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ABSTRACT
EXPLORING THE ESTIMATION OF EXAMINEE LOCATIONS

USING MULTIDIMENSIONAL LATENT TRAIT MODELS
UNDER DIFFERENT DISTRIBUTIONAL ASSUMPTIONS

By
Hyesuk Jang
This study aims to evaluate a multidimensional latent trait model to determine how well
the model works in various empirical contexts. Contrary to the assumption of these latent trait
models that the traits are normally distributed, situations in which the latent trait is not shaped
with a normal distribution may occur (Sass et al, 2008; Woods & Thissen, 2006). As a result
when studies construct evaluations or comparisons in order to determine the appropriate
estimation method and to avoid inefficient ones, the distribution or distributional statistics of the
latent trait are considered as a key assumption. This study explores the performance of parameter
estimation using a bifactor model, a type of multidimensional latent trait model in order to

provide information of the effects of violations of the distributional assumptions.

The effects of the distributional assumptions are evaluated using simulation studies. A
two-parameter logistic bifactor model with three factors: one general and two specific factors, is
used as a basic multidimensional latent model. Simulation studies construct eight distributional
conditions based on the degree of skewedness of the general factor, the directions of skewedness
of the specific factors, the correlation between specific factors and four types of item parameter

conditions.

The results showed that item parameter estimation was affected by the degree of
skewedness of the general factor, the directions of skewedness of the specific factors, and the

correlation between specific factors. These conditions of the latent trait distributions had



different effects on item parameter estimation depending on the type of item parameter. Based on
the variances of the mean biases and correlations between generated and estimated parameters,
the most important condition of the latent trait distribution for 6 parameter estimation was the
correlation between the specific factors. With the increasing number of studies and practical need
for multidimensional structures of latent traits, this research provides useful guidelines for

constructing appropriate multidimensional models.

Key words: Multidimensional latent trait model, bifactor model, latent trait distribution,

simulation study
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1. Introduction

1.1 Multidimensional Latent Trait
The work on latent traits started in the 1950s. According to Gifford (1978), the word

‘latent trait” was mentioned in Lazarsfeld (1950), and latent trait theory was first developed by
Lord (1952, 1953a, 1953Db). Latent traits are unobservable, and cannot be measured directly. In
latent trait theory, the latent trait is portrayed as underlying participants’ performance on sets of
test items, which is why it is called a “latent” trait or ability (Gifford, 1978). Test items are used
to collect participants’ responses to particular stimuli, and based on the response features from
the collected data, the characteristics of the participants and items may be estimated by using a

latent trait model.

In order to have a basis in scientific methods, item response theory (IRT) as a latent trait
theory has been developed to describe the relationship between participants’ responses and their
level of abilities by a mathematical function (Lord, 1980). The models used for item response
theory can be distinguished as unidimensional item response theory (UIRT) or multidimensional
item response Theory (MIRT) models depending on whether the number of latent traits modeled
is one, or more than one. According to the book by Reckase (2009), work in fields such as
education, psychology, and statistics suggests that the structure of human knowledge is
complicated, and that the processes that produce observed responses to test items are often
complex and varied. As a result, multidimensional item response theory (MIRT) has been
developed to better fit reality. Chalmers (2012) also suggested that even though unidimensional
models can be useful, in order to adequately specify the nature of measures with complicated

structures, it is essential to consider their dimensionality.



Many researchers also have considered multidimensionality in measuring particular
constructs of interest. To produce test items that follow an expected factor structure, item
construction studies have constructed and analyzed test item data using multidimensional latent
trait models, for example in educational assessment (OECD, 2007a & 2007b; von Davier, 2008;
Hichendorff, 2013) and psychological or sociological constructs (Capella & Turner,

2004;Y oshida & James, 2010; Eboli & Mazzulla, 2007; Martin, 2007; Duncan-Jones, 1981a &
1981b). In educational assessment of science literacy in PISA 2006, for example, the test
consisted of three content areas: earth and space systems, living systems, and physical systems.
According to OECD (2007a; 2007b), the average score on science questions from different
content areas for a particular country tend to vary. This suggests that even though the test
examines science literacy as a general latent trait, a different pattern of the students’ ability
distribution can exist depending on the sub-latent traits (OECD, 2007a). In this case, modeling
the total latent trait, ignoring the sub-domains, could result in scores that are not easily
interpretable or policy decisions that are erroneous because of the lack of information about the

student latent trait.

Capella and Turner (2004) developed an instrument of customer satisfaction in the
vocational rehabilitation services. In this research, the customer satisfaction survey considered
four components of satisfaction: counselor interpersonal factors, counselor job effectiveness,
satisfaction with the services, and satisfaction with the agency. Confirmatory factor analysis
indicated that the satisfaction instrument consisted of three dimensions that reflected the
counselor that the customers interacted with, the services that the customers received, and the
agency that provided the services. The research showed that customer satisfaction can be

described as consisting of multiple latent traits.



Model A: Model B: Model C:

Multiple Correlated Traits Second Order Bifactor

Figure 1-1. Examples of Multidimensional Latent VVariable Models (Reise et al, 2007; Reise et al,
2010)

Multidimensional measurement and analytical methods have been used in social network
analysis of human interactions. One of the efforts in the measurement of interactions that has
attracted interest was the construction of the Interview Schedule for Social Interaction (I1SSI),
which was developed by the Social Psychiatry Research Unit at the Australian National
University (Duncan-Jones, 1981a & 1981b). The survey consisted of 50 items asking about the
availability or adequacy of social interaction and attachment, and about acquaintances, friends,
attachment, opportunities for nurturance and reassurance of worth, and reliable alliances.
Duncan-Jones (1981) evaluated and characterized the structure of the 1SSl according to

subdomains of social relationships by using confirmatory factor analysis.

1.2 Multidimensional Latent Trait Models

To describe various item content, formats, and relationships between multiple factors,
various latent trait models have been developed and used. Reise et al. (2007) provides examples
of multidimensional latent models, three of which are shown in Figure 1-1. Circles represent

dimensions or latent factors, and rectangles represent items used for measuring the factors.



Model A is a typical multidimensional correlated traits model. Each latent trait is related to some
of the items, and it is assumed that there is a correlation between the factors. Model B shows a
multidimensional model with a higher order structure of latent traits, which is often referred to as
a second-order factor model. As in Model A, the latent traits at the lower level are measured by
some of the items. The difference is the presence of a second order trait explaining the
correlation between the first level traits. Although Models A and B measure certain factors
related to common parts of the items and show relationships among the latent traits, they do not
include general factor directly related to all of the items. Model C shows the structure of a
bifactor model. The bifactor model has two kinds of factors: a ‘general’ factor connected to the
all items accounting for the item intercorrelations, and several ‘group’ or ‘specific’ factors
connected to the some of the items representing additional covariance unexplained by the general

factor.

The bifactor model has a mathematical relationship with other models specifying
multidimensional structures of test items. In Rijmen (2010), the bifactor model was compared to
two other multidimensional IRT models: the testlet model and the second-order model. The
research demonstrated that while all three models take account of item clusters, there are some
differences in the consideration of specific factor loadings. The testlet model has a constraint on
the loadings of the specific factors, and they are estimated from the general factor loading in a
proportional way within each testlet. Under the assumption that the second order model also has
proportional specific factor loadings, the second order models can be described as restricted
forms of the bi-factor model. Therefore, research using the bifactor model can be viewed as
relevant to multidimensional models in general, including those described above that take item

clusters into account.



1.3 Latent Trait Distributions

Many studies using latent trait models focus on the latent trait estimate. To estimate the
latent trait means to locate each examinee somewhere on each continuum scale, allowing us to
investigate a examinee’s status on each latent trait, or to compare examinees’ relative statuses
(Reckase, 2009). Hambleton et al. (1991) emphasized the importance of the latent trait in
demonstrating that the IRT models are based on two postulates; one about whether participants’
performances on test items can be explained by their latent traits, and the other about whether the
relationship between their item performance and the traits can be modeled by a particular family
of item characteristic functions. Among the parameters in latent trait models including item
difficulty, item discrimination and item guessing parameters, and person latent trait parameters,
Sass et al. (2008) suggested that the latent trait parameters be considered the most important to
estimate, because the latent trait estimates can be used to determine an examinee’s proficiency

classification or standing on a psychological construct.

The estimation of the latent traits is important not only to providing examinees’
proficiency classification or measurement of psychological constructs but also because it reflects
to a central assumption of latent trait models. Most of factor models assume normal distribution
of the latent trait; however, situations in which the latent trait is not normally distributed may
occur in reality (Sass et al, 2008; Woods & Thissen, 2006). Violation of the assumption that the
latent trait is normally distributed is a critical issue because it affects confidence in the estimates
from statistical models, which have desirable regularity properties only under conditions
consistent with the assumptions. Researchers who are interested in studies related to parameter
estimation of latent trait models have used various estimation methods, such as maximum

likelihood, least squares, and Bayesian estimators. All these estimation methods use the



distribution or distributional statistics of the latent trait, and assumptions about the latent trait
distribution are an important issue. Many studies have constructed evaluations or comparisons of
estimation methods in order to identify the most appropriate estimation methods and to avoid the
inefficient ones (Finch, 2010; Cai et al., 2011; Li & Lissitz, 2012; Woods & Thissen, 2006). As
an extension of these studies, my research evaluates the estimation performance of a
multidimensional model under conditions characterized by various distributional assumptions

about the latent traits.

1.4 Simulation Study

The study of latent trait distributions is significant in order to evaluate the performance of
latent trait models and their estimation processes. Many of the studies that evaluate estimation
quality use simulation and this study exploring the estimation performance of multidimensional
latent trait models also uses simulation. Simulation studies have been popular in various fields
of research. The large numbers of simulation studies in certain fields or addressing particular
topics shows that many researchers are still using simulation studies (Axelrod, 2005). One reason
for using simulation study is a lack of appropriate empirical data. Practically, it is true that
collecting data requires a lot of time and effort, and sometimes it is hard to get the data that we
really want to analyze. Especially when research conditions do not permit researchers to collect
appropriate data to address a particular question, such data can be simulated. However, leaving
aside practical limitations that suggest study by simulation, there are significant benefits that

simulation study provides.

First, by using a simulation study, we can re-use existing information derived from

previous research to conduct deeper research or develop a sequential research line. If we have



parameter estimates in an original dataset related to our research interest, using them to generate

additional data samples may be a better use of resources than collecting data again.

Simulation study provides not only the tools to allow us to use available information, but
also the opportunity to study unobserved research conditions. Without collecting data, empirical
analysis is not able to be used unless the analysis uses second hand or published data. On the
other hand, in simulation studies, conditions that cannot easily be created or may never have
occurred can be produced. Also, the results from these studies can predict and help prepare for

empirical situations that might occur in the future.

Simulation study methods allow us to replicate the statistical analyses in a very efficient
way. Replication allows us to confirm that the results from a simulation study are reliable, or to
test that the inferences from various models are robust (Axelrod, 2005). For example, in order to
compare estimation methods, we need to examine amounts of estimation error or other statistical
errors that are not related to one’s research interests, but inevitably occur. In this case, one set of
empirical data is not enough to compare the differences among all conditions of interest. Finally,
the results from the simulation study provide methodological information and can be discussed

related to empirical applications, as | will do in this study.

1.5 Research Question

This research evaluates estimation performance of a multidimensional latent trait model
for latent trait and item parameters under various latent trait distribution conditions. The
multidimensional latent trait model that is used for this research is a two-parameter bifactor
model with one general factor and two specific factors. In order to answer the research questions,

a simulation study is constructed with conditions representing different latent trait distributions



and sets of item parameters. The latent trait distribution conditions can be characterized
according to the degree of skewedness of the distribution, the direction of the distribution
skewedness, and the intercorrelations between specific factors. The latent trait distribution
conditions includes four conditions combining general and specific latent trait distributions with
particular skewedness: 1) normal general factor and non-normal specific factors skewed in the
same way; 2) normal general factor and non-normal specific factors skewed in a different way; 3)
non-normal general factor and non-normal specific factors skewed in the same way; and 4) non-
normal general factor and non-normal specific factors skewed in a different way. The parameter
estimation is evaluated under two levels of intercorrelation between specific factors. Further,
four different possible sets of item difficulty and discrimination parameters are considered. In
total, eight conditions of latent trait distributions and four conditions of item parameters are
constructed through simulation. Specific descriptions of the simulation study design are provided

in Chapter 3.

This research explores the estimation performance of the bifactor model under different

distributional and item parameter conditions. My specific research questions are as follows:

What precision results from the parameter estimation of the bifactor model:

1) depending on each combination of latent trait distributions in terms of (a) the
normality of the general factor distribution, (b) direction of the skewed distributions
included in the general or specific factors, and (c) the correlations between the specific

factors?, and

2) depending on the levels of the item difficulty and discrimination parameter values?



The literature review of the bifactor model, latent trait distribution and related studies are
discussed in Chapter 2, and the procedure of the simulation study and methods to generate and

analyze the data are provided in Chapter 3.



2. Literature Review

2.1 Bifactor Model

Collected data is not a direct measure of the unobservable latent trait, but rather a proxy
for the latent trait. Therefore, before an analyst uses collected data, its measurement properties
should be evaluated about whether it represents the construct validly, and measures the construct
consistently across the participants. Also, in order to provide precise information for construct

analysis, it is important to consider the suitability of the method that we use for the analysis.

In order to measure the sub-structure of a general latent trait, Gibbons and Hedeker

(1992) introduced the bifactor model for binary items, which is derived from the ‘bifactor’
solution named by Holzinger and Swineford (1937). The model has the constraints that each item
has a) a nonzero loading on the general factor, which is the primary dimension; and b) a second
loading on no more than one of the specific factors. Also, each specific factor is orthogonal to
the general factor and other specific factors. The pattern matrix for a bifactor model of five items,
for example, could be shown as

arp o 0

[(120 w0 l

=03 o3 O [,

ag 0 (142J
aso 0 a5

where ay is the factor loading of item j on factor k. The factor loadings indicate the item slope,

or “discrimination,” parameters (Cai, Yang, & Hansen, 2011). In the matrix above, the five items
are measures for one general factor and two group factors. The loadings on the general factor in

the first column are oy, which should be nonzero, and the loadings of items 1-3 in the second

10



and 4-5 in the third column are related to specific factors 1 and 2 respectively (Gibbons &

Hedeker, 1992; Li & Lissitz, 2012).

The function of the bifactor model can be explained as an IRT model. Compared to the
unidimensional two-parameter IRT model, in the bifactor model general and specific latent traits

are divided into separate parts with corresponding item parameters.

The functions of the unidimensional two-parameter IRT model and two-parameter

bifactor model are as follows (Reckase, 2009; Cai et al, 2011; Li & Lissitz, 2012):

Unidimensional two-parameter IRT model:

1

P(u=1]0y, a;, di):m

, and

Two-parameter bifactor model:

1
I+exp{-[d;+ag0,+a,0.]}

P(u=1 |90, 0., ag, as,di)=

The left-hand side of each equation represents the probability that an examinee answers a
question (or an item) correctly. 0 is an individual examinee’s ability related to the latent trait, and
the value shows the location on the 8 continuum. ‘a’ and ‘d’ are the item parameters for the ith
item. ‘a’ indicates an item discrimination, and ‘d’ is calculated from the item difficulty and item

discrimination parameters as shown in Equation below: (X):

di=-b /Z a2
v=0

where ‘b’ is an item difficulty parameter and m is the number of dimensions (Reckase, 2009).

11



The bifactor model has been used for multidimensional item analyses with various
purposes. Reise et al (2007) demonstrated the utility of the bifactor model, and according to the
research, the bifactor model can inform decisions about the dimensionality of the data and what
type of models are appropriate for analysis: a) the bifactor model can be used to check the
assumptions of unidimensional IRT models and test the fit of these models to possibly
multidimensional data; b) it can be used, like non-hierarchical MIRT models, to form subscales;
and c) it can be an alternative to using non-hierarchical multidimensional models for measuring
individual differences. As a representative multidimensional latent trait model, the bifactor
model is investigated under various distributional conditions of the latent traits. The next section

discusses previous research on latent trait distributions.

2.2 Previous Research on Latent Trait Distributions

The estimation of the latent traits is important not only to providing examinees’
proficiency classification or measurement of psychological constructs but also because it reflects
to a central assumption of latent trait models. Gibbons and Hedeker (1992) explain the
assumption of the latent distribution in factor models by using Thurstone’s multiple factor model

(1947). The multiple factor model is as follows:
yj=aj191+aj292+aj3 63 cee .+(1jk6k+€j,
where y is a latent variable, 0 is an underlying ability, « is a factor loading, and € is a residual.

In the multiple factor model, underlying abilities of 6s and the latent trait of y are
assumed to follow normal distributions. It implies that the underlying abilities (6s) are
orthogonal, which is an assumption of any bifactor model, and that residuals of € are normally

distributed. The assumption that the relations between factors are orthogonal reduces the
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complexity of the integration involved in estimating the parameters. The estimation efficiency
produced by the assumption of orthogonal latent trait distributions is strength of the bifactor

model.

