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ABSTRACT

BIFURCATION SUBSYSTEM METHOD AND ITS APPLICATION TO DIAGNOSIS OF

POWER SYSTEM BIFURCATIONS PRODUCED BY DISCONTINUITIES

by

Khadija Ben-Kilani

Recurrent problems in diagnosing the cause and location of a stability problem in a

power system are that of (a) the size and complexity of the model, (b) the various kinds

and classes of bifurcations, and (c) the effects of discontinuous hard limit or equipment

outage-induced transitions. Problem diagnosis in power systems is in need of stability

assessment methods that (i) take into account both the existence of discontinuities and

their effect, and (ii) identifies which physical elements or subsystems are associated with a

specific bifurcation observed on the full model.

First, diagnosis is initiated by performing a classification of the modeling

complexity and of the various bifurcations, based on their kinds and classes. The dynamic

behavior of a simulated stability problem depends on the modeling complexity used.

Second, an Epoch-Based Trajectory Stability Assessment Methodology that is aimed

at assessing asymptotic stability within time intervals free of hard limits discontinuities is

presented. In this method, the stability assessment requires testing of quasi equilibria,

limit cycles and trajectories within each epoch, rather than attempting to study stability of

the entire trajectory.

The third major step is to identify the smallest subsystem, a subset of the equations

of the full system model that experiences the same bifurcation in the full system model.

The bifurcation subsystem must satisfy both the linear and the transversality conditions
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for the bifurcation that is being experienced in the full system model. The portion of the

full system external to this bifurcation subsystem has no effect on the linear conditions for

bifurcation to be satisfied in the full system model, and yet the equilibrium point is

dependent on the variations in the full system equations which results in bifurcation in

both the full system and the bifurcation subsystem. The bifurcation subsystem method

utilizes the geometry associated with the various submatn'ces of the differential-algebraic

Jacobian J and with the eigenvectors associated with the bifurcating eigenvalue to

establish conditions for existence of such subsystems. Two examples for validating and

using the bifurcation subsystem method to identify bifurcation subsystems in a model are

presented, and the results are compared with right eigenvector and participation

information. The bifurcation subsystem method can be in disagreement with both

eigenvector and participation information.

The bifurcation subsystem and the model dependency of test matrices T, KS and KD

can identify the subsystem that experiences the bifurcation, the subsystem that produces

the bifurcation, as well as possibly the location, cause and cure for the bifurcation,

including loading changes or hard limit discontinuities.
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Introduction

1.0 Introduction to and Justification for Bifurcation Subsystems

An important aspect of stability analysis of a power system is to determine which

physical elements or subsystems are associated with a specific instability phenomena

observed on the full system. The recurrent problem in diagnosing a specific power system

stability problem is that of size and complexity of the model since a power system may be

composed of 10,000 interconnected buses and 1000 generators. However, although the

models required to study the dynamic effects of interest in a power system seem to

initially involve a large set of variables associated with the many different components of

the system, only a subset of these state variables may actually be critical to problem

diagnosis for a specific stability problem associated with a specific eigenvalue or mode.

The challenge in then not to obtain a reduced-order model that incorporates all of the

components in the system, but to obtain a subsystem of the full model which experiences

and causes the same bifurcation (a discontinuous change in system response as a

parameter changes slowly) as the full model, i.e. the smallest subsystem that preserves the

qualitative information of the system instability involving the specific bifurcating

eigenvalue.





I
‘
d

System modal reduction methods on a power system have mainly been based on

modal analysis (or eigenanalysis) of the linearized power system model, a technique that

has been found to be promising and of fruitful applications [1,2]. Sparsity, singular

perturbation theory, coherency reduction as well as Kalrnan minimal realization theory [3]

have also been applied in an attempt to simplify the large and complex dynamical system

models that arise in various power system problems. These traditional methods for

identifying subsystems are generally based on apriori knowledge of (a) the system or its

control design; (b) time scale information on what system state variables are fast and

which are slow variables; (0) eigenvectors and participation factor information from

eigenvectors; or (d) decoupling within the state space model. While such methods are

often useful, they are not always effective in identifying the smallest subsystem or

subsystems that experience and cause the bifurcation in the full system because the

criterion for deciding their effectiveness is their usefulness in model stabilization,

designing controls, and developing operation schedules for a system. Obtaining a

bifurcation subsystem model that experiences and causes the bifurcation in the full model

requires a quite different set of methods.

The singular perturbation approach for problem diagnosis in power system [4] can

not generally be applied for problem diagnosis of a particular stability problem that occurs

after a power system disturbance since the states most involved in an unstable mode in a

power system cannot generally be classified into either the slow or the fast dynamics

groups. When a power system is subject to undamped inter-area oscillations or local

generator oscillations, this technique seems to be inadequate to establish the bifurcation

subsystem for a single mode since the frequency of all inter-area oscillation modes lie in a





narrow band and the frequency of all local generator oscillation modes also lie in a narrow

band. A singular perturbation based subsystem model contains all the modes in the narrow

band and not just the bifurcating mode.

In modal analysis theory, the location and involvement of specific components of the

system in the system instability may be obtained from the right and left eigenvectors

associated with the bifurcating eigenvalue. While the magnitude of the eigenvalue of the

normalized modal-transformed system is only a relative measure to proximity to

bifurcation (collapse) [2], the components of the left eigenvector can be interpreted as

indicating a direction normal to the operational boundary of the system [5-6], and right

eigenvectors indicate the degree to which given variables are involved in a given mode.

The dimensionless participation matrix, obtained from right and left eigenvector

information associated with the bifurcating eigenvalue, has widely been used as an

indicator to the relative involvement of system components in the unstable system mode or

as a tool for identifying the collapse regions in the system. Although Eigenvalue/modal

analysis has provided promising results, it seems to be insufficient to locate the voltage

collapse regions or system components causing the collapse as can be demonstrated by the

following example.

Example

Modal analysis has been used in [7] on the 1993 BC. Hydro system model to find

the suitable locations where reinforcement and remedial actions ought to be taken. The

relevant portion of the system in question as well as the three critical regions are shown in

Figure 1.1. The system participation factor matrix for the critical mode of the normalized
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system has been computed when the entire BC. Hydro system was stressed to determine

the location where reactive power injection would benefit the system the most. Mth a

uniform MVA load increase, modal analysis near the point of collapse has resulted in the

participation factor plot shown in Figure 1.2. The modal information in the plot indicates

that the British Columbia Lower Mainland was the critical area, with North Vancouver

having the next larger participation factor elements. The Vancouver Island region in

Western British Columbia had relatively small participation and thus was rated relatively

ineffective for reactive compensation [7].

A study on the same BC. Hydro system has been conducted by Michigan State

University where the reactive compensation device was a synchronous var compensator

(SVC). The study based on MSU Voltage Stability Security Assessment and Planning

Methodology Programs [8] concluded that the collapse region was caused by reactive

imbalance in the Vancouver Island region. It has been found [9] that in this system, loss of

excitation voltage control on generators in one generating station on Vancouver Island

causes a voltage collapse in Vancouver Island which uncontrollably spreads and brings

about voltage collapse in the entire BC. Hydro system. This result was later confirmed

because ABB [10] installed one SVC and it was located in the Vancouver Island region at

the site suggested by [9].



5;

P
a
r
t
i
c
i
p
a
t
i
o
n
F
a
c
t
o
r
(
'
0
.
0
0
1
)

 

‘
N

d

   0.5

Figure 1.1

Buses Ordered in the Sequence of P Factor

Identification of the critical areas in 230 kV buses under

area system-stress

 



The al‘

1101 suifitirn

fail sixifm-

$2.165 huiei

rues ulth‘

:13 mi be

1613 8303.36

otter bum

submtdcl a

ital coup:

Baillie pm

thpouu x;

sequence
of

chargers
it

susepante

33311113 Will

Constraints,

difcrcntiaiz

diIIiO iis’u‘iilti

-.-. ‘

"In? . ,
j‘QNIfntl

.al-a

Stifft il‘\

lie Wilt-iii;



The above example demonstrates that the participation matrix can be misleading or

not sufficient for indicating the portion of the system that is causing the instability in the

full system, since (i) the voltage collapse can occur due to discontinuities in regions where

states have quite small participation for the mode closest to bifurcation or (ii) out of many

states with “high” participation, only few may be crucial for remedial actions. This result

may not be surprising since for most realistic power systems (a) the Jacobian matrix is

very sparse where a node in a 10,000 bus network may be connected to only three to five

other buses in the system; (b) weak coupling exists between the real power-angle

submodel and the reactive power-voltage submodel in the algebraic network model; (c)

weak coupling of coherent bus groups exists in both the real power-angle and in the

reactive power-voltage network submodels; (d) decoupling in the different dynamics of

the power system model exists and (e) most bifurcations in a power system occur due to a

sequence of discontinuities such as generators reaching field current limits, under load tap

changers reaching tap position limits, and switchable shunt capacitors reaching

susceptance limits. All of these factors suggest that loss of control in some coherent bus

groups results in decoupling between some generator dynamics and system algebraic

constraints, and thus will produce a bifurcation for the algebraic, differential, or

differential-algebraic model associated with that coherent group. This has been

demonstrated in [11] for a classical load flow model and is expected to be true in a

differential-algebraic model.

Selective Modal Analysis is a model reduction approach that recognized that the

participation matrix is not sufficient for obtaining the smallest Subsystem that preserves

the qualitative information of the system near collapse. In the modal analysis algorithm
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[12], state variables with high participation are divided into “relevant” and “less relevant”

states where the relevant states are preserved in the reduced order model, while the effect

of the less relevant states is incorporated in the final reduced model [12]. The relevant

states are obtained either by intuition or from participation factor information. This

approach demonstrates that only a few out of the many states with high participation

factors in a model may be of crucial importance in a particular unstable mode.

Center manifold dynamics may be a subsystem of the actual system that produces

and causes the bifurcation experienced in the full model. The center manifold dynamics

are obtained through a nonlinear u'ansformation of the original state space model. The

center manifold dynamics are not considered a bifurcation subsystem despite the fact that

it manifests the bifurcation similar to a bifurcation subsystem, because

(a) a bifurcation subsystem is a subsystem of the state space model written in terms of

physically meaningful variables and not a nonlinear transformation of these

dynamics;

(b) the nonlinear transformation on very large power system models generally makes it

impossible to analyze how operating condition changes or model parameter changes

will cause the bifurcation;

(c) the needed nonlinear transformation is not quickly and easily computed, which is not

the case for finding a bifurcation subsystem.

(d) a bifurcation subsystem is not a reduced model that can necessarily be simulated or

analyzed apart from the full system model.

A bifurcation subsystem is a subset of the equations of the full system model that

experiences, produces and causes the full system bifurcation by satisfying the same
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conditions for bifurcation as satisfied by the full system model. The subsystem that

experiences bifurcation may or may not produce the bifurcation in the full system since

the structure or parameters external to the subsystem may help produce the bifurcation in

both the full system and the subsystem. This is certainly true when geometric coupling of

the bifurcation subsystem and external system approaches zero as bifurcation occurs

rather than being zero. If the geometric coupling between the subsystem experiencing

bifurcation and the external system is zero as bifurcation occurs, which is called a

structural geometric decoupling, then the bifurcation subsystem both experiences and

produces the full system bifurcation. Thus the subsystem that produces the bifurcation

experienced by the bifurcation subsystem and the full system may be of larger dimension

than the subsystem experiencing bifurcation. The subsystem causing bifurcation may be

still larger than the subsystem experiencing or producing the bifurcation in the full system

and the bifurcation subsystem. The system that causes bifurcation must include all model

parameters, controls, and discontinuous changes that cause the bifurcation to develop. The

discontinuous changes include under load tap changer tap position changes, switchable

shunt capacitor switching changes, equipment outages, over-excitation limit relays, etc.

that cause instability to occur. The controls include maximum excitation limiter controls,

under load tap changer controls, switchable shunt capacitor controls, and excitation

system controls.
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1.1 Description of the Static Bifurcation Phenomena

In a power system, the parameter space breaks up into open connected regions, each

characterized by a particular behavior of the system in the state space. As parameters

move across the boundary from one open region to another, the topology of the state space

changes. This corresponds to the bifurcation phenomena. Although the bifurcation can

take various forms, a great concentration of the study of bifurcation in power systems has

been devoted to the study of saddle node bifurcation. It is only recently that the power

system researchers have recognized the significance of other forms of bifurcations in

power system stability analysis above and beyond the static bifurcations. The creation of

limit cycles in the state space through Hopf bifurcation, although not fully investigated,

has nevertheless been a familiar although undesirable phenomena in power systems.

Saddle node bifurcation is a kind of static bifurcation that occurs at the steady state

operating point of a dynamic system. Significant research on static voltage stability [App.

B] has resulted in (a) establishing the modeling requirements for static voltage stability,

(b) classification of the various kinds of voltage instability such as algebraic bifurcation,

loss of causality, and saddle node bifurcation. Each of these different kinds of bifurcations

can affect different algebraic and/or differential states of a model and each is called a class

of that particular kind of bifurcation. For example, a saddle node bifurcation can occur in

generator flux decay dynamics or generator inertial dynamics. Each of these is a different

class of saddle node bifurcation. A loss of causality is associated with singularity of the

Jacobian of the algebraic equations at an equilibrium. The Jacobian can be singular due to

row dependence of the real power balance equations and is referred to as angle instability,

or due to row dependence of the reactive power balance equations and is termed a voltage
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instability; both are classes of loss of causality.

Although there is a theory for establishing which kind of these bifurcations occurs,

there is no general method for defining subsystems associated with classes of bifurcation

for each of these kinds of bifurcation. There is no actual test that identifies whether a

subsystem actually causes the bifurcation. A method will be developed that (i) identifies

subsystems that experience and cause saddle node, load flow, and Hopf bifurcations and

the classes of each; (ii) provides tests for whether that specific subsystem causes the static

bifurcation observed in the system, which in turn may identify the kind and class of static

bifurcation which occurs; and (iii) establishes a diagnostic procedure for determining the

causes in terms of the specific parameters in parameter space and the model structure

discontinuities that produce this subsystem bifurcations. The bifurcation subsystem

method will also be developed for Hopf bifurcations in power systems where less

literature exists. A brief review of the literature on dynamic bifurcation in differential

power system models is now given.

1.2 Dynamic Bifurcation on Power Systems: A Brief Review

As a continuing effort to the understanding of voltage stability [App B] mechanism

in a power system, recent attention has been focused on dynamic bifurcation where

periodic solutions suddenly appear. It is now evident that poorly damped or unstable low

frequency oscillations are a major threat to the security. of power systems for many

utilities. The modes of oscillations observed are becoming more numerous and complex in

mOdern interconnected systems. Three specific classes of Hopf bifurcation have been

identified [25]: The local plant mode is associated with the mechanical dynamics of units
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at a generating station swinging with respect to the mechanical generator dynamics of the

rest of the system and the frequency of such modes is typically in the range of 0.8 to 2.0

Hz. The inter-area mode is associated with the swing of the mechanical dynamics of one

group of machines in one part of the system against the mechanical dynamics of groups of

machines in other parts of the system. The frequency of the inter-area mode is typically in

the range 0.2 to 0.8 Hz [13]. The voltage mode appears in any machine’s flux decay

dynamics and exciter dynamics. Its frequency is higher than the local plant and inter-area

modes.

In 1984, Abed and Varayia investigated generating units dynamics including both

generator electro-mechanical and flux dynamics [14]. Their investigation revealed for the

first time that generating unit dynamics may experience Hopf bifurcation. In 1989, Sauer

and Pai [15] investigated the stability of a two-axis generator model connected to an

infinite bus as load level at the generator terminals increased. The study showed that near

the critical or maximum possible load level, a pair of complex eigenvalues associated with

the excitation system experienced Hopf bifurcation, and that the onset periodic solutions

were locally unstable. From 1990-1992, similar investigations have been carried on by

others [16-19], where system stability was based on eigenvalue analysis at different

loading conditions: The oscillatory instability in all of this literature was due to an

apparent subcritical Hopf bifurcation in the generator flux decay and exciter dynamics.

During 1992-1993, Ajjarapu, Abed and Varayia [20-23] conducted a thorough testing on a

similar single machine—infinite bus voltage collapse model developed by Dobson et al [24]

in 1990. The results revealed that Hopf bifurcation and saddle node bifurcation occur on

this model at different system loading levels. The oscillatory instability was characterized
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by the interaction of the generator angle dynamics and the induction motor dynamics.

A recent study on bifurcations on system models of increasing complexity has been

completed by Ajjarapu [49]. Two models were of interest: one model included a detailed

machine model with IEEE type DC-l exciter, and network with a constant power load

model, and a more complex model where a generic dynamic load model has replaced the

constant power load model. Eigenvalue analysis on both models revealed that before the

system collapses due to saddle node bifurcation (which occurs at the tip of the PV curve),

the system experienced Hopf bifurcation, node focus bifurcation and singularity induced

bifurcation. The sequence of Hopf, node focus, singularity induced and finally saddle node

bifurcations occurred on both a 3-generator 9-bus system and a lO-generator 39—bus New

England system model.

Issues that need additional research include (1) identification of generic sequences of

bifurcations in a power system; (2) identification of a bifurcation subsystem for each

possible class of saddle node, Hopf, node focus, or load flow bifurcation in the system; (3)

development of tests for establishing whether a specific subsystem causes a specific

bifurcation observed in the system; and (4) a diagnostic for establishing the specific cause

of that subsystem bifurcation. Such a subsystem whose bifurcation causes bifurcation in

the full system is called a bifurcation subsystem, and may be composed of a subset of

solely differential, algebraic, or a combination of differential and algebraic equations. The

method presented in this thesis establishes conditions for which a specific bifurcation

subsystem exists. This subsystem method is first developed in Chapter 4 for (1) a general

differential-algebraic model for identifying both differential and algebraic bifurcation

subsystems; then (2) for an algebraic model for identifying algebraic bifurcation sub-
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subsystems; (3) to a differential model for identifying differential bifurcation sub-

subsystems; and (4) to a differential-algebraic model for identifying differential-algebraic

bifurcation subsystems.

1.3 Objectives

1. Initiate a diagnostic classification of power system stability problems that is based on

bifurcation kinds and classes for the different model types that have been used for

bifurcation studies. The necessity for simplifying assumptions used in power system

stability analysis has resulted in four types of power system models of increasing

complexity [25], and which are commonly used to study the different forms of power

system instabilities. Kinds of bifurcation refer to saddle node, Hopf, LF bifurcation,

etc., thus refers to the bifurcation behavior observed, while a class of bifurcation refers

to the specific dynamical or algebraic states experiencing the bifurcation. It has been

shown in [25] that the type of model used for assessing stability has an effect on the

kind and class of bifurcation observed. This classification based on model types as

well as kinds and classes of power system stability problems seem to be necessary to

diagnose the problem and to obtain information on how system stability can be

improved most effectively. This diagnostic classification together with a description of

a power system differential-algebraic model is given in Chapter 2.

Briefly review in Chapter 3 the recent development on power system stability which

extends the classical theory of power systems as dynamical smooth nonlinear systems.

to the ongoing development of a method that includes the effects of hard limits and

equipment outages which discontinuously modify the model order and system
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behavior. The theoretical framework for study of stability of a power system model,

called a “taxonomy”, has been developed for smooth systems by Zaborsky [26]. The

taxonomy addressed three regions that lie in state and parameter space: (i) stability

region composed of the region of attraction defined for every parameter vector in

parameter space; (ii) a feasibility region in state and parameter space composed of all

connected stable equilibria and the parameter vectors that produce them; and (iii) a

viability region composed of a subset of the equilibria and associated parameter

vectors belonging to the feasibility region that lie within the acceptable range for each

current, voltage, real power and reactive power variables.

Since hard limits associated with equipment outages, actions of operator control,

protective devices such as relays and field current limit controllers, actions of under

load tap changers and actions of switchable shunt capacitors cause most of the

bifurcations experienced in a power system, the taxonomy is being extended to include

such models. The taxonomy that includes the effects of hard limits [27] defines and

describes similar stability, feasibility and viability regions as the taxonomy for smooth

systems. However, the taxonomic assessment is only valid if one can predict and

compute the sequence of quasi equilibria or limit cycles as well as the sequence of

hard limits encountered along every system trajectory without simulation. This

requirement and the assumptions made in [27] are not true in a power system with

hard limits, where there is different time delay between the time that a specified hard

limit surface is encountered and when the action associated with the hard limit is

implemented.

A different approach to stability assessment methodology for systems with hard
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limit discontinuities is then proposed in Chapter 3. This approach considers an

episodal trajectory stability assessment rather than attempting to study the stability of

all trajectories and stability of all quasi equilibria and limit cycles encountered in some

subregion of state and parameter space. This new approach is aimed at assessing

asymptotic stability of the transient during (5,1,?) and the stability of quasi equilibria

or limit cycles in each epoch, where an epoch is a period of time (1353+, ) where no

hard limit transitions occur. This procedure can be applied to a broader class of models

with hard limits that need not obey the assumptions made in [27]. The Epoch Based

Trajectory Stability Assessment Method is based on a stability simulation method

implemented by Van Cutsem in 1992. [28] which does not require time simulation in

(135“) , but only computes the quasi equilibria (2,97,) for i = 1,...,N in a manner

similar to how a classical load flow simulates the effects of hard limits. Specific rules

and guidelines decide the sequence of discontinuities that occur using a procedure that

avoids full time simulation that in turn determines the sequence of quasi equilibria

(2,3,) for 1' = 1,..., N which can then be used to test for stability, feasibility and viability

via trajectory segments in epochs 03.1,; ,) , i = 1... N.

A Bounded Trajectory Feasibility Region is then defined in Chaptm 3, which

classifies trajectories produced by continuous parameter changes or by discontinuous

parameter or model structure changes that are induced by continuous operating

condition or parameter changes. Tire classification of trajectories is based on (i)

whether each quasi equilibria (2,3,) or encircling orbit is stable and (ii) whether each

trajectory segment in (if, ig+ 1) belongs to the Region of Stability of the associated

quasi stable equilibrium point or limit cycle. The subset of trajectories, where (a) all
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equilibria or encircling orbits are stable and (b) all trajectory segments (or only the last

trajectory segment) lie in the region of stability of a stable orbit or equilibrium,

belongs to a Bounded Trajectory Feasibility Region.

Since the episodal stability assessment method is applied after each hard limit is

encountered, the power system model in each interval may be different and yet

analytic so that existing dynamical system theory can be applied. A natural desire is to

find a reduced—order model or the smallest subsystem within each epoch that

experiences the same bifurcation as the full model, which motivates the bifurcation

subsystem method investigated in the rest of the thesis. If the bifurcation subsystem is

identical in each epoch as discontinuities bring on the bifurcation, it is a bifurcation

subsystem for the bifurcation that ultimately occurs and changes the system dynamical

behavior.

A power system differential-algebraic model is investigated for the purpose of

identifying the possible bifurcation subsystems for each kind of bifurcation (SN, Hopf,

LF bifurcation) that may occur on a Type 2 power system model where load dynamics

and controls are ignored. A Type 2 model with a constant power load model, tap

changers, switchable shunt capacitors in the transmission, subtransmission and higher

voltage distribution system will be assumed in this thesis because it generally contains

the dynamics that experience bifurcation and cause voltage collapse in a large region

[25]. The bifurcation subsystem method allows one to find a specific subsystem that

experiences, produces and causes the same bifurcation that occurs in the full model.

The bifurcation subsystem always experiences the bifurcation that occurs in the full

system model. The geometric coupling of the bifurcation subsystem may not be null
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and may produce the bifurcation in the full system and the bifurcation subsystem as it

becomes zero. The system that causes the bifurcation in the bifurcation subsystem

contains all the discontinuities, operating changes, equipment outages and model

parameter changes that cause the bifurcation to develop in both the full system and the

bifurcation subsystem. Thus, this subsystem may be larger than the bifurcation

subsystem that experiences the bifurcation of the full system model, or the subsystem

that includes the effects of coupling to the external system when this coupling is not

null but approaches zero as bifurcation occurs.

The bifurcation subsystem method is an extension of the diagnostics employed

in producing the taxonomy for feasibility, stability and viability for an equilibrium or

closed orbit developed in Chapter 3, the classification of kinds and classes of

bifurcation given in Chapter 2, and the episodal epoch by epoch stability assessment

given in Chapter 3, because it finds the smallest subsystem that experienced, produced

and caused the loss of stability, feasibility and viability for that equilibrium for

bifurcations produced by encountering hard limit induced discontinuities. The

bifurcation subsystem method allows one to better diagnose the causes of a subsystem

bifurcation and separate causes and effects of this bifurcation for bifurcations brought

on by hard limit induced discontinuities. Since the sequence of discontinuities are the

major cause for many bifurcations, a bifurcation subsystem method based on epoch by

epoch diagnosis appears to be the only way to understand the causes and the

bifurcation subsystem that produced the bifurcation. This is needed in a power system

model when there are hundreds of generators, tens of thousands of dynamic loads, and

a network that couples the load and generator dynamics. The bifurcation subsystem
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method should identify bifurcations that occur in

(a) algebraic subsystems composed of generator bus groups, groups of load buses,

and groups of generators and load buses;

(b) differential subsystem dynamics in one or more groups of generators;

(c) differential-algebraic subsystems in one or more groups of generator and in

one or more groups of generator and load buses.

The bifurcation subsystem method, developed in Chapter 4 would allow a very

complex behavior to be seen as being very simple so that one can potentially explain

virtually everything about feasibility, viability and stability for each and every subsystem

that can produce loss of feasibility, loss of viability or loss of stability. The bifurcation

subsystem model is produced to study the causes of a specific bifurcation and may have no

value except for studying that bifurcation. It may not be useful for control design or even

simulating the contingencies which produce that bifurcation, because the subsystem that

produces the bifurcation may be quite small compared to the subsystem needed to

simulate a specific contingency or design a control system to prevent that bifurcation.

In chapter 5, two examples for validating and using the bifurcation subsystem

method in a model are presented, and the results are compared with the participation factor

information. In Chapter 6 a diagnostic study for the occurrence of SN and Hopf

bifurcations in a single-machine-infinite bus model is performed based on test matrices

derived in Chapter 5. Chapter 7 summarizes the dissertation and suggests topics of future

investigation.



II

Power System Modeling

Effects on Stability Problems

In this chapter, a diagnostic classification of power system stability problems that is

based on bifurcation kinds and classes is developed, and a description of the model types

that have been used for bifurcation study is initiated. A specific model type (Type 2) is

selected for further study in this thesis. A further classification of kinds and classes of

bifurcations for this Type 2 model is then given. Kinds of bifurcations include saddle

node, H0pf, load fiow bifurcation, thus refer to the kind of qualitative change in dynamical

or algebraic network behavior encountered at the point of bifurcation. Classes of

bifurcations are the specific subsystem dynamics or algebraic network variables that

experience a particular kind of bifurcation for a given model type. For the model Type to

be used (Type 2 model), there are two classes of saddle node bifurcation, three classes of

Hopf bifurcation, and three classes of loss of causality bifurcation.

The effort to classify model types as well as kinds and classes of bifurcation is

necessary since later, a bifurcation subsystem method will be developed and applied to

saddle node, load flow and Hopf bifurcations and the classes for each. This bifurcation

subsystem method will attempt to diagnose the geometric subsystem structure that

bifurcates, what locations in a system are vulnerable to this particular kind and class of

19
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bifurcation, what causes it in terms of model parameter changes, equipment outages, or

Operating condition changes. This systematic diagnosis needs a classification of kinds and

classes of bifurcation in a given model type. Details of the classification to be given in this

Chapter comes from a paper published by the author [25] in 1994.

As a natural start to this diagnostic classification, a general power system model

description including models for generators, transmission network and loads are given in

Sections 2.1 and 2.2. Section 2.3 presents the four model types suggested by the author in

[25], and finally kinds and classes of bifurcations in a Type 2 model are presented in

Sections 2.4.

2.1 Description of a Power System

Electric power systems are comprised of generation, transmission and distribution/

load. Electric power is produced at generating stations and transmitted to consumers

through a complex network of individual components including transmission lines,

transformers, and switching devices. Power systems models, although they vary in size

and complexity, all have three basic structural components: synchronous generators, a

transmission network, and electric load.

2.1.1 Synchronous generator

Prime movers convert the primary sources of energy (fossil, nuclear and hydraulic)

to mechanical energy that is in turn converted to electrical energy by synchronous

generators. The synchronous generator output voltage is usually regulated to maintain a

constant value using an excitation system. A functional diagram of a synchronous

generator with an excitation control system is shown in Figure 2.1 [29]. The subsystems
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inside the dashed-line box in Figure 2.1 constitute the excitation system, of which a

typical model widely used in literature is the IEEE Type DCl excitation system model

shown in Figure 2.2. For consistency and task simplification, this specific model will be

used in this work. First, a brief description of the indicated functional blocks is given.

(a),

(b)

(C)

(d)

(e)

Exciter: provides dc voltage to the synchronous machine field winding based on

input from the regulator control;

Regulator. Processes and amplifies input control signals (as shown in Figure 2.1) to a

level and form appropriate for the control of the exciter. This includes both

regulating and stabilizing functions (rate feedback or lead-lag compensation);

Terminal voltage transducer and load compensator: senses generator terminal

voltage, rectifies and filters it to do quantity, and compares it to a reference which

represents the desired terminal voltage. In addition, load compensation may be

provided if it is desired to hold constant voltage at some point electrically close to or

distant from the generator terminal bus;

Power system stabilizer: provides an additional input signal to the regulator to damp

oscillations in generator mechanical dynamics. Some common input signals are

rotor speed deviation, accelerating power, and frequency deviation;

Limiters and protective circuits. They include a wide array of control and protective

functions whose role is to insure that the capability limits of the exciter and

synchronous generator are not exceeded. A recent textbook [29] provides a detailed

description of the various limiters and protective devices commonly used on power

systems.
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2.1.2 Electric load

The diversity of electric loads present on a power system, makes it virtually

impossible to represent every individual component in a power system model. The

common practice is to make considerable simplifications of the composite load

characteristics as seen from bulk power delivery points. Load models have been broadly

classified into two categories, static loads and dynamic loads. The static load model

expresses the load as algebraic equations, classically in the exponential form

- b
P P0(V)

Q = 9007)”

where P and Q are active and reactive components of the load and the voltage magnitude

is V. The subscript “0” refers to the values at the initial operating condition. If the

parameters a and b are 0, l and 2, the models are respectively constant power, constant

current and constant impedance load. The dynamic attributes to motors are usually the

most significant aspects of dynamic characteristics of system loads. Typically motors

consume 60-70% of the total energy produced by a power system. Other devices that

require dynamic consideration are load shedding, operation of protective relays,

thermostatic control of loads, response of under load tap changers (ULTC), etc...
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2.2 General Power System Model

The general power system model consists of a set of first order differential equations,

subject to algebraic constraints. The differential equations represent the mechanical

dynamics, fiux decay dynamics, and excitation system dynamics of a generator whereas

the algebraic equations represent the real and reactive power balance equations for each

bus in the network. A multi-machine system consisting of m network buses and n

generators with voltage regulation can therefore be written in the parameter dependent

differential-algebraic model

where

x(t)

y(t)

11(1)

XxY

I R

I R

i = f(x(t).y(t).u(t)) Mt) e P 2.1(a)

0 = 800). YO). 11(1)) 210’)

n + m + p -> R" , an n-vector of real smooth nonlinear functions.

'1 + m + p —) Rm, an m-vector of real smooth nonlinear functions.

e X cR" , a state vector of dynamic state variables, typically time dependent

values of generator voltages, rotor phases and induction motor variables.

: e 1’ c Rm , a state vector of instantaneous variables, typically time dependent values

of voltage and angle of terminal buses, high side transformer buses and load buses.

: e P c R” , a vector of slow varying operating parameters. It can represent structural

parameters like system components, reactances, under-load tap changers and

switchable shunt capacitors, or operational parameters like reactive power load or

generation, voltage set points on voltage control devices, as well as generation

dispatch. As it varies over the parameter space F, it is assumed that there must be at

least one solution to the above differential-algebraic system of equations.

: state space





P : parameter space.

2.2.1 Model Equations

The differential-algebraic model consists of

a) Differential equations

 

“51 .
W = (”i—(Os [=1 ..... n

do),

Mi—d-t— = Pmi—Di((l)i-O)S)—Pei 1=l,...,n

d5".

Tdoi dt = “Eqi—(Xdi-Xdi)ld;+Efdi i=1.....n

dE .

J '_ _ -_TE, m _ (KEi+sEi(Efdi))Efdi+vRi 1-l.....n

Tfl- —V +V +'(lx) i-l n

Rid: " 11 In JTicil
— .....

T dV3i _ v KFIVRi KFiEfdi(SEi(Efdi)+KEi) _1

Pi dt - _ 3i..- T - T
l- ,. n

51‘ 51'

T {-l—V-B-i v +K v v v '-1
41 d1 ‘ Ri Ai( REFi’ 11’ 31') l- ~~~~~ n

for the generator and exciter dynamics where the variables and constants are defined in the

list of symbols.

b) Stator algebraic equations

Vicosei + Rsiadismai + Iqicosfil.) — X'diuqisinbi ~1dicosfii)

_[E'disinfii+(X'qi-X'di)lqisin8i+E' icosbi] = 0

q

—[E'q,sin6i—(X'qi-X'di)lqicosbi+E'dicosbi] = 0 1: I, .....n

that define the lq, and Id,- at the generator terminal buses.
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c) Network (Power Balance) Equations

Terminal bus equations

,- = Villdisinwi - 9i) + lqicos(5i — 91.)]1- PLi(Vi) i: 1..... 11

Q.- = Viildicosw, — 0,) + Iqisinrti, - 9,11 + QL,(V,-) i= 1,..., n

that define voltage and angle at generator terminal buses where I’M-(Vi) and QL,(V,) are

the loads at the terminal buses.

Load and high side transformer bus equations

The net real and reactive powers at each of the network load and transformer buses

can be expressed in terms of the voltage magnitudes, conductances and susceptance as,

n

pl. = —PU(V,) = kg, lViv/((Gikcostiik+Biksin0ik) 1=n+l,...,n+m

n

Q: = -QU(V,) = 2 Viv/((017,sinOik—Bikcosfiik) i=n+l,...,n+m

k = l

where PLi(Vi) and QL,(V,) are the loads at bus i and Gi, and 8,, are the conductance and

susceprance of the ik’th element of the Y-bus.

2.3 Modeling Complexity

In dynamical system theory, the power system is generally a very high-order, high

dimensional multi-variable process, that is operating in a constantly changing

environment. Simplifying assumptions are therefore a virtual necessity for developing and

using power system analytical methods. A classification of four types of power system

models of increasing complexity, that are used in the existing literature to study or

simulate. the various forms of power system instability is presented. A model type has

been defined in [25] by the author as the simplest model that captures observability,



CDDL’

de. el

all}. [if

2.3)
‘-



27

controllability, feasibility region, region of attraction and modal behavior associated with

at least one class of stability problem. This paper [25] discusses the known classes of

stability problems for each model type.

2.3.1 Type 1 model

Type 1 model reduces a complex differential-algebraic model that includes dynamic

models of both generator and loads, to an algebraic model of the generator, network and

load, because the dynamic states are assumed at equilibrium. However this model takes

into account the time sequence of tap changing transformer, switchable shunt capacitor

and low voltage relaying actions as well as secondary voltage control, AGC and over-

excitation limiter (OEL) control actions. A classical load flow model approximates a Type

1 model at steady state ( t=infinity) and often incorrectly estimates the sequence of control

actions of under load tap changers, switchable shunt capacitors, and field current limit

controllers after a contingency or due to slow operating condition changes. The recently

developed simulation tool of Van Cutsem [28] is an example of a Type 1 model if relaying

actions are represented.

2.3.2 Type 2 model

Type 2 model is perhaps the most common power system dynamic model used to

simulate and study instability. It currently includes generator inertial, flux decay, exciter,

power system stabilizer, and boiler turbine governor dynamics. However this model

excludes all load dynamics, for they are assumed to be decoupled from the generator

dynamics, and thus do not contribute to the stability problems observed on this model. The
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general form of the Type 2 model is:

x = f(x.ld.lq.V.O) 2.2(a)

O = ld—gd(x,V.O) 2.2(b)

O = lq—gq(x,V,O) 2.2(e)

0 = PL—gP(x,V,O) 2.2(d)

0 = QL-gQ(x,V,O) 2.2(e)

where

x : generator dynamics

PL, QL : real and reactive power load

v, 6 : voltage and angle of generator terminal, high side transformers and load buses.

2.3.3 Type 3 model

In this model, the generator dynamics are modeled by constant power sources, while

the load modeling includes all of induction motor and under load tap changers (ULTCs)

controller dynamics, as well as dynamic models of switchable shunt capacitors, and

thermostatically controlled loads. An extensive use of this model is for studying radial

voltage instability, since by definition, this instability problem occurs at points electrically

decoupled from the generator dynamics [30]. The vector x representing the generator

dynamical states is either a constant vector or not included in the state space model

equations. Therefore the complexity of this model depends on the complexity of the

dynamic model used to represent the induction motor dynamics. A Type 3 power system

model has the following form (2.3a-e), where the induction motor model used is a 3rd

order model recently derived by Sauer and Pai [31] as an implicit load dynamic model,

although other dynamic load models may alternatively be used.
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o = PL—gp(x, v, e) 2.3(a)

o = QL—gq(x, v,e) _ 2.3(b)

o = h,(r>,, QL, v, m,‘%, %,%) 23(0)

0 = 19(0), 559,-) 2.3(d)

o = hm(PL, QL, v, orig, ‘2—‘f,‘%, €324“) 2.3(e)

where V, q and to are N dimensional state variables. A type 3 model ought to be used to

study saddle node bifurcation in load dynamics and saddle node and Hopf bifurcations

brought on by under load tap changers and switchable shunt capacitors.

2.3.4 Type 4 model

This model combines the complexity in generator modeling of a type 2 model and in

load modeling of a type 3 model. The generator model includes generator inertial, flux

decay, exciter, power system stabilizer, and boiler-turbine-generator dynamics, whereas

the load model may be a separate dynamic model for real and reactive power, or a

composite model of real and reactive power dynamics. A Type 4 model has the form 2.2(

a-c) and 2.3(a—e) if a nonlinear implicit load model is used, although the load model

equations 2.3(c-e) may differ.

