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ABSTRACT 

ASSESSING THE IMPACT OF MISSING DATA ON HOSPITAL PERFORMANCE PROFILING 
 

By 

Michael P. Thompson 

 Ischemic stroke is a leading cause of mortality, long-term disability, and high healthcare 

costs in the US.  In light of this clinical and financial burden, the Centers for Medicare & 

Medicaid Services (CMS) has decided to incorporate ischemic stroke measures of 30-day 

mortality and hospital readmission into its current pay-for-performance program.  This decision 

has come under intense scrutiny, as many clinicians and researchers believe that the current 

risk adjustment model is inadequate because it does not include a measure of stroke severity.  

Due to its well-documented importance in individual-level prediction, there is concern that 

excluding a measure of stroke severity from risk adjustment will lead to incorrect rankings of 

hospital performance, i.e. hospital profiling.  

However, administrative datasets used in CMS currently do not capture a measure of 

stroke severity, such as the National Institutes of Health Stroke Scale (NIHSS), and in clinical 

databases which capture NIHSS, it is frequently missing.  Little work has been done to asses if 

the documentation of NIHSS is biased, and if so, what impact bias would have on hospital-level 

estimates of mortality.  In this study, we analyzed data from ischemic stroke patients from an 

existing stroke registry to identify patterns and characteristics that predict NIHSS 

documentation at the patient- and hospital-level.  Next, we tested for the presence of selection 

bias in patients with documented NIHSS using the Heckman Selection Model.  Finally, using 

computer simulations, we estimated the impact of missing NIHSS data on hospital profiling of 

 
 



30-day mortality, under different assumptions about the prevalence and mechanism of missing 

NIHSS data. 

 We found that patients with documented NIHSS were, in fact, a biased subsample of all 

ischemic stroke patients.  Documentation of NIHSS was driven by a combination of patient-level 

and hospital-level factors.  At the patient- and hospital-level, analyses suggested that patients 

with more severe strokes (i.e. increased NIHSS score) were better documented than patients 

with less severe strokes. These findings were confirmed using the Heckman Selection Model. 

However, in both analyses, we found that the amount of bias was modest.   

 In computer simulations, we quantified the impact that missing data would have on the 

accuracy of hospital ischemic stroke profiling, under different assumptions about how NIHSS 

data was missing.  Any effect of missing NIHSS mechanism was trumped by the impact of 

missingness on sample size. Because patients with missing NIHSS data were dropped from risk-

adjustment models as documentation of NIHSS decreased, the accuracy of hospital risk-

standardized mortality rates (RSMRs) estimated by the hierarchical logistic model deteriorated.  

All of our findings were substantially modified by the hospital ischemic stroke volume, with low 

volume hospital suffering the worst accuracy.  These results are a reflection of the fact that the 

loss of sample size (either through the documentation rate or hospital volume), increases the 

amount of shrinkage in RSMR estimates, which makes any random noise more impactful on 

changes in RSMR.  Overall, our findings raise concerns about the addition of NIHSS data into risk 

adjustment models for hospital-level ischemic stroke outcomes, and illustrate shortcomings in 

current methodologies used to profile hospitals.  It is crucial that data used in risk adjustment 

for hospital profiling be documented with very high levels of completeness. 
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CHAPTER 1:  BACKGROUND AND OBJECTIVES 

Burden of Stroke in the US 

Stroke is the 4th leading cause of death and the leading cause of serious long-term 

disability in the United States.1  Recent estimates indicate that there are 795,000 new and 

recurrent strokes annually1, with direct medical costs of $17.5 billion in 2011.2  There are over 1 

million hospital admissions for stroke in the US every year.  The average inpatient stay for 

stroke patients is about 6 days in the US1,3, with the average hospitalization resulting in an 

estimated $46,518 in charges.3  Consequently, stroke is the 10th most expensive condition billed 

to Medicare and Medicaid and private insurers, and the 5th most expensive condition for 

uninsured patients in the US.4   

CMS and Pay-for-Performance  

In light of this extraordinary clinical and financial burden, the Centers for Medicare & 

Medicaid Services (CMS) has decided to incorporate a 30-day ischemic stroke risk-standardized 

mortality rate (RSMR) and readmission rate (RSRR) into its Hospital Inpatient Quality Reporting 

(Hospital IQR)5 and Hospital Value-Based Purchasing (HVBP)6 programs.  These programs 

illustrate the implementation of pay-for-performance (P4P) models in healthcare.  P4P models 

tie provider reimbursement to reporting and predetermined performance measure standards, 

as opposed to the volume and complexity of services provided in the traditional fee-for-service 

model of reimbursement.7  With health expenditures reaching $2.7 trillion in 20118 and 

expected to grow to almost 20% of the US gross domestic product by 20239, both private and 

public healthcare providers are implementing P4P models in an attempt to improve the 

efficiency of healthcare delivery.10  The overall mission of the CMS P4P programs is to promote 
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high-quality, patient-centered care and accountability through the reporting of predetermined 

performance measures.11   

The CMS Hospital IQR program was mandated by the Medicare Prescription Drug, 

Improvement, and Modernization Act in 2003. The program is designed to incentivize hospitals 

to report on condition-specific quality measures,5  which are publicly available through the 

Hospital Compare website. The Hospital Compare program allows health care consumers to 

find and compare hospitals based on their reported measures.12  Recently, the Affordable Care 

Act (ACA) utilized the Hospital IQR infrastructure to tie the reported performance on quality 

measures to proportional financial reimbursements through the HVBP program.6    Changes in 

reimbursement are dictated by adjustment factors, which are determined by a total 

performance score, which reflecting a combination of clinical processes, patient experience, 

outcomes, and efficiency of care measures.13,14  Hospitals put a percent of their 

reimbursements (currently 1.5%) into a pool, and based on their performance score rank order, 

either earn back or lose a proportion of that amount.     

Additionally, in June 2007, CMS began publicly reporting hospital 30-day RSMRs for 

acute myocardial infarction (AMI) and heart failure (HF), and subsequently added a 30-day 

mortality rate for pneumonia in June 2008.15,16  Hospital 30-day readmission rates (RSRRs) were 

added for the same conditions in June 2009 as a part of the Hospital Readmissions Reduction 

Program (HRRP).17  In 2014, hospitals began to submit 30-day ischemic stroke and chronic 

obstructive pulmonary disorder (COPD) RSMRs and RSRRs, in addition to the AMI, HF, and 

pneumonia measures.16,18  Measures related to clinical processes, patient experience, patient 

safety, and spending per beneficiary are also publicly reported.  
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Hospital Profiling and Risk Adjustment 

The HVBP program, and more generally, the P4P model presupposes that hospitals can 

be accurately compared based on predetermined performance measures.  The process of 

comparing hospitals through rank-ordering performance measures (e.g. process rates, outcome 

rates) is commonly referred to as hospital profiling.19,20  A critical aspect of hospital profiling is 

accounting for the variation in patient characteristics between hospitals – referred to as case-

mix – using risk-adjustment methods.21-24  Because patients are not randomized into hospitals, 

we must use statistical adjustment to account for imbalances in hospital case-mix.25  Thus, the 

purpose of risk-adjustment, or case-mix adjustment, is to control for confounding that exists 

due to differences in the case-mix of patients between hospitals.19  An important aspect in 

building risk adjustment models to accurately rank hospitals is including predictors of the 

outcome that vary between hospitals. If predictors are evenly distributed between hospitals, 

their inclusion in risk adjustment models will have little effect on improving the accuracy of 

hospital rankings.26  The adequacy of risk adjustment is often a focal point of debate; and 

without satisfactory risk-adjustment, the use of hospital profiling becomes problematic. 

All risk adjustment models assume that after accounting for case-mix differences, the 

resulting differences in hospital outcomes (e.g. RSMR and RSRRs) are due to underlying 

differences in quality between hospitals that are under control of the hospital.18  To account for 

case-mix differences CMS currently uses hierarchical logistic regression modeling (HLM) to 

calculate a hospital RSMR or RSRR, adjusting for patient case-mix.19  HLM is a multilevel 

modeling approach that accounts for the clustering of observations by hospital, and can 

estimate hospital-specific deviation in an outcome from the population average based on the 
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estimated hospital random intercept.20,27,28  This method is generally preferred to indirect 

standardization by way of standard logistic regression models, as it has been shown to be less 

sensitive to smaller hospitals that have fewer observed outcome events, avoids regression-to-

the-mean bias, and calculate more accurate predicted probabilities based on hospital-level 

effects.28-31 

The HLM approach estimates a hospital RSMR, which is calculated as the ratio of 

“predicted” deaths to “expected” deaths multiplied by the overall mortality rate.  The 

“predicted” number of deaths is the sum of individual predicted probabilities from the 

multivariable HLM for all patients seen at a particular hospital (which accounts for case-mix), 

conditional on the hospital’s performance on mortality, i.e. the hospital-specific random 

intercept.19,32  The “expected” number of deaths is the sum of individual predicted probabilities 

of death based on case mix, conditional on the average hospital performance, i.e. setting the 

hospital-specific random intercept to zero. 19,32  The “predicted” to “expected” ratio (P/E ratio) 

is therefore the ratio of deaths expected at a given hospital compared to the number of deaths 

expected at the average hospital with the same case-mix.  The P/E ratio is then multiplied by 

the overall mortality rate to get the RSMR.  If the “predicted” number of deaths in a hospital is 

higher than the “expected” number of deaths (i.e. P/E ratio > 1) the resulting RSMR for that 

hospital would be greater than the overall average mortality rate.  Conversely, if there are 

fewer “predicted” deaths than “expected” deaths, the hospital RSMR would be lower than 

average.  

In addition to calculating RSMRs, the HLM approach can be used to identify statistical 

outliers in hospital performance using the estimated hospital random intercept.  The 
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distribution of hospital random intercepts is assumed to be a normal distribution centered on 

zero.  Thus, hospitals can be identified as “outlier” hospitals, or hospitals with extreme 

performance (high or low), based on where the estimated hospital-specific random intercept 

lies on the normal distribution of random intercepts.  Typically, if a hospital random intercept 

95% confidence interval does not include 0 (i.e. the hospital average), it is considered an outlier 

hospital.33,34   This method has been shown to identify outlier hospitals more accurately 

compared to the partitioning of hospitals into categories based on their performance measure, 

such as quintiles of performance, where many hospitals in the lowest or highest quintiles are 

not statistically identified as outliers.35   

Hospital-Specific Mortality as a Performance Measure 

Despite advances in the statistical methodology used to profile hospitals, a contentious 

debate surrounds the use of mortality to compare hospitals.  Supporters of mortality as a 

performance measure often cite that mortality is a single, easily interpreted, and clinically 

meaningful measure to many different stakeholders, especially to patients.36  They also claim 

that mortality may reflect an aggregate measures of quality that may not otherwise be 

identified through other specific quality measures that reflect processes or structural 

measures.22  Furthermore, all-cause mortality is considered a highly reliable, universally 

available, and unambiguous measure across all settings, which makes it an ideal reporting 

measure.22  A recent study by McCrum, et al. showed that 30-day RSMRs for AMI, HF, and 

pneumonia were highly predictive of mortality rates for other medical and surgical conditions 

within a hospital, suggesting that they may be useful surrogates for overall hospital mortality 

performance.37   
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However, another study by Jha, et al. found that performances on AMI, HF, and 

pneumonia mortality rates are not well correlated within a hospital, signifying that overall 

mortality performance may not adequately identify “good” or “bad” performing hospitals.38  

Other significant limitations with using mortality as a comparative measure of hospital 

performance include its inability to discriminate well between high and low performing 

hospitals, the significant impact of coding and risk adjustment methods on resulting measure 

estimates, the ability for interventions to impact hospital mortality, and that it may be 

misleading true quality of a hospital.  A study by Mackenzie, et al. suggests that RSMR estimates 

are not precise enough to sufficiently discriminate “good” from “bad” hospitals when used to 

profiling hospitals.39  Differences in coding and admission practices across hospitals may also 

bias hospital standardized mortality ratios, which may incorrectly attribute differences in 

outcomes between hospitals to underlying differences in quality of care.40  The methods by 

which RSMRs are risk adjusted have also been shown to produce substantially different results, 

even though they were applied to the same population.41-43  A recent review of conceptual and 

methodological challenges of hospital-wide mortality measures concluded that while mortality 

rates may provide useful information, they may also obscure or distort important signals of 

quality that are of interest to various stakeholders.36  Importantly, Hogan, et al. found that 

while mortality is a clinically relevant measure, few hospital deaths are preventable, which 

would limit its value as an endpoint for quality improvement initiatives aimed to improve 

hospital performance.44  A study of mortality following coronary artery bypass graft surgery 

showed that only one third of in-hospital deaths were deemed preventable.45  Nonetheless, 

while debate rages about the appropriateness of using of hospital-wide mortality as a 
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performance measure to compare hospitals, public and private payers are forging ahead and 

incorporating them into their P4P programs.   

Controversy with 30-Day Ischemic Stroke Measures 

The recent addition of the 30-day ischemic stroke RSMR and RSRR to the Hospital IQR 

and HVBP programs has been especially contentious.  Currently, they lack support from the 

National Quality Forum – a non-partisan organization which evaluates proposed performance 

measures – and the American Heart Association/American Stroke Association (AHA/ASA).46-48  

The primary reason cited for opposing the RSMR and RSRR measures is that they are 

inadequately risk-adjusted due to the exclusion of a measure of stroke severity, such as the 

National Institute of Health Stroke Scale (NIHSS).47-49  The NIHSS50 is a commonly used measure 

of stroke severity collected in stroke trials and registries51, which includes functional domains of 

level of consciousness, horizontal eye movement, visual field test, facial palsy, arm motor 

function, leg motor function, limb ataxia, sensory perception, language impairment, and speech 

impairment.50 (Table 1.1)  In a Presidential Advisory statement from the AHA/ASA, Fonarow et 

al. state that the “outcome measures as currently constructed may be prone to 

mischaracterizing the quality of stroke care being delivered by hospitals and may ultimately 

harm ischemic stroke patients.”48 
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Table 1.1.  Domains and score/descriptions for National Institute of Health Stroke Scale, final 
score ranges from 0-42. 
Domain Score/Description 
1a. Level of Consciousness (Alert, drowsy, etc.) 0 = Alert 

1 = Drowsy 
2 = Stuporous 
3 = Coma 

1b. LOC Questions (Month, age) 0 = Answers both correctly 
1 = Answers one correctly 
2 = Incorrect 

1c. LOC Commands (Open/close eyes, make fist let go) 0 = Obeys both correctly 
1 = Obeys one correctly 
2 = Incorrect 

2.  Best Gaze (Eyes Open – Patient follows examiners 
finger or face) 

0 = Normal 
1 = Partial gaze palsy 
2 = Forced deviation 

3. Visual Fields (Introduce visual stimulus/threat to 
patients visual field quadrants 

0 = No visual loss 
1 = Partial hemianopia 
2 = Complete hemianopia 
3 = Bilateral hemianopia (blind) 

4. Facial Paresis (Show teeth, raise eyebrows and 
squeeze eyes shut)  

0 = Normal 
1 = Minor 
2 = Partial 
3 = Complete 

5a.  
5b. 

Motor Arm - Left 
Motor Arm – Right 
(Elevate arm to 90⁰ with patient supine) 

0 = No drift 
1 = Drift 
2 = Can’t resist gravity 
3 = No effort against gravity 
4 = No movement 
X = Untestable (Joint fusion or limb amputation) 

6a. 
6b.  

Motor Leg – Left 
Motor Leg – Right 
(Elevate leg to 30⁰ with patient supine) 

0 = No drift 
1 = Drift 
2 = Can’t resist gravity 
3 = No effort against gravity 
4 = No movement 
X = Untestable (Joint fusion or limb amputation) 

7. Limb Ataxia (Finger-nose, heel down shin) 0 = No ataxia 
1 = Present in one limb 
2 = Present in two limbs 

8.  Sensory (Pin prick to face, arm, trunk and leg – 
compare side to side) 

0 = Normal 
1 = Partial loss 
2 = Severe loss 

9.  Best Language (Name item, describe a picture, and 
read sentences) 

0 = No aphasia 
1 = Mild to moderate aphasia 
2 = Severe aphasia 
3 = Mute 

10. Dysarthria (Evaluate speech clarity by repeating 
listed words) 

0 = Normal articulation 
1 = Mild to moderate alluring of words 
2 = Near to unintelligible or worse 
X = Intubated or other physical barrier 

11. Extinction and Inattention (Use information from 
prior testing to identify neglect or double 
simultaneous stimuli testing) 

0 = No neglect 
1 = Partial neglect 
2 = Complete neglect 
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As is done with current 30-day RSMRs for AMI, HF, and pneumonia, CMS administrative 

data are used to generate RSMR and RSMRR used to determine hospital-level 

performance.23,24,35,52  Absent from CMS administrative claims data is a measure of stroke 

severity, such as the NIHSS.  Studies have shown that measures of stroke severity, such as the 

NIHSS, significantly improve prediction of patient-level stroke outcomes and are widely 

believed to be essential for risk adjustment at the hospital-level.53-56  A systematic review of 

case-mix adjustment models for post-stroke mortality and functionality found that stroke 

severity is a commonly used and important variable in individual-level risk-adjustment.57   

However, it is unclear if stroke severity varies substantially across hospitals enough to make it a 

significant confounder.  A study of Veterans Affairs  (VA) hospitals showed that the addition of 

NIHSS into risk adjustment had minimal improvement on model fit, most likely due to little 

variation in NIHSS between VA hospitals.58  There are little data on the true variation in stroke 

severity across all US hospitals. 

Due to its importance in individual-level prediction models, there is concern that 

excluding stroke severity from risk adjustment will lead to incorrect rankings of hospital 

performance, particularly in stroke referral centers that typically see a more severe spectrum of 

patients.26,48,59   In a similar situation, a study conducted by Friese et al. that compared 

outcomes in surgical cancer patients, the severity of cancer varied significantly between 

hospitals, and resulting risk-adjusted hospital mortality rates were lower among hospitals with 

less severe patients compared to hospitals with more advanced disease patients when cancer 

severity was not included in the risk adjustment model.60  Furthermore, studies of ICU 

performance have shown that referral centers – which frequently accept more severe patients 
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– typically have higher RSMRs compared to referring centers.61,62  Therefore, it is reasonable to 

believe that not accounting for stroke severity in risk adjustment may similarly bias hospital 

ischemic stroke RSMRs, assuming that there is significant variation in stroke severity between 

hospitals.   

Current Limitations to Including NIHSS in Risk Adjustment Models 

To date, there has been conflicting evidence supporting the use of NIHSS in risk 

adjustment for hospital profiling.  One study conducted by Fonarow, et al. found that among 

hospitals profiled into the top or bottom 20% according to their RSMRs, 26% were ranked 

differently once NIHSS was included in risk adjustment.53  However, this was in a dataset with 

>50% missing NIHSS data.  As previously mentioned, data from VA hospitals showed little 

variation in NIHSS between hospitals, and hospital RSMRs calculated with and without NIHSS 

were nearly identical.58  It is yet unclear if there is sufficient variation in stroke severity between 

hospitals – a necessary condition for risk-adjustment variables26 – especially among hospitals 

that are assumed to treat a more severe set of patients, such as tertiary referral centers and 

certified primary stroke centers.63   

 A more practical limitation to including stroke severity in risk adjustment cannot be 

ignored.  Unlike CMS administrative claims data, clinical registries often do collect measures of 

stroke severity.  But, despite recent improvements in documentation, registries still struggle to 

achieve complete reporting of stroke severity.53,54,56  Given that hospital-specific measures are 

calculated from risk-adjustment models using only cases with complete data on risk adjustment 

variables, i.e. a complete case analysis, resulting measures can be significantly biased when a 

biased subset of patients are used.64,65  One study suggests that assessments of mortality using 
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a complete case analysis of subjects with observed NIHSS may be subject to bias in hospitals 

with very low documentation of NIHSS.66  Unless complete reporting of NIHSS can be achieved 

through CMS administrative data, hospital-wide measures calculated from incomplete data may 

be biased.     

Bias as a Result of Missing Data   

The extent of bias from a complete case analysis of incomplete data depends on the 

mechanism by which data are missing.  Missing data are typically classified as missing 

completely at random (MCAR), missing at random (MAR), or missing not at random (MNAR).67  

If data are MCAR, the missing data are unassociated with any exposure or outcome 

information.  In other words, missing data are the result of a purely random incident, and the 

observed data are a random sample of the entire data.  In theory, a complete case analysis 

under MCAR should result only in a loss of statistical efficiency (because of the smaller sample 

size), but not produce biased estimates.68  If data are MAR, missing data are associated with 

fully observed variables.  For example, if stroke severity documentation is better in males 

compared to females (all observed), data would be considered MAR.  In addition to a loss in 

statistical efficiency, complete case analysis under MAR may result in biased estimates if the 

reason for missing data (gender) is not accounted for.68,69  Methods such as maximum 

likelihood estimation and multiple imputation can be employed to combat biased estimates 

and a loss in statistical efficiency when data are MCAR or MAR.68,69   

The most problematic missing data scenario is when data are MNAR, which is to say that 

missingness is related to either unobserved characteristics or the value of the missing variable 

itself.68  For example, if stroke severity documentation was better in patients with more severe 
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strokes compared to less severe strokes, the data would be MNAR.  Again, bias and loss of 

statistical efficiency are attributed to MNAR data.  However, the methods employed when data 

are MCAR or MAR cannot correct for all the bias resulting from MNAR data, because you 

cannot directly estimate a pattern based on missing data.68,69   

Missing data are common in clinical research.68,70  They are especially common in 

administrative datasets such as billing data, where certain variables may be completely 

unavailable, or data from electronic health records, where variables are often incompletely 

documented.71  Research has shown that a complete case analysis when covariate data are 

missing can lead to biased estimates of patient-level outcomes.72-74  How a complete case 

analysis in the presence of missing data impacts hospital-level estimates is less obvious.  One 

simulation study comparing hospital trauma-related mortality measures showed that a 

complete case analysis when risk-adjustment variable data are MNAR led to considerable 

changes in hospital-level mortality profiling.64  Using a complete case analysis to profile 

hospitals when missing data are present has also been shown to underestimate the proportion 

of poorly performing providers.75  Another simulation study examining the impact of missing 

data on profiling in P4P outcomes showed that between 11 to 21 percent of misclassified 

hospitals were attributable to missing data in risk adjustment.65   

An analogous problem to excluding patients in hospital-level measures based on 

incomplete documentation is variation in administrative data coding.   While there are already 

well documented limitations to using administrative data in hospital profiling71,76-80, differences 

in coding of data can lead to differential exclusion of patients between hospitals.  There are a 

number of examples that illustrate how variations in coding between hospitals impact hospital-
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level measures.  An analysis of data in the United Kingdom showed that differential coding of 

comorbidities between hospitals case-mix adjustment may create biased hospital RSMRs.40  

Another recent study demonstrated that excluding patients from pneumonia RSMR calculations 

due to variation in coding for pneumonia misclassified 28% of hospitals.81  Austin, et al. 

suggested that undercoding of significant comorbidities or severity indicators, which makes 

patients appear healthier than they actually are, can potentially misclassify hospitals.82  Using a 

“present-on-admission” indicator to distinguish between existing comorbidities and 

complications related to quality of care when risk-adjusting for patient health status showed 

that a quarter of hospital AMI mortality rankings were misclassified by 10% or more.83   

In sum, there is a multitude of research showing that excluding patients from hospital-

level measures, either due to missing clinical data or administrative coding variation, can lead 

to inaccurate hospital profiling.  However, it is unclear how different mechanisms of missing 

data, and the frequency at which missing data occur, can impact the accuracy of hospital 

profiling.  To our knowledge, this is the first study to assess how different mechanisms and 

frequencies of missing NIHSS data impact the accuracy of hospital profiling of stroke mortality 

measures.   

Statement of Problem, Aims, and Outline 

Currently, administrative data used to profile hospitals on CMS 30-day ischemic stroke 

RSMRs do not collect measures of stroke severity, such as NIHSS.  When NIHSS is collected in 

clinical data, such as stroke registries, it is frequently missing and little is known about what 

predicts NIHSS documentation.  If NIHSS is to be included in risk-adjustment models, cases with 

missing NIHSS will be excluded in the calculation of the hospital 30-day RSMR for ischemic 
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stroke.  The resulting RSMR may be biased, depending on the mechanism and frequency of 

missing NIHSS data.  Ultimately, biased RSMRs could lead to inaccurate hospital profiling, which 

may unfairly distribute financial incentives in P4P reimbursement models.  The aims of this 

study are as follows: 

1) To identify significant patterns or predictors of NIHSS documentation at the patient-level 

and hospital-level in an existing stroke registry.  

2) To test for the presence and magnitude of selection bias in patients with documented 

NIHSS using the Heckman Selection Model. 

3) To estimate the impact of the prevalence and mechanism of missing NIHSS data on the 

accuracy of hospital profiling of 30-day ischemic stroke RSMRs using computer simulation 

models. 

