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ABSTRACT

MODELING, DYNAMICS AND CONTROL OF LARGE AMPLITUDE

MOTIONS OF VESSELS IN BEAM SEAS

By

Shyh-Leh Chen

The modeling, dynamics and control of large amplitude motions of vessels traveling

in regular beam seas are considered. We first derive a 3-DOF model that considers

roll, sway and heave motions of arbitrary amplitude occurring in a (vertical) plane

for a vessel subjected to excitation from regular beam seas. By exploiting natural

time and force scales of the system, the equations of motion are transformed into

a singularly perturbed form through a nondimensionalization and rescaling process.

Analysis of this dynamical system using chaotic transport theory and a Melnikov

analysis provides a ship capsizing criterion in terms of vessel parameters and the sea

state. The coupling effects from sway and heave are examined in order to assess the

validity of commonly used models which include only roll dynamics.

Next, active anti-roll tanks are added to the system as a means of preventing

large amplitude roll motions. A robust state feedback controller is designed that

can handle model uncertainties, which arise primarily from unknown hydrodynamic

contributions. The approach for the controller design is a combination of sliding

mode control and composite control for singularly perturbed systems, with the help

of the backstepping technique. It is shown that a pump/tank system containing

water representing less than 5% of the vessel displacement can effectively control roll



motions.

Numerical simulation results for an existing fishing vessel, the twice-capsized Patti-

B, are used to verify the analysis for the capsize criteria and the controller design.
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CHAPTER 1

INTRODUCTION

This dissertation is concerned with three important issues of small fishing vessels

traveling in regular beam seas: modeling, large amplitude dynamics, and control.

The eventual goal of this study is to answer the following two questions. First, for

a given vessel under a given sea state, what is the probability that it will capsize

within a prescribed time interval? Second, what can one do to prevent it from

capsizing? The importance of vessel capsize is clear since it can cause the loss of life

and property. The reason for focusing on small fishing vessels is that the sea state

does not respect ship size and hence small fishing vessels usually experience more

nonlinear sea-keeping processes than do large ships.

It is obvious that ship capsizing involves highly nonlinear, large amplitude dy-

namics of the ship under the excitation of a typically random seaway. However, calm

water static stability, characterized by the so-called righting arm, is still the corner-

stone of current vessel safety regulations. Important factors, such as the nature of

the seaway or the dynamic response of the vessel are not explicitly (and many times

not even implicitly) included. This is why vessels may still capsize even when these

regulations are met (e.g., [42]). Moreover, it is one of the reasons why commercial

fishing is the most dangerous occupation in the United States [29]. The present work

is ultimately motivated by this fact.

As one will see in Chapter 2, most previous studies considered the simple single

DOF (Degree-Of-Freedom) models for vessel rolling. There are two main reasons for

this. First, few reasonable multi-DOF mathematical models exist for ship dynamics.

Most ship models are either too complicated to be tractable for analysis or too

1
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simplified to be realistic. Second, the tools available for analyzing nonlinear multi-

DOF models are not as well developed as those for single DOF models. While all

vessels capsize primarily in roll, the influence of other DOF may also be important

due to dynamic coupling effects.

There are three objectives for this study. First, we aim to derive a ship dynamics

model that takes into account as many degrees of freedom as possible, yet remains

tractable for analysis. This model is then used to propose a ship capsizing criterion.

Finally, a stabilizing controller is designed based on this model. The model considered

in the present work is a 3-DOF beam sea model, one that considers roll, sway and

heave motions occurring in a (vertical) plane. The vessel is assumed to be at anchor

or under low speed for work and hence has negligible forward speed. We will pay

close attention to the coupling effects of heave and sway on roll motions and their

effects on capsize. The design of the controller will focus on the robustness to the

uncertainties arising in the modeling. It will be pointed out in the conclusions a

strategy for how this model can be generalized to the full six degrees of freedom.

It should be noted that the analysis of this problem, as is typical in nonlinear

systems, is facilitated by judicious choices of coordinates throughout the process.

This should be kept in mind as one reads this thesis.

The large amplitude dynamics problem will be investigated from the viewpoint

of dynamical systems. Ship capsizing is characterized in phase space by the escape

of a solution trajectory from a potential well (the safe region) under the action of

external excitation (induced by waves), as described in [23]. In this way, it is related

to the study of phase space transport of Wiggins [67]. The main tools for the analysis

of phase space transport are the Melnikov function and lobe dynamics [67]. It will

be shown in Section 3.4 that the present system can be transformed into the form

of a slowly varying oscillator which is amenable to a Melnikov analysis. Although

lobes are well defined in two dimensional diffeomorphisms, they are not well defined
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3

in three or more dimensions (except for special cases), which, unfortunately, are

encountered here. However, an invariant manifold approach provided in Appendix

A will allow us an avenue around this difficulty.

Ship roll stabilization problem is considered after the dynamics analysis. There

are several methodologies for ship stabilization, such as gyroscopes, moving weight

stabilizers, anti-roll tanks, fin stabilizers, and rudder-roll stabilization systems. The

method of anti-roll tanks will be used here since others are either impractical, such

as the gyroscopic method and moving weight scheme, or not effective at low ves-

sel speeds, such as the fin stabilizer and rudder-roll systems. The main goal of the

anti-roll tank is to dynamically change the horizontal position of a ship’s center of

gravity in such a way that the roll motions are reduced. However, the position of

CG cannot be shifted instantaneously, and therefore the control scheme will involve

a dynamic state feedback controller. Our approach for the robust controller design

is based on a smooth version of sliding mode control, which handles the uncertain-

ties, together with the backstepping method and the idea of composite control for

singularly perturbed systems [31].

The upcoming chapters are briefly summarized below. In Chapter 2, we survey

the previous work on ship dynamics and ship roll stabilization. Chapter 3 deals with

the ship modeling problem. We begin in Section 3.1 by deriving a ship model under

the conditions of calm water, no damping, and no wind. Since the wave excitation,

the hydrodynamic damping, and the wind forces are generally small in relation to

inertial effects, this ship model will constitute the prototype of the unperturbed model

and is referred to as the calm water model. Next, the wave motion, the hydrodynamic

forces, and the wind forces are discussed in Section 3.2 in preparation for the general

modeling of a vessel in regular beam seas, which is presented in Section 3.3. In

order to bring the general model into a “nearly integrable” form which allows for

a Melnikov analysis, several steps are carried out in Section 3.4. First, a singular
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4

perturbation formulation is sought through a nondimensionalization and rescaling

process. It will be seen that the roll/sway motion is typically slow compared to

heave and hence their dynamics lie on a slow invariant manifold. It can be shown

that this slow manifold exists globally (up to the angles of vanishing stability) and is

locally attractive. The slow dynamics turns out to be in the form of a slowly varying

oscillator, which is readily handled by Melnikov analysis and has been studied in a

number of papers (e.g., [55], [68], [69], [70]).

In Chapter 4, the large amplitude dynamics which may lead to capsize are ana-

lyzed using chaotic transport theory. As an introduction to the phase space transport

theory, its application to l-DOF roll models is reviewed in Section 4.1. Phase space

transport in slowly varying oscillators using a fast manifold approach is discussed in

Section 4.2. In Section 4.3, capsizing criteria for both biased and unbiased ships are

proposed based on the results in Section 4.2. The present criteria will be compared to

those obtained by l-DOF roll models in Section 4.4 to examine the coupling effects.

The design of a robust stabilizing controller against capsizing is presented in

Chapter 5. In Section 5.1, the uncertainties existing in the current ship model are

discussed. Next, the robust stabilizing controller is designed in Section 5.2 using a

Lyapunov-based approach. By assuming the slow sway velocity is constant, we begin

by designing the slow control on the slow manifold. Then, the effects of the slowly

varying sway motions and the fast heave dynamics are investigated.

The analytical analyses established in previous chapters are verified in Chapter 6

by numerical simulations for a specific fishing vessel, the clam dredge Patti-B. Some

conclusions are drawn in Chapter 7, where we also provide some directions for future

work on this topic.

This work has extended in several ways the study of ship dynamics and control

and has generated some more fundamental results in dynamical systems theory.

First, we have developed a systematic method for modeling multi-DOF ship motions
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in waves, even for the full six DOF dynamics. The resulting model retains realistic

features of the vessel system and is tractable for analysis. Second, based on results

from chaotic transport theory, we have quantitatively estimated the amount of phase

space transport for 2-D maps using a Melnikov analysis. Also, we have provided a new

approach to obtaining the Melnikov function for homoclinic orbits in slowly varying

oscillators, which gives some useful insight into the structure of the dynamical system.

These results together with our estimate of the phase space transport have allowed us

to propose a capsizing criterion for multi-DOF ship models. Finally, we have applied

some newly developed nonlinear control strategies to the ship stabilization problem.

The results are very satisfactory and they demonstrate the promising future that

nonlinear dynamics and control methods hold for advancing our understanding the

motion and control of seagoing vessels.



CHAPTER 2

LITERATURE REVIEW

2.1 Ship Modeling and Dynamics

The general form for the six DOF ship model can be derived from Newton’s law

or Lagrange’s method, and is given in a variety of references (e.g. [1], [16]). However,

due to the difficulties with obtaining the hydrodynamic forces and with nonlinear

multi-DOF problems, the general model is usually linearized or reduced to a l-DOF

roll model for analysis [24]. The reduction of the full ship model to the 1-DOF ones

is commonly done by the introduction of the so—called roll center ([25], [26], [34],

[40])-

The study of ship dynamics began as early as the eighteenth century, when the

laws of dynamics were discovered by Newton and the basic laws of fluid dynamics

were discovered by Bernoulli and others. More detailed historic accounts on the

development of ship dynamics can be found in an excellent survey paper by Hutchison

[24]. Here we will concentrate on the recent efforts on the analysis of nonlinear rolling

motions.

The analysis of nonlinear rolling motions has been focused on the decoupled 1-

DOF roll equation. The steady state periodic solutions for such a system can be

obtained by perturbation techniques such as the harmonic balance method [54], the

method of multiple scales ([5], [6], [43], [44]), and the averaging method [71]. Floquet

theory is commonly used to study the stability of these steady state solutions ([43],

[44])-
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Most perturbation techniques are intended for weakly nonlinear systems. They

usually fail for large amplitude dynamics, which is the main interest of this thesis.

Several approaches have been attempted for investigating the dynamics and stability

of large amplitude ship motions, especially the capsizing problem. Odabassi used

Lyapunov’s direct method to propose a conservative capsizing criterion [49]. An

approximate deterministic capsizing criterion from an energy point of view is given in

[64]. Thompson and co-workers observed that the initially safe basin will be eroded as

the wave amplitude increases, resulting in the fractal-like transient basin boundaries

([57], [60]). They also argued that it is the transient behavior, not the steady state,

that is dominant in ship capsizing process. Intensive numerical simulations were then

carried out by them to introduce a capsizing criterion called integrity measure ([37],

[57], [60], [61])-

Parallel to the above deterministic approaches, stochastic methods were also de-

veloped in order to take into account the random nature of the seaway. A numerical

scheme for a l-DOF roll model with a zero-mean Gaussian distributed excitation

was proposed by Dalzell [11]. While Francescutto used an approximate perturbation

method to study ship dynamics in irregular seas ([18], [19]), Roberts related ship cap-

sizing to the first passage problem and employed the stochastic averaging method

to analyze the problem ([50], [51]). Roberts’ idea was shared by Moshchuk et al.

who applied the method of asymptotic expansion to solve the first passage problem

of ship nonlinear roll oscillations in random sea waves [41]. By characterizing the

capsize as the escape from a potential well under random external excitation, Frey

and Simiu ([20], [56]) and Hsieh el al. [23] studied the problem by combining modern

geometric method (see below) with stochastic analyses.

Besides the various methods presented above, there is yet another promising ap-

proach to understanding the large amplitude dynamics, especially the capsizing, of

vessel systems. It is a geometric method for nonlinear dynamical systems which
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deals mainly with the qualitative behaviors of the system. An excellent introductory

book for this method is Wiggins [66]. Inspired by this rapidly growing field and

by Thompson’s emphasis on transients for ship capsizing, Shaw and co-workers suc-

cessfully proposed good capsizing criteria for regular and irregular beam sea models

using this approach ([13], [23], [27]). The main tools in their analyses are the Mel-

nikov method and the theory of phase space transport which deals exclusively with

the transient behavior [67]. This approach is followed here and will be generalized

to multi-DOF models.

Despite the fact that the 1-DOF roll model has dominated the development of the

analysis, there are several studies considering multi-DOF models. Weakly nonlinear

coupled pitch-roll motions were investigated by Nayfeh et al. ([40], [45]) and coupled

heave-roll motions were studied by Liaw et al. ([35], [36]). However, perturbation

techniques and numerical simulations have dominated these analyses. This thesis

represents a study using multi-DOF models which considers large amplitude ship

motions, including capsize.

2.2 Ship Roll Stabilization

Attempts at controlling or reducing ship rolling motions have a long history

dating back to late nineteenth century. For a historic account of this subject,see

[4]. There are several methodologies proposed. Passive methods appeared first,

such as bilge keels ([34], [53]), anti-roll tanks ([17], [34], [53]), moving weights ([17],

[34]), and gyroscopic methods [52]. Following the development of control theory,

active methods began to emerge, many of which were inspired by or modified from

the passive ones, such as fin stabilizers ([2], [8]), activated tanks ([8], [38], [39]),

controlled moving weights [48], and active gyroscopic methods [58].

As control theory was progressed further and ship dynamics are better under-

stood, new control strategies have been brought to bear on this problem. For exam-
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ple, in view of the chaotic motion observed in ship roll dynamics, a newly developed

controlling chaos technique was proposed in [12] to stabilize the ship rolling motions

from capsizing in regular or irregular sea states. Another example is a controlled—

wing method (similar to fin stabilizers) with an adaptive controller based on gain

scheduling and neural network reported recently in [15].

Also, new stabilizing actuators other than classical ones are proposed. One such

example is the rudder-roll stabilization system. The rudder-roll stabilization system

has been incorporated with optimal control [16], adaptive control and gain scheduling

[63]. A good collection of recent developments on the rudder-roll stabilization system

is provided in the book by Fossen [16], where the control system designs for other

aspects of ocean vehicles, such as auto-pilot and ship positioning, are also discussed

in detail.



CHAPTER 3

MODELING OF SHIP DYNAMICS IN REGULAR BEAM

SEAS

z

I heave

K} yaw x

surge

sway roll

,'

pitch ‘>

  

Figure 3.1: The six degrees of freedom for a ship.

In general, a rigid body floating on the free surface of a liquid interface has six

DOF, i.e., surge, sway, heave, roll, pitch, and yaw; see Figure 3.1. Under beam sea

conditions, in which waves hit the vessel directly broadside, one can assume that

the three DOF — roll, sway, and heave — will dominate. Essentially these DOF live

in a submanifold of the full phase space that should be dynamically stable unless

lO
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a parametric or internal resonance occurs ([35], [46])1. Our approach here will be

to account for the nonlinear effects of hydrostatics and inertia and to model the

hydrodynamics in an essentially linear way. The reason for this is simply that it is

the best that can be done currently short of brute force, large-scale computations.

I   
 
 

  

Figure 3.2: An inertial coordinate system for the vessel system.

With the inertial coordinate system shown in Figure 3.2, the equations of motion

for these 3 DOF can be expressed as follows by applying Newton’s law to the center

of gravity (CG) denoted by G:

14465” = K, (3.1)

mg! = I”, (3.2)

mg = z‘, (3.3)

where ()’ = fi(-), 43 is the roll angle, (316,26) is the coordinate of G, I44 is mass

moment of inertia of the body about G, m is mass of the body, K is the roll moment,

I" is the horizontal force, and Z is the vertical forcez. We will follow the convention

used in naval architecture, wherein subscripts 2, 3, and 4 represent sway, heave,

and roll, respectively. Also note that conventionally, sway and heave are referred to

the body-fixed coordinate system. In contrast, in this work, we refer to them in a

 

1 Motions to other DOF can be excited by non-beam components of the sea

state, or by large fore/aft nonsymmetries in the ship hull.

2 The symbols Y and Z are saved to denote, respectively, forces parallel and

perpendicular to water surfaces.
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slightly different sense, i.e. in the wave-fixed coordinate system. The sway mode

will represent the motion parallel to the local water surface and the heave mode will

represent the motion perpendicular to the local water surface. This turns out to give

a dynamical model that is more amenable to the analysis of interest here.

It is well known that modeling the fully nonlinear dynamics of a ship traveling

on the water is a nontrivial task [64]. The difficulty comes mostly from the modeling

of the force components3 K, 17, and Z. In particular, an accurate measure of the

contributions of hydrodynamics to these forces, especially in the presence of wave

excitation, is virtually impossible to obtain. These issues will be discussed in more

detail in Section 3.2. Generally speaking, each force component can be decomposed

into four major parts, due to gravitation, hydrostatics, hydrodynamics, and wind,

which are written as (-)g, (-)h,, (.)hd, (-)w, respectively. This decomposition is not

unique but has wide acceptance. The sum of gravitational and hydrostatic forces

will be called static forces and written as (-)., That is,

Before obtaining a general beam sea model, we shall first derive a ship model un—

der the conditions of calm water, no damping, and no wind. Under these conditions,

the hydrodynamic forces are assumed to contain only added mass contributions. In

addition to this simple hydrodynamic force, the force components K, I” and 2 will

consist of only static forces. The effects of wave motions and hydrodynamic damp—

ing are considered later. (The motivation for this approach is that we desire a calm

water model that is conservative and autonomous.)

