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ABSTRACT

NONSTATIONARY GAUSSIAN RANDOM FIELDS WITH APPLICATION
TO SPACE AND SPACE–TIME MODELING

By

Abolfazl Safikhani

Space-time models have become increasingly popular in scientific studies. Gaussian ran-

dom fields (GRFs) are an important tool of this field. Developing covariance structures for

GRFs, parameter estimation, and prediction in big spatial datasets are central challenges

in spatio–temporal modeling. My thesis consists of three main chapters dealing with these

main challenges in this area. In chapter 2, we investigate the problem of equivalence of

GRFs with stationary increments, and obtain sufficient conditions for equivalence in terms

of the behavior of the spectral measures at infinity. Further, the main results are applied

to a rich family of nonstationary space-time models with possible anisotropy behavior. In

chapter 3 , we propose a nonstationary parametric model, in which the underlying Gaussian

random field may have different regularities in different directions, thus can be applied to

model anisotropy. Using the theory of equivalence of Gaussian measures under nonstationary

assumption, strong consistency of the tapered likelihood based estimation of the variance

component under fixed domain asymptotics are derived by putting mild conditions on the

spectral behavior of the tapering covariance function. In chapter 4, we merge two ideas of

factor modeling and low-rank spatial processes approximation to develop and propose a class

of hierarchical low-rank spatial factor models which offer a rich and flexible modeling option

for dealing with large vector of outcomes observed at large number of locations. A Markov

chain Monte Carlo algorithm is developed for estimation, and further, the full posterior

distributions are recovered in a Bayesian predictive framework.



Keywords: Space–time models, nonstationary Gaussian random fields, Equivalence of

Gaussian measures, Covariance tapering, Fixed–domain asymptotics, Spatial factor model-

ing, Gaussian predictive processes, Hierarchical Bayesian
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Chapter 1

Introduction

Space-time models have become increasingly popular in scientific studies such as geology,

climatology, geophysics, environmental and atmospheric sciences ([9] and [41]). Gaussian

random fields (GRFs) are an important tool of this field. Developing covariance structures

for GRFs, parameter estimation, and prediction in big spatial datasets are central challenges

in spatio–temporal modeling. My thesis consists of three main chapters dealing with these

main challenges in this area.

Finding conditions for equivalence of Gaussian measures is necessary for studying the

asymptotics in the framework of covariance tapering. Equivalence of Gaussian measures

is a classical problem in probability theory that has been studied since early 60s and 70s.

Necessary and sufficient conditions for the equivalence of general Gaussian measures are

given in [22], [15], [19]. However, the classical conditions are rather abstract, and may

not be directly applicable to concrete cases. More verifiable conditions are then stated by

restricting to a particular family of Gaussian measures. There are criteria for equivalence of

stationary Gaussian processes in terms of their spectral densities in [25], and more general for

stationary GRFs in [37] and [48]. However, investigation on the equivalence of nonstationary

GRFs is limited to some special cases which are discussed in recent works (see, e.g., [7], [42],

and [44]). In chapter 2, we study the equivalence of GRFs with stationary increments, and

give a spectral condition under which the two GRFs will induce equivalent measures. This

condition is easy to verify, and the results are applicable to different families of GRFs such
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as the ones with the power law as their spectral densities with different power exponents in

different dimensions, thus allowing anisotropy.

Researchers across scientific fields are asking increasingly complex questions that require

spatio–temporal models able to accommodate rich association structures. In such settings,

traditional assumptions such as stationarity and isotropy on the underlying GRFs may not

be appropriate. These assumptions become increasingly tenuous as the size of the dataset

and domain increase, which is increasingly common in many applied settings. There have

been considerable attempts in recent literature to construct nonstationary anisotropic spa-

tial models (See [24], [17], [30], [31], [26], [1] and references therein for the construction of

such nonstationary models). In chapter 3, we study covariance estimation for a family of

anisotropic GRFs with stationary increments using covariance tapering (See [18] for defini-

tion). Covariance tapering introduces sparsity to allow for more efficient matrix operations

which is essential in dealing with large scale data sets. Consistency of MLE under the ta-

pered covariance structure is established by putting a mild condition on the decay rate of the

spectral density of the tapering function at infinity. This result also deals with the problem

of equivalence of nonstationary GRFs.

Researchers are increasingly seeking inference about multiple outcome variables across

spatial and temporal domains. This interest in applied community is due in large part to

widely available geographic information systems (GIS), geographic position systems (GPS),

and open source long-term monitoring networks. In such settings, models should capture

both within location (i.e., among outcome variable) and between location covariance struc-

tures. Delivering this inference is often difficult due to the massive size of the given dataset.

In chapter 4, we merge two ideas of factor modeling and low-rank spatial processes ap-

proximation to develop and propose a class of hierarchical low-rank spatial factor models
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which offer a rich and flexible modeling option for dealing with large vector of outcomes

observed at large number of locations. A Markov chain Monte Carlo algorithm is devel-

oped for estimation, and further, the full posterior distributions are recovered in a Bayesian

predictive framework. We illustrate our methodology with simulation experiments and an

environmental data set involving Light Detection and Ranging (LiDAR) signals together with

above-ground biomass (AGB) from the Penobscot Experimental Forest in Bradley, Maine.
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Chapter 2

Spectral Conditions for Equivalence of

Gaussian Random Fields with

stationary increments

Space-time models have become increasingly popular in scientific studies. Recent works

in this field consist of construction of nonstationary anisotropic Gaussian random fields

(GRFs). However, the problem of equivalence of measures corresponding to GRFs, which

has direct consequences on the study of such models, is discussed mostly for the stationary

case, and results for the nonstationary case are limited. In this chapter, we investigate the

problem of equivalence of GRFs with stationary increments, and obtain sufficient conditions

for equivalence in terms of the behavior of the spectral measures at infinity. Further, the

main results are applied to a rich family of nonstationary space-time models with possible

anisotropy behavior.

2.1 Introduction

Space-time models have become increasingly popular in scientific studies such as geology, cli-

matology, geophysics, environmental and atmospheric sciences, etc ([9] and [41]). Gaussian

random fields (GRFs) are basically the main tools in space-time modeling. Most of the para-
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metric models proposed are GRFs with specific parametric covariance structure (See [10],

[20], [43] and [21] for rich families of space-time covariance functions). The main job then

is to find consistent estimates for the parameters, and finally use them for prediction of the

underlying random field at unobserved locations, and also in performing statistical inference.

Given a parametric family of Gaussian distributions, an important question is whether all the

parameters are consistently estimable. First step to answer this question demands an inves-

tigation on the equivalence of the corresponding Gaussian measures involved in the model,

since if two parameters in the parameter space give equivalent Gaussian distributions, then

it is impossible to find consistent estimators for all the parameters involved regardless of the

method chosen for estimation (See for example [50] for discussion on inconsistent estimation

in Matern covariance functions). Another application of equivalence of Gaussian measures

comes from covariance structure misspecification, and its effect on spatial interpolation ([41],

chapter 4). In spatial statistics, an important goal is to predict the underlying GRF at unob-

served locations. The common method is the best linear unbiased predictor (BLUP), which

in known as kriging (See [41] for definition and properties of kriging). This, however needs

information about the covarince function of the underlying GRF, which is in fact unknown.

Using misspecified covariance functions in prediction may increase the prediction error. [41]

proved that covariance functions which yield to equivalent Gaussian measures, have asymp-

totically the same prediction error rate (See also [39] and [40]). Therefore, finding sufficient

conditions under which two covarince functions result in equivalent Gaussian distributions

has direct impact in evaluating the prediction error in interpolation of spatial data, and thus

proving asymptotically optimal prediction under misspecified covariance structure. There

are other applications of equivalence and perpendicularity of GRFs in spatial modeling. For

example, we refer to [18] and [28] for the application in covariance tapering.
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Equivalence of Gaussian measures is a classical problem in probability theory that has

been studied since early 60’s and 70’s. Necessary and sufficient conditions for the equivalence

of general Gaussian measures are given in [22], [15], [19], and references therein (See also

[32], [27] for conditions in terms of time domain reproducing kernel Hilbert spaces). These

conditions are rather abstract, and may not be directly applicable to concrete cases. More

specific conditions are then stated by restricting to a particular family of Gaussian measures.

There are criteria for equivalence of stationary Gaussian processes in terms of their spectral

densities in [25], and more general for stationary GRFs in [37] and [48]. However, investi-

gation on the equivalence of nonstationary GRFs is limited to some special cases which are

discussed in recent works. For instance, we refer to [7] on mixed fractional Brownian motion,

[5] on Volterra processes, [38] on multiparameter Gaussian processes, and [42] on a family

of power law covariance functions. Recently, [44] found sufficient conditions for equivalence

of Gaussian processes with stationary increments in terms of their spectral densities similar

to one in [25] for the stationary case. However, this result is only for one dimensional Gaus-

sian processes, and the case for multidimensional GRFs with stationary increments is not

discussed.

Space-time models have become more complex, and traditional assumptions such as sta-

tionarity and isotropy on the underlying GRFs might not be appropriate in data analysis in

different fields such as geophysics, environmental and atmospheric sciences, etc. There have

been considerable attempts in recent works for constructing nonstationary anisotropic spatial

models (We refer to [24], [17], [30], [31],[26], [1] and references therein for the construction

of such nonstationary models). Therefore, studying the equivalence of nonstationary GRFs

is of interest in the study of such nontrivial families of space-time models. In this paper,

we will investigate the equivalence of GRFs with stationary increments which might have
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different regularities in each direction, and thus allows anisotropy as well, and find sufficient

conditions for their equivalence in terms of the behavior of their spectral measures at infinity.

The rest of the chapter is organized as follows. We start section 2.2 by introducing

some useful Hilbert spaces connected to the frequency domain, and study their structure. In

section 2.3, we state the main result of the paper, which is sufficient conditions for equivalence

of GRFs with stationary increments using the tail behavior of their spectral densities. In

the last section, we apply the main results to a rich family of anisotropic nonstationary

spatio-temporal Gaussian models.

2.2 Preliminary

Let X = {Xt : t ∈ Rd} be a centered GRF with stationary increments with X(0) = 0.

According to [49], we have the following spectral representations for X, and for the covariance

structure of X, respectively:

X(t)
d
=

∫
Rd

(
ei〈t,λ〉 − 1

)
W (dλ), (2.2.1)

C(t, s) = E(XtXs) =

∫
Rd

(
ei〈t,λ〉 − 1

)(
e−i〈s,λ〉 − 1

)
F (dλ), (2.2.2)

where W is a complex-valued Gaussian random measure with control measure F , which is a

non-negative symmetric measure on Rd \ {0}, called the spectral measure of X satisfying

∫
Rd

|λ|2

1 + |λ|2
F (dλ) <∞. (2.2.3)

If the spectral measure is absolutely continuous with respect to the Lebesgue measure
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on Rd, we will call its Radon-Nikodym derivative spectral density, denoted by f(λ). We will

give conditions in terms of the spectral densities for the equivalence of GRFs with stationary

increments, but first, we need to define precisely equivalent GRFs.

