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ABSTRACT

THE PERFORMANCE OF MULTIPLE PENDULUM VIBRATION ABSORBERS
APPLIED TO ROTATING SYSTEMS

By

Chang-Po Chao

A centrifugal pendulum vibration absorber (CPVA) is a device used for reducing
torsional vibrations in rotating machinery. It consists of a movable mass, the cen-
ter of gravity of which is restricted to follow a prescribed path. When this path is
properly designed, the motion of the CPVA is tuned so as to generate a torque that
reduces torsional vibrations. CPVA’s are currently widely employed to suppress tor-
sional vibrations in light aircraft engines, and are receiving attention in experimental
automotive studies.

Existing CPVA designs are based on several assumptions, including the following
two: First, for a multiple-absorber system, the set of identical absorbers moves in
unison, and, second, the absorber paths are manufactured exactly as designed. The
present study aims to re-assess absorber performance in terms of relaxing these two
assumptions. This necessitates consideration of the nonlinear dynamics of mulitple-
CPVA systems.

This study starts with an overview of the operation of CPVA’s and a description
of some existing CPVA designs. A mathematical model is then derived that captures
the nonlinear dynamics of a multi-absorber/rotor system response. Using a generic
methodology which combines asymptotic techniques (averaging) and bifurcation the-
ory, the mathematical model is analyzed for two representative absorber systems:

tautochronic and subharmonic. Analysis is first conducted for the tautochronic sys-



tem, which enables one to: (1) predict the instability /bifurcation point of the unison
motion, (2) investigate the dependence of the post-critical dynamics on various sys-
tem parameters, and (3) assess the absorber performance in terms of two quantitative
measures: the rotor acceleration and the feasible range of the applied torque. A sim-
ilar analysis is carried out for system comprised of multiple pairs of subharmonic
absorbers. In addition, uncertainties and intentional mistuning are incorporated into
the absorber path configurations, which permits one to consider design robustness
issues. It is found that the system dynamics and absorber performance measures are
accurately predicted by the analyses, as verified by extensive numerical simulations
for both absorber systems. Based on these predictions, design guidelines are distilled

for various system parameters, including absorber damping, the number of absorbers,

and intentional mistuning of the path.
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CHAPTER 1

INTRODUCTION

Torsional vibrations in rotating systems are induced primarily by torques trans-
mitted to a rotor from forces applied to attached components. For example, in
internal combustion (IC) engines, cylinder gas pressure, friction and slider-crank in-
ertia cause these torques, while in helicopter rotors aerodynamic loads on blades are
the primary source. These torsional vibrations can propagate through the system
and often cause fatigue and NVH (Noise, Vibrations and Harshness) difficulties. A
centrifugal pendulum vibration absorber (CPVA) is a device used for reducing these
torsional vibrations. It consists essentially of a mass that is restricted to move along
a prescribed path relative to the base rotating system. The absorber is driven by the
centrifugal field generated by rotation, and its motion provides a restoring torque
which is designed to reduce torsional vibrations of the rotating system.

CPVA'’s were invented for the use in internal combustion engines as early as
1929 [5) and have been successfully employed to suppress torsional vibrations in light
aircraft engines [27]. A number of previous works have concentrated on sizing the
absorber inertia and designing the absorber path by analyzing the linear or nonlinear
dynamics of the absorber system under a given order of excitation. All these designs
are based on the following two assumptions: FIRST, each absorber system consists
of only a single dynamic mass; SECOND, the absorber paths are exactly tuned and
manufactured exactly as desired. The present study aims to re-assess the absorber
performance along the lines of relazing these two assumptions.

This chapter starts with an elaboration of the operation of CPVA'’s in section 1.1.

In section 1.2, previous designs of the CPVA’s are described in order to motivate the

1
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objectives of the present study, which are described in section 1.3. Finally, the

organization of the rest of this dissertation is outlined in section 1.4.
1.1 Operation of CPVA’s

In a reciprocating internal combustion engine, combustion in the cylinders and in-
ertial loads of the connecting rods and pistons generate oscillatory torques and forces
that act on the crankshaft. These result in torsional oscillations of the crankshaft,
which lead to several undesirable consequences, including vibration excitation of aux-
iliary components and fatigue failure. Several options are available to remedy this
problem, including the addition of flywheels [60], torsional friction dampers [42, 27],
or tuned vibration absorbers [44, 27]. These devices offer effective means of vibration
reduction for rotating machines, and have the benefit of operating in an open loop
manner, thus achieving a cost-favorable solution when compared to systems which
employ sensors and actuators. However, each also has some shortcomings. The ad-
dition of a flywheel increases the total mass and rotational inertia of the system,
thereby reducing system responsiveness. Torsional friction dampers consume energy
and generate heat. Conventional tuned vibration absorbers that use elastic elements
can be tuned only to a single frequency, and therefore are not useful except at one
rotation rate, and may lead to detrimental effects at other rotation rates. Centrifu-
gal pendulum vibration absorbers have many desirable features when compared to
these solutions. Their main drawback is system complexity in terms of the number
of moving components required.