As mentioned above, most of factor models assume normal distribution of the latent trait;
however, situations in which the latent trait is not normally distributed may occur in reality. Sass
et al (2008) suggested two cases that could result in non-normal distribution of a latent trait: (a) a
non-normal sampled distribution, and (b) a non-normal original distribution. A non-normal
sampled distribution is derived from a non-randomly sampled population distribution. For
example, when the sample is collected from a limited range of the population distribution, for
instance, collected only from the low level class or the high level class, the latent trait
distribution can be skewed. Also, it may occur that the original latent trait follows a non-normal
distribution when a test is very difficult or very easy, or when psychological constructs that have

skewed response distributions are observed.

The research on latent trait distributions has been conducted on both the unidimensional
and multidimensional latent trait models. Sass et al. (2008)’s research using unidimensional IRT
models showed that (a) a positively skewed distribution produces greater latent trait estimation
error than a normal distribution does; (b) for extreme examinees, item difficulty estimates
produce larger amount of estimation error; and (c) the best latent trait estimation procedure
depends on whether a researcher is primarily interested in extreme or non-extreme examinees.
Woods and Thissen (2006) introduced the non-parametric estimation of IRT latent distribution
using spline—based densities, which they refer to as Ramsay-Curve IRT (RC-IRT). They showed
its capability by applying it to normally-distributed and skewed latent distributions in a

simulation study.
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Finch (2010) compared the estimation methods implemented by NOHARM (unweighted
least squares estimation) and Mplus (robust weighted least squares estimation) software using
multidimensional confirmatory factor analysis models. The results showed that the estimation
methods of NOHARM and Mplus were affected by the distribution of the latent traits, and that
item difficulty and discrimination parameters estimated from responses of examinees a skewed
latent trait distribution have a larger amount of standard error than those estimated from
examinee groups with a normal latent trait distribution. This research added to results that show
IRT parameter estimation is affected by the latent trait distribution shape, and can be explained
by the fact that item response theory models express the functional relationship between the
latent trait and observed score distributions as a normal ogive (McDonald, 1997). Batley and
Boss (1993) studied the estimation of latent trait distributions with three levels of
intercorrelations between two latent traits in multidimensional two-parameter logistic model.
They showed that the both the best estimation of the first latent trait and worst estimation of the
second latent trait occurred in the ‘0’ correlation condition. According to their discussion,
estimation of the second latent trait was influenced by rescaling of the estimates; as the
correlation between the latent traits increases, the model with two latent traits has features closer
to those of a unidimensional model. Cai et al. (2011) studied estimation efficiency using full
information bifactor analysis. The research was designed to study conditions involving a
multigroup bifactor model with normally distributed latent factors, and various types of items,
such as dichotomous, ordinal, and nominal items. This study was constructed under the normal
distribution assumption; however, the research discussed the possibility of the non-normal

distribution of the latent trait and suggested the future research.
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2.3 Simulation Study

2.3.1 Simulation as a Research Methodology

In Axelrod (2005), simulation study is identified as one of three major research
methodologies: induction, deduction, and simulation; research using induction methodology
discovers the patterns that the research is interested in by analyzing empirical data, while
research with deduction methodology suggests a set of axioms and proves the consequences
from the logical connections between the assumptions. Indicating simulation as a “third way of
doing science,” Axelrod (2005) explained its process and theme as different from induction and
deduction (See Table 2-1). First, in a simulation study, assumptions of theory are used for data
generation, whereas research with the deduction methodology uses assumptions in order to
affirm or reject a theorem that the research focuses on. Second, the data set in a simulation study
is not only collected empirically as in research with induction methodology, but is also generated
with specified conditions based on the assumptions. In the analysis of research conducted by the
deduction methodology, consequences can be drawn from logical relationships between
assumptions, while in research conducted by the induction methodology, significant patterns in
the empirical results can be found. On the other hand, simulation methodology provides a tool to
support creation of study designs precisely representing research conditions of theoretical or

practical interest.

Kippers and Lenhard (2005) mentioned that computer simulation based on a theoretical
or experimental framework might rarely be successful because reality is too complicated to be

explained only by the theorem or by experiments. Computer simulation consists of numerical

solutions and imitations of empirical situations. The quality of a numerical solution solutions
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Table 2-1. Comparison of Three Research Methodologies

Deduction

Induction

Simulation

Using

assumptions

To affirm or reject a

theorem

To ground the theorem

To generate data sets

Used for construction of

Specified and generated

between assumptions

Data Collected empirically
the theorem with the assumptions
Drawing consequences Providing a tool to be
Analysis and Finding the significance
from the relationships able to use intuitional
results in data

methods

* This is tabulated by using Axelrod (2005).

and imitations of empirical situations. The quality of a numerical solution depends on knowing

how to control inevitable statistical or calculation errors, and validating an imitation of an

empirical situation in order to reproduce the results from empirical analysis. If a theorem to

specify phenomena is established, the validity of computer simulation is related to whether the

study represents the empirical situation or reality accurately. As a result, Kiippers and Lenhard

(2005) argued that simulation modeling can be considered an attempt to imitate reality, and can

be validated not by theoretical arguments but by using experience or existing data because the

simulation study is an “experiment with theories.”
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The fact that a simulation study is an imitation and representation of reality means that
judgments about its validity can depend on epistemology. Schumid (2005) discussed the truth of
simulation as connected to three philosophical theories. First, every simulation study should have
a corresponding counterpart in reality, which is called a property of correspondence. Once the
property of correspondence is met, there are sequential questions of how to demonstrate the
relation between the statements to be described as assumptions, and reality, to exist, and how to
define “reality” itself. Second, another philosophical theory related to simulation study is
consensus, which means that simulation studies should be accepted by a community perspective.
This implies that in addition to having an objective connection to reality, simulation studies
should have subjective rationales in their context. Last, simulation studies should have coherence,
which means their design is believed to be consistent with other theorems. However, a coherent
situation does not guarantee a true relationship between reality and the simulation study.
Referring to “sufficient accuracy and specific purpose” as the important points in evaluating the
validity of simulation studies (Robinson, 2004, p210), Schumid (2005) delineated a validation
process that determines the sufficient level of accuracy of a simulation, and constructs the

simulation model to represent the real world system for a specific purpose.

To sum up, constructing a simulation study should be based on theory and empirical
evidence to support the validity of the design. Review of previous studies and empirical analyses

for determining the conditions of this simulation study will be provided subsequently.
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2.3.2 Simulation Studies of Latent Trait Models

In order to answer questions about estimation of performance, many studies have been
constructed using simulation. Based on previous simulations studies, simulation conditions and

parameters were reviewed for selecting the simulation conditions of this study.

a. Distribution of Latent Trait

Finch (2010) constructed a simulation study to compare unweighted least squares (ULS
and robust weighted least squares (RWLS) estimation. Latent trait distributions were generated
as normal, or skewed with skewness of -1.5 and kurtosis of 3.0. Cai et al. (2011) generated a
general factor and specific dimensions, which were set to be jointly normally distributed and
mutually orthogonal. Li and Lissitz (2012) also generated their general latent traits from normal
distributions with means of -0.5, 0, and 1, and a variance of 1, and specific latet trait values from
a standard normal distribution. In Woods and Thissen (2006), three kinds of latent trait
distributions were constructed from 1) a normal distribution with skewness of 0 and kurtosis of 3,
b) a platykurtic distribution with skewness of 0 and kurtosis of 2.53), and c) a positively skewed

distribution with skewness of 1.57 and kurtosis of 6.52.

b. Intercorrelation between Latent Traits

In Batley and Boss’s (1993) study, three levels of intercorrelations (0, 0.25 and 0.5) were
constructed between two latent traits. Gosz and Walker (2002) used three intercorrelations (0.5,
0.75, and 0.9), two of which were higher than those of Batley and Boss. Finch’s (2010) research
used four levels of intercorrelations in order to evaluate the accuracy of item parameter
estimation: a ‘0’ correlation as no correlation, a 0.3 correlation as a low level of intercorrelation,

0.5 as a medium level, and 0.8 as a fairly large correlation. The research concluded that with a
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high level of correlation between the latent traits, there is great bias in item parameter estimation,

regardless of the estimation method used.

c. Discrimination Parameter

In order to generate the item parameters for a simulation, previous research used either a
population distribution or a specific value of each parameter. The study of Finch (2010)
generated discrimination parameters from a normal distribution with an estimated mean of
0.9657 and a standard deviation of 0.3161; the simulated discrimination parameters ranged
between 0.3736 and 2.0158. Woods and Thissen (2006) also generated their discrimination
parameters from a normal distribution, but with a mean of 1.7 and a standard deviation of 0.3,
based on analysis of existing psychological scales. Cai et al. (2011) and Li and Lissitz (2012)

used specific parameter values for the simulation data, which were values ranging from 1 to 2.

d. Difficulty Parameter

Difficulty parameters are usually generated from a normal distribution. Finch (2010)
generated difficulty parameters from the standard normal distribution. Li and Lissitz (2012), who
studied the bifactor model in vertical scaling, used difficulty parameters for non-common items
from normal distributions with means between -0.5 to 0.5 and variance of 1, and as common
items from a uniform distribution with a range of 1.5, for example, -1 to 0.5 or -0.5to 1. Woods
and Thissen (2006) generated difficulty parameters from a truncated standard normal distribution
ranging from -2 to 2. Cai et al. (2011) selected specific values for difficulty parameters, for

example, -1, -.25, .25, 1.
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e. Replication

Various simulation studies with IRT models have used between 100 and 1000
replications. Finch (2010) and Woods and Thissen (2006) completed their study with 1000
replications of the simulation. The number of replications in Cai et al. (2011) was 500, and Li

and Lissitz (2012) and Sass et al. (2008) replicated their simulations 100 times.

An appropriate or adequate number of replications depends on what kinds of parameter property
are of primary research interest, because each parameter property needs a different level of
replication to obtain stable estimation results. Once the parameter property of interest is
determined, depending on the number of replications, we can evaluate the precision (stability) of
the simulation. If the stability of estimation looks good above a certain minimum number of
replications, we do not need to replicate the studies many times unnecessarily. On the other hand,
if a large number of replications are necessary in order to get stable results, the appropriate
number of simulations should be determined, and conducted. At this point, it is important to
think of simulation efficiency or to construct an efficient algorithm of simulation because in case
a large volume of data simulation is necessary, it is crucial to do the simulation study in a speedy

and simple way.

f. Number of Items

With a small number of items, less than 30, the precision of item parameter estimation is
influenced mainly by the latent trait distribution, whereas the impact of the number of items on
estimation is small (Finch, 2010). This result is consistent with Stone (1992), who reported that

the calibration results from at least 40 items are robust.
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g. Number of Examinees

For ULS and RWLS estimation methods, even though the estimation precision slightly
increases when the number of examinees is increased, there is no significant effect of the number
of examinees on the estimation results if the number is greater than 250 examinees (Finch, 2010).
Studying estimation of the bifactor model in vertical scaling, Li and Lissitz (2012) generated
1,000, 2,000, and 4,000 examinees. The research noted that estimation results showed that the
accuracy and stability of estimation increased with the sample size, and that especially the results
from the sample sizes of 2,000 and 4,000 had lower root mean squared error and standard errors

than those from the sample size of 1,000.

h. Estimation Methods

Finch (2010)’s results show that using ULS estimation in NOHARM software provided
better precision of item parameters, than RWLS estimation in Mplus, but he points out that ULS
with NOHARM should not be used when the models have pseudo-guessing parameters and high
correlations between latent traits. Also, both of the estimation methods tended to underestimate
the item parameters when latent trait distributions were skewed. In order to conduct multigroup
concurrent calibration during vertical scaling, Li and Lissitz (2012) implemented marginal
maximum likelihood by the EM algorithm using IRTPRO software. Woods and Thissen (2006)

also used the EM algorithm for marginal maximum likelihood to compute spline-based densities.

i. Computer Programs for Parameter Estimation

As interest in parameter estimation of latent trait models has increased, various kinds of
computer programs have employed and developed program languages and packages for latent
trait analysis. Chalmers (2012) introduced the Multidimensional IRT package for R-

programming, and Sheng (2010) studied MATLAB programming in order to estimate MIRT
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models with general and specific latent traits using Bayesian methods. IRTPRO is equipped with
bifactor model analysis, and Mplus also provides bifactor model analysis with maximum
likelihood estimators. Seo (2011) estimated the parameters of latent traits for the bifactor model
with maximum likelihood and Bayesian estimation methods using the MBICAT algorithm in R.
WLS estimators can be utilized by using NOHARM and Mplus with limited-information

algorithms, and BMIRT has a Bayesian MCMC estimator (Chalmers, 2012).

2.4 Empirical Data Analysis

In order to show the importance of and provide the rationale for study of skewed latent
trait distributions, the proficiency scales of the Program for International Student Assessment
(PISA) mathematics, reading, and science tests were investigated. The Organization for
Economic Co-operation and Development provides technical and supplementary reports to
describe the test construction and report key findings of the assessment, and the National Center
for Education Statistics has also published analysis of the PISA results focusing on US students
from PISA 2000 to 2009. The data and information used in this part are collected from those

reports and modified for this research.

2.4.1 Distribution of Latent Traits in PISA 2003, 2006, and 2009

The Program for International Student Assessment uses proficiency levels to describe
student performance. In order to reach a particular level, a student must be able to answer a
majority of items correctly at that level. Students are classified into one of the levels according to
their scores (OECD, 2001). For example, the reading literacy scale in PISA 2009 has eight cut
point scores from Level 1b to Level 6, and students’ scores are located on a scale from 0 to 1,000

(NCES, 2010). An example of specific cut scores is shown in Table 2-2.
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Table 2-2. Cut scores of Reading Literacy Proficiency Levels in PISA 2009

Greater than Less than or equal to

Below level 1b - 262.04

Level 1b 262.04 334.75

Level 1a 334.75 407.47

Level2 407.47 480.18

Level3 480.18 552.89

Leveld 552.89 625.61

Level5 625.61 698.32

Level6 698.32 -

Table 2-3 and Figures 2-1 and 2-2 show the percentage distributions of 15-year-old
students in the United States on combined reading, mathematics, and science literacy scales by
proficiency level. In the 2000, 2003, and 2006 PISA results, the distribution of reading
proficiency followed a negatively skewed distribution, whereas the mathematics and science
literacy scales had positively skewed distributions. In PISA 2009, compared to the results in
PISA 2000, the reading proficiency scale, which was modified from 6 levels to 8 levels, was
generally normally distributed. In PISA 2009, the distribution of mathematics literacy had heavy

left tails similar to the distribution from PISA 2003. Although the science literacy distribution
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Table 2-3. Percentage Distribution of Proficiency Level Scores in PISA 2000, 2003 and 2009

Mathematics
Reading (%) Science (%)
(%)
2009 2000 2009 2003 2009 2003
Below level Below level Below level
1 4 8 10 4 8
1b 1 1

Level 1b 4 Level 1 9 Level 1 15 16 14 17
Level 1la 13 Level 2 20 Level 2 24 24 25 24
Level 2 24 Level 3 27 Level 3 25 24 28 24
Level 3 28 Level 4 24 Level 4 17 17 20 18
Level 4 21 Level 5 16 Level 5 8 8 8 8
Level 5 8 - - Level 6 2 2 1 2
Level 6 2 - - - - - - -

* The table is made by the information from NECS, 2001, 2004, 2007, & 2010

has been getting closer to a symmetric distribution over time, compared to the results from PISA

2006, it still is a little skewed with a heavy left tail.
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Reading in PISA2000 Mathematics in PISA2003 Science in PISA2006

alll aill. lls.

Figure 2-1. Percentage distribution of proficiency level in PISA 2000, 2003 and 2006
(Modified from NCES, 2000, Table A3.7; NCES, 2004, Figure 4; NCES, 2007, Figure 4)

Reading in PISA2009 Mathematics in PISA2009 Science in PISA2009

Slll il alli

Figure 2-2. Percentage Distribution of Proficiency Level in PISA 2009
(Modified from NCES, 2010, Figure 3,5, & 7)

2.4.2 Sub-domain Proficiency Levels in PISA
From 2000 to 2009, PISA has measured student’s Mathematics and Science literacy with
three kinds of sub-domains. The distributions of sub domain performance by proficiency level

are shown in Figure 2-3.
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2000 Reading Literacy categorized into six levels from Below Level 1 to Level 5

allly alll ol

Retrieving information Interpreting texts Reflecting on texts

2003 Mathematics Literacy categorized into seven levels from Below Level 1 to Level 6

il il wll,

Quantity Space and Shape Change and relationship

2006 Science Literacy categorized into seven levels from Below Level 1 to Level 6

At s il

Identifying scientific Explaining phenomena Using scientific
issues scientifically evidence

2009 Reading Literacy categorized into eight levels from Below Level 1b to Level 6

o e e

Access and retreive Integrate and interpret Reflect and evaluate

Figure 2-3. Percentage Distribution of Sub-domains in PISA 2000, 2003, 2006, and 2009
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The analysis results show that the distributions of sub domain proficiency levels for each
subject show different patterns. Reading literacy in PISA 2000 had negatively skewed
distributions with long tails to the left for all three sub-domains. Mathematics literacy in PISA
2003 had a positively skewed distribution with a heavy tail in the lower level of proficiency for
the three domains, whereas they had peak points at different proficiency levels. Science literacy
in PISA 2006 showed similar positively skewed distributions for the three domains, but with
slightly different kurtosis. Reading literacy in PISA 2009, with eight levels of proficiency,
showed almost a symmetric distribution, and it showed quite a different distribution from reading

literacy in PISA 2000, which had seven levels of proficiency.

