
 1
I
I
g
u
l
u
x
fl
’
I
f
K
‘
.
\

I
.

‘
h
;
‘
\
.
.
1
‘
l
w
b
l
l
‘
(
.
0

.

d
l
l
l
‘
u
l
t
l
l
l
l
i
fl
l
v

.
.

.

i
i
i
.
‘

A.
.

£
1
3
.
“
!

.
4
?

r
v
l
u
x
t

\
1
.

.
.

.

5
“
I
V
O
.
L
.
I
5
‘
3
}
-

I
n
v
t
<

‘
.

.

A
l
l
.
«
v
.
l
l
1
’
l
¢
t
.
|
t
l
.
k
v
r
v
r
.
.

3
.
1
4
1

(
I

.
A
5
“
]
!
!
!

1

.
1
1
1
1
3
.
1
4
q
1
0
1
5
4
!

i
v
»

i
z
l
l
‘
;

|
.
1

3
‘
1

i
n
i
t
‘
v
l
!

‘
0
1

‘
0
0
.
!

.
.
v

I
»
.
.
. I
I

1
:

.
I
\
Q

5
.
.
.

~
1
.
1
.
.
.
.

1
.
.
.
.

..
S
:

.
4
)
.
}
?

.
T
a
t
v
S
w
P
A
p
a
v
t
n
a

2
.
3
.
1
.
4
.
“
?

.
.
.
.
u
.
r
.
.
t
.
3
¥
d
.
.
.
£

x
‘
.

.
2

.
«

.
u
h
a
.
.
.

1
.
.
.
.

3
:
.
.
.

..
1
1
1
3
3
.
1
(
}

3
.
1
6
.
3
.

:
3
5
:
7
4
1
(
3
5
1
3

1
.

.
1
1
:
.
.
.
5
.
:

1
%
.
.
.
.
u
3
k
i
e

H
V
t
I
'

u.
1
1
“

\
(
a

y
,
0

y
n
u
4
u
.
l
.
6
|
¢
u
l
c
l
l
l
l
v

T
i
l
t
-
g
)
.

A.
A

.
.

P
H
I

A
r
r
-
(
u
.
u
n
fi
fl
v
‘
i
‘
i
’
l
i

3
.
-
.

J
\
‘
t
v
h
n
u
l
a
l
l

»
v

(
I

l
l
.

'
5
'

1
n
fl
t
$
§
r

I
4
4
.

_.
I

:
Q

:
I
K

.

..
i
t
.

1
‘

I
!

v
s
u
n
d
r
x
a
n
v
x
.

.
.t
.u
z.
r.
..
1.
..
.‘

1
‘

..
l
l
:

I
l
t
.
.
t
u
1
‘
§
:
.
.
1

u
h
.
0
1
2
1
.
.
.
.
.
.

I
.
.
x
l
o
x
v
r
¢
I
J
u

1
i
v
:
.
1
5
?
!

$
.
I
v
t
.
l
v
c
t
€

t
}
.
1
¢
\
.
.
‘
d
l
.
.
l
i

fl
(
l
.
§

I
1
3
1

1
A

I
t
?

‘
5
}
.

.
l
.
.
\

I
I
I

1
.
.
.
:
2
1
0
1
5
.
9
1
.

t
4
?
!

t
.
‘
n
§
x
l
1
.
.
.
l
x
.

Aw

thl

.
p

'
1

I
A

I
i
.
0
~
1
.
n
l
‘
l
.
.
.
d
v
.
v
L
(

x
.
i
fi
.
.
l
.
.
2
.
1
:
.
:
f
.
¢
5
§
s
a
e
.
‘
!

1
.
.

3
!
c
h
.

1
1
.
3
1
1
.
1
5
1
.
3
‘
1
5
.
2
.
5
.
3
!

.
,

t
I

i
i
i
-
(
l
é
i
t
l
'
l
a
t
i
v
‘
c
l
i
l
o
g
fi
l
v

.
3
:
¢
E
§
i
4
é
fl

i
.
¢
t
i
i
¢
.
u
.
!
.
{
.
u
u
!
;
i
.
5
.
.
.
.
.
q
u

‘

I
f

’
i
n
l
.
$
.
1
1
9
t
‘
g
L
t
.
.
.
a
a
c
l
v
.
.
v
t
n
:

n
5
.
.
.
»

.
y

s
.
q

.
c

3
8
.
3
.
.

.
I
t
!

A
1

1

3
.
1
1
1
9
}
!

2
.

.
S
e
g
u
n
u
u
h
:

1
)
:
)
»
.

..
..

..

I
t
)
.

.
1
1
.

I
I

n
fi
r

‘
3
'
!

I
,
1

i
r
l
t
‘
a
r
b
‘
l
;

t
.
b
u
n
v
‘
v

i
l
l
}
.

.
I
.

.
1

..

i
s
!

“
a
m
m
u
m
o

A
.

1
-

.
.

.
x
.

U
»
!

A
.

l
i
J
fi
W
S
a
n
r
A
5
1
:
3
5
:
!

.
A

-
.

.
x

l
.
.
i
i
-

.

3
.
.
.
.
”
l
i
a
i
h
i
r
v
e

1
.
2
.
2
.
5
:

.
v

I
E
‘
N
H
‘
I
‘
é

l

.
..

m
.
.
1
.
\
.
3
u
.
fl
l
l
l
\
t

A
A

.
.

r
.
.
.
3
H
:
.
.
f
.
.
1
§
:
.
i
.
§
!

.
«
3
.
.
.

l

.
1

'
1
‘

I
‘

I
5
.

f
a
r
m
s
!

.
3
.
(

h
fl
r
q
I
A
H
t
h

x
.

..

:
2

x.
‘
:
5
.

4
.
.
.
:
1
‘
i
.

.
.
1
3
.

$
1
.
.
r
%
.
a
.
_
.
.
.
.
.
:

5
.
5
;
!
..

I "
U
.

t
i
l
l
.
-
I
J
P
’
Y
'
A

l
f
‘
A
-
l

V

t
i
l
"
!
!
!
{
I
D
-
“
.
3
1
.
,

1
.
.

"
I

I
I
I

1
.
!
)

‘
.

A

c
o
b
!
.
‘
r
r
l
l
i
t
g
é
v
t

I
.
.
.

u

[
L

.
.

.
I
l
l

.

J
.

A:

.
3
3
6
4
.
$
3

3
4
:
,

3
.

c
.
1
1
!

i
n
:

$
3
.

3
. 8
.
.
.
!

1
1
.
2
.
.

3
:
.
.
E
m
r
u
a
l
.

.
1
1
.
.
.
.

d
u
g
.
.
.
“
2
%

u
s
?
»

.
1
E
r
N

A
..

.

A
I

K

.
.

.
I
.
3
2
.

.
.

A

.
g

c
«
r
i
fl
i
h
c
i
fi
.

l
l
:

t
h
a
t
»

3
.
.
.
.

a
t
.

5
3
%
”
.

.
u
‘

1
.
1

5
.
.
.
.
.
.

..

AA
A

.
.A

.
’
4

.
..

r
.

A
v
o
c
a
m
m
u
t
}

k
.
.
.
v
.
.
v
.
.
3
.
.
.
u
.
.
W
m
v
h
.
.
u
.
€
1
.
1
5
?

-
.
0
£
3

u
g
f
c
n
d
l
r
t
l
fl
u
i
h
f
fi
u
fl
fi
g
x
t
d
.
3
1
3
.
.
.
.

.
A

‘
9
!
‘
1

I
‘
1
'

:
‘
f

‘
K

‘
I
i
i
l
'
v
é

.
3

2
.
5
.

3
W
3
.
.
.
-
a
.
.
.
$
fi
m
~
W
L
i
t
!
w
I
§
:
3
-
I
I

L
a
i
d

3
.
.
.
?
1
4
.
.

.
3
?

5
:

s
.

..
2
2
5
.
1
.
.
.

«
9
3
1
3
‘

«
I
!

I
}
;

.
“
4
.
1
3
.
6
:

R
u
i
z
.
.
.
8
%
.
!

.
W
M
.
«
5

.

{
v

'
3
‘
.
.
.

l
l
t
t
n
l
i
i

A
.
I

1
.
3
:
!

A

.
3

n

‘
.
L
u
z
-
I

fl
a
x
i
v
x
fi
u

E
H
3
1
!

.

4
.
1
.
.
.
e
z
u
fi
d
l
u
n
u
m

.
9

..

a
t

5
AA

1
1

I
A

A
.
n
“

t
u
t
.

3
0
5
1
1
.
.

$
3
1
.
“

A

f
r
.
.
.

I
r
.

.
.

,
.

4

4
3
.
.
.
.

a
.
1
}
:

J

1
,
1

I
?
!

1
C
€
’
-
'
S

l

n
u
.

.

‘
...

a
s
;

s
f
.
2
.

A.
«
a
n
.
.
.

.
..

D
n
h
fl
x
f
f
A

W
I
)
:

A.
A
3
9
%
:w
w
w
m
m
m
m
m
i
s

v
i
a

(
.
l
‘

V
I

1
0
0

.
.
.
.
.
1

1
.
2
.
1
:

J
.

A.
2
.
1
”
.
“
4
1
.
3

i
t

S
a
g
é
s
r
a
c
é
a

a

.-

a

THESIS

/7

SITY LIBRARIES

MllUllflHHlllHWHHIHILINMIHHI ll HW
3 1293 015700

This is to certify that the

dissertation entitied

ON LOOSELY COUPLED PARALLEL IMPLEMENTATION OF

ALGORITHMS FOR COMPUTER AIDED MANUFACTURING

presented by

Ming 3110

has been accepted towards fulfillment

of the requirements for

PhD. . Electrical Engineering

degree in

2' '

6 / S4 L1!
.\ / ,

g 1/: c/,._; 4. a 2"? 2V

Major professor

([4. m, 177 7

MSUis an Affirmative Action/Equal Opportunity Institution
0-12771

LIBRARY

Michlgan State

Unlvorslty

PLACE N RETURN BOXto remove thle checkout from your record.

TO AVOID FINES return on or bdore dete due.

DATE DUE DATE DUE DATE DUE

MSU IIAn Affirmatlvo Action/Equal Oppoflunfly Inflation

ON LOOSELY COUPLED

PARALLEL IMPLEMENTATION OF ALGORITHMS

FOR COMPUTER AIDED MANUFACTURING

By

Ming Bao

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering

1997

ABSTRACT

ON LOOSELY COUPLED PARALLEL IMPLEMENTATION OF

ALGORITHMS FOR COMPUTER-AIDED MANUFACTURING

By

Ming Bao

Many manufacturing processes, such as numerically controlled (NC) machining

and robotic spraying, are conducted under direct numerical control of computers. The

process of creating such numerical control (NC) programs remains quite complex and

error-prone for many sophisticated tasks. i The final result of tool motions under control of

such programs in machining complex-shaped parts is often uncertain. Proofing runs on

actual NC machines are time consuming and expensive. The high cost of conducting test

runs of such programs has created a strong demand for simulators and verifiers for such

programs. Current NC simulation software on sequential machines greatly improves the

verification procedure. However, such NC simulators are still inaccurate and most can

handle only 3-axis milling with the simplest types of cutters. Given the former dearth of

sophisticated software for generating optimal 5-axis toolpaths for more complex tools, this

inadequacy of simulators or verifiers was not very noticeable. However, the current trend

toward higher-capability NC programming systems raises the strong need for more

sophisticated and accurate verification. This trend highlights the tradeoff between verifica-

tion time and accuracy of verification. strongly raising the desire for parallelization of NC

verification or simulation processes.

This research presents an algorithm which can address both concerns -- high effi-

ciency and accuracy, using parallel (or distributed) processing. It not only guarantees that

tessellated surfaces are within a user-specified tolerance, but also pre-estimates work load

directly from the original geometry parameters, such as surface order, control points and

knots. The proposed algorithm pre-evaluates the sculptured surfaces to be machined for

parallel processing, estimates the load balance for the processors, discretizes the nominal

sculptured surfaces based on the surface curvature and user-defined error tolerance, distrib-

utes the computational job onto the given number of processors or workstations, and uses a

parallel processing approach to directly compute the possible interference between the sur-

faces being machined and the envelope of the moving too], without solving the swept vol-

ume problem as a solid modeling Operation. The geometric model uses the ruled surface

defined by the axis of the cutting tool to define the center of the tool envelope. The surface

pre-evaluation guarantees that near-optimal computational performance will be achieved on

a given number of processors. We believe the proposed algorithm could be easily imple-

mented on a distributed system.

Some results from a sequential S-axis NC toolpath verification system implemented

by the authors are presented first, and this is used as the basis for the parallelization work

described here. Some published parallel approaches for NC machining are reviewed, then

the new scheme for parallelization is presented. Finally, the performance of this scheme on

parallel vs. single CPU machines is reported and future work is discussed.

To my parents, Erlan Ming and Shiqiang Bao

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Prof. Erik D. Goodman, to whom I owe a

lot for his consistent guidance, support and willingness to share his time and knowledge

through this research. I cannot possibly enumerate all the ways in which he as a teacher and

as a friend has made my graduate education a resourceful and exciting experience. His con-

fidence in providing me the freedom to explore and his tactful participation in keeping my

work in the proper perspective are deeply appreciated. Furthermore, I would like to thank

him for presenting to me the challenges in the manufacturing area with parallel computa-

tion.

I would like to thank Prof. Lionel M. Ni who has brought me into the fascinating

world of parallel processing. His broad knowledge and experience in parallel computation

have been one of the most valuable sources of ideas for the research. I am grateful to Prof.

Michael A. Shanblatt and Prof. David l-I.Y. Yen for taking time to serve on the guidance

committee and overseeing this work. I especially thank Prof. Stephen V. Dragosh for step-

ping in on short notice and reading the thesis when Prof. Yen became ill.

Special thanks also are given to my wife Li Liu and to my parents, whose support

during this study were greatly useful and inspirational.

Sincere thanks should be conveyed to my friends, Leslie Hoppensteadt, Ki-Yin

Chang, etc., for providing many sources of my ideas.

Finally, I’d like to thank Erik Veenstra and the Advanced NC Technology team at

Ford Motor Company for their support on this study.

V

TABLE OF CONTENTS

LIST OF FIGURES ... ix

CHAPTER I

INTRODUCTION ... 1

1.1 Numerically Controlled Milling Machines ... 1

1.2 NC Program Verification ...3

l .3 Motivation ...6

CHAPTER II

LITERATURE REVIEW ... 8

2.1 Solid Modeling Techniques .. 10

2.2 Image Space Techniques ... 12

2.3 Object Space Techniques .. 15

2.4 Parallel Processing Based Techniques .. 18

CHAPTER III

MATHEMATICAL REPRESENTATION OF COMPONENTS OF THE NC MILLING

PROCESS ..20

3.1 Overview of the NC Verification Model ...20

3.2 The Characterization of NC Machining ..21

3.3 Tool Motion Model ...26

CHAPTER IV

SURFACE MODEL FOR PARALLEL NC VERIFICATION .. 34

vi

4.1 B-Spline Curves and NURB Surfaces ..36

4.2 Chordal Deviation and the Surface Model ..42

4.3 Surface Discretization Algorithm for Parallel Processing46

CHAPTER V

PARALLEL NC VERIFICATION SYSTEM..63

5.1 Main Parallel NC Verification Tasks ...64

5.2 Command File and Command Driven Mode ..68

5.3 File Loader .. 69

5.3.1 Surface File Loader ...69

5.3.2 Toolpath (CL) File Loader ..74

5.3.3 Tool Definition File Loader ..74

5.4 Spatial Subdivision ...75

5.5 Toolpath Discretization for Multi-Axis NC Verification 80

5.6 NC Verification with Inward and Outward Tolerances 82

CHAPTER VI

PARALLEL ARCHITECTURE AND IMPLEMENTATION .. 87

6.1 Introduction ... 87

6.2 Background Information on Parallel Processing .. 88

6.2.1 Classification of Parallel Computers ..88

6.2.2 Data Communication and Memory Consistency92

6.2.3 Parallel Programming Models ...94

6.3 BBN GP1000 and Mach 1000 System..95

6.3.1 BBN GP1000 Overview...95

6.3.2 Mach 1000 and Uniform System Approach99

6.4 Implementation of Parallel NC Verification ... 103

vii

CHAPTER VII

EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS 109

7.1 Benchmark Application Models ... 109

7.2 System Performance Evaluation ... 124

CHAPTER VIII

SUMMARY AND CONCLUSIONS .. 127

APPENDIX A

DEFINITION OF THE APT CUTTER ... 133

APPENDIX B

ESTIMATION OF UPPER BOUNDS ON SECOND DERIVATIVES OF A

POLYNOMIAL B-SPLINE SURFACE .. 135

LIST OF REFERENCE ... 142

viii

FIGURE 1.1

FIGURE 1.2

FIGURE 1.3

FIGURE 2.1

FIGURE 2.2

FIGURE 3.1

FIGURE 3.2

FIGURE 3.3

FIGURE 3.4

FIGURE 3.5

FIGURE 3.6

FIGURE 4.1

FIGURE 4.2

FIGURE 4.3

FIGURE 4.4

FIGURE 4.5

FIGURE 4.6

FIGURE 5.1

FIGURE 5.2

FIGURE 5.3

FIGURE 5.4

LIST OF FIGURES

Example of 3-axis Machine ... 3

Undercutting and Gouging for Ball Cutter ..4

Tolerances for the NC Machined Surface .. 5

Swept Volume of Ball Cutter in CSG Model ... 11

A Simple 2D Ray-Rep in Menon‘s Scheme .. 19

Part Surface. Drive Surface and Check Surface ... 23

Chordal Deviation of Two Surface Points ...24

Example of 5-Axis Slab Cut Toolpath ...27

Orientation of Tool Axis N(t) ..28

Tool Swept Ruled Surface ..3O

Interference Detection for Ball-end Cutter ..32

2D B-spline Curve ... 37

Blending Function Cascade ... 38

Surface Mapping Between Parametric Space and 3D Space 41

Chordal Deviation of Two Surface Points ...43

Transformation from Parametric Space to E3 ..49

Surface Bounds and Weights ...52

Overview of Parallel NC Tool Path Verification System 65

Surface Data Structure and Links ..73

Spatial Subdivision of a Discretized Surface Patch77

Tool Path Discretization ... 81

ix

FIGURE 5.5 Offset Point Pout and Pin for Tolerance Specification 83

FIGURE 5.6 Relationship Between Tool Envelope and Pout and Pin 84

FIGURE 6.1 Three Classes of Parallel Computers ...90

FIGURE 6.2 Three Parallel Computer PMS Configurations .. 93

FIGURE 6.3 Block Diagram of Processor Node ..97

FIGURE 6.4 Eight-Node Switch and Packet Move ..98

FIGURE 6.5 Address Space of ‘C’ Program .. 104

7 FIGURE 6.6 The Residences of Surface Data and Tool Path Data............................... 105

FIGURE 6.7 The Distributed Surface Data Created by UsAllocOnUsProc 106

FIGURE 6.8 Share Passes Copies of Process Private Variable 108

FIGURE 7.1 (a) Original Part Surfaces .. 113

FIGURE 7.1 (b) Original Part Surfaces .. 113

FIGURE 7.2 (3) NC Toolpath Display ... 1 14

FIGURE 7.2 (b) NC Toolpath Display ... 114

FIGURE 7.2 (0) NC Toolpath Display ... 1 15

FIGURE 7.2 (d) NC Toolpath Display ... l 15

FIGURE 7.3 (a) Verification Result (intol=0.05mm, outtol=0.05mm) 116

FIGURE 7.3 (b) Verification Result (intol=0.05mm, outtol=0.05mm) 116

FIGURE 7.3 (c) Verification Result (intol=0.05mm, outtol=0.05mm) 117

FIGURE 7.3 (d) Verification Result (Display For intol=0.025mm, outtol=0.025mm)

Without Rerun Computational Job .. 1 17

FIGURE 7.4 Original Part Surfaces for Example 2) ... 119

FIGURE 7.5 (a) NC Toolpath Display ... 120

FIGURE 7.5 (b) NC Toolpath Display ... 120

FIGURE 7.6 (a) Verification Result (intol=0.002mm, outtol=0.05mm) 121

FIGURE 7.6 (b) Verification Result (intol=0.002mm, outtol=0.05mm‘) on Toolpath

with Gouging ... 121

FIGURE 7.6 (c) Verification Result (intol=0.002mm, outtol=0.05mm) on Toolpath

with Gouging Protection .. 122

FIGURE 7.6 (d) Querying Verification Result (2.3mm Gouging at X point, and 1112th

Tool Motion Causes the Gouging) ... 122

FIGURE 7.6 (e) Verification Result (intol=0.5mm, outtol=0.35mm) on Control Cut

Toolpath with Gouge Protection .. 123

FIGURE 7.7 Speedup on Different Surface Subdivision .. 123

FIGURE 7.8 Speedup on Different Problem Sizes ... 126

FIGURE 7.9 Processing Time on Different Problem Sizes .. 126

FIGURE A.1 Standard APT Seven Parameter Cutter .. 134

xi

CHAPTER I

INTRODUCTION

It is crucial to develop methods for planning and simulating motions of objects

among obstacles in order to fulfill the constant demand for ever higher levels of manufac-

turing automation. Motion planning and motion simulation methods have found important

roles in many manufacturing processes, such as generating collision-free workpaths for

robot manipulators, generating gouge-free toolpaths for numerical control machines, etc.

1.1 Numerically Controlled Milling Machines

Numerically controlled (NC) milling is a common manufacturing process. NC pro-

grams are able to guide machining operations for removal of materials from parts (or

tools) to be machined. Advanced NC systems such as computer numerical control (CNC)

and direct numerical control (DNC) systems, combined with other computer technology,

opened the door for computer-aided manufacturing (CAM) to do automatic control of

manufacturing processes and systems. NC technology is not only used extensively in the

metal-removing milling process, but also applied in variety of other manufacturing pro-

CCSSCS.

An NC machine is characterized by the motions it can perform. According to the

changes of the relative positions and orientations of the tool and workpiece allowed, it can

be classified as a two-axis, three-axis, or multi-axis (four or more) milling machine. Two-

axis milling indicates that the contouring capability of the machine tool is limited to

motions with respect to X and Y axes, i.e. in a fixed 2 plane. This mode of operation is fre-

quently referred to as two-dimensional operation. Three-axis milling refers to a cutting

tool moving simultaneously in the X, Y and Z axes under complete control of the NC pro-

gram. The tool axis orientation of the three-axis milling machine does not change relative

to the workpiece during the entire tool motion. Figure 1.1 shows an example of machining

on a typical three-axis NC machine. This type of NC machine is the most commonly used

in industry today. When more complicated parts with complex shapes are desired, move-

ment capability in only the X, Y and Z axes may require repeated refixturing of the part on

the machine, and also excessive numbers of tool passes to meet the required tolerances.

Rotation of the tool or part about various of their axes while the tool is moving may

greatly improve the manufacturability of such parts. The multi-axis milling machine is

designed for this purpose. In the aerospace and automotive tooling industries, there have

long been demands for machines that have 360° contouring with simultaneous control of

the Z axis; this is usually accomplished with a five-axis milling machine which has two

rotary axes. The five-axis milling machine can continuously re-orient the axis of the tool

as it follows the contour of the part, or alternatively, re-orient the part. In general, the

machine axes, or the location and the orientation of the cutter, change with almost every

motion of the mill during a multi-axis milling process. Five-axis machining is in increas-

ing demand in automotive and aerospace industries.

