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ABSTRACT

AN “OPTIMAL” MODAL REDUCTION OF SYSTEMS WITH

FRICTIONAL EXCITATION

By

Ramana Kappagantu V.

We apply a method of order reduction in modeling multi-degree-of-freedom and

continuous systems with frictional excitation. We use proper orthogonal decomposi-

tion to obtain a basis that has the optimal distribution of energy in the system. The

system dynamics are rich, including a variety of periodic, quasi-periodic and chaotic

responses. Each of these responses could result in a different set of proper orthogonal

modes. We select the proper orthogonal modes that can be used to build the reduced

system model by using the chaotic dynamics. The validity of the method of reduc-

ing the system and representing the system with this reduced model is studied. In

these studies we considered a numerical example and an experimental system. The

numerical example is a simple chain of spring-mass-damper system subjected to fric-

tional excitation from a moving belt. The experiment consisted of a cantilever beam

subjected to friction from an oscillating surface. The results confirmed the validity of

the method and exposed the benefits of using proper orthogonal modes rather than

linear natural modes of the system.
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Chapter 1

Introduction

1.1 The Problem Definition

The focus of this research is the application of proper orthogonal decomposition

(POD) theory to higher order systems subjected to frictional excitation. The goal

is to build a reduced-order model for a continuous system using experimental data.

In this process we wish to combine experiment and theory and exploit the rich dy-

namics that are inherent of systems with frictional forcing and understand the spatial

distribution of “energy” in the system.

The key words here are proper orthogonal decomposition theory, friction induced

vibrations and higher-order systems. In the next few paragraphs we will present mo-

tivation, a brief review of the current-day research in friction dynamics and proper

orthogonal decomposition theory followed by proposed research and thesis organiza-

tion.



1.2 Motivation

Friction is highly complex nonlinear mechanism that dissipates energy. It exists in

almost all mechanical systems involving relative motion. When two surfaces in contact

slide relative to one another, self-excited vibrations (Nayfeh and Mook [62]) and stick-

slip oscillations (Bowden and Leben [8]) are often observed. The energy dissipation

from a system undergoing stick-slip oscillations can be in the form of sound which can

be heard in daily life as squeak and squeal in automobiles and trains (Irretier [44],

Schneider et al., [80], Van Ruiten [77]), music from a violin (Schelleng [79, 78]), etc.

Of late manufacturing and designing high—precision equipment is becoming more and

more necessary, and a need for a good model for simulation and control of higher

order systems has become imperative. Though it is hard to estimate the expenditure

involved in combatting friction-related problems, some in the friction community offer

figures like 1.6 percent of the gross national product of developed countries, which

amounts to $116 billion for the U.S.A. alone in 1995 [50]. Thus friction contributes

to the economy both positively as well as negatively.

Modeling of the frictional dynamics is therefore important for understanding the

above mentioned phenomena. The need becomes more severe when the systems are of

high order or continuous. Moreover the usage of dry friction dampers and fasteners

to dissipate vibrational energy in turbine blades, aircraft frames and large space

structures is becoming more and more common (Ferri and Bindemann [32], Ferri and

Heck [33], Dupont and Kasturi [24]).

Experimental and mathematical evidence indicate that friction induced vibrations

involve interaction of degrees of freedom over broad range of spatial and temporal

scales (Van Ruiten [77], Nakai and Yokoi [61, 60], Tworzydlo et al. [90], Arnov et

al. [3], Schneider et al. [80], Irretier [44]). When the dynamics of higher-order me-

chanical systems involving frictional forces need to be studied in detail, a thorough

understanding of modal coupling and a credible model of friction are needed. .



We realize that the actual physical processes are too complex to be described by

mathematical equations. A great number of factors interacting in the real processes

make such descriptions extremely difficult. However, as far as engineering applica-

tions are concerned, good models in the form of mathematical equations would be

of tremendous use, as they represent, at least approximately, real processes by ex-

pressions that are easy to use, understand, communicate and improve. In nonlinear

systems new theories are arising for solving problems analytically and sometimes

pseudo-analytically. However most of the problems are still being verified by nu-

merical methods. This is becoming increasingly feasible and important, thanks to

the advances made in the current-day computing technology. There are several fric-

tion models available in the literature in various forms. Recent survey papers by

Armstrong-Helouvry et al. [2] and Ibrahim [42] gives a comprehensive list of friction

models and methods used in tribology, lubrication, dynamics and controls. One can

easily understand that one model alone cannot describe the different scenarios. Once

when a friction characteristic is identified, the next question that comes up is how to

model the other aspects of the system.

Typically continuous systems are described by partial differential equations (PDEs).

Due to infinite dimensionality, continuous systems are generally difficult to analyze.

Analytic solutions to the governing PDE may not be available and boundary condi-

tions may not be well specified. The problem gets more complex when the forcing is

non-smooth, as is the case with friction and impact. In many cases, finite-difference

or finite-element methods are used for numerical analyses. However they are often

too complex and computationally intensive for on-line simulations. Different methods

have been used in reducing the continuous/higher-order systems to low-order systems,

such as finite element analysis, component-mode synthesis, and Galerkin’s methods,

to name a few. Galerkin’s method of weighted residuals is the most appealing and

treats a continuous system as an n-degree—of-freedom system by assuming the solution

in the form of a linear combination of n known functions or assumed approximate

modes. Typically these n functions are the linear natural modal functions. These



methods become increasingly inconvenient as high-frequency dyanamics come into

play because large amount of information (possibly redundant) is to be handled [26].

The dynamics of higher order systems subjected to frictional excitation generally

involve high frequencies. As such these methods may not predict the behavior accu-

rately. Another issue is the efficacy of using linear natural modes in determining the

dynamics of a nonlinear system (which may have nonlinear natural modes [82, 83]).

One might rather intuitively want to select the set of functions from a basis in

which the energy distribution is optimal. If the major portion of the energy is con-

tained in say three or four of the functions in this basis set, one can then pick those

functions that have most energy. Towards getting the basis that has the optimally

distributed energy we look at the proper modes of the spatial covariance matrix

formed of the state time series (Cusumano [17, 18]). This method is analogous to

the Karhunen-Loeve expansion which is widely used in pattern recognition (Fuku-

naga [37]). The main advantage of proper orthogonal decomposition technique is

that it allows the experimental identification of critical coupling information between

various degrees-of-freedom. This in turn sheds some light on the noise generation and

propagation mechanisms. Also POD “does not do the violence of linearization” as it

gives a basis from the energy perspective [5]. Thus the usage of proper orthogonal

modes (POMs) preserves the gist of nonlinearity even in the presence of a disconti-

nuity [5]. Thus we are motivated to look into the feasibility of applying POD theory

(which is a statistical formulation based on spectral theory and gives us a basis that

has optimal distribution of “energy”) to systems subjected to frictional excitation.

1 .3 Literature Review

1.3.1 Self-excited oscillations and dry friction

Most of the current-day research in the friction-induced dynamics deals with low-

order systems (single or sometimes two-degree—of-freedom systems). This is mainly



because friction is highly nonlinear and, even in the low-dimensional systems it is yet

well modeled.

Despite the clear differences in the circumstances (material properties, geometry,

scale, etc.) at which the oscillatory phenomena of stick-slip occur it is a fact that

most of them are induced by dry friction and that many of them have the common

feature of rapidly alternating states of contact and no contact or sticking and sliding.

Also the coupling of various degrees of freedom has been shown to play an important

role in the generation of dynamic instabilities and various oscillatory phenomena in

finite dimensional systems.

There are many friction models available in the literature, of which the Coulomb

friction law is the foremost and is a great simplification of the recent realistic mod-

els. Though it realizes the existence of static and kinetic friction and is reliable in

describing the macroscopic frictional behaviors like stick-slip (e.g., Den Hartog [40],

Hundal [41], Shaw [81], Kato [57]) it is alone not able to model the subtle frictional

features, like the frictional memory in sliding rocks (Ruina [76], Dietrich [20], Ibrahim

[42]), rate and time dependencies of the static coefficient (Tworzydlo et al. [90]), the

influences of normal degree of freedom in sliding friction (Oden and Martins [63],

Tworzydlo et al. [90]). The first question therefore the dynamicist faces in modeling

a system with frictional forces would be how to decide on the right law so that the

system is appropriately modeled and the appropriate phenomena are noticed.

Courtney-Pratt and Eisner [15] and Burwell and Rabinowicz [71] observed the

creep sliding or micro-sliding of specimens for long periods of time after each increment

of tangential force was applied. The experiments of Johannes, Green and Brockley

[45] and Richardson and Nolle [74] indicate that p, decreases with the increase of

the rate of application of the tangential force. For sufficiently small load rates, the

coefficient of static friction is constant and equal to a value which is the usually

quoted coefficient of static friction. For large loading rates the coefficient of static

friciton tends to be constant and equal to a value which is usually interpreted as the



coefficient of kinetic friction.

Sinclair and Manville [84] showed that frictional vibration is due to the rise of the

coefficient of friction as the slip speed decreases.

While analyzing the experimental results of Bowden and Leben [8] and of Pa-

penhuyzen [66], Blok [7] concluded that the essential condition for the occurence of

stick-slip motion is a decrease of the frictional force with increasing sliding speeds. In

the same paper, Blok also provided the first systematic study of frictional vibrations

and established a quantitative criterion for their appearance.

Although discrepancies between the results of frictional experiments performed

on different apparatuses were noticed by various researchers (e.g., Burwell and Ba-

binowicz [12], Rabinowicz et al. [72], Bowden and Tabor [9]) it was Tolstoi [88] who

clearly stated for the first time the importance of the dynamic characteristics and

vibrations of the apparatus. He considered normal vibrations to explain the sharp

reduction in friction (when the sliding begins). He extended the theory developed

by Koodinov [48] to explain self-excited vibrations as due to coupling between the

normal displacements and tangential velocity of the slider under the conditions of

hydrodynamic lubrication. Tolstoi concluded that the interface coefficient of friction

does not explicitly depend on sliding velocity, and that the difference between the

apparent static and kinetic coefficients of friction is the consequence of microscale

vibrations accompanying frictional sliding. This observation was later confirmed by

experiments of other researchers.

An appropriate model for sliding friciton must incorporate physically reasonable

normal contact conditions. In addition, all the major sources of coupling between

normal and tangential degrees of freedom should be taken into account in such a

model.

The normal deformability of the interface is an essential feature of dynamic contact

problems involving metallic bodies. Not taking into account this deformability in



finite element models of these phenomena (even if frictional effects are negligible)

leads to some serious physical inconsistencies. For example, the absence of normal

deformability leads to models which can provide oscillations, depending on the mesh

used, with frequencies as high as 106 Hz, but these models may be incapable of

delivering experimentally observed contact oscillations of frequencies of the order of

103 Hz (Oden and Martins [63]).

The ideas of Tolstoi [88] led Oden and Martins [63] to a new approach in the

analysis of dynamic friction. They considered a relatively simple constitutive model

of the interface, with a power law normal response and the coefficient of friction in-

dependent of the velocity. This model was combined with an analysis of motion in

particular of normal vibrations of the slider to give an apparent kinetic coefficient

of friction different in general from the interface coefficient of friction. In their nu-

merical studies they obtained a good qualitative modeling of general experimental

observations. Later Tworzydlo and Becker [89] applied it to numerical modeling in

the reduction of static friction by vibrations and found a very good agreement with

experimental observations of Tolstoi. They modeled a typical pin-on-disk appara-

tus using an extended version of the Oden-Martins friction model. They found the

coupling between rotational and normal modes to be the primary mechanism of the

self-excited oscillations. These oscillations combine with a high-frequency stick-slip

motion to produce significant reduction of the apparent kinetic coefficient of friction.

Bengisu and Akay [4], have carried out a stability analysis of friction induced vi-

brations in multi—degree-of-freedom systems. In their studies they considered a contin-

uous friction characteristic. They linearized the nonlinear system (though inherently

linear the response is nonlinear due to the nonlinear nature of the friction force at

the contact interface) for predicting the system response and qualitatively describ-

ing bifurcations associated with the cross-over of the system poles. They obtained

the solutions to the nonlinear equations of motion numerically and demonstrated the

existence of limit cycles, quasi-periodic and chaotic behavior.



New friction models are still being developed. This can be attributed mainly to the

need to describe the phenomenon observed using the modern day sensor technology.

For example Polycarpou and Soom [67] proposed a two-dimensional friction model

which included both tangential and normal dynamics. This model was developed

to account for the oscillations during the stick-slip transition observed in a specific

system. To account for the spring-like characteristic and hysterisis effects in the

sliding regime of a particular experiment, Canudas de Wit et al. [13] suggested

a friction model which treats the friction interface as the contact between bristles.

A similar model was later verified by Liang and Feeny [52] in their experiments.

Marui and Kato [57] noticed oscillations in the friction signal during the stick-slip

transition similar to the ones noticed in boundary lubricated system by Polycarpou

and Soom [67], and Ko and Brockly [10] in their unidirectional pin-on-disk apparatus.

These oscillations were a superposition of high-frequency signal over a low frequency

periodic stick-slip signal. To explain this, they introduced a tangential compliance

at the contact in a Coulomb friction model. The effect of tangential compliance in

case of “pure” sliding motion is to induce an elastic deformation prior to the actual

sliding motion. This elastic characteristic is termed “spring-like” sticking behavior

by Canudas de Wit et al. [13]. The displacement induced by this elastic deformation

is typically small (a few microns) and was referred to as “preliminary displacement”,

“micro displacement”, “presliding displacement”, or “micro stick” in the literature

(Oden and Martins [63], Canudas de Wit [13], Harnoy et al. [39] and Liang and Feeny

[52]). The elastic deformation could belong to either of the contact elements. We

have noticed and identified this compliant behavior of the contact and use a slighlty

modified model of the same. The contact elements in our experiment were rubber

and steel and hence we prefer to attribute the deformation to the former.

1.3.2 Beams subjected to frictional forces

In our experiment we consider a cantilever beam subjected to frictional excitation

at the free end. In this context we would like to review research done with beams



subjected to frictional forces. There is a large catalogue of “vibrating beam” problems

available in the literature (as Cusumano [16] states that “sometimes it seems as if

two or more such problems appear in each issue of, say, The Journal of Sound and

Vibration alone”). We here present a few of those that deal with friction.

Bindemann and Ferri [6] have studied the damping characteristics of built-up

structures damped predominantly by dry friction. In their studes they considered

cantilever free beams subjected to transverse frictional interface.

Dowell and Schwartz [21, 22, 23] carried out theoretical and experimental studies

of the forced vibration response of a cantilevered beam with Coulomb damping non-

linearity. They emphasized on the types of nonlinear behavior and system response

spectral characteristics. They used a single mode Galerkin’s approach in the reduc-

tion of the PDE to ODE problem and analyzed the ODE using harmonic-balance

method.

Yagasaki [92, 93] made theoretical and experimental studies of nonlinear vibrations

of a straight beam clamped at both ends and forced with two frequencies near the

first mode frequency. They used a single mode Galerkin’s approximation in analyzing

the beam motion.

Finite element approximations of the continuous models can also be developed

which feature consistently-derived frictional damping and stiffness matrices. These

finite element methods, together with numerical schemes for solving associated sys-

tems of nonlinear ordinary differential equations, are capable of modeling stick-slip

motion, dynamic sliding, friction damping, and related phenomena in a significant

range of practical problems.

1.3.3 Phase-space reconstruction and dimension estimates

As stated earlier, we would like to exploit the varied dynamics due to the friction

excitation in our experiments. This brings us the issue of classifying the different
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dynamics in a system into periodic, quasi-periodic, chaotic, etc. Periodic dynamics are

easily identifiable. This is not true with quasi-periodic, chaotic and transically choatic

dynamics. We use phase-space reconstruction as a foundation for characterizing these

dynamics and use the dimensional estimates in deciding the number of POMs that are

to be used for model reduction. In this context we here present the recent literature

in the field of phase space reconstruction to identify a system using a time series.

While carrying out experiments it would be difficult to measure the system vari-

ables and more so to get all the system variables. This makes the understanding of

the qualitative dynamics of the system difficult. By qualitative system information

we mean the phase portrait information, the dimensions, the exponents of the system,

etc.

In such cases there are methods available in the literature to obtain information

of the active states from a single observable. This procedure is called phase space

reconstruction. The idea was first suggested by Packard [64]. Later Takens [87]

suggested another method of phase portrait reconstruction which is known as method

of delays. The work of Takens does not take into account the problems associated

with measurement. Broomhead and King [11] developed another method of phase

portrait reconstruction based on Takens’ proof and on ideas from the generalized

theory of information known as singular systems analysis (SSA).

The observation that the dynamics of a system with many degrees of freedom

can be investigated using time series of a single scalar observable has broadened the

class of experiments in which complex behavior can be interpreted as manifestations

of strange attractors. Takens [87] proved that reconstructions are generically topo-

logical embeddings of the original dynamics. Fraser [35] optimized the delay-vector

phase-space reconstruction with a delay time that satisfies a minimum redundancy

criterion, and found a reconstruction better than the one obtained using SSA. The

superiority is due to the farmer’s notion of general independence as opposed to the

latter’s foundation on the notion of linear independence. Pains and Dvorak [65] in
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their study confirmed the pre-existing doubts about the reliability of the singular-

value decomposition method. They concluded that singular-value decomposition, by

nature a linear method, can bring distorted and misleading results when nonlinear

structures are studied. So care should be taken in usage of this method in the systems

with friction, as they could behave in a nonlinear fashion due to the nonlinear nature

of the friction force, though the system inherently could be otherwise linear.

Read [73] in his reconstruction attempts made use of multi-variate singular-systems

analysis (M-SSA) and characterized a number of different kinds of flow and also de-

termined their correlation dimension. In comparision with the more conventional .

method of delays using a single variable, they found that the M-SSA offered sig-

nificantly improved reconstructions in terms of signal to noise ratio and structural

uniformity of the attractor.

The method of delays approach suggested by Takens [87] and its variations is the

most common method for reconstructing the phase space. Takens’ embedding theo-

rem was given for smooth systems. The embedding theorem can be loosely stated as

“if basic hypotheses are satisfied, applying the method of delays to an observable pro-

duces a trajectory in the reconstructed or pseudo phase space which is diffeomorphic

to the trajectory in the reconstructed or pseudo phase space which is diffeomorphic

to the trajectory in the real phase space”.

The friction—induced vibrations are generally nonsmooth and the presence of the

discontinuity could have a profound effect on the analysis of data. Feeny [28] and

Popp and Stelter [69] in their attempts at reconstruction using the method of delays,

have shown the manifestation of the discontinuity during the analysis of the data.

The effect of this problem in a reconstruction is that the consequent analyses for cal-

culating the fractal dimensions, Lyapunov exponents and other nonlinear predictions

become unavailable. This problem may not be suspected when the reconstruction

is attempted from an experimental data where these discontinuties are not clearly

identifiable.
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The question would then be how to identify these problems? Knowing that the

problem exists, is there a way of relaxing the smoothness requirements to continue

with post-analyses? Some answers to these questions have been ventured for low-order

systems (Feeny and Liang [31]). We try to overcome this problem using variables that

are least affected by the discontinuity at the source.

1.3.4 Review of current research in POD

The POD idea can be traced back to independent investigations by Kosarnbi [49],

Loeve [54], Karhunen [46] and Pougachev [70]. Proper orthogonal decomposition

is primarily a statistical formulation widely used in pattern recognition and image-

processing communities. It is a procedure for extracting a basis for modal decom-

position from an ensemble of signals. Its power lies in the mathematical properties

that suggest that it is the preferred basis in many circumstances. The attractiveness

of the POD lies in the fact that it is a linear procedure. The mathematical theory

behind it is the spectral theory of compact, self-adjoint operators. This robustness

makes it “a safe haven in the intimidating world of nonlinearity; although this may

not do the physical violence of linearization methods” [5], the linear nature of the

POD is the source of its limitiations, as will emerge from what follows. However it

should be made clear that the POD makes no assumptions about the linearity of the

problem to which it is applied. In this respect it is as blind as Fourier analysis [5].

