
.
5

l
u
l
.

S
w
h
.

.
fi
fi
m

«
K
a
m
a

..

.
..
“
a
m
n
a
m
w
fi

3
%

M
y
r
a
”
?

P
o
l
-
J
R
. Q
H
K
J
I
H
M
H
q

..
1
5
%
,
.
e
r

3
.
.

o
.
H
.
2
5
7

.
7
1
..

.
'
U

.
I

I
$
1
3
1
1
1

.
.

,
.

m
i
fl
x
fi
u
‘
v
a
£
9
3
}
t
h

:
.

.
.

.

.
.

H
u
c
k
}
;
i
t
?

,
.

.
.

.

T
I
.

d
r
i
n
k
.

n
u

.
.

.
.

.
.

E
l
l

.
.

.
.
F
.
.
.

.

r
\
l
.
9
!
n
.
.
h
\
.
.
t
.
\
fi
n
fl
:
l

.
.

.
.

.
.
W
fl
n
.

..

o
I
I
I
I
|
;

r
:

|
.
u
.

.
I

I
‘
c

u
.

.
Y
r

.
.

.
.

..

.
r

i
.
.

J
.
“

_
_

.
.
.

.
.

.
.

.
.

..
.

n
.

V
.

l
_

a
.

.
~

4
I
.

v
.

u
v
.

a
,

J

.
u
n
i
.
.
.
"
.
3
8
.
.

2
,.

..
.

.
,.

_
.

..
..

.
.
J
S
:

3
.

.
.

.

.
.
.

:
.

x
I
.

.
.

s
.

C
.

~
E
l
a
n
%

H
.

.
.

.
fl
a
w
.

L
.
.
.

.
5
?
?
?
K
m

“
t
h
w
a
m
m
v

.
_

,
.

.
.,

«
fi
x
z
a
t
i
i
w
q
u
u
h
fi

.
.
L
o
n
l
l
v

.
.

.

.
.

.
v
a
w
fl
h
fl
n
t
l
h
t
n
h
l
v
u
“
.
.
.

.
.
3
.
1
.

W
O
N
.

.
.

_
.

.
.
.

1
.
6
.

J
.

.
5
3
.
.
.
.

I
.
.
.

:
.

.

..
1
3
1
‘

l
v
.
1
1
.
-
.
:

..
.
1
.

b
.
-
-
.
a
.
.
.
v
k
.
-
1
|
.
.
-
:
3
!

T
i
:

.
v
-
f
»
-
o
£
)
f
-
4
l
:

i
.
.
.
a
[
£
1

?
y
.
-
.

.
1
1
1
1
”
.
.
.

.

I
n
t
,
»

-
1
!

‘
9
.

1
»
:

I
-

.
I
u
-
«
.
y
-
.
I
£
fl
.
.
.
.
1
.
.
l
-
¢
l
l
.

.
.
.

€
1
1

$
5
4
2
.
3
0
.
.
.
-
J
.

u
r
n
.
"

.
.

.
,
.
.

L
.

..
4
.

.
.
.
.
.

1
.
.
l

.

.
-
g
n
fl
n
fl
.

J
u
a
n
"
.

5
)
:

.
{
1

.

!
-

.
«
K
t
-
i
. .
u

u
.
.
l
t
.
|
!
.
.
.
.
!

.
.

‘
0

u

I

..

1
.
1
.
.
.

.
9
1
3
3
.

.
1
5
.
.
.
?
!
1
5
1
-
-
.
?
?
?

.
.
H

J
.

..
2
1
.
1
.
3
.
1
.
I
.

0
2
5
$
.

.
h
u
r
w
f
k
d
i
t
.

£....u.l..«8..u......u

.
l
t
s
v
l
b
r

n
|
1
.
l

.
»
'
3

.

i
.
.
.
.
1
9
§
L
v
.
.

.
n
u
t

i
v
L
m
fl
l
h
u
.

.

.
m
e
m
w
h
.

‘
2
1
6
3
.

.
3
)
.
.
.

fi
t
.

I
}
:

,
l
«
-

.

.
x
y
o
fl
l

.
.
{
.
u
1
1
3
.
.
.
]
l
l
!

.

1
|
.

.
.
.
l
n
.
|
.
.
.
f
.
.
-
:
I
r

1
?
!

$
1
.
-

.
u

5
.
1
.
2
:
.
.
.
i
s
l
.

.
7
0
.
}
.
.
.

n
!

n
u
p
t
i
a
a
i
q
a
u
i
.

4
1

0
|
.

:
9

.
.

.
.

.
J
a
k
u
.
.
.
.
.
.
.
.
.
:

..
.

.
.
u
n
i
-
[
'
4
9
{
5
:
}
.
t
h

.
.
.
a

l
.
.
.

:
1

.
.
-
I
)
-
-
-

1
.
.
.
}
.
.
-

%

.
u
.

.
p

..
.

4

‘

y
.
.

N
.
L

7
1
.
.
.
.
.
.
5

l
.

.
k

«
1
:

1
.

L
.
.
.

1
.

THESlS

.“7

IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

31293 01571421

This is to certify that the

dissertation entitled

Modelin" Collective Commtmicatten:

Design and QnPDYWSCU’ICC Evahmifon

presented by

\fihjie Edi

has been accepted towards fulfillment

of the requirements for

ph. D degree in COMPLJQF SClCflCe,

@35wa
Q Majorroesspf

Date {12"} [97

MSUisan Affirmative Action/Equal Opportunity Institution 0- 12771

LIBRARY
Michigan State

University

PLACE IN RETURN BOXto remove this checkout from your record.TO AVOID FINES return on or before date due.

DATE DUE DATE DUE DATE DUE

MODELING COLLECTIVE COMMUNICATION: DESIGN AND

PERFORMANCE EVALUATION

By

Yih-jia Tsai

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

1997

ABSTRACT

MODELING COLLECTIVE COMMUNICATION: DESIGN AND

PERFORMANCE EVALUATION

By

Yih-jia Tsai

As advances in VLSI technology have enabled rapid improvements in commod-

ity microprocessors, the same technology also has changed communication archi-

tectures dramatically. A communication subsystem is an integrated combination of

both hardware and software. Eficient communication primitives can be achieved

only through the careful exploitation of the underlying hardware architecture. Col-

lective communication operations, which involve more than two participants, arise

frequently in scientific applications. The primary objective of this work is to explore

design and performance evaluation of collective communication operations. To this

end, two models are proposed. The Extended Dominating Node (EDN) model is

based on dominating sets in graph theory. The EDN model can be used to design

collective operations in systems that support single-step multicast communication.

We demonstrate the use of the EDN model on the design of collective communi-

cation algorithms for wormhole-routed massively parallel processors (MPPs). The

second model, the T-mOdel, is a generalized communication cost model that facili-

tates the study and characterization of collective communication operations over a

variety of networking technologies. We show that the 7-model can reveal relation-

ships among algorithms that are not easily discernible through traditional methods.

To my family

iii

ACKNOWLEDGMENTS

First of all, I would like to thank my thesis advisor, Dr. Philip K. McKinley,

for his initial encourgement and inspiration on the subject that later led to this

dissertation. The constant advice and guidance from him on the subject matter are

enormous. I also would like to express great appreciation to all the members of my

committee: Dr. Lionel M. Ni, whose insights and first class research program have

always been an inspiring source for me; Dr. Abdol H. Esfahanian for stimulating

my thinking in an initial course on graph theory; and Dr. T. Y. Li for his very

useful discussion on the impact of communication performance to parallel scientific

programs. The research projects that these faculty have conducted have served as

wonderful example to me. It is a priviledge to be able to study and work in such

an exciting environment.

In addition, much appreciation is due to Dr. Donald E. Weinshank for providing

me with initial support to work at the Michigan State University, and to Dr. Edward

N. Kashy for his support and discussions on the subject of teaching science in the

University.

Finally, I would like to express my gratitude to members of the Communications

Research Group for their inputs and feedbacks on my on—going research.

iv

TABLE OF CONTENTS

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Motivations 1

1.2 Thesis Statement 3

1.3 Research Contributions 3

1.4 Dissertation Organization 4

2 Background and Related Work 6

2.1 Introduction 6

2.2 Parallel Computation Structures 8

2.3 Communication Paradigms 10

2.4 Collective Communication Operations 12

2.5 Wormhole-Routed MPP Network Architectures 16

2.6 The Trend Toward Clusters 22

2.7 Computation/Communication Models 25

3 Extended Dominating Nodes in Mesh Networks 32

3.1 System Model 33

3.2 Single-Level Dominating Node Broadcast 35

3.2.1 Dominating Nodes in a 2D Mesh 36

3.2.2 Multicast Algorithm 37

3.2.3 Example 39

3.2.4 Performance 40

3.3 EDN Broadcast in 2D Mesh Networks 41

3.3.1 Extended Dominating Sets 41

3.3.2 Systematic Approach to Finding Multi-Level Extended Dominating Sets 44

3.3.3 Theoretical Performance 50

3.3.4 Analysis 54

3.3.5 Simulation Study 55

3.4 EDN Broadcast in 3D Mesh Networks 60

3.4.1 Recursion in XY plane 62

3.4.2 Recursion along the Z-axis 63

3.4.3 Theoretical Performance 64

3.4.4 Analysis 65

3.4.5 Simulation Study 67

V

3.5 Reduction and Gather Operations 69

3.6 Matrix Transposition 71

3.7 Conclusions 74

4 EDN Broadcasting in Torus Networks 75

4.1 System Model 75

4.2 EDN Broadcast in 2D Torus Networks 77

4.3 EDN Broadcast in 3D Torus Networks 87

4.4 Performance Evaluation 89

4.4.1 Number of MessageaPassing Steps 90

4.4.2 Timing Analysis 91

4.4.3 Simulation Study 95

4.5 Conclusions 96

5 The 'r-Model 98

5.1 The T-Model 99

5.1.1 Generalized Latency Formula 99

5.1.2 The T-Plot: Comparing Networks 100

5.1.3 Use of the T-Plot to Compare Algorithms 102

5.2 Characterization of Point-to—Point Communication 104

5.3 Analysis of Wormhole Broadcast Algorithms 108

5.4 Comparisons Using the T-Model 113

5.4.1 Overall Comparison of Algorithms 113

5.4.2 Comparison of SC and FT 116

5.4.3 Comparison of EDN and SC 123

5.4.4 Comparison of EDN and FT 124

5.5 Application of the T-Model to NOWs 127

5.5.1 Broadcast Operations 128

5.5.2 All-to—All Broadcast 131

5.5.3 Summary 135

6 Conclusions and Future Research 136

APPENDICES 139

A Formulae for EDNs in 2" x 2" Meshes 139

BIBLIOGRAPHY 143

vi

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

5.1

5.2

5.3

5.4

5.5

5.6

5.7

LIST or TABLES

Comparison of some message passing libraries with MP1 standard . . . 17

EDN steps for n = 4 x 2" 51

EDN steps for n = 5 x 2" 51

EDN steps for n = 6 x 2" 51

EDN steps for n = 7 x 2" 51

Theoretical EDN performance in 3D mesh networks 65

EDN reduction steps for n = 4 x 2" 70

EDN reduction steps for n = 5 x 2" 70

Point-to-point performance on various platforms.............. 107

Analysis of Scatter Collect algorithm 110

Analytical performance of the three broadcast algorithms 113

The latency formulae for the SC and the FT algorithms.......... 117

Latency formulae for the SC algorithm and the EDN algorithm. 123

Performance of broadcast operation. 129

Performance of all-to-all operation...................... 133

vii

LIST OF FIGURES

2.1 Collective operations.

2.2 System architecture.

2.3 Wormhole routers.

2.4 One-port 2D router.

2.5 All-port 2D router...............................

3.1 Mesh topologies

3.2 Examples of finding dominating nodes in a 5 x 5 mesh and a 4 x 4 mesh

3.3 Example of SLD broadcasting in a 4 x 4 2D mesh

3.4 Examples of extended dominating sets in 8 x 4 2D meshes

3.5 Level-1 and level-2 dominating nodes in 8 x 8 mesh

3.6 Two basic configurations for dominating nodes in a 4 x 4 mesh

3.7 Two configurations of synthetic dominating nodes in a 8 x 8 mesh . . .

3.8 Level-2 dominating nodes sending to level-1 dominating nodes in 8 x 8

meshes

3.9 Level-3 dominating nodes sending to level-2 dominating nodes in a 16 x

16 mesh

3.10 Startup message passing in 8 x 8 meshes

3.11 Basic building blocks for meshes not based on powers of two

3.12 RD multicast solution in a 6 x 6 mesh....................

3.13 Comparison of EDN steps with RD and lower bound (2D mesh)

3.14 Comparison of broadcast algorithms in 8 x 8 mesh (NCUBE—2 parameters)

3.15 Comparison of broadcast algorithms in 32 x 32 mesh (NCUBE-2 param-

eters)

3.16 Comparison of broadcast algorithms in 8 x 8 mesh (T3D parameters)

3.17 Comparison of broadcast algorithms in 32 x 32 mesh (T3D parameters)

3.18 Difierent EDNs in 4 x 4 meshes

3.19 16-node level-1 EDNs in a 4 x 4 x 4 mesh

3.20 Combining EDN configurations to cover an additional plane

3.21 Level-2 EDNs in a 4 x 4 x 5 network

3.22 Level-3 EDNs in a 8 x 8 x 5 network

3.23 Example of concatenating networks in the Z direction

3.24 Comparison of EDN steps with RD and lower bound (3D mesh)

3.25 Comparison of EDN broadcast with RD broadcast in 3D meshes (simu-

lation)

3.26 First three steps of reduction in a 16 x 16 2D mesh

3.27 Channel contention problem in direct approach to matrix transposition

viii

46

48

49

49

52

53

57

58

58

59

60

61

61

62

63

64

68

69

71

3.28 EDN matrix transposition in 16 x 16 mesh. 72

3.29 Comparison of EDN transpose with direct transpose 73

4.1 Examples of 2D 4 x 4 torus networks 76

4.2 Virtual channels in one dimension of a bidirectional torus 77

4.3 Five dominating nodes in 5 x 5 torus. 78

4.4 Two-step broadcast in 4 x 4 torus. 78

4.5 Y-pattern and T-pattern. 79

4.6 First phase (two steps) of EDN broadcast in a 16 x 16 torus. 80

4.7 Main EDN broadcast routine for a 4" x 4" torus network. 81

4.8 Procedure T_pattern(). 81

4.9 F-pattern of message transmission...................... 82

4.10 EDN broadcast in 8 x 8 torus, 6 = 2 for both Y and T patterns, and

6 = 1 for F-patterns............................ 83

4.11 Tilings using {YT} and {YTF} patterns. 84

4.12 EDN configurations in 3D torus networks 88

4.13 Broadcast performance in torus networks. 91

4.14 Comparison of EDN broadcast with U-torus for 4 x 4 and 32 x 32 torus

networks. 96

4.15 Comparison analytical and simulation results for a 32 x 32 torus..... 96

5. 1 Example of the T-plot............................. 101

5.2 Comparing algorithms using the T-plot. 104

5.3 Results from ping-pong test. 106

5.4 T-plot for point-to-point communication benchmarks. 108

5.5 Dimensional broadcast in an 8 x 8 mesh................... 109

5.6 Scatter-collect broadcast operation in an 8 x 8 2D mesh.......... 110

5.7 Fibonacci Tree algorithm for k = 2...................... 111

5.8 Fixed 6 with varying a. 114

5.9 Fixed a with varying fl. 115

5.10 Plotting of ((5, k) and ,u(5, k) with respect to k............... 120

5.11 Difierent L“ values with respect to k..................... 121

5.12 The SC algorithm compared with the FT algorithm with different k values. 122

5.13 Difierent L" values for various 7'. 124

5.14 The crossover message length with different To values. 126

5.15 T-plots for broadcast operations on difierent networking environments. . 130

5.16 Results for all-to-all operation. 132

5.17 Results of fitting the minimum value. 133

5.18 T-plot of all-to-all operations. 134

-1 Representation of four highest level EDNs 140

Chapter 1

Introduction

That which has been, it is that which shall be; and that which has

been done is that which shall be done; and there is nothing new under

the sun.

Ecclesiastes 1:9

1.1 Motivations

Communication and network eficiency play a key role in the pursuit of high perfor-

mance scientific computation. Large-scale scientific applications are characterized

by the demand for high computing power. Advancements in VLSI technology have

increased raw computing power, while high-speed networks have ofiered an effec-

tive way to interconnect processors. Parallel computing provides one of the most

economical ways to solve large scale problems. As the goal of “performance at all

costs” has given way to economic considerations, however, fine tuning of underlying

2

hardware platforms and various software components is frequently used to improve

performance of parallel applications at reasonable cost.

Communication is recognized by many researchers as an area in which such

fine tuning can result in large performance gains. Communication operations can

be generally classified into two broad categories, point-to-point and collective,

according to the number of parties involved. The performance of point-to—point

communication depends heavily on the underlying network bandwidth, network

interface, communication pattern, message size, channel contention, protocol pro-

cessing, and the current system load. These factors also play an important role in

determining the performance of collective communication. In addition, the adverse

effects of resource contention and message serialization are more important to col-

lective operations than to point-to-point operations, due to the presence of multiple

messages in the network concurrently.

During the past decade, communication operations have been extensively stud-

ied in the context of parallel computing environments. The consolidation of the

Message Passing Interface (MPI) standard [131] has spawned a wave of implemen-

tations of various message-passing libraries for difierent architectures. The impor-

tance and usefulness of collective operations is evidenced by extensive discussion

on this topic within the MPI Forum.

1.2 Thesis Statement

Several features of network interfaces and network architectures are critical

to the performance of collective communication operations. We contend that a

performance cost model, capable of accounting for these features can be used in

the design of new algorithms for collective operations that outperform existing

algorithms across a variety of parallel computing platforms. Moreover, such

models can reveal relationships among algorithms and architectures that are

not easily discernible through traditional methods.

1.3 Research Contributions

This research begins with the exploration of communication locality, and yields

the Extended Dominating Node (EDN) model. This model has been used in

the design of several collective operations in parallel computers [142, 143, 144,

145, 146, 147]. The results from these studies are used in the development of a

general communication cost model, the r-model, that covers collective operations

and can accommodate difierent networking technologies. The contributions of this

dissertation can be summarized as follows:

0 The research has produced an abstract model for designing eflicient commu-

nication operations for MPPs with dedicated wormhole-routed networks.

0 Associated with the abstract model is a cost model to account for the network

latency of communication operations. The cost model can be used to classify

4

and characterize communication algorithms, and thus provide a unified view

of all communication operations. Moreover, the complexity of communication

algorithms can be categorized in a more meaningful way.

a The generalized cost model can serve as a basis to characterize the efiects of

difierent architectural supports for communication operations across various

platforms, including both MPPs and workstation clusters. By characterizing

communication operations, we can gain a better understanding of the expected

performance of parallel programs.

1.4 Dissertation Organization

The remainder of this dissertation is organized into the following chapters. Chapter

2 provides background and related work for this research. Algorithms and on-going

research in collective communication primitives for both wormhole-routed MPPs

and workstation clusters are reviewed, and several communication cost models used

in the parallel processing community are discussed. The Extended Dominating

Node model is described in Chapter 3. This model extends the dominating set

concept in graph theory to support the design of collective communication primi-

tives in wormhole-routed networks. Continued in Chapter 3 and in Chapter 4 are

demonstrations of the use of the new model to design collective operations for two

network topologies, the mesh and torus, respectively. Chapter 5 first describes the

'r-model in general and its associated r plot. Subsequently, we demonstrate the use

of the r-model to analyze communication operations in wormhole switching net-

5

works and network of workstations environments. Finally, Chapter 6 summarizes

the dissertation.

Chapter 2

Background and Related Work

Where the ENIAC is equipped with 18,000 vacuum tubes and

weighs 30 tons, computers in the future may have 1,000 vacuum tubes

and perhaps weigh just 1-1/2 tons.

Popular Mechanics, March 1949, p. 258

2.1 Introduction

The rapid advancements in VLSI technology and breakthroughs in the manufac-

turing industry have been major sources of innovation in parallel computation

structures and networking architectures. From the early processor arrays, vector

machines, and multiprocessors, the field of experimental parallel architectures has

been very active. As man’s quest for computing power to solve larger and finer-

grained problems is unabated, so is the demand for economical solutions to satisfy

this need. With the scaling of new technology, both in size and speed, and the vast

6

7

market for general-purpose computing chips, microprocessor-based systems have

emerged as the most viable candidates for providing enormous computing power at

an acceptable cost. Users now have at their fingertips processing power that was

unimaginable fifty years ago, when the first electronic computer was invented.

The design of fast, powerful, and economical single chip microprocessors will

be ultimately limited by physics, specifically, the heat transfer capability of silicon

chips and the speed of light. One way to address these limitations is to interconnect

multiple processors and program them to solve a problem cooperatively. Parallel

processing is not a new idea. As early as the dawn of the computer, there were

experiments connecting together these “electronic brains,” and research projects

in the 19608 and 19708 (Illiac-IV, NASA MPP, Cmmp, and many others) laid the

foundation for parallel processing. However, it was Thinking Machines Corporation

in the mid-19808, with the Connection Machine, that symbolized the economical

success of massive parallelism.

In recent years, however, the cost of silicon chip manufacturing equipment has

risen so high that, without a commodity market, no such company can withstand

the high risks and investment. The result is that future generations of micropro-

cessors will be increasingly targeted at the mass market. Parallel computation

architectures are already successfully competing with supercomputer architectures

in the high performance computing market, and will likely continue to gain ground

as inexpensive and powerful microprocessors are equipped with such features.

The introduction of CM-5 in 1991, which adopted a commodity microprocessor

(SPARC), marked the end of the first generation of massively parallel computers

8

and a victory for off-the-shelf microprocessors over custom-made vector processors.

Although the CM-5 used special-purpose hardware for communications, experimen-

tal microprocessor architectures are already incorporating features that can be used

to better support communication operations [79]. With the widespread use of the

Internet and network navigating applications, future microprocessor architectures

are likely to be even more communication-oriented. The mass market will be the

final judge. These forces have already resulted in the new trend of joining com-

modity workstations with ofl-the-shelf communication networks to perform parallel

computations. The economics and ubiquity of these so-called workstation clusters

may cause us to rephrase the previous technical jargon from “massively parallel

machines” to “parallel machines for the masses.”

2.2 Parallel Computation Structures

In retrospect, the introduction of the Intel 4004 single chip microprocessor [81] in

1972 opened a new era in computing. Since then, the pace of technological ad-

vancement has been so fast that single chip microprocessors are competitive with

the vector machines. Such technological advancement has promised “to bring the

power and flexibility of a dedicated general-purpose computer at low cost” [81]. In

the early 19708, Gorden Moore predicted that transistor count will be doubled ev-

ery 18 months, since referred to as “Moore’s law.” Moore’s prediction was based on

his observation of tremendous potential advances in microprocessor manufacturing

technology. These advances have been realized and the implications have been even

9

more far-reaching than predicted by Moore. With the size of transistors decreas-

ing and the cost dropping, additional functionality, and even the whole processing

unit, can be cheaply integrated into a single chip. As early as 1980, Patterson

proposed a single-chip architecture that could be used as a node in a parallel com-

puter [116]. The revolutionary development of the RISC architecture [115, 117] set

the stage for more rapid performance improvement. Specifically, microprocessor

performance has increased steadily at the rate of over 50 percent per year since

the 19808 [70]. As mentioned earlier, parallel processing can be traced back to the

origins of the computer itself: the ENIAC was equipped with multiple processing

units for redundancy. Parallel computation architectures span a wide spectrum,

from fine-grained bit-serial SIMD systems to multiprocessor vector machines. The

Connection Machine marks one end of the spectrum, and the Cray X/MP marks the

other end. Both architectures use custom-made processors, whose cost rises more

rapidly than the computing power per processor. In the middle of this spectrum

is the medium-grained multicomputer equipped with ofi-the-shelf microprocessors.

Beginning with the Caltech Cosmic Cube project [129], several commercial mul-

ticomputers soon entered the market [11, 109, 120]. Evidence of the success of

commercial microprocessors in parallel processing is seen in the computation archi-

tectures of the TMC CM-5, Intel TOUCHSTONE, Intel Paragon, Meiko CS-2, and

IBM SP—1/SP-2. The trend toward using a commodity network is also clear. Ex-

amples include Myrinet [27], Asynchronous Transfer Mode (ATM) [114], and Fast

Ethernet [84]. The careful design and integration of the network architecture and

the computation architecture is a major issue in parallel systems. As the communi-

10

cation architecture of workstations improves, it is very likely that the dividing line

between multicomputers and workstation clusters will eventually vanish. We can

expect that the widespread use of commodity high-speed networks, combined with

high performance commodity microprocessors, will continue to make the worksta-

tion cluster a popular parallel platform.

2.3 Communication Paradigms

The programming model used in a parallel system defines the tradeoff between

exposing the underlying hardware platform to the programmer and preserving ap-

plication portability and extensibility. Parallel programs have been long regarded

as dificult to develop and even more dificult to debug. One possible reason is that

programmers usually have a hard time visualizing the interaction among concurrent

entities.

The classical dichotomy of parallel programming style has been shared memory

versus explicit message passing. The shared memory paradigm can be supported

in software, hardware, or both. Hardware-supported shared memory can be based

on either a bus-based network or a multistage interconnection network. However,

neither approach scales to a large number of nodes due to contention. Physically

distributed, logically shared architectures must rely on underlying message-passing

operations to move data among nodes. In one approach, the operating system

supports data distribution and coherence protocols, and maintains a single virtual

shared memory space for the user applications. This method is used in the MIT

1 1

Alewife [2, 3, 4], Stanford FLASH [68, 90], Princeton SHRIMP I, II [26], and Wis-

consin Wind Tunnel [39]. In another approach, programming language constructs

support the shared memory paradigm. The compiler generates communication

stubs to support data distribution and sharing. Examples include Dataparallel

C [67] and HPF [71].

Explicit message passing is often blamed for the difliculty to program and main-

tain parallel applications. Yet most of today’s commercial multicomputers support

this model, in part because it is more closely tied to the machine hardware and

gives more control to the programmer. By exposing the communication hardware,

this method relies on the programmer to prevent deadlocks in the parallel program.

Of course, message passing can also serve as an underlying mechanism to support

the shared memory programming paradigm.

No matter which upper level programming paradigm is used, all communication

operations deal with movement and manipulation of data. Communication oper-

ations can be classified as either point-to-point or collective, depending on the

number of parties involved. Numerous communications libraries have been devel-

oped in the past ten years by commercial and research organizations. The recently

published Message Passing Interface (MPI) standard [131] is the result of an efiort

by both industry and the research community to improve the portability of parallel

programs among diflerent platforms. MPI defines the interfaces and semantics of

both point-to-point and collective operations. The software layer that implements

these operations is typically packaged as a library. Calls to these routines can be

placed in application code developed by the user or inserted by the compiler. The

12

performance of communication operations has direct impact on the performance of

the applications that use them. Carefully designed communication operations can

increase program portability and efliciency. Portability implies that applications

can run on difierent platforms with little or no modification, and eficiency means

that no matter which platform is used, the communication Operations can take

advantage of the underlying architecture to achieve better performance.

2.4 Collective Communication Operations

A communication operation may involve exactly two, or more than two, parties.

When more than two parties are involved, the communication operation is called

collective. As defined in the MPI standard, the participating entity in these com-

munications operation is a process, and the processes involved in a collective op-

eration are defined as a process group. The eficient implementation of collective

communication primitives can enhance the performance of programs that use them.

According to the direction of data movements, we can classify collective communi-

cation operations as point-to—multipoint, multipoint-to-multipoint, and multipoint-

to-point.

A point-to—multipoint operation is used to distribute one or more data items to a

set of receiving processes. In a broadcast operation, the same data item is delivered

to every receiving process. Another point-to-multipoint operation is called scatter,

in which a difierent data item is distributed to each group member. The data

flow for broadcast and scatter operations are depicted in Figures 2.1(a) and 2.1(b),

13

respectively.

If the same point-to-multipoint operation is performed by all members of a

group, the result is a multipoint-to—multipoint collective operation. If all members

perform a broadcast, then the resultant operation is called all-gather, or gossiping.

When all members perform scatter operations simultaneously, it is called complete

exchange, or all-to-all personalized communication. Depicted in Figure 2.1(c),

and 2.1(d), respectively, are all-gather and all-to-all personalized communication

operations.

In addition to data movements, computations can be performed on the data.