Definition 2.2.1. For a fixed D ⊆ Rd, we call two GRFs X = {Xt : t ∈ Rd}, Y = {Yt : t ∈

Rd} equivalent if they induce equivalent measures on the measurable space
(
RD,B

(
RD
))

,

in which B
(
RD
)

is the σ-field generated by the Borel subsets of RD. Moreover, we call them

locally equivalent if they are equivalent on any bounded subset of Rd.

Such spectral representations for the covariance structure of GRFs of the type given

in 2.2.2 makes an important bridge between the problem of equivalence of GRFs and the

description of the space generated by the linear combinations of the kernel functions in

the spectral representation. For that purpose, in this section we need to study such linear

spaces, and explore their properties which will be valuable in the next section. For that,

let’s define for a fixed D ⊆ Rd bounded, and a measure F on Rd satisfying 2.2.3, an

incomplete Hilbert space LeD = span
{
et(λ) := ei〈t,λ〉 − 1 : t ∈ D

}
with the inner product

〈et, es〉F =
∫
Rdet(λ)es(λ)F (dλ). We denote the closure in L2(F ) of LeD by LD(F ). Also,

for T > 0 define

ΠT :=
{
λ = (λ1, ..., λd) ∈ Rd : −T ≤ λj ≤ T,∀j = 1, ..., d

}
.

By looking at the basis functions generating LeD, we realize that they are entire functions

defined on Cd, and they are of finite exponential type (See [36] for definition and properties).

However, the elements in the completed Hilbert space, LD(F ), may not have the same

properties. These properties enable us to apply Paley-Wiener type theorems, and get nice

description of the elements in theses Hilbert spaces. This problem is discussed in details in
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[34] and [33], and there are conditions mentioned in [33] on the measure F for this purpose.

Therefore, we need to put further assumption on the spectral measure F in order to get the

same nice properties. Here is the crucial assumption on the tail behavior of the spectral

density f(λ), assuming it exists:

(C1) There exist c, k, η > 0 such that for all |λ| > k, we have f(λ) ≥ c
|λ|η .

This assumption on the spectral density will force the elements in LD(F ) to be entire

functions of finite exponential type. The next two lemmas will prove this statement. The

following lemma is taken from [46], Lemma 2.2, and we state it here again for completeness.

Lemma 2.2.1. Suppose that the spectral density f satisfies (C1). Then for fixed T > 0,

there exists positive constants C and M such that for all functions φ of the form

φ(λ) =
n∑
k=1

ak

(
ei〈t

k,λ〉 − 1

)
, (2.2.4)

where ak ∈ R and tk ∈ ΠT , we have for all z ∈ Cd

|φ(z)| ≤ C ‖φ‖F exp{M |z|}. (2.2.5)

Moreover, for fixed C1 > 0, there exists a positive constant C2 such that for all functions

of the form 2.2.4, we have

|φ(z)| ≤ C2 |z| ‖φ‖F (2.2.6)

for all |z| ≤ C1.

One can use 2.2.5 to define the limiting functions in LΠT
(F ) in such a way that they

also satisfy both 2.2.5 and 2.2.6. We will prove this in the next Lemma.
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Lemma 2.2.2. Let F be a spectral measure on Rd which satisfies (C1). Then, for each

T > 0, the space LΠT
(F ) consists of the restriction to Rd of entire functions on Cd of finite

exponential type. Moreover, 2.2.6 is also true for all functions in LΠT
(F ).

Proof. The idea of the proof is similar to [33], p. 304. Take a sequence φn ∈ LeΠT , such that

‖φn − φ‖F → 0 for some φ ∈ LΠT
(F ). Then, it is a Cauchy sequence in  L2(F ), and using

2.2.5, we get

|φn(z)− φm(z)| ≤ C ‖φn − φm‖F exp{M |z|} (2.2.7)

This means for each fixed z ∈ Cd, the sequence φn(z) is a Cauchy sequence in C. So, it

is convergent. Let’s denote the limit by φ̃(z). Now, since limit in L2(F ) sense implies the

almost sure convergence for a subsequence, φ = φ̃ a.e. with respect to F . From now on, we

will take φ̃ as our favorite version of the limits of functions in LeΠT . Therefore, the elements in

the space LΠT
(F ), are not only the L2(F ) limits of functions in LeΠT , but also the pointwise

limits as well. Thus, both 2.2.5 and 2.2.6 are true for all the elements in LΠT
(F ). The only

thing left to prove is that these functions are entire functions on Cd. But this is true since

any element of the space LΠT
(F ) is the locally uniform limit of functions of the form 2.2.4

which are obviously entire functions, and thus, they are also entire functions as well (This

is called Weirerstrass Thoerem. See for example [14], Proposition 2.8, p. 52).

This lemma shows that if the spectral density satisfies the assumption (C1), we can

complete the space LeΠT in such a way that the resulting functions are locally uniform

limits of entire functions, and hence, they are entire functions as well, and they are also

of finite exponential type. Further, since 2.2.5 is true for all the elements in the Hilbert

space LΠT
(F ), we can see that the point evaluators, i.e. the functionals on LΠT

(F ) of the

10



form φ 7→ φ(z) for each fixed z ∈ Cd are bounded operators. Now, we can apply Riesz

representation Theorem (See [23], Theorem 3. p. 31 ) to prove that the space LΠT
(F ) is

a Reproducing Kernel Hilbert Space (RKHS) in the sense of [2]. This means there exists a

family of functions KT (., .) from Rd × Rd to C such that first of all KT (ω, .) ∈ LΠT
(F ) for

all ω ∈ Rd, and secondly, for every φ ∈ LΠT
(F ) and ω ∈ Rd, we have the following kernel

property

〈φ,KT (ω, .)〉F =

∫
Rd
φ(λ)KT (ω, λ)F (dλ) = φ(ω). (2.2.8)

Also, it is worthwhile to mention that the set of all functions {KT (ω, .) : ω ∈ Rd} is dense

in LΠT
(F ) (To see this, note that if φ ∈ LΠT

(F ) is orthogonal to KT (ω, .) for all ω ∈ Rd,

then φ(ω) = 〈φ,KT (ω, .)〉F = 0, which implies φ = 0.), and further for all ψ ∈ L2(F ), the

function

ω 7→ 〈ψ,KT (ω, .)〉F (2.2.9)

is the orthogonal projection of ψ on LΠT
(F ) (See the proof in [2], p. 345). We denote this

projection by πLΠT
(F )ψ.

Finding explicit forms of the reproducing kernels is not an easy job. However, in order

to prove the results in section 2.3, we need upper bounds for the growth rate of the diagonal

elements of the reproducing kernels at origin and also at infinity. The following proposition

proves an important growth rate for the diagonal elements in the reproducing kernels.

Proposition 2.2.1. Suppose that the spectral density of F , f(λ) satisfies (C1). Then, for

fixed T > 0 and C1 > 0, there exists a positive constant C2 such that

KT (ω, ω) ≤ C2 |ω|2 (2.2.10)
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for all |ω| < C1.

Proof. Since for fixed ω ∈ Rd, KT (ω, .) ∈ LΠT
(F ), we can apply Lemma 2.2.2 to these

functions. This means that the inequality 2.2.6 can be applied to them. After doing so, we

get

|KT (ω, λ)| ≤ C2 |λ| ‖KT (ω, .)‖F

= C2 |λ|(KT (ω, ω))1/2

for all ω ∈ Rd and λ ∈ Cd with |λ| < C1. Now, if we put λ = ω, since the constant C2

doesn’t depend on ω, we will get the desired result.

We also need to define another Hilbert space based on the tensor product of the elements

in LΠT
(F ). For that purpose, first we define LeΠT ⊗ L

e
ΠT

to be the span of functions

(et⊗ es)(ω, λ) := et(ω)es(λ) with t, s ∈ ΠT . Now, denote by LΠT
(F )⊗LΠT

(F ) the closure

in L2(F ⊗F ) of the space LeΠT ⊗L
e
ΠT

. According to [2], Theorem 1, p. 361, the new Hilbert

space LΠT
(F )⊗ LΠT

(F ) is also a RKHS with reproducing kernel

((ω1, λ1), (ω2, λ2)) 7→ KT (ω1, ω2)KT (λ1, λ2). (2.2.11)

This means in fact that for ψ ∈ LΠT
(F )⊗ LΠT

(F ),

〈ψ,KT (ω, .)⊗KT (λ, .)〉F⊗F = ψ(ω, λ). (2.2.12)

We finish this section by a lemma stating that the norm of the elements in spaces LΠT
(F )

only depends on the tail behavior of the spectral measure F .
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Lemma 2.2.3. Suppose f0 and f1 are two spectral densities satisfying the condition (C1),

and further f0(λ) � f1(λ) as |λ| → ∞. Then, LΠT
(f0) = LΠT

(f1), and further there exist

positive constants C3 and C4 such that for all φ ∈ LΠT
(f0)

C3 ‖φ‖f1 ≤ ‖φ‖f0 ≤ C4 ‖φ‖f1 .

Proof. Suppose g ∈ LΠT
(f0). There exists functions gn of the form 2.2.4 such that

‖g − gn‖f0 → 0 as n→∞. Now, using lemma 2.2.2, we get

‖g − gn‖2f1 =

∫
Rd
|g(λ)− gn(λ)|2f1(λ) dλ

≤ C2 ‖g − gn‖2f0

∫
|λ|<C1

|λ|2f1(λ) dλ

+C ‖g − gn‖2f0 .

Therefore, g ∈ LΠT
(f1) as well. Similarly by simply putting g − gn = φ in the above

calculations, we can verify the second part of the lemma.

2.3 Main Results

In this section, we study the equivalence of GRFs with stationary increments, and clarify

its connection to the Hilbert spaces constructed in section 2.2. In particular, the role of

the reproducing kernels of the RKHS LΠT
(F ) will be emphasized. We start this section by

rephrasing Theorem 5, p. 84. in [25] into our context (See also [48], Theorem 1, p. 149).

