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ABSTRACT
MODELING COLLECTIVE COMMUNICATION: DESIGN AND
PERFORMANCE EVALUATION
By
Yih-jia T'sai

As advances in VLSI technology have enabled rapid improvements in commod-
ity microprocessors, the same technology also has changed communication archi-
tectures dramatically. A communication subsystem is an integrated combination of
both hardware and software. Efficient communication primitives can be achieved
only through the careful exploitation of the underlying hardware architecture. Col-
lective communication operations, which involve more than two participants, arise
frequently in scientific applications. The primary objective of this work is to explore
design and performance evaluation of collective communication operations. To this
end, two models are proposed. The Extended Dominating Node (EDN) model is
based on dominating sets in graph theory. The EDN model can be used to design
collective operations in systems that support single-step multicast communication.
We demonstrate the use of the EDN model on the design of collective communi-
cation algorithms for wormhole-routed massively parallel processors (MPPs). The
second model, the 7-model, is a generalized communication cost model that facili-
tates the study and characterization of collective communication operations over a
variety of networking technologies. We show that the 7-model can reveal relation-

ships among algorithms that are not easily discernible through traditional methods.
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Chapter 1

Introduction

That which has been, it is that which shall be; and that which has
been done is that which shall be done; and there is nothing new under

the sun.

Ecclesiastes 1:9

1.1 Motivations

Communication and network efficiency play a key role in the pursuit of high perfor-
mance scientific computation. Large-scale scientific applications are characterized
by the demand for high computing power. Advancements in VLSI technology have
increased raw computing power, while high-speed networks have offered an effec-
tive way to interconnect processors. Parallel computing provides one of the most
economical ways to solve large scale problems. As the goal of “performance at all

costs” has given way to economic considerations, however, fine tuning of underlying
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hardware platforms and various software components is frequently used to improve
performance of parallel applications at reasonable cost.

Communication is recognized by many researchers as an area in which such
fine tuning can result in large performance gains. Communication operations can
be generally classified into two broad categories, point-to-point and collective,
according to the number of parties involved. The performance of point-to-point
communication depends heavily on the underlying network bandwidth, network
interface, communication pattern, message size, channel contention, protocol pro-
cessing, and the current system load. These factors also play an important role in
determining the performance of collective communication. In addition, the adverse
effects of resource contention and message serialization are more important to col-
lective operations than to point-to-point operations, due to the presence of multiple
messages in the network concurrently.

During the past decade, communication operations have been extensively stud-
ied in the context of parallel computing environments. The consolidation of the
Message Passing Interface (MPI) standard [131] has spawned a wave of implemen-
tations of various message-passing libraries for different architectures. The impor-
tance and usefulness of collective operations is evidenced by extensive discussion

on this topic within the MPI Forum.



1.2 Thesis Statement

Several features of network interfaces and network architectures are critical
to the performance of collective communication operations. We contend that a
performance cost model, capable of accounting for these features can be used in
the design of new algorithms for collective operations that outperform ezxisting
algorithms across a variety of parallel computing platforms. Moreover, such
models can reveal relationships among algorithms and architectures that are

not easily discernible through traditional methods.

1.3 Research Contributions

This research begins with the exploration of communication locality, and yields
the Eztended Dominating Node (EDN) model. This model has been used in
the design of several collective operations in parallel computers [142, 143, 144,
145, 146, 147). The results from these studies are used in the development of a
general communication cost model, the 7-model, that covers collective operations
and can accommodate different networking technologies. The contributions of this

dissertation can be summarized as follows:

e The research has produced an abstract model for designing efficient commu-

nication operations for MPPs with dedicated wormhole-routed networks.

e Associated with the abstract model is a cost model to account for the network

latency of communication operations. The cost model can be used to classify
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and characterize communication algorithms, and thus provide a unified view
of all communication operations. Moreover, the complexity of communication

algorithms can be categorized in a more meaningful way.

e The generalized cost model can serve as a basis to characterize the effects of
different architectural supports for communication operations across various
platforms, including both MPPs and workstation clusters. By characterizing
communication operations, we can gain a better understanding of the expected

performance of parallel programs.

