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ABSTRACT

A Polyphase-Based Alias-Free Structure For Adaptive

Filtering And Tracking

By

Umashankar S. [yer

An asymptotically alias-free parallel structure for adaptive filtering applications, called

the Polyphase Structure (PPS) is considered and analyzed here. The structure promotes

the polyphase implementation of a frequency sampling filter bank. Using accumulators in

each band as post-filters, the scheme forms a zooming mechanism on alias-free points in the

frequency domain. This implies that the bands will become asymptotically uncorrelated

which allows independent adaptations in each sub-band. If sufficient number of bands is

used and the input is rich enough, perfect identification of unknown FIR systems is achieved,

both analytically and experimentally.

The effectiveness of this method in identifying long impulse responses is presented,

especially under adverse input coloring and changing environments. A generalized version of

the algorithm is developed which optimizes the solution based on a priori information about

the input signal. This alias-free parallel structure has also been extended to applications in

blind equalization of communications channels.

With theoretically proven convergence behavior, this method outperforms the LMS and

RLS type algorithms in many cases, some of which are presented in the thesis.
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CHAPTER 1

Introduction

Adaptive identification and equalization of systems has been a long studied problem. Many

efficient algorithms and structures have been proposed for solving these problems and are

summarized in [23, 38, 70]. The adaptive algorithms yield estimates of the parameters of

the linear model based generally on a gradient or least squares methods.

A major decision in identification is how to parameterize the properties of a system

or signal using a model of suitable structure. Typically models can be classified as either

input-output models or state-space models. Signal processing literature concentrates more

on input-output models than on the others. Typical I/O models are

1. Linear difference equations;

2. Lattice models.

The properties of an algorithm are dependent on the model structure. The speed of

convergence, the robustness of the algorithm, are all structure dependent. Lattice type

algorithms have better properties with regard to stability monitoring and numerical ro-

bustness, while on the other hand linear difference equation (or transversal filter) models

yield algorithms which are simpler and easier to implement and understand. For this matter

most algorithms are identified with a structure.

Adaptive filtering has found widespread application in dynamic system identification,

channel equalization, echo cancellation, multi-path equalization, beam-forming and various



bio-medical applications [21, 33, 39, 54, 55, 63, 73]. Most of these applications are discussed

in [23, 70]. There is renewed interest in echo cancellation and channel equalization with rapid

advances in the semiconductor technology. Numerous problems related to echo cancellation

limit the efficiency of classical algorithms. We study these problems and propose a novel

structure to overcome these limitations.

1.1 The echo problem

Echo occurs in many scenarios. Cases of interest are, telephony and tele-conferences. In

telephone networks a bidirectional two-wire circuit connects the subscriber to the local

office. The local offices are interconnected by four-wire trunks, two for each direction of

communication. A hybrid connects the two-wire local circuit, where the incoming and

outgoing signals are together into four-wire trunks where the incoming and outgoing signals

are separated. A typical telephone loop is shown in Figure 1.1. The hybrid circuits are

required to separate the incoming and outgoing channels. However due the variations in

the number of connections and the length of the two-wire lines, it is not possible to achieve

ideal separation. There is leakage of the incoming signal into the outgoing circuit. This

leakage along with the round trip delay produces an echo. The further the distance over

which the call is made, the more annoying the echo gets.

Similarly, in a teleconference echo occurs because of a feedback path from the loud speak-

ers to the microphone. In this case the signal from the speaker leaks into the microphone.

Figure 1.2 depicts the case of an echo in a teleconference.

The leakage path has been found to be essentially linear [63], with an unknown amplitude

and phase characteristic. The fact that the echo signal has non-stationary characteristics,

attributable to the nature of the speech signal, and the changing environment (the echo path

changes due to switching in the telephone network or movement of people in conferences),

a stationary solution for cancelling the echo is ruled out. This gives rise to the application

of adaptive filtering which provides an ideal formulation for echo cancellation [45, 70]. The

adaptive echo cancellers have gained much popularity over the fixed echo suppressors for
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Figure 1.1. Echo problem in a telephone system.
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their tracking capabilities and performance, especially when the round-trip echo path is

greater than 100 milliseconds [70].

The length of the echo path determines the order of the model. The longer the echo ,

path, the larger the order of the model. Typically the length of a long distance telephone

connection is of the order of several hundred milliseconds. This requires that the linear

model chosen for the echo be either an infinite impulse response (IIR) filter, or a very

long finite impulse response (FIR) filter. IIR adaptive filters offer the advantage of a fewer

number of parameters to be considered, but are severely disadvantaged by the absence of a

fast and robust adaptation law [30, 59]. FIR filters on the other hand tend to require many

more parameters for an acceptable performance, but have been traditionally considered as

the method of choice owing to the stability of the adaptive process.

Let us consider the generic case shown in Figure 1.3. Here the speech from the speaker

3(n), is corrupted by the echo signal 17(n). Depending on the situation, signal x(n) might

be the speech from a remote speaker (Figure 1.2), or it might be the echo of the speaker’s

own speech (Figure 1.1). The signal 3(n) is known as the near-end speech. The return

signal, denoted by y(n), contains an echo component which must be removed by appropriate

devices. This may be accomplished with an adaptive filter (ADF). Since the echo path is

essentially a linear system, we attempt to model it with an adaptive filter. The output of
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Figure 1.4. PAM communications system.

 

   

the adaptive filter @(n) approximates the echo signal. Once the echo path is identified then

the output of the canceller .§(n) is free of echo.

Other applications of echo cancellation have been in cellular and mobile phones and

in high speed data networks. These applications along with the problems presented below

limit the performance of classical algorithms. These limitations are

1. The length of the echo path;

2. Colored and non-stationary inputs;

3. High sampling (or data) rate.

1 .2 Channel equalization

In telephone channels, dispersion between successive samples, know as inter-symbol inter-

ference (ISI), greatly complicates reliable transmission and reception of digital signals. ISI

arises in all pulse modulation schemes, but is best explained for baseband pulse amplitude

modulation (PAM) systems. In PAM [35, 65] the output signal is a pulse whose amplitude

depends on the input signal value. For instance in a quaternary system the input is quan-

tized into four levels -3, -1, 1 and 3. A model of a PAM communications system is shown in

Figure 1.4. At instant mT a symbol x(m) is transmitted, where T is the sampling period

and x(m) represents the quantized value of the sample x(t) at t = mT. A typical channel

impulse response is shown in Figure 1.5. The received signal r(t) is the superposition of the

impulse response of the channel to each transmitted signal and additive noise n(t).
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Figure 1.5. Impulse response of a channel.

r(t) = ijhu -m + 770) (1.1)

Equalization of such channels involves filtering the output of the channel to recover the

transmitted signal. Once again the time-varying characteristics of the channel rule out a

fixed solution, [23, 39, 40]. Formally the problem of channel equalization can be stated as

follows [23].

Consider the system in Figure 1.4. The problem is to recover the unknown input

x(m), by identifying the inverse h‘1 of the channel h, given the observed system

output sequence r(m).

Thus channel equalization is effectively the identification of the inverse of the channel.

When the channel has a moving average (MA or FIR) model, the the inverse is an auto-

regressive (AR or IIR) model. Identifying an MA system with an AR model leads to

very complex and unstable algorithms [30, 59]. Using an MA model to approximate an

AR model yields a good solution, however the length of the MA model should be very

long, as the impulse response of an AR model is of infinite duration. Another problem

arises when the channel is non-minimum-phase [50]. In this case, the inverse system is

noncausal. Under such circumstances algorithms based on second-order statistics yield

only the minimum-phase equivalent of the channel, producing phase distortion. Solving the

non-minimum-phase problem involves the use of higher-order statistics which yields more

complex algorithms. Hence for channel equalization of minimum-phase channels, we need



algorithms, which very much like echo cancellation, are efficient in identifying long impulse

responses.

While colored and non-stationary inputs limit the convergence speed of gradient type

algorithms and their tracking capabilities [38, 71], sampling rates limit the time available

between samples for all the computations leading to the adaptations of the model parame-

ters. Therefore acoustic echo cancellation and channel equalization with FIR adaptive filters

entails adapting a large number of parameters (order of thousands) at very high speed in

the presence of colored and non-stationary inputs.

These requirements, however, impose constraints on real-time equalization capabilities

of a conventional adaptive system. To overcome this problem several non-conventional

structures have been proposed [3, 20, 62]. These schemes typically are sub-band schemes

and attempt to pose the problem as a parallel processing paradigm. In the subsequent

chapters we shall develop a sub-band method which yields a perfectly parallel system. The

solution obtained by this method is optimal and is based on the properties of the DFT filter

bank. This method overcomes the problems faced the the existing schemes and provides a

cost-efficient solution to the problems discussed above. Before developing this algorithm,

we shall discuss the basics of sub-band schemes.

1.3 Sub-band schemes

Sub-band schemes have been considered as an alternative to conventional schemes for

cases where either the correlation of the input or the order of the system poses a prob-

lem. The forerunner of the sub-band schemes have been transform-domain algorithms [48].

Transform-domain algorithms attempt to solve the problem by transforming the problem

into a more suitable domain by applying unitary transformations. The transformation is

chosen to exploit the properties of the model in the transform-domain. The simplest exam-

ple is the time domain to frequency domain transformation via a discrete Fourier transform

(DFT). These transformations simplify convolution in time domain to multiplication in the

frequency domain.



The first use of transformation based algorithms was to overcome the adverse effects of

colored (correlated) inputs on adaptation speeds. See Section 2.1 for details. The transform-

domain algorithms based on the DFT, discrete cosine transform (DCT), and discrete sine

transform (DST) attempt to do that with great success. Consequently a more general class

of algorithms is the frequency domain adaptive filtering [60].

In frequency domain adaptive filtering the input signal is transformed into a more de-

sirable form before further processing. It is split into an array of signals which are band

limited to a smaller range (band) of frequencies. The advantages of using a transformation

are two fold. First the transformation generates signals that are generally less correlated

[48, 60]. This lessens the colored input problem. Secondly the speed of an adaptive process

is governed by the signal energy [23, 70], and normalizing the signal energy in each band in

the transform-domain can make convergence uniform across the adaptive filter [48].

Having partitioned the (full band) signal across (almost) non-overlapping bands (sub-

bands), one can gain additional savings by reducing the sampling rate in the sub-bands

in accordance with the Nyquist criterion. This process known as decimation yields great

computational advantage and is a basic operation in multirate signal processing.

1.4 Multirate adaptive filtering

Multirate filters and systems have found widespread applications in communications, speech

processing, image compression and the digital audio industry [69]. Interest in multirate

adaptive systems is a recent development [11, 69]. In conventional digital systems the sam-

pling rate is the same throughout the system. In contrast, in a multirate system sampling

rate can vary from point to point. This is advantageous because we can optimize the sam-

pling rate from point to point in a system. There is however a price to be paid in the form

of aliasing errors. This can be minimized by proper design of the multirate system.
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Figure 1.6. (a) A basic decimator block. (b) A basic interpolator block.

1.4.1 Multirate basics

The basic building blocks of a multirate system are decimators and interpolators. Dec-

imators or downsamplers, decrease the sampling rate, while interpolators or upsamplers

increase them. Let us consider Figure 1.6. The output of the M-fold decimator is given as

A

310(71): x(Mn) (1.2)

and the output of the interpolator is given as

A x(n/ L), if n is an integer-multiple of L

y1(n) = (1.3)

0, otherwise

The z-transforms of the signals yo and y; are, respectively, given by

1 M-1

YD(2) = HZXRVMW") (1.4)

k=0

Y1(z) = X(zL) (1.5)

Graphically we can interpret this in the transform-domain (loosely speaking frequency

domain) as decimation stretches the spectrum of the signal, while interpolation compresses

it. When decimating, expansion of the spectrum in the transform-domain may lead to



link

_._.’7

 

9
—
1

lute

dec,

1.4.



