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ABSTRACT 

EXPLORING THE ESTIMATION OF EXAMINEE LOCATIONS 

USING MULTIDIMENSIONAL LATENT TRAIT MODELS 

UNDER DIFFERENT DISTRIBUTIONAL ASSUMPTIONS 

By 

Hyesuk Jang 

This study aims to evaluate a multidimensional latent trait model to determine how well 

the model works in various empirical contexts. Contrary to the assumption of these latent trait 

models that the traits are normally distributed, situations in which the latent trait is not shaped 

with a normal distribution may occur (Sass et al, 2008; Woods & Thissen, 2006). As a result 

when studies construct evaluations or comparisons in order to determine the appropriate 

estimation method and to avoid inefficient ones, the distribution or distributional statistics of the 

latent trait are considered as a key assumption. This study explores the performance of parameter 

estimation using a bifactor model, a type of multidimensional latent trait model in order to 

provide information of the effects of violations of the distributional assumptions.   

The effects of the distributional assumptions are evaluated using simulation studies. A 

two-parameter logistic bifactor model with three factors: one general and two specific factors, is 

used as a basic multidimensional latent model. Simulation studies construct eight distributional 

conditions based on the degree of skewedness of the general factor, the directions of skewedness 

of the specific factors, the correlation between specific factors and four types of item parameter 

conditions.  

The results showed that item parameter estimation was affected by the degree of 

skewedness of the general factor, the directions of skewedness of the specific factors, and the 

correlation between specific factors. These conditions of the latent trait distributions had 



 
 

different effects on item parameter estimation depending on the type of item parameter. Based on 

the variances of the mean biases and correlations between generated and estimated parameters, 

the most important condition of the latent trait distribution for   parameter estimation was the 

correlation between the specific factors. With the increasing number of studies and practical need 

for multidimensional structures of latent traits, this research provides useful guidelines for 

constructing appropriate multidimensional models.  

 

Key words: Multidimensional latent trait model, bifactor model, latent trait distribution, 

simulation study 
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1. Introduction 

1.1 Multidimensional Latent Trait 

The work on latent traits started in the 1950s. According to Gifford (1978), the word 

‘latent trait’ was mentioned in Lazarsfeld (1950), and latent trait theory was first developed by 

Lord (1952, 1953a, 1953b). Latent traits are unobservable, and cannot be measured directly. In 

latent trait theory, the latent trait is portrayed as underlying participants’ performance on sets of 

test items, which is why it is called a “latent” trait or ability (Gifford, 1978). Test items are used 

to collect participants’ responses to particular stimuli, and based on the response features from 

the collected data, the characteristics of the participants and items may be estimated by using a 

latent trait model.  

In order to have a basis in scientific methods, item response theory (IRT) as a latent trait 

theory has been developed to describe the relationship between participants’ responses and their 

level of abilities by a mathematical function (Lord, 1980). The models used for item response 

theory can be distinguished as unidimensional item response theory (UIRT) or multidimensional 

item response Theory (MIRT) models depending on whether the number of latent traits modeled 

is one, or more than one. According to the book by Reckase (2009), work in fields such as 

education, psychology, and statistics suggests that the structure of human knowledge is 

complicated, and that the processes that produce observed responses to test items are often 

complex and varied. As a result, multidimensional item response theory (MIRT) has been 

developed to better fit reality. Chalmers (2012) also suggested that even though unidimensional 

models can be useful, in order to adequately specify the nature of measures with complicated 

structures, it is essential to consider their dimensionality.  
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Many researchers also have considered multidimensionality in measuring particular 

constructs of interest. To produce test items that follow an expected factor structure, item 

construction studies have constructed and analyzed test item data using multidimensional latent 

trait models, for example in educational assessment (OECD, 2007a & 2007b; von Davier, 2008; 

Hichendorff, 2013) and psychological or sociological constructs (Capella & Turner, 

2004;Yoshida & James, 2010; Eboli & Mazzulla, 2007; Martin, 2007; Duncan-Jones, 1981a & 

1981b). In educational assessment of science literacy in PISA 2006, for example, the test 

consisted of three content areas: earth and space systems, living systems, and physical systems. 

According to OECD (2007a; 2007b), the average score on science questions from different 

content areas for a particular country tend to vary. This suggests that even though the test 

examines science literacy as a general latent trait, a different pattern of the students’ ability 

distribution can exist depending on the sub-latent traits (OECD, 2007a). In this case, modeling 

the total latent trait, ignoring the sub-domains, could result in scores that are not easily 

interpretable or policy decisions that are erroneous because of the lack of information about the 

student latent trait.  

Capella and Turner (2004) developed an instrument of customer satisfaction in the 

vocational rehabilitation services. In this research, the customer satisfaction survey considered 

four components of satisfaction: counselor interpersonal factors, counselor job effectiveness, 

satisfaction with the services, and satisfaction with the agency. Confirmatory factor analysis 

indicated that the satisfaction instrument consisted of three dimensions that reflected the 

counselor that the customers interacted with, the services that the customers received, and the 

agency that provided the services.  The research showed that customer satisfaction can be 

described as consisting of multiple latent traits. 
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Model A:  

Multiple Correlated Traits 

Model B:  

Second Order 

Model C:  

Bifactor 

Figure 1-1. Examples of Multidimensional Latent Variable Models (Reise et al, 2007; Reise et al, 

2010) 

Multidimensional measurement and analytical methods have been used in social network 

analysis of human interactions. One of the efforts in the measurement of interactions that has 

attracted interest was the construction of the Interview Schedule for Social Interaction (ISSI), 

which was developed by the Social Psychiatry Research Unit at the Australian National 

University (Duncan-Jones, 1981a & 1981b). The survey consisted of 50 items asking about the 

availability or adequacy of social interaction and attachment, and about acquaintances, friends, 

attachment, opportunities for nurturance and reassurance of worth, and reliable alliances. 

Duncan-Jones (1981) evaluated and characterized the structure of the ISSI according to 

subdomains of social relationships by using confirmatory factor analysis.  

1.2 Multidimensional Latent Trait Models 

To describe various item content, formats, and relationships between multiple factors, 

various latent trait models have been developed and used. Reise et al. (2007) provides examples 

of multidimensional latent models, three of which are shown in Figure 1-1. Circles represent 

dimensions or latent factors, and rectangles represent items used for measuring the factors. 
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Model A is a typical multidimensional correlated traits model. Each latent trait is related to some 

of the items, and it is assumed that there is a correlation between the factors. Model B shows a 

multidimensional model with a higher order structure of latent traits, which is often referred to as 

a second-order factor model. As in Model A, the latent traits at the lower level are measured by 

some of the items. The difference is the presence of a second order trait explaining the 

correlation between the first level traits. Although Models A and B measure certain factors 

related to common parts of the items and show relationships among the latent traits, they do not 

include  general factor directly related to all of the items. Model C shows the structure of a 

bifactor model. The bifactor model has two kinds of factors: a ‘general’ factor connected to the 

all items accounting for the item intercorrelations, and several ‘group’ or ‘specific’ factors 

connected to the some of the items representing additional covariance unexplained by the general 

factor.   

