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ABSTRACT

COMPOSITION OPERATORS ON THE DIRICHLET SPACE

By

William M. Higdon

We examine some properties of functions belonging to, and composition operators

acting upon, the Dirichlet and Dirichlet-type spaces of analytic functions on D. Every

function in one of these spaces has boundary values on all of 8D except perhaps on a

set of capacity zero. We show that when Cg, is Hilbert-Schmidt, cp may have boundary

values of unit modulus only on a set of capacity zero (the converse, of course, does

not generally hold). This result is an immediate consequence of an appreciably more

descriptive integral condition, which shows that | cp(e“) I cannot be “too big, too

often” if C“, is Hilbert-Schmidt.

The space ’Do denotes the Dirichlet space modulo the constant functions. We

determine the spectrum of each composition operator Cg, on D0 which is induced by

a linear fractional map cp taking D into itself. The spectrum of the corresponding

composition Operator on the Dirichlet space is essentially the same.
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CHAPTER 1

Introduction

Here and henceforth, cp will denote a non-constant analytic function which maps the

unit disk D into itself. The induced composition operator C", is defined for each

f E H(D) by

Ccp(f) = f O (/3-

Thus C"p is linear and has range in H(D) In this thesis, the primary concern is

on those composition operators which are continuous on the Dirichlet space. The

Dirichlet space, denoted by D, consists of all f E H(D) for which

/ |f’|2dA < 00,
D

where A is the Lebesgue area measure. D is a Hilbert space with inner product

defined for f and g in D by

< f,g >i mfg-(07 + i/Df’EdA,

and the induced norm

. 1 ,

||f|l%=| M) l2 .g [D I f I2 dA.
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If f is univalent, then In | f’ |2 (M is precisely the area of f(D) In general, In | f’ |2 dA

still yields the area of the image of f on D if one takes multiplicities into account.

This area interpretation of the D-norm offers a constructive way to view the space.

In Lemma 1.1 below, we prove the well known relation:

1 / If’l2dA = if n | M I2,
7r D ":1

where f(n) denotes the nth Taylor coefficient of f. This provides an alternative

formula for the norm:

W%=H®V+ZnMWV-

Contrasting the formulae for H ”D and || “2, one might expect greater regularity of

the functions in D than of the functions in the Hardy space H2. This does turn out

to be the situation, and it is reflected in the theorems of Chapter 4. Briefly stated,

capacity tends to play the role in D (and the Do, spaces defined below) that Lebesgue

measure plays in H2.

The Do space, a 6 (0,1), consists of all f E H1(D) for which

En“ | f(n) |2 < 00.

7121

It is normed by

llflli». =| W) I2 + Z n“ | f(n) Iz-
n=1

The Da function spaces are “larger” than the Dirichlet space, “smaller” than H2, and

tend to have “intermediate” regularity.



1.1 Lemma.

If f e H(D), then

1 , _°° .

ngflidA—gnlflnflz.

In particular, f is a member of D if and only if either side, and hence each side, of

the equation is finite.

PROOF.

1 I2

g/leldA
1 0° * —1 2
— " dA7, [D | an(n)z | (z)

1 1 21r °° A

_/ f I an(n)r"_le("‘l)9
[2 rdOdr

7r 0 0 "=1

1 1 21f Go A 71—1 (n—1)0 2
7—1"./() /0 |an(n)r 26 | dddr

n=1

1 1 °° . 1

—/ 2W2 | nf(n)r""'5 |2 dr

7T 0 n=1

22712 I f(n) I2] r2"_1dr

n=1 0

°° . 1
2 2 _

2g» |f(n)l 2”

Z” l f(n) |2
n=l

///

In his pioneering 1968 paper which examined composition Operators and inner

functions [7], Nordgren determined the spectrum Of Cw as an Operator on the Hardy

space H2 when p is an automorphism of D. Cowen has proven many elegant spec-

tral theorems, mostly for H2 and larger spaces (see [2]). Here, we are interested in

determining the spectrum Of the composition operators C“, on D which are induced

by a linear fractional map (,0. In Chapter 2 we define D0 to be D modulo the constant
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functions, and we show that the (induced) operator C9,, is unitary on Do when (p is an

automorphism. This suggests the space Do as a good starting point, and in Chapter 3

we determine the spectrum of the Operator C,p : D0->Do when cp is a linear fractional

transformation. We conclude that chapter by observing that the operator C',p : D—>D

has essentially the same spectrum as the Operator Cg, : D0—>Do. The only difference

is that the point 1 is not automatically a spectral value in the D0 case—since the

constant functions are identified with the zero element of D0. The eigenfunctions Of

an Operator C2,, on H2 are often rather abundant, however, just as Often they fail

to lie in the Dirichlet space. It is due to this, mainly, that the proofs given here

are distinguished from those of the corresponding H2 results. Again, spectral results

concerning H2 appear in Cowen’s work [2] (see also MacCluer’s and Cowen’s book

[1, Chapter 7]). In particular, we embrace Cowen’s use Of a semigroup in case (p is

a parabolic non-automorphism (the idea for which he attributes to R. P. Kaufman

[2]), as well as his resourceful application of the invariance of the reproducing kernels

under C;.

In Chapter 4 the main theorem, Theorem 4.10, is a generalization of the following

well-known result ( [9, p.32]).

If C“, : H2—)H2 is compact, then the Lebesgue

measure of the set {8“ : |g0(e“)| = 1} is zero.

Theorem 4.10 shows that if C}, is Hilbert-Schmidt on D or D0, then the capacity of

the set upon which (,0 has unit modulus ({e“ : |<,0(e“)| = 1}) is zero.



CHAPTER 2

The Spaces D0 and D,r

Let C denote the class of constant functions in D. Let D0 denote the Hilbert space

D/C with the norm and inner product that it inherits from D. That is,

Il[f]l|%. i if]. I f’ |2 M for f e [f] 6 Do,

and

< m, [91 >1»; i/Df'rdA for f 6 [fl e 00. g e [916 Do.

These definitions do not depend on the representatives chosen and are thus well-

defined.

Let cp be an analytic self-map of the unit disk for which C“, : D—>D is continuous

(or equivalently, by the Closed Graph Theorem, merely well-defined as a mapping).

For any representatives f and g of [f] 6 Do, we have

for-QOPEC-

This shows that the Operator C“, : D0—>D0 induced by C“, : D—iD is well-defined.

The following theorem is a simple consequence of how the D0 norm neatly trans-

lates composition by (,0 into a change of variables.



2.1 Theorem.

If (p : D—)D is an automorphism, then C1,, : D0—)D0 is an isometric isomorphism (i.e.

CV, is unitary).

PROOF.

For any f 6 D0,

“came. = if!) IUnysz

ifiprwmnflwmrdma

1 I 2

=-(@flf®ldfld,

=§£¢rmrdaa

= IIfIIIDo'

—1

Moreover, (,0 is also a disk automorphism and (Cg,)‘1 2 Own. ///

Similar reasoning shows, more generally, that Cw : Do—)Do satisfies ||C,p|| 5 fl

whenever (p : D—>D is at most n-valent.

Let D,r denote the space of equivalence classes of analytic functions, defined on

the upper half-plane 11”“, which is analogous to D/C. More precisely,

[F] .—'.- {F(z) +c e H(H+): c e C} e D,r

if

1

MHMi-leTdA<w-
71' 11+

The situation here is the same as on the disk—some analytic functions 1p : l'IJr—->I'I+

induce well-defined Operators 0,), : D1,—>D,,. We will see that many of the composition
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Operators C1,, : Do—->D0 we consider are similar to simpler composition operators on

D,. In the sequel, we will only consider composition Operators C, on D, where

w : II”'-—>I'I+ is a translation or multiplication by a positive scalar. In these cases, it

is very easy to see that C, : D,—+D, is a bounded operator. To simplify notation in

the sequel, we will identify any member of Do or D, with any (and Often a particular

one) Of its representatives. The statement and proof of the following lemma illustrates

this usage.

2.2 Lemma.

For 11) E D, the functions

 Kw(z)ilog( 1_)=§%flz" (zED)

are reproducing kernels for D0.

PROOF.

Let U) E D. Then

00

ZnIRw(n)I2 = in —

n=1 n21

— Z lwlzn — lO ——1

n _ g1—|w|2’

 

 

so Kw 6 D0. Choose the representative f of [f] E Do with f (0) = 0. Then

 
 

<I,K.. >1). = inflame) = inflmfi) = imam",
n21 n=l

so<f,Kw >130: f(w). ///



CHAPTER 3

The Spectra of Composition Operators on Do Induced by

Linear Fractional Transformations

In this chapter, we shall determine the spectrum of each composition operator C, on

Do induced by a linear fractional map (,0 which takes the unit disk into itself. The

Remark at the end of this chapter shows that the spectrum of a composition Operator

C, : D—->D is essentially the same as that of C, : Do—-)Do. The only difference is that

the point 1 is not automatically a spectral value in the D0 case—since the constant

functions are identified with the zero element of Do. For determining the spectrum

of composition Operators on D, this is an important reduction. We presume that the

reader is familiar with the following ideas:

e The elliptic maps are those which are similar to a rotation of the disk.

e The parabolic maps are those which are similar to a translation in a half plane.

e The hyperbolic maps are those which are similar to a positive dilation in a disk

or a half plane.