The basic service of this method is to quantify the coherence in an ensemble of data.

In the mechanics community, this technique was first exploited by Lumley [55], in

60’s in understanding coherent structures of turbulent flows. Until recently very few

dynamicists have evinced interest in exploiting this tool for understanding the spatial

distribution of energy in a dynamic system. In the recent past the POD theorem has

been applied to estimate number of active states in chaotic attractors (Cusumano

and Bai [17, 18]), model distributed systems (FitzSimons and Rui [34]), understand

snap-through oscillations of buckled plates (Murphy [59]), investigate fluid structure

interaction problems (Sipcic et al. [85]), etc., with different degrees of success. They
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all have used the technique in quantifying the spatial coherence of the dynamics from

observed information at different locations. The foundation of this theory lies on

linear concepts like coherence and this could probably be the reason for the nonlinear

dynamicists hesitation in using this theory for systems showing nonlinear phenomena.

1.4 Proposed Research

The hypothesis for this research is “the proper orthogonal modes obtained from the

chaotic dynamics of a higher order system subjected to frictional excitation broadly

represent the system dynamics and hence can be used in building a reduced-order

model for the system”. In the proposed research we conduct numerical and physical

experiments and obtain time-series of displacements at different locations on the

system when the system behavior is chaotic. We process this information using POD

theory and obtain the dominant modes. We use these modes. in building a reduced

order model for the system and validate the same using different qualitative and

quantitative comparison techniques. We considered systems subjected to frictional

excitation as a feasiblity study for squeak and squeal problems, for which our aim

would be to identify the active modes and degrees of freedom that contribute to the

system dynamic response. The POD provides modes which can be used in modal

reduction in place of linear natural modes which in many situations are unknown.

1 .5 Contributions

The chief contribution of this thesis is the exposure of an effective tool for reducing

the order of higher order systems subjected to friction forcing. The POD method is

simple to implement, is computationally cheap and requires a minimal learning effort

in its application, in comparison with usage of traditional-modal-analysis software.

In some cases, the number of POMs needed to capture the system dynamics is less

than the required number of natural modes. For the systems that we considered, the
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comparison with a “truth set” indicates that models built of POMS predict better

dynamics than models built of an equal number of linear natural modes.

The resulting reduced model can be used to predict structural resonant frequen-

cies, passive damping levels and thus stratagically enhance the robustness of active

control methods for flexible structures. This tool can act as a bridge between high

and low order systems and thus transfer the vast amount of research being done in

the latter systems to the former. By using POMS as a linear combination of the

linear natural modes we throw some light on the degree of modal coupling involved

in the dynamics of the system. In this process we also show the redundancy of the

information that would have been used had linear natural modes been used. The

auxiliary contributions include the experimental characterization of friction between

rubber and steel and a validated method to measure displacements in the presence of

drift using strain gages. In this process we also reinforce the feasibility of a method for

numerically simulating high-order nonsmooth systems, modal projections and apply

tools of nonlinear dynamical systems to model validation.

1.6 Thesis Organization

In Chapter 2 we discuss the POD theory visa-vis simple linear systems and give an

interpretation to proper orthogonal modes (POMS) with reference to linear natural

modes. Also we make an attempt to relate the POMS to nonlinear natural modes of

a nonlinear system.

A feasibility study is described in Chapter 3. In this chapter we consider a numer-

ical experiment. The experiment consists of a chain of masses conneected by springs

and dampers subjected to friction forcing from a continuously moving belt at one

end. The mathematical model for this system is known fully and can be numerically

solved without making major assumptions. We carry some bifurcation studies on

the full model and identify chaotic regimes using Lyapunov exponents, false nearest
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neighbors and other phase space reconstruction techniques. We use the chaotic dis-

placement information of the individual masses to form a spatial correlation matrix.

We determine the POMS and POVs from this matrix and then use the dominant

modes in the original mathematical model to obtain a reduced model. We verify this

model using different qualitative and quantitative techniques.

In Chapter 4 and 5 we extend the method to a physical experiment. These chap-

ters include a description and characterization of the physics of the experiment. We

present here the different measurement methods and determine the friction char-

acteristic. In Chapter 5 we characterize the nonlinear dynamical response of the

experiment by presenting frequency and amplitude sweeps and delay maps. We again

' identify the chaotic regime using Lyapunov exponents and FNN. We end the chapter

with determining POMs and POVs.

In Chapter 6 we describe the mathematical model for the system and discuss the

effects of different parameters on the system. We later build and validate a reduced

model for the system. The nonlinear dynamic response is characterized to further

validate the model.

In Chapter 7 we conclude with a summary of the research conducted, lessons

learned and directions for future work.



Chapter 2

Proper Orthogonal Decomposition

(POD)

In this chapter, we do a brief review of the ideas behind proper orthogonal decom-

position and summarize the relation between proper orthogonal modes as applied in

oscillating systems to normal modes of oscillation.

2.1 Definitions and Theory

Ensemble is a commonly used term when dealing with statistical phenomena. We

present a formal definition for this term in the context of our experiments. Consider

a quantity which can be given a numerical value, e.g., displacement of the beam tip u

at a particular time t which is being measured in an experiment. In statistical studies

we imagine that the same experiment is done repeatedly and each time the value of

the same quantity is recorded. At the end of a large number of repetitions of the

experiment, we have a collection of the data measured under superficially identical

conditions. This collection of data is referred to as ensemble and the members are

termed as realizations. The quantity being measured could be the coordinates of a

point in a n-dimensional space and the repetition can be done at a uniform sampling

rate. Thus the ensemble could consist of displacement information at various locations

16
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in a dynamical system measured at uniform sampling rate.

When there is an ensemble of signals, the proper orthogonal decomposition theo-

rem [54] helps in finding a deterministic function which in some average sense has a

structure'typical of the members of the ensemble. The functions when found would

be the “most similar” to the members of the system represented by the ensemble on

the average. Mathematically the notion of “most similar” implies that the deviation

of the member functions of the ensemble from the found function is minimum. The

advantage of POD to other basis functions lies in the claim that this basis has the

optimal distribution in some sense. When talking about fluid-flow systems, the func-

tions would be the optimal functions in the sense that they capture more power than

any other set of basis functions (Lumley [55]).

The notion of “most similar” in mathematics corresponds to seeking a function o

such that

(Kn, ¢)|’) _ (l(u,¢)l’)
max

(m ' , (M) ' ‘2'”

where () indicates the statistical mean of the quantity under consideration and (2:, y)

indicates the inner product of a: and y. That is we are searching for a member «:5

among the dis, which maximizes the normalized inner product with the field u. Let

us refer to the maximum value in equation (2.1) by A. This is a classical problem

in the calculus of variations. Using kernel theorem and calculus of variations we can

show that a necessary condition [55], for equation (2.1) to hold is, 43 Should be an

eigenfunction satisfying the eigen-relation

Law-(WW. = W). (2.2)

The term (u(t)u"(r)) is the two-point correlation tensor, and we define R(t,r) to

be this average. Spectral theory [75, 14] guarantees the existence of the maximum

in (2.1) and it corresponds to the largest eigenvalue A1 of (2.2). Hilbert-Schmidt

theory [75] assures us there is not one, but countably many (the number equals the

cardinality of R) of solutions of (2.2), as long as Q is bounded. The non-negative
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definiteness of R(t, r) assures that A,- 2 0. We also have a diagonal decomposition:

RU. T) = Z Ak¢k(t)¢Z(T)- (2-3)
I: _

Also almost every member of the ensemble may be reproduced by a modal decompo-

sition in the eigenfunctions:

‘U(t) = Zak¢k(t) (2.4)

I:

The optimality of the basis can be seen by looking at the decomposition of a signal

u(:r, t) with respect to an orthonormal basis 1b,:

u(r,t) = Z b;(t)¢g($). (2.5)

If the w.- have been nondimensionalized and normalized to give («pm/5) = 6.5, then

the coefficients b.- carry the dimension of the quantity u. If u(.'c,t) is a displacement

measurement and the signal energy is defined as In uu‘dz then, the average signal

energy over the experiment is given by

[a (uu')d:r = z: b,b‘:. (2.6)

Hence, we may say that (bib?) represents the average signal energy in the i-th mode.

The optimality of the POD has been summarized by Berkooz et al. [5] in the form of

the following proposition.

Proposition: Let u(:r,t) be an ensemble member square integrable on the domain

It for almost every t and {¢.~,A;} be the POD orthonormal basis set with associated

eigenvalues. Let

' u(:c, t) -.= Z a;(t)¢,-(:c) (2.7)

be the decomposition with respect to this basis, where equality is almost everywhere.

Let w.- be an arbitrary orthonormal set such that

"(13, t) = Z b.-(t)¢,-(:c). (2-8)
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Then the following hold:

1. (a;(t)a;(t)) = 6.3-Ag, i.e. the POD coefi‘icents are uncorrelated.

2. For every n we have )2? (a;(t)a‘;(t)) = E? A; Z 2? (b.-(t)b;'(t)).

The claim that POD gives the most optimal basis is based on the above proposi-

tion. It implies that among all linear decompositions, POD is the most efficient, in

the sense that, for a given number of modes the projection on the subspace used for

modeling will contain the most energy possible in an average sense. In addition the

time series of the coefficients a.-(t) are uncorrelated.

2.2 The Method

To use this method one obtains the covariance of the information, and finds the proper

functions and corresponding proper values of the matrix. The proper values indicate

the fraction of energy of the system (represented by the ensemble) captured in the

corresponding mode. Thus one can determine the modes that dominate the system

from the energy sense. These dominant modes can be picked as empirical and be

used in building a reduced model for the complex system.

To understand how this technique works, let us consider a simple dynamical sys-

tem consisting of masses connected by springs and dampers. Let us represent the

displacements of the N masses by X(t) = [X1(t),X2(t),....,XN(t)]T. The system

equation can then be written as

Mi + CX + Kx = F (2.9)

where M, C and K are the system’s mass, damping and stiffness matrices.

From a real or numerical experiment, one can measure X(t) at different time steps

and thus get a TxN matrix 3, where each of the T rows represent the displacements

of the masses at a particular time. Note that in matrix 3, we have arranged the dis-

placements such that each column represents the displacements of a mass at different
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instants of time.

Using this matrix S we can construct a covariance matrix R = STE. The eigen-

vectors of this matrix R (which is an N x N non-negative definite matrix) can easily

be determined. As the eigenvalues indicate the energy contained in the correspond-

ing mode, we can decide on the modes that dominate the system from the energy

perspective using these eigenvalues.

2.3 Relation to Normal Modes — Unforced and

Undamped Oscillations

Consider an undamped system undergoing oscillations due to initial conditions alone.

Let us assume the mass matrix of the system can be reduced to an identity matrix.

Let us suppose the system is orbiting with the oscillations as a combination of only

two natural modes say V,- and V,-. i.e.

X(t) = A; sin(w,°t + ¢;)V.' + 141' sin(wjt + ¢j)Vj (2.10)

Let us collect the displacements from the experiment at different time steps to get

a matrix of E as shown below.

  

a = av?" + ejvf (2.11)

where

' A: sin(w1t1 + 451) l

e; = A; sm(w:t2 + 451) (2.12)

. Azsin(wjtT + (51) .

for l = i, j.

After measuring these displacements we can form the covariance matrix, which

would be
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II

A

T+ VJe-T)(e,-VT + eJVT)

= V.-eTegVT+VgeTeJ-VT+VJJ-eJTe;VT+VJ--e-TeJ-VT

=eTe5VVT+eTeJ-(VVT+VJ-VT)+eTeJ-VJ-VT

(2.13)

Now if e;, eJ- are sinusoidal vectors with different frequencies, the expected value

of e,TeJ- would go to zero, as T goes to 00. Thus,

R =eTegV-VT+eTeJ-VJ-VT

= aVv?‘ + (Nv? (2°14)

We can easily verify that V.- and VJ- are the eigenvectors for the above covariance

matrix by post-multiplying both sides of the above equation by V.- and VJ- respec-

tively. There are only two nonzero eigenvalues far the matrix R in this case and they

are in the ratio (Ai/Aj)2. ‘

2.4 Relation to Normal Modes in General Systems

In the case of systems with damping and external forcing, the relation between normal

modes and POMS is less obvious and difficult to ascertain analytically. Feeny and

Kappagantu [27] used analytical and numerical methods to relate normal modes and

POMS in case of simple systems with general damping and forcing. They considered

symmetric systems which are typical of structures. In their attempts with damped

systems they considered modal damping factors low enough that several cycles can

be observed. For proportionally damped systems with synchronous modes [58] they

observed the POMS tend to eigenvectors of the system with increasing number of

samples. The error decreased with damping.

In a simple nonlinear system the POMS were found to lie along the principal axes of

inertia of the nonlinear normal modes. In their numerical experiments they assumed

the normal modes to be synchronous and the dynamics on the invariant manifold,
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when projected onto the coordinate space, do not show any hysteretic behavior in the

coordinate space during motions. With these assumptions the ensemble accumulates

on a nonlinear curve in the coordinate space. They have verified that the POMs

represent the principal axes of inertia of the ensemble of data. The POVs represent

the mean-squared distances of the ensemble along these axes. They ascertained the

fact that though the POVS do not reflect the true energy or power in the system, they

represent the mean-squared distance of the ensemble which in mechanical systems is

generally associated with energy or power. For the case of fluid flows where velocity

measurements form the ensemble, these mean-squared distances represent the kinetic

energy consistent with Lumley’s results.

We wish to analytically delve into the application of POD to systems with general

damping and also nonlinear behavior at a later date.

2.5 Recent Engineering Applications of POD

Though Lumley [55] was the first person to report the usage of proper orthogonal

decomposition theorem in the study of turbulent flows to understand the coherent

structures, POD is better established as a statistical tool for signal analysis and

data compression. Almost 95% of the literature found in the application of POD in

mechanics is in the study of turbulent flows. Of late a few structural dynamicists

have started extending the POD-Galerkin’s projection of a PDE such as the Navier-

Stokes equation to understand the behavior of the structure from the resulting finite-

dimensional system. Fitzsimons [34] used these ideas in reducing linear and nonlinear

smooth systems (consisting of strings). They excited the systems with a random

function to generate the ensemble and applied the POD and selected the dominant

modes for using in Galerkin’s method to build a reduced order model. Cusumano

[17, 18] has applied the POD theorem in studying the spatial complexity of the

motions of a 10 degree-of-freedom impact oscillator. He estimated the number of

excited degrees of freedom by finding the number of modes needed to exceed 99%
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of the signal power and gave the distribution of energy in dominant modes. He

compared this number with the predictions of fractal dimension theory and found

that the dimension of the attractor in the phase space matches with the number

of dominant modes. In our preliminary exploratory studies of the POD to friction

excited systems we considered a similar system as that of Cusumano but with friction

excitation, which we present in detail in the next chapter.



Chapter 3

POD of Friction Induced

Vibrations: A Numerical

Experiment

In the end of last chapter we have stated that proper orthogonal decomposition was

originally used in understanding coherent structures in turbulent flows, and recently

was applied to impacting systems to compare with the phase-space reconstruction

results. Here we hypothesize that POD techniques can be applied to the dynamics of

systems subjected to frictional forces (which are nonsmooth in general). The applica—

tion would be the building of a reduced order model for the continuous or higher-order

system. The main question that arises would be how to pick the dominant modes and

how to validate the reduced model. The answer for the first question could involve

usage of chaotic data that is typical of a friction system. Validation of the reduced

model can be done by comparing the time series data, bifurcation results, etc., of the

full and reduced systems. To understand the application and validity of applying the

POD theorem to the frictional system, we first study a numerical system, which is

described in the following section.

24
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3.1 System Description and Modeling Issues

To verify our hypothesis, we conducted some numerical experiments. We have con-

sidered a system with a chain of N masses connected by springs and dampers. One

end of the chain is anchored. The other end mass is lying over a moving belt with

only the friction force acting between the belt and the mass. The configuration is

illustrated in Figure 3.1. All the masses, springs and dampers are assumed identical.

Proportional viscous damping is assumed. The system equation can be written as

l
>'—NKA—A§\A *—

CJ— m 73— ’“ 73-      
 

  

 

 

Figure 3.1: Configuration of spring mass damper system under frictional excitation

Mi+cKX+KX=F (3.1)

where c is the damping coefficient, M, K are the mass and stiffness matrices and are

given by
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where m is the mass of each block and k is the stiffness of each spring.

The friction law is an approximation of the Stribeck friction law and is similar to

the ones used by Sugimoto [86]. The friction force FR is a function of relative velocity

V, and normal load N and can be stated as

FR = (11K + (#5 - lime-"MUN V, > 0 (3-4)

—p51v < FR < +PsN Vr = o (3.5)

FR = -(#K + (#5 - #K)€'°'V")N V, < 0 (3-6)

where pg and p5 are the kinetic and static coefficients of friction.

Noting that the friction force is acting only on the last mass, (the driving mass),

we see that the F vector in the (3.1) is all zeros except the last row. The force F is

a column vector given by
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F = g F,(a,v,,N) (3.7)

0

1
b d  

The above set of equations are only coupled through the matrix K and can be

solved directly by standard numerical ODE solvers. Even when the coupling is

through both M and K matrices one can reduce the (3.1) into a non-dimensional

form. We assume for simplicity m and k to be unity and the damping to be propor-

tional and viscous. Therefore,

5': + ch + xx = F (3.8)

Using the relations Y;- = X,- and Y,“ = X;, we can rewrite the above equations in

a state—space form:

Y = AY + Bf(t) (3.9)

where the matrices A and B are

A = [ i ix 1 (3.10)

B = [ g ] (3.11)

When the driven mass is slipping over the belt, f(t) in the above equation represents

the friction force which is known as a function of relative velocity and normal force.

These equations can be solved by any ODE solvers. We have used IMSL ODE solver

DIVPRK. For clarity let us denote A and B by A“ and B“. The subscript “s1” stands

for slip.
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However when the driven mass is stuck to belt, f represents the static friction

force. We know only the bounds (—psN,+psN) but not the exact value. So the

above state space equation cannot be solved in that form directly. Using the ideas

of Ferri et al. [32] and P0pp et al. [68] we know that, when the driven mass is stuck

to the belt, the acceleration and the velocity of the driven mass would correspond to

those of the belt:

2N

a(t) = YzN = z A2N,iy£ + BszU), (3.12)

i=1

”(0 = YN = Y2N (3-13)

where, a(t) and v(t) are the acceleration and velocity of the belt respectively. The

static force f(t) varies with time, but more specifically is dependent on the time]-

varying displacements of the system. Denoting the first (2N - 1) elements of the

vector Y by Z, we can write the following relation

Y=[(I)]Z+[v?t)] (3.14)

°’ Y=[;]z.[ag)] (3...)

where I and 0 indicate identity and zero matrices of matching sizes. Substituting

these relations in (3.9) and writing f(t) in terms of a(t) as can be obtained from the

(3.12), we have

[31212.1411:1“1t]1+;7w>-F:.Bc11:12+1,1,1]
rearranging,

I - 0 1 I l 0 l[o]z.[am]#112304012....-EBC)[W,]+§;B.(.)

The first 2N —1 equations in the above matrix equation corresponds to the state-

space equations for the state Z. By careful observation we can see that the last
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equation turns out to be an identity relation. One can therefore write the state

equations corresponding to the stuck mode as:

2 = AuZ + B.,v(t) (3.18)

where A“ is given by the 2N — 1 x 2N — 1 block of the matrix (A — fiBC) and B“

is given by the first 2N -1 elements of the 2Nth column of the matrix (A — -B:—NBC).

Here subscripts “st” indicate stuck mode. As know the velocity of the belt, we can

now integrate (3.18) for Z and evaluate the corresponding Y using the algebraic

relation (3.14).

The implementation details are as follows. From the friction characteristic, the

driving point can be either in the stick mode or in the slip mode. The system is

started with some initial conditions and the belt moving at some speed V. From

the initial conditions and the belt speed, the system mode whether in slip or stick is

determined. The system is in the slip mode when the driving mass velocity is different

from that of the belt. If the two speeds are same, then the restraining force 5 on the

driving mass (due to the springs and dampers) should be considered. From equation

3.12 the restraining force has the form

5 = 512710) — :1: AgN,.-}’.-. (3.19)

If the absolute value of this force 5' is within the static friction force p5, the system

is in stick mode. If it is any greater than the static friction force, the system will slip.

