

This is to certify that the

dissertation entitled

Malignant Transformation of the Human Fibroblast Cell Strain MSU-1.1 by Ultraviolet Radiation: Correlation of Tumorigenicity with Anchorage Independence and Growth Factor Independence

presented by

Sardar Waheed Ashraf-Khan

has been accepted towards fulfillment of the requirements for

Ph.D degree in Pathology

Major professor

-. U

MSU is an Affirmative Action/Equal Opportunity Institution

28,1996

0-12771

LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

DATE DUE	DATE DUE	DATE DUE
-		
-		

MSU Is An Affirmative Action/Equal Opportunity Institution choircldetedus.pm3-p

MALIGNANT TRANSFORMATION OF THE HUMAN FIBROBLAST

CELL STRAIN MSU-1.1 BY ULTRAVIOLET RADIATION:

CORRELATION OF TUMORIGENICITY WITH ANCHORAGE

INDEPENDENCE AND GROWTH FACTOR INDEPENDENCE

BY Sarder Success Sunday of Salar

SARDAR WAHEED ASHRAF-KHAN

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirement

for the degree of

DOCTOR OF PHILOSOPHY

Pathology

ABSTRACT CONTRACT CON

MALIGNANT TRANSFORMATION OF HUMAN FIBROBLAST CELL STRAIN MSU-1.1 BY ULTRAVIOLET RADIATION: CORRELATION OF TUMORIGENICITY WITH ANCHORAGE INDEPENDENCE AND GROWTH FACTOR INDEPENDENCE

By

Sardar Waheed Ashraf-khan

I irradiated MSU-1.1 cells, an immortal, non-tumorigenic human fibroblast cell strain with a stable, near diploid karyotype with 254 nm UV radiation and selected for focus formation. A dose-dependent increase in focus formation was observed. From each of the eight independent irradiated cell populations, 5-6 focus-derived cell strains were selected and tested for tumorigenicity by injecting them into athymic mice. When a cell strain from an irradiated cell population made a tumor, this cell strain and a focus-derived cell strain not able to form a tumor from the same population were selected for further analysis. Five UV-induced focus-derived cell strains formed high grade spindle cell sarcomas in athymic mice at a high frequency and with a very short latency.

These five cell strains grew well in agarose and in medium without exogenous growth factors. Two UV-induced focusderived cell strains and one control focus-derived cell strain also formed fibrosarcomas in athymic mice but at a lower frequency and with a longer latency. These three cell strains did not grow well in agarose or in medium without exogenous growth factors. However, two cell lines derived from the tumors (fibrosarcomas) grew well in agarose and in medium without exogenous growth factors. One UV-induced focusderived cell strain formed a single fibroma after a long latency. The cells that formed the fibroma and the fibromaderived cell line did not grow in agarose or in medium without exogenous growth factors. All the non-tumorigenic UV-induced focus-derived cell strains did not grow in agarose and in medium without exogenous growth factors. In summary, UV radiation can transform MSU-1.1 cells to focus formation in a dose-dependent manner and some of these focus-derived cell strains can form tumors in athymic mice. Growth in agarose and in medium without exogenous growth factors are two reliable in vitro characteristics which correlate strongly with tumorigenicity.

DEDICATED:

To my late father,

whose life and whose death due to cancer inspired me,

To my wife,

whose love, support and patience helped me,

To my children,

whose proper education motivated me,

whose untold suffering and miseries touched and moved me.

ACKNOWLEDGMENTS

After due praises and thanks to Allah, my creator and sustainer, I thank first and foremost my major professor and research mentor, Dr J Justin McCormick. His help, intellectual guidance, financial support and above all affection were all inspiring. Besides the academics, I learned many things pertaining to human relationships from him. His advice and his principles will be of value to me in my personal life and in my academic pursuits.

I thank Dr Veronica M. Maher, Co-Director Carcinogenesis
Laboratory for her cordial help and support during my stay in
Carcinogenesis Laboratory. She was always there to help and
advise at a time of need.

I owe special thanks to Dr Robert W. Dunstan, my academic advisor for his help and guidance all these years of my graduate study in Michigan State University.

I thank Dr Mehboob Fateh and Dr Kathy Lovell, members of my guidance committee to take their time out for my research and academic work.

I thank all the members of Carcinogenesis Laboratory for their friendship and help, especially Suzanne K. Kohler,

Lonnie Millam, Clarissa Stropp, and Terry McManus.

I need to thank Ministry of Science and Technology, Govt of Pakistan for the financial support without which this study would not have been possible. I also thank Department of Pathology, Michigan State University for its support during this period.

I owe special thanks to my mother, brothers and sisters for their encouagement and help. I am realy thankfull to my wife whose love, patience and prayers all helped me during my career. I need to thank all my sons, Abdullah, Abdul-Rehman, Abdul-Aziz and Abdul-Wahab who tolerated my separation for long times at an age and time when they realy needed my attention for their proper upbringing and education.

Without mentioning the names, I want to acknowledge all my friends and teachers who taught, guided and prayed for me all along my career.

May Allah bless all the above mentioned for their kind help and proper guidance (Ameen).

TABLE OF CONTENTS

playe a role in cellular transformation	_
LIST OF TABLES	Page
LIST OF FIGURES.	- xi
LIST OF FIGURES	- 30
CHAPTER I . LITERATURE	- xii
CHAPTER I : LITERATURE REVIEW	- 1
A. Multi step malignant transformation of	
human fibroblast	
	- 1
chemicals play a role in cancer	4
C. Viral carcinogenesis	40
apova viiuses	
2.1.Papilloma Viruses	9
virus oncoproteins	49
2.1.2 Molecular mechanism(s) of HPV	11
oncoprotein regulation	12
2.1.3 Human papilloma virus and	
tumor suppressor proteins	13
2.2. Polyoma Virus	16
2.2.1 Mechanism by which middle T	
antigen players male in	17
3. Simian Virus 40 and cancer 3.1. SV40 large t antigen in cellular	21
transformation	23
3.2 Molecular mechanism of SV40 mediated	
cellular transformation	23
3.2.1 SV40 large t anigen and signal transduction	
3.2.2 SV40 large t antigen and Tumor	24
suppressor proteins	5
3.2.3 SV40 and Transcription factors/	
cell cycle regulatory proteins 2	6

4. Adenovirus and cancer
4.1. Molecular mochanic
plays a role in cellular transformation 29
4111
4.1.1. Adenovirus and tumor suppressor
proteins
proteins 31
5. Herpes virus and cancer 31 5.1 EBV and human cancer 32
5.1 EBV and human cancer32
6.4/3. [62 4.7]
5.1.1 EBV nuclear anti-
5.1.1 EBV nuclear antigen and cellular transformation
5.1.2. Latent mombass
transformation
acate transforming retrovience
6.2.2 Proviral Enhancer activation 41 7. Acute transforming activation 42
7.1. Molecular mechanisms of acute
Eranstorming meta
carcinogenesis 44
44
D. Ionizing radiation and cancer 45
3
1. Molecular maghani
1. Molecular mechanisms involved in radiation
induced carcinogenesis48
E. Ultraviolet radiation and cancer 50
1.0 Biologic effects of ultraviolet
radiation
2.0 Role OI Ultraviolet radiation
3.0 Molecular mechanism of Ultraviolet
radiation-induced carcinogenesis
UV-induced photolesions53
4.0. Genetic consequences of UV-induced
photoproducts, III induced
photoproducts: UV-induced DNA mutations 54
5.0. Role of Oncogenes in UV-induced cellular
transformation 56

6.0. Role of Tumor suppressor genes in
UV-induced cellular transformation 59
6.1 P53 tumor suppresses
6.1 P53 tumor suppressor gene and product
6.2.P53 tumor suppressor gene
6.4. Mechanism Of Transition Protein 61
6.4.Mechanism Of Inactivation of p53 61
6.4.1. Gene mutations
6.4.2. P53 and viral protein
interaction
6.4.3. P53 and cellular protein
interaction
6.7. The role of p53 in Malignant
Melanoma 68
E. Multi-step malignant transformation 69
F. The MSU-1.1 Human Fibroblast Transformation
System71
G. LIST OF REPUBLICA
G. LIST OF REFERENCES 76
CHAPTER II
MILTERATION
MULTISTEP MALIGNANT TRANSFORMATION OF IMMORTAL
HUMAN FIBROBLAST CELL STRAIN MSU-1.1 BY ULTRAVIOLET
AND CORRELATION WITH ANCHORAGE INDEPENDENCE
AND GROWTH FACTOR INDEPENDENCE.
ADCED a cm
ABSTRACT141
INTRODUCTION144
MATERIALS AND METHODS 145
Cell culture 145
Exposure to ultraviolet radiation and
selection of focus forming cells 146
Cytotoxicity assay 147

Growth factor independence assay Anchorage independence assay Tumorigenicity assay Histopathology	150
RESULTS	
MSU-1.1 cellsin and Focus Formation in	151
derived Cell Strains	
	158
Focus-Derived Cell Strains	159
derived Cell Strains	
Growth Factors of Some of The Tumor-Derived Cell	
1	167
DISCUSSION 1	74
ACKNOWLEDGEMENTS1	
1	78
ABBREVIATIONS1	79
REFERENCES	
REFERENCES	80

LIST OF TABLES

TABLE-1		Pag
		3
Anchorage independence , Independence and Tumorigg and focus-derived cell st derived cell strains	enicity of UV-indu trains and Contro	1 focus-
Anchorage Independence, G Independence and Tumorig cell lines and Focus-Der		
		1/2

LIST OF FIGURES

Colony Formation by UV-1000KES	
Figure 1	Page
Figure 1. Call Strain 1.1-0vc3-control	
Cytotoxicity and transfer.	
MBU-1.1 Cells	152
Figure 2.	133
Phage gard	
Phase contrast micrographs of UV-induced foci of MSU-1.1 cells	
	155
ackground monolares -f	
(B): A focus of spindle cell with a background monolayer of cells.	
Figure 3.	
Representative photomicrographs of UV-induced,	
focus-derived cells(A): Focus-derived cells	157
(A): Focus-derived cell strain MSU-1.1-UVC2-B5 (B): Focus-derived cell strain MSU-1.1-UVC2-	-57
MSU-1.1-UVC2-	
ligure 4	

Histology of tumors produced by subcutaneous	
strains	
(C): Representative section of a high grade sarcoma (D): Representative section of a high grade sarcoma	
gure 5.	
Colony formation by UV-induced focus-derived cell	
THE U.336 AGAYOSE	8
A. Cell strain MSU-1.1-UVC2-B5 B. Cell strain MSU-1.1-UVC1-B11a.	
T. T. OVCI-DITA.	

Figure 6.

CHAPTER I.

LITERATURE REVIEW

A. MULTI-STEP MALIGNANT TRANSFORMATION OF HUMAN FIBROBLASTS

Human cell transformation results from a multi-step process. Multiple genetic changes in specific proto-oncogenes and/or tumor suppressor genes are required to transform a normal cell into a malignant cell. In this review, I will be using the terms "transformation", "neoplastic transformation" and "malignant transformation" as defined by the Tissue Culture Association (Schaffer, 1983). The term "transformation" indicates that the cells described have one or more of the phenotypic characteristics of tumor cell(s), e.g., morphological alteration, growth factor independence, anchorage independence, increased saturation density, lack of contact inhibition. The term "neoplastic transformation" means that the cells described form benign or malignant tumors when they are injected into a susceptible animal host like athymic mice. "Malignant transformation" means that cells form a malignant tumor when they are injected into a susceptible animal host.

B. CHEMICAL CARCINOGENESIS

The first report showing an association between cancer and chemical exposure was in 1761 by the English physician, John Hill. He noted a higher incidence of oral and nasal cancer in snuff users (Hill,1761). In 1775, Sir Percival Pott, a surgeon at St. Bartholomew Hospital in London, described the possible relationship between exposure to chimney soot and scrotal cancer (Pott, 1775). His work provided the first evidence that environmental factors could play a role in causing human cancer. In 1795, Samuel von Soemmerring reported that there was an association between lip cancer and clay pipe smoking (Soemmerring, 1795).

In the next 90 years, little was published indicating an association between exposure to chemicals and the induction of cancer. However, in 1879, Harting and Hesse showed that occupational exposure to benzene, an important industrial chemical is carcinogenic. This was followed by a report by Rehn who pointed out that the incidence of bladder cancer was higher in workers who were exposed to aromatic amines (Rehn, 1895). These reports led to the first experimental induction of tumors in animals by the two Japanese pathologists, Yamagiwa and Ichikawa. They applied coal tar, a complex

mixture of chemicals, to the ears of rabbits. Tumors developed at the site of application (Yamagiwa and Ichikawa, 1918). Sir Earnest Kennaway was the first to demonstrate that a specific chemical, dibenzanthracene, was carcinogenic in experimental animals (Kennaway and Hieger, 1930).

The first evidence linking hormones to cancer was provided by Lacassagne in 1932. He experimentally induced mammary tumors in mice by treating them with estrone. Three years later, it was found that the rats fed with an azo-dye, o-aminoazotoulene developed liver tumors (Sasaki and Yoshida, 1935). Hueper et al. (1938) made similar findings with 2-naphthylamine. In the period 1950 to 1967, several workers showed that naturally occurring chemicals like alkaloids from plants, e.g., braken fern (Pteridium aquilinum) (Evans and Mason,1965), cycads (Laqueuer, 1964) and Scenecio (Cook et al., 1950) and some toxins from fungi e.g., aflatoxin B1 from Asperigellus (Wogan,1966; Wogan and Newberne, 1967) are carcinogenic in experimental animals.

The association of dietary factors with human cancer was first shown by Alpert and colleagues in 1968. These workers found that the incidence of hepatocellular carcinoma in Africa was correlated with exposure to high levels of aflatoxin in

diet (Alpert et al., 1968). In the same year, animal bioassays were developed as a method to identify chemical carcinogens (van Daurren et al., 1968). In the last 20 years, epidemiological studies (e.g.,Doll & Peto, 1981), laboratory studies (e.g.,McCormick and Maher, 1989), and clinical studies(e.g., Huff, 1992) have provided evidence that there is an association between exposure to certain chemicals and cancer.

1.0 MECHANISM BY WHICH SOME CHEMICAL AGENTS PLAY A ROLE IN CAUSING CANCER

Classically, chemical carcinogenesis has been described on the basis of a phenomena now widely known as "initiation-promotion". The pioneer experiments demonstrating this phenomenon were performed by Rous and Kidd (1941) on the skin of rabbit and by Brenblum and Shubik (1947) on the skin of mice. In these experiments, a single dose of 7,12-dimethylbenz(a) anthracene (DMBA), a carcinogenic polycyclic aromatic hydrocarbon (PAH), was applied to the animals' skin at such a low concentration that no skin tumors were formed during the lifetime of the animals. Croton oil was referred to as a "promoter" because the compound does not cause tumors when applied to the skin but allows a non-carcinogenic dose of

another chemical to produce tumors. However when animals were treated with DMBA as described followed by regular application of croton oil, usually twice a week, multiple benign tumors (papillomas) arose. A long delay in beginning of the application of the promoter, up to even up to a year, led to as many tumors as if croton oil application was begun a week or two after the DMBA. Papillomas, so formed, almost always regressed when one ceased application of the promoter. Subsequent application(s) of DMBA or similar agents caused some of the benign tumors to progress to malignancy, suggesting that additional genetic changes were required for malignant cellular transformation (Hennings et al., 1983; Balmain and Brown, 1988; Balmain et al., 1991). In this procedure, the treatment with the low dose of carcinogen (DMBA) is referred to as "initiation", the treatment with croton oil as "promotion"

It is now widely accepted that initiation involves an irreversible, rapid and permanent change in the cell genome and that promotion involves some modification of gene expression and clonal expansion of the initiated cells (Newbold and Overell, 1983; Vogelstein et al., 1988; Agarwal and Mukhtar, 1992). Although the initiation-promotion theory

has been widely accepted, it cannot be considered to be an adequate description of chemical carcinogenesis. For example, the theory implies that the promoters themselves are non-carcinogenic and their action is mainly epigenetic. However, there are reports indicating that TPA, the active ingredient of croton oil, a commonly used promoter, can cause chromosomal damage (Iversen, 1986). Even more important, sometimes tumors appear in a dose-dependent fashion after TPA treatment alone (Iversen, 1986). In fact, the initiationpromotion theory is basically a description of a commonly seen phenomenon and does not attempt to describe the precise underlying molecular and cellular events that occur in the process of chemical neoplastic transformation (Weisburger and Williams, 1982; Bremmer et al, 1994).

In the last 20 years, through the use of molecular biochemistry, the molecular and cellular events responsible for the malignant transformation of animal and human cells are becoming more clear (Burns and Balmain, 1992; Burns et al., 1991). It is now widely accepted that malignant transformation in vivo as well as in vitro involves multiple sequential genetic and possibly epigenetic changes. Each change causes the cell to be one step closer to the final

overt stage of neoplastic transformation (Bishop, 1987, 1991; McCormick & Maher, 1994). In tumors of adult humans and in the most recent in-vitro cellular transformation models, the number of independent genetic events required to change a normal cell to malignant may be six or more (Fearon & Vogelstein, 1990; McCormick and Maher, 1994). The discovery of proto-oncogenes and tumor suppressor genes, which are now considered to be the molecular targets of chemical and physical carcinogens (Barbacid, 1987; Balmain and Pragnell 1983; Weinberg, 1989), the knowledge of endogenous mutagenic mechanisms such as DNA polymerase infidelity (Wang et al al., 1991), oxygen radical DNA damage (Cerutti, 1985; Autrup and Harris, 1983; Perchellet et al., 1994), and the role of carcinogenic agents as mutagens (Maher et al., 1968; Ames and Gold, 1990; Yuspa and Harris, 1982) necessitate that the classical views of initiation-promotion be revisited.

C. VIRAL CARCINOGENESIS

In addition to the evidence that certain chemicals can cause cancer (Harris, 1991), there is ample evidence that some viruses can play a causal role in causing specific types of human and animal cancers (Evans and Mueller, 1990; Masucci, 1993; Chow, 1993). In the case of all such viruses, many

individuals are infected with such viruses during their life time, but only a few develop viral-associated cancers (Mayer and Ebbsen, 1994). This suggests that additional genetic and/or possibly some epigenetic changes are required for malignant transformation (Vogelstein and Kinzler, 1992a). Viruses are classified according to the type of nucleic acid in their genome. In the following pages, the role of both DNA and RNA viruses in carcinogenesis will be discussed.

1. DNA VIRUSES AND CANCER

DNA viruses normally infect a cell and complete their life cycle by replication in a permissive host resulting in the lysis of the cell and the release of newly synthesized viruses. In a non-permissive host cell, integrated viral DNA cannot complete its replication cycle because during the process of integration, the viral genes essential for the completion of replication are interrupted or lost (Kleinheinz et al., 1989). The early viral genes, those transcribed early in the synthesis of the viral genome, are important for cellular transformation. When the early viral genes are expressed continuously, this sometimes results in a disruption of the normal growth control of the infected cell leading to

cellular transformation (Segawa et al., 1993). Some of the important DNA viruses (papova viruses, adenovirus and herpes virus) and their transforming protein(s) are discussed below.

2.0. Papova Viruses

The Papova family of viruses can be divided into two main groups on the basis of their structure and functions i.e., the papilloma viruses and the polyoma viruses.

2.1. Papilloma Viruses and Cancer:

Both experimental studies (Khan et al., 1993) and epidemiological studies (Schiffman et al., 1993; Isacsohn et al., 1994) provide strong evidence that human papilloma viral infection is associated with human cervical cancer (Morrison et al., 1994; Khan, 1993), oral, and certain other anogenital malignancies (zur Hausen, 1994a; Lu-Lg, 1993; Munoz et al., 1993). Detection of low levels of human HPV DNA sequences in cancer cell lines derived from two well-differentiated nasopharyngeal carcinoma suggest that they may have had a role in the development of these tumors also (Huang et al., 1993; Lowhagen et al., 1993).

The papilloma viruses can be divided into high and low risk viruses. High risk viruses like HPV 16 and 18 are strongly associated with invasive squamous cell carcinoma of the cervix (Lu-Lg, 1993). According to one study, the DNA of these high risk HPV types is detectable in 90% of cervical carcinoma biopsies (zur Hausen, 1994a). In contrast, the low risk HPV viruses like HPV type 6 and HPV type 11, are associated with benign lesions such as condyloma acuminata (Laimins, 1993).

Molecular studies of HPV associated cancers have revealed that the integration of viral DNA into the host cell results in the interruption of the E1/E2 open reading frames (ORF) of the viral genome (zur Hausen, 1994b). Since the E2 region of the viral genome represses the transcription of early viral proteins E6 and E7, a disruption in the E2 gene results in an over expression of E6 and E7 proteins (seo-Ys et al., 1993). E6 and E7 viral proteins are thought to play an important role in the etiopathogenesis of certain anogenital cancers (Yamashita et al., 1993; zur Hausen, 1994b).

In-vitro studies have also provided evidence of role of HPV in cellular transformation (Wantanabe et al., 1989; Wazer et al., 1995). Both the E6 and E7 genes of the high risk HPV demonstrate the ability to transform human and rodent cells in vitro (Band et al.,1991; Howley,1991). E6 and E7 proteins can render some cells immortal and can also confer on the cells

the ability to grow in soft agar (Reznikoff et al., 1993). Some of these transformed cells can form tumors when injected into athymic mice (Munger and Phelps et al., 1993; Howley, 1991; Dipaolo et al., 1993). Von-Knebbel et al. (1988) provided additional evidence that E6 and E7 proteins play a causal role in the development of cancer. They showed that expression of HPV 18 E6-E7 antisense RNA resulted in the inhibition of tumorigenicity in athymic mice of C4-1 cervical cancer cell line.

In summary, in-vitro studies strongly suggest that HPV plays an important role in cellular transformation of some specific human and animal cells.

2.1.1 REGULATION OF HUMAN PAPILLOMA VIRUS ONCOPROTEINS

HPV onco-proteins are transcriptionally regulated by both viral encoded factors and certain other cellular factors (Cripe et al., 1990; Cuthill et al., 1993; Khan et al., 1993a). Papilloma virus oncoproteins are regulated by the E2 viral protein which acts as a transactivator or in certain cases as an encoded repressor (Seo-Ys et al., 1993a). In addition, a wide variety of cellular proteins have been reported to influence the transcription of E6 and E7 proteins such as activator protein-1(AP-1) (Chong et al., 1990; Offord

et al., 1993) and nuclear factor-1(NF-1) (Gloss et al., 1989;
Apte et al., 1993). A detailed review of the transcriptional
regulation of HPV is given by Hoppe-Seyler and Butz, (1994).
Recently, some workers have shown that HPV transcription can
be suppressed by methylation of the regulatory region, thus
preventing the binding of methylation sensitive papilloma
virus transcriptional factors (List et al., 1994).

2.1.2. MOLECULAR MECHANISM(S) OF HPV ONCOPROTEIN REGULATION

Molecular studies have given certain clues as to how HPV oncoproteins are regulated by different viral and cellular factors. (Bernard and Apte, 1994; Seo-Ys et al., 1993b). The activation of E6 or E7 transcription could either be due to an increased activity of the transcriptional stimulator or due to functional inactivation of the repressor of transcription (Ibaraki et al., 1993). The resulting over-expression of HPV oncoproteins could directly or indirectly increase the transcription of some other growth related genes, leading to aberrant cellular growth (Munger and Phelps, 1993; zur Hausen, 1994a). The different cellular and viral factors which regulate the transcriptional activity of early gene products may themselves be under the control of other regulatory

proteins (Imler et al., 1988). For example, recently it has been shown that the c-H-ras protein stimulates AP-1 binding to the binding sequences in the upstream regulatory region and results in enhanced transcription of the early viral proteins E6/E7 (Pinion et al., 1991). Further molecular studies aimed at the factors regulating the transcription of the HPV oncoproteins and identifying the biochemical substrates of these viral oncoproteins need to be done. These will help in understanding the role of these factors in the growth regulatory pathways involved in cellular transformation.

2.1.3. HPV ONCOPROTEINS AND TUMOR SUPPRESSOR PROTEINS

A novel mechanism by which HPV E6/E7 proteins play their role in malignant cellular transformation is by interacting with some of the tumor suppressor gene products (Peacock and Bernchimol, 1994; Peacock et al.,1995). E6 proteins of high risk HPV type 16 and 18 can associate with tumor suppressor protein p53 (Vousden et al.,1993; Band et al., 1990). This results in either degradation (Band et al., 1993) or functional inactivation of the p53 protein (Vousden, 1993). Recently, it has been shown that this binding of E6 protein with the p53 protein results in ubiquitin-mediated metabolic processes which result in degradation of the p53

protein (Schaffener et al., 1993). E6-p53 complex formation might also lead to abrogation of p53-mediated DNA damage repair. Kastan and colleagues showed that p53-dependent G1 arrest involves pRb-related proteins and this G1 arrest is disrupted by HPV type 16 E7 protein(Slebos et al., 1994). This would be expected to result in an enhanced rate of mutation formation which could account for the high frequency of cervical and other HPV related anogenital malignancies (Guz et al., 1994). Hence the expression of E6 oncoproteins in certain cells may have the same functional consequences as are seen when the p53 gene itself is mutated (Butz and Hoppe-Seyyler, 1993; Band et al., 1991).

HPV E7 oncoprotein can form a complex with the Rb protein (Hunag et al.,1993; Dyson et al., 1989). Recently, von-Knebel et al. (1994) suggested that E7's association with Rb results in the release of transcription factor E2F from its complex with pRb. This E7-induced increase in the unbound form of E2F might contribute to the transformation potential of the viral oncoproteins (von-Knebbel et al., 1994). The E7-Rb complex also causes the functional inactivation of the Rb protein resulting in enhanced cellular growth (Dyson et al., 1989). In summary, HPV oncoprotein interaction with tumor suppressor

proteins alone, or in concert with some other genetic change(s) may result in deregulated cell growth, which could contribute to the malignant transformation of a cell (Hope-Seyler and Butz, 1994; Shay et al., 1993).

In spite of these recent discoveries explaining the interaction between p53 and Rb and the HPV oncoproteins (Hoppe-Seyler and Butz, 1994), additional studies are needed to understand some other very important aspects of HPV oncogenesis. Some of the important areas in this respect are: the role of immunological response to HPV in HPV induced cancers (Sandvej et al., 1993), the interaction of HPV with the proteins of other viruses such as those of Herpes group (Evans and Mueller, 1990) and the human immunodeficiency virus (Vernon et al., 1992), the cooperation of HPV oncogenes with proto-oncogenes (von-Knebbel, 1992; Masucci, 1993; Jackson et al., 1993), the different intracellular signaling pathways involved in regulation of HPV (zur-Hausen, 1994a), and their precise role in a multi-step schema of carcinogenesis (Dipaolo et al., 1993). Although HPV can play a causal role in immortalization and transformation of specific types of human and rodent cells, additional genetic and/or epigenetic change(s) are required for malignant transformation (Brown et

al., 1994). A correction lurge I antique are not transferred

2.2. POLYOMA VIRUS AND CANCER

Polyoma virus can transform human and rodent cells in culture (Mess and Hassel, 1982; Jelinek et al., 1992). Some of these polyoma transformed cells form tumors in mice (Dilworth, 1990). The genome of the polyoma virus is a circular double stranded DNA and consists of early and late regions. The early region encodes for three regulatory proteins called large T, middle T and small t antigens. The late region encodes for the viral structural proteins (Friedmann et al., 1979; Evans and Mueller, 1990).

Polyoma small t antigen acts as an auxiliary protein that increases the efficiency of transformation by the other polyoma T antigens. It is dispensable for cellular transformation at least under laboratory conditions. Polyoma large T antigen is a nuclear protein that binds specifically to DNA (Hunter et al., 1978). It has an ATPase activity and it is absolutely required for replication of viral DNA. The expression of polyoma large T antigen in some cells can result in immortalization of the cells (Freund et al., 1992).

However, cells expressing large T antigen are not tumorigenic, indicating the need of additional genetic changes for malignant transformation (Freund et al., 1992; Galiana et al., 1995).

The transformation function of polyoma virus is performed by the middle T antigen, which is an extranuclear protein. Middle T antigen can transform established (immortalized) cell lines but alone cannot immortalize cells in culture (Chastre et al., 1993). Since the middle T antigen is the most important of the three viral proteins, it will be discussed in some detail.

2.2.1 MECHANISMS BY WHICH MIDDLE T ANTIGEN PLAYS A ROLE IN CANCER

In 1984, Bolen et al. detected a tyrosine specific protein kinase activity in the immunoprecipitates of the middle T antigen (Bolen et al., 1984). However, the polyoma middle T antigen does not have any intrinsic kinase activity. This dilemma was solved when it was found that the middle T antigen forms a complex with the cellular homologue of pp60 v-src called pp60 c-src, (Courtneidge & Hebner, 1987) and that pp60 c-src is responsible for the tyrosine kinase activity of the complex. The importance of this complex in viral-mediated

cellular transformation was demonstrated in subsequent studies (Delage et al.,1993; Courtneidge & Hebner, 1987). The pp60 c-src binding site was present in the N-terminal half of the middle T protein. This interaction results in markedly increased pp60 c-src tyrosine kinase activity (Bolen et al., 1984). The increased kinase activity is due to the fact that the middle T antigen locks the src enzyme into a configuration in which it cannot be inactivated by phosphorylation (Courtneidge et al., 1993). These studies led to the hypothesis that by binding to pp60 c-src, middle T antigen activates the oncogene product of pp60 c-src, enabling it to deregulate cellular growth resulting in transformation.

Besides the pp60 c-src, middle T antigen has been reported to bind with other src-related tyrosine kinases such as c-fyn, c-yes and c-fgr (Chang et al.,1990; Kaplan et al., 1989). Thomas et al. (1993) examined the ability of middle T oncogene to transform cells that lack a functional src gene. These workers showed that residual levels of other src related tyrosine kinase such as yes, fyn and phosphotidyl inositol kinase activity appeared to be responsible for cellular transformation and tumor induction in absence of src (Thomas et al., 1993).

Giaever et al. (1993) characterized the phosphoinositide metabolism in a polyoma virus transformed pancreatic islet cell line. They showed that in these cells, phosphoinositide hydrolysis is constitutively activated at the level of phospholipase C resulting in the loss of cellular regulatory control (Giaever et al., 1993). Other workers have demonstrated oncogene cooperation between polyoma middle T oncogene and other cellular oncogenes in polyoma mediated cellular transformation (Hunter, 1978). For example, Chastre et al. (1993) has shown that transfer of the ras and polyoma middle T oncogene to human and rat intestinal cell lines results in neoplastic transformation. Talmage and Listerud (1994) identified the c-fos proto-oncogene as a key nuclear target for middle T-dependent transformation.

In spite of the developments in understanding the pp60 middle T antigen interaction, much still needs to be known to understand molecular events which ultimately result in the increased DNA synthesis and aberrant cellular growth (Hunter et al., 1991; Guy et al., 1992; Wang et al., 1994; Krauzewicz, 1994). One such study to find the downstream effectors in polyoma virus mediated cell transformation was done by Raptis et al. (1990). These workers investigated the

role of cellular ras in the neoplastic transformation of polyoma virus. Murine C3H10T1/2 fibroblasts were rendered ras deficient by transfection with an antisense ras gene construct. Ras deficiency resulted in a partial suppression of the polyoma virus induced transformation. They further showed that the association of polyoma middle T antigen and pp60 c-src in these ras deficient cells led to an increase in protein tyrosine activity. Some of the phenotypic indicators of cellular transformation like focus formation on a confluent monolayer of cells and ability to grow in soft agar were greatly reduced in the cells containing pp60-middle T antigen complexes with reduced p21 ras levels. In the light of these results these workers suggested that ras proteins are needed for the full transformation of C3H10T1/2 mouse cells by polyoma virus. When middle T antigen interacts with the pp60 c-src, the protein itself is phosphorylated on specific tyrosine residues. Some of these phosphorylated residues act as binding sites for the SH2 domains of cellular transforming protein SHC (Van der Geer et al., 1995; Dilworth et al., 1994). Campbell et al. (1994) showed that polyoma middle T antigen interacts with SHC protein through the NPTY (Asn-Pro-Thr-Tyr) motifs. SHC protein on binding to the

4 (Bb/m 020)

phosphorylated tyrosine residue 250 itself also gets tyrosine phosphorylated and binds to the SH2 domain of Grb2 (Campbell et al., 1994). This in turn stimulates p21 ras activity through the mammalian homologue of the Dorsopholia nucleotide exchange factor viz., SOS (McCormick, 1994). Dilworth et al. (1994), As a result of the middle T antigen binding and tyrosine phosphorylation, Dilworth et al. (1994) suggested that middle T antigen-pp60 c-src-SHC-Grb2-sos-ras signaling pathway indicates that middle T antigen should be considered a functional homologue of an activated tyrosine kinase associated growth factor receptor.

In summary, in-vitro and in-vivo studies have helped us to understand many of the molecular and biochemical events involved in polyoma mediated cellular transformation. However, detailed work still needs to be done to understand the precise role of polyoma middle T protein in the multi-step malignant transformation of cells.

3.0. SIMIAN VIRUS 40 (SV40) AND CANCER

In-vitro and In-vivo studies indicate that SV-40 plays an important role in cellular transformation (Reinhart et al., 1993). SV40 is a circular double stranded DNA with 5243 base pairs. The viral genome is divided into two functionally

distinct regions of almost equal size: the early region and late region. The early region codes for two important regulatory proteins i.e., large T antigen and small t antigen. The late viral region codes for the structural proteins of the virus coat (Dilworth, 1990). SV40 is a monkey virus, but there are no reports that SV40 is causative of cancer in monkeys. SV40 transformed rodent cells are usually malignantly transformed, human cells are not. The reason for this difference is not known. However the ability of the virus to immortalize cells in culture even if not malignantly transformed makes it useful (Evans and Mueller, 1990). Invitro cellular transformation studies involving SV40 tumor antigens may help us to understand some of the events that play an important role in human and animal cancer (Reddel et al., 1995).

Several reports are available which show that SV40 large T antigen can result in immortalization of human cells (Lechner and Laiminis, 1991; Hoffman et al., 1992). For example, Reznikoff and colleagues transfected SV40 large T antigen into uroepithelial cells and obtained SV40 large T antigen expressing cells. After subsequent selection, a few of SV40 large T antigen expressing uroepithelial cell became

e o se ile		

immortal (Kao et al., 1993). In addition to the cell culture studies, the development of transgenic mice harboring SV40 large T antigen has enabled us to better understand the role of this oncoprotein in malignant transformation (Hino et al., 1991; Kitagawa et al., 1991). Since SV40 large T antigen is the major viral protein implicated in the cellular transformation, it will be discussed in some detail.

3.1. SIMIAN VIRUS LARGE T ANTIGEN IN CELLULAR TRANSFORMATION

SV40 large T antigen plays an important role in cellular transformation (for review, see Livingston & Bradley, 1987; Dilworth, 1990). SV40 large T antigen is a DNA binding protein which functions as a transcription factor and also plays a role in DNA replication (Schirmbeck and Deppert, 1991; Murakami and Hurwitz, 1993; Amin et al., 1994; Boyer et al., 1993; Stahl and Knipper, 1983). The large T antigen is a 708 amino acid phosphoprotein with distinct functional domains. Evidence suggests that the amino terminal-130 residues of T antigen may be sufficient for its transformation ability (Fanning et al., 1984)

3.2. MOLECULAR MECHANISMS OF SV40 LARGE T ANTIGEN MEDIATED

CELLULAR TRANSFORMATION

villed orlin

There are several different ways by which the expression

of large T antigen may result in cellular transformation: interaction with signal transduction pathways, interaction with tumor suppressor proteins, and release of certain transcriptional factors and cell cycle regulatory proteins.