 

3 Unless otherwise stated, forces refer to generalized forces, including moments.
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3.1 The Calm Water Model

3.1.1 The Static Forces

In the calm water condition, there is no horizontal static force. The vertical static

force is simply the buoyancy force minus the ship weight, and the static roll moment

is the buoyancy force multiplied by the righting arm GZ.

CL

‘9

 

 

 

 

Yo

Figure 3.3: Geometry of a vessel with symmetric hull shape.

We now introduce some notations. Consider the front view of a cross section of a

symmetric ship hull moving in calm water, as shown in Figure 3.3. Let A be a fixed

point on the water surface and B denote the vessel’s buoyancy center. S is the point

fixed on the ship such that when the ship is in the upright position and S is on the

water surface, the buoyancy force will be equal to the ship weight. cp is the roll angle

of the vessel relative to water surface. h is the distance from S to the bottom of the

vessel. ya is the distance between G and the symmetric center line CL (310 is positive

if G is on the port side). 2G is the distance from G to the water surface when cp = 0

and S is on the water surface (23 is positive if G is below the water line). Also, GZ
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is positive if B is on the left-hand-side of G; see Figure 3.3. We attach to point A an

axis system YoZo and denote the coordinate of G in this system by (go, 20 — 20).

Now consider the case where there is an unbiased CG, i.e. ya = 0. Let V}, be the

volume of water displaced by the ship whose weight gives the buoyancy force, and

let R0 = pVo — m. Then it is clear that V0, and hence R0, are functions of 20 and (,0.

Moreover, Ro(zo, 4,0) is even in (,0 and the righting arm GZ0(20, go) is odd in go by the

symmetry of the vessel hull. Also note that Ro(0, 0) = 0.

For the general case where ya is not necessarily 0, it is shown in Appendix B that

R(20i90) = R0(Zo+yGSiI1(p,§0),

02(20, so) = 310 cos «p + 020(20 + 310 Sin so. so),

where R and GZ represent counterparts of R0 and GZo for the general case.

Therefore, we have an expression for the static forces:

KsC(ZO,‘P) = —g[m+R(ZO-)‘P)]GZ(ZO,‘P)

= -glm + RO(Zo + ya sin 99, ‘Plllya COS <P

+ GZOIZO + ya Sin 90. 80)], (3-4)

13420, $0) = 0. (3-5)

Z.c(zo, 90) = 93(20. $0)

= 9Ro(zo + ya $1190.80), (3-6)

where the subscript “sc” stands for the static forces in the calm water case.

3.1.2 The Equations of Motion for the Calm Water Model

Recalling that the hydrodynamic forces in this case will include only added mass

contributions, we write

KM.- = —(a44<p” + ans/6' + (24323), (3.7)
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Yhdc = —(a24cp" + 022.716, + 02323), (3-8)

Zhdc = -(aa4<P” + 032316, + 03326,)- (3-9)

Thus, the equations of motion can be obtained by substitution of equations (3.4)-

(3.9) into equations (3.1)-(3.3) and recognizing that 45 = cp, yo = yo, and 26 = 20—20

under the calm water situation. This yields

14490” = Ksc(20a 99) + Khdc

= K.c(zo, <P) — (04480” + 4423/6I + “4323), (3-10)

myé’ = Yhdc

= —(024<P” + 022313 + 02326,), (3.11)

mzf,’ = Z.C(zo, 99) + Zhdc

= Zsc(ZOa $0) " (“3499” + 032.113 + 03326,)- (3.12)

By introducing the transformation

a a

v. = ya + "fr + 52—:23 (3.13)

the equations of motion (3.10)-(3.12) can be put into the following concise form in

which the new “sway” coordinate v0 is uncoupled from roll and heave:

"1490" + 7714323 = K..(zo, so). (3.14)

"13430” + m3zg : Zsc(an 90), (315)

777.2126 = 0, (3.16)

where the system constants m,’s and mij,S are given in Table 3.1. From equations

(3.14) and (3.15), one can uncouple the inertial terms in roll and heave, resulting in

II

moso = m3Ksc(ZOa $0) — m43Zsc(Zo, $0) d__§_f 17420.99), (3-17)

mozs' = “m34Ksc(Zo,80)+m4Zsc(Zo,<P)ng3(Zo.<P). (3.18)

where mo can be found in Table 3.1.
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Table 3.1: System constants.

 

 

 

 

 

 

 

 

symbol definition symbol definition

m2 "2+0” m3 7714-6133-2333.”

m4 144 + 044 — 3,3,? "243 043 — 33,2221

m34 034 — 23%“ mo m3m4 — m43m34

€23 I)23 — $522 624 524 — $3522

632 I>32 — $322522 C33 baa - 9,3532 — $3023

634 534 - $3532 — $321624 C42 542 - 3:522

043 543 — $33542 — $3023 C44 544 — $542 — $3624

 

332 —m34c42 + "14632 flea —m34c43 + 7114033

 

334 —m34c44 + "14634 fl34q —m34b44q

 

342 7713042 — "143632 [843 "13043 — 77143633

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

[B44 m3C44 — m43c34
[344‘] 17231244.,

7721 {FEELS
7722 3393M

172:3. ”—239
r 7,24 wigs:

7731 (—m34I44 -' m4ma32;:134ma42 zg)“’—“;L° 1732 m4mfli;2

7733 (m4ma32 _:23;ma42)wl4££
1734 2m47;:2;w3ma

7735 W
7736 -2m(m4a3;;1:34a42)w3&

1737 m4szEJ—f523:
7’38 -m4 17::ng6 a2

1739 m4m“:_w§‘ii
7141 (7723144 +wma m?" m“ 2G)?

7742 -m437'n£"-:';Le
7743 imwmaaagzamanwta

"44 4‘7“"- n. ”1:33"

”46 2m(m.3a3:n-;Zzaa.2)u§& ”47 —m43m20£§$fi

"48 W 7149 -m43mg§éfi

”31 £2;(—m4a32 + 77134042) #32 “77134171

I133 m4p2 I141 $072430” — 7713042)

#42 m3pl [143 —m43p2   
 

 



 
whc

Note

Ill gen

have

supp

Vertica] E

aUgle Can

righiing a

pOSlijye Ch

the righting

we CODCIUdE

Iatte, much

in Section 3..



17

Linearizing equations (3.17) and (3.18) about the stable equilibrium for the un-

biased ship, (0, 0), yields

II

moso = —01190 + 0220,

mozg = 039° — 0420,

where

a __ _8F4(0a0) a _ 6124030)

l _ a‘p I 2 — 620 ‘I

6F3(0,0) 0F3(0,0)

03 = —— , 014 = “—-

690 620

Note that these constants a,’s are dependent on ya and 2G, the position of G. Since

in general m34 and m43, the coupling inertia between heave and roll, are small, we

have

aKsc(0, 0) aKsc(0, 0)

01 o<—— , 02 oc —,

880 620

6Z,c(0, 0) 0Z,c(0, 0)

a3 o< —— , a4 o< ———.

830 620

Suppose that the slope of the ship hull at the water line when (25 = O is near

vertical as shown in Figure 3.4. Then one can see that a positive change in the roll

angle can hardly affect the magnitude of buoyancy force. However, it does alter the

righting arm by a negative amount. Also from Figure 3.4, it is easy to see that a

positive change in 20 will give rise to a large amount of negative buoyancy force, but

the righting arm, and thus the roll moment K“, will remain unchanged. Therefore,

we conclude that a; and 013 are very small, and both 01 and 014 are positive with the

latter much greater than the former. This will be important to the rescaling process

in Section 3.4 below.
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(a)AR=Q-. (b)AR=—-

Figure 3.4: Change of buoyancy force due to (a) roll, and (b) heave

displacements.

Define

01

OJ,- = —

mo

and

O4

(1);, = —- .

mo

Then w, and w}, are approximately the roll and heave natural frequencies for the

unbiased vessel under the calm water conditions. The above discussions lead to the

following conclusion

wr

— < 1. (3.19)

Wh

This ratio is often small, typically on the order of 1 /2 ~ 1 / 7. Note that w, depends on

26, but an, does not. Therefore, the ratio will be much smaller when the vessel is fully

loaded. The inequality (3.19) says that the vessel is “soft” in roll which represents a

large class of ships. When the ship is biased, the origin is no longer an equilibrium

point and the natural frequencies will be changed accordingly. However, the order of
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magnitude for each quantity will remain the same. Hence, the relationship in (3.19)

is still valid for the general case.

3.2 Wave Motions, Hydrodynamic Forces and Wind Forces

In preparation for modeling the ship in beam sea conditions, the linear wave

motion, hydrodynamic forces and wind forces are discussed in this section.

3.2.1 The Linear Wave Motion

As mentioned previously, the modeling of the force components in the presence

of wave excitation is too complicated to be analyzed in general terms. Therefore,

several assumptions must be made in order to proceed. They are:

(Al) conservation of mass,

(A2) constant fluid density,

(A3) irrotational flow,

(A4) inviscid flow,

(A5) linear free surface conditions,

(A6) the ship does not affect the wave,

(A7) water surface is a flat plane in the vicinity of the ship.

The first four assumptions are standard in potential fluid dynamics. Assumptions

(A5)-(A7) usually hold for small fishing vessels in long waves. That is, the boat’s
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width is small compared to the wavelength.

Let <I> be the velocity potential of the flow, i.e.,

2) 8(1) andw 0(1)f=_ f=52_,

3y

where v; and wj represents the horizontal and vertical flow velocities, respectively.

Since it is a beam sea, uf = 0. Then assumptions (A1)-(A3) will yield the Laplace

equation for (1):

32¢ 82(1)

D—y; + E; = 0. (3.20)

Furthermore, with an additional assumption (A4), we have Bernoulli’s equation for

<I> and the pressure P:

P 6(1) 1
-;+—a—t-+§V<I>-V<I>+gz—0. (3.21)

Together with the free surface boundary conditions, namely:

(BCl) The kinematic boundary condition (a geometric constraint): the normal

velocity of the fluid on the water surface equals that of the water surface;

(BC2) The dynamic boundary condition (a physical constraint): the pressure ev-

erywhere on the water surface is constant,

equations (3.20) and (3.21), if solved, can yield the velocity potential (I) and more

importantly, the pressure P. Then, from assumption (A6), the force components can

be obtained by integrating the pressure along the ship hull.

Unfortunately, equations (3.20) and (3.21) can not be solved analytically because

in general the free surface conditions, which depend on the incident waves, will lead

to nonlinear boundary conditions. However, if the wave slope is small, then the

kinematic boundary condition (BCI) can be modified to:



 

WI
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(BCl’) The vertical velocity of the fluid on the water surface equals that of the

water surface,

which is the statement of assumption (A5); see Figure 3.5.

The wave has travelled this amount from time = 0 to t.

I

 

   
 

 
Wn : normal velocity of the water particle A.

wr : vertical velocity of the water particle A.

g : usual gravitational acceleration.

8e : effective gravitational acceleration.

(owa : centrifugal acceleration.

Figure 3.5: Linear wave motion and effective gravitational accelera-

tion.

Then, in the situation of periodic beam seas, one can show from equations (3.20)

and (3.21) with boundary conditions (BCI’) and (BC2) that the water particle is

moving in a circular path [62]. Therefore, the water particle experiences not only

gravitational but also a centrifugal acceleration. The resulting acceleration is called

the “effective gravitational acceleration” and is denoted by gc(t). It can be approxi-
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mately expressed as

9.0) = g - wia cos wwt. (3.22)

where Law is the wave frequency and a is the wave amplitude. This relationship is

depicted in Figure 3.5. Here we have assumed that the particle is at the peak of the

wave at t = 0.
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Figure 3.6: The wave-fixed coordinate frame for the vessel system.

Throughout this study, we shall observe the ship motion as if on a surface water

particle. Precisely, the ship model will be derived in a coordinate system tied with
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a water particle; see Figure 3.6. In this coordinate system, the ship motion can be

viewed as under the influence of the effective gravitational field ge(t), instead of 9.

By doing so, the constant hydrostatic pressure surfaces will be parallel to the water

surface since ge(t) is always perpendicular to the local water surface. By assumption

(A7), this surface is a flat plane, as shown in Figure 3.6. Therefore, the static forces

are the same as in the calm water case, except for a small modification (i.e., replacing

 

gby g.(t))=

K, = g-c—‘éth,c(zo,<p), (3.23)

Y, = 0, (3.24)

Z, = gegt)Z,c(zo,go). (3.25)

One should note that under the effective gravitational field, the forces Yg’s are parallel

to, and Z;’S are perpendicular to, the water plane.

3.2.2 The Hydrodynamic Forces

From equation (3.21), it is easy to see that gz represents the contribution of hy-

drostatic effects and 68—? + i—VQ - V<I> represents hydrodynamic contributions. Now,

by introducing the effective gravitational field and replacing gz by ge(t)z, the hydro-

static forces will have accounted for part of the hydrodynamic forces. Hence we will

include in “hd” terms only those hydrodynamic forces proportional to acceleration

and velocity (i.e., added masses and damping), except for in the roll moment KM,

where, as is standard in this field, an additional quadratic damping term is included.
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Thus,

Khd = —(a44(,o” + b44tp’ + b44q‘P’I‘P'I + (1423/6I + 64296 + (14326, + 54326), (3-26)

Yhd = —(024€P" + 52490, + azzyf)’ + 522316 + 02328 + 52326), (3.27)

Zhd = -((13490" + 53490, + 0323/3 + 5323/6 + 03323 + 53326). (328)

where the hydrodynamic coefficients aij,S and b,,- ’s can be determined either by exper-

iment or by an approximate analytical approach, such as the strip theory commonly

used in naval architecture. Note that most ships have a symmetric hull shape with

respect to the zz—plane, resulting in ca,- 2 a], and b,,- = bjg. Usually, for a given

vessel, these coefficients are obtained with respect to the point S in Figure 3.3, i.e.,

the vessel’s geometric center on the calm water plane. However, in this study, they

are taken with respect to the CG. The relationship between these two sets of hydro-

dynamic coefficients is given in Table 3.2, where those with respect to S are denoted

by a,,’s and figj’s.

Table 3.2: The relationship between two sets of hydrodynamic co-

 

 

 

 

 

 

 

 

eflicients.

022 3122 023(= 032) 0

024(= 042) £124 — (32220 033 3133

“34(= 043) ‘9333/0 044 3144 — 2512420 + 512225 + 5133313;

b.. 3.. b..(= b3.) 0

524(= 542) A24 — (3222C; baa i’33

534(= 543) —i733yG 544 iJ44 - 232420 + 022% + 333313;

b... i»...     
 

The assumptions on the hydrodynamics are the most suspect of all modeling



25

issues used in the present study. The linearization of these loads leaves much to

be desired. It would be possible to include nonlinear hydrodynamic coefficients to

account for higher order effects, and the analysis would follow as presented, although

a substantially larger number of coefficients would be involved. However, even the

linear coefficients are not well known for most hull shapes, and virtually nothing is

known about nonlinear terms. Furthermore, more accurate modeling would need to

account for the memory effects associated with the hydrodynamic loads [27].

3.2.3 The Wind Forces

Assume that the wind is steady in the horizontal direction with a constant wind

pressure Pw; see Figure 3.6. Assume also that since the heave displacement is small,

the area exposed to the wind is constant. The wind force can then be expressed as

Kw 2 p1 cos2 <15, (3.29)

Yw = p2 cos (I) cos 900 z 19; cos 45, (3.30)

Zw 2 p2 cos <15 sin cpo z 122900 cos (b, (3.31)

2 I C

where p1 and 192 are constants, and 4,90 = BEE-Sln wwt IS the angle of water surface

relative to the horizontal plane, which is assumed to be small; see Figure 3.6.

3.2.4 Remarks

The idea of using an effective gravitational field and the ship motion modeling

that follows from it are not new. Basically, we follow the work of Thompson et al.

[61]. However, the derivation in their work was heuristic, whereas we have put it on



26

a solid footing. Moreover, they did not include any hydrodynamic coupling effects,

allowing them to arrive at a simple one DOF roll model.

3.3 The General Ship Model in Regular Beam Seas

With the preliminary results established in previous sections, we are now in a

position to derive a general model for ship motions in regular beam sea conditions.

Figure 3.6 shows the coordinate systems used in the analysis. Both the YAZA and

YbZo coordinate systems are tied with a water particle A on the water plane, which

is moving along a circle. YAZA is a nonrotational frame. Hence, it can be regarded

as an inertial, lab-fixed coordinate system if one recognizes the effective gravitational

field in this system. YoZo is a wave-fixed frame rotating with the water plane.

It should be clear that the calm water model is valid only in the YOZo frame. (As

one can see, the water is “at rest” with respect to YoZo.) Also, the force components

given in equations (3.23)-(3.31) are all parallel to the axes of the YoZo system.

The time derivative of a quantity in the YoZo system is related to that in the

inertial YAZA system by

()1: (06+ 996 X ('I, (13-32)

where the subscripts indicate the respective frames and (of, is the angular velocity of

szo. The position vector of the center of gravity G in YoZo is

77c; = 3103.0 + (20 - ZG)ko.

where 3.0 and F0 are the unit bases for YoZo. Then by equation (3.32), we obtain the
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acceleration

II

(FGYI = [yo - 903(20 - za) - s06(226 + 9063/9130

+ [26’ + 903310 + r6(2y6 + 906(2'0 - 20))1130.

Therefore, the dynamics of the 3 DOF beam sea model can be written as

144$" K K. + Khd + K...