We furnish some explicit examples of these mappings below. See [9], for instance, for

more detailed information on the fundamental characteristics of the linear fractional

transformations.
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Some Sample Linear Fractional Transformations of D

Define ,u by p(2) +— 511—32. [I is a linear fractional transformation which maps D onto

the upper half plane. It has inverse p’1(w) = ”—3. We use the formulae for ,u and
w

[1‘1 below.

e <p(z) i 22, a rotation, is an elliptic automorphism Of D.

e cp(z) i u‘1(p(z) + 1) = 9% is a parabolic automorphism Of D.

e 90(2) é u’1((.5) u(z)) = 31:53- is a hyperbolic automorphism Of D.

e cp(z) i p‘1(u(z) + z') = 31,13 is a parabolic non-automorphism of D.

e <p(z) 2 132G is a hyperbolic non-automorphism of D having fixed point 1 6 6D

and no fixed point in D.

e 90(2) = 55; is a hyperbolic non-automorphism of D having fixed point 1 6 0D

and fixed point 0 E D.

e 90(z) i g is a hyperbolic non-automorphism Of D having fixed point 0 E D and

no fixed point in 6D. <p(z) i ‘3‘ is loxodromic.

The theorems of this chapter yield the spectrum Of the Operator C, whenever «p

is a linear fractional transformation.

3.1 Theorem.

If cp : D—>D is an elliptic automorphism, then the Operator C, : D0—>Do has spectrum

equal to the closure of the set {<p’(a)" : n = 1,2,3, . . .}, where a is the point ofD

fixed by (p.
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Remark.

This shows that the spectrum of C, is either the entire unit circle T or the set of k‘”

roots Of unity, for some integer k.

PROOF.

By Theorem 2.1, C, is unitary and so 0(C,) Q T. There is a linear fractional map

It taking D onto D and a number A, of modulus one, so that (p = p'1(A ,u). The

relation ,u o (,0 = A p easily implies that A = g0’(a), where a is the interior fixed point

of (,0. We have

Cw = Cu 0 CA2 ° Cu'l = Cu O CA2 ° (Cid—l:

and it follows that 0(C,) = 0(C,\z). Therefore to determine 0(C,), we may as well

assume that (,0 is the map

<p(z) = /\z (z E D).

Then C,(z") 2 M21" for each n E N. Hence

 

E: {NM n=1,2,3,...} §0(C¢)3

since the spectrum itself is closed. It is only left to show that there are no points

besides those Of E lying in the spectrum. If E 75 T, then the following claim addresses

this point.
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Claim: (C, — £1) : D0—>D0 is invertible for every 5 E T\E. ‘

Let E E T\E and set d = dist (E, E). Then 6 > 0. It suffices to show that C, — {I is

both surjective and bounded from below on Do. Let f 6 D0. Define

 9(2) = :1 A131 2" (z e D).

Then -

f(n) < |f(n)|
An—g

|§(n) |= _ d
  

for each n, and so Lemma 1.1 shows that g 6 Do. For each n E N,

((C, - EI)9)”(71) = Cw(g)i(n) - €901)

 

= ram—tan)

= Mung”),

= in).

Hence (C, — {1)g = f, and along with (3.1), this shows that C, — E] is surjective

and bounded from below. ///

We regard H2(11+) as the set of all f E H(IV) for which

sup |f(:1:+z'y) |2 dz < oo.

0<y<oo —oo

Our principle interest in H2(I'I+) rests in Lemma 3.2 below, which allows us use

Fourier analysis to study of some Of the functions in D,. By the Paley-Wiener
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theorem, every f E H2(II+) can be expressed in the form

f(z) = 912:” [000 g(t)e“z dt (2 E 11+) (3.2)

for some 9 E L2([0, 00)) (see [8, p.372]). We define the L2(R) norm by the formula

. 1 °°

llglli = 7; f... lg(t)|2dt-

When f is defined by (3.2) on R, Plancherel’s theorem shows that f = g (in L2(R)).

In this case, f(x) = 0 for a.e. a: < O.

3.2 Lemma.

For f e H2(II+),

dA 1 00 A
r2_=_ 2

fmlfl 7, 2”/0 t|f(t)| dt

In particular, such a function f is a member ofD, ifand only ifeither side, and hence

each side, of the equation is finite.

PROOF.

Let f E H2(11+). Then f E L2 and by our remarks above,

1 00 A itz +
f(z) = 72—7/0 f(t)e dt (zEII ).

Then for each y > 0,

Hz) = Ego + m) = — f0” f(t)z'te'y‘e”"dt.
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By Plancherel’s theorem, for each y > 0,

/_°° I f’(;z:+z'y) I2 d2: = /°° l f(IIz'te-vt I2 dt.

Then since f(z) = 0 for (1.6. a: < O,

fmlf’I? dA = [Om/:II'IAHM dzdy

= [0” 1: I f(t)z'te"y‘ I2 dtdy

= /0°° I fun l2 2:2 [DOOW‘dz/dt

Division by 7r gives the desired result. ///

Remark.

The relationship

61/1 1 0° A
I2__=_ 2t

[mm , 27r/Otlf(t)|d,

which we have shown to be valid for all f 6 H2(11+) 0 D,, holds more generally. To

each F E D,, there corresponds a function S in L2([O, 00), t 21:?) with

1 oo

2 :_ t2 '

IIFIID. 2,], tlS()| dt

Moreover, this correspondence is surjective as well as isometric. We omit the proof

since we do not have a current need for this generalization. The relatively simple

proof will be included in an article which is in preparation for publication.
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3.3 Theorem.

If Ip : D->D is a parabolic automorphism, then the spectrum of the operator

0,, I D0—>D0 IS T.

PROOF.

By Theorem 2.1, C, : Do—>Do is unitary and so o(C,) _C_ T. It remains only to prove

the other inclusion.

There is a linear fractional map )2 taking D onto 11+ and a real number a so that

cp = [fl 0 7' o p, where T(’lU) i w — a. Note that the Operators CV1 : D0—9D, and

C, : D,—+Do are unitary. Moreover,

C, =C,,0C,0C,,—1 =C,,0C,0(C;1)

and it follows that 0(C,) = 0(C,). Therefore the proof of the theorem will be

complete upon establishing that T Q 0(C,). Fix any point 6‘” [E T, where fl 6 R.

We will show that (C, —- e‘”) : D,—>D, is not bounded from below. Choose k 6 R

so that

27rka = 0 (mod 2%) and 27rk 2 fi/a.

For1>c>0, set

[a, b] = [—fi/a + 27rk, —fi/a+ 27rk + c] C [0, 00)

(although c will be used as an indexing parameter in this proof, we will refrain from

subscripting a and b). Define FC 6 H2(I'I‘L) by

Fc(z) = t) e”t dt

1 oo

fi/o Xia.bl(



15

izt dt.

1 b

— e

v27r [a

Then we have F, = XI”,

Claim: F, E D, and ||F,|[,2T = (C1 c+c2)/(47r) for a constant C1 which

does not depend on c.

F, E H2(II+) since F, E L2([O, 00)) ([8, p. 372]). Thus application Of Lemma 3.2

shows that

. 1 oo .

IIFII: = —/ ch(1t)|2W
Zn 0

= 5—” fabtdt

= (b2 - a2)/(47r)

= [(—fi/a + 2M + c)2 — (—I6/a + 27rk)2]/(47r)

= (2(—fl/a + 27rk)c + c2)/(47r)

= (Cl C “I" 62)/(47l').

For F E H2(II+),

and from this we see that

((CT - e”)FCYOt) = (6""‘ - 6”)Fc(t)
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= (640‘ _ eifl)Xla.bl(t)'

As (C, — ei”)F, E H2(II+), Lemma 3.2 implies that

1 °° —iat m I 2

27T/0 l (e — 8 )X[a,b](t) I tdt

1 b . .

= 2—/ lam—em |2 tdt

7T 0

1 b-a . .
____ fi/ I e—za(t+a) _ ezfl I2 (t-l- a) dt

0

1 c . .

= g] [e—’a(t—B/a+2”k)—e'5|2 (t+a)dt (3.3)
0

“(0, - 6”)FcII§ =

since b — a = c. As 27rka = 0 (mod 27r), the quantity in (3.3) equals

1 C —iat 2
DA II: —II (t+a)dt. (3.4)

For small values Of c, the factor in the integrand, | 6".“ — 1 |, satisfies

le‘iat—llx t.

Hence, there exists 6 > 0 and a constant C2 so that

|e'“"——1|2(t+a)§ Cgt2

when t E [0, 6]. This shows that for each c 6 (0,6), the quantity in (3.4) does not

exceed 02 c3. Therefore, when c < 6,

[[(C, _ ew)FCIII2r S C2 03'
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By this result and the Claim, for c < 6, we have

[[(C, - eifl)F,[[3r C? (33 ,

lchHir — (010+Czl/(47FV

  

and the right hand side tends to 0 as c—>0. Thus the ”Operator (C, — e”) : D,——>D,

is not bounded from below, and so 6'” E 0(C,). By the freedom with which we chose

6, it follows that T g 0(C,). ///

3.4 Theorem.

If C, : D—-+D is a hyperbolic automorphism, then the operator C, : D0—>D0 has

spectrum T.