The subsequent chapters of this dissertation will be organized by answering questions for each 

of these aims. 

 What are the overall patterns or predictors of patient-level NIHSS documentation at the 

patient- and hospital-level?  Chapter 2 will test the hypothesis that there are significant patient 

and hospital predictors of NIHSS documentation.  Using data from the Michigan Stroke Registry, 

we will provide insight into patient or hospital characteristics that explain the documentation of 

NIHSS data in stroke patients.  Analyses of NIHSS documentation to identify patterns and 

predictors will help identify the mechanism and pattern of missing NIHSS data. 

 Is the subset of patients with NIHSS documented a biased sample, and, if so, to what 

extent?  Chapter 3 will assess the presence of selection bias in the documentation of NIHSS 

using the Heckman Selection Method.  The Heckman Selection Method will be used as a 
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diagnostic test for the presence of selection bias in patients with NIHSS documented, i.e., 

patients with observed NIHSS data are systematically different from patients with unobserved 

NIHSS.  While the previous aim helps to identify significant patterns and predictors of NIHSS 

documentation, this aim will provide statistical evidence for selection bias in NIHSS 

documentation based on patient stroke severity.  The Heckman model also indicates the 

magnitude and direction of selection bias in patients with undocumented NIHSS data. 

Furthermore, if there is significant selection bias, it would suggest that missing NIHSS data are 

MNAR, or non-ignorable.  Jointly, the first and second aims will provide a clearer picture of the 

mechanism and pattern of NIHSS documentation, which will motivate the use of different 

missing data mechanisms in the subsequent computer simulations used in Aim 3.  

 How does the presence of missing data impact the accuracy of hospital performance 

profiling?  What role does the prevalence and mechanism of missing NIHSS data have on the 

accuracy of hospital profiling?  How does hospital case volume modify this relationship?  

Chapter 4 will assess the hypothesis that the accuracy of hospital profiling will be affected in 

datasets with missing NIHSS compared to fully documented data.  This aim will illustrate how 

sensitive hospital profiling is when RSMRs are calculated in the face of missing data.  

Furthermore, it will illustrate which mechanisms and patterns of NIHSS documentation result in 

the most inaccurate hospital rankings at various frequencies of NIHSS documentation.  Finally, 

we will assess how missing data impact profiling at different hospital ischemic stroke case 

volumes. 

 These analyses will demonstrate the accuracy of hospital profiling based on risk-

adjusted mortality models when an important risk adjustment variable is frequently 
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undocumented.  Furthermore, it will illustrate what role the mechanism of missing data plays in 

profiling accuracy.  Finally, it will illustrate the importance of hospital volume as an vital 

modifier of the relationship between missing data and profiling accuracy.  As Voltaire is 

famously quoted, “It is better to risk saving a guilty person than to condemn an innocent one.”  

We seek to quantify just how many guilty hospitals are saved, and more importantly, how many 

innocent hospitals will be condemned. 
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CHAPTER 2:  PATTERNS AND PREDICTORS OF NIHSS DOCUMENTATION 

Aim 1 – Background 

The National Institutes of Health Stroke Scale (NIHSS)50 is a commonly used measure of 

stroke severity collected in stroke trials and registries.51  NIHSS has been shown to be one of the 

strongest predictors of outcomes in ischemic stroke patients.54,56,84  Despite its clinical 

importance, complete documentation of NIHSS in clinical registries has yet to be achieved.  

While NIHSS documentation has improved recently, documentation was below 50% in the first 

5 years of the Get With the Guidelines (GWTG) – Stroke national registry.54  Furthermore, 

measures of stroke severity are currently absent from administrative data.  

The Centers for Medicare & Medicaid Services (CMS) will soon be adding 30-day 

measures of hospital-level ischemic stroke mortality and readmissions to its pay-for-

performance incentive programs.5,6  Because of its importance as a clinical prognostic variable 

at the patient-level, it is believed that risk adjustment models used to calculate hospital-level 

performance metrics must include a measure of stroke severity,48,59 although evidence to 

support this claim has been mixed.53,58   Given that complete documentation of NIHSS has not 

been achieved, excluding patients with undocumented NIHSS from risk adjustment models may 

impact the validity of hospital-level performance measures.  Furthermore, any bias in hospital-

level measures may be aggravated if NIHSS data are missing not at random (MNAR).67,68  

Because variation in NIHSS documentation has the potential to bias hospital-level 

ischemic stroke performance measures, the purpose of this study is to describe trends in NIHSS 

documentation in an existing multi-center clinical stroke registry, and identify any significant 

patient- and hospital-level factors associated with NIHSS documentation.  Also, we will attempt 
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to determine the extent of bias in NIHSS scores by describing the relationship between NIHSS 

documentation and NIHSS scores at the hospital-level.  In essence, we will try to determine the 

mechanism by which NIHSS is missing.  We hypothesize that patients with documented NIHSS 

are not simply a random sample of all patients, and that missing NIHSS data may be MNAR. 

Aim 1 – Methods 

Data and Participants 

 The Michigan Stroke Registry (MSR) is a statewide clinical registry which originated as a 

prototype for the Paul Coverdell National Acute Stroke Registry, and has been described 

elsewhere.85  Currently, the MSR is used to provide a data driven approach to improve the 

quality of stroke care in the State of Michigan.86,87  The MSR collects information on many 

different patient level characteristics including demographics, emergency medical services 

(EMS) and hospital admission information, and clinical information such as stroke severity, 

ambulatory status, and medical history.   In addition, we obtained hospital characteristics from 

the American Hospital Association annual survey88 and Paul Coverdell National Acute Stroke 

Registry hospital inventory. 

 We used MSR data from 2009 to 2012 for this analysis.  To increase the generalizability 

of our findings to a CMS ischemic stroke population, we applied a number of exclusions to the 

MSR data.  Ischemic stroke patients were included if they were aged 65 years or older and 

excluded if they belonged to a hospital with <25 annual cases of ischemic stroke, which is the 

minimum number of cases for a hospital risk-standardized mortality rate (RSMR) to be 

calculated, as defined by CMS.18  We also excluded patients if the stroke occurred in a hospital 

inpatient setting.  As this study was a secondary analysis of deidentified registry data, it was 
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considered exempt from Institutional Review Board review.  All analyses were conducted with 

the use of SAS version 9.3 (SAS Institute Inc, Cary, NC). 

Predictor Variables 

 We examined a number of patient-level predictors of NIHSS documentation.  

Demographic characteristics included:  age, gender (male vs. female), race (white, black, other, 

not documented), and insurance status (Medicare, Medicaid, private, no insurance).  We also 

assessed emergency medical services (EMS) and hospital admission information, such as: place 

stroke occurred (at home vs. in a healthcare setting), arrival mode (EMS, private transportation, 

transferred), arrival to the ER (yes vs. no), symptoms resolved prior to arrival (yes vs. no), and 

tPA administration (yes vs. no). Finally, we also examined several clinical variables in this 

analysis, including:  able to ambulate pre-stroke, diabetes mellitus, congestive heart failure, 

peripheral artery disease, hypertension, current smoker, and history of prior stroke, transient 

ischemic attack/vertebrobasilar insufficiency (TIA/VBI), or myocardial infarction/coronary artery 

disease (MI/CAD). 

 Hospital characteristics included bed size, annual stroke volume (<200, 200-600, 600+), 

urban vs. rural location, teaching status, presence of an acute stroke team, and Joint 

Commission primary stroke center status.63 

Outcome Variable 

 The NIHSS is a composite measurement of eleven symptoms measurements, including 

level of consciousness, horizontal eye movement, visual field test, facial palsy, arm motor 

function, leg motor function, limb ataxia, sensory perception, language impairment, and speech 

impairment.50 (Table 1.1)  The resulting score is an integer which ranges from 0 to 42, with 0 
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representing no stroke symptoms and 42 representing the most severe form of stroke.  In 

patient-level analyses, we used a binary NIHSS documentation indicator (yes vs. no) as the 

outcome variable.  In hospital-level analyses, we used the patient- and hospital-level average 

NIHSS score as the outcome variable.  Hospital-level NIHSS documentation rates were 

calculated and categorized by tertiles of NIHSS documentation (<70%, 70-85%, and ≥85%) to 

represent low, moderate, and high documenting hospitals.  

Statistical Analysis 

 First, a patient-level descriptive analysis of the data was conducted, which assessed the 

distribution of demographic, EMS and hospital admission information, and clinical variables, as 

well as patient-level hospital characteristics in the sample, stratified by NIHSS documentation 

(yes vs. no).  To identify patient-level factors associated with documentation, bivariate 

associations were assessed using chi-square tests and ANOVA for categorical and continuous 

variables, respectively.  We also assessed differences in hospital characteristics, mean NIHSS 

score, mortality rates and average length of stay (in days) between tertiles of NIHSS 

documentation rate.  Fisher’s Exact Test and ANOVA were used to test for any significant 

differences between tertile for categorical and continuous variables, respectively.  We then 

tested for significant changes in hospital-level documentation rates over time with ANOVA, 

which were then illustrated using box plots for each year (2009-2012).   

Significant patient- and hospital-level predictors of NIHSS documentation at the patient-

level were assessed using unadjusted and adjusted hierarchical logistic regression model, which 

accounting for clustering of data within hospitals.  The modeling procedure was motivated by 

the multilevel modeling approach by Singer.89  First, a model with a hospital random intercept 
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and no fixed effects was run to assess the within-hospital variation in NIHSS documentation.  

The hospital-level variance (𝜎𝑗 ) was used to calculate the intraclass correlation coefficient (ICC) 

in the model using the equation, 𝐼𝐶𝐶 =  𝜎𝑗   �𝜎𝑗  + 𝜋2

3
�⁄ .  Then, we specified a fully saturated 

model, which included all patient and hospital-level variables with p<0.20 in the previous 

bivariate analysis as fixed effects, as well as a hospital random intercept.  Using a backward 

selection approach with stepwise deletion, we eliminated all non-significant (p>0.05) variables 

from the model.  The final model contained significant patient and hospital fixed effects, and a 

hospital random intercept.  We tested for the statistical significance of 𝜎𝑗 using a log-likelihood 

test.  A priori hospital-level fixed effects terms, including primary stroke center status and 

stroke volume, were retained in the final model regardless of their statistical significance. 

 To determine if NIHSS documentation is related to the NIHSS score, i.e. undocumented 

NIHSS is MNAR, we performed two analyses.  First, Pearson and Spearman correlation 

coefficients were calculated to assess relationships between hospital-level NIHSS 

documentation and hospital-level NIHSS score, for each year (2009-2012).  A significant 

correlation indicates that the level of documentation is associated with the observed NIHSS 

score, suggesting data may be MNAR.  Second, we tested for significant differences in the 

patient-level distribution of NIHSS scores stratified by tertile of hospital-level NIHSS 

documentation rate using ANOVA and a Kruskal-Wallis test.  Differences in patient-level NIHSS 

score distributions by tertile of hospital documentation rate were illustrated by overlaying 

smoothed frequency distributions (kernel density curves) for patients within each tertile. A shift 

in the distribution in lower levels of hospital-level documentation may also suggest data may be 

MNAR. 
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Aim 1 – Results 

 Between 2009 and 2012, 18,280 ischemic strokes admitted to 39 hospitals were 

abstracted from the Michigan Stroke Registry.  A total of 6,572 cases (36.0%) were excluded 

because they were under the age of 65.  We also excluded data from 16 hospitals (n=991 cases, 

5.4%) because their annual case load was below 25 cases.18  Therefore, the final sample 

contained 10,717 cases from 23 hospitals, of which 7,956 cases (74.2%) had NIHSS 

documented. (Table 2.1)  The mean (standard deviation=SD) and median (interquartile range= 

IQR) for patients with documented NIHSS was 7.3 (SD=7.8) and 4 (IQR=2-11) respectively.   

Table 2.1 shows the patient demographics, EMS and hospital admission information, 

and clinical information of the sample, stratified by NIHSS documentation status.  Patients with 

NIHSS documented were more likely to be white compared to patients who did not have NIHSS 

documented (74.1% vs. 68.3%). Patients with NIHSS documented were less likely to have 

Medicaid (4.8% vs. 6.6%) and more likely to be privately insured (45.5% vs. 43.2%) compared to 

those with NIHSS undocumented.  Patients who had NIHSS documented also tended to be at 

home at the time of onset (90.6% vs. 86.5%, p<0.0001) and were more likely to arrive to the ER 

(89.1% vs. 85.9%, p<0.0001). (Table 2.1) There was a marked and significantly lower percent of 

patients whose symptoms had resolved by hospital arrival in those with NIHSS documented 

compared to undocumented (3.6% vs. 15.6%, p<0.0001).  Another striking difference was in tPA 

administration rates between those with and without NIHSS documented (9.3% vs. 1.0%, 

p<0.0001). (Table 2.1)  In regard to patient medical history, patients with NIHSS documented 

were slightly more likely to be ambulatory pre-stroke (96.0% vs. 92.6%, p<0.0001), had higher 

rates of atrial fibrillation (23.7% vs. 19.9%, p<0.0001) and dyslipidemia (47.3% vs. 40.4%, 
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p<0.0001), and a lower rate of prior stroke (26.8% vs. 30.5%, p=0.0002). (Table 2.1)  There were 

no significant differences in NIHSS documentation by age, gender, mode of arrival, history of 

diabetes mellitus, prior TIA/VBI, MI/CAD, congestive heart failure, peripheral artery disease, 

hypertension, or smoking status. 

 There were a number of patient-level hospital characteristics which were associated 

with NIHSS documentation. (Table 2.1)  Patients with NIHSS documented tended to be treated 

at hospitals with slightly fewer beds (p<0.0001) and fewer stroke discharges (p<0.0001). (Table 

2.1)  Modest differences in the proportion of patients with NIHSS documented were observed 

between hospitals which were rural vs. urban hospitals, teaching vs. non-teaching hospitals, 

possessed an acute stroke team, and primary stroke center status as certified by the Joint 

Commission. (Table 2.1) 

Table 2.1.  Patient demographics, EMS and admission information, medical history 
and discharge status in Ischemic Stroke patients 65 years of age or older, in the overall 
sample (n=10,717) and stratified by NIHSS Documentation status. (2009-2012) 

Variable 
NIHSS Documentation Status 

p-value 
Documented  Undocumented  

 n (%) n (%)  
Overall Sample 7,957 (74.3) 2,760 (25.8)  
Demographics    

Age, mean (SD) 78.6 (8.2) 78.8 (8.4) 0.2975 
Female  4,345 (54.6) 1,512 (54.8) 0.8773 
Race  - - <0.0001 

White 5,897 (74.1) 1,884 (68.3)  
Black 1,295 (16.3) 646 (23.4)  
Other 93 (1.2) 23 (0.8)  
Not Documented 672 (8.5) 207 (7.5)  

Insurance status  - - 0.0010 
Medicare 3,884 (48.9) 1,364 (49.6)  
Medicaid 378 (4.8) 181 (6.6)  
Private 3,619 (43.2) 1,189 (43.2)  
None 61 (0.8) 17 (0.6)  

EMS and Admission    
Place stroke occurred  - - <0.0001 
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Table 2.1. (cont’d)  Patient demographics, EMS and admission information, medical 
history and discharge status in Ischemic Stroke patients 65 years of age or older, in 
the overall sample (n=10,717) and stratified by NIHSS Documentation status. (2009-
2012) 

Variable 
NIHSS Documentation Status 

p-value 
Documented  Undocumented  

At home 7,208 (90.6) 2,386 (86.5)  
In a healthcare setting 755 (9.4) 375 (13.4)  

Arrival Mode  - - 0.0829 
EMS 3,892 (49.9) 1,310 (48.1)  
Private 2,673 (34.3) 996 (36.7)  
Transfer 1,230 (15.8) 411 (15.1)  

Arrived in the ER  7,092 (89.1) 2,372 (85.9) <0.0001 
Symptoms resolved 279 (3.6) 414 (15.6) <0.0001 
tPA Administration 743 (9.3) 27 (1.0) <0.0001 

Medical History    
Ambulatory Pre-Stroke 7,957 (96.0) 2,368 (92.6) <0.0001 
Atrial Fibrillation 1,882 (23.7) 548 (19.9) <0.0001 
Diabetes Mellitus 2,612 (32.8) 947 (34.3) 0.1534 
Prior Stroke 2,130 (26.8) 842 (30.5) 0.0002 
Prior TIA/VBI 904 (11.4) 306 (11.0) 0.6198 
MI or CAD 2,704 (34.0) 929 (33.7) 0.7572 
CHF 1,050 (13.2) 395 (14.3) 0.1392 
Peripheral Artery Disease 504 (6.3) 180 (6.5) 0.7281 
Dyslipidemia 3,766 (47.3) 1,114 (40.4) <0.0001 
Hypertension  6,442 (81.1) 2,244 (81.3) 0.6910 
Smoking 882 (11.1) 342 (12.4) 0.0629 

Hospital Characteristics    
Bed size, Mean (SD) 505.1 (245.1) 578.6 (274.3) <0.0001 
Acute stroke discharges - - <0.0001 

<200  758 (9.5) 211 (7.6)  
200-600 3,339 (42.0) 801 (29.0)  
600+ 3,860 (48.5) 1,748 (63.3)  
Mean (SD) 569.3 (308.3) 671.9 (373.7) <0.0001 

Rural Hospital 1,223 (15.9) 290 (11.5) <0.0001 
Teaching Hospital 7,347 (92.3) 2,605 (94.8) 0.0003 
Acute stroke team 6,713 (84.4) 2,426 (87.9) <0.0001 
Joint Commission Primary 
Stroke Center 6,257 (78.6) 2,092 (75.8) 0.0020 

Note:  Categories with small n were excluded from the table, so cells may not add up to 100%. 
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Hospital-level characteristics stratified by tertile of hospital NIHSS documentation rate 

(<70%, 70-85%, ≥85%) can be seen in Table 2.2.  Median documentation rates in low, 

moderate, and high documenting hospitals was 52.7%, 74.8%, and 89.1%, respectively. (Table 

2.2)  Mean NIHSS scores were significantly different (p=0.0122) between hospitals with low 

(mean=8.8), moderate (mean=7.1) and high (mean=6.7) documenting hospitals.  (Table 2.2)  

There were no statistically significant differences between any of the hospital characteristics, 

tPA administration rates, mortality rates, or average length of stay between tertile of hospital 

documentation. (Table 2.2) Although non-significant, low and moderate documenting hospitals 

had greater annual stroke volumes compared to high documenting hospitals (p=0.0703).  

Table 2.2.  Michigan Stroke Registry hospital-level characteristics in the sample of 23 
hospitals, stratified by tertile of hospital NIHSS documentation rate. 

Variable 
Hospital NIHSS Documentation Rate 

p-value 1st Tertile: <70% 
(n=7) 

2nd Tertile: 70-85%  
(n=8) 

3rd Tertile: ≥85%  
(n=8) 

Num. of Patients 2,663 (24.8) 4,749 (44.3) 3,305 (30.8) - 
Characteristics, n (%) n (%) n (%) n (%)  

Bed Size* 443 (88-675) 407 (311-546) 390 (211-407.5) 0.5092 
Annual Stroke Discharges    0.0703 

<200 2 (28.6) 1 (12.5) 2 (25.0)  
200-600 2 (28.6) 2 (25.0) 6 (75.0)  
600+ 3 (42.9) 5 (62.5) 0 (0.0)  

Rural Hospital 2 (28.6) 1 (12.5) 2 (25.0) 0.8369 
Teaching Hospital 5 (71.4) 8 (100.0) 7 (87.5) 0.2727 
Acute Stroke Team 6 (85.7) 6 (75.0) 7 (87.5) 1.0000 
Primary Stroke Center 4 (57.1) 7 (87.5) 5 (62.5) 0.5299 

tPA Administration Rate (%)† 8.4 (4.9) 6.5 (3.6) 6.3 (3.6) 0.5460 
Mortality Rate† 6.2 (3.9) 4.6 (1.3) 4.4 (1.4) 0.3029 
Avg. Length of Stay (in days)† 5.9 (1.7) 4.8 (0.8) 4.5 (0.8) 0.1854 
Hospital-Level NIHSS      

NIHSS Score† 8.8 (1.6) 7.1 (1.2) 6.7 (1.1) 0.0122 
NIHSS Score* 8.7 (7.0-9.7) 7.6 (5.8-8.0) 6.9 (5.8-7.4) - 
Documentation Rate† 52.7 (14.5) 74.8 (2.7) 89.1 (2.7) <0.0001 

* Median (IQR), † Mean (SD) 
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As illustrated in Figure 2.1, hospital-level NIHSS documentation rates have significantly 

improved over time (p=0.0072), from a median of 66.8% (IQR: 52.4-76.3%) in 2009 to 86.8% 

(IQR: 71.7-92.8%) in 2012. 

 

Figure 2.1.  Hospital-level NIHSS documentation rates over time. 

Table 2.3 presents the results of the final hierarchical logistic regression model fitted to 

predict patient-level NIHSS documentation (yes vs. no) based on patient- and hospital-level 

characteristics.  After adjustment, patient-level predictors of NIHSS documentation included the 

stroke occurring at home (OR=1.22; 95% CI: 1.01, 1.48), mode of arrival (hospital transfer vs. 

private transport OR=1.29; 95% CI: 1.05, 1.58), ER presentation (OR=1.69; 95% CI: 1.36, 2.11), 

and if the patient was administered tPA (OR=11.46; 95% CI: 7.31, 17.99).  NIHSS documentation 

was also predicted by pre-stroke ambulatory status (OR=1.75; 95% CI: 1.37, 2.23) and a medical 

history of atrial fibrillation (OR=1.17; 95% CI: 1.02, 1.34) and dyslipidemia (OR=1.15; 95% CI: 

1.02, 1.28).  Patients with a prior stroke (OR=0.86; 95% CI: 0.76, 0.97) and patients whose 

symptoms resolved by ER arrival (OR=0.13; 95% CI: 0.11, 0.16) were also at significantly 
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reduced odds of NIHSS documentation.  Although non-significant, large hospitals had a reduced 

odds of documentation, and Joint Commission primary stroke centers had an increased odds of 

documentation.  We estimated a statistically significant hospital-level variance as 𝜎𝑗 = 1.0930 

(p<0.0001), and calculated the 𝐼𝐶𝐶 =  1.0930  �1.0930 + 𝜋2

3
�� = 0.249 or 24.9%, which 

suggests that roughly a quarter of the unexplained variation in NIHSS documentation can be 

attributed to the hospital-level. 

Table 2.3.  Unadjusted and adjusted odds ratios (and 95% CIs) for patient and hospital 
characteristics predicting NIHSS documentation (yes vs. no) and estimated hospital-level 
variation and intraclass correlation (n=10,717). 

Variable Unadjusted OR  
(95% CI) p-value Adjusted OR  

(95% CI) p-value 

Place Stroke Occurred     
Home 1.51 (1.32, 1.72) <0.0001 1.22 (1.01, 1.48) 0.0377 
Healthcare Setting Ref - Ref - 

Arrival Mode - 0.0830 - 0.0520 
EMS 1.11 (1.01, 1.22) 0.0379 1.08 (0.95, 1.21) 0.2302 
Transfer 1.12 (0.98, 1.27) 0.1091 1.29 (1.05, 1.59) 0.0179 
Private Ref - Ref - 

Received in ER 1.34 (1.18, 1.53) <0.0001 1.69 (1.36, 2.11) <0.0001 
Symptoms Resolved 0.20 (0.17, 0.23) <0.0001 0.13 (0.11, 0.16) <0.0001 
tPA Administered 10.43 (7.08, 15.34) <0.0001 11.46 (7.31, 17.99)  <0.0001 
Ambulatory Pre-Stroke 1.88 (1.56, 2.27) <0.0001 1.75 (1.37, 2.23) <0.0001 
History of Atrial Fibrillation 1.25 (1.12, 1.39) <0.0001 1.17 (1.02, 1.34) 0.0296 
History of Dyslipidemia 1.33 (1.22, 1.45) <0.0001 1.15 (1.02, 1.28) 0.0198 
History of Prior Stroke 0.83 (0.76, 0.92) 0.0002 0.86 (0.76, 0.97) 0.0151 
Year  - <0.0001 - <0.0001 

2012 2.70 (2.38, 3.09) <0.0001 3.03 (2.59, 3.55) <0.0001 
2011 1.83 (1.63, 2.06) <0.0001 1.88 (1.63, 2.17) <0.0001 
2010 1.49 (1.33, 1.68) <0.0001 1.39 (1.21, 1.61) <0.0001 
2009 Ref - Ref - 

Primary Stroke Center 1.18 (1.06, 1.32) 0.0022 1.86 (0.65, 5.30) 0.2320 
Stroke Discharges    0.4219 

600+ 0.62 (0.52, 0.72) <0.0001 0.53 (0.15, 1.95) 0.3224 
200-600 1.16 (0.98, 1.38) 0.0881 1.03 (0.30, 3.47) 0.9660 
<200 Ref - Ref - 

Estimated hospital-level 
variance, 𝜎𝑗  = 1.0930 1.09 (0.37, 1.81) <0.0001 𝐼𝐶𝐶 =  1.0930  �1.0930 +

𝜋2

3 ��  

𝐼𝐶𝐶 =  24.9% 
 ICC = Intraclass correlation 
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Figure 2.2 plotted the hospital-level documentation rate against the mean hospital-level 

NIHSS score for all hospitals (n=23) in each year (2009-2012).  The significant, negative Pearson 

(r = -0.44, p<0.0001) and Spearman (r = -0.39, p<0.0001) correlation coefficients indicate 

moderate correlation between hospital-level NIHSS documentation and NIHSS score.  This 

suggests that at the hospital-level, mean observed NIHSS scores were higher amongst hospitals 

with lower documentation of NIHSS.  

