrumentation systems can be divided into three classes in terms of the key

technologies used: electrical and electromechanical instruments, electronic instruments,

and computer-based instruments. These classes of instrumentation systems have evolved

over time and reflect our increasing capabilities to control electrons [155]. Table 2-1

provides details of instrumentation systems and techniques that each of these classes

incorporates. The evolution of these systems over time is represented by the boxes from

left to right and top to bottom. Note how technological trends dictated transitions from

17

electrical to electronic to state-of-the-art computer-based instrumentation systems.

However, it is not correct to assume that the electrical, electro-mechanical, and electronic

devices are no longer useful. In fact, all types of instrumentation systems listed in Table 2-

1 are still being used for different applications because of their specific characteristics,

such as precision, accuracy, sensitivity, applicability for a particular measurement-based

experiment, and usability. Thus, Table 2-1 represents the entire spectrum of

instrumentation systems that rely on electrical devices for measurements. Software

instrumentation, which is the focus of this dissertation, is an emerging and comparatively

less mature area among others in this spectrum. It is becoming popular due to an

increasing number of computing-based applications that benefit from runtime

measurements.

We can consider virtual and software instrumentation system as non-traditional

instrumentation systems compared to the conventional instruments listed in Table 2-1.

However, there are some similarities between the two types of instrumentation systems.

These similarities include:

1. intrusion to the actual system due to non-ideal behavior of the instrument;

2. measurement errors due to less than perfect precision and accuracy; and

3. perforrnability requirements of the instrumentation system are either relaxed or made

stringent, depending on the target system and application.

Despite these similarities, software instrumentation systems posses distinct characteristics

that cannot be found in conventional instruments. For instance, data collection at the

Operating system or application level is very flexible and user can easily manipulate the IS

to gather useful information. Additionally, a software IS can be used in a “closed-loop”

configuration where runtime information collected by the IS can be used to adaptively

control the target system. Research presented in this dissertation is focused on these two

distinctive functions of a software 185. Therefore, the term instrumentation. system refers

to the software instrumentation systems in this dissertation unless noted otherwise.

18

'Ihble 2-1. The spectrum of instrumentation systems.

Electrical and Electro-

Mechanical

Instruments Electronic Instruments Computer-Based Instruments

The basic instruments for Basic elecuonic instruments: Analog computer-based instru-

direct-current measure- . . merits:

ments: 0 Wilma drrect-current

0 DC voltmeter

0 The Ohmmeter

0 The multimeter

0 Electronic voltmeter for AC

0 Solid-state voltrneters

0 Summing amplifiers

0 Solvers for_simultaneous differ-

entral equations

0 Integrating amplifier

The basic instruments for Recording instruments: Basic digital instruments:

:‘lcms'trng-c ure- 0 Electronic graphic recording 0 Binary counters

C 3:33 0 Frequency and period counters

O ' - O -RecufiertypeA the: xeY ancedsystems . Digitalmulti

0 Dynamometer-type 0 - recorders . .
Lo c analyzers

3d“ 0 Galvanometer recorders 8‘

O any-m

ter 0 Ink and inkless recorders

0 Moving-iron-type

instruments

Instruments for comparison Cathode-ray oscilloscope—based Virtual instruments:

measurements: instruments: . Data 'sition s and

0 Potentiometer-null 0 Voltmeters bus rntglaces

instruments

0 Wheetstone bridge

0 Frequency meter

0 Waveform analyzer

0 Hardware counters and monitors ‘

0 Reconfigurable hardware instru-

mentation

0 Integration of hardware mea-

surements and software tools

Instruments for impedance

measurements:

0 Maxwell-bridge

0 Hay-bridge

0 Alternating-current null

detectors

0 Phase-sensitive detec-

tors
Special-purpose instruments:

0 Transistor testers and analyzers

0 Outlined-amplifier testers

0 Timed radio-frequency testers

0 Nuclear-radiation detectors
Software instrumentation:

OS-level profiling

Application-level monitoring

Dynamic instrumentation

Numerous tools for performance

analysis based on measurements

2.3 An Overview of 18 Development and Usage

Instrumentation systems are being used to serve the data collection needs for diverse

parallel and distributed environments, applications, and systems [188,189,190,174]. Tool

environments consisting of debugging, performance analysis, bottleneck searching,

modeling, and prediction tools rely on runtime measurements supplied by an IS [78,82].’

Multidisciplinary applications, such as administration of commercial transaction

19

processing systems [13], measurement-based testing of complex military systems [9,79],

and resource management of distributed real-time systems [132] consume the runtime

information obtained from an 18. A variety of distributed systems, such as pattern

recognition systems [99] or embedded real-time controllers [66,198] require continuous

data collection for either measuring the features of an object for its appropriate

representation or adaptively controlling a device or process, respectively.

In this section, we survey the use of an instrumentation system, as defined by this

dissertation, for three types of applications: scientific applications that execute on high

performance computing and communication (HPCC) platforms, commercial transaction

processing, and distributed real-time computing. Use of 185 in these application domains

serves the common objective of getting runtime information from the applications and

implementing management policies based on the collected information. This information

can be used for diverse purposes, including capacity planning, system administration,

system performance and workload evaluation, performance prediction, system resource

monitoring and testing, and visualization. Table 2-2 summarizes the key functions that an

IS supported in each of the three application areas and outlines related research issues.

The following subsections present the state-of-the-art with respect to the issues identified

in the table.

In the following subsections, we present research and development efforts and usage of

instrumentation systems for scientific applications, commercial transaction processing

systems, and real-time systems. We elaborate the use of [SS in these areas through

appropriate examples derived from an application areas.

2.3.1 High Performance Scientific and Engineering Applications

The “grand challenge” applications in science and engineering are distinctive due to their

need to achieve high performance [70]. Due to their requirements for high performance,

we refer to these applications as High Performance Computing and Communication

20

Table 2-2. Application areas and related issues of designing and using 155.

Distributed enterprise integra-

tion through a single point of

control

0 Monitoring of resource usage

0 Management of resources to

implement worklflow

Key Functions Supported by

Application Area IS Relevant Issues

High performance scientific 0 Performance evaluation and tun- Intrusion of data collection

and engineering applications "18 MIPS ‘0 the 3913119390“

0 Application steering behavror

. Debugging $2232? for shared system

0 Modeling and predrctron . Lack of gen 1‘ l perfor-

' Performance and data vrsualrza- mancc evaluation methodology

tron that necessitates application-

specific/user-defined lSs

Commercial transaction 0 System administration and System is required to be robust

processing systems capacity planning and fault-tolerant

System is expected to run over

an excwdingly long period of

time for a particular application

Security of various databases

needtobeensured

Real-time systems

On-line monitoring of system

health

Data logging for off-line failure

analysis

System testing with or without

fault injection

Adaptive control and steering
Scheduling of application and

18 tasks having unequal priori-

ties

OS support for real-time behav-

ror

Scheduling of periodic and ape-

riodic tasks for adaptive steering

(HPCC) applications. In practice, it is very difficult to write an application to fully utilize

the peak performance capabilities of the underlying parallel or disuibuted system

architecture. An HPCC application program usually undergoes a tedious process of

debugging, bottleneck evaluation, performance visualization, performance prediction, etc.

before it can be optimized for a particular platform. Measurement-based tools are used at

each step of this process. A number of efforts focused on the use of measurement-based

information for HPCC applications as well as the theoretical issues of presenting this

information are reported in literature (such as, [21,42,43,44,82,149,150,167,168,170,17l,

204,205,206]).

21

2.3.1.1 Research and DeveIOpment

Instrumentation systems for the tools to develop HPCC applications are designed to

collect and manage the data, which are consumed in an on-line or off-line fashion. 185 for

these HPCC applications are often developed in an ad hoc manner. Nevertheless, a number

of research efforts can be found in literature that emphasize systematic characterization of

an 18 and careful considerations of its design alternatives. Ogle, Schwan, and Snodgrass

characterize an IS in terms of a local and central monitor and present the 15505 monitor,

which is an extensible, application-specific IS [146]. Schroeder characterizes an IS in

terms of five applications that require runtime data collection: debugging and testing,

performance evaluation, correctness checking to ensure consistency with the formal

specification, security monitoring attempts to detect unauthorized accesses to system

resources, and control where monitoring is part of the target system [185].

Researchers have considered the problem of IS perturbation to HPCC applications.

Malony characterizes an 18 in terms of an Instrumentation Uncertainty Principle, which is

based on three observations [127]:

- instrumentation perturbs the system state;

- execution phenomena and instrumentation are logically coupled; and

- volume and accuracy of instrumentation are antithetical.

This perturbation may result in one or multiple of the following: loss of performance

(slowdown or direct perturbation or timing perturbation), event reorder, and parallelism

constraints. Perturbation is known to be affected by event frequency, event size,

synchronization requirements, storage limits, and communication mechanisms of IS and

application processes. Malony et a1. present time-based and event-based models to recover

accurate timing information and remove effects of instrumentation on event ordering,

respectively [125]. Performance evaluation tools, such as AIMS, use specific models to

correct the instrumentation data by compensating the effects of the perturbation to

22

represent an approximate behavior of the program [229]. There is an important distinction

between these efforts and the research presented in this dissertation; these efforts do not

consider early evaluation of an IS to reduce or eliminate the perturbation by appropriately

selecting the IS modules and configurations.

More recently, several other researchers have given special attention to the instrumentation

system overheads of their tools. Miller et a]. present measurements of overheads of the

IPS-2 tool and compare them with the overheads of a functionally similar tool, gprof

[134]. On et a]. use synthetic workloads to exercise specific features of the Falcon IS and

measure its performance [71]. Haakee, Schauser, and Scheiman develop an IS for Split-C

parallel programming language and quantitatively evaluate its profiling overhead for

several applications [74]. The management policy for the 18, called flush-on-barrier, is an

extension of our work on modeling and evaluation of the PICL IS management policies,

which will be presented in this dissertation.

2.3.1.2 Usage of Instrumentation Systems

The purpose of using an IS for HPCC applications is to supply the runtime information to

a multitude of on-line or off-line tools in the environment. These tools may include:

debuggers, visualizers, and performance analyzers. Table 2-3 summarizes various tools for

scientific and engineering HPCC applications that need an IS to perform their specific

task. Cheng provides a more extensive survey of numerous commercial and research tools

[36].

2.3.1.3 Example of an [S for an Integrated Parallel Programming Environment

In the parallel system tool environment example given in this subsection, we consider the

architecture of ParAide integrated tool environment for Intel’s Paragon system [165].

Figure 2-2 illustrates the overall architecture of this environment. Commands are sent to

the distributed instrumentation system, called Tools Application Monitor (TAM). TAM

23

Table 2-3. Tools for scientific and engineering HPCC that use an IS for runtime data collection.

Type of the

Tools tool(s) Description of the IS functions

ParAide [165] Performance See Section 2.3.1.3.

evaluation

Paradyn [136] Bottleneck iden- Paradyn uses W3 search model [] to identify performance bottlenecks in

tification programs on a CM-5 and cluster of workstations. Instrumentation is

dynamically inserted by Paradyn daemons at each node of the system, as

rweded by the search algorithm.

VIZIR [76,77] Debugging This debugger consists of an integrated set of commercial sequential

debuggers. Its IS synchronizes and controls the activities of individual

debuggers that run one of the concurrent processes. IS also collects data

from these processes to run multiple visualizations.

Falcon [71] Steering In order to steer the application during its execution. the IS plays a dual

role. Frrst collecting the desired runtime information to allow the human

user to analyze it. Then it interacts with the application processes to con-

trol their execution according to the user input, in order to enhance its

performance.

AIMS [230], Performance These tools integrate monitoring and statistical modeling techniques.

Lost Cycles modeling and Measurements are used to parameterize the model, which is subse-

Toolkit [45] prediction quently used for predicting the desired performance metric. IS performs

the basic data collection tasks.

ParaGraph [81], Performance 13 collects runtime data in the form of time-ordered truce records. These

POLKA [195] and program trace records are used to drive hard-coded (in the case of ParaGraph) or

visualization user-defined (in case of POLKA) visualizations of program’s behavior.

IS can collect performance data to graphically represent various perfor-

mance meuics to aid the visual evaluation of the program. IS can also be

configured to collect program information (program variables. objects,

arrays, lists, etc.) to visually represent the information from application

domain.

consists of a network of TAM processes arranged as a broadcast spanning tree with one

TAM process (part of the IS) at each node. This configuration allows broadcasting

monitoring requests to all nodes. Instrumentation library calls generate data that are sent

to the event trace servers, which perform post-processing tasks andwrite the data to a file

or send them directly to an analysis tool. To minimize perturbation, trace records are

stored locally in a trace buffer that is periodically flushed to the local trace server.

2.3.2 Commercial Transaction Processing Applications

Transaction processing systems consist of sources of data and services distributed

throughout an enterprise with a consistent set of management policies across the system.

These systems usually operate under a client-server paradigm using distributed databases

24

ToolsAppl.

MonitorAM)

.
i ‘ Applications El

1: User Peri

I -IDebugger Proc Libs I

RFC r. RPC I‘

IIF IIF ‘

03 ? User Perl.

mI" , I...ll

Application

Performance

Visualization

ParAide

Toolset

 I, ., Event Trace I; '

Trace FMS) I Servet(s) T! -
. ,3 .

; _—_._.’.a l

'_j:

Figure 2-2. ParAide integrated tool environment for Intel Paragon [165].

and services [2]. In such systems, the data and control transfer mechanisms play an

important role in integrating and managing the enterprise-wide resources. For such

systems, it is often desirable to maintain a single point of control that can replicate a set of

operations across a large number of data sources to allow system administration.

Instrumentation data are collected to analyze the long-term trends of system resource

usage for capacity planning purposes as well as tuning the performance of individual

applications. For an IS in this application domain, it is necessary to guarantee that the

security of the databases will be maintained. Additionally, ISs need to conform to well-

known standards, not only to be useful for a large number of client-server systems but also

to be able to interact with a number of heterogeneous information systems within an

enterprise.

2.3.2.1 Research and Development

There is an important difference between the ISs for tools that support HPCC applications

and 185 for transaction processing systems. The 18s for transaction processing systems, as

well as those for several other types of systems, are developed as a part of the system itself

25

to support important management tasks. The use of 18$ for HPCC applications is often

optional to support performance evaluation and tuning tasks. Therefore, the research

efforts related to the 18$ for transaction processing systems generally focus on the issues

concerning the software development process, fault-tolerance, portability, and

extensibility.

2.3.2.2 Usage of Instrumentation Systems

Transaction processing is one of the most important commercial applications of

distributed computing. Transaction processing systems consist of a large number of

sources of data and services distributed throughout some geographical region with a

consistent set of management policies across the system. The large size of the distributed

system and the difficulty inherent in managing it with some acceptable quality of service

makes it a complex system. In such systems, the data and control flow mechanisms play an

important role in integrating and managing the enterprise-wide distributed resources. An

IS helps establish a continuous flow of information to a central or distributed points of

control to manage the entire system. Table 2-4 lists only a few of several commercially

available tools that monitor transaction processing systems using an instrumentation

system.

2.3.2.3 Example of an 18 for a Commercial TI'ansaction Processing System

In the example transaction processing system given in this subsection, we consider a

network management and operation support (NMOS) system used for providing

commercial telecommunication services. Telecommunication NMOS systems, such as

those used for AT&Ts World Wide Intelligent Network, are integrated systems composed

of subsystems, each of which may be an NMOS system itself or a generic component.

Development of an NMOS system is a multi-phased effort with parts of the system in

production while other parts are being developed or deployed. Figure 2-3 depicts the

architecture of a typical NMOS system [13]. In this example, the IS-provided services

26

Table 24. Tools for transaction processing systems with IS support.

Representative

Tool Functionality Description of Key IS Functions

AT&T’s NMOS Telecomm. See Section 2.3.2.3.

network

management

A+OpenWatch Network The instrumentation system uses a CMG standard called Universal

management Measurement Architecture (UMA) to model the instrumentation

system for both its development and usage. It allows the user to

collect application-specific data from Unix-based. enterprise-wide

distributed client-server systems. This information can be used

with several A+ tools developed by Amdahl. A+OpenWatch is one

such tool used for distributed threshold monitoring to allow

exception-based network management.

Reference: http://www.amdahl.comldoclproducts/oeslpm.oesl

perfhomehtml

NonStop Enterprise Instrumentation system collects data for monitoring enterprise

TUXEDO transaction transactions. This facility is available for heterogeneous Unix-

processing based transaction processing systems.

monrtonng Reference: http://wwwsandemcom/II‘IFOCI'RII-I'IMU

PROD_DES/NSTXDOPD.html

Sybase SQL Workload Data collected through instrumentation system is used workload

Server II adaptability and adaptability through optimized usage of memory resources. This

tunability of data is also used for tuning the performance of individual

applications applications also. This facility is available on multiple platforms,

ranging from PCs to HPC systems.

Reference: http://www.sybase.coml0fferings/System11/

sqlsrv11.html

DataI-Iub System The tool supports management of the system from a central point

management of control and performance analysis using DATABASE 2 monitor.

Data collected by the instrumentation system is useful for

supporting both centralized system management decisions as well

as tuning the performance of various transaction processing

applications. This facility is available for 08/2 and Unix-based

workstations using multiple databases.

Reference: http://wwwsoftwareibmcom/data/del

b41amgmt.htm1

Encina Administrative This tool is used by IBM’s AIX-based networked computing

services environments. Encina monitor uses several AIX features to collect

the data and uses it for system administrative services.

Reference: http://www.austin.ibm.comlsoftwarelencina.html

include: transaction monitoring, decision support, data streaming, communication, alarm,

audit, resource management, security, and visualization.

27

Front-end Decision support system

"9 m :— Data stream established through the Is I

support Audit

W519i“ | repository
I

I j l L
l

| roadcas Not I

l Agent 8 I element I

I WP“ I

r' — — - — -' l

I Transaction
I

' processing
‘___1' |

New ~—
I

l model pp] . Broadcast Net

| or element |

"p" B II
ll.

1 5"" l
' Enor Broadcast

l broadcast l1. ——e~ i

v a) all users

'
Net i

I Other Traffic data WM0 l

| systems V Agent I |

'
I

I. ______________________ .I

Figure 2-3. AT&T’s Signal Operation Platforms-Provisioning (SOP-P) architecture for

network management and operations support[13].

2.3.3 Distributed Real-Time Computing Applications

Real-time systems usually interact with real world phenomena that involve time. These

systems usually follow a stimulus-response paradigm where the real-time system needs to

respond to an external stimulus within a predetermined deadline for correct overall

operation. Distributed real-time systems can be considered a special case of distributed

systems that are becoming popular due to the increasing use and availability of distributed

computing hardware and software. Unlike HPCC applications, distributed real-time

systems are specialized and often embedded. Therefore, the issues related to this

application domain are more constrained and better understood. Often, distributed real-

time systems are designed as embedded computers in control systems.

28

Distributed real-time applications also rely on runtime information collected from the

distributed real-time tasks. In case of real-time systems, correct real-time behavior of the

system is of critical importance in most of the applications instead of the high

performance as in case of HPCC systems. If some of the tasks miss their deadlines, it may

be of critical importance to either immediately report this information to the system

operator or else log this information in a database for a detailed off-line analysis. Such

runtime information is perhaps the only reliable source for analyzing failures in highly

complex and equally critical real-time subsystems.

2.3.3.1 Research and Development

Distributed real-time systems present a number of interesting as well as non-trivial

research issues. For instance, design specification, static analysis, scheduling, fault-

tolerance, operating systems, and software tools are some of the active areas of research.

From the perspective of instrumentation system development and usage, however, our

scope of real-time applications is limited. We consider applications that require runtime

data collection for performing real-time tasks. Some of the example include: dynamic

resource management, distributed real-time control systems, algorithmic steering of

application programs, correctness checking, and monitoring of system health.

Instrumentation can be inserted into a distributed, real-time operating system for dynamic

resource management. Mercer et a1. apply this technique for dynamic resource

management using RT-Mach operating system [132]. Adaptive control of real-time

systems is commonly applied in the area of embedded systems. Typical examples of such

systems include military combat systems, safety-critical systems, and aircraft and

automobile control subsystems. Welch, Masters, and Harrison explore a path-based

paradigm for developing a control system software architecture for large-scale, ship-

board, distributed, real-time control systems [221]. Gergeleit et al. describe the use of

JEWEL 18 for a distributed, real-time control system [66].

29

Reed et al. identify a number of national challenge applications that exhibit irregular

structure, data-dependent execution behavior, time-varying resource demand [163]. These

applications can benefit from real-time adaptive control of their dynamic behavior. For

instance, parallel file system management policies that take the application input/output

access patterns into account can increase performance by more than an order of magnitude

[92]. Schwan et al. distinguish between two types of adaptive control techniques at an

application level: algorithmic steering and interactive steering [50]. Algorithmic steering

controls the execution behavior of an application by implementing an algorithm and dose

not require the human user to be a part of the closed-loop control system. Interactive

steering is based on the explicit user intervention to modify the application behavior.

Applying interactive steering approaches and tools, a user can modify an executing

application parameters in real-time to improve its performance (i.e., steer it), based on

graphical feedback of system states and application behavior [111].

2.3.3.2 Usage of Instrumentation Systems

Distributed systems are becoming more common in safety-critical on-board control

systems in the transportation industry, e.g., in aircraft and automobiles. Some systems are

faced with real-time constraints. Whereas a missed deadline in a real-time, multimedia

system such as on-line video conferencing can result in poor quality voice or video, in a

safety-critical system, it could lead to unpredictable, catastrophic behavior. On-board

distributed systems used in mission-critical applications in the military often involve

highly stringent real-time requirements. Many subsystems may interact to accomplish a

series of tasks on time, requiring finely-tuned local and global resource management.

Table 2-5 lists some of the tools for real-time systems that rely on runtime data collection.

While most of the existing tools use runtime data to test, analyze, and visualize the real-

time subsystem under study, the emerging applications require additional sophistication

from these tools by using this data to adaptively and dynamically control that system.

System resources are dynamically scheduled among various tasks based on the state of the

30

system determined from the information collected by the instrumentation system.

Scheduling of resources for at least one system node is a well-understood problem and the

instrumentation system only provides a bi-directional link between the system (actually

sensors and actuators) and the controller (real-time system). It is still a challenging task to

implement the controller as a distributed real-time system rather than centralized to make

it robust and fail-safe.

Table 2-5. Tools for real-time systems with IS support.

Representative

Tool Functionality Description of Key IS Functions

SPI [15] Correctness

checking

Scalable Parallel Instrumentation (SP1) is Honeywell's real-time

18 for testing and correctness checking on heterogeneous

computing systems. SP1 supports user-defined application-specific

instrumentation development environment, which is based on an

event-action model and event specification language.

Reference: http://www.sac.honeywell.coml

PGRT [174] Testing and

visualization

Instrumentation system collects runtime information (user-

specifred trace records as well as pre-defrned events) from a

heterogeneous, distributed real-time embedded system. 18

supports an integrated environment consisting of off-the-shelf

visualization and analysis tools. Data collected by the 18 during

testing of an embedded ‘system is used for both on-line and off-line

analyses.

Reference: http'J/web.egr.msu.eduNISTAngrtlpgrt.html

JEWEL [114] On-line

monitoring

JEWEL is a commercial, off-the-shelf software product from The

German National Research Center for Computer Science. It has

been used to setup and control user-defined measurement

experiments for embedded real-time platforms, such as Ultrix 4.2

on a MIPS processor, Amoeba and VxWorks on FORCE VME-

bus M68030 board. and MACH 3.0 on an i386 single and

multiprocessor.

Reference: http://bomeo.gmd.de:80/RS/PaperleEWEU

JEWELhtml

DIRECT [66] Adaptive

steering

Runtime information collected by the instrumentation system is

fed to a dynamic scheduler. Scheduler uses this information to

adaptively control the real-time system to make it responsive to the

variation of important system variables.

Reference: httpdlbomeo.gmd.de:80lRS/Papersldirect/direct.html

RMON [l 32] Dynamic

scheduling

RMON monitors the resource usage for distributed multimedia

systems running RT-Mach. Information collected by the

instrumentation system is used for adaptively managing the system

resources through realotime features of the operating system.

Reference: http://www.cs.cmu.edulafslcs.cmu.edu/userlcwml

www/publications.htrnl

Commercial off-

the-shelf tools Military control

systems See Section 2.3.3.3.

31

2.3.3.3 Example of an IS for a Military Control System

In the military control system example given in this subsection, we consider the shipboard

computing system envisioned by the HiPer-D Program (High Performance Distributed

computing Program). The program is conducted jointly by the Department of Defense

Advanced Research Projects Agency (ARPA) and the Aegis Shipbuilding Program. It

consists of simultaneous top-down engineering studies and large-scale experiments

involving mission-critical systems using off-the-shelf computing products. The

architecture of a HiPer-D distributed, embedded control system for the Aegis weapon

system is shown in Figure 2-4 [79]. It is based on a generic control system architecture.

Sensors, e.g., satellites and radar and sonar units, provide sensor data to be processed by

the sense elements of the system (shown on the left side of the figure), which include radar

systems, identification systems, the electronic sensing system, navigation systems, and

sonar systems. The sense elements provide data to the command and decision elements,

which evaluate the data and decide what actions should be taken and when. Actions are

carried out by various act elements (shown on the right side of the figure), such as gun

weapon systems, fire control systems, and launch systems. Act elements schedule

actuators and other resources to perform actions and monitor progress of the action.

Compute-intensive functions are handled by a mesh-based parallel computing system,

which is connected with the rest of the control system through various subnetworks.

In each of the above three areas, 185 impact the behavior of the actual system. However,

this impact is not easy to understand due to the following reasons:

1. there is no simple model that can characterize the measurement system and exactly

account for the IS intrusion;

2. an 18 usually intrudes the SUT behavior in a non-deterministic manner, which makes it

even harder to account for the intrusion; and

3. an 18 is designed to provide the measurements regarding the states and behavior of the

SUT and not to measure its own overhead.

32

‘ AN/SPY-l o X Al, Tactical

signal control data Aegis

processor large screen

A displays

Surface

RADAR

system

Display TOC

workstations server

CEP
LAMPS

v; ' systems

A

Identification “49° 20'“de

system LAN

: AIEWS

Electronic

sensing

system GUN

A mesh-based high weapon

performance parallel system

Navigation

systems

Fire control

and

illumination

LAMPS

systems

Vertical

lamching

SONAR
system

systems

Undennater

fire control

Cuelng W9”

sensor

9 Advanced

TonllghAHAWK

Combat °°"”°'
DF » system system

‘ Advanced TWCS LAN

Figure 2-4. Aegis weapon system based on HiPebD shipboard computing system [79,221].

Therefore, unless an IS is designed with proper evaluation of its overhead and intrusion, it

can cause undesirable problems that may range from poor performance to catastrophic

failures depending on the type of the target application. Application of the design,

modeling, and evaluation methodology presented in this dissertation can help the IS

developers to avoid such problems.

33

2.4 An Overview of Computer System Modeling Techniques

In general, computer system performance modeling is considered a multidisciplinary area.

Information from diverse disciplines such as computer architecture, operating systems,

stochastic processes, operations analysis, and statistics contribute toward the modeling

and evaluation of different types of computer systems. Since the research presented in this

dissertation is based on some of the above disciplines, it is appropriate to present an

overview of the well-known performance modeling and evaluation techniques in this

section.

Performance analysts believe that the pace of developments in computer system design

has always overwhelmed the development of adequate and unified theoretical

characterization efforts for these systems [53,129]. Nevertheless, importance of

appropriate analysis methods becomes obvious when the system complexity increases

[54]. Analytical methods are based on building appropriate mathematical models for the

computer system (and computation) to better understand the system and provide insight to

the designer. Such models are most appropriate for making various decisions at the design

stage of such a system, by analyzing the behavior of the system using alternative

architectural choices. The complexity of analytical techniques may result from the abstract

nature of the performance evaluation objectives, such as, optimizations applied to

hardware, operating systems, compilers, networks, and so on. A number of commercially

available parallel and distributed systems have been developed under different design and

performance goals. Their relative merits are not yet fully understood to enable the system

designer to use appropriate models for the system to analyze and predict the performance

to compare various design alternatives. Therefore, the evaluation of analytical

performance models is still an actively researched problem.

We review the discipline of analytical modeling based on the models/methods that are

often applied to parallel systems. Ferrari [53] divides an analytic study of a computer

system into three parts: (1) model formulation; (2) model solution (or simulation); and (3)

34

model validation. Analytical models are solved either symbolically or numerically, in

order to calculate desired metrics. A model of a parallel system consists of two parts

[129]:

1. description of the architecture, and

2. definition of the workload under which performance predictions are to be obtained.

Figure 2-5 represents a general framework for evaluating analytical models according to

the steps described above. It should be noticed that various architectural components are

expected to behave in a non-deterministic manner under a given workload. Therefore, a

realistic analytical model has to be stochastic, in general.

Architecture Model

and Model solution Performance

description ionnuiation °" ‘ prediction

simulation

Figure 2-5. Phases of an analytical study of a parallel system.

In the following subsections, we survey four generic computer system modeling

techniques: Markov models, queuing models, Petri nets, and simulation models; and

survey a few tools based on these modeling methods.

2.4.1 Markov Models

Markov models (also known as Markov processes) are a compromise between the real-

world dependences among various physical phenomena and the theoretical requirement of

“independent” phenomena to make the calculations tractable [39,164]. The class of

Markov processes that is often used for computer system modeling is called Markov chain

processes. Markov chains are built by considering the stochastic process as a set of states

that are visited once or repeatedly over time. This set of states is termed as the state-space

of the system. A Markov chain process is defined as one whose transition to a future state

35

from its present state depends only on the present state, and not the complete past history

of its states up to the present state. This type of dependence structure proves a powerful

tool for building models of complex real-world phenomena that can be solved.

As noted by Sauer and Chandy [182], there are three issues involved in modeling a

computer system as Markov chain processes:

1. defining the process as a Markov chain according to the definition of a Markov chain

given above by analyzing the dependences of various states of the process;

2. mapping computer system models to Markov processes; and

3. solving Markov model.

Since a multicomputer system exhibits highly dynamic behavior that strongly depends on

contention for and sharing of system resources at a given time, a model of such a system

relies on representing the internal states. A detailed representation of internal states of the

system (i.e., dependences among them) is sufficiently complex and leaves us without any

methods to solve the model other than simulations. This will happen when we want to

analyze the states of the system in response to instruction and data streams of individual

programs. The representation of current and past states provides a “memory” of current

and past states of the system. If this memory includes very few details, then it will be

difficult to predict the future states accurately. However, inclusion of a number of states

makes the numerical solution of the model impractical. We can make up a Markov model

of a given computer system as described (in words) in the following [182]:

Assume that we represent all possible states of the system by a set of mutually

exclusive and collectively exhaustive states. Also assume that thefuture behavior ofthe

system depends only on the current state of the system and is independent ofprevious

states of the system. The times between corresponding entrances to and departures

from (“holding times” or “transition times") are independent and identically

(exponentially) distributed. Then the states of this system with a set of transition

probabilities between these states correspond to a Markov chain process.

After setting up this model, the next step is to represent the state transitions in a matrix

form. This representation reduces the model-based calculations to simple matrix

36

manipulations [3,164]. The transition probabilities represented by the matrix can also be

represented graphically as shown in Figure 2-6. The circles show the states of the system

during the execution of a program and pi]- are the probabilities of transition from state i to

j.

P12

P31

P13 P21

932

P23

Figure 2-6. Markov Chain representation of the system-program behavior.

The solution of Markov models for more complex structures has been an active area of

research. lanolla et al. [96] describe a technique of solving these models utilizing fully

symbolic and computer-algebra based methods at earlier stages of the Markovian process

analysis and using numerical methods at the latter stages. Anton and Rorres [6] provide

some examples of solving these models by purely numerical techniques, which work well

for predicting future states of the system with simple models.

Markov models have been applied to various aspects of parallel and distributed computer

system behavior and performance. Ahluwalia and Singhal [3] analyze the performance of

the interprocessor communication architecture of the CM-2 by developing a discrete—time

Markov chain model of its network architecture. The model shows the use of simplifying

assumptions in a practical situation and predicted results compare favorably with

simulation. Abrams et al. [1] analyze the time-dependent behavior of programs using the

program execution sequence to create a homogeneous semi-Markov chain model. This

37

model can predict the system performance with program parameters different than those

used in the input program execution sequence.

2.4.2 Queuing Models

Queuing models are useful analytical tools for systems that develop conflicts when

multiple entities simultaneously try to access the same resource. Queuing models are

frequently applied to multicomputer networks, communication protocols, contention of

resources among various jobs in a multiprogramming environment, and so on

[33,68,106,1 19]. The study of queuing models is a discipline in its own right, known as

queuing theory.

Queuing models are based on two abstractions: servers and customers. Servers are the

resources of a system that need to be shared or utilized by customers. A queue is another

abstraction in this model where customers arrive and wait for the service, while the servers

are busy serving other customers. The basic structure of this model is represented by

Figure 2-7, which shows servers as rectangles and customers as circles. A queue is

represented by a line of customers with vertical bars on both sides. Queuing models

consisting of more than one server are referred to as queuing network models. There are

two stochastic processes that have to be defined to parameterize this model. These

processes are: (1) inter-arrival time distribution of customers (input process), and (2)

service time distribution of each of the customers. The probabilistic definition of these

parameters (i.e., their probability distributions) determines the type of queuing model for

such a system. Once this model is determined, it can help answer the following type of

questions:

1. What is the average waiting time for a customer in the queue?

2. What is the average queue length?

3. What is the optimal number of servers needed for this system?

4. What about having a separate queue for each server? “fill it be optimal compared to a

single queue?

38

Servers

Customers

O O O O m,
served

«— ._T_

33123.. O
0' ”M09 0 Customers waiting

0 in queue

O

0

Arrival of new
k OC>customers

Figure 24. Ingredients of a basic queuing model.

It can be appreciated that these questions are of a general nature and can arise in any

phenomenon that is being analyzed by queuing models. The answers are important with

respect to computer system performance (e.g., its throughput and response time). For

modeling a computer system, often three types of devices are encountered [100]. These

devices are:

- Devices that have a single server, whose service time does not depend on the number of

jobs in the device. Such devices are calledfixed-capacity service centers. For instance,

CPUs in a system may be modeled as fixed-capacity service centers.

- Devices that do not exhibit “queuing” behavior, and jobs spend the same amount of

time in the device regardless of the number ofjobs in them. These devices can be mod-

eled as a service center with infinite number of servers and are called delay centers. A

group of dedicated terminals is usually modeled as a delay center.

to Devices whose service rates may depend on the load (i.e., number ofjobs in the device)

are called load-dependent service centers. An interconnecting network between the

nodes of a parallel computer system is an example of a load-dependent service center.

39

Tsuei and Vernon [203] use a queuing network to model a commercial multiprocessor bus.

Important characteristics of the bus such as asynchronous memory write Operations, in-

order delivery of responses to processor read requests, priority scheduling of memory

responses, upper bound on the number of outstanding processor requests, and so on, can

be modeled accurately. Kleinrock [106] discusses several computer time-sharing and

networking examples using queuing models to evaluate their performance. Gelenbe [68]

presents an application of regenerative processes to simplify the queuing models that arise

in various computer systems.

2.4.3 Petri Nets

A Petri net is a graphical modeling tool for description and analysis of concurrence and

synchronization in parallel systems. Petri nets were introduced by C. A. Petri in 1962 and

are widely used to model asynchronous systems and concurrent processes. The theoretical

problems associated with Petri nets have been thoroughly investigated, and therefore, it

has sufficient mathematical structure to support formal analysis of parallel systems. The

success of Petri nets is mainly due to the simplicity of the model that works well to depict

complex large-scale systems. Many extensions have been added to the basic Petri net

model to facilitate their use for different application fields. These extensions include timed

Petri nets for quantitative performance analysis of systems, stochastic Petri nets which

uses random variables to specify the behavior of the model with time, as well as others

[129]. Stochastic Petri nets are considered more attractive as a modeling tool for analysis

of multiprocessor systems.

The structure of a standard Petri net is a graph that consists of places, a set of transitions,

and a set of directed arcs. A place represents some conditions and a transition represents

an event. Arcs connect places and transitions to each other. A place is an input to a

transition if an arc exists from the place to the transition, and is an output of a transition if

an arc exists from the transition to the place. Therefore, the set of arcs can be partitioned

into a set of transition input arcs and a set of transition output arcs.

40

Figure 2-8 is a graphical representation of an example Petri net, taken from [129]. Circles

(or nodes) represent places and bars represent transitions. Tokens are placed on place

nodes to represent that certain condition is held on that node. A transition bar (an event)

can fire (occur) if all the nodes (conditions) that input to that transition bar have tokens

(i.e., are holding conditions). When a transition bar fires, it removes one token from each

of its connecting input nodes and places one token on each of its connecting output nodes

[31]. This firing of a transition is called the execution of the Petri net. For instance, if P1 in

Figure 2-8 contains a token, then transition t, will be enabled. States of a Petri net can be

determined by observing the collection of names of the nodes that hold tokens. The

number of tokens a node holds is equal to the number of instances of a node name in the

state. This procedure is called marking of Petri nets.

P—places

t—transitions

P, fl

Figure 2-8. Example of a Petri net.

Petri nets and its variations are graphical, mathematical tools that can model the following

characteristics of a concurrent computer system [31]:

41

representation of concurrent execution of multiple processes;

representation of nondeterrninistic and asynchronous executions;

decomposition and composition into many graphs; and

representation of model’s structure and dynarrric behavior.

Petri nets are also used to model the behavior of a processing unit that needs a resource to

perform some action [129], the behavior of file systems [31], etc.

2.4.4 Simulation Modeling

Simulation models are used to model the operation of a system, rather than the structural

components of the system [12,116,123,131]. Simulation is a useful technique to solve an

analytical model of a complex system that is impractical to be solved by analytical

techniques. Usually, simulation is used in conjunction with the analytical modeling of a

system to verify results. Simulation models have their own advantages, in addition to

being a tool for verifying analytical models. Simulation allows a more detailed study of a

system than analytical models. In this case, a more detailed model is considered better as it

makes fewer assumptions. Simulation studies are useful for analysis of systems even after

they are realized because these models do not perturb the system behavior for analyzing it.

There are several types of simulations used in computer system performance analysis.

These include emulation, Monte Carlo simulation, trace-driven simulation, and discrete-

event simulation. Simulation models are translated into simulation programs that generate

statistical information regarding the model. This simulation data is analyzed by various

statistical techniques [100].

2.4.5 Workload Characterization

Workload characterization complements a computer system model. After a suitable

modeling technique has been selected for a performance study, we have to characterize the

42

work performed by that system. A computer system model is solved analytically or

simulated with respect to a particular workload characterization.

Workload characterization is the process of appropriately representing and modeling a set

of programs that a computer system executes. It complements the physical description of

the architecture of a computer system and represents the system behavior due to the

activities of operating system and user processes that utilize system resources. Workload

characterization is used for both analytical solution as well as simulation of a model.

Workload characterization is usually the most time consuming aspect of a typical system

modeling effort. Large volumes of low-level measurement data are used to identify

clusters of interesting system activity and transitions from one type of activity to another

using a representative mix of programs (for instance, see the studies conducted by

Dimpsey et al. [47] and Hughes [94]). Current software technology and rapid-prototyping

tools have greatly reduced the turn around time of a software system development project;

therefore, a prolonged workload characterization process may yield accurate results but

those results may no longer be useful for the developers. A workload characterization

effort with the following features is desirable to evaluate the performance at an early stage

of development: (1) short turn around time; (2) applicability to only a specific application

instead of targeting generality; and (3) less dependence on low-level measurement data

and more dependence on the knowledge about the application-domain. This type of

workload characterization is increasingly becoming popular for performance prediction

studies that use a simulation model, which is pararneterized for a particular parallel or

distributed system using only high-level, coarse-grained measurements [37,231].

2.5 Related Work

In this section, we put the design, modeling, and evaluation approach presented in this

dissertation into proper perspective by reviewing the related work. We have categorized

. the related work into three areas according to the foci of this research: IS characterization

43

for diverse application areas of parallel and distributed computing, IS design and

development, and IS modeling and evaluation efforts.

2.5.1 IS Characterization

In order to present an overview of IS characterization efforts, we have to use the definition

and scope of an IS as presented in this dissertation. Several related research efforts have

focused on characterizing an instrumentation system either without considering it as an

entity independent of the rest of the system, or else without putting the IS into a broader

perspective of diverse application areas. Additionally, the terminology used by different

researchers is not consistent. These efforts, however, have contributed to the state-of-the-

art and cannot be overlooked.

At a gross level, Jain categorizes an IS into three types: hardware monitor, soflware

monitor, and a hybrid monitor [100]. This terminology was originally meant for

uniprocessor systems but parallel and distributed systems inherited it without any

modifications. Since this characterization is widely accepted, tool developers or users do

not have any problem categorizing an 18 in terms of these three types. The trade-offs

among these techniques are also well understood. A hardware monitor is least intrusive

but it is not suitable for providing information about process level events, such as context

switches, page faults, etc. A software monitor can collect application level information but

its penalty for the target application is usually very high.

Hollingsworth et al. characterize hardware instrumentation based on monitoring low-level

activity on the processor bus into two types: passive hardware monitors and trace co-

processors [88]. Passive hardware monitors are implemented as programmable counters,

which count the events on the bus, in the memory hierarchy, and on the processor. Many

state-of-the-art processors provide hardware counters and operating system level

interfaces to implement a hybrid instrumentation system. Zagha et al. describe an

integrated performance evaluation setup based on hardware monitoring support in MIPS

44

R10000 processor, operating system abstractions, and performance tools [233]. Multikron

is also an example of a custom VLSI co-processor for monitoring, which appears as a

memory mapped device to the main processor [138]. The co-processor collects the event

data and sends it to a central data reduction station via a special-purpose monitoring bus.

Although the gross level characterization of an IS in terms of hardware, software, and

hybrid instrumentation is useful for a uniprocessor system, it is not sufficient for a parallel

or distributed system. A parallel or distributed system consists of a number of physically

distributed processes with complex interactions with one another; such systems require

many more IS modules and services for runtime data collection than deemed necessary on

a uniprocessor system. Therefore, we should view an IS as a distributed system itself

within the target parallel or distributed system. Joyce et al. recognize the instrumentation

needs of a distributed system and present a generic 18 architecture based on a distributed

programming environment, called Jade [101]. This work also recognizes the fact that the

data collected by the IS can be used for different types of tools, such as debugging,

performance evaluation, and testing in the Jade environment. The generic IS architecture

consists of monitorable processes and events, channels and controllers, communication

mechanism, and consoles. An application process is characterized as monitorable or

unmonitorable. A monitorable event is defined as any process operation that may have an

effect outside of that process. A channel process resides on each machine being monitored

and collects runtime information from locally executing processes. User can introduce a

controller process, downstream from a channel process, in order to control the order of

events. Communication of the monitoring information can be handled in one of two

possible ways: use of customized inter-process communication (IPC) mechanisms; and

use of the same [PC mechanism, which is used by the application processes. A console

receives monitoring information from one or multiple channels, examines and interprets it,

and finally presents it to the user. A console may be running on a different machine than

the channels. Although this characterization is fairly detailed, it may be difficult to apply it

to an IS in an environment or application other than Jade.

45

Ogle, Schwan, and Snodgrass [146] characterize a distributed instrumentation system in

terms of a set of resident monitors and a central monitor in 15305 environment. A resident

monitor resides on each system node, collects and analyzes the runtime information about

local application processes, and reports this information to a central monitor. The central

monitor executes on a system node on which a monitoring database is stored. The central

monitor collects the distributed information, interacts with the tools in Issos, and provides

a user interface. Data is collected through sensors and probes. Sensors are defined as small

pieces of code residing within the instrumented application processes. Sensors are applied

to event-driven data collection. Probes are defined as code fragments residing within a

resident monitor rather than the application process. Probes can directly access the address

space of an application process on a system node and are useful for sampling-driven data

collection. Collected information is stored in the monitoring database with time-stamps

and locations of occurrence. The main goal of this characterization is to support

application-dependent data collection. This characterization is sufficient for 185 that

operate in an “open-loop” configuration; however, it does not consider the applications

where an IS operate in a “closed-loop” as a part of an adaptive real-time control system.

Lange et al. characterize the IS of JEWEL distributed measurement, analysis, and

visualization system as a Data Collection and Reduction System (DCRS) [114]. The

architecture of the JEWEL IS (i.e., DCRS) consists of sensors, collectors, evaluators, and

mediators. See Section 3.3 for details about the JEWEL IS architecture. Although the

developers of JEWEL did not originally intend to characterize a generic IS, the

architecture of JEWEL IS has the potential to be extensible and retargettable to diverse

applications and systems.

Hollingsworth, Lumpp, and Miller [88] term a measurement-based experiment as

instrumentation, and characterize it as opposed to an instrumentation system. While an IS

characterization focuses at its architecture in terms of modules and services, a

characterization of the instrumentation is concerned with the use of an 1S for

46

measurement-based experiments. Instrumentation is characterized at an abstract level in

terms of following six attributes:

1. Program Instrumentation: it refers to the insertion of instrumentation code in the appli-

cation program. Prograrn instrumentation can be accomplished in one of four ways:

direct insertion of instrumentation into the source code; automatic insertion of instru-

mentation by a modified compiler; linking the object code with a runtime library for

instrumentation; and modification of the linked executable.

2. System Instrumentation: instrumentation data can be collected at the system level rather

than the application level. It can be accomplished through dedicated monitoring pro~

cesses or instrumenting the operating system.