PROOF.

By Theorem 2.1, C, : D0—>Do is unitary and so 0(C,) g T. It therefore suffices to

establish the reverse inclusion. There is a linear fractional map 11 taking D onto 11+

1
and a positive number A, A 75 1, so that (p = If 0 7' o u, where r(w) i Aw. As in the

previous theorem, by similarity, we have

0(C, : D0—>’Do) = 0(C, : D,—>’D,).

Fix 6‘” E T for any real number fl. We will show that the Operator

(C, — ewl) : D,—>D, is not bounded from below. Define

1 .

g(t) = 26"“10‘9‘ (t > 0).
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Claim 1: %g(t/A) = ei”g(t) for all t > 0.

For any t > 0,

1 1 .

-g(t/A\) = —(t/A>-1e-W°gA<‘/*>
A A

= lB—WIIogItI—l)

t

___ leifle—ifilogxt

t

= emg(t).

For each value Of c with 0 < c < k i min(A,1/A) (which ensures that

[c, 1] (1 [Ac, A] = 0), define F, E H2(I'I+) by

Fc(z) = 712—; [omgm x...IIt> dt (2 6 IF).

Then we have F, = g XI“, Denote by C, the composition operator on H(II+) induced

by 7'.

Claim 2: C,(F,) e H2(II+).

For any y > 0,

[_c: I ICTIFc)I(~"3 +11!) I2 d1" = L: I FC(A:L' +2'Ay) |2 dz

1 00

2 X100 [ F,(:r + z'Ay) I2 dun. (3.5)

Since F, E H2(11+), the quantity in (3.5) is bounded by a constant which does not

depend on the value of y (y > 0). This proves Claim 2.
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Observe that

(C,(F,) —e*‘BF,)“(t) = (Fc(/\x))‘(t)-e”1:‘c(t)

= lF,(t/A)—6”Fc(t)

= —g(t//\)XI...I(t//\) — 6“}QItIXIAHIII

= Xg(II/z\)xI....I(t) - e”g(t)XI...I(t)

= e”g(t)xI..,.I(t) - 6”Q(t)XIc.u(t)

H
)
?

H
)
’

by Claim 1. This function certainly vanishes for t E [cA, A] n [c, 1]. Moreover, if A > 1

then it has support given by the union of the disjoint intervals [c, cA] U [1, A]. If A < 1

then it has support given by the union of the disjoint intervals [cA, c] U [A, 1]. Using

Claim 2, we that that C,(F,) — ewF, E H2(I'I+), so by Lemma 3.2

1

27r
IIIC. — emu: = [0... I (I0. — e”)Fc)‘(t) l2 wt. (3.6)

As | g(t) |= % for t > 0, by the observations above, the quantity in (3.6) equals

1

27r
 

CA1 1
—dt __

[c t I+27r  

*1

f—dt| =|lnA[/7r.
1 t

Hence for all c E (0,k),

||(C, - e”)Fclli = | 111* l /W-

However, for each c E (0, k),

>

“Fall?r = I C(t)|2Idt

I 9(t)XI...,(t) |2 tdt

S
’
I
H
‘
S
’
I
H

o
\
.
o
\
.



Therefore, for c E (0, k)

“(C-r - e”)Elli _ —2 l 111A I

“Fall?r _ 1116 ’

 

and the right hand side tends to 0 as c——>0. Thus, the operator (C, —- ewI) : D,,—)D,

is not bounded from below, and so we Obtain

T Q O'(C,, I D0—>D0).

The reverse inclusion was established earlier. ///

Towards The Case Where (,0 Is A Parabolic Non-automorphism

In [2] (see also [1, Chapter 7]) Cowen constructs, rather generally, a holomorphic

semigroup of Operators {CJIEA on H2 and exhibits a spiral-like set or segment E, for

which 0(Ct) C; Et. Following his method, we construct a holomorphic semigroup of

Operators on D0 which we utilize in an analogous way in Theorem 3.7. That theorem

deals with the case where I0 is a parabolic non-automorphism. The following lemma,

which will be used in the construction of the semigroup, follows from a slightly more

general version which appears in [4].
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3.5 Lemma.

Let f E H(11+) and let S C II+ be a compact subset. Then there exists a number

M satisfying

 

3M
0—5 a

 

1 [ice + a) — m» — %III< + A) -— f(<>>

 

 

whenever three different numbers C, C + a, and C + 6 lie in S.

PROOF.

Let C be a closed path in 11“, having index 1 on S, which satisfies dist (C', S) > 0.

By Cauchy’s theorem,

f(z) - —1- “”0”
2m C T-Z

 (z E S).

Using this representation for each Of the four occurrences of f in the expression we

are taking the absolute value of, the expression becomes

 

_1_/ f(T)dT

2m 0 (r — (g +a))(r -— (C +fi))'

Observe that the modulus of the integrand above, and hence the integral, is uniformly

bounded for all choices Of C, a, and fl satisfying the hypothesis. This proves the

lemma. ///

Let p : D—>II+ be an analytic, bijective mapping. For 111 E H+, define Ip, : D—>D

by

9010(2) = u"1(u(2)+ 10)-

Write C, for C,w, the composition Operator on Do induced by 90,.
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3.6 Lemma.

{Cw},en+ is a holomorphic semigroup of operators on Do. This means that :

(a) 01010102 : w1+w2 (1111, 102 E 11+)-

(b) w I——> C, is a continuous map into the space of operators on D0 (11) E 11+).

(c) For any A E B(D0, Do)“, the function 10 +—> A(Cw) lies in H(II+).

PROOF.

It is trivial to verify that (a) holds, so we prove (b) and (c).

Claim: For each f and g in D0, < C,f, g > is an analytic function

Of w, (w E H+).

Let f and g be given. Denoting the reproducing kernel at the point p # 0 by K, (see

Lemma 2.2), we see that

<wa,K,> = [wal(p)

= f(«pw(p))

= f(u“1(u(p) + w))-

Therefore < C,f, K, > is an analytic function of 10, since f and 0‘1 are analytic

functions. As the linear span Of the set {Kp : p E D\{0} } is dense in D0, there exists

a sequence {9, 3:1 in this linear span with g,—>g in D0. The Observations above then

imply that < C,f, g, > is analytic in w E 11+, for each n E N. As g,—>g, there exists
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a constant M, with M _>_ H g,||1;0 for all n. Then by the Cauchy-Schwartz inequality,

I < waagn > I S IIwaIIDo IIgnIIDo

MIIfIIDo .l
/
\

and so {< C,f, g, >};’,°:1 is a normal family. One easily shows that it has < C,f, g >

as a limit point, in the topology of uniform convergence, proving the Claim.

Fix C E II+, and choose 7‘ so that B(C,r) C IV. For every 0 and 6 in B(0,r)\{0}

with a 75 6, define the Operator U(a, ,6) : D0—+Do by

_l

I3

 

1

UIOII fl) = 3(00... - Cc)a—fl (C(+I3_CC) '

Let f,g E Do. By the Claim,

h(w) i < C,f,g > E H(II+).

Thus by Lemma 3.5, there exists M such that for any a and 6 as above

1'[§wc+m—w«»—%>M 0‘5
 

 
(Mc+m—h«flI (an

As h(w) =< C,f,g >, (3.7) may be written

M 2 l < U(a,fi)f,g > I .

By applying the Uniform Boundedness Principle, twice, there exists a constant M2

satisfying

IIU(avIB)II S M2
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for all a and 5 as above. Equivalently,

11

“3(ch — Cc) flIch — C(III S M2 I a — 5 I - (3-8)

Define I‘('y) = £(CC+, — CC) for '7 E B(0,r)\{0}. Inequality (3.8) shows that I‘(7) is

uniformly Cauchy, in the operator norm, as 7+0 in C. Therefore the following limit

exists:

, . . . 1
CC 2 11m I‘(7) = lIm—(CC+,—CC).

7—+0 'y—+0 ”y

This shows (b), that the mapping w I—> C, is continuous at C (hence on II+). This

also implies (c), for let A E B(D0,D0)*. Then

 

lim A(CC+h) — AICC) = limA (CHI: _ CC)

h—>0 h, h—>0 h

= A (lim ————C<+"- CC )
h—>0 h

= A(Cé)

and so w I—> A(C,,,) is analytic at w = C, hence on II+. ' ///

Following Cowen’s work on H2, we prove the following theorem.

3.7 Theorem.

Let <0 : D—)D be a parabolic non-automorphism. Then the operator C, : D0—>D0

has spectrum

E: {ei”°t: tE [0,00)} 0 {0}

for some number wo E 11+.
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PROOF.

There is a linear fractional map It taking D onto 11+ and a non-real number

w0=x0+iyo EII+ so that ¢=p—10Top,, where T(w) éw+wo.