The bifactor model has a mathematical relationship with other models specifying 

multidimensional structures of test items. In Rijmen (2010), the bifactor model was compared to 

two other multidimensional IRT models: the testlet model and the second-order model. The 

research demonstrated that while all three models take account of item clusters, there are some 

differences in the consideration of specific factor loadings. The testlet model has a constraint on 

the loadings of the specific factors, and they are estimated from the general factor loading in a 

proportional way within each testlet. Under the assumption that the second order model also has 

proportional specific factor loadings, the second order models can be described as restricted 

forms of the bi-factor model. Therefore, research using the bifactor model can be viewed as 

relevant to multidimensional models in general, including those described above that take item 

clusters into account.      
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1.3 Latent Trait Distributions 

Many studies using latent trait models focus on the latent trait estimate. To estimate the 

latent trait means to locate each examinee somewhere on each continuum scale, allowing us to 

investigate a examinee’s status on each latent trait, or to compare examinees’ relative statuses 

(Reckase, 2009). Hambleton et al. (1991) emphasized the importance of the latent trait in 

demonstrating that the IRT models are based on two postulates; one about whether participants’ 

performances on test items can be explained by their latent traits, and the other about whether the 

relationship between their item performance and the traits can be modeled by a particular family 

of item characteristic functions. Among the parameters in latent trait models including item 

difficulty, item discrimination and item guessing parameters, and person latent trait parameters, 

Sass et al. (2008) suggested that the latent trait parameters be considered the most important to 

estimate, because the latent trait estimates can be used to determine an examinee’s proficiency 

classification or standing on a psychological construct. 

The estimation of the latent traits is important not only to providing examinees’ 

proficiency classification or measurement of psychological constructs but also because it reflects 

to a central assumption of latent trait models. Most of factor models assume normal distribution 

of the latent trait; however, situations in which the latent trait is not normally distributed may 

occur in reality (Sass et al, 2008; Woods & Thissen, 2006). Violation of the assumption that the 

latent trait is normally distributed is a critical issue because it affects confidence in the estimates 

from statistical models, which have desirable regularity properties only under conditions 

consistent with the assumptions. Researchers who are interested in studies related to parameter 

estimation of latent trait models have used various estimation methods, such as maximum 

likelihood, least squares, and Bayesian estimators. All these estimation methods use the 
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distribution or distributional statistics of the latent trait, and assumptions about the latent trait 

distribution are an important issue. Many studies have constructed evaluations or comparisons of 

estimation methods in order to identify the most appropriate estimation methods and to avoid the 

inefficient ones (Finch, 2010; Cai et al., 2011; Li & Lissitz, 2012; Woods & Thissen, 2006). As 

an extension of these studies, my research evaluates the estimation performance of a 

multidimensional model under conditions characterized by various distributional assumptions 

about the latent traits.  

1.4 Simulation Study 

The study of latent trait distributions is significant in order to evaluate the performance of 

latent trait models and their estimation processes. Many of the studies that evaluate estimation 

quality use simulation and this study exploring the estimation performance of multidimensional 

latent trait models also uses simulation.  Simulation studies have been popular in various fields 

of research. The large numbers of simulation studies in certain fields or addressing particular 

topics shows that many researchers are still using simulation studies (Axelrod, 2005). One reason 

for using simulation study is a lack of appropriate empirical data. Practically, it is true that 

collecting data requires a lot of time and effort, and sometimes it is hard to get the data that we 

really want to analyze. Especially when research conditions do not permit researchers to collect 

appropriate data to address a particular question, such data can be simulated. However, leaving 

aside practical limitations that suggest study by simulation, there are significant benefits that 

simulation study provides.  

First, by using a simulation study, we can re-use existing information derived from 

previous research to conduct deeper research or develop a sequential research line. If we have 
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parameter estimates in an original dataset related to our research interest, using them to generate 

additional data samples may be a better use of resources than collecting data again.  

Simulation study provides not only the tools to allow us to use available information, but 

also the opportunity to study unobserved research conditions. Without collecting data, empirical 

analysis is not able to be used unless the analysis uses second hand or published data. On the 

other hand, in simulation studies, conditions that cannot easily be created or may never have 

occurred can be produced. Also, the results from these studies can predict and help prepare for 

empirical situations that might occur in the future.  

Simulation study methods allow us to replicate the statistical analyses in a very efficient 

way. Replication allows us to confirm that the results from a simulation study are reliable, or to 

test that the inferences from various models are robust (Axelrod, 2005). For example, in order to 

compare estimation methods, we need to examine amounts of estimation error or other statistical 

errors that are not related to one’s research interests, but inevitably occur. In this case, one set of 

empirical data is not enough to compare the differences among all conditions of interest. Finally, 

the results from the simulation study provide methodological information and can be discussed 

related to empirical applications, as I will do in this study.  

1.5 Research Question 

This research evaluates estimation performance of a multidimensional latent trait model 

for latent trait and item parameters under various latent trait distribution conditions. The 

multidimensional latent trait model that is used for this research is a two-parameter bifactor 

model with one general factor and two specific factors. In order to answer the research questions, 

a simulation study is constructed with conditions representing different latent trait distributions 



8 
 

and sets of item parameters. The latent trait distribution conditions can be characterized 

according to the degree of skewedness of the distribution, the direction of the distribution 

skewedness, and the intercorrelations between specific factors. The latent trait distribution 

conditions includes four conditions combining general and specific latent trait distributions with 

particular skewedness: 1) normal general factor and non-normal specific factors skewed in the 

same way; 2) normal general factor and non-normal specific factors skewed in a different way; 3) 

non-normal general factor and non-normal specific factors skewed in the same way; and 4) non-

normal general factor and non-normal specific factors skewed in a different way.  The parameter 

estimation is evaluated under two levels of intercorrelation between specific factors.  Further, 

four different possible sets of item difficulty and discrimination parameters are considered. In 

total, eight conditions of latent trait distributions and four conditions of item parameters are 

constructed through simulation. Specific descriptions of the simulation study design are provided 

in Chapter 3.  