3. Hardware Instrumentation: instrumentation data can be collected in a non-intrusive

manner using hardware instrumentation. Hardware instrumentation is categorized in

terms of using passive monitoring with hardware counters, trace co-processors, and

hybrid monitoring.

4. Event Specification: it refers to the specification of the information to be collected

related the occurrence of an application event. Event specification languages are com-

monly used to provide a convenient mechanism for a user to specify the useful informa-

tion with respect to an event.

5. Event Filtering: this mechanism is important to limit the volume of performance data

that should be collected during a measurement-based experiment. One event filtering

technique is to use predicates and actions to recognize the desired events. Another

approach is to apply dynamic instrumentation control mechanisms [85].

6. Perturbation Compensation: there are four ways to handle intrusion due to instrumenta-

tion: realize that intrusion affects measurement and treat the instrumentation data as an

approximation to the actual execution; leave the added instrumentation in the final

implementation of the target application; try to minimize the intrusion; and quantify the

intrusion. Perturbation compensation techniques are based on quantifying the effects of

intrusion and correcting the collected information.

An instrumentation system is used to conduct measurement-based experiments.

Characterization of instrumentation is helpful for the user of an 18 for designing a

measurement-based experiment. Although the scope of the above characterization is

limited to performance measurement of parallel programs, it complements the IS

characterization efforts presented earlier in this subsection.

The IS characterization efforts presented in this subsection have influenced our IS

characterization that will be presented in Section 4.1. Our 18 characterization effort differs

47

from earlier efforts in two respects: it considers multidisciplinary applications rather than

restricting to a particular application such as parallel program performance measurement;

and it is useful for developing as well as evaluating an 18.

2.5.2 IS Design and Development Efforts

A software instrumentation system is designed to work at one of three possible levels:

system level, runtime library level, and application level. System level instrumentation

support is usually built into the operating system and can be enabled for an application. It

results in low-level information, such as execution times of various functions, count of

function calls in a program, process and or thread state transitions, thread scheduling,

system call entry and exit events, page faults, address space swapping, and I/O operations.

Examples of such 188 include Unix gprof, Solaris Trace Normal Form (TNF) kernel

probes, and IBM AIX tracing facility. Runtime library level instrumentation is used for

collecting information related to high level functions, such as unicast and multicast

communication, synchronization, and I/O. Examples of ISs developed at this level include

PICL [62], PVM [63], and .various implementations of MP1 [69,133] that support

instrumentation. Finally, the 185 that provide application level instrumentation, allow the

user to select instrumentation points or events of interest that must be monitored. User can

access information that is directly useful from the perspective of a given application.

Examples of such ISs include Pablo [161], AIMS [230], JEWEL [114], and SP1 [15]. The

level of instrumentation plays a major part in designing, managing, and evaluating an 18.

Several recent efforts are focusing at the design of an instrumentation system as an

independent subsystem that can be configured or retargeted for different types of

applications and systems. These efforts include standardization of IS management and

control, standardization of instrumentation data representation, standardization of IS

interfaces, languages for performance metric specification, and development of

configurable IS modules.

48

Standardization in terms of software development is an essential requirement for

commercial computing to ensure flexibility and interoperability of the product. The

Performance Management Working Group (PMWG), which is a part of the Computer

Measurement Group (CMG), was formed to address the needs for collection,

management, and distribution of performance data. The resulting specification is called

the (proposed) Universal Measurement Architecture (UMA) standard. The objectives of

UMA include shared instrumentation system management and control facilities,

transparent access of various application to the IS, common data storage, and extensibility.

Although this standard focuses more specifically on Unix-based commercial client-server

systems to collect performance and accounting data, the software architecture is equally

relevant for other application domains.Figure 2-9 shows various layers and interfaces of

UMA model.

Measurement

Application Layer

Measurement Layer lnterlace (ML!) 4;

———_———_————--

Data Capture lnterlace (DCl) A
------—_-—_———--———-——_——-——-

Data

Capture Layer

Figure 2-9. Universal Measurement Architecture (UMA) layers and interfaces.

The data capture layer of the UMA is responsible for collecting the runtime information

from the target system. This architecture allows the data to be collected from

heterogeneous sources by a single layer. The data capture interface (DCI) joins the

measurement control layer and the data capture layer. This interface allows the dynamic

addition of new data sources in the IS. The measurement control layer schedules and

synchronizes data collection and management activities. Data service layer accepts data

49

collection requests from the applications through MLI. The MLI allows a transparent

interaction between application and the rest of the IS.

A similar standardization effort is On-line Monitoring Interface Standard (OMIS) [148].

This effort is more specifically focused on the standardization of the interface between an

on-line IS and a tool. The objective is to facilitate the use of the same IS for different types

of tools. An IS can be developed such that it conforms to the OMIS specifications to make

it usable by different application and tool developers.

A problem related to the use of an IS as a plug-and-play module is the specification of a

standard instrumentation data representation. Such a standard facilitates the task of

application and tool developers to use the instrumentation data, which might be generated

by different 185. The Pablo Self-Defining Data Format (SDDF) is a notable effort in this

regard. SDDF is a data description language that specifies the instrumentation data record

structure and instances of data records (i.e., the actual instrumentation data) that can be

used according to the specifications [161].

Specifications for IS to indicate what data should be collected are an important part of the

design of an IS. Usually, this information is “hard-coded” in the IS and tool environments.

For instance, the JEWEL IS allows the user to specify a measurement-based experiment

using aspects [114]. An aspect is defined as a measurement-based data collection

abstraction to identify specific events of interest in a distributed system. The JEWEL IS

has to be customized (i.e., recompiled and relinked) to include this aspect information in

an experiment. In other cases, it is possible to flexibly specify this information through a

description language. For instance, Issos [146], SP1 [15], and Paradyn [89] use language-

based approaches to specify the data to be collected.

IS design and development efforts are influenced by the emerging software development

techniques as well as the standardization efforts in other areas. As new technologies and

50

standards are emerging, IS design and development methodologies also continue to

evolve.

2.5.3 18 Modeling and Evaluation

There are very few examples where tool developers either perform, provide, or document

an evaluation of their IS overheads through testing with real applications or synthetic

programs. In particular, we are not aware of this type of evaluation being performed

concurrently with tool design and implementation processes. Paradyn is a notable example

in which tool developers provide an adaptive cost model to predict the overhead to an

application program due to the IS [87]. This cost model is continually updated in response

to actual measurements during instrumented program execution. SPI ensures that the

invasiveness of its IS is accountable [15]. It measures the instrumentation load on nodes

and links in each specified window of time to evaluate the degree of invasiveness relative

to an application program.

Falcon [7]] is perhaps the only tool that supports a thorough evaluation of the modules of

its instrumentation system. Perturbation to programs is measured under different

conditions of tracing rates, event record lengths, and event buffer sizes. On-the-fly

ordering of event records, which is needed for meaningful visualization, is evaluated as a

ratio of out—of-order events that need to be “held back.” This hold-back ratio is found to be

sensitive to the size of trace data buffers. Additionally, IS performance is compared with

other standard instrumentation tools, such as Gprofi using the same metrics for overheads.

Such meticulous and practical evaluation of IS performance by the developers provides

essential information to the users, especially when an IS is used under real-time

constraints. IFS-2 [134] also reports overhead measurements for application programs in

comparison with Gprof.

Work has been done on compensating for the effects of program perturbation due to

instrumentation. The goal of perturbation compensation is to reconstruct the actual

51

program behavior from the perturbed behavior as it may be recorded by the IS. Malony et

al. [125] describe a model for removing the effects of perturbation from the traces of

parallel program executions.

Presently, it is not standard practice to formally evaluate the performance and functionality

of a tool early in its development. Usability and efficiency studies of prototypical tools are

emerging to alleviate this situation. However, the underlying IS is removed from the end-

user and is part of system infrastructure, thus necessitating more rigorous evaluation.

Moreover, contemporary approaches to evaluate IS overheads and perturbation do not

adequately consider the nondeterrninistic nature of these effects. The approach introduced

in this paper has addressed these issues. Table 2-6 summarizes the different evaluation

approaches that are being used for existing 185.

Table 2-6. Classification of IS evaluation approaches.

IS

Evaluation Description ofthe Evaluation Approach with respect to

Extant tools Approach the Took

Several existing Ad hoc Tools are developed and then incrementally modified to correct

tools [213] any performance problems that are discovered during production.

ChaosMON and Heuristic Tools deve10pers can use their knowledge of target architecture

Issos [104,146] as well as the design of their IS and conjecture about overheads.

Falcon [71] Benchmarking Synthetic benchmarks can be used to exercise various data col-

lection, forwarding. and management services of an 18. A mn-

ning version of the tool is required to adopt this evaluation

approach.

1PS-2 [134] Measurement- IS overheads due to a tool can be assessed by comparing the per-

based formance of instrumented version of a program with an uninstru-

mented version of the same. Then overheads can also be

compared by using a different IS to collect performance data.

[125,127] Analytical mod- Analytical perturbation analysis can be used directly on the

cling source code. This analysis can be used by the IS or tools to

remove the effect of perturbation for the program behavior being

represented by the instrumentation data.

Paradyn [136] Performance Well-known performance modeling techniques can be used to

modeling and model the IS and then evaluate the desired performance metrics

evaluation using analytic and/or simulation techniques. This evaluation can

be perforrmd at the time of designing an IS before it is actually

coded or put in production.

52

Development and usage of instrumentation systems is directly related to the development

of new measurement-based tool environments and applications that need data collection.

Software tool environments for parallel and distributed systems is known to be an area of

growing importance to the users [151,162]. Similarly, the application of parallel and

distributed computing paradigms to diverse, complex systems that use runtime collected

data is expanding [174]. Therefore, the background and related work presented in this

chapter depicts the current state of knowledge in 18 design, development, usage, and

evaluation. The state-of-the-art in this area continues to evolve and mature as a discipline

in its own right.

In this chapter, we provided a comprehensive background of the research presented in this

dissertation. In addition, we also surveyed two areas related to this research: IS

development and usage; and techniques for computer system performance modeling. We

also presented an overview of the efforts related to three goals of this research: IS

characterization; IS design and development; and IS modeling and evaluation.

Chapter 3

Reference Instrumentation Systems

In this chapter, we introduce the instrumentation systems used in the subsequent chapters

of this dissertation as case studies of our design, modeling, management, and evaluation

approaches. Although the choice of these 185 may appear somewhat arbitrary, they

represent a broad range of the state-of-the-art 185 for parallel tools [217]. These 183

include: PICL [61], Paradyn [136], and JEWEL [114] 185. In general, these tools support

measurement-based evaluation of parallel and distributed systems. At the time of their

modeling and evaluation, these tools were at different stages in their development and

usage life-cycle.

In the following sections, we briefly overview the tools with respect to the functionality of

our reference 185. We also discuss the domain-specific requirements and constraints that

the design of these tools and their 185 should address.

3.1 PICL IS

Portable Instrumented Communication Library (PICL), designed at Oak Ridge National

Laboratory, provides efficient communication functions that are easily portable to various

multicomputer and distributed computing platforms [61]. Instrumentation is an additional

feature, and when combined with a tool such as ParaGraph, it supports program

performance analysis and animation [81].

3.1.1 Overview of Functionality

In order to instrument an application program, PICL library functions are inserted into the

program before compilation. During program execution, calls to these functions generate

S3

54

instrumentation data in a particular event record format and log these data to a local buffer

at each node of the parallel system. The user can specify the size of the buffer. These

buffers are typically flushed at the end of program execution and merged into a single trace

file at the host system. Figure 3-1 illustrates the functionality of PICL instrumentation

system.

Application em network Accretion
on a system on a system

node node

7 PICL _ PICL

”#108300

on asystem

Fill

Front-end

host otthe

parallel system

 PICLm file

 PICL front-end

Figure 3-1. Overview of PICL IS functionality.

When a PICL library instrumented program executes, it generates a single trace file

consisting of trace records in ASCII format. Each line of this file (i.e., trace record)

corresponds to a traced event of interest at one of the processors in the multicomputer

system. Each trace record has the following fields: record type, event type, timestarnp,

processor number, process number, and the number of additional data fields associated

with the trace record. Figure 3-2 shows a part of a typical PICL trace file.

55

-3 -2 0.000360 1 -l 0

-3 -2 0.000362 3 -l 0

-3 -52 0.000476 3 -l 12 O

-3 -2 0.000512 0 -l 0

-3-210.0006470-1 32401

-4 -210.000965 0 -10

-4-520.0010071032400

-3 -21 0.0011080-1 32402

-4 -2 0.0013231-10

~4-21 0.0014160-1 0

-3 -2 0.001531 1-10

-3 -210.001547 0-13 2 4 0 3

-4-520.0015532032400
Figure 3-2. Example of a PICL trace file.

3.1.2 Domain-Specific Requirements

PICL instrumentation system is used for event-driven tracing of parallel programs written

according to the Single-Program, Multiple-Data (SPMD) paradigm. These programs are

often numerical solvers for scientific problems or simulations of physical phenomenon

that often run for long periods of time. In order to trace such long-running programs, the

IS is required to handle large volumes of data. In case of the PICL IS, every node stores

the trace records in a local trace data buffer. Appropriate buffer management policies must

be adopted by the PICL IS to be useful for long-running practical applications on parallel

systems. Performance of such applications is often sensitive to 18 intrusion; therefore,

PICL IS should ensure minimum intrusion even for tracing long-running programs.

3.2 Paradyn IS

Paradyn is a tool being developed at the University of Wisconsin for measuring the

performance of large-scale parallel programs. Its goal is to provide detailed, flexible

performance information without incurring the space and time overheads typically

56

associated with trace-based tools [136]. The Paradyn parallel performance measurement

tool runs on TMC CM-S, IBM SP-2, and clusters of Unix workstations. The tool consists

of the main Paradyn process, one or more Paradyn daemons, and external visualization

processes.

The main Paradyn process is the central part of the tool, which is implemented as a

multithreaded process. It includes the Performance Consultant, Data Manager, and User

Interface Manager. The Data Manager handles requests from other threads for data

collection, delivers performance data collected from the Paradyn daemon(s), and

distributes performance metrics. The User Interface Manager provides visual access to the

system’s main controls and performance data. The Performance Consultant controls the

automated search for performance problems, requesting and receiving performance data

from the Data Manager.

3.2.1 Overview of Functionality

Paradyn daemons are responsible for inserting the requested instrumentation into the

executing processes being monitored. The Paradyn IS supports the W3 search algorithm

implemented by the Performance Consultant for on-the-fly bottleneck searching by

periodically providing instrumentation data to the main Paradyn process [86]. Required

instrumentation data samples are collected from the application processes executing on

each node of the system. These samples are collected by the local Paradyn daemon (Pd)

through Unix pipes, which forwards them to the main process. Figure 3-3 represents the

overall structure of the Paradyn IS. In the figure, pji for j =0,1,..., n-l denote the

application processes that are instrumented by a local Paradyn daemon at node i, where

the number of application processes n at a given node may differ from another node.

57

Main Paradyn process -

Host workstation

Figure 3-3. An overview of the Paradyn IS-[l36].

3.2.2 Domain-Specific Requirements

Design of Paradyn IS benefits from typical operating system based monitoring techniques

for sequential systems (such as profiling with gprof), which uses sampling-driven data

collection. Sampling-driven data collection usually generates fixed volume of data per

sample and may incur lower overhead compared to event—driven data collection. However,

sampling-driven data collection overhead is sensitive to the sampling rate. Therefore, a

sampling-driven IS is required to use a suitable sampling rate, which is a compromise

between delivering adequate number of samples within a fixed period of execution time

and a reasonable sampling rate that incurs low overhead to the System Under Test (SUT). '

Hence, the IS should be designed to maintain a steady flow of instrumentation data with

minimum overhead.

3.3 JEWEL IS

JEWEL is a commercial, off-the-shelf software. product from the German National

Research Center for Computer Science. It has been used to setup and control user-defined

measurement experiments for embedded real-time platforms, such as Ultrix 4.2 on a MIPS

processor, Amoeba and VxWorks on FORCE VME-bus M68030 board, and MACH 3.0

58

on an i386 single and multiprocessor, in addition to several other general-purpose

distributed computing platforms. Following are some of the features of the JEWEL IS:

a The JEWEL IS is general-purpose as opposed to problem-specific 185 for collecting,

evaluating, and presenting the runtime information.

o It consists of an integrated set of reusable, flexible, and adaptable components with

well-defined interfaces.

0 IS is useful for diverse problems related to system and application development and

management for a broad spectrum of distributed platforms.

0 It provides a central point of control to the experimenter in a distributed computing

environment.

0 It uses a high resolution global time base for global ordering of events.

0 It can support both on-line monitoring and off-line analysis.

JEWEL consists of three main parts (see Figure 3-4): Data Collection and Reduction

System (DCRS), Experiment Control System (ECS), and Graphical Presentation System

(GPS). The DCRS module is responsible for collecting runtime information from the SUT

and transfer it out of the context of the instrumented application process. The ECS

configures the distributed modules of the IS for a measurement-based experiment. In order

to integrate and control the JEWEL IS components from a central point of control, ECS

assumes that all of the JEWEL components support a generic set of control commands.

The GPS provides an on-line facility to visualize the performance data. It is loosely

coupled with the driving system (i.e., the IS or a trace file) and independent of the data

source.

3.3.1 Overview of Functionality

The data collection and reduction system (DCRS) and experiment control system (ECS),

introduced in the preceding subsection, constitute the JEWEL IS. Similar to the PICL IS,

the JEWEL 18 also uses a library linked with the application processes to allow access to

runtime information of the SUT. Figure 35 represents the architecture of the JEWEL IS to

support measurement-based studies in the context of a heterogeneous, distributed

59

JEWEL _|

DCRS ‘

/ : Views Comm. IIF

Sensors Evaluators View manager

I

View handler

Collectors ECS

Daemons Interfaces

r

I Managers

Figure 3-4. Modules ofJEWEL measurement and visualization system.

computing system. Instrumentation is inserted as internal sensors to the SUT processes

running at physically distributed locations. These internal sensors collect the

measurements as a set of integers, which is passed to an external sensor via shared

memory. The external sensor collects this information and creates a corresponding

measurement data record (MDR) in external data representation (XDR [196]) form. An

MDR is a standard data representation for all JEWEL system modules. MDRs are

forwarded to a hierarchy of data collection and evaluation components. These components

are responsible for collecting, sorting, merging, and reducing the instrumentation data.

Under the control of the ECS, the MDRs can directly be forwarded to the GPS for on-line

visualization. If a separate network is available for measurement data and ECS-related

data, JEWEL IS communication does not produce network contention for the SUT traffic.

Since JEWEL IS is a general-purpose system, it is being applied to several measurement-

based studies, such as testing of high-performance distributed combat systems (HiPer-D

project [9]), monitoring of embedded systems [224], and adaptive control of real-time

System under test (SUT) LAN

Distributed SUT Distributed SUT Distributed SUT

site site site

Local SUT Local SUT Local SUT

SUT-intemal SUT-intemal SUT-intemal

sensors sensors sensors

a I I

v v v r

SUT-extemal SUT-extemal SUT-extemal

sensors sensors sensors

collectors collectors collectors

evaluators evaluators evaluators

[Measurement LAN I

Experiment fecal

control system 9 "mm"

(ECS) ’

(GPS)

Figure 3-5. Architecture of the JEWEL IS to support a measurement-based experiment in a

distributed, heterogeneous system.

systems [66]. We are using JEWEL IS to collect data from a distributed video

conferencing application. The purpose of this data collection is to support real-time

resource management and adaptive control of the video application. Figure 3-6 presents an

overview of the functionality of JEWEL IS for this application. Vrdeo conferencing

application uses a client-server paradigm to multicast the successive frames of a scene

captured by the server using a camera to its clients in real-time. Runtime information is

collected by a JEWEL collector arriving from a JEWEL sensors embedded in clients and

the server that are running at physically distributed sites. Collector can share this

information with a resource manager, which analyzes it and makes appropriate resource

61

management decisions for the server as well as clients. Thus, resource manager adaptively

controls the clients and server using its agents and specific interface for interacting them.

ATM network for video conferencing application

S 8 Video 3’ 8 video

EE application I l I 5% application

g2 client gr; client

i i
(E r:

[WWI [WWI [WWI

Ethernet tor JEWEL ls measurements and resource managers control of application

Interface through

JEWEL collector ————————— -D Resource manager

Figure 3-6. Overview ofJEWEL IS functionality for adaptive control of a video conferencing

application.

3.3.2 Domain-Specific Requirements

Video application is one example of a real-time system that has stringent timing

constraints for tasks involved in sending and receiving video frames. It is a requirement of

the client to receive and display 30 frame per second to represent a dynamic scene in real-

time. However, the quality (smoothness of changes) will be lost if the frame rate reduces

from this value. Since JEWEL IS components are sharing resources with the clients and

the server, they can potentially aggravate the problem if the real-time tasks do not have

adequate laxity in a particular setup. Modeling and evaluation of the JEWEL IS in this

scenario should focus on its intrusion to the real-time behavior of the SUT.

62

In addition to considering potential intrusion to the real-time behavior of the video

conferencing application, impact of the JEWEL IS to the resource manager tasks should

also be considered. If the 18 cannot deliver runtime information to the resource manager

within a pre-calculated limit of time after it was generated by a client or the server, it can

cause “oscillations” of the system (under test) as the adaptive control system may continue

to steer the system from one nominal point of operation to another in the available space of

operating conditions. The JEWEL 18 should either guarantee delivering the runtime

information before this time limit expires or discard it. Resource manager design should

also incorporate certain degree of “hysteresis” to make it less sensitive to the transient

conditions.

This concludes our introduction to the 183 used as reference for the case studies presented

in this dissertation. It should be noted that these 185 are presented in this chapter in the

order in which they were modeled and evaluated. Therefore, this order also illustrates the

milestones in the progress of this research as well as its possible future directions.

Chapter 4

Instrumentation System Characterization, Design, and

Synthesis

In this chapter, we begin by extending the discussion of instrumentation system

characterization from Section 2.5.1. Our objective is to develop a generic model for an

instrumentation system that is independent of any specific data collection applications.

Additionally, such a generic model is useful for the IS modeling and evaluation studies

presented in this dissertation. The reference 185 for this dissertation are used to serve

different types of applications, therefore, a consistent taxonomy is necessary to put the

overall modeling and evaluation process in proper perspective.

The process of developing an instrumentation system begins with its specification and

design and culminates into writing the code for its modules. We refer to the task of 18 code

writing as synthesis. Contrary to the instrumentation system modeling and evaluation

processes, which involve dealing with predominantly quantitative issues, design and

synthesis involve application-specific, qualitative considerations. In addition, design and

synthesis require decision—making on the part of developers to choose among a number of

available alternatives to configure and manage the instrumentation system. We address IS

design and synthesis issues in this chapter by synthesizing the approaches found in state-

of-the-art tools and applications. Our intention is to provide the reader with the

background, necessary for selecting among available IS design alternatives and synthesis

methods, based on qualitative considerations.

In order to develop an 18 in a structured manner, we proposed a two—level approach, which

is depicted in Figure 4-1 [212,213]. On a higher-level, requirements of an IS are either

63

64

determined by the developer or specified by the users. These requirements are transformed

to detailed lower-level system specifications, which are subsequently mapped to a model

representing the structure and dynamics of the IS. This model is pararneterized and

evaluated with respect to chosen performance metrics that reflect the critical IS overheads

to the application program as well as the target system. The evaluation results are then

translated back to the higher-level, so that conclusions can be drawn by developers and

users regarding IS performance. Feedback from the IS evaluation process is used to

modify either the requirements or the system specifications to obtain desired performance.

Finally, the model becomes the blueprint for actual software synthesis for the IS.

IS Feedback from the evaluation process IS

Requirements Qation

Higher-level qudltative considerations

"IllIlllllllll-lllllllllllllllllilllllIIIlllldllllIIll.II-IIIIIIIIIIIIOIIIIIIII

Lower-lml quantitative considerations

Sysbm IS Parameter- Model IS Software

Specifications Model ization ’- Calculations Development

v

Figure 4-1. Two levels of a structured IS development approach.

We introduce a taxonomy for IS modules and services based on a generic IS model in

Section 4.1, which are applicable to both IS design and synthesis as well as modeling and

evaluation tasks. Subsequently, we discuss IS specifications in Section 4.2; IS design and

synthesis decisions in Section 4.3; and design and synthesis of reference 185 in Section

4.4.

4.1 A Taxonomy of IS Modules and Services

Viewed from a higher level of abstraction, the purpose of an instrumentation system is to

establish a continuous flow of runtime information from distributed sources to one or

65

multiple, often centralized, consumers. The exact nature of sources and consumers of

runtime information is determined by the application for which an IS is being used.

Establishment of a continuous flow of runtime information, however, is the common

thread that can be found across several applications that consume runtime information.

This common thread is the primary motivation behind the IS taxonomy presented in this

section.

Viewed from the perspective of runtime data-collection, an IS is synonymous to a system

monitor. However, state-of-the-art in software environments for parallel and distributed

systems that consume runtime information spurs the need for considering data collection

from a broader perspective. A number of current environments that rely on runtime data

collection put a greater emphasis on real-time management of this information for

different reasons such as on-line performance analysis, debugging, visualization, and

controlled overhead. Emerging applications, such as application steering, dynamic

resource management, and distributed real-time control, dictate that the data collection

modules are part of a closed-loop system. The scope of the term instrumentation system

takes these new requirements into consideration. We use the term instrumentation data to

account for both execution information (messages, memory references, I/O calls, etc.) and

program information (variables, arrays, objects, etc.).

We have developed a taxonomy for an 18 that represents a majority of components and

services supported in extant ISs and omits unnecessary implementation details. This

taxonomy can be represented with the help of a generic 18 model, which is depicted in

Figure 4-2. The model defines six components. of an IS that supports an integrated

environment: (1) sensors; (2) local instrumentation server (L18); (3) instrumentation

system manager (ISM); (4) instrumentation data consumers (IDC); (5) transfer protocol

(TP); and (6) instrumentation system agent (ISA). In Section 4.4, we study the 185 of

selected IDCs with respect to this taxonomy.

66

User interactions Set of supported tools

and applications

Sensors embedded Data

In with front-ends for

Output control and

processor butters data

Control 7

 : ‘ lntegratedtool environment 5:227

Figure 4-2. Components of a typical instrumentation system supporting an integrated tool

environment.

4.1.] Sensors

A Sensor is a piece of code that is inserted into the SUT code at the time of compilation or

during . its execution. When this part of the SUT code is executed, it generates

instrumentation data, which indicates:

1. the locality of the code in the instrumented SUT program currently being executed; and

2. application-specific information related to the system performance or program data.

These two pieces of runtime information are used by different types of measurement-

based tools and applications (IDCs), such as debuggers, performance analysis tools,

performance bottleneck searching tools, modeling and prediction tools, steering tools, and

program and performance visualization tools. A sensor acts as an interface between the

SUT and the rest of the IS. There are at least three different ways to implement a sensor:

1. sensor is inserted in the code at or before the compile time (i.e., automatically or explic-

itly by the user) and it sends the instrumentation data to the LIS or ISM using a transfer

protocol;

67

2. sensor is implemented as in (1) but instead of explicitly sending the instrumentation

data to another 18 module, it writes them in a memory segment shared by the SUT and

IS processes (Ogle et al. term such a sensor as a probe [146]); and

3. sensor is inserted dynamically in the binary image of a SUT process during its execu-

tion (Hollingsworth et al. term this mechanism as dynamic instrumentation [86]).

Regardless of the differences in implementing a sensor, the main function of a sensor is to

transfer runtime information out of the context of a SUT process. Ogle et al. [146]

describe the sensor portion of the monitor in their Issos environment in terms of sensors,

probes, and tracing buflers. The JEWEL IS uses two types of sensors: SUT-internal and

SUT-external [114]. The internal sensor captures the specified information and writes it in

a ring buffer, which is in a memory segment shared between the SUT process and the

external sensor. The external sensor can collect this information from the shared memory

ring buffer.

Regardless of the differences in terminology and implementations by different developers,

a data collection components can be found in an IS, which can be inserted in a program to

collect desired runtime information. We shall refer to this component as a sensor.

4.1.2 Local Instrumentation Servers

The Local Instrumentation Server (LIS) collects instrumentation data captured by the

sensor and forwards them to the ISM. Additionally, the LIS can provide additional

functionality to control the measurement-based experiment. Typically, an LIS uses local

buffers for temporarily storing instrumentation data, a management policy to accomplish

data collection and forwarding functions, and an interface interact with other IS modules

(i.e., sensors and ISM).

In some cases, the sensor and 1.18 are not implemented as distinct modules and their

functions are combined into a single module. As in PICL, for example, an LIS can simply

comprises of instrumentation library calls responsible for storing data in the local buffers

68

or forwarding data to the ISM. Or, as in Paradyn, the LIS may consist of a separate process

on each node of the concurrent system, which handles instrumentation data management

independent of the application processes. The JEWEL 18 uses external sensors to collect

the data captured by the internal sensor and forwards them to the ISM. It uses a separate

module, called the Experiment Control System (ECS) daemon for interacting with the

ISM. Existing monitoring systems use varying terminologies for the LIS; for example,

Paradyn calls it a Paradyn daemon, Issos, a resident monitor, and JEWEL, an external

sensor. The term LIS, however, is an abstraction for specific implementations of data

capturing and forwarding functionality.

4.1.3 Instrumentation System Manager

The LIS forwards instrumentation data from the concurrent system nodes to a logically

centralized location called the Instrumentation System Manager (ISM), which manages

the data in real-time. The functions of the ISM include temporary buffering of data,

storing of data on a mass-storage device, and pre-processing of data for IDCs (e.g., causal

ordering). Functional requirements of an ISM that supports on-line data consumption are

different in nature than for one that supports off-line consumption. Similarly, different

requirements are associated with an integrated tool environment versus a stand-alone tool.

For instance, on-line tool usage may require the ISM to order data on-the-fly before

submission to a tool; whereas an ISM for off-line tool usage may only need to merge data

from various application processes, performing event-ordering off-line. We reflect this

prograrnmability by defining an instrumentation data processor module within the ISM in

Figure 4-2. IDCs receive instrumentation data from ISM output buffers or a mass storage

device, depending on-line or off-line usage, respectively.

The ISM components in Paradyn, Issos, and JEWEL 188 are known as the main Paradyn

process, the central monitor, and the collector, respectively. Many tool developers, such as

Ogle, Schwan, and Snodgrass [146], favor a different partitioning of pre-processing

69

functions, implementing data reduction/analysis in the LIS rather than in the ISM. The

definitions of the LIS and the ISM do not preclude this.

4.1.4 Instrumentation Data Consumers

Instrumentation data collected by the ISM can be consumed by one or more measurement-

based tools, resource managers, decision makers, or adaptive controllers. We abstract

these tools and applications using the term Instrumentation Data Consumers (IDC). An

IDC is typically part of an integrated environment, and therefore, it must have a well-

defined interface for data and control communications with the ISM. Apart from this

interface, the design and implementation of an IDC can be carried out independent of the

rest of the 18. In fact, an IDC is part of the target system or tool environment rather than

the IS. We consider it as a module in the IS for two reasons:

0 it is on the information (i.e., runtime instrumentation data and control messages) flow

path, which spans distributed processes, sensors, LISs, ISM, and finally the IDC; and

o it can dynamically control the target parallel or distributed system via the IS-supported

information flow path, which can affect IS intrusion to the target system.

Examples of different types of IDCs include: decision support system in AT&T’s network

management and operations system (see Figure 2-3 in Section 2.3.2.3); signal processing,

identification, command and decision tasks in HiPer—D/Aegis weapons system (see Figure

2-4 in Section 2.3.3.3); and a variety of measurement-based parallel tools such as

debuggers, performance analyzers, and visualizers [208].

4.1.5 Ti'ansfer Protocols

Instrumentation data are transferred from the LIS to the ISM and further to the IDC(s) to

establish an information flow path. Data transfer to an IDC (a tool or an application) is

typically accompanied by an exchange of control signals between the ISM and the IDC.

Additionally, control messages may need to be sent in the other direction, back from the

7O

IDC to the ISM, and then to concurrent application processes or actuators (via IS agents),

to control program execution or the target system [71]. Usually, a consistent

instrumentation data and control Trander Protocol (TP) is used for IS-related

communications.

The majority of existing monitors uses operating system-supported interprocess

communication abstractions. For instance, sockets, pipes, and remote procedure calls have

been used in Paradyn [136], Issos [146], JEWEL [114], TAM [165], and Pablo [161] 185

for their implementations on Unix-like operating systems. Some monitors, such as VIZIR

[77], implement customized high-level protocols, developed on top of system library

functions, to enhance the flexibility and portability of the instrumentation data transfer and

control messaging mechanisms.

4.1.6 Instrumentation System Agents

An Instrumentation System Agent (ISA) extends the functionality of an IS to control the

execution of data collection modules as well the application processes. Thus, the IS can

steer the application as well as interact with its own modules to adaptively control them. In

the case of steering (i.e., algorithmically controlling the execution [50,163]), the ISAs are

embedded in the application processes. A number of emerging distributed and embedded

real-time system management and control applications (such as AT&T’s Network

Management and Operations System [13] and NSWC’s Aegis Weapons System based on

HiPer-D computing fabric [79]) use information about the current system states for

making control decisions. In order to incorporate such systems into the generic IS model,

we consider actuators separate from the instrumented application processes. The term

actuator is borrowed from the feedback control systems theory to represent modules that

can modify the state of the system according to a command input [222]. Thus, an ISA/

actuator combination can be implemented such that:

71

1. it is embedded in an instrumented application process that generated instrumentation

data; or

2. it is embedded in an independent process, which is responsible to take specific actions.

The first implementation corresponds to the control of data collection modules and

application steering while the second implementation corresponds to a real-time control

system. In either case, the ISM or an IDC (e.g., a resource manager [219] or decision-

making module [79]) can send a command to the ISA using the transfer protocol to

implement a specific steering or system control function.

The taxonomy of an IS is evolving with emerging applications in parallel and distributed

computing. It is interesting to note that the taxonomy initially did not include sensors and

ISA/actuator components [213]. However, several applications of parallel and distributed

processing to real-time adaptive control systems started using runtime information and

tools that consume this information [163]. Thus, we had to extend the taxonomy to include

these modules. We expect that the scope of an 18 will continue to expand due to these

applications as well as the use of integrated tool environments; therefore, the taxonomy of

an IS will continue to evolve.

4.2 Design Specifications

IS specification is one of the low-level task as identified in Figure 4-1. System

specifications are determined from the high-level system requirements. Requirements of

an IS are primarily determined by the specific needs of the application (or a range of

applications) that are to be supported by the 18. For instance, if the IS is to support on-line

program visualization (e.g., as in case of XPVM [64]), requirements include: data

collection from the application processes, continuous data flow from the application

processes to the visualization tool, and the decoupling of IS from the actual program

activities. These requirements are then transformed into specifications that may include:

library functions to insert instrumentation in the user programs, local buffers to

temporarily hold the data, one or more IS processes to forward the data to the tool, and an

72

interface with a visualization tool to collect, sort, merge, and then visualize the

instrumentation data. Transformation of IS requirements to specifications depends on the

nature of the measurement-based experiment supported by the 18.

4.3 Design and Synthesis Decisions

Design of an instrumentation system involves choices based on its use for a specific

application. These design decisions cannot be justified by any quantitative measures;

experience of tool development and intuition about the future needs of a tool is necessary

in order to make these decisions. In this section, we outline three issues related to the

design of an IS that require decision-making effort for choosing a suitable option.

4.3.1 Selection of an Instrumentation Data Format

In an integrated environment, integrated data is to be used by the tools designed by

different developers. There is usually one common denominator among all these tools: use

of the same instrumentation data for different types of analyses. Minimally, these tools

should use a common data representation to share data and have a well-defined interface

with the IS to receive this data. Additionally, the interface between the 18 (or ISM) and the

tools should incorporate a control messaging mechanism to allow interaction between

tools and the IS. Instrumentation data format is an important consideration when the

environment relies on the tools developed by different developers. In case of the tools

developed by the same developers, the question of sharing the same data by all the tools is

resolved by defining a consistent data format.

Several existing 185 support consistent data format to support integrated tools. Pablo’s

Self-Defining Data Format (SDDF) is a notable effort in this regard. The SDDF is a

performance data description language that specifies both data record structures and data

record instances. It can describe general data records, as opposed to a predefined set of

records; therefore, the SDDF is best viewed as a data meta-format. Intuitively, the format

73

supports the definition of records containing scalars and arrays of the base types found in

most programming languages (i.e., byte/character, integer, and single and double precision

floating point). SDDF was originally developed to link Pablo IS with the data analysis

environment. However, a number of integrated tool environments are using SDDF as a

consistent instrumentation data format. Examples include ParAide performance

environment [165] and XPVM extension of PVM message-passing library [63]. JEWEL

IS uses External Data Representation (XDR [196]) format to share data among several of '

its modules.

4.3.2 Sampling-Driven vs. Event-Driven Data Collection

There are two distinct approaches of collecting the instrumentation data from a target

system: sampling-driven and event-driven. In the case of sampling—driven approach, an

instrumentation data sample is collected after a specified period of time. Thus, the data

collection occurs periodically and IS modules do not require the use of system resources

before a sampling period ends. On the other hand, data collection occurs aperiodically

under the event-driven approach. In this case, the data are collected only when a sensor in

the instrumented code is executed.

The sampling-driven and event-driven approaches are different in terms of the type of data

they provide to the tools in an environment. Instrumentation data collected under a

sampling-driven approach usually consists of the values of IS-defined timers and counters

that are embedded in the instrumented SUT code. For instance, operating system supplied

profiling tools (such as, gprof) use sampling-driven techniques to count the frequency of a

function call in an instrumented program and time spent in that function. Such information

is useful to identify bottlenecks in a program and programmer can analyze the parts of the

program where most of the time is being spent. Instrumentation data collected under an

event—driven approach usually consists of information of interest to a user. For instance,

185 used for testing distributed real-time control systems (such as, HiPer-D [9]) use an

event-driven approach to analyze that the real-time task deadlines are met in critical

74

sections of the code. These data are almost always time-stamped to identify a “time-line”

of occurrences of the events in a system. Therefore, the selection between the sampling-

and event-driven approaches is based on the nature of the application for which an 18 is

being designed.

4.3.3 Global Time and Event Ordering

If an IS for a parallel or distributed system is developed using an event-driven data

collection approach, it has to deal with the classical problems of globally consistent time-

starnps and event ordering. A concurrent system consisting of multiple nodes with

independent local clocks may experience discrepancies among values of these clocks. If a

sensor or LIS assigns time-stamps to the locally collected data and forwards them to the

ISM, it is likely that the resulting “global time—line” does not represent the actual sequence

of event occurrences. The event ordering problem becomes important for message-passing

activity where sending of a message by one node and receiving of that message at another

node should have a causal relationship.

Several efforts have addressed the problems related to global time and consistent event

ordering in parallel and distributed systems. Lamports’s work in this regard is a basis of

some of the solutions that have been used to tackle this problem [112]. Lamport divides

the event ordering problem into two parts: partial ordering and global ordering using a

happened before relationship among the events. A partial order is achieved if we can

establish the happened before relationship for all the events occurring at a particular node.

Then a global order can be achieved if happened before relationship is established for the

events representing interactions among different nodes.

A number of 185 for different types of IDCs have benefited from these results.

O’Donoghue and Plunkett use the Network Time Protocol (NTP) for determining global

time-stamps to test distributed real-time systems using commercial off-the-shelf software

tools [147]. The main problem with this approach is the coarse granularity of time

75

measurements that the NTP can support. Ellwood and Heath describe a postprocessing

mechanism to fix the clock offsets and event inconsistencies in the trace records for PICL

IS implementation for MP1 [51]. The postprocessing is implemented as a parallel

algorithm that executes after the actual program execution is completed. PICL uses barrier

synchronizations at the start, end, and specified instrumentation points in the program.

The postprocessor then uses this information to correct any clock drift. Partial and global

ordering techniques are used to check the global consistency of the events and the

sequence of events is adjusted to fix any inconsistencies. This approach is of limited use

for an IS that supports on-line analysis or visualization tools because instrumentation data

are needed before the program execution finishes. Additionally, the overhead due to

excessive barrier synchronization operations may be undesirable for long-running

application programs. JEWEL IS developers advocate the use of a high-resolution global

clock for consistent time-stamps and event ordering. A global clock can solve the

problems related to clocks and event ordering but most of the parallel and distributed

systems do not support a global clock as a standard feature.

In some cases, IS ensures a causal order of the events while the time-stamps are only

logical (as opposed to physical time-stamps assigned at local nodes). For instance, VIZIR

ISM assigns the time-stamps to the instrumentation data received from the L183 [78]. The

received data are processed in such a manner that the processed data records do not have

any event ordering problems and an on-line tool can use them. Falcon IS also uses an on-

line event ordering algorithm for its steering tool [50].

Based on the above discussion, it is clear that the clock drift and event ordering is still an

open problem in the area of 188 for parallel and distributed systems. However, as we noted

above, there are solutions that ensure consistency on the cost of other factors. These

factors include accuracy of time measurements, intrusion to the target system and

application, cost of specialized hardware, and limited functionality of an IDC supported

by the IS.

76

4.3.4 Hard-Coded vs. Application-Specific Synthesis

In terms of actual coding of an IS, hard-coded and customizable or application-specific

software development techniques reside on opposite ends of a spectrum of possible

development approaches. Tool developers have to choose a suitable approach that can be

applied consistently to all the components in an environment.

Most of the 188 found in literature are designed to complement the specific functions of

IDCs in an environment. Therefore, the primary concern of the software development

process is to provide the user with a self-contained tool rather than to optimize the

extensibility. Consequently, the majority of extant 185 are “hard coded” into the tool

environments. The configuration and functions of the IS remain unchanged for different

application programs, which may have entirely different data collection, management, and

usage requirements. For instance, a parallel program using PICL must initialize

instrumentation functions and buffers at all nodes in a multicomputer system, even if only

a subset of the nodes is of interest to the user. This may incur undesirable overhead.

Similarly, a user can not change the configuration of the IS from one application to

another. This further reduces the flexibility of the IS.

Development of application-specific 185 is a relatively recent phenomenon. Honeywell’s

Scalable Parallel Instrumentation (SP1 [15]) supports customized synthesis of 18s. Its 18

synthesis approach is based on an Event-Action model. IS functions are specified by the

user as actions taken by the IS, in response to the occurrence of specific events. A user

specifies the events and actions in terms of an Experiment Specification Language (ESL).

Therefore, it is possible for the user to specify customized event buffering and

instrumentation data forwarding actions that are optimized (with respect to

instrumentation overhead) for a particular application. Ogle et al. [146] present a similar

approach of developing application-specific monitoring functionality in their Issos parallel

programming environment. Paradyn supports the Paradyn Configuration Language (PCL)

for describing its target architecture and operating system and the language-dependent

77

characteristics of the application and platforms [136]. Tuning and Analysis Utilities (TAU

[83]) is an integrated performance evaluation environment based on the pC++ system

[126]. Instrumentation is specified by the programmer via a pC-H- class library and

Sage-l-r- library, and collected data may be analyzed by on-line or off-line tools supported

by the TAU environment.

Application-specific approaches represent the trend of IS synthesis technologies.

Although these approaches are very promising, they may be counterproductive for a user

having little experience with performance issues of an IS. Therefore, the developers have

to choose between the hard-coded and application-specific approaches. It is also possible

to use a hybrid of two approaches by making specific components of the IS application-

specific while other components are developed as hard-coded software modules.

4.4 Reflections on the Design and Synthesis of Reference ISs

Determining the IS design specifications and a taxonomy of its modules and functions is

simply an effort to collectively consider the features of a broad range of existing 185. In

this section, we work backwards to show the applicability of the taxonomy to the selected

185 and examine their specifications. We discuss the reference 185 in more detail and

summarize the design considerations of a number of other 183.

4.4.1 PICL IS

PICL IS is used for collecting instrumentation data from distributed-memory parallel

systems. It supports an off-line performance visualization tool, called ParaGraph [81]. The

IS does not require a continuous flow of instrumentation data from the USS to the ISM

and the tool during the program execution. Therefore, the IS collects the instrumentation

data at each node and merges them as one trace file at the end of the program. The

ParaGraph tool consists of a rich set of visualizations to represent the computation and

message-passing. The IS is required to be event-driven to capture the data related to

78

interesting message-passing activity. Clock drift problem is handled by synchronizing the

clocks at the start of the program execution and providing a barrier synchronization

function that can be called by the user to synchronize clocks during the execution. If the

resulting trace file shows a receive event on a node before a corresponding send event

occurs on another node, it is said to have a “tachyon” in it. Tachyons can be removed from

the resulting trace files using a postprocessor that sorts the trace records in a globally

consistent order and re-adjusts the time-stamps. PICL modules represent a typical

example of a hard—coded instrumentation system.

Table 4-1 presents the specific modules of the PICL IS according to the IS taxonomy

defined in Section 4.1. The LIS is implemented with an instrumentation library, and the

ISM and TP provide a means to merge the data as a trace file. Due to off-line usage of the

instrumentation data, there is no need for an ISA to control the PICL IS.

Table 4-1. Specifications characterizing the PICL instrumentation system.