Despite the widespread use of multi-axis milling, the correctness of the process is

still a subject of considerable interest. Many researchers focus on the generation of gouge-

free toolpaths. Others focus on the verification of the quality of the generated toolpath for

correction of toolpaths. We intend to build a closed-loop NC system which generates, ver-

ifies and corrects toolpaths. Parallel NC verification is thus a component of our future sys-

tem. The objective of parallel verification of NC toolpaths is to evaluate, with high

performance and accuracy, the geometric quality of the real process, before running it on

the actual machines. This work does not, currently, consider the problems of tool deflec-

tion, tool wear, chatter, tool breakage, or part deflection. Thus, it cannot be used to verify

the correctness of “feeds and speeds”.

(a) 3-Axis Machine 0’) 3 Am Maelmm‘g

FIGURE 1.1 Example of 3-axls Machine

1.2 NC Program Verification

Although the principle of the NC process is simple, the practice is significantly

more complex, and a number of common pitfalls can lead to major process failures. Since

an NC program for sculptured surface machining consists of a sequence of (typically) lin-

early interpolated tool positions, measures must by taken to avoid overcutting and under-

cutting, to the extent required by the tolerances. Undercutting can easily occur when there

is a discontinuity among multiple surfaces or the stepover distance is too large for the local

surface curvature. Overcutting, or gouging, is a particularly painful problem in sculptured

surface machining. Gouging is often encountered when the cutter size is too large relative

to the concave radius of curvature, when there is a lack of continuity among multiple sur-

faces or when there are (sometimes minute) gaps between CAD-defined surfaces. Figure

1.2 shows various cases of undercutting and gouging for a ball-end cutter. Figure 1.2 (a)

shows the undercutting caused by a large stepover for either zig-zag or box cutting. In Fig-

ure 1.2 (b), undercutting of area B and gouging of area C are caused by use of a large cut-

ter. D is caused by a surface discontinuity, and E results from surface gaps.

kill/E ”"

Part Surfaces

(a) Large stepover might (b) Gouging and undercutting caused by

cause undercutting larger cutter, surface discontinuity and

surface gaps.

FIGURE 1.2 Undercutting and Gouging for Ball Cutter

When given true position tolerances, overcutting and undercutting of design part

surfaces are defined as shown in Figure 1.3, where ABCD is the as-machined surface by a

particular toolpath. Two tolerance limits, the outside- and inside-tolerance limits, are

defined. If a machined surface point is between the two tolerance limits, the point is con-

sidered within tolerance. If a machined surface point is outside the outside tolerance limit,

it is considered an undercut surface point. Similarly, if a machined surface point is beyond

the inside tolerance limit, it is considered a gouged surface point. In the example in Figure

1.3, the machined surface point A is within tolerance, B and C are undercut, and D is

gouged.

As-machined surface

D esign part surface

Inside tolerance limit

Outside tolerance limit

FIGURE 1.3 Tolerances for the NC Machined Surface

Traditional NC program proofing has normally been done by milling materials

softer than the actual ones, or scaling down the size of the machined part to reduce the cost

of the process. Verifying NC programs by the proofing runs on an actual NC machine is

time consuming and costly. Most important of all, a successful dry run only indicates that

the NC program is apparently correct. It is often impossible to measure all possible devia-

tions between the whole design part model and the workpiece part, especially for sculp-

tured surface models. Computer-aided NC verification constitutes a new tool for this

problem. It enables calculation of the errors from the desired part, excluding any of the

unmodeled effects of tool and part deflection and tool wear. It can easily trace gouges to

specific tool motions. It is a feasible and economical way to check NC programs, even if a

reduced number of actual proofing runs is still required before final milling. Given the

growing emphases on quality, flexibility, and agility in high technology manufacturing

such as NC machining, there is strong demand for more accurate, more efficient, and more

automatic computer-based manufacturing processes. Because development of the pro-

grams to guide manufacturing equipment is often time consuming, and because the quality

of these programs often translates directly into product quality, manufacturing process

simulation and verification can play an important role in the enterprise. It can contribute to

quality, flexibility and agility through speedup of process development, optimization of

cycle time, improvement of quality, minimization of waste, and consequently, reduction of

manufacturing cost.

1.3 Motivation

Parallel or distributed computation are important to this effort because for many

manufactming process simulation and verification tasks, a single PC or workstation does

not have sufficient computing power to carry out the tasks fast enough to permit automatic

generation of manufacturing process programs, such as NC toolpaths. Furthermore, a uni-

processor system is often too slow to allow interactive design of manufacturing programs

without significantly increasing the time required for new process development. To speed

up simulation and verification processes without using expensive supercomputers, one can

use parallel or distributed processing. However, application of parallel or distributed archi-

tectures to such simulation and verification tasks, such as NC machining, etc., is non-triv-

ial and still rare. Such tasks are not “embarrassingly parallelizable,” and decomposability

of a verification algorithm can be aided significantly if it is designed with this in mind.

CHAPTER II

LITERATURE REVIEW

Software for manufacturing process simulation and verification, including the NC

machining process, typically computes either a graphical representation of the “as milled”

workpiece or the differences between the design part model and workpiece part model

(machined part model). Among the surface types machined by NC programs, sculptured

surfaces which are made up of arbitrary, nonanalytic contours comprise one of the most

challenging areas. Computer-assisted verification systems provide a process by which the

errors between the desired part with the specified tolerances and the part as milled can be

calculated and traced to specific tool motions. This process, using graphical computer

models to replace at least some expensive physical prototypes, is a feasible and economi-

cal way to check the correctness of the CL (cutter location) data file. However, verifying

an NC program, even for only three-axis machining, is still tedious work. In the last two

. decades, many researchers have worked on NC verification and simulation to reduce

proofing time, through various approaches such as Constructive Solid Geometry (CSG),

image-space methods, object-space methods, etc. However, the parallel processing is

rarely considered, except for that provided by specialized graphics processors.

NC toolpath verification began with direct solid modeling approaches. It is based

on the principles of set theory, and assumes that a simulated machined part can be repre-

sented as the result of a series of Boolean subtractions of the swept volumes of the tool

8

motions from the workpiece. The result of these operation is indeed a simulated machined

part, but not the solution to the verification problem, which seeks to show the discrepan-

cies between the simulated machined part and the nominal (design) part. Therefore, these

approaches need to perform another Boolean subtraction to come up with the difference

between the relatively simple design part model and the generally very complex simulated

machined part in order to solve the verification problem. Of course, this difference is not

necessarily in the form in which the user desires to see the discrepancies -- more likely, an

identification of which toolpath segment caused a gouge, for example, is desired. Obvi-

ously, solid modeling based NC verification requires some other computations than those

generally performed by solid modeling systems. Hence, it has been and still is very diffi-

cult to solve verification problems with high complexity because such problems tend to

require very intensive computations. Therefore, other techniques designed more specifi-

cally for solving the same problem have been sought. Based on the new available hard-

ware technology, there are two major categories of NC simulation and verification

approaches which have been developed over the years. One aims at a new and more effi-

cient model to represent the NC verification processes; the other aims at use of advanced

multiprocessor technology. Image space approaches are examples of the former, while

parallel or distributed NC verification approaches are one of the later. Image space meth-

ods employ the methods developed for surface shading to solve the verification problem.

The swept volume of the tool motion is converted by a scan line rendering processor into

screen pixels which are comparable with the screen pixels of the workpiece and fixtures

along a sight line. The Boolean subtraction is performed in the image space and is view-

specific. The resolution for detecting errors is limited by the resolution of the view, the Z-

buffer as well as the view itself. The final verification produces the same type of result as a

10

solid model approach, but only for the chosen view. VeriCut is a typical example of this

approach, and is a leader in the current market. The parallel or distributed NC verification

approach focuses on exploiting advanced multiprocessor computer technology. It divides

one NC verification process into sub-processes and distributes each of them onto more

than one processor to increase the verification efficiency and reduce elapsed clock time.

However, this method is still relatively new and more researches are needed to make it

commercially successful.

Methods of NC milling simulation and verification are generally distinct from

techniques used to model milling phenomena and formulate milling problems. One way to

categorize these methods is to break them into four approaches: solid modeling, discrete

vector intersection, spatial partitioning representation and parallel processing. Since the

spatial partitioning representation approach is, in fact, a combination of others, and the

discrete vector intersection approach can be further divided, we will view the methods in

the following four categories: solid modeling method, image space method, object space

method and parallel processing method. The first three approaches have been applied to

five—axis NC verification with varying ranges of applicability and degrees of success. The

parallel processing based approach is relatively new and is still under study.

2.1 Solid Modeling Techniques

Solid geometry modeling based NC simulation and verification began in the early

1980’s. Solid geometry modeling systemsm'lsl offer the possibility of doing both simula-

tion and verification. Simulation is achieved by subtracting models of the swept volumes

of tool motions from the model of the workpiece. A type of verification can be achieved

11

by Boolean subtraction of the model of the final workpiece from the desired part model.

Constructive Solid Geometry (CSG) is one solid geometric modeling scheme. It provides

a constructive representation of an object of complicated shape, based on a set of primitive

solids such as blocks, cylinders, spheres, cones and other completely surface-bounded sol-

ids, and a set of Boolean operations among the primitive blocks. A complete solid can be

obtained through simple Boolean operations, such as union, difference, intersection and

assembly, of primitive solids. However, the CSG model is an implicit representation in the

sense that the active regions bounding a complex solid are not represented explicitly in the

data structure, which must be computed by means of the definitions of the primitives and

the effects of the Boolean operations stored in the tree structure. A tree structure with

Boolean operators at the non-terminal nodes and primitives at the terminal nodes can eas-

ily be used to define a CSG solid, where the root node represents the complete solid.

cylinder /

sphere\

cylinder /

FIGURE 2.1 Swept Volume of Ball Cutter in CSG Model

As an example shown in Figure 2.1, a swept volumelsnél of a toolpath with a ball

cutter can be represented as a union of three cylinders, two spheres, one block. The simu-

12

lation of this kind of machining can be obtained by sequentially subtracting the swept vol-

ume models of tool motions from the workpiece model. The verification can be obtained

by Boolean subtraction of the workpiece model from desired part model. The task is not as

easy for multi-axis machining, where the same primitive solids are not enough to represent

a twisting tool motion. One needs either to generate more complex primitive solids or to

approximate them as unions of many more primitive blocks. An exploratory study was

done by Voelcker and Huntmm on the feasibility of using the PADL CSG modeling sys-

tem to simulate NC programs. Fridshalm modified GDTIPS to do NC simulation. A prob-

lem of the CSG approach is that it requires a large amount of computational expense,

especially for multi-axis NC simulation and verification, where mathematical primitives

are extremely complex and Boolean operations on them are very compute-intensive.

2.2 Image Space Techniques

The image-space method for NC simulation and verification is another category,

where Boolean operations are done during image rendering. The 3-D machining process

can be reduced to a 2-D problem by considering the intersection of rays from each image

pixel. Two typical image space approaches are proposed by Wangmwm and Van Hooklg].

Almost all of the image based methods take advantage of the concept of Z-buffer. Z-buffer

contains a real number Z or a depth value associated with each (X, Y) screen pixel. It

always keeps the closest Z value and ignores all the other Z values for each pixel along the

sight line. In other words, it always keeps all the visible Z values. Thus it is a widely used

for hidden surface removal for display of an interactive shaded solid as well as some other

area such as NC machining. For example, Carl Jepson at Ford Motor Company success-

13

fully developed a Z-buffer-based software package called CHIPS[42], which is able to gen—

erate multi-axis gouge-free toolpaths for sculptured surfaces.

Wanglsnélm developed a direct NC geometric verification technique for five—axis

milling application. This is a novel view-dependent method for five-axis NC verification.

The beauty of Wang’s algorithm is that he successfully incorporated the idea of a Z-buffer,

which is widely used in hidden surface removal processes, into NC verification. The geo-

metric model of the boundary surface of the swept volume or the composition of the enve-

lope surface is clearly described by its parametric form equation. The envelope consists of

two categories of surface, the subset of the boundary of the generator at the initial position

and the final position, and the new surface created by the generator during the motion. The

algorithm uses a standard Z-buffer and converts CSG part data into pixel data stored in the

Z-buffer for subsequent Boolean operations with other models. The swept volume is also

converted into pixel data, which will be compared with those of the workpiece and fix-

tures. The Boolean subtraction removes the material from the workpiece. The interference

between the tool swept volume and the workpiece can be shown using different colors to

highlight various error areas.

Another Z-buffer-based approach was developed by Van Hooklg]. He developed an

extended Z-buffer structure called a dexel. In contrast to a Z-buffer, a dexel contains not a

single Z value, but several entries for each (X, Y) elements, such as a pointer, color, Z

value of the furthest surface and the Z value of the nearest surface. The dexel structure is

directly displayed just like a normal frame buffer since the color of a dexel at (X, Y)

screen coordinate is the visible surface color at that pixel location. Hook’s method differs

from Wang’s in that instead of intersecting scan lines with swept volumes, he precomputes

14

a pixel image of the cutting tool and performs Boolean subtractions of the cutter from the

workpiece along the toolpath. After the tool is subtracted from the workpiece, the far sur-

face of the tool typically becomes the new near surface of the block, and the inversely

shaded tool color is the properly shaded new workpiece color. The calculation of all the

distance of the verification is along the view-dependent sight lines. The selected view of

the shaded image after verifying the milling path is easily displayed, but cannot be redis-

played from another view point without recomputing the entire problem. The view of the

final part at the completion of the milling is an image-based model that does not provide

toleranced verification or mass properties. His method is limited to three-axis toolpath ver-

ification.

Similar to Wang’s method, Saito and Takahashilgmol deveIOped the G-buffer,

another extension of the idea of a Z-buffer, and applied it to NC toolpath generation and

verification using graphics or image processing hardware. The image space methods

developed by Wang, Van Hook, Saito et al. are all view dependent, which allows errors to

be undetected because of the chosen viewing direction, and causes discrepancies to be cal-

culated along the Z direction, rather than along part surface normals. Thus, they are not

checking according to the actual specification of positional tolerances. Displaying another

view of the part requires running the entire simulation again. In addition, the Z-buffer

approaches are inherently limited in accuracy because of the resolution of the Z-buffer.

Based on Hook’sls] dexel method, Oliverm], in 1994, developed a system based

on a so-called spatial partitioning technique which incorporates incremental proximity

calculations between milled and design surfaces. He derived a dexel representation from

the dexel data structure of Hook to approximate free-form solid geometry as sets of rectan-

15

gular solid elements. The dexel representation of a solid is constructed in a dexel coordi-

nate system via ray intersection and is manipulated using dexel-based Boolean set

operations. The major distinction between this approach and the original dexel data struc-

ture is that the construction of dexels in not limited by the viewing vector. The indepen-

dent dexel coordinate system is used to support dynamic viewing transformations. The

verification process is to calculate the error between each dexel and design surfaces. The

advantage of this algorithm is that the discrepancy between the dexel-based milled sur-

faces and actual design surfaces can be calculated during the simulation. To improve the

efficiency, the calculation is performed only on dexels that are updated during simulation.

Although the verification results can be displayed from other views without rerunning the

simulation and verification, it in essence is still a view dependent verification algorithm,

because the accuracy of the verification depends on the setup of the dexel coordinate sys-

tem. Two methods were provided for specification of the dexel coordinate system, one is

via interactive selection, and the other is via calculating the dexel coordinate system orien-

tation that produces the maximum projected area of the design surfaces on the dexel plane.

This means that the algorithm has the same drawbacks as those of image-based algo-

rithms, and certain errors could not be detected, especially for multi-axis milling.

2.3 Object Space Techniques

A “point-vector” technique, which uses vectors to represent excess material

removed by NC milling, was proposed by Chappell‘”. The part surface in his scheme is

approximated by a set of points. Direction vectors are created parallel to the surface nor-

mal at each surface point. A vector extends until it reaches the boundary of the original

16

stock or intersects with another surface of the part. To simulate the cutting, the intersection

of each vector with each tool movement’s envelope is calculated. The length of a vector is

reduced if it intersects the envelope. This method is possibly more efficient than typical

solid modeling approaches, since the intermediate simulation step is simplified consider-

ably. Chappel gives a detailed algorithm for computing the intersection between a vector

and randomly oriented cylinder that represents the cutting tool. However, this algorithm is

not very general because it treats only the side surfaces of cylindrical cutters. Thus, this

algorithm is not widely used.

Oliver and GoodmaanlS], Jerardllmlg], andChang and Goodmanm] devel-

oped various object-space approaches, in which the verification is accomplished by calcu-

lating the intersections of direction vectors with tool movement envelopes. These methods

can work for any part consisting of a set of surfaces for which surface points and their cor-

responding normal vectors can be defined. The commonality of all the systems in this cat-

egory is their view independence. That is, they can generate another view of a part without

rerunning the simulation and verification. Color-coded graphics can display the machined

part with its error areas and the areas within the given tolerance. In Oliver and Goodman’s

algorithm, the part surface is discretized into surface points and their corresponding nor-

mals; i.e., the entire part is represented by a collection of surface points and their normals.

The surface discretization is based on pixel-level resolution for the view selected. To solve

the problem of intersection of surface normal vectors with milling tool swept volumes for

each tool motion, it creates a parallelipiped which bounds the tool swept volume for the

primitive test of each surface point. Passing the primitive test means the surface point most

likely intersects the swept volume. If so, the parallelipiped is refined by adding cylindrical

17

and/or spherical surfaces. The calculation of the intersection of the surface point and the

refined swept volume is then performed. This algorithm is a viable solution to the problem

of accurate and efficient geometric NC program verification. However, it is only useful for

three—axis machining. Jerard developed another surface-based NC simulation and verifica-

tion system. To gain efficiency, the surface curvature and cutter shape and size are used to

discretize the part surface, which guarantees that a given user-defined level of simulation

accuracy is achieved, at least in the Z direction. The surface points are then mapped into

2D buckets. Tool motion is projected onto the buckets. Only those surface points inside the

buckets need to be examined for the intersection checking. One of the major problems for

this system is that it requires a huge amount of memory because the system internally

reserves a huge static array for the buckets, even though it might not need that many. Sim-

ilar to Oliver and Goodman’s method, this scheme was also developed for three-axis NC

verification. In 1992, Chang and Goodman proposed a new approach for five-axis NC sim-

ulation and verification. Based on Goodman’s previous research, the algorithm discretizes

the nominal sculptured part surface and directly computes the possible interference

between these surface points and the moving tool without explicitly creating the bounding

surface of the tool swept volume. The geometric model of this method is based on the

ruled surface defined by the axis of the cutter along each toolpath. The system is also view

independent and utilizes positional tolerances for the desired part surface. The simulation

time for all of the above systems grows linearly with the number of tool motions and the

number of surface points discretized.

18

2.4 Parallel Processing Based Techniques

To achieve the maximum usefulness of today’s computing resources, Menon et

01.1221 and Yungm] both proposed parallel NC verification methods. Menon et al. pro-

posed a method of NC verification using ray representations (ray rep) in combination with

the RayCasting Engine (RCE), a new highly parallel computer for processing ray repre-

sentations. The combination of ray representation and RCE removes many of the current

limitations in spatial verification, and extends the range of verifiable phenomena to

include part tolerance assessment and machining dynamics. In Menon’s scheme, the solids

for the part and the cutter swept volume are both represented as collections of rays. Simi-

larly, ray reps can be conceived for solids in 3D. The part solid can be directly sent to the

RCE, while a ray rep for a swept volume is generated incrementally through ‘discrete

union’. The Boolean combination of the solids is straight forward. Menon described his

NC verification in terms of a solids-based computation, which is implemented via ray

reps. Yung’s algorithm is also solid-modeling-based NC verification. He investigated the

boundary surfaces of swept volumes for general rotational cutting tools undergoing multi-

axis NC machining motions, and developed a massively parallel algorithm for generating

geometric representations of boundary surfaces of tool swept volumes and the machined

workpiece. The Jacobian determinant in the parametric space, indicating the direction of

the motion relative to the surface normal of the tool boundary, is used to establish the nec-

essary conditions for the boundary surfaces of the tool swept volumes. Yung concentrated

on the construction of triangular surface representations that approximate the boundary of

the tool swept volume, within specified tolerances. The parallel algorithm Yung presented,

which is on a SIMD parallel computer, generates boundary representations of tool swept

19

volumes, performs Boolean subtractions between boundary representations of the tool

swept volume and the workpiece, and renders raster images of the machined objects. A

[23]. Both Menon and Yung’s paralleldetailed description of the algorithm is in Yung

algorithms for NC verification are solid-modeling-based approaches. The algorithms takes

advantage of machine power for solving the complex NC verification problem. However,

the five-axis swept volumes are composed of mathematical primitives which are extremely

complex, and Boolean operations on them are very compute-intensive, thus reducing the

cost-effectiveness of the techniques. In addition, both of them did not fully consider the

load balancing problem of the parallel computations. They show the correctness of their

algorithms, but did not show the speedup and efficiency of their algorithms.

Grid G

\
\
\
\
\
\
é

//
/

%////

/
/

// /////////

Ray-Rep(G,A)

\
\

\
\
\
\
\
\
\
\
\
\
\
\
§

Ray Direction Solid A

FIGURE 2.2 A Simple 2D Ray-Rep in Menon’s Scheme

CHAPTER III

MATHEMATICAL REPRESENTATION OF

COMPONENTS OF THE NC MILLING PROCESS

3.1 Overview of the NC Verification Model

NC verification entails two main tasks -- modeling of machining phenomena, and

assessment of modeled phenomena to determine program correctness. Generally speak-

ing, NC simulators model the machining process, but rely on human observation to detect

machining errors. In contrast, verifiers detect errors by testing mathematical conditions.

Good NC verifiers not only provide accurate analysis results, but also give a graphical rep-

resentation of the verification results, which makes it much easier for the user to find areas

where any tolerance violations occur.

This chapter introduces a model for a single tool motion and other concepts used in

NC rrrilling and verification. The parallel NC verification algorithm will be left for the next

chapter. We will first give a short discussion on the characteristics of NC machining, and

then describe the tool motion model which will be used in our parallel NC verification sys-

tem. Most of the current multi-axis NC verification systems operate by continually creat-

ing the boundary or envelope of the tool motion through time. The verification problem is

handled only as a sort of postprocessing which begins after a full simulation of the NC

20

21

process is completed. The tool motion model we employ does not need to calculate the

boundary or envelope of each tool motion boundary and perform a full temporal simula-

tion of the milling process. It detects interferences between sculpture surfaces, namely

between part surfaces and tool swept volumes, on different processors (or computers)

without using any Boolean operations. The mathematical model for each swept volume

will be briefly described Section 3.3.

3.2 The Characterization of NC Machining

Two major components of the modeling work for NC verification are part surface

modeling and cutter motion modeling. Various approaches, such as CSG methods, image

space methods and object space methods, differ in this aspect. In order to apply parallel

NC verification, let’s examine some of the characteristics and assumptions made for the

NC machining process.