Theorem 2.3.1. Two centered GRFs with stationary increments, and the spectral measures

F0 and F1 are equivalent on D if and only if:
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(i) ‖φ‖F0
� ‖φ‖F1

,∀φ ∈ LeD,

(ii) There exists a function ψ ∈ LD(F0)⊗ LD(F0) such that for all t, s ∈ D

〈et, es〉F0
− 〈et, es〉F1

= 〈ψ, et ⊗ es〉F0⊗F0
. (2.3.1)

Proof. Proof is actually reconstruction of the proof of the Theorem 5, p. 84 of [25]. The

starting point is however, Theorem 4, p. 80. This Theorem can be adapted to our context

since its proof only involves the “entropy distance” between the Gaussian measures, and

thus is true for general GRFs (See also [6], Theorem 4.1, 4.4 pp. 180-185 ). After doing

so, we get that two GRFs with stationary increments and spectral measures F0 and F1 are

equivalent on D ⊆ Rd, if and only if, ‖φ‖F0
� ‖φ‖F1

,∀φ ∈ LeD, and ∆ = I − A∗A is a

Hilbert-Schmidt operator in LD(F0), in which I is the identity operator on LD(F0), and

A : LD(F0) 7→ LD(F1) with Aφ = φ for all φ ∈ LD(F0). Now, since ∆ is a self-adjoint

operator, if it is also a Hilbert-Schmidt operator, by the Spectral Theorem (See [13], corollary

5 p. 905 ), we can conclude that there exists an orthonormal basis for LD(F0) consisting

of the eigenvectors of ∆, denoting them by φj , j = 1, 2, ..., with corresponding eigenvalues

λj , j = 1, 2, ... with
∑
j λ

2
j < ∞. Note that we can write

∑
j λ

2
j =

∑
j,k 〈∆φj , φk〉

2
F0

.

The square root of this quantity is called the Hilbert-Schmidt norm. This norm doesn’t

depend on the choice of the orthonormal basis (See [13], Lemma 2, p. 1010). Therefore, we

can rephrase Theorem 4 in the following form: two GRFs with stationary increments and

spectral measures F0 and F1 are equivalent on D, if and only if, ‖φ‖F0
� ‖φ‖F1

,∀φ ∈ LeD,

and
∑
j,k 〈∆φj , φk〉

2
F0

<∞ for any orthonormal basis for LD(F0).

Now, take an arbitrary orthonormal basis for LD(F0), φ1, φ2, ..., and suppose∑
j,k 〈∆φj , φk〉

2
F0

< ∞. Define ψ0(ω, λ) =
∑
j,k 〈∆φj , φk〉F0

φj(ω)φk(λ). We can see that
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‖ψ0‖2F0⊗F0
=
∑
j,k 〈∆φj , φk〉

2
F0

<∞, and thus by the form of ψ0, it’s clear that it belongs

to LD(F0)⊗ LD(F0). Also, observe that

〈ψ0, φj ⊗ φk〉F0⊗F0
= 〈∆φj , φk〉F0

= 〈(I − A∗A)φj , φk〉F0

= 〈φj , φk〉F0
− 〈φj , φk〉F1

.

This shows that 2.3.1 holds for orthonormal basis of the space LD(F0). Therefore, by

continuity of inner product 2.3.1 will be true for all the elements in LD(F0), especially for

et and es when t, s ∈ D.

Conversely, suppose there exists a function ψ0 ∈ LD(F0)⊗LD(F0), such that 〈φj , φk〉F0
−

〈φj , φk〉F1
= 〈ψ0, φj ⊗ φk〉F0⊗F0

for an orthonormal basis φj ’s for LD(F0). Then, we have

∑
j,k

〈∆φj , φk〉2F0
=

∑
j,k

(
〈φj , φk〉F0

− 〈φj , φk〉F1

)2

=
∑
j,k

〈ψ0, φj ⊗ φk〉2F0⊗F0

≤ ‖ψ0‖2F0⊗F0

< ∞.

This completes the proof.

Previous theorem is stated in general form where equivalence of GRFs is guarantied

with no restriction on the spectral measure. However, verifying the second condition in this

theorem which involves finding a function ψ ∈ LD(F0) ⊗ LD(F0) with the property 2.3.1,

seems to be hard. If we put the condition (C1) on the tail behavior of the spectral density
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of one of the measures involved, we will get the following theorem using the reproducing

kernels of LΠT
(F0). In fact, this theorem clarifies what must be the function ψ in theorem

2.3.1.

Theorem 2.3.2. Two centered GRFs with stationary increments, and spectral measures F0

and F1, with F0 satisfying assumption (C1), are equivalent on ΠT for some T > 0 if and

only if:

(i) ‖φ‖F0
� ‖φ‖F1

,∀φ ∈ LeΠT ,

(ii) ψ(ω, λ) = K0
T (ω, λ) −

∫
RdK

0
T (ω, γ)K0

T (λ, γ)F1(dγ) ∈ LΠT
(F0) ⊗ LΠT

(F0) where

K0
T (., .) are the reproducing kernels of the space LΠT

(F0).

Proof. First, assume that the measures induced by them are equivalent. Then, by theorem

2.3.1, there exists a function ψ ∈ LΠT
(F0) ⊗ LΠT

(F0) such that the equation 2.3.1 will

hold. Now, because of bilinearity and continuity of inner product together with the fact that

LΠT
(F0) = LΠT

(F1), we get

〈φ1, φ2〉F0
− 〈φ1, φ2〉F1

= 〈ψ, φ1 ⊗ φ2〉F0⊗F0
(2.3.2)

for all φ1, φ2 ∈ LΠT
(F0) = LΠT

(F1). Now, simply choose for fixed ω, λ ∈ Rd, φ1(γ) =

K0
T (ω, γ) and φ2(γ) = K0

T (λ, γ), and replace them in equation 2.3.2 to get

ψ(ω, λ) = K0
T (ω, λ)−

∫
Rd
K0
T (ω, γ)K0

T (λ, γ)F1(dγ).

Conversely, since ψ ∈ LΠT
(F0)⊗LΠT

(F0), by reproducing kernel property we get ψ(ω, λ) =

〈ψ,K0
T (ω, .)⊗K0

T (λ, .)〉F0⊗F0
. Also, note that by the form of ψ, we have
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ψ(ω, λ) = 〈K0
T (ω, .), K0

T (λ, .)〉F0
−〈K0

T (ω, .), K0
T (λ, .)〉F1

. Combining them together, we get

〈K0
T (ω, .), K0

T (λ, .)〉F0
− 〈K0

T (ω, .), K0
T (λ, .)〉F1

= 〈ψ,K0
T (ω, .)⊗K0

T (λ, .)〉F0⊗F0
. (2.3.3)

Now, since the span{K0
T (ω, .);ω ∈ Rd} is dense in LΠT

(F0)(= LΠT
(F1)), the equality 2.3.3

will be true for all the elements in LΠT
(F0).

Remark 2.3.1. In order to prove that the function ψ appeared in Theorem 2.3.2 is in the

space LΠT
(F0) ⊗ LΠT

(F0), we only need to show that it belongs to L2(F0 ⊗ F0). To prove

this fact, we will show that the orthogonal projection of ψ on LΠT
(F0)⊗LΠT

(F0) is in fact

itself. For that, observe

(
πLΠT

(F0)⊗LΠT
(F0)(ψ)

)
(ω, λ) =

〈
ψ,K0

T (ω, .)⊗K0
T (λ, .)

〉
F0⊗F0

=

∫
Rd

∫
Rd
ψ(x, y)K0

T (ω, x)K0
T (λ, y)F0(dx)F0(dy)

=

∫
Rd

∫
Rd

∫
Rd
K0
T (x, γ)K0

T (y, γ)K0
T (ω, x)K0

T (λ, y)

×F0(dx)F0(dy)(F0(dγ)− F1(dγ))

=

∫
Rd
K0
T (ω, γ)K0

T (λ, γ) (F0(dγ)− F1(dγ))

= ψ(ω, λ).

This is a huge reduction which strengthen the applicability of Theorem 2.3.2.

By Remark 2.3.1, checking the second assumption in Theorem 2.3.2 is reduced to only

checking ψ ∈ L2(F0 ⊗ F0). However, checking the first assumption seems to be not an

easy job since we need to compare the norms of all the elements in the space LeΠT under
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two different measures. For that purpose, in the following, we will try to find equivalent

conditions which may be easier to verify in application.

It is well known (See [13], p. 1009 ) that for ψ ∈ L2(F ⊗ F ), one can define a Hilbert-

Schmidt operator on L2(F ) in the following way

(ψφ) (ω) =

∫
Rd
ψ(ω, λ)φ(λ)F (dλ) (2.3.4)

for every φ ∈ L2(F ). If we use specifically the ψ defined in Theorem 2.3.2, and restrict the

domain to LΠT
(F ), we will have again a Hilbert-Schmidt operator on LΠT

(F ). Note that

the image of the operator ψ is in fact inside the LΠT
(F ). To prove this, observe that for

φ ∈ LΠT
(F ),

(
πLΠT

(ψφ)

)
(ω) =

∫
Rd

(ψφ)(x)KT (ω, x)F (dx)

=

∫
Rd

∫
Rd
φ(y)ψ(x, y)KT (ω, x)F (dx)F (dy)

=

∫
Rd

∫
Rd

∫
Rd
φ(y)KT (x, γ)KT (y, γ)KT (ω, x)F (dx)F (dy)

×(F (dγ)− F1(dγ))

=

∫
Rd

∫
Rd
φ(y)KT (ω, γ)KT (y, γ) (F (dγ)− F1(dγ))F (dy)

=

∫
Rd
φ(y)ψ(ω, y)F (dy)

= (ψφ)(ω).

This argument shows that ψφ ∈ LΠT
(F ) for any φ ∈ LΠT

(F ). Also, observe that since

ψ(ω, λ) = ψ(λ, ω), the operator ψ is self-adjoint. This fact together with compactness of this

operator (Since ψ is a Hilbert-Schmidt operator, it is already compact, see [13], p. 1009)

enable us to use the spectral Theorem for compact normal operators (See [13], Corollary 5,
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p. 905), which we will use in the proof of the next Theorem. In fact, next theorem shows

that the first condition in Theorem 2.3.2 can be replaced by 1 /∈ σ(ψ), where σ(ψ) is the

spectrum of the operator ψ (See [13], p. 902 for definition).

Theorem 2.3.3. Two GRFs with stationary increments and spectral measures F0 and F1

with F0 satisfying the condition (C1), are equivalent on ΠT if and only if the function defined

by

ψ(ω, λ) = K0
T (ω, λ)−

∫
Rd
K0
T (ω, γ)K0

T (λ, γ)F1(dγ) (2.3.5)

belongs to LΠT
(F0)⊗ LΠT

(F0), and 1 /∈ σ(ψ).

Proof. From 2.3.2, by putting φ1 = φ2 = φ, and the definition of the operator ψ in 2.3.4, we

get

‖φ‖2F1

‖φ‖2F0

= 1−
〈ψφ, φ〉F0

‖φ‖2F0

(2.3.6)

for all φ ∈ LΠT
(F0). This simply implies that first σ(ψ) ⊆ (−∞, 1], and second there exists

a finite positive constant C such that ‖φ‖F1
≤ C‖φ‖F0

for all φ ∈ LeΠT since ψ is a bounded

operator. This fact shows that proving ψ ∈ L2(F0 ⊗ F0) is helping us to verify half of

what we need in the first condition of theorem 2.3.2 as well. What remains is to show that

1 /∈ σ(ψ) if and only if there exists a positive constant c such that ‖φ‖F0
≤ c‖φ‖F1

for all

φ ∈ LeΠT .