1.4 Dissertation Organization

The remainder of this dissertation is organized into the following chapters. Chapter
2 provides background and related work for this research. Algorithms and on-going
research in collective communication primitives for both wormhole-routed MPPs
and workstation clusters are reviewed, and several communication cost models used
in the parallel processing community are discussed. The Extended Dominating
Node model is described in Chapter 3. This model extends the dominating set
concept in graph theory to support the design of collective communication primi-
tives in wormhole-routed networks. Continued in Chapter 3 and in Chapter 4 are
demonstrations of the use of the new model to design collective operations for two
network topologies, the mesh and torus, respectively. Chapter 5 first describes the
7-model in general and its associated 7 plot. Subsequently, we demonstrate the use

of the 7-model to analyze communication operations in wormhole switching net-
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works and network of workstations environments. Finally, Chapter 6 summarizes

the dissertation.



Chapter 2

Background and Related Work

Where ... the ENIAC is equipped with 18,000 vacuum tubes and
weighs 30 tons, computers in the future may have 1,000 vacuum tubes

and perhaps weigh just 1-1/2 tons.

Popular Mechaﬁics, March 1949, p. 258

2.1 Introduction

The rapid advancements in VLSI technology and breakthroughs in the manufac-
turing industry have been major sources of innovation in parallel computation
structures and networking architectures. From the early processor arrays, vector
machines, and multiprocessors, the field of experimental parallel architectures has
been very active. As man’s quest for computing power to solve larger and finer-
grained problems is unabated, so is the demand for economical solutions to satisfy
this need. With the scaling of new technology, both in size and speed, and the vast

6
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market for general-purpose computing chips, microprocessor-based systems have
emerged as the most viable candidates for providing enormous computing power at
an acceptable cost. Users now have at their fingertips processing power that was
unimaginable fifty years ago, when the first electronic computer was invented.

The design of fast, powerful, and economical single chip microprocessors will
be ultimately limited by physics, specifically, the heat transfer capability of silicon
chips and the speed of light. One way to address these limitations is to interconnect
multiple processors and program them to solve a problem cooperatively. Parallel
processing i8 not a new idea. As early as the dawn of the computer, there were
experiments connecting together these “electronic brains,” and research projects
in the 1960s and 1970s (Illiac-IV, NASA MPP, Cmmp, and many others) laid the
foundation for parallel processing. However, it was Thinking Machines Corporation
in the mid-1980s, with the Connection Machine, that symbolized the economical
success of massive parallelism.

In recent years, however, the cost of silicon chip manufacturing equipment has
risen 8o high that, without a commodity market, no such company can withstand
the high risks and investment. The result is that future generations of micropro-
cessors will be increasingly targeted at the mass market. Parallel computation
architectures are already successfully competing with supercomputer architectures
in the high performance computing market, and will likely continue to gain ground
as inexpensive and powerful microprocessors are equipped with such features.

The introduction of CM-5 in 1991, which adopted a commodity microprocessor

(SPARC), marked the end of the first generation of massively parallel computers
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and a victory for off-the-shelf microprocessors over custom-made vector processors.
Although the CM-5 used special-purpose hardware for communications, experimen-
tal microprocessor architectures are already incorporating features that can be used
to better support communication operations [79]. With the widespread use of the
Internet and network navigating applications, future microprocessor architectures
are likely to be even more communication-oriented. The mass market will be the
final judge. These forces have already resulted in the new trend of joining com-
modity workstations with off-the-shelf communication networks to perform parallel
computations. The economics and ubiquity of these so-called workstation clusters
may cause us to rephrase the previous technical jargon from “massively parallel

machines” to “parallel machines for the masses.”