For the purpose of the verification, the cutter is represented as a (symmetrical) sur-

face of revolution, which means that the cross section at any specific position along the

cutter axis has a given radius. Of course, this is not actually true of milling cutters, because

they have teeth. In order to make the assumption tenable, the speed of revolution of the

cutter relative to its feed rate must be large, so that the effects of the individual teeth are

not large relative to the tolerances being checked. This is done purposely to simplify the

modeling of the cutter for the verification. Note that, for example, if a soft material were

cut with a high feed rate, this assumption could be violated.

22

A quite general model for cutter geometry (envelope) will be used here -- the APT

7-parameter cutter. This definition is contained in the APT[33 1 standard (APT is an acro-

nym for Automatically Programmed Tool, and is an NC programming language still in

wide use in the automotive and aerospace industry). The envelope of the cutter to be

treated here can be expressed as a function of position (height) along the cutter axis. This

is true of any 7-parameter APT cutter except one with a flat bottom. A flat bottom has a

radius, but the cutter envelope is actually the plane bounded by the circle of radius R(0).

Our current verification procedure handles such a flat-end cutter as a special case.

There are two types of cutter motions commonly used in manufacturing, point-to-

point motions and contouring motions. Point-to-point motion is a tool motion from a start

point to a destination point without specific requirements on the toolpath, and a roughly

linear motion over a fairly short segment is generally assumed, but not tightly specified. A

contouring motion is one that keeps the cutter moving along the toolpath with designated

orientations as a function of location along the path in the case of multi-axis motions.

Such complex tool motions are often subdivided into a sequence of simpler, point-to-point

motions, maintaining the deviation of the tool from the path within a specified tolerance of

the given contour. For instance, each step of APT contour motion can be defined by a drive

surface, a part surface and a check surface. As shown in Figure 3.1, the part surface is one

of two surfaces with which the cutter is in continual contact (within tolerance) during a

given machining motion. The part surface is usually the surface that controls the depth of

cut. The drive surface is the second surface with which the cutter is in continual contact

(within tolerance) during a given machining motion. The drive surface guides the cutter

through space, while a given relationship is maintained between the cutter and the part

23

surface. The check surface is the limiting surface for a given motion statement. The cutter

maintains a specified relationship with the part surface and the drive surface until it

reaches a given condition with regard to the check surface. When this occurs, a new

motion statement can be specified. The surfaces to be machined are defined exactly by the

control processor. However, most NC machines are capable of moving only in a straight

line. Therefore, a series of straight lines that approximate the desired contour within toler-

ance must be generated. Many post-processing software packages in the market are capa-

ble of accomplishing this task. Although some researchers have used these three surfaces

to implement an NC verification process, such an approach is quite intractable for multi-

axis tool motion. There are various ways to model both types of tool motion in an NC ver-

ification process. The key to our approach is to use the centerline of the tool, as well as the

envelope of the tool, to define the swept volume of the tool motion. A brief description of

the algorithm will be given in next chapter.

Check Surface

Drive Surface

FIGURE 3.1 Part Surface, Drive Surface and Check Surface

24

Another modeling task of NC verification is surface modeling. In Voelcker et al.,

“"21 Fridshalm, and Menon’s approaches, solids are used to represent desired parts.

Goodman’sm" 16] and Jerard’sllg] methods discretize the sculptured surfaces representing

the parts to be machined into a set of surface points and normal vectors at those points.

The level of discretization of the workpiece and associated holding fixtures depends

directly on the size and curvature of the surfaces. The generated surface point data struc-

ture is then used as an approximation to the desired part surfaces.

In the multi-axis simulation and verification systemlm] developed at Michigan

State University, the surface evaluator can provide surface points and can calculate unique

normal vectors for any surfaces except at slope discontinuities -- i.e., along edges and at

vertices. Along edges, two normals may be defined, and at vertices, three or more normals

may be defined. Surfaces need not comprise a closed solid model. The discretized surface

points are further organized into a triangular grid of points, in which the resolution

depends on user-specified values for maximum Chordal deviation in each parametric direc-

fionizn

P2

Chordal deviation

P1 .

distance

FIGURE 3.2 Chordal Deviation ofTwo Surface Points

25

The Chordal deviation is defined to be the distance between the geometric mid-

points Pm of two points and the point P as shown in Figure 3.2. An approximation to the

Chordal deviation is used as an approximation to the maximum error between a curve and

a line segment joining its two endpoints. A user-specified maximum Chordal deviation is

used as a criterion for subdivision of parametric curves in surfaces, by introducing a new

point at the parametric midpoint of any segment of a curve being examined, whenever the

Chordal deviation conditions are violated. At any particular time, the points are evaluated

either in the u or the v parametric direction. In other words, one of the parameters is con-

stant. If the distance between two points or the Chordal deviation of two points P1 and P2

exceeds the user-entered limits for discretization, the curve needs to be subdivided. Recur-

sive subdivision is conducted until all the surface points along the changing parameter (u

or v) satisfy the condition.

An advantage of this approach is that surface evaluation can be done separately

along each parametric flow line -- i.e., in parallel. However, this advantage also becomes

the algorithm’s main drawback, because the satisfaction of Chordal deviation along both u

and v parametric directions cannot guarantee the accuracy of surface approximation of a

set of triangles formed with those edges and diagonal lines joining opposite vertices of the

quadrilateral mesh of edges. We will present a new surface discretization algorithm in the

next chapter, which guarantees that the surface tessellation does not violation the user-

specified geometric tolerance.

We observe that tool motion, including multi-axis motion, may be modeled as a

function of tool location and orientation only. For point-to-point tool motions, the swept

volume can be uniquely defined given only the two end points and their (common) normal.

26

The NC verification process will not make any change in the tool location or orientation

data. Hence, the CL data information is an ideal candidate for residence in shared memory,

[28] situations will not occur. In contrast, the cutbecause it guarantees that dirty memory

depths associated with the discretized surface points will be affected by the NC verifica-

tion process. In other words, the simulation will change the location of the deepest-cut sur-

face points. The geometric change for each surface point depends on all the tool motions

that pass close enough to the point. Because of the changes, memory access, mainly mem-

ory write, will occur frequently. If the discretized surface points reside in shared memory,

dirty memory is inevitable, since at a particular time, multiple processors which hold vari-

ous tool motions could tend to access the same surface point. Hence memory contention

happens that not only slows down the NC verification process, but also leads to network

contention and dirty memory problems. The conclusion is that it is best to assign the sur-

face data to different local memories.

3.3 Tool Motion Model

The tool definition, which specifies the shape and size of the cutter envelope when

the cutter is rotating in place, the control information, such as feed rate, spindle speed,

coolant switch, and the tool paths, can all be included in a CL data file. A CL data file has

an ISO standard format. It is independent of the particular milling machine on which the

cutting will be done. It furnishes sufficient milling information to allow NC post-proces-

sors to generate machine-specific codes for different types of NC milling machines. An

NC toolpath typically consists of a list of tool positions and orientations which control a

milling machine driving along the part surface. In 3-axis NC machining, the tool keeps the

27

same orientation for all the tool motions in a particular machine setup. For a multi-axis NC

machine tool, the tool motion becomes very complicated because there is at least one

rotary axis. Figure 3.3 shows the toolpath and cutter orientations for 5-axis slab milling.

FIGURE 3.3 Example of S-Axis Slab Cut Toolpath

As mentioned earlier, the key concept of our tool motion model is to define the

translation and rotation of the tool in 3D space by using a ruled surface determined by the

axis of the cutting tool. The verification computes the possible interference between dis-

cretized surface points and the moving tool without explicitly creating the bounding sur-

face of the tool motion (the tool swept volume). Mathematically, the motion of a tool can

be defined by the control point C(t) and the orientation of the tool axis N(t). The trajectory

of the control point usually is rendered by linear interpolation between the previous posi-

tion and the current positionm. A series of linear motions is also frequently used to

approximate more complex trajectories, such as circular motion between CL points, by

using a Chordal tolerance to determine the step sizes for a series of short linear segments.

28

There are various ways to interpolate the orientation of the cutter axis for each toolpath

segment. The method employed in our system is that the previous tool axis and current

tool axis are treated as two vectors on the same unit spherels], and interpolation is con-

ducted along the great circle joining them. In other words, the tool vector function N(t) is

defined by an are on the great circle of a unit sphere passing through the two vectors, with

motion at a constant velocity as shown in Figure 3.4. The unit sphere is determined by

normalizing the vectors and translating one of the vectors so that the two have a common

origin at the center of the unit sphere. However, on a particular milling machine, the actual

interpolation for the motion of the tool axis relies on the NC controller and the post-pro-

cessor used. If the function for the motion of the tool axis were a known function different

from the great circle function used here, then N(t) could instead be specified without using

the great circle approximation.

Previous tool axis .

Current tool axrs

FIGURE 3.4 Orientation of Tool Axis N(t)

The locus of the tool centerline moving with one degree of freedom during a multi-

axis tool move constitutes a ruled surface [291130]. For a given C(t) = {x(t), y(t), z(t)}

29

and N(t) = {x(t), y(t), z(t)} in Cartesian coordinates, the center-line ruled drive sur-

face for a tool motion can be parameterized as:

r(t, h) = C(t) + hN(t)

= [x(t) + th(t)]i + [y(t) + hNy(t)]j + [z(t) + th(t)]k
(E0 3.1)

where 0 S h S L , O .<_ t S 1 and L is the cutter height from the control point of the cutter

as shown in Figure 3.5. For a general APT tool, the profile at any specific position along

the cutter axis has a given radius and it can be expressed as a function R(h) of position h

along the cutter axis. The function R(h) for a general APT cutter can have up to three dif-

ferent functional forms for subintervals of 0 S h S L. It should point out that the parameter

t plays double roles in our model. On one hand, it is the parameter to define the ruled sur-

face; on the other hand, it defines different tool positions at particular time instances t. For

any given moment t, a unique line I, on the ruled surface is determined by r(t, h) , as

shown in Figure 3.5, because of the generating property of the ruled surface. Now given

any 3D surface point P,- = (xi, yi, 2,), it is straightforward to find a distance vector (the

shortest vector between I, and Pi) u,(t, h) = P,- — r(t, hi(t)) . By applying the property

of orthogonality -- i.e. lit-(t, h) - N(t) = 0 -- to ul-(t, h) , hi(t) can bedeterrnined to be

the following:

h4(t) = Ix,- —X(t)le(t) + U,- —y(t)lN,(t) + [2,- - 2(t)lN4(t) (EQ 32)

where P(t) = (x(t), y(t), z(t)) is a ruled surface point (control point) and N(t) is the tool vec-

tor at I.

30

Ruled Surface r(t,h)

Pan Surface

FIGURE 3.5 Tool Swept Ruled Surface

Having set up the tool motion model, we are able to determine whether or not a

given surface point P,- is inside the envelop of a tool motion defined by C(t) and N(t) at

particular time instant I. For any surface point Pi, there is a corresponding Po which is the

closest point on the cutter axis. P0 can be defined by hi(t). Since hi(t) may or may not be

within the bound of cutter [0, L], P0 is not necessarily the closest point on the ruled surface

to Pi, but is the closest point on the cutter axis. To explain it clearly, let’s look at the prob-

lem from another view. At any given time t, we can detemrine a unique tool center point

(control point) and its axis vector by C(t) and N(t). The center point and the vector in turn

determine the line I, on the ruled surface. For any given discretized surface point Pi, there

is only one point P0 on I, which is closest to Pi- Po has two characteristics.

31

-The distance vector ui(t, h) = P,- — r(t, hi(t)) passes through P0. In other

words, P0 is the closest point on I, to Pi.

-The distance from P0 to P(t) is hi(t) . If 0 S hi(t) S L and 0 S t S1, then P,-

could be affected by the tool, depending on how far it is from tool axis.

Now let’s consider a local coordinate system which originates at P0. The interfer-

ence check between part surface point P3 and the tool motion at time tcan be simplified to

checking whether Pi is inside a circle centered at P0 with radius R(hi). Therefore, 1’,- is

affected by the tool at t if and only if 1P: — Pol S R(hi(t)) , i.e.

[x4 — xc) - h,(t)~,(t)1’ + U. -y(t) — h.-(t)N,(t)12

+ [2,. — z(t) — h,.(t)Nz(z)]2 s R2(hi(t))

By applying equation 3.2 and the unit N(t), we can have

W) = [xi—x(t)12+[yi—y(t)12+124—2(t)]2—h,-2(t)—R2(h,-(t))

so OSISl and OShi(t)SL

(EQ 33)

Equation 3.3 states the condition under which the part surface point is inside or on

the envelope of the tool motion at tor the part surface point is inside the swept volume of

the tool motion at t.

Figure 3.6 shows a simple example -- a ball—end cutter. The tool control point at the

center of the spherical part of the cutter,fit) has the following form for a given tool motion

{C(t), N(t)} and point Pi:

'ix4—xcu’ +Iy,--y(t)12 +124—2(t)12-h?(t)—R2(h,-(t))

05:51 and 0914051.

W) = < (1303.4)

[x,- —x(t)]’ +[y.--y(t)1’ + [24—20)]2 —R’(h,(r))

05:31 and —RSh,-(t)_<_0

FIGURE 3.6 Interference Detection for Ball-end Cutter

The interference detection based on this model includes two steps.

. If —R S h[(t) S L , interference could occur. Further calculation is required.

. If f(t) S 0 , then the part surface point P, is inside or on the envelope of the tool

motion.

33

The implementation of this tool motion model leads to our parallel NC verification

system which will be described in a later chapter.

CHAPTER IV

SURFACE MODEL FOR PARALLEL NC VERIFICATION

Two major efforts have been developed over the years in NC simulation and verifi-

cation area. One aims at a new and more efficient model to represent the NC verification

process, and the other aims at methods based on advanced computing hardware. Image

space approaches represent the former, while the parallel or distributed NC verification

approach is of the latter type. The parallel or distributed NC verification methods distrib-

ute one NC verification process onto more than one processor to increase the verification

efficiency and reduce process time. However, such methods are relatively new. The sys-

tems developed by Menon et aim] and by Yungm] took advantage of the concept of par-

allel processing, but neither of them addressed essential issues, such as job distribution,

network contention, load balance, system performance (speedup), etc., in the parallel pro-

cessing. The proposed surface model will address these issues and provide reasonable load

estimation for job distribution and load balance, based on geometric information. It will

also guarantees that the discretized surface proximity to the original part surfaces is within

the user-specified tolerance.

The NC toolpath verification process is computationally intensive and time con-

suming. Each of the various approaches has its own characteristics. Examination of the

NC toolpath simulation and verification systemlm] developed by Case Center researchers

reveals the following six characteristics:

34

35

. Among all jobs of the NC verification process, the toolpath verification gener-

ally dominates system performance. It is the most time-consuming process,

compared with other tasks, like loading data, surface discretization, etc. Sur-

face discretization may also take a non-trivial amount of time especially for

small value of the tessellation tolerance.

. The “as-milled” surface points receive changing cut values, changing their

positions during verification.

. The toolpaths are the entities to be verified, and verification does not alter

them.

. The calculations at any surface point are independent of calculations at any

other surface point.

. The calculations at each surface point depend only on those toolpath segments

which may pass within a certain radius r of the point, where r is the maximum

radius of the cutter used.

. Toolpath segments are linear segments and irregular.

These six proposed characteristics of the NC verification process establish the

basis for a parallel NC verification model. They explain why we should place CL data in

shared memory and surface data in local processors’ memories. To achieve high parallel-

ism, we have decided to make each processor not only conduct a verification task, but also

perform surface discretization, since it also represents a significant load on the system.

Having presented the tool motion model in the last chapter, we will introduce a

new surface model in this chapter. We will first give an overview of B-spline and NURB

surfaces. Then the novel mathematical surface model and surface tessellation algorithm

will be introduced. Finally, the parallel NC verification algorithm will be presented. The

implementation and the discussion of the algorithm will be left to the next chapter.

36

4.1 B-Spline Curves and NURB Surfaces

To help the reader understand the surface model used in our parallel NC verifica-

tion scheme, we first provide a brief overview of B-spline and NURB surfaces -- their def-

initions and some useful properties.

A B-spline is a parametric spline or curve which consists of one or more segments.

Each segment represents the curve over a range of the parameter r. The curve is partially

defined by a set of control points [P0, P1, P2, Pu] which produce an open sided polygon

when connected sequentially by straight lines. The general shape of the B-spline follows

the shape of this polygon, and each segment of the curve is defined by a subset of the con-

trol points. Figure 4.1 shows a control point polygon with its three-segment B-spline

curve. Segment ends are denoted with an x. Noted beside each segment are the control

points that are used to compute that particular segment.

Each control point Pi has a blending function Ni, k(t) associated with it, where

the subscript k refers to the order of the blending function and B-spline. The blending

function Ni, k(t) associated with control point Pi will change from segment to segment.

The general form of a B-spline segment is defined by

n

P(t) = 215N440 (1204.1)

i=0

The summation goes from i = O to i = n which means that there are n+1 control

points. The order k of the B-spline is its degree plus 1. The fact that only a subset of the

37

total set of control points is used for each segment implies that the blending functions

associated with other unused control points are all zero.

The blending functions are determined by a set of values called a knot vector -- for

example, knot vector = [x0 x1 x2 x,]. The relationship between the knot vector and the

blending functions is defined as follows:

Segment 2

P1329334

P3

po

1’4

FIGURE 4.1 2D B-spline Curve

r 1 x-St<x-
Ni,1(t)={ r .r+l

O otherwrse

((EQ4.2)

t—x. N. t x. -1 N. t
Ni,k(t) =(l) r,k-1()+(H»):) r+l,k-l()

. xi+k_1"xi xi+k—xi+l

where x, is the ith knot vector element. Ifxi = x then Ni, 1(t) = 0 . This
i+1’

notation also uses the convention that 0/0 = 0 in the blending function evaluation. There

is only one Ni, 1(t) that is nonzero for each segment. This nonzero function cascades

down to the final blending functions associated with that segment as shown in Figure 4.2.

Notice that the number of nonzero blending functions per segment is equal to the order

38

of the B-spline curve. There are two main properties of blending functions which should

be mentioned as well.

n

. ZNHU) = 1 for each segment.

i=0

. Nat“) 20 for all t.

NM
I \

/ \
I \

[Vi-1.2 NLZ

/ \ / \

./ \ / \

[Vi-2.3 ”1-13 N13

/ \ / \ / \

I / \ / \ / \

[Vi-3.4 ”1:2,4 Ni-l,4 Nz 4
’ \ , \ I \ ’ \

FIGURE 4.2 Blending Function Cascade

In most cases, it is required that the B-spline pass through the endpoints of the con-

trol point polygon. However, to make the curve pass through the endpoints, the first and

last entries of the knot vector must repeat k times, i.e. x0 = x1 = = x“ and x1_(k-1) = =

xH = x]. The length of the knot vector (L =1 + l) is a function of the number of control

points (n + 1) and the order (k) of the B-spline. It equals the number of control points plus

the order of the B-spline, i.e., L = n + k + l . The order of the curve must be less than or

equal to the number of control points. The number of segments of the B-spline equals the

number of control points minus the degree of the curve, i.e. n - k + 2. The parameter range

associated with each segment can be determined by examining the knot vector.

39

Control points help to control the shape of the B-spline, and the blending func-

tions, which are determined by the knot vector, control how much each control point con-

tributes to each B-spline segment. When the blending functions for a segment of a B-

spline are computed, only a subset of the knot vector is used. These values form what is

called the effective knot vector. The length of the effective knot vector is a function of the

order k. The relationship iszle = 2(k — l).

lntemal knot vector elements can also be repeated. Repeating an internal knot pro-

duces a zero-length segment and introduces a derivative discontinuity at the segment joint

corresponding to that knot. In order words, repeating a knot once causes the curve to lose

the highest order derivative continuity at the segment joint corresponding that knot. Each

repetition of a knot decreases the number of nonzero segments by one. Thus for a uniform

knot vector, each repetition causes the end knot or maximum parameter value to decrease

by one. A knot may be repeated at most k times, where k is the order of the curve.

EQ. 4.1 shows that a B-spline curve depends on its control points and blending

functions, which in turn depends on the knot vector. Different forms of control point and

knot vector representations lead to the classification of B-spline curves. The representation

of control points defines whether the curve is rational or nonrational, while the knot vec-

tor defines whether the curve is uniform or nonuniform.

If the B-spline control points are expressed in homogeneous coordinates, it is

denoted a rational B-spline. There are an infinite number of homogeneous representations

of a single coordinate point -- for example, the three dimensional Cartesian coordinate

point (1, 2, 3) can be represented by (l, 2, 3, 1) = (2, 4, 6, 2) = (5, 10, 15, 5). The fourth

40

position or coordinate is the homogeneous variable. If the homogeneous variable is equal

to 1, then the other variables represent the actual Cartesian coordinates. If the homoge-

neous variable is not equal to 1, say h, then to transform back to Cartesian coordinates,

each term must be divided by h. For rational B-splines, the value of the homogeneous vari-

able is called the weight. Each control point has its own weight. If all of the weights are

1.0, then the curve will be the same as the nonrational curve -- i.e., the control point coor-

dinates expressed in ordinary Cartesian coordinate form. Expressing the control points in

homogeneous coordinates has no effect on the blending functions, which depend only on

the knot vector.

The uniform or nonuniform B-spline curve depends on the knot vector being uni-

form or nonuniform. Uniform knot vectors have integer values as knots and the interior

knots are consecutive integers. Thus each segment of the uniform B-spline has a “uni-

form” unit change in the parameter value over its length. The use of real (non-integer) val-

ues as knots, or the occurrence of repeated interior knots, produce nonuniform knot

vectors. The term nonuniform is predominantly used to signify real knot values which pro-

duce unequal parameter changes per segment, such as [0 0 0 .3 .8 1 1 1]. An integer knot

vector with repeated knots, and thus segments with zero parameter change, such as [0 0 0

l 1 2 2 2], is sometimes referred to as an “enhanced” unifonn knot vector instead of being

called simply nonuniformlzo]. The ability of the nonuniform B—spline to have each seg-

ment cover a different parameter range is the main reason for their use.

B-spline surfaces are an extension of B-spline curves. The use of B-splines to gen-

erate surfaces follows easily from an understanding of the curve. The most commonly

used surface representation is the four-sided patch as shown in Figure 4.3. Each point on

41

the patch or surface is a function of two parameters, u and v. Figure 4.3 shows the mapping

from parametric space (u, v) to 3D geometric space. One side of the patch and its opposite

side are chosen as curves that depend only on u. The other two edges are functions only of

v. Both u-varying sides share the same knot vector, as do both v-varying sides. The u knot

vector does not have to be identical to the v knot vector; that is, they can be of different

orders and have different numbers of control points. Each edge has a control point poly-

gon. Additional control points determine the interior shape of the patch. If the u edges

have m+l control points and the v edges have n+1, then there will be a total of

(m + l) x (n + 1) control points. The control points joined together by straight lines form

what is called a control point net.

‘\

h(u, v)

L...