Y: K+Yhd+Ywamlyé’ - $06720 - Za) - 996(226 + 906310)]

mlzf)’ + 903310 + 906(23/6 + 906(20 - ZGIII = Z Z, + Zhd + Zw,

where the Kg’S, X’s, and Z,’s are given by equations (3.23)-(3.31). Again, by the

transformation (3.13), the above equations can be rewritten in a form similar to

(3.14)—(3.16):

G42 042II II II

m4cp + m43zo = K8 — 144990 — EX. + Kw — an,

— (C4499, + b44q90'lcp'l + C4200 + C4326), (3-33)

771206 = Ye + Yw - (02499, + 52200 + 62326), (3.34)

T’13‘490” ‘l' T”'32:; : Z: + Ze — 23—?ch + Zw — ‘a—SZYw

m2 m2

— (03499' + 63200 + 63326), (335)

where the ng coefficients can be found in Table 3.1 and

Ye = meEKZo - 20) + 290626 + «ptzonI,

a a

Ze = mI-rt'yo - 2906(1).) - 33¢ - fl210+ r62(Zo - 20))1-
m2 m2

Finally, the equations of motion can be obtained from equations (3.33)-(3.35) and

are given below:

6 t

mocp” = g; )F4(20a90) + D4(‘10,3v0320)
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+ E4(<p', v0, 26, yo, 20, t) + W4(cp, t), (3.36)

m2v6 = D2(<p', v0, 26) + E2(26, yo, 20, t) + W2(cp, t), (3.37)

mozg = git)F3(zoa 99) + 03(90', 00, 26)

+ E3(<,0', v0, 26, yo, 20,t) + W3(<p, t), (3.38)

where F4 and F3 are given in equations (3.17) and (3.18), and

D4

Dz

03

E4

E2

W4

W2

W3

= ‘54490' — 344q90’I80’I — 34200 — 54326.

= —024<P' — 52200 - C2326,

= —53480’ — 334q99’I99’I - 33200 " 53323,

= (7741 + 7742310 + 114320) sin wwt + (mup' + 774st

+ "462(3) C05 wwt + (7747 + 7148310 + 774920) C032 wwt,

= (7721 + 172220) sin wwt + 772326 cos wwt + ng4yo cos2 wwt,

= (7131 + 7732.110 + 773320) sin wwt + (773499, + 773on

+ 713626) cos wwt + (1737 + nasyo + 773920) COS2 wet.

= #41 cos <15 + #42 cos2 <25 + #43900 cos <2,

= P2 COS <15,

= #31 C03 95 + #32 0082 45 + #33900 COS (A,

and where the coefficients 525,5, 176’s, and flij,S are also collected in Table 3.1. In the

equations of motion, the F;’s are the restoring forces due to hydrostatics and ship

weight, the D,’s are the hydrodynamic damping, the Eg’s contain excitation terms

due to wave motion, and the W,’s include the wind forces.
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3.4 Singular Perturbation Formulation

The present system, described by equations (3.36)-(3.38), is too complicated for

a direct attack by analysis. This section is devoted to the purpose of a systematic

simplification by exploiting some special features of this dynamical system.

First of all, the heave natural frequency is in general significantly higher than

the roll natural frequency, as stated in (3.19). The ratio of heave frequency to roll

frequency is about 2.5 for the unloaded clam dredge Patti-B and is significantly larger

when fully loaded. It can also be much larger for other fishing vessels.

Secondly, heave displacements (modulus wave amplitude) 20 are usually small

compared to vessel geometry. Thus we have

Furthermore, by the smallness of 20, we can simplify the restoring forces Fg’s by

expanding them in a series of 20 as follows:

F42...» = essence)?+0((%)2)]. (3.40)

Fascia) = 01h[f3(<p)+f4(99)zh—0+0((z—,:))2)], (3.41)

where

W) = L231)-

Me) = £311,931

fate) = 5%}?

1W,
f4(99) : 820

01
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are dimensionless functions. This step amounts to extracting the leading order con-

tributions from the restoring forces and decomposing them into two classes: those

independent of the vertical position (the first terms in (3.40) and (3.41)) and those

due to incremental changes in the vertical position (the second terms in (3.40) and

(3.41)). Considering equations (3.17) and (3.18) and recalling that m34 and m43 are

small, one can interpret E; as the static roll moment and F3 as the static vertical

force. By the argument given at the end of Section 3.1.2, we know that the vertical

force is much more sensitive to 20 than is the roll moment. Therefore, f4(<,o) is a

relatively large negative quantity for any fixed roll angle (p, and

 

 
 

 
 

  

  
 

 

If3(90)| << |f4(se)|- (3-42)
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(a) “1151(9) = (b) .0“ = ‘
0 A20

Figure 3.7: Physical interpretation of equation (3.43).

Moreover, f4(go) can be further expanded as follows

014

Mr) = -— + fs(so). (3-43)
C11
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where f5((p) = —1—[Q’31(0,(o)— %(0,0)] satisfies f5(0) = 0. Recall that 04 =
01 820

—%§(0,0), which is much larger than (11 = —%’: (0,0). Physically, the relation

in (3.43) is demonstrated in Figure 3.7, as now described. Note that

LBF3(0,(0) oc 32:40.80) at 0R“), ‘19)

01 620 620 820 ,

f4(‘P) =

which is the sensitivity of the buoyancy force to 20 at a roll angle of (,0. Note also

that 04 is simply this quantity at zero roll angle:

812(0, 0)

820 .

 

—CY4 oc

Hence the shaded area in Figure 3.7(a) corresponds to al f4(<p) and that in Fig-

ure 3.7(b) to —a.,. The difference between them is that corresponding to alf5(<p).

It should be clear now that f5(cp) makes only a minor contribution to f4(go). Thus,

it is assumed that

Ifs(«.o)l << if (344)

Also, in terms of al and (14, (3.42) can be expressed as

|f3(<p)| << 35- (3.45)
01

Finally, in practice the wave excitation, hydrodynamic damping (except for the

heave damping), and wind forces are small compared to the inertial terms. Specifi-

cally, we have the following relationships

.23.. << 9, (3.46)

|D2| << mg and [D3], ID4| << ngh (except for 63326 in D3) (3.47)

[ml << mgh and IP2I << mg. (3.48)
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Hence, the equations of motion derived in the calm water case, namely equations

(3.16)—(3.18), are taken to be the dominant terms in equations (3.36)-(3.38).

It is interesting to note that the sway displacement yo does not appear in the calm

water model, as it is immaterial to the nature of the system dynamics. In terms of

dynamics, the sway variable is said to be an ignorable coordinate under calm water

conditions. However, this is not the case when the waves are introduced. As one

can see, yo does show up in equations (3.36)-(3.38). Nevertheless, it will be shown

in the sequel that all terms containing yo can be pushed out to higher orders in the

analysis through rescaling, since they are induced by wave excitation.

Therefore, a singularly perturbed form is expected for the equations of motion if

they are properly nondimensionalized and rescaled. In this form, the heave motion

will be significantly stiffer, and thus faster, than the roll motion. Indeed, by the

following change of variables and scaling of parameters, based on equations (3.19)

and (3.39):

fl = ‘1 “fl = r = w t
wr ’ wr ’ r ,

'00 20 d
 

and using the relationships (3.40)-(3.48), equations (3.36)-(3.38) can be transformed

into the following form:

i1 = 332, (3.49)

532 = f1($1) + 691(5'31. 1132.31.21.22,7',€), (3-50)

3) = 692(33131'233/322a7-26), (3.51)

62.1 = 22, (3.52)



33

. —2

622 = —w 21 — 53322 + 593(31. 132, ya 21, 22, 7', 6), (3-53)

where :51 = 4,0, $2 = 9b, 3] = 17, 21 = Z, 22 = 65, and

g1(:c1, 9:2, y, 21, 22, 7', 6) = 041 cos 2:1 + 042 cos2 2:1 + f2(:v1)zl — 6443:; — 6449x2|x2|

— 6423/ — 64322 — Af1(:v1) cos 07' + 741 sin 01' + 0(6),

920131.332. y, 22, 7', 6) = 021 C0$5131 — 524132 — 5223/ — 52322

+ 72322 cos 07' + 721 sin 97' + 0(6),

93(x1, 3:2, y, 21, 22, T. e) = f3(:c1) + 031 cos 2:1 - 634x2 - 53231

+ A0221 cos 91' + 0(6),

and where the nondimensional coefficients A, agj’s, 6,-j’s, and vgj’s are given in Ta-

ble 3.3. Here we have used the unperturbed natural frequencies w, and w}, as the

rescaling basis. This is valid since the relative magnitudes of the heave and roll

frequencies will remain the same even when the perturbations are introduced. It is

important to note that if the small perturbations gg’s are omitted, the system will

reduce to the calm water model, equations (3.16)-(3.18), as pointed out previously.

It follows from equations (3.49)-(3.53) that the coupled roll/sway motion lies on

a slow manifold which is determined to be given by

€LD-2[f3($1)+ 0'31 COS $1 — 6345132 — 632g] + 0(62), (3.54)21

22 = 0(8). (3.55)

This is a surface in the phase space which accounts for the quasi-static heave dis-

placements induced by roll and sway motion, but it does not include any heave

dynamics. Perturbations away from this manifold represent the small amplitude,
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Table 3.3: Nondimensional coefficients.

 

 

 

 

 

 

 

 

 

      

symbol definition symbol definition

6A if 6721 #327;

6723 :33; 6741 if?“

60’21 1712;233- 60’31 5‘3:

60'41 if: €042 €412-

6622 £33; 6523 £223;

6524 £237, 532 fl

6’1 533 £13; 534 333:;

6642 £323: £643 529%

6644 fl: 6644‘] £13?"

 

fast, and heavily damped heave motions. Such responses will quickly come onto

the roll/sway manifold, where the dynamics are significantly slower. (For a more

thorough treatment of such problems, see the work of Georgiou and co-workers [21].)

Using the global center manifold theorem ([7], [21]), it can be shown that this

slow manifold exists globally up to the angles of vanishing stability for sufficiently

small 6. Furthermore, it can also be shown that the slow manifold is locally attractive

([21], [31]). In other words, within the angles of vanishing stability, trajectories in

the state space will eventually approach the slow invariant manifold which describes

the roll/sway motion; see Figure 3.8.

The dynamics on the slow manifold can be obtained by inserting equations (3.54)

and (3.55) into equations (3.49)-(3.51), which yields

(131 = (B2, (3.56)
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heave

(21, 22)

roll and sway

(X1, x29 Y)

Figure 3.8: Schematic diagram of the slow and fast manifold.

1.72 = f1($1) + €§1($1,$2, 3;, Ta 5), (3-57)

3) = 6§2($1a$2iya7aé)a (358)

where

571(31, 552. y, T. 6) = 0'41 C03 331 + 042 €082 $1 — 644332 — 544q$2I$2| — 5423/

— Af1(a:1) cos 07' + 741 sin QT + 0(6),

§2(xla$2a 31a 7', C) = 021 C051131 — 524332 — 6223/ + 721 sin 97’ + 0(6).

One can see from equations (3.49)-(3.58) that up to 0(6), the sway displacement

yo does not appear, indicating that all terms with yo are of order 62 or higher, as

claimed earlier. This implies that sway still behaves like an ignorable coordinate to

first order, even in the presence of wave excitation.



CHAPTER 4

CAPSIZING CRITERION BY CHAOTIC TRANSPORT

THEORY

We now turn to the vessel’capsizing problem for the 3-DOF model. The main

tool we are using is the theory of phase space transport [67]. It has been successfully

used for proposing capsizing criteria for single DOF ship models ([13], [23], [27]). In

those studies, ship capsizing is characterized in phase space by the escape of a solution

trajectory from the safe region into the unsafe one under the action of wave excitation.

In order to study our 3-DOF ship capsizing problem using the same concept, some

general background and its application to capsize are provided in Section 4.1 for

l-DOF roll models, in which sway and heave are simply ignored. In Section 4.2,

the difficulty in applying chaotic transport theory to slowly varying oscillators is

discussed, and an approach using the fast invariant manifold concept is introduced.

We then apply the results of Sections 4.1 and 4.2 to the ship dynamic model to

propose a capsizing criterion in Section 4.3. In Section 4.4, the proposed capsizing

criterion is compared with those obtained from l-DOF roll models to examine the

coupling effects from sway and heave motions.

4.1 Phase Space Transport for l-DOF Roll Models

From equation (3.33), the 1-DOF roll model is obtained simply by setting v0 and

20 to zero, yielding

II I I I C t

(I... + 0...). + b...) + In... to I + $14.0): W). (4.1)
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where k(cp) = K,c(0,¢) is the static restoring moment and f(t) = —I44<pg (t) is the

wave excitation. Here, without loss of generality, the wind force is also neglected for

the sake of brevity. The unperturbed system is that for which the roll damping, b44

and b44q, and wave excitation, f(t), are zero and ge(t) E g in equation (4.1).

3P

0 [9‘9 0

(a) biased model (b) unbiased model

Figure 4.1: The unperturbed structure for 1-DOF ship models.

Figure 4.1 shows the structures of the unperturbed l-DOF roll model with and

without bias in phase space (for the Poincaré map). Both cases possess two fixed

points of saddle type which are referred to as “the angles of vanishing stability”

and one fixed point of center type between the saddles, representing the upright

equilibrium position. The biased system has a homoclinic orbit connecting to one

saddle point and encircling the center, whereas the unbiased system has a heteroclinic

cycle connecting the two saddle points and also encircling the center. The safe region

is defined to be the one bounded by the homoclinic orbit for the biased system or

by the heteroclinic cycle for the case of the unbiased model. This is because every

initial condition located in those regions will lead to a bounded oscillatory motion.

Outside those regions, the motion will be unbounded, corresponding to capsize.

As the damping is brought in, the homoclinic and heteroclinic orbits will break

and the center type fixed point will become stable, as shown in Figure 4.2. Note

that Figures 4.1 and 4.2 can be regarded either as trajectories for the flow, or as

those for the Poincaré map since they represent autonomous systems. In order to be

consistent and comparable with the following figures, we shall consider them to be
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(a) biased model (b) unbiased model

Figure 4.2: The structure for 1-DOF , damped ship models.

for mappings in which the states are sampled once per period of the forcing.

Figure 4.3 depicts the situation when the wave excitation is turned on with in-

creasing amplitudes. One can see that the stable and unstable manifolds of the

saddle points are distorted. For small enough wave amplitudes, the system’s behav-

ior is qualitatively the same as in Figure 4.2; see Figures 4.3(a) and 4.3(b). When

the wave amplitude passes a critical value, which depends on the damping coef-

ficients and wave frequency, the stable and unstable manifolds of the saddles will

will intersect, resulting in homoclinic or heteroclinic tangles; see Figures 4.3(c) and

4.3(d).

Unlike the case without tangles, where the evolution of any initial condition is

clear, the long-term behavior of systems with tangles is unpredictable due to the

horseshoe structure and fractal basin boundaries resulting from the homoclinic and

heteroclinic tangles. The mechanism and dynamics leading to these phenomena are

relatively complicated. Let us take the homoclinic case as an example. The situation

for heteroclinic case is virtually the same.

It is obvious that there exist homoclinic tangencies at a parameter value some-

where between those in Figures 4.3(a) and 4.3(c). As a consequence, an infinite

sequence of saddle node and period doubling bifurcations will occur just before the

homoclinic tangency occurs ([22], [66]). Moreover, due to the results of Newhouse

([47], [66]), the homoclinic tangency persists in a neighborhood of the major homo-
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(a) biased, small amplitude (b) unbiased, small amplitude

  
(C) biased, larger amplitude (d) unbiased, larger amplitude

Figure 4.3: The structures for 1-DOF ship models with increasing

wave amplitudes.
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clinic bifurcation point. In other words, if a homoclinic tangency is destroyed by

slightly shifting the parameter, another will be created elsewhere in the homoclinic

tangle [66]. This implies that there are infinitely many periodic attractors coexisting

with the horseshoe structure around the homoclinic bifurcation point ([47], [66]).

Therefore, the safe region, i.e. the transient basin of attraction of the stable fixed

point (in unperturbed system), will be eroded by these periodic attractors, making

its boundary fractal-like [57].

Thompson et al. [61] have proposed a capsizing criterion called index of capsiz-

ability by numerically quantifying the erosion of fractal safe basins. While such a

numerical approach can yield accurate results, it has some serious drawbacks. It is

time consuming and problem dependent. Their method provides no analytical esti-

mates for the index. It must be computed on a case-by-case basis. Also, when the

system’s DOF increases, the time spent on the calculations can grow unreasonably

large. Therefore, it is not suitable for multi-DOF systems like the present model. On

the other hand, based on chaotic transport theory, Shaw and co-workers were able

to propose analytical capsizing criteria for periodic and random seas ([13], [23], [27]).

Their basic ideas with some new results are summarized below and will be followed

in this study.

Although the long-term prediction of the behavior for systems with tangles is

seemingly impossible, the system’s short-term evolution can be predicted using the

techniques of lobe dynamics. In Figure 4.4, an enlarged version of Figure 4.3(c), the

homoclinic point r is called a primary intersection point [67]. The segment 3? U 17:9

is referred to as the pseudoseparatrix. The safe region for the perturbed system is

defined to be the interior of the pseudoseparatrix. The bounded regions Lg’s in this

phase space of the Poincare map are called lobes. The arrows relating the lobes in the

figure designate the mapping direction. For instance, L_2 is mapped to L0, which is

mapped to L2, which is mapped to L4, and so on.
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Figure 4.4: The pseudoseparatrix (the bold lines) and the lobes.
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It is clear that when the homoclinic tangle exists, some points initially located in

the safe region can be mapped to the unsafe region, leading to capsize. Point 00 in

Figure 4.4 is such an example. The physical situation is that the vessel slowly rolls

over to one side with small oscillations modulated on this main motion. The small

oscillations have approximately the same frequency as the excitation. Figure 4.5

illustrates this scenario.