 

Figure 2.2.  Scatter plot of aggregated mean hospital NIHSS score vs. hospital NIHSS 

documentation rate with fitted regression line (95% CI) in each year (2009-2012). 

Figure 2.3 overlays the patient-level distribution of NIHSS scores stratified by the tertile 

of hospital documentation (<70%, 70-85%, ≥85%).  Both ANOVA (F=14.4, df=2, p<0.0001) and 

Kruskal-Wallis tests (chi-square=64.5, df=2, p<0.0001) found statistically significant differences 

in NIHSS score distributions between tertiles of hospital-level documentation rate.  The kernel 
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density curves confirm our findings, with the lower levels of hospital-level NIHSS 

documentation resulting in slightly higher reported NIHSS scores (i.e. a “shift to the right”).  

Both of these findings suggest that missing NIHSS data may be MNAR. 

 

Figure 2.3.  Kernel density curves for patient distribution of NIHSS score, stratified by tertile of 

hospital NIHSS documentation rate (<70%, 70-85%, ≥85%), with ANOVA and Kruskal-Wallis 

(KW) test results. 

Aim 1 – Discussion 

 The purpose of this study was to investigate patient- and hospital-level patterns and 

predictors of NIHSS documentation.  Our study confirmed our hypothesis that patients with 

documented NIHSS are not simply a random sample of all stroke patients, and suggests that 

missing NIHSS data may be MNAR.   Our data also suggest that documentation of NIHSS is a 
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reflection of both patient-level factors, including stroke severity, and the overall hospital-level 

documentation at the facility in which a patient is treated.   

From the hierarchical logistic regression model, we found that patients whose 

symptoms had resolved by arrival had roughly one-tenth the odds of documentation compared 

to patients still experiencing stroke symptoms.   If it is assumed that resolution of symptoms is 

accurately recorded at ER arrival, then such patients could be imputed to NIHSS=0.  In patients 

with observed NIHSS, the median (IQR) NIHSS for patients whose symptoms had resolved was 

as expected 0 (0-2).  However, 32% of patients had an NIHSS greater than 0.  Thus, imputation 

may be a feasible solution in improving the overall documentation of NIHSS, given that 16% of 

undocumented cases had symptoms resolve by arrival. 

In a previous study, we found that documentation of NIHSS reflected patients who were 

candidates for tPA.66  In this study, we also found that tPA administration was much higher in 

patients with documented NIHSS than those with undocumented NIHSS (9.3% vs. 1.0%).  This 

may also explain why patient who were received in the ER had greater odds of documentation, 

as they are typically initial candidates to receive tPA.  Similarly, patients who were transferred 

had higher odds of documentation compared to patients who arrived by EMS or private 

transportation, as they most likely represent more severe patients.  Any effect of EMS was most 

likely accounted for by the variable for arrival to the ER.  Additionally, we found that patients 

with atrial fibrillation and dyslipidemia had higher rates of documentation.  These factors may 

also be proxies for more severe strokes, as atrial fibrillation90 and dyslipidemia91 are significant 

predictors of stroke severity. 
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No hospital-level characteristics significantly predicted documentation, although it 

appears that documentation is higher in hospitals with primary stroke center certification from 

the Joint Commission.  Low power due to a small number of hospitals (n=23) with little 

between-hospital variability in hospital characteristics may explain this finding.  We also found 

a large statistically significant proportion of the variation (𝜎𝑗 = 1.09,𝑝 < 0.0001; ICC=25%) in 

NIHSS documentation in our model can be attributed to the hospital level, suggesting that 

patient-level NIHSS documentation is also a reflection of overall hospital-level NIHSS 

documentation.   

Analyses of hospital-level documentation and NIHSS scores also confirmed our 

hypothesis.  At the hospital-level, increased documentation of NIHSS was moderately 

correlated with lower mean NIHSS scores (Pearson correlation r = -0.44; Spearman correlation, 

r = -0.39).  This suggests that hospitals with lower documentation of NIHSS may be 

underreporting less severe strokes.  This was also reflected in our kernel density curves, which 

showed a “right shift” in the patient distribution of NIHSS in lower documenting hospitals.  Our 

data also shows that hospital-level NIHSS documentation has greatly improved from 2009 to 

2012, which is a promising trend if NIHSS is to be used in risk adjustment models.   

If missing data were not associated with any characteristics, i.e., a truly random sample 

of patients, it would be considered missing completely at random (MCAR), and estimates from 

a complete case analysis are less subject to bias.67,68  Since we identified significant predictors 

of NIHSS documentation, we can eliminate the possibility that missing NIHSS data is MCAR.  The 

other possibility is that data is missing at random (MAR), which is to say it is related to some 

observed variable, but not the value of the missing data itself.67,68   In cases of either MAR and 
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MNAR, estimates from a complete case analysis may be biased, however, statistical methods 

such as multiple imputation or maximum likelihood estimation are often used to correct bias 

from data that is MAR.68,92-95  It should be noted that no statistical methods can distinguish 

between MAR and MNAR mechanisms of missing data.  Furthermore, it is possible that missing 

NIHSS data may be both a combination of MAR and MNAR mechanisms. However, given that 

our hierarchical model suggests that characteristics of severe stroke patients are associated 

with documentation, and that increased hospital-level documentation is associated with a shift 

towards less severe patients, we suspect that NIHSS may be MNAR.   

Accurate risk adjustment in hospital profiling requires that variables used in risk 

adjustment model be of sufficiently high quality.22  There is already concern that the quality of 

NIHSS in risk adjustment models due to poor documentation may not be adequate.26 With the 

recent announcement that NIHSS is to be included in ICD-10 coding, there will be substantial 

pressure to include stroke severity in risk adjustment models using administrative data.  Based 

on our evidence, it should be recognized that any hospital-level performance measure that 

includes NIHSS in risk adjustment is potentially biased if missing NIHSS data are present.  

Further research is needed to assess the extent of bias in hospital-level mortality measures 

when cases with undocumented NIHSS are excluded from risk adjustment models and profiling, 

especially if NIHSS data are MNAR.  

There are limitations in this study that should be considered.  The sample of hospitals 

used in this study is a subsample of all Michigan hospitals, which may not be representative of 

all Michigan hospitals or hospitals nationwide. A greater proportion of MSR patients go to 

teaching hospitals (93% vs. 61%) and Joint Commission primary stroke center hospitals (78% vs. 
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65%) compared to patients in the GWTG-Stroke nationwide registry.96  Thus, patients in the 

MSR may be more similar to each other compared to what may be seen in the GWTG-Stroke 

registry or administrative claims data.  Replication of this analysis in a larger sample of hospitals 

may provide more generalizable results, and provide better estimates about the hospital 

characteristics related to NIHSS documentation.  Furthermore, it would be advantageous to 

repeat this analysis in the future, given the improving documentation of NIHSS over time.  

Finally, this analysis was conducted in a stroke registry setting, which has clearly defined data 

abstraction procedures.  Further research should be done to assess the completeness and 

validity of NIHSS in administrative data. 

In summary, despite recent improvements in documentation of NIHSS, our evidence 

suggests that patients with documented NIHSS are a biased subsample of all ischemic stroke 

patients.  Documentation of NIHSS is associated with more severe stroke patients, and is also a 

reflection of overall hospital-level documentation of NIHSS.  Given that NIHSS is a strong 

predictor of patient outcomes, further study should be done to assess the degree of bias in 

hospital profiling when a subsample of patients is used to calculate hospital performance 

measures.  Unless complete documentation of NIHSS is achieved, this limitation should be 

considered when using NIHSS in risk adjustment models. 
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CHAPTER 3:  ASSESSING SELECTION BIAS IN PATIENTS WITH DOCUMENTED NIHSS USING THE 

HECKMAN SELECTION MODEL 

Aim 2 - Background 

 The missing data problem is common in clinical research.68,70  Excluding observations 

with missing data in statistical models, i.e. performing a complete case analysis, has been 

shown to bias model estimates.72-74  Missing data are especially pervasive in administrative 

datasets such as billing data or electronic health records, where variables are frequently 

undocumented.71  

Measures of stroke severity, such as the National Institutes of Health Stroke Scale 

(NIHSS), are strong predictors of patient outcomes.54,56,84  Currently, it is collected solely in 

clinical registries where it is frequently underreported, and is absent from administrative data.54  

However, it was recently announced that NIHSS is to be included in ICD-10 coding, with the 

intent to include NIHSS in stroke performance measures using administrative data.  But, if 

NIHSS is underreported in administrative data, then excluding patients without NIHSS 

documented may introduce bias into models of hospital performance, if it is a biased 

subsample of patients, i.e. NIHSS data are missing not at random.67,68   

Using the Heckman Selection Model, we will test for the presence of selection bias in 

patients with documented NIHSS.  The Heckman Selection Model (hereinafter referred to as the 

Heckman model), was pioneered by James J. Heckman in 1979 to identify and correct for bias in 

study estimates resulting from a non-randomly selected sample.97  He illustrated that when 

estimating wages of women in the workforce, the population of women excluded housewives, 

who had self-selected out of the workforce.  Thus, the distribution of wages was truncated 
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because it excluded a group of women for whom wages were not sufficient for them to enter 

the workforce. Previously, other methods – such as identifying patterns and predictors of 

documentation – were used to provide evidence of selection bias, but ultimately, investigator 

intuition was used to identifying potential selection bias.  The Heckman model offered a 

method to estimate the magnitude of selection bias in the sample, and importantly, could then 

be used to adjust outcomes for the potential bias. While the Heckman model is commonly used 

in economics and social sciences, it has been used sparingly in the biomedical sciences or health 

services research.  Examples of its use to assess and control for survey nonresponse bias include 

assessments of medication use98, estimates of HIV prevalence99, and self-reported quality of 

life.100 

The Heckman model consists of a two-equation model with a model predicting the 

outcome of interest – the outcome model – and a model predicting whether the outcome was 

observed or not – the selection model.  The outcome model is a linear regression model with a 

normally distributed, continuous dependent variable, and set of independent predictors (𝑥𝑖).  

The selection model is a probit model with binary dependent indicator (𝑅𝑖 = 1 if the outcome is 

observed, 𝑅𝑖 = 0 if unobserved) and set of independent predictors, which typically include the 

predictors from the outcome model (𝑥𝑖), as well as additional predictors of NIHSS 

documentation (𝜔𝑖).  As opposed to the logistic model typically used for binary outcomes, the 

probit model is necessary because the Heckman model requires the two equations have jointly 

normally distributed error terms.  The overall model can be seen below. 

𝑂𝑢𝑡𝑐𝑜𝑚𝑒 𝑀𝑜𝑑𝑒𝑙:  𝑁𝐼𝐻𝑆𝑆∗ = 𝑥𝑖𝛽 + 𝜀𝑖 ,

𝑤ℎ𝑒𝑟𝑒 𝑁𝐼𝐻𝑆𝑆 ∗  𝑖𝑠 𝑡ℎ𝑒 𝑡𝑟𝑢𝑒 𝑠𝑐𝑜𝑟𝑒 𝑎𝑛𝑑 𝑁𝐼𝐻𝑆𝑆 = 𝑁𝐼𝐻𝑆𝑆 ∗  𝑤ℎ𝑒𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 
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𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑒𝑙:  𝑅𝑖∗ = 𝑥𝑖𝛽 + 𝜔𝑖𝛾 + 𝑢𝑖 ,   𝑅𝑖 �
= 1 𝑖𝑓𝑅𝑖∗ > 0 
= 0 𝑖𝑓𝑅𝑖∗ ≤ 0 

� 

Both selection and outcome models have error terms with mean zero: 𝜀𝑖~𝑁(0,𝜎2) and 

𝑢𝑖~𝑁(0,1).  When the available data is a random sample of all data, i.e. no selection bias, the 

error terms are assumed to be independent, and the correlation between error terms is thus 

𝜌 = 𝑐𝑜𝑟𝑟(𝜇𝑖, 𝜀𝑖) = 0.  However, in the presence of selection bias, the available data is 

determined by a sample selection process, which means that the outcome model is dependent 

on the selection process, which is reflected through correlation between the error terms, i.e., 

𝜌 = 𝑐𝑜𝑟𝑟(𝜇𝑖, 𝜀𝑖) ≠ 0.    

Typically, the next step in the Heckman model is to obtain a correction factor termed 

the inverse Mills Ratio using the error term correlation, and include the correction factor in the 

outcome model to adjust for selection bias.  However, previous work has shown that using the 

correction factor may worsen, rather than improve estimates, especially when significant 

selection bias has been found or if the selection model is incorrectly specified.101,102   For the 

purposes of this analysis, we are simply interested in the Heckman model’s utility as a 

diagnostic test for selection bias, rather than to use this estimate to adjust for selection bias.   It 

is suggested that an a priori understanding of possible drivers of selection bias, and the 

direction and magnitude in which selection bias may occur improves the validity of the 

method.101,103   

In Chapter 2, we illustrated that NIHSS documentation may be greater in more severe 

stroke cases as compared to less severe strokes, but the differences observed were modest. 

The purpose of this aim is to provide further evidence that NIHSS data are MNAR i.e., that 

NIHSS documentation is correlated with the NIHSS score by using the Heckman Selection 
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Model.  We hypothesize that a significant correlation coefficient between the outcome model 

(patient-level NIHSS score) and selection model (patient-level NIHSS documentation) will be 

detected. Figure 3.1 illustrates the conceptual framework of the Heckman model for this 

analysis.  

 

Figure 3.1.  Conceptual Framework of Heckman Selection Model in this analysis. 

Aim 2 – Methods 

Data and Participants 

We will again use data from the Michigan Stroke Registry (MSR) from 2009-2012 as 

described in Chapter 2.  Briefly, the MSR is a statewide clinical registry which originated as a 

prototype for the Paul Coverdell National Acute Stroke Registry, and has been described 

elsewhere.85  Currently, the MSR is used to provide a data driven approach to improve the 

quality of stroke care in the State of Michigan.86,87  The MSR collects information on many 
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different patient level characteristics including demographics, EMS and hospital admission 

information, and clinical information such as stroke severity, ambulatory status, and medical 

history.   In addition, we obtained hospital characteristics from the American Hospital 

Association annual survey88 and Paul Coverdell National Acute Stroke Registry hospital 

inventory. 

We used MSR data from 2009 to 2012 for this analysis.  To increase the comparability of 

our findings to a CMS ischemic stroke population, we applied a number of exclusions to the 

MSR data.  Ischemic stroke patients were included if they were aged 65 years or older and 

excluded cases if they belonged to a hospital with <25 annual cases of ischemic stroke, which is 

the minimum number of cases for a hospital risk-standardized mortality rate (RSMR) to be 

calculated, as defined by CMS.18  We also excluded patients if the stroke occurred in a hospital 

inpatient setting.  As this study was a secondary analysis of deidentified registry data, it was 

considered exempt from Institutional Review Board review.  All analyses were conducted with 

the use of SAS version 9.3 (SAS Institute Inc, Cary, NC). 

Predictor Variables 

We examined a number of patient-level predictors in the outcome and selection 

models.  Demographic characteristics included:  age, gender (male vs. female), race (white, 

black, other, not documented), and insurance status (Medicare, Medicaid, private, none).  We 

also assessed EMS and hospital admission information, such as:  place stroke occurred (at home 

vs. in a healthcare setting), arrival mode (EMS, private, transferred), arrival into the ER (yes vs. 

no), symptoms resolved prior to arrival (yes vs. no), and tPA administration (yes vs. no).  Finally, 

we also examined several clinical variables in this analysis, including:  able to ambulate pre-
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stroke, diabetes mellitus, congestive heart failure, peripheral artery disease, hypertension, 

current smoker, and history of prior stroke, transient ischemic attack/vertebrobasilar 

insufficiency (TIA/VBI), or myocardial infarction/coronary artery disease (MI/CAD). 

 Hospital characteristics were also examined and included annual stroke volume (<200, 

200-600, 600+), urban vs. rural location, teaching status, presence of an acute stroke team, and 

Joint Commission primary stroke center status.63   

Outcome Model Specification 

 The dependent variable in the outcome model is the patient-level NIHSS score, which is 

continuously distributed with a 0-42 point integer scale.  A primary assumption of the outcome 

model in the Heckman model is that the dependent variable be a normally distributed, 

continuous variable.97  To satisfy this assumption, we transformed the NIHSS score to a normal 

distribution using a Box-Cox transformation, as the NIHSS distribution is highly right-skewed.  

The outcome model was specified using a backward selection process of predictor variables 

with stepwise deletion of non-significant predictors.  Quasi-maximum likelihood estimation was 

used to produce robust estimates of standard errors to account for a clustering effect of 

patients within hospitals. 

Selection Model Specification 

 The dependent variable in the selection model is the patient-level binary indicator of 

NIHSS documentation (documented vs. undocumented).  The selection model was specified to 

include all significant predictors of NIHSS score, regardless of statistical significance in the 

selection model.  Additional significant predictors of NIHSS documentation were again derived 

from a backward selection process of the remaining predictor variables with stepwise deletion 
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of non-significant predictors.  Again, we calculated robust standard errors using quasi-

maximum likelihood estimation to account for clustering of patients in hospitals. 

Estimating the Correlation Coefficient 

Once the outcome and selection models were specified, we utilized the PROC QLIM 

procedure in SAS to estimate the correlation coefficient between the outcome model and 

selection model error terms.  The PROC QLIM (qualitative and limited dependent variable 

model) procedure allows users to estimate the correlation between a simultaneously specified 

multivariable outcome and selection model.104  A statistically significant correlation coefficient 

would indicate the presence of selection bias in patients with documented NIHSS.   The 

correlation coefficient ranges from +1 to -1, with 0 representing no selection bias, and +/-1 

representing strong selection bias.  A positive correlation would indicate that as the NIHSS 

score increases, i.e. strokes are more severe, documentation increases.  Conversely, a negative 

correlation indicates that as NIHSS score increases, documentation decreases.   

 To investigate how the prevalence of missing NIHSS data impacts the amount of 

selection bias in the sample, we repeated the analysis using only data from 2009-2010, when 

documentation was lower (68%), and again using only data from 2011-2012, when 

documentation was greater (80%), and estimated the correlation coefficient between the 

models in each time period (2009-2010 and 2011-2012).   

Aim 2 - Results 

 From the Michigan Stroke Registry, we used data from 10,717 ischemic stroke cases 

discharged from 23 hospitals for the analysis, of which 7,957 cases (74.3%) had NIHSS 

documented.  The following variables were statistically significant independent predictors of 
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NIHSS score in the outcome model:  age (in years), gender (male vs. female), stroke occurred at 

home vs. in a healthcare setting, symptoms resolved prior to arrival, mode of arrival (EMS, 

private, transfer), tPA administration (yes vs. no), ambulatory pre-stroke (yes vs. no), presence 

of an acute stroke team (yes vs. no), and history of atrial fibrillation, prior stroke, dyslipidemia, 

and heart failure (yes vs. no). (Table 3.1)  A positive beta coefficient indicates that the variable 

is associated with a more severe stroke, while a negative beta coefficient is associated with a 

less severe stroke.  When these variables were included in the selection model, all were 

statistically significant predictors of documentation except age, gender, and PMH heart failure.  

The selection model included the following additional significant predictors of NIHSS 

documentation: insurance status (Medicare, Medicaid, Private, none), race (white, black, other, 

not documented), patient received in the ER (yes vs. no), year (2009, 2010, 2011, and 2012), 

hospital Joint Commission primary stroke center status (yes vs. no), and hospital stroke volume 

(<200, 200-600, 600+). (Table 3.1)  

Table 3.1.  Heckman Selection Model specifications for outcome and selection models in the 
full sample of n=10,717 stroke cases (2009-2012). 

Variable 
Frequency Outcome Model Selection Model 

% or Mean(SD) Coefficient (SE) p-value Coefficient (SE) p-value 
Intercept - 1.4828 (0.1261) <0.0001 1.3778 (0.2089) <0.0001 
Age (per year) 78.7 (8.3) 0.0103 (0.0013) <0.0001 -0.0022 (0.0015) 0.1547 
Gender (Male) 54.7 -0.0625 (0.0202) 0.0020 -0.0308 (0.0240) 0.1992 
Stroke Occurred at 
Home 89.5 -0.1612 (0.0357) <0.0001 0.1842 (0.0379) <0.0001 

Symptoms Resolved 6.6 -0.8008 (0.0501) <0.0001 -0.9348 (0.0310) <0.0001 
Arrival Mode      

EMS 49.5 -0.0239 (0.0283) 0.3986 -0.1055 (0.0412) 0.0105 
Private 34.9 -0.6342 (0.0293) <0.0001 -0.1030 (0.0416) 0.0134 
Transfer 42.6 Ref - Ref - 

tPA Administered 7.2 0.8149 (0.0393) <0.0001 1.1631 (0.0885) <0.0001 
Ambulatory Pre-stroke 95.1 -0.4972 (0.0536) <0.0001 0.3147 (0.0517) <0.0001 
History of Atrial 
Fibrillation 22.7 0.2319 (0.0244) <0.0001 0.0943 (0.0303) 0.0018 

History of Prior Stroke 27.7 0.1515 (0.0226) <0.0001 -0.0604 (0.0258) 0.0193 
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Table 3.1. (cont’d) Heckman Selection Model specifications for outcome and selection models 
in the full sample of n=10,717 stroke cases (2009-2012). 

Variable Frequency Outcome Model Selection Model 
% or Mean(SD) Coefficient (SE) p-value Coefficient (SE) p-value 

History of Dyslipidemia 45.5 -0.1005 (0.0203) <0.0001 0.1263 (0.0239) <0.0001 
History of Heart Failure 13.5 0.1609 (0.0299) <0.0001 -0.0327 (0.0245) 0.3433 
Acute Stroke Team 85.3 0.1076 (0.0276) <0.0001 -0.1458 (0.0362) <0.0001 
Insurance Status      

Medicare 49.1 - - 0.2944 (0.1220) 0.0158 
Medicaid 5.2 - - 0.1043 (0.1299) 0.4222 
Private 45.0 - - 0.2496 (0.1225) 0.0417 
None 0.7 - - Ref - 

Race      
White 72.6 - - -0.0758 (0.0456) 0.0964 
Black  18.1 - - -0.3237 (0.0503) <0.0001 
Other 1.1 - - 0.0627 (0.1285) 0.6258 
Not Documented 8.2 - - Ref - 

Received in the ER 88.3 - - 0.2424 (0.0431) <0.0001 
Year      

2009 25.0 - - -0.5756 (0.0346) <0.0001 
2010 23.5 - - -0.3620 (0.0458) <0.0001 
2011 26.0 - - -0.2103 (0.0359) <0.0001 
2012 25.5 - - Ref - 

PSC Status 77.9 - - 0.2211 (0.0294) <0.0001 
Stroke Volume      

<200 9.0 - - 0.2675 (0.0443) <0.0001 
200-600 38.6 - - 0.3344 (0.0283) <0.0001 
600+ 52.3 - - Ref - 

 
Table 3.2 shows the estimated correlation coefficients between the error terms of 

specified outcome and selection models.  For the entire sample, we estimated a statistically 

significant correlation coefficient of 𝜌=0.11 (95% CI: 0.09, 0.13; p <0.0001).  (Table 3.2)  This is 

interpreted as weak, but statistically significant, selection bias.   The positive sign on the 

correlation indicates that as NIHSS score increases, the probability of documentation also 

increases.  When we restricted data to 2009-2010, when documentation was relatively lower 

(68%), we found a slightly higher correlation coefficient of 𝜌=0.13 (95% CI: 0.07, 0.20; 

p<0.0001), indicating a modest increase in selection bias when documentation was lower.  
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Conversely, when we limited our data to 2011-2012, when documentation was better (80%), 

we found a slightly lower correlation coefficient of 𝜌=0.07 (95% CI: 0.05, 0.09; p<0.0001), 

indicating less selection bias when documentation had improved. 

Table 3.2.  Estimated correlation coefficient between error terms of outcome and selection 
models for the full sample (2009-2012), and by 2009-2010 and 2011-2012. 