 

 

 

Figure 1.7. Effects of decimation and interpolation in the transform (frequency) domain.(a)

The input signal X(81”), (b) The decimated signal (M22). Notice the aliasing effect. (c)

The interpolated signal (L=2). Observe the spectral images.

aliasing effects which may result in the loss of information. In order for a decimated signal

to be undistorted due aliasing, it is important that it be band-limited to 1r/M, where M

is the decimation factor. These effects are illustrated in Figure 1.7(b). In most cases a

decimator is preceded by a filter called the decimation filter, which ensures that the signal

being decimated is band-limited. Also an interpolator is followed by a filter, known as the

interpolation filter, that suppresses the spectral images created by interpolation. Typical

decimation and interpolation circuits can be seen in Figure 1.8.

1.4.2 Filter banks

A filter bank is a collection of filters with a common input or a common output as
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Input Output
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o———> f L ———> H(z) ———>

(b)

Figure 1.8. (a) A complete decimator with a band-limiting anti-aliasing filter. Typical cut-

off frequency of the decimation filter is 1r/M. (b) A complete interpolator with an image

suppressing filter. The cut-off frequency of the interpolation filter is 1r / L.
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(a) (b)

        
    

Figure 1.9. (a) An analysis filter bank. (b) A synthesis filter bank.

illustrated in Figure 1.9. The filter bank shown in Figure 1.9(a) has a common input and is

known as an analysis filter bank. This system splits a signal x(n) into M signals zk(n) for

further analysis. Typically the filters in the bank, split the frequency domain into almost

non-overlapping bands. Therefore an analysis bank decomposes a full band signal x(n) into

sub.band signals xk(n). Conversely, the system shown in Figure 1.9(b) synthesizes M signals

into one signal (i:(n) and is known as a synthesis filter bank.
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1.4.3 Perfect reconstruction filterbanks

The filterbanks split the frequency domain into sub-bands. In a uniform filterbank these

sub-bands are of the same width. The output of the analysis filter, i.e., the sub-band

signals, occupy a smaller range of frequencies and hence can be sub-sampled in accordance

with the Nyquist criteria. Therefore it is natural to have decimators following the output

of an analysis filterbank. Similarly, the inputs of a synthesis filterbank are preceded by

interpolators.

It is known that the introduction of decimators or interpolators produces aliasing. Now

consider a system where a synthesis filterbank immediately follows an analysis filterbank so

that y,-(n) = z;(n), i = 0,1, . . ., M -1. In general the output :i'(n) is not equal to the input

x(n), but when the filters in the filterbanks are chosen carefully the aliasing introduced by

decimation and interpolation can be cancelled and 53(n) = x(n). Such filterbanks are known

as perfect reconstruction (PR) filterbanks. From this point on, we shall only be interested

in designing PR filterbanks and studying their applications in transform-domain adaptive

filtering. As an important tool in this design we shall develop an alternate representation

for multirate filterbanks which has a very efficient implementation.

1.5 Polyphase representation

Polyphase representation of multirate systems, introduced in 1976 by Bellanger [5], led to

the development of very efficient structures for implementing multirate systems. The basic

idea of polyphase representation is as follows. Consider a system

H(z) = z: h(n)z-". (1.6)

Separating even numbered and odd numbered coefficients of h(n) we can rewrite (1.6) as

H(z) = i0: h(2n)z"2" + 2’1 f: h(2n +1)z-2". (1.7)

n=—oo n=-oo
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Defining

Eo(z) = Z h(2n)z'"’

E1(z) = Z h(2n+1)z'"

we can rewrite H (2:) as

H(z) = 130(22) + z'1E1(22).

Extending this idea to M, we can decompose H(z) as

H(z) = Z?=-ooh(nM)z‘"M

+ 2‘1 2°:_oo h(nM+1)z‘"M

+ z‘lM'1)E;°,°=_oo h(nM + M — 1)z‘"M.

As done in (1.8) we can rewrite H(z) as

M—l

H(z) = Z z‘kEk(zM)

k=0

where

Ek(z)= Z ek(n)z""

71:-00

with

ek(n)éh(Mn+k), OSkSM—l.

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

The decomposition of H (2) given in (1.11) is known as the Type-I polyphase representa-

tion (or decomposition) and Ek(z) are known as the Type-I polyphase components. Figure

1.10 summarizes how ek(n) can be generated from h(n).

Alternatively H(2) can also be represented as

M—l

H(z) = Z 2(M"1"k)Rk(zM).

k=0

(1.14)
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Figure 1.10. Generation of polyphase components.
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m.___. i M G(z) y" A *—*' G(ZM) {M ‘—’

(a) (1))

Input Output Input Output

x(m) y(n) (m) )4")

~——~ 6(2) [L H A x-—- t L G(z’“)—->

(C) ((1)

Figure 1.11. (a-b) Noble Identity 1. (c-d) Noble Identity 2.

Rk(z) are just permutations of Ek(z) and the decomposition in (1.14) is known as the Type-

II polyphase representation. For a discussion of why the term polyphase came into use see

[69].

Polyphase decomposition yields very efficient structures for the implementation of mul-

tirate systems. Before we delve into this aspect, we shall consider certain interconnections

of multirate blocks and their simplifications.

Consider the multirate systems depicted in Figure 1.11. Typically we have seen that in

order to overcome the problem of aliasing, a filter precedes a decimator (Figure 1.11(a)). A

different type of cascade is encountered in polyphase representations. In this type, a filter

follows a decimator (Figure l.ll(b)), or a filter precedes an interpolator (Figure 1.11(d)).

If the function G(z) is rational, then figures 1.11(a) and 1.11(b), and figures 1.11(c) and

1.11(d) are equivalent. These identities are known as Noble Identities [68, 69]

Armed with the Noble Identities we can set about simplifying multirate systems using

polyphase representations. Consider the system shown in Figure 1.8(a) with M = 2. Sub-
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Figure 1.12. Efficient structures for decimators and interpolators. (a) Polyphase imple-

mentation of a decimator. (b) Simplification of (a) using Noble Identities. (c) A similar

structure for an interpolator using a Type-II decomposition and noble identities.

stituting the polyphase representation the system can be simplified as in Figure 1.12(a).

This can be further simplified using the Noble Identities to yield the system in 1.12(b). If

H(2) was an Nth order FIR filter, it would requires N + 1 multiplications and N additions

per unit time, whereas each of Eo(z) and E1(z) in the structure in 1.12(b) require only

(N + 1)/2 multiplications and N/2 additions per unit time. Notice that due to decimation

not only have the computations been halved, but also the unit time has been doubled. A

similar implementation for the interpolator in Figure 1.8(b) is given in 1.12(c). This uses

the Type-II polyphase decomposition. This idea can be extended to arbitrary M.
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——> x0(n)
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Figure 1.13. A DFT filter bank.

1.6 DFT filter bank

One of the most commonly used filter banks is the DFT filter bank. This filter bank

implements the transformation represented by the DFT matrix W. The DFT matrix W is

defined as

szkl, OSkJSM—l (1.15)

where wk; = W“, and W = e‘m/M.

Consider the transformation shown in Figure 1.13. The matrix W] represents the

inverse DFT operator. The input signal x(n) generates M sequences u,-(n) such that u,-(n) =

x(n — 2'). At every instant n, the system computes, M signals 93,-(12) as

M-l

:c,(n) = Z u;(n)W'ik. (1.16)

k=0

Taking the z-transform of (1.16) we have

M—l

X;(z) = ZU,‘(Z)W-ik

k=0

M—l _ .

Z z”X(z)W"k

k=0
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M—l _

= )3 (sz)“‘X(z). (1.17)

k=0

Therefore we can write

X.(Z) = H;(z)X(z) (1-18)

where

H;(z) é Ho(zWi) (1.19)

with

Ho(z)=1+z'1 + ...+z_(M"1). (1.20)

Therefore the system in Figure 1.13 is identical to the analysis bank in Figure 1.9(a)

where, the analysis filter Hk(z) is given by (1.19) and (1.20). Notice also that the the

analysis filters are nothing but the z-transform of the corresponding row of the DFT matrix

W]. Filter banks satisfying (1.19) are known as uniform filter banks.

Now consider a M uniform DFT filterbank. The kth filter in the bank can be represented

3.8

mm = Ho(zw’=)

M-1

2 (xv-nine“), (1.21)
'=0

where E,(z) are the polyphase components of H(z) as per (1.11). The output Xk(z) can

written as

M-l

Xk(z) = Z W-k‘ (z-‘E.(2M)X(z)). (1.22)

i=0

Therefore a uniform DFT bank can now be represented as in Figure 1.14. Further if

the sub-band signals zk(n) are decimated by a factor M, Figure 1.14 can be redrawn as in

Figure 1.15.
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Figure 1.14. A polyphase representation of an uniform DFT bank.

1.7 Statistical properties of multirate systems

Multirate systems are generally time varying. The presence of interpolators and decimators

make a time-invariant system into a periodically varying system [37]. Consider a generalized

multirate filter shown in Figure 1.16. The output signal of this fractional sampling rate

changer can be expressed as (see [11, 37])

y(n) = Z h(mL + InMIL):t: (Ly—15%] - m) , (1.23)

mz—oo

where |v| L denotes v modulo L and [u] denotes the greatest integer less than or equal to

u. From ( 1.23) it is clear that a fractional sampling rate changer is a linear periodically

time varying system (LPTV) with period M. It has been shown that for such a system

the output is wide sense cyclostationary (CWSS) [18], if the input is wide sense stationary

(W58) [29, 56].

We shall now make a few definitions and establish some results which are true for

general multirate systems. These would be very important for analytical developments in

the sections to come.

Consider the decimator shown in Figure 1.17. Here, the autocorrelation of Hg, 2' = 1,2,
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Figure 1.15. An efficient implementation of a uniform DFT filter bank, when its outputs

have been decimated by M.

   

)1n)

x(m)_. *M h(k) AL —>  V
         

Figure 1.16. A general multirate system.

is defined as

ru,(kM) é E{u.-((n + k)M)u[ (72114)}. (1.24)

Also, the cross-correlations between a: and m, denoted by pm.(k), and between ul and U2,

denoted by pu1u2(kM), are respectively defined by

A i
pm'(k) = E{a:(nM + k)u3- (nM)}. (1.25)

Fact 1.1 For the system shown in Figure 1.17 in accordance with above definitions, the

power spectral density (psd) Su,(w), and cross p.s.d’s 51...,(w) and Sn,“2 (w) are found to

be

2 w—27rkGi(w—21rk Sx( M )

——M)
 

  

1 M—1

Shit") = HZ

k=O
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_. Gum) _VI_.[M 1'. Mm) 4’0")

         

x(n)

   

 “2 Y2(m)
—- 02m» ”all; > Am)  

         

Figure 1.17. A two sub-band block with a common post filter.

   

s...(w) = Gi(w)5x(w)

1 MTI w—21rk tw—27rk w—21rk

51111120”) = M 12:; G1( M )G2( M )5-1'( M ) (1'26)

where Sx(w) is the p.s.d of x(n).

