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ABSTRACT

THE PERFORMANCE OF MULTIPLE PENDULUM VIBRATION ABSORBERS

APPLIED TO ROTATING SYSTEMS

By

Chang-Po Chao

A centrifugal pendulum vibration absorber (CPVA) is a device used for reducing

torsional vibrations in rotating machinery. It consists of a movable mass, the cen-

ter of gravity of which is restricted to follow a prescribed path. When this path is

properly designed, the motion of the CPVA is tuned so as to generate a torque that

reduces torsional vibrations. CPVA’s are currently widely employed to suppress tor-

sional vibrations in light aircraft engines, and are receiving attention in experimental

automotive studies.

Existing CPVA designs are based on several assumptions, including the following

two: First, for a multiple-absorber system, the set of identical absorbers moves in

unison, and, second, the absorber paths are manufactured exactly as designed. The

present study aims to re-assess absorber performance in terms of relaxing these two

assumptions. This necessitates consideration of the nonlinear dynamics of mulitple-

CPVA systems.

This study starts with an overview of the operation of CPVA’s and a description

of some existing CPVA designs. A mathematical model is then derived that captures

the nonlinear dynamics of a multi-absorber/rotor system response. Using a generic

methodology which combines asymptotic techniques (averaging) and bifurcation the-

ory, the mathematical model is analyzed for two representative absorber systems:

tautochronic and subharmom'c. Analysis is first conducted for the tautochrom'c sys-



tem, which enables one to: (1) predict the instability/bifurcation point of the unison

motion, (2) investigate the dependence of the post-critical dynamics on various sys-

tem parameters, and (3) assess the absorber performance in terms of two quantitative

measures: the rotor acceleration and the feasible range of the applied torque. A sim-

ilar analysis is carried out for system comprised of multiple pairs of subharmom'c

absorbers. In addition, uncertainties and intentional mistuning are incorporated into

the absorber path configurations, which permits one to consider design robustness

issues. It is found that the system dynamics and absorber performance measures are

accurately predicted by the analyses, as verified by extensive numerical simulations

for both absorber systems. Based on these predictions, design guidelines are distilled

for various system parameters, including absorber damping, the number of absorbers,

and intentional mistuning of the path.
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CHAPTER 1

INTRODUCTION

Torsional vibrations in rotating systems are induced primarily by torques trans-

mitted to a rotor from forces applied to attached components. For example, in

internal combustion (IC) engines, cylinder gas pressure, friction and slider-crank in-

ertia cause these torques, while in helicopter rotors aerodynamic loads on blades are

the primary source. These torsional vibrations can propagate through the system

and often cause fatigue and NVH (Noise, Vibrations and Harshness) difficulties. A

centrifugal pendulum vibration absorber (CPVA) is a device used for reducing these

torsional vibrations. It consists essentially of a mass that is restricted to move along

a prescribed path relative to the base rotating system. The absorber is driven by the

centrifugal field generated by rotation, and its motion provides a restoring torque

which is designed to reduce torsional vibrations of the rotating system.

CPVA’s were invented for the use in internal combustion engines as early as

1929 [5] and have been successfully employed to suppress torsional vibrations in light

aircraft engines [27]. A number of previous works have concentrated on sizing the

absorber inertia and designing the absorber path by analyzing the linear or nonlinear

dynamics of the absorber system under a given order of excitation. All these designs

are based on the following two assumptions: FIRST, each absorber system consists

of only a single dynamic mass; SECOND, the absorber paths are exactly tuned and

manufactured exactly as desired. The present study aims to re-assess the absorber

performance along the lines of relaxing these two assumptions.

This chapter starts with an elaboration of the operation of CPVA’s in section 1.1.

In section 1.2, previous designs of the CPVA’s are described in order to motivate the

1



2

objectives of the present study, which are described in section 1.3. Finally, the

organization of the rest of this dissertation is outlined in section 1.4.

1.1 Operation of CPVA’S

In a reciprocating internal combustion engine, combustion in the cylinders and in-

ertial loads of the connecting rods and pistons generate oscillatory torques and forces

that act on the crankshaft. These result in torsional oscillations of the crankshaft,

which lead to several undesirable consequences, including vibration excitation of aux-

iliary components and fatigue failure. Several options are available to remedy this

problem, including the addition Of flywheels [60], torsional friction dampers [42, 27],

or tuned vibration absorbers [44, 27]. These devices Offer effective means of vibration

reduction for rotating machines, and have the benefit of operating in an open loop

manner, thus achieving a cost-favorable solution when compared to systems which

employ sensors and actuators. However, each also has some shortcomings. The ad-

dition of a flywheel increases the total mass and rotational inertia of the system,

thereby reducing system responsiveness. Torsional friction dampers consume energy

and generate heat. Conventional tuned vibration absorbers that use elastic elements

can be tuned only to a single frequency, and therefore are not useful except at one

rotation rate, and may lead to detrimental effects at other rotation rates. Centrifu-

gal pendulum vibration absorbers have many desirable features when compared to

these solutions. Their main drawback is system complexity in terms of the number

of moving components required.

In the following the basic operation of CPVA’s is described through a particular

implementation. The favorable features of the CPVA are then compared to the

aforementioned devices.

Figure 1.1 shows one type of physical realization of CPVA’S using a carrier assem-

bly which, in application, is bolted onto a crankshaft at some location. This general



 

 

 

  
  

   

Figure 1.1: The CPVA carrier assembly from the cross-section view

configuration was employed by Borowski et a1 [3] for an experimental study on an

automotive engine. This carrier contains three bifilar pendulums [27] which move

relative to the carrier along a prescribed path as the crankshaft rotates. By using

identical contact curves cut on the carrier and the absorber masses and using the

circular rollers between them, the CPVA masses undergo pure translation relative to

the carrier. Their centers of gravity (C.G.) will follow the path shown in Figure 1.1,

which can be specified by the shape of the contact curves on the CPVA’s and the

carrier. Note that due to the pure translation of the CPVA’s, the dynamic effect of

the CPVA’s on the crankshaft is equivalent to that of point masses moving along the

the C.G. paths as shown in Figure 1.2, while their moments of inertia about their

own C.G.’s simply add to the overall moment of inertia of the rotating system. As

the CPVA’s are driven by the rotation of the carrier, their motions provide restoring

torques on the carrier which, when the absorber C.G. paths are properly designed,

reduce the level of torsional oscillations of the crankshaft.

In the absorber configuration in Figure 1.1, the absorbers are used to replace



  

 

The rotor

Applied Torque

Absorber mass

. Vertex of the Path

Absorber path

Figure 1.2: The Schematic diagram for the CPVA’s and the rotor

from the cross-section view.

the usual counterweights, and can thus be implemented without increasing the net

mass or moment of inertia of the crankshaft. Hence, the absorber is considered to

be favorable over a heavy flywheel for reducing torsional oscillations. In addition,

since an insignificant amount of energy dissipated from the dynamic contact between

the absorbers, rollers and the carriers, the absorber system generates much less heat

than a friction damper during operation. Most importantly, the oscillating frequency

of the CPVA can be tuned, by proper design of the paths, to be the same as that of

the applied torque over a continuous range of rotation speeds, such that it renders

much more efficient reduction on torsional vibrations than elastic, tuned vibration

absorbers. The mechanism behind this favorable property of the CPVA is further

elaborated in the following paragraph.

In most applications, the input torque for a rotating system can be considered as

a nominal constant torque, which keeps the system running at a nominally constant

speed, (1, plus a periodic fluctuating part whose base frequency is n times that of

rotating system rotation; i.e., n0. Such a torque is referred to as a torque of order n,

and this torque is typically approximated by its low-order harmonic components. As
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shown in the derivation of the equations of motion for the CPVA system, one has the

freedom to tune the linear oscillating frequency of the CPVA (the frequency of small

amplitude motion) to n!) by designing the radius of curvature in the neighborhood of

the path vertices. This unique feature of the CPVA is critical Since, as the speed of

the system varies, the torque generated by the motion of the CPVA always contains

the frequency n0, which is used to counteract that of the fluctuating component of

the applied torque at all speeds.

1.2 History and Literature Review

For a thorough history of the CPVA up to 1960, one can refer to [27]. A brief

history including designs of interests for the present study is provided herein for a

better understanding of the content of this dissertation.

In the earliest stage of CPVA development, implementation of the CPVA

into the assembly of rotating systems drew the most attention. The first conceptual

design of these absorbers can be dated back to 1911 when Kutzbach (as referred to

Wilson in [27]) proposed a special mechanical arrangement which consists of moving

fluid in U-shaped channels mounted in some component of the rotating system.

Carter [5] in 1929 introduced a assembly consisting of absorber masses in roller-

forms in a British Patent. In 1930, Meissner first demonstrated the effectiveness of

the CPVA via experiments in a conference paper [33]. This study started an intensive

development of CPVA arrangements over the next ten years in Europe. This included

various inventions of the bifilar-and-roller suspensions of CPVA’S by Sarazin [50, 51]

and Salomon [49]. The Chilton and Reed Propeller Company [9] was also granted

a patent in 1935 for a particular bifilar suspension system applied to radial aero-

engines, which is believed to be the first implementation of the bifilar CPVA in

industry. In the United States Taylor [61] introduced the CPVA in order to eliminate

torsional vibrations of geared radial aircraft-engine-propeller systems. Moore [38]
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in 1942 realized a design of the CPVA by incorporating it into the assembly of a

crankshaft for various applications. Only the use of CPVA’s allowed for the practical

implementation of the light, but powerful aircraft engines used in many aircraft

during World War II [66]. Without these CPVA’S many of the most popular engines

of that era could never have been put into service.

In the second stage, with the existing maturity of the hardware designs, tun-

ing of the pendulum absorbers (riding on circular paths) and various applications

became intensive research issues. Stieglitz [58] in 1938 identified the basis for pendu-

lum tuning. Zdanowich and Wilson [69] refined the tuning basis of Stieglitz [58] in

1940. Meyer and Saldin [34] in 1942 presented an experimental study of absorbers

applied to turbine blades. Harker [23] in 1944 lists charts and design guidelines for

the absorber tuning. In 1949, Reed [48] pointed out the use of CPVA’s for reduction

of translational vibrations. Pluntkett [46] gives a short review on the usage of the

CPVA up to 1953.

Most of the above studies were aimed at developing the tuning methods for

absorbers riding on circular paths and were based on small amplitude, linear theory.

Circular paths were widely used simply because they could be easily manufactured

and the tuning methods are valid in the range of small oscillations. However, such

designs often fail for moderate amplitude motions [41, 54] due to the fact that the

pendulum frequency generally changes as a function of its amplitude (for example,

it decreases as amplitude increases for the common circular path).

In the third stage, the research was extended to account for effects of nonlinear

dynamics of the absorbers. Lame-amplitude motions and the detrimental effects

for circular paths were first discussed by Den Hartog [14] in 1938 and Porter [47] in

1945. Crossley in 1952 and 1953 gives more complete investigations of the associated

undamped systems for free [12] and forced [13] responses, respectively. Newland [41]

in 1964 identified possible catastrophic failure of circular paths due to the mistun-
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ing of the CPVA. To solve this problem, both Den Hartog [14] and Newland [41]

suggested that one can intentionally over-tune the linear oscillating frequency of the

absorber so that it comes into a more favorable tuning for larger amplitudes. Most

recently, the effects of damping, moderate amplitude motion and motion-limiting

stops (snubbers) were studied by Sharif-Bakhtiar and Shaw [53, 52, 54]. Also, Shaw

and Wiggins [57] found in 1988 that without motion-limiting stops, chaotic motions

can exist for certain ranges of parameter values in a pendulum configuration which

allows the absorber to undergo complete rotations.

Along another line of research in the third stage, efforts were dedicated to the

reduction of torsional vibrations and shake forces in helicopter mtors. Kelley [26]

in 1962 described the potential use of absorbers for reducing torsional vibrations of

helicopter rotors. Paul [43] in 1969 recorded experimental data indicating significant

success of the rotor absorbers for reducing vibrations of the helicopter mainframe.

Wachs [64] in 1973 investigated the effects of the absorbers on helicopter reliability

and maintainability by tracking repair costs over a period of time in helicopters with

and without CPVA’S. He found that CPVA’s retrofitted to rotors saved an average

of $367,311 per aircraft per 10 years. Miao and Mouzakis [36] (1980) presented an

experimental study of the nonlinear dynamics of the absorbers mounted on a rotor.

Murthy and Hammond [40] (1981), Harnouda and Pierce [21] (1984) explored the use

of absorbers for reducing vibrations of helicopter rotor blades. Recently, Wang et al.

[65] investigated transverse vibration of rotating beams fitted with CPVA’s. Also,

shake reduction using multiple CPVA’S has been studied by Miao and Mouzakis [35],

Lim [31] and Cronin [11].

The bifilar suspension makes non-circular paths realizable. In the most recent

stage, a number of works were devoted to the design and analyses of CPVA’S riding

on non-circular paths in order to improve performance of the absorbers at large

amplitudes. As early as 1938, Bulter [4] recognized the potential value of noncircular
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paths for absorber C.G.’s via bifilar suspensions. Madden [32] in 1980 first proposed

cycloidal paths, which have favorable tuning behaviors at large amplitudes. Pre-

sumably Madden used the cycloidal path since it is known to be the solution of the

tautochrone problem, that is, it offers the path for which a point mass, moving under

a gravitational field, exhibits oscillations that are independent of the amplitude of

motion. (Note that the solution of the tautochrone problem is identical to that of

the more well-known brachristichrone problem [15].) This motivated an experimental

study by Borowski and co-workers [3] that used absorbers riding on cycloidal paths,

which was carried out by the Ford Motor Company. In this study, second-order ab-

sorbers were found to be effective in reducing the second-order torsional oscillations

in an in-line, four-cylinder, four-stroke, 2.5L engine. However, the fourth-order oscil-

lations were significantly magnified. The remedy offered for this problem was to use

a combination of second and fourth order absorbers [3]. The cycloid does improve

performance, but is not optimal in avoiding the mistuning problem [16, 56]. This

follows since, in the centrifugal field, the force on a mass is not constant, as in a

gravitational field, but is rather proportional to the radial distance from the center

of rotation. The solution for the tautochronic path for this case is known to be a

certain epicycloid [15, 68]. This tautochronic path enables the absorber to possess

a constant oscillatory frequency, regardless of its amplitude of oscillation. Tuned

to have the same frequency as the disturbing torque of order n, the motion of the

absorber, said to be of order 12, provides a periodic torque which counteracts most of

the order n harmonic of the disturbing torque, thereby reducing torsional oscillations

at that order. This promising property of the tautochronic paths launched theoreti—

cal studies [16, 11] which explored the effectiveness of epicycloid path, tautochronic,

absorbers.

It should be noted at this point that all of the above absorber designs are capable

of only partially counteracting the torsional vibrations that arise from a harmonic
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torque, even in an ideal setting [28, 29, 7, 6, 55]. There always exist residual vibra—

tions, especially at higher order harmonics, that arise from nonlinear effects. How-

ever, Lee and Shaw [30] recently proposed a novel absorber design which consists of

a pair of identical absorbers riding on special paths tuned to one — half the order

of the disturbing torque. Such a configuration is referred to as the subharmonic

absorber system. It was shown in [30] that the restoring torque generated by an

ideal, perfectly tuned, undamped pair of subharmonic absorbers is exactly a pure

harmonic over a wide range of amplitudes. This has Significant potential advantages

over conventional designs, since it generates no higher-harmonic torques, even when

accounting for nonlinear effects. However, this type of absorber system has yet to

be experimentally tested.

1.3 Motivation

All designs stated in the last section for CPVA’s are based on two assumptions:

first, the absorber system used for addressing a given harmonic consists of only

a single dynamic mass; second, the absorber paths are perfectly manufactured as

desired.

In practice, it is necessary to choose the total absorber inertia to be sufficiently

large such that the absorbers do not hit motion-limiting stops, or snubbers, under

severe operating conditions. This is typically accomplished by stationing several

absorber masses along and around the axis of rotation, which also is beneficial for

balancing considerations. In addition, ideal path shapes can never be realized in

practice. There always exist manufacturing tolerances, thermal and direct stress

deformations, and distortions due to wear. The goal of the present study is to

introduce a generic methodology that can be used to re-evaluate the performance of

an absorber system by exploring the dynamics of a rotating system with multiple

absorbers which follow paths that include imperfections and mistuning. The use



10

of this method is demonstrated herein through two cases of particular interest: (1)

a system composed of a rigid rotor and N tautochronic absorbers, as proposed by

Denman [16], and (2) multiple pairs of subharmonic absorbers as proposed by Lee

et al [30].

1.4 Organization of this Dissertation

Tha remainder of this dissertation is organized as follows. Chapter 2 covers the

following topics that are common throughout the thesis: the mathematical forms

of the path configurations are given; the assumptions on the system are listed; the

equations of motion for general absorber paths are derived for a multiple absorber

system; the symmetry characteristics of the system, which are critical in the analy-

sis, are identified; two performance measures for an absorber system are defined; and

characteristics of the absorber damping are described. In chapter 3, a stability crite-

rion of the unison motion for a system of N multiple tautochronic absorbers of order

n is derived. This is accomplished by using some scaling assumptions and trans-

formations that massage the equations of motion into a form amenable to asymp-

totic analysis. In chapter 4, the performance of the tautochronic absorber system

is re—assessed in the post-stable parameter range by carrying out a post-bifurcation

analyses of the response. In chapter 5, the effects of imperfection and mistuning, and

the nonlinear dynamics of a single pair of subharmonic absorbers proposed by Lee

et al [30] are investigated in order to re-evaluate the absorber system performance.

In chapter 6, the analysis in chapter 5 is extended to the case of multiple pairs of

absorbers. In section 7 some conclusions and directions for future work are given.



CHAPTER 2

PRELIMINARIES

This chapter aims to establish a mathematical model based on some physical

assumptions, which is followed by a description of limitations imposed on absorber

motions, the characteristics of absorber dampings, and an identification of symmetry

properties of the system. These results will be used in subsequent chapters.

2.1 Assumptions

The equations of motion are derived for an idealized model that consists of a rigid

rotor spinning about a fixed axis, subjected to an applied torque, and fitted with N

general-path point-mass absorbers. The system is shown schematically by the cross

sectional view of the rotor in Figure 2.1. This dynamical system consists of a rotor

of moment of inertia L; with respect to the center of rotation, O, and N absorbers

moving freely on prescribed paths relative to the rotor. Each individual absorber,

denoted by subscript i for the ith absorber, is considered to be a point mass with

mass m;. (In the common bifilar configuration, one can account for the moments of

inertia of the absorbers about their respective C.G.’s by simply including them in

14, since they rotate identically with the rotor.) The path for each absorber mass is

specified by a function R.- = 124(5)), where R,- is the distance from the C.G. of the

absorber to point 0 and S.- is an arc-length variable measured along the path defined

relative to a frame of reference that rotates with the rotor. The origin of each 5'.-

is taken to be at the path vertex, that is, the point where R,- reaches its maximum.

value, Rio = R;(0). The nominal moment of inertia for each absorber with respect

11
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Id: The moment of inertia of the rotor

\

m,-: Absorber’s mass

\

\S;: Arc variable

Absorber’s path

Figure 2.1: Cross-sectional schematic diagram of the rotor and ab-

sorbers.

to 0 is defined by I,- = ng30. The absorber path is designed to be symmetric with

respect to S.- = 0; i.e., R,(S;) = R,(—S.~). The damping between the ith absorber

and the rotor is assumed to be an equivalent viscous damping with coefficient cag.

Resistance between the rotor and ground is also modeled as equivalent linear viscous

damping, with coefficient co.

Let 6 denote the angular displacement of the rotor. The net applied torque (in-

cluding load torques) is assumed to be a nominal constant, To, plus a disturbing

torque T9(6) which is periodic in 6. These torques arise from a variety of sources,

including attached linkages, etc., and are generally periodic with several harmonics.

They may also depend on 6 and 6. Here a simple, single harmonic model for the

applied torque is considered, as there is typically one dominant harmonic and the

absorber system will be designed to address it. Thus, the disturbing torque is as-

sumed to be of order n, as follows, T9(6) = Tgsin(n6), where T9 > 0. (This leaves

open the potentionally large issue of nonlinear resonances that may arise from other
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harmonics in the excitation. This is left for future work, but see [29] for some results

along these lines.)

2.2 Equations of Motion

With these assumptions, the overall system kinetic energy can be formulated,

which is given by

K.E. = {1,62 + i mpg-(50052 + 5'3 + 2C.(s.)éS’.-]} (2.1)

i=1

N
I
H

where (.) denotes 1129, t is time and

 

X;(S.') = 123(5.) and G.(S.') = \/X;(S.') - i-(dE-E-(SiDZ. (2.2)

In the expression for the kinetic energy (2.1), %Id62 is the rotational energy of the

rotor, -;-m,-[X,-(S.-)62 + 5?] is sum of the rotational energy relative the fixed frame and

the translational energy relative to the rotating frame for the ith absorber, and the

term 2G,-(S,-)6S,- arises from Coriolis effects.

By considering the ratio g/(12:92), it can be shown that gravitational effects are

small compared to rotational effects for any reasonable rotating mechanical system.

Then, by assuming that the corresponding potential energy is negligible, the gov-

erning equations of motion are determined by applying Lagrange’s method to the

kinetic energy and to the generalized forces associated with the dampings and the

applied torque. The results are:

1%m.[s + GAS-)6 - 2 d5. (5..)9'2] = -c..s'.-, 1 s 2' s N (Na)

-1 N (1X; - ° '° " ' '

1016 + Zm;[F(S.-)S;9 + Xi(5i)6 + Gi(5i)5i + fl(505.2]

i=1 ‘
d5:

N

= Z: cagG,-(S.°)Sg — C00 + To + Tgsin(n6), (2.31))

i=1

where Co and Cai are damping coefficients for the rotor and the ith absorber respec-

tively. Note that equation (2.3a) describes the dynamics of the ith absorber, which
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are coupled to the dynamics of the rotor through the terms 6 and 62. Equation

(2.3b) results from the dynamic balance among the applied torque To + Tgsin(n6),

the rotor damping CO6, the damping and resistive torques caused by the motions of

all absorbers — as described in the two summation terms, respectively — and the

inertial resistance of the rotor [.16.

A nondimensionalization and a change Of independent variable are performed on

the equations of motion for simplification. To facilitate this process, the nominal

steady-state rotational speed of the rotor, fl, is taken to be the speed at which the

constant torque To balances the mean component of the torque which arises from

rotational damping friction; thus,

To
(2 = —. 2.4CO ( )

Also, a new dimensionless dependent variable y, representing the rotor speed, is

defined as

(2.5)
61

Then, assuming that 6 is a smooth and invertible function of t, applying the chain

rule and using (2.5), one can obtain the following relationships between derivatives

with respect to t and 6,

5: myy', (3) = nym’ and ('5) = WWI-1+ 92.21%)". (2.6)

Where (-)' denotes 5%}. With the relationships (2.5) and (2.6), the resulting equations

of motion (2.3) can be transformed into a set of periodically forced, non-autonomous

equations with the independent variable 6 replacing t. This step transforms the

nonlinearity, Tgsin(n6), into a periodic forcing term.

The following steps are then performed: the equations of motion are transformed

to the form that has 6 as the independent variable; they are divided through by the

inertia terms, m,- and Id, respectively, and by 02; and the absorber displacement S.-
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rescaled in terms of R“. The resulting dynamical system that describes the dynamics

of the N absorbers and the rotor are then given as follows,

II I I 1dr.- , I .

