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ABSTRACT

MULTI-DIMENSIONAL ESTIMATION OF THERMAL PROPERTIES

AND SURFACE HEAT FLUX USING EXPERIMENTAL DATA AND A

SEQUENTIAL GRADIENT METHOD

By

Kevin J Dowding

Inverse theory is an emerging field of study with application to a diverse range of

problems. Inverse thermal problems are the focus of this dissertation; specifically, the

parameter estimation problem and inverse heat conduction problem (H-ICP) are investi-

gated. Although one-dimensional inverse thermal problems have been widely investigated,

multi-dimensional problems are beginning to receive an increasing amount of attention.

One- and two-dimensional cases are addressed for both the noted inverse problems,

including an experimental application.

Parameter estimation techniques are applied to estimate the thermal properties of a

carbon-carbon composite from transient experiments. Properties are determined as a func-

tion of temperature and direction relative to the fiber orientation. The thermal conductivity

is assumed to be orthotropic, varying in the direction normal and parallel to the fibers; the

volumetric heat capacity is assumed isotropic. Thermal properties from room temperature

up to 500C are obtained. The thermal conductivity normal to the fiber is found to be less

than one-tenth of the thermal conductivity parallel to the fiber. Agreement within 7% is

demonstrate between independent one- and two-dimensional results.



A sequential-in-time implementation is proposed for a conjugate gradient method,

utilizing an adjoint equation approach, to solve the IHCP. Because the IHCP is generally

ill-posed, Tikhonov regularization is included to stabilize the solution. The proposed

sequential method benefits from the efficiency and on-line capabilities of a sequential

implementation, without requiring a priori information about the (unknown) surface heat

flux. Aspects of the sequential gradient method are discussed and examined. Several

promising features of the sequential gradient method are noted. Simulated one- and two-

dimensional test cases are presented to study the sequential implementation. Numerical

solutions are obtained using a finite difference procedure. Results indicate the sequential

implementation has accuracy comparable to a standard whole domain solution, but in cer-

tain cases requires significantly more computational time. Methods to improve the compu-

tational requirements, which make the method competitive, are presented.
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Chapter 1

INTRODUCTION

Study of direct (well-posed) problems has progressed for nearly two centuries. In heat

conduction, a direct problem represents a situation when the coefficients of the describing

differential equation, such as thermal conductivity, density, and specific heat, in addition

to the magnitude and location of internal energy generation (if it exist), are specified. The

geometry of the body, boundary conditions, and initial conditions are also specified. Then

given this specified information, the temperature at any point in the body is calculated.

Direct problems have been examined for nonlinear and multi-dimensional cases as well as

irregular geometries. Study of direct problems is widely described in the literature, includ-

ing issues of uniqueness and stability. Although analytical solution methods, Beck, et al.

(1992) and Ozisik (1993), are restricted to mainly linear problems with a regular geome-

try, many numerical methods are available for solving more complex direct problems,

Minkowycz et al. (1988).

Direct problems are typically in a class called well-posed problems because their

solutions exist, are unique, and depend continuously on the data (coefficients of describing

equation, internal energy generation, and boundary and initial conditions), Lamm (1993).

We can think of the direct problem as a cause-effect relationship. Given the cause (coeffi-

cients of describing equation, energy generation, and boundary and initial conditions), the
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effect (temperature) can be determined. In contrast to the direct problem, an inverse prob-

lem attempts to determine the cause for a given efiect; the inverse of the direct problem.

That is, given the effect (temperature), the cause (coefficients of describing equation,

energy generation, or boundary and initial conditions) is determined. Inverse problems are

typically ill-posed because they do not satisfy the criteria for a well-posed problem. Prob-

lems that do not satisfy the criteria for being well-posed were initially thought to be of lit-

tle practical and physical significance. As it turns out, inverse problems are not only

important, but are applicable to a wide range of practical problems.

Inverse thermal methods have numerous applications. Specific examples include: the

determination of the outer surface heat flux during re-entry of a space vehicle, estimating

surface conditions at the exhaust of a rocket or jet engine, determining conditions in the

cylinder of an internal combustion engine, analysis of quenching in material processing,

industrial process control, optimal design of experiments, estimating thermophysical

properties of materials, analysis of casting processes, etc. Two popular applications of

inverse methods are concerned with the estimation of surface conditions from temperature

measurements, typically called the inverse heat conduction problem (IHCP) and the esti-

mation of thermophysical properties or parameter estimation (PE). Both of these prob-

lems are addressed in this dissertation.

The study of inverse problems is relatively recent, particularly in comparison to the

study of the direct problem. The earliest (engineering) papers on the subject were

published near the beginning of the nineteen-sixties. Mathematicians were thinking about

such problems much earlier; in 1923 Hadamard formalized the concept of well-posed, and

hence ill-posed, Lamm (1993). Due to the recent nature of the field, there are few
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comprehensive books on the subject. Books by Kurpisz and Nowak (1995), Hensel

(1991), Beck et a1. (1985), and Beck and Arnold (1977) summarize and present various

methods and discuss practical applications of inverse methods. These aforementioned

books tend to be the broadest in coverage of inverse methods. Less comprehensive, but

more theoretical approaches are given in Alifanov et a1. (1996), Alifanov (1994), Ingham

and Yuan (1994), Murio (1993a), Baumeister (1987), Tikhonov and Arsenin (1977), and

Lawson (1974). These book present a more limited discussion, typically focusing on a

particular approach for inverse methods. They also tend to be more mathematically

rigorous. Additional references (most in Russian) are found in Kurpisz and Nowak (1995);

a relatively large Russian contingent is studying inverse problems.

As the importance and wide-spread application of inverse methods are realized, so too

have the demands on the complexity of the problems that can be solved. For twenty years

one-dimensional problems were the main subject of attention. Over the past decade multi-

dimensional problems have come under scrutiny, as well as inverse radiation problems and

most recently inverse convection problem. (Specific references are given in subsequent

chapters.) The demands on the complexity of the inverse problems that can be solved are

certainly increasing.

Multi-dimensional inverse problems are the main focus of this dissertation. In

particular, the estimation of coefficients in a describing partial differential equation and

the estimation of surface conditions from internal measurements for the two-dimensional

case are studied. These two problems were previously referred to as PE and IHCP,

respectively. The problems are closely related. In the former problem coefficients in the
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describing partial differential equation are estimated. While the latter problem estimates

boundary conditions, or functions, in the describing partial differential equation.

An additional complexity addressed in this dissertation is the experimental applica-

tion of the multi-dimensional inverse methods. Although the contingency studying inverse

problems continues to grow, a relatively small faction applies the methods to experimental

studies, and even a smaller number have addressed multi-dimensional experimental appli-

cations. This dissertation studies inverse methods to experimentally estimate thermal

properties and surface conditions.

Experiments with carbon-carbon composite are used to study one and two-dimen-

sional inverse applications. Carbon-carbon composite, which is known to have thermo-

physical properties that depend on direction within the material (Loh and Beck, 1991), is

studied for the PE problem. For the IHCP a sequential method is proposed. This method is

hybrid in nature, although not completely, in that a sequential implementation on time of

the conjugate gradient method using an adjoint equation approach is proposed to solve the

IHCP. The sequential method was previously proposed for use with the function specifica-

tion method (Beck et al., 1985). Although a sequential implementation of the gradient

method has been proposed by Reinhardt and Hao (1996a), a very limited study of its

implementation was addressed for the one-dimensional problem. This is the first known

application of the method to a multi-dimensional problem. Issues of implementation and

benefits of such a sequential method are also investigated and discussed in detail.

Specifically there two major objectives, both related to multi-dimensional inverse

problems, of this dissertation:

1. Measurement of thermal properties of a carbon-carbon composite from

experiments with one- and two-dimensional heat flow. Two components of
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thermal conductivity and the volumetric heat capacity are simultaneously

measured from transient temperature and heat flux measurements from

room temperature to 500° C.

2. Develop a conjugate gradient method using an adjoint equation approach

for solving the IHCP with a sequential-in-time concept. The sequential

concept is contrasted with the standard whole domain approach and varia-

tions of the sequential approach are proposed. Applications of these meth-

ods are studied with experimental data.

An outline of the dissertation is given. Carbon-carbon composite material and the

experimental aspects to estimate its thermophysical thermal properties are discussed in

Chapter 2 with the estimated one—dimensional properties presented. Chapter 3 gives the

two-dimensional thermal properties for the carbon-carbon and a comparison between the

one- and two-dimensional properties. A derivation of the conjugate gradient method with

adjoint equation for the IHCP is given in Chapter 4, including a sequential implementation

of the method. Chapters 5 and 6 investigate one- and two-dimensional applications of the

sequential method, respectively. A summary and conclusions are given in Chapter 7, and

recommended future work is suggested in Chapter 8.



Chapter 2

CARBON-CARBON THERMAL PROPERTIES: ONE-

DIMENSIONAL EXPERIMENTS

2-l.0 Introduction

Composite materials are defined as materials in which two or more constituent mate-

rials are combined to produce a resultant material that has different properties from the

individual constituents. Often the resulting properties (mechanical and/or thermal) of a

composite material are far better than that of the constituents, hence the advantage of the

composite materials. Carbon matrix carbon fiber composites are an important widely-used

family of such composite materials.

Carbon-carbon composites (CC) display the mechanical benefits of fiber-reinforced

materials, such as high strength-to-weight ratios, stiffness, and in-plane toughness, while

maintaining these mechanical properties at elevated temperatures. Carbon-carbon’s reten-

tion of mechanical properties at elevated temperatures (up to 2000 °C ) is unprecedented

(Savage, 1993). As a consequence, carbon-carbon is used in structural materials for space

vehicles, rocket nozzles, and aircraft brakes. Additionally, carbon-carbon is used for bio-

medical applications in hip replacement joints and for automotive applications in brakes,

clutches, engine blocks, and piston rings. Most automotive applications are associated

with motor sports, such as Formula I, or advanced applications. Presently, costs are too

prohibitive for commercial automotive applications.

6
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The mechanical and thermal properties of the carbon-carbon composite are quite var-

ied. Depending on the weave and precursor used for the fiber and the method used to form

the matrix, the resulting properties (thermal and mechanical) will vary, possibly orders of

magnitude. In general, however, the properties tend to be anisotropic, varying with direc-

tion in the material. The complexity of the anisotropy depends on the weave and form of

the fiber used. For some carbon-carbon materials (such as the one studied herein) it is suf-

ficient to describe the properties based on two principal components, one describing the

properties in the direction parallel to the fibers and a second component for the direction

normal to the fibers. This type of material is referred to as orthotropic. Fortunately in the

material studied, the fibers are oriented to align the fiber direction to coincide with the

planes of the outer surfaces.

Although carbon-carbon can maintain structural integrity at extreme temperatures, it

does so only in an inert atmosphere. At moderate temperatures (500 °C ) in an air atmo-

sphere oxidation will occur (Bines, 1993). To prevent oxidation and extend the tempera-

ture range the carbon-carbon requires protection. Typically, oxidation protection is

obtained by coating the surface with a form of silicon (silicon-carbide, SiC) through one

of many application processes (chemical vapor deposition (CVD), infiltration (CVI), or

reaction (CVR), or “pack coated”). After coating the surface, a film (tetraethylorthosili-

cate, TEOS) is applied to the oxidation protective coating to seal the coating. The TEOS

film significantly decreases relative weight loss (oxidation) through the porous SiC coat-

ing. Since the SiC has a relatively high thermal conductivity (Incropera and Dewitt, 1990)

and appreciable thickness, the properties of the carbon-carbon are even more complex
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with the oxidation protective coating. (For this investigation, the effects of the CC and SiC

are lumped and effective thermal properties are estimated.)

The carbon-carbon composite is known to be a thermally complex material. The sim-

plest description for the thermal properties of the material, beyond isotropic, are orthotro-

pic. Hence, multi-dimensional experiments are required to fully characterize the

properties. (A series of one-dimensional experiments would not verify the adequacy of the

orthotropic assumption.) Furthermore, with the number of different fiber/matrix variations

and manufacturing methods a wide range of thermal properties are possible (Savage,

1993). Consequently, methods, experimental and analysis, are required to measure the

multi-dimensional thermal properties for accurate modeling of the material. Parameter

estimations techniques permit the measurement of thermal properties from appropriate

experimental measurements. These methods are applied and studied to estimate the ortho-

tropic thermal conductivity and isotropic volumetric heat capacity of the carbon-carbon.

The remainder of this section gives a problem description and literature review.

Experimental aspects are discussed in Section 2-2.0. Parameter estimation methods for

analyzing the experiments are covered in Section 2-3.0. Section 2-4.0 presents and dis-

cusses the thermal properties estimated for the one-dimensional experiments. Experimen-

tal uncertainty is analyzed in Section 2—5.0.

2-1.l Problem Description

The development of composites materials is proceeding at an ever increasing rate.

Advanced materials are used in automotive, airplane, and aerospace applications. The

strength-to-weight ratio and survivability in harsh conditions are two main advantages of

these materials. However, the emergence of these materials requires experimental
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techniques and solution methods to determine their thermal properties. This chapter is

about the estimation of thermal properties from temperature and heat flux measurements

for a carbon-carbon composite material.

The investigated material is an advanced carbon matrix-carbon fiber material made by

Carbon-Carbon Advanced Technologies, Inc. of Fort Worth, Texas. There are six speci-

mens, 7.62cm square and 0.953cm thick. (Testing, presented herein, was performed on

two of these specimens.) The specimens are described (by the manufacturer) as CCl 2-D

composite made from fiberite K-641 fully densified, SiC pack coated with sealant.

Because the specimens were not flat as received, the specimens were ground to produce

flat surfaces.

2-1.2 Literature review

Several methods have been used to measure the thermal properties of composite

materials. These methods include: the guarded hot plate (Lee and Taylor, 1975), flash

method (Lee and Taylor, 1975, Taylor et al., 1985, and, Harris et al., 1982, and parameter

estimation (Beck and Osman, 1991 and Gamier et al., 1992). In addition, modeling of the

composite has been investigated to derive properties from constituent or laminate proper-

ties; see Kulkami and Brady (1997), Balageas and Luc (1986), Han and Cosner (1981),

and Chamis (1973). In comparison to the other methods, parameter estimation provides

interaction between the model (analysis) and the experiment. For example, in the flash

method a small sample is heated on one side for a very short duration, typically with a

laser, and the temperature is measured on the opposite side. Early methods to calculate the

thermal diffusivity (0:) used the relationship
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2

a=i=91fli (2-1)

PC ’ 1/2

where (1,2 is the time required for the temperature to reach one-half the maximum tem-

perature rise and l is the sample thickness. An advantage of this method is that it is rela—

tively simple. However, the method has certain disadvantages:

The (heat conduction) model equation is not necessarily satisfied nor checked

Typically few measurements are used

The properties k and pC cannot be obtained independently

P
P
’
P
?
‘

Generalizing these methods, i.e. multi—dimensional, more complex model, or temper-

ature dependent thermal properties, is difficult, if not impossible

5. Use of statistics to quantify estimates or improve the experiment is not easily done

Parameter estimation does not posses the limitations of this other method. Beck (1996)

discusses applying parameter estimation techniques to the flash diffusivity experiment.

Beck shows by observing parameter estimation results that the model can be refined to

improve the accuracy of the estimated thermal diffusivity. Not only by improving the anal-

ysis, but by using the analysis to better understand the experiment. Using equation (2—1) to

calculate the thermal diffusivity does not permit such an analysis or provide insight.

Hence, the more general method applying parameter estimation techniques is used in this

dissertation.

The theory of the techniques in this research using electric heaters for estimating the

thermal properties is detailed in the book Beck and Arnold (1977, see Chapter 7 in partic-

ular). A consequence of using electric heaters is that typically both thermal properties can

be estimated simultaneously. This research uses the electric heaters.
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Other methods with the known heat flux and transient measurements are described in

Beck, et al. (1991), Scott and Beck (1992a,b), and Beck and Osman (1991). The first of

these papers uses an internal heat flux transducer. The papers by Scott and Beck (1992a,

1992b) relate to composite materials during and after cure. A method to sequentially esti-

mate thermal properties by mathematically connecting a series of discrete experiments

with various temperature ranges is presented by Beck and Osman (1991). Loh (1991) has

given results for experimentally determining two components of the thermal conductivity

for a carbon-carbon composite. The papers by Gamier et a1. (1992,1993) describe a

method for estimating thermal properties without requiring the temperature sensor inside

the specimen(s). This was also attempted in the present work, but the method (at least for

one-dimensional cases) is only appropriate for materials with relatively low thermal con-

ductivities because of the contact conductance. The carbon-carbon composite material

does not have low values, however. Also relevant is the study of optimal experiments,

which are discussed in Chapter 8 of Beck and Arnold (1977) and in Taktak et a1. (1993).

2-2.0 Experimental Aspects

2-2.1 Experimental Description

A sketch of the experimental set-up used to estimate the thermal properties of the car-

bon-carbon material is shown in Figure 2-1. It consist of two nominally identical carbon-

carbon specimens (7.62cm x 7.62cm x 0.914cm) and ceramic insulations (7.62cm x

7.62cm x 2.54cm, Zircar Products Inc., Florida, NY) with a mica heater assembly (Ther-

mal Circuits, Inc., Salem, MA., (2(T = 33 Ohms ) located between the identical
room)

halves. Five thermocouples (Type E, 0.254mm nominal wire diameter) are embedded on
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ceramic insulation
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Figure 2-1 Schematic of experimental set—up used for estimating thermal properties of

carbon-carbon composite. For one-dimensional experiments all heaters are activated.
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the surface of each carbon-carbon specimen at the heater/specimen interface. The thermo-

couples (insulation removed) are attached with electrically insulating high temperature

cement into grooves (0.38 mm by 0.46 mm) that extend the length of the specimen. Two

thermocouples are located at each interface of the carbon-carbon specimen and the

ceramic insulation. The entire set-up is mounted between two 3.18 mm thick aluminum

plates that are connected with threaded rods and hold the numerous layers firmly in place;

the apparatus is placed in a furnace, which allows variation of the initial temperature. Fur-

ther details of the experimental procedures are discussed in Ulbrich et a1. (1993).

The experiments are conducted and processed using a 12-bit data acquisition system

(National Instruments) with a 486 PC. The system provides accurate data acquisition with

minimum sampling intervals in the usec range. Two eight-channel data acquisition boards

are linked providing sixteen channels of data acquisition. The system controls and

acquires the power (voltage and current) delivered to the heaters and acquires the therrno-

couple voltages. The current is acquired by measuring the voltage across a known resis-

tance. The heat flux is calculated from the power measurements assuming the heating is

uniform over the heating area (7.62 cm x 7.62 cm) and divides equally to the symmetric

experimental halves.

The measured temperatures are averaged on opposite sides of the heater assembly to

determine the temperature at each location. The location of the thermocouples are shown

in Figure 2-1 and given in Table 2-1. The sensors that are embedded in the specimen are

assumed to measure the temperature at the surface of the specimen. Since thermal conduc-

tivity normal to the fiber is much greater than the conductivity of the insulation

(k; cc » kins) , small temperature gradients near the specimen / insulation interface. The
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Table 2-1 Sensor locations in experimental apparatus

 

Location cm (in)

 

Sensor Sensor

Location Number x y

A 3,8 0.89 (.35) 0

B 4,9 1.91 (.75) 0

C 5,10 3.18 (1.25) 0

D 6,11 4.45 (1.75) O

E 7,12 6.73 (2.65) 0

F 1,13 1.27 (0.5) 0.91 (0.36) (Ly)

G 2,14 6.35 (2.5) 0.91 (0.36) (Ly)

non-embedded sensors are assumed to measure the temperature at the backside of the car-

bon-carbon specimen.

The thermal experimental model for the one-dimensional case is shown in Figure

2-2. All outer surfaces are assumed to be insulated, except for the surface where the

energy is introduced by the heater. The energy to the heater is assumed to divide equally

between the two halves and emanate from the middle of the heater assembly

(y = —0.042 cm). The adequacy of the assumed insulated outer surfaces for the model can

be verified by a comparison of heat losses from natural convection with the anticipated

applied heat flux from the heater assembly. Since a temperature rise of 20 to 25°C above

the ambient is expected for a typical experiment, the heat loss is mainly due to natural con-

vection (h z 4W/m7-C). These losses are negligible (qwnv z 100W/m2) in comparison

to the applied heat flux, which was a minimum of 7800W/m2 for the one-dimensional

testing. Hence, insulated boundary conditions on the outer surfaces are applicable.



 

 

q = 0

11"

1’2 mica ceramic insulation L-
heater

ms

assembly

11

. 1,2,13,14. 1

y composrte specrmen Ly

3,4,5,6,7,8,9,10,11,12

'l [A] III ll’ll'l
 

f/I’I I 1

11/111111it1111111111111111111111117111'1111'1111' 1111111111111 f

L

 

q(t)                               
 

mica

Figure 2-2 Heat transfer model for one-dimensional experiment
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The thermal model is mathematically represented as three coupled problems. In

the analysis of a particular experiment the thermal properties are assumed constant in the

model. Temperature dependence of the thermal properties is developed by combining

experiments over the temperature range. The first problem is for the mica heater/contact

conductance

2

Tmi 8T ic

Strung; C0 = (prnicagt'm a’_Lmica<y<0’t>O (2'2)

8T .

42...?!“ = qm (2-3.,
y y = 0

Tmica(y,0) = To, —LmicaSySO (2-3b)

The second problem is for the carbon-carbon composite

ke 66— Ce 8T“ 0 L t>O 24
y,ch _(p )CC-g; ’ <y< y’ (')

ch(y,0) = To , OSySL), (2-5)

The third problem represents the insulation material

e ins e aTins

kins-3:23 = (901,255; .Ly<y<Ly+Lins,t>0 (2-6)

aTins
_a_, = 0 (2-7a)

} r=Lm+A

Tim.(y, 0) = To, L), S y _<. Ly + Li,” (2-7b)

The problems are coupled through interface conditions that assume perfect contact

ke arm,m(o,z)_ e BTCC(O,t)

mica av _ .y, CC ay 9
(2'83)
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Tmica(0’ t) = ch(0’ t) (2-8b)

6T," (L ,t) aT (L ,t)

kins Say y = k; cc CCay)’ (2-8C)

Tins(Ly’ t) = ch(Ly’ I) (2-8d)

Although perfect contact is not reasonable between the mica heater and carbon-carbon,

effective properties are used to represent the mica heater and contact conductance due to

imperfect contact. Effective thermal conductivity is defined

8T
ke : —/— -

q a)? (2 9)

_ . T . .

where q rs the average heat flux and 9— 13 the average temperature gradient. Both aver-

3y

ages are in the direction normal to the heat flow. The effective volumetric heat capacity is

defined

(pC)"’ = ‘l/IpCdv (2-10)

v

where V is the volume. By experimentally measuring effective properties for the mica

heater assembly and insulation the contact conductance due to imperfect contact is

accounted for in the model. In addition, the effective properties of the mica heater account

for the effects of other materials in the heater and the cement used to install the thermo-

couples in grooves in the carbon-carbon composite. Modeling the effects of several mate-

rials with an effective property is much easier (and in most cases more accurate) then

accounting for all effects individually. Effective properties of the carbon-carbon represent

the non-homogenous construction of the material. To protect from oxidation a thin layer

(approximately 10% of the overall thickness) of silicon-carbide protects the outer surfaces
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of carbon-carbon. Consequently, effective properties that represent the carbon-carbon and

silicon-carbide are estimated.

Including the mica heater and ceramic insulation in the model (Figure 2-2)

requires the thermal properties of the materials to be known, or also estimated, to deter-

mine the properties of the carbon-carbon specimen. Neglecting the mica heater in the

model is not appropriate because the contact conductance results in a large temperature

drop across the heater. If the heater is neglected, the carbon-carbon properties will incor-

rectly reflect this effect. Also, including the heat loss to the insulation, instead of assuming

a perfect insulated condition (at the specimen/insulation interface), increases the accuracy

of the properties estimated for the carbon-carbon. If known (tabulated or published) prop-

erties are used for these materials (mica and insulation), several problems arise. First, ther-

mal properties are typically not known very accurately. Second, contact conductance

between adjacent layers is typically not negligible and must be considered. Third, the

ceramic insulation was treated by spraying with a ridigizing material, possibly changing

its thermal properties. By experimentally estimating effective properties of these materi-

als, these problems are less influential in the estimated properties of the carbon-carbon.

This approach requires additional experimental work, however. The experimental

conditions (length of experiment and heating duration) to determine the properties of the

mica and insulation are quite different from the conditions necessary to estimate the prop-

erties of the carbon-carbon. A separate series of tests are performed, one set with the car-

bon-carbon specimen removed, to determine the properties of the insulation and mica

heater assembly. These are effective properties, which will account for any contact con-

ductance due to imperfect contact between the different material layers.
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With the separate series of experiments the effective thermal properties of the ceramic

insulation and mica heater assembly were determined. However, when the set-up is recon-

figured to test the carbon-carbon composite, the contact conductance may vary. Therefore,

for each experiment to determine the properties of the carbon-carbon composite, a short

duration experiment is conducted to characterize the effective thermal properties of the

mica heater and contact conductance. The short duration experiment is conducted such

that the thermal properties of the mica heater, including the contact resistance, are impor-

tant in the thermal model, but the properties of the carbon-carbon are not important.

Importance of the materials in the model is quantified by the sensitivity coefficients (dis-

cussed in Section 23.0). A duration is selected that is sensitive to the properties of the

mica, but relatively insensitive to the properties of the properties of the carbon-carbon.

For a typical set of experiments to determine the properties of the carbon-carbon

composite, the furnace is set at a given temperature and the experimental apparatus is

allowed to reach a uniform temperature (usually this required several hours). A short dura-

tion experiment (heating for approximately 2 seconds) is run first, which is used to esti-

mate the effective properties of the mica heater. After allowing the set-up to stabilize at a

uniform temperature, a second experiment is run. The second experiment (heating for

approximately 20 seconds) is longer in duration and is used to estimate the properties of

the carbon-carbon composite specimen.

2-2.2 Experimental Design

During the initial stages of this research a different heater design was used. The heater

was constructed of a Kapton material with resistance temperature sensors (RTD) integral

in the heater assembly. This approach had the advantage of being non-intrusive and
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required no machining to install thermocouples. A major difficultly with this design was

that the magnitude of the contact conductance resulted in the one-dimensional thermal

resistance of the heater/contact conductance being on the same order of magnitude as the

composite specimen in the thermal model

L L
y z kapton (2_11)

e e

k J” CC kkapton

where kzapton is the effective thermal conductivity of the kapton heater/contact conduc-

tance and Lkapmn is its thickness. Hence, the measured RTD temperature depends as

much on the thermal properties specified for the heater/contact conductance as it does on

the thermal properties specified for the composite specimen. (Sensitivity coefficients, dis-

cussed in Section 2-3.0, for the two materials would be comparable in magnitude.) In gen-

era], when other materials are present in the model, their effect on the temperature should

be small in comparison to the material for which the properties are sought. For this case,

the sensitivity coefficients (discussed below) for k: C should be larger, compared to the
c

sensitivity coefficients for kzapwn . To improve the accuracy and reduce the dependence on

the thermal properties of the heater/contact conductance, the sensors were embedded in

the surface of the specimen.

The choice of the boundary condition on the backside of the specimen is dependent

on the thermal conductivity of the test specimen. For a test specimen with a relatively high

thermal conductivity (which this carbon-carbon does have) it is more practical to simulate

an insulation condition. An insulating boundary condition is less sensitive to the contact

conductance at this surface. However, for a relatively low thermal conductivity material it

is more practical to simulate a temperature boundary condition. For a test specimen with a
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relatively low thermal conductivity, the boundary temperature is again less sensitive to the

contact conductance. Based on optimality criteria for the one-dimensional case with an

applied surface heat flux, a specified temperature boundary condition on the back surface

is an optimal experiment for estimating thermal conductivity. An insulating condition is

optimal for estimating the volumetric heat capacity, Beck and Arnold (1977).

An approximate insulation boundary condition on the back of the specimen is chosen,

instead of a temperature boundary condition (which was initially used), to minimize the

sensitivity to the contact conductance at this location. With the insulation boundary condi-

tion, the heat flux (and temperature gradients) at the specimen/insulation interface is small

and the temperature is not sensitive to the contact conductance or location for the non-

embedded sensors. A temperature boundary condition, however, has a larger heat flux at

the boundary and the temperature (at the sensor) is very sensitive to the magnitude of the

contact conductance and the specified location for the sensors at the interface.

2-3.0 Analysis Procedures

The techniques to estimate thermal properties are detailed in a book by Beck and

Arnold (1977). The basic process involves minimizing a sum-of-squares function

5 = (Y—T)TW(Y—T)+(u—b)TU(u—b) (2-12)

where Y and T are vectors of the measured and calculated temperatures and W is a

weighting matrix (typically the identity matrix). The last term in equation (2-12) serves as

regularization or allows for'the inclusion of prior information about the thermal properties.

It contains the difference between the prior information u and present estimates b with a

symmetric weighting matrix U. To determine the thermal properties the function S is
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minimized with respect to the thermal properties, i.e., 171 = (pC):c, b2 = k; cc, and

b3 = ke This is accomplished by setting the first derivative of S with respect to each
x,cc'

parameter equal to zero, and solving for the estimated parameters (3). The resulting

expression for the estimated thermal properties (Beck and Arnold, equation 7.4.6, 1977) is

x(k+l) _ A k A A

b b( )+ P(k)[XTW(Y — T) + U(u — b(k))] (2-13)

P“) = [XTWX+ U1“ (2-14)

The superscript (k) defines the iteration number, iteration is required even for the linear

conduction problem, due to the non-linear nature of the estimation problem; the sensitivity

coefficients X depend on the parameters (thermal properties). The columns of the sensi-

tivity matrix are the first derivative of temperature (for each time and sensor location) with

respect to the parameters

X = [X19], sz, . . . ,Xbp] (2'15)

.. 61
" ab.