Sensor/LIS ISM IDC TP Actuator/ISA

Instrumentation Instrumentation ParaGraph tool Parallel 110 None (open-loop

library with trace library with merg- system)

data buffers at ing distributed

each node buffers as a trace

file

4.4.2 Paradyn IS

Paradyn IS addresses the requirements of the main analysis component of the

environment, called Performance Consultant [136]. It uses a W3 search algorithm for on-

the-fly location of bottlenecks in the code of parallel programs. The algorithm uses the

information about resource usage (such as, synchronization primitives, message-passing,

1/O calls, CPU usage, etc.), which is supplied by the LIS at regular sampling intervals.

Therefore, the 18 is required to support on-line analysis and maintain a steady flow of

information to the tool. Due to sampling-driven approach, Paradyn IS does not require any

clock synchronization or event ordering algorithm. Software development approach for

79

Paradyn IS can be considered a hybrid between hard-coded and application-specific

because some of its modules are configurable using its configuration and specification

languages.

Table 4-2 presents the specifications of the Paradyn IS. A local Paradyn daemon works as

an LIS, which inserts the sensors into the running application code, on-demand from the

ISM (i.e., the main Paradyn process).

Table 4-2. Specificatiom characterizing the Paradyn instrumentation system.

Sensor/LIS ISM IDC T P Actuator/ISA

Local daemon Main Paradyn Performance Unix-based Paradyn daemon

process for each process that consultant interprocess is used to adap-

node that collects accepts data from communication tively control the

samples from daemons and uses overhead through

application data for analysis dynamic insertion!

processes and removal of instru-

forwards data mentation

- 4.3 JEWEL IS

JEWEL IS is a commercial off-the-shelf software. Therefore, it can be customized for

different types of target applications and systems. It can support both on-line as well as

off-line processing, analysis, and visualization of the instrumentation data. It supports an

event-driven data collection approach. JEWEL IS does not provide any mechanism to

correct the problems due to clock drifts 0r out-of-order events. It provides customizable

modules that can be modified by the user to implement an appropriate technique to fix

these problems. Thus, JEWEL IS assumes a globally consistent clock as a part of its

default target SUT setup. JEWEL is developed as a fully customizable IS because a user

can modify its modules to suit particular platforms and applications.

O Table 4-3 presents the specifications for the JEWEL IS. JEWEL provides internal and

external sensors ‘as its sensor and LIS modules, respectively. A collector component acts

as an ISM. In order to support a heterogeneous distributed system, JEWEL supports the

80

notion of a hierarchy of ISMs to collect and reduce instrumentation data from different

parts of the system. All of the JEWEL IS modules use instrumentation data in the form of

Measurement Data Records (MDRs) using XDR format. Different adaptations of JEWEL

IS for different platforms uses sockets and remote procedure calls as a part of its TP. It

supports on-line control of the instrumentation system through its Experiment Control

System (ECS) components.

Table 4-3. Specifications characterizing the JEWEL instrumentation system.

Sensor/LIS ISM IDC T P Actuator/ISA

Local daemon Main Paradyn Generic, OS-based Paradyn daemon

process for each process that therefore. can be interprocess is used to adap-

node that collects accepts data from retargeted to communication tively control the

samples from daemons and uses different (using sockets or overhead through

application data for analysis applications RPC) dynamic insertion!

processes and removal of instru-

forwards data mentation

4.4.4 Overview of other 185

In this subsection, we apply the IS taxonomy beyond the reference 183 to cover a broader

range of IDCs. Many parallel programming tools use an 18. We introduce the IS design

approaches of selected IDCs, according to our IS taxonomy. These are summarized in

Table 4-4.

This overview shows that the IS design requirements and taxonomy presented in this

chapter is applicable to the extant ISs. IS design issues such as those requiring decision-

making on the part of the developers cannot be based on formal quantitative analysis.

While the research work presented in this dissertation focuses more on the quantitative

aspects of 18 design, these issues are also essential to be well understood for a balanced

design. In the following chapters, we address the IS modeling and evaluation aspects in

the light of insights gained from the discussion of IS design issues in this chapter.

81

Table 4-4. Summary of IS features of some representative parallel IDCs.

IDC (tools

and Synthesis

applications) Sensor/LIS ISM Actuator/ISA Approach

Jade [101] Channels and con- Consoles None Hard-coded

trollers

AIMS Library Trace file None Hard-coded

Pablo Library Trace file Adaptive control Hardocoded

Falcon/Issos] Resident monitor Central monitor Interactive steering Application-

ChaosMON specific

ParAide Library Event trace OS-based interface to Hard-coded

(TAM) server gang scheduled the

flushing of the filled

trace buffers

SP1 Library Event-Action Adaptive control is Application-

machines possible through its specific

experiment

specification

language

VIZIR Library VIZIR front-end None Hardcoded

Aegis and software (JEWEL) JEWEL collec- Actuators for the Application-spe-

HiPer-D sensors and embed- tor and decision- weapons and fire . cific, using off-

dcd subsystems support tasks control system the-shelf software working as sensors

Chapter 5

Instrumentation System Modeling, Management, and

Workload Characterization

In this chapter, we focus on IS modeling and management issues and present models for

the reference systems. After designing an instrumentation system, performance feedback

may be valuable for tool developers. While the tool development is at an early prototype

stage, it is convenient for the developers to modify the design according to the

performance feedback. Since the IS is not fully developed at this stage, a measurement-

based performance study is not feasible. It is possible, however, to model the system based

on its design and specifications. The model can be solved analytically or through

simulations; thus early feedback can be provided to the developers.

- Modeling-based evaluation of computer systems, compared to an ad hoc measurement-

based evaluation, is often regarded as a careful and rigorous approach that is not widely

practiced [54]. One may ask if such rigor is needed in IS development. The IS represents

enabling technology of growing importance for effectively using parallel and distributed

systems. The IS is often used by application developers or system administrators; the user

typically sees a tool and not the IS. Consequently, tools applications are scrutinized, and

the IS and its overheads receive little attention. Users may be unaware of the impact of the

IS to the SUT. Unfortunately, the IS can perturb the behavior of the application, degrading

the performance of an instrumented application program from 10% to more than 50%

according to various measurement-based studies [71 ,134]. Perturbation can result from

contention for system resources among application and instrumentation processes. With

increasing sophistication of system software technologies (such as multithreading), an 18

process is expected to manage and regulate its use of shared system resources [162,200].

82

83

Toward this end, tool developers have implemented adaptive IS management approaches;

for instance, Paradyn’s dynamic cost model [87] and Pablo’s user-specified (static) tracing

levels [161]. With these advancements come increased complexity and more design

decisions. Modeling and early evaluation facilitates dealing with these design decisions.

This chapter consists of two parts: the first part presents a methodology of dealing with

specific issues involved in instrumentation system modeling, management, and workload

characterization; and the second part presents models for the reference 185. We discuss

modeling and management issues related to an IS in Sections 5.1 and 5.2, respectively.

The resource occupancy modeling technique is presented in Section 5.3 and workload

characterization for such models is considered in Section 5.4. Finally, we present the

models for the three reference 18s in Section 5.5.

5.1 Instrumentation System Modeling Issues

This section focuses on specific issues that should be addressed while developing a model

for an IS. Some of the issues are general and relevant for modeling any other system;

however, we consider these issues from the perspective of modeling an IS for parallel and

distributed systems. Modeling issues discussed in the following subsections are: defining

level of abstraction and objectives for an 18 model; system level considerations; patterns

of instrumentation data flow from distributed producers to centralized consumers; and

selection of performance metrics for IS evaluation.

5.1.1 Abstraction and Objectives of Instrumentation System Modeling

Defining the level of detail that the model should try to capture helps determine the

complexity of a solution technique and, therefore, its suitability for a particular study. In

case of an IS, the level of detail is determined by the functionality and requirements of the

instrumentation data consumer that it supports. If the IDC uses the instrumentation data as

a trace file for off-line analysis, only high-level details such as data collection and

84

forwarding are of interest. This level of details will have to be enhanced if the [DC

supports on-line analysis of long-running programs and may selectively enable or disable

the instrumentation. The model incorporates many more details when the IS supports an

IDC that adaptively controls the IS or steers the parallel or distributed application in real-

time. As our reference ISs address this range of IDCs (tools and applications), level of

detail is an important consideration for the models of these systems presented in this

chapter.

Before developing a model to study a computer system, it is essential to spell out the

modeling objectives. Although the modeling objectives are expected to vary from one tool

' to another, a common set of goals of modeling 183 includes:

0 evaluation of IS overhead and intrusion to the SUT or target system under various oper-

ating conditions, according to the selected metrics;

- comparison of IS overhead and performance using available options to configure and

manage the IS modules;

- determination of sensitivity of the selected IS overhead and performance metrics to the

operating parameters and factors; and

- investigation of “what-ii” scenarios by allowing a specific configuration, IS task sched-

ule, or management approach.

The above list provides only a general set of goals that should be addressed in a modeling

based evaluation of an IS. However, these objectives are specifically spelled out for a

given 18 and SUT combination as the definition of overhead and perforrnability is

application-specific.

5.1.2 System Level Considerations

In Chapter 4, we defined the scope of an IS and a generic model to identify its

components. It is possible to model an IS that restricts to these modules and services

provided by them. However, one objective of IS modeling is the evaluation of intrusion to

the SUT or target system due to contention for and sharing of system resources between

85

instrumentation system tasks and the target system. This objective can not be

accomplished by modeling an IS in isolation from the target system. The 18 should be

considered a part of the entire system to model the interactions among IS and target

system components. Due to system level considerations, models for the reference 185 are

coupled with the functions of their respective target systems.

5.1.3 Data Flow Patterns

Regardless of the level of sophistication, the overall objective of an IS is to maintain a

steady flow of runtime information from the SUT to the supported IDC(s). A model of the

overall system includes a number of data handling modules that perform one of the

following functions: data collection, processing, reacting, buffering, merging and sorting

of data arriving from multiple source, and consumption of the data by an IDC. Depending

on the level of detail, modeling these components may require the knowledge of data flow

patterns. There are three data flow patterns of interest: independent and identically

distributed (iid) arrivals of instrumentation data samples; bursty arrivals; and correlated

arrivals. We overview these patterns in the following with respect to the levels of detail at

which they are applicable.

5.1.3.1 IID Arrivals

Consider the instrumentation data samples that arrive at an IS buffer at instants of time to,

t1, t2 and so on as shown in Figure 5-1. Then the stochastic process {Xn = "+1 - tn: n>=0}

represents the inter-arrival time of data samples. For analytically solving the model, it is

often convenient to assume that the inter-arrival times {Xn} is independent, and identically

(often exponentially) distributed arrivals.

Considering the arrival patterns to be IID simplifies the analytical solution of the IS model

relying only on the probabilistic calculations. However, this approach is rarely useful from

a practical point of view because it is difficult to prove that the inter-arrival times are

86

Figure 5-1. IID arrivals at an IS buffer.

independent. Therefore, we need to consider other possible arrival patterns that are more

useful in practice. In addition, this approach is applicable when we are interested in low

level details of a particular stochastic process. For instance, number of waiting

instrumentation data samples at in an LIS that are to be forwarded to the ISM regardless of

the application program behavior that generated these data.

5.1.3.2 Bursty Arrivals

In may applications and systems, instrumentation data arrives at a collection stations in

batches (or bursts) of samples. Each burst has an inter-arrival time, which is the time

between the end of burst to the start of the next burst. Other parameters associated with a

burst include the number of arrivals within a burst and duration of a burst. Figure 5-2

shows burst of arrivals at a buffer, where number of samples in each buffer is

deterministic.

X0 X1 x2 X3 XI

$$

0 ti :2 e i. to i ‘

Figure 5-2. Bursty arrivals at an IS buffer.

Bursty arrival pattern are often more realistic than the IID arrivals because establishing

lack of independence between individual arrivals is not trivial. Bursty arrivals are also

87

useful with low-level considerations of the IS behavior and difficult to directly map to a

higher-level operation of the IS. While bursty arrival patterns have been successfully

applied for modeling 110 access patterns to improve file system performance [191], the

approach is not appropriate to model the data arrivals in response to the high-level

operations of an instrumented program. Therefore, in the following subsection, we

consider the correlated arrival patterns that relates the arrival of instrumentation data to the

higher level instrumented program behavior and its interactions with the IS.

5.1.3.3 Correlated Arrivals

Arrival of instrumentation data to an IS buffer is closely related to the functionality of the

instrumented program and the behavior of the IS sensor that collects the data in the SUT.

This is true for both sampling- and event-driven instrumentation approaches. Representing

the high-level behavior of a program as a set of interacting states, including one or

multiple data collection states, is a possible approach to incorporate correlation. For

instance, Figure 5-3 shows an example of an instrumented program that performs two

functions: it computes a result and then multicasts it to a set of other processes.

Instrumentation data activity of an LIS (shown as shaded oval) is related to these two

program activities. If we establish that the “holding time” in each of these states is

independent and exponentially distributed, these states can be considered to form a

Markov chain and an analytical solution of the IS model may be possible. On the other

hand, we can make the 18 model specific to a particular instrumented application by fitting

and parameterizing the distribution of holding times in each of the instrumented SUT state

separately. However, simulation is the only practical approach to solve the 18 model, in

this case.

5.1.4 Metrics

During the initial phase of this research, we tried several performance metrics to suite the

IS evaluation objectives of individual case studies [211,215]. However, experience with

88

O Instrumented application process activity

0 LISactivity

Instrumentation data

corresponding to the

end of computation

Instrumentation data

corresponding to the

end of multicast

Figure 5-3. An example of a correlated pattern of instrumentation data arrivals at an LIS.

these initial case studies and feedback from collaborators on later IS modeling and

evaluation studies resulted in a unified set of three types of metrics for this type of

evaluation:

1. Direct Overhead Metrics: these metrics are related to the utilization of the bottleneck

resource by IS processes. A bottleneck resource is one that has maximum utilization

among all the system resources [117]. Specific metrics belonging to this class may

include: CPU utilization, network bandwidth usage, I/O device utilization, etc.

2. Data Flow Metrics: these metrics provide a quantitative measure of the steady flow of

runtime information from the instrumented processes to the ISM or IDCs. Specific met-

rics related to this category may include: monitoring latency i.e., wall-clock time taken

by a sample to reach IDC after it was generated by a sensor; hold-back ratio i.e., the

ratio of the number of samples received by an IDC to the number of total number of

samples generated by all the distributed sensors in the system; and number of received

trace records, etc.

3. SUT or Target System Intrusion Metrics: these metrics directly or indirectly quan-

tify the impact of instrumentation to the system under test. Some of the metrics belong-

ing to this class include: CPU or other shared rescurce utilization by the application

with and without instrumentation inserted in the program; and application quality-of-

service (QoS) metrics [207]. Note that the uninstrumented case provides a baseline

measure to compare the intrusion using metric values obtained from an instrumented

version of the SUT or target system.

The definitions of individual metrics belonging to each of the above three classes of

metrics fall short of being directly useful for different 18 modeling and evaluation studies.

For almost every case, the analyst has to choose a specific metric from each of the above

three classes, which are best suited to the application at hand. Selection of metrics for the

89

studies of reference 188 is based on three types of metrics presented here. These metrics

are presented in the context of specific case studies in Section 5.5. Notice that in Section

5.5, the specific nature of the metrics is determined only after settling on IS management

issues and the system modeling technique. Only generic nature of the metrics can be

determined early at the time of considering modeling issues, as in this subsection.

Modeling issues discussed in this section are in fact high-level qualitative considerations

before proceeding to the actual development of the model. Clarity of objectives of the

study, consideration of dependences among IS and target system activities, and definitions

of suitable IS performance metrics contribute toward an accurate and careful study that

can provide useful feedback to the developers.

5.2 Instrumentation System Management Issues

Instrumentation system management is necessary to maintain a steady flow of

instrumentation data from the target system to the ISM and IDCs in the presence of system

resource sharing and contention. Steady flow of information is required while keeping the

overhead and intrusion to the target system to a minimum level. There are no generic IS

management policies that can be applied to all measurement-based experiments. Instead,

an appropriate management policy is selected for a particular 18 and SUT combination

based the overhead and intrusion due to that policy. There are two issues that should be

addressed by a management policy: scheduling of IS-related tasks and adaptability of the

IS modules with dynamic states of the target system or SUT.

5.2.1 Scheduling of IS-Related Tasks

18 management involves scheduling instrumentation data collection and forwarding tasks

using a policy, which could be a trade-off between two conflicting requirements:

maintaining a steady flow of runtime information from the target system to down-stream

modules and maintaining low overhead and intrusion to the target system due to IS

90

functions. In case of sensors inside the application processes, the instrumentation data

collection can be scheduled as a periodic or aperiodic process for the cases of sampling-

driven and event-driven instrumentation, respectively. Data collection and forwarding by

the LIS can be scheduled using a variety of policies, such as collect-and-forward or batch-

and-forward policies, which have different implications for IS overhead, intrusion, and

performance.

5.2.2 IS Adaptability

It is possible to manage an IS in response to the time-varying operating conditions of the

target system or SUT and volume of information being generated. This is possible through

an adaptive controller for the 18. Figure 54 illustrates the operation and modules of a

typical adaptive controller that can be used for an IS or a distributed application. The

objective of an adaptive controller for an 18 is to make it exhibit a desired response. The

actual response of the system is observed by sampling this information after pre-

determined discrete intervals of time (i.e., sampling period). This discrete system state and

response information is compared with the desired 18 operating requirements and based

on any discrepancies between the two, the controller decides to take an appropriate action.

This decision is dispatched to the distributed actuators that can directly control the local

application and IS processes. The actuator implements the changes to the system,

application, and IS operating parameters according to the command input from the

controller.

Contrary to the modeling issues presented in Section 5.2, IS management issues are not

generic. Selection of appropriate IS management or adaptation policy usually requires

domain-specific knowledge of system level details of establishing a runtime

instrumentation flow path from data sources to IDC(s).

91

r- ———————— 1
Actual response of

I | ‘ I :1: :ypstplication and

Distributed '1m T t ication 9'" L

I actuators I ’ andadrr'.strlaped system I '

I I f. Polling for

| l 3333 $181131},
Desired Command in

oitheappmmlicationm p‘“ Iocaibufiers
and the system I I

“39' Adaptive control I — Instrumentation

and decision-making I Sampll of 3N9")

I mm...
L _ _Ad3ptlle c_t'i_ntrgle1_ _ J ahaptive controller

Figure 5-4. A generic model of an adaptive controller for managing an IS.

5.3 Resource Occupancy Modeling

The survey of computer system modeling techniques presented in Section 2.4 concluded

that the tractability of solving a model depends on the complexity of the system. Since an

objective of IS modeling is to provide an early feedback to the developers, it is important

that model solution should be tractable. Nevertheless, interactions among IS and target

system activities that contribute toward the complexity of the model cannot be ignored for

the sake of analytically tractable solution. Thus a modeling approach that can compromise

the conflicting requirements of tractability and accuracy of representing system behavior

is desirable.

Our work in the area of instrumentation system modeling resulted in a novel approach of

considering the contention for and sharing of system resources among various processes,

termed as Resource OCCupancy (ROCC) modeling [214]. This method is suitable for

parallel and distributed systems with multiprocessing and multithreading support to allow

multiple processes, threads, and users to share the computing resources on the same node.

The ROCC modeling approach is particularly suitable for evaluating the intrusion of an IS

to the target system because processes belonging to both types of systems share the

computing resources, such as CPU, IIO, network, shared bus, display, and other

specialized devices interfaced to the system.

92

Unlike usual stochastic models, the ROCC model does not rely on the assumption of

independence workloads (i.e., processes). Instead, it fully supports complex interactions

and inter-dependences among workloads to closely model the actual behavior of target

system and IS processes. This is an important feature of the ROCC modeling because any

analysis based on the assumption of independent workloads cannot lead to reliable results

beyond “back-of-the—envelope” calculations.

A ROCC model for an IS and target system combination is based on four components:

resources, requests, management policies, and interacting workloads. Figure 5-5 presents

an example of a ROCC model for a system node with four resources being shared by three

processes via resource occupancy requests. The figure also illustrates the interactions

among the processes. Additionally, processes may be synchronized with the resources or

be blocked due to a swamped system resource. Such interactions with the resources are

indicated by dotted lines from resources to the processes.

Interacting workloads Resource System resources being

Interaction

messages

r--- Process

.......... ’ A

I I r' ‘P

I l I

: l I I,

I""l"L‘;! e

g l

: l

}----I----- Process

L— C

Figure 5-5. A Resource OCCupancy (ROCC) model consisting ofshared resources, occupancy

requests, management policies, and interacting workloads.

93

5.3.1 Components of a ROCC Model

Before applying ROCC modeling technique to an IS, it is essential to understand the

details about individual components of a ROCC model. The four components of the model

are elaborated in the following subsections.

5.3.1.1 Resources

In general, a computing system can be considered as a collection of resources that can be

exploited to perform useful work for the users. These resources can be used by a single

process or can be shared by several processes belonging to multiple users, depending

mainly on the level of sophistication of the operating system [194]. Since state-of-the-art

operating systems support multiprogramming and multithreading, we consider the

resources to be shared among multiple user and system processes. Exclusive use of

resources by a single user or process can be handled as a special case of the shared

resource scenario in ROCC modeling.

In addition to sharing of system resources from the operating system perspective, state-of-

the-art computer architectures are based on hardware level sharing of resources. Examples

of hardware level resource sharing are pipelining and caching [102]. However, we cannot

consider resource sharing at such low level of details because it will be almost impossible

to collect measurements related to pipeline and cache states without using specialized

hardware monitoring features available only on a few processors. These measurements are

necessary to parameterize the ROCC model. Therefore, we restrict to the operating system

level resource sharing, which requires comparatively simple measurements for

pararneterization purposes using commonly available monitoring and resource usage

functions of the operating system.

For the application of ROCC modeling technique to an IS, resources are shared among

(instrumented) application processes, other user and system processes, and IS processes.

94

The exact nature of IS processes depends on 18 design and synthesis. In some cases,

sensors and LIS are implemented as separate processes while others may have an LIS

embedded in each instrumented application process as a separate thread. However,

regardless of these differences, a set of system resources can be identified, which is used

either by the application processes, IS processes, or both (i.e., shared among them).

5.3.1.2 Requests

A request is defined as an abstraction, through which a process can occupy a resource to

accomplish useful work. A request is similar to a job submitted by an interactive terminal

workload to a time-sharing computer system [4,106,115,117]. However, in the case of a

ROCC model, there is no think time involved. A process generates a request to a resource;

waits for the completion of the request or continues to generate subsequent requests,

depending on workload characterization; and interacts with other processes as required by

the workload characterization.

Requests are demands from different types of processes (workloads) to occupy the system

resources during the execution of an instrumented application program. A request to

occupy a resource specifies the amount of time needed for a single (coarse-grain)

computation, communication, or NO step of a process. We call this time as occupancy time

of a resource due to a particular request. The occupancy times are often non-deterministic

and can be characterized by an appropriate probability density function (pdf). Such

characterization can be used for analytical or simulation-based evaluation of the model.

The nature of a request is specified by the workload characterization for the ROCC model.

We address this issue in Section 5.4.

95

5.3.1.3 Management Policies

System resources are occupied by the requests according to the management policies

followed by the resources. These management policies are often dictated by the operating

system for accomplishing different goals, such as fair scheduling of a number of

processes, obtaining high throughput, or reducing the response time. Emerging standards

for operating system interfaces allow the user processes to handle system resource

scheduling to a limited extent [97]. Therefore, management policies can also determine

the sequence of resource usage by different processes and interaction or synchronization

with other processes.

The goal of a management policy involves scheduling of system resource to fulfill the

occupancy request of the processes. We identify a series of coarse-grained states to

characterize each process, their dependences on the states of other processes, and

occupancy requirements corresponding to each state.

5.3.1.4 Interacting Workloads

In addition to generating resource occupancy requests, a process in a ROCC model can

interact with other processes. Taking interactions among processes into account addresses

at least two aspects of multiprogramming: process synchronization and blocking. Multiple

processes or threads require synchronization to force an explicit sequence of operations or

order of accessing shared data structures. Different types of synchronization primitives

include: mutual exclusion locks, semaphores, and barriers. Behavior of the’processes that

participate in these synchronization operations depend on one another and cannot be fully

characterized in isolation. Message passing among processes may result in blocking of the

sender. For instance, if two Unix processes interact using a pipe, the sender is blocked

when the pipe becomes full to its capacity. This behavior is particularly worth considering

for IS processes or threads that forward data to other down-steam modules in the

96

information flow path; intrusion of a sensor or LIS to the target system is affected due to

this type of blocking.

Consideration of interacting workloads distinguishes a ROCC model from other computer

system modeling approaches. Many workload models can adequately consider a single

workload but try to deal with multiple workloads as a collection of identical workloads

without any dependences among one another [37,38,45,231]. This approach can provide

approximate results but may entirely overlook potential performance bottlenecks due to

workload interactions, such as synchronization and blocking.

5.3.2 Characterization of the Queuing Network

The ROCC model is a queuing network. Depending on the workload characteristics, it can

be an open or a closed queuing network. Often, it is not possible to characterize a ROCC

model as an open or closed network because it works as a closed network for some

workloads and open network for the others. Usually under application workload, the

ROCC model is viewed as a closed network because after finishing one request the

corresponding application process generates a subsequent request for the same or a

different resource. The IS workloads that periodically schedule their data collection and

forwarding tasks can make the ROCC model appear as an open queuing network. A

request from an LIS may result in forwarding data sample(s) to the ISM; requests from the

ISM may result in initial processing and forwarding of data sample(s) to an IDC; and

requests from the IDC may result in the consumption of data sample(s), which is

equivalent to an exit from the queueing network. Therefore, we consider that a ROCC

model to be a hybrid of both open and closed queueing networks.

5.3.3 Dealing with Concurrence

So far in this section, we have restricted the scope of our discussion of the ROCC

modeling technique to a single node. However, an IS for a parallel or distributed system is

97

a concurrent system itself and resides on multiple system nodes. The ROCC model can be

extended for multiple nodes through interconnection resources (e.g., a network or a bus),

requests to occupy interconnection resources (e.g., messages, packets, cells, flits, etc.),

management policies for using the interconnect (e.g., ethernet or switch characteristics,

protocols, etc.), and interacting workloads (e.g., collisions, stalls, deadlocks, etc.).

As an example of ROCC model functionality for a concurrent system, consider that the

workload characterization dictates one process to pass a message to another process on a

different node. The sender requires CPU time corresponding to the system call overhead

for sending a message. Therefore, it composes and issues a CPU occupancy request and

occupies the CPU according to the scheduling policy enforced by the operating system.

After this request is serviced by the CPU, the sender process composes a network

occupancy request and puts it at the tail of the network queue. If the message send

operation is asynchronous, the sending process can continue its work by generating

subsequent resource occupancy request; otherwise it will remain inactive until the

message is received by the receiving process on another node. The network handles the

occupancy request according the network bandwidth, switching characteristics, and

protocol being used by the system. After the request has received the required occupancy

time (not including the waiting time in the queue), the network prompts the receiving

process residing at the receiving node about the arrival of a message. The receiving

process composes a CPU occupancy request corresponding to the system overhead for

retrieving a message from the network interface buffer. After this request is serviced by

the local CPU, the message is considered to have been received. We can consider any

blocking due to a swamped network resource in the path of a message.

Using the above technique, the ROCC model can closely follow the message-passing

behavior of the actual system. Therefore, it can model an entire parallel or distributed

system without over-simplifying the characteristics of the actual system.

98

It is clear that the ROCC modeling technique is depends on a workload characterization

that is simple to carry out yet sophisticated enough to capture the complex dependences

among interacting workloads. The number and type of shared resources also differ for

each target system and IS combination. The behavior of the application, 18, and other user

or system processes is determined through workload characterization, which is considered

in Section 5.4.

5.4 Workload Characterization

Workload characterization is the most time consuming aspect of a typical system

modeling effort. Large volumes of low-level measurement data are used to identify

clusters of interesting system activity and transitions from one type of activity to another

using a representative mix of programs (for instance, see the studies conducted by

Dimpsey et al. [47] and Hughes [94]). Current software technology and rapid-prototyping

tools have greatly reduced the turn around time of a software system development project;

therefore, a prolonged workload characterization process may yield accurate results but

those results may no longer be useful for the developers. In the context of ROCC

modeling, a workload characterization effort with following features is desirable to

evaluate the performance at an early stage of development:

1. short turn around time;

2. applicability to only a specific application instead of targeting generality; and

3. less dependence on low-level measurement data and more dependence on the knowl-

edge about the application-domain. ’

This type of workload characterization is increasingly becoming popular for performance

prediction studies that use a simulation model, which is pararneterized for a particular

parallel or distributed system using only high-level, coarse-grained measurements

[17,181,231].

99

In order to model the behavior of an application, we first divide it into smaller and

manageable modules that may have complex patterns of interdependence. A particular

module of an application can be a subroutine or a series of high-level functions

distinguished by their requirements of occupying specific system resources. These coarse-

grain modules may be available as prototypes at an early stage of system development. For

each module, we consider two aspects of its behavior relevant to a ROCC model of the

system:

1. system resources that the module occupies to perform its specific function; and

2. its interactions with other modules belonging to a process in the same or a different

class, such as application, 18, user process, etc.

A system resource is occupied by a process, corresponding to a coarse-grain module via

issuing an occupancy request to the resource, indicating the length of time for which it

needs to occupy the resource. Resources may use their own management policies to

service these requests, such as first-come first-server, unequal priorities, preemption, etc.

A module can interact (asynchronously) with another by sending a message to the other

module. Interactions among modules are analyzed through the knowledge of the

application. Messages are passed from one module to another using message queues. Such

messages do not need to occupy any system resources.

This workload characterization strategy is best explained by its application to IS modeling

of reference 185 in Section 5.5. While modeling of Paradyn and JEWEL 18 benefits from

the coarse-grain workload characterization strategy, the PICL IS study is based on

conventional workload characterization techniques.

5.5 Results: Modeling and Management of Reference 185

In this subsection, we apply the IS modeling methodology developed in Sections 5.1—5.4

to the reference 185. In each case, we consider modeling and management issues before

developing a model and characterizing workload for it. After workload characterization,

100

we decide IS performance metrics of interest that will be used at the evaluation stage. As

the study of each reference 18 has specific objectives, we consider each reference system

in a separate subsection.

5.5.1 PICL IS

Modeling of PICL IS is the first application of the ideas promoted by this research.

Compared to the later studies including Paradyn and JEWEL ISs, we did not directly

collaborate with the PICL IS developers. The primary objective of the study was to

provide a proof-of-the-concept for the ideas of early modeling and evaluation of

instrumentation systems. At that time, we had not worked out the ROCC modeling

methodology, therefore, the modeling and workload characterization for the PICL IS case

uses conventional techniques. However, the results of this study are still relevant and

extended by others [74], therefore, it is beneficial present it here.

5.5.1.1 IS Modeling Issues

In addition to its primary function as a portable communication library, PICL is often used

for instrumenting the execution of parallel programs on distributed-memory parallel

systems. In order to instrument an application program, PICL library functions are

inserted in the program by the user before compilation. During program execution, calls to

these functions generate instrumentation data in a particular event record format and log

the data in a local buffer of each node. The user specifies the size of the buffer. These

buffers are typically flushed at the end of program execution and merged into a single trace

file at the host system.The objectives of modeling PICL IS are:

l. to optimize the use of limited resources at each nodes of the parallel system, such as

local memory; and

2. to minimize the adverse effects of excessive intrusion due to trace data flushes that

occur during the execution of long-running instrumented programs.

101

To effectively meet these objectives, concurrent IS is modeled to evaluate the merits of

various management policies (presented in Section 5.5.1.2). The results of this modeling

and analysis effort will have direct utility to system software designers who can

incorporate appropriate management policies in the runtime environments.

5.5.1.2 IS Management Issues

Management of PICL 13 is essential for a long-running program because local buffers will

overflow with the immense amount of instrumentation data generated during program

execution. By default, data collection stops after a buffer becomes full. Local buffers need

to be flushed to allow continued data collection. We have identified two management

policies for the PICL IS: Flush One bufier when it Fills (FOP) and Flush All the buflfers‘

when One Fills (FAOF). Neither of these is the default policy; and only FOF is actually

supported as a PICL option, however, other IS developers have favored FAOF. The

objective of modeling and evaluating this IS is to analyze the overhead of each policy and

guide in the selection of an appropriate policy.

5.5.1.3 IS Model

We consider a distributed-memory parallel system consisting of P processors that have

been allocated to execute a particular instrumented program. The concurrent IS consists of

a set of trace data buffers, one at each processor, as shown in Figure 5-6. The performance

trace data arrives, in response to the occurrence of an event ofinterest, at a local processor.

Possible events of interest include communication, computation, local memory references,

input/output device references, and a number of other program-specific activities. Ensuing

trace data arrivals are stored in the local buffers of the corresponding processors as trace

records. The number of arrivals stored in a local buffer of a processor i at a time t during

the execution of a program will be denoted by Q,(t). Suppose that the capacity of each

local buffer is 1 records and it can not allow any further arrivals of new trace records once

this limit is reached. The inter-arrival times at each of these buffers are assumed

102

independent and exponentially distributed with rate or. The data in local buffers need to be

transferred dynamically to the host system when the buffers become full. Storage at the

host system is the next level of trace data storage hierarchy after the local buffers. This

level is a larger buffer in the main memory of the host and is called the main bufi’er. At the

end of the program, all the trace records must be transferred to the main buffer. The main

buffer, in turn, may also have to be flushed to the subsequent level of the storage hierarchy,

for example, a disk. The storage capacity is assumed to increase as we go further in the

storage hierarchy. The scope of the model for this PICL 18 study is restricted only to the

local buffers, but it can readily be extended to higher levels of the storage hierarchy.

Concurrent Computer System

Processors

—>Program Resulm

Trace records

Dlstributed instrumentation S - m

Inst. - um Manaoer

v

Main trace ; ; Disk-based trace

data butter . data buffer

_ _

= =
Trace data pages ———>= = ‘— Trace data

. segments

Front-End Host System

Figure 5-6. Model for a concurrent program instrumentation facility.

5.5.1.4 Workload Characterization

Since for this case study, we are considering the lower-level IS details by focusing on the

arrivals of individual tracer records, we assume that these arrivals are independent and

exponentially distributed to simplify the analytical solution of the model. In order to

justify the assumption of exponential inter-arrival times, we examined time-stamped PICL

trace records from a particular node of nCUBE-2 system. Figure 5-7 shows the frequency

103

distribution histogram of inter-arrival times between successive records during a particular

instrumented execution. This frequency distribution is compared to the exponential

Probability Density Function (pdj) by drawing the histogram such that area under the

histogram is one. It can be observed that exponential inter-arrival times is a reasonable

assumption.

. x ‘04 T

7 J—

o u

i ._ \

s .. .
5

% 3W ‘
a:

2 n

1 u

3o _ H 500 _1oR _ 1500

Inter-arrival Times (nierosec)

Figure 5-7. Histogram of inter-arrival times for PICL trace records at a particular

nCUBE-2 node.

For the purpose of trace data transfer, we assume that the direct network connecting all the

processors is worm-hole routed. Therefore, the latency of data transfer baween any two

nodes is independent of the distance between them [142]. Moreover, sufficient number of

communication channels is available between each pair of neighboring nodes, so that the

possibility of any channel contentions is negligible. We also assume that the trace data are

transferred to the host system through specific I/O processors that are accessible from

processing nodes through the direct network.

5.5.1.5 Performance Metrics

With the queuing model for PICL IS, we can perform a wide range of experiments using

different parameters and calculate various metrics in order to evaluate 18 performance

104

under alternative management policies. Two of the metrics selected for comparing the

FOF and FAOF policies are:

1. length of the time interval after which a local buffer becomes full and needs to be

flushed (trace stopping time); and

2. ratio of the number of flushes to the number of arrivals for a local buffer during a pro-

gram’s execution (frequency ofbufierflushes).

These metrics represent the lower level quantitative considerations of IS behavior. Each

metric, its method of calculation, and its interpretation are summarized in Table 5-1.

Further evaluation using these metrics yields higher level feedback to aid in design

decisions.

Table 5-1. Metrics for evaluating the PICL IS management policies.

Metric Calculation Interpretation

Trace stopping Stochastic analysis of arrivals to A higher value is desirable

time local buffers

Flushing fre- Regenerative nature of buffer filling A higher value indicates greater

quency stochastic process overhead to the user program

5.5.2 Paradyn IS

Modeling of Paradyn IS was carried out in conjunction with the Paradyn group at

University of Wisconsin and University of Maryland [218]. The idea of ROCC modeling

emerged as a consequence of this case study. In this subsection, we present modeling and

management issues, the ROCC model for Paradyn IS, workload characterization for the

ROCC model, and 18 performance metrics of interest to this study.

5.5.2.1 IS Modeling Issues

We apply the structured IS development approach that we presented in Chapter 4 to the

instrumentation system of the Paradyn parallel performance measurement tool. The

105

objectives of Paradyn IS modeling include: comparing alternatives for IS management

policies and configurations; evaluating IS overheads due to resource sharing; identifying

any IS-induced performance bottlenecks; and determining desirable operating conditions

for the IS.

The Paradyn 18 can be represented by a queuing network model to capture system-level

details, as shown in Figure 5-8. It consists of several sets of identical subnetworks

representing a local Paradyn daemon and application processes. We assume that the

subnetworks at every node in the concurrent system show identical behavior in terms of

sharing local resources during the execution of an SPMD program. Figure 5-8 highlights

the performance data collection and forwarding activities of a Paradyn daemon on a node.

These IS activities are central to Paradyn’s support for on-line analysis of performance

bottlenecks in long-running application programs. However, they may adversely affect

application program performance, since they compete with application processes for

shared system resources.

pi 1'

p1 . . - p"'1 Local application processes (n)

pi I I on node i

Instrumentation data butters

_ _ _ provlded by the kernel (Unlx

— — — P1998)

Datacollectlon

by e Pd

:n--\n - -- lemmeOflOpOI’flOdO

.6;W...;M..

Pd Network delays are

by a _ represented by the arrivals

— to a single server buffer to

— allow random sequence of

arrivals from different Pct

[gain Paradyn processl Main Paradyn process

Figure 5-8. A model for the Paradyn IS with considerations of overall, system-level details. The

distributed system consists of 1’ nodes and each node may have up to n instrumented

application processes.

Although Figure 5-8 adequately represents the operation of the Paradyn IS, the level of

details captured by it are not sufiicient for evaluating alternative configuration options and

106

management policies. In particular, the data flow is correlated with the instrumented

application behavior and resource management enforced by the operating system.

Therefore, the ROCC model for Paradyn IS (presented in Section 5.5.2.3) adequately

captures the required level of detail to meet the objectives of this study.

5.5.2.2 IS Management Issues

Two possible options for a Paradyn daemon to schedule data collection and data

forwarding at a node are collect-and-forward (CF) and batch-and—forward (BF). As

illustrated in Figure 5-9, under the CF scheduling policy, the Paradyn daemon (Pd)

collects a sample from an instrumented application process and immediately forwards it to

the main Paradyn process. Under the BF policy, the Pd collects a sample from the

application process and stores it in a buffer until a batch of an appropriate number of

samples is accumulated and then forwarded to the main Paradyn process.

~ fl To main

,, Paradyn

L ~«——»o

Processes

Buffer siZe = 1

(a) CF Policy

To main

IT“ __ Paradyn

. , i . :—+:i|_—~.—~
Processes

Buffer size > 1

(b) BF policy

Figure 5-9. Two policies for scheduling data collection and forwarding: (a) collect-and-

forward (CF) and (b) batch-and-forward (BF).

In case of using Paradyn IS on a Massively Parallel Processing (MPP) system, we consider

two options for forwarding the instrumentation data from the Paradyn daemon to the main

Paradyn process: direct forwarding and binary tree forwarding. Under the configuration

107

for direct forwarding, a Paradyn daemon directly forwards one or multiple samples (under

the CF and BF policies, respectively) to the main Paradyn process. Under the binary tree

forwarding scheme, the system nodes are logically arranged as a binary tree; every

Paradyn daemon running on a non-leaf node receives, processes, and merges the samples

or batches from Paradyn daemon running on its two children nodes. Figure 5-10 illustrates

the two configurations.

Paradyn

C Pd 3 CPd) Ii-

(a) Direct forwarding

Paradyn

(b) Binary tree forwarding

Figure 5-10. No configurations for data forwarding for an MPP implementation of the

Paradyn IS: (a) direct forwarding and (b) binary tree forwarding.

5.5.2.3 IS Model

This subsection introduces the application of the ROCC model to isolating the overheads

due to non-deterministic sharing of resources between the Paradyn IS and application

processes [214]. Figure 5-11 depicts the ROCC model for Paradyn IS with local and

global levels of detail. The local level of detail considers only one system node and the

global level of detail considers all of the system nodes. The ROCC model includes two

types of resources of interest at a node for the Paradyn IS: CPU and network. Each CPU is

being shared by three types of processes on every node: application, IS, and other user

processes.

108

Triggering of subsequent request from the corresponding process

Timeout

Serviced CPU requests

from the other processes

. . “I I cpu -LL. . .l“ Imm—t

Processes running at a

particular system node that

Wfigwm“momg occupying Network Requests

(a) ROCC model for a particular system node

instrumentation data forwarding (in case of binary tree configuration)

ROCCmOdOIbrCPU

MW occupancyatanode

I _fl

noccmutorceu .

-. ‘oowpancyatanode‘ ' ' 'I II I “M '

I

I

I

ROCCmodeliorCPU

occupancyatanode

(h) ROCC model for the entire system

Figure 5-11. The resource occupancy model for the Paradyn IS with (a) local and 0’) clubs]

levels of detail.

Due to the interactions among different types of processes at the same node and IS

processes at multiple nodes, it is impractical to solve the ROCC model analytically.

Therefore, simulation is a natural choice. The execution of the ROCC model for the

Paradyn IS relies on a workload characterization of the target system, which in turn, relies

on measurement-based information from the specific system.

109

5.5.2.4 Workload Characterization

The workload characterization for this study has two objectives: (1) to determine

representative behavior of each process of interest (i.e., application, IS, and other user/

system processes) at a system node (see Section 5.5.2.4.1); and (2) to fit appropriate

theoretical probability distributions to the lengths of resource occupancy requests

corresponding to the states of each of these processes (see Section 5.5.2.4.2).

5.5.2.4.] Process Model

We consider the states of an instrumented process running on a node, as illustrated by

Figure 5-12, which is an extension of the Unix process behavior model. After the process

is admitted, it can be in one of the following states: Ready, Running, Communication, or

Blocked (for U0). The process can be preempted by the operating system to ensure fair

scheduling of multiple processes sharing the CPU. After specified intervals of time (in

case of sampling) or after occurrence of an event of interest (in case of tracing), such as

spawning a new process, instrumentation data are collected from the process and

forwarded over the network to the main Paradyn process via a Paradyn daemon.

Forward data

to the main process

done .° 9. 7

Wipg

. nte

Admit dispatch

Ready L Running '

time out

3%?“ e "a"Iafie release

m a

Figure 5-12. Detailed process behavior model in an environment using an instrumentation

system.

110

In order to reduce the number of states in the process behavior model and hence the level

of complexity, we group several states into a representative state. The simplified model,

shown in Figure 5-13, considers only two states of process activity: Computation and

Communication. This simplification facilitates obtaining measurements without any

special operating system instrumentation. This characterization also considers the

interactions among states across different processes. For instance, an instrumented

application process interacts with the local Paradyn daemon process either by forwarding

a sample to it or by blocking (via the operating system) if the pipe is full. The

Computation and Communication states require the use of the CPU and network

resources, respectively. The Computation state is associated with the Running state of the

detailed model of Figure 5-12. Similarly, the Communication state is associated with

Figure 5-12’s Communication state, representing the data collection, network file service

(NFS), and communication activities with other system nodes. Measurements regarding

these two states of the simplified model are conveniently obtained by tracing the

application programs. The model provides sufficient information to characterize the

workload when applied in conjunction with the resource occupancy model.

Paradyn daemon process Instrumented application process

*..'""'°...."£;°":.‘ + Isample iomardag,

pipe is l _

Figure 5-13. A process model based on alternating computation and communication states

of two types of interacting workloads.

Figure 5-14 shows the ROCC simulation model for the process model presented in Figure

5-13. Although the interactions among processes as well as processes and resources are

handled by message-passing queues, the occupancy requests for the system resources are

treated separately from the interactions among the processes. The figure shows only the

instrumented application process generating resource occupancy requests for the clarity of

presentation; in fact, both application processes and a Paradyn daemon can concurrently

send the occupancy requests during a ROCC model simulation.

D Process in locus

I .
Interaction message I Quantum finished I Interacting process

_ _ ' Agfgccggsm \J queueCpuln ’

' ., G»

queueNetworkln

I
queuePdln I ...,

Pd

'- +|H|| process I

I Occupancy requests

r.

I

I

I

I

interaction among processes I Resource sharing

1

Figure 5-14. The ROCC simulation model corresponding to the alternating process model,

shown in Figure 5-13.

5.5.2.4.2 Distribution of Resource Occupancy Requests

Trace data generated by the IBM SP-2’s AIX operating system tracing facility are the

basis for the workload characterization. We used the trace data obtained by executing the

NAS benchmark, pvmbt, on the SP-2 system [178]. Table 5-2 presents a summary of the

statistics for CPU and network occupancy by various processes.

Table 5-2. Summary of statistics obtained from measurements ofNAS benchmarkpvmbt on an

SP-2.

Process Network Occupancy

Type CPU Occupancy (microseconds) (microseconds)

Mean St. Dev. Min. Max. Mean St. Dev. Min. Max.