FIGURE 4.3 Surface Mapping Between Parametric Space and 3D Space

Just as the B-spline curve consisted of segments, the B-spline surface consists of

segments known as subpatches. From earlier discussion, we see there are (m-k1+2) u

direction segments if the u edge B-splines have m+1 control points and are of order k1,

42

and that there will be (n-k2+2) v direction segments if the v edge B-splines have n+1 con-

trol points and are of order k2. Therefore the total number of subpatches is (m-k1+2)*(n-

k2+2). The general formula for a B-spline surface is:

m n

2 2 Pi.jwi.jMi,k1(“)Nj,k2(V)

. -

(EQ 4.3)

o

m n

2 2 wi,jMi,k1(u)Nj,k2(V)

where M and N are two blending functions and WiJ is the weight of control point PiJ'

Likewise, B-spline surfaces can be classified into rational/nonrational, uniform/

nonunifomr surfaces. The definitions of these terms are exactly parallel to those described

previously for space curves. The terms NURB surface or NURBS surface, which are

widely used in industry, stand for NonUniform Rational B-Spline surface.

4.2 Chordal Deviation and the Surface Model

Two major components of the modeling work for NC verification are part surface

modeling and cutter motion modeling. Various approaches, such as CSG methods, image

space methods and object space methods, differ in this area. The previous chapter dis-

cussed tool motion modeling. Now we are ready to present a new efficient surface model

for a parallel (or distributed) NC verification system. In Voelcker et al., “"21 Fridshalm,

and Menon’s approaches, solids are used to represent desired parts. Goodman’smlm] and

[18]
Jerard’s methods discretize the sculptured surface, which is widely used to represent

parts to be machined, into a set of surface points, with the location and normal for each

43

surface point. The level of discretization of workpiece and associated holding fixtures

depends directly on the size and curvature of the surfaces. The generated surface point

data structure is then used as an approximation to the desired (nominal) part surfaces.

In the multi-axis simulation and verification systemlm], the surface evaluator can

provide surface points and can calculate unique normal vectors for any surfaces except at

slope discontinuities -- i.e., along edges and at vertices. Along edges, two normals may be

defined, and at vertices, three or more normals may be defined. Surfaces need not com-

prise a closed solid model. The discretized surface points are further organized into a tri-

angular grid of points, in which the resolution depends on user-specified values for

[21]
maximum Chordal deviation in each parametric direction.

Chordal deviation

P1 ,

distance

FIGURE 4.4 Chordal Deviation of Two Surface Points

The Chordal deviation plays very important roles in surface discretization. It is

defined to be the distance between the geometric midpointh of two points, P1 and P2

and the point P as shown in Figure 4.4. An approximation to the Chordal deviation is used

as an approximation to the maximum error between a curve and a line segment joining its

two endpoints (it would be exact if the parameterization were uniform and the curve were

44

an arc of a circle). A user-specified maximum chordal deviation is used as a criterion for

subdivision of parametric curves in surfaces. Whenever the chordal deviation conditions

are violated, a new point at the parametric midpoint of the curve segment being examined

is introduced. At any particular time, the points are evaluated either in the u or the v para-

metric direction. In other words, one of the parameters is constant. If the distance between

two points or the chordal deviation of two points P1 and P2 exceeds the user-entered limits

for discretization, the curve needs to be subdivided. Recursive subdivision is conducted

until all the surface points along the changing parameter (u or v) satisfy the condition.

Note that the chordal deviation at Pm, the geometric midpoint of P1 and P2, is not neces-

sarily the maximum chordal deviation of the B-spline considered. As shown in Figure 4.4,

the maximum chordal deviation is at Pu instead of Pm. Although there is a straightforward

way to solve for the maximum chordal deviation by recursively evaluating Pm, it would

require a huge amount of computational time. To reduce computational costs, we instead

sample several points and evaluate the chordal deviation at these points. The number of

sampled points is determined by the order of the given B-spline.

As was the case in the previous scheme just described, the parallel NC verification

system will still use discretized surface points along with surface triangles as the surface

model. An advantage of discretizing a part surface along its parametric flow lines is that

surface evaluation can be done separately along each line -- i.e., in parallel. However, this

advantage also becomes the algorithm’s main drawback, because the satisfaction of

chordal deviation along both u and v parametric directions cannot guarantee the accuracy

of surface approximation of a set of triangles formed with those edges and diagonal lines

joining opposite vertices of the quadrilateral mesh of edges. In other words, the satisfac-

45

tion of the chordal tolerance condition in curve evaluation along both 11 and v directions

does not imply its satisfaction by a set of triangular planes (a faceting of the surface). We

will present a new surface discretization algorithm in next section which guarantees that

the surface tessellation does not violate the user-specified geometric tolerance. Mean-

while, it gives the estimation of the work load for processing each particular surface. This

algorithm can be further used in some other area such as FEM, mass analysis, etc.

We have observed that tool motion, including multi-axis motion, may be modeled

as a function of tool location and orientation only. For point-to-point tool motions, the

swept volume can be uniquely defined given only the two end points and their (common)

normal. The NC verification process basically needs to compute the minimum distance

between the designed surface and its corresponding machined surface along the surface

normal vector to the boundary of the tool motion. This minimum signed distance can be

defined as the so-called cut value or cut depth of the surface point. The NC verification

process will not make any change in the tool location or orientation data. Hence, the CL

data information is an ideal candidate for residence in shared memory, because it guaran-

[23] situations will not occur. In contrast, the cut depths associatedtees that dirty memory

with the discretized surface points will be affected by the NC verification process. In other

words, the simulation will change the location of the deepest-cut surface points. The geo-

metric change for each surface point depends on all the tool motions that pass sufficiently

close (a dynamic condition) to the point. Because of the changes, memory access, mainly

memory write, will occur frequently. If the discretized surface points reside in shared

memory, memory access contention is inevitable, since at a particular time, multiple pro-

cessors which hold various tool motions could intend to access the same surface point. To

46

handle this problem, atomic process function on the surface point is required. All the

involved processors except the one who is performing the calculation for the surface point

have to be either waiting or revisiting the surface points. This not only slows down the NC

verification process, but also leads to network contention and dirty memory problems. The

conclusion is that it is best to assign the surface data to different local memories.

4.3 Surface Discretization Algorithm for Parallel Processing

Surface discretization or subdivision is a technique for tessellating parametric sur-

faces, which generates approximating polyhedrons to represent original designed surfaces

for applications such as NC part surface modeling, mesh generation, etc. One surface dis-

cretization approach is to generate a set of small triangles or quadrilaterals in parametric

space and then map them to the Euclidean space through mapping the vertices of the para-

metric triangles or quadrilaterals to the desired surface to form the approximating surface.

The approximating surface actually consists of a set of flat polyhedrons or triangles. In

other words, flat subpatches are used to construct the approximating surface. To guarantee

the goodness of the approximation of the surface, all the subpatches of the approximating

surface should be within a given tolerance e. Finer approximating surfaces require more

subdivision and mapping steps.

The two main purposes of the parallel surface discretization algorithm presented in

this section are to improve the quality of surface approximation, and to exploit parallelism

in sculptured surface based manufacturing processes. The algorithm guarantees that the

approximating surface, consisting of a set of polyhedrons, is within the required accuracy

47

or tolerance. It is also able to provide the necessary information to solve the potential load

balance problem for parallel processing or distributed processing.

There are two major types of subdivision techniques. One is called adaptive subdi-

vision, which can generate an approximation surface that is within the required tolerance.

This method is very time consuming because of all the flatness testing required during the

subdivision process. The other technique is to estimate a subdivision depth ahead of the

subdivision process. This subdivision depth guarantees the required flatness of the sub-

patches after the subdivision. Therefore, flatness testing is not required during the subdivi-

sion process. Filip et. allzs] and Chenglz‘” proposed widely adopted methods for

estimating the subdivision depths for parametric surfaces. Filip et. al.’s algorithm requires

direct estimation of the sup’s of the second partial derivatives over the domain of the sur—

face. This is straightforward for polynomial B-spline surfaces, but is tedious and painful

work for rational B-spline surfaces because the estimation of sup’s of the second deriva-

tives requires computing the third partial derivatives, finding their roots, and evaluating the

second partial derivatives at these roots. Cheng extended Filip et al.’s algorithm by trans-

ferring rational B-spline surfaces to polynomial B-spline surfaces under the standard per-

spective projection. Cheng’s algorithm successfully avoids direct evaluation of the sup’s of

the second partial derivatives for the given rational surfaces. However, his algorithm fails

to give the expected results due to the sensitivity of the weights of the rational B-spline

surface because of the perspective transformation. Based on Filip et al.’s and Cheng’s

work, we present a new algorithm which improves both surface discretization and parallel-

ization. It guarantees the proximity of the approximating surface and the desired surface.

It is also helpful to pre-estimate the computational load of NC verification and give a

48

worst-case performance evaluation for parallel processing. Furthermore, it can guide the

job distribution on a parallel machine or distributed system. We first give the definitions of

some problem-related terminology, as follows:

Given an E" (Euclidean n-space, n 2 3) parametric surface S(u,v) defined over a 2-

D quadrilateral Q.

Let c be a user-specified surface discretization limit (8 > 0) on S(u,v). It means

that the distance between any surface point P and its corresponding point P on the

approximating polyhedral surface must be smaller than 8; i.e., IP - PI < e .

Let AUmax and AVmax be the maximum allowed A values for u and v. These

parameters determine the maximum steps in parametric space. They implicitly indicate a

lower bound on the number of discretized surface points required so that the approximated

surface is close to the desired surface within limit 8. This is especially important for flat

surfaces, since flat surfaces could have arbitrarily large A values. In most cases on sur-

faces with high curvature, the required A values are normally less than these limits, so

they do not come into effect there.

Let AUest and AVest be the estimated allowable A values for u and v. These

parameters are obtained by the algorithm that will be presented later in this section. To dis-

cretize a given surface, our objective is to find AUmin = min(AUest, AUmax) and

AVmin = min(AVest, AVmax) in order to get a good approximation of the surface and

good estimate of workload for parallel or distributing processing.

49

A midpoint subdivision of quadrilateral Q is the process of subdividing Q into four

subquadrilaterals along the midpoints of its edges. The number of recursions of the mid-

point subdivision process is called the subdivision depth n. Through recursion n times, the

parametric surface can be split into a fine, locally quite uniform mesh.

[241Let T be a subtriangle of Q with vertices vi(u,~, vi), i=0,l,2, and let h(u, v):

T -—> E" be a linearly parametrized triangle in n-space with vertices S(vi), i=0,l,2. A trian-

gular subpatch of S is said to be within a if

sup inf [S(u, v) — h(u', v')I S e

(u,v)e T (u’,v')e T

FIGURE 4.5 'II-ansformation from Parametric Space to E3

[251
Filip et. a1 proved that if T is a right triangle in parametric space with

v1 = v0 + (Au 0) and v2 = vo + (0 Av), which is the casein most surface applica-

tions, and if S(u,v) and h(u, v) are defined as above, then the following equation is true.

50

sup [S(u, v) — h(u, v)I S %(Au2M1 + 2AuAvM2 + Av2M3) (EQ 4.4)

(u,v)e T

where

82

M1 = sup 2 (u, V)

(u,v)e[0,1]x[0,l] au

jig
M2 = sup (u, V)

(u,v)e [0.l]x[0,l] auav

32

M3 = sup H(u,V)l

(u,v)e [O,l]x[0,1] av

[241w Q' be a subquadrilateral of Q after n levels of recursive midpoint subdivi-

sion. S(Q') is said to be within 8 if the triangular subpatches S(Tl) and S(Tz) are both

within 8 , where T1 and T2 are subtriangles generated by splitting Q' along one of its diag-

onals. Furthermore, a subdivision depth n guarantees the e -closeness of S if S(Q') is

within a tolerance for all the subquadrilaterals Q' of after n levels of recursive midpoint

subdivision.

The polyhedron based approximation surface can be obtained by recursively sub-

dividing Q into small subquadrilaterals and replacing each triangular subpatch with corre—

sponding triangle h(u, v): T —> E". The closeness of the approximating surface to the

desired surface S is controlled by the subdivision depth n. The proximity is within toler-

ance e if the subdivision depth guarantees the e -closeness of S. Clearly, the subdivision

depth should be just large enough to provide the required closeness. Otherwise, the surface

51

might be over-subdivided. However, in the case of a very flat surface, we also impose con-

ditions Au = AUmax and Av = AVmax in order to place an upper limit on the trian-

gle size even for flat surfaces.

Let S (u, v) be a rational B-spline surface with degree m x n (m = kl — 1 and

n = k2 - l , where k1 and k2 are the order of surface in u and v direction separately),

with control points Pia" weights Wi,j and blending functions M4’ k1(u) and Nj. k2(v)

2 2 Pi.jwi,jMi.k1(u)Nj,k2(V)

o

m n

2 2 WI. jMi,k1(u)Nj, ”(1’)

i=0j=0

Consider S (u, v) to be the image, under the standard perspective projection F:

E4 -—> E3 , of the E4 polynomial surface S(u, v) . We have

m n

S(u,v) = 2 2 P4, jMi,k1(u)NJ-’ 1.20) (564.5)

i=0j=0

. p. . . .

where Pg, ,- = " 1W“!

Wi,j

As we described earlier, once a rational B-spline surface is given, homogeneous

representation of control points as well as the knot vector are then determined. Expressing

the control points in homogeneous coordinates has no effect on the blending functions,

which depend only on the knot vector. Instead, it adds one more degree of freedom per

control point to the surface and thereby allows the representation of surfaces that are

impossible to represent exactly with nonrational B-splines. The homogeneous representa-

52

tion of control points also provides a key for surface estimation. Two useful values, mini-

mum weights wmin and maximum norm of control points pmax, can be derived from it. The

definitions are given as follows:

min{w 0SiSm,0San} and (EQ4.6)2 ll

min i, j I

= max{|P,-'J| |0SiSm,0San} (1304.7)
pmax

Similarly, we can define wmax and Pmin- Since wmm S w S w and
max

2 2 2

I’m-,4 S J(£) + (fi) + (i) S pmax , it is possible to find a surface boundary domain D

as follows:

1 j 2 2 2

D E {P = (X, y, 2, Wylwmin S W S Wmaxapmin S ; x + y + Z S pmax}

xyzplane

pmax

pmin

 (b) I

FIGURE 4.6 Surface Bounds and Weights

53

Examining this situation, it is obvious that D is an E4 truncated hypercone which

determines surface upper and lower bounds because rational B-spline surfaces satisfy the

convex hull property. To understand this discussion, picture a 3D graph with one w axis

and an xyz plane containing surface bounds for a particular w, as shown in Figure 4.6. Fig-

ure 4.6 (a) is a perspective view, and (b) is the side view. Based on the definition of D, we

know that wpmin S sz + y2 + 22 S wpmax , which determines the truncated hypercone. At

each particular value of w, two hypercircles are obtained. These two hypercircles define

the boundary of the surface points for the given weights. In fact, sz + y2 + z2 is the dis-

tance of a surface point from the w axis. When w = l, the surface bounds equal the control

point bounds. In other words, the whole surface is within the control point bounds. When

w decreases, the surface bounds shrink and surface estimation becomes more difficult.

[24] gave two properties based on polynomial surfaces S (u, v). He provedCheng

that for any given 8 > 0 , there exists a 5 > 0 which is the length of the shortest line seg-

ment P1P2 which lies in D and is projected onto a segment S(P1)S(P2) of length 8. Such a

8 can be computed by

r er'ne

0<eSp
2 1 2 max

8 = < (EQ4.8)

Wmin8 pmax < 8 S 2pmax

l +00 852pmax

Cheng also stated an important property -- that a subdivision depth n which guar-

antees the 8-Closeness of S(u, v) would guarantee the e -closeness of S(u, v) , where 5

is defined as above and e is a user-specified surface discretization tolerance. We will

54

directly apply this properties as well as EQ. 4.8 in our algorithm because S (u, v) is poly-

nomial surface.

Unlike what Cheng did in his approach, we want to consider the subdivision

depths in the u direction and v direction separately, instead of computing a single common

subdivision depth. This is because the necessary iterations of midpoint subdivision pro-

cesses in the u direction and v direction are generally different. More unnecessary march-

ing steps along either the u or v direction implies much more unnecessary computational

work is needed.

Since S (u, v) is polynomial surface, we can then directly use M1, M2 and M3

defined by Filip et a[,[251 to make our parametric space surface approximation based on

second derivatives.

322
M1 = sup 2 (u, V)

(u,v)e [0,1]x[0,l] Bu

2
a ..

- sup h(u, v)I

(u,v)e [0, l]x[0,1] auav

322
M3 = sup 2 (u,V)

(u,v)e [0,1]x[0,1] av

14[261

N
3 1

As given in de Boo , the n-th derivative of a B-spline curve

C(u) = 2PM, 1.0)

i=0

can be expressed as

incur) = (k — n)...(k — 1) 2 Pi"’M.-,k-,.(t)
u

i=n

55

where

(II-1)- ("-1)
Pi") = P1 Pt-l

u.

u ri+k—n_

By applying the above equation and the convex hull property of B-spline surfaces,

the following relations can be obtained:

MIS(kI-2)(kI-I) max max auPi.j_(au+bu)Pi-1.j+buPi-2.jl (EQ4.9)

2SiSm0SjS aubucu

M2S(k1-1)(k2—1)max "“1" Pivi‘Pi-IJ‘PU-l“Di-1J4 (1304.10)
lSiSmlSjS bub,

M3 :3 (k2 — 2)(k2 — 1)2

|(EQ 4.11)

SanOSiS avbvcv

max maxmlavpi, j - (av + bflpi, j- 1 + bvpi, j— 2

where

“u = “r+k1—2—“i-1 av = Vj+k2—2—vj—l

bu = “nu—1'“; bv = vj+k2-1_vj (1304.12)

Cu = “aria—“1' Cv = Vj+k2_2—Vj

Refer to Appendix B for the proof of EQ. 4.9, EQ. 4.10 and EQ. 4.10

The physical meaning of M1, M2 and M3 are the maximum curvatures of surface

S (u, v) . They also provides an estimation of necessary stepovers in the u and v direc-

tions for surface tessellation. If M1 = 0, it means that the surface isflat in the u direction --

i.e., the u direction is linear. Likewise, we say the surface isflat in the v direction if M3 =

56

0. If the u direction isflat and the v direction is not, such as occurs in a cylinder, then the

necessary stepover size, or number of recursive subdivisions, in the u direction during sur-

face evaluation depends on AUmax. Similarly, if the v direction isflat and the u direction

is not, the necessary stepover size in the v direction during surface evaluation depends on

AVmax. If both directions areflat, then the stepover sizes in both directions should be the

same. Otherwise, the proportional contribution of the partial term M2 to stepover sizes in

the u and v directions will take into consideration the ratio of M1 and M3. As a result, we

have four different cases, M1> 0 and M3 > 0, M1> 0 and M3 = 0, M1 = 0 and

M3 > 0 , and M1 = M3 = 0. We will discuss each of them later in this chapter.

Based on the above equations, a linear surface approximation which is different

from the traditional surface approximation can be presented. This approximation is espe-

cially important for applications where the original surface definition is difficult to work

with, such as in display of the surface and calculation of surface properties. It is important

that a bound on the error of the approximation is known so that any analysis done on the

approximation can take it into consideration. The traditional way to approximate a given

NURB surface is to recursively subdivide the B-splines in u and v directions, and to per-

form a tolerance test. These methods have the advantages over non-adaptive methods that

the approximating pieces can be placed adaptively over the surface -- that is, more surface

points or meshes can be placed in areas of greater curvature, which minimizes the total

number of surface points. However, in the manufacturing area, high degree surfaces are

rarely used, because they are not very stable in practice. Those places with high curvature

on manufacturing parts are often be broken down into small surface pieces so that rela-

tively low degree surfaces can be used. The algorithm presented here is several times

57

faster than the usual adaptive algorithms. In addition, the number of surface points gener-

ated by this scheme is not much more than necessary, since in the worst case, the surface

can first be split into its patches, with each patch usually having roughly similar curvature.

Then each patch can be approximated independently.

Unlike Cheng’s algorithm, we divide surfaces in the u and v directions separately.

In other words, we have two different subdivision depths, nu and n, Thus the approxi-

mated surface consists of (nu + l)(nv + 1) discretized surface points, or 2nunv triangles

constructed from these points. The subdivision depths nu and nv also give the stepover

sizes, l/nu and 1/nv, in parametric space.

It is important to point out that nu and nv will be very useful for us to estimate a so-

called min-max bounding box. The bounding box is defined by two points

P-=(xmm) and Pmax = (xmx, ymax, zmax). Any surface point P satis—
min’ ymin’ 2min

fies Pmin S P S Pmax. The bounding box will help us to eliminate those toolpath segments

which will not affect the selected surface, so that most unnecessary computation for tool-

path verification can be eliminated.

Here is the parallel NC verification algorithm for a given rational B-spline surface.

1. Compute S(u, v)

2. Compute the values of Wm", pmax and 5 by using EQ. 4.6, EQ. 4.7 and EQ.

4.8.

3. Compute the values of M1, M2 and M3 based on EQ. 4.9 - EQ. 4.12.

58

4. Compute subdivision depth nu and nv or parametric stepover size l/nu and 1/nv,

using one of the four cases below, based on the values of M1, M2 and M3. Notice that l/nu

and l/nv are actually equal to AUest and AVest defined earlier.

As we discussed earlier in this chapter, M1, M2 and M3 gave us a clue to determine

the necessary stepover sizes in the u and v directions. M1 carries the curvature information

for the u direction, while M3 has it for the v direction. Thus we can define the ratio of M1

and M3 as k -- i.e. k = Ml/M3 in general, and treat each of the special cases separately.

From another view of the problem, since l/nu and Mn, have the same meaning as

Au and Av in EQ. 4.4, we can substitute them to obtain the following equation:

%(Au2M1+ 2AuAvM2 +Av2M3) = é i2M1+ i'Mz '1’ i2M3] = 5 (EQ4'13)
nu nunv nv

Based on M1, M2 and M3, which were found in step 3, we can now solve for nu

and nv using one of the following four cases:

Case 1: M1 >0 and M3>0

This is the general case. Since nu and n, are the necessary subdivision depths in

the u and v directions, we can set the ratio of them equal to k -- i.e., k = n,/ = M1/M3. By

substituting k into EQ. 4.13, we obtain:

-—1—2(M1+2kM2+k2M3) = 8

8n“

The solutions for nu and n4, for this step are then given in EQ. 4.14

59

I

nu = ngsuul +2kM2+k2M3)

l where k = Ml/M3 (EQ 4.14)

nu

an _ 7(-

Case 2: M 1 > 0 and M3 = 0, which means that the surface isflat in the v

direction or the v direction is linear. Thus the necessary stepover sizes in the v direction

can be set to l, i.e. nv = 1. EQ. 4.15 gives the solution in this case.

n = 8—18(M2+JM22+ 85M1)

< (EQ4.15)

Case 3: M1 = 0 and M3 > 0, which means that the surface isflat in the u

direction or the u direction is linear. Similarly to Case 2, we have

4 (EQ4.16)

n = 8—18(M2+ JM22+ 85M3)

Case 4: M 1 = 0 and M3 = 0 , which means that the surface isflat in both the

u and v directions, or both the u direction and the v direction are linear. In this case, the

ratio of nu and n, is equal to 1. Thus we have

1 M2

"a = "v = 2 7 (1304.17)

6O

5. Determine the actual stepovers in the u and v directions by

Au = min(l/nu,AUmax) = min(AUest,AUmax)

(EQ4.18)

Av = min(l/nwAVmax) = min(AVest,AVmax)

6. Compute the total estimated number of discretized surface points for all the

surfaces, assuming there are a total of m surfaces

_ "’ 1 _1_
Np _ 2{(Aui+l)X(Av.+l)} (1504.19)

1

7. Have the master processor distribute surface patches along with Au and Av to

each processor for discretization. The total number of discretized surface points on

each processor should be approximately Np/p in order to maintain load balance.