The global computation can be as simple as a logical operation or as complicated as

a user-defined function. If the resultant data resides at a single node, then the oper-

ation is multipoint-to-point. Depending on the operation performed over the data

set, several different collective operations can be defined. As shown in Figure 2.1(c),

gather refers to pure data movement from all members to a single member; con-

catenation is the operation performed on the data. In contrast, combine means

that in addition to data movement, a logical or arithmetic operation is performed

on the data set; the combine operation is depicted in Figure 2.1(f)

Multipoint-to-multipoint operations also come in several flavors. If the result

of a combine operation is made available to all members, then the operation is

called global reduction; see Figure 2.1(g). A special case, when the global oper-

ation synchronizes all participating members, is called barrier synchronization.

Another special form of multipoint-to-multipoint operation is the prefix-scan, or

simply scan, where the result at each node depends only on the contents of all its

14

Pi— process 1' - local data movement

D;— process i’s data item} fl-..» inter—process data movement

‘/ /IS. \\\ I?\

I t E!

’ \

x

\ I \

\ 'I ‘4 / ‘

\ \ ./

— \
\
\

/ ‘ \\

V \\ \V/

\\ h

5.. \\ /'F,..\

(a) broadcast

”uh stx ”R‘\

,/

\va/ __/

 V

(e) gather (I) combine (3) global reduction (h) prefix scan

Figure 2.1: Collective operations.

15

predecessors in rank order (Figure 2.1(h)).

All the above collective operations are included in the Message Passing Interface

(MPI) standard [104, 131], which defines a rich collection of both point-to-point and

collective communication primitives. Key issues discussed in the MPI standard with

regard to implementing these interfaces include sender buffering, receiver buffer-

ing, synchronization, data type, process group, communication context, and virtual

topology. Most of these concepts are borrowed from existing message-passing 1i-

braries.

The importance of collective communication can be seen from the large number

of pre-MPI communication libraries that include such operations. Vendors of paral-

lel computers typically provide their own message passing libraries that are highly

optimized with regard to their own architecture. Notable examples include IBM’s

EUI (External User Interface) [12], Thinking Machine’s CMMD [139, 149], Intel’s

NX [119], and NCube’s Vertex [126]. In the parallel processing research community,

PVM [59] is perhaps the most widely used system for parallel computing over net-

works of workstations. Other prominent libraries include Argonne m4 descendants,

p4[35, 36], PARHACS [37, 69], and TCGMSG, as well as PICL [60, 61] from Oak Ridge

National Lab, Zipcode [130] from Caltech, Yale’s Linda [6, 38], BLACS (Basic Lin-

ear Algebra Communication Subprograms), which is the communication library for

ScaLaPACK [54], CHIMP [29] from University of Edinburgh, and LAM [33, 34] from

Ohio State University. The NXLib, implemented by Lamberts et al. [91, 132, 133],

is designed to emulate the Paragon message-passing environment on clusters of

workstations.

16

All the above libraries implement some form of collective communication opera-

tions. From Table 2.1, we can see how certain libraries differ from the proposed MPI

standard, although these libraries are now merging into the MPI mainstream. As

indicated in the Table 2.1, most of the pre-MPI libraries do not have very extensive

communication interfaces compared to MP1. Moreover, the workstation cluster ver-

sion of most of these libraries is based on the point-to-point TCP/IP protocol suite.

Clearly, careful implementation and fine tuning according to the system character-

istics is necessary to achieve high performance, especially in high-speed networks

where the overhead of conventional protocol stacks is especially detrimented to per-

formance. Researchers such as von Eicken et al. [152] have used the active message

approach [153] to reduce the software overhead in ATM networks, and Pakin et

al. [108] have developed a fast messaging layer for Myrinet [27], 'a high-speed local

area network.

2.5 Wormhole-Routed MPP Network Architec-

tures

Given the importance of collective communication, the design and analysis of such

operations on various parallel architectures has been a very active research area for

the past decade [101]. Most early studies concentrated on the hypercube topol-

ogy. First generation hypercubes, such as the Cosmic Cube, nCube/ten, and iPSC,

all exhibited large communication latencies, on the order of milliseconds. This

17

p4.lendbr()

p4.aendrx()

v1.1

12 3

.y.z -rocv

1 2 3 .rocv()

.z

1 2 3 -fanout()

.2

g{1.2,3}.fan1n()

- .z

IGOP-() 1.x .pack-co-b1no()

1.2.3 -co-bineO

1 2

,1

1
Table 2.1: Comparison of some message passing libraries with MP1 standard

characteristic was due to the ineficiency of communication software and the use

of store-and-forward switching, which requires intermediate nodes on the message

path to receive incoming data and then forward it to the next node in the path. As

a result, the communication latency was proportional to the number of communica-

tion links traversed by the message. Suppose the software setup overheads are t, for

sending a message and tr for receiving a message, and that the transmission delay

per node per unit message is tn, then the overall delay for sending an L-unit message

h hops across the network in store-and-forward switching is h(t, + L * tn + t,).

With the advent of wormhole routing, in which a message is broken down into

18

small units and pipelined through the network, the overall latency of sending an

L-unit message h hops across the network is reduced to approximately t, + h an: L *

tn + t,. The advantage of this technique is twofold. First, communication latency

is relatively distance-insensitive, a characteristic that has been demonstrated in

experimental studies [107]. Second, the routing automata can be implemented

in specialized hardware, called a wormhole router, relieving the processor of the

burden of message bufi'ering and routing. A8 a result, communication latency is

reduced to the microsecond range.

J ., .

] "[3]] WJ
J l, IPJPI‘ (Li; [J7EE]

Figure 2.2: System architecture.

In a wormhole-routed system, the interconnection of routers form the topology

of the multicomputer. Each processing node is attached to the router as illustrated

in Figure 2.2. The link between routers is called channel and the link between

router and processing node is called port. The number of channels between adja-

cent routers determines how many messages can be in transit simultaneously, while

the number of ports is an indication of the communication capacity between the

node and the network. The major difierence between single-port and multi-port

wormhole routers in functionality is the number of messages that can be sent (re-

19

ceived) by the computing node simultaneously. Due to this capability, a multi—port

router can be important to the design and performance of collective communication

operations, which often involve the transmission (reception) of multiple messages

at a single node. Depicted in Figure 2.3(a) and (b) are difl'erent port models of a

wormhole router. In Figure 2.4 is a detailed block diagram of the internal structure

of a one-port 2D mesh wormhole router, which is composed of two 1D mesh routers.

For comparison, Figure 2.5 shows the structure of an all-port 2D mesh wormhole

router. The main element of this router is a crossbar.

Wormhole routing is the predominant switching technique used in most sec-

ond generation multicomputers. Some systems, exemplified by the nCube/2,

adopted the topology of their ancestors, namely, the hypercube. However, anal-

ysis by Dally [45] on the performance of wormhole routing under the assumption

of constant bisection width for difierent k-ary n-cube topologies, showed a clear

cost/performance advantage for low-dimensional topologies, such as meshes and

tori. Consequently, Intel produced the DELTA and Paragon systems, which use a

2D mesh, and Cray designed the T3D and T3E, which use a 3D torus topology.

P0
Y- “I TY‘fM / h Po Y“ '1 TY‘MIV/

I M ‘ ,,./ //‘ ./
/ /

Ll //P°"
fi—W/é/ Ports

x- “‘4', x X- i ‘ \/;I/’/ x

M I - n
M ' — h

‘--— -——4 r * -— +_ __ 1' 1“...“ .

w—w ,--I- -.—.-—-~ ~>l ,_ I——--,.+
'" ' 00‘ In = T can

Y‘all ‘Iv+h Y-Ml IY+ h

(shone—M20 muter (b) anall—ponzo router

Figure 2.3: Wormhole routers.

Over the last several years, a number of researchers have sought to exploit the

20

fl- _ X6 FAD": X0,_ .

in, [:2] __ _ Lia" - 9‘“J:F§H [‘4‘

’J- 9” ' ’ ' x-.. [ADJ x-...

x’h [‘53] 3x3 x'au "*1 EC?“ ‘4 "r—rr

”“ ’Egl" “" Crossbar ’ 4'" y.“ IEL Ly,”

p. my --...I_.. -~— -—
h . L _

—is; he» .- w v-..

AD]. 0mm P0

__ r_ _— Po 7 Iup] w I»-.. _._.
A F_C hit—‘5‘ [<- "J'. P1“ TAD“ P1“

. _ ———. 'pc an we —3-

“a, [49]. 3x3 .72, 1"”?
- EC w—v Crossbar “ p2,, [10; p2,...

”LEG r— _le ‘ "’
Y‘h A—D . P0,. _.

. FC [‘Z —— ?2- P3“ lg P301

AD: We. dooodo AD: Mus decode

FC: Flow control FC: Roam

Figure 2.4: One-port 2D router. Figure 2.5: All-port 2D router.

distance—insensitivity of wormhole routing in the design of collective communica-

tion algorithms. A large fraction of that research has concentrated on broadcast

and multicast for wormhole-routed systems. One-port mesh multicast (U—mesh al-

gorithm) is given in [103], and a one-port mesh broadcast algorithm is presented

in [17]. The former is a tree-based algorithm that can be used in both hypercubes

and meshes. The latter uses a scatter-collect approach, in which the original mes-

sage is split into pieces that one distributed to all nodes and later collected by the

receiving nodes. Multicast for a one-port torus is described in [124]; similar to the

U-mesh algorithm in one-port meshes [103], the U-torus algorithm is tree based. In

addition to the tree-based approach to multicast and broadcast, a difi'erent method

is to partition the message into pieces and send them through different routes in

a pipelined fashion. This approach has been explored for one-port hypercubes [73]

and one-port meshes [156].

All the communication algorithms mentioned above assume a one-port network

architecture. In addition, software unicast algorithms have been designed for multi-

port systems. Communication algorithms based on the multiport assumption have

21

been studied quite extensively for hypercubes [21, 76, 85, 99]. 'Itee-based multiport

hypercube multicast algorithms are presented in [76, 99, 123] and one-to—all per-

sonalized communication (scatter) is described in [85]. Broadcasting algorithms,

based on our EDN model, for multiport meshes [147] and tori [146] comprise our

preliminary studies and are described in detail in Chapter 3 and 4.

Another distinctive hardware feature that has been used to construct eficient

communication operations is a path-like approach for multicast. This method relies

on a special feature of the router, in which the message can be duplicated so that the

node connecting to the router can receive a copy while the message is progressing

toward subsequent destinations. The entire message visits all the destination nodes

in a pipelined fashion. This path-based approach was first explored in [95, 96,

97]. Later, this concept was extended from single—phase algorithms to multi-phase

collective algorithms for meshes [148], hypercubes [74], and tori [122]. The EDN

model can also be used in the design of multi-phase path-based algorithms.

While most of the above mentioned communication operations focus on mul-

ticast and broadcast, other collective communication primitives have been devel-

oped specifically for wormhole networks. Examples include barrier synchroniza-

tion [66, 110, 159] and global combine [151]. Several difierent approaches have been

proposed for all-to—all exchange in meshes, including binary exchange, interleaved

binary exchange, direct exchange [128], quadrant exchange [28], modified quadrant

exchange [136], pairwise exchange, and indirect pairwise exchange [137, 138]. All

these algorithms assume a one-port architecture. We [144] have used the EDN

model to design global combine, gather, and matrix transposition algorithms for

22

multiport 2D meshes; details are given in Chapter 4.

These extensive research efi'orts have shown that, to design eficient collective

communication operations, the characteristics of the underlying network should be

carefully taken into consideration. This is particularly true in the parallel process-

ing community, where communication latency is the major concern. In early studies

of collective communication, the store-and-forward routing assumption is predom-

inant, although both one-port and all-port architectures were addressed. With the

advent of the wormhole-routed networks, the network interface characteristics play

increasingly important roles in the design of communication algorithms. While a

systematic approach to design eficient algorithms is very useful, more importantly,

a unified model for characterizing and parameterizing the network is needed in

order to compare and predict the performance of difierent algorithms in various

environments.

2.6 The Trend Toward Clusters

The platforms used for parallel computing have continued to change over the past

decade. In fact, technology has evolved to a point that the communication archi-

tectures of MPPs and workstation clusters bear more similarity than difierence.

In a paper bearing a similar title with the first paper introducing the RISC ar-

chitecture [115], Anderson et al. [8] pushed forward a new era of the network of

workstation (NOW) architecture. Using a collection of workstations to perform

parallel computations is not restricted to scientific computing. For example, a

23

recently introduced search engine for the World Wide Web utilizes a set of work-

stations connected by Myrinet LAN [80]. Indeed, unprecedented computing power

is possible when commercial microprocessors are coupled with high performance

communication networks. However, how to harness such combined computing and

communication capability is a challenging task. Past experiences with the paral-

lel computers indicates that eficient parallel applications require not only careful

layout the computation, but also the careful consideration of the underlying com-

munication hardware. Given the economic and performance advantages of NOW

platforms, many diflerent high-speed networking technologies have been investi-

gated in this context. Examples of such networking technology are asynchronous

transfer mode (ATM), fast Ethernet, and Myrinet [27]. In order to take advantage

of such technologies, network interface sofiware must be streamlined. A number of

research groups are investigating ways to reduce software overheads; examples in-

clude Berkeley NOW Fast Communication [125], Berkeley Active Messages [98, 153],

Illinois Fast Messages (FM) [108], and Cornell U-Net [20]. To date, most of these

efiorts have focused on unicast communication, although collective communication

is gaining increased attention.

Of course, the computer networking research community has already showed

great interest in the study and implementation of collective communication, ex-

emplified by efforts in designing multicast algorithms for various protocol stacks.

The introduction of IP multicast [51] implementations made possible many such

algorithms. Due to the unreliability of the underlying network, reliability is sup-

ported with a separate protocol. Example protocols proposed thus far include

24

ST-II [140] at the network layer; MTP [10], XTP [134, 157], TP++ [56], and

VMTP [40] at the transport layer. The recently introduced Scalable Reliable Mul-

ticast (SRM) [57] emphasizes the functionality at both the application and session

levels. The ISIS [23, 24, 25] and Horus [121, 155] systems have implemented group

communication from a difl'erent perspective; they are designed to preserve message

ordering in the presence of faults in the network.

Some communication packages designed to support parallel computing over con-

ventional network technology are also based on the conventional Internet protocol

stack. An important example is PVM [135]. The popularity of PVM has demon-

strated that the use of ofi-the-shelf communication and computation components,

including both software and hardware, is a viable approach to parallel process-

ing. The implementation of MP1 over workstation environments, for example,

MPICH [64] and CHIMP/MP1 [30], are natural extensions of this work. Several

parallel processing projects have constructed communication systems based on IP

multicast. This approach includes the Transis system [52] and the PCODE [31]

library. All these packages support a subset of the collective operations described

earlier.

Concurrent with the development of efficient communication operations over

traditional network technology, the use of high-speed networks such as ATM has

also received attention from the parallel processing community. Point-to-point com-

munication performance over ATM network with difi'erent software interface imple-

mentations is studied in [94], and ATM point-to-point primitives have been used

to improve the performance of PVM [160]. The exploration of low-level ATM mul-

25

ticast to support collective operations is presented in [77, 78]. This research has

shown the potential of directly applying ATM networking technology to parallel

computing. Meanwhile, a large contingent is focusing on the implementation of

traditional Internet protocol stack over ATM [9].

Finally, a number of studies have addressed how to parameterize collective op—

erations for use in distributed environments. For cluster environments that are

dedicated parallel machines, such as IBM SP systems, the CCL library [13] of-

fers parameterized collective communication. In addition, Park et al. [112] have

shown how to design multicast algorithms using a parameterized communication

cost model that derives from the LogP model. Finally, considering a network envi-

ronment spawned from the parallel processing community, the Myrinet LAN [62], a

reliable multicast algorithm based on reliable point-to-point communication prim-

itive and credit-based flow control mechanism is reported in [154].

2.7 Computation/Communication Models

In the design and performance assessment of parallel programs, an appropriate com-

putation model is used to aid the understanding of their behavior. In this section,

several popular computation models that are used in the design of eficient par-

allel programs are briefly reviewed. In addition, emerging communication models,

proposed by various researchers to characterize communication behavior more accu-

rately, are discussed. The diflerence between modeling parallel algorithms and se-

quential algorithms lies not only in the parallelism from multiple concurrent threads

26

of control, but more importantly, in the communication costs that be taken into

account. Although the Turing machine is a theoretically interesting computation

model that can eflectively simulate arbitrary algorithms, this model is seldom used

in the design and analysis of parallel algorithms. Numerous research endeavors

have sought to design a more practical model for analysis of parallel algorithms.

We review some of these eflorts in the following.

PRAM and variants. In the area of modeling and analyzing the complexity

of parallel algorithms, the classical Parallel Random Access Machine (PRAM)

model [58] has been widely used. This model assumes P concurrent processors

sharing a unlimited sized memory, and closely matches the uniform memory access

shared-memory machines. Several refinements to the model accounting for the han-

dling of simultaneous access of the same data item by several processors. Examples

include the EREW (exclusive read exclusive write) PRAM, the CREW (concurrent

read exclusive write) PRAM, and the CRCW (concurrent read concurrent write)

PRAM. Due to the simplicity of the model and the lack of a detailed cost model

for communication, several variants of the PRAM model have been proposed in an

attempt to better model the behavior of parallel systems [5, 42, 63].

The PRAM models assume that communication is implemented using shared

memory or explicit message-passing. In the case of message-passing, the network

topology is either not considered or simply assumed to be a fully-connected graph.

The reason for this is twofold: assuming a specific topology invalidates the gener-

ality of the model, and no “canonical” topology exists among real parallel architec-

27

tures. Moreover, even for small networks, the completely connected topology is far

more dense than typical multicomputer topologies, such as meshes and hypercubes.

Therefore, contention for network resources, such as link bandwidth and channel

sharing, is not likely to be accurately accounted for by these abstract models.

Postal model. The Postal model [18], as opposed to telephone model, attempts

to define a communication model in terms of a single parameter A, which is a ra-

tio of the network latency and the time that the sender engaged in preparing the

message. By using the daily mail delivery system as an analogy to the communica-

tion network, this model can be used to analyze the performance of communication

algorithms such as broadcast and multicast [19]. Specifically, if a node can send

multiple messages before the first arrives at its destination, the structure of an op-

timal distribution tree is afiected. Because of the long network latency and the

relative short message preparation overhead, which the model asserts by assuming

A 2 1, a complete graph for the underlying network is suitable for the analysis.

However, for high speed networks such as ATM LANs, as observed in [86] , the soft-

ware startup latency is on the order of 400 to 1000 psecs, while the switch latency

is on the order of few to tens of microseconds. This eflectively makes A value less

than one, and therefore the optimal algorithm developed under this model may not

be the best choice for such systems.

BSP model. The Bulk Synchronous Parallel (BSP) architecture model [150] was

designed to achieve the goal of developing architecture-independent parallel algo-

28

rithms. It is intended to bridge the programmer’s perspective with the actual

system architecture in order to achieve portable program design. The BSP archi-

tecture is a collection of processor/memory pairs, a point-to-point virtual network,

and a mechanism to synchronize all or a subset of the processor/memory nodes.

The computation is divided into sequences of parallel “supersteps,” with each super-

step separated by a global synchronization, before which all memory and network

accesses should be completed. The cost model associated with the BSP model is

expressed in the form of linear combination of communication costs, synchroniza-

tion costs, and computations within each superstep. The communication cost is

measured by a communication primitive called the h-relation [1], which means that

each processor has at most h messages to send to diflerent processors and each

processor is due to receive at most h messages. Unfortunately, the BSP model does

not describe how communication occurs, that is, the communication pattern is not

scheduled precisely.

C3 model. The C3 model [88] is an attempt to capture the cost of computa-

tion, communication patterns, and network congestion due to communication for

coarse-grained parallel algorithms. Five system parameters are used as metrics for

evaluating the target algorithms for a particular system. They are the number of

processors p, the network latency h, the bisection width of the communication net-

work b, the startup cost per message 3, and the length of a message I. The latency h

is modeled as the average distance between two processors. The overall communica-

tion cost is the sum of send/receive cost, link congestion, and processor congestion

29

costs. The send/receive cost depends on the underlying routing mechanism and

the communication mode used to send/receive a message. The routing mechanism

can be store-and-forward or wormhole routing and the communication mode can be

either blocking or non-blocking. This model is designed specifically to characterize

parallel computer networks, wormhole network in particular. Similar to the LogP

model discussed later, this model mainly considered point-to-point communication

and the possible underlying hardware supported multicast capability is not included

in the model.

LogP model. The LogP model is an efl'ort to model parallel and distributed sys-

tem in which all participating nodes communicate through explicit point-to-point

message-passing. Associated with each message are three parameters to account for

the cost of message-passing. They are the overhead 0, the time that the sender is

busy preparing the message; the gap 9, the total amount of time elapsed from the

start of one message to the initiation of the next message; and the network latency

L, the time that a message spends in the network. The model also assumes that the

time the receiver engaged in reception of the message is equal to the overhead 0.

As with the Postal model, the LogP model assumes a completely connected graph

as the underlying network topology. In fact, the LogP model can be viewed as a

generalization of the Postal model. By setting parameters 0 = 0, g = 1, and A = %,

the LogP model is exactly the same as the Postal model [18]. Recent extensions to

the LogP enable the gap between packets to be much smaller than the gap between

messages [7], and allow for a hierarchical memory model [93]. Although the LogP

30

model was carefully designed to account for communication costs, with three out

of four parameters are used to describe such costs, there exists many situations

the model does not adequately cover. Examples include network congestion and

network supported multicast.

Hockey’s model. Some models have focused exclusively on communication.

Hockney [72] recently proposed communication model that identifies two metrics as

the most important performance indicators for modeling point-to—point communi-

cation on massively parallel processors such as Intel iPSC/860, Paragon, and Meiko

CS—2. The startup time, to, is the latency to send a zero-length message, and the

asymptotic bandwidth, r00, is the averaged elapsed time for sending an m-byte mes-

sage through the network. The latency formula used to describe the performance

of point-to-point communications is of the form to + m/roo. Despite its simplicity,

this formula matches the measured point-to—point communication performance of

many massive parallel architectures [53].

Xu and Hwang’s model. In an attempt to generalize Hockney’s cost model,

Xu and Hwang [158] incorporated collective communication operations into a new

model and introduced the idea that both to and TOC are not constants for a specific

architecture, but instead are functions of the number of participating parties n.

Therefore, the latency formula used in this cost model assumes the form to (n) +

m/r00 (n). This cost model also possesses the virtue of simplicity, and yet is precise

enough to capture the aggregate behavior of collective communications. Xu and

31

Hwang studied diflerent implementations of collective communication operations

on the IBM SP-2 and measured the difierent parameters t0(n) and roo(n). By

identifying the order of complexity of both t0(n) and roo(n), they showed the model

is able to identify the possible ineficiencies in difierent implementations.

The need for a general communication model. A universal parallel comput-

ing model that satisfies both the eficiency and universality requirements is dificult

to construct, since these basic requirements are often conflicting. This dificulty

has led to the separation of performance modeling, analysis, and algorithm devel-

opment. Modeling the complexity of parallel algorithms is based on models that

are rarely used to design and develop communication algorithms. Therefore, in

the design of eficient, portable parallel algorithms, the usual approach is to adopt

some frequently used communication primitives and implement these primitive op-

erations on a per-platform basis.

In order to design eficient communication primitives, an extensive communi-

cation cost model is needed. The model should be general enough to capture the

characteristics of diflerent communication platforms and capable of reflecting costs

associated with resource conflicts. In the following chapter, we will show how the

proposed EDN model provides an intuitive model that is powerful enough to ac-

commodate many communication operations on various platforms.

Chapter 3

Extended Dominating Nodes in

Mesh Networks

There may be nothing new under the sun, but permutation of the

old within complex systems can do wonders.

Stephen Jay Gould 1977

As discussed in Chapter 2, development of emcient collective algorithms requires

that the underlying hardware characteristics be taken into account. This approach

has been following in the application of the Postal model and the LogP model to

the design of collective algorithms for various environments. However, an important

feature that is not reflected in either of these models is the ability of one node to

transmit a message to multiple destinations simultaneously.

In this chapter, we develop the Extended Dominating Node (EDN) model, which

explicitly models this “single-step multicast” property. Such a capability may be

32

33

realized in diflerent ways, for example, broadcast on a shared medium (such as

Ethernet) or path-based multicast in wormhole networks. In this chapter and the

follow chapter, we develop collective algorithms for wormhole-routed networks in

which single-step multicast is possible due to a multi-port network interface archi-

tecture. In Chapter 5, we discuss the application of EDN to ATM networks, where

single-step multicast is supported by multicast virtual channels.

3.1 System Model

Before we formally introduce the definition of Extended Domination and its appli—

cation in wormhole networks, we discuss some major characteristics of the systems

studied. This chapter addresses MPCs that are characterized by five properties

described below.

First, their topologies are low-dimensional (2D or 3D) meshes. Formally, an

m x n 2D mesh consists of N = m x n nodes; each node has an associated integer

coordinate pair (x,y), 0 g x < n and 0 S y < m. Two nodes with coordinates

(x,, y,) and (12,, yj) are connected by a communication channel if and only if Ix,- —

xJ-I + Iy, — yjl = 1. A 3D mesh is defined similarly. Figure 3.1(a) shows a 3 x 3 2D

mesh, while Figure 3.1(b) shows a 3 x 3 x 3 3D mesh.

Second, communication is handled by routers, one at each node. Several pairs

of external channels connect each router to neighboring routers; the pattern in

which the external channels are connected defines the network topology. Typically,

a router can relay multiple messages simultaneously, provided that each incoming

”A (2.2.2)

(0.2) (2,2)

(0,2,0)

LXI . t: a»
(0,0) (2,0) (0,0,0) (2,0,0)

(a)3x32Dmesh (b)3x3x33Dmesh

Figure 3.1: Mesh topologies

message requires a unique outgoing channel. In addition, two messages may be

transmitted simultaneously in opposite directions between neighboring routers. As

discussed in earlier chapter, a router is connected to the local processor/memory

by internal channels, or ports. One or more of the ports is for input, and one or

more is for output.

Third, these systems use the wormhole routing switching strategy [48]. Worm-

hole routing has been adopted in many new generation MPCs, including the MIT

J-machine [47] (3D mesh); the nCUBE-2 [106] and nCUBE—3 [55] (hypercube); and

the Intel Paragon [82] (2D mesh); and the Cray T3D [87] (3D torus).

Fourth, these systems use the deterministic dimension-ordered routing algo-

rithm [47], in which messages are routed through dimensions of the mesh in a

predetermined order. In Figure 3.1(b), for example, a message sent from node

(0,0,0) to node (2,2,2) under dimension-ordered routing would follow the path:

(0,0,0), (1,0,0), (2,0,0), (2,1,0), (2,2,0), (2,2,1), (2,2,2). (Since wormhole-routing

is assumed here, such a message would traverse only the routers at the five inter-

35

mediate nodes, and would not be handled by the local processors at those nodes.)

Although research in adaptive routing algorithms is very promising, most commer-

cial systems whose topologies are n-dimensional meshes presently use some form of

dimension-ordered routing.

The final distinguishing characteristic of these systems, mentioned earlier, is

that each node possesses multiple internal channels, or parts.

3.2 Single-Level Dominating Node Broadcast

We begin with the case of broadcast in all-port 2D mesh networks. We first apply the

concept of dominating sets in graphs to direct network topologies for MPCs. The

MPC is modeled as a graph, with nodes represented as vertices and communication

links represented as edges.

Definition 1 A set of dominating nodes D in a direct network is a subset of

nodes such that every node in the network is either in D or is a neighbor of

at least one node in D.

The first broadcasting approach studied in this project, called the single-level

dominating (SLD) algorithm, comprises two phases. First, the message is mul-

ticast from the source node to a set of dominating nodes of the network; this

phase may require several message-passing steps. In the second phase, the domi-

nating nodes deliver the message to all other nodes in the network by forwarding

the message directly to the appropriate neighbors. Once all the dominating nodes

36

have received the message, this second phase can be completed in one additional

message-passing step. The two primary issues that arise in using this approach are

(i) how to find a set of dominating nodes with small cardinality, and (ii) how to

eficiently send a multicast message to those dominating nodes.

3.2.1 Dominating Nodes in a 2D Mesh

The problem of finding a dominating set (or domination number) of minimal car-

dinality in a rectangular graph (or grid graph) has been shown to be NP-hard [83].