Application 2,213 3,034 9 10,718 223 95 ' 48 5,241

process

Paradyn 267 197 11 6,923 71 109 31 816

daemon

PVM 294 206 9 1,662 58 59 36 5,169

daemon

Other 367 819 8 9,746 92 80 8 198

processes

Main 3.208 3,287 11 10,661 214 451 46 4,776

Paradyn

process

We apply standard distribution fitting techniques to determine theoretical probability

density functions that match the lengths of resource occupancy requests corresponding to

112

the states of the processes [41,46]. Figure 5-15 shows the histograms and probability

densityfunctions (pde) for the lengths of CPU and network occupancy requests (in (a) and

(b), respectively) by an application (NAS benchmark) process.

Quantile-quantile (Q-Q) plots are often used to visually depict differences between

observed and theoretical pdfs (see Law and Kelton [116]). For CPU requests (Figure 5-

15a), the Q-Q plot of the observed and lognorrnal quantiles approximately follows the

ideal linear curve, exhibiting differences at both tails, which correspond to very small and

very' large CPU occupancy requests relative to the CPU scheduling quantum. Despite

these differences, the lognorrnal pdfis the best match. For network requests by application

processes (Figure 5-15b), an exponential distribution yields the best fit. Table 2

summarizes the distribution fitting results for various processes; the inter-arrival time of

requests to individual resources is approximated by an exponential distribution.

5.5.2.5 Model Parameterization and Validation

The workload characterization presented in the preceding section yields parameters for the

ROCC model for the Paradyn IS, as listed in Table 5-3. Note that exponential(m) means an

exponential random variable with mean inter-arrival time of m microseconds, and

lognonnal(a, b) means a lognormal random variable with mean a and variance b. These

parameters were calculated using maximum likelihood estimators given by Law and

Kelton [116].

In order to validate the ROCC simulation model and its pararneterization, we simulated

the same case that was measured empirically on an IBM SP-2 system. Table 5-4 compares

the CPU time for the NAS benchmark and Paradyn daemon during the execution of the

program using measurement and simulation. It is clear that the simulation model-based

results follows the measurement-based results. Therefore, using the estimated parameters,

the model can be simulated to answer “what if” questions.

113

.

V

O
b
s
e
r
v
e
d
q
u
a
n
t
i
l
e
s

issue

-. ldealtit ’

-- Actualquantiles ,’

e

Lengths of CPU occupancy requests (microseconds) Lognorrnal quantiles

(a)

m.

' _' - ldealllt

., Exponential]. -— Acmalquantlies

+ Weibul “W

-0- Lomormel I a

5 w-

gm.

g snee- 'q,.-~""' '1

“IN ,,,,," """" ’

an ”I” ”30 03° N m ‘70' in to?» 1.?» subs

Lengthsoinehsorkoccupencyrequests(microseconds Exponential quantiles

(b)

Figure 5-15. Histograms and theoretical pdfs of the lengths of (a) CPU and (b) network

occupancy requests from the applicationyrocess. Q-Q plots represent the closest theoretical

butions.

Table 54. Comparison of measurements ofNAS benchmarkpvmbt on an SP-2 with the

simulation results of the same case.

Application CPU time

Type of experiment (sec) Pd CPU time (sec)

Measurement based 85.71 0.74

I Simulation model based 87.96 0.59

114

Table 5-3. Summary of parameters used in simulation of the ROCC model. All time parameters are

in microseconds. The range of inter-arrival times for the Paradyn daemon corresponds to varying

the rate of sampling (and forwarding) performance data by the application process.

Parameter Type Parameter Range of Values

Configuration Number of application processes per node 1-32 (typical 1)

Number of Pd processes per node 1-4 (typical 1)

Number of CPUs per node 1

Number of nodes 1-256 (typical 8)

CPU scheduling quantum (microseconds) 10,000

Application Length of CPU occupancy request Lognormal (2213, 3034)

Process Length of network occupancy request Exponential (223)

Paradyn Daemon Length of CPU request Exponential (267)

Length of network request Exponential (71)

Inter-arrival time 5,000—50,000 (typical 40,000)

PVM Daemon Length of CPU request Lognormal (294, 206)

Length of network request Exponential (58)

Inter-arrival time Exponential (6485)

Other Processes Length of CPU request Lognormal (367, 819)

Length of network request Exponential (92)

inter-arrival time of CPU requests Exponential (31485)

Inter-arrival time of network requests Exponential (5598903)

5.5.2.6 Performance Metrics

Two performance metrics are of interest for this study: average direct overhead due to IS

modules and monitoring latency of data forwarding. Average direct overhead represents

the occupancy time ofa shared system resource by the IS modules, which is averaged over

all the system nodes. A lower value of the direct overhead is desirable. Direct overhead

quantifies the contention between application and IS processes for the shared resources on

a particular node of the system. Monitoring latency has been defined by Schwan et al. as

the amount of time between the generation of instrumentation data and its receipt at a

' logically central collection facility (in our case, the main Paradyn process) [71].

Monitoring latency impacts the main Paradyn process, since a steady flow of data samples

from individual system nodes is needed to allow the bottleneck searching algorithm to

work properly. In order to quantify the IS intrusion to the application, we calculate the

115

application CPU utilization per node, with and without instrumentation. Malony et al.

refer to this metric as time perturbation [125]. Performance metrics are summarized in

Table 5-5.

Table 5-5. Metrics for evaluating the Paradyn IS evaluation.

Metric Calculation Interpretation

Average direct CPU Simulation of the ROCC model A lower value means lower instru-

overhead due to IS mentation overhead '

modules

Monitoring latency Simulation of the ROCC model A lower value is desirable for a

per received sample steady flow of runtime information

to the main Paradyn process

Average application Simulation of the ROCC model A lower value is desirable as it

CPU utilization reflects lower intrusion to the appli-

cation

5.5.3 JEWEL IS

Modeling of JEWEL IS is performed in the context of resource management for a real-

time video conferencing application [219]. One of the motivations behind this study was

to explore the potential application of the ROCC modeling technique in the area of real-

time adaptive control. The results of this study show the promise of the technique for

dynamic resource management problems for distributed real-time systems.

5.5.3.1 IS Modeling Issues

We intend to accomplish two objectives through modeling and evaluation of the JEWEL

IS for video conferencing application:

1. provide early feedback to the system developers about the intrusion and overhead of

alternative IS configuration options under different operating conditions; and

2. suggest policies for adaptively controlling the IS to meet domain-specific requirements.

Selection of a particular IS configuration based on modeling and evaluation process can

ensure minimum overhead to the target application but cannot guarantee meeting domain-

116 '

specific requirements. The system can be adaptively controlled to meet local or global

requirements that ensure desired operation.

The level of detail considered for this evaluation includes the behavior of the individual

processes running on a system node, their interactions with one another, and their

interaction with the IS processes. As in case of Paradyn IS, we account for interactions

among workloads by representing each type of process as a series of inter-dependent

coarse-grain states.

5.5.3.2 IS Management Issues

In this subsection, we introduce configuration options and adaptive control policies for the

JEWEL IS, which are of interest from the perspective of our application. Two alternative

configuration options related to data forwarding are: collect-and-forward and batch-and-

forward. The external sensor can be configured to operate in one of two possible modes:

busy-waiting and polling. The JEWEL IS can be adaptively controlled using one 'of two

policies: static polling period adaptation or dynamic polling period adaptation. These

policies can be scheduled in one of two possible manners: centralized or distributed.

These configuration and adaptation alternatives are elaborated in the following:

1. Collect-and-Forward vs. Batch-and-Forward: The current version of the Jewel

external sensor for Unix platforms collects one event record from the shared memory

segment and forwards it to the collector and continues to repeat this procedure. We

refer to this procedure as collect-and-forward (CF) policy. However, it is possible to

customize Jewel components for a specific application; therefore, we model and evalu-

ate a slightly different MDR forwarding policy, called batch-and-forward (BF) policy.

Under the BF policy, the external sensor collects all the outstanding event records from

the shared memory and forwards them as a batch to the collector.

2. Busy-Waiting vs. Polling: The external sensor of the Jewel 18 remains in a busy-wait

state to continuously check the ring buffer in a shared memory segment for the arrival

of new event records. We propose a configuration of the external sensor that periodi-

cally polls the shared memory to collect any outstanding event data. As opposed to the

busy-waiting approach, the polling-driven approach does not require CPU time during

the period between two successive searches for outstanding event records.

117

3. Static Polling Period vs. Dynamic Polling Period Adaptation Policies: We consider

two policies to adapt the Jewel IS behavior according the requirements of video confer-

encing application. Under the static polling period (SPP) adaptation, the period of poll-

ing the shared memory to collect event data is statically specified before the execution

of the instrumented application. Adaptive control system tries to meet the system con-

straints while keeping the polling period fixed or completely turns off the data collec-

tion and forwarding when it cannot meet the constraints. However, it resumes

collecting the event data as soon as it can meet the constraints. Under the dynamic poll-

ing period (DPP) adaptation policy, the polling period increases to the double of its cur-

rent value at an adaptive controller sampling instant of time where the constraints are

not met. Thus the polling period gradually increases until the data collection is (tempo-

rarily) turned off. As soon as the control system can again meet the constraints, the data

collection and polling is turned on. The polling period continues to reduce by half at

observation instants as long as the adaptive controller can meet the constraints. The

controller checks the IS and application states only at discrete instants of time after

each controller sampling period (observation instant). Choice of dynamically changing

the polling period by a factor of two is somewhat arbitrary; our intention is to make

only incremental changes to the polling periods to avoid sudden changes in the applica-

tion and system response. We know one example where IS data collection rate dynami-

cally changes by a factor of two; Paradyn instrumentation system continues to reduce

the volume of collected data per unit of time by half with the passage of time [136].

4. Centralized vs. Distributed Controller: We model and evaluate two configurations of

the adaptive controller: centralized and distributed. In case of a centralized control sys-

tem, all the control decisions are made centrally by the resource manager, which is

located at a logically centralized location in the system. Control decisions are based on

the system state as a whole and implemented at all system nodes as a gang schedule

with the help of resource manager agents. On the other hand, distributed control is

based on making localized decisions by the resource manager agents using the system

state at each node. In this case, the implementation of these decisions is scheduled only

at the local node.

In addition to the above IS configuration, adaptation, and control options, we can consider

the adaptive control and resource management strategies by directly using the controllable

parameters of the application itself (i.e., algorithmically steering it [50]). Although

important, such considerations are beyond the scope of this study.

Real-time video application has timing constraints for the tasks involved in sending and

receiving video frames. It is a requirement of the client to receive and display 30 frame per

second to represent a dynamic scene in real-time. However, the quality (smoothness of

changes) will be lost if the frame rate reduces from this value. Since Jewel IS components

118

share system resources (such as, CPU, network, and 1/0) with the clients and the server,

the quality of service problem may get aggravated if the real-time tasks do not have

adequate laxity. In this scenario, adaptive control of the IS addresses two domain-specific

requirements:

0 IS intrusion to the real-time characteristics of the application (in terms of the frames

processed by a client per second) remains within the specified limit of 30 frames per

second; and

0 direct overhead of the IS to the application (in terms of Jewel sensor CPU utilization)

remains within the user-specified limit.

In order to provide this adaptation, we have to identify a controllable parameter in this

setup of the application, IS, and the resource manager subsystems. We use the polling

period (definition follows) of Jewel sensor as the controllable parameter. Due to the design

of a Jewel external sensor, it is always in a busy-wait state for the arrival of event records

in the ring buffer. We introduce a polling scheme due to which the sensor gives up the

CPU (i.e., sleeps) for a variable polling period. After this period, it (wakes up and) polls

the ring buffer for any newly arrived event records.

An important consideration for the design of adaptive controller components (i.e.,

resource manager and its agents) is the sampling period, which is the time between

discrete observation instants of the current system state derived from the information

delivered by the IS. If the sampling period is too large, several system state changes may

not be “observable” to the controller and it may not be very responsive. On the other hand,

if this period is too small, adaptive controller components can cause excessive overhead.

Our evaluation in Chapter 6 considers the choice of sampling period as a part of the

controller design and provides feedback regarding the choice of this parameter.

In addition to considering potential intrusion to the real-time behavior of the video

conferencing application, impact of the Jewel IS to the resource manager tasks should also

be considered. If the IS cannot deliver runtime information to the resource manager within

119

a pre-calculated limit of time after it was generated by a client or the server (to be defined

as monitoring latency in Section 5.5.3.6), it can cause “oscillations” of the video

application response as the adaptive controller may continue to steer the system from one

nominal point of operation to another in the available space of operating conditions. Jewel

IS should either guarantee delivering the runtime information before this “hysteresis” time

limit expires or discard it. Resource manager design that incorporates certain degree of

hysteresis can make it less sensitive to the transient conditions. However, adaptation of the

IS behavior to maintain a desired monitoring latency is beyond the scope of this paper and

we use the adaptive controller sampling period as available hysteresis limit. Possible

operating conditions for the adaptive controller depend on the types of adaptation

(considered in the following subsection).

5.5.3.3 IS Model

There are three shared resources of interest at each system node: CPU, local X server (i.e.,

graphical display device), and network. Camera that is used by the application server

process to capture the scene is not shared with any other process; therefore, it is not

considered as a part of the ROCC model. System resources included in the ROCC model

are shared among four types of processes at every node: video application client/server

process, resource manger agent, jewel sensor, and system load Visualizer at nodes running

a client or the server. We assume that other user or system processes do not significantly

load the system nodes. In cases where a node is shared among multiple users, we can

easily incorporate the behavior of the user processes through adequate workload

characterization. Lengths of occupancy requests for shared resources and interactions

among processes is addressed in Section 5.5.3.4.

Figure 5-16 presents the ROCC model for the distributed system under study. At every

node, local processes send occupancy requests to the shared system resources according to

the workload characterization (to be presented in Section 5.5.3.4). When a resource

finishes servicing a request, it can trigger the generating process to generate next request

120

for the cases where a process remains blocked until its request is fully serviced. In some

cases, such as requests to the network for sending a message, the requesting process is not

blocked (due to asynchronous sends) and can continue generating subsequent requests

according to its workload model.

Triggering for the next request

r- ———————————————————————————— '1

I Quantum finished I

| Local processes _ CPU I

I Wdeo appl. client) ' I

—§(Res. manager agen) I I

(Jewel sensor) I I

_, ’ ”5"" I I

_ _ _ E99302? Em." ESE“- _ _ .J I

' :3 ll”
. _.

' Quantum finished
‘F——

Local processes _ CPU

(Video appl. client) '

—-b(Res. manager agen) I

(Jewel sensor) I

' I I

._ _ _ Em"29!@m3i_ _ _. .J

Quantumiinlshed

@

 Local processes

C Video appl. server)

V

'——§ C Resource manager) I

(Jewel collector) _----' I

— ’ ”my I

_ _ _ Emflmmnanw_ _ _ .J

Figure 5-16. Resource occupancy model for the video application with real-time adaptive

control and instrumentation.

5.5.3.4 Workload Characterization

There are three types of application processes in the video conferencing application:

server and client processes, a visualizer process local to each client and the server, and

resource manager agent processes on each node of the system. The central resource

manager process runs as an independent process on a separate workstation with the

JEWEL collector process.

121

Server Process: Figure 5-l7(a) shows the behavior of the application server process and

Figure 5-17(b) shows the corresponding components in the ROCC model. Application

server process captures a frame from the camera, displays it locally, compresses the frame,

and multicasts it to all the clients. At each of these stages, it triggers the Jewel external

sensor process to collect and event record and forward it as an MDR to the Jewel collector.

It also triggers a visualizer process that displays the data transfer statistics at the host

workstation. Note that the actual data collection and forwarding is replaced by the

following sequence of occupancy requests and interaction messages under the ROCC

model: (1) an application server process sends a CPU occupancy requests (to charge the

CPU time) for forwarding the event data to shared memory ring buffer; (2) an application

process notifies the external sensor of the arrival of new data by putting a message in its

input queue; (3) when the sensor polls the ring buffer after the current polling period, it

retrieves the message; (4) the sensor charges CPU time through an occupancy request

corresponding the system call overhead to forward an MDR to the collector; and (5) the

sensor requests the network occupancy to (asynchronously) sending the MDR to the

collector. These activities are not an exact replica of the actual process behavior but

capture all the resource usage demands and dependences among the processes. Therefore,

this workload model is a trade-off between high accuracy and simplicity.

Using Solaris OS-supplied high-resolution timing functions, we measure the occupancy of

system resources corresponding to the server process states (illustrated in the Figure 5-

17(a)) by running the server process on a Sun Ultra-l platform for several hours. Our

objective is to fit an appropriate theoretical distribution that best describes occupancy

requirement of the system resources in each state. Figure 5-18 presents the normalized

histograms (such that the area under every histogram is one) and exponential, weibull, and

normal probability density firnctions (pdf). We use the Kolmogorov-Smimov (K-S)

goodness offit test statistic to quantitatively measure the differences between a theoretical

pdfand an observed pdf. The K-S test is based on a statistic, called the K-S statistic, which

is equal to the absolute value of the largest difference between an observed and a

122

Application

VIsualIzer

I

Trigger

a!" JEWEI

SQHSOI

D Process in locus

- Interacting processes

1

Interaction message I Quantumtinished

r- — - - ‘ Application
I _ _ _ server \4 queueCpuIn

I I L’ .__,
I I l queue—oepIay'Tn"

l queueJewelSensorin 3""

I I Jewel queueNetworkln

:m»
| WAppVIsuaiizerln WW

 :flfl] ApplicaIIon

L - +

Interaction among processes I Resource sharing

(b)

Figure 5-17. Characterization of the server process of the application. (a) Process

behavior and (b) ROCC model of the server and other interacting processes.

theoretical pdf. Thus, a larger value of the K—S statistic for a particular distribution

indicates a poor fit. See Law and Kelton [116] for further details about K-S goodness of fit

test.

The K-S statistic has minimum value for the normal pdf, thus the normal pdf is a relatively

closer match to the measured data compared to the weibull and exponential pdfs.

Therefore, we characterize the resource occupancy requirements of the server process

states using a normal distribution whose parameters are determined from the measured

data using maximum-likelihood estimators.

123

- Exponential

—- - - - + Weibull _

new -0- Normal ' F . .

”I F Will.” ‘ op“. n m

E Nan-t3: aim was.“
q, as» ' E. Nun-teas

g g o.” ‘I‘H .-

E ” s .. . - I
s t/

at as» r

:2 in V *u. \
a ser-

- k-..........-.- on»

(as an """s3'—'::A6s° :1 _ , , ,

n '0 so res IIIe

Frame Input camera occupancy (sec) Frame display output occupancy (see)

a: f V ' ' I; use..." V v V f p: j

as» H “'3“ Enron: 13.96

Emma.“ on ma.“ Fl“

MI was.“ ‘ E- “, mars a"!

“I Nam-1:40 I . I x .

S '- L

ear E us “I

g as ' 5 es- N

E are»
2 are

m Ch
8 I.

“. -.-.-- . .-... . .- -, w

.5 u at: an ’sre’ue an an in as

h are sun as use use rue ".-

Frarne display cpu occupancy (sec Frame compression cpu occmancy (sec)

“M
cur ' K's”. .

at: J - IE“: .
m&“ 5 are» mess I

E as ,

.5, ..
I aer-

........ I.“ -.-'.i-‘-"-I-.-,_ .

res iii are no as - “’- en IID ' III, as are

meemulticastcpuoccrpancfisec) Framemultlcastnetworkoccupancy(sec

Figure 5-18. Histograms and theoretical probability distribution function for CPU, network, and

IIO occupancy time for frame input, frame display, frame compression, and frame multicast

states of the server process.

Client Processes: The behavior of the client processes differ from the server. A client

process waits for the arrival of a multicast frame from the network, uncompresses the

frame, and displays it. Figure 5-19 shows the behavior of a client of the video application

as well as its ROCC model that illustrates its interactions with the local Jewel sensor and

visualizer processes. We again fit theoretical pdfs to the measured resource occupancy

requests from various states of the client. The display state has the same resource

occupancy behavior as in the case of server process. Histograms and pdfs corresponding to

the occupancy requests in frame receive and uncompress states are shown in Figure 5-20.

As in the case of the server process, the normal distribution closely fits the measured

occupancy requests.

124

Notificationoftl'rearrlvalotalramelrommenetwork

 —:nln
r..___.-

r——-

queueAppCllentOut

Application

client

lqueuederrrrelSensorln

:1. Jewel

+| I I I I SENSOf

: queueAppVisualizerln

am-
Application

vrsuahzer

\J cpu e

' queueDlsplayIn

Quantummm

queueCpuln

 queueNethr n

Interaction among processes | Resource sharing

Behavior of other application and IS processes is similarly characterized. Distributions of

the lengths of resource occupancy requests from these processes are used to parameterize

the ROCC model for the JEWEL IS.

0))

Figure 5-19. Characterization of a client process. (a) Behavior of a client process and (b)

ROCC model for the client and .1er sensor and visualizer processes that interact with it.

D Process in focus

I Interacting processes

125

i

. —. Exponential - - 1

a” user-sue: H 4" WW" m use-us:

Slur-L: 12.“ ‘ -0- Normal was

J was ' mares ‘

i mess war:

.54

3
8

J

R
e
l
a
t
i
v
e
f
r
e
q
u
e
n
c
y

!

R
e
l
a
t
i
v
e
f
r
e
q
u
e
n
c
y

'e
an 1

..... ,. -.- -.- -.- - - - -.- - .L

W' reme "are rule

I y (m) (a) Frame receive state

8
.
i
i
i
i
r
'
i
-
E
i
é
'
u

Fr;me receive cpu occup’ancflsez)

--

ve— v v f

K-B suns:

.. i r m: r
i was

a: r

é um "

‘5 a as so a re

Frame uncompress cpu occupancy (sec)

(b) Frame uncompress state

Figure 5-20. Histograms and theoretical probability distribution function for CPU and network

occupancy times for (a) frame receive and (b) frame uncompress states of a client process.

5.5.3.5 Model Parameterization

The workload characterization presented in the preceding subsection yields parameters for

the ROCC model for the Jewel IS, as shown in Table 5-3. These parameters were

calculated using maximum likelihood estimators given by Law and Kelton [116]. Note

that the standard deviation for parameters that have normal distribution is actually less

than 1 usec in most cases; however, we use a value of 1 usec as it is the smallest time unit

for this model.

5.5.3.6 Performance Metrics

Three types of metrics are of interest for the evaluation purposes of this study: (1) quality

of service (QoS) metrics of the real-time video conferencing application; (2) IS metrics

126

Table 5-6. Summary of parameters used in simulation of the ROCC model for a Sun Ultra-1

platform. All time parameters, including resource occupancy requirements, are in microseconds.

Parameter

Type Parameter Range of Values

System Number of nodes 1—6 (typical 6)

configuration CPU scheduling quantum (microseconds) 10,000

Network (ethemet) bandwidth 100 Mbits/sec

Ring buffer polling period 14,000,000 (typical 1000)

Resource manager and agent sampling periods l—l ,000,000 (typical 1000)

Hysteresis time Same as sampling period

Application CPU occupancy requirement for receiving a frame Normal (49,1)

am“pm CPU occupancy for uncompressing a frame Normal (42,1)

CPU occupancy for displaying a frame Normal (2100.1)

CPU occupancy for triggering the visualizer Normal (100,1)

CPU occupancy for dropping a frame Normal (10,1) '

X server (display) occupancy for displaying a frame Normal (38,1)

Application Video hardware occupancy for capturing a frame Normal (178,1)

server through the camera

W CPU occupancy for compressing a frame Normal(21900.1)

CPU occupancy for multicasting a frame Normal (167,1)

Jewel sensor CPU occupancy for sampling shared memory by the Normal (267,1)

and collector external sensor

9mm CPU occupancy for receiving a trace record by the Lognormal (7,1)

collector

CPU occupancy by Jewel sensor and collector to forward Lognormal (200,20)

data to collector or resource manager, respectively

related to its performance and direct overhead to the application; and (3) adaptive control

system performance metrics. These metrics are summarized and interpreted in Table 5-7.

The QoS metrics are related to the real-time behavior of the application. A high quality of

video requires smoothness of changes in a dynamic scene being multicast to multiple

clients from the server. For the video application, QoS depends on the rate at which a

client processes a frame. Processing of a frame involves receiving the frame by a client,

uncompressing it, and finally displaying it. We term this metric as clientframe rate. Frame

rate is required to be fixed at 30 frames per second for desired Q08. A related metric is the

client CPU utilization, which indirectly affects the frame rate; the frame rate can decrease

if the application client cannot get enough CPU time due to contention with IS processes.

127

Table 5-7. Metrics for evaluation ofJEWEL IS and its adaptive control system.

Metric Type Metric Interpretation

Real-time Client frame rate Application frame rate is required to be fixed at 30 frames/sec for

application (frames/sec) desired quality of the video.

905 mm” Client CPU A desirable value is one that results in 30 frames/sec rate.

utilization (percent

of total CPU time)

IS overhead Jewel sensor CPU A lower value is desirable.

and utilization (96)

performance Monitoring latency A lower value is desirable for an MDR to be useful for real-time

mm“ (sec) control.

Hold-back ratio A lower value is desirable and indicates small congestion in the IS.

Number of lost A lower value (typically zero) indicates the reliability of the IS.

trace records

Adaptive Mean-squared error A lower value means better tracking of the frame rate by the

control system of adaptation with controller.

performance respect to required

metrics frame rate

Mean-squared error A lower value implies that controller can keep the IS overhead close

of adaptation with to the desired value.

respect to sensor

CPU utilization limit

We define four metrics related to the IS overhead and performance: JEWEL sensor CPU

utilization, monitoring latency, hold-back ration, and the number of lost records. A higher

value of JEWEL sensor CPU utilization implies higher overhead to the application

processes; therefore, a lower value of this metric is desirable. Monitoring latency, as

defined for Paradyn IS, is the period of time between generating an event record by the

internal sensor until it is received by the JEWEL collector. A lower value is desirable

because a longer latency means that the observed information may no longer be useful for

the resource manager for control purposes. Hold-back ratio is defined as the number of

MDRs enroute to the collector to the sum of event records generated by all the distributed

internal sensors. This metric was originally defined and used by Gu et al. in the context of

out-of-order arrivals at the ISM of Falcon IS [71]; however, we use this metric to quantify

the number of queued-up MDRs at different locations in the JEWEL 18. We also explicitly

use the number of received MDRs. The number of lost trace records indicates the event

records that an internal sensor could not generate due to a full shared memory ring buffer.

128

In addition to QoS and IS performance metrics, we also define two performance metrics

for the adaptive controller based on mean-squared error of adaptation. Mean-square error

is a well-known metric used in systems theory for quantifying the adaptation errors for

different types systems [156,175,180,201,220,222,232]. Mean-squared error of

adaptation with respect to the requiredframe rate is defined as the sum of squared errors

between desired and actual frame rates at observation epochs (determined by adaptive

controller sampling period), averaged over the entire execution time. Similarly, mean-

squared error ofadaptation with respect to sensor CPU utilization limit is defined as the

sum of squared errors between the upper bound on allowable sensor CPU utilization and

its actual values at observation epochs, averaged over the entire execution time.

In this chapter, we presented a model, workload characterization, and a set of appropriate

metrics for each of the three reference 185. In the next chapter, we use these models and

metrics to evaluate the reference 18s to address specific objectives in each case.

Chapter 6

Instrumentation System Evaluation

We present the evaluation results of three reference instrumentation system in this chapter.

Our focus is more on the individual case studies than the overall IS modeling-based

evaluation methodology. Given the application-specific nature of computer system

performance evaluation, it is necessary to evaluate the PICL, Paradyn, and JEWEL 185

with all the relevant domain-specific details. Nevertheless, we adopt a consistent

evaluation process (with differences in the techniques used) for the three case studies

based on the reference 185.

Section 6.1 presents a general perspective on evaluating an instrumentation system model.

We present the PICL, Paradyn, and JEWEL 185 in Sections 6.2, 6.3, and 6.4, respectively.

We conclude with a summary of IS evaluation results.

6.1 Evaluating a System Model

After modeling an instrumentation system, the next step is to use that model for

determining values of the metrics of interest under a given set of operating conditions. In

general, we can select one of two possible approaches of evaluating a model: analytical

and simulation-based. An analytical approach extensively uses mathematical and

statistical tools such as queuing theory, Markov processes, renewal theory, operations

analysis, and so on to present the metrics as closed-form mathematical expressions; these

expressions are functions of the system parameters. A simulator uses statistical input and

algorithmically exhibits the same behavior that the system is supposed to exhibit under

that input; the metric values can be calculated by examining the current and past

(simulated) system state information.

129

130

Both analytical and simulation-based model evaluation techniques have their advantages

and drawbacks. Typically, analytical models can provide accurate results under a number

of simplifying assumptions to remain mathematically tractable. However, the simplifying

assumptions may make the model far removed from the actual system for practical

systems of even moderate complexity. Therefore, the analytical evaluation approaches

provide only “back-of-the-envelope” calculations of the metrics that the system should

exhibit under restrictive operating conditions. These calculations are useful when the

actual system is not developed and any feedback about its behavior (even under restrictive

assumptions) is helpful for the developers. A simulation-based study can incorporate

minute details of system structure and behavior to calculate accurate results under more

realistic operating conditions. Moreover, interdependence of different processes and their

contention for the shared system resources can be captured adequately, using simulation

techniques. Due to the use of a random number generators, simulation results usually

exhibit high variance and require large number of independent experiments to bring the

mean value of the metrics within a “tight” confidence interval. In this chapter, we use

analytical results as approximate, back-of-the-envelope calculations to discern the gross

behavior of the instrumentation system under study; simulation-based evaluation will be

used for relatively more accurate results.

The primary goal of evaluating an IS model is to answer “what-if” questions regarding the

system behavior. These answers can guide developers to choose appropriate

configurations and management policies before actually implementing them. Not only this

early feedback to the developers avoids later upgrades of the IS, it also helps developing

18s that can meet their domain-specific requirements. Meeting of domain-specific

requirements is critical for a number of systems, such as distributed real-time systems.

In order to effectively use simulation-based evaluation of the models of reference 185, we

emphasize on careful experimental design. One useful approach is Zkr experimental

design approach, where k is number of IS factors (variable system parameters) and r is the

131

number of repetitions of an experiment to calculate a metric [100]. For the simulation

results presented in this chapter, we used a value of r=50, i.e., each metric value in a

simulation-based evaluation is a mean of the results of fifty independent experiments and

falls within 90% confidence interval of the mean.

Before analyzing the IS behavior with respect to various factors, it is essential to know the

sensitivity of selected IS performance- or intrusion-related metrics to these factors.

Moreover, it is not correct to assume that all of the factors act independently on the system

under test (i.e., the 18). We use principal component analysis technique to provide insight

into the relative importance of individual factors, as well as their interactions to affect the

performance metrics of interest.

6.2 Evaluation of the PICL IS

In this section, we present analytical calculations of the metrics of interest for the PICL IS,

based on the model developed in Section 5.5.1. We also present simulation-based results

and a discussion of the trade-off between the PCP and FAOF management policies for the

PICL IS.

6.2.1 Analytic Calculations

Analytical calculations of PICL IS metrics are based on probabilistic calculations.

Although, trace data buffers at every node can be treated as single-server queues, we do

not commit to any particular queuing system. Instead, our approach is more generic as it

uses well-known results from the renewal theory [166].

6.2.1.1 Definitions and Preliminary Results

In this subsection, we present notations and derive preliminary mathematical results based

on the IS model presented in Figure 5-6. Preliminary results will be used to characterize

132

and compare the FOF and FAOF management policies. We begin with the definition of the

repetitive nature of filling and flushing of the local trace data buffers. This process repeats

after every flush of one or all the buffers under either of the two management policies.

Definition (Flushing Cycle)

Let tn and tn“ be the instants of time immediately after a trace data buffer is flushed for

the n-th and n+1-st times, respectively. Then th-tn is the duration of time that

constitutes n+1-stflushing cycle. 9

We observe that the time until a local buffer fills up in a particular flushing cycle is a

stopping time which is defined as trace stopping time under the POP policy in the

following.

Definition Definition ('h'ace Stopping Time)

We define the trace stopping time for the i-th local buffer during an n-th flushing cycle

when it fills to its capacity I as:

ti‘) = inf{t: Qi(r)=l} (6.1)

where inf operator specifies the minimum time t e(t ,1, tn] until the local buffer i

becomes full for i e [0, P-l]. O

The buffer filling process that starts with an empty buffer and ends with a completely filled

buffer at the trace stopping time is represented in Figure 6-1. In the following, we establish

that the trace stopping time for any buffer i has an l-Erlang distribution.

I

0r“) ,,-_I-_1_r—;

3 J........... i i

1 {—12 r 1 '
0 ' ' l '

‘ J A l (r) ’
0 t1 ta ta ‘4 in tF-‘r t

Figure 6-1. Arrivak of trace records at a local buffer in the concurrent system.

Let Q,(t) be the number of records in the i-th buffer at the i-th node in the concurrent

system. Figure 6-1 shows the arrival epochs of each new record and the number of records

133

in the buffer at those times. Let N,(O,t] be a point process that counts the number of trace

record arrivals in the local buffer from the start of the tracing at time 1:0 to any other time

t during the traced execution of a program. Since the inter-arrival times {tn—tn_1: n21} are

assumed exponential and the number of arrivals in disjoint intervals are independent,

Ni(0,t] is a homogeneous poisson process with mean measure at. Therefore, the

distribution of the trace stopping time is given by:

I

PHI") 5 t] = P[N,-(O,t]=l] = e-GIE‘ZL) .

This is an l-Erlang distribution because 1,“) is the sum of exponential inter-arrival times of

individual trace records in the i-th buffer, and thus

I
i) = --ar (0“)

PM St] e F(l+l) . (6.2)

It is useful to calculate the expected trace stopping time. Since the inter-arrival times are

independent and exponentially distributed, the expected time till the arrival of any

subsequent record is l/or. The capacity of a local buffer can reach 1 records, which is a

constant. Then the expected time until an empty buffer fills up can be determined by

applying Wald’s identity [resnick] and is given by:

1

Elem = E[Ni(0,t,]]-E[tl —t0] = r- a. (6.3)

Additionally, we consider the trace stopping time from the perspective of the concurrent

IS on all P nodes. This is needed to evaluate the FAOF policy. Therefore, we define the

global trace stopping time in the following.

Definition (Global Thee Stopping Time)

The global trace stopping time is the time during the n-th flushing cycle at which any

one of the P buffers becomes full and is given by:

134

t, = min {tf°),t}1), flip-1)} .O (6.4)

According to this definition, the global trace stopping time is the minimum gamma order

statistics of P gamma (l-Erlang) random variables. The following probabilistic

calculations provides insight into the nature of the distribution of the global trace stopping

time.

Consider an IS consisting of P trace buffers where trace records arrive with independent

and exponentially distributed inter-arrival times, and an arrival process at one buffer can

be considered independent of that at another buffer. Using the definition of the global trace

stopping time, it can be noted that

P[t,> t] = P[1:}°)> t, rf1)> t, rip-1) > t]

and using the independence of the buffer sizes at all the local buffers

P[‘t,>t] = P[t;°)>t]r>[t;1)>t]...P[t;P-l>>t] = [1—Prt;i>St]]P

P[’t',>t] = [lrat-(Lg)

Generally, after determining the distribution of the global trace stopping time, its expected

value can be calculated as:

E[t,]= [(P[r,>t])dt=:[[.1e-w(T-°”)‘]dt , (6.5)

which is not easily solved for explicitly. There is another possible approach to calculate

the expected global stopping time. Global trace stopping time is the minimum of P of the

gamma random variables for P local buffers. Gupta [72] has derived and tabulated the first

four moments of this type of gamma order statistics. In this case, we are interested in the

135

first moment of the smallest order gamma statistics, which is specified by the recursion

relations given in [1 l]. Calculations of these have been tabulated in [19]. However, there

are restrictions on I and P to be small, which prohibits calculating the expected global

trace stopping times for long buffers on massively parallel processing (MPP) systems

where P could be large. Therefore, we decided to evaluate the bounds on the global trace

stopping time.

Let P be the total number of trace buffers in an IS, each having a capacity of holding l

records, where trace records arrive with exponential (or) inter-arrival times. Let oro=a1=...

=ap_1=0t be the parameters of the exponential inter-arrival times at P local trace buffers.

Let am," be the parameter associated with the first arrival in any of the P buffers, which is

given by:

or in = ao+or1+...+orp_,= For
m

as shown by [164]. Then the time until there are 1 distinct trace record arrivals in the whole

IS, regardless of the number of arrivals in individual trace buffers, is l/Por according to

Wald’s identity. Clearly, the global trace stopping time is at least equal to l/Por, i.e.,

l

which represents the case that all the trace records arrive at a single buffer. On the other

hand, if there is only one node in the system (i.e., P=1) then the global trace stopping time

cannot be larger than the local trace stopping time, i.e.,

l
< _

E[1:,] _

Therefore, it can be concluded that:

136

s E[r,] s . (6.6)L 1

Pa or

The result shown by equation (6.6) is useful in practice because it shows that the global

trace stopping time can not be more the trace stopping time observed at an individual node

of the system.

In both the PCP and FAOF policies whenever one or all the buffers have been flushed, the

IS experiences the same buffer filling and flushing cycle. We consider the successive

flushes of a local buffer (under either of the two policies) as a renewal process, as shown in 0.

the following.

Dynamic flushing of the trace data buffer constitutes a regenerative stochastic process

{Q,(t)} for the length of any buffer in the IS. In order to justify this, we consider {Snz n20}

to be the starting times of new service periods at the i-th buffer, i.e., the buffer starts to

refill from Q,(S,,)=0 to Q,(S,,+1)=l, as shown by Figure 6-2. Clearly, N,(S,,,S,,+1]=l. Further,

it can be noticed that: (1) {Sn} is a renewal process as inter-arrival times are independent

and identically (exponentially) distributed; (2) for 0<t1<t2<...<tk, (Q,(S,,+t1),Q,(S,,+t2),...,

Q,(S,,+tk)) ~ (Q,(t1), Q,(t2),..., Qfltk» for n20 and k2], where the processes on either side

of ~ symbol are equal in their joint distributions; and (3) {Q,(S,,+t)} is independent of

{S1,52..." Sn}. Hence, {Q,(t): t e (Sn,S,,+1]} is a regenerative process.

First Second Third

- flUSi'l .t_ . - .flUSh 7 flush ----------

I M u
u

L

I h n
n

T

So=0 31 $2 53 ----------- t

Figure 6-2. Regenerative process of buffer fillings and fiushings.

The regenerative process of the buffer filling and flushing repeats in cycles. After the

buffer is filled, it gets flushed. Note that the time for buffer flushing has a different

distribution than the exponentially distributed inter-arrival times of the trace records. The

137

buffer flushing time distribution does not affect the regenerative nature of the overall

process, as {Qi(t)} alternates between two regenerative processes. Therefore, the

regenerative process of buffer filling and flushing repeats with the same probabilistic

structure in each subsequent cycle. These cycles continue till the end of the instrumented

execution of the program.

6.2.1.2 Comparison of the Management Policies

In this subsection, we compare the FOF and FAOF policies in terms of flushing frequency

under each of the two policies. We begin with the definition of theflushingfrequency.

Definition (Flushing Frequency)

Let Nflush“ be the number of flushes recorded at a local buffer (under FOF policy) or all

buffers (under FAOF policy) during program execution. Let Nmm, be the count of all the

trace records that arrived into the local buffer(s) during the entire execution of the

program. Flushing frequency of a particular local trace data buffer (under the POP

policy) or all the buffers (under the FAOF policy), denoted (no and ma, respectively, is

defined as:

N

(no or and = M.O (6.7)

Ntotal

In the following, we calculate the values of flushing frequency under the FOF and FAOF

policies. The flushing process starts immediately after the buffer has been filled to its

capacity. and is responsible for transferring all the trace records to the main buffer at the

host of the concurrent system. This transfer is accomplished through the (wormhole-

routed) direct network. An IIO node transfers the data to an appropriate host system entity,

for instance, a larger buffer in the main memory of the host or a disk that instantiates the

main buffer. We assume that the time for flushing the local buffer is time required to

transfer all the trace records in that buffer to an I/O node. The subsequent transfer from the

I/O node to the host system does not add any latency to the local buffer flushing facility.

138

Let fll) be a function of the capacity of the buffer that represents the time of transferring

the local buffer to the I/O node through the wormhole-routed direct network. It has been

shown by [hi] that fll) can be approximated by Cl/B where B is the bandwidth of the

channels of the direct network and C is the average number of bytes per trace record.

Therefore, Cl is the amount of data to be transferred. Clearly, the average service time

after the arrival of l trace records at the local buffer is equal to the latency of transferring

this trace data. Therefore, the mean service time is given by: b = f(l) = Cll+ C2,

where C1=C/B and C2 accounts for the start-up latencies (fixed overhead of calling a

system function for sending and receiving a message) and the path establishment time

between the local node and the I/O node.

The FOF Policy: We prove that the long-term buffer flushing frequency (so under an FOF

management policy of a trace data buffer is the ratio of mean inter-arrival time of a trace

record to the expected time to complete one flushing cycle of that buffer. Let [Q,(t)=0] be

the event that the i-th buffer has been flushed and the process has been regenerated to

proceed through this cycle once again, where {Q,(t): t e(S,,,S,,+1]} is the n+l-st flushing

cycle. The buffer filling process {Q,(t): tZO) is a regenerative process with renewal times

{Snz nZO}. We can define a state j of the buffer corresponding to j records in the buffer,

such that: qj(t) = P[Q,-(t)=j, S" H > t]. If tro=E[cycle length], it can be given by:

- 1
ll. = E[t§"]+f(1)= at+c,-r+c2

and clearly u<oo. Then under mild regularity conditions, Smith ’s theorem [164] shows

that:

lim P[Q;(t)=j] ___ E[occupation time of state j in acycle].

l-)¢° “'0

The long-term number of visits to state j=l are equal to the number of visits to state j=0 (in

the next cycle). However, the latter will be used here as the distribution of occupation time

139

of state j=l is different from the (exponential) distribution of the occupation time of the

rest of the states. When j=O, the buffer has been flushed and the process has been

regenerated, and the expected time of occupancy of this state is equal to the expected time

until the first trace record arrives to the flushed buffer. Therefore, E[occupation time ofj=0

state]=1/0t. Hence, the long-term flushing frequency is

1 _ 1 _ 1

a-lto- l+aCll+aC2 ’ z+otf(z)

 too = lim P[Q,.(t)=O] = (6.8)

l -§ no

where Ila is the mean inter-arrival time of a trace record. When we let l-)oo, then equation

(6.8) implies that too = 'lim P[Q,-(t)=0] = O, which is merely a proof of the intuitive

t -) on

fact that a buffer having an infinitely large capacity will never have to be flushed.

The FAOF Policy: Under the FAOF policy, whenever one of the P local buffers is filled to

its capacity, all the buffers are flushed to the main buffer. This policy is implemented by

some ISs, such as Pablo [161] and TAM [165]. Implementation of this policy requires

synchronization of individual processes and gang scheduling of the flushing operation on

all nodes, which is not trivial on a loosely coupled distributed-memory parallel system.

The process {Q(t)} under the FAOF policy is a regenerative process, which is analogous to

the regenerative process {Q,(t)} under the FOF policy. After flushing all the local buffers,

the service process waits until one of the buffers becomes full. Then it again flushes all the

local buffers. This sequence of events constitutes one flushing cycle under the FAOF

policy that repeats until the program execution ends. Under the FAOF policy, the

maximum long-term frequency of flushing all the local buffers, tea, is less than or equal to

the long-term flushing frequency under the FOF policy. This can be proved by applying

Smith’s theorem as in the case of FOF policy, except that the exact value of no can not be

calculated. Since pa 5 l/(Pa) , therefore:

140

. _ _ l _ 1
ma s t1;mflP[Q(t)—O] _ Pang _ H mm). (6.9)

which is an upper bound on the long-term frequency of flushing all the buffers. When P=l ,

tra=tto and right hand side of the equation (6.9) becomes equal to (00. Therefore ma S (00.

When we let l—)oo, then equation (6.9) implies that (00 S lim P[Q(t)=0] = O. In the

worst case, the flushing frequency under the FAOF policy—tan become equal to the

flushing frequency of an individual buffer under the FOF policy. It proves that the FAOF

policy is desirable based on the flushing frequency metric.

6.2.1.3 Summary of IS Management Policies

Table 6-1 summarizes the analytical results that were derived in Section 6.2.1.2. These

results compare the FOF and FAOF policies using expected buffer filling time (trace

stopping time) and flushing frequency for a given arrival rate. Note that the analytical

results for the FAOF policy (except for its distribution) can be obtained from the

corresponding results for the FOF policy by replacing or with Put. In order to compare the

FOF and FAOF policies on the basis of analytical results for flushing frequency and

perturbation index metrics, it is important to identify the dominant factor between a (or

Pa) and the time for flushing 0(1)).

Table 6-1. Summary of management policies.

Performance

Metric FOF Policy FAOF Policy

chem i _ (at)’ at P

Pit] is t] - e-wm + 1) Hr, > t] = [brad—nil]

Wm: Emit] = r- i 7:? s Ely] Sci:

mute-m [(1) = c,r+ r:2 f(l) = C‘I‘l-Cz

mm _ _1__ __1__

Irene-Icy (”0 - 1+ af(l) 0)“ S 1+ Pan)

141

6.2.2 Simulation-Based Experiments

In this subsection, we compare the FOF and FAOF management policies based on

simulating the PICL IS model. We begin with the description of the experimental setup for

simulations, followed by the principal component analysis of selected factors and

investigation of the PICL IS behavior under the two management policies.