8. Each processor evaluates its assigned surface patches independently.

9. For each surface patch, determine the min-max bounding box by first finding

Pm“, and Pmax from the discretized surface points. Notice this can be done during the

surface evaluation process. Because our algorithm guarantee 5 -closeness, the actual

min-max bounding box can be easily determined by Pmm— (5 , 5 , 5) and Pm + (5 , 5 ,

5).

10. Eliminate unnecessary toolpath segments and perform NC verification on those

surface patches in local processor memory.

1 1. Postprocessing, including extraction of the NC verification results from each

processor and graphical display of the results.

61

Suppose we have p processors on our parallel machine, and we distribute the math-

ematical representation of a subset of the surfaces to each processor and allow it to gener-

ate approximatelyNp/p surface points independently. The sets of discretized surface points

on each processor are totally independent of each other. Therefore each set is placed in its

processor’s local memory. The toolpath data can be stored in shared memory, or each pro-

cessor may make a local copy of those toolpath segments which it might possibly need,

depending on the size of local memory on each processor. In this manner, fully parallel

operation can be achieved.

The estimated processing time on a sequential machine, TS, and the parallel pro-

cessing time, Tp, can be expressed as:

T=T
s sin it

+ TCNp and

N

Tp = l-Tpinit + Tcgp + Tn(p).l

where Tsinit and Tpim, are the average process initiation or setup times on a sequential

machine and a p-processor parallel machine, respectively. TC is the average computation

time for NC verification on each surface point. Np is the total number of discretized part

surface points. Tn(p) is the communication time spent among the processors, including

data transfer, shared memory access, etc. Tn(p) is a function of number of processors p.

Finally, the estimated process speedup Sp of our algorithm is given in EQ. 4.20

T T-.+TN
S = T_s = 7 Sim! C p

(E0420)

N

p [Tpinit + Tcyp + Tn(p).|

62

When problem size —- i.e., the total number of surface points to be verified, Np --

tends to infinity, we can achieve the ideal case, which is, lim S = p. However, when p

Np —) co
10

increases withouth dramatically increasing, Sp —> 0 because T,,(p) also increases,

mainly due to network contention.

We will present experiment results in a later chapter to demonstrate the proposed

surface discretization algorithm for parallel processing.

CHAPTER V

PARALLEL NC VERIFICATION SYSTEM

Based on the previous discussion and the proposed parallel NC verification

scheme, we construct the system defined in Figure 5.1. This system reads part surface data

files, CL data files and APT cutter statements as inputs. It also allows users to specify the

surface discretization tolerance and NC verification tolerance including intol, outol and

range of interest. If a cut value is within the range specified by into! and outol, then the cut

can be considered within machining tolerance. Range of interest is a user-selected param-

eter to provide a maximum offset around the surface, outside of which the algorithm need

not calculate cut distance, and the display of those areas can be uniformly colored. The

system pre-evaluates the part surface data and distributes the surface data in parametric

form to each of the p processors. The initial load balance on each processor is guaranteed

because each processor will conduct the NC verification process on an approximately

equal number of surface points. The surface discretization is performed locally on each

processor. The selection of the set of possibly relevant toolpaths is also done on each pro-

cessor (note that these sets are typically neither disjoint nor identical across processors). A

local copy of the toolpath set can reduce network contention and increase computational

efficiency as well as system speedup, if local memory permits. Then the most time-con-

suming computations of the NC verification, minimum cut value calculation and surface

discretization, proceed totally independently on the p processors. Verification results are

63

64

displayed graphically to depict any tolerance violations, and the data structure permits

arbitrary views without redoing any verification calculations.

In this chapter, we introduce the parallel NC verification system. The four main

tasks of the system are discussed first. Each of the major components of the system will be

presented. The algorithm for each component is depicted in pseudo code. We then intro-

duce the overall NC verification procedure and the necessary input and output data for the

system.

5.1 Main Parallel NC Verification Tasks

There are several steps in our parallel NC verification system. First, one must be

able to load surface data, cutter description data and CL data. Then surface data must be

evaluated and initial load balance must be estimated before distribution of parametric sur-

face data to each processor. On each processor node, the discretized surface point nets

must be generated. Those toolpath segments which possibly affect part surfaces must be

selected and discretized if necessary. Finally, maximum cut depth on each surface point

must be computed to provide NC verification results. Thus, this procedure consists of four

main tasks: surface pre-evaluation, object space surface discretization, toolpath processing

and verification, and display of the verification results as a pseudo-coloring of the part sur-

faces. We now provide pseudocode to describe each process.

65

S t

Load NURB surface data e l Load toolpath data I

Tolerances

I I Load APT cutter data ‘
LPre-evaluate surfaces

 i

Distribute surface in

parametric form to nodes

i v

Pi

Graphical Display

(depicting tolerance violations)

T

View Selection and Display

(zoom, enlarge, rotate, etc.)

FIGURE 5.1 Overview of Parallel NC Tool Path Verification System

0 Surface pre-evaluation

Load the surface data and user-defined tolerances for surface discretization

For each surface:

{

Pre-evaluate surface and compute the stepovers in u and v directions

Compute maximum number of discretized surface points possibly required

Calculate the min-max box

}

For each surface:

{

Based on the number of processors and estimated maximum computation load,

determine the ranges of u and v; i.e., define the possible sub-patches of the sur-

face, in order to satisfy the load balance criterion

Distribute the parametric surfaces, possibly surface sub-patches, along with the

ranges and stepovers in u and v, among the processors

oObject space surface discretization on each processor

For each surface:

{

Discretize each NURBS (Non-Uniform Rational B-Spline) surface patch and

store surface points and normals in a POINT list data structure

Compute the min-max box of the processor’s work space -- i.e., the min-max

of all the processor’s surfaces

}

Construct a triangle list based on the POINT list

Classify each surface point into a uniform discretization of 3D-space (voxels), and

establish a linked list for each voxel including all of its points.

67

oToolpath Verification on each processor

Load the cutter data and CL file

Link all CL points to create a toolpath segment list

For each toolpath segment:

{

Check whether it is possibly within the min-max box of the processor’s work-

space

Calculate the parameters for the tool axis motion, implicitly defining a ruled

surface

Further discretize the toolpath segment if necessary, when the tool axis orienta-

tion changes within a segment

Determine which voxels may contain this toolpath segment

For every surface point within those voxels which possibly interfere with this

toolpath segment

{

Simulate the tool motion along the toolpath and compute the cut value for

the surface point

Update the cut value in the POINT data structure

oDisplay the verification results as a pseudo-colored raster image of the part surfaces

For each triangle in the triangle list:

{

Retrieve the cut values from the vertices of the triangle

Compute the color value at each pixel inside the triangle based on the magni-

tudes of the three cut values

68

Determine the boundaries between regions of varying hues between the dis-

cretized surface points by linear interpolation of cut values. Determine inten-

sity based on angle between sight line and surface normal

5.2 Command File and Command Driven Mode

In a previous NC simulation and verification systemllé], the system ran in an inter-

active mode; that is, the user had to specify all the parameters via an X-Window-based

graphical user interface (GUI) and wait for the result while the verification computation

was processed. Since the amount of computation required is often large, the user might

have to wait a long time for results. Many CAD/CAM systems in the market now provide

a so-called batch or command—driven mode to alleviate this type of problem. While the

software is running under batch mode, the user is free to use the computer (and CAD/

CAM system) to do other tasks. We incorporated such a batch mode in our new NC verifi-

cation system. The two immediate benefits obtained are: 1. system efficiency is improved

and enforced idle waiting time is eliminated; 2. the system is more adaptable and portable.

For example, there is no X-Window environment on the BBN GP1000 parallel computer,

so the earlier system could not be run on that machine; the new system has run success-

fully under this command-driven mode.

The new parallel NC verification system can run either with or without an X-Win-

dow environment. If one has an X-VVrndow environment, the program will run as before.

However, if one does not have or does not want to run under X-‘Vrndows, the program can

be run through a command file. There are some reserved keywords for command files,

such as rd_srf, rd_path and rd_tool, for reading surface file, toolpath file and cutter defini-

69

tion file, respectively. There is also srf_data for reading surface discretization parameters,

// stands for comment line, etc. The following example shows a typical verification proce-

dure defined by a command file.

// read surface file, toolpath file and tool definition file

rd_srf apmesiges

rd_path apmes.cl

rd_tool apmes_apt_cutter

// surface tessellation parameters: maximum chordal deviation and polygon length

srf_data 0.25 0.5

ld_srf

ld_tool

pre_process

// conduct verification with INTTOL, OUTTOL and range of interest

verify 0.5 0.5 1.0

5.3 File Loader

To process the NC verification, the system needs to know input data, such as part

surface information, cutter definition and CL data, etc. The file loader is designed for this

purpose.

5.3.1 Surface File Loader

The desired part surfaces used in our system consist of NURB surfaces, which are

defined by a designer and typically are directly produced by a CAD package. NURBS,

trimmed NURBS, and bounded NURBS may all be stored in standard IGES formats. Trim

70

and boundary curves may be either NURBS curves, composite curves or copious data

entities in IGES format. The core NURBS surface data is the type 128 entity of IGES.

This entity can exactly represent various analytical surfaces of general interest.

The IGES 128 entity includes two major parts, the directory entry and the parame-

ter data. The directory entry provides general surface information for both the surface gen-

erating system and the surface manipulating system. The surfaceform number in this entry

defines surface type, which could be NURBS surface type, ruled surface type, plane sur-

face type, revolution surface type, etc. The parameter data entity gives the entire definition

of the surface. It is in the following form:

Index

M
A
W
N
H

Name

K 1

K2

M 1

M2

PROPl

PROP2

PROP3

PROP4

PROPS

Type

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Description

Upper index of first sum of S(u,v)

Upper index of second sum of S(u,v)

Degree of first set of blending function

Degree of second set of blending function

1 = Closed in first parametric variable direc-

tion

0 = Not closed

1 = Closed in second parametric variable

direction

0 = Not closed

0 = rational surface

1 = polynomial surface

0 = Nonperiodic in first parametric variable

direction

1 = Periodic in first parametric variable

direction

0 = Nonperiodic in second parametric vari-

able direction

1 = Periodic in second parametric variable

direction

Now let N1 = 1+K1-M1, N2 =1+K2—M2, A = N1+2*Ml, B = N2+2*M2, C =

(1+K1)*(1+K2), then

10 U(-Ml) Real First value of first knot vector

10+A

1 1+A

1 1+A+B

12+A+B

13+A+B

1 1+A+B+C

12+A+B+C

13+A+B+C

14+A+B+C

15+A+B+C

16+A+B+C

17+A+B+C

9+A+B+4*C

10+A+B+4*C

1 1+A+B+4*C

12+A+B+4*C

13+A+B+4*C

14+A+B+4*C

15+A+B+4*C

U(N1+Ml) Real

V(-M2) Real

V(N2+M2) Real

W(0,0) Real

W(1,0) Real

W(K1,K2) Real

X(0,0) Real

Y(0,0) Real

Z(0,0) Real

X(1,0) Real

Y(1,0) Real

Z(1,0) Real

X(K1,K2) Real

Y(K1,K2) Real

Z(Kl ,K2) Real

U(0) Real

U(1) Real

V(O) Real

V(1) Real

71

Last value of first knot vector

First value of the second knot vector

Last value of the second knot vector

First weight

Last weight

First control point

First control point

First control point

Last control point

Last control point

Last control point

Starting value for first parametric direction

Ending value for first parametric direction

Starting value for second parametric direc-

tion

Ending value for second parametric direction

Besides the untrimmed surface entity described above, the system is able to handle

rational B-spline curves, composite data, copious data, curve on a parametric surface and

trimmed parametric surface data as well, to form a complete surface definition. The sur-

face file loader reads IGES surface data files into our project data structure. Then the sur-

face evaluator computes the parametric surfaces and trim curves as points in 3D space, and

constructs the lists of surface points and triangles which constitute our internal representa—

tion of the trimmed surfaces.

The first step in loading surfaces is the reading of all the entries in the IGES-format

file directory into an internal directory. From the internal directory, we determine which

parameter data to read from the file and the order of reading. IGES 144 entity parameter

72

data are read first, as these entities control the collection of trim curves with their corre-

sponding surfaces. As directed by the 144’s and their associated 142’s, an internal surface

data structure is created and the definition parameter data for the surface and trim curves is

read from the IGES file and loaded into IGES]28, IGES 126 and IGES 106 data structures,

which are pointed to by the surface data structure as surface definition data and trim data.

Any IGES 128 entities remaining after the 144’s have been loaded will be untrimmed sur-

faces. These untrimmed surface are loaded into the surface data structure with the pointer

to trim data left NULL.

The internal surface data structure is defined as follows:

#define SURFACE struct surface

1

SURFACE *next; /* pointer to the next surface structure */

POINT *point_1ist; /* pointer to this surface point list */

TRIANGLE *triangle_list; /* pointer to triangle list which display

the surface */

IGE8128 *surf_data; /* pointer to surface definition */

B_DATA *bounds_data; /* pointer to surface boundary data */

int bounds_count; /* number of boundary curves */

float comers[4][3]; /* comer points of the surface in 3D

space */

float surface_minimum[3]; /* surface bounding box */

float surface_maximum[3]; /* surface bounding box */

int norms_checked; /* for automatic surface normal check */

int steps_u, steps_v; /* number of steps in u and v direction */

73

first surface +—>| next surface ,_ - - —>| last surfacea—p null

surface definition

boundary data I

first point- 2nd point-— - - —>[last point +—> null

i
l
l

: 3 points ' null

—>| first triangle - 2nd triangle 4 - — —h» last triangle 1

FIGURE 5.2 Surface Data Structure and Links

The surface structure list can be depicted in Figure 5.2. As shown above, at the first

level, the surfaces are organized as a linked list of SURFACE data structures, each con-

taining all the information from one IGE8128, the underlying surface definition. These

SURFACE structures include pointers to the definition data as well as the list of surface

POINT and TRIANGLE data structures by which each surface is represented internally.

As the SURFACE list is stepped through, each surface is analyzed into lists of 3D xyz

points and triangles as required to meet the discretization parameters. The surface point

lists of all surfaces make up the entire part to be machined, as it will be used in NC tool-

path verification, while the surface triangle lists represents the part for display purposes. If

a surface is trimmed, points found to be outside trim boundaries are removed from the

point lists. Points are created on the trim boundaries as required for good verification out-

put.

74

5.3.2 Toolpath (CL) File Loader

The toolpath is considered to define a linear motion of the tool’s control point

between adjacent CL (cutter location) points. In other words, the sequence of toolpath seg—

ments can be represented by a sequence of cutter locations, (x, y, z), and their orientations,

cos a,cos[3,cosy where a , B and y are the angles of the cutter axis with the x, y and z

axes, respectively, at that cutter location. cosa,cos [3,cosy can also be written as i, j and

k, the normalized cutter axis vector.

The data structure of the toolpath is also built as a linked list. It includes eight data

members: a pointer to the next cutter position, the current cutter IOCation (x, y, 2), tool vec-

tor (i, j, k) and toolpath number. Because of the toolpath list structure, each toolpath seg-

ment can be defined by cutter position from start point to end point. The start point of the

next toolpath segment is the end point of the previous toolpath segment, and so on.

Dynamic memory allocations are used while constructing the cutter paths.

5.3.3 Tool Definition File Loader

The tool is defined in this system as a general APT cutter. Seven parameters are

used, in accordance with the definition in Appendix A. The data structure for the tool con-

tains cutter type, which can be calculated from the APT parameters, distance from the cut-

ter control point to top of cutter, the seven APT parameters, three h values,

f — r x cos(a) , f — r x sin(b) and L that bound the three cutter regions, two precom-

puted coefficients of radius-dependent functions (to avoid the need to recalculate them for

each tool move), and the range of interest The three most commonly used cutter types are

ball-end cutter, flat-end cutter and bull-nose cutter. In all cases except ball-end cutter, the

75

control point is considered to be at the tip of the cutter. The APT definitions of these cutter

are as follows:

Ball—end cutter: CUTTER/d, d/2, 0, d/2, 0, 0, L

The ball-end cutter has radius d/2 and total length L. Notice that the distance from

the control point to the top of the cutter is L - d/2.

Flat-end cutter: CUTTER/d, 0, d/2, 0, 0, 0, L

The flat-end cutter has radius d/2 and length L.

Bull-nose cutter: CUTTER/d, r, d/2-r, r, 0, 0, L

The bull-nose cutter has radius d/2, comer circle radius r and length L.

5.4 Spatial Subdivision

To speed up the NC verification process, we subdivide the 3D workspace into a set

of cubic 3D boxes, or voxels, as shown in Figure 5.3. This makes it easier to search for the

3D area where the cutter may contact part surfaces and to obtain the surface points possi-

bly affected by a given tool motion. The spatial subdivision method selected for use cre-

ates a set of uniform cubic 3D voxels. A voxel is defined as a rectangular solid element in

3D space. A voxel is the primary volume element in our 3D workspace. As an example, a

l m3 volume could be considered to contain 106 individual 1 cm3 cells, or voxels.

The voxel-based 3D computational space is established by a translation and scal-

ing transformation of the 3D workspace. The translation aims to move the minimum point

76

of the workspace bounding box to the origin of the computational space, while the scaling

transformation, which is determined by the density of overall discretized surface points, is

mainly to reduce surface point searching time during toolpath verification, as described

below. The transformation from workspace to computational space moves all surface

points into a positive 3D space of such voxel size that the integer parts of each surface

point’s coordinates can serve as the index of the voxel containing the point. In other

words, after the transformation, the indices of the voxel that contains the surface point are

the truncated real parts of its translated (x, y, z) coordinates. Each voxel has a linked list of

all the translated surface points it contains.

The voxel size plays important roles in the toolpath verification process. If the size

is too large, each possibly affected voxel may contain a large number of surface points.

This implies that the verification of each toolpath must consider that large number of sur-

face points and perform a computation for each surface point. As result, the overall verifi-

cation performance will be greatly reduced. The extreme case is one voxel containing all

surface points -- in this case, the spatial subdivision loses all its advantages. In the other

extreme, if the voxel size is too small, most voxels will be empty. This will increase the

burden for searching those voxels which contain the surface points that may be cut by the

given toolpath segment. The advantage of workspace subdivision is lost in this case, as

well. On the other hand, if the voxel size is appropriate, most (or at least a large number,

depending on the nature of the part) voxels will contain a small number of surface points.

The computational costs for each toolpath segment will be reduced and system perfor-

mance will be increased. It is suggested that one choose the size of the voxel to be on the

77

order of the length of the median toolpath segment. Therefore, typical tool motions may

move into some voxels and out of others.

FIGURE 5.3 Spatial Subdivision of a Discretized Surface Patch

The process of the transformation from 3D workspace to 3D computational space

can be depicted in the following pseudocode:

while (surface 1: NULL)

{

Translate all surface points as well as surface comer points, surface maximum

and surface minimum points, into the positive quadrant of the “computational

space” coordinate system based on the part bounding box, with the minimum

comer at the origin.

Locate each surface point in its corresponding voxel.

78

A sculptured surface is typically discretized into thousands of points, depending on

the desired accuracy, size, and curvature of the surface. Since a given tool motion will

interfere with only a small percentage of the surface points, it is desirable to eliminate all

the surface points which cannot possibly cause any interference. The voxel-based 3D com-

putational space is designed for this purpose. NC verification calculation time is essen-

tially proportional to the number of interference calculations. To reduce that, one needs to

determine a loose boundary of surface points for any given tool motion. The computa-

tional space makes it easier to find these boundaries. As stated in the Chapter 3, the key to

the multi-axis tool motion model is to define the translation and rotation of the tool in 3D

space by using the ruled surface determined by the axis of the cutter. For any ruled surface

r(t, h) (0 S t S l and 0 S h S L) which defines the corresponding tool motion, one can

easily use EQ. 3.1 to evaluate the bounding box of this tool motion -- i.e., determine the

maximum and minimum values xmax, ymax, zmax, xmin, ymin and 2min of the ruled surface.

For a 3-axis tool motion, it is straightforward to compute the bounding box by evaluating

the four corner points because the ruled surface is a rectangle. For multi-axis tool motion,

it is not guaranteed that the ruled surface is monotonic in any of its coordinates. The num-

ber of local extreme along any coordinate axis may be greater than one. Therefore, the

evaluation of the bounding box of the ruled surface becomes much more complicated. In

fact, all these problems are introduced by the increase of tool axis freedom. To simplify

the problem, we shall, when necessary, subdivide each tool motion based on the angle

between the tool axis at the start position and end position to guarantee the monotonicity

of the surface. Hence we are still able to estimate the bounding box for each sub-motion

by using the four corner points of the sub-toolpath segment (see details in the next sec-

tion). Now suppose the maximum radius of the tool is Rtool and the range of interest is

79

Rim. Rim is a user-defined parameter which indicates a maximum offset around the part

surfaces in which the user is concerned about verifying cut depths. In other words, the

space further than Rim units away from all part surfaces will not be included in the NC

verification process. Then any surface point P which might be affected by a given tool

motion satisfies the following equation:

xmin _ Rtool — Rim S x S xmax + Rtool + Rim

ymin _Rtool —Rinl S y Symax + Rtool + Rim

zmin ‘Rtool -Rint 5 Z S Zmax + Rtool + Rim

The pseudocode for the algorithm for searching the voxels containing points possi-

bly affected by a given tool path segment can be expressed as follows:

Evaluate the maximum and minimum values of comer points for the ruled surface

of the tool path segment

maximum coordinate of the bounding box for any effect from this tool motion =

maximum coordinate of the ruled surface + Rm] + Rim

minimum coordinate of the bounding box for any effect from this tool motion

= minimum coordinate of the ruled surface - R4001 - Rim

for (i=xmin-Rtool-Rim; i<=xmx+Rmol+Rint ; i++)

for U=Ymin'Rtool'Rint; l<=Ymax+Rtool+Rinr 3 i++)

for (k=zmin'Rroor‘Rim3 k<=zmax+Rmol+Rim ; k++)

{

Use i, j, k as index of voxel in which to calculate cut values of surface points.

Set surface_pointer = first surface point in the voxel

while (surface_pointer != NULL)

{

80

Compute the cut value for this surface point.

Set surface_pointer = surface_point->neighbor

}

5.5 Toolpath Discretization for Multi-Axis NC Verification

As mentioned earlier, the orientation changes of the tool axis from the start point to

end point of a tool motion introduce much more complexity into multi-axis NC verifica-

tion, as well as into multi-axis toolpath generation. The ruled surface defined by the tool

motion can become much more complex. In 3-axis point-to-point tool motions, the num-

ber of minimum distances between the ruled surface and a given part surface point is

exactly one, because tool axis does not change, so the ruled surface is planar. This is no

longer true in 4- or S-axis tool motion. To solve this problem, an algorithm for dynamic

toolpath discretization is implemented using a user-specified angle tolerance. The number

of additional toolpath segments to be produced is determined by the angle, 0 , between the

tool orientations at the start point and end point and by the maximum angle tolerance. 0

can be decided easily using the cross product of the orientations of the tool axis at the

starting and end points of the tool motion. The procedure for toolpath discretization is

depicted in Figure 5.4.