 This research explores the estimation performance of the bifactor model under different 

distributional and item parameter conditions. My specific research questions are as follows: 

What precision results from the parameter estimation of the bifactor model:   

1) depending on each combination of latent trait distributions in terms of (a) the 

normality of the general factor distribution, (b) direction of the skewed distributions 

included in the general or specific factors, and (c) the correlations between the specific 

factors?,  and  

2) depending on the levels of the item difficulty and discrimination parameter values? 
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The literature review of the bifactor model, latent trait distribution and related studies are 

discussed in Chapter 2, and the procedure of the simulation study and methods to generate and 

analyze the data are provided in Chapter 3.  

  



10 
 

2. Literature Review 

2.1 Bifactor Model 

Collected data is not a direct measure of the unobservable latent trait, but rather a proxy 

for the latent trait. Therefore, before an analyst uses collected data, its measurement properties 

should be evaluated about whether it represents the construct validly, and measures the construct 

consistently across the participants. Also, in order to provide precise information for construct 

analysis, it is important to consider the suitability of the method that we use for the analysis. 

In order to measure the sub-structure of  a general latent trait, Gibbons and Hedeker 

(1992) introduced the bifactor model for binary items, which is derived from the ‘bifactor’ 

solution named by Holzinger and Swineford (1937). The model has the constraints that each item 

has a) a nonzero loading on the general factor, which is the primary dimension; and b) a second 

loading on no more than one of the specific factors. Also, each specific factor is orthogonal to 

the general factor and other specific factors. The pattern matrix for a bifactor model of five items, 

for example, could be shown as  

  

[
 
 
 
 
 10  11 0

  0   1 0
 30

  0

 50

 31

0

0

0

   

 5 ]
 
 
 
 

 , 

where     is the factor loading of item   on factor  . The factor loadings indicate the item slope, 

or “discrimination,” parameters (Cai, Yang, & Hansen, 2011). In the matrix above, the five items 

are measures for one general factor and two group factors. The loadings on the general factor in 

the first column are   0, which should be nonzero, and the loadings of items 1-3 in the second 
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and 4-5 in the third column are related to specific factors 1 and 2 respectively (Gibbons & 

Hedeker, 1992; Li & Lissitz, 2012).  

The function of the bifactor model can be explained as an IRT model. Compared to the 

unidimensional two-parameter IRT model, in the bifactor model general and specific latent traits 

are divided into separate parts with corresponding item parameters.  

The functions of the unidimensional two-parameter IRT model and two-parameter 

bifactor model are as follows (Reckase, 2009; Cai et al, 2011; Li & Lissitz, 2012): 

Unidimensional two-parameter IRT model: 

 (u 1| 0, ai, di) 
1

1 exp  -[di ai 0] 
 , and 

Two-parameter bifactor model: 

 (u 1| 0,  s, a0, as,di
) 

1

1 exp   [di a0 0 as s] 
 

The left-hand side of each equation represents the probability that an examinee answers a 

question (or an item) correctly.   is an individual examinee’s ability related to the latent trait, and 

the value shows the location on the   continuum. ‘a’ and ‘d’ are the item parameters for the ith  

item. ‘a’ indicates an item discrimination, and ‘d’ is calculated from the item difficulty and item 

discrimination parameters as shown in Equation below: (X): 

di  b√∑ av
 

m

v 0

 

where ‘b’ is an item difficulty parameter and m is the number of dimensions (Rec ase,  009).  
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The bifactor model has been used for multidimensional item analyses with various 

purposes. Reise et al (2007) demonstrated the utility of the bifactor model, and according to the 

research, the bifactor model can inform decisions about the dimensionality of the data and what 

type of models are appropriate for analysis: a) the bifactor model can be used to check the 

assumptions of unidimensional IRT models and test the fit of these models to possibly 

multidimensional data; b) it can be used, like non-hierarchical MIRT models, to form subscales; 

and c) it can be an alternative to using non-hierarchical multidimensional models for measuring 

individual differences. As a representative multidimensional latent trait model, the bifactor 

model is investigated under various distributional conditions of the latent traits. The next section 

discusses previous research on latent trait distributions.  

2.2 Previous Research on Latent Trait Distributions 

The estimation of the latent traits is important not only to providing examinees’ 

proficiency classification or measurement of psychological constructs but also because it reflects 

to a central assumption of latent trait models. Gibbons and Hedeker (1992) explain the 

assumption of the latent distribution in factor models by using Thurstone’s multiple factor model 

(1947). The multiple factor model is as follows:    

y
 
   1 1         3 3….         , 

where y is a latent variable,   is an underlying ability,   is a factor loading, and   is a residual.  

In the multiple factor model, underlying abilities of    and the latent trait of y are 

assumed to follow normal distributions. It implies that the underlying abilities (  ) are 

orthogonal, which is an assumption of any bifactor model, and that residuals of   are normally 

distributed. The assumption that the relations between factors are orthogonal reduces the 
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complexity of the integration involved in estimating the parameters. The estimation efficiency 

produced by the assumption of orthogonal latent trait distributions is strength of the bifactor 

model. 

As mentioned above, most of factor models assume normal distribution of the latent trait; 

however, situations in which the latent trait is not normally distributed may occur in reality. Sass 

et al (2008) suggested two cases that could result in non-normal distribution of a latent trait: (a) a 

non-normal sampled distribution, and (b) a non-normal original distribution. A non-normal 

sampled distribution is derived from a non-randomly sampled population distribution. For 

example, when the sample is collected from a limited range of the population distribution, for 

instance, collected only from the low level class or the high level class, the latent trait 

distribution can be skewed. Also, it may occur that the original latent trait follows a non-normal 

distribution when a test is very difficult or very easy, or when psychological constructs that have 

skewed response distributions are observed. 

The research on latent trait distributions has been conducted on both the unidimensional 

and multidimensional latent trait models. Sass et al. ( 008)’s research using unidimensional IRT 

models showed that (a) a positively skewed distribution produces greater latent trait estimation 

error than a normal distribution does; (b) for extreme examinees, item difficulty estimates 

produce larger amount of estimation error; and (c) the best latent trait estimation procedure 

depends on whether a researcher is primarily interested in extreme or non-extreme examinees. 

Woods and Thissen (2006) introduced the non-parametric estimation of IRT latent distribution 

using spline–based densities, which they refer to as Ramsay-Curve IRT (RC-IRT). They showed 

its capability by applying it to normally-distributed and skewed latent distributions in a 

simulation study. 
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Finch (2010) compared the estimation methods implemented by NOHARM (unweighted 

least squares estimation) and Mplus (robust weighted least squares estimation) software using 

multidimensional confirmatory factor analysis models. The results showed that the estimation 

methods of NOHARM and Mplus were affected by the distribution of the latent traits, and that 

item difficulty and discrimination parameters estimated from responses of examinees a skewed 

latent trait distribution have a larger amount of standard error than those estimated from 

examinee groups with a normal latent trait distribution. This research added to results that show 

IRT parameter estimation is affected by the latent trait distribution shape, and can be explained 

by the fact that  item response theory models express the functional relationship between the 

latent trait and observed score distributions as a normal ogive (McDonald, 1997). Batley and 

Boss (1993) studied the estimation of latent trait distributions with three levels of 

intercorrelations between two latent traits in multidimensional two-parameter logistic model. 