Type 1-3 models will later be viewed as specific subsystem models for the Type 4

power system model. This will be made clear when differential subsystems are discussed

in Chapter 6. Thus it will be clear that a Type 4 model is quite general and that Type 1-3

models are only used when specific types and classes of bifurcations are to be studied.

A Type 2 model may be able to capture the generator dynamics that ultimately

experience saddle node bifurcation, Hopf, or node focus bifurcation, and which may be
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affected by load flow bifurcation, algebraic bifurcation and singularity induced

bifurcation. A Type 2 model with a constant power load model, tap changers, switchable

shunt capacitors in the transmission, subtransmission and higher voltage distribution

system will be assumed in this thesis because it generally contains the dynamics that

experience bifurcation and cause voltage collapse in a large region, a utility, or even a

county. However, a Type 2 model can not accurately capture the load buildup and

overshoot but just approximates the peak load produced by action of distribution system

load control dynamics and the voltage control dynamics.

A Type 4 model is the only model that can hopefully simulate actual voltage collapse

events. For Hopf bifurcation studies, a Type 4 model must be used because both the load

dynamics and generator dynamics must be considered Load dynamics may strongly

couple to generator dynamics when subcritical (unstable), or low frequency supercritical

(stable) Hopf bifurcations occur. In fact, when a pair of stable conjugate eigenvalues

approaches the jun-axis, the real part of the eigenvalues also decreases, which causes the

orbit size of the associated limit cycles to increase. This causes more control actions of

under load tap changers, switchable shunt capacitors and thermostatically controlled loads

to take place to prevent the system equipment from operating beyond the maximum

tolerable range. The impact of the load dynamics is therefore present and a full Type 4

dynamic load model is necessary to represent them. Although Type 4 models are needed,

they have generally been developed only for small regions within a utility or are only

being developed at the present time for larger regions.

Since a Type 2 model with voltage dependent algebraic load model, with under load

tap changers, switchable shunt capacitors, control in the transmission, subtransmission,
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and higher voltage rating distribution system is the best model available at present to study

voltage collapse, they will be used in this thesis with the following assumptions

1. The load dynamics are electrically far from the generator such that they are

decoupled from the generator dynamics;

2. There is reasonably good voltage control at the load buses in the system so that the

load variation with voltage is small;

3. If the magnitude of stable orbits associated with generator dynamics remains large

enough and if the frequency of the associated oscillations remains small enough,

then significant control actions of tap changers, switchable shunt capacitors and

thermostatically controlled loads should take place in response to these oscillations.

These assumptions indicate a constant power load model would be satisfactory to

determine the equilibrium point set by the actions of tap changers, switchable shunt

capacitor and thermostatically controlled loads, and that a perturbation load component

that is voltage dependent and responsive to orbital dynamics need not exist using this

assumption. Indeed, a perturbation load component model has been validated and used in

recently developed simplified dynamic load models, that include both steady state and

perturbation components. The perturbation load component model can be viewed as the

Taylor series approximation of the system load model around equilibrium [31].

2.4 Classes and Kinds of Bifurcations in a Type 2 Model

A classification of stability problems that are observed and/or may occur on a Type 2

power system model is established in terms of kind and class:

Kind - Kind (SN, Hopf, Load Flow bifurcation...) of local bifurcations that may
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occur on the specific model type.

Class - The subset of generators, controls, and/or load dynamics which exhibits the

specific kind of bifurcation in this model type.

The bifurcation phenomena in the nonlinear power system model (2.1) refers to

characterizing the qualitative change of the fixed points of the differential-algebraic model

in (2.2) for a smooth continuous change in parameter value it over a specified range.

Although all system bifurcations usually result in a qualitative change in system behavior,

they however have different effects on the dynamics of the system. Kinds of bifurcation

simply refers to saddle node, Hopf etc., while a class is a further division of each

bifurcation kind into the specific system dynamics experiencing the bifurcation. Kinds of

bifurcations observed in a Type 2 power system model have been reported in [25] and

include saddle-node, Hopf, load flow bifurcation and period doubling bifurcations. Loss of

causality bifurcation may be split into a voltage, angle, or both voltage and angle

bifurcation classes. Similar classes may be found for the other kinds of bifurcations. A

class of bifurcation is necessary to (a) identify the subsystem dynamics and specific

parameter u or parameters 11, of a power system model, that cause a specific kind and

class of bifurcation to occur in the full dynamic model; (b) to develop methods that can

identify all potential bifurcations that exist in a particular model; and (c) to find the

underlying continuous or discontinuous parametric, operafing schedule, or structural

model control changes that produce such bifurcations.

In order to present the kinds and classes observed on a Type 2 power system model,

rewrite the differential-algebraic model (2.1) as

x = f(x.0T. v11» 2.4(a)
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t) = (;,,(x, 9,, vpu) - 2.4(b)

GQ(X, 67" VT’ I1) 2.4(C)C II

where

x = [6, 5",, y] : generator dynamic state variables: 6 is the angle at synchronous machine

internal bus excluding swing bus, E", is the voltage behind transient reactance at

generator internal bus and y presents the states of exciter dynamics of synchronous

generator.

VT , GT : voltage and angle at generator terminal, generator high side transformer and load

buses, not including synchronous machine internal buses and the swing bus.

11 : parameter of interest that has an impact on the stability property of the equilibrium

points of (2.4), such as real and reactive loads and generator real generation.

Local stability of a steady state equilibrium point of interest for some u e R

Y. = (x001). Grout). V1000)

may be investigated using a linearized version of (2.4) evaluated at the equilibrium,

obtained by solving the system of equations

0 = f(x.GT. v1.11) 2.5(a)

0 = GP(X, 9T, VT, ‘1) 2.5(b)

O = 00(x, 9T, VT’ u) 2.5(C)

The Jacobian matrix of (2.4) at the equilibrium point Y0 = (xo(u), 91 (11), V, (11)) may be

obtained by linearizing the differential and algebraic equations and then combining all the

linearized components as shown below

ax Ax

0 = J(u)- A9, 2.6(a)

o AVT
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where

"er. 2:. 2:2
ax 39, av,

DFO—(O) 30,, 60,. 30,,

’(“)-_ax - ‘37 Te; 5v;

aGQ Bag 809

L 8x BOT 3V1}?

A1 B1 C1

A3 33 C3

 

  

X = (1(14).9T(i~l). V7~(il))

F(X) = [f(X).Gp(X).GQ(X)]

An equilibrium point X‘0 = (x3, 9;,” Va) of (2.4) is called a bifurcation point and u‘ a

bifurcation value if the complete Jacobian matrix J01") is singular, in which case

existence or uniqueness of solutions is lost. Since the power system model as given in

(2.4) is composed of both algebraic and differential equations, it is clear that an equivalent

differential or equivalent algebraic equation model ought to be obtained to derive the kinds

of bifurcation that may occur in the model, as will be shown in the following section.

2.4.1 Kinds of Bifurcation

From the implicit function theorem [33], a unique solution to 2.4(b) and 2.4(c) exists

locally if and only if the matrix

J (11) ___ 32 c2 5 Bop/as, aGP/BVT

‘ 133 C, aGQ/BBT aGQ/BVT go

is nonsingular. If Jc(|.l.) is nonsingular for all x, 8T, VT and u in a neighborhood of )‘to

then 2.4(b-c) may be solved uniquely for OT(x(|.t)),V7-(x(u)), which results in the

equivalent differential equation model

Ax = f(x. 91001)). V1061)»
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which linearization gives the linear equivalent differential model

.1 = 1,,(11) . Ax 2.7(a)

-1

r.<u)=A.—[s,c,][:2:2] [2] 2.70»)
3 3 3

Similarly, a unique solution to 2.5(a) exists locally if and only if the matrix A,(u) a Si l?

x 0

is nonsingular. If A101) is nonsingular for all x, 9,, VT and u in a neighborhood of if"

then 2.5(a) may be solved uniquely for x(6T(u), VT(11)) . which results in the equivalent

algebraic equation model

0 = g(x(97~(u). V10»). 6,01). VT(u)) 2.8(a)

or upon linearization gives the linear equivalent algebraic model

0 = Jy(u) - Ay 2.8(b)

_ 32 C2 A1 -1
Jy(|.l) .. [33 c3] - [Ali/1,1 [3, q] 2.8(c)

The power system defined by (2.4) with equivalent differential equation model 2.7(a) is

said to be asymptotically stable iff all the eigenvalues of the equivalent differential system

Jacobian matrix J,(ll) have negative real parts. Hence a critical state is a state when one

or a pair of eigenvalues become non-hyperbolic and have zero real part. Kinds of

bifurcation on a Type 2 model are summarized in the following:

(0 WW

Occurs at u= u“ when Jc(u‘) is nonsingular and the system (2.7) has one real

eigenvalue that crosses the imaginary axis of the complex plane and where certain

transversality conditions hold [App C]. In this case the system trajectories are

attracted by the center manifold, and the system behavior becomes monotonic and
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may experience monotonic instability, i.e. collapse type of instability.

II [E .E . Ill:

Occurs at u= u‘ when 1001‘) is nonsingular and the equivalent differential Jacobian

matrix Jx(u") has one pair of imaginary eigenvalues with zero real parts. Additional

transversality conditions must also be satisfied [App C]. In the neighborhood of this

point, periodic solutions always exist and the stability of the system is determined by

the stability of the periodic solutions (limit cycles). A Hopf bifurcation can be stable

(supercritical) or unstable (subcritical). Both supercritical and subcritical Hopf

bifurcations have been observed on a single-machine-infinite-bus model [25].

(iii) WW)

Occurs in the system equivalent algebraic model 2.8(a), at u: u‘ when A,(u") is

nonsingular and the equivalent algebraic Jacobian Jy(u‘) in 28(c) has one simple

zero eigenvalue. This bifurcation is called Load Flow (LF) bifurcation because it

indicates a system at equilibrium is unable to satisfy the system power flow

requirements imposed by the given generation and demand requirements.The system

in 2.8(a) is called the Exact Load Flow Model since these equations represent the

power balance equations at all buses in the system, while the ‘classical’ load flow

model will be shown in Chapter 4 to be an approximation of this model.

(M LasaQLCausalinr

Occurs when Jc(u) becomes singular as it varies. Simulation cannot be performed

on the system (2.4) since 2.4(b-c) have no solution or have multiple solutions
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91",(X(ll))

Vri(x(11))

i= 1,2...

in the neighborhood of an equilibrium 2,, = (x0, 9T0, VTo) . If there is no solution, the

system trajectory terminates abruptly. If multiple solutions exist, random

discontinuous trajectories can occur as the solution (en-(x00), VT,(x(p.))) changes

rapidly from time point to time point. Two types of loss of causality may occur.

(a) Algebraicflifirrcationflil

Occurs when the submatrix of 1(a) .

A a c 1'
1m”: 2 2 2 = 1:1.

A3 33 C3 JQL

becomes row dependent at u: 11‘. Hence it requires that the differential-

algebraic bifurcation occurs in a subset of the equations. Note that algebraic

bifurcation may suggest that there are no solutions of the form (x,, 9T, VT) or

multiple solutions (x1197? VTr)’ i=1,2,..

(b) 5' l . I I lE°fi . :51:

Occurs when the full system Jacobian matrix 1.01) is nonsingular with

eigenvalues crossing from the right half plane to the left half plane or vice

versa by going through infinity, rather than across the imaginary axis (jar-axis).

At this point, one real eigenvalue of the system is at infinity and the rest of

them are bounded which makes simulations using the differential-algebraic

model not possible.

(V) W

Occurs in the case of multiple eigenvalues when a pair of complex conjugate
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eigenvalues become two equal real eigenvalues. A node focus bifurcation (NF) may

be stable or unstable depending on whether the real part of the eigenvalue pair is

negative or positive, respectively.

(vi) Wee: Occurs in the case of multiple eigenvalues when two pairs of

complex conjugate eigenvalues become two equal complex eigenvalues.

At (SN), (H) and (SI) bifurcation points, local system steady state stability around

the equilibrium point changes. At 1:1 resonance point, the system may experience non-

linear oscillatory behavior due to order 1 resonance. In this case, participation factors,

eigenvectors and residues can be misleading because eigenvectors are not unique and they

lose their physical meaning.

2.4.2 Classes of Bifurcation

For each kind of bifurcation, the bifurcation subsystem method will attempt to

identify subsystems of smaller and smaller dimension to determine the smallest

bifurcation subsystem that produces and causes the bifurcation. The bifurcation subsystem

implies the class of bifurcation of the particular kind which will be investigated in

Chapters 4-6. Classes of bifurcation in a Type 2 power system model may be

(a) the power system differential equations;

(b) the power balance equations at load buses;

(c) a generator’s inertial, flux and exciter dynamics;

(d) a generator’s electrical dynamics; .

(e) the control systems dynamics ( PSS, Govemor..) on a generator;

(f) a combination of the above.
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An investigation to find the smallest bifurcation subsystem that experiences and

causes the bifurcation in the full system is initiated theoretically in Chapter 4 and

continued to the end of the thesis.

2.4.2.1 Classes of Loss of Causality in a Type 2 Model

Although the two kinds of loss of causality system bifurcations (algebraic bifurcation,

and SI bifurcation) all produce truncation of trajectory, they have quite different effects on

generator dynamics. Loss of causality may occur in real power-angle variables, in reactive

power-voltage variables, or in both angle and voltage variables.

(i) misleLcsscLCausaliut

Occurs when [32 C2] = [Bap/89, aoP/avT] is row dependent, thus since [32] is

singular, this loss of causality is due to real power-angle instability.

(ii)W

Occurs when [83 C3] = [609/89, aoQ/aVT] is row dependent, thus since the square

matrix [C3] it singular, the loss of causality is due to reactive power-voltage

instability.

(iii)WWW

Occurs when Jc(u) is row dependent but neither [82 C2] nor [B3 C3] is row

dependent resulting in a voltage and angle loss of causality.
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2.4.2.2 Classes of Static Bifurcation in a Type 2 Model

Static bifurcation in a Type 2 model occurs when the matrix 1,01) is nonsingular

and

-1

B C A

W = [3‘ “lie: cil ll3

is singular as m changes. Saddle node bifurcation is a special but generic case of static

instability which occurs when a single eigenvalue of 1,01) is zero and certain

transversality conditions hold [App C]. Two classes of static bifurcation may occur on a

Type 2 power system model:

(i) S'EI .. °'l| .

Static bifurcation in generator inertial dynamics may be associated with the loss of

transient [App. B] stability [36] such as the voltage instability that occurred in the

Czechoslovakian system after tripping lines in a major interface [30]. This class of

static bifurcation is likely to occur when the disturbances are very large and the

transmission interfaces or boundaries are weak, so that loss of stability occurs soon

after the contingency before the field current level/duration limits are reached.

(ii)W

This bifurcation has been called classic voltage instability and is due to insufficient

reactive supply in the EHV system, an example of which is the blackout that

occurred in the French system [37]. This class of stability has been analyzed with the

use of a sensitivity matrix between reactive generation and voltage at generator

internal buses 5965' The matrix SQGE is diagonally dominant for inductive networks

(networks that absorb reactive power), and not diagonally dominant for capacitive



41

network (network with long high voltage transmission lines). Classic voltage

instability has been described as occurring when generators reach their field current

limits and the field current limit controllers disable the exciters. An important

implication to this result is that studying this saddle node bifurcation must include

the field current limit controllers action in the model.

2.4.2.3 Classes of Dynamic Bifurcation in a Type 2 Model

Three classes of dynamic bifurcation may exist and have been observed in a Type 2

power system model

(i)

(ii)

IIE' "lffllf°l ':

Hopf bifurcation in generator inertial, flux decay and exciter dynamics and is

associated with low frequency inter-area oscillations in a power system. This mode

of oscillation is usually referred to as a swing mode and appears as stable limit

cycles (supercritical) [15].

Wanna:

Hopf bifurcation in the flux decay/exciter control dynamics. This mode of oscillation

is usually referred to as voltage swing modes and appear as unstable limit cycles

(subcritical) in literature [15].

(iii) II E' . °lffl l l . :

Hopf bifurcation in generator inertial/flux decay dynamics and occurs only when the

exciter in completely disabled. This mode of oscillation is called the voltage collapse

mode and has been shown to occur in the single machine infinite bus model [15].



III

POWER SYSTEM STABILITY ASSESSMENT

A TAXONOMICAL APPROACH

3.1 Introduction

Power system stability can be broadly defined as that property of a power system

which enables it to remain in a state of operating equilibrium under normal operating

conditions, and to regain, in a finite time, an acceptable state of equilibrium after being

subject to a disturbance [29]. Stability analysis of post contingency equilibrium point or

limit cycle using dynamical system theory for smooth nonlinear systems, although

necessary, is not generally sufficient for assessing stability of equilibria or limit cycles of

the power system dynamical model. Stability analysis for smooth nonlinear systems must

also be performed for points in parameter space where parameter change is continuous.

Assuring power system security based on describing local stability of an equilibrium,

determining local connected regions in state and parameter space where local stability is

retained (feasibility region) and region of stability for trajectories when parameters are

fixed, has been investigated in [26]. This work is being extended [27] to include effects of

hard limits and equipment outages which discontinuously modify the model order, the

structure, equilibria and dynamic behaviors

42
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A realistic power system model is characterized by nonsmooth elements, the most

important of which are the hard limits encountered during system operation. In power

system terminology, “saturation” is usually reserved for denoting smooth effects

associated with saturation phenomena such as field saturation; and “hard limits” are

usually associated with nonsmooth effects such as actuation limits, tap changer limits,

relay effects, etc. From a conceptual point of view, there exists three types of hard limits:

(a) windup limits or actuation limits [27]; (b) nonwindup limits or state limits [27]; and (c)

relay type limits or switching limits [27]. Depending on how a system with saturation

limits comes back to the limit, windup and non-windup limits are distinguished. Whereas

windup limits can come off the constraint at any time, this is not possible for nonwindup

limits before the windup variable has been released completely. Hard limits are generally

associated with actions of operator control; actions of protective devices such as relays or

field current limit controllers; actions of under load tap changers and actions of switchable

shunt capacitors.

An example that qualitatively portrays the effect of consecutive discontinuities on a

state trajectory is shown in Figure 3.1 as well as Figure 3.2 [40] and Figure 3.3 [41] for

simulations on actual detailed power system models. The standard bifurcation theory for

smooth systems [26], being based on the functionsfand g in Equation (2.1) being smooth,

is not applicable to assess the stability of the system experiencing such discontinuous

transitions. Since voltage collapse time scenarios are characterized by all of the

discontinuities described above, it is necessary to extend the stability analysis for models

with discontinuities (hard limits and contingencies).

The stability analysis of a power system is complicated by the lack of smoothness
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needed to characterize not only the bifurcations existing on smooth systems, but also

because new bifurcations that are directly connected with the hard limits must be

described.'Such bifurcations include hard limit induced static bifurcations and hard limit

induced dynamic bifurcations [27,42-43]. Although the purpose of this thesis is not to

develop an extension of stability theory for hard limits, a brief description of the current

development on this subject is necessary for consistency and a better understanding of the

theoretical framework under which the bifurcation subsystem method is being developed.

In this chapter, a rather brief description of the recent development of the taxonomy of

the large differential algebraic power system model is given. Zaborsky’s taxonomical

work of 1991 [26] which summarizes a method for applying dynamical system theory to a

smooth power system model is reviewed in Section 3.2 and a discussion of the status of

the theoretical development on the extensions of this taxonomy to include models with

hard limits discontinuities [27] is briefly reviewed in Section 3.3. A parametric episodal

approach to security assessment is then proposed that

a. analyzes the stability region, feasibility region and viability region for the

continuous analytical model in intervals (1,515”) between instants t,- and t,“ where

discontinuities brought on by equipment outages or hard limit induced model

changes occur; and uses this analysis to decide stability, feasibility and viability of

the entire trajectory;

b. enumerates all equipment outages and operating changes for which the trajectories

and attracting equilibria and limit cycles of the system are expected to be stable and

viable and then establishes for which contingencies and operating changes the

trajectories are indeed unstable or nonviable. V1ability for equilibria, limit cycles and
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transients is defined to be those equilibria, limit cycles and transients which (i) do

not cause equipment damage; (ii) do not cause relaying actions for protecting

equipment of the system; and (iii) have voltage, current, frequency and power

variations that are within acceptable design and operating ranges.

Win-l

 1 1

ii t1+1 (time)

 

Figure 3.1 2-D example portraying the effects of the ith

discontinuous control action. (y,) is the ith quasi equilibria

3.2 A Taxonomy of Stability Assessment in Power System

A taxonomy theory refers to a general and structural theoretical analysis of the

dynamic behavior of very large nonlinear systems. Assessing local and transient stability

[App B] of a power system as well as maintaining its security for parameter changes in an

operating range is certainly a taxonomical task. Security has been defined in Zaborszky

[26] in parameter and state space as operating conditions which belong to the feasibility

region, stability region (region of attraction) and viability region. The state space includes
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both the dynamic state vector x and algebraic state vector y, whereas the parameter space

includes structural parameters such as transmission network capacitances and topology,

and operational parameters that could include

a. the level and variation of real and reactive load as a function of voltage and

frequency at each bus;

b. the real generation at every generator and its change with frequency, load level, and

area control error as well as its upper and lower limits;

c. the voltage setpoints on generators exciters, or voltage setpoint upper and lower

voltage limits on switchable shunt capacitors and the upper limit on their

susceptance, and voltage limits and tap setting limits on under load tap changing

transformers;

d. the transfer or wheeling actions taken.

There are numerous parameters above and beyond those itemized above but these

are certainly important parameters in deciding when voltage stability is retained or lost

[11]. Assessing stability of the large power system for a specific equilibria or limit cycle

requires the assessment of four regions: region of stability, feasibility region, viability

region and security region, which definitions are based on Zaborszky [26], the

Zaborszky’s discussion [47] of a paper by Schlueter and Benkilani [25], and their reply

[48]. The definitions are not new but generalize the definitions found in [26] as suggested

by the discussion and reply.

3.2.1

 

The region in state space where every trajectory originating inside, will finally con-

verge to the specific attractor of a particular type (equilibrium point or closed orbit) for a
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specific set of operating parameters ,0 = p0. The region of attraction in state space is dif-

ferent for each specific point pa in parameter space that belongs to a feasibility region of

that specific attractor of a particular type.

322 E .1]. E . [5 'E E l]. 1..: l

The region in parameter and state space, within which a specific attractor of a partic-

ular type (operating equilibrium point or stable closed orbit) can be shifted smoothly from

any point in the region to any other point by continuous parameter change while retaining

local stability. Structuralstability holds [34,50] within the feasibility region for each spe-

cific atuactor of a particular type.

323W

The region in parameter and state space belonging to a feasibility region of a specific

attractor of a particular type where the values of the state variables, i.e. voltages, current,

frequency, active or reactive power for the specific attractor of a particular type remain

within prescribed limits. The bounds can be based on physical device limitations on

parameters or states; safe operating limits on parameters or states; hard limits based on

device limitations or relay actions for protection of the device or system.

324W

A trajectory that is stable and belongs to a region of attraction of a specific simple

attractor of a particular type that belongs to the feasibility region for that specific attractor

of a particular type is viable if the current, voltage, frequency or other variable trajectory

does not cause equipment damage, does not exceed design limits, and does not trigger

relay actions that protect equipment or system operation.
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3.3 Development of a Taxonomy for Power System

Models with Hard Limits

The taxonomy developed in [26,27] is certainly the first rigorous effort to describe

stability in a differential-algebraic power system model, and yet the taxonomy is still

under development. One major area of development is the inclusion of hard limit-induced

discontinuities, which Occur during operation when

l. the generator field current reaches its magnitude and duration limits so the field cur-

rent limit controller either causes a relay to disable the generator exciter or reduces

the exciter voltage setpoint and thus field current down to a sustainable level that will

not produce thermal damage to the generator rotor;

the controlled bus voltage remains outside the' prescribed upper or lower voltage lim-

its, and under load tap changers discontinuously and abruptly change the turns ratio

on a transformer to bring the voltage within limits. The action is possible as long as

the tap settings remain within tap position limits. If under load tap changers reach

upper or lower tap position limits, a second hard limit induced discontinuity is

encountered;

the voltage at the controlled bus exceeds lower or upper voltage limits, a switchable

shunt capacitor switches one or more banks of capacitors in or out to bring the con-

trolled voltage within limits.

Voltage collapse in the distribution system can be prevented by actions of under load

tap changers and switchable shunt capacitors as long as the under load tap changers

remain within the tap setting limits and switchable shunt capacitors remain within the

capacitive susceptance limits. However when a sufficient number of generators reach field
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current limits, tap changers reach tap position limits, and switchable shunt capacitors

reach capacitive susceptance limits, voltage collapse will occur due to loss of voltage con-

trollability [11].

The discontinuities associated with generator field current limit controllers, under

load tap changer controllers, and switchable shunt capacitor controllers can be modeled

using actuation (windup); state (nonwindup); and relay hard limits. Due to the discontinu-

ous nature of the actuation, state and relay hard limit models [27], the taxonomy described

for smooth dynamical systems can not be used to describe the feasibility region and stabil-

ity region for voltage collapse which develop when generator field current limit control-

lers, under load tap changer controllers and switchable shunt capacitor controllers hit hard

limits in response to equipment outages or continuous operating changes.

Zaborszky [27] has started the long process of extending the taxonomy so that it can

include actuation, state and relay limits. The status of taxonomy development and its

structure is now described.

(1) The model used [27] is a differential equation model rather than the differential-

algebraic model used in the taxonomy without hard limits [26]. When hard limits are

ignored in the model, the boundary of the feasibility region has segments due to

Hopf bifurcation, saddle node bifurcation and singularity induced bifurcation,

whereas singularity induced bifurcation can not be part of a feasibility region bound-

ary in the taxonomy being developed for a differential equation model with hard lim-

its. In the taxonomy without hard limits [27], the boundary of the region of stability

allows

(i) stable manifolds of order 1 equilibria;
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(3)
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(ii) stable manifold of periodic orbits;

(iii) stable manifolds of pseudo saddles, semi saddles and bad anchors;

(iv) singular boundary pieces;

among others where the stable manifolds of pseudo saddles, semi saddles, bad sad-

dles and singular pieces could not belong to the stability boundary for a taxonomy

being developed for a differential equation model with hard limits [27];

the feasibility region for a differential equation model with actuation and state hard

limits have been derived but not for relay limits. The feasibility boundary for actua-

tion (state) limits is composed of segments due to saddle node bifurcation, Hopf

bifurcation, actuation (state) induced dynamic bifurcation, and actuation (state)

induced static bifurcation. The actuation induced static bifurcation and state induced

static bifurcation behaviors near the feasibility boundary are similar to saddle node

bifurcation except that the transversality and bifurcation conditions are somewhat

different. The actuation induced dynamic bifurcation behavior is similar to Hopf

bifurcation except that the transversality conditions at the bifurcation point are dif-

ferent;

When windup limits are modeled in the analysis, equilibria and their stability prop-

erties change and the system transient trajectories are characterized by nonsmooth-

ness (“kinks”). The unstable equilibria which anchor the stability boundary may

correspond to points where hard limits are encountered, hence results from these

equilibria differ from those of the smooth systems. Although the boundary of the

stability region is composed of stable manifolds of unstable equilibrium and periodic

orbits, these manifolds have comers or kinks (actuation) or have different dimension
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terization of its boundary is only complete for actuation limits. This task is far more

challenging for state and relay hard limits since the state space for state and relay

limits consists of several smooth systems of varying dimensions.

The most important conclusion [27] is that there is indeed a stability region bound-

ary when hard limits are included in the model and where one or more hard limits are

reached either on the trajectories on the stability boundaries or on trajectories that are ini-

tiated at some point within the region of stability and converge to some equilibrium.

Another conclusion is that within the epoch (2;, (5+ 1 ) , the trajectory is smooth and the fea-

sibility and stability regions satisfy all the properties of a model where hard limits are

ignored. A final conclusion is that the nonsmoothness of the stable manifolds means that

the construction of Lyapunov functions or energy functions is more difficult and requires

different techniques than the typical u.e.p based methods used in models without hard lim-

its.

3.4 Stability Security Assessment for Model with Hard Limits

The desire in developing a taxonomy for studying stability in a power system model

is to be able to assess retention or loss of stability without time simulation of the system,

or quite possibly with almost no simulation of the contingency or operating change. The

stability region, feasibility region, and viability region and their boundaries are known if

such a taxonomy is complete. Even if the taxonomy were known, its success of avoiding

time simulations appears questionable, since one is unable to predict apriori the post con-

tingency or operating change steady state equilibrium point or limit cycle without time
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simulation. This is because (1) the set of hard limits and the sequence through time at

which they are encountered is impossible to predict apriori and (2) knowing the set of hard

limits and their sequence over time is necessary to determines the final post contingency

equilibrium point or limit cycle. The fact that the set and time sequence of hard limits

encountered not only determine the equilibria or limit cycle trajectories converge to but

whether they are stable or unstable, is documented in [41]. The reasons that it is impossi-

ble to predict the equilibria or limit cycles and their stability are (i) that the hard limit

encountered in a power system model are never enabled instantaneously when the limit is

encountered, (ii) the delay for each hard limit is different and can depend on the magni-

tude of the violation and duration of the hard limit, and (iii) the delay may be large com-

pared to the transient response of the dynamics, (iv) the sequence of future hard limit

control actions are dependent on previous ones, (v) the system is highly nonlinear so dif-

ferent sequence of hard limit control actions give different ultimate results.

An approach is now proposed that studies stability of the equilibrium or limit cycle

as well as transient stability epoch by epoch where an epoch is a period of time I: < t < t; + 1

(see Figure 3.1) where no hard limit transitions occur. This method would utilize the tax-

onomy to study stability of equilibria, limit cycles and trajectories within epochs, rather

than attempting to study stability of the entire trajectory as well as the steady state equilib-

rium or limit cycle without simulation. The justification for this approach is that the taxon-

omy being developed with hard limits [27] indicates that the taxonomy developed for

models without hard limits [27] applies to time intervals (1315+ l) as well as for subinter-

vals in state space where no hard limit transition surfaces are encountered. An Epoch

Based Trajectory Stability Assessment Method is discussed in Section 3.4.1.
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A second change in stability assessment methodology to be discussed is to consider

an episodal trajectory stability assessment rather than attempting to use a taxonomy which

might determine stability without time simulations for all trajectories resulting from (a)

disturbance initiated changes in initial state but no change in model; (b) continuous slow

operating changes in parameters of that model and (0) power system models with no delay

hard limit so that the set and sequence of hard limits encountered can be known. Utilities

currently utilize an episodal stability assessment rather than a taxonomy based method in

dynamic security assessment and contingency selection for fault contingencies [52]. The

motivation for this taxonomy is based upon the earlier work on fault contingencies. The

use of an episodal rather than a taxonomic method is due to the fact that most realistic

fault contingencies are followed by a number of discontinuities which could not be pre-

dicted to occur without time simulation. Thus taxonomy based methods and episodal

methods are competing in an application where taxonomy based methods held dominance

for years due to their promise in providing accurate stability assessment without the need

for time simulation. An episodal trajectory stability assessment is thus proposed for the

equipment outages and operating changes that cause voltage instability. Utilities currently

specify the contingencies and the range of operating condition changes they expect to sur-

vive without loss of voltage stability. If one can quickly assess stability of trajectories pro-

duced by each of the set of contingencies for the ranges of operating conditions specified

epoch by epoch to find those that are stable and those that are unstable, then a contingency

selection or stability assessment procedure, in the language of power system engineering,

could to be produced. The set of trajectories that are viable and transient stable [App B] to

attracting sets (equilibria and limit cycles) that are feasible and viable for every epoch are
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said to belong to a Bounded Trajectory Feasibility Set. A discussion of the contingency

selection and Bounded Stable Trajectory Feasibility Methodology is given in Section

3.4.2.

3.4.1 Epoch Based Trajectory Stability Assessment

The Epoch Based Trajectory Stability Assessment is proposed because each hard

limit induced model change may produce

(a) a model

xi = fi(xiryi»l*i) ‘:<’<‘i+1 (3.1)

O = 810pr Hi)

where an equilibrium (mi) may or may not exist;

(b) a stable or unstable equilibrium point;

(c) a stable limit cycle encircling the unstable equilibrium point;

(d) a region of attraction for that stable equilibrium point or limit cycle that is suffi-

ciently large to include (x(r;), y(r;)) .

All four questions (a-d) must and will be assessed for each time epoch (if, t'i+ 1) to

be able to diagnose when and why the trajectory does not converge to a final attracting set

as time progresses. The Epoch Based Trajectory Stability Assessment is based on a trajec-

tory simulation method implemented by Van Cutsem in 1992 [28] that does not require

time simulation in (1321,; l) , but only computes the quasi equilibria (21.51!) for i = 1,...,N

since it has been found that

(a) the transition to the quasi equilibria (5:9,) is stable because the region of attraction is

generally large;

(b) that xi(t‘-’+ l) = ii and yi(t‘?+ 1) = 5:1. since the time T= (‘3, 1 —ti+ between hard limit
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model changes is large enough to cause the trajectory to reach steady state at each

hard limit model change;

(c) The lack of a stable equilibrium without existence of a stable limit cycle may be

observed as a diverging set of quasi equilibria.

If one has an unstable sequence of quasi equilibria (fl-,5") but a stable encircling limit

cycle around each quasi equilibria, this rapid simulation method [28] would not indicate

retention or loss of stability. Furthermore it has been found that the short term dynamics

and long term dynamics interact and thus such a rapid simulation method is not always

adequate [41]. The Epoch Based Stability Assessment Method utilizes the rapid simula-

tion method to evaluate quasi equilibria (5:1,?!) but takes into account not only stability and

feasibility of quasi equilibrium (in?) but also stability of trajectory during each epoch.

In order to illustrate the argument that the rapid simulation method is needed to sim—

ulate the voltage stability trajectories with a large number of discontinuities but is inade-

quate to assess the interactions of short and long term dynamics that cause instability

without Epoch Based Trajectory Stability Assessment, we bring out two examples from

recent literature. Figure 3.2 shows the time simulation of the active power load of a large

utility system after a severe fault where the over-excitation limiter controller (OEL) dis-

abled the exciter on one machine but all other machine protection devices are enabled

[41]. The disturbance was an EHV line fault and line trip which resulted in tripping a large

generator unit off-line. The model includes excitation systems, turbine/govemor systems,

PSSs, generator protection functions, AGC...etc. The transition dynamics which occur due

to the action of voltage protective devices (LTCs, switchable shunt caps.) clearly manifest

a nonsmooth behavior. A number of discontinuities occurred before the system was driven
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to voltage collapse and thus a rapid time simulation method [28] is needed. This example

would not need to simulate the trajectories in epochs but only needs to determine quasi

equilibria provided by the Epoch Based Trajectory Stability Assessment because the quasi

equilibria capture the response of the system and no short term dynamic behavior is

observed. Feasibility and viability of equilibria could be utilized to assess why the system

experienced voltage collapse.

Figure 3.3 is intended to demonstrate interaction of short term and long term

dynamic behavior via simulation of the active power flow between two regions following

tripping of a line and a generator in a Swedish test system [41]. We notice that due to the

severe fault, the dynamic behavior was initiated by large oscillations, which after the acti-

vation of the OEL and the tap changers reduced to smaller limit cycles. As the voltage

keeps dropping, the system was finally driven to voltage collapse. Three crucial phenom-

ena are demonstrated by this figure: (1) Viability of limit cycles is necessary in each

epoch; (2) quasi stable/unstable limit cycles rather than quasi equilibria may exist; and (3)

both long term and short term dynamics must be considered to assess stability and security

of the entire trajectory. Viability, feasibility and region of stability of trajectory segments

and the feasibility and viability of equilibria and limit cycles would be needed to assess

why voltage collapse occurred in this system.

In order to address the stability of the full trajectory (x(t), y(t)) as well as the interac-

tion of short term and long term dynamics, time simulation or taxonomy based stability

assessment within epochs r: < z < 5+ I is necessary. The Epoch Based Trajectory Stability

Assessment that avoids complete time simulation within (if, (5+ 1) that utilizes a taxon-

omy stability assessment in each epoch to computes
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(1) X(t;) = i,” and y(:;) = 53.4 by solving for (i,_l,yi_l) from

fi-l(xi-l'yi—l) = 0 32(8)

85-1(xi-1,)’1_1) = 0 3.2(b)

(2) y(t;‘) by assuming x(t;') = x(t;) = 31.4 using

g;(i,_1.y(t.-*)) = 0 (3.3)

This assumption is based on the fact that whereas the algebraic state vector y(t) may

change instantly, this is not possible for the dynamic state vector x(t). Infinite power is

needed to cause an instantaneous change in x(t). The Epoch Based Trajectory Stability

Assessment then checks

(i) if solutions (ii—1,534) and (xi_1,y(ti+)) exist;

(ii) if (2,; 1, 52:1) is stable and viable;

(iii) if (x(r,.+_,), y(z;'_ 1)) lies within the region of attraction of (53.4, 5L1) if step (ii) is

true;

(iv) establishes if there are attracting sets (closed orbits) surrounding the unstable equi-

librium and whether they are stable if step (ii) is not true;

(v) establishes whether these attracting sets are stable and viable if step (iv) is true;

(vi) establishes whether (x(t;‘_l), y((‘-+_1)) lies in the region of attraction of the attracting

set if steps (iv) and (v) are true.