0 = acos(N(0) 0N(1))

if (0 < angle tolerance)

number of segments = 1

else

number of segments = [Ti/(angle tolerancefl

81

store current toolpath data

for (i = 0; i <= number of segments: i++)

{

evaluate cut values of surface points based on this sub-toolpath segment

}

restore toopath data

N(l)

 C(O)
t=0

FIGURE 5.4 Tool Path Discretization

As we described in Chapter 3, given a surface point Pi and a time instant t, the

closest ruled surface point can be determined by the tool control point C(t), tool vector

N(t) and equation 3.2 hi(t) = [xi —x(t)]Nx(t) + [Yr — y(t)]Ny(t) + [21" z(t)]N2(t) . As

shown in Figure 5.4, C(t) = C(0) + [C(1)-C(0)]t. N(t) is linearly interpolated along a great

circle. It is a function of t as well as 9 . To derive the expression for N(t) in terms of 0 and

t, one needs to solve the following three equations:

NOON = |N0|INIcos(0t) = cos(Ot)

NONl = INI|N1|cos(0(l—t)) = cos(0(l —t))

N 0(N0XN1) = 0

82

where N0 = N(O) and N1 = N(l)

The above equations can be rewritten as

cos(0t)

nlxnx+n1yny-t-nlznz = cos(0(1—t))

noxnx + "oy’ly + nOZnZ

rxnx+ryny+rznz = 0

where rJr = nOynlz—nOany, r = "02"1x‘"ox"12 and r2 = nOXnIY—noynlx.
y

The final solution for N(t) can be expressed as

(nlyrz — nlzry)cos(0t) + (nOZry — noyrz)cos(0(l — t))

Nx(t) =
2

|N0xN1|

N (t) = ("lzrx-nlxrz)005
(9t)+(noxrz—n02r

x)cos(0(1—t))

y
|N0le|2

N (t) _ ("Ixry-"iyrx)00
3(91)+(noyrx—n0

xry)cos(0(l -t))

|N0xN1|2

By substituting C(t) and N(t) into Equations 3.2 and 3.1, we can detemrine the

closest ruled surface point r(t,h) = C(t) + hN(t).

5.6 NC Verification with Inward and Outward Tolerances

The algorithm presented earlier allows us to quickly evaluate the minimum dis-

tance along each surface normal vector to the boundary of the tool motion. Once all of the

distances have been evaluated, our system is able to display the color coded verification

results from arbitrary viewpoints based on user-specified inward and outward tolerances,

as long as both values are less than the range of interest.

83

..........

..............

Cutter

Ruled Surface

of Tool Axis

Offset Surface Points

Surface Normal

FIGURE 5.5 Offset Point Po... and Pb for Tolerance Specification

To compare the final machined part surfaces with the desired (nominal) part sur-

faces, one normally use the tolerances INT0L and OUTTOL defined by APT. As long as

the error of the machined part surface is between INTOL and OUTT0L, the machined part

surface can be considered to meet the tolerance specification. Otherwise, it violates the

tolerance specification. Color coded results help the user identify the areas within toler-

ance and out of tolerance. Shades of green represent the areas cut within tolerance.

Gouges deeper than Intol vary from red to yellow for distances from Intol to -Rint (a user-

specified maximum range of interest). Undercuts greater than Outtol are shown in hues

from dark blue to light blue for distances from Outtol to Rint. For intelligibility of the out-

put, intensities of all hues are varied according to the angle between the eye point and the

part surface normal.

84

To reduce the cost of the minimum distance calculation, two discretized offset sur-

faces are created from each part surface. Rather than solving for the equations of the offset

surfaces, the normals of the discretized part surface points are simply used to generate Pin

and Pout offset points for each surface point in the data structure. As shown in Figure 5.5,

Pin is offset along the negative of the normal vector by Intol, and Pout is offset along the

positive normal vector by Outtol. By definition, these offset points are on the correspond-

ing offset surfacesm]. To detect whether or not the cutter cuts the part surface within the

tolerance limits, the signed distances from the corresponding tool envelope to Pin and Pout

for each surface point must be calculated using EQ. 3.3. If Pout is inside the envelope of

the tool motion and Pin is not, as shown in Figure 5.6 (a) and (b), then the corresponding

surface point is within the tolerance specification. This is equivalent to saying that the cut

is within tolerance at the given surface point if the depth of cut is anywhere between Pin

and Pom, even though the level of deepest cut is only approximated.

Scull)

INT0L

(a) (b) (c) 50“” (d)

FIGURE 5.6 Relationship Between Tool Envelope and Pout and Pin

The main objective of NC verification is to provide verification results to allow

subsequent adjustment of the toolpath to eliminate undercut or overcut (gouge) regions.

85

Therefore, it is not only important to identify those regions where the tolerance specifica-

tion is satisfied, but also necessary to estimate how deep the gouge is or how great the

undercut is for any surface point outside the tolerance range. The approximated distance

between a surface point and the ruled surface of the tool motion can be evaluated as fol-

lows.

First, evaluate the approximate cut values S4,,(t) and Sour“) for the Pin and Pout off-

set points, respectively. The cut values for Pin and Pout can be easily derived from EQ. 3.3,

which states the condition under which the part surface point is inside or on the envelope

of the tool motion at time instant t. As shown in Figure 3.5, suppose C(t) = (x, y, z) repre-

sents the cutter’s control point and Po represents the closest point on the cutter axis ruled

surface to a given part surface point P. Since the distance between P and P0 can be deter-

mined as |P — P0| , the distance from P to the cutter boundary is then equal to

IP — Pol — R(hi(t)) . If we define this distance as the cut value of P, we can obtain its

equation, applying EQ. 3.2, as:

S(t) = ./1P,-x(t)12+ [Py—y(t)]2 +1P,-z(t>12—h?(t)-R(h,-(t))

To calculate the cut value for Pin and Pout, we can simply substitute Pin and Pout

into the above equation.

$4.0) = fir... —x(t>12 +1y,-,. —y(r)12 +124, — 2101’ - him -R<h,-(t))

2 2 2 2

It should be pointed out that it is not actually necessary to evaluate the cut value

S(t) once we obtain sin(t) and Som(t). S(t) can be approximated from sin(t) and Sout(t)°

86

If sin(t) and Sour“) are both positive, which means both Pin and Pout do not inter-

fere with the envelope of the tool motion, then the approximate cut value is S(t) = Sour“) +

OUT0L, as shown in Figure 5.6 (c).

If sin(t) is positive and Sour“) is negative, which means Pin does not interfere with

the envelope of the tool motion and Pout does, as shown in Figure 5.6 (a) and (b), then the

approximate cut value is still S(t) = Sout(t) + OUT0L. Notice Sout(t) is negative now.

If sin(t) and Sour“) are both negative, which means both Pin and Pout interfere with

the envelope of the tool motion, as shown in Figure 5.6 ((1), then the approximate cut value

is S(t) = 8444(1) - INTOL.

If sin(t) is negative, but Sout(t) is positive, then we need to evaluate the surface

point itself, since the surface normal and the tool axis are pointed in radically different

directions. If the cut value of this surface point is also negative, then the approximate cut

value is S(t). Otherwise, it means that the cutter may be approaching the surface from

behind the outward-directed surface, and this case can be considered either as an error --

say, a deep gouge -- or as not cutting the surface point from its normal direction.

CHAPTER VI

PARALLEL ARCHITECTURE AND IMPLEMENTATION

6.1 Introduction

Many important problems in the areas of simulation, modeling, and manufacturing

require tremendous amounts of computational power for more accurate solution. Although

computing technology has advanced dramatically, many of the so-called grand challenge

problems, including real-time simulation, prediction of weather, determination of molecu-

lar, atomic and nuclear structure, etc., are still challenging and await new tools to provide

precise solutions, because even the most powerful and advanced computers do not provide

enough computational power. In order to address such problems, the goal has been to

obtain computer systems capable of computing at teraflops (1012 floating point operations

per second) rates. However, due to technological limitations, it has not been possible to

boost the performance of single processors to that rate. Parallel computers are not bound

by the speed of an individual circuit, and are opening the door to teraflops computing per-

formance to meet the increasing demand for computational power. Parallel computers

with hundreds or thousands of processors have proven to be the most promising technol-

ogy to achieve such dramatic increases in computational power.

This chapter focuses on our parallel NC simulation and verification environment

and implementation. It has two parts. The first provides the background on the parallel

87

88

computing environment and data parallel algorithms. In particular, the system configura-

tion of the model BBN GP1000 machine and its characteristic regarding software develop-

ment are introduced.

The second part discusses issues and methods related to implementation of parallel

NC simulation and verification on the above system.

6.2 Background Information on Parallel Processing

The concept of parallel computation has been studied since the early days of com-

puter development. But only recently has parallelism become an attractive and viable

approach to the attainment of very high computational speeds, because of the decline in

cost and size of computer components and the increasingly expensive gains in developing

ever faster circuitry.

Parallelism in computation takes many forms with regard to hardware configura-

tion and software design. The spectrum of parallel computers runs from systems with dual

or quadruple processors to those utilizing hundreds or even thousands of processors. Each

individual processor may be programmed to perform identical tasks or completely differ-

ent tasks from those of the other processors. Data communication among processors can

be through a memory common to all processors, or by means of networks interconnecting

the processors in various fashions.

6.2.1 Classification of Parallel Computers

A single processor operates by executing a stream of instructions on a stream of

data. It follows a single thread of control to fetch, decode, and execute a sequence of

89

instructions. Multiple processors in the same computer system may execute different

streams of instructions on the same steam of data, the same steam of instructions on differ-

ent steams of data, or different streams of instructions on different steams of datammsl

Depending on their data and instructions streams, machines are classified into four catego-

ries.

oSISD: Single Instructions Single Data

oSIMD: Single Instruction Multiple Data

oMISD: Multiple Instruction Single Data

oMIMD: Multiple Instruction Multiple Data

SISD computers are the traditional uniprocessor systems. The performance of

SISD computers is enhanced by techniques that try to exploit more instruction-level paral-

lelism.

In MISD computers, as shown in Figure 6.1 (a), multiple computing functional

units are organized in cascade to process a stream of data. It is a type of pipelined comput-

ing, but it is different from vector processors. The pipeline in MISD computers is visible

to the programmer, while in the vector processor, a single instruction is applied concur-

rently across many data items. Because of the potentially large variation in execution time

across the various computing functional units implied by the MISD organization, the over-

all execution rate of the MISD pipeline is determined by the stage with the poorest perfor-

mance. Thus it is rare to see real MISD computers.

90

Instruction

PROCESSORl ‘—-| CONTROL 1|

Stream 1

Instruction

PROCESSOR 2 <——| CONTROL 2|

Stream 2

O I

O O

O 0

Instruction

PROCESSOR NHOMOL NI

Stream N

(a) MISD Computer

SHARED Dams 1 PROCESSOR 1

MEMORY "cam

—Em——>| PROCESSOR 2
OR Stream 2 7

INTER- . .

CONNECTION : :

NETWORK Data

PR R NW OCESSO

(b) SIMD Computer

Data Instruction

SHARED l—S—1>| PROCESSOR 1 K——| CONTROL 1 I

MEMORY "83'" SW 1 *

Data Instruction

on —>| PROCESSOR2 ‘——| CONTROL 2|
Stream 2 , Stream 2

INTER- 0 e e

O O O

CONNECTION , , ,

NETWORK Data ' Instruction

|———->| PROCESSOR NHomor. N|

Stream N , Stream N

(c) MIMD Computer

FIGURE 6.1 Three Classes of Parallel Computers

SIMD computers, as shown in Figure 6.1 (b), include array processors, pipelined

array processors, and associative processors. All processors perform the same instruction,

91

which is broadcast from a single control unit Through enable/disable or masking capabil-

ities of individual processors, a number of applications can benefit from SIMD computers.

Examples of SIMD computers include Thinking Machine’s CM—2 and earlier Cray vector

machines.

As shown in Figure 6.1 (c), MIMD computers can perform arbitrary Operations -—

i.e., multiple instructions -- on different data at the same time. MIMD computers consist of

a number of uniprocessors which are connected through a network. Depending on how

processors and memories are connected, MIMD computers can be further classified. A

popular approach tries to distinguish the systems in terms of the coupling among proces-

sors. A tightly coupled system usually refers to a multiprocessor system in which proces-

sors are connected to a set of memories through a switch and processors can access any

location in the memories. A loosely coupled system consists of a number of processors,

each with its own local memory, and processors communicate through explicit message

passing.

Nilzg] has depicted a six-layer architecture to characterize parallel computer sys-

tems. The six layers, from bottom to top, include application, programming environment,

language, communication model, address space and PMS (Processor, Memory, Switch)

organization. Among these six layers, the first two are machine independent, while the last

two are machine dependent. The address space of a processor depends on the memory

organization, which is machine dependent. PMS organization, the bottom hardware layer,

defines the configuration of processors, memories and interconnection switches, which

differs from machine to machine. There are two fundamental clusters, as shown in Figure

6.2. In a Global Memory Cluster (GMC), the various processors and memory modules are

92

connected by a switch. In a GMC, all memory modules are equally accessible to all pro-

cessors. In a Local Memory Cluster (LMC), each memory is associated with a particular

processor, so that the processor and memory form a unit called a node. All nodes are inter-

connected by a switch. BBN’S Butterfly machine and Thinking Machine’s CM-5 are the

examples of LMC. A mixed Memory Cluster can be formed as a combination of the two

cluster models above.

6.2.2 Data Communication and Memory Consistency

Data communication among multiple processors can be achieved through a mem-

ory common to all processors -- i.e., shared memory. When processor i sends a piece of

data to processor j through the shared memory, processor i must first write the piece of

data in the memory at a location known to processorj, then processorj will read that piece

of data from the location. Since any location in the memory is common to those processors

Sharing the memory, it is possible at any instant that more than one processor is at some

stage of accessing the same memory location, and one or more of them is trying to alter

the contents of the location. This is the so-called memory inconsistency problem, in which

different processors may have different views of the same memory location. There are four

general models for accessing shared memory.

oExclusive-Read, Exclusive-Write (BREW): No more than one processor is

allowed to access the same memory location at any time.

oConcurrent-Read, Exclusive-Write (CREW): No more than one processor is

allowed to write to the same memory location at any time, but there is no restriction for

read access.

93

oExclusive-Read, Concurrent-Write (ERCW): Multiple processors are allowed to

write to the same memory location simultaneously, but read access remains exclusive.

PROCESSOR]9 HMEMORY A

PROCESSOR2Hi 9MEMORY B

PROCESSORNH’ «bl MEMORY M

S
W
I
T
C
H

(a) Global Memory CLuster (GMC)

S
W
I
T
C
H

(c) Mixed Memory Cluster

FIGURE 6.2 Three Parallel Computer PMS Configurations

94

oConcurrent-Read, Concurrent-Write (CRCW): There is no restriction for either

read or write access.

The above models provide the framework for defining more subtle communication

protocols to resolve memory conflicts in various computing environments.

6.2.3 Parallel Programming Models

A parallel program has two aspects: computation and communication. In computa-

tion, a processor fetches instructions and required data to perform a task. The processor

may stall due to hardware contention, such as memory conflict or network contention. In

communication, processes communicate or coordinate in order to preserve the required

execution order. Communication overhead has a significant impact on the performance of

parallel programs.

There are two important types of parallelism, control parallelism and data paral-

lelism, in designing parallel algorithms and deveIOping parallel programs. Control paral-

lelism allows two or more operations to be performed simultaneously, while the same

operation is performed on many data elements by multiple processors Simultaneously in

data parallelism. Four popular parallel computation models -- the asynchronous model,

SPMD model, master/slave model and systolic model —- are frequently used.

The asynchronous model is the most general parallel computation model. There

are no constraints on the interactions of the processes. Each process may run its own pro-

gram and may communicate with any other processes, depending on the application. The

Single Program Multiple Data (SPMD) model runs the same program code on all proces-

sors, with each processor working on its own portion of the data. The SPMD model

95

exploits data parallelism and is well suited for a multiprocessor with a large number of

processors. Our parallel NC simulation and verification system is mainly based on the

SPMD model. In the master/slave model, a dedicated master processor collects global

information from slave processors or instructs slave processors to perform some dedicated

function. We apply this model at the first stage of our parallel NC simulation and verifica-

tion program, when the master pre-evaluates the surface data and sends the data in para-

metric forrn to each of the “slave” nodes to perform surface discretization, toolpath

simulation and verification. At the second stage, the SPMD model is applied, in which

each node works on its own task independently. The systolic model is another type of par-

allel computing model, in which each processor operates on input data from some neigh-

boring processors and produces output data for some neighboring processors. It allows

overlapped computation and communication, and has been very useful in applications

such as signal processing, image processing, neural nets, etc.

6.3 BBN GP1000 and Mach 1000 System

Due to limited availability of resources, the parallel NC verification and simulation

system has to date been developed and implemented only on a BBN GP1000 machine.

The implementation of the system in a distributed environment through CORBA is under

Study. This section will focus on the BBN GP 1000 implementation.

6.3.1 BBN GP1000 Overview

The Butterfly GP1000 parallel machine is a powerful, modular computer system

which consists of multiple processors and memory models connected by a high-perfor-

mance internal network called the Butterfly switch. Each processor, along with an associ-

96

ated memory module, occupies one circuit card called a processor node (BPNE). All

BPNES in a GP1000 machine are identical; all connect to the Butterfly switch in the same

way and can work together interchangeably to run an application program. This tightly-

coupled processor architecture allows for efficient and extensive interprocessor communi-

cations. It gives each processor equal access to the global memory. GP1000 is a MIMD

machine in which each processor can execute an independent program on local or shared

memory data. It can be configured with up to 256 processor nodes.

Collectively, the memory modules of all the processor nodes form the shared

memory of the machine. Although each memory module is local to one particular BPNE,

any processor can access the local memory Of any other processor by using the Butterfly

switch to make remote memory references. Typical memory reference instructions that

access local memory take about one microsecond, while accessing remote memory takes

about five microseconds -- shared memory access is five times slower than local memory

access. Whether a memory location is remote or local memory is determined by its

address. If the high-order address bits match the processor number, the access is local and

can be made without involving the switch. If these address bits differ from the processor

number, the access is remote and must be made through the switch.

The distributed, shared memory architecture of the GP1000, together with the

firmware and software of the Mach 1000 operation system, provides a program execution

environment in which tasks can be distributed among processors regardless of where the

task data are located. Although the GP 1000 is a MIMD machine, it can be programmed in

several different ways -- for example, it is primarily configured to perform as a SIMD

machine in our parallel NC simulation and verification system. It can be also used as a

97

pool of interchangeable computing resources that are allocated to tasks dynamically. Inter-

processor communication can occur through shared memory, with one processor writing

data for another processor to read, or through message passing. The Mach 1000 operating

system and its associated set of programming languages, such as ’C’ and Fortran, tools,

and utilities, supports various styles of parallel processing.

4 Megabyte

Random

Access

Memory

. Physical Address

32-b1t Data Bus

68020

W’ -.l- 4......68881 Controller

“W“ l I -
Bootstrap Dual

| EPROM UART Noder

Controller

Special

Function

Decoder CODU‘OI

FIGURE 6.3 Block Diagram of Processor Node

The heart of the GP1000 is the identical nodes, called BPNEs. Each processor

node contains the following components: an MC68020 microprocessor with MC68881

floating point coprocessor and MC68851 paged memory management unit; 4 megabytes

of dynamic random access memory (DRAM); 128K programmable read only memory

(EPROM); address decoding logic; processor node controller (PNC); DUART that drives

the serial lines to the console terminal; I/O bus adapter; interface to the Butterfly switch;

98

switch power supply. Figure 6.3 is a block diagram of a processor node. The functionality

of each block in Figure 6.3 is addressed in detail in Chapter 2 of [37].

FIGURE 6.4 Eight-Node Switch and Packet Move

Interprocessor communication is implemented through butterfly switches. A But-

terfly switch is a collection of switching nodes, configured as a serial decision network,

which interconnects processor nodes and gives each processor equal access to the shared

global memory. It supports reading and writing memory on remote processor nodes, block

transfer of memory data between processor node memories, special atomic functions of

the operating system, and processor node reset. Each Butterfly switching node is a 4-input,

4-output switching element chip. Eight of these chips are logically arranged in two col-

umns to produce a l6-input, 16 output switch module as shown in Figure 6.4. At least one

path through the switch module connects each processor node to every other processor

99

node. Switch operation is similar to that of a packet switching network. For example, if

node 5 wants to send a message to node 14, node 5 must build a packet containing the 4-

bit address of node 14, i.e. 1110, followed by the message data, which it then sends to the

switch. The first switching node strips the two least significant address bits, i.e. 10, from

the packet and uses these two bits to route the remainder of the packet out of its output

port 10. The next switching node strips off the next two address bits, i.e. 11, from the

packet and sends the remainder of the data to its output port 11. Port 11 of the second

switch actually connects to node 14. The Structure of the switch network ensures that

packets with binary address 1110 will always be routed, with the same number of steps, to

node 14, regardless of which processor node sent them.

6.3.2 Mach 1000 and Uniform System Approach

The GP 1000 hardware and Mach 1000 Operating systeml38] are a foundation on

which a variety of parallel application software structures may be built. Based on this

foundation and wide range of parallel software development experiences, BBN proposed a

parallel programming style or method called the uniform system approach. This approach

has proved to be particularly effective for applications containing a few frequently

repeated tasks. The “uniform system” provides a library of functions or subroutines which

can be used in either ’C’ or Fortran.

There are two key considerations during parallel programming on GP1000: mem-

ory management and processor management. The goal of memory management is to use

the full memory bandwidth of the machine -- i.e., to attempt to prevent many processors

from accessing a Single memory module while other memory modules are idle. The goal

100

of processor management is to utilize the full processor bandwidth of the machine -- i.e.,

to keep all the processors equally busy or the keep the load balance among processors.

The Butterfly switch in the GP1000 provides high memory bandwidth for all the

processors. The uniform system follows two principles for memory management. First, it

tries to use a single large address space shared by all processes to simplify programming.

Two or more processes can share a single large block of virtual memory if they have either

a parent-child or sibling relationship. This frees the application programmer from the need

to manipulate memory maps. Data that two or more processors must share is allocated

without regard to which processors will use it. The stack and local variables, as well as

code, are not fetched across the Butterfly switch. Second, the uniform system scatters

application data across all memories of the machine to reduce possible memory conten-

tion. The large shared memory is composed of the memories of all the nodes collectively.

If all the shared data used by an application happened to be located in a single physical

memory, the memory contention -- that is, multiple processors accessing the same mem-

ory location -- would force the processors to proceed serially, thereby reducing the pro-

gram performance. Since the aggregate memory bandwidth of the GP1000 is very large,

memory contention can be reduced by scattering application data across the physical

memories of the machine. When many processors access data that has been scattered, their

references tend to be distributed across the memories and can make use of the full memory

bandwidth.