 
Figure 4.5: The scenario for chaotic transport leading to capsize.

One can show that the only points which are transported from the safe region to

the unsafe one under one period of excitation are those in L0 [67]. This particular
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lobe is called a turnstile lobe, and for 6 << 1 its area is related to the associated

Melnikov function [67]. Referring to Figure 4.6, this relationship is given by

pa...) = 6 [OT M+(o, 430W + 0(8) = e [of M(0, ¢0)d0 + 0(8), (4.2)

where p(Lo) represents the area of the set Lo, M+ denotes the positive part of the

Melnikov function, 0 is the time parameter on the unperturbed homoclinic/heteroclinic

orbit qo(t), 450 is the phase difference with respect to the excitation, 6 is the order of

the perturbations and T is the period of the excitation. This area, [1(Lo), is that of

the lobe containing point Q1 in Figure 4.4. By equation (4.2), every other lobe has

the same area as Lo up to 0(6) since the Melnikov function is periodic in 0. (Note

that these lobe areas are affected by the system dissipation, but it is of order 6.)

Also, let A, be the area of the safe region of the unperturbed model; here we will

use A, to approximate that for its perturbed counterpart, since the size of the safe

region remains essentially unchanged after perturbation.

M(9 9¢0)

 
T

A0: 8% =8LM(9a¢o)d9

Figure 4.6: The correspondence between lobes and the Melnikov

function.

We are now interested in the initial conditions in the safe region which are trans-

ported to the unsafe one after N periods of wave excitation. Let the set of these
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initial points be denoted by EN. A candidate for EN is Lo plus its N — 1 pre—images.

However, part of the turnstile lobe’s pre-images is not in the safe region. Indeed, for

area-preserving maps (non-dissipative systems), we have ([67])

no.) = i ”(Lo n run), (4.3)
k=l

where f"(L1) denotes the k-th image of L1. Equation (4.3) says that L0 is completely

filled with images of L1, a lobe in the unsafe region, as shown in Figure 4.7.
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Figure 4.7: The relationship between Lo and the images of L1.

Since every lobe has the same area as Lo, the area of EN can be expressed in

terms of L0 and L1 as follows ( [67])

N—l

MEN) = NMLO) — Z (N — k)#(Lo n fk(L1)), (4-4)

k=l

for N Z 2. The last term in equation (4.4) accounts for the portions in L0 whose

pre—images are located in the unsafe region.

While the quantity [1(Lo) is related to the Melnikov function by equation (4.2),

there are no analytical results on the estimate for p(Loflf"(L1)). In view of equation

(4.3) and the fact that typically Lo 0 f(Ll) = 0, we shall assume

M(Lo 0 f(L1)) = 0 (45)
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and

,.(L0 0 f"(L1)) = 2*“).(L0), Vk = 2,3,... (4.6)

The reason for choosing 1/2 as the decay rate is that equations (4.5) and (4.6) will

add up to equation (4.3). Substituting equations (4.5) and (4.6) into equation (4.4)

yields

MEN) (3 "' 2_N+2)#(L0)

as 3p(Lo), foerarge. (4.7)

Hence the amount of phase space transport MEN) is nearly independent of N. In

other words, it is independent of the exposure time to the wave excitation. An

interesting implication for this is that most initial conditions in the safe region will

either stay in the safe region forever or lead to capsize during the first few excitation

periods.

The amount of phase space transport can be regarded as an estimate of the

eroded area of the safe basin. Therefore, equation (4.7) is useful in this respect. By

combining it with equation (4.2), one can thus obtain a simple expression for the

ratio of the eroded area, denoted by p8, as

T

p, = 35%) 42‘ 3<1> = % / M+(0,0)d0 + 0(8), (4.8)

a .9 0

where (I) is the normalized phase space flux and we have set (to = 0 since the integral

is independent of this phase angle. It is easy to see that )0.3 is closely related to the

capsizing probability, which will be discussed in Chapter 6 for an example vessel.

Similar results have been generalized to the case of random excitation ([23], [27]). In

this study, they will be generalized to a multi-DOF beam sea model via the approach

presented below.
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4.2 Phase Space Transport in Slowly Varying Oscillators

The slow dynamics derived from the current 3-DOF ship model, i.e. equations

(3.56)-(3.58), are in the form of a class of systems called slowly varying oscillators,

which are defined by the standard form

a? = fx(:v.y.2)+6g.(:v,y.z.t), (4.9)

3) = fy(x,y,2)+€gy(x,y,z,t), (410)

z' = 6gz(:r,y,z,t), (4.11)

where 0 < 6 << 1. In the present case, the 95,8 are periodic in t with period T, and

fz(a:, y, z) = %(z, y, z) and fy(:z:,y, z) = —%—ii(x, y, z) for some Hamiltonian function

H(9:, y, 2). Slowly varying oscillators usually arise from systems involving two time

scales. There have been many investigations of such systems (e.g., [68], [69], [70]).

For more examples and applications of such systems, please refer to [65].

    

Q

2

ty
x
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(a) The biased case. (b) The unbiased case.

Figure 4.8: The unperturbed structures of slowly varying oscillators.

The current system is a special case in that its Hamiltonian function does not

depend on the slowly varying coordinate, 2 (here, the sway velocity). Hence, the
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unperturbed structures are identical at each 2 level of the slowly varying variable,

as depicted in Figure 4.8. This unperturbed structure mimics the behavior of the

unperturbed one DOF roll model. When the perturbations are added, i.e. when the

wave excitation is introduced, the behavior of the present system will be significantly

different from that of the corresponding single DOF one due to the coupling effects

from sway and heave. In other words, the hydrodynamic coupling through added

masses and dampings, aij,S and bij’s, will play an important role in determining the

dynamics.

Note that systems eligible for analysis of chaotic transport by Melnikov theory

are those in nearly integrable form, i.e. integrable systems with small perturbations.

Slowly varying oscillators are in such a form and their Melnikov function is available

in ([9], [68] , [69]), and is given by

Mm. (150) = [:(VH - g)(qo(t).t + o + $4 — 5:350.) [:g.(qo(t),t + o + 33w,

(4.12)

where g = [gr 9,, gz]T, qo(t) is the reference homoclinic orbit, 0 is the time parameter

on qo(t), (130 is the phase difference with respect to the excitation, and 7, is the saddle

point, here the angle of vanishing stability.

In extending the concept of phase space transport for a single DOF model to the

present system, one must be cautious. As can be seen, a slowly varying oscillator

will result in a three-dimensional Poincare map. While the theory of phase space

transport is relatively complete for two-dimensional maps and some special higher

dimensional maps [67], it is not well developed for cases in which “lobes” are not

well defined, as is the case for slowly varying oscillators; see Figure 4.9. The problem

here is that the saddle point of the perturbed system in the three-dimensional phase

space has a two-dimensional stable and a one-dimensional unstable manifold, and

these sets do not form boundaries for pieces of the phase space (both manifolds need

to be two-dimensional in this case in order to form well-defined lobes). A difficulty
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Figure 4.9: The structure of stable and unstable manifolds in a slowly

varying oscillator.
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thus arises about how to quantify phase space transport measures for such systems.

Me

Fe  

 

Figure 4.10: The fast manifold in a slowly varying oscillator.

It is shown in Appendix A that the fast dynamics of a slowly varying oscillator

on a two dimensional fast invariant manifold has the same Melnikov function as the

whole system, i.e. that given by equation (4.12). This can be easily visualized in

Figure 4.10, which depicts the fast manifold F, in a slowly varying oscillator. It is

interesting to note that the dynamics on the fast manifold are similar to that of a

single DOF roll model, only the quasi-static effects of sway coupling are incorporated.

This result suggests one approach to the above-mentioned difficulty, as the transport

theory can at least be applied to the two-dimensional fast dynamics, wherein the

integral of the positive part of the Melnikov function over one period can now be

interpreted as the area of the two-dimensional turnstile lobes in the fast manifold.

Since the fast manifold is (at least weakly) attractive, this integral of Melnikov

function will serve as a measure of the transport for the overall system.

We close this section by some remarks. Recall that we started with a 3-DOF

beam sea model and then restricted ourselves to a three dimensional slow manifold

composed of roll and sway dynamics. In the slow manifold, we once again confined
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ourselves to a two dimensional fast manifold which is basically the roll dynamics with

coupling from sway. The justification these steps is that the final two dimensional

manifold, although slow in one sense and fast in another, is attractive in the entire

state space and it contains the important dynamics for capsize in roll, with coupling

from heave and sway accounted for in a systematic manner. One may also have

noticed that the entire system has three time scales. The heave motion is the fastest,

the roll motion is next, and the sway motion is the slowest. Among them, the heave

and sway motions are stable, and the roll motion is essentially the one left for the

analysis, as it contains the unstable dynamics that lead to capsize.

4.3 Capsizing Criterion

Let qo(r) = (3310(7), $20(T), g) be the reference (homoclinic or heteroclinic) orbit

for the present slowly varying oscillator described by equations (3.56)-(3.58). This

orbit is based at a sway velocity of g, which can be determined by applying the

theory of averaging to the slowly varying equation (3.58). This yields

0

g = A cos :21, (4.13)

522

where :21 is the (cl-coordinate of the saddle fixed point with homoclinic orbit. This

velocity is the mean sway velocity of the vessel in the presence of damping and wave

excitation, as the vessel is oscillated about the angle of vanishing stability, 5:1. Thus,

the Melnikov function for the system is given by

M(0, a0) = j: 320(T)§1(:r10(r), 1:200“), 37, r + 9 + %9)dr.

It is more convenient to rewrite it as

M(0, ($50) = 10 — 64411 — 644.,12 + A1362, 9, 00) + 74114“), 0, 450), (4.14)

where

Io = I: x20(r)[041 cos 3310(7) + 042 cos2 3310(7) — 6423]]617',
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II = £:x§0(r)dr,

1, = /_:x§o(r)lxzo(r)ldr.

1301.0. 40) = - 1: 4240146140) cosmv + 0) + 404,

14(0, 0, (150) = I: x20(‘r) sin(Q(r + 6) + ¢O)dr.

The advantage of representing M(0, 450) by these five integrals is that it shows the

different contributions which constitute the Melnikov function. Io is the contribution

from the wind forces. [1 and 12 are those from the linear and quadratic parts of the

hydrodynamic damping, respectively. Finally, 13 and 14 are, respectively, related to

parametric and external components of the wave excitation.

We now turn to some simplifications of these integrals. By taking qo(0) to be the

point Q in Figure 4.8(a), namely the “midpoint” of the reference orbit, x10(r) and

x20(T) will be even and odd functions in 1', respectively. Therefore, the integrand of

Io is an odd function, implying Io = 0. Since 1220(7) approaches zero exponentially

as 7' —> :l:oo, the integrals 11 and 12 are well defined and are, obviously, positive.

Finally, by noting again that x10(r) is even and 2320(7) is odd, [3 and I4 can be

further simplified to

13(919, Q50) = 13(5)) sin(fl9 + 450),

[4(0, 0, (230) = [4(0) COS(Q0 + (250),

where

13(9) = —/_: x20(r)f1(x10(7'))sin Qrdr,

14(Q) = [- $20(T) SlIl QTdT.

It is interesting to point out the implications of Io = 0. It follows immediately

that the wind force has no effect on the Melnikov function and hence will not affect

the amount of phase space transport (to the first order). This can be understood
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from the energy viewpoint of the Melnikov function and by recognizing that the

model adapted here for wind forces is conservative ([30], [59]). Physically, if one

considers the calm water situation, a steady mild wind can hardly cause capsizing

without the aid of wave excitation. No phase space transport may happen in the

calm water condition. However, it should be intuitively clear that wind forces have

an important influence on the possibility of capsize. This comes about through the

change of the size of the (unperturbed) safe region, even in the absence of damping

and forcing; for example, as shown in Figure 4.1. In other words, it will cause a bias

in the upright equilibrium angle. As it is assumed to be small in this study, it is of

higher order and of little importance. In the present study, the offset in the CC is

used to account for bias in the equilibrium angle of the vessel.

An alternative treatment to wind is to separate it from the perturbation and to

incorporate it into the unperturbed part while keeping in mind that it is small. Then,

the “unperturbed” reference orbit will be altered accordingly. This will not change

the results except possibly for the case when the mass center has no bias, i.e. ya = 0.

In this case the reference orbit will be disturbed dramatically from heteroclinic to

homoclinic type, despite the smallness of the wind force. However, we will not pursue

this issue further since it involves the subtle issue of the interaction of heteroclinic

and homoclinic orbits and requires more careful considerations.

Based on the above discussions, the Melnikov function can be put in the concise

form:

M(0,0) = M+M(0), (4.15)

M = —6,,I,—5,,,12, (4.16)

114(0) = I~sin(90+q~5), (4.17)

where

 

I = (was) +7430).
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—1 7.1174(9)

413(9) ’

d = tan

and without loss of generality, do is taken to be zero for simplicity. From this simple

expression, one can clearly see that the Melnikov function is harmonic in 0 with

same frequency as the excitation 0, mean value M, and oscillatory amplitude f, as

depicted in Figure 4.6.

It is important to note from equation (4.16) that the mean value of the Melnikov

function [W depends linearly on the hydrodynamic damping coefficients and is inde-

pendent of the wave excitation. Also, note that M is negative since both II and I; are

positive, and the combined damping coefficients 644 and 544.; are in general positive

as well. This negative constant indicates that without wave excitation, the unstable

manifold of the saddle point lies “inside” of the corresponding stable manifold, as

sketched in Figure 4.2. The physical meaning is that a ship originally located in the

safe region will eventually go to the upright equilibrium position — i.e., no capsize

may occur from safe initial conditions.

In contrast, the amplitude of the Melnikov function i is independent of damping

parameters and is determined by the wave height and frequency. It depends lin-

early on the wave height, but nonlinearly on the wave frequency. Increasing wave

amplitude is equivalent to increasing f. If the wave excitation is so strong that

i 2 I47 I. (4.18)

then the homoclinic tangles exist and the ship has the possibility of capsize from the

safe region.

Following the ideas developed in Sections 4.1 and 4.2, we can now develop a

quantitative measure of the likelihood for escape over N periods of excitation using

the ratio of the erosion area given by equation (4.8). For a given vessel exposed over a

prescribed time, the ratio pc depends only on the sea state, which is characterized by

the wave frequency and amplitude. (In fact, it is almost independent of the exposure
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time, as indicated previously.) If the sea is well behaved such that equation (4.18) is

not satisfied, )08 is simply zero. When the sea is strong enough such that j exceeds

the critical value set by equation (4.18), pc will be positive. Hence, we have the

following simple relation between the ratio of erosion area and the sea state:

= 0, if i < [M]

p. 20,1{i2lMli

This ratio is generally computed by numerically evaluating some well-behaved indef-

inite integrals.

For the special case that ya: 0 and no wind force18 present (the unbiased case),

an analytical expression for M(9, do) is possible. Note that f1(:1:1) is an odd function

in 2:1 in this situation. Hence, one can use the polynomial

f1(:rl) = —.r1 + 0.13:],

as a best-fit approximation to the actual function, as was done in many previous

works ([23], [27], [61], [64]). Then, following the procedure similar to the general

case, one can get the following closed-form expression for the Melnikov function

2 2 86 A 2o+n3 11
M(0,do)=—-§\:——544-15;:/q——[a-+7417r 7” 6a >181.” s1n(no+¢o)7.

(4.19)

  

where some of the integrals involved are evaluated by the method of residues. The

safe region for this case is bounded by a pair of heteroclinic orbits and its area can

also be obtained explicitly:

g
A, = .

361

Once the parameters in (4.19) are specified, i.e. a given ship and sea state, we

can determine the ratio of erosion area by an equation similar to (4.8), developed for

the heteroclinic case. It is

_ 6‘ T + 2p, _ [18/0 M (0,0)d6+0(6 ). (4.20)
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One should note that since there are two turnstile lobes in heteroclinic tangles (one

each for positive and negative velocities), there a factor of 6 instead of 3 in equation

(4.20).

4.4 Comparison With Results Horn l-DOF Roll Model

The effects of coupling from sway and heave will be examined in this section by

comparing the present results with those obtained from an analysis of a single DOF

roll model, that is, the model considered in virtually all previous analytical studies.

The structure of the Melnikov function for our 3-DOF model, given by equations

(4.15)-(4.17), is exactly the same as that for the 1-DOF roll model, but with differ-

ent coefficients. The differences have two sources. One is the linear damping 644,

which will affect the mean value of the Melnikov function. The other is the external

excitation 741, which influences the amplitude of the Melnikov function. During the

following discussion, one should recall that m43 is a small quantity.

In the case of the l-DOF roll model, the linear roll damping either contains only

hydrodynamic roll damping b.“ [23], or incorporates other sources of damping in

044 through an assumed roll center, which is heuristic and difficult to verify ([25],

[26]). In this study, all damping coefficients from roll, sway, and heave are taken into

account in a systematic way to form a combined damping coefficient 644. Explicitly,

1

6544 = ——2——[m3(m§b44 - "12024542 — "12042524 ‘1' 042024522)

mzmowr

+ m43(m2a32b24 — 032024522 — m3534 + 7712024532”. (4-21)

It is obvious from equation (4.21) that the effect of heave coupling is small since

m43 is small. Compared to the simple roll model, the additional dominant term for

the current 3-DOF model is

m3

-—2—(—m2a24b42 - mza4zbz4 + 042024522). (4.22)

mZmWr
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Note that mo, m2, mg, 4.0,, and (’22 are always positive, but a24, 042, b24, and 042

could be positive or negative, depending on the wave frequency and the position of

the CG. Since the three terms in equation (4.22) have the same order of magnitude,

it is hard to conclude the overall effect on 644 and hence on the mean value of the

Melnikov function. It will be shown in Chapter 6 that for the Patti-B, the coupling

effect on the mean value of the Melnikov function is negligible.