In summary, in PISA 2003, 2006, and 2009 the distributions of reading are negatively
skewed, with a heavy tail on the high levels of proficiency. The distributions of mathematics and

science are positively skewed, with the heavy tails toward the low levels of proficiency.

In this analysis of sub-domain proficiency levels in PISA, the distributions of the sub-
domains show different patterns by subject, and the three domains in each subject show slightly
different distributional properties. While reading in 2000 had negatively skewed distributions for
the three domains, each distribution had different levels of skewedness and thickness of its tails.
The subdomain distributions for math in 2003 had common heavy tails on the lower level,
however, each distribution had different points with the highest frequencies. Science in 2006 had
a similar pattern for the three domains, but with different levels of kurtosis, and reading in 2009
also had a similar pattern of symmetric distribution for three domains, with the different level of

kurtosis.
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The results of this PISA score distribution analysis show that the distributions of the
latent trait scores can have different shapes for each subject matter, and distributions within the
sub-domains of each subject can have different properties. Within the same general construct,
such as math, science or reading, their sub-domain proficiency level scores had different

distributional properties, especially related to the skewedness and kurtosis of the distributions.
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3. Method

3.1 Data Generation

In order to study the effect of different distributional assumptions when a
multidimensional latent trait model is estimated, | generated a set of latent trait distributions and
item parameter sets corresponding to the simulation conditions. Previous literature and empirical
analyses were used for selecting the true item and person parameters in order to allow the
simulation data to be representative of the reality. Table 3-1 shows the simulation conditions for
data generation. The model used for estimating the item and latent trait parameters is a two-
parameter logistic bifactor model. There are three latent traits in each model, one general factor
and two specific factors. For the latent trait distributions, normal and skewed distributions are
generated. Simulation conditions related to the item parameters consist of two levels of item

difficulty and item discriminations.

3.1.2 Data Generating of Latent Trait Distributions

The bifactor model designed for this research has three latent factors including one
general factor and two specific factors and three latent trait distributions in every replication of
the simulation study. The trait distributions are generated according to combinations
characterized by (a) the normality (shape) of the general factor distribution, (b) the direction of
skewedness of the skewed distributions included in the general or specific factors, and (c) the
correlations between the specific factors. The general factor distribution in each condition is one
of two shape types: normal or positively-skewed. Each general factor distribution is paired with
two specific factor distributions, which are two positively skewed distributions or one positively

skewed distribution and one negatively skewed distribution.
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The bifactor model assumes that the specific factors are not only uncorrelated with the
general factor, but also uncorrelated with each other. In order to evaluate the estimation quality
when this assumption is violated, two levels of intercorrelation between latent traits of 0.2
(barely correlated) or 0.8 (correlated) are given for each paired condition. With the two
conditions of normality of the general factor, two conditions of direction of skewedness of the
specific factor distributions, and two levels of intercorrelations, a total of eight simulation

conditions are assigned to the latent trait distributions.

Table 3-2 shows the specific simulation conditions of the latent traits. Based on the
simulation conditions, in order to look at the effects of general factor distribution, the results
from conditions 1 to 4 and the results from corresponding conditions 5 to 8 are compared.
Similarly, the direction effects of the skewed distributions of specific factors are evaluated by the
comparison of Condition 1 vs. Condition 3, Condition 2 vs. Condition 4, Condition 5 vs.
Condition 7, and Condition 6 vs. Condition 8. The effect of the extent of correlation between the
specific factors on estimation are evaluated with the comparison of Condition 1 vs. 2, Condition

3 vs. Condition 4, Condition 5 vs. Condition 6, and Condition 7 vs. Condition 8.

Because the model has item difficulty and discrimination parameters, but no guessing
parameter, the effects found from the negatively skewed distribution will be the same as the
positively skewed distribution except opposite in sign. For example, the results from the
combination of negatively skewed specific factors with normal distribution of general factor are
implied by the results from the combination of positively skewed specific factors with normal

distribution in Condition 1 and 2.
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Table 3-1. Simulation Conditions for Data Generation

Simulation factors

Condition

Model

Two-parameter multidimensional latent trait model - bifactor
model with three factors of one general factor and two specific

factors

Distribution of Latent Traits

with Directions

Normal distribution from standard normal distribution with mean
of 0 and standard deviation of 1. Positively or negatively skewed

with a mean of 0.3 or -0.3, and skewedness of 0.8 or -0.8

Discrimination Parameter

2 conditions generated from lognormal distributions with the range
from 0.5 to 2.5; Mean of 1.3 with standard deviation of 0.15 and

mean of 1.8 with standard deviation of 0.15

Difficulty Parameter

2 conditions generated from normal distributions with the range
from -2 to 2; Mean of-0.5 with standard deviation of 0.4 and mean

of 0.5 with standard deviation of 0.4

Number of ltems

Total 60 items with 30 items for each specific factor

Number of Examinees

2000

Estimation method

Full Information Marginal Maximum Likelihood in IRTPRO

Replications

50
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Table 3-2. Simulation Combinations of Latent Trait Distributions

Condition
General Specific 1 Specific 2 Correlation
Number
1 Normal Skewed (+) Skewed (+) 0.2
2 Normal Skewed (+) Skewed (+) 0.8
3 Normal Skewed (+) Skewed (-) 0.2
4 Normal Skewed (+) Skewed (-) 0.8
5 Skewed (+) Skewed (+) Skewed (+) 0.2
6 Skewed (+) Skewed (+) Skewed (+) 0.8
7 Skewed (+) Skewed (+) Skewed (-) 0.2
8 Skewed (+) Skewed (+) Skewed (-) 0.8

* (+) or (-) means a positively or negatively skewed distribution respectively.

The simulation conditions of the latent trait distributions combine the degree of skewedness of

the distributions and the intercorrelations needed to describe multivariate latent trait distributions.

For example, assume that one general factor and two positively skewed specific factors need to

be generated. The procedure of the data generation is as follows:1) a distribution for the general

factor is generated from a normal distribution with mean of 0 and standard deviation of 1 or
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mean of -0.3 and skewedness of 0.8 for a positively skewed distribution, 2) in order to generate
skewed distributions for specific factors with particular levels of correlation between them, two
distributions from multivariate normal distributions are generated with correlations of 0.2 and 0.8,
and 3) the distributions with the correlations that are generated in 2) are non-linearly transformed
into skewed distributions. In this case, the transformed distribution is going to be skewed
compared to the normal distribution, but the correlation between the two specific factors is not

changed.

As mentioned above, the generated distributions considering intercorrelations are
transformed into skewed distributions. In order to transform the correlated distributions into
skewed distributions, | applied the idea of the Copula method (Nelsen, 1999). Relational
functions between normal and targeted skewed distributions are estimated by using their
cumulative probability distributions, and are used in order to transform the multivariate normal
distributions with the targeted intercorrelation into skewed distributions. The steps to generate

the distributions are as follows:

Step 1. Generating the targeted skewed distribution

Based on conditions in previous studies, positively skewed distributions with their first
four moments having values of: mean of -0.3, variance of 1, skewedness of 0.8, and kurtosis of
3.5, are created. For negatively skewed distributions, a mean of 0.3, variance of 1, skewedness of

-0.8 and kurtosis of 3.5 are used.

Step 2. Calculating the cumulative probability distribution of the skewed distribution

generated in the step 1
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In order to calculate a cumulative probability distribution, R-programming is used with

the function of ‘ecdf’, which calculates an empirical cumulative distribution.

Step 3. Estimating the regression function between the normal and the skewed probability

distributions.

For each positively skewed or negatively skewed distribution, regression coefficients
between two distributions were estimated. In this research, the coefficients were estimated fifty
times through simulation analysis estimating the function needed to transform from a normal
distribution to a skewed distribution (see Tables in Appendix A). The fifty data sets of 2,000 or
10,000 cases generated from normal and skewed distributions showed similar coefficients, and
quadratic and cubic functions were identified as the best functions to use for the transformation
based on the variance explained in the model fit. Each coefficient of the polynomial functions
had a very small amount of variance, which shows that estimated coefficients for each trial were
very similar. Finally, the cubic transformation function was selected. The R-squares of the
regression functions between the data of normal distributions and the data of skewed
distributions were over .999. The means of the fifty coefficients were used, and by using a
regression function, the normal distributions were approximately transformed into the skewed

distributions. The regression functions are as follows:

In order to transform the normal distribution values (X) into skewed distribution values
(), two regression functions are used:
for positively skewed distributions,
Y =-0.4508 + 1.0167 xX + 0.1461x x2- 0.0136 x x>, and

for negatively skewed distributions,
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Y =-0.4516 + 1.0135 xX — 0.1500x x> — 0.0115x x>
Step 4. Generating multivariate normal distributions with correlations of 0.2 or 0.8
By using the function to generate a multivariate normal distribution, sets of distributions
are generated with correlations of 0.2 or 0.8 between the specific factor distributions.

Step 5. Calculating the skewed distribution by using the function estimated in step3

The values of the multivariate distributions generated in step 4 are transformed into

skewed distributions by using the one of the formulas estimated in step 3.
Step 6. Checking the descriptive statistics and correlations of the generated distributions

If the descriptive statistics and correlations are not acceptable, the parameters of the

normal distributions are modified to reach the targeted values for the distributions.

3.1.2 Data Generating of Item Parameters

For the purpose of stability, but allowing some comparison, the discrimination parameter
and difficulty parameters are each generated with two levels. Two sets of discrimination
parameters are generated to represent “high” and “low” levels of discrimination in an item set. In
order to avoid negative values for discrimination parameters, the parameters are generated from
lognormal distributions. The lognormal distribution is a log-transformed distribution from a

normal distribution (Hogg & Tanis, 1997), and the probability density function is

(ln x—u)Z

f(X) = 22 X >0

_— e_
xoV2n

with two parameters of p and o, and the mean and variance of a lognormal distribution are

calculated by
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Table 3-3. Parameters for Generating Distributions of Simulation Combinations of Item
Parameters

Discrimination from 0.5t0 2.5 Difficulty from -2 to 2

Mean SD Mean SD

1 1.3 0.15 -0.5 0.4
2 1.3 0.15 0.5 0.4
3 1.8 0.15 -0.5 0.4
4 1.8 0.15 0.5 0.4

2

E(X): ePH‘G? and Var(x): (662'1)62”H62.

Therefore, with the specific target value of mean, E(X), and variance (squared standard

deviation), Var(X), the parameters of p and o are calculated by using the two formulas:

p=In(ECQ) - In ( (355741 and o= [In (S5 +1)

For example, in order to generate a distribution of discrimination parameters with a mean

of 1.3 and a standard deviation of 0.15 from a lognormal distribution, the u of -0.13118 and o of
0.51222 should be used. Similarly, the discrimination parameters in this study are generated from

a lognormal distribution with a mean of 1.3 or 1.8 and a standard deviation of 0.15.

For the difficulty parameter, normal distributions with a mean of -0.5 or 0.5 and a
standard deviation of 0.5 are used. To avoid violating the latent trait model assumption that the

function between the latent trait and the probability of the correct answer is monotonically
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increasing, the variances of the distribution for generating item parameters are manipulated by
giving the range of the difficulty parameter distribution. The distributions of the created
discrimination parameters ranged from 0.5 to 2.5, and those of the created difficulty parameters

ranged from -2 to 2. The combinations of item parameters are shown in Table 3-4.

3.1.3 Data Generating of Examinees’ Responses

The estimation performance of the bifactor model is evaluated via the comparison
between the data generated under the simulation conditions and the data estimated from the
bifactor model. In other words, the comparison means to investigate how the estimated
parameters from the bifactor model are close to the generated data under the simulation
conditions. In order to estimate parameters by using the bifactor model, examinees’ responses

are generated based on the item and 6 parameters generated under the simulation conditions.

Item parameters and 6 parameters are plugged in to the function of the bifactor model in

order to calculate the probability of answering correctly:

1
1+exp{-[di+ag0y+a;0,+a,0,]}

, where d; = -b /23;0 aZ

As a result, each examinee has a probability to answer correctly for each item. To add

P(u=1|0y, 0,,0,, ag, aj,a;, d,)=

randomness to each value, random variables from uniform distributions ranged from 0 to 1 are
generated and assigned to each response probability value. If the probability is higher than the

random value, the corresponding response is assigned as 1, which means that the examinee
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answers that question correctly. If the probability is lower than the random value, the response is

assigned as 0, which means that the examinee responds with the wrong answer.

The total number of items is 60, which are divided so that 30 items are indicators for each
of the two specific factors, and the number of examinees in each data set is 2000. The data sets
are generated by using R-programing and the full information marginal maximum likelihood
estimation (MML) implemented in IPRPRO is used for estimating the parameters. 50

replications of the simulation study are conducted to achieve stable estimation of the results.

3.2 Evaluation Methods

The generated data are compared to the true parameters in order to confirm if the
generated data sets represent the planned simulation design. Descriptive statistics for the
generated data, such as the mean, standard deviation, minimum, maximum, skewedness and

kurtosis, will be provided.

In order to evaluate the estimation precision of the model under the designed conditions,
0 and item estimated parameters are compared to the true parameters assigned. Means and
variances of mean bias were used to judge the precision of parameter estimation. The formula for

mean bias is as follows.
. 1 -~
Mean Bias = - Xk (6;-6; ),

where 8 is the given parameter, 8 is the estimate of the parameter, and k is the number of
parameters, for example, k=30 for discrimination item parameters of each specific factor. The
mean and variance of mean bias were calculated across the replications. Bias is the index
showing that the difference between the parameter and its estimates. To judge overall bias across

the parameters estimated, mean bias is calculated by the average of the differences.
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For the investigation of the distributional difference between the estimated 6 distributions
and the generated 6 distribution, the Kolmogorov-Smirnov (KS) test was utilized. The KS test is
used to compare two empirical distributions by using their cumulative functions (Stapleton, 2008;
Hogg & Tanis, 1997). In order to compare the generated and estimated 6 distribution, the KS test
was utilized with the entire 6 parameter set, and for specific value ranges of the 6 parameters. For
the KS test with the entire data set, a total of 2000 parameters for each analysis were tested. For
the specific ranges, 2,000 6 parameters were sorted by their locations, and sets of 200 parameters
were sequentially assigned to each 6 category. Thereby, ten specific 6 value categories were
constructed for the KS tests. All categories had the same frequency of 6 parameters; however,
that does not mean that their 6 continuums had the same width, because depending on the
generated distribution, the frequencies in a certain fixed 6 range can be different. Every
simulation condition was replicated fifty times, and values showing the numbers of frequencies
from the fifty replications that were statistically significant under the significance level of 0.05

will be reported.
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4. Results

4.1. Data Generation
For the simulation study, the item and 6 parameters were generated, and those values
were used to generate response strings through the bifactor models. The descriptive statistics of

the generated item and 0 parameters are provided.

4.1.1 Item Parameter Generation

The bifactor model used in this study includes three item discrimination parameters
related to general or specific factors, and one d parameter calculated using the discrimination and
difficulty parameters. Table 4-1 shows the descriptive statistics of the generated discrimination
and difficulty parameters. In order to check the range of the generated data, and to avoid extreme

values, minimum, mean, and maximum values were calculated.

The discrimination parameters were generated within the range from 0.5 and 2.5 from a
lognormal distribution with a mean of 1.3 and 1.8, and a standard deviation of 0.15. The mean,
and standard deviation statistics showed that the generated discrimination parameters of the
general and the two specific factors had means and standard deviations very close to those of the
generating distribution in each simulation condition. For the discrimination parameters generated
from a lognormal distribution with a mean of 1.3, the means of three discrimination parameter
sets were 1.298, 1.309, and 1.304, which were very close to the simulation condition of 1.3; and
for the parameters from a distribution with a mean of 1.8, the three means were 1.802, 1.804, and
1.796. All of the discrimination parameters also had values very close to the parameter of 1.5. No
values were out of the range from 0.5 and 2.5. The difficulty parameters were generated from

normal distributions with a mean of 0.5 or -0.5, and a standard deviation of 0.4 within the range
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of -2 to 2. The generated difficulty parameters showed the proper level of mean and standard
deviation for the data sets. The means of the difficulty parameter sets were 0.497 and 0.495 for
the mean parameter of 0.5, and they were -0.515 and -0.497 for the mean parameter of -0.5.
Their standard deviations were close to 0.4, and there were no extreme values outside the range

of -2 to 2.

4.1.2 6 Parameter Generation

There were eight types of ability distributions under the conditions characterized by the
degree of skewedness of the distributions, the direction of skewedness, and the correlation
between specific factors. The normal distributions were generated from a standard normal
distribution with a mean of 0 and a standard deviation of 1. The parameter values for the skewed
distributions were means of 0.3 for the negatively skewed distributions, and -0.3 for the
positively skewed distributions, standard deviations of 1, skewedness of 0.8, and correlations

between the specific factors of 0.2 or 0.8.