6.2.2.1 Experimental Setup

We developed a simulator for the nCUBE-Z multicomputer that uses exponentially

distributed inter-arrival times. The FAOF policy is modeled by using P independent

streams of the random number generator to ensure the independence assumption among

the local buffer filling processes. All simulations presented here were executed for one

second of simulation time with a timer resolution of one microsecond; this allows the

buffer filling and flushing processes to run for a sufficient length of time. The

communication latency on an nCUBE-2 multicomputer for flushing a buffer of capacity 1

records was estimated as:

f(1) = 21+ 187

where start-up latency is estimated to be 187 microseconds [mckinley].

6.2.2.2 Principal Component Analysis

In order to use 2" factorial design technique, we need to conduct 8 experiments to obtain

the required data needed for the principal component analysis (PCA). Table 6-2 shows the

results of these experiments. We use the technique outlined by Jain to perform the

principal component analysis [100].

Table 6-3 shows the results of the PCA. Number in the parenthesis in the second and third

columns indicates the relative rank of the corresponding factor (or a combination of them)

142

Table 6-2. Results of initial experiments to use principal component analysis for Paradyn IS

evaluation.

Inten- Three

Buffer arrival stopping

length Time Flushing time Flushing

(records) (microsec) policy (microsec) Frequency

10 100 FOF 997 0.1

1000 100 FOF 99,307 0.001

10 2000 FOF 20,083 0.12

1000 2000 FOF 2,022,762 0.001

10 100 FAOF 526 0.01 1874

1000 100 FAOF 94,727 0.000066

10 2000 FAOF 10,930 0.01 1522

1000 2000 FAOF l .891 .962 0.000066

FOF—Flush One when it Fills

FAOF—Flush All when One Fills

in terms of its importance in explaining the variation of the metric. Clearly, a combination

of buffer lengths (A) and flushing policy (C) explain most of the variation of flushing

frequency metric. On the other hand, a combination of buffer lengths and inter-arrival

times explain most of the variability of trace stopping time. Therefore, a further

investigation of the behavior of the IS with respect to buffer lengths, inter-arrival times,

and flushing policy is justified.

Table 6-3. Results of principal component analysis for PICL IS.

Variation explained Variation explained

Factors or combination of for trace stopping for flushing frequency

factors time (96) (70)

A (buffer length) 37.45 (1) 42.45 (I)

B (inter-arrival time) 31.69 (2) 0.28

C (flushing policy) 0.05 28.72 (2)

AB 30.71 (3) 0.28

AC 0.04 27.66 (3)

BC 0.04 0.3

ABC 0.03 0.3

143

6.2.2.3 Investigation of Management Policies

In practice, different programs or even different phases of the same program can have

variable arrival rates. In order to test the validity of the conclusions drawn from analytical

and trace-driven simulation statistics, we carried out several simulations using different

arrival rates and buffer lengths to analyze their effects on trace stopping time, flushing

frequency, and average number of lost arrivals per cycle. Trace stopping times directly

impact the flushing frequency and number of lost arrivals per cycle, therefore, we discuss

these results separately.

'h'ace Stopping Time: Figure 6-3 compares the trace stopping times for the FOF and

FAOF policies using three different arrival rates and twenty different buffer sizes.

0 The trace stopping times behave consistently with different values of arrival rates under

both policies. Stopping times are longer under the FOF policy because the trace data

buffer is flushed only when it fills up, whereas under the FAOF policy, a trace data

buffer can be flushed even if it is not completely filled (due to the filling of some non-

local buffer). .

0 These results also support the analytical result for trace stopping time, which predicts a

linear relationship between buffer length and the trace stopping time.

0 Another notable observation is the proximity of trace stopping times under both poli-

cies.

If the inter-arrival time of trace records at individual local buffers is exponentially

distributed, the trace stopping time for one local buffer under the FOF policy is

approximately equal to the trace stopping time for all the buffers under the FAOF policy.

This favors the FAOF policy because it implies that if one buffer fills up, then it is highly

likely that others will also fill up soon, and flushing all the buffers simultaneously can be

justified.

Flushing Frequency: Buffer flushing frequencies under the two management policies are

compared in Figure 6-4 for the three arrival rates.

144

—e— FAOFpolicy

..,-v . . . - . . f . —+— FOFpolicy -'°‘.

 I
.

3
0

.

v

6 Y

a
.

O Y

8 V

'
7

.

V

C

v

. 1

T
r
a
c
e
s
t
o
p
p
i
n
g
t
i
m
e

T
r
a
c
e
s
t
o
p
p
i
n
g
t
i
m
e

u
e

e
e

5
3

~

Y

A A A A A A A A A A : A A A A + A A A A

v

0 t” see an can an no no an I!) m O i” run no em see no 7N see mu M

Butler length l Buffer length l

(a) (b)

Figure 6-3. Comparison of trace stopping times for the FOF and FAOF policies. Trace

stopping time is in microseconds for three arrival rates, (a) a1=0.00006 and (b) a2=0.007.

' o The flushing frequency also behaves consistently for different arrival rates. Flushing

frequency is higher under the FOF policy regardless of arrival rate or buffer length.

0 Flushing frequency diminishes very rapidly with small increases in the buffer size at

small buffer lengths under either policy.

0 The lower flushing frequency under the FAOF translates into less time spent overall on

flushing during program execution. Intuitively, the lower flushing frequency can be

attributed to the proximity of the trace stopping times.

Hence, flushing all the buffers simultaneously reduces the number of flushes during

program execution.

-e— FAOF POI‘CY

—l— FOF policy

F
l
u
s
h
i
n
g
f
r
e
q
u
e
n
c
y

a
i

 0.01

'00 oleealemeeneseeeeereeeeeuelllne

”Bugs! :09; l m .. Buffer length

(a) (b)

Figure 64. Comparison of buffer flushing frequencies of the FOF and FAOF policies. Bufler

flushing frequencies are given for three arrival rates, (a) a,=0.00006 and (b) (12:0.00'7.

145

6.2.3 Feedback to the Developers

Analysis of the two management policies reveal that the FAOF buffer flushing policy has a

smaller buffer flushing frequency than the FOF policy. Under the worst case, the flushing

frequency for the FAOF policy can become equal to that for the FOF policy. Therefore, the

FAOF policy should be considered optimal on the basis of flushing frequency. Although

this conclusion is obvious from the analytical and simulation results, the caveat is in terms

of the practical implementation of this policy on a multicomputer system. The FAOF

policy can be implemented if the IS has the capability of gang scheduling the flushing

operation after synchronizing all the nodes. This essentially mean two requirements: (1)

the multicomputer operating system needs to be able to run multiple processes per node;

and (2) the operating system needs to support synchronization operation and be able to

gang schedule the IS processes at all nodes by saving the context of application processes

on each node as well as any pending messages over the network. Some multicomputer

architectures and Operating systems support such facilities (e.g., CM-S) whereas others

may not support them (e.g., nCUBE-2).

While selecting a particular buffer flushing policy, the IS developers should consider the

perturbation effects of implementing a particular policy. The FOF policy may incur

relatively lower overheads because flushing one buffer independently from the others is

similar to sending a message from one processor to another processor (an I/O processor, in

this case). However, under the FOF, flushing frequency is relatively larger. Independently

flushing local trace data buffers during program execution may result in variable delays

among processors. The overall effect of these delays can also change the application

program behavior in an unexpected manner. However, such perturbation effects are

difficult to be specified quantitatively.

146

6.3 Evaluation of the Paradyn IS

We evaluate the Paradyn IS with respect to three target architectures: Network of

Workstations (NOW), Symmetric MultiProcessors (SMP), and Massively Parallel

Processing (MPP) systems. For the Paradyn IS, we apply ROCC modeling technique for

evaluating alternative design and configuration options. In this section, we begin with

analytic calculations for the Paradyn IS model using operations analysis techniques. Then,

we present simulation-based evaluation of the ROCC model for the Paradyn IS followed

by the recommendations to the developers on the choice of 18 design and configuration.

6.3.1 Analytic Calculations

In this section, we present approximate analytical calculations using operations analysis

on the ROCC model of the Paradyn IS. The ROCC model is a queueing network that has

two workloads of interest to this study at each node of the system: Paradyn daemon’s

resource occupancy requests to collect and forward samples, and user application requests

to execute the application program. On one hand, the ROCC model may be considered an

open queuing network for the Paradyn daemon’s workload because its requests actually

leave the system when a sample is received by the main Paradyn process. Thus, the total

number of Paradyn daemon requests in the system can vary with time. On the other hand,

the ROCC model may be considered a closed queueing network for the application

workload. An application process generates a request and waits for its completion before

initiating a new occupancy request for the same or a different resource. Thus, the total

number of application requests at a given time is always constant. This scenario is typical

of a closed queueing network with a batch workload [100]. Therefore, the overall ROCC

model for the Paradyn IS is a mixed queueing network with two workloads, assumed to be

independent for analytic calculations. We derive the analytical results for Network of

Workstations (NOW), Symmetric MultiProcessors (SMP), and Massively Parallel

Processing (MPP) architectures in this subsection. .

147

6.3.1.1 The NOW Architecture

Using (transaction) workload due to Paradyn daemon requests at each node of the system,

we first calculate the arrival rate 2. of Paradyn daemon requests at each node. It is given as:

1 1

' Sampling period x Batch size
 x # of application processes per node. (6.10)

This definition of arrival rate makes it sensitive to three of the four system parameters that

can vary for this study. The CPU utilization per node due to Paradyn daemon requests

follow from the utilization law andforcedflow law [100] as:

"Pd, CPUO‘) =)‘DPd, CPU (5-11)

where Dpd'cpu represents the average length of a CPU occupancy request from the

Paradyn daemon. In order to calculate the monitoring latency and Paradyn CPU

utilization, we calculate the overall Paradyn daemon CPU request throughput of P

concurrent nodes. Using flow balance assumption, the throughput of each node is equal to

2.. Therefore, overall Paradyn daemon CPU request throughput is given by:

which is the arrival rate of Paradyn network requests. The network utilization by Paradyn

daemon requests is given by:

“Pd, Network(x) = PADPd, Network ' ' (6'12)

The monitoring latency of a sample that reached the main Paradyn process in the form of a

CPU request followed by a network request can be defined as a sum of residence times

(resource occupancy and queueing time) in two resources. Thus, monitoring latency for a

148

sample is calculated by using utilization law and Little’s law under the assumption offlow

balance, to yield:

R00 = DPd, CPU DPd, Network .

1 ' ”Pd, CPUO') 1 ’ ”Pd, NetworkO")

 (6.13)

Since we know the overall arrival rate of Paradyn daemon requests to the main Paradyn

process (under flow balance assumption), we can calculate the CPU utilization of the main

Paradyn process as:

“Paradyn, CPU(A') = PA'DParadyn, CPU ' (6'14)

In order to calculate the application CPU utilization per node, we use (batch) workload

with a closed queueing network. We can use mean value analysis (MVA) to solve this

model to calculate the throughput of application CPU requests at each node and use this

throughput to calculate the CPU utilization (as product of throughput and average CPU

occupancy time for an application request). However, there are two problems in using this

approach: the resulting application CPU utilization does not vary with any of the system

parameters and the calculation does not account for the contention for CPU between

Paradyn daemon and application process. Therefore, an MVA based evaluation of

application CPU utilization is not useful in this case. We can calculate the application

CPU utilization in an indirect way as:

“Applicationcrr/(M = “Prawn/(7‘)- (6-15)

This approximate calculation for the application CPU utilization per node does not

account for the time that the application process spends waiting for its network occupancy

request to be serviced. Therefore, the resulting values of the application CPU utilization

are expected to be higher than the actual values. Nevertheless, this technique serves the

149

purpose of providing “back-of-the-envelope” calculations to be used as an intuitive check

on the simulation results.

Figure 6-5 plots the results of analytical calculations of the metrics of interest with respect

to number of system nodes and sampling rate. The results indicate that the Paradyn

daemon CPU overhead does not change with respect to the number of system nodes.

However, under the BF forwarding policy, the overhead is significantly lower. This

difference between the CF and BF cases is due to the dependence of arrival rate A on the

batch size, as given in equation (6.10). The batch sizes are l and 32, respectively, for the

CF and BF policies. The larger batch size for the BF policy results in lower overhead.

Analytical results with respect to variable number of nodes and sampling periods predict

that the BF policy is more desirable as it yields lower CPU overhead and monitoring

latency.

_ X CF pdicy A “.110“
0.. v t + Bancy § w... e f

E ... CF " w OF

g «L 3 an»

5 I): g “It

3
ea- 2 an

i
2 BF g “' er:

0 s to is of as I a . O "' s a is of ha“ as

(:1) Samng period = 40 msec

gr. is. i

E... or g h

£1“ E

s a 2 “

2 as A . - g

Samplingperiod(rnsec) Samplingperlod(rnsec)

(b) Numberofnodes = 8

Figure 6-5. Analytic calculations of the efl'ects of varying number of nodes and sampling

periodsonmeuicswithrespecttoCFandBFdamforwardingpdiciesaogafithmk

horizontal scale in (b)).

150

6.3.1.2 The SMP Architecture

In the SMP case, the ROCC model is slightly different from the model for the NOW

architecture. Instead of multiple nodes having their own CPUs and workloads, the system

consists of multiple CPUs that are shared by a set of application processes, one or more

Paradyn daemons, and a main Paradyn process. Therefore, the ROCC model has one

queue for all the CPUs and one queue corresponding to the system bus.

For the SMP case, we include the factor of multiple Paradyn daemons that may be sharing

the system resources into the definition of arrival rate, as given by equation (6.10). Thus,

the definition of arrival rate for SMP is:

l 1

- Sampling period x Batch size

 x # of application processes per node x # of Pds

The Paradyn daemon, main Paradyn process, overall 18 processes, and application process

CPU utilization are given by:

D

“Pd, cpl/(7») = h—Pdfcw. (6.16)

A _ lDParadyn, CPU

“Paradyn, CPU() " P ’ (6-17)

(# 0f Pds ‘ "Pd, Cpl/(7‘)) "' “Paradyn, CPUO')
ills, CPUO“) - # of Pds + 1 , and (6.18)

“Application, CPUO“) = 1 " "IS, CPUO'): (6-19)

The bus utilization and monitoring latency are given as:

“Pd, Euro") = 0‘0Pd, Bus and (6'20)

151

R0») = DPd,CPU/" + DPd,BuS .

1 ‘ “Pd, CPUO') 1 " “Pd, BusO“)

 (6.21)

Figure 6-6 plots the results of analytical calculations under the BF policy with respect to

sampling periods and multiple Paradyn daemons. Equations (6.18) and (6.21) indicate that

IS (i.e., Pd and Paradyn) CPU utilization and monitoring latency metrics depend on the

number of Paradyn daemon processes because the arrival rate A. is proportional to the

number of Paradyn daemons. Therefore, the analytical results predict that the use of

multiple daemons may result in a higher monitoring latency and CPU overhead compared

to the single daemon case, but the effects appear to be negligible, especially at larger

sampling periods.

’ - x 1Pd A .- ‘°‘ + e -

A + 2 Pds

lio- . 3 Pds 3, u-

g o 4 Pds °
‘l g g.“-

E or E 1“.

g 3* g ‘13.

a 2

8 2‘ g ‘1.

a . E
‘

é HIT A

'0 {0 3° ’° ‘° ‘° "l n "”0 ti) all a; 43 re fi- to

Sampling period (msec) Sampling period (msec)

Figure 6-6. Analytical calculations of the effects of multiple Paradyn daemons on two metrics

(number of nodes = 16, number of application processes = 32, BF policy). IS CPU utilization

represents the combined CPU utilization due to Paradyn daemons and the main Paradyn

process.

6.3.1.3 The MPP Architecture

For an MPP system, the ROCC model is the same as depicted in Figure 5-11 with the

exception that the shared network is replaced by a direct network. For this architecture, we

model and evaluate direct and binary tree forwarding approaches.

The analytical results for the direct forwarding are same as in the case of NOW system,

presented by equations (6.10)—(6.15). In case of binary tree forwarding approach, the

152

Paradyn daemons running at non-leaf nodes perform extra work of collecting the

instrumentation data samples from their two children nodes, merging them into single

samples, and forwarding them to their parent node. We define the arrival rate of enroute

samples that are to be merged as hm. If we assume that the total number system nodes P is

equal to a multiple of 2, then three are P/2 leaf nodes that have h,,,=0; one less than n/2

nodes that have two children and 2,522.; and one node that has only one child and 755)..

The CPU utilizations due to the Paradyn daemon and main Paradyn process under tree

forwarding are given by:

n n
57mm, CPU "' (5 ‘ Oil-Dar, CPU "' ZADPdm, CPU) + ADPdm, CPU

”Pd, CPUO“) = P (6.22)

"Paradyn, CPUO‘) = 2"DPnradyn, CPU: (633)

The network utilization and monitoring latency are given as:

n n

51D”, Net + (5 ‘ 1)0‘DPd, CPU + 22D”, Net) + ADPd, Net

“Pd, Net(A') = P . (6.24)

R0.) = DPd, CPU "' DPdm, CPU DPd, Net (6 25)
 + .

1 ‘ "Pd, CPUO“) 1 ‘ ”Pd, Nero")

Note that the network occupancy needed for forwarding a merged sample is the same as

for forwarding a local sample.

Figure 67 presents the analytical results under the BF policy with respect to the number

of nodes in the MPP system. The graph in the middle indicates that tree forwarding has a

clear advantage over direct forwarding in terms of lower CPU overhead for the main

Paradyn process. Analytical results show that under tree forwarding the CPU overhead

due to Paradyn remains unchanged as long as the arrival rate at a node (i.e., h) is constant.

Conversely, this overhead increases linearly with the number of nodes under direct

forwarding. The monitoring latency is higher for tree forwarding due to additional arrivals

153

at non-leaf nodes corresponding to the “enroute” samples. The differences in Paradyn

daemon CPU overhead between the two forwarding policies are insignificant (hundredths

of a percent).

x Direct forwarding

-‘-= a . + Tree forwarding r"

g .,., g

g .. g

s ”" i ..wt
3 acre» g DlI'OCI

E ”" l
0 ”W m,

a < Tree

:8 T I t; i I“ t. - J; g g s. a u g. m

Number 0' "0603 m. Norther of nodes

A “—1 ' ‘ T Y ' v

I; “i Tree

8

5 a.

r . ‘5
e re I as

Nurnberofnodee

Figure 6-7. Analytical calculations of the effects of varying number of nodes with respect to

direct and tree forwarding policies.l(sampling period = 40 msec, BF policy, logarithmic

orizontal scale)

As we noted earlier, the application and IS workloads actually interact. Because the

analytical calculations have a limited scope of providing “back-of-the—envelope”

calculations, we did not consider inter-dependences between the workloads in this section.

We consider these inter-dependences in the following section on simulation-based

experiments.

6.3.1.4 Summary of Analytic Calculations for Paradyn IS

Table 64 presents the analytical results for the NOW, SMP, and MPP systems. Based on

these approximate calculations, we can predict the following about the IS behavior:

154

Table 6-4. Summary of analytic results for the ROCC model of Paradyn IS.

System Performance

Type Metric Analytic Results

NOW unveil-learn l- l x l x# f l' t' n e es nod

were - Sampling period Batch size 0 app lca ro proc $8 per e

“mm
lingual/(A) = ADM, CPU

NM ”Pd, Network(1) = "ADPd. Network

WM R0») = DPd, CPU DPd. Network

1 " “Pd. CPUO‘) 1 ‘ ”Pd. Network“)

mm “Paradyn. CP0(1) = "ADParadyn, CPU

oatmeal——

SMP ‘ mm:n h = Samplinlg period x Batclll size x n x # 0f Pds

comm “N. 000‘) = 10M, CPU

restaurants» ll”, 3,,(1) = ID”, Bus

number-w R(A) = 0P4, CPU/n DPd, Bus
 +

1 ' “Pd. CPUO‘) 1 ' “Pd. Buso‘)

WW DP dy .CPU

M “Paradyn, CPUO“) = 3' m n n

“mm (A) _ (1* 0f Pds ' “Pd. CPUO‘» + ”Paradyn. CPI/0‘)

"15. CPU " # of Pds + 1

=

MPP muscles 2. _ 1 x 1 x

(”"317 m - Sampling period Batch sin n

m) "WM
n n

iADPd. CPU 4' (5 ‘ l}de, CPU + 210M... CPU) "' ADPalm. CPL

“Pd. CPUO‘) = n

"""'"" "l. " to 7. i.
m 5 0P4, Net + 5 “ ‘ Pd, CPU + 2 DPd. Net) + DPd, Net

"Pd, ”(3(1) = n

Wen-ray R(l) = 0P4, CPU + DPdrn, CPU + DPd, Network

1 ' “Pd. CPUO') 1 ' "Pd. Network“)

Penal-cw Franny... CPUO') = szaradyn. CPU

- In the case of NOW system, analytical results indicate that the Paradyn daemon CPU

overhead does not change with respect to the number of system nodes. However, under

the BF forwarding policy, the overhead is significantly low. This difference between the

CF and BF cases is due to the dependence of arrival rate it. on the batch size, as depicted

in equation (6.10). In case of the CF and BF forwarding policies, the batch sizes are l

and 32, respectively. This is the main reason for differences between the CF and BF

155

results for same number of nodes. Analytical results with respect to variable number of

nodes and sampling periods indicate that the BF policy is desirable as it results in lower

CPU overhead and monitoring latency.

- In case of the SMP system, IS CPU utilization and monitoring latency metrics depend

on the number of Paradyn processes. Additionally, the arrival rate it is also proportional

to the number of Paradyn daemons. Therefore, the analytical results indicate that the

use of multiple daemons results in a lower monitoring latency on the cost of relatively

higher CPU overhead compared to the single daemon case. Use of multiple daemons is

particularly justified at lower values of the sampling periods.

0 In case of the MPP system, results indicate that the tree forwarding has clear advantage

over the direct forwarding in terms of lower CPU overhead for the main Paradyn pro-

cess. Equation (6.22) shows that under the tree forwarding the CPU overhead due to

Paradyn remains unchanged as long as the arrival rate at a node (i.e., h) is constant. On

the other hand, this overhead increases with the number of nodes under the direct for-

warding policy. Monitoring latency is higher for the tree forwarding due to the merge

operations at each subsequent level of the tree before'a sample reaches the Paradyn pro-

cess at the root of the tree. The differences between Paradyn daemon CPU overhead

under the two forwarding policies are insignificant.

6.3.2 Simulation-Based Evaluation

In this subsection, we compare possible configurations and management policies for the

Paradyn IS using simulation-based evaluation of the ROCC model. Simulation-based

evaluation is more accurate than analytical approaches because we account for the inter-

dependences between the application and IS workloads and details of system

functionality. We keep this evaluation process focused by posing specific “what-if”

questions that are of interest to the developers and users of the IS. This focus is further

refined by using the principal component analysis (PCA) technique to determine the

system parameters and their combinations that can significantly affect the selected IS

performance metrics.

6.3.2.1 Experimental Setup

As with analytical calculations, simulation-based experiments also consider three types of

parallel or distributed system architectures: NOW, SMP, and MPP. We make minor

modifications in the ROCC model to accommodate the specific characteristics of each of

these configurations. In the case of a NOW system, each node has one CPU and the nodes

156

are interconnected via a switch-based or a shared network. For an SMP, multiple CPUs are

connected through a bus. An MPP system is similar to the NOW system but has a multi-

stage switched network and typically consists of a larger number of nodes. We

pararneterized the ROCC model for an IBM SP-2 system, which is closer to the NOW

configuration. Nevertheless we use the modified ROCC models to extend the scope of the

Paradyn IS evaluation to the SMP and MPP systems.

In answering various “what-if" questions regarding the Paradyn IS management and

configuration, our simulation experiments are designed to analyze the effects of six

parameters (factors):

1. number of concurrent system nodes: the number of NOW, SMP, or MPP system nodes

that execute the instrumented application as well as the IS processes;

2. sampling period: length of wall-clock time between two successive collections of per-

formance data samples from an instrumented application process;

3. number oflocal application processes: number of application processes running on one

node of the parallel/distributed system;

4. forwarding policy: the policy implemented by the Paradyn daemon at each node to for-

ward instrumentation data samples to the main Paradyn process;

5. application type: compute- or communication-intensive (determined by the network

occupancy requirement and frequency of synchronization barrier operations); and

6. network configuration: direct or binary tree (logical) Configuration of the nodes to for-

ward the instrumentation data from a Paradyn daemon to the main Paradyn process.

For each system architecture type, we use a subset of these factors for simulation-based

experiments. We use a 2"r factorial design technique for the simulation-based

experiments, where k is the number of factors of interest for a given case, r is the number

of repetitions of each experiment, and each factor can assume one of two possible values.

For these experiments, we select k=4 factors and r=50 repetitions, and the mean values of

the performance metrics of interest are derived within 90% confidence intervals from a

sample of fifty values. This approach helps reduce the variance (or “noise”) in the results;

thus any differences among the performance metrics under varying IS configurations and

management policies are clarified.

157

6.3.2.2 Principal Component Analysis

For each of the three system architecture types, we supplement the 2kr factorial

experiment design technique with principal component analysis (PCA) to assess the

sensitivity of the performance metrics to selected model parameters (factors) [100]. With

multiple factors, we cannot assume that each acts independently on the system under test

(i.e., the IS). PCA helps determine the relative importance of individual factors, as well as

their inter-dependences. Instead of evaluating the metrics for all possible combinations of

the factors for each “what-if” question, we use a subset of combinations that are deemed

important by the PCA.

For the NOW architecture, we assume that the system nodes are connected through a

shared network (Ethernet). Each node runs an application process and a Paradyn daemon.

One of the nodes also executes the main Paradyn process. Paradyn daemons on individual

nodes directly forward the instrumentation data to the main process. We arbitrarily select a

batch size of 32 samples for the BF policy. For compute-intensive applications, the mean

network occupancy requirement is arbitrarily set at 200 usec; and for communication-

intensive applications, 2000 usec. Four factors of interest in this case are: number of

nodes, sampling period, forwarding policy, and application type. Applying the Zkr

factorial design technique, we conduct sixteen simulation experiments, obtaining the

results shown in Table 6-5. Four factors produce fifteen combinations that affect a metric:

four for individual factors; six for the combinations of two factors; four for the

combinations of three factors; and one for the combination of four factors.

The bar graphs in Figure 68 present the results of the principal component analysis.

Clearly, the sampling period (labeled as B) is the single most important factor that affects

the direct overhead of the Paradyn daemon, followed by the data forwarding policy (C),

and the combination of the two (BC). The data forwarding policy (C) and number of nodes

(A) are the most important factors affecting monitoring latency. Thus, a further _

investigation of the IS behavior with respect to the sampling period (B), the number of

nodes (A), and the data forwarding policy (C) is justified.

158

Table 6-5. Results of simulation experiments for the NOW system.

Compute-Intensive Communication-Intensive

Parameters Application Application

Monitoring Monitoring

Latency per Latency per

Number Sampling Pd CPU Received Pd CPU Received

of period Forwarding Time per Sample Time per Sample

nodes (msec) Policy Node (sec) (msec) Node (sec) (msec)

2 5 CF 5.33 3.52 5.34 2.83

2 50 CF 0.54 0.07 0.54 0.07

32 5 CF 5.34 0.07 5.34 2.92

32 50 CF 0.53 5.42 0.53 4.83

2 5 BF 2.48 0.08 2.48 0.08

2 50 BF 0.21 0.07 0.21 0.07

32 5 BF 1 .78 - 0.68 1 .78 0.70

32 50 BF 0.22 0.94 0.20 0.88

Factor Label Values

Number at nodes A 2 or 32

Sampling period 8 5 or 50

Forwardng policy C CF or BF

Application type D Corrpute- or ‘

commmleation-

intensive l l l l

25% 50% 75% 100%

Pa of variation

explal for the metric

Figure 6.8. Results of principal component analysis of four factors and their

combinatiom for the NOW system.

PCA for the SMP and MPP architectures is conducted in a similar manner but with

slightly different sets of factors. Tables 6-6 and 6-7 present the results of sixteen

experiments for the SMP and MPP architectures, respectively.

The final results of the PCA for SMP and MPP architectures are depicted in Figure 6-9.

Figure 6-9(a) shows theiresults of the PCA for an SMP architecture. The number of nodes

(labeled as A) is the most important factor that affects the direct overhead of the Paradyn

IS (i.e., daemon and the main process), followed by the forwarding policy (C) and the

sampling period (B). The data forwarding policy (C), the number of nodes (A), and the

159

Table 6-6. Results of simulation experiments for the SMP system. (number of application

processes = number of nodes)

Compute-Intensive Communication-Intensive

Parameters Application Application

Monitoring Monitoring

Latency per Latency per

Sampling IS CPU Received IS CPU Received

ii of Period Forwarding Time per Sample Time per Sample

Nodes (msec) Policy Node (sec) (msec) II Node (sec) (msec)

1 5 GP 11.16 0.93 H 11.16 0.93

1 50 CF 2.69 3.57 2.69 3.57

32 5 CF 0.52 0.001 0.52 0.001

32 50 CF 0.17 0.001 0.17 0.001

1 5 BF 2.60 0.001 2.60 0.001

1 50 BF 0.72 0.001 0.72 0.001

32 5 BF 0.1 1 0.001 0.1 1 0.001

32 50 BF 0.1 1 0.001 0.1 1 0.001

Table 6-7. Results of simulation experiments for the MPP system.

Parameters Direct Forwarding Thee Forwarding

Monitoring " Monitoring

J Latency per Latency per

Sampling Pd CPU Received Pd CPU Received

it or Period Forwarding Time per Sample H Time per Sample

Nodes (msec) Policy Node (see) (msec) Node (see) (msec)

2 5 CF 0.54 3.76 0.54 3.76

256 5 CF 0.35 3.84 0.02 10.00

2 50 CF 0.54 0.28 0.05 0.30

256 50 CF 0.05 5.60 0.02 4.07

2 5 BF 0.21 0.12 0.21 0.12

256 5 BF 0.14 0.16 l 0.16 0.19

2 50 BF 0.01 0.12 0.01 0.12

256 50 BP 0.02 0.20 0.02 ' 0.07

combinations of the two (AC) are the most important factors affecting monitoring latency.

Figure 6-9(b) shows the results of PCA for an MPP architecture. The sampling period (B),

the forwarding policy (C), and number of system nodes (A) are equally important factors

affecting the direct overhead of the Paradyn IS, followed by the forwarding policy (C).

The forwarding policy (C) and the number of nodes (A) are the most important factors

affecting monitoring latency.

160

Metric

Factor Label Values Monitorin-

Number 01 nodes A 2 or 32 latency

Sampling period 3 5 0' 50

Forwarding policy 0 CF or er {:1ng '

wrath" type 0 Compute- or

communication- 1 l r 1

intensive
25% 50% 75% 100%

. _ . . Percenteage of variation

(a) SMP With direct forwardrng configurations ex1913'" 10" "'9 "“3"“:

25% 50% 75% 100%

Percenta e of variation

explai for the metric

(b) MPP with compute-intensive applications

Figure 6-9. Results of PCA for (a) SMP and (b) MPP architectures for four factors and their

combinations.

In summary, PCA directs us to focus on the following features, in order of importance: B,

C, A for NOW; A, C for SMP; and C, A, B for MPP architecture. PCA indicates that

monitoring latency is most affected by forwarding policy and number of nodes; and IS

overhead by sampling period and forwarding policy as well as number of nodes in SMP

and MPP cases.

6.3.2.3 Investigation of “what-if” Questions

In this subsection, we present simulation-based results that answer specific “what-if”

questions that are posed to the ROCC model. These questions are explored in order on the

NOW, SMP, and MPP architectures. These questions are related to the forwarding policy,

use of multiple Paradyn daemons, and logical network configurations for data forwarding.

161

NOW Architecture: What are the effects of forwarding policy with varying the

number of nodes and sampling periods?

The PCA in Section 6.3.2.2 shows that the choice of data forwarding policy significantly

impacts the IS overhead. In this subsection, we compare the CF and BF policies by

varying the number of system nodes and sampling periods.

The simulation results with respect to varying the number of system nodes, depicted in

Figure 6-10, lead to following observations:

x CFpolicy

+ BFpolicy

- Uninstrumented

(for application CPU utilization plots)

0 e f :e s

s“: ”L - i s " *
V u V a»

.8.
g as g 8' i

5 ..
0.8

3
'3? 0A6 g 1;. 4

g o“. 1 E 10>

a as» f l E h

e; . .3 1‘: 5 is {p as 0 gt :0 risk so 8 mg as

Numberotnodes Nurnberofnodes

l L

A
p
p
l
.
C
P
U

u
t
i
l
i
z
a
t
i
o
n
/
n
o
d
e
(
%
)

.
fi
§
§
3
a
§
§
§
i
=

M
o
n
i
t
o
r
i
n
g
l
a
t
e
n
c
y
/
s
a
m
p
.
(
s
e
c
)

A

A A A A A A

5 10 18 D 8 3 I

Number of nodes =° ; '3 Ni‘méof "adios 1” 3‘

Figure 6-10. Effects of varying number ofsystem nodes on the metrics with respect to the CF

and BF policies (sampling period = 40 msec).

- Although the direct overhead of Paradyn daemon CPU utilization does not vary with

the number of system nodes due to its localized nature, Figure 610 shows that the BF

policy incurs lower overhead. The CPU overhead by the main Paradyn process under

the CF policy increases with the number of nodes due to more data samples forwarded

162

to it. However, this overhead is significantly smaller under the BF policy since fewer

batches provide the same number of data samples as under the CF policy. Monitoring

latency is also lower under the BF policy because on the aggregate more data can be

transferred in a shorter time.

o The behavior depicted by the simulation results in Figure 6-10 is generally consistent

with the analytic results in Figure 6-5(a). Differences are due to the approximate nature

of analytic calculations that do not accurately consider inter-dependences and resource

contentions among the workloads.

The simulation results with respect to varying the sampling period, presented in Figure 6-

11, lead to following observations:

x CFpoiicy

+ BFpoliey

- Uninstrumented

(for application CPU utilization plots)

4 A "l/

E" e n
o m

g .. g “-rs- g le-

5 . a ..

3 10» o ”s

E “l; 4

Sampling period (msec) Sampling period (msec)

2': r a . . . :no" i

A I} ----- I ----- e----- .------o- ------- j A

a» i ..

g 9 "

i ”'
n- \ a

s E a,
- 70» 3

g 5 2r J

a Q g u- l

O

-' .l-

g 1»

$3 5 5 “i a a

’ “”8“” 9°.“ ("g”) Sampling patio; (meg)

Figure6-11.Effeetsofvaryingthesamplingperiodsonthemetricswith respecttotheCF

and BF data forwarding policies (number of nodes = 8, contention-free network).

0 Figure 6-1 1 shows that the monitoring latency is not significantly affected by variations

in the sampling period. The direct IS overhead and intrusion to the application decrease

with increasing sampling period. As sampling period increases, the application CPU

utilization approaches the uninstrumented level.

163

o The application CPU utilization significantly decreases at sampling periods less than 4

msec (see the lower left plot). Therefore, neither CF nor BF policy can support more

than 250 samples per second.

0 The behavior depicted by the simulation results in Figure 6-11 is generally consistent

with the analytic results in Figure 6-5(b). The differences are elaborated in third “what-

if’ question related to the SMP architecture. Simulation of the ROCC model accurately

accounts for the resource contentions according to the scheduling policies used by the

operating system.

These results indicate that the BF data forwarding policy outperforms the CF policy with

respect to both direct overhead and monitoring latency. This was also found true for the

SMP and MPP architecture. Therefore, we consider only the BF policy in the following

subsections.

NOW Architecture: What should be the size of the batch?

After determining that the BF policy is better with respect of our metrics of interest, we

investigate the effect of the batch size on the overall system performance. Since the PCA

for the NOW system indicates that sampling period is the most important factor for the

CPU overhead of Paradyn daemon, we investigate this question by varying the batch Sizes

for three levels of the sampling period: a short value of 1 msec, an intermediate value of 40

msec, and a longer value of 64 msec. Simulation results presented in Figure 6-12 indicate

that:

0 Typically, significant changes can be observed when batch size is increased from one,

i.e., at the transition from the CF to BF policy. In addition, these changes are more rele-

vant for shorter sampling periods. This is consistent with the results of the PCA that

verifies the importance of forwarding policy and sampling period.

0 Monitoring latency exhibits a sharp decrease with increasing batch sizes after the

change over point from the CF to the BF policy. However, this sharp initial decrease

levels off at larger batch sizes. A batch size of greater than 2 samples reduces the CPU

occupancy requirements for forwarding individual samples. An excessively large batch

size also takes a longer time to accumulate, especially at lower sampling periods; thus it

does not result in any significant improvement in monitoring latency.

164

x Sampling period c 1 msec

Sampling period a 40 msec

c sampling period a 64 msec

+

A 1

g ”IF

£25» 0 n»

i i .,.. e
E :3 '°*

31‘ -r g ”P

g e.— :2 :7 = “ N; a a:

:10’ 1 o ”L

8 g. at

a '. £ 107-

e‘ z ‘ ; n J J 11s =1 42 s s is i": 3 11s

Batch size (samples Batch 3520 (88019193)

s= _ _ _ A r ~ .. '
v”. g 2 g

g u-
2

5.. i
5 7.. g

‘3 ..

a " s

u'» cg

=1 2 4 0 10 g 06 1’ z f 0‘: 1.

Batch size (samples) Batch size (samples)

Figure 6-12. Effects of varying the size of batch of samples to be forwarded from Paradyn

daemon to the main Paradyn process on IS performance metrics (number of nodes = 8,

contention-free network).

Based on the above observations, a value of batch size close to the “knee” of the

monitoring latency curve is desirable. We selected a batch size of 32 for the BF cases

presented here.

SMP Architecture: What is the effect of multiple Paradyn daemons on the

monitoring latency?

Simulation results in Figure 610 Show that the monitoring latency increases with the

number of nodes. In order to maintain a lower monitoring latency, we investigate the

potential effects of using multiple Paradyn daemons (up to four) on an SMP. An important

165

factor with respect to the use of multiple daemons is the sampling period. Figure 6-13

evaluates the use of multiple Paradyn daemons in terms of direct Paradyn daemon and

main process (IS) overhead, monitoring latency, and intrusion to the application processes

under the BF policy. We conclude the following from Figure 6-13:

x 1 Pd ' 3 Pds - --- - Uninstrumented (for application

+ 2 Pds o 4 Pd_s CPU utilization plot)

d

:10
!

8 i

J

”
L

I
I

—
3

as
w

1
8
C
P
U

u
t
i
l
i
z
a
t
i
o
n
/
n
o
d
e
(
9
6
)

A L a a a

'

Sampling period (msec)
Sampling period (msec)

 M
o
n
i
t
o
r
i
n
g
l
a
t
e
n
c
y
/
s
a
m
p
l
e
(
s
e
c
)

 _ - r |

3
4
'

 w
v

w
w

L

Sampling period (msec)

Figure 643. Effects of multiple Paradyn daemons on two metrics (number of nodes = 16,

application processes = 32, BF policy, duration of simulation = 100 sec, logarithmic

horizontal scale).

A
p
p
l
i
c
a
t
i
o
n
C
P
U

u
t
i
l
i
z
a
t
i
o
n
/
n
o
d
e
(
9
6
)

o The number of Paradyn daemons does not have any intrusive impact on the application

except at sampling periods of less than 10 msec. At shorter sampling periods, the appli-

cation CPU time significantly decreases, particularly for one Paradyn daemon. This is

not a consequence of high CPU utilization by Paradyn daemons at lower sampling peri-

ods (see the left plot). Rather, at a lower sampling period, the pipe that holds data sam-

ples for a Paradyn daemon fills to its capacity more often. When the pipe is full, the

application process that generates a sample is blocked until the daemon is able to for-

ward outstanding data samples. The effect of this blocking is reduced if the number of

Paradyn daemons is increased for smaller sampling periods.

0 The monitoring latency increases with the number of Paradyn daemons. This small

increase is a consequence of additional CPU contention due to multiple Paradyn dae-

mon processes.

166

o It is interesting to note that the behavior of the monitoring latency shown in Figure 6-13

is opposite to that predicted by analytical calculations in Figure 6-6. Analytical calcula-

tion of monitoring latency for the SMP architecture (presented in Table 6-4) is a func-

tion of only the arrival rate (A). Arrival rate is inversely proportional to the sampling

period and directly proportional to the number of Paradyn daemons. Since the ratio of

the number of Paradyn daemons to the sampling period decreases with increases in

sampling period, the arrival rate and hence analytical monitoring latency also decrease.

However, the analytical model does not account for the fact that a longer sampling

period means longer periods of time between successive samples being forwarded from

a node, which translates to longer latency in the end. On the other hand, simulation of

the ROCC model accurately accounts for the time between successive samples in calcu-

lating monitoring latency. It also accounts for CPU and bus contention of multiple dae-

mons.

SMP Architecture: What are the effects of multiple Paradyn daemons under CF and

BF policies with varying number of application processes?

With multiple Paradyn daemons, we investigate the effect of varying the number of

application processes while keeping the number of nodes and sampling period constant.

The objective is to evaluate the use of multiple daemons when varying amount of work is

being generated, depending on the number of application processes. Figure 6-14 shows

the results of this case.

0 The effect of multiple Paradyn daemons on the IS CPU overhead is insignificant until

the number of application processes becomes greater than the number of CPUs (i.e.,

system nodes). Similarly, the intrusion to the application is also unaffected by the num-

ber of Paradyn daemons.

- Monitoring latency for multiple Paradyn daemons is greater than the latency for one

daemon, especially for larger number of application processes. This increase is due to

more contention for shared resources due to larger number of application and daemon

processes. '

These results show that the use of multiple Paradyn daemons per node may not result in

improved monitoring latency on an SMP. In fact, it may increase the latency due to

additional resource contentions.

167

x 1Pd ' 3 Pds - --- - Uninstrumented (for application

+ 2 Pds o 4Pds CPU utilization plot)

g... g ,_ J

i .. g i
See \ e» 4

>

5 on
g 0 J

g ... T a ..

E 3' ._
o ... E
2 3 v i

=. i. .3 .‘o .‘o {o a re 5-__:.4. .g. - -$

' ’ o 90 D 9 0 IO U 70

Number of application processes Number 0' application as

g - - *‘EET

s «f = +
E

a .. w

3

a ..

E ..
0

§ ..

g l.
a,

2. we to a a en es era to

Nunberotapplleationproeeeses

Figure 644. Effects of multiple Paradyn daemons on the metrics with respect to CF and BF

data forwarding policies (sampling period = 40 msec, number of nodes = 16, BF policy,

duration of simulation 2 100 sec).

MPP Architecture: What is the effect of direct vs. tree forwarding on scalability?

A typical MPP system may consist of hundreds of nodes. Our objective is to study the

scalability of data collection when hundreds of nodes forward instrumentation data

samples through their local Paradyn daemons. In this cases, a single data collection and

reduction node that hosts the main Paradyn process is likely to become a bottleneck. We

proposed the use of a binary tree configuration in Section 5.5.2.2 (Figure 5-10) for

intermediate reduction and forwarding of instrumentation data samples. In this subsection,

we compare the scalability of the Paradyn IS under direct and tree configurations.

Principal component analysis in Section 6.3.2.2 indicates that the effect of varying the

sampling period on the direct IS overhead should be significant. Figure 6-15 represents the

effects of varying sampling periods under the direct and binary tree data forwarding

168

configurations. The results are again shown under the BF policy only. Analyzing direct

forwarding versus tree forwarding, we make the following comparisons:

x Direct brwarding

+ Binary tree forwarding

- Uninstrumented

(for application CPU utilization plot)

I
I

M
.
1
!

W

‘ N

v

v

¢ 0 1

r
?

O v

v

.
9

§

P
d
C
P
U

u
t
i
l
i
z
a
t
i
o
n
/
n
o
d
e
(
%
)

P
a
r
a
d
y
n
C
P
U

u
t
i
l
i
z
a
t
i
o
n
/
n
o
d
e
(
%
)

a
T 4%

Sampling period (msec)

A

O h

3
A
-

l
l

‘
V

U

9 i3

8 8

V

I M
o
n
i
t
o
r
i
n
g
l
a
t
e
n
c
y
/
s
a
m
p
l
e
(
s
e
c
)

2

L
A

A
p
p
l
i
c
a
t
i
o
n
c
p
u

u
t
i
l
i
z
a
t
i
o
n
l
n
o
d
e
(
%
)

8

A A A A v

. g . . a u I I . I . ee

Sarmiing period (msec) Sampling period (msec)

Figure 6-15. Effects of varying sampling periods with respect to direct or tree forwarding on

the IS performance metrics (number of nodes = 256, BF policy, logarithmic horizontal scale).

0 Per node Paradyn daemon CPU overhead is higher under the binary tree configuration

at shorter sampling periods due to the increased volume of samples being generated.

CPU utilization of the main Paradyn process reaches nearly 100% because it is

swamped by sample arrivals from 256 nodes. With direct forwarding, a swamped main

Paradyn process blocks all the Paradyn daemons that try to forward further samples to

it. Blocking results in lower Paradyn daemon CPU utilization even though samples are

pending. Since most of the data reduction and merging are handled by intermediate

Paradyn daemons, blocking is less likely under tree forwarding because the main Para-

dyn process has less work to do.