Stability and viability are assumed to be retained if the answer to step (i) and either

steps (ii) and (iii) or steps (vi), (v), and (vi) are true. Such a procedure would eliminate the

need to perform time simulation and would only require solving y(t;') using equation

(3.3) and checking (i-vi)

A slight expansion of the above (i-v) rules for testing trajectories via trajectory seg-
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ments in epochs (If. t;+ l) for the diagnostics of knowing feasibility, viability and stabil-

ity is given below

(a)

(b)

(C)

(d)

(8)

Every post contingency steady state operating point or stable limit cycle, and every

quasi equilibrium point (ii, 5".) or limit cycle which occurs at the PM discontinuous

control action, must exist, be stable and viable and thus reside in the (non-empty)

intersection of its viability region and its feasibility region. (feasibility, viability)

Assuming (x(t‘-+), y(t;)) accurately reflects the unmodeled transition from

(x(t;), y(t;)) to (my), y(t;‘)) for each i, the stability for the transition from

(x(t;), y(r;)) to the stable steady state or quasi equilibrium point (2,, it.) or its stable

encircling limit cycle can be decided by checking whether (x(ti+), y(t;')) lies within

its region of attraction for each i = I , 2 N.

Shrinking unstable limit cycles around the stable steady state or quasi equilibrium

point constrain the size of its region of attraction. A lower limit on the size of the

unstable limit cycles should be prescribed. (viability of unstable limit cycles)

Every trajectory initiating in the region of attraction of each steady state or quasi sta-

ble equilibria does not stall or trip motors, does not cause equipment damage, relay

action to protect equipment , and operator emergency action to trip generators off the

system. (viability of transient trajectory)

Stable limit cycles around unstable steady state or quasi equilibrium points that are

viable must also satisfy the additional condition to be small enough to prevent dam-

age of equipment. An upper limit on the size of the limit cycles is prescribed so that

(e) equipment damage could not occur or (b) so that the region of attraction could

not disappear (as the limit cycles reach the boundary of the region of attraction).
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(viability of stable limit cycles)

Performing steps (ii - vi) or (a-e) is computationally difficult if not impossible at

present due to the very large dimension of models. Research is underway to make possible

rapid evaluation of steps (ii - vi). This thesis on development of a bifurcation subsystem

method would allow one to quickly assess whether the equilibrium is stable or unstable

and whether the attracting set (.5 one exists) is stable or not with very little computation.

The bifurcation subsystem method identifies the small dimension subsystem that experi-

ences the same bifurcation as the entire system and for the same value of the bifurcation

parameter. The natural sparse structure, weak coupling and geometric structure of the

model cause bifurcation subsystems to exist. Furthermore, the bifurcation subsystem

method would indicate not only which parameters of a linearized model cause a specific

bifurcation to occur, but also what operating changes cause that bifurcation to occur.

The bifurcation subsystem method may also identify the subsystem dynamics that

determine the stable manifold of a particular unstable equilibrium that belongs to the

boundary of the region of attraction. Although investigation of how the dynamics of the

bifurcation subsystem defines a stable manifold of an unstable equilibrium, is beyond the

scope of this thesis, it is an important subject for the future.

Bifurcation subsystems appear to be omnipresent in a power system model. The

bifurcation subsystem can not generally be identified using eigenvectors or participation

factors because the eigenvectors indicate the states affected by the bifurcation eigenvalue

and not the subsystem that specifically experiences the same bifurcation as that experi-

enced in the full system. The bifurcation subsystem of a differential-algebraic model may

be differential, algebraic, or differential-algebraic depending on the kind and class of
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bifurcation experienced. Each bifurcation subsystem needs to be checked for structural

stability and retention of stability at each quasi equilibrium (Sit-.91) to assume stability dur-

ing each epoch. If such assessments are rapid, the epoch based trajectory stability assess-

ment is a natural procedure for performing a contingency selection and stability

assessment that does not require time simulation in each epoch.
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3.4.2 Bounded Stable Trajectory Feasibility Method

A Bounded Stable Trajectory Feasibility Method is proposed because the

trajectories initiated by contingencies or operating changes which experience voltage

collapse or other types of instability are marked by a number of discontinuities such as the

contingency itself or a hard limit-induced discontinuity such as described in Section 3.3.

Since the number of such discontinuous control actions is typically large and quite

different, an episodal classification based on trajectory segments and thus trajectories and

their attracting sets being stable appeared to be logical and consistent with electric utility

practice. Contingency selection methods have been widely used to

a. determine contingencies where the currents on every branch (element) of the

transmission network lie within thermal limits and those contingencies where the

currents on one or more branches exceed thermal limits.

b. determine contingencies where voltages at every bus (node) lie within a secure range

( 0.95puSViS 1.05pu) and those trajectories where one or more bus voltages lie

outside the range;

.
6

determine contingencies where voltage collapse does not occur in any subregion and

determine the contingencies that cause voltage collapse in some identified subregion.

Each of these subregions can be proven to be a bifurcation subsystem where the

saddle node bifurcation makes it impossible to obtain solutions or may cause

multiple solutions to exist.

All of these contingency selection and security assessment procedures are based on

load flow solution which attempts to find ilgn~(ii, 5".) where N is the number of

discontinuities experienced along the trajectory. A Bounded Trajectory Feasibility Method
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appears far more reasonable because it uses the Epoch Based Trajectory Stability

Assessment that actually simulates

(i) the actual sequence of quasi equilibrium points (3,, 53-) that would occur after

each discontinuity;

(ii) the transitions from ii = x(t;); )7, = y(t;) to x(t;') = x(r;); y(t;') = y(tg);

also evaluates feasibility and viability of each equilibrium and limit cycle, and assess

stability of trajectories (x(t), y(()) over epochs (131‘; l) . The Bounded Trajectory

Feasibility Method would utilize an Epoch Based Trajectory Stability Assessment rather

that a load flow because the load flow often does not calculate a steady state equilibrium

ileN(ri, 5".) that actually occurs since it does not determine the correct set or sequence of

discontinuities that occur, and thus the correct equilibrium as explained earlier. Therefore

the conclusions concerning its stability, viability and whether the initial conditions after a

contingency lie within its region of stability are irrelevant Even if load flow calculated the

correct steady state equilibrium [lgnNup ii) the hard limit based taxonomy would be

difficult to apply to assess stability and viability of trajectories within each epoch.

The set of equipment outage and operating condition combinations evaluated by the

Bounded Trajectory Feasibility Method is clearly specified by a utility’s planning

criterion. For each such combination the Bounded Trajectory Feasibility Method would

determine stability and viability based on

(a) existence and uniqueness of a solution or equilibrium point (39.5!) for each trajectory
1

segment;

(b) stability of the equilibrium point or stable closed orbit for each trajectory segment;

(c) asymptotic stability of the trajectory segment towards a stable closed orbit or



equilibrium for the epoch (tf, I; + 1 ) ;

(d) viability of the equilibrium, stable closed orbit, and trajectory segment transient for

each trajectory segment;

(e) classification of the trajectory as being or not being stable, and bounded trajectory

feasible based on (a-d) for each segment.

The Bounded Trajectory Feasibility Method would then attempts to assess why the

bifurcation subsystem was affected by the equipment outage and operating change

combination, why it was unstable or nonviable, and what could be done to prevent the

problem, based on information that can be determined once the bifurcation. subsystem is

known. This diagnostic step of the Bounded Trajectory Feasibility Method is similar to the

diagnostic that can be performed for the voltage stability security assessment procedure in

[11].



IV

Bifurcations Subsystems in a Power System

Differential-Algebraic Model

4.0 Introduction

The focus of this chapter is to initiate investigation on the bifurcation phenomena in

a differential-algebraic power system model for the purpose of identifying the various

bifurcation subsystems for each kind of bifurcation (saddle node, Hopf and load flow

bifurcation) observed on a Type 2 power system model. The bifurcation subsystem

method will attempt to identify subsystems of very small dimension, called bifurcation

subsystems, that are associated with each kind and class of bifurcation.

Diagnostic classification of power system instability problems that is based on

bifurcation kinds and classes, as well as model types used for bifurcation studies has been

presented in Chapter 2. A Type 2 power system model was selected for further study in

this thesis. The kinds of bifurcations that have been observed on this model include saddle

node, Hopf, load flow, and each exhibits a different qualitative change in dynamical or

algebraic network behavior encountered at the point of bifurcation. Classes of bifurcations

are associated with the specific subsystem dynamics that experience a particular kind of

bifurcation for a given model type. Possible bifurcation subsystems of a Type 2 power

65
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system model are

(a) the power system differential equations,

(b) the power balance equations at load buses,

(c) a generator’s inertial, flux and exciter dynamics,

(d) a generator’s electrical dynamics,

(e) the control systems dynamics ( PSS, Govemor..) on a generator,

(f) a combination of the above

One known class of Hopf bifurcation occurs in generator flux decay and exciter

dynamics and another occurs in generator flux decay and inertial dynamics. Two other

classes of saddle node bifurcation are also known to exist; one in generator flux decay

dynamics and the other in generator inertial dynamics. Similiar classes may be found for

other kinds of bifurcations. Since a power system trajectory after a disturbance is generally

characterized by a sequence of hard limit induced discontinuities, during each epoch

(23.15”) , the bifurcation subsystem method will be applied to a differential-algebraic

Type 2 power system model to

(i)

(ii)

determine the subsystems that experience the same bifurcation as that observed in

the full power system model during each time epoch (t3, r13, 1 ) . These bifurcations

capture the effects of the previous discontinuous or continuous parameter changes

that had occurred in the past time epochs (1325:”) for k = 1,...,i-1. The subsystem

that produces the bifurcation in the subsystem and in the full system may at times be

larger than the subsystem experiencing the bifurcation of the full system.

find the cause and the remedial action for preventing the bifurcation without actually

finding the center manifold dynamics. The subsystem containing all the causes
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including model parameters, controls, and model discontinuities may extend outside

the subsystem that experiences or produces the bifurcation. Even though the research

ultimate objective is to find the subsystem experiencing, producing, and

experiencing bifurcation, the present work is solely aimed at finding the subsystem

experiencing bifurcation as the full system experiences bifurcation. The diagnostics

on the bifurcation subsystem may be more easily performed because retaining how

specific continuous model parameter changes, how continuous operating, or

scheduling changes affect the center manifold dynamics is not easily retained on

very large power system models. The ability to analyze how the center manifold

change along the whole trajectory when discontinuities are encountered has been

investigated by Zaborszky [27] and is not an easy task.

The traditional methods for identifying subsystems are generally based on apriori

knowledge of (a) the system or its control design, (b) time scale‘information on real

eigenvalues or imaginary components of complex eigenvalues, (c) eigenvectors and

participation factor information from eigenvectors, or (d) decoupling within the state

space model. While such methods are often useful in model reduction that preserves time

or modal behavior at one operating condition or developing and redesigning particular

excitation systems, system stabilizers or FACTS controls, they are not always effective in

identifying the smallest subsystem or subsystems that manifests the same bifurcation in

the full system. These traditional methods (a-d) for determining subsystems are not

effective because obtaining a bifurcation subsystem model which experiences the

bifurcation in the full model has a different objective than preserving modal or coherent

behavior, designing controls or developing operation schedules for a system. The objective
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of a bifurcation subsystem is to capture the nonlinear behavior that produces and causes a

bifurcation in a specific eigenvalue or a particular model or operating condition changes.

Time scales are often not effective in defining a bifurcation subsystems for a specific

bifurcating eigenvalue in a power system model, because the frequencies of all inter-area

oscillations lie in a narrow band and because the frequencies of all local generator

oscillations also lie in a narrow band. A singular perturbation method would preserve all

the modes in a band and not just the bifurcating modes for a particular bifurcation

parameter. Subsystems used for control design must be satisfactory nonlinear model

representations of the full system and the associated linearized model must be a

satisfactory representation for several eigenvalues of the specific device or process being

controlled and for a range of operating conditions. Despite the fact that eigenvector

methods indicate the system state variables most severely affected by each Hopf

bifurcation or the controls that are controlling that mode, this information does not always

describe the location or cause of the bifurcation as noted in the power system example

presented in Chapter 1. In that case, the modal information (participation factor) showed a

rather large region near the city of Vancouver was the most severely impacted, but did not

capture the fact that the disabling of voltage control on generators on Vancouver Island

could actually cause the voltage collapse. Decoupling of subsystem dynamics by

inspection of the structure of the system Jacobian matrix could also be used for model

reduction and for identification of system states with high participation in a particular

bifurcation.
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4.0.1 Bifurcation Subsystems for Epochs

The great majority of the literature on bifurcation in power systems assumes that the

differential-algebraic power system model is continuous and differentiable. The

discussion in Chapter 3 shows that virtually all bifurcations occur after (1) generators

reach field current limits, (2) switchable shunt capacitors act, (3) tap changers reach upper

or lower tap position limits, and (4) switchable shunt capacitors reach upper susceptance

limits. All of these actions are discontinuous and violate the smoothness assumptions

needed to apply bifurcation theory. Thus an extended bifurcation theory is being

developed in [27] to properly describe the bifurcation that occurs in power system models

that experience actuation, state, and relay hard limits [27]. Since inclusion of these

discontinuities is absolutely essential for system stability analysis of power systems, the

framework for the bifurcation subsystem method should accommodate and include the

effects of such discontinuities. If the effects of discontinuities were neglected, then the

bifurcation subsystem method would have limited and possibly little value, since there are

relatively few if any bifurcations that occur in an actual power system without one and

likely several discontinuities.

Therefore, in this chapter we adopt the Epoch Based Trajectory Stability Assessment

method, where system stability analysis is performed epoch by epoch where an epoch is a

period of time (1:45”) free of hard limit discontinuous transitions. In this method

presented in Chapter 3, stability analysis for smooth systems may be performed within

epochs (1;, 117+ l) for i =1,... N, where 6+ 1 — z: is very long compared to the time constants

of the linearized dynamics, rather than attempting to study stability of the entire trajectory.

In each time epoch (tg‘, IA, 1 ) , bifurcation subsystems need to be determined and checked
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for retention and structural stability at each quasi equilibrium (Sq-.5"). Since the progress of

discontinuities during system operation is accompanied by loss of control and loss of

subsystem coupling, bifurcations may be of different kinds, and bifurcation subsystems

may be different for each epoch. Consequently, the bifurcation subsystem method makes

the Epoch Based Trajectory Stability Assessment Method a rapid and natural procedure

for stability assessment and contingency selection in a power system.

4.0.2 Existence of Bifurcation Subsystems

Stability analysis and testing for bifurcations in a power system had always put

special focus on its subsystem structure and on finding the critical subsystem dynamics or

subsystems which exhibit the bifurcation. For example, it is quite clear that the generator

flux decay dynamics and the generator excitation system are a subsystem based on the fact

that the exciter controls both the flux and the voltage produced by a generator, and that a

subcritical Hopf bifurcation is known to occur in these dynamics [25]. It is also known

that a supercritical Hopf bifurcation can be observed in the generator mechanical, flux

decay, and excitation system dynamics [25]. Since two Hopf bifurcations affect the exciter

and flux decay dynamics, it might be difficult to define the proper subsystem for the

subcritical and the supercritical Hopf bifurcations. These classes of bifurcation motivate

the investigation of whether a subsystem composed of those dynamics produces and

experiences the same bifurcation as the full system, what produces bifurcation in both and

causes of the specific bifurcation, thus the name bifurcation subsystem.

A nonlinear transformation can reduce a very complex high dimensional nonlinear

system into a simple subsystem that describes the system behavior along the center
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manifold. If one is able to retain how the parameters and equilibrium state change with the

changes in operating conditions in the system, one could fully diagnose causes of the

bifurcation and how it might be effectively prevented through direct control actions or

through better adjustment or scheduling of the operating conditions. Although the

subsystem that describes behavior at or near the center manifold is typically of very low

dimension, the dimension of the participation factor subvector (obtained from normalized

right and left eigenvectors of a specific mode) with large (> 0.1) elements can be quite

large. From the example shown in Chapter 1, the right and left eigenvectors do not

necessarily indicate the cause or the geographical location of the bifurcation, nor the states

in the model where the bifurcation has an effect. In this system, loss of excitation voltage

control on generators in one generating station on Vancouver Island causes a voltage

collapse on Vancouver Island that uncontrollably spreads and brings about voltage

collapse in the entire BC Hydro system. The Vancouver Island subsystem experiencing

bifurcation may not be even retained based on the magnitude of the participation factor

elements of the bifurcating eigenvalue before this loss of excitation control occurs which

is shown in Figure 1.1. Once the loss of excitation occurs, there may be no load flow

solution that can be used to calculate participation factor information, or eigenvectors.

This result indicates that when discontinuities in the model exist and cause the

occurrence of bifurcation [11] in a power system, the magnitude of the eigenvectors and

participation factors may be insufficient or may give misleading information on the

location, cause, or remedial action needed to prevent bifurcation.

The result in [1 1] indicate that there are small coherent bus groups, called voltage

control areas, with independent voltage collapse problems. Each of these coherent bus
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groups in the electric transmission network is protected from experiencing a voltage

collapse bifurcation by retaining reactive supply and thus voltage control on one or more

of the generators in the unique subset of generators that protect that voltage control area

from voltage collapse. This result indicates there are indeed small subsystems of a power

system model, called bifurcation subsystems, that produce and cause the bifurcation that is

experienced in the entire power system.

(1)

(2)

(3)

The reasons that bifurcation subsystems exist on a power system model are

Bifurcations in a power system algebraic network model are typically brought on by

a series of hard limit or equipment outage induced discontinuities. While hard limit

actions are result of disablement of system (voltage) protective devices and can

result in loss of voltage control, equipment outages such as the trip of a tie line result

in decoupling or separation of two regions in the system. Therefore in each time

epoch (rf, 5+ 1) , the effect of the previous discontinuities which occurred at times (k

for k=1,..,i-1 may fully be captured through the disappearance of certain dynamics,

isolation of some subset of dynamics, increase in matrix sparsity when dynamic

equations are substituted by algebraic equations,.. etc. The resulting subsystems

within each epoch (If, 1,; I) may experience different kinds of bifurcations.

Bifurcation subsystems with different kinds of bifurcations seem to be a natural and

essential way for tracking the subsystem experiencing, producing, and causing

bifurcation, as well as the actual cause for the final system instability;

the extreme sparsity of the transmission network where every bus or node in a

10,000 bus network may only be connected to three to five other buses;

the weak coupling between real power and voltage magnitude as well as the weak
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coupling of reactive power—voltage angle. This decoupling implies the existence of a

real power-voltage angle subsystem and a reactive power-voltage magnitude

subsystem. Both subsystems have the extreme sparsity discussed above;

(4) effective decoupling of coherent bus groups within the real power-voltage angle

subsystem and within the reactive power-voltage magnitude subsystem.

The decoupling of the two subsystems, the decoupling of coherent groups within

each subsystem, and the extreme sparsity make a power system vulnerable to loss of

control induced bifurcations;

The bifurcation subsystem model is just a truncated portion of the actual power

system model where the impact of parameter and operating changes simulated on a full

system model can be easily observed and analyzed on the subsystem model.

4.0.3 Introduction to the Bifurcation Subsystem Method

The bifurcation subsystem method utilizes the geometry associated with the various

submatrices of the differential-algebraic Jacobian matrix I and with the eigenvectors

associated with the bifurcating eigenvalue to establish conditions for existence of a

bifurcation subsystem. Conditions for existence of a bifurcation subsystem require

geometric decoupling that encompasses time scales, matrix decoupling and eigenanalysis

in identifying the smallest subsystem that not only experiences the bifurcation but also

produces and causes the same bifurcation observed in the full model. Geometric

decoupling will be shown to be the most effective as well as a generalized method for

identifying bifurcation subsystems.

A bifurcation subsystem can therefore be loosely defined as a truncated portion of



the .11

\5 \l6

l‘ll‘dl

ll)

(7
.1

i
"

:
3
”

SW:

[lime

)Iifl/

filer

die“
03hr



74

the actual power system model that experiences and causes the same bifurcation in the full

system model. Special characterictics of a bifurcation subsystem come from the fact that a

bifurcation subsystem

(1) is a reduced model developed for a specific kind of bifurcation since the geometric

decoupling conditions for a bifurcation subsystem are only on the linearized model

and only on the subspace associated with the left and right eigenvectors of the

bifurcating eigenvalue as the bifurcation parameter it approaches the bifurcation

value 14*. The bifurcation subsystem should not only experience the bifurcation of

the full system model, but may also be useful in capturing what produces and causes

the bifurcation in any epochs (if, rg+ l) at the quasi equilibrium (39.7,), but also in

tracking the model transitions which uncover the persisting dynamics that finally

produced the collapse.

(2) is not necessarily an equivalent model to the full differential-algebraic model in the

sense that it preserves all the characteristics of the full model, since it can not be

used to observe and investigate all other bifurcations of the full model.

(3) geometric decoupling can break down at the point of bifurcation so that the entire

system produces the bifurcation rather than just the bifurcation subsystem.

The fact that the geometric decoupling at a quasi equilibrium for an epoch (If, (5+ 1)

breaks down before the actual bifurcation occurs and does not always solely produce the

system bifurcation may discredit application of the bifurcation subsystem method for

these cases if one views the bifurcation subsystem in the strict sense of its definition.

However as an engineering tool, the bifurcation subsystem method still provides

diagnostic information on how much the geometric decoupling and how much the full
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system behavior after the breakdown contribute to the bifurcation in the full system model.

It should be noted that geometric decoupling does not ever prevent the entire system

from experiencing the bifurcation experienced in the subsystem, but hopefully can in the

future help identify the subsystem that produces and causes the bifurcation. The fact that

bifurcation subsystems experience and could produce most bifurcations even though the

bifurcation affects all dynamic and algebraic states of the system should not be a surprise

since almost all system bifurcations are understood in terms of affecting some subsystem.

Also, it should be noted that one should not and can not assume all bifurcations develop in

bifurcation subsystems, because the bifurcation could be produced by the full system, in

no particular identifiable subsystem or subsystems, and in very strange unexplainable

patterns of state variables.

4.0.4 Chapter Objective and Outline

The three main objectives of this investigation are therefore to (a) develop tests for

identifying subsystem dynamics that produce and cause a specific bifurcation to occur in

an equivalent dynamic or equivalent algebraic system model; (b) utilize the test for

existence of bifurcation subsystems to develop methods that can help identify all potential

bifurcations that may exist in a particular model; and (c) introduce several application

examples of bifurcation subsystems in stability assessment of power systems. One such

example in this thesis is the justification of the classical load flow model as an algebraic

bifurcation subsystem for load flow bifurcation of the differential-algebraic model.

These objectives are quite ambitious Since the study of bifurcations usually assumes

this knowledge while it is often unknown and is rather essential for excitation system
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redesign and FACTS control that may prevent the bifurcation from occurring. This

knowledge may also be useful in developing unit commitment, generation dispatch and

voltage setpoint schedules that could prevent each specific kind and class of bifurcation.

The development of this bifurcation subsystem method will be first developed for a

general differential-algebraic model and then applied to a Type 2 power system model. A

Type 2 power system model is chosen rather than any other power system model type

because (1) the bulk of bifurcation studies in power systems has been based on this model

and (2) because the kinds and classes of bifurcations are best understood for this model.

The differential equations in this Type 2 power system model represent generator

mechanical and flux decay dynamics, generator excitation system dynamics, and governor

turbine system dynamics. The algebraic equations represent the transmission and

distribution networks as well as the load. The Type 2 power system model is described in

details in Chapter 2 and structurally as a differential-algebraic model in Section 4.1.

The first step in this investigation is to assume that it is possible to obtain a

differential (dynamic) system model and/or an algebraic system ’ models, that are

equivalent to the full differential-algebraic power system model. Such assumption is

generally made because most bifurcations do not occur solely in the differential equations

or solely in the algebraic equations of the differential-algebraic model. Formulation of

equivalent differential and algebraic system models will be based on Schuur’s theorem as

will be shown in Section 4.3.1. The conditions for existence of an algebraic bifurcation

subsystem and a differential bifurcation subsystem which experience bifurcation in the

equivalent algebraic system model and the equivalent differential system model,

respectively, are then derived in Section 4.3.2.
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The conditions for a differential bifurcation subsystem to exist are further refined to

provide conditions for a subsystem of the differential equations to produce bifurcation in

the equivalent differential equation model. When the bifurcation is experienced solely in a

subsystem of the differential equations, then a bifurcation sub-subsystem is said to exist

Conditions for a differential sub-subsystem are given in Section 4.4.1.

The conditions for an algebraic bifurcation subsystem to exist are further refined to

provide conditions for a subsystem of the algebraic equations to experience bifurcation in

the equivalent algebraic system model. When the bifurcation is experienced solely in a

subset of the algebraic equations, then an algebraic bifurcation sub-subsystem is said to

exist. Conditions for algebraic sub-subsystems to exist are given in Section 4.4.2.

The bifurcation produced in the full set of differential and algebraic equations can be

experienced solely in a subsystem composed of a subset of the differential equations and a

subset of the differential equations. When this occurs, a differential-algebraic sub-

subsystem is said to exist. Conditions for a differential-algebraic subsystem to exist are

given in section 4.4.3

Under normal conditions, a power system should never experience bifurcation solely

in the differential equations, if the generators, governor and exciation system are properly

designed. However, during voltage collapse, generator exciters cause the generator to

reach field current limits in an effort to produce the reactive power needed by the network,

and theexciter is completely disabled on excitation systems built prior to 1970 [51]. This

can produce bifurcations that are solely in the generator dynamics. A condition for an

algebraic bifurcation subsystem is also derived in section 4.3 where bifurcation in the

equivalent algebraic system model is captured totally in the algebraic equations. Voltage
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collapse is often studied using an algebraic model and thus its use is theoretically justified

based on the conditions derived for an algebraic bifurcation subsystem to exist. This

understanding motivates the development of Sections 4.3, 4.4 and 4.5.

Finally, an application example of bifurcation subsystems in stability assessment of

power systems, is given in Section 4.6. A classical load flow model is justified for the first

time in terms of being both a bifurcation subsystem for saddle node bifurcation in the

differential-algebraic model or equivalent differential model and a bifurcation subsystem

for algebraic bifurcation in the algebraic equations of the network far from generator

terminal and internal buses. In Chapters 6 and 7, the concept of bifurcation subsystems

will be used to study several different kinds and classes of bifurcations in a Type 2 power

system model.

4.1 Differential-algebraic Power System Model

From power system stability assessment practice it is currently assumed that the

underlying cause of voltage collapse is typically a bifurcation associated with the

nonlinear power system dynamics, and can be invoked by a small change in system

parameters. First, recall the nonlinear power system differential-algebraic model presented

in Chapter 2, where the differential and algebraic nonlinear equations describe the

generator and control dynamics, the network and load, respectively. The form of the

nonlinear model in each time epoch (if, “7+ I) after the i’th discontinuity occurs in the

system, 1 gig N — 1 is given by:

Difierential equations: i, = fi(x,-(t)), yi(t)), ui(r)) re (1315+ l) 4.1(a)

Algebraic equations: 0 = gi(x,-(r), LII). ui(t)) re ((31,; l) 4.1(b)
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xi(t) :

Yr“)

11,-(2)

XxY

2 R

I R

N

n+m+ n - - '
p —> R , an n-vector of real analytic nonlinear functions

+ . . .

" + m p —> Rm , an m-vector of real analytic nonlmear functrons

e x cR'l , a state vector of dynamic state variables, typically time dependent

values of generator and excitation system voltages, rotor phases and induction

motor variables for re (1;, rg+ l) .

: e Y cRm, a state vector of instantaneous variables, typically time dependent

values of voltage and angle at generator terminal buses, high side transformer

buses and load buses for z e 031;”) .

e P cRp , a vector of slow varying operating parameters for the time epoch

re ($.11; l) . It can represent a scaling of any of the parameters discussed in

Chapter 3 as belonging to parameter space. The parameter pig) is likely to scale

parameters like reactive power load or generation, generator exciter voltage set

points, or active generation or load. As ill-(t) varies over the parameter space P,

there must be at least one solution to the above differential-algebraic system of

equations.

: state space

P : parameter space

Note (Notation):

The subscript ‘i’ used in the vectors xi(t) , yin), fi(x,-(t), yi(t), ui(r)),.. indicates that the

model in valid after the i’th discontinuity, during the epoch (if, 1; l) . For example,
I

xi(t) = “‘1’ x12, ""x‘n) e R" is the n-dimentional state vector during (if, (,3, l) .
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For an arbitrary fixed parameter at. = H.» a steady state quasi equilibrium point

X .= (fame), yi(pc)), is a point of quasi equilibrium defined by locally solving the system of
l

equafions

0 = IKE-w.» int). n.) (49-3)

0 = 342411.). 91m.» u.) (421’)

A linearized model of (4.1) about an isolated equilibrium point of interest (2., £41,) may

be obtained using Taylor’s theorem where every function is approximated by its Taylor

series expansion of the first degree, in the neighborhood of the isolated equilibrium point.

The Jacobian matrix of (4.1) at an equilibrium point (:2, )7, 11.») may be obtained by

linearizing the differential and algebraic equations and then combining all the linearized

[132,] = Ji- [AL] 4.3(a)

O Ayi

J _ afi/axi afi/ayi = f‘x“ fly“

‘ egg/3% agi/ayi (:i’Z" He) gixi 3in

components, as shown below.

where

4.3(b)

and

Ari = xi(t)-ii

Ayi = )2“) " )7,

In the rest of the thesis, sufficient smoothness of the functions fi(xi(t)), yi(t)), ui(t)) and

gi(x,-(t)), yi(t)), [rt-(0) is assumed to be preserved since no discontinuous system changes

occur within the time epoch (rf, rg+ 1 ). Therefore, for simplicity, we omit the subscript i

and the argument ‘t’ in the analysis within the epoch. That is, unless otherwise noted, g

stands for gi(xi(t)),y,-(t)),ui(t)), fx stands for f,(xi(t)),y,-(t)),ui(t)) ,.. etc.

A linearized differential-algebraic power system model has been derived in [52] for
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a general Type 2 power system model, where each synchronous machine and its control

systems are described. The control systems include (a) Excitation control with Load

(Line-Drop) Compensator, (b) Power System Stabilizer (P88) [52], and (c) Speed-

Govemor-Turbine System. The full linearized system model [52] is given by:

TXXAXX Axx AXE Axe 0 Axe Axv FAX;

TEEAXE AEX A55 0 Ass A59 AEV AXE

TGGAXG AUX 0 A06 0 0 0 AXG

      

= wow, (4.4)

TSSAX'S Asx 0 0 Ass 0 0 AXS

-APC APX 0 0 0 Ape APV A9

Where

AXX : states of mechanical and flux decay dynamics;

AEF : states of flux decay dynamics

AXE : states of excitation system

AXG : states of speed-goveming-turbine systems;

AXS : states of power system stabilizer;

A9 : angle variables at network buses;

AV : voltage variables at network buses;

APC : coefficients of non-voltage-dependent active power load demand model;

AQC : coefficients of non-voltage-dependent reactive power load demand model;

Txx : diagonal matrix composed of inertia constants of synchronous machines;

identity matrix, and time constants of flux decay dynamics;

TEE : time constants of the excitation systems dynamics;

Too : time constants of speed-governing-turbine systems;
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T55 : time constants of power system stabilizers;

4.2 Conditions for Bifurcation Subsystems Experiencing

SN and LF Bifurcations

4.2.1 Equivalent System Models

Although testing for singularity of the full Jacobian matrix J in (4.3b) is a sufficient

indication of a system bifurcation, this test is not sufficient to tell (a) whether either saddle

node bifurcation (when gy is nonsingular), load flow bifurcation (when fx is nonsingular),

or algebraic bifurcation ([gx gy ] is row dependent) occurred; (b) whether the bifurcation is

associated with strictly an equivalent dynamic system model or an equivalent algebraic

system model; or (c) what system dynamics were associated with the bifurcation. Schur’s

theorem [53] is used to establish conditions under which equivalent systems to (4.1)

comprised solely of differential equations or solely of algebraic equations can be

constructed with different eigenvalues than the differential equation model which better

reflect the effects of the eigenvalue qualitative changes of the full system model.

Existence of equivalent differential or algebraic system models to (4.1) depends on

the row dependence of the rows associated with the differential equations and/or the row

dependence of the rows associated with the algebraic equations in the linearized full

system (4.3). This will be clear from Schur’s theorem which reduces the computation of a

determinant of a matrix of order n to the computation of a determinant of a matrix of order

r<n [53].
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Schur’s Theorem

If a square matrix A oforder n is represented in partitionedform as

= Art A 12

A21 A22 m,

where A, , is a square nonsingular matrix oforder r<n, then

(a) IfAu is nonsingular, then Der(A) = Damn)-De:(All—A,2A;!,A2,)

(b) IfA,, is nonsingular, then Der(A) = Der(A”) - Der(A22—A21Al‘llA12)

The reduced order matrices

—1

Arl = Arr‘ArzAzzAzr

-r

ArZ = A22"421'411'412

are commonly called system reduced matrices, system modified matrices or system

sensitivity matrices [38,51], since they preserve the singularity of A, a property that is very

desirable for system reduction techniques and absolutely essential in bifurcation analysis.

Indeed, intensive power system research has been performed using these low-order

matrices to investigate system sensitivities and proximity to voltage instability bifurcation

where A and .4,1 , A and 11,2, or A, .4,1 and A,2 approach singularity together. Eigenvalue

analysis, singular value decomposition technique, and system sensitivity analysis to

various operating parameter variations are examples of power system stability analytical

methods that are based on formulating system submatrices in the form of A,l and A,2 in a

classical load flow model [38]. Letting A22 = AQV, A21 = Age, A12 = Apv , and A“ = A],e

submatrices of the load flow Jacobian A, test results in [38] show that the minimum

singular value of A, A,2 , and A22, are identical down to nearly the point of bifurcation.

The changes in all the minimum singular values of all matrices occur at discontinuities
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when generator buses become load buses and control of voltage is lost. This result

establishes that A22 is a bifurcation subsystem of the load flow model with Jacobian A and

motivates development of a general theory for describing when a bifurcation subsystem

exists in the differential-algebraic model.

Since we are interested in reduced order equivalent system models that have the

same dynamic and algebraic properties as the full model, we apply Schur’s theorem to the

matrix I in (4.3b), where we can see that two possible equivalent matrices may be used to

obtain equivalent reduced order models, namely

-1

J, = f,,-fygy g,

—r

Jy = gy—gxfx fy

Jx and 1,, are indeed two equivalent system Jacobian matrices associated with an

equivalent dynamic model and an equivalent static/algebraic model respectively, as can be

seen below.

4.2.1.1 Equivalent Algebraic System Model (Exact Load Flow model)

If fx is nonsingular at steady state (At = 0 ), the differential equations in (4.2a) model may

be aggregated into the algebraic equations (4.2b) by setting x = 0 and solving for x(y)

from f(x, y, u) = 0 by the Implicit Function Theorem [33], resulting in a model where no

saddle node bifurcation in the differential equations occurs, i.e. the full system bifurcation

may be determined from the equivalent reduced order algebraic equivalent model given in

4.5(a), or locally from the linearized model about )7: (3:, y, it) given in 4.5(b):

g(x(.v). y. u) = 0 4.5(a)

-l

0 = Jy-Ay = [gy-gxf, fy] - Ay 4.5(b)

This result suggests using an algebraic model g(x(y), y, u) = 0, called an Exact Load Flow
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model is obtained. This Exact Load Flow model g(x(y), y, u) = 0 is implemented as a load

flow where generator and exciter algebraic equations from f(x, y, u) = 0 are included in

the model. The usual procedure of incorporating generator PV and PO buses is an

approximation of g(x(y), y, u) = O and is referred to as a classical loadflow model. If the

Exact Load Flow model g(x(y), y, u) = 0 is valid because there exists a unique solution

x(y) then test for bifurcation on the full model using (4.1) is equivalent (if and only if) to

the test for bifurcation on the Exact Load Flow model g(x( y), y, u) = 0 using Jy

4.2.1.2 Equivalent Dynamic System Model

From 4.3(a) and 4.3(b), we can see that if gy is nonsingular, the algebraic equations may be

aggregated into the set of differential equations by obtaining y(x), resulting in an

equivalent dynamic model x = f(x, y(x), p). This reduced order model consists only of

differential equations, making this system suitable for assessing static and dynamic

bifurcations associated with the full system using 4.6(a), or locally from the linearized

model about Y: (5:, 5», u) given in 4.5(b): ~

2 = f(x, y(X). ll) 415(3)

Ar = Jx. Ax = [fx—fyg;lgx] - Ax 4.6(b)

Based on these two equivalent models, we can see that a qualitative change in the full

linearized system behavior, may be determined from the algebraic or the differential

equivalent models depending on the singularity of the matricesfx and gy . An equilibrium

point fr“: (x*, y*, u*) of 4.3(a) can experience bifurcation at a bifurcation value of u , 11*

when J is singular and either :

(i) g), is nonsingular, and 1,, = fx— fygfgx is singular. This bifurcation in the equivalent

dynamic system model is called static bifurcation, which is generically a saddle node
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bifurcation.

(ii) fx is nonsingular, and Jy = g), - gxfI‘f, is singular. This bifurcation in the equivalent

algebraic system model called a load flow bifurcation since it occurs in the Exact

Load Flow model g(.r( y), y, u) = 0.

(iii) Both fx and g), are singular. There is no known description of this case in dynamical

system literature on systems composed of differential and algebraic equations, such

as a power system.

There is no theory to establish that the dynamics experience, produce, or cause the

bifurcation in (i) or that the load flow would experience, produce, or cause the bifurcation

in (ii), but convension has assumed such is the case. This result suggests that the first step

in the investigation of bifurcation subsystems is generally to determine (if possible)

whether the bifurcation occurs in the equivalent differential or algebraic system model. It

may be possible thatfx and gy are both nonsingular when I is singular and one may study

the bifurcation in both the equivalent differential mode]

x = f(x. y(X). ll)

and the equivalent algebraic model (Exact Load Flow model)

g(x(y).y.u) = 0

Our subsequent results will show that some of the kinds and classes of bifurcations being

investigated in this research can be studied in both the equivalent dynamic and algebraic

system models. Identification of such differential-algebraic bifurcation subsystems will be

investigated in this thesis and will be shown to be quite useful in determining voltage

instability/collapse regions in a power system.

Now, a conceptual and formal definitions of bifurcation subsystems are given, using

the notation and definitions of systems (4.1) and (4.3).
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4.2.2 Definitions of Bifurcation Subsystems

Definitions of Hopf and saddle node bifurcations with transversality and nondegeneracy

conditions are given in Appendix C. For saddle node bifurcation, Hypotheses (8N2) and

(8N3) given in [App C] are the transversality conditions which control the nondegeneracy

of the behavior with respect to the parameter p and the dominant effect of the quadratic

nonlinear term. For Hopf bifurcation, hypothesis (H2) is the transversality condition.

