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ABSTRACT

NUMERICAL SIMULATION OF MICRO-FILTRATION OF OIL-IN-WATER
EMULSIONS

By

Tohid Darvishzadeh

This study addresses the issue of oil removal from water using hydrophilic porous mem-

branes. The effective separation of oil-in-water dispersions involves high flux of water through

the membrane and, at the same time, high rejection rate of the oil phase. The effects of

transmembrane pressure and crossflow velocity on rejection of oil droplets and thin oil films

by pores of different cross-section are investigated numerically by solving the Navier-Stokes

equation. We found that in the absence of crossflow, the critical transmembrane pressure,

which is required for the oil droplet entry into a circular pore of a given surface hydrophilicity,

agrees well with analytical predictions based on the Young-Laplace equation. An analytical

expression for the critical pressure in terms of geometric parameters of the pore cross-section

is validated via numerical simulations for a continuous oil film on elliptical and rectangular

pores. With increasing crossflow velocity, the shape of the oil droplet is strongly deformed

near the pore entrance and the critical pressure of permeation increases. We determined

numerically the phase diagram for the droplet rejection, permeation, and breakup depend-

ing on the transmembrane pressure and shear rate. The critical pressure of permeation is

identified as the line separating permeation and rejection regions. Using a novel method for

computing the critical pressure, we investigated the effect of various physical and geometri-

cal parameters on the critical pressure of permeation and breakup of droplets under shear

flow. It is demonstrated numerically that the critical pressure of permeation increases with

shear rate, viscosity ratio, surface tension coefficient, contact angle, and droplet size. On the



other hand, droplet breakup at the pore entrance is facilitated at lower values of the surface

tension coefficient, higher oil-to-water viscosity ratio, and larger droplet size. Using simple

force and torque balance arguments, an estimate for the increase in critical pressure due to

crossflow and the breakup capillary number is obtained and validated for different viscosity

ratios, surface tension coefficients, contact angles, and drop-to-pore size ratios.
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Chapter 1

Introduction

With the recent advances in environmental and biological technologies, there has been in-

creasing interest in characterization and modeling flows at the micron scales including flows

in microchannels and nanochannels [1, 2], multiphase flows through porous media [3, 4],

and droplet-based microfluidics [5, 6]. The industrial applications include oil extraction

from porous media [7, 8, 9], treatment of oily wastewater [10, 11, 12], and encapsulation of

molecules, cells, and microorganisms [13, 14, 15]. In recent years, microfluidics has emerged

as a promising new tool to address various problems in different areas of research and industry

including biology, petroleum industry, and environmental engineering [1, 16, 17]. Microflu-

idic devices are used as efficient analysis systems for DNA characterization and cell sorting

processes in biomedical applications [18]. Moreover, measurements of chemical composition

and properties of oil produced during drilling and production has enhanced significantly

by using microfluidic sensors [19]. On the other hand, the science of microfluidic behavior

of fluids and drops has contributed to the design of micro-separation systems to treat oily

wastewater produced in oil spills, oil leaks, and industrial discharge [20]. In most of these

processes, one or more phases are dispersed in a continuous phase in the form of emulsions,

which are usually produced by shearing two immiscible phases against each other in the pres-

ence of surfactants [21]. Emulsions are used in a handful of different applications ranging

from petroleum industry [22] to biomedical treatments [23]. In some cases, emulsions serve

as means of transport of molecules, bio-reagents, and drugs, and ultimately provide the envi-
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ronment for enhanced reactions [14, 24]. Another technological application of emulsions is to

improve the transportability or displacement of highly viscous liquids. For example, heavy

crude oil is emulsified to form a less viscous mixture to facilitate its transportation [25, 26].

In addition, oil-in-water emulsions are used to enhance recovery and increase sweep efficiency

from crude oil reservoirs by blocking highly permeable paths and preventing channeling of

the displacing fluid [7]. A very interesting part of microfluidics deals with the formation [27],

transport [14], and stability [28] of emulsions. Depending on applications, producing stable

emulsions could be either beneficial or problematic [29]. In food industries, it is essential for

the emulsion to remain stable to retain the required flavor and quality [30]. On the other

hand, emulsions with high stability produced during bio-diesel washing, crude oil extraction,

and industrial wastewater are difficult to demulsify [29]. Common methods for separation of

emulsions include evaporation of the continuous phase [31], destruction (demulsification) [32],

and membrane filtration [10].

Micro-porous membranes are often used as an efficient tool to both produce emulsions [33]

and to separate them from their bulk fluid [10]. The typical pore size for both applications

is in the range of 0.1µm to 10µm [34]. Apart from conventional methods such as ultrasound

emulsification [35] and stirring vessels [36], emulsions are produced through a process known

as membrane emulsification [37]. Membrane emulsification generally involves a process in

which micon-sized droplets are produced by forcing a liquid stream through a membrane

pore into a channel in which another liquid is flowing. The emerging droplet breaks as

a result of interactions between the shear, pressure, and capillary forces [38]. Membrane

emulsification is more cost efficient, requires less energy density, and ultimately produces a

narrower droplet size distribution than conventional methods [39, 40]. On the other hand,

membrane microfiltration has proven to be an efficient way for separating oil-in-water emul-
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sions [41, 42]. In comparison with the conventional methods of filtration (gravity separators,

centrifuges, etc.), membrane microfiltration has several distinct advantages including re-

duced space requirements, higher permeate quality, and lower operating costs [10]. Despite

its advantages, microfiltration efficiency can be greatly reduced because of membrane fouling

at highly concentrated emulsions or long filtration times [43]. Fouling is generally caused by

the accumulation of the rejected phase on the surface of the membrane or inside the pore.

There are four main mechanisms (blocking laws) for membrane fouling, i.e., standard block-

ing, complete blocking, intermediate blocking, and cake formation [44]. Complete blocking is

common for very dilute mixtures and during the initial stages of filtration when some pores

are sealed by droplets and particles, thus reducing the permeate flux [45, 46]. Accumulation

of the rejected droplets on the membrane surface results in the formation of the so-called

cake layer, which is sometimes referred to as the secondary membrane as it adds a hydraulic

resistance to the microfiltration process [47, 48, 49]. This mechanism is dominant at the

final stages of filtration when the water flux depends mainly on the thickness of the cake

layer. The present study is mainly related to the “complete blocking” mechanism in which

a droplet blocks a pore completely and prevents the flux of the continuous phase [50].

The efficiency of the microfiltration process is determined by the properties of the mem-

brane material and oil-in-water mixtures. For example, the permeate flux is highly dependent

on the oil concentration, stability of the oil phase in water, and the size distribution of oil

droplets [10, 51]. Moreover, the membrane properties such as membrane material, pore size

and morphology, and membrane geometry affect the permeate flow resistance [10, 20]. It

was shown that slotted (rectangular) pores resulted in higher flux rates compared to circular

pores for similar operating conditions because of the lower fowling rate of the slotted-pore

membranes [52]. Another approach to reduce the fouling rate is to introduce crossflow above
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the membrane surface. This method, known as the “crossflow microfiltration”, reduces foul-

ing by sweeping away the deposited drops and particles and, hence, decreases the thickness

of the cake layer. Therefore, crossflow microfiltration systems tend to produce higher per-

meate fluxes for longer times compared to dead-end microfiltration systems [53, 54]. One of

the aims of the present study is to investigate numerically the entry dynamics of oil droplets

into a membrane pore in the presence of crossflow.

Depending on the application and droplet size distribution, crossflowing systems could

be either confined or unconfined. Most crossflow microfiltration processes use unconfined

systems to produce a higher flux of the continuous phase. On the other hand, emulsifi-

cation processes often use confined systems (e.g. t-junctions) to have a better control on

the size and pattern of the emulsions generated [55]. During the last decade, a number

of studies have investigated the process of droplet formation using cross-flowing streams in

T-shaped junctions [56, 57, 58, 59]. In these microfluidic systems, two immiscible liquids are

driven through separate channels until their streams meet at a junction, where the dispersed

liquid extends into the continuous stream, resulting in periodic formation of equal-sized

droplets [40]. Regardless of the specific channel geometry and wettability of the channel

walls, breakup of the emerging droplet in a cross-flowing stream is determined by the vis-

cous drag when the droplet remains unconfined by the microchannel [40]. For unconfined

T-junctions, it was demonstrated experimentally that the droplet size strongly depends of

the crossflow rate of the continuous phase and only weakly on the flow rate of the dispersed

phase [57, 58]. It was also shown that, for given value of continuous phase flow rate, the size

of oil droplets decreases with increasing viscosity ratio of the oil and water [58]. For micro-

sized systems, the main force acting on a droplet in a confined environment is the upstream

pressure, whereas for unconfined systems, the main contribution is from the shear stress on
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the droplet. Consequently, breakup in unconfined systems is mainly shear dominated. How-

ever, droplets in confined channels, break as a result of blockage pressure gradient produced

in the channel [40, 60].

Studying emulsions in general has been performed in two different scales, i.e. macro-

scopic or bulk scales and mesoscopic scales [22]. Early works in membrane emulsification

and microfiltration includes performing bulk experiments to calculate average quantities and

formulate empirical relations [33]. Bulk emulsification tends to produce broad distribution

of droplet sizes as the shear stresses are not homogeneous [55, 14]. In recent years, however,

with the development of advanced imaging and measuring techniques and computational

resources, researchers studied a single droplet in a flow and related its microscopic behavior

to the bulk properties of the flow [61, 62]. Macroscopic studies consider parameters such

as droplet size distribution, dispersed phase concentration, and bulk properties such as per-

meate flux [63, 64]. On the other hand, the microscopic behavior of a droplet is quantified

using different parameters like deformation, orientation angle, and breakup criteria [62]. In

microfiltration of emulsions, there has been a limited number of studies investigating the

connection between the macroscopic and mesoscopic variables [65, 66].

Micro-scale study of single droplets under various flow conditions has gained considerable

attention in the past century. Taylor was the first to systematically study the deformation

and breakup of a single droplet under shear flow. He performed experiments and developed

theories explaining effect of viscosity on the droplet behavior [67, 68]. After Taylor, several

other researchers have contributed theoretically [69, 70] and experimentally [71, 72] to the

characterization of droplet deformation and breakup under shear flow. Bentley et. al [73]

used a computer-controlled four-roll mill to investigate the effect of shear and extensional

flows on a single droplet. Many researchers also performed numerical simulations using
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boundary integral method to analyze droplets under different types of flow [62, 74]. Boundary

integral methods have the advantage that the flow is solved only on the boundary of the

droplet and the surface rather than the whole flow field and so the interface can be very

accurately modeled. [75]. With the development of powerful computers, new algorithms

were developed for flow solution and interface tracking with very high resolutions. One of

these effective algorithms is the use of Volume of Fluid method to define the interface. This

method tracks the interface between the two phases using a color function [76, 77]. The

Volume of Fluids method has been extensively used to validate results of experiments and

boundary integral simulations and to predict flow conditions [78, 79].