In the following the basic operation of CPVA'’s is described through a particular
implementation. The favorable features of the CPVA are then compared to the
aforementioned devices.

Figure 1.1 shows one type of physical realization of CPVA’s using a carrier assem-

bly which, in application, is bolted onto a crankshaft at some location. This general



Figure 1.1: The CPVA carrier assembly from the cross-section view

configuration was employed by Borowski et al [3] for an experimental study on an
automotive engine. This carrier contains three bifilar pendulums [27] which move
relative to the carrier along a prescribed path as t}le crankshaft rotates. By using
identical contact curves cut on the carrier and the absorber masses and using the
circular rollers between them, the CPVA masses undergo pure translation relative to
the carrier. Their centers of gravity (C.G.) will follow the path shown in Figure 1.1,
which can be specified by the shape of the contact curves on the CPVA’s and the
carrier. Note that due to the pure translation of the CPVA’s, the dynamic effect of
the CPVA'’s on the crankshaft is equivalent to that of point masses moving along the
the C.G. paths as shown in Figure 1.2, while their moments of inertia about their
own C.G.’s simply add to the overall moment of inertia of the rotating system. As
the CPVA'’s are driven by the rotation of the carrier, their motions provide restoring
torques on the carrier which, when the absorber C.G. paths are properly designed,
reduce the level of torsional oscillations of the crankshaft.

In the absorber configuration in Figure 1.1, the absorbers are used to replace



The rotor
Applied Torque

Absorber mass

Vertex of the Path
Absorber path

Figure 1.2: The Schematic diagram for the CPVA’s and the rotor
from the cross-section view.

the usual counterweights, and can thus be implemented without increasing the net
mass or moment of inertia of the crankshaft. Hence, the absorber is considered to
be favorable over a heavy flywheel for reducing torsional oscillations. In addition,
since an insignificant amount of energy dissipated from the dynamic contact between
the absorbers, rollers and the carriers, the absorber system generates much less heat
than a friction damper during operation. Most importantly, the oscillating frequency
of the CPVA can be tuned, by proper design of the paths, to be the same as that of
the applied torque over a continuous range of rotation speeds, such that it renders
much more efficient reduction on torsional vibrations than elastic, tuned vibration
absorbers. The mechanism behind this favorable property of the CPVA is further
elaborated in the following paragraph.

In most applications, the input torque for a rotating system can be considered as
a nominal constant torque, which keeps the system running at a nominally constant
speed, (2, plus a periodic fluctuating part whose base frequency is n times that of
rotating system rotation; i.e., n{). Such a torque is referred to as a torque of order n,

and this torque is typically approximated by its low-order harmonic components. As
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shown in the derivation of the equations of motion for the CPVA system, one has the
freedom to tune the linear oscillating frequency of the CPVA (the frequency of small
amplitude motion) to nQ by designing the radius of curvature in the neighborhood of
the path vertices. This unique feature of the CPVA is critical since, as the speed of
the system varies, the torque generated by the motion of the CPVA always contains
the frequency n(Q, which is used to counteract that of the fluctuating component of

the applied torque at all speeds.

1.2 History and Literature Review

For a thorough history of the CPVA up to 1960, one can refer to [27]. A brief
history including designs of interests for the present study is provided herein for a
better understanding of the content of this dissertation.

In the earliest stage of CPVA development, tmplementation of the CPVA
into the assembly of rotating systems drew the most attention. The first conceptual
design of these absorbers can be dated back to 1911 when Kutzbach (as referred to
Wilson in [27]) proposed a special mechanical arrangement which consists of moving
fluid in U-shaped channels mounted in some component of the rotating system.
Carter [5] in 1929 introduced a assembly consisting of absorber masses in roller-
forms in a British Patent. In 1930, Meissner first demonstrated the effectiveness of
the CPVA via experiments in a conference paper [33]. This study started an intensive
development of CPVA arrangements over the next ten years in Europe. This included
various inventions of the bifilar-and-roller suspensions of CPVA'’s by Sarazin [50, 51]
and Salomon [49]. The Chilton and Reed Propeller Company [9] was also granted
a patent in 1935 for a particular bifilar suspension system applied to radial aero-
engines, which is believed to be the first implementation of the bifilar CPVA in
industry. In the United States Taylor [61] introduced the CPVA in order to eliminate

torsional vibrations of geared radial aircraft-engine-propeller systems. Moore [38]
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in 1942 realized a design of the CPVA by incorporating it into the assembly of a
crankshaft for various applications. Only the use of CPVA'’s allowed for the practical
implementation of the light, but powerful aircraft engines used in many aircraft
during World War II [66]. Without these CPVA’s many of the most popular engines
of that era could never have been put into service.