Although testing for SN and Hopf requires testing all hypothesis (SNl-3) and (HI-2)

respectively, in practical investigations, only (SNl) and (H1) are tested since transversality

conditions are generally satisfied [59]. Therefore, in the rest of the thesis and without loss

of generality, we assume that as the system eigenvalues cross the imaginary axis, the

transversality conditions are satisfied so that a Hopf or a saddle node bifurcation occurs.

An Exact Load Flow model is a model that describes an equilibrium situation

g(x(y), y, u) = 0 that exists when x = 0, and the dynamic model f(x, y, u) = O at

equilibrium has a unique solution x(y) for each y in some set The bifurcations in the Exact

Load Flow model are called load flow bifurcations and occur when Jy is singular.

( a) Conceptual Definition of a Bifurcation Subsystem

A bifurcation subsystem is any subsystem of the original power system model equations

that experiences the same saddle node (Hopf, load flow bifurcation) that occurs in the full

model. Therefore, the dynamic behavior in the full model is associated with the dynamic

behavior in the subsystem and thus investigating the specific bifurcation occurring in the

full model may be greately simplified by investigating the lower order bifurcation

subsystem.
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Formal definitions of bifurcation subsystems for saddle node, Hopf, load fiow

bifurcation, differential sub-subsystems, algebraic sub-subsystems, and differential-

algebraic bifurcation subsystems are now given. These definitions are based on the

dynamic relation of the physically based subsystem of the full model, as the system

approaches bifurcation. These definitions may be extended to other kinds of bifurcations.

(b) Formal Definition of a Bifurcation Subsystem

Consider the systems in (4.1) and (4.3) where we partition Ax, Ay, f, g, and the full

system Jacobian matrix I as follows:

    

      

x-l Pf1(x9 Y. l1;

”‘2 = f2(x, y, ’1) 1(a)

0 81(x.y.u)

_o‘ _g2(x, y, u)_

' 1

_ 1 at: II: .—

Ax} f,“(rl) f‘rzm) Ax:

. x ( x ( a: at:

W = f 2‘ u) f 22 u) _ Ax2 Kb)

0 * * 8,,1101) 8,1204) Ar,

- 0 - * * 11,2101) 8,2200 9”;

f (u) = and) f‘rzw) g (u) = 3,1101) 3,1201)

x Y

132101) fxzzltl) yum) 3,2201)

with equivalent differential model 4.6(a) when gy(|.t) is nonsingular and with equivalent

algebraic model 4.5(a) when nut) is nonsingular, and assume that the full system

experiences a bifurcation at a parameter value pt 6 (pl, 112) . Also assume that

n n

x=[x[.x{lT, xleR ‘, xzeRZ, y=[y[.yngT

"‘1 ”'2
yleR , yzeR , nl+n2=n, m1+m2=m,
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fo(u) = aft/ax].

1.l

and note that the “*” in the matrices indicate unspecified elements or submatrices. Then

(A) the subset of differential equations of I(a)

x = f(x(t). y(th) “(21)

A .

[ xi] = M»)- [Ax‘] Il(b)
sz sz

where the algebraic state vector y is not a function of I, but only function of the

with linearization

parameter p. , is called a bifurcation subsystem of 4.6(a) if the dynamic and/or static

behavior of 4.6(a) is related to the dynamic and/or static behavior of [I(a) in one of

the following ways:

(Al) If fx(tl) in Il(b) has an eigenvalue Mp.) approaching Mu't) = 0 with

eigenvector u(tt) e R" , then the equivalent differential Jacobian matrix

1,01) has an eigenvalue Mu) approaching i(u*) = 0 with eigenvector

u(u) e R". At 2*: (x(u*), y(u*), u*) , transversality conditions for SN must

hold [App C].

(A2) If fx(u) in Il(b) has eigenvalues 11,201) approaching smart) = ijto for

some m¢0,co e R with associated conjugate eigenvectors u(u)e C",

u*(p.)e C", then the equivalent differential Jacobian matrix Jx(u) has

eigenvalues 711.2(11) approaching i1,2(u*) = :tjd) and with conjugate

eigenvectors u(u) e C", u*(u) e C" and (Into, (be R. At

2*: (x(u*), y(w'), u*) , transversality conditions for Hopf must hold [App

C]

(B) the subset of algebraic equations of I(a)
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g(x(u). y(u). u) = 0 [Il(a)

0 =’ . A)” [Nb[0] gym) [Ah] ()

is called a bifurcation subsystem of 4.5(a) if the equilibrium behavior of (4.5) is

with linearization

related to the equilibrium behavior of (IIIa) in the following way:

If gym) in [Il(b) has an eigenvalue Mu)- approaching Mu") = O with eigenvector

u(u) e R’" , then Jy(u) has an eigenvalue 1(a) approaching Mu") = O, with

eigenvector u(u) e R’"

the subset of differential equations of I(a)

x'. = f(x1(t).x2(u).y(t1).u) IV(a)

with linearization

Ail = fxuur) . Axl IV(b)

where the algebraic state vector y and the dynamic state subvector x2 are not

function of I but only function of the parameter p, is called a bifurcation sub-

subsystem of 4.6(a) if (i) x = f(x(r), y(u),u) is a bifurcation subsystem of (4.5)

when gym) is nonsingular, (ii) 322‘“) is nonsingular, and (iii) the dynamic and/or

static behavior of 4.6(a) is related to the dynamic and/or static behavior of IV(a) in

one of the following ways: -

(Cl) If fxnfll) in IV(b) has an eigenvalue Mu) approaching 7t(u*) = 0 with

eigenvector u(u)e Rnl , then the equivalent differential Jacobian matrix

Jxx(u) given by

Judi) = f,l I(Il)-f,12(l~l)f;122(ll)fx21(ll)

has an eigenvalue 1(a) approaching 101*): 0 with eigenvector
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u(u)e R"l . At X": (x(t1*). y(u“). u*), transversality conditions for SN

must hold [App C]

(C2) If f,”(u) in IV(b) has eigenvalues 11.2““ approaching 2mm") = ijw

for some (t) :0, m e R with associated conjugate eigenvectors u(u) 6 CR1,

u*(u)e C"l , then the equivalent differential Jacobian matrix Ju(u) has

eigenvalues £1,2(u) approaching X1,2(u*) = ijd) and with conjugate

eigenvectors u(u) e C"1 , u*(u) e C"1 and (3:0, the R . At

fr": (x(u*), y(u*), u*) , transversality conditions for Hopf must hold [App

C]

(D) the subset of algebraic equations of I(a)

810601). y(u). [1) = 0 V(a)

with linearization

0 = 8mm) - Ayl V(b)

is called a bifurcation sub-subsystem of (4.5a) if (i) g(x(u), y(u), u) = O is a

bifurcation subsystem of (4.5) when fx(p.) is nonsingular, (ii) 3mm) is nonsingular,

and (iii) the equilibrium behavior of (4.5) is related to the static behavior of V(a) in

the following way:

If 3mm) in V(b) has an eigenvalue Mu) approaching Mu“) = 0 with eigenvector

u(u)e le , then Jyy(u) given by

5,0» = gmw)-g,12(u)g;‘22(u)gy21(u)

has an eigenvalue Mu) approaching 101*) = 0 , with eigenvector u(u) e RmI

(E) the subset of differential-algebraic equations of I(a)

x', g f1(x,(t). x200. y(u). u) Wu)

0 g1(X(t1).y(u). u)
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. f, ([1) "'
Ax, = l _ Axl Vl(b)

o * gylw) Ayl

where the algebraic state vector y and dynamic state vector x2(u) are not function of

with linearization

I but only function of the parameter p , is called a bifurcation subsystem of I(a) if the

static behavior of (la) is related to the static behavior of Vl(a) in the following way:

If the subsystem in Vl(b) has an eigenvalue Mu) approaching 101*) = 0 with

n +ml

eigenvector u(u)e Rl , then J(p) has an eigenvalue 71m) approaching

n+m

X(u*) = 0 with eigenvector v(u) e R

From the above definitions, possible bifurcation subsystems are:

(a)

(b)

(C)

E'EE 'IE'E . S! E . . 51!

If (Al) holds, then [1(a) is a differential bifurcation subsystem experiencing saddle

node bifurcation that causes saddle node bifurcation in the equivalent differential

system model (4.6)

DEE 'IET . 5! E . . H E

If (A2) holds, then [1(a) is a differential bifurcation subsystem experiencing Hopf

Bifurcation which causes Hopf bifurcation in the equivalent differential system

model (4.6)

If (B) holds, then III(a) is an algebraic bifurcation subsystem experiencing load flow

bifurcation which causes bifurcation in the Exact Load Flow model (4.5).



(d)

(e)

(f)

(g)
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[ii 'lEi . Sl-l , E . . SI!

If (Cl) holds, then III(a) is a differential bifurcation sub-subsystem experiencing

saddle node bifurcation that causes saddle node bifurcation in the equivalent

differential system model (4.6)

E'Efi 'IE'E . 51-! E . . H i

If (C2) holds, then III(a) is a differential bifurcation sub-subsystem experiencing

Hopf Bifurcation which causes Hopf bifurcation in the equivalent differential system

model (4.6)

5] I '51 . Sl-l EIEE'E .

If (D) holds, then [V(a) is an algebraic bifurcation sub-subsystem for load flow (LF)

bifurcation which causes load flow bifurcation in the Exact Load Flow model (4.5).

[if °l-l!°E'E .5!

If (E) holds then Vl(a) is a differential-algebraic bifurcation subsystem which causes

bifurcation in the full differential-algebraic model I(a).

Finally, it is important to note that in the case of differential-algebraic bifurcation

subsystems, the kind of bifurcation could not be determined, unless an equivalent

differential or algebraic model exists.

Note that as u approaches u*, x(p) and mu approach mm and mm where

bifurcation occurs. The algebraic bifurcation subsystem depends on both x(u) and y(u)

determined from the full model even though the bifurcation subsystem equations may only

define y(u) or some subset. The remainder of the equations not in the bifurcation

subsystem help define the approach to bifurcation but do not have effect when load flow

bifurcation occurs in the bifurcation subsystem. Similarly, the saddle node or Hopf
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bifurcations that occur in the bifurcation subsystem dynamics and simultaneously in the

full system model due to satisfaction of hypotheses SNI or H1 in the bifurcation

subsystem model depends solely on the bifurcation subsystem differential and possibly

algebraic equations, even though the differential and algebraic equations not in the

bifurcation subsystem are used to determine x(u) and y(u) but not whether hypotheses

SNl and H1 are satisfied in the bifurcation subsystem model. The time behavior of the

components of x(z,u) and y(t, u) not in the bifurcation subsystem model is ignored in

testing for SNl or H1 in the bifurcation subsystem model.

4.2.3 Decoupling Conditions for Algebraic Bifurcation

Subsystems and Differential Bifurcation Subsystems

An equivalent differential subsystem model x = f(x, y(x), u) or an equivalent algebraic

subsystem model g(x(y), y, u) = 0 exist if gy orfx are nonsingular respectively, and may be

used to study static or dynamic bifurcations in the differential-algebraic model from

Schur’s Theorem. In fact, to understand the bifurcation physically, the use of equivalent

models is imperative. The usefulness of the equivalent models is universally known in

power systems and certainly not the subject of this thesis.

The bifurcation subsystem method to be developed states conditions where the

subspace in which the bifurcation subsystem experiences bifurcation is totally

independent and unaffected by coupling to the rest of the model. Thus geometric

decoupling conditions which formally state this principle, is the core of the bifurcation

subsystem method to be developed. This result does not solely attempt to show that f; = J;

for differential bifurcation subsystems or that gy a Jy for algebraic bifurcation subsystems,
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but rather the far more feasible condition that near the bifurcation value p = yr" and in

some subspace of x, Jx - u = f, - it because [fygjgx] - u = 0 for some u e Null(fx) and that

in some subspace of y, 1y. v = gyo v since [gxfjfy] -v = 0 for some ve Null(gy). Ifthese

geometric decoupling conditions for a bifurcation subsystem hold, then in Null(Jx) and

Numfx) the equivalent linearized dynamic model becomes

Ax = Jx-Ax = fx-Ax

and in Nulluy) and Null(gy) the equivalent linearized algebraic model becomes

0 = Jy-Ay = gy-Ay

for the specific differential bifurcation subsystem or algebraic bifurcation subsystem

respectively.

Consequently, it is clear that a trivial decoupling condition is the case when the

generator and control dynamics are fully decoupled from the network equations, i.e. when

the off-diagonal matrix fy in 4.3(b) is null near the bifurcation value u = 11*. Similarly,

when the off-diagonal matrix gx in 4.3(b) is null near u* , the network equations are fully

decoupled from the generator and controls dynamics equations. These two conditions can

formally be stated as two corollaries to Schur’s Theorem, Corollary 4.1 and Corollary 4.2.

Corollary 4.1

Given 1, fx, fy, gx, and gy as in 4.3(b) where gy is nonsingular and near t1*,fy or gx are

null, then x = f(x(t), y(u), u) is a drfierential bifurcation subsystem experiencing SN

bifurcation for thefull model in (4.1).

Proof:

It is clear that if fx has an eigenvalue Mu) approaching 104*) = 0 with eigenvector
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u(u*)e R" then Jx-u(l.l) = If,-fyg;'g,] - um) = f,- um) = Mutual) aPPmaChe-Y

Mutt) - u(u*) = O, which says that J, has an eigenvalue int) approaching int“) = 0 with

eigenvector u(u*) e R". Hence assuming that transversality conditions (for SN

bifurcation) hold near Mu“) = 0, definition A] imply that x = f(x(t), y(u),u) is a

bifurcation subsystemfor (4.1 ) experiencing SN bifurcation

The decoupling condition given by Corollary 4.1 implies that the system dynamic

behavior is totally dictated by the machine and control dynamics. This type of modeling

which appears to be inappropriate to real situations, is encountered in system modeling

techniques where study of stability of a specific synchronous machine in the system is

based on a single machine infinite bus model. The load bus and generator terminal bus are

aggregated back to the generator terminal bus and the swing bus, so that the network

seems to be virtually decoupled from the generator dynamics. If the shunt admittance at

the load bus is zero, the single machine infinite bus model is a differential bifurcation

subsystem since f, = 1x .

Corollary 4.2

Given J, fx, fy, gx, and gy as in 43(b) wherefx is nonsingular and near u* , fy or gJr are null,

then g(x(u), y(u), u) = O is an algebraic bifurcation subsystem experiencing LF

bifurcation for thefull system in (4 .1 ).

Corollaries 4.1 and 4.2 imply the equivalent differential and algebraic system models

could be decoupled so that an algebraic bifurcation subsystem and a differential

bifurcation subsystem exist. Total decoupling of the algebraic and differential subsystems
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is of course never true for the differential-algebraic power system model and thus this

thesis needs not pursue non-geometric decoupling. The more general geometric

decoupling is now investigated

4.2.4 Geometric Conditions

Since the power system model is nonlinear, it is clear that a bifurcation subsystem of a real

system should also be nonlinear, so that the effects of the nonlinearities would be

captured. A bifurcation subsystem could but may not have to contain the exact center

manifold dynamics as the full system model, but this is difficult to verify since computing

the center manifold of the specific critical operating point, has been argued (in Section

4.0.2) to be impractical if not impossible to compute for the 10,000 state variable power

system model. Whether center manifolds of the bifurcation subsystem and the full system

are identical and whether the effects of the nonlinear terms of the normalized power

system model on the system dynamics are identical is impossible to know without further

research. Although the description of the center manifold is crucial for stability analysis

near the nonhyperbolic equilibrium point, their study is beyond the scope of this work and

are not of high concern to us for establishing a rather fast and practical method for

identifying bifurcation subsystems of the full model.

The transversality conditions (H2) for Hopf bifurcation and (8N2) and (SN3) for

saddle node are generally assumed to hold without testing so that only (SN 1) is generally

tested for saddle node bifurcation and (H1) is tested for Hopf bifurcation. Since the

theoretical results that follow only relate to (SNl), (H1) tests on a linearized model and do
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not attempt to prove that the transversality conditions that hold on the full system model

are sufficient to assure that they hold in the bifurcation subsystem (which can be assumed

due to genericity of these transversality conditions), the existence of a bifurcation

subsystem of the system model are limited to a first order (linear) satisfaction and

simultaneity of SNl and H1 tests in the full model and the bifurcation subsystem model. If

the transversality conditions (8N2) and (SN3) for saddle node and (H2) for Hopf

bifurcation were checked for the bifurcation subsystem (second order conditions), then the

bifurcation subsystem would be the nonlinear model found in the bifurcation subsystem

definitions, rather than a bifurcation subsystem of first order (the linearized bifurcation

subsystem model) found in the propositions which follow.

Proposltlon 4.1

Let fx(u*) in 4.3(b) be singularfor some to e (pl, pg) where transversality conditionsfor

SN hold at 2*: (x*. y*,u*), gym.) nonsingular near u*, and let N1 = Null(fx(u*)) and

N2 = Null(fI(u*)). Then Ax = f,(ll) - Ax is a difierential bifurcation subsystem offirst

orderfor (4.1) experiencing SN bifurcation if and only if near 11*, condition (i) or (ii) is

satisfied

. -1
(I) [fygy gxl-u, = 0 forsome ul 6 Nl

(ii) vtr - [fygygxl = 0 for some v1 6 N2

Proof:

Necessity:

Given that f,(ll*) is singular, we need to show that if (i) or (ii) is satisfied, then the

equivalent differential Jacobian matrix Jx(u*) is also singular with eigenvector ul .

(i) Let [fyg;lgx] - u1 = 0 for some ul 5 N1. Since foI“) - u1 = 0 by definition of ul

and the assumption that f,(u*) is singular, we have
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“(m-u! = [f,,(u*)-fyg;'g,] -u, = 0

by condition (i). Therefore J‘,(u*) is singular with eigenvector ul as required by

definition Al. Therefore, Ax‘ = fx(u) - Ax is a bifurcation subsystem of (4.3) and a

bifurcation subsystem of first order for (4.1) experiencing SN bifurcation.

Let v? - [fysfilsx] = 0 for some v16 N2. Since vI-fxut'“) = 0 by definition of v1

and the assumption that f,(ll*) is singular, we have

vTr ~J,(r1*) = VTI - [f,(tl*) -f,g;‘g,1 = o

by condition (ii) . Therefore Jx(p.*) is singular with eigenvector ul as required by

definition Al. Therefore, Ax = fx(u) - Ax is a bifurcation subsystem of (4.3) and a

bifurcation subsystem of first order for (4.1) exoeriencing SN bifurcation.

Sufficiency:

(0

Given that Ax = fx(p.)-Ax is a bifurcation subsystem, we need to show if

singularity of f,,(ll*) is associated with singularity of J,(u*) as in definition A1,

then we must have condition (i) or (ii) satisfied. Suppose Jx(u*) is singular, and let

N and NT be the Null spaces of Jx(u*) and Jx(u*)T respectively.

Suppose there exists ul 6 N1 such that

fx(l1*)u1 = 0 4.7(a)

and

trivia, = rf,(u*)-f,g;‘g,1 . u, = o 4.70»

Which implies that the singularity of f, is associated with the singularity of 1,,

because the vector ul satisfying 4.7(a) also satisfies 4.7(b). From 4.7(a) and 4.7(b)

we have

[f,(u*)-fyx;'g,l-ul = f,(tl*)-ul-[fyg;lgxl'u1

-l
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Therefore ul 6 Nl , and [f'),,g1;lgx]-rrl = 0, as required.

(ii) Suppose there exists vl 6 N2 such that

v:- .fr(u*) = 0
4.8(a)

and T

v, -Jx(u*) = v[- [fx(u*)-fyg;lgx] = o 4.8(b)

Which implies that the singularity of fx(u*) is associated with the singularity of

Jx(tt*) as in definition A1, because the vector vl satisfying 4.7(a) also satisfies

4.7(b). From 4.8(a) and 4.8(b) we have

vf- rf,<u*)-f,g;‘g,1 = {mm-vi" ~ if,g;‘g,1 = -v[ - rfyg;‘g,1 = 0

Therefore v1 6 N2 and v{- [fyg;lgx] = O, as required.

Implication of Proposition 4.1

Proposition 4.1 implies that singularity of the matrix fx(u*) is associated with the

singularity of the equivalent differential system Jacobian matrix Jx(u*) if and only if the

system submatrices fy , gx, and gy satisfy at least one of the conditions (i) and (ii) as

u —> [1* . Under these conditions, singularity of the reduced order matrixfx becomes crucial

for analyzing and studying the occurrence of saddle node bifurcation in the equivalent

dynamic model of (4.3). The reduced order system is called a bifurcation subsystem of

first order for (4.1), since its change in dynamic behavior experiences the change in

dynamic behavior in the full system. Recall conditions (i) and (ii) of Proposition 4.1

v,’ - rf,g;‘g,1 = o if,g;‘g,r - u, = 0 as u-w“ (4.9)

These equalities are seldom perfectly satisfied in a real power system Type 2 model.

However taking into account the extreme sparsity, decoupling of reactive power and

voltage from real power and angle, and the decoupling of coherent bus groups in both the
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real power and angle as well as reactive power and voltage model, (i) and (ii) are likely to

be satisfied to an 0(8) as discontinuities occur that cause J to be singular whenfx is nearly

singular. Hence, the subsystem Ax = f, - Ax , may effectively be used to assess the causal

factors of the bifurcation in the full model. Equations in (4.9) are approximately satisfied

for the following five conditions:

(a

v

1ng n is 0(8) and llg;l||]|fy|| - "u,“ is 0(1) near w

(b) Ilfy n is 0(a) and "g?”"g," - "u,“ is 0(1) near [1*

(c) up u is 0(a) and “hung," . "a," is 0(1) near to

(d) None of the above but near u* , the vector v, satisfies vf- [fyg;‘gx] z 0

(e) None of the above but near [4* , a vector u, e N, satisfies [fyg;lgx] - u, = 0

where H . II is any suitable matrix norm.

Proposition 4.2

Let gy(tt*) in 4.3(b) be singular for some u* e (p,, u?) , fx nonsingular near u* and let

N, = Null(gy(tt*)) and N2 = Null(gy(p.*)T). Then, = gy(t.l) - Ay is an algebraic

bifurcation subsystem offirst order for (4 .l ) experiencing LF bifurcation if and only if

near it“ , condition (i) or (ii) is satisfied

(i) [gxf;lfy] - u2 = 0 for some u2e N,

(ii) v§.[gxf;1fy] = 0 forsome v26 N2

Implication of Proposition 4.2

In contrast to (4.9), conditions (i) and (ii) of Proposition 4.2 may be satisfied when the

matrix fx associated with the machine dynamics, exciter and governor controls is

diagonally dominant, a condition which is generally satisfied in a real power system Type
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2 model. It can be shown that conditions (i) and (ii) of Proposition 4.2 can be satisfied to

an O(e) only in Section 4.6.5 if the bifurcation occurs near or in the distribution system

and electrically far from generator terminal and internal buses. The resulting bifurcating

model 0 = gym) - Ay may then effectively be used to assess the causal factors of the

bifurcation in the full model. Structural and operating conditions and constraints for the

validity of using the algebraic bifurcation subsystem will be discussed in Section (4.3.5).

Discussion of Propositions 4.1 and 4.2

The geometric conditions that near u* , [gxfjfy] - u2 = 0, v; - [gxf;lfy] = 0,

v? - [fyg;lgx] = 0, and [fyg;lgx] ~ u, = O generalize the case of full decoupling of the

differential equations and the algebraic equations stated in Corollaries 4.1 and 4.2, while

Corollaries 4.1 and 4.2 give conditions for the existence of equivalent reduced-order

systems to the full differential-algebraic model and would never occur. The more general

geometric conditions given in Propositions 4.1 and 4.2 are for the existence of bifurcation

subsystems and can indeed occur.

(a) Sparsely connected subsystems

Although these conditions seem to be a strong requirement, they are indeed a quite

easily satisfied requirement since the submatrices of J and especially gy have few

nonzero elements, so that there is a natural column or row dependence in the

submatrices of J, because so many elements of each column and row are identical or

are zero. In a 10,000 node network, each node may be connected to at most five other

nodes making gy virtually null except for five nonzero elements in the block
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submatrices corresponding to the Jacobians dF/de , dP/uv , dQ/de and dQ/dv . The

submatrices offx in (4.4) are diagonal which makesfx very sparse as well.

Weakly connected subsystem

Weekly connected may be expressed by elements in off-diagonal matrices being

multiples of a small scalar e > 0. If some of the few nonzero elements in different

rows and columns are 0(8) and can be approximated by zero, then the combination

of sparsity and weak coupling can produce row or column dependence. The natural

decoupling of real power-angle submodel and reactive power-voltage submodel as

well as the decoupling within bus groups of both these models satisfies the weak

coupling assumptions.

Discontinuous system changes

Time epochs (if, q, ,) are defined in Chapter 3 as the time interval after the i’th

discontinuity and before the i+l hard limit or equipment outage discontinuities.

These nonsmooth system transitions described in Chaptre 3 usually result in loss of

voltage control of certain buses in the system and/or decoupling and islanding of

certain areas or group of buses of the system. Loss of control implies that the

generator dynamics and controls or other voltage protective devices of the system

are disabled which results in a decoupling of the generator dynamics and the system

algebraic operational constraints. Loss of control induced discontinuities occur when

generators reach field current limits that cause the exciter to effectively lose control

of voltage, tap position limits to cause tap changer controls to lose control of voltage
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and switchable shunt capacitor susceptance limits that also cause loss of control of

voltage discontinuously affect the structure and in some cases change the dimension

of fx and g, . On the other hand an equipment outage such as the trip of a tie line, i.e

a line that connects two major areas in a‘power system results in decoupling between

the two regions or even an isolation or islanding of a major part of a system.

Therefore in each time epoch (if, 1;, , ) , the effect of the previous discontinuities

which occurred at times t, for k=l,..,i-l may fully be captured through the

disappearance of certain dynamics, decoupling or isolation of some subset of

dynamics, increase in matrix sparsity when dynamic equations are substituted by

algebraic equations,.. etc. For example, the effects of the discontinuities in epoch

(if, 1;, , ) , in addition to the extreme sparsity in the network create the weak coupling

of the reactive power and voltage and real power and angles as submodels in gy, as

well as the weak coupling of coherent bus groups in both models. Therefore, the

resulting model within each epoch (2:31;, ,) may experience separate bifurcations in

the real power inertial (angle) dynamics, flux decay, exciter, voltage and reactive

power dynamics within coherent groups. The evolution of the bifurcation

subsystems with different kinds of bifurcations for each discontinuity is a natural

and essential way for tracking the actual cause for the final system instability. The

relative isolation of the real power and angle coherent groups and reactive power and

voltage coherent bus groups in submodels of g,, allows Proposition 4.1(i) and (ii) to

be satisfied for eigenvalues associated with the inertial dynamics and for the flux

decay exciter dynamics in coherent groups of buses.
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(d) Geometric Structural Decoupling

The decoupling may only be geometric and thus occurring in the direction of the

bifurcating eigenvalue. The geometric decoupling may occur as u —+ u* , or may be such

that it holds for all u as u—>u*. This geometric decoupling, asymptotic as ll-)ll* or

structural for all u, is quite easy to achieve given factors (a-c).

It is often impossible to determine all of the bifurcation subsystems without

comprehensive stress tests at every bus in the network and possibly every subsystem of the

generator model since the coordination of controls in different bifurcation subsystems

mask the existence of such subsystems. Comprehensive stress test cause the

discontinuities that disable the controls to allow one to observe the subsystem or sub-

subsystem that experience bifurcation, which result when conditions of Proposition 4.1

and 4.2 are satisfied.

4.2.5 Algebraic Bifurcation Subsystem Experiencing LF Bifurcation

Until the last decade, the classical method for analyzing local power system stability has

been limited to the use of a load flow model. This model commonly called classical or

standard load flow model, will be shown in Section 4.5 to be an approximation of a

linearization of the Exact Load Flow model

0 = g(x(y).y(u).u)

Under the Conditions of Proposition 4.2, the linearized Exact Load Flow model is shown

to be a bifurcation subsystem of first order for the differential-algebraic model. The P-V or

Q-V curves computed using the classical load flow model have been the principal methods

used to study voltage stability [App B] and proximity to voltage collapse. Studies [54]
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have shown that voltage collapse occurs at a bifurcation in the classical load flow model

and results either in no solution or multiple solutions in the model equations. The results

in [1 I] show that each coherent bus group where the Q-V curve have nearly identical

minima have unique voltage collapse problems. These voltage collapse problems occur

whenever the generators that exhaust reactive reserves and lose control of voltage in

computing the Q-V curve minima for each coherent group exhaust reserves for equipment

outages or operating changes. The fact the classical load flow is an approximation of an

algebraic bifurcation subsystem of the differential-algebraic model supports the discussion

of how bifurcations occur due to extreme sparsity, decoupling of real power-angle and

reactive power-voltage submatrices, weak coupling of coherent groups in each submodel

and loss of voltage control discontinuities actually cause bifurcation in the differential-

algebraic model as claimed in Section 4.2.4.

4.3 Bifurcation Sub-subsystems Experiencing

SN and LF Bifurcation

The results presented in 4.6.5 indicate the classical load flow model is a bifurcation

subsystem when generator exciters have high gain and are not disabled and results

presented in Chapter 5 indicate that the reduced differential equation model Ax = Jx- Ax

can be a bifurcation subsystem of first order. when generator exciters are disabled. The fact

that the classical load flow is a bifurcation subsystem that produces and cause bifurcation

in the differential-algebraic model does not end the application or investigation of

bifurcation subsystems. The bifurcation subsystem method will attempt to identify

algebraic sub-subsystems of smaller and smaller dimension to determine the smallest
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bifurcation sub-subsystem (a coherent bus group) that produces and causes the bifurcation

in the complete system as will be shown in Chapter 5. Similarly, differential bifurcation

sub-subsystems containing (a) generator mechanical dynamics, (b) electrical dynamics,

(c) generator flux decay dynamics, ((1) the power balance equations at terminal buses, (e)

the control systems dynamics or (f) a combination of the above would be investigated to

find the smallest bifurcation subsystem once it is confirmed that a differential subsystem

bifurcation has occurred. If a differential or algebraic bifurcation subsystem does not exist

when conditions of Propositions 4.1 and 4.2 do not hold, a differential-algebraic

bifurcation subsystem containing both differential and algebraic equations may exist For

the following results on finding the smallest algebraic subsystem, the smallest differential

bifurcation subsystem and the smallest differential—algebraic subsystems, the Jacobian

matrix J must be partitioned as follows

xll fxrz fyrr fyrz

f f
J fxzr x22 yzr fyzz

g

g’rr xxrz Yu gl’rz

  g‘zr g‘22 gyzr gyzz

4.3.1 Differential Bifurcation Sub-subsystem for

Saddle-Node Bifurcation

Not all system dynamical states are generally involved in a differential subsystem

bifurcation. The differential subsytem Jacobian matrix fx includes the machine electrical

and flux decay dynamics, excitation system dynamics, governor control dynamics and

power system stabilizer dynamics. The matrices associated with each set of dynamics are



108

shown in the partitioned fx matrix. The matrix fx“(p.) in

r (u)! (u)
l]=fx(u).Ax= ‘11 ’12 [”1] (4.12)
2 13,2101) 522‘") Ax,

[Ax
Ax’ = .

can represent any subsystem of the the differential equation in (4. 12), and the conditions

for differential bifurcation sub-subsystems of first order are given in the following two

corollaries.

Corollary 4.3.1 (a)

Given that (4.1) has a differential bifurcation subsystem for SN bifurcation because

conditions of Proposition 4.] hold. Let fx”(u*) in (4.12) be singular for some

p* 5 (11,412) where transversality conditionsfor SN hold at if" , fx22 nonsingular near u*

and let N, = Null(fx“(,u*)) and N2 = Null(fxu(tt*)T). Then Ax, = fx“(u)-Ax, is a

difierential bifurcation sub-subsystem offirst orderfor (4 .1 ) experiencing SN bifurcation if

and only ifnear u*, condition (i) or (ii) is satisfied

(1') [fxnf]:22 fle] - u, = Oforsome u, e N,

.. T -1 .

Corollary 4.3.1(b)

Given that (4.3) has a dtfierential bifurcation subsystem for SN bifurcation because

conditions of Proposition 4.1 hold. Let fx22(u*) in (4.12) be singular for some

11* e (11,, uz) where transversality conditionsfor SN hold at X“ , fx” nonsingular near [1*

and let N, = Null(f(tt*)) and N2 = Null(f(u*)T). Then Ax2 = fJr220.1) - Ax2 is a difl'erential

bifurcation sub-subsystem offirst orderfor (4.1 ) experiencing SN bifurcation ifand only if
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near u* , condition (i) or (ii) is satisfied

- —1
(t) [“21fo fx12]-u, Oforsome u, e N,

.. -1

(ll) vr-[flefxn fxlz] = Ofor some v, 6 N2

4.3.2 Algebraic Bifurcation Sub-subsystem for Load-Flow Bifurcation

Let the algebraic bifurcation subsystem 4.3(b) be partitioned as

0 = gym = [g’118’12J.[Ay1] (4.13)

g’zr gyzz Ayz -

where gm , gym , g),21 , gy22 are arbitrary submatrices of gy. Depending on the singularity

of gy“ and gy22 , algebraic bifurcation sub-subsystems experiencing LF bifurcation may be

obtained by applying Propositions 4.1 and 4.2 to the system in (4.13) as given in the two

corollaries below.

Corollary 4.3.2(a)

Given that (4.3) has an algebraic bifurcation subsystem for LF bifurcation because

conditions of Proposition 4.2 hold. Let gy”(u*) in (4.13) be singular for some

we (u,,u2), gyzzur) in (4.13) nonsingular and let N, = Null(gy“(tt*)) and

N2 = Null(gy”(|.t*)T). Then 0 = gynut) . Ay, is an algebraic bifurcation sub-subsystem of

first order for (4.1) experiencing LF bifurcation if and only if condition (i) or (ii) is

satisfied

. —1
(l) [gylzgyzzgyu] - u, = Ofor some u, e N,

-- T -1
(ll) v [ ]=0 orsomeveN, gylzgyzzsyu f 1 2
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Corollary 4.3.2(b)

Given that (4 .3 ) has an algebraic bifurcation subsystem for LP bifurcation because

conditions of Proposition 42 hold. Let gy22(p.*) in (4.13) be singular for some

u* e (u,,u2), gm nonsingular near 11* and let N, = Null(gy22(t1*)) and

N2 = Null(gy22(tt*)T). Then 0 = gynm) - Ay22 is an algebraic bifurcation sub-subsystem of

first orderfor (4 .1 ) experiencing LF bifurcation if and only if, near [1* , conditions (i) or

(ii) is satisfied

0 forsome u, e N,
- —r

(I) [gyzrgl’ugytz] “I

(it) vl-[g it“s ]
er yrt'ytz

Ofor some v, 6 N2

The thesis will show that the disablement of generator excitation control produces voltage

collapse in a load flow model, which is an algebraic bifurcation subsystem and will also

cause bifurcations in the differential subsystem composed of the generator inertial and

flux decay dynamics. These bifurcations in this differential bifurcation subsystem can

explain the dynamical behavior observed as a system experiences voltage collapse.

4.3.3 Differential-algebraic Bifurcation Sub-subsystem

Differential-a1gebraic subsystems may be the most common type of bifurcation subsystem

that produces and causes bifurcation in the full differential algebriac model. It has been

reported that the transfer of real power across long transmission network is the reason

behind the low-frequency oscillations, which may affect one or many generators in the

system, or may affect more than one coherent generator groups. Differential-algebraic

subsystems may therefore exist to represent not only the generator and control dynamics

involved in the bifurcation, but also the contribution of the power balance constraints in
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causing the failure. These subsystems may be derived by first perrnuting the order of the

state variables as for instance,

1x ylr= [x115 it by —>[x1y1x2 All

Then the full system (4.3) now has the form

  
  

    

, -

~ f f f f r . r -
,7 x x y

Ax, g 118111 8 12 g 12 Ax, . . Ax,

0 = .xlr Yri x12 in - Ay, = fx fy . Ay, (414)

. t t

sz fx fy fx fy M2 8x gr M2
0 21 21 22 22 Ay A)’

“ ‘ g g g g L 2‘ L 2‘
_ ‘21 >’21 ‘22 122

Differential-algebraic sub-subsystems may be obtained by applying Propositions 4.1 and

4.2 on the Jacobian matrix as partitioned in Equation (4.14), where f;, f; , g; and g; are

  

given by:

pro ’9“) 1 fX" fr”gx = -1 ..l ’ 8y «2 ~~ 4.15(a)

Lng, g13L ng22 gy22

- f - f

e x y " x yfx = 11 11 ’ fy 12 12 4.15(b)

‘11 gyud x,2 gyl2

Corollary 4.4.3(a)

Let f;(u*) in (4.14) be singularfor some 11* 6 (11,412), g;(u) in (4.15) nonsingular near

11* and let N, = Null(f;(tt*)) and N2 = Nuu(f;(u*)7) . Then

Ax, e Ax]

= f (u)~

1 0 1 x 1A? 11

is a differential-algebraic bifitrcation subsystem offirst orderfor (4.1 ) if and only if near

11* , condition (i) or (ii) is satisfied

‘ ‘ fi-l . -

(I) lfygy gxl-u, = Oforsome u, e N,
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(ii) 1" 1 - [figf‘rfl = 0 for some V, 6 N2

Corollary 4.4.3(b)

Let g;(u*) in (4./4) be singular for some 11* e (11,, 11,). f;(u) in (4.15) nonsingular near

11* and let N, = Null(g;(tt*)) and N, = Nuu(g;(u*)T). Then

. . A

0 Ah

is a differential-algebraic bifurcation subsystem offirst orderfor (4 .1 ) if and only if near

p.* , condition (i) or (ii) is satisfied

(i) rg;r;"r;1 . u, 0 for some it, e N,

—le-- T e ‘

(H) V, ~11:fo fy] Oforsome v, e N,

4.4 Differential Bifurcation Subsystems for Hopf Bifurcation

The analysis and results carried out so far in this chapter have been based on Propositions

4.1 and 4.2 which focused on the system’s change in behavior when a simple real

eigenvalue of the differential-algebraic Jacobian matrix crosses the jar-axis. It has been

shown that under certain system operating conditions, two bifurcation subsystems of

4.3(a) are of interest:

(a) An algebraic bifurcation subsystem for studying load flow bifurcation (also called

loss of causality) in the equivalent algebraic system model (4.5) is given by

O=Jy-Ay = [gy-gxf;lf,l-Ay = gy-Ay

(b) A differential bifurcation subsystem for studying saddle node (SN) bifurcation in the

equivalent differential system model (4.6) is given by

Ax~=1,- Ax: rf,-f,g;‘g,1-Ax = f,- Ax

Such results are desired and may easily be extended to the case where the system behavior
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is characterized by the onset of unstable (subcritical) or stable (supercritical) oscillations.