The deformation and orientation angle of droplets deposited on a surface under shear

flow is greatly influenced by its contact angle, viscosity ratio, and the contact angle hystere-

sis [80]. Studying effect of shear flow on particles and droplets near walls has been received

considerable attention in the past 50 years. Saffman concluded that a droplet near wall un-

der shear flow could experience an upward lift force if inertial effects are not negligible [81].

O’Neill derived an exact solution for the linear Stokes flow over a spherical particle on a

solid surface [82]. Price found the drag force acting on a hemispherical bump as a result of

linear shear stokes flow on a solid wall [83]. Pozrikidis extended Price’s work to a spherical

bump with arbitrary angle using boundary integral method [84]. Sugiyama et al. extended

the work of Price by varying the viscosity ratio to values other that infinity (as considered by

Price [83]) and found an exact solution for the linear shear flow past a hemispherical droplet

on a solid surface. Assuming that the droplet is pinned to the surface, they computed the

drag force, torque, and the deformation angle as function of the viscosity ratio [85].

The dynamics of droplet breakup in steady shear flow is determined by the relative

competition of the viscous stress, pressure, and interfacial tension [62]. In general, the
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breakup process is initiated by the droplet deformation, which is linearly proportional to the

rate of shear [72]. When the critical deformation is reached, the droplet assumes an unstable

configuration and undergoes a transient elongation before it breaks up [62]. It was also shown

that the geometric confinement as well as the viscosity ratio of the dispersed and continuous

phases influence droplet breakup [86]. In recent years, the problem of droplet deformation

and breakup has been extensively studied numerically using Lattice Boltzmann [56, 87,

88], boundary integral [89, 90], and Volume of Fluid (VOF) [77, 78, 91] methods. The

VOF method, used in the present study, has proven to be a powerful and efficient interface

tracking algorithm that is both conceptually simple and relatively accurate [92]. Due to

the conservative discretization of the governing equations in the VOF method, the mass of

each fluid is accurately conserved [78, 93]. Furthermore, the ability of the VOF method to

automatically capture local and global changes of the interface topology, e.g., coalescence

and breakup of droplets, has made it attractive for various multiphase flow applications [92].

When studying micron-sized droplet deformation and breakup, there are multiple pa-

rameters to consider that are related to each other through dimensionless numbers. These

parameters include viscosity of the continuous phase, surface tension coefficient between the

two fluids, contact angle between the fluid-fluid interface and a solid surface attached to

them, the viscosity ratio of the dispersed phase and the continuous phase, and the size of the

droplet. These variables constitute two main dimensionless numbers, namely, the capillary

number Ca = µcu/σ and the viscosity ratio λ = µd/µc, where u is the characteristic veloc-

ity of the flow, σ is the surface tension coefficient, and µd and µc are the viscosity of the

dispersed and continuous phases, respectively. For very small sizes and slow velocities, the

inertial effects could be neglected and so the Reynolds number (Re = ρcurd/µc where ρc is

the density of the continuous phase and rd is the characteristic length scale) and the Weber

7



number (We = ρcu2rd/σ) are no longer important. The contribution of gravity is measured

through the Bond number which is the ratio of the gravitational force to the surface tension

force (Bo = ρ r2
d
g/σ). Generally micro-sized systems have a very small Bond number and

therefore the Bond number is not an important dimensionless number. We will later see

(by estimating the Bond number in chapter 3) that gravitational forces in our computations

could be safely neglected.

The first part of this study reports numerical simulations based on the Volume of Fluid

method to investigate the influence of transmembrane pressure and crossflow velocity on the

entry dynamics of thin oil films and droplets into pores of various cross-sections. We find

that the formula derived in Ref. [65] for the critical pressure of permeation of an oil droplet

into a circular pore agrees well with the results of numerical simulations. The numerical

analysis is then extended to thin oil films covering pores with elliptical and rectangular

cross-section in the absence of crossflow. In the presence of crossflow, we obtain numerically

the phase diagram for the droplet rejection, permeation, and breakup as a function of the

transmembrane pressure and shear rate, and study the details of the processes in three

different regions of the phase diagram. These results are relevant to microfiltration of dilute

oil-in-water emulsions at early stages before the formation of the cake layer.

In the second part of this study, we perform numerical simulations to determine the drop

behavior on a pore for different parameters. The effect of confinement on the droplet is

demonstrated and an optimum height for the crossflow channel is found. Next, we perform

simulations to study the effect of viscosity ratio, surface tension coefficient, contact angle, and

drop-to-pore size ratio. Critical pressure of permeation is found and compared for different

parameters. Also, breakup behavior of the droplet is studied.

The rest of this report is organized as follows. The details of numerical simulations are
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described in the next chapter. In chapter 3 analytical predictions based on the Young-Laplace

equation are reviewed and verified numerically for an oil droplet on circular, elliptical, and

rectangular pores. Moreover, the results for the oil droplet dynamics near circular pores in the

presence of crossflow are presented. Chapter 4 introduces a novel procedure for computing

the critical pressure of permeation and a summary of analytical predictions for the critical

pressure based on the Young–Laplace equation is presented, and the effects of confinement,

viscosity ratio, surface tension, contact angle, and droplet size on the critical transmembrane

pressure and breakup are studied. The conclusions are given in the last chapter.
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Chapter 2

Details of numerical simulations

Numerical simulations were carried out using the commercial software FLUENT [94]. In or-

der to control the transmembrane pressure and the crossflow velocity, a user-defined function

was written in C and compiled along with the main solver. The Volume of Fluid method was

used to solve the multiphase flow problem [95]. The Volume of Fluid method has the advan-

tage that it rigorously conserves the mass and automatically captures topology changes. For

a two-phase fluid, this method is based on the fact that the two phases form an impenetrable

interface, i.e., each cell is filled with either one of the phases (denoting a specific phase zone)

or a combination of two phases (denoting the interface). This is achieved by introducing a

variable α, known as the “volume fraction”, which is defined as the ratio of the volume of

fluid in the cell and the total cell volume; and it varies between 0 and 1 [96, 97]. An example

of how the volume fraction varies near the interface is illustrated schematically in Fig. 2.1.

The interface is tracked by solving the transport equation for the volume fraction as

follows:

∂α

∂t
+∇⋅ (αV) = 0, (2.1)

where V is the velocity vector. Equation (2.1) states that the substantial derivative of the

volume fraction is zero, and, therefore, the interface is convected by the velocity fields at the

interface. After solving Eq. (2.1), the material properties are computed by considering the
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Figure 2.1 Values of the volume fraction for each of the phases and the interface (α = 1 in
the first phase, α = 0 in the second phase, and 0 < α < 1 at the interface).

fraction of each component in the cell; e.g., the density is given by

ρ = αρ2 + (1 − α)ρ1, (2.2)

where ρ is the volume-fraction-averaged density.

One momentum equation is solved and the velocity field is shared between two phases as

follows:

∂

∂t
(ρV) +∇ ⋅ (ρVV) = −∇p +∇ ⋅ [µ(∇V +∇VT )] + ρg +F, (2.3)

where g is the vector of gravitational acceleration, and F is the source term. In multiphase

flow applications, the source term is the surface tension force per unit volume and it is non-

zero only at the interface. Using the divergence theorem, the surface tension force is defined
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as the volume force in a cell as follows:

Fσ = σ
ρκ∇α

1
2(ρ1 + ρ2)

, (2.4)

where σ is the surface tension between two phases and κ is the mean curvature of the interface

in the cell. This force is related to the pressure jump across the interface (determined by the

Young-Laplace equation) and it acts in the direction normal to the interface. The surface

tension term tends to smooth out regions with large interface curvature [98]. If the interface

is in contact with the wall, the normal vector (∇α), which defines the orientation of the

interface in the cell adjacent to the wall, is determined by the contact angle. The effect of

static contact angle is taken into account by imposing the interface unit normal for a point

(a cell in the Finite Volume method), ni, on the wall containing the interface as follows:

ni = nw cos(θst) + nt sin(θst), (2.5)

where nw is the unit vector normal to the wall, nt is a vector on the wall and normal to the

contact line, and θst is the static contact angle [76].

A SIMPLE algorithm was used for the pressure-velocity decoupling. The momentum

equation was discretized using a second order upwind scheme. To reconstruct the interface

and, consequently, solve the volume fraction transport equation, a PLIC (Piecewise Linear

Interface Reconstruction) method was used [99]. The pressure equation is discretized using

a staggered mesh with central differencing. In FLUENT, the interfacial tension is modeled

using the well-known model of Continuum Surface Force (CSF) of Brackbill et al. [76]. Using

CSF, the surface tension volume force Eq. (2.4) is added as a source term to the momentum
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equation and the curvature is computed in terms of the vector normal to the interface n via:

κ = 1

∣n∣
[( n
∣n∣
⋅ ∇)∣n∣ − (∇ ⋅ n)]. (2.6)

Interfacial effects in multiphase flows are described by the Young-Laplace equation, which

relates the pressure jump across the interface to its mean curvature and the surface tension

coefficient. For flows at the micron length scales, the viscous effects are dominant and the

inertial effects are typically negligible. The capillary number is a measure of how viscous

shear stresses are compared to the interfacial stresses and it is defined Ca = µU/σ, where U

is the characteristic velocity, µ is the fluid viscosity, and σ is the surface tension coefficient.