The most novel aspect of programming on the GP1000 is processor management.

It falls naturally into two parts: identification of the parallel structure inherent in the appli-

cation to be parallelized, and controlling the processors to achieve the parallelism identi-

101

fied. In many applications, the parallel Structure is both obvious and rich, such as in matrix

computation. In others, the structure is less clear and requires more study, such as in the

simulation and verification of robotic spraying or NC machining. Discovering and imple-

menting parallelism is done application by application. Once the programmer has decided

what processing will occur in parallel, he or she must then control the GP1000 to make

this happen. The Mach 1000 kernel provides a rich collection of relatively low-level oper-

ations for starting processes on various processors and for communicating among them.

The Uniform System provides a higher level abstraction for managing the processors. It

treats processors as a group of identical workers, each able to do any task. To use the Uni-

form System, a programmer must divide his or her application into two parts -- a set of

functions that perform various application tasks and one or more functions called task gen-

erators that identify the next task for execution. Notice that the task generator is normally

embedded in the control structure in a serial program. The task generator can also be con—

sidered to be the master in a master/slave parallel programming model.

To understand the how the task generator works, we can think of the generator con-

cept in terms of three procedures -- a generator activator procedure, a worker procedure

and a task generation procedure -- and a task descriptor data structure. Suppose we have a

“master” processor which calls the generator activator procedure to start the application

software. The generator activator procedure first builds a task descriptor data Structure that

specifies the tasks to be generated in terms of the worker procedure, the data, and the task

generation procedure. It then “activates” the generator by making the task descriptor avail-

able to other processors. The “master” processor, along with other available processors,

then uses the task descriptor and the task generation procedure to make repeated calls on

102

the worker procedure, specifying subsets of the data to work upon. Each call of the worker

procedure is a task. When the last task is done, the “master” processor continues execution

of its program, while the other processors that worked on the tasks look for other work. To

help understand the above concept, let’s consider a matrix multiplication

Am x k x Bk x" = Cm x" as an example. For each ith row OfA andjth column of B, we can

have a ’C’ function, say DotProduct(i, j), which computes the dot product and then stores

the results the (i,1')the element of C. In this example, DotProduct(i, j) is the worker proce-

dure, and the operand and result matrices are the data. DotProduct(i,j) is called once for

each combination of row and column index; these indices are stored in the task descriptor

and are incremented atomically each time the task generation procedure is executed by a

processor.

The Uniform System supports two kinds of task generators. Synchronous genera-

tors return to the caller after all of the generated tasks have been processed. Furthermore,

the processor that calls a synchronous generator always works on the tasks that are gener-

ated. Asynchronous generators return to the caller as soon as the generator has been acti-

vated. This enables the calling process to do other work. The Uniform System matches

available processors to the generated tasks and keeps track of active task generators.

Whenever a processor has nothing to do, it obtains a task using the task generation proce-

dure for one of the active generators. When a Uniform System program begins execution,

all the processors, except the one used to start the program, are idle. As long as there are

active generators with tasks to be done, there are no idle processors.

103

6.4 Implementation of Parallel NC Verification

As we mentioned earlier, the key issue in implementing applications in parallel is

to explore the embedded parallel structure. The structure in NC simulation and verification

is not obvious and straight forward. In order to develop the parallel NC simulation and

verification system, we followed general parallel programming guidelines, starting with

the best existing algorithms and system, namely, the early version of an NC simulation and

verification system developed at the Case Centerm]. The block diagram for the overall

system was studied and analyzed. An attempt was then made to do the same number and

kinds of steps as those in the existing system, studying the steps and re-ordering them in

order to achieve parallelism. Opportunities for parallel execution were sought at all levels

and in all sizes. The final solution was developed after numerous exploratory studies.

Although the Uniform System provides both Static and dynamic approaches for

determining the desirable number of concurrent operations to have at any stage in the pro-

cessing, we decided to use the dynamic approach, to attempt to maintain the load balance.

That is, tasks are allocated dynamically to processors. As a processor finishes a task, it is

assigned the next task ready for execution. This approach minimizes adverse end effects

by having many more tasks than processors. The end effects refer to the processor idle

time that occurs toward the end of computation when some processors have finished and

others are still working. In this approach, some idle processor time occurs at the end of

execution, but it is generally small relative to the total program execution time.

During implementation, we concentrated on the two key considerations -- memory

management and processor management. We applied the master/slave parallel program-

104

ming model in our system. The master processor works on the program module which

cannot be parallelized and assigns those jobs that can be parallelized to all processors

available at a particular time. In fact, all the NC verification tasks are assigned to worker

procedures which can be processed in parallel.

Private ' " Codeti's'»; 7'“

(per Process) ’ ' ‘C’ Globals, ’C’ Locals,

* Heap i“— ‘C’ Allocable (via malloc)

Uniform

Shared —» System h— Uniform System Allocable

Part (via Uniform System Allocator)

Figure 6.5 Address Space of ’C’ Program

FIGURE 6.5 Address Space of ‘C’ Program

The parallel NC simulation and verification system is implemented in C language.

Figure 6.5 Shows the general address space map of the system, as seen by the ‘C’ program.

‘C’ local variables are process-private and are stored on the stack. A local variable is visi-

ble only within the function that declares it. ‘C’ global variables are also process-private.

These variables are shared by functions within the same process, but are hidden from all

other processes. ‘C’ dynamic variables, obtained by malloc, are also process private.

There is one instance of an allocated variable per process. These variables can be accessed

by functions within same process, providing the necessary pointers have been made avail-

able. Shared variables, obtained from the Uniform System allocator UsAlloc, are globally

105

shared. Pointers to shared variables are valid on all processors and can be passed freely

among them. This is the only way to communicate between different processors and tasks,

unless one uses the Mach 1000 mechanisms directly.

In order to distribute tasks equally and reduce memory conflict, we distribute sur-

face data in parametric form among processors and keep toolpath data in shared memory.

During surface pre-evaluation, the bounding box, or min-max box, of the surface can be

obtained. These bounding boxes help us to select those toolpath segments which possibly

affect the particular surface. Toolpath data block transfer from to shared memory to local

memory can then occur if necessary. Figure 6.6 shows where the surface data and toolpath

data are located in the memory.

Process 1 Process 2 Process n-l Process 11

S g 8 g

private D D D C:

Memory 2:; § e e e e e e e 23 §

2% L5. 1% 25.

Shared

Memory Toolpath Data

FIGURE 6.6 The Residences of Surface Data and Tool Path Data

As we mentioned earlier, if the huge amount of data is not distributed over all

available memories, poor performance will occur. This is because clumping a lot of data in

a single processor node’s memory can easily result in contention for that memory by mul-

106

tiple processors. Fortunately, the Uniform System provides memory allocators which

allow us to distribute data across the memories of the machine to reduce memory conten-

tion. In our system, as shown in Figure 6.7, we choose the UsAllocOnUsProc function to

allocate memory on each node and store the parametric surface data at the first stage.

Notice that there is no memory contention at this stage because all other processors,

except the master processor, have not started to work yet.

Global Pointer P Private memory on each node

(in shared _

memory) T :“ Surface Data on Node 1

’5’ .

E i . . .
2 e

0

r:

/ Surface Data on Node n-l

T :fl Surface Data | . - . . 0n Node n

 Sizes of surface data are various -> I‘-

FIGURE 6.7 The Distributed Surface Data Created by UsAllocOnUsProc

It is often useful for each processor to have its own copy of certain frequently ref-

erenced variables declared as ’C’ globals, such as user-specified surface discretization tol-

erances, NC verification tolerance, and working space minimum and maximum values.

These copies eliminate the memory contention that might otherwise occur as multiple pro-

cessors access shared copies of the variables. Recall that ’C’ globals are in process private

memory. There are several ways to copy these private data to each of the other processors.

Two main methods are used in our system. The first way to make the values of these vari-

107

ables accessible to the other processors is to pass the values in the data structure argument

to a task generator and have the generator “initialization” routine make copies on each

processor. Another way we frequently used is to call the Uniform System function Share

to propagate variables to processors. For example, assume that i is an integer declared as

global or static; i is therefore process private. The effect of Share(&i), as shown in Figure

6.8, is to copy the value of i into each processor that performs tasks generated by subse-

quent task generators. When processor P1 executes Share(&i), it allocates a share block in

shared memory to hold both the address of i and the current value of i. The share block is

linked together with other share blocks and they can be all found when needed because

they are in shared memory. When processor Pi begins working on a task generator for the

first time, and before the init routine for the generator is called, it finds all of the share

blocks that have been linked together. For each share block, Pi copies the value ofi saved

in the share block to the address of i, which also was saved in the share block. Allocating i

in static or global process private memory ensures that the address of i is at the same loca-

tion in all processors. It is important to understand that the value of i is propagated to other

processors by the Share mechanism, but the variable i itself is not in shared memory.

Therefore, should one processor change its copy of i, only that processor will see the

changed value.

Processor management is accomplished using task generators. Although the Uni-

form System provides several generator families, such as the index family, array family

and half array family, we simply used the index family generator GenOnIFull because it

generates a task for each value (index) within the range when given an integer range.

GenOnIFull has the following form:

108

code = GenOanull(Init, Verifier, Final, Arg, Range, Limited, Abortable);

Init(Arg) is called on a particular processor before the generator calls Verifier(Arg,

Index) for the first time on that processor. Init(Arg) is used to copy frequently referenced

constants from globally shared memory into process private memory or to initialize pri-

vate temporaries. Verifier(Arg, Index) starts the NC verification process on that processor.

After the last call of Verifier(Arg, Index) on each processor used to perform tasks for the

generator, Final(Arg) is called once on each such processor used, to do post-processing

associated with the tasks. the “Limited” parameter specifies the number of processors to

which the generator is to be restricted. The “Abortable” parameter indicates whether or not

the generator can be aborted.

Process 1 Process i Process 11

i

Private 6\

Memory 0 O O O I O O

\

Share(&i) /

l A

I

Task Generator

Shared V

Memory 6

FIGURE 6.8 Share Passes Copies of Process Private Variable

CHAPTER VII

EXPERIMENTAL RESULTS AND PERFORMANCE

ANALYSIS

The proposed parallel approach for NC toolpath verification is practical and realiz-

able. In this chapter, a series of test cases is presented. These test cases are chosen to illus-

trate the complexity of the problem, as well as the correctness and efficiency of the

algorithm All the test cases are based on realistic models of manufactured sculptured sur-

faces. The verification results are obtained through a batch process, and can be displayed

in X Window environment. The color-coded verification results make it easy for the user

to identify undercut or overcut areas. The functionality of querying cut values provides the

user a tool to determine exact cut values at points of interest on part surfaces. Views from

arbitrary viewpoints based on the same results, without rerunning the verification process,

are given to illustrate the view independence of the program.

7.1 Benchmark Application Models

This section presents two real industrial part surface models. The first example is a

file provided by CIMLINC, a CAD/CAM software company, and is a model frequently

used to benchmark CAD/CAM systems. The model consists of multiple NURB surfaces,

including trimmed surfaces. The toolpath was also generated by CIMLINC. A real work-

109

110

piece was provided to facilitate comparison of the verifier’s output with the part as actually

cut by the toolpath being verified. The second example demonstrates five-axis NC machin-

ing. The surfaces were created in PDGSm], a CAD/CAM software package developed by

the CAD/CAM/PIM department of Ford Motor Company and widely used within Ford

and its suppliers. The toolpath was generated by CHIPSm], a robust cutter path genera-

tion package which is also developed and widely used by Ford Motor Company. Two dif-

ferent toolpaths -- one a gouge-protected cutter path and the other not protecting against

gouging -- are used to demonstrate the verification results.

For the first example, we conducted three difl'erent experimental cases. In all three

cases, the same toolpath file and cutter definition files were used. The verification parame-

ters for inward tolerance (intol) and outward tolerance (outtol) were set to 0.025mm, while

range ofinterest was set to 5.0mm in all three cases. In Case 1, all of the sculptured sur-

faces were discretized by letting chordal deviation equal 1.0mm and maximum parametric

stepover equal 2.0mm. This generated 21,485 discretized surface points. It took about 2

minutes to complete the verification process on a SPARC20 workstation with 64

MBRAM, 60 Mhz CPU and SunOS 5.5. In order to test parallel speedup, however, the

same run was repeated twice, using one and four processors, on a BBN GP1000 machine.

While the processors on this machine are obsolete, it nonetheless constitutes a reliable

platform on which to examine the parallel speedup of this algorithm. It took 4 hours, 47

minutes and 16 seconds to complete the verification process on one processor node, and 1

hour, 18 rrrinutes and 19 seconds with 4 processor nodes. The speedup in this case is

about 4. In Case 2, the chordal deviation was set to 0.02mm and maximum parametric

stepover was set to 0.5mm, and 306,266 discretized surface points were obtained. Verifica—

111

tion took about 20 minutes on a 60MHz SPARC20. In Case 3, the above two parameters

for surface discretization were set to 0.02mm and 0.25mm, respectively. Verification took

1 hour, 18 minutes and 36 seconds to complete on a 60MHz SPARC20.

The experimental results are shown in Figure 7.1 to Figure 7.3. Figure 7.1 shows

the original part surfaces from two different views. Figure 7.2 is a plot of the control point

of the tool as it moves along the toolpath. Three pictures were captured at difierent points

in time. An additional picture was obtained from another viewpoint. The tool was drawn

only on the first toolpath, and the tool motions were depicted with the toolpath in yellow

and the tool axis vector in blue. The main reason for only showing the tool once is to

reduce the graphics—related computation and the clutter of the image. Figure 7.3 shows

the verification results based on the user-specified display parameters. Our system actu-

ally maintains and uses two copies of the set of parameters intol, outtol and range ofinter-

est. The first set is called the computational parameter set, and is the values of intol, outtol

and range ofinterest used during a verification calculation. A second copy is called the

display parameter set, and allows changing those parameters to values slightly different

from those used during verification and displaying approximately correct results without

redoing the verification calculations. That is, the user can arbitrarily set the display

parameters to display the verification results without rerunning the NC verification pro-

cess, as long as the display parameters are within the general range of the computational

parameters, and the display intol and outtol are both within the computational range of

interest. In this example, we ran the NC verification at 0.025mm (intol = outtol =

0.025mm) with range ofinterest equal to 5.0mm. However, we set a display band at

0.05mm and 5.0mm in Figure 7.3 (a), (b) and (c). Figure 7.3 (c) is a zoomed view of the

112

result. This picture appears to match perfectly the prototype part actually cut. Figure 7.3

((1) shows the result when we set the display tolerances to the 0.025mm values used for

running the job. In other words, although the display parameters are different in Figure 7.3

(d) from those in Figure 7.3 (a), (b) and (c), the same verification computation was used

for all the displays. The different display results can be obtained simply by redefining the

display bands, which sets the reference between color and cut value. The color-coded ver-

ification result image shows the areas within or outside the display tolerance. Green repre-

sents the area out within tolerance. Gouges deeper than intol vary from red to dark pink for

distance from intol to range ofinterest. Undercuts greater than outtol are shown in hues

from dark blue to light pink for distances from outtol to range ofinterest. For intelligibil-

ity of the output, intensities of all hues are varied according to the angle between the eye-

point and the part surface normal. From Figure 7.3, we can see that more gouging (red)

area shows up, of course, when intol and outtol values are decreased (tolerances are tight-

ened). For highest accuracy of the verification, display values should match the computa-

tional values, but for quick exploration of the regions out within various tolerances, simple

resetting of the display bands yields fairly accurate results with almost no computation

time, once the initial verification has been done.

113

FIGURE 7.1 (11) Original Part Surfaces

FIGURE 7.1 (b) Original Part Surfaces

114

FIGURE 7.2 (11) NC Toolpath Display

FIGURE 7.2 (b) NC Toolpath Display

115

FIGURE 7.2 (c) NC Toolpath Display

FIGURE 7.2 ((1) NC Toolpath Display

116

m“u-

threw-e

’1. fan

mum In" v

their»): he!

(hop lint-:1" n... (“M

. I’m (at

‘~ 5.1""

5.!”

FIGURE 7.3 (b) Verification Result (intol=0.05mm, canola-0.05m)

117

"up Sela: lone!

(hear Null"

out

"up ‘Iota- ten-1

(Mm III-Ills

than

FIGURE 7.3 (d) Verification Result (Display For intol=0.025mm, outtol=0.025mm)

Without Rerun Computational Job

118

In the second example, we verified three different toolpaths on the same sculptured

part surfaces. The first toolpath was generated without considering gouge protection. The

second case uses gouge-protected toolpath data. In both cases, the toolpath attempts to cut

the entire part. It took much more computation time to complete the verification process

for this part. It took 45 minutes 41 second to verify 215,933 surface points for 12,288 tool

motions on a SPARC20 workstation with 64 Meg. memory, 60 Mhz CPU and SunOS 5.5.

It took 56 minutes 39 seconds to verify the same surface points for the 17,500 tool motions

of the second case in the same environment. Case three represents a so—called control cut

or flowline cut example on the same part surfaces. This kind of cut tries to cut certain areas

of the part determined by a so-called control surface. In all three cases, the same part sur-

face file and cutter definition files were used. The verification parameters intol and outtol

were set to 0.025mm, while range ofinterest was set to 10.0mm in all three cases.

The experimental results are shown in Figure 7.4 to Figure 7.6. Figure 7.4 depicts

the original part surfaces. Figure 7.5 illustrates portions of the NC toolpath. Again, the

tool was drawn only at the beginning of the toolpath, and tool motions were represented

by the toolpath in yellow and the tool axis vector in blue. Figure 7.6 shows the verification

results based on the verification parameter intol = 0.002mm, outtol = 0.002 and range of

interest = 10mm. All the results are from the same verification process without rerunning

the program. The display band in Figure 7.3 (a) is defined as intol=0.002mm and outtol =

0.05mm. Figure 7.3 (b) gives the result when intol is changed from 0.002mm to 0.05mm.

A toolpath produced without considering gouge protection was used for both Figure 7.6

(a) and (b). In Figure 7.6 (c) and (d), we used a gouge-protected toolpath. Figure 7.6 (c)

shows that the quality of the toolpath was improved a great deal, as expected. Further, the

119

verifier detects a certain area where a tool protrusion collided with the part. Figure 7 .6 (d)

demonstrates how we can investigate the gouged area. If we use the mouse to pick a

gouged point of interest on part, the program tells us the depth of the gouge and which tool

motion causes the problem. In Figure 7.6 (e), the result of a so-called control cut is shown.

The toolpath only cuts a particular area of interest, under the direction of a control surface.

This kind of cut is also widely used in the manufacturing world.

FIGURE 7.4 Original Part Surfaces for Example 2)

120

Sue- “ felt-l

{Ira (l‘ Vela:

"a! hi Pe'h!

1

(mun; Inn

(Jay 51!.

FIGURE 7.5 (b) NC Toolpath Display

121

FIGURE 7.6 (b) Verification Result (intol=0.002mm, outtol=0.05mm)

on Toolpath with Gauging

FIGURE 7.6 (c) Verification Result (intol=0.002mm, outtol=0.05mm)

on Toolpath with Gouglng Protection

I- be”.

nan-u: rlvv‘

mun-1:4 I..-

lie: Swe—

FIGURE 7.6 (d) Querying Verification Result (2.3mm Gouglng at

X point, and 1112th Tool Motion Causes the Gouging)

S
p
e
e
d
u
p

123

FIGURE 7.6 (e) Verification Result (intol=0.5mm, outtol=0.35mm)

on Control Cut Toolpath with Gouge Protection

Surface Subdivision Analysis

I 7 I I T I *1 I

After Surface Subdivision

Before Surface Subdivision

LL 1 L l I I I

0 2 4 6 8 10 12 14 16

No. of Processor Nodes

FIGURE 7.7 Speedup on Different Surface Subdivision

124

7.2 System Performance Evaluation

The proposed parallel NC Simulation and verification approach provides a new

tool to speed up the time-consuming manufacturing process. Full parallelism, better sys-

tem performance, and high accuracy can be achieved using the parallel simulation scheme.

The approach is especially good for SPMD machines because verification procedures on

each processor are the same. We distribute the part surface in parametric form, instead of a

set of surface points, to reduce the network traffic and parallelize more of the total work-

load. We believe that the approach to parallelization and process simulation exemplified

here for NC verification is useful for many large-scale problems in manufacturing process

simulation, such as spray robot simulation, FEM mesh generation, crash analysis, etc.

The proposed parallel NC toolpath verification scheme has been shown to be prac-

tical and realizable. We have done some experiments with it on a butterfly-architecture

machine. The test model and toolpaths we have used are given in the previous section. The

results to date have been quite encouraging and match what was predicted. Figure 7.7 is

the result of two different experiments -- one distributes the part surfaces without consid-

ering surface subdivision, and the other subdivides surfaces before distributing them. The

figure shows that the maximum speedup can be limited if surface subdivision is not done.

AS the blue line indicates, the maximum speedup is about 4, due to the unbalanced load

among the processors. Some processor has much more work to do than others. The time

spent on this node dominates the overall system performance and the end effects plays

major role, so the maximum speedup is limited. When the surface data is subdivided —- in

other words, more surface patches are generated -- a better processor load balance can be

125

achieved. The green line in Figure 7.7 shows that the maximum speedup is improved when

part surfaces are subdivided. In the former experiment, there are 22 surface patches, while

there are 51 surface patches in the latter experiment.

Figures 7.8 and 7.9 depict the relationships among problem sizes, processing times

and speedup. The results have been quite positive. As shown in the figure, the peak

speedup achieved to date is about 10, among 16 processors. This is mainly due to the net-

work contention during reading the shared memory. As we can see, as the problem size

becomes larger -- i.e., the surface discretization tolerance decreases and more surface

points are created to represent the part surfaces -- the system speedup increases as the

green line shows. The larger the number of surface points, the better the speedup which

might be achieved, because more computations can be conducted in parallel. In the exper-

iment, three different problem sizes -- large, medium and small -- were used, and they are

represented by green, red and dotted curves, respectively. The total number of toolpath

segments was kept the same for all three cases. The experiment data show that the green

curve has the best speedup, peaking at 10.6. Due to the limitations of the Butterfly

machine used, the largest sized run still used only 21,485 surface points.

126

12 v e . a T e .

Smaller Size- - -

Medium Size—

1° ' Larger Size -""

8 Ir

a.

3

S 6 '
m

4 l

2 r-

0 4 l M A L

0 2 4 6 8 10 12 14 16

No. of Processor Nodes

FIGURE 7.8 Speedup on Different Problem Sizes

12 U I

Smaller Size - - -

A Medium Size —

'8 10 ' Larger Size ’ —‘

o

S
v 3 l l

i
1—

oo 6 b .

.5

B

‘s’ 4 r -

d:

2 ' 4 d

0 2 4 6 B 10 12 14 16

No. of Processor Nodes

FIGURE 7.9 Processing Time on Different Problem Sizes

CHAPTER VIH

SUMMARY AND CONCLUSIONS

The high cost of conducting test runs of NC programs has created a strong

demand for simulators and verifiers for such programs. Current NC simulation software

on sequential machines greatly improves the verification procedure. However, such NC

simulators are still inaccurate and most can handle only 3-axis milling with the simplest

types of cutters. Given the former dearth of sophisticated software for generating optimal

S-axis toolpaths for more complex tools, this inadequacy of simulators or verifiers was not

very noticeable. The current trend toward higher-capability NC programming systems

raises the strong need for more sophisticated and accurate verification. This trend high-

lights the trade-off between verification time and accuracy of verification, strongly raising

the desire for parallelization of verification or simulation processes. However, application

of parallel or distributed architectures to such simulation and verification tasks. etc., is

non-trivial and still rare. Such tasks are not “embarrassingly parallelizable,” and decom-

posability of a verification algorithm can be aided significantly if it is designed with this in

mind.