Proof: Let g,(n) be the impulse response of G,(w). Then

p...(k) E {x(nM + k)ul(nM)}

= E{Zgi(j)$(nM + k)xl(nM -J')}

J

= :gi(j)r.(k +1)

= Zgl(—j)r.(k -j). (127)

Therefore

5...,(3) = Gl(w)5,(w). (1.28)

Now

ru,(kM) E [11,-((12 + k)M)u,l(nM)}

= E {zit-wan + k)M — j)u!(nM)}

= Zga(j)pxu.(kM -1)- (1°29)



 

Th



Therefore, we have [53]

lM—l

Sua(w) =

Moreover,

pxu2(k)

Therefore

3
|

E
l

21

w—fifth) to — 27rk

Gi(_)S:ua(T)

(w—M21rk) w—M21rk

25———x()
  

k=0

E{:r(nM + lc)u:(nM)}

73:09) ® 92[(5.16)

5mm») = Chasm.

Now

Pu1u2(kM)

Therefore

3

E
I
H

1
M5111112 =

3 l

1

M

a
.

II o

-1

1

E{ul<(n+ k)M)ul(nM)}

E {291017401 + k)M - j)Ui(nM)}

j

291(J')pxu2(kM - j).

j

w-M27rk w—M21rk

Gl(-——)qu2(——-)

w-M27rk w—M21rk)Gl(————)S(w-M21rk

G1( 
 ).

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)
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Fact 1.2 The cross p.s.d Sxy,(w) and the p.s.d Sy,(w) are given by

 

  

 

  

 

   

M

5.,(3) .-_ Al(w)s.u,.(w) (1.35)

1 M1 w—27rk w-M21rk

5y.(w) = |A(‘0)le Z G.(—————) 5x( )- (1.36)

k:0 M

Proof: Let a(n) be the impulse response corresponding to A. Then

pxy.(k) = E{IL‘(nM+ k)!!! (nM)}

= E{Zal(j)x(nM + k)u,l(nM — j)}

j

= Dismal/cw)
j

= aR—k) ®qu.(k)- (137)

Therefore,

5.,(13) = Alumna. (1.38)

Also

S11.01)) — |A(w)|25u.(w)

= A(M‘*’)l2— (w—M21rk))I2:cS((w—M27rk). (1.39)

O

Fact 1.3 For the system shown in Figure 1.17, it is true that

1""1 1.1—27m [1.1—27d: 2 w~21rk

3.... = H 2 Ga M )G.( )|A(w)| s.( ). (1.40)
k=0

Proof: Note that

5311312 (0") = iA(w)i25u1u2 (w)
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Therefore, from Fact 1.1 it is concluded that

1M1 —2 k 2 k 2 k

-H1(ZG(“’ M“ )Gi(“’M” )|A(wW(“M” ). (1.41)
k=0

   

&

 

It should be clear that the p.s.d of the output has aliased components and unless some care

is take its effects on the system can be degrading.

We shall begin the next chapter by first considering the need for a new sub-band adaptive

scheme. Based on the multirate basics developed here we shall then design a sub-band

adaptive filtering scheme.



CHAPTER 2

The Polyphase Algorithm

Sub-band techniques are an effective solution to identify very long impulse responses, spe-

cially for echo cancellation and channel equalization. Their strength lies in their ability to

break a given problem into weakly linked sub-problems of smaller complexity that can then

be solved almost independently of one another at faster rates.

The forerunner of the current sub-band algorithms has been the Transform-domain

(TD) algorithms. TD algorithms were however considered for solving another limitation

of adaptive algorithms, namely the convergence rate. Input signals whose autocorrelation

matrix has a very large eigenvalue spread slows the convergence of adaptive algorithms

[23, 38, 48, 70]. Such signals are know as ill-conditioned signals (strictly speaking these are

signals with an ill-conditioned autocorrelation matrix).

2.1 Transform-domain adaptive filtering

A host of TD algorithms [7, 8, 13, 46, 47, 48] has been studied to improve the convergence

of adaptive process when the input is ill-conditioned. The premise of these TD algorithms

is as follows. Suppose an orthogonal transform W is chosen such that the autocorrelation

matrix of the input signal in the transform-domain is the identity matrix, then the adaptive

filter in that domain will have the best convergence rate possible. The corresponding W

is known as the Karhunen-Loéve Transform (KLT) [4]. The KLT is a signal-dependent

transformation and requires a priori knowledge of the second-order statistics of the input.

24
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In most practical applications such a priori information is not available. Also the signal

might have time-varying statistics that make a fixed transformation impossible. Under

such circumstances transforms such as the Discrete Fourier Transform (DFT), the Discrete

Cosine Transform (DCT) have been observed to yield better convergence than the regular

time domain algorithms [46, 48]. Also these transformations are computationally efficient,

with a complexity of 0(N log2(N )) as compared to 0(N2) for any general transformation.

Simulations show that DCT is better for speech and low-pass signals [46, 48].

2.2 Sub-band adaptive filtering

Sub-band algorithms are an improvement on TD algorithms. The orthonormal transfor-

mation W is implemented using a bank of filters. The mth filter in the bank has as its

coefficients the mth row of the transformation W. Typically the filter bank represents

a bank of comb filters or bandpass filters. The transform-domain signals which are the

outputs of the filters have a bandwidth which is at most equal to the bandwidth of the

corresponding filter. In a M filter bank, if each filter has a bandwidth of 21r/M, then each

of the transform-domain signals has a bandwidth of at most 271’/M . Since the original signal

occupies the full band of 21r, we can subsample each of the transform-domain signals by a

factor of M (See Section 1.4.1). Thus a sub-band algorithm is essentially a multirate TD

algorithm.

While identifying very long impulse responses, the sub-band algorithms decouple the

system into smaller subsystems distributed across the sub-bands. The adaptive process

then adapts to these lower order suboband systems. The advantages of sub-band algorithms

are

1. Faster convergence due to improvement in the condition number of the input correla-

tion matrix;

2. More processing time in the transform-domain due to decimation;

3. Smaller order subsystems to identify, thereby reducing the computation complexity.
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Figure 2.1. A general sub-band adaptive filter.

A typical sub-band system is shown in Figure 2.1, where D0,D1,...,DM_1 are the

transform-domain desired signals, and Y0,Y1,. . .,YM-1 are the outputs of the sub-band

adaptive filters which are of a much smaller order than the original system. The filters are

adapted such that the cost function

J = E{e2}

M—l

E{ Z €k(m)}2 (2-1)

Ic=0

is minimized, where ek is the error in the kth sub-band.

Ideally, we would like each of the sub-band adaptive filters to work independently of

one another, i.e., in parallel. In this case each adaptive process minimizes its corresponding

cost function

J1. -_- E{ei(m)} k = 0,1,. ..,M — 1 (2.2)

with the overall cost function
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z E1 E{e§(m)} k = 0,1,. . .,M — 1. (2-3)
k=0

Equations (2.1) and (2.3) are equal only when

E{e,-(m)ek(m)} = 0 i 75 k, i,k = 0,1,. . .,M — 1. (2.4)

Equation (2.4) is true if and only if the spectral overlap between the filters in the bank is

zero. This implies that all the filters in the bank be ideal bandpass filters. But such filters

are non-causal and hence unrealizable.

Most sub-band schemes are based on the cost function in equation (2.3), in which case

the solution is sub-optimal since e;(m) and ek(m) are not orthogonal in general. Next we

shall consider some of the existing sub-band techniques and discuss their advantages and

drawbacks, and then present a new structure that will overcome their limitations.

2.3 Prior work

The techniques to be discussed in this section can be categorized under FIR and HR algo-

rithms. We first discuss the FIR algorithms and then the HR algorithms.

2.3.1 FIR algorithms

Gillore and Vetterli [19] present some of the pioneering work in sub-band echo cancellers.

The main limitation observed by the authors was the aliasing between the sub-bands. This

yielded a sub-optimal solution as seen in equation (2.4) and was observed in the form of

peaks, in the spectrum of the residual signal, at frequencies corresponding to the overlap.

These peaks indicated the failure of the canceller at those frequencies. Two solutions were

suggested in this paper.

The first method was to introduce band stop filters to suppress the peaks. These filters

however degraded the quality of the speech signal and required additional care in processing

the near-end speech. The second method was to oversample the sub-bands, .i.e., use a
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decimation factor K which is less than M, the number of sub-bands. This reduced the

aliasing between the filters in the bank. Improvement in the quality of the solution was at the

expense of more computations compared to the savings of maximal decimation (decimation

by a factor M).

In their subsequent work [20] the authors present a scheme to overcome the limitations

of their previous work. They propose a transformation which yields a tridiagonal system

in the transform-domain which implies that cross filters maybe used just between adjacent

filters to model the aliasing between them. Such a system yields an optimal solution and

also uses critical sub-sampling. However the computational complexity is increased, as

2(M — 1) cross filters are needed. Once again M is the number of sub-bands used.

In [72] the degrading effects of spectral overlap between the sub-bands is overcome by

introducing filterbanks with no overlap. This technique yielded a much lower residual echo

but the solution is suboptimal since some of the input information was lost due to the

spectral gaps. In this case the output signal had spectral gaps at frequencies corresponding

to the edges of the sub-bands. These problem is severe when the number of sub-bands was

large and needed additional compensation.

In [62] Somayajulu et al. present a technique in which they introduce auxiliary sub-

bands which are not decimated, in addition to the main sub-bands in order to overcome the

problem of spectral gaps. There are M non-overlapping sub-bands, and (M — 1) auxiliary

sub-bands. The main sub-bands are critically decimated (by M) while the auxiliary bands

are not. There are a total of (2M — 1) adaptive filters in the sub-band, (M — 1) of which

are working at the input sampling rate. The auxiliary sub-bands have been introduced to

reduce the problem of spectral gaps between the non-overlapping main sub-bands. While

this structure does not completely avoid aliasing it also has the auxiliary sidebands as an

added cost.

A very efficient FFT based block processing scheme is the Fast LMS (FLMS) [36]. In

this scheme a FFT’s are performed on non-overlapping blocks of data, thereby yielding

great savings while compared to the frequency domain LMS (FDLMS) algorithm. However
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to overcome the aliasing effects of circular convolution, overlap-and-save and a overlap-and-

add methods are used. This effectively increases the length of the FFT to be taken to be

2N compared to the block size of N.

It was observed in [2, 3] that while frequency domain algorithms performed much better

than the time domain algorithms, the propagation delay grew with the size of the trans-

formation. In order to reduce this delay a new structure called the frequency bin adaptive

filter was proposed. This algorithm is a modification of the block LMS. The key point of

the algorithm is as follows. Since the propagation delay is proportional to N, the size of

the FFT, the frequency domain LMS is modified such that instead of taking an N-point

FFT, M N' FFTs are taken reducing where N = MN'. In practice, a 2N'-point FFT is

taken increasing the computational complexity by a factor of 2. The algorithm proposed

here is essentially a combination of Frequency Domain LMS and Block LMS. While it tries

to exploit the features of both schemes, the effect on the autocorrelation is not clear. In

addition the aliasing between adjacent blocks in this structure are not addressed and neither

are the issues related to convergence. It was, however noticed that power normalization in

each block yields an improved performance.

2.3.2 IIR filterbanks

Another approach to the problem of aliasing between the sub-bands is to design filters with

sharper cutoffs. In such filterbanks a very good solution can be obtained ignoring the very

small aliasing. Since FIR filters with sharp cut-off have a very high order, IIR filterbanks

have been considered. In [28, 49, 67] the authors present techniques that yield orthogonal

IIR filterbanks. In [67] Tuncer and Sandri prove that Butterworth filters can be used to

design and orthogonal filterbank, while in [28] Iyer et al. designed sharper cut-off filter

banks using elliptic filters. It is shown in these papers that these filterbanks constitute a

wavelet filter bank. These filterbanks yield a much lower aliasing and at the same time are

orthogonal.