They showed that the both the best estimation of the first latent trait and worst estimation of the 

second latent trait occurred in the ‘0’ correlation condition. According to their discussion, 

estimation of the second latent trait was influenced by rescaling of the estimates; as the 

correlation between the latent traits increases, the model with two latent traits has features closer 

to those of a unidimensional model. Cai et al. (2011) studied estimation efficiency using full 

information bifactor analysis. The research was designed to study conditions involving a 

multigroup bifactor model with normally distributed latent factors, and various types of items, 

such as dichotomous, ordinal, and nominal items. This study was constructed under the normal 

distribution assumption; however, the research discussed the possibility of the non-normal 

distribution of the latent trait and suggested the future research.  
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2.3 Simulation Study 

2.3.1 Simulation as a Research Methodology  

In Axelrod (2005), simulation study is identified as one of three major research 

methodologies: induction, deduction, and simulation; research using induction methodology 

discovers the patterns that the research is interested in by analyzing empirical data, while 

research with deduction methodology suggests a set of axioms and proves the consequences 

from the logical connections between the assumptions. Indicating simulation as a “third way of 

doing science,” Axelrod ( 005) explained its process and theme as different from induction and 

deduction (See Table 2-1). First, in a simulation study, assumptions of theory are used for data 

generation, whereas research with the deduction methodology uses assumptions in order to 

affirm or reject a theorem that the research focuses on. Second, the data set in a simulation study 

is not only collected empirically as in research with induction methodology, but is also generated 

with specified conditions based on the assumptions. In the analysis of research conducted by the 

deduction methodology, consequences can be drawn from logical relationships between 

assumptions, while in research conducted by the induction methodology, significant patterns in 

the empirical results can be found. On the other hand, simulation methodology provides a tool to 

support creation of study designs precisely representing research conditions of theoretical or 

practical interest. 

Küppers and Lenhard (2005) mentioned that computer simulation based on a theoretical 

or experimental framework might rarely be successful because reality is too complicated to be 

explained only by the theorem or by experiments. Computer simulation consists of numerical 

solutions and imitations of empirical situations. The quality of a numerical solution solutions 
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Table 2-1. Comparison of Three Research Methodologies 

 

Deduction Induction Simulation 

Using 

assumptions 

To affirm or reject a 

theorem 

To ground the theorem To generate data sets 

Data 

Used for construction of 

the theorem 

Collected empirically 

Specified and generated 

with the assumptions 

Analysis and 

results 

Drawing consequences 

from the relationships 

between assumptions 

Finding the significance 

in data 

Providing a tool to be 

able to use intuitional 

methods 

* This is tabulated by using Axelrod (2005). 

and imitations of empirical situations. The quality of a numerical solution depends on knowing 

how to control inevitable statistical or calculation errors, and validating an imitation of an 

empirical situation in order to reproduce the results from empirical analysis. If a theorem to 

specify phenomena is established, the validity of computer simulation is related to whether the 

study represents the empirical situation or reality accurately. As a result, Küppers and Lenhard 

(2005) argued that simulation modeling can be considered an attempt to imitate reality, and can 

be validated not by theoretical arguments but by using experience or existing data because the 

simulation study is an “experiment with theories.”   
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The fact that a simulation study is an imitation and representation of reality means that 

judgments about its validity can depend on epistemology. Schumid (2005) discussed the truth of 

simulation as connected to three philosophical theories. First, every simulation study should have 

a corresponding counterpart in reality, which is called a property of correspondence. Once the 

property of correspondence is met, there are sequential questions of how to demonstrate the 

relation between the statements to be described as assumptions, and reality, to exist, and how to 

define “reality” itself. Second, another philosophical theory related to simulation study is 

consensus, which means that simulation studies should be accepted by a community perspective. 

This implies that in addition to having an objective connection to reality, simulation studies 

should have subjective rationales in their context. Last, simulation studies should have coherence, 

which means their design is believed to be consistent with other theorems. However, a coherent 

situation does not guarantee a true relationship between reality and the simulation study. 

Referring to “sufficient accuracy and specific purpose” as the important points in evaluating the 

validity of simulation studies (Robinson, 2004, p210), Schumid (2005) delineated a validation 

process that determines the sufficient level of accuracy of a simulation, and constructs the 

simulation model to represent the real world system for a specific purpose.   

To sum up, constructing a simulation study should be based on theory and empirical 

evidence to support the validity of the design. Review of previous studies and empirical analyses 

for determining the conditions of this simulation study will be provided subsequently. 
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2.3.2 Simulation Studies of Latent Trait Models  

In order to answer questions about estimation of performance, many studies have been 

constructed using simulation. Based on previous simulations studies, simulation conditions and 

parameters were reviewed for selecting the simulation conditions of this study.  

a. Distribution of Latent Trait 

Finch (2010) constructed a simulation study to compare unweighted least squares (ULS 

and robust weighted least squares (RWLS) estimation. Latent trait distributions were generated   

as normal, or skewed  with skewness of -1.5 and kurtosis of 3.0. Cai et al. (2011) generated a 

general factor and specific dimensions, which were set to be jointly normally distributed and 

mutually orthogonal. Li and Lissitz (2012) also generated their general latent traits from normal 

distributions with means of -0.5, 0, and 1, and a variance of 1, and  specific latet trait values from 

a standard normal distribution. In Woods and Thissen (2006), three kinds of latent trait 

distributions were constructed from 1) a normal distribution with skewness of 0 and kurtosis of 3, 

b) a platykurtic distribution with skewness of 0 and kurtosis of 2.53), and c) a positively skewed 

distribution with skewness of 1.57 and kurtosis of 6.52. 

b. Intercorrelation between Latent Traits 

In Batley and Boss’s (1993) study, three levels of intercorrelations (0, 0.25 and 0.5) were 

constructed between two latent traits. Gosz and Walker (2002) used three intercorrelations (0.5, 

0.75, and 0.9), two of which were higher than those of Batley and Boss. Finch’s ( 010) research 

used four levels of intercorrelations in order to evaluate the accuracy of item parameter 

estimation: a ‘0’ correlation as no correlation, a 0.3 correlation as a low level of intercorrelation, 

0.5 as a medium level, and 0.8 as a fairly large correlation. The research concluded that with a 
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high level of correlation between the latent traits, there is great bias in item parameter estimation, 

regardless of the estimation method used.  