Since the objective of this project is to develop practical broadcast methods, how-

ever, any approximation algorithm that yields a dominating set will serve our pur-

pose as long as the number of nodes within that set is a relatively small fraction of

the total number of nodes.

According to the work by Cockayne [41], we can easily find such sets of dom-

inating nodes for square meshes. This method is illustrated in Figure 3.2. We

begin by replicating a basic 5-square pattern, illustrated in Figure 3.2(a), in order

to form an “infinite” background pattern, represented in Figure 3.2(b). The shaded

squares represent dominating nodes; every unshaded square is adjacent to exactly

one shaded square.

In order to find a set of dominating nodes for a square mesh of a given size, we

move a square frame of that size over the background pattern, seeking a position in

which all squares in the frame are covered minimally. As illustrated in Figure 3.2(b),

our search for a dominating set for a 5 x 5 mesh results in the placement of the

37

5-square flame as shown. The flame contains 5 dominating nodes, however, these

are not sumcient to dominate all nodes that lie inside the 5 x 5 flame. As shown

in Figure 3.2(c), we move two dominating nodes that lie outside the flame to its

interior and adjust the positions of two of the dominating nodes that were already

inside the flame, forming a set of 7 dominating nodes that covers all 25 nodes in

the flame. Details of this method may be found in [41].

Also shown in Figure 3.2(b) is the optimal placement of a 4 x 4 flame. In

this case, however, the 4 dominating nodes inside the flame represent a minimum

dominating set. As shown in Figure 3.2(d), none of the nodes inside the flame are

dominated by a node outside the flame, so no adjustment is necessary. In general,

this approach yields a set of dominating nodes with cardinality of approximately

one-fourth the number of nodes in that square mesh [41].

3.2.2 Multicast Algorithm

Once a set of dominating nodes has been found for a specific mesh, the first phase

of the SLD broadcast algorithm can be executed, in which the source node delivers

the message to all the dominating nodes in the mesh. Unicast-based multicast

communication in wormhole-routed 2D mesh networks has been studied previously.

For example, the U-mesh algorithm [103] was designed for one-port mesh networks,

but can also be used on multi-port architectures.

In the U-mesh algorithm, the source node and destination nodes are sorted

lexicographically by their addresses into a list <I>. The source node successively

38

_
.
_
i
i
I
T
T

T
T

g
T

I.
L

T
T
T
T
fi
T

,
L
.
T

.
.

,
.
.
T
,
_
T
T

T
J
T
T
T
E
T

T
,
T
4
T
T
T
T
T
T
J
T
T

T
T
T
T
J
T
T
I
L

TJ

‘
J

,
i

I
J

J

”
A

,
,

J
r

7
"
”

J
I

T
T
J
,

.
T
T
.
T
l

T
L
T

T
T
”
.

l
.

T
i

T
.
T

L
T
T
I

T
_
.
T
T

J
T

J
J

+
J

J
]

J
I
T
T
T
T
J
T
.
;
.
_
T

T
T
E
.
.
-

_
T
‘

_
T
l
T

[
_
T
,

.
.
T
.

.1
J

1
J

(a) basic 5—square pattern used

to construct background pattern

(b) placing target squares on background

(d) no adjustment necessary for 4—square(c) adjusting dominating nodes for 5—square

Figure 3.2: Examples of finding dominating nodes in a 5 x 5 mesh and a 4 x 4 mesh

39

divides (I) in half. If the source is in the lower half, then it sends a copy of the

message to the first node in the upper half. In addition to the data, each message

carries the addresses of the destinations for which the receiving node is responsible.

The receiving node will be responsible for delivering the message to the other nodes

in the upper half, using the same U-mesh algorithm in a distributed manner. If the

source is in the upper half, then it sends a copy of the message to the last node

in the lower half. At each step, the source deletes flom <I> the receiving node and

those nodes in the half not containing the source address. The source continues

this procedure until <I> contains only its own address. On one-port architectures,

the U-mesh algorithm is optimal in terms of the number of message-passing steps,

requiring [log2(m + 1)] steps to reach m destinations. Moreover, the constituent

unicast messages are guaranteed to be contention-flee [103]. However, we emphasize

that other multicast algorithms besides U-mesh could be used in the first phase of

the SLD broadcast algorithm.

3.2.3 Example

Figure 3.3 illustrates the operation of the proposed SLD algorithm in a small, 4 x 4

mesh. Figure 3.3(a) shows the mesh itself. The four dominating nodes, (0,2), (1,0),

(2,3), and (3,1), are shaded in the figure. In this example, node (2, 0) is the source

of the broadcast. Figure 3.3(b) shows the broadcast “tree” rooted at node (2,0).

In step 1, the source node transmits simultaneously to dominating nodes (1,0) and

(2,3), which subsequently forward the message to dominating nodes (0,2) and (3,1),

40

respectively, in step 2. Although some of these messages pass through intermediate

routers, the pipelining eflect of wormhole routing and startup costs result in latency

nearly identical to that of messages sent between neighboring nodes [107]. Since

the network is assumed to be an all-port architecture, node (1,0) can also forward

the message to node (1,1) in step 2, and node (2,3) can also forward the message

to nodes (1,3) and (2,2) in step 2. The dominating nodes send the message to the

remaining nodes in step 3.

3.2.4 Performance

In the SLD broadcast algorithm, the source node uses the U-mesh algorithm to

multicast the message to the dominating nodes, which then complete the broadcast

by passing the message to the appropriate neighboring nodes. Of course, the U-

mesh algorithm itself can be used for broadcast, requiring [log2(N)] steps, where N

is the number of nodes in the network. The SLD algorithm requires approximately

[log2(%)] = [log2(N)] — 2 message-passing steps to deliver the message to the dom-

@ source node other node {1;}

r": intermediate router message transmitted in step It

8

(a) 4 x 4 2D mesh (b) broadcast based on single-level dominating set

Figure 3.3: Example of SLD broadcasting in a 4 x 4 2D mesh

41

inating nodes. An additional step is required to complete the broadcast, bringing

the total number of steps to [log2(N)] — 1. Although the SLD algorithm requires

one less step than that of the U-mesh algorithm when used alone, the advantage

may not be worth the added complexity of the algorithm. This observation led us

to investigate a diflerent approach to broadcast that relies entirely on the concept

of dominating nodes.

3.3 EDN Broadcast in 2D Mesh Networks

A natural extension to the previous approach is to find some subset of the dominat-

ing nodes that are capable of sending the message to the other dominating nodes in

a single message-passing step and without channel contention. Once each of these

nodes has a copy of the message, then broadcast can be completed in two additional

steps.

3.3.1 Extended Dominating Sets

The method described in this section applies such a method recursively until a very

small set of nodes, which will be sent the message directly flom the source, are

used to begin the broadcast process. This approach broadens the concept of node

domination by accounting for the distance-insensitivity of wormhole routing. We

formally define the concept of an extended dominating set as follows.

Definition 2 Consider an all-port wormhole-routed direct network with node

set V, a routing algorithm R, a set D1, D1 C V, and a set D2, D2 C D1. The

42

set D2 is said to be an extended dominating set (EDS) of D1 if and only if there

exists a set of edge-disjoint paths ’P under R such that, for every node v in

D1 — D2, there exists a node x, x E D2, and a path p, p E P, from x to v.

Figure 3.4 illustrates four examples of extended domination in an 8 x 4 2D mesh

network under XY routing. In each of the four figures, the 8 shaded nodes (two

difl‘erent shades are used) constitute a dominating set D, of all nodes in the mesh,

and 2 of those 8 nodes form an extended dominating set D2 of D1. On an all-

port architecture and using XY routing, the nodes in D2 can transmit messages, as

shown, to the other nodes in D1 in a single step without channel contention.

' 12%???- . ° _ ——>

I node m D2 iii-.J node m D1 D2 D other node message transmission

(b) (C) ((1)

Figure 3.4: Examples of extended dominating sets in 8 x 4 2D meshes

In order to model multiple steps of a broadcast algorithm, we need to formally

define the concept of levels of extended dominating sets. Hence, an EDS of a set

of nodes X in a direct network will also be referred to as a level-1 EDS of X. For

completeness, a level-0 EDS of a set X is just X itself.

Definition 3 Consider an all-port wormhole-routed direct network with node

set V, a routing algorithm R, a set X C V, and a set D,- C X. The set D,- is a

43

level-i EDS of X if and only if D,- is a level-1 EDS of a level-(i—l) EDS of X.

Given Definitions 2 and 3, the problem of performing eficient broadcast flom a

source node 3 in a wormhole-routed direct network with node set V can be stated

as follows: Find a collection of multi-level EDSs, D,-, i = 0,... ,t such that {s}

is a level-t EDS of V and t is minimum among all such collections. Once such a

collection of sets has been found, broadcast can be performed flom node 3 in a

minimum number of steps, while avoiding contention among the unicast messages

transmitted in each step.

Although numerous methods could be used to perform this task, we sought a

method that will not only achieve low latency, but that will be simple to implement

and applicable to meshes of diflerent shapes and sizes. Specifically, it is desirable

that the pattern of dominating nodes at each level be “regular,” in order that

the algorithm can be implemented easily and executed quickly. The generality of

the approach will be important because, while determining the sets of multi-level

dominating nodes for a physical architecture need be carried out only once, in some

systems a given application may be allocated only a subset of the nodes on the

network. If these nodes are organized as a (square or rectangular) submesh, then

the application would benefit flom a library broadcast routine that accommodates

a large variety of possible submesh shapes and sizes.

44

3.3.2 Systematic Approach to Finding Multi—Level Extended

Dominating Sets

Initially, we describe the proposed method in terms of meshes of size 2" x 2";

later, we Show how the approach can be applied in other square and rectangular

meshes. An optimal four-node dominating set for a 4 x 4 mesh was shown in

Figure 3.2(d). Suppose that we wish to find a dominating set for an 8 x 8 mesh.

Figure 3.5(a) depicts a minimum dominating set, comprising 16 nodes, for such a

mesh. Figure 3.5(b) shows another dominating set for the 8 x 8 mesh, constructed

by simply combining four solutions to the 4 x 4 problem. For each mesh, a level-2

dominating set comprising four nodes can be used to reach the level-1 dominating

nodes. The advantage of the regular pattern in Figure 3.5(b) is that the number and

pattern of messages transmitted by each level-2 dominating node is identical. That

is to say, the four level-2 nodes can complete the broadcast in two steps using either

pattern, but the actions are more regular for the pattern shown in Figure 3.5(b).

E'” . ..
. 1 f ’ _>

I level—2 node E level-l node I, J level-0 node message transmussnon
.T..TI

(a) 4——node EDS (b) 4—node regular EDS

Figure 3.5: Level-1 and level-2 dominating nodes in 8 x 8 mesh

Using such regular patterns is advantageous to finding broadcast patterns for

45

larger meshes. In fact, by treating 4 x 4 meshes and their dominating sets as building

blocks, we can construct level-2 dominating sets for any mesh of size 2" x 2" for

any It 2 2. The problem becomes how to recursively find a higher level dominating

nodes. In order to develop a regular approach to this problem, the orientation of

the 4 x 4 dominating nodes must be considered.

There are essentially two difl'erent configurations for (non-extended) dominating

nodes in a 4 x 4 mesh, as shown in Figure 3.6. We will refer to these patterns as A

and B, respectively. Pattern B is the same as that shown earlier in Figure 3.2(d),

and pattern A is the mirror image of pattern B across the vertical axis.

—->

level-1 node J—:] level—0 node message transmission
l_

(a) pattern A (b) pattern B

Figure 3.6: Two basic configurations for dominating nodes in a 4 x 4 mesh

By combining four instances of patterns A and B in all possible ways, we can

construct 16 difl'erent configurations for an 8 x 8 mesh. Among these 16 config-

urations, we have selected two configurations to demonstrate the construction of

higher-level dominating sets. As illustrated in Figure 3.7, pattern C places two A

patterns on the left and two B patterns on the right, while pattern D places two A

patterns on the right and two B patterns on the left. Patterns C and D are mirror

images of one another, this time with respect to the horizontal axis.

It is straightforward to find four level-2 dominating nodes for 8 x 8 meshes with

46

[j level—0 node [level—l node

Figure 3.7: Two configurations of synthetic dominating nodes in a 8 x 8 mesh

—>

I level—2 node B level—l node [j level-0 node message transmission

Figure 3.8: Level-2 dominating nodes sending to level-1 dominating nodes in 8 x 8

meshes

47

either pattern C or pattern D at level 1. Figure 3.8 illustrates four level-2 dominat-

ing nodes for each pattern. Under XY routing on an all-port architecture, the level-2

nodes can transmit messages to all of the level-1 nodes in a single message-passing

step.

Figure 3.9 depicts the message passing flom level-3 dominating nodes to level-2

dominating nodes in a 16 x 16 mesh. Since the pattern is formed by placing two C

patterns above two D patterns, the reader will notice that the right half of the mesh

is a mirror image of the left half, and that the lower half is a mirror image of the

top half. Again, under XY routing, the message passing between level-3 nodes and

level-2 nodes can be completed in a single step. This systematic approach can be

applied to any mesh of size 2" x 2". Essentially, the broadcast “tree” is constructed

in a bottom-up manner. A dominating set of all nodes in the network is found

and placed at level 1 of the tree; all non-dominating nodes are placed at level 0. A

dominating set of the level 1 nodes is found and placed at level 2, and so on. This

process continues until four nodes are placed at level (I: — 1).

The resulting algorithm, which we call the EDN (extended dominating nodes)

algorithm, consists of two distinct phases. In the startup phase, the source node

sends out the message to the four dominating nodes at the highest level. In the

second phase, the message is iteratively passed down the tree to lower-level domi-

nating nodes, until, after the last step, all nodes in the network will have received

a copy of the message.

The method used by the source node to deliver the message to the highest-level

dominating nodes, as well as the number of message-passing steps required, depends

48

I level-3 node E: level—l node

I level—2 node B level-O node message transmission

Figure 3.9: Level-3 dominating nodes sending to level-2 dominating nodes in a

16 x 16 mesh

on the position of the source relative to those nodes. Figure 3.10 illustrates two

examples of the startup phase in an 8 x 8 mesh. In Figure 3.10(a), the source node

sends the message to two of the level-2 dominating nodes in the first step, each of

which forwards the message to another level-2 dominating node in the second step.

The reader will notice that each of the level-2 dominating nodes that received the

message in step 1 can also proceed to forward the message to two of the level-1

dominating nodes in step 2. Since the architecture is assumed to be all-port, an

overlapping of steps is permitted, thus allowing some level—0 nodes to receive the

message before the last step. In Figure 3.10(b), since all the level-2 dominating

nodes are to the right of the source node, under XY routing, the source node can

transmit to only one of them in the first step. At the end of the second step, all

49

i
—>

I source node I level—2 node i] level-l node message transmission in stepi

LL ’ L. _ L

(a) reach 2 nodes in step I (b) reach one "a. in step I

Figure 3.10: Startup message passing in 8 x 8 meshes

level-2 dominating nodes (and some level-1 dominating nodes) will have received

the message.

As mentioned earlier, the multilevel dominating set approach to broadcast can

be applied to square meshes whose widths are not powers of two, as well as to

rectangular meshes. Of course, for mesh sizes other than powers of two, the basic

building blocks are different than the 4 x 4 meshes shown in Figure 3.6. Figure 3.11

illustrates basic building blocks of size 5 x 5, 6 x 6, and 7 x 7, which were found using

the method [41] illustrated in Figure 3.2. The performance of each is summarized

in the next subsection.

I... ...;

r-- "7

_ mu T -— , I.“ «J . . T I.- J

- L i I I

(a) 5 x 5 mesh (b) 6 x 6 mesh (c) 7 x 7 mesh

Figure 3.11: Basic building blocks for meshes not based on powers of two

In each of the cases described thus far, we have shown only one or a small

50

number of basic building blocks. One disadvantage of having a fixed pattern for all

broadcasts is that, in the presence of a large amount of broadcast trafic, system

resource usage may become imbalanced. However, it turns out that the patterns

presented here are not the only ones that would suflice for broadcast. On the other

hand, if broadcast were expected to be a relatively inflequent, but time-critical,

operation, the proposed methods could be supported in hardware.

3.3.3 Theoretical Performance

As mentioned earlier, we evaluate the performance of the EDN flom both a graph

theoretical and flom a systems perspective. Since several other projects evaluate

the performance of multi-port collective algorithms by counting message-passing

steps [21, 75, 111, 113, 118], we first assess algorithms in this manner. As in these

related projects, it is assumed that a k-port node can send (receive) k messages

simultaneously, that is, serialization of startup latencies is not reflected. In order

to predict the performance of the EDN algorithms on actual systems, however, we

also conducted simulation studies. The simulations account for sequential startups,

as well as other system conditions and parameters.

We have calculated the number of message-passing steps required for EDN

broadcast in square meshes of width n = 4 x 2",5 x 2",6 x 2",7 x 2". The to-

tal number of steps consists of two parts, corresponding to the startup phase and

message passing among multiple levels of EDNs. Tables 3.1 through 3.4 give these

values. The number of steps needed in the startup phase depends on the position

51

of the source node relative to the highest-level EDNs.

Table 3.1: EDN steps for n = 4 x 2" Table 3.2: EDN steps for n = 5 x 2"

n = 4 X 4 6 16 32 64 128 4 x n = 5 x 5 10 20 40 80 160 5 x

max max

 max max

Table 3.3: EDN steps for n = 6 x 2" Table 3.4: EDN steps for n = 7 x 2"

n = 6 x 6 12 24 48 96 192 6 x n = 7 x 7 14 28 56 112 224 7 x

max max

max max

In order to evaluate the EDN broadcast algorithm, we compare its performance

to that of an algorithm based on recursive doubling (RD) and to a lower bound.

The RD algorithm [102, 103] was designed for the general case of multicast in one-

port n-dimensional meshes, and can also be used for the special case of broadcast.

Figure 3.12 illustrates the operation of the RD algorithm on a multicast problem in

a 6 x 6 2D mesh. The RD algorithm first sorts the source and destination addresses

lexicographically into a list, denoted T. The source node successively divides T in

half. If the source itself is in the lower half, then it sends a copy of the message

to the first node in the upper half. That node will be responsible for delivering

the message to the other nodes in the upper half, by invoking the same algorithm

recursively. If the source is in the upper half, then it sends a copy of the message

to the last node in the lower half. The source continues this procedure until T

contains only its own address.

The RD algorithm doubles the number of nodes that hold the message in each

III B El 0
source node other node destination node intermediate router

Ill-I-

III-l-Il-II-Il-

+++++

[41 [3] I [3]
Q Q

6} Q ® ® 6‘

:I'2E.silliilislligl Q

(a) multicast example'In 6x6 mesh (b) U—mesh multicast tree solution

Figure 3.12: RD multicast solution in a 6 x 6 mesh.

step, and therefore is optimal on one-port architectures, requiring [log2(N)] steps

to complete a broadcast operation in an N~node network. Although the RD algo-

rithm can be implemented on a multi-port architecture, it will often fail to take

advantage of that architectural property, resulting in more message-passing steps

than necessary. In fact, the number of steps is still [log2(N)].

A simple lower bound on the number of message-passing steps needed for broad-

cast in a three-port 2D mesh is computed as follows. If, in every time step, every

node that already holds a copy of the message is capable of forwarding the message

to three other nodes, then the number of nodes that have received the message

after time step t is 4‘. Given a mesh of size n x n, this lower bound on the time

complexity is derived to be T 2 [log4(n2)].

Figure 3.13 plots the number of steps needed to perform broadcast in n x n

meshes, for 1 < n g 256. The number of nodes in the mesh varies flom 1 to

53

65,536. The number of steps required by the RD algorithm is equal to [log2(n2)],

regardless of the location of the source node. The number of steps required by

the EDN algorithm depends on the location of the source node, but the maximum

number of steps is at most one more than the minimum number. As shown in

Figure 3.13, in many cases the minimum number of EDN steps matches the lower

bound of [log4(n2)], and in some cases even the maximum number of EDN steps

achieves the lower bound.

16 -

l4 -

12 L

10 L

steps
”fr 4

8 - "'49-"-+----+-Titl’cf:...---.5__..--..--g.-.....__...-:il:______,

6 - Mia; " ° '

. WW RD ._
EDN maximum -+---

2
EDN minimum --a-----

Lower bound for Three ports ~~~~~

0 liower bgund for All port

0 32 64 96 128 I60 192 224 256

Mesh width n (number of nodes = n x n)

Figure 3.13: Comparison of EDN steps with RD and lower bound (2D mesh)

54

3.3.4 Analysis

In order to better understand the performance of these two algorithms, we develop

an analytical model. Let 0 represent the message sending latency and '7 represent

the receiving latency. Let L be the message length, and let 6 denote the per-hop

transmission time. If the message is long enough that we can ignore the number of

hops traversed by each message, then we can approximate the message latency by

a + fiL + 'y.

In a 2" x 2Ic mesh, the RD broadcast algorithm consists of 2k message—passing

steps. In each step, every node holding the message sends it to one other node.

Therefore, the total time to execute the algorithm can be approximated by:

5RD broadcast = 2M0 + BL + 7)

In each message-passing step of the EDN broadcast algorithm, other than the

first two steps, a parent node sends three messages to its children. Again ignoring

the number of hops traversed by each message, the time for this operation is ap-

proximated by 3a + 6L + 7. For a 2" x 2" mesh, 1: — 1 such steps are required to

broadcast from the four highest-level EDNs, and two steps are needed to deliver

the data from the source node to the four highest-level EDNs. Depending on the

configuration (see Figure 3.10), one of the first two steps requires time a + 6L + 7

and the other step requires time 20+ 6L+ 7. The total time for the EDN broadcast

55

algorithm is approximated by:

£EDN broadcast = (k - 1)(3(a) + flL + ’7) + 30 + ZflL + 2’)’

= 3ka + (k +1)’7 + (k +1)[3L.

Comparing these two approximations, we see that they differ in the coemcients

of a, 6L, and '7. If we assume that sending and receiving latencies are approximately

equal (a z 7), then the sum of the first two terms is (4k + 1)a for EDN and 41m for

RD. In the RD algorithm, the coeficient of L is 2kfi, while in the EDN algorithm,

it is (k + 1)6. By combining these two results, the EDN algorithm can be expected

to perform better than the RD algorithm when message length L is greater than

(k-IW'

3.3.5 Simulation Study

The previous two sections evaluated the performance of the EDN algorithm in terms

of the number of message-passing steps and analysis based on sending/receiving

overheads and per-byte transmission time. When implemented on an MPC, other

factors such as path length and channel contention, affect the latency of unicast-

based collective operations.

In order to compare the algorithms while accounting for such system charac-

teristics, a simulation study was conducted. As part of an earlier project, we have

developed a simulation tool called MultiSim [100] for the study of large-scale mul-

tiprocessors. MultiSim is based on an event-driven simulation package, CSIM [127],

56

which allows multiple pseudo-processes to execute in a quasi-parallel fashion and

provides a convenient interface for writing modular simulation programs. MultiSim

is designed to emciently simulate wormhole-routed systems.

MultiSim was used to simulate broadcast operations in 3—port meshes of difierent

sizes. For each mesh size, up to 100 diflerent source nodes were selected randomly.

For a given broadcast operation, the average broadcast latency is the mean of the

broadcast latencies of all the destinations. The maximum broadcast latency is the

largest broadcast latency among all destinations, that is, the time between when

the source sends the message until the last destination receives it. Both values

may be of interest, depending on how broadcast is used in a particular parallel

application. Since EDN is assumed to be implemented in software, an intermediate

node must fully receive the message before it forwards it to another node(s), and

sending latency is incurred for each message transmitted. The computation time

of a broadcast operation at an intermediate node is small (typically a table lookup

determining to which nodes to forward the message) and is assumed to be part of

the startup latency.

We first studied the performance of EDN broadcast on a multi-port 2D mesh

with latency characteristics of the only commercial multi-port system, the nCUBE-

2 hypercube. Specifically, the simulated channel rate 0.45 microseconds per byte,

and a combined (sending and receiving) startup latency of 170 microseconds. As

with all other simulations presented in this paper, sending latencies are simulated

sequentially. For example, if a node is sending two messages in succession, the

sending latencies do not overlap, even if the messages are transmitted on difierent

57

M
a
m

|
I
I
|
u
n
e
n
c
y
(
r
m

)

A
v
e
r
a
g
e
l
a
t
e
n
c
y
(
m
i
c
r
o
s
e
c
'
o
n
d
s
)

00 256 5l2 768 IOL7A I280 ”‘36 17.92 2048 00 256 5l2 768 10.24 ”80 1536 ”‘92 20“

Message Size (Bytes) Message Size (Bytes)

(a) maximum broadcast latency (b) average broadcast latency

Figure 3.14: Comparison of broadcast algorithms in 8 x 8 mesh (NCUBE-2 param-

eters)

ports and external channels. (The same is true of receiving latency, though this

property does not afi'ect the broadcast results.) Therefore, even though the system

has an multi—port architecture, some staggering will occur among successive mes-

sages. This characteristic is consistent with our experience on the nCUBE-2 [99].

Figure 3.14 compares the maximum and average broadcast latencies of the two

broadcast algorithms (EDN and RD) in an 8 x 8 mesh, and Figure 3.15 compares the

algorithms in a 32 x 32 mesh. The message size is varied from 32 bytes to 2048 bytes.

The advantage of the EDN algorithm is significant, and the advantage is greater in

the larger mesh. In fact, inspection of the plots reveals that the maximum broadcast

latency of the EDN algorithm in a 32 x 32 mesh is approximately equal to that of

the RD algorithm in an 8 x 8 mesh.

We also wanted to evaluate the EDN algorithm on a newer architecture, since

the nCUBE—Z architecture is now several years old. In the second set of tests, the

values of the latency parameters are consistent with the Cray T3D. Specifically, the

simulated channel rate is 300 MBytes/sec (0.0033 microseconds per byte, per hop)

12000

10000»

M
a
x
i
m
a
l
[
J
u
i
c
y
(
m
t
a
u
e
e
e
o
n
d
s
'
)

E

1

AP
0 256 512 768 mu 1280 1536 1792 2048

MessapSizeGytes)

(a) maximum broadcast latency

Figure 3.15: Comparison of broadcast algorithms in 32 x 32 mesh (NCUBE—2 pa-

rameters)

60

M
a
x
i
m
u
m
L
a
e
n
c
y
(
m
i
c
r
o
s
e
c
o
n
d
s
)

 L 4

0 256 512 768 1024 1280 1536 I792 2048

Meme: Sin (Bytes)

(a) maximum broadcast latency

58

A
v
e
r
a
g
e
L
a
t
e
n
c
y
(
m
i
c
r
o
s
e
c
o
n
d
s
)

A
v
e
r
a
g
e
L
a
t
e
n
c
y
(
m
i
c
r
o
s
e
c
o
n
d
s
)

12000

10000?

 J
256 512 768 IOQA 1280 1536 1792 2048

MessageSizfiBytes)

(b) average broadcast latency

 L

256 512 768 1024 l280 1536 1792 2048

Message Siu(Bytes)

(b) average broadcast latency

Figure 3.16: Comparison of broadcast algorithms in 8 x 8 mesh (T3D parameters)

and the combined sending and receiving latency is 1.5 microseconds. Figures 3.16

and 3.17 compare the algorithms in 8 x 8 and 32 x 32 meshes, respectively. Again,

the performance advantage of the EDN algorithm is significant.

Although the network latency in wormhole routing is relatively insensitive to

the distance between the source and destination nodes, the total path lengths of the

messages involved in a collective operation indicate the amount of communication

resources that are consumed by the operation. A collective operation that consumes

few resources may be less likely to negatively aflect other network traffic. The link

usage of the EDN algorithm is lower than that of the RD algorithm, due to the

59

100 a too .

g E 8" '52:; 2*

§ 3
s

5 §’5 g

z <

00 236 5; 768 10.24 1280 1:36 l;92 2048 00 256 5l2 768 1024 [2‘80 15; :92 2048

Message Size(By1c3) Message Sine (3m)

(a) maximum broadcast latency (b) average broadcast latency

Figure 3.17: Comparison of broadcast algorithms in 32 x 32 mesh (T3D parameters)

divide-and—conquer nature of EDN. In the last step of EDN broadcast, for example,

a full three-fourths of all the nodes receive the message from an immediate neighbor.

In a 32 x 32 mesh, the average path length of a message in EDN is 1.86 hops, whereas

the average for RD is 4.16 hops.