The one problem posed by these filters is that the synthesis part is non-causal. In such

filter banks even a delayed reconstruction is not possible. In [67] this problem is overcome
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by truncating the impulse responses of the IIR filters to obtain an FIR filter bank. Recent

work by Tuncer and Nguyen [66] has shown techniques for developing perfect reconstruction

IIR filter banks.

2.3.3 IIR echo canceller

IIR filters are very efficient while trying to represent long impulse responses. However

they are severely limited by the speed of convergence and stability of the adaptive filter.

In [16] Fan and Jenkins explore the issues relating to the use of IIR echo cancellers and

the performance of a new class of IIR adaptive filtering algorithms developed in [14, 15]

is investigated. In order to overcome the “strict positive realness” condition required for

convergence by the well known SHARF algorithm [32, 34], Fan and Jenkins proposed a

modification of the Steiglitz-McBride algorithm [64]. The authors conclude that although

the IIR echo canceller has the potential to suppress echo better, the improvement depends

on the environment in which it is operating. It was observed that the performance is

degraded when

1. The length of the echo path is not exactly known;

2. The measurement noise is considerable.

Even though computationally more efficient, the IIR filters converge more slowly than the

FIR filters. The problem gets worse when the order of the IIR filter is greater than two.

Having discussed the existing approaches to solving the problem of echo cancellation we

are now ready to present a new technique that overcomes the limitations of the existing

FIR sub-band filtering algorithms. But before we present the algorithm we shall introduce

some basics of block processing schemes based on which will be the development of the new

technique.
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2.4 Equivalence of block processing and sub-band schemes

Block processing of signals has been a common approach in many applications [10, 43]. Block

digital filtering has been used to implement filters in a manner that enhances parallelism in

computations. In many high speed applications block digital filtering is a preferred method.

Consider a linear system h(n) with input x(n) and output y(n). Define vectors 33(n)

and y3(n) as

Pa:(nM+M—1)- -y(nM+M—1)1

ng+M—2 M+M_2

33(71): ( , ) ,me: 3“" , ) (2.5)

_ x(nM) . _ y(nM) J    
23(n) and y3(n) are known as the blocked versions of x(n) and output y(n), respectively.

Let H3(2) be a system that generates Y3(z) from X3(2) according to

YB(Z) = HB(Z)XB(Z) (2-6)

where HB(z) is an M-input M-output system. It can be shown that 113(2) is an LTI system

and can be represented by an M X M transfer matrix. H3(2) is called the blocked version

of H(2)

Let us define the signals xk(n) and yk(n) by

xk(n) x(nM + k)

“
D

yk(n) y(nM + k). (2.7)
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Figure 2.2. (a) A block processing system. (b) Its multirate equivalent.

Then 23(n) and yB(n) can be rewritten as

a33(71) =

 

xM_1(n)

231(72)

xo(n)

l

 l   

yam}

Unblocking y(n)

EHMecahnism +

(a)

YM-1(n)

——> 4 M

z-l

YM-2(fl)

_. 1 M
HB(Z)

-1
Z

-1

Yo(n) z

—» f M y(m)

(b)

yM-1(n)

9 31301) = (2.8)

3M")

[ yo(n)

Now X(z) and Y(z) can be rewritten in terms of the z-tmnsforms of xk(n) and yk(n),

denoted by Xk(z) and Yk(z), respectively, as

X(z)

Y(Z)

M—1

2 z""X,,(zM)

k=0

M-1

)3 24144.21").

k=0

(2.9)

923(n) and y3(n) are the polyphase components of x(n) and y(n) respectively. This

implies that block filtering scheme in Figure 2.2(a) is equivalent to the multirate system in
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Figure 2.2(b). The structure shown in 2.2(b) indicates that the system H3(2) is operating

at a rate M times lower than the input rate. So the sampling rate of the input signal

x(n) can be M times larger than the speed of the basic computational unit. Therefore we

have increased the computational rate (and parallelism) using a block processing (or its

equivalent multirate) scheme by increasing the number of computational units. As a result

we are able to process signals which arrive at a rate M times higher. We know from (1.4)

that even though decimation produces aliasing in the analysis banks, we are able to recover

the signal y(n) without any distortion at the synthesis end of the system. Consequently,

the aliasing introduced in the analysis section is cancelled by the synthesis section.

2.5 Further properties of the uniform DFT filter bank

As mentioned before the uniform DFT filter bank given by the (1.19) and (1.20) has many

interesting properties. They form a perfect reconstruction system. Before we discuss the

DFT filter we first consider the commutator switch models. This makes understanding of

the filter bank structure more straightforward.

Commutator models are useful tools to study the operation of polyphase implementa-

tions. A delay chain followed by a set of decimators is equivalent to a commutator switch

rotating counter clockwise. This equivalence is depicted in Figure 2.3(a). Figure 2.3(b)

shows the equivalent commutator model for a set of interpolators followed by a delay chain.

Therefore a DFT filter bank can be represented using a commutator model as in Figure 2.4.

For such a filter bank it can be shown that

:i:(n) : Mz(n — M + 1) (2.10)

To further study the properties of an uniform DFT bank, let us consider the filter bank,

whose filters are given according to the equations (1.19) and (1.20). The frequency response



34

 

   

 

 

   

Vz'l

o—hh3 ———> a '———>

Vz’ o———>

  
   

(a)
 

   

 

 

 ]—>+3 -—>—o

-I

if v

__.+3 _..._

   

 

 

 
   

(b)

Figure 2.3. Commutator models for (a) decimators, (b) interpolators.

of kth filter in the bank can be expressed as

 

° M . _

an) = S”? ,3, “L“5' I) (2.11)
sm 2

where

27rk

Figure 2.5 shows the frequency response of a typical M-band DFT filter bank. Notice that

there are M points along the frequency axis, corresponding to the center frequency of each

bin, where aliasing is zero, i.e., at those points only one of the bins has a non-zero response.

The DFT filter bank can be thought of as a spectrum analyzer. The output zk(n) of the

kth bin represents a smoothed spectrum of the input X(ejw) about the center frequency of
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+—> —o o— —>

”do—D ——o .— —>‘>v(n)

o W o w'[’ o

O—D —00— —>      

Figure 2.4. Commutator based implementation of the analysis and synthesis section of a

DFT filter bank.

the corresponding bin (21rk/M).

We shall exploit the following properties of the DFT bank to obtain a structure which

would give us increased computational savings in terms of both speed and parallelism.

l. The DFT filter bank offers computational savings because of the increased parallelism

and decimation;

2. The DFT filter bank is alias free at M distinct frequencies;

3. The sub-band signals are an average of the spectrum of the input at frequencies

corresponding to the center frequencies of each band.

What we propose to achieve is the spectral estimate of the unknown system at fre-

quencies corresponding to the center frequencies of each bin of the filter bank. Then in

accordance with the frequency sampling theorem we can identify the impulse response of

the unknown system, provided we have sufficient number of spectral estimates.

In Section 2.6 we present an adaptive structure that attempts to exploit the features

mentioned above. This structure known as the Polyphase structure (PPS) was presented

by Iyer et al. in [24, 25, 26, 27].
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Figure 2.5. Normalized frequency response of a 4-band DFT filter bank.

2.6 Adaptive scheme based on frequency sampling theory

Figure 2.6 shows the proposed adaptive structure, where the employed transformation is an

M-band DFT filter bank. In this structure, x(n) denotes the input, y(n) the reconstructed

signal, and d(n) the desired signal. In addition, Xk(nM) and Dk(nM) are the kth sub-band

signals.

The filters involved in the structure are,

h(n) = Estimated Impulse Response

hD(n) = Desired Impulse Response

Gk(w) = kth DFT filter

HD(w) = Fourier transform of hD(n)

AN(w) = Fourier transform of Accumulator
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Figure 2.6. Polyphase adaptive structure.

Note that the M-DFT in conjunction with the commutator is the polyphase decomposi-

tion of a maximally decimated filter bank whose prototype filter has a flat impulse response

of length M.

The error signal for the kth bin, parameterized by the scalar If)“ is formed by

ek(nM) = Dk(nM) — ffkl(nM)Xk(nM), (2.13)

where

Xk(nM) Xk((n—1)M)+Xk(nM)

é
Dk(nM) Dk((n — 1)M) + 1),.(nM) (2.14)
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denote the accumulated quantities of the input and the desired (reference) signal, respec-

tively. Having defined the critical quantities in the proposed structure, the statement of the

problem is as follows.

Problem Statement In reference to Figure 2.6, if the cost function for

each bin is defined as

Jk(nM) é iek(iM)e:(iM) (2.15)

i=1

find [h(nM) such that Jk(nM) is minimized.

Obviously, this optimization performed for each bin independently, will be a success-

ful procedure if ek(nM), 0 S k S M - 1, are uncorrelated asymptotically. If we let

If), 2 flied-1’ jfiimag, and assume that Jk(nM) is a differentiable function of these two

variables [23], we can write

 

1" é ——6~Jk j—afl‘, . (2.16)

3H): 6H?“ 8H}: ‘5

Since by definition "‘

JunM) = 2(1),. — 11,1 2am. _ £1li

i=1

= XXI—9m: - DkaX: - 5:1?le + lHk|2XkX,[), (2.17)

i=1

it is found that

Lil: = 21-21-7ng + 2XlefIZ). (2.18)

0H), {:1

Setting ii = 0 yields,

3”“ ° ( M)“l _ Pk n

 

‘We have temporarily dropped the time indices for simplicity.
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where

pk(nM) = £2 Dk(IM)X,I(iM)

i=1

i‘k(nM) = $iX—k(iM)Xz(2M). (2.20)

i=1

Notice that the quantities 15;,(nM ) and 1"),(nM) can be regarded as temporal cross cor-

relations of Dk and Xk, and temporal auto-correlation of Xk, respectively. pDka(nM) and

er(nM) are the corresponding statistical correlations. The computation of 15;,(nM) and

rk(nM) is a simple task which is done recursively to compute f1h(nM) in (2.19). Table 2.1

summarizes the PPS algorithm.

The asymptotic convergence properties of this algorithm are investigated next.

2.7 Convergence analysis

We claim that [h(nM), given by (2.19), converges to 1113(3)?) as n —> 00. Note that the

DFT filter bank is alias free at 3%, k 6 {O,1,...,M - 1}. It should also be noted that

the transform-domain signals Dk and X], are stationary if the input x(n) is stationary.

Even though the decimators form a time-varying system, a decimated signal is wide sense

stationary (WSS) if the original signal is WSS. (See [29, 56].)

We have from (2.19) that the estimated f11, are the ratios of the temporal correlations.

The following theorem establishes that the limit of the ratio of the temporal correlations is

the same as that of the statistical correlations.

Theorem 2.1 Assume that the input x(n) is an ergodic random process. Define

 

é . fikUlM)
_ ”131010 fk(nM) . (2.21)

Then it is true that

Ira: ’N 0

7 : Mil (2.22)

NP... 175(0)
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Table 2.1. PPS algorithm.