313; + [3; + 9430] - 5195M)?! = _flaisiv 1 S 2 S N. (2-78)

I II di i '

2543352831"'S+x(8.)yy +g.(8.i')8yy +g.-(8,3)y2+%8.2y’l
i=1

N

+yy = Z (Emma-(808w - £on + 1"o + F0 sin(n9) (2-7b)
i=1

3.I d .

where () denotes 7]}, s,~ = FL
_1..._

.o’bi"f:’#°‘—m.i2””0=ldfl’ro=140 IF”: 7‘67,
d

and
 

$43,.) = 51%}23—0 and g,(s.) = \]x;(s;) — Z1633.)) , (2.8)

are functions set by the path of the absorber C.G. Note that in terms of these

dimensionless quantities, the steady rotation condition (2.4) becomes

F0 = lilo. (2.9)

2.3 The Absorber System

It is assumed that the system is composed of N absorbers with identical individual

masses m; = 3%,“ and identical damping coefficients [Im- = [1,, for each 2'. Two different

absorber systems will be considered in the subsequent investigations. The first system

consists of N tautochronic absorbers riding on standard epicyloids tuned to order n

(the same as the order of the applied torque), which can be specified in the ideal

case by

22,-(s,-) = 1 — nzsf, with Rm = R0 for each i. (2.10)

The second is composed of N tautochronic absorbers riding on subharmonic epicy-

loids tuned to order 1;- (one-half the order of the applied torque), which can be

specified in the ideal case by

2

:r;(s,-) =1 — (g) s? with Rm = R0 for each i. (2.11)
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Note that the path functions (2.10) and (2.11) presented herein assume that the

paths are perfectly manufactured as desired. The formulation of imperfections will

be introduced in section 5.1.2, particularly for the subharmonic absorber system.

The equations of motion for a system with N identical absorbers is then given

by

II I I 1d ;' A .

315.- + [3.- + g.-(8.)] — "1.08031 = -I1a8.-. 1 g 2 S N, (2.12a)

dz,- I d t 8" I

_Zl—w +$.(8)yy +g.(8)8.yy +9.(8”)8y + yd:)8.2y”]
Ni=13‘

+ 3131’: —NZ#a9I(8 )~‘5.-y- [10y + F0 + F9 sin(n6) (2.12b)

where Io = moRg, and V = fl.

It will be shown in section 3.1 that the standard epicycloidal paths tune the

oscillating frequency of each absorber to be equal to that of the disturbing torque,

even when the absorbers undergo large motions. This favorable property motivates

the investigation on this type of path. Also, the subharmonic epicycloidal paths

tune the oscillating frequency of each absorber to be one-half that of the disturbing

torque, again over a large amplitude range. The merits of this path design will be

further elaborated in section 5.1.

Also, it should be noted that in practice, the inertia of the entire absorber system

is much smaller than that of the overall rotary system, typically on the order of 1%-

10%. This implies that V is generally a small parameter in these systems.

2.4 Limitations on Absorber Motions

The value of the function g;(s.-) must be kept real during absorber motions, and

this leads to a restriction on the amplitudes of the absorber motions, given by

125(35) - l (il-ECSJ) > 0, V 9 and t. (2.13)
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This restriction keeps the absorber from passing any cusp point that may exist on

the path. For example, the epicycloid and cycloid paths have cusps at fairly large

amplitudes. The explicit form for the right-hand-side of equation (2.13) depends

on the type of the absorber path used, which will be derived for each particular

absorber path considered in the ensuing analyses. Note that since the absorber

amplitude grows as the torque level is increased, the restriction in inequality (2.13)

imposes a finite operating range on the disturbing torque level, which is an important

measure of the absorber system performance.

2.5 Absorber Dampings

A discussion of the damping models employed in the equations of motion is per-

tinent at this point. The damping on the main rotor system and the mean torque

simply set the nominal speed and play no other vital role in the the system dynamics.

However, the damping in the absorbers plays a central role in the performance of the

system, and this is a notoriously difficult effect to qualitatively determine or quanti-

tatively measure. First, the source of the damping is complicated and depends on the

specifics of how the absorbers are implemented. Some sources of damping include:

rolling resistance, resistance due to movement through oil-saturated air, slippage,

and pumping of fluid. Second, even if one knows the basic damping mechanisms, the

physical constants are difficult to measure and they will vary with operating condi-

tions (such as temperature). We have assumed a form of equivalent viscous damping

in our equations, and will consider two different types of damping, viscous and hys-

teretic. Note that if the damping is viscous, the associated coefficient on (herein we

assume that ca.- = c,- for each i) in equation (2.3a) is assumed to be independent of

the mass of the absorber, as in the linear case, then

. NCa.

It.
 m0“ (2.14)
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which shows that the nondimensional “effective” damping coefficient flu is pro-

portional to the number of absorbers. However, an experimental result given by

(Cronin [11], 1992) indicates that there exists a hysteretic damping factor that is

independent of the absorber mass, implying that ca is proportional to mass of the

absorber. Therefore, if is a constant in this case. According to this result, intro-

ducing the quantity coo as the coefficient for a single absorber, we can express [1,,

8.5

it _ 600

a mom?

which renders the damping ratio to be independent of the number of absorbers.

(2.15)

2.6 Symmetry Identification

Intuitively, due to the identical nature of each absorber, it is expected that the

system described by equations (2.12a) and (2.12b) will enjoy some special properties.

These properties can be mathematically characterized by transformations among the

state variables that yield new sets of system equations which are both structurally

and mathematically invariant from the original system equations. Such transforma-

tions are symmetries of the system. Identifying the symmetry of the system allows

one to search for and characterize many solutions in an efficient way. To mathemat-

ically characterize the symmetries of the system, conventional notation from group

theory is employed. (See [20] for details.) Let

2': = h(I,/\) (2.16)

be a system of first-order differential equations, where :r is a generalized state vector,

A is a system parameter, and h : R" x R —+ R", is a smooth transformation. Let 7 be

an invertible k x 1: matrix representing a transformation among the state variables.

It is said that 7 is a symmetry of the system (2.16) if

h(7:r, A) = 7h(:c, A) Va: 6 R”. (2.17)
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It can be shown that system (2.16) is invariant subject to 7 if equation (2.17) is

satisfied.

If there exists a group G such that the equation (2.17) is satisfied for each 7 E

G, then G is called a symmetry group of the system, or, equivalently, that the

function h is called G-equivariant. To identify the symmetry group of the present

model, first consider equation (2.12b), which describes the dynamics of the rotor.

It is seen that the speed of the rotor, y(6), is invariant subject to any permutation

among the absorbers. Furthermore, from equation (2.12a), it can be confirmed that

each absorber is coupled with all other absorbers only through y. Therefore, any

permutation of absorbers should result in a system that is indistinguishable from the

original. One can easily transform equations (2.12a) into 2N first-order differential

equations and use condition (2.17) to show that the symmetry group of the system is

SN, known as the “symmetric group”, which is a group containing all permutations

on N symbols [18].

Based on group theory [20], there exist invariant subspaces in the absorber system

due to the embedding symmetry SN. A partition of particular utility in the present

work is offered by splitting the phase space into components that capture the unison,

or synchronous, response of the system, and its complement. In mathematical terms,

we define

V={s€RN I 8 =[v,v,...,v]T} and W=RN—V (2.18)

where V is the subspace spanned by the unison mode and W is its complement. For

any given initial conditions 8(0) 6 V or 8(0) 6 W, the system dynamics will stay in

V or W, respectively, for all time.

It should be pointed out that bifurcations in systems with this level of symmetry

can be extremely rich. In fact, due to the fact that many eigenvalues associated with

W are identical, and thus may become simultaneously unstable (which is always

true for perfect abosorber system), the corresponding bifurcation problem is highly
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degenerate and there may exist numerous branches of solutions emanating from a

single bifurcation point. It is not always possible to determine all these branches, let

alone their stability types. In the present study, measures of absorber performance

are used in conjunction with symmetric bifurcation theory in order to get a handle

on the most important branches, and in particular, the dynamically stable ones that

define and limit the post-bifurcation steady-state system behavior.

2.7 Measures of Absorber Performance

Two measures will be used to quantify the effectiveness of an absorber system.

The first is the amplitude of torsional oscillations of the rotor, here represented by its

peak angular acceleration. The nondimensionalized angular acceleration of the rotor

is given by 6(t)/92, and is represented in terms of the variable y(6) by yy'(6). The

corresponding measure of absorber performance is given by the peak value (that is,

the infinity norm) of yy'(6) during a steady-state response. This quantity is denoted

by llyy'llss-

The second performance measure used is the range of the applied torque ampli-

tude over which the absorber can operate, denoted by F9. This is imposed by the

limiting cusps on the absorber paths, as stated in condition (2.13) above. (It should

be noted that in practice, the geometry of the bifilar configuration commonly used

when implementing these absorbers will impose even stricter limits than those given

by the cusp.)

The general aim of an absorber system is to minimize ||yy'||ss over the largest

possible range, 0 < F9 < F9. It will be seen that these goals oppose one another,

and the information obtained from the present study can be used to make informed

judgments for the selection of the number of absorbers and the path parameters.



CHAPTER 3

STABILITY OF THE UNISON RESPONSE FOR A

ROTATING SYSTEM WITH MULTIPLE

TAUTOCHRONIC ABSORBERS

Due to spatial and balancing considerations, the implementation of CPVA’s in-

variably requires that the total absorber mass be divided into several absorber masses

that are stationed about the center of rotation and along the rotating shaft. In order

to achieve the designed-for performance, a system of like-tuned, identical CPVA’s is

assumed to move in an exact unison response. However, due to nonlinear dynamic

effects, the absorbers may undergo non-unison steady-state motions, even under a

moderate level of applied torque. The study in this chapter and the next is

an investigation of the dynamic stability and bifurcation of the unison

response of a system of identical CPVA’s operating on a rotating system.

This chapter is organized as follows. Section 3.1 gives a preparation for asymp-

totic analysis by re-arranging the equations of motion into a form of N weakly-

coupled and weakly-nonlinear oscillators. This special formulation will also be uti-

lized in chapter 4 for further investigation of post-bifurcation responses. Section 3.2

presents a derivation of a stability criterion for the unison motion. It indicates that

for small levels of absorber damping (a condition required for satisfactory perfor-

mance), the critical torque level is proportional to the square root of the absorber

damping level.

21
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3.0 Equations of Motion

Results in this and the next chapter are obtained under the assumptions that

the absorber paths for the N identical absorbers are tuned epicycloids of order n

(Denman [16], 1992). These paths are specified by

:r;(s,-)=1- nzsf, 1S i S N. (3.1)

Applying the path configuration (3.1) into equations (2.12) yields the equations of

motion which describe the dynamics of the rotor and N absorbers riding on epicy-

cloids of order n, as follows,

ys: + [s]- + g(s.°)]yl + nzsgy = —fias:-, 1 S i S N, (3.2a)

V N 2 I 2 2 2 I I I II 2 dg(3;') I2 2

321-28 8.8.31 + (1 - n 8.)yy +g(8.)8.-yy +g(8.)8.y + 778.- y ]
i=1

i

I V N A I a

+ 311/ = 7)? Z #a9(~9i)3;y - [toy + I‘o + I“(9888019) (32b)
i=1

where

 

y(s.) = \/1 — (n2 + ESE? “9“") - _(n. + ””3" (3.3)I I (13; _ \/1 _ ("2 + n4)3?.

Note that the value of the function g(s,-) must be kept real during absorber motions,

and this leads to a restriction on the amplitudes of the absorber motions, given by

1
i0< mu:-———, \7’6 d‘v’ '. .s()_s n n2+1 an I (34)

3.1 Scaling and Reduction of the Equations of Motion

Approximate steady-state solutions of the system are sought by making some

scaling assumptions and employing asymptotic analysis techniques. A series approx-

imation for the equations of motion is derived below, and this leads to a form that

is amenable to asymptotic analysis.
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3.1.1 Scaling Assumptions

In applications the total nominal moment of inertia of all absorbers about point 0

is much smaller than that of the entire rotating system. This motivates the definition

of the small parameter,

c E V, (3.5)

the ratio of absorber inertia to rotor inertia, which is used for the asymptotic analysis.

With this definition, many of the system parameters can be scaled such that the

desired system behavior can be captured by asymptotic analysis.

It is assumed that the nondimensional damping and excitation parameters, fin,

fro, F0 and F9, are also small such that they can be scaled as follows:

[in = 6,60, [Io = efio, F0 = (FE), and Pa = ng. (3.6)

The unperturbed system dynamics for this scaling are determined by considering

equation (3.2b) with e = 0, that is, V = 0, which yields y = 1. Using this in equation

(3.2a) with [1,, = 0 yields a linear oscillator with frequency n for the absorber motion.

Thus, the steady-state solution of the unperturbed system is simply a constant rotor

speed, y = 1, and the absorber motion is harmonic with frequency n and arbitrary

amplitude. This limiting case can be imagined as that with a very large flywheel

attached to the rotor, in which the absorbers move in a harmonic manner but have

no effect on the rotor.

Since the rotor speed will change smoothly as the absorber mass, the applied

torque and the absorber damping are increased from zero, y will be smooth in e and

can be expanded as follows,

y(0) = 1+ ey.(8) + 0(62). (3.7)

where y; captures the speed fluctuations induced by the net interaction of the applied

torque, damping effects, and the torques induced by the motions of the absorbers.
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Note that condition (2.9) is assumed to maintain as e is increased from zero, thereby

keeping the mean rotational rate near y = 1.

3.1.2 The Rotor Angular Acceleration

It is convenient to have an explicit expression for the rotor acceleration, since it

is a measure of the torsional vibration amplitude Of the rotor. This can be derived

by first noting that since 6 << 1 and y; is bounded, y(6) oscillates about unity and

is never zero. Therefore, equation (3.2a) can be divided through by y in order to

obtain an expression for s? in terms of 3;, s;- and y. Substitution of this expression

into equation (3.2b) and utilization of equation (2.8) gives an exact expression for

yy'(6), as follows,

N -l

Swim) = [1+ {72714.54 ]:-roy+Fo+I‘gsin(n6)

i=1

N I d ;’ I I

+ ‘V— : (2828.886 - -g(8—)8.2y2 + 828.9(8e)y2 + 2fl.8.g(8.)y) ](3E8)
N i=1 d3;

Utilizing the definition 5 E V, the scalings in equation (3.6), the expansion in (3.7),

and condition (2.9), a series approximation for yy' in terms of 6 can be obtained as

follows,

j=l d3]

+0052). (3.9)

I 1 N I d ' I ~

yy (6) = —e {N z(-2nsz-sj — n2g(s,-)sj + 39,232) — I‘gsin(n6)}

The above equation shows that the nondimensionalized angular acceleration is of

order 6, a result consistent with the known limiting case as e —> 0.

3.1.3 The Absorber Dynamics

The method of averaging is used in the next section to determine the dynamic

response for 0 < 6 << 1. To obtain equations in the correct form for the application
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of averaging, some modifications of the equations of motion are carried out. First,

based on the expansions in equations (3.7) and (3.9), one can Show that it, is the

same as yy' to leading order in 6. Then by dividing equation (3.2a) through by y,

a modified equation describing the absorber dynamics is obtained, into which the 6-

series approximation of ”y: is substituted. Expanding the result in terms of 6 yields a

set of weakly coupled, weakly nonlinear oscillators for the absorber dynamics. These

oscillators, in which the dynamics of the rotor has been eliminated to first order, are

 

as follows,

3;, +n2s; = ef;(s;,....,s~,s'l,....,s]v,6) + 0(62), 1 S i S N (3.10)

where

f;(s;,....,sN,s;,....,s]v,6) = —[Ias:-

I 1 N I d 8‘ I

+l3.‘ + 9(3i)llN:(-2n23j3j " "29(Sjlsj + ills {)33'2)

1:1 J

—ngin(n6)].

Remarks:

0 These equations are weakly coupled. The weak coupling arises due to the

fact that the absorbers are not directly coupled in a physical sense, but only

indirectly so through the rotor, and each absorber has only a small effect on

the rotor due to its small relative inertia.

o The equations of motion are weakly nonlinear, even though the amplitude of

motion of the absorbers is not assumed to be small. The weak nonlinearity

is due to the epicycloidal path used for the absorbers, which renders a linear

equation of motion valid for all feasible absorber amplitudes when the rotor

speed is constant. Again, due to the relative smallness of the absorbers’ inertias,

the rotor speed is nearly constant (cf. equations (3.7)), rendering nearly linear

equations of motion.
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o The symmetry SN is evident in equations (3.10), as the absorbers appear in a

completely interchangeable manner.

3.2 The Averaged Equations

The method of averaging is employed to analyze these equations. To this end,

the following transformation to amplitude and phase variables is introduced,

3.- = a;cos(d>,- — n6), 3:- = na;sin(d>,- — n6), 1 S i S N,

where a,- and 45,- are slowly-varying due to the form of equation (3.10). Substituting

the above transformations into equation (3.10), a set of ODE’s are derived which

govern the dynamics of a,- and (15,-, of the form,

d i
666- = if, (a;cos(¢; — n6), ....,aNcos(¢N — n6) ,

na;sin(¢; — n6), ...., naNSin(¢N -— n6)) sin(¢,- — n6) + 0(62)

d 1'
2% = if, (a;cos(¢; — n6), ....,aNCOS(¢N - n6) ,

na;sin(¢; — n6), ....,naNsin(¢N - 726)) cos(¢,- — n6) + 0(62). (3.11)

We now average the first order terms in the R.H.S. above over one period of the

excitation, 27". The resulting averaged equations are expressed in terms of the new

variables r.- and 90,-, (that is, the first order averaged quantities of a,- and (15,-, respec-

tively), as follows,

dr; “'1 .. f

E = £{7pa1‘g+';9COSQO;'F1(T{)

1 1 .

+75glznarsrfsmmaj.) - ner1(r.-. r). 01,-.) — ”(n2 + n4)er;(r.-, r). 01")”
J i

+002”)

dcp; _ “f0 . 1 1 5 2 1

d0 - 4 S‘W’Fz“) + Nb” " 2”)
1 —1 3 2 M) 2 4 "i+N§[-4—n rJ-cos(2a,-.-) - TG2(7‘i.7‘j,aJ’i) ’ n(n 'l‘ n ):H2(T;,Tj,aji)]}

J I '
'

+0052) (3.12)
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where

aji = a

sin2:r[1 — (n2 +n4,)7‘2 cos2.2]2dx,
‘pl

F1(T,') = To

271'

1 1
rgcoszx] 2

-:9.

F2(r,-) = 1]: cos2:z:[1— (n2-+-n“)r?cos"’a:]idx,

Gl(r,-, rj,aj,-) = 21rcos(;zc)sin(:1r: — aj,)[1 — (n2 + 12")

21ro

[1 — (n2 + n4)r?cosz(z — aj,)]%d:c

 

 

1 2x

G2(7'.°,7'j,aj.') = filo cos(a:)cos(x — 01,-.)[1 — (n2 + n4)r§coszx]51’

[1 - (n2 + n4)r?cosz($ — aj,)]%dx

1 Zn . 2 . 1 — (n2 + n‘)r?cosz(:c —an-,)1
. . .. = _ _ .i d

H.(r.,r.,a..) 2, f0 cos<x>sm (some: a. )[ 1-(n2+w,2)wszl x

1 2" , 1—(n2 +n4,?)1"cosz(z—x-ag)

H2(r;,rj,aj,) = -2_7r-./o cos(x)31n2(:r)c08(:r—Oji)l 1_ (n2+n4)r2c032a: J 1%1WI.13.

These equations govern the first-order, slow-time dynamics of the absorber motions,

from which the first-order rotor dynamics can be obtained from equation (3.9). While

these equations cover quite general motion, the present interest is in the existence

and stability of the important unison motion of the absorbers, to which we now turn.

3.3 Stability Criterion

In order to express the unison steady-state solution for the averaged equations

(3.12), we introduce new variables 1' and cp as the steady-state amplitude and phase

of unison oscillation, respectively. When the system undergoes unison motions,

1": r, (,0,- = (p for 1 S 3,] S N
(313)

The steady versions of equations (3.12) can be solved for sin(<p) and cos(cp) (since all
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01,-.- = 0). Using sin2(cp) + c032(<p)—- 1 it can be shown that r and cp must satisfy

- r2 — 2n 2

Pa = TH‘J5 (2—F1(7‘))2+ (m) and (3.14)

= <——"5-mam-
The amplitude r can be numerically solved using equation (3.14) and then cp can be

 

 

 

easily calculated by equation (3.15). To determine the stability of this response, the

Jacobian matrix of the averaged equations (3.12) is evaluated at the unison steady-

state solution. Due to the symmetry of the system and this motion, this Jacobian C

has the particular form

A2x2 32x2 B2x2

B A x . B

C2Nx2N = 2X2 2 2 2X2 (3.16)

. . . 82x2

(32x2 32x2 B2x2 A2x2 J  
where the entries of the 2 x 2 matrices A and B are given by

 

 

 

 

_ -1~ 1,, _16F1(7‘)

All — 2 #a + 2”ark-$10“) 67'

A12 = F1(r)F2(r)'lr (én — $12513)

N —1 1 1 1

+—N— (7nr — Zn3r3 + 4n5r3— nr3(n2 + n4) 63—5} M.)

_ 3172(7) 1 1 1 1
A = F l____ _ __ (_ _ 51,2) _

21 ( 2(r) 81' r) 2n 4121‘ + 2Nn5r

N—l n l 3 1 5 2 2 4 8H2

+ N (2r+8nr+§nr—nr(n +n)37‘iu.

_1~ _

A22 = -2—#aF1(") 1PM")

Bu = 0

l 1 1 1 6H
B = __ _ _ 3 3__ 5 3_ 3 2 4 _1

12 N (2nr+ 4n 1' 4n 1‘ nr (72 +71 ) 3ij M.)

1 —n 1 3 8H
B = _ ___ 3 _ 5 4 2

21 ~(2r W" ”)6—17...) 

.822 = 0,
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where ()Iu. indicates that the quantity is evaluated at the unison steady state solu-

  

- - 8H, 8H3 3H, 8H2) - - -
tion. Expressrons for 3% M, 8r.- 3.3., 3% M. and 3,.) M. are given 1n Appendix A.

 

For this structure of C, it can be proved that an eigenvalue of [A - B] is an

(N — 1) times repeated eigenvalue of C and an eigenvalue of [A + (N — 1)B] is

also an eigenvalue of C (this is a standard result from bifurcations with symmetry;

refer to Section XVIII.4 of (Golubitsky [20] et a1, 1988) or Appendix B). Under the

assumption that the absorber does not hit the cusp during the unison motion, all

eigenvalues of [A + (N — 1)B] have negative real parts (see Appendix C for a proof).

Thus, the stability of the unison motion is dictated by the eigenvalues of [A — B].

For a 2 x 2 matrix such as [A — B], both eigenvalues have negative real parts if and

only if the trace of matrix is negative and the determinant is positive. It can be

shown (see Appendix D) that

Trace[A — B] = —fla (3.17)

so that the trace is always negative. Therefore, [A — B] will have an eigenvalue with

positive real part only when its determinant becomes negative. In addition, condition

(3.17) indicates that only those bifurcations corresponding to a zero eigenvalue can

occur, i.e., Hopf bifurcations cannot occur.

From equation (3.16) one can obtain the determinant of [A — B]. We proceed

to solve the condition for the loss of stability in two ways: The first is an “exact”

form, using numerical determination of the determinant in terms of the functions F,-

and Hg. The second approach uses an expansion that is based on the observation

that when [2,, —) O, the amplitude at which the instability occurs, 1“, also approaches

zero. By assuming [2,, << 1, an expansion in r‘2 in terms of flu is carried out for the

condition det[A — B] = O, which yields

, 2 ~ (1+n2 (14n2+6n4 ~ ~

1* 2 = gnu — )8”, )#3 + 0013)- (3-18)
 

Note that based on the computational results shown in equation (3.18), 1'" is not



m2

151]

for t
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an explicit function of the number of absorbers N, although it may depend on N

through [la if the linear viscous damping described in equation (2.14) is assumed.

The first-order approximation in equation (3.18) gives the simple result

1‘" 2 (2’1“) 5. (3°19)

When 1' exceeds 1“ the determinant of [A — B] becomes negative such that [A — B]

 

has one real eigenvalue with positive real part, and therefore C has (N — 1) such

eigenvalues.