Let us assume the system is in slip mode. When in the slip mode the instantaneous

kinetic friction force is calculated based on the relative velocity between the driving

mass and the belt and this is used as an external excitation force. The integration

is carried out in small time intervals At, until the crossover of the beltspeed by the

speed of end mass (i.e. XN crosses V). When there is a crossover, the program steps

back and uses a reduced time step to calculate the state. This is continued till the

end mass speed nearly equals the belt speed. At this stage, the restraining force 5 on
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the end mass is computed. If the restraining force satisfies the static force constraint,

i.e. IS I < psN, sticking occurs. If IS I Z psN the system continues to slip and we

continue to integrate the slip state equations.

When the system gets into the stuck mode, we integrate the state~equations cor-

responding to the stuck mode in small time intervals At and at each instant the

restraining force 5 is calculated. This restraining force is compared with the its, to

check for the slipping criterion. When IS I crosses p5, the program steps back and

re-integrates with a reduced time step, until ISI equals ps. The system is then ready

to slip. The slip module takes over until it sticks again. These steps are repeated for

the specified time duration.

For a given initial condition, the system is first checked for the mode in which it is

to start off and the integration is continued using the same. The kinetic friction force

is to be updated at every time step based on the relative velocities. In the course

of time the exact state of transition from one mode to the other is calculated and is

given as initial condition for the subsequent mode.

To calculate the periodicity we run the system for a specified number of time

steps at the end of which we check for any periodicity based on the slip criterion

(the absolute difference between the states at successive slips is compared with the

last slip recorded). In our simulations we assumed constant belt speed. We have

thrown out the first 1000 seconds of data before we check for periodicity. In the

absence of periodicity, we continue the simulations for another 5000 seconds before

the next check. In the absence of periodicity we continued this process until we

reached 100, 000 seconds.
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Figure 3.2: Bifurcation diagram of the full model and a few different possible orbits.

The belt speeds for these orbits are 0.20, 0.22 and 0.25

3.2 Higher Order Dynamics, Chaos and its Verifi-

cation

Multi-degree-of-freedom systems are known be rich in dynamics. To study this we

conducted a sweep of the belt-speed from 0.5 to 0.0 in steps of 0.001. We found that

the system gives rise to different kinds of orbits: period 1, period 2, quasi-periodic,

chaotic, etc. These are reflected in the bifurcation diagram, where we have the belt-

speed on the x-axis and the points of slip on the y-axis. Thus at a given belt-speed, n

points indicate the period is 1:. When n is large, i.e., when there is a smear of points

it indicates the dynamics are either non-periodic or the system is still in the transient

stage.

Systems involving frictional forces are known to behave chaotically [31, 42]. This

does not obviate the need to check for veracity of the chaotic nature of the seemingly
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chaotic orbit. It is possible that, for some initial conditions, a nonlinear system can

go to a steady-state periodic orbit after a long time, and the observer may collect

the data from the transients. Chaos, as a property of orbits z(t), manifests itself as

complex time traces, continuous, broadband Fourier spectra, nonperiodic bounded

motion and exponential sensitivity to small changes in the orbit [1].

We now have a need to detect and quantify chaos. One way to check for the

chaotic nature of the orbit is to look at the spectrum of Lyapunov exponents [91].

Lyapunov exponents are the average exponential rates of divergence or convergence

of nearby orbits in phase space. Since nearby orbits correspond to nearly identical

states, exponential orbital divergence means that systems whose initial differences we

may not be able to visually resolve may soon behave quite differently, i.e. predictive

ability is rapidly lost. Any system containing at least one positive Lyapunov exponent

is defined to be chaotic, with the magnitude of the exponent reflecting the time scale

on which system dynamics become unpredictable.

This brings us into the problems faced in reconstruction techniques. Typically

most of the theorems that are used in the art of reconstruction from a time series

data needs a degree of smoothness. This smoothness is essential in allowing the

demonstration that all the invariants of the motion as seen in the reconstructed time

delay space are the same as if they were evaluated in the original space. This means

we can work in the time delay space and learn as much as we could about the system

were we able to make our calculations directly in the true space and other variables.

Because of the inherent nature of the friction characteristic we used we have

a non-smoothness in the system and this is immediately reflected in the displace-

ment/velocity of the driven mass. Some methods have been proposed in the literature

to take care of this non-smoothness, by modifying the “now” stande methods [29].

The usage of another state variable measurement such as phase etc., in conjunction

with the available time series, is the approach.

In our numerical experiment though there is non-smoothness in the driven mass
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displacement and velocity, we have in hand the time series of the displacement and

velocities of even other masses. By taking the velocity of the mass farthest from the

driven mass we have a time series that is minimally affected by the the non-smoothness

of the forcing. We use this time series in determining the Lyapunov exponents. Let

us denote this time series by 3(n).

In order to calculate the Lyapunov exponents from a scalar time series one needs

to calculate some parameters from the time series. If we keep in mind that we have a

time series of only one variable, we realize that we need an equivalent system phase

space. We have to unfold the projection back to a multivariate state space that

is representative of the original system. This can be obtained by using time delay

reconstruction, which involves determining the necessary number of coordinates to

unfold the attractor from self overlapping caused by projection. The dimension that

unfolds the attractor enough so that we have no overlaps is called the embedding

dimension. One has to determine this embedding dimension so that the attractor

can be reconstructed before we can attempt to find the Lyapunov exponents. To

determine the embedding dimension using time delay reconstruction, we need to

determine the time delay. If the time delay is too short, the coordinates 3(a) and

s(n + T) will not be independent enough: not enough time will have evolved for the

system to have explored enough of its state space to produce, in a practical numerical

sense, new information about that state space. On the other hand since chaotic

systems are intrinsically unstable, if the time lag is too large, any connection between

the measuements s(n) and s(n + T) is numerically tantamount to being random with

respect to each other. So we need a time delay which is large enough that s(n) and

s(n+T) are rather independent but not so large that they are completely independent

in a statistical sense. Towards this goal we make use of chaos as an information source

[36, 35]. Fundamental to the idea of information among measurements is Shannon’s

idea of mutual informtion [38] between two measurements. This is a measure of the

amount of information learned by one measurement from the other. We therefore

determine the “mutual information” (auto-correlation is sometimes used instead of
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mutual information, but it is a linear concept and here we are dealing with nonlinear

system).

3.2.1 Mutual information

The mutual information between two measurements A = {0;} and B = {bj} is defined

as the amount learned by the measurement a,- by the measurement bj and is given by

the relation

 I =1og, [ P‘B(“"b") (3.20)

PA(a.-)P3(b,-)

where PA3(a, b) is the joint probability density for the measurements A and B re-

sulting in values a and b. PA(a) and P3(b) are the individual probability densities

for the measurements of A and B. If the measurement of a value from A result-

ing in a.- is independent of the measurement of a value from B resulting in ()5, then

PAB(a, b) = PA(a)PB(b) and the amount learned is zero, as it should be. The average

of this statistic, called the average mutual information between measurements A and

B, over all measurements is

PAB(aiv bi)

PA(a,-)P3(b,-)

 

IAB = Z PAB(a,-, bj) logz [ (3.21)

M

Now take as the set of measurements A the values of the observable s(n) and for

the B measurements, the values of s(n + T). Then the average mutual information

between these two measurements, namely the amount learned by measurements of

3(a) through measurements of s(n + T) is

P(8(n),3(n + T))

P(8(n))P(3(n + T))

 I(T) = Z P(s(n), s(n + T)) logz (3.22)

By general arguments [38] I(T) _>_ 0 (as PAB(a.-, b,) is at least PA(a,-)P3(bj) when

both the signals a and b are independent of each other). I(T = 0) is directly related

to the Kolmogorov-Sinai entropy [35]. When T becomes large, the chaotic behavior
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of the signal makes the measurements s(n) and s(n + T) become independent in a

practical sense, and I(T) will tend to zero.

It was the suggestion of Fraser [35] that one use the function I(T) as a kind of

nonlinear correlation function to determine when the values of s(n) and s(n + T) are

independent enough of each other to be useful as coordinates in a time delay vector

but not so independent as to have no connection with each other at all. The actual

prescription suggested is to take the T where the first minimum of the average mutual

information I(T) occurs as that value to use in time delay reconstruction of phase

space.

Now that we have a formulae for average mutual information, let us look into

the implementation details. The main problem would be determining the probability

densities. The probability P(s(n)) can be obtained by taking the ratio of number

of points in a 1-D line with the coordinate s(n) to the total number of samples.

Similarly joint probability density P(s(n), s(n + T)) is obtained by taking the ratio of

number of points in a 2—D plane with coordinates (s(n), s(n + T)) to the square of the

total number of samples. However as we have only finitely many samples with finite

precision we can divide the 1-D line and 2-D plane into finite grids and keep a count

of the number of points falling in the individual cells. Then the ratio of samples in a

cell to the total number of samples corresponds to the probabilty of the cell value. In

this case, the probability would be a function of the grid size. So one has to decide

on the grid size judiciously by playing with the grid size.

As mentioned earlier we have taken the time series of velocity of the first mass

(which is the farthest from the driven mass) as the sample signal s(n) and applied

the above algorithm of finding mutual information. Plots of T versus I(T) are shown

in Figure 3.3 for different grid sizes. Clearly we see that the first minimum occurs

around T = 11 and hence this would be taken as the time delay in the future sections.
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Figure 3.3: Average mutual information of the lO-SMD system, using velocity time

series of the first mass. The numbers of cells used in estimating probability density

are 5, 10, 20, 40 and 80 and the corresponding plots go towards the axes. The first

minimum occurs near T = 11.

3.2.2 Embedding dimension

We already saw the need to determine the embedding dimension. From the point of

view of the mathematics of the embedding process it does not matter whether one

uses the minimum embedding dimension (IE or any d 2 d3, since once the attractor is

unfolded, it remains unfolded for higher dimensions. For an experimentalist the story

is quite different. Working in any dimension larger than the minimum required by

the data leads to excessive computation when investigating any subsequent question

(Lyapunov exponents, prediction, etc.) one wishes to ask. It also enhances the

problem of contamination by round-off or instrumental error since this noise will

populate and dominate the additional (1 — d5 dimensions of the embedding space

where dynamics are not active.

The usual method of choosing the minimum dimension dB is to compute some
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invariant on the attractor. By increasing the embedding dimension used for the

computation one notes when the value of the invariant stops changing. Since these

invariants are geometric properties of the attractor, they become independent of d for

d 2 (13. The problem with this approach is that it is data intensive and is certainly

subjective. Furthermore, the analysis does not indicate the penalty one pays for

choosing too low an embedding dimension.

Kennel [47] presented the idea of determining the embedding dimension based on

false nearest neighbors. In the passage from dimension d to d+1 one can differentiate

between points on the orbit y(n) that are “true” neighbors and points on the orbit

y(n) which are “false” neighbors. A false neighbor is a point in the data set that is

a neighbor solely because we are viewing the orbit in too small an embedding space

(d < dE). When we achieve a large enough embedding space, all neighbors of every

orbit point in the multivariate phase space will be true neighbors.

We used Kennel’s idea in determining the embedding dimension. We follow the

following steps in determining the false neighbors.

Start with dimension d = 1. For each of the points y(n) determine the closest

point yc(n), using the norm defined by the square of the Euclidean distance between

‘ them D(y(n)). This is given by

d

D(y(n)) = 201001 + iT) - W? + 2T))2 (3-23)

i=0

Between each point and its closest neighbor, compute the value of D(y(n)) in higher

dimensions. This involves just the addition of the term 61) = (gt/(;(n+kT)—y(n+kT))2

to the previous distance. Here I: is the latest dimension number. A natural criterion

for catching embedding errors is to compare the increase in distance between the

closeset neighbors y(n) and yc(n) with some threshold. i.e. use the criterion

FED > 6101 (3.24)

The usual practice in literature is to use c101 = 10 and we used the same. By this we

are deciding a neighbor to be false when the proportional change in the distance with
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an additional dimension is ten times the previous distance. This criterion alone is not

sufficient to determine a proper embedding dimension. We have to make sure that

the actual distances are also within some threshold. If either of the two are outside

the thresholds, the neighbor that we found closest is not really a true neighbor. We

have a false nearest neighbor. We keep a count of all these false nearest neighbors

and store it across dimension d. Now increase d by 1 and continue the same steps to

determine the false nearest neighbors. We continue this till the false nearest neighbors

go to zero. When this happens we have the minimal embedding dimension d3.
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Figure 3.4: False-nearest-neighbors in the 10-SMD system, using velocity time series

of the first mass. Note the first zero occurs near d = 6.

In Figure 3.4 we give a plot of number of false nearest neighbors versus dimension

d. Notice that at d = 6 we have zero false-nearest-numbers. Hence we take d5 = 6

in further calculations.
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3.2.3 Lyapunov exponents

We have already seen the meaning and importance of Lyapunov exponents in earlier

sections. Here we discuss the method of finding them. Wolf [91] presented the first

algorithm to estimate the non-negative Lyapunov exponents from an experimental

time series. This method was rooted conceptually in an earlier method which could

be applied only to analytically defined systems. It basically monitors the long-term

growth rate of small volume elements in an attractor: in an n-dimensional state space,

an infinitesimal n-sphere will become an n-ellipsoid due to locally deforming nature

of the flow. The ith one-dimensional Lyapunov exponent is defined in terms of the

length of the ellipsoidal principal axis p;(t) :

P_i(t)

Ps"(0)

where the A,- are ordered from largest to smallest. Thus the Lyapunov exponents

A,- = lim-tl—og2 (3.25)

are related to the expanding or contracting nature of different directions in phase

space. Since the orientation of the ellipsoid changes continuously as it evolves, the

directions associated with a given exponent vary in a complicated way through the

attractor. One cannot therefore speak of a well defined direction associated with a

given exponent.

Notice that the linear extent of the ellipsoid grows as 2"“, the area defined by

the first two principal axes grows as 2(*1+’\’)‘, the volume defined by the first three

principal axes grows as 2l"1+"’+"3)‘, and so on. This prOperty yields another definition

of the spectrum of exponents: the sum of the first j exponents is defined by the long

term exponential growth rate of a j-volume element. This alternate definition will

provide the basis of our spectral technique for experimental data.

Here we have discrete measurements of a single observable. Using the delay coor-

dinates (obtained in previous sections) we do a phase-space reconstruction to get an

attractor whose Lyapunov spectrum is identical to that of the original attrctor. We

define the Lyapunov exponents by the phase space evolution of a sphere of states. At-
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tempts to apply this definition numerically to equations of motion fail since computer

limitations do not allow the initial sphere to be constructed sufficiently small. Assum-

ing linear approximation holds at the smallest length scales defined by our data we

can work in a reconstructed attractor, examining orbital divergence on length scales

that are always as small as possible, using an approximate Gram-Schmidt reorthonor—

malization (GSR) procedure in the reconstructed phase space as necessary.

To estimate A1 we in effect monitor the long-term evolution of a single pair of

nearby orbits. Our reconstructed attractor, though defined by a single trajectory,

can provide points that may be considered to lie on different trajectories. We choose

points whose temporal separation in the original time series is at least one mean

orbital period, because a pair of points with a much smaller temporal separation is

characterized by a zero Lyapunov exponent. Two data points may be considered to

define the early state of the first principal axis so long as their spatial separation is

small. When their separation becomes large we would like to perform GSR on the

vector they define (simply normalization for this single vector), which would involve

replacing the non-fiducial data point with a point closer to the fiducial point, in the

same direction as the original vector. With finite amounts of data, we cannot hope

to find a replacement point which falls exactly along a specified line segment in the

reconstructed phase space, but we can look for a point that comes close. In eflect,

through a simple replacement procedure that attempts to preserve orientation and

minimize the size of replacement vectors, we have monitored the long-term behavior

of a single principal axis vector. Each replacement vector may be evolved until a

problem arises and so on. This leads us to an estimate of A1.

The use of a finite amount of experimental data does not allow us to probe the

desired infinitesimal length scales of an attractor. These scales are also inaccessible

due to the presence of noise on finite length scales and sometimes because the chaos-

producing structure of the attractor is of negligible spatial extent.

Given the time series s(t), an m-dimensional phase portrait is reconstructed with
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 W
Figure 3.5: A schematic representation of the evolution and replacement procedure

used to estimate Lyapunov exponents from experimental data. The largest Lyapunov

exponent is computed from the growth of length elements. When the length of the

vector between two points becomes large, a new point is chosen near the reference

trajectory, minimizing both the replacement length L and the orientation angle 0.

delay coordinates, i.e., a point on the attractor is given by [s(t),s(t + T), ...,s(t +

(d - 1)T)], where T is the time delay that we determined using mutual information

and d is the embedding dimension that we determined in the previous section. We

locate the nearest neighbor (in the Euclidean sense) to the inital point [s(to), s(to +

T), ..., s(to+ (d — 1)T)] and denote the distance between these two points L(to). At a

later time t1, the initial length will have evolved to length L’(t1). The length element

is propagated through the attractor for a time short enough so that only small scale

attractro structure is likely to be examined. If the evolution time is too large we may

see L’ shrink as the two trajectories which define it may pass through a folding region

of the attractor. This .would lead to an underestimation of M. We now look for a

new data point that satisfies two criteria reasonably well: its separation, L(t1), from

the evolved fiducial point is small and replacement elements is small. If an adequate
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replacement point cannot be found, we retain the points that were being used. This

procedure is repeated until the fiducial trajectory has traversed the entire data file,

at which point we estimate

M LI(

)3 IL(1:3) (3.26) 

=tMl-tok-

where M is the total number of replacement steps. In this implementation we have

held evolution time step (A = tk+1 — tk) constant. In the limit of no infinite amount

of noise-free data this procedure always provides replacement vectors of inifinitesimal

magnitude with orientation error and A1 is obtained by definition.

This method has been used on the velocity time series of the first mass of the

lO-SMD system which resulted in 0.2833 as the most positive Lyapunov exponent,

thus verifying the chaotic nature of the data under consideration.

3.3 Finding POMS and System Reduction

We collected the displacement data of different orbits and for each of them we de-

termined the proper-orthogonal-modes as described in earlier sections and presented

them in Figure 3.6. For each of the different orbits we see that the system shows a

difl'erent set of POMS. Though for majority of the cases only two modes were found

to dominate and these modes happen to be same in the limit, we do find different

sets of dominant modes for different kinds of orbits. This gives rise to a problem of

finding a single set of POMs that broadly represent the system.

We conjecture that the POMs obtained from the chaotic orbit would represent

the system in the broadest sense possible. This is because of the fact that a chaotic

orbit visits many unstable periodic orbits and hence should contain more information

about the system than a single periodic orbit. Also chaos has random like properties.
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Figure 3.6: Typical orbits of the lO-SMD system in the first row and corresponding

dominant POMs are shown in the bottom row. The first two orbits are obtained at a

belt speed of 0.25 with different I.C.’s and the third obtained at a belt speed of 0.20.

3.4 Modal Reduction

3.4.1 The mathematics

From the chaotic orbit we collected the displacement data of all the N masses and

calculated the spatial covariance matrix. The singular value decomposition of this

Hermitian matrix gives us the eigenmodes which are the proper orthogonal modes

of the system. The eigenvalues are put in a decending order. The dominant modes

are then selected. We used these modes in transforming the system coordinates Y,

to a new set of coordinates Q, using the relation Y = VQ + Y, where V is the

block diagonal matrix, and both the blocks are of size N x L and are formed of the

dominant modes (each column in the block represents a modal vector), and Y— is the

mean of Y across time. By measuring Y from the points of static deflection of each

mass, we can easily show that Y equals zero. Thus we can write Y = VQ. The usage
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of this transformation in the system’s full model equation results in a reduced system

equation. The dimension of the system equation in state space notation changes from

2N to 2L in this reduction. Here N is the number of DOF and L is the number of

dominant modes. Equation (3.9) then leads to

vi; = AVQ + BfR (3.27)

Premultiplying this equation by (VTV)‘1VT results in

c“) = (VTV)"VTAVQ + (VTV)“VTBf}; (3.28)

Denoting (VTV)‘1VTAV by K.) and (VTV)_1VTB by F“ we can rewrite the above

equation as

Q = KuQ + FufR (3-29)

These 2L equations can be integrated as before to obtain the values of Qgs at each

time step during slipping. From Q;s one can get back the value of YES from the relation

Y=VQ

During stick mode the mathematics is similar to that of the full model. Again we

make use of the velocity and acceleration constraints.