In chapter 3, the numerical simulations are performed to investigate a separation process

of two commonly used liquids, i.e., kerosene and water. The density of kerosene is ρo =

889kg/m3 and the viscosity ratio of kerosene and water at standard conditions is µo/µw =

2.4. It is assumed that the water is deionized; and, thus, the surface tension coefficient

σ = 19.1mN/m is used throughout the study [66]. Furthermore, we consider hydrophilic

surfaces (for example polyvinyl-pyrrolidone [66]) with contact angles of kerosene in water

greater than 90○. In our simulations, the mesh was generated in GAMBIT using the Cooper

mesh scheme. This method works by sweeping the node patterns of specified source faces

through the whole volume and the resultant mesh consists of an array of hexagonal grids. For

the results reported in the current study, we used about 30 cells along the pore diameter. To

test the grid-resolution dependence, we considered 3 finer meshes that contained 50, 70, and

90 cells along the pore diameter. In the absence of crossflow, the simulations were performed

for an oil droplet (rd = 1.0µm) on a circular pore (rp = 0.2µm) at two transmembrane

pressures (1.000 and 0.951 bar) slightly above and below the exact value of the permeation
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pressure 0.976 bar predicted by the Young-Laplace analysis. In all cases, the droplet would

either penetrate into the pore or reside at the pore entrance for at least 40µs. Furthermore,

it was previously shown that the velocity of the contact line in the VOF method is inversely

proportional to the logarithm of the mesh size [100], and, therefore, it is expected that the

droplet velocity in the shear flow will depend on the grid resolution. However, in the present

study, the oil droplet becomes temporarily pinned at the pore entrance by the transmembrane

pressure, and thus the contact line velocity becomes much smaller than the flow velocity in

the channel. Nevertheless, we have performed numerical simulations in the permeation,

rejection, and breakup regions of the phase diagram with 4 times finer meshes and found

that the predicted behavior of the the droplet remained unchanged. The corresponding

profiles of the droplets simulated with the base mesh resolution level (30 grids along the

diameter of the pore) and two and four times finer mesh are plotted in Fig. 2.2. There is

great agreement between the profiles of two and four times refinement which indicates a

grid-resolution-independent solution.

To ensure that the numerical method used in this study correctly captures the physics of

two-phase flows in stokes regime, we have performed a series of simulations of a well-studied

benchmark problem in interface science, namely, the deformation and breakup of a droplet

under pure shear flow. We have compared our results to findings from experiment, boundary

integral method, and Volume of Fluid computations. The simulations were performed in a

three-dimensional cubic space enclosed by periodic boundary conditions in lateral directions

and no-slip walls in the vertical sides. The droplet is placed in the center of the cube and

shear flow is induced by the motion of the walls in opposite directions. The viscosity and

density of both fluids, and the shear rate is assumed to take a non-dimensional value of 1

and the drop radius is 0.25. Therefore, the Reynolds number is Re = ργ̇r 2
d
/µ = 0.0625 which

14



Y (µm)

X
(µ

m
)

-1E-06 0 1E-06 2E-06 3E-06

-3E-06

-2E-06

-1E-06

0

1E-06

Base Level
2 Times Finer
4 Times Finer

Figure 2.2 Profiles of a pinned droplet simulated using three levels of mesh resolution with
the base level containing 30 grids along the diameter of the pore.

allows for creeping flow.

Fig. 2.3 shows the deformation and orientation angle of the droplet under various capillary

numbers. It is observed that the present solver is able to accurately predict the deformation

and the orientation angle of a single droplet in shear flow. The solver was able to numerically

confirm that the critical capillary number for breakage of a droplet in simple shear flow is

Cacr ≈ 0.41. We also comment that both the deformation and the orientation angle of the

droplet appear to be increasing with the capillary number as will be further investigated in

the following chapters.

Moreover, Fig. 2.4 demonstrate the profiles of the droplet at four different capillary num-

15



Figure 2.3 Deformation (left) and orientation angle of a droplet in simple shear flow for
various capillary numbers: ● present simulations; ◇ VOF simulations of Li et. al; ◻ boundary
integral simulations of Rallison; × boundary integral simulations of Kwak et. al; △ boundary
integral simulations of Kennedy et. al; ○ experimental results of Rumschiedt and Mason; the
solid line is for small deformation theory of Cox [78] (parameters: ρ1 = ρ2 = 1, µ1 = µ2 = 1,
rd = 0.25, and γ̇ = 1)
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Figure 2.4 Snapshots of the cross-section of a droplet in simple shear flow for various capillary
numbers using present simulations (left) and the results of VOF simulations of Li et. al
(right) [78] (parameters: ρ1 = ρ2 = 1, µ1 = µ2 = 1, rd = 0.25, and γ̇ = 1)

bers using the present solver and the numerical results of Li et. al [78]. There is remarkable

resemblance in the shape of the droplet. The last shape corresponds to the capillary number

slightly below the breakup value.
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X
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Figure 2.5 Schematic of the hybrid mesh cross-section used in chapter 4. The mesh consists
of coarse tetrahedral and fine hexagonal cells.

In chapter 4, in order to increase the simulation efficiency, we generated a hybrid mesh

that consists of fine hexagonal meshes in a part of the channel that contains the droplet and

coarse tetrahedral meshes in the rest of the channel. Fig. 2.5 shows an example of the mesh

used in chapter 4. Finally, a user-defined function was used to initialize the droplet shape

and to adjust the velocity of the top wall that induced shear flow in the channel, as shown

schematically in Fig. 2.6.

Since the dynamics of the oil-water interface inside the pore slows down significantly when

the transmembrane pressure becomes close to the critical pressure of permeation [101], the

interface inside the pore is nearly static and the pressure jump across the spherical interface

can be easily computed from the Young-Laplace equation. On the other hand, numerical

simulations are required to resolve accurately the velocity fields, pressure, and the shape

of the deformed droplet above the pore entrance. In the present study, we propose a new

numerical procedure to compute the droplet critical pressure of permeation and breakup,

as illustrated in Fig. 2.7. First, the pressure jump across the static interface inside the pore
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Figure 2.6 Schematic representation of the oil droplet residing at the pore entrance in a
rectangular channel with the corresponding boundary conditions. The width and length of
the computational domain are fixed to 24µm and 36µm and the height of the domain is
determined in Section 4.2.

is calculated using the Young-Laplace equation. Second, we simulate the oil droplet in the

presence of steady shear flow when the droplet covers the pore entrance completely and the

oil phase fills in the pore. In the computational setup, the pore exit is closed to prevent the

mass flux and to keep the droplet at the pore entrance. The difference in pressure across

the deformed oil-water interface with respect to the inlet pressure is measured in the oil

phase at the bottom of the pore (see Fig. 2.7). The critical pressure of permeation is then

found by adding the pressure differences from the first and second steps. We applied this

procedure to the cross-flow microflitration problem of chapter 3, in which the critical pressure

for every shear flow is found by testing several operating conditions with similar shear rates

and different transmembrane pressures. The present procedure was able to directly compute

the critical pressures in a much shorter time and with a higher accuracy for various shear
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Figure 2.7 Schematic of the droplet cross-section on the pore. Critical pressure of permeation
(P1 − P3) is calculated in three steps: (1) pressure jump across static interface (P1 − P2) is
calculated from Young-Laplace equation, (2) pressure jump across the dynamic interface
(P2 − P3) is computed numerically, and (3) pressure jump from steps 1 and 2 are added.

rates. Moreover, this procedure has the potential to be automated and requires less post

processing.

The solution of the Navier-Stokes equations for the flow over the membrane surface

requires specification of the appropriate boundary conditions. As shown in Fig. 2.6, there

are four types of boundary conditions used in the computational domain. The membrane and

the pore surfaces are modeled as non-penetrable and no-slip boundaries. A moving “wall”

boundary condition is applied at the top surface to induce shear flow between the moving

top wall and the stationary membrane surface. The bottom of the pore is also described by

the wall boundary condition to prevent mass flux and to keep the droplet pinned at the pore

entrance (Note that, in the second part of chapter 3, the bottom of the pore is “pressure

outlet” condition to allow flux and the imposition of transmembrane pressure. See Fig. 3.6).

Periodic boundary conditions are imposed at the upstream and downstream of the channel.

On the lateral side of the channel in the (Z+) direction, a pressure-inlet boundary condition
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is applied to allow mass transfer, and to ensure that the reference pressure is fixed. Finally,

a “symmetry” condition is implemented on the other side and only half of the computational

domain is simulated to reduce computational efforts. We performed test simulations with

an oil droplet rd = 2µm exposed to shear flow and found that the local velocity profiles at

the upstream, downstream, and the lateral sides remained linear when the width and length

of the computational domain were fixed to 24µm and 36µm, respectively. The effect of

confinement in the direction normal to the membrane surface on the droplet deformation

and breakup will be investigated separately in the Section 4.2.
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Chapter 3

Effect of Crossflow Velocity and

Transmembrane Pressure on

Microfiltration of Oil-in-Water

Emulsions

3.1 The Young-Laplace analysis for circular pores

Effective separation of oil-in-water emulsions is controlled by several key parameters such

as the membrane pore size, surface energy, size of oil droplets, surface tension, and pressure

difference across the membrane. If the transmembrane pressure is relatively high, then oil

droplets will most likely penetrate the membrane resulting in low rejection rates of the oil

phase. On the other hand, low transmembrane pressures tend to limit flux of water through

the membrane. Hence, the optimum operating conditions strongly depend on the critical

transmembrane pressure required for an oil droplet entry into a membrane pore.

When the transmembrane pressure across a hydrophilic membrane exceeds a certain criti-

cal value, the oil phase will penetrate the membrane. Thus, for high separation efficiency, the

transmembrane pressure should be maintained at a value below Pcrit, which for a continuous
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oil film on the membrane surface with circular pores is given by

Pcrit =
2σ cos θ

rp
, (3.1)

where σ is the surface tension coefficient between oil and water, θ is the contact angle of

the interface of an oil droplet on a membrane surface immersed in water, and rp is the

membrane pore radius [65]. The critical pressure in Eq. (3.1) is determined by the Young-

Laplace pressure due to the curvature of the oil-water interface inside the pore.

If instead of a thin oil film, a droplet of oil is placed at the entrance of the membrane

pore, the formula for the critical pressure, Eq. (3.1), has to be corrected by a factor that

depends on the ratio rd/rp to include the effect of the oil-water interface curvature above

the membrane surface. It was previously shown [66, 65] that the pressure required to force

an entry of an oil droplet of radius rd into a circular pore is given by

Pcrit =
2σ cos θ

rp

3

¿
ÁÁÀ1 − 2 + 3 cos θ − cos3θ

4 (rd/rp)3 cos3θ − (2 − 3 sinθ + sin3θ)
. (3.2)

In the limit rd → ∞, the curvature of the droplet above the pore vanishes, and thus this

formula corresponds to a continuous oil film on the membrane surface, and Eq. (3.2) converges

to Eq. (3.1). Contrary to the case of the thin film, the critical pressure for an oil droplet

with θ = 90○ is negative, and the droplet will penetrate into the pore in the absence of the

applied pressure gradient. We also comment that no such expression exists for the case when

crossflow is present and the hydrodynamic drag force is exerted on the droplet parallel to

the membrane surface.

