ma,\uuwm,méwvtrm =

e

S e ==

IVEHSITV LlBRARIES

e (L Wl

= 3 1293 0157

This is to certify that the

dissertation entitled

ON LOOSELY COUPLED PARALLEL IMPLEMENTATION OF
ALGORITHMS FOR COMPUTER AIDED MANUFACTURING

presented by

Ming Bao

has been accepted towards fulfillment
of the requirements for

Ph.D. . Electrical Engineering
degree in

VLY
/C L,/’\/_.- . Lz‘%)\k—/

Major professor

Date /{Cf‘.«i] /C/], /77 7

MSU is an Affirmative Action/Equal Opportunity Institution 0-12771

LIBRARY
Michigan State
University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES retum on or before date due.

DATE DUE DATE DUE DATE DUE

MSU Is An Affirmative Action/E qual Opportunity Institution
coirc\datedus. pm3-p. 1

ON LOOSELY COUPLED
PARALLEL IMPLEMENTATION OF ALGORITHMS
FOR COMPUTER AIDED MANUFACTURING
By

Ming Bao

A DISSERTATION
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering

1997

ABSTRACT

ON LOOSELY COUPLED PARALLEL IMPLEMENTATION OF
ALGORITHMS FOR COMPUTER-AIDED MANUFACTURING

By

Ming Bao

Many manufacturing processes, such as numerically controlled (NC) machining
and robotic spraying, are conducted under direct numerical control of computers. The
process of creating such numerical control (NC) programs remains quite complex and
error-prone for many sophisticated tasks. \ The final result of tool motions under control of
such programs in machining complex-shaped parts is often uncertain. Proofing runs on
actual NC machines are time consuming and expensive. The high cost of conducting test
runs of such programs has created a strong demand for simulators and verifiers for such
programs. Current NC simulation software on sequential machines greatly improves the
verification procedure. However, such NC simulators are still inaccurate and most can
handle only 3-axis milling with the simplest types of cutters. Given the former dearth of
sophisticated software for generating optimal 5-axis toolpaths for more complex tools, this
inadequacy of simulators or verifiers was not very noticeable. However, the current trend

toward higher-capability NC programming systems raises the strong need for more

sophisticated and accurate verification. This trend highlights the tradeoff between verifica-
tion time and accuracy of verification. strongly raising the desire for parallelization of NC

verification or simulation processes.

This research presents an algorithm which can address both concerns -- high effi-
ciency and accuracy, using parallel (or distributed) processing. It not only guarantees that
tessellated surfaces are within a user-specified tolerance, but also pre-estimates work load
directly from the original geometry parameters, such as surface order, control points and
knots. The proposed algorithm pre-evaluates the sculptured surfaces to be machined for
parallel processing, estimates the load balance for the processors, discretizes the nominal
sculptured surfaces based on the surface curvature and user-defined error tolerance, distrib-
utes the computational job onto the given number of processors or workstations, and uses a
parallel processing approach to directly compute the possible interference between the sur-
faces being machined and the envelope of the moving tool, without solving the swept vol-
ume problem as a solid modeling operation. The geometric model uses the ruled surface
defined by the axis of the cutting tool to define the center of the tool envelope. The surface
pre-evaluation guarantees that near-optimal computational performance will be achieved on
a given number of processors. We believe the proposed algorithm could be easily imple-

mented on a distributed system.

Some results from a sequential 5-axis NC toolpath verification system implemented
by the authors are presented first, and this is used as the basis for the parallelization work
described here. Some published parallel approaches for NC machining are reviewed, then
the new scheme for parallelization is presented. Finally, the performance of this scheme on

parallel vs. single CPU machines is reported and future work is discussed.

To my parents, Erlan Ming and Shigiang Bao

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Prof. Erik D. Goodman, to whom I owe a
lot for his consistent guidance, support and willingness to share his time and knowledge
through this research. I cannot possibly enumerate all the ways in which he as a teacher and
as a friend has made my graduate education a resourceful and exciting experience. His con-
fidence in providing me the freedom to explore and his tactful participation in keeping my
work in the proper perspective are deeply appreciated. Furthermore, I would like to thank
him for presenting to me the challenges in the manufacturing area with parallel computa-

tion.

I would like to thank Prof. Lionel M. Ni who has brought me into the fascinating
world of parallel processing. His broad knowledge and experience in parallel computation
have been one of the most valuable sources of ideas for the research. I am grateful to Prof.
Michael A. Shanblatt and Prof. David H.Y. Yen for taking time to serve on the guidance
committee and overseeing this work. I especially thank Prof. Stephen V. Dragosh for step-

ping in on short notice and reading the thesis when Prof. Yen became ill.

Special thanks also are given to my wife Li Liu and to my parents, whose support

during this study were greatly useful and inspirational.

Sincere thanks should be conveyed to my friends, Leslie Hoppensteadt, Ki-Yin

Chang, etc., for providing many sources of my ideas.

Finally, I'd like to thank Erik Veenstra and the Advanced NC Technology team at

Ford Motor Company for their support on this study.

v

TABLE OF CONTENTS

LIST OF FIGURESccootiimiiiinietneseeeeet ettt et sae sttt ss s s s enesessaesnaee ix

CHAPTER |

INTRODUGCTION ..ottt ettt sa sttt se s s s sssss e snss st enesesnees 1
1.1 Numerically Controlled Milling Machines..........c.cccceceeiiiininnniniinicrennen. 1
1.2 NC Program VerifiCation...........cccceeueecenierinneeierinrieeeeceeeteceeeae e seaesesseseesessesnes 3
1.3 MOtVALION ...ttt ettt ettt ettt e asa s seenas 6

CHAPTER 11

LITERATURE REVIEWcooiiiiiiiiiiirerertntctie sttt st st st es e snss e 8
2.1 Solid Modeling TEChNIQUEScceeveerereieiereeieieereeeeeerereeeeesee e e esesesnnas 10
2.2 Image Space TeChNIQUES.......c.cccoeeiiieuiriiirieirirtcecctee ettt 12
2.3 Object Space TEChNIQUESccceeveeeeeeieriieeeeceiee ettt eve e 15
2.4 Parallel Processing Based Techniquesc.covueueeeteririeenenineecnineseenennans 18

CHAPTER 111

MATHEMATICAL REPRESENTATION OF COMPONENTS OF THE NC MILLING

PROGCESS ...ttt st se st saes et se s st e st e s st s sn e e sesasssssnsananas 20
3.1 Overview of the NC Verification Modelc..ccccevvvvenerevureverenrerireeneenene. 20
3.2 The Characterization of NC Machining............cccceceveereveireerenrencsereeennn 21
3.3 Tool Motion MOdELccc.couriimiiieinieeiiirie ettt 26

CHAPTER IV

SURFACE MODEL FOR PARALLEL NC VERIFICATION..........ccccceeeirinieenenrenerenenes 34

Vi

4.1 B-Spline Curves and NURB Surfacesocceevuenievinicnicnenicienccieneeeenee 36

4.2 Chordal Deviation and the Surface Model...........ccccooeveriiiniiininiieee 42

4.3 Surface Discretization Algorithm for Parallel Processing.........cccccceceenene 46
CHAPTER V

PARALLEL NC VERIFICATION SYSTEM.....ccoooiiiieeteeeeee et 63

5.1 Main Parallel NC Verification Tasks.........cccceveeerieneninvcnnincnireceeeeceeenene 64

5.2 Command File and Command Driven Mode..........c.ccocevrinvininencnenenene. 68

5.3 File LOAAET ...ttt e sne s s saane 69

5.3.1 Surface File Loader......c.cccooiiiieiiiiiieenicece e 69

5.3.2 Toolpath (CL) File Loader............cccoeevuerienienrienrieciiesieseieeeieeeessnens 74

5.3.3 Tool Definition File Loaderc.cccocevueevenerinieniienenenrennesisnnanns 74

5.4 Spatial SUBIVISIONcccoveriiveiereiicietictecteeie et st sve et esaeseesae e ssassees 75

5.5 Toolpath Discretization for Multi-Axis NC Verificationcc.cccceeeecennnee 80

5.6 NC Verification with Inward and Outward Tolerances..........c.cccceueeveeurnenunne 82
CHAPTER VI

PARALLEL ARCHITECTURE AND IMPLEMENTATIONccccoceniviniierinnennenn. 87

6.1 INOUCHON. ..ottt sttt e saaesa e sanaae 87

6.2 Background Information on Parallel Processingc.ccccccveueueencveruerinnnen 88

6.2.1 Classification of Parallel COMPULETS..........ccceerurerierineeccrrerireneiaennas 88

6.2.2 Data Communication and Memory ConsiStencycccceceveucvunne 92

6.2.3 Parallel Programming Modelscccoeveieinvenerencecceec e 94

6.3 BBN GP1000 and Mach 1000 System............cceeveirrerrereereenueneeneeneernesesessene 95

6.3.1 BBN GP1000 OVEIVIEW......ccoeverurererrereneenineeneeieeeneeeeneeneenee e esessees 95

6.3.2 Mach 1000 and Uniform System Approachcccccccceeereevenennee 99

6.4 Implementation of Parallel NC Verificationc.ccoccevervievieniiceenecnennenne. 103

vii

CHAPTER VII

EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS.....cccccocvieviiienenne. 109
7.1 Benchmark Application Modelsccccoouenieriirinininnieieneeieeieneee e 109
7.2 System Performance Evaluation.............cccceeeeveeereeeieeecieeceeciecceeee e 124

CHAPTER VIII

SUMMARY AND CONCLUSIONS ...ttt ss s e s ase e eaans 127

APPENDIX A

DEFINITION OF THE APT CUTTER........cocoinitiieieeneieectetete ettt 133

APPENDIX B

ESTIMATION OF UPPER BOUNDS ON SECOND DERIVATIVES OF A

POLYNOMIAL B-SPLINE SURFACE ...ttt sreeeseese e st e esesseeseene 135

LIST OF REFERENCEccooiintitiiriirerete et sresse st s ssesae e s b e s s sasnesnene 142

viil

FIGURE 1.1

FIGURE 1.2

FIGURE 1.3

FIGURE 2.1

FIGURE 2.2

FIGURE 3.1

FIGURE 3.2

FIGURE 3.3

FIGURE 3.4

FIGURE 3.5

FIGURE 3.6

FIGURE 4.1

FIGURE 4.2

FIGURE 4.3

FIGURE 4.4

FIGURE 4.5

FIGURE 4.6

FIGURE 5.1

FIGURE 5.2

FIGURE 5.3

FIGURE 5.4

LIST OF FIGURES

Example of 3-axis Machingccccocviiviiiininicniiiicniciciceniceccieens 3
Undercutting and Gouging for Ball Cutterccocoociiiiiiniiiniiinincnnenne. 4
Tolerances for the NC Machined Surface........cc.ccccooeeivcnenincnencnnencnnenne. 5
Swept Volume of Ball Cutter in CSG Model...........cccovviviicnniiinninincnnnn. 11
A Simple 2D Ray-Rep in Menon's Schemec.ccceecivenininiccnninencs 19
Part Surface, Drive Surface and Check Surface........cccccocuvvinviincnninninnne. 23
Chordal Deviation of Two Surface Pointsccccocevininininciiinencnicnnes 24
Example of 5-Axis Slab Cut Toolpathccooeeeviininnniininiiiieins 27
Orientation Of TOOI AXIS N(1) .eeeeereeeereerieeeireeeeceeeeeeeeeeereeeesnre e csssaeseesnes 28
Tool Swept Ruled Surface..........ooveeeveieiiiienieninieeceeesce e 30
Interference Detection for Ball-end Cutterc..cccoovevivvnincninncnincnnn, 32
2D B-SPINE CUIVE ...ttt et ae b ene 37
Blending Function Cascadeccoceviiieieniiiieniececceceeecce e 38
Surface Mapping Between Parametric Space and 3D Space..................... 41
Chordal Deviation of Two Surface Pointsccccceevenniiiiinicnnniininnnns 43
Transformation from Parametric Space to E3.........ccccccocviinininncnnnnnnnee. 49
Surface Bounds and Weightsccccuveieiniinenncniessccceeceenns 52
Overview of Parallel NC Tool Path Verification System............ccccucu...... 65
Surface Data Structure and Linksc.cccceeevneninrivninnniniininneninns 73
Spatial Subdivision of a Discretized Surface Patch.........ccoceeceencnneninnene 77
Tool Path DiSCTetization..........cccccvueireinieireceseecese e 81