In the second stage, with the existing maturity of the hardware designs, tun-
ing of the pendulum absorbers (riding on circular paths) and various applications
became intensive research issues. Stieglitz [58] in 1938 identified the basis for pendu-
lum tuning. Zdanowich and Wilson [69] refined the tuning basis of Stieglitz [58] in
1940. Meyer and Saldin [34] in 1942 presented an experimental study of absorbers
applied to turbine blades. Harker [23] in 1944 lists charts and design guidelines for
the absorber tuning. In 1949, Reed [48] pointed out the use of CPVA'’s for reduction
of translational vibrations. Pluntkett [46] gives a short review on the usage of the
CPVA up to 1953.

Most of the above studies were aimed at developing the tuning methods for
absorbers riding on circular paths and were based on small amplitude, linear theory.
Circular paths were widely used simply because they could be easily manufactured
and the tuning methods are valid in the range of small oscillations. However, such
designs often fail for moderate amplitude motions [41, 54] due to the fact that the
pendulum frequency generally changes as a function of its amplitude (for example,
it decreases as amplitude increases for the common circular path).

In the third stage, the research was extended to account for effects of nonlinear
dynamics of the absorbers. Large-amplitude motions and the detrimental effects
for circular paths were first discussed by Den Hartog [14] in 1938 and Porter [47] in
1945. Crossley in 1952 and 1953 gives more complete investigations of the associated
undamped systems for free [12] and forced [13] responses, respectively. Newland [41]

in 1964 identified possible catastrophic failure of circular paths due to the mistun-
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ing of the CPVA. To solve this problem, both Den Hartog [14] and Newland [41]
suggested that one can intentionally over-tune the linear oscillating frequency of the
absorber so that it comes into a more favorable tuning for larger amplitudes. Most
recently, the effects of damping, moderate amplitude motion and motion-limiting
stops (snubbers) were studied by Sharif-Bakhtiar and Shaw [53, 52, 54]. Also, Shaw
and Wiggins [57] found in 1988 that without motion-limiting stops, chaotic motions
can exist for certain ranges of parameter values in a pendulum configuration which
allows the absorber to undergo complete rotations.

Along another line of research in the third stage, efforts were dedicated to the
reduction of torsional vibrations and shake forces in helicopter rotors. Kelley [26)
in 1962 described the potential use of absorbers for reducing torsional vibrations of
helicopter rotors. Paul [43] in 1969 recorded experimental data indicating significant
success of the rotor absorbers for reducing vibrations of the helicopter mainframe.
Wachs [64] in 1973 investigated the effects of the absorbers on helicopter reliability
and maintainability by tracking repair costs over a period of time in helicopters with
and without CPVA’s. He found that CPVA'’s retrofitted to rotors saved an average
of $367,311 per aircraft per 10 years. Miao and Mouzakis [36] (1980) presented an
experimental study of the nonlinear dynamics of the absorbers mounted on a rotor.
Murthy and Hammond [40] (1981), Hamouda and Pierce [21] (1984) explored the use
of absorbers for reducing vibrations of helicopter rotor blades. Recently, Wang et al.
[65] investigated transverse vibration of rotating beams fitted with CPVA’s. Also,
shake reduction using multiple CPVA’s has been studied by Miao and Mouzakis [35],
Lim [31] and Cronin [11].

The bifilar suspension makes non-circular paths realizable. In the most recent
stage, a number of works were devoted to the design and analyses of CPVA'’s riding
on non-circular paths in order to improve performance of the absorbers at large

amplitudes. As early as 1938, Bulter [4] recognized the potential value of noncircular
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paths for absorber C.G.’s via bifilar suspensions. Madden [32] in 1980 first proposed
cycloidal paths, which have favorable tuning behaviors at large amplitudes. Pre-
sumably Madden used the cycloidal path since it is known to be the solution of the
tautochrone problem, that is, it offers the path for which a point mass, moving under
a gravitational field, exhibits oscillations that are independent of the amplitude of
motion. (Note that the solution of the tautochrone problem is identical to that of
the more well-known brachristichrone problem [15].) This motivated an experimental
study by Borowski and co-workers [3] that used absorbers riding on cycloidal paths,
which was carried out by the Ford Motor Company. In this study, second-order ab-
sorbers were found to be effective in reducing the second-order torsional oscillations
in an in-line, four-cylinder, four-stroke, 2.5L engine. However, the fourth-order oscil-
lations were significantly magnified. The remedy offered for this problem was to use
a combination of second and fourth order absorbers [3]. The cycloid does improve
performance, but is not optimal in avoiding the mistuning problem [16, 56]. This
follows since, in the centrifugal field, the force on a mass is not constant, as in a
gravitational field, but is rather proportional to the radial distance from the center
of rotation. The solution for the tautochronic path for this case is known to be a
certain epicycloid [15, 68]. This tautochronic path enables the absorber to possess
a constant oscillatory frequency, regardless of its amplitude of oscillation. Tuned
to have the same frequency as the disturbing torque of order n, the motion of the
absorber, said to be of order n, provides a periodic torque which counteracts most of
the order n harmonic of the disturbing torque, thereby reducing torsional oscillations
at that order. This promising property of the tautochronic paths launched theoreti-
cal studies [16, 11] which explored the effectiveness of epicycloid path, tautochronic,
absorbers.