2.2 Parallel Computation Structures

In retrospect, the introduction of the Intel 4004 single chip microprocessor [81] in
1972 opened a new era in computing. Since then, the pace of technological ad-
vancement has been so fast that single chip microprocessors are competitive with
the vector machines. Such technological advancement has promised “to bring the
power and flexibility of a dedicated general-purpose computer at low cost” [81]. In
the early 19708, Gorden Moore predicted that transistor count will be doubled ev-
ery 18 months, since referred to as “Moore’s law.” Moore’s prediction was based on
his observation of tremendous potential advances in microprocessor manufacturing

technology. These advances have been realized and the implications have been even
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more far-reaching than predicted by Moore. With the size of transistors decreas-
ing and the cost dropping, additional functionality, and even the whole processing
unit, can be cheaply integrated into a single chip. As early as 1980, Patterson
proposed a single-chip architecture that could be used as a node in a parallel com-
puter [116]. The revolutionary development of the RISC architecture [115, 117] set
the stage for more rapid performance improvement. Specifically, microprocessor
performance has increased steadily at the rate of over 50 percent per year since
the 1980s [70]. As mentioned earlier, parallel processing can be traced back to the
origins of the computer itself: the ENIAC was equipped with multiple processing
units for redundancy. Parallel computation architectures span a wide spectrum,
from fine-grained bit-serial SIMD systems to multiprocessor vector machines. The
Connection Machine marks one end of the spectrum, and the Cray X/MP marks the
other end. Both architectures use custom-made processors, whose cost rises more
rapidly than the computing power per processor. In the middle of this spectrum
is the medium-grained multicomputer equipped with off-the-shelf microprocessors.
Beginning with the Caltech Cosmic Cube project [129], several commercial mul-
ticomputers soon entered the market [11, 109, 120]. Evidence of the success of
commercial microprocessors in parallel processing is seen in the computation archi-
tectures of the TMC CM-5, Intel TOUCHSTONE, Intel Paragon, Meiko CS-2, and
IBM SP-1/SP-2. The trend toward using a commodity network is also clear. Ex-
amples include Myrinet [27], Asynchronous Transfer Mode (ATM) [114], and Fast
Ethernet [84]. The careful design and integration of the network architecture and

the computation architecture is a major issue in parallel systems. As the communi-
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cation architecture of workstations improves, it is very likely that the dividing line
between multicomputers and workstation clusters will eventually vanish. We can
expect that the widespread use of commodity high-speed networks, combined with
high performance commodity microprocessors, will continue to make the worksta-

tion cluster a popular parallel platform.

2.3 Communication Paradigms

The programming model used in a parallel system defines the tradeoff between
exposing the underlying hardware platform to the programmer and preserving ap-
plication portability and extensibility. Parallel programs have been long regarded
as difficult to develop and even more difficult to debug. One possible reason is that
programmers usually have a hard time visualizing the interaction among concurrent
entities.

The classical dichotomy of parallel programming style has been shared memory
versus explicit message passing. The shared memory paradigm can be supported
in software, hardware, or both. Hardware-supported shared memory can be based
on either a bus-based network or a multistage interconnection network. However,
neither approach scales to a large number of nodes due to contention. Physically
distributed, logically shared architectures must rely on underlying message-passing
operations to move data among nodes. In one approach, the operating system
supports data distribution and coherence protocols, and maintains a single virtual

shared memory space for the user applications. This method is used in the MIT
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Alewife (2, 3, 4], Stanford FLASH [68, 90], Princeton SHRIMP I, II [26], and Wis-
consin Wind Tunnel [39]. In another approach, programming language constructs
support the shared memory paradigm. The compiler generates communication
stubs to support data distribution and sharing. Examples include Dataparallel
C [67] and HPF [71].

Explicit message passing is often blamed for the difficulty to program and main-
tain parallel applications. Yet most of today’s commercial multicomputers support
this model, in part because it is more closely tied to the machine hardware and
gives more control to the programmer. By exposing the communication hardware,
this method relies on the programmer to prevent deadlocks in the parallel program.
Of course, message passing can also serve as an underlying mechanism to support
the shared memory programming paradigm.