FIGURE 5.5 Offset Point Pout and Pin for Tolerance Specificationcccceceveeceuenene 83
FIGURE 5.6 Relationship Between Tool Envelope and Pout and Pin.............c.c.cc...... 84
FIGURE 6.1 Three Classes of Parallel COMPULETscc..coceeveveneeirnieniencnrentiscneenerennens 90
FIGURE 6.2 Three Parallel Computer PMS Configurationsc.cecceeecernercenccnuncnnen 93
FIGURE 6.3 Block Diagram of Processor NOdecoceoveeveerirnnenneinrecnecienie e 97
FIGURE 6.4 Eight-Node Switch and Packet MoVecccoocviiiiiiiniicccniecie e 98
FIGURE 6.5 Address Space of ‘C’ Programcccceceeeeuevereenenreneneenueneeneeseneesnesennens 104
FIGURE 6.6 The Residences of Surface Data and Tool Path Data.................ccccueueeee. 105
FIGURE 6.7 The Distributed Surface Data Created by UsAllocOnUsProc.................. 106
FIGURE 6.8 Share Passes Copies of Process Private Variable..........c.ccccocceerevcninnnnn. 108
FIGURE 7.1 (a) Original Part SUrfaces.........ccccoecveeienieeiiecreeieeee e e seesseeseesaeessessees 113
FIGURE 7.1 (b) Original Part Surfaces.........cccccervuenieniecieeieeeieereenecseeeseeenecsnesevesnens 113
FIGURE 7.2 (a) NC Toolpath Displayccccceeeriemimirnienieienieeneeieneeesteeeseeeesseeeeennes 114
FIGURE 7.2 (b) NC Toolpath DiSplaycccccevuemirieniirienienteeneiereeie et ceeeeennenes 114
FIGURE 7.2 (c) NC Toolpath DiSplaycccccceeeririmiinirenenecrienieiee e sreeseseenneesnens 115
FIGURE 7.2 (d) NC Toolpath DisSplaycccccceerimiinieniieirecceeeceeeceeeeee e e e eanes 115
FIGURE 7.3 (a) Verification Result (intol=0.05mm, outtol=0.05mm)ccccovereeunen. 116
FIGURE 7.3 (b) Verification Result (intol=0.05mm, outtol=0.05mm)c..cccueeuneene. 116
FIGURE 7.3 (c) Verification Result (intol=0.05mm, outtol=0.05mm)ccccovveveeunn. 117

FIGURE 7.3 (d) Verification Result (Display For intol=0.025mm, outtol=0.025mm)

FIGURE 7.4

Without Rerun Computational Jobc.cccccounevininecinicinicincinnne. 117

Original Part Surfaces for Example 2).........ccccoceveveneninnciinncncnciiinne, 119

e S

FIGURE 7.5 (a) NC Toolpath DiSplayc.cecueevieeierienieeiieee et eie e 120
FIGURE 7.5 (b) NC Toolpath DiSplayc.cccevueriinininenenieneeieceeeeeeine e 120
FIGURE 7.6 (a) Verification Result (intol=0.002mm, outtol=0.05mm) 121
FIGURE 7.6 (b) Verification Result (intol=0.002mm. outtol=0.05Smm) on Toolpath

WIth GOUZING ..ottt ettt et e e et eeees 121
FIGURE 7.6 (¢) Verification Result (intol=0.002mm, outtol=0.05mm) on Toolpath

with Gouging ProteCtionccccevueieviieirneeicieceneeeeseie e eeee e 122
FIGURE 7.6 (d) Querying Verification Result (2.3mm Gouging at X point, and 1112th

Tool Motion Causes the GOUgINg)cccccevveeveerciennecciecniieninrieenneeas 122
FIGURE 7.6 (¢) Verification Result (intol=0.5mm, outtol=0.35mm) on Control Cut

Toolpath with Gouge Protectioncccecveeeencceneneececenninsecncinenne 123
FIGURE 7.7 Speedup on Different Surface Subdivision...........cccceeceevinenncencnnicnucnnen. 123
FIGURE 7.8 Speedup on Different Problem Sizescccceeveeeeereeieeincciereciccecneenes 126
FIGURE 7.9 Processing Time on Different Problem Sizesccccooveviiniencenccnennens 126
FIGURE A.1 Standard APT Seven Parameter CUtter..........cccoevueeeeeeccvenuenennscnicnenenns 134

xi

CHAPTER 1

INTRODUCTION

It is crucial to develop methods for planning and simulating motions of objects
among obstacles in order to fulfill the constant demand for ever higher levels of manufac-
turing automation. Motion planning and motion simulation methods have found important
roles in many manufacturing processes, such as generating collision-free workpaths for

robot manipulators, generating gouge-free toolpaths for numerical control machines, etc.

1.1 Numerically Controlled Milling Machines

Numerically controlled (NC) milling is a common manufacturing process. NC pro-
grams are able to guide machining operations for removal of materials from parts (or
tools) to be machined. Advanced NC systems such as computer numerical control (CNC)
and direct numerical control (DNC) systems, combined with other computer technology,
opened the door for computer-aided manufacturing (CAM) to do automatic control of
manufacturing processes and systems. NC technology is not only used extensively in the
metal-removing milling process, but also applied in variety of other manufacturing pro-

CESSES.

An NC machine is characterized by the motions it can perform. According to the

changes of the relative positions and orientations of the tool and workpiece allowed, it can

be classified as a two-axis, three-axis, or multi-axis (four or more) milling machine. Two-
axis milling indicates that the contouring capability of the machine tool is limited to
motions with respect to X and Y axes, i.c. in a fixed Z plane. This mode of operation is fre-
quently referred to as two-dimensional operation. Three-axis milling refers to a cutting
tool moving simultaneously in the X, Y and Z axes under complete control of the NC pro-
gram. The tool axis orientation of the three-axis milling machine does not change relative
to the workpiece during the entire tool motion. Figure 1.1 shows an example of machining
on a typical three-axis NC machine. This type of NC machine is the most commonly used
in industry today. When more complicated parts with complex shapes are desired, move-
ment capability in only the X, Y and Z axes may require repeated refixturing of the part on
the machine, and also excessive numbers of tool passes to meet the required tolerances.
Rotation of the tool or part about various of their axes while the tool is moving may
greatly improve the manufacturability of such parts. The multi-axis milling machine is
designed for this purpose. In the aerospace and automotive tooling industries, there have
long been demands for machines that have 360° contouring with simultaneous control of
the Z axis; this is usually accomplished with a five-axis milling machine which has two
rotary axes. The five-axis milling machine can continuously re-orient the axis of the tool
as it follows the contour of the part, or alternatively, re-orient the part. In general, the
machine axes, or the location and the orientation of the cutter, change with almost every
motion of the mill during a multi-axis milling process. Five-axis machining is in increas-

ing demand in automotive and aerospace industries.

Despite the widespread use of multi-axis milling, the correctness of the process is

still a subject of considerable interest. Many researchers focus on the generation of gouge-

free toolpaths. Others focus on the verification of the quality of the generated toolpath for
correction of toolpaths. We intend to build a closed-loop NC system which generates, ver-
ifies and corrects toolpaths. Parallel NC verification is thus a component of our future sys-
tem. The objective of parallel verification of NC toolpaths is to evaluate, with high
performance and accuracy, the geometric quality of the real process, before running it on
the actual machines. This work does not, currently, consider the problems of tool deflec-
tion, tool wear, chatter, tool breakage, or part deflection. Thus, it cannot be used to verify

the correctness of “feeds and speeds”.

(b) 3-Axis Machining

(a) 3-Axis Machine

FIGURE 1.1 Example of 3-axis Machine

1.2 NC Program Verification

Although the principle of the NC process is simple, the practice is significantly
more complex, and a number of common pitfalls can lead to major process failures. Since

an NC program for sculptured surface machining consists of a sequence of (typically) lin-

early interpolated tool positions, measures must by taken to avoid overcutting and under-
cutting, to the extent required by the tolerances. Undercutting can easily occur when there
is a discontinuity among multiple surfaces or the stepover distance is too large for the local
surface curvature. Overcutting, or gouging, is a particularly painful problem in sculptured
surface machining. Gouging is often encountered when the cutter size is too large relative
to the concave radius of curvature, when there is a lack of continuity among multiple sur-
faces or when there are (sometimes minute) gaps between CAD-defined surfaces. Figure
1.2 shows various cases of undercutting and gouging for a ball-end cutter. Figure 1.2 (a)
shows the undercutting caused by a large stepover for either zig-zag or box cutting. In Fig-
ure 1.2 (b), undercutting of area B and gouging of area C are caused by use of a large cut-

ter. D is caused by a surface discontinuity, and E results from surface gaps.

p
&/

Part Surfaces
(a) Large StePO‘fef might (b) Gouging and undercutting caused by
cause undercutting larger cutter, surface discontinuity and
surface gaps.

FIGURE 1.2 Undercutting and Gouging for Ball Cutter

When given true position tolerances, overcutting and undercutting of design part
surfaces are defined as shown in Figure 1.3, where ABCD is the as-machined surface by a

particular toolpath. Two tolerance limits, the outside- and inside-tolerance limits, are

defined. If a machined surface point is between the two tolerance limits, the point is con-
sidered within tolerance. If a machined surface point is outside the outside tolerance limit,
it is considered an undercut surface point. Similarly, if a machined surface point is beyond
the inside tolerance limit, it is considered a gouged surface point. In the example in Figure
1.3, the machined surface point A is within tolerance, B and C are undercut, and D is

gouged.

As-machined surface
C

esign part surface

Inside tolerance limit

QOutside tolerance limit

FIGURE 1.3 Tolerances for the NC Machined Surface

Traditional NC program proofing has normally been done by milling materials
softer than the actual ones, or scaling down the size of the machined part to reduce the cost
of the process. Verifying NC programs by the proofing runs on an actual NC machine is
time consuming and costly. Most important of all, a successful dry run only indicates that
the NC program is apparently correct. It is often impossible to measure all possible devia-
tions between the whole design part model and the workpiece part, especially for sculp-
tured surface models. Computer-aided NC verification constitutes a new tool for this

problem. It enables calculation of the errors from the desired part, excluding any of the

unmodeled effects of tool and part deflection and tool wear. It can easily trace gouges to
specific tool motions. It is a feasible and economical way to check NC programs, even if a
reduced number of actual proofing runs is still required before final milling. Given the
growing emphases on quality, flexibility, and agility in high technology manufacturing
such as NC machining, there is strong demand for more accurate, more efficient, and more
automatic computer-based manufacturing processes. Because development of the pro-
grams to guide manufacturing equipment is often time consuming, and because the quality
of these programs often translates directly into product quality, manufacturing process
simulation and verification can play an important role in the enterprise. It can contribute to
quality, flexibility and agility through speedup of process development, optimization of
cycle time, improvement of quality, minimization of waste, and consequently, reduction of

manufacturing cost.

1.3 Motivation

Parallel or distributed computation are important to this effort because for many
manufacturing process simulation and verification tasks, a single PC or workstation does
not have sufficient computing power to carry out the tasks fast enough to permit automatic
generation of manufacturing process programs, such as NC toolpaths. Furthermore, a uni-
processor system is often too slow to allow interactive design of manufacturing programs
without significantly increasing the time required for new process development. To speed
up simulation and verification processes without using expensive supercomputers, one can
use parallel or distributed processing. However, application of parallel or distributed archi-

tectures to such simulation and verification tasks, such as NC machining, etc., is non-triv-

ial and still rare. Such tasks are not “embarrassingly parallelizable,” and decomposability

of a verification algorithm can be aided significantly if it is designed with this in mind.

CHAPTER 11

LITERATURE REVIEW

Software for manufacturing process simulation and verification, including the NC
machining process, typically computes either a graphical representation of the “as milled”
workpiece or the differences between the design part model and workpiece part model
(machined part model). Among the surface types machined by NC programs, sculptured
surfaces which are made up of arbitrary, nonanalytic contours comprise one of the most
challenging areas. Computer-assisted verification systems provide a process by which the
errors between the desired part with the specified tolerances and the part as milled can be
calculated and traced to specific tool motions. This process, using graphical computer
models to replace at least some expensive physical prototypes, is a feasible and economi-
cal way to check the correctness of the CL (cutter location) data file. However, verifying
an NC program, even for only three-axis machining, is still tedious work. In the last two
. decades, many researchers have worked on NC verification and simulation to reduce
proofing time, through various approaches such as Constructive Solid Geometry (CSG),
image-space methods, object-space methods, etc. However, the parallel processing is

rarely considered, except for that provided by specialized graphics processors.