It should be noted at this point that all of the above absorber designs are capable

of only partially counteracting the torsional vibrations that arise from a harmonic
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torque, even in an ideal setting [28, 29, 7, 6, 55]. There always exist residual vibra-
tions, especially at higher order harmonics, that arise from nonlinear effects. How-
ever, Lee and Shaw [30] recently proposed a novel absorber design which consists of
a pair of identical absorbers riding on special paths tuned to one — half the order
of the disturbing torque. Such a configuration is referred to as the subharmonic
absorber system. It was shown in [30] that the restoring torque generated by an
ideal, perfectly tuned, undamped pair of subharmonic absorbers is ezactly a pure
harmonic over a wide range of amplitudes. This has significant potential advantages
over conventional designs, since it generates no higher-harmonic torques, even when
accounting for nonlinear effects. However, this type of absorber system has yet to

be experimentally tested.

1.3 Motivation

All designs stated in the last section for CPVA’s are based on two assumptions:
first, the absorber system used for addressing a given harmonic consists of only
a single dynamic mass; second, the absorber paths are perfectly manufactured as
desired.

In practice, it is necessary to choose the total absorber inertia to be sufficiently
large such that the absorbers do not hit motion-limiting stops, or snubbers, under
severe operating conditions. This is typically accomplished by stationing several
absorber masses along and around the axis of rotation, which also is beneficial for
balancing considerations. In addition, ideal path shapes can never be realized in
practice. There always exist manufacturing tolerances, thermal and direct stress
deformations, and distortions due to wear. The goal of the present study is to
introduce a generic methodology that can be used to re-evaluate the performance of
an absorber system by ezploring the dynamics of a rotating system with multiple

absorbers which follow paths that include tmperfections and mistuning. The use
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of this method is demonstrated herein through two cases of particular interest: (1)
a system composed of a rigid rotor and N tautochronic absorbers, as proposed by

Denman [16], and (2) multiple pairs of subharmonic absorbers as proposed by Lee

et al [30].

1.4 Organization of this Dissertation

Tha remainder of this dissertation is organized as follows. Chapter 2 covers the
following topics that are common throughout the thesis: the mathematical forms
of the path configurations are given; the assumptions on the system are listed; the
equations of motion for general absorber paths are derived for a multiple absorber
system; the symmetry characteristics of the system, which are critical in the analy-
sis, are identified; two performance measures for an absorber system are defined; and
characteristics of the absorber damping are described. In chapter 3, a stability crite-
rion of the unison motion for a system of N multiple tautochronic absorbers of order
n is derived. This is accomplished by using some scaling assumptions and trans-
formations that massage the equations of motion into a form amenable to asymp-
totic analysis. In chapter 4, the performance of the tautochronic absorber system
is re-assessed in the post-stable parameter range by carrying out a post-bifurcation
analyses of the response. In chapter 5, the effects of imperfection and mistuning, and
the nonlinear dynamics of a single pair of subharmonic absorbers proposed by Lee
et al [30] are investigated in order to re-evaluate the absorber system performance.
In chapter 6, the analysis in chapter 5 is extended to the case of multiple pairs of

absorbers. In section 7 some conclusions and directions for future work are given.



CHAPTER 2

PRELIMINARIES

This chapter aims to establish a mathematical model based on some physical
assumptions, which is followed by a description of limitations imposed on absorber
motions, the characteristics of absorber dampings, and an identification of symmetry

properties of the system. These results will be used in subsequent chapters.

2.1 Assumptions

The equations of motion are derived for an idealized model that consists of a rigid
rotor spinning about a fixed axis, subjected to an applied torque, and fitted with N
general-path point-mass absorbers. The system is shown schematically by the cross
sectional view of the rotor in Figure 2.1. This dynamical system consists of a rotor
of moment of inertia I; with respect to the center of rotation, O, and N absorbers
moving freely on prescribed paths relative to the rotor. Each individual absorber,
denoted by subscript : for the :th absorber, is considered to be a point mass with
mass m;. (In the common bifilar configuration, one can account for the moments of
inertia of the absorbers about their respective C.G.’s by simply including them in
I4, since they rotate identically with the rotor.) The path for each absorber mass is
specified by a function R; = R;(S;), where R; is the distance from the C.G. of the
absorber to point O and S; is an arc-length variable measured along the path defined
relative to a frame of reference that rotates with the rotor. The origin of each S;
is taken to be at the path vertex, that is, the point where R; reaches its maximum

value, R, = Ri(0). The nominal moment of inertia for each absorber with respect

11
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I;: The moment of inertia of the rotor

\

m;: Absorber’s mass

\ Y
\S’,-: Arc variable

Absorber’s path

Figure 2.1: Cross-sectional schematic diagram of the rotor and ab-
sorbers.

to O is defined by I; = m;R?. The absorber path is designed to be symmetric with
respect to S; = 0; i.e., Ri(S:) = Ri(—S:). The damping between the ith absorber
and the rotor is assumed to be an equivalent viscous damping with coefficient c,;.
Resistance between the rotor and ground is also modeled as equivalent linear viscous
damping, with coefficient co.