The descriptive statistics of the generated 6 parameters are provided in Tables 4-2, 4-3,
and 4-4. The generated ability distributions showed means standard deviations, skewedness, and
correlations near their anticipated values. The general factor distributions were generated from
normal distributions or positively skewed distributions (See Table 4-2). The means of the normal
distribution means were from -0.002 to 0.010, and the means of their standard deviations were
from 0.997 to 1.003. The positively skewed distributions had means that ranged from -0.308 to -

0.302, and means of skewedness that ranged from 0.798 to 0.807.
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Table 4-1. Descriptive Statistics of Generated Item Parameters

Mean (SD) Factors Mean SD Min Max

Min 1.245 0.128 0.841 1.480

General Mean 1.298 0.151 0.994 1.689

Max 1.331 0.188 1.106 1.957

Min 1.224 0.096 0.858 1.471

1.3(0.15) Specificl  Mean 1.309 0.151 1.028 1.631

Max 1.372 0.196 1.174 1.791

Min 1.235 0.114 0.870 1.481

Specific2  Mean 1.304 0.149 1.018 1.639

Disc. Max 1.369 0.217 1.132 1.953
Parameters Min 1.764 0.106 1.349 2.039
General Mean 1.802 0.148 1.485 2.178

Max 1.840 0.179 1.583 2.490

Min 1.739 0.111 1.411 1.945

1.8(0.15)  Specificl Mean 1.804 0.151 1.518 2.134

Max 1.880 0.192 1.617 2.349

Min 1.734 0.112 1.344 1.976

Specific2  Mean 1.796 0.156 1.493 2.155

Max 1.888 0.211 1.621 2.350
Min -0.625 0.281 -1.993 -0.025

Specificl  Mean -0.515 0.405 -1.330 0.338

Max -0.382 0.534 -0.901 0.946

-0.5(0.4) -

Min -0.698 0.323 -1.719 -0.205

Specific2  Mean -0.497 0.395 -1.315 0.283

Diff. Max -0.287 0.491 -0.937 0.641
Parameters Min 0.340 0.301 -0.700 1.065
Specificl  \rean 0497 0399 -0293 1297

0.5(0.4) Max 0.601 0.501 -0.013 1.743

Min 0.294 0.289 -0.637 0.952

Specific2  Mean 0.495 0.386 -0.281 1.291

Max 0.710 0.519 0.044 1.828

* Disc. Parameters: Discrimination parameters; Diff. parameters: difficulty parameters
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Although this study didn’t consider kurtosis as a simulation factor, the skewedness of the
distributions affected the kurtosis of the distributions. Standard normal distributions with a mean
of 0 and standard deviation of 1 have skewedness of 0 and kurtosis of 3 when the standardized
fourth moment is used for the formula of the kurtosis (DeCarlo, 1997). Therefore the kurtosis
values of the normal distributions from conditions 1 to 4 in Table 4.2 show values acceptable to
be regarded as a standard normal distribution. From conditions 5 to 8, the means of kurtosis
values range from 3.551 to 3.646, which are higher than the values for the non-skewed

distribution, showing that the kurtosis values are related to the skewedness of the distribution.

Based on the simulation conditions, all of the first specific distributions were positively
skewed (See Table 4-3). The generated factor distributions had means of means that ranged from
-0.305 to -0.297, means of the standard deviations that ranged from 0.995 to 1.004, and the

means of skewedness that ranged from 0.788 to 0.805.

The data sets of second specific factors were generated from positively skewed
distributions and negatively skewed distributions (See Table 4-4). For the positively skewed
distributions, the means of the distributions were from -0.309 to -0.300, and the means of
skewedness were from 0.783 to 0.807. For the negatively skewed distributions, the means were

from 0.296 to 0.308, and the means of skewedness were -0.834 to -0.812.

The descriptive statistics for the correlations between specific factors in each of the eight
distributional simulation conditions of 6 parameters showed that those distributions had values of
correlations close to 0.2 or 0.8 (See Table 4-5). The mean correlations of distributions generated
with the correlation of 0.2 were 0.192, 0.199, 0.194, and 0.197, and those generated with the

correlation of 0.8 were 0.792, 0.794, 0.791, and 0.793.
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Table 4-2. Descriptive Statistics of General 6 Parameters Generated

Cond. Distribution Stat Mean SD Min Max Skew  Kurtosis

Min  -0.043 0960 -4371 2845 -0.151  2.841

1 Normal Mean  -0.002 0997 -3431 3397 0006  2.988

Max 0048  1.041 -2.889 4131 0105  3.335

Min  -0.047 0962 -4430 2775 -0.097  2.733

2 Normal Mean  -0.002  1.003  -3.405 3.440  0.005  2.967

Max 0046  1.037 -2.807 4333 0151  3.239

Min  -0.057 0958 -4587 2878 -0.121  2.751

3 Normal Mean  -0.001 0998 -3.478 3439  -0.005  3.005

Max 0034  1.027 -2952 3979 0111  3.461

Min  -0035 0954 -4149 2968  -0.094  2.789

4 Normal Mean 0010  1.002 -3387 3481 0004  2.997

Max 0063  1.045 -2.929 5050 0094  3.264

Min  -0347 0961 -1.868 3266 0706  3.288

5 Positively ) on 0305 0999  -1.868 4192  0.807  3.616
Skewed

Max  -0253 1.045 -1.866 5656 0938  4.202

Min  -0361 0970 -1.868 3192 0683  3.091

6 Positively -\ on 0308 0996  -1.868 4243 0798  3.579
Skewed

Max  -0.261 1.036 -1.866 5838 0914  4.075

Min  -0.347 0964 -1.868 3427 0698  3.176

7 Positively —\oon 0302 0999  -1.868 4267 0802  3.602
Skewed

Max  -0.260 1.040 -1.864 5781 0978  4.425

Min  -0.350 0957 -1.868 3352 0681  3.119

8 Positively —\oon 0305 0099 -1.868 4151 0798  3.551
Skewed

Max  -0.249  1.036 -1.867 5378 0923  4.020

* Cond.: Numbers of 8 simulation conditions
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Table 4-3. Descriptive Statistics of First Specific 6 Parameters Generated

Cond. Distribution Stat Mean SD Min Max Skew  Kurtosis

Min  -0.363 0949 -1.868 3.133 0670  3.028

1 Positively /1 oon -0300 0995 -1.868 4185 0788  3.546
Skewed

Max  -0259  1.033 -1.866 5981 0939  4.119

Min  -0.341 0969 -1.868 3.395 0669  3.056

2 Positively —\oon -0207  1.002  -1.868 4262 0794 3578
Skewed

Max  -0259 1035 -1.865 5544 0973  4.468

Min  -0343 0967 -1.868 3.182 0679  3.060

3 Positively —\roon 0303 1.004 -1.868 4190 0805  3.501
Skewed

Max  -0.247 1044 -1.867 5572 0985 4569

Min  -0364 0967 -1.868 3.408 0698  3.177

4 Positively —\\oon -0208 0999  -1.868 4242 0803  3.607
Skewed

Max  -0251  1.051 -1.867 5568 0939  4.339

Min  -0.350 0965 -1.868 3228 0613  2.960

5 Positively —\/oon 20300 1.000  -1.868 4172 0790  3.526
Skewed

Max  -0.243 1041 -1.867 5467  0.897  3.932

Min  -0352 0970 -1.868 3.461 0691  3.219

6 Positively —\oon -0301  1.001  -1.868 4150  0.801  3.563
Skewed

Max  -0254 1050 -1.867 5174  0.893  3.969

Min  -0352 0955 -1.868 3310 0681  3.097

7 Positively 1o n -0305 0996  -1.868 4268 0799  3.609
Skewed

Max  -0.258 1044 -1.866 5717 0912  4.165

Min  -0358 0962 -1.868 3.418 0727  3.235

8 Positively —\oon -0305  1.000 -1.868 4266 0803  3.601
Skewed

Max  -0230 1041 -1.865 5572 0957  4.473

* Cond.: Numbers of 8 simulation conditions
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Table 4-4. Descriptive Statistics of Second Specific 6 Parameters Generated

Cond. Distribution Stat Mean SD Min Max Skew  Kurtosis

Min  -0359 0966 -1.868 3.262 0660  3.129

p  Positively o n 0300 0097 -1.868 4170 0785 3518
Skewed

Max  -0.270 1.031 -1.866 5279 0928  4.313

Min  -0.348 0965 -1.868 3540 0623  3.127

2 Positively 0 0n 0300 1.001 -1.868 4188 0788  3.543
Skewed

Max  -0.257 1.042 -1.866 5323 0929  4.107

Min 0269 0967 -5797 1870 -0980  3.240

g Negatively 0 0305 1000 -4391 1871 -0821  3.664
Skewed

Max 0365 1035 -3.324 1871 -0.721 4501

Min 0253 0963 -6.221 1870 -1.012 3.074

4 Negatively 0 0308 0996 -4358 1871 -0819  3.690
Skewed

Max 0364  1.030 -3.245 1871 -0.663  4.922

Min  -0.353 0966 -1.868 3.127 0643  3.021

g Positively o 0303 0999 -1.868 4107 0783 3534
Skewed

Max  -0252 1.034 -1.868 5850 0951  4.200

Min 0354 0960 -1.868 3458 0630  2.979

6 Positively /o 0n 0305 0998 -1.868 4356 0.807  3.618
Skewed

Max  -0.250 1.047 -1.867 5655 0939  4.297

Min 0250 0967 -5539 1870 -0958  3.035

7 Negatively 0 0206 1004 -4295 1871 -0812  3.607
Skewed

Max 0347  1.040 -3.358 1.871 -0.702  4.140

Min 0242 0942 -5.740 1.870 -0.965  3.181

g  Negatively 0 0301 1002 -4442 1871 -0834  3.720
Skewed

Max 0.368 1.041 -3.516 1.871 -0.680  4.688

* Cond.: Numbers of 6 simulation conditions
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Table 4-5. Correlations Between Two Specific 6 Parameters Generated

Condition 1 2 3 4 5 6 7 8

Correlation 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8
Min 0.133 0.772 0.149 0.781 0.151 0.771 0.158 0.776
Mean 0.192 0.792 0.199 0.794 0.194 0.791 0.197 0.793
Max 0231 0828 0258 0806 0.241 0.806 0.227  0.807

4.2. Bifactor Analysis

For each condition of the latent trait distributions and item parameters, item and 0
parameter estimation was evaluated. The tables in the body text show the mean and variance of
the mean bias of the parameter estimates. More details of the descriptive statistics such as

minimum and maximum values of the mean and variance are attached in Appendix B, C and D.

4.2.1 Item Parameters

For evaluating the bifactor model under the different distributional conditions, the mean
and variance of the mean bias of the estimated parameters were calculated. Table 4-6 and 4-7
show means and variances of item parameter mean bias under each of eight 8 simulation
conditions, and more detailed statistics are provided in Appendix B. Among the simulation

conditions, there were four noticeable patterns of item parameter estimation.
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Table 4-6. Means of Item Parameter Mean Bias

Cond. 1 2 3 4 5 6 7 8

G () (0) (0) (0) (+) (+) (+) (+)
Sl (+) (+) (+) (+) (+) (+) (+) (+)

0 Cond.
S2 (+) (+) ) ) (+) (+) ) )
Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8
a0 0.121 0.391 0.137 0407 0.118 0.382 0.110 0.395
Disc: 1.3 al -0.207 -0.714 -0.190 -0.750 -0.144 -0.715 -0.170 -0.736

Diff: -0.5 2 0166 -0.715 -0.116 -0.689 -0.188 -0.681 -0.146 -0.717

d -0.433 -0431 0.005 0.023 -0.840 -0.845 -0.420 -0.426

a0 0143 0444 0134 0413 0206 0488 0171  0.449
Disc. 13 a8l 0097 -0678 0123 -0.713 0109 -0.620 -0.088 -0.671
Diff: 05 a2 0125 -0634 -0171 -0.728 -0056 -0.659 -0210 -0.754

d -0.443 -0.438 -0.003 0.008 -0.872 -0.860 -0.428 -0.430

a0 0216 0494 0282 0538 0202 0502 0.18 0.508
Disc: 1.8 al -0.308 -0978 -0.289 -1.007 -0.284 -0.954 -0.235 -1.000
Diff:-0.5 92 0321 -0979 -0215 -0957 -0.274 -0.955 -0.290 -0.993

d -0.611 -0.611 -0.001 0.054 -1.204 -1.195 -0.602 -0.586

a0 0305 0615 0266 0542 0421 0709 0334 0617
Disc: 1g A1 0208 -0891 -0.214 0961 -0145 -0.854 -0177 -0.921
Diff: 05 5 0208 -0891 -0214 -0961 -0.145 -0.854 -0.177 -0.921

d -0.635 -0.615 -0.015 0.009 -1278 -1.249 -0.623 -0.620

* Cond.: Numbers of 6 simulation conditions

* G, S1, & S2: Distributions of general, first specific, and second specific factors

* a0, al, and a2: Discrimination parameter for general, first and second specific traits; d: d-
parameter

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed
distributions

* Corr.: Correlation between specific factor distributions
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Table 4-7. Variances of Item Parameter Mean Bias

Cond. 1 2 3 4 5 6 7 8

G (0) (0) (0) (0) (+) (+) (+) (+)

0 Sl (+) (+) (+) (+) (+) (+) (+) (+)
cond. 57 (+) (+) () () (+) (+) () ()
Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8

a0 0019 0018 0025 0021 0020 0019 0025 0022
Disc. 13 @ 0013 0020 0013 002 0011 0020 0011 0021
Diff:-05 20 0012 0020 0013 0020 0012 0019 0013 0.020

d 0.008 0.008 0.204 0.210 0.009 0.009 0.196 0.209

a0 0031 0024 0022 0022 0030 0021 0022 0023
Disc: 13 @ 0014 0022 0014 0022 0017 0020 0014 0022
Diff: 0.5 2 0015 0021 0012 0025 0014 0023 0014 0.030

d 0.011 0011 0.207r 0.213 0.016 0.015 0.209 0.220

a0 0020 0023 002 0034 0028 002 0045 0.030
Disc: 1g @ 0017 0023 0016 0027 0015 0020 0016 0025
Diff: -0.5 2 0014 0023 0018 0025 0015 0022 0018 0.022

d 0.011 0011 0415 0423 0.012 0011 0393 0.412

a0 0031 0032 0025 0033 0027 0034 0036 0043
Disc. 1g @ 0016 0020 0018 0025 0019 0026 0019 0027
Diff: 05 2 0017 0023 0016 0031 0020 0027 0017 0.035

d 0.018 0.018 0.410 0425 0.028 0.028 0.437 0.449

* Cond.: Numbers of 6 simulation conditions

* G, S1, & S2: Distributions of general, first specific, and second specific factors

* a0, al, and a2: Discrimination parameter for general, first and second specific traits; d: d-
parameter

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed
distributions

* Corr.: Correlation between specific factor distributions
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First, the degree of skewedness of the general factor was influential in the estimation of
d-parameters. Table 4-6 shows the mean of the mean bias related to the item parameters. Under
conditions 5, 6, 7, and 8 having the skewed general factor distribution, the d-parameter estimates
show a larger amount of the mean bias than under conditions 1, 2, 3, and 4 having the normal
distribution of the general factors. Table 4-7 includes the variances of the mean bias of item
parameter estimates. When the variances of d-parameter estimates are compared across the
conditions, there is no significant pattern with respect to the d-parameter variances, and this
result shows that the degree of skewedness of the general factor is influential not in the variances

of d-parameters biases but in the means of d-parameter biases.

Second, the condition of the skewedness directions combined with the skewed specific
factor distributions was influential in d-parameter estimations. When two specific factors had
distributions with the same direction, for example, two positively skewed distributions or two
negatively skewed distributions, the d-parameters had larger biases, the values of which under
the conditions 1, 2, 5, and 6 shown in Table 4-6, whereas the d-parameters had smaller amounts
of bias when the directions of the skewed distributions were different under the conditions 3, 4, 7,
and 8. The amounts of bias increased when the general factor distributions were also skewed.
The results for the d parameters under conditions 1 to 4 had smaller amounts of bias than the

results under conditions 5 to 8.

Also, the direction of skewedness of the skewed distributions affects the variance of the d
parameters. As shown in Table 4-7, the d parameters had large variances under conditions 3, 4, 7,
and 8 when the two specific trait distributions had different directions of skewedness. On the

other hand, the variance of the discriminations (a0, al and a2) related to the general, first and
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second specific factors had no significant patterns depending on the directions of skewedness of

the distributions. These patterns were shown across all four item parameter conditions.

Third, the strength of the correlation between the specific factors had a noticeable effect
on the estimation of discrimination parameters. The distributional conditions with a high
correlation of 0.8 between the specific factors had larger amounts of mean bias in item
discrimination parameter estimation than the conditions with a smaller correlation of 0.2 between
the specific factors. Table 4-6 shows that the discrimination parameter estimates under
conditions 2, 4, 6, and 8 with a high correlation of 0.8 had larger mean biases than the results
under conditions 1, 3, 5, and 7 with a lower correlation of 0.2. For example, under the mean
discrimination parameter of 1.3 and difficulty parameter of -0.5 condition in Table 4-6, with a
low correlation of 0.2 between the specific factors, mean biases of the discrimination parameters
related to the general factor range from 0.110 to 0.137 for conditions 1, 3, 5, and 7. However,
corresponding the range of the mean biases with the high correlation is from 0.382 to 395 under
conditions 2, 4, 6, and 8. This pattern was found regardless of the item parameter combination.
The high correlation also affects the variance of discrimination parameter estimates for the
specific factors. The discrimination parameters had large amounts of variance in the mean bias
when there was a high level correlation between the two specific factors under conditions 2, 4, 6,

and 8 in Table 4-7.