Sample Total Num. NIHSS 
Documented, n (%) 

Estimated Correlation 
Coefficient (95% CI) p-value 

2009-2012 10,717 7,957 (74.3) 0.11 (0.09, 0.13) a <0.0001 

2009-2010 5,197 3,554 (68.4) 0.13 (0.07, 0.20) b <0.0001 

2011-2012 5,520 4,403 (79.8) 0.07 (0.05, 0.09) c <0.0001 
a   Outcome and selection model variables can be seen in Table 3.1. 
b  Outcome model variables:  age, gender, stroke occurred at home, arrival model, received in the ER, symptoms resolved by 

ER arrival, tPA administration, ambulatory pre-stroke, and history of atrial fibrillation, heart failure, stroke and myocardial 
infarction. 
Selection model variables:  Outcome model variables plus race, history of smoking, year, and hospital stroke volume, rural 
location, Joint Commission Primary Stroke Center status, presence of acute stroke team. 

c  Outcome model variables:  age, stroke occurred at home, arrival mode, symptoms resolved by ER arrival, tPA 
administration, ambulatory pre-stroke, hospital presence of acute stroke team, and history of atrial fibrillation, heart 
failure, stroke, and TIA/vertebrobasilar insufficiency. 
Selection model variables:  Outcome model variables plus race, received in the ER, year, and hospital stroke volume, rural 
location, teaching status, Joint Commission Primary Stroke Center status. 

 
Aim 2 – Discussion 

 Using the Heckman model, we found evidence of selection bias in patients with 

documented NIHSS.  Although statistically significant, the magnitude of the selection bias 

appears to be relatively weak (𝜌=0.11).  The positive correlation between stroke severity (NIHSS 

score) and NIHSS documentation suggests that as stroke severity increases, the probability of 

documentation also increases.  In Aim 1, we concluded that more severe strokes are better 

documented.  Our results in this study confirm our findings, which also indicate that as patient-

level stroke severity increases, the probability of documentation also increases.  Furthermore, 

as expected we found that when documentation of NIHSS was lower, the magnitude of 

selection bias slightly increased (𝜌=0.13), and bias subsequently decreased slightly when 
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documentation improved (𝜌=0.07).  In the traditional Heckman model process, we would 

subsequently calculate the inverse Mills ratio using the estimated correlation coefficient, and 

include this parameter in the model predicting patient-level NIHSS score to correct for the 

selection bias.  However, since our aim is only to assess for the presence of bias, and not 

estimate patient-level NIHSS score, we did not perform this step. 

 Together, this evidence provides a compelling argument that documentation of NIHSS is 

associated with the NIHSS score itself, and that the probability of documentation increases as 

patient-level NIHSS increases.  As such, it can be safely concluded that missing NIHSS data are 

missing not at random (MNAR).  Therefore, any analysis that includes NIHSS when it is not 

completely documented is subject to selection bias; however, the extent of the bias appears to 

be modes and its implications have yet to be understood. Both analyses we conducted 

(Chapters 2 and 3) suggested that NIHSS data are MNAR; but selection bias appears to be 

relatively weak.  In Aim 1, we showed a slight “right shift” in the distribution of patient-level 

NIHSS in low documenting hospitals.  The average NIHSS score in high versus low documenting 

hospitals was 6.7 compared to 8.7, respectively. (Table 2.2)  But, would using a more severe 

subsample of stroke patients translate to biased estimates of hospital-level mortality?  We will 

attempt to answer that question in the next aim.  

 This particular analysis does have some limitations to consider.  First, the Heckman 

model relies on an accurately specified selection model.103  Failure to specify a correct selection 

method may result in inaccurate assessment or correction for selection bias.  Having a priori 

information about the possible direction of selection bias or what variables might predict 

selection may improve the validity of Heckman model estimates.  The analysis in Aim 1 
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corroborates our findings, which also suggest a similar magnitude and direction of selection 

bias, improving the validity of our results.  The Heckman model also requires that the 

dependent variable for the outcome model is a continuous, normally distributed variable.97  

The NIHSS score is not a normally distributed variable (as illustrated in Figure 2.3).  However, 

we used a Box-Cox transformation to transform NIHSS into an approximately normal 

distribution.  As this study used a relatively small subset of hospitals (n=23), further research 

should be done to improve the generalizability our findings in a more representative sample of 

hospitals.  

 Using the Heckman Selection Model, we were able to corroborate previous analyses 

which showed evidence of weak selection bias in patients with NIHSS documented.  We also 

illustrated that as documentation of NIHSS improved the magnitude of selection bias in our 

data reduced. It is unclear if hospital-level performance measures (e.g. mortality) are biased 

when documentation patterns change in respect to patient stroke severity.  In the next chapter, 

we will employ computer simulations to explore how the prevalence and mechanism of missing 

NIHSS data impacts the accuracy of hospital performance profiling. 
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CHAPTER 4:  THE IMPACT OF MISSING NIHSS DATA ON THE ACCURACY OF HOSPITAL 

PROFILING 

Aim 3 – Background 

 While it is widely accepted that using a complete case analysis in the presence of 

missing data may introduce bias into any given analyses68,69, how this impacts hospital-level 

estimates used for hospital profiling is less certain.  There is some evidence that hospital-level 

measures of performance may be biased when missing data is present.  One simulation study 

comparing risk-adjusted hospital trauma-related mortality measures showed that a complete 

case analysis when risk-adjustment variables were missing not at random (MNAR) led to 

considerable changes in hospital-level mortality profiling.64  Another simulation study 

examining the impact of missing data on profiling of pay-for-performance outcomes showed 

that between 11 to 21 percent of misclassification was attributable to missing data used in risk 

adjustment models.65  Studies have also shown that differential coding40 or undercoding82 of 

comorbidities and severity indicators between hospitals – which would cause “missing” data if 

variables were coded incorrectly – can bias hospital-level risk standardized mortality rates.   

 The addition of 30-day mortality and readmission measures for ischemic stroke into the 

Centers for Medicare & Medicaid Services pay-for-performance schemes5,6 has generated 

considerable contention regarding the contents of models used in risk adjustment.  There is 

serious concern that excluding a measure of stroke severity, such as the National Institutes of 

Health Stroke Scale (NIHSS)50,51, will not adequately risk adjust hospital-level performance 

measures.53-56  Furthermore, it has been suggested that hospitals which tend to see a more 

severe case-mix of patients – such as tertiary referral centers or primary stroke centers – may 
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be at greater risk of misclassification.46-48  With the announcement that NIHSS is to be included 

in ICD-10 coding, it will likely be included in future risk adjustment models for ischemic stroke 

outcomes.  Although documentation of NIHSS in clinical datasets has improved in recent years, 

it is still frequently missing in large clinical datasets.53  Therefore, it is essential to understand 

how missing NIHSS data may impact hospital-level estimates of mortality used in profiling 

schemes, especially if it is MNAR.   

 In this study, we utilize computer simulations to illustrate how missing NIHSS data 

impacts the accuracy of hospital performance profiling on ischemic stroke mortality.  

Specifically, we will assess how the prevalence and mechanism by which NIHSS is missing 

impacts our ability to classify hospital outliers, estimate hospital deviation in ischemic stroke 

mortality, and correctly rank-order hospitals on ischemic stroke mortality.  We hypothesize that 

our ability to correctly identify outlier hospitals and rank-order hospitals will degrade as the 

prevalence of missing NIHSS increases, especially in situations where missingness is related to 

the severity of the stroke, i.e. is MNAR.  Finally, because hospital case volume has previously 

been shown to impact profiling accuracy in myocardial infarction, we will also investigate how 

hospital ischemic stroke volume modifies our findings. 

Aim 3 – Methods 

 To pursue our aims, data must be generated in such a way that the variation in patient 

case-mix and ischemic stroke mortality within and between hospitals reflect empirical 

estimates from real-world data.   Briefly, a top down approach for data generation was used, 

where a set of hospitals were generated with assigned components of case-mix and ischemic 

stroke mortality variation.  Patients were then generated within each hospital, and assigned 
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patient characteristics that reflect the underlying observed case-mix and mortality.  We then 

replicated the generated dataset, simulated missing NIHSS data within each dataset based on a 

different mechanism and prevalence of missing NIHSS data.  Hospital-level outlier status and 

RSMRs were estimated from a complete case analysis of patients with observed NIHSS.  This 

data generation scheme can be seen in Figure 4.1 

 

Figure 4.1.  Overview of data generation process for simulations. 

Section 1 - Parameter Generation for Simulations 

A series of analyses of 10,717 ischemic stroke patients 65 years of age and older from 23 

hospitals in the Michigan Stroke Registry (MSR) were conducted to generate parameters 

needed for the computer simulations.  The MSR is a statewide clinical registry which originated 
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as a prototype for the Paul Coverdell National Acute Stroke Registry, and has been described 

elsewhere.85  Descriptive statistics of the sample can be seen in Table 2.1.   

Parameters needed for the simulation studies were generated in three distinct steps: 

first we created a multivariable patient risk score for in-hospital mortality using MSR data.  

Second, we quantified the variation in the patient risk score between hospitals in the registry 

(this variation represents the differences in hospital case-mix).  Finally, we estimated 

hierarchical model parameters for in-hospital mortality model given the patient risk score and 

hospital random intercepts.  Specific details of the steps are described below. 

Patient Risk Score:  We used the Get With the Guidelines – Stroke (GWTG-Stroke) in-

hospital mortality risk score for this analysis, which includes NIHSS score.54  In-hospital 

mortality was used because the MSR does not have data on 30-day mortality.  However, for 

acute myocardial infarction patients in-hospital mortality has been shown correlate well 

with 30-day mortality.105  The GWTG-Stroke in-hospital mortality risk score was developed 

from the logistic model using the method described by Sullivan, et al.106, and contains nine 

clinical variables:  patient age, NIHSS score categories (0-2, 3-5, 6-10, 11-15, 16-20, 21-25, 

and 26-42), mode of arrival, gender, and presence of atrial fibrillation, previous stroke or 

TIA, coronary artery disease, diabetes mellitus, or history of dyslipidemia. (Table 4.1) The 

score ranges from 0 to 109, and is shown in Table 4.1; the NIHSS score is by far that most 

important variable contributing to the total score  
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Table 4.1.  Get With the Guidelines-Stroke in-hospital mortality 
risk score variables, categories, and respective points. 
Variable Categories Points 
Age (in years) <60  0  
 60-70 1  
 70-80 5  
 ≥80 9  
NIHSS Score 0-2 0  
 3-5 10  
 6-10 21  
 11-15 37  
 16-20 48  
 21-25 56  
 26-42 65  
Mode of Arrival Private transport 0  
 Did not present via ED 16  
 Ambulance from scene 12  
  Yes No 
Presence of: Male gender 0 3 
 Atrial fibrillation 5 0 
 Previous stroke or TIA 0 2 
 Coronary artery disease 5 0 
 Diabetes mellitus 2 0 
 History of dyslipidemia 0 2 
Information taken from Smith, et al. 201054 
 

To allow for manipulation of the NIHSS score variable, we calculated the NIHSS risk 

score component separately from the rest of the risk score.  Therefore, the total risk score 

(𝑇𝑅𝑆𝑖𝑗) for patient i in hospital j is the sum of the NIHSS score component (𝑁𝐼𝐻𝑆𝑆𝑖𝑗) and a 

non-NIHSS component – hereinafter referred to as the sub-risk score component (𝑆𝑅𝑆𝑖𝑗) – 

which contains the remaining eight variables. (1) 

(1)  𝑇𝑅𝑆𝑖𝑗 = 𝑆𝑅𝑆𝑖𝑗 + 𝑁𝐼𝐻𝑆𝑆𝑖𝑗 

In the MSR, the sub-risk score (𝑆𝑅𝑆𝑖𝑗) is normally distributed with mean 21.4 and standard 

deviation (SD) 8.3, i.e. 𝑆𝑅𝑆𝑖𝑗~𝑁(21.4, 8.32).  The distribution of NIHSS score categories in 

the 7,957 (74.3%) cases with documented NIHSS in the MSR can be seen in Figure 4.2.  The 
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mean (SD) and median (IQR) for patients with documented NIHSS were 7.3 (SD=7.8) and 4 

(IQR=2-11), respectively. 

 

Figure 4.2.  Distribution of patient-level NIHSS score categories in the Michigan Stroke Registry 

(n=7,957) 

To measure the association between 𝑆𝑅𝑆𝑖𝑗 and 𝑁𝐼𝐻𝑆𝑆𝑖𝑗 components, we used an 

ordinal regression model to predict NIHSS score categories given the patient 𝑆𝑅𝑆𝑖𝑗.  For 

simplicity in the simulation process, we used an ordered probit model, which has a normally 

distributed random error term, as opposed to the traditional ordinal logistic model, where 

the error term has a logistic distribution.  The ordered probit model yields a beta coefficient 

for the sub-risk score, and six intercept terms, which reflect the cutoff points between the 

seven ordinal NIHSS categories. (Table 4.2) 
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Table 4.2.  Results of ordered probit model of NIHSS category 
predicted by sub-risk score. (n=7,957) 

Parameter Estimate Standard Error 
Intercept 1* 0.63 0.0353 
Intercept 2 1.26 0.0365 
Intercept 3 1.79 0.0381 
Intercept 4 2.16 0.0396 
Intercept 5 2.55 0.0419 
Intercept 6 2.98 0.0459 

Sub-Risk Score (𝑆𝑅𝑆𝑖𝑗) -0.050 0.00152 
Note:  All parameter estimates are statistically significant, p<0.0001 
* Intercepts reflect cutoff points between seven ordinal NIHSS categories, 0-2, 3-5, 6-
10, 11-15, 16-20, 21-25, and 26-42. 
 

Using the model intercepts shown in Table 4.2, patient-level NIHSS category can be 

imputed by multiplying the generated sub-risk score and sub-risk score model beta 

coefficient (β=-0.050).  This step will be explained in more detail in the section describing 

the data simulation process.  

Between-Hospital Variation in Risk Score:  To estimate the between-hospital variation in 

patient risk score, i.e. case-mix variation, we ran a variance components model to estimate 

the hospital-level variation in the sub-risk score component (𝑆𝑅𝑆𝑖𝑗) which was centered 

with mean of 0.  The variance of the sub risk score was made up of a hospital-level 

component, 𝜇𝑗 with variance 𝜎µ2, for hospital j, and a patient-level component, 𝛿𝑖𝑗 with 

variance 𝜎δ2, for patient i in hospital j, 𝑆𝑅𝑆𝑖𝑗 = 𝜇𝑗 + 𝛿𝑖𝑗.   

It is assumed that the hospital and patient-level variance components are 

independent from one another.  Thus, 𝑣𝑎𝑟�𝑆𝑅𝑆𝑖𝑗� = 𝜎µ2 + 𝜎δ2. From the variance 

components model, we estimated 𝜇𝑗~𝑁(0,𝜎µ2 = 1.5) and 𝛿𝑖𝑗~𝑁(0,𝜎δ2 = 68.0).   Using the 

formula for calculating intraclass correlation coefficient – 𝐼𝐶𝐶 = 𝜎µ2 �𝜎µ2 + 𝜎δ2�� =

1.5 (1.5 + 68.0)⁄ = 0.022, or 2.2%.  This means that only 2.2% of the variation in the sub-
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risk score is attributed to between-hospital differences in the overall mean sub risk score.  

Because the NIHSS component is estimated from the sub-risk score component, case-mix 

variation in NIHSS will also be reflected by variation in the sub-risk score.   

Between-Hospital Variation in In-Hospital Mortality:  Using data from the MSR, a 

hierarchical logistic regression model was used to estimate the between-hospital variation 

in mortality, given the patient total risk score (𝑇𝑅𝑆𝑖𝑗).  This model can be seen below (2), 

where 𝑝𝑖𝑗 represents the probability of in-hospital mortality for patient i in hospital j, 𝛽0 

represents the overall log-odds of mortality, 𝛽1 represents the log-odds of mortality given a 

one unit increase in the total risk score for patient i in hospital j (𝑇𝑅𝑆𝑖𝑗), and 𝑏0𝑗 represents 

the random intercept for hospital j.    

(2)  𝑙𝑜𝑔𝑖𝑡�𝑝𝑖𝑗� =  𝛽0 + 𝛽1 ∗ 𝑇𝑅𝑆𝑖𝑗 + 𝑏0𝑗 

When this model was run in 7,957 ischemic stroke patients who had NIHSS recorded in the 

MSR, we obtained the following model estimates (3) 

(3)  𝑙𝑜𝑔𝑖𝑡�𝑝𝑖𝑗� =  −6.1 + 0.054 ∗ 𝑇𝑅𝑆𝑖𝑗 + 𝑏0𝑗 

We estimated the distribution of the hospital random intercept, 𝑏0𝑗~𝑁(0,𝜎2 = 0.13), 

where 0.13 represents the between-hospital variation in in-hospital mortality.  The ICC from 

a logistic regression model is calculated using the equation107, 𝐼𝐶𝐶 = 𝜎2 (𝜎2 + 𝜋2 3⁄ )⁄ =

0.13 (0.13 + 𝜋2 3)⁄⁄ = 0.039, or 3.9%, which means that only 3.9% of the unexplained 

variation in in-hospital mortality is attributed to between-hospital differences.  These 

estimated parameters were subsequently used to simulate a full dataset which mimics the 

between- and within-hospital variation in patient risk score and mortality. 
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Section 2 – Generating Datasets for Simulations 

 We simulated S=500 independent samples of patients within each hospital from the 

parameters generated in the previous section.  In each sample (S), N=100 hospitals were 

simulated using n patients per hospital; each scenario reflected a unique combination of the 

NIHSS documentation rate (%), the mechanism of missing NIHSS data, and hospital stroke 

volume.  To assess how the accuracy of performance profiling is modified by the hospital 

ischemic stroke volume, independent simulations of hospital volumes of n=100, 300, and 500 

patients were used, to represent low, moderate, and high volume hospitals.  Each hospital was 

assigned a random intercept for mortality, which represents its true deviation in mortality from 

the overall average, i.e., true hospital performance.  Patient-level risk scores for mortality were 

then simulated to represent within- and between-hospital variation in patient risk of mortality 

observed in the MSR.  Finally, using the assigned hospital random intercept and patient-level 

risk score, we simulated a binary mortality outcome (alive/died) for each patient.  Specific 

details for these three steps are detailed below. 

Assigned Hospital Random Intercept:  From the analyses conducted in the MSR, we 

observed a normal distribution of hospital random intercepts of 𝑏0𝑗~𝑁(0,𝜎2 = 0.13).  

Simulated hospitals were randomly assigned a random intercept from this normal 

distribution.  The assigned random intercept represents a hospital’s known deviation in 

mortality compared to the overall average, after adjusting for the patients risk of mortality.  

As such, it represents a hospital’s true in-hospital mortality compared to the average 

hospital, and was used as the gold standard for comparison with estimated hospital 

performance rankings.   
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Assigned Patient Risk Score:  To generate the total risk score for patient i in hospital j 

(𝑇𝑅𝑆𝑖𝑗), we first generated the non-NIHSS component of the risk score, i.e. the sub-risk 

score (𝑆𝑅𝑆𝑖𝑗).  As previously mentioned the sub-risk score has a hospital-level component, 

𝜇𝑗, and patient-level component, 𝛿𝑖𝑗.   For each hospital, 𝜇𝑗 was randomly drawn from the 

distribution, 𝜇𝑗~N(0,𝜎µ2 = 1.5).  Within each simulated hospital j, for patient i,  𝛿𝑖𝑗  was 

randomly drawn from the distribution 𝛿𝑖𝑗~N(0,𝜎δ2 = 68.0).  The hospital and patient 

components were summed to create the 𝑆𝑅𝑆𝑖𝑗, which was then centered on the observed 

mean from the MSR (mean=21.4), which can be seen in equation (4). 

(4) 𝑆𝑅𝑆𝑖𝑗 = (𝜇𝑗 + 𝛿𝑖𝑗) + 21.4 

Next, we assigned each patient an NIHSS score category by multiplying the 𝑆𝑅𝑆𝑖𝑗 

with the beta coefficient for 𝑆𝑅𝑆𝑖𝑗 from the ordered probit model, and added a random 

error term, 𝜀, drawn from an 𝑁(0, 1) distribution. (5) 

(5)  𝛾𝑖𝑗 =  −0.050 ∗ 𝑆𝑅𝑆𝑖𝑗 +  𝜀 

The estimate 𝛾𝑖𝑗was then compared to the cutoff points from the ordered probit model 

intercepts, which refers to an imputed NIHSS category, as seen in Table 4.3.   

Table 4.3.  NIHSS category assignment cutoff intervals derived 
from the ordered probit model predicting NIHSS category given 
the patient sub-risk score. 

Cutoff Interval Assigned NIHSS 
Category 

Risk Score Points* 
(NIHSSij) 

γ ≥ -0.63 0-2 0 
-0.63 > γ ≥ -1.26 3-5 10 
-1.26 > γ ≥ -1.79 6-10 21 
-1.79 > γ ≥ -2.16 11-15 37 
-2.16 > γ ≥ -2.55 16-20 48 
-2.55 > γ ≥ -2.98 21-25 56 

-2.98 > γ 26-42 65 
* Risk Score Points from Smith, et al. 201054 
Note:  γ is calculated using the patient Sub Risk Score (SRS) 
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Finally, the NIHSS risk score and sub risk score components were summed to create 

the total risk score (𝑇𝑅𝑆𝑖𝑗), which ranges from 0 to 109 and mimics the distribution 

observed in the MSR.  For instance, if a patient was assigned an 𝑆𝑅𝑆𝑖𝑗 = 20 and random 

error term 𝜀 = 0, the resulting  𝛾𝑖𝑗 is:  𝛾𝑖𝑗 = −0.050 ∗ 20 + 0 = −1.0.  Thus, the patient 

would be assigned to an NIHSS category of 3-5 (i.e. −0.63 > 𝛾𝑖𝑗 ≥ −1.26), and 10 points 

would be added to the sub-risk score for a total risk score of 𝑇𝑅𝑆𝑖𝑗 = 𝑆𝑅𝑆𝑖𝑗 + 𝑁𝐼𝐻𝑆𝑆𝑖𝑗 =

20 + 10 = 30. 

Generating In-Hospital Mortality:  Using the logit model in equation (2), we input the 

assigned hospital random intercept and for each of the n patients in the particular sample 

we generated the logit of the predicted probability of mortality (𝑝𝑖𝑗) from the 𝑇𝑅𝑆𝑖𝑗.  To 

reflect 30-day mortality rates (~15%) used in CMS outcome metrics as opposed to in-

hospital mortality rates (~4%), we re-scaled the model intercept to generate an average 

mortality of 15% (𝛽0 =  −4.4 vs. –6.1). (6) 

(6)  𝑙𝑜𝑔𝑖𝑡�𝑝𝑖𝑗� =  −4.4 + 0.054 ∗ 𝑇𝑅𝑆𝑖𝑗 + 𝑏0𝑗 

The reverse logit of this model estimated the predicted probability of mortality (𝑝𝑖𝑗) for 

each patient in the sample. From this we generated a patient-level binary mortality status (0 

if alive, 1 if dead) using a random draw from the Bernoulli distribution.  

 From these three steps, we generated patient samples within each simulated hospital 

which reflect empirical estimates of variation in case-mix and ischemic stroke mortality 

obtained from the MSR.  Each patient has a generated risk score for mortality, including an 

NIHSS component, and binary mortality indicator.  In the next section, we discuss models which 

were used to simulate missing NIHSS in the fully observed dataset.   
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Section 3 – Missing NIHSS Data Model Specification 

 In the Chapters 2 and 3, we provided evidence that NIHSS documentation is related to 

the patient NIHSS score.  To replicate missing NIHSS data in our simulated data, we generated a 

mixture of different prevalences and mechanisms of NIHSS documentation.  First, we simulated 

a mechanism where NIHSS documentation is completely unrelated to the NIHSS score, i.e., data 

are missing completely at random (MCAR).  To replicate a MCAR model of NIHSS 

documentation, we generated a binary indicator of documentation by a random draw from a 

Bernoulli distribution.  In addition to a fully observed dataset, we created datasets which 

modified the probability of documentation between 30 and 90% in increments of 10% in 

addition to the fully observed dataset. 