Let 6 denote the angular displacement of the rotor. The net applied torque (in-
cluding load torques) is assumed to be a nominal constant, Tp, plus a disturbing
torque T4(0) which is periodic in 6. These torques arise from a variety of sources,
including attached linkages, etc., and are generally periodic with several harmonics.
They may also depend on 6 and 6. Here a simple, single harmonic model for the
applied torque is considered, as there is typically one dominant harmonic and the
absorber system will be designed to address it. Thus, the disturbing torque is as-
sumed to be of order n, as follows, Ty(#) = Tysin(nf), where Ty > 0. (This leaves

open the potentionally large issue of nonlinear resonances that may arise from other
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harmonics in the excitation. This is left for future work, but see [29] for some results

along these lines.)
2.2 Equations of Motion

With these assumptions, the overall system kinetic energy can be formulated,

which is given by

K.E. = {Id02+z:m.[X $:)6* + §? + 2G, (S)OS]} (2.1)

i=1

N »—

where () denotes éa(;l, t is time and

X(S)=F(S) and  G(S)=\[X(S)-j(BSR (22)

In the expression for the kinetic energy (2.1), %Id02 is the rotational energy of the
rotor, 1m;[X;(S5;)62 + $?] is sum of the rotational energy relative the fixed frame and
the translational energy relative to the rotating frame for the ith absorber, and the
term 2G;(S;)é$,- arises from Coriolis effects.

By considering the ratio g/(R;0?), it can be shown that gravitational effects are
small compared to rotational effects for any reasonable rotating mechanical system.
Then, by assuming that the corresponding potential energy is negligible, the gov-
erning equations of motion are determined by applying Lagrange’s method to the
kinetic energy and to the generalized forces associated with the dampings and the
applied torque. The results are:

1dX;

m,[S+G (S:)6 - 5 dS
. N dX; .. v v . )

1,6 + Emi[d—S(S;)SeG + Xi(Si)0 + Gi(S:)Si + 3—?(5,)5,2]

=1

(85:)6%) = —caiSi, 1<i<N (2.3a)

N . . -
= Z Ca,'G,'(S.')S,' —cof + T+ Tgsin(nO), (23b)

=1
where ¢p and c,; are damping coefficients for the rotor and the ith absorber respec-

tively. Note that equation (2.3a) describes the dynamics of the ith absorber, which
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are coupled to the dynamics of the rotor through the terms 6 and 6%. Equation
(2.3b) results from the dynamic balance among the applied torque Tp + Tysin(n#),
the rotor damping cof, the damping and resistive torques caused by the motions of
all absorbers — as described in the two summation terms, respectively — and the
inertial resistance of the rotor Idé.

A nondimensionalization and a change of independent variable are performed on
the equations of motion for simplification. To facilitate this process, the nominal
steady-state rotational speed of the rotor, €2, is taken to be the speed at which the
constant torque Ty balances the mean component of the torque which arises from

rotational damping friction; thus,
0=—. (2.4)

Also, a new dimensionless dependent variable y, representing the rotor speed, is

defined as

é
5 (2.5)

y

Then, assuming that  is a smooth and invertible function of ¢, applying the chain
rule and using (2.5), one can obtain the following relationships between derivatives

with respect to ¢ and 6,

6=0%y, ()=0y() and ()=0%y'() +0%()", (2.6)

where (.)' denotes é}él. With the relationships (2.5) and (2.6), the resulting equations

of motion (2.3) can be transformed into a set of periodically forced, non-autonomous

equations with the independent variable @ replacing ¢t. This step transforms the
nonlinearity, Tosin(rw), into a periodic forcing term.