0 The same phenomena that lead to the performance of the IS processes impacts the

application processes as well. When a Paradyn daemon blocks, waiting to forward

additional samples, it forces the application process generating samples to block. Thus

169

the application CPU utilization at a node is reduced to 25% instead of an uninstru-

mented 78%. Tree forwarding greatly reduces this intrusion to the application pro-

cesses.

- Although the CPU utilization values for the main Paradyn process are almost the same

under the direct and tree forwarding cases, the number of samples collected under the

tree forwarding is larger.

0 Monitoring latency is higher for the tree configuration because a set of samples origi-

nating from the leaf nodes undergoes a logarithmic number of forwarding operations

instead of one for direct forwarding. Additionally, the monitoring latency increases

with sampling period for the tree configuration because intermediate Paradyn daemons

do not merge and forward the “enroute” samples asynchronously; these samples are

forwarded after the expiration of the current sampling period. We do not process the

enroute samples asynchronously because doing so significantly reduces the CPU time

available for the local application process.

Simulation results presented in this subsection suggest that the use of binary tree

forwarding is beneficial to improve the scalability of the Paradyn IS as the number of

system nodes increases to several hundreds. For 256 nodes and sampling periods less than

8 msec (i.e., more than 25 samples per second), the Paradyn IS should switch from direct

to tree forwarding.

MPP Architecture: What is the effect of varying the frequency of barrier operations

in a program on IS overhead and intrusion?

Barrier synchronization is frequently used to explicitly implement a lock-step execution of

parts of a program on an MPP system. Since barrier synchronization causes global

coordination among application processes, it is of interest to consider the impact of on-

line data collection on programs with different rates of barrier synchronization. In

particular, we want to verify that the additional Paradyn daemon overhead for tree

forwarding does not unduly perturb application execution time. Figure 6—16 presents the

results of our investigation of the effect of varying the frequency of barrier

synchronization operations on the Paradyn IS.

170

x Direct forwarding

+ Binary tree forwarding

- Uninstrumented

(for application CPU utilization plot)

03: r , A = ‘r v

, a
$3 < .3u

g I:

08> 4

E ..
a

g .. g

s , “a a
— o“ h

2 a.»
a. Q"

0

E W'
+ ‘0’

A! A L A A 4L .1 A A A A

'om 0.1 r to 100 race 10006 "no: 0.: r to 100 race room

Barrier period (msec)

§ :e A 0.1- 1 1

7;; we»
§ one»

0
n’ a Q“P

E g
”b

5 ‘5 ..
‘5 o- o

3 a w:
Q a. '—

0 g onev i

g a» eon <

i 10 our

on: 0.: i ii) «in robe roooo =0.01 a? 1' to too robe 10006

BMWPOW (WC) Barrier period (msec)

Figure 6-16. Effects of varying frequency of barrier operations (number of nodes = 256,

sampling period = 40 msec, BF policy, logarithmic scales for barrier periods).

CPU overhead of both Paradyn daemons and main process decreases at higher barrier

frequencies (and lower barrier periods as shown in the figure). While an application

process waits to exit from the barrier, the Paradyn daemon does not compete for CPU

time with the application process. Note that the CPU overhead for Paradyn daemon is

only a fraction of a percent for the entire range of barrier period.

Tree forwarding does not result in a lower application CPU utilization compared to the

direct forwarding at any barrier period value. Thus, tree forwarding does not cause any

additional intrusion to the application.

The penalty of having instrumentation in the application varies from 10%-35% for a

barrier period range of l to 100 msec. It appears that any delay in dispatching an instru-

mented application process on a node significantly reduces the amount of useful work

done by that process, especially when coupled with the synchronization operations.

This behavior identifies a potential bottleneck in the Paradyn 18 for an MPP system.

The monitoring latency is unaffected due to barrier operations but exhibits differences

due to the direct or tree configurations.

171

These results indicate that barrier synchronization operations result in greater intrusion,

essentially independent of the choice of data forwarding configuration. As a result, we are

able to use tree forwarding without introducing additional application perturbation.

6.3.3 Feedback to the Developers

The investigation of the “what-if” questions presented in the preceding subsections

evaluated the Paradyn IS with several low—level details. However, such low-level details

are typically less beneficial for tool developers or users. In order to provide them with

useful feedback, we summarize the simulation-based evaluation results in this subsection.

Simulation-based evaluation results can be divided into two categories: results directly

relevant to the actual implementation of the Paradyn IS on an IBM SP-2 (NOW

architecture) platform; and results projecting the performance of the Paradyn IS to the

SMP and MPP architectures under different operating conditions. The first category of

results is useful for improving the IS; and the second category, for porting the 18 to other

platforms without compromising scalability or performance. We presented several

conclusions from the individual “what-if” simulation-based analyses in the preceding

subsection. The important results are summarized as follows:

1. the BF policy should be implemented as a default policy to schedule data forwarding

operations because it outperforms the CF policy;

2. in the case of an SMP, use of multiple daemons per node represents a trade—off between

more samples received by the main process and additional contention for system

resources;

3. binary tree forwarding should be used on an MPP system due to its superior scalability

characteristics compared to direct forwarding; and

4. specific application characteristics, such as frequency of barrier operations on an MPP

system, may affect 18 performance, which may in turn impact the instrumented applica-

tion.

172

This feedback was well-received by the Paradyn IS developers and the BF policy was

implemented in addition to the CF policy for the IBM SP-2 platform. Thus, we can

experimentally validate these simulation results via testing of the actual IS.

6.3.4 Experimental Validation

We use measurement-based experiments to test the actual IS and validate the simulation-

based results. Our objective is to experimentally verify that the performance of the real

system with actual application programs matches the predictions of the simulator.

Measurement-based tests generate large volumes of trace data. Investigating a number of

“what-if" questions is less feasible than with simulation. Time is also required to

implement and debug new policies. Therefore, testing necessarily focuses on specific

aspects of performance under carefully controlled experimental conditions.

6.3.4.1 Experimental Setup

Figure 6-17 depicts the experimental setup for measuring the Paradyn 18 performance on

an IBM SP-2 system. We initially use the NAS benchmark pvmbt as the application

process; and we use the AIX tracing facility on one of the SP-2 nodes executing the

application process. The main Paradyn process executes on a separate node, which is also

traced. Therefore, one experiment with a particular sampling period and data forwarding

policy results in two AD(trace files. These trace files are then processed to determine

execution statistics relevant to the test.

We conduct a set of four experiments based on two factors, sampling period and

scheduling policy, each having two possible values. As in the simulation, the forwarding

policy options are CF and BF. The sampling period is assigned a relatively low value (10

msec) or a higher value (30 msec). Experiments using Paradyn on SMP and MPP

architectures are left to future work with Paradyn. Consistent with the simulation, network

173

Parallel virtual machine mnning NAS benchmarks with Paradyn IS

High-speed network

. . hiuusz“.-ueu_a.a-,M

Etherne‘ " Maj... .: Mane.“W s ,wuwl‘_......r..-_-..‘ 1

—~. "“1.rr-"WW-“WM"W1 “r,m

SP-2 Node: SP-Z Node: SP-Z Node:

Main Para application, ap llcation, llcation.

process dyn Pd. PVM-'1. Pd.) pvmd, a?pvmd,

AlX tracing facility I ; AIX tracing facility

AIX trace file

corresponding

to the main

AIX trace file

corres ing

 to app lcatlon,

Pd, and pvmd

V58

Figure 6-17. Measurement-based experiment setup for Paradyn IS on an SP-Z.

occupancy is not considered (which means that communication events are not traced); this

also reduces the disk space needed for AIX traces.

6.3.4.2 Evaluation

Figure 6-18 summarizes the Paradyn IS testing results related to the CPU overhead of the

Paradyn daemon (a) and the main Paradyn process (b). The CPU utilization of the Paradyn

daemon under the BF policy is about one-third of its value under the CF policy. This

indicates a more than 60% reduction in overhead when Paradyn daemons send batches of

samples rather than making system calls to send each sample individually. Similar

analysis of the trace data obtained from the node running the main Paradyn process

indicates that the overhead is reduced by almost 80% under the BF policy.

In order to determine the relative contribution of these two factors to the direct CPU

overhead, we use principal component analysis. The results of this analysis for the

Paradyn daemon and main Paradyn processes are shown in Table 6-8. Clearly, the

174

a CF VIA BF m CF BF

A 18.9 4‘

E ‘ 3 :

r. é :
i i «a:
D 6.3 a :zezej

95 5.1 0 . .z.: 59

2 3 z’? 38 29

a a m 3’02

h—w—’ —v-—“ —‘V‘—" —v—’

Samplingperiod(SP)-10msec SP-aomsec SP-iomec SP=30msec

(a) Paradyn daemon process (b) Main Paradyn process

Figure 6-18. Comparison of CPU overhead measurements under the CF and BF policies

using two sampling period values for (a) Paradyn daemon and (b) main Paradyn process.

scheduling policy to forward data is primarily responsible for variations in IS overhead.

Thus, within the scope of our testing, the results verify that the performance of the real

system matches the predictions of the simulation.

Table 6-8. Renrlts of principal component analysis of scheduling policy vs. sampling period

for the tests in Figure 1548.

Variation explained Variation explained

Factors or combination of for Paradyn daemon for main Paradyn

factors CPU time (%) process CPU time (%)

A (scheduling policy for data 47.5 52.9

forwarding)

B (sampling period) 35.9 26.5

A8 16.5 20.7

We conduct another set of measurement experiments to isolate the effect of a particular

application on the Paradyn IS overheads. To do this, we experiment with two forwarding

policies, CF and BF, and two NAS benchmark programs, pvmbt and pvmis. Benchmark

pvmbt solves three sets of uncoupled systems of equations, first in the x, then in the y, and

finally in the z direction. The systems are block tridiagonal with 5x5 blocks. Benchmark

pvr'nis is an integer sort kernel. All experiments use a sampling period of 10 msec. The

results are summarized in Figure 6—19. The key observation is that the reduction in IS

175

overheads under the BF policy is not significantly affected by the choice of application

program.

we: .eF @cr

A 95.5%

55
g 82.6%

' §

§ . s
E . ' 1.9% E

- d

8 : . 6 °

. , /
~—Y—'_’ —Y_.——4

pvmbt
pvmbt

(a) Paradyn daemon process (b) Main Paradyn process

Figure 6-19. Paradyn IS testing results related to (a) Paradyn daemon and (b) main

process.

We again use principal component analysis to quantify the dependence of IS overheads on

the choice of application program. The results of this analysis are shown in Table 6-9. Not

surprisingly, the effect of the application program is negligible. Once again, the dominant

factor under the current experimental setup is the scheduling policy.

Table 6-9. Resulm of principal component analysis of scheduling policy vs. application

program for the tests in Figure 6-19.

Variation explained Variation explained

for Paradyn for main Paradyn

Factors or combination of daemon’s normalized process’s normalized

factors CPU time (%) CPU time (%)

A (scheduling policy for data 98.5 , 86.8

forwarding)

8 (application program) 0.3 6.8

AB 1.2 6.4

6.4 Evaluation of the JEWEL IS.

In this subsection, we evaluate the JEWEL IS model based on workload characterization

presented in Section 5.5.3.4. We present analytical calculations using operations analysis

176

in subsection 6.4.1, simulation results in subsection 6.4.2, feedback to the developers in

subsection 6.4.3, and experimental validation of selected simulation results in subsection

6.4.4.

6.4.1 Analytic Calculations

Similar to the Paradyn 18 case, the ROCC model for the JEWEL IS is a mixed queueing

network. It is an open network for the JEWEL sensor requests and a closed network for

the application, visualizer, and resource manager agent requests. Since the operations

analysis techniques cannot capture the interactions among these types of workloads, we

focus on the JEWEL sensor requests and calculate only the IS-related metrics. This

calculation is similar to the one for Paradyn IS in a NOW system.

6.4.1.1 Calculation of IS-Related Metrics

We first calculate the arrival rate 2. of JEWEL sensor requests at each node. It is given as:

1

" Polling period‘

(6.26)

The JEWEL sensor CPU utilization per node follows from the utilization law andforced

flow law as:

l'LSensor, CPU(A‘) = A'DSensor, CPU ' (6‘27)

Using flow balance assumption, the throughput of each node is equal to 2.. Therefore,

overall JEWEL sensor CPU request throughput is equal to P)», which is the overall arrival

rate of JEWEL sensor network requests. The network utilization by JEWEL sensor

requests is given by:

“Sensor, Network(l) = PADSensor, Network' (6-28)

177

The monitoring latency of a sample that reaches the JEWEL collector in the form of an

MDR is given by:

D D
R(A.) = Sensor, CPU Sensor, Network

. (6.29)

1 - ”Sensor, CPU(}") 1 — ”Sensor, Newer/((1)

In order to calculate the hold-back ratio, we first need to know the number of outstanding

sensor requests in the system and an estimate of the number of received requests in

observation time T. The maximum possible number of MDRs received by the collector in

time T is equal to nM‘. The number of outstanding sensor requests in the system is given

by:

l ._ P"Sensor, CPU "Sensor, Ne:

QSensor() ' 1 _ + l _ .

“Sensor, CPU ”Sensor, Ne:

Therefore, the hold-back ratio (HBR) is give by:

HBR(A.) = 1 [IPI‘lSenson CPU + "SemanNet] (6.30)

PAT - ”Sensor, CPU 1 — “Sensor, Net

As in the case of Paradyn IS, the analytical results presented by equations (6.26)—(6.30)

are only approximate calculations. Simulation-based approach will be used to capture the

interesting details such as sharing of system resources by multiple workloads.

6.4.1.2 Summary of Analytic Results

Table 6-10 summarized the analytical results from the ROCC model of JEWEL IS. These

results are expressed as functions of arrival rate only, which depends on the polling period

of the shared-memory ring buffer of the JEWEL IS. It is obvious from these results that

sensor CPU utilization decreases and monitoring latency increases as the polling period

178

increases. However, the more accurate simulation-based results may deviate from this

behavior as they take the contention of shared system resources into account.

Table 6-10. Summary of analytic results for the ROCC model ofJEWEL IS.

Performance

Metric - Analytic Results

mmdn
A _ l 1

new - Polling period

WW ”Sensor. CPU(A‘) = lDSenror. CPU

WM “Sensor,NerworkO“) = PADSensor,Nerwork

M

w!w R(A) = DSensor. CPU DSensor. Network

1 ' “Sensor. CPUO') l ' “Sensor, Networka')

Mrs“ HERO.) = 1 I: PuSensor, CPU + ”Sensor. Net]

P17. 1 "' “Sensor. CPU 1 - “Sensor, Net

6.4.2 Simulation-Based Evaluation

In this subsection, we present the results of simulating the ROCC model for the JEWEL 18

to evaluate the performance of the IS and the controller. As in case of Paradyn IS, we

present experimental design, principal component analysis, investigation of the “what-if"

questions, and feedback to the developers.

6.4.2.1 Experimental Design

We again design the simulation experiments to calculate the value of a metric based on

fifty independent repetitions. The mean values of the six metrics (defined in Section

5.5.3.6) are derived within 90% confidence intervals from this sample of fifty values at

each operating point of interest. We use four variable model parameters (factors): ring

buffer polling period, controller sampling period, adaptation policy, and control system

scheduling policy.

179

6.4.2.2 Principal Component Analysis

Applying the 2" factorial design technique, we conduct sixteen simulation experiments,

obtaining the results shown in Table 6—2. For this analysis, each factor can assume one of

two possible values.

Table 6-11. Results of simulation experiments for adaptive control of the JEWEL IS for the

video application (number of nodes = 8, ring buffer size = 4000 MDRs, simulation time = 100

sec).

Parameters Metries

Ring Sampling Adaptation Client Sensor Monitoring Hold- Percent

buffer period policy, frame CPU latency back ratio of lost

polling (msec) control rate utilization (msec) (%) MDRs

period system (frames/ per node (%)

(msec) scheduling sec) (%)

0.001 0.001 SPP, Die 29.99 8.00 1.00 23.08 17.95

100 0.001 SPP, Dis 29.99 3.40 1.52 23.13 17.95

0.001 100 SPP, Dis 29.99 8.02 0.81 23.64 17.93

100 100 SPP, Dis 29.99 3.40 1.36 23.1 1 17.93

0.001 0.001 DPP, Dis 29.99 0.01 0.81 99.96 74.31

100 0.001 DPP, Dis 29.99 5.75 0.60 45.43 31.98

0.001 100 DPP, Dis 29.99 8.52 2.14 33.28 24.35

100 100 DPP, Dis 29.99 8.00 1.61 23.01 17.88

0.001 0.001 SPP, Cert 29.99 10.01 1.25 0.03 0

100 0.001 SPP, Gen 29.99 4.40 1.27 0.07 0

0.001 100 SPP, Gen 29.30 10.00 0.83 0.92 0

100 100 SPP, Can 29.99 4.40 1.27 0.04 0

0.001 0.001 DPP, Con 24.15 41.16 2.16 14.68 14.68

100 0.001 DPP, Gen 29.98 15.82 2.33 20.19 15.56

0.001 100 DPP, Cert 29.96 11.48 1.21 3.92 0

100 100 DPP, Con 29.97 24.52 1.86 0.001 0

SPP—-Static Polling Period adaptation policy

DPP—Dynamic Polling Period adaptation policy

Dis—Distributed scheduling of the control system

Con—Centralized scheduling of the control system

Figure 6-20 shows the results of the PCA. Clearly, scheduling policy for the control

system (labeled as D) is the most important factor that affects all six metrics of interest. In

case of monitoring latency, the most important factor is the combination of controller

sampling period and the scheduling policy (labeled as BD). Also note that the client frame

180

rate and CPU utilization are sensitive to the same factors because one metric is dependent

on the other. The adaptation policy is the second most important factor after control

system scheduling policy that affects the sensor CPU utilization. Thus, a further

investigation of the behavior of the IS with respect to control system scheduling policies,

adaptation policies, and sampling periods is justified.

Metric

Lost trace records 0 C
43% 13% 11%

D C BC

Hold-back ratio 42% I 14% I 10%

Monitoring latency 23% I 25,? I - 1cm

Sensor CPU util.

Client CPU util.

Frame rate

Figure 6-20. Results of principal component analysis of four factors and their

combinations for the metrics of interest for JEWEL IS case study.

6.4.2.3 Investigation of “what-if” Questions

Simulation-based evaluation of the ROCC model for JEWEL IS explores the answers to

three questions:

1. What is a desirable IS configuration and operating conditions with respect to the

requirements of real-time video conferencing application?;

2. Which one of the two adaptation policies should be selected for actual implementation?

Should this policy be scheduled in a centralized or a distributed fashion?; and

181

3. What is the performance of the adaptive controller designed on the basis of the answers

to the above two questions?

The above questions are posed in a logical order such that the results of investigating one

question are directly useful for the subsequent question. Results of investigating these

questions are presented in the rest of this subsection.

What is a desirable IS configuration and a set of operating conditions?

We begin with an investigation of the effects of selecting different values for ring buffer

polling period and ring buffer size under the CF and BF instrumentation data forwarding

policies. Our primary goal is to select one of the two forwarding policies and size of the

ring buffer. Ring buffer size should be suitable for any value of polling period, which is to

be varied for adaptive control. For the cases presented in this subsection, we keep the

adaptation turned off while the instrumentation system continues to perform its functions

throughout the simulation experiments. Moreover, in order to compare with these cases,

we use a base-line case that involves disabling the instrumentation in the application

pI'OCCSSCS.

Figure 6-21 presents the behavior of the metrics of interest with respect to variable ring

buffer polling periods under the CF and BF forwarding policies.

0 It is important to note that under the CF policy and shorter polling periods, the frame

rate drops well below the 30 frames/sec requirement. In comparison, intrusion to this

real-time characteristic of the application is significantly reduced under the BF policy.

Under the BF policy, the JEWEL external sensor can forward several MDRs to the col-

lector as a batch by charging the same amount of CPU time (system call overhead) that

is required to forward a single MDR. An application process can use this additional

CPU time to process the incoming frames, resulting in higher frame processing rate.

0 The BF policy also helps maintain a steady flow of instrumentation data (i.e., MDRs)

from the distributed sensors to the collector. This is evident from the comparatively low

monitoring latency and hold-back percentage and larger number of MDRs received by

182

x CF policy

+ BF policy

- - — Noinstrumentation

i 1 i I I I i 9
‘ r r r i

jg E
as» o h

g g 5. J

2: ”’ E

a .

8 s
9 g

5 ° "a

g .. 2 ..

._ § '

o : . , g A a , . . - - -
0.01 ”I 9.1 r so m I” error 901 0.1 1 re 0“ III)

Fling buffer polling period (msec) Ring butler polling period (msec

E . .. l

’ v fi» .

a ’ g" l

5 » a ..
g _ 2.»

i . E w
8 w

2’ = ..
m MI 191 0:1 A re a in ace: 6:! of r : m 1”

Ring butter polling period (msec) Ring butter polling period (msec)

eel l £

A ”if F a

a «l a -

s .. 4 .
E .

J .5 _

D . b

. 4 g

as 2 'F

Ring butler polling period (msec) Ring buffer polling period (msec)

Figure 6-21. 008 and IS metrics for variable ring buffer polling periods under the CF and BF

policies of forwarding instrumentation data to the JEWEL collector (number of nodes = 8,

rings bufl’er size = 4000, simulation time = 100 sec, logarithmic scale for ring buffer sampling

period).

the collector, at all ring buffer polling periods. The default technique of JEWEL exter-

nal sensor to busy-wait for any event records to arrive in the shared memory correspond

to very small polling periods.

0 Although the BF policy outperforms JEWEL’s default CF forwarding policy at shorter

polling periods, it is advisable to poll the shared memory segment after relatively

longer polling periods to avoid intrusion to the real-time behavior of the application.

183

From the results presented in Figure 6-21, it appears that a suitable polling period that

maintains a 30 frames/sec rate keeps the application client CPU usage close to its base-

line (no instrumentation) value, keeps sensor CPU overhead low, and maintains steady

instrumentation data flow is at least 1 msec.

Next, we select a suitable size for the shared memory segment that temporarily holds the

event data arriving from the internal sensor. Figure 6-22 presents only the data flow related

metrics of interest under variable ring buffer sizes and CF and BF forwarding policies.

x CFpolicy : . - - - f - .

- f v r f + Blecy :: 4* As. :: 4.; t: :

09> — 19'
4

g oer
f A is»

V .7» i 1.?

EM-

8 13.

:3 as» g "

0.4
1

a u.

‘9
g”, J g “P

o: 4 I as)

2 0.1:»
, 01»

J

,ggggugggm ‘......‘.....‘....;....;....;.....;.....

Ring buffer size (trace records) Ring buffer size (trace records)

1..
l

a u» .

g u-

- as

E es-

rf u»

3.. .1. .2. 8.. .2. 82...: «are

Fling buffer size (tr'aoe records)

Figure 6-22. IS metrics for variable ring buffer sizes under the CF and BF policies of

forwarding instrumentation data to the JEWEL collector (ring buffer sampling period = 1000

unec, number of nodes = 6, simulation time = 100 sec, logarithmic horizontal scale).

0 None of the metrics, other than data flow metrics, changes with the ring buffer size,

because the application does not block if this buffer becomes full; the internal sensor

simply drops the event data.

0 The default shared memory segments size of 128K bytes allows about 4000 event

records, which appears to be an appropriate size under either of the two forwarding pol-

icies. Within each cycle of client process execution, it does not generate more than six

184

event records. There are at the most 30 cycles that a client process completes per sec-

onds; therefore, the average number of events waiting in the shared memory ring buffer

do not grow more than 180 records.

0 Monitoring latency is low at small buffer sizes because a number of event records are

not generated by the internal sensor in the first place.

Based on the results presented in this section, we conclude that the BF policy is desirable

at all ring buffer polling periods and sizes. Additionally, the default ring buffer size of

128K bytes (or 4000 event records) is sufficient for the purposes of this application.

Therefore, for the rest of the cases presented in subsequent sections, we use the BF

forwarding policy and a shared memory segment of size 4000 records.

What is a suitable adaptation policy and how it should be scheduled?

We compare two adaptation policies: static polling period (SPP) and dynamic polling

period (DPP). JEWEL IS parameter changes due to these policies can be implemented

using one of the two possible types of scheduling: centralized or distributed scheduling.

Adaptation is made possible through the resource management component that examines

the state of the entire system after each controller sampling interval and makes decisions

that are applied to all the nodes in the system using centralized scheduling approach.

Under distributed scheduling options, the resource manager agents collect and analyze the

states of the local system using JEWEL sensor data and schedule any needed actions for

their node. The goal of the simulation-based evaluation presented in this section is to

select a combination of an adaptation policy and scheduling policy that can better meet the

QoS requirement of a constant frame rate (30 frames/sec) and JEWEL sensor CPU 1

overhead constraint (to be less than or equal to 10% of CPU usage). Additionally, we have

to consider that the selected policy also maintains a steady flow of MDRs to the collector.

We begin with an evaluation of the effect of controller sampling period on the

performance metrics of interest. The results are presented in Figure 6-23.

185

——-)t— SPP adaptation. centralized scheduling - at- - SPP. distributed scheduling

, DPP adaptation, centralized scheduling - 4— _ DPP. distributed scheduling

— e — No adaptation

A e 4 ; :\.fi :3 7 r '

§ rel : ee‘ :

B i
E .. a “

v % C4L

s n» l s
E 'g as» i

,. . a ..
0

s .. s

.~ door act or , to too iooo " one: do: at . to too iooe

Sampling period (msec) Sampling period (msec)

‘- V v r

M
o
n
i
t
o
r
i
n
g
l
a
t
e
n
c
y
(
s
e
c
)

S
e
n
s
o
r
C
P
U

u
t
i
l
i
z
a
t
i
o
n
/
n
o
d
e
(
%
)

Sampling period (msec)

- I. a; ’
é ,, 2

i» g ,

g ‘ g .’

Samplingpei'iodmisec) Sampling périodrmsec

Figure 6-23. 008 and IS metrics for variable controller sampling periods under the BF

policy of forwarding imtrumentation data to the JEWEL collector (number of nodes = 8,

ring bufl‘er size = 4000, simulation time = 100 sec, logarithmic scale for sampling period).

Under both distributed and centralized scheduling policies, the SPP adaptation policy

outperforms the DPP adaptation policy in terms of almost no intrusion to the real-time

behavior of the application and meeting constraints on sensor CPU utilization. The rea-

son is the incremental changes in the ring buffer polling period under the DPP adapta-

tion. Particularly at shorter controller sampling periods under the centralized

scheduling, the DPP cannot attain a “steady state” as resource manager has to change

the polling period at every sampling instant (up or down by a factor of two) resulting in

186

low frame rate and high sensor CPU overhead. These changes result in only small

improvements and the system continues to require further adjustments resulting in

larger variability in the metrics. On the other hand, static adaptation makes only one of

the two changes: (1) turn the instrumentation off at all nodes (under centralized sched-

uling) or at local node (under distributed scheduling) if the current system state shows

that the constraints are not being met; or (2) turn the instrumentation on if the system

starts meeting the constraints. This policy results in more predictable (in terms of lesser

variability) and steady behavior of the real-time application and instrumentation sys-

tem.

- The benefit of using adaptive control is clear from the plot of sensor CPU utilization,

which shows a reduction in CPU overhead, under the static adaptation, to 50% of its

value under no adaptive control.

0 In case of distributed scheduling, both frame rate and sensor CPU overhead require-

ments are met by both adaptation policies because unlike resource manager’s operation

under centralized scheduling local resource manager agent’s decisions are not influ-

enced by the state changes at any other node. The centralized scheduling approach

works better for greater data flow (low monitoring latency and hold-back ratio and

larger number of received MDRs). In fact, the centralized scheduling may be the only

option if the goal of the controller were to maintain the monitoring rate at a desired

level. However, the SPP adaptation with distributed scheduling meets the QoS and IS

overhead requirements set forth in this study.

Adaptation of the instrumentation system starts with the initial ring buffer polling period

specified at the beginning of the execution. Working in a closed loop, the adaptive

controller (centralized or local) tries to adjust this parameter based on the runtime

measurements. The adaptive controller is effective only if its performance is not overly

sensitive to the initial ring buffer polling period value. Figure 6-24 shows the effects of

different initial ring buffer polling periods under SPP and DPP adaptation policies using

centralized and distributed scheduling schemes.

0 The overall benefit of using adaptation, regardless of the controller design, is clearly

demonstrated by the frame rate and sensor CPU overhead values that are within the

required ranges. The SPP adaptation under distributed scheduling can better meet the

real-time application QoS and IS overhead requirements due to the same reasons

described above for the case shown in Figure 6-23.

0 Adaptation is not sensitive to the initial ring buffer polling period values except using

DPP adaptation, which shows unpredictable behavior in any case.

187

—it—— SPP adaptation. centralized scheduling - * - SPP. distributed soiledullng

—+—— DPP adaptation. centralized scheduling — +— — DPF‘, distributed scheduling

— e - No adaptation

: e r A : 1: ' - _ - - t 5‘1-“

g
E: “’ .i' .

a g ._ .

5 Ir
1 E “b

J

2 I
l 5 9’ I,

E g g [a

m " a
0

g ,
E or

6 _,< 1 . -
O =_ . + A 1

.. can so: or . re m w W ”l M 1 as we seen

Bing butter polling period (msec) Ring buffer polling penod (msec)

“ . -
.720;f ,

g 10L - - -.“ A ‘- '0: ‘ 4

§ 65> r' ‘9 i

a. 4 r t

v " .0 \‘ J

E “ii ‘
g as» ‘

,

5 a,
3 " “ 1

g

g u' I, ‘t . 01L

2
2 '0' :9", “" '

o ’
“1", ‘ ,1"! ‘t‘ “ X‘ 1: l

g 1
ill ------"" "“‘hmzfi"

-.4 --- -..,.. ""2 . A A

(I) “out oer a: 1 re 9. rear

Ring butter polling period (msec)

_no‘

'
7

r

\

\

s

A

‘
v

\

s I

I
v
—

v
v

v

H
o
l
d
-
b
e
c
k

r
a
t
i
o
(
%
)

§

’
3
0

Rm Wading period (mac)

N
u
m
b
e
r
o
f
r
e
c
e
i
v
e
d
t
r
a
c
e
s

L L

‘s‘ l

A . ‘l s

w a: . to too rare

Ring buffer polling period (msec)

Figure 6-24. 008 and IS metrics for varhble initial ring bufl'er polling periods using static

and dynamic adaptation policies under centralized and distributed scheduling (number of

nodes = 8, controller sampling period = l msec, ring buffer size = 4000, BF policy, simulation

time = 100 sec, logarithmic scale for ring buffer polling period).

0 Note that the adaptation is achieved on the cost of data flow. In case of no adaptation,

the monitoring latency and hold-back ratio are very small, particularly at shorter poll-

ing periods (at the cost of excessively high sensor CPU utilization resulting in a drop in

frame rate). The SPP adaptation with centralized scheduling is the closest match with

the data flow characteristics of the case with no adaptation.

188

The results reported in this subsection indicate that SPP adaptation outperforms DPP

adaptation under both distributed and centralized scheduling policies by consistently

meeting the frame rate and sensor CPU utilization constraints (due to lesser variability)

while maintaining a steady flow of MDRs to the collector. Due to the localized nature of

constraints, they are efficiently met using distributed resource manager agents (i.e.,

distributed scheduling). If the nature of the constraints were global (such as a limit on

monitoring latency), centralized control through a resource manager (using centralized

scheduling) would be preferred. To meet the requirements identified in this paper, SPP

adaptation of the instrumentation system with an initial polling period of 1 msec or longer

and a controller sampling period of about 1 msec are suitable for the video application.

How does the adaptive controller perform?

The evaluation of the adaptive control for the JEWEL instrumentation system in the

preceding parts of this subsection was based on meeting the application-specific QoS and

IS overhead constraints. However, there are well-known performance metrics to directly

evaluate the performance of an adaptive controller, such as the difference between the

desired and actual response of the system [222]. One such metric is mean square error

(MSE). Variation of the MSE with time lends insight into the temporal characteristics of

the adaptive behavior of the controller and its usability for a particular application.

We monitor the frame rate and sensor CPU utilization during a simulation using a polling

period equal to the sampling period used by the resource manger and its agents to observer

the system state. We also measure the MSE values at these points. The results are

presented in Figure 625.

o The results corresponding to the desired frame rate value do not show any clear differ-

ences between the SPP and DPP adaptation or centralized vs. distributed control.

0 In all the cases, the frame rate reaches close to the required 30 frames/sec within about

0.5 see after the start of simulation and mean square error drops to about 10% of its ini-

tial value. This behavior is in part due to the dependence of frame rate on the CPU time

§
I
v

C
l
i
e
n
t
f
r
a
m
e
r
a
t
e
(
f
r
a
m
e
s
/
s
e
c
)

SPP

- _ .. opp

Desired

 A A 4

as of. if. a} a? as as .

Discretetime(sec)

T Y

v
i
f

I

.
e

I

S
e
n
s
o
r
C
P
U

u
t
l
i
z
a
t
l
o
n
(
9
6
)

i3

8 :-

M
S
E

i
n
C
P
U

u
t
i
l
i
z
a
t
i
o
n

0.8 0.9 10.1 0.2 as M “0"» (0.9”)0J.

(a) Centralized scheduling

C
l
i
e
n
t
f
r
a
m
e

r
a
t
e
(
f
r
a
m
e
s
/
s
e
c
)

10*

*1

v T v v V V '

 A

0.1 0.3 0.3 0.4 0.5 0.0 0.7 0.0 0.0 1

Discrete time (sec)

M
S
E

i
n
f
r
a
m
e
r
a
t
e

Vi

S
e
n
s
o
r
C
P
U

u
t
l
l
z
a
t
i
o
n
(
%
)

M
S
E
i
n
C
P
U
u
t
i
l
i
z
a
t
l
o
n

5
8
5
5
8
3
5
6
8
»

i

0.2 0.3 0.4 0.8 0‘ 0.7 0.8 0.8 1

Discrete time (see)

(b) Distributed scheduling

Figure 6-25. Performance of the adaptive control system using the SPP and DPP adaptation

policies under (a) centralized scheduling and (b) distributed scheduling (number of nodes =

8, ring bufler polling period = l msec, controller sampling period = 1 msec, simulation time =

1 see).

190

that the client process can get. If the CPU usage by the local external sensor does not

causes contention for the client’s CPU usage, the rate of frames processed by the client

process should remain close to the required value.

0 For adapting to the required value of the JEWEL sensor CPU utilization, the adaptive

controller exhibits different behavior for different adaptation and scheduling policies.

For both types of scheduling policies, the controller does not attain a “steady state”

under the DPP adaptation policy as the CPU utilization remains different from the

required value. Thus the error is also larger for the DPP case. However, under the dis-

tributed scheduling the CPU utilization is lesser than the required value and error is

smaller. It means that distributed scheduling for the adaptive control of frame rate and

sensor CPU utilization is desirable to maintain a smaller error of adaptation with

respect to the desired system response.

6.4.3 Feedback to the Developers

The modeling and evaluation process for the JEWEL IS and adaptive controller is being

conducted at a time when a prototype version of the video application with initial JEWEL

instrumentation exists. Any feedback to the developers regarding the application of

JEWEL IS and adaptively controlling its overhead can be useful. Based on the simulation-

based evaluation, the following specific results can be provided to the developers:

1. Use of BF forwarding policy is better to keep the intrusion to the real-time behavior of

the application low and maintain a steady flow of data to the collector. Moreover, use of

polling with periods of l msec or longer rather than busy-waiting for the event records

to arrive in the shared memory ring buffer is desirable for low sensor CPU overhead.

2. A ring buffer size to hold about 4000 event records is enough for all the practical cases

of IS usage for this application.

3. A resource manager sampling period of close to l msec is a reasonable compromise

between responsiveness of the controller and its “unsteady” behavior due to high vari-

ability.

4. For all practical purposes, SPP adaptation policy should be used because it meets the

criterion of low intrusion to the real-time behavior of the application, low sensor CPU

overhead, low variability (i.e., predictable), and smaller adaptation errors.

5. Distributed scheduling is a better choice over centralized scheduling to meet the QoS

requirements of this application and IS overhead constraints of JEWEL 18.

These recommendations are well-received by the developers who are in the process of

implementing the resource manager to control the IS as well as the application. Some of

191

the measurement-based results obtained from an early prototype of JEWEL customization

for the video application are presented in the following section.

6.4.4 Experimental Validation

Customization of JEWEL IS for the video application is at its initial development stages.

We have a prototype version of the JEWEL external sensor that is being used with the

application for collecting runtime data. The initial version of this instrumentation used the

default scheme of JEWEL IS: it used a busy-wait technique to collect the event data from

shared memory ring buffer. Based on the feedback of the modeling and evaluation

presented in this paper, the BF policy with polling scheme was implemented in the

external sensor.

6.4.4.1 Experimental Setup

In order to measure the improvement, we transferred trace records at a rate of 180 records

per second (corresponding to generating 6 records per cycle of application client function

and 30 such cycles per second). Corresponding to the 100 second time limit used in

simulations, we ran these measurement-based experiments until 18,000 MDRs are

transferred. The application and JEWEL IS were run on a network of Sun Ultra-l

workstations connected through a high-speed Ethernet. We use two polling period values:

1 psec and 1 msec. These values correspond to the time that external sensor spends polling

the ring buffer in the shared memory. The first value is close to the “busy-wait” case while

the second value is the value of polling period recommended to the developers as a result

of evaluation presented in this paper.

6.4.4.2 Evaluation

Figure 6-26 compares the CF and BF policies using two polling period values. It is clear

that the use of polling scheme has its advantage over the default “busy-wait” scheme as the

sensor CPU overhead considerably reduces in the former case. At a polling period of l

192

usec, the CPU overhead under the BF policy is higher than the CF policy because the

external sensor requires greater CPU time to collect multiple event records under the BF

policy. Under the CF policy, the external sensor collects only one event record at a time

even though others may be waiting. However, at a polling rate of l msec, the CPU

overhead under the BF becomes equal to that of the CF and balances its capability to

collect and forward multiple MDRs with its CPU overhead. Therefore, the measurement

results indicate that use of l msec polling period under the BF policy is desirable for low

CPU overhead and maintaining steady data flow to the collector, as predicted by the

simulation results.

S
e
n
s
o
r
C
P
U

t
i
m
e
(
s
e
c
)

W—l

Polling period (PP) = 0 PP = 0.001 msec PP = 1 msec

Figure 6-26. Comparison ofJEWEL sensor CPU overhead measurements under the CF and

BF policy using two polling period values. (total measurement time = 100 see)

6.5 Summary of IS Evaluation Results and Discussion of Methodology

We applied the model-based evaluation methodology to three reference ISs in the

preceding sections. In this section, we first summarize the important results of these

evaluation efforts. Subsequently, we discuss the methodology itself in suitability for IS

evaluation. In particular, we present a systematic approach of developing a ROCC model

and evaluating it for evaluating the design and configuration alternatives for a particular

IS.

193

6.5.1 Summary

A summary of the key results of evaluating three reference ISs is given in Table 6-12.

These 185 were modeled to address their domain-specific objectives. In this chapter, we

evaluated these models to quantitatively determine the metrics of interest under specific

“what-if” scenarios. However, the summary of results listed in Table 6-12 is of qualitative

nature to be directly useful for the tool developers.

Table 6-12. Summary of key results of evaluating selected 155.

IS Key Evaluation Results

PICL 0 The FAOF flushing policy outperforms the FOF policy in terms of reducing

the frequency of flushes and perturbation; and

0 compared to the FOF policy, it is not trivial to implement the FAOF policy

on a loosely-coupled, distributed-memory parallel system.

Paradyn 0 The BF policy should be implemented as a default policy to schedule data

forwarding operations because it outperforms the CF policy;

0 in the case of an SMP, use of multiple daemons per node represents a trade-

off between more samples received by the main process and additional con-

tention for system resources;

0 binary tree forwarding should be used on an MPP system due to its superior

scalability characteristics compared to direct forwarding; and

0 specific application characteristics, such as frequency of barrier operations

on an MPP system, may affect IS performance, which may in turn impact

the instrumented application.

JEWEL 0 Use of BF forwarding policy is better to keep the intrusion to the real-time

behavior of the application low and maintain a steady flow of data to the col-

lector;

0 for all practical purposes, SPP adaptation policy is desirable because it

meets the criterion of low intrusion to the real-time behavior of the applica-

tion, low sensor CPU overhead, low variability (i.e., predictable), and

smaller adaptation errors; and

0 distributed scheduling is a better choice over centralized scheduling to meet

the QoS requirements of the video conferencing application and IS overhead

constraints of Jewel IS.

6.5.2 Discussion

In this subsection, we evaluate our 18 design, modeling, and evaluation methodology in

general instead of the specific results. Our objective is to highlight the strengths and

194

weaknesses of this approach and provide a set of guidelines to conduct a performance

evaluation study of an IS.

Results related to the use of ROCC modeling approach indicate that its accuracy depends

on the level of details captured in the model. If we capture only the coarse-grain details of

the IS behavior, the measurement process to collect model parameterization information

becomes a simple task. However, this simplicity results in reduced accuracy of the model

predictions. On the other hand, it is possible to capture minute details of the IS in the

simulation of the ROCC model. The major problem with this approach is the availability

of the low-level system measurements that are necessary to parameterize a detailed model.

Obtaining these measurements is a difficult task especially when the IS is not yet

developed or at an early prototype stage. Therefore, the analyst has to make a compromise

between the two extremes of modeling coarse-grain IS details and exact details according

the objectives of a particular study.

The notion of an early feedback to the IS and tool developers is another important aspect

of our modeling and evaluation efforts. Timely feedback to the developers at an early

prototype stage helps them to choose suitable system configuration. If- the IS does not

undergo such an evaluation, it is possible that performance problems are discovered for

certain cases that were not taken into the consideration by the developers. Using a model

of an IS, it is simpler to exercise the functionality of different modules of an IS and

improve the design based on this feedback. However, it is not practical to subject an IS (or

its prototype) using a variety of practical workloads. Additionally, testing and

benchmarking of an IS is still a relatively unexplored area.

Our experience shows that a formal performance study of an IS usually results in a better

understanding of the actual system. Several of the policies that we proposed for the

reference 18s are a result of this modeling and evaluation process. It is difficult for a tool

developer to explore a number of possible IS management policies. Collaboration between

195

the developers and performance analysts can result in useful feedback to the developers to

explain the strengths and weaknesses of different management policies.

Based on the modeling and evaluation experiences of the reference systems, we

recommend the following set of guidelines to conduct an IS performance study at the time

of its design and development:

1. As a first step, it is essential to determine the objectives and scope of the study. If the 18

is being designed for an I-IPC tool, its overhead is an important consideration. On the

other hand, if it is being designed for an embedded real-time system, its intrusion to the

real-time behavior is of prime importance. Similarly, ISs for other systems may have

their own domain-specific requirements that should determine the objectives of an IS

modeling and evaluation study.

2. There should be an initial design of the IS that depicts all of its modules and their func-

tionalities.

3. Based on the information about the SUT and IS modules, identify the system resources

that are shared between the two types of modules (processes).

4. Characterization of the workload. This should initially be based on the coarse-grain

functions of the SUT and IS processes. Workload characterization process also includes

collecting relevant measurements from an initial prototype of the IS, analyzing these

data, and fitting appropriate distributions. If a prototype of the IS does not exist, we can

use empirical workload characterization for the IS modules to allow the modeling and

evaluation process to proceed.

5. Steps 3 and 4 should result in a ROCC model for the SUT and IS combination.

6. We can optionally derive analytical results for the ROCC model, especially in the case

of 18s that have not yet reached an early prototype stage of their development.

7. Detailed simulation-based evaluation of the ROCC model. The results of the simulation

study should be validated in an intuitive manner. For instance, variations of a specific

operating condition may be expected to affect a particular metric. If the simulation

results follow that pattern, it is likely that simulator is functionally accurate (at least to

certain extent). Analytical results can also help validate the simulator.

8. IS development according to the evaluation results.

9. Selective measurement-based testing of the IS to validate the predictions of the model-

ing and evaluation study.

196

Some of the above guidelines such as determining the objective of the study are generic

while others are noted as a result of modeling and evaluation experiences with the

reference ISs.

In this chapter, we concluded the performance studies of the PICL, Paradyn, and JEWEL

ISs. Additionally, we elaborated on the choice of analytic and simulation-based evaluation

techniques for IS model. Results of evaluating three reference ISs were presented with all

appropriate details and feedback to the developers, in each case, was summarized. Finally,

we listed a number of steps to develop a ROCC model for an IS and use it for investigating

specific performance-related questions.

Chapter 7

Deliverables of the Research

In this chapter, we present and discuss three outcomes of this research:

1. evaluation of extant, well-known ISs and feedback to the developers and users;

2. design and implementation of a simulator to analyze the ROCC models of ISs; and

3. design and implementation of the Vista IS.

The latter two outcomes are “deliverables” of this research because they are readily usable

for extending this work. This chapter can be helpful for practically using the ROCC

simulator and the Vista IS. The ROCC simulator can be used for modeling and evaluating

an IS while the Vista IS can be used for collecting runtime information from a distributed

system.

We presented specific results of evaluating three reference 185 in Chapter 6. In this

chapter, our objective is not to consider the specific details about each case study but to

recognize the outcome of the overall effort and its impact on the state-of-the-art. Two

different simulators were developed for the ROCC models of Paradyn and JEWEL 185.

However, there are number of similarities between the designs of the two. Based on the

same design principles, we consider the possibility of extending these simulators as a tool

for exploratory analysis of different ISs. Finally, we consider the design and

implementation of the Vista IS, which can be considered a link between the design and

synthesis of an 18 envisioned by this research and its future directions, discussed in

Chapter 8.