3.2.1. SV40 Large T Antigen and Signal Transduction

SV40 large T antigen might play a role in cellular transformation by interacting with the different components of the signal transduction pathway. Some researchers have shown epidermal growth factor and platelet derived growth factors are essential components of the intricate pathway of SV40 mediated cellular transformation (Masuda et al., 1992). Valentinis et al. (1994) studied the role of insulin like growth factor (IGF) receptor in the transformation of Balb/C 3T3 cells by SV40 large T antigen, using a temperature sensitive mutant of SV40 large T antigen. By comparing cells over-expressing the IGF-1 receptor and cells expressing an IGF-1 gene with targeted disruption, they showed that the activation of IGF-1 by its ligand plays an important role in the ability of SV40 large T antigen to promote growth under low serum conditions (Porcu et al., 1992). Sell et al. (1993) confirmed this study by showing that SV40 large T antigen

cannot transform mouse embryonic fibroblasts lacking IGF-1 receptors. These and several other recently conducted studies indicate that signaling via the IGF-1 receptor plays an important role in SV40 large T antigen regulated cell transformation (Porcu et al., 1992; Valentinis et al., 1994).

3.2.2. SV40 Large T Antigen and Tumor Suppressor Genes

SV40 Large T antigen can also lead to aberrant cellular growth by complexing with the p53 tumor suppressor protein (Lamb and Crawford, 1986; Sun et al., 1993) resulting in metabolic stabilization and functional inactivation of p53 protein (Deppert and Steinmayer, 1989; Deppert, 1994). The T antigen-p53 complex cannot bind to the p53 DNA binding sequences resulting in abolition of p53 transactivation. This leads to release of the cell from p53 mediated growth inhibition (Ludlow, 1993). Another way by which SV40 large T antigens can inactivate p53 is by inducing a protein kinase which is responsible for the phosphorylation of the cellular p53 protein resulting in its inactivation (Muller et al., 1993: Muller and Scheidtmann, 1995). SV40-mediated inactivation of the p53 tumor suppressor protein, either directly by complex formation or indirectly by metabolic


stabilization of p53 (Deppert et al., 1989), might be an important step in immortalization and/or aberrant cellular growth (Ludlow et al., 1990).

Besides p53, SV40 large T antigen can associate with the underphosphorylated form of the Rb protein (DeCapario et al., 1988; Jones et al., 1992b). This abolishes the growth suppressor activity of Rb. Recently some researchers have shown interaction of T antigen with some other proteins like p107 which is structurally and functionally closely related to the Rb protein (Amin et al., 1994). This interaction might also be important in SV40 mediated cellular transformation. In summary, circumstantial evidence supports the hypothesis that the interaction of SV40 large T antigen with tumor suppressor gene products plays an important role in mitigating the negative cellular growth control, resulting in viral-mediated transformation.

3.2.3. SV40 and Transcription Factors/Cell Cycle Regulatory Proteins

SV40 large T antigen, by forming complexes with tumor suppressor proteins, might result in the release of transcription factors like E2F (Cao et al., 1992). E2F release might cause an increased transcription of some of the

growth promoting genes resulting in cellular transformation. In the uninfected cells the Rb protein and the closely related protein, p107, interact with cellular transcriptional factor E2F and/or DRTF1, another related protein (Dyson et al., 1993). The Rb-E2F complex dissociates near the G1-S boundary before the initiation of the S phase of the cell cycle. This allows E2F to activate the transcription of certain downstream genes. In the case of SV40 viral infection, SV40 large T antigen associates with the Rb protein and this allows the constitutive release of E2F. Recently, some researchers have started to focus on the role of SV40 in regulating cell cycle control mechanisms. Lukas et al. (1994) showed that the interaction of SV40 large T antigen with Rb protein results in functional inactivation of Rb and a concomitant increase of cellular regulatory proteins like cyclin D1. Also, SV40 large T antigen might cause increased cell growth by repressing the expression of some cell cycle dependent growth inhibitory proteins like p65, which is a growth arrest specific gene product (Rose et al., 1992). In summary, these and other such findings support the hypothesis that interaction between SV40 large T antigen and cell cycle regulatory proteins play an important role in SV40 mediated cellular transformation (Evans

and Mueller, 1990).

4.0. ADENOVIRUS AND CANCER

The adenoviruses were first isolated from the cultures of adenoid tissues, hence the name. The human adenovirus genome consists of approximately 35 kilo base pairs of double stranded DNA which encodes for approximately 35 proteins. In human adenoviruses the entire viral genome is expressed in a regular and orderly fashion. The early viral genes and the corresponding proteins are the ones which play the most important role in the adenoviral mediated cellular transformation (Doyle and Crawford, 1994). There are six primary early transcripts which are converted to more than 16 early mRNAs which function analogously to the early gene products of SV40 and polyoma virus. In the adenoviral genome, the transforming ability resides in an early viral region called E1(Boyd et al., 1993; Wang et al., 1993). It is further divided into Ela and Elb. Jelinek et al. (1994) recently demonstrated that the tumor formation of adenovirus type 12 transformed rodent cells is controlled by region between CR2 and CR3 of Ad12 Ela. This segment between CR2 and CR3 has homology with a similar region in another highly oncogenic adenovirus AD7 (Telling and Williams, 1993). importance of this segment is further substantiated by the fact that it is entirely missing from the ElA gene of adenovirus type 5 virus which is non-oncogenic (Telling & Williams, 1993). Thus it is postulated that the oncogenic potential of Ad virus resides mainly in the region between CR1 and CR2 (Leclere et al., 1993; Mymeryk and Bayley, 1994). In addition to Ela and Elb oncoproteins, recently it has been shown that some other viral oncoproteins might also play some role in cellular transformation, either independently or in concert with some other viral proteins. For example, Javier et al. (1994) showed that the human adenovirus E4 open reading frame encodes a transforming protein which is required for the induction of mammary tumors in mice. The recent development of transgenic mice with adenovirus type 12 Ela/Elb genes might also help us to understand more clearly the mechanisms and adenoviral oncoproteins in the malignant cellular transformation (Belingieri et al., 1993; Ullrich et al., 1994).

4.1. Molecular Mechanisms By Which Adenovirus Plays a Role in Cellular Transformation

Although Ela can play a role in immortalization of

rodent and human cells, it needs other adenovirus Elb protein and/or other oncoproteins, like ras, for neoplastic transformation (Douglas et al., 1994). Possible mechanisms by which adenoviral proteins play a role in immortalization, cellular transformation and malignant change are discussed below.

4.1.1. Adenovirus and tumor suppressor protein

Adenovirus early proteins can cause functional inactivation of tumor suppressor proteins resulting in aberrant cellular growth (Shepherd et al., 1991; Teodore et al., 1994). Ela forms complexes with Rb protein (Guilhort et al., 1993) and E1b forms complexes with p53 protein (Grand et al., 1993; Chang et al., 1993). When Elb binds to p53 protein, it results in the abrogation of the p53 transactivation function (Va dereb et al., 1993). In addition, this interaction can also result in the release of transcription factors from their complexes with these tumor suppressor proteins (Fattaey et al., 1994). For example, E2F release of from Rb or p53 results in transactivation of several other factors which may play an important role in controlling the growth in the cells. Ela protein can also influence transcription by changing the phosphorylation patterns of some of the cell cycle regulatory proteins (Dumont et al., 1993; Mymryk and Bayle, 1994).

Another possible way by which these adenoviral oncoprotein-p53 interactions malignant can cause transformation of cells is by modulating the apoptosis (programmed cell death) (Lowe and Ruley., 1993; Lowe et al., Ela protein may play an important causal role in immortalization of rodent cells but fails to neoplastically transform the cells possibly due to the induction of p53 mediated apoptosis (Subramanian et al., 1993; Sabbatani et al., 1995). Recently Chiou et al., (1994) showed that BCL2 expression and possibly E1b expression by passes the induction of apoptosis by p53 and this might contribute to the oncogenic activity of the Elb protein. More studies are required to clearly understand the role of adenoviral mediated apoptosis in cellular transformation (White, 1993).

4.1.2. Adenoviral interactions with some other cellular proteins.

Ela protein can lead to increased expression of DNA polymerase alpha and can also interact with AP-1, TRIIIF, Heat Shock protein (HSP), P300 and p60 (cyclins) (Rosahl & Doerfler, 1992). The deregulation of cell cycle control due

to Ela mediated changes in cyclins might be an important mechanism of cellular transformation. In addition Ela protein can also increase the expression of fos, jun, myc as well as viral proteins like Elb, and E4 (Martin & Haung et al., 1994). Since Ela protein does not bind to DNA, it is probable that its effects on such a wide array of proteins are mediated indirectly, e.g., by alteration in the phosphorylation pattern of these proteins and/or by sequestering regulatory proteins (Peeper and Zantema, 1993).

In spite of current advances in understanding the molecular mechanisms of adenovirus induced cellular transformation, there are still many areas which need more research, e.g., the role of Ela protein in cell cycle control (Hinds et al., 1994), interaction of adenoviral proteins with the host immune system (Katz et al., 1994) and its precise role in the multi-step malignant transformation needs to be clarified (Boyd and Barrett, 1990)

5.0. HERPES VIRUS AND CANCER

The herpes viruses are a group of DNA viruses, some of which are strongly implicated in the causation of some human cancers. The herpes viral family is composed of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), varicella

zoster virus, cytomegalovirus, Epstein-barr virus(EBV) and recently discovered human herpes simplex virus type 6 (HSV-6) and type 7 (HSV-7). Since EBV is most clearly implicated in human tumorigenesis, it will be dealt with in some detail.

5.1. EPSTEIN-BARR VIRUS AND HUMAN CANCER

EBV was the first virus to be recognized as playing a causal role in human tumor formation. Though the presence of viruses in pediatric lymphomas was described by Burkitt in 1958, it was Epstein & Barr who isolated viral particles from lymhoblastoid cell lines derived from patients with Burkitt's EBV is associated with infectious mononucleoses, Sjogren's Syndrome (Miyaska et al., 1994), lymphoproliferative disorders in immunosuppressed patients (Shibata et al., 1993), several human malignancies such as nasopharyngeal carcinoma, as well as B cell(Khan et al., 1993b; Lieboeitz, 1994; Katz and Witz, 1993) and T cell lymphoma (Albeck et al ., 1993; Miller et al., 1987; Shibata et al., 1994). A possible role for EBV in human tumors is demonstrated by the ability of the virus to immortalize B lymphocytes and epithelial cells in culture (Allday et al., 1993; Sinclair et al., 1994). Cheng et al. (1993) showed EBV viral gene expression during early

stages of B cell transformation. By the use of molecular and biochemical techniques, the EBV encoded genes and the gene products have been identified (Wang et al., 1987).

The genome of EBV is a double stranded DNA molecule of approximately 170,000 base pairs organized as regions of repeated DNA sequences. There are 6-12 tandem copies of a 500 bp units located at the end of linear genome (Robertson and Kieff, 1995).

Out of the several EBV proteins two EBV nuclear proteins (EBNA) namely Epstein-Barr Nuclear Antigen-1(EBNA-1) and Epstein-Barr Nuclear Antigen-2 (EBNA-2) (Grasseret al., 1993) and one membrane associated protein called Latent Membrane Protein (LMP) are strongly implicated in the etiology of human cancer (Sample et al., 1986).

5.1.2. EPSTEIN-BARR VIRUS NUCLEAR ANTIGENS AND CELLULAR TRANSFORMATION

EBNA-1 is viral nuclear protein that is expressed in virtually all EBV immortalized lymphocytes. Transfection studies using EBNA-1 expression vectors showed that only some of the cells expressing EBNA-1 were immortalized (Wang et al., 1987), suggesting that additional genetic events are needed (Gross et al., 1989). Recent studies indicate that EBNA-1 does

play a causal role in cellular immortalization in some type of cells. Using EBNA antisense oligonucleotide, Roth et al. (1994) demonstrated that proliferation of EBV immortalized cells can be inhibited by EBNA antisense oligonucleotides. These researchers showed that the exposure of EBNA-1 antisense oligonucleotide (codon 6-10 of EBNA-1) in EBV immortalized cells resulted in decreased expression of EBNA-1 protein and greatly decreased proliferation of these cells.

EBNA-2 is an acidic protein that can act as transcriptional activator of both viral and cellular genes. Cellular proteins that can be transcriptionally activated by EBNA-2 include the B cell activation antigens, CD21, CD23 (Wang et al., 1987) and the proto-oncogene c-fgr (Contreas-Bordin et al., 1991; Knutson, 1990). EBNA-2 can also immortalize rodent cells (Wang et al., 1987; Tong et al., 1994). EBNA-2 expression in Rat-1 cells confers the ability to grow in a medium with a low serum concentration. Tsui & Scubasch (1994) showed that EBNA-2 proteins form oligomer in vitro through a region encompassing amino acid 122-344. They further showed that this is the region which is required for B cell transformation.

Other EBNA proteins like EBNA-3 (Contreas- Bordin et

al., 1991), EBNA-4 (Silinis & Sculley, 1994), EBNA-5 and EBNA-6 (Allday et al., 1994) have also been shown to play a role in cell transformation, but the precise mechanism of their role is yet to be elucidated. Though EBNA proteins seem to be playing a causal role in cellular transformation of certain cell types, it is clear that further changes are required for malignant transformation (Chang et al., 1993).

In summary, all the EBV nuclear proteins appear to play a role in cellular transformation. There seems to be a need for additional genetic alterations for EBV mediated malignant transformation. The expression of EBNA proteins might interact with other regulatory proteins including tumor suppressor proteins, possibly in a cell specific manner. This might also involve components of signal transduction. Such interactions with the growth controlling processes can lead to EBNA mediated cellular transformation which in appropriate cells and conditions might progress to a malignant state.

5.2. LATENT MEMBRANE PROTEIN (LMP) AND CELLULAR TRANSFORMATION

Latent membrane protein (LMP) is the only viral membrane protein known to have the property of transforming human cells (Hu et al., 1994) and rodent cell lines like Rat-1

(Moorthy et al., 1993), and Balb/3T3 cell line (Wang et al., 1985). LMP is the most frequently detected EBV membrane protein in EBV related human cancers (Longnecker et al., 1992). Doyle et al. (1994) showed that in the absence of LMP, EBV was unable to transform cells suggesting that LMP is essential for EBV mediated cellular transformation. researchers have shown that EBNA-2 acting as transcriptional factor can transactivate LMP. Johansen et al. (1995) showed that EBNA-2 transactivated the LMP promoter and this transactivation is mediated by recently characterized cellular proteins Jk and Pu.1 (Robertson et al., 1995; Johannsen et al., 1995; Gross man et al., 1994). Besides EBNA-2, other EBNA proteins like EBNA-6 have been shown to induce LMP independently or in concert with EBNA-2 (Allday et al., 1993). Minarovitis et al. (1994) showed that methylation inhibits the activity of LMP. Recently, Crawford et al. (1995) demonstrated induction of LMP expression by interlukin 4 in EBV infected leukemic B Lymphocytes.

In-vitro cellular transformation studies have shown that LMP can transform rodent cells resulting in growth factor independent and anchorage independent phenotypes (Wang et al., 1987). Some of the anchorage independent clones when injected

into nude mice resulted in tumors (Baichwal & Sugden, 1988). Another way in which it is postulated that LMP can cause cellular transformation is by activation of the BCL2 gene resulting in the inhibition of programmed cell death (Henderson et al., 1991). Furthermore, due to its membrane association and phosphorylation of serine 313 and tyrosine 324 residues, it is hypothesized that it might also be interacting with some of the membrane associated receptor tyrosine kinase (Moorthy et al., 1993). LMP's expression in the cell can also increase the levels of interlukin 10 (IL-10) which is a strong B cell activating factor (Finks et al., 1994; Nakagomi et al., 1994). Wendel-Hansen et al., (1994) showed that certain cytokines can cause increased expression of LMP which in turn results in increased levels of IL-10. This cascade of cytokine-LMP-IL-10 activation might play an important role in the cellular transformation mediated by EBV (Miyazaki et al., 1993). Recently, Miller et al. (1995) showed that LMP induces expression of epidermal growth factor in some cells.

In summary, EBV infection is closely related to malignant transformation of human cells, both in vivo and vitro. EBNA proteins play an important role in immortalization of some types of human (e.g., B cells) and

rodent cells in culture. LMP, on the other hand, plays a role in cellular transformation to anchorage independence and growth factor independence. However, it is clear that additional genetic changes are required for the malignant transformation of EBV-transformed cells.

6.0. RETROVIRUSES AND CANCER

Retroviruses play an important role in certain cancers and studies with retroviruses gave important insights to the oncogenes (Vecchio, 1993). Retroviruses contain two large identical single stranded RNA molecules together with the enzyme reverse transcriptase, a RNA-directed DNA polymerase. After the virus is in the host cell, reverse transcriptase catalyzes the formation of a double stranded DNA from the RNA of the virus (Temin & Baltimore, 1972). The enzyme possesses three enzymatic activities: 1) it copies RNA to give DNA-RNA hybrid; 2) it degrades the RNA in DNA-RNA hybrids; and 3) it copies the single stranded DNA to form a double stranded DNA. The resultant double stranded DNA is not an exact copy of the parental viral DNA. The sequences from the 5' and 3' end of each RNA molecule are combined and duplicated to form a long terminal repeat (LTR) at both ends of the double stranded DNA. This double stranded DNA then gets inserted into the host

genome to form a DNA provirus. In the growth cycle of the retrovirus, integration of the viral DNA in the host chromosome is obligatory in contrast to that of DNA viruses. Retroviruses are now generally classified as acute transforming viruses and non-acute transforming viruses, based on their potential to cause neoplastic transformation (Bouton & Parson, 1993).

6.1. NON-ACUTE TRANSFORMING RETROVIRUSES

Non-acute retroviruses cause animal tumors with long latency (Teich et al., 1984; Athas et al., 1994). Non-acute transforming viruses implicated in animal cancers include Murine Mammary Tumor Virus (MMTV) (Matsuzawa et al., 1995; van -Leeuwen and Nusse, 1995), Murine Leukemia Virus (MuLV) (Kozak et al., 1990), Friends Leukemia Virus (Tambourin et al., 1969), Maloney Leukemia Virus (Ihle et al., 1989), Avian Leukosis Virus (ALV) (Kung et al., 1981), and Feline Leukemia Virus (FeLV) (Besmer et al., 1983; Bergold et al., 1987)

6.2. MOLECULAR MECHANISM(S) INVOLVED IN NON-ACUTE RETROVIRAL CARCINGGENESIS

Non-acute transforming viruses are replication competent RNA viruses i.e., they carry sufficient information to generate all the protein required for virus production. They

can play a role in cellular transformation by a mechanism called Insertional Mutagenesis (Kung et al., 1991). The virus inserts into the host genome and this insertion is potentially mutagenic. This insertion can result in two potential changes: it can either damage some cellular gene(s) directly or it can influence the expression of cellular gene(s) by bringing them under the control of the regulatory elements in the viral genome (Vijaya et al., 1987; Kung et al., 1991). Mechanistically, the viral insertional mutagenesis can be of two types: promoter insertional activation or proviral enhancer activation (Trembley et al., 1992).

6.2.1. Promoter Insertional Activation

This process was first demonstrated by Hayward and colleagues in 1981. These researchers showed that in the B-cell lymphomas induced by Avian Leukemia Virus (AVL), the provirus was inserted at a specific location, i.e., in the vicinity of the c-myc proto-oncogene (Groudine and Weintraub, 1980; Hayward et al., 1981). Further investigation by other researchers showed that the proviral insertion led to the transcriptional activation of c-myc proto-oncogene expression by read through from the cryptic viral promoter in the ALV downstream LTR. Promoter insertional activation is also seen

in ALV induced erythroblastosis in chicken (Fung et al., 1983). Promoter insertional activation is also seen in the Muloney Leukemia Virus (MuLV) activation of c-myb proto-oncogene (Shen-Ong et al., 1987; Kanter et al., 1988).

In summary, as a consequence of the proviral insertion in the vicinity of a cellular proto-oncogene, high efficiency transcription from the viral LTRs leads to the over expression of the cellular proto-oncogene product resulting in unregulated growth (Groudine and Weintraub, 1980). This unregulated growth in concert with other genetic changes can finally lead to malignant transformation of cells.

6.2.2. Proviral Enhancer Activation

In some virus-induced tumors, the model of proviral promoter insertion described above was not seen. In tumors like AVL-induced B-cell lymphomas (Payne et al., 1982) and MMTV-induced mammary tumors (Nusse and Varmus, 1982) the provirus was inserted next to proto-oncogenes in the opposite configuration. Instead of the classical promoter insertion upstream of the cellular proto-oncogene, the provirus was inserted either in the opposite transcriptional orientation or downstream of the cellular proto-oncogenes (Payne et al., 1982; Nusse and Varmus, 1982; Cuypers et al., 1984). Even in

such orientations there was increased expression of the proto-oncogenes (Groudine and Weintraub, 1980). The explanation offered is that the proviral enhancer elements or sequences in the retroviral LTR were responsible for activating the transcription from the proto-oncogene's own promoter. Enhancers are cis acting DNA elements which can activate the adjacent promoters in orientation, distance and position independent fashion. Recently, Morrison (1995) showed that misincorporation and/or recombination can alter the enhancer structure resulting in a generation of more pathogenic variants.

The study of non-acute transforming retroviruses has helped to identify several proto-oncogenes that were never transduced or captured by the acute transforming viruses e.g., pim-1 in MuLV induced lymphomas (Cuypres et al., 1984), int-1, int-2 and int-3 in MMTV induced mammary tumors (Nusse et al., 1984; Roelinink et al., 1992). Proviral LTR activation of the proto-oncogenes also explains in part the long latency of non-acute transforming virus induced tumors. The retrovirus DNA integrates at multiple sites in the host DNA. The very likelihood that the proviral promoter insertion will be in the proximity of cellular proto-oncogenes is low.

Hence, multiple rounds of the viral infection which requires a long time interval are required for the chance insertion of a provirus next to an appropriate cellular proto-oncogenes.

7.0. ACUTE TRANSFORMING RETROVIRUSES

Acute transforming viruses are non-replication competent retroviruses which are derived from the non-acute retroviruses. They carry oncogenes which endow them with the potential to rapidly induce tumors in animals (Vogt, 1987). Some of the important acute transforming viruses are Rous Sarcoma Virus, Feline Sarcoma Virus and Simian Sarcoma Virus. Despite the fact that retroviruses induce cancers in a wide range of animals and birds, no retrovirally-borne gene or gene product has yet been demonstrated to be causative of human cancer.

7.1. MOLECULAR MECHANISMS OF ACUTE TRANSFORMING RETROVIRAL CARCINOGENESIS

When a non-acute retrovirus infects a cell and in the process captures a cellular proto-oncogene, it becomes an acute transforming virus (Stehelin et al., 1976). A recombination event between the cellular and retroviral genome results in the insertion of the cellular gene into the viral genome and a loss of an equivalent length of the viral genome.

The transduced gene is then under the influence of the viral promoter which can result into aberrant expression. Since the cellular gene is now being regulated by a viral promoter, its expression is independent of the site of the proviral insertion within the chromosomal DNA. Additionally, during the process of transduction, the cellular proto-oncogene might undergo structural alterations like point mutations, gene rearrangements, deletions and fusions. These genetic alterations alone might convert cellular proto-oncogenes into oncogenes or they may enhance their virulence (Bishop and Varmus, 1984). In the case of the cellular src genes (csrc) a stretch of a few nucleotides was lost during the process of transduction resulting in many fold higher expression of src in virally infected cells. Specific point mutations might also result in activation of certain cellular proto-oncogenes as seen in the case of ras and neu (Barbacid 1987). In each case, the acutely transforming virus plays a causal role in the carcinogenesis by introducing an activated protooncogene into a cell resulting in some type of aberrant cellular growth.

D. IONIZING RADIATION AND CANCER

Ionizing radiation (x-rays and gamma rays) and

particulate radiation (alpha particles, beta particles, protons and neutrons) are carcinogenic in humans, and some of them can cause neoplastic transformation of some cells in culture (Rhim 1993; Reinhold et al., 1996). Epidemiological experimental evidence strongly supports the view that accidental and experimental exposure to ionizing radiations may play a causal role in some types of human cancers (Armitage and Doll, 1985). The first neoplasm attributed to radiation was an epidermoid carcinoma on the hand of a radiologist (Frieban et al., 1902). Within the next few years, 94 cases of skin cancer had been reported to be attributed to exposure to radiation among physicians, radium handlers and x-ray technicians in America, England and Germany (Hesse et al., 1910). These were predominantly squamous and basal cell carcinomas but a few fibrosarcomas were also seen. The first association of hematopoietic cancers like leukemia and exposure to ionizing radiation was reported by von Jaggie et al., 1911. Since then, several hundreds of radiationinduced leukemia have been reported in literature (Cronkite et al., 1960). Epidemiological studies also confirmed the association of leukemia with ionizing radiation exposure (Armitage & Doll, 1985; Fraumeni et al., 1990). The high

incidence of cancer in radium dial painters was first suspected by Martland in 1901 (Fry, 1985). The dial painters used to put their brushes between their lips to shape them when applying the luminous paint to the watch and clock dials. In doing so they ingested radium. In 1929, Martland first reported the high incidence of bone tumors, osteosarcomas, in these dial painters (Martland and Humphries, 1929; Wagener et al., 1960). In addition to the osteosarcomas commonly seen in these patients, an increased incidence of other tumors like carcinoma of paranasal sinuses, mastoid sinuses fibrosarcoma was also reported. A high incidence bronchogenic carcinoma in radioactive mine workers in Central Europe and the Rocky Mountain region of United States of America has been attributed to inhaling radon and its radioactive disintegration products.

Experimental studies also provide evidence of association of exposure to ionizing radiation and cancer in humans. Soon after the detection of the first radiation-induced human cancer, experiments performed on animals showed that neoplasms of virtually any kind could be induced by the exposure to ionizing radiation. Furthermore, ataxia telangiectasia, an autosomal recessive syndrome, is characterized by increase

sensitivity to ionizing radiation and an increased predisposition to cancer (Morgan et al., 1968). In-vitro cellular transformation studies using rodent and human cells (Namba et al.,1981, Namba et al., 1993; McCormick et al., 1995; Little and Novak, 1990) showed that cells exposed to ionizing radiations could be transformed. Some of these transformed cells formed foci and/or anchorage independent colonies. On occasion, cells from these assays formed tumors in athymic mice (Rhim et al., 1985; Reinhold et al, 1996)

1.0. MOLECULAR MECHANISMS INVOLVED IN RADIATION-INDUCED CARCINOGENESIS

Ionizing radiation causes a variety of molecular lesions in essentially every cellular organelle and subcompartment (Weichselbaum et al., 1991; Fornace, 1992). The lesions most detrimental and important in carcinogenesis are those in the DNA (Ward, 1995). Several biochemical and molecular studies have shown that radiation-induced lesions are produced either by a direct deposition of the energy in the DNA or indirectly by the interaction of DNA with the radiation-induced free radicals like $\rm H_2O_2$ (Ward, 1995). Both direct and indirect effects of ionizing radiation produce a variety of DNA lesions like sugar and base damage (Teoule, 1987; Osman et al., 1991;

Cadet, 1994), single strand breaks (Ward, 1995) and the double strand breaks (Nelson and Kastan, 1994; Cole et al., 1980; Paquette and Little, 1992; Ward, 1990). As a result of ionizing radiation-induced DNA damage, cells may survive or they die due to necrosis or apoptosis. Surviving cells may have received no damage or received damage which was completely repaired, incompletely repaired, not repaired or misrepaired (Elkind, 1985; Teoule, 1987). The complex repair mechanisms involved in the repair of radiation-induced DNA lesions involves checkpoints located in G-1 and G-2 and many DNA repair proteins (Lehman and Norris, 1989). In the last few years several x-ray cross complimenting (XRCC) genes have been identified and localized to several different human chromosomes (Lehman, 1995). Defective cell cycle checkpoints, the failure of a cells to undergo complete DNA repair as well as misrepair of the DNA lesions can result in mutations (Kuerbitz et al., 1992). A detailed understanding of the molecular and biochemical mechanisms involved in ionizing radiation injury, DNA repair, cell death and cell survival will help us to clearly delineate the how ionizing radiation induces human cancer (Lee et al., 1994; Ward, 1995).

E. ULTRAVIOLET RADIATION AND CANCER

Ultraviolet radiation from the sun has been implicated in the etiology of human Squamous Cell Carcinoma (SCC) and Basal Cell Carcinoma (BCC) (Urbach et al., 1978; Scotto & Fears, 1978; Brash et al., 1991; Yuspa, 1994). Ultraviolet radiation is classified as UVA (315-400 nm), UVB (280-315 nm) and UVC (100-280 nm). Visible light is in the region between 400 nm and 780 nm. Since atmospheric ozone absorbs essentially all of the UVC and most of the UVB, the spectrum of UV that reaches the earth primarily consists of UVA (90-99%) and UVB (1 to 10%). Depletion of stratospheric ozone in the last few years is postulated to result in a higher incidence of SCC and BCC (Kerr and McElroy,1993; Fears and Scotto, 1983; Lloyd, .1993).

The wavelength of UV radiation also determines the depth of the skin which can be penetrated by the photon. For example, one-third of UVA (315-400 nm) penetrates the skin to a depth of 0.1 mm. However 99% of UVB is absorbed by the upper 0.03 mm of the epidermis. Most evidence indicates that the UVB accounts for most of the biologic damage caused by solar UV radiation (Urbach et al., 1978; Epstein, 1978), although a few studies suggest a possible role of UVA in

cellular transformation (Forbes, 1982)

1.0. Biological Effects of Ultraviolet Radiation

Ultraviolet radiation exerts its biological effects mainly by its interaction with cellular DNA (Jones et al., 1987; Zolzer and Kiefer, 1989). There are two pathways: photons with energy in the UVB spectrum are absorbed directly by DNA resulting in the formation of photo products (Moan & Peak, 1989; Peak & Peak, 1989) and the photons with energy in UVA spectrum causes reactive oxygen species resulting in single strand breaks and DNA protein cross links (Tyrell & Kyse, 1990). Although UV radiation-induced immune suppression may play some role in human carcinogenesis (Kripke, 1994; Kripke et al., 1996), most investigators consider this to be a minor role at most and so it will not be discussed.

2.0. Role of Ultraviolet Radiation

Experimental and epidemiological studies strongly implicate UV radiation as a cause of skin cancer (Scotto and Fears, 1978; Scotto et al., 1981; Slaga, 1982)). Findlay in 1928 was the first to demonstrate that the chronic exposure to UV radiation resulted in cancer in albino mice (Findlay, 1928). Using the initiaton-promotion model of cellular transformation, several workers have shown that ultraviolet

radiation acts as a "complete carcinogen". In this two step model ultraviolet radiation was shown to be acting as an "initiator" in causing DNA damage and as a "promoter" causing the clonal expansion of the initiated cell (Forbes, 1981; Urbach et al., 1978).

Animal research focused on two main aspects of UV-induced carcinogenesis: to develop action an spectra carcinogenesis and secondly to determine the relative contribution of the different UV wavelengths in the causation of tumors (Suzuki et al., 1981). Studies in 1970's and 1980's proved that UVB is most important in UV-induced carcinogenesis. Davies and Forbes (1986) showed that in mice UV-induced squamous cell carcinoma and the increased incidence of mortality in these mice was due to UVB. Urbach (1989) was the first to suggest that UVA can augment the carcinogenic effects of UVB.

The role of UV radiation in skin carcinogenesis is clearly substantiated by the higher incidence of skin cancers in individuals with the rare genetically-transmitted disease, xeroderma pigmentosum (XP) (Robbins et al., 1974; Patton et al., 1984; Cleaver 1990; Jones et al., 1992a). This disease is characterized by clinical hypersensitivity to ultraviolet

radiation and by a defective DNA repair mechanism (Bohr and Wasserman, 1988; Hanawalt & Melon, 1993; Evans., 1993; Kraemer et al., 1989; Setlow et al., 1969; McCormick & Maher, 1981; MacGregor et al., 1992). The initial description of XP was made by Moriz Kaposi in Germany in 1870. The first American case of XP was described by Taylor in 1878 (Taylor, 1878). So far more than 1000 cases have been reported in the literature. The recent generation of mice lacking the murine homologue of the genes defective in XP patients shows that such mice show a high susceptibility to ultraviolet radiation induced carcinogenesis (Sands et al., 1995; de Vries et al., 1995). In short, experimental studies on the cells of XP patients as well as from mice with similar defects provides valuable insight into the role of UV and DNA repair in the etiology and pathogenesis of UV-induced skin carcinogenesis (Maher et al., 1976; Maher et al., 1982; Evans et al., 1990; Lambert & Lambert, 1995).

3.0. Molecular Mechanism of Ultraviolet Radiation

Carcinogenesis: UV-Induced Photo Lesions

Two main types of UV photo products arise due to direct absorption of UVB radiation by DNA: cyclobutane pyrimidine-pyrimidine dimers and (6-4) pyrimidine-pyrimidones (Taylor,

The most frequent photo product is the cyclobutane 1987) With UVB, there are about three times more cyclobutane dimers produced than 6-4 products (Mitchell, 1989; Mitchell et al., 1991). The frequency of UVB-induced cyclobutane dimers in DNA follows the pattern TT>TC>CT>CC (Gordon and Haseltine, 1982; Bouree et al., 1985), with TT lesions occurring 2-3 times more frequently than the CC lesions. Besides these two major classes of photo products, there are several other photo lesions like thymine glycols (Hariharan & Cerutti, 1977), cytosine photohydrates (Weiss & Duke et al., 1987), purine photo products (Gallagher et al., 1989), DNA strand breaks (Miquel & Tyrell, 1983; Tyrell et al., 1974; Cadet, 1994), DNA protein cross links (Kolomiitseva et al., 1994) which occur at a low frequency. These minor types of UV-induced photo lesions are not thought to be important in the process of carcinogenesis.

4.0. GENETIC CONSEQUENCES OF PHOTO PRODUCTS: UV-INDUCED DNA MUTATIONS

DNA photoproducts caused by UV radiation are removed and the DNA resynthesized by repair mechanisms (Lambert & Lambert, 1995). If the lesions are not removed before DNA replication takes place, mutations can be generated by a failure to insert

the correct nucleotide across the lesion (Keohavong et al., 1991; Maher & McCormick, 1989; McGregor et al., 1991; Tung et al., 1996).

In 1991, McGregor et al. found that the unique DNA lesions induced by UV radiation produced a distinctive mutation pattern e.g., a " UV-signature ". He found that in human cells, C-T transitions and CC-TT double base substitutions are the typical mutations associated with UV exposure. These characteristic mutations were hypothesized to arise due to misincorporation of A residues at the noninstructional lesion sites. According to the so called "A" rule, when the DNA polymerase comes across lesions on DNA that it cannot interpret, it inserts A residues. Hence T--T dimers which are the most frequent photo product are non-mutagenic. However C-C dimers give rise to C-T mutations. It should be noted that that some workers lately are questioning the applicability of the "A" rule in UV-induced mutations (Sage, 1993). Using C-T transitions and CC--TT double base substitutions as a signature for UV-induced mutations, several workers have examined skin tumors to determine whether such mutations are present in genes thought to be responsible for cancerous growth (Brash et al., 1991; Dumaz et

al., 1991). These results show that presence of UV signatures in proto-oncogenes and tumor suppressor genes in skin tumors suggesting that UV plays a causal role in their etiology (Nartaraj et al., 1995; Ananthaswamy and Kanjilal, 1996).