On the other hand, the amplitude of the external excitation is

4
wwa
 

6741 = (77127723144 - 772377104220 + 7724377103220). (4.23)

€11ng

If the hydrodynamic couplings are neglected, only the first term in equation (4.23)

will be retained ([61] and cf. equation (4.1)). It is clear from equation (4.23) that

the contribution from heave coupling (the third term) is small since m43 is small,

whereas that from sway coupling (the second term) can be significant. Recall that

04220 = 514220 - 312223;,

is usually negative; see Tables 3.2 and 6.1. Thus, 741 will be larger if the coupling

effects are taken into account, resulting in the increase of the amplitude of the Mel-

nikov function. This will lead to an increase in the amount of phase space transport.

Also from equation (4.23), we can deduce that the coupling effects will increase with

the wave amplitude since the additional term is proportional to a.

In summary, there are two major points to be made. First, the coupling from

heave has little effect on the Melnikov function, and thus on the capsizing proba-

bility. Second, the overall sway coupling effects turn out to increase the amount of

phase space transport. So, for a particular ship under a given sea state, the 3-DOF

model will propose a higher capsizing probability than does the 1-DOF model. The

implication for this is that there are situations which are predicted to be relatively

safe by the single DOF criterion, that are actually vulnerable to capsize. This, and
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other features of the ship dynamics, will be illustrated by numerical simulations in

Chapter 6.



CHAPTER 5

ROBUST SHIP STABILIZATION

After understanding the dynamics of the nonlinear 3-DOF ship model from the

analysis in previous chapters, we can now proceed to consider roll stabilization by

feedback control. The objective is to design a stabilizing feedback controller against

capsizing that takes into account model uncertainties. In other words, in addition

to stabilization, robustness is a major consideration. As is clear in Chapter 3, it is

virtually impossible to develop accurate models for large amplitude ship motions,

due to the difficulties involved in solving the associated free-surface hydrodynamic

problem. Therefore, model uncertainties always exist and can be substantial in

magnitude.

Because of the uncertainties, the best one can achieve is ultimate boundedness

of the motion. That is, the vessel is not guaranteed to settle to a single equilibrium

position in steady state, but its motion is restricted to a small bounded region. This

is sufficient for our purposes, as there will be a significant reduction of the rolling

motions, and the control will prevent the ship from capsizing even under severe sea

conditions. It is obvious from Chapter 4 that without any controller, the vessel

system is subject to the possibility of capsize in unfavorable sea states ([10], [13],

[23]. [27])-

To this aim, anti-roll tanks are employed as actuators, since other methods are

either impractical, such as the gyroscopic method and moving weight scheme, or not

effective at low vessel speeds, such as the fin stabilizer and rudder-roll systems. The

main goal of the anti-roll tank is to dynamically change the horizontal position of a

ship’s center of gravity in such a way that the roll motions are reduced. However,

58
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the position of the CG cannot be shifted instantaneously, and therefore the control

scheme will involve a dynamic state feedback controller.

Our approach for the robust controller design is based on a smooth version of

sliding mode control, which handles the uncertainties, together with the backstepping

method and the idea of composite control for singularly perturbed systems [31].

5.1 Uncertainties in the Ship Model

The nondimensional state equations (3.49)-(3.53) for the current 3-DOF ship

model can be rewritten to include the uncertainties existing in the model and to

explicitly show the dependence on ya as follows:

531 = $2. (5.1)

$52 = f11(331) + f12($1)$3 + Af($1. $3)

+ 6(91 + Agi)($1. x2, 3:3. y, 21, 22. r), (5.2)

3) = €(92 + A92)(5131, 1132, y, 22, T), (5.3)

621 = 22, (5.4)

622 = —5121 — bozo + 6(93 + Agg)(a:1, 2:2, 333, y, 21, 22, 7'), (5.5)

where x3 = yG/ 11:41 is the (normalized) horizontal position of the CG, and the fij,S

are hydrostatic functions induced by the f;,S. Note that the arguments of the per-

turbation functions now include .733, but we shall still use the gg’s to denote these

functions for brevity. Note also that here the time variable has been rescaled using

the unbiased roll natural frequency.

There are two sources of model uncertainties, one from hydrostatics and the

other from hydrodynamics. The functions f,-,-’s in the state equation represent the

contributions from hydrostatic forces. For a given hull shape, these functions can

 

1 k4 is a constant in the unbiased GZ function, defined in Section 6.1 below.
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be obtained in an integral form, but quite often they cannot be expressed in a

closed form in terms of the roll angle. However, in most cases, polynomials can

well approximate them in an appropriate best-fit sense. It should be noted that if

better functional fits for fij’S are available, they can be easily used in place of the

polynomials. The discrepancy between the actual and approximate righting moment

(i.e., f11(a:1) + f12(21)x3) is represented by the uncertainty function Af(x1, :03). For

the other hydrostatic functions, the differences are contained in the functions Agg’s.

On the other hand, the significant model uncertainties arising from the hydro-

dynamics are represented in part by the uncertainty functions Agg’s and in part by

the unknown positive constants b1 and b; in equation (5.5)2. All these uncertainty

functions are assumed to be continuously differentiable in their arguments.

5.2 Design of a Robust Stabilizing Controller

 
Figure 5.1: The active anti-roll tanks.

In this section, a robust state feedback controller will be designed using the

method of anti-roll tanks. The anti-roll tanks, as shown in Figure 5.1, consist of two

tanks connected at the bottom with one on the port side of the vessel and the other

 

2 In comparison with equation (3.53), it should be clear that b1 is of)” plus

uncertainty, and b; is 633 plus uncertainty.
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on the starboard side. The fluid in the tanks can be moved from one side to the

other through the connection tubes, and in this way, the CG of the vessel can be

controlled. ‘

When equipped with such anti-roll tanks, a dynamic equation for these tanks

needs to be included in addition to the state equations given by (5.1)-(5.5). Assume

that the flow rate of the fluid can be directly controlled by actuators, such as pumps,

added to the connection tubes. Then the additional equation takes the form:

(733 = u, (5.6)

where u is proportional to the flow rate and serves as the control input.

Due to space limitations, the fluid weight in the tanks is usually less than 5% of

the vessel displacement [53]. This implies that in order to shift the CG by 1 inch,

we need to move the CG of the fluid by at least 20 inches. Hence, x3 is limited by

available space. On the other hand, the flow rate (the control effort) also has practical

limitations. These limitations must be monitored when designing the controller. The

overall system can thus be illustrated by the block diagram shown in Figure 5.2. The

two limiters in the diagram stand for the practical limitations on $3 and u.

Before starting the controller design, a specific statement of the problem is given.

Let So be the unperturbed, unbiased safe region in the ($1,152) invariant manifold,

i.e. the one enclosed by the heteroclinic cycle in the roll manifold. Let 51 be some

compact set containing So in the same manifold. Then the domain of interest is

defined by

D = {($1,32,$3.ya21,22)|($1a932) 6 SI: [333' S an lyl S Ly? ”(21122)” S L2}, (57)

where H - [I denotes the Euclidean 2-norm, and L3,, Ly, and L, are positive constants.

Our goal is to design a feedback law

u : ¢($1,$2,$3,9121122) (58)
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Figure 5.2: The ship control system.



63

such that for any initial condition in D,

(i) All state variables are bounded for T _>_ 0;

(ii) (231(7), 232(7)) asymptotically approaches a small neighborhood of the origin as

T—)OO.

In other words, for the ship initially in the safe region, we want to reduce the roll

motions as much as possible and, at the same time, maintain bounded motions of the

other degrees of freedom. It will be shown below that the desired feedback function

can be chosen to depend only on 2:1, 9:2, and .23. That is, partial state feedback is

sufficient to achieve the goal. This is due to the large damping in heave and the

essentially inconsequential nature of sway.

The full control system given by equations (5.l)-(5.6) is a singularly perturbed

system. Therefore, it is natural to design the controller via the approach of composite

control ([31], [32]). The composite control is a sum of two components, the slow

control and the fast control. The former is designed on the slow manifold to satisfy

the desired requirement. The fast control, on the other hand, is designed to guarantee

that the slow manifold is attractive. In the following analysis, we will first assume

that the slowly varying variable y is bounded for all r 2 0 and then investigate this

assumption at the final stage of the design.

5.2.1 The Controller on the Slow Manifold

We start with the design of the slow control by restricting ourselves to the slow

manifold which, to leading order, is given by

21 = 0, (5.9)
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The slow system is thus given by

4:, = 22, (5.11)

1532 = f11($1)+f12($1)$3+Af($la$3)

+ 6(91 + Agl)(xl, 2:2, :33, y,0,0, r), (5.12)

2:3 = u, (5.13)

where y is taken to be a bounded constant. The controller for this system will

constitute the slow control for the full system.

It is clear that the uncertainties in the slow dynamical system do not satisfy the

matching condition [31]. In other words, the uncertainties and the control input

enter the state equations at different points. As a consequence, most robust control

methods can not be applied without incorporating the backstepping technique ([31],

[33]). In what follows, we shall design the slow control by a smooth version of sliding

mode control with the help of the backstepping technique.

As the first step in the backstepping procedure, let us pretend for the moment

that $3 is our control input, i.e., that the CG can be altered instantaneously. Thus,

we arrive at the following 2-D dynamical system on the slow manifold:

$1 = $2, (5.14)

11.32 = f11(1‘1)+ f12($1)$3 + A1($1,$2,$3aya7)a (5-15)

where

A1 = Af($1,$3) + ((91 + Agl)($1,$2,$3,y,0,0,7') (516)

is viewed as the uncertainty.

Since f12($1) is basically a normalized inertia term, it is always positive within

the angles of vanishing stability. Hence, the uncertain term A1 will now satisfy the

matching condition by treating 1:3 as the control input. The problem now is to design

a smooth feedback law 133 = dx(x1,a:2) such that the 2-D system in (5.14)-(5.15) is
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ultimately bounded. Note that the smoothness requirement is due to the use of

backstepping.

This 2-D control problem appears to be well suited for the method of sliding

mode control. Other methods like Lyapunov redesign and adaptive control are also

possible choices. However, it is easier to obtain a simple smooth feedback law by

employing a smooth version of sliding mode control.

The idea of sliding mode control is to design a sliding manifold,

‘32 = 3(131),

such that the dynamics on this manifold, given by

2:1 = s(:1:1), (5.17)

will be asymptotically stable. The sliding mode control thus consists of two parts.

One part is used to bring the system onto the sliding manifold in finite time; this

is called the switching control and is denoted by 1,12,. The other part is used is to

maintain the situation afterwards, which is called the equivalent control and denoted

by 21)...

Let us design the equivalent control first. The sliding manifold will be taken as

the linear form

3(21) 2 —,6:rl, fl > 0,

resulting in an asymptotically stable reduced system

5531 = —fl$1,

on the sliding manifold. Let

01031.30) = $2 — 3(531) = 3531 + 332,

so that the sliding manifold is represented by 01(21, 932) = 0. Then, maintaining the

system on 01 = 0, once it is there, is equivalent to maintaining

(’71 = 0, (5.18)
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which is to be done by 2b,, in the absence of the uncertainty. Without the uncertainty,

condition (5.18) leads to

3172 + f11($1) + f12($1)1/)eq($1, $2) = 07

yielding

 

¢CQ($1) $2) = " f1’::[;)fl$2- (5.19)

Upon applying

$3 = ¢x($1,$2) = ¢eq($1,$2) + $4171.32)

with d,,($1,:cg) given by equation (5.19), the (Tl-equation becomes

(’71 = f12($1)1/)s($1.$2)+A1($1.$2,¢eq+¢sayaTl

’U

= +A a a e + _a 37 a 520v 1(31 172 115‘ q f12(171) 31 l ( )

where we have set d, = v/f12(a:1). Our task now is to choose v to force 01 toward

the manifold 01 = 0 in the presence of the uncertainty. To this end, we assume that

there are constants pl 2 0 and 0 S k < 1 such that

[A1($1,$2, 2()cq + 93/77.“ S P1 + kl’Ul, (5.21)

f12($1)

within the domain of interest. The positive constant p1 represents an upper bound

on the uncertainty and is not necessarily small.

With inequality (5.21), a Lyapunov analysis using the candidate function V, =

%of suggests that

_ A1 + P1
'1) — — l k sgn(0'1), A1 > 0, (5.22)
 

will satisfy the requirement. However, the feedback function needs to be smooth

in order to apply the backstepping method. Hence, we will replace (5.22) with its

smooth counterpart,

_ /\1 + P1 01

v — (1_ k)tanh(1)tanh(61)’ 61 > 0, (5.23)
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where C] is the thickness of the boundary layer near the sliding manifold. While

asymptotic stability is guaranteed by the discontinuous feedback law (5.22), only

ultimate boundedness can be achieved by its smooth version (5.23). This can be

shown by a Lyapunov analysis, which is discussed in Section 5.2.4 below.

Next, consider the 3-D system given by equations (5.11)-(5.13). With the above

preliminary analysis, the backstepping method proceeds by applying the sliding mode

control again, with the sliding manifold now given by

02(371, 932,173) = 1133 — 1%(331, $2) = 0a

where d, is the “controller” for the 2-D system and is summarized here

144331.312) = d,q(x1,a:2)+d,(x1,a:2)

1

— —mlfu($1)+ 5372 +

In other words, on the sliding manifold, we have the foregoing desired results. The

/\1 + P1

(1 — k)tanh(1)

 tanh(?» (5.24)

time derivative of 02 with respect to the 3-D system is

 

 

(’72 = f13($1, $2, $3) + u 'l' A2(‘317 $2, $33 ya T), (525)

where

(9 , 8 ,

f13 = —-a::—1$2 - a:f:2(f11(.’151)+f12(~731)333),

3 1:
A2 = —a:)2 A1.

Hence, the equivalent control for present is simply

ueq = —f13(xla $231.3)-

Similar to the previous 2-D system, we have an upper bound on the uncertainty

A2 within the domain of interest

[A2(x1,$23x33y97-)| S p23 p2 2 0, (5'26)
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by the continuity of the uncertain functions and the smoothness of d,. Thus the

switching control is taken as

32+P2 02
,=— t h—, A >0, 20.

u tanh(l) an (62) 2- 62

 

This completes the design on the slow manifold and we finally have the slow control

   

U = ueq + us

_ 33¢. 02/2. _ 42 + p2 93

-" 0131 $2 + 0$2 (f11($1) + f12($1)$3) tanh(1)tanh(62)’ (527)

where d,(:1:1, $2) is given in equation (5.24).

5.2.2 The Fast Dynamics

Given the slow control established in Section 5.2.1, the next step in the design of

a composite controller is to obtain a fast control to ensure the attractiveness of the

slow manifold. However, in the light of the asymptotically stable linear part in the

fast dynamics (equations (5.4)-(5.5)), feedback control of the fast dynamics is not

necessary. Physically, this simply means that the large heave damping will do the job.

On the other hand, one can see from the previous analysis that the attractiveness

of the slow manifold is not crucial as long as 21 and 22 remain bounded. This is

because that the fast variables only show up in the perturbation terms. Therefore,

we expect that the heave damping will naturally bound the motions. Indeed, the

following Lyapunov analysis will confirm this point.

Let

W(z) = zTPz,

where z = [21 22]T and P satisfies

PA+ ATP = —I, with A =

—b1 —b2
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where recall that b1 and b; are positive constants. The continuity of A93 suggests

that within the domain of interest,

“.93 + A9:3)(5’31a $2, 5133, ya 21, 22,7)l $11, 11 Z 0- (5.28)

Then an easy calculation gives

W |
/
\

1

-;l|z||2+2||z||l|P|||ga+Agsl

l
/
\

1

-;|lzll(||2|l - 2611||Pll)

< 0 for ||z||22ellllP|L

which demonstrates the ultimate boundedness of 21 and 22 with a bound of 0(6) for

6 small enough.

5.2.3 The Slowly Varying Sway Motion

The analysis to this point has been predicated on the boundedness of the sway

velocity, 3;. The validity of this assumption is investigated in this subsection. It

should be physically correct since the little energy fed into the sway direction through

coupling from heave and roll is easily absorbed by the sway damping. As one can see

below, like the heave damping, the sway damping plays an important role in limiting

the sway velocity.

Again, we use the Lyapunov analysis to verify the boundedness of y. In view of

the expression for g2, it is assumed that the only y-dependent term in the uncertainty

Ag; is A6223; and that the actual sway damping is

522 — A522 2 822 > 0-

This is reasonable since in practice, the sway damping always exists and is positive.

Now, we rewrite the sway equation as

3): 6{-0522 - A622)y + (éz + A§2)($1,w2,22,7)l,
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where

g2($1a32$ 2217-) = 92(531, 172: ya 22: T) + 6223/,

A§2($1,1‘2,22,T) = A92($1,$2aya22,T)—A522y-

By the continuity of Afiz, there exists L > 0, independent of y, such that

“572 + A§2)($1,$2, 22, Tll S 1:, (5.29)

within the domain of interest.

Let Vy = %y2. Then

V. s e(—522y2+|yl|§2+A§2|)

.. L

S —€522lyl(lyl " 3")

22

S 0 for Ingi/ng.

Let us take

Ly 2 i/Szz. (5.30)

Then V|y(0)| S Ly, we must have

ly(T)l S Ly? VT 2 0:

provided that all other states are also within the domain of interest D.