In what follows, we investigate the dynamics of an oil droplet and thin film entry into
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pores with various cross-sections. The critical pressures [Eq. (3.1) and Eq. (3.2)] are compared

with the results of numerical simulations in order to validate the numerical scheme. The

numerical analysis is then extended to pores with rectangular and elliptical cross-sections.

Finally, the effect of shear flow on the droplet entry is considered and a phase diagram of

the transmembrane pressure versus shear rate is determined numerically.

3.2 An oil droplet on a circular pore in the absence of

crossflow

We first present the numerical results for the critical pressure required to force an entry of

an oil droplet into a cylindrical pore. In the numerical scheme, the oil droplet is initially

immersed in water above the membrane surface in the absence of flow. The transmembrane

pressure is then gradually increased to a predetermined value. As the simulation continues,

the droplet approaches the membrane surface and resides at the pore entrance. Depending

on the applied pressure difference across the membrane, the droplet will either remain at the

pore entrance or penetrate into the pore. We comment that when the applied pressure is

close to the critical pressure, the dynamics of an oil droplet entry into the pore is significantly

slowed down because the net driving force on the droplet is reduced.

The critical pressure as a function of the droplet radius is plotted in Fig. 3.1 using Eq. (3.2)

for three values of the pore radius. The error bars in Fig. 3.1 indicate the upper and lower

values of the transmembrane pressure when the oil droplet either enters the pore or remains

at the pore entrance during the time interval of about 40µs. We find an excellent agreement

between the results of numerical simulations and analytical predictions of Eq. (3.2), which

provides a validation of the numerical method. Furthermore, as shown in Fig. 3.1, the critical
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Figure 3.1 The critical pressure computed using Eq. (3.2) for the values of the pore radius
0.15µm (continuous line), 0.2µm (dashed line), and 0.3µm (dotted line). Error bars are
extracted from the numerical simulations (see text for details) with the parameters µo/µw =
2.4, ρo/ρw = 0.781, σ = 19.1mN/m, and θ = 135○. The symbols indicate (×) rejection and
(○) permeation of the oil droplet.

pressure increases with increasing droplet radius or decreasing pore radius. As the droplet

radius increases, the critical pressure approaches an asymptotic value predicted by Eq. (3.1)

for a thin oil film (not shown).
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3.3 Critical pressure for pores with arbitrary cross-

section

We next investigate the influence of pore cross-sectional shape on the critical transmem-

brane pressure using simple physical arguments and numerical simulations. According to

the Young-Laplace equation, the pressure jump across an interface between two immiscible

fluids is related to its mean curvature and the surface tension as follows:

∆P = 2σ κ, (3.3)

where κ is the mean curvature of the interface computed by averaging two principle curva-

tures. In the absence of gravity, the mean curvature of an arbitrary surface z(x, y) is given

by

2κ = ∇ ⋅ ( ∇ z√
1 + ∣∇ z∣2

). (3.4)

It follows from Eq. (3.3) that an interface, which is subject to a prescribed pressure jump and

constant surface tension coefficient, has a constant mean curvature. Therefore, if the gravity

is negligible, the fluid-fluid interface forms a section of the so-called Delaunay surface [102,

103].

As shown in Fig. 3.2, if the oil-water interface is bounded by the walls of a pore of

arbitrary cross-section, the constant contact angle at the pore surface imposes a boundary

condition for Eq. (3.4) in the form

cos θ = n ⋅ ( ∇ z√
1 + ∣∇ z∣2

), (3.5)
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Figure 3.2 Schematic representation of the oil-water interface inside the pore of arbitrary
cross-section with perimeter C and area A. The interface forms a constant angle θ with the
inner surface of the pore.

where n is the outward unit vector normal to the pore surface [104].

Integrating Eq. (3.4) over an arbitrary cross-section with a smooth boundary and using

the divergence theorem, we obtain

Ap ⋅ 2κ = ∫
Cp

n ⋅ ( ∇ z√
1 + ∣∇ z∣2

)dL, (3.6)

where Cp and Ap are the perimeter and cross-sectional area respectively. Taking the integral

on the right hand side over the perimeter gives the following relation for the mean curvature

of the oil-water interface [105]

2κ =
Cp cos θ

Ap
. (3.7)

According to Eq. (3.7), the mean curvature of an interface bounded by a pore of arbitrary
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cross-section can be related to the geometric properties of the boundary. Remember that

Eq. (3.3) relates the mean curvature to the surface tension and the pressure jump. In the

case of an oil film on a pore with an arbitrary cross-section, the critical applied pressure

is equal to the pressure jump at the interface. Therefore, combining Eqs. (3.3) and (3.7),

we obtain the critical permeation pressure for the oil film to enter into a pore of arbitrary

cross-section

Pcrit =
σCp cos θ

Ap
. (3.8)

This equation can also be derived from the force balance between the applied pressure and

the Laplace pressure due to the curvature of the oil-water interface inside the pore.

It should be noted that the boundary value problem Eq. (3.4) does not always have

a solution for a stable interface with a constant mean curvature and a constant contact

angle [106]. In other words, there is a limitation on the values of the contact angle that

correspond to the attached interface with a constant mean curvature. For example, if the

contact angle (computed from the oil phase) is larger than the critical value, then Eq. (3.4)

subject to the boundary condition Eq. (3.5) does not have a stable solution. As a result,

the interface cannot remain attached to the bounding surface with a prescribed contact

angle and, at the same time, maintain a constant mean curvature required by the Laplace

equation. The critical contact angle is determined by the largest curvature of the cross-

sectional shape for smooth boundaries and by the smallest wedge angle for boundaries with

sharp corners [107].

In what follows, we consider two special cases of rectangular and elliptical pores and

compare predictions of Eq. (3.8) with the results of numerical simulations. The problem is

illustrated schematically in the inset of Fig. 3.3. The oil film covers the pore entrance of a
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hydrophilic membrane subject to a pressure gradient (the transmembrane pressure). Since

the Bond number is small, Bo = (ρw − ρo) r2d g/σ = 6 × 10
−8, the effect of the gravitational

force can be neglected.

3.3.1 Thin oil film on the membrane surface with a rectangular

pore

In this subsection, we investigate the dynamics of an oil film entry into a rectangular pore,

which is sometimes referred to as a “slotted pore” [108]. The rectangular shape of a slotted

pore is characterized by the width (the shorter side) and the length (the longer side). Using

Ap = w l and Cp = 2 (w + l), the corresponding critical pressure is obtained from Eq. (3.8) as

follows:

Pcrit = 2σ cos θ ( 1
w
+ 1

l
), (3.9)

where w and l are the width and length of the pore cross-section [105, 109, 110]. In the limit

when l ≫ w, Eq. (3.9) reduces to Pcrit = 2σ cos θ /w, which is the critical pressure on an oil

film entering into an infinitely long rectangular pore. In this case, one of the curvatures of

the interface is zero and the other curvature is proportional to the width of the pore, and

thus the shape of the interface is a part of a cylinder with the radius w/2 cos θ.

The results of numerical simulations and predictions of Eq. (3.9) are shown in Fig. 3.3

for several aspect ratios. As expected, square pores have the highest critical pressure due

to the largest perimeter-to-area ratio. The critical pressure decreases with increasing aspect

ratio. These results demonstrate that there is an excellent agreement between the numerical

results and analytical predictions based on the Young-Laplace equation. It is important to

note that when the applied pressure is close to the critical pressure, the net force on the
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Figure 3.3 The critical permeation pressure for the oil film into the rectangular pore with
different aspect ratios. The curves are Eq. (3.9) and the symbols are the numerical results
for µo/µw = 2.4, ρo/ρw = 0.781, σ = 19.1mN/m, and θ = 120○. The symbols indicate (×)
rejection and (○) permeation of the oil film.

interface is small, and, therefore, very long simulation time is required to capture the motion

of the interface. The symbols in Fig. 3.3 indicate the rejection and permeation pressures that

were resolved numerically without excessive computational effort. Interestingly, each curve

in Fig. 3.3 is well described by the function Pcrit = 2σ cos θ / l, which is shifted upward by a

constant 2σ cos θ /w (indicated by the horizontal lines in Fig. 3.3).

It was previously shown that for a rectangular cross-section of arbitrary aspect ratio,

Eq. (3.4) has a solution with a constant curvature for a non-wetting fluid (θ > 90○) when the

the contact angle θ ≤ 135○ [111, 107, 112]. In the case of a square pore, the interface is part

of a sphere with the radius w/2 cos θ [113, 104]. For other aspect ratios, the interface surface

has a constant mean curvature κ = cos θ (1/w + 1/l), but it is no longer spherical [105].
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(a) θ = 90o

(c) θ = 135o

(b) θ = 120o

(d) θ = 150o

Figure 3.4 Snapshots of the oil-water interface inside the square pore for contact angles
θ = 90○, 120○, 135○, and 150○. The critical pressure Eq. (3.9) is computed for the surface
tension σ = 19.1mN/m and the pore width 1.5µm. Cases (a), (b), and (c) correspond to
the stationary interface, while in the case (d) the interface is in transient state (see text for
details).
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Figure 3.4 shows snapshots of the oil-water interface inside the square pore obtained from

our numerical simulations. The transmembrane pressure is set to a value computed from

Eq. (3.9) for the contact angles θ = 90○, 120○, 135○, and 150○. As observed in Fig. 3.4, the

concave shape of the interface strongly depends on the contact angle. When θ = 90○, the

interface enters the pore with zero curvature and, according to Eq. (3.9), with zero pressure

gradient. For contact angles between 90○ and 135○, the interface bends in the center and

penetrates into the pore before it starts to move near the corners. For θ > 135○, the distance

between the interface location in the center and at the corners will theoretically be infinity

because the interface becomes pinned at the corners while the inner part penetrates into the

pore [114].