 

 

0 Form the input blocks at instant nM as

33(71) z [z(nM),:c(nM "1)9' ° -,x((n - 1)M +1”

d3(n) = [d(nM)9d(nM _ 1)9"'9d((n— 1)M +1)]

where x(nM) is the input and d(nM) is the desired output

0 Find the FFT of the input blocks

[X0(nM)9Xl(nM)9”'9XM-1(nM)] : FFT(:EB(TZ))

[Do(nM), Dl(nM), - - -, DM_1(nM)] = FFT(d3(n))

o fori= 0,1,...,M— 1 do

1. Form the accumulated outputs

X,(nM) = X,((n — 1)M) + X,-(nM)

D;(nM) D.((n -1)M)+ D;(nM)

2. Update the auto- and cross- correlations

72'.(nM) (1 _ 55,-((71 —1)M)+%|)f'i("1‘4)l2

2.02M) = <1 — int-((12 — 1)M) + %D1(nM)X.-l(nM)

3. Then H1 [3g(nM)

3' ("M) =m

0 Obtain the impulse response estimate h(n) as

h(n) = IFFT{[fI0(nM),H1(nM),-~-,HM_1(nM)]}
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where

_ A N—l

D,’,"(nM) = Z Dk((n — i)M) (2.23)

i=0

_ A N-l

XflnM) = Z Xk((n — 0M) (2.24)

i=0

are partially accumulated quantities, and

A -' ‘N

pofxym) = E{DI.V(nM)X.‘<nM)}

rpm) 3 E{X,£V(nM)x,fiV1‘(1134)} (2.25)

are their respective correlations.

Proof: Let

. A 1 n .

r. (W) = ;ZIX1V(2M)12 (2.26)
i=1

define the temporal auto-correlation of X3’(nM ), similar to (2.20).

Equations (2.14),(2.20) and (2.26) yield

[gm fig/(nM) = fk(nM). (2.27)

Noting that X(V(nM ) is obtained by linear filtering of the the input x(m), then under

assumptions of ergodicity

”1:120 imnM) = gym). (2.28)

Now as N approaches n, while 72 itself approaches 00, we have from (2.27) and (2.28) that

"lingo Allim r(cv(nM) = nlingo i‘k(nM)

= Aliinoorxfm). (2.29)

In a similar manner we obtain

313,13an) = ,jigloopbfxflol (2-30)
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Hence we have the result. ‘

 

The points of convergence are yet to be shown for each of the statistics, which is done

next. Several lemmas will be introduced first as a prelude to the main result stated in

Theorem 2.2.

Lemma 2.1 Let 53:10.0) and $15fo (ea) be the p.s.d associated with the correlations de-

fined in (2.25) respectively. Then these p.s.d’s are given by

   

 

 

  

1M’l w—M21rj w—21rj2w—M27VJ N

SDNIW) = If HM )|G(M ) S( )5 M (2.31)1:0

1M”1 w—21rj w-27?] N

Sxflw) Z Mm Gk( M ) 235(_—)5 (M), (2.32)

an 2

where SN(w)= IAN(W)|2= is???
2  

Proof: The above lemma is a direct consequence of applying Fact 1.3. The cross power

spectral density 315,131,734”) can be found from (1.40) to be

1.0—M27rj
  

 

w— 27r w— 21r

Sbfxy(w)=lAN(w)I2-M17Z HD( M’)]GM(————’—) s< ). (2.33)

Also,

AN( )— N—l —jwk: Sin E22 _j%
(2 34)

w -— Z 6 Sin _ C . .

2

Therefore from (2.33) and (2.34), we conclude (2.31). Equation (2.32) can be obtained

similarly. ‘

 

Note that we cannot obtain a similar expression for the correlation given in (2.20),

because the accumulator associated with this set-up has a pole on the unit circle. Hence

we circumvent the problem by dealing with a limiting case.
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For the sake of convenience let us define the following,

   

  

  

1""1 w—27rj w—21rj 2 w—27rj
f"( ) é _ H( G ) Sx( ) (2-35l w M jzo D M ) k( M )

M—l __ -

f2"(w) 9- M 0‘68”2"’1 511‘” M2“). (2.36)
  

H

I
I

The following lemma (Lemma 2.2) proves a convergence result for smooth, periodic

functions and shall form the basis for our main Theorem (Theorem 2.2).

Lemma 2.2 Assume that f E £([—7r,7r]), is continuous at 0, and is periodic with a period

27r. Then

. 1 7' Alsinz—"‘

"“00 7171' —1r sin 2

Proof: Let us consider

 

, t + sin23-

1 = ”1320——M][[M—f(0)]Slnzidt (2.38)

2

Let 6 > 0. Splitting the integral over [0,6] and [6, 71'] we have

t n_ 1r 6 ‘ 2 nt

1 = _16] W11”i £1‘°’—',"—,—dt, (2.39)
mr 0 sm 2 mr 5 s1n

2

where g t) = W— f(0) . Since f(t) is continuous at 0, then g(t) —> 0 ast —9 0. This
2

simply suggests that, for e > 0, there exists 6 > 0, such that g(t) < 5/2, for all t 6 (0,6).

  

  

Hence,

g(t)si2n:—2—n7dt 6 f0" sin2—2 e

—- —dt= 2.4

mr__/06 sin2 - 2n1r sin:2 ; 2’ ( 0)

and on (6,71')

"g(t) sinz—"‘ /" I

— —dt < t dt

Inlvr 5 sinzé _ nrsinzg 6 g()

f" lg(t)ldt

727? $111 5
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Also, since f E £([—1r, 7r]), there exists N E N, such that, for all n 2 N,

_f____5lg(t)ldt< 5
-. (2.42)

n1r sin2_—_%— <2

Consequently, for all n 2 N, we have that

   

III <59(t)51n22"—t+1/"9(t)8in22"—
‘dt

‘ mr o sinzM mr 5 sinzé

e e

_ 5+5

= e. (2.43)

Therefore

1 7' Lgflsinznf
L=u _/ ————-—dt= 0. 2.44.12.. -. $.22 M < )

 

Notice that as n increases the integral collapses to the value of the function at t = 0. This

- n_t

can be interpreted as the zooming efi’ect of the accumulator function A"(t) = %i—. In fact,

2

as it tends to infinity this term converges to a delta function. As a consequence of Lemma

2.2 we have the following.

Lemma 2.3 Assume that f1,f2 E £([—7r,7r]), are continuous at 0 and periodic with period

21r. Also assume that f2(0) ¢ 0. Then

  

fur f1(:)Sin-2md2

L, = “in1 (pain—'222 :zfly (2'45)n oo 11' 2 2 )

Proof: L’ can be rewritten as

_1_ 1rfi(:)8in“3d

L' = lim (2.46)
11—900 _1_mr1r1rf2(t)sin:-MT

N
I
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Then by Lemma 2.2 and the fact that f2(0) 75 0, we have the required result. ‘

 

The above lemmas are summarized in the following theorem to give us the points of

convergence of the the estimates of the PPS algorithm given in (2.19). This theorem shows

that the algorithm does indeed converge to the samples of the frequency response of the

unknown system as intended.

Theorem 2.2 Assume that the p.s.d. of input x(n), Sx(w), and the frequency response

HD(w) of the unknown system are sufficiently smooth functions which belong to £([—1r, 7r]),

then

. I3k(nM) _ 1‘ fl _
221530 i'k(nM) .. HD M ), k e {0,1,...,M 1} (2.47)

2754—?) 7e 0, k e {0,1,...,M — 1}.

Proof: From Theorem 2.1 we have that

‘ p‘N' (0

11 WW") - ° ”*X" ) (2.48) 

n~oo fk(nM) — N—IPOOW

Then from Lemma 2.1, and by substituting (2.35) and (2.36) in equations (2.31) and (2.32),

respectively, we have that

 

lim
Pram”) _ If. f1"(w)SN(w)dw

:(0) ‘~~ooff.f§(w)SN(w)dw‘ (2'49)

Realizing that f1" and ff are periodic, smooth and E £([—7r,1r]), we have by Lemma 2.3

that

. PENN) _ me)

~thW‘m ”'50)

Substituting for fl"(w) and ff(w) from equations (2.35) and (2.36), respectively, yields

  
  

— 1ri 1ri 2 7ri

12m PDMMO) _ hZf-ZolHM-grr Cid-217 5x(‘2714‘) (2 51)

—>oo - — - 1ri 2 7 7ri ° '

N ”5(0) fizgol le(-'21vr 534—217)
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But GA—fifii) = M6,}, where

 

 

 

1 if z' = k

6i}: = (2.52)

0 if 2' ¢ 1:.

Therefore we have that

I, 15k(nM) _ Meme?)
m T—_ ‘ " 21rk

"#00 rk(nM) Sal-T!-

—2wk

— HD( M ). (2.53)

if Sx(—3i;7'5) 75 0, k E {0, 1,. ..,M — 1}. Then from (2.19) and (2.53) we have that

. 2 k
”1&1;on = JIM—XI). (2.54)

 

The resulting zooming on the center frequency of each band leads to perfect estimation of

the parameters.

Notice that the condition SA—gfi'i) ¢ 0 for k E {1,2,. . ., M — 1} forms a Persistency

of Excitation (RE) [23] requirement on the input signal. Also, since we are evaluating

the frequency response of the unknown system at M particular points in the interval from

[—1r,1r], it is only natural that we require the input to excite those particular points.

The impulse response can be obtained by taking the IDFT of the ff), obtained above.

If the number of bins used is sufficient, then the estimated impulse response is identical to

the impulse response of the unknown system.

2.8 Time-varying environment

It will be shown in Section 3.1 that the PPS algorithm works very well in time-invariant

setting. However, for time-varying environments we need to incorporate a forgetting factor

in the accumulated quantities. As done in the classical RLS [38], we introduce a forgetting
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Table 2.2. Number of computations per block (M samples) for PPS.

 

 

 

 

 

  

Operation Additions Multiplications Divisions

Adaptive algorithm %M + 11 7M + 14 M + 2

Filter Bank 4M log2 “—21- 4M log? % -

Inverse FFT 2M log 521 2M log 521 -

Total %M+11+6Mlog2—2- 7M+14+6Mlogzg M+2     
 

factor A, where /\ 6 (0,1). The accumulated equations are modified as

XkUIM) = AXk((n-1)M)+Xk(nM)

Dk(nM) = ADk((n — 1)M) + Dk(nM). (2.55)

The cost function is redefined as

Jk(nM) = ihn-iekUMkkiM). (2.56)

i=1

Proceeding as done in Section 2.6, we observe that the correlation quantities would be

accordingly evaluated as

Pk(nM) fiDunMWlmM) + A(1- 3pm —1)M)

WM) = %X.(nM)X,I(nM)+A(1—gym—1)M) (2.57)

and the estimate of the parameter is the same as in (2.19). The choice of the forgetting

factor A depends on how fast the system parameters are changing. A rule of thumb would

be to decrease A as the system parameters change faster.

2.9 Computational complexity

The computational elements involved in the PPS algorithm are the FSF filter bank, and

the accumulators. It should however be noted that most of the computations are done at

different rates. The FSF filter bank is implemented using an FFT algorithm, thereby giving
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us computations of order M1092M , when an M-band filter bank is considered. The input

sequence x(n) is partitioned into blocks of length M to compute the M-point FFT (see

Table 2.1). Since the accumulator and the updating algorithm work at a decimated clock

rate, great computational savings are rendered. Table 2.2 summarizes the number of real

arithmetic operations [required per input—block of length M.

2.10 Recursive PPS

PPS can be modified into a recursive form similar to the extension of least squares method

to recursive least squares [38]. The non-recursive PPS always initializes the parameters to

zero, where as the recursive version can initialize the parameters to any arbitrary value.

This helps in proper initialization when some a priori knowledge of the unknown system is

available. The recursive version of least squares method is summarized in Table 2.3.

In the next chapter we evaluate the performance of the PPS algorithm and perform

simulations to verify its convergence properties.

 

tThe number of complex arithmetic operations have been converted to appropriate number of real

operations.
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Table 2.3. Recursive PPS algorithm.