5.2.4 Summary of the Controller Design

The design of a robust stabilizing controller for the full vessel system has been de-

composed into several simple control problems. In each subsystem, it is easy to verify

that the design indeed works. A question thus arises: Will it work in the full system?

Specifically, there are usually some interconnection (coupling) terms between sub-

systems. For the design to be valid for the full system, these interconnection terms
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must be well behaved in the sense that they will not destroy the established analysis.

Generally, they are required to satisfy some smallness conditions.

For the current system, as one can see from the state equations, the coupling terms

are not dominant, indicating that the design should work for the full system, as will

be shown below. Indeed, in addition to the inequalities satisfied by the uncertainties

and perturbations, an inequality is satisfied by the interconnection term between the

slow and fast systems. That is, within the domain of interest,

|§1($13327 £133, ya 21) 2217'“ $12, ’2 Z 0a (531)

since fil, which is defined by

fir = (.91 + A91)(5€1,$2,$3aya 21, 22,7.) _ (.91 + Agl)($1,$2,$3,y,0,0,7'),

is a continuous function in its arguments.

The foregoing analysis is now summarized as the main theorem, followed by a

proof based on Lyapunov analysis. Recall that the compact set D C R6 given by

equation (5.7) is our domain of interest. Also, let

Do = {($1,w2,x3,y,21,z2)|($1.:v2) E 509 ng| 3 L4,, M S Lya ”(21:22)” 3 Lz}

be our stabilization region.

Theorem. Consider the vessel control system given by equations (5.1)-(5.6). Sup-

pose that within the domain of interest D, the perturbations and uncertainties satisfy

the inequalities (5.21), (5.26), (5.28), and (5.29), and the interconnection term sat-

isfies the inequality (5.31). Then for A1, A2, and fl large enough and 61, 62, and e

sufficiently small, the partial state feedback controller given by equation (5.27) will

stabilize the vessel system in the sense that for any initial condition in Do, we have

(i) 2:1, 9:2, and x3 are ultimately bounded with bounds depending on 61 and 62.

(ii) 21 and 22 are ultimately bounded with bounds depending on e.
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(iii) |y(r)| s L., W 2 0.

Proof: Since (ii) and (iii) have been established in Sections 5.2.2 and 5.2.3 respec-

tively, it remains to show (i).

As is standard in the analysis of sliding mode control, we begin by examining the

attractive property of the sliding manifold 02 = O by defining a Lyapunov function

candidate

1 2
‘/1 = —02-

2

Recalling that (72 = 1:3 -— 1,12,,(x1, 2:2), we have

VI = 02572

: 0’2[fl3($1,$2, $3) + U + A2031, (132, $33 y, T)

(‘3 3..

— 682/) g1(xl,922,:c3, y, 21, 22.7)]- (532)
$2

 

Note that the interconnection term {11 appears in 62 in addition to those given by

equation (5.25). By the smoothness of 1,03, we have

a¢x($1,$2)

6132

within the domain of interest. Using the inequalities (5.26), (5.31), and (5.33),

S 13, 13 Z 0, (5.33)

  

equation (5.32) becomes

° (A2 + p2)0’2 02

<__ _
V1 _ tanh(l) tanh( £2 ) + p2|02| + 61213IO’QI,

upon applying the feedback control law (5.27).

Note that V5 6 3?,

{tanh(é) > |€|, for |€l21
_ . (5.34)

tanh(l) £2, for |£| < 1

Hence, for [0;] 2 62, we can get

Vi S (-)\2 - P2 + P2 + 61213)|02l

= —(/\2 '- €1213)|0’2|

< 0 If /\2 > 61213.
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In other words, for A; large enough, the set {ldzl S 62} is positively invariant.

Next, inside this positively invariant set, the roll dynamics are investigated by

rewriting equations (5.1)-(5.2) in terms of (71 and 02 as

$731 = —,6$1 + 0'], (5.35)

(71 = fll‘z + f11($1) + f12($1)(¢x + 02) + A1051, 1‘2, tbsp, y, 7')

+ A3031, $2, 029 y, T) + €§1($13 $2,173,185 21a 22: T)

 
_ A1 + P1 01 s
_ (1_ k)tanh(1) tanh(61)+ A1 + f1202 + A3 ‘l' 591, (5°36)

where

A3 = A1031, $29 $1: + 02,313)“ AIL/£1,329 1px, ya T)°

Now, let

01 2 02 2

I/2‘—"—2-£L'1+—2-0'1, 0(01, 92<1, 01+62=L

Then with respect to equations (5.35)-(5.36), we have

()‘1 + P1)01 01

(1 — k)tanh(1) MIME)

+ 01A1 + f120102 + 01133 + 60151]-

 

Vz = 01(—fl$¥+$101)+92[—

In view of the smoothness of the uncertain functions, we have the following bound

within the domain of interest,

”120102 + 01A3l S I4|02la (4 Z 0,

where one should note that A3|02=o = 0. Thus we can get

(A1 +P1)01 0'1

(1— k)tanh(1) tanh(?

+ (p1 + €12)l0’1” + 9214'0'2'. (5.37)

I72 S —913$§+91l$101|+92[—
 

For |0‘1| Z 61, by (5.34), the inequality (5.37) reads

172 |
/
\

—[913~T§ + (9281 '— 69212 — 01l$1|)|01|] + 92’4l02I

l
/
\

_7I(ll($1, 952)“) + 629214, (5.38)
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for A1 large enough such that 02M — £0212 — 01|a31| > 0 within D, where 71(-) is a

class [C function3.

On the other hand, for loll S 61, and by (5.34) again, (5.37) will become

. 0

V2 S “[9133: — 01l$101| +

A +_'-’_(_1:1__P_1).a§] + 02mm + at.) + 6214]

S —72(H(-’171,$2)|l) + 92161001 + €12)+ 6214], (5-39)

for /\1 large enough and £1 sufficiently small, where 72(-) is also a class IC function.

By (5.38) and (5.39), we conclude that $1 and x; will be ultimately bounded with

bounds depending on 61 and 62. Together with the positive invariance of {Iagl S 62},

we obtain conclusion (i) and hence complete the proof.

Remarks. (i) All the bounds on the perturbations, uncertainties, and interconnec-

tion terms in the inequalities (5.21), (5.26), (5.28), (5.29) and (5.31) can be obtained

from the fact that these functions are continuous on the compact domain of interest.

(ii) The perturbations and uncertainties depend on the wave amplitude. Hence, the

upper bounds should be chosen to include the worst sea condition expected to be

encountered. (iii) For given values of 01 and 92, there exists a positive constant co

such that 50 C {V2 S co}, which can be used to serve as 5'1. This is demonstrated

by Figure 5.3.

 

3 A continuous function 71 : §R —) R is said to be class [C if (i) 7() is

nondecreasing, (ii) 71(0) = 0, and (iii) 71(q) > 0 whenever q > 0.
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Figure 5.3: The domain of interest and the ultimate bound.



CHAPTER 6

NUMERICAL RESULTS AND DISCUSSIONS

In order to illustrate and confirm the analysis given in previous chapters, a typical

fishing vessel, the twice-capsized clam dredge Patti-B [42], is numerically investigated

in this chapter. While the 1-DOF model of this vessel has been analyzed in many

previous studies ([13], [23], [27]), the multi-DOF model is emphasized here.

Table 6.1: Hydrodynamic coefficients for the Patti-B w.r.t. S at

 

 

 

 

 

 

  
 

02., = 0.6 rad/s.

symbol value symbol value

(“122 2.648 x 105 kg 623(= £132) 0

2124(= 5142) —5.671 x 104 kg ~ m {133 4.396 x 105 kg

&34(= €143) 0 6144 1.780 x 105 kg - m2

8.2 9.290 x 103 kg/sec 323(= 032) 0

82.4: 342) —3.190 x 103 kg - m/sec 333 3.048 x 105 kg/sec

634(= 643) 0 644 2.140 x 103 kg - m2/sec

3..., 9.88 x 104 kg . m2     
 

The numerical simulation performed in this chapter is based on the state equa-

tions (3.49)-(3.53) and on equations (5.1)-(5.6) when implemented with the con-

troller. The nondimensional coefficients therein can be obtained from Patti-B’s sys-

tem parameters provided in Table 6.2 together with the hydrodynamic coefficients

given in Tables 3.2 and 6.1. ( These coefficients have been computed by the standard

76
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Table 6.2: System parameters for the Patti-B.

 

 

 

 

 

 

 

parameter value parameter value

I44 1.255 x 106 kg - m2 m 2.413 x 105 kg

h 3.0 m 29 -0.329 m

101 —1.273 x 105 kg/m 102 —2.097 x 103 kg

10;; 6.365 x 103 kg/m 194 0.214 m

k5 0.05 kg —0.671 m

107 —0.1      
 

linear seakeeping program SHIPMO using the given hull form data [3].) In addition

to nondimensional system parameters, the state equations also include some nondi-

mensional functions f,’(.’131) and f,-J-(:rl), which depend on the ship hull shape and

need to be made specific for the Patti-B.

6.1 The Nondimensional Hydrostatic thctions

The hydrostatic functions Ro(zo,go) and GZo(zo,cp) can be approximated in an

appropriate best-fit sense as

R0(209 <P) = 19120 + (k2 + k320)902,

GZ0(ZO, ‘P) = ((94 + (€520)? + (k6 + k720)‘193,

where the key properties of R(zo, cp) and GZo(zo, 4,0) are retained, namely, the former

is even and the latter is odd in 90. Note also that 20 appears linearly because in the

range of interest, it is relatively small and the functions are approximately linear in 20.

Unfortunately, only coefficients 1:1, 1:4, and 196 are available for the Patti-B, which are
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given in Table 6.2. By the arguments given at the end of Section 3.1.2, it should be

clear that the others (i.e., [92, [93, 1:5 and k7) are relatively small. Hence we arbitrarily

set (relatively) small values to them; see Table 6.2, where we set 192 = —k3zg and

k3 = —0.05k1.

From this set of coefficients, one immediately has the angles of vanishing stability

for the unbiased Patti-B, i.e. i32.3° (1W rad.). For the biased case, these

angles will be even smaller. Hence, within the angles of vanishing stability, sin (,0 and

cos cp can be well approximated by the first two terms in their Taylor series about

the origin. Then, the biased hydrostatic functions

3(20199) = RO(ZO+3/GSin<P,<P),

02(20, £9) 90 cos «p + GZo(zo + 310 Sin WP).

can also be approximated by polynomials of 20 and (,0. In doing so, however, the

static roll moment K,c(zo, 4p) will become a polynomial in go up to 7-th degree. It is

easy to see that the lower order terms are dominant, and we keep up through cubic

order terms. The static roll moment K3420, up) and heave force Z,c(zo, 99) will then

take the following form

Ksc(zo, ‘10) = 1:711 + (21220 +(12713 + 81420)? + (12315 + £1620)902

+ (12717 + 81820)803, (6-1)

Zsc(201 $0) = (€21 + (32220 + (7923 + 1“92420)? + (12725 + iczszohoz

+ ((927 + (232820)993, (6-2)

where the iCijls are related to the kg’s, and these relationships are given in Table 6.3.

Note that these coefficients are functions of the bias ya. If experimental or numer-
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ical data for Ro(zo,<p) and GZo(zo, cp) are available, then one can perform a best-fit

approximation directly on Kac(zo, cp) and Z,c(zo, 90) to obtain the form and/or coef—

ficients of equations (6.1) and (6.2).

Table 6.3: Hydrostatic constants.

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

      

symbol definition symbol definition

2711 ‘mgyG i612 -k19yG

i913 -g(k1y?; + mk4) 814 -9(mk5 + k1’94)

is... —gyc:(m(k5 — 0.5) + k2 + him.) I}... —gyG(k1(2k5 — 0.5) + k3)

7:17 —g((—§-kl + 1.3 + k1k5)y§; + 525.. + mks) is... —g(k2k5 + 1535., + mic. + 151k.)

12:21 0 I2722 (€19

11:23 klgya 1924 0

12:25 by 2726 (€39

122-, gyG(k3 — gkl) I}... 0

kn —1},,/ic.,3 k1. -li:45/ic43

1.3 4247/1243

k2, 4%.,25/1‘543 1:22 —1}4,h/ic43

1.23 42.65/54, k2, 4.485024,

1.. 4231/0530 1.. Jess/(12.35)

1:33 4235/0243» 53., 4237/(12435)
 

Thus, we immediately have

F3(203 ‘10) =

+ ((2737 + [233820)903,

F4208?) =

1:331 + (63220 + ((933 + is34250)? + (£35 + E3620)$02

(6.3)

1:341 + (94220 + (£43 + (C4420)? + (£45 + (C4620)902

 



 

where

01 = ‘—

nondim

are obta

Where c

Patti-B

finds th

 

To



where [273,- : —m34ll:1,- + m4192, and 12:4,- : m3/itl, — m43fi725, 2° = 1,...,8. Note that

01 = —ic43 and a4 = —k32. Finally, after dividing (6.3) by alh and (6.4) by m, the

nondimensional restoring force functions f,-(cp) in the state equations (3.49)-(3.53)

are obtained as

where 01, a4, and the k,j’s are collected in Table 6.4 with 3 sets of values for the

Patti-B, depending on ya, the bias of the center of gravity G. From Table 6.4, one

finds that w, /wh z 0.4. Hence, we will take 6 = 0.1 as the perturbation parameter.

'1' (i647

f1($0) =

f2(‘10) =

f3($0) =

80

+ (C4820)9031

kn - $0 + k12<P2 + [C13903,

1921 + (92290 + k23<P2 + 1924803,

k31 + 1$3290 + (€334.02 + 1634903,

Table 6.4: Hydrostatic coefficients for the Patti-B with different lev-

els of biases.

 

 

 

 

 

 

 

 

          

y; 0 0.01 0.025 ya 0 0.01 0.025

a] 3.450 3.449 3.448(x1011) a: 1.776 1.776 1.776(x10”)

km 0 —0.047 —0.117 1:12 0 0.026 0.065

km 3.127 3.127 3.128

kg, 0 0.026 0.065 kn 0.882 0.882 0.882

1m 0 —0.031 —0.077 kg, —3.645 —3.646 -—3.647

11:31 0 0 0 km 0 —0.017 —0.048

k43 0.028 0.028 0.028 k... 0 0.010 0.026
 

To explicitly show the dependence of f1(:1:1) on ya for the use in designing the

1unit: m. tunit: kg2 . m2/s2.
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feedback controller, we can extract ya from the 101j,S and rewrite f1(:cl) as

f1($1) = f11($1) + f12(171)$3 + Af($1, 13),

where recall that :63 = gig/194 and Af(1:1, :63) represents the discrepancy between the

actual and approximate functions, and for the Patti-B,

f11($1) = —$1+3.144$?,

f12($1) = l-O..572$¥

A similar procedure can also be done for f2 and f3, but it is not necessary since the

feedback control law involves only f1.

6.2 The Invariant Manifolds

In the figures that follow, the symbol “x” is used to denote iterates of the mapping

as started from the initial condition. The number beside each such point indicates

the order of the mapping sequence. The mapping is the usual time periodic Poincaré

map using the period of wave excitation. The (approximate) analytical roll invariant

manifold in the figures is determined from equations (3.54) and (3.55) with the sway

variable y given by equation (4.13).

Figure 6.1 shows that a two dimensional invariant manifold, which contains es-

sentially the roll motions, indeed exists and is attractive. The sea state for this

figure is: wave amplitude a = 0.14 m and wave frequency 012,, = 0.6 rad/s and

no wind force is present. The initial condition is 10(0) = [—0.4 0 1 1 1]T, where

W) = [$10) 9320) W) 21(t) 220)]?

As shown in Figures 6.1(a) and 6.1(b), it takes only one or two iterates for the
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Figure 6.1: The 2-D invariant manifold.
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heave motions to settle down to the invariant manifold, while in Figure 6.1(c), we see

that the sway motion requires about 15 iterates. This reveals the special feature of

the 2-D invariant manifold, which is slow compared to the heave dynamics, but fast

with respect to the sway motions. Note that in the figures, some points have numbers

but without a corresponding “x” — this simply implies that the points are beneath

the approximate invariant manifold. This is because that equations (3.54) and (3.55)

are only an 0(6) approximation to the actual manifold. The actual manifold is a

bit more tilted. Note also that in Figure 6.1(c), we connect the adjacent points by

a straight dotted line to clearly display the relative positions of the mapping points,

although the reader should be aware that the motion follows a very different path in

the phase space between iterates.

6.3 The Critical Wave Amplitude

The critical wave amplitudes predicted by the Melnikov analysis for different

wave frequencies are depicted in Figure 6.2. It is clear from the figure that l—DOF

models give higher critical amplitudes than do 3-DOF models, as claimed in Chapter

4. However, they are very close, especially for wave excitations in the mid-frequency

range. One should recall that the difference between the two models is dictated by

the hydrodynamic coefficients such as (124, 042, 624, ha, and 622. For other vessels

where the couplings are more significant, the difference could be large.

The significance of the critical wave amplitude is that it signals a new possibil-

ity for the dynamics of the vessel. For a fixed wave frequency, there is no homo-

clinic/heteroclinic intersection and hence no erosion in the safe basin if the wave
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Figure 6.2: The critical wave amplitudes predicted by Melnikov anal-

ysis.

amplitude is below the critical value. For higher amplitudes, however, we will have

some erosion of the safe area, implying that there is a chance of capsize from the

safe area. This is illustrated in Figure 6.3, where 7.12., = 0.6 rad/s and ya = 0.025 m.

The unperturbed homoclinic orbit in the roll manifold is represented by the dashed

curve. The initial condition 23(0) 2 [—0.3719 0.10256 0 0 0]T, which is inside the

unperturbed safe region, is taken in Figure 6.3 for two different wave amplitudes

with one above (0.14 m) and one below (0.13 m) the critical value (0.1309 m).