First, suppose that ‖φ‖F0
≤ c ‖φ‖F1

for some c > 0. If 1 ∈ σ(ψ), it means that

there exists φ ∈ LΠT
(F0) with ‖φ‖F0

= 1 such that ψφ = φ. Putting it in 2.3.6, we get

‖φ‖F1
= 0 which is contradiction. Conversely, suppose 1 /∈ σ(ψ), and also there exists a

sequence φn ∈ LeΠT such that ‖φn‖F0
= 1 for all n ≥ 1, and ‖φn‖F1

→ 0 as n → ∞.

Since ψ is a self-adjoint compact operator, by Corollary 5 p. 905 in [13], there exists a
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countable orthonormal basis for LΠT
(F0) consisting of eigenvectors of ψ, denoting them

by gj , j = 1, 2, ... with corresponding eigenvalues λj . Now, each φn has the representation

φn =
∑∞
j=1 anjgj for anj ∈ R. Putting this sequence back to the equation 2.3.6, we get

that 〈ψφn, φn〉F0
→ 1 which means

∑∞
j=1 a

2
njλj → 1 as n→∞. Now, since 1 = ‖φn‖2F0

=∑∞
j=1 a

2
nj , we can rewrite the above equation as 0 ≤

∑∞
j=1 a

2
nj(1− λj)→ 0 (This quantity

is non-negative since all the eigenvalues are bounded above by 1). Since 1 /∈ σ(ψ), and

{λj , j = 1, 2, ...} has no accumulation points in C except possibly 0 (See [13], Corollary 5

p. 905), there exists ε > 0 such that sup {λj , j ≥ 1} = 1 − ε. However, this implies that∑∞
j=1 a

2
nj(1 − λj) ≥ ε

∑∞
j=1 a

2
nj = ε for all n ∈ N, which is contradiction by the fact that

this sequence must go to 0 when n goes to ∞. This completes the proof.

Remark 2.3.2. Note that based on the proof of theorem 2.3.3, we can change the first con-

dition in theorem 2.3.2 to

(i)′ There exists a positive constant c such that ‖φ‖F0
≤ c ‖φ‖F1

for all φ ∈ LeΠT .

As lemma 2.2.3 emphasizes that the behavior of the spectral measure at origin does not

affect the structure of the space LΠT
(F ), one might expect the same formation in terms of the

equivalence of Gaussian measures. The following Theorem shows that changing the spectral

measure on bounded subsets of Rd will not affect the equivalence of the corresponding GRFs.

In other words, for checking the equivalence of GRFs, only the behavior of their spectral

measures at infinity is important.

Theorem 2.3.4. Suppose two GRFs with stationary increments have spectral measures F0

and F1 such that F0 satisfies the condition (C1), and F0 = F1 on I
c, where I is a bounded

subset of Rd. Then, these two GRFs are locally equivalent.
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Proof. Define F̃1(dλ) = 1Ic(λ)F0(dλ). First, we show that F0 and F̃1 will produce locally

equivalent GRFs with stationary increments. For that, fix T > 0. We will investigate the

equivalence of measures on ΠT . The function ψ appearing in Theorem 2.3.3 in this case is

given by

ψ(ω, λ) =

∫
I
K0
T (ω, γ)K0

T (λ, γ)F0(dγ).

Now, by Fubini’s Theorem, and the reproducing kernel property we get

‖ψ‖2F0⊗F0
=

∫
Rd

∫
Rd

∣∣∣∣∫
I
K0
T (ω, γ)K0

T (λ, γ)F0(dγ)

∣∣∣∣2F0(dω)F0(dλ)

=

∫
I

∫
I

(∫
Rd
K0
T (ω, γ)K0

T (ω, γ′)F0(dω)

∫
Rd
K0
T (λ, γ′)K0

T (λ, γ)F0(dλ)

)
×F0(dγ)F0(dγ′)

=

∫
I

∫
I

∣∣∣K0
T (γ, γ′)

∣∣∣2 F0(dγ)F0(dγ′).

Now, using Proposition 2.2.1, and the fact that
∣∣K0

T (γ, γ′)
∣∣2 ≤ K0

T (γ, γ)K0
T (γ′, γ′), we get

‖ψ‖2F0⊗F0
≤

(∫
I
K0
T (γ, γ)F0(dγ)

)2

≤ const.

(∫
I
|γ|2 F0(dγ)

)2

< ∞

by 2.2.3. This implies ψ ∈ LΠT
(F0)⊗ LΠT

(F0).

It remains to show that 1 /∈ σ(ψ). For that purpose, take an arbitrary φ ∈ LΠT
(F0), and

observe that (We use the fact that K0
T (ω, λ) = K0

T (λ, ω). See [2], p. 344 )
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(ψφ) (λ) =

∫
Rd
φ(ω)ψ(λ, ω)F0(dω)

=

∫
Rd
φ(ω)

(∫
I
K0
T (λ, γ)K0

T (ω, γ)F0(dγ)

)
F0(dω)

=

∫
I

∫
Rd
φ(ω)K0

T (λ, γ)K0
T (γ, ω)F0(dω)F0(dγ)

=

∫
I
φ(γ)K0

T (λ, γ)F0(dγ)

= πLΠT
(F0)

(
φ1I
)

(λ).

Therefore, if ψφ = φ, it implies in particular that ‖φ‖F0
≤ ‖φ1I‖F0

. This means φ = 0

almost everywhere with respect to F0 in Ic. Hence, since φ is an entire function, this implies

that φ = 0. Thus, 1 cannot be in the spectrum of ψ.

So far, we proved GRFs with spectral measures F0 and F̃1 are locally equivalent, but since

F0 = F1 on I, similarly, we can say that F1 and F̃1 produce locally equivalent GRFs. Putting

these two together, we get the desired result.

Theorems 2.3.2, and 2.3.3 give necessary and sufficient conditions for equivalence of

GRFs with stationary increments, but still verifying the conditions mentioned in these two

theorems for some concrete cases might be difficult. In the literature, there are sufficient

conditions for equivalence of certain GRFs in terms of only their spectral densities. These

conditions are easily verifiable once the two spectral densities are given. For example, we

refer to [25], theorem 17, p. 104, [37], theorem 4, and [48], theorem 4, p. 156 for stationary

GRFs, and also [44], theorem 5.3, [45], theorem 1, and [42] theorem 1 for some nonstationary

cases. Therefore, in the rest of this section, we attempt to find similar sufficient conditions

for equivalence, only in terms of the spectral measures.
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Theorem 2.3.5. Suppose that the spectral measure F0 and F1 have positive densities f0 and

f1 with respect to the Lebesgue measure, and F0 satisfies the condition (C1). If there exists

a finite constant C > 0 such that ‖φ‖F0
≤ C‖φ‖F1

for all φ ∈ LeΠT , and

∫
|λ|>k

(
f1(λ)− f0(λ)

f0(λ)

)2

K0
T (λ, λ)f0(λ) dλ <∞ (2.3.7)

for some k > 0, then GRFs with stationary increments and spectral measures F0 and F1 are

equivalent on ΠT .

Proof. Applying theorem 2.3.4, we can change the value of f1 on any bounded set, without

having any consequences on the equivalence. So, we assume here that f0 = f1 on |λ| ≤ k.

The function ψ in Theorem 2.3.3 here will be of the form

ψ(ω, λ) =

∫
Rd
K0
T (ω, γ)K0

T (λ, γ) (f0(λ)− f1(λ)) dγ

= πLΠT
(F0)

(
K0
T (ω, .)

f0 − f1

f0

)
(λ).

(observe that since
∣∣K0

T (ω, λ)
∣∣2 ≤ K0

T (ω, ω)K0
T (λ, λ), 2.3.7 implies that K0

T (ω, .)
f0−f1
f0

∈

L2(F0) for all ω ∈ Rd, and hence using the orthogonal projection makes sense). Now, it
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follows that

∫
Rd

∫
Rd
|ψ(ω, λ)|2 F0(dλ)F0(dω) =

∫
Rd

∥∥∥∥πLD(F0)

(
K0
T (ω, .)

f0 − f1

f0

)∥∥∥∥2

F0

F0(dω)

≤
∫
Rd

∥∥∥∥K0
T (ω, .)

f0 − f1

f0

∥∥∥∥2

F0

F0(dω)

=

∫
Rd

(∫
Rd
|K0

T (ω, γ)|2
(
f0(γ)− f1(γ)

f0(γ)

)2

F0(dγ)

)
×F0(dω)

=

∫
Rd

(
f0(γ)− f1(γ)

f0(γ)

)2

K0
T (γ, γ)f0(γ) dγ

=

∫
|γ|>k

(
f1(γ)− f0(γ)

f0(γ)

)2

K0
T (γ, γ)f0(γ) dγ

< ∞

by the integrability assumption 2.3.7. Hence ψ ∈ L2(F0 ⊗ F0), and this completes the

proof.

In the condition 2.3.7, in addition to the behavior of the spectral densities at infinity,

the growth rate of the diagonal elements of the reproducing kernels of the space LΠT
(F0) at

infinity is also playing an important role. Since finding explicit forms of reproducing kernels

are difficult, we need at least to find upper bounds for the growth rate of the diagonal terms.

The following condition on spectral density helps us to accomplish this task:

(C2) For spectral density f , there exist an entire function φ0 on Cd of finite

exponential type such that f(λ) � |φ0(λ)|2 as |λ| → ∞ on Rd.

As it was mentioned, condition (C2) will force an upper bound for the behavior of the

reproducing kernels on the diagonal at infinity, and the following lemma explores this fact.
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Lemma 2.3.1. Suppose f0 is a spectral density such that it satisfies (C1) and (C2) for

some entire function φ0. Then, for T > 0, there exists a finite constant C > 0 such that the

reproducing kernel K0
T of LΠT

(f0) satisfies

∣∣∣K0
T (ω, λ)

∣∣∣2 ≤ C
K0
T (ω, ω)

f0(λ)

for all real ω, and all λ large enough. In particular,

∣∣∣K0
T (λ, λ)

∣∣∣ ≤ C

f0(λ)
(2.3.8)

for all λ large enough.

Proof. The idea of the proof is similar to the one in Lemma 3 p. 57 in [45]. Put f(λ) =

|φ0(λ)|2. Since f and f0 are comparable at ∞, and f is bounded around 0, it is clear that

f is satisfying both conditions 2.2.3 and (C1). This means we can define LΠT
(f) the same

way, and this space is also a RKHS. Consider an arbitrary orthonormal basis for this space,

and denote them by ψk, k = 1, 2, ... . Now, by Lemma 2.2.2, they are entire functions on Cd

with finite exponential type which doesn’t depend on k. Further, we know ψkφ0 ∈ L2(Rd)

since ∫
Rd
|ψk(λ)φ0(λ)|2 dλ =

∫
Rd
|ψk(λ)|2f(λ) dλ = 1 <∞.