Next, we simulated a mechanism where NIHSS score category and NIHSS documentation 

are directly related (as NIHSS score category increases, documentation increases) and inversely 

related (as NIHSS score category increases, documentation decreases).  These mechanisms 

represent a missing not at random mechanism of missing data (MNAR), where the missingness 

in NIHSS is related to the value of the NIHSS score itself.  Logistic regression models were used 

to estimate the probability of NIHSS documentation (𝑅𝑖𝑗) given the patient NIHSS category 

(𝑁𝐼𝐻𝑆𝑆𝑖𝑗). (7) 

(7)  𝑙𝑜𝑔𝑖𝑡�𝑝�𝑅𝑖𝑗 = 1| 𝑁𝐼𝐻𝑆𝑆𝑖𝑗�� =  𝛽0 + 𝛽1 ∗ 𝑁𝐼𝐻𝑆𝑆𝑖𝑗  

Because we cannot observe these models directly, we estimated the model intercept (𝛽0) – 

which represents the overall documentation rate – and the beta coefficient (𝛽1) for the NIHSS 

score – which indicates the estimated increase or decrease in odds of documentation by 

moving up one NIHSS category (0-2, 3-5, 6-10, 11-15, 16-20, 21-25, and 26-42).  The signs of 
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beta coefficients were manipulated to reflect direct and inverse relationships between NIHSS 

and NIHSS documentation.  Additionally, in each scenario, we altered the values of the beta 

coefficient to reflect a relatively weaker and stronger effect of NIHSS category on 

documentation. The weaker effect represents a 10% increase or decrease (Beta = +/-0.095) in 

odds of documentation as NIHSS category increases; the strong effect represents a 25% 

increase or decrease (Beta = +/-0.225) in odds of documentation as NIHSS category increases.  

In total, four MNAR models were created (direct-weak, direct-strong, inverse-weak, inverse-

strong).  Similar to the MCAR model, we altered the model intercepts to reflect overall 

documentation rate of 30 to 90% in increments of 10%. All missing NIHSS model specifications 

(MCAR and MNAR), and their estimated NIHSS documentation rates can be seen in Table 4.4. 

Table 4.4.  Specification for missing NIHSS models, including model parameters and estimated 
documentation rates in each category of NIHSS. 

 Estimated NIHSS Documentation Rates 
Scenario Model Coefficients NIHSS Score Category 

Effect % Doc. Intercept Beta 0-2 3-5 6-10 11-15 16-20 21-25 25-42 
Missing Completely at Random 

- 90 - - 90 90 90 90 90 90 90 

 
80 - - 80 80 80 80 80 80 80 

 
70 - - 70 70 70 70 70 70 70 

 
60 - - 60 60 60 60 60 60 60 

 
50 - - 50 50 50 50 50 50 50 

 
40 - - 40 40 40 40 40 40 40 

 
30 - - 30 30 30 30 30 30 30 

Missing Not at Random – Direct Relationship 
Weak 90 2.00 0.095 89 90 91 92 92 93 93 

 
80 1.15 0.095 78 79 81 82 83 85 86 

 
70 0.60 0.095 67 69 70 73 74 76 77 

 
60 0.17 0.095 57 59 62 64 66 67 70 

 
50 -0.25 0.095 46 49 51 53 55 58 60 

 
40 -0.65 0.095 36 39 41 44 45 48 50 

 
30 -1.10 0.095 27 29 31 33 35 37 39 

Strong 90 1.65 0.225 87 89 91 93 94 95 96 

 
80 0.85 0.225 75 79 82 85 88 90 92 

 
70 0.29 0.225 63 67 72 76 80 84 87 

 
60 -0.15 0.225 52 58 63 68 73 77 81 

 
50 -0.58 0.225 41 47 52 58 63 68 73 
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Table 4.4. (cont’d)  Specification for missing NIHSS models, including model parameters and 
estimated documentation rates in each category of NIHSS. 

 
Estimated NIHSS Documentation Rates 

Scenario Model Coefficients NIHSS Score Category 
Effect % Doc. Intercept Beta 0-2 3-5 6-10 11-15 16-20 21-25 25-42 

 
40 -1.45 0.225 23 27 32 36 42 47 53 

  30 -2.00 0.225 15 17 21 25 30 34 40 
Missing Not at Random – Inverse Relationship 

Weak 90 2.46 -0.095 92 91 90 89 88 87 86 

 
80 1.64 -0.095 83 81 79 78 77 74 73 

 
70 1.10 -0.095 73 71 70 67 65 64 61 

 
60 0.66 -0.095 64 61 60 57 54 53 50 

 
50 0.24 -0.095 54 51 49 47 44 42 38 

 
40 -0.16 -0.095 44 42 39 37 34 32 30 

 
30 0.60 -0.095 33 31 29 27 25 24 22 

Strong 90 2.85 -0.225 93 92 89 87 85 82 77 

 
80 2.02 -0.225 86 83 80 76 71 65 62 

 
70 1.47 -0.225 77 74 69 64 59 53 48 

 
60 1.01 -0.225 69 64 58 53 47 43 35 

 
50 0.58 -0.225 59 53 48 42 36 32 26 

 
40 0.17 -0.225 49 43 37 33 28 23 19 

  30 -0.28 -0.225 38 33 28 24 20 16 14 
Note: Shading represents the % rate of documentation at the patient-level determined by the specified missing 
data models (i.e. intercepts and beta coefficients). 
 

 Collectively, we simulated five models of NIHSS documentation, which includes one 

MCAR model and four MNAR models (direct-weak, direct-strong, inverse-weak, inverse-strong).  

Each model was repeated to illustrate seven overall rates of NIHSS documentation, 30% to 90% 

by 10%, and a fully documented dataset.  Finally, to determine the impact of hospital volume, 

we modified hospital patient volumes as n=100, 300, and 500.  In total, there were 5 

missingness models x 8 documentation rates x 3 hospital volumes = 120 simulations with S=500 

samples per simulation of N=100 hospitals.  In each permutation of missingness pattern, 

documentation rate, and hospital volume, hospitals were identified as “observed” outliers from 

their estimated hospital random intercept, and were rank-ordered based on calculated risk 

standardized mortality rates (RSMR).  The details on hospital outlier identification and RSMR 

profiling are outlined below. 
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Section 4 – Hospital Profiling Methodology 

At this point, we have generated data sets with fully observed NIHSS and missing NIHSS 

data based on different mechanisms of missing NIHSS data.  These datasets were then used to 

profile hospital-level RSMRs as is done in real-life datasets, by only including patients with 

complete documentation of NIHSS.  We utilized the hospital profiling methodology employed 

by CMS to calculate hospital 30-day ischemic stroke RSMRs, which employs a hierarchical 

logistic regression model.19,33  The hospital RSMRs were obtained as the ratio of predicted (P) to 

expected (E) mortality – or the P/E ratio – multiplied by the overall unadjusted mortality rate 

(~15% for 30-day ischemic stroke mortality).  The numerator of the P/E ratio is the predicted 

mortality in each hospital, given its case mix and hospital-specific deviation in mortality (i.e. 

hospital random intercept).  The denominator of the P/E ratio is the expected mortality in that 

hospital given the same case-mix if it had the mortality of the average hospital (i.e. hospital 

random intercept equal to 0).19,32  Hence, the predicted number is the number of expected 

mortalities in that “specific” hospital.52  A P/E ratio of >1 represents poorer hospital 

performance than expected, and a P/E ratio of <1 represents better hospital performance than 

expected.  The P/E ratio was then multiplied by the overall 30-day mortality rate (15%) to 

produce the hospital RSMR, which was subsequently rank-ordered from lowest (#1) to highest 

(#100) in each simulation scenario. 

Section 5 – Assessments of Profiling Accuracy Using the Simulated Data  

 The primary assessment of this study is to determine the accuracy of profiling (i.e. 

hospital RSMR rank order) under difference scenarios of missing data and hospital volume.  

Hospital RSMR rank-order is the primary method of profiling used in the CMS  Hospital Value-
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Based Purchasing Program (HVBP).6  We determined accuracy in three different ways.  First, we 

estimated the correlation between the true hospital rank-order (as defined during data 

generation) and the observed rank-order (as defined by estimated RSMRs).  Spearman rank 

correlation and Pearson correlation coefficients were both estimated between the true and 

observed performance rank order in each scenario of missing NIHSS data.  This approach 

estimates profiling accuracy on a continuous scale, as opposed to a binary categorization, which 

is done in the next assessment.  Again, because we know the hospital’s “true” performance, 

these correlations assess the validity of the RSMRs to accurately rank-order hospitals.  These 

data were generated for each scenario of missing NIHSS data, stratified by hospital stroke 

volume. 

Second, we assessed the accuracy based on the ability of the HLM to accurately identify 

high and low hospital performers on mortality.  We defined high/low performing hospitals as 

being in the top or bottom 5th percentile of rank order (i.e. 10% high/low performer prevalence) 

and 20th percentile of rank order (i.e. 40% high/low performer prevalence).  These 

categorizations of performance have been frequently used in previous research.53,108,109  A 

hospital is considered a true high/low performing hospital if the rank-ordered, assigned random 

intercept is in the top/bottom 5th or 20th percentiles.  We compared the true high/low 

performer status with the rank ordered RSMRs, which were similarly categorized.   

Because we simulated “true” performance, we are able to calculate the sensitivity (Se), 

specificity (Sp), and predictive value positive (PVP) and negative (PVN) of the HLM to correctly 

identify high/low performers.  Sensitivity represents the ability of the model to correctly classify 

a hospital as a high/low performer, given that it is in fact a true high/low performer.  Specificity 
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refers to the models ability to correctly classify non-high/low performer hospitals, given that 

they are not high/low performers.  The predictive value positive of the model represents the 

proportion of hospitals classified as high/low performers by the model which are known to be 

high/low performers.  Conversely, the predictive value negative is the proportion of hospitals 

classified by the model as non-high/low performers which are known to not be high/low 

performers.  These calculations (Table 4.5) were generated for each scenario of missingness 

and stratified by hospital stroke volume.   We plotted the average Se, Sp, PVP and PVN over all 

500 replications for each scenario of missing data, stratified by hospital stroke volume. 

Table 4.5.  Calculations for sensitivity (Se), specificity (Sp) and predictive value positive 
(PVP) and negative (PVN) for true vs. observed high/low performer classification. 

Observed High/Low 
Performer Status† 

True High/Low Performer Status* 
Calculation 

Yes No 

Yes True Positive (A) False Positive (B) PVP = [A / (A+B)] 

No False Negative (C) True Negative (D) PVN=[D / (C+D)] 

Calculation Se = [A / (A+C)] Sp = [D / (B+D)]  

Note:  High/low performers were defined as being in the top/bottom 5th percentile of rank-ordered 
performance or 20th percentile of rank-ordered performance 
* Determined from assigned hospital random intercept in data generation step (i.e. true performance) 
† Determined by the estimated hospital RSMR from the HLM (i.e. observed performance) 
 

 Lastly, we estimated the average absolute change in rank-order position relative to the 

hospitals true rank position in each scenario of prevalence and mechanism of missing NIHSS 

data.  In each sample (S=500), we calculated the absolute difference between the true hospital 

ranking, and observed hospital ranking from the rank-ordered RSMRs in each scenario of 

missing NIHSS.  Next, hospitals were categorized by quintile of their true hospital ranking (i.e. 1-

20, 21-40, 41-60, 61-80, and 81-100).  In each quintile, we calculated the average absolute 

difference between the true hospital ranking and observed hospital ranking for each scenario of 
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missing NIHSS data, averaged over the S=500 samples.  We then plotted the absolute average 

difference between true and observed rankings for each prevalence and mechanism of missing 

NIHSS data, stratified by the true quintile ranking and hospital stroke volume (n=100, 300, and 

500).   

Aim 3 – Results 

Accuracy of Hospital RSMR Rank-Order 

 The spearman rank correlations between true and estimated hospital performance can 

be seen in Figure 4.3.  Note that the mechanism of missing NIHSS data did not have an 

important effect relative to the effect of sample size as dictated by hospital stroke volume and 

NIHSS documentation.   In the low stroke volume hospitals, the Spearman rank correlation 

coefficient between assigned and estimated random intercepts was moderate at best (ρ=0.72) 

when NIHSS was fully documented.  As documentation decreased, the correlation fell to 

between ρ=0.52 and 0.47, depending on the mechanism of missing NIHSS data.  While some 

variation between mechanisms of missing NIHSS data was observed, at any given level of 

documentation the differences in correlations were at most 5% between the different 

mechanisms.  In moderate stroke volume hospitals, correlation was as high as ρ=0.87, but also 

fell as documentation reduced.  However, even at the lowest levels of documentation, there 

was moderate correlation between hospital random intercepts (ρ=0.70).  Correlation between 

rankings was high (ρ>0.80) in most scenarios of missing NIHSS data in large stroke volume 

hospitals.  Pearson correlation coefficients can be seen in Figure B.1, and were almost identical. 
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Figure 4.3.  Spearman rank correlation coefficients between true rankings and RSMR rankings 

as NIHSS documentation increases under different mechanisms of missing NIHSS data.  Results 

are stratified by hospital stroke volume. 

Accuracy of High/Low Performer Classification  

 In general, as documentation increases, the number of true positives and true negatives 

increase, and the number of false negatives and false positives decrease (thus both Se and Sp 

increase).  As hospital stroke volume increases, the number of true positives and negatives also 

increases, and the number of false positives and negatives decreases.  There are no substantial 

differences in classification between mechanisms of missing NIHSS data. 
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Figure 4.4.  Sensitivity of HLM to classify hospitals as high/low performers based on top/bottom 

5th (solid lines) and 20th (dashed lines) percentiles of mortality rank-order as documentation of 

NIHSS increases under different mechanisms of missing NIHSS data. Results are stratified by 

hospital stroke volume. 

The sensitivity of the hierarchical logistic regression model to classify high/low 

performer hospitals according to estimated RSMRs, given that they are truly a high/low 

performer hospital can be seen in Figure 4.4.   As documentation of NIHSS increases, sensitivity 

increases.  Also, sensitivity was substantially higher when classifying high/low performing 

hospitals based on the top/bottom 20th percentiles compared to the top/bottom 5th 

percentiles.  It should be noted that sensitivity is never greater than 80% in any scenario of 

missing NIHSS data or hospital volume.  Notably, when documentation was complete in low 

volume hospitals, sensitivity was still worse compared to moderate and high volume hospitals 
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at the lowest levels of NIHSS documentation (30%).  Differences in sensitivity between 

mechanisms of missing data was modest at each level of NIHSS documentation and hospital 

volume (<5%).   

 

Figure 4.5.  Specificity of HLM to classify hospitals as non-high/low performers based on 

top/bottom 5th (solid lines) and 20th (dashed lines) percentiles of mortality rank-order as 

documentation of NIHSS increases under different mechanisms of missing NIHSS data. Results 

are stratified by hospital stroke volume.  

Figure 4.5 illustrates the specificity of the hierarchical model to identify non-outlier 

performing hospitals (i.e. not high/low performers).  In contrast to sensitivity, the specificity of 

the HLM is much higher when classifying hospitals in the middle 90% (i.e., outliers are defined 

as the top/bottom 5th percentiles), and lower when using the middle 60% (i.e., outliers are 

defined as the top/bottom 20th percentiles.  When classifying hospitals in the top/bottom 5th 
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percentiles, specificity was greater than 90% in all combinations of documentation and hospital 

volume, with only modest reductions as documentation fell. More substantial improvements in 

specificity were observed as documentation increased when hospitals were classified using the 

top/bottom 20th percentiles.  Again, the mechanism of missing NIHSS data had little importance 

on specificity compared to the effect of sample size, as defined by hospital volume and NIHSS 

documentation.  Although, differences between mechanisms were greater when classifying 

hospitals based on top/bottom 20th percentiles compared to 5th percentiles. 

 

Figure 4.6.  Predictive value positive of HLM to classify hospitals as high/low performers based 

on top/bottom 5th (solid lines) and 20th (dashed lines) percentiles of mortality rank-order as 

documentation of NIHSS increases under different mechanisms of missing NIHSS data. Results 

are stratified by hospital stroke volume. 
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Figure 4.7.  Predictive value negative of HLM to classify hospitals as non-high/low performers 

based on top/bottom 5th (solid lines) and 20th (dashed lines) percentiles of mortality rank-order 

as documentation of NIHSS increases under different mechanisms of missing NIHSS data. 

Results are stratified by hospital stroke volume. 

Figures 4.6 and 4.7 show the predictive value positive (PVP) and negative (PVN) of the 

HLM to classify high/low performers, respectively.  Patterns and values of PVP were similar to 

values obtained for sensitivity, because we categorized high/low performance based on rank-

order cutoffs, the number of false positives and false negatives are essentially the same.  The 

same can be said for the similarity between PVN and specificity.  Briefly, PVP was greater when 

classifying hospitals based on top/bottom 20th percentiles compared to 5th percentiles, due to 

the greater prevalence of high/low performers.  Consequently, PVN was lower when classifying 

hospitals based on top/bottom 20th percentiles compared to 5th percentiles.  As documentation 
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of NIHSS increased, significant improvements in PVP and PVN were observed.  PVP and PVN 

were highest in high volume hospitals, and lowest in low volume hospitals.  Again, the 

mechanism of missing NIHSS data had modest impact on PVP and PVN.  

We note that the average hospital high/low performer classification (i.e. true/false 

positives, true/false negatives) for each prevalence and mechanism of missing NIHSS, stratified 

by hospital stroke volume can be seen in Table A.1 (top/bottom 5th percentiles) and Table A.2 

(top/bottom 20th percentiles).   

Absolute Change in Hospital RSMR Rankings 

 Figure 4.8 shows the estimated magnitude of absolute change in observed rankings 

relative to the true (known ranking) stratified by the quintile of true hospital ranking.  In 

general, the mechanism of missing NIHSS data did not have an effect, except at the lowest rates 

of NIHSS documentation.  In low stroke volume hospitals, observed hospital rankings of the 

lowest and highest quintile of true hospital rankings changed as much as 25 positions on 

average when documentation was 30%.  When documentation of NIHSS was complete, 

rankings of hospitals in the lowest and highest quintile still changed as many as 14 positions on 

average. It should be noticed that the results in Figure 4.7 are symmetrical in that they are the 

same for the 1st and 5th quintile, and 2nd and 4th quintile.  Low volume hospitals in the second 

and fourth quintile of true ranking changed on average between 24 and 18 positions when 

documentation was 30% and 100%, respectively.  Similar patterns were observed in moderate 

and large stroke volume hospitals, but the average change was smaller compared to low stroke 

volume hospitals.  At most, moderate volume hospitals changed as many as 14 to 25 positions 

on average in the lowest and highest quintiles of true ranking when documentation was at 30%, 
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and only changed by 8 positions on average when NIHSS was fully documented.  In large stroke 

volume hospitals, the average difference between true and observed hospital rankings was no 

more than 12 positions in the lowest and highest quintile in any scenario of missing NIHSS data.  

 

Figure 4.8.  Average absolute change in hospital RSMR rankings (# of positions) as NIHSS 

documentation increases under different mechanisms of missing NIHSS data.  Results are 

stratified by hospital size and quintile of true ranking. 
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Aim 3 – Discussion 

In this study, we explored how current methods used to profile hospitals on ischemic 

stroke mortality are susceptible to inaccuracies when an important risk adjustment variable is 

missing.  We imitated hospital-level rates of NIHSS documentation which are observed in the 

Michigan Stroke Registry, and theoretical mechanisms of missing NIHSS data motivated by 

previous analyses.  To understand the importance of hospital stroke volume in our assessment, 

we conducted simulations with hospital stroke volumes of n=100, 300 and 500 ischemic strokes 

per hospital.  Our main assessments were the ability of current methods to accurately rank-

order hospitals according to their estimated risk standardized mortality rate (RSMR), to 

correctly classify high/low performing hospitals, and to estimate the average change in hospital 

RSMRs in the presence of missing data. Our primary finding was that the mechanism by which 

NIHSS was missing did not have a meaningful impact on the accuracy of hospital profiling per 

se, and was trumped by the much larger impact of the sample size that was determined by the 

level of NIHSS documentation and hospital size. 

 We hypothesized that when NIHSS documentation was associated with stroke severity, 

i.e. missing not at random (MNAR), the accuracy of hospital profiling would diminish compared 

to a missing completely at random mechanism (MCAR).  On the whole, we found that the 

mechanism of missing NIHSS data did not lead to substantial differences in accuracy.  Any 

observed differences in Se/Sp/PVP/PVN or in the correlation coefficients were less than 5% or 

<ρ=0.05, respectively, and the RSMR rank-order between mechanisms was less than 4 positions 

on average in any scenario of missing data.  However, the mechanisms which were associated 

with inverse relationships (i.e. as NIHSS score increased, documentation decreased) 
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consistently had lower accuracy.  This may be because under this assumption of missing data, 

the more severe patients are missing more frequently, and so the exclusion of these patients 

would lower the observed mortality in the hospital.  As the rate of mortality and differences in 

mortality between hospitals reduce, accurate discrimination between hospitals becomes more 

problematic.  The fact that we did not find the mechanism of missing NIHSS data to be very 

important could be explained by the modest variation in NIHSS between hospitals (ICC=2%), 

which were observed in the MSR.  A necessary condition for a variable to have an meaningful 

effect in a risk adjustment model is that it should vary significantly between hospitals26, and this 

has yet to be substantiated in regards to NIHSS.  In Chapters 2, we found only modest 

differences in overall NIHSS at the hospital-level.  If greater between-hospital variation in NIHSS 

were observed, the mechanism by which NIHSS is missing may play a larger role.   

We found that reduced sample size – whether due to lower NIHSS documentation rate 

or low hospital case volume – resulted in poorer profiling accuracy, as depicted by substantially 

reduced rank correlation, and lower sensitivity and specificity.  I hypothesize that changes in 

profiling accuracy based on sample size can be attributed, in part, to changes in the shrinkage 

of estimated random intercepts in the HLM model, which is inversely related to sample 

size.110,111   Shrinkage is the phenomenon whereby estimated random intercepts in low volume 

hospital are “shrunken” toward the mean of all hospitals.12,19,112  This is done because small 

volume estimates are presumed to be imprecise, and shrinkage accounts for the imprecision by 

stabilizing these estimates to the overall mean.112  Because estimated random intercepts are 

utilized in calculating RSRMs, if there is greater shrinkage in low volume hospitals, subsequent 

RSMRs will also be “shrunken” toward the overall mortality rate.19,109,111,113 
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Figure 4.9.  Illustrating the effect of shrinkage on RSMR distribution as depicted by range (i.e. 

minimum/maximum, solid lines), 5th/95th percentiles (dotted lines), and 25th/75th percentiles 

(dashed lines) of RSMRs.  Estimates are the averages of 500 simulations for each of 100 

hospitals. 

To illustrate this phenomenon, we estimated the range (i.e. minimum, maximum), 

5th/95th percentiles, and 25th/75th percentiles of estimated RSMRs for the 100 hospitals 

averaged over all S=500 samples. (Figure 4.9)   The estimates are repeated for each scenario of 

NIHSS documentation (i.e. 30% to 100% by 10%) and hospital volume (n=100, n=300, and n=500 

patients). (Figure 4.9)  Because our previous findings did not support a significant role of 

missing NIHSS mechanism, here we only illustrate the MCAR mechanism.  As sample size 

decreases, the plausible range of RSMR values decreases.  Notably, while there are modest 

increases in the 25th/75th percentiles as documentation increases, there are much greater gains 

73 



 

in the observed range of RSMRs (i.e. minimum and maximum RSMRs) and 5th/95th percentiles.  

This illustrates the expansion of the RSMR distribution tails, indicating less shrinkage in 

estimated RSMRs.   

We believe that shrinkage due to small sample size, either through NIHSS 

documentation rate or low hospital volume, is largely driving the reduced accuracy in RSMR 

profiling. Let’s imagine that we are rank-ordering 100 hospital RSMRs, similar to our simulation 

methods.  When sample size is small, the RSMRs for these hospitals will be more compressed 

around the overall mortality rate due to shrinkage.  Any stochastic or random variability in 

these hospital RSMRs would lead to greater changes in profiling rank order, because they are 

more closely grouped together.  Conversely, when sample size is large the same number of 

hospital RSMRs (n= 100) are less “shrunken”, and so would be spread further apart.  In this 

situation the same stochastic or random variability will be less impactful on RSMR rank order 

because they are more distanced apart.  Thus, as sample size reduces, the accuracy of hospital 

performance profiling also reduces. A study by Silber et al. has illustrated the phenomenon of 

shrinkage in the context of Hospital Compare outlier performance by showing that the 

hierarchical model frequently underestimates poor performance in small hospitals with 

mortality rates moved close to the hospital average.112 

Small sample size has long been a thorn in the side of hospital profiling.112,114-116  Even 

when perfect risk adjustment is achieved, in typical clinical case volumes, much of the variation 

in performance measures is due to random noise, especially in centers with low volumes of 

cases (e.g. <100 annual ischemic strokes).109    An oft cited benefit of the hierarchical model is 

its ability to produce more valid provider-specific estimates in low volume providers.22,27  We 
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illustrate that even in the highest volume hospitals with complete documentation of NIHSS, the 

HLM approach still misses 2 of 10 hospitals in the top/bottom 5th percentiles of performance 

(Se=78%), and 3 of 10 (Se=68%) in low volume hospitals.  If a more conservative definition of 

high/low performer is used (top/bottom 20th percentile), specificity in low volume hospitals 

becomes equally troubling, with more than 1 in 4 hospitals falsely identified as a high/low 

performing hospital (Sp=73%).  The hierarchical model assumes that the variation in mortality 

left after adjusting for case-mix can be attributed to differences in hospital quality.18  This study 

shows a substantial amount of random noise unrelated to true hospital performance influences 

hospital profiling.    It is important to note that variation in our simulations cannot be attributed 

to confounding because our simulations achieved perfect case-mix adjustment.  Until this noise 

can be accounted for, the accuracy of hospital profiling will remain suspect. 