60

3.4 EDN Broadcast in 3D Mesh Networks

We illustrate the application of the EDN approach to 3D mesh network by way of

an extended example. We first consider EDN patterns in 2D meshes, upon which

the 3D mesh solutions are based. In a 4 x 4 network, several different level-1 EDN

configurations can be found, each of which can serve as a building block pattern

in larger networks. Figures 3.18(a) and (b) show four level-1 EDN configurations

and their abstract representations, respectively. In the rest of this section, we will

demonstrate a systematic approach for constructing multi-level EDNs for 3D meshes

by starting from these four configurations.

Figure 3.18: Difl'erent EDNs in 4 x 4 meshes

We begin with a 4 x 4 x 4 3D mesh network. Using any permutation of the above

four configurations, one configuration in each of the four planes, gives a 16-node

level-1 EDS for the entire network. Figure 3.19 shows one such configuration (for

clarity, not all connections in the z dimension are shown). The configuration used

in Figure 3.19 possesses an interesting feature, as shown in Figure 3.20. Under XYZ

61

routing, these 16 level-1 EDNs can together dominate an additional 4 x 4 plane.

Therefore, the number of level-1 EDNs for a 4 x 4 x 5 network is the same as that

ofa 4 x 4 x 4 network.

Figure 3.19: 16-node level-1 EDNs in a 4 x 4 x 4 mesh

L‘ Q level-l EDN
5

Figure 3.20: Combining EDN configurations to cover an additional plane

Next, we seek a set of level-2 EDNs that can reach the other level-1 EDNs in

a single message-passing step and without channel contention. A set of four such

nodes is shown in Figure 3.21(a). Also shown in the figure are the routes taken

by the messages sent to the twelve other level-1 nodes; all messages follow XYZ

paths. Given this configuration of the level-2 EDNs, any source node can deliver

the message to them in two startup steps. Therefore, broadcast in a 4 x 4 x 5

network can be completed in four message-passing steps.

(a) Communication between level-2 and level—l EDNs in 4 x 4 x 5 network

I level-l EDN ..

(b) representation of level-2 basic unit

Figure 3.21: Level-2 EDNs in a 4 x 4 x 5 network

3.4.1 Recursion in XY plane

We can represent the configuration of the four level-2 EDNs as shown in Fig-

ure 3.21(b). This particular configuration plays an important role in the recursive

construction of multi-level EDNs in larger 3D mesh networks, and we refer to it as

a basic unit. By combining four basic units as shown in Figure 3.22(a), we define

the 16 level-2 EDNs of a larger network with four times the number of total nodes.

By seeking a basic unit among these sixteen level-2 EDNs, as illustrated in Fig-

ure 3.22(b), four level-3 EDNs are defined. The paths followed by messages from

level-3 EDNs to level-2 EDNs are shown in Figure 3.22(b). The twelve other nodes

are reached while avoiding contention among the messages. As a basic unit, the ori-

entation of the four level-3 EDNs is the same as the representation in Figure 3.21(b),

with the pattern simply reversed in the Z dimension.

This method can be applied recursively to larger networks. In general, if the

basic unit represents the highest-level EDNs in a network of size a x a x 6, then four

such basic units can be combined, and a new basic unit is found that represents the

highest-level EDNs in a network of size (2 a: a) x (2 * a) x B. Specifically, this basic

63

I level-3 EDN if? level-2 EDN

(a) 16 level-2 EDNs in a 8 x 8 x 5 network 00 communication between level-3 EDNs (c) level-3 basic unit

and remaining level—2 EDNs

Figure 3.22: Level-3 EDNs in a 8 x 8 x 5 network

unit can represent the highest-level EDNs in networks of size 4 x 4 x 4, 8 x 8 x 4,

16x16x4,..., (4*2")x(4*2’°)x4and4x4x5,8x8x5,16x16x5,...,

(4 a: 2") x (4 * 2") x 5, where k = 0,1,2, and so on.

3.4.2 Recursion along the Z-axis

By positioning three basic units along the z-axis, as shown in Figure 3.23(a), we can

create a network three times the original size. In Figure 3.23(b), we can see that 4

nodes in the middle section can serve as the highest-level EDNs in this 8 x 8 x 15

network. Again, the basic unit of the level-4 EDNs in this network is the same as

that of the level-3 EDNs in the 4 x 4 x 5 network, as shown in Figure 3.22(c).

This approach can be extended to larger networks. In general, if the basic unit

represents the highest-level EDNs in a a x a x 6 network, then after the operation

as described above, the same basic unit can be used to represent the highest-level

EDNs in a a x a x (3 * 6) network. Combined with the earlier result, this basic unit

can also represent the highest-level EDNs in a network of size (4*2") x (412‘) x (4213")

and (4*2") x (4*2") x (5*3'") where k = 0,1,2,--- andm = 0,1,2, and so on. The

64

techniques described here generalize to meshes of other shapes by using difierent

basic units.

I level—4 EDN I level-3 EDN L: level—2 EDN

(a) combining three 8 x 8 x 5 networks along the z—axis to form an 8 x 8 x 15 network

n' . ,

a

<

(b) messages sent between level—4 EDNs and level—3 EDNs

Figure 3.23: Example of concatenating networks in the Z direction

3.4.3 Theoretical Performance

The number of startup steps required to send the message from the source node to

the four highest-level EDNs is two, regardless of the location of the source. This

property can be seen from the orientation of the basic unit. The number of message-

passing steps in networks of size (4x2k) x (4x2") x (4x3m) is (k+2)+m+2 = k+m+4,

where k 2 0 and m 2 O. The numbers of steps required in specific networks are

listed in Table 3.5 in increasing order of the total number of nodes in the network.

As with the 2D case, we compare the number of message-passing steps of the

EDN algorithm with that of the RD algorithm and a theoretical lower bound. For a

3D mesh with four output ports per node, a lower bound is [log5(N)] Figure 3.24

65

Table 3.5: Theoretical EDN performance in 3D mesh networks

Network Total Levels of Total number

size nodes EDNs of steps

4 x 4 x 4 64 2 4

4 x 4 x 5 80

4 x 4 x 12 192

4 x 4 x 15 240

8 x 8 x 4 256

8 x 8 x 5 320

4 x 4 x 36 576

4 x 4 x 45 720

8 x 8 x 12 768

8 x 8 x 15 960

16 x 16 x 4 1024

16 x 16 x 5 1280

4 x 4 x 108 1728

4 x 4 x 135 2160

8 x 8 x 36 2304

8 x 8 x 45 2880

 m
m
m
m
e
a
x
h
h
h
h
w
w
w
w
w

N
N
N
N
G
Q
Q
Q
Q
G
W
O
‘
U
‘
U
A

compares the maximum broadcast latency (in message-passing steps) of the EDN

algorithm and the RD algorithm for 3D meshes of specific sizes up to 5000 nodes.

The advantage of the EDN algorithm over RD is clear; the performance of the EDN

algorithm is within a small number of steps of the lower bound.

3.4.4 Analysis

Following the same notations of the previous analysis for 2D broadcast and combine,

this section provides some analytical comparison of the performance of these two

algorithms.

In a (4 x 2") x (4 x 2") x (4 x 2’") mesh, the RD broadcast algorithm consists of

2]: + m+ 6 message-passing steps, with each receiving node combining the incoming

66

 20 v . , fl
. .

RD +—

EDN .4.--

Four port lower bound ---------

Br

I—

v

M
e
s
s
a
g
e
-
P
a
s
s
i
n
g
S
t
e
p
s

 0 4 L 1 1 L 1 1 a 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Total number of nodes

Figure 3.24: Comparison of EDN steps with RD and lower bound (3D mesh)

vector its local data. Therefore, the total time to execute the algorithm can be

approximated by:

5RD broadcast = (2k + m + 6) * (a + M + 7)

= (2k+m+6)a+(2k+m+6)7+(2k+m+6)fiL.

Although the number of message-passing steps of the EDN algorithm is the same

for (4 x 2") x (4 x 2") x (4 x 2'") and (4 x 2") x (4 x 2") x (4 x 3’") meshes, it is more

convenient in the case of the RD algorithm to analyze the (4 x 2") x (4 x 2") x (4 x 2'")

mesh.

In the first two steps of the EDN broadcast algorithm, a total time of 30 + 26L+

27 is needed for the source to reach the four highest-level EDNs. Proceeding along

the Z-direction, another m message-passing steps are needed, and for each step, two

messages are sent out from each node. Thus, a maximum time of m(2a + 6L + 7) is

required. The broadcast algorithm now is executed on each XY-plane, where k + 2 ‘

67

steps are needed. In the first k +1 steps, 3 messages are sent from each node holding

the message, and in the last step, at most 4 messages are sent from an EDN. The

total time for the EDN broadcast algorithm is approximated by:

LEDN broadcast = (3a + 2,3L + 2’7) + m(2a + BL + ’7) +

(k+1) * (3a+flL+7)+(4a+fiL+7)

= (3k+2m+lO)a+(k+m+4)7+(k+m+4)flL

Again, if we assume that sending and receiving latencies are approximately equal

(a as 7), and combining these two approximations, the EDN algorithm is expected

to perform better than the RD algorithm when the message length L is greater than

(m+3)a

(k+2)fl ‘

3.4.5 Simulation Study

The MultiSim simulator was used to study the performance of EDN broadcast in

3D mesh networks under various system conditions. Two different mesh sizes were

simulated. For each mesh size, difi'erent source nodes were selected randomly. The

channel rate parameter is again consistent with the T3D, namely, 300 MBytes/sec.

Difi'erent values of sending and receiving latencies, which together constitute startup

latency, were used. As in the other simulations, sending (and receiving) latencies

are simulated serially.

Figure 3.25(a) compares the broadcast latency of the EDN algorithm and the

RD algorithm for meshes of size 4 x 4 x 4 and 8 x 8 x 4. The message size is varied

68

from 32 bytes to 2048 bytes. In this plot, the startup latency is 1.5 microseconds

(0.75 for sending, and 0.75 for receiving). The advantage of the EDN algorithm is

approximately 30 percent in the larger mesh and 27 percent in the smaller mesh.

One may conclude that for tasks such as distribution of initial data and replication

of arrays, the EDN algorithm is preferred to a recursive doubling approach. Even

though the latter will inadvertently take advantage of a multi-port architecture, the

EDN approach achieves better performance due to increased parallelism among the

constituent messages.

100 v t 1 v v . . 1m 1 1 fi a

3 so » EDN(4x4x4) ~— E 80 - EDN(4x4x4) ~— I
RD(4X4X4) -'-'" RD(4X4X4) ------

EDN(8x8x4) --~-~- / g EDN (8x8x4) «~-

48; so _ RD(8x8x4) ——~—- 4 a: so _ RD(8x8x4) ——

; r.

i S
.11

_3 40 L

S

. .g ,0 .
2 2

o n A 1 L A 1 L o a L L A L J L

0 256 512 768 1024 1280 1536 1792 2048 0 256 512 768 102A 1280 1536 1792 20“

Message Size (Bytes) Message Size (Bytes)

(a) startup latency equals 1.5;isecs (b) startup latency equals 0.15psecs

Figure 3.25: Comparison of EDN broadcast with RD broadcast in 3D meshes (sim-

ulation)

Reducing startup latency is a major goal of many ongoing research projects. For

comparison, Figure 3.25(b) plots the broadcast latency of the EDN algorithm and

the RD algorithm in the same meshes, except that the startup latency is decreased

by an order of magnitude. Specifically, the sending latency is 0.075 microseconds,

as is the receiving latency. Again, the message size is varied from 32 bytes to

2048 bytes. The broadcast times of both algorithms are reduced, but the relative

advantage of the EDN algorithm increases (36 percent and 32 percent, respectively,

69

~ 7 —.

@ manna: I ism—sew I Ievel—IEDN [j level-IEDN Ll. 1mm.” wan-mimo-

7'lrip-Ht53+2"

433*"?th:1":

II:"III:I”.II":3
alt-+3fink";in;

4d?

(a) step! nearestneighbor (b) step2 (c) step3

Figure 3.26: First three steps of reduction in a 16 x 16 2D mesh

in the large and small meshes). A lower startup latency increases the overlap among

messages messages sent from the same node, and the EDN algorithm is better able

to exploit this characteristic.

3.5 Reduction and Gather Operations

Besides broadcast, the EDN approach can be applied to collective operations such as

reduction and gather [104]. In reduction, a commutative and associative operation,

such as maximum, is performed on a set of data items that may be distributed

across network nodes. In gather, one process receives a message from each of a

group of processes. These operations, also known as global combine, have been

studied for one-port meshes, for which at least [log N] message-passage steps are

needed to complete the operation [159, 15].

EDN-based algorithms are designed to reduce this time by taking advantage of

all-port network interfaces. Since the communication patterns of such operations

are typically many-to-one, it may appear that an EDN broadcast tree, described

70

above, could be used to implement such operations with the direction of message

transmission reversed. The restriction of XY routing prevents this approach from

achieving good performance, however, because it results in contention among the

unicast messages. Specifically, the children nodes of some parent nodes cannot all

transmit to that parent at the same time because the messages require a common

channel.

The solution lies in rotating the pattern of EDN nodes by 90 degrees clockwise

or counter-clockwise, as shown in Figure 3.26. In the first step, all level-0 nodes

send the message to their neighbor that is an EDN. After three steps, the four

level-3 EDNs have received the data from their children. Two more completion

steps are required to deliver the data to the root node.

Like broadcast, the total number of steps in EDN-based reduction consists of

two parts, the steps in which messages are passed up the reduction tree, and the

completion steps. Tables 3.6 and 3.7, respectively, give these values for n = 4 x 2"

and n = 5 x 2", where the number of network nodes is N = n x n. The values for

n = 6 x 2" and n = 7 x 2", though not given, are the same as for n = 5 x 2". In

fact, although the number of steps in the reduction tree and the completion process

difier among the four mesh types, the totals are the same for all types.

Table 3.6: EDN reduction steps for n = 4 x 2" Table 3.7: EDN reduction steps for n = 5 x 2"

n=4x 4 8 16 32 64 4x n=5x 5 10 20 40 80 5X

nxn an

71

3.6 Matrix Transposition

We can also apply the EDN approach to the problem of transposing a square matrix

mem. We assume that the elements of the matrix are distributed evenly among

a 2D mesh processor network of size N = n x n with processor Pio' holding a block

of submatrix of size If x 1:5, for 0 S i, j S n — 1. (In terms of High Performance

Fortran [71], the matrix is decomposed in a (black, black) manner.) Suppose that

b = % is an integer. In a direct implementation of transposition, depicted in

Figure 3.27 for an 8 x 8 mesh, processor 1),,j sends a message of length b2 to processor

p13,, for 0 5 2', j S n — 1. Processors located in the major diagonal already hold

the correct data, and do not send or receive any messages. Therefore, a total of

n2 —n unicast messages are transmitted. Although all the messages are theoretically

transmitted in one step, under XY routing, channel contention is a major drawback

of this approach. As depicted in Figure 3.27, only two of the messages do not have to

compete for at least one channel. In the EDN approach to transposition, although

multiple message-passing steps are involved, contention among messages can be

largely avoided, thereby reducing the latency of the operation.

(a) low to high (b) high to low

Figure 3.27: Channel contention problem in direct approach to matrix transposition

The basic EDN pattern used for transposition is shown in Figure 3.28(a) for

72

(a) EDNs for transpose (C) step 2 (‘0 step 3

 -

(b) step 1

Figure 3.28: EDN matrix transposition in 16 x 16 mesh.

the 16 x 16 mesh. In order to implement transposition, the mesh is “divided” into

4 x 4 blocks. In the first message-passing step, nodes within each 4 x 4 block send

their data to the appropriate EDN in that block, as shown in Figure 3.28(b). In the

second step, corresponding EDNs on the diagonals in separate blocks send messages

as illustrated in Figure 3.28(c). The third and fourth steps are similar to the second

and first, respectively, except that the direction of the messages is reversed. After

four steps, the transpose operation is complete, while avoiding channel contention.

We observe that the communication patterns in Figures 3.28(c) and (d) are iden-

tical to the communication pattern in Figure 3.28(b). That is, the “basic blocks”

of this transpose pattern can be of size ((4 x 4)j x (4 x 4)’), for j 2 0. In general,

transpose for a network of size 2" x 2" requires k message-passing steps. For net-

works of size 2" x 2", where k is even, this approach produces no channel contention

for any communication steps throughout the process of transposition. However,

when we use the same approach for a network of size 2" x 2" , where k is odd,

73

3000" WWW!” W W "W W W W“W W winning) +— g i. '3

A g , , 7 / 'm b“. -m. El,"hvl_ean(l6x16)mM _ L” j" ‘ ,,‘ ___ ___+

25000» H(32x32)*—" I- r/i 4 W gun-“W ‘ :
arduous) ~»—« . E , lug).... 1

”N Mama)» , - € . .000 Direct - ._.__.'. _--__.

m _MMRQMZI'37 -.-_ . 1 M. _ ;, -, .L- - ,, .1 '

5 Drummers)J-- , _ . _ i

., omsfuoxsr- , ; 7 , g i i

l t ' ’ ” l

' : . g .- _/

< m, J /J/jfl'fiwm‘“
k”

 A A In

0 256 512 768 1W [2” 1536 1792 2068 0 256 512 768 1024 l2!) 1536 1792 2048

WWW) WSW(bra)

(a) maximum latency (a) average latency

Figure 3.29: Comparison of EDN transpose with direct transpose

channel contention is possible in one of the transposition steps. Some messages in

those blocks along the major diagonal may begin transmission at the same time

that other messages from ofi-diagonal blocks are being sent across the network to

other ofi-diagonal blocks. The amount of contention, though, is small as compared

with the direct approach. Specifically, the number of messages involved in channel

contention is—3—“ ,compared to (n2 — n— 2)1n the direct approach.

In order to compare the transposition algorithms while accounting for such sys-

tem characteristics, a simulation study was conducted using MultiSim [100]. Fig-

ures 3.29(a) and 3.29(b), respectively, compare the maximum and average transpose

latency of the EDN transpose algorithm with the direct approach for meshes of size

8 x 8, 16 x 16, and 32 x 32. The message size is varied from 128 bytes to 2048 bytes.

The advantage of the EDN transpose algorithm is clear. In fact, the maximum

latency of the EDN algorithm is less than one-third that of the direct approach in

a 32 x 32 mesh, and the average transpose latency of the EDN algorithm is approx-

imately one-half that of the direct approach. Thus, while the direct approach can

theoretically be completed in a single message-passing step, the EDN approach,

74

which involves k steps for network of size 2" x 2" , can achieve better performance

by reducing or avoiding contention among the constituent unicast messages.

3.7 Conclusions

In this chapter, a communication model has been described that uses the concept of

dominating sets to eficiently implement broadcast in all-port wormhole-routed 3D

mesh networks. The EDN algorithm takes advantage of the distance-insensitivity

of wormhole routing, allowing a node to “dominate” another node even though

the two nodes may not be neighbors in the network. In addition, the algorithm

is designed to exploit the presence of multiple ports between each local processor

and its router. Using the EDN algorithm, the number of message-passing steps was

shown to be at most three steps above a theoretical lower bound in systems with up

to 60,000 nodes. Simulation results confirm the advantages of the algorithm under

typical system conditions.

Chapter 4

EDN Broadcasting in Torus

Networks

In this chapter, we use the EDN model to develop broadcast algorithms for multi-

port wormhole-routed torus networks. We first consider 2D networks, followed by

3D networks.

4.1 System Model

The systems under consideration in this chapter are similar to those discussed in

Chapter 3. They use wormhole routing, dimension-ordered routing, and possess

a multi-port architecture. However, the topologies of these systems are 2D or 3D

tori. Formally, an n-dimensional torus has [so x [:1 x x kn-2 x kn_1 nodes, with

k,- nodes along each dimension 2', where k,- 2 2 for 0 S 2' g n — 1. Each node :1:

is identified by n coordinates, an_1(a:)o,,-2(a:) . . .ao(:c), where 0 g (7,-(3) S k,- — 1

75

76

for 0 g i g n — 1. Two nodes :1: and y are neighbors if and only if (7,-(x) = o,(y)

for all i, 0 g i S n - 1, except one, j, where oJ-(sc) i 1 = 03-(y) mod kj. In this

chapter, we consider only bidirectional tori, in which direct message transmission

is possible in either direction between neighboring nodes. Figures 4.1(a) and 4.1(b),

respectively, show the physical links associated with a 2D unidirectional torus and

a 2D bidirectional torus. Also shown in each figure are the paths taken by two

example unicast messages, one from source node (0, 0) to destination node (2,1),

and another from source node (0, 2) to destination node (3, 1). The paths shown in

Figure 4. 1 result from dimension-ordered routing.

(a) unidirectional torus (b) bidirectional torus

3— unicast path —’

unidirectional communication link

bidirectioml communication link 4—5’

Figure 4.1: Examples of 2D 4 x 4 torus networks

The second distinguishing property of these networks is that they use virtual

channels [46] in order to prevent deadlock. Each virtual channel has its own flit

bufl’er and control lines. For wormhole routing in bidirectional torus networks, three

sets of (unidirectional) virtual channels are required: p-channels, l-channels, and

h-channels [49]. The virtual channels along a single dimension, d, of a bidirectional

torus with even width, k, are illustrated in Figure 4.2; the situation is similar

when k is odd. We use the notation of Dally and Seitz [49]: Cdaa: represents the

77

virtual channel leaving node :1: in dimension d, in the virtual channel set a, where

oz 6 {p,l,h}.

cdpu-n
_.\

‘awz-2;:AHVZ-1:Cam

. :?:au_w-H'——}_-3 Cam;_iL‘rk—l .q—w‘gm-2 '—

jinx—c‘40 Cd:lit—m2)Cmm-n ma1; cl“- 1;

Figure 4.2: Virtual channels in one dimension of a bidirectional torus

4.2 EDN Broadcast in 2D Torus Networks

An important step in the development of an EDN broadcast algorithm is the se-

lection of the EDN configuration, that is, the pattern of EDNs that will be used.

We might initially consider using the EDN configuration of a 5 x 5 torus, since it

possesses the property that only five level-1 EDNs are required to dominate the

other nodes, and that all five EDNs use their entire set of outgoing channels in

doing so; see Figure 4.3. However, we observe that at least three message passing

steps are needed for broadcasting in a 5 x 5 torus under XY routing, since a single

source node cannot reach the other 4 nodes in one step. We would rather base our

algorithm on a more eflicient “building block,” such as a 4 x 4 torus.

As shown in Figure 4.4, it is possible to perform broadcast in a 4 x 4 torus in

two message-passing steps under XY routing. In the first step, the source delivers

the message to three level-1 EDNs, labeled A, B, and C', which together with the

source deliver the message to the remaining nodes in the second step. In this case,

the source is a level-2 EDN of all the nodes in the network. There are actually many

EDN configurations that could be used to implement two-step broadcast in a 4 x 4

Level-1 EDNs in 5x5 toms network,

all 5 level-1 EDNs has used all its

out going channels

Figure 4.3: Five dominating nodes in 5 x 5 torus.

torus. The message-passing patterns shown in Figure 4.4 are particularly important

because they can be used to design broadcast algorithms for larger networks as

well. The pattern in Figure 4.4(a) is referred to as a Y-pattern, and the pattern in

Figure 4.4(b) is referred to as a T-pattern.

I Source node —> Message transmission path

Level-l EDN -_---- Connection link

~
.

.
. V
}
;

u
.

‘

in
?» n.

.
.

F

_
L
.

fi
g
.

(a) step 1, source sends to (b) step 2. delivery to

three level-1 EDNs remaining nodes

using Y—pattem. by T—pattem.

Figure 4.4: Two-step broadcast in 4 x 4 torus.

Figure 4.5 shows an abstract representation of the two patterns, which are used

to identify the EDNs at each level for a given network. The Y-pattern is used by a

level-t EDN to send a message to three level-(t— 1) EDNs. The T—pattern is used

by four level-(t—l) EDNs to send a message to twelve level-(t—2) EDNs. In a torus,

the paths may traverse wraparound channels. Associated with each instantiation of

79

a Y or T pattern is a parameter 6, which represents the relative distance between

the source and destination of each message. Also, since the torus is a symmetric

topology, exactly the same patterns can be used regardless of the location of the

source node.

(Banning—l

: (3,+a,3,) (AriAy)(A.+2§A,)

B [3 48 BF [ll—FAR

(s.+25.s,) (Bx-258,) (3.3,) (A.-6.A,) l

m (A',A,- 8)

! (s..s,+ 25)

{:———+——£]C

8(vasy) (Sx- §.Sy+ 5) (Cg-8.Cy+ 8)

Alil LT)](S..S,+ 5) fl (Cx.Cy+5)

(SI-'58P» } p

l ~ __J(S.+ 6.8,) JAE]

(a) Y patter" (s,.s,) (c.,c,) (c.+a.c,)

(b) T—pattern

Figure 4.5: Y-pattern and T-pattern.

Given a single level-t EDN holding a message, execution of a Y-pattern followed

by a T-pattern results in 16 level-t, level-(t— 1), and level-(t—2) EDNs holding the

message. These 16 nodes form a 4 x 4 grid and are equidistant from one another

in each dimension, that distance being 6. We can therefore define a broadcast

operation in a 4 x 4 torus as {YT} with parameter 6 = 1. Let us refer to the

combined {YT} transmission pattern as a phase. For example, Figure 4.6 shows

the first phase of an EDN broadcast operation in a 16 x 16 torus. The parameter

5 for both steps is 16/4 = 4. A second {YT} phase, with 6 = 1, is required

to complete the broadcast. We should emphasize that each {YT}-pattern in the

second phase does not necessarily operate within a square 4 x 4 subnetwork, as

illustrated in Figure 4.4. Rather, the patterns match those in Figure 4.5, with

wraparound channels used as necessary. Figure 4.6 shows three level-1 EDNs and

80

the twelve level-0 EDNs that will be reached from node C in the second phase.

I Someenode bevel-2 EDN O Level-OEDN (reachedfromnodeC)

I Level-3 EDN Level—l EDN (reached from “06¢ C) -> Message transmission path (first phase only)

A.

4. ,

(a) step 1. Y-pattern with 8 = 4. (b) step 2. T—pattern with 5 = 4.

Figure 4.6: First phase (two steps) of EDN broadcast in a 16 x 16 torus.

Figure 4.7 gives the general algorithm for EDN broadcast in a 2D 4 x 4 torus

network; the algorithm is invoked by all nodes in parallel. The parameter 6 is

calculated from the size of the network. If the node is not the source, then it must

first receive the message, and may be required to complete the T step of a {YT}

phase. Following this action, or if the node is the source itself, the node repeatedly

sends messages according to the {YT} pattern, reducing the value of 6 by a factor of

4 following each phase. Each message carries two variables identifying the message

type and the value of parameter 6. The message type can be one of Ya, Yb, Yc,

or T, which dictates to the receiving node which role it must play the subsequent

message-passing step. Procedure T.pattern (type , 6), given in Figure 4.8, generates

three messages corresponding to the type parameter.

In order to implement broadcast in a network of size (2 x 4") x (2 x 4"), we

81

Procedure EDN_bcast() /* local address is (X, Y) */

6 : 4k—1

if (I..am_not-source)

call msg_recv(type,6);

svitch(type)

case Ya: call T.pattern(Ya,6); break;

case Yb: call T.pattern(Yb,6); break;

case Yc: call T_pattern(Yc,6); break;

case T: break;

end switch

6 = 6/4

end if

while (6 >= 1)

send {Ya,6} to node (X—6,Y—6); send {Yb,6} to node (X,Y+26);

send {Yc,6} to node (X+26, Y);

call T_pattern(Y,,6); 6:6/4 ;

end while

Figure 4.7: Main EDN broadcast routine for a 4" x 4" torus network.

Procedure T_pattern (type, 6) /* local address is (X, Y) */

switch (type)

case Y;:

send {T, 6} to node (X+26, Y); send {T, 6} to node (X,Y—6);

send {T, 6} to node (X -6, Y); break

case 1%:

send {T, 6} to node (X—26, Y); send {T, 6} to node (X,Y+6);

send {T, 6} to node (X +6, Y); break

case 1; or l3:

send {T,6} to node (X—6,Y+6); send {T,6} to node (X,Y+6);

send {T, 6} to node (X +6, Y); break

and switch

Figure 4.8: Procedure T..pattern().

82

need to define a new message-transmission pattern. The F-pattern is shown in

Figure 4.9. As mentioned above, after executing a {YT} pattern of transmission

from any source node, three levels of EDNs form a 4 x 4 grid with some internode

spacing, call it 61. If each of these 16 EDNs executes an F-pattern transmission

with parameter 62 = 61/2, the resulting 64 EDNs form an 8 x 8 grid with adjacent

nodes spaced at distance 62.