One can see that the fate of this initial point is dramatically different for the two

wave amplitudes, even though they differ only by 0.01 m. With a below-critical wave

amplitude, the initial point will lead to a bounded motion. On the other hand, for

the above-critical case, capsizing is inevitable after 4 periods of wave excitation.

For a small wave excitation, but one exceeding the critical amplitude, capsizing
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Figure 6.3: The significance of critical wave amplitude: 0.1309 m.

is possible only for initial conditions near the boundary area of the unperturbed safe

region, such as point A in Figure 6.3. As the wave amplitudes get larger, some inner

regions will also be eroded such as points C and D in Figure 6.4, where a = 1.0 m.

A more detailed account of this erosion for a simple roll model is given by McRobie

and Thompson [37].

It is important to point out that in practice, unless the wave amplitude is large

enough, a vessel will rarely capsize in an above-critical sea state. One may have

noticed that the wave amplitude of 0.1309 m is quite small. In a real situation, a

vessel in such a sea state will not find itself near the capsize boundary, and hence

capsize will only occur if some large disturbance causes a large motion that would be

nearly critical even in calm seas. Consequently, the sea state should not be considered

dangerous until its wave amplitude is considerably larger than the critical one. This

is also the reason why the ratio of erosion area )0.3 can not be directly interpreted as
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Figure 6.4: The escape from inner regions of the safe basin.

the capsizing probability, although they are closely related.

However, it is true that the capsizing probability from the safe region is zero below

the critical case, and that the critical case signals the beginning of an important

change in the system dynamics. And, as demonstrated by Thompson et al. ([60],

[61]), erosion of safe basin begins in earnest as the wave height is raised beyond the

critical value. Also, since this critical case is not difficult to obtain and is related

directly to system parameters, it can be used for improving hull design and for

detecting unsafe conditions. The higher critical wave amplitude a vessel has, the

more severe environment it can resist.

6.4 The Erosion Area Ratio

Next, the ratio of the erosion area to that of the entire safe basin will be calculated

for both l-DOF and 3-DOF models. To this end, a uniform grid of points in the
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unperturbed safe region is taken as initial conditions and the percentage of those

points which will lead to capsizing after N wave periods is computed. For l-DOF

models, the safe region simply means the two-dimensional region bounded by the

homoclinic/heteroclinic orbit(s) denoted by Sal. For 3-DOF models, the safe region

is five-dimensional, and is defined as

Sb = {(31,121 y,21,22)[21 6 [_‘dl + h($la$29y)1dl + h($1,$2,y)],

22 E [_d29d2lay E l-d3 + g1d3 + gla(931,1'2) 6 50},

where 3] is given by equation (4.13) which determines the steady state sway velocity

and Man, 2:2, y) is given by equation (3.54), which defines the slow manifold. Appar-

ently, 5;, can be interpreted as the two-dimensional safe region in the roll invariant

manifold with some thickness in 21, 22, and y directions. (The full safe region in

this case may have an extremely complicated shape; we are using only a part of it

near the stable, two-dimensional invariant manifold.) For simplicity, we will take

d1 = nld, d2 = 712d, and d3 = n3d, where d is the grid step size.

The results are presented in Figure 6.5, where d = 9.65 x 10‘3 and 121 = 712 =

n3 = 1. With these values, there exists a total of 49761 points for the grid at each

parameter value. The parameters are com = 0.6 rad/s and ya = 0.025 m with wave

amplitude varying from 0 to 1 m. From the figure, one can see that the 3-DOF model

has more erosion area than the 1-DOF one for any fixed wave amplitude and the

discrepancy grows as the wave amplitude increases, as pointed out in section 4.4. The

ratio of phase space transport given by equation (4.8) is also plotted in Figure 6.5 for

both models. It is indicated that equation (4.8) provides a very good estimate of the

 

1 For the unbiased case, Sc, is the same as 50 defined in Chapter 5.
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Figure 6.5: The ratio of erosion area and the phase space transport.

ratio of the eroded area (especially in light of the crudeness of the approximations

and the assumptions used). This is of practical usage as the analytical estimate is

much faster than the simulation results.

One of the implications of Figure 6.5 is that some capsizing situations can not

be predicted solely by the 1-DOF roll model, as emphasized in section 4.4. One

such example is demonstrated in Figure 6.6, where the sea state is com = 0.6 rad/s

and a = 0.14 m, and the bias is ya = 0.025 m. Consider the initial condition

:z:(0) = [—0.3719 0.10256 0 0 0]T. For the single-DOF model, it is predicted to be

safe. For the multi-DOF model, on the contrary, it capsizes after 4 periods of wave

excitation.

6.5 The Closed Loop System

In this section, numerical simulations for the closed loop system are carried out
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Figure 6.6: The evolution with different DOF models for the same

initial condition.

to examine the performance of the robust controller designed in Chapter 5. We

will focus on the comparison of open loop and closed loop systems under severe sea

conditions. Practical issues regarding the control effort will also be addressed.

Given a vessel, like the Patti-B, a simple procedure based on our main results in

Chapter 5 can be followed to obtain a robust stabilizing controller. The procedure

includes the following 6 steps:

1. Determine fl.

2. Choose the domain of interest D.

3. Estimate p1 and k in inequality (5.21).

4. Determine /\1 and £1 for 11),,(331,:02).

5. Estimate p2 in inequality (5.25).
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6. Determine /\2 and 62.

Step 1 amounts to determine the sliding plane for the 2-D roll system and the stability

on the sliding plane. It will also affect the level of control effort required. This step

precedes step 2 due to the fact that the choice of D involves 51, which depends on

,8.

Ideally, we want the controller to meet the following requirements:

(a) It can stabilize a large set of initial conditions;

(b) It will work under severe sea states.

Requirement (a) is equivalent to enlarging D as much as possible, which will increase

the estimated bounds for pl, ,0; and 1:. Requirement (b) also leads to large values

for p1, p2 and 1:. Then a choice of large values for the parameters A1, A2 and fl

is needed, as indicated in the previous analysis. In other words, both requirements

need sufficiently large control effort. However, in reality the control effort cannot

be arbitrarily large, as mentioned in the beginning. Therefore, there is a tradeoff

between the ideal requirements and practical limitations in choosing the domain of

interest D and the design parameters A1, A2 and fl. A feasible approach is to choose

D as small as possible such that it still includes most of the safe region. Moreover,

the design parameters can be tuned according to the sea conditions, Where larger

values are used in bad conditions.

It is also important to point out that the analysis in Chapter 5 is conservative,

typical for a Lyapunov-based design. The main purpose of the analysis is to ensure

that such a controller design will work. Although it can also provide some estimates
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on the ultimate bounds of states and lower bounds for design parameters, quite

often the controller works better than predicted. This is why these bounds were not

explicitly calculated in Chapter 5. Hence, one can be a a bit generous when choosing

design parameters, as we will see below.

For a chosen fl, we can take 01, 62 and co to minimize the range of 51 = {V2 S co}

that contains 50 in its interior. It can be shown that

 (6.5)

is the set of parameters needed. In the following numerical results, the domain of

interest D is chosen with 5'1 determined from (6.5), LD 2 2.0, Ly given by equation

(5.30), and L2 = 2.0.

Three different control systems for the Patti-B are considered for purposes of

comparison. The first is the open loop system, i.e. an unbiased ship. The second is

a closed loop system with linear partial state feedback law, i.e.,

u = 191231 + [62332 + [$3173. (6.6)

The third is the closed loop system with the nonlinear partial state feedback controller

designed in Chapter 5.

The linear feedback gains in equation (6.6) are chosen as:

k] = 0, k2 = —l.0, and k3 = —6,

which assign the closed loop poles of the linearized slow system to —1, —2, and —3.

The design parameters for the nonlinear feedback system are taken to be

fl = 0.1, A1 = 0.005, A2 = 0.01, 61 = 0.3, and 62 = 0.01.
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The above linear feedback gains and parameters for nonlinear controller are chosen

to yield the same order of control effort. The sea condition for each run is set at a

wave amplitude of 5 m and a wave frequency of 0.6 rad/s.

Figure 6.7 shows the state-space trajectories for each of the three systems with

the following three sets of initial conditions:

101: $1 =0.1,$2=0,$3=0,y=0,2120,2220.

I02: 351 = 0.5, m2 = 0, $3 = 0.1, y =1, 21 =1, 22 =1.

IC3::1:1 = 0, x2 = 0.4, $3 = 0.1, y =1, 21 =1, 22 =1.

The first initial condition is near the calm-water stable operating point, whereas the

latter two are near the boundary of the calm-water safe region. From Figure 6.7(a),

one can see that for the open loop system, the vessel readily capsizes, even when the

initial condition is close to the origin. With linear feedback control, the situation

is much improved. However, as seen from Figure 6.7(b), the linear controller is

inadequate for some states near the boundary of the safe region. On the other hand,

the nonlinear controller demonstrates good stabilization for any initial conditions

inside the safe region.

The position of the CG, ya (obtained from 2:3), is shown in Figure 6.8(a) for

the two controlled systems, whereas the corresponding control effort is plotted in

Figure 6.8(b). It can be seen from Figure 6.8(a) that with an initial bias of 0.021 m,

the transient ya can reach as large as 0.14m, although it settles down soon after. For

anti-roll tanks using 5% of the ship weight (which is about 12 tons for the Patti-B),

this accounts for 2.8 m movement of the CG of the water required.
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Figure 6.7: System behaviors with different controllers for (a) 1C1,
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with IC3 for (a) 319, and (b) control effort 21.

From Figure 6.8(b), it is clear that like ya, most peak control efforts occur during

the initial transient period (here the peak value is about -4). The control effort will

determine the specifications of the actuators needed. Suppose that the two tanks are

separated by 6 In. Then, in order to reach u = —4, it is required that the total flow

rate be 103 liters/sec or 27 gallons/sec. If the control effort goes beyond practical

limitations, one should tune down the design parameters. The nonlinear controller

provided in this study has a large flexibility in tuning the parameters. For the linear

feedback controller, the tuning is restricted in that high feedback gains in general

must be used in order to stabilize the initial conditions far away from the origin. For

example, the feedback gains [:1 = —3, k2 = —10, and k3 = —6 can stabilize IC2.

However, the peak control effort for this case is more than two times that of the

nonlinear case, and this may lead to practical difficulties in implementation.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this study, the modeling, dynamics and control of large amplitude motions

of vessels in regular beam seas have been considered. First, based on the wave-

fixed coordinate system, a 3-DOF model, including roll, sway, and heave motions,

is obtained which balances model accuracy against the desire to obtain analytical

estimates of certain features of large amplitude motions. After nondimensionalization

and rescaling, a 5-th order state model is obtained which is amenable to analysis using

invariant manifold and singular perturbation techniques.

The emphasis of the dynamic analysis is on the coupling effects from sway and

heave to the roll capsizing problem. A fast invariant manifold approach to the

Melnikov analysis is incorporated with the phase space transport theory to propose

a capsizing criterion for both biased and unbiased ships. It is found that for typical

fishing vessels, the coupling effect from heave is negligible, whereas that from sway

tends to increase the tendency to capsize. Moreover, the coupling effects, which are

generally quite small, do increase with wave amplitudes.

While the results obtained herein are not dramatic in terms of corrections to

capsize criteria, they do put the results obtained from simple roll models on a firmer

foundation. In addition, they point the way to more systematic analyses of large

amplitude vessel motions.

Next, we designed a nonlinear state feedback controller using a Lyapunov-based

approach to stabilize the nonlinear 3-DOF vessel system. The vessel is fitted with

anti-roll tanks whose flow rate can be controlled by actuators like pumps. The nonlin-

ear controller is robust in the sense that it takes into account the model uncertainties,
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resulting primarily from unknown hydrodynamic contributions.

The design procedure follows the idea of composite control for singularly per-

turbed systems. The slow control for the dynamics on the slow manifold is consid-

ered first. It consists of two parts, linked by the backstepping technique. Both parts

in the slow control use a smooth version of sliding mode control which can handle

large uncertainties. It is shown by a Lyapunov analysis that the slow control alone

can restrict the roll motions to a small region in the state space, and at the same

time, keeps the motions in other degrees of freedom bounded.

Numerical simulations for a fishing vessel, the clam dredge Patti-B, were carried

out for the open loop system, the closed loop system with linear feedback, and the

closed loop system with the designed nonlinear feedback. The simulation results

for the open loop system verify the proposed capsizing criterion as well as other

analytical results. It is also shown that only the nonlinear controller can effectively

stabilize the system against capsizing using a reasonable amount of control effort.

Many improvements and extensions of the current work are worthy of future

consideration, both in the areas of fundamental dynamical systems and in their

application to vessel dynamics. Some of these are listed below.

0 Although only the 3—DOF beam sea model is analyzed in this study, one should

note that the current approach can be applied to the fully 6-DOF ship model.

The resultant state equation will again be of singularly perturbed form where

the fast manifold will contain heave and pitch motions, whereas the slow mani-

fold includes roll, sway, yaw, and surge. The slow dynamics will be again in the

form of slowly varying oscillators with sway, yaw, and surge as stable, slowly

varying variables. Of course, the derivations and calculations involved will be

much more complicated than the present work.

0 The present results can be generalized to the case of random excitation follow-

ing the line of analysis in [23] for the 1-DOF models. Here one will need results
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on invariant manifolds for stochastic systems.

One can use these ideas to calculate a capsizing probability. To achieve this,

some distribution must be assigned for the initial conditions, rather than using a

uniform distribution. The capsizing probability will be a combined probability

of initial states and escape. Such a measure may provide a more useful capsize

criterion.

A more accurate analytical estimation of MEN), the amount of chaotic trans-

port, can be achieved by utilizing the analytical unperturbed homoclinic so-

lution and the distance function between stable and unstable manifolds in

Melnikov’s theorem.

The phase space transport on the 2-D fast invariant manifold in the 3-D slowly

varying oscillator is used in this paper as a measure for the transport of the

overall 3-D system. Although it provides a satisfactory result, the chaotic

transport for general higher dimensional maps and their relationship with the

current measure remain open.

When the bias is relatively small, the homoclinic and heteroclinic tangles may

coexist and interact with each other. So far there are no satisfactory analytical

results on this subject.

The use of linear hydrodynamics remains the weak link in this line of work. It

would be of use to consider general forms of nonlinear coefficients and determine

their effect on the results. This type of analysis could be used as a guide

for determining which coefficients need to be measured most accurately for

predicting large amplitude motions of vessels.

This study suggests a very promising approach to the question of the existence

and solution of the roll center. Namely, an invariant manifold approach offers
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a systematic way to study this question for a large range of vessel motions.

o The controller design procedure provided here can be applied to other stabiliz-

ers, such as fin and rudder-roll stabilizers, for different purposes.

a The effects of the limitations of 3:3 and u on the performance of the closed loop

system can be investigated analytically using Lyapunov analysis.
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APPENDIX A

A FAST-MANIFOLD APPROACH TO MELNIKOV

FUNCTIONS FOR SLOWLY VARYING OSCILLATORS

Consider the slowly varying oscillator given by equations (4.9)-(4.11). Suppose

that for each value of z in some open interval J C 3?, the planar Hamiltonian system

i‘ = f1(:v,y,z),

3? = f2($,y,z),

possesses a homoclinic orbit to a hyperbolic saddle point, denoted by 7(2) = (a:(z), y(z), 2)

which satisfies f,(a:(z), y(z), z) = 0. Of interest here is the fate of these orbits under

the action of the perturbations.

To better visualize the structure of the system, we shall take the usual time-T

Poincare section 2‘0 defined by

Etc : {($9y’ 2? ¢)l¢ : to E [0, T]}’

where 45 = t mod T. The associated Poincare map is then given by P : E“ —> 2‘0.

Following the notation of Wiggins and Holmes [68], we denote the unperturbed

normally hyperbolic one-manifold of saddle points by

M = {(‘r(z),¢)|¢ E 51, 2 E J}

and its perturbed version by

M. = {(7(z,¢; 6M) = (7(2) + 0(6),¢)l¢ é 5‘, z E J}-
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It is assumed that on M. near 2 = 20, there exists a fixed point of the Poincare

map, denoted by p, that is preserved under the perturbation. The value of 20 can be

approximated by application of the averaging theorem restricted to Me. It is found

that p can be approximated by 7(20) up to 0(6) [68]. The structure of the perturbed

system is shown in Figure A.1. (In Figure A.1 and throughout this appendix, we

assume that the stable manifold of p, W‘(p), is two-dimensional and the unstable

manifold, W“(p), is one-dimensional. The argument for the other case, i.e., W‘(p)

is one-dimensional and W“(p) is two dimensional, is the same.)

81

  
Figure A.1: Perturbed (solid) and unperturbed (dashed) manifolds

for slowly varying oscillators with homoclinic orbits.

A Melnikov function for equations (4.9)-(4.11) was developed in Wiggins and

Holmes [68] for detecting the persistence of homoclinic orbits when 6 ¢ 0. The ap-

proach utilizes a distance function between the stable and unstable manifolds of the

preserved fixed point p in the three-dimensional Poincare section. The purpose of this

appendix is to show that without dealing with the three-dimensional distance prob-

lem, the same Melnikov function can be derived by examining the dynamics of the

system on a two-dimensional fast manifold and applying the usual two-dimensional
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Melnikov analysis. The motivation for presenting this alternative derivation is that

it offers some potentially useful insight into the system dynamics.