3.3.2 Thin oil film on the membrane surface with an elliptical pore

The critical permeation pressure for an oil film covering a pore with an elliptical cross-section

can be estimated from Eq. (3.8) and the geometric properties of an ellipse. However, there

is no exact expression for the perimeter of an ellipse. In our study, we use one of the most

accurate and compact approximations that predicts the perimeter of an ellipse with an error

of −0.04% [115]

Cp ≈ π (a + b)[1 +
3h

10 +
√
4 − 3h

], (3.10)

where a and b are the major and minor radii of the ellipse and h = (a − b)2/(a + b)2. Using

Eq. (3.10) and the expression for the ellipse area Ap = π a b, the critical pressure is given by

Pcrit ≈
(a + b)
a b

[1 + 3h

10 +
√
4 − 3h

]σ cos θ. (3.11)
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Figure 3.5 The critical pressure of permeation for the oil film into the elliptical pore as a
function of the major and minor radii. The curves are computed using Eq. (3.11). The
symbols represent numerical results for the parameters µo/µw = 2.4, ρo/ρw = 0.781, σ =
19.1mN/m, and θ = 120○. The symbols indicate (×) rejection and (○) permeation of the oil
film.

Clearly, in the case of a circular pore, a = b = rp, Eq. (3.11) is reduced to Eq. (3.1).

The results of numerical simulations and predictions of Eq. (3.11) are summarized in

Fig. 3.5 for different aspect ratios. Similar to the case of the rectangular pore, the symbols

indicate pressures of rejection and permeation that were resolved during the simulation time

interval of about 40µs. It can be observed that the critical pressure decreases with increasing

ellipse aspect ratio, and the numerical results agree very well with predictions of Eq. (3.11).

We also comment that when a≫ b, each curve in Fig. 3.5 asymptotes to Pcrit ≈ 4σ cos θ/π b,

which is higher than the value Pcrit = 2σ cos θ /w estimated for an infinitely long rectangular

pore (see section 3.3.1). This difference arises because an infinitely long ellipse and an
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infinitely long rectangle of equal width have the same perimeter but different areas.

If the aspect ratio of an elliptical pore is less than 1.635, then the boundary value problem

given by Eq. (3.4) has a solution for any contact angle [116]. However, when a/b > 1.635,

there is a critical contact angle above which Eq. (3.4) has no solution [116]. For a/b = 1.635,

the critical contact angle is 180○, and it decreases with increasing aspect ratio. The largest

aspect ratio considered in the present study is a/b = 4.0 for which the critical contact angle

is 153.05○ [116]. Therefore, the contact angle of 120○ used in our simulations generated

an interface with a constant mean curvature described by Eq. (3.7). We comment that the

oil-water interface inside the elliptical pore is not spherical because the boundary condition

Eq. (3.5) is not satisfied at the intersection of a sphere and a cylinder with an elliptical cross-

section. Similar to the rectangular cross-section, we found that at the critical pressure given

by Eq. (3.11), the contact line is pinned at the antipodal points of the highest curvature of

the ellipse, (x, y) = (±a,0), while the rest of the interface penetrates into the pore.

3.4 Sheared droplet on the membrane surface with a

circular pore

We next examine the combined effect of the transmembrane pressure and crossflow velocity

on the entry dynamics of an oil droplet into a circular pore. The computational setup is

illustrated schematically in Fig. 3.6. The shear flow is induced by translating the upper wall

with a constant velocity. In our simulations, the effective shear rate γ̇ is defined as the

ratio of the upper wall velocity to the channel height. The relevant dimensionless numbers,

the capillary and Reynolds numbers, are estimated to be Ca = µwγ̇rd/σ ≤ 0.03 and Re =

ρwγ̇r 2d /µw ≤ 0.5. The width of the channel is chosen to be about 8 times larger than the
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Figure 3.6 Schematic representation of the oil droplet in the channel with the circular pore.
The shear flow is induced by the upper wall moving with a constant velocity parallel to the
stationary lower wall. The droplet radius is rd = 0.9µm and the pore radius is rp = 0.2µm.
Periodic boundary conditions are applied at the inlet and outlet, while a constant pressure
is maintained at the side walls.

droplet radius in order to minimize finite size effects in the lateral direction. Initially, the

droplet is released upstream to insure that the flow reaches a steady state before the droplet

approaches the pore. At the same time, the transmembrane pressure is set to a prescribed

value, and the simulation continues until the droplet either reaches the outlet, penetrates

into the pore, or breaks up.

The main results of this study are summarized in Fig. 3.7, which shows the phase diagram

for the droplet rejection, permeation, and breakup depending on the transmembrane pressure

and shear rate. The corresponding snapshots of the droplet for five different cases (denoted

by the capital letters A, B, C, D, and E) are presented in Fig. 3.8. Below, we discuss the

details of the processes in the three different regions of the phase diagram and provide an

estimate of the leakage volume during the droplet breakup.

35



Shear Rate (105 1/s)

T
ra

ns
m

em
br

an
e

P
re

ss
ur

e
(b

ar
)

1 2 3 4 5 6

0.85

0.9

0.95

1

1.05

1.1

1.15

Breakup

Rejection

A

Permeation

B

E

C

D

Figure 3.7 The phase diagram of the transmembrane pressure versus shear rate for the oil
droplet with rd = 0.9µm and the circular pore with rp = 0.2µm. The contact angle is θ = 135○.
Each symbol represents a separate simulation that corresponds to either (◯) permeation,
(square) breakup or (∇) rejection. Letters A, B, C, D, and E indicate operating conditions
for the series of snapshots shown in Fig. 3.8.

In the permeation region shown in Fig. 3.7, the transmembrane pressure is larger than

the streamwise drag force, and the oil droplet penetrates into the pore. A series of snapshots

at point B in Fig. 3.8 demonstrate the details of the permeation process. As observed in

Fig. 3.8 (B), at first, the droplet partially penetrates into the pore and becomes strongly

deformed in the shear flow. However, the droplet does not breakup because its size above

the pore decreases as the droplet penetrates into the pore, and the viscous shear stress acts
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Figure 3.8 Sequences of snapshots of the sheared droplet on the pressurized pore for different
operating conditions as indicated in Fig. 3.7. The droplet radius is rd = 0.9µm, the pore
radius is rp = 0.2µm, and the contact angle is θ = 135○. The letters denote (A) rejection at
low shear rates (∆t ≈ 15µs), (B) permeation (∆t ≈ 15µs), (C) rejection at high shear rates
(∆t ≈ 2µs), (D) local breakup (∆t ≈ 2.5µs), and (E) breakup with necking (∆t ≈ 4µs).

on a progressively smaller surface area.

With increasing shear rate, the effect of viscous forces becomes more important, resulting

in strong deformation of the droplet shape near the pore entrance. We find that at sufficiently

large transmembrane pressures and Ca ≥ 0.015, the oil droplet breaks up. In this case, the

larger droplet is washed off downstream and the smaller droplet enters the pore, and, as a

result, the membrane leaks.

Depending on the values of the transmembrane pressure and shear rate, two different

breakup regimes were observed. The first regime is bounded by the minimum breakup

pressure, which is found from Fig. 3.7 to be 1.00 ± 0.01 bar. Above this pressure, a small

fragment is detached and penetrates into the pore while the main droplet is carried away by

the shear flow. During this process, the droplet has a limited time to deform, and, therefore,

the breakup occurs only locally without significant deformation, as shown in Fig. 3.8 (D).
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The breakup process at higher transmembrane pressures occurs in a qualitatively different

way [see Fig. 3.8 (E)]. As the droplet approaches the pore, it momentarily slows down and

remains at the pore entrance during the “residence time”. In this case, the effects of the drag

and the transmembrane pressure are relatively large and comparable with each other. As a

result, the shape of the droplet is significantly deformed by the shear flow and a thin bridge

is formed between two parts of the stretched droplet. This thinning is known as necking

and it usually indicates the initial stage of the breakup process [117, 118]. For a short time

interval, the thin neck holds the two parts of the droplet together. At the final stage of

breakup, the neck gets thinner and thinner near the the edge of the pore, and at some point,

it becomes unstable and the droplet breaks.

Visual inspection of the snapshots of the droplet near the pore entrance revealed that, at

a given shear rate in the breakup regime in Fig. 3.7, the residence time is roughly independent

of the transmembrane pressure. Therefore, it is expected that during the breakup process,

the volume of leaked droplets is proportional to the applied pressure. Figure 3.9 shows the

leakage volume as a function of the transmembrane pressure when γ̇ = 5 × 105 s−1. Indeed,

the leakage volume is almost linearly proportional to the applied pressure, indicating that

the flow inside the pore is described by the Hagen-Poiseuille equation.

The lower part of the phase diagram in Fig. 3.7 indicates operating conditions when the

oil droplet is rejected by the membrane and washed off by the shear flow. An example of the

rejection process at low shear rates is presented in Fig. 3.8 (A). Although the droplet partially

penetrates into the pore, the flow generates a force on the droplet surface, which pulls the

droplet away from the pore, resulting in the droplet rejection. As shown in Fig. 3.8 (C), the

residence time at higher shear rates is reduced, and the droplet is carried away by the flow

without penetrating into the pore.
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Figure 3.9 The leakage volume as a function of the applied pressure for rd = 0.9µm, rp =
0.2µm, and γ̇ = 5 × 105 s−1. The square symbols indicate the numerical results and the
dashed line is the best fit to the data. The inset shows a snapshot of the process shortly
after breakup of the droplet. The contact angle of the oil droplet in water is θ = 135○.

The threshold of permeation is determined by the competition between the drag force and

the transmembrane pressure. Naturally, with increasing shear rate, the drag force increases;

and, therefore, it is not surprising that the boundary curve separating the permeation and

rejection regions in Fig. 3.7 increases with shear rate. However, it is difficult to estimate

the exact dependence of the drag force on the droplet because its shape becomes strongly

deformed in the shear flow. We also comment that, in the range of shear rates reported in
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Fig. 3.7, the lift force is about an order of magnitude smaller than the drag force [57].

The critical shear rate that marks the boundary between the permeation and breakup

regions in Fig. 3.7 can be estimated using simple force balance arguments. In the absence of

gravity, the sheared droplet is subject to forces of surface tension, Laplace pressure, drag,

and lift. Neglecting the lift force and following the analysis in Ref. [57], the torque balance

around the edge of the pore for the droplet configuration depicted in Fig. 3.8 (E t6) can be

written as follows:

FD dd + (P2 − P1)An dn − Fσ dn = 0, (3.12)

where dn and An = π d2n/4 are the diameter and cross-sectional area of the thinnest stable

neck, Fσ = π σ dn is the surface tension force around the perimeter of the neck, and P2 and

P1 are the pressures inside the droplet and in the channel, respectively. The Stokes drag

force on the spherical droplet, FD ≈ 1.1π µw γ̇d2
d
, is estimated for the viscosity ratio 2.4 and

the average flow velocity γ̇dd/2 [58]. In our simulations, the typical diameter of the thinnest

stable neck is dn ≈ 0.9dp [see Fig. 3.8 (E t6)]. Using dd = 1.7µm, σ = 19.1mN/m, and µw =

10−3 kg/ms in Eq. (3.12), the critical shear rate is roughly estimated to be γ̇ ≈ 3.4×105 s−1,

which is in good agreement with the value γ̇ ≈ 3.2×105 s−1 obtained numerically in Fig. 3.7.