NC toolpath verification began with direct solid modeling approaches. It is based
on the principles of set theory, and assumes that a simulated machined part can be repre-
sented as the result of a series of Boolean subtractions of the swept volumes of the tool

8

motions from the workpiece. The result of these operation is indeed a simulated machined
part, but not the solution to the verification problem, which seeks to show the discrepan-
cies between the simulated machined part and the nominal (design) part. Therefore, these
approaches need to perform another Boolean subtraction to come up with the difference
between the relatively simple design part model and the generally very complex simulated
machined part in order to solve the verification problem. Of course, this difference is not
necessarily in the form in which the user desires to see the discrepancies -- more likely, an
identification of which toolpath segment caused a gouge, for example, is desired. Obvi-
ously, solid modeling based NC verification requires some other computations than those
generally performed by solid modeling systems. Hence, it has been and still is very diffi-
cult to solve verification problems with high complexity because such problems tend to
require very intensive computations. Therefore, other techniques designed more specifi-
cally for solving the same problem have been sought. Based on the new available hard-
ware technology, there are two major categories of NC simulation and verification
approaches which have been developed over the years. One aims at a new and more effi-
cient model to represent the NC verification processes; the other aims at use of advanced
multiprocessor technology. Image space approaches are examples of the former, while
parallel or distributed NC verification approaches are one of the later. Image space meth-
ods employ the methods developed for surface shading to solve the verification problem.
The swept volume of the tool motion is converted by a scan line rendering processor into
screen pixels which are comparable with the screen pixels of the workpiece and fixtures
along a sight line. The Boolean subtraction is performed in the image space and is view-
specific. The resolution for detecting errors is limited by the resolution of the view, the Z-

buffer as well as the view itself. The final verification produces the same type of result as a

10

solid model approach, but only for the chosen view. VeriCut is a typical example of this
approach, and is a leader in the current market. The parallel or distributed NC verification
approach focuses on exploiting advanced multiprocessor computer technology. It divides
one NC verification process into sub-processes and distributes each of them onto more
than one processor to increase the verification efficiency and reduce elapsed clock time.
However, this method is still relatively new and more researches are needed to make it

commercially successful.

Methods of NC milling simulation and verification are generally distinct from
techniques used to model milling phenomena and formulate milling problems. One way to
categorize these methods is to break them into four approaches: solid modeling, discrete
vector intersection, spatial partitioning representation and parallel processing. Since the
spatial partitioning representation approach is, in fact, a combination of others, and the
discrete vector intersection approach can be further divided, we will view the methods in
the following four categories: solid modeling method, image space method, object space
method and parallel processing method. The first three approaches have been applied to
five-axis NC verification with varying ranges of applicability and degrees of success. The

parallel processing based approach is relatively new and is still under study.

2.1 Solid Modeling Techniques

Solid geometry modeling based NC simulation and verification began in the early
1980’s. Solid geometry modeling systemsm'[sl offer the possibility of doing both simula-
tion and verification. Simulation is achieved by subtracting models of the swept volumes

of tool motions from the model of the workpiece. A type of verification can be achieved

11

by Boolean subtraction of the model of the final workpiece from the desired part model.
Constructive Solid Geometry (CSG) is one solid geometric modeling scheme. It provides
a constructive representation of an object of complicated shape, based on a set of primitive
solids such as blocks, cylinders, spheres, cones and other completely surface-bounded sol-
ids, and a set of Boolean operations among the primitive blocks. A complete solid can be
obtained through simple Boolean operations, such as union, difference, intersection and
assembly, of primitive solids. However, the CSG model is an implicit representation in the
sense that the active regions bounding a complex solid are not represented explicitly in the
data structure, which must be computed by means of the definitions of the primitives and
the effects of the Boolean operations stored in the tree structure. A tree structure with
Boolean operators at the non-terminal nodes and primitives at the terminal nodes can eas-

ily be used to define a CSG solid, where the root node represents the complete solid.

FIGURE 2.1 Swept Volume of Ball Cutter in CSG Model

As an example shown in Figure 2.1, a swept volumeBIl6] of 2 toolpath with a ball

cutter can be represented as a union of three cylinders, two spheres, one block. The simu-

12

lation of this kind of machining can be obtained by sequentially subtracting the swept vol-
ume models of tool motions from the workpiece model. The verification can be obtained
by Boolean subtraction of the workpiece model from desired part model. The task is not as
easy for multi-axis machining, where the same primitive solids are not enough to represent
a twisting tool motion. One needs either to generate more complex primitive solids or to
approximate them as unions of many more primitive blocks. An exploratory study was
done by Voelcker and Hunt!12] on the feasibility of using the PADL CSG modeling sys-
tem to simulate NC programs. Fridshal!®! modified GDTIPS to do NC simulation. A prob-
lem of the CSG approach is that it requires a large amount of computational expense,
especially for multi-axis NC simulation and verification, where mathematical primitives

are extremely complex and Boolean operations on them are very compute-intensive.

2.2 Image Space Techniques

The image-space method for NC simulation and verification is another category,
where Boolean operations are done during image rendering. The 3-D machining process
can be reduced to a 2-D problem by considering the intersection of rays from each image
pixel. Two typical image space approaches are proposed by Wang[5 16117 and Van Hook!®!,
Almost all of the image based methods take advantage of the concept of Z-buffer. Z-buffer
contains a real number Z or a depth value associated with each (X, Y) screen pixel. It
always keeps the closest Z value and ignores all the other Z values for each pixel along the
sight line. In other words, it always keeps all the visible Z values. Thus it is a widely used
for hidden surface removal for display of an interactive shaded solid as well as some other

area such as NC machining. For example, Carl Jepson at Ford Motor Company success-

13

fully developed a Z-buffer-based software package called CHIPS#2!, which is able to gen-

erate multi-axis gouge-free toolpaths for sculptured surfaces.

Wang[5 6171 developed a direct NC geometric verification technique for five-axis
milling application. This is a novel view-dependent method for five-axis NC verification.
The beauty of Wang’s algorithm is that he successfully incorporated the idea of a Z-buffer,
which is widely used in hidden surface removal processes, into NC verification. The geo-
metric model of the boundary surface of the swept volume or the composition of the enve-
lope surface is clearly described by its parametric form equation. The envelope consists of
two categories of surface, the subset of the boundary of the generator at the initial position
and the final position, and the new surface created by the generator during the motion. The
algorithm uses a standard Z-buffer and converts CSG part data into pixel data stored in the
Z-buffer for subsequent Boolean operations with other models. The swept volume is also
converted into pixel data, which will be compared with those of the workpiece and fix-
tures. The Boolean subtraction removes the material from the workpiece. The interference
between the tool swept volume and the workpiece can be shown using different colors to

highlight various error areas.

Another Z-buffer-based approach was developed by Van Hook(3]. He developed an
extended Z-buffer structure called a dexel. In contrast to a Z-buffer, a dexel contains not a
single Z value, but several entries for each (X, Y) elements, such as a pointer, color, Z
value of the furthest surface and the Z value of the nearest surface. The dexel structure is
directly displayed just like a normal frame buffer since the color of a dexel at (X, Y)
screen coordinate is the visible surface color at that pixel location. Hook’s method differs

from Wang’s in that instead of intersecting scan lines with swept volumes, he precomputes

14

a pixel image of the cutting tool and performs Boolean subtractions of the cutter from the
workpiece along the toolpath. After the tool is subtracted from the workpiece, the far sur-
face of the tool typically becomes the new near surface of the block, and the inversely
shaded tool color is the properly shaded new workpiece color. The calculation of all the
distance of the verification is along the view-dependent sight lines. The selected view of
the shaded image after verifying the milling path is easily displayed, but cannot be redis-
played from another view point without recomputing the entire problem. The view of the
final part at the complcti.on of the milling is an image-based model that does not provide
toleranced verification or mass properties. His method is limited to three-axis toolpath ver-

ification.

Similar to Wang’s method, Saito and Takahashi®)1%] developed the G-buffer,
another extension of the idea of a Z-buffer, and applied it to NC toolpath generation and
verification using graphics or image processing hardware. The image space methods
developed by Wang, Van Hook, Saito et al. are all view dependent, which allows errors to
be undetected because of the chosen viewing direction, and causes discrepancies to be cal-
culated along the Z direction, rather than along part surface normals. Thus, they are not
checking according to the actual specification of positional tolerances. Displaying another
view of the part requires running the entire simulation again. In addition, the Z-buffer

approaches are inherently limited in accuracy because of the resolution of the Z-buffer.

Based on Hook’s!8! dexel method, Oliver!!!], in 1994, developed a system based
on a so-called spatial partitioning technique which incorporates incremental proximity
calculations between milled and design surfaces. He derived a dexel representation from

the dexel data structure of Hook to approximate free-form solid geometry as sets of rectan-

15

gular solid elements. The dexel representation of a solid is constructed in a dexel coordi-
nate system via ray intersection and is manipulated using dexel-based Boolean set
operations. The major distinction between this approach and the original dexel data struc-
ture is that the construction of dexels in not limited by the viewing vector. The indepen-
dent dexel coordinate system is used to support dynamic viewing transformations. The
verification process is to calculate the error between each dexel and design surfaces. The
advantage of this algorithm is that the discrepancy between the dexel-based milled sur-
faces and actual design surfaces can be calculated during the simulation. To improve the
efficiency, the calculation is performed only on dexels that are updated during simulation.
Although the verification results can be displayed from other views without rerunning the
simulation and verification, it in essence is still a view dependent verification algorithm,
because the accuracy of the verification depends on the setup of the dexel coordinate sys-
tem. Two methods were provided for specification of the dexel coordinate system, one is
via interactive selection, and the other is via calculating the dexel coordinate system orien-
tation that produces the maximum projected area of the design surfaces on the dexel plane.
This means that the algorithm has the same drawbacks as those of image-based algo-

rithms, and certain errors could not be detected, especially for multi-axis milling.

2.3 Object Space Techniques

A “point-vector” technique, which uses vectors to represent excess material
removed by NC milling, was proposed by Chappel!®). The part surface in his scheme is
approximated by a set of points. Direction vectors are created parallel to the surface nor-

mal at each surface point. A vector extends until it reaches the boundary of the original

16

stock or intersects with another surface of the part. To simulate the cutting, the intersection
of each vector with each tool movement’s envelope is calculated. The length of a vector is
reduced if it intersects the envelope. This method is possibly more efficient than typical
solid modeling approaches, since the intermediate simulation step is simplified consider-
ably. Chappel gives a detailed algorithm for computing the intersection between a vector
and randomly oriented cylinder that represents the cutting tool. However, this algorithm is
not very general because it treats only the side surfaces of cylindrical cutters. Thus, this

algorithm is not widely used.

Oliver and Goodman!!2115] jerardl171018], and.Chang and Goodman!!%! devel-
oped various object-space approaches, in which the verification is accomplished by calcu-
lating the intersections of direction vectors with tool movement envelopes. These methods
can work for any part consisting of a set of surfaces for which surface points and their cor-
responding normal vectors can be defined. The commonality of all the systems in this cat-
egory is their view independence. That is, they can generate another view of a part without
rerunning the simulation and verification. Color-coded graphics can display the machined
part with its error areas and the areas within the given tolerance. In Oliver and Goodman’s
algorithm, the part surface is discretized into surface points and their corresponding nor-
mals; i.e., the entire part is represented by a collection of surface points and their normals.
The surface discretization is based on pixel-level resolution for the view selected. To solve
the problem of intersection of surface normal vectors with milling tool swept volumes for
each tool motion, it creates a parallelipiped which bounds the tool swept volume for the
primitive test of each surface point. Passing the primitive test means the surface point most

likely intersects the swept volume. If so, the parallelipiped is refined by adding cylindrical

17

and/or spherical surfaces. The calculation of the intersection of the surface point and the
refined swept volume is then performed. This algorithm is a viable solution to the problem
of accurate and efficient geometric NC program verification. However, it is only useful for
three-axis machining. Jerard developed another surface-based NC simulation and verifica-
tion system. To gain efficiency, the surface curvature and cutter shape and size are used to
discretize the part surface, which guarantees that a given user-defined level of simulation
accuracy is achieved, at least in the Z direction. The surface points are then mapped into
2D buckets. Tool motion is projected onto the buckets. Only those surface points inside the
buckets need to be examined for the intersection checking. One of the major problems for
this system is that it requires a huge amount of memory because the system internally
reserves a huge static array for the buckets, even though it might not need that many. Sim-
ilar to Oliver and Goodman’s method, this scheme was also developed for three-axis NC
verification. In 1992, Chang and Goodman proposed a new approach for five-axis NC sim-
ulation and verification. Based on Goodman’s previous research, the algorithm discretizes
the nominal sculptured part surface and directly computes the possible interference
between these surface points and the moving tool without explicitly creating the bounding
surface of the tool swept volume. The geometric model of this rﬁethod is based on the
ruled surface defined by the axis of the cutter along each toolpath. The system is also view
independent and utilizes positional tolerances for the desired part surface. The simulation
time for all of the above systems grows linearly with the number of tool motions and the

number of surface points discretized.