With no further analysis Proposition 4.1, Corollaries 4.4.l(b) and 4.4.l(b) may be

generalized to cover the case when the equivalent dynamic system Jacobian matrix J, has

a pair of pure imaginary eigenvalues 11.2 = iiwo. If (00:0, the equivalent dynamic system

model experiences SN bifurcation, otherwise the system experiences undamped

oscillatory behavior whose frequency depends on (00. Also it is evident that if the system

Ax = J,(u*) - Ax has a pair of pure imaginary eigenvalues "1.2 = :in with associated

conjugate (complex) eigenvectors “1.2 e C" then we have

h,-u, = two-u, = J,(u*)-u,

[Jx(l-‘*)"“°o’nxn] ' “1 = 0

which says that when the matrix J, has a pair of pure imaginary eigenvalues 11.2 = :in ,

the matrix [1,(u* )riwolm] has a zero eigenvalue, i.e. singular. Therefore, with the

following definitions,

ffow) = f,(u)-im,l,,l,,,l 4.16(a)

1:)"(u)s awning/"1,", 4.16(b)

_| .

= f,(u)-f,g, griffin/"1,...,

= fforu)-f,g;'g,

similar proposition and corollaries to Proposition 4.1 and Corollaries 4.4. 1(a-b) may be

stated for the existence of differential bifurcation subsystems of 4.3(a) for Hopf

bifurcation.

Proposition 4.3

Let ffflu) in (4.16) be singularfor some 11* e (11,, (1,) where transversality conditionsfor

Hopf hold at 2*, gym) nonsingular near 11* and let N, = Null[f:)°(|.t*)]ch and

N, = Null[ffO(u*)T] c C". Then, Ax = fx(u) - Ax is a difi’erential bifurcation subsystem of
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first order for (4./) experiencing Hopf if and only if near 11*, condition (1‘) or (ii) is

satisfied

(1') [5.5111,]. 14, = 0 for some u, e N,

.. T . —1
(U) v 1-[fygy 12,] = Oforsome v, 6 N2

4.4.1 Differential Bifurcation Sub-subsystems for Hopf Bifurcation

The Hopf bifurcation in a differential bifurcation model for Hopf, may exist in only a

subset of the generator inertial dynamics, flux decay dynamics, exciter system control

dynamics, governor control dynamics...etc. Condition for bifurcation of Ax = fx(u) . Ax or

bifurcation sub-subsystems of (4.1) for Hopf are given below. Let the matrix ffom) be

partitioned as

(D

f,"(u) f

f?"(u)-Ax= ” “2 [1111,] (4.18). (00 M2

1,2, 522111)

then conditions for differential bifurcation sub-subsystems for Hopf bifurcation are given

in the following two corollaries.

Corollary 4.4.l(a)

Given that (4.3) has a differential bifurcation subsystemoffirst orderfor Hopfbifurcation

exists because conditions of Proposition 4.3 hold. let f2: (11*) in (4.18) be singular for

some 11* e (11,, 11,) where transversality conditions for Hopf hold at 2*, fg"2(u)

nonsingular near 11*, and let N, = Null|:f:)"(u*)] and N, = Null[(f:)0(p*))1]. Then

11 11

Ax, = fx“(u) - Ax, is a differential bifurcation sub-subsystem offirst order for (4.1) for

Hopfif and only if near 11* , condition (i) or (ii) is satisfied
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(i) folzfégfll) .fle‘l - u, = 0 for some 11, e N,

.. 1' to -1

(ll) v, -[fxlzf,2"2(u) [X21] = Ofor some v, e N,

Corollary 4.4.l(b)

Given that (43) has a dtfierential bifurcation subsystem for Hopf bifitrcation because

conditions of Proposition 4.3 hold. Let f2; (11*) in (4.18) be singular for some

11* e (u,, 11,) where transversality conditions for Hopf hold at 2*, fzolm) nonsingular

near 11* and let N, = Nuu[fff202(11*)] and N, = Null[(f:)2°2(tt‘))r]. Then

Ax, = f,22(11)-Ax,, is a differential bifurcation sub-subsystem offirst orderfor (4.1) for

Hopfbifurcation ifand only if near 11* , condition (i) or (ii) is satisfied

(i) [fxufff’ (11¢fo - u, = Ofor some 11, e N,

l

.. T 020 —l _

(II) V, -[fx21fx”(u) fx12]- Oforsome v, e N,

4.5 Application of Algebraic Bifurcation Subsystem Experiencing

LF Bifurcation in Power System Stability Assessment

When the linearized system model (4.4) satisfies conditions of Proposition 4.2, the

algebraic bifurcation subsystem of first order 0 = g, . Ay or consisting only of the network

equations 0 = g(x, y, p.) is a bifurcation subsystem of the Exact Load Flow model

0 = g(x(y), y, u) that is used to study load flow bifurcation occurring in the full

[if] [:1 -
Considering the similarity between g, and the classically used approximate load fiow

differential-algebraic model

model with Jacobian matrix JLF [52], such a result would justify why experience has

shown that a classical load flow model is such a useful tool in assessing stability that
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occurs in a differential-algebraic model. The classical load flow model was the first and for

some time the only tool for studying voltage collapse or voltage stability [App B]. The P-

V or Q-V curves computed using a classical load flow model have been the principal

methods used to study voltage instability and proximity to voltage collapse. Studies [54]

have shown that voltage collapse occurs as a bifurcation in the classical load flow model

and results either in no solution or multiple solutions in the model equations. Over the past

ten years far more accurate Type 2-4 differential-algebraic models have been developed.

However the classical load flow model is still the model and computer program being used

in power system voltage stability assessment programs despite the existence of far more

accurate models and simulation tools. The objective is therefore to use the present

knowledge of bifurcation subsystems, to assess when and why a classical load flow model

is a bifurcation subsystem for the full differential-algebraic model. The discussion will

start with a brief description of a classical load flow model, then take hierarchical steps by

first looking into the preliminary system condition (f, nonsingular) for utilizing J, as a test

matrix that is equivalent to J for testing when a static or algebraic bifurcation occurs in the

differential-algebraic model. The second step is to compare the Exact Load Flow model

0 = J, - Ay ( 0 = g(x(y),y(11),u) ) with the algebraic bifurcation subsystem 0 = g), - Ay

(0 = g(x(u), y(u), 11)), and the classical load flow model 0 = JLF ~ Ay (0 = g’(y, u) ).

Finally, based on the bifurcation subsystem conditions, some operational and geometric

grounds are established for the use of the classical load flow power system model when

algebraic bifurcation subsystem experiences the same algebraic bifurcation as the Exact

Load Flow model.
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4.5.1 Description of 3 Classical Load Flow Model

The classical load flow model describes the power system steady state condition of the

transmission network and is a set of algebraic equations composed of the active and

reactive power balance equations of the transmission network at load buses and only the

active power balance equations at generator terminal PV buses. The reactive power

balance equations at generator buses are neglected since the excitation systems of these

generators are assumed to have infinite gain and thus hold the generator terminal voltage

to set point value. The classical load flow model can also be viewed as a simplified model

of a power system differential-algebraic model under the following assumptions: (a) the

generator armature resistance is zero; (b) fx is invertible (c) the excitation gain of each

generator is infinite; and (d) all time constants in the differential equations are set to zero

since the time interval over which the model is to be valid is infinite.

Buses in a classical load flow model are conventionally divided into three types: (I)

a swing bus is a generator bus with infinite active and reactive power reserves so that its

voltage and angle are fixed while its active and reactive power generations are dependent

variables that provide the power mismatch between generation and load plus losses in the

rest of the system; (2) a generator PV—bus represents a generator bus operating under over-

excitation limits (OEL), and thus its reactive power generation and angle are dependent

variables while its voltage and real power generation are independent variables. (3) load

PQ-bus is any bus with no reactive or real power generation, and thus instead active and

reactive power injections are specified at this bus and are independent variables in the

model. The voltage and angle at PQ buses are dependent variables that must be solved for

using the model.
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The classical load flow model consists of active power balance equations at all PV-

buses and PQ-buses, and reactive power balance equations at all PQ-buses. The reactive

power generation at each PV-bus and the active and reactive power generations at the

swing bus are output variables (dependent variables) of the load flow model. In addition, if

a generator PV-bus exciter is disabled by field current limit controllers, the generator PV-

bus becomes a load PQ bus due to action of field current limit controller that disables the

exciter and controls the reactive power to be the continuous rating limit. Thus, one more

reactive power balance equation at that generator terminal bus needs to be added, since the

voltage magnitude at its terminals is no longer held fixed. The general structure of the

classical load flow Jacobian has been derived in [52] and presented in Appendix A as:

    

yer. A1 BIH 0 Cin 011-! 0

3P 8P 1”” A21! BZHH ‘3an C519 DZHH Dzm.

JLF = E W ___ J“ = 0 BZLH 321.1. 0 DZLH DZLL (4.18)

fig 9!: 1’"? A59 Bill 0 Cir? Dill 0

393V 19” A B B CPfiD D
JQL 4H 4HH 4LH 4 41m 4m.

1 - 0 B B 0 D D
Where _ 4w 4LL 41.14 41.1.,

I

9 = [9T1 9”! 9L1] : angle variables at network buses;

t

v = [vggt V”! VL‘] : voltage variables at network buses;

t

P = [P1, PH, pL‘] : voltage-dependent active power load demand;

I

Q = [QfQ' Q”: AQLI] voltage-dependent reactive power load demand;

The real and reactive power balance equations in ( 4.18) have been arranged according to

the types of bus variables in the transmission network, i.e generator terminal (T) buses,

high side (H) transformer buses and load (L) buses. The matrices in the fourth row block

and column blocks are solely associated with the generator PV buses which became PQ
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buses, thus the superscript notation PQ.

4.5.2 Structural Conditions for Utilizing J,

The structural condition (f, nonsingular) imposed by Proposition 4.2 for formulating the

algebraic bifurcation subsystem 0 = gy . Ay may be understood by observing the matrix f,

as presented in (4.4). The derivation of the model used is given in [52] and summarized in

Appendix A. The matrices f, and ACC are given by

r r

Axx Axe Axo 0

~ “ A15x ABE 0 Ass

OX 66

Asx O 0 ASS  

ABS 0 Ass

0 0 ASS

Matrix f, is composed of diagonal block submatrices where each diagonal element is

associated with one machine. The elements of each submatrix off, is defined based on the

single machine infinite bus matrix, since it represents the operating condition when the

terminal bus of each machine is assumed to be an infinite (swing) bus with constant

terminal voltage. Note that each diagonal block submatrix of f, can be viewed as an

element of a single machine model, since the dynamics of each machine are uncoupled in

f,. The control systems form an upper triangular block matrix Ace and its eigenvalues are

those of each control system: AEE , A151; , and Ass- Based on IEEE general models of

speed-governing-turbine system and power system stabilizers [52], both Ace and ASS are

lower triangular matrices with real and negative eigenvalues. Regarding the excitation
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system matrix AEE, when the excitation system is “properly tuned” and is able to be

manually operated, all the eigenvalues of AEE are nonzero negative real values. Moreover,

under the assumption that each synchronous machine is operated below its steady state

stability limit, the matrix f, can be shown to be nonsingular, with stable eigenvalues. It

will be shown in Chapter 6 thatf, can be singular if the mechanical dynamics or fiux decay

dynamics experience saddle node bifurcation. Operationally neither saddle bifurcations

should occur if the machine is operated within its real power generation limits and the

exciter is properly designed. Therefore, under the above assumptions, the equivalent

algebraic Jacobian matrix Jy = g, — gxfjfy can be analytically defined.

4.5.3 Comparison of Exact Load Flow model, Algebraic

Bifurcation Subsystem, and Classical Load Flow Model

The Exact Load Flow model 0 = g(x(y), y(u), u) , algebraic bifurcation subsystem

0 = g(x(11), y(p), 11), and the classical load flow model 0 = g’(y,u) are all quite similar

because they all have real and reactive power balance equations at generator high side

transformer buses. The associated linearized models with Jacobians J), g, and J”: are also

quite similar. The diflerences in J, and g, is investigated first to establish (i) when and if

load flow bifurcation occurs due to loss of causality so that 0 = g(x(u),y(u),u) is an

algebraic bifurcation subsystem of 0 = g(x(y), y(u), u), and (ii) when the classical load

flow model is a bifurcation subsystem model of the Exact Load Flow model.

The geometric conditions of existence of an algebraic bifurcation subsystem of first

order for LF bifurcation.

—1
[xxfx fyl-u,=0 when gy-u,=Jy-u,=0
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1"2-[gxf;'fy] = 0 when v, -gy = v, -Jy = 0

where u, and v, are the right and the left eigenvectors associated with the zero eigenvalue.

may be approximately satisfied in different ways such as

(Cl) Ilg,C I] is 0(8) and "ff““fy” - “a," is 0(1) near 11*

(C2) llfy II is 0(8) and ||f;‘||||g,,|| - “a," is 0(1) near 11*

(C3) ufju is 0(a) and mug," - "u,“ is 0(1) near 11*

(G1) None of the above but near 11* , the vector v, is such that vT2- [,gxf;l fy] = 0.

(G2) None of the above but near 11* , the vector u, is such that [gxfffy] - u, z 0.

where ll . II is an appropriate matrix norm. Conditions C1 and C2 pertain to the case when

the coupling matrices g, and f, are negligible so that the interaction between generator

internal and terminal buses is insignificant to the bifurcation study. Likewise, condition

C3 implies that the single machine matrix f, must be diagonally dominant. The

eigenvalues of j; are in fact proportional to the eigenvalues of the control systems AGC ,

ASS and A 151-: , and the system K-matrices (will be derived in Chapter 6). These eigenvalues

may be high when the system is operating below its steady state stability limits and with

high excitation gain. Despite the implication of these conditions, it is clear that the

geometric conditions G1 and G2 not only encompass conditions C1-C3, but also are more

likely to occur due to the sparsity and weak coupling property of the Jacobians as noted

earlier. G1 and G2 say that near 11* , [gxf;lfy] need not be zero, but only that gy-Jy be

nearly singular and that its null space (approximately) overlap the null space of gym") .

Conditions GI and G2 require examination of the structure and characteristics of the

matrix [gy—Jy ] = gxfjfy near 11* and its geometric interaction with the right and left

eigenvectors u, and v, of the null space of gy(|.l*)
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In order to demonstrate and characterize the validity of the use of the algebraic

bifurcation subsystem and subsequently the classical load flow model, analytical

expressions of g, and [11,, —Jy ] = gxfjfy derived and presented in [52] are

ng ”Arr BIH 0 Cur DIH 0 ~
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[g,f;'f,l=g,-Jy= O 00 0 00 (4.21)

Kg,ooc,xoo

o 00 0 00

[o 00 o 0Q  
Where

t

6 = [A6,' A9”! ABL'] : angle variables at network buses;

l

v = AVrt AVH‘ Avril : voltage variables at network buses;

l

P = [Mort APH' APL‘] : voltage-dependent active power load demand;

Q [AQr‘ AQn‘ AQLT :voltage-dependent reactive power load demand;

Note that the submatrices in the fourth row and fourth column blocks of g, model the

reactive power Jacobians associated with the generator terminal buses, while in the

classical load flow model (4.18) the fourth row and fourth column blocks are associated

with unregulated generator PV-buses which became PQ-buses. Therefore, the difference

between the two matrices resides mainly in the fourth row and fourth columns, since the

row dimension of submatrices in the fourth row of JLF associated with Q’T’Q and the



column dimension of the submatrices in the fourth column of JU, associated with Vf‘l

equal to the number of generators with PV to P0 bus changes, but those in gy are

proportional to the number of generators in the model. These are also differences in the

terms Am, A3,, C”, and C3,, of g), and A, , AfQ, CW and C5? of JLF .The relations

between these terms as well as their relation to the equivalent algebraic Jacobian matrix

Jy is now discussed when the dimension of uPQ and the number of rows associated with

Vl’Q and Q’T’Q in (4.18) are zero.

Note that the submatrices A”, and A3,, of gy are given by

Arr = Kivq1+41 ; Asx =K31+A3

where A, and A3 do not include the effects of the K131: aPT/ae, and K3,: BQT/BGT

coupling between generator terminal and internal buses. Thus A, and A3 are identical to

the matrices A, , A§Q of a classical load flow model Jacobian (4.18) since this model

includes terminal buses but not internal buses. Also note that

CIK = Kii‘I‘l'Cr ? C3K = K317+C3

where C, and C3 do not include the effects of the K#17: ap,/av, and K547: aQT/av,

coupling between generator terminal and internal buses. Therefore C, and C3 are

identical except in dimension to the matrices CfQ and C5]? of a classical load flow model

Jacobian (4.18) since this model includes terminal buses but not internal buses.

Expressions for K51, , K51, , K$17 and K3, are easily derived [52] and can be found in

Appendix A. When adding [1, -g,, ] of (4.21) and g, of (4.20) to obtain Jy , it turns out

that A, K and A3,, of g), are replaced [52] by A, and Ag’Q of the classical load flow

Jacobian JLF which implies that the exciter and flux decay dynamics have no effect on

aPT/ao, and aQT/ae, terms of J, . Furthermore, in J, the submatrices C , K and C3,, of
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gy are replaced by

Cir = ClK—CIX

Cir = Csx‘Csx C3+K37 ‘Csx

Matrices C 1x and C3,, are derived in [52] and are dependent on the DC gain of the

excitation system KEE which makes diagonal matrices CfK and cg, have very large

negative elements when all exciters are active. However if the armature resistance of the

generator R0 = O , then [52]

C,,, = K137 thus Cf, = C, .

This result implies that when the armature resistance of the generator is neglected, the

control systems do not have any effect on the active power-angle Jacobian matrix

CfK = C,. Since Ra is generally small so that Cl} = C, and C19, is assumed to be large

when exciters are operating at high gain at every generator, the conditions for static

bifurcation of Jy

0 = 1’ . u, 4.23(a)

where

u; = (11%,. ulfl. uh. 115,. 115”. 115,) 4.23(b)

Equation (4.20), (4.21) and (4.23) imply that

A3uPT+B3uPH+C§KuQT+D3HuQH z C§KuQT z 0 4.24(a)

since Cir is very large due to its being linearly dependent to KEE. From equation 4.24(a)

and the fact that C1} is diagonally dominant when all generators have excitation control,

4.24(a) suggests that

em = 0 4.24(b)

Since 4.24(b) is associated with the fourth row of Jy not in JLit when all generators have

excitation control and um = 0 eliminates the fourth column of J}, , the remaining
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equations of 4.23(a), (which do not include 4.24(a), require that

J T T T T T T :3 0
LF' “pr “PH “PL “Po “QH “or.

where uPQ has dimension equal to zero.

Thus Propositions 4.2 implies that the classical load flow model is a bifurcation subsystem

of

and

r1 = , AO Ay

for LP bifurcation for the case where all exciters are active and operating with high gain,

Ra on every generator is assumed to be zero, and af/ax is invertible.

An option has been added to some load flow algorithms to model the generator flux

and exciter loop. In this case, the exciter gain on every generator does not have to be large

for the load flow to be a bifurcation subsystem for the differential-algebraic power system

model, since in this case I“; = J, regardless of whether the exciter is present or is

disabled by field current limit controllers. The only difference in I“, = I, when exciters

are present or disabled is in the terms C, x and C3,, that depend on whether excitation

system gain Kor: = Kgg-KAKD is zero or nonzero, where K5); is the inverse diagonal matrix

of the inverse DC gain of the exciter, KA is a diagonal matrix of the amplifier gain of each

excitation system, and Ko is the diagonal matrix of the sensor gain for each generator

exciter.
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4.5.4 Bifurcation in LF Model or in Generator Dynamics

Recall that the conditions for g, to be a bifurcation subsystem of J, and J require that

[1y —gy] - u2 = O (4.25)

when

J,- u, = o (4.26)

From (4.21), condition (4.25) can be written as

0 4.27(a)
K1141 ' “PT+C1X'“QT

O 4.27(b)K31 '“PT + Csx ' “QT

where u, is the eigenvector associated with the zero eigenvalue,

T .. T T T T T
“2 " (“PT’ “PH’ “er “QT’ “on: um.)

The Jy condition in (4.26) for terminal buses can be written

AluPT+BIuPH+(CI+Ki¥7-C1X)uQT+D3H“QI-l = 0 4.28(3)

A3“PT + B3uPH + (C3 + K87 - CBX)“QT + D3HuQH = O 4.28(b)

There is very little chance that Jy and I will be singular simultaneously with gy since the

C3,, term in equations 4.27(b) and 4.28(b), which is dominant, occurs with different signs.

On the other hand, if 11,, , up” , um and 110,, were zero for a specific bifurcating

eigenvalue, then from (4.26) and (4.27) we can see that the bifurcation occurs strictly in

the load buses far from the generators in the system, which indicates that J and J, can

reach bifurcation when gy reaches bifurcation [52]. If 11", “PH , um. and 110,, are nonzero

then g, is never singular when J and J), are singular, and singularity in J always occurs

due to singularity in 1,. This bifurcation in generator dynamics that occurs whenever

uPT, up” , um. and 110,, are nonzero, will occur when load flow bifurcation occurs if all

generator exciters have infinite gain, all generators have zero armature resistance, andf, is

nonsingular, or if the load flow modeling option has been selected that makes J, = Jur-



4.5.5 Conclusion

(1)

(2)

(3)

(4)

The bifurcation subsystem method suggests that

the classical load flow model is a bifurcation subsystem for the differential-algebraic

model for all static bifurcations when all exciters are active and high gain at the point

of bifurcation; R, is zero on every generator, andf, is invertible.

the classical load flow model with complete DC modeling of generator exciter and

flux decay effects is a bifurcation subsystem for LF bifurcations for both

J -Ay = o

and

u = ,_ u0 Ay

the set of algebraic equations for a differential-algebraic model is not likely to be a

bifurcation subsystem of all the differential-algebraic model whether exciters are

active or disabled, unless an , uH, , uQT and uQH are zero. This result implies that

bifurcation of these algebraic equations can only occur if it occurs solely in the

algebraic equations of load buses in the system, which produce an algebraic

bifurcation subsystem.

as a result of (3), static bifurcations of the differential-algebraic model are either

static bifurcations of the reduced differential model with Jacobian JJr when 11,, ,

up” , uQT and 11,,” are non zero, or an algebraic bifurcation in the real and reactive

power balance equations at load buses when 11,-, , up” , “QT and 11,,” are null. The

algebraic bifurcation is referred to as clogging voltage instability in [1 I] and is due

to inability to ship reactive power to load buses. The clogging occurs due to reactive

losses that consume the reactive supply. The static bifurcation of the reduced

differential model is a saddle node bifurcation because the generic static bifurcation
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is a saddle node bifurcation. The static bifurcation is most often a loss of control

voltage instability that occurs due to exhaustion of reactive reserves and voltage

control at generator buses since the generator terminal bus is affected by the

bifurcation. There can be clogging voltage collapse problems [11] that are due to

static bifurcation in the reduced differential equation model since clogging voltage

collapse can exhaust reactive reserves and cause loss of voltage control, but this is by

definition not the cause of the instability. The exhaustion of reactive reserves of these

generators could only occur if the generator terminal buses were affected and

uQTatO.
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Effect of Hard Limit Discontinuities on

Stability Analysis

5.0 Introduction

The Bifurcation Subsystem Method developed in Chapter 4 and the Epoch Based Trajec-

tory Stability Assessment Method developed in Chapter 3 provide a framework for initiat-

ing a su'uctural stability analysis on a single—machine—infinite bus (SMIB) model that

encompasses local shunt loads, with emphasis on the effects of one type of hard limit dis-

continuous system transition, the disablement of excitation control. This discontinuous

control action is shown to have an effect on the kind, class and the tests for bifurcation

occurring on the SMIB model. The goals of this chapter are to:

(a) Demonstrate two examples of using the bifurcation subsystem method to identify

bifurcation subsystems in a model. The generator angle-speed dynamics is the bifur-

cation subsystem for Hopf bifurcation in the regulated SMIB model, and the angle-

speed-flux decay dynamics is the bifurcation subsystems for SN bifurcation, in the

unregulated SMIB model, respectively.

(b) Analyze the effects of hard limit discontinuities by assessing the effect of excitation

control or lack of excitation control on the (1) types, (ii) classes of bifurcations pro-

duced, and (iii) the stability test needed for detecting the occurrence of bifurcation.

129
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(c) Derive expressions for the synchronizing and damping torques in a linearized power

system model with no exciter, a thyristor exciter, and type I exciter models in terms

of the model parameter K,-K,. The damping torques are derived for f<<l and for

f>> l.

(d) Derive conditions on linearized model parameters [(4 and K, for the occurrence of

Hopf and on parameter K,, K, K3, [(4.1(5 and K, for Saddle Node bifurcations, and

preservation of stability of the equilibrium. Such conditions are derived for the unreg-

ulated model and for the regulated model (thyristor and type 1 exciter) SMIB model.

The conditions on model parameters K, and [(5 set the stage for establishing diagnostic

tests for specific kind and class of Hopf bifurcation in terms of active load, reactive load,

shunt capacitive susceptance, and real power transfer levels in Chapter 6.

The stability analysis in this chapter is based on the principle of synchronizing and damp-

ing torques or a bifurcation sub-subsystem

MAS +m8 = ATm — ATe

AT, = KSAa + KDAS 5 ATS + ATD

where

ATm : incremental change in mechanical power input to the generator

ATe : incremental change in the electrical power output of the generator

ATs : incremental change in synchronizing torque

ATD : incremental change in damping torques of the machine

The use of damping and synchronizing torque model for the model shown in Figure 5.3

was developed in [55] where the generator inertial and exciter dynamics are assumed to

produce equivalent damping and synchronizing torques on the inertial dynamics. This

type of analysis performed in [55] was later extended in [56], in both classical papers on
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power system dynamics. Matrices KS and [(0 were derived in [52] for multi-machine

power systems given that the subsystem external to the mechanical dynamics is invertible.

The Ks and KD tests for saddle node and Hopf bifurcations respectively, do not necessarily

imply that the bifurcation occurs in the generator mechanical dynamics, nor that the

inertial dynamics are a bifurcation subsystem, and neither the test matrices nor the

bifurcation subsystem indicates anything about the center manifold for the bifurcation in a

non-classical power system model. The system is stable if and only if both the

synchronizing and damping torques are positive. If a classical generator model is used,

where no flux decay or exciter dynamics are modeled, then the damping and

synchronizing torques are namely ATS = K, , the machine real power coefficient, and

ATD = D, the natural damping of the machine. In the case of more complex generator

models, ATS and AT,, depend on the single machine infinite bus model constants K,-I(6.

The form of ATS and ATD in terms of K,-K6 have been derived for nonclassical generator

model with different exciter models and for the unregulated model [56]. The system K,-K4

constants (unregulated) and K,-K6 (regulated) are derived as part of this thesis and are

expressed as functions of the system operating point, the network parameters, and the

infinite bus voltage. Although the parameters or matrices ATS and ATD do not imply that

the inertial dynamics contain the center manifold or even a bifurcation subsystem, they are

tests for saddle node and Hopf bifurcations in the full system model utilized as effective

measures of stability and security, and are for that reason used in this dissertation.
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5.1 Linearized Multi-machine Power System Model

The power system model used in this chapter is based on linearizing the differential and

algebraic equations of a multi-machine power system model. The modeled system consists

of n synchronous generators represented by a two-axis models, m network buses, and an

infinite bus for each area in the model. The model takes the multivariable block diagram

form shown in Figure 5.1, where the state variables are the electrical angle and rotor speed

deviations of the n generators A5 and A11) , and the q-axis transient EMF deviation AE'q .

In this model, TM is a diagonal matrix of inertial time constants TM, = 2H,, T’d is a

diagonal matrix of field open circuit time constants 7",,“ and D a diagonal matrix of

damping coefficients. The inputs to the multi-machine model are the mechanical power

deviations AP", and the excitation voltage deviations AE, of the n generators.

The nxn linearization coefficients matrices K,, K2, K3, K4, K5 and K6 depend upon the

network parameters, the system quiescent operating point, the infinite bus voltage. They

change as the system conditions change, and therefore can decouple angle and voltage

dynamics or can strongly couple voltage and angle dynamics for other operating condi-

tions. Specific system operating characteristics, such as heavy local loading conditions,

large transfer of active power, or a capacitive network can dramatically effect K,-K6 and

the kind and class of the bifurcation produced. As the significance of these constants will

be revealed throughout this chapter, it is important to explain their definitions. In the next

section a linearized SMIB model will be derived, where these constants K,-I(6 are scalar.

(a) K, = EMU/(8814,15, : Change in electric power for a small change in rotor

qil = 15,411"

angle with constant flux linkage in the direct axis °. The component of
 

E’q,| =
 

Eq,
 

torque (or power) K,A51‘ is in phase with A5 and hence represents a synchronizing



(b)

(C)

(d)

(e)

(f)
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power component. Indeed K, is the synchronizing power coefficient in a classical

generator model where no exciter or field circuit is present.

K, = arc/(a
 

Eq,

 

), . _ : Change in electric power for a small change in the d-

51 = 51°

axis flux linkage at constant rotor angle 81' = 81°.

K3 = [1 +((26,,,-—x',,,)(xq,+xe,))/(A1')]"l :K3 is an impedance factor that takes into

account the effect of the external impedance that relates the generator transient

closed circuit time constant T’(,0 to the transient open circuit time constant T’at:

1
K4 = E313

  

thi )/(a8t),Efd : K, represents the natural coupling between

i: constant

AlE’,,-| and A81. It is related to the demagnetizing effect of a change in the rotor

angle.

K5 = (3|le V(aanllE' , 0: K5 is the change in terminal voltage V,, for a small

qt = 15'  qi

change in rotor angle with constant flux linkage in the direct axis E' °
qi=E'    qi

[(6 = (alv,,|)/(a : Change in terminal voltage V,,- for a small change in
 

Eqi
 ’1 i=5i°

the d-axis flux linkage at constant rotor angle 81’ = 81°.
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Figure 5.1 Block Diagram of a Power System Model

5.2 Single Machine Infinite Bus Model With Local Load

5.2.1 Model Representation

Considering how large and complex a general power system is, understanding the basic

effects and concepts of power system stability phenomena using analytical techniques

requires a simple configuration and a reasonably low-order model. A single machine con-

nected to a large system through a transmission network and supplying a local constant

impedance load (Z,,,) is shown in Figure 5.2 (a). This system may be simplified by using a

Thevenin’s equivalent of the transmission network external to the machine and its trans-

former as shown in Figure 5.2(b). Furthermore, because of the relative megawatt (MW)

generator capacity and inertia of the machine that represents a generating station compared

to the generator MW capacity and inertia of the rest of the large interconnected system,

dynamics associated with the single machine will cause virtually no change in the voltage

and frequency of a Thevenin equivalent source (V0,) used to represent the large intercon-

nected system. Such a source of invariable frequency and voltage has been called an infinite
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bus [29]. The described single machine infinite bus model has widely been used in the lit-

erature as a simple yet powerful tool for understanding of power system stability of far

more complex systems under small disturbances [55]. Accordingly, in order to develop an

appreciation for the dynamical behavior of the system as it undergoes bifurcations, their

causes and effects, it is virtually necessary to investigate such a low-order system before

dealing with very large complex systems. The Thevenin electric circuit of a complex trans-

mission network model is shown in Figure 5.2(a) with simplification shown in Figure

5.2(c). This single machine-infinite bus model includes

(1) A generator and its transformer represented by a voltage source
 

E’qlz8 behind a

transient reactance x',, + x, where x, is the transformer reactance. This generator

and transformer are radially connected to a large interconnected system, via a long

transmission corridor with equivalent reactance XE that is large. The large

interconnected system represented by the infinite bus (i) may be a major bus or

group of buses that are stiffly interconnected so that they act as a single bus and (ii)

contains very large generation capacity and inertia compared to the single machine

connected to this bus group via the transmission conidor reactance XE;

(2) A load center at the generator terminal is represented by a constant shunt resistance

R3,, in parallel with a shunt capacitance or inductance X3,, that can include line

charging of the transmission line, local shunt capacitive compensation, or inductive

load.

(3) XE is the equivalent transmission network inductance shown in Figure 5.2(b);

(4) The equivalent transmission network resistance RE shown in Figure 5.2(b) that is

neglected in Figure 5.2(c);
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(5) The infinite bus is modeled as a voltage source with voltage IVOO|40°.

5.2.2 Model Implications

Despite the simplicity of its configuration, the single-machine infinite bus model can be

used to represent

(a) A generator connected to a large system, via a long equivalent transmission corridor

with equivalent reactance x, that is large. The large system may be a major bus or

group of buses of a power system of very large capacity compared to the rating of the

machine under consideration, or a large load center. Real power is shipped from the

generator to the large load center, whereas reactive power may be shipped in either

direction across the transmission network;

(b) A generator serving a heavy local constant impedance load that can include line

charging of the transmission line, local shunt capacitive compensation, or inductance

load. With x5 large, the dynamics of the generator serving a local load center can be

investigated. Effects of transfer to and from the large remote load center can also be

included.
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Figure 5.2 Single machine with local load connected to an infinite bus through

a transmission network: (a) General configuration of a single machine connected

to a large system through transmission lines; (b) Equivalent system where the

uansmission network is reduced to its Thevenin’s equivalent; (c) Circuit model of

(b) where the RE is neglected
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Figure 5.3. Simplified single-machine infinite bus model. (a) Equivalent

Thevenin model where r, x, and v; are given by equations (5.1). (5.2) and

(5.3) respectively, (b) Phasor diagram for the synchronous machine connected

to an infinite bus shown in (a)
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5.2.3 Model Equations

The circuit model in Figure 5.3 (a) can obtained from Figure 5.2 (c) by first transforrrring

the Thevenin’s equivalent XE and Ivool 40° to a Norton’s equivalent circuit, aggregating XE,

X,h and R5,, and then transforming the resulting Norton’s equivalent to a Thevenin’s equiv-

alent. This produces the circuit model shown in Figure 5.3 (a) where r, and xe and V; are

the equivalent thevenin’s resistance, inductance and infinite bus voltage. The parameter re,

x8 and V; are expressed in terms of the original line inductance XE, and the shunt loads R,,,

and X,,, in equations (5.1), (5.2) and (5.3) respectively.

Rsh
rc = 2 (5.1)

1+R,,(1/X,,+1/XE)2

Z

R3,,(1/X3h-1- 1/x,,)

 

 

 

 

,, = 2 (5.2)

1+R um um )7-
sh sh E

e = [Veal a Ive|z_B (5 3)

°° 1+xE/xM”XE/111,,I °° '

The differential equations for the single synchronous machine are

M8+08 = Pm-PG(8, IE'ql) (5.4)

T‘d0(d|E'q|/dt)+|Eq| = 5,, (5.5)

Where PG has the form

5' v; V32

PG(5,|E'q|) = 1 , 1' lsin8+| I ( 1 — , 1 )sin2(8—B) (5.6)
xd+x¢ 2 xq+x¢ xd-t-x,

when r, = 0. An equation of PG is derived when r, at 0. The algebraic equations represent-

ing the network shown in Figure 5.3 are

Eq = V;+rela+j(xd+xe)ld+j(xq+xe)lq (5.7)

E, = v; +rcla+j(x'd+x,,)ld+j(xq+x,)lq ld<0 (5.8)
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5.2.4 Simplified Linear SMIB Model

A simplified linear model for the synchronous machine connected to an infinite bus

through a transmission line with reactance x, shown in Figure 5.3(a) is derived, based on

the phasor diagram in Figure 5.3(b). In the linearized model, the following assumptions

have been made:

(i) The amortisseur effects are neglected;

(ii) Stator winding resistance is neglected;

(iii) Balanced conditions are assumed and saturation effects are neglected;

(iv) The synchronous machine can be represented (electrically) by a constant volt-

age source behind its direct-axis transient reactance.

Under these assumptions, the linearization of the E', equation (5.2), the electric torque/

power equation and the terminal voltage equation will be performed in the next subsection.

It should be noted that the equations describing the system are expressed in p.u.