  How we should interpret these findings relative to the current policies regarding 

hospital profiling methods is less clear.  Low volume hospitals have frequently been shown to 

have poorer patient outcomes in ischemic stroke117-119 and other clinical contexts.120,121  As 

such, profiling methods should be robust enough to accurately capture performance outliers in 

small sample size scenarios.  We also showed that as you expand the definition of high/low 

performers to include more hospitals, sensitivity and PVP is increased, but at the expense of 

reduced specificity and PVN.   How you classify hospitals as high/low performers directly effects 

model sensitivity and specificity.  The cost of identifying more false positives or false negatives 

depends on your viewpoint as a healthcare provider or consumer, and no correct answer 

exists.122  If you are a patient or payer, such as CMS, it may be more beneficial to identify all the 

truly poor performing hospitals, at the risk of falsely identifying average or good performing 
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hospitals.  On the other hand, hospitals may lose much needed financial reimbursements or be 

unfairly stigmatized if they are incorrectly labeled as a poor performer. Ultimately, both 

providers and consumers must be made aware of the limitations of current profiling methods 

to facilitate better interpretation of hospital profiling results. 

 There are some limitations and caveats to our study that should be considered.  First, 

we simulated a 30-day mortality rate in our analysis, even though we did not have data on 30-

day outcomes.  However, current datasets which capture 30-day outcomes do not collect 

measures of stroke severity, so utilizing data with 30-day outcomes was not possible unless 

directly linked to administrative data.  With ICD-10 codes set to include NIHSS, evaluation of 

hospital profiling methods using administrative data which includes both 30-day outcomes and 

stroke severity could be conducted in the future.  Second, we did not obtain bootstrapped 

standard errors and 95% confidence intervals of individual hospital RSMRs to assess the 

accuracy of identifying statistical outliers, which is the approach used in Hospital Compare.12  

Future work should be done to test the accuracy of performance outliers using this method.  

Third, we did not compare our findings with the diagnostic ability of the current proposed CMS 

risk adjustment model, which is based on administrative data and does not include NIHSS.18  A 

direct comparison would help illustrate the benefits and limitations regarding the current CMS 

risk adjustment model, and that of a model that includes NIHSS with various amounts of 

missing data.  Fourth, while the models we specified to replicate missing NIHSS data were 

motivated by our analyses in Chapters 2 and 3, assessing the impact of missing data 

mechanisms rely on correct specification of the missing data model, which cannot be known 

with certainty.  Fifth, in imputing the total risk score for individual patients we assumed a linear 
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relationship between the patient NIHSS component and non-NIHSS variables (i.e. the sub-risk 

score).  This relationship may not be accurately captured, and should be validated using other 

data sources.  Finally, our simulation parameters were based off a hospital sample which did 

not have substantial variation in severity between hospitals (ICC = 2.2%).  Future studies should 

be conducted to assess how profiling accuracy is impacted when greater variation in stroke 

severity between hospitals is present, even though it remains unclear how much variation in 

severity actually exists. 

 In conclusion, the accuracy hospital profiling of ischemic stroke mortality is in large part 

a reflection of the sample size used to calculate hospital-level estimates, and sample size is 

influenced by both documentation rates of key risk adjustment variables and hospital case 

volume.  Our simulation work shows that the mechanism of NIHSS missingness which is 

associated with severity (MNAR) has only a minimal impact on hospital profiling accuracy. 

However, even when NIHSS was completely documented, significant limitations in the accuracy 

of current methods used to profile hospitals should be acknowledged, especially in low volume 

hospitals.  This study is innovative because it quantifies how much less accurate profiling 

becomes as missing data proliferates, and how accuracy interacts with hospital case volume.  It 

also has advantages in that by using simulation methods we were able to determine the true 

ranking of hospitals performance with certainty and had no residual confounding by case mix. 
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CHAPTER 5:  DISCUSSION AND FUTURE DIRECTIONS 

 The overall aim of this study was to quantify the accuracy of hospital profiling when an 

important risk adjustment variable is missing.  Specifically, using simulation based methods we 

investigated how hospital profiling based on ischemic stroke mortality is impacted when a 

strong predictor of mortality56, stroke severity (i.e. NIHSS), is frequently undocumented.53,54,56  

Furthermore, we investigated how the mechanism by which NIHSS is missing impacts profiling 

accuracy, and how our findings are modified by hospital ischemic stroke volume.  To test the 

underlying hypothesis that ischemic stroke patients with NIHSS documented are not a random 

sample of all patients, we conducted a series of analysis to identify patient- and hospital-level 

characteristics that are associated with NIHSS documentation in an existing clinical stroke 

registry (Michigan Stroke Registry).   Additionally, we utilized the Heckman Selection Model as a 

diagnostic tool to assess the presence and magnitude of selection bias in the clinical registry.   

Summary of Findings 

 Our analysis of the Michigan Stroke Registry (MSR) revealed a number of important 

findings.  In Chapter 2, we found that at the patient- and hospital-level, patients with less 

severe stroke were less likely to have NIHSS documented.  Beyond that, we found that 

documentation of NIHSS was a reflection of overall hospital-level documentation.  Roughly a 

quarter of the variation in documentation was attributed to the hospital in which the patient 

was treated (ICC=25%).  To illustrate the scale of this hospital-level variability, ICC’s associated 

with hospital-level mortality and readmissions measures are typically below 5%.23,24,123,124  This 

indicates that NIHSS documentation has both patient-level and hospital-level attributes; but  

78 



 

was not found to be accounted for by hospital characteristics such as annual stroke volume or 

Joint Commission primary stroke center status due to a lack of power at the hospital-level.   

Notably, patients whose stroke symptoms had resolved by arrival to the ER had one 

tenth the odds of NIHSS documentation compared to patients who were still symptomatic upon 

arrival.  Assuming that the absence of stroke symptoms is recorded with accuracy for these 

patients (who make up 6.5% of the registry) it would be reasonable to assume that these 

patients had an NIHSS of 0, which could be imputed into current registries with some 

confidence.  We also found that patients who were administered tPA had higher rates of NIHSS 

documentation compared to non-tPA patients, which has been previously suggested.66  If 

patients were not administered tPA because they missed the window for treatment, they may 

have worse outcomes compared to patients who received tPA.  Thus, excluding these patients 

because they are missing NIHSS may also bias hospital-level estimates of mortality. 

When we applied the Heckman Selection Model to the same MSR data in Chapter 3, we 

found as expected, evidence of selection bias in patients with documented NIHSS, although it 

was rather modest (correlation coefficient:  ρ = 0.11).  The positive correlation also indicates 

that as NIHSS increases (i.e. strokes are more severe), the probability of NIHSS documentation 

also increases.  We repeated the analysis in time periods with lower (documentation = 67% in 

2009-2010) and higher rates (documentation = 87% in 2010-2012) of NIHSS documentation to 

assess the impact of missing NIHSS data prevalence.  Selection bias increased marginally when 

documentation was lower; and conversely, when documentation was higher, selection bias 

decreased.  Together, these analyses support the hypothesis that patients with documented 
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NIHSS are not simply a random sample of all stroke patients at the patient- or hospital-level, 

and that subsequent hospital-level estimates using this sample may subsequently be biased.   

How selection bias at the patient-level translates to bias in hospital-level estimates is 

not clear, and was what originally motivated our study.  We employed computer simulations to 

estimate the accuracy of hospital profiling based on ischemic stroke mortality under various 

mechanisms and prevalences of missing NIHSS data.  Simulations were essential in this 

instance, because they allow us to assign a known (true) hospital-level mortality performance, 

which is impossible to determine in real-world conditions.29,82,108,109  Since true hospital 

performance is known, we can measure the diagnostic accuracy of profiling, using measures of 

as sensitivity, specificity, and predictive value positive and negative, by comparing true hospital 

performance with the performance estimated using current hospital profiling methods under 

various scenarios of data documentation.   

There are some other benefits to computer simulations that should be noted.  One 

benefit is that we employed risk adjustment models which were not subject to inadequate risk-

adjustment.108,109  This is because the fitted risk adjustment model was identical to the model 

used in the data generation process.  Consequently, any hospital misclassification cannot be 

attributed to residual confounding from unmeasured case-mix differences, but to random 

variation.  Simulations also allow one to explore a variety of scenarios to be developed in order 

to explore the modifying effect of other variables (such as hospital volume) and are ideal to 

conduct sensitivity analyses of underlying parameters and assumptions.125  But, simulation 

studies can be difficult to understand, which can lead to confusion when interpreting results 
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and making correct conclusions.126  They also rely on correct assumptions about real-world 

data, which should be justified at each step.125 

 The results from our simulation studies in Chapter 4 can be succinctly summarized as 

follows: 1.) the mechanism by which NIHSS is missing (i.e., MCAR, MNAR) plays only a minor 

role in the accuracy of profiling, 2.) because of its effect on sample size the NIHSS 

documentation rate (where cases with missing NIHSS data are deleted) has a substantial impact 

on the accuracy of profiling, and 3.) the relationship between NIHSS documentation and 

profiling accuracy was exacerbated by hospital ischemic stroke volume.  In sum, the mechanism 

by which NIHSS is missing is not as important in the context of profiling accuracy as is the 

amount that is missing, and in the size of hospitals in which it is missing.  This study illustrates 

fundamental limitations of the profiling method by showing how the underlying sample size has 

a profound effect on the accuracy of performance profiling. 

The first assessment in Chapter 4 was the ability of the hierarchical model to accurately 

estimate hospital rank order.  We compared the rank order of true hospital performance to the 

estimated rank order generated from the RSMR estimates.  This assesses the accuracy of 

profiling on a continuous scale, as opposed to the subsequent assessments, which 

dichotomized hospitals as either outliers (i.e., high/low performers) or not outliers based on 

arbitrary cut points.  We found that in moderate and high volume hospitals, correlation 

between these true and observed ranking was generally high (>0.80).  But, as documentation of 

NIHSS decreased, correlation between rankings also decreased, more markedly in moderate 

sized hospitals.  With perfect documentation, correlation between rankings in low volume 
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hospitals was moderate (ρ=0.72), but dropped to almost ρ=0.50 when documentation reduced 

to 30%.  The mechanism of missing NIHSS had negligible effect on the correlation coefficients. 

The next assessment in Chapter 4 was the ability of the hierarchical logistic model to 

correctly classify high/low performing hospitals, based on the true and estimated performance 

rank-order.  Two definitions of outlier hospitals were used; top/bottom 5th percentile and 

top/bottom 20th percentile hospitals.  We found that, in general, as documentation of NIHSS 

reduced, the model sensitivity, specificity, PVP, and PVN all reduced.  There was little variation 

in these measures between mechanism of missing NIHSS at a given level of documentation and 

hospital volume.  Sensitivity was never higher than 80% in any scenario, and as expected was 

much higher when categorizing hospitals in the top/bottom 20th percentiles compared to 

top/bottom 5th percentiles, because it is easier to classify hospitals as high/low performers 

when it is defined more broadly.  Conversely, specificity was much higher when categorizing 

hospitals into the top/bottom 5th percentiles.  Again, the mechanism of missing NIHSS data had 

only modest effects.  Similar effects were observed for PVP and PVN 

Our final analysis in Chapter 4 was to assess the magnitude of change between true 

performance rankings and rankings based on calculated hospital risk-standardized mortality 

rates (RSMRs).  We found that observed performance rank order (which ranged from 1 to 100 

in each simulation) could change significantly compared to the true performance rank order, 

and this was especially evident in low volume hospitals.  Changes in rankings between different 

mechanisms of missing NIHSS data were again only modest or almost non-existent.  Even with 

perfect NIHSS documentation and perfect case-mix adjustment, hospitals in the top and bottom 

quintile of true performance rankings changed on average 13 positions.  As documentation of 
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NIHSS reduced, the average difference between observed and true performance rank order 

increased to almost 24 positions in low volume hospitals in the top (1-20) and bottom (81-100) 

quintile of hospital true performance rankings.  While changes in position were not as volatile 

in moderate and high volume hospitals, hospitals still changed at least an average of 5 positions 

in the top and bottom quintile of true performance rankings.   

Again, these findings illustrate that random noise after risk adjustment negatively 

impacts hospital profiling, especially when sample size is low, due to shrinkage of RSMR point 

estimates towards the mean.  Previous work in the GWTG-Stroke population showed that 

including NIHSS in risk adjustment improved the model fit and reclassified a significant 

proportion of hospitals.53  However, more than half of ischemic stroke patients in GWTG-Stroke 

were excluded from this analysis because they did not have NIHSS documented.  We showed 

that at this rate of NIHSS documentation, hospital RSMR rankings could change on average 9-16 

positions in high volume hospitals, 12-18 positions in moderate volume hospitals, and 20-23 

positions in low volume hospitals due to random variation alone.  Given the great degree of 

inaccuracy at this level of reporting, significant changes in rankings are not unexpected. 

Limitations 

There are several limitations of this study.  First, our analysis used the Michigan Stroke 

Registry (MSR), which has data on a limited number of hospitals and may not be representative 

of all stroke patients.  A greater proportion of MSR patients go to teaching hospitals (93% vs. 

61%) and Joint Commission primary stroke center hospitals (78% vs. 65%) compared to patients 

in the national GWTG-Stroke registry.96  Thus, patients in the MSR may be more similar to each 

other compared to what may be seen in the GWTG-Stroke registry, and are likely different than 
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patients treated at all US hospitals.  A repetition of our simulations using parameters estimated 

from a more comprehensive dataset, such as the national GWTG-Stroke registry data linked 

with Medicare claims data, would be useful in generalizing our results to data used in CMS pay-

for-performance schemes.  Access to Medicare claims data would also allow for a direct 

comparison with the risk-adjustment model currently proposed to profile hospitals on ischemic 

stroke 30-day risk standardized mortality, which was not done in this study.18  Linking Medicare 

claims data to GWTG-Stroke registry data may also allow for an evaluation of both a model with 

and without NIHSS on the proposed 30-day risk standardized readmission measure for ischemic 

stroke.   

With regard to our simulations, there are other limitations to consider.  First, we 

simulated variation in patient- and hospital-level risk of mortality which reflects data observed 

in the MSR.  However, this variation was not substantial (ICC = 2.2%), and may not reflect what 

is observed in most hospitals.  Although this between-hospital variation in mortality is small, it 

is consistent with prior estimates in the literature which are typically <5%.23,24,123,124  Additional 

simulations should be conducted to reflect a greater between-hospital variation in risk, which 

may have important consequences on our findings.  We also did not examine the accuracy of 

profiling as reported by the Hospital Compare program, which identifies hospitals with better- 

or worse-than-expected mortality rates based on a statistical test of the estimated RSMRs 

relative to the average hospital.12  Future work should examine how missing data impacts the 

accuracy of statistical outlier identification as used by the Hospital Compare program.  

However, a previous study has already shown that the methods used in Hospital Compare to 

identify outlier hospitals significantly underestimates poor performance in low volume hospitals 
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due to the shrinkage phenomenon.112  Furthermore, the missing not at random (MNAR) 

mechanisms used in simulations were motivated by findings in Chapters 2 and 3, but may not 

represent the actual missing data mechanism.  Additional mechanisms, such as bimodal 

mechanisms or mechanisms related to other important covariates, should be explored to 

complement our analyses.  However, our findings suggest that the mechanism by which data is 

missing may have minimal impact on performance profiling. 

Including NIHSS in Risk Adjustment Models for Stroke Performance Measures 

Advocates for including NIHSS in risk adjustment models for ischemic stroke 

performance measures will be energized by its addition to ICD-10 coding in administrative 

data.127  Given its importance in patient-level outcome prediction56, the enthusiasm is 

warranted.  However, including it in risk adjustment models for hospital-level estimates of 

performance should be approached with caution because it is frequently undocumented in 

clinical registries.  How complete documentation of NIHSS will be in ICD-10 is unknown.  But, 

documentation of NIHSS has been improving in clinical registries, such as the Get With the 

Guidelines – Stroke national registry, where in recent years it has been as high as 70%.  It is 

likely that hospitals participating in clinical registries such as GWTG-Stroke represent a more 

engaged and trained subset of hospitals and a concerted effort has been made by the GWTG-

Stroke program to improve NIHSS documentation in participating hospitals.  Hence, it may be 

unreasonable to expect that NIHSS documentation in hospitals not involved in such programs 

would achieve similar levels as those seen in more recent years of the GWTG-Stroke.  Since our 

study has shown that hospital-level documentation of NIHSS is a significant driver of patient-

level documentation, and has tremendous impact on the accuracy of ischemic stroke hospital 
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profiling, eagerness to include NIHSS in risk adjustment should be tempered, until NIHSS has 

increased to an acceptable level, such as 80% or greater. 

  Our findings also showed that hospital-level NIHSS did not vary sufficiently between 

hospitals in our sample.  Little hospital-level variation of NIHSS was also illustrated in a study of 

VA hospitals.58  The rational for the addition of NIHSS as a risk adjustment variable is weakened 

if it does not vary sufficiently between hospitals to warrant inclusion.26  However, both the VA 

study and our study sample may not be representative of most hospitals.  While it has been 

suggested that hospitals which see more severe strokes – such as tertiary referral centers or 

Joint Commission primary stroke centers – may be at greater risk for misclassification if stroke 

severity is not included in risk adjustment26,48,59, little evidence has been presented to support 

that claim.   

Further research should be done to investigate the amount of between-hospital 

variation in stroke severity.  Since sufficient between-hospital variation in patient-level 

variables is a prerequisite for inclusion in risk adjustment models, understanding the extent of 

between-hospital variation may help guide decisions about the need to include stroke severity 

in models for ischemic stroke mortality and readmissions.  Analysis should also be done to 

understand if variation is driven by hospital-level characteristics, such as tertiary referral 

centers or Joint Commission primary stroke centers.  These characteristics may be able to serve 

as proxies for stroke severity, which are easier to obtain than measures of stroke severity on 

every patient.    

Simulation studies could be used to assess how modifying the variation in case-mix at 

the hospital level – particularly as it pertains to stroke severity – improves the accuracy of 
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hospital profiling.  The variation in case-mix in our simulations reflected observed differences in 

the MSR, but altering parameters of our simulation would allow us to investigate the impact of 

greater variation in case-mix between hospitals.  This could be achieved in two ways:  1.) by 

increasing the overall amount of variation in hospital-level case mix, and 2.) by increasing the 

proportion of case-mix which can be attributed to the hospital-level (i.e. intraclass correlation 

of case-mix). This analysis would illustrate how the presence of missing NIHSS data impacts 

hospital profiling when greater disparities in case-mix between hospitals are present. 

Critique on Current Profiling Methodologies 

 The analysis presented here highlights important drawbacks to current methods of 

hospital profiling in general.  Pay-for-performance models assume that profiling methods can 

accurately compare hospitals on predetermined performance measures after accounting for 

patient case-mix. 19,20  However, a growing body of literature suggests that current profiling 

methods are inadequate.  Low sample size is a well documented limitation of hospital 

profiling114-116, which is especially problematic in the context of stroke, given that low volume 

settings have been shown to have higher rates of mortality in ischemic stroke117-119 and in other 

clinical applications, such as surgical outcomes.120,121,128  Simulation studies have found that the 

accuracy of hospital report cards in case volumes typically seen in clinical settings is low, and 

further deteriorates in lower case volume hospitals.108,109   

Our analysis echoed these concerns, showing that profiling accuracy is inextricably 

linked with provider sample size.  By any measure of accuracy, the estimated RSMR from the 

HLM used to profile hospitals is less accurate as sample size reduces, either through hospital 

volume or missing data.  This is due to the effect of shrinkage in RSMR estimates toward the 
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mean when sample size is small, which was illustrated in Figure 4.9.  Even when documentation 

of NIHSS is 100%, our simulations show serious limitations in the accuracy of current profiling 

methods. Data in Table 5.1 illustrate the observed Se, Sp, PVP and PVN across the hospital 

volumes under the scenario of complete NIHSS documentation.  Even in these best case 

scenarios, when the definition of high/low performers is strict (i.e. top/bottom 5th percentiles), 

sensitivity and PVP are quite poor, while specificity and PVN are generally high.  If the definition 

of top/bottom performer is expanded to include more hospitals (i.e. changed from top/bottom 

5th percentile to 20th percentile), sensitivity and PVP increase, but at the expense of specificity 

and PVN. 

Table 5.1.  Diagnostic ability of hierarchical logistic model to identify hospital high/low 
performers when documentation of NIHSS is complete (i.e. no missing NIHSS data), 
stratified by definition of high/low performer and hospital stroke volume. 

 Top/Bottom 5th Percentiles Top/Bottom 20th Percentiles 

 Hospital Stroke Volume 

Diagnostic Measure n=100 n=300 n=500 n=100 n=300 n=500 

Sensitivity 41% 58% 67% 60% 73% 78% 

Specificity 94% 95% 90% 73% 82% 85% 

Predictive Value Positive 42% 59% 67% 60% 73% 78% 

Predictive Value Negative 94% 95% 96% 73% 82% 85% 

Note:  Diagnostic measures calculated using data from Table A.1 (top/bottom 5th percentiles) and Table A.2 
(top/bottom 20th percentiles) 
 

These findings illustrate the need to apply optimal decision making theory in order to 

guide hospital performance profiling benchmarks by placing relative values/costs on identifying 

false positive vs. false negative high/low performers.129,130   By making the definition of 

high/low performer more conservative, i.e. changing from top/bottom 5% to 20%, we 

substantially improved the sensitivity and PVP of HLM, but at the cost of specificity and PVN.  
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Austin, et al. found that decisions about the significance-level used to classify hospitals as 

performance outliers can lead to outlier designations which are more or less preferable to 

patients as opposed to providers, based on the values associated with false positive or false 

negative hospital outliers.122  Decisions should be made regarding which classification is more 

important, false negatives or false positives, and the potential economic impact of these 

decisions in the context of pay-for-performance incentive structures.   

Given that low hospital case volume will be omnipresent in any hospital profiling 

scheme, future research should explore solutions to improve the accuracy of performance 

profiling in these hospitals.  In addition to traditional frequentist methods, Bayesian methods 

can be used to provide further evidence that a hospital may indeed be a performance 

outlier.20,122,131,132  Longitudinally profiling hospital performance may also be useful, especially 

as data collection in hospitals becomes routine.133  Further simulation studies may also provide 

insight into how many years of data should be pooled to profile hospitals accurately, especially 

in the case of low volume hospitals.   

Although we used data from clinical registries for the simulations, our findings are 

equally relevant when considering the use of administrative data to profile hospitals.  

Administrative data has previously been shown to lack important prognostic indicators as 

compared to clinical datasets.22,134-136  Even if risk adjustment models are developed in 

administrative datasets with similar model fit compared to clinical models, coding and 

documentation inconsistencies between hospitals can threaten the validity of the hospital-level 

estimates.40  Krumholz, et al. outlined standards for using administrative data to profile 

hospitals, which outlines that data must be sufficiently high-quality and timely.22  We illustrated 
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how hospital-level performance profiling measures can be impacted when data are not 

sufficiently high quality, such as in the case of NIHSS.  A greater emphasis should be placed on 

the quality and completeness of data used in risk adjustment models, whether data from 

administrative sources or clinical registries are used. 

If current profiling methods are going to continue to use administrative data, solutions 

to missing or miscoded data are needed.  Missing data methods such as maximum likelihood 

estimation or multiple imputation may provide a solution to address frequently undocumented 

or miscoded data.  Multiple imputation has been shown to facilitate the identification of 

provider outlier status, but can be sensitive to the assumptions made about reasons for missing 

data.75  Our results show that the amount of missing data is more problematic than the 

mechanism by which it is missing.  Thus, any bias associated with imputing values using missing 

data methods, especially when data are MNAR, is probably outweighed by the gain in sample 

size.  Future research could use simulation methods to compare the accuracy of hospital-level 

estimates generated using imputation of missing data to those calculated by a complete case 

analysis that excludes observations with missing data. 

As mentioned in Chapter 1, mortality-based performance measures of mortality already 

suffer from a plethora of limitations, including the inability to accurately discriminate between 

“good” and “bad” hospitals39, the sensitivity of RSMRs to risk adjustment model specification41-

43, and that few deaths in hospitals may actually be preventable.44,45 Additionally, low variability 

in hospital-level performance measures between providers has been also shown to reduce the 

accuracy of hospital performance classification.137  In Hospital Compare – the Medicare hospital 

performance reporting system12 – hospitals in the top or bottom tier of performance have been 
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shown to be not statistically different from at least one hospital in the middle tier of 

performance, suggesting that side-by-side comparisons using publicly reported performance 

profiling measures may be misleading to consumers 138  Our research extends this observation 

by illustrating that profiling accuracy is quite low in many instances, and that calculated RSMRs 

are subject to a substantial amount of random noise, especially when sample size is low, either 

through low hospital volume or through missing data. 