1

Xb (2-16)

The sensitivity coefficients can provide considerable insight to the estimation problem and

aid in the design of the experiment for optimum accuracy in the estimates (Beck and

Arnold, Chapter 8, 1977). One criteria for an “optimal” experiment, valid for additive,

zero mean normal errors in Y, and errorless independent variables, is to maximize

A = IXTXI (2-17)

This criteria is appropriate because it corresponds to minimizing the volume of the

confidence region for the estimated parameters. By studying the experimental design prior

to conducting experiments, such that equation (2-17) is maximized, the maximum

information is available from an experiment. In addition to the criteria proposed in
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equation (2-17), a constraint requiring a fixed number of observations and/or the same

temperature rise, may be required to provide consistency in comparing experimental

designs with multiple sensors. Taktak et al., (1993) discuss the design of an experiment to

estimate thermal properties of composites with relatively low thermal conductivity.

Additional investigations on experimental design concerning the optimal placement of

sensors (Fadale et al., 1995a) and the design of experiments using uncertainty information

(Fadale et al., 1995b and Emery and Fadale, 1996) use the Fisher information matrix.

The sensitivity matrix and the temperatures are linearized about the thermal proper-

ties from the previous iteration in equation (2-13) and (2-14). Iteration continues until con-

kl Ak ak(+)_b() 3 8b“,
vergence of the estimated parameters is reached, as defined by, |5

where e is a small number to quantify convergence, such as 8 = 0.0001 .

These solution procedures are implemented with the computer program PROPlD

to estimate the thermal properties. PROPID provides a means to estimate thermal proper-

ties of multi-layer bodies from appropriate measurements. Thermal conductivity and volu-

metric heat capacity may be determined simultaneously and for more than one material, if

desired. Layers of different materials may also be lumped and effective thermal properties

determined. Gamier et a1. (1992) performed experiments on materials with well-known

published thermal properties to support the accuracy of PROPID.

2-4.0 Results and Discussion

Three types of experiments were conducted. The first type removed the carbon-car-

bon from apparatus and replaced it with a 1.25 cm thick insulation. These type-one exper-

iments estimated effective thermal properties of the mica heater and insulation.
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Experiments of type-two and type-three replaced the carbon-carbon specimen in the

experiment. Type-two experiments heated for a short duration, providing information

about the effective properties of the mica heater. Type-three experiments estimate the

properties of the carbon-carbon. Results from experiments of type-one and type-two are

discussed in Section 2-4.1 and type-three is discussed in Section 2-4.2.

The reason that three types of experiments were used, is to quantify three separate,

quite different, effects. Type-one experiments, with the carbon-carbon composite

removed, provide effective thermal properties of the insulation. Experiment type-two was

relatively short in duration, so that temperature is mainly influenced by the properties of

mica heater, contact conductance, and associate materials used to install thermocouples.

Type-three experiments were longer in duration and characterized the properties of the

carbon-carbon composite. Each of the three experiments focuses on an individual aspect

of the thermal model and has minimal effects from other material’s thermal properties.

2-4.1 Effective Properties for Mica Heater and Insulation

An independent set of experiments was conducted to determine the effective thermal

properties of the insulation material (Ulbrich, 1993). These tests used a set-up similar to

Figure 2-1, except that the carbon-carbon specimen was replaced by a 1.25 cm-thick piece

of insulation. The goal of these experiments was to estimate the thermal properties of the

insulation. The results are given in Table 2-2. The values estimated for the insulation are

considerably higher than the values reported by the manufacturer. This is not a surprising

outcome. Manufacturers do not typically measure thermal properties. Also, this material

was treated with a solution to make it more structurally strong. The effective properties for

the mica heater were also measured. Because these values are sensitivity to the contact
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Table 2-2 Thermal properties of the ceramic insulation

 

 

 

 

 

 

 

    

Present Investigation Manufacturer

Temperature kins (p C)fnsx 10-6 kins

°C W/(m°C) J/(m3°C) W/(m°C)

40 .088 .419

175 .093 .570

200 .055

600 .1 10  
 

Table 2-3 Effective thermal properties for the mica heater assembly

 

 

 

 

 

 

 

 

 

 

      

Initial . kin-ca (pC)fm.wx10"6

Experimental Temp 0 3

Case (°C) (°C) W/(m°C) J/(m oC)

1010@3(),1 30 0.066 0.142 +/- 0.002 2.030

1010@41_1 41 0.070 0.131 +/- 0.002 2.030

1007@134,1 134 0.067 0.102 +/- 0.001 2.030

1007@143,1 143 0.072 0.1 10 +/- 0.002 2.030

1008@180,1 180 0.057 0.125 +/- 0.001 2.030

1012@195,1 195 0.053 0.123 +/- 0.001 2.030

1008@245.1 245 0.070 0.1 14 +/- 0.001 2.030

1013@254,1 254 0.057 0.123 +/- 0.002 2.030

1008@295,1 295 0.058 0.123 +/- 0.002 2.030
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conductance they were measured again after the apparatus was re-assembled with the car-

bon-carbon specimen. These experiments were referred to as type-one experiments.

Having established the properties of the insulation, type-two experiments were con-

ducted to determine the effective properties of the mica heater. It was found that estimat-

ing the thermal conductivity and volumetric heat capacity simultaneously is not possible

due to correlated sensitivity coefficients (see Beck and Arnold, 1977). Therefore, the volu-

metric heat capacity of the mica heater is set at the value estimated during the experiments

to determine the properties of the ceramic insulation (type-one). The effective thermal

conductivity of the mica heater is estimated. The thermal conductivity is estimated

because it is most influenced by the contact conductance, which may have changed from

the previous estimates.

The effective thermal conductivity estimated for the mica heater assembly, assuming

(pC);,-ca = 2.0><106 J/m3C, demonstrated no specific trend with temperature over the

range (30—295)°C . See Table 2-3. The largest value is ke (30°C) 2 0.14 W/mC
mica

e

mica
and the smallest is k (134°) = 0.10 W/mC . For temperatures up to 295°C the ther-

mal conductivity of the mica heater is estimated at each temperature. After which, the

magnitudes of these thermal properties were shown to minimally affect the outcome of the

estimation for the carbon-carbon properties. A variation of 50% in the thermal properties

specified for the mica heater results in variations in the estimated properties of the carbon-

carbon that are within the magnitude of the confidence intervals (discussed below). For

temperatures greater than 295°C , the thermal conductivity estimate of the mica heater at

295°C is used in the analysis. The fact that it is difficutlt to estimate the thermal proper-

ties of the mica heater suggests that these properties are not significant in the estimation of
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Table 2-4 Thermal properties estimated for the carbon-carbon composite from

one-dimensional experiments and analysis

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

. . e

Experimental 113:2: 6 ky’ CC ( p C):c3x 10-6

Case (°C) (°C) W/(m°C) J/(m °C)

1010#30.1 31 0.128 3.40 +/- 0.05 1.42 +/- 0.01

1010#41.1 42 0.114 3.48 +/- 0.04 1.47 +/- 0.01

1012#94.1 95 0.161 3.85 +/— 0.07 1.74 +/- 0.02

1012#108.l 109 0.161 3.93 +/- 0.07 1.81 +/- 0.02

1011#143.l 143 0.121 4.12 +/- 0.07 1.90 +/- 0.02

1011#159.1 159 0.089 4.22 +/- 0.06 2.08 +/- 0.01

1012#195.l 195 0.091 4.35 +/- 0.06 2.20 +/- 0.02

1013#259.1 259 0.075 4.60 +/- 0.04 2.47 +/- 0.02

1008#295.l 295 0.090 4.76 +/- 0.05 2.52 +/- 0.02

1013#304.1 304 0.103 4.74 +/— 0.05 2.58 +/- 0.02

1023#403.2 403 0.100 4.86 +/- 0.05 2.76 +/- 0.02

1023#455.2 455 0.082 4.93 +/- 0.03 2.88 +/- 0.02

1023#508.2 508 0.096 4.99 +/- 0.05 2.97 +/- 0.02

1023#571.2 571 0.278 3.93 +/- 0.23 3.06 +/— 0.10

1023#623.2 623 0.205 3.73 +/- 0.15 3.23 +/- 0.07
  

the carbon-carbon properties (or thermal model). This is a desirable characteristic for

additional materials (i.e. mica heater and ceramic insulation) in the experimental model. A

similar insensitivity is demonstrated for the thermal properties of the insulation.

2-4.2 Effective Properties of Carbon-Carbon

The properties estimated for the carbon-carbon composite are given in Table 2-4. The

first column identifies the experimental case and the second column the initial
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temperature. The third column is the estimated standard deviation of the analysis, which is

defined as

1 I .I 2 0.5

O = [W2 2 (Yij_ 7.0)] (2-18)

1 = l j = l

where Nt is the total number measurements (from both sensor locations, Nt = I + J) and

Np is the number of estimated parameters. Variables I and J are the number of measure-

ment times and number of sensors, respectively. The last two columns present the esti-

mated properties with the associated confidence interval (calculated by PROPID and

discussed below).

Insight about the estimated properties is gained by plotting the properties as a func-

tion of temperature; Figure 2-3 gives a plot of the one-dimensional properties of the car-

bon-carbon composite as a function of the temperature, with the estimated confidence

intervals. Note that the analysis assumes that the thermal properties were constant during

an experiment, but varied between experiments; the initial temperature of the experiment

is used to plot the properties. Using an F-test (Beck and Arnold, chapter 6, 1977) it is con-

cluded that a second order (in temperature) model adequately represents the results. The

equations determined for the properties with a least squares fit are

  

  

k" 342 338 T40 186 T-TO 2 9= . . — . 21
y, CC + (T3 ‘ T0) (T3 _ To) ( )

C" 141 265 T40 111T—TO 2 106 0(P )CC — [. + . (T3—TO)_ . (T3—TOHX (22)

where T0 = 31°C and T3 = 508°C are the minimum and maximum temperatures. By

normalizing the temperature in equation (2-19) and (2-20) the coefficients in the

describing equations have units equivalent to the respective thermal properties. A physical



appreciation of the magnitudes is more easily realized in this form. The relationships are

also shown in Figure 2-3. The thermal conductivities determined from the last two

experiments are not used in the least squares analysis. The validity of the thermal

properties estimated at temperatures of 571°C and 623°C is uncertain. The residuals and

confidence intervals for these two cases are relatively large. When the set-up was

disassembled after these experiments, the outer coating of the specimen (which protects

from oxidation) had separated from the inner composite material. Because the estimated

thermal conductivities are lower it is quite possible that the failure of the specimen
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occurred just before or during these experiments.
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The details of the parameter estimation are quite similar at different initial tempera-

tures. For this reason, and for brevity, only one case (1023#508.2), at an initial tempera-

ture of 508°C , is discussed. The experimental data for this case are presented in Figure 2-

4. The temperatures shown represent the average of all thermocouples at the referenced

locations. The results closely approximate the case of a finite slab heated with a constant

heat flux at the surface and insulated at the backside. Initially, the temperature at the

heated surface increases rapidly, while the backside temperature remains constant. Later

both the temperatures at the heated surface and backside increase linearly with time until

the power to the heater is turned off. Then the temperatures at both surfaces tend to

approach the same temperature, demonstrating that there is little heat loss to the insulation

(even though it is considered in the analysis).
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In addition to estimating the thermal properties, PROPlD provides some means to

quantify the accuracy of the estimates. The previously discussed estimated standard devia-

tion, equation (2-15), provides an indication of how well the calculated match the mea-

sured temperatures. The magnitude of ("I can be compared to the temperature rise of the

experiment, which is approximately 15°C . Except for the last two experiments, 6 is

within 1% of the temperature rise. Also given with the estimates of the parameters is a

confidence interval (Beck and Arnold, Chapter 6, 1977). The calculation of the confidence

intervals has associated assumptions. First, the model for the experiment is correct. Sec-

ond, the dominant errors in the analysis are in the temperature measurements, modeled

with a first order auto-regressive model, and the errors are not biased (Beck and Arnold,

1977).

Other quantities can be observed to demonstrate the accuracy of the estimated proper-

ties. These include the sequential estimates of the properties, the residuals, and the sensi-

tivity coefficients. The quantities are important to provide insight to the estimation, as well

as insight to the experiment. Observing them can help improve the experiment and support

the accuracy of the estimated properties. Each is discussed below.

The sequential estimates demonstrate how the estimated properties vary as additional

measurements are considered. The analysis assumes that the estimates are linearized about

the converged parameter values using all experimental data. Figure 2-5 shows the sequen-

tial estimates for this case. The sequentially estimated property, at time I, , represents the

outcome if only data up to that time is used in the analysis (and linearized about the con-

verged property values). In other words, if the data is analyzed by adding one data pair,

Y( y = 0) and Y(y = Ly) , at each time, it shows how the estimated properties change as
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Figure 2-5 Sequential parameter estimates for one-dimensional case 1023#5082

an additional data pair is added to the analysis. Initially the sequential estimates vary

because there is not enough information to determine the parameters. However, as more

data is considered, the property estimates approach constants and the linearization approx—

imation is accurate. Meaning, if the experiment (or analysis) is ended at 15 seconds, the

estimated properties would not differ significantly from the properties at 30 seconds. In

general, for a good estimation, the sequential estimates converge to a constant and are

fairly steady with time. For times greater than fifteen seconds, the sequential estimates of

k; CC and (pC):c vary 0.9 and 3.5%, respectively. These values can be compared with the

confidence regions predicted in Table 2-4 for this case of 1% and 0.67%, respectively.

These sequential results for (pC):c at 508°C are not as accurate as the confidence inter-

val in Table 2.4. Uncertainty in the other experimental measurements account for the dif-

ference; the confidence intervals include error in the temperature measurements only.
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The residuals are related to the estimated standard deviation and are calculated using

and represent the difference between the measured and calculated temperature for a partic-

ular time (ti) and sensor location (j) . The estimated standard deviation gives an indica-

tion of the magnitude of the residuals; the signs and magnitudes of the residuals can

provide considerable insight. Figure 2-6 presents the residuals for this case. The magni-

tude of the residuals is approximately 0.1°C . The residuals are correlated; most of the

residuals are positive during the heating. This outcome may signify that some inconsis-

tency exists in the model or that a small effect was omitted. However, the magnitudes of

these residuals are small, within 1% of the temperature rise during the experiment, indicat-

ing that errors in the model are minimal.
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Figure 2-6 Temperature residuals for one-dimensional case 1023#508.2
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Sensitivity coefficients are the first derivative of the temperature with respect to the

parameters, thermal conductivity and volumetric heat capacity. They are indicators of how

well designed the experiment is. In general, the sensitivity coefficients are desired to be

large and uncorrelated (linearly independent). A sense of the magnitude of the sensitivity

coefficients is gained through normalizing the sensitivity coefficients by multiplying by

parameters, resulting in units of temperature for the normalized sensitivity coefficients. A

comparison is then possible with the temperature rise of the experiment. For a well

designed experiment, with boundary conditions similar to the case investigated in this

study, the sum of the normalized sensitivity coefficients for the thermal conductivity and

volumetric heat capacity is nearly equal to the negative of the temperature rise (equal only

if perfectly insulated at y = Ly ). Sensitivity coefficients are useful in the design of exper-

iments, i.e., determining the heating and experiment duration, location of sensors, heating

area (for two-dimensional case), etc. A study of the sensitivity coefficients, prior to per-

forming experiments, can lead to better experiment designs.

Figure 2-7 shows the sensitivity coefficients for the representative experimental case

(1023#508.2). The sensitivity to the thermal conductivity and volumetric heat capacity are

shown for both sensor locations. The magnitudes are about equal to the temperature rises,

which is a good feature. Notice that the sensitivity coefficients are correlated (linearly

dependent) for times up to 10 seconds for the sensor at the surface of the specimen

(y = 0). This is similar to the situation that resulted in only being able to estimate one

parameter for the effective properties of the mica heater in the analysis of the short dura-

tion experiment. In this case, however, information is available from another sensor

. . . . . e e -

(y = Ly) where the normallzed sens1t1vrty coefficrents for k“ C and (pC)CC have qurte
C
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different shapes (i.e., not correlated). Even though the (pC);c normalized sensitivity

coefficient at (y = 0) and L), are both negative and decrease with time, the k; CC normal-

ized sensitivity coefficients are different shapes with one decreasing (y = 0) and the

(y = Ly) values being positive. The difference in the k; cc and (pC):c normalized sensi-

tivity coefficients at (y = 0) and Ly is more pronounced as time increases and also after

22 seconds when the power to the heater is turned off. These sensitivity coefficients for

k; cc and (pC):c show that the experiment is well-designed because 1) the sensitivity

. e . . e .

coefficrents for ky, C are qurte different from those for (pC)cc and 2) the normalized
C

magnitudes are large (relative to the temperature rise of the experiment).
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2-5.0 Experimental Uncertainty

The estimated thermal properties are presented with confidence intervals indicating

the error in the estimates due to errors in temperature measurements. Only errors in the

temperature measurements are considered in such an analysis. Errors in other experimen-

tal measurements are not included in the confidence interval. Several other experimental

aspects influence the estimated thermal properties. These other experimental issues are not

the same nature as the errors in temperature. They are systematic errors and not random in

nature. The uncertainty in the estimate parameters (5), based on the uncertainty in the

experimental parameters, is calculated as

.. . A 1/2

~ ab 2 ab 2 3b 2
db = —d + —d + . . . —d 322

{(5.21) 0.. .2) +0., ..1 < >

where z = [z], z], . . . tsz are experimentally measured parameters. In the experiment to

estimate the thermal properties of the carbon-carbon, uncertainties in the measured heat

flux, location (depth) of the thermocouple, thickness of the carbon-carbon specimen,

effective thermal properties of the mica heater, and effective thermal properties of the

insulating material are considered. An experimental uncertainty in the thicknesses of the

mica heat and insulation are not included. This is because effective thermal properties

were experimentally estimated for these materials, implicit in the effective thermal proper-

ties is the prescribed thickness of the material. Consequently, uncertainty in the material

properties includes an uncertainty in the thickness. Experimental uncertainty for each

experimental parameter and its contribution to the total uncertainty in the estimated

parameters are given in Table 2-5.Uncertainty in the measured heat flux was computed as
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Table 2-5 Experimental uncertainty for the two-dimensional experiments

 

 

 

 

 

 

 

 

 

  
     
 

P3328“ Uncertainty Contribution (g—Edz)

(pC):Cx10"° 14,“.

z dz

J/(m3°C) WI<m°C>

q 125 W/m2 0.033 0.049

L), 0.05 mm 0.016 0.027

y, 0.025 mm 0.014 0.015

kg,“ 20% 0.04 0.0

(pC)f,,,.ca 20% 0.06 0.06

kfm 20% 0.0 0.0

(pC)fm 20% 0.0 0.0

TOTAL 0.082 0.083

1

dq = {(gg-d/ijz + (3%;de +(%1d1j}2 (3-23)

where uncertainties in measurements of area (A), voltage (V), and current (1p) are

included.

There is not a dominant term in the uncertainty analysis. All experimental conditions

considered are of the same order. Overall, the uncertainty due to other experimental mea-

surements are excellent. The uncertainty represents a maximum of 2.4% in k; CC and

5.8% in (pC):C for the experiment at the lowest temperature and 1.6% and 2.8%, respec-

tively at the highest temperature. These values assume the uncertainties do not vary with

temperature, which is reasonable for these experiments.



Chapter 3

CARBON-CARBON THERMAL PROPERTIES: TWO-

DIMENSIONAL EXPERIMENTS

3-1.0 Introduction

In this chapter two—dimensional experiments are presented to estimate two compo-

nents of the thermal conductivity and the volumetric heat capacity for the carbon-carbon

composite. As in the previous chapter, effective thermal properties are estimated that rep-

resent the carbon matrix carbon fiber composite with a silicon-carbide protective coating.

The properties, k; CC, (pC):C, determined from the one-dimensional experiments are not

imposed on the two-dimensional solution. All the thermal properties are estimated simul-

taneously for the two-dimensional case. This permits a comparison between the results

from one-dimensional and two-dimensional experiments to demonstrate the consistency

of the methods.

3-l.1 Motivation

Interest in the solution of multi-dimensional inverse problems has gained momentum,

particularly in recent years. As the importance and wide-spread application of inverse

methods are realized, so too have the demands on the complexity of the problems that can

be solved. Such is the case for the application of inverse methods to the field of heat

transfer. Two examples are the estimation of the thermal properties of a material and the

38
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determination of the heat flux at a boundary, both from experimental measurements. The

latter problem is the inverse heat conduction problem (IHCP), which has been the main

focus of research on multi-dimensional inverse problems in heat transfer. The application

of inverse methods to evaluate the IHCP or estimate thermal properties are closely related,

however.

A variety of methods which are used to solve the one-dimensional IHCP, have been

extended to the multi-dimensional case. Osman and Beck (1990), Hsu et al. (1992) and

Bass (1980) use methods based on the function specification method (Beck, et al., 1985).

Murio (1993b) has presented a mollified space-marching algorithm. The adjoint method is

employed by Jamy et al. (1991) and Truffart et al. (1993). Alifanov and Egorov (1985),

Alifanov and Kerov (1981), and Alifanov ( 1994) have presented formulations for iterative

regularization methods to solve the two-dimensional problem. The Monte-Carlo method

was investigated by Haji-Sheikh and Buckingham (1993). Solving the multi-dimensional

IHCP is further discussed in Chapter 4.

Although much energy has been focussed on the multi-dimensional IHCP, less work

has been afforded to the estimation of thermal properties using inverse methods for the

multi—dimensional case. Loh (1991) performed an experimental investigation for the esti-

mation of thermal properties, orthotropic thermal conductivity and isotropic volumetric

heat capacity, in a carbon-carbon composite. Jarny et al. (1991) formulated the analysis to

estimate the thermal conductivity using a conjugate gradient method with an adjoint equa-

tion.

The lack of research on the multi-dimensional estimation of thermal properties may

be due to the small number of materials that display an appreciable anisotropy. Due to the
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construction and advancement of composite materials, however, anisotropic thermal

properties are inherent in the composite; the magnitude of the anisotropy depends on the

type of materials. For the carbon-carbon material investigated by Loh the thermal

conductivity varied nearly an order of magnitude for directions normal and parallel to the

fiber direction. This anisotropic nature of the composite material requires multi-

dimensional inverse solution methods to accurately determine the thermal properties.

Although this chapter focuses on a laboratory method, the extension of a method to

the field, i.e. while the aircraft is on the runway or in the hanger, is of particular interest for

the carbon-carbon material because of the variability that the thermal properties demon-

strate. An in situ method also allows changes in the material properties to be tracked dur-

ing development and operation of the vehicle. The methods presented herein are not easily

extended experimentally to a field application, due to the practicality of instrumenting the

material. What is demonstrated, however, is the applicability of the analysis and algo-

rithms to determine the thermal properties given experimental data. More work on the

design and optimization of the experiments is required to move the methods to the field.

3-2.0 Experimental Aspects

The same experimental apparatus, shown in Figure 2-1, is used, except that only one

of three heaters is energized. The two-dimensional thermal model is shown in Figure 3-1.

The locations for the thermocouples are given in Table 2-1. The thermal model is mathe-

matically represented as three coupled problems. Although the techniques used herein can

be extended to temperature variable properties in a given experiment, the models given

below are for thermal properties that are temperature independent.
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Figure 3-1 Heat transfer model for two-dimensional experiments

The first problem models the mica heater/contact resistance
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The second problem is for the carbon-carbon composite
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Taktak (1992) investigated optimal experimental conditions to estimate the orthotro-

pic thermal conductivity for this geometry. However, his model specified a temperature

boundary condition at the backside of the composite, instead of (an approximate) insula-

tion condition which is used here. Taktak showed that for two sensors, the extremes

(x = 0, 7.62 cm) on the heated surface (y = 0) , was optimal for the condition that heat-

ing occurred over one-half of the surface. For this case, which is approximately insulated

at the backside of the specimen, includes the thermal effects of the heater assembly, and

heats over one-third of the surface, a similar outcome would be expected. Measurement of

the temperature on the surface where the heater is active and locations where it is not

active provides contrasting effects (sensitivity coefficients), which improves the accuracy

of the estimates. See the optimality criteria in Section 2-3.0.

3-3.0 Analysis Procedures

The same analysis procedures presented in Section 2-3.0 are used for the two-dimen-

sional case. However, now a two-dimensional heat conduction thermal model is solved.

Computer program PROP2D implements this inverse method to determine two com-

ponents of thermal conductivity and the volumetric heat capacity. The program was devel-

oped at Michigan State University by taking the finite element code TOPAZZD (Shapiro,

1986) and combining this direct problem solver with these parameter estimation methods,

to create a powerful algorithm. PROP2D allows for the estimation of the thermal proper-

ties for multiple materials, with possibly irregular geometries, from transient measure-

ments. The thermal conductivity can be orthotropic and temperature dependent thermal

properties are allowed.



3-4.0 Results and Discussion

A separate, independent set of one-dimensional experiments (Chapter 2) were per-

formed to determine the thermal properties of the mica heater and ceramic insulation in

the model (Figure 3—1). Effective properties were determined to account for imperfect con-

tact between the layers. Therefore, only the thermal properties of the carbon-carbon com-

posite are unknown in the model (Figure 3-1). Furthermore, one-dimensional experiments

e

were performed to determined the thermal conductivity normal to the fibers (ky, cc ) and

the volumetric heat capacity (pCzc) in the previous chapter. The one-dimensional results

provide initial estimates for the two-dimensional analysis and permit for a comparison to

demonstrate the accuracy and consistency of the methods; one-dimensional results are not

used as prior information in the analysis.

For the two-dimensional experiments, the analysis is more sensitive to the experimen-

tal conditions. For example, the magnitude and duration of the heat flux must produce ade-

quate response (sensitivity coefficients) for the sensors nearer the active heater, as well as

for the sensors farther from the active heater. This requires a longer heating duration than

that used for the one-dimensional experiments. The locations of the thermocouples must

also be known accurately, especially on the active heater where temperature gradients are

large. Although it is not too difficult to locate the position of the thermocouples in the car-

bon-carbon specimen, it is difficult to align the mica heater assembly relative to the speci-

mens since the heating elements are not visible in the heater assembly.

The two-dimensional thermal properties of the carbon-carbon composite determined

for temperatures up to 400°C are given next. Experiments were conducted at regular

intervals over this temperature range and analyzed assuming the thermal properties were
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constant for the duration of an experiment, but varied between experiments. The measured

experimental data and details of the parameter estimation are presented and discussed for

a typical experiment.

3-4.1 Experimental Data

Experimental data for a test started at a temperature of 297°C (experiment case

1022$297) are shown in Figure 3-2. A sampling interval of 0.64 seconds is used to

acquired data for this experiment. The heating begins at approximately 16 seconds and

ends at 56 seconds. For experiments at lower initial temperatures the heating duration is

80 seconds. However, based on observation of the sensitivity coefficients and the criteria

for optimal experiments, “D-optimality”, (Beck and Arnold, Chapter 8, 1977) a shorter
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duration, higher magnitude heat flux is selected to be closer to optimal experimental con-

ditions for determining the two components of the thermal conductivity and the volumet-

ric heat capacity. The complexity of this experiment is that two components of thermal

conductivity and volumetric heat capacity are simultaneously estimated. The experimental

conditions must be selected to provide information about all three effects. An alternative is

to conduct an series of experiments, each experiment providing information on one (or

more) particular effect. Then analyze the different experiments in a sequential manner.

Osman and Beck (1991) used such a procedure to estimate temperature dependent thermal

properties. For this model, a single experiment provides adequate information on all ther-

mal properties (effects) and a sequential procedure is not required.

The effect of the orthotropic thermal conductivity is seen by comparing in Figure 3-2

the temperature rise for the sensors at x = 3.81 cm (Figure 3-1) on the heated surface

(sensors 5,10) and x = 1.27 cm on the insulated surface (sensors 1,13). The larger thermal

conductivity in the x-direction results in a nearly instantaneous response at x = 3.81 cm

on the heated surface, while the sensor at x = 1.27 cm on the insulated surface has

approximately a four second time delay before responding. This delay exists even though

the sensors are approximately the same distance from the active heater (~10% difference,

0.835 and 0.914 cm from the sensor on the heated surface and insulated surface, respec-

tively).

Notice that temperature data are acquired after the heating ends. Continuing to

acquire data after stopping the heat flux results in better estimates. This is because it

causes the sensitivity coefficients to be of different shape from one another after heating.

These effects result in a more accurate estimation of multiple thermal properties based on
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the criteria “D-optimality with constraints” (Beck and Arnold, pp. 459, 1977). Possible

heat losses in the experimental set-up can also be monitored with this data, although it

does not appear that there are significant losses in this experiment, since all temperature

SCIISOI'S Converge IO a constant.

3-4.2 Estimated Thermal Properties

Numerical issues are more important for the two-dimensional analysis than they are

for the one-dimensional. The mesh size and time step selected for the finite element

method can greatly influence the amount of time required to obtain a solution and the

accuracy of this solution. The mesh used for this analysis contains 525 (quadrilateral) ele-

ments. Twenty-five elements are along the 7.62 cm surface (x-direction) for all materials.