. 2L

v(t) = YN = Y2N = Z V2N,.°Q: (3-30)

i=1

0 2L 0

a(t) = Y2N = Z V2N,£Qi ' (3.31)

i=1

1 1 2” 2L

t = —at -— A ,- Vg- -
f() BzN () Burg; 2mg .JQJ

l l

= - EV

321v BzN Q

 

where E is a row vector corresponding to the 2Nth row of matrix A.
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Now with the constraints in (3.30) and (3.31) we can define a new state R (one

dimension less than Q) given by

I - .. 0

Q= -1 V ””1".“ -1 n~.1-.]R+[ 1 [v(t) (3.32)
V2N,2L “N'1 V2N.2L V2N.2L

 
 

For simplicity let us denote the coefficients of R and v(t) by S and T respectively.

Thus we get

Q = SR + Tv(t) (3.33)

Substituting for Q, in (3.29) we obtain the following relation:

sr’r + Ta(t) = K,,(sn + Tv(t)) + B—l—F,,(a(t) — EV(SR + Tv(t)))
2N

(K.. - Lnnwsn+ (K,, — —1-F.,EV)Tv(t) + imam
321v 321v 321v

Rearranging the terms to bring R to the left side, and premultiplying the equation

with (STS)‘IST results in

11 = (sTS)-lsT(K.,—-1—F,,EV)SR

321v

+(sTS)-lsT(K., — ernvnvu) + (sTsr‘sT—1—F,, — Ta(t)

B2N BZN

For simplicity we define the matrices K“, Fm, and Fm to be the coefficients of

the terms R, v(t) and a(t) in the above equation. Thus we get the reduced equation

for the system when in the stick mode.

1'1 = K.,R + F,,.,v(t) + F..,a(t) (3.34)

One can thus build a reduced order model from experimental data which can later

be used to study and characterize various phenomenon that occurs in a frictional

system.

3.4.2 The order of reduction

Now that we know how to construct a reduced order model, the next question is

how to decide on the order of reduction? General practice in literature is to pick
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the first few modes the sum of whose corresponding eigenvlaues exceeds 99% of the

sum of all eigenvalues. Cusumano [17, 18] studied the correlation between the 99%

criterion and the false nearest neighbours test for dimensionality of the reconstructed

phase space. Let us decide on the validity of the 99% criterion in the selection of

dominant modes. In Figure 3.7 we show the phase portraits (plots of velocity versus
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Figure 3.7: Phase portraits of 10-SMD system, with different levels of reduction —

A qualitative comparison for determining the order of reduction

displacement of the driving mass) of different reduced models of the system with

different levels of reduction. Note that for the system under consideration, six of the

modes have eigenvalues summing up to 99% of the total. We have not shown the one

and two mode reduced model phase portraits as they deviate well beyond the range

shown in the figure.

For quantiative comparison of the full and reduced systems we look at two different

measures. One of the measures corresponds in a sense to the total energy in the



47

__Iahl§_3_J;_St_a_ti§tig_al_d§viatignsLfidiflerent levels of reductio

# of modes 10 9 8 7 6 5 4 3

2:3;wa 100.0 99.99 99.95 99.90 99.59 98.53 96.50 94.05

 

 

 

 

          

Z;-1 ’\'

AX 0.00 0.05 0.25 0.39 1.08 2.17 4.67 6.07

AE 0.00 0.01 0.02 0.01 0.06 0.44 0.99 2.07
 

system. The energy E in the system can be represented by

1110

-3:531.."—+—.-x2+§i(X- 11.-.)” (3.35)
i=12i=2

With this relation we can define Ef and E, for the energies in the full and reduced

system respectively. The deviation of the reduced system from the full system can

then be represented by

Ef - E,

E!

and this deviation is used as one of the measures. Other measures that we used

AE= x 100 (3.36)

to compare are the deviations in the displacements and velocities of the individual

masses and the sum square of those deviations:

2 2

AX: 1‘1AX +AX x100 (3.37)
_,X3+ X3

 

 

This measure would take care of the problems where we have the first measure small

in spite of a large phase difference. In the table (3.1) we show the statistical measures

of deviation of the models from the full model.

From the qualitative comparison we find that with six-mode reduction the orbit

is close to that of the full system. From the table we also note that the statistical

deviation of the reduced system from the full system is well within the limits. As

such the 99% criterion is accepted for selection of number of modes and we continue

with the research. We however must mention that for some engineering applications,
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agreement such as the three-mode case is considered great and settling for two or

three-mode cases consideriably simplifies the analysis of the system.

3.5 Validation of Reduced Model

Now that we have decided on the order of reduction, the next step is to validate

the reduced model. Different methods have been thought of in comparing two non-

linear systems. The foremost method is to compare the qualitative behavior of the

two systems. The next is to look at the energy content. This gives a quantitative

comparison. Another important feature of nonlinear systems is the occurence of bi-

furcations and jumps. Towards this we compared the bifurcation diagrams generated

from the two systems. To compare the chaotic dynamics, we look at the Lyapunov

exponents. Another comparison for chaotic dynamics is the comparison of skeletons

of the attractors.

3.5.1 Qualitative comparison

For qualitative comparison one can look at the phase portraits of the system obtained

from the full and reduced models. Phase portraits of the system are obtained by

plotting the displacement versus velocity of the driving mass. With different initial

conditions and belt speeds the system gives rise to different dynamics and we plot the

corresponding phase portraits from the reduced and full models. In the plots here we

show the phase portraits from the reduced model in the top row and those from the

full model in the bottom row.

One can observe that the phase portraits of the two systems look similar, including

the complicated orbits of higher periods, where although there are deviations, the size

of the attractor is of the same order.
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Figure 3.8: Qualitative comparison between full and reduced models. Top row cor-

responds to the dynamics of reduced model and bottom row to the full model. Each

column corresponds to a set of identical initial conditions. All other parameters are

kept constant.

3.5.2 Quantitative comparison

For quantitative comparison of the periodic orbits, we can use the same measures that

we used in determining the order of reduction. In table (3.2) we list these measures

for the three periodic orbits that we used for qualitative comparison.

From table 3.2 we realize that the statistical deviations of the reduced model

predictions from the full model predictions are rather small, more so from the energy

perspective. We do not want to elaborate on this comparison as the tolerances allowed

are application dependent. For example, in a computer assembly plant the tolerances

could be fractional percentages whereas in a steel plant even 5-6 percent deviation is
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Table 3.2: Quantitative comparison between full and reduced models. AX and AE

defined in equations (3.37) and (3.36) respectively

period # AX AE

1 0.614% 0.095%

3 2.527% 1.350%

5 4.873% 0.610%

 

 

 

 

     

considered acceptable. We also note that in some applications the maximum deviation

between the predicted and actual displacements of the system at some particular

location would be the deciding factor. An example would be the case of a pick-and-

place robot manipulator. The allowable deviation is again dependent on the specific

application.

3.5.3 Comparison of bifurcations

Another possible method of comparing the two systems is to check for the occurrence

of bifurcations. Towards this goal we generated the bifurcation diagrams for both of

the models and did a comparison. We varied the belt speed from 0.500 to 0.001 in

steps of 0.001. The initial conditions at each belt speed equals the end conditions of

the previous speed for the reduced system. Note that the same initial conditions that

were used for the reduced model at each belt speed have been used for the full model

also. Thus we are comparing the system dynamics in steady state that go close to the

subspace spanned by the L modes of the system. Here we present the two bifurcation

diagrams.

As typical of any two nonlinear systems, we do see differences. The difference

is small when the reduced system predicts periodic orbits. However for bifurcations

' into non-periodic orbits, the predictions did not match well with the full model. This

could be attributed to a shift in basin boundary and the sensitive dependence to

initial conditions of chaotic systems.
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Figure 3.9: Comparison between full and reduced models: Bifurcations

3.5.4 Unstable periodic orbits

During a chaotic orbit, the system visits countably many unstable periodic orbits

[51]. These unstable periodic orbits form the skeleton of the chaotic orbit. One way

of comparing the chaotic orbits is to compare these skeletons. Lathrop [51] gives a

procedure of extracting the unstable periodic orbits in a reconstructed attractor from

a time series. In this method a phase-space attractor is reconstructed from the data

using the standard method of time delays as explained in the earlier sections. The

attractor is the set of points y(n) = (smsfir, ...,sn+(d_1)1). The time delay T and

embedding dimension d are determined as earlier on the basis of mutual information

and false nearest neighbors respectively. The orbits are located as follows. Let c >

0, and let y(i) be a point on the reconstructed attractor. We follow the observed

images y(i + 1),y(i + 2),... of y(i) until we find the smallest index k > i such that
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||y(k) — y(i)|| < e. If such a k exists, we define m = k — i and say that y(i) is an

(m, e) recurrent point.

In this analysis we fixed 6 = 0.5 x Ay, where Ay is the average distance between

two consecutive points on the attractor. In the following we show the skeletons of

attractors reconstructed from velocity time series of the first mass, obtained during

the sweeps when the belt speed is 0.2, both the systems starting with identcal initial

conditions. We find that the approximate unstable orbits have close resemblances

qualitatively.
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Figure 3.10: Unstable periodic orbits in the chaotic attractor reconstructed from the

velocity time series of the first mass. The first row corresponds to data from reduced

model and second from full model. The first column shows part of the attractor. The

remaining shows approximate unstable periodic orbits of periods 1, 2 and 3
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3.6 Discussions and Conclusions

Proper orthogonal decomposition theorem has been used successfully in a Galerkin-

based order reduction of a frictionally excited multi-degree-of-freedom numerical sys-

tem. This work thus bridges the work of Cusumano [17] which relates the size of a

nonsmooth system to spatial coherence of the system and the work of Fitzsimons [34]

which deals with modal reduction of simple smooth systems using POD. Also in this

chapter we reinforced modal reduction and modal projection in a stick-slip system

which is a non-trivial task.

Though the reduction is only from an order 20 to an order 12 (this being a discrete

system), we suspect a better reduction can be achieved for the same criterion, in case

of continuous systems where only a few modes of the system dominate the dynamics.

Another important issue is the criterion used for picking the number of modes is

application dependent, the same criterion can be better for some applications and

can be worse for some others. Detailed analysis of an experimental system with

frictional excitation is presented in the following chapter. The reduction in the order

helps in applications like building controls viz. the control of robot manipulators

where nonsmooth forcing like friction and impact are imperative.



Chapter 4

Physics and Measurement

Methods of the Experiment

In the previous chapter we used POD theory in modal reduction of a discrete nu-

merical system. The different validation techniques of the reduced model indicated a

great potential for this method of modal reduction as it does not do the violence of

linearizaton. In this and following chapters we wish to extend the method to a real

continuous system and confirm our hypothesis of using POD technique in a nonlinar

and nonsmooth system.

4.1 Description

The main ingredients needed to apply the proper orthogonal decomposition theorem

to a physical system are the displacement or velocity information at a set of prede-

termined locations. Also for using the proper orthogonal projections in a Galerkin’s

projection method the physics of the system should be well understood, i.e. the

mathematical model for the system should be known in advance. Towards this goal

we consider a cantilever beam subjected to frictional excitation. The frictional con-

tact is provided by a solid mass of steel connected to a shaker. This system has been

selected because it is relatively inexpensive, simple to build and measure, and known

54
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to show rich dynamics. The displacements of the beam at various locations can be

measured using proximity probes, strain gages or accelerometers, and there is abun-

dant literature available on the dynamics of beams. The schematic of experimental

setup is shown in Figure 4.1. A photograph of this setup is presented in Figure 4.2.
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Figure 4.1: Schematic diagram of the experimental setup

Before deScribing the setup let us define a coordinate system XYZ. Let X lie along

the length of the cantilever, Y the thickness and Z the width of the cantilever. Thus

the transverse vibrations of the cantilever is along the Y direction.

The cantilever is built by taking a 0.4000 x 0.0128 x 0.00086 m3 mild steel beam

(E=128 x 109 N/m“, p=7488 kg/m3) and fixing it at one end. At the free end of the

cantilever, we attached a small beam (0.064 x 0.0134 x 0.00056 m“, E = 126 x 109

N/m“, p = 6777 kg/m3) to act as a leaf spring. It is referred to as a loading beam.

The mass of the fixture (not shown in figure) is 0.01226 kg. The presence of fixture

made the effective length of loading beam 0.076 m. The bending axes of the two

beams are perpendicular to each other, i.e. the length of loading beam is along the X
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Figure 4.2: A photograph of the experimental setup

axis, the thickness along the Z axis and the width along the Y axis. The loading beam

has low transverse (Z) rigidity and high lateral (Y) rigidity. This configuration allows

for the transmission of any force on the tip of loading beam in the Y direction to the

cantilever without significant change. A small hemispherical rubber nub is glued to

the free end of the loading beam. This nub makes contact with the oscillator. The

loading beam is used to provide a spring-loaded normal load. Easy monitoring of the

normal load is achieved by attaching strain gages to this loading beam (the amount

of strain is directly proportional to the moment which in turn is proportional to the

normal force).

As the oscillator moves to and fro, the friction force between the rubber nub and

the oscillator is transmitted to the beam. We incorporated a tilt 9 in the shaker

axis by lifting the rear end. The angle between the rubbing surface and the plane
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of beam motion allows for a variation in normal load. This would affect the force

transmitted to the main beam. In Figure 4.3 we show the force diagram. For ease in

understanding we defined a coordinate frame xyz local to the sliding surface as shown

in Figure 4.3.

 

Nu a 2N2

®

Figure 4.3: The effect of tilt on the force transmitted

From now on, we refer to the force N2 due to the flexure in loading beam as

flezural load and force N2, the force normal to the surface, as normal load. F, (the

force tangential to the surface) is referred to as the friction force and Fy (the effective

force that excites the main beam) as the excitation force.

The relative motion between the slider and the rubber nub results in frictional

excitation. The friction force F, is proportional to the normal load N,. The normal

load is dependent on flexural load Nz. The flexural load is a function of the position

of the nub on the surface. Let the distance between positions 1 and 2 be a along

Y axis. As the nub moves from position 2 to 1, the flexural load would increase

by 3E1a tan 0/l3. In the figure we have represented the loading beam by a spring of

stiffness 3E1/l3, 1 being the length of the loading beam. Using a simple force balance,

we have N2 = N2 c039— F, sin 0. Since F, = pNz, we have N, = Nz/(cos d—p sin 0).
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Now we can write the resulting excitation force Fy on the beam in direction Y as

sin0+pcos0
 Fy = N, sin9 + F, cos0 = N2 (4.1)

cosd—psinfl

Thus the effect of tilt is to change the effective coefficient of friction from p to

sinOig c000

coca-usina'

During the frictional excitation, the dynamics of the beam comprise of low-

frequency drifts. While selecting the displacement measuring devices, care should

be taken to see that their low-frequency limit is below this drifting frequency. For

example a B&K laser transducer (type 8323 with power supply 2815) when used in

the displacement mode has a frequency range of 0.3 Hz - 20 KHZ and therefore cannot

measure the“ drifts below 0.3 Hz accurately. Also as displacements at different loca-

tions are needed one needs more than 4 - 5 displacement measurement transducers

which would therefore be constrained by the resources.

Now that we have defined the system and the forces of interest, the problem of

conducting the experiment can be divided into a problem of measuring the friction,

the normal load variation caused by the tilt, and the displacement. But to know

the system more accurately we need to know the system response. In the following

section we present the system characteristics in the form of impulse response spectra.

4.2 System Characteristics

Neglecting the possibility of microscale loss of contact and impact, the system has

two dynamic states. One is the case of the rubber nub slipping over the slider surface,

when the system acts a forced cantilever. The other is the case of rubber nub sticking

to the slider surface, when the sytem more like a clamped-sliding beam. As such

we present two power spectra, one when there is no contact and other when there is

contact and the normal load between the contact elements is high. The power spectra

are obtained by using a Zonic signal analyzer. The power spectra of the strain signals
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(strain gage located at 0.05 m from the fixed end) obtained by averaging ten impulses

close to the fixed end define the system characteristic. Figure 4.4 shows the power

spectrum of the cantilever setup and Figure 4.5 shows the system characteristic when

there is a high normal load between the surfaces. The first six modes lie within 300

Hz.
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Figure 4.4: Average power spectrum response to impulses close to the clamped end

of the system with zero normal load at the contact.

The first six modes of the cantilever setup have frequencies of approximately 3.75,

18.4, 53.75, 102.5, 172.5 and 265 Hz. We have only six strain signal conditioners

available for strain measurements and hence are restricted to six modes.

In the following sections we present the details of measurement techniques.



60

 

 

 
   

  
 

_55... ............................................................................................. ..

.60.. ...........................................................................................

-65 1 1 1 1 1 1 l I

0 50 100 150 200 250 300 350 400 450 500

lrequencylnHz

Figure 4.5: Average power spectrum response to impulses close to the clamped end

of the system with high normal load at the contact point.

4.3 E‘iction Measurement

A good friction characteristic is required for the validation of the reduced model. The

friction characteristic represents the relation between the friction force, normal force,

relative velocity and displacements between the rubbing surfaces. The friction force

is most commonly modeled as being directly proportional to normal load. However

the relationships between friction force, relative velocity and relative displacement is

still a subject of fundamental research and is dependent on many parameters. As

such we would like to carry out the studies with the surfaces that are being used.

A schematic of the apparatus used to get this friction characteristic is presented in

Figure 4.6. The apparatus consists of the friction surface (that has been used in the
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main eXperiment), two slender beams (similar to the one used in the main experiment)

with rubber nubs attached at the end and a carefully designed fixture to connect these

beams to the shaker (B&K model 4808) to minimize the moments due to normal loads.

Strain gages on the beams are used to sense the normal load. As shown in the figure,

the sliding contact surface is now fixed to the steel bracket through a load cell. Thus

the axial component of any force on this mass can be measured using the load cell.

The two rubber nubs attached to the beams slide over this block, exerting normal (to

the surface) and frictional (along the surface) forces onto the block. The fixture is

mounted on to the shaker through a roller hearing so that the normal forces balance

each other and do not produce a resultant moment which would contaminate the

force transducer measurement. The force measured by the transducer is therefore the

force that gets transmitted to the oscillator. For determining the friction coefficient

we need the normal load acting between the surfaces. This can be measured using the

strain gages attached to the beams at appropriate locations. The strains measured

are proportional to the moments in the beams at the gage locations which in turn are

directly pr0portional to the normal load. Thus one can obtain both the friction and

normal loads.
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Figure 4.6: Configuration of friction measurement setup
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The normal load has been calibrated by suspending known weights from the free

end of loading beam with its fixed end clamped in a vice. For example, with a weight

of 0.20 lbs, the strain signal corresponded to 3.82 Volts on the output of the signal

conditioner. This way of calibration would automatically take care of the excitation

voltage, the conditioner gain and gage factor. Thus for the strain gage voltage we

have calibration constant equal to 4.29 Volts/N.

We attached the loading beams to the fixture with the solid block wedged between

the two beams. This fixture was attached to the shaker, while the solid block was

mounted on to a rigid bracket. The axis of oscillation was parallel to the rubbing

surfaces. This we cross-checked by turning on the shaker and examining the varia-

tion in the normal load as the rubber nubs rode on the surfaces. The normal load

variation was found to be 0.8%. The sum of the two normal loads (taking the sign

into account) is the effective normal load between the sliding surfaces. During the

friction measurement the mean normal load was found to be 1.86 N.