18

2.4 Parallel Processing Based Techniques

To achieve the maximum usefulness of today’s computing resources, Menon et
al.!?! and Yungm] both proposed parallel NC verification methods. Menon et al. pro-
posed a method of NC verification using ray representations (ray rep) in combination with
the RayCasting Engine (RCE), a new highly parallel computer for processing ray repre-
sentations. The combination of ray representation and RCE removes many of the current
limitations in spatial verification, and extends the range of verifiable phenomena to
include part tolerance assessment and machining dynamics. In Menon’s scheme, the solids
for the part and the cutter swept volume are both represented as collections of rays. Simi-
larly, ray reps can be conceived for solids in 3D. The part solid can be directly sent to the
RCE, while a ray rep for a swept volume is generated incrementally through ‘discrete
union’. The Boolean combination of the solids is straight forward. Menon described his
NC verification in terms of a solids-based computation, which is implemented via ray
reps. Yung’s algorithm is also solid-modeling-based NC verification. He investigated the
boundary surfaces of swept volumes for general rotational cutting tools undergoing multi-
axis NC machining motions, and developed a massively parallel algorithm for generating
geometric representations of boundary surfaces of tool swept volumes and the machined
workpiece. The Jacobian determinant in the parametric space, indicating the direction of
the motion relative to the surface normal of the tool boundary, is used to establish the nec-
essary conditions for the boundary surfaces of the tool swept volumes. Yung concentrated
on the construction of triangular surface representations that approximate the boundary of
the tool swept volume, within specified tolerances. The parallel algorithm Yung presented,

which is on a SIMD parallel computer, generates boundary representations of tool swept

19

volumes, performs Boolean subtractions between boundary representations of the tool
swept volume and the workpiece, and renders raster images of the machined objects. A
detailed description of the algorithm is in Yung[23 1. Both Menon and Yung’s parallel
algorithms for NC verification are solid-modeling-based approaches. The algorithms takes
advantage of machine power for solving the complex NC verification problem. However,
the five-axis swept volumes are composed of mathematical primitives which are extremely
complex, and Boolean operations on them are very compute-intensive, thus reducing the
cost-effectiveness of the techniques. In addition, both of them did not fully consider the
load balancing problem of the parallel computations. They show the correctness of their

algorithms, but did not show the speedup and efficiency of their algorithms.

7

////
7 / %

7
¢/ /////////

Ray-Rep(G,A)

Grid G

NN
N

N

AN

Ray Direction Solid A

FIGURE 2.2 A Simple 2D Ray-Rep in Menon’s Scheme

CHAPTER III

MATHEMATICAL REPRESENTATION OF

COMPONENTS OF THE NC MILLING PROCESS

3.1 Overview of the NC Verification Model

NC verification entails two main tasks -- modeling of machining phenomena, and
assessment of modeled phenomena to determine program correctness. Generally speak-
ing, NC simulators model the machining process, but rely on human observation to detect
machining errors. In contrast, verifiers detect errors by testing mathematical conditions.
Good NC verifiers not only provide accurate analysis results, but also give a graphical rep-
resentation of the verification results, which makes it much easier for the user to find areas

where any tolerance violations occur.

This chapter introduces a model for a single tool motion and other concepts used in
NC milling and verification. The parallel NC verification algorithm will be left for the next
chapter. We will first give a short discussion on the characteristics of NC machining, and
then describe the tool motion model which will be used in our parallel NC verification sys-
tem. Most of the current multi-axis NC verification systems operate by continually creat-
ing the boundary or envelope of the tool motion through time. The verification problem is

handled only as a sort of postprocessing which begins after a full simulation of the NC

20

21

process is completed. The tool motion model we employ does not need to calculate the
boundary or envelope of each tool motion boundary and perform a full temporal simula-
tion of the milling process. It detects interferences between sculpture surfaces, namely
between part surfaces and tool swept volumes, on different processors (or computers)
without using any Boolean operations. The mathematical model for each swept volume

will be briefly described Section 3.3.

3.2 The Characterization of NC Machining

Two major components of the modeling work for NC verification are part surface
modeling and cutter motion modeling. Various approaches, such as CSG methods, image
space methods and object space methods, differ in this aspect. In order to apply parallel
NC verification, let’s examine some of the characteristics and assumptions made for the

NC machining process.

For the purpose of the verification, the cutter is represented as a (symmetrical) sur-
face of revolution, which means that the cross section at any specific position along the
cutter axis has a given radius. Of course, this is not actually true of milling cutters, because
they have teeth. In order to make the assumption tenable, the speed of revolution of the
cutter relative to its feed rate must be large, so that the effects of the individual teeth are
not large relative to the tolerances being checked. This is done purposely to simplify the
modeling of the cutter for the verification. Note that, for example, if a soft material were

cut with a high feed rate, this assumption could be violated.

22

A quite general model for cutter geometry (envelope) will be used here -- the APT
7-parameter cutter. This definition is contained in the APT 133 standard (APT is an acro-
nym for Automatically Programmed Tool, and is an NC programming language still in
wide use in the automotive and aerospace industry). The envelope of the cutter to be
treated here can be expressed as a function of position (height) along the cutter axis. This
is true of any 7-parameter APT cutter except one with a flat bottom. A flat bottom has a
radius, but the cutter envelope is actually the plane bounded by the circle of radius R(0).

Our current verification procedure handles such a flat-end cutter as a special case.

There are two types of cutter motions commonly used in manufacturing, point-to-
point motions and contouring motions. Point-to-point motion is a tool motion from a start
point to a destination point without specific requirements on the toolpath, and a roughly
linear motion over a fairly short segment is generally assumed, but not tightly specified. A
contouring motion is one that keeps the cutter moving along the toolpath with designated
orientations as a function of location along the path in the case of multi-axis motions.
Such complex tool motions are often subdivided into a sequence of simpler, point-to-point
motions, maintaining the deviation of the tool from the path within a specified tolerance of
the given contour. For instance, each step of APT contour motion can be defined by a drive
surface, a part surface and a check surface. As shown in Figure 3.1, the part surface is one
of two surfaces with which the cutter is in continual contact (within tolerance) during a
given machining motion. The part surface is usually the surface that controls the depth of
cut. The drive surface is the second surface with which the cutter is in continual contact
(within tolerance) during a given machining motion. The drive surface guides the cutter

through space, while a given relationship is maintained between the cutter and the part

23

surface. The check surface is the limiting surface for a given motion statement. The cutter
maintains a specified relationship with the part surface and the drive surface until it
reaches a given condition with regard to the check surface. When this occurs, a new
motion statement can be specified. The surfaces to be machined are defined exactly by the
control processor. However, most NC machines are capable of moving only in a straight
line. Therefore, a series of straight lines that approximate the desired contour within toler-
ance must be generated. Many post-processing software packages in the market are capa-
ble of accomplishing this task. Although some researchers have used these three surfaces
to implement an NC verification process, such an approach is quite intractable for multi-
axis tool motion. There are various ways to model both types of tool motion in an NC ver-
ification process. The key to our approach is to use the centerline of the tool, as well as the
envelope of the tool, to define the swept volume of the tool motion. A brief description of

the algorithm will be given in next chapter.

Check Surface

Cutter

Drive Surface

FIGURE 3.1 Part Surface, Drive Surface and Check Surface

24

Another modeling task of NC verification is surface modeling. In Voelcker et al.,
[112] Eridshall3], and Menon’s approaches, solids are used to represent desired parts.
Goodman’s!'3118) and Jerard’s!!8] methods discretize the sculptured surfaces representing
the parts to be machined into a set of surface points and normal vectors at those points.
The level of discretization of the workpiece and associated holding fixtures depends
directly on the size and curvature of the surfaces. The generated surface point data struc-

ture is then used as an approximation to the desired part surfaces.

In the multi-axis simulation and verification systemlm] developed at Michigan
State University, the surface evaluator can provide surface points and can calculate unique
normal vectors for any surfaces except at slope discontinuities -- i.e., along edges and at
vertices. Along edges, two normals may be defined, and at vertices, three or more normals
may be defined. Surfaces need not comprise a closed solid model. The discretized surface
points are further organized into a triangular grid of points, in which the resolution
depends on user-specified values for maximum chordal deviation in each parametric direc-

tion.[21]

Chordal deviation

P1)
distance

FIGURE 3.2 Chordal Deviation of Two Surface Points

25

The chordal deviation is defined to be the distance between the geometric mid-
points P, of two points and the point P as shown in Figure 3.2. An approximation to the
chordal deviation is used as an approximation to the maximum error between a curve and
a line segment joining its two endpoints. A user-specified maximum chordal deviation is
used as a criterion for subdivision of parametric curves in surfaces, by introducing a new
point at the parametric midpoint of any segment of a curve being examined, whenever the
chordal deviation conditions are violated. At any particular time, the points are evaluated
either in the u or the v parametric direction. In other words, one of the parameters is con-
stant. If the distance between two points or the chordal deviation of two points Py and P,
exceeds the user-entered limits for discretization, the curve needs to be subdivided. Recur-
sive subdivision is conducted until all the surface points along the changing parameter (u

or v) satisfy the condition.

An advantage of this approach is that surface evaluation can be done separately
along each parametric flow line -- i.e., in parallel. However, this advantage also becomes
the algorithm’s main drawback, because the satisfaction of chordal deviation along both u
and v parametric directions cannot guarantee the accuracy of surface approximation of a
set of triangles formed with those edges and diagonal lines joining opposite vertices of the
quadrilateral mesh of edges. We will present a new surface discretization algorithm in the
next chapter, which guarantees that the surface tessellation does not violation the user-

specified geometric tolerance.

We observe that tool motion, including multi-axis motion, may be modeled as a
function of tool location and orientation only. For point-to-point tool motions, the swept

volume can be uniquely defined given only the two end points and their (common) normal.

26

The NC verification process will not make any change in the tool location or orientation
data. Hence, the CL data information is an ideal candidate for residence in shared memory,
because it guarantees that dirty memorym] situations will not occur. In contrast, the cut
depths associated with the discretized surface points will be affected by the NC verifica-
tion process. In other words, the simulation will change the location of the deepest-cut sur-
face points. The geometric change for each surface point depends on all the tool motions
that pass close enough to the point. Because of the changes, memory access, mainly mem-
ory write, will occur frequently. If the discretized surface points reside in shared memory,
dirty memory is inevitable, since at a particular time, multiple processors which hold vari-
ous tool motions could tend to access the same surface point. Hence memory contention
happens that not only slows down the NC verification process, but also leads to network
contention and dirty memory problems. The conclusion is that it is best to assign the sur-

face data to different local memories.

3.3 Tool Motion Model

The tool definition, which specifies the shape and size of the cutter envelope when
the cutter is rotating in place, the control information, such as feed rate, spindle speed,
coolant switch, and the tool paths, can all be included in a CL data file. A CL data file has
an ISO standard format. It is independent of the particular milling machine on which the
cutting will be done. It furnishes sufficient milling information to allow NC post-proces-
sors to generate machine-specific codes for different types of NC milling machines. An
NC toolpath typically consists of a list of tool positions and orientations which control a

milling machine driving along the part surface. In 3-axis NC machining, the tool keeps the

27

same orientation for all the tool motions in a particular machine setup. For a multi-axis NC
machine tool, the tool motion becomes very complicated because there is at least one

rotary axis. Figure 3.3 shows the toolpath and cutter orientations for 5-axis slab milling.