Recall that condition (3.4) must be satisfied for the absorbers to not reach their

maximum amplitude during the unison motion; i.e.,

1

n\/n2+1'

This indicates that r will necessarily be small for n > 1. The results regarding

1‘ _<_ 1"incur = (am)

the instability and the limiting absorber amplitude, equations (3.19) and (3.20),

respectively, can be used to obtain a condition on the system parameters which will

insure that the unison motion will be stable over the entire feasible operating range.

This holds if r" > rm”, and provides the following condition on the level of damping

that will ensure the stability of the unison motion for all amplitudes up to rm”:

nu

‘0 > —— . .

” — 2(1+ n2) (3 21)

In terms of the dimensional damping coefficients, this yields the following conditions

for the cases of viscous and hysteretic damping, respectively:

ca 2 filgfigz—z), if (2.14) is assumed

(3.22)

can 2 fi%%, if (2.15) is assumed

It is observed that the only difference in these results is that the minimal damping

level required for the viscous model to remain in unison motion decreases as the

number of absorbers is increased (while holding the total absorber mass fixed), while
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for the hysteretic model the damping level required is independent of the number of

absorbers.

If condition (3.21) does not hold, then there will exist a critical torque level

at which the absorbers, moving in unison, will reach an amplitude of r“, and the

instability will occur. In order to determine this critical torque we use the relationship

between I‘g and r given in equation (3.14), expanded for 1' << 1 and flu << n, which

yields f9 2 n21" (this is simply the undamped, linear response relationship, which

is a sufficient approximation for motions with amplitudes nearly up to rma$)- With

this result, equation (3.19) can be re—expressed in term of the critical level of the

disturbing torque as1

I‘; '2 (Ml/nil“. (3.23)

The corresponding dimensional forms of the critical torque for the cases of viscous

and hysteretic damping are, respectively,

 

. 2nNcaIdQ3Rg, if (2.14 is assumed

T; 2 l/ ) (3.24)

\/2ncaoIdQ3R3, if (2.15) is assumed.

This result indicates that the critical torque level for the viscous damping case de-

pends on the number of absorbers N, and is raised by splitting a given total absorber

mass into more absorbers. In contrast, for hysteretic damping, the critical torque

level is independent of the number of absorbers used. (Recall that this result is valid

only if the instability occurs before the absorbers reach the maximum amplitudes of

the unison motion.)

For the case of linear viscous damping, the effective damping flu in (2.14) is

 

1 See the work by Lee and Shaw (1996) [29] for an alternate derivation of

the critical torque level in which a pair of absorbers is considered and one assumes

from the outset that the amplitude, r, is small, but allows for arbitrary values of

the mass ratio V. In this case, the critical torque level contains a correction term

involving 1/2 — a correction that can be captured in the present analysis only by

carrying out second order averaging, a nontrivial task for this system. However,

note that their result cannot account for the finite amplitude effects captured here.



32

Bifurcation Set No.1
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Figure 3.1: The critical torque level, 1‘3, versus the number of ab

sorbers, N with 777:5"~ 0.0013. “”0 represents the bifur-

cation point derived from “Det[A— B] = 0”. “”1: rep-

resents the bifurcation point derived from the simplified

criterion (3.23). “x” represents an non-unison motion

from numerical simulations. “0” represents a unison mo-

tion from numerical simulations.
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proportional to the the number of absorbers and the quantity 3°35 = % is a fixed

physical quantity. Based on this assumption, Figure 3.1 shows the critical disturbing

torques levels Fg’s for different numbers of absorbers, N. The specific numerical

values used for parameters are: 1/ = 0.1662, n = 2 (values taken from the 2.5 liter,

in-line, four-stroke, four-cylinder engine considered by Denman [16] (1992)), and

51$ = 9‘7" x V = 0.008 x V 2 0.0013. The symbol ’0’ in Figure 3.1 denotes the critical

torque levels determined by numerically solving Det[A — B] = 0 for the critical

r value and using equation (3.14), while ’19 denotes the results derived from the

simplified, small—amplitude criterion (3.23). In this figure, we also show simulation

results obtained at selected “check points”, using a bearing damping level given by

{to = 0.005. Points marked by ’ x ’ denote the upper check points, which lie at torque

levels 5% above the critical values; here the absorbers undergo non-unison motions

after bifurcation — more on this below. The symbols ’0’ denote the lower check

points, which lie at torque levels 5% below the critical values; here the absorbers

undergo unison motion. The responses near the check points converge very slowly

to their respective steady states since they are close to the instability.

One can see that the predicted critical torque levels derived from “Det[A—B] = 0”

are within the range bounded by the corresponding upper and lower check points,

while the simplified criterion diverges away from the more accurate result as N

increases.

Figure 3.2 shows the approximations for the critical disturbing torque level F;

versus absorber damping [2“, as given by the simplified criterion (3.23) and by

“Det[A — B] = 0”. Note that by the results obtained from using equation (3.18), the

curves in this figure are independent of the number of absorbers N. The remaining

system parameters used are the same as those in Figure 3.1. The upper bound of

fia=0.01 is chosen to prevent any absorber from hitting a cusp after bifurcation for

N S 10, as based on observations from simulations. This figure also shows simulation
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Bifurcation Set No.2
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Figure 3.2: The critical torque level, F3, versus various absorber

damping [10. The solid line represents bifurcation points

derived from “Det[A — B] = 0”. The dashed line repre-

sents bifurcation points derived from the simplified crite-

rion (3.23). “x” represents an non-unison motion from

numerical simulations. “0” represents a unison motion

from numerical simulations.
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results at check points ’x’ and ’0’, which indicate that utilizing “Det[A — B] = 0”

gives a very accurate prediction of the bifurcation.

Figure 3.3 shows the absorber responses for N = 7 at the two check points. The

unison motion is obvious. It is interesting to note that the post-critical, non-unison

motion involves six absorbers moving together while the seventh has a different mo-

tion with a larger amplitude. This super-critical bifurcation was the only type ob-

served in many simulations involving different values of system parameters, different

N, and different initial conditions. Note that there will be N such responses possible

that are virtually identical, since the symmetry of the problem allows any one of the

absorbers to be the one that is “out of step”. The specific absorber that steps out is

dictated soley by initial conditions. The determination of this response and its effect

on the performance of the absorber system is the topic of the next chapter.

3.4 Concluding Remarks

This study investigated the stability of unison motions for multiple identical tau-

tochronic vibration absorbers (CPVA’s). This problem has practical importance,

as systems of CPVA’s are typically divided into N identical masses due to spatial

restrictions and in order to balance the rotating system. However, the selection of

the total absorber mass is generally done based on the assumption of unison mo-

tion. Using the method of averaging, a stability criterion for unison motions was

derived in terms of the disturbance torque level and the system parameters. The

results indicate that the number of absorbers has an effect on the system stability

if the absorber damping is viscous. If the absorber damping is hysteretic, however,

the number of absorbers does not affect the instability. In practice, this damping,

while critical for good operation, is extremely difficult to determine, either in type

or magnitude.

Designers with the aim of improving performance by lowering absorber damping
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Absorber motions before bifurcation with F9 = 0.0655 (at the lower check point)
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Figure 3.3: Absorber motions before and after the bifurcation point

for N = 7.
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should keep this instability in mind, as it is more likely to occur with smaller damp-

ing. The net result of lowering the damping is that the system will have improved

performance, but over a smaller operating range, since the post-critical motion of

the absorbers will reach amplitude limits at a smaller torque level than the unison

motion. This is considered in detail in the next chapter.
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CHAPTER 4

NON-UNISON DYNAMICS OF A ROTATING SYSTEM

WITH MULTIPLE TAUTOCHRONIC ABSORBERS

It was shown in the previous chapter that for epicycloidal absorber paths, the

unison motion of N identical absorbers may become unstable at a moderate level of

the disturbing torque, in which case the performance of the absorbers in the post-

bifurcation stage becomes of interest. In addition, it was observed in simulations

that the post-critical response involved N - 1 absorbers moving in relative unison

with the remaining absorber undergoing a larger amplitude motion.

This chapter aims to uncover the source of this response and to determine the

effects it has on system performance. To this end, the dynamic response of the

model considered in the previous chapter, which consists of a rigid rotor fitted with

N identical absorbers using epicycloidal paths and subjected to a harmonic torque, is

investigated. The primary goal of this effort is to determine the nature and stabilities

of the post-bifurcation, non-unison solutions in order to estimate the effects that the

bifurcation has on the two performance measures: the rotor acceleration and the

feasible operating torque range. It is determined that the torsional oscillation level

is reduced in the post-bifurcation regime, which improves the absorber performance.

However, it is also found that the feasible operating torque range is reduced due

to the bifurcation, since the absolute peak of all steady state absorbers’ motions is

increased. It should be noted that the present results are only the first step in such a

study, as some important issues must be considered in subsequent work in order for

the results to be of any practical use. These matters are taken up in the conclusions

of this chapter.

38
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4.1 Preparation of Equations of Motion

' In the previous chapter, the method of averaging was employed to find a criterion

that determines the point at which the unison motion becomes unstable. However,

this approach fails to characterize the post-bifurcation dynamics in a convenient

form, since the averaged equations are highly nonlinear and coupled in terms of the

amplitudes and phases. Essentially, while it is possible to find the post—bifurcation

solutions using numerical methods, it is not possible to predict the behavior of the

post—bifurcation dynamics in terms of system parameters. To solve this problem, a

linear coordinate transformation among absorber displacements is used herein that

splits the dynamics into two invariant subspaces, representing the unison motion and

its complement, respectively. 1 This transformation is given by

1 N 1 .
{1 = figs], 6.- = N(81 — s.) for 2 S 2 S N. (4.1)

Remarks:

0 This transformation enables one to separate the dynamics in the subspace of

the unison mode V, with attendant coordinate {1, from the dynamics in the

complement space W, with coordinates £5, 2 g i S N. From the structure of

the Jacobian C, it is known that when the unison response bifurcates, (N — 1)

eigenvalues of this system response, which correspond to the system dynamics

in W, cross the imaginary axis through zero. Therefore, in order to determine

the post-bifurcation behavior, the dynamics in W must be analyzed.

0 Note that for a response in which a group of p absorbers move in unison, with

31 included in that group, there will be (p — 1) {i’s with zero amplitudes and

(N — p) 65,8 with nonzero amplitude (for 2 S i S N). Furthermore, if the

 

1 A similar transformation was used in [11] in order to put linearized equations

in a useful form.
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remaining (N — p) absorbers move together, the nonzero {g’s (2 S 2' S N) will

be equal to one another.

0 Each 5,- (2 S i S N), is orthogonal to {1 but they are not orthogonal to one

another. A standard block diagonalization technique (see [24]) suggests that

one choose a set of orthogonal coordinates to characterize the dynamics in W

in order to find the linearized solutions near the bifurcation point. In contrast,

herein the special transformation (4.1) is chosen for convenience in estimating

the feasible operating range of the applied torque.

o The inverse of the transformation exists and is given by

N' .N

81:26” 35=Z€j—N€;, for 2_<_ZSN. (4.2)

'=l j=l

o For efficiency of presentation, the matrix T is defined such that a = T5 where

a = [31,32, ..., 3N]T and £ = [€1,52, ...,{N]T.

The final form for averaging is obtained by applying transformation (4.2) to the

equations of motion (3.10) and implementing a transformation to polar coordinates.

First, substituting transformation (4.2) into equations (3.10) yields the following

transformed equations of motion

{1’ + "251 = €f1(£,€'19) + C(52)»

61", + nzéi = efi(£a£':0) + 0(62)9 2 S 2 S N: (43)

where

fl(£a£'1 6) = —fia£1 +61 Y(T£, 0)

1 N N N

+17 [9 (235,-) +29 (25.- -N a.)
j=l i=2 '=l

—pa€; + £:Y(T£a 0)

+% [a (£261) -9 (£611 N 6:)

i=1 i=1

Y(T€,9),

 

fi(£a 5', 0)

y(T£,9),2 S i S N,
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1 N d ‘ I " .

Y(s = N2;—2n2sis; —n2g(sj)sj + figs-1%,?) — F951n(n0).

j]: J

The polar transformation13 then given by

{g = p;cos(1b,~ — n0), and 5:- = np,sin(1,b,~ - n9), 1 S i S N. (4.4)

Note that this transformation is singular when 6; is zero, and it is therefore not ap-

propriate for determining the stability of the unison mode. However, of interest here

is the system dynamics in the post-bifurcation stage. Substituting transformation

(4.4) into equations (4.3) results in a set of first-order differential equations which

describe the dynamics of p.- and 312,-, 1 S i S N, as follows,

p:- = 51:01,,p~,¢.,...,¢~, msinw.--n6)+0() (4.5a)

101$; = §n(p.,...,p~,¢.,...,¢~,0)cos(¢».-n0)+00%), wish/14.51))

where the function F,- is simply f; expressed in terms of coordinates p.- and 1,11,, as

obtained by incorporating transformation (4.4) into fg. Equations (4.5a) and (4.5b)

are in the desired form for averaging.

It should be pointed out that, when expressed in terms of the coordinates pg’s

and ng’s, the subspace of the unison mode V is spanned by [p1,¢1,0, 0, ..... ,0,0]T

and the complement W is spanned by [0,0, p2, 1122, ..... , pN, ¢N]T.

4.2 The Averaged Equations

Considering only the first order terms in e in equations (4.5a) and (4.5b), aver-

aging is performed in 0 over one period of the excitation, 2,11. The resulting aver-

aged equations are expressed in terms of the first—order averaged variables ,6.- and 113,-,

1 S i S N. Due to the complicated nature of the system, this process results in many

terms in the forms of integrals, which render closed-form solutions unachievable.

In order to obtain simplified, approximate estimates of the rotor acceleration

and the operating torque range, it is assumed that the oscillation amplitudes of the
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absorbers, that is, the [31’s, are small and of the same order, denoted 0(0). Then

the averaged equations can be expanded in terms of the p",-’s. This yields a set of

truncated, averaged equations in terms of [3; and 10,-, 1 S 2' S N, as follows, where

each is expanded to the desired order (more on this below):

~

 

 

dfil _ "flafil F9 ‘ —3

dé - 2 + 2nc08¢u + 0(10 l,

_ dIBI _ f0 . - ”/31 -3

P1 dé "" —2n81n¢’1 — 2 +O(P )9

dfii __ _flafii ”3 -2 _ . - -

d0 '— 2 + 4 P1P:Sln(21/)1 2w!)

3..

n pg

(4.6a)

(4.6b)

+— Z {2006.011011- — 213.) — (N -1)fifsin[2(d3e— M}
4 11513

n '1 _ _ . - — —

+7.0 )3 pjpksln(2¢.- - t/Jj - 1&1.)

11.11,.- & #1:

16n J.___,

2 4 -. ~ N . - -
+M{Nf‘gfigcoswg — Z2I‘9fijcos(2¢g — 7,0,)

N

anfilfiiSin(J’l — 117:) - Z 2n2fi1fijsinwi - 21/7: + 1131)} +

 

0035). (Me)
j=1

_ (1—1 3 _ - _ _ N — 1
MT? = —nTp,p§cos(2tl)1 - 21h) — ( 4 )n3p"?

n35.- - - ‘ ‘ ‘2 _ -+-4— Z {2piijOSWi - 7%) ‘ (N " 1)ij0S[2(¢’.‘ — '61)”
19513

+7235.- 2 —.— ‘. '. ‘T . . _ pkaCOS(22,[!. — Kb, — We)

J,k¢1,a a: #1:

n2 + n4 '1' ~ — - N ” ' _ — ~ ' _
+——————()p {—3Nng;Sln¢i + Z [2I‘9fijsln(21/Ji " $1) + 4F96jsmwjl16n

‘3Nn2/31P'NOSW—H — 1131)

N

+ Z [2n’filfijcos(2¢3.- — «13. — «13.) + 4n2fi1fijcoswl — 03.)]
'=l

0035)

i=1

where2SiSNand0260.

}+

(4.6d)
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4.3 Steady-State Responses

Note that equations (4.6c) and (4.6d) are expanded out to third order, while

terms out to fifth order are retained in the remaining equations. This is consistent

for obtaining steady-state solutions, as the 0033) terms in the dynamics of fil and

1/31 contribute at 0(55) in the dynamics of fig and 7,13,, 2 S 2' S N. Since only the

first-order nonlinear terms in the dynamics of fig and 11-2,, 2 S i S N, are needed to

find the desired approximate solutions, the 0063) terms in [2'1 and 1131 are not needed.

This fact implies that only the linear dynamics of the unison response are needed in

order to determine the first-order nonlinear steady-state solution of the non-unison

component (this is most easily seen by making use of the coordinates employed

here). In the above suggested method for finding the approximate solutions, it is

assumed that the 0033) and 0(6) terms in the averaged equations will dominate the

0(62) terms that would result from second order averaging (which is not considered

here). The validity of this assumption depends on the actual values of e and p, which

depend in turn on the level of the disturbing torque. It is shown in the simulations to

follow that the present expansion method provides satisfactory results for the system

dynamics well beyond the bifurcation.

To find a simple approximation for the steady-state solution for [)1 and 1,51, it is

assumed that ii“ is small compared to n (this is true in most applications), and that

the 0063) terms in equations (4.6a) and (4.6b) are neglected. Setting equations (4.6a)

and (4.6b) equal to zero yields the following approximate steady-state solutions for

[21 and 11—21, denoted by £31 and 121,

P1 = — and $1 = "‘- (4-7)

This is nothing more than the linear undamped response, but a reasonable approx-

imation of the unison mode at steady state, even up to amplitudes for which the

bifurcation occurs; this is verified in simulations. Substituting the above solutions
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into equations (4.6c) and (4.6d), setting their derivatives equal to zero, and ignoring

the 0(fi5) terms, a set of stationary equations obtains which can be solved for the

approximate steady-state solutions of fig and 25,-, 2 S 2' S N, denoted here as ,3,- and

~

21-)“ respectively. These equations are

_ ‘fiafii fifii - ~‘_

0 — —2 + —4nsnow.)

7?}: {2pgfijsin((22. — 22,) - (N -1)5§sin[2(2l7;- 213,-)1}

#13

123/),- z. z . 2: ‘ -

+—2—— Z: . p,pksm( 20.- -¢’,- HM), (4.8a)

j,k¢l,¢ 8!. J¢k

_ f2gfi' (N - 1)n3 :3

0 — 4113c——os(227)) 4 ,0,-

+_3_p_, z {21.1.cos(2Z- — 27)) — (N— l)p3cos[2(27),~— 2L )]}
4 j¢1£ pup) : J

"all" “- 2‘ ”- ‘ 2<'<N 48b
+7. 2 PijC05( «firth-$1.), _3_ - ( )

1.1591,: & 1;“:

Note that up to this point, (:)’s denote the first-order averaged quantities of p’s

and 21)’s and (3’s denote the associated truncated, steady-state quantities of (:)’s

when the absorber damping is neglected in the unison mode. The post-bifurcation

dynamics are investigated using the truncated equations in equations (4.6) and (4.8),

as well as their non-truncated version, equations (3.12). The first approach has the

advantage of providing explicit results in terms of the system parameters, whereas the

second approach is more accurate. (One should note that equations (3.12) express

the system dynamics in terms of the s coordinates, which are different from the 5

coordinates used in this chapter.)

4.4 The Post-Bifurcation Dynamics

In this section a first-order approximation of the post-bifurcation dynamics is

examined based on the truncated equations obtained in the previous section. Some

general remarks, notational definitions and a brief overview of this section are pro-
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vided before the detailed results are presented.

It is very difficult to determine all solution branches and their stabilities in a

problem with this level of symmetry. However, for the problem at hand, it is pos-

sible to estimate certain important features of the response, including the angular

acceleration of the rotor and the feasible torque range. Note that the torque range is

imposed by the restriction stated in inequality (3.4), the constraint on the amplitude

of the absorber motions. Therefore, an estimate for the peak amplitude over the

steady state responses of all absorbers, denoted by ||s||ss, is needed.

In section 4.4.1, it is first shown that all possible post-bifurcation, steady-state

solutions lie near the surface of an ellipsoid formed by the steady-state amplitudes

as expressed by the pg’s, 2 S i S N. Some of the solutions on this ellipsoid are those

with the corresponding isotropy subgroups, Sp x SN_p, for 1 < p < N. For simplicity,

such solutions are referred to as “an Sp x SN_p solution”, or “an Sp x SN-p branch”.

A Sp x SN-p solution simply refers to one with p absorbers moving in relative unison

and the other (N — p) absorbers also moving in relative unison, but with a different

amplitude and/or phase than the first p.

In section 4.4.2, based on the results obtained in section 4.1, it is shown that

among all the possible solution branches, the SI x SN_1 branch leads to the maximum

||s||38 of all possible absorber motions. In section 4.4.3, one of the 81 x SN_1 branches

is proven to be dynamically stable, based on the truncated equations in (4.6). This

information is then used in section 4.5 to estimate the feasible torque range and the

amplitude of rotor acceleration (that is, torsional vibration).

4.4.1 Approximate Post-bifurcation Solutions

Based on equations (4.8), for each 2° there exist steady-state solutions with )3,- = 0

or £3,- 79 0. As time goes to infinity, some of the 5,73, 2 S i S N, may converge to

~

[6,- = 0 while the others converge to non-zero steady-state amplitudes, depending on
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initial conditions and the stabilities of the various solution branches. In order to

distinguish these two types of amplitudes, the following sets of indices are defined

2 E{i|911m;3,(0)=0,2gi31v),

N a (i|olim}3,(6);é0,2SiSN}, (4.9)

which contain those indices corresponding to zero and nonzero steady-state ampli-

- tudes, respectively. For those )3,- with 2' in Z, the solution for the steady-state phase 2;,-

is arbitrary. For the remaining 5,, that is, those with i in N, it can be assumed that

the corresponding phases are identical; i.e., 22-),- = 27),, Vi, j E N (see Appendix E for

a justification of this assumption.) Under this assumption, one can approach equa-

tions (4.8) with a method like that used in to obtain equation (3.14). This yields a

steady state condition that corresponds to an ellipsoid prescribed by

 

N :2 N N ~ ~ f»: 4[12 %

NZP;‘ZZ§£-j= (5" n6“) , (4.10)

such that the steady-state solutions of ii, 2' E N lie on this ellipsoid (to a first-order

approximation). The formulation of this ellipsoid is independent of number of the

nonzero steady-state ifs, i.e., of the size of N, but its dimension depends on the size

ofN.

Note that the ellipsoid exists only for system and excitation parameters satisfying

1”“. 2 21%, (4.11)

which is equivalent to the simplified bifurcation criterion for the unison motion ob-

tained in equation (3.23). Thus, as the torque level is increased, the unison solution,

represented by the trivial solution in terms of the variables used here, becomes unsta-

ble and spawns an invariant ellipsoid. In fact, this ellipsoid can be shown to be stable

based on the truncated averaged equations (4.8), although the full-order dynamics

on the surface of the ellipsoid are not know.
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Note also that since this ellipsoid results from the truncated equations (4.8);

when the non-truncated equations are considered the ellipsoid will be distorted and

only a finite number of points on the (distorted) ellipsoid will survive as legitimate

steady-state solutions. 2

Some information about the nature of the solutions on the ellipsoid can be gar-

nered from symmetric bifurcation theory. Consider a case in which p and N - p

groups of absorbers move in distinct, but relative unison motions. (Note that in this

case (p - l) is the size of Z, since the first absorber is not included in Z.) As for the

other fig, that is, the N — p with i E N, their steady-state solutions lie on the surface

of the ellipsoid (4.10). Based on the “Equivariant Branching Lemma” proposed by

Cicogna [10] and Vanderbauwhede [63], when certain conditions are satisfied3, the

SD >< SN_p solution branches generically exist for all p, 1 S p S N. Therefore, the

existence of the solution branches on the surface of the ellipsoid with identical am—

plitudes p,- and phases 2b,- for each i 6 N is generically ensured for the non-truncated

averaged equations. Note that traveling wave types of solutions are also possible in

the generic case for this bifurcation, but these have not been observed for the system

under consideration. They may not exist, or may be dynamically unstable for this

system. Attention is now turned to the most important of these solution branches,

81 X SN_1 .

 

2 Working to first nonlinear order predicts the existence of this invariant

ellipsoid, but it does not provide the dynamics on it. This could presumably be

obtained by using higher order averaging. However, for present purposes this is

not necessary.