When measurements are taken with different devices there is a scope for phase

differences between the various measurements due to the inherent dynamics within

the devices, more so when post filtering is done on one of the measurements and

not on the other. At 10 Hz frequency the phase difference between measurements

of accelerometer PCB 309A and force transducer PCB 208B was found to be 50.4

degrees (0.88 radians) with the accelerometer signal leading. This phase has been

adjusted in our measurements. (Incidentally in the above phase calculations we also

took into account the phase change that would arise due to a high-pass filtering of the

accelerometer signal. We noted that the accelerometer PCB 309A has a low-frequency

limit of 5 Hz. Between 5 and 10 Hz there is -3.2 percent deviation in the amplitude.

We have accounted for this during our calibration procedure described below.)

For measuring the input displacement and velocity we made use of the accelerom-

eter. We first obtained the acceleration using accelerometer PCB 309A. As we are

measuring the acceleration of the input whose frequency is known, we high-pass fil-
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tered the acceleration signal to take care of any drifts due to bad ground looping.

We took a Fourier transform of this signal and divided this by the frequency compo-

nent once to obtain velocity Fourier transform and twice to obtain the displacement

Fourier transform. We took the inverse Fourier transform of the two resulting signals

to get velocity and displacement. We cross checked this information using a laser

transducer B&K 6808 with power amplifier B&K 2815. The laser transducer has a

low-frequency limit of 0.3 Hz in the displacement measurement mode.

After running the shaker at 10 Hz for about an hour, we recorded the data for

32 seconds at a sampling rate of 1000 Hz. We used Laboratory WorkBench on a

Masscomp 5550 for this data acquisition. The four channels of data we collected are

the acceleration, both the normal loads and the friction force. In Figure 4.7 we plot

a sample of the data after processing for phase correction.

A plot of the relative displacement (of the shaker) versus friction force is shown in

Figure 4.8 and relative velocity versus friction force is shown in Figure 4.9. The mean

slope of the nearly vertical lines of direction reversal in the displacement-friction plots

gives the contact stiffness Kc. This slope can be used to predict the velocity with

which the rubber nub slips and this has been discussed in the following paragraphs.

From the friction-displacement characteristic in Figure 4.8 we find that the effec-

tive contact stiffness is —20 kN/m (this is the average slope of the lines of direction

reversal, the standard deviation is 0.1% of the average). A better explanation is given

in the following paragraphs.

The hysteresis in the friction-velocity plot in Figure 4.9 suggests that the friction

characteristic may be close to a Coulomb model with contact compliance. The kinetic

friction force limit is close to 1.03 N. Dividing this by the mean normal load of 1.86

N gives us the kinetic friction coefficient of 0.55. The static to kinetic transition if

it exists, is generally at high frequencies and gets filtered. As such the static friction

limit is difficult to get captured in experiments of this nature and needs a different

but simple method.
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Figure 4.7: Sample time-series of displacement, velocity, friction force and effective

normal load

In a separate experiment we rested a mass of 250 grams underwhich we attached

three rubber nubs (similar to the one used in the experimeint) on an inclined plane

made of a similar surface (as the one used in the experiment, but not the same one).

We increased the tilt of the inclined plane until the mass began to slide. The average

tilt at which the mass began to slide was 37.2 degrees (standard deviation across seven

different readings was 2.7% of the mean) which amounted to an average coefficient

of static friction p5 = 0.75 (standard deviation of 115 is 3.7% of the mean). Thus we

have 115 z 1.38pK.

In our numerical experiments we have used 1.36. Incidentally we conducted this
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Figure 4.9: Friction-velocity relation
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experiment for determining static friction to verify the validity of the estimated value

of 1.36. We will describe the method that we adopted for the estimation of static

friction later in Chapter 6.

Both the friction-displacement and friction-velocity plots indicate “hysteresis”

phenomenon. This has been described as “spring-like” sticking behavior in the litera-

ture (Canudas de Wit [13]). Experimental evidence of this kind of behavior is reported

by Dahl [19] and Courtney-Pratt and Eisner [15]. Both the reports indicate a junc-

tion compliance which induces small displacements prior to the actual slip. Eflorts

for modeling these elastic contact problems have been put forth by many researchers

(Liang and Feeny [52], Oden and Martins [63], Canudas et al. [13], Harnoy [39]).

Liang and Feeny aptly described this motion as “microsticking” as during this stick-

ing event the elastic displacement is really small for high contact stiffness. Dahl’s

model is equivalent to Coulomb friction model incorporated with a lag in friction

force change when the direction of motion reverses. Canudas de Wit et al. treated

the friction interface as a contact between bristles. Their model was able to describe

Stribeck and frictional memory effects in the sliding regime.
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Figure 4.10: A schematic diagram showing a massless compliant-contact model

A schematic of the model similar to the one used by Liang and Feeny is shown

in Figure 4.10. This model effectively describes the observed phenomenon in our

experiment. YT(t) describes the displacement of the shaker. Yc(t) represents the
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displacement of the contact point (the point is on the rubber nub). The dynamics of

the block and the mass of the nub are negligible. However due to contact compliance

there is a relative motion between the contact point (on the rubber nub) and the

shaker attachment. During pure sliding motion, the relative motion VT(t) — You)

is negligible since the contact is nearly massless and its dynamics are damped out

immediately. When Vc(t) remains zero, we have sticking event. This does not neces-

sarily mean IQ“) is zero. I’T(t) continues to differ from YOU) which is zero, until the

static friction force can no longer sustain the stiffness force exerted by the compliant-

contact joint, i.e.IKc(YT(t) — Yc(t))| > IF,|. When the contact elements slip we

again have YT(t) = Yc(t). F, is the static friction force bound. Thus the slope in the

friction-displacement plots in Figure 4.8 is the effective contact stiffness Kc. From

the plot we determined the contact stiffness to be -20 kN/m (the average slope of the

lines of direction reversal was found to be 20.2 kN/m with a standard deviation of

10.6% of the average).

Now we know from the friction-displacement plot the change in YT(t) during

the microsticking event. We also know that micro-sticking begins when the relative

velocity is zero, in our case YT = Vc(t) = 0 and ends when stiffness forces overcome

the friction forces. Let t1 and t; be the times when microsticking begins and ends

respectively. Therefore the relative displacement YT(t2) - YT(t1) is effectively (F, —

F1)/Kc. Let us assume harmonic excitation of the shaker attachment, i.e. YT(t) =

A0 + Asinwt. Then V701) = Vc(t1) = 0 as prior to t = t1 we have VT(t) = Vc(t).

This implies YT(t1) = A0 + A. Also YT(t2) = A0 + Asinwtg. This in turn equals

YT(t1) + (F, - Fk)/Kc = A0 + A + (F, — Fig/Kc. Thus we have an estimate of t2.

From this we calculate 17702). Going through simple mathematics we get YT(t2) =

—wA,/1 — (1 — (F. — F.)/KCA)2.

 

From the friction-displacement plot we have A = 0.0023 m, Kc = —20 KN/m,

F. = 1.03 N and F), = —1.0 N. We know the value of w = 201r rad/s. Substituting all

these parameters in the equation for V102) we arrive at a slipping velocity equal to

0.044 m/s which is consistent with the the friction-velocity plot, in which a microstick—
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slip transition occurs at approximately V, = 21:0.045 m/s.

4.4 Displacement Measurement

One can obtain the displacements of the beam at various locations directly and in-

directly by using proximity probes, laser transducers, accelerometers, strain gages,

etc. As we need many probes, the cost of laser transducers preempt their usage.

(Though we can use two point correlation measurements using two laser transducers,

this would be very difficult to achieve, as we also intend to operate in the chaotic

regime.) Moreover the frictional excitation of the beam results in low-frequency drift

of the beam over the slider which cannot be measured by the laser transducer due to

its low frequency limit. The chaotic regime is usually in the low-frequency range and

we find a need to measure the low frequency dynamics of the system. This puts a

restraint on the usage of proximity probes and piezo-accelerometers. With the above

considerations in mind we are left with the option of strain gages which are relatively

inexpensive. The problem then would be to convert the strain data to displacement

data and from the discrete displacements to continuous.

We used six half-bridge strain-gage circuits to obtain the strains at six uniformly

distributed locations. We were limited to the number six for two reasons. The main

reason was the availability of signal conditioners and the other was the finite length

of the beam being used. We attached the strain gages on either side of the beam

to form a half bridge. We spaced the gages at 0.05 m, with the sixth gage located

at 0.05 m from the fixed end. Based on numerical simulations we found that this

distribution helps us maximize the strains. For easy reference we numbered the gages

from 1 to 6, strating from the gage at 0.30 m and ending at 0.05 m. All the strain

gages used are of the type Micro-Measurements Precision Strain-Gages model CEA-

06-250UN-350. These have a resistance of 350.0 :1: 0.3%, a gage factor 2.1 :1: 0.5% and

a transverse sensitivity of (+0.1 :1: 0.2)% all at 24° C. For minimizing the eflect of

wiring, we used Micro-Measurements single conductor wire type l34-AWP. To reduce
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noise we twisted the three wires coming out of the each half bridge and tried our

best to minimize the length. We ran the wires along the beam to the fixed end. We

used four strain-gage conditioners of the type 2120 and two of the type 2210, both of

which are from the Micro-Measurements Group Inc. We used an excitation voltage

of 10 V for both the models. A gain of 2000 was used on model 2120 and gain of

1000 was used on model 2210. The difference in gains have been accounted later in

the post-processing programs.

For data acquistion we used Laboratory Workbench of Concurrent Computer Cor-

poration on a MASSCOMP 5550. We acquired six strain signals on the main beam,

one strain signal of the loading beam and one input acceleration signal using an ac-

celerometer PCB 309A. We used a sampling frequency of 1000 Hz for the acquisition.

4.4.1 From strain to displacement

We know from basic mechanics that the strain 6(1') in a beam subjected to pure

bending is related to the transverse displacement y(z) by

62y
633 = 6555 (4.2)

where c is half the width of the beam.

One of the methods of solving a PDE is to convert it into a ODE and then solve

the 'ODE using standard ODE solvers. The conversion is achieved by a Galerkin’s

approximation by assuming y(a:, t) = 2;, ¢,($)u,-(t), where 453(3) form a basis satis-

fying the geometric conditions. We use the same technique here which enables us to

write 6,, in terms of 4).- and 11,-. Thus

"I(t)

c,,(:c)=c[¢1(x) 1141)] g , (4.3)

un(t)

where 1b,-(:1:) = 32¢,(z)/02:“. Now by measuring 6 at n diflerent points on the beam
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we get n such equations. Writing these 11 equations in a matrix form, we get

61 $11 ' °° $111 111

' = c '- , 5 , (4.4)

6n 1an ° ' ° 1PM ”it

where, 6.,- indicates the strain measured at the ith location 2:3, 1b,,- = ¢j(:c,-) is the

value of ¢jth function at the ith location and u, is the corresponding weight. The

matrix on the right hand side is invertible and therefore we can compute the values of

ms. This can be used in the Galerkin’s approximation formula to get back the actual

value of y at different locations. Thus we get

—1

3’1 4511 ¢1n I(’11 $111 61

fi
l
l
-
-
|

. .. .. . (4.5)

yn ¢nl <firm zpnl $1111 611

In our displacement calibration experiment, we applied a high normal load at the

contact so that the contact remained in the stick mode at that operating frequency.

We operated at 8.45 Hz frequency during this stage. We measured the displacement

of the beam at a location of 0.35 m from the fixed end using the laser transducer and

simultaneously obtained the strain signals. We then used equation (4.5) to obtain

the displacement at the same location. The laser transducer sensitivity is 1 mm/V.

We took Fourier transforms of the laser displacement and the computed displacement

and took the ratio of the amplitudes at the operating frequency. This gave us the

calibration constant needed in our procedure. This constant should equal half the

thickness of the beam. At 8.0 Hz we found this constant to be 99.9% of the thickness.

At an operating frequency of 12.0 Hz (with normal load high enough to result in a

pure stick motion), we found the constant to be 99.84% of the thickness. We used this

calibration constant to verify the displacements at six different locations. Across six

different locations, the standard deviation of these constants was found to be 0.71%

of the mean of 98.57, with the worst match occuring close to the fixed end where

the displacements are very small and we suspect the laser measurement to be not so

accurate.
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The next step was to verify the above procedure during our normal operating

conditions where the dynamics would comprise stick-slip oscillations and the dis-

placement is not a pure harmonic. We cross-checked our procedure by bringing the

normal load to the operating normal load and operating at 12.0 Hz and 41.1 Hz

where we found the dynamics to be “chaotic”. During this verification at both the

frequencies we noted that the calculated displacement consisted of harmonics of fre-

quencies higher than the sixth frequency of the system, which are not present in the

laser measured displacement. This might be attributed to the fact that we are using

only six modes to approximate the beam dynamics. We use only six modes as we

have only six strain signals at any given instant. As such we low pass filtered the

calculated displacement, with a cut-off frequency of 300 Hz. We also noted that there

is a low-frequency deviation between the two signals. This we attributed to the fact

that the laser cannot measure the low-frequency drifts (the low-frequency bound on

the laser in displacement mode is 0.3 Hz), while the strain-gages can. As such we

high-pass filtered both the laser and calculated displacements. The cut-off frequency

at this stage was 0.5 Hz. Now both the signals are ready for comparison. The strain

signals have been corrected for by the calibration constant of 0.9857.

Figures 4.11 and 4.12 show samples of the direct and indirect measurements (at

an operating frequency of 12.0 Hz) in time and frequency domain respectively. At

this operating frequency, for the uncorrected signals we found the ratio between the

peaks in the frequency domain to be 99.98%.

Figures 4.13 and 4.14 represents samples of both the signals obtained at an oper-

ating frequency 41.1 Hz. in time and frequency domains.

At 41.1 Hz operating frequency, the direct and indirect measurements did not

match as well especially in the high frequency regions (above 120 Hz). This could

possibly be the result of using a simple pure bending theory for the relation between

strain and displacement, without taking into account the effects of shear. Also the

ratio between the peak amplitudes of power spectra at this operating frequency is
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Figure 4.11: Sample time series of direct (laser) and indirect (strain gage) displace-

ment measurements (Y and y) at an operating frequency of 12.0 Hz.
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Figure 4.12: Fourier transforms (averaged) of direct (laser) and indirect (strain gages)

displacement measurements at an operating frequency of 12.0 Hz.

81.11%. Another possibility for this discrepancy is the presence of modes higher than

the sixth mode. This can be corrected by using more than six modes during the curve

fit. This is a later thought and we have not attempted implementing this idea. We

noted that the noise floor in the frequencies above 50 Hz to be 50 dB below zero (see

Figure 4.15 where the FFTs of noise floor for the measurements of displacement using

laser and strain-gages have been depicted).

The signals are found to be of close match, apart from subtle details, and we
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Figure 4.13: Sample time series of direct (laser) and indirect (strain gage) displace-

ment measurements (Y and y) at an operating frequency of 41.1 Hz.
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Figure 4.14: Fourier transforms (averaged) of direct (laser) and indirect (strain gages)

displacement measurements at an operating frequency of 41.1 Hz.

adopted this procedure for getting the displacement information in our POD studies.

4.4.2 From discrete to continuous

In the previous section we have described a simple way of obtaining displacements of

the beam at specified locations by using strain gages. However the beam is continuous

and we do not want to restrict our studies to only those few locations where we
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Figure 4.15: Fourier transforms (averaged) of the noise floor levels for direct (laser)

and indirect (strain gages) displacement measurements

measure the strains. Here we discuss a way of converting these discrete signals into

a continuous signal. Though this is a simple curve fit, we present this for the sake

of completion. We can do a simple polynomial fit as suggested by [34] or in this

experiment as we know the linear modes of the cantilever, a modal fit can be obtained

by using the linear natural modes (LNMs) of the cantilever. We can later do a simple

Gram-Schmidt orthonormalization method to ortho-normalize the functions.

Let [ 1:1 - - - 2,. ] represent the 12 locations where we know the displacements.

Let the corresponding displacements be [ yl - - - y" ]. Note that we are not taking

into account the zero end condition where we have zero displacement all through the

motion. Even if the motion is not zero at this end condition we are not taking this

point to avoid singularity problems. This problem, if present, can be tackled through

a simple translation. Let us try to fit an nth degree polynomial along these 12 points.

z.e.,

y(a:) = tan" (4.6)

i=1

where a.- are the coefficients to be determined which can be obtained by a simple
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least squares fit (“polyfit” of MATLAB would do the job). Once the coefficients a.-

are determined, we can substitute into (4.6) to get the value of y(a:) at any given an.

Instead of doing a polynomial fit, we can make use of the natural modes of the system

to do the curve fitting, i.e., we fall back on our usual Galerkin’s approximation:

y(:z:) = Z a;¢,-(:r), (4.7)

i=1

where a,- are the coefficients to be determined and ¢,~(a:) are the linear natural modal

functions. Writing the above equation for the 72 locations in a matrix notation, we

get

¢1($1) '" ¢1($n)

[yl y..]=[a1 an] (4-8)

¢n(:c1) ¢n(zn)

¢1($1) ° ' ' ¢1($n)

[a1 an]=[y1 ya] (4,9)

¢n(31) ¢n(:rn)

--1

We prefer to use natural modes as it would give us a better understanding of the

natural modal components in the POMS later. Also, they are natural to the linear

part of the system.

4.5 Measurement of Normal Load Variation

The case of a single degree-of-freedom oscillator shows us the variation in normal

load would give us rich dynamic behavior [28]. As such we introduced a tilt 0 in the

shaker axis to allow for normal load variation as the beam vibrates. This normal

load variation has to be measured for modeling and we used a quasi-static approach

during our measurement. We positioned our beam at various locations on the slider

surface and at each location (after waiting for at least fifteen minutes for the system

to settle) took the strain measurements at different locations on the main beam and

also the strain on the loading beam. The strain on the loading beam represented the
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normal load. We used the same procedure that we described in the section on friction

measurement to convert the strain signal into the normal load. In the previous section

we described a way of obtaining the displacements at a specified location on the beam

using the strain data. We can use a similar procedure to obtain the displacement of

the rubber nub K on the sliding surface. We just need to add I * Y}, to Y1, to get K.

Here I is the loading beam length, and YL and YI’, are the transverse displacement

and slope of the main beam at the “free” end.
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Figure 4.16: Relation between normal load and position of the beam tip on the slider.

In Figure 4.16 we show a plot of normal load versus position on the slider surface.

A least-squares fit gives us a slope Ngm of —1.54 N/m and the nominal normal load

NZc (at zero position) of 0.345 N. Earlier we have seen that the normal load Nz varies

as 3E1a tan 0/13, where a is the change in displacement. By substituting the values of

E, I and I we get the value of 0 = 0.312 deg. This value when used in equation (4.1)

results in excitation force Fy z 0.557Nz for a coefficient p = 0.55. However Nz is still

computed using the relation Nz = -l.54YT + 0.345 N, where YT is the displacement

of the loading beam tip. In terms of the loading beam transverse displacement Z,

the above relation can be written as Z = ZmYT + Zc = —5.45e3YT + 1.2263. These

numbers will be used later in the mathematical modeling of the system.



Chapter 5

Beam Dynamics, Reconstruction

and POD

5.1 Introduction

Frictional excitation of low-order physical systems have shown a wealth of dynamical

behavior [28, 30]. In Chapter 3, we have discussed the rich dynamical behavior of

higher-order numerical systems with frictional excitation. In this chapter we try to

explore the different possible dynamics of a continuous beam. In our exploration we

carried out amplitude and frequency sweeps to understand the different dynamics and

the routes. We will first present the bifurcation studies with frequency and amplitude

as bifurcation parameters, followed by delay maps of a few interesting cases. Later

we will present the phase-space reconstruction results to characterize the chaotic

dynamics. We end this chapter with a proper othogonal decomposition of the chaotic

dynamics and make an attempt to explain the spatial aspects of the dynamics.