Claim: 0(C,) C E.

For m E 11+, define g0, : D—+D by

PwIz) = #"1(u(z) + w) (z E D)-

Write C, for C,w, the composition operator on Do induced by Ipw. Then (,0 = (0,0.

By Lemma 3.6, {C,}w€n+ is a holomorphic semigroup of operators. Let A be the

norm-closed algebra of operators generated by

{I} u U 0,.

wEII+

As A is a commutative Banach algebra with identity, we know that

([8, Theorem 1817])

0A(Cw) = {A(C,,) : A is a multiplicative linear functional on A}, (3.9)

where 0,4(Cw) denotes the spectrum of C, with respect to invertibility in .A. That

is, [i E 0,4(Cw) if (C, — 61) has no inverse contained in the set A. Let A be a multi-

plicative linear functional on .A. Define the function A by A(w) = A(C,) for w E IF.

A E H(11+) since {Cw},6n+ is a holomorphic semigroup. Since A is multiplicative,
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”A“ = 1 and for all 1121, 102 E 11+,

/\(?.U1 + w?) : A(Cw1+w2)

: AICwI 0 cm)

= Maw.) MC...)

Therefore

A E 0 or A(w) = 6”” (3.10)

for some 6 E C. In the latter case, we have

[eflwl = lim Iefianfi
11—200

__ . n 1

— ,Igrrgole) I"

= lim I new)" It
11-900

e n .1—

= 31,130 I MC.) I" -

Therefore, since “A” = 1,

Ieflw Is um IICLtlli .
1].—’00

The right hand side is of course a familiar formula for the spectral radius of C,, and

so we obtain

|eflw |51 (w e W). (3.11)

This implies that fl E {it : t E [0,00)}, and so by (3.9) and (3.10),

0,40,) g {emtz t6 [0, 00)} u {0}. (3.12)
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If C, — AI has no inverse in B(D0,D0), then it also fails to have an inverse in the

smaller class .4; hence

0(Cw) Q 0,4(Cw). (3.13)

Since 90(2) 2 cp,0(z), by (3.12) and (3.13),

o(C,) Q {eiwotz tE [0,oo)} U {0} = E.

Claim: E Q a(C,).

As Cr: : D0—>D, and C, : D,—>D0 are unitary, and since

C, = C,0C,oC,,—1 =C,oC,0C;1,

it follows that 0(C, : D0—+D0) = 0(C, : D,—-)D,). It therefore suffices to show that

E Q a(C,). Let A = ei”°‘° E E, for any to E [0, 00). For c > 0, define F, E H2(H+)

by

F,(z) (t) em dt (2: E 11+).

1 oo

: —\/—2'__7;Loo
XI‘O-‘O‘I'CI

Then we have F, = XHOJMC, By Plancherel’s theorem,

(C,F,)A(s) = #1: F,(:r+w0)e““ d2:

1 [00 1 [00 F (t) i(:r:+wo)t dt —isa: d
— — , e e a:

V27i' -oo V27i' —oo

1 0° 1 00 A iwot imt —isa:

“.07; I... 72—, I... We 6 d“ d‘”

= F,(s)ci”°8 (m — a.e.).
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Therefore,

(C,F, — AF,)A(3) = (ei”°s — ei”°t°)F,(s)

(eiwos - eiwoto )X1:o.to+c1 (3)

As 0,15; —- AF, 6 H2(II+), by Lemma 3.2,

1 00

new. — mu: = ,7; [0 mar. — mm) |2 tdt

1 0° iw iwo

Z .2—7;/0 I (e at _ e to)X[¢o-‘o+¢l(t) I2 tdt

t +c . .

= .21? f 0 | (e‘w0t — em") |2 tdt. (3.14)
to

Define k(t) = e‘”°‘ for t E [to, to + c]. Then the quantity in (3.14) becomes

1 to+c

/ I k(t) — k(t0) I2 tdt. (3.15)
27f to

Note that k(t) —— k(t0) z k’ (t0)(t — to) when t is near to. Therefore, there exists a

constant K and 6 > 0 so that

IkItl—kItol IAS K2 I t—to I

whenever | t — to [< 6. Then for c < 6, the quantity in (3.15) is at most

K2 to+c K2 C

— t—tztdt=—/t2t tdt

27r ./to ( 0) 27r o (+ 0)

K2 c

< —t tzdt

_ 27r(0+c)/0

S 0163
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for a constant C1 independent of c (0 < c < 6). This shows that

“an. — AF,||,2, 5 C103

whenever c < 6. On the other hand,

1 oo .

”an: = 27/0 ch(t)|2tdt

1 to-i-ctdt

- 27/.
1

= EIIto + CIA — t6)

1

= EIAC to + c2)

= C2 0 + c2/(47r)

for all c > 0. Therefore for all c E (0,6),

||C,F,—AF,||,2,< C1c3 .

“Fall?r ‘Czc+ci/(47r)’

  

and the right hand side tends to 0 as c——>0. Thus C, — AI : D,——>D, is not bounded

from below. Therefore A E o(C,), and hence

{ei”°‘ : t E [0, oo) } Q o(C,).

Since the spectrum is closed, this implies that E Q 0(C,). This completes the proof

Of the theorem. ///

3.8 Theorem.

If (0 : D—>D is hyperbolic with precisely one fixed point on 8D and no interior fixed

point, then 0(C, : Do—iDO) = D.
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PROOF.

There exists a linear fractional map )1 and a positive number A, with A 75 1, so that

(p = ”"1070”, where T(Z) i Az. IfA > 1, define p(z) = FIT); then p‘1(w) = ,u‘1(1/w),

and

 

Therefore, we may further assume that'A E (0, 1).

Claim: ”(D) is a circle with the point 0 on its boundary.

As It is a linear fractional map, ,u(D) is either a half-plane or a circle. Suppose first

that ”(D) is a half-plane. Then there exists a point c E 6D at which [1. is singular.

 

Then (0(c) = p_10TO/I(C) = c and so c is the boundary fixed point of (0. If 0 E ,u(D),

then p“1(0) is another fixed point of (,0 (contrary to our hypothesis). Thus 0 ¢ ( ).

But then

T 0 H(D) = AMD) Z #( ),

and this implies that (,0 is not a self map of the disk. Therefore u(D) must be a circle.

Reasoning as above, if 0 E ”(D) we Obtain an interior fixed point for (,0; if

0 ¢ p(D), then (,0 is not a self-map of the disk. Each Of these conclusions is con-

trary to the hypothesis, and so 0 E 6(u(D)), completing the proof of the Claim.

Set P = ,u(D), and denote by D): the space of functions analytic on P which is
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analogous to D,, i.e.

1

DP 2 {[F]: F 6 mp), Will?» A g [P I F' l2 M < oo}.

It is easy to see that C,—1 : DO—Dp and C, : Dp—>D0 are unitary Operators. More-

over, since

C,=C,0C,0C,—1=C,0C,0C;l,

C, : Do—Do and C, : Dp——)Dp share the same eigenvalues. As (0 is univalent,

”C,“ S 1 and so 0(C, : D0—>D0) Q D. We will show that each B E D\{0} is an

eigenvalue of C,.

Fix 6 E D\{O}. Define the function F, on P by

n6

nAF3(z) : zI—‘.

Writing 6 = [6 [601, we have

FBIZ) = ,(IanRé)

lnz)(——Llnlm+io )
= 8( 10A

Since the logarithm is analytic on P, so is F5. Setting c1 2 [%§, we have

F,(Z) : 61201—1: _C_1_ec1lnz

fl Z

For each 2 2 re” E P,

|F[,(re”)| : |:_lec1(lnr+i0)|

I C_le(1n IBI+101 )(ln r+i0)/ ln Al

r
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[21' |,(InIaI)(1an,—ololfi
,

< E [6(ln|B|)(lnr)|I-,,‘:
,.

for some constant C2 which does not depend on 2 (z E P). Thus

. C n )9

[Fé(re”)| _<_ —A:rl—IFIT1 = Cg'r"

r

where a > —1, since 1,93% > 0. Choose R large enough so that P C B(0, R). We have

F, 2dA < C2] 20 dA
[I flI — 2 IZI (Z)

< 02/ 2061/4
— 2 3(0, )IZI (Z)

R

C22 27r / r2°+1dr.

0

|
/
\

Since 2a + 2 = 2(a + 1) > 0, the latter integral is finite and so F, E Dp. For each

zEP,

C(ngz) = (MI?

C
D

Ilag ln

ln A Z in=A V

_ e(ln A)(ln Ifi|+i91)/(ln A)Ffi(z)

= W BIA‘FMZ)

= WW2)-

Thus C,(Fg) = ,BFp, and so 6 is an eigenvalue of C,. Because of the freedom

with which we chose 3, every point in D\{0} is an eigenvalue. We observed

that 0(C,) = 0(C,) Q D. Since the spectrum is a closed set, we conclude that

0(CIp) = 5- ///
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For the convenience Of the reader, we state the following lemma, which can be

found for instance in [1, p. 270]. It will be helpful in the proof of Theorem 3.10, and

again at the end Of this chapter.