The following steps are then performed: the equations of motion are transformed

to the form that has 6 as the independent variable; they are divided through by the

inertia terms, m; and Iy, respectively, and by 02?; and the absorber displacement S;
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rescaled in terms of R;,. The resulting dynamical system that describes the dynamics

of the N absorbers and the rotor are then given as follows,

" ' ] ld:c, R ] .
ys; + [s; +gi(si)]y — ET( 8i)y = —flais;, 1<t <N, (2.7a)
' ’ ' dg.(S) ,2 2
Eb[ sy P+ zils)yy + gi(s)sivy + gils)s vt + = sy

=1
N
+yy’ = ¥ biftaigi(si)siy — jioy + Lo + Dosin(nf)  (2.7b)
1=1
where ()' denotes id%l’ $i = ﬁs;v bi = ﬁ" flai = m, na l‘O = Ian o= —0'7, Fo 7_67,

and

ai(s) = REE 2 g g.-(s.~)=\jz‘~(s.-) (""'(s.)), (28)

are functions set by the path of the absorber C.G. Note that in terms of these

dimensionless quantities, the steady rotation condition (2.4) becomes

Fo = ﬁo. (29)

2.3 The Absorber System

It is assumed that the system is composed of N absorbers with identical individual
masses m; = 3¢ and identical damping coefficients ji,; = fi, for each :. Two different
absorber systems will be considered in the subsequent investigations. The first system
consists of N tautochronic absorbers riding on standard epicyloids tuned to order n

(the same as the order of the applied torque), which can be specified in the ideal

case by
zi(s;) = 1 — n®s?, with Ri, = R, for each i. (2.10)

The second is composed of N tautochronic absorbers riding on subharmonic epicy-
loids tuned to order 5 (one-half the order of the applied torque), which can be
specified in the ideal case by

2
zi(si))=1- (%) s? with Riy = Ry for each i. (2.11)
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Note that the path functions (2.10) and (2.11) presented herein assume that the
paths are perfectly manufactured as desired. The formulation of imperfections will
be introduced in section 5.1.2, particularly for the subharmonic absorber system.

The equations of motion for a system with /N identical absorbers is then given

by
n ] ' ldx, “ ! .
ysi +[si+gi(sly — 5 =(8)y = —flasiy  1<i< N, (2122)
dz; ()
—Z[isﬁy +zi(si)yy + gil(si)siyy + gilsi)sv® + gdis) v
s—l Si 1

Eyag, ,y poy + Lo + Ty sin(nf)  (2.12b)

where Iy = moR2, and v = %’:.

It will be shown in section 3.1 that the standard epicycloidal paths tune the
oscillating frequency of each absorber to be equal to that of the disturbing torque,
even when the absorbers undergo large motions. This favorable property motivates
the investigation on this type of path. Also, the subharmonic epicycloidal paths
tune the oscillating frequency of each absorber to be one-half that of the disturbing
torque, again over a large amplitude range. The merits of this path design will be
further elaborated in section 5.1.

Also, it should be noted that in practice, the inertia of the entire absorber system
is much smaller than that of the overall rotary system, typically on the order of 1%-

10%. This implies that v is generally a small parameter in these systems.
2.4 Limitations on Absorber Motions

The value of the function g;(s;) must be kept real during absorber motions, and

this leads to a restriction on the amplitudes of the absorber motions, given by

2
zi(si) — 1 (‘Z:(s;)) >0, V#6and :. (2.13)
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This restriction keeps the absorber from passing any cusp point that may exist on
the path. For example, the epicycloid and cycloid paths have cusps at fairly large
amplitudes. The explicit form for the right-hand-side of equation (2.13) depends
on the type of the absorber path used, which will be derived for each particular
absorber path considered in the ensuing analyses. Note that since the absorber
amplitude grows as the torque level is increased, the restriction in inequality (2.13)
imposes a finite operating range on the disturbing torque level, which is an important

measure of the absorber system performance.

2.5 Absorber Dampings

A discussion of the damping models employed in the equations of motion is per-
tinent at this point. The damping on the main rotor system and the mean torque
simply set the nominal speed and play no other vital role in the the system dynamics.
However, the damping in the absorbers plays a central role in the performance of the
system, and this is a notoriously difficult effect to qualitatively determine or quanti-
tatively measure. First, the source of the damping is complicated and depends on the
specifics of how the absorbers are implemented. Some sources of damping include:
rolling resistance, resistance due to movement through oil-saturated air, slippage,
and pumping of fluid. Second, even if one knows the basic damping mechanisms, the
physical constants are difficult to measure and they will vary with operating condi-
tions (such as temperature). We have assumed a form of equivalent viscous damping
in our equations, and will consider two different types of damping, viscous and hys-
teretic. Note that if the damping is viscous, the associated coefficient ¢, (herein we
assume that c,; = ¢; for each ?) in equation (2.3a) is assumed to be independent of

the mass of the absorber, as in the linear case, then

. Nec,
Ha =

— (2.14)
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which shows that the nondimensional “effective” damping coefficient f, is pro-
portional to the number of absorbers. However, an experimental result given by
(Cronin [11], 1992) indicates that there exists a hysteretic damping factor that is
independent of the absorber mass, implying that ¢, is proportional to mass of the
absorber. Therefore, 2 is a constant in this case. According to this result, intro-
ducing the quantity c,o as the coeflicient for a single absorber, we can express f,

as

- Ca0
Ha = -mo_Q’ (215)

which renders the damping ratio to be independent of the number of absorbers.
2.6 Symmetry Identification