No matter which upper level programming paradigm is used, all communication
operations deal with movement and manipulation of data. Communication oper-
ations can be classified as either point-to-point or collective, depending on the
number of parties involved. Numerous communications libraries have been devel-
oped in the past ten years by commercial and research organizations. The recently
published Message Passing Interface (MPI) standard [131] is the result of an effort
by both industry and the research commﬁnity to improve the portability of parallel
programs among different platforms. MPI defines the interfaces and semantics of
both point-to-point and collective operations. The software layer that implements
these operations is typically packaged as a library. Calls to these routines can be

placed in application code developed by the user or inserted by the compiler. The
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performance of communication operations has direct impact on the performance of
the applications that use them. Carefully designed communication operations can
increase program portability and efficiency. Portability implies that applications
can run on different platforms with little or no modification, and efficiency means
that no matter which platform is used, the communication operations can take

advantage of the underlying architecture to achieve better performance.

2.4 Collective Communication Operations

A communication operation may involve exactly two, or more than two, parties.
When more than two parties are involved, the communication operation is called
collective. As defined in the MPI standard, the participating entity in these com-
munications operation is a process, and the processes involved in a collective op-
eration are defined as a process group. The efficient implementation of collective
communication primitives can enhance the performance of programs that use them.
According to the direction of data movements, we can classify collective communi-
cation operations as point-to-multipoint, multipoint-to-multipoint, and multipoint-
to-point. |

A point-to-multipoint operation is used to distribute one or more data items to a
set of receiving processes. In a broadcast operation, the same data item is delivered
to every receiving process. Another point-to-multipoint operation is called scatter,
in which a different data item is distributed to each group member. The data

flow for broadcast and scatter operations are depicted in Figures 2.1(a) and 2.1(b),
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respectively.

If the same point-to-multipoint operation is performed by all members of a
group, the result is a multipoint-to-multipoint collective operation. If all members
perform a broadcast, then the resultant operation is called all-gather, or gossiping.
When all members perform scatter operations simultaneously, it is called complete
ezchange, or all-to-all personalized communication. Depicted in Figure 2.1(c),
and 2.1(d), respectively, are all-gather and all-to-all personalized communication
operations.

In addition to data movements, computations can be performed on the data.
The global computation can be as simple as a logical operation or as complicated as
a user-defined function. If the resultant data resides at a single node, then the oper-
ation is multipoint-to-point. Depending on the operation performed over the data
set, several different collective operations can be defined. As shown in Figure 2.1(e),
gather refers to pure data movement from all members to a single member; con-
catenation is the operation performed on the data. In contrast, combine means
that in addition to data movement, a logical or arithmetic operation is performed
on the data set; the combine operation is depicted in Figure 2.1(f)

Multipoint-to-multipoint operations also come in several flavors. If the result
of a combine operation is made available to all members, then the operation is
called global reduction; see Figure 2.1(g). A special case, when the global oper-
ation synchronizes all participating members, is called barrier synchronization.
Another special form of multipoint-to-multipoint operation is the prefiz-scan, or

simply scan, where the result at each node depends only on the contents of all its
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predecessors in rank order (Figure 2.1(h)).

All the above collective operations are included in the Message Passing Interface
(MPI) standard [104, 131}, which defines a rich collection of both point-to-point and
collective communication primitives. Key issues discussed in the MPI standard with
regard to implementing these interfaces include sender buffering, receiver buffer-
ing, synchronization, data type, process group, communication context, and virtual
topology. Most of these concepts are borrowed from existing message-passing li-
braries.

The importance of collective communication can be seen from the large number
of pre-MPI communication libraries that include such operations. Vendors of paral-
lel computers typically provide their own message passing libraries that are highly
optimized with regard to their own architecture. Notable examples include IBM's
EUI (External User Interface) [12], Thinking Machine’s CMMD [139, 149], Intel’s
NX [119], and