197

198

7.1 IS Evaluation Methodology

Realization of an IS for a target system is a non-trivial process requiring many person-

hours of software development effort. Moreover, evaluation of an 18 by users upon its

release may lead to requests for corrections, changes, or enhancements in its functions. In

contrast, preliminary evaluation of an IS using the modeling-based approach can be

applied to ensure that specific requirements of a target system are met prior to the

investment in programming effort. This process is likely to deliver better performance and

be less costly for the target system.

Performance evaluation studies presented in this dissertation focused on three 155. We

applied our model-based evaluation methodology to an existing IS (PICL) and two 138 at

different stages of development: Paradyn IS and JEWEL IS.

Evaluation of an IS requires low-level information about the design and implementation of

an IS from tool developers. However, such a study during the early stages of tool

development can lead to a better design of the IS, which can ensure lower overhead to

meet its specifications. This is a worthwhile effort because various instrumentation data

consumers, such as visualization, modeling and prediction, debugging, steering, etc. tools,

will be successful only if proper framework exits for developing an IS to support them.

The purpose of the initial feedback provided by a modeling- and simulation-based study is

to answer generic, performance-related “what it” questions. It is both advisable and

practical to relax the accuracy requirements at this stage. Achieving a high degree of

accuracy is costly due to the complexity of an instrumentation system. One lesson that we

learned by modeling the Paradyn IS is that an approximate simulation model, following

the gross behavior of the actual instrumentation system, is sufficient to provide useful

feedback. At an early stage of modeling the Paradyn IS, we arbitrarily pararneterized the

model based on information provided by the developers [214]. The case study presented in

this dissertation used a more detailed workload characterization based on measurement

199

data. Although we enhanced the scope of “what-if” questions in this study, e.g., to include

the SMP and MPP architectures and factors such as forwarding policy, this more detailed

study does not contradict the earlier study that used an approximate model [218].

Obviously, with an approximate model, the analyst relies on correlating the simulation

results with some intuitive explanation of the system behavior. Unfortunately, approximate

modeling results are open to speculation without extensive workload study based on actual

data.

Instrumentation system design and maintenance are difficult and costly since supported

IDCs may undergo frequent modifications for new platforms and applications. The HPCC

community, for instance, has recognized the high cost of software tool development [151].

As with any large software system, a software tool environment should be partitioned into

components and services that can be developed as off-the-shelf, retargettable software

products. Due to the generic nature of an IS, which consists of components and services

for runtime data collection and management, it is an excellent candidate for modular

development [216]. Off-the-shelf IS components will need to meet a number of functional

as well as non-functional requirements. The modeling and evaluation methodology of this

dissertation research is a necessary steps toward implementing high-performance, well-

specified off-the-shelf IS components.

7.2 The ROCC Simulator

ROCC simulators for Paradyn and JEWEL IS studies, presented in this dissertation, are

developed as C-H- programs using task library. The simulation framework of the task

library provides four types of base classes: tasks, objects, queues, and a scheduler. The

task library allows the simulation of concurrent activity by deriving the corresponding

object from its base class task. The object thus derived becomes a (simulated) thread,

which can be controlled either through the scheduler using its time-keeping facility or its

explicit controls for executing, suspending, or deleting the threads. Concurrent tasks (i.e.,

200

simulated threads) can interact using message-passing, first-in, first-out queues. Messages

can be derived from the base class object.

Figure 7-1 presents the design of a ROCC simulator based on the task library. The timing

and controlling functions are handled by the task library itself and user does not have to

explicitly implement them. We model the shared system resources as well as multiple

processes on a node as classed derived from the task base class. Using a convenient

mechanism of instantiating the objects, multiple nodes can be modeled by replicating the

resources and processes of one node for all other nodes. These nodes can be identified by

their unique identifiers and different seeds for the purposes of (approximate) statistical

independence among nodes. Processes send occupancyrequests to the resources; a request

is a class derived from the object base class. Different processes interact with one another

using objects of another class called message, which is also derived from the object base

class. Messages and requests go to different queues, which are supported by the task

library. In addition to these classes, we define additional classes for generating random

numbers according to a number of distributions and collecting results. This is a flexible

framework for simulating a ROCC model that can easily be extended for different [85. The

major differences are due to different workload characterizations. Therefore, the workload

classes that are derived from the task base class has to be modified for every IS.

In order to use the above setup for simulating the ROCC models for Paradyn and JEWEL

185, we had to customize it for each of these two cases. However, it is possible to extend

this setup as a tool with a convenient GUI-based mechanism to configure different

components according the needs of a particular IS. This extension is left for the future

work on the ROCC simulator.

7.3 The Vista IS

Vista is a part of an integrated tool environment being developed at Michigan State

University, called PG”, for instrumenting and testing distributed, real—time systems [145].

201

Task lib

simulation frammyework

“has a"

'has 3"

Object _ ' Task

"is a" ‘is a" "is a" "is a' ‘13 a” “is a”

Mm m m... W me my.

Figure 7-1. Design of a ROCC simulator using the task library.

We previously used a similar environment to integrate specialized performance analysis

tools with generic data analysis and visualization tools to perform off-line performance

analysis [210]. Presently, we are using the Vista IS for supporting on-line as well as off-

line performance analysis and visualization of real-time tasks running on a cluster of

workstations based testbed for real-time systems. Vista IS controls data collection,

forwarding, processing, and dispatching to the environment. Integrated environment

consists of a set of custom and off-the-shelf tools for visualization, performance analysis,

and real-time task scheduling. User interacts with the environment as well as the Vista IS

through a front-end supported by the PGRT environment. TWo types of applications are

instrumented using the Vista 18: one that simulates general-purpose real-time systems and

tasks and another that emulates a real-time system using PVM message-passing library

[63] on a cluster of workstations.

7.3.1 Overview of Vista IS

Figure 7-2 illustrates the functionality of the Vista IS as a part of the PG” environment. In

order to collect runtime information, Vista library is linked with the distributed application

202

program. Before using the Vista library interface to collect and forward any data, local

modules of the IS are initialized by every distributed process. Subsequently, the events of

interest can be captured by calling appropriate library functions that forward them to the

tools in PORT environment. Instrumentation is event-driven, and instrumentation data

related to an event of interest are forwarded without local buffering. The data may arrive

out of order at the Vista instrumentation system manager module, which is the (logically)

central part of the distributed IS. To avoid problems due to the lack of a global clock, we

use the technique of assigning logical time-stamps, as implemented by VIZIR [77]. This

ordered and time-stamped trace record is consumed by the tools in the PGRT environment

for analysis purposes. Vista IS generates PICL-formatted trace records to be able to

visualize them with ParaGraph tool. In addition to event-driven tracing, Vista IS also

allows the users to generate application-specific trace records in PICL format. These trace

records are forwarded to the environment without any modifications. Such data collection

and forwarding is implemented in Vista to support user—defined events that may have

special significance for a particular real-time system under test.

. Distributed Distributed Distributed

system node system node system node

®® ..

[Ethemet ' 1

Vista tool PGRT int ted
Vista ”'3

“WWW ‘* I-m- - - - 4 "is“ 33mm X- tem
system manager a sys

testbed

Figure 7-2. Overview ofVista IS functionality to support data collection needs ofan integrated

tool environment for testing distributed, real-time systems.

203

7.3.2 Domain-Specific Requirements of the Vista IS

Vista IS supports a testbed for a distributed, real-time system, which is not a real system.

Although actual real-time systems operate under strict timing constraints, a simulator or

an emulator often uses simulated time to schedule the tasks. Therefore, the overhead of IS

modules to the application do not affect the measurements that are based on simulation

time instead of real time. A more important requirement of this setup is to ensure a steady

flow of instrumentation data to the integrated environment to support their analyses. Thus,

the behavior and performance of the Vista instrumentation system manager should be a

focus of a modeling and evaluation based study of the IS. Additionally, system resources

are shared between the ISM and tool environment (i.e., IDC), therefore, the Vista IS

modules should have minimum intrusion to the tool environment. As the environment is

responsible to interact with the user and graphically present the data, it is required to be

highly responsive. Therefore, ISM tasks should be scheduled such that they do not block a

shared system resource while waiting for instrumentation data to arrive from the

distributed system nodes.

7.3.3 Design of the Vista IS

The Vista framework is developed in CH- and utilizes the typical features of object-

oriented languages to enable the users to develop domain—specific 18s. This framework

consists of four abstract and several base classes for customized configuration of various

IS modules. The Vista IS framework has four abstract classes to define instrumentation

data, timers and clocks, transfer protocols, and data structures for buffering of

instrumentation data. There are two classes derived from the instrumentation data abstract

class: event data and program data classes. A user can derive further classes from these

base classes to represent application-specific data. The timer abstract class has two base

classes, one to define clocks to measure elapsed real time and the other to define the

sampling intervals. The transfer protocol abstract class has three classes derived from it

using various application-level transport facilities based on available operating system

204

support. These classes use X library calls, remote procedure calls (RPC), and PVM library

functions to implement various types of communication among IS modules. An important

constituent of any IS module is a data structure that temporarily stores the instrumentation

data. The instrumentation data structure abstract class supports three types of data

structures: first-in, first-out (FIFO) queues, priority queues, and doubly linked lists. These

classes of the Vista framework are summarized in Figure 7-3.

Vistaleramework

./“””/'

instDataSttuct

"isa' “ise" 'isa' ‘lsa'

PVM instDetaFito rnstDataPriority lnstDataList

Figure 7-3. Abstract and base classes in the Vista framework.

The Vista framework supports a layered approach to develop an 18. At the lowest level, it

provides abstract classes to configure the structure of an IS using appropriate TPs. At the

next higher level, it provides various convenience functions supported by Vista library for

rapid prototyping of the design. The next higher level is the Vista toolkit. It supports

several pre-implemented and -configured modules of various 18s that can be used as

“plug-and-play” components in different integrated environments. Figure 7-4 depicts the

details of these layers and their relationship with applications development and available

tool technology.

The specific features of this framework include:

. 205

Distributed applications IS Tools

Vista toolkit of pro-configured IS modules

Vista library (libvistaa) consisting of convenience functions

Vista framework consisting of abstract classes

X/Xt/Motif/OponGL IPOSIXI nsl Ithread I PVM

Operating system and transport provider (TCP)
Figure 74. Tool development using Vista framework and class library.

1. object-oriented design that ensures domain-specific and application-specific develop-

ment;

2. a rapid prototyping technique to support design of performance-critical 18$;

3. QoS at application level using separate threads for IS-related communication via the

TP;

4. compliance with the POSIX standard for system-level tasks, such as multi-threading,

scheduling, synchronizing, timing, etc. to ensure portability; and

5. C++ based application programming interface (API), which is independent of the

implementation.

It should be noted that certain features are supported individually by certain technologies,

for example: object-oriented design, rapid prototyping, and API, by languages and

compilers; QoS, by operating systems and network architectures; and portability across

operating systems, by standardization efforts. However, the integration of these features as

a part of the Vista framework makes them transparent to the user, who can then

concentrate on the specific issues related to a particular application domain.

7.3.4 Vista 18 Modeling and Evaluation

We present an initial effort of modeling the Vista IS, which is focused primarily on the

design of an event ordering part of its ISM. Modeling and evaluation of the Vista IS

modules is an on-going project and a part of the future directions of the work presented in

this dissertation.

206

7.3.4.1 IS Modeling Issues

The Vista LIS captures instrumentation data from an application process by invoking its

instrumentation library functions. Instrumentation is event-driven, and data related to an

event of interest are forwarded to the ISM without local buffering. The size of this data

structure is kept very small to avoid excessive communication delays. The data are

received and ordered by the ISM. To avoid problems due to the lack of a global clock, we

use the technique of assigning logical time-stamps, as implemented by VIZIR. If an

arriving event is in correct causal order, it is assigned a logical time-stamp and stored in an

output buffer. When a tool selected by the user is ready, the processed event information is

dispatched to the tool from the output buffer. If the arriving event is not in causal order, it

is added in one (or multiple) input buffer(s) to reconstruct the causal order of the data

before dispatch to a tool. For this type of ISM, it is desirable that input buffer management

and event ordering are efficient, so that the (monitoring) latency between the arrival of

data to the input buffer and the dispatch of data to the output buffer is minimized.

Otherwise, the logical time-stamp will become less accurate and may even perturb the

visualizations presented by the tools.

7.3.4.2 18 Management Issues

The ISM is modeled because its performance is deemed critical to obtaining correct and

efficient presentation of program behavior from tools in an integrated environment. The

specific objective of this modeling effort is to guide the developers in selecting one of two

possible configurations of the ISM that will guarantee regular receipt of instrumentation

data with minimum delays. The two possible configurations are: Single Input bufi’er; Single

Output bufl'er (SISO) and Multiple Input bufl'ers, Single Output bufler (MISO). As the

names suggest, the $180 configuration uses one input buffer to store out-of-order

instrumentation data from all the processes, whereas the M150 configuration has one

buffer per each application process. These configurations are commonly used in on-line

18$, for example, Falcon uses the M150 approach [71].

207

7.3.4.3 IS Model

The ISM is modeled as a network of two single-server queues. Queuing models for the

SISO and MISO systems are shown in Figure 7-5. _

The SISO Model S The MISO Model

F pliestion = F leetlon
prrgcmeggs Exitfmmesystam E .9239:ng processP-t Exitiromthesystem

“- E Al

I . won W1 5 , P GMt __
: queue queue Tool 5 . rue/9,9; queuei Tool

= a ‘ mm, M
= lnpul (MOW) — 5 = = ms

— QUOUG _ —

(FIEO) = E (FlgO)

— queue — g — queue

Data "‘9‘“ 9“” . 5 m Input side

l;';;;°'l Output cruel f ' 5 processor Output 8k,

Mt'm'amm E Datatrmsiertotool

Figure 7-5. Models for the SISO and MISO configurations of the Vista ISM.

7.3.4.4 Workload Characterization

As in the case of PICL IS study, we focus on the low—level instrumentation data arrivals

regardless of the number of LISs or the instrumented SUT that generates these data.

Instrumentation data are assumed to arrive at the input buffer(s) with exponentially

distributed inter-arrival times. The data processor of the ISM processes and dispatches this

data according to a normal distribution. The processed instrumentation data are consumed

by a tool in a first come, first served fashion.

7.3.4.5 Performance Metrics

We have selected two metrics to compare the performance of the ISM configurations: data

processing latency and average length of buffer(s). Data processing latency is defined as

the amount of time between the arrival of instrumentation data at the ISM and its arrival

(after processing) at the output buffer. Lower is better, since a high latency may result in

208

inaccurate presentation of program behavior by tools. Average bufier length is defined as

the ratio of the total number of instrumentation data records that arrive out of order (and

hence need to be buffered) to the total observation time. A larger value of average buffer

length indicates that many arrivals are out of order due to the management policies

implemented by the LIS. A similar metric, called hold back ratio has been used by Gu et

al. to evaluate the performance of the Falcon ISM [71]. This metric is defined as the ratio

of the number of out-of-order arrivals to the total number of arrivals (rather than to total

time). However, the two metrics provide the same qualitative measure of ISM

performance. Each metric, its calculation, and its interpretation are summarized in Table

7-1.

Table 7-1. Metrics for evaluating the Vista IS management policies.

Metric Calculation Interpretation

Data processing Queuing model evaluation and Longer latency may be undesir-

latency simulation able for the tools

Average buffer Queuing model evaluation and Higher value indicates a poten-

length (hold simulation tial bottleneck in the IS

back ratio)

7.3.4.6 IS Evaluation

In order to evaluate two configurations of the Vista IS, we present two approaches.

Initially, during the Vista planning and design stages, we used a simulation model to

evaluate the performance impact of the two configurations. Presently, as it is realized, we

obtain actual measurements by running real programs to compare them with the

simulation results.

Simulation Results

The simulation experiments are set up to analyze the effects of the SISO or MISO

configuration on the two performance metrics. Two factors are varied for these

experiments: the ISM configuration (SISO or MISO) and the mean inter-arrival time

209

between successive instrumentation data arrivals to the ISM. We use a 2kr factorial design

technique for these experiments. For these experiments, k=2 factors and 1:50 repetitions,

and the mean values of the two metrics are derived within 90% confidence intervals.

Data processing latency and average buffer length statistics for the two configurations and

various arrival rates are shown in Figure 7-6. The data processing latency exhibits higher

variance at longer inter-arrival times (lower arrival rates) for both SISO and MISO

configurations, making them less distinguishable. For shorter inter-arrival times (higher

arrival rates), the SISO ISM has relatively lower latency. Intuitively, maintenance of

multiple buffers should incur more overhead, especially in accessing memory (including

virtual memory), under high arrival rate conditions. The average buffer length follows a

similar pattern. At lower arrival rates, the average buffer lengths are almost the same, but

at higher rates, SISO is better than MISO. We analyzed these results using principal

component analysis techniques and found that the inter-arrival rate is the dominant factor

that affects data processing latency and average buffer length.

0 MISO system

+ SISO system

V

t
8

8
3
-
"

1
-

.
.

. ~

.

v
3

Q
Q

3
.

.
.

 A
v
e
r
a
g
e
i
n
p
u
t
b
u
f
f
e
r
l
e
n
g
t
h

i an in 6 i. {a in 8 one

can interoarrival times (milliseconds)

Figure 7-6. Comparison between the SISO and MISO ISMs in terms ofaverage data processing

latencies and input buffer lengths.

A
v
e
r
a
g
e
d
a
t
a
p
r
o
c
e
s
s
i
n
g
l
a
t
e
n
c
y

t
I

I
n
“ is {a .3 .3 £- 6. {a C. E. u

Mean inter-arrival times (milliseconds)

The simulation results do not indicate that one configuration is clearly superior to another.

Some researchers favor the MISO configuration, and tools such as Falcon have

implemented it. However, the models and simulation-based evaluation presented here

suggest that the SISO configuration performs equally well at moderate arrival rates and

210

marginally better at higher arrival rates. In event-driven monitoring, it is not uncommon

for the rate of arrivals to surge during certain intervals, yielding unstable ISM behavior.

Since the Vista IS uses an event-driven approach, a design decision was made to

incorporate both the SISO and MISO configurations based on this modeling and evaluation

feedback, so that user could dynamically configure the ISM based on the requirements of

the application. In general, assessing and validating design decisions with measurements

of the Operating IS (i.e., with testing and benchmarking) is an essential step of the

development process and one that we are currently addressing.

Measurement Results

After undertaking the simulation-based evaluation study for designing Vista ISM, we

developed its prototype version that supports both SISO and MISO systems as options.

Results presented in this section are based on the measurements obtained from this

prototype. We use two example programs for the measurement experiments: one that is

communication-intensive (a linear solver) and another that is compute-intensive with a

comparatively smaller number of messages, both using a master/slave computing

paradigm supported by PVM.

We collected the inter-arrival times of the successive instrumentation data samples at the

ISM. These inter-arrival times for the two programs are presented as frequency

distribution histograms in Figure 7-7. In both cases, the number of arrivals that have large

inter-arrival times becomes exponentially small. This is a typical scenario where

assumption of exponentially distributed inter-arrival times can be used. However, we did

not prove the exponential nature of arrivals using statistical tests, because the purpose of

simulation-based studies was only to furnish only back-of-the-envelope type of

calculations. A rigorous workload evaluation was beyond the scope and details necessary

to gain an initial insight into the design options when the system was not yet prototyped.

211

 I! , i
, i i l

a
s
]

#
o
i
a
r
r
i
v
a
l
s

I

i
i
o
f
a
r
r
i
v
a
l
s

8

 A A A A A - A ‘

' i e: as es es 1 u u is 'o i a a e e e 1 ll

Inter-arrival time (sec) Inter-arrival time (sec

Mean 2 35.8 milliseconds Mean = 136 milliseconds

(a) (b)

Figure 7-7. Frequency distribution of two arrival processes to the Vista ISM from (a)

communication-intensive and (b) compute-intensive master/slave PVM programs.

The simulation study assumed that the service times for each incoming instrumentation

data sample were not Markovian. In order to determine the validity of this assumption, we

collected service times for each instrumentation data sample for the two example

programs. The frequency distribution histograms for the communication intensive

program using SISO and MISO systems are presented in Figure 7-8. For the SISO system,

the service time distribution resembles the shape of an exponential distribution. However,

the shape of the service time distribution for the MISO system is not close to the

exponential distribution. This is apparent if the outliers are removed from the range of the

service times for the MISO system. In that case the shape of the distribution curve is close

to that of a normal distribution, as assumed in the simulation-based experiments.

Figure 7-9 shows the frequency distribution for the service times for the compute-

intensive master/slave example program. As in the case of communication-intensive

example, the service time distribution is different from exponential. One possible

explanation of this behavior is the involvement of a number of factors that influence the

service time of an instrumentation data sample, such as the computation load due to other

user and system processes running on the workstation, number of memory references and

page faults for servicing a sample, pipelining effects, and so forth. When there are several

factors influencing the nature of a stochastic process, a normal distribution is often an

212

SISO MISO

3:: F v r . v c: v r a

are
"h i

2 see
a -

J

i: 1
as m

2 .9

Service time (sec) Service time (sec) "”

Mean a 305 microseconds Mean 3 245 microseconds

(a) (b)

Figure 7-8. Frequency distribution of the service processes for the communication-intensive

program at the Vista ISM using (a) SISO and (b) MISO configurations.

appropriate assumption. In the absence of a precise workload study, service times are

assumed to be normally distributed for the simulation experiments.

SISO MISO

 v w 1 v fi

v
fi

r
v

I
o
i
a
r
r
l
v
a
l
s

5
9
:
9
9
3
.
!
!
!
“

t
o
t
a
r
r
i
v
e
l
s

s
e
s
e
e
e
a
e
e
i
i

W i.__-
Service time (sec) "" Service time (sec) ""

Mean . 281 microseconds

-n A

v

x 1'! A — _. -

0 ea .0 es I. I 11 1.0 I. I. 8

Mean = 251 microseconds

(a) (b)

Figure 7-9. Frequency distribution of the service processes for the compute-intensive example

program at the Vista ISM using (a) SISO and (b) MISO configurations.

Table 7-2 summarizes the results of this measurement study. It presents the measurements

for two metrics of interest, i.e., data processing latency and the mean buffer length (hold-

back ratio) over the entire execution of a program. As in the case of simulation-based

results, the measurement results also do not show that one configuration outperforms the

other given the information flows in the studies. Therefore, the choice between the two

depends largely on the preference of the tool developers and the nature of specific

applications that need to be supported by the IS. Further investigations and modeling of

213

event flows in other application domains may reveal distinctive ISM performance.

Table 7-2. Summary of measurement results for evaluating the Vista ISM.

Data

Mean inter- Mean service processing

arrival time time latency Mean input

System Program (milliseconds) (useconds) (milliseconds) buffer length

SISO Communication- 35. 8 305 2.10 26.9

intensive

Compute- 136 281 2.13 6.6

intensive

=3:

MISO Communication- 35.8 245 2.15 26.4

intensive

Compute- 136 251 2.24 6.28

intensive

7.3.4.7 Summary

Development of software tools to assist parallel and distributed computing is considered a

formidable task, involving multidisciplinary efforts. Unlike a typical software

development project, the development of software tools for concurrent systems requires

the accomplishment of the following three tasks:

1. determining ways to present a consistent “ordered” picture of parallel or distributed

computation, which is easily comprehensible by a human user;

2. determining ways to present a “synchronous” picture of inherently asynchronous com-

puting activities, such as computations local to a node and message-passing among var-

ious nodes of a concurrent system; and

3. determining ways to achieve the former two objectives in a manner that is appealing to

the users.

Several paradigms have been proposed to develop tools that are technically sound and are

successful to varying degrees in addressing user requirements. Based on state-of-the-art in

parallel and distributed computing tools, one may conclude that: (1) tools that have been

developed to address specific user requirements for specific classes of applications,

214

utilizing available tool development technology, are considered useful; and (2) expanding

application areas of parallel and distributed processing necessitate the tool development

process that adheres to well-known techniques of designing software as well as other

complex systems.

An instrumentation system is a vital component of the middleware of an integrated tool

environment [14]. We applied several aspects of the structured IS design, modeling,

evaluation, and development approach to the Vista IS. This application is driven by the

domain-specific requirements and focuses on designing and evaluating the IS based on

these requirements. This process provided initial insight to the developers of PGRT

environment, so that performance impacts of IS design alternatives were appreciated at an

early stage of development. Considerable effort is needed to extend the Vista framework,

so that it can be used as a library of configurable, retargettable, plug-and-play IS modules

for multidisciplinary applications. This is one of the future directions of this work.

Chapter 8

Conclusions, Contributions, and Future Work

In this concluding chapter, we evaluate the contributions of the research presented in this

dissertation and suggest possible ways of extending the research. An important measure of

success for a research effort is the achievement of projected goals to address specific

problems in an area. We specified a number of goals of this research, including: modeling

of off-line and on-line ISs; evaluation of IS management policies based on a set of generic

metrics; and implementation of an IS based on the proposed (at the time of starting with

this research) modeling and evaluation methodology. Through this research, we have

demonstrated the feasibility of a structured IS design, modeling, and evaluation approach

by applying it to PICL, Paradyn, JEWEL, and Vista 185. We were able to identify a set of

generic performance metrics to evaluate an IS; however, we advocate that performance

metrics be defined in the context of domain-specific requirements to be more useful in

practice. We proposed, modeled, and evaluated the management policies for Paradyn and

JEWEL ISs. We applied the structured approach to develop an object-oriented framework

to configure the Vista IS for multidisciplinary applications. We have met our goals to the

extent that the validity and applicability of the proposed research is demonstrated.

In section 8.1, we present the specific contributions of this work. Some of the possible

future directions of this work are presented in Section 8.2. We conclude with a discussion

of the impact of this research on state-of-the—art in instrumentation system design,

modeling, evaluation, development, and usage in Section 8.3.

8.1 Contributions

There are four main contributions of the work presented in this dissertation: development

of a taxonomy for multidisciplinary ISs; development and application of ROCC modeling

215

216

technique; modeling-based evaluation of a number of 185; and proposition and evaluation

of novel management policies and alternative configurations for real 185. These

contributions are further elaborated in the following subsections.

8.1.1 A Taxonomy for [SS

185 are used with diverse parallel and distributed tool environments, applications, and sys-

tems. Tool environments consisting of debugging, performance analysis, bottleneck

searching, modeling, and prediction tools rely on runtime measurements supplied by an

IS. Multidisciplinary applications, such as administration of commercial transaction pro—

cessing systems [49], measurement-based testing of complex military systems [9], and

resource management for distributed real-time systems [16,187,199,202] consume the

runtime information supplied by an IS to perform their specified functions. A variety of

distributed systems, such as a pattern recognition system [99] or an embedded real-time

controller [122] require continuous data collection for either measuring the features of an

object for its appropriate representation or adaptively controlling a device or process,

respectively. Based on the available information about the common practices of IS design

and usage in each of the above three entities, we were able to synthesize a taxonomy of an

IS. This taxonomy identifies a number of modules and services that were found common

(explicitly or implicitly) in 185 across diverse disciplines. Initially, we used this taxonomy

to develop a framework consisting of generic implementations of the modules identified in

the taxonomy. We applied this framework to develop the Vista IS, which is being used for

collecting runtime information from two types of applications: message-passing PVM

programs and simulated complex distributed real-time systems.

8.1.2 The ROCC Modeling Technique

The above discussion outlines two major contributions of this work: development of a

unified IS taxonomy and a well-defined methodology to obtain early evaluation of the IS

performance and intrusion. It is appropriate to mention a third contribution of this work:

the Resource OCCupancy (ROCC) modeling technique. ROCC models were developed

and used for evaluating the contention for system resources shared among IS and

217

application processes. This technique is distinguished from a number of other computer

system modeling approaches in terms of capturing inter-dependences among different

processes. A majority of the existing models rely on simplifying assumptions to factor out

these dependences [38,80,93,177]. However, ROCC modeling combined with a coarse-

grain workload characterization can represent application- and system-level task

scheduling and dependences. Although we have used this technique for evaluating

different IS configurations and management policies, we expect to apply it to a broader

range of system resource management problems.

8.1.3 Modeling and Evaluation of Real 18s

This research is mainly focused at applying the IS taxonomy to better understand the

design and domain—specific requirements of three real ISs: PICL, Paradyn, and JEWEL

ISs. Based on this understanding, we were able to model them; propose policies for IS

runtime management and reduction of intrusion to the target system; and evaluate them.

The results indicate that the modeling and evaluation approach is effective to provide early

feedback to the IS developers as well as users about the performance and intrusion of IS

modules, available management policies, and alternative configurations. With early feed-

back, it is possible for the IS or application developers to make informed decisions about

the selection of IS components, management policies, and configurations that are suitable

for a given application.

8.1.4 IS Management Policies

In addition to modeling and evaluating the existing runtime management policies of the

183, we proposed alternative policies and configurations. In case of the PICL IS, the flush-

all when one-fills (FAOF) and flush-one when it fills (FOF) policies were proposed by the

developers. However, the modeling-based evaluation of these two policies exposed their

trade-offs. Based on this evaluation, Haake et al. developed aflush-on-barrier policy that

implements the FAOF policy at barrier synchronization points in Split-C programs [74].

We proposed and evaluated the Batch Forwarding (BF) policies for the Paradyn and

218

JEWEL 185 that resulted in considerable reduction of overhead and intrusion over the

default management policies for these 185. Similarly, alternative configuration options,

such as tree forwarding for the Paradyn IS and adaptive control scheme for the JEWEL IS,

addressed the domain-specific requirements of 135.

These four contributions identify the original work in a steadily maturing area. In order for

this work to be beneficial to advance the state-of-the-art in instrumentation systems, it

should be extended in several ways. We identify a number of avenues for the future work

in the following section.

8.2 Future Work

The research presented in this dissertation has contributed mainly to the area of software

tools and environments for parallel and distributed systems. It can be extended to further

explore a number of related applications and systems. Although this research work falls in

the general area of computer system performance modeling, it is directly linked to the

software development and implementation of those systems. Thus it can be extended to

four broad areas:

1. design and evaluation of 18s for emerging parallel and distributed computing applica-

tions;

2. design and implementation of suitable IS testing approaches;

3. development of ISs from a set of configurable, possibly commercial off-the-shelf, plug-

and-play modules; and

4. extension of the ROCC modeling approach, which is applied to the study of ISs and

trade-offs among its management policies, to other parallel and distributed systems and

applications.

The rest of this section explores the above areas with considerable details to motivate the

application and extension of this research.

219

8.2.1 Design and Evaluation of 185 for Emerging Applications

There are opportunities to extend the 18 design, modeling, management, and evaluation

work presented in this dissertation to several applications that consume instrumentation

data collected from parallel and distributed systems. We discuss a number of emerging

applications of parallel and distributed computing systems that benefit from runtime

information to fulfil their domain-specific needs. These applications include: distributed

real-time adaptive control systems, commercial on-line transaction processing systems,

pattern recognition systems, and complex distributed systems.

8.2.1.1 Distributed Real-Time Adaptive Control Systems

Adaptive control is commonly applied to the distributed, real-time embedded systems.

Typical examples of such systems include military combat systems, safety-critical

systems, switching and routing in telecommunication systems, and aircraft and

automobile control subsystems [66,121,202,224]. An IS accomplishes three tasks for this

class of applications:

0 collects runtime data for on-line monitoring of “health” of the target system;

- observes the internal states and system response to help decide any resource manage-

ment “actions” to maintain the system at desired operating points; and

- collects data from the distributed sensors to help an adaptive controller make decisions

in real-time, according to the mission of the system.

Clearly, for adaptive control applications, the scope of an instrumentation system is

extended beyond its role as a set of data collection, processing, and consumption

components. An IS is a part of the closed-loop control system and works as a system

observer. A consequence of this extended scope is the need for meeting stringent design

and operation specifications to ensure that functional and non-functional requirements of

the target system are not impacted. The IS design, modeling, and evaluation approach

220

presented in this dissertation did consider such systems. However, several case studies are

needed to practically apply this approach to real-time adaptive control applications.

In addition to designing and using an IS for distributed adaptive control applications, an IS

itself can be designed as an adaptive system. The case study of JEWEL IS, presented in

this dissertation, explored the trade-offs involved in implementing different policies. This

area can be further investigated by considering the application of real-time dynamic

scheduling techniques to IS tasks using real-time features available in a number of

operating systems.

8.2.1.2 Commercial Transaction Processing Systems

Transaction processing is one of the most important commercial applications of

distributed computing. Transaction processing systems consist of a large number of

sources of data and services distributed throughout some geographical region with a

consistent set of management policies across the system. In such systems, the data and

control flow mechanisms play an important role in integrating and managing the

enterprise-wide distributed resources. Instrumentation systems are used to collect runtime

information to accomplish two types of system management strategies:

0 IS can support a single point-of-control to manage the entire distributed system from a

logically centralized location; or

0 IS can support a hierarchical, distributed control of the local resource.

Modeling and evaluation of an IS for either type of management strategy is relevant to

provide an early feedback to the developers. For a large transaction processing system, it is

desirable to evaluate the design of the IS to make sure that it can meet domain-specific

requirements.

221

8.2.1.3 Distributed Embedded Systems

Distributed embedded systems are distinguished due to their constraints on space, weight,

power consumption, and real-time behavior. Such systems are widely used for real-time

control, signal processing, and pattern recognition applications. An embedded system can

be developed as a parallel or distributed system, depending on the requirements on its

performance and functionality. An IS design that ensures accuracy of measurements is

desirable to achieve the domain-specific performance goals of the embedded system, such

as small error rate.

Distributed embedded systems are often complex systems. The term complex system refers

to a distributed computing system, possibly including any system within which it is

embedded [174]. Computation and/or communication are critical aspects of system

behavior. A complex system is often encountered in an application that needs to

accomplish a large number of interdependent tasks to satisfy a given set of requirements

that may conflict with one another in multiple ways [198]. There is a growing number of

software tools and environment that address the needs of distributed complex systems

[221]. A sizeable subset of these tools, such as monitoring, visualization, performance

tuning, real-time steering, dynamic assertion checking, and debugging tools depend on

runtime data collection. An IS that is implemented according to the structured design,

modeling, and evaluation approach presented in this dissertation is desirable for these

systems.

This list of emerging applications of 185 is expected to grow with time. However, the

purpose of this subsection is to identify some important potential areas of application

rather than enumerating all possible areas.

222

8.2.2 1s Testing

With increasing diversity of their areas of usage, 18s are being developed as ofif-the-shelf

software systems that can easily be integrated in a target system where runtime data

collection and processing is needed. These 185 are developed as a set of “middleware”

modules and services that interface application processes with operating system services

to allow an application to collect data from the system under test.

At the time of writing this dissertation, a great deal of emphasis is being placed on the

testing of parallel tools [228]. Software reliability models [24,225] and tests [140] are

often used by software vendors to analyze the suitability of a software product for a

particular application. However, there are very few examples of applying quantitative

approaches to test and improve 18s. This situation motivates the need of extending IS

modeling and evaluation work to the development of quantitative testing methodologies.

Due to the emerging applications discussed in Section 8.2.1, stringent performability

constraints may be imposed on an IS, in addition to non-functional requirements such as

fault-tolerance and reliability. There is a growing need for these 185 to be tested by their

developers with results of these tests reported as IS specificm'ons. Testing is an essential

aspect of system design in many areas including VLSI devices and circuits, fly-by-wire

aircraft control systems, telecommunication systems, pattern recognition systems, and so

on. However, use of software instrumentation systems for collecting data from physically

distributed, large complex systems is a relatively recent phenomenon. Therefore, IS testing

and a number of issues related to it are yet to be explored. We identify some of these issues

in the following subsections.

8.2.2.1 Models for 18 Testing

Testing of parallel tool components, especially an instrumentation system can greatly

benefit from the state-of-the-art testing approaches in other areas. For instance, IC design

223

and manufacturing industry has well-developed fault models and test-generation methods,

such as built-in self-test (BIST) [34,139]. BIST, which utilizes scanning technology,

provides the stimulus-generation and response processing functionality to test complex

logic structures and embedded components or cores [109]. Due to intense competition in

microprocessor industry, it is desirable that a newly designed microprocessor does not

require an excessively long testing period before marketing. Marr et al. describe the use of

an innovative testing methodology that was used to validate the multiprocessor

functionality of Intel’s Pentium Pro microprocessor [128].

Developing models to test software systems such as 18s, is a more complicated process

compared to the testing of VLSI systems; lack of physical entities with well-defined

behaviors in a software system contributes to the complexity in representing them using

simple modeling tools. Software systems are made up of abstractions such as processes,

threads, semaphores, locks, etc. that have intricate behavior and dependences on one

another. Exact analytic models of such systems are of little practical value because they

are often mathematically intractable. A Markov model is considered a reasonable

compromise between real-world dependences and independence needed for mathematical

tractability. Chen and Mills suggest a Markov process model for random testing of

software [35]. Miller reports the results of testing real parallel programs using random

inputs [137]. It is necessary to study a number of existing 185 from the perspective of

developing appropriate test models. Such studies can yield a valuable body of knowledge

about the suitability of different models for testing existing ISs.

8.2.2.2 Synthetic Workload Generation

According to the IS development and usage envisioned in this dissertation, an IS

undergoes at least three phases in its life-cycle: (1) evaluation of alternative configurations

of modules and task scheduling options at an early development stage; (2) testing IS

features for correctness and reliability by the developers before the IS goes into

production; and (3) usage of the IS for real applications (production phase). For

224

accomplishing the first two tasks, we need a model for the IS and an adequate workload

characterization that drives the model. This dissertation specifically focused at the first

phase where the model was evaluated analytically or through simulations to provide

feedback to the IS developers. Testing phase can also benefit from the model and workload

characterization by focusing on specific aspects, found critical to the perforrnability of the

IS during the evaluation phase. While workload characterization is used for simulation-

based studies of computer systems, testing phase is conducted empirically.

Figure 8-1 illustrates an approach to use the initial characterization results for generating

synthetic workload for testing the 185. This setup has some similarities with a typical

pattern recognition system. A typical pattern recognition system consists of two phases:

training and classification. Workload characterization is similar to the training phase.

However, workload generation requires the synthesis of test patterns according to the

workload characterization rather than classifying the patterns as in case of a typical

classifier. Thus, test pattern generation phase is in effect inverse of the pattern

classification phase of a typical pattern recognition system. Test patterns undergo a

postprocessing phase to invoke appropriate executable instructions that can be used for

testing an actual instrumentation system. Some initial efforts are reported in the literature

to use workload characterization to design test suites. For example, Nanda and Ni

emphasize the importance of characterizing the workload to generate synthetic workload

kernels that can expose weaknesses and strengths of multiprocessor memory subsystem

behavior [141].

Although the IS test workload generation scheme depicted in Figure 8-1 appears simple,

the challenging part is the designing of actual code to implement a particular synthetic test

pattern. For instance, if a test pattern requires a specific value for the system bus

bandwidth utilization during a test, there is no simple way to implement it on most of the

Unix-like operating systems that are based on fair scheduling of system resources among

225

Factors related to

the experiment

nstnm - Pattern

gym", mafim Parameteriza ; generation Postprocessing

Testing phase To workload

----------------- ' — — - rating ram

Workload characterization (learning) phase testing tgemlg

initial Workload

trace data—. Preprocessing Feature selection : characterization

Figure 8-1. Approach adopted for workload characterization and testing of an

instrumentation system.

user processes. Therefore, the approach needs additional effort to undergo appropriate

modifications to be useful in practice.

Instrumentation system testing can be considered a part of a much broader initiative for

measurement-based tool testing [228]. Although we restricted our attention to the

quantitative aspects of testing, there is a growing need to address the qualitative aspects

also.

8.2.3 IS Development

We presented a taxonomy to characterize an 18 in terms of a number of modules and

services. We used this taxonomy to understand, model, and evaluate the behavior of a

number of existing 18s. This characterization is also useful for actual software

development to implement an IS beyond its design and evaluation stages. Some of the

possible future directions for IS development are presented in the following subsections.

226

8.2.3.1 Plug-and-Play IS Modules

Software tool environments including those being used for parallel and distributed

systems, are increasingly using commercial, off-the-shelf (COTS) software products. This

is emerging as a cost-effective and efficient approach as opposed to relying on a single

software developer to custom design every single module of an environment for a

particular application. Many safety-critical [157] and high performance, distributed

combat systems [79] are also relying on plug-and-play COTS software. ISs can also

benefit from this approach. We have done preliminary work to define a framework for

developing 185 for multidisciplinary applications [216]. However, considerable effort is

needed to develop a set of IS modules according to this framework that can be

conveniently ported to various platforms and integrated into different too] environments.

8.2.3.2 Configurable IS Kernels

Embedded system design is distinguished due to the constraints imposed on their size,

weight, requirements for computing resources, and performance. Runtime measurements

of system behavior are useful to tune their performance and test their functional

correctness. Thus, 185 are needed for such systems. In Section 8.2.1.1, we discussed the

need for using the structured IS design and evaluation approach for embedded and real-

time systems. However, the actual development of such 185 requires the use of novel

software techniques and tools. One possible approach is to design an IS “kernel” instead

of fully functional IS that can be retargeted to new embedded applications. In order to

develop a fully functional IS for an embedded system, customized software layers can be

added on top of the kernel.

8.2.3.3 IS Interfaces

As ISs developed as COTS software products are being applied to a broad range of

applications, the need for standardizing the interface between an IS and the SUT as well as

an IS and a tool (or environment) is becoming obvious. A number of standardization

227

efforts, such as MP1 [133], I-IPF [84], and POSIX [97] are driven by the needs of a diverse

user community for portable communication functions, language constructs for HPCC

applications, and operating system functions, respectively. Due to a large size of parallel

tool developer community, development of a standard IS interface will be a worthwhile

effort. Our research as well as several related efforts can contribute toward the

development of a standard for IS interfaces.

8.2.4 Resource Management Using ROCC Modeling Technique

Resource management problems in a parallel or distributed system are not restricted to the

instrumentation systems. Performance of most of the computer systems depends on

evaluating the trade-offs among available design options. We applied the resource

occupancy (ROCC) modeling technique for evaluating the resource contention between

the SUT and IS tasks. A notable benefit of using ROCC modeling technique is its ability to

model the software system at a high level of abstraction considering dependences among

different processes. This modeling approach has the potential of extending to parallel or

distributed systems that need dynamic resource management. Examples of such systems

include: embedded real-time systems, distributed high-performance computing systems

(connected through a high-speed wide-area network), computer networks for multimedia

traffic, and parallel file systems. We intend to apply ROCC modeling approach to evaluate

the dynamic resource management policies for these systems.

As a final note related to the future investigations, we consider the state-of-the-art in 185 to

be in a transition phase. A number of IS-related projects in relatively new application areas

of parallel and distributed computing indicate the thrust for future changes. Therefore, we

view the work presented in this dissertation as a static snapshot of this area at the time of

writing it. We are already making progress on some of the future directions described

here.

228

8.3 Concluding Remarks

The impact of a research effort on the state-of-the-art in its area is an essential measure of

success. While the application of this research proceeds and its ideas continue to mature,

outcomes of this research—publications, collaborations, funded proposals, and citations—

indicate its relevance to the field.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Bibliography

M. Abrams, N. Doraswarny, and A. Mathur, “Chitra: Visual Analysis of Parallel

and Distributed Programs in the Time, Event and Frequency Domains,” IEEE

Transactions on Parallel and Distributed Systems, 3(6), November 1992.

Richard M. Adler, “Distributed Coordination Models for Client/Server Comput-

ing,” IEEE Computer, 28(4), April 1995, pp. 14—22.

A. K. Ahluwalia and M. Singhal, “Performance Analysis of the Communication

Architecture of the Connection Machine,” IEEE Transactions on Parallel and Dis-

tributed Systems, 3(6), November 1992.

Arnold 0. Allen, Probability, Statistics, and Queuing Theory with Computer Sci-

ence Applications, Second Edition, Academic Press, 1990.

George S. Almasi and Allan Gottlieb, Highly Parallel Computing, The Benjamin/

Cummings Publishing Company, Inc., 1989.

Howard Anton and Chris Rorres, Elementary Linear Algebra — Applications Ver-

sion, John Wiley & Sons Inc., 1991. IEEE Transactions on Parallel and Distributed

Systems, 3(6), November 1992.

Masanao Aoki, State Space Modeling ofTime Series, Springer-Verlag, 1990.

W. Appelbe and C. McDowell, “Integrating Tools for Debugging and Developing

Multitasking Programs,” ACM SIGPLAN and SIGOPS Workshop on Parallel and

Distributed Debugging, Madison, Wisconsin, May 5-6, 1988.

ARPA Integrated Demonstration Report on “High Performance Distributed Com-

puting Program (HiPer-D),” September 6, 1994.

Touraj Assefi, Stochastic Processes and Estimation Theory with Applications, John

Wiley & Sons, Inc., 1979.

N. Balakrishnan and A. C. Cohen, Order Statistics and Inference—Estimation

Methods, Academic Press, Inc., 1991.

P. Beadle, C. Pommerell, and M. Annaratone, “K9: A Simulator of Distributed-

Memory Parallel Processors,” Proc. ofSupercomputing ‘89, ACM Press, 1989.

David G. Belanger, th-Fam Chen, Neal R. Fildes, Balachander Krishnamurthy,

Paul H. Rank Jr., Kiem-Phong V0, and Terry E. Walker, “Architecture Styles and

Services: An Experiment Involving Signal Operations Platforms-Provisioning

Operations Systems,” AT&T Technical Journal, January/February 1996, pp. 54—60.