3 These two conditions are (also see [20]): (1) The symmetric group SN acts on

W irreducibly. (2) The critical eigenvalues cross the imaginary axis with non-zero

speed as the parameter of interest is varied. These conditions can be verified in the

present case. However, one still needs to prove that the present bifurcation problem

is generic. It is not the author’s intention to complete such a rigorous proof here.

The “Equivariant Branching Lemma” is simply used as a “road map” to search

for possible solution branches, and their existence can be confirmed by numerically

solving the non-truncated averaged equations given in equations (3.12).
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4.4.2 Search for the Solution Branch Leading to the Maximum IISIIss

Instead of finding all possible solution branches, a search for the branch leading

to the maximum ||s|]ss is conducted in order to estimate the feasible torque range.

This is accomplished by substituting the polar form of the absorber responses given

in equation (4.4) into the absorber displacements in terms of the 6 coordinates given

in equations (4.2), and assuming identical phases for each absorber during steady-

state Operation (this is the assumption justified in Appendix E). From this, one can

express the steady-state peak value of the first absorber motion by

||31||ss E max{ 31(0) I 60 S 0 S 00 +27r, 00 -> 00}

N 2 N ~'1 ”2
- 2I‘ , ~— ._ I‘2 2;.) 2.1.2.2;)+.—:] ,

{‘2 i=2

which is a square root of a positive quadratic function of 22-2 5,. (Note that it

is implied from equations (4.8) and Appendix E that sin(2l),-) is independent of

h, 2 S 2' S N.) Subject to the ellipsoid in equation (4.10), ||31||ss will reach its

maximum value when 25:2 ,5,- reaches its extremum. Since 2Z2 Z3,- = 0 is a principal

axis for the ellipsoid, 2&2 )3, reaches its extrema at the direction of the associated

eigenvector where ,3, = ’61-, 2 S i, j S N. Hence, among all the possible post-

bifurcation solutions, the one with identical )7, and 26,-, 2 S 2 S N, leads to the

maximum ”Slugs. It can be easily shown that the maximum ||3,-||ss for all 2 S 2 S N

is equal to the maximum H31 ”95, since the results are preserved under different choices

of the first absorber ( since all absorbers are identical). As a result, among all the

possible post—bifurcation solutions, the one with identical ,3,- and 27),- for 2 S 2 S N

leads to the maximum IISHss of all possible absorber motions on the steady-state el-

lipsoid. This solution corresponds to the isotropy subgroup S; X SN_1, wherein one

absorber moves out-of-step relative to all other absorbers, which remain in relative

unison. This is also the post-bifurcation solution observed in simulations.

Based on the Equivariant Branching Lemma, at least one such solution branch is
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expected to exist (and it contains N identical steady state responses). The Newton-

Raphson method was employed to numerically determine from the non-truncated

averaged equations (given in equations (3.12)) that such branches indeed exist in the

post-bifurcation stage over a wide range of parameter values.

4.4.3 Stability of the 51 x SN_1 Solution Branch

With the existence of the 51 x SN-1 solution in hand, a stability analysis is

carried out based on the truncated equations (4.6).

Consider equations (4.6a) and (4.6b), in which [61 and 2131 capture the dynamics

of the unison mode. The steady-state solutions of [31 and 251 can be approximated

by

 
 

pl = ,3, + 0053) and tan 2/31 = tan 2;, + 0(fi3) (4.13)

where

1 f9 ”- -71

P1 _ "(fig + n2)1/2 and tan 2/)1 — [ta , (4.14)

which, when truncated, is simply the linear, damped steady-state unison solution.

Note that when compared to the approximate solutions in equation (4.7), here the

effect of damping is required since it is crucial to the stability analysis of the 81 x SN_1

branch.

This approximate solution is independent of p,- and 21),, 2 S 2 S N, up to 0(fi3)

(that is, the unison dynamics are independent of the non-unison dynamics to second

nonlinear order). By treating the 0033) terms as non-vanishing perturbations in

equations (4.6a) and (4.6b), it can be shown (using Lyapunov techniques) that there

exists a positive number 9, independent of 5,09), 2,5;(0), 2 S 2 S N, such that

[[51 (0),2Z11(0)]T is ultimately bounded in an 0(fi3) neighborhood of [i31(0),2l)1(9)]T

for 0 _>_ 9. Hence, the stability of the 51 x SN_1 branch can be examined by
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incorporating the approximate solution from equation (4.13) in equations (4.6c) and

(4.6d), which govern the dynamics of fig, 213g, 2 S 2 S N, and in which the 0(fi3)

terms in (4.13) only contribute to the terms of 0(fi5).

The subsystem consisting of equations (4.6c) and (4.6d), governing the dynamics

of fig and zfig, 2 S 2' S N, is considered for the stability analysis. The Jacobian of

this subsystem is first derived and evaluated on the 81 x SN_1 branch. Due to the

symmetry of the subsystem and this solution, this Jacobian, denoted by J, has the

form

1

A2x2 B2x2 82x2

B2x2 A2x2 82x2

J(2N—2)x(2N—2) = . (4.15)

. o . 82x2

32x2 B2x2 B2x2 A2x2 J  
It can be shown that all eigenvalues of J are eigenvalues of one of the 2 x 2 matrices,

[A + (N — 2)B] or [A — B]. This result is a consequence of the symmetry and

does not depend on the actual values of A and B. The nature of the eigenvalues

of [A — B] are first determined by the well-known fact that both eigenvalues of a

2 x 2 matrix possess negative real parts if and only if the trace is negative and the

determinant is positive. By incorporating approximation (4.13) into the Jacobian J,

the determinant and trace of [A — B] are determined to be,

Trace[A - B] = —fia, (4.16a)

N~a 722 + 124 11 1‘—

Det[A — B] = " (256 )pp. [(12 - 5mm? + nap/2.

+(4N - 12W + 1241235. €059.23 — 2223.)

 

+16 c0502 — 21.21)] + 0(fi6) (4.16b)

Where fi and 2; are used to denote the steady-state amplitudes and phases of fig and

ii, 2 S i S N, respectively, on the S; x SN-1 branch. Since the trace is always

negative, only the sign of Det[A - B] needs to be determined. Letting fi —> 0*,
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it is found that the sign of Det[A — B] is dominated by the sign of c030,; — 27),)

near the bifurcation point. Based on equations (4.8), it can be shown that near the

bifurcation point the phase must satisfy

 

—37r

or

*— 71'

The above two solutions for the phases provide two different S; x $121.; solution

branches. With the approximate value of 2b; given in equation (4.7), one has

cos(2Z) — 'Z’i) ‘3 2,

near the bifurcation point. The first branch, with 2; 2 32—”, leads to Det[A — B] > 0

as fi -> 0+ while the other branch similarly leads to Det[A — B] < 0.

As for the [A + (N — 2)B] matrix, in Appendix F it is proved that the branch

with 22) 2 "—21 leads to Trace[A + (N — 2)B] < 0 and Det[A + (N — 2)B] > 0 as

fi -> 0"“ near the bifurcation point. Hence, the S; x SN-; branch with 2; close to

~31r/4 is stable. Henceforth, this branch will be designated as “the stable S; x SN_.;

branch.”

4.5 Absorber Performance

In this section, two important measures of absorber system performance, the

feasible operating range of the applied torque and the angular acceleration of the

rotor, are estimated.

4.5.1 Estimate of the Feasible Torque Range

As the amplitude of the applied torque is increased, the absorbers’ amplitudes

likewise increase, until a cusp limit (3.4) is reached for one or more absorbers. There-

fore, the feasible torque range can be determined if one combines the relationship
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between the torque amplitude and ||s||ss with the absorber amplitude limit. This

process is described here for both the truncated and non-truncated versions of the

equations.

From the analytical results obtained in the previous section, is known that there

exists a stable S; x SN-; solution which yields the maximum ||s||ss (based on the

truncated equations). This implies that for any initial conditions, the system will

converge to a solution branch that renders an ||s||ss which is less than or equal to

that resulting from the stable S; x SN-; branch. Therefore, this solution branch

can be used to predict the maximum ||s||ss, which is used in turn to determine the

feasible torque range.

By using the fact that the steady—state amplitudes, pg, 2 S 2 S N, are all equal

on the stable S; x SN_; solution branch, the ellipsoid prescribed in equation (4.10)

can be used to determine the steady-state amplitudes, yielding

 

~ A

- - 1 I“ 4‘2 ‘ .
pap,=—(—9— p“), 2S2SN. (4.18)

n8 226

Similarly, by using equations (4.8), the equal steady-state phases on this solution

branch are found to be

“— *— 1 . 2 ~a .
2,!) E (bi = —[sm-1(_%g_)] — 7r, 2 S 2 S N. (4.19)

o

It has been shown that ||s||ss can be derived from ||s;||ss. To determine [[s;||ss,

the expression for s; in terms of {g,1 S 2 S N, given in equation (4.2) is utilized.

Substituting the angular transformation (4.4) into this expression, using the stable

S; x SN_; branch and the approximate steady-state unison solution for p; and 2!);

given in equations (4.7), one obtains Hsllss, as follows,

”Sllss E lrsngx‘fl 3g(0) | 00 S 0 S 00 + 27r, 00 —> oo}

- 1

P3 2 2:2 2

—— —(N—1)1”‘9;3sinfi+(N— 1) p (4.20)
n4 n2
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where fi and 27) are given by equations (4.18) and (4.19), respectively.

It is now possible to estimate the feasible operating range of the applied torque

level f‘g by recalling inequality (3.4) and using the approximate expression for Ilsllss

in equation (4.20). This can be carried out to an analytical equation, which is

not presented here since it is not easily solved for an explicit expression for the

maximum torque. Note that since this estimate is based on the truncated equations

in equation (4.8), it will deteriorate near the singularity of the absorber path. In order

to determine a more accurate estimate for the torque range, one can numerically solve

the non-truncated equations (3.12) (as described in section 3.2) for a more accurate

estimate of the S; x SN-; solution.

Numerical results for the torque range are given in Section 4.6.

4.5.2 Estimate of the Rotor Acceleration

An approximate expression for the angular acceleration is first formulated to

leading nonlinear order, after which more accurate estimates are computed. Taking

the nondimensionalized acceleration yy'(0) stated in equation (3.9), considering only

the 0(6) terms in yy'(6), expanding yy'(0) in terms of s,-,1 S 2 S N, and then using

the definition 6 E V and the transformation (4.1), yields

I r2712 N I ~

yy (6) = 1) N 233's” + n25; + P9 sin(n0) + 0(p3) (4.21)

J:

where only the first and second order amplitude terms are considered. Utilizing

the truncated stationary equations (4.8), a nontrivial calculation (outlined in Ap-

pendix G) yields the following lower-order approximation for yy'(0),

, e[n3fi: sin(227)1 — 2n9)] = g; sin(2n0), before bifurcation.

1111(9) 2’ 22)

4222,, cos(227) —- 2720)] = 212,, cos(22Z - 2120), after bifurcation.

where the approximate solution for fi; and 273; in equations (4.7) have been used and
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=_1 ,_1 272141,,

w) (a )1 «
An interesting feature of this result is that the peak value of yy'(0); i.e., Hyy'llss,

where

 

is quadratic in terms of the applied torque level in the pre—bifurcation stage — this

is due to the fact that the absorber is tuned to eliminate the acceleration at linear

order. An even more interesting result is that in the post-bifurcation stage, ||yy’||ss

is independent of the torque level; i.e., it saturates after bifurcation. Furthermore,

the acceleration yy'(0) vanishes as [1,, goes to zero. (Recall that the bifurcation

torque level also goes to zero as [2,, goes to zero.) Since the acceleration predicted

by equations (4.22) saturates after bifurcation, higher order terms in p will become

dominant when the applied torque level begins to go beyond the bifurcation level. In

order to obtain a more accurate estimate, one can use the acceleration approximated

to the next order, which is given by

2 N
I

2 ' ~ . N , 2 2 4 N

yy(6) 2 V Till—23,13]-+7226;-+-I‘(9sm(n0)+(722+12")ZsjsJ-2—E—(—n—2;l-—iflz.sjl

j=l j=1 j=l

(4.23)

where 3g,l S 2 S N are approximated by equations (4.7), (4.18) and (4.19).

An even more accurate estimate can be obtained by numerically solving the non-

truncated equations (3.12) given in section 3.2 for the stable S; x SN_; branch and

substituting the resulting 3g, 1 S 2 S N, into equation (3.9). These results are found

to match simulations very closely over the entire feasible torque range.

4.6 Numerical and Simulation Results

In this section, existence and stability results for steady-state solutions are pre-

sented, along with simulation results, which are used to confirm the analytical results

and to examine the accuracy of the various levels of approximations used in this study.
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In addition to the approximate results obtained in the previous sections, included

here are numerical solutions of the non-truncated averaged equations (3.12) given in

section 3.2. The system parameters used throughout this section are: u = 0.1662 and

n = 2; these were taken from the 2.5 liter, in-line, four-cylinder, four-stroke engine

considered by Denman [16]. Recall that our approximations are based on a small

V assumption, and the value considered here is a relatively large ratio for absorber

systems; typical values are in the range 0.01— 0.1. The absorber damping [1,, is taken

to be independent of the number of the absorbers, N.

The Newton-Raphson method was employed to solve the non-truncated averaged

equations (3.12) for the post-bifurcation branches. This process was repeated for the

following parameter ranges: N = 2 to 10 with increments of one, fin = 0.0013 to

0.013 with increments of 0.0001, I“; = 0.03 to 0.08 with increments of 0.0001. In order

to determine as many solutions as possible, several starting points were randomly

chosen in the range 1‘.- = 0 to 0.22 (the cusp level) and go.- = 0 to 21r, for each i. The

associated stability of each solution was determined by numerically evaluating the

eigenvalues of the associated Jacobian matrix. Numerical and simulation studies of

many Sp x SN_p solutions were carried out. It was found that in the post-bifurcation

stage, for absorber amplitudes below the cusp level, the only stable solution branch

is the S; x SN_1 branch predicted by equations (4.14), (4.18) and (4.19).

Equations (3.2a), (3.2b) and (3.3) were used to directly simulate the system

dynamics, using Gear’s BDF method [59]. It was found that by utilizing a wide

range of initial conditions and the ranges of system parameters described above,

the system dynamics always converged to a stable S; x SN._1 response in the post-

bifurcation parameter range.

Figure 4.1 shows a typical set of post-bifurcation absorber responses for N = 4,

[1,, = 0.0026 and f9 = 0.048. (Note that different values of [la show qualitatively the

same system dynamics as the value chosen here, although for higher damping levels
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Figure 4.1: Post-bifurcation steady-state responses of the absorbers

for N = 4 (four absorbers), [4,, = 0.0026 and F9 = 0.048.

Solid lines: Simulation; Dotted lines: Truncated; Dashed

lines: Non-truncated; Coarsely dotted lines: Imposed

unison response.
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the bifurcation of the unison response occurs nearer the cusp point.) In Figure 4.1,

the solid lines represent the simulated response. The dotted lines are derived by

estimating the response by truncated equations (4.7), (4.18), (4.19) and transforma-

tions (4.2). The dashed lines are obtained by assuming the stable 81 x SN_1 solution

(=81 x S; here) and numerically solving the non-truncated averaged equations (3.12)

for the absorber responses. The coarse dotted lines represent the simulated absorbers’

responses if they are locked into a unison motion (that is, the absorber inertia is a

single lumped mass). This shows that the non-truncated equations are very accurate

and that the truncated equations are quite satisfactory. Note that the system re-

sponse, as compared with the corresponding unison motion, has N—1(= 3) absorbers

with a slight phase shift and little amplitude difference, while one absorber undergoes

a motion with drastically different amplitude and phase. It is the localized response

of this absorber that will limit the applied torque range. (Initial conditions determine

which absorber goes to the large amplitude, but in practice small symmetry-breaking

discrepancies may favor localization in a particular absorber.)

Figure 4.2 shows various estimates and simulations of the rotor acceleration for

the same case as Figure 4.1. The 2nd-order approximation is derived by the trun-

cated equations and the estimate given in equation (4.22), while the 3rd-order ap-

proximation is derived by the truncated equations and the estimate given in equa-

tion (4.23). It is seen that the 2nd-order approximation roughly represents the main

harmonic component of the simulated acceleration, but offers a poor prediction for

Ilyy’llss. This is due to the fact that in the post-bifurcation stage, the terms up to

0(p2) in equation (3.9) saturate and the higher-order harmonics begin to dominate

IIyy'Hss. One remedy to this problem is to use the 3rd-order approximation, from

equation (4.23), to estimate Ilyy'Hss, which offers a significant improvement over the

2nd-order results. As expected, the numerically-obtained, non-truncated solution is

in excellent agreement with the simulated acceleration in all regards.
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Figure 4.3 shows the peak absorber amplitude ||s||ss versus the applied torque

level. The maximum amplitude, which fixes the range of the applied torque, is set

by the restriction in equation (3.4) and is marked as “Cusp” in the figure. From

this figure, one observes that the truncated equations give a conservative prediction

of the feasible torque range while the non-truncated equations give a very accurate

estimate. Also, by comparing the unison and non-unison ||s||83’s, one can see that

the distribution of the total absorber mass into several smaller masses significantly

decreases the operating torque range. Figure 4.4 shows the percent reduction in this

range relative to the unison response for different numbers of absorbers. It is seen

that as N increases, the feasible range is dramatically decreased by the bifurcation.

Figure 4.5 shows the rotor angular acceleration ||yy'||ss versus the applied torque

level. In this figure, the 2nd-order approximation completely saturates after the

bifurcation, which is not observed in the simulations. The 3rd-order results are

much improved, and the non-truncated equations again give a very accurate result.

By comparing the llyy'llss’s for the unison and non-unison responses in the post-

bifurcation range, one can see that the distribution of absorber mass slightly improves

absorber system performance by decreasing the ||yy'||ss levels. Figure 4.6 shows the

ratio of the resulting ||yy'||ss to that for the unison response for various numbers of

absorbers with F9 = 0.0555 and [10 = 0.0026. It is seen that the ||yy’||ss’s obtained

from simulations are well approximated by the non-truncated equations. However,

the second and third order results significantly under and over estimate this ratio,

respectively. Also, it is seen that the actual ratio approaches unity as N increases.

4.7 Concluding Remarks

This study considered the dynamic effects of using several masses to compose the

required inertia for a system of tuned absorbers. For usual sizing calculations, one

implicitly assumes that these masses move in a unison manner. In chapter 3, it was
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determined that this motion can become dynamically unstable as the torque level is

increased. In the present work the post-bifurcation dynamics are investigated. The

results were obtained and verified by employing three methods: (1) low-order trunca-

tions of the averaged equations, (2) numerically solving the non-truncated averaged

equations, and (3) simulations. The truncated equations offer reliable qualitative

results in terms of the dependence on system parameters, but are not very accurate

in some respects. In contrast, the non-truncated results, while requiring numerical

solutions of the steady-state equations, are very accurate in all respects.

It was found that the post-bifurcation dynamics are dominated by a stable 81 x

SN-1 steady-state solution branch. This is very reminiscent of mode localization,

in that one absorber undergoes a much larger amplitude of motion relative to the

others (see [62] for relevant work on nonlinear localization). It was also found that

this S; x SN_1 branch leads to the maximum ||s||ss and it results in a mild saturation

of Ilyy'llss after bifurcation.

Combining the results shown in Figures 4.4 and 4.6 indicates that one does not

gain a significant reduction in the level of torsional oscillations by the distribution of

the total absorber mass into N masses, but the feasible torque range is drastically

reduced.

Designers of absorber systems can refer to the information provided herein in

order to obtain refined estimates of system performance before testing. However, it

is recognized that other effects may have comparable influence on the overall system

behavior. Of particular importance is the level of absorber damping; while generally

small in practice, it is difficult to measure and may vary during operation (due to

wear, temperature differences, etc.). It is interesting to note that when designing an

absorber system, it is desirable to keep this damping as small as possible in order

to keep the absorber oscillating in an out-of-phase manner relative to the disturbing

torque. This offers optimal torque counteraction if the absorbers move in unison.
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However, for a multiple absorber system, a smaller damping level will cause the

bifurcation to non-unison response at a smaller level of the disturbing torque level,

causing a potentially dramatic decrease in the applicable torque range.

As stated in the introduction, this investigation is only the first step in the study

of unison absorber motions. To be of any practical use, the results must be extended

to include: other absorber paths, including the widely—used, intentionally mis-tuned

circular path; the effects of multiple harmonics in the torque; rotor flexibility and

the distribution of torque along the axis of rotation; and mistuning, i.e., symmetry

breaking, to name a few. Preliminary simulations that include small mistunings

among the absorbers indicate that the individual absorber dynamics can be drasti-

cally altered by mistunings on the order of 1%. However, it is also observed that

the overall ||s||ss’s and llyy'llss’s are quite robust to such changes. An investigation

of these effects will bring the research squarely into the active realm of mode 10-

calization (Happawana et al [22]; Hodges [25]; Pierre and Dowell [45]; Vakakis and

Cetinkaya [62]).



CHAPTER 5

THE EFFECTS OF IMPERFECTIONS AND

MISTUNING ON THE PERFORMANCE OF THE

PAIRED, SUBHARMONIC CPVA SYSTEM

A recent study by Lee et al. [30] has demonstrated a new configuration of cen-

trifugal pendulum vibration absorbers (CPVA’s) that is very effective at reducing

torsional vibration levels in rotating systems that are subjected to harmonic exter-

nal torques. This system is composed of a pair of absorbers riding on epicycloidal

paths that are tuned to one-half-order relative to the frequency of the applied

torque. Such a configuration is referred to as the subharmonic absorber system. It

was shown in [30] that the restoring torque generated by an ideal, perfectly tuned,

undamped pair of subharmonic [absorbers is exactly a pure harmonic over a wide

range of amplitudes. This has significant potential advantages over conventional

designs, since it generates no higher-harmonic torques, even when accounting for

nonlinear effects.

The aforementioned results are based the assumption that the absorber paths

are perfectly tuned and are manufactured exactly as desired. In practice, however,

due to manufacturing tolerances, wear, thermal effects, etc., the absorber paths are

never perfect. It was the initial goal of this study to determine the sensitivity of the

system response to such small imperfections. During the course of the investigation

it was found that a slight mistuning of the linear natural frequencies of the absorbers

can actually help to improve some aspects of the absorber performance, although

at a price in terms of other measures. In order to account for these effects and to

predict the corresponding performance of the absorber system, an extensive analysis

66
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is conducted herein that includes imperfections and intentional mistuning in the

mathematical system model.

An evaluation of absorber performance is accomplished by evaluating two perfor-

mance measures: the angular acceleration of the rotor and the range of the applied

torque. The former is used to quantify the level of vibration reduction, which is

desired to be as small as possible, while the latter is imposed by the size of the

absorbers’ masses and their limited range of travel. To calculate these two perfor-

mance measures, the system dynamic response is approximated using the method

of averaging for a particular scaling of the system parameters. The solutions of the

averaged equations are derived and considered in light of the system performance

goals. Bifurcation diagrams are used to evaluate absorber performance and to distill

some guidelines for the design of absorber paths.

5.1 The Subharmonic Absorber System

5.1.1 The Perfectly-Tuned Absorber System

A subharmonic absorber system was proposed by Lee et a1. [30] which is composed

of a pair of identical absorbers with individual masses m, = $2“ and identical damping

coefficients [29.- = [16, i = 1, 2. These absorbers ride on identical paths specified by

n 2

x92(s;)=1— (2) 3?, 2': 1,2 (5.1)

 

which is equivalent to R,-(S,-) = \/R3 _ (g)? 5?. This path can be shown to be a

particular epicycloid, resulting in absorbers whose natural frequency in the constant

rotation rate case is n9/2, that is, one-half that of the applied torque.