Intuitively, due to the identical nature of each absorber, it is expected that the
system described by equations (2.12a) and (2.12b) will enjoy some special properties.
These properties can be mathematically characterized by transformations among the
state variables that yield new sets of system equations which are both structurally
and mathematically invariant from the original system equations. Such transforma-
tions are symmetries of the system. Identifying the symmetry of the system allows
one to search for and characterize many solutions in an efficient way. To mathemat-
ically characterize the symmetries of the system, conventional notation from group

theory is employed. (See [20] for details.) Let
T = h(z,\) (2.16)

be a system of first-order differential equations, where « is a generalized state vector,
) is a system parameter, and h : R* x R — R¥, is a smooth transformation. Let v be
an invertible k x k matrix representing a transformation among the state variables.

It is said that v is a symmetry of the system (2.16) if

h(yz,)) = vh(z,)) Vz e R (2.17)
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It can be shown that system (2.16) is invariant subject to v if equation (2.17) is
satisfied.

If there exists a group G such that the equation (2.17) is satisfied for each 4 €
G, then G is called a symmetry group of the system, or, equivalently, that the
function h is called G-equivariant. To identify the symmetry group of the present
model, first consider equation (2.12b), which describes the dynamics of the rotor.
It is seen that the speed of the rotor, y(@), is invariant subject to any permutation
among the absorbers. Furthermore, from equation (2.12a), it can be confirmed that
each absorber is coupled with all other absorbers only through y. Therefore, any
permutation of absorbers should result in a system that is indistinguishable from the
original. One can easily transform equations (2.12a) into 2N first-order differential
equations and use condition (2.17) to show that the symmetry group of the system is
SN, known as the “symmetric group”, which is a group containing all permutations
on N symbols [18].

Based on group theory [20], there exist invariant subspaces in the absorber system
due to the embedding symmetry Sn. A partition of particular utility in the present
work is offered by splitting the phase space into components that capture the unison,
or synchronous, response of the system, and its complement. In mathematical terms,

we define
V={scRN|s =[v,v,..,v]T} and W=RN_V (2.18)

where V is the subspace spanned by the unison mode and W is its complement. For
any given initial conditions 8(0) € V or 8(0) € W, the system dynamics will stay in
V or W, respectively, for all time.

It should be pointed out that bifurcations in systems with this level of symmetry
can be extremely rich. In fact, due to the fact that many eigenvalues associated with
W are identical, and thus may become simultaneously unstable (which is always

true for perfect abosorber system), the corresponding bifurcation problem is highly
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degenerate and there may exist numerous branches of solutions emanating from a
single bifurcation point. It is not always possible to determine all these branches, let
alone their stability types. In the present study, measures of absorber performance
are used in conjunction with symmetric bifurcation theory in order to get a handle
on the most important branches, and in particular, the dynamically stable ones that

define and limit the post-bifurcation steady-state system behavior.
2.7 Measures of Absorber Performance

Two measures will be used to quantify the effectiveness of an absorber system.
The first is the amplitude of torsional oscillations of the rotor, here represented by its
peak angular acceleration. The nondimensionalized angular acceleration of the rotor
is given by 6(t)/Q?, and is represented in terms of the variable y(8) by yy'(8). The
corresponding measure of absorber performance is given by the peak value (that is,
the infinity norm) of yy'(6) during a steady-state response. This quantity is denoted
by llyyllss-

The second performance measure used is the range of the applied torque ampli-
tude over which the absorber can operate, denoted by f‘o. This is imposed by the
limiting cusps on the absorber paths, as stated in condition (2.13) above. (It should
be noted that in practice, the geometry of the bifilar configuration commonly used
when implementing these absorbers will impose even stricter limits than those given
by the cusp.)

The general aim of an absorber system is to minimize ||yy'||ss over the largest
possible range, 0 < s < f‘o. It will be seen that these goals oppose one another,
and the information obtained from the present study can be used to make informed

judgments for the selection of the number of absorbers and the path parameters.



CHAPTER 3

STABILITY OF THE UNISON RESPONSE FOR A
ROTATING SYSTEM WITH MULTIPLE
TAUTOCHRONIC ABSORBERS

Due to spatial and balancing considerations, the implementation of CPVA'’s in-
variably requires that the total absorber mass be divided into several absorber masses
that are stationed about the center of rotation and along the rotating shaft. In order
to achieve the designed-for performance, a system of like-tuned, identical CPVA’s is
assumed to move in an exact unison response. However, due to nonlinear dynamic
effects, the absorbers may undergo non-unison steady-state motions, even under a
moderate level of applied torque. The study in this chapter and the next is
an investigation of the dynamic stability and bifurcation of the unison
response of a system of identical CPVA’s operating on a rotating system.