Philip A. Bernstein, “Middleware: A Model for Distributed System Services,”

Communications of the ACM, 39(2), Feb. 1996, pp. 86—98.

Devesh Bhatt, Rakesh Jha, Todd Steeves, Rashmi Bhatt, and David Wills, “SPI: An

Instrumentation Development Environment for Parallel/Distributed Systems,”

Proc. ofInt. Parallel Processing Symposium, April 1995.

770

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Laxmi N. Bhuyan and Xiadong Zhang, Multiprocessor Performance Measurement

and Evaluation, IEEE Computer Society Press, 1995.

Robert J. Block, Pankaj Mehra, and Sekhar Sarukkai, “Automated Performance

Prediction of Message-Passing Parallel Programs,” Proceedings ofSupercomputing

‘95, San Diego, California, Dec. 4-8, 1995. Available on-lin from: http://

scxy.tc.comell.edu/sc95/proceedings/450_SSAR/SC95.HTM.

George P. Box and Gwilym M. Jenkins, Time Series Analysis — Forecasting and

Control, Holden-Day Inc., 1976.

M. C. Breiter and P. R. Krishnaiah, “Tables for the Moments of Gamma Order Sta-

tistics,” Sankhya, Series B, Volume 30, 1968, pp. 59-72.

D. Brown, S. Hackstadt, A. Malony, B. Mohr, “Program Analysis Environments for

Parallel Language Systems: The TAU Environment,” Proc. ofthe Second Workshop

on Environments and Tools For Parallel Scientific Computing, Townsend, Tennes-

see, May 1994, pp. 162—171.

Marc Brown and John Hershberger, “Color and Sound in Algorithm Animation,”

IEEE Computer; December 1992.

Andreas Buja et al., “Interactive Data Visualization using Focusing and Linking,”

Proceedings of Visualization ‘91 , 1991.

Peter Burger, Duncan Gillies, Interactive Computer Graphics, Addison-Wesley

Publishing Company, Inc., 1989.

Ricky W. Butler and Finelli, George B., “The Infeasibility of Quantifying the Reli-

ability of Life-Critical Real-Time Software,” IEEE Transactions on Software Engi-

neering, 19(1), Jan. 1993, pp. 3-12.

D. Callahan and J. Subhlok, “Static Analysis of Low-level Synchronization,” ACM

SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging, Madi-

son, Wisconsin, May 5-6, 1988.

B. M. Carlson, T. D. Wagner, L. W. Dowdy, and P. H. Worley, “Speedup Properties

of Phases in the Execution Profile of Distributed Parallel Programs,” Technical

Report ORNL/I'M-l 1900, Oak Ridge National Laboratory, August 1992.

Gordon B. Carlson, Signal and Linear System Analysis, Houghton Mifflin Com-

pany, 1992.

Thomas L. Casavant, “Tutorial: Software Tools for Visualization of Parallel and

Distributed Programs and Systems,” Department of Electrical and Computer Engi-

neering, University of Iowa, September 1991.

Thomas L. Casavant, “Tools and Methods for Visualization of Parallel Systems and

Computations,” Journal ofParallel and Distributed Computing, 18(2), June 1993.

K. M. Chandy and Jayadev Misra, Parallel Program Design—A Foundation, Addi-

son-Wesley Publishing Company, Inc., 1988.

Carl K. Chang, Young-Pu Chang, Lin Yang, Ching-Roung Chou, and Jong-Jeng

Chen, “Modeling a Real-Time Multitasking System in Timed PQ Net,” IEEE Sofi-

ware, March 1989.

230

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

John Chapin, Stephen A. Herrod, Mendel Rosenblum, and Anoop Gupta, “Memory

System Performance of Unix on CC-NUMA Multiprocessors,” Proceedings ofSig-

metrics ‘95, Ottawa, Canada, May 15-19, 1995, pp. 1—13.

M. L. Chaudhry and J. G. C. Templeton, A First Course in Bulk Queues, John

Wiley, 1983.

Chih-Ang Chen and Sandeep K. Gupta, “BIST Test Pattern Generators for Two-

Pattem Testing—Theory and Design Algorithms,” IEEE Transactions on Comput-

ers, 45(3), March 1996.

Sanping Chen and Shirley Mills, “A Binary Markov Process Model for Random

Testing,” IEEE Transactions on Software Engineering, 22(3), March 1996.

Doreen Y. Cheng, “A Survey of Parallel. Programming Languages and Tools,”

Report RND-93-005, NASA Ames Research Center, March 1993.

M. J. Clement and M. J. Quinn, “Multivariate Statistical Techniques for Parallel

Performance Prediction,” Proceedings of the Twenty Eighth Hawaii International

Conference on System Sciences, Maui, Hawaii, Jan. 3-6, 1995, pp. 446—455.

Mark J. Clement, Michael R. Steed, and Phyllis E. Crandall, “Network Perfor-

mance Modeling for PVM Clusters,” Proceedings of Supercomputing ‘96, Pitts-

burgh, Pennsylvania, Nov. 17—22, 1996. Available on-line from http://

scxy.tc.comell.edu/sc96/proceedings/SC96PROC/CLEMENT/INDEX.HTM.

John R. Clymer, Systems Analysis Using Simulation and Markov Models, Prentice-

Hall, Inc., 1990.

Richard Comerford, “Software on the Brink,” IEEE Spectrum, 29(9), September

1992.

R. A. Cooper and A. J. Weekes, Data, Models and Statistical Analysis, Barens and

Noble Books, 1983.

Alva Couch, “Graphical Representation of Program Performance on Hypercube

Message-Passing Multiprocessors.” Ph.D. dissertation, Department of Computer

Science, Tufts University, April 1988.

Alva Couch and David W. Krumme, “Projection, Pursuit, and the Triplex Tool Set

for the NCUBE Multiprocessor,” Department of Computer Science, Tufts Univer-

sity, November 1989.

Alva Couch, “Categories and Context in Scalable Execution Visualization,” Jour-

nal ofParallel and Distributed Computing, 18(2), June 1993.

Mark E. Crovella and Thomas J. LeBlanc, “Parallel Performance Prediction Using

Lost Cycles Analysis,” Proceedings ofSupercomputing ‘94, Washington, DC, Nov.

14-18, 1994. pp. 600—609.

Morris H. DeGroot, Probability and Statistics, Addison-Wesley Publishing Com-

pany, 1987.

Robert T. Dimpsey and Ravishankar K. Iyer, “A Measurement-Based Model to Pre-

dict the Performance Impact of System Modifications: A Case Study,” IEEE Trans-

actions on Parallel and Distributed Systems, 6(1), January 1995, pp. 28-40.

231

[481

[49]

[50]

[51]

[52]

[53]

[54]

[551

[56]

[57]

[53]

[59]

[60]

[61]

[62]

J. Dongarra, R. van de Geijn, and D. Walker, “A Look at Scalable Dense Linear

Algebra Libraries,” Proceeding of Scalable High Performance Computing Confer-

ence, April 1992.

Stephen G. Eick and Daniel E. Fyock, “Visualizing Corporate Data,” AT&T Techni-

cal Journal, January/February 1996, pp. 74—85.

Greg Eisenhauer, Weiming Gu, Thomans Kindler, Karsten Schwan, Dilma Silva,

and Jeffrey Vetter, “Opportunities and Tools for Highly Interactive Distributed and

Parallel Computing," in Debugging and Performance Tuningfor Parallel Computer

Systems, M. L. Simmons, A. H. Hayes, D. A. Reed, and J. Brown, Editors, IEEE

Computer Society Press, Dec. 1995, pp. 245-277.

Loretta S. Ellwood and Michael T. Heath, “A Tracing Environment for MP1,” Proc.

of MP1 Developers Conference, June 22—23, 1995. Proceedings available on-line

from http://www.cse.nd.edu/mpidc95/proceedings.

P. Emrath and D. Padua, “Automatic Detection of Nondeterrninancy in Parallel Pro-

grams,” ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed

Debugging, Madison, Wisconsin, May 5-6, 1988.

Domenico Ferrari, Computer Systems Performance Evaluation, Prentice-Hall, Inc.,

1978.

Domenico Ferrari, “Considerations on the Insularity of Performance Evaluation,”

IEEE Transactions on Software Engineering, June 1986.

D. Ferrari and D. Verrna, “A Scheme for Real-Time Channel Establishment in

Wide-Area Networks,” IEEE Transactions on Iected Area in Communications,

8(3), 1990. pp.368-379.

C. E. Fineman and P. J. Hontalas, “Selective Monitoring Using Performance Metric

Predicates,” Proc. Scalable High-Perf Comp. Conf, IEEE Comp. Soc., 1992.

Ian Foster, Designing and Building Parallel Programs, Addison-Wesley, 1995.

Ian Foster, “Tools for Network-Based Supercomputing: Lessons from the I-WAY

Experience,” presented at Workshop on Software Toolsfor High Performance Com-

puting Systems, Cape Cod, Massachusetts, Oct. 15-18, 1996.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving Prob-

lems on Concurrent Processors: Volume I—General Techniques and Regular

Problems, Prentice-Hall, Inc., 1988.

D. Gannon, “Predicting Performance: Spreadsheets and What-If Questions,” pre-

sentation at Workshop on Parallel Computer Systems: Software Performance Tools,

Santa Fe, October 2—4, 1991.

G. Geist, M. Heath, B. Peyton, and P. Worley, “A Machine-Independent Communi-

cation Library,” Proceedings ofthe Fourth Conference on Hypercubes, Concurrent

Computers, and Applications, Los Altos: Golden Gate Enterprises, 1990.

G. Geist, M. Heath, B. Peyton, and P. Worley, “A User’s Guide to PICL”, Technical

Report ORNIII'M-11616, Oak Ridge National Laboratory, March 1991.

232

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[731

[74]

[751

[76]

G. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, PVM,

MIT Press, 1994.

G. Geist, J. Kohl, and P. Papadopoulos, “Visualization, Debugging, and Perfor-

mance in PVM,” in Debugging and Performance Tuning for Parallel Computer

Systems, edited by M. L. Simmons, A. H. Hayes, D. A. Reed, and J. Brown, IEEE

Computer Society Press, Dec. 1995, pp. 65-77.

G. Geist, J. Kohl, and P. Papadopoulos, “Providing Fault-Tolerance, Visualization,

and Steering of Parallel Applications,” Proc. of Workshop on Environments and

Toolsfor Parallel Scientific Computing, August 1996.

Martin Gergeleit, J. Kaiser, and H. Streich, “DIRECT: Towards a Distributed

Object-Oriented Real-Time Control System,” Technical Report, 1996. Available

from http://bomeo.gmd.de:80lRS/Papers/direct/direct.html.

R. Glenn, and D. Pryor, “Instrumentation for a Massively Parallel MIMD Applica-

tion,” Journal ofParallel and Distributed Computing, 12(3), July 1991 .

E. Gelenbe, G. Pujolle, and J. C. C. Nelson, Introduction to Queuing Networks,

John Wiley, 1987.

W. Gropp, E. Lusk, and A. Skjellum, Using MP1: Portable Parallel Programming

with the Message-Passing Inted’ace, MIT Press, 1994.

Morris Grossman, “Modeling Reality,” IEEE Spectrum, 29(9), Sep. 1992, pp. 56-

60.

Weiming Gu, Greg Eisenhauer, Eileen Kraemer, Karsten Schwan, John Stasko, and

Jeffrey Vetter, “Falcon: On-line Monitoring and Steering of Large-Scale Parallel

Programs,” Technical Report GIT—CC—94-21, 1994.

Shanti S. Gupta, “Order Statistics from the Gamma Distribution,” Technometrics,

2(2), May 1960. pp. 243—262.

John Gustafson, Diane Rover, Stephen Elbert, and Michael Carter. “The Design of

a Scalable, Fixed-time Computer Benchmark,” Journal ofParallel and Distributed

Computing, 12(4), August 1991.

Bjoem Haake, Klaus E. Schauser, and Chris Scheiman, “Profiling a Parallel Lan-

guage Based on Fine-Grained Communication,” Proc. of Supercomputing ‘96,

Pittsburgh, Pennsylvania, Nov. 17—22, 1996. Available on-line from http:/l

www.supercomp.org/sc96/proceedings/SC96PROC/SCHAUSER/INDEX.HTM.

S. Hackstadt, A. Malony, B. Mohr, “Scalable Performance Visualization for Data-

Parallel Programs,” Proceedings of the Scalable High Performance Computing

Conference (SHPCC), Knoxville, Tennessee, May 1994.

Ming C. Hao, Alan H. Karp, Milon Mackey, Vineet Singh, and Jane Chien, “On-

the-Fly Visualization and Debugging of Parallel Programs,” Proc. ofInternational

Workshop on Modeling, Analysis and Simulation ofComputer and Telecommunica-

tion Systems (MASCOTS ‘94) Tools Fair, Durham, North Carolina, Jan. 31- Feb. 2,

1994.

233

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

Ming C. Hao, Alan H. Karp, Abdul Waheed, and Mehdi Jazayeri, “VIZIR: An Inte-

grated Environment for Distributed Program Visualization,” Proc. ofInt. Workshop

on Modeling, Analysis and Simulation of Computer and Telecommunication Sys-

tems (MASCOTS ‘95) Tools Fair, Durham, North Carolina, Jan. 1995, pp. 288-292.

Ming C. Hao, Abdul Waheed, Alan Karp, and Mehdi Jazayeri, “Multiple Views of

Parallel Application Execution,” in Debugging and Performance Tuningfor Paral-

lel Computer Systems, edited by M. L. Simmons, A. H. Hayes, D. A. Reed, and J.

Brown, IEEE Computer Society Press, Dec. 1995, pp. 199-206.

R. Harrison, L. Zitzman, G. Yoritomo, “High Performance Distributed Computing

Program (HiPer-D)—Engineering Testbed One (T 1) Report,” Technical Report,

Naval Surface Warfare Center, Dahlgren, Virginia, Nov. 1995.

T. Hasegawa, H. Takagi, and Y. Takahashi, editors, Performance ofDistributed and

Parallel Systems, Elsevier Science Publishers B.V., 1989.

Michael T. Heath and Jennifer A. Etheridge, “Visualizing the Performance of Paral-

lel Programs,” IEEE Software, 8(5), September 1991, pp. 29-39.

M. Heath, A. Malony, and D. Rover, “The Visual Display of Parallel Performance

Data,” IEEE Computer/IEEE Parallel and Distributed Technology special theme

issues on Performance Evaluation Tools for Parallel and Distributed Computer Sys-

tems. November 1995.

B. R. Helm and A. D. Malony, “Automating Performance Diagnosis: a Theory and

Architecture,” Proceedings of International Workshop on Computer Performance

Measurement andAnalysis (PERMEAN ‘95), Beppu, Japan, Aug. 20--23, 1995, pp.

84—91.

High Performance Fortran Forum, “High Performance Fortran Language Specifica-

tions: Version 1.0,” Technical Report CRPC-TR92225, Center for Research on Par-

allel Computation, Rice University, Houston, Texas, 1993.

J. K. Hollingsworth and B. P. Miller, “Dynamic Control of Performance Monitor-

ing on Large Scale Parallel Systems,” Proc. ofInt Con. on Supercomputing, Tokyo,

Japan, July 19-23, 1993, pp. 185-194.

J. K. Hollingsworth, B. P. Miller, Jon Cargille, “Dynamic Program Instrumentation

for Scalable Performance Tools,” Proc. of Scalable High-Performance Computing

Conference, Knoxville, Tenn., 1994, pp. 841—850.

J. K. Hollingsworth and B. P. Miller, “An Adaptive Cost Model for Parallel Pro-

gram Instrumentation,” Proc. ofEuroPar ‘96, Lyon, France, August 1996, Volume

1, pp. 88-98. -

J. K. Hollingsworth, James E. Lump, Jr., and Barton P. Miller, “Techniques for Per-

formance Measurement of Parallel Programs,” in Parallel Computers: Theory and

Practice, IEEE Press, 1995.

J. K. Hollingsworth and B. P. Miller, Marcelo J. R. Goncalves, Oscar Naim,

Zhichen Xu and Ling Zheng, “MDL: A Language and Compiler for Dynamic Pro-

gram Instrumentation,” Technical Report, 1996.

234

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[93]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Alfred A. Hough and Janice E. Cunny, “Belvedere: Prototype of a Pattern-Oriented

Debugger for Highly Parallel Computation,” Proceedings of the 1987 International

Conference on Parallel Processing, pp. 735-738, 1987.

Alfred A. Hough and Janice E. Cuny, “Perspective Views: A Technique for

Enhancing Parallel Program Visualization,” Proc. 1990 Int. Conf on Par: Proc,

IEEE Comp. Soc., 1990.

J. V. Huber, C. L. Elford, D. A. Reed, A. A. Chien, and D. S. Blumenthal, “PPFS: A

High-Performance Portable Parallel File System,” Proceedings of the Ninth ACM

International Conference on Supercomputing, July 1995.

Jau-Hsiung Huang and Leonard Kleinrock, “Performance Evaluation of Dynamic

Sharing of Processors in Two-Stage Parallel Processing Systems,” IEEE Transac-

tions on Parallel and Distributed Systems, 4(3), March 1993.

Herman D. Hughes, “Generating a Drive Workload from Clustered Data,” Com-

puter Performance, 5(1), March 1984, pp. 31—37.

Watts S. Humphrey and Nozer D. Singpurwalla, “Predicting (Individual) Software

Productivity,” IEEE Transactions on Software Engineering, 17(2), February 1991.

Giuseppe Iazeolla and Francesco Marinuzzi, “LISPACK—A Methodology and

Tool for the Performance Analysis of Parallel Systems and Algorithms,” IEEE

Transactions on Sofiware Engineering, 19(5), May 1993.

IEEE Standardfor Information Technology (Std 1003.1b-I993), Portable Operat-

ing System Interface (POSIX)-—Part 1: System Application Program Interface

(API), IEEE, 1994.

IEEE Transactions on Parallel and Distributed Systems, special issue on measure-

ment and evaluation, 3(2), November 1992.

Anil K. Jain, Fundamentals ofDigital Image Processing, Prentice-Hall, Inc., 1989.

Raj Jain, The Art of Computer Systems Performance Analysis—Techniques for

Experimental Design, Measurement, Simulation, and Modeling, John Wiley &

Sons, Inc, 1991.

Jeffrey Joyce, Greg Lomow, Konrad Slind, and Brian Unger, “Monitoring Distrib-

uted Systems,” ACM Transactions on Computer Systems, 5(2), May 1987, pp. 121—

150.

Kai Hwang, Advanced Computer Architecture, McGraw-Hill, 1993.

Maurice Kendall and Keith Ord, Ttme Series, Edward Arnold, 1990.

Carol Kilpatrick and Karsten Schwan, “ChaosMON—Application-Specific Moni-

toring and Display of Performance Information for Parallel and Distributed Sys-

tems,” Proceedings of the ACM/ONR Workshop on Parallel and Distributed

Debugging, Santa Cruz, California, May 20—21, 1991.

Doug Kimmelmari and Dror Zemik, “On-the-Fly Topological Sort—A Basis for

Interactive Debugging and Live Visualization of Parallel Programs,” Proceedings of

the ACM/ONR Workshop on Parallel and Distributed Debugging, San Diego, Cali-

fornia, May 17-18, 1993.

235

[106] Leonard Kleinrock, Queuing Systems—Volume 11: Computer Applications, John

Wiley, 1976.

[107] Leonard Kleinrock and Willard Korfhage, “Collecting Unused Processing Capac-

ity: An Analysis of Transient Distributed Systems,” IEEE Transactions on Parallel

and Distributed Systems, 4(4), May 1993, pp. 535-546.

[108] D. Knuth, The Art ofComputer Programming, Addison-Wesley, 1981.

[109] Bemd Konemann, Ben Bennetts, Najmi Jarwala, and Benoit Nadeau-Dostie,

“Built-In Self-Test: Assuring System Integrity,” IEEE Computer, 29(11), Novem-

ber 1996. PP. 39-45.

[110] Eileen Kraemer and John T. Stasko, “The Visualization of Parallel Systems: An

Overview,” Journal ofParallel and Distributed Computing, 18(2), June 1993.

[111] K. Kunchithapadam and B. P., Miller, “Integrating a Debugger and a Performance

Tool for Steering,” in Debugging and Performance Tuning for Parallel Computer

Systems, M. L. Simmons, A. H. Hayes, D. A. Reed, and J. Brown, Editors, IEEE

Computer Society Press, Dec. 1995, pp. 53—63.

[112] L. Lamport, L., “Time, Clocks, and the Ordering of Events in a Distributed Sys-

tem,” Communications ofthe ACM, 21(7), July 1978, pp. 558-565.

[113] F. H. Lange, Correlation Techniques, London Iliffe Books Ltd., 1967.

[114] F. Lange, Reinhold Kroger, and Martin Gergeleit, “JEWEL: Design and Implemen-

tation of a Distributed Measurement System”. IEEE Transactions on Parallel and

Distributed Systems, 3(6), November 1992, pp. 657-671. Also available on-line

from http://bomeo.gmd.de:80lRSlPapers/JEWELIJEWEL.html.

[115] Stephen S. Lavenberg, editor, Computer Performance Modeling Handbook, Aca-

demic Press, 1983.

[116] Averill M. Law and W. D. Kelton, Simulation Modeling and Analysis, McGraw-

Hill, Inc., 1991.

[117] Edward D. Lawzowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik,

Quantitative System Performance—Computer System Analysis Using Queuing Net-

work Models, Prentice-Hall, 1984.

[118] Thomas J. Leblanc, John M. Mellor-Crummey, and Robert J. Fowler, “Analyzing

Parallel Program Executions Using Multiple Views,” Journal ofParallel and Dis-

tributed Computing, 9(2), June 1990.

[119] Hwa-Chun Lin and C. S. Raghvendra, “An Approximate Analysis of the Join the

Shortest Queue (JSQ) Policy,” IEEE Transactions on Parallel and Distributed Sys-

tems, 7(3), March 1996.

[120] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming in a Hard

Real-Time Environment,” Journal of the ACM, 20(1), 1973, pp. 46—61 .

[121] C. Locke, D. Vogel, and T. Mesler, “Building a Predictable Avionics Platform in

Ada: A Case Study,” Proc. of the IEEE Real-Time Systems Symposium, 1991, pp.

181—189.

236

[122] C. B. Lynch and G. A. Dumont, “Control Loop Performance Monitoring,” IEEE

Transactions on Control Systems Technology, 4(2), March 1996.

[123] M. H. MacDougall, Simulating Computer Systems—Techniques and Tools, The

MIT Press, 1987.

[124] Michael R. Macedonia and Donald P. Brutzman, “MBone Provides Audio and

Video Across the Internet,” IEEE Computer, 27(4), April 1994, pp. 30—36.

[125] A. D. Malony, D. A. Reed, and H. A. G. Wijshoff, “Performance Measurement

Intrusion and Perturbation Analysis,” IEEE Transactions on Parallel and Distrib-

uted Systems, 3(4), July 1992, pp. 433—450.

[126] A. Malony, B. Mohr, P. Beckman, D. Gannon, S. Yang, F. Bodin, and S. Kesavan,

“Implementing a Parallel C++ Runtime System for Scalable Parallel Systems,”

Pmceedings ofSupercomputing ‘93, Portland, Oregon, November 15—19, 1993.

[127] A. D. Malony, “Measurement and Monitoring of Parallel Programs,” Tutorial, Sig-

metrics ‘1994, Nashville, Tennessee, May 16—20, 1994.

[128] Deborah T. Marr, Subramanian Natarajan, Shreekant Thakkar, and Richard Zucker,

“Multiprocessor Validation of the Pentium Pro,” IEEE Computer, 29(11), Novem-

ber 1996. pp. 47-53.

[129] M. A. Marsan, G. Balbo, and G. Conte, Performance Models of Multiprocessor

Systems, The MIT Press, 1986.

[130] Margaret Martonosi, Douglas W. Clark, and Ganesh Lakshminarayanan, “The

SHRIMP Performance Monitoring System: Design and Application,” Princeton

University, 1995.

[131] Philip K. McKinley and Christian Trefftz, “Multisim: A Simulation Tool for the

Study of Large-Scale Multiprocessors,” Proceedings ofInternational Workshop on

Modeling, Analysis and Simulation of Computer and Telecommunication Systems

(MASCOTS ‘93), San Diego, California, January 1993.

[132] Clifford W. Mercer and Ragunathan Rajkumar, “Interactive Interface and RT-Mach

Support for Monitoring and Controlling Resource Management,” Proceedings of

Real-Time Technology and Applications Symposium, Chicago, Illinois, May 15-17,

1995, pp. 134-139.

[133] Message Passing Interface Forum, “MP1: A Message-Passing Interface Standard,”

International Journal of Supercomputer Applications, 8(3), Fall/“Winter 1994, pp.

159-416.

[134] Barton P. Miller, Morgan Clark, Jeff Hollingsworth, Steven Kierstead, Sek-See

Lirn, and Timothy Torzewski, “IPS-2: The Second Generation of a Parallel Pro-

gram Measurement System,” IEEE Transactions on Parallel and Distributed Sys-

tems, 1(2), April 1990, pp. 206-217.

[135] Barton P. Miller, “What to Draw? When to Draw? An Essay on Parallel Program

Visualization,” Journal ofParallel and Distributed Computing, 18(2), June 1993.

237

[136] Barton P. Miller, Jonathan M. Cargille, R. Bruce Irvin, Krishna Kunchithapadam,

Mark D. Callaghan, Jeffrey K. Hollingsworth, Karen L. Karavanic, and Tia

Newhall, “The Paradyn Parallel Performance Measurement Tool,” IEEE Computer,

28(11), November 1995, pp. 37—46.

[137] Barton P. Miller, “Making Real Programs Explode: A Simple Application of Ran-

dom Testing,” Technical Report, University of Wisconsin at Madison, 1995. Avail-

able on-line from http://www.cs.wisc.edu/~bart/fuzz/fuzz.html.

[138] A. Mink, R. Carpenter, G. Nacht, and J. Roberts, “Multiprocessor Performance

Measurement Instrumentation,” IEEE Computer, 23(9), September 1990, pp. 63-

75.

[139] Brian T. Murrary and John P. Hayes, “Testing ICs: Getting to the Core of the Prob-

lem,” IEEE Computer, 29(11), November 1996, pp. 32-38.

[140] John D. Musa, “Software-Reliability-Engineering Testing,” IEEE Computer,

29(11), November 1996, pp. 61—68.

[141] Arun K Nanda and Lionel M. Ni, “MAD Kernels: An Experimental Testbed to

Study Multiprocessor Memory System Behavior,” IEEE Transactions on Parallel

and Distributed Systems, 7(2), February 1996.

[142] Lionel M. Ni and Philip K. McKinley, “A Survey of Wormhole Routing Techniques

in Direct Networks,” IEEE Computer, February 1993.

[143] Kathleen Nicholas and Paul W. Oman, “Navigating Complexity to Achieve High

Performance,” IEEE Software, 8(5), September 1991.

[144] Ahmed K. Noor and Samuel L. Venneri, “A Perspective on Computational Struc-

tures Technology,” IEEE Computer, 26(10), October 1993.

[145] Gary J. Nutt and Adam J. Griff, “Extensible Parallel Program Performance Visual-

ization,” Proc. ofInt. Workshop on Modeling, Analysis and Simulation ofComputer

and Telecommunication Systems (MASCOTS ‘95), Durham, North Carolina, Jan.

1995.

[146] David M. Ogle, Karsten Schwan, and Richard Snodgrass, “Application-Dependent

Dynamic Monitoring of Distributed and Parallel Systems,” IEEE Transactions on

Parallel and Distributed Systems, 4(7), July 1993, pp. 762-778.

[147] Karen F. O’Donoghue and Timothy R. Plunkett, “Development and Validation of

Network Clock Measurement Techniques,” Proc. ofthe Fourth International Work-

shop on Parallel and Distributed Real—Time Systems, Honolulu, Hawaii, April 15-

16, 1996, pp. 65—68.

[148] OMIS—On-Line Monitoring Interface Specifications. Accessible from http://www-

bode.informatik.tu-muenchen.de/~omis.

[149] Cherri M. Pancake and Sue Utter, “Models for Visualization in Parallel Debug-

gers,” Supercomputing ‘89, November 1989.

[150] Cherri M. Pancake, “Software Support for Parallel Computing: Where Are We

Headed?”, Comm. ACM, Nov. 1991.

238

[151] Cherri M. Pancake, “The Emperor Has No Clothes: What HPC Users Need to Say

and HPC Vendors Need to Hear,”, Supercomputing ‘95, invited talk, San Diego,

Dec. 3—8, 1995.

[152] Athanasios Papoulis, Signal Analysis, McGraw-Hill, Inc., 1977.

[153] Peyton Z. Peebles, Probability, Random Variables, and Random Signal Principles,

McGraw-Hill, Inc., 1993.

[154] Paul E. Pfeiffer, Concepts ofProbability Theory, Dover Publications, Inc., 1978.

[155] Sol D. Prensky and Richard L. Castellucis, Electronic Instrumentation, Prentice-

Hall, 1982.

[156] John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing-Principles,

Algorithms, and Applications, Macmillan Publishing Company, 1992.

[157] Joseph A. Profeta III, Nikos P. Andrianos, Bing Yu, Barry W. Johnson, Todd A.

DeLong, David Guaspari, and Damir Jamsek, “Safety-Critical Systems Built with

COTS,” IEEE Computer, 29(11), November 1996, pp. 54—60.

[158] L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, Prentice-

Hall, 1978.

[159] Stephen A. Rago, Unix System VNetwork Programming, Addison-Wesley, 1993.

[160] Ragunathan Rajkumar, Mike Gagliardi, and Lui Sha, “The Real-Time Publisher/

Subscriber Inter-Process Communication Model for Distributed Real-Time Sys-

tems: Design and Implementation,” Proceedings of Real-Time Technology and

Applications Symposium, Chicago, Illinois, May 15—17, 1995, pp. 66—75.

[161] Daniel A. Reed, Ruth A. Aydt, Tara M. Madhyastha, Roger J. Noe, Keith A.

Shields, Bradley W. Schwartz, “The Pablo Performance Analysis Environment,”

Dept. of Comp. Sci., Univ. of 111., 1992.

[162] Daniel A. Reed, “Building Successful Performance Tools,” Presented in ARPA PI

Meeting, July 1995. Available on—line from http://www-pablo.cs.uiuc.edu/June95-

ARPA/index.html. ‘

[163] Daniel A. Reed, Jeffrey S. Brown, Ann H. Hayes, and Margaret L. Simmdns, “Per-

formance and Debugging Tools: A Research and Development Checkpoint,” in

Debugging and Performance Tuning for Parallel Computer Systems, M. L. Sim-

mons, A. H. Hayes, D. A. Reed, and J. Brown, Editors, IEEE Computer Society

Press, Dec. 1995, pp. 1-22.

[164] Sidney I. Resnick, Adventures in Stochastic Processes, Birkhauser, 1992.

[165] B. Ries, R. Anderson, D. Breazeal, K. Callaghan, E. Richards, and W. Smith, “The

Paragon Performance Monitoring Environment,” Proceedings of Supercomputing

‘93, Portland, Oregon, Nov. 15-19, 1993, pp. 850—859. '

[166] Sheldon M. Ross, Introduction To Probability Models—Fourth Edition, Academic

Press, 1989.

239

[167] Diane T. Rover, “Visualization of Program Performance on Concurrent Comput-

ers,” Ph.D. Dissertation, Dept. of Electrical Engineering and Computer Engineer-

ing, Iowa State University, December 1989.

[168] Diane T. Rover, “A Performance Visualization Paradigm for Data-Parallel Comput-

ing,” Proceedings ofthe 25th Hawaii International Conference on System Sciences,

New York: IEEE Computer Society, 1992, pp. 146—160.

[169] Diane T. Rover, A. Waheed, and M. Doetsch, “Advanced Methods of Performance

Data Processing and Analysis,” Proceedings of the Seventh International Parallel

Processing Symposium, Newport Beach, April 13-16, 1993, pp. 609-613.

[170] Diane T. Rover and A. Waheed, “Multiple-Domain Analysis Methods,” Third

ACM/ONR Workshop on Parallel and Distributed Debugging, San Diego, May 17-

18, 1993, pp. 53—63. Proceedings appeared in ACM SIGPLAN Notices, 28(12),

December 1993.

[171] Diane T. Rover and Charles T. Wright, “Visualizing the performance of SPMD and

Data-Parallel Programs,” Journal of Parallel and Distributed Computing, 18(2),

June 1993.

[172] Diane T. Rover, “Performance Evaluation: Integrating Techniques and Tools into

Environments and Frameworks,” Roundtable, Supercomputing ‘94, Washington

DC, November 14—18, 1994.

[173] Diane T. Rover, Allen D. Malony, and Gary J. Nutt, “Summary of Working Group

on Integrated Environments Vs. Toolkits,” in Debugging and Performance Tuning

for Parallel Computing Systems, edited by A. Hayes, M. Simmons, J. Brown, and

D. Reed, IEEE Computer Society Press, May 1996.

[174] Diane T. Rover, Abdul Waheed, Matt W. Mutka, and Aleksandar Bakic, “The

Application of Software Tools to Complex Systems: An Overview,” to appear in

IEEE Parallel and Distributed Technology, 1997.

[175] Wilson J. Rugh, Linear System Theory, Prentice-Hall, 1993.

[176] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and Will-

iam Lorensen, Object-Oriented Modeling and Design, Prentice Hall, 1991.

[177] M. Ruschitzka, editor, Computer Systems: Performance and Simulation, Elsevier

Science Publishers B.V., 1986.

[178] Subhash Saini and David Bailey, “NAS Parallel Benchmark Results,” Report NAS-

95-021, NASA Ames Research Center, December 1995. Available on-line from:

http://www.nas.nasagov/NAS/TechReports/NASreports/NAS—95-021/NAS-95-

021.html.

[179] Meera Sampath, Raja Sengupta, Stephane Lafortune, Kasim Sinnarnohideen, and

Demosthenis C. Teneketzis, “Failure Diagnosis Using Discrete-Event Models,”

IEEE Transactions on Control Systems Technology, 4(2), March 1996.

[180] Gary M. Sandquist, Introduction to system science, Prentice-Hall, 1985.

240

[181] Sekhar R. Sarukkai and Jerry C. Yan, “Event-Based Study of the Effect of Execu-

tion Environment on Parallel Program Performance,” Proc. of Int. Workshop on

Modeling, Analysis and Simulation of Computer and Telecommunication Systems

(MASCOTS ‘96), San Jose, Feb. 1-3, 1996, pp. 257—261.

[182] Charles H. Sauer and K. M. Chandy, Computer Systems Perfonnance Modeling,

Prentice-Hall, Inc., 1981.

[183] Robert J. Schilling and Hua Lee, Engineering Analysis—A Vector Space Approach,

John Wiley & Sons, 1988.

[184] L. Schnell, editor, Technology of Electrical Measurements, John Wiley & Sons,

1993.

[185] Beth A. Schroeder, “On-Line Monitoring: A Tutorial,” IEEE Computer, 28(6), June

1995,pp.72—78.

[186] S. K. Setia, M. S. Squillante, and S. K. Tripathi, “Analysis of Processor Allocation

in Multiprograrnmed, Distributed-Memory Parallel Processing Systems,” IEEE

Transactions on Parallel and Distributed Systems, 5(4), April 1994.

[187] Chia Sheri, Krithi Rarnamritham, and John A. Stankovic, “Resource Reclaiming in

Multiprocessor Real-Time Systems,” IEEE Transactions on Parallel and Distrib-

uted Systems, 4(4), April 1993.

[188] M. Simmons, R. Koskela, I. Bucher, editors, Instrumentation for Future Parallel

Computing Systems, ACM & Addison-Wesley, 1989.

[189] M. Simmons and R. Koskela, editors, Performance Instrumentation and Visualiza-

tion, ACM & Addison-Wesley, 1990.

[190] M. Simmons, A. Hayes, J. Brown, and D. Reed, editors, Debugging and Perfor-

mance Tuning for Parallel Computing Systems, IEEE Computer Society Press,

1996.

[191] Evgenia Smimi and Daniel A. Reed, “Parallel I/O: Problems and Solutions,” pre-

sented at Workshop on Software Tools for High Performance Computing Systems,

Cape Cod, Massachussetts, Oct. 15-18, 1996.

[192] R. Snodgrass, “A Relational Approach to Monitoring Complex Systems,” ACM

Transactions on Computer Systems, 6(2), May 1988.

[193] “William Stallings, Data and Computer Communications, Macmillan Publishing

Company, 1991.

[194] “William Stallings, Operating Systems, Macmillan Publishing Company, 1992.

[195] John Stasko and Eileen Kraemer, “A Methodology for Building Application-Spe-

cific Visualization of Parallel Programs,” Journal ofParallel and Distributed Com-

puting, 18(2), June 1993.

[196] W. R. Stevens, UNIX Network Programming, Prentice-Hall, Inc., 1990.

[197] H. Stone, High-Performance Computer Architecture, Addison-Wesley, 1987.

241

[198] Alexander D. Stoyenko, Phillip A. Laplante, Robert Harrison, and Thomas J. Mar-

lowe, “Doubling the Engineer’s Utility,” IEEE Spectrum, 31(12), December 1994,

pp. 32—39.

[199] J. Strosnider, T. Marchok, and J. Lehoczky, “Advanced Real Time Scheduling

Using the IEEE 802.5 Token Ring’ Proc. of the IEEE Real-Time Systems Sympo-

sium, 1988, pp. 42-52.

[200] Andrew S. Tanenbaum, Distributed Operating Systems, Prentice Hall, 1995.

[201] LaMar K. Timothy, State space analysis: an introduction, McGraw—Hill, 1968.

[202] Jeffrey J.P. Tasi and Steve J.H. Yang, Monitoring and Debugging of Distributed

Real-Time Systems, IEEE Computer Society Press, 1995.

[203] T. F. Tsuei and M. K. Vernon, “A Multiprocessor Bus Design Model Validated by

System Measurement,” IEEE Transactions on Parallel and Distributed Systems,

3(6), November 1992.

[204] Edward R. Tufte, The Visual Display of Quantitative Information, Graphics Press,

Cheshire, Connecticut, 1983.

[205] Edward R. Tufte, Envisioning Information, Graphics Press, Cheshire, Connecticut,

1990.

[206] Sue Utter-Honig and Cherri M. Pancake, “Graphical Animation of Parallel Fortran

Programs,” Supercomputing ‘91, November 18 - 22, 1991.

[207] Andreas Vogel, Brigitte Kerherve, Gregor von Bochmann, and Jan Gecsei, “Dis-

tributed Multimedia and Q08: A Survey,” IEEE Multimedia, Summer ‘1995, pp.

10—19.

[208] Abdul Waheed and D. T. Rover, “Performance Visualization of Parallel Programs,”

Visualization ‘93, San Jose, California, Oct. 25-29, 1993.

[209] Abdul Waheed, B. Kronmuller, and D. T. Rover, “A Matrix Approach to Perfor—

mance Data Modeling, Analysis and Visualization,” Proc. of International Work-

shop on Modeling, Analysis and Simulation of Computer and Telecommunication

Systems (MASCOTS ‘94), Durham, North Carolina, Jan. 31-Feb. 2, 1994.

[210] Abdul Waheed, B. Kronmuller, Roomi Sinha, and D. T. Rover, “A Toolkit for

Advanced Performance Analysis,” Proc. of Int. Workshop on Modeling, Analysis

and Simulation of Computer and Telecommunication Systems (MASCOTS ‘94)

Tools Fair, Durham, North Carolina, Jan. 31- Feb. 2, 1994, pp. 376-380.

[211] Abdul Waheed, Vincent Melfi, and Diane T. Rover, “A Model for Instrumentation

System Management in Concurrent Systems,” Proceedings of the Twenty Eighth

Hawaii International Conference on System Sciences, Maui, Hawaii, Jan. 3-6,

1995. PP. 432—441.

[212] Abdul Waheed and Diane T. Rover, “A Schema for Specifying and Classifying

Instrumentation Systems,” Proceedings of International Workshop on Computer

Performance Measurement and Analysis (PERMEAN ‘95), Beppu, Japan, Aug. 20-

-23, 1995, pp. 42—51.

242

[213] Abdul Waheed, and Diane T. Rover, “A Structured Approach to Instrumentation

System Development and Evaluation,” Proceedings of Supercomputing ‘95, San

Diego, California, Dec. 4—8, 1995.

[214] Abdul Waheed, Herman D. Hughes, and Diane T. Rover, “A Resource Occupancy

Model for Evaluating Instrumentation System Overheads,” Proceedings ofthe 20th

Annual International Conference ofthe Computer Measurement Group (CMG ‘95),

Nashville, Tennessee, Dec. 3-8, 1995, pp. 1212-1223.

[215] Abdul Waheed and Diane T. Rover, “Performance Evaluation of an Integrated

Instrumentation System,” Proc. ofInt. Workshop on Modeling, Analysis and Simu-

lation of Computer and Telecommunication Systems (MASCOTS ‘96), San Jose,

Feb. 1-3, 1996.

[216] Abdul Waheed, Diane T. Rover, Aleksandar Bakic, Matt W. Mutka, and David

Pierce, “Vista: A Framework for Instrumentation System Design for Multidisci-

plinary Applications,” Proc. of Int. Workshop on Modeling, Analysis and Simula-

tion ofComputer and Telecommunication Systems (MASCOTS ‘96) Tools Fair, San

Jose, Feb. 1-3, 1996.

[217] Abdul Waheed and Diane T. Rover, “Instrumentation Systems for Parallel Tools,

“Chapter in the Book State-of-the-Art in Performance Modeling and Simulation:

Advanced Computer Systems, edited by K. Bagchi, J. Walrand, and G. Zobrist, Gor-

don and Breach Publishers Inc., 1996.

[218] Abdul Waheed, Diane T. Rover, and Jeffrey K. Hollingsworth, “Modeling, Evalua-

tion, and Testing of Paradyn Instrumentation System,” Proc. of Supercomputing

‘96, PIttsburgh, Pennsylvania, Nov. 17-22, 1996. Available on-line from http://

www.supercomp.org/sc96/proceedings/SC96PROC/WAI-IEED/INDEX.HTM.

[219] Abdul Waheed, Diane T. Rover, Hough Smith, Matt W. Mutka, and Aleksandar

Bakic, “Modeling, Evaluation, and Adaptive Control of an Instrumentation Sys-

tem,” Technical Report, November, 1996.

[220] Edward J. Wegman and James G. Smith, editors, Statistical Signal Processing,

Marcel Dekker, Inc., 1984.

[221] Lonnie R. Welch, Michael W. Masters, and Robert D. Harrison, “Toward a 2lst

Century Shipboard Computing Infrastructure,” Technical Report, Naval Surface

Warfare Center, Dahlgren, Virginia, Jan. 1996.

[222] Bernard Widl‘OW and Samuel D. Steams, Adaptive Signal Processing, Prentice-

Hall, Inc., 1985.

[223] W. W. Wilcke et al., “The IBM Victor Multiprocessor Project,” Proceedings of the

Fourth Conference on Hypercubes, Concurrent Computers, and Applications, Los

Altos: Golden Gate Enterprises, 1990.

[224] Tom Williams, “System-Visualization Tools Help Spot Real-Time Problems,”

Computer Design, August 1994, pp. 50—54.

[225] Alan Wood, “Predicting Software Reliability,” IEEE Computer, 29(11), November

1996. pp. 69-77.

243

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

Paul R. Woodward, “Perspective on Supercomputing: Three Decades of Change,”

IEEE Computer, 29(10), Oct. 1996, pp. 99-111.

Workshop on Debugging and Performance Tuning of Parallel Computing Systems,

Chatham, Mass., Oct. 3-5, 1994.

Workshop on Software Toolsfor High Performance Computing Systems, Chatham,

Mass., Oct 15-18, 1996.

Jerry C. Yan and S. Listgarten, “Intrusion Compensation for Performance Evalua-

tion of Parallel Programs on a Multicomputer,” Proceedings of the Sixth Intema-

tional Conference on Parallel and Distributed systems, Louisville, KY, Oct. 14-16,

1993.

Jerry C. Yan, “Performance Tuning with AIMS—An Automated Instrumentation

and Monitoring System for Multicomputers,” Proc. of the Twenty-Seventh Hawaii

Int. Confi on System Sciences, Hawaii, January 1994.

Jerry C. Yan, S. R. Sarukkai, and P. Mehra, “Performance Measurement, Visualiza-

tion and Modeling of Parallel and Distributed Programs using the AIMS Toolkit,”,

Software Practice and Experience, 25(4), April 1995, pp. 429-461.

Lotfi Asker Zadeh, Linear system theory; the state space approach, McGraw-Hill,

1963.

Marco Zagha, Brond Larson, Steve Turner, and Marty Itzkowitz, “Performance

Analysis Using the MIPS R10000 Performance Counters,” Proceedings of Super-

computing ‘96, Pittsburgh, Pennsylvania, November 17—22, 1996. Available on-

line from http://www.supercomp.org/sc96/proceedings/SC96PROC/ZAGHA/

INDEX.HTM.

W. Zhao, J. Stankovic, and K. Ramamritham, “A Window Protocol for Time Con-

strained Messages,” IEEE Transactions on Computers, 39(9), Sep. 1990, pp. 1186-

1203.

W. Zhao, J. Stankovic, and K. Ramamritham, “A Multiaccess Window Protocol for

Time Constrained Communications,” Proceedings of the 8th International Confer-

ence on Distributed Computing Systems. IEEE, June 1991.

244

"Illllllllllllll'lllli