5.2.4.1 The E’q Equation

From the system algebraic equations (5.7) and (5.8), Eq and E’q are related by

E“, = Eq+ j(xd"x.d)ld (5.9)

Using the phasor diagram representation of (5.7)-(5.9), we express 1,, (<0) and I, as func-

tions of 15.41 and lv‘ml. Projecting E'q and V; on the q-axis and the d-axis and keeping in

mind that Id is negative yields

-(x'd+x,)ld+rclq = [E'ql-lvglcosw-B) (5.10)

(xq+x,,)lq+reld = lVfolsiMS-B) (5.11)

|qu = [E'ql-(xd-x'dfld (5.12)

Assume steady state operating condition at an operating point such that

s = s" 1, =1; (5,1 = rear IV1|=|V1|°
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B = B ’d = (4° E/d = 514° Pa = (”0° = PG(8°’IE'41°)

A180 assume a small perturbation around the operating point, such that

5=8+A6 I,

B=BO+AB Id

lq°+Alq |V,| = |V,|°+A|V,|

lo° + No IE'ql = IE'ol° + A1511

Substituting these into equations (5.10) and (5.11), and using Taylor’s expansion method

around the nominal solution as the steady operating point yields the following linear equa-

tions (5.10’)-(5.12’)

—(x',, + x,)Ald + reAlq = AIE’ql + |v;| sin(8° — (5°) - A8 (5.10’)

reAld+(xq+x,)Alq = lV,|cos(8°—B°)~A8 (5.11’)

Solving for Al, and A1,, and writing the result in matrix form as

_,. -(xq+xe) relVeoolcos(5°-B°)—(xq+xe)|Veoolsin(5°-B°) AIE’ql (5.13)

re relvemlsin(6°—B°) + (x'd+xe)|Vem|cos(5°—fi°)

A“ = r} + (x, + x,)(x',, + x,)

Replacing Alq from equation (5.13) into equation (5. 12’), an expression of the incremental

quadrature voltageAIqu as solely function of AIE’qI and A5 is obtained

Alqu = [1+(xd—x'd)(xq+x,)A-'] -A|E'
«l

+ [(xd - x'd)A’l IVfoI ((xq + x,)sin(8° - (3°) - r,cos(6° — B°))] - A8

which can be written as

l

A15111 = [(3
~A|E'q| +K4-A6 (5.14)

Now, substituting into an incremental version of equation (5. 12) expressed in the s-domain,

the following transfer function is found

K,K4
' — —3_. _____.

AIE‘II - 1+K3T’dos AIEfdl 1+K3T’dos
A5 (5.15)

where
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K, = [1+ A-I(xd_x'd)(xq+x,)]" (5.16)

K4 = A—l(xd-X'd)

 

V"
 
'[(xq+xe)sin(5°-B°)—recos(8°-B°)] (5.17)

5.2.4.2 Electrical Torque Equation

The electric torque Te in numerically equal to the three-phase generated electric power PG

when expressed in per unit, thus

T, = PG = Re(V,-la*) = led+ V41, p.u (5.18)

where V, and V, are the projections of the generator terminal voltage V, on the q-axis and

the d-axis, respectively, i.e

v, = Vq-t-de (5.19)

Vq and V, can be expressed in terms of I, and 1,, by projecting IV.) and I,| on the q-axis and

the d-axis as shown in the phasor diagram in Figure 5.3, we obtain

V, = v; + (re +jxe)la

-_- |vg| cos(8° - 3°) - j|v;| sin(8° - 3°) + (r, + jxe)(lq + jld)

= |vg|cos(8° — 3°) + 51, —x,rd—j[|v;|sin(8°— 3°) -xelq—reld]

Which may be expressed using 5.10 and 5.11 simply as

v, = IE'ql + x'dld- 1'quq (5.20)

Setting real and imaginary components in these two representations of V, in equation 5.19

and 5.20 equal, the following is obtained

Vq = IE'ql +x'dld (5.21)

Thus,

= [lqu "' (xq‘x'd),d]lq (5.22)

Linearizing PG as expressed in equation (5.22), we get
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All)G = [3,54,]; " (x4 " x'dlA’d’qo + Al4115.410 ‘ (xq ‘ fol/Vela"

= A|E'qllq° + [Eqa|°Alq — (xq -—x'd)Aldlq°

where we used the q-axis voltage E,a defined in Figure 5.3 (b) as

with initial conditionvalues

lEqa|° = |E,,|° + (“"d’hzl’do

Substituting for 15410 from Equation 5.12, one obtains

IE 0 = lEq’

= 15410 " (x, ‘ x-d),do

 

qal °—(xd—x'd)ld°+(xd—xq)ld°

Substituting expressions from equation (5.13) into APO to finally compute

APG = [1,°+A-lleqa|°r,+A-l(xq-x'd)(xq+x,)(lq°)] . AIE'ql

+ A-1|v;| [leqal°(r,sin(6° — 3°) + (x'd + xe)cos(8° — 3°))

_(xq-x'd)lq°(r¢cos(8° - [3°) - (x, + x,)sin(8° - B°))] . A8

a K, - A8 + K, - A|Eq’] (5.23)

where

K1 = 4"lVfolllqul°(resin(5° - 6°) + (x'd+ x.)cos(5° - B°))]

+ A-1|v;|1q°[(xq + xe)(xq - x'd)sin(8° — 3°) — r,(xq - x’d)cos(8° — 3°)] (5.24)

K, = rc|Eqa|°A‘1+lq°[l+ A"(xq - x'd)(xq + xe)] (5.25)

5.2.4.3 Terminal Voltage Equation

The square of the norm of V , as expressed in equation (5.19) is given by the equation

2 2 2
V, = Vq+vd (5.26)

Linearizing equation (5.25) yields

V v"

AV =—1;-AV +é-Av (5.27)

, l l Ith 4 |V1| .
AVo and AV4 can be obtained from an incremental version of equation (5.21) as

AV =q AIE'ql + x'dAlq
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Finally, substituting AV4 , AV 4 , and then Ala, and Alq from (5.13) with re = 0 into equation

 

 

(5.27) we obtain

vd° o v°

A|V,| = IV1I°'quMe|v;;,|cos(ts —3°-) A8+,VV|° -'A|E|

v ° ' v ° '

" x" -A|E'|-—"—-—,x—--|v;|sin(8°— 3°) A8
|V,|°.x'd+x,, IV ,|° x'd+x

  

1V;1.( x‘l Vd°cos(8°-B°)- .xd Vq°Sifl(5°-B°))'A5

  

IVII° xq+x,, xd+xe

V° x

+_‘l_. __

+,°|V| x'd +x A1541

= K5 - A8+K6 - AIE'ql (5.28)

where

K = _|Vf°|.-(—x‘1——V °cos(8°—B°)- x'd V°sin(8°-B°)) (529)

5 IVII° xq+xe d x'd-r-xe q "

0

K6 _ 1’3. x. 15.30)
+|V,|°'x'd+xe

Equations (5.30), (5.31) and (5.32) below constitute the basic equations for the simplified lin-

ear model, which is implemented in the block diagram shown in Figure 5.4 where the

dynamic characteristics of the system are expressed in terms of the K constants K,-K6

MA8+DA8 = ATm-AT (5.30)

. K3K4

APG =K,-A8+K,-A|Eq’| (5.32)

AIV,| = K5-A8+K6-A|E'q| (5.33)
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Figure 5.4 Block diagram of the simplified linear model of a synchronous machine

connected to an infinite bus. through an external impedance.
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5.3 Application Examples of the Bifurcation Subsystems

Method on a SMIB Model

Assume that under some system stress, no bifurcation in the model algebraic equa-

tions occurs in the SMIB model shown in Figure 5.4. Then, the resulting system bifurca-

tion, if one exist in some subsystem must reside in the model differential equations

representing the generator angle, speed, and flux decay dynamics. Using a power system

toolbox for Matlab [59] will allow us to demonstrate the existence of bifurcation sub-

systems in the model differential equations. Example 1 shows that when the system in

unregulated, the bifurcation subsystem for SN is the machine angle-speed-fiux decay

dynamics (A8, A10. AEq’). In Example 2, the bifurcation subsystem for Hopf is the generator

angle-speed dynamics (A8, Aw), called the inertial mode [25,31]. These examples are now

presented.

5.3.1 Differential Bifurcation Subsystem for SN (Unregulated Model)

A linearized differential equation model of the unregulated SMIB model is obtained

under heavy local loading system stress, i.e. when the shunt inductance Gs, is increases as

can be seen in Appendix C. The state vector Ax , the A matrix as well as the critical eigen-

value N" and its associated eigenvector are given by

Ax = [A8 A0) AEq' Awkd AEd' Awkq]T

- '1

0 376.9911 0 0 0 0

—0.1980 —0.0000 40.2289 -00000 -00091 0.0000

A = —0.4740 0.0000 —0.5519 0.0000 0.0000 —0.0000

—2.1235 —0.0000 30.6816 —32.2581 0.0000 0.0000

-0.1333 -00000 .00000 —0.0000 -4.0476 0.0000

_-0.0422 0.0000 0.0000 00000155923 —16.3934_  
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__ 0.2767 x j8.6336_
-00.6281

_4.0431
151000423

“SW = .00030 1* = —0.0030 as = 0-

—32 2581
0.5572

-16.3934
0.0207

,0.0213_  
The eigenvalues of A indicate the existence of static bifurcation (SN), provided that trans-

versality and degeneracy conditions for this SN bifurcation [34] hold at this point Since at

this operating point the system differential equations experience bifurcation, the Bifurca-

tion Subsystem Method is used to possibly find a smaller differential bifurcation sub-sub-

system for SN. In order to test whether we have a bifurcation subsystem, we need to

partition the square matrix A as A = [A“ A,,] where A,, is ixi, A,, is ixj, A,, is jxi, and

A21 A22

A,, is jxj, i+j = 6, i = l, ..,5. The Bifurcation Subsystem Method (Proposition 4.1) says

that when the full matrix A is near singularity and for all possible subsystems of order

j=2,3..,n, A22 is nonsingular, the term [A ,, - A,,l - A,,] - u,* z 0 as u -> 11* for u,* e Null(A,,) ,

then the dynamics confined in Ax, = A ,, - Ax are a bifurcation subsystem for SN. In a prac-

tical sense [A , ,] - u,* is never null as it approaches the bifurcation value 11* since we never

find the exact value of the bifurcation parameter 11* , and thus

”51114111'“i*11

should be a measure of how close the subsystem is experiencing saddle node bifurcation.

The coupling term expressed by

C E"1'412'4221'4211"""1"

is also never null at 11 close but not equal to 11* , and thus is a good indication of how little

the system external to [A,,] contributes to producing the saddle node bifurcation in [A].

This is indicated by
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R 5111A1242i4211‘“*1
”

"M11143"

When saddle node bifurcation is close to occur in [A,,] as measured by N, then if R << 1,

the saddle node bifurcation in [A,,] is producing the saddle node bifurcation in [A] with

little or no coupling or help from the system external to [A,,] . Bifurcation subsystems exist

if N is small and approximately equals 1* as 11 —) 11* , and C is very small and much less

than 1* for all u —~> 11* . This second condition requires R to be much less than 1.0.

The subsystem used for testing are decided by the ranking of the participation factor

or right eigenvector elements except that the dynamics 8 and or are considered together

since they are part of the inertial dynamics. Note that both N and C are equal to or less than

1* = —0.0030 for all subsystems of order greater or equal to third order, which implies that

the bifurcation subsystem is (A8, Aw, AEq‘). Note that N = 1* and R = C/N is less than one

for any subsystem of order equal to or greater than three, indicating that the third order

model is the smallest bifurcation subsystem, but that the fourth and fifth order models are

all bifurcation subsystems. This third order model is thus the bifurcation subsystem since it

is weakly coupled (R <<1) to the dynamics of AE,‘ and A111,“, from the results in rows 4 and

5 in Table 5.1.
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subsystem -1

Art 141242242111,- [Arr] ' "i N C R

[45] 4.8397e + 12 inf
4.8397 6+12 0 0

0 0.1237 0.9944
A5 ] 0019 0.1244

[Am] 10-1237 [0.1243]

' 46 0 0.0019 0
-3 . 1.8873e - 04 .0754

A2,“ —0.1887 10 010002 00025
[ 4,3000 -0.0016

:05] 0 0.0019

—0.1887 -3 0.0002
10 0.003 _AEq 0.0000 -0.(X316 1.8873e 04 0.0626

A111,, 0.0000 -0.0017

- A8 ’ ‘ ' 1

A... $00417) 0001: 0.003

' -13 _ _AE‘q 0.0218 ,0 -0.0016 4.47e 14 1.4912 14

A111,“, —0.2474 .0.0017

, A54 L—0.3719, L.00001,

 

Table 5.1 Computational results for identifying the bifurcation subsystem

for SN bifurcation in the SMIB model.
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This bifurcation subsystem is quite obvious from Figure 5.5 since three integral

blocks have infinite gain when 1 = s = 0 which implies that the states A8, A0), AE,‘ are con-

nected by infinite gain blocks in a loop when saddle node bifurcation occurs. This explains

why the flux decay and mechanical dynamics have both been argued to be associated with

saddle node bifurcation when in fact both are part of the bifurcation subsystem. It should be

noted that the saddle node bifurcation could be due to inertial dynamics or the flux decay

dynamics experiencing bifurcation and yet the bifurcation subsystem (A8, Am. AEq‘) would

still be from Figure 5.5 because there is a loop with infinite gains relating (A8, Am, AEq’).

In order to see whether the information obtained from the participation matrix indi-

cates similar conclusions, the participation factor have been computed for this case and

summarized in Table 5.2. This information indicates the only state with significant partici-

pation in this SN bifurcation is the AE,’, which is one of the states in the bifurcation sub-

system. The eigenvector u* is also a poor prediction of the bifurcation subsystem since (A8,

A0). AEq‘) are predicted to be associated with the dynamics experiencing bifurcation.

It should be noted that the bifurcation subsystem does not necessarily contain the

center manifold dynamics since no formal theory has been presented that suggests so for

this saddle node bifurcation. The fact that R<<1 as u -> 11* so that the coupling of the exter-

nal system is not affecting the conditions for bifurcation

[A,, —A,, - A,,1 -A,,] - u,* = [A,,] . u,* long before bifurcation occurs in the full model

matrix [AI and in the bifurcation subsystem matrix [A ,,] at the value of 11* , suggests but

does not prove that (i) the center manifold of the full system is contained in the bifurcation

subsystem, or (ii) that the bifurcation subsystem necessarily contains any portion of the

center manifold dynamics. The proof is beyond the scope of this thesis.
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Several factors suggest the bifurcation subsystem contains the center manifold

beyond the discussion above are:

(i)

(ii)

(iii)

(W)

(V)

(Vi)

a root locus of the unregulated SMIB model shows that the eigenvalue associated

with AEq’ is the one approaching zero;

the participation factor indicates AEq‘ is by ar the largest element;

the test matrix [52] Ks for saddle node bifurcation in the full system to be derived for

the unregulated model is K, - K,K,K4 < 0 and thus depends on the parameters of the

bifurcating subsystem; .

a test matrix T developed by [51] for an equivalent flux decay model AE’, = TM", is

T = (—1/T’,,,,)[1/K3 — K,K4/K,] for the SMIB model shown in Figure 5.5, is singular

when the full system is experiencing saddle model bifurcation. This test matrix also

depends on all the parameters of the bifurcating subsystem. This test matrix if it

exists assures that loss of causality has not occurred and that saddle node bifurcation

has not occurred [51] in mechanical dynamics K, at 0;

the test matrices T and KS for saddle node bifurcation in the full system, do not theo-

retically guarantee that bifurcation occurs in flux decay or inertial dynamics respec-

tively as their derivations might suggest, but solely that a saddle node bifurcation in

the full system exists. This confirms the above result that as long as K, at 0 , both T and

Ks and are singular at the same point, i.e. the point of bifurcation. This would suggest

that the bifurcation subsystem (A8, Am. AEq’) containing all the parameters in both T

and Ks and no others, contain the center manifold of the full system model;

the fact that the flux decay eigenvalue in a root locus is the one approaching zero [59]

as the term K,K4 increases and that the participation factor so heavily weighs AEq'
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might suggest the center manifold is just the AE,‘ dynamics. but the fact that both T

and K3 are both singular at saddle node bifurcation, and both depend on all the

parameters of the bifurcation subsystem and no others, the center manifold would

appear to lie within the bifurcation subsystem.

Without determining the center manifold, it is impossible to say whether it is tangent

to the eigenvector of AE,’ in the (A8, A0), AEq’) bifurcation subsystem subspace, or even

whether it lies outside the bifurcation subsystem. It is clear that the test matrices T and K5

are diagnostic in saying the center manifold lies solely in the inertial or flux decay dynam-

ics since both are zero at the bifurcation. The above results (i-vi) suggest that the bifurca-

tion subsystem may well contain the center manifold but no proof exists that it does.



AIE’ql

153

 

 

 

 

 

  

 

A8
 

 V

   
    

 

 

 

   

 

     
 

   
 

   

(a)

Figure 5.5 Block diagram of the a linearized machine model showing the

bifurcation subsystem and the test matrix T.

 

 

 

State A8 Aw AEq' A‘l’kd A54,

Participation 0.(X)00 0.0000 0.2088 0.0000 0.0000

factor

       

Table 5.2 Participation factor results for the SN bifurcation in the SMIB model
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5.3.2 Differential Bifurcation subsystem for Hopf (Regulated Model)

A linearized differential model of a regulated SMIB model is obtained when the

transmission network inductance x, or the power transfer to the infinite bus has been grad-

ually increased. The input parameters for this bifurcations are given in Appendix E. The

state vector Ax , the A matrix as well as its eigenvalues and the critical one 1* , are given by

T

Ax = [A6 A0.) A54. Awkd AEd' Aqu AVA: AVR]

' 0 376.9911 0 0 0 0 0 6

—0.1395 0 -0.0868 -0.0781 —0.0072 —0.0318 0 0

.00542 0.0000 -2.0818 2.0781 —0.0240 -0.1056 0.0000 1.9373

A = -2.9066 0.0000 30.7985 -33.5716 0.0000 0.0000 0.0000 0.0000

.0.0934 0.0000 0.0000 0.0000 -8.3982 6.5047 0.0000 0.0000

—0.9893 0.0000 0.0000 0.0000 15.6517 —19.6571 0.0000 0.0000

3.2771 0.0000 .9.5117 -8.5604 3.0798 1.5531 —0.1499 0.0000

47.0239 0.0000 -163.5591 -186.1236 56.3153 247.8250 14.9613 —l72.986Q  

-17159

—32.99

eig(A) = ‘2559 1* = 0.09: j7.16

0.09 x j7.16

-394

__ 1.46 :1: j0.41_  

The eigenvalues of A indicate the existence of a swing mode of frequency

to = 7.16 rad/s

Since at this operating point the system differential equations are at bifurcation, it is possi-

ble to find a difi’erential bifurcation sub-subsystem for Hopf. Proposition 4.3 implies for-

mulating the matrix
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— 171.59 - 17.16 0.3285 + 10.8108

— 32.99 _ j7.16 — 0.0153 + j0.0064

— 25.59 — )7. 16 0.0424 + 10.0114

6,3,3, = 0.09 ,. = 009 u, = - 0.0022 - 100591

0.09 _ 114.32 — 0.0349 + [0.0082

- 3.94 - j7.16 - 0.0499 - j0.0160

— 1.46 + j6.75 0.3991 + j0.0264

_ — 1.46 - j6.57_ _ 0.3991 + j0.0264_   
In order to test whether a bifurcation subsystem exists, the B matrix is partitioned as

3 = [8“ 8‘2] where 3,, is ixi, 3,, is ixj, 3,, iiji, and 3,, iijj, i+j= 8, i = 1...,7, and

B2| 322

form column vectors u, = [u,...u,], i=1...,7. Note that

N = "[B,,]-u,*||, ; Cs||{B,,B,,B,,].u*,|| and R = C/N

are defined as for saddle node bifurcation for all subsystems where 3,, is nonsingular. N

must be less than 1* and C must be << 1* as u —> 11* for a bifurcation to exist. The values

of N and C are less than 1* = 0.09 and R<<l only for the second order subsystem, indicat-

ing that (A8, A10) is the bifurcation subsystem for this mode of oscillation. Since for this sub-

system R = 0.0551 the bifurcation subsystem (A8, A10) produces the bifurcation in the full

subsystem without coupling to the external system.

The participation factor information for this bifurcation is presented in Table 5.4.

These results indicate that the generator inertial dynamics {A8, A10} have higher participa-

tion in the occurrence of the bifurcation then the rest of the states. It is worth noting that

these two states form the bifurcation subsystem obtained using the bifurcation subsystem

method, and thus the participation factor can indeed sometimes agree with bifurcation sub-

system method results. Although participation factors can sometimes indicate the states in

a bifurcation subsystem, there is no theoretical assurance the bifurcation subsystem is cor-

rect in assessing the center manifold dynamics. The large drop off in participation factor
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elements for states other than (A8, A00) may indeed contain the center manifold. However

the fact that KD will be shown in Section 5.4 to depend on parameters outside (A8, A18) sug-

gests that the bifurcation subsystem may only contain a portion of the center manifold

dynamics. Since may only be true since D = 0 and the bifurcation subsystem must be (A8,

A00). If D ¢ 0 then the bifurcation subsystem may be larger if one exists.
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i subsystem -1

Ax [Brszszr] ' “i 311'“,- N C R

, [A5] 5.7393 - j2.5040 5.7393 - j2,5040 6.2636 6,2617 09997

M - 0 0045 0 0551Am [ 0] 0.0313 + 10.0748 0.0812 - .

2 00017- 100041 0.0003 — 10.00351

45 0 0.0313 + j0.0748 0 8 740

3 Am -.00020— 10.0051 - 0.0034 - 10.0045 '3 07 0-3 09324

135 — 0.0280- 103729 - 0-0243 -1’03729

1 A8 ,
4 Am 0 0.0313 + 10.0748

A5 -0.0018- j00004 - 00°32 - 100002 0.5011 0.4967 0.9911
7 __ 00164-104964 — 0.0288 - [0.4937

A‘Vrd — 0.0003 - j0.0055

1- A5) . P T

A,,, F 0 0.0313 + 10.0748

5 A3, - 0.0016 — 10.0005 - 0-0030 - 100001 0.6046 0.6023 0.9961

‘ A — 0.0153 _ j0.4953 - 0-0280 - 10.4939

‘de 0.0000 _ 0.0003 — 10.0055

_ 454 _ 0.3261 + ,0.1039_ . 0.3214 +1'O-1048l

1 A8] , r ,

Am ' 0 0.0313 + j0.0748

6 AB 0 - 0.0014 + 0.0006

q _ _ - —0.0227— 10.4922 0.4994 0.4936 0.9884A,,, 0.0106 10.4953

*4 00000 -00003 — j0.0055

454 0.0000 — 0.0032 + j0.0008

All/“fl _ 0.0000 _- 0.0046 - j0.0014]

- - , .

A8 r 0* 0.0313 + j0.0048

A0) 0 - 0.0014 + j0.0006

A,,, 00000 - 0-0003 - 10.0055 0.5008 0.4942 0.9868

"4 0 0000 — 0.0032 + j0.0008
AE - .

d 011m - 0.“)46 — [0.0014

A111,, 0000,, _ 0.0370 + 10.0020

bAVA s,        
Table 5.3 Computational results for identifying the bifurcation subsystem

for Hopf bifurcation in the SMIB model: Inertial mode.
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state Participation factor

A8 0.0132-j0.0101

Acu -0.0129+j0.0105

AEq’ 0.0004-j0.0008

M1,,1! j0.0001

AEd’ j0.0002

Avkq 10.0002

AVA, -j0.0001

AVR 0     
Table 5.4 Participation factor results for the

inertial Hopf bifurcation in the SMIB model

5.4 Effect of Hard Limit Discontinuities on Stability Analysis

Diagnosing and assessing stability problems in the SMIB model is dependent on whether

the system is regulated by an active excitation control or whether it is unregulated. The

effect of the hard limit discontinuity on stability analysis can then be viewed by means of

the damping and synchronizing torque coefficients KD and Ks since both KD and Ks are

determined in terms of K,-K(, constants when the system is regulated and unregulated. Con-

ditions for system stability in terms of constraints on the K-constants are derived and sum-

marized in proposition 5.1-3 for before and after the hard limit discontinuity that disables

the generator exciter occurs.

The damping and synchronizing torque coefficients KD and K8 are derived for the

case when (a) the generator terminal voltage is unregulated, (b) when a thyristor type exci-

tation system is used, and (c) when an IEEE dc Type 1 excitation system is used. The
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effects of measurement or sensor dynamics are included in this analysis. Finally important

conclusions are determined on how the variation of the system K-constants affect the

damping and synchronizing torques to cause a Hopf or SN bifurcation in the SMIB dynam-

ics. First, a general formula for ATD , ATS , Ko and Ks will be derived in the next section.

5.4.1 Synchronizing and Damping Torques

Consider a change in electrical torque following a disturbance at an arbitrary frequency.

The restoring forces that act to this change are in form of braking torques that develop in

phase with machine rotor angle and in phase with machine rotor speed [55]. Indeed, the

change in electrical torque of a synchronous machine can be resolved into two main com-

ponents

AT, = KSA8 + KDA8 s ATS + ATD (5.34)

where ATS is the component of torque change in phase with rotor angle perturbation A8

and thus referred to as the synchronizing torque, and ATD is the component of torque in

phase with the speed deviation A00 and thus referred to as the damping torque. KD and Ks

are called the damping and the synchronizing torque coefficients, respectively. System sta-

bility depends on the existence of both components of torques for each machine. Positive

synchronizing torques assure restoring of the rotor angle after a small incremental change

of this angle, whereas positive damping torque is necessary to damp out any oscillation fol-

lowing a disturbance. A necessary and sufficient condition for the system to be stable is that

both damping and synchronizing torque coefficients Ko and Ks be positive [51]. A

decrease in either coefficient implies a destabilizing effect and therefore, evaluation of

these coefficients can be used as a proximity measure to oscillatory instability or to an
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increasing change in the machine rotor angle. First, ATD, ATs , Ko and KS are defined as:

 

  

AT, _ AT:
ATS=Re[ A8 . J and ATD=Im[-E-5- _ . 1 (5.35)

s = 10) s — jto

.— S = __SKS - —A8 and KD 01A8 (5.36)

A transfer function ATe/A8 that is independent of the type of excitation system used, may

be derived from the block diagram in Figure 5.4, in which G,(s) refers to the transfer func-

tion representation of the AVR and the exciter, and 03(5) represents the transfer function of

the field circuit. From the block diagram we see that

E!

A q  

 5'41}

E!

A «1  

= _ (1,0,8) . A8 - K,o,(s)G,(s) - AS 460.0103“) ' A115’.)

By grouping terms involving A
 

3",] and rearranging,

— K4G3(s) — Kch(s)G3(s).

1+ K60,(s)G,(s)
 A

 

E’ql = A5 (5.37)

Replacing (5.35) in the expression of AT, given in equation (5.31),

K4G3(S) + KSG‘(S)G3(S) .

1 + K6G,(s)o,(s) A5
 

 

Finally the general transfer function ATS/A8 is given by equation (5.38).

AT, K,G3(s)(K4 + K50,(s))

T8 1 ‘ 1 + K6G,(s)G,(s)

 (5.38)

5.4.1.1. Unregulated system (G,(s) = 0)

A system that is not under an active excitation control is called unregulated. In such condi-

tion, K5 , K6 and G,(s) in the block diagram in Figure 5.4 can be set to zero. The transfer

function ATS/A8 is then equals to

AT,
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AT K,K,K4

__ _. K __.______

A8 ‘ 1+K3T'dos

AT, K2K3K4 ° (1 - ijBT’do)

.—- = K1-
A8 . 2 . 2

s=Jw 1+0)(K3Tdo)

 (5.39)

The damping and synchronizing torques ATS and AT,, are the real and imaginary parts of

AT,/A8 in (5.39) respectively and are equal to

8 K,K,K4 8 0

AT = K-A ———-A 5.4a

s 1 1+0)2T’,,2 ( )

AT K K ——K3° T,“ A8 S40b= . - a) . .

D 2 4 1-1-0)2T’,,2 ( )

where T’d = K3T’d0

From Equation 5.34, Ks and K0 are given by

K3'T'd

2 , 2
1+0) T d

K K,K

KS = K,-—3—'—4— (5.410)
2 , 2

1+0) T d

From these two expressions, we can see that the damping and synchronizing coefficients

are positive if they satisfy the conditions:

KD>0 ifandonlyif K4K,>0

. . K2K3K4

1+0) T’d

5.4.1.2 Thyristor-T‘ype Excitation system

This is a simplified thyristor type excitation system that includes only the elements that are

considered necessary for representing a specific excitation system, namely the terminal

voltage transducer time constant TR with gain KR , the exciter with gain KE and time con-

stant TE. The transfer function is given by



G (S, ___ IAEfdl = "KEKR

*’ A|V,| (1+sTE)(l +sTR)

 (5.42)

For typical values for the terminal voltage transducer time constant TR and for the gains and

time constants in fast exciters, acceptable bounds for TR, the exciter gain TE and exciter

time constant TR satisfy

KE»I; TE«I and TR«1

Substituting G,(s) in (5.42) into the general transfer function in equation (5.38), and col-

lecting the powers of s in the numerator and the denominator, we obtain

AT, 0,, + as + a,s2

__ = K, _
(5.43)

A5 b,,~1»b,s+b,s2-1-b3s3

 

Where

a, = K,K3K4(TE+TR)

o, = K,K3K4TETR

on = 1+K3K6KEKR 5K3K6KEKR

b, = T’d-rTEd-TR

b, = TETR+T’d[TE+TR]

b, = T’dTETR

Evaluating ATS/A8 at s = jar, we get

AT 0 -a (02+ '0 (1)
_55 =K,— "22, 1‘ 2 (5.44)
A ,,]-a, bo—b,0) +1(b,0)—b30))

 

Therefore ATS and ATD are given by:

[an - 11,182] [12,, — 6,652] + 11,816,115 - b3w3]
AT = K -A8-

3 ‘ [ho-b,0)2]2+[b,t0-b30)3]2
A8 (5.45a) 

[ac—a,0)2][b, - b3w2] —a,[b0— 6,612]

AT =

D [bo-b,o)2]2 + [b,0)-b3(03]2

 . (8A8) (5.451))
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(a) Frequency Range (0)« 1)

Setting the 10° terms to zero in the numerator and the denominator of Ko and K5 yields,

ATD aob, -a,b0

D: — _

wA503=0 bzo

(K,K,K4 + KEKRK,K3K5)(T’d + T, + TR) — K,K3K4(TE + TR)( 1 + K3K6KEK

(1 + K3K6KEKR)2

R)

or approximately

(T’d+ TE+ TR) K (TE+ TR)

 

  

KDEK5K, — 4 , (5.46a)

. K3K125K3KR K6KEKR
by assumrng KE >> 1

Similarly, the synchronizing torque coefficient is

K _ K a011,, _ K,K3K4 + KEKRK,K3K5

s - 1 r - 1 —
b2" 1+K3K6KEKR

K2 K2
or, Ks s K , K (5.46b)—K .____ ._

4 K6KEKR 5 K6

Therefore positive damping and synchronizing torques are obtained for the following con-

ditions:

TETTR

K >0 ifwehave K >KKK -,———
D 5 4 3 6 Td-t-TEd-TR

K K K

K >0 ifwehave K >K ---3+—".-—2
5 1 5 K6 KEKR K6

(b) Frequency Range (10»1)

In this range, the terms involving the highest power of 0) dominate. Hence, keeping only

these terms from equations 5.45(a-b), approximate expressions for Ko and KS may be

obtained as,

- 02b, 1

K0 - W =KZK4‘m (5.473)

Similarly, the synchronizing torque coefficient may obtained by retaining only the highest

powers of 0) in the numerator and the denominator
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s - 1‘ b32w6 " 1 bgmz

K K K

or, K5 5 K,——2——3—5§ (5.4715)

m2<T’do)

5.4.1.3 IEEE dc Typel Excitation System

The gain of the voltage transducer block is usually close to unity, it time constant is small,

in the 0.2 to 0.4 range. The amplifier gain KA is typically on the range 25 to 400, its time

constant TA is typically in the range 0.02 to 0.4 sec. The power system stabilizer parameter

values are KF in the range 0.02 to 0.1, and T; in the range 0.35 to 2.2 sec. The block dia-

gram of this system has been shown in Figure 2.2, from which the transfer function is given

by

2599,5400 0.025T,s0.1 0ss,gr.3

4.0511590 0.SSTESI.0 TR50.05

The transfer function for this excitation system is given by

-KAKR(1+ sTF)

09(5) = [(1+sT,1)(1+sTF)(55+K3+STE)+3KAKF]'(l+STR)

 (5.50)

Substituting G,(s) into the transfer function in equation (5.38) and collecting terms of pow-

 
 

ers of “s” in the numerator and denominator we obtain

AT, 110+ass-r-a,sz+a3s3+a,,s4

= - 5.51)

A5'151115215315465 (0+ ,s+ ,s+3s+4s+5s

Where

a, = MK,K3K4+K,K3K5KAKR

5K,K3K5KAKR since KAEM
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a4 = K,K,K4TATETFTR 5 Ta,

6,, = M + K3K6KAKR

s K3K6KAKR since K3K6KAKR » M

5K_,1<,,1r,,rr,,T,.+T,,l

b = T
4 b4

65 = T’dTATETFTR = T,5

M = SE+KE

= K3T’do

'5 KAKF+TE+M(TA+TF+TR)

T

T

T = KAKFTR + (T54. MTR)(T, + TF) + MTATF + TETR

T TATETF+TETR(TA+ TF)+MTATFTR

T - KAKF+K3K6KAKRTF+M[T’d+TA+TF+TR]+TE

e
-

l

T,,7 = TE[T+TR]+M[T,,TF+T’,,TR]+[TE+MT+MTR][TA+TF]

Tb, = [T’dTE+MT’dTR+TETR][TA+TF] +TATF[TE+MT’d+MTR] + T’dTRTE

Now, evaluating AT/A8 at s = jto, we get

 

AT, A,, + M,
= K ___—___. (5.52)

A8 ”,0, 1 304-13,

Where

2 4
A0 = ao-aztu +040)

30 = bo- b,01)2 + b401)4

3, = b,0)-b301)3+b50)5

The synchronizing and the damping torques can finally be deduced.

.48 +A£i

ATS = (K, -°—‘2%]-A8 (5.5311)

30+B,

.403, - 4,3,,

ATD = —-2——2—— - ((0A5) (5.53b)

30+B,
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(a) Low" Frequency Range ( 0) « 1)

In this range of frequency, we can neglect the terms in ATS and ATD of higher exponents.

aob, — a, b

b
0

0 (5.54)I
l
l

Ko

Evaluating the numerator yields to

Replacing in equation (5.54) gives an approximate expression for Ko: for 0)<<l.

 

 

   

K K T T Tb‘ K2 Ta‘ 555
D ‘ 5 K F’ R+KAKRK3K6 ‘ KGKAKR ("20

Similarly,

5‘ l 62.. ‘ l K3K6KAKR

K

or, K, :—_-K,—K5 - 1?? (5.551))

6

Therefore,

Ta

K >0 ifwehave K5>K,K,K6- ‘
D - T +K K K K T —Tb, A R 3 6( F R)

KS>0 ifwehave K,>K5-,—(3

6

(b) Frequency Range (11)»1)

T. T1. Ta KKK
_ 4 5 _ 4 _ 2 3 4

K0. 2 2 ..T 2 .. 2T, (5.56a)

Tbstr) 65m 0) d

Similarly, the synchronizing coefficient may obtained by retaining only the highest powers

of 0) in the numerator and the denominator

4

(a,b,—a,b3)u) _ K (a,b,-a,b3) ~ K2K3K4

1‘ 2 6 " 1' 2 2 = 1' 2 , 2
b30) 0,0) 0) To

KS=K  (5.56b)
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5.4.2 Bifurcation Tests for the SMIB

Given that the system K-constants K2, K3 and K6 are positive, bifurcation tests for SN and

Hopf Bifurcations in both the regulated and unregulated SMIB models have been derived

in the previous section and are stated in the form of two propositions and two corollaries,

followed by their proofs.

Proposition 5.1 (Unregulated system)

(i) A sufficient (and necessary) condition for a Hopf bifurcation to occur in the unregu-

lated SMIB model is that K, < 0.

(ii) A sufficient (and necessary condition) for a saddle node bifurcation to occur prior to

Hopf bifurcation in the unregulated SMIB model is that K, - K,K,K4 < 0 when K4 > 0

Proof:

(i) Since all the terms in the expression of the damping coefiicientfor the unregulated

SMIB given in equation (5 .4 Ia) are positive except K4, then its sign depends on the

sign of the parameter K4, i .e. KD<0 when K, < 0.

(ii) Similarly, the expression for the synchronizing torque coefficient Ks in equation

(5 .4 Ib) indicates that it is negative ifand only ifK , - K,K,K4 < 0 whenmw=0 as is the

casefor saddle node bifurcation. The condition K, > 0 assures that Hopfbifurcation

has not occurred.

Corollary 5.1 (Unregulated System)

The unregulated system is stable if (and only if) the constant K, lies in the range

0<K < K1 (1+(02T’2)
4 K2K3 d
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Proof:

Equations 5 .41 (a) and (b) indicate that sufiicient synchronizing forces exist in the system

 

KKK

ifl Ks: K,-—2-—23—‘1- > 0,whichcanberewrittenas

1+0) T’d K

1 2 2
K < (1+0)T’)

4 K2K3 d

Since stability is assured only when both synchronizing and damping torque coefficients

are positive, this condition combined with K4>0 prove the claim ofthe corollary.

Proposition 5.2 (Regulated system, Inter-area mode)

Whenf<<1 and K4>0 under voltage regulation, (i) A necessary conditionforaHopfbifur-

cation to occur in the SMIB model is that K5 < 0 and (ii) A sufficient conditionfor a saddle

node bifurcation to occur in the SMIB model is that K,, K2, K5 and K, satisfy

K5K2

l - K6

K5"2 K4K2

1-.-KT — K3"6KR

 < 0 for Type I exciter

 < 0 for Thyristor exciter

Proof:

(i) Equation 5.46(a) and 5.55(a) indicated that sufficient damping forces exist in the

 

SMIB systemif

(T’d+TE+TR) (TE+TR) _

[(05st2 2 - 4 2m— 0 for Thyristor type

K3K6KEKR 6 E R

K K K2[T T Tb‘ ] K2 Ta‘ > 0 f T I '1s -— - +—— — -—— or ype excr er
0 5 K6 F R KAKRK3K6 4 KéKAKR

which can be rewritten as

-1

K , and K > K - 1 T -T +——-‘——
5 (Td+TE+TR) 5 4 KAKR( F R KAKRK3K6]

  

for a thyristor type exciter and type 1 exciter, respectively. By observing the terms on

the right hand side ofboth inequalities ofK5, we can conclude that they are generally

small and either positive or negative depending on the sign of K4. Thus, K5 is sufii-

ciently positive, no Hopfbifurcation occur; and when K5 is sufiiciently negative Hopf
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bifurcation occurs.