There is one element across the mica heater assembly and ten elements across each the

carbon-carbon specimen and ceramic insulation (y-direction). The computational time

step chosen was 0.64 seconds, the same as the experimental time step. A typical two-

dimensional analysis required 2-4 hours on a VAXstation 4000 Model 60 running VMS

V5.5—2, depending on the number of iterations and accuracy of the initial parameter esti-

mates; typically 4-5 iterations (16-20 direct solutions) were required. Although a detailed

investigation was not performed, the time step and mesh size were varied and shown to

have little influence on the resulting estimated thermal properties.

Two-dimensional thermal properties determined for the carbon—carbon composite are

summarized in Table 3-1. The experiment case number and initial temperature are given in

columns one and two. The next four columns present the estimated standard deviation (6)

and the two-dimensional thermal properties determined from the analysis with confidence

intervals. The final two columns give the duration and magnitude of the applied heat flux.
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Table 3-1 Thermal properties estimated for the carbon-carbon composite from two-

dimensional experiments and analysis

 

 

 

 

 

 

 

 

 

         

EXP T1812: A k; cc k; cc (P C):cx 10-6

Case p 6 Heat Flux

(°C) (°C) W/mC W/mC J/m3c sec W/m2

1020&65 65 0.168 58.4 +/- 0.34 3.89 +/. 0.04 1.52 +7- 0.003 80 5276

10209111 111 0.183 61.0 +7- 0.39 4.17 +/. 0.04 1.74 +/- 0.004 80 6095

102119.157 158 0.163 60.7 +/- 0.34 4.24 +/. 0.04 1.93 +/. 0.003 80 6910

1021&205 205 0.210 61.8 +/. 0.33 4.55 +7- 0.04 2.13 +/. 0.004 80 8905

1021&256 256 0.202 61.6 +/. 0.30 4.73 +/. 0.05 2.34 +7. 0.004 80 8792

10228297 297 0.295 58.8 +/. 0.38 4.97 +/. 0.06 2.36 +/. 0.007 40 17304

10223352 353 0.277 58.7 +/. 0.37 5.07 +/. 0.06 2.56 +/— 0.007 40 17259

1022$403 403 0.256 57.4 +/- 0.34 5.09 +/- 0.05 2.66 +/- 0.007 40 17096

 
 

A plot of the thermal properties (ke kg and ( p C)2.) with estimated confidence
x, cc ’ y, cc ’

interval as a function of the initial temperature is shown in Figure 3-3. A F—test (Beck and

Arnold, Chapter 7, 1977) indicated a second order model (in temperature) for these prop-

erties. Because limited results are available, the relationship for k: cc remains linear. The

relationships determined with a least squares fit, are shown in Figure 3-3 and given by the

following relationships:

  

 

  

kg 387 193 LT‘ 0656 T_T' 2= . . —. -13

e T— l

kt,“ = 60.8—2.07(T T J (314)

2_ 1

Ce 152 168 LT‘ 0543 FT‘ 2 10° 3 59-1-1 1—1 11xC TZ—Tl TZ-‘Tl

where T1 = 65°C and T2 = 403°C. The thermal conductivity parallel to the fibers
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Figure 3-3 Temperature dependence of estimated thermal properties from two-

dimensional experiments

e

y, cc(k.x, cc) is 12 to 15 times as large as that normal to the fibers (k ). Testing was halted at

400°C due to the failure of the carbon-carbon specimen during subsequent one-dimen-

sional testing at higher temperatures.

In addition to estimating the thermal properties, PROP2D provides some means to

quantify the accuracy of the estimates. The estimated standard deviation, 6' computed in

equation (2-18), which is given in Table 3-1, provides an indication of how well the calcu-

lated temperatures match the experimentally measured temperatures. The magnitude of

the estimated standard deviation can be compared to the temperature rise of the experi-

ment, which is approximately 20 to 25°C. The magnitude of the estimated standard devi-

ation is within 1.2% of the maximum temperature rise for all the experiments and many
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are less than 1%. The estimated standard deviation is largest for the last three experiments,

which applied a larger heat flux for a shortened duration.

There are other quantities that can be observed to demonstrate the accuracy of the

estimated properties. These quantities are the sequential estimates of the thermal proper-

ties, the temperature residuals, and sensitivity coefficients. These quantities are sensitive

indicators to provide insight to the estimation and experiment. Each is discussed below for

experiment 1022$297.

The sequential estimates demonstrate how the estimated properties vary as additional

experimental measurements are considered. Figure 3-4 shows the sequential estimates for

this experiment. A sequentially estimated property, at time ti, represents the outcome if
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only data up to that time is used in the analysis and the results are linearized about the con-

verged parameter values. In other words, if the data is analyzed by adding one data set at

each time, it shows how the estimated properties change as one more data set is added to

the analysis. Initially the sequential estimates vary because there is not enough informa-

tion (data) to accurately determine the properties. However, as more data is considered,

the property estimates approach constants. If the experiment (or analysis) is ended at 80

seconds, the estimated properties would not differ significantly from the properties at 100

seconds. In general, for a good estimation the sequential estimates converge to a constant

and are steady with time. For this experiment the sequential estimates for k; cc, k; cc , and

(pC):C vary only 7.7, 3.0, and 1.6% over the final one-half of the experiment. The values

are quite large compared to the confidence intervals, which were 0.6%, 1.2% and 0.3%,

respectively. The confidence interval models error in temperature only. Uncertainty in

other experimental measurements account for the discrepancy.

The temperature residuals are related to 6 and are calculated as shown in equation (2-

18). They represent the difference between the measured and calculated temperature for a

particular time (ti) and sensor location (xj, yj) . The estimated standard deviation gives

an indication of the magnitude of the residuals; the sign and magnitude of the individual

residual can provide considerable insight. The residuals for this experiment (1022$297)

are shown in Figure 3-5a, b and c. Figure 3—5a presents the residuals for the sensors on the

active heater, Figure 3-Sb the residuals for the sensors on the heated surface but not on the

active heater, and Figure 3-50 the residuals for the sensors at the insulated surface. The

residuals for the sensors on the heated surface, but not on the active heater (Figure 3-5b),

are slightly correlated. The other residuals, Figure 3-5a and 3-50, are highly correlated and
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Figure 3-5a Temperature residuals for two-dimensional case 1022$297 on surface
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larger, 4—5% of the temperature rise on the heated surface and 8-10% of the temperature

rise at the insulated surface. It is not clear exactly why the residuals are so highly corre-

lated. Two possible reasons are the uncertainty in the location of the sensors with respect

to the heater and a non-uniform heat flux produced by the heater. First, there is some

uncertainty in the alignment of the heater assembly and the specimen. The heating ele-

ments are contained within an opaque fiberglass with a mica layer on the outside. Since

the fiberglass and mica extend beyond the heating elements, the alignment of the edge of

the heater (element) with the specimen is difficult. Second, the design of the heating ele-

ment has a gap between successive coils allowing for areas of localized heating. If the sen-

sors align with a gap, the actual heat flux will be larger than that calculated flux, which

assumes a uniform profile. Similarly, the sensors aligned with the heating element will

have a larger heat flux than the calculated uniform flux. The residuals for sensors away

from the active heater are less sensitive to the location and uniformity of the heat flux and

therefore are less affected.

To investigate the correlated residuals, two numerical experiments were conducted.

The first numerical experiment investigated an error in the location of the heater and the

second investigated a non-uniform heat flux; no other measurement errors were present.

These experiments were analyzed assuming no error in the location of the heater and a

uniform heat flux to investigate the effect on the residuals. Unfortunately, the results of

these numerical experiments were not conclusive. In particular, the two errors had

opposite effects on the residuals. An error in the location of the heater resulted in a

residual that had an opposite sign to the residuals for a non-uniform heat flux. The shapes

of the residual curves for the numerical experiments were quite different from the
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2

experimental case (Figure 3-5), especially for sensors not at the location of the applied

heat flux.

As previously noted, observation of the sensitivity coefficients can provide insight to

the estimation problem. An advantage of parameter estimation, compared to other inverse

methods, such as gradient methods (Jamy et al., 1991), is that the sensitivity coefficients

are computed in the analysis. Hence, no additional computation are required to observe

the coefficients. Observation of the sensitivity coefficients at this stage may be too late,

since the experiment is essentially designed and moving sensors or changing the heated

area is not easily done. However, some minor modifications may improve the accuracy,

such as changing the heating duration or magnitude. When possible, an analysis of the

sensitivity coefficients should be conducted prior to running the experiments.

Sensitivity coefficients provide insight to design experiments. In general, the normal-

ized sensitivity coefficients are desired to be large for each parameter and uncorrelated

(linearly independent) for different parameters. A sense of the magnitude of the sensitivity

coefficients is gained through normalizing the sensitivity coefficients. Normalization is

performed by multiplying by the parameters, resulting in unitsof temperature for the nor-

malized sensitivity coefficients. The normalized sensitivity coefficient for parameter 1] is

— 8T
X11 = n- (3-16)

A comparison is then permitted with the temperature rise of the experiment. For the cur-

rent experimental design, the normalized sensitivity coefficients are shown in Figure 3-6a-

c. Figure 3-6a shows the sensitivity to pCZC , ch, and Figure 3-6b and c shows the sensi-

tivity to the thermal conductivities k: c.C and kin, X,“ and ka. Because the sensitivity
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coefficients are normalized, a direct comparison of their magnitudes is possible. Some

observations are drawn from the sensitivity coefficient plots.

The most information is available on the active heater (sensor locations x = 0.89 cm

and 1.91 cm for y = 0). At these locations the sensitivity coefficients have the largest

magnitudes and therefore are most influential on the values of the estimated properties.

Notice that Xky undergoes a sign change across the specimen (in the y-direction) and ka
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undergoes a sign change along the specimen (in the x-direction). The implications of the

these sign changes are that there exist 1) a y-location within the body where the tempera-

ture is insensitivity to ky’ CC and more importantly 2) a x-location where the temperature is

insensitivity to kx, CC. The latter result is more important for this case where surfaces tem-

peratures are measured, because seemingly logical locations along the measurement sur-

faces y = 0, Ly may be insensitive to kx, CC. Although it is desirable to avoid locations

where the sensitivity coefficients changes sign because the sensitivity is quite small, sen-

sor locations that have sensitivity coefficients with opposite signs are a beneficial result.

This situation produces contrasting effects which improves the accuracy of the estimates.

Hence, the choice of the locations near the edges of the specimen (x = 0, 7.62 cm),

which have oppositely signed sensitivity coefficients, for the measurement locations. For—

tunately, the surfaces of the specimen (y = 0, Ly) are the most sensitive in that direction.

Finally, the experiment was halted after heating for approximately 40 seconds to make

comparable the magnitudes of the sensitivity coefficients for all thermal properties. In Fig-

ure 3-6b 70.) is approaching a steady-state value, while the sensitivity to Xk! and XPC

have not. The sensitivity coefficient ch does not have a steady-state solution and will

continue to increase linearly with time. If the experiment heated for a longer duration Xk)‘

and ch would be much larger than X1;,- Consequently, the estimates for the two former

properties would be considerably more accurate than the latter property.

3-4.3 Comparison of One- and Two-Dimensional Results

The two-dimensional results can be compared to the one-dimensional results in chap-

ter two for the thermal conductivity normal to the fiber and the volumetric heat capacity.

The results obtained for the one-dimensional analysis were used as initial estimates for the
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two-dimensional analysis; however, the thermal properties were not constrained in the

two-dimensional analysis using the one-dimensional results.

The properties determined from the one- and two-dimensional experiments are com-

pared in Figure 3-7a and 3-7b. Overall, the results are quite close. The two-dimensional

and slightly lower for (pC):c. Recall that the pr0per-
C

results are slightly higher for k; C

ties were estimated assuming they were constant over the duration of an experiment and

therefore are applicable for a 20-25°C temperature range. Noting this, the one and two-

dimensional estimates for k; CC are within 6%, with the largest errors at the higher tem-

peratures where limited two-dimensional data is available. There is also a dip downward

for the estimates near the maximum temperature, an unexpected result that may indicate

the thermal conductivity is approaching a constant, but more testing (at higher tempera-

tures) is needed for verification. The results for (13C); have a maximum of 7% deviation

between the one and two-dimensional estimates.

The temperature dependence determined using both one- and two-dimensional

results, which were also indicated to be second order in temperature using a F-test, are

  

  

kg = 346+359 —208 3 ‘7I I O -1

y'c (13 10) (7 3 10) ( )

Ce =ll4l+242 —08 '10 3 8O O C -1(P )CC (T3 7) 94( 3 ) x ( )

The relationship for k: CC has only two-dimensional results and is given by equation (3-

12). The estimated thermal properties, from both one- and two-dimensional experiments,

are within 4% and 6% of the relationships given in equation (3-17) and (3-18) for k: CC

and (pC):C.
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Table 3-2 Experimental uncertainty for the two-dimensional experiments

 

 

 

 

 

 

 

 

 

 

  
 

Paigeter Uncertainty Contribution (gig-dz)

(pC1:.x10“° k2... k5,...
z dz

J/(m3C) W/(mC) W/(mC)

q 3%*q W/m2 0.086 1.9 0.15

Ly 0.05 mm 0.014 0.43 0.066

y1 0.025 mm 5.5 13-04 0.14 0.016

xJ. (i=1,2. J) 1.0 mm 8.0 13—04 0.72 0.20

kg,“ 20% 0.018 0.55 0.073

(003,“, 20% 0.020 1.2 0.14

kfm 20% 0.0 0.0 0.0

(0C); 20% 0.0 0.0 0.0

TOTAL 0.091 2.5 0.30     
 

3-5.0 Experimental Uncertainty

Using the techniques described in Section 4-5.0 for the one-dimensional properties,

the experimental uncertainty for the two-dimensional thermal properties is assessed. For

the two-dimensional experiment uncertainties in the measured surface heat flux, thickness

of the carbon-carbon specimen, y-location and x-locations of sensors on the surface near-

est the heater (experiment is insensitive to locations specified for sensors on back surface

of specimen), thermal properties of mica heater, and thermal properties of insulation are

considered. As in the one-dimensional analysis, the uncertainty in the thicknesses of mica

heater and ceramic insulation are not considered because they are implicit in the effective

properties estimated for these materials. Table 3-2 gives the uncertainties in the estimated
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thermal properties due to the uncertainties in the measured quantities. For the two-dimen-

sional case there are three important uncertainties. The uncertainty in the measured heat

flux, x—location of the sensors, and the thermal properties of the mica heater are dominant

terms. All terms contribute significantly to the overall uncertainty, but vary depending on

the thermal property. The heat flux is important because there is a large uncertainty in the

area associated with locating the heater relative to the sensors. The x-location of the sen-

sors are important due to alignment issues. The two-dimensional uncertainties are larger

than one-dimensional results. However, uncertainties are still a maximum of 6.0, 4.2, and

7.7% of(pC)" k" and kf’CC , x, CC, v, CC, respectively.



Chapter 4

SOLUTION OF IHCP USING A GRADIENT METHOD WITH

ADJOINT EQUATION APPROACH

4-1.0 Introduction

Estimating the conditions at the surface of a conducting body from internal measure-

ments is typically called the inverse heat conduction problem (IHCP). Inverse describes

this type of conduction problem because conditions at the boundary or surface of a body

are estimated using internal measurements. Whereas a direct conduction problem, some-

times called just the direct problem, uses conditions specified on the boundary to compute

the internal temperature. While the direct problem is generally a well-posed problem, the

inverse problem tends to be ill—posed and very sensitive to measurement errors. A sequen-

tial method to solve the IHCP is discussed in this chapter.

Applications of the IHCP are abundant. A classic problem is determining the heat flux

at the surface of space vehicles during re-entry. A related problem is the estimation of the

heat flux at the leading edges of hypersonic vehicles. Other examples are estimating the

heat flux, or convection coefficients during quenching, which enables control in the result-

ing material properties. During casting processes, estimates of the heat flux can be used to

the control the cooling rate and movement of the cooling front to minimize residual

stresses and void formation. Measurements on the outside of the cylinder wall of a internal

65
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combustion engine can estimate the heat flux in the combustion chamber. Additional

examples are cited in Kurpisz and Nowak (1995).

Several methods are applied to solve the IHCP. Function specification (Beck et al.,

1985), Tikhonov regularization (Tikhonov and Arsenin, 1977), gradient methods (Ali-

fanov, 1994 and Ozisik, 1993), and mollification (Murio, 1993) are more frequently cited

methods. However, other approaches also applied are, dynamic programming (Busby and

Truijillo, 1985), Kalman filter (Tuan et al., 1996), Monte Carlo method (Haji-Sheikh and

Buckingham, 1993). In addition, combining methods is useful. Beck and Murio (1986)

formulated a combined function specification and Tikhonov regularization method, simi-

lar concepts were used in Osman et al. (1997). Jamy et al. (1991) combined an iterative

search method with Tikhonov regularization. Since this dissertation focuses on multi-

dimensional problems, the literature review will narrow its attention to the two-dimen-

sional problem. Refer to books by Alifanov (1994), Beck et a1. (1985), Hensel (1991), and

Kurpisz and Nowak (1995), for a comprehensive survey of the literature.

Many methods applied to the one-dimensional problem have been extended for the

two-dimensional problem. Function specification and gradient methods have received the

most attention. Function specification specifies a functional form for the heat flux over a

future interval (Beck et al., 1985). Specifying a functional form over the future interval

provides regularization to stabilize the ill-conditioned problem (Lamm, 1995). In conjunc-

tion with specifying a function form, function specification solves the problem in a

sequential manner.

Several researchers have investigated the two-dimensional application of the function

specification method. It was applied to estimate spatially and time varying convective heat
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transfer coefficients, Osman and Beck (1989, 1990), and surface heat flux, Osman et a1.

(1997). A boundary element method was coupled with function specification to investigate

multi-dimensional problems by Zabaras and Liu (1988). Hsu et al. (1992) applied a finite

element method to solve the general two-dimensional problem with inverse methods simi-

lar to function specification.

Gradient methods, which typically apply a conjugate gradient iterative scheme, cou-

ple iterative or Tikhonov regularization to stabilize the solution and solve the multi-dimen-

sional problem. Iterative regularization depends on the slowness or “viscosity” of the

solution and uses the iteration index as the regularization parameter. Several papers use

iterative regularization; see Alifanov and Kerov (1981), Kerov (1983), and Alifanov and

Egorov (1985). Additional investigations using gradient methods, but not iterative regular-

ization, are given in Zabaras and Yang (1996), Reinhardt (1996a.b) and Jamy et al. (1991).

Others have studied the multi-dimensional inverse problem with a variety of

approaches. Tuan et al. (1996) uses Kalman filter to develop an on-line algorithm. A new

method, called “direct sensitivity coefficient,” is claimed by Tseng and Zhao (1996) and

Tseng et a1. (1996). Pasquetti and Le Niliot (1991) employ Tikhonov regularization with

the boundary element method. An adjoint equation approach to compute sensitivities and

relate measured temperature to unknown surface conditions is used by Hensel and Hills

(1989). A Monte-Carlo method is given by Haji-Sheikh and Buckingham (1993). Mollifi-

cation with a space marching technique is used by Murio (1993) and Guo and Murio

(1991). Busby and Trujillo (1985) use dynamic programming. An analytical solution is

developed by Mosaad ( 1995) and transform methods are used by Imber (1974, 1975).
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Function specification and gradient methods are popular approaches. An advantage of

the function specification method is that the problem retains the causal nature, represented

with a Volterra operator (Lamm, 1995), and can be solved sequentially with possible sav-

ings in computational time and memory. The method, however, requires assuming a priori

information about the (unknown) function. Gradient methods require no a priori informa-

tion but typically solve for a function on the whole time domain, not taking advantage of

the causal nature of the problem.

The demonstrated success of gradient methods and the efficiency of a sequential

implementation suggest a sequential implementation of a gradient method would be a

powerful combination. A method that sequentially implements a gradient scheme, using

an adjoint equation approach, is proposed and to be developed; additional stability is intro-

duced by including Tikhonov regularization. The method is anticipated to benefit from not

requiring a prescribed functional form, which is particularly useful on space, and the com-

putational aspects of a sequential implementation. Other researchers who have proposed a

sequential implementation are Reinhardt and Hao (1996a,b) and Artyukhin and

Gedzhadze (1994); however, past implementations have addressed the one-dimensional

problem with a very limited investigation of the method. This dissertation addresses the

one- and two-dimensional problems for the sequential implementation. Although applying

the sequential gradient method to linear one-dimensional problems is probably not needed

or recommended, addressing the one-dimensional problem provides valuable insight to

the method. This is the first known two-dimensional implementation of a sequential gradi-

ent method and the most comprehensive, to the best of the author’s knowledge, study of

the gradient methods.
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Derivation of the equations to solve the IHCP using a conjugate gradient search

method with an adjoint equation approach are presented in this chapter. Gradient methods

that apply an adjoint equation approach have been widely discussed in the literature. In

particular, the Russian community has championed these methods (Alifanov, 1994). How-

ever, the mathematical basis of the method seems to have limited application of the meth-

ods (at least for engineers), more so in the USA than elsewhere. Reasons for the limited

use of the method in the USA can be partially attributed to the strong advocacy of the FSM

there (Beck et al., 1985). However, more recently the power of the methods, particularly

for multi-dimensional problems and problems with many estimated components in the

author’s opinion, has been realized. In particular, Ozisik (1993), is an advocate of gradient

methods. In addition, the methods have been presented in a less mathematically rigorous

form (Jamy et al., 1991, Lamm, 1990, and Jamy and Beck, 1995).

Section 4—2.0 to 4-6.0 develop the describing equations to solve the general multi-

dimensional IHCP. Equations are developed in differential form and presented in the form

of an algorithm in Section 4-7.1 for a whole domain solution. A sequential implementa-

tion is discussed and an algorithm is presented in Section 4-7.2. Derivations up to this

point in the chapter assume that the unknown function resides in a prescribed function

space E, which is an infinite-dimensional space. Restricting the solution to a finite-dimen-

sional space, Rn , is addressed in Section 4-8.0. The chapter is concluded with a section to

summarize the chapter and provide some insight to the method.
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4-2.0 Problem Statement of the Multi-Dimensional IHCP

A schematic of the general multi-dimensional IHCP is shown in Figure 4-1. In the

analysis that follows, the conduction problem is assumed linear, i.e., thermal properties do

not depend on temperature. Extending the gradient methods for non-linear problems is

discussed in Artyukhin (1996) and Loulou et al. (1996). For the sequential implementation

to be developed, it is possible to temporarily linearize the problem and not consider it non-

linear. Assuming the thermal properties are independent of temperature, the problem is

mathematically formulated as follows:

V. (k(r)VT(r, t)) = pC(r)[—aa—IT(r, t) + v - VT(r, 0], at)": :nSgt:) (4-2.1)

_k, 97170", t) + h, T(r, t) = fi(r, t), (r) on 1“,, (i =1’ 2’ 3) (42.23)

(t0<tStf)

(T=f](r7 1))

     
  

Y2(t) Yj(t)

  
(qu2(rrt))

(610,1): (0

Figure 4-1 Schematic of multi-dimensional general IHCP
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_k(r)-—87T(r, t) = q(r,t), (r) on F4 (4-2.2b)

3" (tO < t s tf)

T(r, t0) = Tom (4-2.20)

where k(r) and pC(r) are the thermal conductivity and volumetric heat capacity. The

spatial domain 9 is moving at a constant velocity of v and the symbols

1“,- (i = l, 2, 3, 4) representing the domain boundaries. The outward pointing normal

vector is denoted fr. Functions f1(r, t), f2(r, t), f3(r,t), and T0(r) are assumed

known. Boundary coefficients kl. and hi are specified to form different boundary condi-

tions, i.e. k1 = 0 and h1 = l specifies a temperature boundary condition (first kind),

k2 = k(r) and h2 = 0 a flux condition (second) kind, and k3 = k(r) and h3 = h(r)

a convective condition (third kind). Surface F4 has the unknown heat flux, q(r, t) , to esti-

mate. Excess information of transient temperature measurements exists within the body

(or at the surface of the body) at locations (r =dj) j = 1, ....... J . These measured tem-

peratures are denoted

Y(dj,tk) = YJ-(tk) (42.3)

and are available at discrete times tk, 0 < tk S 1f, k = l, 2 N. The analysis is first devel-

oped for measurements being at discrete locations but continuous on time.

The objective is to estimate q( r, I) using the measured temperatures. Hence, the heat

flux q(r, t) is estimated such that the calculated temperatures match the measured tem-

peratures, T(dj, tk;q) = Yj(tk) , where T(dj, tk;q) is the solution of equation (4-2.l) and
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(4-2.2). Due to the ill-conditioned nature of this problem, the matching is accomplished in

a least squares sense by minimizing the function

J

%E £’1T(d,-,t.;q)— 13-10124: + gaTfi’jnrqu, t) _qpn.(,, 012.1, d,

J(q) = j=1
 f

P J

v

15 JR

(4—2.4)

The last term in equation (4-2.4), JR, serves as regularization to stabilize the ill-condi-

tioned problem; the function q[NI-(s, t) is known and could be zero. Regularization of this

form is similar to zeroth order Tikhonov regularization (Tikhonov and Arsenin, 1977).

Schemes to minimize J(q) in equation (4-2.4), which use iterative methods such as

steepest descent and conjugate gradient, require the gradient of J(q) . Methods to compute

this gradient depend on the function space where q(r, t) is assumed to reside. Two possi-

bilities are a finite dimensional space and an infinite dimensional space. For the infinite

dimensional problem a priori information is not required concerning the (unknown) func-

tion q(r, t) . However, computation of the gradient requires solving two additional prob-

lems, which are the adjoint and sensitivity problems. For the special case when a priori

information is available (or assumed) concerning the function, the problem is considered

finite dimensional and standard differential calculus is used to compute the gradient.

The approach considered here is the more general infinite dimensional problem. The

heat flux is assumed to be in the function space E on F4 x (to, if) with the scalar product

defined by

(Z,,2,)E = I? [2,0, I)Zz(r, t)dr d: (42.5)
”F,
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for functions Z1(r, t) and Z2(r, t). The associated norm or function Z(r, t) is

HZ“: = JJIJIZU, r)|2dr dt (4-2.6)

to 1“,,

One possible choice for the function space is E = L2 , all square integrable functions on

F4 x (0, if) . The finite dimensional problem, i.e. E = R" , is discussed in section 4-8.0.

4-3.0 Gradient Calculation

The gradient of the function J(q) in equation (4-2.4) is required for gradient search

methods. In all derivations that follow it is assumed that the function J(q) is given by

equation (4-2.4). This is an important point because J(q) is quadratic, since temperature

is a linear function of the heat flux q. Application of the methods for non-linear problems

is discussed in Artyukhin (1996) and Loulou et al. (1996). Because a functional heat flux

is assumed, (q e E), the mathematics are more complex. The gradient of J(q) at q,

denoted VJ(q) , is related to the variation of J at this point by the general relationship

J(q + Aq) — J(q) = (VJ(q), Aq)E + (terms nonlinear in llAqIIE) (4-3.1)

Although more mathematics are required to correctly interpret this gradient, it is analo-

gous to the generalization of a Taylor series expansion in standard differential calculus.

For the function J(q), the Gateaux differential with increment Aq, henceforth

referred to as the directional derivative at q in the direction Aq, denoted DAqJ(q) , is

defined as (Luenberger, 1973)

DAqJ(q) = Ji-TOJ(q+uA:)—J(q) (4.32)

The directional derivative DAq](q) is therefore related to the gradient



74

DAqJ(q) = (VJ(q), Aq)E (43.3)

The directional derivative is computed using equation (4-3.2); however, identifying the

gradient requires the derivation of two additional problems, typically called the sensitivity

and adjoint problems.

To compute the directional derivative of J(q) the limit in equation (4-3.2) is evalu-

ated

J(q + qu) -J(q) =

J
l I . 2 l f 2
5.21J:0 [T(dj, t,q + qu) - Yj(t)] dt + 2a7£0Jr.[q(r’ t) + 11440“, t) - qpn-(f, t)l dr 0’!

J:

J

1 2 1
2

-§ 2 flfldj, t, :61) - Yj(t)] dt— 2aT£fIr [q(r, t) —qpn.(r, t)] dr dt(4-3.4)

jzl 0
0 4

After expanding the terms, dividing by u, and some manipulation, equation (4-3.4) is

rearranged as

J(q+qu) -J(q) :

u

 

.1

$2 £:{1T<d,.t;q+qu)+T<d,.t;q>—2Y,-0>1 u
[T(dj, m + 114(1) — T(d,» (1)1}dt

j=l

 

2

2 9 — ' ’ A 1 A ’“Lialeflr { [610 I) qp,,(r 0111 610 0+1” q(r 1)] }dr W435)

u

The resulting change in the temperature caused by a variation of magnitude ItAq in the

heat flux is related to the directional derivative of the temperature. The directional deriva-

tive of T at q in the direction Aq, evaluated at (r, t) is

 DAan, t;q) = lim T(r’ “‘1 + “A” ‘ T(r, ”1) (43.6)
u-—)0 [1

Taking the limit of equation (4-3.5) as It —> 0 while using the definition of the directional

derivative of temperature in equation (4-3.6) gives
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J

DAquq> = 2 J2me. t;q) - Y,(r)1DA,T(d,-. t;q)dr
j: 1

+ aTJ’fI [q(r, t) — qpnrr, t)]Aq(r, t)dr (1:14-37)

to 1‘4

where the left side of equation follows from the definition in equation (4-3.2). This equa-

tion shows that the directional derivative of the J(q) is a function of the directional deriv-

ative of the temperature DAqT(dj, t;q) . The directional derivative of temperature, i.e., the

variation in temperature due to a variation in the heat flux, is typically referred to as the

sensitivity function and defined as

0(r, t;Aq) E DAqT(r, t;q) (4-3.8)

The sensitivity function 0(r, t;Aq) represents the variation in temperature T(r, t;q) due

to the presence of an input heat flux function Aq.