In this dissertation, a tool model and a surface model for NC simulation and verifi-

cation are first presented. The tool motion envelope is implicitly defined by the ruled sur-

face that is determined by the motion of the axis of the cutting tool. Part surfaces are

defined by hundreds and thousands of triangles composed of discretized surface points.

127

128

The triangles are mainly used for display purposes, while surface points are the fundamen-

tal elements on which the NC verification can be performed. A novel surface discretiza-

tion algorithm is developed for both surface tessellation and load balance estimation. The

beauty of the algorithm is that it kills two birds with one stone -- it not only guarantees that

tessellated surfaces are within user-specified tolerance, but also estimates and keeps load

balance directly by the use of parameters of the original geometry, such as order of thesur-

faces, control points and knots. The load estimates produced facilitate good parallel NC

verification processing by guiding the assignment of tasks to processors. Hence, we can

say that the function we derived, which determines the relationships among geometry,

load balance and program performance, is the key characteristic of our new parallel NC

simulation and verification program.

The software developed using the algorithm has been proved useful and practical

for verifying multi-axis NC machining programs with APT cutters. The input to our soft-

ware includes three parts -- a standard IGES file that defines desired part geometry, CL

files that define cutter locations or toolpaths during machining, and user-specified parame-

ters that determine surface discretization tolerances and verification tolerances. As soon as

input data is defined, a generic command file is created. The command file can drive the

software on either a sequential or parallel machine. The user can also directly write a com-

mand file and run the software through command lines. The program begins by reading

surface data, then pre-evaluates all the sculptured surfaces and estimates the load factors

for each surface. It then discretize the surfaces and transforms all surface points into a

computational space which is based on voxels. Toolpath segments are also transformed

into voxel space. Only the surface points possibly affected by a given tool motion will be

129

used for further computation. The verification process mainly computes the distances

between surface points and tool swept volumes, which are derived from the locus of the

tool axis, without explicitly creating the surface boundary of the tool motion (swept vol-

ume). The result of the verification process is saved in a “cut value” data file that can be

used to display the output images in a variety of formats. The output display image uses

pseudo color coding to show the areas cut within tolerance and out of tolerance in different

colors. A color map is provided to help the user determine the depths of gouging or under-

cut. The verification process is view independent, which allows the user to do detailed

checking of the verification results without repeating the computationally intense verifica-

tion calculations. The user can also query the cut value at any surface point of interest. The

verification results may be used to adjust the toolpath to eliminate overcut or undercut

regions, or to generate additional toolpaths using a smaller cutter to clean up the undercut

regions.

There are some limitations of the system, especially for irregular toolpath patterns

such as the ones generated by control cuts. As shown in the previous chapter, a control cut

creates a cutter path which concentrates on a subregion of the part. In this case, the com-

putational job loads are not equally distributed. Those surfaces with a high density of

points may require no verification calculations, provided they are not affected by the tool-

path, while most of the computational time is spent on a few surfaces with smaller point

density. An improvement would be needed in our current algorithm in order to better allo-

cate load in that circumstance. Pro-evaluation of surfaces taking into consideration the

toolpath data, or dynamically balancing the load, could address that problem.

130

The algorithm brings high technology, in the form of parallel processing, into the

“old world” in which most researchers still focus on finding better and more efficient algo-

rithms to model the tool motion for the simulation and verification of NC machining. It is

the result of interdisciplinary knowledge, including geometric computation, manufactur-

ing processes. parallel computing, etc. There are two major differences between our cur-

rent system and other NC verification systems. First, it is surface based, so that the effort

needed to calculate the intersection of surface points and tool swept volumes is greatly

reduced because each surface point has a local coordinate function for each tool motion. In

most solid-modeling-based systems -- for instance, VeriCut of CG Tech. ~- most of the

verification time is spent on computing the boundary of each tool motion or combining the

boundaries of all the tool motions, and on computing the intersection between the desired

part surface and the tool swept volume by Boolean operations. Since tool swept volumes

for multi-axis tool motion are very complicated, it requires huge CPU time to complete the

job. The second characteristic of our system is its parallel processing basis, so that it

requires much less time to perform a large verification job, compared to verification on a

sequential machine. It addresses the load balance problem right at the beginning of surface

evaluation. It tends to minimize communication intensity and redundant computation by

passing parametric surface data and taking geomeu'y locality into consideration. Full par-

allelism, better system performance, and high accuracy can be achieved using the parallel

simulation scheme. The algorithm is especially good for SPMD machines because verifi-

cation procedures on each processor are the identical. For large-scale problems, this algo-

[23L therithm can be applied and extended to distributed environments. In Yung’s system

only other parallel NC verification program available so far, two major factors -- load bal-

ance and system performance -- were not addressed. In addition. it is a CSG-based system.

131

The algorithm is realizable not only on parallel machines, but also in a distributed

environment, such as networked workstations. In a distributed system. the network com-

munication time is relatively large, so that it is not advisable to apply the approach to

small problems. The differences between a parallel machine and a distributed system are

in the communication overhead and system cost. A parallel machine can greatly reduce

the communication overhead, but at a considerable cost. The overall system performance

could become worse than the serial case in a distributed environment. if the problem size

is not large enough. However, for more difficult verifications, with hours or days of execu-

tion time on single-CPU machine, the communication overhead is negligible, even on a

distributed system. Therefore, a distributed system might be cost-effective.

The mathematical basis presented in this dissertation can also be used in other

applications, such spray robot simulation, collision analysis, and welding process simula-

tion. It can also be extended to a distributed computation environment, especially for cer-

tain real manufacturing problems which require hours to days of computation. For

different applications, different issues must be considered. However, there are common

foundations -- for example, finding the relationship between the optimal computational

performance of a given application and the geometric parameters, problem size, average

system communication time, surface discretization limits, etc. This is not a simple prob-

lem and is quite problem-dependent, since there are many dynamic system factors that

could affect the results. Further study should focus on this area. Further study is also

needed regarding maintaining dynamic load balance in case the initial balance is lost.

There is always a trade-off among the number of processors, memory contention and net-

work contention to achieve the optimal performance. More processors means larger com-

132

putation power of the system, but more memory contention and network contention during

system initialization and post-processing. Finally, it may be very useful to consider build-

ing a closed loop application system or self-correcting system, which can generate a man-

ufacturing solution, verify the results, discover necessary corrective actions and regenerate

the solution, all based on user-specified tolerances and parameters. This would probably

require linking several distinct technologies, such as knowledge based systems, supercom-

puters, manufacturing process simulators or verifiers, etc., to realize the dream of manu-

facturing automation.

ters, as shown in Figure A.1. The statement defining a cutter or tool is as follows

where

APPENDIX A

DEFINITION OF THE APT CUTTER

In the APT language, a quite general cutting tool can be defined by seven parame-

[341.

CUTTER/d, r, e, f, a, b, L

The diameter of the circle generated by the intersection of the end and the

side surfaces of the cutter.

The radius of the corner circle.

The distance from the corner circle center to the cutter center line.

The distance from the comer circle center to the plane passing through the

cutter end center and perpendicular to the cutter center line.

The angle (degrees) between the cutter end surface and the plane perpen-

dicular to the cutter axis (it lies in the range of 0 S a S 90).

The angle (degrees) between the cutter side surface and the cutter axis (it

lies in the range of —90 Sb 5 90).

The cutter height measured from the control point of the cutter.

133

134

Note that usually the comer circle should be tangent to the end and side surface.

For this seven-parameter cutter, the radius of the cutter, R(h), can be defined in

terms of linear functions for three different ranges of h, the height along the cutter axis

from the tip point of the cutter. The functions can be expressed as follows:

V

h
m OSh<f—rcos(a) (a¢0)

R(h) = <e+ rz—(h—f)2 f—rcos(a)$h<f—rsin(b)

g+(h—gtan(a))tan(b) f—rsin(b)ShSL

h=L

FIGURE A.l Standard APT Seven Parameter Cutter

APPENDIX B

ESTIMATION OF UPPER BOUNDS ON SECOND

DERIVATIVES OF A POLYNOMIAL B-SPLINE SURFACE

Suppose S(u, v) is a homogeneous polynomial B-spline surface with degree m

and order k] in u direction and degree n and order [(2 in v direction.

m n

S(u,v) = 2 2 Pi,jMi,k1(u)NJ-’k2(v) (EQB.1)

i=0j=0

In order to estimate the subdivision depths in u and v directions respectively, we

need first to estimate the upper bounds of M1, M2 and M3 defined by Filip et (11,951, The

solution of the upper bounds of M1, M2 and M3 will guarantee that the tessellated surface

be within 8 tolerance.

According to de Boorm], the first, second and nth derivative of a B-spline curve

m

C(t) = 2 PiM1., km , with degree m and order k, can be written as
1':

d __ "1 Pr-IU-t

ECU)-(k—1)i;1’i+k—1—‘iMi’ k_1(t)

135

136

Let’sdefine

P.—P.
Pin: 1 1-1

ti+k-l—ti

(1) (1)

P(2)=Pi _Pi—1

' ti+k—2—ti

(n-l) (n-l)

(n) Pi ’Pi—r
Pi =

ti+k-n-ti

Then first, second and nth derivative of C(t) will be of the following forms:

ic — k 1 m PmMdt (t) -(—)i; ,- i,k-1(t)

m

_C(t) = (k—2)(k—1)i;2P§2)Mi,k_2(t) (EQB.2)

d"

_ m (n)
FC(t) _ (k—n)...(k—1)i;nl’,- Mi,k-n(‘)

Now applying the properties to regular polynomial B-spline surface S (u, v)

m n m

x
O

S(u,v) = 2 2 PUMngwMZw) = 21%)Mi,k1(u)

i=0j=0 1:0

rt

0

where PE ’ = 2010,; ij,,,2(v)
J:

Therefore the first derivative of S (u, v) can be written as

137

3 ~ _ m (1)
.

535mm) - (kl—1)i;1P,. Mi’k1_l(u) (EQB.3)

where

(0) (0)

P(1)_ I,i _Pi-1
i ..

ui+kl-1"ui

1

n n

= j =

1 n

= (p.._p._ .)N. (v)

“i+k1-1‘“i,;o "’ ' 1” ”"2

“nu—1‘“:

Now let us consider the second derivative of S(u, v)

556““ v) = (k1 — 2)(k1—1)i;2P§2)ML k1_2(u) (E0 8.4)

"annv

(98021)
.t

.r'z—z_.f‘t—,r1!__p1__,J,,,"5.1505(2)“,
[(J«()4(JJ)v]xvzu

!n_Z-I’I+!n_9

!n_I-I’l+!n_nq

I-'n_Z"I¥+!n
_"D

ougopmou$391

(I‘!n_z-I’I+!n)(!n_I-H+.r,,)(t,,_z-n+tn)

c_s__‘_‘--“SISD=

[(!zrd_ft!dx.1n_lI¥+!n)_(fl!J_.[!Jxl’n—Zl”+-'n)]xmu

(I—in—z-"HnX-M-I-I¥+!n)(!n_Z—I¥+!n) o=f

01‘!
r

“K.Z.d_.I.Jx3n_1[1.n)_(.I..J_.d)(1.n_zIq+.n)]wi

(1-!n_z_tq+.’n)(!n_I-I¥+!n)(fn_z—Iq+!n)

=l'

(Af’l‘INK-f‘z‘ld_f'1‘!J)(!n_I'l’lfin)-(f‘I-!J_f'!d)(I-!n_z-”fink

U

I-fn_z-I’I+.'n!n_I-Iq+!n!n_Z‘I¥+!n

I

c._‘_0:f‘‘-‘0=f

(MW/MMld_flI‘DZ(“Hf/Vol.1’J-“flZ

u
u

!n_Z-I¥+!n
.1

-(z)‘l

1:!_.1

(1)4m"

:31qu

851

139

From EQ. BA and EQ. B.5, we can have

32. (2)
aS(u,v): (k1-2)(k1—1)2P M.

(u)
1-2 i,—k1 2

<(kl 2)(k1 1) pm m M (u)

- _ — {Stiasxm i 1°22 i,kl-2

= (k1—2)(k1—1)mgxP§2)
2StSm

a P--- —b P —P. .

<(I‘51—2)(kl-1)2max max u("1 P‘ 11) “(‘ 1.1 “2.1)

2SiSm0San
aubucu

-(au +b,,-)P +bP

=2(k1—2)(k1-1)max
maxa

‘ 1'1 ' 2,1

ZSiSntOSan
aubucu

By definition from Filip et al.[25]

= sup I—Wu, v)"

(u ,V) auz

-"-' su u, V

(ule’agl—j—az—S-__S()|

M3 = sup —a:-S(u, v)

(u ,V) 8V2

Hence, we can obtain Equation 3.6 as following:

=Mlsup|—:§5(u V)“

‘“"’ (EQ 13.6)

S(k1—2)(kl _ ”max max’flaupi.j_(au+bu)Pi-I.j+buPi-2.j

2sr'smosjs aubucu

140

Similarly, by defining

av = vj+k2-2—vj-l

bv = Vj+k2-1—vj

0v = vj+k2—2—vj

We can obtain Equation B.7.

M3 S(k2—21k2—1)max max avPi,j-(av+bv)Pr,j-1+vai,j_2i (EQ B.7)

0SiSm2San avbvcv

Now let’s derive the upper bound for M2 which depends on partial derivatives

32 .

W‘“"”-

9—S()-(kl 1) m PmM ()
au “’v ' ‘ 5;.- i,k1_1“

2 (Fifi-Pi— 1,j)Nj,k2(V)m

=(k1-1)§:1L=‘L M. (u)

=1 “nu—1"“: "kl—1

" [m (Pi.j‘Pi-1.i)Mi,kr_r(“

1 =1 “i+k1—1—“i

)

:le,k2(v)

= (k1—1)20Aij,k2(v)

J:

l1M
l1—I‘1—rd+1—I‘3J_II—gd_I‘tJ

(3'3Ca)Anm)
I(A‘")eEdns=zw

rm“WWI—000411);

lvsISI1115.151

v28

:Burmono;812S;3w}o‘g'g'03‘punoqroddnour2910591911J.

usIsr1115.151

”44
X0111xmu-—_-

{-I‘1—1J+1—I‘_td_I‘[-_1I‘d__td(IZ’IXII’l)>

r-II-.1

(4)1-zr'IN(n)I-tr‘1wzZX

quvsISI1115.151

111pd+1—IgJ_T'—,J_Tgrdxmuwi([’Z’/)(I'I7I)S

I-[I-I

(writ-’mnr-I'twH.-.(1+,7,34.-.”ZZu——z>/)(1—w):

[:II-t

.AI-anAn-1-n+1"

(Ar-zrww-I'1n}....4+1$4,-”__3ZZu—”mo11):

[II

I-n_l11+!"Z I._Al-Z’HIA

((1)1er(’01—111W(II11J_1I1)

.I-I

n-nZ]K(I-z1/)(I—111)=
('0‘”WUI'J-"4)

[If

Z(I-z1/)(I-I>/)=

.I_.,‘1-z1+IA

((1)1u[NNT‘IV—IV

o-I

(1)"‘IN-‘vZu-m—=(A‘s-—") “9"9
uZe

IVI

LIST OF REFERENCE

1. Voelcker, H. B., and Hunt, W.A., “The Role of Solid Modeling in Machine—

Process Modeling and NC Verification,” Proceedings ofSAE I981 International Congress

and Exposition, Detroit, Michigan, February, 1981

2. Hunt, W.A and Voelcker, H.B., “An Exploratory Study of Automatic Verifica-

tion of Programs for Numerically Controlled Machine Tools,” Product Automation

Project, Technical Memo No. 34, University of Rochester, 1982

3. Fridshal, R., Cheng, K. P., Duncan, D., and Zucjer, W., “Numerical Control

Pan Program Verification System,” Proceedings Conference CAD/CAM Technology in

Mechanical Engineering, MIT Press, Cambridge, Massachusetts, 1982, pp. 236-254

4. Chappel, I.T., “The use of Vectors to Simulate Material Removed by Numeri-

cally Controlled Milling,” Computer-Aided Design, Vol. 15, No. 3, May 1983, pp156-158

5. Wang, W. P., Solid Geometric Modelingfor Mold Design and Manufacture,

Ph.D. Dissertation, Cornell University, 1984

6. Wang, W.P., and Wang, K. K., “Geometric Modeling for Swept Volume of

Moving Solids,” IEEE Computer Graphics and Applications, December, 1986, pp.8-17

7. Wang, W.P., and Wang, K. K., “Real Time Verification of Multi-Axis NC Pro-

grams with Raster Graphics,” Proceedings ofIEEE International Conference on Robotics

and Automation, April, 1986, pp7-10

142

143

8. Van Hook, t., “Real-Tune Shaded NC Milling Display,” Computer Graphics

[Proceeding ofSIGGRAPHI, Vol. 20, No. 4, August 1986, pp. 8-17

9. Satio, T., and Takhashi, T., “Comprehensible Rendering of 3D Shapes,” Com-

puter Graphics [Proceeding ofSIGGRAPH ‘90], Vol. 24, No. 4, 1990, pp. 197-206

10. Satio, T., and Takhashi, T., “NC Machining with G-bufl'er Method,” Computer

Graphics [Proceeding ofSIGGRAPH ‘90], Vol. 25, No. 4, 1991, pp. 207—216

11. Huang Y., and Oliver J. H., “NC Milling Error Assessment and Tool Path Cor-

rection,” Computer Graphics Proceedings, Annual Conference Series, 1994, pp. 287-294

12. Oliver, J. H., and Goodman, E. D., “Color Graphic Verification of N/C Mill-

ing Programs for Sculptured Surface Parts,” First Symposium on Integrated Intelligent

Manufacturing, ASME, New York, 1986

13. Oliver, J. H., and Goodman, E. D., “Computational Verification of Numerical

Control Programs for Sculptured Surface Parts,” in Computers in the Design, Construc-

tion, and Operation ofAutomobiles, T.K.S. Murthy and CA. Brebbia, Eds., Springer Ver—

lag, New York, 1987, pp. 105-119

14. Oliver, J.H., D. Wysocki and ED. Goodman, “Gouge Detection Algorithms

for Sculptured Surface NC Generation,” ASME Computer-Aided Design and Manufacture

ofCutting and Farming Tools, PED-Vol. 40, pp. 39-44, December, 1989

15. Oliver, J. H., and Goodman, E. D., “Direct Dimensional NC Verification,”

Computer Aided Design, Vol. 22, No. 1, 1990, pp. 3-10

I44

16. Chang, K.Y. and Goodman, E.D. “A Method of NC Toolpath Interference

Detection fro a Multi-Axis Machining System,” Control ofManufacturing Processes,

DSC-VOL. 28, PED-Vol. 52, ASME. pp. 23-30, December, 1991

17. Jerard, R.B., Drysdale, R. L., Hauck, K., and Schaudt, B., “Method for

Detecting Errors in Numerically Controlled Machining of Sculptured Surfaces,” IEEE

Computer Graphics & Applications, Vol. 9, No. 1, January 1989, pp. 26-39

18. Jerard, R. B., and Robert L. Drysdale, “Methods for Geometric Modeling,

Simulation and Spatial Verification of NC Machining Programs,” in Product Modelingfor

Computer-Aided Design and Manufacturing, J. Turner, J. Pegna and M. Wozny (Eds),

Elsevier Science Publishers B.V. (North-Holland), 1991, pp. 39-52.

19. Chang, K.Y., Graphical Verification ofMulti-Axis Numerically Controlled

Machining Programsfor Sculptured Surface Parts, Ph.D. Dissertation, Michigan State

University, 1991

20. Jane L. Hawkins, “The Wonder of B-Splines, Guide to the Mystery and Power

of B-Splines and their Variations”, Case Center Technical Report, Michigan State Univer-

sity, June, 1987

21. Correns, Martin, “Numerical Evaluation of Nonuniform Rational B-Spline

Surfaces,” Technical Report, Case Center for Computer-Aided Engineering and Manufac-

turing, Michigan State University, 1989

22. Menon, J. P., and Robinson, D. M., “High Performance NC Verification via

Massively Parallel Raycasting,” Technical Report, Cornell University, June, 1992

145

23. Yung, Y. K., Boundary Surfaces ofTool Swept Volumes using Massively Par-

allel Algorithm, Ph.D. Dissertation, Boston University, 1991

24. Cheng, F., “Estimating Subdivision Depths for Rational Curves and Sur-

faces,” ACM Trans. on Graphics, Vol. 11, No. 2, April, 1992, pp 140-151

25. Filip, D., Magedson, R., Markot, R., “Surface Algorithms using Bounds on

Derivatives,” Computer Aided Geometric Design, 3, 4, December, 1986, pp 295-311

26. Carl de Boor, A Practical Guide to Splines, Springer-Verlog New York Inc.

27. Farin, G., Curves and Surfacesfor Computer Aided Geometric Design, A

Practical Guide, Academic Press, San Diego

28. Ni, L., “Parallel Processing”, class notes, Computer Science Department,

Michigan State University.

29. Mortenson, M. E., Geometric Modeling, John Wiley & Sons Inc., 1985

30. Preparata, F. P. and Shamos, M. 1., Computational Geometry: An Introduc-

tion, Springer-Verag New York Inc., 1985.

31. Anderson, R.O., “Detecting and Eliminating Collision in NC Machining”,

Computer-Aided Design, Vol. 10, No.4, July 1978, pp. 231-237.

32. IGES “Initial Graphics Exchange Specifications, Version 3.0,” doc. No.

NBSIR 86-3359 Nat. Bur. of Stds., Gaithersburg, MD, USA, 1986

146

33. HT Research Institute, APT Part Programming, McGraw-Hill Book Com-

pany, New York, 1967

34. Chang, C. H. and Melkanoff, M. A., NC Machine Programming and Software

Design, Prentice-Hall Inc., New Jersey, 1989.

35. Akl, S.G., “The design and Analysis of Parallel Algorithms”, Prentice Hall,

Englewood Cliffs, 1989

36. Aggarwal, A., Chazelle, B., Guibas, L., O’Dunlaing, C., and Yap, C., “Paral-

lel Computational Geometry”, Proceedings of the 35th Annual IEEE Symposium on

Foundations of Computer Science, 1985, pp. 468-477

37. BBN GP1000 manual

38. Mach 1000 and Uniform System Manual

j 39. Yunching Huang, James H. Olive, “NC Milling Error Assessment and Tool

Path Correction”, Computer Graphics Proceedings, Annual Conference Series, 1994,

pp287-194

40. CAM-I inc. “APT4 Sculptured Surfaces Part Program Manual,” Jan., 1985

41. Ford Motor Company, PDGS User Manual, Release 26, 1996

42. Ford Motor Company, CHIPS User Manual, Release 26, 1996

"1111111111111111113