FIGURE 3.3 Example of 5-Axis Slab Cut Toolpath

As mentioned earlier, the key concept of our tool motion model is to define the
translation and rotation of the tool in 3D space by using a ruled surface determined by the
axis of the cutting tool. The verification computes the possible interference between dis-
cretized surface points and the moving tool without explicitly creating the bounding sur-
face of the tool motion (the tool swept volume). Mathematically, the motion of a tool can
be defined by the control point C(t) and the orientation of the tool axis N(t). The trajectory
of the control point usually is rendered by linear interpolation between the previous posi-
tion and the current position'®). A series of linear motions is also frequently used to
approximate more complex trajectories, such as circular motion between CL points, by

using a chordal tolerance to determine the step sizes for a series of short linear segments.

28

There are various ways to interpolate the orientation of the cutter axis for each toolpath
segment. The method employed in our system is that the previous tool axis and current
tool axis are treated as two vectors on the same unit sphere[5] and interpolation is con-
ducted along the great circle joining them. In other words, the tool vector function N(t) is
defined by an arc on the great circle of a unit sphere passing through the two vectors, with
motion at a constant velocity as shown in Figure 3.4. The unit sphere is determined by
normalizing the vectors and translating one of the vectors so that the two have a common
origin at the center of the unit sphere. However, on a particular milling machine, the actual
interpolation for the motion of the tool axis relies on the NC controller and the post-pro-
cessor used. If the function for the motion of the tool axis were a known function different
from the great circle function used here, then N(t) could instead be specified without using

the great circle approximation.

Previous tool axis)
Current tool axis

FIGURE 3.4 Orientation of Tool Axis N(t)

The locus of the tool centerline moving with one degree of freedom during a multi-

axis tool move constitutes a ruled surface (2°130] For a given C(t) = {x(2), y(2), z(2)}

29

and N(z) = {x(¢), y(¢),2(t)} in Cartesian coordinates, the center-line ruled drive sur-
face for a tool motion can be parameterized as:

r(t,h) = C(t) + hN(¢)
= [x(¢) + AN (£)]i + [y(2) + RN ,(£)]j + [2(2) + hN,(1)]k

(EQ3.1)
where 0<hA<L, 0<t<1 andL is the cutter height from the control point of the cutter
as shown in Figure 3.5. For a general APT tool, the profile at any specific position along
the cutter axis has a given radius and it can be expressed as a function R(k) of position A
along the cutter axis. The function R(A) for a general APT cutter can have up to three dif-
ferent functional forms for subintervals of 0 < h < L. It should point out that the parameter
t plays double roles in our model. On one hand, it is the parameter to define the ruled sur-
face; on the other hand, it defines different tool positions at particular time instances t. For
any given moment ¢, a unique line /, on the ruled surface is determined by r(t, &) , as
shown in Figure 3.5, because of the generating property of the ruled surface. Now given
any 3D surface point P; = (x;, y;, z;), it is straightforward to find a distance vector (the
shortest vector between [, and P;) u;(t, h) = P;—r(t, hi(t)) . By applying the property
of orthogonality -- i.e. u;(t,h)- N(t) = 0 --to u;(¢, h) , h;(t) can be determined to be

the following:
hi(t) = [x;=x()IN (1) + [y; = y()IN (1) + [2; — 2(1) IN ,(2) (EQ32)

where P(f) = (x(2), y(?), z(?)) is a ruled surface point (control point) and N(¢) is the tool vec-

tor at ¢.

30

Ruled Surface r(t,h)

Part Surface

FIGURE 3.5 Tool Swept Ruled Surface

Having set up the tool motion model, we are able to determine whether or not a
given surface point P; is inside the envelop of a tool motion defined by C(#) and N(#) at
particular time instant . For any surface point P;, there is a corresponding P, which is the
closest point on the cutter axis. P, can be defined by A,(f). Since h;(t) may or may not be
within the bound of cutter [0, L], P, is not necessarily the closest point on the ruled surface
to P;, but is the closest point on the cutter axis. To explain it clearly, let’s look at the prob-
lem from another view. At any given time ¢, we can determine a unique tool center point
(control point) and its axis vector by C(r) and N(t). The center point and the vector in turn
determine the line /, on the ruled surface. For any given discretized surface point P;, there

is only one point P, on /, which is closest to P;. P, has two characteristics.

31

»The distance vector u,;(t, h) = P;—r(t, h;(t)) passes through P,. In other

words, P, is the closest point on /, to P;.

*The distance from P, to P(t) is h;(t) . If 0<h,(t)<L and 0<t<1,then P;

could be affected by the tool, depending on how far it is from tool axis.

Now let’s consider a local coordinate system which originates at P,,. The interfer-
ence check between part surface point P; and the tool motion at time ¢ can be simplified to
checking whether P; is inside a circle centered at P, with radius R(h;). Therefore, P; is
affected by the tool at ¢ if and only if |P,—P,|<R(hy(?)) ,i.e.

[x; — x(2) = h(ON (O] +[y; = (1) = h(IN (1))’
+[z;— 2(5) - R(ON (O S RP(hy(1))

By applying equation 3.2 and the unit N(t), we can have

£(0) = [x;—x(O1 +1y; - (O + [2;— 2(1)) = K2(8) = R*(h(1))
<0 0<t<l and O0<h(t)<L

(EQ3.3)

Equation 3.3 states the condition under which the part surface point is inside or on
the envelope of the tool motion at ¢ or the part surface point is inside the swept volume of

the tool motion at .

Figure 3.6 shows a simple example -- a ball-end cutter. The tool control point at the
center of the spherical part of the cutter, f{¢) has the following form for a given tool motion

{C(®), N(t)} and point P;:

32

([x; - X(O1 + [y; - YO + [2;— 2()1° - B2(8) - R (hy(1))
0<t<1 and OS<h(r)<L
f() =1 (EQ34)
[x; = x(D1 + [y; - YOI + [2;— 2()]* - R2(h(1))
0<t<1 and -R<h(t)<0

FIGURE 3.6 Interference Detection for Ball-end Cutter

The interference detection based on this model includes two steps.

e If —-R < h;(t) <L, interference could occur. Further calculation is required.

e If f(¢) <0, then the part surface point P, is inside or on the envelope of the tool

motion.

33

The implementation of this tool motion model leads to our parallel NC verification

system which will be described in a later chapter.

CHAPTER 1V

SURFACE MODEL FOR PARALLEL NC VERIFICATION

Two major efforts have been developed over the years in NC simulation and verifi-
cation area. One aims at a new and more efficient model to represent the NC verification
process, and the other aims at methods based on advanced computing hardware. Image
space approaches represent the former, while the parallel or distributed NC verification
approach is of the latter type. The parallel or distributed NC verification methods distrib-
ute one NC verification process onto more than one processor to increase the verification
efficiency and reduce process time. However, such methods are relatively new. The sys-
tems developed by Menon et al.[?2l and by Yungm] took advantage of the concept of par-
allel processing, but neither of them addressed essential issues, such as job distribution,
network contention, load balance, system performance (speedup), etc., in the parallel pro-
cessing. The proposed surface model will address these issues and provide reasonable load
estimation for job distribution and load balance, based on geometric information. It will
also guarantees that the discretized surface proximity to the original part surfaces is within

the user-specified tolerance.

The NC toolpath verification process is computationally intensive and time con-
suming. Each of the various approaches has its own characteristics. Examination of the
NC toolpath simulation and verification system[ml developed by Case Center researchers
reveals the following six characteristics:

34

35

e Among all jobs of the NC verification process, the toolpath verification gener-
ally dominates system performance. It is the most time-consuming process,
compared with other tasks, like loading data, surface discretization, etc. Sur-
face discretization may also take a non-trivial amount of time especially for

small value of the tessellation tolerance.

e The “as-milled” surface points receive changing cut values, changing their

positions during verification.

e The toolpaths are the entities to be verified, and verification does not alter

them.

» The calculations at any surface point are independent of calculations at any

other surface point.

e The calculations at each surface point depend only on those toolpath segments
which may pass within a certain radius of the point, where r is the maximum

radius of the cutter used.

e Toolpath segments are linear segments and irregular.

These six proposed characteristics of the NC verification process establish the
basis for a parallel NC verification model. They explain why we should place CL data in
shared memory and surface data in local processors’ memories. To achieve high parallel-
ism, we have decided to make each processor not only conduct a verification task, but also

perform surface discretization, since it also represents a significant load on the system.

Having presented the tool motion model in the last chapter, we will introduce a
new surface model in this chapter. We will first give an overview of B-spline and NURB
surfaces. Then the novel mathematical surface model and surface tessellation algorithm
will be introduced. Finally, the parallel NC verification algorithm will be presented. The

implementation and the discussion of the algorithm will be left to the next chapter.

36

4.1 B-Spline Curves and NURB Surfaces

To help the reader understand the surface model used in our parallel NC verifica-
tion scheme, we first provide a brief overview of B-spline and NURB surfaces -- their def-

initions and some useful properties.

A B-spline is a parametric spline or curve which consists of one or more segments.
Each segment represents the curve over a range of the parameter ¢. The curve is partially
defined by a set of control points [Py, Py, P,, ... P,] which produce an open sided polygon
when connected sequentially by straight lines. The general shape of the B-spline follows
the shape of this polygon, and each segment of the curve is defined by a subset of the con-
trol points. Figure 4.1 shows a control point polygon with its three-segment B-spline
curve. Segment ends are denoted with an x. Noted beside each segment are the control

points that are used to compute that particular segment.

Each control point P; has a blending function N, ,(#) associated with it, where
the subscript k refers to the order of the blending function and B-spline. The blending
function N, ,(¢) associated with control point Pj will change from segment to segment.

The general form of a B-spline segment is defined by

n
P(t) = Y PN, (1) (EQ4.1)
i=0

The summation goes from i = 0 to i = n which means that there are n+/ control

points. The order k of the B-spline is its degree plus 1. The fact that only a subset of the

37

total set of control points is used for each segment implies that the blending functions

associated with other unused control points are all zero.

The blending functions are determined by a set of values called a knot vector -- for
example, knot vector = [xpx; x; x;]. The relationship between the knot vector and the

blending functions is defined as follows:

Segment 2
Py,P,,P3.Py

FIGURE 4.1 2D B-spline Curve

1 x‘-St<x‘-+1

N. ((t) =
b1 { 0 otherwise
< (EQ4.2)

N, (1) = (’—xi)Ni.k_l(')+(xi+k—t)Ni+1.k-1(‘)
[Xivk-1—% Xivk—Xis1

where x; is the ith knot vector element. If x; = x;,;,then N, ;(¢) = 0. This
notation also uses the convention that 0/0 = 0 in the blending function evaluation. There
is only one N ; 1(¢#) that is nonzero for each segment. This nonzero function cascades
down to the final blending functions associated with that segment as shown in Figure 4.2.

Notice that the number of nonzero blending functions per segment is equal to the order

38

of the B-spline curve. There are two main properties of blending functions which should
be mentioned as well.
n
e Y N, (1) = 1 for each segment.
i=0

e N, ()20 forallt.

Ny
7/ N\
7 \
/ \
Nii2 Ni2
/ N\ VRN
N N/ \
Ni23 Ni13 Ni3
VRN / N\ 7/ \
7 N\ N\ 7 \
Ni34 Ni24 Ni 14 N4
4 \ ’ \ 2 \ ‘ N

FIGURE 4.2 Blending Function Cascade

In most cases, it is required that the B-spline pass through the endpoints of the con-
trol point polygon. However, to make the curve pass through the endpoints, the first and
last entries of the knot vector must repeat k times, i.e. Xg =Xj =... = X and Xjx.1) = ... =
X).1 = X;. The length of the knot vector (L =/ + 1) is a function of the number of control
points (n + 1) and the order (k) of the B-spline. It equals the number of control points plus
the order of the B-spline, i.e., L = n +k + 1. The order of the curve must be less than or
equal to the number of control points. The number of segments of the B-spline equals the
number of control points minus the degree of the curve, i.e. n - k + 2. The parameter range

associated with each segment can be determined by examining the knot vector.

39

Control points help to control the shape of the B-spline, and the blending func-
tions, which are determined by the knot vector, control how much each control point con-
tributes to each B-spline segment. When the blending functions for a segment of a B-
spline are computed, only a subset of the knot vector is used. These values form what is
called the effective knot vector. The length of the effective knot vector is a function of the

order k. The relationship is:/, = 2(k-1).