4-4.0 Sensitivity Equations

The describing problem for the sensitivity function is derived from the definition of

the directional derivative in equation (4-3.6). Evaluating the direct problem in equation (4-

2.1 and 4-2.2) at q + ItAq gives

V ' (k(r)VT(r, I:q+11461))

= pC(r)[§—T(r, t;q + ItAq) + v - VT(r, t;q + ItAq)], (r) in Q (4-3.9)

at (to < t S If)

(r) on 1",, (i =1, 2, 3)

(t0<tStf)

-k,- Egg-T(r, t;q + qu) + h,- T(r, t;q + qu) = fi(r, t), (4-3.10a)

(r) on F4

(tO<tStf)

—k(r)§fi-T(r, t;q + qu) = q(r, t) + qu(r, t), (43.1015)
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T(r, 0;q + ItAq) = T0(r), (r) in Q (4-3.10c)

Defining Tp = T(r, t;q + qu) in equation (4—3.9) and (4-3.10), subtracting the direct

problem in equation (4-2.1) and (4-2.2) with T = T(r, t;q) , and dividing the result by It

   

  

 

 

 

gives

T —T T —T T —T '

V-(k(r)V( D = pC(r)[3( 1‘ )+y-V( 1‘ j] , (”mg (4311)

at 11 ll (t0<tStf)

T —T T —T , -_._.

—k,. a‘( “ )+hi( ’1 )z 0, (”on IT“ 1’2’3) (4-3.12a)

3" ll 11 (t0<tStf)

T —T

-k(r)-§—.-( u )= Aq(r,t). (”on F4 (4-3.12b)

3" 11 (IO<tStf)

T —T

( “ )l = 0,(r) inn (4-3.12c)

11 (:0

Taking the limit as It -—> 0 of equation (4-3.l 1) and (4-3.12) while using the definition in

equation (4-3.6) and the definition of the sensitivity function 0(r, t;Aq) E DAqT(r, t;q) ,

the describing problem for sensitivity function is

V-(k(r)V0(r,t)) = pC([)[—a—0(r,t)+v - V0(r,t)], (r) i“ 9 (43.13)
at (t0<tStf)

_kla__0(r,t)+h 9( )= 0’ (r) on 1“,,(i=1,2,3) (4-3.143)

(t0<tStf)

_k(r)—"0(r, I): Aq(r,t), (r) on F4 (43140)

(t0<tStf)

0(r, 0): 0, (r) in Q (4-3.l4c)



77

The describing equations for the sensitivity function have a similar form to the equations

derived for direct problem. The differential equation and boundary conditions have the

identical form. Differences between the direct and sensitivity problems are that the sensi-

tivity problem has homogeneous known boundary conditions, equation (4-3.14a), it has a

zero initial condition equation (4-3.14c), and its driving term is the variation in the heat

flux Aq(r, t) on surface F4, equation (4-3.14b). Similarities in the form of the two prob-

lems (direct and sensitivity) allow for savings in the calculations required for the numeri-

cal solution of these two problems. It is shown in the subsequent section that the

describing equations for the adjoint function have a similar form.

4-5.0 Adjoint Equations

To obtain the derivative, VJ(q), an adjoint problem is derived which will allow the

directional derivative to be written as the scalar product

DAqJ(q) = (VJ, Aq)E (44.1)

The current expression for DAq](q) in equation (4-3.7) is not separable into a scalar prod-

uct that contains Aq, i.e., (function, Aq) E where terms that comprise “function” would

then be the gradient. Hence by developing an adjoint problem the directional derivative is

written as a scalar product and the gradient is identified.

To derive such an adjoint problem the method of Lagrange multipliers is used. As

posed, the problem is to determine a solution q*(r, t) that minimize J(q), subject to

q*(r, t) satisfying the direct problem, equation (4-2.1) and (4-2.2). Equations (4-2.l) and

(4-2-2) are rewritten such that A[T(r, t;q)] = 0, where A is an appropriate operator. A
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necessary condition for q*(r, t) to satisfy these conditions is that there exist Lagrange

multipliers, Mr, I) , such that the Lagrangian function

110., T, q) = M. q) + 1140-, 041m. t;q)ldr dr (44.2)

i Q

is stationary at the solution, q*(r, t). This implies that the directional derivative of

A0», T, q) is zero at q*(r, t). (In equation (4-4.2), the integrations must be interpreted in

the correct sense for the boundary conditions associated with operator A .)

Using Lagrange multipliers permits the temperature T(r, t;q) to be considered inde-

pendent of the heat flux, q(r, t) . This is possible because the interaction between the tem-

perature and heat flux is forced in the constraint, eliminating the need to consider the

temperature as a function of q.

Define a Lagrangian function which includes the criterion J(q) and Lagrange multi-

pliers (w, 11,-, AU) associated with the imposed constraints that the heat flux must satisfy

the direct problem gives

f 0T

4011.11,. k... 7.4) = J(T.q>+ f jv(r.t){V - (k(r)VT)—pC(r)[3-t +v - VT]}dr 4:
[On

3

+ 2 Eryn”, ”(19. %%_hiT+fi(r,
t)}lr dt

”rI31 ,‘

+ I? In4(r, t)(k(r)g% + q(r, 1))dr dt + I710(r)[T(r, 0) _ Tom] d, (4.43)

01-44
Q

Applying Green’s theorem and integrating by parts on time, the first integral in equation

(4-4.3) can be rewritten as
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JII‘IWO', t){V . (k(r)VT) - pC(r)[%lt~ + v . VT]}dr dt =

0::

£’I{V . (k(r)V\V) + [pC(r)g—}V+ v - V[pC(T)Wl]}T 61" d’

052

+ ffl‘l’kUg—g— “H
T—313w dt-LIIPCUNITU . fildr dt

0F
0F

‘jPCWT )1?= tow-(4-4.4)

n

where F = F1 u F2 u F3 U F4. Substituting this integral into the Lagrangian in equation

(4-4.3) gives

4111.11.40.14) = J(T.q>+f’j{V~1k<r)W)+ 960) 31,-" +v - Vipcrr) w1}r dr 4:

”Q

I 3T 3 f .. I

+ “[1405;— 1.6113434, .11 _ 1‘0 ijcvwnv - n>dr dt—#ch >1;= ,Odr

+ 2]: 111,0:)k,[g%h T+f.,(r t)]dr dt+J:: [1140, t)[k(r)gI-fi +q(r 0].), 4,

i=1

+ I;o(r)[T(r, 0) - T0(r)] dr (4—45)

9

The Lagrangian has now been rewritten such that the differential operators in the first inte-

gral apply to the Lagrange multiplier 01, instead of temperature T. The directional deriva-

tive of the Lagrangian function A, for fixed multipliers, is

SAW, 11;" A.» T, q) = DATAW, 111, AG, T, q) + DAqu, ‘11, 10, T, q) (4-4.6)

where DATA( w, 11,-, 10, T, q) is the directional derivative at T in the direction AT

evaluated at (11!, n i, 21.0, q) and DAqA(w, m, 3.0, T, q) is the directional derivative at q in

the direction Aq evaluated at (111, T1,, 71.0, T). An analogous expression, similar to equation

(4-4.6), can be written for the directional derivative of J(T,q). These directional
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derivatives can be obtained by using a similar methodology to that given in equation (4-

3.2).

The directional derivative of the Lagrangian criterion for fixed multipliers is

SAW, 11,-, to, T. q) = 51(T. q) + Jj’j{V - (k(r)V\v) + pC(r)? + v - leC(r)w1}AT dr dt

on

B 8 . t

+ [Thane—fin — k(r)AT3—¥]dr dt — £’IpC(r)wAT(v - n)dr dt — ({pCWAT )1]= I0dr

+ 2f: [11,0 t)l:k-aan—AT+——h.AT]dr 811+]: [1140, t)[k(r)aan—AT,+Aq(r t)]dr d,

i=1

+ jl,(r)1AT(r, 0)] dr (44.7)

9

The solution of interest is for the case that the temperature satisfies the direct problem, i.e.,

T = T(q) . Hence, for this case AT 2 0 in equation (4-4.7), therefore the boundary con-

ditions on sensitivity problem, equation (4-3.l 1) and (4-3.12), can be used to simplify this

equation. Introducing the boundary and initial conditions from the sensitivity problem, the

Lagrangian criterion in equation (4-4.7) simplifies to

6401!. T14). q) = 611T<q>.4>+f’1{V- (k(r)Vw)+ 96013;" + v - V10C<r>w1}e dr 4:
()Q

3

2130——JJI:I{1I/Aq(r, ’)+[k(5)a-7 +pC(r)(v n)\|l]0 }dr dt

i=1

-ij(r)(\1I8 )1, dr (4-4.8)
Q

f

where,

 (i = 1) 13C! = K’Hkm 32—pC(r)(v-n)0]wdr dt (449)
(Ir

1
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(i¢ 1) IBC, = JTJI— k(r)%%’+[hi—pC(r)(v~fz)]w]6dr dt (4-4.10)

()ri

Notice that the criterion is no longer a function of the multipliers “i and lo since the

terms for these multipliers are zero from the boundary conditions on the sensitivity prob-

lem. It can be shown that

51(T(q), q) = DAqJ(q) (4-4.ll)

Defining the residual for the difference between the measured and calculated temperatures

(ej(t) = YjU) - T(d,» I, 4)) in the directional derivative DAqJ(q) , equation (4-3.7), the

directional derivative of the Lagrangian is

SAW, T(q), q) =

J

_ 2 £II[ej(t)5(r—dj)]6 dv dz + an’jr [q(r, z) —qp,,.(r, t)]Aq(r, z) dr dz

j=l 09 t0 4

+ij [{V - (k(r)Vw) + pC(r)-git" + v ~ V[pC(r)w]}9 dr dt

"Q

3

+ Z IBC, —J:f I{qu(r, t) + [k(r)g—:i: + pC(r)(v - ii)\|l]6} dr (1!

or4

i=1

-IPC(f)(W9 )|t=t dr(4-4.12)

Q
I

Rearranging the terms in equation (4-4.12) to group similar integrals gives

8A(W’ T(q)? q) =

J

K‘HV ' (k(rw‘”) + 9C“)? + V ' VIPC(r)vl - Zlej(z)6(r_dj)}e dr dz

J:

+ GTE-(IL [q(r, t) — qpn-(r, t)]Aq(r, t) dr (1'!

3

+ 2 13C, ‘ij j{qu(r, z) + [k(r)%%’+ pC(r)(v - fi)w]9} dr dz
“F4

i=1

+ JPCUXWG )|t=t dr (44.13)

9
j
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Fix the Lagrange multiplier, w(r, t), as follows:

J

V . [k(r)Vw]+pC(r)%V +v . VIPC(r)\Vl— z e,(t)8(r—d,-> = n.

j=1

(r) in 9

(44.14)

(r0 < r s tf)

-kz—a,-wtr,z>+Ihz—pC(r><v-fi>1ww) = 0. (')°"F"(’=1’2’3) (44.15»
3" (t0<tStf)

k(r) 5%“!0, z) +pC(r)(v - it) Mr, z) = 0, (r) on F4 (4-4.15b)

(to < t s tf)

w(r,t)|1_l = O, (r) in Q (4-4.15c)

" I

By defining the Lagrange multiplier as done in equation (4-4.l4) and (4-4.15), the

Lagrangian function in equation (4-4.l3) reduces to

SAW, T(q),q) = -£fJWAq(r, I) dr 61”“sz [q(r, t)-—q,m-(r, t)lAq(r, 0dr dt
0r4 0 4

(44.16)

Instead of fixing the Lagrange multiplier as prescribed in equation (4-4.14) and (44.15),

the negative of the Lagrange multiplier is calculated. Since the Lagrange multiplier is

homogeneous except for the residual term, changing the sign of the residual term only

changes the sign of the multiplier. Define the adjoint function as this Lagrange multiplier,

with describing equations

J

V . [k(r)V\p] +pC(r)%V+v - V[pC(r)w] + 2 ej(t)8(r—dj) = O,

j=l

(r) in Q

U0<t3rfl

(4-4.l7)
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-kz 13W, t)+[hz-pC(r)(v-ii)] Mr. I) = 0. (r) on no =1’2’3) (4—4.18a)

3" (t0<tStf)

k(r) BAH", t) + pC(r)(v ~13) w(r, t) = O, (r) on F4 (4-4.18b)

3" (t0<tStf)

WU, t)|,=,f = 0. (r) in Q (4-4.18c)

By defining the Lagrange multiplier in this manner, the directional derivative of the

Lagrangian reduces to

MW, T(q), q) = 1:: r{1113610, t) dr d! + arfiflrfqm t) —quz(r, t)]Aq(r, t)dr dt

(4-4. 19)

To determine the relationship between the directional derivative of the Lagrangian

and the function J, consider that temperature T satisfies the equations given in equation

(4-2.1) and (4-2.2), denoted T(q) , and the Lagrangian criterion simplifies to

AW, T(q), q) = J(T(q), q) (4-4.20)

This relationship is seen from equation (4-4.5) where all integral terms are zero for

T = T(q) . Assuming fixed multipliers, the directional derivative of equation (4-4.20) is

5A(\V, T(q),q) = 51(T(q),q) = DAqJ(q) (4-421)

Since equation (4-4.19) is also satisfied for T(q) , it can be rewritten using the result of

equation (4-4.21) as

Diqlm) = f" I w, z)Aq(r, 0dr dt + azfjr [q(r, t) — qpn-(r, z)1Aq(r, 0dr dz
0 r4 0 4

= (w + aT(q - qpri)’ Aq)E = (VJ, Aq)E(4-4.22)

Finally, the equation is in the desired from to identify the gradient of J, which is obtained

from equation (4—4. 1)
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VJ(r, t, q) = w(r, t) + 0tT[q(r, t) —qpn-(r, t)], (r) on I“4 (44.23)

With the derivation of the gradient VJ complete, the gradient search methods are dis-

cussed.

4-6.0 Optimization Method

The previous equations have presented the derivation for computing the gradient of

function J(q), which is minimized to determine the heat flux. Gradient search methods

are applied to compute the unknown heat flux.

Methods of steepest descent and conjugate gradient are common approaches to com-

pute the search direction. Steepest descent is quite inefficient and not recommended, but is

simple and illustrative. Gradient search methods use iterative techniques to search for the

minimum of an objective function. Beginning with an initial guess q0 for the heat flux, at

subsequent iterations the heat flux is

q"+1(r, t) = q"(r, t) + Aq(r, t), (r) on F4 (4-5.1)

The correction to the heat flux is

Aq(r, t) = —p"p"(r, t), (r) on F4 (4-5.2)

where p" is the search direction and p” is a scalar step size. For the steepest descent

method the search direction is

P"(r, t) = VJ(r, t, q") (4-5.3)

(It is actually the negative of the gradient, but the negative sign is incorporated in equation

(4-5.2).) The conjugate gradient method, which typically converges more quickly, com-

putes the search direction as follows (Arora, 1989)

p" = VJ(r, t, q") + [3"p"‘ 1(r, t), (n at O) (4-5.3a)
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P0 = VJ(r, t, (10). n = 0 (45.413)

where,

fi’jr {VJ<r. z, ammo, r, q"- l) — We, z. q")1}dr dz
 

B f’j [VJ(rt n-l)]2drdz
t l“4 ’ ’q

___ <VJ(q"), VJ(q"-1)- VJ(q"»E

“won-1)":

 (4-5.5)

Procedures to calculated the gradient V](r, t, q") have been outlined previously. Compu-

tation of the step size p" (a positive scalar) remains. The optimum step size is selected

based on reducing J(q) the greatest amount in the current search direction. Equivalently,

the following function is minimized

(MP) = J(q" - Np") (4-5.6)

for (p" 2 O) . The optimal step size, denoted {5", satisfies

(ii = _‘Luqn _ pnp") = O (4-5.7)

do" _ ., dp" .
P" - P P" = P"

The sensitivity problem, which calculates the changes in temperature due to a variation of

magnitude Aq in the heat flux, can be adapted to calculate the change in temperature due

to a variation in heat flux of magnitude p". Then the calculated temperature, which is lin-

ear with respect to q" , can be written as

T(r, z, (1" — pnp") = T(r, z, q") - p"é(r, z) (458)

where 6 is the adapted sensitivity function computed from the problem

V - (k(r)vé(r,z)) = pC(r)[-aa—té(r,t)+v-Vé(r,t)]. (52:11:?) (4-5.9)

o - f
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-kk—aTB6,(r z)+h 6(r, z)-_ O , (r) on I}, (1:1’2’3) (4-5.10a)

an (t0<tStf)

_k(r)—a—,é(r, z) = p"(r, z), (r) on F4 (4-5.10b)

3" (t0<tStf)

6(r, O): O, (r) in 52 (4-5.10c)

The adapted sensitivity problem differs from the original sensitivity problem in equation

(4-3.l3) and (4-3.14), only by the right hand side of equation (4-5.10b). In the original

sensitivity problem this is the function Aq. Using equation (4-2.4), the function ¢1(p") in

equation (4-5.6) becomes

<1>(p")-— J(q —pp"): 22f1T<d,,z;"(q —pp",)>—Y(z)1dz
j=l

1 ff ,2 _ _ n n 2 2

+20tT zOJnlq (r, t) qpn.(r,t) p p (r, t)] dr dz(4 5.11)

Substituting the variation in the calculated temperature from equation (4-5.8) gives

<1><p")-- 22 f {T(d,,z ;q)-p"91d, z) Y,(z)1 dz
j=l

l I 2

+ 2aT£0Jr,[qn(r, t) — (Jpn-(r, t) — p"p"(r. 1)] dr d! (4512)

After expanding the terms, equation (4-5. 1 2) is rewritten as

up"): 2p2f161d,.z11dz- p 2ft1m,t;q"1—Y,<z>1é<d,-,z>dz

1:1
j—l

+2+12]: [T(dj’tzqn)-Y
(1)] 2(111+

j=l

l f
n

n n
n

n ’1
2

iaTfioIr4{[
q (r,t)-CI,,,,-(

r, 01-29 p (f,t)[q (r’t)—qpri(
rzt)]+lp p 031)] }dr d!

(46.13)
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Taking the derivative with respect to the step size and solving for the optimal step size [3" ,

as shown in equation (4-5.7), gives

J

2 £:[T(dj, t;qn) — Yj(t)]é(dj, t)dt+ arfiflnpnu, t)[qn(§, t) ‘quz'("z t)]dr dr

—1
 

(Suzi-

J

‘
2

2 £36”?t)]2dt+arj‘::jr4[p"(r,t)]

dr dt

j= 1

(4-5.l4)

Utilizing the relationship between the directional derivative and gradient in equation (4-

3.3) and the directional derivative in equation (4-3.7), the numerator of this function is

J

2 £3“sz t;q") ‘ Yz(’)]é(djz ”‘1’ + arJZjBPWr, t)[q"(~£, t) — Chm-(r, z)]dr dz =

j= 1

(V1 (61"), p">E(4-5.15>

The step size in equation (4-5. 14) is rewritten as

IL. VJ(r, t, q")p"(r, t)dr dt

A ’0 4
p" : :

J
J

2 fléwj, t)]2dt + aTflfjr [pn(r, t)]2dr dt 2 "6911., ”"3; aTllpn”:

i=1 0 " “ j=1

(VJ(q"), p">z:
 
 

(4-5.16)

4-7.0 Implementation of the Gradient Method

4-7.1 Whole Domain

The derivation to solve the IHCP using a gradient search method and adjoint equation

approach have been presented. A summary of the solution with these methods, in the form

of an algorithm for a whole domain implementation are given next. Equations presented in

this section are identical to those derived earlier and are summarized here for clarity.
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1) Select initial values for the function q°(r,t) (n = 0). A common choice is

q0(r, t) = 0. If prior information is available set an-(r, t).

2 i) Solve the direct problem for the temperature T(r, t;q")

V-(k(r)VT(r,t)) = pC(r)[—a—T(r,t)+v-VT(r,t)], (r) i" 52 (4-6.1)

at (10 < t s. If)

_k, inr, z)+h, T(r, z) = f2.(r, z), (r) on 13"“ =1’2’3) (4—6.2a)

3" , (tO <15 1f)

-k(r)3.-T(r. t) = q"(r, t) . (r) on 1‘4 (4-6.2b)

3" (r0 < z g If)

T(r, 0) = T0(r) , (r) in Q (4-6.2c)

2 ii) Evaluate the residuals

eJ-(ti) = Yj(t,-) — T(dj, ti;q") (4-6.3)

3 i) Solve the adjoint problem to determine w(r, I)

a J

V . (k(r)V\1I(r, z)) + [pC(r)§—t-w(r, z) + v - V[pC(r)w(r, z))] + X ej(t)5(r—-dj) = 0

j: 1

(r) in Q (4-6.4)

(r0 < t S If)

-k.- 587w. z) + 1h.-— pC(r11v-zz)1w(r.z) = o, ”’ °" F" (' z" 2’ 3) (4-65a)
n (10 < z g If)

k(r) give, z) + pC(r)<v - zz) w. z) = 0. m °" r4 (4-6.51)
" (tO <13 1f)

w(r, t)|t = z, = O, (r) in Q (4-6.5c)

3 ii) Evaluate the gradient VJ(q")
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VJ(r, t, q") = w(r, z) + ozT[q"(r, t) —qpn-(r, t)], (r) on F4 and (t0< t 3 if) (4-6.6)

3 iii) Compute search direction p"

p"(r, t) = VJ(r, t, q") - Steepest Descent Method (4-6.7)

p"(r, t) = VJ(r, t, q") + [3"p” ‘1(r, t), (n ¢ 0) Conjugate Gradients (4-6.8)

p0 = VJ(q0), n = O Conjugate Gradients (4-6.9)

where,

fifjr {VJ(r’ I, qn)[VJ(r’ t’ q") - VJ(I’, t, (In— l)]}dr dt

fin = 0 4
 

2":er [VJ(r, t, q"'1)]2dr dt

___ (WW), VJ(q"")—VJ(q")>zs
 

  

2 (4-6 10)

IIVJ(q"-1)Ilz:

4 i) Solve the (adapted) sensitivity problem for 8(5, t)

V - (k(r)Vé(r, t)) = pC(5)[-a—é(r, t) + v ~ V60, 1)], (r) 1n Q (4-6.l 1)

at (10 < t _<_ tf)

(i =1, 2, 3)

—k2. 23—2260, 1) + h,- é(r, t) = O, (r) on I",- (4-6.12a)

(r0<ts If)

_ F

~k(r)—Q;9(r, t) = p"(r,t), (r) on 4 (4-6.12b)

3" (to <13 If)

é(r,0) = 0, (r) in Q (4-6.12c)

4 ii) Compute the optimal step size (1

f
‘7 n n

An _ 10L} J(r, t, q )p (r, t)dr dt — (VJ(q"), Pn>E

p - J 2 2 _ J 2 2
f - I n - n

.lejulewj, 1)] dt+a7£0jr4lp (r, 1)] dr dt _21I|9(d,-.t)llg+azllp HE

J : j :

(4-6.l3)
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5) Compute the improved value for the heat flux

q" + '(r, t) = q"(r, t) — fi"p"(r. t). (r) on F4 (MM)

6) Check for convergence of the estimated heat flux

2

ff],- [qnflvz t)-q"(r, 1)] 4’ dt = Ilq”+‘-q"||:~<€ (4-6.15)

‘0 4

If convergence has not been obtained let n = n + 1 and return to step 2 with the updated

heat flux. If convergence has been met, use the residual principle to verify that the correct

magnitude of (IT was used. The residual principle is

J

15(q") = 2 J:’[T(d,-, q")—Y,-(t)]2a't=1:52 (4-6.16)

1:1 °

2 . . . . .

where 5 IS the expected no1se or error 1n the measurements and 1‘ 2 1 1s a relaxat1on

parameter.

An iterative regularization method can be obtained in the above algorithm by allowing

the regularization parameter (IT to go zero. However, convergence is not evaluated by

checking that by changes in the heat flux are small as in equation (4-6.15). Instead, in iter-

ative regularization, the residual principal is used to select the number of iterations such

that equation (4-6.l6) is satisfied and the sum-of-squares function is reduced to its

expected value; once this is achieved the iteration process is stopped.

Sequentially implementing this method is discussed next. Insight to the solution pro-

cedures using the gradient method with adjoint equation approach is given in Section (4-

8.0) at the end of this chapter.
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4-7.2 Sequential Implementation

The usual application of a gradient method with adjoint equation approach would

solve the three problems over the whole time domain (tO < t S tf) , obtaining the estimated

function q(r, t) for all time. Consequently, any inaccuracies in the estimated function at

later times might influences the estimated function at early times. This dependence results

from simultaneously estimating the function for all time.

An alternative approach uses the sequential idea applied in function specification

method. A sequential approach is quite effective for estimating the heat flux. In addition, it

possesses other positive attributes. The components that are estimated at later times are not

influenced by the early estimates, less computer storage (and possibly time) is required,

and it is possible to linearize over the future interval and more efficiently solve non-linear

problems. Benefits of a sequential method are discussed in more detail in Section 5-2.0.

The sequential procedure can also be implemented for a gradient method using an

adjoint equation approach. This procedure applies the method over smaller time intervals.

Assuming that the function q(r, t) is known for times t S rm _ 1 , the unknown heat flux

over r-future time steps, tm _ 1 < t S rm + r_1 is estimated. Equations for the whole domain

implementation are identical to those for the sequential implementation; however, they are

solved over the time interval tm _ 1 < t S tm + r _ 1 . After obtaining a solution, the time inter-

val is shifted by one (or possibly more) time step(s) and the procedure is repeated until the

whole time domain is covered. In contrast to function specification it is not required to

assume a functional form for the heat flux, but such a procedure may be beneficial. With

this sequential approach, many shorter duration problems are solved, compared to the

whole domain approach that solves one large time duration problem. Operationally. it is
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straight forward to use gradient search methods in a sequential manner. Implementing

such a method, and the associated practical issues, are not as straight forward. Chapters 5

and 6 study and provide insight to this implementation.

It is anticipated that this sequential approach will result in great reductions in the use

of computer memory and have the potential to substantially reduce computational time.

More savings are expected as the number of measurements become very large. These

potential benefits are to be explored and are important parts of the proposed research. A

more in-depth discussion of the benefits associated with the sequential approach is given

in the subsequent chapters (Section 5-2.0).

The formulation of the problem and the describing equations are nearly identical for a

sequential implementation. However, the sequential implementation solves a series of

smaller problems over the time domain. The time domain (to < t S tf) is broken into a

series of sequential intervals each of length (tm_l < t S tm + r_ l) and solved for

m = l, 2, . . . .M, where M = (tf- t0)/At— r, AI is the time step, and r is the number

of future time steps. Assume that the heat flux for the sequential intervals up to and includ-

ing time tm _ 1 is known. It is desired to compute the heat flux for subsequent times. Simi-

lar to the whole domain implementation, the solution is presented in the form of an

algorithm.

1 For the first sequential interval (m = 1) and iteration (n = 0) select the initial values for

the function qO. Future sequential intervals (m > 1) use the estimates at the previous

sequential interval to specify the initial value. A common choice is q0(r, t) = 0. If prior

information is available set qpn-(r, t) .
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2 i) Solve the direct problem for T(r, t;q")

V - (k(r)VT(r, z)) = pC(r)[3T(r, z) +v . VT(r, n], (r) i“ Q (4-6.l7)
at (tm_1<tStm+,_1

_k, ainr, z)+h, T(r, z) = f2.(r, z) , (r) 0" Ff“ =1’2’3) (4-6.18a)

n (tm—l<tStm+r-—l)

—k(r)-:TT(r, z) = q"(r, z) , (r) 0" 1‘4 (4-6.18b)

n (tm—l<tStm+r—l)

T(r, tm_]) = T(r, tm_1), (r) in Q (4-6.18c)

2 ii) Evaluate the residuals

eJ-(t) = Yj(z)—T(dj,z;q") ,(tm_,<tszm+,_l) (4-6.l9)

3 i) Solve the adjoint problem to determine w(r, t)

a J

V . (k(r)Vw(r, r))+[pC(r)§7w(r,t)+v - V[pC(r)w(r, z)]]+ 2 ej(t)5(r—dj) = 0

j=1

(r) in Q (4620)

(tm-l <ts‘m+r—l

F, '=l,2,3

-k.-ierthz-parxv'fin Wat) = 0. (”on ‘ (I ) <4-6.21a>

an
(tin—l<tgtm+r—l)

F

k(r) inl(r,t)+pC(r)(v-fi) Wm) = 0. (r) on 4 (4-6.21b)

an (rm—l<t'<‘tm+r-l)

w(r, 0|! :2 = 0, (r) in Q (4-6.2|c)

3 ii) Evaluate the gradient VJ( q")

F

VJ(r,t,q”) _—. 111(r, t)+0tT[q"(r, t)—q2m-(r, 1)], (r) on 4 (4-622)

(tin—l <tstm+r—l)
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3 iii) Compute search direction p"

p"(,r t): VJ(r t, q")- Steepest Descent Method (4-6.23)

P"("z t) = VJ(r, 1. q") + [3”p" ‘1(r, t), (n ¢ 0) Conjugate Gradients (4-6.24)

p0 = VJ(qo), n = O Conjugate Gradients (4-6-25)

where,

[::”“'n[ {VJ(r, z, q")[VJ(r, z, q")— VJ(r, z, q" 1)1}dz- dz

B" = 

[:m _ [r [VJ(r, t, q"‘1)]dr dt

= (VJ(q"), VJ(q"' 1) — VJ(q")>E
 

 

 

2 (4—6.26)

IIVJ(q"“)||E

4 i) Solve the adapted sensitivity problem for 6(r, t)

V (k(r)V6(r, t))= pC(r)|:(%-—6(r, t)+v V9(r, 0], (r) 1n 0 (4-6.27)

(rm—l <tStm+r—l

- - F, ' =1, 2, 3

—k 1,90,04,19. 9(r,t) = 0, (r) on ' (l ) (4-6.28a)

an (tm—l<tStm+r—l)

(r) on F4

-k(r)§-"6(r, t)-— p"(r, I), (4-6.28b)

(tm—l<tStm+r—l)

6(r, 0) = O, (r) in Q (4-6.28c)

4 ii) Evaluate the optimal step size 6

[JIM IJF VJ(r, t)p"(r, t)dr dt

A 1 —1 4

P": m

it: '[é(d 1)]2dt+01 [”‘”'[ 1 "(r t)]2dr dz

I
j,

T (In-l 1.‘4 p ,

j-

V] n 2 n ‘

= J < (61 ) P >15 (“529)

z ||é<d,. 0112+ odnpnnz

j=l
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5 Compute the improved value for q

F

WHOM) = CI"(r,t)-15"p"(r,t). (r) on 4 (4-6.30)

(tm-l<tStm+r-l)

6 Check for convergence of the estimated heat flux

J'r JJm+I-l[(qn+l(r, t)_q"(r, t))]2dt dr ___ llqn+l_qn”2<8 (4-6,3])

4 ’m—1

If convergence has not been obtained let n = n + 1 and return to step 2 with updated heat

flux. If convergence has been met, store the heat flux for sequential analysis interval (store

l-components)

qes,(r, z) = q" +1(r, t), (zm_ 1 < IS tm+1_1) (4-6.32)

Then index sequential interval m = m + I and reset iteration to n = 0. Use estimated

heat flux from the current sequential interval to partially set initial guess for next sequen-

tial interval (an additional I-components must be specified to complete the initial guess).