3.9 Hilbert Space Lemma

Suppose H is a Hilbert space with H = K EB L, where K is finite dimensional, and

C is a bounded operator on H that leaves K or L invariant. If C has the matrix

representation

C: or C:

We define L1 to be Do. The reproducing kernels for Lm, denoted Kw,“ are defined

for each 21) E D by

z" (z E D).

°° III"

Kw,m(z) = Z —

"=77! n

Suppose that C, is a bounded composition Operator on Do and that (0(0) :2 0. Then

the restriction of C, to L, has its range contained in Lm. Let 0;, denote the adjoint

of the Operator C, on Lm. A routine argument shows that the family of reproducing
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kernels (KW, : w E D} is invariant under C; and that, in particular,

0;,(Kw,,,) = K,(,,,,.,,. (3.16)

L, has finite codimension in D,, so application Of Lemma 3.9 ensures that

0(C, : Lm—iLm) Q 0(C, : D0—)Do). (3.17)

Following Cowen’s proof of Theorem 7.30 in [1, p. 289], wherein he makes effective

use of the H2 analogues of (3.16) and (3.17), we are able to prove the following

theorem.

3.10 Theorem.

If (p : D—>D is a hyperbolic map with an interior fixed point (necessarily attractive)

and a boundary fixed point, then the spectrum of the operator C, : D0—+D0 is D.

PROOF.

WLOG, we may assume that (p fixes the points 0 and 1. Hence, by our hypothesis

0 < (0’(0) <1 < (p’(1).

Throughout the proof, m and J will always denote positive integers. In accordance

with the remarks preceding the theorem, let 0;, denote the adjoint of the opera-

tor C, : Lm—Lm. Fix A E D\{0}. To see that A is contained in 0(C, : D0—>D0),

by (3.17), it is sufficient to show for some value of m, that A is contained in

0(C, : Lm—>Lm). This is our underlying goal in the remainder.

Since (,0 is a linear fractional transformation which fixes 0 and 1, it follows that (0 is
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a homeomorphism of the interval [0, 1]. For any point a: E (O, 1), consider the sequence

{:r,,}$,°=_oo consisting of the forward and backward (p-iterates of 2:, i.e. {2,}$,°=_°o is

the uniquely determined such sequence having 51:0 A; :12, whose elements satisfy the

family of relations

1,, = (0(a) (n e Z). (3.18)

Let us pause to outline the rest Of the proof. A primary tool in our argument

is, from (3.16), that Cg, is a forward shift of the sequence {K,mm}$f= It is not
—W'

difficult to check, formally, that

00

Z X‘" 1g",

712-“)

is an eigenfunction of C; corresponding to A. We shall see that for m sufficiently

large, this is a convergent series. It is necessary, however, that the series not be zero—

if it is to be an eigenfunction. We show in Claim 2, non-trivially, that a sequence of

partial sums of the series is bounded away from zero. This lower bound, of course,

also applies to the limit. In this way we Obtain an eigenfunction for C; corresponding

to A, implying that A E 0(C, : Lm—)Lm).

The homeomorphism Of the interval [0, 1] described above, along with the Schwarz

Lemma, provides that

O<$n+1<$n<1 (REZ).

Since (0 has no fixed points in (0,1), this implies that

lim 2-, z 1.
71—)00
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Indeed, since

1_ :17." (10(1) “ 90(33—11—1)
 1° —— : 1 = ’ 1

713,20 1 — $_n_1 Tiling) 1 _ $_n_1 ”0 ( )

and (,0’(1) > 1, we have

2(1 —:1:_,,) < oo. (3.19)

:0

This shows that the backward iterates of .230 tend to 1 quickly enough to be the zeros

of a Blaschke product. Let s be a number satisfying 0 < s < 5%. Then 3 < 1, and

there exists a number a in the interval (.5, 1) such that

1—2:

  

 

—Z 3 whenever 1 > a: 2 a. 3.20

1 - 90(27) ( I

We now fix the sequence {:1:,.,}$,°:_co determined by $0 = a and the relations given in

(3.18). For any value of J, the backward (,0-iterates 22-1, 2-2, . . ., :r_J lie in (01,1),

and so by (3.20)

1—a:_J 1—:r_J+1 1—a:_1-

1 ‘— _ 2 > 1 — _ = . . . 1 _

(A: J) :1: J 1— $-J+1 1— $-J+2 1— $0 ( $0)

_ 1—$-J 1—$_J+1 l—IE._1 (1 :L‘)

1 — (obs—J) 1 — Mar—m) 1 — (om—1) °

2 SJ(1 — 1130).

This inequality provides the entire means for the following claim.

Claim 1: There are constants M and J0 so that

||K,_J||p0 3 MW whenever J 2 J0.
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Since

“K H2 — Io ——x—J Do — g1 _ ($-J)2

< ___

_ log sJ(1— $0)

= Jllogsl —- log(1 — 3:0),

we have

IIK,_,II,, g \/J|logs| — log(1 — 230). (3.21)

Claim 1 follows from (3.21).

A simple application of the Schwarz Lemma yields a constant c in (0,1) which satisfies

the condition:

[90(2)] _<_ c|z| when ([2] g .5). (3.22)

Set

N = min{n: 11:, g .5}.

Then (IN 3 .5, and N > 0 since 3:0 > .5. By (3.22),

{EA/+1, S C,c ' IL‘N for all k 2 0. (3.23)

cm0

Fix a positive integer m0 which satisfies MI 3 .5. For m and J, with m 2 m0, define

the functions Fh, by

PM = Z X‘" K,,,,,,. (3.24)

n=-J

We will now show that the functions FJ,” lie in Lm.
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It suffices to show, for each m 2 m0, that

00

Z IAI‘"IIK..,...IID, < oo.

n=N

Fix m _>_ m0. For each n 2 N, we have

 

 

—n —n 00 1

I/\I IIKannIIDo : IAI Z’EImnIAk

\kzm

_ °° 1

S W A Z -IC”‘N$NI2"

\k2mk 
 

°° 1

s IAI‘"c‘"‘”’"‘ z—IANIF
kzmk

—Nm cm n

= C W IIKxNvaIDO

cm A

= Const —

(III)
S Const (.5)".

Therefore, for each n 2 N,

IAI‘" I|K.1..,m||1>0 S Const (5)".

and so the series for FJ," converges in Lm.

Claim 2: For some integer m1, greater than or equal to m0, there is

a constant 6 > 0 so that

IIFJJnlIIDo 2 (I for all J > 0.
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The proof of this claim is of some length, and for the reader’s reference, we note that

it will be completed at statement (3.34). By (3.19),

E (1 — 2,) < oo. (3.25)

ng-1 .

men

We define the function f in H°°(D) by the formula

f(Z)= (1— Z)2 '11 a$k(z (Z 6 D),

“1%

where 01,, denotes the familiar automorphism of D which transposes 0 and 113,. Fun-

damental theory concerning Blaschke products provides that

f(zr,)=0 4:» 0¢ng—1. (3.26)

Certainly [fl 3 4, and since {23), : 0 aé k S N - 1} Q (.5,1), it follows that [f’l

is bounded (this is essentially problem #18 from [8, p. 318]). We will now prove

this. Since the product defining f converges uniformly on compact subsets of D, the

product rule for differentiation shows that, for any 2 E D,

lf'(Z)| S 2|1-z|+|1—z|2 Z I02,IZ)|-

 

 

ng—i

k¢0

Hence,

I 1 '— Z 2

|f(()2: <4 + Z I (1— 12,). (3.27)

k<N— 1 1— ”kg

#0

Write 2 as z = :1: + 33/. Observe that for k satisfying 0 75 k g N — 1,

2 < (1 _ x)2 + 3,2

(1 - 371:1?)2 + (flirt/)2

  

[l—z

1—xkz  



4O

 

 

< (1—513)2 1

_ (1—2,:1:)2 ($02

_ 2

< ( 1 ‘5) +4
_- l‘-$k$

16

< — 49 +

< 6.

 

We used above the facts that for each such It, :r;c > .5 and ( 1‘” ) is a decreasing
l—zkz

function on the interval [1,1]. From (3.27), we Obtain

|f'(Z)| S 4 + 6 Z (1 - xi). (3-28)
ng—1

k¢0

and by (3.25), the right hand side Of (3.28) is finite. This establishes the existence Of

a number B1 satisfying

|f'(Z)I S 81 (z e D).

Since If I _<_ 4 and | f’ | _<_ B, it follows, in a straight forward manner, that

IIfKJJOImIIDo S (4 "I" BI)IIK:ro,mII’D0 S (4 ‘I" BlIIIKxollDo for all m.

We abbreviate this:

IIfKIoImIIDo S 32 (m 2 1)

and Observe, then, that f Kmm E L, since the appropriate Taylor coefficients vanish.