5.0. Role of Oncogenes in Ultraviolet Radiation-Induced Cellular Transformation

Cellular oncogenes are reported to be activated in a variety of human and rodent tumors (Bishop et al., 1987; Balmain & Brown, 1988; Weinberg, 1985). The normal cellular counterpart of oncogenes, proto-oncogenes, typically play a role in regulation of normal cellular growth. Exposure of the cells to carcinogens can convert the proto-oncogenes to oncogenes. Typically this results in either a structurally abnormal gene product with increased activity or a marked increased expression of the normal gene product. There is in-vivo and in-vitro evidence available that both these phenomena occur in cells (Barbacid, 1987; McCormick et al., 1991; Pierceall et al., 1992).

As an example, the role of ras oncogene in this cellular transformation will be discussed. In-vivo and in-vitro studies indicate that ras is one of the most common oncogene mutated in skin cancers (Quantanilla et al., 1986; Elder,

1990). Evidence is available implicating ras oncogene both in the earlier and later steps of malignant transformation (Balmain et al., 1989). Ananthswammy et al. (1990) showed that genomic DNA isolated from non-melanoma skin cancers from sunlight exposed parts of the body contained an activated c-H ras oncogene. When these activated ras genes were transfected NIH3T3 cells, malignant transformation resulted. into Analysis of human skin cancer (in melanoma and non-melanoma) have revealed point mutations in one or the other of the three members of the ras gene family (K-ras, N-ras and H-ras) (Pierceall et al., 1991; Van'T Veer et al., 1989). In most skin tumors ras mutations were found at codon 12 or 61, opposite the dipyrimidines in the other strand. This suggests that in skin cancer UV-induced photo products (dimers or 6-4's) are actively involved in the induction of mutation in the ras proto-oncogene oncogenes (Ananthaswamy & Pierceall, 1990). Ras gene amplification has been reported in human squamous cell carcinoma (Pierceall et al., 1991), melanomas (Funato et al., 1989) and in squamous cell carcinoma of skin in XP patients (Suarez, 1989; Suarez et al., 1989; Steingrimsdottir et al., 1995). In most of cases ras gene amplification was accompanied by point mutations, but in some

cases gene amplification was present in unmutated sequences (Boss, 1989; Pierceall et al., 1991).

Ras mutations in melanoma cell lines from XP patients with cutaneous melanomas have been detected (van'T Veer et al., 1989). Most of these mutations were at codon 12, 13 or 61. These results suggest that an activated ras gene plays a role in the transformation of melanocytes to melanoma (Pierceall et al., 1991).

In-vitro experiments confirmed the observations of UVinduced DNA damage in animals or human skin cancers. Using
NIH 3T3 cells, Bezlepkin et al. (1991) showed a dose-dependent
increase in UV-induced fibroblast transformation. Most of
these UV-induced transformants contained mutations at codon
12 or 61 in a ras gene opposite a run of pyrimidines
indicating the causal role of UV in this cellular
transformation. Cells cultured from mouse skin tumors induced
by UV showed similar results (Kanjilal et al., 1993).

UV-induced skin tumors in mice have also been found to have ras mutations (Strickland et al., 1985). Sutter et al. (1993) showed ras gene activation in UVB-induced epidermal neoplasia in mouse skin. Husain et al. (1990) found that UVB-induced mouse papillomas and carcinomas expressed H-ras

protein at 3-5 fold higher levels than the controls. They showed that when DNA from the UV-induced mouse carcinomas was transfected to NIH 3T3 cells, transformed foci resulted. This result was not seen when DNA from UV-induced papilloma was transfected. These and other experiments done by Balmain and co-workers indicate that additional genetic changes (oncogene activation and/or tumor suppressor gene inactivation) are required for the UV-induced malignant transformation.

5.0. Role of Tumor Suppressor Genes in UV-Induced Malignant Transformation

Tumor suppressor genes play a causal role in cancer when they no longer function to restrain cellular growth (Deppert,1994). This requires the loss of function of both alleles (Vogelstein and Kinzler,1992b). Small or large deletions, chromosomal rearrangements, as well as point mutations all can lead to the loss of the ability to make functional protein (Fearon & Vogelstein, 1991).

The p53 gene is the most frequently mutated gene in human cancers (Levine et al., 1991; Stampfer et al., 1993). It will be discussed in some detail as a prototype suppressor gene to illustrate the possible molecular and biochemical mechanisms by which such genes play a role in the regulation

of cellular growth and consequently in carcinogenesis.

5.1. P53 Tumor Suppressor Gene and Protein

The p53 tumor suppressor protein was first identified because it co-precipitated with SV40 large T antigen and was assumed to be a viral associated protein (Linzer & Levine, 1979; Lane & Crawford, 1979). Subsequently, transfection of the p53 gene into cells with an activated ras led to malignant transformation of the cells indicating p53 was an oncogene (Hinds et al., 1989). In 1983, Finlay and colleagues demonstrated that in fact the p53 gene used in the cell transformation studies was a mutant version of normal p53. In 1991, it was found that the wild type p53 gene was in fact a tumor suppressor gene (Levine et al., 1991). When the wild type p53 gene is mutated, so that either no p53 protein is synthesized or that the protein sybthesized is non-functional, it causes increased cellular proliferation and aberrant cellular growth (Levine et al., 1991; Chang et al., 1994).

5.2. P53 tumor suppressor gene.

The p53 gene is located on chromosome 17p13.1 in humans and chromosome 11 in mice (Benchimol et al., 1985). It consists of 11 exons which code for a protein of 393 amino acids in humans and 390 amino acids in mice (Lamb & Crawford,

1986). The first exon of the *p53* gene is non-coding. There are several highly conserved exons of which exons 4-7 are the most conserved ones. Two-thirds of the missense mutations are found at specific bases in these exons which are referred to as hot spots. The levels of *p53* mRNA are low in the normal cells but they are frquently elevated in transformed cells.

5.3. P53 TUMOR SUPPRESSOR PROTEIN

The p53 gene encodes for a 53 kd nuclear phosphoprotein . The phosphorylation pattern of p53 regulates its function in a cell cycle dependent fashion. It is hypophosphorylated in early G1 and becomes phosphorylated by cdc2 kinases as the cell enters S phase (Bischoff et al., 1990). The N-terminus (residues 1-75 in humans) of the protein is very acidic and highly charged. The C-terminus (residue 319-393) is a proline rich hydrophobic region (Soussi et al., 1990; Donehower et al., 1993). The middle region (residue 75-110) is a basic DNA binding domain contains and serine phosphorylated by cdc2 kinase and casein kinases (Funk et al., 1992; El-Deiry et al., 1992).

5.4. Mechanism of Inactivation of p53

5.4.1. Gene mutations.

Missense mutations in p53 gene can result in its

inactivation (Greenblatt et al., 1994). Missense mutations in one allele and subsequent loss of the remaining allele by genetic or epigenetic events can result in the loss of p53 suppressor functions. Other genetic alterations like gene rearrangements, chromosomal loss, deletions, etc. can also result in loss of one or both of the alleles of p53. Mutations can inactivate p53 in two ways. p53 mutations can result in the loss of the p53 functions directly or the mutant p53 protein can oligomerize with the wild type p53 protein in transdominant fashion resulting in the loss of the wild type p53 activity (Lane, 1992).

5.4.2. p53 Protein and viral protein interaction.

SV40 large T antigen, adenoviral Elb and human papilloma virus E7 oncoproteins can interact with the p53 protein. These viral oncoproteins interact with specific domains of the p53 protein resulting in the loss of the p53 binding to DNA. This results in abrogation of transcriptional activity of the p53 protein. Alternatively, the interaction of p53 protein with the specific viral proteins noted above may lead to ubiquitin-mediated degradation. Both situations cause the loss 0f p53 suppressor functions (Band et al., 1995).

5.4.3. P53 and cellular protein interaction.

Some cellular proteins like the Minute-Double-Minute 2 protein can bind to p53 protein resulting in its inactivation. MDM2 gene amplification is seen in sarcomas (Fornace, 1992) and some uroepithelial carcinomas (Habuchi et al., 1994). is one of the cellular MDM2 proteins which is transcriptionally activated by p53 protein. Elevated levels of MDM2 protein can interact in turn with p53 resulting in its inactivation (Cordon-cardon et al., 1994; Hind et al., 1994). Kastan and coulleques in 1994 demonstrated that MDM2 overexpression can inhibit p53 function in a known mammalian cell cycle checkpoint in G1 phase of cell cycle. They suggested that MDM2 might function in an autoregulatory feedback loop with p53 resulting in determining the length and severity of p53 mediated cell cycle arrest after radiaion damage (Chen et al., 1994).

In summary, there is an auto regulatory loop in which the wild type p53 protein transcriptionally transactivates the MDM2 gene. The MDM2 protein synthesized can bind to wild type p53 protein resulting in functional inactivation of p53 protein (Juven et al., 1993; Meltzer, 1994). Further study is required to fully understand the role of p53-MDM2 interaction in regulating the cellular growth in cells.

5.5. THE ROLE OF P53 TUMOR SUPPRESSOR PROTEIN IN CANCER

The p53 protein is one of the most extensively studied proteins in humans (Finlay, 1992). Diverse cellular functions have been attributed to the p53 protein (Unger et The role of p53 al., 1993). protein in cellular transformation correlates best with its ability to act as a transcriptional factor (Raycroft et al., 1990). The p53 protein is a DNA binding protein which binds to tandem copies of consensus sequence which is comprised of two copies of 5'-PuPuC (A/T) (T/A)GPyPy-3' separated by 0-13 bp (Kern et al.,1991; El-Deiry et al.,1992). p53 protein as such or in concert with other transcriptional factors binds to the promoters of the genes with this concensus binding sequence (Field & Jang, 1990; Raycroft et al., 1990), resulting transcriptional activation of these genes. p53 protein can also bind to some promoters which do not have the p53 binding site resulting in transcriptional inactivation of such genes. WAF/CYP1/SIDII/P21 and GADD45 are two genes which are transcriptionally activated by the p53 protein (Kastan et al.,1992; Gujuluva et al.,1994; Michelli et al., 1994; Smith et al., 1994)

5.6. THE ROLE OF P53 IN ULTRAVIOLET RADIATION-INDUCED MALIGNANT CELL TRANSFORMATION

Several in-vivo and in-vitro studies suggest that p53 gene plays an important role in UV-induced carcinogenesis (Reiss et al., 1992). Mutational analysis of p53 gene mutations in humans and animals have revealed the presence of hot spots in p53 gene for UV-induced mutations. Ten p53 gene mutational hot spot areas have been identified in human skin cancers (151-152, 177, 196, 245, 248, 258, 278, 186, 194, 342). The distribution of the two major UV lesions in p53 gene indicates the highest frequency of mutations at codon 286 followed by codons 151 and 278. These three hot spots are rarely involved mutation in internal malignancies (Zeigler et al., 1993; Tornaletti et al., 1993). In human skin fibroblasts, Amstad et al. (1994) showed UVinduced mutagenesis hot spot in p53 gene were at codons 248 and 249. Brash et al. (1991) detected p53 mutations in 58% of human squamous cell carcinomas. Recent studies have shown a much higher frequency (80%-100%) of p53 mutations in human skin cancers (Kanjilal et al., 1995). In non-melanoma skin cancers (basal cell carcinoma and squamous cell carcinoma) as well as in acanthosis keratosis, a UV induced skin lesion thought to be precancerous, most of the p53 mutations mainly were C-T transitions and/or CC--TT double base substitutions (Zeigler et al.,1993, 1995; Reed et al., 1993; Van Der Reit et al., 1994; Pierceall et al., 1991; Nelson et al., 1994; Nakazawa et al., 1994; Moles et al., 1993; Kress et al., 1992). These results reinforce the view that UV radiations play a direct role in skin carcinogenesis (Kanjilal et al., 1993a; Dumaz et al., 1994).

It not yet clear that p53 mutations are early or late events in the process of UV-induced malignant transformations. Brash et al. (1994) indicated that UV-induced p53 mutations are an early event. Campbell et al. (1993) suggested that p53 mutations precede tumor invasion in the squamous cell carcinoma of the skin. Ziegler et al. (1994) showed that p53 gene inactivation abrogated the p53-dependent apoptosis of skin cells. These researchers proposed that p53 besides acting as guardian of genome in cells, also acts as a guardian of the skin tissue in skin in response to DNA damage. Zeigler et al. (1994) proposed that UV can act both in the early steps in actinic keratosis (acting as initiator) and in the later steps (acting as promoter) in skin carcinogenesis these results in human are substantiated by studies on mouse skin

(Kanjilal et al., 1993b). Studies in the NMSC of XP patients also exhibit a UV signatures in the p53 gene. In addition, p53 mutations were found at high frequency in the non-melanoma skin cancers (NMSC) of xeroderma pigmentosum patients. Sato et al. (1993) showed that five of eight NMSC studies in XP patients had p53 mutations mainly C-T transitions and CC-TT double base substitutions. Dumaz et al. (1994) showed that 40% of UV-induced skin cancers from XP patients had p53 mutations. Dumaz et al., (1994) also demonstrated that 100% of the P53 mutations were targeted at py-py sites and that 55% of these are tandem CC--TT transitions which are considered signature mutations of UV-induced lesions.

Dumaz et al., (1994) also demonstrated that nearly all (95 %) of the p53 mutations in XP are located on the non-transcribed strand. Several other researchers have shown that UV-induced p53 mutations occur preferentially on the non-transcribed strand indicating a presence of preferential repair of the transcribed strand in XP patients (Evans et al., 1993; Ford et al., 1994). Besides, Tornalltti & Pfeifer (1994) found slow repair of pyrimidine dimers at p53 mutation hot spots in skin cancer suggesting that inefficient DNA repair might also contribute to the mutation spectra in UV-

induced skin cancer.

5.8. The role of P53 in Malignant Melanoma

The role of UV radiation induced p53 mutations in the etiology and pathogenesis of malignant melanoma is not as clear (Brozena et al., 1993). Research has shown that the over expression of the p53 protein is a late event in melanoma skin cancers (Llassam et al.,1993). These researchers also showed that p53 mutations occur in less than 10 % of melanoma patients (Llassam et al., 1993). In some cases of malignant melanoma, the MDM2 cellular protein was over expressed (Momand & Levine, 1991; Perry et al., 1993).

Recently another cell cycle regulated protein p16/MTS1 has been implicated as a causal factor in malignant melanomas (Kamb et al., 1994). Somatic mutations and homologous deletions were found in several tumor derived cell lines (Nobori et al., 1994). Liu et al. (1994) showed that in 14 out of 18 human nelanoma cell lines, the p16 mutations detected were C-T transitions at dipyrimidine sites. Two other melanoma cell lines carried CC--TT double base substitutions. These UV signature mutations imply that UV is involved in the pathogenesis of melanoma. However, the fact that melanoma occurs in the sunlight exposed and non-sunlight

exposed areas of the body indicates that other factors might be involved in the etiology of malignant melanoma (Kamb et al., 1994).

In summary, UV induces unique signature mutations (C--T and CC--TT) at dipyrimidine sites. The fact that these types of mutations are very rare in most cancers but are common in the oncogenes and/or the tumor suppressor genes of human and mouse skin cancers is evidence that the tumors arise as a result of DNA damage from UV radiation (Ananthaswamy & Pierceall, 1990; Brash et al., 1994; Vogelstein and Kinzler, 1992b).

E. MULTI-STEP MALIGNANT TRANSFORMATION

Cancer is now considered to result from a multi-stepped process involving the activation of oncogenes and/or inactivation of tumor suppressor genes (Farber, 1984; Fearon & Vogelstein, 1991; Marshall, 1991). These genes can be altered in their structure and function by exposure to mutagenic carcinogens and/or by spontaneous mutations. It is proposed that activation of an oncogene or loss of expression of a tumor suppressor gene in a cell will give that particular cell some growth-adwantage over the other cells allowing clonal expansion of these mutant cells. The clonal expansion

of these cells increases the likelihood that a second mutation will occur in one of the progeny cells. This will bring the cell with mutations in two cancer related genes a step closer to being malignant. The clonal expansion of doubly-mutated cell increases the likelihood that the third mutation will occur in one of the progeny cells. This clonal expansion and sequential mutations will result finally in a cell which has acquired all the required number of changes needed for the malignant transformation. Clonal expansion of this cell results in an overt cancer (McCormick & Maher, 1994).

The number of genetic alterations needed for any human cell to become fully malignant is not known. The specific genes that must be mutated to generate a tumor cell are surely different in different cell types. It is also clear that childhood tumors like retinoblastoma require fewer changes as compared to adult tumors (Knudson et al., 1991; Vogelstein et al., 1991; McCormick & Maher, 1994). Various studies in animals and humans suggest that the number of changes required for complete malignant transformation of adult tissues range from six to nine (Vogelstein et al., 1991; McCormick et al., 1994).

One of the many problems in studying the molecular

mechanism of carcinogenesis is this that most of the studies to detect cancer related genetic alterations in humans are The cells in these human tumors done on overt tumors. (epithelial or mesenchymal) have already undergone multiple genetic changes in the process of transformation. consistent detection of an activated oncogene or inactivation of a tumor suppressor gene in a specific tumors strongly suggests that it is playing a causal role in the tumorigenesis of the cells. However, the specific function of a gene can not be demonstrated from such findings. For these reasons, it is difficult to study the individual steps or the genetic chenges involved in the tumorigenesis process using human tumors. Most of the studies carried out so far to study the genes involved in malignant transformation of human cells involve placing cancer-related genes in murine cells like NIH 3T3 cells. This cell system provides us with valuable information about the actions of oncogenes. However, the changes already acquired by the NIH3T3 cells cannot be readily studied in these cells making it difficult to ascertain all the individual steps involved in carcinogenesis.

F. THE MSU-1.1 HUMAN FIBROBLAST TRANSFORMATION SYSTEM

Many workers have tried to establish in vitro cell

transformation systems using human cells, particularly using human fibroblasts to study the molecular changes involved in multistep carcinogenesis. In general, human fibroblasts are easy to be grown in culture and exhibit high cloning efficiencies (McCormick and Maher, unpublished observations). Though several workers have been successful in causing normal human fibroblast to acquire different transformed properties, these cells have not been successfully transformed in culture to malignant cells as pointed out by McCormick and Maher (1988).One of the reasons they postulated for this difficulty is that normal human fibroblasts have a limited life span in culture and it is not enough to allow the cells to acquire the requisite number of changes for malignant transformation. Normal human cells in culture can only undergo two sequential clonal selections before entering into crisis and senescence (McCormick & Maher, 1988).

In view of such difficulties, McCormick and Maher and colleagues decided to work on an alterative method to study multi-step malignant transformation. They began their studies by establishing human fibroblast system in which genotypically and phenotypically normal cells are first immortalized and then carried step-wise forward. At each step, the cells were

selected for phenotypic changes like the ability to grow in agarose or in serum-free medium. The sequential clonal expansion of cells that had acquired the various properties finally yielded malignant cells.

Using the gene transfection approach of Weinberg and colleagues, McCormick, Maher and colleagues began by developing an immortal human fibroblast cell strain. The parental cell line was obtained from the foreskin of neonate LGI cells are normal, diploid human and termed LG1. fibroblasts with normal growth dynamics (Morgan et al., 1991). LG1 cells were transfected with a plasmid carrying v-myc oncogene and a selectable marker neo. Cells were selected for the drug resistant colonies. A clonal cell population that expressed v-myc protein was identified and propagated in culture for several months (McCormick et al., 1995). cells entered crisis and finally senesced. A small group of cells, most probably a clone, was found replicating in the senescing population. This eventually gave rise to a MSU-1.0, a diploid, immortal human fibroblast cell strain with stable diploid karyotype. A spontaneous variant of MSU-1.0 cells with growth advantage arose and overgrew the MSU-1.0 cells in culture. These cells were designated MSU-1.1. MSU-1.1 cells grow moderately well in serum free medium, form very small size colonies at low frequency in agarose and have stable karyotype with 45 chromosomes including two unique marker chromosomes (Morgan et al., 1991). MSU-1.0 has never been transformed to malignant by exposure to carcinogens or oncogene transfection despite intensive efforts (McCormick et al., unpublished observations). However, MSU-1.1 has been transformed by oncogene transfection or chemical carcinogen treatment and suitable selection. In many cases a progeny of selected cells form malignant tumors in athymic mice (Fry et al., 1990; Wilson et al., 1990; Yang et al., 1991).

In summary, the MSU-1 cell lineage provides us with a system in which cells are carried step wise from normal to malignant. At each step the genetic change(s) are well defined or are being defined and the resultant cells are genotypically and phenotypically stable. This cell system can now be exploited to study the effects of other carcinogens and the mechanisms of cell invasion and metastasis. Studies are being carried on by McCormick & Maher and their colleagues using the differential display technique to identify and clone the oncogene(s) and/or tumor suppressor gene(s) involved in the transformation process which are not yet understood. It

is hoped that these studies on the mechanism of malignant transformation of human fibroblasts will lead to insights which will ultimately translate into improved therapy for patients with sarcomas and perhaps other types of tumors.

REFERENCES:

Agarwal R, Mukhtar H (1992): Cutaneous chemical carcinogenesis. In: Pharmacology of Skin, Mukhtar H., Ed., CRC Press, Boca Raton, FL, pp 371-397.

Albeck H, Bentzen J, Ockelmann HH, Nielsen NH, Bretlau P, Hansen HS (1993): Familial clusters of nasopharyngeal carcinomas and salivary gland carcinomas in Greenland natives. Cancer 72: 196-200.

Allday MJ, Crawford DH, Thomas JA (1993): EBV nuclear antigen 6 induces expression of EBV LMP and an activated phenotype in Ragi cells. J Gen Virol 74: 361-369.

Allday MJ, Sinclair A, Parker G, Crawford DH, Farrell PJ (1995): Epstein-Barr virus efficiently immortalizes human B cells without neutralizing the function of p53. EMBO J 14: 1382-1391.

Alpert ME, Hutt MS, Davidson CS (1968): Hepatoma in Uganda. A study in geographic pathology. Lancet 1: 1265-1267.

Amblard P, Beani JC, Reymond JL, Didier-Roberto B (1987): Photocarcinogenesis. Am Dermatol Venerol 114: 381-394.

Ames BN, Gold LS (1990): Two many rodent carcinogens: mitogenesis increases mutagenesis. Science 249: 970-971.

Ames BN (1989): Endogenous DNA damage as related to cancer and ageing. Mutat Res 214: 41-46.

Ames BN, Durston WE, Yamasaki E, Lee FD (1973): Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Nat Acad Sci USA 70: 2281-2285.

Amin A, Murakami Y, Hurwitz J (1994): Initiation of DNA replication by SV40 T antigen is inhibited by the 107 protein. J Biol Chem 269: 7735-7743.

Amstad P, Hussain SP, Cerutti P (1994): Ultraviolet B light induced mutagenesis of p53 hotspot codons 248 and 249 in human

skin fibroblasts. Mol Carcinog 10: 181-188.

Ananthaswamy HN, Pierceall WE (1990): Molecular mechanisms of ultraviolet radiation carcinogenesis. Photochem Photobiol 52: 1119-1125.

Ananthaswamy HN, Kanjilal S (1996): Oncogenes and tumor suppressor genes in photocarcinogenesis. Photochem Photobiol 63:428-432.

Ananthaswamy HN, Price JE, Goldberg LH, Bales ES (1988): Detection and identification of activated oncogenes in human skin cancers occuring on sun exposed body sites. Cancer Res 48: 3341-3346.

Androphy EJ, Lowy DR (1984): Tumor viruses, oncogenes, and hunan cancer. J Am Acad Dermatol 10: 125-141.

Apte D, Chong T, Liu Y, Bernard HU (1993): Nuclear factor-1 and epithelial cell specific transcription of human papilloma virus type 16. J Virol 67: 4455-4463.

Armitage P, Doll R (1954): The age distribution of cancer and multistage theory of skin carcinogeensis. Br J Cancer 8: 1-5.

Athar M, Agarwal R, Bickers DR, Mukhtar H (1992): Role of reactive oxygen specie in skin, In: Pharmacology of Skin, Mukhtar H Ed. CRC press, Boca Raton, Fl, pp. 269-280.

Athas GB, Starkey CR, Levy S (1994): Retroviral determinants of leukemogenesis. Crit Rev Oncog 5:169-199.

Aurbach C, Robson JM, Carr JG (1947): The chemical production of mutations. Science 105: 243-247.

Autrup H, Harris CC (1983): Metabolism of chemical carcinogens by human tissue. In: CC Harris and H Autrup (eds), Human Carcinogenesis. pp.169-194. New York: Academic Press, Inc.

Baker SK, Markowitz ER, Fearon R, Wilson J, Wilson KV, Vogelstein B (1990): Suppression of human colorectal carcinoma cell growth by wild type p53. Science 249: 912-915.

Balmain A, Pragnell R (1983): Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene. Nature 303: 72-74.

Balmain A, Brown K (1988): Oncogene activation in chemical carcinogenesis. Adv Cancer Res 51: 147-182.

Balmain A, Kemp CJ, Burns PA, Stoler AB, Fowlis DJ, Akhurst RJ (1991): Functional loss of tumor suppressor genes in multistage chemical carcinogenesis. Princess-takamatsu Symp 22: 97-108.

Band V, Zajchowski D, Kulesa V, Sager R (1990): Human papilloma virus DNA immortalize normal human mammary epithelial cells and reduce their growth factor requirements. Proc Nat Acad Sci USA 87: 463-467.

Band V, De caprio JA, Delmolino L, Kulesa V, Sager R (1991): Loss of p53 protein in human papilloma virus type 16 E6 immortalized human mammary epithelial cells. J Virol 65: 6671-6676.

Band V, Dallal S, Delmolino L, Androphy EJ (1993): Enhanced degradation of p53 protein in HPV-E6 and BPV-1 E6 immortalized human mammary epithelial cells. EMBO J 12: 1847-1852.

Barbacid M (1987): Ras genes. Annu Review Biochem 56: 779-827.

Barbacid M (1989): Mutagens, oncogenes and cancer. Trends Gent 2: 188-192.

Barrett JC (1987): Genetic and epigenetic mechanism in carcinogenisis. In: Mechanism of Environmental Carcinogenisis, Vol 1. Role of genetic and Epigenetic Changes (J.C.Barret, Ed), CRC Press, Boca Raton, Fl, pp. 1-15.

Belingieri MT, Santoro M, Battagalia C, Grieco M, Fusco A (1993): The adenovirus E1a gene blocks the differentiation of a thyroid epithelial cell line, however the neoplastic phenotype is achieved only after cooperation with other oncogenes. Oncogene 8: 249-55.

Bergold PJ, Wang JY, Hardy WD Jr, Littau V, Johnson E, Besmer P (1987): Structure and the origins of HZ2-Feline sarcoma virus. Virology 158:320-329.

Bernard HU, Apt D (1994): Transcriptional control and cell type specificity of HPV gene expression. Arch Dermatol 130:210-215.

Bernblum I (1941): The co-carcinogenic action of croton resins. Cancer Res 1: 44-48.

Bernblum I, Shubik P (1947): A new quantitative approach to the study of the stages of chemical carcinogenesis in mouse skin. Br J Cancer 1: 383-391.

Bernblum I, Shubik P (1949): An experimental study of the initiating state of carciniogenesis, and re-examination of the somatic cell theory of cancer. Br J Cancer 3: 109-118

Besmer P, Hardy WD Jr, Zukerman EE, Bergold P, Lederman L, Synder HW Jr (1983): the Hardy-Zukerman 2-feline SV, a new feline retrovirus with oncogene homology to Ableson MuLV. Nature 303:825-828.

Bezlepkin VG, Ostravskia LB, Bezlepkina TA, Giaziev AI (1991): The DNA-mediated transformation of mouse fibroblasts after radiation damage to the cellular chromatin. Radiobiologiia 31: 188-194.

Bischoff JR, Casso D, Beach D (1992): Human p53 inhibits growth in Schizosaccharomyces pombe. Mol Cell Biol 12: 1405-1411.

Bishop JM (1991): Molecular themes in oncogenesis. Cell 64: 249-270.

Bishop JM (1987): The molecular gentics of cancer. Science 235: 305-311.

Bohr VA, Wasserman K (1988): DNA repair at the level of gene. Trends Biomed Sci 13: 429-433.

Bohr VA, Smith CA, Okumoto DS, Hanawalt PC (1985): DNA repair in active gene: Removal of pyrimidine dimers from the DHRF gene of CHO cells is much more efficient than than in the genome overall. Cell 40: 359-369.

Bolen JB, Thiela CJ, Israel MA, Yonemoto W, Lipsich LA, Brugge JS (1984): Enhancement of cellular src gene product associated tyrosyl kinase activity following polyoma virus infection and transformation. Cell 38: 767-777.

Borek C, Ong A, Mason H (1987): Distinctive transforming genes in x-ray transformed mammalian cells. Proc Nat Acad Sci USA 94: 794-798.

Boss JL (1989): Ras oncogenes in human cancer: a review. Cancer Res 49: 4682-4689.

Bouree FG, Renault PC, Seawell PC, Sarasin A (1985): Location and quantitation of ultraviolet radiation induced lesions in simian virus 40 DNA. Biochemie 67: 233-239.

Bouton AH, Parson JT (1993): Retroviruses and cancer: models for cancer in animals and humans. Cancer Invest 11: 70-79.

Boveri T (1914): Zur Frageder Entstehlung Maligner Tumoren, Gustave Fischer, Jena, Germany .

Boyd JA, Barrett JC (1990): Genetic and cellular basis of multistep carcinogenesis. Pharmacol Ther 46: 469-486.

Boyd JM, Subramanian T, Schaeper U, Laregina M, Bayley S, Chinnadurai G (1993): A region of the C-terminus of Ad 2/5 Ela protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24 ras mediated transformation, tumorigenesis and metastasis. EMBO J 12: 469-78.

Boyer JC, Thomas DC, Maher VM, McCormick JJ, Kunkel TA (1993): Fidelity of DNA replication by extracts of normal and malignantly transformed human cells. Cancer Res 53: 3270-3275.

Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP,

Halperin AJ, Poten J (1991): A role of sunlight in skin cancer: UV -induced p53 mutations in squamous cell carcinoma. Proc Nat Acad Sci USA 88: 10124-10128.

Bremmer R, Kemp CJ, Balmain A (1994): Induction of different genetic changes by different clases of chemical carcinogens during the progression of mouse skin tumors. Mol Carcinog 11: 90-97.

Brockmann D, Feng L, Kroner G, Tries B, Esche H (1994): Adenovirus type 12 early region 1A express a 52 R protein repressing the trans activation function of transcription factor c-Jun/AP-1. Virology 198: 717-723.

Brown K, Kemp C, Burns P, Balmain A (1994): Importance of genetic alterations in tumor development. Arch Toxicol Suppl 16: 253-260.

Brozena SJ, Fensky NA, Perez IR (1993): Epidemiology of malignant melanoma, worldwide incidence, and etiologic factors. Semin Surg Oncol 9: 165-167.

Buchmann A, Ruggeri B, Klein-Szanto AJ, Balmain A (1991): Progression of squamous carcinoma cells to spindle carcinoma of mouse skin is associated with an imbalance of H-ras alleles on Chromosome 7. Cancer Res 51: 4097-4101.

Burn PA, Balmain A (1992): Potential tharapeutic targets in multistep oncogenesis. Semin Cancer Biol 3: 335-341.

Burns PA, Bremmer R, Balmain A (1991a): Genetic changes during mouse skin carcinogenesis. Env Health Perspect 93: 41-44.

Burns PA, Brown K, Bremmer R, Clarke M, Balmain A (1991b): Molecular alterations in oncogenes or tumor suppressor genes during chemical carcinogenesis. Prog Histochem Cytochem 23: 100-106.

Butz K, Hoppe-Seyler F (1993): Transcriptional control of human papilloma virus (HPV) oncogene expression: composition of the HPV type 18 upstream regulatory region. J Virol 67: 6746-6766.

Cadet J (1994): DNA damge caused by oxidation, deamination, ultraviolet radiation and photoexcited psoralens. IARC Sci Publ 125: 245-276.

Campbell C, Quinn AG, Rao YS, Angnus B, Rees JL (1993): p53 mutations are common and early events that precede tumor invasion in squamous cell neoplasia of skin. J Invest Dermatol 100: 746-748.

Campbell KS, Ogris E, Burke B, Su W, Auger KR, Druker BJ, Schaffhausen BS, Roberts TM, Pallas DC (1994): Polyoma middle T tumor antigen interacts with SHC protein via NPTY (Asn-Pro-Thr-Tyr) motifs in the middle tumor antigen. Proc Nat Acad Sci USA 91: 6344-6348.

Cao L, Faha B, Dembskyi M, Tsai LH, Harlow E, Dyson N (1992): Independent binding of the retinoblastoma protein and p107 to the transcription factor E2F. Nature 355: 176-179.

Cavenee WK, Hansen MF, Nordenskjold M, Kock E, Maumenee I, Squire JA, Phillips RA, Gallie BL (1985): Genetic origins of mutations predisposing to retinoblastoma. Science 228: 501-503.

Cerutti PA (1985): Peroxidant states and tumor promotion. Science 227: 375-381.

Chang SH, Espino PC, Marshall JM, Harvey R, Smith AE (1990): Stoichiometry of cellular and viral components in the polyoma middle T antigen tyrosine complex. Mol Cell Biol 10: 5569-5574.

Chang F, Syrjanen S, Kurvinen K, Syrjanen K (1993): The p53 tumor suppressor gene as a common cellular target in human carcinogenesis. Am J Gastroenterol 88: 174-186.

Chang H, Benchimol S, Minden MD, Messner HA (1994): Alterations of p53 and c-myc in the clonal evolution of malignant lymphoma. Blood 83: 452-459.

Chastre E, Empereur S, DigiouY, el-Madani N, Mareel M, Valeminick K, Van-Roy F, Emami S, Spandidos DA et al., (1993): Neoplastic progression of human and rat intestinal

cell lines after transfer of the ras and polyoma middle oncogenes. Gasteroenterology 105: 1776-1789.

Cheng SH, Markland W, Markham AF, Smith AE (1986): Mutations around the NG59 lesion indicates that the active assoscation of polyoma virus middle T antigen with pp60c-src is required for cell transformation. EMBO J 5: 325-34.

Cheung Rk, Dosch HM (1993): The growth transformation of human B cell involves super induction of hsp70 and hsp90. Virology 193: 700-708.

Cheung RK, Miyazaki I, Dosch HM (1993): Unexpected patterns of EBV virus gene expression during early stages of B cell transformation. Int Immunol 5:707-716.

Chiou SK, Rao L, White E (1994): Bcl2 blocks p53 dependent apoptosis. Mol Cell Biol 40: 2556-2663.

Chong T, Apt D, Gloss B, Isa M, Bernard HU (1991): The enhancer of HPV type 16: binding site for the transcriptional factor oct-1, NFA, TEF2, NF1, and AP-1 participate in epithelial cell- specific transcription. J Virol 65: 5933-5943.

Chow VT (1993): Cancer and viruses. Ann Acad Med Singapore 22: 163-169.

Clark AR, Purdie CA, Harrison DJ, Morris RG, Biord CC, Hoper ML, Wyllie AH (1993): Thymocyte apoptosis induced by p53 dependent and independent pathways. Nature 362: 849-852.

Cleaver JE (1990): Do we know the cause of xeroderma pigmentosum? Carcinogenesis 11: 875-882.

Cleaver JE (1994): It was a very good year for DNA repair. Cell 76: 1-4.

Cleaver JE, Hultner ML (1995): Transcriptional related human isorders (editorial comments). Am J Hum Genet 56: 1257-1261.

Cleaver JE, Corte F, Lutze WF, Morgan ABN, Player N, Mitchell DL (1987): Unique DNA repair properties of xeroderma

pigmentosum revertant cell lines. Mol Cell Biol 7: 3353-3357.

Cole CA, Forbes PD, Davies RE (1986): An action spectra for UV photocarcinogenesis. Photochem Photobiol 43: 275-284.

Contreas-Bordin BA, Anvret M, Imreh S, Altiok E, Klein G, Masucci MG (1991): B cell phenotype dependent expression of the Epstein-Bar virus Nuclear Antigen EBNA-2 to EBNA-6: studies with somatic cell hybrids. J Gen Virol 72: 3025-3033.