Future Directions 

 We proposed a number of future directions as a result of our study, which can be 

summarized as follows.  First, a better understanding of hospital-level variation in stroke 

severity is needed to assess its utility as a risk-adjustment variable for hospital-level 

performance measures.  Simulation studies may also illustrate how much between-hospital 

variation in stroke severity (leading to case mix differences) is needed to impact hospital 

profiling accuracy.  Altering parameters in our simulations to mimic increased case-mix 

variation is also needed to understand its impact on our findings.  Second, obtaining simulation 

parameters from a more comprehensive dataset, such as the GWTG-Stroke registry, would 

improve the generalizability of our findings.  Linking this with claims data would allow us to 

compare an NIHSS risk-adjusted model with the current CMS model, obtain simulation 

parameters associated with 30-day outcomes, and evaluate the accuracy of the 30-day 

readmissions measures (RSRR) as well.  Third, if NIHSS is to be included in profiling, missing data 

methods (e.g. multiple imputation) should be explored to address the problem of missing data, 

and its impact on profiling accuracy.  Fourth, simulations should be done to obtain 

bootstrapped standard errors and 95% confidence intervals for estimated 30-day outcomes of 
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individual hospitals, to evaluate the accuracy of the CMS method to identify performance 

outliers as currently employed by the Hospital Compare program.12  Finally, we should explore 

other statistical methods such as decision making theory to guide outlier performance 

categorization, and Bayesian and longitudinal methods to assess their utility to accurately 

profile hospitals compared to the current HLM method.   

Conclusion 

In sum, there are significant concerns about the validity and reliability of current 

profiling methods which should be considered when developing policies which rely on accurate 

performance comparisons.  But, in spite of this evidence, healthcare stakeholders, such as the 

CMS, are doubling down on pay-for-performance models which are tied to performance 

profiling.  U.S. Secretary of Health and Human Services Sylvia Burwell announced that by 2018, 

90% of Medicare fee-for-services payments will be tied to quality or value139, which emphasizes 

that it is critical to have reliable and valid measures of quality and value.  Unless methods to 

compare hospital performance are improved, a substantial proportion of hospital could be 

unfairly punished for poor performance that may not actually be poor (i.e. low predictive value 

positive), and hospitals that are providing poor care may go undetected (i.e. low sensitivity or 

predictive value negative).  It is important to note that we are not advocating for the 

abandonment of pay-for-performance models or hospital profiling, but simply suggesting that 

intrinsic limitations to current methods should be realized, and further research should be 

conducted, such as in the outlined in the future directions section above, to create more robust 

profiling methodology. 
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Ultimately, hospital performance profiling should be one method in a larger repertoire 

of tools to assess hospital quality of care.  Healthcare is multidimensional and interdependent, 

and excelling in every category of hospital quality is important in its own right.  While statistical 

methodologies used to assess healthcare quality should continued to be improved upon, 

healthcare providers should strive to improve all aspects of care, rather than focusing on a 

handful of quality measures.  Thomas H. Lee astutely conveyed this notion in a recent 

editorial140 when he stated: “Reliability matters.  Safety matters.  Efficiency matters.  Patient 

experience matters.   All of these dimensions of performance are intertwined, and interact to 

define the quality of an institution’s care.”  
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CHAPTER 6:  SUMMARY 

 Pay-for-performance schemes, which are currently used as a model to improve the 

quality and value of care, rely on accurate comparisons of hospital performance, i.e. hospital 

profiling.  Proposed measures to profile hospitals on ischemic stroke mortality and 

readmissions at thirty days have been controversial because they lack a measure of stroke 

severity.  The National Institutes of Health Stroke Scale (NIHSS) is a commonly used measure of 

stroke severity that is highly predictive of patient outcomes; however, it is frequently missing in 

large scale clinical databases and is currently completely absent from administrative data.  With 

the announcement that NIHSS is to be included in ICD-10 administrative coding, there will be 

pressure to include it in risk adjustment models for ischemic stroke outcomes.  But, if the 

subsample of patients with documented NIHSS is a biased sample of ischemic stroke patients, 

there is the potential that hospital-level estimates of mortality may also be biased, but the 

extent of which is unknown. 

 The main contribution of this study is a quantification of the impact that missing data on 

an important risk adjustment variable has on the accuracy of hospital profiling.  We conclude 

that the accuracy of hospital profiling is strongly impacted by missing data, although this is not 

because the mechanism by which missing data occurs is important.  Rather, missing NIHSS data 

has an important effect on profiling because it results in a smaller “effective” hospital sample 

size, which has a much stronger effect on profiling accuracy due to the impact of shrinkage on 

estimated hospital random intercepts.  Moreover, this study also illustrates limitations of 

current profiling methods, even when perfect documentation and risk adjustment are achieved.  

It is noteworthy that documentation of NIHSS is driven by a combination of both patient-level 

94 



 

and hospital-level factors.  Furthermore, we note that hospital-level variation in actual NIHSS 

scores in our sample of hospitals is not substantial, which, if true, would lessen the rationale for 

including NIHSS in risk adjustment models.  These findings are important when considering 

covariates to be used in risk adjustment models, as well as the validity of profiling hospitals on 

ischemic stroke mortality, and other hospital-level performance measures.
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Appendix A:  Supplementary Tables 

Table A.1.  Average proportion (%) of hospital high/low performer classification for top/bottom 5th 
percentile of rank-order (true positive, false positive, true negative, false negative) for different 
mechanisms of missing NIHSS data, stratified by hospital stroke volume (n=100, 300, and 500). 

Mechanism of 
Missing NIHSS 

NIHSS 
Doc. Rate 

Average Hospital High/Low Performer Classification (%) 
n=100 n=300 n=500 

TP FN TN FP TP FN TN FP TP FN TN FP 

MCAR 

30 2.3 7.7 82.4 7.6 3.9 6.1 83.9 6.1 4.8 5.2 84.8 5.2 
40 2.8 7.2 82.8 7.2 4.4 5.6 84.4 5.6 5.2 4.8 85.2 4.8 
50 3.2 6.8 83.2 6.8 4.7 5.3 84.7 5.3 5.6 4.4 85.6 4.4 
60 3.3 6.7 83.3 6.7 5.1 4.9 85.1 4.9 5.9 4.2 85.9 4.2 
70 3.5 6.5 83.5 6.5 5.3 4.7 85.3 4.7 6.1 3.9 86.1 3.9 
80 3.8 6.2 83.8 6.2 5.6 4.4 85.6 4.4 6.4 3.6 86.4 3.6 
90 3.9 6.1 83.9 6.1 5.8 4.2 85.8 4.2 6.5 3.5 86.5 3.5 

100 4.2 5.8 84.2 5.8 5.9 4.1 85.9 4.1 6.7 3.3 86.7 3.3 

MNAR  
Direct – Weak 

30 2.4 7.6 82.5 7.5 4.1 5.9 84.1 5.9 4.9 5.1 84.9 5.1 
40 2.8 7.2 82.8 7.2 4.5 5.5 84.5 5.5 5.4 4.7 85.4 4.7 
50 3.1 6.9 83.1 6.9 4.9 5.1 84.9 5.1 5.7 4.3 85.7 4.3 
60 3.3 6.7 83.3 6.7 5.2 4.8 85.2 4.8 5.9 4.1 85.9 4.1 
70 3.6 6.4 83.6 6.4 5.4 4.6 85.4 4.6 6.3 3.7 86.3 3.7 
80 3.7 6.3 83.7 6.3 5.6 4.4 85.6 4.4 6.3 3.7 86.3 3.7 
90 3.9 6.1 83.9 6.1 5.8 4.2 85.8 4.2 6.5 3.5 86.5 3.5 

100 4.0 6.0 84.0 6.0 5.9 4.1 85.9 4.1 6.7 3.4 86.7 3.4 

MNAR 
Direct – Strong 

30 2.0 8.0 82.5 7.5 3.7 6.3 83.7 6.3 4.5 5.5 84.5 5.5 
40 2.6 7.4 82.7 7.3 4.2 5.8 84.2 5.8 5.1 4.9 85.1 4.9 
50 3.3 6.7 83.3 6.7 5.0 5.0 85.0 5.0 5.8 4.2 85.8 4.2 
60 3.4 6.6 83.4 6.6 5.3 4.7 85.3 4.7 6.0 4.0 86.0 4.0 
70 3.6 6.4 83.6 6.4 5.5 4.5 85.5 4.5 6.3 3.7 86.3 3.7 
80 3.7 6.3 83.7 6.3 5.6 4.4 85.6 4.4 6.4 3.6 86.4 3.6 
90 3.9 6.1 83.9 6.1 5.8 4.2 85.8 4.2 6.6 3.4 86.6 3.4 

100 4.0 6.0 84.0 6.0 5.9 4.1 85.9 4.1 6.7 3.4 86.7 3.4 

MNAR  
Inverse –  Weak 

30 2.3 7.7 82.6 7.4 3.8 6.2 83.8 6.2 4.7 5.3 84.7 5.3 
40 2.7 7.3 82.8 7.2 4.3 5.7 84.1 5.9 5.1 4.9 85.1 4.9 
50 3.0 7.0 83.0 7.0 4.6 5.4 84.6 5.4 5.6 4.4 85.6 4.4 
60 3.3 6.7 83.3 6.7 4.9 5.1 84.9 5.1 5.9 4.1 85.9 4.1 
70 3.5 6.5 83.5 6.5 5.3 4.7 85.3 4.7 6.1 3.9 86.1 3.9 
80 3.8 6.2 83.8 6.2 5.5 4.5 85.5 4.5 6.3 3.7 86.3 3.7 
90 4.0 6.0 84.0 6.0 5.6 4.4 85.6 4.4 6.5 3.5 86.5 3.5 

100 4.1 5.9 84.1 5.9 5.8 4.2 85.8 4.2 6.6 3.4 86.6 3.4 

MNAR  
Inverse – Strong  

30 2.2 7.8 82.6 7.4 3.7 6.3 83.7 6.3 4.5 5.5 84.5 5.5 
40 2.5 7.5 82.7 7.3 4.1 5.9 84.1 5.9 5.1 4.9 85.1 4.9 
50 2.8 7.2 82.8 7.2 4.5 5.5 84.5 5.5 5.5 4.5 85.5 4.5 
60 3.2 6.8 83.2 6.8 4.9 5.1 84.9 5.1 5.7 4.3 85.7 4.3 
70 3.4 6.6 83.4 6.6 5.1 4.9 85.1 4.9 6.0 4.0 86.0 4.0 
80 3.8 6.2 83.8 6.2 5.5 4.5 85.5 4.5 6.2 3.8 86.2 3.8 
90 3.9 6.1 83.9 6.1 5.6 4.4 85.6 4.4 6.5 3.5 86.5 3.5 

100 4.1 5.9 84.1 5.9 5.9 4.1 85.9 4.1 6.6 3.4 86.6 3.4 
Abbreviations:  MCAR = missing completely at random, MNAR = missing not at random, Doc. = documentation, TP  
= true positive, FP = false positive, TN = true negative, FN = false negative 
Note:  Sensitivity = TP/(TP+FN), Specificity = TN/(TN+FP), PVP = TP/(TP+FP), PVN = TN/(TN+FN) 
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Table A.2.  Average proportion (%) of hospital high/low performer classification for top/bottom 20th 
percentile of rank-order (true positive, false positive, true negative, false negative) for different 
mechanisms of missing NIHSS data, stratified by hospital stroke volume (n=100, 300, and 500). 

Mechanism 
of Missing 

NIHSS 

NIHSS 
Doc. 
Rate 

Average Hospital High/Low Performer Classification (%) 
n=100 n=300 n=500 

TP FN TN FP TP FN TN FP TP FN TN FP 

MCAR 

30 19.1 20.9 39.4 20.6 23.4 16.6 43.4 16.6 25.9 14.1 45.9 14.1 
40 20.1 19.9 40.2 19.8 24.7 15.3 44.7 15.3 27.4 12.6 47.4 12.6 
50 20.9 19.1 41.1 18.9 25.8 14.2 45.8 14.2 28.3 11.7 48.3 11.7 
60 21.5 18.5 41.5 18.5 26.7 13.3 46.7 13.3 29.1 11.0 49.1 11.0 
70 22.2 17.8 42.2 17.8 27.3 12.7 47.3 12.7 29.8 10.2 49.8 10.2 
80 22.9 17.1 42.9 17.1 28.0 12.0 48.0 12.0 30.3 9.7 50.3 9.7 
90 23.5 16.5 43.5 16.5 28.6 11.4 48.6 11.4 30.9 9.1 50.9 9.1 

100 23.9 16.1 43.9 16.1 29.1 10.9 49.1 10.9 31.2 8.8 51.2 8.8 

MNAR  
Direct – Weak 

30 19.4 20.6 39.7 20.3 23.8 16.2 43.8 16.2 26.4 13.6 46.4 13.6 
40 20.5 19.5 40.6 19.4 25.0 15.0 45.0 15.0 27.6 12.4 47.6 12.4 
50 21.3 18.7 41.4 18.6 26.1 13.9 46.1 13.9 28.5 11.5 48.5 11.5 
60 21.9 18.1 41.9 18.1 26.9 13.1 46.9 13.1 29.4 10.6 49.4 10.6 
70 22.6 17.4 42.6 17.4 27.6 12.4 47.6 12.4 30.0 10.0 50.0 10.0 
80 23.1 16.9 43.1 16.9 28.1 11.9 48.1 11.9 30.5 9.5 50.5 9.5 
90 23.7 16.3 43.7 16.3 28.6 11.4 48.6 11.4 30.8 9.2 50.8 9.2 

100 24.1 15.9 44.1 15.9 29.0 11.0 49.0 11.0 31.2 8.8 51.2 8.8 

MNAR 
Direct – Strong 

30 18.1 21.9 39.8 20.2 22.6 17.4 42.6 17.4 25.0 15.0 45.0 15.0 
40 19.7 20.3 39.9 20.1 24.4 15.6 44.4 15.6 26.8 13.2 46.8 13.2 
50 21.6 18.4 41.6 18.4 26.5 13.5 46.5 13.5 29.0 11.0 49.0 11.0 
60 22.2 17.8 42.2 17.8 27.4 12.6 47.4 12.6 29.6 10.4 49.6 10.4 
70 22.8 17.2 42.8 17.2 27.8 12.2 47.8 12.2 30.1 9.9 50.1 9.9 
80 23.2 16.8 43.2 16.8 28.2 11.8 48.2 11.8 30.6 9.4 50.6 9.4 
90 23.7 16.3 43.7 16.3 28.6 11.4 48.6 11.4 30.9 9.1 50.9 9.1 

100 24.1 15.9 44.1 15.9 29.0 11.0 49.0 11.0 31.2 8.8 51.2 8.8 

MNAR  
Inverse –  Weak 

30 18.6 21.4 39.8 20.2 23.3 16.7 43.3 16.7 25.5 14.5 45.5 14.5 
40 20.0 20.0 40.4 19.6 24.5 15.5 44.4 15.7 27.0 13.0 47.0 13.0 
50 20.7 19.3 40.7 19.3 25.5 14.5 45.5 14.5 28.1 11.9 48.1 11.9 
60 21.6 18.4 41.6 18.4 26.6 13.4 46.6 13.4 28.9 11.1 48.9 11.1 
70 22.3 17.7 42.3 17.7 27.3 12.7 47.3 12.7 29.6 10.4 49.6 10.4 
80 23.1 16.9 43.1 16.9 28.0 12.0 48.0 12.0 30.3 9.7 50.3 9.7 
90 23.4 16.6 43.4 16.6 28.5 11.5 48.5 11.5 30.8 9.2 50.8 9.2 

100 24.0 16.0 44.0 16.0 29.1 10.9 49.1 10.9 31.3 8.7 51.3 8.7 
MNAR  

Inverse – Strong  30 17.8 22.2 39.7 20.3 22.7 17.3 42.7 17.3 24.9 15.1 44.9 15.1 

 
40 19.5 20.5 40.2 19.8 24.0 16.0 44.0 16.0 26.6 13.4 46.6 13.4 

 
50 20.5 19.5 40.5 19.5 25.2 14.8 45.2 14.8 27.7 12.3 47.7 12.3 

 
60 21.5 18.5 41.5 18.5 26.1 13.9 46.1 13.9 28.7 11.3 48.7 11.3 

 
70 22.0 18.0 42.0 18.0 27.0 13.0 47.0 13.0 29.5 10.5 49.5 10.5 

 
80 22.6 17.4 42.6 17.4 28.0 12.0 48.0 12.0 30.3 9.7 50.3 9.7 

 
90 23.5 16.5 43.5 16.5 28.6 11.4 48.6 11.4 30.6 9.4 50.6 9.4 

 
100 24.0 16.0 44.0 16.0 29.2 10.8 49.2 10.8 31.3 8.7 51.3 8.7 

Abbreviations:  MCAR = missing completely at random, MNAR = missing not at random, Doc. = documentation, 
TP  = true positive, FP = false positive, TN = true negative, FN = false negative 
Note:  Sensitivity = TP/(TP+FN), Specificity = TN/(TN+FP), PVP = TP/(TP+FP), PVN = TN/(TN+FN) 
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Table A.3.  Average absolute change in hospital RMSR Rankings (# of positions) in different scenarios of missing 
NIHSS data, stratified by quintile of true hospital ranking and hospital stroke volume (n=100, 300, and 500). 

Mechanism of 
Missing NIHSS 

NIHSS 
Doc. Rate 

Average Absolute Change Between True and Observed Rankings (# of Positions) 

n=100 n=300 n=500 

1Q 2Q 3Q 4Q 5Q 1Q 2Q 3Q 4Q 5Q 1Q 2Q 3Q 4Q 5Q 

MCAR 

30 23.4 23.0 22.7 23.4 21.8 15.1 18.5 19.2 18.6 13.8 11.7 16.2 17.0 15.8 10.5 
40 21.3 21.7 22.0 22.0 19.5 13.2 17.3 18.0 17.3 12.0 10.2 14.8 15.7 14.4 9.0 
50 19.5 20.9 21.2 21.1 18.0 11.9 16.1 17.0 15.9 10.7 9.0 13.8 14.7 13.2 8.1 
60 18.1 20.4 21.1 20.6 16.5 10.6 15.2 16.2 14.9 9.7 8.2 12.9 13.8 12.4 7.3 
70 17.0 19.7 20.4 19.7 15.6 10.0 14.5 15.4 14.2 8.9 7.7 12.2 13.0 11.6 6.7 
80 16.2 18.9 19.9 19.2 14.4 9.3 13.7 14.7 13.6 8.3 7.1 11.5 12.4 10.9 6.2 
90 15.3 18.7 19.4 18.6 13.6 8.7 13.2 14.3 13.0 7.7 6.7 11.0 11.9 10.4 5.8 

100 14.6 18.1 19.0 18.0 13.0 8.3 12.7 13.7 12.4 7.3 6.3 10.5 11.5 10.0 5.5 

MNAR 
Direct – Weak 

30 22.4 22.9 22.3 22.6 21.3 14.4 18.1 19.0 18.2 13.2 11.3 15.6 16.5 15.5 10.2 
40 20.3 21.8 21.5 21.9 19.1 12.7 16.9 17.5 16.7 11.6 9.8 14.1 15.5 14.1 8.9 
50 18.7 20.8 21.1 20.9 17.3 11.3 16.0 16.6 15.5 10.2 8.9 13.3 14.2 13.1 7.9 
60 17.6 20.3 20.5 20.3 16.1 10.5 15.0 16.0 14.6 9.4 8.2 12.4 13.5 12.3 7.1 
70 16.5 19.8 20.0 19.7 15.1 9.8 14.4 15.3 14.1 8.7 7.7 11.8 12.9 11.5 6.6 
80 15.7 19.2 19.7 19.2 14.3 9.2 13.9 14.6 13.4 8.2 7.1 11.3 12.2 11.0 6.2 
90 14.9 18.7 19.1 18.5 13.6 8.6 13.2 14.1 12.8 7.6 6.7 10.8 11.7 10.5 5.8 

100 14.3 18.2 18.8 18.0 12.9 8.3 12.9 13.7 12.4 7.3 6.4 10.4 11.3 10.1 5.6 

MNAR 
Direct – Strong 

30 24.7 23.6 22.4 23.5 24.0 16.2 19.3 20.0 19.6 15.0 12.7 16.8 17.8 16.8 12.0 
40 21.6 22.4 22.0 22.4 20.6 13.6 17.6 18.3 17.7 12.4 10.7 15.0 16.2 15.0 9.8 
50 18.3 20.8 20.8 20.9 17.0 11.0 15.5 16.3 15.4 9.9 8.5 13.0 13.9 12.6 7.7 
60 17.1 20.1 20.3 20.1 15.7 10.2 14.7 15.6 14.4 9.1 7.9 12.2 13.2 12.0 6.9 
70 16.3 19.5 20.0 19.4 15.0 9.5 14.2 14.9 13.7 8.5 7.3 11.6 12.7 11.4 6.5 
80 15.5 19.0 19.4 18.8 14.2 9.0 13.6 14.6 13.3 8.1 7.0 11.1 12.2 10.8 6.1 
90 14.8 18.6 19.0 18.5 13.5 8.6 13.3 14.1 12.9 7.6 6.7 10.7 11.7 10.4 5.8 

100 14.3 18.2 18.8 18.0 12.9 8.3 12.9 13.7 12.4 7.3 6.4 10.4 11.3 10.1 5.6 

MNAR 
Indirect – Weak 

30 23.9 23.1 22.4 23.5 22.6 15.4 18.7 19.5 18.9 14.2 12.4 16.3 17.3 16.5 11.0 
40 21.4 21.8 21.7 22.1 20.2 13.7 17.4 18.4 17.6 12.2 10.4 15.2 16.1 14.9 9.6 
50 19.7 21.1 21.6 21.5 18.2 12.2 16.6 17.1 16.2 11.0 9.3 14.0 15.0 13.7 8.3 
60 18.1 20.7 20.8 20.7 16.7 11.2 15.5 16.1 15.2 9.9 8.4 13.1 14.0 12.7 7.5 
70 17.0 19.8 20.2 20.1 15.5 10.3 14.7 15.5 14.5 9.0 7.8 12.2 13.2 11.7 6.9 
80 15.8 19.2 19.7 19.2 14.5 9.4 13.9 14.9 13.7 8.4 7.1 11.5 12.5 11.2 6.3 
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Table A.3. (cont’d)  Average absolute change in hospital RMSR Rankings (# of positions) in different scenarios of 
missing NIHSS data, stratified by quintile of true hospital ranking and hospital stroke volume (n=100, 300, and 500). 