Therefore, we can apply the Paley-Wiener Theorem ([36], Theorem 3.4.2. p. 171) to get

ψkφ0 = ĝk for certain functions gk ∈ L2(B) where B is a bounded subset of Rd (Here ĥ

stands for the Fourier transform of h). By Parseval relation, we can deduce that gk’s are
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orthonormal in L2(B). It follows from Bessel’s inequality that

∑
k

|ψk(λ)|2f(λ) =
∑
k

∣∣∣∣∫
B
e−i〈t,λ〉gk(t) dt

∣∣∣∣2
≤

∫
B

∣∣∣ei〈t,λ〉∣∣∣2 dt
= m(B),

where m(B) is the Lebesgue measure of B. Therefore,

∑
k

|ψk(λ)|2 ≤ m(B)/f(λ) ≤ C/f0(λ)

for large enough λ. Now, consider the reproducing kernels of LΠT
(f0), denoting them by

K0
T (ω, .). Since f(λ) � f0(λ) as |λ| → ∞, by lemma (2.2.3), K0

T (ω, .) belong to LΠT
(f)

as well for ll ω ∈ Rd. Thus, we can expand it using the basis ψk, and get K0
T (ω, λ) =∑

k 〈K0
T (ω, .), ψk〉fψk(λ), and then by Cauchy-Schwarz and lemma 2.2.3, we get

|K0
T (ω, λ)|2 ≤ ‖K0

T (ω, .)‖2f
∑
k

|ψk(λ)|2

≤ c ‖K0
T (ω, .)‖2f0

∑
k

|ψk(λ)|2

= cK0
T (ω, ω)

∑
k

|ψk(λ)|2,

which makes the proof complete.

Theorem 2.3.5 in combination with the lemma 2.3.1 will lead to an appealing result. If

the relative difference between two spectral densities is square integrable at infinity, then the

corresponding GRFs with stationary increments will be locally equivalent. We finish this
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section by proving this fact.

Theorem 2.3.6. Suppose that the spectral measures F0 and F1 have positive densities f0

and f1 with respect to the Lebesgue measure, with f0 satisfying (C1) and (C2) for some

entire function φ0 on Cd of finite exponential type. If there exists a finite constant k > 0

such that ∫
|λ|>k

(
f1(λ)− f0(λ)

f0(λ)

)2

dλ <∞, (2.3.9)

then GRFs with stationary increments having spectral measures F0 and F1 are locally equiv-

alent.

Proof. Combine Lemma 2.3.1, and Theorem 2.3.5. The only thing we need to additionally

prove is that 1 /∈ σ(ψ). In spirit of Theorem 2.3.4, we can assume that f0 = f1 on |λ| ≤ k.

Now, take an arbitrary element φ ∈ LD(f0), and observe that using the multidimensional

Paley-Wiener Theorem ([36], Theorem 3.4.2. p. 171), we get φφ0 is the inverse Fourier

transform of a squared integrable function g with bounded support, B in Rd. This implies

that

|φ(λ)φ0(λ)|2 =

∣∣∣∣∫
B
e−i〈λ,γ〉g(γ) dγ

∣∣∣∣2
≤

∫
B

∣∣∣e−i〈λ,γ〉∣∣∣2g2(λ) dλ

=

∫
B
g2(λ) dλ

< ∞

for all λ ∈ Rd. This means φφ0 is bounded on Rd. This fact together with 2.3.9 imply that
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φ
f0−f1
f0

∈ L2(f0). Now, observe that

(ψφ) (λ) =

∫
Rd
φ(ω)ψ(λ, ω)F0(dω)

=

∫
Rd
φ(ω)

(∫
|γ|>k

K0
T (λ, γ)K0

T (ω, γ)

(
f0(γ)− f1(γ)

f0(γ)

)
F0(dγ)

)
F0(dω)

=

∫
|γ|>k

∫
Rd
φ(ω)K0

T (λ, γ)K0
T (γ, ω)

(
f0(γ)− f1(γ)

f0(γ)

)
F0(dω)F0(dγ)

=

∫
|γ|>k

φ(γ)

(
f0(γ)− f1(γ)

f0(γ)

)
K0
T (λ, γ)F0(dγ)

= πLΠT
(F0)

(
φ
f0 − f1

f0
1{|γ|>k}

)
(λ).

Now, similar to the proof of the Theorem 2.3.4, if ψφ = φ, we get that

‖φ‖F0
≤
∥∥∥φf0−f1f0

1{|γ|>k}

∥∥∥
F0

. Letting k → ∞, by the Dominated Convergence Theorem,

we get ‖φ‖F0
= 0. This implies that φ = 0. Thus, 1 cannot be in the spectrum of ψ. The

proof is complete.

2.4 Application

In this section, we apply the results in section 2.3 to some anisotropic GRFs with stationary

increments. In particular, we consider GRFs with stationary increments and spectral density

of the form

f(λ) =
1(∑d

j=1 |λj |
βj
)γ , (2.4.1)

where λ = (λ1, ..., λd) ∈ Rd\{0}, βj > 0 for all j = 1, ..., d, and γ >
∑d
j=1

1
βj

. The

latter condition guaranties the integrability condition in 2.2.3 for spectral measures (See

Proposition 2.1 in [47]). Fractal and smoothness properties of this family of spatio-temporal
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models are discussed in [47]. In order to apply the main results to this model, we need to

verify the assumptions needed. First of all, condition (C1) is obviously satisfied for spectral

densities of the form 2.4.1. Next lemma provides the proof that these spectral densities also

satisfy (C2).

Lemma 2.4.1. Spectral density functions of the form 2.4.1 satisfy condition (C2).

Proof. First of all, it is obvious that

1(∑d
j=1 |λj |

βj
)γ � 1(

1 +
∑d
j=1 |λj |

βj
)γ ,

as |λ| → ∞. Therefore, it suffices to prove the lemma for functions of the form on the right

hand side. Now, similar to the construction made in the proof of lemma 2.3 in [29], we can

find a function φ ∈ L2(B) for some bounded subset B ⊆ Rd such that

1(
1 +

∑d
j=1 |λj |

βj
)γ � ∣∣∣φ̂(λ)

∣∣∣2,

as |λ| → ∞, which φ̂ is the Fourier transform of φ. By Paley-Wiener Theorem ([36], Theorem

3.4.2. p. 171), φ̂ is actually the restriction on Rd of an entire function on Cd with finite

exponential type. Therefore, the proof is complete.

In order to apply the main results, first we consider a similar family of spectral densities

of the form

f(λ) =
1(∑d

j=1 |λj |
Hj
)Q+2

, (2.4.2)

where λ = (λ1, ..., λd) ∈ Rd\{0}, 0 < Hj < 1 for all j = 1, ..., d, and Q =
∑d
j=1

1
Hj

(See the

connection between this family and the ones of the form 2.4.1 in remark 2.2 in [47]).

29



Theorem 2.4.1. Suppose f0 and f1 are spectral densities of the form 2.4.2 with parameters

H0
j and H1

j , respectively. Then, GRFs with stationary increments and spectral densities f0

and f1 are locally equivalent if and only if H0
j = H1

j for all j = 1, ..., d.

Proof. Suppose for some k ∈ {1, ..., d}, H0
k < H1

k . By Lemma 3.2 in [47], there exist

c1, c2 > 0, such that for all t ∈ Rd

c1

d∑
j=1

|t|2H
i
j ≤ ‖et‖2fi ≤ c2

d∑
j=1

|t|2H
i
j , (2.4.3)

for i = 0, 1. If we simply choose t ∈ Rd with tk = l, and tj = 0 for j 6= k, we get

‖et‖2f1
‖et‖2f0

≤ c2
c1
l
2
(
H1
k−H

0
k

)
→ 0 as l→ 0.

This violates the necessary condition for equivalence of Gaussian measures in Theorem 2.3.1.

Therefore, the proof in complete.

Now, we go back to the more flexible spectral densities for space-time models with sta-

tionary increments given in 2.4.1. Next theorem proves that under certain conditions, the

mixture of spectral densities of the form 2.4.1 will be equivalent to the one with the lowest

decay rate at infinity. Similar results of this type for Gaussian processes can be seen in [44]

and [7].

Theorem 2.4.2. Suppose X and Y are two independent centered GRFs with stationary

increments with spcetral densities of the form 2.4.1 with parameters (βj , γ) and (β′j , γ
′),
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respectively. Then, if

γ′ >
1

2

d∑
j=1

(
1

β′j

)
+max1≤j≤d

{
βj
β′j

}
γ, (2.4.4)

then X and X + Y will be locally equivalent.

Proof. Using theorem 2.3.6, we only need to show

∫
|λ|>1

(∑d
j=1 |λj |

βj
)2γ

(∑d
j=1 |λj |

β′j
)2γ′

dλ <∞. (2.4.5)

By using the inequality (a+ b)p ≤ 2p(ap + bp), we can break the integral in 2.4.5 into d

integrals. Thus, it’s enough to show for each fixed j = 1, ..., d

Ij :=

∫
|λ|>1

|λj |
2βjγ(∑d

k=1 |λk|
β′
k

)2γ′
dλ <∞. (2.4.6)

Since |λ| > 1, this implies that |λk| > 1/
√
d for some k ∈ {1, ..., d}. We need to make two

cases. Case I is when k = j, and case II is when k 6= j. In both cases, we use the following

fact that given positive constants β and γ, and nonnegative constant b, there exists a finite

positive constant c such that for all a > 0

∫ ∞
0

xb(
a+ xβ

)γ dx = a
−
(
γ− 1

β
− b
β

) ∫ ∞
0

yb(
1 + yβ

)γ dy (2.4.7)

=


c a
−
(
γ− 1

β
− b
β

)
if βγ − b > 1,

∞ if βγ − b ≤ 1.
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First, let’s consider case I. By, applying d times the formula 2.4.7,

Ij ≤
∫ ∞

1√
d

|λj |
2βjγ

∫ ∞
0

...

∫ ∞
0︸ ︷︷ ︸

d−1

dλ(∑d
r=1 |λr|

β′r
)2γ′

≤ c′
∫ ∞

1√
d

|λj |
2βjγ(

|λj |
β′j
)2γ′−

∑
r 6=j

1
β′r

dλj

< ∞

since β′j

(
2γ′ −

∑
r 6=j

1
β′r

)
> 2βjγ + 1 due to condition 2.4.4.

Next, we consider case II, where k 6= j. Similar to case I, we use formula 2.4.7 iteratively,

but we do the integration in different order. Denote integration in λi for i 6= j, k by dλ\j,k,

and observe

Ij ≤
∫ ∞

1√
d

dλk

∫ ∞
0

...

∫ ∞
0︸ ︷︷ ︸

d−1

|λj |
2βjγ(∑d

r=1 |λr|
β′r
)2γ′

dλjdλ\j,k

≤ c

∫ ∞
1√
d

dλk

∫ ∞
0

...