Cook JW, Duffy E, Shonental R (1950): Primary liver tumors in rats following feeding with alkaloids of Scenecio jacobaea. Br J Cancer 8: 458-465.

Cordon-cardo C, Latres E, Drobnjak M, Oliva MR, Pollack D, Woodruff JM, Marcechal V, Chen J, Brennan MF, Levine AJ (1994): Molecular abnormalities of mdm2 and p53 genes in adult tissue sarcomas. Cancer Res 54: 794-799.

Courtneidge SA (1994): Protein tyrosine kinases, with emphasis on the src family. Semin Cancer Biol 5: 239-246

Courtneidge SA, Hebner A (1987): An 81 kDa protein complexed with middle T antigen and pp60 src: a possible phosphotidlylinositol kinase. Cell 50: 1031-1034

Courtneidge SA, Fumagelli S, Koegl M, Superti-Furga G, Twamley-stein GM (1993): The src family of protein tyrosine kinases: regulation and functions. Dev - Suppl 57-64.

Crawford DH, Thomas B, Gregory CD, Catovsky D, Chaggar K (1995): Induction of Latent Membrane protein expression is in vitro EBV infected leukaemic B lymhocytes by interlukin 4 and antibodies to CD40. Leukemia 9: 747-753.

Cripe TP, Alderborn A, Anderson RD, Parkkinen S, Bergman P, Haugen TH, Petterson U, Turek LP (1990): Transcriptional activation of the human papilloma virus -16 promoter by an 88-nucleotide enhancer containing distinct cell-dependent and Ap-1 responsive modules. New Biol 2: 450-63.

Cronkite EP (1987): An historical account of clinical investigations on chronic lymhocytic leukemias in the Medical

Research Centers, Brookhaven Research Laboratory. Blood Cells 12: 285-295.

Cupyres HT, Selten G, Berns A, Geurts A, van Kessel AMH (1986): Assignment of the human homologue of pim-1, a mouse gene implicated in leukemiogenesis, to the pter-q12 region of chromosome 6. Human Genet 72: 262-265.

Cuthill S, Sibbet GJ, Campo MS (1993): Characterization of a nuclear factor ,papilloma enhancer binding factor-1, that binds to the long control region of human papilloma virus type 16 and contributes to the enhancer activity. Mol Carcinog 8: 96-104.

Dana F, Bechere PR, Bacon BR (1994): Hepatitis C virus. What recent studies can tell us? Postgrad Med 95: 121-122, 125-128

Davies RE, Forbes PD (1986): Effect of UV radiation on survival of non haired mice. Photochem Photobiol 43: 267-74.

Debbas M, White E (1993): Wild type p53 mediates apoptosis by Ela which is inhibited by Elb. Genes Develop 7: 546-54.

DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, Marsillio E, Paucha E, Livingston DM (1988): SV40 large T antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54: 275-283.

de Gruiji FR, Sternberg HJ, Forbes PD, Davies RE, Cole C, Kelfken G, van Weelden H, Slaper H, van der Leun JC (1993): Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice. Cancer Res 53: 53-60.

Delage S, Chastre E, Empereur S, Wicek D, Veissiere D, Capeau J, Gespach C, Cherqui G (1993): Increased protein kinase C alpha expression in human colonic caoca -2 cells after insertion of human Ha-ras or polyoma virus middle T oncogenes. Cancer Res 53: 2762-2770.

Deppert W (1994): The yin and yang of p53 in cellular transformation. Seminar Cancer Biol 5: 187-230.

Deppert W, Steinmayer T (1989): Metaboilc stabilization of p53

in SV40 transformed cells correlates with the expression of the transformed phenotype but is independent from complex formation with SV40 large T antigen. Curr Top Microbiol Immunol 144: 77-83.

de Vries JE, Kornips FH, Wiegnat J, Moerkerk PM, Senden N, Schutte B, Geraedts JE, Bosman FT, Tenkate J (1992): Chromosomal localization of transfected genes by a combination of hot banding and flourescence in situ hybridization. J Histochem Cytochem 40: 1053-1058.

Dilworth SM, Brewster CE, Jones MD, Lanfrancone L, Pelicci G, Pelicci PG (1994): Transformation by polyoma virus middle T antigen involves the binding and tyrosine phosphorylation of Shc. Nature 367: 87-90.

Dilworth SM (1990): Cell alterations induced by the large T antigens of SV40 and polyoma virus. Semin Cancer Biol 1: 407-414.

DiPaolo JA, Donovan P, Nelson R (1969): Quantitative studies of in vitro transformation by chemical carcinogens. J Nat Can Inst 42:867-873.

DiPaolo JA, Popescu NC, Alvarez L, Woodworth CD (1993): Cellular and molecular alterations in human epithelial cell transformed by recombitant HPV DNA. Crit Rev Oncog 4: 337-360.

Doll P, Hill A (1950): Smoking and carcinoma of the lung: preliminary report. Br Med J 2: 739 -748.

Doll P, Peto R (1981): The causes of cancer. J Natl cancer Inst 66:1191-1208.

Donehower LA, Bradley A (1993): The tumor suppressor p53. Biochem Biophys Acta 1155: 181-205.

Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Butel JS, Bradley A (1992): Mice deficient of p53 are developmentally normal but susceptible to spontaneous tumors. Nature 356: 215-221.

Douglas JL, Quinlan MP (1994): Efficient nuclear localization of Ad5 E1A 12S protein is necessary for immortalization but not co-transformation of primary epithelial cells. Cell Growth Differ 5: 475-483.

Doyle MG, Crawford DH (1994): Analysis of viral gene expression and genome persistance in CD23- positive and negative subpopulations of EBV infected BL2 cells. Intervirology 37: 236-244.

Doyle MG, Catovsky D, Crawford DH (1993): Infection of Lekaemic B lymphocytes by EBV. Leukemia 7: 1858-1864.

Dumaz N, Drouguard C, Sarasin A, Daya-Grosjean L (1993): Specific p53 mutations spectrum in the p53 gene of skin tumors in DNA repair deficient xeroderma pigmentosum patients. Proc Nat Acad Sci USA 90: 10529-10533.

Dumaz N, Stary A, Soussi T, Daya-Grosjean L, Sarasin A (1994): Can we predict solar radiation as the causal event in human tumors by anlyzing the mutation spectra of the p53 gene? Mutat Res 307: 375-386.

Dumont DJ, Marcellus RC, Bayley ST, Branton PE (1993): Role of phosphorylation near the amino terminus of adenovirus type 5 early region 1A proteins. J Gen Virology 74: 583-595.

Dyson N, Howley PM, Munger K, Harlow E (1989): The human papilloma virus -16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243: 934-937.

Dyson N, Dembski M, Fattaey A, Ngwu C, Ewen M, Helin K (1993): Analysis of p107 assoscaited proteins: p107 associates with a form of E2F that differs from Rb assosciated E2F-1. J Virol 67: 7641-7647.

El-Diery WS, Tokino T, Velculescu E, Levy DB, Parson JM, Trent D, Lin WE, Mercer E, Kinzler KW, Vogelstein B (1993): WAF-1, a potential mediator of p53 tumor suppression. Cell 75:817-820.

Elder JT (1990): c-Hras and UV photocarcinogenesis. Do rays raise ras? Arch Dermatol 126: 379-382.

Eliyahu D, Raz A, Gruss P, Givol D, Oren M (1984): Participation of p53 cellular tumor antigen in transformation of normal embryonic cells. Nature 312: 649-651.

Eliyahu D, Michalovitz, D, Eliyahu S, Pinhasi-kimhi O, Oren M (1989): Wild type p53 can inhibit oncogene mediated focus formation. Proc Nat Acad Sci USA 86: 8763-8767.

Elkind MM (1985): DNA damage and cell killing: cause and effects. Cancer 56:2352-2363.

Epstein JH (1978): Photocarcinogenesis: a review. Natl Cancer Ins Monogr 50: 13-25.

Evan HJ (1993): Molecualr genetic aspects of human cancer: The 1993 Frank Rose Lecture. Br J Cancer 68: 1051-1060.

Evans IA, Mason J (1965): Carcinogenic activity of bracken. Nature 208: 913-914.

Evans MK, Mueller NE (1990): Viruses and cancer: causal associations. Ann Epidemiol 1: 71-92.

Evans MK, Ganges MB, Robbin JH, Tarone RE, Bohr VA (1990): Gene specific DNA repair in different complementation groups of XP. Proc Amer Assoc Cancer Res 31: 1-2

Ewans ME, Xing YG, Lawrence JB, Livingston DM (1991): Molecular cloning, chromosomal mapping, and expression of the cDNA for 107, a retinoblastoma gene product-related protein. Cell 66: 1155-1164.

Faha B, Harlow E, Lees E (1993): The adenovirus E1A associated kinase consists of cyclin E-p33 cdk2 and cyclin A-p33 cdk2. J Virol 67: 2456-65.

Fanning H, Westphal KH, Brauer D, Corlin D (1982): Subclasses of simian virus 40 large T antigen: differential binding of two subclasses of T antigen from productiviely infected cells to viral and cellular DNA. EMBO J 1: 1032-1038.

Farber E (1984): The multistep nature of cancer development. Cancer Res 44: 4217-4223.

Fattaey AR, Harlow E, Helin-K (1994): Independent regions of Adenovirus E1A are required for the binding to and dissociation of E2F protein complexes. Mol Cell Biol 13: 7267-7277.

Fearon ER, Vogelstein B (1990): A genetic model of colorectal tumorigenisis. Cell 61: 759-767.

Fears TR, Scotto J (1993): Estimating increases in skin cancer morbidity due to increases in UV radiation exposure. Cancer Invest 1: 119-126.

Fields S, Jang SK (1990): Presence of a potent transcriptional activating sequence in the p53 protein. Science 249: 1046-1048.

Findlay GM (1928): Ultraviolet light and skin cancer. Lancet 2:1070-1075.

Finke J, Terens P, Lange W, Mertelsmann R, Dolken G (1993): Expression of interlukin 10 in B lymhocytes of different origin. Leukemia 7: 1852-1857.

Finlay CA (1992): p53 loss of function: implications for the processes of immortalization and tumorigenesis. Bioessays 14: 557-560.

Finlay CA, Hinds PW, Levine AJ (1989): The p53 protooncogene can act as a suppressor of transformation. Cell 57: 1083-1093.

Forbes PD (1981): Experimental photocarcinogenesis: an overview. J Invest Dermatol 77: 139-143.

Ford JM, Hanawalt PC (1995): Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc Nat Acad Sci USA 92: 8876-8880.

Fornace AJ Jr (1992): Mammalian genes induced by radiation: activation of genes associated with growth control. Annu Rev Genet 26: 507-526.

Fraumeni JF Jr, Hoover RN, Devessa SS, Kenllen LJ (1990): Epidemiology of cancer In: VT deVita Jr, S Hellman and SA Rosenberg (eds), Cancer, Principle and Practise of Oncology, J. B. Lippincott Co.Philadelphia. pp.196-235

Freund R, Bronson RT, Benjamin TL (1992): Separation of immortalization from tumor induction with polyoma large T mutants that fail to bind the retinoblastoma gene product. Oncogene 7: 1979-1987.

Friben A (1902): Demonstartion lines canccroids des rechten Handruckens, das sich nach langdauernder einwirkung von Rotgenstrahlen entwichelt hatte. Fortschr geb Rontgenstr 6: 106-117

Friedmann T, Esty A, Laporte P, Deinger PL (1979): The nucleotide sequence and genome organization of the polyoma early region: extensive nucleotide and amino acicid homology with SV40. Cell 17: 715-724.

Friend SH, Bernards R, Rogeli S, Weinberg RA, Rapoport JM, Albert DM, Dryja TP (1986): A human DNA segment with the properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643-646.

Fry RJ (1990): Radiation protection guidelines for the skin . Int J Radiat Biol 57: 829-839.

Fry RJ, Ley RD, Grube D, Staffeldt E (1982): Studies on the multistage nature of radiation carcinogenesis. Carcinog Compr Surv 7: 155-165.

Fry DG, Milam LD, Maher VM, McCormick JJ (1986a): Transfromation of human diploid fibroblasts by DNA transfection with v-sis oncogene. J Cell Physiol 128: 313-321.

Fry RJ, Storer JB, Burns FJ (1986b): Radiation induction of cancer of the skin. Br J Radiation Suppl 19: 58-60.

Fry DG, Hurlin PJ, Maher VM, McCormick JJ (1988): Transformation of diploid human fibroblasts with the v-sis, PDGF2/c-cis or T24 H-ras genes. Mutat Res 199: 341-351.

Fry DG, Milam LD, Dillberger JE, Maher VM, McCormick JJ (1990): Malignant transformation of infinite life span human fibroblast cell strain by transfection with v-Ki ras oncogene. Oncogene 5: 1415-1418.

Funato T, Take A, Ichikawa K, Ohtani H, kankazi T (1989): Expression of p21 ras protein in human melanoma cell lines. Neoplasm 36: 513-518.

Fung YK, Fadly AM, Crittenden LB, Kung HJ (1981): On the mechanism of retrovirus-induced avian lymphoid lekosis: deletion and integration of the proviruses. Proc Nat Acad Sci USA 78:3418-3422.

Fung YK, Lewis WG, Crittenden LB, Kung HJ (1983): Activation of the cellular oncogene by the c-erb B by LTR insertion: molecular basis for induction of erythroblastosis by avian leukosis virus. Cell 33: 357-368.

Fung YK, Murphee AL, Tang A, Qian J, Hinrichs SH, Benedict WF (1987): Structural evidence for the authenecity of human retinoblastoma gene. Science 236: 1657-1661.

Funk CJ, Consigili RA (1992): Evidence for Zinc binding by two structural proteins of plodia interpunctella granulosis virus. J Virol 66: 3168-3171.

Galiana E, Vernier P, Dupont E, Evrard C, Rouget P (1995): Identification of a neural specific c DNA, NPDC-1, able to down regualte cell proliferation and to suppress transformation. Proc Nat Acad Sci USA 92: 1560-1564.

Gallhager PE, Duker NJ (1989): Formation of purine photoproducts in a defined human DNA sequence. Photochem Photobiol 49: 599-605.

Gannon JV, Greaves R, Iggo R, Lane DP (1990): Activating mutations in p53 produce a common confirmational effect. A monocolonal antibody specific for the mutant form. EMBO J 9: 1595-1602.

Giaever AK, Haukland HH, Bertinussen A, Vonen B, Malm D, Husbey NE, Florholmen J (1993): Phosphoinositide metaboloism

in polyoma -BK- virus transformed pancreatic islet cell lines: evidence of constitutively activated phospholipase C. Int J Cancer 53: 80-86.

Gloss B, Bernard HU, Seedorf K, Klock G (1987): The upstream regulatory region of the human papilloma virus -16 contains an E2 protein independent enhancer which is specific for the cervical carcinoma cells. EMBO J 6: 3735-3743.

Gloss B, Yeo-Gloss M, Meisterenst M, Rogge L, Winnacker EL, Bernard HU (1989): Clusters of nuclear factor I binding sites identify enhancers of sevaral papillomaviruses but alone are insufficient for enhancer function. Nucleic Acid Res 17: 3519-3533.

Gordon LK, Haseltine WA (1982): Quantitation of cyclobutane pyrimidine dimer formation in double and single stranded DNA fragments of defined sequences. Radiat Res 89: 99-112.

Grand RJ, Lecane PS, Roberts S, Grant ML, Lane DP, Young LS, Dawson CW, Gallimore PH (1993): Overexpression of wild type p53 and c-myc in human fetal cells transformed with adenovirus early region 1. Virology 193: 579-591.

Grand RJ, Grant ML, Gallimore PH (1994): Enhanced expression of p53 in human cells infected with mutant adenoviruses. Virology 203: 229-240.

Grasser FA, Sauder C, Haiss P, Hille A, Konig S, Gottel G, Kremmer E, Leinenbach HP, Zeppezauer M, Mueller- Lantzsch N (1993): Immunological detection of proteins associated with EBNA 2A. Virology 195: 550-560.

Graves RA, Tontonoz P, Ross STR, Spiegelman BM (1991): Identification of a potent adipocyte-specific enhancer: inviolvement of an NF-1 like factors. Genes Develop 5: 428-437.

Greenblatt MS, Bennet WP, Hollstein M, Harris CC (1994): Mutations in the p53 tumor suppressor gene: clues to the cancer etiology and molecular pathogenesis. Cancer Res 54: 4485-4490.

Gross TG, Sakai K, Volsky DJ (1986): Transfer of EBV DNA fragnment coding for EBNA-1, the putative transforming gene of EBV, into normal lymphocytes: gene expression without cell transformation. Biochem Biophys Res Commun 134: 1260-1268.

Grossman SR, Johanssen E, Tong X, Yalmanchilli R, Kieff E (1994): The Epstein-Barr virus nuclear antigen 2 transactivator is directed to response elements by the J kappa recombination signal binding protein. Proc Nat Acad Sci USA 91: 7568-7572.

Groudine M, Weintraub H (1980): Activation of cellular genes by avian RNA tumor viruses. Proc Nat Acad Sci USA 77: 5351-5354

Gu Z, Pim D, Labrecque S, Banks L, Matlashewski G (1994): DNA damage induced p53 mediated transcription is inhibited by human papillomavirus type 18 E6. Oncogene: 629-633.

Guilhort C, Benchaibi M, Flechon JE, Samarut J (1993): The 12 S adenoviral E1a protein immortalizes avian cells and interacts with the avian Rb product. Oncogene 8: 619-624.

Gujuluva CN, Back JH, Shin KH, Cherrick HM, Park NH (1994): Effects of UV-irrdiation on cell cycle, viability and the expression of p53, gadd53 and gadd45 genes in normal and HPV immortalized oral keratinocytes. Oncogene 7: 1819-1827.

Guy CT, Cardiff RD, Muller WJ (1992): Induction of mammary tumors by the expression of polyoma virus middle T oncogene: a transgenic model of metastatic disease. Mol Cell Biol 12: 954-961.

Habuchi T, Kinoshita H, Yamada H, Kakehi Y, Ogawa O, Wu WJ, Takahashi R, Sugiyama T, Yoshida O (1994): Oncogene amplification in urothelial cancers with p53 gene mutations or mdm2 amplification. J Nat Cancer Inst 86: 1331-1335.

Hall P, McKee H, Mengee HP, Dover R, Lane DP (1993): High levels of p53 proteins in UV-induced normal human skin. Oncogene 8: 203-207.

Halvey O, Michlovitz D, Oren M (1990): Different tumor derived

p53 mutations exhibit distinct biological activities. Science 250: 113-116.

Hanawalt PC (1987): Preferential DNA repair in expressed genes. Env Health Persepct 76: 9-14.

Hanawalt P, Mellon I (1993): Stranded in active gene. Curr Biol 3: 67-69.

Hariharan PV, Cerutti PA (1977): Excision of ultraviolet and gamma ray products of the 5,6-dihydrothymine type by nuclear preparation of xeroderma pigmentosum cells. Biochem Biophys Acta 447: 375-378.

Harlow EN, Willimston NM, Ralston R, Helfman DM, Adams TE (1985): Molecular cloning and in-vitro expression of a cDNA clone for human cellular tumor antigen p53. Mol Cell Biol 5: 1601-1610.

Harris CC (1991): Chemical and physical carcinogenisis: Advances and perspectives for the 1990s. Cancer Res 51: 5023s-5044s.

Harris CC, Vogelstein B (1989): Mutations in the p53 gene occurs in diverse human tumor types. Nature 342: 705-708.

Harris CC, Vahakangas K, Auturp H, Tivers GE, Shamsuddin AKM, Trump BF, Boman BM, Mann DL (1985): Biochemical and molecualr epidemiology of human cancer risk. In: D. Scarpelli, J Craighead and N Kaufmann (eds). The pathologist and Enviornment, Baltimore: Williams and Wilkins. pp: 140-167 Harting FH, Hesse W (1879): Derlungenkrebs, diebergkrankheit in den schneeberger gruben. Vrtljschr gerlichtl Med 30: 296-303.

Haung PS, Patrick DR, Edwards G, Goodhart PJ, Huber HE, Miles L, Garsky VM, Oliff A and Heimbrook DC (1993): Protein domains governing interactions between E2F, Rb gene product and HPV type 16 E7 protein. Mol Cell Biol 13: 953-960.

Hayflick L (1965): The limited in-vitro lifetime of human diploid cell strains. Exp Cell Res 37: 614-616.

Hayward NK, Nancarrow DJ, Parson PG, Kidson A, Ellem KAO (1988): c-Hras-1 allelem in bladder cancer, Wilm's tumor and malignant melanoma. Human Genet 78: 115-120.

Helin K, Harlow E, Fattaey A (1993): Inhibition of E2F-1 transactivation by direct binding of retinoblastoma protein. Mol Cell Biol 13: 6501-6508.

Henderson S, Rowe M, Gregory C, Croom-Carter D, Wang F, Longnecker R, Kieff E, Rickinson A 91991): Induction of bcl-2 expression by Epstein- Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 65: 1107-1115.

Hennings H, Shores R, Wenk ML, Spangler EF, Tarone R, Yuspa SH (1983): Malignant conversion of mouse skin tumors is increased by tumor initiators and unaffected by tumor promoters. Nature 304: 67-69.

Hennings H, Shores R, Mitchell P, Sprangler EF, Yuspa SH (1985): Induction of papilloma with a high probability of conversion to malignancy. Carcinogenesis 6: 1607-1610.

Hill J (1761): Caution against the immoderate use of snuff. London: R. Baldwin and J.Jacobson.

Hinds P, Finlay C, Levine AJ (1989): Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol 63: 739-746.

Hinds PW, Dowdy SF, Eaton EN, Arnold A, Weinberg RA (1994): Function of human cyclin gene as an oncogene. Proc Nat Acad Sci USA 91: 709-713.

Hino O, Kitagawa T, Nomura K, Ohtake K, Cui L, Furuta Y, Aizawa S (1991): Hepatocarcinogenesis in transgenic mice carrying albumin-promoted SV40 T antigen gene. Jpn J Can Res 82: 1226-1233.

Hofmann MC, Narisawa S, Hess RA, Millan JL (1992): Immortalization of germ cells and somatic testicular cells using the SV40 large T antigen. Exp Cell Res 201: 417-435.

Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991): p53 mutations in human cancer. Science 253: 49-53.

Hoppe-Seyler F, Butz K (1994): Cellular control of human papillomavirus oncogene transcription. Mol Carcinog 10: 134-141.

Hoppe-Seyler F, Butz K (1993): Repression of endogenous p53 transactivation function in HeLa cervical carcinoma cells by human papilloma virus type 16 E6, human mdm2, and mutant p53. J Virol 67: 3111-3117.

Hopppe -Seyler F, Butz K (1994): Tumor suppressor genes in molecular medicine. Clin Investig 72: 619-630.

Howley PM (1991): The role of Human papilloma virus in human cancer. Cancer Res 51 (Suppl): 5019s-5022s

Hu LF, Chen F, Zheng X, Ernberg I, Cao SL, Christensson B, Klein G, Weinberg G (1994): Clonability and tumorigenecity of human epithelial cells expressing the EBV encoded membrane protein LMP1. Oncogene 8: 1575-1583.

Huang ES, Gutsch D, Tzung KW, Lin CT (1993a): Detection of low levesl of human papilloma virus type 16 DNA sequenecses in cancer cell lines derived from two well differentiated nasopharyngeal cancers. J Med Virol 40: 244-250.

Huang PS, Patrick DR, Edwards G, Goodhart PJ, Huber HE, Miles L, Garsky VM, Oliff A, Heimbrook DC (1993b): Protein domains governing interactions between E2F, the reinoblastoma gene product and human papilloma virus type 16 E7 protein. Mol Cell Biol 13: 953-960.

Hueper WC,, Wiley FH, Wolfe HD (1938): Experimental production of bladder tumors in dogs by administration of batanaphthylamines. J Indust Hyg 20: 46-54.

Huff J (1992): Chemical toxicity and chemical catrcinogenisis: Is there a causal connections? In: Mechanisms of Carcinogenesis in Risk Evaluation (H Vainio P and

Hunter T (1991): Cooperation between oncogenes. Cell 64:

249-270.

Hunter T, Hutchinson MA, Eckhart W (1978): Translation of polyoma virus T antigens in vitro. Proc Natl Acad Sci USA 75: 5917-5921.

Hurlin PJ, Fry DG, Maher VM, McCormick JJ (1987): Morphological transformation ,focus formation, and anchorage independence induced in diploid human fibroblasts by the expression of a transfected H-ras oncogene. Cancer Res 47: 5752-5757.

Hurlin PJ, Maher VM, McCormick JJ (1989): Malignant transformation of human fibroblasts caused by expression of transfected T24 H ras oncogene. Proc Nat Acad Sci USA 86: 187-191

Husain Z, Yang QM, Biswas DK (1990): CH ras proto-oncogene. Amplification and overexpression in UVB induced mouse skin papillomas and carcinomas. Arch dermatol 126: 324-330

Hussain SP, Augilar F, Amstad P, Cerutti P (1994): Oxy-radical induced mutagenesis of hot spot codons 248 and 249 of human p53 gene. Oncogene 9: 2271-2281.

Ibaraki T, Satake M, Kurai N, Ichijo M, Ito Y (1993): Transactivating activities of E7 genes of several types of human papillomavirus. Virus Genes 7: 187-196.

lezzoni JC, Gaffey MJ, Weiss LM (1995): The role of EBV in lymphoepithelioma-like carcinoma. Am J Clin Pathol 103: 308-315.

Ihle JN, Smith-White B, Sisson B, Parker D, Blair DG, Schultz A, Kozak C, Linsford RD, Askew D, Weionstein Y (1989): Activation of c-H ras protooncogene by retroviral insertion and chromosomal rearrangement in Moloney leukemia virusinduced T cell lekemia. J Virol 63:2959-2966.

Imler JL, Schartz C, Wasylyk C, Chatton B, Wasylyk B (1988): A Harvey ras responsive transcription element is also responsive to tumor promoter and to serum. Nature 332: 275-278.

Imler JL, Wasylyk B (1989): AP-1, a composite transcription factor implicated in abnormal growth control. Prog Growth Factor Res 1: 69-77.

Inman GJ, Cook ID, Lau RK (1993): Human papilloma viruses, tumor suppressor genes and cervical cancer. Int J Std Aids 4: 128-134.

Isacsohn M, Dolberg L, Sabag SG, Mitrani RS, Nubani N, Diamant YZ, Goldsmidt T (1994): The inter-relationship of herpes virus, papilloma 16/18 virus infection and pap smear pathology in Israeli women. Isr J Med Sci 30: 383-387.

Iversen OH (1986): Carcinogenesis studies with benzoly peroxide (panoxyl gel 5%). J Invest Dermatol 86: 442-448.

Iversen OH (1988): Skin tumorigenesis and carcinogenesis studies with 7,12-dimethyle benz(a)anthracene, ultrviolet light, benzoperoxide (panoxyl gel 5%) and ointment gel. Carcinogenesis 9: 803-809.

Jackson ME, Campo MS, Gaukroger JM (1993a): Cooperation between papilloma virus and chemical co-factors in oncogenesis. Crit Rev Oncog 4: 277-291.

Jackson P, Bos E, Braithwaite AW (1993b): Wild type mouse p53 down regulates transcription from different virus enhancers /promoters. Oncogene 8: 589-597.

Javier RT (1994): Adenovirus type 9 E4 open reading frame encodes a transforming protein required for the production of mammary tumors in rats. J Virol 68: 3917-3924.

Jelinek MA, Hassel JA (1992): Reversion of middle T antigen transformed rat-2 cells by K rev-1 implications for the role of p21 in polyoma virus-mediated transformation. Oncogene 7: 1687-1698.

Jelinek T, Pereira DS, Graham FL (1994): Tumorigenecity of adenovirus-transformed rodent cells is influenced by at least two regions of adenovirus type 12 early region 1A. J Virol 68: 888-896.

Johannsen E, Kohn E, Mosialos G, Tong X, Kieff E, Grossman SR (1995): Epstein- Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and Pu.1. J Virol 69: 253-262.

Johnson P, Gray D, Mowat M, Benchimol S (1991): Expression of wild type p53 is not compatible with continued growth of p53-negative tumor cells. Mol Cell Biol 11: 1-11.

Jones CA, Huberman E, Cunningham ML, Peak MJ (1987): Mutagenesis and cytotoxicity in human epithelial cells by far and near UV radiations: action spectra. Radiat Res 110: 244-254.

Jones CJ, Cleaver JE, Wood RD (1992a): Repair of damaged DNA extracts from XP complimentation group A revertants and expression of a protein absent in its parental cell lines. Nucleic Acid Res 20: 991-995.

Jones RE, Heimbrook DC, Huber HE, Wegrzyn RJ, Rotberg NS, Stauffer KJ, Lumma PK, Garsky VM, Oliff A (1992b): Specific N methylation of HPV -16 E7 peptides alter binding to the retinoblastoma suppressor protein. J Biol Chem 267: 908-912.

Kadin ME (1994): Pathology of Hodgkin's disease. Curr Opin
Oncol 6: 456-463.

Kamb A, Gruis NA, Weaver-Fedhaus J, Liu K, Harshman SV, Tavitigian E, Stockert RS, Day RS, Johnson BE, Skolnick MH (1994): A cell cycle regulator potentially involved in the genesis of many tumor types. Science 264: 436-440.

Kanjilal S, Pierceall WE, Cummings KK, Kripke ML, Ananthswamy HN (1993a): High frequency of p53 mutations in UV-induced murine skin tumors: evidence of strand bias and tumor hetrogeneity. Cancer Res 53: 2961-2964

Kanjilal S, Pierceall WP, Ananthswamy HN (1993b): Ultraviolet radiation in the pathogenesis of skin cancer: involvement of ras and p53. Genes Cancer Bull 45: 205-215.

Kanter MR, Smith RE, Hayward WS (1988): Rapid induction of B cell lymphomas: insertional activation of c-myb by avian

leukosis virus. J Virol 62: 1423-1432.

Kao C, Huang J, Wu SQ, Hause P, Rezinkoff CA (1993): Role of SV40 T antigen binding to pRb and p53 in multistep transformation in vitro of human uroepithelial cells. Carcinogenesis 14: 2297-2302.

Kao C, Wu SQ, deVries S, Rezinkoff WS, Waldman FM, Rezinkoff CA (1993): Carcinogen induced amplification of SV40 DNA inserted at (q12-21.1)associated with chromosome breakage, deletions, and translocations in human uroepithelial Cell Transformation in-vitro. Gene Chromosome Cancer 8: 155-166.

Kaplan DR, Pallas Dc, Morgan W, Schaffhausen B, Roberts TM (1989): Mechanism of transformation by polyoma virus middle T antigen. Biochem Biophys Acta 948: 345-364.

Kaposi M (1882): Xeroderma pigmentosum. Med jahr (wien), p 619-625: French Translation. Ann Dermatol Syphiol 1883: 29-41.

Kaprowski H, Ponten JA, Jensen F, Ravdin RG, Moorhead P, Saksela E (1962): Transformation of cultures of human tissue infected with simian SV40. J Cell Comp Phsyiol 59: 281-286.

Kastan MB, Onyekwere D, Sidransky B, Vogelstein B, Craig RW (1991): Participation of p53 protein in the cellular response to DNA damage. Mol Cell Biol 11: 6304-6311.

Kastan MB, Zhan Q, El-Diery WS, Carrier F, Jacks T, Walsh W, Plunkett BS, Vogelstein B, Fornace AJ (1992): A mammalian cell cycle checkpoint pathway utilizing p53 and gadd 45 is defective in ataxia telangiectasia. Cell 71: 587-597.

Katz BZ, Witz IP (1993): In- vitro exposure of polyoma virus transformed cells to laminin auguments their in vivo malignancy phenotype. Invasion Metastasis 13: 185-194.

Keizer W, Mulder MP, Langeveld JCM, Smit EM, Bos JL, Hoeijimaker S (1989): Establishment and charecterization of a melanoma cell lines from a xeroderma pigmentosum patients: activation of N-ras at a potential pyrimidine dimers site. Cancer Res 49: 1229-1235.

Kemp CJ, Donehower LA, Bradley A, Balmain A (1992): Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. Cell 74: 813-822.

Kemp CJ, Whaldon T, Balmain A (1994): P53 deficient mice are extremly susceptible to radiation induced tumorigenesis. Nat Genet 8: 66-69.

Kennaway EL, Hieger I (1930): Carcinogenic substances and their flouresence spectra. Br Med J 1: 1044-1046.

Keohavong P, Liu VF, Thilly WG (1991): Analysis of point muatations by UV light in human cells. Mutat Res 249: 147-159.

Kern SE, Lindberg RA, Thiagalingam A, Seymour K, Kinzler W, Vogelstein B(1992): Oncogeic forms of p53 inhibit p53 regulated gene expression. Science 256: 827-830.

Kerr JB, McElroy CT (1993): Evidence of large upward trends of UVB radiation linked to ozone depletion. Science 262: 1032-1034

Khan SA (1993): Cervical cancer, Human papilloma virus and vaccines. Clin Oncol Cell Radiol 5: 386-390.

Khan MA, Jenkins GR, Tolleson WH, Creek KE, Pirisi L (1993a): Retinoic acid inhibition of human papilloma virus type 16-mediated transformation of human keritinocytes. Cancer Res 53: 905-909.

Khan G, Norton AJ, Slavin G (1993b): EBV in Reed-Sternberg like cells in non- Hodgkin lymhomas. J Pathol 169: 9-14.

Kitagawa T, Hino O, Lee GH, Li H, Liu J, Nomura K, Ohtake K, Furuta Y, Aizawa S (1991): Multistep hepatocarcinogenisis in transgenic mice harboring SV40 T antigen gene. Princess Takamatsu Symp 22: 349-360.

Kleinheinz A, von-knebbel DM, Cripe TP, Turek LP, Gissmann L (1989): Human papilloma virus early gene product and maintenance of the transformed state of cervical cancer cells

in vitro. Curr Top Microbiol Immunol 144: 175-179.

Knudson AG (1971): Mutations and cancer: statistical study of retinoblastoma. Proc Nat Acad Sci USA 68: 820-823.

Knudson AG Jr (1993): Pediatric molecular oncology: past as prologue to the future. Cancer 71: 3320-3324

Knutson JC (1990): The level of c-fgr RNA is increased by EBNA-2, an Epstein Bar virus gene required for B cell immortalization. J Virol 64: 2530-2536.

Kolomiitseva Gla, Kurochikina LP, Babkova EA (1994): Study of DNA protein cross links induced by UV light in Hela cells. Biokhimiia 59: 1192-1197

Kozak CA, Albriton IM, Cunningham J (1990):Genetic mapping of cloned sequences responsible for susceptibility to ectopic murine leukemia viruses. J Virol 64: 3119-31121.

Kraemer KH, Herlyn M, Yuspa SH, Clark WH, Townsend GR, Neisses GR, Hearing VJ (1989): Reduced DNA repair in thebncultured melanocytes and nevus cells from the patients with xeroderma pigmentosum. Arch Dermatol 125: 263-268.

Krauzewicz NS (1994): Studying the interaction of polyoma virus middle T antigen with cellular proteins. Electrophoresis 15: 491-502

Kress S, Sutter C, Strickland H, Mukhtar H, Schweizer J, Schwartz M (1992): Carcinogen specific mutational pattern in p53 gene in ultraviolet radiation-induced squamous cell carcinoma of mouse skin. Cancer Res 52: 6400-6403.

Kripke ML (1986): Immunology and Photocarcinogenesis. J Am Acad of Dermatology 4: 49-52.

Kripke ML, Morison WL (1986): Studies on the mechanism of systemic suppression of contact hypersenstivity by UVB radiation: difference in the suppression of delayed and contact hypersenstivity in mice. J Invest Dermatol 86: 543-547.

Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB (1992). Wild type p53 is a cell cycle checkpoint determinant following irradiation. Proc Nat Acad Sci USA 89: 7491-7495.

Kumar R, Sukumar S, Barbacid M (1976): Activation of ras oncogenes preceding the onset of neoplasia. Science 248: 1101-1104.

Kung HJ, Boerkoel C, Carter TH (1991): Retroviral mutagenesis of cellular oncogenes: a review with insights into the mechanisms of insertional activation. Curr Top Microbiol Immunol 171: 1-25.

Kuroki T, Sato H (1968): Transformation and neoplastic development in vitro of hamster embryonic cells by 4 -nitroquinoline-1-oxide and its derivatives. J Nat Cancer Inst 20: 67-89

Kuroki T, Huh NH (1993): Why are the human cells resistant to malignant cell transformation in-vitro? Jpn J Cancer Res 84: 1091-1099.

Laimins LA (1993): The biology of HPV from warts to cancer. Infect Agents Disease 2: 74-86.

Lamb L, Crawford (1986): Charecterization of the human p53 gene. Mol Cell Biol 6: 1379-1385.

Lambert C, Lambert MW (1995): DNA repair deficiency and Skin cancer in Xeroderma pigmentosum. In: Skin cancer: Mechanism and Humnan relevance. H. Mukhatar(eds), CRC, Fl. pp 39-71.

Lane D (1992): p53, guardian of the genome. Nature 358: 15-16.

Lane DP, Crawford LV (1979): T antigen is bound to a host protein in SV40 transformed cell. Nature 278: 261-263.

Laqueur GL (1964): Carcinogenic effects of of cycad meal and cyacasin, methyleazoxcymethanol glycoside, in rats and effects of cycasinin germ free rats. Fed Proc 23: 1386-1387.

Lechner MS, Laminis LA (1991): Human epithelial cells immortalized by SV40 retain differentiation capabilities in an

in-vitro raft system and maintain viral DNA extrachromosomally. Virology 185: 563-571.

Leclere V, Huvenet I, Verwaerde P, Cousin C D, Halluin JC (1993): Comparison between Ela gene from oncogenic and non oncogenic adenoviruss in cellular transformation (Ad Ela conserved region). Arch Virol 132: 43-57.

Lee JM, Abrahmson LA, Bernstein A (1994): DNA damage, oncogenesis and the p53 tumor suppressor gene. Mutat Res 307: 573-581.

Lehman AR (1995): Workshop on eukaryotic DNA repair genes and gene products. Cancer Res 55: 968-970.

Lehman AR, Norris PG (1989): DNA repair and cancer: speculations based on studies with xeroderma pigmentosum, Cockayne 's Syndrome and trichothiodystrophy. Carcinogenesis 10: 1353-1356.

Lehman TA, Modali R, Boukamp P, Stanek J, Bennet WP, Welsh JA, Metcalf RA, Stampher MR, Fusening N, Rogan EM et al., (1993): P53 mutations in human immortalized epithelila cell lines (published erratum appears in Carcinogenesis 1993 July 14: 1491): Carcinogenesis 14: 833-839.

Levine AJ, Mommand J, Finlay CA (1991): The p53 tumor suppressor gene. Nature 351: 453-456.

Liebowitz D (1994): Nasopharyngeal carcinoma: The Epstein-Barr association. Semin Oncol 21: 376-81.

Lin C, Wang Q, Maher VM, McCormick JJ (1994): Malignant transformation of a human Fibroblast cell strain by transfection of a v-fes oncogene but not by transfection of a gag -human fes construct. Cell Growth and Different 5: 1381-1387.

Lin CC, Maher VM, McCormick JJ (1995): Malignant transformation of human fibroblast cell strain MSU-1.1 by v-fes requires an additional genetic change Int J Cancer 63: 140-147.

Lindahl T, Nyberg B (1972): Rate of depurination of native deoxyribonucleic acid. Biochemistry 11: 3610-3618.

Linzer DI, Levine AJ (1979): Charecterization of a 54 kilo dalton cellular SV40 tumor antigen present in the SV40 transformed cells and uninfected embryonal carcinoma cells. Cell 17: 43-52.

List HJ, Patzel V, Zeidler U, Schopen A, Ruhl G, Stollwerk J, Klock G (1994): Methylation senstivity of the enhancer from the human papillomavirus type 16. J Biol Chem 269: 11902-11911.

Little JB (1994): Failla Memorial Lecture: Changing views of cellular radiosenstivity. Radiat Res 140: 299-311.

Little JB, Novek J (1990): Sensitivity of human diploid fibroblast cell strains from various genetic disorders to acute and protracted radiation exposure. Radiat Res 123: 87-92.

Liu Q, Neuhausen S, McClure M, Frye C, Weaver -feldhaus J, Gruis NA, Eddington K, Allalunis-Turner MJ, Skolnick MH, Fujimura FK, Kamb A (1995): CDKN2 (MTS1) tumor suppressor gene mutations in tumor cell lines. Oncogene 10: 1061-1067.

Livingston DM, Bradley MK (1987): The simian virus large T antigen: a lot packed into a little. Mol Biol Med 4: 63-80.

Livingston DM (1992): Functional analysis of retinoblastoma gene product and of RB-SV40 T antigen complexes. Cancer Survey 12: 153-160.

Lloyd SA (1993): Stratospheric ozone depletion. Lancet 42: 1156-1158.

Longnecker R (1989): Biochemical and genetic studies of EBV latent membrane protein 2. Leukemia 8: 846-850.

Lopez DM (1984): Humoral and cellular immune reponses to mouse mammary tumor virus (MMTV) in experimental animal models. Anticancer Res 4:35-312.

Lowe SW, Ruley HE (1993): Stabilization of the p53 tumor suppressor is induced by adenovirus 5 Ela and accompanies apoptosis. Genes Dev 7: 535-545.

Lowe SW, Schmitt EM, Smith W, Osborne BA, Jacks T (1993): P53 is required for radiation induced apoptosis in mouse thymocytes. Nature 362: 847-849.

Lowe SW, Jacks T, Housman DE, Ruley HE (1994a): Abrogation of oncogene associated apoptosis allows transformation of p53 deficient cells. Proc Natl Acad Sci USA 91: 2026-2030.

Lowe SW, Ruley HE, Jacks T, Housman D (1994b):. P53 dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957-967.

Lowhagen GB, Balmsted A, Ryd W, Voog R (1993): The prevelance of high risk HPV types in penile condyloma like lesions: correlation between HPV type and morphology. Genitourin Med 69: 87-90.

Lozano G, Levine AJ (1991): Tissue specific expression of p53 in trangenic mice is regulated by intron sequences. Mol Carcinog 4910: 3-9.

Ludlow JW, Shon J, Pipas JM, Livingston DM, DeCapario JA (1990): The retinoblastoma susceptibuility gene product undergoes cell cycle dependent dephosphorylation and binding to the release from SV40 large T antigen. Cell 60: 387-396.

Ludlow JW (1993): Interactions between SV40 large T antigen and the growth suppressor proteins pRb and p53. FASEB J 7: 866-871.

Lukas M, Barrkova J, Spitkovsky D, Kjerulff A A, Jansen Durr, Strauss M, Barrtek J (1994): DNA tumor virus oncoproteins and Rb gene mutations share the ability to relieve cells requirement for cyclin D1 function in G1. J Cell Biology 125: 625-633.

Lu-Lg (1993): Detection of human papilloma virus DNA in tissue sections of cervical carcinoma by in situ hybridization with digoxiqenin labelled DNA probes.

Chung-hua-Ping-Li-Hsueh-tssa-Chih 22: 341-343.

Mack DH, Laminis LA (1991): A keratinocyte-specific transcription factor, KRF-1, interacts with AP-1 to activate expression of human papilloma virus type 18 in squamous epithelial cells. Proc Nat Acad Sci USA 88: 9102-9106.

Macleod KF, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K, Vogelstein B, Jacks T (1995): P53 dependent and independent expression of p21 during cell growth, differentiation and DNA damage. Gen Dev 9: 935-944.

Magee,D, McGregor and AJ McMichael ,Eds). IARC Scietific Publications No 116, International Agencey of Research in Cancer, Lyon, pp. 437-475.

Maher VM and Miller EC, Miller JA, Szybalski W (1968): Mutations and the decrease in density of transforming DNA produced by derivatives of the carcinogens 2-Acetylaminoflourene and N-methyl-4-aminobenzene. Mol Pharmacol 4: 411-426

Maher VM, Ouellete LM, Curren R, Mccormick JJ (1976): Frequency of ultraviolet light -induced mutations is higher in xeroderma pigmentosum variant cells than in normal human cells. Nature 261: 593-595.

Maher VM, Dorney DJ, Mendrella AL, Konze-Thomas B, McCormick JJ (1979): DNA excision repair processes in human cells can eliminate the cytotoxic and mutagenic consequences of ultraviolet radiations. Mutat Res 62: 311-323.

Maher VM, Rowan LA, Silinskas SA, Katley SA, McCormick JJ (1982): Frequency of UV -induced neoplastic transformation of diploid human fibroblasts is higher in xeroderma pigmentosum cells than in normal cells. Proc Natl Acad Sci USA 79: 2613-2617.

Marshall CJ (1991): Tumor suppressor genes. Cell 164: 313-326.

Martin JM, Veis D, Korsmeyer SJ, Sugden B (1993): LMP of EBV induces cellular phenotypes independently of expression of

BCL2. J Virol 67: 5269-5278.

Martland HS, Humphries RE (1929): Osteogenic sarcomas in dial painters using luminous paint. Arch Pathol 7: 406-417.

Masucci MG (1993): Viral immunopathology of human tumors. Curr Opin Immunol 5: 693-700.

Masuda A, Kizaka-kondoh S, Miwatani H, Terada Y, Nojima H, Okayam H (1992): Signal transduction cascade shared by epidermal growth factor and platelet -derived growth factor is a major pathway for oncogenic transformation in NRK cells. New Biol 4: 489-503.

Matin A, Haung MC (1993): Negative regulation of the neu promoter by the SV40 large T antigen. Cell Growth Differ 4: 1051-1056.

Matlashewski GP, Lamb P, Pim D, Peacock J, Crawford L, Benchimol S (1984): Isolation and charecterization of a human p53 c-DNA clone: expression of human p53 gene. EMBO J 3: 3257-3262.

Matsuzawa A, Nakano H, Yoshimoto T, Sayama K (1995): Biology of mouse mammary tumor virus (MMTV): Biology of mouse mammary tumor virus (MMTV). Cancer Lett 90: 3-11.

Mayer R, Ebbsen P (1994):. Persistent viral infection in human carcinogenesis. Eur J Cancer 3: 5-14.

Mayol X, Grana X, Baldi A, Sang N, Hu Q, Giordano A (1993): Cloning of a new member of retinoblastoma geen family (pRb2) which binds to the Ela transforming domains. Oncogenes 8: 2561-2566.

McCormick F (1993): Siganl transduction. How receptors turn ras on. Nature 363: 15-16.

McCormick F (1994): Activators and effectors of ras p21 proteins. Curr opin geet Dev 4:71-76

McCormick JJ, Maher VM (1988): Towards an understanding of the malignant transformation of diploid human fibroblasts. Mutat

Res 199: 341-351.

McCormick JJ, Maher VM (1989): Malignant transformation of mamalian cells in culture, including human cells. Envioron Mol Mutag 14: 105-113.

McCormick JJ, Maher VM (1994): Analysis of multi-step process of carcinogenisis using human fibroblasts. Risk Analysis 14: 257-263.

McCormick JJ, Kohler SK, Wantanabe M, Maher VM (1986): Abnormal senstivity of fibroblasts from xeroderma pigmentosum variants to transformation to anchorage independence by ultraviolet radiations. Cancer Res 7: 489-492.

McCormick JJ, Kohler SK, Maher VM (1987): Methods for quantitifying carcinogen induced transformation of diploid human fibroblasts to anchorage independence. J Tissue Culture Methods 10: 189-196.

McCormick JJ, Kohler SK, Maher VM (1995): Transfection of a myc gene as means of generating infinite life sapan human fibroblast strains. Methods in Cell Science 17: 141-148.

McGregor WG, Chen RH, Lukash L, Maher VM, McCormick JJ (1991): Cell cycle dependent strand bias for UV induced mutations in the transcribed strand of excision repair proficient human fibroblasts but not in the repair deficient cells. Mol Cell Biol 11: 1927-1934.

Meek D (1994): Post translation modification of p53. Semin Cancer Biol 5: 203-210.

Mercer WE, Shields MT, Amin M, Suve GJ, Apella E, Romano JW, Ullrich SJ (1990): Negative growth regulation in glioblastoma cell lines that conditionally expresses human wild type p53. Proc Nat Acad Sci USA 87: 6166-6170.

Mess AM, Hassel JA (1982): Polyoma middle T antigen is required for cell transformation. J Virol 42: 621-629.

Metzenberg S (1990): Levels of EBV-DNA in lymphoblastoid cell lines are correlated with the frequencies of spontaneous lytic

growth but not with the levels of expression of EBNA-1, EBNA-2 or latent membrane proteins. J Virol 64: 4370-4384.

Michieli P, Chedid M, Lin D, Pierce JH, Mercer WE, Givol D (1994): Induction of WAF1/CIP1 by a p53 independent pathway. Cancer Res 54: 3391-3395.

Miguel AG, Tyrell RM (1983): Induction of oxygen dependent lethal damage by monochromatic UVB (313nm) radiation: strand breakage, repair and cell death. Carcinogenesis 4: 375-380.

Miller JA (1970): Carcinogenesis by chemicals: an overview-GHA Clowes Memorial Lecture. Cancer Res 30: 559-576

Miller EC, Miller JA (1947): The presence and significance of bound aminoazo dyes in the livers of rats fed p-dimethyleaminoazobenzene. Cancer Res 7: 468-480

Miller G, Katz BZ, Niederman JC (1987): Some recent developments in the molecular epidemiology of Epstein-Barr virus infections. Yales J Biol Med 60: 307-319.

Miller BA, Ries LAG, Hankey BF, Kosary CL, Harras A, Devesa SS, Edwards BK (1993): SEER Cancer Statistics review 1973-1990, publication No 93-2789. National Cancer Institute Bethesda MD.

Miller WE, Edwardas RH, Walling DM, Rabb-Traub N (1994): Sequence variation in the Epstein Barr Virus latent membrane protein (published erratum appears in J Gen Virol(1995):76: 1305). J Gen Virol 75: 2729-2740.

Miller WE, Earp HS, Rabb-Traub N (1995): The Epstein Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor. J Virol 69: 4390-4398.

Milner J, Cook A, Mason J (1990): p53 is associated with p34 cdc2 in transformed cells. EMBO J 9: 2885-2889.

Milo GE (1990): Transformation of Human diploid fibroblasts: Molecular and genetic mechanisms. In: George E Milo and Bruce C Casto CRC press, Inc , Boca Raton , Florida.pp:1-20

Minarovits J, Hu LF, Minarovits-korumuta S, Klein G, Ernberg I (1994): Sequence-specific methylation inhibits the activity of the EBV virus LMP-1 and BCR2 enhancer promoter regions. Virology 200: 661-667.

Mitchell (1989): The biology of 6-4 photoproduct. Photochem Photobiol 49: 8050-8059.

Mitchell Dl, Jen J, Cleaver JE (1991): Relative induction of cyclobutane dimers and cytosine photuhydrates in DNA irradiaterd in vitro and in vivo with UVC and UVB light. Photochem Photobiol 54: 741-746.

Mittal R, Kumar KU, Paster A, Pater MM (1994): Differential regulation by c-jun and c-fods protooncogenes of hormones response from composite glucocorticoids response element in human papilloma virus type 16 regulatory region. Mol Endocrinol 8: 1701-1708.

Miyaska N, Saito I, Haruta J (1994): Possible involvement of EBV in the pathogenesis of Sjogren's Syndrome. Clin Immunol Immunopathol 72: 166-170.

Miyazaki I, Cheung RK, Dosch HM (1993): Viral interlukin 10 is critical for the induction of B cell growth transformation by Epstein-Barr virus. J Exp Med 178: 439-447.

Moan H, Peak P (1989): Effects of UV radiation of cells. J Photochem Photobiol 4: 21-34.

Moles JPC, Moyret B, Guillot P, Jeanteur JJ, Guilhou C, Basset-seguin N (1992): P53 gene mutations in human epithelial skin cancer. Oncogene 8: 583-588.

Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992): The mdm2 oncogene product forms a complex with p53 protein and inhibits p53 mediated transactivation. Cell 69: 1237-1245.

Moorthy RK, Thorley-Lawson DA (1993a): All three domains of EBV encoded LMP are required for transformation of rat-1 fibroblsts. J Virol 67: 1638-1646.

Moorthy RK, Thorley-Lawson DA (1993a): Biochemical, genetic

and functional anlysis of the phosphorylation sites on the Epstein Barr virus encoded oncogenic Latent Membrane Protein LMP-1. J Virol 67: 2637-2645.

Morgan TL, Yang D, Fry DG, Hurlin PJ, Kohler SK, Maher VM, McCormick JJ (1991): Charecteristic of an infinite life span diploid human fibroblast cell strains and near diploid strain arising from a clone of cells expressing a transfected v myc oncogene. Exp Cell Res 197: 125-136.

Morrison EA (1993): Natural history of cervical infection with human papilloma viruses. Clin Infect Disease 18: 172-180.

Morrison EA (1994): Natural history of cervical infection with human papilloma viruses. Clin Infect Dis 18: 172-180

Morrison HL, Soni B, Lenz J (1995): Long terminal repeat enhancer core sequences in proviruses adjacent to c-myc in T cell lymphoma induced by a murine retrovirus. J Virol 69: 446-455.

Muir CS (1988): Changing interantional patterns of cancer incidence. In: JG Fortner and JE Rhoads (eds). Accompalishment in cancer research ,1988 prize year. General Motors Cancer Research Foundation, pp:126-144. Philadelphia: J.B. Lippincott Co.

Muller E, Scheidtmann KH (1995): Purification and charecterization of a protein kinase which is activated by SV40 Large T antigen and phosphorylates the tumor suppressor protein p53. Oncogene 10: 1175-1185.

Muller E, Boldyreff B, Scheidtmann KH (1993): Charecterization of protein kinase activities associated with p53 large T immune complexes from SV40 transformed rat cells. Oncogene 8: 2193-2198.

Muller H, Lukas J, Scheneider A, Warthoe P, Barrtek, J, Eilers M, Strauss M (1994): Cyclin D1 expression is regulated by the retinoblastoma protein. Proc Nat Acad Sci USA 91: 2945-2949.

Munger K, Pietenpol JA, Pittelkow MR, Holt JT, Moses HL (1992): Transforming growth factor beta 1 regulation of c-myc

expresion, pRb phosphorylation, and cell cycle progression in keratinocytes. Cell Growth Differ 3: 291-298.

Munger K, Phelps WC (1993): The human papilloma virus E 7 protein as a transforming and transactivating factor. Biochem Biophys Acta 1155 (1): 11-123.

Munoz N, Bosch FX, de Sanjose S, Viladiu P, Tormo J, Moreo P, Ascunce N, Gonzalez LC, Tafur L, Gili M (1993): Human papilloma virus in the etiology of cervicouterine cancer. Biol ofcina Sanit Panam 115: 301-309.

Murakami Y, Hurtwitz J (1993a): Functional interactions between SV40 T antigen and other replication proteins at the replication fork. J Biol Chem 268: 11018-11017.

Murakami Y, Hurwitz J (1993b): DNA polymerase alpha stimulates the ATP-dependent binding of SV40 tumor T antigen to the SV40 origin of replication. J Biol Chem 268: 11008-11017.

Mymryk JS, Bayle ST (1994a): Multiple pathways for gene activation inrodent cells by the smaller adenovirus 5 E1A protein and their relevance to growth and trasnformation. J Gen Virol 74: 2131-2141.

Mymryk JS, Bayley ST (1994b) Induction of gene expression by exon 2 of the major E1A proteins of adenovirus type 5. J Virol 67: 6922-6928.

Nakagomi H, Dolcetti R, Bejarano MT, Pissa P, Kiessling R, Masucci MG (1994): The Epstein-barrr virus latent membrane protein -1 (LMP1) induces interlukin-10 production in Burkitt lymphoma lines. Int J Cancer 57: 240-244.

Nakane H, Takeuchi S, Yuba S, Saijo M, Nakatsu Y, Murai H, Nakatsura Y, Ishikawa T, Hirota S, Kitamura Y et al., (1995): High incidence of ultraviolet B or chemical carcinogen induced skin tumors in mice laking the xeroderma pigmentosum group A gene. Nature 377: 165-168.

Nakazawa HD, English PL, Rendell K, Nakazawa N, Martel N, Armstrong BK, Yamasaki H (1994): UV and skin cancer : Specific p53 mutations in normal skin as a biological relevant

exposure measurement. Proc Nat Acad Sci USA 91: 360-364.

Namba M, Nishitani K, Kimoto T (1978): Carcinogeesis in tissue cuture 29:Neoplastic transformation of a normal human diploid cell starin WI:38 with cobalt -60 gamma rays. Japan J Exp Med 48: 303-306.

Namba N, Nishitani F, Fukushima T, Kimoto J, Utsonomiya J, Hayflick L (1981): Neoplastic transformation of human diploid fibroblast treated with chemical carcinogens and Co-690 gamma rays. Gann Monogr Cancer Res 27: 221-230

Namba M, Nishitani K, Hyodh F, Fukushima F, Kimoto T (1985): Neoplatic transfromation of human fibroblasts (KMST-6) by treatment with 60 Co gamma rays. Int J Cancer 35: 275-280.

Namba M, Iijima M, Kondo T, Jahan I, Mihara K (1993): Immortalization of normal human cells is a multistep process and rate limiting step of neoplastic transformation of the cells. Human Cell 6: 253-259.

Nartaraj AJ, Jonathan CT, Ananthswamy HN (1995): p53 gene mutations and photocarcinogenesis. Photochem Photobiol 62: 218-230.

Nelson MA, Einsphar JG, Albert CA, Balfour JA, Wymer A, Welsch SJ, Salasche SJ, Bangert JL, Gorgan TM, Bozzo PO (1994): UV and skin cancer: specific p53 mutations in normal skin as a biologically relevant exposure measurement. Proc Nat Acad Sci USA 91: 360-364.

Nelson WG, Kastan MB (1994): DNA strand breaks and DNA template alterations that trigger p53 dependent DNA damage response. Mol Cell Biol 14: 1815-1823.

Nevins JR (1993): Disruption of cell cycle control by viral oncoproteins. Biochem Soc Trans 21: 935-938.

Newbold RF, Overell RW (1983): Fibroblast immortality is prerequisite for transformation by EJ c Hras oncogene. Nature 304: 648-651.

Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R,

Cleary K, Bigner SH, Davidson N, Baylin S, Deville P, Glovere T, Collins FS, Weston A, Modalli R, Vogelstein B (1989): Mutations in the p53 gene occur in diverse human tumor types. Nature 342: 705-708

Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA (1994): Deletions of the cyclin dependent kinase 4 in multiple human cancers. Nature 368: 753-746.

Nowell PC (1976): The clonal evolution of tumor cell population. Science 194: 23-28.

Nowell PC (1986): The mechanisms of tumor progression. Cancer Res 46: 2203-2206.

Nusse R, Varmus HE (1982): Many tumors induced bythe mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31: 99-109.

Nusse R, van ooyen A, Cox D, Fung YKT, Varmus HE (1984): Model of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307: 131-136.

Offord EA, Chappuis PO, Beard P (1993): Different stability of AP-1 proteins in human keratinocytes and fibroblasts cells: possible role in the cell type specific expression of human papilloma virus type 18 genes. Carcinogenesis 14: 2447-2455.

Olson DC, Levine AJ (1994) The properties of p53 proteins selected for the loss of suppression of transformation. Cell Growth Differ 5: 61-71.

Osman R, Pardo L, Banfelder J, Mazurek AP, Shvartzman L, Weinstein H (1991): Molecular mechanisms of radiation induced DNA damage: H-addition to bases, direct ionization and double stranded break. Free Radic res Commun 2: 465-467

Pahel G, Aulabaugh A, Short SA, Barrnes JA, Painteer GR, Ray P, Phelps WC (1993): Structural and functional charecterization of HPV16 E7 protein expressed in bacteria. J Biol Chem 268: 26018-26025.

Paquette B, Little JB (1992): Genomic rearrangements in mouse

c3H/10T1/2 cells transformed by X-rays , UVC and 3 methyle chloranthrene ,detected by a DNA fingerprint assay. Cancer Res 52: 5788-5793.

Parada CF, Land H, Weinberg RA, Wolf D, Rotter V (1984): Cooperation between gene encoding p53 tumor antigen and ras in cellular transformation. Nature 312: 646-649.

Patterson RL, Kelleher CA, Streib JE, Amankonah TD, Xu JW, Jones JF, Gelfand EW (1995): Activation of human thymocyte after infection by EBV. J Immunol 154 : 1440-1449.

Patton JD, Rowan LA, Mendrala AL, Howell JN, Maher VM, McCormick JJ (1984): Xeroderma pigmentosum (XP) fibroblasts including cells from XP variants are abnormally sensitive to the mutagenic and cytotoxic actions of broad spectrum simulated sunlight. Photochem Photobiol 39: 37-42.

Payne CM, Grogan TM, Cromey DW, Bjore CG Jr, Kerrigan DP (1987): An ultrastructural morphometric and immunophenotypic evaluation of Burkitt's and non-Burkitt's like lymphomas. Lab Invest 57: 200-218.

Peacock JW, Benchimol S (1994): Mutations of the endogenous p53 gene in cells transformed by HPV-16 E7 and EJ c-ras confers a growth advantage involving autocrine mechanism. EMBO J 13: 1084-1092.

Peacock JW, Chung S, Bristow RG, Hill RP, Benchimol S (1995): The p53-mediated G-1 checkpoint is retained in tumorigenic rat embryo fibroblast clones transformed by the human papilloma virus type 16 E 7 gene and EJ-ras. Mol Cell Biol 15: 1446-1454.

Peak MJ, Peak JG (1989): Solar ultraviolet induced damage to DNA. Photodermatol 6: 1-15.

Peak MJ, Peak JG, Carnes BA (1987): Induction of direct and indirect single-strand breaks in human cell DNA by far and near uv radiation:actions spectrum and mechnisms. Photochem Photobiol 45: 381-387.

Peeper DS, Zantema A (1993): Adenovirus E1A proteins transform

cells by sequestering regulatory proteins. Mol Biol Rep 17: 197-207.

Perchellet J, Pechellet EM, Gali HU, Gao XM (1995): Oxidant stress and multiskin carcinogenesis. In: Skin cancer: Mechanisms and Human relevance. ed: H. Mukhatar, CRC press, pp.145-155.

Peto R (1980): Genetic predisposition to cancer. In: Cancer Incidence in Defined Populations, Banbury Report 4, Cold Spring Harbor laboratory Press, Cold Spring Harbor, NY.

Peto R, Roe FJ, Lee PN, Levy L, Clack J (1990): Cancer and ageing in mice and men. Br J Cancer 32: 411-426.

Pierceall WE, Ananthaswamy HN (1991): Transformation of NIH3T3 cells by transfection with UV-irradiated human c Hras -1 protooncogene DNA. Oncogene 2085-2091.

Pierceal WET, Mukhopadhay LH, Goldberg H, Ananthswamy HN (1991): Mutations in the p53 tumor suppressor gene in humna cutaneous squamous cell carcinoma. Mol Carcinogenesis 4: 445-449.

Pierceall WE, Kripke ML, Ananthswamy HN (1992): N-ras mutations in UV -induced radiation induced murine skin cancer. Cancer Res 52: 3946-3951.

Pinion SB, Kennedy JH, Miller RW, Maclean AB (1991): Oncogene expression in cervical intraepithelial neoplasia and invasive cancer of cervix. Lancet 337: 819-820.

Porcu P, Ferber A, Pietrzkowski Z, Roberts CT, Adamo M, Leroith D, Baserga R (1992): The growth stimulatory effects of the SV-40 T antigen requires the interaction of insulin-like growth factor I with its receptor. Mol Cell Biol 12: 5069-50677.

Pott P (1775): Chirugical observations relative to the cancer of the scrotum. London: Hawes, L., Clark, W., and Collins, R.

Prevot S, Neris J, De-saint D, Maur PP (1994): Detection of EBV in an hepatic leomyomatous neoplasm in an adult human

immunodeficiency virus -1 infected patients. Virchows- Arch 425: 321-325.

Punneon K, Jansen CT, Puntala A, Ahutopa M (1991): Effects of ultraviolet radiation A and B irrdaition on lipid peroxidation and activity of antioxidantenzymes in the Keratinocytes in culture. Photodermatol Photoimmunol Photomed 8: 3-6.

Quinilan MP (1993): Expression of antisense Ela in 293 cells results in altered morphjologies and cessation of proliferation. Oncogene 8: 257-265.

Quinilan MP (1994): Enhanced proliferation, growth factor induction and immortalization by adenovirus E1 A 12 S in the absence of E1B. Oncogene 9: 2639-2647.

Quintanilla M, Brown K, Ramsden M, Balmain A (1986):Carcinogen-specific mutations and amplifications of Ha -ras during mouse skin carcinogenesis. Nature 322:78-80

Raddy P, Scinicariello RF, Wagner RF, Tyring SK (1992): p53 mutations in basal cell carcinoma. Cancer Res 52: 3804-3806.

Ramazainni B (1964): De Morbis Arteficium, Diatribia (Disease Of Workers). New York: Hafner.

Raptis L, Marcellus RC, Whitfield JF (1990): Transforming signals generated by the polyoma virus tumor antigens. Adv Enzyme Regul 30: 133-142.

Raycroft L, Wu H, Lozano G (1990): Transcriptional activation by wild type but not transforming mutant of p53 anti-oncogene. Science 249: 1049-1051.

Raycroft L, Wu H, Lozano G (1990): Transcriptional activation bywild type but not transforming mutants of the p53 antioncogene. Science 249: 1049-1051.

Reddel RR, Salghetti SE, Willey JC, Ohnuli Y, Ke Y, Gerwin BI, Lechner JF, Harris CC (1993): Development of tumorigenecity in simian virus 40-immortalized human bronchial epithelial cell lines. Cancer Res 53: 985-991.

Reddel RR, de Saliva R, Duncan EL, Rogan EM, Whitaker NJ, Zahra DG, Ke Y, McMenamin MG, Gerwin BI, Harris CC (1995): SV-40 induced immortalization and ars transformation of human bronchial epithelial cell. Int J Cancer 61: 199-205.

Reed M, Wang Y, Mayer G, Anderson ME, Schwedes JF, Tegtemeyr P (1993): p53 domains: suppresssion, transformation and transactivation. Gene Expr 3: 95-107.

Rees J (1994): Genetic alterations in non-melanoma skin cancer. J Invest Dermatol 103: 747-750.

Rehn L (1895):Blasengeschwultse bei fuchsin-arbeitin. Arch. Klin. Chir 50: 588-100.

Reinhold DS, Walicka M, ElKassaby M, Milam L, Kohler SK, Dunstan RW, McCormick JJ (1995): Malignant transformation of human fibroblasts by ionizing radiations. Int J Rad Biol (in press)

Reiss M, Brash DE, Munoz-Antonia T, Simon JA, Ziegler A, Vellucci VF, Zhou ZL (1992): Status of p53 tumor suppressor gene in human squamous carcinoma cell lines. Oncol-Res 4: 349-357.

Reznikoff CA, Bertram DW, Heidelberger C (1973): Quantitative and qualitative studies of chemical transformation of cloned C3H mouse embryo cells sensitive to post-confluence of growth. Cancer Res 33: 3238-3242.

Reznikoff CA, Kao C , Messing EM , Newton M , Swaminathan S (1993): A molecular model of human bladder carcinogenesis. Seminar Cancer Biol 4: 143-152.

Rhim JS (1993): Neoplastic transformation of human cells in vitro. Crit Rev Oncogene 4: 313-335.

Rinehart CA, Laundon CH, Mayben JP, Lyn-cook BD, Kaufman DG (1993): Conditional immortalization of human endometrial stromal cells with a temperature sensitive SV40. Carcinogenesis 14: 993-999.

Robbins JH, Kraemer KH, Lutzner MA, Festoff BW, and Koon HG

(1974): Xeroderma pigmentosum: an inherited disease with sun senstivity, multiple cutaneous neoplasms and abnormal DNA repair. Ann Intern Med 80: 221-248.

Roberts S, Ashmole I, Johnson GD, Kreider JW, Gallimore PH (1993): Cutaneous and mucosal Human papilloma virus E4 proteins form intermediate filamennt-like structures in epithelial cells. Virology 197: 176-187.

Roberts S, Ashmole I, Sheehan TM, Davies AH, Gallimore PH (1994): Human papillomavirus type 1 E4 protein is a zinc binding protein. Virology 202: 865-874.

Robertson E, Kieff E (1995): Reducing the complexity of the transforming EBV genome to 64 Kilo base pairs. J Virol 69: 983-993.

Robertson ES, Grossman S, Johansen E, Miller C, Lin J, Tomkinson B, Kieff E (1995): Epstein Barr virus nuclear protein 3C modulates transcription through interaction with the sequences specific DNA binding protein J kappa. J Virol 69: 3108-3116.

Roehl HH, Anderson MM, Mehigh CS, Conrad SE (1993): Regulation of cellular thymidine kinase gene promoter in SV40 infected cells. J Virol 67: 4964-4971.

Roelink H, Wagenaar E, Nusse R (1992): Amplification and proviral activation of several of several wnt genes during the progression and clonal variation of mouse mammary tumors. Oncogene 7: 487-492.

Rogers RP, Strominger JL, Speck SH (1992): EBV in B lymhocytes : viral gene expression and function in latency. Adv Cancer Res 58: 1-26.

Rosahl T, Doerfler W (1992): Alterations in the levels of expression of specific cellular genes in the adenovirus - infected and transformed cells. Virus Res 26: 71-90.

Rose TM, Trembley S, Khanddjian EW (1992): Repression of a GO assosciated 65-kilodalton protein in actively proliferating

and SV40 transformed mouse kidney cells. Biochem Cell Biol 70: 149-155.

Rosl F, Arab A, Klevenz B, zur-Haussen H (1993): The effects of DNA methylation on gene regulation of human papilloma viruses. J Virol 74: 791-801

Ross D, Ziff E (1994): Defective processing of human adenovirus2 late transcription unit mRNA during abortive infections in monkey cells. Virology 202: 107-115.

Roth G, Curiel T, Lacy J (1994): EBNA-1 antsense oligodeoxynucleotide inhibits the proliferation of EBV immortalized B cells. Blood 84: 582-585

Rous P, Kidd JG (1941): Conditional neoplasms and subthreshold neoplastic state. J Exp Med 73: 365-389.

Rowe M, Khanna R, Jacob CA, Argaet V, Kelley A, Powis S, Belich M, Croom carter D, Lee S, Burrows SR et al., (1995): Restoration of endogenous antigen processing in Burkitt's Lymphoma cells by EBV latent membrane protein-1: coordinate upregulation of peptide transporters and HLA clas I antigen expression. Eur J Immunol 25: 1374-1384.

Rowley JD (1991): Molecular cytogenetics: Rosetta Stone for understanding cancer. Twenty-ninth GHA Clowes memorial award Lecture. Cancer Res 50: 3816-3825.

Ryan JJ, Danish R, Gottleib CA, Clarke MF (1993): Cell cycle analysis of p53 -induced cell death in murine erytholeukemia cells. Mol Cell Biol 13: 711-719.

Sabbatani P, Chiou SK, Rao L, White E (1995): Modulation of p53-mediated transcriptional repression and apoptosis by the adenovirus E1B 19K protein. Mol Cell Biol 15: 1060-1070.