 

 

0 Form the input blocks at instant nM as

233(7).) : [x(nM),:r(nM "1), ' ' 33((7‘ — 1)M + 1)]

data) [d(nM),d(nM - 1),---,d((n- 1)M + 1)]

where x(nM) is the input and d(nM) is the desired output

0 Find the FFT of the input blocks

[Xo(nM), X1(nM), . - o,XM_1(nM)] = FFT(:cB(n))

[Do(nM), Dl(nM), . - -,DM_1(nM)] FFT(dB(n))

o fori=0,1,...,M— 1 do

1. Form the accumulated outputs

XJ‘nM) = X.((n -1)M)+ X;(nM)

D,(nM) = D;((n - 1)M) + D.(nM)

2. Update the inverse auto-correlation and cross-correlations

r(nM) = X,l(nM)P((n_- 1)M) _

x(nM) = P((n — l)M)X.-(nM)/(z\ + 1r(n)X.-(nM))

d(nM) = 12,-(nM) — Il,l(nM)X.-(nM)

P(nM) = %{P((n —1)M)- n(nM)1r(nM)}

3. Then . .

H,i(nM) = H,l((n — 1)M) + n(nM)al(nM)

0 Obtain the impulse response estimate h(n) as

h(n) = IFFT{[1§Io(nM), 111(nM), - . ., HM_1(nM)]}

 

 



CHAPTER 3

Performance Evaluation of PPS

In this chapter we present simulations to highlight the characteristics of the Polyphase

Structure algorithm. Its convergence to the optimal solution along with its robustness to

disturbance are demonstrated. In addition, it is compared with various other algorithms to

show its better performance and improved computational efficiency.

PPS has been introduced as an algorithm for identifying very long impulse responses.

We shall first establish its convergence properties by comparing its performance with smaller

order systems in the system identification mode. In this mode, depicted in Figure 3.1 we

attempt to model the unknown system by a linear model such that the difference between

its output and that of the unknown system is minimum according to some criteria such as

the mean-square or the least square. The parameters of the model are given by one of the

many adaptive algorithms that we shall be comparing. The unknown system hd and the

input 3 are chosen so as to highlight the properties of the adaptive algorithms. Later on we

shall compare the performance of the PPS algorithm in the inverse filtering mode, depicted

in Figure 3.2 in order to evaluate its performance in equalizing inter-symbol interference

(ISI) in communications channels.

In particular, we shall use as our unknown system a room of dimensions 7mx8mx2.5m.

The impulse response coefficients were obtained by the ”hammer-tap” method. The impulse

response is about 4096 samples and represents a duration of 0.25 seconds at a sampling

frequency of 16 kHz. The normalized room impulse response is shown in Figure 3.3. Other

50
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Figure 3.1. System identification configuration.
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Figure 3.2. Inverse filtering configuration.

scenarios are also considered to highlight various other features and shall be described later

in the chapter.

3.1 Simulations

We compare the PPS with popular algorithms currently in use. The ones considered are

the Least Mean Square algorithm (LMS), Fast Transversal Filter (FTF) algorithm [9] which

is a variation of the Recursive least squares algorithm, Frequency domain LMS (FDLMS),

discrete cosine transform LMS (DCTLMS), and Fast LMS (FLMS). The strength of LMS

is its simplicity but its weakness is its slow convergence while using severely colored inputs.

The DCTLS and FDLMS are faster than LMS when the input is severely colored but are

computationally expensive. FTF a variant of the Recursive Least Square algorithms is

computationally more efficient that RLS, but is very complex and unstable. The FLMS

algorithm offers both computational savings and better performance than LMS while using
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Figure 3.3. Impulse response of a room.

colored inputs. In the sections to follow we compare the performance of PPS with these

algorithms using both time varying and time invariant systems and white and colored inputs.

3.2 Time invariant systems

In this case the unknown system is assumed to be time invariant. However no assumption

is made about the stationarity of the input signal 2:. This signal would be non-stationary

when signals such as speech are used. We first consider the case when the input is white

and then consider colored signals and speech signals.

3.2.1 White noise

The behavior of the LMS algorithm is nearly optimal when the input is white. The orthogo—

nality, in a stochastic sense, of the input to the adaptive filter is the sought-after property by

sub-band schemes. It has been argued in the literature that sub-band filtering is redundant
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Figure 3.4. Comparison of learning curves for LMS and PPS when M=32.

for cases in which the input is already white. In fact, due to the non-ideal characteristics

of the filter banks, small correlations will be introduced in each sub-band if the input is

white. This is usually prevailed by a degradation in performance of the sub-band algorithms

compared to that of the LMS. The same phenomenon has been observed in our experiments

involving white noise.

In out first simulation we consider a 32 tap unknown system with a white input 1:,

uniformly distributed on [-.5, .5]. The learning curves in Figures 3.4 and 3.5 show that LMS

outperforms the PPS when the input is white. When the length of the unknown system

is increased to 128, the performance of the two algorithms is more comparable as shown

in Fig. 3.5. The convergence is also governed by the zooming effect of the accumulator.

It can be observed from (2.40) and (2.41) that the accumulator zooms in at a rate of 1 /n.

Although the performance of the LMS algorithm and the PPS are crudely comparable, the
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Figure 3.5. Comparison of learning curves for LMS and PPS when M=128.

tradeoff in favor of the PPS improves when the length of the unknown system increases or

the input signal becomes colored (i.e., the condition number of it correlation matrix gets

large).

3.2.2 Colored noise

The performance of PPS is dramatically better compared to the performance of LMS-

type algorithms when colored inputs are involved. This is true even under severe coloring

conditions as long as the input is persistently exciting, as the following simulations will

show.

In our first simulation the unknown system is 32 tap FIR filter, whose impulse response

is shown in Figure 3.6. The input signal has a low pass spectrum with a normalized cut-off

frequency 0.11r. Figure 3.6 shows the parameters of the adaptive model after 5000 samples
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Figure 3.6. 32 FIR filter. Estimated impulse response.

of the input have been processed. Notice that the estimates from PPS are much closer to

the original compared to the estimates from LMS. The learning curve in Figure 3.7, which

is a plot of how the output error e changes with iterations, shows the faster and better

convergence of PPS when compared to LMS.

As mentioned before PPS is a better choice when the length of the unknown system is

long. In the next simulation we try to estimate the impulse response of a room. The input

used is a low pass signal with a cut-off frequency 0.11r. Figure 3.8 compares the difference

between the impulse response of the unknown system and the model after convergence. The

difference called the impulse response difference coefficient (IRDC) is defined as

9
IRDC (13(2) — 11.42))2 (3.1)
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Figure 3.8. The unknown system is the impulse response of a room. IRDC for LMS and

PPS are plotted here.
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Notice that the error in the coefficients in case of PPS is much smaller than that of

LMS. The learning curve in Figure 3.9 also tells the same story. PPS outperforms LMS

in the same time scale by more that 30dB. This behavior was observed to be typical for

systems with long impulse responses under adverse conditions.

As a further test of the performance of PPS we compare PPS to FLMS. Figure 3.10

shows how PPS outperforms FLMS. The order of the system used in this case was 256

and the input was a low pass signal with a cut-off frequency of 0.257r. Not only does PPS

perform better, it is computationally very efficient compared to FLMS as can be noticed in

Table 3.1. We next evaluate the ability of PPS to track time-varying systems.
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Figure 3.11. Tracking behavior of LMS and PPS with slow variations in one parameter of

a 16-tap FIR system (A = 0.98).

3.3 Time-varying systems

With the introduction of the forgetting factor in equations (2.55) and (2.56) PPS has the

ability to track time varying systems. To verify its ability to track time varying systems, we

test its tracking properties first with slowly varying systems and then with fast variations.

In the first case periodic ramp type variations were introduced into one parameter of

a 16-tap FIR filter. Two cases are considered, one with a period of 350 samples and the

other with a period of 700 samples. Figures 3.11 and 3.12 depict the tracking behavior of

the LMS and PPS algorithms for these variations. The time varying estimates from both

algorithms are plotted at each sample instant. Notice that in both cases PPS performs

much better that LMS.

A higher order system is tried out wherein sinusoidal variations are introduced into one
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Figure 3.12. Tracking behavior of LMS and PPS with fast variations in one parameter of a

16-tap FIR system (A = 0.95).
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Figure 3.13. Tracking behavior of LMS and PPS with slow variations in one parameter of

a 512-tap FIR system (A = 0.45).

parameter of a 512 tap FIR filter. The input in this case is a high pass signal with a cut-off

frequency of 0.51r. Figure 3.13 shows how PPS outperforms LMS.

In order to model systems with larger variations, ramp variations are introduced into 8

parameters of a 128 tap FIR filter. In Figure 3.14 only three of the parameters have been

plotted for convenience. Notice that PPS shows a much faster and better tracking of the

unknown parameters.

We next compared the performance of PPS with FTF. FTF exhibits all the fast con-

vergence properties of a Least Squares based algorithm, but is very complex and inherently

unstable. In order to make it more stable numerous rescue and restart operations have been

prescribed which add to the complexity of the algorithm. Nevertheless it is a yard stick

for comparing both the speed of convergence and the computational efficiency. We shall

address the issue of computations in a later section. Here we present the case where the
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instability of this algorithm in case of time varying systems is presented.

In the first comparison shown in Figure 3.15, PPS performs marginally better that FTF.

In this case the length of the unknown system was 16 and saw-tooth type variations were

introduced into on the parameters. The input signal was low pass with a cut-off frequency of

0.17r. When the order of the unknown system is increased to 128 it can be seen from Figure

3.16 that FTF becomes unstable around the sample 2500. In spite of the presence of rescue

and restart operations FTF, goes unstable. Further modifications have been proposed in

[61] to overcome this problem

It has been noticed that PPS exhibits excellent tracking capabilities. It exhibits a very

fast transient state, and once it settles in a neighborhood of the true parameter, it achieves

tracking even under adverse input conditions. The PPS elevates its performance beyond

the reach of the LMS, for both slow and fast-varying systems.
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Figure 3.17. Comparison of learning curves for LMS, FDLMS, DCTLMS and PPS when

the input is a low pass colored noise. The unknown system is a 512 tap FIR filter.

3.4 Echo cancellation

In order to evaluate the performance of PPS while suppressing echoes, we compare it

with LMS, Frequency Domain LMS (FDLMS) and discrete cosine transform-domain LMS

(DCTLMS)[47]. A measure of echo suppression, the Echo Return Loss Enhancement

(ERLE), defined as

ERLE = IOIog%]—::E—:%, (3.2)

is used in some experiments, where y(n) is the desired output, and e(n) is the output error.

An ERLE greater that 20dB is expected for echo cancellation [17].

In the first scenario the unknown system is a 512 tap FIR filter. Two simulations were

performed, one with a low pass input and the other with a high pass input, where the

stop-band attenuation in both cases are around 40dB. Figures 3.17 and 3.18 portray the
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Figure 3.18. Comparison of learning curves for LMS, FDLMS, DCTLMS and PPS when

the input is a high pass colored noise. The unknown system is a 512 tap FIR filter.

results of this comparison. It is clear that the performance of LMS is the worst and that

DCTLMS gives the best performance. PPS does a reasonable job, and gives an ERLE of

more than 20dB. At the same time PPS is computationally more efficient, requiring a 512

point FFT every 512 samples, while DCTLMS and FDLMS require the corresponding 512

point transform for every sample.

In the second scenario the impulse response of a real conference room (Figure 3.3) is

the unknown system, and the input is a speech signal (a male voice reading a passage from

a book). Figure 3.19 compares the echo suppression achieved by the different algorithms.