Since fK,0,m E Lm,

IIFJ.m||vo _>_ I<foo.vaJ,m> I/IIfKZOJTtIIDo

> I Z ’\_n < foo,mIKxn,m > I/B2

nz-K
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= I f A-"f<x.)K..,m(x..)I/B2. (3.29)
nz—K

We notice that if A were a positive number, then by using 1 in place of f, the proof

of Claim 2 would be done at (3.29). Considering (3.26), (3.29) becomes

  

1 °° _,

IIFJJnIIDo 2 E2” f(x0) I(.'zo.m(370) + Z ’\ f(mnIchoflIxn)

n=N

and since [fl 3 4,

1 0° _n

IIFJMIIA. 2 E; (Imam llemllipo —4 )3 IAI K..,m(a=..)). (3.30)
n=N

Because of the infinite set of zeros were were able to prescribe for the function f, the

right hand side of (3.30) is independent Of J. To prove Claim 2, it suffices to find just

one value of m for which the right hand side of inequality (3.30) is positive. Observe

 

 

 

 

that

00 00 00 k k

Z W” Iowan) = 2 MI” )3 ”—3?
n=N n=N k=m

oo oo (Bk (cn—N $N)k

S [AI—n 0

11%;)! It; k

00 _ oo (Cn—N $0 x~)k

= N ”
fig kgm k

00 (C—N $0 $N)k oo ck n

2 Z k E T
k=m nzN I I

00 N k 5—h- N m

= E (C A” TN) (IAI) , (since — < .5)

k=m k (1 — [CA—l) IAI

 

 

k=m (1 Kl)

_ 1 °° (1170 11m)" 1

IAIN :43... k (1 If.)

 

|
/
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m

M
8 ”
I
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[
\
D

T
;
-
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That is,

 ZIAI‘" K,()..,..x. so :3 “/2
n=N

where C is a constant independent of m. Employing this estimate in (3.30), we Obtain

V

1
A 00 :13 2),

IIlelvo - 2 (If(xo>IIIK..,mII%.—4Cz ————I0; I )
k=m

H

— 1 00 [370]”: 00 (mo/2)]:

— 32 (If($o)I Z T—AC [cg—r)

1
 

 

k=m

_ °° IIISEOIIIJEII'IA‘4C'Iflb‘olk/2'c

— 22:2 A

_ 1 °° (molkIIfIHSOIIISEolk—4C/2kl

- 32.2. A -

That is,

00 $0 _ k

IIFJ,mIIDo_—B12kzm($ )kIIIf )Igfok) 40/2 I. (3.31)

The comments proceeding inequality (3.30) explain why it suffices to show that the

series in (3.31) is positive for just a single value of m, m 2 me. For this end, it is

enough to verify that the condition

[f(xo)| (:1:0)’c — 4C/2“ > 0 (3.32)

holds for all k sufficiently large. Condition (3.32) is equivalent to

 (2x0)’° — > 0, (3.33)

and since (130 > .5 we have (2:120) > 1. Hence Claim 2 is proven: for some 6 > 0,

IIFJ,m1IIDo Z <5 (J > 0)- (3-34)
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By Claim 1,-

—Jo ——n 00

2: II’\ KanmIIInnl S Z3I’\In1I4\/—7I

nz—oo n=Jo

s M Z (/IAI"n (\/I—’\I)
n=Jo

_<_ Const Z (\/|—A—|)n

ano

< 00.

Therefore,

F“ i .23” “W = .112. Fm

is well defined in Lml. Furthermore, “Fm,” Z 6, by Claim 2. Now we may readily

complete the proof of the theorem. Using (3.16),

01:11 (le) : 07:11 ( Z X—n Kxniml)

n=—oo

m — n

= 2 A K$n+11ml

fl=—OO

0° — n+1

= Z ’\ Kmmmi

nz-oo

= m,

Therefore A E 0(C, : Lm,—>Lm,). The remarks made at the beginning of the proof

provide, then, that A E 0(C, : D0—>Do). By the way A was chosen, we have

D\{O} g 0(0, : 1),—>00). (3.35)
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Since “CI,“ S 1 bounds the spectral radius, and since the spectrum is a closed set,

(3.35) implies that

0(C, : Do—2Do) = D.

///

3.11 Theorem.

If the operator C, : D0—2D0 is continuous and (C,)" is compact for some n, then (,0

has an attractive fixed point a E D and

0(C,) Q {(,0'(a)’c : k = 1,2,3, . . .} U {0}.

PROOF.

Fix n so that (C,)" is compact. Suppose that (p fixes no point in D. By The Grand

Iteration Theorem ([9, p. 78]) (p, and consequently (,0, (the composition of (,0 with

itself n times), has a fixed point in 6D at which the angular derivative exists. Thus

(C,)" : H2—->H2 is not compact (a contradiction since (C,)" : D0——>D0 is compact).

SO (0, and consequently (0,, has a fixed point in D. We shall denote it by a. (,0 is

certainly a non-automorphism, and so |(p’(a)| < 1. By KOnig’s theorem ([9, p. 93]),

0(C,n) C {(,0;,(a)k: k=1,2,3,...} U {0}

= {(p'(a)"k: k: 1,2,3,...} U {0}.
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As C," = (C,)”, the Spectral Mapping Theorem then implies that

0'(C,)n g {(0'(a)"’°: k =1,2,3,...} U {0}. (3.36)

Set

A, = {(,0'(a)kA: A’" :1; k =1,2,3,...} U {0},

for m = n and m = n + 1. By (3.36), 0(C,) Q A,. Since (C,)"+1 is also compact on

Do, the same reasoning shows that

0(C‘p) g An+1.

Hence

0(C,) Q A, (I A,“

= {Ip'(a)k: k = 1,2,3, . . .} u {0},

which is the desired conclusion. A ///

Remark.

If (,0 : D—>D is a hyperbolic map with no boundary fixed point, or is a loxodromic

map, then

0(C, : D0—>D0) = {(p'(a.)" : n = 1,2,3, . . .} U {0} (3.37)

where a denotes the point of D fixed by (0. Theorem 3.11 shows that the left hand

side of (3.37) is contained in the right hand side, and it is not difficult to show that

each of the non-zero members of the right hand side is an eigenvalue of C,. The

spectrum is a closed set, and so (3.37) follows.

Furnished below is a summary Of the spectra of composition Operators on Do
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induced by the linear fractional transformations, which are self-maps Of D. Where a

appears below, it denotes the point Of D fixed by (p.

e If (0 is a parabolic or hyperbolic automorphism, then 0(C,) = T.

 

e If (p is an elliptic automorphism, then 0(C,) = {(,0’(a)" : n = 1, 2, 3, . . .} Q T.

e If (0 is a parabolic non-automorphism, then 0(C,) = {€th : t E [0, oo) } U {0}

for some point '11) E 11“.

e If (,0 is a hyperbolic non-automorphism without a fixed point in D, then

0(C,) = D.

e If (0 is hyperbolic with an interior and a boundary fixed point, then o(C,) = D.

e If (,0 is a hyperbolic with no boundary fixed point, or is a loxodromic map, then

o(C,) = {(p’(a)": n = 1,2,3, . . .} U {0}.

Remark.

Since an Operator C, : D—>D leaves the constant functions fixed, upon writing

D = C CD D0, Lemma 3.9 shows that

0(C, : D—>D) = 0(C, : D0—>D0) U {1}.

In particular, all of the results listed above hold for C, : D——)D, if one merely includes

the point {1} in the last result.



CHAPTER 4

Hilbert-Schmidt Composition Operators and Capacity

Let H denote a Hilbert space. A linear operator T : H—>H is said to be Hilbert-

Schmidt if

: IITIBnIIIII < 00

n=1

for an (or equivalently, any) orthonormal basis {e,}$,°:1 of H.

4.1 Theorem.

([9, p. 25]) If T : H—>H is Hilbert-Schmidt, then T is a compact operator.

OUTLINE OF PROOF.

For n E N, define T, on H so that T,(f) is the projection Of T(f) into

LS({T(61), T(eg), . . . , T(e,)}).

HOlder’s inequality shows that T,—>T as n—>oo. Since each T, is a finite rank operator,

T is therefore compact. ///

Denoting D by D1 here, we that C, : D,—>D,, is Hilbert—Schmidt for a E (0,1]

47
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provided

°° 2" °° IIP"I|%
2:110 (7) II... = Z—-..—° <oo-
n=1 ‘P n /2 n=1 n

Shapiro proved, in Propositon 2.4 of [10], the following statement for any self map (,0

of D.

II 2

C, is Hilbert-Schmidt on D 4:) [D ( I (p I dA < oo.

1 - m2)?

From this result, we see that C, is Hilbert-Schmidt on D provided that the image of

(,0 on D has finite hyperbolic area (counting multiplicities).

One Of our principle interests here is in generalizing the following result whose

proof is well-known ( [9, p.32]).

If C, : H2—2H2 is compact, then the Lebesgue

measure of the set {cit : |(,0(e”)| = 1} is zero.

For a self map (p Of D, set

E = E(90) i {G'II |<p(e“)l = 1},

where the notation (0(e”) refers to the radial limit, provided it exists, Of (p at e” E T.