c. Discrimination Parameter 

In order to generate the item parameters for a simulation, previous research used either a 

population distribution or a specific value of each parameter. The study of Finch (2010) 

generated discrimination parameters from a normal distribution with an estimated mean of 

0.9657 and a standard deviation of 0.3161; the simulated discrimination parameters ranged 

between 0.3736 and 2.0158. Woods and Thissen (2006) also generated their discrimination 

parameters from a normal distribution, but with a mean of 1.7 and a standard deviation of 0.3, 

based on analysis of existing psychological scales. Cai et al. (2011) and Li and Lissitz (2012) 

used specific parameter values for the simulation data, which were values ranging from 1 to 2.  

d. Difficulty Parameter 

Difficulty parameters are usually generated from a normal distribution.  Finch (2010) 

generated difficulty parameters from the standard normal distribution. Li and Lissitz (2012), who 

studied the bifactor model in vertical scaling, used difficulty parameters for non-common items 

from normal distributions with  means between -0.5 to 0.5 and variance of 1, and as common 

items from a uniform distribution with a range of 1.5, for example, -1 to 0.5 or -0.5 to 1.  Woods 

and Thissen (2006) generated difficulty parameters from a truncated standard normal distribution 

ranging from -2 to 2. Cai et al. (2011) selected specific values for difficulty parameters, for 

example, -1, -.25, .25, 1.  
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e. Replication  

Various simulation studies with IRT models have used between 100 and 1000 

replications. Finch (2010) and Woods and Thissen (2006) completed their study with 1000 

replications of the simulation. The number of replications in Cai et al. (2011) was 500, and Li 

and Lissitz (2012) and Sass et al. (2008) replicated their simulations 100 times.  

An appropriate or adequate number of replications depends on what kinds of parameter property 

are of primary research interest, because each parameter property needs a different level of 

replication to obtain stable estimation results. Once the parameter property of interest is 

determined, depending on the number of replications, we can evaluate the precision (stability) of 

the simulation. If the stability of estimation looks good above a certain minimum number of 

replications, we do not need to replicate the studies many times unnecessarily. On the other hand, 

if a large number of replications are necessary in order to get stable results, the appropriate 

number of simulations should be determined, and conducted. At this point, it is important to 

think of simulation efficiency or to construct an efficient algorithm of simulation because in case 

a large volume of data simulation is necessary, it is crucial to do the simulation study in a speedy 

and simple way.  

f. Number of Items 

With a small number of items, less than 30, the precision of item parameter estimation is 

influenced mainly by the latent trait distribution, whereas the impact of the number of items on 

estimation is small (Finch, 2010). This result is consistent with Stone (1992), who reported that 

the calibration results from at least 40 items are robust.  
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g. Number of Examinees 

For ULS and RWLS estimation methods, even though the estimation precision slightly 

increases when the number of examinees is increased, there is no significant effect of the number 

of examinees on the estimation results if the number is greater than 250 examinees (Finch, 2010). 

Studying estimation of the bifactor model in vertical scaling, Li and Lissitz (2012) generated 

1,000, 2,000, and 4,000 examinees. The research noted that estimation results showed that the 

accuracy and stability of estimation increased with the sample size, and that especially the results 

from the sample sizes of 2,000 and 4,000 had lower root mean squared error and standard errors   

than those from the sample size of 1,000.  

h. Estimation Methods 

Finch ( 010)’s results show that using ULS estimation in NOHARM software provided 

better precision of item parameters, than RWLS estimation in Mplus, but he points out that ULS 

with NOHARM should not be used when the models have pseudo-guessing parameters and high 

correlations between latent traits. Also, both of the estimation methods tended to underestimate 

the item parameters when latent trait distributions were skewed. In order to conduct multigroup 

concurrent calibration during vertical scaling, Li and Lissitz (2012) implemented marginal 

maximum likelihood by the EM algorithm using IRTPRO software. Woods and Thissen (2006) 

also used the EM algorithm for marginal maximum likelihood to compute spline-based densities. 

i. Computer Programs for Parameter Estimation 

As interest in parameter estimation of latent trait models has increased, various kinds of 

computer programs have employed and developed program languages and packages for latent 

trait analysis. Chalmers (2012) introduced the Multidimensional IRT package for R-

programming, and Sheng (2010) studied MATLAB programming in order to estimate MIRT 
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models with general and specific latent traits using Bayesian methods. IRTPRO is equipped with 

bifactor model analysis, and Mplus also provides bifactor model analysis with maximum 

likelihood estimators. Seo (2011) estimated the parameters of latent traits for the bifactor model 

with maximum likelihood and Bayesian estimation methods using the MBICAT algorithm in R. 

WLS estimators can be utilized by using NOHARM and Mplus with limited-information 

algorithms, and BMIRT has a Bayesian MCMC estimator (Chalmers, 2012).  

2.4 Empirical Data Analysis 

In order to show the importance of and provide the rationale for study of skewed latent 

trait distributions, the proficiency scales of the Program for International Student Assessment 

(PISA) mathematics, reading, and science tests were investigated. The Organization for 

Economic Co-operation and Development provides technical and supplementary reports to 

describe the test construction and report key findings of the assessment, and the National Center 

for Education Statistics has also published analysis of the PISA results focusing on US students 

from PISA 2000 to 2009. The data and information used in this part are collected from those 

reports and modified for this research.  

2.4.1 Distribution of Latent Traits in PISA 2003, 2006, and 2009 

The Program for International Student Assessment uses proficiency levels to describe 

student performance. In order to reach a particular level, a student must be able to answer a 

majority of items correctly at that level. Students are classified into one of the levels according to 

their scores (OECD, 2001). For example, the reading literacy scale in PISA 2009 has eight cut 

point scores from Level 1b to Level 6, and students’ scores are located on a scale from 0 to 1,000 

(NCES, 2010). An example of specific cut scores is shown in Table 2-2. 
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Table 2-2. Cut scores of Reading Literacy Proficiency Levels in PISA 2009   

  Greater than Less than or equal to 

Below level 1b - 262.04 

Level 1b 262.04 334.75 

Level 1a 334.75 407.47 

Level2 407.47 480.18 

Level3 480.18 552.89 

Level4 552.89 625.61 

Level5 625.61 698.32 

Level6 698.32 - 

 

Table 2-3 and Figures 2-1 and 2-2 show the percentage distributions of 15-year-old 

students in the United States on combined reading, mathematics, and science literacy scales by 

proficiency level. In the 2000, 2003, and 2006 PISA results, the distribution of reading 

proficiency followed a negatively skewed distribution, whereas the mathematics and science 

literacy scales had positively skewed distributions.  In PISA 2009, compared to the results in 