(ii) Similarly. equation 5.46(b) and 5.55(b) indicated that sufficient synchronizing forces

are positive in the SMIB system if

: _ . ___— - - — > 5 _. . .—KS..K, K4 KsKeKR K5 Ks 0 and KS K, K5 K6 > 0

for a thyristor type exciter and type I exciter, respectively. IfK5 is sufi'iciently positive,

large and increasing, saddle node bifurcation occurs.

Corollary 5.2 (Regulated System)

The SMIB model is stableforf< <I if the constant K5 lies in the range

T

- a' < K < [(1—K6 Type I exciter
6 Tb1+KAKRK3K6(TF-TR) 5 K,
 K4K3K

TE+TR K,K6 K4

“4‘3“6'firg—fi; <"s< x, ”x511,
 Thyristor exciter

Proof:

(i) For thyristor exciter; equations 5.46(a) and (b) indicate that sufficient damping and

synchronizingforces exist in the system if

(T’d+ TE+ TR) (TE+TR)

_ 4 2—

K3K§KEKR K6K5"R

 KDEKSK,

K K K K2 K K2 >0
8— l 4 K6KEKR 5 K6

These two conditions may be rewritten respectively as

Thur-TR
K1K6 K4

6'T',,+T,,+T,,
K2 _ K3"R

(ii) For a Type I exciter. equations 5.55(a) and (b) indicate that sufficient damping and

K5 > K4K3K  and K5

synchronizingforces exist in the system if

K :: K ...3[7‘ ..7‘ +._n,l__]-g.153i >0

0 5 K6 F R KAKRK3K6 4 K6KAKR

K.
KsK—K-—" >0
S 15K6
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These conditions may be rewritten respectively as

a <

+KAKRK3K6(TF- TR) 5 K2
 

 

K5 > K4K3K6 - Tb]

Since stability is assured only when both synchronizing and damping torque coefii-

cients are positive, conditions for positive damping are combined with conditions

for positive synchronizing for the thyristor type exciter andfor the Type I exciter,

which leads to the desired result ofthe corollary. IfK5 is below the lower limit or K5

exceeds the upper limit Hopfbifurcation occurs.

5.4.3 Conclusions

It is our desire to hopefully find a subsystem of the full model which experiences, produces,

and causes the same bifurcation in the full system model. Determining the center manifold

dynamics requires finding a nonlinear transformation that is often given in terms of a Tay-

' lor series and may be infinitesimally linked to all the states of the model even if it virtually

lies in a subsystem of the full model which experiences, produces, and causes the bifurca-

tion. Determining such a subsystem if one exists is essential to diagnosing the location,

class, cause, and cure for a bifurcation, and that is important from an engineering sense.

Determining the center manifold is thus not what is desired, but a subsystem of the full

model which experiences, produces, and causes the bifurcation, and which is normally of

larger dimension than that of the center manifold. One may be able to diagnose the loca-

tion, class, cause and cure without resorting to finding the center manifold transformation,

or its approximation.

The subsystem which experiences bifurcation may or may not produce bifurcation in

the full system since the structure or parameters external to the subsystem may help pro-
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duce the bifurcation both in the full system and subsystem. This is especially true if the

geometric coupling of the bifurcating subsystem and the external system in the direction of

the bifurcating eigenvector is not zero but approaches zero. Thus the subsystem that pro-

duces the bifurcation experienced by the subsystem and the full system may be of larger

dimension than the subsystem experiencing bifurcation. The subsystem causing bifurca-

tion may be still larger than the subsystem experiencing or producing the bifurcation in the

full system model and the subsystem. The subsystem that causes bifurcation must include

all model parameters, controls, and discontinuous changes that cause the bifurcation to

develop. The discontinuous changes include under-load tap changes, switchable shunt

capacitors switching changes, equipment outages, over-excitation limit relays,...etc. The

controls include maximum excitation limiter controls, under-load tap changer controls,

switchable shunt capacitor controls, and excitation system controls.

The results of this chapter along with chapter 4 imply the bifurcation subsystem

method may provide such a tool for identifying the subsystem that experiences, produces,

and causes a specific kind and class of bifurcation, since

(a) the theoretical conditions for existence of bifurcation subsystem was applied to show

that they exist and can be determined. The bifurcation subsystem showed some prom-

ising results in identifying the subsystem that experiences the bifurcation in the full

model;

(b) the sensitivity matrices K5, KD and T were derived in two recent Ph.D dissertations

with the purpose of identifying the subsystem that causes and produces the bifurca-

tions, and which may also contain the center manifold. It has been shown that the test

matrices Ks, and T are not necessarily associated with the subsystem that experi-
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ences, produces, or causes the bifurcation, but the parameters of the system they

depend on can help identifying the bifurcation subsystem;

The results on Hopf bifurcation indicate that the bifurcation subsystem obtained

(Example 2) which experiences the bifurcation of the full system model may be too

small to track what produces and even less capable of tracking what causes and cures

that bifurcation, since the test matrices suggest that KD depends on K, and K, which

lie outside the bifurcation subsystem (A5, Am). This result may be true since the

(A8, Aw) dynamics are experiencing bifurcation for all u , and this may imply that the

bifurcation subsystem producing and causing the bifurcation should be identified as

u —> u* , and not at the point of bifurcation, so that the subsystem captures the causes

and cure for that bifurcation;

the determination of what [(5, KD and T depend on for a generator with exciter, a thy-

ristor based exciter, and a dc] model exciter, gives implicit information for determin-

ing the subsystem which experiences the bifurcation in each case.



VI

A Diagnosis for SN and Hopf Bifurcations

in a Discontinuous SMIB Model

6.0 Introduction

The goal of this chapter is to perform a diagnostic study to assess the structural causes,

operational stresses, and stabilizing requirements for the occurrence of SN and inter-area

modes of oscillations that occur in the generator inertial and flux decay dynamics of a sin-

gle-machine-infinite-bus model (SMIB). The tool for this study is based on the bifurcation

tests derived and concluded in propositions 5.1-2 and corollaries 5.1-2 of Chapter 5.

The diagnostic study is performed by formulating three study models: (1) a power

transfer model where the effects of both the network inductance x, and real and reactive

power transfer are investigated; (2) a local loading model where the eflect of local loading

on system stability may be investigated; (3) a power transfer-local loading model where

the effect of local load model and transfer can be investigated. The SMIB local load may

be capacitive, inductive or some combination. The generator exciter may be enabled (regu-

lated case) or disabled (unregulated case).

The objective of the analysis in this chapter is to establish that (i) increased local

load causes quite different bifurcation phenomena in the regulated and unregulated load

center models and (ii) that increased power transfer causes quite different bifurcations in

173
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the regulated and unregulated power transfer model: When the exciter is enabled, the

regulated model is vulnerable to Hopf bifurcation for increased power transfer, whereas

when the exciter is disabled, the system is vulnerable to saddle node bifurcation in the flux

decay dynamics as power transfers increase. The analysis also shows that when the local

loading in light-real, heavy-capacitive, the regulated local load center model is vulnerable

to Hopf bifurcation, and the unregulated local load center model is vulnerable to saddle

node bifurcation. The combination local load center/transfer model is then used to

validate, extend, or possibly disagree with the diagnostic conclusions obtained from the

local load center or the transfer models.

6.1 Diagnostic Models Formulation

Based on operational and structural parameter variations of the SMIB, three operationally

and structurally different models may be obtained. This kind of diagnostic modeling is per-

missible by the SMIB model since this model represents a generator connected to a large

system, via a long equivalent transmission corridor with equivalent reactance x, The large

system may be (a) a major bus or group of buses of a power system of very large capacity

compared to the rating of the machine under consideration, or (b) a large load center. Such

a structure allows formulating three study models as follows.

6.1.] Power Transfer Model (Ra: X“: infinity)

In a power transfer model, no local load or equivalent line shunts are modeled, so that the

generated real and reactive power are solely used to satisfy the power transfer requirements

to the ‘large’ system at the side of the infinite bus. Real power is shipped from the generator

to the infinite bus, whereas reactive power may be shipped in either direction across the
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transmission network. The effects of the power transfer as well as the network inductance

may then be investigated. In the power transfer model shown in Figure 6.1, the system

steady state conditions are computed for given values of P” , Q“, and Vm = 1.010 p.u.

 

V“, = 1.040
9 Vt

XT+Xd I Xe

mo I tom—_‘EP

IE’qu _~__,

Q...

Figure 6.1 Power transfer model

6.1.2 Local Load Model

A local loading model is obtained when a shunt constant load is connected to the

generator terminals while the power transfer requirements to the infinite bus are negligible.

The local constant impedance load can include line charging of the transmission line, local

shunt capacitive compensation, or inductance load. “fith xe large, the dynamics of the

generator serving a local load center can be investigated. This results in a model where

stability problems are solely associated with the local load center. Note that since the power

absorbed by the local load in proportional to VZ/Zsh, the local load is capacitive when

X,h<0 and the reactive absorbed is proportional to l/Xm, it is inductive when X,h>0 and the

load is proportional to l/Xsh. Similarly, the real shunt load is proportional to 1/R,,,. The local

load is shown in Figure 6.2
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V“, = LOZO

V

XT+X‘d t

0000 ‘ 0666 E

E IqZS Rsh xsh Xe large

LoEar-‘Ead

Figure 6.2 Local loading model

6.1.3 Combination Local Load/Power Transfer Model

Under normal operation, power system models serve both local loading and power

transfer requirement patterns, and therefore a diagnostic study of this model is necessary.

The more realistic SMIB model consists of real local loading in combination with power

transfer model.

6.2 Diagnostic Study

From Propositions 5.1 and 5.2, it is clear that since the system constants K2, K3 and K6 are

positive for a generator mode of operation of the machine, the occurrence of Hopf bifurca-

tion in the unregulated and regulated SMIB model depends on the parameters K4 and K5

which approximate the sign change behavior of the test matrix KD, respectively. The oper-

ating condir: '218 where K5<O cause undamped oscillations in the generator inertial dynam-

ics when the exciter is active. The operating conditions where K4<O cause negative

damping in the SMIB model with a local load when the exciter is disabled. Similarly, the

terms K , —K2K5/K6 and K1 — K2K3K4 which approximate the sign change behavior of the

test matrix K8 are indication to the occurrence of SN bifurcation for the regulated and the

unregulated systems, respectively. These conclusions are based on results in Chapter 5.
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The scope of this section is to investigate the change in the parameters K4, K5 as well

as K, - K2K3K4 and K, — Ksz/K6 , for the purpose of establishing a diagnosis for the occur-

rence of Hopf and saddle node bifurcations in systems subject to relay-type discontinuous

hard limit action. It should be noted that these I(,-K6 parameters are associated with the

bifurcation subsystems that experience saddle node and Hopf bifurcations in a single-

machine-infinite-bus model. The bifurcation subsystem would approximately indicate the

generator and dynamics (bifurcation class) experiencing bifurcation. Investigating how the

key indices for sign changes in test matrices (KS,KD) for occurrence of Hopf (K4, K5) and

saddle node (K, - K2K3K4 , K, — KZKS/Ké) change with load parameters provides important

diagnosis of why the bifurcation occurs and what can be done to prevent it. The parameter

and stress tests that will be investigated are:

(a) Power transfer to or from the infinite bus (P0,, > 0 and Q” 2 0 or Q” s 0)

(b) Local loading: inductive or capacitive shunt X31. > 0 or Xsh < 0 in parallel with a

real load (R,,,)

(c) Network inductance (x,).

In this diagnostic study, the real power transfer P” is varied between 0.1 and 1.0 p.u,

(Pa = 0.1, 0.2, 1 p.u.) , and the reactive power transfer to the infinite bus Qm is either pos-

itive (Q,, = 0.0.1, 0.2, 1 p.u.) indicating reactive power absorption by the infinite bus, or

negative (Q,o = —1.0, —0.9, —0.8, 0 p.u.) , indicating reactive power supply by the infinite

bus. Power transfer levels of $1.0 indicate maximum system rating since for [V4 = 1 and

Poo 1.0 x srn(zV, AV”) — 2.S|V,|srn(zV, AV”)

—|v:|2+[vavAcosuvrzvg

1:

1.0 =(
Q

8

ll

 = 2,5(_|v°°|2 + IVNHVJ cos(zV, — eve,»
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so that the system is operating at

4v,—zvg = 15.1°

|V,| = 1.45 p.u.

This level of terminal voltage indicates heavy reactive supply to the infinite bus with large

reactive losses sufficient to bring on instability in the network equations let alone the SMIB

dynamics. Similarly, when 1"m = 1.0 and Qm = —1.0 the system operates at:

4v,_4v,, = 33.5°

|V,| = 0.72 p.u.

and this level of angle difference indicates heavy real and reactive power loads at the infi-

nite bus and very large 12X losses sufficient to bring on instability in the SMIB dynamics.

Thus P” = 1.0 and Q” = :10 indicate the system is heavily stressed and it is operating at

marginal values of voltages and angle differences.

Similarly, The chosen ranges of the local load R5,, Xsh, and x, are such that

1 s l/Rsh s 6 , and 1 s l/Xsh s 6 result in acceptable system operating conditions and viable

system voltages and angles required for normal operation: When X,,,= 0.17, the resulting

voltage at the terminal bus shown in Figure 6.1 is approximately V, = 0.45 , since

x’d+xT = 0.2 p.u.. Operating below this voltage level, is considered outside the system

capabilities [59]. However parameter studies in literature [55,56] usually consider the

entire range of RWXM = 0.1.1.0 p.u. i.e, 151/R8,,510, and ls 1/Xshs 10, as it is the

approach in this study. For this kind of study, when solvability was not possible, the cases

were skipped as will be observed in the tabulated results and the associated figures.

The results of this diagnostic study are summarized in tables for operating conditions

resulting in bifurcations, and tables for operating conditions where no bifurcations

occurred. The tables indicate the test parameter, the kind of bifurcation tested, the network
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and the power transfer operating conditions used. The arrows in the tables point to the

range where the test parameter was more sensitive, i.e was more negative.

6.2.1 Power Transfer Model

6.2.1.1 Effect of Pin, and Q,,,,

The effect of P” and Q,° on the parameters [(4, K5 as well as K, -K2K3K4 and

K, —K2K5/K6 is simulated in Figures El.1-E1.4 in Appendix E1, while the bifurcation

results and the associated figures are summarized in Table 5.1. In these figures, the param-

eters K4, K5 as well as K, — Ksz/K,5 and K, -K2K3K4 are plotted versus sequential 0.1 p.u

step increases in real power transfer P, , and for increases in levels of reactive power trans-

fer Q“, = 0, 0.1, 0.2, ..., 1 p.u. or Q” = —1,—O.9,—0.8, 0 p.u.. The simulation results on

bifurcations of this study are summarized in Table 6.1(a) for cases resulting in bifurcations,

and in Table 6.1(b) for non-bifurcation cases. A careful review of these tables indicates

ranges of P” , Q” 2 0 , Q” s 0 when oscillatory and non-oscillatory instability occurs, the

points (pointed by arrows) where the measure of instability of a particular kind (K4, K5,

Kl -K2K5/K6, K, —K2K3K4) is most negative over the range of P,° and Q”, the kind of

bifurcation (SN or Hopf) that occurs, the values of (PO, , Q”) where the bifurcation occurs

(in general at points opposite to where the arrows point to) and whether the instability

occurs in the regulated or unregulated model. The tables are so complete so that the discus-

sion that follows may be superfluous. The results indicate that Hopf bifurcation occurs in

the regulated model but not in the unregulated model, and saddle node occurs in the unreg-

ulated model but not in the regulated model.

Namely, when the model is regulated, Figure El.1(a) shows that (i) as the real power
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transfer P“ increases and the reactive power is such that 0 s Qm<0.3 , K5 is positive and

decreasing; (ii) for 3 3 Q0, < 0.7 , K5 = a|V,|/E)8 decreases and becomes negative as P“,

increases; and (iii) for higher levels of reactive power transfer, i.e when Q” > 0.7 pu , K5<0.

This implies that the regulated SMIB model is subject to undamped oscillations in the iner-

tial dynamics when the generator terminal voltage begins to decrease for increases in 8 and

occurs for the range of values (Pg , Q”) shown in Table 6.1. The fact that Hopf bifurcation

occurs when K5 = Blvd/35 is negative for a regulated system due to large P” and Q” indi-

cates that Hopf bifurcation in the inertial dynamics is due to voltage if not voltage instabil-

ity. .

Diagnosis for the causes of undamped oscillations in the system is also performed

when the reactive power is withdrawn from the infinite bus, i.e. real and reactive power

transfer are in opposite directions. From Figure E1.l(b), we see that (i) when

Q” = —0.3, 0 p.u. K5>0 and (ii) when Qm = —1.0, ...,—0.5 p.u. K5<0. An oscillatory mode

in the regulated SMIB model may then be brought on by negative reactive power transfer,

i.e generator reactive absorption.

Power transfer also affected the synchronizing term K, — K2K3K4 for the unregulated

machine, where it became negative for heavy-real and heavy-reactive power transfer to the

infinite bus, as indicated by Table 6.1(a).

Note that the non-bifurcation cases are summarized in Table 6.1(b). Real and reactive

power transfer to the infinite bus has no effect on the parameter K4, since K. is positive and

increasing for the whole range of (Po, ,Qg ). If no local load is present at the generator side,

K4-associated oscillatory stability problems in the unregulated model do not seem to

appear. The synchronizing torques for the regulated model are not affected by the transfer
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of real/reactive power, whereas when the system is heavily stressed by real/reactive power

supply to the infinite bus, the synchronizing coefficient in the unregulated model is driven

to zero, indicating the occurrence of saddle bifurcation. The bifurcation subsystem of (A5.

Aw. AEq‘) explains why heavy real and reactive power transfer cause saddle node bifurcation

because K, decreases with real power transfer and K2 and K4 coupling between inertial

(real power) and flux decay (reactive power) increases with real and reactive power transfer

causing K, - K2K3K4 to approach zero.

The diagnosis study will now focus on the effect of the transmission network inductance.

6.2.1.2 Effect of transmission network inductance Xe

The effect of the transmission network inductance is simulated when P” = 0.8 p.u.

and Q” = 0.5 p.u. in Figure 6.3. As the network inductance increases, the constant K,

decreases, and finally changes sign at xe=0.4 p.u. The system damping coefficient also

decreases and changes sign, indicating that the system damping forces are insufficient to

damp the ongoing oscillatory modes. This implies that long transmission corridors, cause

undamped oscillation in the regulated SMIB model. The inter-area oscillations often occur

in a multi-machine model between two groups of machines connected by a long line carry-

ing significant transfer.

 

 

 

 

 

 

       

 

  

Exeltatlon Bifurcetlon Network Power Transfer Figure

System

Reg/Un Kind Test x. 11R... fix... P... G... t

R H K5<0 0.4 0 O .—l‘—. ‘ El.l(a)

0.1 r 0.3 r

R H K,<0 0.4 0 0 ,3___. ,1— El.l(b)
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Table 6.1 (a) Results on the power transfer model bifurcation diagnosis
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Excitation Bifurcation Network Power mnsfer Figure

System

Fleg/Un Kind Test x. 1/Fl,,, 1/X,,, Pm, 0",, #

U H k,>0 0.4 0 0 57—1 .'——,o I 51.2

U SN K| “K2K3K4>0 0.4 0 O (ST—‘1 .1 0 E1.4

R SN K. -K,K,/K,,>0 0.4 0 0 5f,—-—~, T, 51.3

Table 6.1 (b) Power transfer model non-bifurcation results
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Figure 6.3 Power Transfer Model: Effect of transmission inductance

on the parameter K5 and the damping torque Kd.
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6.2.2 Local Load Model

The effect of the local constant impedance load parameters X,,, and Rs, on the occur-

rence of system bifurcations is simulated in Figures E2. l—E2.4. The bifurcation results, the

associated operating conditions and figures are summarized in Tables 6.2(a-b). In the local

load model, Ra. is a positive parameter between 0.1 3 R3,, 51 and Xsh may be negative or

positive, depending on whether it is capacitive or inductive, respectively. Note that x,3 = 0.9

which effectively isolates the local load bus from the infinite bus. In this case, no transfer of

power to or from the infinite bus is permitted. Therefore, three cases are considered: the

effect of (i) real-inductive load and (ii) real-capacitive load. The simulation results on

bifurcations of this study are summarized in Table 6.2(a) for cases resulting in bifurcations,

and in Table 6.2(b) for non-bifurcation cases. A careful review of these tables indicated

ranges of (l/RM , i/Xsh ). when oscillatory and non-oscillatory instability occurs, the

points (pointed by arrows) where the measure of instability of a particular kind (K4, K,,

K, —K2K5/K6 , K, -K2K3K4) is most negative over the range of ( “Ru. , 1/Xsh), the kind of

bifurcation (SN or Hopf) that occur, the values of (l/Rsh , UK“) where the bifurcation

occurs (in general at points opposite to where the arrows point to) and whether the instabil—

ity occurs in the regulated or unregulated model. The tables are so complete so that the dis-

cussion that follows may be superfluous.

6.2.2.1 Effect of real-inductive local loading

When the shunt local load was real-inductive, the parameter K, was negative for the

entire R,,,-X,,, range. Furthermore, K4 was most negative at l/Rsh = 2.5 and decreased as 1/

X5,, was decreasing. This implies that the unregulated SMIB model was subject to

undamped oscillations in the inertial dynamics, as summarized in Table 6.2(a).
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6.2.2.2 Effect of real-capacitive local loading

When the shunt local load is real-capacitive load, Table 6.2(b) shows that the param-

eter K, is negative and decreasing for the entire Rw-Xfl, range from Figures E2.1(a-b)

results. Furthermore, K4 is decreasing when the inductance UK“, is negative and ll/X,,,|

increasing. This implies that the unregulated SMIB model is subject to undamped oscilla-

tions in the inertial dynamics. Table 6.2(a) also indicates that the synchronizing term

K, —- K2K5/K6 became negative for light-real, heavy capacitive local loading, implying that

the regulated model is vulnerable to SN bifurcation. The capacitive shunt is larger than

x’d+.tT = 0.2 p.u. when Ixshl = l and becomes the same size as x'd-i-xT as [X34 becomes

smaller, causing heavier capacitive loading. This appears to cause the network to induce the

saddle node bifurcation.

6.2.2.3 Effect of the transmission network

We notice that K4 is negative if no power transfer to the infinite bus occurs, regardless

of the local real power load (R,,,), or the shunt capacitance/reactance (X,,,) at the generator

side, which indicates that undamped oscillations in the unregulated SMIB model are asso-

ciated with (i) heavily loaded load centers; (ii) local shunt capacitive system compensation;

(iii) transmission lines with high capacitive/inductive charging; and (iv) when power trans-

fer from or to the infinite bus is not possible.

On the other hand, under the real-inductive and real-capacitive local loading operating con-

ditions, Table 6.2(b) summarizes the non-bifurcations cases. Both K5 and the synchroniz-

ing term K, - K2K3K4 are positive for the local load variations. This diagnostic study

implies that in a local model, it is unlikely to experience (i) Hepf in the regulated model; or

(ii) SN in the unregulated model.
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Excitation Bifurcation Network POW“ Transfer Home

System

Reg/Uri Kind Test x. 1m... 11x... PM 0..., If

u H K4<0 0.9 1‘- 10 {41—10 0 0 EZ.1(a)

u H K,<0 0.9 7,—“10 145—.1 0 0 52.10:)

R SN K. -K2K,/K.<0 0.9 [_A_’___w .fi.’__,6 0 0 E2.4(b)

    
 

Table 6.2(a) Results on the local loading model bifurcation diagnosis

 

 

 

 

 

 

 

 

Excitation Bifurcation Network Power Transfer Figure

System

Reg/Un Kind Test x. 1m... 1/X... P... 0.... #

R H K,> 0 0.9 1 ,0 i——'10 0 0 EZ.2(a)

R H K5> 0 0.9 {___—'10 ’17—: l 0 0 52.2(b)

U SN K, -K,K,K,>0 0.9 5——-,,, {—10 0 0 132.3(a)

U SN K, -K,K,K,>0 0.9 0'__'“10 INT—'1, 0 0 152.3(1))

R SN K, -K,K,/r<,>0 0.9 ,3———',o ,,,,'——_, 0 0 152.4(a)          
 

Table 6.2(b) Non-bifurcation results on the local loading model diagnosis

6.2.3 Conclusion of the Power Transfer and Local Load Models

From the diagnostic stress tests results of the power transfer and local loading models, we

deduce the following three conclusions: (i) undamped oscillations in the regulated SMIB

model are highly associated with the transfer of active and reactive power (supply or

absorption) along transmission corridors; (ii) undamped oscillations in the unregulated

SMIB model are associated with heavy capacitive local loading; and (iii) power transfer

causes different kinds of bifurcations in the SMIB depending on whether the generator is
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regulated or unregulated: the effect of relay-type control action.

The regulated SMIB model is vulnerable to Hopf bifurcation when considerable reac-

tive power transfer is absorbed by the generator —1 s Q” « 0. The unregulated model is vul-

nerable to Hopf bifurcation in the generator inertial dynamics under local capacitive and

local real loading operating conditions. Therefore, shunt capacitive load (generator absorp-

tion) causes Hopf in the unregulated model, and transfer of reactive power to the generator

(generator absorption) causes Hopf in the regulated model. The same conclusions hold in

the regulated model for (Q,° > 0) and in the unregulated model for (l/Xsh > O).

Hopf bifurcation occurs both in the regulated and unregulated models for heavy

absorption of reactive power. This is not surprising due to armature reaction that reduces

the rotor field flux for reactive absorption and is shown to cause instability due to insuffi-

cient synchronizing torque between rotating rotor stator flux waves.

The unregulated SMIB model is vulnerable to SN bifurcation when considerable real

and reactive power is supplied by the generator 0.4 SPgs 1, 0 « gas 1. The regulated

model is vulnerable to SN bifurcation in the generator inertial dynamics under heavy-local

capacitive, and heavy-real local loading. Therefore, transfer of reactive power to the infi-

nite bus causes SN in the regulated model, and shunt capacitive load (generator absorption)

causes SN in the unregulated model.

Finally, no saddle node bifurcation occurs in the regulated power transfer model, and

no saddle node in the unregulated local loading model. In correlation, no Hopf bifurcation

occurs in the unregulated power transfer model, and no Hopf in the regulated local loading

model (l/R,,,, l/Xsh).
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6.2.4 Combination Local Load-Power Transfer Model

The diagnostic study now focuses on the more realistic model consisting of a local

load in combination with power transfer requirement patterns. The variation of the machine

damping and synchronizing torques under the effect of the various local loading patterns,

and power transfer patterns is investigated for both the case where the generator is

regulated (K5,K, — K2KS/K,,) and the case where the generator is unregulated

(K4,K, -K,K,K4). Various transfer and loading patterns are considered: (i) the effect of

power transfer for a local loading pattern, (ii) the effect of local loading for a power transfer

pattern, and (iii) the effect of the transmission network. Simulation for the combination

model bifurcation diagnosis are shown in the figures in Appendix E3, and the bifurcation

results are summarized in Tables 6.3(a-c).

6.2.4.1 Effect of Power Transfer

First, the local shunt load and the transmission network inductance are fixed

respectively at R5,, = 0.65 p.u. , X5, = $0.17 p.u. and Jr,2 = 0.4 p.u. , while the power

transfer to the infinite bus (Pm , Q”) is varied. Note that xe = 0.4 p.u. rather than 0.9 p.u. as

in the local load center model. The bifurcation results for the effect of P” and Q0 on the

parameters K4 and K5 as well as K, -K,K5/K,S and K, --K,K3K4 are summarized in Table

6.3(a). The occurrence of bifurcation as shown in the table indicates that (i) when the load

Xsh is inductive, K5<O for both the case when Q” 2 0 and the case when Q” s. 0; (ii) when

X,,, is capacitive, K5<0 for both when Q” 2 0 and Q“ s 0; and (iii) the parameter K, >0 for

the power transfer stress tests except when the local load is capacitive and reactive power is

being supplied by the infinite bus (X3, = —0.17 ,Qm s 0 ). Note that while (i) and (ii) confirm

the power transfer model diagnosis results, (iii) occurred only in the combination model,
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and thus extends the diagnostic conclusions. This result (iii) may be due to the effect of the

large shunt capacitive load which caused Hopf bifurcation in the unregulated model for

shunt capacitive load and no power transfer.

Power transfer stress on the system seem to also ultimately cause (i) SN bifurcation in

the regulated model when the local load is real—capacitive X3, = -0.17 and P” increasing,

Q00 decreasing; and (ii) SN in the unregulated model when the local load is inductive

X3, = 0.17 and Po, and ngo are increasing. These results in (ii) above extend the SN

bifurcation results obtained from the power transfer model.

6.2.4.2 Effect of Local Loading

The power transfer to the infinite bus, the local shunt load and the transmission network

inductance are fixed respectively at I",° = 0.8 p.u. , Qco = 0.5 p.u. and xe = 0.4 p.u. , while the

local shunt load at Rs]: and X,,, are varied. The bifurcation results for the effect of R3,, and

X5, on the parameters K4 and K, as well as K, -K2K3K4 and K, — Ksz/K,5 , are summarized

in Tables 6.3(b-c). The occurrence of bifurcation as shown in the table indicate that when

the model is regulated, (i) the parameter K, changed sign for the light- real, heavy-inductive

local loading conditions (approximately l/Rshs 1.67, 1/X3h22.0), and is decreasing for

lighter l/Rsh loading conditions as can be seen from Figure E3.9(a); and (ii) the parameter

K, is positive with no change in sign when the local load is real-capacitive from Figure

3.9(b) results.

Given the system is unregulated, (i) when the shunt load is real-capacitive, the

parameter K.4 changes sign under the heavy-capacitive loading conditions (l/Xsh s -1.67 ,

generator reactive absorption); and (ii) when the shunt load is real-inductive, the parameter

K, is positive which implies that shunt real-inductive real loading patterns are unlikely to
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cause undamped oscillatory behavior in the unregulated machine dynamics in the SMIB.

Figures 133.11 and E3.12 in Appendix E3, show the variation of. the machine

synchronizing torques under the effect of the machines local loading patterns, for both

when the system is regulated (K ,-K2K5/K6) and unregulated (K,—K2K,K4). For the

regulated system, the summarized figures in Table 6.3(b) indicate that (i) the synchronizing

torque coefficient is positive for real-inductive loading conditions; and (ii) negative for

light-real, heavy-capacitive loading (l/Rsh small, |1/X:,,| 2 1.67 ). When the generator

exciter is disabled, the synchronizing torque is positive for the entire R,,,-X,,, range. This

, implies that the system is unlikely to experience static kind of instability when the

generator is unregulated.

6.2.4.3 Effect of transmission network

The effect of the system’s transmission network inductance Jrc on the system synchronizing

and damping forces is simulated in Figure 6.4. The system operating conditions were at

P” = 0.8 p.u., Q“, = 0.5 p.u., X3, = 0.4 p.u., and two real loading levels were tested,

Rs}: = 0.17 and Rsh = 0.87. For this case, the damping torques are plotted versus x, We see

that (i) both K, and K(, both decrease as x° increases, and (ii) K0 is very much more negative

for heavy loading conditions, but K, is slightly more negative for light loading conditions.

This behavior confirms the results obtained from the power transfer model.
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Excitation Bifurcation Network Power Transfer Figure

System

Reg/Un Kind Test x, R... x... P" G... #

R H K,<0 0.4 0.65 +0.17 6?)? 65—1 E3.1(a)

R H K,<0 0.4 0.65 +0.17 (ST—:21 1" m 53.10:)

R K,<0 0.4 0.65 0.17 6?)“: 0 ‘1 B3.2(a)

R H K,<0 0.4 0.65 .0.17 6T“): '1—‘:__'0.4 E3.2(b)

R SN K, -K,K,/K,<0 0.4 0.65 .017 (Ts—ll (Sf—“o 5 133.6(a)

R SN K, -K,K,/K,<0 0.4 0.65 .017 (Ts—‘1 .1 ‘0 4 83.6(b)

U H K4<0 0.4 0.65 -017 67—)? T—lim 133.4(1))

‘ i

U SN K, -K,K,K, <0 04 0.65 +0.17 fir 5;——-, 53.701)

U SN K, -K,K,K.<0 0.4 0.65 0.17 63—)": 0.3 E3.8(a)

Table 6.3 (a) Results on the combination model bifurcation diagnosis

Excitation Bifurcation Network Power Transfer Figure

System

Flag/Uri Kind TOSt X‘ 1 IR.“ 1 IX“, Pint Q.“ #

U H K,<0 0.4 1 1.5-: 3%: 05 133.100»

R H K5<0 0.4 {—1 67 2,—2le 05 E3.9(a)

R SN K, -K,K,/K,<0 0.4 L. ,t_ 05 133.120»

1 3.33 -2.5 -l.6"l        
 

Table 6.3 (b) Combination model: Effect of Local loading
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Excitation Bifurcation Network Power Transfer Figure

System

Reg/Un Kind Test x. R... X... P... G... if

U H K,>0 0.4 0.65 +0.17 0, , 6—‘ E3.3(a)

U H K,>() 0.4 0.65 +0.17 5.1—1 :5— E3.3(b)

U H K,>0 0.4 0.65 -017 6.1—1 6?"— E3.4(a)

U SN K, -K,K,1<,>0 0.4 0.65 +0. 17 5,—1 3.3—— E3.7(b)

U SN K. -K,K,k,>0 0.4 0.65 -017 57,-—', .T_"‘- E3.8(b)

R SN KI -K,K,/K,>O 0.4 0.65 +0.17 (ST—1 F E3.5(a)

R SN K. -K,K,/K,,>O 0.4 0.65 +0. 17 67““, 5.7—” E3.5(b)

R H K,>0 0.4 {—10 127—11 0.8 0.5 E3.9(b)

R H K,>0 0.4 1 ,0 1r ,0 0.8 05 E3.10(a)

R SN k,-K,K,/1<,>0 0.4 1 m i w 0.8 0.5 53.12(b)

U SN K,-K2K,K.,>0 0.4 1 ,0 1 ,0 0.8 0.5 E3.11(a)

U SN K.-K,K,K,>0 0.4 r 710 2,, fl 0.8 0.5 E3.11(b)

Table 6.3 (c) Combination model: Non-bifurcation cases
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Figure 6.4 Combination Model: Damping torque coefficient Kd

and parameter K, for different levels of real local loading
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6.2.5 Discussion of the Combination Model Results

How do the power transfer and local loading models predict, disagree, or possibly

extend the results obtained from the combination model?. The combination model

diagnostic Study Shows that combining both models may extend or confirm the results from

each individual model, depending on Operating conditions or Stress is dominating. The

following conclusions are drawn:

a)

b)

Although local capacitive or inductive local loading (XS,,<0 or Xsh>0,P°° = Q” = 0)

did not cause Hopf bifurcation in the regulated model in the local load diagnostic

Study for reactive supply (Q2 0) to the infinite bus, local inductive or capacitive

loading in combination with reactive power supply to the infinite bus (X3). = $0.17 ,

Q” 2 0) appears to drive the system to oscillatory instability (Figures 133.1(a) and

E3.2(a)). This extends the local loading model results and allows the diagnostic

conclusion that the regulated model Hopf bifurcation can occur when the reactive

power is supplied to the infinite bus. The problem is aggravated when real power

supply P” increases and real loading (l/R,.,) decreases. This result may be due to the

transfer of power to the infinite bus over a weak but extremely weak line.

Although local capacitive loading (X,.,<0 or X,,>0,P,, = Q“, = 0) did not cause Hopf

in the regulated model, for reactive power supply from the infinite bus (an s 0) local

capacitive or inductive loading (Figure E3.l(b), E3.2(b)) in combination with

reactive power supply from the infinite bus (X3, = $0.17 , Q“, s 0) seem to drive the

system to oscillatory instability. This extends the local loading model results and

allows the diagnostic conclusion that the regulated model Hopf can occur when

reactive power is supplied from the infinite bus. The problem is aggravated when real
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power supply P” increases and real loading (l/R,,,) decreases. This result may be due

to the large active power transfer to the infinite bus, and reactive power transfer from

the infinite bus.

For saddle node bifurcation, although power transfer Stress seems to affect the

unregulated model synchronizing torque, and not the regulated model, in the

combination model the following bifurcation occurred:

(i)

(ii)

SN bifurcation in the regulated model occurs when the local load is real-

capacitive(xs,, = -0.17 ), active power transfer to the infinite bus iS increased

and reactive power from the infinite bus is increased (Figures E3.6(a-b)). This

bifurcation was not observed in the power transfer model diagnosis, but appears

to be caused by the presence of the heavy capacitive local load |1/Xs,,| == 6 , as

diagnosed by the local loading model.

SN in the unregulated model for power transfer (P002 O,Q” 2 0) to the infinite

bus and either X,,,>0, or X,,,<0). These results (Figures E3.7(a), E3.8(a)) are

consistent with the SN bifurcation results obtained from the power transfer

model.

The effect of local loading Stress seems to be less severe in the presence of real

and reactive power transfer to the infinite bus. The local loading model

diagnosis Showed that K4 s 0 for the entire range of Rg-Xsh. In the combination

model, Figure E3.10 (a) Shows that the parameter K4>0 for a Significant

portion of the operating range of Rsh-Xsb.
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6.3 Diagnostic Summary

The diagnostic Study demonstrated that the cause and effeCt of a specific kind of bifurcation

in the SMIB model are dependent on (1) the effect of the relay-type control action, i.e

whether the system is regulated or unregulated; (2) local loading-power transfer operating

requirement patterns; and (3) transmission network inductance. The comprehensive power

transfer and local loading pattern variations in the three study models, has been the mean

for drawing (if possible) conclusions for diagnosing the causes of SN and Hopf

bifurcations in the SMIB. Furthermore, the results establish the classes of saddle node and

Hopf bifurcations that were observed in the SMIB model.

6.3.1 Classes of Hopf Bifurcation in a SMIB Model

111; Power Swing Mode (Regulated)

This oscillation mode occurs when K, is negative in the single machine infinite bus

model, when the voltage regulator is Still operating within its fields current limits.