77
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5.2 Bifurcation Studies

The beam in the experimental setup described in the previous chapter is subjected

to frictional excitation from the harmonic slider. In the case of pure stick we expect

the beam to show harmonic response. At any given frequency as the input amplitude

is increased the static friction force is overcome by the restraining force due to the

elasticity in the beam and the contact surfaces slip. Similarly for a given input

amplitude, as the frequency increases the surfaces slip. However in carrying out a

controlled experiment we are constrained by the ranges of the equipment in use.

One of the ways of exploring the dynamics of a given system is to carry out a

sweep along a well defined curve in the parameter space. The sweep could be an

amplitude or frequency sweep with all the other parameters kept constant. The

amplitude sweep is easily manageable whereas the pure frequency sweep is difficult

to obtain because the shaker amplitude decreases as the frequency increases in order

to maintain a constant impedance. However a frequency sweep gives us an indication

of the zones of rich dynamics. As such we carried out a sweep of the frequency of

the input to the shaker. In Figure 5.1 we show the amplitude versus frequency of

the shaker output and a tenth-degree polynomial fit. Thus a frequency sweep takes

us along this curve in the parameter space. Incidentally, we later realized that the

relation between amplitude and frequency is exponential.

During the sweeps, the two signals that we made use of are the acceleration of

the slider (input) and the strain at location 6 on the beam. A LabVIEW program

on a Macintosh has been used to run the sweep. We sampled both the signals si-

multaneously (to keep the phase constant) at a sampling rate of 48 samples/cycle

and omitted the first 500 cycles to account for transients. We collected the next 100

cycles of data and processed the data to obtain 100 “quarter phase strain” signals.

By quarter-phase strain, we mean the strain value when the input acceleration is at

the peak and the excitation velocity is passing through zero. We carried out this

operation at 450 slider frequencies uniformly spaced between 5 and 50 Hz. Figure 5.2
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driving frequency in Hz

Figure 5.1: Amplitude versus frequency of the shaker with other parameters kept

constant. A tenth-degree polynomial fit has been used to curve fit the data. Input

frequency sweep of the shaker thus takes us along the above curve on the output.

shows the resulting bifurcation diagrams in the forward and reverse sweeps. The time

for the sweeps took about 6 Hours.

In the bifurcation diagrams of Figures 5.2, at each frequency we have 100 points.

A single cluster of points (ideally the cluster should be of zero dimension) at any

given frequency indicates the response is periodic with period one, multiple clusters

indicate higher periods. A smear of points would indicate either a quasi-periodic or

chaotic orbit. In a latter section we show the delay maps obtained at a few selected

frequencies to elaborate on the same. Notice the hysteresis in start and end of different

regimes during the reverse sweep. This is typical of nonlinear systems.

A wealth of dynamics is observed near 12.0 and 40.0 Hz. As such we carried finer

frequency sweeps in these zones. These are presented in Figure 5.3. The rich dynamics

are more pronounced in the latter zone which was accompanied with slight audible

chatter. First we suspected normal vibrations to be the cause of this chatter and made

an attempt to visualize the loss of contact using a stroboscope. The stroboscopic

probe did not show us any loss of contact. We suspect the jump from the static

friction to kinetic friction to be the cause of this chatter.
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Figure 5.2: Frequency sweeps (forward and reverse): the beam response is denoted by

the strain at the location 6 and measured at quarter phase of the input acceleration.

The bifurcation parameter is the input frequency.

The deviation in the plots during finer sweeps might be attributed to the wear on

which we did not have any control.

To get a better understanding of the dynamics of the beam at frequencies 12.0

and 41.1 Hz where the dynamics seemed chaotic, we carried out amplitude sweeps,

similar to the frequency sweep. The only difference is that the shaker-input amplitude

sweep implies shaker-output amplitude sweep. We varied the shaker input amplitude

between approximately 1.0 to 5.0 mm. All through the sweep we kept the frequency

at 12.0 Hz. In Figure 5.4 we present the amplitude sweep plots at 12.0 Hz frequency.

A similar amplitude sweep performed at 41.1 Hz is presented in Figure 5.5.
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Figure 5.3: Finer frequency sweeps around 12 and 41.1 Hz : the beam response is

denoted by the strain at the location 6 and measured at quarter phase of the input

acceleration. The bifurcation parameter is the input frequency.
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Figure 5.4: Amplitude sweep at 12.0 Hz: the beam response is denoted by the strain

at the location 6 and measured at quarter phase of the input acceleration. The

bifurcation parameter is the input amplitude.

The amplitude sweeps at both the frequencies indicated that the system behavior

is nonperiodic at most of the amplitudes. In the next section we will characterize the

dynamics qualitatively. The amplitude sweeps at both the frequencies indicated that

the system behavior is nonperiodic.

To verify the effects of wear on the broad dynamics of the we carried out sweeps
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Figure 5.5: Amplitude sweep at 41.1 Hz: the beam response is denoted by the strain

at the location 6 and measured at quarter phase of the input acceleration. The

bifurcation parameter is the input amplitude.

over a finite time by keeping all parameters in our control constant. In a way we are

attempting to study the wear effects. We sampled the 100 quarter-phase strains after

every 500 cycles for about 30,000 cycles. We carried these sweeps at frequencies of

12.0 and 41.1 Hz (the frequencies where the dynamics seemed chaotic). We present

these sweeps in Figure 5.6.

5.3 Characterization of the Dynamics

In the frequency sweeps, we note that in the vicinity of 12.0 Hz frequency, the system

shows a deviation from a periodic orbit and there is a change in sign of the strain.

A closer observation in this frequency range indicates as the frequency is increased,

the system seems to go from period one to chaotic and back to period one through

a quasi-periodic path. This is speculative and has not been rigorously quantified.

Similarly there are interesting dynamics in the vicinity of 40 Hz. In this zone as the

frequency is varied from 35 Hz to 45 Hz, speculatively the system goes from period

one, quasi—periodic, period two, quasi-periodic, chaotic, quasi-periodic and period

one in that order. The delay maps obtained at some of the frequencies provide some
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Figure 5.6: Wear sweeps at 12.0 and 41.1 Hz. All other parameters (under our control)

are kept constant.

visualization of these different dynamics. We also observed very low-period motions

at these excitation frequencies. We wish to explore these low-periodic motions in our

future studies.

The delay maps are the projections of phase space reconstructions. The construc-

tion of delay maps is straight forward and involves plotting of a time series with the

signal on one axis and a delayed version of the same on the other. For the purpose of

visualization, we used a time delay of one-fourth period, which converts to 12 sam-

ples. In our reconstruction studies we use a different time delay which will be chosen

on a more rigorous basis.
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Figure 5.7: Delay maps at a few selected frequencies on the bifurcation-diagram

elucidate the periodicity in the beam. The frequencies are: (a) 6.3, (b) 10.0, (c) 12.0,

(d) 26.0, (e) 37.7, (f) 39.0, (g) 41.1 and (h) 47.0 Hz.

Clearly we can identify the period one, two and non-periodic motions in the de-

lay map. To determine whether the non-periodic motions are chaotic or not, we

can look at the Fourier spectrum for the broad-band characteristic and confirm the

same by looking for positive Lyapunov exponents. The latter involves phase-space

reconstruction and dimensional studies using time series data.

The delay maps presented above were built using the strain signal at location

6 on the beam. To appreciate the end effects of higher-order dyanmics we present

the phase-portraits using the displacement and “velocity” of the contact point of

the beam, at a few selected frequencies (11, 12 and 41.1 Hz). We measured the

displacement using the method described earlier. We used a simple forward-difference

scheme to differentiate these displacements to determine the velocity of the beam at

the contact point. We have not accounted for any phase deviation that may result

due to this process. We present the resulting phase-portraits and the corresponding



85

power-spectra in Figure 5.8.
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Figure 5.8: Dynamics of the contact point of the beam. The top row indicates the

phase-portraits of the contact point at frequencies 11, 12 and 41.1 Hz. The bottom

row indicates corresponding power-spectra.

The dynamics at 11 Hz were found to be periodic and is presented in this study

as a reference for noise level. The dynamics at 12.0 and 41.1 Hz are non-periodic and

are further investigated in the later sections. The effect of higher-order dynamics is

to accentuate the chaotic nature of the dynamics and reveal the broad-band nature of

the chaos. The usage of a single strain signal from a wrong location could sometimes

give misleading results.
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Figure 5.10: FFT of the strain signal measured at location 6 on the beam at 41.1 Hz.

5.3.1 Reconstruction Results

From the delay map and broad band nature of the FFT of the strain signal and the

contact point dynamics at 12.0 Hz and 41.1 Hz, we suspect the dynamics at 12.0

and 41.1 Hz to be chaotic. To verify the suspicion we carried the reconstruction

studies detailed in Chapter 3 on the time series consisting of strain at location 6 on

the beam. From the mutual information [36] we realized a time delay of 21 sampling

intervals. We used this time delay to determine the embedding dimension using
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Figure 5.11: FFT of the noise level of the strain signal measured at location 6 on the

beam.

the method of FNN. For determininng the FNN, we used the same method that

we described in Chapter 3. As before we decided that a neighbor is false when the

proportional change in the distance (with the additional dimension) is greater than

10. The embedding dimension was found to be five. Thus five is the number of delay

coordinates necessary to describe the data. There is not a clear relationship between

delay coordinates and dimension of the state. But it suggests the number of active

modes to be in the ball park of half the number which is close to three in this case,

consistent with the 99.99% criterion. We remind the reader that in the measurement

of FNN we used some tolerances and these may have some relation to the criterion of

99.99% “energy”. With the embedding dimension of five and the above stated time

delay we realized the positive Lyapunov exponent to be 3.73 (using Wolf’s algorithm

[91]), thus assuring us of the chaotic nature of signal.

A similar study of the dynamics at 41.1 Hz resulted in a time delay of 8 sampling

intervals, an embedding dimension of 8 and a positive Lyapunov exponent of 1.91,

assuring us of the chaotic nature of the dynamics at 41.1 Hz.

A better algorithm to obtain Lyapunov spectrum is given by Eckmann [25]. Our

attempts to obtain this spectrum were unsuccessful.- We leave this and the study of
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the dependence of the predictive ability of the model on the strength of chaos for our

future studies.

5.4 Proper Orthogonal Modes: Giving a Spatial

Description

We have already discussed the significance of proper orthogonal modes and values

visa-121's a numerical system. In this section we describe the spatial content of the

beam dynamics in terms of proper orthogonal modes and proper orthogonal values.

We pick here two particular cases. The first is the dynamics of beam around 12.0 Hz

and the other is around 41.1 Hz. In both these regimes we found the dynamics to

be chaotic. The selection has been made as we intend to use the dominant modes in

these regimes in building a reduced—order model for the beam in the next chapter.

We collected the six strain-signal time series at the operating frequencies 12.0 and

41.1 Hz. Using the method described in the previous chapter we have converted the

six strain signals into displacement signals at locations 1 — 6. After subtracting the

mean displacement from each of these displacement time series, we arranged them to

form a matrix X of six columns. We computed the covariance matrix R = XTX. This

matrix is a positive definite matrix and the singular values and vectors of this 6 x 6

matrix, yields the proper orthogonal modes. Using the proper values we identified the

dominant modes in the system. As we have the values only at six different discrete

locations we need to curve-fit the discrete modes to get continuous modal functions.

Though the modes are orthonormal, by doing a curve-fit we lose the orthogonality, as

the definition of inner-product of the modes is changed from a finite sum to a definite

integral. In order to make the continuous functions orthonormal with reference to the

distributed mass matrix, we use the Gram-Schmidt reorthonormalization technique,

to yield what we call proper orthogonal modal functions (POMFs). We have used

the linear natural modes (LNMs) of the cantilever for the curve fit. The motive is to

identify the content of the natural modes in the dominant proper orthogonal modes.
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Table 5.1:Lor 11L

POM # LNM 1 LNM 2 LNM 3 LNM 4 LNM 5 LNM 6

1 0.7113 0.2474 0.0296 0.0089 0.0021 0.0007

2 0.2494 0.7265 0.0108 0.0096 0.0035 0.0002

3 0.1978 0.2343 0.5538 0.0053 0.0051 0.0038      
 

 

In Figure 5.12 we presented the six proper orthogonal modes and their continuous

versions, for the dynamics at 12.0 Hz frequency. The energy content (defined as the

ratio of corresponding proper value to the sum of all the proper values) of each of the

POMS is indicated. The POMS for which we have not indicated any energy content

have zero proper values. For example the first three dominant modes account for

fractions of 0.9913, 0.0083 and 0.0003 of the total energy. This implies the dimension

of the active state is six. We recall that the false-nearest-neighbors have gone to

“zero” when the embedding dimension is five, consistent with the number of active

modes.

In Figure 5.13 we present the POMFs obtained by Gram-Schmidt orthonormal-

ization of the continuous versions of the POMs. The effect of orthonormalization is

to take out the components that are already present in the previous vectors. As such

it would be wrong to assign the same energy content to the POMFs, though the order

of dominance is still maintained. We suspect that we can still determine the energy

content in the orthonormalized functions, by using the same ideas that we used to

orthonormalize the functions.

In Table 5.1 we give the percentage contribution of the natural modes in the

POMFs. From this table we realize that the POMFs are not purely the LNMs. In

fact, the first five LNMs account for 99.99% energy of the first three POMFs. This

indicates that we need the first five natural modes to describe the same dynamics

(at least from the 99.99% energy perspective) as that of the three POMF model.

Definitely this is an advantage favoring POMFs.
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Figure 5.12: Proper orthogonal modes of chaotic dynamics at a driving frequency of

12.0 Hz. The continuous versions of the discrete modes are not orthonormalized.

In Figures 5.14 and 5.15 we present the POMS and the orthonormalized POMFS

obtained from the chaotic dynamics observed at the operating frequency of 41.1 Hz.

In Table 5.2 we Show the contribution of LNMS of the cantilever to these POMFS. In

this case we need the first five LNMS to account for 99.99% energy in the first four

POMFS and six LNMs to account for the same proportion of energy content in the

fourth POMF. Thus we need six LNMS to describe the same dynamics as that of the

four POMF model, again proving that POMFS give a better reduction than LNMS.
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Figure 5.13: POMFS (obtained by orthonormalization of the curves fit on POMs)

from chaotic dynamics at a driving frequency of 12.0 Hz.

From this contribution table we note that the higher LNMS have a greater contri-

bution to the dominant POMFS. This indicates that a model built from three POMFS

would not be similar to the model built from three LNMS. Also as indicated by the

FFT of strain signal (Figure 5.10), we suspected more than six modes to be active

in these dynamics. The varying degree of contribution of LNMS to the POMFS gives

us an indication of the modal coupling involved. This in turn reflects on the better

representation of the system dynamics by POMFS rather than LNMS.
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Figure 5.14: Proper orthogonal modes of chaotic dynamics at a driving frequency of

41.1 Hz. The continuous versions of the discrete modes are not orthonormalized.

5.4.1 Proper orthogonal modes: using a larger number of

sensors

Until now we have used only six sensors to determine the POMS. Earlier we have

converted the displacement information determined at discrete locations into displace-

ment at any point on the beam using the first six LNMS. Thus we have an infinite

number of pseudo-sensors. However because we used only the first Six LNMS in the

curve fit, we are making an implicit assumption that the system dynamics does not
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Figure 5.15: POMFs (obtained by orthonormalization of the curves fit on POMS) of

chaotic dynamics at a driving frequency of 41.1 Hz.

contain any more than the first six LNMS of the cantilever. Thus if we use any more

than six pseudo-sensors in the displacement measurement, the POD would result in

a correlation matrix of rank no more than six and hence we can at most have Six

non-zero proper values. However the resulting (discrete) POMS could differ. In this

section we see the effect of using a larger number of “sensors”.

Using the pseudo-sensors we obtained the displacement at points uniformly dis-

tributed in steps of 0.01 m all across the beam of length 0.40m. We used this infor-
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tribution of LNMS to POM MAL

POM # LNM 1 LNM 2 LNM 3 LNM 4 LNM 5 LNM 6

1 0.2872 0.5748 0.1081 0.0216 0.0060 0.0023

2 0.7764 0.0443 0.1386 0.0326 0.0045 0.0038

3 0.1920 0.0937 0.5582 0.1386 0.0145 0.0030

4 0.1179 0.0819 0.0323 0.6254 0.1093 0.0331      
 

 

mation and built the covariance matrix and obtained the proper orthogonal modes

and modal functions. In Figures 5.16 and 5.17 we present the same.

On comparing these modal functions with the ones obtained using the actual

sensors we realize that the continuous versions of the dominant modes tend to the

orthonormalized functions with increasing number of sensors. This indicates larger

number of sensors gives a better representation of the system. However this would

render the process more expensive. Thus with an. “optimal” number of sensors we

can achieve the POMFS similar to the ones using larger number of pseudo-sensors,

using the Gram-Schmidt orthonormalization technique.

5.5 Discussion

In this and earlier chapters we presented the outline of the experiment, discussed

the dynamics of the system under frictional excitation and described the method of

extracting the POMFS from the experimental data. In this process we have seen

the ease with which one can obtain the POMS from an experiment compared to the

difficulty in obtaining the LNMs from sophisticated and expensive software with a

large learning curve. For the systems that we considered we showed that the number

of LNMs needed to span the space of the dominant POMFS is larger than the number

of dominant modes. This indicates that we need more LNMS than the POMS to

describe the same system dynamics. We will verify these issues later in Chapter 6

with models built of both POMS and LNMS.
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Figure 5.16: Proper orthogonal modes of chaotic dynamics at a driving frequency of

12.0 Hz, using 41 pseudo-sensors. The continuous versions of the discrete modes are

not orthonormalized.
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Chapter 6

Mathematical Model, Reduction

and Validation

6.1 Mathematical Model

The system under consideration (described in the previous chapter) consists of a

cantilever with an attachment for convenient variation of normal load. Because of

the attachment, we have the friction force F, acting not on the cantilever but at

the end of an extension. This force can be transferred to the cantilever tip, by an

equivalent force and moment combination (the force is F and the moment is FI, where

I is the length of the extension). To take the inertial effects of the extension and the

fixture we lump the masses together at the cantilever tip. Hence we need the beam

equation where both external forces and moments are present. Assuming that there

is no shear, we use the extended Hamilton’s principle [58] to get the standard PDE

for a Euler-Bernoulli beam and write our system equation (zero damping is assumed

here) as

090; t)
 

67:1”)62y(:,t)]+ P3()6_:___ya(t21t)2 P5”t)—

where y(z,t)18613118 deflection at the point a: at time t. E(:I:),I(:ca)and p(z) are the

(6.1)

elastic modulus, the area moment of inertia and the linear density respectively of the

system at location (1:. p(:r, t) and q(:c, t) are the external forces and moments applied
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at location a: on the beam at time t. Note that p and q are implicitly time varying

functions of relative velocity, normal load and other parameters in case of frictional

excitation. The parameter values are given in Chapter 4.

With this assumption of “an Euler-Bernoulli cantilever beam with a lumped mass

at the free end” for the system, we numerically estimated frequencies of 3.13, 21.97,

64.72, 130.64, 220.55 and 334.12 Hz. When we compare these frequencies with the

experimental ones presented in the Chapter 4 ( 3.75, 18.4, 53.75, 102.5, 172.5 and

265 Hz), we notice that the estimated frequencies are higher, with the exception of

the fundamental frequency. Hence we expect to see a shift in the predicted frequency

sweeps to the right. With a Timoshenko beam model we could get better astimates

of the frequencies [43], however this would increase the order of the system from two

to four in the time domain. We defer the Timoshenko model to our future studies.