The superiority of PPS over LMS is self-evident. Its performance is comparable with that

of FDLMS and DCTLMS, but note that FDLMS and DCTLMS are much more compu-

tationally intensive. After 50,000 samples while FDLMS and DCTLMS perform 50,000 of

their corresponding 4096-point transform, PPS performs only 12 FFTs.

PPS, DCTLMS and FDLMS fare much better than LMS, when the input is ill-
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Figure 3.19. Comparison of learning curves for LMS, FDLMS, DCTLMS, and PPS when

the input is a speech signal. The unknown system is the 4096 tap impulse response of a

conference room.

conditioned. DCTLMS gives a very good performance with speech and low pass signals,

while FDLMS fares well for high pass inputs. Notice that when the order of the system

increases PPS performs at least as well as the other algorithms. This along with the fact

that it is 0(M — 1) times more efficient than both DCTLMS and FDLMS, makes it the

best choice for echo cancellation. PPS offers a steady performance, achieving the ERLE of

20dB after only 10 blocks of input have been processed, for almost all inputs and all orders

of the system.

Note that the memory allocation for the covariance matrix (4096 X 4096 in this case)

make RLS sluggish and impractical as verified by our simulations. In the section to follow

we shall consider enhancements that make PPS more robust and efficient.
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3.5 Dilation and rotation

It is observed in (2.53) that a weak sample of the input spectrum causes degradation in the

convergence of the algorithm. Since PPS is a frequency domain algorithm, it is possible

for PPS to zoom in on the portion of the input spectrum which is well conditioned and

to provide better spectral estimates. Such operations can be performed using rotation

(modulation) and dilation (decimation) of the spectra of the input signal.

It is known that decimation in time produces a dilation in the frequency domain [11, 69].

Assume, for example, it is known a priori that the input signal has a low pass p.s.d. Such a

signal would degrade the performance of PPS since there is insufficient excitation at higher

frequencies. However, if the input signal is decimated, its p.s.d dilates to occupy a much

larger spectral range. This input conditioning helps PPS to zoom in on the useful range of

frequencies. Similarly if it is known that the signal is not sufficiently exciting at the desired

frequencies, modulating the input signal with a complex sinusoid will rotate its p.s.d for

more excitation at the desired frequencies.

Figure 3.20 depicts how the two schemes of modulation and decimation can be incorpo-

rated into PPS. The rotated and decimated input a: and the desired output d are given as
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inputs to PPS. If M sub-bands are used then, PPS yields spectral estimates at M even spaced

frequencies over the range of frequencies dictated by rotation and dilation. To recover the

estimates in time domain, we need to undo the effects of rotation (i.e., demodulation) and

dilation (i.e., interpolation).

To show the effect of rotation, a signal is generated with nulls around 8 equidistant

points on the frequency axis from 0 to 211'. The frequency response of the coloring filter

used to generate this input is shown in Figure 3.21. The unknown system is an eight-tap

FIR filter. Figure 3.22 shows estimates of the magnitude of the frequency response of the

unknown system obtained by PPS without rotation in comparison to those obtained by

rotated PPS. The estimates have been plotted after 500 iterations. Notice that rotated

PPS exhibits a much improved convergence.

In order to examine the effect of decimation we conducted the following experiment. The

unknown system is a 512 tap FIR filter, and spectrum of the input signal is low pass with a
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cut-off frequency of .57r. Figure 3.23(a) shows the performance of the normal PPS with 512

sub-bands after 20,000 samples. Here the frequency response of the system estimated by

normal PPS is plotted. When the signal is decimated by a factor of two, the performance

of PPS improves dramatically. Using only 256 taps after decimation, PPS converges to the

true estimates much faster as shown in 3.23(b), needing only 10,000 samples. The execution

times for the decimated and undecimated PPS on a Sun Sparc 20 workstation consistently

shows a ratio of 1:3.

3.6 Signal-to-noise ratio and computational complexity

The strength of PPS has been its computational efficiency. Not only does it allow parallel

processing but also improves efficiency by being a block processing algorithm. This feature

makes it ideal for applications, involving the identification of very long impulse responses,
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Table 3.1. Comparison of computational complexities of LMS, FTF and PPS.

 

 

 

 

 

 

Algorithm ® per sample N = 128 N = 512 N = 1024

LMS 2N 256 1024 2048

FTF SN 1024 4096 8192

PPS 610g2(N/2) -l- 8 44 56 62

FLMS 1010g2(2N) + 16 96 116 126     
 

such as severe echo cancellation in telephones and teleconferences.

The problem of echo cancellation as discussed in Section 1.1 involves the identification

of a system whose impulse response is as long as the round trip time of the call [42, 70].

With increasing distances over which a call is made, the effectiveness of a canceller is limited

by its computational efficiency. In addition, the non-stationary nature of the signals and

their sample correlation inhibit the effectiveness of many algorithms. Table 3.1 compares

the computational complexities of the LMS, FTF, PPS, and FLMS. Notice that PPS enjoys

a decisive computational advantage over the other three algorithms.

As a further test of the computational efficiency we compare the performance of the

three algorithms (LMS, FTF and PPS) under various signal to noise ratios (SNR) when the

input signal is a speech signal, and the unknown signal is the impulse response of a room of

about 0.5 seconds long (or, 4096 taps). The disturbance term is simulated using an additive

Gaussian white noise, with a zero mean. Its variance is varied to obtain different SNRs.

It can be seen from Figure 3.24 that PPS performs reasonably well in comparison to FTF,

while both FTF and PPS are more preferable than LMS. These simulations were run on a

SUN Sparc 20 workstation and it was observed that on the average the time required for

PPS, LMS and FTF showed a ratio of 1:2:7, respectively, for the case under consideration.

3.7 Channel equalization

The dispersive effect of a channel, known as the 181 was discussed in Section 1.2. Equal-

ization of a channel involves the recovery of the original stream of data transmitted over

the channel. This poses the problem of channel equalization under the realm of inverse

filtering as depicted in Figure 3.2. Most telephone channels are FIR in nature [54] and their
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Figure 3.24. The performance of LMS, FTF and PPS under various SNR conditions.

inverses are IIR. Thus exact equalization requires the use of IIR filtering algorithms. From

our discussion in Section 2.3.3 on IIR algorithms we known that they are very slow and face

stability problems [30]. The best solution for such problems then is using very long FIR

filters for approximating the infinite impulse response of an ideal equalizer. This approach

puts PPS as an ideal choice for equalization of FIR channels.

3.7.1 Blind equalization

One of the many problems with equalization of channels is that not much is known about

the signal being transmitted. One might just have some limited information about the

statistics of the signal, but the signal itself is not known. This should be clear from the

statement of the equalization problem in Section 1.2. In most practical cases the adaptive

equalization process in initialized by transmitting a known pseudo random sequence of data

across the channel. This sequence is used to asses the channel characteristics which are
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Figure 3.25. Blind equalization configuration.

used to remove the 181 from the subsequent data. The ideal formulation would be for an

algorithm to perform the equalization without any knowledge of the input signal. This

process is known as blind equalization or deconvolution [31, 39, 54].

In blind equalization an estimate of the most likely transmitted input symbol is obtained

from the output of the equalizer. This signal is then used as the desired signal for the

adaptive process. For instance in the case of transmitting a binary sequence of ls and -ls,

the estimator might just be the sign of the output of the equalizer. In general the estimator

is a non linear, zero memory device. A blind equalization scheme is depicted in Figure 3.25.

There are a whole class of cost functions associated with the nonlinear estimators. We

shall briefly discuss a few.

3.7.2 Cost functions for blind equalization

Consider the blind equalizer shown in Figure 3.25. The equalizer attempts to minimize the

cost function

10!) = E{(i(n) - y(n))2} (3-3)

Here the estimate of the input signal a”:(n) is obtained as the output of the zero-memory

nonlinear estimator. One of the earliest proposed estimator was for the case of a binary

source of data, where the estimator was described as
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an) = vsgn{y(n)} (3.4)

where sgn(.) is the sign function. The constant 7 sets the gain of the equalizer and is defined

by

_ Emu»

7 ‘ E{|x(n)l}' (3'5)

The adaptive algorithm based on equations (3.3)-(3.4) was first proposed by Sato [57]

in 1975. The Sato algorithm is robust, but has a slower convergence. Its convergence is

guaranteed, when the input signal’s probability density function can be approximated by a

sub-Gaussian distribution such as the uniform distribution [6].

A generalization of the Sato algorithm leads to a whole family of constant modulus blind

equalization algorithms for use in two-dimensions digital communications systems (e.g., M-

ary phase shift keying [58, 65]). These class of algorithms collectively known as the Godard

algorithm [22] minimize the non-convex cost function

«’00 = E{(|y(n)l” - 3:02} (3-6)

where p is positive integer and Rp is a positive real constant defined by

_ Emma}

12.- E{|:r(n)|”}°

The Godard algorithm is designed to penalize deviation of the blind equalizer output

(3.7)

y(n) from a constant modulus. The constant RP is chosen in such a way that the gradient

of the cost function J(n) is zero when perfect equalization is attained.

Note that for p = 1 equations (3.3) and (3.6) are equal, i.e., the Godard algorithm is

same as the Sato algorithm for p = 1.
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Figure 3.26. PPS modified for blind equalization. Notice the delay introduced to account

for the block processing.

3.7.3 PPS for blind equalization

Since PPS is a block processing algorithm, there is a delay of the order of the block size

in the estimation of the model parameters. This delay has to be incorporated into the

scheme for equalization of channels. Modification of PPS for blind equalization is depicted

in Figure 3.26. In all our simulations we assume that the input signal is a binary sequence

of ls and -ls. The nonlinear estimator in our case is the sign function. Under this setting

PPS operates under a Sato class algorithm for blind equalization.

Figure 3.27 depicts the performance of PPS while equalizing an all-pole channel with

denominator polynomial D(z) = 1 + 0.82’1 + 0.42'2 + 0.52‘3. Notice that the estimates

from PPS converge towards the negative of the true parameters. This is due to the nature

of the non-linearity (the sign function) used. This problem is because of the fact that PPS

initializes all the parameters to zero and the algorithm converges to the closest minima

which in this case happens to be the set of negatives. It should be noted that the negative

values also yield a valid solution because all that is needed to recover the transmitted signal

is to invert the output.

In practice equalization is not done completely blind. With each data frame, a known

signal is transmitted and this is used to initialize the equalizer. This implies that recursive

version of PPS needs to be used as this allows for initialization of the estimates to non-zero

values. The PPS based blind equalizer initialized by a training signal can be expected to

converge faster to the true solution. This observation is strengthened by the results in
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Figure 3.27. Performance of PPS under blind equalization with all parameters initialized

to zero.

Figure 3.28. In this simulation the recursive PPS algorithm is used to equalize the all pole

channel equalized in Figure 3.27. The algorithm initialized to non-zero values obtained by

using a training sequence, converges to true values in a much shorter period.

Finally we compare the performance of PPS, LMS and FTF while equalizing a channel.

For this simulation we consider a binary input sequence of ls and -ls. The channel is a

minimum-phase channel.

The cost function for blind equalization is not unimodal because of the non-linear es-

timator used. This makes the quality of the solution very much dependent on the initial

conditions. For large number of parameters (like 500 or a 1000), the cost function can be

very complex with many local minimas.

Figure 3.29 shows the estimates of the equalizer obtained from different algorithms under

consideration. The ideal equalizer (the inverse of the channel) has an impulse response

which is 512 taps long. Notice that PPS performs at least as good as the other algorithms
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Figure 3.28. Performance of recursive PPS under blind equalization with parameters ini-

tialized to non-zero values.

in addition to its great computational savings.