This oscillation is observed in the generator angle/Speed/flux decay dynamics, and is

associated with low frequency inter-area oscillations. It is a supercritical (Stable)

Hopf bifurcation since these oscillations are Stable inter-area oscillations. It is often

referred to as a power swing mode, Since it is brought on by considerable power

transfer between two areas. The power swing mode can be associated with a single

generator, two generators or with groups of generators. There are two subclasses:

l. Reactive Power Supply Swing Mode (regulated)

2. Reactive Power Absorption Swing Model (regulated)
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112;, Voltage Collapse Mode (Unregulated)

Occurs in the inertial and fins decay dynamics of the generator in a Single machine

infinite bus model, when the exciter is completely disabled, and the single machine

parameter K, is negative. These classes of l-Iopf bifurcations are likely to be the limit

cycles that develop as a precursor to voltage collapse and thus are called voltage

collapse modes. It is not clear whether voltage collapse oscillatory modes are

supercritical or subcritical Hopf bifurcations. The diagnostic study showed that these

undamped oscillations in the unregulated SMIB model are associated-with (i) heavy

loaded local load centers; (ii) local Shunt capacitive system compensation; (iii)

transmission lines with high capacitive line charging; and (iv) when power transfer

from or to the infinite bus is not possible. There are two subclasses:

l- Reactive Power Supply Voltage Collapse Mode (unregulated)

2- Reactive absorption Voltage Collapse Mode (unregulated)

It should be noted that there is a Voltage Mode that is subcritical Hopf bifurcation that

depends solely on the exciter and flux decay dynamics.

6.3.2 Classes of Static Bifurcation in a SMIB Model (SN)

Similarly, two classes of Static bifurcation may occur on a Type 2 power system model:

SNJ Static Bifurcation in generator inertial dynamics (Regulated)

Static bifurcation in generator inertial dynamics may be associated with the loss of

transient Stability [36] such as the voltage instability that occurred in the

Czechoslovakian system after tripping lines in a major interface [30]. This class of

static bifurcation is likely to occur when the disturbances are very large and the
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transmission interfaces or boundaries are weak, so that loss of stability occurs soon

after the contingency before the field current level/duration limits are reached. It

would appear from the results in this chapter that the static bifurcation in generator

inertial dynamics occurs the local network is capacitive near a local generator, real

power is shipped away from that generator, and reactive power is shipped to that

generator.

5N1 Static Bifurcation in generator inertial dynamics(Unregulated)

This bifurcation has been called classic voltage instability and is due to insufficient

reactive supply in the EHV system, an example of which is the blackout that occurred

in the French system [37]. This class of Stability has been analde with the use of a

sensitivity matrix T between reactive generation and voltage at generator internal

buses [51] that is diagonally dominant for inductive networks (networks that absorb

reactive power), and not diagonally dominant for capacitive network (network with

long high voltage transmission lines). Classic voltage instability has been described

as occurring when generators reach their field current limits and the field current limit

controllers disable the exciters. An important implication to this result is that study-

ing this saddle node bifurcation must include the field current limit controllers action

in the model.



VII

Thesis Summary and Future Research

7.1 Dissertation summary

This thesis addressed three major difficulties in diagnosing the cause of a Specific

Stability problem in a power system. These difficulties are (a) the size and complexity of

the model, (b) the various kinds and classes of bifurcation that can occur in the model, and

(c) the lack of smoothness in the dynamic behavior after a disturbance or during operation,

((1) the inability to determine a subsystem of the full model that experiences the same

bifurcation as the full system for each kind and class of bifurcation. These different

problems in a power system have been and Still are in need of better methods for Stability

analysis, developing application software, and problem diagnosis in a large power system.

This thesis will address all four problems and hopefully provide the basis for methods that

can be utilized to establish where, why, and what can be done to prevent loss of Stability

for three kinds (kinds) of bifurcation: Hopf, saddle node, and Load Flow bifurcations

observed on a Specific power system model as well as all of the specific subsystems of the

model affected by each particular kind of bifurcation (classes). The contributions of this

work can be summarized in the following four sections:
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A) Diagnostic Classification

First, the diagnostic study started by classifying (a) the model types used in power system

studies, (b) the kind and (c) class of bifurcations. This classification is performed in

Chapter 2 of the thesis. The kind and class of a bifurcation observed depends on the model

used. Four model types are classified: Typel model is the simplest model where both

generator and loads are modeled by algebraic equations and under load tap changers

(ULTCS) and switchable Shunt capacitors controls are modeled. Type 4 model represents

both generators and loads by differential equations and yet all the ULTCS controls

dynamics and switching capacitor inductors, etc. are included. Type2 and Type 3 models

are Simplified Type 4 models that eliminate the load dynamics and generator dynamics

respectively. The complete Type 4 dynamic model has been developed only for small test

systems.

B) Epoch Bases Trajectory Stability Assessment Method

Virtually every local bifurcation is brought on by a sequence of equipment outages and

hard-limit discontinuities enabling or disabling various controls. Although dynamic

system theory is fairly well developed for smooth systems, it is currently being developed

for nonsmooth systems. These hard limit discontinuities do not cause immediate

enablement or disablement of a particular control. The dynamical system theory for

nonsmooth systems [27] is not sufficiently well developed to be able to determine the

sequence of hard limit discontinuities when each discontinuity has a different length time

delay. Current dynamical system theory for smooth system can be applied to intervals

(:3, 1;, 1) called epochs where discontinuities occur only at [ti] , the discontinuous change
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at [1,] can be computed; and the time T,- = if, , 4; is long compared to the settling time

of the dynamics. Therefore, a method aimed at assessing asymptotic stability of the

transient during 0,7,1?) and the Stability of quasi equilibria or limit cycles in each epoch is

proposed. This method called the Epoch Based Trajectory Stability Assessment, is based

on a trajectory Simulation method implemented by [28] that does not require time

Simulation in (if, 1;, ,) , but only computes the quasi equilibria ($9.51,) for each epoch for

i = 1.... N. This method allows the assessment of the stability of individual trajectories for

a power system by assessing stability for every epoch through (a) assessing stability of the

sequence of quasi equilibria or the limit cycles, and (b) the asymptotic stability to each

quasi equilibrium or limit cycle.

C) Bifurcation Subsystem Method:

A third a major contribution in this diagnostic framework is the establishment of the

Bifurcation Subsystem Method, This method attempts to identify the smallest subsystem,

a subset of the equations of the full system model that experiences and causes the same

bifurcation that occurs in the full system model. A bifurcation subsystem can loosely be

defined as a truncated portion of the actual power system model that experiences the same

bifurcation in the full system model. The Bifurcation Subsystem Method utilizes the

geometry associated with the various submatrices of the full system differential-algebraic

Jacobian J = [ff fl] since

x 8y

Det(.l) = Det(gy) - Det(fx—fyg;lgx) when g), is nonsingular;

DerU) = Det(fx)-Det(gy—gxf;lfy) when f, is nonsingular;

and with the eigenvectors associated with the bifurcating eigenvalue to establish
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conditions for existence of such systems. The fact that the Jacobian of the truncated

portion of the system (gy) must be Singular somewhat restricts the set of possible

subsystems that one is using to find the bifurcation subsystem. The bifurcation subsystem

must satisfy both the linear and the transversality test conditions for bifurcation that is

used to test for bifurcation in the full system model. The null space of the effects of the

truncated system (fyg;lgx) must be common with the null Space of the bifurcation

subsystem (1;) in which the right or left eigenvector of the bifurcating eigenvalue resides.

The portion of the full system external to this bifurcation subsystem has no effect on the

linear conditions for bifurcation to be satisfied in the full system model only at bifurcation

(asymptotic), or as bifurcation develops for u: 11" (structural), and yet the equilibrium

point is dependent on the variations in the full system equations which results in

bifurcation in both the full system and the bifurcation subsystem. Propositions for the

existence of bifurcation subsystems for a particular kind of bifurcation were derived and

proved. Possible bifurcation subsystems in a power system Type 2 model are:

(a) Differential Bifurcation Subsystem Experiencing SN;

(b) Differential Bifurcation Subsystem Experiencing Hopf;

(c) Algebraic Bifurcation Subsystem for LP;

(d) Differential Bifurcation Sub-subsystem Experiencing SN;

(e) Differential Bifurcation Sub-subsystem Experiencing Hopf;

(g) Differential-algebraic Bifurcation Subsystem.

It Should be noted that the bifurcation subsystem is not the center manifold of a specific

bifurcation Since the same bifurcation subsystem could exist for saddle node bifurcation in

the flux decay dynamics, and for saddle node bifurcation in the inertial dynamics. The
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sensitivity matrices Ks, KD and T also do not necessarily identify the center manifold

dynamics, and thus do not necessarily identify the exact class and location of a specific

bifurcation. The research has Shown that what is desired is not to determine the center

manifold dynamics, but rather a subsystem of the original model that experiences the same

bifurcation as the full system. The bifurcation subsystem may in most cases be an

excellent approximation of the possibly larger subsystem that causes and produces the

bifurcation in the full model, as it is the desired result. The root locus of the bifurcating

eigenvalue and the participation factor information provides additional diagnostic

information on such a subsystem.

Determining sensitivity matrices Ks, KD or T as a function of the model parameters

K,-K6 and then Studying how K3, KB or T vary with changes in operating conditions and

hard limit discontinuities also can assist in indicating the subsystem that produces, causes

and cures a specific bifurcation, in special cases.

D) Stability Conditions and Diagnosis:

Lastly, the Epoch Based Trajectory Stability Assessment Method and the Bifurcation

Subsystem Method are the framework for initiating a diagnostic study for Hopf and saddle

node bifurcations on a single-machine-infinite bus (SMIB) model to (a) computationally

demonstrate and validate the use of the bifurcation subsystem method to identify

bifurcation subsystems in the SMIB; (b) identify the classes of saddle node and Hopf

bifurcations that may occur in the SMIB model: the generator angle/Speed dynamics and

angle/speed/flux decay dynamics are bifurcation subsystems for Hopf and SN bifurcations

in both the regulated and unregulated SMIB models, respectively; (c) gain better
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understanding on the effects of hard limits by assessing the effect of excitation control on

the types and classes of bifurcations produced; and (d) establish an understanding to the

causes, operational and structural stresses, and stabilizing requirements for SN, local and

inter-area modes of oscillations that occur in generator inertial, flux decay and exciter

dynamics of the SMIB model. This study was performed by formulating three study

model: (1) a power transfer model; (2) a local loading model; and (3) a combination

power-transfer/local loading model. The diagnostic study demonstrated that the cause and

effect of a Specific kind of bifurcation in the SMIB model are dependent on (1) the effect

of the relay-type control action, i.e whether the system is regulated or unregulated; (2)

Local loading or power transfer operating patterns; and (3) transmission network

inductance across interfaces.

7.2 Future Research

The following topics are subjects for further investigation:

1. Develop a load flow program based on the Bifurcation Subsystem Method to obtain

load flow bifurcation subsystems that experience the same bifurcation as the full sys-

tem, but also include what produces and causes the bifurcation. Evaluate how load

flow subsystems change with (a) decoupling of P-V and Q-O Jacobian submatrices;

(b) generator reaching field current limits; (c) under-load tap changers reaching tap

limits; ((1) switchable Shunt capacitors reaching shunt susceptance limits; and (e) the

effects of multiple contingencies. This knowledge allows the prediction of the most

critical bifurcation subsystem in the system for a load flow model, given any equip-

ment outage or operating condition combination using proximity measures and diag-
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nostic tools. A heuristic method has been developed for identifying bifurcation

subsystems that experience the bifurcation of the full system, given certain assump-

tions are true. The work would establish the bifurcation subsystems when the

assumptions are not made and when they are true.

Develop a dynamic Stability program based on the Bifurcation Subsystem Method to

obtain dynamic bifurcation subsystems that not only experience the bifurcation of the

full model, but also produce and cause the bifurcation. Evaluate these subsystems

change with (a) decoupling the generator/load dynamics of the system; (b) hard limit

discontinuities in generator and network controls; and with (c) the effects of multiple

contingencies. This knowledge allows the prediction of the most critical bifurcation

subsystem in the system for a differential-algebraic model for any equipment outage

or operating condition combination using proximity measures and diagnostic tools.

Develop proximity measures for each class of bifurcation subsystem found in a load

flow or a differential algebraic model. These proximity measures can be (a) reactive

reserves on a particular group of generators; (b) measures of properties of sensitivity

matrices like K5, KB or T; (c) measures of properties of the system matrices K,-K,; or

((1) measures of properties of the Jacobian of the bifurcation subsystem that produced

the bifurcation.

Develop diagnostic procedures for identifying the kind, class, location, cause, and

remedial action needed for each bifurcation subsystem or class of bifurcation identi-
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fied in a load flow or differential algebraic model. The diagnosis Should be based on

identifying how the system matrix A; sensitivity matrices like K5, KB or T; sensitivity

matrices [(1-Kc; or Jacobian matrix J are affected by load, transfer, reactive reserve

exhaustion, etc. that produce each bifurcation class.
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Appendix A

Power System Dynamic Model

A.1 Nonlinear Model

The dynamic model of the full power system [52] is described in this section. Without loss

of generality, we assume that the connection between each generator and its high-side bus

is equivalently one-to-one, and that the power system has 11 buses total buses including m

machines with m high—side buses and (n-m) other (load) buses. The subscripts used in the

various variables used in the model equations, are described here:

Subscript t: represents the generator terminal PV—buses (including switchable Shunt

capacitor buses. Eg: P0,, P0, V, etc, t = 2, m.

Subscript H: represents the generator-transformer high-side PQ-buses. Eg: P0,, Pu.

Subscript L: represents the rest of the P-Q buses. Eg: PC,

Subscript G: represents the active or reactive power generations

Subscript C: represents the non-voltage (i.e constant) active or reactive power load or

injection

A.I.l Swing Equation

For each synchronous machine,

8 = (1)—0),,

Mc'o = —D(w—wo)+Pm—Pe

Where

5 : angular rotor position, measures in electrical radians of the relative to a syn-

chronous rotating frame

(0 : angular speed
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0),, : nominal angular speed

D : approximate damping constant due to damper winding effects( pu/(rad/S) )

M = 2H/00o : moment of inertia (sec/(rad/sec))

l—l : moment of inertia constant (MW - sec/MVA)

Pm : mechanical input power to the machine

P, : electric power output of each generator

A.1.2 Flux Decay Equation

For each synchronous machine,

K53 = l-(xd-x'd)-Bq > 1

U4, = Gasin(5—0,)-chos(5—0,)

R -x

Ga = 7—“—— ; B = _T—L—

Ra-l-x’dxq Ra+x’dxq

Where

T’do : d-axis open-circuit transient time constant

Efd : field winding voltage

Eq’ : induced stator voltage due to the flux linkage of the filed winding

A.1.3 Excitation system

A typical excitation system in Shown in Figure Al, is responsible for controlling the

terminal voltage. Using the following notation:

VC: output of load ( or line drop) compensator

V3: output of power system stabilizer (PSS)

Vref: reference (set point) voltage

VD: voltage detector output

KD: dc (direct current) gain of voltage detector
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l/KSE:
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time constant of voltage detector

transient gain reduction

lagging time constant of TGR

leading time constant of TGR

output of automatic voltage regulator (AVR)

dc gain of AVR

time constant of AVR

output of exciter (field voltage of synchronous machine)

dc gain of exciter. Note that K312 is function of the saturation effect of the

exciter.

TE/KSE:time constant of exciter

KF:

TF:

washout gain of Stabilizing feedback of excitation system

washout time constant of Stabilizing feedback of excitation system

The State space model of the IEEE-DC] excitation system is given by

.%DV;

roF

TAVA

rev,

  

P

-KA

 L O

:2

TB

7'.

_(1__E

TBH

A.1.4 Power System Stabilizer

A power system stabilizer improves the dynamic stability of a synchronous machine and/

or a power system, using other regulator input signals in addition to terminal voltage

through its excitation system. Some common Stabilizer input signals are accelerating

power, machine speed, frequency and terminal voltage. A State Space model for the PSS

model Shown in Figure A2 may be written using V50, V52 and V54 Shown in the block

diagram.

  
 

1- -r

KDVC

0

Tc

TC
(1 - fi)(an + VS)

  L 0
d
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P ..1 0 0i , —KS

TSVSU 1—12 —1 0 v30. (1 TS')K

Tszvsz = Tsz Vsz T 752 5 VS!

T, V54 T33 TSl T53 _1 V54 Tsr T51.34 “FT—1’7— 1__ —KS
L S4 52 S4 L T54 T57

Tsszr TS3TSI 753

s = EEKS SIT‘T'ij—SZ so 754

A.1.5 Speed-Governing-Turblne System Model

The speed—governing system controls the mechanical input power, using a turbine system

and rotor Speed as an input signal. Figure A3 present the general model of speed

governing system, for Steam-turbine and hydro-turbine. In the figure, PGV is the power at

the gate or valve and represents the input of the turbine system. The state space model of

the speed-goveming-turbine system may be obtained by combining both models.

    

a. Speed Governing-Turbine

.- ' W P — T1 q

T1,, —1 0 0 0 0 0 P ' T1

3 f” -1—1 0 0 0 0 6V T,

TCHPVHP = 0 1 -1 0 0 0 PVHP + _KG(1'F,)(°”(°0)+P0

3 3 3" ° 3 °1 -1
T P PIP 0
””2,” _0 0 0 0 1-1, I, 0

_TCOPLP_ - LP 0    
PM = FVHPPVHP+FHPPHP+FIPPIP+FLPPLP
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b. Hydraulic Governing-Turbine

  

  

T
.

K (hiker—co)

TIP! -1 0 0 P1 0 T1 "

TPGV= “1‘1 0 Pav“
3 _ 0 a ~-a —KG(l——3)(w-w0)+l’o

TWPW W0 WW PVHP 1

_ 0 _

. “13021 . “13021

PM=FGVPGV+PW 9 “WC: 0211 ’ “WV/'51— , FGv-aza‘ a”

A.1.7 Load Compensator Model

The load compensator uses the terminal voltage and current as feedback measurement of

the excitation system model. A State space representation of this model is given by:

‘ K4254 + Kd'lVr<

C
.

a
. l

Where,

K42 = -(XcGa+Rch)

K42 = Rcaa-XCBq

K47 = (1 +XCB’d-RCGa)sin(8—9,)—Kdzcos(6-0,)

Kq7 = (1 -Kq2)cos(8-0,) -(XCGa +RCB’d)Sin(8-9,)

A.1.6 Algebraic Load Flow equation

(i) At Internal Bus: for each synchronous machine

e

’2 I 2

P = E 4055-5 quTPE+VtGEt

,2 , 2

Qc E qBEE+_EthUQE_VtBEt
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(ii) At terminal Bus: for t = n+1. n+m; h = 1.,m

2 , I 2 ,,

"PDt Vt (qu ‘ er thq + Vt “’Crh + Grh) ' Viv/1T1}:

2 , 2

'QDt _Vthq+-VtE qth—vt(BClh+Bth)_ vrvhUth

(iii) At high-side bus:for h = l, m; t = n+h, we have

2 w 2 n w I!

J: I:

_QDh
1:] 1:

(iv) At load bus: for i= m+1, ..., n, we have

2 n ‘ ’3

‘P01 = Vi ,Zlfi’cr'j'f Gij)‘ .ZlVng-ng

/= 1=

If ' n

2

‘Qoi = _Vi .ZI(BCij+Bij)‘_21ViVjUij
j: I:

“
‘
1

ll,1 Gijcos(0,- — 01-) + Bil-sin(ei- 9,.)

Q ll

Q ll

Q ll

Linearized Power System Model

2 2 n n

"Vh(ch+Bm) —VthUht'Vh 2- (HChj+th)' 2 VthUtj. . 1

1:}

he]

i¢j

i¢j

i¢j

i¢j

Taylor series expansion is used to obtain a linear model about a nominal isolated

equilibrium point. Linearization is necessary for the load demand model, power balance

equations, swing equation, flux decay equation and load compensator. The jacobian matrix

full linear model is expressed in terms of submatrices that are explicitly given below.



F . 7 — '1

TXXAXX Axx Axe Axr; 0 Are Axv AXX

TEEAXE A5x AEE 0 Ass A59 A15v AXE

      

= +BOAU0

TSSAXS ASX 0 0 ASX 0 0 AXS

—APC APX 0 0 0 Are A1W A0

L-AQc_ LA,,, 0 0 0 A,,,, AQV‘LAV‘

Where,

r n-1r a r' —l-

TX, 0 0 0 AXXAXEAXG 0 1,, 0 0 0i AxeAxvl

f.= 0 TEE 0 0 AEXAEE 0 A55 ,0: 0 TEE 0 0 AseAev

' 0 O TGG 0 AGX 0 AUG 0 O 0 TGG O 0 0

_0 0 0 rs, LASX 0 0 A5,, ,0 0 0 rs, lo 0_        

t I

AXx = iAu,‘ A5‘ AEir] : states of mechanical and flux decay dynarrucs;

l.

r

l

AEF = LAB"; AA"; “’14! Atplq’] :states of flux decay dynarrucs

l' t

- t t t t r . ‘ '
AXE _ LAVD AVF AVA AVB ABM] . states Of excrtatron system 

i

AX“ [AP 1‘ “’th APVHPt APHP‘ APIP‘ APLP’]

:states of speed-governing-turbine systems;

I

= I t l : . . ;
AXS [Avso Avsz (”54] states of power system stabrlrzer

t

A0 = [AGT' A9”! 491.1] : angle variables at network buses;

l

AV = [AVT' AVH' AVL‘] :voltage variables at network buses;

l

Me = [APCT‘ APCH‘ APCL‘]

: coefficients of non-voltage-dependent active power load demand model;

1

I

AQC [AQCT AQCHI AQCLI]

: coefficients of non-voltage-dependent reactive power load demand model;



diug[M I T’do] : diagonal matrix composed of inertia constants of

synchronous machines, identity matrix, and time constants of flux decay

dynamics;

TEE = diag [To TF TA TB TE] : time constants of the excitation systems dynamics;

Tao “mg [Tr Ts TCH TRHl TRHl Tco]

: time constants of Speed-governing-turbine systems;

T55 = diag[T5 T52 T54] : time constants of power system stabilizers;

M = diag[M, M2, Mm] :inertia constants for m synchronous machines

1 .° m x m identity matrix

7.10 : m x m diagonal matrix of time constants of flux decay dynamics
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APPENDIX B

COMMON DEFINITIONS FOR POWER SYSTEM STABILITY

In order to facilitate analysis of stability problems, identify the essential associated factors

and to formulate methods of assessing and improving stable operation, Stability problems

have been classified into appropriate categories. A classification recently presented in

[29], summarizes the most widely used stability definitions, the associated concepts, and

the related terms. The classification is based on the following considerations: (a) the

physical nature of the resulting instability, (b) The Size of the disturbance considered, (c)

the devices, processes and time Span required to determine Stability.

B.1 Rotor angle stability

Any unbalance between the generation and load results in a net accelerating (or

decelerating) torque exerted on the rotors. From the swing equation, we see that this

transient causes the rotors of the synchronous machines to “swing”. If the net torque is

sufficiently large to cause the rotor to swing far enough so that one or more machines “slip

a pole”, synchronism is lost. However an appreciable increase in the machine’s rotor

angular velocities does not necessarily mean that synchronism will be lostThe important

factor is the angle difference between machines, where the rotor angle is measured with

respect to a synchronously rotating reference. Rotor angle Stability is the ability of

interconnected synchronous machines of a power system to remain in synchronism after
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being subject to a transient disturbance.

3.2 Small signal ( or small-disturbance) stability

It is the ability of the power system to maintain synchronism when subject to small

disturbances. The disturbances are considered small enough to cause a small change from

the operating equilibrium point, so that linearization of system equations is permissible.

The powerful tool of linear system theory may therefore be explored for purpose of

analysis.

8.3 Transient stability

Transient stability is the ability of a system to maintain synchronism when subjected to a

severe disturbance. The system response involves large excursion of the generator rotor

angle. Stability depends on both the initial state and the severity of the disturbance.Usually

the system is altered so that the post-disturbance Steady state operating point differs from

that prior to the disturbance.
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Figure B]. Response of a four-machine system during a transient [57]

(a) stable system; (b) unstable system

8.4 Voltage stability and voltage collapse

A power system at a given operating State is voltage stable, if an injection of reactive

power causes the voltage magnitude at this node increases and all other voltages also

increase or at least do not decrease. A system enters a state of voltage instability if a
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disturbance, increase in load demand, or a change in system condition causes a

progressive and uncontrollable drop in voltage.
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Appendix C

Definition of Hopf and Saddle Node,

Bifurcations with 'Il'ansversality Conditions

Hopf and Saddle node bifurcations have been recognized as the two generic bifurcations

in variety of power system models, and are generally detected by monitoring the

eigenvalues at a certain operating point, as a particular parameter of interest is varied

Slowly. Saddle node involves the coalescence and disappearance of two neighboring

equilibrium points, while Hopf involves the emergence of a small amplitude periodic orbit

from an equilibrium as the parameter is varied

(a1) Saddle Node Bifurcation

Let x = f(x,u) be a system of dijferential equations in R" depending on the single

parameter it. At (1 = (1’ , assume that there is an equilibrium point X: (2(u’), u‘) for

which thefollowing hypotheses are satisfied

(SNI) fx = af/ax(r(u‘), 11’) has one simple eigenvalue 201*) = 0 with right

eigenvector v and left eigenvector w. f, all other (n-l) eigenvalues with negative

real part

(5N2) w- [Bf/3u(i(u’). u')l #0

(SN3) w- Raf/311ml“). ll'))(v. V)] #0

Then the system undergoes a saddle node bifurcationfrom Y: (2(11‘), (1")
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(a2) Hopf-Andronov Bifurcation

Let x = f(x, u) be a system of drfierential equations in R" depending on the single

parameter 11. At ii = (1’, assume that there is an equilibrium point K= (2(11’), (1‘) for

which thefollowing hypotheses are satisfied

(HI) f, = af/ax(i(u’),u’) has a simple zero eigenvalue 2101*) = 0 and no other

eigenvalues with zero real part.

(H2) %(Re}t(u))|u=p,¢0 (Transversality condition)

Then a small amplitude non-constant periodic orbit of x = f(x,tt) emerges from

7= (301’). 11‘) at i1 = 11‘
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APPENDIX D

INPUT DATA FOR BIFURCATION SUBSYSTEM EXAMPLES

EXAMPLE 1 (SN)

0
9

The single machine infinite bus system for power system

% stabilizer design

% datasmib.m

% bus data format

% bus: number, voltage(pu), angle(degree), p_gen(pu),

% q_gen(pu), p_load(pu), q_load(pu), gshunt, bshunt,

% bus_type

% bus_type - 1, swing bus

% - 2, generator bus (PV bus)

% - 3, load bus (PQ bus)

% the voltage on bus 2 is adjusted for zero Q at machine 1

bus = [ l 1.05 0.0 0.7 0.4 0.0 0.0 0.00 0.300 2;

2 1.08103 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1;

3 1.0 O 0 0 0 0 0.0 0.0 3];

% line data format

% line: from bus, to bus, resistance(pu), reactance(pu),

% line charging(pu), tap ratio, phase shifter angle

line = [l 3 0.0 0.61 0. l. 0.;

2 3 0.0 0.1000 0. 1. 0.;

2 3 0.0 0.1000 0. l. 0.];

% Machine data format

leakage reactance x_l(pu)

r_a(pU)

sychronous reactance x_d(pu)

transient reactance x'_d(pu)

subtransient reactance x'_d(pu)

open-circuit time constant T'_do(sec)

open-circuit subtransient time

% machine: 1. machine number

% 2. bus number

% 3. base mva

% 4.

% 5. resistance

% 6. d—axis

% 7. d-axis

% 8. d-axis

% 9. d-axis

% 10. d-axis

% constant T‘_do(sec)

% 11. q-axis sychronous reactance x_q(pu)
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% 12. q-axis transient reactance X'_q(pU)

% 13. q-axis subtransient reactance x"_q(pU)

% l4. q-axis open-circuit time constant T'_qo(sec)

% lS. q-axis open circuit subtransient time

% constant T'_qo(sec)

% 16. inertia constant H(sec)

% 17. damping coefficient d_o(pu)

% 18. dampling coefficient d_1(pu)

% 19. bus number

% 20. S(l.0) - saturation factor

% 21. S(l.2) - saturation factor

% note: machine 1 uses mac_sub model, machine 2 uses mac_em

% model

mac_con = [

l 1 991 0.15 0 2.0 0.2 0.2 5.0 0.031 1.91 0.2 0.2

0.66 0.061 2.8756 0.0 0 1 0 0,

2 100000 0.00 0 0. 0.01 0 0 0 0 O 0

0 3.0 2.0 0 2 0 0],

Exciter data format

exciter: 1. exciter type - 3 for ST3

2. machine number

input filter time constant T_R

voltage regulator gain K_A

voltage regulator time constant T_A

voltage regulator time constant T_B

voltage regulator time constant T_C

. maximum voltage regulator output V_Rmax

9. minimum voltage regulator output V_Rmin

10. maximum internal signal vglmax

11. minimum internal signal V_Imin

12. first stage regulator gain K_J

13. potential circuit gain coefficient K_p

14. potential circuit phase angle theta_p

15. current circuit gain coefficient K_I

16. potential source reactance X_L

17. rectifier loading factor K_C

18. maximum field voltage E_fdmax

l9. inner loop feedback constant K_G

20. maximum inner loop voltage feedback V_Gmax

exc_con = [

3 1 O 7.04 0.4 0.00 1.0 7.57 0 0.2 -0.2 200 4.365 20

4.83 0.091 1.096 6.53 1 6.53];

(
D
Q
O
W
U
'
I
l
b
w

d
e
d
d
e
d
e
P
o
‘
P
o
‘
P
c
P
d
e
P
d
e
P
d
e
P
d
e
P
d
e
P
o
‘
P
o
P
o
‘
P
d
e
P
O
N

EXAMPLE 2 (Hep!)

% The singl machine infinite bus system for power system

stabilizer design

datasmib.mW
0
9

bus data format

bus: number, voltage(pu), angleldegree), p_gen(pu),

q_gen(pu), p_load(pu), q_load(pu), gshunt, bshunt,

bus_type0
9
0
9
0
9
0
1
9



% bus_type - 1, swing bus

% - 2, generator bus (PV bus)

% - 3, load bus (PQ bus)

% the voltage on bus 2 is90djusted for zero Q at machine 1

% # V ang Pg Qg Pl Q1 Gsh Bsh type

bus = [ 1 1.05 0.0 0.90 0.80 0.0 0.0 0.0 0.0 2;

2 1.08103 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1;

3 1.0 0 0 0 0.7 0.4 0.0 0.0 3],

% line data format

% line: from bus, to bus, resistance(pu), reactance(pu),

% line charging(pu), tap ratio, phase shifter angle

% fr to r x chg tap pshft

line = [1 3 0.0 0.6 0 1 0.;

2 3 0.0 O 01 0 1 0.;

2 3 0.0 0 01 O 1 0.];

% Machine data format

% machine: 1. machine number

% bus number

% base mva

leakage reactance x_l(pu)

resistance r_a(pu)

d-axis sychronous reactance x_d(pu)

. d-axis transient reactance x’_d(pu)

d-axis subtransient reactance x'_d(pu)

d-axis open-circuit time constant T'_do(sec)

d-axis open—circuit subtransient time

constant T'_do(sec)

11. q-axis sychronous reactance x_q(pu)

12. q-axis transient reactance x'_q(pu)

13. q-axis subtransient reactance x'_q(pu)

14. q-axis open—circuit time constant T'_qo(sec)

15. q-axis open circuit subtransient time

constant T‘_qo(sec)

16. inertia constant H(sec)

17. damping coefficient d_o(pu)

18. dampling coefficient d_1(pu)

19. bus number

H O
k
o
o
o
x
l
m
m
n
w
w

o
P
o
‘
P
d
O
o
W
d
P
o
W
d
e
fl
d
P
o
n
P
d
P
o
P
d
e
P
d
e
P
d
P
o
P
o
‘
O
W
d
P

20. S(1.0) - saturation factor

21. S(l.2) - saturation factor

note: machine 1 uses mac_sub model, machine 2 uses mac_em

model

mac_con = [

1 l 991 0.15 0 2.0 0.245 0.2 5.0 0.031 1.91 0.42 0.2

0.66 0.061 2.8756 0.0 0 1 O 0;

2 2 100000 0.00 O O. 0.01 0 0 0 0 0 0

O 0 3.0 2.0 0 2 0 0];

% Exciter data format

% exciter: l. exciter type - 3 for ST3

% 2. machine number

% 3. input filter time constant T_R
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exc_con = [

0
0
4
m
m
»

9.

10.

ll.

12.

13.

14.

15.

l6.

17.

18.

19.

20.
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voltage regulator gain K_A

voltage regulator time constant T_A

voltage regulator time constant T_B

voltage regulator time constant T_C

maximum voltage regulator output V_Rmax

minimum voltage regulator output VflRmin

maximum internal signal V_Imax

minimum internal signal V_Imin

first stage regulator gain K_J

potential circuit gain coefficient K_p

potential circuit phase angle theta_p

current circuit gain coefficient K_I

potential source reactance x_L

rectifier loading factor K_C

maximum field voltage E_fdmax

inner loop feedback constant K_G

maximum inner loop voltage feedback V_Gmax

3 l 0.00 1.9 0.19 3.7 0.08 7.57 0 0.2 -0.2 400 4.365 23

4.83 1.0 1.096 6.53 2.949 6.53];
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POWER TRANSFER MODEL
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parameters K... (a) Inductive loading, (b) Capacitive loading

231



K
5

232

 

I I I I l

. ; LocaiLoadModel '3

oo25........ .............. ...

' ore-0.9 .

002... ..... ......... ........... .............. ............. .4

0.015? ............. : . ......... : ....... .....E..... ........E .......... ............... -

0.01,. .. . . ..... ..

0.005

     
§Xsh-o.1  
 

—o.oos . L ‘1 . g

o 0.2 0.4 0.6 3 0.8 1

 

0-5 T. '. i F I

0.46~-~~ .............. ...........§.x.h._o,a.....

0.4» .......... ,...,.......Locleeadquel ..... ......

i Pint-Qinf-O : § ;

0_35 .. .. ............. 3 ........x..0_9i ................ ............... .3 ............... ............... _

0.3r .............. -.............. .. .............. ....o: ................ ............... 1

gozs- ......... .............. ............... _

o_2+. ............... ............... ...... ........... ............... —.

Q1. .............. 5 ............... 3. . . ................Xeh-—10_

  
 

Figure E21 Local Loading Model: Effect of the shunt local load on the

parameter K5, (a) inductive loading, (b) Capacitive loading



233

 
0.12 I I I

LocalLoadMiodel 3 3

0.13. ...............P'nmn'fl. ......... .......... ------l

19-0.9 I

 

 

   
 

0.04,. ...................... . ...............................................................

0.02? .......................................3................................:...............

...,—— i EXsh-OI
0... ................................................ ................................. .. .............. ..,

o 02 0.4 . 03 1

 

o_5_....... ................ ..... ........... ....... ,1 ............... q

LocalLoadModel ; 2 / ;

0.4i—. Wxé-D'gw.... ............... ............... r' ............. ...............

0.1% ........... ............. ................ ............... .3

 

   
 

(b)

Figure E23 Local Loading Model: Effect of the local load on the

parameters K1 -K2K3K4 , (a) inductive loading, (b) Capacitive loading



K
l
—
K
2
K
5
/
K
6

K
i
-
K
Z
W
K
G

0.1
r- . ................ -

Pinff-Qirtf-O

xe-O.9

0.05 "
..

./ 3 z 2 a

. . i . i

0 0.2 0.4 0.6 0.8 1

95" (W)

(a)

" XShI—I .0

—4

—5

t
»
)

b
.
)

A

 

I I I

.Leeeil-eedMedelf ........... ....... ..........

I I

 

 

 

 

 
 

 

 

 

................................  
 

.............................................. 3. . . . . . ..

Xsh--0.1 3

1 i

(b)

Figure E2.4 Local Loading Model: Effect of real-inductive loading on the

parameters K1-K2K5/K5 (a) Inductive loading, (b) Capacitive loading

 



APPENDIX E3

FIGURES FOR DIAGNOSTIC ANALYSIS

COMBINATION MODEL



APPENDIX E3

FIGURES FOR DIAGNOSTIC ANALYSISLOCAL

LOADING MODEL

 

f ' T i 7

:Combination Model _

" \3 1 § Xsh-O.1 7 3 ’

. ‘ . 5"“0-4 . :

_0.04L .............. ............... . . .. - ...-......é ................ 2:............... -

K
5

E 1. Z "II-1.0
_o.06l.... ............ ........ . . .. . Q ...........................

—0.08 I .................................................

. .

I h I I I

0.12... ............. : .......... ................ 3........................... _............... _.

_0.14L..... ....... . ........ ........... ...;.QIIJI'0.0...._

L i i i A

O 0.2 0.4 0.6 0.8 1

Plnt(pu)

(a)

  
 

 r I I I I

.f ........... ....eqwoermwe' .......... ..............

  

   

 

-

, inn-0.17 _

_o_05...... ........ . “-0.4................. .......... _,

..............

.. ;
x QIHI-0.0

- d

 

 

_o.25._ ............... .. .......... . ..... 2................3................S............... _(  
 

0.6

Pint (pu)

(b)

Figure E3.1 Combination Model: Effect of power transfer on the parameter K5
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(b) Real and reactive power flow in opposite directions.
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(b) Real and reactive power flow in opposite directions.
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Figure E35 Combination Model: Effect of power transfers to the infinite bus on

the synchronizing term K, -K2K5/K6 (regulated) when the local load is real-inductive.

(a) Real and reactive power flow in the same direction. (b) Real and reactive power

flow in opposite directions.
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(a) Real and reactive power flow in the same direction, (b) Real and reactive power

flow in opposite directions.
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(a) Real and reactive power flow in the same direction, (b) Real and reactive power

flow in opposite directions.
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