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ABSTRACT

THE ACTIVE NOISE CONTROL OF A ONE-DIMENSIONAL DUCT

By

Young-Sn Lee

Active noise control can reduce acoustic noise in situations where passive

material sound absorption is ineffective. The specific problem studied is the active noise

control of a one-dimensional, hard-walled duct with a partially dissipative boundary

condition. Feedforward control technique have been used to cancel noise measured at a

specific location. The control technique presented here is the modern state feedback

control to globally reduce noise in a one-dimensional duct.

A state-space model of a one-dimensional acoustic duct was derived using the

finite element method, which discretized the acoustic duct model continuum. A duct can

be assumed to be one-dimensional model when its length is relatively long compared to

cross-sectional diameter. The state-space model allows the computation of the system

response and truncation of the system model.

State feedback control with a state estimator are developed from the truncated

model to reduce noise level in a duct. The state estimator observes the system state

through a pressure measurement microphone in the duct. The state feedback control is

implemented to change the eigenstructure of the system and globally reduce noise

through the control speaker. The estimator gains are determined by linear, quadratic

optimum control theory. The results are discussed and the simulation is demonstrated in

this paper.
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1. INTRODUCTION

Indoor noise reduction has increasingly become an important issue. The growth

of noise in the workplace containing long duct assemblies is mostly due to the increase in

the usage of high speed fans and complex machinery. This threatens the health of people

and adversely affects the productivity. This problem can be solved by either passive or

active noise control.

Passive noise control is control that uses noise absorption materials. These noise

absoption materials counteract the undesirable effects of sound reflection by the hard,

rigid, interior surfaces which they cover or replace. The advantage of passive noise

control is simplicity and stability. Effective passive noise absorption materials need to

have a thickness at least 10% of the noise wave length (Mankovsky, 1971). However,

they are not suitable to reduce noise at low frequencies. The noise absorption might not

be effective when the system or the operating conditions are changed because the noise

absorption materials are designed for the specific systems or operating conditions.

The active noise control uses the intentional superposition of acoustic waves to

reduce noise, and is able to adapt for system changes. In active noise control, low

frequency noise reduction can be obtained. In feedforward control, the system inputs are

measured and the cancellation sound, which contains exactly the same frequency,

magnitude, and phase components as the noise to be cancelled, is generated. In this case,



the noise cancellation is limited to a small region where noise is measured and cancelled.

At the other locations away from the measurement location, noise is often increased

because errors of frequency, magnitude, and phase are eveloped. In the feedback control,

the system states are measured or estimated and the pole locations are changed to reduce

but not eliminate the noise level at all positions in the duct.

The objectives of the research presented here are modeling of a one-dimensional

hard-walled acoustic duct with a partially dissipative boundary condition, and the

application of the state feedback control to achieve active noise control in the duct. This

paper uses the finite element method to develop a discretized state space model of the

duct. The state feedback control is applied to obtain noise reduction in the duct. The

spillover problem is also quantified in this paper.



2. SYSTEM MODEL

2-1. Physical System Model

The system to modeled (Fig. 1) is a one-dimensional, hard-walled duct. The

length of duct is longer enough that the wave propagation in the cross sectional direction

can be ignored. The wall of duct is assumed to be rigid that the energy dissipation occurs

only at the ends. The gas in the duct is assumed to be uniform density p, and

temperature T.

The acoustic pressure of the system is related to the spatial gradient of the particle

displacement by (Seto, 1971)

2 d“(x’t)

P(x,t) = —pc dc (1)

The duct model is governed by a linear wave equation for the particle

displacement u as a function of time, and the spatial location x (Kinsler and Frey, 1962).

é’2u(x,t) _ c2 flzu(x,t)

a2 _ a; (2)

This model equates the spatial gradient ofpressure the particle acceleration.

The boundary condition at x=0 is related to the pressure input.

L40”) = _—1—2— P(0,t)
(3)

63: xx

The partially reflective boundary condition at x = L is the relationship between the spatial



 

 

  
 

Figure 1 Physical acoustic duct model

gradient and the time gradient of the particle displacement. This is expressed as (Seto,

1971)

d1(L,t) _ _£ d1(L,t)

dc c 0’?