Return to solution of direct problem (step 2.)

7 After final sequential interval check that proper magnitude of (1T was used with the

residual principle

J 2z 2
J(q") = 2r [T(dj, q”) — Yj(t)] dt =- 15 (4-6.33)

!

1= 1 °

2 . . . . .
where 5 1s the expected no1se or error 1n the problem and t 2 1 1s a relaxation parameter.

The selection of the Tikhonov parameter for this case does not take advantage of the

sequential implementation to improve the selection of the parameter during a solution.

Selecting the parameter after completing the solution for the whole time domain was cho-

sen to allow a direct comparison between a sequential and whole domain solution. It is



96

possible to sequentially select the magnitude of the Tikhonov parameter at each sequential

interval. In a sequential selection of the parameter, equation (4-6.33) is evaluated at each

sequential interval and criteria are specified to vary the magnitude of the Tikhonov param-

eter. In a sequential application of equation (4-6.33) the results would likely be more sen-

sitivity to local errors, and some constraints based on previous values of the Tikhonov may

be need to prevent large fluctuation in the parameter from one sequential interval to the

next.

4-8.0 Parameterizing the Solution (Finite-Dimensional Problem)

The derivation up to this point does not assume information concerning the functional

form of the unknown heat flux. The problem, in general, has been considered infinite

dimensional. This approach permits estimating a functional representation of the heat flux

without having to specify information concerning the unknown function. Of course for

realistic problems, obtaining a solution requires a numerical procedure. Any numerical

procedure chosen will require discretizing, both on space and time, and consequently

making assumptions about the form of unknown function. These assumptions are not too

restrictive for most cases and the function can be estimated at the discrete grid points. If

however, information is available, or assumed, concerning the heat flux, the solution can

be constructed as a special case of the generalized solution methodology presented for the

infinite dimensional problem.

Consider the case that information about the form of the heat flux is known. A general

form for the known information can be represented as

P M

q(r,!) = 2 zqz,k¢z(t)<pk(r) (4-71)

k=1i=l
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where ¢z(’) and (pk(r) are basis functions on time and space and qi’ k is the parameter-

ized heat flux. When the heat flux is represented in the form of equation (4-7.1), solving

for an adjoint function is not required to compute the gradient VJ . Standard differential

calculus can be used to compute the partial derivative with respect to each component of

heat flux BJ/qu, k. When there are a relatively small number of components this approach

is suggested. However, for the multi-dimensional problem a large number of components

are required to represent the spatial, time varying heat flux. Hence, the solution for the

finite dimensional representation of the heat flux is presented as a special case of the infi-

nite dimensional problem.

As stated previously, solving realistic problems requires using a numerical procedure.

Regardless of the numerical method selected (finite element, finite difference, boundary

element, or finite control volume) the spatial and temporal domains required discretizing.

Consequently, even the infinite dimensional problem requires the heat flux to be

represented in a finite dimensional form, as shown in equation (4-7.1), when solving with

a numerical procedure. For the finite control volume numerical method, assuming that the

quantities are constant over the control volume, P is the number of control volumes on

surface F4 and M is the number of time steps. It is well understood that improved

numerical accuracy is obtained by decreasing the size of the control volumes and time step

when solving the direct problem. Although this improves the numerical accuracy of the

direct solution, it also increases the number of spatial heat flux components and decreases

the magnitude of the time step. Estimating a larger number of spatial components or at

smaller time increments makes the inverse problem more ill-conditioned. Hence, refining
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the spatial and temporal grid size for a numerical method will not necessarily improve the

accuracy of the inverse problem, in fact it will likely produce a larger variability in the

estimated function. If however, some smoothing or prior information is used, as in

equation (4-7.1), accuracy will not be significantly affected.

Modifications of the solution for a heat flux represented as in equation (4-7.l) are

mainly in the computation of the gradient. Implementing the finite dimensional case using

an adjoint equation approach is given in Jamy et al. (1991) and Alifanov (1994). Assum-

ing the update to the heat flux, Aq(r, t) has the same form as the heat flux, and substitut—

ing these approximations into the directional derivative in equation (4-4.22) gives

P M

DA,J(q) = 2‘, Z J” J we, z)¢,-(z>zp,.<r>Aq(r, z)dr dz

1' I F,k = 1:

P M P M

z

+ az 2 2 2 2 J0 Jr41¢.(z)<p,.(r>q(r. z) — q,.,-<r. z)1¢,(z)<p,(r)Aq(z-, t)dr dz

l=lj=lk=11=1

(4-7.2)

Equation (4-7.2) can be arranged to determine the gradient

P M

DAqJUI) = Z 2 VJz, kqu, J. (47.3)

k=li=1

where

P M

V‘IiJz = Yz,k+aTZ 2Si,k,j,1[q(rzt)—qprz(rzt)]~ (1:1’2’ W’M) (4-7.4)

I=Ij=l (k:1,2,...,P)

P M

7.1. = 2 2 f’ J we. z)¢z,-<z><p,.(r)dr dz (4-7.5)

k=li=l “F.

Si,k,j,l = J:In¢,-(t)(Pk(r)¢,-(t)(p,(r)dr dz (4-7.6)



99

Thus, once the adjoint function \JJ(r, t) is available, 72-, k is computed by integrating with

the known basis functions. Similarly the weighting for the regularization Si, k, j. I is com-

puted by integrating.

Restricting the more general infinite dimensional problem to a finite dimensional

domain is straight forward. After solving for the adjoint function, the gradient for the finite

dimensional representation of the heat flux is an integration of the adjoint function with

the associated basis function. Other quantities computed in the solution, such as parame-

ters for the search direction and step size, are performed in the finite dimensional space,

 
i.e.,( , )R, and II IR”.

4-9.0 Summary

A formulation to solve the multi-dimensional IHCP using a conjugate gradient search

method with an adjoint equation approach was derived in Section 4-1.0 to 4—6.0. The

describing differential equations for solving in a whole domain implementation, herein

referred to as the whole domain gradient method (GM), were presented in algorithm for—

mat in Section 4-7.l. The formulation for a method that solves the IHCP sequentially in

time was also given in an algorithm format in Section 4-7.2. Studying this sequential

implementation, herein called the sequential gradient method (SGM), is a major objective

of this dissertation. The algorithms, for both GM and SGM, were formulated for the most

general case, allowing the estimated heat flux to be described as a function (infinite dimen-

sional). As a special case, restricting the estimated heat flux to a finite dimensional space

was discussed in Section 4-8.0.
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Solving the IHCP with a gradient method requires solving three problems, which are

denoted the direct, adjoint, and sensitivity problems. Results from the solution of each

problem provides an input for the subsequent problem. Residuals computed from the solu-

tion of the direct problem, equations (4-6.17) and (4618) are the driving term in the

adjoint problem in equation (4-6.20) and (4-6.21). The search direction computed with

information from the adjoint function is the driving term in the sensitivity problem in

equation (4-6.27) and (4-6.28). If the measured temperatures are known “exactly” i.e.,

residuals are zero, all three problems have a homogeneous solution. For inexact data, as

iterations progress the solution of the three problems should converge towards a homoge-

neous solution.

The remaining chapters study the solution of the IHCP using the GM and SGM. In

Chapter 5 a detailed discussion of the benefits of a sequential implementation are

addressed. Because many of these benefits are related to the numerical solution, a discus-

sion of the numerical aspects are given first. In the remainder of Chapter 5 the methods are

applied to the one-dimensional IHCP. Although a two-dimensional formulation is given, a

one-dimensional solution is obtained as a special case of the two-dimensional formulation.

In general, it is not recommended that this solution technique be applied to a one-dimen-

sional problem. However, to gain insight to the SGM and understand it better, a one-

dimensional solution is an appropriate beginning to the investigation. After investigating

the one-dimensional problem, Chapter 6 progresses to study the two-dimensional prob-

lem.



Chapter 5

APPLICATION OF THE SEQUENTIAL GRADIENT METHOD:

ONE-DIMENSIONAL IHCP

5-l.0 Introduction

Cases are presented in this chapter to study the sequential gradient method. The accu-

racy of the sequential implementation, as compared to the whole domain, is also quanti-

fied. Addressing issues of accuracy for inverse methods is an important topic. Though

there are many methods for solving the IHCP, few methods have had detailed studies con-

ducted on their accuracy. Investigations of the accuracy of inverse methods are presented

by Beck and Murio (1986), Raynaud and Beck (1988), and Scott and Beck (1989). Beck

and Murio (1986) compared a whole domain solution with a sequential implementation

combining function specification and Tikhonov regularization. The work by Scott and

Beck focussed on the sequential regularization method while Raynaud and Beck com-

pared four methods for solving the IHCP. In these papers, however, simulated cases, with

known heat flux, are analyzed to quantify the accuracy of the inverse methods. These ideas

are also applied in this investigation. In particular, standard test cases for which the heat

flux is known are analyzed and the accuracy is quantified for the sequential implementa-

tion as well as the whole domain approach, which is the usual application of this method.

Hence in addition to studying the sequential method, this dissertation provides insight to

the whole domain solution.
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An important issue in an inverse analysis is the effect of measurement errors on the

solution. Many researchers study this effect modeling the errors with standard statistical

assumptions, which is beneficial and also pursued in this investigation. Additional insight

is gained from an analysis with actual experimental measurements. Hence, in addition to

the studies with simulated errors, an experimental case is presented. The case has the

unique benefit, in that transient temperature and heat flux histories are both measured.

Since the heat flux is measured, the “true” heat flux, within some experimental uncer-

tainty, is known. This experiment permits comparison between the estimated and mea-

sured flux.

A new competitive sequential method is presented in this chapter. In addition to

studying the sequential gradient method a modification of the sequential implementation

is suggested that improves the computational requirements of the sequential method. The

new method combines function specification with the sequential gradient method. Imple-

menting a gradient solution, but assuming the heat flux is a prescribed function over the

sequential interval is studied. Prescribing a functional form for the heat flux over the

sequential interval is shown to reduce the computational requirements compared to a stan-

dard sequential implementation.

Associated benefits of a sequential implementation of gradient methods and the

numerical procedures to obtain a solution are discussed in next section. Several test cases

to simulate experimental data are given in Section 5-3.0. Results of the one-dimensional

analyses with simulated exact data, data corrupted with measurement errors, and experi—

mental data are presented in Section 5-4.0.
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5-2.0 Advantages of a Sequential Method and Numerical Solution of the

IHCP

This section discusses the benefits and advantages of a sequential implementation for

solving the IHCP. Because these advantages are closely related to the numerical solution,

the numerical method to solve the IHCP is discussed first.

S-2.1 Numerical Solution

A numerical solution for the two-dimensional IHCP is developed using a finite con-

trol volume (FCV) method. Numerically solving the IHCP using a gradient method and

adjoint equation approach requires the solution of three partial differential equations rep-

resenting the direct, adjoint, and sensitivity problems. Describing equations formulated for

the three problems are given in equation (4-6.17) and (4618), equation (4-6.20) and (4-

6.21), and equation (4-6.27) and (4-6.28), respectively. Fortunately, the differential equa—

tions are similar and numerical computations required for one problem apply for the other

problems. A detailed derivation of the FCV equations are given in Appendix A.

The numerical solution was developed for the two-dimensional problem using an

alternating direction implicit (ADI) scheme. A one-dimensional solution is obtained as a

special case. The FCV equations for the direct problem are represented as a two step solu-

tion

1K11{T""”2} = {0"} (5-2.1)

} = {EMW} (5-2.2)
n+1

[K21{T

where [K 1] and [K2] are the standard FCV tri-diagonal matrices, {T"} is a vector of

n+l/. 2
unknown temperatures for t1me n, and {0"} and {E } are vectors of known
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information for the respective time steps. The two sets of equations represent the two steps

of an ADI scheme.

All three problems, direct, adjoint, and sensitivity, require solving a set of equations

similar to those shown in equation (5-2.1) and (5-2.2). Since the problems are similar, the

tri-diagonal matrices ([K1] and [K2]) are identical for the three problems and require

computation only one time for constant thermal properties, i.e., a linear problem. Further-

more, when solving the tri-diagonal set of equations, computational savings are possible

for the linear problem. This is true for a whole domain as well as sequential solution.

However, for non-linear problems with a sequential solution it is possible to temporarily

linearize and benefit from the computational savings associated with linear problems.

Aspects of this procedure are discussed below.

5-2.2 Sequential Solution of IHCP

Benefits of applying a sequential solution for the IHCP are addressed. Several sup-

porting reasons for a sequential solution are discussed. Although not all reasons are inves-

tigated in this dissertation, nor verified, it suggests the possibility of growth for the

sequential gradient method.

1. A sequential method can be implemented in an on-line or “real” time mode. For exam-

ple, in the monitoring of surface heating during the flight of a space vehicle, data can be

collected for a short period then the surface heat flux can be computed in “real” time.

2. Estimated values much later in time do not affect the estimates at early times when

solving sequentially. When solving in a whole domain approach, all temporal compo-

nents are simultaneously estimated. Consequently, errors in estimated components will

pervade all estimates. It is physically unreasonable that this occurs because of the para-

bolic nature of the describing equations. Furthermore, values near the final time, which



105

are known to be difficult to estimated, must be estimated and the errors in these compo-

nents may impact the others. Since a sequential approach solves on a subset of the

whole time region, or sequential region, estimates at later times do not impact early

estimates, which is physically reasonable.

. For nonlinear problems, due to temperature dependent thermal properties or other tem-

perature dependent coefficients in the differential equation, the sequential method per-

mits the problem to be temporarily linearized. This is an important point, because it is

not possible when solving on the whole time domain. Since the problem is solved on

the shorter sequential interval, it is valid to assume that the temperature dependent

quantity is constant during the sequential interval (r-future time steps). The validity of

this assumption depends on the degree of non-linearity in the problem. In most applica-

tions the non-linear term is not known with sufficient accuracy to justify accounting for

the non-linearity during the temperature change seen in a sequential interval. To linear-

ize, thermal properties and temperature dependent variables are evaluated at the initial

temperature distribution of the sequential interval. Consequently, computing matrices

[K1] and [K2] is required only at the beginning of each sequential interval. The matri-

ces apply for all three problems and it is not required to recompute the matrices during

the iteration procedure. Conversely, the whole domain approach requires re-computing

the matrices at each time step as the temperature varies over the time domain. Matrices

must be recomputed at every iteration.

. Related to point 3., is the computational savings that can be realized in the solution of

the tri-diagonal system of equations. Since the problem is linear (temporarily) for a

sequential approach, the intermediate coefficients required to solve the tri-diagonal sys-

tem can be saved after solving the direct problem and need not be computed until the

next sequential interval, when the initial temperature, and coefficients, change. Examin-

ing the algorithm illustrates the point. Assuming the tri-diagonal matrix [K1] has main

diagonal C1,, sub-diagonal A1,,- and sup—diagonal B the system is solving by the
1,1"

Thomas algorithm using the recursive relations (Anderson et al., 1984)

B0 = C1, 0 (5-2.3a)



 

A1 iBl z—1 .
51: 12— ' ' ,z=1,2,...N (5-2.313)

13,--1

n

_ Do
yo — — (5-2.3c)

Bo

D'.'-A . .

y,- = ' "‘Y“l,i=1,2,...N (5-2.3d)

B.-

The solution of the temperature is

1/2
T2: = 7N (5-2.4a)

B _Tzz+1/2

Tj””2=y,——"—'—B”—‘,z=N—1,N—2,...1,o (5-241))

1'

Since the problem is linear (temporarily), the coefficients A 1’ ,- , C1, 2. , and, 3U are the

same for the direct, adjoint, and sensitivity problems. Consequently, after computing

and storing [3,. in equation (5-2.3b), this step is by-passed in subsequent solutions. A

similar procedure is used to store the coefficients from the second step in the ADI

scheme. Computations in the following steps, equation (5-2.3c) and (5-2.4a) and (5-

2.4b), are required for every solution. For a linear problem, both the sequential and

whole domain methods can benefit from this computational saving.

. Solution of the adjoint and sensitivity problems can use the zero initial condition and

fact that driving terms in the equations tend to have oscillating signs to reduce computa-

tions by marching on space and/or time. The possibly oscillating signed driving terms,

residuals e2(t) in the adjoint problem and search direction p"(r, t) in the sensitivity

problem, will localize the effects. It may be possible to consider the solution on a subset

of the time domain or physical domain because the effects are localized. A whole

domain approach might benefit from such an approach, but because the sequential

implementation focuses on a restricted time region it is more likely to benefit.
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6. The magnitude of the Tikhonov regularization parameter can be adjusted in a sequential

implementation. Again, this is not restricted to the sequential implementation, but is

more practical to implement in a sequential method because current information is

available to select the magnitude of the Tikhonov parameter. This permits more accu-

rately estimating rapidly changing functions with less bias.

7. Additional heat flux components can be retained in a sequential implementation. This is

an advantage compared to a standard function specification solution, because additional

bias is not introduced with the function specification approximation. More components

from the solution over a sequential interval therefore may be retained.

5-3.0 Simulated Test Cases

Several standard one-dimensional cases are examined. Test cases include heat flux

functions that vary in a triangular, step, and sinusoidal manner with time. The one-dimen-

sional geometry is a slab of thickness L with an unknown heat flux at x = O , insulated on

the surface at x = L, uniform initial temperature, and constant thermal properties. Since

the IHCP is very sensitive to measurement errors, to reduce the possibility of numerical

errors, analytical solutions (when possible) are employed to generate simulated data.

Mathematically the problem is represented as

 

 

 

a Tj.’ aTj'
2 = ‘—+ (5-3.I)

ax“ az

ar‘.‘
_ a i = q:(z*) = ? (5-3.2a)

x 22+:

6T:
2 = 0 (5-3.2b)

ax

T:(x+, 0) = 0 (5—3.2c)
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where i = 1, 2, 3 for the three prescribed heat fluxes studied. To remove the dimensional

dependence and facilitate the investigation, dimensionless variables were introduced in

equation (5-3. 1) and (5-3.2). The dimensionless variables are

 

q: = 3- (5-3.3)

4N

T--T

TI = ' 0 53.4

' (qNL/k) ( ’

1+ = @1291 (53.5)

L

+ x

= — - .6x L (5 3 )

Symbol qN is a nominal value of the heat flux, k and pC are the thermal properties, T0 is

the uniform initial temperature, and L is the plate thickness in equation (5—3.3) through

(5-3.6).

Three forms of the prescribed (assumed unknown) heat flux (q?) are examined. A tri—

angular heat flux

0 (I+<0)

+ < +< +

CIR?) = [ t (0” _Ih/z) (5-3.7)

t+—2(t+-—I;/2) (tZ/2<I+SI;)

O (t+>t;) K
which increases linearly to a magnitude of t;/2 then decreases linearly until reaching

zero, and is zero elsewhere. The second variation is a step change in the heat flux
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0 (t+<0)

+ +

‘12“ ) = i 1 (OSt+St;) (5-3.8)

J O (t+>t;)

which increases to a magnitude of one at t+ = 0 , remains constant until t+ = t; and then

returns to zero. The final heat flux is a sinusoidal heat flux. It represents one-half the

. 1t 31: . .

perrod {—5, 3-) of a s1ne wave between zero and t+ = I; , and 1s zero elsewhere

 

,

O

(t+<0)

+z+ — 1 - ’+ 1 + + 539
‘13()-< isrn—n2:+§ +1 ogzgzh ('-)

’zz

[ O (t+>t;)

A constant is added to the sinusoidal heat flux to maintain a nonzero flux.

Analytical solutions are readily generated for these three cases. Solutions can be

obtained using Greens functions (Beck et al., 1992). Although the test cases mentioned are

standard cases and it is not difficult to solve for the temperature, closed form expressions

are not typically given in the literature. Beck et al. (1985) give the closed form solution for

a linear heat flux at the boundaries (x = 0, L). For completeness, the closed-form expres-

sions for the temperature solutions with the three specified heat flux functions are pro-

vided.

For the triangular heat flux the solution is built using superposition of a heat flux

which increases linearly with time (q+ = t+ ). The temperature due to the linearly varying

heat flux is



+2
+++_t 1+2+l 1M1+31+21

¢l(x,t)——é—+[x —X '1' “It +[2—4x ~6x +6x —'4-5]

+2 0° 1 2 2+
+7212 —4ccos(mrtx)[exp(——m 1: t )](5-3.10)

The temperature solution for the triangular heat flux in equation (5-1.7) follows as

 

u*<0)

+ + +
+ +

.x , t <: 3<

41m". t“) — 2<1>I'(zc",t+ — III/2) (z;/2 < z+ _<. z;)

1 (q(x", 1+)— 2¢f(x*, z+ — z,j/2) + ¢f(x*, z” — z;) (,+ > ti)

(5—3.l 1)

Similarly, the temperature solution for the step help flux is built using superposition

of a constant heat flux.The temperature solution for a constant heat flux (q+ = l ) is

00

¢;(x+, t+)= t + [1x+2 —x+ + l] — —2— —1—2- cos(m1rx)exp(—m211:2t) (53.12)

2x 3 K2 17712
n =

For the step change in the heat flux, equation (5-3.8), the temperature solution is

(1+ <0)

T+ + + — 4 + + + + +

 
+ + + + + + +

\ ¢2(X 3t )—¢2(X rt _th) (t+>t;)

The sinusoidal heat flux in equation (5-3.9) is the sum of a sine function and a constant,

hence, superposition of these solutions is used. The sinusoidal part of the heat flux,

q+ = sin [—1t(21+/t; + l/2)] , has a temperature solution
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+

00

th t+ l 1

¢;(x+, f) = ECOS[—n[2-+ + 2]] +4t; 2 [m4 4 +2 2:|cos(m11‘.x+)

th m=1 “’1. +41:

+ +

{21tcos[—1t[2-t: + a] + mzrtzt;sin [—1c(2t—+ + g] + mZTtZIZexp(—m21t2t+)} (S-3.14)

th ’11

The temperature solution for the sinusoidal heat flux in equation (5-3.9) is

 

 

1

0

(t+ < 0)

73oz“, z“) = i1 130*, z“) + ¢§(x+. z”) (0 S ti 5 ’Z)

1 ¢§<x+, z“) — «1306', z+ _ z;) + ¢§(x*, z*) — <1>§(x+,t+ — 12) (z+ > t2)

(5315)

Data for the simulated temperature and heat flux are shown in Figure 5-1, 5-2, and 5-

3 for the triangular, step, and sinusoidal heat flux. All three cases demonstrate the effect

that makes the IHCP difficult, mainly the lagged or delayed response in the temperature at

the back surface due to the heat flux on the opposite surface. The temperature response is

delayed relative to the application of the surface heat flux. The more gradual the variation

in the surface heat flux is, the greater this delay becomes, as seen by comparing Figure (5-

2) and (5-3). The temperature response at the sensor location is damped also. That is, the

magnitude of the temperature response at the sensor location is smaller that the response at

the surface where the heat flux is estimated. These temperature data are used to estimate

the surface heat flux.
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Figure 5-1 Simulated temperature and heat flux data for the one-dimensional triangular

heat flux
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Figure 5-2 Simulated temperature and heat flux data for the one-dimensional step heat

flux test case
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Figure 5-3 Simulated temperature and heat flux data for the one-dimensional

sinusoidal heat flux test case
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5-4.0 1D Results - Simulated Measurements

One-dimensional test cases are presented to study the sequential implementation.

Implementing such a method is not recommended for the usual one-dimensional prob-

lems; it is applied in this case to develop an understanding of this new method. (Nonlinear

problems may be an exception for using the sequential method for one-dimensional prob-

lems.) Three functional forms of the heat flux, triangular, step, and sinusoidal, serve as test

cases. Investigations with exact data and data corrupted with errors are conducted. Errors,

denoted 8n(dj, t) , are assumed additive

Y(dj, t) = T(dj, t) + en(dj, t) (54.1)

with a normal distribution, zero mean, constant variance, and uncorrelated. The true tem-

perature T(dj, t) is computed from the analytical solutions, see Section 5-3.0. Random

errors are generated with routines in MATLAB.

5-4.l Exact Data (no Measurement Errors)

The three test cases are analyzed with exact data (an = O) for a dimensionless time

step of 0.06 and a total of thirty time steps. Values selected for r are five, eight, and ten.

Results are shown for the triangular heat flux in Figure 5-4. Graphic results are not shown

for the step and sinusoidal test cases using exact data, but the analyses are discussed. Esti—

mates for the final sequential interval (tf — rAt < t < If) at the end of the time region are

not considered reliable and not reported. The results of the estimations are similar with

less than a five-percent difference in the whole domain and sequential implementation;

errors are largest near areas of sudden change in the surface heat flux.



116

 

 

H
e
a
t
fl
u
x
(
d
i
m
e
n
s
i
o
n
l
e
s
s
)

  
 

0.8 ' T T T I I t I . I

o——oGM 4

HSGM r=5

0 6 _
<>"—">SGI\A r=8 ..

' HSGM r=10

— Exact

0.4 -
-

0.2 -
.

0.0 " i-T "3‘: ;;:: _

-02 . I 1 1 1 1 . 1 1 1 .

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

+

t

Figure 5-4 Estimated heat flux for one-dimensional triangular test case with exact data
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Table 5-1 Estimation results for exact simulated data

 

 

      

Iterations

. Tikhonov Comp S1’ 0D

Analysrs per time 2

Method domain 0‘7" total seq int (sec) (°C) W/m
  

Triangular Flux (O’ = 00°C)

 

 

 

 

 

GM whole 0.001 7 - 2.14 8.59 13-04 0.0094

SGM r = 5 0.0001 1 78 3.0 3.64 8.64 E-04 0.0046

SGM r = 8 0.00087 87 3.8 6.86 8.72 E-04 0.0094

SGM r = 10 0.00107 87 4.1 8.64 8.72 E-04 0.011        
 

Step Flux(6 = 00°C)
 

 

 

 

 

GM whole 0.001 8 - 2.38 3.12 E-03 0.116

SGM r = 5 0.00014 79 3.0 3.56 3.17 13-03 0.109

SGM r = 8 0.0009 96 4.2 7.29 3.12 13-03 0.097

SGM r = 10 0.001 102 4.9 9.85 3.08 E—03 0.101       
 

 

Sinusoidal Flux (0' = (10°C)
 

 

 

 

 

GM whole 0.001 6 - 1.85 1.71 E-03 0.043

SGM r = 5 0.00012 80 3.1 3.48 1.70 13-03 0.044

SGM r = 8 0.0009 84 3.7 6.38 1.71 E-03 0.051

SGM r = 10 0.001 86 4| 8.34 1.71 E-03 0.050          

Results from the analysis with exact data are given in Table 5-1 for estimating the

three heat flux functions. The first column identifies the method, whole domain gradient

method (GM) or a sequential gradient method (SGM). The second column lists the analy-

sis domain investigated, either whole domain or sequential with the value of r specified.

The Tikhonov regularization parameter is given in column three. Since exact data are

used, the regularization parameter is specified as 0.001 for the whole domain analysis and
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varied to produce the same sum-of—squares error (column seven) for the sequential analy-

sis. The number of iterations, both total and average number per sequential interval, are

given in columns four and five. Computational time is listed in column six. Measures of

the error in temperature and heat flux are given in columns seven and eight, respectively.

The error in the temperature is computed as

1

J N 5

l 2
S}, = {mg 2 [T(dj,t,.)—Yj(ti)] } (5-4.2)

j=1i=l

Equation (5—4.2) represents a measure of the error in the sum-of-squares function JS in

equation (4-2.4). The residual (discrepancy) principle states that the error, Sy in equation

(5-4.2), should be reduced to its expected value, Alifanov (1994). Error in the estimated

heat flux is

1

P N 5

A 1 A

CD = {mkx z [(1070 t,-)-61(rk, 1,112} (5-4.3)

= 11': 1

where q(rk, ti) is the true heat flux at location rk on F4 and time ti and 21 is the estimated

value with no measurement errors. Equation (5-4.3) is referred to as the deterministic bias,

or just bias, (Beck et al., 1985), since the estimated heat flux is computed without mea-

surement errors. The deterministic bias represents the bias that is introduced by the inverse

method itself; some bias is required to stabilize the ill-posed problem.