∫ ∞
0︸ ︷︷ ︸

d−2

1

(∑d
r=1 |λr|

β′r
)2γ′− 1

β′j
−

2βjγ

β′j

dλ\j,k

≤ c′
∫ ∞

1√
d

1(
|λk|

β′
k

)2γ′−
2βjγ

β′j
−
∑
r 6=k

1
β′r

dλk

< ∞,

where the second and the third inequality follow since 2γ′β′j > 2βjγ + 1 and

β′k

(
2γ′ −

2βjγ

β′j
−
∑
r 6=k

1
β′r

)
> 1, respectively using the assumption 2.4.4. Therefore, the

proof is complete.

Next, we will consider similar situation as in theorem 2.4.2, but this time we put discrete
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spectral measure mixed with the ones of the form 2.4.1. For that purpose, consider discrete

spectral measure of the form

F ({−γn}) = F ({γn}) = αn, (2.4.8)

where γn ∈ Rd, αn ≥ 0, for n ≥ 1, and
∑∞
n=1

|γn|2

1+|γn|2
αn < ∞. If {γn, n = 1, 2, ...} is a

bounded subset of Rd, then in view of theorem 2.3.4, this spectral measure won’t affect the

equivalence of Gaussian measures. Therefore, we consider here only the case where |γn| → ∞

as n→∞.

Theorem 2.4.3. Let X and Y be two independent centered GRFs with stationary increments

with spectral measures FX and FY . Suppose FX has density with respect to Lebesgue measure

on Rd, denoted by f , which satisfies both conditions (C1) and (C2), and FY is a discrete

measure of the form 2.4.8. Then, if

∑
n>N

αn
f(γn)

<∞, (2.4.9)

for some N ≥ 1, then X and X + Y are locally equivalent.

Proof. First of all, using theorem 2.3.4, we can assume αn = 0 for n = 1, ..., N , without

having any consequences on the equivalence of Gaussian measures. Second, observe that for

all φ ∈ LeΠT , ‖φ‖FX ≤ ‖φ‖FX+FY
, which by remark 2.3.2, is equivalent to condition (i) in

theorem 2.3.2. All we need to prove is then to show that the function ψ in theorem 2.3.2

is in L2(f ⊗ f). For that, using Foubini’s theorem and the reproducing kernel property we
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have

‖ψ‖2f⊗f =

∫
Rd

∫
Rd

∣∣∣∣∣∣
∑
n>N

αnKT (ω, γn)KT (λ, γn)

∣∣∣∣∣∣
2

f(ω)f(λ)dωdλ

=
∑

n,m>N

αnαm

∫
Rd

∫
Rd
KT (ω, γn)KT (λ, γn)KT (ω, γm)KT (λ, γm)

× f(ω)f(λ)dωdλ

=
∑

n,m>N

αnαm|KT (γm, γn)|2

≤

∑
n>N

αn
f(γn)

2

< ∞

by the assumption 2.4.9. The proof is complete.

34



Chapter 3

Covariance Tapering for Anisotropic

Nonstationary Gaussian Random

Fields with Application to Large Scale

Spatial Data Sets

Estimating the covariance structure of spatial random processes is an important step in spa-

tial data analysis. Maximum likelihood estimation is a popular method in spatial models

based on Gaussian random fields. But calculating the likelihood in large scale data sets is

computationally infeasible due to the heavy computation of the precision matrix. One way

to mitigate this issue, which is due to Furrer et al. (2006), is to “taper” the covariance

matrix. While most of the results in the current literature focus on isotropic tapering for

stationary Gaussian processes, there are many cases in application that require modeling of

anisotropy and/or nonstationarity. In this chapter, we propose a nonstationary parametric

model, in which the underlying Gaussian random field may have different regularities in dif-

ferent directions, thus can be applied to model anisotropy. Using the theory of equivalence

of Gaussian measures under nonstationary assumption, strong consistency of the tapered

likelihood based estimation of the variance component under fixed domain asymptotics are
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derived by putting mild conditions on the spectral behavior of the tapering covariance func-

tion. The procedure is illustrated with numerical simulation.

3.1 Introduction

Spatial Statistics is nowadays a very active research field in Statistics, and has many appli-

cations in Geology, Agricultural Science, Environmental Science, Climate data, etc. [9, 41].

A common problem in this field is the estimation of the covariance structure in spatial mod-

els based on Gaussian random fields. Likelihood-based estimators are the most popular

method for estimating the covariance parameters. However, in large scale spatial data sets,

calculating the likelihood is computationally infeasible due to the heavy calculation of the

precision matrix. There are different ways to overcome this issue. The first idea is to set

the off-diagonal entries of the covariance matrix to zero, or to keep the first k subdiagonal

entries for some integer k and put the rest of them to be zero, which is called banding. In

this way, the resulting matrix becomes sparse, and one can use the existing algorithms deal-

ing with sparse matrices to handle the new covariance matrix efficiently. But, the problem

with banding is that the final covariance matrix may not be positive definite, which is a

huge drawback since all the theoretical covariance matrices must be positive definite. An

alternative approach is to multiply the covariance function by a positive definite compactly

supported correlation function. By this way, the resulting covariance matrix is again sparse,

but still positive definite. This is called covariance tapering [18]. A natural question is that

how we can use tapering to construct consistent estimates for the covariance parameters in

spatial regression models. Kaufman et al. (2008) proposed two different likelihood-based

estimations of the parameters in the Matern covariance function, and proved the strong con-
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sistency of the estimates using the results in the equivalence of stationary Gaussian measures

[37]. See also [12] for more results in the asymptotics of tapered maximum likelihood esti-

mators. There are two strong assumptions under which the consistency is proved, isotropy,

and stationarity of the underlying Gaussian random field. However, there are many cases

in application in which the data sets resemble anisotropy and nonstationarity. There have

been interests in general (not necessarily in the context of covariance tapering) for dropping

these conditions in spatial modellings (See [11], and [1]). In this chapter, we relax both of

these conditions simultaneously. For that purpose, in section 3.2, we introduce a class of

parametric models for spatial modeling which are anisotropic and non-stationary. In section

3.3, we state the main result of the paper which is deriving strong consistency of the tapered

likelihood-based estimates of the variance parameter. In the last section, we demonstrate

the procedure proposed here via numerical simulation.

3.2 Preliminary

In this section, we introduce a class of Gaussian random fields which can be used as spatial

models. Any Gaussian field model needs a mean structure and a covariance structure to

be uniquely defined. However, finding new models for covariance structure might be hard

since one can only choose covariance structures from the family of positive definite func-

tions and it is complicated to verify the positive definiteness. An alternative is to use the

spectral representations of positive definite functions or variograms. We consider here specif-

ically Gaussian field models with stationary increments. By applying the results in [49], the

covariance functions of Gaussian random fields with stationary increments on Rd can be de-

termined by a symmetric non-negative measures on Rd \ {0} satisfying certain integrability
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condition (See e.g., [47] for more details). This measure is called spectral measure. If this

measure is absolutely continuous with respect to Lebesgue measure on Rd, we will call its

Radon-Nikodym derivative the “spectral density”.

Now, we propose the following spectral density:

f(λ) =
σ2(

1 +
∑
j |λj |

Hj
)Q+ν

(3.2.1)

where λ = (λ1, ..., λd) ∈ Rd , Q =
∑d
j 1/Hj , and σ2, ν and Hj ’s are all positive parameters.

σ2 is the variance component, and Hj ’s are related to the smoothness of the model in

different directions. Figures 3.1 and 3.2 are realizations of such a Gaussian field over the

two-dimensional grid [0, 1]2 with increments of 0.02 with parameters H1 = 1.5, H2 = 3, and

ν = 0.4.

Having different parameters, Hj , j = 1, ..., d, for different components of λ ∈ Rd, allows

the underlying random field to have different regularities in different directions, and therefore,

this model is able to capture anisotropy appearing in spatial data sets. (See more about

fractal and smoothness properties of these models in [47]. See also [43]).

3.3 Main Result

In this section, we state the main result of the article, which is the consistency of the tapered

likelihood estimation of the variance parameter σ2 in the model introduced in the last section

under the fixed domain asymptotics. The following theorem, shows how to get equivalent

Gaussian measures in tapering set up, which is necessary in proving strong consistency, by

putting mild conditions on the spectral behavior of the tapering covariance function.

38



Figure 3.1 3D Simulated Surface on [0, 1]2 with increments 0.02

Theorem 1. Suppose {Z(t), t ∈ T}, where T ⊆ Rd is a mean zero Gaussian random field

with stationary increments, and the spectral density of the form 3.2.1 for some positive con-

stants σ2, ν, and Hj, j = 1, ..., d. Let’s denote the covariance function of the process by

K0(x). If K1(x) = K0(x)Kt(x) where Kt(x) is a correlation function, and its Fourier trans-

form exits and satisfies the following condition:

ft(λ) ≤ M(
1 +

∑
j |λj |

Hj
)Q+ν+ε

(3.3.1)

for some ε > max{Q/2, 1/min{Hj/2}}, and M > 0. Now, if Hj > 1, j = 1, ..., d, then the

Gaussian measures induced by K0 and K1 will be equivalent on the paths of {Z(t), t ∈ T}
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Figure 3.2 2D Projection of the Simulated Surface on [0, 1]2 with increments 0.02

for any bounded subset T ⊂ Rd.

Remark 1. Proof of this theorem is similar to that of Theorem 1 in [28]. However, due to

the nonstationarity assumption, it relies on the study of the equivalence of Gaussian random

fields with stationary increments, which is discussed in details in the second chapter.

Suppose one observes the random process at locations sj ’s j = 1, ..., n on some bounded

domain in Rd, and Kt(x) is the tapering covariance function. Fix a tapering parameter

γ > 0. Define the tapering matrix T (γ) to be T (γ)ij = Kt(‖si − sj‖; γ). This means that

if ‖si − sj‖ > γ, then T (γ)ij = 0. Denote the true covariance matrix of the process by

Σ(θ). Now, the idea of tapering is to use Σ(θ) ◦ T (γ) as the new covariance matrix in the
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likelihood of the process. Here, ◦ means the element wise matrix product. Therefore, the

Tapered Maximum likelihood estimator (Tapered MLE ) of σ2 will be:

σ̂2
t = argmax

σ2 Tapered likelihood

= argmax
σ2

(
−1

2
log |Σ(θ) ◦ T (γ)| − 1

2
Z ′(Σ(θ) ◦ T (γ))−1Z

)
,

where Z is the vector of observed values of the random field at the specified locations.