The usual practice in the literature for solving these partial differential equations

is to first convert the PDEs into ODEs by using the Galerkin’s approach. In this

method, we write the deflection as a weighted sum of functions {<p1(:r),cpg(a:), - - }

which form an orthonormal basis. Typically these functions are the linear natural

modes (LNM). Since the system is a continuous system the cardinality of the basis

is infinite. As such we truncate the summation to a finite sum of N terms, such

that y(:z:, t) = 2;, (p;(:r)u.-(t), and then try to minimize the error. In minimizing the

error we make note of the fact that the error term is orthogonal to each of the basis

functions that we used in the finite sum [56]. Substituting for y(z,t) in (6.1) we get

the following ODE’s for j E [1, N]:

3=L N . N

/_., [31(1)2 ‘Pj(x)¢§'”)(x)ua(t) + per) 2 ‘Pj($)cps(:c)fi.-(t)]da: =
" i=1 i=1

[:7 [¢j(=v)p(z, t) -- $0j($)q'(z,t)]da: (6.2)
$-

where the superscripts ' and ‘” indicate differentiation with respect to a: one and

four times respectively, and the dots indicate differentiation with respect to t. L is

the length of the cantilever. By interchanging the integral and the sums, for each
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j 6 [1, N], the above equation can be rewritten as

2E1am)'"’(z)dxu(t)+:/wmm)dmz-(t)
'=1 13:0

= L::‘p(.,t).pj(x) + j: «snag-(x) - (9(L,t)soj(L) - q(0,t)%(0))

The system under consideration comprises of two uniform beams (the main beam

and the loading beam) attached by a fixture of mass m. In the direction of main

motion i.e. along the Y-axis, the loading beam has high rigidity and can be treated

as a rigid connection. Therefore as mentioned earlier for transverse vibration compu-

tation, we lump the mass of loading beam m1 at the cantilever tip along with fixture

mass and call it mL. In our case we have the beam subjected to a concentrated load

and a concentrated moment at the cantilever tip. Therefore we can replace p(:r, t) in

the above equation with f(t)6(a: - L) and q(:r,t) with lf(t)6(:r -— L), where f(t) is

the implicitly time varying excitation force which also depends on the state and other

parameters.

Now for each j, the above integration can be rewritten as

2]:E1(x)so.(z)w$‘"’(z)dxu.(t)+2£Lmmz)cp.-(x)dxua(t)
'=1

i=1

+Z]: mL6(a: — L)goj(a:)cpg(z)dzfi.-(t)-— f(t)(‘Pj(L) +180j(L)‘ I‘Pj(L))

i=1

We can write the coefficients of u;(t) and {a(t) in a simpler notation and keep only

the {2,-(t) term in the left hand side. Thus, for each j e [1, N] we have

:Mfia; + :Kfiua = f(t)Pj, (6.3)

where

K..- = /: EI<x>so.-(x)w3‘”’(x)dz (6.4)

M..- = :pr(x)cps(x)dz + mL<Pj(L)‘Pi(L) (6.5)

Pi = 90j(L)+l¢$-(L) -1<p5(L) (6-6)
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Assuming M to be invertible, we can write equation (6.3) as

ii = Au + Bf(t) (6.7)

where, A = -M"1K and B = M‘IP. Also if we assume that the modal viscous

damping is proportional to the stiffness, i.e. C = cK, then the only difference to the

above equation would be an extra term cAu(t) getting added to the right hand side.

Here c would be proportional to a characteristic damping coefficient. Let us now write

the system equation with finite damping in the state space form, with the elements

of the state U defined by U1 = ul, - - - , Un = um Un+1 = 121, - - - U2” = 11... Notice that

the state U is time varying. Thus we end up with the following state-space equation.

- O I 0

U=[A CA]U+[B]f(t) (6.8)

For clarity let us call the coefficient of the state U as K“ and the coefficient of the

forcing term f(t) as F,;. The subscript 31 indicates slip as we use the same equation

for the slip state. With this notation we can write the equation for the beam as

U = K.:U + F.tf(t) (6.9)

These equations can be integrated using a standard Runge-Kutta routine to find

the values of U;(t), which in turn can be used to obtain the value of y(:r,t) and its

derivatives at any point on the beam.

6.1.1 Coulomb-friction forcing with infinite contact stiffness

We have previously identified the friction characteristic in our experiment to be

Coulomb with contact compliance. The Coulomb friction characteristic is discon-

tinuous. The kinetic friction force fk is given by fl: = :tnyN, where the sign is

. decided by the sign of relative velocity between the contact elements. During the slip

state we can therefore use equation 6.9 for determining U(t), by using f). for f.
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The static friction force cannot be stated in the above style. However the bounds

on the static friction f, are [‘I‘st, +113fN]. When the beam is stuck to the slider,

we do not know the value of f, and the above set of equations needs modification.

We have new constraints on the beam. The motion of the point :5" is now known

because it is the same as the motion of slider (the slider velocity is denoted by v(t)

and acceleration is denoted by a(t)), i.e.

N

v(t) = i/(xfit) = 2904302110)
i=1

N

a(t) = 37(3'113) = 2974370171“)

i=1

Using the state notation, and defining

11,-:[0 0 901(5) [Mag]

we have

an) = a(t)

We premultiply equation (6.9) by i”, and use equation (6.13) to get

‘I’.(K.1U + F.1f(t)) = a(t)

Thus we can write f.(t) in terms of a(t) as

f,(t) = —(<I>‘F,;)‘11>‘K.1U + (Q‘F.1)"1a(t)

Now we can substitute for f(t) in (6.9) to get

U = K.:U+F.zf(t)

= [1 - (FF.:)"F.1‘I’*] K..U + (rm-11111.6)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

Denoting the coefficients of U and a(t) by C and D, we can write the above equation

as

1'} = CU + Da(t) (6.16)
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Now using (6.10), we can define a new state vector W which is one dimension less

than U and is given by

  

. 0 .

I2N—l 2N—1 E

U = 0 . .x. 0 'WP'] . . . “spar-1F.) W + 0 v(t)

‘PN(3.) «061(1")
1

- ¢N(3.) -

Substituting this relation for U in (6.16) results in

cw + 116(1) = C(GW + Hv(t)) + Da(t) (6.17)

Rearranging the above terms and multiplying the equation by (GTG)'1GT results in

w = (GTG)‘1GTCGW + (GTG)‘1GTCHv(t)+ (GTG)-1GT(D - H)a(t) (6.18)

By denoting the coefficients of W, v(t) and a(t) by P, Q, R respectively we have

w = PW + Qv(t) + 116(1) (6.19)

Thus we obtain the state equation for the system in the stick mode. The state

is one dimension less than that of the slip mode. This accounts for the temporary

constraint associated with the stick. For the sake of consistency/simplicity in the im-

plementation, we wish to use the redundant state U instead ofW for the stuck mode

also. Hence we use the state equation (6.16) which (for the sake of easy reference) we

write as,

U = K..U + Fma(t) (6.20)

where K“ = C and Feta = D.

Now we know the state equations for the system in both the modes: equation

(6.9) is for slip and equation (6.20) is for stick. We now need the criteria for the

slip-stick transitions. These criteria are based on the relative velocity between the

slider and the beam and the elastic force Fy in the beam. When the relative velocity
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of beam at the point of application 3" is zero and the resultant of the components of

Fy and Nz along the direction of sliding is bounded by the limits of static friction

[-psN,, +psNz], the system sticks and in all other cases the system slips. Equation

(6.15) can be used to obtain Fy. Notice that the usage of equation (6.15) is based on

the assumption that the beam were sticking, otherwise the acceleration of the beam

would be different from the slider.

6.1.2 Finite contact stiffness with Coulomb friction excita-

tion

Till now we have assumed the contact stiffness to be infinite. In order to use a finite

contact-stiffness model we need to modify the state equations and the criteria for

slipping and sticking. The state equation for the slip mode remains the same since

f(t) is defined. From a free-body diagram we can easily verify that f(t) is same as the

frictional excitation at the massless contact point. Now we determine the frictional

excitation during sliding. Let us denote the contact stiffness by Kc. We denote the

displacement of the tip by YT(t) and the displacement of contact point as Yc(t). Then

as seen in Chapter 4, we have f(t) = KC(YT(t) — Yc(t)). Upon differentiation we

have f(t) = KC(YT(t) — Yc(t)). We have assumed Coulomb-friction model. This

implies that the friction force f(t) = :1:pr3 during sliding, the sign decided by the

direction of relative motion at the contact. Hence Yc(t) = YT(t) 2]: pKNz(t)/Kc.

We note that Nz(t) is a function of the contact point displacement and is given by

Nz(t) = Nzo + NZmYc(t), where N20 and NZ", are the nominal normal-load and

the slope of normal load variation, the measurements of which were described in

__£c__

uKNZm+Kc

values of Kc,px and NZ", we realize that Yc(t) z YT(t) during sliding. Thus the

first criterion for sticking is Yc(t) — v(t) z YT(t) - v(t) = 0.

Chapter 4. Using this relation we have Yc(t) = YT(t). Comparing the

Earlier for infinite stiffness we compared the effective force on the beam with

bounds on the static friction. In that case we used equation (6.15) to get the effective
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restraining force. When the elements of contact were stuck, we computed the effective

force using the acceleration of the slider (which would have been acceleration of the

beam tip, had the slider stuck to the beam tip in the infinite stiffness situation).

We cannot do the same in the finite stiffness case. With finite stiffness during the

stuck state the acceleration of the beam tip is different from the slider acceleration. -

However we have a simpler method of determining the force in this case using the

finite stiffness Kc. If the beam were to stick, due to the finite contact stiffness, we

have a relative displacement between the actual contact point and the tip of the beam.

Here Yc(t) = do + d(t), where do is the point on the slider where the contact is made

and d(t) is the slider displacement. In case of infinite contact stiffness, Yc(t) = YT(t).

However with a finite stiffness Kc, we have f(t) = Kc(Yc(t) - YT(t)), where f(t)

is force from the beam. Thus we can replace equation (6.15) with this relation and

proceed. Thus we have

f(t) = Kc(Yc(t) — a(t))
N

= Kc((do + d(t)) — Z ¢.(x')U.-(t)))
i=1

= Kc((do + 61(1)) - W‘U) (6-21)

where

W'=[¢.(z') Mr) 0 0] (6.22)

In the above force relation we have the effective force in terms of the state and input

displacement which are all known. Thus we know the effective restraining force, which

can be compared with the static friction bounds to determine whether the contact

elements stick.

We can use the force information defined above in the equation (6.9) to obtain

the equation for the stuck mode. Thus

U K..U — F.1Kc((do + a(t)) - w'U)

= (K,( - KcF,(‘I")U + KcF,1(do + (f(t)) (6.23)
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For easy reference we will rewrite the above equation as

U = KmU + 1?...(61o + d(t)) (6.24)

where the definitions of Km and Fm are obvious.

We now know the state equations for the system with non-zero contact compliance

in both the modes (slip is represented by equation (6.9) and stick is represented by

equation (6.24)). As before the criteria for slipping and sticking are based on the

relative velocity between the slider and the beam and the dynamics of the beam.

When the relative velocity of beam at the point of application :6“ is zero and the

resultant components of Fy given by equation (6.21) and Nz along the direction of

sliding is bounded by the limits of static friction [—p5Nz, +p5Nz], the system sticks.

In all other cases the system slips. Equation (6.21) can be used to obtain Fy to

determine the sticking criterion.

6.1.3 Effects of normal vibrations of the beam on normal

load

In the previous sections we have not considered the effects of the normal (i.e. in

the Z direction) vibrations of the loading beam and the cantilever. We realize that

the coupling of normal, torsional and lateral degrees of freedom may be important

in generation of interesting friction-induced dynamics. We have not considered the

torsional coupling effects as the geometry of the rubber nub and the torsion of beam

are not well known and any assumptions would be arbitrary. The torsional and

normal effects could be small but could have a significant impact on the normal load

variation. To this end in the following we consider the effect of normal vibrations.

We suspect the source of normal vibrations to be the slope of the slider and the

effect to be significant in the neighborhood of the fundamental frequency of the normal

vibrations (especially when the slope is large) and it could contribute significantly to

the bifurcations in that neighborhood. In order to account for this, we used a lumped
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mass model. We assumed an effective mass mL to be lumped at the Cantilever tip.

Though the stiffness of the cantilever in the Z-direction is large compared to the

stiffness in Y-direction, it is not 00 (the first frequency of vibration in Z direction is

around 70 Hz). We therefore do not neglect the contribution of the cantilever to the

normal vibrations. In this case we have the lumped mass m), connected by two springs

of stiffnesses kb and Ice. kg, and ke are given by (IE'I)(,z/L3 and (EI),z/I3 respectively.

(E1)b2 and (E1)eZ are the flexural rigidities of the cantilever and extension beam

in Z direction respectively. L and I are the lengths of the cantilever and extension

beams. The second end of spring k5 is fixed and spring 1:, rides on the slider surface.

In Figure 6.1 we show a schematic of this simplified model for normal vibrations.

As depicted, Z1, and Ze are the displacements of the cantilever tip and the extension

3

k.= 3(EI)bz/L

Zbr mb  

kc: 3(EI)cZ/13
v

Z6]—

Figure 6.1: Simplified model for normal vibrations

tip in the Z direction. We note that the extension tip is riding on the slider surface

and hence is given by Z, = ZmYT + Z, where Zm, Y1 and Zc are the slope of slider,

extension tip displacement in the Y direction, and nominal position of the extension

tip in the Z direction. We can see that Z, and Ze are connected by

mi. + (c. + c.)z'. + (k. + k.)Z.. = 1.2. + c.z'., (6.25)

where q, and 6e are damping coefficients added to account for damping in the can-

tilever and the rubber nub (both of which are assumed proportional viscous). The
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damping is not represented in the schematic. The normal load is then given by

f~ = k.(Ze - Z.) + c.(Z. — Z'.) + 16.2... (6.26)

The normal load can thus be computed and be used in the friction force calculation.

We will illustrate the effects of the normal vibrations later in the sections on

frequency sweeps.

6.1.4 Modal reduction using POMs

In the previous sections we have given a mathematical model for the system under

consideration. The information that was not defined was the 905(3). We propose

here the usage of proper orthogonal modes for <p,-(x). Because of high rigidity of the

loading beam in the direction of motion we can treat the loading beam as rigid and

hence have lumped the mass of the loading beam at the cantilever tip. If ¢,(:c) are

the proper orthogonal modal functions obtained from spatial information, for each

i E [1, N], where N is the number of dominant modes, we propose the following:

. _ ¢,(x) if0<z<L

W) ’ f (z - L)¢.‘(L) + ML) L s x s L +1 (627)

We need cp,-(a:) for L S a: S L + I to compute the normal load which depends on the

motion of loading beam tip.

In obtaining the proper orthogonal modal functions 1125(3) we curve fit the discrete

proper othogonal modes obtained from the coherence matrix, by n clamped-free beam

linear natural modes (151(3) = (cosh sz — cos fljx) -- 05(sinh 5,2: - sin Biz), where

,3,- are obtained from the weighted frequencies of the cantilever and are given by

6,- = \/w,-‘/pA/(EI) and a,- are the mode shape coefficients [43]. Here w,- is the

jth frequency of the cantilever and A, E and I are the cross-sectional area, elastic

 

modulus and moment of inertia of the cantilever section respectively. In the process

of conversion we obtain the orthogonality of the functions using the Gram-Schmidt

orthonormalization technique. In the inner-product calculation of this technique, we
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have accounted for the lumped mass. Thus the proper orthonormal modal functions

(POMFS) are made admissible. The orthonormalized curve fit can then be represented

1111(3) = I: ¢k(1€)vki (6.28)

where 12,-, are “contributions” of ¢,(:r) to the POMFS during the curve fit and n is

the number of natural modes used in fitting.

Using the above two relations, we can now obtain the values of K,M and P

matrices of equations (6.4) and (6.5).

r=L .

K,,- = _ o (E1)¢,(x)¢§'”)(z)dx
I:

= —(EI) f”: i (Mn.- 2"“. ¢$:;">(x)vm.-dx
k=1 m=1

n n z=L .

= —<EI)>:vavmi/.=.¢1<2>¢2”>(x)dx, 6.29)
k=l m=l

3=L

M).- = mL¢j(L)¢a(L)+P/z=o ¢j($)¢e($)d$

= mam/«(m + ,,f: .2} mm.- i ¢m(x)vm.-dx
m=1

-_- mL¢,(L)z,b,-(L) + pi in: ”kjvmi/;:L ¢k(x)¢m(x)dz (6.30)

Ic=l m=l

P.- = I¢;(L)+¢.(L)-I¢.(L) (6.31)

Note that ¢,-(a:), are the LNMs of the cantilever section, and due to their orthog-

onality, we have simpler forms for the undetermined definite integrals in the above

equations. Specifically we note that

[L0 ¢j(:r)¢,-(x)dx = 6jg/2 (6.32)

I:

and

j; ¢.(x)¢:i"(z)dx = (666/2 (6.33)
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Using equations (6.32) and (6.33), in equations (6.29), (6.30) and (6.31), we get for

each j,i 6 [1,N],

KJ',‘ = —(E1) 2“: i vkjvmgflz/26km = -(EI)1 i ‘Umjvmgflfn/2 (6.34)

It=l m=1 m=l

M).- = mL¢,(L)¢,(L) + P f: "WM/2 (5535)
16:1

Pi = I1113-(14) + WU!) - MAL) (6-35)

The M,K and P matrices thus obtained can now be used in getting the matri-

ces required in equations (6.9) and (6.20). Now we have a way to implement the

conversion of PDE into a set of ODEs using experimentally obtained POMS.

6.2 Numerical Solution Technique

The numerical simulation technique adopted is much similar to the one that we used

in Chapter 3. The technique involved the usage of IMSL routine DIVPRK (a Runge-

Kutta ODE integrator in double precision). We used a variable time step integration

to integrate the slip and stick equations. For a given set of initial conditions we

determine the relative velocity and the excitation force. These we use to define a

flag for slip or stick. Then we proceed to integrate in a while loop till we reach the

specified time of simulation. At each time step we determine the relative velocity and

effective force on the beam and compare their values for slip and stick criteria. In

case of a cross-over (relative velocity crossing zero or the effective force crossing the

static friction force bounds) we step back and use a simple interpolation, to determine

a smaller time step and integrate. This we continue until the cross-over is within a

predefined tolerance zone. At this point after verifying the respective criterion we

move to the following state. In this way we compute the state U at each time step.

In turn we use the state U to compute the displacement y(a:,t), velocity g(z,t) or

strain e(:c,t) at any given point x on the beam and given time t using the following



110

equations

N

yet) = Emma-(t) (6.37)
i=1

N

(KM) = 221(z)U.+~(t) (6.38)

I ~ ,.
.(.-,t) = 52¢.(2)U;(t) (6.39)

(6.40)

where h is the beam thickness.

6.3 Reduced Model — Numerical Simulations

6.3.1 Friction-force characteristics — different scenarios

In previous sections we described the effects of contact compliance and the transverse

inertial effects. In this section we will present the resulting force characteristics, i.e.,

Fy versus the relative displacement D, and relative velocity V, between the tip of the

beam and the slider. In the next section we will present the corresponding frequency

and amplitude sweeps.

If the contact stiffness is infinite, we do not expect any variation in the displace-

ment when there is a direction reversal and we should see a sudden change only in

the sign of kinetic friction (in Coulomb’s friction model). This is seen in Figure 6.2.

Similar is the case where the static friction coefficient is slightly higher than the ki-

netic friction coefficient. The only difference is the beam tip now gets moved to a

larger distance in the stick regime. The slope Zm of the shaker axis is present though

not perceptible as the displacement is too small. The slope Z,,, is reflected in the top

and bottom lines (in the Force-displacement characteristic) when the displacements

are higher and is seen as a wedge shape trapezium.

In the case of compliant contact model as explained in an earlier chapter, we
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Figure 6.2: Friction characteristics of the infinite contact stiffness model. The top row

shows the case where p5 = ,uK and the bottom row shows the case where #8 > [Ix

should expect the lines of direction reversal (in the friction-displacement plot) to be

slanted and the slope should correspond to the contact stiffness. The finite stiffness

results in a non-zero displacement as the the relative velocity changes sign. This would

also result in a hysteresis loop in the friction-velocity plot. The friction-velocity plots

need a more detailed description in case of compliant contact friction model. This

is because now we have the so-called micro-stick. In case of “pure” slip motion, the

hysteresis loop becomes more obvious. On direction reversal we have the relative

velocity going to zero and hence a micro-stick regime is present which is reflected

in the slanted curves of the friction-velocity plots. Notice that the micro-stick event

begins at zero relative velocity and ends at a non-zero relative velocity. In the case

of stick-slip motion (the top row of Figures 6.3 and 6.4), the sticks are reflected as
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The top row shows the case of macroscopic stick-slip and the bottom row shows the

case of micro-stick

loops in the friction-velocity plots, similar to the observations made by Liang [52] and

Liang and Feeny [53].