The estimated heat flux can more closely approximate the triangular shape for small

r-values using the SGM, particularly near the peak, see Figure 5—4. A smaller Tikhonov

parameter permits the SGM to more accurately reproduce the peak, with less bias or

smoothing of the estimated heat flux. It is interesting that the Tikhonov parameter is
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reduced for the SGM at small values of r. The problem is more ill-posed for the SGM

compared to GM. Hence, it was anticipated that the Tikhonov parameter would increase,

but it decreases instead. The decrease in the Tikhonov parameter is required, even though

the problem is more ill—posed, to permit the solution the “flexibility” to reduce the sum-of-

squares to the magnitude specified by the residual principle. Regularization, tends to

“stiffen” the inverse problem. When solved in a sequential manner, estimates near the end

of the sequential interval are biased low (discussed below). To compensate for the biased

estimates near the end of the interval the Tikhonov parameter must be reduced to permit

“flexibility” in the first components and obtain the correct magnitude for the sum-of-

squares. Note that as r is increased, the Tikhonov parameter also increases towards the

magnitude specified for the whole domain solution.

Several observations are drawn from the analysis with exact data. The computational

time required for the sequential implementation was significantly more (by a factor or 2 or

greater) than the whole domain solution. Larger magnitudes of r required additional com-

putational time. Five was the minimum number of future times that could be used, which

represents a dimensionless time based on the sensor depth of t: = 0.3. Fewer than five

future steps, or more importantly a dimensionless time of 0.3, results in the estimated heat

flux being biased low. The additional computational time required and minimum number

of future time steps for the sequential implementation are explained by examining the

characteristics of the gradient method near the end of the time interval.

For illustrative purposes, consider that the steepest descent method is the iterative

search method used. In this case the search direction is (the negative of) the gradient,

which is related to the adjoint function. The heat flux at iteration n + 1 is
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q" +1(ht) = q"(r, t) — 15571:, t). r 3 F4 (5-4.4)

For the steepest descent method this becomes

q“ 10‘, t) = qn(f, t)-(3"VJ(r, t),r3F4 (5-4.5)

Substituting for the gradient from the relationship developed for the adjoint function, gives

q" + 1(r, z) = q”(r, t) — p"{w(r, t) + aT[q"(r, t) — qpn-(r, 0]} , r 3 r4 (5-4.6)

Recalling that the adjoint function is prescribed to be zero at the final time, equation (4-

6.21d), equation (5-4.6) shows that updates to the heat flux approach zero at the final time.

Consequently, the estimated heat flux near the final time is biased. If no prior information

is used, qpn-(r, t) = 0, the estimated heat flux at the final time is approximately (the dif-

ference is the Tikhonov regularization term) the same as the initial guess (n = 0),

q" + 1(r, tm + r__ 1) z q0(r, tm + r _ 1) . For a zero initial guess the estimated value at the final

time is identically zero, q" + 1(r, t 0.
m + r— 1) =

It is not unreasonable to specify that the flux components near the final time approach

zero. Nor is it unreasonable to specify that the adjoint function be zero at the final time.

Very little information is available concerning the flux components near the final times.

Due to the lagging effect of the temperature response at the senor location to variations in

the surface heat flux, there is not time enough for information about the components near

the final times to reach the sensor. The magnitude of the lagging effect depends on the

dimensionless time (based on the sensor depth). For the same reason, the adjoint function,

which is shown to be closely related to the gradient, is insensitive to the components near

the end of the time interval. Appropriately, it is specified as zero there to simplify its com-

putation.
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The inherent difficulty of estimating the heat flux near the end of the time domain is

more influential for the sequential implementation because a smaller number of time steps

are considered. As stated previously, for sequential intervals shorter than a dimensionless

time of 0.3 (five steps for these cases) results in biasing of the estimated heat flux. At the

threshold of 0.3, the response at the sensor and sensitivity is large enough such that the

estimated heat flux is not biased at the first time step of the sequential interval (the one

retained for a sequential interval). Components beyond the first time step are biased due to

the insensitivity of the temperature to these components.

An anticipated benefit of a sequential implementation is an improvement in the com-

putational efficiency. The expected improvement is based on the premise that after the first

sequential interval (t0 < t < tO + rAt) an accurate initial guess for the estimated heat flux

is available from the previous sequential interval. With an accurate initial guess it was

expected that few iterations, possibly one, would be required to converge after the first

sequential interval. Computational savings may not be realized for the one-dimensional

problem because the conjugate gradient method is quite efficient. Results indicate that

approximately the same number of iterations are required for all sequential intervals. A

result that indicates the conjugate gradient search method is insensitive to the initial esti-

mate. With a seemingly accurate initial estimate, convergence is expected within a couple

of iterations, especially for the one-dimensional problem and should improve after the first

sequential interval. This was not realized. the reason is discussed next.

The computational time required for the whole domain approach was 50-90% less

than the time required for a sequential implementation for r=5, see Table 5-1. As more

future time steps were considered. the computational time increases significantly, nearly
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doubling for an increase from r=5 to r=8. Additional iterations, which in turn increases

the computational time, are required for the sequential implementation because of the

biasing in the estimated heat flux near the end of the sequential time interval. The biasing

of the estimates to zero (or a prescribed constant) results from the definition of the adjoint

function, which is prescribed to be zero at the final time. The sequential implementation

accentuates this effect, which was not expected to have such a significant effect. This was

not expected to be significant because only data at the first time step is checked for the

convergence. What was not realized was that in a sequential interval, the estimates at the

end of the time interval influence the estimates at the beginning of the time interval. Fur-

thermore, predicting the effect of the biasing is a difficult proposition. Its influence

depends on the variation of the (unknown) heat flux. Such an effect is difficult to predict or

anticipate.

Examining the estimates at each iteration for a sequential interval gives insight to this

effect. Estimated values for the triangular heat flux at each iteration for the sequential

interval beginning at I: = 0.12 are shown in Figure S-Sa, b, and c, for r-values of 5, 8 and

10, respectively. For r=5 in Figure 5-5a the initial estimate (n = 0) , set from values at the

previous sequential interval, is inaccurate. Biasing of the estimated heat flux resulted in a

40% error in this component during the previous sequential interval. At larger magnitudes

of r in Figure 5-5b and c, the effect at the beginning of the sequential interval is less pro-

nounced. However, the estimate at the first time step, which is the component retained for

a sequential interval, varies with iteration. For r=10 the converged estimate (at n=4) for

the first component varies only 2-3% compared to the initial estimate (n=0). The first com-

ponent varies 10-30% while iterating (n=1 and 2). Variations in the estimates are caused



123

 

   
 

0.80 ' I I I I I ' I ' I ' I ' I

G—ano

13—E1n=1

<>—<>n=2

3;, 0.60 r 1 “1:3

'QE’ — Exact

.2
a
0.)

.§.

3 0.40 — ~

é
a:

g 1

I

0.20 r .

0”8.00 I 0.10 L 0.20 ‘ 0.30 ‘040 I 0.50 l 0.60 I 0.701 0.80

+

t

Figure S-Sa Estimated one-dimensional triangular heat flux with no measurement

errors for sequential interval beginning at time 0.12 for r = 5



124

 

 
 

0.80

i3

.5

§

.§

3 0.40

§
Q:

§
I

0.20-

0“8.00 010 I 0.201 0.304 0.40 l 1

+

t

 

G—ano

[El—El n=1

<>—<>n=2

A—An=3

ak—alenz4

— Exact .

 A;

0.50 0.70 L 0.80

Figure 5-5b Estimated one-dimensional triangular heat flux with no measurement

errors for sequential interval beginning at time 0.12 for r = 8



125

0.80'1e111r1vrr 

0.60 .

E
g 0.40 -

§

.5 1
3

’5‘

E 0.20 ~

8
I

 4 J 4

 

G—9n=0

El—Eln=1

<>—<>n=2

A—An=3 l

Hn=4

— Exact .

 
 0.08

+

t

0010101020 0.3 0.4010.5010.601.7010.80

Figure 5-5c Estimated one-dimensional triangular heat flux with no measurement

errors for sequential interval beginning at time 0.12 for r = 10



126

by the biasing at the end of the time region influencing estimates throughout the entire

time region. In particular, estimates four to five time steps from the end (within a dimen-

sionless time of 0.3) have the largest change, and hence the most influence on the required

number of iterations. These components, not the one at the end of the interval, are the dif-

ficult ones. There is not enough sensitivity to estimate these component accurately, but

there is enough to cause them to vary. Similar results were seen when estimating a con-

stant heat flux.

Estimating the heat flux with exact data has indicated that a sequential implementa-

tion gives estimates within 5% (relative to maximum flux) of the whole domain method.

Computational time required for the sequential solution was significantly greater. Compu-

tational time is 50-90% greater than the whole domain, and increases depending on the

magnitude of r. Additional computational time is required because the sequential imple-

mentation is plagued by the inherent biasing of the components near the end of the time

interval. This issue is addressed later by introducing some functional forms (function

specification) over the sequential interval to control this effect.

5-4.2 Corrupted Data (Measurement Errors)

An important issue when investigating methods for solving the IHCP is the effect of

measurement errors on the solution. Methods that are typically insensitive to measurement

errors do so at the cost of introducing bias in the estimates. Conversely, methods that are

unbiased or have a small bias, are typically sensitive to measurement errors. These con-

flicting objectives, minimal bias and sensitivity to measurement errors, are further dis-

cussed later. The one-dimensional simulated test cases were evaluated again after adding
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random measurement errors to the experimental data. Only errors in the measured temper-

ature are investigated. Errors have standard statistical assumptions and are described in

equation (5-4. 1).

Estimation of the triangular, step, and sinusoidal heat flux with measurement errors

added to the data are shown in Figure 5-6, 5-7, and 5-8, respectively. Results from the
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Table 5-2 Estimation results for simulated data corrupted with errors

 

  

 

      

 

 

 

 

 

        
 

 

 

 

 

 

        
 

 

 

 

 

  

Iterations ,1

Analysis Tikhonov per (I32? SY 05'

Method domain (1.7 total seq int (sec) (°C) W/m2

Triangular Flux (0' = 0.0036°C )

GM whole 0.0028 6 - 1.84 3.63 13-03 0.034

SGM r = 5 0.0021 77 2.9 3.48 3.65 E—03 0.050

SGM r = 8 0.0019 91 4.0 6.95 3.64 E-03 0.040

SGM r = 10 0.0026 88 4.2 8.50 3.62 E-03 0.039

Step Flux (0' = 0.012°C)

GM whole 0.0033 7 - 2.06 1.23 E-02 0.139

SGM r = 5 0.0021 76 2.9 3.43 1.25 E-02 0.147

SGM r = 8 0.0026 87 3.8 6.66 1.24 E-02 0.1 19

SGM r = 10 0.0030 82 3.9 7.74 1.23 13-02 0.101

Sinusoidal Flux ( 0' = 0.006°C )

GM whole 0.0019 7 - 2.15 6.19 13-03 0.061

SGM r = 5 0.0016 76 2.9 3.42 6.19 13-03 0.088

SGM r = 8 0.0015 91 4.0 6.91 6.19 13-03 0.071

SGM r = 10 0.0019 92 4.4 8.88 6.19 13-03 0.070         
analysis are given in Table 5-2. The tabulated results are similar to that presented for the

analysis with exact data. The type of analysis, whole domain (GM) or sequential (SGM),

Tikhonov parameter, number of iterations, computational time, and temperature and heat

flux errors are given in the table. In this case, which has measurement errors, the error in

the estimated heat flux represents an error due to bias in the algorithm and the influence of

measurement errors. This error is defined as the mean-squared error. The computation of
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this error is identical to computation of the previous error in heat flux; however, the heat

flux is estimated with random errors present in the measurements

1
P N 2

A 1 A

GS, : {P(N _1) 2 2140700)" qe(rk2 ti)]2} (5-4.7)

k = 11': 1

where 218 is the estimated heat flux with measurement errors in the temperature.

The residual principle was used to select the magnitude of the Tikhonov regulariza-

tion parameter. As stated in the principle, the sum-of-squares function should be reduced

to the expected level. Since random errors are used, this is specified as the standard devia-

tion of the measurement errors.

The analysis with measurement errors, as expected, demonstrates similar computa-

tional aspects as the analysis without measurement errors, requiring significantly more

time for the sequential method. It also showed that the whole domain method was superior

to the sequential implementation in the accuracy of the estimated heat flux. Errors in the

estimated flux were up to 50% less, depending on the magnitude of r, and were largest for

smaller magnitudes of r. (Error in the estimated step heat flux was less for r—values of eight

and ten; however, this did not include the step down in the heat flux because this region

was within r steps of the final time.) These results show that, similar to the function speci-

fication method, the sequential gradient method requires a pr0per selection of r. However,

it further shows that selecting a magnitude of r and the Tikhonov parameter (r, (1T) , such

that the residual principle is met, does not insure optimum results. Improved results may

be obtained with another set of parameters. For smaller magnitudes of r the sequential

method is more sensitive to measurement errors, but the method reduces (IT to meet the
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residual principle. Although the whole domain method provides a more accurate estimate,

the sequential method is competitive for a proper selection of r. If r is made large enough,

the estimates are independent of r and are the same for both the sequential and whole

domain solutions.

Quantifying the results of an estimation are discussed in Beck et al., (1985) and Scott

and Beck (1989). The errors suggested for quantifying the results of an estimation are the

deterministic error D and the mean-squared errorSe. These errors provide insight into the

characteristics of an estimation algorithm. The errors are computed in equation (5-4.3) and

(5-4.7) and are tabulated in Tables 5-1 and 5-2. For the deterministic error the heat flux is

estimated with no measurement errors, while for the mean-squared error the heat flux is

estimated with random errors in the measurements.

The deterministic errors, which show the bias of an algorithm, are smaller for the

sequential approach for the r=5. The deterministic bias, in the final column of Table 5-1, is

smaller because OtT is smaller for all three cases for r=5. Since there is less regularization

the solution can more quickly respond to changes in the heat flux. However, as r increases

(and a7 increases) the deterministic bias for the SGM becomes larger, and equals or

exceeds the whole domain value. The mean-squared error, which can be compared to the

deterministic error to determine the sensitivity to measurement errors, is exclusively better

for a whole domain solution. The mean-squared error is shown in the final column of

Table 5-2. A sequential method permits the Tikhonov parameter to be smaller at low r—val-

ues, however, this is at the cost of an increased sensitivity to measurement errors, as shown

by a larger mean-squared error at these r—values. As r increases the SGM becomes less

sensitive to measurement errors, of course in the limit the SGM and GM are the same.
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Although the SGM provides comparable results to the GM, the computational

requirements are significantly greater. A 100% (or more) increase in the computational

time is typical for a sequential implementation compared to a whole domain solution. The

increase in computational time is a direct consequence of the sequential implementation

(of length r—steps) requiring approximately half as many iterations for each sequential

interval as the whole domain requires for a complete solution. Since these results are for

the one—dimensional problem, when the methods are extended to two-dimensions the

requirements for the sequential implementation might be greater in comparison to the

whole domain approach. As demonstrated previously, the additional computational

requirements are caused by the inability to estimate components near the end of the

sequential interval.

Several approach were investigated to improve the computational requirements of the

sequential implementation. It was clear from observing the results during a sequential

interval (see Figure 5-5) that the variation in components near the end of the interval result

in an increased number of iterations. If these components over the end of the sequential

interval could be controlled, or anticipated in their response, improvement in computa-

tional requirements is possible. Note that the components in the range 4-5 steps from the

end of the interval (a dimensionless time of 0.25 to 0.3) are troublesome. On either side of

these components the response of the heat flux is understood.

Approaches to improve the computational efficiency of the sequential method looked

at three aspects of the sequential implementation. First is the setting of the initial condition

for a sequential interval. Next, was using regularization to control the variation of certain

components in a sequential interval. Lastly, was the use of prescribed functions over the
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sequential interval, similar to the function specification method. As it turned out, only the

final approach, using function specification over the sequential interval significantly

improved the computational efficiency. Much was learned concerning the method, how-

ever, and is described below.

Setting the initial condition for the subsequent sequential interval, from the previous

interval, has all the required information except for I-components, where I is the number

of components retained on time for a sequential interval. Initially, all values from the past

interval were carried to the next interval then the final I-values were specified to be zero.

But it was noticed that the values near the end of the interval did not change with sequen-

tial interval. Another procedure was used. Estimates from the previous interval were used

from the beginning and end of the sequential interval. The procedure is shown graphically

in Figure 5-9. For a specified number of time steps, mend (typically mend = 4) from the

end of the interval, the initial values were set from the previous interval

0

q (r’t) : qNC0"V(f,I—IAI) ’tm+r-1—mmd+lStStm-+r—l (5-4'8)

where qum’ is the heat flux estimated at the previous sequential interval and q0 is the

initial estimate for the next interval. Equation (5-4.8) specifies that the initial values at the

end of the sequential interval should be the same as they were at the end of the previous

sequential interval. The components are shifted I-values in time because the time interval

advances l—values for the next sequential interval. Initial values at the beginning of the

time interval are specified directly from the previous interval

0

q (r, I) = qNCOflV(’-,t) ’tm—1+IStStm+r-l—m (5-4.9)

rnd
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This leaves I-values (where I is the number of retained components on time) to be speci-

fied, which are computed using linear interpolation to join the two previously defined

regions.

Unfortunately, accurately specifying the initial condition from the previous interval

was not causing the increased computations. Computational requirements were unchanged

using the procedure outlined for setting the initial estimated. Rather, it was understanding

that the estimated heat flux in the previous sequential interval was not as accurate as antic-

ipated, particularly components about 4-5 steps (or t: = 0.3) from the end of a sequential

interval. These components vary significantly from one sequential interval to the next,

which influences other components in the interval.

The results in Figure S-Sa, b, and c show that the initial condition was not as accurate

as believed. Furthermore, the components that cause the most difficulty in the sequential

estimation are the last 4-5 components (covering the final 0.3 in dimensionless time of the

interval). Consequently, regularization was used to attempt to control the change in these

components. The Tikhonov regularization parameter was specified to be a function of

time, with magnitudes larger near the end of the sequential interval. The larger regulariza-

tion parameter drives the estimated heat flux to zero. This approach did eliminate changes

in the component near the end of the sequential. But, the changes that would have

occurred in these component migrated to other components. In retrospect this should have

been anticipated, since the solution for the heat flux should conserve the total energy (for a

specified r-value), by forcing some components to be zero (or a constant), other compo-

nents will accommodate to conserve the total energy. Computational aspects were not

improved.
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A positive aspect of the gradient methods is their function estimation basis. The diffi-

culties encountered in the sequential implementation, however, are due to the attempt to

estimate a function over the sequential interval, even though, only one component of the

function is typically retained. A final approach to reduce the computational requirements

is to constrain the heat flux over the sequential interval so that not as much computational

effort is needed to estimated all components on a sequential interval. Fewer parameters are

estimated instead of a function. Specifying several functional forms over the sequential

interval were tried: cubic, parabolic, linear, and constant. Additional constraints were

imposed for the higher order functions, such as zero slope or zero second derivative at the

end of the sequential interval, as required. Prescribing a single function over the sequential

interval did not improve the computational aspects when higher order functions were used.

However, specifying the heat flux be constant over the sequential interval did improve

computational efficiency significantly.

The triangular heat flux case was re-evaluated using function specification over the

sequential interval. Herein, this method is referred to as the sequential function specifica-

tion gradient method (SFSGM). Maintaining the heat flux constant over the sequential

interval stabilizes the problem and the Tikhonov regularization parameter is set to zero.

The results for the exact data are shown in Table 5-3 for the triangular heat flux using

the function specification assumption; graphical results are not shown. The accuracy of the

estimated heat flux is comparable to the whole domain. A direct comparison is not made

because the Residual principle is not met by all r-values. The magnitude of the sum-of-

squares error suggest an r between 4 and 5. In this range the error in the estimated heat

flux is comparable, and more importantly computational requirements are reduced. For
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Table 5-3 Estimation results for prescribing a constant heat flux over the sequential

 

 

        
 

 

 

 

 

 

 

       
 

 

 

 

 

 

 

 

interval

Analysis Tikhonov 1“”er C113: SY GD 0" 63'

Method domain aT total seq int (sec) ( o C) W/m2

Triangular Flux (G = 00°C)

GM whole 0.001 7 - 2.14 8.59 E-04 0.0094

SFSGM r = 3 0.0 51 1.8 1.08 9.65 E-05 0.0054

SFSGM = 4 0.0 49 1.8 1.47 6.07 E-04 0.0052

SFSGM r = 5 0.0 48 1.9 1.90 1.89 E-03 0.014

SFSGM r = 6 0.0 48 1.9 2.24 9.13 E-04 0.025

Triangular Flux (0' = 0.0036°C)

GM whole 0.0028 6 - 1.84 3.63 E-03 0.034

SFSGM = 4 0.0 54 2.0 1.62 2.52 E-03 0.096

SFSGM r = 5 0.0 50 1.9 1.98 3.27 E-03 0.039

SFSGM r = 6 0.0 50 2.0 2.38 4.99 E-03 0.040

SFSGM r = 8 0.0 46 2.0 2.93 1.07 E-02 0.048         
 

r=5, using the function specification requirement (SFSGM) the computational time is

reduced by nearly 50% compared to the standard SGM; computational time is 10% less

than a whole domain solution.

The heat flux estimated with measurement errors added to the data is shown in Figure

5-10 when assuming the heat flux is constant over the sequential interval. Estimation

results are also given in Table 5-3. With the heat flux held constant over the sequential

interval the sequential implementation improves significantly in computational efficiency.

Since only one components is estimated at each sequential interval, convergence is
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obtained with few iterations. When the heat flux is held constant over the sequential inter-

val, denoted SFSGM, a sequential solution is competitive with the whole domain solution.
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The computational time is further reduced for a sequential solution by using prior

information. The prior information enters the solution in the Tikhonov regularization term

of equation (4-2.4). Specifying the prior information as the initial estimate, which is set

from values at the previous sequential interval, is shown to significantly improve the accu-

racy of the estimated heat flux as well as reduce the computational time required for a

sequential solution. The use of the prior information is discussed in the next chapter.

Results using prior information are not shown for the one-dimensional case.

5-4.3 Results - Experimental Measurements

Although simulated measurements provide insight to the behavior of the method, the

true test is with experimental data. Gradient and iterative regularization methods are

applied extensively in the literature to solve the IHCP. However, few of these investiga-

tions have applied the method to experimental data. Measured temperature and heat flux

histories from the experiment to estimate the thermal conductivity are used. For this pur-

pose, the problem is reversed and the estimated thermal properties and measured tempera-

tures are used to recover the transient surface heat flux. Since electric heaters were used to

generate the heating, the heat flux is also quantified. Consequently, a comparison between

measured and estimated heat flux can be made.

The experimental apparatus is shown in Figure 2-1 and discussed in section 2-2.0.

Electric heaters symmetrically heat the composite material while thermocouples measure

the transient temperature. Since the experiment is symmetric, the measured power to the

heaters quantifies the energy and heat flux to the specimens. In the thermal model of the

experiment, shown in Figure 2-2, the thermal effects of the mica heater, and more
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importantly the contact resistance, are included. An effective thermal conductivity, which

represents the heater, contact resistance, and the cement used to install the thermocouples,

is used to group these effects. Heat losses to the insulation are also included. Temperature

measurements are made very close to the surface where the heat flux is estimated (a depth

of 0.44 mm). However, the relatively low effective thermal conductivity of the mica

heater/contact resistance results in the problem being more difficult than it appears. The

Fourier number based on the depth of the closest sensor and thermal properties of the mica

heater/contact resistance is approximately 0.06. The relative high thermal conductivity of

the carbon-carbon specimen increases the difficulty of estimating the surface heat flux

also. This is demonstrated by the limiting case, if the conductivity of the specimen were

infinite, the sensitivity to the surface heat flux is zero and it is impossible to estimate it.

This case was also investigated by Beck et al. (1996), which among other things

investigated the use of the residual principle for selecting the number of future time steps

for the function specification method. Since seven reliable thermocouples were used to

measure the temperature at nominally the same location, the error in the measurements

could be quantified. Beck et al. suggested using the estimated standard deviation of seven

measurements from the average temperature at each time. The standard deviation was

approximately 004°C at the beginning and end of the experiment when the heater was

not active and 012°C when the heat flux was active. A time average of this standard devi-

ation was 0.083 C. This value was used as the level of noise for selecting the regularization

parameters with the residual principle.

Beck et al. (1996) also compare several inverse methods. Function specification,

Tikhonov regularization, iterative regularization, and specified functions over large time
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regions using Green’s functions were compared. Results indicate that estimates from the

various methods are quite comparable. Although computational requirements were not the

focus of the study in Beck et al. (1996), it was noted that certain methods require consider-

ably more computational time.

Estimations of the surface heat flux are shown in Figure 5-11 for the experimental

case. Several variations of the gradient method are compared to estimate the surface heat

flux. Whole domain gradient method and sequential gradient method including specifying

a constant flux over sequential internal are shown. A remarkable outcome of the different

techniques is that about the same results is obtained. Results of the analysis are also listed

in Table 54. Only for r=4 is there a significant difference between the whole domain and

sequential solutions. Otherwise, the sequential solutions are as good as, or better than, a

whole domain solution. The sequential solutions, denoted SGM in column one of Table 5-

4 require about three iterations per sequential interval. Holding the heat flux constant over

the sequential interval, denoted SFSGM in column one, requires about two iterations per

sequential interval. This represents a reduction of approximately 30% in computations

with SFSGM. A larger decrease in the computational time is achieved because the number

of iterations required for SFSGM is actually less. Although the second iteration is started,

frequently the gradient computed during the second iteration is very small (less than 1E-

15) and based on the magnitude of the gradient iteration is stopped. So a full iteration is

not completed (the sensitivity problem is not solved) and greater savings are realized.

These additional savings increase with r.
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144

Table 5-4 Estimation results for analysis of experimental case

 

  

 

     
 

 

 

 

 

 

 

 

 

 

 

 

        
 

 

 

 

 

 

 

 

 

 

 

  

Iterations

Analysis Tikhonov per (£1912? SY 64

Method domain a7" total seq int (sec) (0 C) W/m2

Experiment Case 1010#30.1

GM whole 1.0 E-08 8 - 24.1 0.080 766

SGM r=4 4.0 E- 10 603 3.1 30.0 0.079 1400

SGM r=6 2.0 E-09 564 2.9 47.4 0.077 754

SGM r=8 4.5 E-09 560 2.9 64.7 0.079 716

SGM r=10 7.0 E-09 565 2.9 80.2 0.078 726

SFSGM 124 0.0 382 1.9 16.5 0.039 2250

SFSGM r=6 0.0 373 1.9 26.4 0.044 762

SFSGM r=8 0.0 347 1.8 33.1 0.057 699

SFSGM r=10 0.0 320 1.7 39.4 0.083 751

SFSGM r=6 3.5 E-lO 370 1.9 25.4 0.086 764

SFSGM m8 4.5 E-10 342 1.8 32.7 0.077 714

Experimental Case 1023 #4031

GM whole 4.0 E-09 8 - 25.3 0.080 1230

SGM i=6 9.0 E- 10 578 3.0 47.0 0.084 1182

SGM :8 2.0 E-09 578 3.0 82.1 0.084 1141

SGM :10 3.0 E-09 576 3.0 82.5 0.079 1167

SFSGM r=6 0.0 359 1.9 26.0 0.036 1234

SFSGM r=8 0.0 342 1.8 34.2 0.052 1162

SFSGM r=10 0.0 306 1.8 39.8 0.081 1261

SFSGM r=6 1.5 E- 10 359 1.9 26.0 0.080 1215

SFSGM r=8 2.0 E- 10 336 1.8 32.6 0.077 1180

SFSGM r=10 1.2 E- 10 307 1.6 39.9 0.084 1267       
 

 



Chapter 6

APPLICATION OF THE SEQUENTIAL GRADIENT METHOD:

TWO-DIMENSIONAL IHCP

6-1.0 Introduction

The solution of the two-dimensional IHCP is investigated in this chapter. Use of the

sequential gradient method (SGM), possibly coupled with prescribing a functional form

over the sequential interval (SFSGM) are studied. A comparison of sequential gradient

methods with the standard whole domain gradient method (GM) is made. Some compari-

son with the standard function specification method, which does not use a gradient search

method nor an adjoint equation approach, is presented. The two (or three) dimensional

problem is the intended use of the proposed sequential methods. As demonstrated with the

one-dimensional cases, assuming the heat flux is constant over the sequential interval

improves the computational time of the sequential implementation, and makes it competi-

tive with the whole domain approach. Additional steps may be required to improve the

computational aspects for the two-dimensional problem also.

An approach similar to the one-dimensional analysis is pursued for the two-dimen-

sional case. Several test cases for which the surface heat flux is known are studied to quan-

tify the accuracy of the method for a two-dimensional analysis. The two-dimensional

cases will demonstrate the ability to estimate spatially dependent fluxes. In addition to
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simulated cases, an experimental case with a measured surface heat flux, which is two-

dimensional and transient, is analyzed.

Several variations of the sequential gradient method are suggested in this chapter.