Internal knot vector elements can also be repeated. Repeating an internal knot pro-
duces a zero-length segment and introduces a derivative discontinuity at the segment joint
corresponding to that knot. In order words, repeating a knot once causes the curve to lose
the highest order derivative continuity at the segment joint corresponding that knot. Each
repetition of a knot decreases the number of nonzero segments by one. Thus for a uniform
knot vector, each repetition causes the end knot or maximum parameter value to decrease

by one. A knot may be repeated at most k times, where £ is the order of the curve.

EQ. 4.1 shows that a B-spline curve depends on its control points and blending
functions, which in turn depends on the knot vector. Different forms of control point and
knot vector representations lead to the classification of B-spline curves. The representation
of control points defines whether the curve is rational or nonrational, while the knot vec-

tor defines whether the curve is uniform or nonuniform.

If the B-spline control points are expressed in homogeneous coordinates, it is
denoted a rational B-spline. There are an infinite number of homogeneous representations
of a single coordinate point -- for example, the three dimensional Cartesian coordinate

point (1, 2, 3) can be represented by (1, 2, 3, 1) = (2, 4, 6, 2) = (5, 10, 15, 5). The fourth

40

position or coordinate is the homogeneous variable. If the homogeneous variable is equal
to 1, then the other variables represent the actual Cartesian coordinates. If the homoge-
neous variable is not equal to 1, say A, then to transform back to Cartesian coordinates,
each term must be divided by A. For rational B-splines, the value of the homogeneous vari-
able is called the weight. Each control point has its own weight. If all of the weights are
1.0, then the curve will be the same as the nonrational curve -- i.e., the control point coor-
dinates expressed in ordinary Cartesian coordinate form. Expressing the control points in
homogeneous coordinates has no effect on the blending functions, which depend only on

the knot vector.

The uniform or nonuniform B-spline curve depends on the knot vector being uni-
form or nonuniform. Uniform knot vectors have integer values as knots and the interior
knots are consecutive integers. Thus each segment of the uniform B-spline has a “uni-
form” unit change in the parameter value over its length. The use of real (non-integer) val-
ues as knots, or the occurrence of repeated interior knots, produce nonuniform knot
vectors. The term nonuniform is predominantly used to signify real knot values which pro-
duce unequal parameter changes per segment, such as [0 0 0.3 .8 1 1 1]. An integer knot
vector with repeated knots, and thus segments with zero parameter change, such as [0 0 0
1122 2], is sometimes referred to as an “enhanced” uniform knot vector instead of being
called simply nonuniform!29). The ability of the nonuniform B-spline to have each seg-

ment cover a different parameter range is the main reason for their use.

B-spline surfaces are an extension of B-spline curves. The use of B-splines to gen-
erate surfaces follows easily from an understanding of the curve. The most commonly

used surface representation is the four-sided patch as shown in Figure 4.3. Each point on

41

the patch or surface is a function of two parameters, 4 and v. Figure 4.3 shows the mapping
from parametric space (i, v) to 3D geometric space. One side of the patch and its opposite
side are chosen as curves that depend only on u. The other two edges are functions only of
v. Both u-varying sides share the same knot vector, as do both v-varying sides. The u knot
vector does not have to be identical to the v knot vector; that is, they can be of different
orders and have different numbers of control points. Each edge has a control point poly-
gon. Additional control points determine the interior shape of the patch. If the u edges
have m+1 control points and the v edges have n+1, then there will be a total of

(m + 1) % (n + 1) control points. The control points joined together by straight lines form

what is called a control point net.

h(u, v)

L.

FIGURE 4.3 Surface Mapping Between Parametric Space and 3D Space

Just as the B-spline curve consisted of segments, the B-spline surface consists of
segments known as subpatches. From earlier discussion, we see there are (m-k1+2) u

direction segments if the u edge B-splines have m+1 control points and are of order k1,

42

and that there will be (n-k2+2) v direction segments if the v edge B-splines have n+1 con-
trol points and are of order k2. Therefore the total number of subpatches is (m-k1+2)*(n-

k2+2). The general formula for a B-spline surface is:

m n
2 2 P jwi ;M (N (V)
= (EQ4.3)

0
> 2 Wi Mi N ()

where M and N are two blending functions and w; ; is the weight of control point P; ;.

Likewise, B-spline surfaces can be classified into rational/nonrational, uniform/
nonuniform surfaces. The definitions of these terms are exactly parallel to those described
previously for space curves. The terms NURB surface or NURBS surface, which are

widely used in industry, stand for NonUniform Rational B-Spline surface.

4.2 Chordal Deviation and the Surface Model

Two major components of the modeling work for NC verification are part surface
modeling and cutter motion modeling. Various approaches, such as CSG methods, image
space methods and object space methods, differ in this area. The previous chapter dis-
cussed tool motion modeling. Now we are ready to present a new efficient surface model
for a parallel (or distributed) NC verification system. In Voelcker et al., [1112] Erigshall3),
and Menon’s approaches, solids are used to represent desired parts. Goodman’s! 3116 anqg
Jerard’s!!8) methods discretize the sculptured surface, which is widely used to represent

parts to be machined, into a set of surface points, with the location and normal for each

43

surface point. The level of discretization of workpiece and associated holding fixtures
depends directly on the size and curvature of the surfaces. The generated surface point

data structure is then used as an approximation to the desired (nominal) part surfaces.

In the multi-axis simulation and verification system[16], the surface evaluator can
provide surface points and can calculate unique normal vectors for any surfaces except at
slope discontinuities -- i.e., along edges and at vertices. Along edges, two normals may be
defined, and at vertices, three or more normals may be defined. Surfaces need not com-
prise a closed solid model. The discretized surface points are further organized into a tri-

angular grid of points, in which the resolution depends on user-specified values for

(21]

maximum chordal deviation in each parametric direction.

Chordal deviation

P1 .
distance

FIGURE 4.4 Chordal Deviation of Two Surface Points

The chordal deviation plays very important roles in surface discretization. It is
defined to be the distance between the geometric midpoint Py, of two points, P; and P,
and the point P as shown in Figure 4.4. An approximation to the chordal deviation is used
as an approximation to the maximum error between a curve and a line segment joining its

two endpoints (it would be exact if the parameterization were uniform and the curve were

an arc of a circle). A user-specified maximum chordal deviation is used as a criterion for
subdivision of parametric curves in surfaces. Whenever the chordal deviation conditions
are violated, a new point at the parametric midpoint of the curve segment being examined
is introduced. At any particular time, the points are evaluated either in the u or the v para-
metric direction. In other words, one of the parameters is constant. If the distance between
two points or the chordal deviation of two points Py and P, exceeds the user-entered limits
for discretization, the curve needs to be subdivided. Recursive subdivision is conducted
until all the surface points along the changing parameter (4 or v) satisfy the condition.
Note that the chordal deviation at P, the geometric midpoint of P; and P,, is not neces-
sarily the maximum chordal deviation of the B-spline considered. As shown in Figure 4.4,
the maximum chordal deviation is at P, instead of Py,. Although there is a straightforward
way to solve for the maximum chordal deviation by recursively evaluating Pp,, it would
require a huge amount of computational time. To reduce computational costs, we instead
sample several points and evaluate the chordal deviation at these points. The number of

sampled points is determined by the order of the given B-spline.

As was the case in the previous scheme just described, the parallel NC verification
system will still use discretized surface points along with surface triangles as the surface
model. An advantage of discretizing a part surface along its parametric flow lines is that
surface evaluation can be done separately along each line -- i.e., in parallel. However, this
advantage also becomes the algorithm’s main drawback, because the satisfaction of
chordal deviation along both u and v parametric directions cannot guarantee the accuracy
of surface approximation of a set of triangles formed with those edges and diagonal lines

Jjoining opposite vertices of the quadrilateral mesh of edges. In other words, the satisfac-

45

tion of the chordal tolerance condition in curve evaluation along both u and v directions
does not imply its satisfaction by a set of triangular planes (a faceting of the surface). We
will present a new surface discretization algorithm in next section which guarantees that
the surface tessellation does not violate the user-specified geometric tolerance. Mean-
while, it gives the estimation of the work load for processing each particular surface. This

algorithm can be further used in some other area such as FEM, mass analysis, etc.

We have observed that tool motion, including multi-axis motion, may be modeled
as a function of tool location and orientation only. For point-to-point tool motions, the
swept volume can be uniquely defined given only the two end points and their (common)
normal. The NC verification process basically needs to compute the minimum distance
between the designed surface and its corresponding machined surface along the surface
normal vector to the boundary of the tool motion. This minimum signed distance can be
defined as the so-called cut value or cut depth of the surface point. The NC verification
process will not make any change in the tool location or orientation data. Hence, the CL
data information is an ideal candidate for residence in shared memory, because it guaran-
tees that dirty memory!?#! situations will not occur. In contrast, the cut depths associated
with the discretized surface points will be affected by the NC verification process. In other
words, the simulation will change the location of the deepest-cut surface points. The geo-
metric change for each surface point depends on all the tool motions that pass sufficiently
close (a dynamic condition) to the point. Because of the changes, memory access, mainly
memory write, will occur frequently. If the discretized surface points reside in shared
memory, memory access contention is inevitable, since at a particular time, multiple pro-

cessors which hold various tool motions could intend to access the same surface point. To

46

handle this problem, atomic process function on the surface point is required. All the

involved processors except the one who is performing the calculation for the surface point
have to be either waiting or revisiting the surface points. This not only slows down the NC
verification process, but also leads to network contention and dirty memory problems. The

conclusion is that it is best to assign the surface data to different local memories.

4.3 Surface Discretization Algorithm for Parallel Processing

Surface discretization or subdivision is a technique for tessellating parametric sur-
faces, which generates approximating polyhedrons to represent original designed surfaces
for applications such as NC part surface modeling, mesh generation, etc. One surface dis-
cretization approach is to generate a set of small triangles or quadrilaterals in parametric
space and then map them to the Euclidean space through mapping the vertices of the para-
metric triangles or quadrilaterals to the desired surface to form the approximating surface.
The approximating surface actually consists of a set of flat polyhedrons or triangles. In
other words, flat subpatches are used to construct the approximating surface. To guarantee
the goodness of the approximation of the surface, all the subpatches of the approximating
surface should be within a given tolerance ¢. Finer approximating surfaces require more

subdivision and mapping steps.

The two main purposes of the parallel surface discretization algorithm presented in
this section are to improve the quality of surface approximation, and to exploit parallelism
in sculptured surface based manufacturing processes. The algorithm guarantees that the

approximating surface, consisting of a set of polyhedrons, is within the required accuracy

47

or tolerance. It is also able to provide the necessary information to solve the potential load

balance problem for parallel processing or distributed processing.

There are two major types of subdivision techniques. One is called adaptive subdi-
vision, which can generate an approximation surface that is within the required tolerance.
This method is very time consuming because of all the flatness testing required during the
subdivision process. The other technique is to estimate a subdivision depth ahead of the
subdivision process. This subdivision depth guarantees the required flatness of the sub-
patches after the subdivision. Therefore, flatness testing is not required during the subdivi-
sion process. Filip et. al'®! and Chenglz‘” proposed widely adopted methods for
estimating the subdivision depths for parametric surfaces. Filip et. al.’s algorithm requires
direct estimation of the sup’s of the second partial derivatives over the domain of the sur-
face. This is straightforward for polynomial B-spline surfaces, but is tedious and painful
work for rational B-spline surfaces because the estimation of sup’s of the second deriva-
tives requires computing the third partial derivatives, finding their roots, and evaluating the
second partial derivatives at these roots. Cheng extended Filip et al.’s algorithm by trans-
ferring rational B-spline surfaces to polynomial B-spline surfaces under the standard per-
spective projection. Cheng’s algorithm successfully avoids direct evaluation of the sup’s of
the second partial derivatives for the given rational surfaces. However, his algorithm fails
to give the expected results due to the sensitivity of the weights of the rational B-spline
surface because of the perspective transformation. Based on Filip et al.’s and Cheng’s
work, we present a new algorithm which improves both surface discretization and parallel-
ization. It guarantees the proximity of the approximating surface and the desired surface.

It is also helpful to pre-estimate the computational load of NC verification and give a

48

worst-case performance evaluation for parallel processing. Furthermore, it can guide the
job distribution on a parallel machine or distributed system. We first give the definitions of

some problem-related terminology, as follows:

Given an E" (Euclidean n-space, n 2 3) parametric surface S(u,v) defined over a 2-

D quadrilateral Q.