Lastly, generally the item discrimination parameters related to the general factor were
overestimated, whereas the discrimination parameters related to specific factors and d parameters
were underestimated. Negative or positive values of bias indicate underestimation or
overestimation, respectively, because bias is the result of subtracting a parameter from its

estimated value. In Table 4-6, all mean biases of the discrimination parameters related to the
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general factors were positive values, which means the parameters tend to be overestimated. Most
of the discrimination parameters related to the specific factors and d parameters had negative

mean biases, except for some d parameters, especially under conditions 3 and 4.

Based on the results, it was demonstrated that the degree of skewedness of the general
factor distributions, the skewedness directions of the specific factor distributions, and the
correlation between the specific factor distributions are influential in estimating the item
parameters. No noticeable pattern of item parameter estimates across the four item parameter

conditions was found.

4.2.2 6 Parameters

Similar to the item parameter estimation, 6 parameter estimation was evaluated under the
eight distributional conditions across four item parameter conditions. In this section, the mean of
the mean biases, variance of the mean biases, and correlation between the generated and
estimated trait distributions for the general, first specific and second specific factors are

investigated.

a. Mean of Mean Biases

The results for mean bias of the 6 parameters are shown in Table 4-8. The 6 parameters
were generated from a standard normal distribution, from a negatively skewed distribution with a
mean of 0.3, or from a positively skewed distribution with a mean of -0.3. The mean values of
mean biases in Table 4-8 are very close to 0, -.3, or .3. They are the discrepancies from 0 that is
the mean of a standard normal distribution to the simulation parameters. Item response functions
are manipulated by the item and 6 parameters, but the 6 continuum is not a fixed scale, or an

arbitrary one. Because of this indeterminacy, the estimation procedure should select the method
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Table 4-8. Means of 8 Parameter Mean Bias

Cond. 1 2 3 4 5 6 7 8

G 0) (0) (0) (0) (+) (+) (+) (+)
st (® (+) (+) (+) (+) (+) (+) (+)

6 Cond.
2. (¥) (+) () () (+) (+) () ()
Cor. 02 08 02 08 02 08 02 08
G 0003 0006 0002 -0.010 0305 0308 0303 0308
Disc: 13 s1 0301 0207 0304 0298 0299 0301 0305 0.305

S2 0309 0300 -0.305 -0.308 0.304 0305 -0.295 -0.301

G 0.001 0.004 0.000 -0.010 0.303 0303 0.301 0.302

E[’)iisf‘;f 0153 S1 0301 0297 0303 0298 0299 0301 0303 0305

S2 0307 0300 -0.306 -0.308 0.302 0.305 -0.296 -0.302

G -0.001 0.006 0.006 -0.016 0.308 0.309 0.306 0.301

B'ni:j(l)g S1 0301 0297 0306 0298 0302 0301 0308 0305

S2 0305 0300 -0.302 -0.308 0.304 0.305 -0.296 -0.301

G 0.001 0.002 0.001 -0.010 0311 0308 0.301 0.300

%iisfif 0158 S1 0300 029 0304 0297 0303 0301 0.304 0.305

S2 0308 0300 -0.306 -0.308 0.305 0.305 -0.297 -0.302

* Cond.: Numbers of 6 simulation conditions

* G: General factor distribution; S1: First specific factor distributions; S2: Second specific
distributions

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed
distributions

* Corr.: Correlation between specific factor distributions
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Table 4-9. Variances of 8 Parameter Mean Bias

Cond. 1 2 3 4 5 6 7 8

G 0) (0) 0) (0) (+) (+) (+) (+)
st (M (+) (+) (+) (+) (+) (+) (+)

0 Cond.
S2 (+) (+) ) ) (+) (+) ) ()
Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8
G 0383 0546 0408 0570 0399 0559 0413 0579
Disc: 1.3 o1 0471 0851 0491 0889 0457 0832 0471 0874
Diff; -0.5
S2 0469 0856 0455 0816 0470 0845 0454 0.833
G 0419 0574 0403 0570 0412 0558 0395 0.558
Disc: 1.3 o1 0454 0823 0448 0808 0468 0803 0450 0.802
Diff; 0.5
S2 0463 0832 0490 0903 0466 0813 0509 0.922
G 0374 0542 0399 0577 0396 0559 0423 0591
Disc: 1.8 o1 0479 0852 0506 0909 0470 0841 0483 0.894
Diff: -0.5
S2 0484 0862 0461 0812 0476 0850 0468 0.835
G 0415 0578 0398 0575 0411 0560 0390 0.559
[E)iisf‘]i{ 0158 S1 0461 0817 0451 0800 0472 0809 0455 0.796

S2 0466 0830 0515 0927 0479 0820 0.531 0.948

* Cond.: Numbers of 6 simulation conditions

* G: General factor distribution; S1: First specific factor distributions; S2: Second specific
distributions

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed
distributions

* Corr.: Correlation between specific factor distributions
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to set up the mean and variance of the 6 distribution in order to estimate unique 6 parameters
(Lord, 1980; Reckase, 2009). The most frequently used method is to appoint a mean of 0 and a
variance of 1. The IRTPRO software used for this research sets the mean and variance of the 6
distribution to 0 and 1, respectively, as default values, and the results showed the average
discrepancies between the generated parameters and 0. Therefore, the mean biases close to 0, -
0.3, or 0.3 indicate that the means of the estimated 0 parameters were at ‘0’. This result shows
that in order to evaluate the mean of mean bias of the 6 distribution, some alternative method for
giving the mean value needs to be utilized instead of using the fixed value of 0 for the mean of
the distribution. The 0 estimates were also consistently centered at ‘0’ regardless of the item

condition.

b. Variances of Mean Biases

The condition of the latent trait distributions with the most important effect on the
variance of the mean biases was the correlation between specific factors. The variances of 0
parameter mean biases are shown in Table 4-9. Different from the results for the means of mean
biases, the variance results showed a specific pattern depending on the correlation between the
specific factors. The amount of variance in the mean bias increased under conditions 2, 4, 6, and
8with a high correlation between the specific factors (correlation=0.8), compared to the amount
of variance in mean bias under conditions with a low correlation between the specific factors.
While the general, first specific and second specific factors all had a large amount of variance in
mean bias with the high correlation, the specific factor distributions showed more variance in
mean bias than the general factor distributions across all item conditions. In order to investigate
information about estimation precision, as a first insight, the correlations between the generated 0

parameters and the estimated 6 parameters were calculated.
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c. Correlations between Generated and Estimated Parameter Distributions

Tables 4-10, 4-11 and 4-12 show the results of the mean correlations between the
generated and estimated 6 parameters, and more detailed information is provided in Appendix D.
Under the various 6 and item conditions, no noticeable patterns related to the correlation between
the generated and estimated general factor distribution were found. The correlations between the
generated and estimated distributions for the general factor are shown in Table 4-10. The
estimated general factor scores showed constant high mean correlations regardless of the 6 and
item conditions, although the correlations were slightly lower when the level of correlations
between the specific factors was high. Most of the mean correlations were greater than .77 under
conditions 1, 3, 5, and 7, with a low correlation of 0.2 between specific factors, and the mean
correlations were greater than .70 under conditions 2, 4, 6, and 8 with a high correlation of 0.8

between the specific factors.

The first and second specific factors showed the estimation precision to be sensitive to
the level of correlation between the specific factors. Under the low correlation of 0.2 between the
specific factors, the mean correlations of the generated and estimated first specific factors, shown
in Table 4-11, and of the generated and estimated second specific factors, shown in Table 4-12,
were over 0.7, although those correlations were slightly lower than the correlations between the
generated and estimated parameters for the general factor. Whereas the level of correlation
between the specific factors was only slightly influential on the observed correlation between the
generated and estimated general factor 6 parameters, the mean correlations between the
generated and estimated parameters for the first and second specific factors were below 0.5

under conditions 2, 4, 6, and 8 with the high correlation between the specific factors.
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The correlation between the generated and estimated parameters of the specific factors
also showed noticeable patterns according to item condition (see Tables 4-11 and 4-12). While
the mean correlations between the generated and estimated parameters of the specific factors did
not show a distinguishable difference depending on the level of item discrimination parameters
(mean discrimination parameters of 1.3 vs. 1.8), they showed a significant pattern depending on
the level of the item difficulty parameters (difficulty parameters of 0.5 and -0.5) especially under
conditions 4 and 8, which had specific factors with a high correlation and distribution skewed in
opposite directions. The first specific factors had lower correlations between the generated and
estimated parameters under conditions 4 and 8 when the item difficulty parameters had a mean
of -0.5, whereas the second specific factors had lower correlations under conditions 4 and 8
when the item difficulty parameters had a mean of 0.5. This result implies that the effect of the
correlation between the specific factor distributions on the correlation between the generated and
estimated parameters for the specific factors is related to not only the direction of skewedness of

the distributions but also to the item parameter conditions.

d. Kolmogorov-Smirnov Test (KS test)

In order to compare the generated and estimated 6 distributions, the KS test was utilized
with the entire 6 parameter set, and with specific ranges of the 6 parameters. Tables 4-13 shows
summary results of the KS test; complete results of the KS tests are included in Appendix E.
Every simulation condition was replicated fifty times, and among fifty replications the values in
the tables show the numbers of frequencies that were statistically significant under the
significance level of 0.05. For example, in Table 4-13, under Condition 1 with the mean of
discrimination parameters equal to 1.3 and mean of difficulty parameters equal to -0.5, 18 of the

estimated 0 distributions among fifty replications were shown to be significantly different from
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Table 4-10. Mean of the Correlations of the General Factors

Condition 1 2 3 4 5 6 7 8
G (0) (0) (0) (0) (+) (+) (+) (+)
S1 (+) (+) (+) (+) (+) (+) (+) (+)
0
S2 (+) (+) () () (+) (+) () ()

Correlation 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8

(1.3,-0.5) 0789 0.720 0.775 0.708 0.780 0.711 0.772 0.703

General (1.8,-0.5) 0.767 0.702 0.777 0709 0.771 0.707 0.782 0.712

0 (1.3, 0.5) 0.794 0724 0.779 0.707 0.782 0.713 0.766 0.699

(1.8, 0.5) 0.768 0.700 0.779 0.708 0.771 0.704 0.784 0.713

* Condition: Numbers of 6 simulation conditions

* G: General factor distribution; S1: First specific factor distributions; S2: Second specific
distributions

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed
distributions

* (1.3, -0.5): Discrimination parameters with mean of 1.3 and Difficulty parameters with mean of
-0.5

* Correlation: Correlation between specific factor distributions

the generated 0 distribution by the p-value for the KS test statistic being less than the

significance level of 0.05.

Most of the ten specific categories of the estimated general factor distributions were not

significantly different from the generated distributions when they were generated from a standard
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Table 4-11. Correlation Means of the First Specific Factors

Condition 1 2 3 4 5 6 7 8
G (0) (0) (0) (0) (+) (+) (+) (+)
S1 (+) (+) (+) (+) (+) (+) (+) (+)
0
S2 (+) (+) () () (+) (+) () ()
Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8
(1.3,-0.5) 0.726 0431 0.719 0.386 0.740 0.442 0.728 0.403
(1.8, -0.5) 0.722 0434 0.708 0.378 0.730 0.443 0.722 0.395
S16

(1.3, 0.5) 0.739 0.448 0.747 0457 0.730 0465 0.741 0.463

(1.8, 0.5) 0.732 0457 0.744 0465 0.728 0459 0.736 0.467

* Cond.: Numbers of 6 simulation conditions

* G: General factor distribution; S1: First specific factor distributions; S2: Second specific
distributions

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed
distributions

* (1.3, -0.5): Discrimination parameters with mean of 1.3 and Difficulty parameters with mean of
-0.5

* Corr.: Correlation between specific factor distributions

normal distribution under the conditions 1, 2, 3, and 4, whereas the KS tests on the entire set of
parameters more often showed significant differences between the generated and estimated

distributions. For example, under Condition 2 with the mean discrimination parameter equal to
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Table 4-12. Correlation Means of the Second Specific Factors

Cond. 1 2 3 4 5 6 7 8
G (0) (0) (0) (0) (+) (+) (+) (+)
S1 (+) (+) (+) (+) (+) (+) (+) (+)
0
S2 (+) (+) () () (+) (+) () ()
Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8
(1.3,-0.5) 0.729 0425 0.741 0.448 0.729 0.433 0.743 0441
(1.8, -0.5) 0.718 0423 0.735 0451 0.726 0.431 0.733 0.442
S26

(1.3, 0.5) 0.734 0447 0.718 0374 0.732 0.449 0.705 0.355

(1.8, 0.5) 0.730 0.447 0.701 0359 0.721 0443 0.692 0.341

* Cond.: Numbers of 6 simulation conditions

* G: General factor distribution; S1: First specific factor distributions; S2: Second specific
distributions

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed
distributions

* (1.3, -0.5): Discrimination parameters with mean of 1.3 and Difficulty parameters with mean of
-0.5

* Corr.: Correlation between specific factor distributions

1.3 and mean difficulty parameter equal to -0.5 in Table 4-13, all of the replications were
significant when the entire data set was tested, but few estimated parameter distribution
replications (between one and three) were significantly different from the generated true
parameter distribution when KS tests were conducted on ten specific categories of the 0 values.
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When the correlation between the specific factor distributions was high, the frequencies
of significant test results for differences between the estimated and generated general factor
distributions increased. Compared to conditions1 and 3, under conditions 2 and 4 significant
results under the KS test were found much more frequently. For example, in Table 4-13, with the
mean discrimination parameter equal to 1.3 and mean difficulty parameter equal to -0.5, KS test
results from all of the fifty replications of the entire data sets showed significant differences
between the generated and estimated parameters under the high level correlation between
specific factors (Condition 2 and 4) whereas only eighteen or twenty two replications are

significant under lower level correlation.

All of the specific factor distributions were positively or negatively skewed, and the
results of the KS test showed that the estimated 6 distributions were significantly different from
the generated 6 distributions. According to Stapleton (2008), the KS test is powerful when the
tested distributions are away from normality, as long as the sample size is sufficient. That means
that when the sample size increases, the sensitivity of the KS test becomes stronger. The tests on
the entire parameter distributions that included 2,000 values could have been more sensitive than
the tests on the specific categories, which included 200 parameter values. For example, Table 4-
13 shows that the KS tests for the entire data set were more frequently significant than the tests

within the 6 sub-categories.
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Table 4-13. Frequency of Significant Differences between Distributions of Generating and
Estimated General Factor 6 Parameters

Discrimination Mean:1.8 / SD: 0.15
Item
Difficulty Mean:-0.5/SD: 0.4 Mean:0.5/SD: 0.4
Cond. 1 2 3 4 1 2 3 4
G @ () (0) (0) " & O
6 S1 ®H ™ ®H | ®H & ®H  ®
S2 (GO C) ) Q) " ™ Q) Q)
Correlation 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8
1 to 2000 18 50 22 50 34 50 21 49
1to 200 0 1 0 2 0 5 0 4
201 to 400 0 3 0 3 0 4 0 3
401 to 600 0 3 0 4 0 2 0 4
601 to 800 0 2 0 0 0 4 0 0
801 to 1000 0 2 0 0 0 4 0 0
1001 to 1200 0 2 0 2 0 1 0 4
1201 to 1400 0 2 0 1 0 0 0 2
1401 to 1600 1 2 0 1 1 3 0 2
1601 to 1800 0 2 1 6 0 1 0 6
1801 to 2000 1 3 0 1 0 1 0 3

* Cond.: Numbers of simulation conditions

* G: General factor distribution; S1: First specific factor distributions; S2: Second specific
distributions

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed
distributions

* Corr.: Correlation between specific factor distributions
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Table 4-13 (cont’d)

Discrimination Mean:1.8 / SD: 0.15
Item
Difficulty Mean:-0.5/SD: 0.4 Mean:0.5/SD: 0.4
Condition 1 2 3 4 1 2 3 4
G @ () () (0) " &
6 S1 CONN G| (+) 1 H ®H ¢ ®
S2 SO C) ) ) SO G ) )
Correlation 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8
1 to 2000 28 50 46 50 50 50 46 50
1 to 200 0 1 1 4 1 1 0 )
201 to 400 1 1 0 4 0 3 0 5)
401 to 600 2 3 1 6 0 2 1 6
601 to 800 0 2 1 2 0 3 1 0
801 to 1000 0 2 1 2 0 3 1 0
1001 to 1200 0 1 0 5 0 1 0 3
1201 to 1400 0 3 0 1 0 2 0 1
1401 to 1600 1 2 0 1 1 4 1 2
1601 to 1800 1 2 1 6 1 1 0 6
1801 to 2000 0 3 0 0 0 3 0 5

* Cond.: Numbers of 6 simulation conditions

* G: General factor distribution; S1: First specific factor distributions; S2: Second specific
distributions

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed
distributions

* Corr.: Correlation between specific factor distributions
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5. Discussion

5.1 Summary of the Results

Item parameter estimation was affected by the degree of skewedness of general factor,
the directions of skewedness of the specific factors, and the correlation between specific factors.
These influential conditions of the latent trait distributions had different effects on item
parameter estimation depending on the type of item parameter. First, the degree of skewedness of
the general factor was influential in the estimation of the d parameters. Second, the direction of
skewedness of the specific factor distributions was also influential in d parameter estimation. The
skewedness direction affected both the mean and variance of the d parameter mean biases, and
the effect on estimation increased when the general factor distribution was also skewed. Third,
the correlation between the specific factors had a noticeable effect on the estimation of
discrimination parameters. While estimation of discrimination parameters related to both the
general and specific factors was affected by the size of the correlation between the specific
factors, the discrimination parameters of the specific factors exhibited much more variance in
their mean biases as a result than the discrimination parameters corresponding to the general
factor. Lastly, generally the item discrimination parameters related to the general factor were
overestimated, whereas the discrimination parameters related to the specific factors and d

parameters were underestimated.