The canonical example of F-pattern usage is broadcast in an 8 x 8 torus, il-

lustrated in Figure 4.10. The entire broadcast procedure is denoted as {YTF}.

The parameter 6 for both the Y and T patterns is 8/4 = 2, while 6 = 1 for the

F-pattern. The operation of the F-pattern is illustrated in Figure 4.10(c), where it

is used by each of the 16 EDNs holding the message to send to the remaining nodes

in the network. The algorithm in Figure 4.7 can be extended easily to handle the

networks of size (2 x 4") x (2 x 4") by defining an F-message type and by having

all nodes that have not received an F message, invoke an F-pattern as their last

action.

(3“ 5’5 3+ 5)

{T1— [gown 6)

{:i—Eks x+ 5,8 y)

(S x .S y)

Figure 4.9: F-pattern of message transmission.

Theorem 1 The EDN broadcast algorithm delivers a message exactly once to

every node in a 4" x 4" ZD torus network in 2k message-passing steps, where

k_>_1.

83

. Source node —> Message transmission path

I Itvcl-Z EDN [3 Level-l EDN

v——~ T__.

l

(1)m node sends ‘0 three level-2 EDN‘ (1)) source and level-2 EDNs use the T-pattem (c) source and all EDN: all use the F—pattem

“3'08 Y-pattetn. to send to twelve level-l EDNs. to transmit to the remaining nodes.

Figure 4.10: EDN broadcast in 8 x 8 torus, 6 = 2 for both Y and T patterns, and

6 = 1 for F-patterns.

Proof: The proof is by induction on k. For k = 1, the theorem holds by obser-

vation; Figure 4.4 shows the {YT} pattern used to implement two-step broadcast

in a 4 x 4 torus. Assume that the result is true for k = 8, E 2 1, that is, the EDN

broadcast algorithm can reach every node in a 4‘ x 4‘ torus in 28 steps. Clearly,

the same algorithm can be used to reach every fourth node (in each direction) in a

4‘+1 x 4‘+1 torus by starting EDN-bcast() with 6 = 4‘ instead of 6 = 4‘”.

An additional invocation of the {YT} pattern (two steps) can be used to reach

the remaining nodes in the 4‘+1 x 4‘+1 torus. This can be seen by considering

the the pattern of nodes reached by the {YT} pattern, which is depicted in

Figure 4.11(a). The source node is indicated by an open circle. As shown in

Figure 4.11(c), this pattern can cover a plane, with the pattern repeating every

four nodes in both directions. Therefore, afier 2(€ + 1) total steps, every node

in the 4‘+1 x 4‘+1 torus has received the message at least once. Finally, no node

receives the message more than once, since in every step of the algorithm, every

node holding the message sends it to 3 other nodes, so at most 42““) nodes hold

84

the message after 2(13 + 1) steps. I

.
. a"
- in

II
rill
n

, air
~ a?
. "as.
. ..

(a) nodes reached by (YT) pattern

a

an. I In

""1: ”‘flihu

"hmdnfllfio

“IIUBI‘LQ

"Iln'l'k-

(b) nodes reached by (YTF) pattem (c) 4—node tiling using (YT) pattern (d) 8—node tiling using (YTF) pattern

Figure 4.11: Tilings using {YT} and {YTF} patterns.

The pattern of nodes reached by the {YTF} pattern is depicted in Fig-

ure 4.11(b). As shown in Figure 4.11(d), this pattern also can cover a plane,

repeating every eight nodes in both directions. By a similar argument to that

used in the proof of Theorem 1, we have the following corollary. Combining the

two results yields Corollary 2.

Corollary 1 The EDN broadcast algorithm delivers a message exactly once to

every node in a (2 x 4") x (2 x 4") 2D torus network in 2k + 1 message-passing

steps, where k 2 1.

Corollary 2 The EDN broadcast algorithm requires d message-passing steps

to deliver a message exactly once to every node in a. 2d x 2“ torus.

Due to the symmetry of the torus, the number of steps and patterns involved

in a broadcast operation are independent of the location of the source node. Here,

85

we have considered only networks built from 4 x 4 networks. However, the EDN

approach can be applied to torus networks of other shapes and sizes. Various

patterns, applicable to both mesh and torus networks, are described in [143].

Besides the number of message-passing steps, an issue that must be addressed

is channel contention among constituent messages. Two types of contention have

been studied for collective communication in wormhole-routed direct networks [103].

Stepwise contention occurs when two or more messages sent in the same message-

passing step contend for the same channel. In the absence of multiple virtual

channels [46] for each unidirectional physical channel, one of the messages will

be blocked until the other has relinquished the channel. The presence of virtual

channels allows the messages to share the physical channel in a round-robin manner,

though the resulting rate of progression of each will be indirectly proportional to

the number of messages sharing the channel. The second type of contention is depth

contention, which occurs when messages sent in two difl'erent communication steps

may actually be transmitted concurrently. This skewing of message-passing steps

can be caused by the delays at nodes, such as sending latency, receiving latency,

and other computing tasks that delay the handling of messages [103].

Theorem 2 The EDN broadcast algorithm for a 4" x 4" 2D torus network is

stepwise contention- e.

Proof: EDN broadcast for a 4" x 4" torus can be denoted as

{YT},;,{YT},;,{YT}53 . . . {YT}5,, where 6m 2 4""m,m = 1,2, . .. ,k. To prove that

stepwise contention does not occur, we need only show that no two messages trans-

86

mitted in step {Y};, for 6 E {6,}f=1, require the same channel, and that no two

messages transmitted in step {T},;, for 6 E {6,}le, require the same channel.

By definition, the three messages sent by a single node {Y}5, do not use a

common channel. Consider step {Y};,, i > 1, which follows step {T}45,-. All nodes

holding the message are located at distance 46 from one another. In the {Y}5,

step, each such node (x, y) sends messages to nodes (2: — 6;, y — 6;), (x, y + 6,), and

(x + 6,, y). Since all channels used by these messages are within distance 26,- of

node (x, y), none of these messages may contend with the messages sent by a node

that is distance 46,- from (x, y). As for step {T};,, i Z 1, inspection of the tiling in

Figure 4.11(c) shows that the T-pattern messages in neighboring regions do not

require any common channels. I

Corollary 3 EDN broadcast in a 2D torus network of size (2 x 4") x (2 x 4") is

stepwise contention—free.

Proof: The algorithm requires a total of 2k + 1 steps. The first 2k steps can be

denoted as {YT},5,{YT},;,,{YT},;3 . . . {YT}6k, where 6m = 2 x 4""m, m = 1, 2, . .. ,k.

The last step is a {F}5=1 pattern. From the proof of Theorem 2, the first

2k steps are stepwise contention-free. After step {T}5k, all nodes holding the

message are located at distance 2 from one another in each dimension. The three

destination nodes of the {F}5=1 messages sent from node (x, y) are located at

(x — 1, y + 1), (x, y + 1), and (x + 1, y). Therefore, no channel is traversed by more

than one message in {F}5=1, completing the proof. I

87

Besides stepwise contention, it can be shown that the EDN broadcast algori-

thm also avoids contention among messages sent in neighboring steps. Although

depth contention is possible under certain conditions, simulation results presented

in Section 3.4.3 indicate that the efl'ect of such contention is likely to be small under

conditions representative of commercial systems.

4.3 EDN Broadcast in 3D Torus Networks

We now describe the procedure for implementing EDN broadcast in 3D torus net-

works. As shown in Figure 4.12(a), a source node located in position (x, y, z)

in a network of size 4 x 4 x 7 can simultaneously send a message to six other

nodes, one located in each of the XY planes other than its own. The six nodes

are: (x,y,z+3),(x+1,y,z + 2),(x,y,z — 2),(x,y —1,z+4),(x —1,y,z — 1), and

(x, y — 1, 2 +1). The broadcast process then proceeds in a divide-and-conquer man-

ner, with each node holding the message performing a local broadcast within its

XY plane using the 2D broadcast algorithm described earlier. Because the torus

topology is symmetric, this method is applicable to any source node.

For networks in which the width of the Z dimension is greater than 7, additional

strategies are needed. The proposed approach is to partition the network into at

most 7 zones, each comprising contiguous XY planes, with the XY planes in the

network assigned to the zones as evenly as possible. In the first message-passing

step, the source node uses the message-passing pattern in Figure 4.12 to send a

n A [\l A

x , .« “a J

asu s - 1 m n a a
«sf _ . .5 ~ ‘3‘; fr 7i red _I I I;

:fljii.iii 1 at: ’3‘ _ IT — ""L’f‘ifi- 1‘ “Paris L

_TPW‘T CEL ‘x ‘ ~. . ‘3‘ \ Ef{\ l ‘T Ix; :‘l(~\~{i‘ l [Ih'ml in)

,U \ . ‘“ ~34 jgerT ‘l f" \me 2 “a t ' +...{_ ".a

1 , said - . w. s ~ ii . mks-l \ ~ w i ll
Qflu-{ll "tFC #;,:;{L)‘l\:fl $5,; 975:1“; r" {3:9deyflp iii—{iii‘tikfl -,,' fa .3

q)[I},l u ; “effigy; [. ‘g’l'il at)“, l .«is(L, I. ’ will

a I u , : "i k) is...» u - (it: u . . a..-
u {l ‘ u l LI 1 " \J a! U w

y J a c U

, (a) A basic pattern for source node located at plane 2 = 0,

Z This pattern utilizes two 2 direction wraparound links.
‘ ' 9'

!
/
(

a
,

x
l

;
r
,

-
—
$
_
'
J
\

—
4
”
I
f
”
;

)
d
«
‘

4
4
4
;
.

"
$
4
.
;
)

A
.

’
‘

x
,
4
.

‘

21
.;

.
Q
r
—
i
:
#
2

-
x'

a'
,1

“
.
1
9
:

I

4'
I
"

.
o
.
‘

L
'
l

.
J
'

‘
,
,

I

4
+
.

.
3

 ‘
‘

,‘

,A
g

4
‘
¥
P
f
“

v
i

a

l

"
/

C
;

(
~
9
3

:-

(
V
—
r
w
‘

,
I

l |
.
'

(b) A basic pattern for source node located at any plane with

f Z 2 value not equal to zero. This pattern does not utilize any

—*) 2 direction wraparound links.

Figure 4.12: EDN configurations in 3D torus networks

copy of the message to one node in each zone. Continuing in a recursive fashion,

each sub-zone is further partitioned, with each receiving node acting as a new source

node. Eventually, the sub-zone is a single XY plane, in which case the node holding

the message delivers it to the other nodes in the plane according to the 2D torus

broadcast algorithm described earlier. In order to avoid the use of the wraparound

channels in all but the first message-passing step, subsequent steps may partition a

zone into at most 6 sub-zones. Figure 4.12(b) shows an example in which a single

node sends to one node in each of the other planes without using wraparound

channels in the Z dimension.

Theorem 3 The EDN broadcast algorithm for 3D torus networks requires the

following number of message-passing steps to deliver a message to every node

in a 2" x 2“ x z network, where d 2 2: If 2 = 1, then the algorithm requires

requires (1 message-passing steps. If 2 _<_ z s 7, then the algorithm requires

requires d+ 1 message-passing steps. If 7 x 6'" +1 3 z s 7 x 6”“, where m 2 0,

89

then the algorithm requires d + m + 2 message-passing steps.

Proof: In the following proof, let patterns (a) and (b) refer to Figure 4.12(a) and

(b) respectively. If 2 = 1, then (1 steps are needed by Theorem 1 and Corollary 1. If

2 g z _<_ 7, pattern (a) is used in the first step to deliver the message to one node in

each XY plane, after which these XY planes can then perform their own 2D torus

broadcast in d steps, for a total of d + 1 steps. When 7 x 6'" + 1 g z 5 7 x 6”“,

the (a) pattern is followed by m + 1 (b) patterns in order to distribute the

message to one node in each XY plane. Including the (1 steps for broadcast in

each plane, a total of d+m+2 message-passing steps is needed to reach all nodes. I

Since the messages in the two patterns used to reach different XY planes do not

produce channel contention (see Figure 4.12), and the algorithm used within each

plane has already been shown to be stepwise contention-free, we have the following

corollary.

Corollary 4 EDN broadcast in a 3D torus network of size 2“ x 2“ x z, where

d 2 2 and z 2 1, is stepwise contention- cs.

4.4 Performance Evaluation

The performance of EDN broadcast algorithm is evaluated in three ways: by com-

paring the number of message-passing steps to a lower bound, through timing anal-

ysis, and through simulation.

90

4.4.1 Number of Message-Passing Steps

A simple theoretical lower bound on the number of message-passing steps required

for broadcast in an all-port n-dimensional torus is [10anH (N)l , where N is the total

number of nodes in the network. In many cases, however, this bound may not be

achievable because of the limitations imposed by deterministic routing. Specifically,

it is not always possible that every node can send to 2n new nodes in every step of

the algorithm.

Figure 4.13(a) compares the number of message-passing steps of the EDN algo-

rithm for torus networks (both 2D and SD) of various sizes up to 3000 nodes. The

number of steps achieves the theoretical lower bound in many cases and is at most

one step away from the lower bound in other cases. Figure 4.13(b) compares the

number of steps for networks with up to 20,000 nodes. Again, the EDN algorithm

again is close to, and in some cases equal to, the lower bound. As a reference point,

both plots also show the number of steps needed by the U-torus algorithm [124].

The U-torus algorithm uses recursive doubling, in which the number of nodes hold-

ing the message is doubled in each step. Though optimal for one-port architectures,

requiring [log2(N)] steps to complete a broadcast operation in an N-node network,

the U-torus algorithm will often fail to take advantage of a multi-port architecture,

resulting in more message-passing steps than necessary. In fact, the number of steps

is still [log2(N)] .

91

20 :o f

Um +— Utunu *—

Wlwnd "" loverbumd -+--
[sort 1... EDN »o

IS l! l I—-———1

o-nuo -o--o o~~o--o- our -- o ~o--o o ~DOH—b—

5 p — A :o-obooo-T—H—a— 5 - arr—mmun---—-—-~—«----«-»-—«-——----—$ J

ra‘ (F.

00 ill) I‘D I?” who 25; 3000 00 1m 15:!» 10000

Tumor-uh Total-Walnuts

(a) medium-sized toms networks (b) large torus networks

Figure 4.13: Broadcast performance in torus networks.

4.4.2 Timing Analysis

Calculating the number of steps required is only one way to evaluate the perfor-

mance of a broadcast algorithm. In order to better understand how the EDN

algorithm may perform for specific values of system parameters, we analyze the

time required when executed on an all-port torus. We use the following notation:

0 represents the sending latency incurred for each message.

5 is the time required to transmit a flit on a channel connecting two neighboring

routers.

7 is the receiving latency of a message.

h denotes the number of hops, or distance, between the source and the destina-

tion of a message.

L is the length of message, in flits.‘

We model the delay of a unicast message as the sum of the sending latency,

the time it takes for the header flit to reach the destination node, the time for the

message to be extracted from the network at the receiving node, and the receiv-

92

ing latency. That is, the unicast delay is a + fih + 5L + '7. When a node sends

multiple messages in succession, we assume that their sending latencies are seri-

alized, even though the other components may occur in parallel. Therefore, on a

k-port architecture, the time needed for a node to transmit m (m g 1:) copies of the

same message simultaneously to m different destinations, each of which is reached

through a disjoint set of external channels, can be expressed as ma + hfl + L5 + 7.

This expression assumes that no channel contention occurs for any of these m out-

going messages and that the timing is measured from the beginning of the first

message transmission until the last destination receives its message.

Using this formula as a basis, we can analyze the execution time of the EDN

algorithm. In a Y-pattern transmission with parameter 6, for example, the last

destination will receive its message at time 3a + (26m + Lfl + 7. As we have seen,

for a 4" x 4" torus, k 2 1, the message transmission pattern is {YT}", with each

stage comprising two message-passing steps. At stage i, the value of the parameter

6,- associated with the Y and T patterns is 4"“. Because 2le 6, = 2" 4"‘i =
i=1

2" 4“1 = (4" — 1) /3, after summing the times required for all stages, the total
i=1

execution time of the EDN algorithm, £EDN: is computed as follows:

It

LEDN = 2::{301 + ’7 + 5(L + 260}

i=1

4(4Ic — 1)
= Gka + 2k'y + 2kLfi + 3 [3 .

In other words, for a 2“ x 2" torus, LEDN = 3da + d7 + dLfl + flzd—yflfi, when

d is even. Now let us consider a torus of size (2 x 4") x (2 x 4"), in which the

93

broadcast pattern is {YTF}"F. There are k stages, plus one extra message-passing

step. For stage i, the parameter 6,- = 4"""1 /2. Because 2;, 6,- = 2;, 4"“+1/2 =

iZfziwc) = 2(4" - 1)/3, we compute EEDN for this case to be:

I:

LEDN = 22{3a+7+fl(L+26,-)}+3a+7+fl(L+2)

i=1

k 1_

= 3(2k + 1)a + (2k + 1M + (2k + 1)Lfl + _._—.2“+ 1)
3 fl .

To summarize, the time needed for EDN broadcast in a 2" x 2“ torus can be expressed

as

3da+d7+dLfl+g§2d+qufi ,diseven

£EDN = +1

3da+d7+dw+3<2i311s ,disodd.

Combining these two expressions, we obtain:

2(2‘“1 — 2 + mod(d, 2))

3

EEDN = 3da + d’)’ + dLfi + H . (4.1)

For comparison, the execution time of the U-torus algorithm for a X x Y torus

can be derived in much the same way (see [124] for details of the algorithm). As-

suming that both X and Y are powers of two, in the X dimension, l'log2(X)l

message-passing steps are required to perform broadcast. At step i, the number of

hops traversed by the message is (X/2‘). The same argument can also be applied

to the Y dimension. Because 2:913?“)1 if. = X — 1, the total delay for broadcast

94

using the U-torus algorithm Latom can then be calculated as follows:

“082001 l1082(Y)l

LU-torus : Z fi('§,‘)+ 2 fl(;)

+llog2(X)l (a + 7 + M) + llogs(Y)l (a + 7 + fiL)

= (a + fiL + v)(llog2(X)l +l10s2(Y)l)+ B(X + Y — 2).

We rewrite the U-torus expression for 2" x 2" torus as:

mum, = 2da + 2d7 + was + 2(2" — 1);} . (4.2)

In order to discover when the EDN algorithm will execute faster than the U-torus

algorithm, we can set EEDN S £U.tom, eliminate common terms, and compare

the two sides of the inequality for difierent values of parameters. Doing so for

Equations 4.1 and 4.2 yields:

2(2“ — 1 — mod(d, 2))

dagd7+dLB+ 3
 B . (4.3)

 For d 2 1, the ratio 2(2d'1—310dw’2» is always greater than or equal to zero.

Therefore, we can see immediately from this relation that, in those situations where

the sending latency is less than or equal to the sum of the receiving latency and

the network latency (that is, a 5 7 + Lfl), the EDN algorithm will be faster than

U-torus, assuming that B > 0, L 2 0 and d 2 1. Moreover, if a < 7, then EDN will

complete sooner for any message size L.

95

4.4.3 Simulation Study

In order to account for specific system dynamics, a simulation study was conducted

using MultiSim [100]. MultiSim was used to simulate broadcasts of various-sized

messages in networks of difierent sizes. For a given message size, a large number of

difierent source nodes were selected at random to perform the broadcast operation.

The maximum delays were measured and then averaged over these samples. The

simulated channel rate was 0.5 microseconds per byte, a relatively modest rate con-

sistent with the nCUBE—Z, a wormhole-routed multicomputer with which MultiSim

has previously been validated.

Figure 4.14 compares the two algorithms across difierent message lengths (128

bytes to 2048 bytes) in a 4 x 4 torus and a 32 x 32 torus. In Figure 4.14(a), the

sending latency and the receiving latency are both set to 0. In Figure 4.14(b),

the sending latency and the receiving latency are both set to 100 microseconds. In

both cases, the advantage of the EDN approach is significant. Although the U-torus

algorithm will sometimes happen to take advantage of the all-port architecture, the

EDN algorithm achieves better performance because it is designed specifically to

exploit the all-port architecture.

The results of the simulation study have been compared with the previous anal-

ysis. One reason to do so is that the analysis did not account for depth contention,

while the simulation would accurately reflect any message delays due to this phe-

nomenon. Figure 4.15 plots simulation versus analytical results for a 32 x 32 torus;

the plots agree almost exactly. Such results indicate that, while depth contention is

M
a
x
i
m
u
m
l
a
t
e
n
c
y
(
m
i
c
r
o
s
e
c
o
n
d
s
)

96

EDN vs UTorus with startup/receive latency = 0

10000 I f j T t 1 I

3000 FWUfEDN(4X‘)L*—" . , . T . . x’f .. .,

EDN (32x32). -+--- : g /

Uroms(4x4) -G--- - , x/

UTqus (32x32)? "*~- . . /

i . ’ .X

f {)i/J I at”

t : .2 ' ,."'

/ ,v’¥/

/” ,2".

5 3 I,,,,,,,,3"

; X r ...a -----°
I / I,‘ . ."‘G‘" .

f / ' - " : _.—"B
. ,A' _..-D"

20“) u- . .=_ . . / . I.‘ .1”? . .4 . 8'8 . . . b

; / ,x" ao""" i

2 ,3", ,

1A:----B.... ‘3' .

111-"0" . a ,

0‘ j 1 i L 1 n

128 256 512 768 1024 1280 1536 I792 2048

Message Size (Bytes)

Figure 4.14: Comparison of EDN broadcast with U-torus for 4 x 4 torus networks.

possible in the EDN algorithm, the efiect of this phenomenon may not be significant.

4.5 Conclusions

As one of the most fundamental collective communication operations, broadcast is

highly demanded in parallel applications that are implemented on massively parallel

computers. The EDN model is intended to formalize the concept of node domina-

tion among nodes that may be separated by multiple channels. In this chapter, an

EDN-based algorithm has been described that uses the concept of dominating sets

to eficiently implement broadcast in all-port wormhole-routed torus networks that

use dimension-ordered routing. The performance advantage of the algorithm over

recursive doubling has been evaluated through both analysis and simulation.

97

EDN vs UTorus with startup/receive latency = I00 microseconds

”000 f y W, r 1 r v /

10000 ”*EDN(‘X4)“.— .. -_,

EDN (32x32); -+-- : :-

U'l'orus (4x4); -G--- g

UTorus (32x32); mm . .
5 t . I/x Q

M
a
x
i
m
u
m
[
A
m
y

(
m
i
c
r
o
s
e
c
o
n
d
s
)

 0 i 4 j 1 i i 1

|28 256 512 768 1024 1280 l536 1792 2048

Message Size (Bytes)

Figure 4.15: Comparison of EDN broadcast with U-torus for 32 x 32 torus networks.

12000-

10000 r- EDN *—

U-Iorus -+---

EDN Simulation 43"-

U-loms snmulauan +—

T
i
m
e
(
m
i
c
r
o
s
e
c
o
n
d
s
)

2000

l 1 1 l l 1 l

0 256 512 768 1024 1280 1536 I792 2048

Message size

Figure 4.16: Comparison analytical and simulation results for a 32 x 32 torus.

Chapter 5

The T-Model

As far as the Laws of mathematics refer to reality, they are not

certain; and as far as they are certain, they do not refer to reality.

Albert Einstein

Prediction is dificult, especially of the future.

Niel Bohr

As demonstrated in previous chapters, communication algorithms designed to

exploit certain characteristics of a network architecture can improve performance.

In this chapter, we introduce the 'r-model, a generalized communication cost model

that can assist in the comparison of difierent algorithms as well as difierent net-

working technologies, and the associated T-plot, which facilitates the visualization

of performance comparisons. Next, we demonstrate the use of the T-model in eval-

uating the performance of wormhole broadcast algorithms, include EDN broadcast.

Finally, we discuss the application of the T-model to an increasingly popular parallel

98

99

platform, networks of workstations.

5.1 The T-Model

In general, the point-to-point communication latency of a message can be repre—

sented as the sum of the message handling overhead and the network delay. Al-

though this decomposition is represented in difierent ways in the literature, we will

use in the following form:

T,+T,,*L,

where L is the message size, T, is the sum of software startup and receiving latencies,

and Tn is the network latency per unit of message size. Empirical studies have

shown, that T, and Tn are not necessarily constants, but for a given network, depend

on a number of system parameters [107, 86].

5.1.1 Generalized Latency Formula

The first part of the T-model is a generalized latency formula describing both point-

to-point and collective communication operations. Instead of explicitly asserting a

limited number of parameters in the cost model, the formula incorporates all the

factors that may have any efiect on performance. The T-model uses the following

formula to represent the latency of a broad range of communication operations:

T = T,(ao,a1,a2, . .. ,a,_1) + Tn(ao,a1,a2, . .. ,a,_1) * f(L) (5.1)

100

Although this formula appears rather complex, we can summarize it as the

sum of a message-length independent term and a message-length dependent term.

The parameters {a,- Hg; are specific to the underlying hardware and software of

the system. They typically include such items as the software startup latency,

reception latency, network bandwidth, communication network distance, system

load, degree of network sharing, communication group size, and so on [89, 43].

Their values depend on the system configuration and network conditions under

which the communication algorithm is executed. The function f(L) satisfies the

property that f(O) = 0 and is usually a non-decreasing, continuous polynomial

function. The function f(L) determines the L-complean'ty of the algorithm. If

f(L) = L, which is the most common situation, then we say that the algorithm is

of linear .C-complexity.

5.1.2 The T-PlOt: Comparing Networks

The second part of the 'r-model is a two-dimensional Cartesian plot that allows us

to characterize and to compare different performance curves more easily than using

traditional methods. From the above generalized latency formula, we define the

parameter 'r to be:

: Tn(a01alia21' ' ' ran—l)

T,(ao,a1,a2,... wan—l)

 . (5.2)

The ratio r is the reciprocal of the metric m1/2, which in Hockney’s model is the

message length required to achieve half the asymptotic bandwidth [72].

101

Plotting the performance of a communication algorithm according to its co-

ordinates (T, T,), results in a 'r-plot for that algorithm. The use of the T-plot is

illustrated in the following analysis. Shown in Figure 5.1(a) are three lines marked

1, 2 and 3. Suppose that they represent measurements of the same communica-

tion operation for three difi‘erent networks. Their individual latency formulas are

T,1 + TnlL, R; + TngL, and T,3 + Tn3L, respectively. Let us assume that T,1 = T,2.

In Figure 5.1(b), points 1 and 2 represent lines 1 and 2, respectively. They have

the same T, coordinate, but point 2 lies to the right of point 1, indicating that the

slope of line 2 is greater than that of line 1 in original latency plot. Line 3 has a

difierent T, value and a difierent Tn value as compared with line 1. However, in

the T-plot, they have the same 7' coordinate, indicating that the total time required

to finish the operation in network 3 is a constant multiple of that in network 1,

a relationship that is not obvious from the original latency plot. We can use this

relationship to predict the performance of a communication operation in network

1 from its performance in network 3.

all /”2 T

2
T33 +Tn3 Lf/f/é;gi.,.-w,

3 /_

“/i-f/ ”I" T82+Tnz L "‘/,,/—»“’/»I7 1 T83 3 — ‘ “—

__ {/ T91 'l' Tm L Tsz‘-’Ts1
T Tea 1 2

T31

Message length (Lli 1 “=13 1'2 “:3;

(a) message length vs. latency plot (b) ‘t-plot T

Figure 5.1: Example of the T-plot.

This example illustrates the use of T-plot for linear algorithms, that is, where the

102

algorithms discussed all exhibit linear £-complexity. In the following, we demon-

strate the use of the T-plot for the more general communication cost model.

5.1.3 Use of the T-PlOt to Compare Algorithms

The use of the T-plot to compare the performance of diflerent communication al-

gorithms under the same network conditions is illustrated in the following exam-

ple. Suppose that three communication algorithms 1, 2, and 3, are described by

the latency formulas T1(L) = ,1 + Tm * f1(L), T2(L) = 32 + Tug * f2(L), and

T3(L) = T,3 + Tn3 * f3(L), respectively. Let us further assume that these three algo-

rithms have the same LI-complexity, that is, f1 E f2 E f3 E f(L). Let T1, 72 and T3

be their respective T-values; the T-plot of these three algorithms is also represented

by Figure 5.1(b).