PPS offers the best choice available in terms of the tradeoffs between performance and

computational efficiency for equalization on minimum-phase channels. This along with the

observations in Section 3.4 on echo cancellation make PPS ideal for applications where long

impulse responses need to be identified, or infinite impulse responses need to be approxi-

mated. While the performance of other algorithms degrades with the increasing order of

the system, PPS offers almost the same performance for systems of different lengths. This

is due to its parallel, alias-free structure.

The promise of computational savings along with good performance makes further study

of PPS for blind-equalization very attractive. Further investigation on application of PPS

for equalizing non-minimum-phase channels would be a fruitful endeavor. This and other

issues for future research are discussed in Chapter 4.
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CHAPTER 4

Discussion and Future Work

The development of PPS opens a new avenue for the design of sub-band adaptive filtering

algorithms. A whole new class of sub-band algorithms can be developed considering the

structure of the system in the sub-bands. It was shown in Section 2.4 that sub-band schemes

and block processing schemes are equivalent. Thus a scalar system, modeled by a block

processing scheme, is equivalent to a sub-band scheme in which the system is now a square

matrix.

This sub-band matrix system has many interesting properties and can be exploited

to achieve increased parallelism. PPS algorithm developed in previous chapters is one of

such algorithms. In PPS only one parameter is evaluated per bin. However based on the

structural decomposition method, algorithms evaluating more than one parameter per bin

can be developed. One of the implications of this feature is that the block size can be

reduced, thus decreasing block delays. This allows us to design algorithms that optimize

the delay and the number of parameters to be evaluated in each bin.

Some of the approaches to structural decomposition of sub-band schemes have been

presented in [41, 44, 52]. In the section to follow a more general approach based on diagonal

decomposition of systems is presented.

Another modification would be the extension of PPS for identification of non-minimum-

phase channels. This would require incorporation of higher order statistics and poses some

very interesting challenges. In the sections to follow, leads for the implementation of the

81
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above ideas are presented.

4.1 Diagonal decomposition of the system in the transform-

domain

An alternate approach to increased parallelism can be obtained by considering a decompo-

sition of the system in Fig. 2.2(b). Let 33(2) be defined as

HB(z) é leB(z)W (4.1)

Then Fig. 2.2(b) can be redrawn as shown in Fig. 4.1. If the transformation W is such

that FIB is diagonal, then we have achieved our goal. This can be stated as

Problem Statement: Does there exist a unitary transformation W, that diago-

nalizes HB; with the added condition that the W is independent of the elements of

HB-

We have the following fact.

Fact 4.1 A circulant matrix is unitary similar to a diagonal matrix. The transformation

that diagonalizes all circulant matrices is the DFT matrix.

Proof: See [12, 51]

In the subsequent section we develop the diagonal decomposition of a sub-band system

based on the diagonalization of circulant matrices.

4.1.1 Generalized sub-band decomposition

Consider the block processing, multirate equivalent of a $180 (scalar) system H(z) with

input X(z) and output Y(z). If the size of the block is M, then H3(2), the multirate

equivalent of the scalar system H(z), is a M x M matrix. For the two systems to be

equivalent, the multirate system must be an alias free system. The requirements on H3(2)

that yield an alias free system are summarized in the following theorem.
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Figure 4.1. Diagonalized system function in the transform-domain.

Theorem 4.1 Let 113(2) be the multirate equivalent of the scalar system H(z) If the two

systems are to be equivalent, then H3(2) should be pseudo-circulant (PC). A pseudo-

circulant matrix is essentially a circulant matrix with all elements below the main diagonal

being multiplied by z. (See Example 4.1. In addition the elements of the first row of H3(2)

one the M-polyphase components of H(2)

Proof: See [69] for the proof.

Consider a transformation W such that, a new multirate equivalent system IlB(z) is

given by (4.1)

if the transformation W diagonalizes H3(2), then we can represent the block/multirate

system as shown in Figure 4.1. The diagonalizing transformation W must be unitary, and

independent of the system function H3(2), i.e., there should be only one transformation

W that diagonalizes all H3(2). The following theorem shows how one can obtain such a

transformation.

Theorem 4.2 Let C be any M x M pseudo-circulant matrix, and W a square matrix with

elements ajk defined as

k7j=0,---,M—1
andw:ej2"/M
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Then W is unitary, diagonalizes C and

wicw = D = diag{p(1),p(w).....p(wM-‘)} (4.2)

when: p(/\) = Co + clAzl/M + . . . + cM_1(Azl/M)M‘1

Proof: This proof can be obtained just along the same lines as the proof for circulant

matrices. See [69] for details.

The transformations for the cases of n = 2 and n = 3, respectively, are

  

1 1 1

1 1
1 1 -1—\/§ —1 '\/§
W 1/2 1/2 , W5 21/3 z1/3l__21__2 zl/3l_+;__i (4.3)

2 2 l 22/3 zz/sg-ltg'x/fil z2/3g—1-21'x/5]

An example of such decomposition is given below.

Example 4.1 Consider the following scalar (or unblocked) system

H(z) = a0 + alz + a1»?2 + a3z3 (4.4)

Its four-component Type-I polyphase components are

530(2) = ao

E1(Z) = al

192(2) = 02

E3(z) = a3 (4.5)

Then the block (PC) system [13(2) is given as
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203 (10 (11 02

113(2) = (4.6)

2 02 2 a3 a0 0.1

2a1 2a; 2a3 a0  
for which we have

Y3(2) = 113(2) 4: X3(2) (4.7)

as in (2.6)

The unitary transformation which diagonalizes 113(2) given in (4.6) was found to be,

  

1 1 1 1 l
2 2 2 2

1 1/4 1 - 1/4 _1 1/4 _1 . 1/4

22 232 22 232

W: (4.8)

.1. _l l _.1_

zfi 2 2 2 z 2 z

1 3/4 __1_ ' 3/4 _1 3/4 1 ' 3/4
_22 232 22 232 _

The diagonalized form 113(2) is

- n

21/401 +ao+z3/4a3+\/'z'az, 0,0,0

. 0,a — '23/4a - 2a + '21/4a ,0,0

H3(2)=WlH3(2)W= 0 J 3 f 2 J 1 (4.9)

0,0,—21/“a1+ao—23/4a3+\/2a2,0

  0,0,0,ao+j23/4a3—¢2a2—-j21/4a1

4.1.2 Adaptive structure

We now consider an adaptive algorithm based on the above sub-band decomposition of a

scalar system. The first problem to be considered is the fact that the transformation W has

fraction powers of 2'1, the delay operator, and hence cannot be realized using a rational

filter bank. This can however be avoided by using interpolation. Using this property the



86

 

   

x(n) Z w

 

  

 

    
 
 

  
  
\S

(101)

Figure 4.2. Adaptive structure based on generalized sub-band decomposition.

transformation W can then be rewritten as

W = diag{l,2'1,...,2-(M-1)}U (4.10)

where U is the M x M DFT matrix. Thus the transformation W can be implemented

efficiently using the FFT algorithms. The implementation of an adaptive structure, using

the above transformation is shown in Figure 4.2. A LMS type algorithm is used to adapt

the coefficients. Each bin evaluates the coefficients of the corresponding polyphase compo-

nent. It should be noted that the diagonal element of the unknown system 113(2) in the

transform-domain is H(w-lz), where j is the corresponding bin. In terms of the M-polyphase

components Ej(Z),j = 0,1, . . ., M — 1, of H(z), we can rewrite this as

M-l

H(wjz) = Z 2'kEk(2M)wkj (4.11)

k=0
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With such as structure, adaptations can be performed in one of two ways. In the first

method all the bins have a copy of the coefficient array and use that compute their outputs.

But they only update the coefficients of the corresponding polyphase component keeping

the others fixed. At the end of the iteration we can update the fixed polyphase components

using the updated values from the other bins. Its advantage, however, lies in the fact that

lesser number of coefficients are updated in each bin, and these updates can be done in

parallel.

In the second method, efficiency is increased by estimating just corresponding polyphase

component in each bin, assuming that the rest of the components are zero. By estimating

only the parameters of the polyphase component in each bin we are under-parameterizing,

but by combining all the polyphase components we can reconstruct the original system

function. This method gives an optimal strategy for utilizing the generalized sub-band

structure. However gradient type algorithms have poor convergence when they are severely

under parameterized. Lattice based least squares method [23] provides very good conver-

gence regardless of the number of parameters used owing to its orthogonal and modular

nature and seems to the be the best solution for this problem.

4.2 Equalization of non-minimum-phase channels

One of the limitations of an equalizer based on second-order statistics is that when the

channel is non-minimum-phase, exact identification is not possible. In this case the algo-

rithms identifies the minimum-phase equivalent of the unknown system. Extension of PPS

to higher order statistics (third-order or higher) is a subject that needs further investigation.

While second-order statistics are phase blind, higher order statistics are phase sensitive. In

particular, cumulants and their Fourier transforms, polyspectra are useful in the analysis

and descriptions of non-Gaussian process, and non-minimum-phase and nonlinear systems

[23]. A frequency domain approach based on polyspectra is a good avenue to pursue. An-

other promising technique is the method based on fractionally spaced equalizers which is a

relatively new development.



CHAPTER 5

Conclusion

We have presented an asymptotically alias-free parallel structure in which the DFT filter

bank polyphase decomposition allows multi-rate processing. The zooming effect, as a result

of using accumulators in each band, is the distinguishing feature of this scheme. This

implies that the bands would become asymptotically uncorrelated, which accommodates

independent adaptations in each sub-band. It was proven that 11;,(nM), given by (2.19),

converges to 113(2fik) as n —> 00 provided sufficient number of bands are used and the input

is persistently exciting.

Through several experiments it was shown that PPS completely outperforms the LMS

and FDLMS algorithms by as much as 30 dB (ERLE) in some applications involving severe

input coloring. The tracking capability is yet another strong attribute of PPS which was

experimentally shown against the LMS and FTF. The great computational saving afforded

by PPS as compared to LMS, FTF and FLMS is evident from table 3.1. This coupled

with its good performance under different SNRs, as compared to FTF and LMS, and its

effectiveness in identifying long impulse responses, especially under adverse input coloring

and changing environment, makes this structure a viable alternative to available methods.

The modification of PPS for blind equalization opens a new area for its application.

This represents one of the first frequency domain approaches to blind equalization. The

recursive version of PPS extends very well for blind equalization with facility for choosing

arbitrary initial values for the parameters. We can summarize our achievements as follows:
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0 An alias free structure for sub-band adaptive filtering was developed.

0 A simple and modular least squares type algorithm was developed for updating the

parameters.

0 The computational complexity of the algorithm is 0(l0g2N) per sample.

0 Analyses were conducted to establish the convergence of the parameters to the true

values under developed the persistency of excitation conditions.

0 Simulations supporting the deductions from analysis were performed.

0 The algorithm was modified to incorporate a priori information about the input with

an eye on improving performance.

0 A general frame work for developing sub-band adaptive filtering algorithms based on

diagonal decomposition in the transform-domain was presented.

The prospects of extending this research and applying it to other areas was discussed

in the previous sections. These can be summarized as follows:

0 Modify PPS in a fashion similar to the work in [2] to reduce the block delay.

0 Develop a more general algorithm based on the diagonal decomposition in sub-bands.

o Formulate an algorithm similar to PPS, based on Chirp z-transform. Such a structure

would allow for non-uniform spacing of frequency domain estimates.

0 Extend PPS for equalization of non-minimum phase channels.
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