The estimated 6 distributions had means of 0, and so the mean biases of the 6
distributions had values close to 0, -0.3, and 0.3, depending on the direction of the generated
distribution. Based on the variances of the mean biases and correlations between generated and
estimated parameters, the most significant condition of the latent trait distribution in 6 parameter

estimation was the correlation between the specific factors. The amount of variance in the mean
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bias increased under conditions with a high correlation of 0.8 between the specific factors.
While all three factors, general, first specific and second specific, had large amounts of variance
in mean bias with the high correlation, the specific factor distributions showed much more

variance than the general factor distributions across the item conditions.

Whereas only a slightly noticeable pattern was found related to the correlation between
the generated and estimated distributions for the general factor, the correlations between the
generating and estimated distributions for the first and second specific factors were markedly
lower when the correlation between the specific factors was high (0.8) than when it was low
(0.2). Also the effect of the correlation between the specific factors depended on the item
condition, and this result implies that the effect of the correlation between the specific
distributions is related to not only the direction of skewedness of the distributions but also to the

item parameter conditions.

By the Kolmogorov-Smirnov test, most of the ten specific categories of the estimated
general factor distributions were not found to be significantly different from the generated
distributions when the parameters were generated from a standard normal distribution. When the
correlation between the specific factor distributions was high, the frequencies of significant test
results for the general factor distribution increased. All of the specific factor distributions were
positively or negatively skewed distributions, and the results of the KS test showed that the

estimated 0 distributions were significantly different from the generated 6 distributions.

5.2 Implications
The use of measurements based on the concepts of multi-dimensional and non-normal

distributions have been increasing in various fields. Latent trait models have been developed in
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order to represent these complicated measurement properties. Researchers have studied
appropriate estimation methods for each model, and the recommended methods have been
evaluated in empirical situations. As an extension of these studies, this research examines the
estimation performance of a bifactor model under various distributional conditions of the general

and specific factors.

In many cases, the distributions of latent traits represent particular participant
characteristics are non-normal. For example, it is not unusual to find that satisfaction
measurements from a program evaluation or interaction frequencies in a social networking
analysis have a skewed distribution with a long tail or with high kurtosis. When measurement
models are used to estimate the parameters from data that do not follow a normal distribution,
the normal distribution assumption of the estimation method may be violated. Therefore, new
models and estimation methods should be developed in order to solve these problems: how the
estimation of the model can be made robust when the normal distribution assumption is violated,
or how the empirical data distribution can be substituted for a normal distribution in the
estimation procedure. Woods and Thissen (2006) introduced Ramsay-Curve IRT, which is a non-
parametric estimation procedure for the IRT latent distribution, and showed the capability of the
method with normal and non-normal latent distributions. Also a complex model to allow
correlations between the latent trait factors has been studied (Fujimoto, 2014; Cai 2010). For
these newly-developed methods, it is necessary to evaluate their capability in different empirical
situations to determine their limitations and produce further developments. This research
evaluated the estimation quality of the bifactor model and the results showed how conditions of

the item and 0 parameter distributions affect item and 6 parameter estimation under particular
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estimation assumptions. As previous research has done, this research is expected to provide

information about estimation performance and guidelines for future research.

One of the most important conditions studied in this research was the non-normality of
the distribution of the latent traits being measured. Varying the amount and direction of
skewedness of the distributions and the correlation between the specific factors, the results
showed that in the analysis of data generated from skewed 6 distributions, both the item and 6
conditions influenced the quality of estimation. Also, the conditions had different effects
depending on the type of item parameter estimated. The results from this research showing the
effect of skewed latent trait distributions are consistent with the results of previous studies. Sass
et al. (2008) demonstrated the effect of skewed distributions on estimating the 6 distribution and
item parameters using a unidimensional latent trait model. In that study, difficulty parameter
estimates were particularly affected by the presence of a skewed latent trait distribution.
Similarly, in my research the amount and direction of skewedness of the latent trait distributions
had a significant influence on the mean and variance of d parameters’ mean biases, which relates

to the estimation of difficulty parameters.

The most significant condition of the latent trait distributions for 6 estimation was the
correlation between the specific factors. The correlation of the specific factors had a remarkable
impact on 6 estimation not only by itself but also in conjunction with particular item parameter
conditions. This result shows that the combination of the item and 6 conditions and the
distributional assumptions should be considered simultaneously when the model and estimation

method are evaluated.
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The skewed distributions were transformed from normal distributions via the Copula
method, and Kolmogorov-Smirnov tests were used to evaluate the distributional differences
between the generated and estimated 6 parameter distributions. My application of those methods
has suggested some implications for future research. The Copula method requires identification
of a transformation function, and in this research two polynomial functions were used for
transformation to produce negatively and positively skewed latent trait distributions. Even
though the R?s of the functions were values very close to 1 (.999), it should be noted that the
extreme values were particularly sensitive to the polynomial transformation function selected.
Also, Kolmogorov-Smirnov tests showed the differences between the generated and estimated 6
parameters in specific 6 ranges; however, this method had very high power to detect differences
when entire 6 distributions were compared. . Especially for the skewed distributions, all cases in
each category were significant, using a significance level of 0.05. That shows that the skewed
distributional condition tended to have significant differences between the generated and
estimated parameter distributions, however, it could not provide specific information and details
for each 6 range. Therefore, more sophisticated and alternative methods are required for the

transformation and the evaluation procedures.

In an effort to measure the structure of complex constructs, multidimensional latent trait
models have been developed. The bifactor model is one of those multidimensional models, and is
connected mathematically to other major classes of multidimensional measurement models. This
research evaluates the bifactor model to determine how well it model works in various empirical
contexts. While the distributions of latent traits are often assumed to be normal, the distributions
observed in empirical data are not always normal. Also, despite the advantages of the bifactor

model, it restricts the latent traits to be orthogonal.

68



The results from this research provided information about the estimation properties of
bifactor models under conditions when their distributional and relational assumptions are not met.
Also, the influence of item parameters was shown. Based on this information, the results can be
applied to analyses using models of multidimensional latent traits. The study of the effect of the
latent trait distribution on parameter estimation is also significant in terms of providing
information about measurement error for data analysis. With the increasing number of studies
and practical need for multidimensional structures of latent traits, this research is expected to

provide useful guidelines for investigating appropriate multidimensional models.
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Appendix A

Table A-1. Parameter Estimates of Quadratic Regression Function for Positively Skewed
Distribution with 2,000 examinees

R Square Constant bl b2 b3
Mean 0.9980 -0.4508 0.9770 0.1461 -
Var 0.0000 0.0006 0.0002 0.0001 -
Min 0.9960 -0.4948 0.9418 0.1282 -
Max 0.9993 -0.3915 1.0128 0.1727 -

*b1, b2, and b3: regression coefficients of linear, quadratic, and cubic terms

Table A-2. Parameter Estimates of Cubic Regression Function for Positively Skewed
Distribution with 2,000 examinees

R Square Constant bl b2 b3
Mean 0.9990 -0.4508 1.0167 0.1461 -0.0136
Var 0.0000 0.0006 0.0003 0.0001 0.0000
Min 0.9978 -0.4948 0.9772 0.1282 -0.0236
Max 0.9997 -0.3915 1.0652 0.1727 -0.0060

*b1, b2, and b3: regression coefficients of linear, quadratic, and cubic terms
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Table A-3. Parameter Estimates of Quadratic Regression Function for Positively Skewed

Distribution with 10,000 examinees

R Square Constant bl b2 b3
Mean 0.9986 -0.4434 0.9793 0.1454 -
Var 0.0000 0.0001 0.0001 0.0000 -
Min 0.9978 -0.4701 0.9676 0.1337 -
Max 0.9993 -0.4261 0.9970 0.1557 -
*b1, b2, and b3: regression coefficients of linear, quadratic, and cubic terms
Table A-4. Parameter Estimates of Cubic Regression Function for Positively Skewed
Distribution with 10,000 examinees
R Square Constant bl b2 b3
Mean 0.9995 -0.4434 1.0166 0.1454 -0.0125
Var 0.0000 0.0001 0.0001 0.0000 0.0000
Min 0.9993 -0.4701 0.9989 0.1337 -0.0175
Max 0.9998 -0.4261 1.0366 0.1557 -0.0086

*b1, b2, and b3: regression coefficients of linear, quadratic, and cubic terms
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Table A-5. Parameter Estimates of Quadratic Regression Function for Negatively Skewed

Distribution with 2,000 examinees

R Square Constant bl b2 b3
Mean 0.9984 0.4516 0.9801 -0.1500 -
Var 0.0000 0.0006 0.0002 0.0001 -
Min 0.9964 0.3921 0.9453 -0.1785 -
Max 0.9995 0.4950 1.0173 -0.1308 -

*b1, b2, and b3: regression coefficients of linear, quadratic, and cubic terms

Table A-6. Parameter Estimates of Cubic Regression Function for Negatively Skewed

Distribution with 2,000 examinees

R Square Constant bl b2 b3
Mean 0.9991 0.4516 1.0135 -0.1500 -0.0115
Var 0.0000 0.0006 0.0003 0.0001 0.0000
Min 0.9981 0.3921 0.9720 -0.1785 -0.0225
Max 0.9997 0.4950 1.0625 -0.1308 -0.0023

*b1, b2, and b3: regression coefficients of linear, quadratic, and cubic terms
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Table A-7. Parameter Estimates of Quadratic Regression Function for Negatively Skewed

Distribution with 10,000 examinees

R Square Constant bl b2 b3
Mean 0.9988 0.4441 0.9798 -0.1462 -
Var 0.0000 0.0001 0.0001 0.0000 -
Min 0.9980 0.4223 0.9646 -0.1566 -
Max 0.9995 0.4705 0.9977 -0.1351 -

*b1, b2, and b3: regression coefficients of linear, quadratic, and cubic terms

Table A-8. Parameter Estimates of Cubic Regression Function for Negatively Skewed

Distribution with 10,000 examinees

R Square Constant bl b2 b3
Mean 0.9996 0.4441 1.0151 -0.1462 -0.0119
Var 0.0000 0.0001 0.0001 0.0000 0.0000
Min 0.9993 0.4223 0.9976 -0.1566 -0.0164
Max 0.9998 0.4705 1.0360 -0.1351 -0.0079

*b1, b2, and b3: regression coefficients of linear, quadratic, and cubic terms
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Appendix B

Table B-1. Mean and Variance of ltem Parameter Biases under Disc of 1.3 and Diff of -0.5

Cond. 1 2 3 4 5 6 7 8

G ©) 0) 0) ©) (+) (+) (+) (+)

o S1 (+) (+) (+) (+) (+) (+) (+) (+)

S2 (+) (+) ) ) (+) (+) ) )

Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8
Mean

min 0.0518 0.3207 0.0576 0.3393 0.0374 0.3084 0.0478 0.3176

Dgc. mean  0.1214 0.3910 0.1372 0.4072 0.1178 0.3824 0.1098 0.3952

max 0.2168 0.4773 0.2348 0.5125 0.1995 0.4422 0.1665 0.4613

min  -0.5501 -0.8914 -0.5463 -0.9447 -0.3600 -0.8853 -0.5512 -0.9216

Dsis?c. mean -0.2066 -0.7139 -0.1895 -0.7500 -0.1442 -0.7150 -0.1697 -0.7357

max  -0.0482 -0.5252 0.0691 -0.6273 0.0698 -0.5660 0.0899 -0.5897

min  -0.3516 -0.9029 -0.4893 -0.8175 -0.4804 -0.8331 -0.7114 -0.8767

D?sc. mean -0.1661 -0.7150 -0.1157 -0.6894 -0.1879 -0.6814 -0.1456 -0.7172

max 0.0331 -0.5773 0.1494 -0.5508 0.0080 -0.5188 0.0821 -0.5423

min  -0.5161 -0.5358 -0.0651 -0.1145 -0.9444 -0.9847 -0.4985 -0.5359

D mean -0.4329 -0.4310 0.0054 0.0234 -0.8401 -0.8448 -0.4201 -0.4264

max  -0.3546 -0.3103 0.1018 0.1433 -0.7695 -0.7345 -0.3000 -0.2852
Variance

min 0.0067 0.0107 0.0070 0.0113 0.0071 0.0115 0.0079 0.0147

Dgc. mean  0.0188 0.0177 0.0247 0.0212 0.0196 0.0193 0.0245 0.0221

max 0.0727 0.0296 0.0615 0.0336 0.0686 0.0294 0.1181 0.0313

min 0.0060 0.0075 0.0054 0.0125 0.0049 0.0067 0.0049 0.0105

DSislc. mean  0.0126 0.0203 0.0129 0.0259 0.0108 0.0203 0.0114 0.0213

max 0.0369 0.0468 0.0274 0.0457 0.0196 0.0401 0.0249 0.0525

min 0.0042 0.0073 0.0056 0.0077 0.0054 0.0094 0.0062 0.0080

DSiszc. mean  0.0117 0.0195 0.0133 0.0199 0.0122 0.0186 0.0128 0.0198

max 0.0256 0.0435 0.0343 0.0342 0.0271 0.0339 0.0345 0.0365

min 0.0039 0.0043 0.1592 0.1787 0.0059 0.0056 0.1528 0.1778

D mean  0.0077 0.0075 0.2043 0.2096 0.0092 0.0089 0.1964 0.2092

max 0.0106 0.0115 0.2470 0.2478 0.0147 0.0137 0.2662 0.2436

*Disc.: Discrimination item parameter / Diff.: Difficulty parameter
* Cond.: Numbers of 6 simulation conditions
* G: General factor; S1: First specific factor; S2: Second specific
* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed

distributions

* Corr.: Correlation between specific factor distributions
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Table B-2. Mean and Variance of Item Parameter Biases under Disc of 1.3 and Diff of 0.5

Cond. 1 2 3 4 5 6 7 8

G ©) ©) 0) 0) (+) (+) (+) (+)

0 S1 (+) (+) (+) (+) (+) (+) (+) (+)

S2 (+) (+) ) ) (+) (+) ) )

Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8
Mean

G min 0.0464 0.3541 0.0555 0.3390 0.1280 0.3927 0.0635 0.3637

Disc. mean 0.1432 0.4437 0.1344 0.4133 0.2057 0.4875 0.1711 0.4491

max 0.2692 0.5308 0.2398 0.5052 0.3134 0.5833 0.2394 0.5404

s1 min  -0.5176 -0.8712 -0.4041 -0.8545 -0.6482 -0.8471 -0.3627 -0.8388

Disc. mean  -0.0974 -0.6775 -0.1226 -0.7126 -0.1087 -0.6289 -0.0878 -0.6714

max 0.1969 -0.4658 0.0996 -0.4984 0.2257 -0.4316 0.1478 -0.4996

S min  -0.5220 -0.9141 -0.4374 -0.9474 -0.3851 -0.8688 -0.7276 -1.0232

Disc. mean -0.1249 -0.6341 -0.1708 -0.7281 -0.0564 -0.6590 -0.2103 -0.7537

max 0.1200 -0.4482 0.0475 -0.5688 0.1772 -0.4432 0.0244 -0.6011

min  -0.5524 -0.5218 -0.0893 -0.0972 -0.9769 -0.9906 -0.5214 -0.5450

D mean  -0.4432 -0.4382 -0.0034 0.0077 -0.8721 -0.8598 -0.4282 -0.4304

max  -0.3359 -0.3474 0.0783 0.2179 -0.7575 -0.7560 -0.3112 -0.2353
Variance

G min 0.0084 0.0152 0.0079 0.0109 0.0098 0.0116 0.0088 0.0132

Disc. mean 0.0306 0.0236 0.0218 0.0223 0.0295 0.0213 0.0217 0.0228

max 0.0985 0.0353 0.1008 0.0341 0.1263 0.0300 0.0619 0.0398

s min 0.0065 0.0120 0.0050 0.0057 0.0063 0.0077 0.0057 0.0101

Disc. mean 0.0139 0.0224 0.0142 0.0220 0.0172 0.0200 0.0143 0.0223

max 0.0350 0.0628 0.0336 0.0604 0.0761 0.0388 0.0310 0.0486

S min 0.0048 0.0081 0.0059 0.0127 0.0059 0.0082 0.0059 0.0115

Disc. mean 0.0146 0.0211 0.0117 0.0246 0.0143 0.0230 0.0143 0.0304

max 0.0315 0.0430 0.0196 0.0733 0.0309 0.0631 0.0644 0.0617

min 0.0065 0.0065 0.1561 0.1804 0.0086 0.0096 0.1767 0.1825

D mean  (0.0107 0.0108 0.2068 0.2130 0.0155 0.0147 0.2092 0.2201

max 0.0152 0.0187 0.2699 0.2423 0.0234 0.0304 0.2582 0.2694

*Disc.: Discrimination item parameter / Diff.: Difficulty parameter
* Cond.: Numbers of 6 simulation conditions
* G: General factor; S1: First specific factor; S2: Second specific
* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed
distributions