The case of p5 > pg is similar to the one where they are both equal, the only

difference being that the sticking continues until a larger force is exerted for a longer

time.

The effect of transverse inertial mass is not obvious for the low values of mass and

slope of the shaker axis under consideration. However for larger slopes, though the

friction force characteristic remains same, the effective force Fy characteristic changes

considerably.
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6.3.2 Frequency sweeps

In the friction-characteristics presented above we obtained the relative displacement

and velocity between the beam tip and slider velocity using the reduced model of the

beam. The model reduction was done using the POMFS at 12.0 Hz. In this section

we present the frequency sweeps of the reduced model. We later use these frequency

sweeps to compare the reduced models obtained using the LNMs of the cantilever

beam and POMs from the experiment.

We carried out frequency and amplitude sweeps using the reduced model that was
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described in the earlier sections. Earlier in Chapter 5 we used a 10 degree polynomial

fit to define the relation between the shaker frequency and shaker amplitude. We used

the same polynomial in defining the slider amplitude at a given frequency during the

numerical simulation of frequency sweep. Each sweep was carried for 600 cycles of

which only the last 100 cycles were stored. Thus we are discarding 500 cycles to

account for transients. Incidentally we used a one-percent proportional damping and

the two-percent settling time is well within the linear damping limits. We however

note that the damping effects could be quite different in this nonlinear system. In each

of the excitation cycles we measured the strain at location 6 on the beam, whenever

v(t) crosses zero with a positive slope. Thus we computed 100 strain values at each

frequency step when the slider acceleration crossed its peak. We swept from 5 - 60

Hz in steps of 0.1. We caution the reader that the above plots are not connected to

the amplitude-frequency response curves. These plots are sweeps of Poincare sections

along the curve described by the 10 degree polynomial in the configuration space.

6.3.3 Different levels of reduction using POMs

In this section we present the frequency sweeps for different levels of reduction. For

comparison between different reduced models we used the Coulomb friction model

with finite contact stiffness. In Figure 6.5 we show the sweeps obtained from the

POMFS determined at 12.0 Hz in the physical experiment superimposed on the ex-

perimental frequency sweep.

From these plots we see that the most dominant mode alone is not able to pre-

dict the system’s behavior. With two dominant modes we are able to retrieve the

resonant dynamics around 12 Hz range (the POMs are extracted from the chaotic

orbits at this frequency), but the high frequency dynamics are not noticed. How-

ever with three POMs we are able to see the higher resonant frequencies, though the

instabilities (indicated by the smear of points) are not as pronounced as in the ex-

periment. These instabilities become more prominent as we include more POMs but
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Figure 6.5: “Frequency sweeps” of reduced models obtained at different levels of

reduction using POMFS (extracted from experiment at 12.0 Hz and the continuous

versions orthonormalized) superimposed on the experimental sweep.

the sweep characteristics (represented by the resonant frequencies) remain same. The

inclusion of higher modes results in higher computing time and grows exponentially

with increasing number of modes. Also the inclusion of higher POMFS could result

in deviations from the experiment as the signal noise is generally reflected in higher

POMFS whose corresponding proper—values are close to zero.

On comparing these predicted sweeps with the ones from the experiment we realize

that though the stick-slip instabilities around 12 and 41 Hz of the physical experiment

do occur the latter instablities occur at slightly higher frequencies and the resonant

levels match well within five percent (the 3-POMF model). The dynamics in the

unstable regions in the predicted sweeps seems chaotic but is not as prominent as
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in the experiment, especially at the higher frequencies. However we note that the

periodic orbits and also the zones of pure stick and stick slip are well predicted by

the reduced model.

We expected the shift from the linear behavior of the numerical model. The re-

duction in order though introduces new constraints and in a way stiffens the system,

it is not truly the cause for the shift in higher frequency dynamics to higher frequen-

cies. This we verified by carrying a frequency sweep using a numerical model with

ten LNMs. The addition of more modes did not significantly improve the dynamic

characteristics with reference to the frequency shift. Thus we attribute the shift to

the fundamental modeling assumption of “lumped mass at the free end of a Euler-

Bernoulli cantilever beam”. We leave the usage of Timoshenko beam model (which

is fourth order in time) to our future work.

In order to account for the uncertainities involved in our modeling efforts, viz.,

beam model, damping, friction characteristics, etc. we considered a model similar to

that of the POMF model, but with a large number of LNMs (ten) as a “truth set”.

We compared the frequency sweeps of reduced models with that of this “truth set”

(see Figure 6.6). This comparison reveals that the resonant frequencies predicted by

the POMF models are almost same as the ones predicted by the “truth set” model.

The convergence of the reduced model frequency sweep with that of the “truth set” is

acheived rather earlier just with three POMFs! We suspect that the the contamination

of signal noise on higher POMFs is reflected as the deviations in the six POMF model.

In this particular system we were fortunate to have the LNMs of the cantilever

readily available. As such we built reduced models with the LNMS and carried fre-

quency sweeps similar to those of POMF models and in Figure 6.7 we present the

same. From Figures 6.6 and 6.7 we realize that in this particular example POMFs

have faster convergence than the LNMs.

In Figure 6.8 we show the sweeps obtained from the POMFS determined at 41.1

Hz in the physical experiment superimposed on the experimental sweep.
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Figure 6.6: “Frequency sweeps” of reduced models obtained at different levels of

reduction using POMFS (extracted from experiment at 12.0 Hz and the continuous

versions orthonormalized) superimposed on that of the lO—LNM model (“truth set”).

We recall that four of this set of POMFS were dominant (whose combined energy

content is at least 99.99%). Thus we expect to reveal the features of the beam dynam-

ics with at least four POMS. This is what we observe in the above plots. The models

built by using less than four POMFs from the 41.1 Hz dynamics did not reveal the

higher resonant frequencies. Also the dynamics in the 12 Hz neighborhood predicted

by these models deviated from that of the experimental sweeps. However with four

POMFS model the deviation is reduced and also the higher resonant dynamics are

revealed.

For a better appreciation of the three POMF reduced model (from the 12.0 Hz

chaotic dynamics in the experiment) we show the phase portraits (displacement versus
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Figure 6.7: “Frequency Sweeps” of reduced models obtained at different levels of

reduction using LNMS of the cantilever superimposed on that of the 10-LNM model

(“truth set”).

velocity of the contact point on the beam) in Figure 6.9. These are obtained at 11,

11.9 and 42.9 Hz respectively of the resulting dynamics in the sweeps.

On comparison with the experimental phase-portraits (presented in Chapter 5),

the qualitative nature and the order of the size of the attractor are found to be well

preserved. We also note that the meandering (of the beam tip on the oscillating

slider) seen in the experiment could not be effectively realized with this this reduced

model.
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contact model).

6.3.4 Finite and infinite contact-stiffness friction excitation

In Figure 6.10 we present the plots of frequency sweeps for finite and infinite contact-

stiffness model for friction. Both the sweeps were generated by the 3 POM reduced

model.

Also between the two friction models we note that the compliance model gives a

better prediction, in the sense that the occurence of instabilities and resonances are

more pronounced in the latter. However both the models Show the shift of stick—Slip

instabilities (that are observed around 12 and 40 Hz in the experiment). We also note
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three-POMF reduced model at 11, 11.9 and 42.9 Hz.

that with the infinite stiffness model, we see a better smearing of the quarter-phase

strain in the 12.0 Hz neighborhood, indicating the non-periodic nature of the response

in this neighborhood. This implies that the infinite contact stiffness friction model

is better (compared to finite contact stiffness friction model) in the low frequency

region. This leaves us with a suspicion that the friction characteristic is not a simple

Coulomb model with a finite contact-stiffness. A possible model could comprise of

varying contact stiffness (nonlinear). For example we can replace spring Kc with an

hardening Spring such that, the stiffness increases with increase in the amplitude or

a decrease in the frequency in these “frequency sweeps”. With this insight we leave

more complex friction modeling to future studies.

6.3.5 Normal vibrations included

In an earlier section we mentioned that the coupling between torsional, normal and

lateral degrees of freedom could significantly contribute to the friction-induced dy-

namics of the beam. We described the effects of the normal vibrations caused by the

tilt in Slider axis. Here we present a numerical frequency sweep from a reduced model

where we accounted for the normal vibrations. For these simulations we lumped one
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Figure 6.10: “Frequency sweeps” of the system using the reduced model from POMFS

(of the three dominant POMS obtained at 12.0 Hz). The top row corresponds to the

zero contact compliance friction excitation and the bottom row corresponds to non-

zero contact-compliance.

third of the beam mass at the end.

The parameters like the lumping factor and damping due to the rubber nub were

not determined from the experiment and definitely needs a little fine tuning before

for proper predictions. We however note that the bifurcation become more prominent

in the 40 Hz region. With this insight and note on the normal vibrations, we leave

the studies to future work where we intend to account for higher modes in the normal

direction and also better lumping of the masses.
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Figure 6.11: “Frequency sweep” of the system using the reduced model from POMFS

(of the three dominant POMs) obtained at 12.0 Hz. Normal vibrations are accounted

for in the model.

6.3.6 Amplitude sweeps

We already have noted that the unstable zones have moved to higher frequencies and

the instabilities are not as prominent as in the experiment. In order to confirm the

robustness of the reduced model to parameter changes, we carried our sweeps with

amplitude, normal load, static-friction coefficient and slider Slope as sweep param-

eters. In this section we present the amplitude sweep. The amplitude sweeps were

carried at frequencies of 12.5 and 46.9 Hz rather than 12.0 and 41.1 Hz the frequencies

where we conducted the physical experiments, to account for the frequency shift in

Euler-Bernoulli model.

From the amplitude sweep we note that as the amplitude increases we see an

increase in the quarter—phase strain value initially followed by a gradual decrease

to zero. By neglecting the higher mode effects we can say that the large strain

values indicate larger amplitudes of the beam tip and smaller values indicate small

oscillations of the beam tip. At both the frequencies the beam undergoes a steady stick

in the low amplitude levels and as the amplitude increases the stick-slip instabilities

begin to Show. AS the amplitude increase further the beam tip gets into a pure Slip

motion. The pure slip motion is more pronounced at higher frequency.
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Figure 6.12: Amplitude sweeps of the system using the reduced model from POMFS

(of the three dominant POMS obtained at 12.0 Hz). The top row corresponds to the

sweep at 12.5 Hz and the bottom row corresponds to 46.9 Hz.

The other sweeps involving Slider slope, static friction coefficient and normal load

did not reveal any interesting dynamics. As such we with hold their presentation.

6.3.7 The effect of static friction coefficient

The static friction coefficient p5 that we used in earlier sections was not experime-

natlly determined. We estimated p5 = 1.36pg apriori using sweeps on ratio of static

to kinetic friction coefficients, by keeping other parameters constant. We varied the

ratio ps/pg from 1.0 to 2.5. We conducted these sweeps at 12.5 and 46.9 Hz, and
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plotted the quarter-phase strain at location 6 versus this ratio. We presented these

plots in Figure 6.13.
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Figure 6.13: p5/pg sweeps of the system using the reduced model from POMFS (of

the three dominant POMS obtained at 12.0 Hz). The top row corresponds to the

sweep at 12.5 Hz and the bottom row corresponds to 43.9 Hz.

From these plots we note that the dynamics are nonperiodic in the neighborhood

of 1.36 for both the frequencies that we considered. This in a way indicates that p5

is in the ball park of 1.36pg. We later confirmed p5 to be 1.38pg. The higher ratios

were not considered in our experiments as we found them to be unrealistic.
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6.4 Conclusions

In this chapter we gave a method for reducing the order of the system under con-

sideration and validated the same using frequency sweeps. Though we found some

discrepancies between the physical and numerical experiments, we attribute these

discrepancies to the original mathematical model of the system, like the assumptions

of Euler-Bernoulli model for the cantilever, lumped mass for the loading beam and

friction law to be a Simple Coulomb with contact compliance characteristic. Some

of these discrepencies have been verified by comparing the natural frequencies de-

termined from the physical experiment and numerical estimates. Thus for better

predictive ability of the reduced model we need a better mathematical model of the

system.

We presented two sets of models obtained from the chaotic dynamics at two dif-

ferent regions. In the first set (at 12.0 Hz) we found three POMFS to capture 99.99%

energy whereas in the second set (at 41.1 Hz) we found four POMFS to capture the

same. AS expected we noted that the 99.99% POMFS broadly revealed the dynamics

of interest. As the three POMFS model is computationally cheaper we prescribe its

usage compared to the four POMFS.

We considered the case of a Single POMF dominating a periodic orbit. The model

built from this single POMF did not reveal the dynamics clearly and the frequency

sweep resembled the sweep obtained from using one POMF of the chaotic dynamics

at 12.0 Hz.

From the comparison between the LNMS and POMFS we realized that the POMF

models converge to both the experimental sweep and the sweep from the “truth set”,

rather fast with just three POMFS. Also the experimental nature of the determination

of POMFS makes it more advantageous as for complex systems the LNMS may not

be readily available. However one should be cautious of the effects of contamination

from Signal noise. This noise is usually reflected in higher POMFS and so one should



126

not be tempted to use all the POMFS that are available.

With better instrumentation, modeling (usage of Timoshenko beam model) and

chaotic dynamics with fewer modes we can possibly obtain a two POMFS (if not one

POMF) model that shows us all the dynamics of interest. With this note we conclude

this final chapter.



Chapter 7

Conclusions

7.1 Summary of the Results and Conclusions

In this study, the reduced order modeling of frictionally excited systems has been con-

sidered. The studies were both numerical and experimental. The problem of friction

induced vibrations was chosen as it provides us with an insight into understanding

the problems of squeak and ”squeal. Our aim was to identify the active modes and

degrees of freedom from experiments and the coupling information between differ-

ent modes which is critical to understanding noise generation and propagation. In

this process we have Shown the ease with which one can obtain the POMS and use

them effectively in modal reduction. We also have shown that better reduction is

achieved by using POMS compared to using LNMS. This is a major plus point fa-

voring POMS as in control applications better reduction means lesser cost per run.

The main disadvantage of this method lies in the initial cost involved in obtaining

the displacement information at different locations. However this disadvantage pales,

when we consider the computational expense and the large learning curve associated

with the sophisticated and expensive software involved in determining the LNMS.

First we explored a numerical system comprising 10 degrees of freedom. We

studied the dynamics of this numerical system under frictional excitation using Sim-

127
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ulations and dynamical system tools base on phase space reconstruction. Later we

used proper othogonal decomposition modes in characterizing the Spatial content of

the dynamics. We then built a reduced order model using these POMS (the number

of dominant modes is six) and studied the dynamics of the reduced model.

We validated the reduced model by comparing the predictions of the reduced

model with the full model. In these comparisons we used phase portraits, FFTS,

statistical measures, occurrence of bifurcations, Lyapunov exponents and skeletons of

the chaotic orbits. Though the reduction in the state dimension is only from 20 to 12,

the comparisons were quite promising which led us to apply the ideas to a physical

system.

In applying the ideas to a physical system we considered a cantilever beam sub-

jected to frictional excitation. This seemingly simple system is found to be complex

enough considering the limited resources and controlled nature of the experiment.

As we needed displacement information at different locations simultaneously we

had to consider a cost-effective way of obtaining this information. In this process

we made use of the simple bending theory in finding a relation between strains and

displacement. AS we were limited to six strain-gage signal conditioners, we made

use of six linear natural modes of a cantilever in estimating the displacements. We

validated this method using Laser measurements and found the method to be quite

effective in the low frequency regions, the estimated displacements were about 99%

of the laser measurements. However near 41 Hz, the method was not found to be as

effective and the estimates were about 80% of the direct measurements.

The second aspect of this experiment was in determining the friction characteristic.

We determined the characteristic to be Similar to Coulomb’s model but with a contact

compliance. Though we realized the difference between the static and kinetic friction

coefficients between the contact elements, we had used a static friction coefficient

p5 = 1.36pg. We later experimentally determined the mean static friction coefficient

p5 = 1.38pg with a standard deviation of 3.7% of the mean.
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We assumed a Euler-Bernoulli cantilever (with a lumped mass at the free end)

model for our system. We obtained the discrete POMS from the Spatial covariance

matrix and curve fit them using linear natural modes of the cantilever, to get the

proper orthogonal modal functions. We then built reduced—order models using differ-

ent sets of POMFS in a Galerkin’s approximation. With the help of frequency sweeps

we validated the reduced-order model.

By taking into account the discrepancies that are introduced due to Euler-Bernoulli

beam model assumption for the system rather than Timoshenko beam model (where

shear effects are considered not negligible) we note that the reduced model’s predic-

tive ability is close, as far as zones of stick, slip and stick-Slip and phase reversals are

considered. However the chaotic zones and bifurcations are not pronounced and we

suspect the neglect of the effects of shear, moment of inertia, normal and torsional

modal coupling to be a possible cause.

In this study we have attempted to integrate two research areas viz., proper or-

thogonal decomposition and friction induced vibrations. In our attempts, we have

proposed and validated the use of proper orthogonal decomposition theorem in modal

reduction of systems subjected to friction-induced vibrations. The main advantage of

this method lies in the fact that the modal functions are obtained from experiments

and hence represent the system dynamics in an optimal sense. This however could

become a major disadvantage when the spatial information is not easily available. In

our preliminary investigations with strings, we encountered this problem. An imme-

diate application of the resulting tool from this modal reduction is in the development

of models for robust active vibration control of flexible structures where friction acts

as a source of passive damping [6]. Another advantage of this method is critical in-

formation pertaining to modal coupling comes as a byproduct. This information is

needed in some cases to understand noise (squeak/squeal) generation [44, 80, 26] and

its propagation. Finally we can use this method in transferring the vast amount of

research being done on low order systems subjected to frictional excitation to high

order systems which are more common in the real world.
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7.2 Future Work

During the course of our research we found some improvements and extensions to the

current work to be worthy of consideration both by ourselves and future students.

Some of these are listed here.

0 We neglected the mass moment of inertia and Shear effects in the beam mod-

eling. We expect the perfomance of the model to considerably improve if we

take these effects into consideration. To start with one can replace the Euler-

Bernoulli beam model with a simple Timoshenko beam model. However we

caution that this would result in a two-fold increase in the dimension of the

system [43].

e The normal and torsional vibrations of the beam could contribute to the chaos.

Though we considered the former vibrations, we treated the source of these to

be the slope of the Slider. There are better models in the literature that couple

the normal vibrations with the transverse.

e The effects of noise on POMS have been considered by some in the literature.

We have not considered this in our research and they did not become an issue

for us possibly because, we made use of the linear natural modes in curve fitting

and in a way filtered out the noise. One can study the effects of noise on POMS

and the resulting model predictions. To start with, one can use a polynomial

fit rather than modal fit for these studies.

0 In the phase space reconstruction studies we have used Wolf’s algorithm [91]

in estimating the Lyapunov exponents. Algorithms which give us the whole

spectrum of Lyapunov exponents have been suggested by Eckmann et al. [25].

This spectrum can be used to characterize the strength of chaos. One can then

study the effects of the strength of the chaotic dynamics on the predictive ability

of the model.



131

o In the experiment, around 41.1 Hz we detected an audible chatter. A strobo-

scopic probe did not reveal any loss of contact. We suspect the jump from the

static to kinetic friction or micro-scale normal motion to be the source of this

chatter. Indeed micro-scale normal motions and p5/pg may be linked. An

experimental confirmation of this suspicion would be of practical use.

0 Another interesting phenomenon that we observed in this neighborhood is the

very low periodic motion of the beam. This low periodic motion at these high

excitation frequencies further indicates the presence of coupling between other

degrees of freedom. This needs a proper study.

With this we conclude this thesis work.
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