Sage E (1993): Distribution and repair of photolesions in DNA: genetic consequence and the role of sequence context. Photochem Photobiol 57: 163-174.

Sager R (1991): Senescence as a mode of tumor suppression. Enviorn Health Perspective 93: 59-62.

Sample J, Kieff E (1990): Transcription of EBV genome during latency in growth transformed lymphocytes. J Virol 64: 1667-1674.

Sample J, Kieff EF, Kieff ED (1994): EBV-type 1 and type 2 have nearly identical LMP-1 transforming genes. J Gen Virol 75: 2741-2746.

Sandvej KB, Hamilton -Dutoit SJ, Pallesen G (1993): Influence of EBV encoded LMP-1 on the expression of CD23 antigen, ICAM-1, and LFA-3 in Hodgkin and Reed sternberg cells. A morphometric analysis. Leuk Lymphoma 9: 95-101.

Sanford KK, Price FM, Rhim JS, Stampfer MR, Parshad R (1992): Role of DNA repair in malignant transformation of human mammary epithelial cells in culture. Carcinogenesis 13: 1137-1141.

Sanford K, Barker BE, Woods MW, Parshad R, Law LW (1967): Search for the indicators of neoplastic transformation in vitro. J Nat Cancer Inst 39: 705

Sasaki T, Yoshida T (1935):Liver carcinoma induced by feeding o-amindo-azotulene. Virchows Arch Pathol Anat 295: 175-220.

Sato M, Nishigori C, Zghal M, Yagi T, Takebe H (1993): Ultraviolet radiation specific mutations in p53 gene in the skin tumors in xeroderma pigmentosum patients. Cancer Res 53: 2944-2946.

Sato M, Nishogori C, Lu Y, Zghal T, Yagi T, Takebe H (1994): Far less frequent mutations in ras gene than in p53 gene in skin tumors of xeroderma pigmentosum patients. Mol Carcinogenesis 11: 98-105.

Satoh Y, Nishigori C (1988): Xeroderma pigmentosum: clinical aspects. Gann Monogr. Cancer Res 35: 113-125.

Schaffer WI (1983): Usage of vertebrate, invertebrate and plant tissue cells , tissues and organ culture terminology. Tissue Culture Rep 17: 19-23.

Scheffner M, Munger K, Huibregtse, JM, Howley PM (1992):

Targeted degradation of the retinoblastoma protein by HPVE7-E6 fusion protein. EMBO J 11: 2425-2431.

Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993): The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75: 495-505.

Scheidtmann KH, Haber A (1990); Simian virus 40 large T antigen induces an activated a protein kinase which phosphorylates the transformation associated protein p53. J Virol 64: 672-679.

Schiffmann MH, Bauer HM, Hoover RN, Glass AG, Cadell DM, Rush BB, Scott DR, Sherman ME, Kurman RJ, Washolder S (1993): Epidemiological evidence showing that human papilloma virus infection causes most cervical intraepithelial neoplasia. J Nat Cancer Inst 85: 958-964.

Schirmbeck R, Deppert W (1991): Structural topography of simian Virus 40 DNA replication. J Virol 65: 2578-2588.

Schonthal A, Srinivas S, Eckhart W (1992): Induction of c-jun protooncogene expression and transcription factor AP-1 activity by the polyoma virus middle -sized Tumor antigen. Proc Nat Acad Sci USA 89: 4972-4976.

Scotto J, Fears TR (1978): Skin cancer epidemiology: research needs. Nat Cancer Inst Monogr 50: 169-177.

Scotto J, Fears TR, Fraumeni JF (1981): Incidence of non melanoma skin cancer in United States. Publ No. (NIH) 82-2433, USA Department of Health and Human Services, Washington DC.

Segawa K, Maruyama M, Murakami Y, Wada T, Tanpakushits U (1993): Molecular Biology of SV40, polyomavirus and adenovirus. Recent Progress 38: 1402-1411.

Sell C, Rubin M, Rubini R, Liu JP, Efstratiadis A, Baserga R (1993): Simian virus 40 large tumor antigen is unable to transform mouse embryonic fibroblasts lacking type 1 insulinlike growth factor receptor. Proc Nat Acad Sci USA 90: 11217-11221.

Seo-YS, Muller F, Lusky M, Gibbs E, Kim HY, Phillips B, Hurwitz J (1993a): Bovine pappilloma virus (BPV) encoded E2 protein enhances binding of E1 protein to BPV replication origin. Proc Natl Acad Sci USA 90: 2865-2869.

Seo-Ys, Muller F, Lusky M, Hurwitz J (1993b): Bovine papilloma virus (BPV)-encoded El protein contains multiple activities required for the BPV DNA replication. Proc Nat Acad Sci USA 90: 702-706.

Setlow RB (1974): The wavelength of sun light effective in producing skin cancer. A theoratical anlysis. Proc Nat Acad Sci USA 71: 3363-3366.

Setlow RB (1983): Variations in DNA repair among humans In: CC Hariss and H. Auturp (eds). Human Carcinogenesis pp. 231-254. New York, Academic Press, Inc.

Setlow RB, Carrier WL (1966) Pyrimidine dimers in ultraviolet radiated DNA's. J Mol Biol 17: 237-239.

Shay JW, Wright WE, Werbin H (1991): Defining the molecular mechanism of human cell immortalization. Biochem Biophys Acta 1072: 1-7.

Shay JW, Wright WE, Braiskyte D, Van der haegen BA (1993): E6 of human papilloma virus type 16 can overcome the M1 stage of immortalization of human mammary epithelial cells but not in human fibroblasts. Oncogene 8: 1407-1413.

Shay JW, Tomilinson G, Piatyszek MA, Gollahon LS (1995): Spontaneous immortalization of breast epithelial cells from Li-Fraumeni syndrome. Mol Cell Biol 15: 425-432.

Shein HM, Enders JF (1962): Transformation induced by SV40 in human renal cell cultures I. Morphology and growth charecteristics. Proc Nat Acad Sci USA 48:1164-1170.

Shen-Ong GL, Keath EJ, Picolli SP, Cole MD (1982): Novel myc oncogene RNA from abortive immunoglobin-gene recombination in mouse plasmacytoma. Cell 31: 443-452.

Shepherd SE, Howe JA, Mymryk JS, Bayley ST (1993): Induction

of cell cycle in baby rat kidney cells by adenovirus type 5 Ela in the abscence of Elb and a possible influence of p53. J Virol 67: 2944-2949.

Shi C, Weinberg RA (1982): Isolation of a transforming sequences from human bladder cacarcinoma cells. Proc Nat Acad Sci USA 79: 2845-2849.

Shibata D, Weiss LM (1992): Epstein Barr virus asosciated gastric adenocarcinoma. Am J Pathol 140: 769-74.

Shibata D, Weiss LM, Hernandez AM, Nathwani BN, Berstein L, Levine AM (1993): Epstein Barr virus assosciated non - Hodgkin's lymphomas patients infected with the human immunodeficiency virus {see comments} Blood 81: 2102-9.

Shih C, Shilo BZ, Goldfarb MP, Dannenberg A, Weinberg RA (1979):Passage of phenotypes of chemically transformed cells via transfection DNA and chromatin. Proc Nat Acad Sci USA 76: 5714-5718.

Silinins SL, Sculley TB (1995): Burkitt Lymphoma cells are resistant to programmed cell death in the presence of latent antigen EBNA-4. Int J Cancer 60: 65-72.

Silinskas KC, Kateley SA, Tower JE, Maher VM, McCormick JJ (1981): Induction of anchorage independenct growth in human fibroblasts by propane sultone. Cancer Res 41: 1620-1628.

Sinclair AJ, Palmero I, Peters G, Farrell PJ (1994): EBNA-2 and EBNA-LP cooperate to cause Go to G1 transition during immortalization of resting human B lymhocytes by EBV. EMBO J 13: 3321-3328.

Silverberg E, Boring CC, Squires TC (1990): Cancer statistics. CA 40: 9-26.

Slaga TJ, Fischer SM, Weeks CE, Klein-Szanto AJ, Reiners JJ Jr (1982): Studies on the mechanisms involved in the multistage carcinogeneisis in mouse skin. J cell Biochem 18: 99-119.

Slebos RJC, Lee MH, Kessis TD, Williams BO, Jacks T, Hedrick L, Kastan MB, Cho KR (1994): P53 dependent G1 arrest involves

pRb-related proteins and is disrupted by human papillomavirus 16 E 7 oncoprotein. Proc Nat Acad Sci USA 91: 5320-5325.

Slingerland JM, Benchimol S (1991); Transforming activity of muatant human p53 alleles. J Cell Physiol 148: 391-395.

Smith ML, Chen IT, Zhan Q, Bac I, Chen CY, Gilmer TM, Kastan MB, o'Connors PM, Fornace AJ (1994): Interaction of p53 regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266: 1376-1380.

Soemmerring ST (1795): De Morbis pasorum Absorbeutium Corporis Humani. Frankfurtam Main, Germany: Varretrapp and Weuner.

Soussi T, de Fromentel C, Mechali M, May P, Kress K (1990): Structural aspects of p53 protein in relation to gene evolution. Oncogene 5: 945-952.

Sporn MB, Todaro GJ (1980): Autocrine secretion and malignant transformation of cells. N Eng J Med 303: 878-880

Stahl H, Knipper R (1983): Simian virus 40 large tumor antigen on replicating viral chromatin: tight binding and localization on the viral genome. J Virol 47: 65-76.

Stahl H, Droge P, Knipper R (1986): DNA helicase activity of SV40 large tumor antigen. EMBO J 5: 1939-1944.

Stampfer MR, Fusenig N, Rogan EM (1993): P53 mutations in human immortalized epithelial cell lines. Cancer Res 14: 1491-1496.

Stamps AC, Davies SC, Burman J, O'Hare MJ (1994): Analysis of proviral integration on hwmgn mammary epithelial temperature-sensitive SV 40 T antigen construct. Int J Cancer 57: 865-874

Stanbridge EJ (1976): Suppression of malignancy in human cells. Nature 260: 17-20.

Stehhelin D, Varmus HE, Bishop JM, Vogt PK (1976): DNA related to the transforming gene of avian sarcoma viruss present in the normal avian DNA. Nature 260: 170-173.

Stein B, Rhamsdorf HJ, Steffen A, Litfin M, Herrlich P (1989): UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type-1, collagenase, c-fos, and metallothionein. Mol Cell Biol 9: 5169-5181.

Stevens CW, Monoharan TH, Fahl WE (1988): Charecterization of mutagen-activated cellular oncogenes that confer anchorage independence to human fibroblsts and tumorigenecity to NIH3T3 cells:sequence analysis of an enzymatically amplified mutant HRAS allele. Proc Natl Acad Sci USA 85: 3875-3879.

Stewart JP, Arrand JR (1993): Expression of the EBV LMP in nasopharyngeal carcinoma biopsy specimens. Human Pathol 24: 239-242.

Stiles CD, Desmond W, Chuman LM, Sato G, Saier HM Jr (1976) Relationship of cell growth behavior in vitro to tumorigenecity in athymic nude mice. Cancer Res 36:3300-3305.

Strickland P (1986): Photocarcinogenesis by near ultraviolet A radiation in Sencar mice. J Invest Dermatol 87: 272-275.

Strong LC (1982): Genetic and Enviornmental Interactions. In: Cancer epidemiology and Prevention (D Schottenfeld and JF Fraumeni, Eds) pp:506-516. W.B.Saunders, Philidelphia..

Su ZZ, Shen R, Young CS, Fisher PB (1994): Gentic analysis of carcinogen enhancement of type 5 adenovirus transformation of cloned Fischer rat embryo fibroblast cells. Mol Carcinog 8: 155-66.

Suarez HG (1989): Activated oncogenes in human tumors. Anticancer Res 9: 1331-1343.

Suarez HG, daya-Grosjean L, Schlaifer D, nardeux P, Renault G, Bos JL, Sarasin A (1989): Activated oncogenes in human skin tumors from a repair-deficient syndrome, xeroderma pigmentosum 49: 1223-1228

Subramanian T, Tarodi B, Govindarajan R, Boyd JM, Yoshida K, Chinnadurai G (1993): Mutational analysis of the transforming and apoptosis suppression activities of the adenovirus E1b 175

R protein. Gene 124: 173-81.

Sukumar S (1990): An experimental analysis of cancer: role of ras oncogenes in multistep carcinogenesis. Cancer Cell 2: 199-204.

Sun Y, Hegamyer G, Nakamura K, Kim H, Oberley LW, Colburn NH (1993): Alterations in the p53 tumor suppressor gene in transformed mouse liver cells. Int J Cancer 55: 952-956.

Sutherland B M, Cimino JS, Delihas N, Shih AG, Oliver RP (1980): Ultraviolet light -induced transformation of human cells to anchorage independent growth. Cancer Res 40: 1934-1938.

Sutherland BM, Ddelihas NC, Oliver RP, Sutherland JC (1981): Action spectra of Ultraviolet light-induced transformation of human cells to anchorage independent growth. Cancer Res 41: 2211-2216.

Sutherland BM, Freeman AG, Bennet PV (1988): Human Cell transformation in the study of sunlight-induced cancers in the skin of man. Mutat Res 199: 425-436.

Sutter C, Strickland PT, Mukhtar H, Agarwal R, Winter H, Schweizer J (1993): Ras gene activation and aberrant expression of Karatin K13 In ultraviolet B radiation Induced epidermal neoplasia of mouse skin. Mol Carcinogenesis 8: 13-19.

Suzuki F, Han A, Lankas R, Utsumi H, Elkind M (1981): Spectral dependencies of killing, mutations, and transformation in mammalian cells and their relevance to hazards caused by solar UV radiation. Cancer Res 41: 4916-4924.

Syrjanen KJ (1993): Human papilloma virus in genital carcinogenesis. Sex Transm Dis 21: 86-89

Talmage DA, Listerud M (1994): Retinoic acid suppresses polyoma virus transformation by inhibiting transcription of the c-fos proto-oncogene. Oncogene: 3557-3563.

Tamada Y (1993): The biological activities of the human

papilloma virus type 16 E6/E7 cDNAs cloned from the SiHa cervical carcinoma cell line. Hokkaido Igaku Zasshi 68: 849-61.

Tan SH, Gloss B, Bernard H (1992): During negative regulation of the human papilloma virus -16, E6 promoter, the viral E2 protein can displace Sp1 from a proximal promoter element. Nucleic Acid Res 209: 251-256

Tang Q, Ginsberg HS (1994): Transdominant interference of type 5 adenovirus Ela mutants in cell transformation. J Virol 68: 2127-2134.

Taylor RW (1878): On the eroderma of Hebra. Trans American Dermatol Society 8: 37-38.

Taylor AM (1987): DNA, light and Dewar pyrimidones: the structure and biologic significance of TpT3. J Am Chem Soc 109: 2834-2835.

Taylor AM (1992): Ataxia telengectasia genes and predisposition to Leukemia, lymphoma and breast cancer. Br J Cancer 66: 5-9.

Telling GC, Williams J (1993): The Elb 19 kilodalton protein is not essential for transformation of rodent cells in vitro by adenovirus type 5. J Virol 68: 1600-1611.

Telling GC, Williams J (1994): Constructing chimeric type 12/type 5 adenovirus E1A genes and using them to identify an oncogenic determinant of adenovirus type 12. J Virol 68: 877-887.

Temin HM, Baltimore D (1972): RNA-directed DNA synthesis and RNA tumor viruses. Adv Virus Res 17: 129-186.

Teodoro JG, Halliday T, Whalen SG, Takeyesu D, Graham FL, Branton PE (1994):Phosphorylation at the carboxy terminus of the 55 Kilodalton adenovirus type 5 E1B protein regulates transforming activity. J Virol 68: 776-865.

Teoule R (1987): radiation induced DNA damge and its repair. Int J radiat Relat Stud Phys chem Med 51: 573-589.

Thiry L, Vokaer R, Detremmerie O, De-Schepper N, Herzog A, Bollen A (1993): Cancer of the cervix , papilloma virus , contraception and tobacco. J Gynaecol Obstet Biol Reprod 22: 447-86.

Thomas JE, Azzi A, Soriano P, Wagner EF, Brugge JS (1993): Induction of tumorformation and cell trasnformation by polyoma middle T antigen in the absence of Src. Oncogene 8: 2521-2529.

Thompson LH (1991): Properties and application of human DNA repair genes. Mutat Res 247: 213-219

Thompson LH, Brookman KW, Weber CA, Salazar EA, Reardon JT, Sancar A, Deng Z, Siciliano MJ (1994): Molecular cloning of the human nucleotide excision repair gene ERCC4. Proc Nat Acad Sci USA 91: 6855-6859.

Tiemann F, Deppert W (1994): Immortalization of Balb/c mouse embryo fibroblasts alter SV40 Large T antigen interactions with the tumor suppressor p53 and results in reduced SV40 efficiency. Oncogene 9: 1907-15.

Tong X, Yalaminchilli R, Harada S, Klieff E (1994): The EBNA-2 arginine -glycine domain is critical but not essential for the B lymhocyte growth transformation; the rest of the region 3 lacks interactive domains. J Virol 68: 6188-6197.

Tong X, Wang F, Thut CJ, Kieff E (1995): The EBNA-protein2 acidic domain can interact with TFIIB, TAF40, RPA70 but not with TATA binding proteins. J Virol 69: 585-588.

Tornaletti S, Rozek D, Pfeifer GP (1993) The distribution of UV photoproducts a long the human p53 gene and its relation to mutatins in the skin cancer. Oncogene 8: 2051-2055.

Tornaletti S, Pfeifer GP (1994): Slow repair of pyrimidine dimers at p53 mutations hotspots in skin cancer. Science 263: 1436-1448

Tremblay PJ, Kozak CA, Jolicoeur P (1992): Identification of a novel gene, Vin-1, in murine leukemia virus-induced T cell leukemias by provirus insertional mutagenesis (published erratum appears in J Virol 66: 5176-5180). J Virol 66:1344-

1353.

Trojan J, Blossey BK, Johnson TR, Rudin SD, Tykocinski M, Ilan J (1992): Loss of tumorigenecity of rat glioblastoma directed by episome-based antisense cDNA transcription of Insulin-like growth factor I. Proc Nat Acad Sci USA 89: 4874-4878.

Tsang NM, Nagasawa H, Li C, Little JB (1995): Abrogation of p53 function by transfection of HPV 16 E6 gene enhances the resistance of human diploid fibroblats to ionizing radiation. Oncogene 109: 2403-2408.

Tsui S, Schubach WH (1994): EBNA-2A oligomerizes in-vitro and in-vivo through a region required for the B cell transformation. J Virol 68: 4287-4294.

Tung B, McGregor WG, Wang YC, Maher VM, McCormick JJ (1996): Comparison of rate of excision repair of major UV photoproducts in the strands of human HPRT gene of normal and xeroderma pigmentosum variant cells. Mutat Res 362: 65-74.

Tyrell RM, Keyse SM (1990): New trends in photobiology: The interaction of UVA radiation with cultured cells. J Photochem Photobiol 4: 349-361.

Ullrich SJ, Zeng ZZ, Jay G (1994): Transgenic mouse model of human gastric and hepatic carcinomas. Semin Cancer Biol 5: 61-68.

Unger T, Mietz JA, Scheffner M, Yee CL, Howley PM (1993): Functional domains of wild type and mutant p53 prtoteins involved in transcriptional regulation, transdominant inhibition and transformation suppression. Mol Cell Biol 13: 5186-5194.

Urbach F (1969): The biologic effects of Ultraviolet radiation. Pergmaon Press, New York.

Urbach F (1978): Evidence and epidemiology of ultraviolet radiation induced cancer in man. NCI Monog 50: 5-10

Ushijima T, Makino H, Nakayasu M, Aonuma S, Takeuchi M, Segawa K, Sugimura T, Nagao M (1994): Presence of p53 mutations in

3Y1-B clone 1-6: a rat cell line widely used as a normal immortalized fibroblats. Japn J Can Res 85: 455-458.

vander-Eb AJ (1993): Unusual interactions of adenoviral 5 and 12 Elb protein with p53. Jpn J Cancer Res 84: 818-820.

Valentinis B, Porcu PL, Quinn K, Baserga R (1994): The role of Insulin-like growth factor I receptor in the transformation by SV40 T antigen. Oncogene 9: 825-831.

Van -der-Geer P, Wiley S, Lai VK, Oliver JP, Gish GD, Stephens R, Kaplan D, Shoelson S, Pawson T (1995): A conserved aminoterminal SHC domain binds to phoshphotyrosine motifs in activated receptors and phoshotpeptides. Curr Biol 5: 404-412.

Van Duuren BL, Goldschmidt BM, Langseth L, Mercado G, Sivak A (1968): Alpha haloethers: a new type of alkylating carcinogens. Arch Environ Health 16: 472-476

Van'T Veer LJ, Burgering MT, Versteeg R, Boot AJR, Ruiter DJ, Osanto S, Schrier PJ, Bos JL (1989): N-ras mutations in human cutaneous melanoma from sun-exposed boody sites. Mol Cell Biol 9: 3114-3116.

Van-der Heuvel SJ, van-Laar T, van-der-Eb AJ (1993): Large E1B proteins ofadenovirus types 5 and 12 have different effects on p53 and distinct roles in cell transformation. J Virol 67: 5226-5234.

van-Leeuwen F, Nusse R (1995): Oncogene activation and oncogene cooperation in MMTV-induced mouse mammary cancer. Semin Cancer Biol 6: 127-133.

Vander Riet P, Karp D, Farmer E, Wei Q, Grosman L, Tokino L, Ruppert JM, Sidransky D (1994): Progresion of basal cell carcinoma through loss sof chromosome 9q and inactivation of a single p53 allele. Canc Res 54: 25-27.

Vecchio G (1993): Oncogenes of DNA and RNA tumor viruses and the origins of cellular oncogenes. Pub Stn Zool Napoli II 15: 59-74.

Vernon SD, Icenogle JP, Johnson PR, Reeves WC (1992): Human papilloma virus, human immunodeficiency virus and cervical cancer: newly recognised association. Infect Agent Dis 1: 319-324.

Vijaya S, Steffen DL, Kozak C, Robinson HL (1987): Dsi-1, aregion with frequent proviral insertions in Moloney murine leukemia virus-induced rat thymomas. J Virol 61:1164-1170.

Vogel F (1979): Gentics of retinoblastoma. Human Gent 52:1-54.

Vogelstein B, Kinzler KW (1992a): p53 function and dysfunction. Cell 65: 765-774.

Vogelstein B, Kinzler KW (1992b): Carcinogens leave fingerprints. Nature 355: 209-210.

Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, leppert M, Nakamura Y, White R, Smits AM, Bos JL (1988): Genetic alterations during colorectal-tumor development. N Eng J Med 319: 525-532.

Vogt PK (1987): Onc genes and signals of cell growth. Arzeinmittelforschung 37: 243-245.

Von-Knebbel DM (1992): Papilloma viruses in human disease: Part II.Molecular biology and immunology of papilloma virus infection and carcinogenisis. Eur J Med 1: 485-495.

Von-Knebbel DM, Oltersdorf T, Schwarz E, Gissman L (1988): Correlation of modified human papilloma virus early gene expression with altered growth properties in C4-1 cervical carcinoma cells. Cancer Res 48: 3780-3786.

Von-Knebbel DM, Rittmuller C, Aengeneyndt F, Jansen DP, Spitkovsky D (1994): Reversible repression of papillomavirus oncogeen expression in cervical carcinoma cells: Consequences for the phenotype and E6-p53 and E7-pRb interactions. J Virol 68: 2811-2821.

Vousden KH (1993): Interactions of human papilloma virus transforming proteins with the products of tumor supressor genes. FASEB J 7: 872-879.

Vousden KH, Vojtesek B, Fisher C, Lane D (1993): HPV 16 E7 or adenovirus E1A can overcome thegrowth arrest of cells immoratalized with a temperature sensitive p53. Oncogene 8: 1697-1702.

Wagener JC, Sleggs CA, Marchand P (1960): Osteogenic sarcoma in dial painters using luminous paint. Arch Pathol 7: 406-417.

Wagner Ef, Risau W (1994): Oncogenes in the study of endithelial cell growth and differentiation. Seminar Cancer Biol 5: 137-145.

Wang D, Liebowitz D, Kieff E (1985): An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43: 831-840.

Wang Y, Milam LD, Maher VM, McCormick JJ (1986): Cobalt radiation induced transformation to anchorage indepndence of fibroblast from normal person and patients with inherited predisposition to retinoblastoma. Carcinogenesis 7: 1917-1929.

Wang F, Gregory CD, Rowe M, Rickinson AB, Wang D, Birkenbach M, Kikutani H, Kiwhomoto T, Kieff E (1987): EBNA-2 antigen specifically induces expression of the B cell activation antigen CD23. Proc Nat Acad Sci USA 84: 3452-3456.

Wang YC, Maher VM, McCormick JJ (1991): Xeroderma pigmentosum v ariantcells are less likely than normal cells to incorporate d AMP opposite photproduct during replication of UV irrdiated plasmids. Proc Nat Acad Sci USA 88: 7810-7814.

Wang HG, Rikitake Y, Carter MC, Yaciuk P, Abraham SE, Zerler B, Moran E (1993): Identification of specific adenovirus Ela N terminal residues critical to the binding of cellular proteins and to the control of cell growth. J Virol 67: 476-488.

Wang R, Siegal GP, Scott DL, Bautch VL (1994): Development analysis of bone tumors in polyomavirus transgenic mice. Lab Invest 70: 86-94.

Ward JF (1994): DNA damage as the cause of ionizing radiation-induced gene activation. Radiat Res 138: 85-88

Ward JF (1995): Radiation mutagenesis: the initial DNA lesions responsible (published erratum appears in Radiat Res 143:355-357). Radiat Res 142:362-368.

Watanabe S, Kanda T, Yoshike K (1989): Human papilloma virus type 16 transformation of primary embryonic fibroblast requires expression of open reading frames of E6 and E7. J Virol 63: 965-969.

Watt SM, Thomass JA, Murdoch SJ, Kearney L, Chang SE, Barr tek J (1991): Human thymic epithelial cells are frequently transformed by retroviral vectors encoding simian virus 40. Cell Immunol 138: 456-472.

Wazer DE, Liu XL, Chu Q, Gao Q, Band V (1995): Immortalization of distinct mammary epithelial cell types by human papilloma virus 16 E6 or E7. Proc Nat Acad Sci USA 92: 3687-3691.

Weichselbaum RR, Hallan DE, Sukhatme V, Dritschilo A, Sherman ML, Kufe DW (1991): Biological consequences of gene regulation after ionizing radiation exposure. J Nat Cancer Inst 83: 480-484.

Weinberg RA (1985): The action of oncogenes in the cytoplasm and nucleus. Sceince 230: 770-776.

Weinberg RA (1989): Oncogenes, antioncogenes, and the molecular basis of multistep carcinogenisis. Cancer Res 49: 3713-3721.

Weinberg RA (1994): You can't get from there to here: the tortuous road to basic research. Acad Med 69: 441-4444.

Weinstein IB (1988): The origins of human cancer: molecular mechanisms of carcinogenesis and their implications for cancer prevention and treatment. Twenty-seventh GHA Clowes Memorial Award Lecture. Cancer Res 48: 4135-4143.

Weisburger JH, William GM (1981): Carcinogen testing: current problems and new approaches. Science 214: 401-407.

Weisburger JH, William GM (1982): Chemical carcinogenesis. In : J.F. Holland, Efrei (eds): Cancer Medicine (Eds 2) pp. 42-95. Phillidelphia: Lea and Febiger

Weiss RB, Duker NJ (1987): Endonucleolytic incision of UVB-irrdiated DNA. Photochem Photobiol 45: 763-768.

Wendell-Hansen V, Sallstrom J, De-Campos-Lima PO, Kjellstrom G, Sandlund A, Siegbahn A, Carlsson M, Nillson K, Rosen G (1994): EBV can immortalize B cells activated by cytokines. Leukemia 893: 476-484.

Wessel R, Schweizer J, Stahl H (1992): Simian virus 40 large T antigen DNA is a helicase is a hexamer which forms a binary complex during bidirectional unwinding from the viral origin of DNA replication. J Virol 66: 804-815

White E (1993): Regulation of apoptosis by the transforming genes of the DNA tumor virus adenovirus. Proc Soc Exp Biol Med 204: 30-39.

Wilson DM, Fry DG, Maher VM, McCormick JJ (1989): Transformation of diploid human fibroblast by transfection of N-ras oncogene. Carcinogenesis 10: 635-640

Wilson DM, Yang D, Dillberger JE, Dietrich SE, Maher VM, McCormick JJ (1990): Malignant transformation of human fibroblasts by a transfected N-ras oncogene. Cancer Res 50: 5587-5593.

Wogan GN (1966): Chemical nature and biological effects of the aflatoxins. Bacteriol Rev 30: 460-470.

Wogan GN, Newberne PM (1967): Dose-response charecteristics of aflatoxin B1 carcinogenesis in the rat. Cancer Res 27: 2370-2376.

Woodworth CD, Notario V, Dipaolo JA (1990): Transforming growth factor beta 1 and beta 2 transcriptionally regulate human pailloma virus (HPV) type 16 early gene expression in HPV immortalized genital epithelial cells. J Virol 64: 4767-4775.

Wynder EL, Graham EA (1950): Tobacco smoking as a possible

etiologic factor in bronchogenic carcinoma. JAMA 143: 329-336.

Yamagiwa K, Ichikawa K (1918): Experimental study of the pathogenesis of carcinoma. J Cancer Res 3: 1-21.

Yamashita T, Segawa K, Fujinaga Y, Hishikawa T, Fujinaga K.(1993): Biological and biochemical activity of E7 genes of the cutaneous human papillomavirus type 5 and 8. Oncogene 89: 2433-2441.

Yang D, Louden C, Reinhold DS, Kohler SK, Maher VM, McCormick JJ (1992): Malignant transformation of human fibroblast cell strain MSU-1.1 by (+)-7 β ,8 α -dihydroxy-9 α ,10 α -epoxy-7,8,9,10, tetrahydrobenzo(a)pyrene. Proc Nat Acad Sci USA 89: 2237-2241.

Yang D, Kohler SK, Maher VM, McCormick JJ (1994): v-sis oncogene induced transformation of human fibroblasts into cells capable of forming benign tumors. Carcinogenesis 15: 2167-2175

Younish-Roauch ED, Rezintzky J, Lotem L, Sach A, Kimchi A, Oren M (1991): Wild type p53 induces apoptosis of myeloid leukemic cells that is inhibited by IL-6. Nature 352: 345-347.

Yu D, Shi D, Scanlon M, Hung MC (1993) Reexpression of neu encoded oncoptotein counteracts the tumor suppressing but not the metastasis suppressing function of Ela. Cancer Res 53: 5784-90.

Yu D, Matin A, Hinds PW, Hung MC (1994): Transcriptonal regulation of neu by Rb and Ela in rat-1 cells. Cell Growth Differ 5: 431-438.

Yuspa SH (1994): The pathogenesis of squamous cell cancer: lessons learned from the studies of skin carcinogenesis. Thirty third GHA Clowes Memorial Award Lecture. Cancer Res 54: 1178-1189.

Yuspa SH, Harris CC (1982): Molecular and cellular basis of chemical carcinogenesis. In: D Schottenfeld and JF Fraumeni (eds): Cancer epidemiology and prevention, pp 23-43.

Philidelphia: W.B. Saunders Co.

Zahn Q, Carrier F, Fornace Jr (1993): Induction of p53 activity by DNA damaging agents and growth arrest. Mol Cell Biol 13: 4242-4250.

Zambetti GP, Levine AJ (1993): A Comparison of activities of wild type and mutant p53. FASEB J 7: 931-937.

Zhang W (1993): Cloning and charecterization of the genome of HPV type 16 in China. Chung hua I Hsueh Tsa taipei Chih Taipei 73: 229-31, 254-255.

Zhang Q, Brooks L, Busson P, Wang F, Charron D, Kieff E, Ricinson AB, Tursz T (1994): EBV latent membrane protein 1 increases HLA clas II expression in an EBV negative cell line. Eur J Immunol 24: 1467-1470.

Zheng X, Christensson B, Drettner B (1993): Studies on the etioliogical factors of nasopharyngeal carcinoma. Acta Otolaryngol Stockh 113: 455-457.

Ziegler A, Jonason AS, Leffel DJ, Simon JA, Sharma HW, Kimmelman J, Remington L, Jacks T, Brash DE (1994): Sunburn and p53 in the onset of skin cancer. Nature 372: 773-776.

Ziegler A, Leffel DJ, Kunala S, Sharma HW, Gailani M, Simon JA, Halperin AJ, Baden HP, Shapiro PE, Bale AE, Brash DE (1993): Mutational hot spots due to sunlight in the p53 gene of non-melanoma skin cancer. Proc Nat Acad Sci USA 90: 4216-4220.

Zimmerman RJ, Little JB (1983): Charecterization of a quantitative asssy for the in vitro transformation of normal human fibroblasts to anchorage independence by chemical carcinogens. Cancer Res 43: 2176-2182.

Zolzer F, Kiefer J (1989): Cellular effects of the ultraviolet components of sunlight. Naturwissenschaften 76: 489-495.

zur Hausen H (1994a): Molecular pathogenisis of cancer of the cervix and its causation by specific human papilloma virus types. Curr Top Microbiol Immunol 186: 131-156.

_			
_			
-			

zur Hausen H (1994b): Disrupted dichotomous intracellular control of human papilloma virus infection in cancer of the cervix. Lancet 143: 955-977.

Chapter II

Malignant Transformation of Human Fibroblast Cell Strain MSU1.1 by Ultraviolet Radiation: Correlation of Tumorigenicity
with Anchorage Independence and Growth Factor Independence

Sardar W. Ashraf-khan, Veronica M. Maher, and J. Justin McCormick

Carcinogenesis Laboratory- Fee Hall Department of Microbiology and Department Of Biochemistry. Michigan State University,

East Lansing, MI 48824-1316

ABSTRACT

MALIGNANT TRANSFORMATION OF HUMAN FIBROBLAST CELL STRAIN MSU1.1 BY ULTRAVIOLET RADIATION: CORRELATION OF TUMORIGENICITY
WITH ANCHORAGE INDEPENDENCE AND GROWTH FACTOR INDEPENDENCE

Ву

Sardar Waheed Ashraf-khan

I irradiated MSU-1.1 cells, an immortal, non-tumorigenic human fibroblast cell strain with a stable, near diploid karyotype with 254nm UV radiation and selected for focus formation. MSU-1.1 is . A dose-dependent increase in the focus formation was observed. From each of eight independent irradiated cell populations, 5-6 focus-derived cell strains were selected. Several UV-induced focus derived cell stains from each irradiated cell population were tested for tumorigenicity by injecting them into athymic mice. When a cell strain from an irradiated cell population made a tumor, this cell strain and a focus-derived cell strain not able to form a tumor from the same population were selected for further analysis. Five UV-induced focus-derived cell strains

formed high grade spindle cell sarcomas in athymic mice at a high frequency and with a very short latency. These five cell strains grew well in agarose and in medium without exogenous growth factors. Two independent UV-induced focus-derived cell strains and one control focus-derived cell strain also formed fibrosarcomas in athymic mice but at a lower frequency and with a longer latency. These three cell strains did not grow well in agaros or in medium without exogenous growth factors. cell lines derived However from these two tumors (fibrosarcomas) grew well in agarose and in medium without exogenous growth factors, they grew well in agarose and in medium without exogenous growth factors. One UV-induced focus-derived cell strain formed a single fibroma after a long latency. The cells that formed the fibroma and the fibromaderived cell line did not grow in agarose or in medium without exogenous growth factors. None of the non-tumorigenic focusderived cell strains grew in agarose and in medium without exogenous growth factors. In summary, UV radiation can MSU-1.1 cells to focus formation in a dosetransform dependent manner and some of these focus-derived cell strains can form tumors in athymic mice. Growth in agarose and in medium without exogenous growth factors are two reliable in

vitro characteristics which correlate strongly with tumorigenicity.