* Corr.: Correlation between specific factor distributions
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Table B-3. Mean and Variance of ltem Parameter Biases under Disc of 1.8 and Diff of -0.5

Cond. 1 2 3 4 5 6 7 8

G 0) (0) (0) (0) (+) (+) (+) (+)
S1 (+) (+) (+) (+) (+) (+) (+) (+)

O R e I e N NS NS
Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8
Mean
G min 0.0679 0.3911 0.1290 0.4211 -0.0440 0.4045 -0.0789 0.4002
Disc. mean 0.2163 0.4935 0.2820 0.5378 0.2016 0.5022 0.1850 0.5080
max 0.3628 0.5746 0.4263 0.6272 0.3604 0.5831 0.3220 0.6128
s1 min -0.4473 -1.0972 -0.3875 -1.1511 -0.6284 -1.1186 -0.5386 -1.1185
Disc. mean -0.3077 -0.9783 -0.2885 -1.0068 -0.2842 -0.9541 -0.2349 -0.9995
max -0.1196 -0.8678 -0.0026 -0.8202 0.0696 -0.7873 0.2381 -0.8592
52 min -0.5096 -1.1444 -0.3255 -1.0831 -0.6628 -1.1417 -0.6950 -1.1150
Disc. mean -0.3206 -0.9786 -0.2154 -0.9570 -0.2740 -0.9550 -0.2901 -0.9927

max  -0.1832 -0.8407 -0.1340 -0.8116 0.0605 -0.7702 0.0484 -0.9018

min  -0.7969 -0.7648 -0.1830 -0.1192 -1.4206 -1.3482 -0.8585 -0.8027
D mean -0.6106 -0.6111 -0.0009 0.0544 -1.2043 -1.1949 -0.6017 -0.5864
max  -0.4454 -0.4274 0.1481 0.2478 -1.0508 -1.0203 -0.4262 -0.3206

Variance

min 0.0114 0.0136 0.0139 0.0203 0.0096 0.0136 0.0142 0.0199

Dgc. mean  0.0201 0.0225 0.0259 0.0336 0.0283 0.0260 0.0451 0.0300
max  0.0640 0.0356 0.1055 0.0496 0.1399 0.0418 0.2533 0.0434

s1 min 0.0058 0.0109 0.0074 0.0138 0.0077 0.0104 0.0067 0.0122
Disc. 'Mmean  0.0168 0.0228 0.0163 0.0270 0.0154 0.0204 0.0157 0.0250
max  0.0373 0.0416 0.0286 0.0469 0.0336 0.0341 0.0289 0.0547

52 min 0.0068 0.0098 0.0074 0.0132 0.0052 0.0114 0.0069 0.0106
Disc. 'Mmean  0.0142 0.0227 0.0183 0.0246 0.0146 0.0215 0.0180 0.0216

max  0.0263 0.0383 0.0339 0.0429 0.0340 0.0395 0.0751 0.0403

min 0.0072 0.0065 0.3004 0.3682 0.0076 0.0075 0.3244 0.3592
D mean  0.0112 0.0110 0.4151 0.4230 0.0119 0.0107 0.3932 0.4115
max  0.0158 0.0181 0.4952 0.4753 0.0206 0.0150 0.5369 0.5031

*Disc.: Discrimination item parameter / Diff.: Difficulty parameter

* Cond.: Numbers of 6 simulation conditions

* G: General factor; S1: First specific factor; S2: Second specific

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed
distributions

* Corr.: Correlation between specific factor distributions
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Table B-4. Mean and Variance of Item Parameter Biases under Disc of 1.8 and Diff of 0.5

Cond. 1 2 3 4 5 6 7 8
G (©) 0) 0) ©) (+) (+) (+) (+)
o S1 (+) (+) (+) (+) (+) (+) (+) (+)
S2 (+) (+) ) ) (+) (+) ) )
Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8
Mean
Min 0.0205 0.5126 0.0211 0.4275 0.2486 0.5698 0.1853 0.5014
Disc. Mean 0.3053 0.6149 0.2661 0.5419 0.4206 0.7092 0.3344 0.6165
Max 0.4789 0.7022 0.3815 0.6671 0.5687 0.8086 0.4428 0.7829
s1 Min  -0.4631 -1.0605 -0.3136 -1.0915 -0.2541 -1.0893 -0.3178 -1.0873
Disc. Mean -0.2075 -0.8910 -0.2135 -0.9612 -0.1446 -0.8536 -0.1768 -0.9212
Max -0.0386 -0.6841 0.0053 -0.8276 0.0221 -0.6149 -0.0555 -0.7876
S Min  -0.3654 -1.0131 -0.4576 -1.1091 -0.2997 -1.0280 -0.4166 -1.1505
Disc. Mean -0.1884 -0.8777 -0.3010 -0.9951 -0.1591 -0.8628 -0.3035 -1.0090
Max 0.1765 -0.7680 -0.2001 -0.8612 -0.0055 -0.6371 -0.1684 -0.9012
Min  -0.7658 -0.7621 -0.2331 -0.1928 -1.5176 -1.4091 -0.7523 -0.7552
D Mean -0.6353 -0.6148 -0.0147 0.0086 -1.2776 -1.2486 -0.6227 -0.6196
Max -0.4744 -0.4390 0.2370 0.2027 -1.1127 -1.1132 -0.4510 -0.4308
Variance
Min 0.0132 0.0217 0.0135 0.0193 0.0142 0.0212 0.0084 0.0235
Disc. Mean 0.0306 0.0321 0.0253 0.0325 0.0270 0.0335 0.0363 0.0432
Max 0.1981 0.0562 0.0770 0.0599 0.0599 0.0566 0.0779 0.0705
s1 Min 0.0052 0.0088 0.0092 0.0113 0.0068 0.0112 0.0100 0.0148
Disc. Mean 0.0162 0.0204 0.0177 0.0245 0.0187 0.0263 0.0189 0.0273
Max 0.0361 0.0411 0.0328 0.0438 0.0300 0.0574 0.0370 0.0591
S Min 0.0082 0.0117 0.0074 0.0154 0.0099 0.0119 0.0078 0.0138
Disc. Mean 0.0174 0.0228 0.0157 0.0308 0.0195 0.0270 0.0170 0.0348
Max 0.0314 0.0487 0.0282 0.0523 0.0300 0.0475 0.0304 0.0666
Min 0.0098 0.0094 0.3407 0.3794 0.0172 0.0137 0.3464 0.3523
D Mean 0.0183 0.0181 0.4104 0.4245 0.0283 0.0283 0.4371 0.4490
Max 0.0358 0.0321 0.4890 0.4770 0.0520 0.0521 0.5564 0.5055

*Disc.: Discrimination item parameter / Diff.: Difficulty parameter
* Cond.: Numbers of 6 simulation conditions
* G: General factor; S1: First specific factor; S2: Second specific
* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed

distributions

* Corr.: Correlation between specific factor distributions
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Appendix C

Table C-1. Mean and Variance of 8 Parameter Biases under Disc. of 1.3 and Diff. of -0.5

Cond. 1 2 3 4 5 6 7 8

G (0) (0) (0) (0) (+) (+) (+) (+)

o S1 +) +) (+) +) (+) (+) +) +)

S2 +) +) ) ) (+) (+) ) )

Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8

Mean
Min  -0.0488 -0.0625 -0.0352 -0.0793 0.2690 0.2224 0.2388 0.2542
G Mean 0.0028 0.0064 0.0021 -0.0096 0.3048 0.3084 0.3029 0.3078
Max  0.0479 0.0818 0.0513 0.0568 0.3582 0.3697 0.3516 0.3638
Min  0.2641 0.2586 0.2431 0.2510 0.2430 0.2538 0.2513 0.2301
S1 Mean 0.3011 0.2966 0.3042 0.2976 0.2989 0.3012 0.3046 0.3050
Max  0.3671 0.3412 0.3503 0.3636 0.3568 0.3521 0.3598 0.3577
Min  0.2681 0.2570 -0.3532 -0.3643 0.2483 0.2501 -0.3484 -0.3677
S2 Mean 0.3086 0.3003 -0.3051 -0.3079 0.3039 0.3047 -0.2950 -0.3014
Max  0.3578 0.3479 -0.2684 -0.2527 0.3531 0.3538 -0.2346 -0.2418
Variance

Min  0.3345 0.4924 03597 0.5294 0.3627 0.5197 0.3705 0.5306
G Mean 0.3827 0.5464 0.4077 0.5702 0.3990 0.5589 0.4129 0.5786
Max  0.4680 05952 0.4981 0.6341 0.4601 0.6262 0.5272 0.6369
Min  0.4169 0.7023 0.4116 0.7582 0.3874 0.7176 0.4160 0.7748
S1 Mean 0.4714 0.8506 0.4905 0.8886 0.4569 0.8322 0.4708 0.8738
Max  0.6123 09790 0.6497 1.0351 0.5355 0.9342 0.5497 1.0342
Min 04151 0.7733 0.4076 0.7341 0.4108 0.6922 0.3743 0.7218
S2 Mean 0.4688 0.8557 0.4546 0.8158 0.4698 0.8449 0.4537 0.8330
Max 05209 0.9521 0.5657 0.9319 0.5523 0.9613 0.6878 0.9304

*Disc.: Discrimination item parameter / Diff.: Difficulty parameter
* Cond.: Numbers of 6 simulation conditions
* G: General factor; S1: First specific factor; S2: Second specific
* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed

distributions

* Corr.: Correlation between specific factor distributions



Table C-2. Mean and Variance of 8 Parameter Biases under Disc. of 1.3 and Diff. of 0.5

Cond. 1 2 3 4 5 6 7 8
G ©) 0) ©) 0) (+) (+) (+) (+)
S1 (+) (+) (+) (+) (+) (+) (+) (+)
0 S2 (+) (+) ) ) (+) (+) ) )
Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8
Mean
Min  .0.0579 -0.0538 -0.0442 -0.1161 0.2325 0.2271 0.2487 0.2191
G Mean 00007 0.0043 0.0000 -0.0104 0.3033 0.3034 0.3006 0.3023
Max 00463 0.0719 0.0656 0.0462 0.3606 0.3632 0.3483 0.3538
Min 02534 0.2585 0.2469 0.2508 0.2404 0.2539 0.2572  0.2299
S1  Mean 03006 0.2965 0.3032 0.2975 0.2993 0.3011 0.3027 0.3048
Max 03661 0.3411 0.3538 0.3635 0.3506 0.3515 0.3445 0.3577
Min 02548 0.2569 -0.3568 -0.3644 0.2453 0.2500 -0.3389 -0.3678
S2 Mean 03070 0.3002 -0.3060 -0.3080 0.3019 0.3046 -0.2956 -0.3015
Max 03724 0.3483 -0.2682 -0.2528 0.3524 0.3534 -0.2487 -0.2417
Variance
Min 03616 05200 0.3526 05297 0.3571 05115 0.3553 0.5122
G Mean 04194 05741 04030 05698 0.4123 05578 0.3949 0.5581
Max 05173 0.6330 0.4736 0.6306 0.5163 0.6333 0.4665 0.6049
Min 03798 0.7138 0.3569 0.7004 0.3959 0.6914 0.3853 0.7350
S1  Mean (04540 0.8229 04479 0.8076 0.4676 0.8034 0.4496 0.8016
Max 05882 0.9599 05479 009231 0.7469 0.9582 05219 0.9080
Min 03922 0.7491 0.4265 0.8308 0.4104 0.6833 0.4231 0.7808
S2. Mean (04626 0.8316 0.4897 0.9025 0.4658 0.8125 0.5092 0.9221
Max 05590 0.9164 05512 09843 0.5341 0.9619 0.7431 1.0380

*Disc.: Discrimination item parameter / Diff.: Difficulty parameter
* Cond.: Numbers of 6 simulation conditions
* G: General factor; S1: First specific factor; S2: Second specific
* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed

distributions

* Corr.: Correlation between specific factor distributions
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Table C-3. Mean and Variance of 8 Parameter Biases under Disc. of 1.8 and Diff. of -0.5

Cond. 1 2 3 4 5 6 7 8
G ) ) () () +) +) +) +)
5 S1 +) (+) (+) (+) +) (+) +) +)
S2 +) +) ) ) +) +) ) )
Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8
Mean
Min 00752 -0.0751 -0.0515 -0.0815 0.2449 0.2489 0.2355 0.2266
G Mean 00006 0.0064 0.0062 -0.0158 0.3080 0.3092 0.3055 0.3014
Max 00770 0.0755 0.0793 0.0325 0.3767 0.3796 0.3938 0.3713
Min 02484 02587 02542 0.2512 0.2558 0.2539 0.2558  0.2299
S1  Mean 03009 02967 0.3057 0.2977 0.3018 0.3012 0.3080  0.3050
Max 04024 0.3414 0.3610 0.3636 0.3512 0.3510 0.3857 0.3576
Min 02614 02571 -0.3461 -0.3644 0.2461 0.2499 -0.3475 -0.3677
S2 Mean 03053 0.3003 -0.3022 -0.3079 0.3040 0.3047 -0.2957 -0.3013
Max 03521 0.3481 -0.2544 -0.2528 0.3740 0.3533 -0.2395 -0.2421
Variance
Min 03391 04948 0.3606 05362 0.3365 05172 0.3635 0.5561
G Mean (3737 05422 0.3989 05765 0.3959 0.5593 0.4227 0.5911
Max 04285 05954 0.4342 0.6204 04531 0.6102 0.5729 0.6315
Min 04215 0.7403 04629 0.8165 04059 0.7850 0.4283 0.8126
S1  Mean 04791 08520 05061 0.9091 0.4699 0.8405 0.4826 0.8936
Max 05247 0.9537 05536 1.0262 05151 0.9308 0.5409 0.9735
Min 04347 07870 04223 07219 04195 0.7551 0.4111 0.6987
S2 Mean (4844 0.8619 04608 0.8119 04761 0.8497 0.4679 0.8347
Max 05302 0.9652 05055 0.8846 05481 0.9195 0.6768 0.9165

*Disc.: Discrimination item parameter / Diff.: Difficulty parameter
* Cond.: Numbers of 6 simulation conditions
* G: General factor; S1: First specific factor; S2: Second specific
* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed

distributions

* Corr.: Correlation between specific factor distributions
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Table C-4. Mean and Variance of 8 Parameter Biases under Disc. of 1.8 and Diff. of 0.5

Cond. 1 2 3 4 5 6 7 8
G () () () () +) +) +) +)
6 S1 +) ) ) +) +) +) +) +)
S2 +) ) ) ) +) +) ) )
Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8
Mean
Min 00565 -0.0658 -0.0730 -0.0768 0.2499 0.2409 0.2534 0.2200
G Mean (00005 0.0022 0.0006 -0.0104 0.3108 0.3076 0.3010 0.3001
Max 00640 0.0651 0.0742 0.0379 0.3715 0.3713 0.3475 0.3487
Min 02505 0.2576 0.2435 0.2511 0.2358 0.2552 0.2502 0.2299
S1  Mean (2998 0.2963 0.3038 0.2973 0.3033 0.3014 0.3043 0.3048
Max 03546 0.3408 0.3695 0.3636 0.3824 0.3526 0.3547 0.3576
Min 02521 0.2559 -0.3656 -0.3646 0.2455 0.2499 -0.3638 -0.3678
S2 Mean (03078 0.3001 -0.3058 -0.3080 0.3052 0.3045 -0.2967 -0.3015
Max 03620 0.3471 -0.2578 -0.2526 0.3549 0.3546 -0.2475 -0.2419
Variance
Min 03821 05198 0.3686 0.5382 0.3768 0.5213 0.3580 0.4981
G Mean (4154 05780 0.3983 05753 0.4105 05599 0.3897 0.5585
Max 05126 0.6286 0.4257 0.6249 0.4413 0.6044 0.4188 0.6138
Min 04073 0.7006 04196 0.7288 04313 0.7346 0.4150 0.6650
S1  Mean (04614 08169 0.4509 0.8000 0.4715 0.8088 0.4554 0.7957
Max 05468 0.9201 0.4836 0.8611 0.5162 0.8903 05117 0.8618
Min 04155 0.7575 04742 0.8381 04219 0.7322 0.4887 0.8186
S2 Mean (04658 0.8296 0.5145 09271 0.4794 0.8197 05306 0.9475
Max 04983 0.9384 0.5620 1.0190 0.5316 0.9070 05711 1.0542

*Disc.: Discrimination item parameter / Diff.. Difficulty parameter
* Cond.: Numbers of 6 simulation conditions
* G: General factor; S1: First specific factor; S2: Second specific
* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed

distributions

* Corr.: Correlation between specific factor distributions
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Appendix D

Table D-1. Correlations between Generated and Estimated Factors with Discrimination