PISA 2000, the reading proficiency scale, which was modified from 6 levels to 8 levels, was 

generally normally distributed. In PISA 2009, the distribution of mathematics literacy had heavy 

left tails similar to the distribution from PISA 2003. Although the science literacy distribution  
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Table 2-3. Percentage Distribution of Proficiency Level Scores in PISA 2000, 2003 and 2009 

Reading (%) 

 

Mathematics 

(%) 

Science (%) 

2009 2000 

 

2009 2003 2009 2003 

Below level 

1b 

1 

Below level 

1 

4 

Below level 

1 

8 10 4 8 

Level 1b 4 Level 1 9 Level 1 15 16 14 17 

Level 1a 13 Level 2 20 Level 2 24 24 25 24 

Level 2 24 Level 3 27 Level 3 25 24 28 24 

Level 3 28 Level 4 24 Level 4 17 17 20 18 

Level 4 21 Level 5 16 Level 5 8 8 8 8 

Level 5 8 - - Level 6 2 2 1 2 

Level 6 2 - - - - - - - 

* The table is made by the information from NECS, 2001, 2004, 2007, & 2010 

has been getting closer to a symmetric distribution over time, compared to the results from PISA 

2006, it still is a little skewed with a heavy left tail. 
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Reading in PISA2000 Mathematics in PISA2003 Science in PISA2006 

   

Figure 2-1. Percentage distribution of proficiency level in PISA 2000, 2003 and 2006 

(Modified from NCES, 2000, Table A3.7; NCES, 2004, Figure 4; NCES, 2007, Figure 4) 

 

Reading in PISA2009 Mathematics in PISA2009 Science in PISA2009 

   

Figure 2-2. Percentage Distribution of Proficiency Level in PISA 2009 

(Modified from NCES, 2010, Figure 3, 5, & 7) 

 

2.4.2 Sub-domain Proficiency Levels in PISA  

From  000 to  009,  ISA has measured student’s Mathematics and Science literacy with 

three kinds of sub-domains. The distributions of sub domain performance by proficiency level 

are shown in Figure 2-3. 
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2000 Reading Literacy categorized into six levels from Below Level 1 to Level 5 

   

2003 Mathematics Literacy categorized into seven levels from Below Level 1 to Level 6 

   

2006 Science Literacy categorized into seven levels from Below Level 1 to Level 6 

   

2009 Reading Literacy categorized into eight levels from Below Level 1b to Level 6 

 
  

Figure 2-3. Percentage Distribution of Sub-domains in PISA 2000, 2003, 2006, and 2009 

Retrieving information Interpreting texts Reflecting on texts 

Quantity Space and Shape Change and relationship 

Identifying scientific 

issues 

Explaining phenomena 

scientifically 
Using scientific 

evidence 

Access and retreive Integrate and interpret Reflect and evaluate 
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The analysis results show that the distributions of sub domain proficiency levels for each 

subject show different patterns. Reading literacy in PISA 2000 had negatively skewed 

distributions with long tails to the left for all three sub-domains. Mathematics literacy in PISA 

2003 had a positively skewed distribution with a heavy tail in the lower level of proficiency for 

the three domains, whereas they had peak points at different proficiency levels. Science literacy 

in PISA 2006 showed similar positively skewed distributions for the three domains, but with 

slightly different kurtosis. Reading literacy in PISA 2009, with eight levels of proficiency, 

showed almost a symmetric distribution, and it showed quite a different distribution from reading 

literacy in PISA 2000, which had seven levels of proficiency.   

In summary, in PISA 2003, 2006, and 2009 the distributions of reading are negatively 

skewed, with a heavy tail on the high levels of proficiency. The distributions of mathematics and 

science are positively skewed, with the heavy tails toward the low levels of proficiency. 

In this analysis of sub-domain proficiency levels in PISA, the distributions of the sub-

domains show different patterns by subject, and the three domains in each subject show slightly 

different distributional properties. While reading in 2000 had negatively skewed distributions for 

the three domains, each distribution had different levels of skewedness and thickness of its tails. 

The subdomain distributions for math in 2003 had common heavy tails on the lower level; 

however, each distribution had different points with the highest frequencies. Science in 2006 had 

a similar pattern for the three domains, but with different levels of kurtosis, and reading in 2009 

also had a similar pattern of symmetric distribution for three domains, with the different level of 

kurtosis. 
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The results of this PISA score distribution analysis show that the distributions of the 

latent trait scores can have different shapes for each subject matter, and distributions within the 

sub-domains of each subject can have different properties. Within the same general construct, 

such as math, science or reading, their sub-domain proficiency level scores had different 

distributional properties, especially related to the skewedness and kurtosis of the distributions.  
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3. Method 

3.1 Data Generation 

In order to study the effect of different distributional assumptions when a 

multidimensional latent trait model is estimated, I generated a set of latent trait distributions and 

item parameter sets corresponding to the simulation conditions. Previous literature and empirical 

analyses were used for selecting the true item and person parameters in order to allow the 

simulation data to be representative of the reality. Table 3-1 shows the simulation conditions for 

data generation. The model used for estimating the item and latent trait parameters is a two-

parameter logistic bifactor model. There are three latent traits in each model, one general factor 

and two specific factors. For the latent trait distributions, normal and skewed distributions are 

generated. Simulation conditions related to the item parameters consist of two levels of item 

difficulty and item discriminations.    

3.1.2 Data Generating of Latent Trait Distributions  

The bifactor model designed for this research has three latent factors including one 

general factor and two specific factors and three latent trait distributions in every replication of 

the simulation study.  The trait distributions are generated according to combinations 

characterized by (a) the normality (shape) of the general factor distribution, (b) the direction of 

skewedness of the skewed distributions included in the general or specific factors, and (c) the 

correlations between the specific factors. The general factor distribution in each condition is one 

of  two shape types: normal or positively-skewed. Each general factor distribution is paired with 

two specific factor distributions, which are two positively skewed distributions or one positively 

skewed distribution and one negatively skewed distribution.  
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The bifactor model assumes that the specific factors are not only uncorrelated with the 

general factor, but also uncorrelated with each other. In order to evaluate the estimation quality 

when this assumption is violated, two levels of intercorrelation between latent traits of 0.2 

(barely correlated) or 0.8 (correlated) are given for each paired condition. With the two 

conditions of normality of the general factor, two conditions of direction of skewedness of the 

specific factor distributions, and two levels of intercorrelations, a total of eight simulation 

conditions are assigned to the latent trait distributions.  

Table 3-2 shows the specific simulation conditions of the latent traits. Based on the 

simulation conditions, in order to look at the effects of general factor distribution, the results 

from conditions 1 to 4 and the results from corresponding conditions 5 to 8 are compared. 