, K at o, 1, oo (4)

where K is dimensionless complex impedance of the termination end. The real part of K

is associated with energy dissipation. The imaginary part of K is associated with

conservative fluid compliance and inertial effects. When real part of K equals zero, or

infinity, the termination end ofthe duct reflects all the acoustic energy and the response is

composed of standing waves only. When K=1 , the termination end of duct absorbs all the

acoustic energy and the response is composed of propagating waves only. All other

values of K yield some combination of propagating and standing wave response

(Spiekennann and Radclifl‘e, 1988).



One or more control inputs associated with mass flow are allocated in the domain

to control noise in the duct. The system equation with these inputs is nonhomogeneous.

The linear second order wave equation modeling particle displacement in a hard-walled,

one-dimensional duct is (Seto, 1971)

3’ ,t_ 6255.82,t ”a M, t

0” i=1 105

where u(x, t) = particle displacement (m), c = wave speed (m/s), x = spatial location (m), t

= time (s), p = density of the medium (kg/m3 ), M(t) = mass flow input in the domain

(kg/s), x, = location of mass flow input (m), S = speaker area driving the mass flow input

(m2 ), P(t) = pressure excitation at x = O (N/ m2 ), and 6(x) = the Dirac delta fimction.

2-2. Finite Element Model

The finite element method can change this partial differential equation for the

continuous medium in the duct to a system of ordinary differential equation for a

discretized medium. Finite element analysis based on Galerkin’s method uses weighting

functions to approximate equation solutions. This method uses piecewise smooth

functions, and the Galerkin residual integral formulation to generate a system of algebraic

equations (Segerlind, 1984). The Galerkin’s residual integral with respect to the space

coordinates for fixed instant oftime is

 

_" ,(cazuoct) azu(xt) M(t) _

xlwc (2:2 -§[6(x— x.)1—{—pg Ddx-o

(6)



where WT is the Galerkin weighting functions which consists one dimensional shape

functions associated with specific nodes in the finite element mesh. This residual integral

can be solved for the system of differential equations for the particle displacement vector,

u.

The first term on the right hand side yields the element stiffness term and

interelement term If). The stiffness element is generated by conventional integration.

The interelement term is a row vector which contains the element contributions. This

vector is deleted except when derivative boundary conditions are specified (Segerlind,

1984). In the case of duct, the interelement term contains only the boundary conditions

for the left and right end. The boundary condition on the right end can be separated from

interelement vector, because it can be expressed as damping element. The remaining

interelement vector only the left boundary condition. The second term on the right hand

side of the Galerkin’s residual integral turns out to be a mass element, and the third term

yields point source vector which contains the mass flows at system input location. This

point source vector and the interelement vector which contains the left boundary

condition consist the force vector.

Mii+D|i+Ku=fp(t)+fM(t) (7)

where M = TNTNdx

‘o‘N’o‘N
K=j01 Zdx

X

 

D = If;



_ (e)

fp _ Ix=O

k .

i=1 x=x,

Dimension of each matrix, n is determined by number of elements. Each matrix row

represents a specific location in the duct. The boundary conditions are incorporated into

D and fp (t). D is derived from 15; which represents the boundary condition of the

right end. fp (t) is consist of I“),3, term that contains the boundary condition of the left

end, and fM (t) is consist of the summation term which represents the mass flow inputs,

M,(t) at x = x,.

The frequency response of 3.66m duct (Fig. 2) show comparison between finite

element solution (solid line) and analytical solution (dashed line). The response is

measured at x=0 m. The impedance at the termination end is K=O.3 and 50 elements are

used for finite element solution. The finite element solution is quite similar to the

analytical solution.
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Figure 2 The frequency response of 3.66m duct by finite element solution (solid line) and

analytical solution (dashed line). Impedance constant K=O.3, input location

x=Om, and output location x=O.762m. Number of element for finite solution is

50.