Parameters from mean of 1.3

Cond. 1 2 3 4 5 6 7 8
G (0) ©) (0) ©) (+) (+) (+) (+)
0 S1 (+) (+) (+) (+) (+) (+) (+) (+)
72 G MR O NN G B > BN Co NN ¢ N G I &
Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8
Difficulty parameters with mean of -0.5 and standard deviation of 0.4
Mean 0.7890 0.7200 0.7749 0.7079 0.7800 0.7106 0.7719 0.7033
Var  0.0002 0.0002 0.0003 0.0002 0.0002 0.0001 0.0002 0.0002
Min  0.7440 0.6867 0.7219 0.6737 0.7355 0.6736 0.7166 0.6698
Max 0.8253 0.7504 0.8030 0.7347 0.8046 0.7364 0.7952 0.7329
Mean 0.7260 0.4310 0.7186 0.3859 0.7396 0.4416 0.7276 0.4032
S1 Var  0.0007 0.0018 0.0007 0.0016 0.0004 0.0011 0.0003 0.0017
Min  0.6280 0.3317 0.6346 0.2993 0.6904 0.3624 0.6905 0.2815
Max 0.7670 0.5216 0.7649 0.5044 0.7768 0.5251 0.7674 0.4973
Mean 0.7295 0.4248 0.7414 0.4482 0.7289 0.4329 0.7431 0.4414
S2 Var  0.0003 0.0011 0.0003 0.0014 0.0004 0.0011 0.0011 0.0013
Min  0.6969 0.3178 0.6718 0.3558 0.6685 0.3690 0.5572 0.3504
Max 0.7631 0.4932 0.7702 0.5161 0.7656 0.5059 0.7839 0.5397
Difficulty parameters with mean of 0.5 and standard deviation of 0.4
Mean 0.7668 0.7024 0.7771 0.7085 0.7713 0.7066 0.7819 0.7119
G Var  0.0003 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002
Min  0.7031 0.6677 0.7479 0.6711 0.7182 0.6664 0.7468 0.6867
Max 0.8047 0.7352 0.8046 0.7312 0.7980 0.7357 0.8037 0.7407
Mean 0.7387 0.4480 0.7466 0.4572 0.7296 0.4650 0.7410 0.4625
S1 Var  0.0007 0.0019 0.0004 0.0017 0.0023 0.0016 0.0003 0.0015
Min  0.6492 0.2882 0.7044 0.3705 0.4561 0.3751 0.6983 0.3786
Max 0.7742 0.5267 0.8015 0.5427 0.7702 0.5451 0.7850 0.5311
Mean 0.7339 0.4470 0.7178 0.3736 0.7324 0.4487 0.7049 0.3549
S2 Var  0.0004 0.0010 0.0003 0.0015 0.0005 0.0020 0.0012 0.0024
Min  0.6733 0.3722 0.6874 0.2322 0.6688 0.3681 0.5076 0.2216
Max 0.7746 0.5015 0.7508 0.4258 0.7721 0.5467 0.7505 0.4712

* Cond.: Numbers of 6 simulation conditions
* G: General factor; S1: First specific factor; S2: Second specific
* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed

distributions

* Corr.: Correlation between specific factor distributions
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Table D-2. Correlations between Generated and Estimated Factors with Discrimination

Parameters from mean of 1.8

Condition 1 2 3 4 5 6 7 8
G (0) V) (0) V) +) +) (+) (+)
0 S1 (+) (+) (+) (+) +) +) (+) (+)
S 2 € W C N o SR G NN O B O B C B ¢
Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8
Difficulty parameters with mean of -0.5 and standard deviation of 0.4
Mean 0.7937 0.7243 0.7785 0.7072 0.7817 0.7125 0.7663 0.6992
Var  0.0001 0.0002 0.0001 0.0001 0.0001 0.0002 0.0004 0.0001
Min  0.7658 0.6891 0.7569 0.6724 0.7535 0.6867 0.6900 0.6771
Max 0.8177 0.7471 0.7993 0.7244 0.8072 0.7399 0.7945 0.7217
Mean 0.7215 0.4336 0.7083 0.3783 0.7304 0.4433 0.7219 0.3947
S1 Var  0.0002 0.0007 0.0002 0.0009 0.0002 0.0005 0.0002 0.0007
Min  0.6959 0.3464 0.6830 0.2991 0.6950 0.3829 0.6914 0.3248
Max  0.7442 0.4907 0.7341 0.4266 0.7731 0.4833 0.7556 0.4463
Mean 0.7184 0.4226 0.7351 0.4508 0.7255 0.4314 0.7333 0.4418
S2 Var  0.0002 0.0007 0.0002 0.0008 0.0003 0.0007 0.0008 0.0007
Min  0.6863 0.3561 0.7057 0.3838 0.6624 0.3703 0.5923 0.3486
Max 0.7569 0.4847 0.7604 0.5123 0.7740 0.4996 0.7745 0.4911
Difficulty parameters with mean of 0.5 and standard deviation of 0.4
Mean 0.7677 0.6997 0.7790 0.7075 0.7710 0.7041 0.7839 0.7129
G Var  0.0002 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002
Min  0.7055 0.6628 0.7563 0.6799 0.7490 0.6830 0.7648 0.6805
Max 0.7911 0.7315 0.8001 0.7348 0.7939 0.7398 0.8086 0.7482
Mean 0.7323 0.4566 0.7439 0.4649 0.7276 0.4595 0.7362 0.4667
S1 Var  0.0002 0.0009 0.0001 0.0007 0.0001 0.0007 0.0001 0.0009
Min  0.6942 0.3662 0.7172 0.4064 0.7069 0.4089 0.7027 0.4047
Max 0.7568 0.5181 0.7617 0.5211 0.7516 0.5106 0.7577 0.5344
Mean 0.7305 0.4471 0.7007 0.3591 0.7211 0.4433 0.6917 0.3414
S2 Var  0.0002 0.0006 0.0002 0.0012 0.0002 0.0012 0.0002 0.0010
Min  0.7053 0.3885 0.6766 0.2989 0.6995 0.3356 0.6651 0.2687
Max 0.7577 0.4987 0.7279 0.4371 0.7576 0.5178 0.7218 0.4105

* Condition: Numbers of 6 simulation conditions
* G: General factor; S1: First specific factor; S2: Second specific
* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed

distributions

* Corr.: Correlation between specific factor distributions
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Appendix E

Table E-1. Numbers of Frequencies Significant by KS Test under Condition 1

Discrimination Mean: 1.3/SD: 0.15 Mean: 1.8/ SD: 0.15

Mean: -0.5 Mean: 0.5 Mean: -0.5 Mean: 0.5
Difficulty
SD: 0.4 SD: 0.4 SD: 0.4 SD: 0.4

0 G Ss1 s2 G ST s2 G S1 s2 G s s2
1 to 2000 18 50 50 34 50 50 28 50 50 50 50 50
1to 200 0 50 50 0 50 50 0 50 50 1 50 50
201 to 400 0 50 50 0 50 50 1 50 50 0 50 50
401 to 600 0 50 50 0 50 50 2 50 50 0 50 50
601 to 800 0O 50 5 0 5 5 0 5 5 0 50 50
801 to 1000 0O 50 5 0 5 5 0 5 5 0 50 50
1001t01200 0 50 50 O 50 50 0O 50 50 0 50 50
1201 to 1400 0 50 50 0 50 50 0 50 50 0 50 50
1401 to 1600 1 50 50 1 50 50 1 50 50 1 50 50
1601 to 1800 0 50 50 0 50 50 1 50 50 1 50 50
1801t0o2000 1 50 50 O 49 50 0 50 50 0 50 50

* Condition: Numbers of 6 simulation conditions
* G: General factor; S1: First specific factor; S2: Second specific factor
* The frequencies under the significance level of .05 were counted.

85



Table E-2. Numbers of Frequencies Significant by KS Test under Condition 2

Discrimination Mean: 1.3/SD: 0.15 Mean: 1.8/ SD: 0.15

Mean: -0.5 Mean: 0.5 Mean: -0.5 Mean: 0.5
Difficulty
SD: 0.4 SD: 0.4 SD: 0.4 SD: 0.4

0 G S1  S2 G S1  S2 G S1 82 G S1 82
1 to 2000 50 50 50 50 50 50 50 50 50 50 50 50
1to 200 1 50 50 5 50 50 1 50 50 1 50 50
201 to 400 3 50 50 4 5 5 1 5 5 3 50 50
401 to 600 3 50 50 2 50 50 3 50 50 2 50 50
601 to 800 2 50 50 4 50 50 2 50 50 3 50 50
801 to 1000 2 50 50 4 50 50 2 50 50 3 50 50
1001t01200 2 50 50 1 5 5 1 5 50 1 50 50
1201t01400 2 50 50 0 50 50 3 50 50 2 50 50
1401to1600 2 50 50 3 50 50 2 50 50 4 50 50
1601 to 1800 2 50 50 1 50 50 2 50 50 1 50 50
1801 to 2000 3 50 50 1 50 50 3 50 50 3 50 50

* Condition: Numbers of 6 simulation conditions
* G: General factor; S1: First specific factor; S2: Second specific factor
* The frequencies under the significance level of .05 were counted.
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Table E-3. Numbers of Frequencies Significant by KS Test under Condition 3

Discrimination Mean: 1.3/SD: 0.15 Mean: 1.8/ SD: 0.15

Mean: -0.5 Mean: 0.5 Mean: -0.5 Mean: 0.5
Difficulty
SD: 0.4 SD: 0.4 SD: 0.4 SD: 0.4

0 G S1  S2 G S1  S2 G S1 82 G S1 82
1 to 2000 22 50 50 21 50 50 46 50 50 46 50 50
1 to 200 0O 50 50 O 5 5 1 5 50 0 50 50
201 to 400 0O 50 50 O 5 5 0 5 50 0 50 50
401 to 600 0 50 50 0 50 50 1 50 50 1 50 50
601 to 800 0 50 50 0 50 50 1 50 50 1 50 50
801 to 1000 0 50 50 0 50 50 1 50 50 1 50 50
1001t01200 O 5 50 0 50 50 0 50 50 O 49 50
1201t01400 O 5 50 0 50 50 0 50 50 O 50 50
1401to1600 O 5 50 0 50 50 0 50 50 1 50 50
1601 to 1800 1 50 50 0 50 50 1 50 50 0 50 50
1801 to 2000 0 50 50 0 50 50 0 50 50 0 50 50

* Condition: Numbers of 6 simulation conditions
* G: General factor; S1: First specific factor; S2: Second specific factor
* The frequencies under the significance level of .05 were counted.
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Table E-4. Numbers of Frequencies Significant by KS Test under Condition 4

Discrimination Mean: 1.3/SD: 0.15 Mean: 1.8/ SD: 0.15

Mean: -0.5 Mean: 0.5 Mean: -0.5 Mean: 0.5
Difficulty
SD: 0.4 SD: 0.4 SD: 0.4 SD: 0.4

0 G S1  S2 G S1  S2 G S1 82 G S1 82
1 to 2000 50 50 50 49 50 50 50 50 50 50 50 50
1 to 200 2 50 50 4 50 50 4 5 50 5 50 50
201 to 400 3 50 50 3 5 50 4 5 5 5 50 50
401 to 600 4 50 50 4 50 50 6 50 50 6 50 50
601 to 800 0 50 50 0 50 50 2 50 50 0 50 50
801 to 1000 0 50 50 0 50 50 2 50 50 0 50 50
1001t01200 2 50 50 4 50 50 5 50 50 3 50 50
1201 to 1400 1 50 50 2 50 50 1 50 50 1 50 50
1401to1600 1 50 50 2 50 50 1 50 50 2 50 50
1601 to 1800 6 50 50 6 50 50 6 50 50 6 50 50
1801 to 2000 1 50 50 3 50 50 0 50 50 5 50 50

* Condition: Numbers of 6 simulation conditions
* G: General factor; S1: First specific factor; S2: Second specific factor
* The frequencies under the significance level of .05 were counted.
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Table E-5. Numbers of Frequencies Significant by KS Test under Condition 5

Discrimination Mean: 1.3/SD: 0.15 Mean: 1.8/ SD: 0.15

Mean: -0.5 Mean: 0.5 Mean: -0.5 Mean: 0.5
Difficulty
SD: 0.4 SD: 0.4 SD: 0.4 SD: 0.4

0 G S1  S2 G S1  S2 G S1 82 G S1 82
1 to 2000 50 50 50 50 50 50 50 50 50 50 50 50
1 to 200 50 50 50 50 50 50 50 50 50 50 50 50
201 to 400 50 49 50 50 50 50 50 50 50 50 50 50
401 to 600 49 50 50 50 50 50 50 50 50 50 50 50
601 to 800 49 50 50 49 50 50 50 50 50 50 50 50
801 to 1000 49 50 50 49 50 50 50 50 50 50 50 50
1001t01200 49 50 50 49 50 50 50 50 50 50 50 50
1201t01400 50 50 50 49 50 50 50 50 50 50 50 50
1401t01600 50 50 50 50 50 50 50 50 50 50 50 50
1601to 1800 50 50 50 50 50 50 50 50 50 50 50 50
1801to 2000 50 50 50 50 50 50 50 50 50 50 50 50

* Condition: Numbers of 6 simulation conditions
* G: General factor; S1: First specific factor; S2: Second specific factor
* The frequencies under the significance level of .05 were counted.
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Table E-6. Numbers of Frequencies Significant by KS Test under Condition 6

Discrimination Mean: 1.3/SD: 0.15 Mean: 1.8/ SD: 0.15

Mean: -0.5 Mean: 0.5 Mean: -0.5 Mean: 0.5
Difficulty
SD: 0.4 SD: 0.4 SD: 0.4 SD: 0.4

0 G S1  S2 G S1  S2 G S1 82 G S1 82
1 to 2000 50 50 50 50 50 50 50 50 50 50 50 50
1 to 200 50 50 50 48 50 50 50 50 50 50 50 50
201 to 400 50 50 50 50 50 50 50 50 50 49 50 50
401 to 600 49 50 50 49 50 50 50 50 50 50 50 50
601 to 800 50 50 50 50 50 50 49 50 50 49 50 50
801 to 1000 50 50 50 50 50 50 49 50 50 49 50 50
1001t01200 50 50 50 50 50 50 50 50 50 50 50 50
1201t01400 49 50 50 48 50 50 50 50 50 49 50 50
1401t01600 50 50 50 50 50 50 50 50 50 50 50 50
1601to 1800 50 50 50 50 50 50 50 50 50 50 50 50
1801to 2000 50 50 50 50 50 50 50 50 50 50 50 50

* Condition: Numbers of 8 simulation conditions

* G: General factor; S1: First specific factor; S2: Second specific factor
* The frequencies under the significance level of .05 were counted.
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Table E-7. Numbers of Frequencies Significant by KS Test under Condition 7

Discrimination Mean: 1.3/SD: 0.15 Mean: 1.8/ SD: 0.15

Mean: -0.5 Mean: 0.5 Mean: -0.5 Mean: 0.5
Difficulty
SD: 0.4 SD: 0.4 SD: 0.4 SD: 0.4

0 G S1  S2 G S1  S2 G S1 82 G S1 82
1 to 2000 50 50 50 50 50 50 50 50 50 50 50 50
1 to 200 50 50 50 49 50 50 50 50 50 50 50 50
201 to 400 50 50 50 49 50 50 50 50 50 50 50 50
401 to 600 48 50 50 50 50 50 49 50 50 50 50 50
601 to 800 50 50 50 49 50 50 50 50 50 49 50 50
801 to 1000 50 50 50 49 50 50 50 50 50 49 50 50
1001t01200 50 50 50 50 50 50 50 50 50 50 50 50
1201t01400 50 50 50 50 50 50 50 50 50 50 50 50
1401t01600 50 50 50 49 49 50 49 50 50 50 50 50
1601to 1800 50 50 50 49 50 50 50 50 50 50 50 50
1801to 2000 50 50 50 50 50 50 50 50 50 50 50 50

* Condition: Numbers of 6 simulation conditions
* G: General factor; S1: First specific factor; S2: Second specific factor
* The frequencies under the significance level of .05 were counted.
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Table E-8. Numbers of Frequencies Significant by KS Test under Condition 8

Discrimination Mean: 1.3/SD: 0.15 Mean: 1.8/ SD: 0.15

Mean: -0.5 Mean: 0.5 Mean: -0.5 Mean: 0.5
Difficulty
SD: 0.4 SD: 0.4 SD: 0.4 SD: 0.4

0 G S1  S2 G S1  S2 G S1 82 G S1 82
1 to 2000 50 50 50 50 50 50 50 50 50 50 50 50
1 to 200 50 50 50 50 50 50 50 50 50 49 50 50
201 to 400 50 50 50 50 50 50 50 50 50 50 50 50
401 to 600 50 50 50 48 50 50 50 50 50 49 50 50
601 to 800 50 50 50 50 50 50 50 50 50 50 50 50
801 to 1000 50 50 50 50 50 50 50 50 50 50 50 50
1001t01200 50 50 50 49 50 50 50 50 50 50 50 50
1201t01400 50 50 50 48 50 50 49 50 50 49 50 50
1401t01600 50 50 50 50 50 50 50 50 50 50 50 50
1601to 1800 49 50 50 50 50 50 50 50 50 49 50 50
1801to 2000 49 50 50 48 50 50 49 50 50 49 50 50

* Condition: Numbers of 6 simulation conditions
* G: General factor; S1: First specific factor; S2: Second specific factor
* The frequencies under the significance level of .05 were counted.
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