Let us now derive the formal relationships among these three algorithms. The

relationship between the performances of Algorithms 1 and 3 can be characterized

as follows. Because T1 = 73 and f1 E f3, we have, Tnl/T,1 = Tn3/T,3. The latency

formula of T1(L) can be rewritten as T1 (L) = gt; * T3(L).

The relationship between Algorithms 1 and 2 can be calculated from the fact

that T,1 = T,2 and 72 > 71. We can then derive the following equation:

T2 - T1 = (E:- — 1) Tn1f(L) (5.3)

= (1- g) Tn2f(L). (5.4)

The relationship between Algorithms 2 and 3 can be derived directly by taking

103

the difierence, T3 - T2 = T,3 — T,2 + (Tn3 — Tug)f (L). If Tug ;£ Tug, then a specific

length L“ can be defined as:

T — T
a _ —1 82 83

L — f (Tn3 _ T112) (5'5)

T — T_1 s2 s3

= . 5.6

f (T3713 — T2712 ()

Thus, we know that:

T3 > T2, when L > L“

T3 = T2, when L = L" (57)

T3 < T2, when L < L“

Because T,3 > T,2, f(0) = 0 by definition, and f is an increasing function, if

Tug > Tn3, then L“ > O, and if Tug < Tn3, then L‘ < 0. Since message size cannot

be negative, if T02 < Tna, then for all message sizes L > 0, T2 < T3.

To summarize, the performance of a particular communication operation under

a specific communication architecture is identified as a single point in the T-plot,

shown as point :r in Figure 5.2. Four regions, marked by A, B, C, and D, can be

identified by drawing two intersecting lines through point 3:, one line parallel to the

horizontal axis and the other parallel to the vertical axis. Any other communication

operation that falls in region A has better performance than point 2:, and point a:

outperforms any communication operation in region B. Algorithms in regions C and

D can have better or worse performance than point as, depending on the message

length. The crossover message length is calculated from Equation 5.7. In general,

104

algorithms in region C favor long messages as compared to algorithm 2:, and those

in region D favor short messages as compared to algorithm 2:.

Tn
T(=T—s)

Figure 5.2: Comparing algorithms using the T-plot.

5.2 Characterization of Point-to-Point Communi-

cation

As mentioned earlier, using the T-model, two kinds of comparisons can be made.

The first is to compare different networks, which is made possible by identifying

some communication operation that exhibits the same .C-complexity in these net-

works. The second is a quantitative comparison of different implementations of the

same operation in a given network. In the same network, the system and algorith-

mic parameters {a,-}§=’(} are identical for all implementations of the operation. It is

also true that the difierent implementations of the same operation usually exhibit

the same .C-complexity in the same network architecture.

Point-to-point communication is one operation that exhibits same fi-complexity

105

for difierent networking technologies. The traditional way to measure point-to-

point communication latency is the so-called ping-pong benchmark, in which two

nodes exchange messages repeatedly. To provide a simple illustration of the T-

model, we conducted two difierent ping-pong experiments using the same network

architecture, but difi'erent computing platforms. The first experiment uses two

SPARCstation-ZO workstations running Solaris 2.5, and the second uses two SGI

Indy workstations running IRIX 5.3. The SPARCstation-20 has 32 MBytes of main

memory and a clock rate of 75 MHz, whereas the Indy is running at 180 MHz

and has a main memory size of 64 MBytes. According to the SPEC benchmark,

the SPARCstation-20 has a SPECint95 rating of 3.11 and SPECfp95 of 3.10, while

the Indy has a SPECint95 rating of 4.1 and SPECfp95 of 4.4. The results of

20,000 round-trip measurements were recorded for each specific message length,

averaged, then divided by two to obtain the one-way latencies, which are plotted in

Figure 5.3(a). These one-way latencies were then least-squared fitted to a straight

line; the results (using a logarithmic scale) are shown in Figure 5.3(b). This method

can be used to derive the values of T, and T, for point-to-point communication.

The ping-pong benchmark has been widely used to measure point-to-point per-

formance, and many such results have been published in the literature [53, 86, 20].

We have used these results, and the method described above, to compute T,, Tn

and 7' values for various configurations. Table 5.1 lists the results, and Figure 5.4

presents a r-plot of the data listed in the table.

The T-plot reveals several relationships that may not be evident in typical la-

tency vs. message size and latency vs. bandwidth plots [53]. First, the effect of

106

200000 200000

100000 > SCUM-id nip) 0 < It!!!” > SGllone-Ivay) 0 -

SGHonc-way) ° 0 294.45+0.8887‘(messagcsize)
600!) > SS20(tomd nip) 6 1) 60am *- SS20(one-way) . -

m . SS20(one-\ny) l l m . 260.85+0.89l6'(message sue) -— .0

3 0

20000 - . 4 20000 L
. I

10000 ~ 1 10000 ~
I g J

6“!) r m .

4000 L - (4000 ~

2G!) '- O i 2!!!) r

O

'

1000 a 1000 4

600 a 3 . 600 J

400‘r 8 8 4 ' 400 j").n .4 b , .1

1 .: z u? ‘ rants—"r333"
m A L A A A l m A A A A J L

4 I6 64 256 1024 4096 16384 4 16 64 256 1024 4096 16384

mainsLflmea) maizel.(by1es)

(a) Round trip and one-way latencies. (b) Least-squared fit one-way latencies.

Figure 5.3: Results from ping-pong test.

reducing the software and protocol processing time is reflected by a shift to the

lower right in the T-plot. This characteristic is illustrated in dramatic fashion by

the relative locations of the two points marked SS20/UNet/TCP and 5520/UNet/UDP

in the lower-right corner as compared to the points marked SS20/ASX200/TCP and

SS20/ASX200/UDP in the upper-left corner. Although both sets of points represent

measurements on Sun SPARCstation—20 workstations and a FORE ASX-200 ATM

switch, the Active-Message based U-Net interface software is very efiective in re-

ducing T,. Second, a similar shift occurs when using the same underlying physical

networking technology, but faster processors. This property is exemplified in Fig-

ure 5.4 by the difierence between the points SSlO/Ethernet/TCP, SS20/Ethernet/TCP

and SGI/Ethernet/TCP. Third, a constant factor increase/decrease in performance

between networks for a particular communication operation is demonstrated in the

T-plot if their positions are located in the vicinity of a vertical line, which indicates

that they have similar 1' values. An example of this behavior in Figure 5.4 is the

107

Table 5.1: Point-to-point performance on various platforms.

system software [I T,(11.9) I Tn (us/byte) 7 = Tn/T, I source I

T3D MAX 1.2.0.2 (SM) 3.0 0.00781 0.0026 [53]

Paragon SUNMOS 1.6.2 25.0 0.00585 0.000234 (53

Delta NX 3.3.10 77.0 0.125 0.00162 53

iPSC/860 NX 3.3.2 65.0 0.333 0.00513 :53

iPSC/2 NX 3.3.2 370.0 0.357 0.000965 :53

SP-l MPL 270.0 0.143 0.000529 :53

SP-2 MP1 35.0 0.0286 0.000816 :53:

KSR—l OSF 3.1.2.2 73.0 0.125 0.00171 :53:

03-2 Solaris 2.3 (SM) 11.0 0.0250 0.00227 :53

nCUBE—2 Vertex 2.0 154.0 0.589 0.00382 :53

nCUBE—l Vertex 2.3 384.0 2.5 0.00651 :53

Cenju-3 End. Rel. 1.5d (SM) 34.0 0.04 0.00118 :53:

SGI IRIX 6.1 10.0 0.0156 0.00156 :53

CM-5 CMMD 2.0 95.0 0.111 0.00117 :53

SS-20/ASX200 Solaris 2.4/UDP 716.0 0.16 0.000224 :86:

SS-20/ASX200 Solaris 2.4/TCP 817.0 0.13 0.000159 :86

SS-20/Myrinet Solaris 2.4/UDP 746.0 0.18 0.000241 86

SS—20/Myrinet Solaris 2.4/TCP 807.0 0.152 0.000188 {86

SS-20/UNet SunOS 4.1.3/UDP 65.0 0.75 0.0115 20

SSaZO/UNet SunOS 4.1.3/TCP 75.0 0.85 0.0113 20

SS-lO/Ethernet Solaris 2.5/TC}> 552.17 0.913 0.00165 *

SS-20/Ethernet Solaris 2.5/TCP 260.85 0.892 0.00342

SGI Indy/Ethernet IRIX 5.3/TCP 294.45 0.889 0.00302

* measured by the authors

7 values of the Paragon system and the SS-20s connected by the FORE ASK-200

ATM switch. The Intel Paragon system has a 7 value of 0.00023, while the SS-

208 have a 7 value of 0.00022. The values of T, for these points reveal that for

point-to-point one-way communication operation, the ATM-connected SS-208 ex-

hibit latencies that are approximately 28 times the latency of the Intel Paragon

system, across the entire measured message length range. Another example pair is

the CM-5 and Cenju-3, although in this case, the ratio is much smaller (2.78).

108

§ . R‘ T A:SS20/UNel/UDP
s:sszoIUNe1/Tcp

8' C:SG|/Power

O. D.

6
0
0

.
.
.

G
)
“

a: U

7890"

u- 1 lPSC/860

W- R:SSZOIASX2OOITCP

K' v- s:sszolMyrine1/uop

I T:SS20/Mynnel/TCP

0:881 OlEthemet/TCP

~1- V:SSZO/Ethemel/TCP

W:lndy/EthemellTCP

0‘ L F BA.

0.0 0.002 0.004 08.006 0.008 0.010

U

Figure 5.4: T-plot for point-to-point communication benchmarks.

5.3 Analysis of Wormhole Broadcast Algorithms

In this section, we analyze and compare four broadcast algorithms for 2D wormhole-

routed mesh networks. In Section 5.4 we use the r-model to compare them. The

algorithms under investigation are Recursive Doubling (RD) [16], Scatter Collect

(SC) [17], Fibonacci Tree (FT) [50], and Extended Dominating Node (EDN) [147].

All these algorithms are based on point-to-point message passing. The following

formula is used to describe the point-to-point communication latency in wormhole-

routed networks. Suppose that a message traverses h hops before reaching its

destination. Then the overall message latency is described by 07+hfl+flL+y, where

a is the startup overhead, and [3 is the per-unit message transmission latency, and

109

7 is the reception overhead at the destination.

Probably the most well-known algorithm for multicast or broadcast is the Re-

cursive Doubling algorithm. The source divides all participating nodes into two

groups, the first containing itself and sends the message to one node in the sec-

ond group. Those two nodes holding the message now acting as source nodes for

their respective groups and proceed with the broadcasting process independently.

When used as a broadcast algorithm for a wormhole-routed 2" x 2" square mesh

network, one implementation is to begin the broadcast operation with the distribu-

tion of the message along the row of the source node. Next, all nodes in that row

perform the same operation along their respective columns. Figure 5.5 illustrates

the operation of this algorithm in an 8 x 8 2D mesh. This algorithm, referred to

as Dimensional Broadcast [16], is a special case of the more general U-mesh [103]

multicast algorithm. For a 2" x 2" mesh, a total of 271 steps is needed to complete

the operation. Step 1' requires time a + 2510 + fiL + 7. Therefore, the overall time

needed is 27107 + 2fl(2" — 1) + 2717 + 2nfiL.

new” D mdeauyaholdlngm

(flaw! (bl-lap! (cm-1H (d) m4 (ewes)! (0 MG

Figure 5.5: Dimensional broadcast in an 8 x 8 mesh.

The Scatter-Collect algorithm [17] is based on the idea of message fragmentation.

The source node partitions the message and performs a scatter operation across its

row, with each node receiving a particular segment of the message. Next, each node

110

holding part of the message performs a scatter in its column. In the third step, the

nodes in each row form a logical ring and circulate segments around the ring until

all nodes hold all segments in that row. Finally, a similar circulation in each column

results in a copy of the entire message at every node. This algorithm avoids channel

contention, and the pipelining of message segments ofiers good performance for

broadcast of long messages [17]. Table 5.2 summarizes its performance for a 2" X 2"

mesh network.

. , 1
W» ‘-

.“'9" message ”8 ”f "“5““ D "54 of ”5538‘ scatter operation wormhole across network

1 jibfi‘.

, ”rt-’1 2°79.

Lil 151’

(a) scatter in row — 3 steps (b) scatter in columns - 3 steps (c) collect in rows — 8 steps (d) collect in columns — 8 steps

Figure 5.6: Scatter-collect broadcast operation in an 8 x 8 2D mesh.

Table 5.2: Analysis of Scatter Collect algorithm

row 71* 07+ — + +

scatter 71* 67+ —1 + +

row —1*a+++

—1*a+ ++

The Fibonacci Tree algorithm, proposed in [50], uses both message fragmen-

tation and message pipelining. One requirement of the algorithm is that the tree

used to broadcast is free of depth-contention [103]. As with the U-mesh algorithm,

the tree is based on lexicographical ordering of nodes, which prevents depth con-

tention. This means that messages will not contend for the same channel, even if

111

those messages are sent in difierent steps. The message is divided into k pieces

and sent down the tree in a pipeline fashion. The structure of the tree depends

on the parameter k and the number of nodes in the tree. Figure 5.7 illustrates the

operation of the Fibonacci The algorithm for a partition parameter k = 2. The

first part of the message is labeled as A and the second part as B; the messages are

sent to the receiving nodes independently.

[jmmmmewholemessage 72;» TmnsmisssonoimeesagepanA

O Nodesholdnoparflalmessaso ——> Transmisslonofmessage panB

step 1 step 2 step 3 step 4 step 5

D U T [J
“:V 1651/ 1A1] 181 {:1

“’ O D D D D OU 141/m 131:] / [A1]

6 WE moo EDD

Figure 5.7: Fibonacci Tree algorithm for k = 2.

The relationship between the partition parameter k and the total number of

nodes N that have received the entire message after t steps of message transmission

can be described by the following recursion [50]:

N(t,k)=N(t-k,k)+N(t—1,k) fortZk

N(t, k) = 1 otherwise

112

When implemented on a mesh network of size P = 2" x 2”, the total number

of hops traversed by the segmented message is In times that of the RD algorithm,

if the original message is divided into 1: packets, each of size no more than [%I.

We define the number of steps in the Fibonacci tree algorithm as t(P, k) for group

size P and message segmentation factor of k. A special case of the function t(P, k)

occurs when k = 1 and P = 2" x 2”, specifically, t(2” =1: 2",1) = t1 = 271. We

can approximate the latency of the Fibonacci tree algorithm by adding up the cost

from the distance traveled by the message, 2k(2" — 1)0, to the cost computed by

t(P, 11:) steps of unicast message, a + 5% + 7. Therefore, the latency formula for the

Fibonacci tree algorithm is approximated by

Ln = t(P, k)(a + 7) + 226(2" — 1) + t(P, 105%.

The final algorithm that we consider is EDN broadcast. As described earlier, the

EDN methodology designed to take advantage of a multiport architecture. We can

compute its performance based on the analysis in Chapter 3. The approximate cost,

without taking into account the distances traveled by the message, is 3na + (n +

1)7 + (n + 1)0L. The cost induced by the distance can be approximated by dividing

the distance cost of the RD algorithm by half, as indicated by the simulation results

in Chapter 3. Therefore, the overall cost of the EDN algorithm can be approximated

by 37167 + (n + 1)7 + (2" — 1)fl + (n +1)flL.

We summarize the performance of the four broadcast algorithms according to

113

the 7-model in Table 5.3. The overall latency formula takes the form T,(a, fl, 7, n) +

Tn(a, fl, 7, n)L, the T, and T,. components are listed in the table.

Table 5.3: Analytical performance of the three broadcast algorithms

Algorithm Ts Tn

RD 27167 + 25(2" — 1) + 271.7 2710

SC 2(2" — 1+ n)(a + 7) + 6(2“ — 1w 2(1— 3%)[3

FT t(P, k)a + 226(27 — 1) + t(P, k)7 flP—flfi

EDN 371a + (n +1)7 + (2" - 1)[3 (n + 1)fl

5.4 Comparisons Using the 7-Model

In this section, we demonstrate the use of the 7-model to analyze the four broad-

cast algorithms based on wormhole switching technology. More specifically, we use

parameterized wormhole-routed square mesh network as the underlying networking

technology to compare different implementations of broadcast algorithm.

5.4.1 Overall Comparison of Algorithms

Let us begin with two examples. We fix the size of the network by letting n = 5,

and we assume that a = 7. In the first example, we vary the value of a from 0.5 to

1.5 in increments of 0.1, while the value of 3 is fixed at 0.01. This represents a range

of 7 values from 0.01 to 0.003. In the second example, we vary the values of 0 from

0.001 to 0.2 in increments of 0.01, while we fix the value of a at 0.5. This results in

a range of 7 values from 0.001 to 0.2. Next, we calculate the T, and T,. values and

1 14

the corresponding 7 values for each algorithm. me those difierent (7, T,) pairs,

the 7-plot for these four algorithms is constructed.

2m I I I I I fi

+ RD 0

SC +

+ EDN El

Fibonacci Tree (k=2) x

+ Fibonacci Tree (k=4) A

Fibonacci Tree (lt=8) I

150 -+ -'

+

+

I

m h- '.' T -.
1— 100 .

4- I

:1

+ 111
A

I a

I a

50 - 1' ‘
a

I ‘ ‘ xx x

A ‘ X X

x
0% a x x6 o . 0

c1 a o x)4 ° ° 0
El 0 :1 o

0 1 l l l l l

0 0.00l 0.002 0.003 0.004 0.005 0.006 0 007

Figure 5.8: Fixed [3 with varying a.

As indicated in the Figure 5.8, with increasing a (7 decreases), the SC algorithm

has more rapidly rising T, component than the other three algorithms. From the

closeness to the origin of the trace made by the SC algorithm, we know that it

utilizes the largest aggregate network bandwidth, but sufiers severely from the

increased T, component as the underlying network parameter 67 increases. The fact

that the SC algorithm moves toward upper left corner as 07 increases indicates that

long message sizes are more suitable for this algorithm. The FT algorithm can

utilize more aggregate network bandwidth as It increases, however, with large k

values, it is more sensitive to increased T, as network parameter a increases. When

compared with the SC algorithm, the FT algorithm will be more suitable for smaller

message sizes. The EDN algorithm utilizes less aggregate network bandwidth as

115

140

fi I

‘

RD 0

.

SC 4-

.

EDN :1

12°F :- Fibonacci Tree (k=2) ,, ..

.

Fibonacci Tree (k=4) a

I

Fibonacci Tree (k=8) 1.

100 - 1‘

,

I

I

I

80 I.

q

M
4 .

‘

t-
.

5

111

60 .. . A:

4

' :‘
I A

I A

40$
‘5‘

d

A

A“

xxxx

20+
xxxxx

00°

F X X

o .0.
_I

K "El 413 DOD one mouooon
moed’o‘

b

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.l

Tau

Figure 5.9: Fixed a with varying 0.

a increases, the bandwidth is approximately the same as the FT algorithm with

k = 4, and is less subjective to increased T,. The RD algorithm is the lowest in

network bandwidth utilization, and it has the least increase in T, as 07 increases.

However, it also has the largest 7 values among the algorithms compared.

To summarize, the SC algorithm is more suitable for long message sizes and

networks with larger 7 values. The EDN algorithm will perform better for smaller

message sizes and the FT algorithm with smaller k values is suitable for smaller

message sizes, but compared with the EDN algorithm, the FT algorithm is faster

for large message sizes.

Shown in Figure 5.9 is the 7-plot with increasing ,6 (7 increases). The traces

of these algorithms indicate that the upper bound of 7 values in decreasing order

is RD, EDN, FTk=2, FTk=4, FTk=8, and SC when network parameter ,6 increases.

The SC algorithm will perform faster than the FTk=3 algorithm as network param-

116

eter 3 increases. me the traces made by FTkzz, FTk=4, and FTk=8, we can tell

that as It increases, the FT algorithm will have characteristics similar to the SC

algorithm, but performance will be worse than the SC algorithm as [3 increases.

When comparing the RD algorithm with the EDN algorithm, we know that for

this a = 7 = 0.01, the EDN algorithm will be faster than the RD algorithm. The

characteristic of the EDN algorithm is similar to the RD algorithm, as compared

with the FT, SC algorithms, the former are both suitable for short message sizes.

In summary, as the network 7 value increases, the SC algorithm is better for

long message sizes and the EDN algorithm is better for short message sizes. The

FT algorithm has similar characteristic as the SC algorithm, but for large k and

large 7 values the SC algorithm will perform faster than the FT algorithm.

As demonstrated above, the comparison between broadcast algorithms through

the use of the 7-plot can provide some qualitative information regarding the algo-

rithms. In the following, detailed quantitative comparisons of between the SC, the

FT and the EDN algorithms are made. This analysis is intended to give a thor-

ough understanding about the behavior of these algorithms under any reasonable

architectural assumptions.

5.4.2 Comparison of SC and FT

From the latency formulae of the SC and the FT algorithms, as indicated in Ta—

ble 5.4, it is very dificult to extract an overall picture of how one algorithm performs

as compared to the other under different parameter settings. With the aid of the

117

7-model, we can establish these conditions and compare the algorithms easily. The

parameters involved in the latency are the mesh size P = 2" x 2", the message size

L, the segmentation count k for the FT algorithm, and the three unicast latency

parameters, a, 0, and 7.

Table 5.4: The latency formulae for the SC and the FT algorithms.

T,
T" T

n n (1_ In”
so 2(2 — 1 + 71)(a + 7) + 6(2 — 1m 2(1; 31;)3 ‘2"“+""E’§33‘2"‘”fl

r t 1

FT t(P,k)(a+7) +2<2n — 11w ,. .31)....)aéaunep

From our earlier description of the 7-model, we know that when T, [SC] < T, [FT]

and 730 < TF7. the SC algorithm performs better than the FT algorithm for all

message sizes. The first condition leads to the inequality

2(2" — 1 + n) — t(P, k)

2(2n —-1)(k -— 3) ’

 (5.8)

provided that k — 3 > 0, where the parameter 7'0 is defined to be fl/(a+7). Similarly,

we can derive from the second condition that

t(P, k){k(1 — 5%,) — 2" + 1 — 71}

7° > (2" - 1){3t(P.k) — 2180— 24:1}

 when 3t(P, k) — 2112(1 — 211.7) > 0 (5.9)

and

t(P,k){k(1— 53,-) — 2" + 1 — 71}

7° < (2" — 116303 Is) — 2km -— 3a)}

 when 31(1), k) — 2180— 24;) < 0.(5.10)

118

If, on the other hand, the equation 3t(P, k) — 2142(1 — 5%?) = 0 is true, by replacing

2102(1 - 5%;) with 3t(P,k) in the inequality Tsc < 7”, we can conclude that for

any 16 > 0, the inequality 750 < 7pT holds. Therefore, the satisfaction of conditions

3t(P, k) — 2102(1 - 2+”) = 0 and Equation 5.8, or Equation 5.8 and Equation 5.9, 5.10,

will guarantee that the SC algorithm performs better than the FT algorithm for

any given message length L.

In order to facilitate later derivations, we define three functions, w(n, k), 5(71, 1:),

and 11(71, k), which depend only on parameter 71 and k, as follows;

w(n,k) = 3t(P,k)—2k2(1—2%),

_ 2(2" — 1 + 71) - t(P,]c)

47",“) ‘ 2(2" —1)(k — 3) ’ and

t(P, k){k(1 — 271;) — 2" +1 — n}

“(7" k) = (2n — 00(1)

Because the parameter n is a constant when we consider a fixed-sized network

of size P = 2" x 2", the only variable in the evaluation of these three functions is

It. Once the mesh size is determined (71 is fixed), we can compute a series of w, e,

and 11 values for varying 11:.

By comparing To with e(n, k), 11(71, k), and w(n, k), we can determine when the

SC algorithm is better than the FT algorithm. Following a procedure similar to

that outlined above, we know that when T, [SC] > T, [FT] and 750 > TFT, the FT

algorithm is faster than the SC algorithm. The first inequality leads to To < 6(71, 1:)

for k > 3 and the second inequality leads to To 2 11(71, k) when w(71, k) 2 0.

In addition to the above two cases, according to the 7-model, there are cases

119

when one algorithm performs better for message size greater than a specific length.

Specifically, when T, [SC] < T, [FT] and Tsc > 7”, the SC algorithm will perform

better than the FT algorithm for any message size L > L“, where L" = (T, [SC] —

T,[FT])/(T,,[FT] — T,.[SC]). This leads to the results that when To < 6(71, 1:), and

7'0 2 11(71, 1:) for w(71, k) 2 0, the SC algorithm is better than the FT algorithm for

message sizes greater than L‘, otherwise, the FT algorithm is better.

By combining these results, we can compare the SC algorithm with the FT

algorithm for any architectural and algorithmic parameters as follows:

0 From the equation w(n, k) = 0, we can solve for k. Suppose the solution is

k“ > 0. We know that when k = k“ the SC algorithm is better than the FT

algorithm for any given network parameters 61, fl, and 7.

o For a given mesh network with parameters To > 6(71, k), the SC algorithm is

better than the FT algorithm for any I: > 3.

0 Given a mesh network with parameter 70, if 70 3 6(71, k) and one of the

conditions To 2 11(71,k) for w(n,k) 2 0 holds, the SC algorithm is bet-

ter than the FT algorithm for any message size L such that L > L“ =

(T,[SC'] — T,[FT])/(T,,[FT] — T,,[SC]). For any L < L“, the FT algorithm

is better than the SC algorithm.

0 For a specified mesh network parameter 7'0. if 7'0 5 6(71, k) and one of the

conditions To 2 11(71, k) for w(n, k) g 0 holds, the FT algorithm is better than

the SC algorithm for any It > 3.

120

In order to illustrate the use of the above results, we select a mesh network

with 71 = 5 (thus P = 25 x 25 = 1024 nodes), and assume that a = 7 = 1.5, and

fl = 0.009, which are very similar to the T3D parameters [44]. This results in a 7'0

value of 0.003. The values of 6(5, k) and [1(5, k) for difierent values of k, are shown

in Figure 5.10.

0.05 fifi~r vvvvvvvvvTM.........

I x epsilon(k) + 1

: mm X I

0.045 :- uu_0=0.003 1

I x 1

0.04 :- + 1

i
:

0.035 [- " 41

0.03 :- * " a:

:1 I x I

g 0.025 '- + d:

. X 1

0.02 :- + x “I

0.015 :- x 5

t + x 1

0.01 :- + x a:

D x ‘

0.005 - + x .

...+x

X

0 l a l l = a_L

5 10 15 20 25 30 35 40

Figure 5.10: Plotting of ((5, k) and 11(5, k) with respect to k.

Because these three functions, 6(71, k), 11(71, k), and w(n, k), are independent of

7, which indicates for a given network of size 2” x 2", for any a > 0, 3 > 0 and

7 > 0, the resulting plots are identical. For a given 70, we can draw a horizontal

line across the plot to indicate that it is independent of k, as shown in Figure 5.10.

From the previous results, when To > 6(71, k), the SC algorithm is better than the FT

algorithm. As illustrated in Figure 5.10, by following the line indicating constant

7'0 = 0.003, this condition holds only for k 2 20. As to 3 < k < 20, the condition

70 < 6(n, k) holds, as well as 70 < 11(71, k) for w(71, k) < 0 and To > [1(71, k) for

121

w(n, k) > 0. This indicates that for 3 < k < 20, the SC algorithm is better than the

FT algorithm for any message size L > L“ = (T, [SC] — T, [FT]) / (T,. [FT] — Tn[SC]).

The computed L" values vs. difi'erent k values are illustrated in Figure 5.11.

 4500_.v.vr+.4

)

h

D

4000~++ + ~
I__

3500 :- , .

2500 :- 1

L
0

2000 :-

1500 L -:

1000

V
'
Y
fi
v
v

b 4

b 1

500: 4 1
Figure 5.11: Difierent L“ values with respect to k.