3. STATE SPACE REPRESENTATION

The state space representation used in the control system observer and simulation

can be derived from the finite element form of governing equation. Defining that the

state vector, 1r1 represents the vector of particle displacements, u in equation (7) and X,

represents the vector of particle velocities, in , the second order differential equation of the

system can be changed to the first order differential equation. Letting x, = u , x2 = u ,

and x = [xl,x2]T gives

X(t) = Ax(t) + Bpfp(t) + BMfM(t) (8-1)

P = ch(t) (3'2)

l ° ’ l
where A = -1 -1

-M K -M D

A is 2n x 2n matrix which contains the characteristic of physical duct system. B has

dimension 2n x n and plays role of gain of force vectors 1', and {M in state space. Force

vectors fp and fM are the disturbance input and control input, respectively. 2n x1

matrix, c contains the spatial gradient of particle displacement which is expressed in

equation (1).
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A can be diagonalized using modal transformation, x = (Dz. (D is modal matrix

and z is the state vector in modal coordinate. Substituting x = (Dz and premultipling

inverse ofmodal matrix gives

i=ADZ+Bprp+Bwa (9'1)

P = cDTz (9-2)

where AD = (V‘ACD

BMD = (D-IBM

cDT = cTCD

AD is diagonal matrix and has the same characteristic equation and eigenvalues as what

A has, because AD is mathematically similar to A. This state space representation

allows the individual modes to be decoupled from each other.



4. TRUNCATION

A truncated finite element model is needed because the exact solution to the

acoustic duct problem requires an infinite number of elements which is not available. A

truncated model can be obtained by simply truncating high frequency modes of the state

space model shown in equation (9), because the state space model has decoupled

individual modes. This truncated model allows only dominant modes to be observed and

controlled.

Spillover is generated by truncation. Spillover is system contamination by

unmodeled modes (Balas, 1978). Spillover occurs when unmodeled modes in the system

interacts with the control system action. This Spillover degrades control performance and

can cause instability.

The frequency response of a 3.66m duct (Fig. 3) shows the effect of truncation.

The response is measured at x=O.792m with the pressure excitation at x=Om. The

impedance is K=O.3+O.2i and a truncated model with 7 term is used to approximate the

solution (solid line). This truncated model with 7 term has only 3 dominant modes while

a 62 term model (dashed line) includes higher fi'equency modes.

Time response of the finite element model (Fig. 4) shows the effect of truncation

in time domain. The input into the duct is a harmonic pressure excitation with a

frequency of 150 Hertz initiated at t=0 second. The input location is x=0 and the

11
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response is calculated at location x=O.792m. The impedance constant K=O.3+O.2i is used.

This time response shows the predicted response with only 7 term (solid line) is quite

similar to that for 62 term (dashed line) because truncated error is reduced by decoupling

the states.

Another time response of the finite element model (Fig. 5) shows the response to

the pulse pressure input with 7 term model (solid line) and 62 term (dashed line). The

magnitude of pulse input is 1 N / m2 and width is 0.005 second. The input location is

x=0 and the response is calculated at x=O.792m. The impedance constant is K=O.3+O.2i.

The 7 term finite element model shows the same response in each of the states but lower

resolution due to the reduction in state number.
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Figure 3 The frequency response of 7 term (solid line) and 62 term (dashed line) duct

model with impedance constant K=O.3+O.2i. Total length of duct L=3.66m,

input location x=Om, and output location x=O.792m.



 

 

    
 

Figure 4 The time response of 7 term (solid line) and 62 term (dashed line) duct model to

the harmonic pressure input with a frequency of 150 Hz initiated at t = 0 second.

Total length of duct L=3.66m and impedance constant K=O.3+O.2i. Input

location x=Om, and output location x=O.792m.
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Figure 5 The time response of 7 term (solid line) and 62 term (dashed line) duct model to

the pulse pressure input with a magnitude of 1 N/ m2 and width of 0.005 second initiated

at t=0 second. Total length of duct L=3.66m and impedance constant K=O.3+O.2i. Input

location x=0m and output location x=O.792m.



5. STATE FEEDBACK CONTROL

5-1. State Estimator

State feedback control through an appropriate state feedback gain matrix can

change the eigenstructure of the physical duct system to the desired one. In this case, all

states need to be measurable and available. However, none of states variables of the

physical duct are directly measurable, therefore a state variable estimator is needed. A

state observer is a device or computer program that runs in parallel with the actual system

and estimates the state variables based on the measurements of input and output from

physical system. An estimate of the infinite number of state variables of the physical

duct is not possible. So a truncated state Observer is used.