INTRODUCTION

Epidemiological (Urbach, 1978; Scotto & Fears, 1978) and experimental studies (Ananthswamy and Pierceal, 1990) indicate that ultraviolet radiation from the sun plays a causal role in the etiology and pathogenesis of human skin cancer. The most common skin cancers are basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). More than 95% of the 600,000 new cases of basal and squamous cell carcinomas each year in the USA are thought to be caused by sun exposure (Urbach, 1978; Silverberg et al., 1990). The mortality rates from such cancers are relatively low, there are about 2,500 deaths each year in United States (Scotto & Fears, 1982; Scotto et al., 1981). Recent data indicate that the depletion of the stratospheric ozone layer will increase the amount of UV radiation reaching the earth which is expected to increase the frequency of UV-induced skin cancers (Kerr & McElroy, 1993; Fears & Scotto, 1983; Lloyd, 1993).

UV-induced dipyrimidine photoproducts in DNA result in a distinctive pattern of mutations (i.e., C-T transitions and CC-TT double base substitutions), which are often referred to as a UV signature. The presence of this signature in proto-

oncogenes and/or suppressor genes of skin tumors strongly implicates sunlight as the cause of such skin lesions (Brash et al., 1991; Vogelstein & Kinzler, 1992b; Ananthaswamy & Pierceall, 1990).

McCormick and his colleagues have developed a human fibroblast transformation system in which a normal diploid human fibroblast can be transformed to malignancy by a series of sequential selections. One cell strain in this series, MSU-1.1 has been transformed to malignancy by exposure to chemicals (Yang et al., 1992), ionizing radiations (Reinhold et al., 1996) and oncogene transfection (Hurlin et al., 1987; Hurlin et al., 1989; Fry et al., 1990; Wilson et al., 1990; Lin et al., 1995). In this study, we exposed these cells to a single dose of UV radiation, grew them for an expression period, and then selected the cells for focus formation. When assayed in the athymic mice, many of the UV-induced focus-derived cell strains were tumorigenic.

MATERIAL AND METHODS

CELL CULTURE:

Cells were cultured routinely in Eagle's minimal essential medium supplemented with L-aspartic acid (0.2 mM), L-serine (0.2mM), pyruvate (1.0 mM), 10% supplemental calf serum (SCS)

(Hyclone, Logan, UT), penicillin (100 units/ml), streptomycin (100 ug/ml) and hydrocortisone (1 ug/ml). This is referred to as culture medium. The cells were maintained in exponential growth at 37°c in a humidified incubator with 5% CO₂.

EXPOSURE TO ULTRAVIOLET RADIATION AND SELECTION OF FOCUS-FORMING CELLS:

Cells in exponential growth were plated in 150 mm-diameter culture dishes. Sixteen hours after the initial plating when the cells were well attached, the cells were exposed to ultraviolet radiation. Briefly, the cell culture medium was aspirated and the cells were washed with phosphate buffered saline, and this solution was removed. Taking care not to allow the cell monolayer to dry, we irradiated with UV (254nm) using a Mineral Light Short-Wave Lamp UVS-54 (UV Products Inc, San Gabriel CA) as previously described (Patton et al., 1984). Immediately after irradiation, cells were refed with freshly prepared culture medium. The next day, the medium was replaced to eliminate the cytotoxic effects of the dying cells. cells were continually maintained in The exponential growth for the 7 days period following irradiation by trypsinizing and replating the cells at lower densities as required. After this expression period, from each independent

irradiated population, cells were trypsinized and pooled and counted on an electronic cell counter. 1x 106 cells were assayed for focus formation by plating 50,000 cell per 100 mm-diameter dish in culture medium supplemented with 0.5% SCS and 20mM Hepes (pH 7.5). The medium was renewed weekly. When distinct foci developed after 5-7 weeks, cells were isolated from representative foci. After growing for 1-2 weeks the focus-derived cells were trypsinized and plated at cloning densities to separate the non-morphologically transformed from the morphologically transformed cells. After 2 weeks, clones identified which were made up of morphologically transformed cells. The cells from such clones were isolated and individual clonal populations were established for further analysis. The rest of the original foci were stained with methylene blue. Foci were counted and the frequency of the foci was expressed per number of cells plated.

Cytotoxity Assay

The cytotoxic effects of radiation was determined by the loss of colony forming ability. Briefly, cells in exponential growth were plated into 100 mm plastic dishes at various densities so that 25-45 colonies/dish would be observed, and irradiated 16 hours post-plating. They were refed with fresh

culture medium after irradiation and again after seven days.

The colonies were stained after two weeks with crystal violet.

The number of clones in the control and irradiated cells was counted and cell survival was calculated.

Growth Factor Independence Assay

The growth factor requirement of the cells was determined by a modified version of the assay of Scudiero et Briefly, exponentially growing MSU-1.1 cells, al.(1988). focus-derived cell strains, and tumor-derived cell lines were plated into 16 wells of a 96-well microtitre plate at 1000 cells/well. The cells were plated in McM medium, a modified version of MCDB110 (Ryan et al., 1987) containing 0.1 mM calcium, instead of the standard 1.0 mM concentration and SCS. After 24 hours, in half of the wells the medium was replaced with 100 ul of modified McM medium lacking phenol red and containing 0.1 mM calcium which was supplemented with 10% In the rest of the wells, the medium was replaced with 100 ul of McM medium lacking phenol red and containing 0.1 mM calcium which was supplemented with the serum replacement factors designated in Ryan et al. (1987) without epidermal growth factor, referred to as Medium Without Exogenous Growth Factors (MWEGF). The cells were allowed to grow for seven days with a medium change on the fourth day. The number of cells present was measured on days one, four and seven using 2, 3 bis(2methoxy-4-nitro-5-sulfophenyl)-5-(phenylamino) - carbonyl] -2H-tetrazolium hydroxide) (XTT). XTT was dissolved in water at 1 mg/ml concentration and allowed to stay in 37°c water bath for approximately 20 minutes until the turbid yellow appearance was lost and the solution became clear. Just before use, phenazine methosulphate (PMS) was added to the XTT solution so that the final concentration was 0.05 mM. Taking care that the cells did not dry, medium was removed from all the wells and replaced with MWEGF in each well. total of 50 ul of the XTT/PMS solution was added to each well already containing 200 ul of the MWEGF, using a multichannel micro well pipet, and the cells were allowed to incubate at 37°C in a 5% CO2 incubator for four hours. This was followed by vigorous shaking at room temperature for 30 minutes. optical density at 450 nm and 650 nm was read using an Emax™ Microplate Reader (Molecular Device, Sunnyvale, CA). tests were carried out at least twice. The population doubling time of each cell strain was calculated from the log of OD (450-650) and plotted on log paper as a function of time (days in culture).

Anchorage Independence Assay

The cells were assayed as described by Hurlin et al. (1989) for the ability to form large sized colonies in 0.33% Sea Plaque agarose (FMC Bioproducts, Rockland, ME). The agarose plates were incubated at 37°C with 3% CO₂. MSU-1.1 cells and MSU-1.1 H-ras10 cells which were derived from MSU-1.1 by transfection of MSU-1.1 cells with a T24 H-ras oncogene were included in each assay as negative and positive controls respectively. All tests were carried out at least twice.

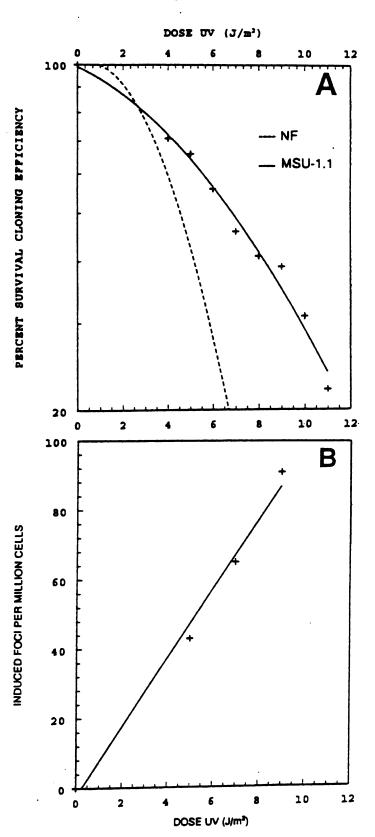
Tumorigenicity Assay

Absorbable gelatin sponges (Upjohn Co., Kalamazoo, MI) 1-3 cm in size were implanted subcutaneously in the subscapular and flank region of athymic BALB/c mice to serve as matrix for the cells. One week later 1 x10 7 exponentially growing cells in 0.2 ml of McM medium were injected directly into the sponge. Mice were monitored weekly for tumor growth and tumors were measured using a vernier caliper. In order to calculate the volume of the tumor, the formula for the volume of a sphere $(4/3\pi r^{3})$ was used. The radius was determined by taking half of the two diameter measurements made perpendicular to each other. The latency of the tumors was determined by plotting the tumor volume for each of the weekly measurements

against time at which it was made. The line for the tumor volume was extrapolated to cross the time axis and the point at which it crossed was called the latency of the tumor. The mice were sacrificed when the tumor reached approximately 1 cm. in diameter. A portion of the tumor was returned to culture. Since MSU-1.1 cells were generated by transfection of the v-myc gene linked to the G418-resistant gene, cells from the tumors were grown in medium containing Geneticin in order to eliminate any contaminating mouse cells.

Histopathological Analysis of Tumors

The rest of the tumor specimen was fixed in 10% Phosphate Buffered Formalin, pH 7.0, embedded in paraffin, sectioned at 4-5 um and stained with hematoxylin and eosin using the standard technique. Routine histopathological analysis was performed and tumors were graded according to the established histological criteria.


RESULTS:

UVC-INDUCED CYTOTOXICITY AND FOCUS FORMATION IN MSU-1.1 CELLS

The MSU-1.1 cells exhibit sensitivity to the cytotoxic effects of UV radiation that is not typical of that of repair proficient cells (McCormick et al., 1986) (Fig 1 A). MSU-1.1

Figure 1. Cytotoxicity and frequency of induced focus formation by UV irradiation in MSU-1.1 cells (continuous line). Cells were irradiated in exponential growth (See materials and methods for details). UV radiation resulted in a dose-dependent increase in the frquency of foci. There were 5 background foci in the untreated (control) cell population. The points are joined by the best fit line using a computer program. The dashed line shows the cytototoxicity of normal human skin fibroblast to UV radiation and is taken from a previous published study from this laboratory (McCormick et al.,1986).

Figure 1

וין איני ווין ד'ילי ווין

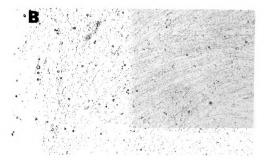
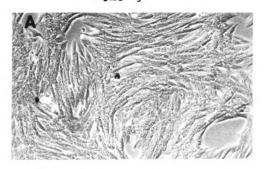
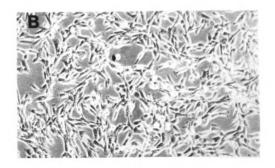

k Mi

Figure 2. Phase contrast micrographs of UV-induced foci of MSU-1.1 cells.

- (A): A focus of spindle cells on a background monolayer of cells. Note piling up of cells in criss-cross fashion.
- (B): A focus of spindle cell on a backgound monolayer of cells. Note the absence of criss-cross pattern

Figure 2


-114


Figure 3.

Representative photomicrographs of UV-induced, focus-derived cells.

- (A): Focus-derived cell strain MSU-1.1-UVC2-B5 exhibited a spindle shape. This cell strain produced high grade spindle cell sarcomas in athymic mice.
- (B): Focus-derived cell strain MSU-1.1-UVC2-B11a exhibited a spindle shape and grew in an open pattern. This cell strain produced high grade spindle cell sarcomas in athymic mice.

157 Figure 3

Test

Tibe at

STOTE

MSU-1.1 cells were exposed to different doses of ultraviolet radiation and then assayed for focus formation, as detailed in the materials and methods. There was a dose dependent increase in the foci (Fig 1B). The foci stained more darkly than the monolayer and were refractile when viewed with a phase contrast microscope before staining. Fig 2(A,B) shows the phase contrast micrograph of foci. Phase contrast microscopic examination showed that most foci consists of spindle-shaped cells which form a dense criss-cross, multilayers. In a few foci the cells appeared to be more plumb and exhibited increased piling up and numerous mitotic figures (Fig 2A). In culture, the UV-induced focus-derived cells mainly have a spindle shape(Fig 3A and 3B).

SELECTION OF INDEPENDENT UV-INDUCED FOCUS-DERIVED CELL STRAINS

Eight independent cell populations were irradiated by UV and placed in the focus assay. At the end of the each focus assay, cells were isolated from 5-6 foci, cloned twice to isolate pure population of morphologically transformed cells, expanded and injected into athymic mice for tumorigenicity. From each independently-irradiated cell population, the cell strain which formed tumors in the athymic

Selected descriptions of the Calling of the Calling

by UV and placed in the focus assay. At the end of the such focus assay, cells were isolated from 5-6 fork, clamed twice to isolate pure population of sorphologically transformed cells, expanded and injected into athysic mice for macriganicity. From each independently-irradiated cells and proceed to the significant contraction which formed tumors in the significant contraction the cell gives which formed tumors in the significant

mice first was selected for further study. A non-tumorigenic cell strain derived from a focus that occurred in the same cell population was also selected for further study. In the non-irradiated (control) cell populations, the number of background foci was very low(5-6 per million cells). We selected one control focus-derived cell strain that was tumorigenic and one that was not tumorigenic for further study.

Tumorigenicity Assay

Eight independent focus-derived cell strains from independently irradiated cell populations and one control (untreated) focus-derived cell strains formed tumors in mice (Table 1). The tumorigenic cell strains fall into categories according to the frequency and latency of the tumors. Five focus-derived cell strains (1.1-UVC2-B5, 1.1-UVC2-C16, 1.1-UVC1-B11a, 1.1-UVC2-B11b and 1.1-UVC2-C1a) formed sarcomas with a short latency (2-6 weeks) and high frequency (87-100%). All these tumors were high grade sarcomas. See Fig 4a and 4b for typical microscopic appearance. Frequent mitosis and an occasional tripolar mitotic figure was seen in these tumors

Table 1: Anchorage Independence, Growth Factor Independence and Tumorigenicity of UVC-Induced and Control Focus-Derived Cell Strains

### AGAR COLONIES* INDEPENDENCE* FREQUENCY* LATENCY* ####################################						
MSU-1.1 0 + + 0.50 NA MSU-1.1-UVC2-CONT1 0 + + 0.44 NA MSU-1.1-UVC2-CONT2 0 + + 0.44 NA MSU-1.1-UVC2-B5 9 + + 6.66 3-5 MSU-1.1-UVC2-B5 9 + + 4.44 4-6 MSU-1.1-UVC2-B11a 9 + + 4.44 4-6 MSU-1.1-UVC2-B11b 12 + + 4.44 2-4 MSU-1.1-UVC2-C1a 12 + + 4.44 2-4 MSU-1.1-UVC2-A16b 9 + + 3.44 12-18 MSU-1.1-UVC2-A17 12 + + 2.78 18-20 MSU-1.1-UVC3-A18b 12 + + 0.44 NA MSU-1.1-UVC3-B19 9 + + 0.44 NA MSU-1.1-UVC3-B15 9 + + 0.44 NA MSU-1.1-UVC3-B16 12 + + 0.44 NA MSU-1.1-UVC3-B16 13 + + 0.44 NA MSU-1.1-UVC3-B16 14 NA MSU-1.1-UVC3-B16 15 9 + + 0.44 NA	MSU-1.1 DERIVED	UV DOSE	ABILITY TO FORM	GROWTH FACTOR	TUMORIGENICITY	
MSU-1.1-UVC2-CONT1 0 + + 0/4 NA MSU-1.1-UVC2-CONT2 0 + + 3/4 10-12 MSU-1.1-UVC2-B5 9 + + 6/6 3-5 MSU-1.1-UVC3-B11a 9 + + 4/4 4-6 MSU-1.1-UVC3-B11b 12 + + 4/4 2-4 MSU-1.1-UVC3-B11b 12 + + 1/8 12-18 MSU-1.1-UVC3-C1a 12 + + 1/8 18-20 MSU-1.1-UVC3-A16b 9 + 1/8 18-20 MSU-1.1-UVC3-A17 12 + 1/8 18-20 MSU-1.1-UVC3-A18b 12 + + 0/4 NA MSU-1.1-UVC3-B15 9 + 0/4 NA MSU-1.1-UVC3-B15 9 + 0/4 NA MSU-1.1-UVC3-B16 9 + 0/4 NA	CELL STRAINS	(JOULESM?)	AGAR COLONIES	INDEPENDENCE"	FREQUEN	CY LATENCY
### ### ### ### ### ### ### ### ### ##	MSU-1.1	0	+	+	0/50	NA
MSU-1.1-UVC2-B5 9	MSU-1.1-UVC2-CONTI	0	+	+	0/4	NA
MSU-1.1-UVC2-C16 9	MSU-1.1-UVC2-CONT2	0	+	++	3/4	10-12
MSU-1.1-UVC2-B11s 9	MSU-1.1-UVC2-B5	9	+++	++	6/6	3-5
MSU-1.1-UVCI-B11b 12 +++ ++ 7/8 3-6 MSU-1.1-UVCI-Clb 12 +++ ++ 4/4 2-4 MSU-1.1-UVCI-A16b 9 + + 3/4 12-18 MSU-1.1-UVCI-A17 12 + + 2/8 18-20 MSU-1.1-UVCI-A18b 12 + + 1/8 20 MSU-1.1-UVCI-A18b 12 + 0/4 NA MSU-1.1-UVCI-B19 9 + 0/4 NA MSU-1.1-UVCI-B15 9 + 0/4 NA MSU-1.1-UVCI-B15 9 + 0/4 NA MSU-1.1-UVCI-B4 12 + + 0/4 NA MSU-1.1-UVCI-Clb 12 + + 0/4 NA	MSU-1.1-UVC2-C16	9	+++	++	5/5	2-4
MSU-1.1-UVC2-C1s 12 +++ ++ 4/4 2-4 MSU-1.1-UVC2-A16b 9 + + 3/4 12-18 MSU-1.1-UVC2-A17 12 + + 2/8 18-20 MSU-1.1-UVC1-A18b 12 + + 1/8 20 MSU-1.1-UVC3-A18b 12 + + 0/4 NA MSU-1.1-UVC3-C1b 9 + + 0/4 NA MSU-1.1-UVC3-B15 9 + + 0/4 NA MSU-1.1-UVC3-B4 12 + + 0/4 NA MSU-1.1-UVC3-B4 12 + + 0/4 NA MSU-1.1-UVC3-C1b 12 + + 0/4 NA	MSU-1.3-UVC3-B11:	9	***	**	4/4	4-6
MSU-1.1-UVC2-A16b 9 + + 3/4 12-18 MSU-1.1-UVC2-A17 12 + + 2/8 18-20 MSU-1.1-UVC3-A18b 12 + + 1/8 20 MSU-1.1-UVC3-B19 9 + + 0/4 NA MSU-1.1-UVC3-B15 9 + 0/4 NA MSU-1.1-UVC3-B4 12 + + 0/4 NA MSU-1.1-UVC3-B4 12 + + 0/4 NA MSU-1.1-UVC3-C0 12 + + 0/4 NA MSU-1.1-UVC3-A14 12 + + 0/4 NA MSU-1.1-UVC3-A14 12 + + 0/4 NA MSU-1.1-UVC3-A15 9 + + 0/4 NA	MSU-1.1-UVC2-B11b	12	+++	++	7/8	3-6
MSU-1.1-UVC2-A17 12 + + 2/8 18-20 MSU-1.1-UVC3-A18b 12 + + 1/8 20 MSU-1.1-UVC3-B19 9 + + 0/4 NA MSU-1.1-UVC3-B19 9 + + 0/4 NA MSU-1.1-UVC3-B15 9 + + 0/4 NA MSU-1.1-UVC3-B4 12 + + 0/4 NA MSU-1.1-UVC3-B4 12 + + 0/4 NA MSU-1.1-UVC3-A14 12 + + 0/4 NA MSU-1.1-UVC3-A14 12 + + 0/4 NA MSU-1.1-UVC3-A15 9 + + 0/4 NA	MSU-1.1-UVC2-C1:	12	+++	↔	4/4	2-4
MSU-1.1-UVC1-A18b 12 + + 1/8 20 MSU-1.1-UVC2-B19 9 + + 0/4 NA MSU-1.1-UVC2-C1b 9 + + 0/4 NA MSU-1.1-UVC1-B15 9 + + 0/4 NA MSU-1.1-UVC2-B4 12 + + 0/4 NA MSU-1.1-UVC2-C0 12 + + 0/4 NA MSU-1.1-UVC2-C1b 12 + + 0/4 NA	MSU-1.1-UVC2-A16b	9	+	+	3/4	12-18
MSU-1.1-UVC2-B19 9 + + 0/4 NA MSU-1.1UVC2-C1b 9 + + 0/4 NA MSU-1.1-UVC1-B15 9 + + 0/4 NA MSU-1.1-UVC2-B4 12 + + 0/4 NA MSU-1.1-UVC2-C0 12 + + 0/4 NA MSU-1.1-UVC2-C1b 12 + + 0/4 NA MSU-1.1-UVC2-C1b 12 + + 0/4 NA MSU-1.1-UVC2-C1b 12 + + 0/4 NA	MSU-1.1-UVC2-A17	12	•	+	2/8	18-20
MSU-1.1-UVC2-C1b 9 + + 0/4 NA MSU-1.1-UVC1-B15 9 + + 0/4 NA MSU-1.1-UVC2-B4 12 + + 0/4 NA MSU-1.1-UVC2-C0 12 + + 0/4 NA MSU-1.1-UVC2-A14 12 + + 0/4 NA MSU-1.1-UVC2-A15 9 + + 0/4 NA	MSU-1.1-UVC1-A18b	12	+	+	1/8	20
MSU-1.1-UVC1-B15 9 + + 0/4 NA MSU-1.1-UVC2-B4 12 + + 0/4 NA MSU-1.1-UVC2-C0 12 + + 0/4 NA MSU-1.1-UVC2-A14 12 + + 0/4 NA MSU-1.1-UVC2-A15 9 + + 0/4 NA	MSU-1.1-UVC2-B19	9	+	+	0/4	NA
MSU-1.1-UVCI-BIS MSU-1.1-UVCI-BIS MSU-1.1-UVCI-CO 12 + + 0/4 NA MSU-1.1-UVCI-CO 12 + + 0/4 NA MSU-1.1-UVCI-A14 12 + 0/4 NA MSU-1.1-UVCI-A15 9 + 0/4 NA	MSU-1.1UVC2-C1b	9	+	+	0/4	NA
MSU-1.1-UVC2-Q10 12 + + 0/4 NA MSU-1.1-UVC2-Q14 12 + + 0/4 NA MSU-1.1-UVC2-Q15 9 + + 0/4 NA	MSU-1.1-UVC1-B15	9	•	+	0/4	NA
MSU-1.1-UVC2-A14 12 + + 0/4 NA MSU-1.1-UVC2-A15 9 + + 0/4 NA	MSU-1.1-UVC2-B4	נו	+	+	0/4	NA
MSU-1.1-UVC-A15 9 + + 0/4 NA	MSU-1.1-UVC2-C20	12	+	+	0/4	NA
MSU-1.1-UVCZ-A15 7	MSU-1.1-UVC2-A14	12	+	•	0/4	NA
MSU-1.J-UVCJ-A3 12 + + 0/4 NA	MSU-1.1-UVC2-A15	9	+	+	0/4	NA
	MSU-1.1-UVC1-A3	12	+	+	0/4	NA

A) +, frequency of agar colonies <0.01%, size>60um; ++, frequency of agar colonies 5-15%, size >100um

NA= Not applicable

^{+++,} frequency of agar colonies 5-15%, size >160um

B) +, moderate growth in MWEGF, like normal human diploid fibroblasts in medium supplemented with 5% serum.

^{++,} rapid growth in MWEGF, like normal human diploid fibroblast in medium supplemented with 10% serum.

C) Frequency indicates the number of tumors per number of sites injected in the athymic mice.

D) Refer to the description of latency in Materials and Methods

Table 1: Anchorage Independence, Crawth Farm Independence and Compressions of

A - Browney of ages valued with the recovery of agest actually \$ 15%, year \$ 10000

and dispersed of after constant 2-12-1, the property

access the telephone and the state of the st

the standard group in british stand to the second to the second standard for the second secon

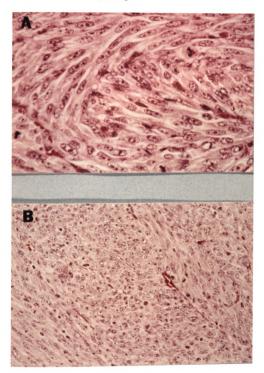

or results included the remoter of comers per persons of the re-

Figure 4

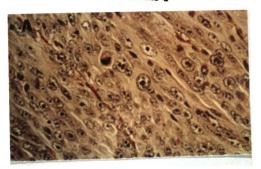
Histology of tumors produced by subcutaneous injection of UV-inducedfocus-derived cell strains.

- (A): Representative section of a poorly differentiated spindle cell sarcoma produced by cell strain MSU-1.1-UVC2- B5, which produced tumors at all injection sites with a short latency. Note the compact cellular architecture with scant intracellular matrix and multiple mitotic figures (6-8 per high power field).
- (B): Representative section of a high grade sarcoma with pleomorphic cells produced by cell strain MSU-1.1 UVC2-C16, which produced tumors at all injection sites with a short latency.

Figure 4

Fig 4 (cont'd)

- C. Representative section of a high grade spindle cell sarcoma with frequent mitosis and scant intercellular matrix produced by cell strain MSU-1.1- UVC2-11b, which produced tumors at all injection sites with a short latency. Note the classical tripolar mitotic figure(see arrow). Most of the cells are spindle shaped with a high degree of anaplasia.
- D. Representative section of a high grade sarcoma with frequent abnormal mitotic figures (6-8 per high power field) produced by cell strain MSU-1.1-UVC2-C1a, which produced tumors at all injection sites with a short latency


(b'2500) h 363

In Representative section of a high grade special minds and sout interesting matrix.

which produced transact at all important should tripolar mitodo figuros/security and a light degree of anaplasts.

Representative section of a high good or digital power field provinced to the first beautiful inicially the work was removed the inicial or digital power field to be a section of the first beautiful in the section of the section

Figure 4, cont'd

(Fig 4C and 4D). Two focus-derived cell strains (1.1-UVC2-A16b and 1.1-UVC2.A17) formed tumors at a lower(25-75%) frequency with a relatively long latency (12-20 weeks). Another focus-derived cell strain (1.1-UVC2.A18b) formed a single fibroma after a long latency (20 weeks). One of the control focus-derived cell strains (1.1-UVC2-CONT2) formed tumors at a 75% of the injection sites and with a moderate latency (10-12 weeks). None of the rest of focus-derived cell strains formed tumors in the athymic mice. Therefore we selected eight non-tumorigenic UV-induced-focus-derived cell strains, one from each independent UV irradiated cell population, for further characterization.

GROWTH FACTOR INDEPENDENCE OF UV-INDUCED FOCUS DERIVED CELL STRAINS

Previous studies in this laboratory showed that oncogene and an active derivative of benzo(a)pyerene transformed MSU-1.1 cells into cells that are highly tumorigenic and proliferate rapidly in medium lacking exogenous growth factors. To examine whether UV-transformed focus-derived cells have this property, all the cell strains were tested for growth in medium without exogenous growth factors. MSU-1.1 cells, which grow only moderately well under these conditions,

Provious studies in the second systems exactioned and an enting desirative at tensoral systems exactioned and an enting tensor systems and redifferers rapidly in madine lacing exceptions grown factors. To exact a whether IV-transformed factor desiration of the continue of the continue were sected for mostly heredite without exceptions growth factors. Mostly entitle water property and the continue of the continu

were included as a negative control and MSU-1.1 cells transformed by the H-ras oncogene (MSU-1.1-H-Ras10) were used as a positive control. This cell strain is known to be growth factor independent (J. J. McCormick, unpublished studies). The results of the growth factor independence assays are summarized in Table 1. Five cell strains(1.1-UVC2-B5, 1.1-UVC2-C16, 1.1-UVC1-B11a, 1.1-UVC2-B11b and 1.1-UVC2-C1a) were completely growth factor independent (i.e., GFI++). These cell strains replicated as rapidly in MWEGF as the parental MSU-1.1 cells replicate in medium supplemented with 10% SCS. These five cell strains are the ones which formed sarcomas at a high frequency and short latency. The UV-induced focusderived cell strains which formed tumors at a lower frequency with a relatively long latency(1.1-UVC2-A16b, 1.1-UVC2-A17 and 1.1-UVC2-control2) and a UVC-induced focus-derived cell strain which formed a single fibroma (1.1-UVC1-B18b) grew like the parental MSU-1.1 cells in medium without exogenous growth factors (i.e., GFI +). The other focus-derived cell strains also grew like MSU-1.1 cells in the medium without exogenous growth factors.

ANCHORAGE INDEPENDENCE OF UV-INDUCED FOCUS-DERIVED CELL
STRAINS

Growth Lactors.

ANGENCIAS INDEPENDENCE OF UV-INDUCED FOOMS DESIVED LEVE

UV-induced focus-derived cell strains were tested for their ability to form large size colonies in agarose. The results of the agarose assays are shown in Table 1. The five UV-induced cell strains (1.1-UVC2-B5, 1.1-UVC2-C16, 1.1-UVC1-B11a, 1.1-UVC2-B11b, and UVC2-C1a) which formed tumors at a high frequency and with a short latency, formed large size colonies at higher frequencies (i.e.,AI+++) (Fig 5A and 5B). The control focus-derived cell strain (1.1-UVC2-control2) grew moderately well in agarose (i.e.,AI++) (Fig 6a). All of the others focus-derived cell strains grew like the parental MSU-1.1 cells in agarose (i.e.,AI+) (Fig 6B).

GROWTH IN AGAROSE AND IN MEDIUM WITHOUT EXOGENOUS GROWTH FACTORS OF SOME OF THE TUMOR-DERIVED CELL LINES.

The five focus derived cell strains which grow well in agarose (AI+++) and in medium without exogenous growth factors (GFI++) formed high grade sarcomas in athymic mice at a relatively high frequency and with a short latency. However, MSU-1.1-UVC2-A16b, MSU-1.1-UVC2-A17 and MSU-1.1-UVC-control2, which did not grow well in agarose or in medium without exogenous growth factors, also formed tumors in athymic mice

shilty to form large size only
of the ageroes earsys are obinduced cell exteins III-UV
sits, II-UVC2-Bith, and V
sits, II-UVC2-Bith, and V
sits, II-UVC2-Bith, and V
sits at bigher free
colomies at bigher free
scherasly well in exschera flows-derive.

It cells in system
RECULT IN AGARCES ALL
RECULT OF SCHE OF TO

The five focus or agrowed (AI+++) and in equipment of a subpain with latters (AEI++) formed bligh grade parameter in subpain wine at a relatively bligh frequency and with a short latency. Mosevery NEW-1.1-UVCZ-AISD, MOU-1:1-UVCZ-AIS and MOU-1.1-UVCZ-AISD, MOU-1:1-UVCZ-AISD and store and store are sedium without which did not grow well in equipment in achieve along stores transports growed becomes to stored tumors in achieve along

Figure 5.

Colony formation by UV-induced focus-derived cell strains in 0.33% agarose.

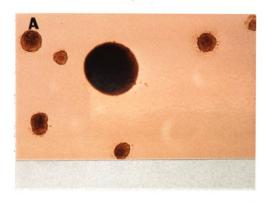
- A. Cell strain MSU-1.1-UVC2-B5, which produced high grade sarcomas with a short latency at all injection sites, formed large size colonies in agarose (200-300 μ m diameter) in 3 weeks.
- B. Cell strain MSU-1.1-UVC1-B11a which also produced a high grade sarcomas with a short latency at 7 of 8 injection sites, formed large size colonies in agarose (200-300μm in diameter) in 3 weeks.

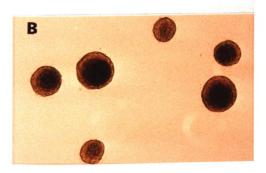
Colony formation by UV-induced to

A Cell strain MSU-1.1-UVC2-H2, min. 1, 1000

lates of all injection sites, formed

dismeter) in 3 weeks.


Service of the second


B. Cell stein MSD-LL-UVCI-Bills - I -

a door latency at 7 of 8 injection steen.

Tolling book and and the

169 Figure 5

but with a relatively long latency (Table 1). Previous studies in this laboratory showed that if focus-derived MSU-1.1 cell strains which did not grow well in agarose and in medium without exogenous growth factors formed tumors, the tumors had a long latency. In contrast, the cell lines derived from these tumors grew well in agarose and in medium without exogenous growth factors (Yang et al., 1992). In view of these findings, tumor-derived cell lines 1.1-UV2.A16b/T and 1.1-UV2-control 2/T derived from high grade sarcomas were tested for growth in agarose and medium without exogenous MSU-1.1-UVC2-A17 was lost in a freezer growth factors. accident and could not be tested. These tumor-derived cell lines formed large colonies at a high frequency (i.e., AI+++), and they grew rapidly in MWEGF, like normal human fibroblasts grow in medium supplemented with 10% serum (i.e., GFI++), whereas the original focus-derived cells did not do so (Table 2). However, the fibroma-derived cell line (1.1-UV1-A18b/T) did not grow well(i.e., AI+/GFI+). Indeed, they grew just like the parental MSU-1.1 cells (Table 2).

Table 2: Anchorage Independence, Growth Factor Independence and Tumorigenicity of Tumor-Derived Cell Lines and Corresponding Focus-Derived Cell Strains.

CELL STRAIN/CELL LINE	FOCUS/TUMOR	ANCHORAGE INDEPENDENCE ^A	GROWTH FACTOR INDEPENDENCE®		TUMOR ncy ^c Latency ^D
MSU-1.1-UVC2-A16b	Focus-derived	+	+	3/4	12-18
MSU-1.1-UVC2- A16b/T	Tumor-derived	+++	++	4/4	3-5
MSU-1.1-UVC2- CONTROL2	Focus-derived	++	+	3/4	10-12
MSU-1.1-UVC2- CONTROL2/T	Tumor-derived	+++	++	4/4	3-4
MSU-1.1-UVC1-A18B	Focus-derived	+	+	1/8	20
MSU-1.1-UVC2- A18B/T	Tumor-derived	+	+	0/4	NA

a: See Table 1 for legend and information concerning these focus-derived cell strains.

Table 2: Anchorage Independence, Grown'd Forder Independence and Foundation of Tamor-Darved Cell Lines and Convenience, i.e., "Darved Convenience, i.e., "Darved Cell Lines and Cel

the property bearing the second and the last the Park I

DISCUSSION:

These experiments demonstrate that a single dose of UV radiation is able to induce MSU-1.1 cells to form foci in a dose- dependent manner and that some of the focus-derived cells are tumorigenic. The frequency of focus formation increases linearly with UV dose(Fig 1) and at 25-30% is similar to the number of HPRT mutations induced in normal skin fibroblasts by this radiation (100-120 per million) (Maher et al., 1982) and by a reeactive derivative of benzo(a)pyrene (Yang et al., 1991; Yang et al., 1992) suggesting that focus formation may be caused by a mutation.