Similarly, the direction effects of the skewed distributions of specific factors are evaluated by the 

comparison of Condition 1 vs. Condition 3, Condition 2 vs. Condition 4, Condition 5 vs. 

Condition 7, and Condition 6 vs. Condition 8. The effect of the extent of correlation between the 

specific factors on estimation are evaluated with the comparison of Condition 1 vs. 2, Condition 

3 vs. Condition 4, Condition 5 vs. Condition 6, and Condition 7 vs. Condition 8.   

Because the model has item difficulty and discrimination parameters, but no guessing 

parameter, the effects found from the negatively skewed distribution will be the same as the 

positively skewed distribution except opposite in sign. For example, the results from the 

combination of negatively skewed specific factors with normal distribution of general factor are 

implied by the results from the combination of positively skewed specific factors with normal 

distribution in Condition 1 and 2.  

 



31 
 

Table 3-1. Simulation Conditions for Data Generation 

Simulation factors Condition 

Model 

Two-parameter multidimensional latent trait model - bifactor 

model with  three factors of one general factor and two specific 

factors 

Distribution of Latent Traits 

with Directions 

Normal distribution from standard normal distribution with mean 

of 0 and standard deviation of 1. Positively or negatively skewed 

with a mean of 0.3 or -0.3, and skewedness of 0.8 or -0.8 

Discrimination Parameter 

2 conditions generated from lognormal distributions with the range 

from 0.5 to 2.5; Mean of 1.3 with standard deviation of 0.15 and 

mean of 1.8 with standard deviation of 0.15 

Difficulty Parameter 

2 conditions generated from normal distributions with the range 

from -2 to 2; Mean of-0.5 with standard deviation of 0.4 and mean 

of 0.5 with standard deviation of 0.4 

Number of Items Total 60 items with 30 items for each specific factor 

Number of Examinees 2000 

Estimation method Full Information Marginal Maximum Likelihood in IRTPRO 

Replications 50 
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Table 3-2. Simulation Combinations of Latent Trait Distributions 

Condition 

Number 

General Specific 1 Specific 2 Correlation 

1 Normal Skewed (+) Skewed (+) 0.2 

2 Normal Skewed (+) Skewed (+) 0.8 

3 Normal Skewed (+) Skewed (-) 0.2 

4 Normal Skewed (+) Skewed (-) 0.8 

5 Skewed (+) Skewed (+) Skewed (+) 0.2 

6 Skewed (+) Skewed (+) Skewed (+) 0.8 

7 Skewed (+) Skewed (+) Skewed (-) 0.2 

8 Skewed (+) Skewed (+) Skewed (-) 0.8 

* (+) or (-) means a positively or negatively skewed distribution respectively.  

 

The simulation conditions of the latent trait distributions combine the degree of skewedness of 

the distributions and the intercorrelations needed to describe multivariate latent trait distributions. 

For example, assume that one general factor and two positively skewed specific factors need to 

be generated. The procedure of the data generation is as follows:1) a distribution for the general 

factor is generated from a normal distribution with mean of 0 and standard deviation of 1 or 
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mean of -0.3 and skewedness of 0.8 for a positively skewed distribution, 2) in order to generate 

skewed distributions for specific factors with particular levels of correlation between them, two 

distributions from multivariate normal distributions are generated with correlations of 0.2 and 0.8, 

and 3) the distributions with the correlations that are generated in 2) are non-linearly transformed 

into skewed distributions. In this case, the transformed distribution is going to be skewed 

compared to the normal distribution, but the correlation between the two specific factors is not 

changed.  

As mentioned above, the generated distributions considering intercorrelations are 

transformed into skewed distributions. In order to transform the correlated distributions into 

skewed distributions, I applied the idea of the Copula method (Nelsen, 1999). Relational 

functions between normal and targeted skewed distributions are estimated by using their 

cumulative probability distributions, and are used in order to transform the multivariate normal 

distributions with the targeted intercorrelation into skewed distributions. The steps to generate 

the distributions are as follows: 

Step 1. Generating the targeted skewed distribution  

Based on conditions in previous studies, positively skewed distributions with their first 

four moments having values of: mean of -0.3, variance of 1, skewedness of 0.8, and kurtosis of 

3.5, are created. For negatively skewed distributions, a mean of 0.3, variance of 1, skewedness of 

-0.8 and kurtosis of 3.5 are used.  

Step 2. Calculating the cumulative probability distribution of the skewed distribution 

generated in the step 1 



34 
 

In order to calculate a cumulative probability distribution, R-programming is used with 

the function of ‘ecdf’, which calculates an empirical cumulative distribution.  

Step 3. Estimating the regression function between the normal and the skewed probability 

distributions. 

For each positively skewed or negatively skewed distribution, regression coefficients 

between two distributions were estimated. In this research, the coefficients were estimated fifty 

times through simulation analysis estimating the function needed to transform from a normal 

distribution to a skewed distribution (see Tables in Appendix A).  The fifty data sets of 2,000 or 

10,000 cases generated from normal and skewed distributions showed similar coefficients, and 

quadratic and cubic functions were identified as the best functions to use for the transformation 

based on the variance explained in the model fit. Each coefficient of the polynomial functions 

had a very small amount of variance, which shows that estimated coefficients for each trial were 

very similar. Finally, the cubic transformation function was selected. The R-squares of the 

regression functions between the data of normal distributions and the data of skewed 

distributions were over .999. The means of the fifty coefficients were used, and by using a 

regression function, the normal distributions were approximately transformed into the skewed 

distributions. The regression functions are as follows: 

In order to transform the normal distribution values (X) into skewed distribution values 

(Y), two regression functions are used:  

for positively skewed distributions,   

Y = -0.4508 + 1.0167  X + 0.1461 x - 0.0136   x3, and 

for negatively skewed distributions,  
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Y = -0.4516 + 1.0135  X – 0.1500 x  – 0.0115  x3 

Step 4. Generating multivariate normal distributions with correlations of 0.2 or 0.8 

By using the function to generate a multivariate normal distribution, sets of distributions 

are generated with correlations of 0.2 or 0.8 between the specific factor distributions.   

Step 5. Calculating the skewed distribution by using the function estimated in step3 

The values of the multivariate distributions generated in step 4 are transformed into 

skewed distributions by using the one of the formulas estimated in step 3.   

Step 6. Checking the descriptive statistics and correlations of the generated distributions 

 If the descriptive statistics and correlations are not acceptable, the parameters of the 

normal distributions are modified to reach the targeted values for the distributions.  