The equations of motion (2.12a) and (2.12b) for N = 2 and the identical paths

given by equation (5.1) have an exact solution when the absorber damping is zero,
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[1,, = 0, and condition (2.9) (for constant rotor speed) is satisfied. It is given by

y(0) = 1’
(5.2a)

31(0) = —82(0) i%([%c0s (g0) , (5.2b)

where V = mg“: is the ratio of the total nominal moment inertia of both absorbers

about point 0 to that of the rotor. It is seen from equation (5.2a) that in this

response the rotor runs at a constant speed and the absorbers move in an exactly

out-of-phase (.91 = —32) subharmonic response of order two relative to the disturbing

torque. In this response the absorbers exactly counteract the applied torque, hence

the designation of the subharmonic absorber system. The physics of this absorber

response can be seen by observing equation (2.12b), which describes the balance of

the torques acting on the rotor. It is seen that the motions of the individual absorbers

generate torque harmonics of all odd orders, which, due to their out—of—phase nature,

cancel each other in the summation. However, each absorber also generates a single

even-order torque, of harmonic 72, through the Coriolis term fiszyz. Since even-order

torques add together in an out-of-phase motion, these add, creating a purely order

n torque that exactly cancels the disturbing torque.

This steady-state operating condition corresponds to a perfectly constant rotor

speed, which is the ultimate design goal of such an absorber system. Note also that

this solution, while not absolutely global due to the limited range of absorber motion

imposed by the cusps, is valid and exact over a wide range of torque amplitudes

(described in more detail below). When the system possesses small, nonzero absorber

damping, it was shown in [30] that this pair of subharmonic absorbers is able to limit

the rotor acceleration 5 to a level that is of the same order as the absorber damping,

and that this acceleration saturates at a fixed, small level as the torque amplitude is

increased over a wide torque range.
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5.1.2 Absorber Imperfections, Mistuning and Limitations

The dynamically favorable property described in the previous section can only

be approximated in practice. Several effects will come into play that limit the ideal

solution, including tolerances in the cutting process used for generating the absorber

paths, the presence of rollers in the bifilar configuration (whose dynamics do not

follow the absorbers’ motions [16]), and deformations due to wear, elasticity or ther-

mal effects. In order to account for these imperfections, the absorber path functions

(5.1) are generalized to the following,

$i(3ii9ij)=1-(%)2sl- 29.583, i=1,2 (5-3)

.i

where the 9’s are used to quantify the the deviations from the ideal path. Note that

all g’s are assumed to be small in magnitude in the following analysis. In order to

have control on the system dynamics, it is also worthwhile to examine the effect of

intentionally mistuning the linear frequencies of the absorbers relative to their

design value of n/2. To incorporate this mistuning, the absorber path describing

functions are reformulated as

2 .

x,(s,;9,-,-,Aw,) = 1 - [(g) + AM] 8? - 29:58?» i: 1’2 (5-4)

,-

where the Aw’s represent the intentional mistuning for each path. For simplification

equation (5.4) is re-expressed as

. n 2 . .

:r,-(s,-;6,-,-) = 1 — (2) s? — $6,533, i=1,2,. (5.5)

where 5,,- = 9;,- for all i, j, except 6.2 = 992 + Aw.- for i=1, 2. This split may appear

to be artificial, but the idea is that the parameters Aw,- are to be designed into the

path, whereas the ggj’s are small and generally unknown perturbations in the path.

From equation (2.8), it should be noted that the value of the function g,-(s,-) must

be kept real during absorber motions. This leads to a restriction on the amplitudes
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of the absorber motions. For the case when all mistunings and imperfections are

small, 6,, << 1, the aforementioned restriction is approximated by

4

nVn2+4’

This restriction, derived by maintaining the g(s)’s real, keeps the absorbers from

39(9) S 3m + 0(6), V 0 and i, where sum,x = (5.6)

passing the cusp points of the epicycloidal paths. This also imposes a finite operating

range on the disturbing torque level F9. For the case of perfect absorber paths it is

given by

. 7 2121/

F < P = ——-, 5.7o .. 0.0 n2 + 4 ( )

over which the desired system response given in equations (5.2) can be maintained.

(Note that these explicit forms can be given for the subharmonic absorber since the

desired ideal steady state response is known exactly.)

5.2 Measures of Performance

Two performace measures will be used to quantify the effectiveness of an ab-

sorber system. The first is the amplitude of torsional oscillations here represented

by its peak angular acceleration at steady state, denoted by ||yy'||ss. The second

performance measure is the range of the applied torque amplitude over which the

absorber can operate, denoted by F9. A complete description of these two perfor-

mace measures was provided in section 2.6. Note that for the perfect, undamped

subharmonic absorber, ||yy'||ss = 0 and the corresponding torque range is given by

F90 in equation (5.7). One of the main goals of this work is to determine ||yy'||ss

and the generalization for condition (5.7) for the damped, imperfect system. These

results will point out some limitations that are imposed on the subharmonic absorber

system by parameter uncertainties, but it will also offer the designer some flexibility

in designing the path to achieve certain goals.
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5.3 Scaling and Reduction of the Equations of Motion

Approximate solutions are sought for the damped and imperfect system by mak-

ing some scaling assumptions and employing asymptotic analysis techniques. This

is accomplished by first utilizing the definition of the small parameter c in equa-

tion (3.5) and the scaling (3.6) used for a different case in section 3.1.1. With the

definition of e E V, the small imperfections and mistunings can be scaled by

691' = 66,5 Vj, and 2 = 1,2. (5.8)

Note that typical values of the ng’s are less than one percent, whereas V may range

from one to ten percent. The conservative assumption (5.8) is made in order to

incorporate the effects of imperfections and mistunings in the first order analysis.

The unperturbed system dynamics for this scaling are determined by considering

equation (2.12b) with e = 0, that is, V = 0, which yields y = 1. Using this in

equation (2.12a) with [1,, = 0 yields a linear oscillator with frequency 72/2 for the

absorber motion. Thus, the steady-state solution of the unperturbed system is simply

a constant rotor speed, y = 1, and the absorber motion is harmonic with frequency

n/2 and arbitrary amplitude.

The rotor acceleration can be derived by following the same procedure used for

the case with N tautochronic absorbers described in section 3.1.2. This gives the

following expression for the acceleration,

I 1 2 n2 i n 2 dg°(s-), ~ ,

3131(9) = -€{§§(—'2—3i31‘ (‘2') 90(3j)3j+'—d;]_3j2)‘F981n(n9)}

+0(e")- (5.9)

where

 

. 4 2 4

90(86) = 96(3655' = 0) = ([1 - (116—1) 3;”, i=1,2.
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Likewise, a set of weakly coupled, weakly nonlinear oscillators for the absorber dy-

namics can be obtained, given by

2

s,- + (:21) s,- = ef,(sl,sg,sl,sz,6) + 0(62), i=1,2 (5.10)

where

f£(31,82,3i,3;a9) = -fla8;-hi(3i)

I 1 2 n2 I n 2 6190(3) I
o o

+[3.-+9 (3i)l[§j§(--2-Sjsj - (5) g (5031' + 'Tjj'sj?

—I‘9sin(n0)],

h;(S,-) = lzjgnggj-l.

2 j

Remarks:

0 This system has two degrees of freedom with a 1:1 internal resonance. In

addition, the excitation is in a 2:1 resonance with respect to the absorbers,

and it is of parametric form. In this regard, the system is very similar to that

considered by Yang and Sethna [67].

o The effects of the imperfections and intentional mistunings are present in the

function h’s which results from the term fi—ffy in the equation of motion (2.12a).

5.4 The Averaged Equations

In this section some standard coordinate changes are first carried out which put

the equations in the desired form. Averaging is then applied, and this followed by

a discussion of the system parameters which appear in the averaged equations and

by a presentation of a modified form of the equations for a special scaling of the

imperfections. With these forms of the averaged equations in hand, the search for

approximate steady-state solutions is carried out in the following sections, the results

of which are used for performance evaluation.
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5.4.1 The Periodic Standard Form

A linear coordinate transformation between absorber displacements is first used

to simplify the ensuing analysis. This transformation splits the leading order system

dynamics into two invariant subspaces, representing the unison motion and its com-

plement. A subsequent transformation to amplitude/phase coordinates will render

the desired form.

The first transformation is given by

5:81:32 and 0:31;”. (5.11)  

Substituting transformation (5.11) into equations (5.10) yields the following trans-

formed equations of motion

2 “ I I

64(3) c 6fe(€,€,n,n,9)+0(€"),

 

2

n” + (§)’n = 445,529,910) + 092), 2 s .- s N, (5.12)

where

fe(€,€',n,n',9) = -i2a€' — $12, (6 + n) - ghz (5 - 77)

+ [6' + %QO(€+'7)+ gym-77)] Y(€+n,£ -n,9),

fn(€,€',n,n',9) = -flan' - %h1(€+ 7)) + ghz (5 - n)

+ [n'+ 59°(€+n) - $9005 -n)] Y(€ +m€ - m9),

Y(31,32,9) = %:(—%23j3i — (%)29°(81)31+ ’19:?)3?)

—I~‘-9sin(n9). (5.13a)

Next, the polar coordinate transformation given by

110 I , 0

e: r. cosop. — 7). c = nr£81n(<P£ — ”7),

n0 I . n0
1] = r,, cos((,0,, - —2—), 7} = my, Sin(<p,, - 3). (5.14)
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is applied. Substituting the above transformations into equations (5.12) yields a set

of first-order differential equations which describe the dynamics of re, (pg, 1‘, and cpn

in the periodic standard form [39], as follows,

I 26 A n9

1‘5 = 7F€(r57‘p£$r7)9’197730)8in(’p€ — _2—) + C(62),” (5153’)

. 2e . n0 2

1’60: = :Fdreiweirmsomgl 6030?: - "2") + 0(6 ), (5.151))

I 26 e , 120

r77 = 710703, (p69 rm ‘Pm 6) SH“??? - '2_) + 0(6)), (5.15C)

. 2e . n0 2

rfl‘pn = 71510:, (P5, rm (pm 0) COS“??? - 7) + 0(6 )i (515d)

where the functions F5 and F}, are simply f5 and f’,7 expressed, respectively, in terms

of coordinates re, 90:, r,, and (pm as obtained by incorporating transformation (5.14)

into f9 and f". Equations (5.15a) to (5.15d) are in the desired form for averaging.

5.4.2 Application of Averaging

Considering only the first order terms in e in equations (5.15), averaging is per-

formed in 9 over one period of the excitation, 5;”. The resulting averaged equations

are expressed in terms of the first-order averaged variables F9, 955, F" and 95". Due to

the complicated nature of the system, this process results in many terms in the form

of integrals which do not yield closed-form expressions.

In order to obtain simplified, approximate estimates of the rotor acceleration

and the operating torque range, it is assumed that the oscillation amplitudes of the

absorbers, that is, 1": and F", are small and of the same order, denoted by 0(F). The

averaged equations are then expanded in terms of F9 and F". This yields the following

set of truncated, averaged equations, where each has been expanded to the desired

order, 0(F3),

_ ~ - _ g n . _ _ _ . ._

dé — 2 [turf ( + 2n ’7 + 2n 81110106 — cI077) + Zror£ 81112006

+cn1F97": sin(2g55 — 2957,) + 0(1‘5), (5.16a)
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_ ~ ‘ - 38 ‘3 95 ‘2"_ 61905 _ 6&2 n 7": _ 6’72“? + _”£Il + Jig-L" cos(c,59 — 95,7)

2n 2n

1~ _ _ _ _ _ _ -
+ZI’9F9 cos 2959 + c,,17'9r;"7 cos(2<p9 — 2%,) + €1,2793 + 6.1372732,

 

  

 

+065), (5.16b)

(1F -1,_ 5 F 35,?3 35,5259 , _ _ 1~_, _

:5" = 7““ ‘ ( "2 ’ + 2? + "2.." SW» - w) + imam?»

+c,,,F,,r-§ sin(2,a,, — 2,59) + 0(55), (5.16c)

_d‘ 5 _ 5 F 35,?3 95,5259 _ _ 1~ _ _
rug? = ——’:—2r,, — ( ":1: + 2””5 + fi— cos(<,0,, — 909) + ZI‘9F" cos2cp,,

+cn1FnF§ cos(2g.5,, — 2959) — emf: + c,,3F,,F§ + 0(F5), (5.16d)

and where

. ~ 5 +5 ~ 5 —5 ~ 5 +5 ~ 5 -59 E 60, 692: 122 22, 6n2: 122 22, 5:4: 142 24’ 5114: 142 24,

411,3 — n5 3894 n5 3894 471.3 + n5 3554

6111 = ————, c,,2=———, 3=____

256 2n 128 2n 128 2n

n3 3894

= — —. .1and CM 32 + 2n (5 7)

These equations contain the essential dynamics that arise from the resonant struc-

ture of this system. The stationary solutions of equations (5.16) represent the am-

plitudes and phases of the periodic steady-state responses of the absorbers, as repre-

sented by the unison and opposition modal coordinates. Non-stationary steady-state

solutions are represented by amplitude and phase modulated oscillations of the av-

eraged equations.

The averaged equations (5.16) as derived using the polar transformation (5.14)

are singular when either 5 or 17 is zero. Therefore, they cannot be used for determining

the stability of any trivial solutions that may exist. When faced with this problem,

the following transformation is employed,

A9 = F9 cos @9, B9 = F9 sin 959, A,7 = F" cos 95", and B,7 = F, sin ii)", (5.18)

which yields an equivalent set of truncated, averaged equations expressed in Cartesian

coordinates. These are given in Appendix H.
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5.4.3 System Parameters

The averaged equations (5.16) depend on seven dimensionless parameters: [20,

n, n, 3.2, 3,. 5,. and 5,...

Note that the effects of imperfections are present in the truncated averaged equa-

tions only through the second and fourth order terms as they are defined in terms

of the path formulations given in equation (5.5). The coefficients of odd powers of s

in the path formulation, that is, 591, 5,1, 593 and 5,3, do not appear in the averaged

equations (5.16). Thus, the analysis indicates that such terms, which measure the

deviation of the path’s symmetry about its vertex, do not contribute to the resonant

responses. As defined in equation (5.17), the parameters 592 and 5,,2 are the sum

and difference of 512 and 522, respectively, and these result from the net effects of

frequency mistuning and linear imperfections in the dynamics of each absorber. The

parameters 594 and SM result from fourth-order imperfections in the absorber path

realization, that is, they capture the leading-order nonlinear imperfections that are

symmetric about the path vertex.

Of the other system parameters, [1,, is the absorber damping which, in practice,

is designed to be small and will be regarded as fixed in the bifurcation analysis of

this chapter. f‘g is the amplitude of the main harmonic of the disturbing torque, and

this is used as the primary bifurcation parameter. Since the absorber motions are

prevented from reaching the cusps on their paths, the applicable range for T9 is finite

for each steady-state solution branch of the averaged equations (5.16). The value

of n is fixed by the loading condition, e.g., in an M-cylinder, four-stroke internal

combustion engine, 12 = M/2. Note that the value of n affects the signs of the en’s,

and can even render them zero if 594 = 0. These differences can result in qualitatively

different bifurcation diagrams, as shown below.

Note also that the term —nF9/4 in equation (5.16b) results from expansion of
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the term (n/2)zg°(s,-)s.- in the e-order function Y in equation (5.13). This term

characterizes the difference between the linear frequencies of the two modes, that is,

—n1"'9/4 plays the role of internal mistuning on the system dynamics. When this

term is nonzero, the system dynamics are not invariant under the exchange of the

two modes. It will be seen in the analysis presented below that this term is a key

factor in obtaining the desired performance of the subharmonic absorber system.

5.4.4 Averaged Equations for Nearly Identical Absorber Paths

In order to evaluate absorber performance in terms of the two performance mea-

sures defined above, the steady-state solutions of the truncated averaged equations

(5.16) must be determined. However, due to the complexity of the expanded aver-

aged equations (5.16), it is impossible to find steady-state solutions in closed form.

In order to determine some approximate solutions an additional scaling assumption

on the mistuning parameters is employed.

It is assumed that one can manufacture the curves for the absorbers such that the

relative precision between the curves is much higher than their absolute precision.

This assumption leads to the following scaling of the imperfection parameters,

% = 0(6) for i: 1, 2,.... (5.19)

{i

This scaling allows the designer to intentionally mistune the absorbers relative to the

order of the applied torque, and it accounts for some imperfection in the paths, but it

does assume that the two paths are nearly identical. With scaling (5.19) adopted, the

terms involving the 5,,’s in the averaged equations (5.16) are pushed out to C(62),

and thus have no influence on the dynamics at this level of approximation. This

scaling assumption will be revisited near the end of this chapter.

The resulting modified, truncated averaged equations are given by,

d’ —1 1 ~ . .

71% z 751s": + Zr”: SID 2% - cn1f9fgsm(2¢9 ‘ 295"), (5208‘)
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d" —5 n 1* - - ‘ ’ ‘
_ ‘Pé _ ( 52 _ _) F: + —I‘9F9 cos 2959 + 07.17273, COS(2‘P€ " 299") + cngrg’

 

r9? — n 4 4

+c,,3f9f3,, (5.20b)

din —1~_ 1~_. _ __2. _ _

-7 = —par,, + —I‘gr,, sm 2,0,, - 6,,17‘nré sm(2<,9,, — 2999), (5.20c)

d0 2 4

- —5 1..
73,5350} = n62 17,, + ZI‘an cos 295,, + cnlfni‘? cos(2c,5,, — 24,59) — emf:

+Cn3fn7—‘g (5.20d)

where 6, Car, cflg, cn3 and cm are the same as defined in equations (5.17). Utiliz-

ing transformation (5.18), the corresponding averaged equations (5.20) in terms of

Cartesian coordinates are determined, and these are given by equations (H2) in

Appendix H.

It is seen from equations (5.20) that in this case f‘g, n, 592 and 594 are the impor-

tant parameters to be considered in the bifurcation analysis. 592 enters the averaged

equations as a linear frequency detuning, while 594 affects the coefficients of the first-

order nonlinear terms. If 594 is very small, the value of n will dictate the coefficients

of the nonlinear terms, thus fixing the nature of the bifurcation diagram.

It is interesting to point out that the truncated, averaged equations (5.20) have

the same structure as those analyzed by Yang and Sethna [67] in a study of the

flexural vibrations of nearly square plates subjected to parametric in-plane excitation.

In that study, two detuning parameters with respect to the natural frequencies of each

individual oscillator are considered as primary bifurcation parameters, and local and

global bifurcation analyses are carried out. Herein, in addition to the imperfection

and mistuning parameters, the disturbing torque level Ta is considered as a primary

bifurcation parameter in order to evaluate the absorber performance under various

levels of the disturbing torque.

For more related works on bifurcation analyses for dynamical systems composed

of weakly-coupled oscillators and subject to internal and/or external resonances, one

can refer to Bajaj et a1. [2], and Ariaratnam and Sri Namachchivaja [1].
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5.5 Approximate Steady-State Solutions

This section begins with a brief discussion about the types of steady-state re-

sponses that can occur, followed by a detailed analysis of each type. Of particular

interest are the existence, stability, and range of validity for each type of response.

These results are used for the performance evaluation described in the section 5.6.

5.5.1 Solution Types

With assumption (5.19) adopted, it is evident from the averaged equations (5.20)

that for any given system parameters there exists a trivial solution which leads to

no motion for the absorbers; i.e., F9 = F,, = 0. Also, there are solutions with

F9 = 0,F,, 95 0 and with F" = 0,F9 7E 0. These are single-mode solutions and are

denoted by “SM” in the following. Solutions with F9 74 0 and F,, = O are unison

mode solutions. Such synchronized motions of the two absorbers are denoted as

“8M1”. Solutions with F9 = 0 and F,, ¢ 0 correspond to motions in which the

two absorbers undergo oscillations with the same amplitude but are 1r outvof-phase,

and these are denoted as “SM2”. In addition, there exist couple-mode solutions

with F9 and F,7 both non-zero, denoted by “CM.” Note that for certain values of

the system parameters, periodic solutions arising from Hopf bifurcations may exist

for the averaged equations, and these represent amplitude and phase modulated

oscillations of the absorbers. However, it will be shown that such motions are not

physically possible for this system, due to the finite physical limits of the absorber

paths.

As each solution type is considered, results are presented in the form of bifurcation

diagrams depicted by plotting the amplitudes of the two modes versus the torque

amplitude f‘g. For this study the value of the absorber damping [in is fixed, whereas

several possible values for n, 592 and 594 are considered. The solution branches are
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represented in closed form whenever possible, and are otherwise determined using

numerical tools such as AUTO [17] and the Newton-Raphson method. Figure 5.1

shows a representative bifurcation diagram for the system with n = 2, [la = 0.05,

592 = 0.06 and 594 = 0. This diagram is typical and depicts the general features that

appear in the following analyses. However, most of the solution branches shown will

be shown to be non-physical, thus significantly simplifying the picture of the actual

steady-state response.

5.5.2 The Zero Solution

It is evident from the averaged equations (5.20) that the zero solution; i.e., F9 =

F" = 0, exists for any set of system parameters. Its stability can be determined by

the eigenvalues of the corresponding Jacobian matrix of equations (H.2) evaluated

at the origin. It is found that this matrix has the following form,

A 0J4“ = 2x2 2x2 (521)

02x2 82x2

where 02x2 represents the two-by-two zero matrix. The eigenvalues of J thus coincide

with the eigenvalues of A and B, which are

 

 

 

 

-fla 1 ,. -

11,, = 2 :l: EJ464632 + r3722, (5.22a)

_~a 1 - -

A3,. = 5‘ a; jaw-(n2 + 4692)2 + rgn2. (5.22b)

Based on these eigenvalues, it is easy to show that for nonzero damping ([10 7E 0)

there are no Hopf bifurcations from the zero solution. The bifurcation sets on which

an eigenvalue becomes zero are shown in Figure 5.2, which is depicted for the system

parameters, n = 2 and [la = 0.05. In this figure, the zero solution is stable under the

curve ACE and unstable above AOB. Note that a double zero eigenvalue condition

holds at the point labeled 0. All bifurcations from the zero solution are pitchfork
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Figure 5.1: The bifurcation diagram for n = 2, [ca = 0.05, 592 = 0.06,

594 = 0, 5,,2 = 0, 5,4 = 0 . The solid lines represent

stable solutions and the dashed lines represent unstable

solutions.
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bifurcations, and both the super- and sub-critical cases occur for various system

parameters.

Of course, this solution is not affected by the limitations imposed on absorber

motion.

5.5.3 Single-Mode Solutions

5.5.3.1 Solution Branches

There exist two types of single-mode solutions, defined above and labeled as SM]

and SM2.

For SMl, the synchronous responses, the solutions with F9 75 0 can be determined

by equations (5.20a) and (5.20b), yielding

_ 5 F—_~.. _ 3 ~ -
7.2+ = 4c1n2 (£71;2 + n + F3 - 4’12) ’ T2_ = 4cln2 (:I—n‘2 + n _ Pg - 4”?!)(523)

- = 2-“ - = -2-“tan 2509+ 13-471? tan 2909- —’i—F:_4fia. (5.24)

The solution branches with F94r and F9- on SMl are denoted by SMl+ and SMl',

  

respectively.

Utilizing the same procedure and notation, the solutions for SM2, the out-of-

phase responses, are found to be

- 5: /~ - _ 5: /~ ~

- 2} - _ -2éa
tan 290,”, = 1934‘]? tan 290"- — [934%. (5.26)

The existence of SMl' and SMZ‘ depend on the signs of [123 + n] and [if-Q] ,

 

respectively. Since I592| << 1, it follows that Igf-z-l << n, and therefore SMl"

always exists for the parameter ranges of interest. However, the existence of SM2“

depends critically on the sign of 592. When SMl' and SM2' exist, they arise
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from the zero solution via pitchfork bifurcations and then merge with SMl+ and

SM2+, respectively, in saddle-node bifurcations. If SM2' does not exist, SM2+

arises directly from the zero solution through a pitchfork bifurcation. Note that

the internal mistuning plays an important role in determining the nature of these

single-mode solutions.