Evaluating the inverse of Σ(θ)◦T (γ) is much faster than Σ(θ) in many cases, especially with

large n. This is the benefit of using Tapered MLE. However, this estimator might be biased

in general. In [28], another estimator based on the same idea of tapering is presented which

is unbiased. We call it here the Adjusted Tapered MLE, and it is defined as follows:

σ̂2
adj. = argmax

σ2 Adjusted tapered likelihood

= argmax
σ2

(
−1

2
log |Σ(θ) ◦ T (γ)| − 1

2
Z ′
(

(Σ(θ) ◦ T (γ))−1 ◦ T (γ)
)
Z

)
.

We will see in section 4 that the Adjusted Tapered MLE performs better comparing to the

Tapered MLE due to its unbiasedness. Theorem 1 is the key part in proving the consistency

of the tapered maximum likelihood estimators for the variance component (σ2). The outline

of the proof is similar to Theorem 2 in [28], and also it relies on the above theorem. We omit

the proof here.
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3.4 Simulation Results

In this section, we illustrate the methods discussed in previous parts by applying them into

some simulated spatial data sets. For this purpose, we simulated 1000 data sets, each con-

sisting of a multivariate Gaussian vector of length 14×14. The locations are two-dimensional

grid over [0, 1]2 with increments 0.07. We added a random noise in each coordinate, uni-

formly distributed on [−0.01, 0.01]. We used the spectral density 3.2.1 to generate the normal

vector with H1 = 1.5, H2 = 2, ν = 0.5, and σ2 = 1. Figure 3.3 shows a simulated surface

using the above parameters over the specified grid.

Figure 3.3 Simulated Surface on [0, 1]2 with increments 0.07

We used the same tapering function used in [28] with different tapering parameter γ =
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0.7, 0.4, 0.2, respectively. We applied three diferent estimators for estimating σ2: MLE,

Tapered MLE and Adjusted Tapered MLE (See [28] for details.). Table 3.1 shows the results

for this procedure for different tapering parameters. The values in the table are the averages

of the estimated value over the 1000 repetitions with their standard errors in the bracket.

As it was expected, by decreasing the tapering parameter, the Tapered MLE becomes more

and more biased. However, the Adjusted Tapered MLE is almost unbiased regardless of the

changes in the tapering parameter.

Table 3.1 Results for estimation of σ2

σ̂2 γ = 0.7 γ = 0.4 γ = 0.2
MLE 0.999(0.10) 0.999(0.10) 0.999(0.10)

Tapered MLE 0.437(0.06) 0.409(0.07) 0.400(0.17)
Adjusted Tapered MLE 1.025(0.53) 1.019(0.47) 1.031(0.61)

Simulations show that comparing to MLE, Adjusted Tapered MLE is a good alternative

for estimating the covariance parameters in spatial data analysis, and it is computationally

feasible. Further, this method has the potential to be generalized to more complicated

models which have nonstationarity and anisotropy.

There are other methods dealing with covariance estimation in large spatial data sets.

For example, in [11], nonstationary spatial models are defined through some fixed basis

functions, and then weighted least squares method (rather than the MLE approach) is chosen

for covariance parameter estimation with the emphasis of finding the best linear unbiased

prediction (BLUP).
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Chapter 4

Spatial factor models and dimension

reducing Gaussian predictive

processes for high dimensional

remotely sensed data and forest

variables

Combining spatially-explicit long-term forest inventory and remotely sensed information

from Light Detection and Ranging (LiDAR) datasets through statistical models can be

a powerful tool for predicting and mapping above-ground biomass (AGB) at a range of

geographic scales. We present and examine a novel modeling approach to improve prediction

of AGB using LiDAR data. More specifically, we introduce a multivariate spatial regression

model in which both LiDAR data and AGB play as target variables. There are two sources

of computational infeasibility in the proposed model which need to be addressed. First, the

number of target variables are too high since we put both LiDAR and AGB simultaneously

(In our real dataset, we have more than 100 LiDAR data points at different heights for each

location). Second, the number of locations are also too high (more than 451 locations in our
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data).In other words, dimension reduction is needed in two aspects: (i) the length of the

vector of outcomes, and (ii) the very large number of spatial locations. We use spatial factor

modeling for the first aspect, and low-rank spatial processes for the second one. Latent

variable (factor) models are usually used to address the large vector of outcomes, and low-

rank spatial processes offer a rich and flexible modeling option for dealing with a large

number of locations.

We introduce the model in the first section, and it is followed by a brief discussion on the

identifiablility issue of the model in section 4.2. Preparation for the Bayesian hierarchical

framework for the estimation and prediction is done in sections 4.3, 4.5 and 4.6. In section 4.4,

we explain in detail the low-rank spatial processes chosen here to reduce the computational

time. We finish this chapter by a simulation study and real data analysis.

4.1 Model

The following hierarchical factor model is considered

z(s)

y(s)

 =

 x(s)′β

xy(s)′η

+

A 0

α′f αν


f(s)

ν(s)

+

εz(s)
εy(s)

 (4.1.1)

where z(s) is m×1 vector, y(s) ∈ R, x(s) is t×m set of covariates for the high-dimensional

signal z(s), xy(s) is r×1 vector of covariates for the target variable y(s), β and η are t×1 and

r× 1 vectors of parameters, respectively. A is m× q matrix of factor loadings with elements

satisfying a1j > 0 ∀j = 1, ..., q. α′f = (αf,1, αf,2, ..., αf,q) is a 1 × q vector of coefficients,

and αν > 0. Also, f(s) = (f1(s), f2(s), ..., fq(s))
′ where each fj(s) follows an independent
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spatial GP (0, Cj(s1, s2; θj)) with unit variance, and ν(s) follows a GP (0, Cj(.; θν)) with unit

variance and independent from all f ′js. εz(s) and εy(s) are N(0,Σεz := diag(τ2
1 , ..., τ

2
m)) and

N(0, τ2
y ) where τ2 and τ2

y are representing the usual geostatistical nuggets for predicting z(s)

and y(s), respectively.

In this model, z(s) represents the LiDAR data, y(s) is the biomass, and fj(s)’s are the

factors with the total number of q factors.

4.2 Identifiablity Issue

Define Λ :=

A 0

α′f αν

, and ω(s) :=

f(s)

ν(s)

. The indentifiability issue in model 4.1.1

relates to the existence of an (q + 1)× (q + 1) orthogonal matrix P (i.e. P ′P = PP ′ = Iq)

such that P ′w(s) has the same covariance structure as w(s). Following the argument in

[35], the only possible matrices in this case are the ones whose entries are in {−1, 0, 1} with

exactly one nonzero element in each row and each column. In other words, changing the

sign of some of the components in w(s), and permuting some of the elements in w(s) are the

only two groups of transformations which can lead to another Gaussian random field with

the same distribution as w(s). Both cases need to be handled in order to have an identifiable

model. The first group can be prevented by putting constrain on the sign of the parameters

involved in Λ. To be precise, at each column in Λ, the sign of one of the elements needs to

be fixed. Here, we have positive elements in the first row of A with αν > 0, which together

will solve the first part. Switching the orders of the elements in w(s) can be prevented by

putting constrain on the priors related to the covarince parameters in f(s) and ν(s), which

will be addressed in the next section.
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4.3 Prior Specification

We put a multivariate normal prior on the mean parameters β and η, with mean µβ and µη,

and variance Σβ and Ση, respectively ( we will consider a flat prior, i.e. Σ−1
β = Σ−1

η = 0, and

also µβ = µη = 0 ). Both nugget effects τ2 and τ2
y are assigned Inverse Gamma distribution

IG(a, b) with choices of a = 2 for having an infinite variance and b = 5. All the parameters

in the matrix Λ are considered to be independent normal random variables or truncated

normal random variables depending on whether their sign are determined beforehand. More

precisely, aij ∼ N(0, c2a) for i 6= 1, αf,i ∼ N(0, c2α) for i = 1, ..., q, and a1i ∼ N(0, c2a)I(a1i >

0) for i = 1, ..., q, and αν ∼ N(0, c2a)I(αν > 0). Correlation functions related to f ′js and ν

are considered to be exponential correlation function, i.e. cov(fj(s), fj(t)) := ρj(s, t;φj) =

exp(−φj ‖ s−t ‖) for j = 1, ..., q, and also cov(ν(s), ν(t)) := ρν(s, t;φν) = exp(−φν ‖ s−t ‖).

Because of identifiability issue discussed in section 4.2, we construct a joint distribution for

the φ′js to ensure ordering. In particular, we set

π(φ) = π(φ1)π(φ2 | φ1)...π(φq | φq−1, ..., φ1) (4.3.1)

where π(φ1) is a uniform density with support (φl, φu) with φl = − log(0.05)/dmax and

φu = − log(0.01)/dmin, where dmin and dmax are the minimum and maximum distance

across all the locations, and for j = 2, 3, ..., q

π(φj | φj−1, ..., φ1) ∝ exp

(
−

cj
φj − φj−1

)
I(φj−1 < φj < φu). (4.3.2)

Based on the discussion in [35], we fix cj = 2j as a reasonable choice. Also, φν ∼

uniform(φl, φu).
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4.4 Approximation using Gaussian predictive processes

Due to computational burden, we need to replace the random effects f(s) and ν(s) by a

low-rank approximation of them. One way to address this issue is to project the mentioned

Gaussian random fields into the space generated by them at certain locations, called “knots”

(We refer to [4] and [16] for the complete discussion on Gaussian predictive processes).

Suppose S∗ = {s∗1, ..., s
∗
n∗} is the set of knots considered for approximating both fields f(s)

and ν(s). We replace f(s) and ν(s) with f∗(s) and ν∗(s) with the following details. Define

the Gaussian field

f̃∗k (s) ∼ N
(
f∗k (s), σ∗k

2(s)
)

(4.4.1)

where

f∗k (s) := dk(s;φk)′D∗k(φk)−1fk(S∗), σ∗k
2(s) := 1− dk(s;φk)′D∗k(φk)−1dk(s;φk), (4.4.2)

and

ν̃∗(s) ∼ N
(
ν∗(s), σ∗ν

2(s)
)

(4.4.3)

where

ν∗(s) := dν(s;φν)′D∗ν(φν)−1ν(S∗), σ∗ν
2(s) := 1− dν(s;φν)′D∗ν(φν)−1dν(s;φν), (4.4.4)

and dk(s;φk) is an n∗ × 1 vector whose ith element is ρk(s, s∗i ;φk), D∗k(φk) is an n∗ × n∗

covariance matrix whose (i, j)th entry is ρk(s∗i , s
∗
j ;φk), fk(S∗) is an n∗ × 1 vector with

elements as the evaluation of the field fk at the knot points. The case for ν(s) is exactly

similar to the fields f ′ks by just simply replacing the index k by ν. After this replacement,
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model 4.1.1 can be written as

z(s)

y(s)

 =

 x(s)′β

xy(s)′η

+

A 0

α′f αν


f∗(s)
ν∗(s)

+

ε∗z(s)
ε∗y(s)

 (4.4.5)

where f∗(s) = (f∗1 (s), f∗2 (s), ..., f∗q (s))′, ε∗z(s) ∼ N(0,Σε∗z(s) := AΣ
f̃∗A

′ + Σεz ), and ε∗y(s) ∼

N(0, σ2
ε∗y(s)

:= α′fΣ
f̃∗αf + α2

νσ
∗
ν

2(s) + τ2
y ) with Σ

f̃∗ to be a q × q diagonal matrix with

diagonal elements σ∗k
2(s), k = 1, ..., q.