The permeation, rejection, and breakup regions identified in the phase diagram in Fig. 3.7

can be useful for the optimal design and operation of crossflow microfiltration systems. It is

apparent that the permeation region should be avoided for filtration purposes. The optimal

performance of the microfiltration system with maximum rejection is achieved in the upper

part of the rejection region where the large transmembrane pressure results in high flux of

water while the oil phase is completely rejected. However, the separation efficiency can be

increased at higher transmembrane pressures in the breakup region, where the higher flux
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of water is accompanied by some oil leakage.
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Chapter 4

Effect of Physical and Geometrical

Parameters on Crossflow

Microfiltration of Liquid-Liquid

Emulsions

4.1 Analytical formulations

As discussed in Section 3.3, The pressure jump across a static interface between two immis-

cible fluids could be described in terms of the interfacial tension coefficient σ and the mean

curvature of the interface κ by the Young-Laplace equation as ∆P = 2σ κ. Therefore, the

pressure required to force entry (i.e. critical pressure of permeation) of a thin liquid film into

a pore of arbitrary cross-section is found by Eq. 3.8 and was used in chapter 3 to calculate

critical pressure of permeation of thin oil films into rectangular, elliptical and circular pores

and compared to results obtained numerically. In case of a droplet on a pore, we need to

account for the interface of the droplet inside the channel as well as the interface in the pore

and it was shown that Eq. 3.2 could be used to find the critical pressure of permeation of a

drop on a circular pore.
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Numerical simulations of Section 3.2 for a drop size of 0.15µm and different pore sizes

show very good agreement with Eq. 3.2. In the presence of cross-flow in the channel, Eq. 3.2

no longer holds since the drop interface is distorted and assumption of a perfectly spherical

interface is not valid. Furthermore, numerical simulations showed that the critical pressure

of permeation increases with increasing crossflow velocity up to a certain value, above which

the droplet breaks up. [101]. The region of critical pressure is denoted by the area between

the permeation region and the rejection region in the phase diagram Fig. 3.7. In this chapter

we calculate the critical pressure region more accurately in the form of a line and determine

its dependence on shear rate for a range of material properties and geometrical parameters.

In the presence of crossflow above the membrane surface, an oil droplet breaks up when

viscous stresses over the droplet surface exposed to the flow become larger than capillary

stresses at the interface of the droplet near the membrane pore. Therefore, at the moment of

breakup, the drag force in the flow direction is balanced by the capillary force at the droplet

interface around the pore

D ≈ Fσ. (4.1)

Neglecting the contact angle dependence, Fσ ∝ σ rp is the interfacial force acting in the

direction opposite to the flow at the droplet interface near the pore entrance. The drag force

generated by a linear shear flow on a spherical droplet attached to a solid surface is given by

D ∝ fD(λ)µ γ̇ r2d, (4.2)

where µ is the viscosity of the continuous phase, γ̇ is the shear rate, and rd is the radius of

the droplet [119, 85]. The coefficient fD(λ) is a function of the viscosity ratio λ = µoil/µwater

and it depends on the shape of the droplet above the surface. Sugiyama and Sbragaglia [85]
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have estimated this function analytically for a hemispherical droplet (θ = 90○) attached to a

solid surface

fD(λ) ≈
2 + 4.510λ
1 + 1.048λ

. (4.3)

By plugging Eq. (4.2) into Eq. (4.1) and introducing r̄ = rd/ rp, the critical capillary number

for breakup of a droplet on a pore can be expressed as follows:

Cacr ∝
1

fD(λ) r̄
, (4.4)

where the capillary number is defined as Ca = µwγ̇rd/σ.

The difference in pressure inside the pore in the presence of flow and at zero shear rate

can be estimated from the torque generated by the shear flow on the droplet surface. The

torque around the center of the droplet projected on the membrane surface is given by

T ∝ fT (λ)µ γ̇ r3d, (4.5)

It was previously shown [85] that for a hemispherical droplet on a solid surface, fT (λ) is a

function of the viscosity ratio

fT (λ) ≈
2.188λ

1 + 0.896λ
. (4.6)

Hence, the balance of the torque due to shear flow above the membrane surface [given by

Eq. (4.5)] and the torque arising from the pressure difference, (Pcr − Pcr0)Ap rd, can be

reformulated in terms of the capillary number and drop-to-pore size ratio as follows:

Pcr − Pcr0 ∝
fT (λ)σ r̄ Ca

rp
, (4.7)
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where Pcr0 is the critical permeation pressure in the absence of crossflow.

In what follows, we consider the effects of confinement, viscosity ratio, surface tension,

contact angle, and droplet size on the critical pressure of permeation and breakup using

numerical simulations and analytical predictions of Eq. (4.4) and Eq. (4.7).

4.2 The effect of confinement on the critical pressure

of permeation and breakup

In practical applications, the dimensions of a crossflow channel of a microfiltration system

are much larger than the typical size of emulsion droplets so that the velocity profile over

the distance of about rd from the membrane surface can be approximated as linear. To

more closely simulate this condition in our computational setup, the shear flow above the

membrane surface was induced by moving the upper wall of the crossflow channel (Fig. 2.6).

To understand how the finite size of the channel affects droplet dynamics at the membrane

surface, we studied the influence of the channel height on the droplet behavior. The con-

finement ratio is defined as the ratio of the height of the droplet residing on the pore at

zero shear rate Hd (i.e., the height of a spherical cap above the membrane surface) to the

channel height Hch. It is important to note that the degree of confinement is varied only in

the direction normal to the membrane surface and the computational domain is chosen to

be wide enough for the lateral confinement effects to be negligible (see chapter 2).

We performed numerical simulations of an oil droplet with radius rd = 2µm in steady-

state shear flow for the channel heights 3.8µm ≤ Hch ≤ 12.0µm. Figure 4.1 illustrates the

effect of confinement on the shape of the droplet residing on a rp = 0.5µm pore when the

capillary number is Ca = µwγ̇rd/σ = 0.021. The height of the droplet above the membrane
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Hd/Hch = 0.286
Hd/Hch = 0.428
Hd/Hch = 0.686
Hd/Hch = 0.902

Flow Direction

1µm

Figure 4.1 The cross-sectional profiles of oil droplets in steady shear flow for the indicated
confinement ratios when the capillary number is Ca = 0.021. The droplet radius is rd = 2µm,
the pore radius is rp = 0.5µm, the contact angle is θ = 135○, the surface tension coefficient is
σ = 19.1mN/m, and the viscosity ratio is λ = 1.

surface in the absence of flow is approximately 3.43µm. It can be observed from Fig. 4.1 that

highly confined droplets become more elongated in the direction of flow than droplets with

lower confinement ratios, which is in agreement with the results of previous simulations [120].

When a droplet is highly confined, the distance between the upper moving wall and the top

of the droplet is relatively small. As a result, the effective shear rate at the surface of

the droplet is higher and the droplet undergoes larger deformation. Furthermore, the cross-

sectional profiles for the confinement ratios of 0.428 and 0.286 are nearly identical, indicating

that the flow around the droplet is not affected by the upper wall when Hd/Hch ≤ 0.428 and
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Figure 4.2 The critical (breakup) capillary number as a function of the confinement ratio
Hd/Hch. Other parameters are the same as in Fig. 4.1.

the capillary number is fixed.

Figure 4.2 shows the variation of the critical capillary number (right before breakup)

as a function of the confinement ratio for the the same material parameters as in Fig. 4.1.

These results indicate that highly confined droplets breakup at lower capillary numbers, and,

when the confinement ratio is smaller than about 0.5, the breakup capillary number remains

nearly constant. For the rest of the study, the channel height was fixed to 8µm, which

corresponds to the confinement ratio of 0.428 for a droplet with radius rd = 2µm. For the

results presented in the subsection 4.6, the channel height was scaled appropriately to retain

the same confinement ratio for larger droplets.

4.3 The effect of viscosity ratio on the critical trans-

membrane pressure

The ratio of viscosities of the dispersed and continuous phases is an important factor that

determines the magnitude of viscous stresses at the interface between the two phases. For a
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small droplet at low Reynolds numbers, the viscous stresses are primarily counterbalanced

by interfacial tension stresses. In a shear flow, viscous stresses tend to distort the surface

of a droplet, while interfacial stresses assist in retaining its initial spherical shape. The

competition between the two stresses determines the breakup criterion, deformation, and

orientation of the droplet [62, 121]. In this subsection, we investigate numerically the effect

of viscosity ratio on the droplet deformation and breakup at the entrance of the membrane

pore.

Figure 4.3 shows the effect of the viscosity ratio, λ = µo/µw, on the critical pressure of

permeation and breakup of an oil droplet on a membrane pore as a function of the capillary

number. The percent increase in critical pressure is defined with respect to the critical

pressure in the absence of crossflow Pcr0 , i.e., (Pcr − Pcr0)/Pcr0 × 100%. Keeping in mind

that Pcr0 does not depend on λ, the results shown in Fig. 4.3 demonstrate that at a fixed

Ca, the critical pressure increases with increasing viscosity ratio, which implies that higher

viscosity droplets penetrate into the pore at higher transmembrane pressures. Specifically,

the maximum increase in critical pressure just before breakup is about 8% for λ = 1 and

about 15% for λ = 20. Furthermore, highly viscous droplets tend to break at lower shear

rates because of the larger drag force generated by the shear flow [see Eq. (4.2)]. As reported

in Fig. 4.3, the critical capillary number for breakup varies from about 0.018 for λ = 20 to

0.032 for λ = 1. The practical implication of these results is that in membrane emulsification

processes the use of liquids with lower viscosity ratios should be avoided as the droplets tend

to break at higher shear rates.