5.5.3.2 Stability

With these solutions in hand, a stability analysis is conducted by evaluating the

corresponding Jacobian matrix on the various single-mode solutions. It is found, as

in the case for the zero solution, that the Jacobian matrix possesses the structure

stated in equation (5.21). Hence, the eigenvalues of this Jacobian matrix satisfy two

second-order polynomials of the form

A2 + {M + DA = 0, A2 + [101 + 0,; = 0, (5.27)

where the first and second polynomials are derived from the the block matrices A

and B, respectively, in equation (5.21). Since [in > 0, the stability of the SMl and

SM2 solutions can be determined entirely by the signs of DA and DB. Furthermore,

due to the fact that [10 > 0 no Hopf bifurcations occur from SMl or SM2. The

stability for each branch on SMl and SM2 is now determined.

Utilizing transformations (5.18) when necessary, DA and DB can be derived. For

SMl,

D“ = imfgfl/f‘g—mg. (5.28)

Since D41- is negative on the branch SMl', this leads to one positive eigenvalue,

and thus SM]. is always unstable. For the branch SM1+, DA” is positive and this

leads to negative eigenvalues. Thus, the stability of SM1+ must be determined by

the sign of D3”, which is given in Appendix I. It can be shown that for 59 small,

D3” is positive. Hence, the branch SM1+ is stable.
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For SM2,

032,. = ions-fm/fg—zifig. (5.29)

Applying the same approach used for SMl yields the following results. The branch

SM2" is always unstable and the stability of the branch SM2+ is determined by

the sign of DA“, which is given in Appendix J. It can be shown that for 59 small,

DA“ becomes negative at a level of F9 denoted by F3, at which point a secondary

bifurcation occurs. An example of this is shown in Figure 5.1, where SM2+ is

unstable for F9 > F3.

5.5.3.3 Range of Validity

Based on condition (5.6), only a finite torque range is valid for each branch, in

order to keep the motions of the absorbers below the cusps. Only stable solution

branches are considered, since these will dictate the steady-state system behavior.

For the solutions on SMl, only the stable branch SMl'l' is of interest. Using

equations (5.23), a condition can be determined such that point A in Figure 5.1 is

above the cusp amplitude, thus violating condition (5.6). This condition is given by

~ 2

692 > 2726112 - 94—, (5.30)

which, if satisfied, implies that no stable SMl solutions are valid. For the case

with n = 2 and small 594, the R.H.S. of the above equation is approximately -3/4,

and thus the condition is satisfied for any realistic value of 592. The same argument

sustains for different values of n.

It is thus concluded that for small 59, the stable solutions on the branch SMl

do not correspond to legitimate steady-state responses for the equations of motion

(2.12). This result is largely due to the “internal mistuning” mentioned in section 5,

since the term “—n2/4” in the R.H.S of inequality (5.30) results from the effect of

internal mistuning.
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On the other hand, it is seen from equations (5.25), representing the SM2 single-

mode solutions, that internal mistuning has no effect (to leading order) on the out-

of-phase responses. This fact actually allows the stable solution SM2+ to be valid

up to a torque level denoted by F9, at which the absorbers hit the cusps. (Note that

F9 herein is a rescaled version of F9 defined in equation (5.7); i.e., F9 = 6F9). Based

on the solutions given in equations (5.25) and the restriction on the the absorber

motions given by the approximation in equation (5.6), F9 can be approximated by

.. ~ 2 1
2n 96594 4692 4

1’ —— 4 . .9 [(17.2 + 4 + n3(n2 + 4) + n ) + ”a (5 31)
 

"
j
u

This limit is now compared against the secondary bifurcation torque amplitude,

~3, described in the previous section. Utilizing the information given in Appendix J,

this torque can be numerically computed and compared with equation (5.31). It

is determined that F; > F9 over the following ranges of the mistuning parameters:

592 E {-0.03, 0.03] and 594 E {-0.03, 0.03]. Therefore, the important conclusion is

reached that the SM2+ responses are stable all the way out to the cusp amplitude

for realistic values of imperfections.

The stable SM2+ branch is central to the effectiveness of the subharmonic vi-

bration absorber system, as described in section 5.6.

5.5.4 Coupled-Mode Solutions

The existence, stability and range of validity of the coupled-mode solutions are

now considered.

5.5.4.1 Solution Branches and Their Stability

Observing the averaged equations (5.20), one can first classify all possible steady-

state solutions into two distinct groups: the first satisfies sin(2<,59 - 2%,) = 0 and
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the other does not. Solutions in the group with the property sin(2t%9 — 2%,) = 0

are sought first. This property implies cos(2¢9 — 2%,) = :l:1, which enables one

to solve the averaged equations (5.20) for steady-state solutions. As a result, eight

steady-state solutions are found, given by

 

 

  
 

 

 

 

  

13.315 = .4(cn2cn4-:flc‘n3icm)2)l" + 5%:2 + W552 + (Long—cm + 1) (f3 — 459%] ’

Fr2215 = _4(c..,c,..:(?..3¢cm)’)l[-1652 + b%1(n+ 1%!) + ($55?“ + 1) (P2 — 4fl<21’)%]

5526 = [4(cnzc..fi‘c‘.3xcm)2)l_" + 4‘53 + W562 + (2‘53“+ 1) (f3 " 41195] .

= [........:z*:.......:.] + ‘C"3::"”<n++2?) + (seen —1) (f: - 49:)5],

is = [.(......:a......)2)] in + is + 42—16: + (m - 1) (1‘3 - 4113f] ,

5537 = l4(cn2cn4-:(Zzaicn1)2)l E? + (“iii“)m + £553) + (““5“ + 1) (P2 " 4"“)5]

= [........:z::......2.] [n + _. + 4—46 + (M — 1) (1“: — 499%] ,

F72748 = [4(Cngcn4+(cn3icn1)2)] :432 + “filing“ + £53) + (ing—cm _ 1) (f3 — 4’12)?

with phases given by

sin(2509,)-— sin(2%,,-)-— 2%?“ , 1 S i S 8. (5.33)

The stabilities of these coupled-mode solutions can be determined by evaluating the

corresponding Jacobian matrix on the corresponding solution branches and examin-

ing their eigenvalues. In this case, the characteristic equation is fourth order. Due

to the complexity involved in the expressions for the stability criteria, results are not

explicitly given here.

The solutions in the other group, which satisfy sin(2c%9 — 2%,) 79 0, are obtained

by utilizing the computational algorithm outlined in Appendix K. The corresponding

stability is then determined by numerically evaluating the Jacobian matrix on the

solution branches.

By comparing the single-mode and coupled solutions (denoted by CMl to CM4),
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one finds that all coupled-mode solutions bifurcate from single—mode solution through

pitchfork bifurcations. Also, no isolated solution branches are found to exist.

5.5.4.2 Range of Validity

It is of practical importance to identify the set of stable coupled-mode solutions

which satisfy condition (5.6), that is, those that are physically possible. It turns out

that no such solutions are valid, and this is shown by a simple argument, and backed

up by detailed calculations.

First, it is known that all coupled-mode solutions bifurcate from single-mode

solutions. Furthermore, in section 5.5.3.3 it was determined that all single-mode

branches are beyond their range of validity when they bifurcate to coupled-mode

solutions. Therefore, no coupled-mode solutions are valid for the range of parameters

of interest.

A more detailed calculation follows that allows one to directly check condition

(5.6) for all coupled-mode solutions at once over a range of parameters. To facilitate

the method, a relationship between the two modal amplitudes, F9 and F,,, is first

derived. Setting the R.H.S. of the averaged equations (5.20) equal to zero yields

 

 

0 = —2fla + F9 sin 2559 — 49,1153; sin(2c%9 — 2%,), (5.34a)

0 = (-:6£2 - n) + F9 cos 2959 + 4can: cos(2959 — 2%,) + 4cn2F§

+4533, (5.34b)

0 = «2%, + F9 sin 2%, -— 4can§ sin(2%, — 2959), (5.34c)

0 = “:58 + F9 cos 2%, + 4cn1F§ cos(2%, - 2959) — 4c,,.4F,27 + 4Cn3Fg. (5.34d)

Combining equations (5.34b) and (5.34d) gives

-—45 45 ~
(TL — n) F? + -;£3F,2, — F9 (F3, cos 2%, — F: cos 2959) + 46712772 + 40:19:77.4, = (1535)

NeXt, incorporating equations (5.34a) and (5.34c) into equations (5.34b) and (5.34d),
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respectively, one can represent cos 2,59 and cos 2%, as functions of f9, flu, 552, n, 1"?

and F3, as follows,

-1 ~ ~ 4552 _

cos2’ = ———.— F2+16ciF4—4 :— (—+4c,, r2906 86,.1I‘97-‘g [ 9 1 g II n 4 ,,

_4cn3fg)2] , (5.36a)

—1 ~ ~ 4852 _
cos2' = —.—— I‘2+1(ic;"1 f4—4 Z— (—+n—4c,, r2

2

—4c..31‘~3,) ] . (5.36b)

Substituting the above equations into equation (5.35) yields the following fourth-

order polynomial which governs a relationship between the two modal amplitudes on

any coupled-mode, periodic, steady-state response,

01F? + (1217:, + a3i‘gi‘: + (14?? + 051'“; + 06 = 0, (5.37)

where

2 2 2 _ 2 2 2

01 = 261116112 — cnl — C112 + C713) 02 — zcnlcn‘! + Cfll _ C113 + C714,

28 25
43+2)_£
n 2

as = —2(cn2cn3 + cn4cn3), a4 = (an — cnl) ( ens,

~ ~ ~ 2

as = 2(c,,1 + 67,3 + cm) (36—2) + 2% and as = (1%? — (67:3 + g) . (5.38)

Note that this polynomial does not depend on the torque amplitude f‘9. Thus, for

fixed values of n and the system parameters, this constraint represents two curves

in the 175-17,, plane. An example for n = 2, 552 = 0.05 and 354 = 0 is shown in Figure

5.3. Also shown in this figure is the set of amplitudes that satisfy condition (5.6),

represented by the interior of the triangle OAB. It is seen that all points on the two

curves generated by the polynomial (5.37) are outside the triangle OAB. Thus, no

coupled-mode solutions are physically possible for this set of parameters. One can

generate such graphical information for any values of n, 352 and 394 in order to check

the feasibility of the coupled-mode solutions.



1.4

1.2
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Figure 5.3: The curves represent the relationship between E, and F9

in coupled-mode solutions for n = 2, 652 = 0.05 and 654 =

0. The feasible absorber motions lie inside of triangle

OAB

1.5
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5.5.5 Remarks

With all possible solution branches and corresponding stabilities in hand, bifurca-

tion diagrams showing all periodic steady-state responses and their stabilities can be

generated. Figure 5.1 shows a typical bifurcation diagram for 55 = 0.06, 3,, = 0 and

n = 2. However, as shown above, many of the solution branches are non—physical.

AUTO [17] was utilized to confirm the results obtained above, and consistency

was found in every case checked. In addition, AUTO also found some non-physical

periodic solutions to equations (5.20), all of which arise from the coupled-mode

solutions via Hopf bifurcations.

Based on the results obtained in this section, the following conclusion is drawn.

For reasonable ranges of the system parameters, the only viable steady-state system

responses are the trivial solution and those on the branch SM2+. To ensure this

conclusion for a given system, one can use the criterion in equation (5.30) and the

method provided in section 5.5.4.2 to confirm that SM2+ is the only nontrivial

solution that satisfies condition (5.6).

When the system is undamped and the paths are perfect, the solution SM2+

reduces to the idealized subharmonic absorber system response given in equations

(5.2a) and (5.2b). It is therefore not too surprising that this solution will persist

in the face of imperfections, and that it will offer good performance as a torsional

vibration absorber. The details of this performance are considered next.

5.6 Absorber Performance and Design Guidelines

This section contains the main results of this chapter. Here the desired steady-

state solution is considered in terms of the system’s effectiveness as a vibration

absorber. Considered in turn are the following: some general features of the response,

expressions for the two measures of system performance, details of the effects of
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imperfections and mistuning, a summary of results in the form of design guidelines,

and verification by simulations.

5.6.1 The Desired Solution

In this section it is shown that the stable branch SM2+ is very favorable in terms

of meeting the two goals outlined in section 5.2.

For a given disturbing torque level, I‘9, the absorber dynamics can converge to

any stable steady-state solution. Utilizing the expression for the angular accelera—

tion “gs/(0)” provided in equation (5.9) and the solution branches obtained by the

averaged equations, one can compute the rotor acceleration on each branch. The

main conclusion of these results is the following: for various values of n, small 36 ’s

and zero 3", among all branches, the SM2 branches lead to the smallest ||yy'||ss over

the feasible range of the disturbing torque. This result can be explained in terms of

the harmonics contained in 3131', as follows. First, yy'(0) given in equation (5.9) is

expanded in terms of the 3’s. Next, it is observed that each steady-state absorber

response 3(0) is dominated by a harmonic of order n/2 (since they are nearly linear).

From these facts it is determined that the net rotor acceleration yy' is generally com-

posed of all odd harmonics, but only one even harmonic, which comes from the term

—2n23,-s; in the summation. Now, suppose there is a non—zero f9 for the steady-state

solution. In equation (5.9) it renders the summation of all odd harmonics nonzero

and thus the higher-order harmonics will be amplified. This leads to a large value of

Ilyy'llss. Contrarily, if 7": = 0 for a steady-state solution, that is, if the two absorbers

simply move in an out-of-phase manner with the same amplitude, the odd harmonics

resulting from the motion of the two absorbers will cancel each other in the sum-

mation and only the even harmonic term survives. In fact, it is a pure harmonic

of order n, and it is precisely this effect which is used to counteract the harmonic

disturbing torque. This is the crux of the subharmonic absorber system.
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Since the solution branch SM2+ is the desirable solution in terms of rotor accel-

eration, it is useful to ensure that it is the only possible stable steady-state response.

For a given set or range of parameters, one can employ the criterion given by equation

(5.30) and the method provided in section 5.5.4.2 to verify that the other potential

solutions are not viable. After this is accomplished, one can be quite certain that

the absorber performance as evaluated in the following section will be achieved.

5.6.2 Absorber Performance on SM2+

The peak rotor acceleration llyy’llss is first derived. On SM2+, the absorber

motions are represented by the single-mode solution given in equations (5.25) and

(5.26). These solutions are incorporated in expression (5.9) for the rotor acceleration,

the scalings in equations (5.8) and (3.6) are employed, and terms up to 0(6) are

retained, yielding

.. .. 2 2

6 66 *2
:13 + $413) on SM2+, (5.39)

I = 2,02

llyyllss (#)+(n n

where 173+ is given by equation (5.25). Note that the exact saturation exhibited by

the ideal absorber system is lost when the nonlinear mistuning parameter 864 is non-

zero, since 1"?” depends on the torque level. However, exact saturation at different

levels can be obtained when 394 = 0. This is discussed more fully in section 5.6.3.

The applied torque range I‘9 is simply set by the upper torque limit at which the

absorbers hit the cusps on the SM2+ branch, given by equation (5.31). Utilizing the

scaling assumptions, one can obtain F9 by scaling equation (5.31), as follows:

7 2121/ 96394 4592 2 ,2 i-

P9 2: [(m +m+T) + 4pc] . (5.40)

This result is the generalization of the result given in equation (5.7) for the ideal

system, accounting for the effects of absorber damping, mistuning and imperfections.
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Note that this result assumes that the cusp is reached before a secondary bifurcation

takes place, and this can be checked for each case by the procedure outlined in section

5.5.3.3.

5.6.3 Effects of Imperfections and Mistuning

The effects of 592, 594, 5,2 and 5,4 are considered in turn in this section. Recall

that these scaled parameters capture the effects of mistunings and imperfections

associated with the second and fourth order coefficients in the path function (5.5).

Observing the solutions for SM2+ given by equation (5.25), one sees that a small

non-zero value of 594 does not qualitatively change system behavior since it only

affects the magnitude of the coefficient Cn4. Based on this fact, the effects of 862 on

absorber performance are first considered for the case when 554 is zero. It is seen from

equation (5.39) that IIyy'Ilss depends on the parameters [10, n, and 552 (for 594 = 0).

It is independent of the disturbing torque level and independent of the absorbers’

amplitudes. This indicates that the rotor acceleration saturates after the bifurcation

point, a result that is valid until F9 reaches F9.

In order to demonstrate the main results, bifurcation diagrams for various values

of 552 with n = 2, 5,. = 0.0083 ([2,1 = 0.05) and 554 = O are now described. Figures

5.4(a) and 5.4(c) show the response of F,, for positive and negative values of 852,

respectively (recall that F9 = 0 on the branch being considered) . Figures 5.4(b) and

5.4(d) show the corresponding rotor accelerations up to the torque level F9, where

the absorber motions hit the cusps. It can be seen from these figures that the level of

rotor acceleration is smallest for zero mistuning, case D (as expected). However, the

largest torque range is obtained for the largest positive value of mistuning considered

here, case A. It is also observed that the amplitudes of the absorber motions are much

larger for negative values of 862 than for positive values. Furthermore, for negative

values of 352, a highly undesirable subcritical bifurcation takes the system to the
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desired subharmonic solution. Therefore, in order to ensure a large torque range, to

avoid jump behaviors, and to keep Hyy'llss small, it is suggested that the absorber

paths be designed such that 652 is either zero or small and positive. The selection of

a specific value for 652 will depend on the criteria at hand, as tradeoffs between the

torque range and torsional vibration amplitudes can be made.

The effects of nonzero 694’s on absorber performance are considered next. Through-

out this discussion it is assumed that 652 is positive and small. As pointed out above,

the presence of this nonlinear imperfection destroys the perfect saturation of the rotor

acceleration beyond the bifurcation point. Utilizing equations (5.39) and (5.40), bi-

furcation diagrams can be generated for various values of 654. An example for n = 2,

fig = 0.0083 and 652 = 0.02 is shown in Figure 5.5. By comparing the responses with

positive and negative values of 694, it is seen that negative values offer better per-

formance in terms of the rotor acceleration, but they also reduce the applied torque

range. On the other hand, although positive values of 654 lead to a larger torque

range, they cause an increase in the level of rotor acceleration. Also note that this

parameter does not affect the torque level at which the bifurcation occurs.

The results given above are based on scaling assumption (5.19), which says that

the differences in the paths are even smaller than the general level of imperfections

and mistunings. This condition is now relaxed in order to consider the effects of

nonzero, small bn’s. Due to the complexity of the resulting averaged equations,

bifurcation diagrams can only be generated numerically, in this case using AUTO.

The effects of the imperfection parameter 6,; are considered first. Figure 5.6 shows

the bifurcation diagram with the same system parameters used in Figure 5.1, but

with 6,2 = 0.01 and 6,,4 = 0. Comparing Figure 5.1 and Figure 5.6, it is seen

that they are qualitatively the same, except that the zero amplitude parts of the

solutions in the two single-mode responses are replaced by nonzero, but very small

amplitudes. Note that the solutions denoted by SM1+, SMl- and SM2+ in the



98

 

  
 

 

 

 

 
 

I I f l ’ I ’ l ” J’fi ’ L a

0-8- c... A x2 -2647... .22:

It? 0.6 l' ‘

0.4 - ‘

0.2 -
.

o l l l l J L l I

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

(b)

l l T I G I F I

0.06 ' E '

_3

‘ a: 0 04 - D -

Ea

— C

0.02 b A B -

O l l l l l l l l

O 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Po

Figure 5.5: The response bifurcation diagram for SM2 with n = 2,

6:2—— O.02, 6,,2-— 0, 6,4-— 0,119: 0.0083 and various 694:

(A) -.003 (B) -0.02 (C) -0.01 (D) 0.00 (E) 0.01 (F) 0.02

(C) 0.03.



99

 

  
 

 

    

l l T l l

2 b SM1+ '

1.5 '- .......

CM2 ............................
-1

SMl‘ .............................................

Isl" 1* ....... -
...::::.i::‘:;""""""" CM4 . .

0.5“ ' CM3 61G;....................................... '

o. .............................................................. 1. ........................... ..

l l l l

0 0 5 1 1.5 2 2 5 3

2 l l I I l

1.5 - CM3 (31111/ l

,,,,,, 9M2 ...................

|g~§ 1 " ‘43::Tfffffti. ......................................

-

0.5 P / .......... . CM4 '-

SM2+ -

~, SM1+, SMl’

o ._.__: .......................................................'m............................. ..

I l l l I

0 0 5 1 1.5 2 2 5 3

Figure 5.6: The response bifurcation diagram forfin = 2, [2,, = 0.05,

652 = 0.01, 6,; = 0.01, 694 = 0 and 6,4 = O. The solid

lines represent stable solutions and the dashed lines rep-

resent unstable solutions.



100

figure are labeled so for convenience and for comparison purposes only, since they

are in fact coupled-mode solutions in this case. Figure 5.7 shows the solutions for F5,

1"", and the corresponding rotor accelerations on the branch SM2+ for 552 = 0.02,

864 = 0.01, 8,,4 = 0 and various values of 3,,2. It is seen that the existence of a

nonzero component of 1} decreases the applicable torque range and increases the

rotor acceleration as the magnitude of (in; becomes larger. Both effects deteriorate

absorber performance. In addition, the parameter 8,,4 is found to have the same

qualitative effect on the system behavior as 5,,2.

5.6.4 Design Guidelines

In summary, the above results indicate that the following general guidelines be

followed when designing the paths for a subharmonic absorber system:

0 The absorber paths should be kept as identical as possible.

0 The linear mistuning parameter 352 should be selected to be small and positive,

in order to be safe and avoid it becoming negative due to unforeseen changes.

0 The nonlinear imperfection parameter 5,54 should made as small as possible.

0 One can refer to the predicted dynamics in order to choose values of 3“ and

352 for a particular specification in terms of vibration level or torque range.

This would most likely be implemented experimentally by a trial-and-error

approach.

5.6.5 Simulation Results

Numerical simulations for the equations of motion (2.12) are carried out in order

to Verify the system dynamics as predicted by the averaged equations. The system
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parameters used throughout this section are u =2 0.166 and n = 2. These are

values taken from the 2.5 liter, in-line, four stroke, four cylinder engine considered

by Denman [16]. The damping coefficients are taken to be [10 = 0.05 and [1,, = 0.0083

([2,. = 0.05). The following truncated absorber path formulation, expressed in terms

of the 0’s, is employed, (5.5) given by

:c,(s,-; 8.5) = 1-8,13;— [(2)2 + 3,2] 3? — 3,33? - 3.43:, 2': 1,2. (5.41)

Higher-order imperfections are not included here since it is evident that they will not

contribute to the first-order nonlinear resonant responses. In all cases the coefficients

of odd powers of s, 351, 3,,1, 553 and 3n3, are assumed to be small. The simulations

show no sign of any effects from these 3’s, as predicted by the analysis.

Overall, excellent consistency is found between the analytical results derived from

the non-truncated averaged equations (5.16) and the simulations.

A representative case is chosen to demonstrate the simulation results and their

comparison with the analysis. Imperfection parameters for this case are,

A A

851 = 0.01, 6,1 = 0.01, 852 = 0.02, 6,; = 0.005,

8.3 = 0.01, 8,3 = 0.01, 8.4 = 0.01, 8,. = 0.005. (5.42)

Here the linear frequency mistuning for the two absorbers is Awl = Aw; = 0.02 (2%

mistuning for n = 2) with a deviation represented by 3,,2 = 0.005. A small, positive

854 = 0.01 is chosen, which enlarges the range of the disturbing torque but also

increases rotor acceleration amplitudes. A small deviation 8,,4 = 0.005 is chosen to

demonstrate its influence on the system response. The bifurcation diagram using this

set of values is shown in Figure 5.8. The solid lines represent the absorber amplitude

solutions, as computed by AUTO using the non-truncated averaged equations (5.16),

and the corresponding rotor acceleration, which is calculated by the 0(6) term of

yy'(9) given in equation (5.9). The circles are the results obtained from simulations,

after allowing the system to settle into its steady-state response. It is seen from this
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104

figure that the averaged equations (5.16) offer a very satisfactory prediction of the

system dynamics, even for this value of the perturbation parameter, 6 = 0.166.