This chapter is organized as follows. Section 3.1 gives a preparation for asymp-
totic analysis by re-arranging the equations of motion into a form of N weakly-
coupled and weakly-nonlinear oscillators. This special formulation will also be uti-
lized in chapter 4 for further investigation of post-bifurcation responses. Section 3.2
presents a derivation of a stability criterion for the unison motion. It indicates that
for small levels of absorber damping (a condition required for satisfactory perfor-
mance), the critical torque level is proportional to the square root of the absorber

damping level.
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3.0 Equations of Motion

Results in this and the next chapter are obtained under the assumptions that
the absorber paths for the N identical absorbers are tuned epicycloids of order n

(Denman {16}, 1992). These paths are specified by
zi(s;)=1-n?%? 1 <i<N. (3.1)

Applying the path configuration (3.1) into equations (2.12) yields the equations of
motion which describe the dynamics of the rotor and N absorbers riding on epicy-

cloids of order n, as follows,

ys; + [s; + 9(s:)ly + nlsiy = —fas;, 1<i<N, (3.2a)

v N 2 ' 9 2 2 ' ) " 9 dg(s.) 2 2
=Y [-2n?sisy® + (1 = n?s)yy + g(si)s;yy + g(si)s; v* + = —s.7y]
N =1 ds,

v

tu'= 5

N
3" ftag(si)siy — fioy + Lo + Fsin(n6) (3.2b)

=1

where

- dg(s) __ —(n?+nY)s,
ds; \/l — (n? + nt)s?

Note that the value of the function g(s;) must be kept real during absorber motions,

(3.3)

and this leads to a restriction on the amplitudes of the absorber motions, given by

1 .
S.'(o) S Smax = .n—\/;z-z——-l--—l-’ Ve andV 1. (34)

3.1 Scaling and Reduction of the Equations of Motion

Approximate steady-state solutions of the system are sought by making some
scaling assumptions and employing asymptotic analysis techniques. A series approx-
imation for the equations of motion is derived below, and this leads to a form that

is amenable to asymptotic analysis.
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3.1.1 Scaling Assumptions

In applications the total nominal moment of inertia of all absorbers about point O
is much smaller than that of the entire rotating system. This motivates the definition

of the small parameter,

€=y, (3.5)

the ratio of absorber inertia to rotor inertia, which is used for the asymptotic analysis.
With this definition, many of the system parameters can be scaled such that the
desired system behavior can be captured by asymptotic analysis.

It is assumed that the nondimensional damping and excitation parameters, f,,

fo, fo and f‘o, are also small such that they can be scaled as follows:

a

fia = €flg, flo = €flg, To = elo, and [y = els. (3.6)

The unperturbed system dynamics for this scaling are determined by considering
equation (3.2b) with € = 0, that is, » = 0, which yields y = 1. Using this in equation
(3.2a) with i, = 0 yields a linear oscillator with frequency n for the absorber motion.
Thus, the steady-state solution of the unperturbed system is simply a constant rotor
speed, y = 1, and the absorber motion is harmonic with frequency n and arbitrary
amplitude. This limiting case can be imagined as that with a very large flywheel
attached to the rotor, in which the absorbers move in a harmonic manner but have
no effect on the rotor.

Since the rotor speed will change smoothly as the absorber mass, the applied
torque and the absorber damping are increased from zero, y will be smooth in € and

can be expanded as follows,
y(0) = 1+ ey1(0) + O(€?), (3.7)

where y; captures the speed fluctuations induced by the net interaction of the applied

torque, damping effects, and the torques induced by the motions of the absorbers.
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Note that condition (2.9) is assumed to maintain as € is increased from zero, thereby

keeping the mean rotational rate near y = 1.
3.1.2 The Rotor Angular Acceleration

It is convenient to have an explicit expression for the rotor acceleration, since it
is a measure of the torsional vibration amplitude of the rotor. This can be derived
by first noting that since € < 1 and y; is bounded, y(6) oscillates about unity and
is never zero. Therefore, equation (3.2a) can be divided through by y in order to
obtain an expression for s in terms of s;, s; and y. Substitution of this expression
into equation (3.2b) and utilization of equation (2.8) gives an exact expression for

yy'(0), as follows,
v Y -
yy' (0) = [1 + N En‘s?] [— fioy + o + Igsin(nf)
=1

N ' d 1 ’ ’

+ ';7 ) (27123.'3&!/2 - '—511(8—')3;2312 +n’sig(si)y® + 2ﬂa3.~9(3i)y) ](3-8)
i=1 Si

Utilizing the definition € = v, the scalings in equation (3.6), the expansion in (3.7),

and condition (2.9), a series approximation for yy' in terms of € can be obtained as

follows,

2|~
z

yy () = —e{ E(-2n23,~3; —n?g(s;)s; + %ﬁls?) - f‘gsin(nﬂ)}
+0(?). (3.9)

The above equation shows that the nondimensionalized angular acceleration is of

order ¢, a result consistent with the known limiting case as ¢ — 0.
3.1.3 The Absorber Dynamics

The method of averaging is used in the next section to determine the dynami