Examples of cross-sectional profiles of the oil droplet in steady shear flow are presented in

Fig. 4.4 for the viscosity ratio λ = 1. At small capillary numbers, no significant deformation

occurs and the droplet retains its spherical shape above the membrane surface. As Ca
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Figure 4.3 The percent increase in critical pressure of permeation as a function of the capillary
number Ca = µwγ̇rd/σ for the indicated viscosity ratios λ = µo/µw. Typical error bars are
shown on selected data points. For each value of λ, the data are reported up to the critical
capillary number above which droplets break into two segments. The droplet and pore radii
are rd = 2µm and rp = 0.5µm, respectively. The contact angle is θ = 135○ and the surface
tension coefficient is σ = 19.1mN/m.

increases, a neck forms at the pore entrance while the rest of the droplet remains nearly

spherical. A closer look at the shapes of the droplet for Ca = 0.0283 and 0.0314 in Fig. 4.4

reveals that with increasing shear flow, the neck gets thinner and the droplet becomes more

elongated in the direction of flow. While the torque due to the shear flow does not increase

significantly, the elongated shape of the droplet results in an effectively longer arm for the
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Ca = 0.0063
Ca = 0.0126
Ca = 0.0188
Ca = 0.0251
Ca = 0.0283
Ca = 0.0314

Flow Direction

1µm

Figure 4.4 The cross-sectional profiles of the oil droplet residing on the circular pore with rp =
0.5µm for the indicated capillary numbers. The viscosity ratio is λ = 1. Other parameters
are the same as in Fig. 4.3.

torque due to pressure in the droplet along the flow direction, and, thus, it leads to a lower

critical permeation pressure required to keep the droplet attached to the pore. This effect

is observed in Fig. 4.3 as the critical pressure just before breakup decreases as a function of

Ca.

We next estimate the breakup time and compare it with the typical deformation time of

the droplet interface for different viscosity ratios. In our simulations, the upper wall velocity

is increased quasi-steadily and the spontaneous initiation of the breakup process can be

clearly detected by visual inspection of the droplet interface near the pore entrance. We then

identify the moment when a droplet breaks into two segments and compute the breakup time.

The deformation time scale, defined by µwrd (1 + λ)/σ, is a measure of the typical relaxation
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Figure 4.5 The breakup time versus deformation time scale µwrd (1+λ)/σ for the tabulated
values of the viscosity ratio λ = µo/µw. Other system parameters are the same as in Fig. 4.3.
The straight line is the best fit to the data. The error bars for the breakup time are about the
symbol size. The inset shows the droplet profiles just before breakup for the same viscosity
ratios.

time of the droplet interface with respect to its deformation at steady state [80, 122]. In

Fig. 4.5, the breakup time is plotted against the deformation time scale for different viscosity

ratios. Notice that the breakup time increases linearly with the deformation time scale,

which confirms that highly viscous droplets break up more slowly. The inset in Fig. 4.5

displays the droplet cross-sectional profiles just before breakup for the same viscosity ratios.

It can be observed that the profiles nearly overlap with each other, indicating that droplets
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Figure 4.6 The normalized percent increase in critical pressure of permeation versus the
modified capillary number CafD(λ) for the selected values of the viscosity ratio λ = µo/µw.
The functions fD(λ) and fT (λ) are given by Eq. (4.3) and Eq. (4.6), respectively.

with different viscosities are deformed identically just before breakup.

According to Eq. (4.4), the breakup capillary number depends on the drop-to-pore size

ratio and the viscosity ratio via the function fD(λ). Therefore, it is expected that the

product Cacr fD(λ) will be independent of λ and the appropriate dimensionless number for

a constrained viscous droplet in a shear flow is CafD(λ). Moreover, based on Eq. (4.7),

the percent increase in the critical pressure is independent of the viscosity ratio when it is

divided by fT (λ). Figure 4.6 shows the same data as in Fig. 4.3 but replotted in terms of the
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normalized critical pressure and the modified capillary number. As is evident from Fig. 4.6,

the data for different viscosity ratios nearly collapse on the master curve. It is seen that

droplets break at approximately the same value CafD(λ) ≈ 0.09. In practice, the increase in

critical pressure due to crossflow can be roughly estimated from the master curve in Fig. 4.6

for any viscosity ratio in the range 1 ≤ λ ≤ 20. Also, if CafD(λ) ≥ 0.09, the oil droplets will

break near the pore entrance for any viscosity ratio.

4.4 The effect of surface tension on the critical pres-

sure of permeation

Surface tension coefficient determines how well an interface can resist external forces such

as pressure and shear stresses. In the absence of flow, the normal component of the surface

tension force is canceled by a pressure difference across the interface known as capillary

pressure which relates to the surface tension coefficient through the Young-Laplace equation.

In the presence of shear stresses, however, the shape of the interface is also a function of the

viscosity ratio and flow velocity.

Here, we investigate the influence of surface tension on the critical permeation pressure,

deformation and breakup of an oil droplet residing at the pore entrance in the presence of

crossflow above the membrane surface. Figure 4.7 shows the critical pressure of permeation

as a function of shear rate for five values of the surface tension coefficient. As expected from

Eq. (3.2), the critical pressure at zero shear rate increases linearly with increasing surface

tension coefficient. Note that oil droplets with higher surface tension break up at higher shear

rates because larger stresses are required to deform the interface and cause breakup of the

neck. Also, the difference between the critical pressure just before breakup and Pcr0 is larger
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Figure 4.7 The critical pressure of permeation as a function of shear rate for the indicated
surface tension coefficients. The symbols (×) denote the analytical predictions of Eq. (3.2).
The droplet and pore radii are rd = 2µm and rp = 0.5µm, respectively. The viscosity ratio
is λ = 1 and the contact angle is θ = 135○.

at a higher surface tension; for example, it is about 1.5 kPa for σ = 9.55mN/m and 6 kPa

for σ = 38.2mN/m. The results shown in Fig. 4.7 suggest that crossflow microfiltration of

emulsion droplets with higher surface tension is more efficient because higher transmembrane

pressure can be applied and the droplet breakup is less likely.

Examples of droplet cross-sectional profiles above the membrane pore are presented in

Fig. 4.8 for five values of the surface tension coefficient. These profiles are extracted from
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Figure 4.8 The cross-sectional profiles of the oil droplet above the circular pore for the listed
values of the surface tension coefficient. In all cases, the shear rate is γ̇ = 1.5×105 s−1. Other
parameters are the same as in Fig. 4.7.

the data reported in Fig. 4.7 at the shear rate γ̇ = 1.5 × 105 s−1. It can be observed that

oil droplets with lower surface tension become highly deformed along the flow direction.

The elongation is especially pronounced when the surface tension coefficient is small; for

σ = 9.55mN/m the droplet interface is deformed locally near the pore entrance and the neck

is formed.

To further investigate the effect of surface tension on the droplet breakup, we compare

the breakup time and the deformation time scale µwrd (1 + λ)/σ. The numerical results are

summarized in Fig. 4.9 for the same values of the surface tension coefficient as in Fig. 4.7.

Similar to the analysis in the previous subsection, the breakup time was estimated from the
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Figure 4.9 The breakup time versus deformation time scale µwrd (1 + λ)/σ for the surface
tension coefficients in the range from 9.55mN/m to 38.2mN/m. Other parameters are the
same as in Fig. 4.7. The straight solid line is the best fit to the data. The cross-sectional
profiles of the oil droplet just before breakup are displayed in the inset.

time when a droplet becomes unstable under quasi-steady perturbation till the formation of

two separate segments. It can be observed in Fig. 4.9 that the breakup time varies linearly

with increasing deformation time scale, which in turn indicates that the breakup time is

inversely proportional to the surface tension coefficient. In addition, the inset in Fig. 4.9

shows the cross-sectional profiles of the droplet just before breakup for the same surface

tension coefficients. Interestingly, the profiles nearly coincide with each other, indicating

56



Ca

%
In

cr
ea

se
in

C
ri

tic
al

P
re

ss
ur

e

0 0.007 0.014 0.021 0.028 0.035
0

2

4

6

8

10

σ = 38.2 mN/m

σ = 9.55 mN/m
σ = 14.3 mN/m
σ = 19.1 mN/m
σ = 28.6 mN/m

Figure 4.10 The percent increase in critical pressure of permeation as a function of the
capillary number Ca = µwγ̇rd/σ for the selected values of the surface tension coefficient.
The rest of the material parameters are the same as in Fig. 4.7.

that the droplet shape at the moment of breakup is the same for any surface tension.

In order to present our results in a more general form, we replotted the data from Fig. 4.7

in terms of the percent increase in critical pressure, (Pcr − Pcr0)/Pcr0 × 100%, and the

capillary number in Fig. 4.10. Note that in all cases, the data collapse onto a master curve

and breakup occurs at the same relative pressure (Pcr − Pcr0)/Pcr0 ≈ 8% and Cacr ≈ 0.03,

which indicates that the capillary number is an appropriate dimensionless number to describe

the droplet deformation in shear flow with variable surface tension. These results are not
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surprising, given that the breakup capillary number, Eq. (4.4), does not depend on the surface

tension coefficient. Moreover, the increase in critical pressure due to crossflow, Eq. (4.7), is

proportional to σ and Ca, and when it is divided by Pcr0 , which itself is a linear function of σ

[see Eq. (3.2)], the percent increase in critical pressure becomes proportional to the capillary

number. In practice, the master curve reported in Fig. 4.10 can be used to predict the critical

permeation pressure and breakup of emulsion droplets for specific operating conditions and

surface tension.

4.5 The effect of contact angle on permeation of the

droplet

The problem of a drop on a solid surface involves three phases (the drop, the continuous

phase, and the solid surface) that intersect at a contact line with a specific contact angle.

The contact angle is determined by the contribution of the surface tension forces between

either on of the two phases and is a measure of the direction of the surface tension force on

the at the contact line.