Our study is similar to two other studies from this laboratory using MSU-1.1 cells. Reinhold et al. (1996) reported that ionizing radiation was able to cause focus formation in MSU-1.1 cells and that the progeny cells of some foci are highly tumorigenic. Yang et al.(1992) reported that, an active derivative of benzo(a)pyrene was able to induce foci. In this study, cell strains derived from three foci formed a high frequency of large colonies in agarose and grew without exogenous growth factors. These cells formed tumors that reached 6 mm diameter in two-to-three weeks in all animals. One cell strain (2C1) that did not form large

BIBCUSSION

Takes experiments decorated and decoration in adjustic to the manner and colls are tumorigenic. The increases linearly with a similar to the number of the libroblasts by this range in the base of all, 1982) and by a selection say be cause formation may be cause formation may be cause

Indicatory using well reported that ionising the second commercion in MSU-1:1 cells and second commercion in MSU-1:1 cells and second commercial manufactures are strictly towardlesses, yang at all 1991 reported that; an active derivative of banks(s)pyrame was able to induce fout, In this study, cell strains derived from these both lorsed a high fraquency of large colonies in aparone and draw without exceptions growth factors. These opins forced tunoout that reached t am diameter in two-to-three wants in all minals. One cell strain (2011) that did not loss large animals.

colonies in agarose and did not grow without exogenous growth factors formed tumors in three of four mice after two and a half months. However, the cells derived from these tumors formed large colonies in agarose at a high frequency and grew rapidly in medium without exogenous growth factors just as the other three tumorigenic strains had. The interpretation was that a variant cell(s) with these characteristics arose spontaneously in the 2C1 cell population and that these variant cells formed the tumors.

In the present experiment, the five UV-induced focusderived cell strains that formed large colonies in agarose at
a high frequency and grew rapidly without exogenous growth
factors were tumorigenic in 87-100% of the mice, and the
tumors formed were of the shortest latency (2-6 weeks) (Table
1). Nine focus-derived cell strains that did not exhibit
growth without exogenous growth factors and did not form
colonies in agarose were not tumorigenic. Three cell strains
that did not exhibit growth in medium without exogenous growth
factors and which exhibited little or no ability to form
colonies in agarose were found to give rise to tumors at 2575% of the injection sites. These tumors were of relatively
longer latency (12-20 weeks). When cells derived from these

tumors were tested for these characteristics, they were found to grow without exogenous growth factors, to form large colonies in agarose, and to form tumors with a very short latency (3-5 weeks) (Table 2). These cell strains appear to be like the 2C1-derived cell strain described above, from the research of Yang et al. (1992). Our interpretation is that variant cells that had these characteristics spontaneously in the cell populations after they were isolated from the foci and it the expression of was these characteristics that converted them to tumorigenic cells. One cell stain which was derived from a fibroma did not have these characteristics and may be a special case.

The results we have obtained are similar to that of Smith et al. (1993) who studied the transformation of an infinite life span mouse fibroblast cell line (C3H10T1/2) by various chemical carcinogens. They found that 81% of the focus-derived cell populations that formed large size clonies in agarose were tumorigenic. In the present study and that of Yang et al., 1992, 100% of the focus-derived MSU-1.1 cells that grew rapidly without exogenous growth factors and formed large colonies in agarose at a high frequency were tumorigenic.

Infinite life agen mouse files and could that fit my various cheesings. They found that fits of the forme-derived cell populations that formed large case diomical in agarose were tumoriganic. In the present study and that of large al., 1992, 1809 of the focuse-derived Matt-1.1 cells that graw rapidly without exogenous growth factors and formed large colonies to agarose at a high frequency were large colonies.

. blungirous

Our study supports the hypothesis of Smets' (1982), who suggested that transformation in vitro occurs by distinct steps. At each step, cells acquire independent, qualitatively distinct properties like colony formation in agarose, growth in medium without exogenous growth factors, etc. study, MSU-1.1 cells showed a somewhat greater senstivity to the cytotoxic effects of UV 254 when compared with normal skin fibroblasts (McCormick et al., 1986). The reasons for this are not known but the cause cannot be the loss of expression of wild type p53 protein as found by Ford and Hanawalt (1995) since MSU-1.1 cells express wild type p53 protein (J.J.McCormick, unpublished studies).

In summary, our data show that exposure of MSU-1.1 cells to UV radiation causes increase in the frquency of foci in a dose-dependent manner. The progeny of cells from some of these UV-induced foci are tumorigenic, but not cells from every focus. We conclude that co-expression of three in vitro biological characteristics i.e., the ability to form foci, the ability to form large size colonies in agarose at high frequency and the ability to grow in medium without exogenous growth factors correlates with the ability of the cell strains to form tumors in athymic mice.

Our study supports the my state state of the state of the

to form tumors in activate mice.

ACKNOWLEDGMENTS

We wish to thank Suzanne K Kohler, Lonnie Milam and other members of Carcinogenesis Laboratory for their help and assistance. This research was supported in part by DHHS grant CA 56796 from the NCI.

ACCRECATION NOTES AND ADDRESS OF THE PARTY O

ABBREVIATIONS:

AI, anchorage independence; GFI, growth factor independence
UV, ultraviolet; MWEGF, medium without exogenous growth
factors

AMOUTATIVESSA

AL anchorage independence Or

W. ultraviolet, MWEGE,

factors

REFERENCES:

Ananthswamy HN, Pierceall WE (1990): Molecular mechanisms of ultraviolet radiation carcinogenesis. Photochem Photobiol 52: 1119-1125.

Brash DE, Rudolph JA, Simon JA, Linm A, McKenna GJ, Baden HP, Halperin AJ, Poten J (1991): A role of sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Nat Acad Sci USA 88: 10124-10128.

Fears TR, Scotto J (1983): Estimating increases in skin cancer morbidity due to increases in ultraviolet radiation exposure. Cancer Invest 1: 119-126.

Findlay GM (1928): Ultraviolet light and skin cancer. Lancet 2: 1070-1075.

Ford JM, Hanawalt PC (1995): Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV-resistance. Proc Nat Acad Sci USA 92: 8876-8880.

Fry DG, Milam LD, Dillberger JE, Maher VV, McCormick JJ (1990): Malignant transformation of an infinite life span human fibroblast cell strain by transfection with v-Ki-ras. Oncogene 5: 1415-1418.

Hurlin PJ, Fry DG, Milam LD, Maher VV, McCormick JJ (1987): Morphological transformation, focus formation and anchorage independence induced in human fibroblast by expression of transfected H-ras oncogene. Cancer Res 47: 5752-5757

Hurlin PJ, Maher VV, McCormick JJ (1989): Malignant transformation of of human fibroblast caused by transfected T24 H-ras oncogene. Proc Natl Acad Sci USA 86: 187-191.

Kerr JB, McElroy CT (1993): Evidence for large upward trends of UV-B radiation linked to ozone depletion. Science 262: 1032-1034.

BESTEERSTEEN

Anantuwanaw NW. Pierceall Vul () vitraviolet radiation carries :

Erach DE, Rudolph JA, Simen di Halperin AJ, Poten J 1188 Cancer: UV-induced p53 manager Proc Mat Aced Sci USA 888 188

Pears TR, Scotto J (1981)
morbidity due to incress
Caroer Invest l: 119:118

Indlay OM (1928): U.Fe-I: 1070-1075.

Try DO, Milam LD, Discouling (1890): Waligment transition of the Manual Ethichland cell access to the Control of the Control o

Harila PF, PTY DG, Miles LD, Maher Ve McGorrick DJ (1990); McCopical cransformation, Socus formation and anoboxeds induced induced in human fibroblast by approached of fireaffected H-ras oncogene. Concer Res 47: 2723-2727

melin RV, Maber VV, McCormick JJ (1983): Mailonaur transformation of or human (flowblast caused by transferbed TAS H-ras processes Proc Natl Acad Sci USA 96: 187-174.

lert JB, McElroy Cf (1923): Evidence for large spears transact of UV-E rediacion linked to ocone depletion. Science 202:

Lin C, Maher VM, McCormick JJ (1995b): Malignant transformation of human fibroblast strain MSU-1.1 by v-fes requires an additional genetic change. Int J Cancer 63: 140-147

Lloyd SA (1993): Stratospheric ozone depletion. Lancet 42:1156-1158.

Maher VM, Rowan LA, Silinskas SA, Katley SA, McCormick JJ (1982): Frequency of UV-induced neoplastic transformation of diploid human fibroblasts is higher in xeroderma pigmentosum cells than in normal cells. Proc Nat Acad Sci USA 79: 2613-2617

McCormick JJ, Kateley-Kohler S, Watanabe M, Maher VM (1986): Abnormal sensitivity of human fibroblasts from xeroderma pigmentosum variants to transformation to anchorage independence by ultraviolet radiation. Cancer res 46: 489-492

McCormick JJ, Maher VV (1988): Towards an understanding of the malignant transformation of diploid human fibroblasts. Mutat Res 199: 341-345.

McCormick JJ, Maher VV (1989): Malignant transformation of mammalian cells in culture, including human cells. Envior Mol Mutag 14: 105-113.

McCormick JJ, Maher VV (1994): Analysis of multi step process of carcinogenesis in human fibroblasts. Risk Analysis 14: 257-263.

Morgan TL, Yang D, Fry G, Hurlin PJ, Kohler SK, Maher VV, McCormick JJ (1991): Characteristics of an infinite life span diploid human fibroblast cell strain and a near diploid human fibroblast cell strains arising from a clone of cells expressing a transfected v-myc oncogene. Exp Cell Res 197: 125-136.

Patton JD, Rowan LA, Mendrala AL, Howell JN, Maher VM, McCormick JJ (1984): Xeroderma pigmentosum (XP) fibroblasts including cells from XP variants are abnormally sensitive to the mutagenic and cytotoxic actions of broad spectrum simulated sunlight. Photochem Photobiol 39: 37-42.

Reinhold DS, Walicka M, Elkassaby M, Milam L, Kohler SK, Dunstan RW, McCormick JJ (1996): Malignant transformation of human fibroblasts by ionizing radiations. Int J Rad Biol 69: 707-716.

Ryan PA, McCormick JJ, Maher VM (1987): Modification of MCDB-110 medium to support prolonged growth and consistent high cloning efficiency of human diploid fibroblasts. Exp Cell Res 172:318-328.

Scotto J, Fears TR, Fraumeni JF Jr (1981): Incidence of non-melanoma skin cancer in United States. Publ. No. (NIH) 82-2433, U.S.Department of Health and Human Services, Washington D.C.

Scotto J, Fears TR (1978): Skin cancer epidemiology: research needs. Nat Cancer Inst Monog 50: 169-177.

Scudiero DA, Shoemaker RH, Paul KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR (1988): evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48: 4827-4833.

Silveberg E, Boring CC, Squires TS (1990): Cancer Statistics. CA 40:9-26.

Smets LA (1982): Cell transformation as a model for tumor induction and neoplastic growth. Biochem Biophys Acta 605: 93-111.

Smith GJ, Bell WM, Grisham JW (1993): Clonal analysis of the expression of multiple transformation phenotypes and tumorigenicity by morphologically transformed 10T1/2 cells. Cancer Res 53: 500-508.

Urbach F (1978): Evidence and epidemiology of ultraviolet radiation induced cancer in man. NCI Monog 50:5-10.

Wilson DM, Yang D, Dillberger JE, Maher VM, McCOrmick J (1990): Malignant transformation of human fibroblasts by a Transfected N-ras oncogene. Cancer Res 50: 5587-5593

Majobeld DS, Waldeks M, Elkansalg M: Filer a, Mobior SK, Dometas RM, McCornick JJ (1996): Majoras from mobios of heart fibroblacts by tomising restaurant the most contrator-yra.

Near PA, McCormick JJ, Mahel Ve 110 medium to support province clouing efficiency of human appear

Scotto J. Pears TR, Francis missions skin cancer in the 22-2431, U.S. Dopartechi Machington D.C.

Scotto U. Pears TR IIs Manager Land menda, Mat Cancer Last m

Southern DA, Show also in Mortgar TH, Coursens Ha Cot a southly tetravolus, drug sensitivity in corresponding Cancer Res 88 1

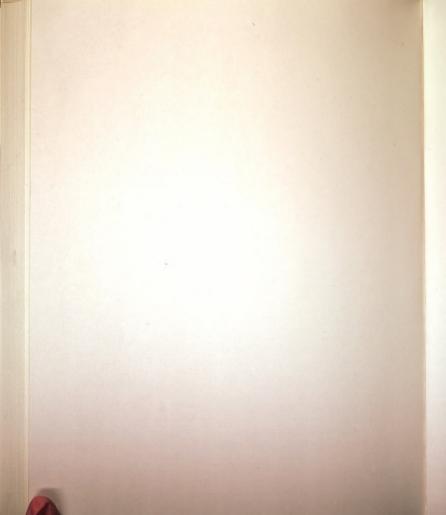
Silveberg E, Boring CC. Inger CA 4018-26.

Spets LA (1982) a Cell transler and response Acta 50%: induction and recplastic growth stress stophys Acta 50%:

Saith GJ, Dell NM, Grisham GM (1993): Clonal analysis of the expression of sultiple transformation phanetypes and bmorigonicity by morphologically transformed 1011/2 cells-Cupre may as one one to be supposed to the control of th

Track V (1978): Evidence and spidestology of wlersvioles

Wilson DM, Yang D, Dillberger JE, Maher VM, McColeick OV (1990); Mallgmack transformation of human fibrobiasts by a (1990); Mallgmack transformation of human fibrobiasts by Yang JL, Chen RH, Maher VM, McCormick JJ (1991): Kinds and locations of mutations induced by (+/-)-7 beta,8 alphadihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene in the coding region of the hypoxantine(guanine)phosphoribosyltransferase gene in the diploid human fibroblasts. Carcinogenesis 12: 71-75.


Yang D, Louden C, Reinhold DS, Kohler SK, Maher VV, McCormick JJ (1992): Malignant transformation of human fibroblast cell strain MSU-1.1 by (+)-7 β ,8 α -dihydroxy-9 α ,10 α -epoxy-7,8,9,10 -tetrahydrobenzo(a)pyrene. Proc Nat Acad Sci USA 89: 2237-2241.

You fu, Chen EH, Maher VM, McDirmick E (199) Risks and Bocations of mutations induced by the first R Alphathy droxy - S alpha 10 alpha 20 alphathy decay (alphathy a shape and a shape a shape and a shape a shape and a shape and a shape a s

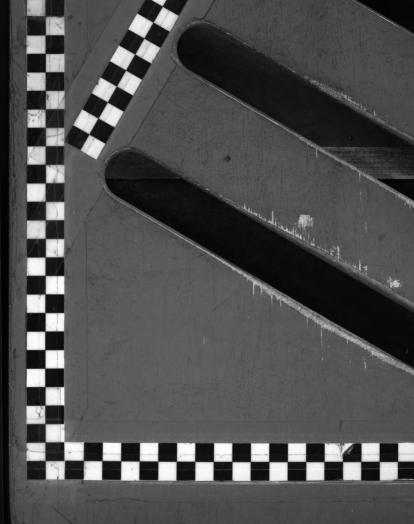

Tang D. Louden C. Reinhold D. 22 (1922): Malkgnant cransform strain MSU-1.1 by (+) -78 sectors by dropers (a) pyrene

Figure 5.

Colony formation by UV-induced focus-derived cell strains in 0.33% agarose.

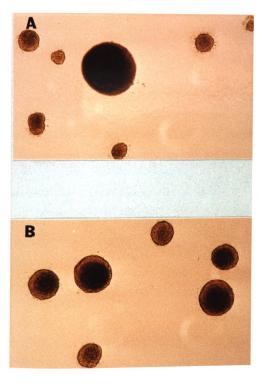
- A. Cell strain MSU-1.1-UVC2-B5, which produced high grade sarcomas with a short latency at all injection sites, formed large size colonies in agarose (200-300 μ m diameter) in 3 weeks.
- B. Cell strain MSU-1.1-UVC1-B11a which also produced a high grade sarcomas with a short latency at 7 of 8 injection sites, formed large size colonies in agarose (200-300μm in diameter) in 3 weeks.

Floure S.

Colony formation by UV-ladaced for assistant

A. Cell stain MSU-1:1-UVC2-B) village progra

luoney at all injection sites, funned


discourse) in 3 weeks.

B. Cell storie MSU-1, LeUVCI-Bills with Level

A short latency at 7 of S Injection sites . Given hyperstern in a recent (200

169

Figure 5

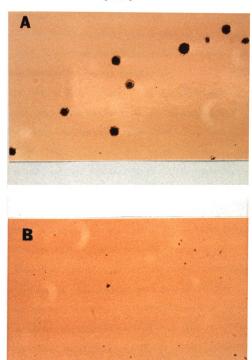
Figure 6.

Colony formation by UV-induced, focus-derived cell strains in 0.33% agarose.

- A. Cell strain 1.1-UVC2-control2, which formed tumors with relatively long latency, formed moderate size agarose colonies (60-100 μ m in diameter) in 3 weeks.
- B. Cell strain MSU-1.1-UVC2-B15, which was not tumorigenic, formed small agarose colonies (40-60 μm diameter) in 3 weeks.

Piggere 6

Colony formation by UV-induced, focus-de-


A. Cell statio 1.1-UVC2-control2, which for our re-

formed moderate size agarose colonie.

R. Cell strain MSI-L1-UVC2-B15, which

were colonies (40-60 pp diameter) in it

Figure 6

but with a relatively long latency (Table 1). Previous studies in this laboratory showed that if focus-derived MSU-1.1 cell strains which did not grow well in agarose and in medium without exogenous growth factors formed tumors, the tumors had a long latency. In contrast, the cell lines derived from these tumors grew well in agarose and in medium without exogenous growth factors (Yang et al., 1992). In view of these findings, tumor-derived cell lines 1.1-UV2.A16b/T and 1.1-UV2-control 2/T derived from high grade sarcomas were tested for growth in agarose and medium without exogenous growth factors. MSU-1.1-UVC2-A17 was lost in a freezer accident and could not be tested. These tumor-derived cell lines formed large colonies at a high frequency (i.e., AI+++), and they grew rapidly in MWEGF, like normal human fibroblasts grow in medium supplemented with 10% serum (i.e., GFI++), whereas the original focus-derived cells did not do so (Table 2). However, the fibroma-derived cell line (1.1-UV1-A18b/T) did not grow well(i.e., AI+/GFI+). Indeed, they grew just like the parental MSU-1.1 cells (Table 2).

Table 2: Anchorage Independence, Growth Factor Independence and Tumorigenicity of Tumor-Derived Cell Lines and Corresponding Focus-Derived Cell Strains.*

CELL STRAIN/CELL LINE	FOCUS/TUMOR	ANCHORAGE INDEPENDENCE ^A	GROWTH FACTOR INDEPENDENCE ^B	TUMOR Frequency ^c Latency ^D	
MSU-1.1-UVC2-A16b	Focus-derived	+	+	3/4	12-18
MSU-1.1-UVC2- A16b/T	Tumor-derived	+++	++	4/4	3-5
MSU-1.1-UVC2- CONTROL2	Focus-derived	++	+	3/4	10-12
MSU-1.1-UVC2- CONTROL2/T	Tumor-derived	+++	++	4/4	3-4
MSU-1.1-UVC1-A18B	Focus-derived	+	+	1/8	20
MSU-1.1-UVC2- A18B/T	Tumor-derived	+	+	0/4	NA

a: See Table 1 for legend and information concerning these focus-derived cell strains.

Table 2: Ancharage Independence, Growth Fester Independence and Transcripticity of Transc-Darved Cell Lines and Curvay and Curvay of Cell Strains.

the Patient but beautiful and in the Patient and I

DISCUSSION:

These experiments demonstrate that a single dose of UV radiation is able to induce MSU-1.1 cells to form foci in a dose- dependent manner and that some of the focus-derived cells are tumorigenic. The frequency of focus formation increases linearly with UV dose(Fig 1) and at 25-30% is similar to the number of HPRT mutations induced in normal skin fibroblasts by this radiation (100-120 per million) (Maher et al., 1982) and by a reeactive derivative of benzo(a)pyrene (Yang et al., 1991; Yang et al., 1992) suggesting that focus formation may be caused by a mutation.

Our study is similar to two other studies from this laboratory using MSU-1.1 cells. Reinhold et al. (1996) reported that ionizing radiation was able to cause focus formation in MSU-1.1 cells and that the progeny cells of some foci are highly tumorigenic. Yang et al.(1992) reported that, an active derivative of benzo(a)pyrene was able to induce foci. In this study, cell strains derived from three foci formed a high frequency of large colonies in agarose and grew without exogenous growth factors. These cells formed tumors that reached 6 mm diameter in two-to-three weeks in all animals. One cell strain (2C1) that did not form large

DISCUSSION

These experiments demonstrate that and of redistion is able to induce red dose- dependent manner and redistant and tending and tumoxigenis. The increases linearly with similar to the number of the n

Indocatory using Marie and account of the foods of the foods of the food that icolaing count account of the food o

colonies in agarose and did not grow without exogenous growth factors formed tumors in three of four mice after two and a half months. However, the cells derived from these tumors formed large colonies in agarose at a high frequency and grew rapidly in medium without exogenous growth factors just as the other three tumorigenic strains had. The interpretation was that a variant cell(s) with these characteristics arose spontaneously in the 2C1 cell population and that these variant cells formed the tumors.

In the present experiment, the five UV-induced focusderived cell strains that formed large colonies in agarose at
a high frequency and grew rapidly without exogenous growth
factors were tumorigenic in 87-100% of the mice, and the
tumors formed were of the shortest latency (2-6 weeks) (Table
1). Nine focus-derived cell strains that did not exhibit
growth without exogenous growth factors and did not form
colonies in agarose were not tumorigenic. Three cell strains
that did not exhibit growth in medium without exogenous growth
factors and which exhibited little or no ability to form
colonies in agarose were found to give rise to tumors at 2575% of the injection sites. These tumors were of relatively
longer latency (12-20 weeks). When cells derived from these

Colonies in agarose and did not grow without semigenous grawth
factors formed tumors in three of their seminary two and a
half months. However, the calle garrest translations themselved
formed large colonies in agarose at a sub-fraction translation of the seminary seminary in medium without exceptus colonies and the seminary other three tumorigenic stresses as the seminary colonies are seminary in the seminary seminary in the seminary seminary colonies.

derived cell strains was a high frequency and graw factors were tumorigens formed were of the common and and the finance formed were of the engagement of the season of the growth without exogenous growth factors and did not form that did not exhibit growth in medium without exogenous greath factors and which exhibit growth in medium without exogenous greath colonies in squrose were found to give rise to tumors at the colonies in squrose were found to give rise to tumors at the longer latency (11-20 weeks). When calls derived from blums longer latency (11-20 weeks). When calls derived from blums longer latency (11-20 weeks). When calls derived from blums longer latency (11-20 weeks). When calls derived from blums longer latency (11-20 weeks). When calls derived from blums

tumors were tested for these characteristics, they were found to grow without exogenous growth factors, to form large colonies in agarose, and to form tumors with a very short latency (3-5 weeks) (Table 2). These cell strains appear to be like the 2C1-derived cell strain described above, from the research of Yang et al. (1992). Our interpretation is that variant cells that had these characteristics spontaneously in the cell populations after they were isolated from the foci and it the expression of was characteristics that converted them to tumorigenic cells. One cell stain which was derived from a fibroma did not have these characteristics and may be a special case.

The results we have obtained are similar to that of Smith et al. (1993) who studied the transformation of an infinite life span mouse fibroblast cell line (C3H10T1/2) by various chemical carcinogens. They found that 81% of the focus-derived cell populations that formed large size clonies in agarose were tumorigenic. In the present study and that of Yang et al., 1992, 100% of the focus-derived MSU-1.1 cells that grew rapidly without exogenous growth factors and formed large colonies in agarose at a high frequency were tumorigenic.

Our study supports the hypothesis of Smets'(1982), who suggested that transformation in vitro occurs by distinct steps. At each step, cells acquire independent, qualitatively distinct properties like colony formation in agarose, growth in medium without exogenous growth factors, etc. study, MSU-1.1 cells showed a somewhat greater senstivity to the cytotoxic effects of UV 254 when compared with normal skin fibroblasts (McCormick et al., 1986). The reasons for this are not known but the cause cannot be the loss of expression of wild type p53 protein as found by Ford and Hanawalt (1995) since MSU-1.1 cells express wild type p53 (J.J.McCormick, unpublished studies).

In summary, our data show that exposure of MSU-1.1 cells to UV radiation causes increase in the frquency of foci in a dose-dependent manner. The progeny of cells from some of these UV-induced foci are tumorigenic, but not cells from every focus. We conclude that co-expression of three in vitro biological characteristics i.e., the ability to form foci, the ability to form large size colonies in agarose at high frequency and the ability to grow in medium without exogenous growth factors correlates with the ability of the cell strains to form tumors in athymic mice.

Our wrody supports the hypertense of sects (1981), who supposed that transformation to the unitarity scape. At sech step, cells scape of the control of the properties like cells scape the stady, MSU-1.1 cells score the control of the cytotoxic effects the cytotoxic cytoxic cytotoxic cytoxic cytotoxic cytoxic cytotoxic cytotoxic cytotoxic cytoxic cytoxi

In summary, one contact the summary of the contact of the contact

ACKNOWLEDGMENTS

We wish to thank Suzanne K Kohler, Lonnie Milam and other members of Carcinogenesis Laboratory for their help and assistance. This research was supported in part by DHHS grant CA 56796 from the NCI.

S THE PROPERTY OF THE PARTY OF

We wish to thank Suranne K Kibler, semile Nilse and college members of Carolhogenesis Laboratory are the tell and assistance. This research was appared to the tell than the MCT.

ABBREVIATIONS:

AI, anchorage independence; GFI, growth factor independence
UV, ultraviolet; MWEGF, medium without exogenous growth
factors

ABBREVIATIONS:

AL anchorage independence Or Trails Specific DN, ultraviolet, Moror, Seales Specific Specific

REFERENCES:

Ananthswamy HN, Pierceall WE (1990): Molecular mechanisms of ultraviolet radiation carcinogenesis. Photochem Photobiol 52: 1119-1125.

Brash DE, Rudolph JA, Simon JA, Linm A, McKenna GJ, Baden HP, Halperin AJ, Poten J (1991): A role of sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Nat Acad Sci USA 88: 10124-10128.

Fears TR, Scotto J (1983): Estimating increases in skin cancer morbidity due to increases in ultraviolet radiation exposure. Cancer Invest 1: 119-126.

Findlay GM (1928): Ultraviolet light and skin cancer. Lancet 2: 1070-1075.

Ford JM, Hanawalt PC (1995): Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV-resistance. Proc Nat Acad Sci USA 92: 8876-8880.

Fry DG, Milam LD, Dillberger JE, Maher VV, McCormick JJ (1990): Malignant transformation of an infinite life span human fibroblast cell strain by transfection with v-Ki-ras. Oncogene 5: 1415-1418.

Hurlin PJ, Fry DG, Milam LD, Maher VV, McCormick JJ (1987): Morphological transformation, focus formation and anchorage independence induced in human fibroblast by expression of transfected H-ras oncogene. Cancer Res 47: 5752-5757

Hurlin PJ, Maher VV, McCormick JJ (1989): Malignant transformation of of human fibroblast caused by transfected T24 H-ras oncogene. Proc Natl Acad Sci USA 86: 187-191.

Kerr JB, McElroy CT (1993): Evidence for large upward trends of UV-B radiation linked to ozone depletion. Science 262: 1032-1034.

REPERENCES Y

Ananthusung HM, Picrocall HM 1998 ultraviolet radiation carcinopsa liberity

Pears TR, Scotto J (19e) | 10 morbidity due to incres Capper Invest 1: 119-14

Pindley ON (1928) - Ultra 2: 1070-1075.

Try DG, Milam 12, Dillierge of Continues 12 develope 12 [1390] Wellgmann transforms of the development into apaca Description of the Coll service of the College 12 of the College 13 of the College 13 of the College 13 of the College 13 of the College 14 of the C

Harlin BT, Fry DG, Milam LD, Maher VV, McCormick JJ (1987): Atphological transformation, focus formation and minburges independence induced in busen fibroblast by expression of transforced H-rms onCogens, Cancer has S7: 5781-5787

Burlin PJ, Haber VV, McCormick JJ (1999) Selignaut transformation of of human fibroblest caused by transferosed 724 M-ras choogens, Proc Matl Acad Sci USA 98: 187-191.

Nert JB. McElroy Cf (1993): Evidence for Intes upward trends of UV-B radiation linked to ozone depletion. Science 262: 1032-1034. Lin C, Maher VM, McCormick JJ (1995b): Malignant transformation of human fibroblast strain MSU-1.1 by v-fes requires an additional genetic change. Int J Cancer 63: 140-147

Lloyd SA (1993): Stratospheric ozone depletion. Lancet 42:1156-1158.

Maher VM, Rowan LA, Silinskas SA, Katley SA, McCormick JJ (1982): Frequency of UV-induced neoplastic transformation of diploid human fibroblasts is higher in xeroderma pigmentosum cells than in normal cells. Proc Nat Acad Sci USA 79: 2613-2617

McCormick JJ, Kateley-Kohler S, Watanabe M, Maher VM (1986): Abnormal sensitivity of human fibroblasts from xeroderma pigmentosum variants to transformation to anchorage independence by ultraviolet radiation. Cancer res 46: 489-492

McCormick JJ, Maher VV (1988): Towards an understanding of the malignant transformation of diploid human fibroblasts. Mutat Res 199: 341-345.

McCormick JJ, Maher VV (1989): Malignant transformation of mammalian cells in culture, including human cells. Envior Mol Mutag 14: 105-113.

McCormick JJ, Maher VV (1994): Analysis of multi step process of carcinogenesis in human fibroblasts. Risk Analysis 14: 257-263.

Morgan TL, Yang D, Fry G, Hurlin PJ, Kohler SK, Maher VV, McCormick JJ (1991): Characteristics of an infinite life span diploid human fibroblast cell strain and a near diploid human fibroblast cell strains arising from a clone of cells expressing a transfected v-myc oncogene. Exp Cell Res 197: 125-136.

Patton JD, Rowan LA, Mendrala AL, Howell JN, Maher VM, McCormick JJ (1984): Xeroderma pigmentosum (XP) fibroblasts including cells from XP variants are abnormally sensitive to the mutagenic and cytotoxic actions of broad spectrum simulated sunlight. Photochem Photobiol 39: 37-42.

Lin C. Mahar VM, McCarmick of Hilling Malignanc transformation of numan filterblass season structure by v-for requires an additional penetra stage for transfer later 1971

Moyd 8A (1993); Stretce, mer. 42:1156-1156.

Maner Vot, Bowen LA, 911: (1982) Frequency of Votes diploid human fibroblasts calls chan in normal

McContat UJ, Kataley Mana Almorata enuthitally playmonous variate Independence by ultimate

Nedormide 33, Mahar an maligmant Ermanicomaria Ann 1991 341-345

McCormick UJ, Maher VV
memelian cells in c...
Nol Mutag 14: 105-119

McComick JJ, Maher VV 1183411 has ment with beel process of carcinogenesis in haman firstonias as and Analysis tig 357-263.

Mospan TL, Yang D, Fry G, Hurlin st, Kobler SE, Manar VK, McConder JJ, (1981): Characteristics of an infinite life even diploid human farmin and a near diploid human diploid human arising from a close of ceile strains arising from a close of ceile appearing a transfected v-syc oncogens. Exp Cell New 187-185.

Petton UD, Rowen LA, Mendrala AL, Sowell CV Maker VK.
Michaelek UJ (1984): Xeroderma pignenceum CEP (Ilbreriates
Including cells iron ik variantes ein antomathy entditive to
the multepenic and cytotoxio actions of hedd appearum
simulated sunilght: Photochem Photobiol 38: 1745.

Reinhold DS, Walicka M, Elkassaby M, Milam L, Kohler SK, Dunstan RW, McCormick JJ (1996): Malignant transformation of human fibroblasts by ionizing radiations. Int J Rad Biol 69: 707-716.

Ryan PA, McCormick JJ, Maher VM (1987): Modification of MCDB-110 medium to support prolonged growth and consistent high cloning efficiency of human diploid fibroblasts. Exp Cell Res 172:318-328.

Scotto J, Fears TR, Fraumeni JF Jr (1981): Incidence of non-melanoma skin cancer in United States. Publ. No. (NIH) 82-2433, U.S.Department of Health and Human Services, Washington D.C.

Scotto J, Fears TR (1978): Skin cancer epidemiology: research needs. Nat Cancer Inst Monog 50: 169-177.

Scudiero DA, Shoemaker RH, Paul KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR (1988): evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48: 4827-4833.

Silveberg E, Boring CC, Squires TS (1990): Cancer Statistics. CA 40:9-26.

Smets LA (1982): Cell transformation as a model for tumor induction and neoplastic growth. Biochem Biophys Acta 605: 93-111.

Smith GJ, Bell WM, Grisham JW (1993): Clonal analysis of the expression of multiple transformation phenotypes and tumorigenicity by morphologically transformed 10T1/2 cells. Cancer Res 53: 500-508.

Urbach F (1978): Evidence and epidemiology of ultraviolet radiation induced cancer in man. NCI Monog 50:5-10.

Wilson DM, Yang D, Dillberger JE, Maher VM, McCOrmick J (1990): Malignant transformation of human fibroblasts by a Transfected N-ras oncogene. Cancer Res 50: 5587-5593

Relabold DS, Walicka M, Klisspaby M, Milan L, Achler SE, Dunstan RW, McCornlok UJ (1986): Walaymens Iransakensation of Dunst Elbroblasts by Ionizing radiations latty was sed out of: 707-716.

Non PA, McCormick JJ, Maher PM

110 medium to support project

111 claring efficiency of human dipple.

122:118-328.

Socto J. Pears TR. Fragment melanos and cancer as as 22.240. U.S. Department and Machington D.C.

Scotto J. Fears Th (1886)

Scudence DA, Shetsaler 9
Markiger TH, Ourtens se
of a soluble tetrarolium,
drug sanskivity in ou se
Lines. Cancer Res 68

Silveberg E, Boxing CC, Squies CA 4019-165.

Smots LA (1993): Cell transformation as model for tumor induction and neoplastic growth. Blocker Blophys Acts 805: 33-121.

much GJ, Bell WW, Orieham JW (1993): Clonal enelysis of the expression of amitigle transformation phenotypes and two origanisky by exceptionally exemptormed 1071/2 cells-Cunter Res 33: 500-508.

urbach F (1878): Syldence and epidemiology of ultraviolet redistion induced carcer in man. NCI Monog 50:5-10.

Vilson DM. Yang D. Dillberger JE, Mahor VM. McChwick J (1390): Mailgrant transformation of bores fibroblacts by a Transferred M-ras orcoogne, Cancer Man Str. 6567-5583 Yang JL, Chen RH, Maher VM, McCormick JJ (1991): Kinds and locations of mutations induced by (+/-)-7 beta,8 alphadihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene in the coding region of the hypoxantine(guanine)phosphoribosyltransferase gene in the diploid human fibroblasts. Carcinogenesis 12: 71-75.

Yang D, Louden C, Reinhold DS, Kohler SK, Maher VV, McCormick JJ (1992): Malignant transformation of human fibroblast cell strain MSU-1.1 by (+)-7 β ,8 α -dihydroxy-9 α ,10 α -epoxy-7,8,9,10 -tetrahydrobenzo(a)pyrene. Proc Nat Acad Sci USA 89: 2237-2241.

Yang JL, Ches RH, Maher VM, MUCLIFICK AT (1931) Minic and locations of sutations induced by in-left (obsert alphaelity droxy-9 slpps) a, 10 slpps or success in a 2 do attack droberso (slpyrene in the success ing. of the hypoxactine (guantime) phosphor theory translates are a the diploid human fibroblasts Corresponding

Yang D, Louden C, Reinhold IA
JU (1992): Malignant cremets
strain MEU-1:1 by (+) -78, e s
-tetrahydrobenro (a)pyren-