Figure 5.9 shows the system responses and the angular accelerations of the rotor

at points A, B, C, and D indicated in Figure 5.8. Solid lines represent the simulated

responses while the dashed lines represent the responses predicted by the nontrun-

cated averaged equations (5.16). Note that the scale used to depict the 5(0) response

in Figure 5.9 (A) - (D) is expanded for greater clarity. It is seen from (A) - (D) that

the the approximations obtained from averaging for the crucial response variables

yy'(0) and 17(0) are very accurate.

At point A, the simulations show that the absorber motions are dictated by the

non-resonant responses, that is, the absorbers respond in a synchronized manner at

the frequency of the disturbing torque (the linear system response). For this case the

averaged equations predict zero resonant responses for both 6(0) and 11(0). At point

B, as predicted by the averaged equations, a subharmonic resonant response with

frequency half that of the disturbing torque has appeared. This response possesses

a nonzero component in the difference coordinate 17(0) and a very small component

in the sum coordinate {(0). Figure 5.9(B) shows that the simulated 11(0) matches

well with the analysis, while the simulated 6(0) is approximately a superposition of

the non—resonant response shown in Figure 5.9(A) (not predicted) and the resonant

response (predicted). In this case, the absorber motions are dominated by the out-

of-phase component 17(0). From (C) to (D), as Fe is increased, the response of .5 (0)

grows and begins to influence the rotor acceleration. In addition, higher harmonics

start to creep into the response.

Using the simulations, one also finds consistency between the predicted and simu-

lated torque ranges. This follows since in the large torque range the absorber motion

is dominated by 17(0), which is well approximated by the analytical results.
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Figure 5.9: The absorber responses and rotor accelerations for F9 =

0.038, 0.055, 0.085, 0.11, corresponding to points (A),

(B), (C) and (D) in Figure 5.8, respectively.
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5.7 Concluding Remarks

The performance of a pair of subharmonic absorbers as proposed by Lee and

Shaw [30] has been re-assessed by incorporating imperfections and intentional mis-

tuning into the absorber paths. Based on approximate solutions obtained by scaling

the system parameters and applying the method of averaging, it is found that the

mistunings and imperfections entering the path function at even orders of the path

variable .9 play an important role in the resonant responses of the system. It is

also found that differences between the two paths of the absorbers have a generally

deleterious effect on system performance. On the other hand, mistunings and im-

perfections that are identical to the two paths can be used to trade off between the

operating range of the system and the level of torsional vibration.

This work only considers a rotating system with a single pair of subharmonic ab-

sorbers. In practice, one needs to choose the total absorber inertia to be sufficiently

large such that the absorbers’ amplitudes remain below some specified level even un-

der severe operating conditions. This is typically accomplished by stationing several

absorber masses along and around the axis of rotation. These multi-mass arrange-

ments are also used for balancing and/or due to restricted space around the rotor.

In many cases, these absorbers are of identical mass and have identical path tuning.

In the next chapter the performance of systems with multiple pairs of subharmonic

absorbers are considered, and bifurcations are found to occur. It will be shown that

the desired torsional vibration reduction is maintained, and that one must include

imperfections in the model in order to obtain a realistic estimate of the torque range.



CHAPTER 6

NONLINEAR DYNAMICS OF A MULTIPLE

SUBHARMONIC CPVA SYSTEM

The study presented in the previous chapter considers a rotating system with

a single pair of subharmonic absorbers. In practice, one needs to choose the total

absorber inertia to be sufficiently large such that the absorbers’ amplitudes remain

below some specified level even under severe operating conditions. This is typically

accomplished by stationing several absorber masses along and around the axis of

rotation. These multi-mass arrangements are also used for balancing and/or due to

restricted space around the rotor. In many cases, these absorbers are of identical

mass and have identical path tuning.

In this chapter, a system consisting of a rotor and multiple identical subharmonic

absorbers is considered. Due to balancing considerations, only the cases with multi-

ple pairs of subharmonic absorbers are investigated herein. Some general features of

the equations of motion for such a system are first described and they are massaged

into a form where averaging can be applied. For simplicity, an asymptotic analysis

utilizing special scaling and the method of averaging is first carried out for a system

with two pairs of absorbers to predict the bifurcation point of the desired (unison)

motion and the post-bifurcation responses. Under the assumption that each absorber

path is identical and possesses the same mistuning and imperfections, the absorber

performance can be re-evaluated with respect to various imperfection and mistuning

parameters by computing two performance measures. Design guidelines for the ab-

sorber paths are distilled from the results. Based on some preliminary analyses and

simulations, it can be shown that the generic design guidelines found for the case

110
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with two pairs of absorbers are applicable to the case with an arbitrary numbers

of pairs of absorbers.

The analytical and simulation results show that compared to the idealized system

composed of a single pair of subharmonic absorbers, an increase of absorber number

may lead to a drastic decrease on the torque range due to the possibility that the

system dynamics converges to a HOD-SN/g x SN/z branch in the post-bifurcation stage

for some parameter ranges of mistuning and imperfections. (The SN/g x SN/z branch

is the response in which half of the absorbers move, exactly, out - of — phase relative

to the other half, with the same amplitudes, leading to equivalent system dynamics

as that for the system with a single pair of absorbers.) Based on evaluations of the

performance measures, general design guidelines for absorber paths for arbitrary

pairs of absorbers can be outlined to trade off between the increase of the torque

range and the reduction of torsional vibration.

6.1 The Multiple Subharmonic Absorber System

6.1.1 The Perfectly 'Dmed Absorber System

A subharmonic absorber system was proposed by Lee et al. [30] which is com-

posed of a pair of absorbers with identical individual masses and dampings. Due to

spatial restrictions and balancing requirements, a system consisting of N/2 (N even)

pairs of identical absorbers with individual masses m.- = %‘1 and identical damping

coefficients i1“,- = fig, 2' = 1, ..., N, is considered here.

These absorbers ride on identical paths specified by

2

x,2(s.-)=1— (g) sf, 132's N, (6.1)

 

which is equivalent to R;(S.~) = JR?) — (@253. This path is a particular epicy-

cloid [16]. It was shown in section 5.1.3. that these paths tune the nondimension-
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alized natural frequency of each absorber to be n/2, that is, one-half that of the

applied torque.

The equations of motion (2.12a) and (2.12b) and the identical paths given by

equation (6.1) have an exact solution when the absorber damping is zero, [la = 0,

and the steady rotation condition (2.9) is satisfied. It is given by

y(0) = 19
(6.2a)

..,-(o) = —s,«(0) i%\/gl%cos(g0), (6.2b)

where i = 1,3,...,(N — 1), j = 2,4,...,N and V = Egg: is the ratio of the total

nominal moment inertia of all absorbers about point 0 to that of the rotor. The

solution described in equation (6.2) represents a response with a constant speed of

the rotor and half of the absorbers moving out — of — phase relative to the other

half, which is denoted by the SW; x SN/g solution. One can refer to section 5.1.1

for a description of this type of response.

6.1.2 Imperfections, Mistuning and Limitations

The steady-state solution in equations (6.2) corresponds to perfectly constant

rotor speed, which is the ultimate design goal of such an absorber system; However,

as absorber damping, mistuning and imperfections enter the absorber path config-

uration, a constant rotor speed is unachievable. To account for the aforementioned

effects, the absorber path functions are generalized following the same steps used in

section 5.1.2., yielding

.. 2 . .

$i(3ii6ij)=1_ (g) 3? — 26.58:, 2:1,2,....,N (6.3)

.7

where the 0,-j’s are imperfections at various orders of the path functions, and the 0,-2’3

incorporate both the effects of intentional mistuning and imperfections.

Keeping the function g;(s,-) real during absorber motions leads to a restriction
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on the amplitudes of the absorber motions. For the case when all mistuning and

imperfections are small, 0,,- << 1, the aforementioned restriction is approximated by

4

n\/n2 + 4.

The above restriction will impose a finite operating range on the disturbing torque

level F9.

...-(0) 3 3m + 0(8), v 0 and i, where SW = (6.4)

6.2 Reduction of the Equations of Motion

Approximations of the steady-state solutions are sought in the next section through

an asymptotic analysis in order to evaluate absorber performance measures. To this

end, a re-arrangement and series approximation for the equations of motion is con-

ducted in section 6.2.1, followed by two proposed transformations which allow one to

re-formulate the system dynamics in a periodic form which is amenable for averaging.

6.2.1 The Rotor Acceleration and Absorber Dynamics

The scaling of parameters and the series approximation for the equations of mo-

tion employed in sections 3.1.2 and 5.3 are utilized herein to derive an approximation

of the rotor acceleration, given by

yy’w) = —e{§Z(-3‘,—sjs;—(§) g°(s.-)s.-+dgdij”)s?)—fosin(n0)}

+0052). (6.5)

 

where

 

. 4 2 4

90(1): .13.... ___ 0) = J1- (_1.g_) .=1,...,v,

and a set of weakly coupled, weakly nonlinear oscillators for the absorber dynamics,

Which are described by a set of 2nd order ODE’s, as follows,

2

3;, + (g) s.- = ef,(sl,sz,s;,s;,0) + 0(62), i=1,...,N (6.6)
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where

fi(31,32a3;a3;v0) : _fi03;_h£(3i)

, 1 N n2 I n 2 dg°(s-) :

+15; +9°(35)llfi 12:31ngij — (5) 90(3jlsj + #3,?)

—f‘gsin(n0)],

h,‘(3;) = leggjsij—l.

2 1

Remarks:

0 It can be recognized in the above equations that the linear oscillating frequen-

cies of the absorbers are identical to each other. Thus, there exist 1:1 internal

resonances between each absorber dynamics. In addition, the excitation is in a

2:1 resonance with respect to each absorber, and it is of parametric form. Note

that the types and structures of resonances appearing hererin is the same as

those for the case with a single pair of absorbers, except that there are multiple

1:1 resonances in this case.

0 In the case with multiple absorbers tuned to the the order of the external

torque, which is the system analyzed in chapter 4, the excitation is in a 1:1

resonance with respect to each absorber (different from the present case), and

there exist 1:1 internal resonances between each absorber dynamics (the same

as the present case).

0 Non-zero, distinct imperfections and mistuning undermine the embedding sym-

metry of the system, SN.

6.2.2 The Periodic Standard Form

Averaging on the system dynamics is conducted in the following sections in order

to obtain approximate steady-state responses. This is accomplished by first arranging
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the system equations (6.6) into amenable form for averaging, the periodic form,

through two stages of transformation. The first transformation is given by

N

51 =-11V:3j, {i = -]1\7(51- 8;) for 2 S 2' S N. (6.7)

j=1

The above linear coordinate transformation among absorber displacements is used to

split the dynamics into two invariant subspaces, representing the unison motion and

its complement, respectively. For more insight into the physics of this transformation,

one can refer to section 4.1.

The second transformation is the polar coordinate transformation which is given

by

. 0

5,- = r;cos(<p.- -— n—6-), 6,. = nr;sin(cp,- — 112—L for 1 S i S N. (6.8)

Utilizing the transformations in equations (6.7) and (6.8) and following the steps

used in section 5.4.], one can transform equations (6.6) into the standard periodic

form, as follows,

I 2C A , n9

Ti = ;E(Tla °°°°° 9 TN, ‘Pla °°°°°° a SON, 0) Sln(90i "" g) 'i' 0(62), (6.9a)

1 2e - n0

73-90,. = -n-F,-(r1, ...... ,rN, (pl, ...... ,cpN, 0) cos(cp; - 7) + C(62) (6.9b)

where 1 S i S N, and the functions 132’s result from incorporating transformations

(6.7) and (6.8) into f,-, l S i S N, which are listed in equations (6.6).

6.3 The Averaged Equations

Considering only the first-order terms in e in equations (6.9), first-order averaging

is performed over one period of excitation 47". The resulting averaged equations can

be expressed in terms of the first-order averaged variables, 1“}, and 95,-, 1 S i S

N. Due to the complicated nature involved in the functions f{,S in equation (6.6),

the averaging process does not yield closed-form expressions for each term in the
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averaged equations. To solve this problem, several assumptions are made. First,

the oscillation amplitudes of absorbers, that is, 1";, 1 S i S N, are assumed to be

small and of the same order, denoted by 0(i"). Second, the resulting averaged

equations are expanded in terms of F5, 1 S 2' S N up to 0(F3), the first nonlinear-

order terms, in order to capture the resonant solutions in the post-bifurcation stage.

Third, it is assumed that the relative precision between the curves manufactured

for the absorber paths is much higher than their absolute precision, which renders

nearly identical absorber paths, yielding

Ogj

(311' = 0(6) for 2 S i S N, j = 1,2, ..... , (6.10)

where

51, = 717:5,” j=1,2, ...... ,

i=1

a,- = %(31,—5,,),ZSiS N, j=1,2, ......

The aforementioned steps result in a set of averaged equations of the form

(If —1 ~ _ l~ _ . ..
d—él = ?,uar1 + 4-1197‘1 51112901

+0101, ...... ,rN,<p1, ...... ,cpN) + (9(f5), (6.11a)

_ d' 6 n _ 1~ _ _

T139907]- : (——7:-Z — Z) 1 + ngrl COS 2<p1

+f11(r,, ...... ,rN,<,01, ...... ,,oN) + 0(r5), (6.11b)

df,’ —l 1~

—~ = —~a-i '4‘ -i ' 3'd0 2pr+4 9r31n2cp

+é;(r1, ...... ,rN,cp1, ...... ,cpN) + 0(1‘5), (6.11c)

61—; ~ 1~

ng—(pé = —%F; + ZI‘gF, cos 295,-

+Iif,-(r1, ...... , rN, cpl, ...... , 901v) + 0(F5) (6.11d)

where 2 S i S N, 6 E 60, and the functions G’s, H’s contain the 0(f3) terms

resulting from averaging. Due to the complexity involved and the dependence on
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the number of absorbers, they are not listed explicitly here; however, they can be

derived easily by following the procedure stated above.

Note that with the scaling assumptions (6.10), which forces near-identity of im-

perfections and mistuning in each absorber, the averaged equations (6.11) up to

0(F3) possesses the isotropy subgroup SN. It is also seen in these averaged equa-

tions that the internal mistuning is evident through the presence of the term —nF1/4

in equation (6.11b), which represents the discrepancy between the frequencies of two

normal response modes. This will be shown to be a key factor in predicting the

approximate post-bifurcation responses of the system in the next section.

6.4 Case Studies

In section 6.4.1, a system with two pairs of subharmonic absorbers (N = 4) is

first considered. In section 6.4.1.1, these equations are analyzed to find approximate

steady-state solution branches and the corresponding stabilities. In section 6.4.1.2

two performance measures are evaluated based on the solution branches found and

their associated stabilities are detected. It is found that only solutions with isotropy

subgroups S; x S; and 51 x Sa are possible as stable steady states.

Next, the studies are extended to the cases with arbitrary pairs of absorbers,

described in section 6.4.2. Based on some preliminary analysis and simulations, it is

found that for a system of N absorbers (N/2 pairs), only the solutions with isotropy

subgroups SN); x SN/g and 81 x SN-1 survive as stable and feasible solutions without

vulnerability of violating the cusp condition., This result is consistent to those found

in the case with two pairs of absorbers.
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6.4.1 Two Pairs of Absorbers

6.4.1.1 Steady-State Solution Branches

It is very difficult to determine all solution branches due to the high level of sym-

metry and dimensions involved in the system’s averaged equations (6.11). However,

the restriction on the absorber motions described in equations (6.4) impose an up-

per limit on the feasible torque range. This condition facilitates the search for the

post-bifurcation, steady-state solution branches near the first bifurcation point. In

the following, the post-bifurcation, steady-state solution branches are sought near the

first bifurcation point. Then, the corresponding stabilities are detected by evaluating

the corresponding Jacobians.

It can be shown by evaluating the Jacobian of equations (6.11) that by assuming

512 to be small, the trivial solution becomes unstable as To approaches 211a; thus,

“'3 2 2ila where I‘; denotes the critical torque level at the first bifurcation point.

Based the structure of equations (6.11a) and (6.11b), one can show that F; '2 0 as

To —> (2fla)+, due to the effect of the internal mistuning. In the following, “Fl :2 0”

will be applied to find possible post-bifurcation solutions.

In the post-bifurcation stage, the system might converge to any steady-state

solution with non-zero components of fig, 2 S 2' S 4. To classify these solutions, the

following sets of indices are defined

73 E {ilolimF,-(6)=0,2SiS4},and

A7 a {ilolimf,(0)¢0,2SiS4}, (6.12)

which contains those indices corresponding to zero and nonzero steady-state ampli-

tudes, respectively. For those F,- with i in Z, the solution for the steady-state phase

(,5.- is arbitrary. For the remaining Pg’s, that is, those with i in A7, it can be assumed
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that the corresponding phases are identical; i.e., 95,- = 95,-, Vi, j 6 A7 (one can utilize

a procedure similar to that given in Appendix E to justify this assumption). Apply-

ing the above results and “F1 2 0” to equations (6.11c) and (6.11d) yields that the

post-bifurcation solutions must satisfy

 

—1 1~ .

0 = —2—~O+Zl"gsm2<,5, (6.13a)

0 — —&12+1F 02' —1-—\II(7=--f 1" F ‘ ) ‘e/V (613b)
— n 4 0C 5 99 3272. :12, 3) 4,014 a 2 a °

where

cfi = ,a,, ieN, and (6.14a)

‘I’(F5;F2,F3,F4,6’14) = 3n4F§+3n4F§+3n4F3—2n47"21"3-2n47“3i‘4—2n41‘2i‘4

+192&,,(4r~3 — 3522*.- - 373.7".- — 3m.)

+144614(i~§ + r; + F3 + 25213 + 213?. + 2mm). (6.14b)

Equations (6.13) lead to

\I’(fi; f2, 713,714, 514) = ‘1»!(7-‘1'; 7:2, F31 F4, 614), zaj 6 JV. (6.15)

Note that equation (6.15) is automatically satisfied for a system with zero fourth-

order imperfection (that is, 514 = 0) due to the invariance of the function \II(F,-; F2, F3, F4, 0)

under arbitrary exchanges of [$2, F3,F4]. In this case, there exist an infinite number

of steady state solutions (at this level of approximation) which lie on an ellipsoid

prescribed by

8° = {[f2,f3,F.]I<I>(f.-; F2,1"‘3,F4.0) = 0}, (6-16)

where

<I>(f,-;1‘~2,1‘-3,F4,6r14) = —32612 + 8n(f‘g — 4,03% — won; 52, 13,174,614). (6.17)

However, in practice, the fourth-order imperfection 614 is always a small, nonzero

quantity. In the following, the possible steady-state solutions are sought by solving
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equations (6.13) with assistance from a graphical interpretation in the phase space

of the dynamical system.

For each i, equations (6.13) are satisfied for any solutions on the ellipsoid

8‘ = {[7‘2,7_‘3,7‘4]|‘1’(fi; 62.63.27... 61.) -- 0}- (6-18)

One should note that for any steady-state solution, it must satisfy equations (6.13)

for all i 6 A7 simultaneously. Hence, all possible steady-state solutions are the

intersection points of the 8‘,i 6 A7; i.e., the set

5 = fl 8" (6.19)

ilef

contains all possible steady-state solutions. Figure 6.1 interprets the graphical re-

lationship among the aforementioned ellipsoids, where the case with JV = {2, 3} is

used for the sake of a clear presentation. It is seen from this figure that with a small,

nonzero 514, each ellipsoid 8‘ is slightly distorted away form 8° but in a different

preferable direction for different i. This results in only finite number of steady-state

solutions, which lie at the intersection points of the E‘,i 6 A7, denoted by points

Ij, lSj S 4, in the figure.

Based on equations (6.18) and (6.19), the aforementioned intersections, i.e., the

steady-state solutions, can be found by solving

@(fiW-‘zafaaflfiul = (DU—"j; 772.53.54.51“) = 0, 2',j 6 A7, (6.20)

which automatically satisfies equation (6.15). It can be shown that the mode shapes

for all solutions in the set 8 can be found by examining equation (6.15). They are

listed in Table 6.1, where the corresponding isotropy subgroup is used for classifica-

tion. It is seen from this table that there exist only three distinct types of solutions:

S; x 83, 51 x 33, S; x 81 x 82. The existence of two different mode shapes for the

81 x S; and 81 x S; x 82 solution branches is due to different choices of .51. In fact,

 



 

 
 

Figure 6.1: The graphical interpretation of the distorted ellipsoids.

 

 

 

 

Isotropy Subgroup Mode Shapes of [F2, F3, F4]

S; x S, [5,5,0]

S, x S; [5,5,5] or [5,0,0]

81 x 31 x S; [F, —1",0] or [7'3 1", 21“]    
 

Table 6.1: The solutions branches classified by their isotropy sub-

groups and their mode shapes.

they are dynamically equivalent. Figure 6.2 depicts the typical responses in the time

domain for these solutions.

With the mode shapes in hand, the steady-state solutions can be obtained by

solving equations (6.20). Furthermore, by numerically evaluating the Jacobian of

the truncated, averaged equations (6.11) numerically at these solutions, one can
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Figure 6.2: The mode shapes of the steady-state solutions with var-

ious isotropy groups

detect the corresponding stabilities for each steady-state solution.

6.4.1.2 Absorber Performance and Design Guidelines

In this section, the absorber performance will be evaluated by computing two

performance measures based on the solution branches and their stabilities. Fur-

thermore, generic design guidelines for the absorber paths are given based on the

predicted performance. However, due to the high multiplicity of the post-bifurcation

solutions and the complexity of the corresponding stability boundaries, closed-form

representations of the two performance measures are not pursued in detail. The de-

sign guidelines are distilled through a general discussion based on a representative

case study. Based on a number of simulations, the design guidelines presented later

are robust over a wide range of system parameters.

Figures 6.3 to 6.5 show the stability and feasibility boundaries for the representa-

tive case, for the solutions with the three different mode shapes, as functions of the

two imperfection parameters, 612 and 614 (612 and 614 denote the unscaled quanti-
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ties of 6;; and 6M; i.e., 6;,- = 66,5). The common system parameters used for this

study are T; = 0.035, [1,, = 0.005, n = 2 and u = 0.1662 (The latter two parameters

are taken from the 2.5 liter, in-line, four-stroke, four cylinder engine considered by

Denman [16]). In this figure, “S” and “U” denote stable and unstable regions re-

spectively. Also, the dashed line divides the feasible and infeasible regions, where

the corresponding absorber motions hit or not hit the cusps. It is seen that among

the three types of solutions, a large set of the S; x S; solutions survive as stable and

feasible; a small set of the S; X S; solutions lead to stable and feasible motions; only

a tiny set of the S; x S; x S; solutions are stable and feasible. Based on simulations,

all the stable and feasible steady-state solutions in areas “abc” and “def” in Figure

6.4 and 6.5, respectively, are unrealistic since the absorber motions will most likely

hit the cusps during the transient responses. Thus, they will not be considered for

absorber performance evaluation. As results, only stable, feasible S; x S; and S; x S;

solutions in Figure 6.3 and 6.4 are the candidates for performance evaluation in the

following.