Let € be a user-specified surface discretization limit (¢ > 0) on S(u,v). It means
that the distance between any surface point P and its corresponding point P on the

approximating polyhedral surface must be smaller than €; i.e., |P - f’| <€.

Let AUmax and AVmax be the maximum allowed A values for u and v. These
parameters determine the maximum steps in parametric space. They implicitly indicate a
lower bound on the number of discretized surface points required so that the approximated
surface is close to the desired surface within limit €. This is especially important for flat
surfaces, since flat surfaces could have arbitrarily large A values. In most cases on sur-
faces with high curvature, the required A values are normally less than these limits, so

they do not come into effect there.

Let AUest and AVest be the estimated allowable A values for u and v. These
parameters are obtained by the algorithm that will be presented later in this section. To dis-
cretize a given surface, our objective is to find AUmin = min(AUest, AUmax) and
AVmin = min(AVest, AVmax) in order to get a good approximation of the surface and

good estimate of workload for parallel or distributing processing.

49

A midpoint subdivision of quadrilateral Q is the process of subdividing Q into four
subquadrilaterals along the midpoints of its edges. The number of recursions of the mid-
point subdivision process is called the subdivision depth n. Through recursion n times, the

parametric surface can be split into a fine, locally quite uniform mesh.

[24]Let T be a subtriangle of Q with vertices vi(u;, vp), i=0,1,2, and let h(u, v):
T — E™ be a linearly parametrized triangle in n-space with vertices S(v;), i=0,1,2. A trian-
gular subpatch of S is said to be within € if

sup inf IS(u,v)-hu, V)| <e
(,eT (u',V)eT

FIGURE 4.5 Transformation from Parametric Space to E3

Filip et. all?’] proved that if T is a right triangle in parametric space with
Vv, = Vo+(Au 0) and v, = v+ (0 Av), which is the case in most surface applica-

tions, and if S(u,v) and h(u, v) are defined as above, then the following equation is true.

50

sup IS(u,v) —h(u,v)| < -é(Au?'Ml +2AulAvM, + Av2M3) (EQ4.4)
(u,v)eT

where

X
I

2
0

sup |——52 (u, v)
(uv) € [0,1]x [0, 1]§ou

az
M, = sup (u,v)
(uv) € [0,1]x [0, 1] Judv

az
M, = Sup 55 (u, v)
(uv) € [0,1]x [0, 1]]dV

(24l et Q' be a subquadrilateral of Q after n levels of recursive midpoint subdivi-

sion. S(Q") is said to be within € if the triangular subpatches S(T;) and S(T,) are both
within €, where T and T, are subtriangles generated by splitting Q' along one of its diag-
onals. Furthermore, a subdivision depth n guarantees the € -closeness of S if S(Q') is
within € tolerance for all the subquadrilaterals Q' of after n levels of recursive midpoint

subdivision.

The polyhedron based approximation surface can be obtained by recursively sub-
dividing Q into small subquadrilaterals and replacing each triangular subpatch with corre-
sponding triangle h(u, v): T — E”. The closeness of the approximating surface to the
desired surface S is controlled by the subdivision depth n. The proximity is within toler-
ance € if the subdivision depth guarantees the € -closeness of S. Clearly, the subdivision

depth should be just large enough to provide the required closeness. Otherwise, the surface

51

might be over-subdivided. However, in the case of a very flat surface, we also impose con-
ditions Au = AUmax and Av = AVmax in order to place an upper limit on the trian-

gle size even for flat surfaces.

Let S(u,v) be arational B-spline surface with degree m xn (m = k1 -1 and
n = k2 -1, where k1 and k2 are the order of surface in 4 and v direction separately),

with control points P;;, weights w; j and blending functions M; ,,(u) and N i n)

D D P wi M (DN (V)
S(u,v) = =0=0
D 2 Wi M (WN (V)

i=0j=0

Consider S(u, v) to be the image, under the standard perspective projection F:

E'SE , of the E* polynomial surface S(u, v) . We have

m n
Suv) =Y Y Py M, (N, 15(v) (EQ4.5)
i=0j=0
where i’,"]’ = Pi' jwi‘j
W"j

As we described earlier, once a rational B-spline surface is given, homogeneous
representation of control points as well as the knot vector are then determined. Expressing
the control points in homogeneous coordinates has no effect on the blending functions,
which depend only on the knot vector. Instead, it adds one more degree of freedom per
control point to the surface and thereby allows the representation of surfaces that are

impossible to represent exactly with nonrational B-splines. The homogeneous representa-

52

tion of control points also provides a key for surface estimation. Two useful values, mini-
mum weights w,,;, and maximum norm of control points p,,,., can be derived from it. The

definitions are given as follows:

I
I

min{w,-'j [0<i<m0<j<n} and (EQ4.6)

min

max{|P;] 10<i<m0<j<n} (EQ4.7)

pmax

Similarly, we can define w,,,, and p,,;,,. Since w,,;,, Sw<w,,, and

2 2 2
Pmin S JG}) + (vy—v) + (‘%) < Ppmax » it is possible to find a surface boundary domain D

as follows:

1/2 2, 2
DE{P=(x,y,zaW)tlwminswswmax’pminsa, X +y +z Sp’”‘“}

Pmin

(b) '

FIGURE 4.6 Surface Bounds and Weights

53

Examining this situation, it is obvious that D is an E* truncated hypercone which
determines surface upper and lower bounds because rational B-spline surfaces satisfy the
convex hull property. To understand this discussion, picture a 3D graph with one w axis
and an xyz plane containing surface bounds for a particular w, as shown in Figure 4.6. Fig-
ure 4.6 (a) is a perspective view, and (b) is the side view. Based on the definition of D, we
know that wp,,; < Nt + y2 +22< WD .z » Which determines the truncated hypercone. At
each particular value of w, two hypercircles are obtained. These two hypercircles define
the boundary of the surface points for the given weights. In fact, sz + y2 +2° is the dis-
tance of a surface point from the w axis. When w = 1, the surface bounds equal the control
point bounds. In other words, the whole surface is within the control point bounds. When

w decreases, the surface bounds shrink and surface estimation becomes more difficult.

Cheng[u] gave two properties based on polynomial surfaces S (u, v) . He proved
that for any given € > 0, there exists a 8 > 0 which is the length of the shortest line seg-
ment PP, which lies in D and is projected onto a segment S(P,)S(P,) of length €. Such a

O can be computed by

wmine
O<es<p
2.1/2 max
(14 Ppaz -8
& =4 (EQ4.3)
Wmine Pmax <es 2pmax
| + o0 ES2P,.0x

Cheng also stated an important property -- that a subdivision depth n which guar-
antees the 8-closeness of (u, v) would guarantee the € -closeness of S(u, v) , where 3

is defined as above and € is a user-specified surface discretization tolerance. We will

54

directly apply this properties as well as EQ. 4.8 in our algorithm because S(u, v) is poly-

nomial surface.

Unlike what Cheng did in his approach, we want to consider the subdivision
depths in the u direction and v direction separately, instead of computing a single common
subdivision depth. This is because the necessary iterations of midpoint subdivision pro-
cesses in the u direction and v direction are generally different. More unnecessary march-
ing steps along either the u or v direction implies much more unnecessary computational

work is needed.

Since S(u,v) is polynomial surface, we can then directly use My, M, and M,
defined by Filip et al.1?31 to make our parametric space surface approximation based on

second derivatives.

3%
M, = sup 53 (4, v)
(uv) e [0,1]x[0, 1]}ou

3% .
M, = sup (u, v)
(uv) e [0,1]x[0,1] Judv

3%,
M; = Sup >3 (4, v)
(uv) € [0, 1] x[0, 1]V

As given in de Boor!26], the n-th derivative of a B-spline curve

C(u) = Y P;M, (1)
i=0

can be expressed as

L) = (k=m).(k=1) Y, PIOM, (1)
u i=n

55

where

pim - P D PTD

‘ u

i+vk-n— Ui

By applying the above equation and the convex hull property of B-spline surfaces,

the following relations can be obtained:

(EQ4.9)

M, < (k1-2)(k1-1)

max max auﬁi,j'(au+bu)i)i—1.j+bui)i-ljl
<ism0<j<

aubucu

M,<(kl-1)(k2- 1)1”“” '”“xani,j—Pz-l,j—Pi,i-l +Pi—1’i-1| (EQ4.10)

Sism1<j< b,b,
|(EQ4.11)

My <(k2-2)(k2 - 1)2'"“" "’“J‘J“vi’hi- (a,+b)Pij 1 +bP;; 2

<jsn0<is< ab,.c,

where

y = Uiyk1-2— Ui a, = Visk2-2"VYj-1

b, = Ui 1-Y b, = Vjika_1-V; (EQ4.12)
Cu = Uisk1-27 Y Cy = Vjisk2-2"Yj

Refer to Appendix B for the proof of EQ. 4.9, EQ. 4.10 and EQ. 4.10

The physical meaning of M;, M, and M3 are the maximum curvatures of surface
S(u, v) . They also provides an estimation of necessary stepovers in the u and v direc-
tions for surface tessellation. If M; = 0, it means that the surface is flat in the u direction --

i.e., the u direction is linear. Likewise, we say the surface is flat in the v direction if M3 =

56

0. If the u direction is flat and the v direction is not, such as occurs in a cylinder, then the
necessary stepover size, or number of recursive subdivisions, in the u direction during sur-
face evaluation depends on AUmax . Similarly, if the v direction is flat and the u direction
is not, the necessary stepover size in the v direction during surface evaluation depends on
AVmax . If both directions are flat, then the stepover sizes in both directions should be the
same. Otherwise, the proportional contribution of the partial term M, to stepover sizes in
the u and v directions will take into consideration the ratio of M; and M3. As a result, we
have four different cases, M; >0 and M;>0, M; >0 and M3 = 0, M; = 0 and

M;>0,and M; = M3 = 0. We will discuss each of them later in this chapter.

Based on the above equations, a linear surface approximation which is different
from the traditional surface approximation can be presented. This approximation is espe-
cially important for applications where the original surface definition is difficult to work
with, such as in display of the surface and calculation of surface properties. It is important
that a bound on the error of the approximation is known so that any analysis done on the
approximation can take it into consideration. The traditional way to approximate a given
NURB surface is to recursively subdivide the B-splines in 4 and v directions, and to per-
form a tolerance test. These methods have the advantages over non-adaptive methods that
the approximating pieces can be placed adaptively over the surface -- that is, more surface
points or meshes can be placed in areas of greater curvature, which minimizes the total
number of surface points. However, in the manufacturing area, high degree surfaces are
rarely used, because they are not very stable in practice. Those places with high curvature
on manufacturing parts are often be broken down into small surface pieces so that rela-

tively low degree surfaces can be used. The algorithm presented here is several times

57

faster than the usual adaptive algorithms. In addition, the number of surface points gener-
ated by this scheme is not much more than necessary, since in the worst case, the surface
can first be split into its patches, with each patch usually having roughly similar curvature.

Then each patch can be approximated independently.

Unlike Cheng’s algorithm, we divide surfaces in the u and v directions separately.
In other words, we have two different subdivision depths, n, and n,. Thus the approxi-
mated surface consists of (n, + 1)(n, + 1) discretized surface points, or 2n,n, triangles
constructed from these points. The subdivision depths n, and n, also give the stepover

sizes, 1/n, and 1/n,, in parametric space.

It is important to point out that n,, and n, will be very useful for us to estimate a so-
called min-max bounding box. The bounding box is defined by two points

P_. =(x

min Yand P, .. = (X000 Ymax» Zmax)- ANy surface point P satis-

min> Ymin> Zmin

fies P,;, <P <P, , . The bounding box will help us to eliminate those toolpath segments
which will not affect the selected surface, so that most unnecessary computation for tool-
path verification can be eliminated.
Here is the parallel NC verification algorithm for a given rational B-spline surface.
1. Compute S (u,v)

2. Compute the values of W, Pmac and & by using EQ. 4.6, EQ. 4.7 and EQ.

4.8.

3. Compute the values of M;, M, and M3 based on EQ. 4.9 - EQ. 4.12.

58

4. Compute subdivision depth n, and n, or parametric stepover size 1/n, and 1/n,,
using one of the four cases below, based on the values of M;, M, and M;. Notice that 1/n,

and 1/n, are actually equal to AUest and AVest defined earlier.