We show in Theorem 4.10 that if C, is Hilbert-Schmidt on D,,, then the capacity Of

E is zero. Here, the capacity function depends on the space. For example, when C,

acts on the Dirichlet space, it follows that the (classical) logarithmic capacity of E is

zero.
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Kernels and Capacities

Here and in the sequel, we identify t E (0, 27r) with e” E T. The logarithmic kernel

and the kernel of order 6 (0 < ,6 < 1) are defined for t E (0, 21r) by

K109“) : 10g (TL—A)° t
81112

and

1

t:—
K’AII [sinélfi

respectively. These functions are non-negative, even (when extended naturally), con-

vex, and integrable on (0, 271). Furthermore (see [5, pp. 33,40]):

e KI,g(n) and Kg(n) are positive for each n E Z.

e K),g(n) x % as n—>oo.

e Kfi(n) x $17; as n—>oo.

Let K be one of the kernels above. Let E Q T be a closed subset, and let M+(E)

denote the class Of positive measures supported by E. Li(T) will denote the subset

of positive functions of L2(T). We define four different capacities of the set E with

respect to the kernel K:

cK,1(E) = sup{||11[|: ,u E M+(E); Vt E E, K =1: 11(t) $1},

CK,2(E) = SUPIIIHIII H E M+(E); IIK * M“; S 1},

CK,2(E) = inf{||F||§: F e Li(T); Vt e E, K * F(t) 2 1}.
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If E C T is not closed, and C denotes one of the capacity functions above, define

C(E) = sup C(F)

FCE

where the supremum is taken over all closed subsets F. By these definitions, each of

these capacity functions is defined for every subset of T and is inner-regular. In each

case, it is easy to see that

K13 K2 :> CK,(E) 2 CK,(E)

and

E1 E E2 => CK(E1) S CK(E2)-

If K = K109, we sometimes substitute “log” in place of “K” in the capacity notation.

[5] is a good source of information on the capacity CK, and its relationship with

trigonometric series. [6] is a good source of information on capacity functions induced

by potentials—including the ones which have been defined above.

In the sequel, some of our theorems will express results in terms of the big-C

capacity functions CK,2. The following theorem recognizes the equivalence of these

capacities with the classical ones. By equivalence, we mean that they share the same

null-sets.

4.2 Lemma (Capacity Equivalence).

For all subsets E Q T:

(a) c.,,,(E) = 0 (=> CK ,2(E) :0
i

(b) CK,_m1(E) = 0 <=> CK1_%,2(E) = 0 (a E (0,1))
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The proof will use results from both [6] and [5]. The following identity is from

[6, p. 273] and holds for all compact subsets E Q T:

N
i
t
-

CK,2(E) 1' (CK’2(E)) . (4.1)

Combining Theorems III and V from [5, pp. 37,40], we Obtain the following lemma:

4.3 Lemma.

There exists 0 75 ,u E M+(E) satisfying

  

00 I e 2 00 A 2

MI") | |u(n) |
< 00 01‘ < 00

.23.. InI .23.. In 11-3
119150 n¢0

iff

6109,1(E) > 0 or cKm1(E) > 0, respectively.

PROOF OF LEMMA 4.2. For the purposes of this proof, define K0 : K1,, Then

statement (a) is statement (b) with a = 1. Thus it suffices to prove (b) for arbitrary

a E (0,1]. Fix such a number (2. Since these capacities are inner-regular, we may

assume that E Q T is a compact subset.

Claim 1: CK,_,,2(E) > 0 => CK1_,,,1(E) > 0.

Suppose CK1_9,2(E) > 0. Then by (4.1), cKl_%,2(E) > 0. By the definition Of CK1_%’2,

there exists 0 74 ,u E M+(E) satisfying

IIKl—g * #II2 < 00-
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Then we have

00 > ||K1_g.*uI|§

1

= -— K_g* 2dm

anrI 12 III .

oo

= Z I (Kl—a, *MIAIT’A) I2

 

  

nz—oo

0° 2 2

= Z I(K1—%) (n)I |#(n)I -

n=—oo

Hence we Obtain

11750

f: IMn) I2

,2-.. INI“
n¢0

Lemma 4.3 implies then that CK1_,,1(E) > 0, completing the proof of Claim 1.

Claim 2: cK1_m1(E) > 0 => CK1_,,1(E) > 0.

Suppose cK,_m1(E) > 0. Then by Lemma 4.3, there exists 0 75 11 E M+(E) satisfying

 

 

00 c 2

Z I 11(7).) I <

..=_.. In I“
11.960

Hence

00 A 2

Z IHI?) I < 00,

"z-.. WI2
11950

and this shows that K145. =1: 11 E L2(T). Considering the definition of cK1_ 312’ this im-

plies that cK1_g,2(E) > 0. Using the identity in (4.1), it follows that CK1_%,2(E) > 0.

This completes the proof Of Claim 2 which, along with Claim 1, completes the proof
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of the theorem. ///

By Lemma 4.2, if some property occurs capacitarily almost everywhere (i.e. except

on a set of capacity zero) with respect to one of these capacities, then it occurs capac-

itarily almost everywhere with respect to the corresponding capacity (as indicated by

Lemma 4.2). We frequently use the abbreviation

CK,- — a.e. e” E T,

et. al., to mean capacitarily almost every member of T with respect to the capacity

CK,j (j = 1 or 2).

4.4 Lemma (Weak Capacitary Inequality).

Let K be a kernel and F E L1(T). For a > 0, set E, = {e“ : K * F(e”) 2 0.}. Then

 
IlFl|§_

CK,2(Ea) S a2

PROOF.

By definition, CK,2(E,) = inf{||F||§ : F E Li(T); Ve” E E,, K * F(e“) Z 1}.

Therefore, since K :1: ac“) Z 1 for each e” E E,, we have

IIFI|§_
a2

CK.2(Ea) S IIF/a||§ =

///
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Remark.

For F E L2(T), K >1: F is certainly defined pointwise wherever K * |F| is finite.

Lemma 4.4 then shows that K at F(e“) is defined (and finite) for CK; — a.e. e“ E T.

4.5 Lemma.

Fix a E (0,1] and define K = K1_%. Then for each f E D,, (where D, = D), there

exists F E L2(T) satisfying

oo

f(2) = 2(K * F)A(n) z" (z E D); (4.2)

n=0

moreover, for f and F associated in this way,

IIfIli), >< IIFIIE (f E Do.)- (43)

PROOF.

Recall that K(n) > 0 for each n E Z, and that K(n) x :1, as n—mo. Let f E D,.

Define a sequence c = {c,};,’°=_co by

 (n E Z).

Then [c,]2 x n“ | f(n) I2 as n—>oo. Since f E D,,, it follows that c E l2(n). By the

Riesz-Fischer theorem, there exists F E L2(T) with F(n) = c, for all n E Z, and this

gives (4.2). Since

n"‘(K(n))2 ><1 for all n E Z \{O}
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and

A

(K(0))2 x 1 (trivially),

the implicit pairs of constants associated with each of these statements can be chosen

to be the same. Then for any f E D,, we have

IIfIIia, = I f(O) I2 +27%“ | f(n) |2
n=1

= I (K A F)‘(0) l2 + in“ I (K . mm |2
11:1

= I Rm) 121 Pm) I2 + i n“(K(n))2 I 1%) l2

)
(

1|F(0)|2+:1|F(n)|2

= I|F||§-

We note that the implicit constants associated with x here are the same as those we

considered above (and are independent of f E D,,). This yields (4.3). ///

The following two theorems, which are well known, help substantiate the state-

ment make in the introduction that capacity tends to play the role in the Dirichlet

and Dirichlet-type spaces that Lebesgue measure plays in H2. They show that func-

tions in these spaces have boundary values and Lebesgue points capacitarily almost

everywhere.
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4.6 Theorem.

Let f E D, with a E (0,1] (where D, = D). Set K = K1413. Then the limit

f(e“) 21133163)

exists (and is finite) for CK, — a.e. e” E T.

Remark.

By Lemma 4.2, CK; may be replaced above by 0,0,1 if f E D, or by c1_,,1 if f E D,,.

PROOF.

Fix f,K and a as in the statement of the theorem. By Lemma 4.5, there exists

F E L2(T) satisfying

f(2) = :(K =1: F)A(n) z" (z E D).

By the Remark following Lemma 4.4, K =1: F (ei‘) is defined for CK,» — a.e. e” E T.

Define Q for all such points by

{2(6“) 2 lim sup [f(re“) — K * F(e”)|.

r—+1—

Hence

C(e“) = lim sup |P,. * K I: F(e”) — K * F(e“’)|. (4.4)

r—il'

Let c > 0. For h E C(T), define

g=g(h) iF—hEL2(T).
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Then F = g + h and for all e“ E T,

P, =1: K :1: h(e”)—-)K =1: h(e”) as r—>1" .