Three methods are investigated. The standard whole domain gradient method (GM) solves

for the heat flux with data from all measurement times. The sequential gradient method

(SGM) solves for the heat flux using data from a sequential interval. The sequential func-

tion specification gradient method (SFSGM) solves for the heat flux over a sequential

interval while prescribing a functional form for the heat flux on time, but allows for spatial

variation. In addition, the use of prior information is suggested during the sequential solu-

tion to improve the sequential method. This is the first known application of prior informa-

tion to improve a sequential solution.

The remainder of this chapter is summarized. The calculation of the simulated tem-

perature data is discussed in the next section. Section 6-3.1 presents results for the simu-

lated test cases with exact data. Test cases with measurement errors added to the simulated

data are discussed in Section 6-3.2. An experimental case, with a measured surface heat

flux is analyzed in Section 6-4.0.

6-2.0 Simulated Temperature Data

A rectangular domain of dimensions [0, a] x [0, b] is studied for the two-dimen-

sional simulated cases. A schematic of the geometry is shown in Figure 6-1. One bound-

ing surface of the two-dimensional body is assumed to have an unknown heat flux while

all other surfaces are insulated. Furthermore, constant anisotropic thermal properties and a

uniform initial temperature are assumed.
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Figure 6-1 Two-dimensional geometry for simulated test cases

The problem can be mathematically written as
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arf
; = 0 (6—2.l 1c)

x

x+ = 0

Br:

I

x+ = 1

T:(x+, y+, 0) = O (6-2.lle)

where the following dimensionless variables were introduced

 

q: = {-15}; (62.12)

T-—T
+ l 0

= —— (6-2.l3)
' (qNb/k),)

k,/ c)!

+ = ( " z (6-2.l4)

b

x+ = (1: (6-2.15)

y+ = 11) (6-2.16)

The subscript 1' indicates the prescribed heat flux. The estimation of two different pre-

scribed heat fluxes is investigated for the two—dimensional case. A step change in heat flux

on time (starting at t+ = 0 and ending t+ = t2) and position (from x+ = 0 to x)r = a1)

is the first flux (1' = l) examined

qi(x+,t*)= l (O<t+<t;),(OSx+Sal)
(64.17)

0 otherwise

The second flux ((i = 2) examined also has a step change in time, but the spatial profile is

triangular over the entire surface at (y = 0)
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213 (0 < 1" < 1;),(0 s x“ s

l

2—211+ (0<t+<t;),G<x+S 1)

N
i
l
—

q:(x+, t+) = < (6-2.18)

 1 0 otherwise

Due to the complexity of obtaining analytical solutions for the two-dimensional prob-

lems, an accurate finite element code (TOPAZ2D) is used to solve for the two-dimensional

temperatures. Data for the simulated cases are shown in Figure 6-2 and 6-3 for the step

heat flux and triangular heat flux, respectively. Temperature data at the sensor locations

and the heat flux at the surface are shown for the two cases. Both surface flux histories

\
l

begin at time 0 and end at time t;, which is prior to the end of the time domain, t}. The

temperature data are generated for eleven simulated sensor locations that are equally

spaced along the x-plane at a depth of y+ = 0.1 . Lagging effects are similar to the one-

dimensional problem. Notice that the spatial temperature profile is smoothed compared to

the profile of the surface heat flux. The diffusive nature of the problem at the sensor depth

makes it difficult to recover sharp spatial features.

6-3.0 2D Results - Simulated Measurements

6-3.l Exact Data (No Measurement Errors)

A case with “exact” data is analyzed first. The dimensionless groups of interest for

this geometry are a/b = 2 and kx/ky = 1 . Measurements are available at eleven equally

spaced locations (x+ = 0.0, 0.1. . . ..l.0) beneath the surface of unknown heat flux at a

depth of y+ = 0.1. The dimensionless time step (Fourier number) based on the sensor



triangular heat flux

Figure 6-2 Simulated temperature and surface heat flux for a two-dimensional
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flux

Figure 6-3 Simulated temperature and surface heat flux for a two-dimensional step heat
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depth is At: = 0.06 , which represents a difficult case; two-hundred time steps are consid-

ered in the analysis. “Exact” simulated temperature data are generated from the finite ele-

ment solution using TOPAZZD (Shapiro, 1986)

The geometry shown in Figure 6-1 is discretized for the numerical solution. A finite

control volume mesh with eleven nodes in the x-direction and twenty-one nodes in the y-

direction is used. A more coarse node spacing is specified for the x-direction. Because

eleven sensors are located along this surface, eleven components of heat flux are to be esti-

mated. It is possible to define more nodes along this surface and estimate a greater number

of spatial components (discussed later). Altemately, more nodes can be defined along the

surface and fewer spatial components, compared to the number of nodes, can be estimated

by introducing some spatial smoothing using basis functions; see Section 4—8.0. In this

study, it is not desired to impose spatial smoothing on the solution. Instead the number of

nodes defined for the numerical solution are set based on the number of available sensors.

Hence, eleven nodes are defined on the surface. The number of nodes is increased and

more spatial components are estimated in a later analysis. Care is exercised to not have too

few of nodes and incur numerical error from a coarse discretization.

The estimated surface heat flux for a whole domain solution (GM) and the sequential

gradient method (SGM) with r=6 are shown in Figure 6-4a and b, respectively, for the tri-

angular test case. The GM has the whole domain characteristic of over—shooting near

regions where the heat flux has an abrupt change, at the beginning and ending times. The

SGM reduces the effect of these characteristics. Both methods accurately estimate the sur-

face heat flux.
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a) GM

Whole Domain
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Figure 6-4a Estimated surface two-dimensional heat flux for triangular test case using

data without measurement errors. Whole domain solution
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b) SGM

r = 6

  

 
Figure 6-4b Estimated surface two-dimensional heat flux for triangular test case using

data without measurement errors. Sequential solution with r=6
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Table 6-1 Estimation results for the two-dimensional IHCP with exact simulated data

 

 

   

 

      
 

 

 

 

 

 

         
 

 

 

 

 

 

 

         
 

 

 

 

 

 

          

Analysis

domain Iterations

Tikhonov CPmP SY 6D

per t1me

Method 1' I “T total seq int (sec) (°C) W/m2

Triangular Flux (11 Components)

GM all all 1.00 E04 1 1 - 35.7 2.53 E-04 7.46 E-02

SGM 6 1 1.02 E-04 758 4.0 71.8 2.50 E-04 8.05 E-02

SGM 10 1 3.20 E04 735 4.0 121.2 2.52 E-04 7.79 E-02

SFSGM 6 l 1.05 E-05 244 1.3 23.2 2.51 E-04 7.89 E-02

SFSGM 10 1 0.0 238 1.3 35.6 4.29 E-04 7.32 E-02

Step Flux (11 Components)

GM w all 1.0 E-04 12 - 38.8 4.42 E-04 9.30 E-02

SGM 1 1.25 E-04 762 4.0 71.7 4.46 E-04 9.92 E-02

SGM 10 1 4.05 E-04 737 4.0 119.9 4.43 E-04 9.54 E-02

SFSGM 6 1 1.67 E-05 264 1.4 24.9 4.42 E-04 9.68 E-02

SFSGM 10 l 0.0 260 1.4 42.1 5.41 E-04 8.84 E-02

Triangular Flux (21 Components)

GM w all 1.00 E-04 11 - 66.3 2.53 E-04 7.46 E-02

SGM 6 1 1.01 E-04 758 3.9 130.7 2.50 E-04 8.12 E-02

SGM 10 1 3.10 E04 727 3.9 222.4 2.50 E04 7.72 E02

SFSGM 6 l 1.05 E-05 270 1.4 47.0 2.52 E-04 9.65 E-02

SFSGM 10 1 3.00 E-OS 278 1.5 83.6 4.91 E-04 7.89 E-02
  

Pertinent information about the estimations with exact data are given in Table 6-1.

The table lists the solution method and analysis domain, with the number of future time

steps and number of components retained on time in the first three columns. Column four

gives the magnitude of the Tikhonov parameter. The number of iterations, both total and
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average per sequential interval are given in columns five and six. Computational time is

listed in column seven. The errors in the sum-of-squares temperature and estimated heat

flux (bias error) are shown in columns eight and nine. Values of r = 6 and r = 10 were

studied for the number of future time steps. The Tikhonov regularization parameter was

specified as 0.0001 for the whole domain solution (GM). Subsequent sequential solutions

(SGM and SFSGM) varied the Tikhonov parameter to match the magnitude of the sum-of-

squares, S y, to the level of the whole domain solution.

Estimation results with exact data for the triangular and step heat flux, given in Table

6-1, have trends similar to the one-dimensional case. A comparable heat flux to the whole

domain (GM) solution is estimated with the sequential implementation (SGM), the bias

error (last column of Table 6—1) is 6-8% larger for r = 6, but it requires approximately

twice as much computational time. Increasing the r-value to ten reduces the bias error to a

magnitude 2-4% larger than the GM, but requires a proportional increase in the computa-

tional time, i.e. computational time increases by 167%(10/6) , compared to the computa-

tional time for r = 6.

In the one—dimensional solution the computational aspects were improved by main-

taining the heat flux constant (on time) over the future sequential interval, which is the

standard function specification assumption. The same procedure was tried for the two-

dimensional problem. Prescribing that the heat flux remain constant over the sequential

interval (method SFSGM in Table 6-1), requires one-third the computational time of the

SGM for r = 6, and has a bias error that is only 4-6% larger than the whole domain esti-

mation. Improved accuracy was obtained when r was increased to ten, bias error was 2-5%
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less than whole domain solution. Notice that the Tikhonov parameter was set to zero for

the SFSGM with r = 10. Even with this parameter set to zero the sum-of-squares was not

reduced to the required level. This is due to the effects of the Tikhonov parameter and the

function specification approximation, which are discussed next. The SFSGM has superior

computational aspects. It requires 35% less computational time than the GM for both the

triangular and step test case for r = 6; computational requirements are comparable for

r = 10.

One observes in Table 6-1 that the estimation with exact data requires a larger magni-

tude for the Tikhonov parameter when solving sequentially compared to whole domain.

Since a larger magnitude of the Tikhonov parameter is used, the sequential solution is

more biased than the whole domain solution, particularly near regions of variation in the

heat flux. An increase in the Tikhonov parameter is expected because the shorter duration

sequential problem is more ill-posed than the whole domain problem. For the one-dimen-

sional solution, in general, a smaller Tikhonov parameter was required for the sequential

solution compared to the whole domain solution, contrary to what was expected. It is

believed that the one-dimensional problem required a smaller Tikhonov parameter to per-

mit the solution algorithm the flexibility to reduce the sum-of—squares magnitude to the

desired level. The reduction in the Tikhonov parameter is greater at small r-values. As r is

increased the Tikhonov parameter for SGM approaches the magnitude of GM, in the one-

dimensional case.

Applying the function specification approximation in the inverse solution provides

significant regularization, which increases with r. As noted in Chapter 5, regularization

imposes “stiffness” to the inverse solution. When maintaining the heat flux constant over



158

the sequential interval, considerable “stiffness” is imposed on the solution. Consequently,

the Tikhonov parameter must be reduced in magnitude to permit obtaining the desired

sum-of-squares magnitude, Sy. At some level of r, the bias error becomes large enough

such that even when the Tikhonov parameter is specified as zero, the sum-of-squares func-

tion can not be reduced any further. This is a result of the bias introduced when assuming

the heat flux is constant over the sequential interval.

A noted benefit of the gradient method is that it is not required to specify the func-

tional form of the unknown heat flux. Since a numerical solution is used, however, some

approximation of the heat flux is required. The simplest numerical approximation of the

heat flux is used, which assumes the heat flux is constant over a control surface surround-

ing the node. Consequently, the functional heat flux is numerically represented by P spa-

tial components, where P is the number of nodes along the surface of the unknown heat

flux. Specifying more nodes along this surface will improve the numerical accuracy of the

direct problem, but requires estimating more spatial components, which may increase the

difficulty of the inverse problem depending on sensor locations. A general rule is that the

number of spatial components estimated should not exceed the number of sensors. Fewer

spatial components of the heat flux, compared to the number nodes, can be estimated by

prescribing a spatial functional form using basis functions, see Section 4-8.0. Prescribing

a spatial functional form introduces regularization and helps stabilize the solution.

In the previous simulated cases, given in the first two blocks of Table 6-1, eleven

nodes were defined along the x-direction and eleven spatial components were estimated.

Now the triangular test case is analyzed with twenty-one nodes components on the surface

and twenty-one spatial components are estimated, with eleven equally spaced sensors
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along the surface. Results are given in the final block of Table 6-1. The estimated heat flux

is nominally the same for the whole domain (GM); of course computational time is

approximately doubled with twice as many nodes. The sequential method does not per-

form as well. Bias error is increased by 1% for the SGM, but increases 22% for the

SFSGM with r=6. When estimating more spatial components than available sensors with

a sequential method the spatial components between the sensor locations are biased low

for r=6. This produces spatial oscillations in the estimated heat flux, a “zig-zag” pattern

about the true flux value exists in the estimated heat flux. The oscillations are reduced by

increasing the magnitude of r.

It appears that estimating more spatial components than available sensors is possible

using the gradient method. At least for the case when sensors are evenly distributed along

the surface it is possible. The method seems to have some spatial regularization inherent.

Implementing a sequential solution degrades this characteristic for small values of r.

These outcomes are influenced by the dimensionless time step based on the sensor depth,

the spacing of the sensors along the surface relative to the sensor depth, and the amount of

noise in the measurements, which was exact for this case.

6-3.2 Corrupted Data (Measurement Errors)

The two-dimensional test cases are analyzed with measurement errors added to the

simulated temperatures. Standard statistical assumptions are used to describe the measure-

ment errors. The errors are modeled as additive, with zero mean, constant variance, and a

normal distribution. A magnitude of approximately 1% of the maximum temperature rise
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was selected as the standard deviation of the measurement errors. This error corresponds

to 0.0018°C and 0.0025°C for the triangular and step heat flux, respectively.

Estimation of the triangular heat flux with measurement errors is shown in Figure 6-

5a for a whole domain solution and Figure 6-5b shows a sequential solution with r=6. The

two solutions are quite different, whereas the whole domain solution is relatively smooth,

the sequential solution has a significantly larger variability. It is not clear if the variability

of the SGM estimated heat flux is larger on time or on space. The sequential results are

certainly unacceptable in comparison to the whole domain solution for r=6.
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Figure 6-5a Estimated surface heat flux for triangular test case using data corrupted

with measurement errors (0' = 0.0018°C ). Whole domain solution.



with measurement errors (0' = 0.0018°C ). Sequential solution with r=6.

using data corruptedFigure 6-5b Estimated surface heat flux for triangular test case
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Table 6-2 Estimation results for two-dimensional IHCP with simulated data corrupted

with random errors

 

 

   

 

      

 

 

 

 

 

 

 

 

 

 

          
 

 

 

 

 

 

 

 

 

         
 

 

 

 

 

          

Analysis

domain Iterations A

Tikhonov Comp Sy as,

per t1me

Method r I (1.7- total seq int (sec) (0 C) W/m2

Triangular Flux (0' = 0.0018°C) - 11 Spatial Components

GM all all 1.70 E-03 9 - 31.8 1.82 E—03 8.57 E-02

SGM 6 1 2.20 E-04 764 4.0 77.8 1.81 E-03 1.36 E-Ol

SGM 8 l 4.50 E-04 758 4.0 96.0 1.80 E-03 1.02 E-OI

SGM 10 1 7.00 E-04 746 4.0 1 19.0 1.80 E-03 9.19 E-02

SGM 15 1 1.25 E-03 718 4.0 173.7 1.80 E-03 8.65 E-02

SGM 20 1 1.50 E-03 759 4.3 246.9 1.80 E-03 7.53 E-02

SFSGM 6 1 5.00 E-05 767 4.0 77.1 1.81 E-03 1.57 E-Ol

SFSGM 8 1 8.30 E-05 769 4.1 96.3 1.80 E-03 1.12 E-01

SFSGM 10 1 1.1 E-04 761 4.1 120.2 1.80 E-03 9.71 E-02

SFSGM 15 l 9.50 E-05 693 3.8 167.2 1.87 E-03 8.97 E-02

Step Flux (0' = 0.0025 ° C) - 11 Spatial Components

GM all all 6.00 13-04 13 - 45.8 2.51 E-03 1.06 E01

SGM 6 1 1.90 13-04 775 4.1 73.3 2.50 15-03 2.18 13-01

SGM 10 1 5.5 E-04 762 4.1 121.9 2.50 E-03 1.24 E-01

SGM 15 1 7.5 E-04 822 4.5 200.7 2.50 E-03 1.15 E-Ol

SGM 20 1 7.5 E-04 975 5.5 317.8 2.50 E-03 1.03 E-01

SFSGM 6 1 4.0 E-05 795 4.2 74.2 2.50 E-03 2.59 E-Ol

SFSGM 10 1 2.0 E-05 953 5.1 150.8 2.50 E-03 1.49 E-01

Triangular Flux (0' = 0.0018°C) - 21 Spatial Components

GM all all 1.70 E-03 9 - 54.7 1.84 13-03 8.50 E-OZ

SGM 6 1 2.20 E-03 760 4.0 137.9 1.82 E-03 1.33 E-Ol

SGM 15 1 1.25 E-03 718 4.0 328.2 1.82 E-03 8.44 E-02

SFSGM 6 1 5.50 E-05 786 4.1 141.6 1.82 E-03 1.65 E-01

SFSGM 15 1 9.50 13-05 693 3.8 314.4 1.88 E-03 9.29 E-02
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Analysis of the triangular and step test cases with measurement errors are presented in

Table 6-2. Numerical conditions similar to the exact cases were used, a dimensionless time

step based on the sensor depth is At: = 0.06 with twenty-one nodes in the y-direction

and eleven in the x-direction for the numerical solution. Data was assumed at two-hundred

time steps and eleven components of the heat flux are estimated; twenty-two hundred heat

flux components are estimated.

The step heat flux case was more difficult to estimate. Reproducing a step change spa-

tially is considerably harder than the more gradual changing triangular case. Figures 6-6a

and b show the whole domain and SGM for r=15 estimated heat flux for the step case.

Estimates have more variability than the triangular test case. Tabulated results in the mid-

dle of Table 6-2 show that trends similar to the triangular case. The mean-squared error is

as large as 25% of the maximum heat flux for small r-values. For the triangular case the

mean-squared error did not exceed 16% of the maximum heat flux.

The whole domain (GM) approach was superior to the sequential approach (SGM and

SFSGM) for both two-dimensional test cases for r less than 10. This superior performance

is supported by the smaller mean—squared error, final column of Table 6-2, and the shorter

computational time, column seven. The mean-squared error was 7 to 83% greater for

sequential approach, compared to the whole domain approach for the triangular heat flux,

depending on the choice of r. Results were worse for the step heat flux, which had a mean-

squared error that was 17 to 144% (depending on r) greater for the sequential approach.

Computational times were adversely affected by the sequential approach. The sequential



measurement errors (0' = 0.0025°C ). Whole domain solution

Figure 6-6a Estimated surface heat flux for step test case using data corrupted with
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measurement errors (0' = 0.0025°C ). Sequential solution r=15

Figure 6-6b Estimated surface heat flux for step test case using data corrupted with
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approach required 60 to 400% more computational time, compared to a whole domain

solution. The computational time increases proportional to the increase in the number of

future time steps, r.

The poor performance of the sequential approach for these cases can be attributed to

two related factors. The first factor is that the sequential implementation is more ill-posed

than the whole domain solution. Since the sequential solution solves over a shorter time

domain, the effect of the measurement errors is more significant and results in a more i11-

conditioned problem than the whole domain problem. Examining Table 6-2 shows that,

even though the sequential problem is more ill-posed, the magnitude of the Tikhonov

parameter in column four is decreased (except at large r—vales). Decreasing the Tikhonov

parameter is contradictory to stabilize a more ill-conditioned problem. However to obtain

the required magnitude in the sum-of-squares function, Sy, the Tikhonov parameter must

be decreased. The reason for this outcome (decreasing OLT for SGM) is the second factor

in the poor performance of the sequential implementation. It is again the difficulty with the

values near the end of the sequential interval influencing the early values. Much the same

as was observed for the one-dimensional problem. Because the values near the end of the

time region are biased, the regularization parameter must be decreased to provide the

inverse solution “flexibility” to obtain the proper magnitude of the sum-of—squares func-

tion. Although decreasing the Tikhonov parameter reduces the temperature sum-of-

squares, it results in an increase in the variability of the estimated heat flux.

In contrast to the one-dimensional solution, maintaining the heat flux constant over

the sequential analysis interval does not improve the two-dimensional results. In the two-

dimensional solution it does not work because the additional stability introduced by
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maintaining the heat flux constant over the sequential interval requires a reduction in the

Tikhonov parameter to obtain the desired sum-of-squares. The reduction in orT in turn

increases the variability in the estimated heat flux. If r is too large when using function

specification, the sum—of—squares can not be reduced to the desired level, regardless of the

Tikhonov parameter. The estimated results are actually worse when maintaining the heat

flux constant (with time) over the sequential interval for the two-dimensional problem.

The sequential method performs poorly for small magnitudes of r, which are in the

range that would typically be used for function specification. The estimated results for

both test cases are improved as the number of future time steps is increased. Figure 6-7

demonstrates that the effects at the end of the interval are reduced by lengthening the

sequential interval. At r=15 and 20 the mean-squared error in Table 6-2 is +1% and —12%

of the mean-squared error of the whole domain estimation, respectively. The improved

accuracy in the estimated heat flux using larger r-values is at the cost of a significantly

increased computational requirement. Sequential solutions (SGM) for larger magnitudes

of r require SOC-800% (depending on r) more computational time than the whole domain

solution. Computational time increases proportional to the increase in r. However, the

potential benefits of an on-line (real time) method may outweigh the increased computa-

tional time.

For the one-dimensional problem, and the two-dimensional problem with exact data,

an improvement in the computational speed, with a comparable accuracy in the estimated

function, was obtained when the heat flux was maintained constant over the sequential

interval, the method was denoted SFSGM. In the two-dimensional analysis with measure-

ment errors the results are not improved when the heat flux is maintained constant over the
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sequential interval. Although computational times are comparable (to the SGM) for a

specified r—value, the error in the estimated heat flux actually increases, as seen in the final

column of Table 6-2, when maintaining the heat flux constant over the sequential interval.

It was shown with exact data that a greater number of spatial components can be esti-

mated than there are sensors available. The triangular case is reanalyzed for data with

measurement errors and results are listed in the final block of Table 6-2. The outcome was

similar to that seen in the analysis with exact data. A comparable heat flux, to that esti-

mated with few spatial components, is obtained for a whole domain solution. Using the

sequential method has a larger variability in the estimated heat flux for small r—values. The

sequential method is improved by increasing r. Computational times are significantly

greater using the sequential method.

Several approaches are possible to improve the sequential method. Before outlining

these approaches, a summary explaining the effects that are resulting in the sequential

method’s poor performance is given. It is understood that the sequential method is more

ill-posed. However, when solving with a sequential method the Tikhonov parameter is typ-

ically smaller than the whole domain solution; as r is increased the Tikhonov parameter

increases for the sequential method. The reason that the Tikhonov parameter decreases

(assuming that the residual principle is applicable), even though the sequential problem is

more ill-posed, is due to the components near the end of the time interval. These compo-

nents are difficult to estimate; when using a gradient method with the adjoint equation

approach, these components are not estimated. Instead, the adjoint function, which is pro-

portional to the computed update to the heat flux, is defined to be zero at the end of the

time interval. Consequently, the heat flux estimated at the end of the time interval is “near”
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the initial estimate specified for the heat flux. Its deviation from the initial estimate

depends on the magnitude of the Tikhonov parameter.

As was demonstrated, lengthening the sequential interval improves the mean—squared

error in the estimated heat flux; see Table 6-2 and Figures 6-7. Lengthening the sequential

interval is also shown to increase the computational time in Table 6-2. An advantage of the

SGM, compared to the SFSGM is that functional constraints are not imposed on the solu-

tion. Consequently more than one component may be retained for a sequential interval and

the computational time can be reduced by having fewer sequential intervals. For example,

when retaining 10 components for the triangular heat flux with r=20, the computational

time is reduced to 30.8 seconds, which is about only 3% greater than the whole domain

computational time. The mean-squared error for this case, shown in the final column of

Table 6-3, is within 1% of the whole domain error; the mean-squared has increased 14%

compared to retaining only one component for r=20. Although lengthening the sequential

interval and retaining more components on time improves the computational aspects, the

process may reduce the likelihood that non-linear problems can be linearized. Since larger

sequential intervals are considered, it is less likely that the changes in thermal properties,

due to the temperature variation during the sequential interval, are negligible. This is an

important advantage of the sequential method. The validity of this assumption will depend

on magnitude of non-linearity in the problem.

The one-dimensional problem was quite insensitive to the specified initial condition.

Regardless of how the initial condition was specified, the solution required approximately

the same number of iterations to converge. This same situation was found for the two-

dimensional problem. Estimated heat flux and computational time were insensitive to the
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procedure for setting of the initial condition for the two-dimensional problem. Whether

the initial estimates for the next sequential interval were specified from the previous inter-

val as outline in Section 5-4.2, or specified as zero, it did not significantly change the num-

ber of iterations.

A characteristic noticed for the one-dimensional problem, and two-dimensional test

cases with measurement errors, was that the Tikhonov parameter decreases for the sequen-

tial problem, compared to its magnitude for the whole domain solution. The decrease in

the Tikhonov parameter was more pronounced at smaller r-values and approached the

magnitude of the whole domain solution as r was increased. A smaller Tikhonov parame-

ter was not expected for the sequential solution because the problem is more ill-posed. It is

the sequential implementation that forces the Tikhonov parameter to be reduced, at least

for small r—values. Since the sequential solution is on the shorter time interval, the zeroth

order Tikhonov regularization is more influential because the sensitivity (or in this case

adjoint function) is not as large, particularly for r-values beyond four to five time steps

from the end of the interval, which represents a dimensionless time of 0.3. The nature of

zeroth order regularization is to bias or “drive” the estimates to zero, to reduce their vari-

ability. Consequently, to obtain the desired sum-of—squares, the Tikhonov parameter must

be decreased so as not to “drive” the estimates towards zero. As r is increased to be farther

away from this region the sensitivity (or adjoint function) is larger and the regularization

has less affect on the solution.

When solving in a sequential manner, however, there is additional information avail-

able concerning the heat flux. The heat flux need not be “driven” to zero with the zeroth

order regularization, instead it can be confined using the concept of prior information. The
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prior information for the heat flux is specified from converged values at the previous

sequential interval. The initial estimate for the sequential interval, which is specified from

the converged estimates at the previous sequential interval, are set identically to be the

prior information. The prior information is seen to enter the solution as qp"1(r, t) in equa-

tion (4-2.4), which is the Tikhonov regularization term in the sum-of-squares function.

Hence, instead of penalizing estimates that are different from zero, it penalizes estimates

that are different from the previous estimates. For components that are far enough away

from the end of the sequential interval the prior information has little influence. Near the

end of the sequential interval, however, the prior information is more influential and helps

control components in this region.

The results using prior information are given in Table 6-3. As shown in the table, by

using the initial estimate as prior information, the sequential method is improved com-

pared to no prior information. Figure 6-8 shows the estimated triangular heat flux for r=6.

Compared to the estimated flux without prior information, see Figure 6-5b, results are sig-

nificantly smoother. For r=6 the mean-square error is reduced by 15%, and the computa-

tional time is reduced in half with prior information. For larger magnitude of r the mean-

squared error is comparable, while computational time is approximately one-half its

former value without prior information. Similar trends are shown for the step heat flux

case in Table 6-3. Notice that the magnitude of the Tikhonov parameter is greater when

using prior information, but because it penalizes changes from the prior information (esti-

mates at previous sequential interval) it does not bias the estimates as significantly. Prior

information allows for smaller r—values to be considered and reduces computational time

by requiring fewer iterations.
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Figure 6-8 Estimated surface heat flux for triangular test case using data corrupted with

measurement errors (6 = 0.0018°C ). Sequential solution with r=6 using prior

information.
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Table 6-3 Estimation results for two-dimensional IHCP with simulated data corrupted

with random errors using prior information

 

  

        
 

 

 

 

 

 

 

 

 

        
 

 

 

 

 

 

 

  

Analysis

domain Iterations .1

Tikhonov Comp Sy 0'5,

per t1me o 2

Method r I 0‘7 total seq int (sec) ( C) W/m

Triangular Flux (O’ = 0.0018°C) - 11 Spatial Components

GM all all 1.70 E-03 9 - 31.8 1.82 E-O3 8.57 E-02

SGM1 6 1 1.40 E-03 396 2.1 37.6 1.80 E-03 1.16 E-01

SGMl 8 1 3.50 E-03 391 2.0 50.1 1.80 E-03 1.02 13-01

SGMl 20 10 3.00 E-03 59 3.2 19.4 1.82 E-03 8.21 E—02

SGM 20 10 1.20 E-03 90 5 30.8 1.80 E-03 8.51 E-02

SFSGMl 6 1 8.30 E-04 390 2.0 36.5 1.81 E-03 1.33 E-Ol

SFSGMI 8 1 2.50 E-03 384 2.0 48.9 1.82 E-03 1.11 E-01

Step Flux(O' = 0.0025 ° C) - 11 Spatial Components

GM all all 6.00 E-04 13 — 45.8 2.51 E-03 1.06 E-Ol

SGMl 6 1 9.00 E04 508 2.7 48.2 2.50 E-03 1.79 E-Ol

SGMl 10 l 3.50 E-03 423 2.3 67.8 2.51 E-03 1.30 E-01

SFSGMl 6 l 4.00 E-04 506 2.7 47.2 2.50 E-03 1.97 E-Ol

SFSGM' 10 1 3.00 E-03 388 2.1 61.8 2.52 13-03 1.19 13-01          
1 Prior information used for solution

A final procedure to improve the sequential method is discussed. Although the proce-

dure is not numerically studied, it has promise for further improving the sequential

method. For all results presented herein, the Tikhonov parameter was specified to be con-

stant for the entire time region. Using the residual principle, the correct magnitude of the
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Tikhonov parameter was identified. This procedure allowed for a direct comparison of

computational time for the whole domain and sequential methods. An alternative method

could vary the Tikhonov parameter during the sequential analysis. In regions that the heat

flux is rapidly varying, the Tikhonov parameter could be reduced to minimize the effect of

bias. Similarly, it could be increased in regions where the heat flux is relatively constant.