The state observer equations for single disturbance are

2 = Am +BM~fM +Bp~fp +g~(P- 1") (10-1)

13 = cfviN (IO-2)

where AN is a truncated matrix which contains the N dominant dynamic characteristics

of the duct system, 1'5 is the estimated sound pressure by observer, fM is control input

vector which is mass flow and located at z ¢ 0 , BW is control input matrix, fp is

disturbance input which is a pressure excitation and located at the left end, Bm is the

disturbance input matrix, gN is the observer gain vector, and P is the pressure

14



15

measurement output from the actual duct. 2,, designates the observed state vector which

approximates the actual state vector, 2”. The last term on the right side of equation (10-

1) is a correction term. This correction term involves the difference between actual P and

estimated P , and is weighted by gN . This Observer gain vector, gN determines the error

dynamics between the actual states and the estimated states.

The observer error equation can be expressed by

e=Aee+Bmfp (11)

where e = 2N — a” that is the error vector which designates the difference between the

actual states and the estimated states, and A, = AN — gNe; . The poles of observer error

equation determine the rate of convergence of the error to zero. If matrix A, is a stable

matrix, error vector will converge, which means the estimated states will converge to the

actual states. Hence, if the eigenvalue of matrix A is chosen such that the dynamic

behavior of the error vector is asymptotically stable and adequately fast, then any error

will converge with adequate speed. However, the error equation is driven by any

unknown input, fp. The desired poles of matrix A, can be located by determining the

observer gain matrix, gN . This pole placement can be done using Ackermann’s formula.

The Ackermann’s formula for an observer is (Phillips and Harbor, 1996)

I- -I-1I— -

    

c” O

c A E

gN zae(AN)l N- N 0 (12-1)

_¢~A'i«-IJ -1-

a,(AN) = A7,, + a"_,A',§,"+---+a,AN + aoI = 0 (12-2)
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where a¢(AN) is the desired characteristic polynomial whose roots are eigenvalues for

error system. The observer gain is recommended to be chosen so that the dynamic speed

of the observer is twice or fourth times faster than those of the system (Phillips and

Harbor, 1996).

5-2. State Feedback Control with Optimized Feedback Gain

Pole location determines the speed and damping of the dynamic response.

Changing pole location gives different eigenstructures of the system. Pole location is

generally desired to be as far to the left of the origin as possible, because they have faster

dynamic response. However, locating poles far to the left of the origin yields high

control gain and signals which are too large to be produced within the system power

limitations. Such high gain systems also have signal noise problems, and limiting the

speed of response is necessary to avoid saturation and noise problems. The pole location

for the speed limitation of response can be determined by Ackermann’s formula

expressedas

kac=[0 0 IIBPN ANBPN ANn-IBPN]ac(AN) (13)

where kw is the state feedback gain vector and ac(AN) is the desired characteristic

polynomial. The state feedback gain matrix can be decided by the desired poles and can

be used for control law fM = —kxi,,.

Another technique to determine the state feedback gain vector is linear quadratic

optimal control technique. This optimal control technique generates control which

minimize both system error and the input required to a device. These system error and
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the input can be expressed by performance index. Performance index in this paper

consists the integral of a quadratic form of the truncated state vector, 2,, plus an another

quadratic form ofthe control input, fM , that is

J = Taft)“ + fMRfM)dt (14)

0

The first term on the right side of the equation (14) represents a penalty on the deviation

of the N dominant state vector , 2,, from the origin, while the second term represents the

control effort. Q is a state weighting matrix which determines the relative importance of

the each state variable, and assume to be positive definite Herrnitian or real symmetric

matrix. In this paper, Q is selected as a diagonal matrix which has the different diagonal

elements to weight each state variable differently. R is a matrix which contains the

weighting value for control vector, and chosen 1 x 1 matrix with weighting value 1.