Therefore, (4.4) becomes

52(6”) = lim sup IP, :1: K =1: g(e”) — K =I< g(e”)|

r—+1"

3 lim suplP, * K =1: g(e”)| + [K * g(e“)|.

r—rl“

Observe that

P, * K at g(e”) = K * P, * g(e”)

1 2.. .
= —/ K(t—0)P, *g(e”)d0,

Zn 0

SO

- it 1 2" 1‘9
llmsupIP,*K*g(e )l _ 22/6 K(t—6)M,,(P[g])(e )d0
r—rl—

: K* M,,d(P[g])(e”),

where Mm, denotes the radial maximal function. Therefore,

9(6”) S K * Mmd(PIgl)(e“) + |K * g(€“)|-

We denote the Hardy-Littlewood maximal function by MHL. By Theorem 11.20 Of

I8],

9(6“) S K * MHLIQIIBII) + IK * 9(61IIIa
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and this easily implies that

0(6”) S 2 K * MHL(9)(6”)- (4-5)

By inequality (4.5),

{eitz Q(e”) > 6} Q [6”: K at MHL(g)(e”) > 6/2}.

Hence by Lemma 4.4,

CK,2({e“ : 9(e”) > 6}) l
/
\

CK,2({6“ 3 K * MHL(9)(eit) > 5/2”

(2/5)2 IIMHL(9)II2

3 (2M2 IIMHLII2II9113. (4.6)

|
/
\

Recall that g 2: F — h where h was as arbitrary continuous function on T. Since the

continuous functions are dense in L2(T), we may choose 9 = g(h) and It so that [Igllg

is as small as we please. Therefore, the inequality above may be improved:

CK,2({e” : 9(e“) > 6}) = 0. (4.7)

Note that (4.7) holds for each 6 > 0. Using the a-subadditivity of 0K3, we Obtain

CK,2({e“: 9(e”) > 0}) = 0.

Considering the definition of (2, this completes the proof Of the theorem. ///
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4.7 Corollary of the proof.

For f, K and F as in Lemma 4.5,

f(e”) = K =1: F(e”) for CK; — a.e. e” E T.

4.8 Theorem.

Let f E D, with a E (0,1] (where D1 = D). Set K 2 K1_%. Then CKg—ae e” E T

is a Lebesgue point of f.

The proof Of this theorem is analogous to that Of Theorem 4.6.

OUTLINE OF PROOF. We identify t with e” E T. Let f, g and h be as in the proof

of Theorem 4.6. Then K * F = f (CK; — a.e.) and K =1: h is continuous. Define Q by

0e“) =11msupi ft mo) — WM 40
r—+0 7' -r

for each t where f(t) is defined (CK; — a.e. by Theorem 4.6). Hence for

CK,2 — a.e. e” E T,

. 1 t-i-r

9(e”) = limsupE/ [K * 9(6) — K at g(t)[ d0 3 MHL(K * g)(t) + [K =I< g(t)|.

r—>0

Note that

1 Hr

M...(K *9)(t) = sup (,— / IK Age/>141)
r>0 T t-r

SUD (511; [If i(11%) Ig(y - 8)| ds dy)
r>0 —r 271'

|
/
\
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S 51-7,]: K((8) Egg/H lg(y-S)|dy) ds

3 5;(:K(s)MH1<g)<t—s)ds

= K*MHL(g)(t).

Hence we see that for CK; — a.e. e” E T,

Q(8“) S K * M111.(.¢1)(I)+IK * 9(t)I

< 2 K * MHL(g)(t).

The remainder Of the proof is the same as that of Theorem 4.6. ///

4.9 Lemma.

If a < 2 and h is the function defined by

 

= Z n1

7121

then

1 2—0

h(:1:) (1_ x) as arc—>1

PROOF.

If a = 1, very little analysis is required to Obtain the result. Therefore assume

1 79 a < 2 and define 9(2) = (-I—)2_a. Then 9(0) = 1 and, for all n 2 1,
1—1:

gI")(0)=(2—a)(3~—a)-~(n+1—~a). (4.8)
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Observe that §(n) > O for all n 2 0, and that h(n) > 0 for all n 2 1 (here §(n) and

h(n) denote the 12‘" Taylor series coefficients Of g and h). It suffices then, to show

that h(n) x “(12) as n——>oo. By (4.8), for n 2 1,

 

 

M _ n! nl’a

FIR) _ 9“”(0)

n! 711'“

Z (2—a)(3—a)---(n+1—a)

n1 n1‘0

= (1 — a) (4.9) 

(1—a)(1—a+1)(1—a+2)-~(1—a+n)’

Consider the following formula, due to Gauss [11, p. 312]:

11.1712

'Ithloz(z+1)~-(z+n)—P(z) (260).

 

Its application to (4.9) shows that

)

nIIIQOfl— = (1 —a)r(1—a).

(71)C
a
)

In particular, this limit exists and is non-zero; this shows that h(n) >< 9(n) as n—>oo.

///

In Theorem 3.1 Of [10], Shapiro gives a short direct proof that the condition

211‘ dt

—< oo 4.10

I, 1— |<p(e“)| I I

is both necessary and sufficient for a self map (0 of D to induce a Hilbert-Schmidt

composition operator on H2. When C, is Hilbert-Schmidt on H2, (4.10) evidently

implies that

m({e“= I<p(e“)l 2 £})

1 -€

 —>0, as §—> 1’. (4.11)

Shapiro’s proof that (4.10) is necessary for Hilbert-Schmidt composition Operators on
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H2 provides orientation for the proof of the following theorem concerning the Dirichlet

and Dirichlet-type spaces. Hansson’s Inequality (cited below), and Theorem 4.6 and

its corollary are important ingredients Of its proof. One will find it interesting to

compare (4.11), satisfied when C, is Hilbert-Schmidt on H2, with Corollary 4.11

concerning Hilbert-Schmidt composition Operators on D and D,,.

4.10 Theorem.

Fix a E (0,1] and define K = K1.0,. If the composition operator C, : D,,—2D, is

Hilbert-Schmidt (where D1 = D), then

[01 CK,2({eit3 |(,0(e“)| Z 5}) fir, < 00-

PROOF.

90" is in D,, for each n E N. By the Corollary of the proof of Theorem 4.6, for each

n E N there exists F, E L2(T) with (0"(eit) = K * F,(e”) (for CK; — a.e. e” E T).

By Lemma 4.5, there exists a constant B satisfying

BIISOnII 2 “Fit”;

for each It. By Hansson’s inequality [3, Theorem 2.4, p. 93], there exists a constant

A satisfying

AIIFnlli 2 f0” CK.2({€“= K . an|(e“) 2 A})d(A2)
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for n E N. Thus for each positive integer n,

AB ”WIS. I
V

: (01032“6‘“ IF"<e“)I 2 A}) do?)

2 610K266“: I¢(e“)l 2 Wham?)

= (102,269 = |<p(e”)| 2 (1)452")

= (010.2266: = l<p(e“)| 2 6})2n62"'1d(€)

I
V

[01 CK,2({€it : |(,0(e”)| 2 €}) 2,” 52nd“).

Since C, is Hilbert-Schmidt, we have

 

00 n 2

1P

2: I ,I”: < a,
71:1

thus summing over the preceding inequality gives

00 112

00 > ABE—II”)LID"

n=1 n

2 i Ii: (102266": |<p(e“)| 2 r}>2n(2"d(€)
11:1

1 , . °°

= 2 [0 CK.2({6”= 34631251) 2121-312" 4:.
n=1

A00 CK,2({€“Z K
* [Fn[(eit) Z A}) d(A2)

> (.1 0a,,“ = IK .. Fn(e“)l 2 AI) d(X")

(4.12)

The only possible singularity of the integrand in (4.12) occurs at C = 1, so Lemma 4.9

implies that

1

a. > [0 came“: I(o(e“)I2(}>(—,—_E,)2—_. (1g.
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This quickly yields the result stated in the theorem:

[01 CK,2({€“= I‘Meitll 2 €}) 6%)73 < 00-

///

4.11 Corollary.

Fix a 6 (0,1] and define K 2 K1_%. For a self map (,0 of the disk, define the

capacitary distribution function

W) i Cx,2({6i‘ = |90(e‘3)| Z t})-

If C.p : D—>D is Hilbert-Schmidt, then there exists a constant M satisfying

 

If C“, : Da—flDa is Hilbert-Schmidt and a 6 (0,1), then there exists a constant M

satisfying

PROOF.

By Theorem 4.10, there exists a number M1 satisfying

614
(fl—C)?“ for all t 6 [0,1). (4-13)M12 [gm
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If a = 1, then define h(() = log 1—_1_—C; if a 76 1, then define h(() = 53(1— 0““.

Then

1

”(O =W

Fix t E [0, 1). Inequality (4.13) and integration by parts shows that

M. 2 moms — [memo

= g<t>h<t>—g(0>h(0) + [oth(<)ldg(C)l-

Hence, M2 2 M1 + 9(0) [1(0) > g(t) h(t), and we obtain

M2 Z 9“) Mt)-

If a = 1, then this gives the desired result with M = M2. If a 79 1, then this gives

the desired result with M = (1 — a)M2. ///

Remark.

From Theorem 4.10 (or Corollary 4.11), and Lemma 4.2, we see that

Czog.l({e“= |<P(e“)| =1}) = 0

01'

Cl—a.1({8“= |<P(e“)| =1}) = 0

whenever C'.p : D—>’D or C2,, : Da—)Da is Hilbert-Schmidt, respectively.
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