In a sequential implementation information from previous sequential intervals is available

to modify the magnitude of the Tikhonov parameter, as well as the magnitude of r. The

whole domain solution does not have the necessary information to select these parameters.

6-4.0 Results - Experimental Measurements

The experimental configuration previously used to estimate the (orthotropic) thermal

properties of the carbon-carbon composite is used to study the two-dimensional IHCP.

Recall that transient temperatures and heat flux were measured to estimate the thermal

properties in Chapter 3. Now the same transient temperature measurements, with the pre-

viously estimated thermal properties, are employed to estimate the two-dimensional tran-

sient surface heat flux. Surface heat flux is known for this experiment because the power to

the heater is measured. Furthermore, the experiment is symmetrically designed and heat

losses are negligible compared to the applied heat flux. Since the heater design has three

independently controlled heaters, by activating only one of the three heaters a two-dimen-

sional surface heat flux is experimentally prescribed. Additional details on the experimen-

tal configuration are discussed in Section 2-2.0 and 3-2.0.

An important issue in the study of the multi-dimensional IHCP is defining the spatial

representation of the unknown heat flux. In the analysis of simulated data, it was shown

that the gradient method could estimated more spatial components than the number of
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sensors available. A rule used by the author is that the number of components estimated

should not exceed the number of sensors. If more components than this are estimated,

additional regularization is typically required to stabilize the solution. In the analysis of

this experimental case, no assumptions on the spatial form of the heat flux are used. It is

assumed that the heat flux is unknown only on the surface where the temperature sensors

are located. All other boundary surfaces are insulated. See Figure 3-1. Hence, the heat flux

that is estimated has a step change spatially and also a step change on time; a difficult case.

The measured surface heat flux is shown if Figure 6-9a. Note that the surface with

unknown heat flux, which is 7.62 cm long, has five sensors located above the heater at

locations, x = 0.89, 1.91, 3.18, 4.45, and 6.73 cm.

The numerical solution for this problem uses twenty-one nodes along the x-direction

for all materials. A schematic of the geometry is given in Figure 3-2. In the y-direction

there are four nodes across the mica heater, eleven nodes across the carbon-carbon, and

eleven nodes across the insulation. A numerical time step of 0.64 seconds, which is the

same as the measurement time step, is used. Because effective properties have been esti-

mated for the mica heater, the interface between the heater and specimen is modeled with

perfect contact. Although the mica heater is quite thin (0.44 mm), because its properties

include the contact resistance between the heater and the carbon-carbon, it is thermally

significant. Based on the effective properties of the mica heater, the dimensionless time

step (Fourier number) for the temperature sensors is 0.23. A dimensionless time step in

this range does not represent a difficult one-dimensional case; however, in two-dimensions

with a limited number of sensors, the problem is more difficult.
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Selecting the appropriate Tikhonov parameter requires knowledge about the errors to

apply the residual principle (Alifanov, 1994). For this two-dimensional experiment the

temperature was measured at seven locations, but two measurements are available at all

seven locations. The sensors located at the back surface of the carbon-carbon composite

provide little information compared to the sensors near the surface. Therefore the five sen-

sors located closest to the heater are used in the analysis. By comparing the two measured

signals at each location an indication of the noise in the measurements is gained. The stan-

dard deviation of the redundant measurements, from the average, is computed as

1

J, 2

62(0) = {171—12[Yk(t)—Yk’,(t)]2} (6-4.1)

(=1

where Y_k(t) is the average temperature (for Jk sensors) for sensor location k, Yk’ ,(t) is

the measured temperature for sensor location k and sensor number I , and Jk is the num—

ber of sensors at location k. For this experiment Jk = 2 for all k. Since so few sensors

are available, by substituting for the average temperature

Yk’1(t)+ Yk,2(t)

 Y_t = 6-4.2k( ) 2 ( )

equation (6-4. 1) simplifies to

1

1 2 2

67*“) = {Ely/(1 1“)" Yk,2(t)1 } (6-4-3)

Notice that this error is a function of time and sensor location k. An approximation of the

total error is obtained by averaging the error in equation (6-4.3) over time and sensor loca—

tion. The average magnitude is 0.1°C . This is about 20% larger than the measurement
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error estimated for the one-dimensional experiment. The one-dimensional experiment had

a larger sample set, Jk = 7.

The estimated heat flux is shown in Figure 6-9b and c for the whole domain and

sequential method. The two methods are remarkable similar. Table 6-4 shows results from

the analysis. The mean—squared errors are within 5% of the GM for all cases considered,

except when prior information is used. For r=6, however, the computational time 77%

greater for the SGM, which increases to 203% greater for r=10. The computational time is

reduced to the level of whole domain solution by retaining more than one component.

With r=6 and retaining two components, the computational time is cut in half and the

mean-squared error is reduced by 3%, compared to the estimates while retaining only one

component. Similar improvements are seen when retaining five components for r=10.

For a comparison, another program for estimating the surface heat flux is used to ana-

lyze the same data. The program QUENCH2D (Osman and Beck, 1989) computes surface

heat flux from internal measurements using a combined function specification regulariza-

tion method (CFSRM). In the CFSRM algorithm function specification on time and

Tikhonov regularization on space is applied. The finite element direct solver TOPAZZD is

used in this program. Heat flux estimated with QUENCH2D is shown in Figure 6-9d for

r=6. The Tikhonov parameter was specified to have the same magnitude as the whole

domain solution. Similar numerical aspects as used in the gradient method’s FCV solution

were defined for the finite element solution. Approximately the same number of nodes and

time step were specified for the numerical solution.

The estimated heat flux is again quite similar. For the CFSRM only seven spatial com-

ponents are estimated because of program limitations. Because QUENCH2D required two
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Figure 6-9b Estimated surface heat flux for experimental case. Whole domain solution.
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Figure 6-9c Estimated surface heat flux for experimental case. Sequential solution with
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specification regularization method with r=6.
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Table 6-4 Estimation results for two-dimensional IHCP with experimentally measured

 

 

   

 

      
 

 

 

 

 

 

 

         

 

 

 

 

 

heat flux

Analysis

domain Iterations ,.

Tikhonov Comp Sy Gq

per time

Method r I “T total seq int (sec) (°C) W/m2

Experimental Case 1020&65 - 21 Components

GM all all 1.5 E-06 13 - 89.5 1.00 BO] 648

SGM 6 1 3.0 E-06 763 4.3 159 1.04 E-Ol 660

SGM 6 2 2.4 E-06 429 4.9 89.3 1.03 E-01 637

SGMl 6 l 1.3 E-OS 486 2.8 101 1.01 E-Ol 878

SGM 10 1 3.6 E-06 825 4.8 298 1.01 ED] 679

SGM 10 5 2.9 E-06 215 6.3 78.3 1.07 E—Ol 635

Experimental Case 1020&65 - 7 Components

SGM 6 1 2.6 E-08 504 3.3 104 1.04 E-Ol 500

SGMl 6 1 2.0 13-07 371 2.2 76.8 1.00 E-Ol 389

CFSRM 6 l 1.5 E-06 - - 7200 7.88 E-02 399

CFSRM 10 l 1.5 E-06 - - 7200 1.65 ED] 518           

1 Prior information used

hours to obtain a solution the appropriate OLT, based on the residual principle, was not

identified. It appears the appropriate (r, arr) for CFSRM is between the two cases listed in

Table 6-4. The estimated heat flux is not sensitive to these parameters. The biggest distinc-

tion between the two programs is the computational time. The gradient method requires on

the order of 100 seconds, while CFSRM requires on the order of 7000 seconds. These

computational times can not be directly compared because different direct solvers are
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used. The gradient methods employ a ADI method, which typically is much faster than the

finite element method used in QUENCH2D. To understand the computational difference,

the time required to obtain one direct solution with comparable numerical conditions was

conducted. The ADI solution required 3.6 seconds while the FEM required 110 seconds; a

factor of 30. Indicating that the gradient methods are more computational efficient because

the inverse solution required a factor of 70 more computational time. Furthermore, the

CFSRM only estimated seven components, compared to 21 for the GM. As more spatial

components are estimated the CFSRM requires solving additional problems, some compu-

tational savings are carried from previous solutions, however. In contrast, the gradient

methods do not require solving additional problems when more components are consid-

ered. A very good feature for the multi-dimensional problems. It appears that the gradient

methods are more efficient for higher dimensional problems, but further cases, with simi-

lar direct solvers, or more detailed studies are need. Comparing the gradient methods with

standard function specification was not a thrust of this dissertation. Early indications are

that the gradient methods are very promising for multi-dimensional problems.



Chapter 7

SUMMARY AND CONCLUSIONS

A study of multi-dimensional inverse thermal problems was presented. Two main

problems were studied. Parameter estimation techniques were applied to characterize ther-

mal properties of a carbon-carbon composite material. The second problem developed the

sequential implementation of a gradient method, utilizing an adjoint equation approach,

for estimating the surface heat flux from internal temperature measurements. Both prob-

lems addressed multi-dimensional cases.

Thermal properties, represented by two components of thermal conductivity and the

volumetric heat capacity, were estimated for the carbon-carbon composite. One- and two-

dimensional transient experiments were analyzed to estimate the thermal properties up to

500°C . Several conclusions are supported:

1. The thermal properties of the carbon-carbon are described by a parabolic temperature

:C , and by a lin-dependence, given in equation (3-40) and (3—41) for the k; CC and (pC)

ear temperature function, given in equation (3-37) for k: cc.

2. Experimental uncertainty in the estimated thermal properties was a maximum of 5.8%

in (pC); and 2.4% in k1“. for one-dimensional experiments. Two-dimensional

experimental uncertainty was a maximum of 6.0% in (pC); and k: CC and 4.4% in

k8

X,CC'
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3. One and two-dimensional results for (p C)2c and k; CC correlate within the experimen-

tal uncertainty.

4. An orthotropic model adequately describes the carbon-carbon material studied.

A sequential gradient method was developed to solve the IHCP. Several one and two

dimensional cases, using simulated and experimental measurements, were investigated to

characterize the sequential method. A comparison between the sequential method and a

whole domain solution was made. The following conclusions are drawn concerning the

sequential gradient method, and variations of the method that were proposed:

1. A sequential gradient method has an accuracy comparable to the whole domain gradi-

ent method, but in certain cases requires significantly more computational time.

2. In one-dimensional cases the minimum length of the sequential interval was a dimen-

sionless time of 0.3. The dimensionless time is based on the depth of the sensor nearest

the location of the estimated surface heat flux.

3. Applying function specification on time, in conjunction with the sequential gradient

method, reduced the computational requirements and allowed for sequential intervals to

be shorter than 0.3 for the one-dimensional cases. Computational requirements were

comparable for the sequential function specification gradient method and whole

domain method.

4. The two-dimensional cases required the dimensionless time to be greater that 1.0 to

obtain comparable accuracy between the sequential and whole domain solutions. The

dimensionless time is based on the depth of the sensor nearest the location of the esti-

mated surface heat flux.

5. Applying function specification on time, in conjunction with the sequential gradient

method, did not improve the computational requirements when errors were present in

the data for the two-dimensional case.

6. Retaining more than one component for a sequential interval improved computational

requirements without affecting the accuracy of the sequential gradient method for the

two-dimensional case.

7. Using prior information with the sequential gradient method for the two-dimensional

case was shown to improve the accuracy, permitted smaller sequential intervals, and

made the computational requirements competitive with the whole domain solution.

 



Chapter 8

RECOMMENDED FUTURE WORK

In the course of this dissertation several topics for future work were realized. The top-

ics are separated according to the parameter estimation or inverse heat conduction prob-

lem.

Experiments conducted to estimate the thermal properties of the carbon-carbon com-

posite material measured transient temperature and heat flux histories for discrete experi-

ments spanning the desired temperature range. Experiments with one- and two-

dimensional heat flow were analyzed independently, assuming the thermal properties were

constant for the analysis of each experiment. In the end, the discrete experiments were

combined to determine a temperature dependence for the thermal properties. One and two-

dimensional results were also compared. Topics of future direction are noted:

1. Analysis of currently available data to directly estimate temperature-dependent thermal

properties is of interest. A sequential analysis using prior information is used to accom-

plish this.

2. The optimal experiment for estimating two components of thermal conductivity and

volumetric heat capacity is needed for the case of a relatively high thermal conductivity

material (which this particular carbon-carbon has). The optimal conditions for the

design of a series of experiments is an important concept that needs attention. The

experimental series may included one- and two-dimensional experiments. As the com-

plexity of the experiments increase, more frequently several experiments may be

required to fully characterize complex materials or compound structures.

3. The model of the carbon-carbon composite can be extended to include the silicon-car-

bide layer. This case of a thin layer on a thick substrate represents an important prob-

lem. Work to estimate the thermal properties of the thin layer, in conjunction with the

underlying material, is of interest.
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. Methods, both experimental and analytical, should be generalized to the three-dimen-

sional case. Developing the analysis is straight forward. Experimental techniques,

including the experimental design, are extremely important for higher dimensions and

will require significant effort.

The sequential gradient method has several areas for potential growth of the method.

. The procedure to linearized nonlinear problems in the sequential gradient solution sug-

gests large savings in computational time without significantly affecting accuracy, the

procedure needs investigating.

. Implementing on-line logic for selecting the regularization parameter, number of future

time steps, and/or the number of retained components would enhance the sequential

method. Quite frequently, the selection of these parameters is not trivial and requires

experience and an understanding of inverse problems. Since the accuracy of the solu-

tion may be sensitive to correctly selecting these parameters, the method would be

enhanced to logically select the parameter.

. In the sequential formulation presented, zeroth order Tikhonov regularization was used.

Extending the method to include first order Tikhonov regularization is appropriate.

. Prior information to spatially filter the heat flux could provide spatial regularization.

5. Implementing the methods for the three-dimensional case is of interest.
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APPENDIX A

FINITE CONTROL VOLUME METHOD

A-1.0 Introduction

Many methods exist for discretizing partial differential equations. Two popular meth-

ods are finite differences and finite element. An alternate approach applies conservation of

energy directly to a control volume. That method is applied to discretize the heat conduc-

tion equation here.

The problem considered is the heat conduction equation with constant thermal prop-

erties, a spatially time dependent volume energy source

 

3 er 3 ar _ ar 3
5:0“ 5;)+$(k,5;)+g(x, y, t) — pC[§; +1%-8%] (A-1.l)

8T _ ._
-k é—n—i — qi(si, t) (z --1, 2, 3, 4) (A-1.2a)

ri

OR Tlr = Ti(si, t) (i =1, 2, 3,4) (A-1.2b)

T|t=0 = T0(x, y) (A-l.2c)

The thermal conductivity is assumed orthotropic. First or second kind boundary condi—

tions are allowed on the four bounding surfaces (1“,) . Conditions may have temporal and

spatial variation. The outward normal of surface 1' is ni. Since a regular geometry is used

this is the unit normal in the x or y direction.
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The FCV procedure uses energy conservation principles to derive a discretized set of

equations to solve for the temperatures. In contrast, a finite difference scheme would dis-

cretize the problem presented in equation (A-l.1) and (A-l.2), i.e. use a finite difference

approximation for the derivatives, to obtain a numerical solution. The FCV procedure is

preferred over a finite difference approach because it is more general and applies energy

conservation principles to derive the equations.

To implement the FCV procedure the spatial domain is discretized with uniform mesh

points (nodes)

(x, y) = (iAx, jAy) i: (o, 1, 2 ..... ,1), j = (o, 1, 2 ..... ,J) (A-1.3)

where the mesh lengths are

L L,

( = .5 (Ay = 72) (A-l.4)

Control volumes are the region (AxAy) surrounding the nodes with the node centrally

located. The control surfaces are at the mid-plane between the nodes. Figure A-l shows a

schematic of the nodes, control volumes, and control surfaces.

The integral energy equation (Beck et al., 1992)

J(_q . fi)dA + Jgdv = Jnggdv+ Iqu’ - fi)dA (A-l.5)

C.V C.S.C.S. C.V.

is applied to each control volume on the domain to obtain the FCV equations. The integral

energy equation can be used to derive the describing differential equation in equation (A-

1.1) as well. The energy balance for a typical node in the interior is shown in Figure A-2.

Using the simplified approximation of equation (A-l.5), which assumes the quantities are
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Figure A-2 Typical energy balance for an interior node
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constant over the control volume and surface, gives

3T
_ (_ 417411 + qi+Ai+ _ 411"}: + qj+Aj+) + gV = pC-é; V + pvouhAh — pvoui-Ai. (A-1.6)

The heat fluxes are taken as the mean values over the control surface and are approximated

as

(Ti,j_ Ti- l,j)
 

 

 

 

qt: = _kx Ax (xx-1.7)

qr, = -kx(Ti+1X; TU) (A-1.8)

41'. = ‘kym’flaly- TU) (A-L9)

Assuming that the velocity is positive, the flow terms are evaluated at the upwind locations

to avoid the known difficulties associated with central differences for this term (Anderson

etal.,)

u- = C T«,- (A-l.ll)

“i- = CPTF (A-l.12)
l,j

The areas are (A1.) = Ai = Ay) and (Aj. = A]. = Ax) and the volume is (AxAy). Substi-

tuting equation (A-l.7) through (A-1.12) with areas and volume into the energy balance

gives

(Tij—Ti,j—l) (Ti.j+I_Ti.j)

Ay Ax+ky Ay

(Ti.j’Ti—l.j) (Ti+1,j"Ti,j)
k1 Ax A_y+kx Ax  Ay — k‘, Ax  

8T. .

+gAxAy = pCAxAy—S; "J+pCv0Ay(Ti,j—— T,-_ UNA-1.13)
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Defining the following constants

k,r k
x, = —; x = ——-”—— (A-1.14)

PCUM)2 y PC(A)’)2

and simplifying equation (A-1.l3) results in an equation that represents an energy balance

on a finite control volume

V V

[(A'x + 263T" 1.1—(291'), + 13%)7‘51' + A'xTi+ 1,1] + [4,3113% 1 — 2x),Ti,j + MT“). 1]

+ iLé = g—tTi’jm-LM)

For boundary conditions that are prescribed temperature only, after approximating the

time derivative in equation (A-1.15) the equation can be written for each interior node and

numerically solved for the all discrete temperatures. However, if flux boundary conditions

are prescribed, a FCV procedure performs an energy balance on the boundaries and results

in an equations to describe the energy balance there.

The FCV equations to represent the boundary conditions apply an energy balance at

the boundary FCV. Two possible configurations on the boundary are shown in Figure A-3.

The first is along a bounding surface but not on a comer and the second is at a comer.

The energy balance for the bounding surface node is

A 3T

—(" qi+Ai+—qjjAj_+Qj+Aj++qsthQ+gV = 9C3? V+pv0u0Ai—pvou1A,-+ (A’l°l6)

The heat fluxes (q I. , qj, qj ) and flow term (ui ) are the same as for an interior grid point

and given in equation (A-l.8) through (A-l.lO) and equation (A-l.l 1). The flow term at

the boundary surface is evaluated using the average temperature,

ui = Cp(T0,j+Tl,j)/2' The areas are A}. = A}: = Ax/2, AI. = A5 = Ay and the
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0, '+1 0( J ) q” (0, 1)

J o

I' _ 1 q"

ui<—: :‘Ei+ "Lb:- — 11" u!”

. 4—5 —I;I> 00’!) 3132,,- ' ' €1,-

615,,1- (0,j)| | 1* (0,0)‘ “ — " * ' ~
I I . (1.1)

L _ J qsl

q}.-

(0, j_ 1) .

a) Bounding surface node b) Comer node

x=0 (x=Qy=0)

Figure A-3 Finite control volumes along the boundary of the domain

volume is V = AxAy/Z. Substituting these relations into equation (A-l .16) and simplify-

ing gives

1 V0 , V0 1 ' '

[PMEITOJ+IZMEITMI+ ”11702-1 -2M7‘o.j+>~yTo.,-. 11

2q52vj g0,j _ a_TOvj

—pCAx pC — a:

 (A-l.17)

where Xx and Xx are given in equation (A-12). The prescribed heat flux (“15" j is the heat

flux on surface 32 at nodej.

Using the same procedure the following equation is derived to represent the energy

balance at a corner node
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V V

[I—zxx + K970, 0 + (2x, _ 2T1)“ o] + {—2797, 0 + 22.31,, ,1

2411.113" "’ 2‘452: IA)’ 81,; 3T1.)
— + —- = — (A-1.l8)

pC(AyAx) pC a:

 

The equations derived for the boundary conditions, equation (A-l7) and (A-18),

apply along boundary x = 0 and at comer (x = 0, y = 0). Similar expressions can be

derived for the remaining boundary surfaces and corners.

A-2.0 Alternating Direction Implicit Method (ADI)

Discrete equations derived can be solved using an explicit or implicit method. The

explicit is more easily implemented, however, may be unstable depending on thermal

properties and the time and space discretization. In contrast, an implicit method is more

complicated to implement, but unconditionally stable. A fully implicit method has five

unknowns for each interior node (see Figure A-2 and equation (A-1.15)) and requires

solving a penta-diagonal system for each time step. A more efficient method is the ADI

(alternating direction implicit) scheme, which requires solving two tri-diagonal system of

equations at each time step.

The time domain is uniformly discretized

t=nAt n=(l,2 .....,N) (A-2.l)

In the ADI method, two solutions are obtained for each time step. For the first half time

step the FCV equations are solved implicit in the x-direction and explicit in the y-

direction. For the second half time step the difference equations are implicit in the y-

direction and explicit in the x-direction. Hence, the ADI method is a two step solution. An
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intermediate solution at time (n +1/2)At is obtained after the first step. The second

results in the solution at the end of the time step.

A-2.l ADI Equations (n+1/2)

The FCV equations using an ADI scheme proceed over the first half time step. These

equations are implicit in the x-direction and explicit in the y-direction. For illustrative pur-

poses consider the FCV equations in equation (A-l.13), (A-1.15), and (A-1.16). Introduc-

ing the forward difference for the time derivative and the implicit/explicit ADI scheme for

the first half time step produces the following equations

Interior Node: (0<i<I), (0<j<J)

 

v At v At
[05‘4" 0 ¢+1/2_(2kx+ 0 qf1/2+XT7+1/2]

 

    

  

    

 
 

Ax l-l,j Ax 1,} x 1+1,}

n n+l/2_

g,-__1' _ (Ti) 1'}
+(AT,1_ 1 2xyr,1+7tr,1+,) FE— At/2 (A22)

Flux B.C.(i = 0) and(0 <j< J)

n+l/2 , VON n+1/2

[GM-AxITO! (* Ax 1'1 I

an n n+l/2 n

n n n qs,,j gO,j = (T0,j _TOJ)

Flux B.C. (i=0) and (j=0)

n+l/2 , VA’ n+l/2

II 2”)7.“(”r—2. I

an A" n n+l/2 n

n q Ax+q M T —T..

+(-2}t),T0.0+2}tyTg,l)—2 “'0 ‘2'0 go") (00 "1) (A-2.4)
pC(AyAx) +p_C' = At/2
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The first equation is for an interior node and the next two equations are for a surface and

corner node for a prescribed fiux boundary condition. For the case of temperature bound-

ary conditions only, the first equation is sufficient for numerically solving the problem.

Using a similar procedure, equations for the remaining surfaces and comer can be written.

After deriving all the FCV equations, they can be rearranged to group known information

on the left hand side of the equation and unknowns on the right. The equations represent a

set of simultaneous equations, which can be written for each j, (j = 0, 1 . . . ,J), the jth

set of equations are

I

v At

I-Kx-fi)T?jll-2+ (20. +1)+v"Ax—)T’.’j“2— A1711“}: D?(O<i<1)(A-2.5b)

        
VA’ n+l/2 . vAt ““2 n .

ZXJTOJ +I_2}‘x+ 2,; LJ =00(l=0)
(A2521)

v At voAt(_zlx__27)17+11/2+(2(x + l)+v0Ax—)TZ:'U2 = 0'; (i=1) (A-2.5c)

The right hand sides are also a function ofj,

fori=0

At .n 2At .n 2A:
1);; _-2(1—A)T3 0+?»To #83. 0pC+qu0pCAy+q52’OPCAx

 (j = O) (A-2.6a)

It At An 2At

03:xr0j_,+2(1_t)roj+xr01+1+g,1pc+qsl}.pC——A—x0<j<1 (A-2.6b)

n A__t_+,.n12At +,,n 2At

 

for0<i<l

At .. 2At .
= 2(1— A)T?O+1)T?]+g:0p—C+q:l-pCAy (1:0) (A-2.7a)
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nAI

D'.’ = 2. T’.' ._,+2(1—}.y)T2j+}.1"j+1+g,.j—pC, y ,, J (O < j < J) (A-2.7b)

It At An 2_A__t[Dy-MT?! 1-+-2(1—---y:.'2.)TMj+gi1pC+ 4:3p—-_CAy (j: J) (A-2.7c)

for (i = I)

n n At ,. 2At . 2At
-_- 2(1—1),)T,’0+2.),T,,1+g70 " "

. p—C + q-‘vopCAy + q-‘b OpCAx (j = 0) (A-2.8a)

I: At An 2At

=I.T,j_1+2(1—}.)T,j+}.le+1+gljp—C+qs4,ijAx O < j < J (A-2.8b)

n A! an 2At .11 2A!

D, __A'yTIJ- l+2(1- A)T1J+gIJp—-C+q53’ lm+qs"1p—CA_X (j=J) (A-2.8C)

A-2.2 ADI Equations (n+1)

The FCV equations for the second-half time step for the ADI scheme proceed from

the intermediate solution at n+1/2 to the n+1 time step. For this second half step the FCV

equations are implicit in the y-direction and explicit in the x-direction (the opposite of the

first-half time step). Using the same procedure as before, the forward difference approxi-

mation is used to represent the time derivative, a simultaneous set of equations are written

for i, (i: 1,2...,I),the ith set ofequations are

20.+1)rj.';‘—>.yrj{f‘ = 133”” (j = 0) (A-2.9a)

A. Tn+l A n+1 n+1 n+1/2

__y1,j—1+2( HUT —xyTij+l= E O<j<J (A-2.9b)

n+1 n+1 n+1/2

—7.T,,_ ]+20. +1)T,, = E, (j=J) (A-2.9c)

The right hand side constants are a function of1:

forj=0

+112 +1/2 V A‘ +1/2
£3 =(2(1—}.)—AX)T"O +(2x Ax)T’;’O   
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At . 2At ,, 2_A_t

+83,opC “13,, op—CAy+q:,,op——oCAx (i=0)(A-2.10a)

n+1/2 VA’ 11+1/2 _AVot +1/2 +1/2

+3120pAé-I-‘Zl ri‘AAty 0<i<I(A-.210b)

+112 VAI +1/2 _oVA’ +1/2
E3 —-(22.x+ 2x)TJ;_ 10+(2(1— 20

I: At An 2At An 2A__t_ _

+g,0p——C+qs] ’pCAy+q-‘4°p_—CAx(i I)(A-2.10c)

for0<j<J

n+1/2_ VOA n+1/2 VOA! n+1/2
E}. _(2(1—1.x)—E 0,]. +(27tx— EJTU

It At An 2At

+g0’jp_C+ qsij—CM (i: 0)(A-2.lla)

n+1/2 VoAt n+1/2+ _A_Vot +1/2 n+1/2

At

+g, JpC0<z<I(A211b)

voAt _OvAtE;+1/2 = (2)514“ Ax)T7+11/2+_Ax(2(1 Ax)7m+1/2

I: At an 2At ._ .

+gl’jI)_C‘+qS4’prAx (z — I)(A-2.11.)

forj = J

En+l/2_ 21 2. n+1/2+ VOA’ n+1/2
_[ I - )- EAITOJ Ax T1,]
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At A 2At A

+80, JpC:::2,thCAx+qs3,OpZCAAy

n+1/2_ V__.)A’ n+ll/2+ 4.1/2+ Tn+1l2

(i: 0) (A-2.12a)

+ n £+ A 2A!

g‘JpC+ q"3'pCA—_y

VA’ n+1/2 VA’ +1/2

nyl—lJ “(2(1-xx 2x I,J

+g",,)m+, 2At +. _2__At

pC q‘3’pCAy 454pCAx

O<i<I(A-.212b)

 

n+1/2

E, (=2AX +    

(i =I)(A2.12c) 

A-2.3 Summary of ADI Equations

The ADI scheme results in two tri-diagonal sets of equations to solve for the tempera-

ture

{A1},T’.'_+”t"+ {C1}T’."f“2+ {131},.T;’jl“j2 = D? (A-2.l3)

{A2}jrzj_‘1+{C2}jT2}' +{192}1.T2j+‘1 = 1531*”2 (A-2.14)

where the coefficients, {Al }i, {C l } 1" {Bl },-, are given in equation (A-2.5) and D? is

given in equation (A-2.6) through (A-2.8) and coefficients {A2}1, {C2}j, {82}j, are

given in equation (A-2.9) and E; + “2 is given in equation (A-2.10) through (A-2.l2).
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