Here, we focus on the effect of contact angle on the permeation pressure, deformation

and breakup of oil droplets on a membrane pore. The variation of the critical permeation

pressure as a function of the capillary number is presented in Fig. 4.11 for nonwetting oil

droplets with contact angles 115○ ≤ θ ≤ 155○. The critical pressure at zero shear rate is

higher for oil droplets with larger contact angles, which is in agreement with the analytical

prediction of Eq. (3.2). As expected, with increasing shear rate, the critical pressure of

permeation increases for all values of θ studied. We estimate the maximum change in the

critical pressure to be about 3 kPa and roughly independent of the contact angle. This
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Figure 4.11 The critical pressure of permeation as a function of the capillary number for
the indicated contact angles. The critical pressure at zero shear rate, given by Eq. (3.2), is
denoted by the symbols (×). The droplet radius, pore radius, surface tension coefficient, and
viscosity ratio are rd = 2µm, rp = 0.5µm, σ = 19.1mN/m, and λ = 1, respectively.

corresponds to a relative increase of about 6% for the contact angle θ = 155○ and 21% for

θ = 115○. These results suggest that the relative efficiency of a microfiltration system due to

crossflow is higher for emulsion droplets with lower contact angles. Interestingly, we find that

the critical capillary number for breakup (Cacr ≈ 0.032) is nearly independent of the contact

angle. This suggests that Ca can be used as a criterion for predicting breakup. Finally, the

examples of the droplet cross-sectional profiles are shown in Fig. 4.12 for different contact
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Figure 4.12 The cross-sectional profiles of the oil droplet above the circular pore for the listed
values of the contact angle when Ca = 0.022. Other parameters are the same as in Fig. 4.11.

angles when Ca = 0.022. Notice that droplets with lower contact angles wet larger solid area

and are less tilted in the direction of flow.

4.6 The effect of droplet size on the critical pressure

of permeation

In the microfiltration process, the size of the membrane pore is one of the crucial parameters

that determine the permeate flux and membrane selectivity. Membranes with smaller pore

sizes provide higher rejections but require higher transmembrane pressures to achieve the
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Figure 4.13 The critical pressure of permeation as a function of shear rate for the selected
drop-to-pore size ratios. The symbols (×) indicate the critical pressure in the absence of flow
calculated from Eq. (3.2). The pore radius, surface tension coefficient, contact angle, and
viscosity ratio are rp = 0.5µm, σ = 19.1mN/m, θ = 135○ and λ = 1, respectively.

same permeate flux. Moreover, size of the droplets generated in a membrane emulsification

system greatly depends on the size of the pores [40, 123]. Emulsions with narrower size

distribution tend be more stable [124]. Therefore, it is essential for the droplet size and

the pore size to match appropriately. In this subsection, we examine the influence of the

drop-to-pore size ratio on the critical pressure of permeation and the breakup dynamics of

oil droplets in the presence of crossflow above the membrane surface.
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Figure 4.13 reports the critical permeation pressure as a function of shear rate for the

droplet radii in the range from 1.5µm to 2.5µm, while the pore radius is fixed at rp = 0.5µm.

In the absence of crossflow, the critical pressure is higher for larger droplets because they have

lower curvature of the interface above the membrane surface, which is in agreement with the

analytical prediction of Eq. (3.2). With increasing shear rate, the critical pressure increases

for droplets of all sizes. Note also that the slope of the curves in Fig. 4.13 is steeper for larger

droplets because of the larger surface area exposed to shear flow, resulting in a higher drag

torque, and, consecutively, a higher transmembrane pressure needed to balance the torque.

Furthermore, as shown in Fig. 4.13, smaller droplets break at higher shear rates, since higher

shear stress are required to produce sufficient deformation for the breakup to occur. The

maximum relative critical pressure is about 14% for rd/rp = 3 and 6% for rd/rp = 5.

We next compute the difference in the critical permeation pressure with respect to the

critical pressure in the absence of flow, Pcr − Pcr0 , and define r̄ = rd/rp. According to

Eq. (4.4), the product Cacr × r̄ is independent of the droplet radius. At the same time,

Eq. (4.7) suggests that the increase in critical pressure depends on the droplet radius via the

term Ca × r̄. Figure 4.14 shows the critical pressure difference as a function of the modified

capillary number Ca × r̄ for different droplet radii. It can be observed in Fig. 4.14 that

all curves nearly collapse on each other and the droplet breakup occurs at the same value

Ca × r̄ ≈ 0.125. We also comment that one of the assumptions in deriving Eq. (4.7) is that

the distance between the center of the pore and the center of the droplet on the membrane

surface is approximately rd. This approximation becomes more accurate for larger drop-to-

pore size ratios, and, thus, the critical pressure difference in Fig. 4.14 is nearly the same for

larger droplets even at high shear rates.

The inset of Fig. 4.14 shows the cross-sectional profiles of oil droplets just before breakup
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Figure 4.14 The difference in the critical pressure, Pcr − Pcr0 , versus the modified capillary
number for five drop-to-pore size ratios r = rd/rp and rp = 0.5µm. Other parameters are
the same as in Fig. 4.13. The cross-sectional profiles of the droplet just before breakup are
shown in the inset for same r.

for different drop-to-pore size ratios. Note that all droplets are pinned at the pore entrance

and elongated in the direction of flow. It is seen that when r̄ is small, the droplet shape is

significantly deformed from its original spherical shape. In contrast, larger droplets remain

nearly spherical and only deform near the pore entrance. In general, the droplet-to-pore size

ratio should be large enough to make Pcr sufficiently high for practicable separation. At the

same time, if the pore size is much smaller than the droplet size, the water flux through the
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membrane decreases and the probability of breakup increases, which could result in lower

rejection rates and internal fouling of the membrane. Therefore, choosing a membrane with

an appropriate pore size could greatly increase the efficiency of the microfiltration process.
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Chapter 5

Conclusions

In this report, we investigated numerically the effects of material parameters and operating

conditions on the entry dynamics of thin oil films and droplets into pores of a microfiltration

membrane. Specifically, the critical pressure of permeation, breakup criteria, and deforma-

tion of oil droplets were studied for a number of material parameters, such as viscosity ratio,

surface tension, contact angle, and drop size, and reported for different crossflow velocities

above the membrane surface. We used a finite-volume-based incompressible flow solver that

used Volume of Fluids method to track the interface between water and oil. The validity of

the solver was confirmed by testing benchmark problems of droplets in simple shear flow.

In the first part, the numerical simulations were carried out to investigate the influence

of the transmembrane pressure and crossflow velocity on the entry dynamics of thin oil films

and oil droplets into pores of different cross-section. We considered hydrophilic membrane

surfaces with contact angles of oil in water greater than 90○. The numerical method was

validated against the analytical solution for the critical pressure of permeation of an oil

droplet into a circular pore in the absence of crossflow. Furthermore, we found that the

results of numerical simulations of thin oil films on elliptical or rectangular pores agree

well with the theoretical prediction for the critical pressure expressed in terms of geometric

parameters of the pore cross-section. Also, examples of curved oil-water interfaces inside

elliptical and rectangular pores were discussed for different aspect ratios and contact angles.

In the presence of crossflow above the membrane surface, we have determined numerically
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the phase diagram for the droplet rejection, permeation, and breakup as a function of the

transmembrane pressure and shear rate. A detailed analysis of the droplet dynamics near

the pore entrance was performed in the three different regions of the phase diagram. We

found that in the permeation region, the transmembrane pressure is larger than the stream-

wise drag, and the oil droplet penetrates into the circular pore. With increasing crossflow

velocity, the shape of the droplet becomes strongly deformed near the pore entrance; and,

at sufficiently high transmembrane pressures and shear rates, the droplet breaks up into two

fragments, one of which penetrates into the pore. It was also shown that during the breakup

process, the residence time of the oil droplet at the pore entrance is roughly independent of

the transmembrane pressure, and the volume of the leaked fragment is nearly proportional

to the applied pressure. Finally, the numerical value of the critical shear rate that separates

the permeation and breakup regions is in good agreement with an estimate based on the

force balance arguments.

In the second part, we performed numerical simulations to study the effects of viscosity

ratio, surface tension, contact angle, and drop size on the deformation, breakup, and critical

pressure of permeation of oil droplets on membrane pores of circular cross-section. In our

numerical setup, the oil droplet was exposed to a linear shear flow induced by the moving

upper wall. The critical pressure of permeation was computed using a novel procedure

where the total critical pressure was found as the sum of pressure jumps across the oil-

water interfaces of the droplet in the channel and in the pore. First, the pressure jump

across the static interface inside the pore was found using the Young-Laplace equation.

Then, the pressure jump across the dynamic interface above the membrane surface was

computed numerically and added to the pressure jump in the pore. This method was proven

to be accurate, robust, and computationally efficient. To determine the dimensions of the
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computational domain, we also studied the effect of confinement on the droplet deformation

and breakup and concluded that in order to minimize finite size effects and computational

costs, the distance between the membrane surface and the upper wall has to be at least twice

the droplet diameter. In particular, it was observed that highly confined droplets become

significantly deformed in a shear flow and break up more easily.

In the absence of crossflow, we found that the analytical prediction for the critical perme-

ation pressure derived by Nazzal and Wiesner [65] agrees well with the results of numerical

simulations for different oil-to-water viscosity ratios, surface tension, contact angles, and

droplet sizes. In general, with increasing crossflow shear rate, the critical permeation pres-

sure increases with respect to its zero-shear-rate value and the droplet undergoes elongation

in the flow direction followed by breakup into two segments. The results of numerical sim-

ulations indicate that at a fixed shear rate, the critical permeation pressure increases as a

function of the viscosity ratio, which implies that more viscous droplets penetrate into the

pore at higher transmembrane pressures. In agreement with a scaling relation for the critical

capillary number, we also found that droplets of higher viscosity tend to break at lower shear

rates. Furthermore, with increasing surface tension coefficient, the maximum increase in the

critical permeation pressure due to crossflow becomes larger and the droplet breakup occurs

at higher shear rates. Interestingly, the percent increase in critical permeation pressure as

a function of the capillary number was found to be independent of the surface tension co-

efficient. Next, we showed that the breakup capillary number and the increase in critical

pressure of permeation are nearly independent of the contact angle. Last, it was demon-

strated that smaller droplets penetrate into the pore at lower pressures and break up at

higher shear rates because larger shear stresses are needed to deform the interface above the

membrane surface.

67



While most microfiltration membranes used in medium- to large-scale separation ap-

plications have pores of complex morphologies and a distribution of nominal sizes, results

obtained for the simple case of a pore of circular cross-section can be useful for identifying

general trends. As the model describes the interaction of oil droplets with unblocked pores,

which corresponds to the initial stage of filtration or the stage that immediately follows

membrane cleaning, the results can be helpful in understanding how fouling starts and in

devising means to delay the onset of fouling. With the development of new methods of

manufacturing micro-engineered membranes [125] and the rapid growth in the diversity and

scale of applications of microfluidic devices, conclusions obtained in this work can be of direct

practical value for guiding membrane design and optimizing process variables.
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