Figure 5.12(a) compares the two algorithms by latency vs. message length as

computed from the latency formula with specified a, 7 and 0 values. For the

FT algorithm, we select a set of k values, k = 16,18,19,20, in the neighborhood

of crossover point from Figure 5.10. The results agree with those predicted by

the analysis according to the 7-model. When we keep the 7 value fixed at 0.003

but change parameters (a, ,6, 7) from (1.5,0.009,1.5) to (0.5,0.003,0.5), the result

is illustrated in Figure 5.12(b). The crossover message length for k = 18 can be

calculated from the equation L‘ = (T,[SC] — T, [FT]) /(T,.[FT] — Tn[SC]). In the

first case, when a = 7 = 1.5, ,8 = 0.009, and t(P, 18) = 67, the crossover message

T
l
r
m

122

size is

2(25—1+5)(1.5+1.5)+6(25—l)4:0.009—674(1.5+1.5)—-2(25 —1)418*0.009

(6740.009/18)—2(1—1/221T)40.009

_ 6.603 _

- 0.0155 — 4255

In the second case, when a = 7 = 0.5, fl = 0.003, and t(P,18) remains as 67, the

crossover message size is

2(2~'5 — 1+5)(0.5+0.5)+6(25 — 1)30003—671:(0.5+0.5)—2(25 —1)41840.003

(6740.003/18)—2(1— 1/22'5)40.003

”1 425 25
— 0.0051725 '

2” Y I V Y V “ I V I W V

”(15,000). ill) — 1110100010 SJ!) —

I-‘rusnmoJ 5.191 17101011310519)

w - l-‘l’(l 5.0009.15.201.--~"- 4 1110501010520) 4

$039,009.13) 4' '1 ’ scws.ooo.1.0;5)...o--“'

(a) a = 7 = 1.5, fl = 0.009 (b) a = 7 = 0.5, fl = 0.003

Figure 5.12: The SC algorithm compared with the FT algorithm with difierent k

values.

When we compare Figure 5.12(a) with Figure 5.12(b), the difierence is the scale

123

of the Y-axis, the crossover message length remains as predicted.

5.4.3 Comparison of EDN and SC

Next, we compare the EDN algorithm with the SC algorithm. The procedure is

similar to the process illustrated in the previous discussion. Table 5.5 gives the

latency formulae for both algorithms.

Table 5.5: Latency formulae for the SC algorithm and the EDN algorithm.

n n (I- In”so 2(2 — 1 + n)(a + 7) + 6(2 — 1m 2(1— 337% (2n_1+n)(ai—)+a(2n—lm

EDN 3na + (71 + 1)7 + (2" - 1W (71 + 1” 3na+Ln$l-+)-;?f(2"—l)fl

We can compute the difierence between T, [SC] and T,[EDN] as T, [SC] ——

T,[EDN] = (2 =1: 2" — 2 — n)a + (2 =1 2" — 3 + 71)7 > 0 for 71 >1. Thus, the inequality

T, [SC] > T,[EDN] holds for all 71 > 1. In addition, the difierence between TnIEDN]

and T,.[SC'] is T,.[EDN] —T,,[S'C] = (n+5);- —1),6 > 0 for all 71 > 1 and 0 > 0. From

these two conditions, we can conclude that the EDN algorithm is better than the SC

algorithm for L < L'. The length L“ = (T,[SC'] — T,[EDN])/(T,,[EDN] — Tn[SC]).

This indicates that independent of the underlying wormhole network parameters,

the EDN algorithm is more suitable for short messages while the SC algorithm is

better for long messages.

In Figure 5.13, the crossover message length is plotted against the network size.

As the network size increases, the crossover size increases, and as the value of 7

increases, the crossover message size decreases. This trend indicates that the SC

124

algorithm is more suitable for network with large 7 values and large message sizes.

However, the decrease of crossover message size becomes smaller as the values of 7

increases. Take 71 = 5 for example, the crossover message size is 14 Kbytes when 7

is 0.001 and it becomes 7000 bytes when 7 is 0.002, the size decreases by a factor

of 0.5. When 7 is 0.003, the crossover message size is 4200 bytes, as compared with

7 = 0.002, the decrease factor is less than 0.5.

In summary, we can conclude that the EDN algorithm is faster for short message

sizes, and the crossover message size increases as 7 decreases.

1% I T 1 I I

14000

12000

10000

8000

L
0

Figure 5.13: Difierent L“ values for various 7.

5.4.4 Comparison of EDN and FT

Following the same procedure used in comparing the SC algorithm with the FT

algorithms, we can derive the conditions that will guarantee that the EDN algorithm

performs better than the FT algorithm for any message length. That is, when both

125

inequalities T,[EDN] < T, [FT] and 731m < TFT are true. From the first inequality,

we can derive

3n — t(P, k)

7" > 2(1: — 1)(2n — 1)‘

Because t(P, k) > 371 for 71 = 5 and k > 3, therefore, we know that the first

inequality is valid for any To > 0 due to the fact that (371 — t(P, k))/(2(k — 1)(2" —

1)) < 0. To facilitate the derivation of the second inequality, we define R(n, k) as

2k2(71 + 1) — t(P, k). From the calculation of t(P, k), we know that R(5, k) < 0 for

any It > 2. The following inequality is valid for any k > 2.

t(P, k){371a + (71 +1)7} —t(P, k)k(71 + 1)(a + 7)

< t(P, k){371a + 3717} — t(P, k)k(71 + 1)(a + 7)

= t(P, k)(a + ’Y){3n — k(n +1)} < 0

Because (2" — 1)[3 =1: R(n, k) > O for all k, we know that (2" — 1)fl{2k2(71 + 1) —

t(P, k)} > 0. Furthermore, the following inequality is valid for all k.

(2" —1)6{2k2(n + 1) — t(P, 1)} > t(P, k){3na + (n + 1)7} — t(P, k)k(71 + 1)(a + 7)

Rearranging the terms of the above inequality, we can conclude that TEDN > TN“-

126

Therefore, we know that both the inequalities T,[EDN] < T,[FT] and TEDN >

7” are true for 71 = 5 and k > 2. The EDN algorithm is faster than the FT

algorithm for message sizes less than L‘. Similar to the previous comparison, we can

calculate L‘ for difierent To = [3/(a+7). Figures 5.14(a), (b) illustrate the crossover

message lengths for difierent To values. One observation from both Figure 5.14(a)

and Figure 5.14(b) is that as k increases, the crossover message length does not

increase very rapidly. In addition, as the 7'0 values increases, the crossover message

length decreases. This indicates that architectures with lower To values will favor

the EDN algorithm. This agrees with the observation from the 7-plot outlined

previously.

lowerbountl O

upperhound O

Iowerboond 0

upperhound O

9 9
eeeeee
......

e
a

o . . 0

1
1
1
1
m
m

 1
1
1
1
1
1
3
1
1
1
1
5

(a) To = 0.001 (b) To = 0.002

Figure 5.14: The crossover message length with different 7'0 values.

To summarize, the process of comparing the performance of difierent communi-

cation algorithms over various architectural and algorithmic parameters is compli-

cated. In the above analysis, we compare three broadcast algorithms, SC, EDN, and

FT, through the use of the 7-model for a particular network topology and size. In

127

the beginning of this section, we use the 7-plot to facilitate the comparison visually.

For a range of 7 values, the 7-plot allows us to determine the qualitative character-

istics of the algorithms under study easily. This is demonstrated by the comparison

of the SC algorithm with the FT algorithm, and the difl’erent characteristics ex-

hibited by the EDN algorithm and the SC algorithm. The SC algorithm is faster

for long message lengths and favors machines with large 7 values as compared with

the EDN algorithm. Detailed analysis confirms the observation from the 7-plot.

Nevertheless, to determine quantitatively the crossover message lengths, the com-

putation from the 7-model is more appropriate. This approach can be applied to

other networking topologies and sizes as well as difierent networking technologies,

as demonstrated in the next section.

5.5 Application of the 7-Model to NOWs

As networking technology has evolved into difierent branches, and as new protocols

and algorithms have been proposed over the past few years at a very fast pace, the

need for a unified communication cost model is self evident. In this section, we

present results of the application of the 7-model to networks of workstations, an

increasingly popular parallel computing platform. In addition to broadcast algo-

rithms, we use the 7-model to study all-to-all broadcast algorithms. Specifically,

we use recent results from the literature to point out which aspects of the problem

are most important, and speculate on how to improve implementations.

128

5.5.1 Broadcast Operations

In the following, we demonstrate the use of the 7-model to study the various results

for broadcast on difierent network of workstation platforms. This demonstration

focuses on the use of some empirical data from various research results and create

a global view on those data. Thus allows us to understand better the performance

comparison between those algorithms.

Table 5.6 gives the empirical data under study. The MPI-CCL library [32] is

implemented atop unreliable hardware—supported multicast on Ethernet; the two

entries are for group sizes of 4 and 8. These entries represent the performance

of an MPI implementation over User-level Reliable Transport Protocol (URTP)

on top of 10Mbps Ethernet [32]. The SSlO/ASX100 entries represent software

implementations of broadcast operations through FORE systems ATM application

interface forming spanning binomial tree configuration, with group sizes of 4 and

8 [78]. The data for broadcast on networks such as Myrinet, ATM, and fast Ethernet

are taken from [14]. There are two difierent implementations, the first is based on

the Panda system [22] and the second is based on Fast Messages (FM) [92, 108].

For both cases, the group size is fixed at 8.

For the purpose of comparison, we also use data from implementations on par—

allel machines. The data for the IBM SP-2 are from Xu and Huang’s study [158],

in which two difierent communication libraries, MPI and MPL, were compared on

a 512-node SP-2. The data for the Intel Paragon is from measurements of the

InterComm collective communication library, also on a 512-node system [105].

129

Table 5.6: Performance of broadcast operation.

As illustrated in Figure 5.15, comparisons on various groups of data

can be made using a 7-plot. Comparing algorithms over different net-

working technology are shown by the pairs (SPARC/IOOBase-T/Panda/8,

SPARC/100Base-T/FM/8), (SPARC/Myrinet/Panda/8, SPARC/Myrinet/FM/8),

and (SPARC/ASXZOO—WG/Panda/S, SPARC/ASXZOO-WG/FM/B). It is ap-

parent that points SPARC/100Base-T/Panda/8, SPARC/Myrinet/Panda/8,

and SPARC/ASX200-WG/Panda/8 have a relatively lower 7 values than

their counterpart SPARC/100Base-T/FM/8, SPARC/Myrinet/FM/8, and

SPARC/ASX200-WG/FM/8. This tells us that algorithms based on the Panda

system are relatively suitable for long messages than their counterparts based

on the Fast Message. Based on the comparison of points SPARC/looBase-

T/Panda/8, SPARC/Myrinet/Panda/8 and SPARC/100Base-T/FM/8,

SPARC/Myrinet/FM/8, we can observe that SPARC/Myrinet/FM/8 is better than

SPARC/100Base-T/FM/8 for all message sizes while SPARC/Myrinet/Panda/S

and SPARC/100Base-T/Panda/8 are not of similar relationship. This indicates

that the algorithms based on the Fast Message have take advantage of the

130

networking technology (from Myrinet to fast Ethernet) while the algorithms based

on the Panda system have not.

0 SSlO/A8X100/888T

8
0
0
0

1
0
0
0
0

1
2
0
0
0

p

0 $810/ASX100/4SBT

s
t
a
n
u

6
0
0
0

o Paragon/lnterComm/S12

0 RSBOOOIMPl-CCUB

2
0
0
0
4
0
0
0

 . . RSOOOOIMPl-OCLM

““043me 2" 2N" SP mmsmnar T/F

° SPAHCI1OOBnn-T/PW8 SPWPWASWWWW”

0.0 0.0005 0.0010 0.0015

tau

Figure 5.15: 7—plots for broadcast operations on difierent networking environments.

From the comparison of points 8810/ASX100/8SBT, SPARC/ASX200-

WG/Panda/8, and SPARC/ASX200-WG/FM/8, they are all of the same group size,

and are all based on ATM networking technology, what makes SSlO/ASX100/SSBT

deviates from SPARC/ASX200-WG/Panda/8 and SPARC/ASX200-WG/FM/8 are

the high startup appeared in SSlO/ASX100/8SBT. This is partly due to the fact

that SS10/ASX100/BSBT uses point-to-point primitive to implement the multi-

cast while both SPARC/ASX200-WG/Panda/8 and SPARC/ASX200-WG/FM/8

131

are built on top of the underlying un-reliable multicast mechanism.

One more observation from Figure 5.15 is that SPARC/ASXZOO-WG/FM/8 is

better than SP-2/MPI for all message sizes. This indicates that for group size 8,

the platforms based on commodity networks such as ATM have better performance

than parallel machines such as SP-2

5.5.2 All-to-All Broadcast

For the all-to-all broadcast operation, we considered two difi'erent implementations,

referred to as A and B, in a traditional Ethernet environment. The approach

adopted in algorithm A is quite similar to that used in MPICH [65]: every par-

ticipating node posts (P — 1) non-blocking indications to receive messages, and

subsequently sends (P — 1) messages to their individual destinations. Due to the

medium access control protocol of Ethernet, if every node starts the operation at

the same time, the possibility of message collisions during initial and subsequent

transmissions is very high.

The approach adopted in version B is to arrange the P participating nodes in

a linear list, with each node successively transmitting its (P — 1) messages to the

other nodes. The order in which nodes transmit is determined by their positions

in the list. When one node has finished sending its messages, the next node must

be triggered to begin sending. This synchronization is accomplished by arranging

the message transmission pattern so that the last message sent by a given node is

destined for the node that will start next. As an example, first node 0 sends (P — 1)

132

messages to nodes (P — 1), (P — 2), ..., 1. Next, node 1 sends (P — 1) messages to

nodes 0, (P — 1), (P — 2), . . . , 2. This process continues until node (P — 1) completes

its message transmission.

A simple timing analysis of version B can be derived by assuming that the time

needed to send a message of length L is a + 5L, in which case the overall cost is

thus P(P — 1)(a+ flL). Therefore, one might assume that this approach would have

much worse performance than version A. However, as indicated by the following

experiments, the performance of this approach is in some sense quite competitive.

‘.M 1 V V Y T 0 V l.” V 7 Y Y Y 1’ 1

4.064 Pall-lull v.1 . . 1 . 4.064 ~411-4o-au v.2 . 1

2044 > < 2064 - 1

1.064 1 I I < 1.064 - 1

4&3 r , z . . QM . ‘

10:3 1 , < 2043 ~ 1 i 1
. D

1.1K! . ’ ' 1 1 1.0e3 J . . ° 1
.

- I
' 4.01:2 I | I | 4 ' 4&2 I. 4 . . 4 ; .

2.042 < 2.0420 4 4 4 4 4 4 4 4 I .

1.062 » | « 1.0e2 » . 4

4.041 I | 1 . 4.0e1 .1 4 . 4 4 8 3 ‘

2041” l I I | . 2041 »

l.m' A A A L 4 A A A I'ml l I I A; A A A A

4 16 64 256 1004 4096 16334 4 16 64 256 1024 4096 16384

mummy) messagesinaiyu)

(a) version A. (b) version B.

Figure 5.16: Results for all-to—all operation.

Figures 5.16(a) and (b) plot the results of executing all-to-all broadcast opera-

tions (1000 iterations for each message size) on 12 SUN SPARCstation-lO worksta-

tions interconnected by a shared Ethernet segment. The plots indicate that in this

environment, completion times vary for both versions, but the variation is much

greater for version A, likely due to network contention. Computing the average

across 1000 runs shows that for message size less than 2048 bytes, version B is

133

faster than version A, despite the fact that the minimum value of version A is less

than that of version B, as illustrated in Figure 5.17(a) and (b). In order to apply the

7-model to the performance plots of these two algorithms, we used the minimum

values, which are the most optimistic estimation of algorithm performance.

24M .' _ V _ V 26M ’V ‘ Y _ 1

minimum (version A) 4 minimum (version B) s

1.0e4 r avenge (1133100 A) 1.0e4 - average (version 8)

1.2e7 + l.&5'(message size) ---------- l " 3.3e7 + 9.2e4‘(rnessage size) ----------

I

4.&3)- 7 4.0e3 -

2043 > ~ 20:13 - '5

1) ’

3 41k) ’ I I I ‘ I I I ' “.xll' ‘ 3 gm .. ‘_.

.
'

64"..
u-

l..."

Z'M b A“... ‘ E 1&2 IIIIIIIIII 3.".-

"M ' . '1 . 1.042 - 1.. "'

4’ml .- 3'“... 4“! 704414.0‘......

.s--"

2.0el r 2.0el t

...............t.....-~----“'
l-(bl a L L A l A a g 1 11*] I r I a L A

4 16 64 256 1024 4096 16384 4 16 64 256 1024 4096 16384

message are (bytes) message size (bytes)

(a) all-to-all version A. (b) all-to-all version B.

Figure 5.17: Results of fitting the minimum value.

Following similar procedure, we measure the performance of these two all-to-all

operations with group size 4 and 8. Table 5.7 summarizes the results of T, and T,.

values for these two algorithms with difierent group sizes.

Table 5.7: Performance of all-to-all operation.

machine protocol/algorithm/size T, (11.9) T,. (11.9/byte) 7 = T,./T,

SSlO/Ethernet TCP/A/4 3220.0 9.11 0.00283

8810/Ethernet TCP/B/4 5380.0 9.66 0.00180

SS10/Ethernet TCP/A/8 6200.0 47.7 0.00769

SSlO/Ethernet TCP/B/8 14700.0 43.8 0.00298

8810/Ethernet TCP/A/12 12900.0 107.0 0.00830

SSlO/Ethernet TCP/B/12 32900.0 92.4 0.00281

From the data in Table 5.7, the 7-plot of all-to-all operations is constructed. As

shown in Figure 5.18, one very distinct difi'erence between these two versions of all-

134

-8810/TCPIBI12

g 4

g 4

3 ‘ -ssiorrcpm

-SSlO/TCPIN12

-8810/TCPIM

g , -ssiorrcmr4

-ssrolrormv4
If I V I V V l

0.“ 0.” 0.”! 0.” 0.” 0.”? 0.”

Figure 5.18: 7-plot of all-to-all operations.

to-all operation is the direction when we move from small group size to large group

size. Version A tends to move to the right—hand direction while version B prefer

to move up. Thus, the qualitative comparison 'of version A vs. version B is that

for the same group size, version A prefers long messages, and this trend increases

with increasing group size. Such a comparison is not obvious when we look at the

latency-length or other similar performance plots. The second observation from the

7 plot is the efiect of increased group size. As the group size changes from 4 to 8,

the horizontal shift made by version A is greater than that of B, which indicates

that as group size increases, the rate of growth in the latency plot of A increases

more rapidly than version B, however, the vertical shift of version B is greater than

A, thus overshadowing the gain.

135

5.5.3 Summary

To summarize, we have demonstrated the use of the 7 model to compare commu-

nication algorithms under difl'erent system parametric assumptions in NOW envi-

ronments. This study allows us to gain better understanding of the behavior of

any communication operation under difierent system parameters. It also illustrates

that for a specific implementation, the efi'ect of a particular system parameter on its

performance can be quantified. From this study, we know that as the number of pa-

rameters increases, the task of detailed comparison between difi'erent algorithms is

not trivial. Different networking environments as well as difi'erent algorithm imple-

mentations further complicated the issue. However, through the use of the 7-plot,

we can capture the most prominent feature of the algorithm as compared with other

algorithms. As seen from the study of communication operations in the network of

workstations environment, the 7 model approach provides a common platform to

facilitate the understanding of the issues of communication performance.

Chapter 6

Conclusions and Future Research

Generally speaking, the purpose of a model is to capture the salient features of the

object under study with clarity and defining details. Though many well known

parallel computation models have been developed in recent years, these models are

not necessarily well-suited for modeling communication. Since communication is

a critical part of parallel applications, and since communication technologies and

software interfaces are changing frequently, the need for an accurate communication

model is immediate.

The research described in this dissertation has produced the following contribu-

tions: a general model for the design of eficient collective communication algorithms

that could exploit the characteristics of certain network hardware architecture; the

proper integration of a communication model and a cost model to support the de-

sign of communication primitives for various network environments. Moreover, this

work improves the theoretical background used in characterizing the complexity of

difierent communication operations and in comparing their implementations.

136

137

Our work in designing eficient communication primitives for wormhole routed

systems generated insight into the proper cost model for collective communication.

Specifically, the use of the EDN model in developing communication primitives

illustrates a conceptual model, associated with the usual cost model, that aids

the design of eficient communication operations while taking into account specific

architectural features. The extension of the EDN model to workstation cluster envi-

ronments can be considered quite natural, since many communication media used

in those platforms provide multi-destination message passing. Examples include

Ethernet, Fast Ethernet, and ATM switches, all of which support hardware multi-

cast. We have conducted a preliminary study in this area [141]; additional studies

are deferred to future research.

As an increasing number and variety of network architectures have been intro-

duced into the commodity market, and as the trend of using such components for

parallel computing continues, the task of understanding and comparing communi-

cation algorithms is increasingly complicated. The second model developed in this

dissertation, the 7-model, ties together the various aspects of performance compar-

ison and allows the comparison of algorithms and networking technologies to be

done both qualitatively and quantitatively.

The future generation of parallel computing platforms is growing into an area

where diverse networking components and workstations play the major roles. Un-

derstanding and comparing the performance of diflerent implementations of the

same operation, as well as different networking technologies, can assist in the re-

finement and selection of a better platform/algorithm combinations. Further re-

138

search can be conducted in the area of creating tools based on the 7-model. Such

tools would facilitate a uniform representation of performance data for difierent

communication operations and technologies as they come available.

APPENDICES

Appendix A

Formulae for EDNs in 2"“ X 2’“

Meshes

We use the D pattern in Figure 3.8(b) to show how to compute the coordinates of

the EDNs in a 2D mesh of size 2" x 2", k 2 3.

As illustrated in Figure -1(a), we denote the four highest level EDNs of a 2" x 2"

mesh as 400 = (4.31.4101). 3(1) = (8.0131(1)). 000 = (6.31.0131) and

0(1) = (0.31.0131).

The construction of the next level EDNs is as shown in Figure -1(b). Let the

corresponding four highest level EDNs in this 2’”1 x 21+1 mesh be A(k + 1), B(k +

139

1”““’P“*y“”

1:] i [j

C(k+l) D(k+l)

[l I I '1

C(11) D(k)

-' C“ I {.1 El I

Mk) 30:)
(a)the four highest level EDNs (b) the four highest level EDNs in a 2'“; 2'“I

in a 2"; 2k mesh mesh

Figure -1: Representation of four highest level EDNs

1), C(k + 1) and D(k + 1). The following relation holds for any k 2 3.

430=ruk—0 .Asm=£uk—0

B,(k) = 2" -1— 0,,(1: — 1) , B,(k) .—. 0,,(k — 1)

0,01) = 2k-1— 1 — 0,0: — 1) , 0,01) = 2k — 1 — 0,,(1 — 1)

D,(k) = 2k - 1 — D,(k — 1) , 0,,(1) = 2'c — 1 — D,(k — 1) = C,(k)
The case of the 8 x 8 mesh serves as a boundary condition for the above re-

currence. From Figure 3.8(b), the coordinates for these four level-2 EDNs in 8 x 8

mesh are:

A,(3) =1 , A,(3) = 0

B,(3) = 6 , 3,,(3) = 0

61(3) = 2 , 0,,(3) = 7

12(3) = 5 , 13,,(3) = 7

141

Now we solve the above recurrence for C,(k). Let S(k) = 2" — 1. By expanding

C,(k — 1) with C,(k — 2), C,.(k — 2) with C,(k — 3) and so on until 03(3), we arrive

at the following formula for C, (k):

01:0,) Egfl-IP’ISM " j) — 03(3) when k is even

Zk—3(-1)j_15(k - j) + Cx(3) when k is odd.
i=1

Solving the summation and setting C,c (3) = 2, the following closed-form solution

for C,(k) can be found:

”+5 _._ 03(3) = Z"??— when k is even

0309) =

”—3-?! + 043) = 2"3—‘2 when k is odd.

The same procedure can also be used to derive the following equation for C, (k):

—2k+1+13 — C (3) = ——2k+1“8 when k is even
3' 3 y 3

y(k)

2_"+_;-_1§ + Cy(3) =w when k is odd.

In a similar fashion, the formula for D,(k) can be written as:

£3.12 — D,(3) = 3%:3 when k is even

D309) =

2%;19 3, 193(3) = 21% when k is odd.

Thus, we have the following formula to compute the coordinates of the four highest

142

level EDNs for a mesh of size 2" x 2":

4.00 4+ ,A,(,,)=24_s.

3,0.) = —— . 31(1) = 41(1)
) when k is even

04(1) J": .Cy(k>=2"*;-8

194(k) =2"*;-2 ,o,(1)_c,(1.)

A400 =22“ .Ay(k)=2"-8

32.-(k) =w 1 B (k) =A (k)

y ,,) when k is odd.

02:05) = 2kT—2 1 011(k) = 24H;5

13,0.) =— ,D,(1.)=c,(1.) ,

By using the above formulae to calculate the highest-level EDNs for submeshes

and by performing coordinate transformations to larger meshes, we can generate all

levels of EDNs within a mesh. Using this information, any node in the mesh can

compute in advance the list of nodes that it should forward to upon receipt of a

broadcast message. Some care must be taken in the startup phase, since a highest

level EDN may be required to forward the message to one or more other EDNs at

the highest level. The message transmission pattern in this startup phase can be

either dependent on the location of source node or fixed.

BIBLIOGRAPHY

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

M. Adler, J. W. Byers, and R. M. Karp, “Scheduling parallel communica-

tion: The h-relation problem,” in Mathematical Foundations of Computer

Science 1995, The 20th International Symposium (J. Wiedermann and

P. Hajek, Eds.), pp. 1-20, Springer, August 28 — September 1 1995. Lec-

ture Notes in Computer Science, Vol. 969.

A. Agarwal, “Overview of the Alewife project.” ALEWIFE SYSTEMS MEMO

10, Laboratory for Computer Science, MIT, July 30 1990.

A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz,

B.-H. Lim, K. Mackenzie, and D. Yeung, “The MIT Alewife machine: Archi-

tecture and performance,” in Proceedings of the 22nd Annual International

Symposium on Computer Architecture, pp. 2—13, June 22-24 1995.

A. Agarwal, D. Chaiken, G. D’Souza, K. Johnson, D. Kranz, J. Kubiatowicz,

K. Jurihara, B.-H. Lim, G. Maa, D. Nussbaum, M. Parkin, and D. Yeung,

“The MIT Alewife machine: A large-scale distributed-memory mulitproces-

sor,” in Proceedings of the Workshop on Scalable Shared-Memory Multi-

processors, June 1990. ‘

A. Aggarwal, A. K. Chandra, and M. Snir, “Communication complexity of

PRAMs,” Theoretical Computer Science, vol. 71, pp. 3—28, 1990.

S. Ahuja, N. Carriero, and D. Gelernter, “Linda and friends,” IEEE Com-

puter, vol. 19, pp. 26-34, August 1986.

A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman, “LogGP:

incorporating long messages into the LogP model — one step closer towards a

realistic model for parallel computation,” in Proceedings of the 7th Annual

Symposium on Parallel Algorithms and Architectures, pp. 95—105, July

1995.

T. E. Anderson, D. E. Culler, and D. A. Patterson, “A case for NOW (net-

works of workstations),” IEEE Micro, vol. 15, pp. 54—64, February 1995.

G. Armitage, “Support for multicast over UNI 3.0/3.1 based ATM networks.”

Internet-Draft, February 22 1996. draft-ietf-ipatm-ipmc-12.txt.

143

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

144

S. M. Armstrong, A. O. Freier, and K. A. Marzullo, “Multicast transport

protocol.” RFC 1301, February 1992.

R. Asbury, S. G. F‘rison, and T. Roth, “Concurrent computers ideal for inher-

ently parallel problems,” Computer Design, pp. 99—107, September 1 1985.

V. Bala, J. Bruck, R. Bryant, R. Cypher, P. de Jong, P. Elustondo, D. Frye,

A. Ho, C.-T. Ho, G. Irwin, S. Kipnis, R. Lawrence, and M. Snir, “The IBM

external user interface for scalable parallel systems,” Parallel Computing,

vol. 20, pp. 445—462, April 1994.

V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C.-T. Ho, S. Kipnis,

and M. Snir, “CCL: a portable and tunable collective communications library

for scalable parallel computers,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 6, pp. 154—164, February 1995.

H. Bal, R. Hofman, and K. Verstoep, “A comparison of three high speed

networks for parallel cluster computing,” in Workshop on Communica-

tion and Architectural Support for Network-based Parallel Computing

(CANPC’97), pp. 184—197, February 1997.

M. Barnett, R. Littlefield, D. G. Payne, and R. van de Geijn, “Global combine

on mesh architectures with wormhole routing,” in Proceedings of the 7th

International Parallel Processing Symposium (IPPS ’93), pp. 156-162,

April 13—16 1993.

M. Barnett, D. G. Payne, R. A. van de Geijn, and J. Watts, “Broadcasting

on meshes with worm-hole routing,” tech. rep., Department of Computer

Science, University of Texas at Austin, November 2 1993.