The optimal control law which minimize the performance index, J in equation

(14) can be expressed as

fl" = -kapi~ (15)

where kqp is a optimal feedback gain vector. Therefore, performance index can be

minimized by this optimal control law, and such an optimal control law can be obtained

by a proper vector kap. The equation that gives the optimal k0,, is given by

k0,, = R"B,,,‘P (16)

where matrix P is the symmetric, positive definite solution of the Riccati equation

expressed by (Ogata, 1970)
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AN‘P + PAN - PBPNR"B,N'P + Q = 0 (17)

5-3. Frequency Domain Simulation

The schematic and block diagram ofthe control system for duct is shown in Fig. 6

and Fig. 7. The state estimator measures pressure output fi'om the physical system and

the feedback input. The disturbance input is unknown because, in general, there is no

way to determine the disturbance excitation ofthe duct.

A frequency response simulation of the controlled system is shown in Fig. 7. The

length of the duct is 3.66m, the response is measured at x=O.792m, and the control

speaker is at x =3.56m. The acoustic impedance at the end is K=O.3+O.2i. The number of

terms used to form the model is 7. The state feedback gain is chosen to minimize the

performance index J with

r- '1
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R = [1]

The frequency response (Fig. 7) shows that the fourth closed loop resonance tends to

increase in amplitude as the closed loop resonances in the lower frequency range (solid

line). The more magnitudes of closed loop resonances in frequency range ofmodeled

dominant poles are decreased, the more likely magnitudes of closed loop resonances in

frequency range ofunmodeled poles are increased.
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The pole locations of these system in complex plane (Fig. 8) also shows control

spillover. Placing the dominant poles to the left from their original place causes some

unmodeled poles to move to the right from their original place. In extreme case, those

unmodeled poles move to the positive real plane, and cause the instability of the system.
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Figure 6 The schematic diagram of active noise control system
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Figure 8 The fi'equency response of closed (solid line) and open (dashed line) loop

system of 3.66m duct. Disturbance input location x=Om, states measurement

location x=O.792m, K=O.3+O.2i. Number oftruncation term for observer is 6.
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Figure 9 Pole locations of closed (0) and open (x) loop systems of a 3.66m duct.

Disturbance input location x=Om, states measurement location x=O.792m, and

control input location x=3.56m. Impedance constant at the termination end

K=O.3+O.2i. Number oftruncation term for observer is 6.



22

5-4. Time Domain Simulation

Time domain simulations predict the response of the system over a finite time.

They are useful in determining the transient response of the controller. A time domain

simulation is performed with the plant and the control system shown in Fig. 7.

A time domain simulation with 3.66m duct is shown in Fig. 10. The response is

measured at x =0.792m and the control speaker is at x =3.56m. The impedance at the

termination end is K=O.3+O.2i. 6 truncated term was used for state estimator. The

simulation step size is 0.0002 seconds. The simulation excitation is a sine wave with unit

magnitude at 150 Hertz. The state estimator and controller are both activated at t=0

second. The steady state amplitude of closed loop system (solid line) is 0.9 N / m2 while

that of open loop system (dashed line) is 1.4 N / m2 .
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Figure 10 The time response of closed (solid line) and open (dashed line) loop systems

of a 3.66m duct to the harmonic pressure input with a magnitude of l N / m2

and a frequency of 150 Hz initiated t=0 second. Harmonic pressure input

location x=Om, state measurement location x=O.792m, control input location

x=3.56m. Impedance constant ofthe termination end K=O.3+O.2i and number of

truncation terms used for observer is 6.

 

  



6. CONCLUSIONS

A one-dimensional hard-walled acoustic duct with a partially dissipative boundary

condition was modeled using the finite element method. This paper showed the finite

element method discretize the continuum system and approximate the exact dynamic

response of the system with a convenient numerical computation.

Active noise control technique was developed to reduce noise levels. Frequency

and time domain simulations are presented. These simulations showed the active

feedback control techniques globally reduced noise in the duct instead of canceling the

noise in particular region. Active feedback control generated spillover which degrades

control performance and caused instability.

There are several areas for firture work or improvement in the method. One

obvious extension is to move this work into three dimensional enclosures, since most

acoustic system are three-dimensional rather than one-dimensional. Three-dimensional

noise reduction would be extremely useful in aircrafi and factories.

A topic of improvement in the one-dimensional system is in the area of filters.

Noise reduction by feedback control has limitation because of spillover problem.

However implementing the filters in order to minimize the spillover problem will allow

more noise reduction by feedback control.
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