A.l The Fast Manifold

For 6 = 0 the fast manifold is nothing more than the plane at z = 20. The

existence of this fast invariant manifold when 6 7e 0 can be examined from cen-

ter manifold-like arguments [7] and Fenichel’s theory on the persistence of invariant

manifolds under perturbation [14]. Although a fast invariant manifold is not always

guaranteed for a dynamical system, the special structure of the slowly varying oscil-

lator along with its assumptions make this possible for the present system. In this

section, the existence of such a fast manifold will be established by construction.

Let the fast invariant manifold be denoted by

ff- : {(23,y,2) I Z = Fo($,y,t) + 6F1($,y,t) + 0(62)}'(A'1)

Note that by the nature of the system, this manifold is also periodic in t with period

T. By setting 6 = 0, we immediately have

F0017, yat) 5 2o-

For invariance, .7; has to satisfy the dynamical equations (4.9)-(4.11). Substituting

equation (A.1) into equation (4.11) yields

d

caFfix, y, t) + 0(62) 2 693(x, y, 20 + eF1(a:, y, t) + 0(62), t),

and equating both sides for 0(6) terms gives the following differential equation that

F1 must satisfy:

d

d—tFl(xa yat) : 93(33, 31,209”, (A2)
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which, to the first order, is equivalent to

6F 3F 3F

6t; + Eli—lflcvay, 20) + —a_ylf2(x, ya 20) : 93(1), ya 20, t)’ (A3)

Equation (A3) is a linear partial differential equation in F1 whose solutions can

be obtained by the method of characteristics [28]. Note that the right-hand-side

of equation (A3) is independent of F1, making it easier to solve. Indeed, one can

show that F1 can be expressed as an integral of g3(:1:(t),y(t),zo,t), where a:(t) and

y(t) are the solution to the unperturbed planar Hamiltonian system. However, to

get an explicit form for F1 by this method, one needs a priori knowledge about

the fast manifold (to prescribe initial Cauchy data for equation (A.3)). Therefore,

the function F1, which would yield the first-order geometry of the fast manifold via

equation (A.1) and the dynamics on it via equations (A.4)-(A.5) below, is not easily

obtained. Alternatively, one could obtain a polynomial approximation to F1, local

to the fixed point p, by using a procedure similar to that used in finding center

manifolds [7]. We will not pursue this here, as we need nonlocal information. In

fact, and as is typical in derivations of Melnikov functions, we will circumvent the

need for computing F1 explicitly.

One should note that since .77, is an invariant manifold for the dynamical system

in equations (4.9)-(4.11), it must consist of a collection of solution trajectories of

equations (4.9)—(4.11). Furthermore, it passes through the fixed point p. Hence, we

can conclude that the one-dimensional unstable manifold W“(p) and an invariant

one-dimensional piece of the two-dimensional stable manifold W‘(p) lie on the fast

manifold .77.; see Figure 4.10.
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Using equation (A.1), the dynamics on .7, can thus be expressed up to 0(62) by

d: = f1(:ry,zo)+€[(%£1-(x,y,zo))F1(a:,y,t)+gl(:r,y,zo,t)]+0(€2), (A4)

.22 = f(x We) +e[(%—fa y,zo))F1(a= y,)+gz(x,y,z'o,t)1+ 0(8).

One can directly apply the two-dimensional Melnikov analysis to this system.

A.2 Melnikov Analysis

(A.5)

Let qo(t) be the homoclinic orbit of the unperturbed system on the z = 20 plane.

Then applying the usual two-dimensional Melnikov analysis [22] to equations (A.4)-

(A.5), we obtain the following Melnikov function

M(0,to) = f:[f1(%—f-:F1+92)- f2(9f-1F1+gl)1<0(t),t+0+to)dt

= £:(f192‘f291dt+/(f1%—f—

Now, note the following identity

af2 6f _0H 82H 8H 02H

f1——f2—
  

Evaluating this on q0(t), equation (A.7) becomes

%_ 6f.

2 f2—

1 _ _ + _ _

3::— 03/ 0x82 ax Byaz _

Bfl

dBH

‘E(E)

daH

)Fldt.

02H ,

822 z. 

(f1, 2—a, )(qo(t)) = WWW»)

since 2 = 20, a constant, on qo(t). Then, by integration by parts, we have

I:l(f1—62f:—f2%—fl)F1l(QO(t) t+9+to)dt=

60H(qo(—oo)>F1(qo(—oo) —oo) — 5%?

[:3EM“))93(qo(t),t +
0 + to)dt,

(qo(00))F1(qo(00) 00) +

(A.6)
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where we have used equations (A.2) and (A8). Recalling that q0(t) is the unper-

turbed homoclinic orbit on 2 = 20, its limits are at the saddle point, as follows:

(Id—0°) = C10(00) = 7(20)

Also, from integration of equation (A.2),

F1(qo(oo), oo) — F1(€10(-00)a —oo) = [:gsmourt + a + to)dt.

Hence equation (A.9) now reads

1: [(flfa—J: _((298—
f1)F1l(90(tt,) t

+0+to)dt =

1;:3_H 15))t93(qo() t+0
+to)dt _

Inserting equation (A.10) into equation (A.6), we finally arrive at an expression for

the Melnikov function

Manta) = [:(flgz—fw%’igaxqo(t),t+o+to)dt—

85—1210“()20)1: 93 (QOU) t+0+t0)dt

= [:(VH - g)(qo(t).t + a + to)dt — $170.1)» f: 93(qo(t),t + 0 + to)dt,

where g = [91 92 g3]T. This Melnikov function is exactly the same as that given in

Wiggins and Holmes [68] and errata [69]. However, the derivation presented here is

quite different.



APPENDIX B

THE RELATIONSHIP BETWEEN BIASED AND

UNBIASED HYDROSTATIC FUNCTIONS
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Figure 3.1: G'Z for biased and unbiased ships.

This appendix is devoted to relating the biased hydrostatic functions R(zo, cp) and

GZ(zo, cp) to its unbiased counterparts Ro((Zo)o, (,0) and GZo((zo)o, 1,0) for a given hull

shape. The additional subscript 0 to zo in the latter cases denotes zero bias. Suppose

that the bias for the biased ship is measured by ya and that both ships have the same

23. Then, given 20 and (,0 (the position of the biased vessel), we want to determine
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R and GZ in terms of R0 and GZO.

As shown in Figure 3.1, it is seen that in order for the biased and unbiased ships

to have the same buoyancy force and buoyancy center (in the inertial frame), i.e. for

the submerged portions of the two ships to be coincident, it is required that

(Zo)o = 20 + ya sin (,0.

Hence it follows that

390,90) = RO(ZO + ya Sin 90,90)-

Moreover, it is also clear from Figure 3.1 that

GZ(zo, (,0) = 3,10 comp + GZo(zo + ya sin (0, (0).



BIBLIOGRAPHY



107

BIBLIOGRAPHY

[1] Abkowitz, M. 1969. Stability and Motion Control of Ocean Vehicles. Cambridge,

Massachusetts : The M.I.T. Press.

[2] Allen, J. 1945. The stabilization of ships by activated fins. Transactions of the

Institution of Naval Architecture 87:123—159.

[3] Beck, F. and A. Troesch 1990. Documentation and User’s Manual for the

Computer Program SHIPMO. Department of Naval Architecture and Marine

Engineering, The University of Michigan.

[4] Bennett, S. 1991. Ship stabilization: history. In Concise Encyclopedia of trafiic

and transportation systems, ed. Papageorgiou, M., 454—459. Pergamon Press.

[5] Cardo, A., A. Francescutto, and R. Nabergoj 1981. Ultraharmonics and sub-

harmonics in the rolling motion of a ship: steady-state solution. International

Shipbuilding Progress 28:234—251.

[6] Cardo, A., A. Francescutto, and R. Nabergoj 1984. Subharmonic oscillation

in nonlinear rolling. Ocean Engineering 11:663.

[7] Carr, J. 1982. Applications of Center Manifold Theory. New York : Springer-

Verlag.

[8] Chadwick, J. 1955. On the stabilization of roll. SNAME Transactions 63:234—

280.

[9] Chen, S.-L. and S. Shaw 1996. A fast manifold approach to melnikov functions

for slowly varying oscillators. International Journal of Bifurcation and Chaos.

[10] Chen, S.-L., S. Shaw, and A. Troesch. 1996. An analysis of roll/sway/heave

dynamics in relation to vessel capsizing in regular beam seas.

[11] Dalzell, J. 1973. A note on the distribution of maxima of ship rolling. Journal

of Ship Research 17:217-226.

[12] Ding, M., E. Ott, and C. Grebogi 1994. Controlling chaos in a temporally

irregular environment. Physica D 74:386—394.

[13] Falzarano, J ., S. Shaw, and A. Troesch 1992. Application of global methods for

analyzing dynamical systems to ship rolling motion and capsizing. International

Journal of Bifurcation and Chaos 2:101—116.



108

[14] Fenichel, N. 1971. Persistence and smoothness of invariant manifolds for flows.

Indiana University Mathematics Journal 21:193—226.

[15] Fortuna, L. and G. Muscato 1996. A roll stabilization system for a monohull

ship: modeling, identification, and adaptive control. IEEE Transactions on

Control Systems Technology 4:18-28.

[16] Fossen, T. 1995. Guidance and Control of Ocean Vehicles. New York : John

Wiley & Sons.

[17] Frahm, H. 1911. Results of trials of the anti-rolling tanks at sea. Transactions

of the Institution of Naval Architecture 53:183—216.

[18] Francescuntto, A. 1990. On the nonlinear motions of ships and structures in

narrow band sea. In Proc. IUTAM Symposium on Dynamics of Marine Vehicles

and Structures in Waves 291-304. London.

[19] Francescuntto, A. 1992. Stochastic modeling of nonlinear motions in the pres-

ence of narrow band excitation. In Proc. International Society of Offshore and

Polar Engineers 91—96. San Francisco.

[20] Frey, M. and E. Simiu 1993. Noise-induced chaos and phase space flux. Physica

D 63:312—340.

[21] Georgiou, I., M. Corless, and A. Bajaj 1994. Invariant manifolds and nor-

mal modes in a singularly perturbed nonlinear oscillator with applications to

structural dynamics. ZAMP: Journal of Applied Mathematics and Physics.

[22] Guckenheimer, J. and P. Holmes 1983. Nonlinear Oscillations, Dynamical

Systems, and Bifurcations of Vector Fields. : Springer-Verlag.

[23] Hsieh, S., S. Shaw, and A. Troesch 1994. A nonlinear probabilistic method

for predicting vessel capsizing in random beam seas. Proc. Royal Society of

London, Series A 446:195—211.

[24] Hutchison, B. 1990. Seakeeping studies: A status report. SNAME Transactions

98:263—317.

[25] Hutchison, B. 1991. The transverse plane motions of ships. Marine Technology

28(2).

[26] Jiang, C. Highly Nonlinear Rolling Motion Leading to Capsize. PhD thesis

Department of Naval Architecture and Marine Engineering, The University of

Michigan Ann Arbor 1995.

[27] Jiang, C., A. Troesch, and S. Shaw 1996. Highly nonlinear roll motion leading

to capsize. Journal of Ship Research.

[28] John, F. 1982. Partial Diflerential Equations. New York : Springer-Verlag 4th

edition.



109

[29] Jons, O., G. Fuller, and R. Letorneau 1987. Fishing vessel stability: a case

study for operator guidance and investment. SNAME Transactions.

[30] Ketema, Y. 1992. A physical interpretation of melnikov’s method. International

Journal of Bifurcation and Chaos 2:1—9.

[31] Khalil, H. 1996. Nonlinear Systems. Upper Saddle River, NJ : Prentice-Hall

second edition.

[32] Kokotovic, P., H. Khalil, and J. O’Reilly 1986. Singular Perturbations Mehtods

in Control: Analysis and Design. New York : Academic Press.

[33] Kristic, M., I. Kanellakopoulos, and P. Kokotovic 1995. Nonlinear and Adaptive

Control Design. New York : Wiley-Interscience.

[34] Lewis, E. 1989. Principles of Naval Architecture. New Jersey : SNAME second

edition.

[35] Liaw, C., S. Bishop, and J. Thompson 1993. Heave-excited rolling motion of

a rectangular vessel in head seas. International Journal of Offshore and Polar

Engineering 3:26—31.

[36] Liaw, C. and S. Bishop 1995. Nonlinear heave-roll coupling and ship rolling.

Nonlinear Dynamics 8:197—211.

[37] McRobie, F. and J. Thompson 1991. Lobe dynamics and the escape from a

potential well. Proc. Royal Society of London, Series A 435:659—672.

[38] Minorsky, N. 1941. Note on the angular motions of ships. Transactions of the

ASME 63zAlll-Al20.

[39] Minorsky, N. 1947. Experiments with activated tanks. Transactions of the

ASME 69:735—747.

[40] Mook, D., L. Marshall, and A. Nayfeh 1974. Subharmonics and superharmonics

resonance in the pitch and roll modes of ship motions. Journal of Hydronautics

8:32—40.

[41] Moshchuk, N., R. Ibrahim, R. Khasminskii, and P. Chow 1995. Asymptotic

expansion of ship capsizing in random sea waves: Parts i and ii. International

Journal of Non-Linear Mechanics 30:727—757.

[42] National Transportation Safety Board (NTSB) 1979. Grounding and Capsizing

of the Clam Dredge Patti—B: NTSB Marine Accident Report.

[43] Nayfeh, A. and A. Khdeir 1986. Nonlinear rolling of biased ships in regular

beam seas. International Shipbuilding Progress 33:84—93.

[44] Nayfeh, A. and A. Khdeir 1986. Nonlinear rolling of ships in regular beam seas.

International Shipbuilding Progress 33:40-49.



110

[45] Nayfeh, A., D. Mook, and L. Marshall 1973. Nonlinear coupling of pitch and

roll modes in ship motions. Journal of Hydronautics 7:145—152.

[46] Nayfeh, A. and N. Sanchez 1988. Chaos and dynamic instability in the rolling

motion of ships. In 17th Symposium on Naval Hydrodynamics 617—632. The

Hague.

[47] Newhouse, S. 1974. Diffeomorphisms with infinitely many sinks. Topology 13:9—

18.

[48] Norden, C. 1929. Ship Stabilizer: U.S. Patent No. 1708679.

[49] Odabassi, A. 1977. Ultimate stability of ships. RINA Transactions 199:237—264.

[50] Roberts, J. 1982. A stochastic theory for nonlinear ship rolling in irregular seas.

Journal of Ship Research 26:299—245.

[51] Roberts, J. and N. Dacunha 1985. Roll motion of a ship in random beam

waves: Comparison between theory and experiment. Journal of Ship Research

29:112—126.

[52] Schlick, O. 1904. The gyroscopic effect of fly-wheels on board ship. Transactions

of the Institution of Naval Architecture 46:117-144.

[53] Sellars, F. and J. Martin 1992. Selection and evaluation of ship roll stabilization

systems. Marine Technology 29:84—101.

[54] Senjanovic, I. 1994. Harmonic analysis of nonlinear oscillation of cubic dynam-

ical systems. Journal of ship research 129:112—126.

[55] Shaw, S. and S. Wiggins 1988. Chaotic dynamics of a whirling pendulum.

Physica D 31:190—211.

[56] Simiu, E. and M. Frey 1996. Melnikov process and noise-induced exits from a

well. Journal of Engineering Mechanics 122:263—270.

[57] Soliman, M. and J. Thompson 1989. Integrity measures quantifying the erosion

of smooth and fractal basins of attraction. Journal of Sound and Vibration

1352453-475.

[58] Sperry, E. 1915. Ship’s gyroscope: U.S. Patent No. 1150311.

[59] Tan, N. and P. Radmore 1995. Alternative approaches to melnikov analysis for

forced oscillators. Journal of Sound and Vibration 187:815—824.

[60] Thompson, J. 1990. Transient basins: A new tool for designing ships against

capsize. In IUTAM Symposium on the Dynamics of Marine Vehicles 325-332.

London.



111

[61] Thompson, J., R. Rainey, and M. Soliman 1993. Mechanics of ship capsize

under direct and parametric wave excitation. Phil. Trans. R. Soc. London Ser.

A.

[62] Troesch, A. 1986. Naval Architecture 440, Marine Dynamics II: Course Notes.

Department of Naval Architecture and Marine Engineering, The University of

Michigan Ann Arbor, Michigan.

[63] vanAmerongen, J. 1991. Ship rudder roll stabilization. In Concise Encyclopedia

of traffic and transportation systems, ed. Papageorgiou, M., 448—454. Pergamon

Press.

[64] Virgin, L. 1989. Approximate criterion for capsize based on deterministic dy-

namics. Dynamics and Stability of Systems 4:55—70.

[65] Wiggins, S. 1988. Global Bifurcations and Chaos. New York : Springer-Verlag.

[66] Wiggins, S. 1990. Introduction to Applied Nonlinear Dynamical Systems and

Chaos. New York : Springer-Verlag.

[67] Wiggins, S. 1992. Chaotic Transport in Dynamical Systems. New York :

Springer-Verlag.

[68] Wiggins, S. and P. Holmes 1987. Homoclinic orbits in slowly varying oscillators.

SIAM Journal of Mathematical Analysis 18:612—629.

[69] Wiggins, S. and P. Holmes 1988. Errata: Homoclinic orbits in slowly varying

oscillators. SIAM Journal of Mathematical Analysis 19:1254—1255.

[70] Wiggins, S. and S. Shaw 1988. Chaos and three dimensional horseshoes in

slowly varying oscillators. Journal of Applied Mechanics 55:959—968.

[71] Wright, J. and W. Marshfield 1980. Ship roll response and capsize behavior in

beam seas. RINA Transactions 122:129-—144.



IIllllllllllll11111111“

 