M. Barnett, D. G. Payne, R. A. van de Geijn, and J. Watts, “Broadcasting

on meshes with wormhole routing,” Journal of Parallel and Distributed

Computing, vol. 35, no. 2, pp. 112-122, 1996.

A. Bar-Noy and S. Kipnis, “Designing broadcasting algorithms in the Postal

model for message-passing systems,” in Proceedings of the 4th Annual ACM

Symposium on Parallel Algorithms and Architectures, pp. 13—22, June 29

- July 1 1992.

A. Bar-Noy and S. Kipnis, “Designing broadcasting algorithms in the Postal

model for message-passing systems,” Mathematical Systems Theory, vol. 27,

pp. 431—452, September/October 1994.

A. Basu, V. Buch, W. Vogels, and T. von Eicken, “U-Net: a user-level network

interface for parallel and distributed computing,” in Proceedings of the 15th

ACM Symposium on Operating Systems Principles, December 3-6 1995.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[23]

[29]

[30]

[31]

[32]

145

D. P. Bertsekas, C. Ozveren, G. D. Stamoulis, P. Tseng, and J. N. Tsitsiklis,

“Optimal communication algorithms for hypercube,” Journal of Parallel

and Distributed Computing, vol. 11, pp. 263—275, 1991.

R. Bhoedjang, T. Riihl, R. Hofman, K. Langendoen, and H. Bal, “Panda: a

portable platform to support parallel programming languages,” in Sympo-

sium on Experiences with Distributed and Multiprocessor Systems IV,

pp. 213—226, September 1993.

K. P. Birman, “The process group approach to reliable distributed comput~

ing,” Communications of the ACM, vol. 36, pp. 37—53, December 1993.

K. P. Birman and T. A. Joseph, “Reliable communication in the presence

of failures,” ACM Transactions on Computer Systems, vol. 5, pp. 47—76,

February 1987.

K. P. Birman, A. Schiper, and P. Stephenson, “Lightweight causal and

atomic group multicast,” ACM Transactions on Computer Systems, vol. 9,

pp. 272-314, August 1991.

M. A. Blumrich, C. Dubnicki, E. W. Felten, K. Li, and M. R. Mesarina,

“Virtual-memory-mapped network interfaces,” IEEE Micro, vol. 15, pp. 21—

28, February 1995.

N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N.

Seizovic, and W.-K. Su, “Myrinet: A gigabit-per-second local area network,”

IEEE Micro, vol. 15, pp. 29—36, February 1995.

S. H. Bokhari and H. Berryman, “Complete exchange on a circuit switched

mesh,” in Proceedings of Scalable High Performance Computing Confer-

ence (SHPCC ’92), pp. 300—306, April 26—29 1992.

R. A. A. Bruce, J. G. Mills, and A. G. Smith, “CHIMP version 2.0 design,”

Tech. Rep. EPCC-KTP-CHIMP—V2—DESIGN 1.2, Edinburgh Parallel Com-

puting Center, February 24 1994. version 1.2.

R. A. A. Bruce, J. G. Mills, and A. G. Smith, “CHIMP/MPI user guide,”

Tech. Rep. EPCC-KTP—CHIMP-VZ—USER 1.2, Edinburgh Parallel Comput-

ing Center, June 1994. version 1.2.

J. Bruck, D. Dolev, C.-T. Ho, R. Orni, and R. Strong, “PCODE: an em-

cient and reliable collective communication protocol for unreliable broadcast

domains,” in Proceedings of the 9th International Parallel Processing Sym-

posium, pp. 130—139, April 1995.

J. Bruck, D. Dolev, C.—T. Ho, M.-C. Rosu, and R. Strong, “Eficient message

passing interface (MPI) for parallel computing on clusters of workstations,”

in Proceedings of the 7th Annual Symposium on Parallel Algorithms and

Architectures, July 1995.

146

[33] G. D. Burns, “The local area multicomputer,” in Proceedings of the

Fourth Conference on Hypercube Concurrent Computers and Applica-

tions, March 1989.

[34] G. D. Burns, R. B. Daoud, and J. R. Vaigl, “LAM: an open cluster environ-

ment for MPI,” in Supercomputing ’94, June 1994.

[35] R. M. Butler and E. L. Lusk, “User’s guide to the p4 parallel programming

system,” Tech. Rep. ANL-92/17, Argonne National Laboratory, Mathematics

and Computer Science Division, October 1992.

[36] R. M. Butler and E. L. Lusk, “Monitors, messages, and clusters: the p4

parallel programming system,” Parallel Computing, vol. 20, pp. 547-564,

April 1994.

[37] R. Calkin, R. Hempel, H.-C. Hoppe, and P. Wypior, “Portable programming

with the PARMACS message-passing library,” Parallel Computing, vol. 20,

pp. 615-632, April 1994.

[38] N. J. Carriero, D. Gelernter, T. G. Mattson, and A. H. Sherman, “The

Linda alternative to message-passing systems,” Parallel Computing, vol. 20,

pp. 633—656, April 1994.

[39] S. Chandra, J. R. Larus, and A. Rogers, “Where is time spent in message-

passing and shared-memory programs?,” in The Sixth International Confer-

ence on Architectural Support for Programming Languages and Operating

Systems (ASPLOS VI), October 1994.

[40] D. Cheriton, “VMTP: Versatile message transaction protocol.” RFC 1045,

February 1988. Stanford University.

[41] E. J. Cockayne, E. O. Hare, S. T. Hedetniemi, and E. V. Wimer, “Bounds for

the domination number of grid graphs,” Congressus Numerantium, vol. 47,

pp. 217-228, 1985.

[42] R. Cole and O. Zajicek, “The APRAM: incorporating asynchrony into the

PRAM model,” in Proceedings of the 1989 ACM Symposium on Parallel

Algorithms and Architectures, pp. 169-178, June 18—21 1989.

[43] M. Cosnard and D. Trystram, Parallel Algorithms and Architectures. In-

ternational Thompson Press, 1995.

[44] Gray Research, Inc., CRAY T3D System Architecture Overview Manual,

1993.

[45] W. J. Dally, “Performance analysis of k-ary n—cube interconnection networks,”

IEEE Transactions on Computers, vol. 39, pp. 775-785, June 1990.

147

[46] W. J. Dally, “Virtual-channel flow control,” IEEE Transactions on Parallel

and Distributed Systems, vol. 3, pp. 194—205, March 1992.

[47] W. J. Dally, J. A. S. Fiske, J. S. Keen, R. A. Lethin, M. D. Noakes, P. R. Nuth,

R. E. Davison, and G. A. Fyler, “The message-driven processor: A multicom-

puter processing node with emcient mechanisms,” IEEE Micro, pp. 23-39,

1992.

[48] W. J. Dally and C. L. Seitz, “The torus routing chip,” Journal of Distributed

Computing, vol. 1, no. 3, pp. 187-196, 1986.

[49] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in multiprocessor

interconnection networ ,” IEEE Transactions on Computers, vol. C-36,

pp. 547-553, May 1987.

[50] L. De Coster, N. Dewulf, and C.-T. Ho, “Emcient multi-packet multicast al-

gorithms on meshes with wormhole and dimension-ordered routing,” in Pro-

ceedings of the 1995 International Conference on Parallel Processing,

vol. III, pp. 137-141, August 1995.

[51] S. Deering, “Host extensions for IP multicasting.” RFC 1112, August 1989.

[52] D. Dolev and D. Malki, “The Transis approach to high availability cluster

communication,” Communications of ACM, vol. 39, pp. 64—70, April 1996.

[53] J. J. Dongarra and T. H. Dunigan, “Message-passing performance of various

computers,” Tech. Rep. ORNL/TM-13006, Oak Ridge National Laboratory,

February 1996.

[54] J. J. Dongarra and D. W. Walker, “Software libraries for linear algebra com-

putations on high performance computers,” SIAM Review, vol. 37, no. 2,

pp. 151—180, 1995.

[55] B. Duzett and R. Buck, “An overview of the nCUBE 3 supercomputer,” in

Proceedings of the Fourth Symposium on the FRONTIERS’92, pp. 458-

464, October 19-21 1992.

[56] D. C. Feldmeier, “An overview of the TP++ transport protocol project,”

in High Performance Networks—Frontiers and Experience (A. Tantawy,

Ed.), ch. 8, pp. 157-176, Boston, MA: Kluwer Academic Publishers, 1993.

[57] S. Floyd, V. Jacobson, S. McCanne, C.-G. Liu, and L. Zhang, “A reliable

multicast framework for light—weight sessions and application level framing,”

in Proceedings of the ACM SIGCOMM ’95, pp. 342-356, August 1995.

[58] S. Fortune and J. Wyllie, “Parallelism in random access machines,” in Pro-

ceedings of the 10‘“ Annual ACM Symposium on Theory of Computing,

pp. 114-118, May 1-3 1978.

148

[59] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam,

PVM: Parallel Virtual Machine. The MIT Press, 1994.

[60] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley, “PICL: A

portable instrumented communication library C Reference Manual,” Tech.

Rep. ORNL/TM-11130, Oak Ridge National Laboratory, July 1990.

[61] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley, “A user’s

guide to PICL: A portable instrumented communication library,” Tech. Rep.

ORNL/TM-11616, Oak Ridge National Laboratory, August 1990.

[62] M. Gerla, P. Palnati, and S. Walton, “Multicasting protocols for high-speed

wormhole-routing local area networ ,” in SIGCOMM’96, 1996.

[63] P. B. Gibbons, “A more practical PRAM model,” in Proceedings of the 1989

ACM Symposium on Parallel Algorithms and Architectures, pp. 158-168,

June 18—21 1989.

[64] W. Gropp and E. Lusk, “User’s guide for mpich, a portable implementation

of MP1,” Tech. Rep. ANL/MCS-TM-96—6, Argonne National Laboratory, 199.

[65] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable

implementation of the MPI message passing interface standard,” tech. rep.,

Argonne National Laboratory, 1996.

[66] S. K. S. Gupta and D. K. Panda, “Barrier synchronization in distributed-

memory multiprocessors using rendezvous primitives,” in International Par-

allel Processing Symposium (IPPS’93), pp. 501—506, 1993.

[67] P. J. Hatcher and M. J. Quinn, Data-Parallel Programming on MIMD

Computers. Cambridge, Massachusetts: The MIT Press, 1991.

[68] J. Heinlein, K. Gharachorloo, S. Dresser, and A. Gupta, “Integration of mes-

sage passing and shared memory in the Stanford FLASH multiprocessor,” in

Proceedings of the 6th International Conference on Architectural Support

for Programming Languages and Operating Systems, pp. 38-50, October

1994.

[69] R. Hempel, H.-C. Hoppe, and A. Supalov, PARMACS 6.0 Library Interface

Specification. Institute for Foundations of Information Technology, German

National Research Center for Computer Science, December 17 1992.

[70] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-

tative Approach. San Francisco, CA: Morgan Kaufmann Publishers, Inc.,

second ed., 1996.

[71] High Performance Fortran Forum, “High Performance Fortran language spec-

ification.” (version 1.0), May 1993.

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[32]

[83]

[84]

[85]

149

R. W. Hockney, “The communication challenge for MPP: Intel Paragon and

Meiko CS—2,” Parallel Computing, vol. 20, pp. 389—398, 1994.

C.-T. Ho and S. L. Johnsson, “Distributed routing algorithms for broadcasting

and personalized communication on hypercubes,” in Proceedings of the 1 986

International Conference on Parallel Processing, pp. 640—648, 1986.

C.-T. Ho and M.-Y. Kao, “Optimal broadcast in all-port wormhole-routed

hypercubes,” in Proceedings of the 1994 International Conference on Par-

allel Processing, vol. III, pp. 167—171, August 1994.

C.-T. Ho and M. Kao, “Optimal broadcast in all-port wormhole-routed hyper-

cubes,” IEEE Transactions on Parallel and Distributed Systems, vol. 6,

pp. 100—204, February 1995.

C.-T. Ho and M.-Y. Kao, “Optimal broadcast in all-port wormhole-routed

hypercubes,” IEEE Transactions on Parallel and Distributed Systems,

vol. 6, pp. 200-204, February 1995.

C. C. Huang, E. P. Kasten, and P. K. McKinley, “Design and implementa-

tion of multicast operations for ATM-based high performance computing,” in

Supercomputing ’94, pp. 164—173, November 1994.

C. C. Huang and P. K. McKinley, “Communication issues in parallel com-

puting across ATM networks,” IEEE Parallel 6 Distributed Technolog,

pp. 73-86, Winter 1994.

H. H. J. Hum, K. B. Theobald, and G. R. Gao, “Building multithreaded

architectures with ofl-the—shelf microprocessors,” in Proceedings of the 8th

International Symposium on Parallel Processing, pp. 288-294, April 1994.

Inktomi Corporation, The INKTOMI Technology Behind HOTBOT: A

White Paper, 1996.

“Computer on a chip.” New Products, IEEE Computer, p. 71, Jan-

uary/February 1972.

Intel Corporation, Paragon XP/S Product Overview, 1991.

D. S. Johnson, “The NP-completeness column: An ongoing guide,” Journal

of Algorithms, vol. 5, pp. 147—160, 1984.

H. W. Johnson, Fast Ethernet: Dawn of a New Network. Prentice Hall,

1996.

S. L. Johnsson and C.-T. Ho, “Optimum broadcasting and personalized com-

munication in hypercubes,” IEEE Transactions on Computers, vol. 38,

pp. 1249-1268, September 1989.

150

[86] K. K. Keeton, T. E. Anderson, and D. A. Patterson, “LogP quantified: The

case for low-overhead local area networks,” in Hat Interconnects III: A Sym-

posium on High Performance Interconnects, August 10—12 1995.

[87] R. E. Kessler and J. L. Schwarzmeier, “CRAY T3D: A new dimension for

Cray research,” in Proc. COMPCON, pp. 176-182, 1993.

[88] A. Khokhar, “c3: An architecture-independent model for coarse-grained ma-

chines,” in Workshop on Models of Parallel Computation, January 27 1995.

[89] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel

Computing: Design and Analysis of Algorithms. Benjamin-Cummings,

1994.

[90] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,

J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, M. R. Anoop Gupta, and

J. Hennessy, “The Stanford FLASH multiprocessor,” in Proceedings of the

218” International Symposium on Computer Architecture, pp. 302-313,

April 1994.

[91] S. Lamberts, G. Stellner, A. Bode, and T. Ludwig, “Paragon parallel pro-

gramming on Sun workstations,” in Sun User Group Proceedings, pp. 87-93,

December 1993.

[92] M. Lauria and A. Chien, “MPI-FM: high performance MPI on workstation

clusters,” Journal of Parallel and Distributed Computing, February 1997.

[93] Z. Li, P. H. Mills, and J. H. Reif, “Models and resource metrics for parallel

and distributed computation,” in Proceedings of the 28th Annual Hawaii

International Conference on System Sciences, January 3—6 1995.

[94] M. Lin, J. Hsieh, D. H. C. Du, J. P. Thomas, and J. A. MacDonald, “Dis-

tributed network computing over local ATM networks,” IEEE Journal on

Selected Areas on Communications, vol. 13, no. 4, pp. 733-748, 1995.

[95] X. Lin, P. K. McKinley, and L. M. Ni, “Deadlock-free multicast wormhole

routing in 2D mesh multicomputers,” in 1991 International Conference on

Parallel Processing, vol. I, pp. 435-442, 1991.

[96] X. Lin, P. K. McKinley, and L. M. Ni, “Deadlock-free multicast wormhole

routing in 2-D mesh multicomputers,” IEEE Transactions on Parallel and

Distributed Systems, vol. 5, no. 8, pp. 793-804, 1994.

[97] X. Lin and L. M. Ni, “Deadlock-free multicast wormhole routing in multicom-

puter networks,” in Proceedings of the 18th Annual International Sympo-

sium on Computer Architecture, pp. 116-125, May 1991.

[98] R. P. Martin, “HPAM: An active message layer for a network of HP worksta-

tions,” in Proceedings of Hot Interconnects II, August 1994.

151

[99] P. K. McKinley and C. Trefi’tz, “Eficient broadcast in all-port wormhole

routed hypercubes,” in Proceedings of the 1993 International Conference

on Parallel Processing, vol. II, pp. 288—291, August 1993.

[100] P. K. McKinley and C. Trefftz, “MultiSim: A tool for the study of large-

scale multiprocessors,” in Proceedings of 1993 International Workshop on

Modeling, Analysis and Simulation of Computer and Telecommunication

Networks (MASCOTS), pp. 57—62, January 1993.

[101] P. K. McKinley, Y. Tsai, and D. F. Robinson, “Collective communication in

wormhole-routed massively parallel computers,” IEEE Computer, vol. 28,

pp. 39-50, December 1995.

[102] P. K. McKinley, H. Xu, A.-H. Esfahanian, and L. M. Ni, “Unicast-based

multicast communication in wormhole-routed networks,” in Proceedings of

the 1992 International Conference on Parallel Processing, vol. II, pp. 10-

19, August 1992.

[103] P. K. McKinley, H. Xu, A.-H. Esfahanian, and L. M. Ni, “Unicast-based mul-

ticast communication in wormhole-routed direct networks,” IEEE Transac-

tions on Parallel and Distributed Systems, vol. 5, pp. 1254—1265, December

1994.

[104] Message Passing Interface Forum, “MPI: A message-passing interface stan—

dard,” International Journal of Supercomputing Applications, vol. 8,

no. 3/4, 1994. Special Issue on MPI.

[105] P. Mitra, D. Payne, L. Shuler, R. van de Geijn, and J. Watts, “Fast collec-

tive communication libraries, please,” Tech. Rep. TR-95-22, Department of

Computer Sciences, The Unversity of Texas, June 1995.

[106] NCUBE Company, NCUBE 6400 Processor Manual, 1990.

[107] L. M. Ni and P. K. McKinley, “A survey of wormhole routing techniques in

direct networks,” IEEE Computer, vol. 26, pp. 62—76, February 1993.

[108] S. Pakin, M. Lauria, and A. Chien, “High performance messaging on work-

stations: Illinois fast messages (FM) for Myrinet,” in On-line Proceedings

of Supercomputing ’95 at http://www. supercomp . org/sc95/proceedingsl,

1995.

[109] J. Palmer, “A VLSI parallel supercomputer,” in Proceedings of the First

Conference on Hypercube Multiprocessors (M. T. Heath, Ed.), August 26-

27 1985.

[110] D. K. Panda, “Optimal phase barrier synchronization in k-ary n-cube

wormhole-routed systems using multirendezvous primitives,” in Workshop

152

on Fine-Grain Massively Parallel Coordination, in conjunction with In-

ternational Symposium on Computer Architecture (ISCA ’93), pp. 24—26,

May 1993.

[111] J.-Y. L. Park and H.-A. Choi, “Circuit-switched broadcasting in tours and

mesh networks,” IEEE Transactions on Parallel and Distributed Systems,

vol. 7, pp. 184-190, February 1996.

[112] J.-Y. L. Park, H.-A. Choi, N. Nupairoj, and L. M. Ni, “Construction of optimal

multicast trees based on the parameterized communication model,” in The

1996 International Conference on Parallel Processing, August 12-16 1996.

[113] J.-Y. L. Park, S.-K. Lee, and H.-A. Choi, “Fault-tolerant broadcasting in

circuit-switched mesh,” in Proceedings of the sixth SIAM Conference on

Parallel Processing for Scientific Computing, pp. 887-890, 1993.

[114] C. Patridge, Gigabit Networking. Addison-Wesley, 1993.

[115] D. A. Patterson and D. R. Ditzel, “The case for the reduced instruction set

computer,” Computer Architecture News, vol. 8, pp. 25—33, October 15

1980.

[116] D. A. Patterson and C. H. Séquin, “Design considerations for single-chip

computers of the future,” IEEE Transactions on Computers, vol. C-29,

pp. 108-116, February 1980.

[117] D. A. Patterson and C. H. Séquin, “RISC I: a reduced instruction set VLSI

computer,” in The 8th Annual Symposium on Computer Architecture,

pp. 443-457, May 1981.

[118] J. G. Peters and M. Syska, “Circuit-switched broadcasting in tours networks,”

IEEE Transactions on Parallel and Distributed Systems, vol. 7, pp. 246-

255, March 1996.

[119] P. Pierce, “The NX message passing interface,” Parallel Computing, vol. 20,

pp. 463-480, April 1994.

[120] D. A. Reed and R. M. Fujimoto, Multicomputer Networks: Message-Based

Parallel Processing, ch. 8 Commercial Hypercubes: A Performance Analysis,

pp. 305-377. MIT Press, 1987.

[121] R. V. Renesse, T. M. Hickey, and K. P. Birman, “Design and performance of

Horus: A lightweight group communications system,” Tech. Rep. TR-94-1442,

Department of Computer Science, Cornell University, August 1994.

[122] D. F. Robinson, Scalable Multicast Communication in Massively Parallel

Computers. PhD thesis, Department of Computer Science, Michigan State

University, 1994.

153

[123] D. F. Robinson, D. Judd, P. K. McKinley, and B. H. C. Cheng, “Eficient

multicast in all-port wormhole-routed hypercubes,” Journal of Parallel and

Distributed Computing, vol. 31, pp. 126-140, 1995.

[124] D. F. Robinson, P. K. McKinley, and B. H. C. Cheng, “Optimal Multicast

Communication in Torus Networks,” IEEE Transactions on Parallel and

Distributed Systems, vol. 6, pp. 1029—1042, October 1995.

[125] S. H. Rodrigues, “Building a better byte stream,” Master’s thesis, University

of California at Berkeley, 1996.

[126] M. Schmidt-Voigt, “Eficient parallel communications with the nCUBE 2S

processor,” Parallel Computing, vol. 20, pp. 509—530, April 1994.

[127] H. D. Schwetman, “Csim: A C-based, process oriented simulation laguage,”

Tech. Rep. PP-080-85, Microelectronics and Computer Technology Corpora-

tion, 1985.

[128] D. S. Scott, “Eficient all-to-all communication patterns in hypercube and

mesh topologies,” in Proceedings of the 6th Conference on Distributed

Memory Concurrent Computers, pp. 398-403, 1991.

[129] C. L. Seitz, “The Cosmic cube,” Communications of the ACM, vol. 28,

pp. 22-33, January 1985.

[130] A. Skjellum, S. G. Smith, N. E. Doss, A. P. Leung, and M. Morari, “The

design and evolution of Zipcode,” Parallel Computing, vol. 20, pp. 565-596,

April 1994.

[131] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, Eds., MPI:

The Complete Reference. Cambridge, Massachusetts: The MIT Press, 1996.

[132] G. Stellner, A. Bode, S. Lamberts, and T. Ludwig, “NXLib — a parallel pro-

gramming environment for workstation clusters,” in PARLE’94 Parallel Ar-

chitectures and Languages Europe, no. 817 in Lecture Notes in Computer

Science, pp. 745-748, Springer, 1994.

[133] G. Stellner, A. Bode, S. Lamberts, and T. Ludwig, “Developing application

for multicomputer systems on workstations,” in High-Performance Comput-

ing and Networking, International Conference and Exhibition, no. 797 in

Lecture Notes in Computer Science, pp. 286-292, Springer, 1994.

[134] W. T. Strayer, M. J. Lewis, and R. E. Cline, Jr., “XTP as a transport pro-

tocol for distributed parallel processing,” in Proceedings of the USENIX

Symposium on High-Speed Networking, pp. 91-102, August 1-3 1994.

[135] V. Sunderam, “PVM: a framework for parallel distributed computing,” Con-

currency: Practice and Experience, vol. 2, December 1990.

154

[136] S. S. Takkella and S. R. Seidel, “Broadcast and complete exchange algo-

rithms for meshes,” in Proceedings of the Conference on Scalable High-

Performance Computing (SHPCC ’94), pp. 422—428, May 23-25 1994.

[137] R. Thakur and A. Choudhary, “All-to-all communication on meshes with

wormhole routing,” in Proceedings of the 8th International Parallel Pro-

cessing Symposium (IPPS ’94), pp. 561-565, April 1994.

[138] R. Thakur, A. Choudhary, and G. Fox, “Complete exchange on a wormhole

routed mesh,” in Proceedings of the Second International Workshop on

Modeling, Analysis, and Simulation of Computer and Telecommunica-

tion Systems, pp. 131-135, January 31-February 2 1994.

[139] Thinking Machines Corporation, CMMD and Active Messages, 1993.

[140] C. Topolcic, “Experimental internet stream protocol, version 2 (ST-11).” RFC

1190, October 1990.

[141] Y. Tsai, Y. Huang, and P. K. McKinley, “Performance evaluation of barrier

synchronization in ATM networks,” in Proceedings of the 5th International

Conference on Computer Communications and Networks, pp. 144-151,

October 16-18 1996.

[142] Y. Tsai and P. K. McKinley, “Broadcast in all-port wormhole-routed 3D mesh

networks using extended dominating sets,” in International Conference on

Parallel and Distributed Systems, pp. 120—127, December 19-23 1994.

[143] Y. Tsai and P. K. McKinley, “A dominating set model for broadcast in all-port

wormhole-routed 2D mesh networks,” in Proceedings of the 8th ACM Inter-

national Conference on Supercomputing, pp. 126-135, July 11—15 1994.

[144] Y. Tsai and P. K. McKinley, “An extended dominating node approach to

collective communication in wormhole-routed networks,” in Proceedings of

the Scalable High Performance Computing Conference, pp. 199-206, May

23—25 1994.

[145] Y. Tsai and P. K. McKinley, “A broadcast algorithm for all-port wormhole-

routed torus networks,” in The Fifth Symposium on the Frontiers of Mas-

sively Parallel Computation, pp. 529—536, February 6—9 1995.

[146] Y. Tsai and P. K. McKinley, “A broadcast algorithm for all-port wormhole-

routed torus networks,” IEEE Transactions on Parallel and Distributed

Systems, vol. 7, pp. 876—885, August 1996.

[147] Y. Tsai and P. K. McKinley, “An extended dominating node approach to

collective communication in wormhole-routed networks,” IEEE Transactions

on Parallel and Distributed Systems, vol. 8, pp. 41—58, January 1997.

155

[148] Y.-C. Tseng, D. K. Panda, and T.-H. Lai, “A trip-based multicasting model

in wormhole-routed networks with virtual channels,” IEEE Transactions on

Parallel and Distributed Systems, vol. 7, pp. 138-150, February 1996.

[149] L. W. Tucker and A. Mainwaring, “CMMD: active messages on the CM-5,”

Parallel Computing, vol. 20, pp. 481-496, April 1994.

[150] L. G. Valiant, “A bridging model for parallel computation,” Communications

of the ACM, vol. 33, pp. 103-111, August 1990.

[151] R. van de Geijn, “On global combine operations,” Journal of Parallel and

Distributed Computing, vol. 22, pp. 324—328, 1994.

[152] T. von Eicken, A. Basu, and V. Buch, “Low-latency communication over ATM

networks using active messages,” IEEE Micro, vol. 15, pp. 46-53, February

1995.

[153] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active

messages: a mechanism for integrated communication and computation,” in

Proceedings of the 19th International Symposium on Computer Architec-

ture, pp. 256-267, May 1992.

[154] K. Verstoep, K. Langendoen, and H. Bal, “Eficient reliable multicast on

Myrinet,” in Proceedings of the 1996 International Conference on Parallel

Processing, pp. III-156—III-165, August 12—16 1996.

[155] R. van Renesse, K. P. Birman, and S. Mafl'eis, “Horus, a flexible group com-

munication system,” Communications of the ACM, vol. 39, pp. 76—83, April

1996.

[156] J. Watts and R. van de Geijn, “A pipelined broadcast for multidimensional

meshes,” Parallel Processing Letters, vol. 5, no. 2, pp. 281-292, 1995.

[157] XTP Forum, Xpress Transport Protocol Specification: XTP version 4.0,

March 1 1995.

[158] Z. Xu and K. Hwang, “Modeling communication overhead: MPI and MPL

performance on the IBM SP2,” IEEE Parallel 6! Distributed Technology,

pp. 9—23, Spring 1996.

[159] H. Xu, P. K. McKinley, and L. M. Ni, “Eficient implementation of barrier

synchronization in wormhole-routed hypercube multicomputers,” Journal of

Parallel and Distributed Computing, vol. 16, pp. 172-184, October 1992.

[160] H. Zhou and A. Geist, “Faster (ATM) message passing in PVM,” in The 9th

International Parallel Processing Symposium: Workshop on High-Speed

Network Computing, April 1995.

"I[llllll][llllllll