4.5 Data equation

Let

Y (s) =

z(s)

y(s)

 , X ′(s) =

x(s)′ 0

0 xy(s)′

 , b =

β
η

 ,

ω∗(s) =

f∗(s)
ν∗(s)

 , ε(s) =

ε∗z(s)
ε∗y(s)

 . (4.5.1)

Now, the model can be written as

Y (si) = X(si)b+ Λω∗(si) + ε(si) (4.5.2)

for i = 1, ..., n. Also, the matrix form of the model is

Y = Xb+ Λω∗ + ε (4.5.3)
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where

Y =


Y (s1)

...

Y (sn)

 , X =


X(s1)

...

X(sn)

 ,Λ =


Λ 0

. . .

0 Λ

 ,

ε =


ε(s1)

...

ε(sn)

 , ω∗ =


ω∗(s1)

...

ω∗(sn)

 . (4.5.4)

Here, ω∗ ∼ N(0,Σω∗), and ε ∼ N(0,Σε),

Σε =


Σε(s1) 0

. . .

0 Σε(sn)

 ,Σω∗ =


Σω∗(s1) 0

. . .

0 Σω∗(sn)

 (4.5.5)

with

Σε(si)
=

Σε∗z(si)
0

0 σ2
ε∗y(si)

 ,Σω∗(si) =

Σf∗(si) 0

0 σ2
ν∗(si)

 (4.5.6)

where Σf∗(s) is a diagonal matrix with diagonal elements dk(s;φk)′D∗k(φk)−1dk(s;φk), and

σ2
ν∗(s) = dν(s;φν)′D∗ν(φν)−1dν(s;φν).

4.6 Computations

The first step for computation purposes is to find the full conditionals of the parameters

involved in the model.
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4.6.1 Updating the mean part b

The posterior of β follows Nt

(
µ̃β , Σ̃β

)
with:

Σ̃β =

(
Σβ
−1 +

n∑
i=1

x(si)Σ
?(si)x(si)

′
)−1

(4.6.1)

and

µ̃β = Σ̃β

(
Σβ
−1µβ +

n∑
i=1

x(si)Σ
?(si) (z(si)− Af(si))

)
, (4.6.2)

where Σ?(s) is an (m)×(m) diagonal matrix with j-th diagonal element τ−2
j for j = 1, ...,m.

The posterior distribution of η follows a Nr

(
µ̃η, Σ̃η

)
with:

Σ̃η =

(
Ση
−1 +

n∑
i=1

xy(si)xy(si)
′/τ2

ν

)−1

(4.6.3)

and

µ̃η = Σ̃η

(
Ση
−1µη +

n∑
i=1

xy(si)τ
−2
ν (y(si)− λνω(si))

)
, (4.6.4)

where λν is the last row of the matrix Λ.

4.6.2 Updating ω?

ω? consists of two main components: f? and ν?, and they will be updated similarly. For

k = 1, ..., q, f?k will follow a Nn?

(
µ̃f?
k
, Σ̃f?

k

)
with:

Σ̃f?
k

= D?
k(φk)

(
D?
k(φk) +Dk(φk)′Σfk(φk)−1Dk(φk)

)−1
D?
k(φk) (4.6.5)
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and

µ̃f?
k

= Σ̃f?
k
D?
k(φk)−1Dk(φk)′Σfk(φk)−1fk, (4.6.6)

where Σfk
(φk) is an n? × n? diagonal matrix whose j-th diagonal element is σ?k

2(s?j ), and

Dk(φk) is the covariance matrix between the observation locations and the knots for the

k-th factor fk.

4.6.3 Updating the loading factors Λ

For j = 2, ...,m, the full conditionals for the j-th row of Λ follows Nq(mj , Kj), where

K−1
j = c−2

a Iq + τ−2
j

(
F ′F

)
(4.6.7)

and

mj = τ−2
j KjF

′(zj − µj), (4.6.8)

where F = (f(s1), ..., f(sn))′, and µj is the mean vector of zj . The first row of Λ is normal

distribution truncated at 0 with mean m1 and variance K1. The last row of Λ follows

Nq+1(mν , Kν) with:

K−1
ν = c−2

a Iq+1 + τ−2
ν

(
W ′W

)
(4.6.9)

and

mν = τ−2
ν KνW

′(y − µy), (4.6.10)

where W = (ω(s1), ..., ω(sn))′, and µy is the mean vector of yj . The last element of this row

is truncated at 0.
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4.6.4 Updating the nuggets τ

For j = 1, ...,m, the full conditional distribution of τ2
j will be Inverse Gamma with shape

parameter a+ n/2, and scale parameter b+ 1
2

(
zj − µj − Fλj

)′(
zj − µj − Fλj

)
where λj

′ is

the j-th row of the matrix Λ. τ2
ν will be also Inverse Gamma with the same shape parameter,

but with scale parameter b+ 1
2(y − µy −Wλν)′(y − µy −Wλν) where λν

′ is the last row of

the matrix Λ.

4.7 Simulations

We illustrate the performance of the model using a simulation study. Here, we generated

data over 256 locations across a [0, 50]× [0, 50] square using the following parameters:

b =


5

10

12

 ,Λ =


2 1 0

−1 2 0

1 −1 2

 , φ =


0.1

0.4

0.12

 ,Σε =


2 0 0

0 5 0

0 0 1

 .

In this simulation, t = r = 1 and m = q = 2. We used Gaussian predictive processes

to reduce the computation time by selecting 81 knots. Table 4.1 shows the parameter

estimates together with their credible interval. In can be observed from this table that all

the true parameter values are within their 95% credible interval calculated by the posterior

distributions.
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Table 4.1 Parameter estimates with their 95% credible intervals

parameter true value estimate credible interval

β1 5 6.278622 (4.213607,8.506537)
β2 10 9.152451 (8.141619,10.197632)
η 12 12.13515 (10.67103,13.93106)

τ2
1 2 1.7069400 (0.9133798,2.6578697)

τ2
2 5 2.6038261 (0.8570427,6.4833734)

τ2
ν 1 1.4963317 (0.7562288,2.4505370)

Λ1,1 2 2.235054 (1.418790,2.978264)
Λ1,2 1 0.6389909 (0.2377660,1.4958831)
Λ2,1 -1 -1.0007031 (-1.8632592,-0.3081513)
Λ2,2 2 2.371756 (1.055427,2.886742)
Λ3,1 1 0.6106929 (-0.1468869,2.2537335)
Λ3,2 -1 -0.8785957 (-1.3010258,-0.5326576)
Λ3,3 2 2.430128 (1.571113,3.469093)

φ1 0.1 0.06601322 (0.04838031,0.12743472)
φ2 0.4 0.6352006 (0.3916554,0.8975183)
φν 0.12 0.08413867 (0.04986396,0.19860435)

4.8 Real Data Analysis

In this section, the proposed model is assessed using LiDAR data acquired from NASA God-

dards LiDAR, Hyper-spectral & Thermal imager and field inventory data from the Penobscot

Experimental Forest in Bradley, Maine (NASA Goddards LiDAR, Hyper-spectral, and Ther-

mal (G-LiHT) imager 28 is an air-borne platform developed, in part, to examine how future

space-originating LiDAR, e.g., ICESat-2, 29 GEDI, or other platforms, may be combined

with field-based validation measurements to build predictive models for AGB and other for-

est variables; See [3] and [8] for more information). The dataset consist of two parts: (i)

biomass measurements for over 451 locations, and (ii) LiDAR signal data observed at more

than 100 different heights in more than 5000 locations including those we have their biomass

(AGB) measurements. Figure 4.1 plots the Penobscot Experimental Forest together with

the AGB measurements.
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Figure 4.1 AGB measurements from the Penobscot Experimental Forest in Bradley, Maine

We only used the portion of the data in which we have both AGB measurement and

LiDAR data for the analysis so that we would be able to use the multivariate model proposed

in this chapter for data fitting. This portion consists of 451 locations with 64 outcome

variables (63 from the LiDAR data, and one from the AGB). The maximum number of factors

is set to be 10. The stochastic factor selection is done similarly as in [35] by putting Bernoulli

priors on keeping each factor in the model independently (See section 2.3 in [35] for more

explanation on the adaptive Bayesian factor selection). Further, 100 knots are chosen for the

low-rank Guassian predictive processes approximation. We used 20,000 MCMC iterations,

including 2,000 samples for burn–in. Table 4.2 summarizes the fitted model which includes
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some of the parameter estimates with their credible intervals. Out of all the 10 factors, factor

# 5 was not selected in the stochastic selection procedure we have chosen in our model. One

could observe the wide credible interval for the coefficient αf,5 as compared to all the other

factor loadings as a sign of its corresponding factor not being selected. Moreover, figure 4.2

shows both the real data and the fitted values coming from the fitted model. Also, in figure

4.3 one can see the fitted values for the LiDAR data at several different locations.

Figure 4.2 Fitted plot of AGB measurements together with the observed values
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Figure 4.3 LiDAR data with fitted values and credible bands
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Table 4.2 Parameter estimates with their 95% credible intervals

parameter estimate credible intervals

η0 0.9912472 (0.9559148,1.0267694)

τ2
y 0.1186832 (0.1039515,0.1366400)

αf,1 0.1887652 (-0.2071523,0.5462206)
αf,2 -0.1370774 (-0.4929575,0.1614393)
αf,3 0.0883730 (-0.16048225,0.32833808)
αf,4 0.0604460 (-0.16171807,0.27297671)
αf,5 -0.016114 (-6.11216314,6.18284331)
αf,6 -0.021537 (-0.24357843,0.08823335)
αf,7 0.0242004 (-0.13238865,0.18407468)
αf,8 -0.115645 (-0.30288243,0.01502838)
αf,9 0.1121742 (-0.2331279,0.2656526)
αf,10 -0.165493 (-0.2868342,0.1519692)
αf,ν 0.112052 (0.005656521,0.357829027)

φ1 0.7551075 (0.7501629,0.7775895)
φ2 0.9855927 (0.9161703,1.0884193)
φ3 1.375376 (1.211139,1.602903)
φ4 2.140675 (1.734234,2.813785)
φ5 14.867140 (3.371117,35.734567)
φ6 31.397823 (5.248678,53.407113)
φ7 46.783236 (8.355846,67.885794)
φ8 61.83730 (18.15725,81.25511)
φ9 77.90531 (35.90097,91.89012)
φ10 95.05987 (55.68514,99.91256)
φν 0.7620842 (0.7504561,0.8102750)
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