Figure 6.6 show the contours of the rotor accelerations with a fixed F9 = 0.035, for

all stable and feasible solutions, except for those in areas “abc” and “def” in Figure

6.4 and 6.5. Figure 6.7 and 6.8 show the feasible ranges of the disturbing torque for

the S; x S; and S; x S; solution branches respectively. Note that the expression

of the rotor acceleration in equation (6.5) and the limitation of absorber motions in

inequality (6.4) are used to here generate these figures. It is seen from Figure 6.6 to

6.8 that small, positive &;2’s and &;4’s, leading to the S; x S; branches, have good

balance between achieving small rotor accelerations and rendering larger feasible

ranges of the disturbing torque, while small, positive 632’s and small, negative &;4’s,

leading to the stable, feasible S; x S; branches, render larger rotor accelerations,

smaller torque ranges and vulnerability for absorbers to hit the cusps during the

transient response.
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Figure 6.3: The stability and feasibility boundaries of the solutions

with isotropy subgroup S; x S; for Pa = 0.035, it; =

0.005, n = 2 and u = 0.1662.
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Figure 6.4: The stability and feasibility boundaries of the solutions

with isotropy subgroup S; x S; for Pa = 0.035, [to =

0.005, n = 2 and V = 0.1662.
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Figure 6.5: The stability and feasibility boundaries of the solutions

with isotropy subgroup S; x S; x S; for I}; = 0.035,

[1,, = 0.005, n = 2 and u = 0.1662.
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Figure 6.6: The contours of the rotor acclerations for F; = 0.035,

it; = 0.005, n = 2 and u = 0.1662.
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Figure 6.7: The feasible disturbing torque range of the S; x S; solu-

tion branch for [1,, = 0.005, n = 2 and u = 0.1662.
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Figure 6.8: The feasible disturbing torque range of the S; X S; solu-

tion branch for [1,, = 0.005, n = 2 and u = 0.1662.
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6.4.2 Arbitrary Pairs of Absorbers

The similar analysis can be conducted for a system with an arbitrary number

of pairs of absorbers. The following conclusions are drawn from considerations of

results obtained from analysis and simulations of systems with one, two and three

pairs of absorbers (the later results are not presented here).

0 As the number of absorbers increases, the number of existing solution branches

increases; e.g., there exist five distinct mode shapes of solution branches for

N = 6. This fact complicates the analysis. However, only the solutions with

isotro'py subgroups SN]; x SN/2 and S; x SN_; survive as stable and feasible

solutions without vulnerability of violating the cusp condition.

0 The dependence of the absorber performance, in terms of the two measures,

on the imperfection parameters 6;; and 6;.; is generically similar to that for

N = 4. Positive, small 6;; and 6“, leading to a stable SN); x SN); response, are

suggested to render smaller rotor accelerations and keep the absorber motions

within the cusp levels.

6.5 Remarks and Design Guidelines

The results given above are based on scaling assumption (6.10), which says that

the differences in the paths are even smaller than the general levels of imperfections

and mistunings. Based on simulations, similar to the results obtained for the case

N = 2 in the last chapter, the existence of small nonzero 6,5,2 S i S N, slightly

decreases the applicable torque range and increases the rotor acceleration. Further-

more, odd (6,5, j = 1,3, ..... ) and higher (6,,-, j Z 4) order imperfections have no

distinguishable effects on the absorber performance.

 



131

In summary, the above results indicate that the following general guidelines be

followed when designing the paths for a multi-pair subharmonic absorber system:

0 The absorber paths should be kept as identical as possible.

0 The imperfection parameters 6;; and 6;; should be selected to be small and

positive.

0 One can refer to the predicted dynamics and performance evaluations (for

example, represented by Figure 6.3 to Figure 6.8, for N = 4) in order to choose

values of 6;; and 6;; for a particular specification in terms of vibration level

or torque range.

 



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This study focused primarily on investigating the nonlinear dynamics of a rotat-

ing system with multiple centrifugal pendulum vibration absorbers (CPVA’s). It is

motivated by the fact that in practical implementations the total absorber inertia

needs to be divided into several absorber masses that are stationed about and/or

along the axis of rotation, due to spatial and balancing considerations. If all the

absorbers move in exact unison, the absorber designs suggested by researchers in the

past sustain.

However, in chapter 3, through a proposed methodology including proper trans-

formations and the method of averaging, it was shown that for certain absorber de-

signs the unison motion of N identical absorbers may become unstable at a moderate

level of the disturbing torque. The corresponding stability criterion was derived. it

was found that the critical disturbing torque level is proportional to the square root

of the absorber damping when viscous damping is assumed.

In chapter 4, the post-bifurcation performance of the absorbers was evaluated by

solving for the resultant system response via symmetric bifurcation theory. With

the ability to compute two performance measures, the rotor acceleration and the

applicable range of the disturbing torque, the absorber absorber performance was

re-assessed. It was found that the distribution of the absorber inertia results in a

drastic decrease of the disturbing torque range and a slight decrease of the rotor

acceleration.

Utilizing the same methodology, in chapter 5, the next effort was given to an

investigation of the effects of path imperfections and mistuning on the dynamics
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of a system with a pair of subharmonic absorbers. Based on the analytical results

obtained, it was found that the effects of path mistuning and symmetric imperfections

dominate non-symmetric imperfections, due to resonance effects. It was also found

that differences between the two paths of the absorbers have a generally deleterious

effect on system performance. Furthermore, by neglecting higher-order dynamics, the

average mistunings and imperfections at 2nd and 4th order can be used to design

systems that trade off between the operating range of the system and the level

torsional vibrations.

In chapter 6, the study in the previous chapter was extended to the case with

multiple pairs of subharmonic absorbers. As found in the case with a single pair of

absorbers, the average mistunings and imperfections dominate the absorber perfor-

mance due to resonances. It was also found that the response in which the absorbers

move in two unison groups, half in each and exactly out-of-phase, is the ideal re-

sponse of the system in terms of absorber performance. Specific design guidelines

for absorber paths were distilled based on some case studies and simulations.

The analytical work presented in this dissertation is part of a larger framework

for absorber dynamics analysis. Listed below are the additional specific problems to

be investigated in the future, which include analytical and experimental studies.

0 Circular Paths

The intentionally-mistuned circular paths are easily manufactured and widely

used in industry. A recently completed perturbation analysis and simulations

[55] have shown that for the single-absorber and damped system, a rotor fit-

ted with absorbers riding on “mistuned” circular paths can exhibit excellent

performance in terms of vibration reduction in the large torque range, even

though perfectly tuned tautochronic absorbers are more effective in the low

and moderate torque operating range. A systematic analysis on the damped

and multi-absorber system is needed for further generalization of the aforemen-
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tioned results.

Multi-Harmonic Torque Inputs

In most applications, the applied torque on the rotor is not a pure harmonic.

For IC engines, the torque acting on the crankshaft is generated by the gas

pressure in the cylinders and through the inertial affects of pistons and other

moving components as they transmit torque through crank throws and con-

necting rods. This torque is periodic in the rotating angle of the crankshaft,

and enters the system equations as a complicated combination of external and

parametric excitation which is dependent on the velocity and the acceleration

of the crankshaft. However, it can be approximated well by its first several

harmonics. To reflect this fact an analysis for systems under general types of

multi-harmonic excitation is needed.

Nonstationary Conditions

There are no reports in the literature dealing with the potential problems as-

sociated with transitions in rotational speed; all analyses have been carried

out for the case in which the average rotor speed remains fixed. The results

are applicable to the aircraft and helicopter applications, but for other appli-

cations, e.g., automotive engines, speeds vary in many different ways. It is

of interest to consider the effects of such nonstationary operating conditions.

Relevant analytical work should be possible since the time scale for the speed

changes is slow compared to that of rotation. Herein, asymptotic methods for

nonstationary problems may be applied [37].

Flexible Shafts

In all aforementioned analyses, the rotor is assumed to be perfectly rigid. How-

ever, a system with large but finite rotational flexibility may exhibit different

dynamics, especially when the absorbers and the applied torques are distributed
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along the axis of the rotor. This design strategy is actually used in powertrains

to maintain balance and distribute stress along the crankshaft. To investigate

the related dynamics, the natural oscillating frequencies of the rotor would

be first assumed much larger than that of each absorber subsystem; i.e., the

crankshaft is much more “stiff” than each absorber. The equations of motion

can then be re-arranged into a singular perturbation form in which the global

dynamics is decomposed into fast and slow components, captured by invari-

ant manifolds in the phase space subsystem [19, 8]. Our task is to determine

the parameter ranges for which the long-time behavior of the system can be

simply described by the slow manifold, in which case the crankshaft torsional

dynamics are negligible when compared to the “soft” dynamics of each absorber

system. However, it is expected that the effects of finite flexibility will have a

similar role to that of imperfections, thereby leading to the realistic possibility

of localization of absorber response.

Experiments

In all aforementioned theoretical developments of CPVA systems, the system

dynamics is idealized in several aspects in order to obtain analytical estimates of

system behavior. For example, the damping is taken to be small and of viscous

type and the dynamic effects of rollers are ignored in modeling, to name just two

of several. An experimental device needs to be built in the laboratory to verify

the validity of the designs offered by the analytical models, and also to provide

a measuring stick for the discrepancies between desired/predicted absorber

performance and reality. Borowski et al. [3] conducted an experimental study

in which it was demonstrated that attaching a CPVA system to an automotive

engine crankshaft can actually decrease noise and vibration levels inside a car,

but their conclusions were based on qualitative measures from the passengers’

feelings. To evaluate the absorber performance on more solid ground, we need
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to acquire quantitative measures of vibration levels by building an experimental

model in the laboratory and carrying out systematic, controlled experiments.

The challenging parts of the experimental buildup would be: (1) precision

control of the manufacture of the absorber paths; (2) dynamical measurement

of absorber motions; and (3) measurement and quantification of dissipation

mechanisms.
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APPENDIX A

8111 @111 and __20H

8“" 5.5., 8r,- s.s., 8501' 5.5. Brj 8.8.   

 

8H; 8H; .
.

3.3., 8ng 8.,_ and Br: [8.8. In (316) are given by

 

g + (n2 + n4)2r4

_ 6H;

690.‘

1

 

 

 

8(n2 + n4)2r5

__ 6H;

81‘;

 

 8.8.

m
o

[(1 — (n2 + n4)r2) — (3(n2 + 11.“)21"4 — 12(n2 + n4)r2 + 8)]

m
I
H

 

[(n2 + n“)2r4 + 4(n2 + n“)r2 — 8 + 8\/1 — (n2 + n4)r2]

The above results were obtained using contour integrals and the residue theorem.
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APPENDIX B

ON THE EIGENVALUES OF C

In section 3.3, we claim that if C2Nx2N is a block matrix of the form

r .

A2x2 82x2 B2x2

B2X2 A2x2 82x2

CZNX2N = a

B2x2

LBzxz B2x2 32x2 A2x2 ]  
then an eigenvalue of [A — B] is an (N — 1) times repeated eigenvalue of C. Further-

more, an eigenvalue of [A + (N — 1)B] is an eigenvalue of C. Since the proofs for

different N’s are similar, we provide only the proof for N = 4 here.

Let A; be an eigenvalue of [A — B] and the associated eigenvector be u, and thus,

[A — B]u = /\;u. (B.l)

We further define

u u u

—u 0 0

v; E v; E v; _=_

0 —u 0

. 0 . 0 . _“ J      
Based on (B.1), one can verify that

CD] = A101, 002 = A102, and 0’03 = A;v3.
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Since 12;, v; and v; are independent, an eigenvalue of [A— B], A;, is a 3 times repeated

eigenvalue for C.

Let A; be an eigenvalue of [A + (N — 1)B] and the associated eigenvector be w,

  

and thus,

[A + 3B]w = A2w. (B.2)

We further define

F .

w

w

124 E

w

1 w 1

Similarly, one can verify that

004 = A204

based on (B.2). Thus, an eigenvalue of [A + 38] is an eigenvalue of C. Note that

1);, 12;, v; and v; are independent regardless of the choices of the eigenvectors u and

w. Furthermore, we know that [A — B] and [A + 3B] have two sets of independent

eigenvectors (11;, 11;) and (w;, w;), respectively, and each pair of eigenvectors spans

R2. Hence, the following eight eigenvectors spans R8:

               

. 1 . 1 . . .. . . . - .

U1 112 111 112 U] 112 w; F 102

.111 —u2 0 0 0 0 w1 “’2

0 0 -u; —u; 0 0 w; w;

0 0 0 0 —‘U1 —U2 “’1 “’2
. .. . . L . l . - . .l . .J .1 

We can conclude that two eigenvalues of C are the eigenvalues of [A + 33] and the

other six eigenvalues of C are the thrice-repeated eigenvalues of [A — B]. The proof

is similar for an arbitrary N.



APPENDIX C

ON THE EIGENVALUES or [A + (N — 1)B]

In section 3.3, we claim that all the real parts of the eigenvalues of [A+ (N —1)B]

are negative. To Show this is equivalent to prove that its trace is negative and its

determinant is positive. From (3.16), they can be determined in series form as follows

 

Trace[A+ (N —1)B] _-_ _fia,
(Cl)

122 +112 n4 n6 2

Det[A+(N—1)B] - ——4—+ (T— 71—) r

4 4

+ [15n2 +10n4 + 7126 — [13(1 + n2)“ 716—:

6 6

+ [(1+ n2)(40n2 +10n4 — 6n6 — 3113.0 + n2)2)] :5; +

0(1‘7).

Obviously the trace is negative. (Since 8;; = B;; = 0, this trace is the same as the

trace of [A — B]. See Appendix D for the proof of (C.1).) The general proof that

Det[A + (N — 1)B] is positive appears to be quite difficult, so we satisfy ourselves

here by proving that the sum of the first two terms in the series is positive. Since the

function g,(s,~) in (3.3) is required to be real, 7‘ must satisfy r S m. Under this

condition, we can derive that the sum of the first two terms in Det[A + (N — 1)B]

is positive if

1 n2+fi§
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This inequality can be proved by the fact

6 4 4

Tl — Tl 2 —2n
~2

n2 + n4 — n — n2 + n4 < 0 < ”a, for ”—1, 2, 3,.”
  

Thus, for sufficiently small 7', it follows that Det[A + (N - 1)B] is positive.



APPENDIX D

PROOF OF EQUATION (3.17)

In section 3.3, we claim that

Trace[A — B] = —fi,,.

To prove this, we first show that

211’ 1

F;(r)—F;(r) = 51;] cos2x[1—(n2+n4)r2coszx]5d:r

o

1 2" 2 4 2 2 l -
= 4—/ [1—(n +n )r cos x]2d(sm2z)

7r 0

—(n’+n“)
211’ _1

= —— [r cos(x) sin(x)]2[1 -- (n2 + n“)r2 cos2 1:]de

o27r

r613;

3r '

Note that the third step is completed using integration by parts. Incorporating the

above result into the expressions for A;; and A;; in Jacobian (3.16), we can show

that

Trace[A — B] = A11 + A;; = —[1,,.
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APPENDIX E

JUSTIFICATION OF {2,. 9: 21,-, v 2 31,; _<_ N

In order to justify the assumption {6,- 2 12,, \7’ 2 S i, j S N, in the post—bifurcation

stage (cf. equations (4.8)), the transformation with 17; capturing the dynamics in V

and the remaining 77,-( 2 S i S N) capturing the dynamics in W, where all 175’s are

orthogonal to each other, is employed in place of transformation (4.1). Then, by

also introducing the angular transformation

77,- : g;cos('r,- — n6) and 17:- : ng,sin(‘r,- — n0), 2 S i S N, (El)

and proceeding along the usual lines for the application Of averaging, one arrives at

the following steady-state conditions, in place of equations (4.8),

~

_ _flaéi F35; - 1,

0 — —2 +—4nsrn(2*r,), (E.2a)

1“”. - N—l 3- N -
0 = _flécos(27",-)—(——)2—§,- :52. . (B.2b)

4n 4 i=2 3

where :5 and ‘7' are the approximate (averaged and truncated) versions Of g and T.

The above equations give

Tg=7:'j, (mod 71') V2,jEN (13.3)

By the definitions Of the {g’s and the 1),-’3, each 5.- with i 6 N is a linear combination

Of the ng’s with i 6 N. Hence, 1;,- = 16,-, (mod 7r) V i,j 6 N. Now, choose an

arbitrary 2’; E N. For all jo E N with 12,-0 = {61-0 + 7r (mod 27f), replace (FEAR-o)
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by (—]6,-0,1,f2,-0) to equivalently represent the signal sic, and then proceed with the

analysis in section 4. One finds that the results are the same as those Obtained if

$1=§Z1Vidé N is assumed.



APPENDIX F

PROOF OF Trace[A + (N — 2)B] < 0 AND

Det[A+ (N — 2)B] > 0 AS 6 —) 0+

4 7
In section 4.4.3, it is claimed that on the S; X SN-; branch with 26 2 '3”

Trace[A+ (N— 2)B] < 0 and Det[A+ (N— 2)B] > 0 as 6 -+ 0+ near the bifurcation

point. Through a nontrivial computation it can be shown that

Trace[A + (N — 2)B] = —fl,, < 0,

Det[A + (N — 2)B] = 2—561{461(11/ )12N2;3‘ + 763(N— 2)(n + 7.82626;

+16(N — 2);2:(n2 + n‘)i361cos(1Z-17)1)

—8(N — 2)2,2§;(n2 + n4)2;32f6';’ cos(216 — 2.2,)

-16(N — 2)(N —1)Np,n3(n'-’ + n4)636lsin(16—161)}.

(F.1)

On the S; X SN_; solution branch with 16 2 L21,

cos(26— 161 )2 %, cos(216 — 216,) 2 0, and sin(16—161) ~ —1 (F2)-7?

Thus, Det[A + (N — 2)B] > 0 on this branch as 6 —> 0+ near the bifurcation point.
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APPENDIX C.

THE LOW-ORDER APPROXIMATION OF 99(6)

To Obtain the expressions for yy'(9) in equation (4.22), simplification is carried

out in two steps. First, it can be shown that

n25; + F9 sin(n0) 2 0 (G.1)

by incorporating the approximate steady-state solutions for p; and d); in equations

(4.7). Second, the remaining term is reduced based on the corresponding truncated

steady-state equations (4.8). It can be shown that before the bifurcation the absorber

motions undergo unison motion, which yields

277.2 N I I

T2311,- = 27126161

i=1

= 7236: sin(2f61 — 2120). ((3.2)

After the bifurcation, using the transformations given in equations (4.2) and (4.4)

yields

2712 N ’ 3 ~2 . 2
:2 1

N23,6, = n 6; Sln(2¢1 - 2119) — (N " 1) Z P19111910 — 2719)
j=l

j?“

+ Z 2fij5k Sln('¢_)j + #3): — 277.0) . (G.3)

M9“ 3?- j?“

Utilizing some trigonometric identities and the approximate solutions given in equa-

tions (4.7), one can Show

R.H.S of (G.3) = c08(2IZ,- - 2n0){n3isisin(2zZ.-)
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~ ~

+7.3 2 {2i3.i3,-sin($.- — 227,-) - (N —1>5§sin[2( .-— an}

.191”

+713 2 26j6ksin(2tb,- - d),- - 11%)}

j,k¢1,i & #1:

+ sin(2gf); — 2n9){n3)~5jC03(2151) + (N " ”"313?

+152125.1,cos($.—$,)—(N—is,1)cosINzZ 2%,-)1}
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+713 Z 2BjBkCOS(2l/;i — 15;“ — {NJ}: 2 S i S N-

j,k¢1.i a; #1:

(GA)

Incorporating the truncated averaged equations in equation (3.12) yields

R.H.S of ((1.4) = 2,1,, cos(216, — 21.9), 2 g i g N. (G.5)

Based on the results in Appendix B, one finds

26,, cos(216; -— 2710) = 26,, cos(21l—J — 2n0), 2 S i S N,

after the bifurcation.



APPENDIX H

AVERAGED EQUATIONS IN CARTESIAN

COORDINATES

The truncated, averaged equations expressed in Cartesian coordinates are given

 

 

 

by

dA 1 6 6,

76$ = 7B6Ae+(—+£2 3'12)B€+_Bn +ZPOB£

—anB{(Ag + B?) + CnsAchBn - Cn6B£A727 + 61173ng

+3621 2 3

+2” (A,3, + A23, +33,3: + 3, + 2A,,A,3,) (H.1a)

dB —1 6 6 ~
71076 = 3.2—6,3, - (7:3 + Z) A,E — -1:—A, + ZRA,

+Cn2A{(Ag + B?) "' C115861417817 + CnGAfB: _ Cn7A£A72p

_3_6fl4 2 2 2 3

2n (3,A, +3,A, +3A,A +A, +23,,A,3,) (H.1b)

dA -1 6 6,
d6" = 2—,1,A, + ;-—2B, + 72-3—B,+:1~‘98,

+Cn4Bn (A927 + 8,2,) + CnSAnAé-Bé — 0116877142 + Cn7BnBza

36"“ A3 A33 33 32 33 2A 3+2n,( 5+ ,+ g + ,+ , ,,A) (H.1c)

dB —1, 6, 6
702 = 711.8» — 7/15— -5-2A, + -I‘aA

-Cn4An (A?7 + Bi) - 0115/153an + 6116/4nt — 0717/19/13

‘36,;
 (8,515 + 32A, + 3A,A2 + A2 + 23,A,3,.) (H.1d)
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where

 

42— 5 6

n n +3“, —— and 6,17:
C25: 128 n C26 256 2n 256

Applying assumption (5.19), the above equations become

53% = ‘B—l'fiaAe + (€513 + :11) Be + iffiBE ‘ @1234": + 8:)

+cn5A,A,B, — enngAf, + 61173633,

552; = €1,103, _ (Sufi +21) A£+ifoAg + Caz/4:04: + 852)

_c,53,A,B, + cue/1:83 - Gav/1:243,

d—(gfl = :ZI—flaA, + 3238, + £118, + MBA/4,2, + B3,)

+c,5A,A,3, - 6,63,A§ + 6,73,33,

2% = ’71,,3, _ $4, + film, — 664,114: + 83)

— Cn5A§B€Bn + (311614nt — 9171417142-

_ 12n3 + n5 3654 —4n3 — 3715 +

2n

(H.2a)

(H.2b)

(H.2c)

(H.2d)

 



APPENDIX I

STABILITY OF SOLUTIONS ON SMl+

Incorporating the SM1+ solutions given by equation (5.25) into the sub-block

matrix B in the corresponding Jacobian, one can obtain the determinant of B, DB”.

 

It is given by

 

 

 

 

031+ = _f_§_+%_2+i5:2

(2:61?’)<r’223-2662421264“ J
+( )W 3)“ “HI

+< ><18::>1~>—J
m6“] [<2 22* +6]

150



APPENDIX J

STABILITY OF SOLUTIONS ON SM2+

Incorporating the SM2+ solutions given by equation (5.26) into the sub-block

matrix A in the corresponding Jacobian, one can obtain the determinant of A, DA“.

It is given by

6 f2 62 n

DA2+ = 66- Tg+gf+$+fi

C116 +___Cn-cn("7)g ..2 6' "2 ~2 '6' 4562

—4 I‘ — 4 — —

+

 

+

128cm,

~ 2

8%: ~2 ~2 6' 4662

12862,4 (1 fg)[(P9 4") ’T

H-2Cn60n7—C

01:6" 562 2_ ~2 1_4_3£3

2%+:)[<r 4) ,.

+2( (

(62,,sis—emanwcfiv-cs)[(l~«3_4flg)6_ii€_22

( )

(—
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APPENDIX K

THE NUMERICAL ALGORITHM FOR

COUPLED-MODE SOLUTIONS

The coupled-mode solutions are numerically computed by carrying out the fol-

lowing steps.

1. Compute the possible sets of solutions for Fe and F, using the polynomial (5.37).

2. For each set of solutions for f5 and 13,, calculate the corresponding applied

torque amplitude by combining equations (5.34a) and (5.34c), which gives

2,1,(62 + f?) + 1"“, (F3, sin 2,5, + 7“? sin 2,6,) = 0. (K.1)

The dependence of equation (K.1) on 95, and (,5, is then eliminated by using

equations (5.36a) and (5.36b). This results in a nonlinear algebraic equation

which can be used to solve for Pa for given values of F5 and 1",. Thus, one can

find the values of f5 and F, for a given P9 in a reverse manner. Using equations

(5.36a) and (5.36b) again, one can determine the corresponding phases (5,: and

9917-
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