As we discussed earlier in this chapter, M, M, and M3 gave us a clue to determine
the necessary stepover sizes in the u and v directions. M; carries the curvature information
for the u direction, while M3 has it for the v direction. Thus we can define the ratio of M,

and M3 as k -- i.e. k = M;/Mj; in general, and treat each of the special cases separately.

From another view of the problem, since 1/n, and 1/n, have the same meaning as

Au and Av in EQ. 4.4, we can substitute them to obtain the following equation:

%(AuzM |+ 2AuAVM, + AV M) = %(%Ml + 2 M+ le3] =8 (EQ4.)
n, Pulty n,

Based on M, M, and M3, which were found in step 3, we can now solve for n,

and n,, using one of the following four cases:
Casel: M;>0and M;>0

This is the general case. Since n, and n,, are the necessary subdivision depths in
the u and v directions, we can set the ratio of them equal to k -- i.e., k = n,/n,= M{/M3. By

substituting k into EQ. 4.13, we obtain:

LM, +2kMy + M) = B
8n,

The solutions for n, and n, for this step are then given in EQ. 4.14

59

(0, = JSLS(M1+2kM2+k2M3)
d where k = M;/M; (EQ4.14)
an - -[7

Case 2: M; >0 and M; = 0, which means that the surface is flat in the v
direction or the v direction is linear. Thus the necessary stepover sizes in the v direction

can be set to 1, i.e. n, = 1. EQ. 4.15 gives the solution in this case.

S
|

.= 8—18(M2+ JM,% +85M))

: (EQ4.15)

Case 3: M; = 0 and M; >0, which means that the surface is flat in the u

direction or the u direction is linear. Similarly to Case 2, we have

4 (EQ4.16)

\

Case4: M, = 0 and M5 = 0, which means that the surface is flat in both the
u and v directions, or both the u direction and the v direction are linear. In this case, the
ratio of n, and n, is equal to 1. Thus we have
1 M,

n,o=n, =505 (EQ4.17)

60

5. Determine the actual stepovers in the u and v directions by

Au = min(1/n,AUmax) = min(AUest,AUmax)

(EQ4.18)
Av = min(1/n,AVmax) = min(AVest,AVmax)

6. Compute the total estimated number of discretized surface points for all the

surfaces, assuming there are a total of m surfaces

_w [gl
P - .21{(Au,-+l)x(Avi+l)} (EQ4.19)

1=

7. Have the master processor distribute surface patches along with Au and Av to
each processor for discretization. The total number of discretized surface points on

each processor should be approximately N,/p in order to maintain load balance.
8. Each processor evaluates its assigned surface patches independently.

9. For each surface patch, determine the min-max bounding box by first finding
Pmin and Py, 44 from the discretized surface points. Notice this can be done during the
surface evaluation process. Because our algorithm guarantee 8 -closeness, the actual
min-max bounding box can be easily determined by Ppyi,- (8, 8, 8) and Ppyay + (8, 9,

d).

10. Eliminate unnecessary toolpath segments and perform NC verification on those

surface patches in local processor memory.

11. Postprocessing, including extraction of the NC verification results from each

processor and graphical display of the results.

61

Suppose we have p processors on our parallel machine, and we distribute the math-
ematical representation of a subset of the surfaces to each processor and allow it to gener-
ate approximately N,/p surface points independently. The sets of discretized surface points
on each processor are totally independent of each other. Therefore each set is placed in its
processor’s local memory. The toolpath data can be stored in shared memory, or each pro-
cessor may make a local copy of those toolpath segments which it might possibly need,
depending on the size of local memory on each processor. In this manner, fully parallel

operation can be achieved.

The estimated processing time on a sequential machine, T, and the parallel pro-

cessing time, T, can be expressed as:

T. =T

K sinit

+T Np and

N
T, = [Tp,.m., + TC—pB + Tn(p)-l

where T;,,;, and T),;,;, are the average process initiation or setup times on a sequential
machine and a p-processor parallel machine, respectively. T, is the average computation
time for NC verification on each surface point. N, is the total number of discretized part
surface points. T,(p) is the communication time spent among the processors, including

data transfer, shared memory access, etc. T,,(p) is a function of number of processors p.
Finally, the estimated process speedup S, of our algorithm is given in EQ. 4.20

T Tu+TN,
Sp =7 =7 sinit ~_c P (EQ4.20)

N
P [Tpinit + Tc7p + Tn(p)]

62

When problem size -- i.e., the total number of surface points to be verified, N, --

tends to infinity, we can achieve the ideal case, whichis, lim S

= p.However, when p
Np — e

p
increases without Np dramatically increasing, § P 0 because T,(p) also increases,

mainly due to network contention.

We will present experiment results in a later chapter to demonstrate the proposed

surface discretization algorithm for parallel processing.

CHAPTER V

PARALLEL NC VERIFICATION SYSTEM

Based on the previous discussion and the proposed parallel NC verification
scheme, we construct the system defined in Figure 5.1. This system reads part surface data
files, CL data files and APT cutter statements as inputs. It also allows users to specify the
surface discretization tolerance and NC verification tolerance including intol, outol and
range of interest. If a cut value is within the range specified by intol and outol, then the cut
can be considered within machining tolerance. Range of interest is a user-selected param-
eter to provide a maximum offset around the surface, outside of which the algorithm need
not calculate cut distance, and the display of those areas can be uniformly colored. The
system pre-evaluates the part surface data and distributes the surface data in parametric
form to each of the p processors. The initial load balance on each processor is guaranteed
because each processor will conduct the NC verification process on an approximately
equal number of surface points. The surface discretization is performed locally on each
processor. The selection of the set of possibly relevant toolpaths is also done on each pro-
cessor (note that these sets are typically neither disjoint nor identical across processors). A
local copy of the toolpath set can reduce network contention and increase computational
efficiency as well as system speedup, if local memory permits. Then the most time-con-
suming computations of the NC verification, minimum cut value calculation and surface

discretization, proceed totally independently on the p processors. Verification results are

63

64

displayed graphically to depict any tolerance violations, and the data structure permits

arbitrary views without redoing any verification calculations.

In this chapter, we introduce the parallel NC verification system. The four main
tasks of the system are discussed first. Each of the major components of the system will be
presented. The algorithm for each component is depicted in pseudo code. We then intro-
duce the overall NC verification procedure and the necessary input and output data for the

system.

5.1 Main Parallel NC Verification Tasks

There are several steps in our parallel NC verification system. First, one must be
able to load surface data, cutter description data and CL data. Then surface data must be
evaluated and initial load balance must be estimated before distribution of parametric sur-
face data to each processor. On each processor node, the discretized surface point nets
must be generated. Those toolpath segments which possibly affect part surfaces must be
selected and discretized if necessary. Finally, maximum cut depth on each surface point
must be computed to provide NC verification results. Thus, this procedure consists of four
main tasks: surface pre-evaluation, object space surface discretization, toolpath processing
and verification, and display of the verification results as a pseudo-coloring of the part sur-

faces. We now provide pseudocode to describe each process.

65

L Y ¥

Load NURB surface data b Load toolpath data
Tolerances
Pre-evaluate surfaces I | Load APT cutter data |

(]

Distribute surface in
parametric form to nodes

v y

\
Discretize surface patches using proposed algorithm and Pp
construct the surface point data structure in voxel space
Find Max-Min bounding box for the surface patches
Construct 3-D-cubed “box space” structure

Select P ihl i :(h g1 bhased surface
bounding boxes
VERIFICATION

Localize tool sweeps in 3-D box space
Calculate Deepest Cuts for points in possibly affected boxes

Graphical Display
(depicting tolerance violations)

(]

View Selection and Display
(zoom, enlarge, rotate, etc.)

FIGURE 5.1 Overview of Parallel NC Tool Path Verification System

e Surface pre-evaluation

Load the surface data and user-defined tolerances for surface discretization

For each surface:

{
Pre-evaluate surface and compute the stepovers in 4 and v directions
Compute maximum number of discretized surface points possibly required
Calculate the min-max box

}

For each surface:

{

Based on the number of processors and estimated maximum computation load,
determine the ranges of 4 and v; i.e., define the possible sub-patches of the sur-
face, in order to satisfy the load balance criterion

Distribute the parametric surfaces, possibly surface sub-patches, along with the
ranges and stepovers in u and v, among the processors

» Object space surface discretization on each processor

For each surface:

{

Discretize each NURBS (Non-Uniform Rational B-Spline) surface patch and
store surface points and normals in a POINT list data structure

Compute the min-max box of the processor’s work space -- i.e., the min-max
of all the processor’s surfaces

}
Construct a triangle list based on the POINT list

Classify each surface point into a uniform discretization of 3D-space (voxels), and
establish a linked list for each voxel including all of its points.

67

»Toolpath Verification on each processor

Load the cutter data and CL file
Link all CL points to create a toolpath segment list
For each toolpath segment:

{

Check whether it is possibly within the min-max box of the processor’s work-
space

Calculate the parameters for the tool axis motion, implicitly defining a ruled
surface

Further discretize the toolpath segment if necessary, when the tool axis orienta-
tion changes within a segment

Determine which voxels may contain this toolpath segment

For every surface point within those voxels which possibly interfere with this
toolpath segment

{

Simulate the tool motion along the toolpath and compute the cut value for
the surface point

Update the cut value in the POINT data structure

Display the verification results as a pseudo-colored raster image of the part surfaces

For each triangle in the triangle list:
{
Retrieve the cut values from the vertices of the triangle

Compute the color value at each pixel inside the triangle based on the magni-
tudes of the three cut values

68

Determine the boundaries between regions of varying hues between the dis-
cretized surface points by linear interpolation of cut values. Determine inten-
sity based on angle between sight line and surface normal

5.2 Command File and Command Driven Mode

In a previous NC simulation and verification system!1®], the system ran in an inter-
active mode; that is, the user had to specify all the parameters via an X-Window-based
graphical user interface (GUI) and wait for the result while the verification computation
was processed. Since the amount of computation required is often large, the user might
have to wait a long time for results. Many CAD/CAM systems in the market now provide
a so-called batch or command-driven mode to alleviate this type of problem. While the
software is running under batch mode, the user is free to use the computer (and CAD/
CAM system) to do other tasks. We incorporated such a batch mode in our new NC verifi-
cation system. The two immediate benefits obtained are: 1. system efficiency is improved
and enforced idle waiting time is eliminated; 2. the system is more adaptable and portable.
For example, there is no X-Window environment on the BBN GP1000 parallel computer,
so the earlier system could not be run on that machine; the new system has run success-

fully under this command-driven mode.

The new parallel NC verification system can run either with or without an X-Win-
dow environment. If one has an X-Window environment, the program will run as before.
However, if one does not have or does not want to run under X-Windows, the program can
be run through a command file. There are some reserved keywords for command files,

such as rd_srf, rd_path and rd_tool, for reading surface file, toolpath file and cutter defini-

69

tion file, respectively. There is also srf _data for reading surface discretization parameters,
// stands for comment line, etc. The following example shows a typical verification proce-

dure defined by a command file.

// read surface file, toolpath file and tool definition file

rd_srf apmes.iges

rd_path apmes.cl

rd_tool apmes_apt_cutter

// surface tessellation parameters: maximum chordal deviation and polygon length
srf_data 0.25 0.5

1d_srf

1d_tool

pre_process

// conduct verification with INTTOL, OUTTOL and range of interest

verify 0.50.5 1.0

5.3 File Loader

To process the NC verification, the system needs to know input data, such as part

surface information, cutter definition and CL data, etc. The file loader is designed for this

purpose.

5.3.1 Surface File Loader

The desired part surfaces used in our system consist of NURB surfaces, which are
defined by a designer and typically are directly produced by a CAD package. NURBS,

trimmed NURBS, and bounded NURBS may all be stored in standard IGES formats. Trim

70

and boundary curves may be either NURBS curves, composite curves or copious data
entities in IGES format. The core NURBS surface data is the type 128 entity of IGES.

This entity can exactly represent various analytical surfaces of general interest.

The IGES 128 entity includes two major parts, the directory entry and the parame-
ter data. The directory entry provides general surface information for both the surface gen-
erating system and the surface manipulating system. The surface form number in this entry
defines surface type, which could be NURBS surface type, ruled surface type, plane sur-
face type, revolution surface type, etc. The parameter data entity gives the entire definition

of the surface. It is in the following form:

Index Name Type Description

1 K1 Integer Upper index of first sum of S(u,v)

2 K2 Integer <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>