Mechanism of 
Missing NIHSS 

NIHSS 
Doc. Rate 

Average Absolute Change Between True and Observed Rankings (# of Positions) 
n=100 n=300 n=500 

1Q 2Q 3Q 1Q 2Q 3Q 1Q 2Q 3Q 1Q 2Q 3Q 1Q 2Q 3Q 
MNAR 

Indirect – Weak 
90 15.1 18.7 19.1 18.7 13.7 8.9 13.3 14.2 13.1 7.8 6.7 11.0 12.0 10.6 5.9 

100 14.3 18.1 18.6 18.1 12.9 8.3 12.8 13.7 12.6 7.4 6.3 10.5 11.4 10.1 5.6 

MNAR 
Indirect – Strong 

30 24.7 23.3 22.3 23.6 23.6 16.2 19.4 19.7 19.4 14.9 12.8 17.0 18.0 16.8 11.7 
40 22.3 22.4 22.0 22.7 20.9 14.3 18.0 18.6 17.8 12.9 11.1 15.6 16.6 15.3 9.9 
50 20.3 21.8 21.8 21.8 18.8 12.5 16.8 17.7 16.7 11.5 9.9 14.4 15.4 14.1 8.6 
60 18.7 20.7 21.0 20.7 17.1 11.6 15.6 16.8 15.6 10.2 8.9 13.4 14.3 13.0 7.8 
70 17.4 20.2 20.3 20.2 15.9 10.5 14.8 16.0 14.6 9.3 7.9 12.4 13.6 12.1 7.0 
80 16.4 19.4 19.8 19.4 14.8 9.7 14.0 15.1 13.8 8.5 7.2 11.7 12.7 11.4 6.4 
90 15.3 18.6 19.2 18.8 13.7 8.9 13.4 14.4 13.1 7.9 6.8 11.1 12.1 10.8 6.0 

100 14.3 18.1 18.6 18.1 12.9 8.2 12.7 13.7 12.4 7.4 6.3 10.5 11.4 10.1 5.6 
Quintiles: 1Q:1-20, 2Q: 21-40, 3Q: 41-60, 4Q: 61-80, 5Q: 81-100 
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Appendix B:  Supplementary Figures 

 

Figure B.1.  Pearson correlation coefficients between true rankings and RSMR rankings as NIHSS 

documentation increases under different mechanisms of missing NIHSS data.  Results are 

stratified by hospital stroke volume. 
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Appendix C:  IRB Determination 
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Appendix D:  Example Data Generation SAS Code 

/**************************************************************************** 
Title: Data Generation for Simulation Modeling 
Date: 11/10/14 
Descr.: SAS code to generate data that is similar in structure to the 
Michigan Stroke Registry (MSR).  Does not include changes in Risk score 
distribution as noted by the primary stroke center status.  Does include 
differences in missing NIHSS frequency 
****************************************************************************/ 
/* Suppress log - nonotes=no log statements, notes=log statements */ 
options nonotes; 
 
libname sim "L:\MASCOTS\Mike\Dissertation\Analysis\Simulation Runs"; 
 
/* Set # of samples to run (S) and Hospitals (M) per sample */  
%Let S=500; 
%Let M=100; 
 
data init; 
call streaminit(02052015); 
 do Sampleid = 1 to &S ; 
 /* Number of Patients per Hospital */ 
 do hospid = 1 to &M; 
 /* b0 --> Assigned hospital random intercept "true ranking" */ 
 b0 = rand("Normal", 0, sqrt(0.13)); 
 do vol = 500; 
  hospSRS = rand("Normal", 0, sqrt(1.5)); 
  do rep = 1 to vol;   
   /* SRS = Sub-risk score */ 
   ptSRS = rand("Normal", 0, sqrt(68.0)); 
   muSRS = ptsrs + hospSRS; 
   SRS = 21.4 + muSRS;  
   output; 
  end; 
 end; 
 end; 
 end; 
run; 
 
data init; 
 set init; 
 PatID = _N_; 
 if SRS<0 then delete; if SRS>44 then delete;  
 
 /* Generate NIHSS Categories and RS weights from Eta - based on ordinal  
 model cut points. Note:  To change frequency of categories, adjust cut  
 points as necessary */ 
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 /* NIHSS */ 
 eps = rand("Normal", 0, 1); 
 eta = -0.050*SRS + eps;  
 if eta>=-0.63 then nih=1;  if nih=1 then rsnih=0; 
 if -0.63> eta >=-1.26 then nih=2; if nih=2 then rsnih=10; 
 if -1.26> eta >=-1.79 then nih=3; if nih=3 then rsnih=21; 
 if -1.79> eta >=-2.16 then nih=4; if nih=4 then rsnih=37; 
 if -2.16> eta >=-2.55 then nih=5; if nih=5 then rsnih=48; 
 if -2.55> eta >=-2.98 then nih=6; if nih=6 then rsnih=56; 
 if eta<-2.98 then nih=7;  if nih=7 then rsnih=65; 
 
 /* Total Risk Score (TRS) and probability from algorithm calculated */ 
 TRS = SRS + rsNIH; 
 logitphat = -4.4 + 0.054*trs + b0; 
 phat = exp(logitphat) / (1 + exp(logitphat)  ); 
 
 /* Calc of Patient Mortality - use parameters from registry model*/ 
 died = rand("Bernoulli", phat); 
 
 drop hospsrs ptsrs musrs eta eps; 
 do doc=30 to 100 by 10; 
  output; 
 end; 
run; 
 
data Miss;  
 set init; 
  
 /* Missingness Scenario */ 
 
 /* MCAR */ 
 /*if doc=100 then obs=rand("Bernoulli", 1.00); 
 if doc=90 then obs=rand("Bernoulli", 0.90); 
 if doc=80 then obs=rand("Bernoulli", 0.80); 
 if doc=70 then obs=rand("Bernoulli", 0.70); 
 if doc=60 then obs=rand("Bernoulli", 0.60); 
 if doc=50 then obs=rand("Bernoulli", 0.50); 
 if doc=40 then obs=rand("Bernoulli", 0.40); 
 if doc=30 then obs=rand("Bernoulli", 0.30);*/ 
 
 
if doc=100 then obslow=1; 
if doc=90 then obslow=rand("Bernoulli", 1/(1+exp(-(2.00 + .095*nih))));  
if doc=80 then obslow=rand("Bernoulli", 1/(1+exp(-(1.15 + .095*nih))));  
if doc=70 then obslow=rand("Bernoulli", 1/(1+exp(-(0.60 + .095*nih))));  
if doc=60 then obslow=rand("Bernoulli", 1/(1+exp(-(0.17 + .095*nih))));  
if doc=50 then obslow=rand("Bernoulli", 1/(1+exp(-(-0.25 + 0.095*nih))));  
if doc=40 then obslow=rand("Bernoulli", 1/(1+exp(-(-0.65 + 0.095*nih))));  
if doc=30 then obslow=rand("Bernoulli", 1/(1+exp(-(-1.10 + 0.095*nih)))); 
if doc=100 then obshigh=1; 
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if doc=90 then obshigh=rand("Bernoulli", 1/(1+exp(-(1.65 + 0.225*nih))));  
if doc=80 then obshigh=rand("Bernoulli", 1/(1+exp(-(0.85 + 0.225*nih))));  
if doc=70 then obshigh=rand("Bernoulli", 1/(1+exp(-(0.29 + 0.225*nih))));  
if doc=60 then obshigh=rand("Bernoulli", 1/(1+exp(-(-0.15 + 0.225*nih))));  
if doc=50 then obshigh=rand("Bernoulli", 1/(1+exp(-(-0.58 + 0.225*nih))));  
if doc=40 then obshigh=rand("Bernoulli", 1/(1+exp(-(-1.45 + 0.225*nih))));  
if doc=30 then obshigh=rand("Bernoulli", 1/(1+exp(-(-2.00 + 0.225*nih)))); 
 
run;  
proc sort data=miss; by doc sampleid; run; 
 
 
* Step 0: Import data set.  The dataset "original" will be used throughout 
the analysis as necessary, no need to change the name of the variable.  Also, 
create hospid variable based on whatever hospital id is being used in your 
data.  This dataset uses the outcome of "died" as binary a outcome (died=1, 
alive=0).  Change outcome as necessary, but be sure that event=1 for the 
analysis.  This analysis uses a single risk score variable, x1, as the 
independent predictor, but more can be inserted as needed.; 
 
/*******P/E Method - Hierarchical Logist Regression Model ***************/ 
/* LOW */ 
* Step 1:  Calculate predicted probability of mortality.  NOTE: This 
probability includes hospital random effect in the calculation. (i.e. blup 
statement); 
 
ods trace on; 
ods select solutionr /*parameterestimates*/ ; 
title "Model for P/E Ratio Rankings"; 
proc glimmix data=miss initglm  ; 
 where obslow=1; 
 by doc SampleID; 
 class hospid; 
 model died(event='1') = TRS / dist=binary link=logit ddfm=bw ; 
 random int / subject=hospid s; 
 nloptions tech=nrridg; 
 output out=gmxout1 pred(blup ilink)=phatpred pred(noblup ilink)=phatexp 
; 
 ods output "Solution for Random Effects"=solutionr  

/*"Solutions for Fixed Effects"=param*/; 
run; 
 
data solutionr; 
 set solutionr; 
 newvar=compress(subject,'hospid '); 
 hospid=newvar*1; 
 drop newvar subject effect;; 
run; 
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* Step 2:  Calculate predicted, expected and observed deaths for each 
hospital. This is done by summing the predicted probability, expected 
probability, and observed deaths for each patient in the hospital.; 
 
proc means data=gmxout1 noprint; 
 by doc SampleID hospid;  
 output out=PE sum(phatpred)=pred sum(phatexp)=exp sum(died)=obsdied  
  mean(b0)=b0 ; 
run; 
 
* Step 3:  Calculate: PMR/EMR, P/E ratio, SMR-P/E, OMR/EMR, O/E ratio, SMR-
O/E, observed hospital random intercept and outlier status; 
data PElow; 
 merge PE solutionr; 
 by doc sampleid hospid; 
 pmr=pred/_FREQ_*100; 
 emr=exp/_FREQ_*100; 
 PEratio=pmr/emr; 
 SMRPE=15*peratio; 
 omr=obsdied/_freq_*100; 
 OEratio=omr/emr;       
 SMROE=15*oeratio; 
 hosp=put(hospid, 3.); 
 obsb0=estimate; 
 drop _type_ df estimate;  
run; 
 
/* Rankings of Hospitals */ 
title "True rankings"; 
proc rank data=pelow out=pelowrank; 
 by doc sampleid; 
 var b0; 
 ranks b0rank; 
run; 
 
title "Observed RI Hospital rankings"; 
proc rank data=pelowrank out=pelowrank;      
 by doc sampleid; 
 var obsb0;   
 ranks obsb0rank; 
run; 
 
 
 
title "RSMR - P/E rankings"; 
proc rank data=pelowrank out=pelowrank; 
 by doc sampleid; 
 var SMRPE; 
 ranks SMRPErank; 
run; 
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title "RSMR - O/E rankings"; 
proc rank data=pelowrank out=pelowrank; 
 by doc sampleid; 
 var SMROE; 
 ranks SMROErank; 
run; 
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Appendix E:  Example Simulation Assessment SAS Code 

 
/********* Assessment of Observed v True Random Intercepts ****************/ 
 
/* Se, Sp, PVP, PVN for True Outlier status */ 
proc means data=pemain2 noprint; 
 class size mechanism doc sampleid; 
 output out=means3 sum(tp5rank)=tp5rank sum(tn5rank)=tn5rank  
   sum(fn5rank)=fn5rank sum(fp5rank)=fp5rank  
   sum(tp20rank)=tp20rank sum(tn20rank)=tn20rank 
   sum(fn20rank)=fn20rank sum(fp20rank)=fp20rank  
   sum(pe20)=pe20 sum(pe5)=pe5; 
run; 
data means4; 
 set means3; 
 if _type_ ne 15 then delete; 
 Se5=(tp5rank/(tp5rank+fn5rank))*100; 
 Se20=(tp20rank/(tp20rank+fn20rank))*100; 
 Sp5=(tn5rank/(tn5rank+fp5rank))*100; 
 Sp20=(tn20rank/(tn20rank+fp20rank))*100; 
 PVP5=(tp5rank/(tp5rank+fp5rank))*100; 
 PVP20=(tp20rank/(tp20rank+fp20rank))*100; 
 PVN5=(tn5rank/(tn5rank+fn5rank))*100; 
 PVN20=(tn20rank/(tn20rank+fn20rank))*100; 
 pe20=pe20/_freq_*100; 
 pe5=pe5/_freq_*100; 
run;  
proc means data=means4 noprint; 
 class size mechanism doc; 
 output out=acc2 mean(Se5)=Se5 stderr(Se5)=Se5Err 
     mean(Se20)=Se20 stderr(Se20)=Se20Err 
     mean(Sp5)=Sp5 stderr(Sp5)=Sp5Err 
     mean(Sp20)=Sp20 stderr(Sp20)=Sp20Err 
     mean(PVP5)=PVP5 stderr(PVP5)=PVP5Err 
     mean(PVP20)=PVP20 stderr(pvp20)=PVP20Err 
     mean(PVN5)=PVN5 stderr(PVN5)=PVN5Err 
     mean(PVN20)=PVN20 stderr(PVN20)=PVN20Err 
     mean(pe20)=pe20 stderr(pe20)=pe20err 
     mean(pe5)=pe5 stderr(pe5)=pe5err 
     mean(tp5rank)=TP5 mean(tn5rank)=TN5 
     mean(fp5rank)=FP5 mean(fn5rank)=FN5 
     mean(tp20rank)=TP20 mean(tn20rank)=TN20 
     mean(fp20rank)=FP20 mean(fn20rank)=FN20; 
run; 
data accuracy; 
 set acc2; 
 if _type_ ne 7 then delete; 
run; 
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/* Sensitivity */ 
ods graphics / imagefmt=png height=4in width=6.5in antialias=on 
antialiasmax=1000; 
ods listing device=png image_dpi=300; 
title font=arial; 
proc sgpanel data=assessment2 noautolegend; 
 panelby size/ columns=3 novarname; 
 loess x=doc y=se5_1 / nomarkers legendlabel="MCAR 5%" 
lineattrs=(thickness=2 color=black pattern=1); 
 loess x=doc y=se5_2 / nomarkers legendlabel="Direct-Weak 5%" 
lineattrs=(thickness=2 color=dark_blue pattern=1); 
 loess x=doc y=se5_3 / nomarkers legendlabel="Direct-Strong 5%" 
lineattrs=(thickness=2 color=light_blue pattern=1); 
 loess x=doc y=se5_4 / nomarkers legendlabel="Inverse-Weak 5%" 
lineattrs=(thickness=2 color=dark_red pattern=1); 
 loess x=doc y=se5_5 / nomarkers legendlabel="Inverse-Strong 5%" 
lineattrs=(thickness=2 color=light_red pattern=1); 
 loess x=doc y=se20_1 / nomarkers legendlabel="MCAR 20%" 
lineattrs=(thickness=2 color=black pattern=4); 
 loess x=doc y=se20_2 / nomarkers legendlabel="Direct-Weak 20%" 
lineattrs=(thickness=2 color=dark_blue pattern=4); 
 loess x=doc y=se20_3 / nomarkers legendlabel="Direct-Strong 20%" 
lineattrs=(thickness=2 color=light_blue pattern=4); 
 loess x=doc y=se20_4 / nomarkers legendlabel="Inverse-Weak 20%" 
lineattrs=(thickness=2 color=dark_red pattern=4); 
 loess x=doc y=se20_5 / nomarkers legendlabel="Inverse-Strong 20%" 
lineattrs=(thickness=2 color=light_red pattern=4); 
 rowaxis label="Sensitivity (%)" values=(20 to 80 by 5) grid; 
 colaxis label="NIHSS Documentation Rate (%)" values=(30 to 100 by 10) 
valueattrs=(size=6); 
 keylegend / position=bottom across=5 down=2 valueattrs=(size=6) ; 
 format size size.; 
run; 
 
/* Specificity */ 
 
ods graphics / imagefmt=png height=4in width=6.5in antialias=on 
antialiasmax=1000; 
ods listing device=png image_dpi=300; 
title font=arial; 
proc sgpanel data=assessment2 noautolegend; 
 panelby size/ columns=3 novarname; 
 loess x=doc y=sp5_1 / nomarkers legendlabel="MCAR 5%" 
lineattrs=(thickness=2 color=black pattern=1); 
 loess x=doc y=sp5_2 / nomarkers legendlabel="Direct-Weak 5%" 
lineattrs=(thickness=2 color=dark_blue pattern=1); 
 loess x=doc y=sp5_3 / nomarkers legendlabel="Direct-Strong 5%" 
lineattrs=(thickness=2 color=light_blue pattern=1); 
 loess x=doc y=sp5_4 / nomarkers legendlabel="Inverse-Weak 5%" 
lineattrs=(thickness=2 color=dark_red pattern=1); 

109 
 



 

 loess x=doc y=sp5_5 / nomarkers legendlabel="Inverse-Strong 5%" 
lineattrs=(thickness=2 color=light_red pattern=1); 
 loess x=doc y=sp20_1 / nomarkers legendlabel="MCAR 20%" 
lineattrs=(thickness=2 color=black pattern=4); 
 loess x=doc y=sp20_2 / nomarkers legendlabel="Direct-Weak 20%" 
lineattrs=(thickness=2 color=dark_blue pattern=4); 
 loess x=doc y=sp20_3 / nomarkers legendlabel="Direct-Strong 20%" 
lineattrs=(thickness=2 color=light_blue pattern=4); 
 loess x=doc y=sp20_4 / nomarkers legendlabel="Inverse-Weak 20%" 
lineattrs=(thickness=2 color=dark_red pattern=4); 
 loess x=doc y=sp20_5 / nomarkers legendlabel="Inverse-Strong 20%" 
lineattrs=(thickness=2 color=light_red pattern=4); 
 rowaxis label="Specificity (%)" values=(60 to 100 by 5) grid; 
 colaxis label="NIHSS Documentation Rate (%)" values=(30 to 100 by 10) 
valueattrs=(size=6); 
 keylegend / position=bottom across=5 down=2 valueattrs=(size=6) ; 
 format size size.; 
run; 
 
/* PVP */ 
 
ods graphics / imagefmt=png height=4in width=6.5in antialias=on 
antialiasmax=1000; 
ods listing device=png image_dpi=300; 
title font=arial; 
proc sgpanel data=assessment2 noautolegend; 
 panelby size/ columns=3 novarname; 
 loess x=doc y=pvp5_1 / nomarkers legendlabel="MCAR 5%" 
lineattrs=(thickness=2 color=black pattern=1); 
 loess x=doc y=pvp5_2 / nomarkers legendlabel="Direct-Weak 5%" 
lineattrs=(thickness=2 color=dark_blue pattern=1); 
 loess x=doc y=pvp5_3 / nomarkers legendlabel="Direct-Strong 5%" 
lineattrs=(thickness=2 color=light_blue pattern=1); 
 loess x=doc y=pvp5_4 / nomarkers legendlabel="Inverse-Weak 5%" 
lineattrs=(thickness=2 color=dark_red pattern=1); 
 loess x=doc y=pvp5_5 / nomarkers legendlabel="Inverse-Strong 5%" 
lineattrs=(thickness=2 color=light_red pattern=1); 
 loess x=doc y=pvp20_1 / nomarkers legendlabel="MCAR 20%" 
lineattrs=(thickness=2 color=black pattern=4); 
 loess x=doc y=pvp20_2 / nomarkers legendlabel="Direct-Weak 20%" 
lineattrs=(thickness=2 color=dark_blue pattern=4); 
 loess x=doc y=pvp20_3 / nomarkers legendlabel="Direct-Strong 20%" 
lineattrs=(thickness=2 color=light_blue pattern=4); 
 loess x=doc y=pvp20_4 / nomarkers legendlabel="Inverse-Weak 20%" 
lineattrs=(thickness=2 color=dark_red pattern=4); 
 loess x=doc y=pvp20_5 / nomarkers legendlabel="Inverse-Strong 20%" 
lineattrs=(thickness=2 color=light_red pattern=4); 
 rowaxis label="Predictive Value Positive (%)" values=(20 to 80 by 5) 
grid; 
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 colaxis label="NIHSS Documentation Rate (%)" values=(30 to 100 by 10) 
valueattrs=(size=6); 
 keylegend / position=bottom across=5 down=2 valueattrs=(size=6) ; 
 format size size.; 
run; 
 
/* PVN */ 
 
ods graphics / imagefmt=png height=4in width=6.5in antialias=on 
antialiasmax=1000; 
ods listing device=png image_dpi=300; 
title font=arial; 
proc sgpanel data=assessment2 noautolegend; 
 panelby size/ columns=3 novarname; 
 loess x=doc y=pvn5_1 / nomarkers legendlabel="MCAR 5%" 
lineattrs=(thickness=2 color=black pattern=1); 
 loess x=doc y=pvn5_2 / nomarkers legendlabel="Direct-Weak 5%" 
lineattrs=(thickness=2 color=dark_blue pattern=1); 
 loess x=doc y=pvn5_3 / nomarkers legendlabel="Direct-Strong 5%" 
lineattrs=(thickness=2 color=light_blue pattern=1); 
 loess x=doc y=pvn5_4 / nomarkers legendlabel="Inverse-Weak 5%" 
lineattrs=(thickness=2 color=dark_red pattern=1); 
 loess x=doc y=pvn5_5 / nomarkers legendlabel="Inverse-Strong 5%" 
lineattrs=(thickness=2 color=light_red pattern=1); 
 loess x=doc y=pvn20_1 / nomarkers legendlabel="MCAR 20%" 
lineattrs=(thickness=2 color=black pattern=4); 
 loess x=doc y=pvn20_2 / nomarkers legendlabel="Direct-Weak 20%" 
lineattrs=(thickness=2 color=dark_blue pattern=4); 
 loess x=doc y=pvn20_3 / nomarkers legendlabel="Direct-Strong 20%" 
lineattrs=(thickness=2 color=light_blue pattern=4); 
 loess x=doc y=pvn20_4 / nomarkers legendlabel="Inverse-Weak 20%" 
lineattrs=(thickness=2 color=dark_red pattern=4); 
 loess x=doc y=pvn20_5 / nomarkers legendlabel="Inverse-Strong 20%" 
lineattrs=(thickness=2 color=light_red pattern=4); 
 rowaxis label="Predictive Value Negative (%)" values=(60 to 100 by 5) 
grid; 
 colaxis label="NIHSS Documentation Rate (%)" values=(30 to 100 by 10) 
valueattrs=(size=6); 
 keylegend / position=bottom across=5 down=2 valueattrs=(size=6) ; 
 format size size.; 
run; 
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/* Spearman Correlation */ 
ods graphics / imagefmt=png height=4in width=6.5in antialias=on 
antialiasmax=1000; 
ods listing device=png image_dpi=300; 
title font=arial; 
proc sgpanel data=assessment2 noautolegend; 
 panelby size/ columns=3 novarname; 
 loess x=doc y=spcorr1 / nomarkers legendlabel="MCAR" 
lineattrs=(thickness=2 color=black pattern=1); 
 loess x=doc y=spcorr2 / nomarkers legendlabel="Direct-Weak" 
lineattrs=(thickness=2 color=dark_blue pattern=1); 
 loess x=doc y=spcorr3 / nomarkers legendlabel="Direct-Strong" 
lineattrs=(thickness=2 color=light_blue pattern=1); 
 loess x=doc y=spcorr4 / nomarkers legendlabel="Inverse-Weak" 
lineattrs=(thickness=2 color=dark_red pattern=1); 
 loess x=doc y=spcorr5 / nomarkers legendlabel="Inverse-Strong" 
lineattrs=(thickness=2 color=light_red pattern=1); 
 rowaxis label="Spearman Rank Correlation Coefficient" values=(0.4 to 1 
by 0.1) grid; 
 colaxis label="NIHSS Documentation Rate (%)" values=(30 to 100 by 10) 
valueattrs=(size=6); 
 keylegend / position=bottom across=5 down=1 valueattrs=(size=6) ; 
 format size size.; 
run; 
/* Pearson Correlation */ 
ods graphics / imagefmt=png height=4in width=6.5in antialias=on 
antialiasmax=1000; 
ods listing device=png image_dpi=300; 
title font=arial; 
proc sgpanel data=assessment2 noautolegend; 
 panelby size/ columns=3 novarname; 
 loess x=doc y=pearcorr1 / nomarkers legendlabel="MCAR" 
lineattrs=(thickness=2 color=black pattern=1); 
 loess x=doc y=pearcorr2 / nomarkers legendlabel="Direct-Weak" 
lineattrs=(thickness=2 color=dark_blue pattern=1); 
 loess x=doc y=pearcorr3 / nomarkers legendlabel="Direct-Strong" 
lineattrs=(thickness=2 color=light_blue pattern=1); 
 loess x=doc y=pearcorr4 / nomarkers legendlabel="Inverse-Weak" 
lineattrs=(thickness=2 color=dark_red pattern=1); 
 loess x=doc y=pearcorr5 / nomarkers legendlabel="Inverse-Strong" 
lineattrs=(thickness=2 color=light_red pattern=1); 
 rowaxis label="Pearson Correlation Coefficient" values=(0.4 to 1 by 
0.1) grid; 
 colaxis label="NIHSS Documentation Rate (%)" values=(30 to 100 by 10) 
valueattrs=(size=6); 
 keylegend / position=bottom across=5 down=1 valueattrs=(size=6) ; 
 format size size.; 
run; 
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/*********** Difference between True/Observed Rankings *********/ 
 
ods graphics / imagefmt=png height=7.5in width=6.5in antialias=on 
antialiasmax=1000; 
ods listing device=png image_dpi=300; 
title font=arial; 
proc sgpanel data=difftable2 noautolegend; 
 panelby size rankcat  / colheaderpos=top layout=lattice onepanel 
novarname ; 
 loess x=doc y=pediff1 / nomarkers legendlabel="MCAR" 
lineattrs=(thickness=2 color=black pattern=1); 
 loess x=doc y=pediff2 / nomarkers legendlabel="Direct-Weak" 
lineattrs=(thickness=2 color=dark_blue pattern=1); 
 loess x=doc y=pediff3 / nomarkers legendlabel="Direct-Strong" 
lineattrs=(thickness=2 color=light_blue pattern=1); 
 loess x=doc y=pediff4 / nomarkers legendlabel="Inverse-Weak" 
lineattrs=(thickness=2 color=dark_red pattern=1); 
 loess x=doc y=pediff5 / nomarkers legendlabel="Inverse-Strong" 
lineattrs=(thickness=2 color=light_red pattern=1); 
 rowaxis grid label="Absolute Change in Hospital RMSR Rankings (# of 
Positions)"  
  values=(4 to 26 by 4) valueattrs=(size=6); 
 colaxis label="NIHSS Documentation Rate (%)" values=(30 to 100 by 10) 
valueattrs=(size=6); 
 keylegend / position=bottom valueattrs=(size=6)  ; 
 format size size. mechanism mechanism. rankcat rankcat.; 
run; 
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