3.1.2 Data Generating of Item Parameters 

For the purpose of stability, but allowing some comparison, the discrimination parameter 

and difficulty parameters are each generated with two levels. Two sets of discrimination 

parameters are generated to represent “high” and “low” levels of discrimination in an item set. In 

order to avoid negative values for discrimination parameters, the parameters are generated from 

lognormal distributions. The lognormal distribution is a log-transformed distribution from a 

normal distribution (Hogg & Tanis, 1997), and the probability density function is  

f(X) = 
1

x √  
e

-
(ln x- )

 

   , X > 0 

with two parameters of   and  , and the mean and variance of a lognormal distribution are 

calculated by  
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Table 3-3. Parameters for Generating Distributions of Simulation Combinations of Item 

Parameters 

 

Discrimination from 0.5 to 2.5 Difficulty from -2 to 2 

Mean SD Mean SD 

1 1.3 0.15 -0.5 0.4 

2 1.3 0.15 0.5 0.4 

3 1.8 0.15 -0.5 0.4 

4 1.8 0.15 0.5 0.4 

 

E(X)= e
  

  

  and Var(X)= (e 
 
-1)e    

 
. 

Therefore, with the specific target value of mean, E(X), and variance (squared standard 

deviation), Var(X), the parameters of   and   are calculated by using the two formulas: 

  ln(E( ))  - ln (√
 ar( )

E( ) 
 1) , and     √ln (

 ar( )

E( ) 
 1) 

For example, in order to generate a distribution of discrimination parameters with a mean 

of 1.3 and a standard deviation of 0.15 from a lognormal distribution, the   of -0.13118 and   of 

0.51222 should be used. Similarly, the discrimination parameters in this study are generated from 

a lognormal distribution with a mean of 1.3 or 1.8 and a standard deviation of 0.15.   

For the difficulty parameter, normal distributions with a mean of -0.5 or 0.5 and a 

standard deviation of 0.5 are used. To avoid violating the latent trait model assumption that the 

function between the latent trait and the probability of the correct answer is monotonically 



37 
 

increasing, the variances of the distribution for generating item parameters are manipulated by 

giving the range of the difficulty parameter distribution. The distributions of the created 

discrimination parameters ranged from 0.5 to 2.5, and those of the created difficulty parameters 

ranged from -2 to 2. The combinations of item parameters are shown in Table 3-4.  

3.1.3 Data Generating of Examinees’ Responses 

The estimation performance of the bifactor model is evaluated via the comparison 

between the data generated under the simulation conditions and the data estimated from the 

bifactor model. In other words, the comparison means to investigate how the estimated 

parameters from the bifactor model are close to the generated data under the simulation 

conditions. In order to estimate parameters by using the bifactor model, examinees’ responses 

are generated based on the item and   parameters generated under the simulation conditions.  

Item parameters and   parameters are plugged in to the function of the bifactor model in 

order to calculate the probability of answering correctly: 

 (u 1| 0,  1,  , a0, a1,a , di
) 

1

1 exp   [di a0 0 a1 1 a   ] 
 

, where di   -b√∑ av
  

v 0  

As a result, each examinee has a probability to answer correctly for each item. To add 

randomness to each value, random variables from uniform distributions ranged from 0 to 1 are 

generated and assigned to each response probability value. If the probability is higher than the 

random value, the corresponding response is assigned as 1, which means that the examinee 
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answers that question correctly. If the probability is lower than the random value, the response is 

assigned as 0, which means that the examinee responds with the wrong answer.   

The total number of items is 60, which are divided so that 30 items are indicators for each 

of the two specific factors, and the number of examinees in each data set is 2000. The data sets 

are generated by using R-programing and the full information marginal maximum likelihood 

estimation (MML) implemented in IPRPRO is used for estimating the parameters. 50 

replications of the simulation study are conducted to achieve stable estimation of the results. 

3.2 Evaluation Methods 

The generated data are compared to the true parameters in order to confirm if the 

generated data sets represent the planned simulation design. Descriptive statistics for the 

generated data, such as the mean, standard deviation, minimum, maximum, skewedness and 

kurtosis, will be provided.  

In order to evaluate the estimation precision of the model under the designed conditions, 

  and item estimated parameters are compared to the true parameters assigned. Means and 

variances of mean bias were used to judge the precision of parameter estimation. The formula for 

mean bias is as follows.  

Mean Bias = 
1

 
∑ ( î- i

 
i 1 ), 

where   is the given parameter,   ̂ is the estimate of the parameter, and   is the number of 

parameters, for example,  =30 for discrimination item parameters of each specific factor. The 

mean and variance of mean bias were calculated across the replications. Bias is the index 

showing that the difference between the parameter and its estimates. To judge overall bias across 

the parameters estimated, mean bias is calculated by the average of the differences.  
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For the investigation of the distributional difference between the estimated   distributions 

and the generated   distribution, the Kolmogorov-Smirnov (KS) test was utilized. The KS test is 

used to compare two empirical distributions by using their cumulative functions (Stapleton, 2008; 

Hogg & Tanis, 1997). In order to compare the generated and estimated   distribution, the KS test 

was utilized with the entire   parameter set, and for specific value ranges of the   parameters. For 

the KS test with the entire data set, a total of 2000 parameters for each analysis were tested. For 

the specific ranges, 2,000   parameters were sorted by their locations, and sets of 200 parameters 

were sequentially assigned to each   category. Thereby, ten specific   value categories were 

constructed for the KS tests.  All categories had the same frequency of   parameters; however, 

that does not mean that their   continuums had the same width, because depending on the 

generated distribution, the frequencies in a certain fixed   range can be different. Every 

simulation condition was replicated fifty times, and values showing the numbers of frequencies 

from the fifty replications that were statistically significant under the significance level of 0.05 

will be reported.  
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4. Results 

4.1. Data Generation 

For the simulation study, the item and   parameters were generated, and those values 

were used to generate response strings through the bifactor models. The descriptive statistics of 

the generated item and   parameters are provided.  

4.1.1 Item Parameter Generation 

The bifactor model used in this study includes three item discrimination parameters 

related to general or specific factors, and one d parameter calculated using the discrimination and 

difficulty parameters. Table 4-1 shows the descriptive statistics of the generated discrimination 

and difficulty parameters. In order to check the range of the generated data, and to avoid extreme 

values, minimum, mean, and maximum values were calculated.   

The discrimination parameters were generated within the range from 0.5 and 2.5 from a 

lognormal distribution with a mean of 1.3 and 1.8, and a standard deviation of 0.15. The mean,  

and standard deviation statistics showed that the generated discrimination parameters of the 

general and the two specific factors had means and standard deviations very close to those of the 

generating distribution in each simulation condition. For the discrimination parameters generated 

from a lognormal distribution with a mean of 1.3, the means of three discrimination parameter 

sets were 1.298, 1.309, and 1.304, which were very close to the simulation condition of 1.3; and 

for the parameters from a distribution with a mean of 1.8, the three means were 1.802, 1.804, and 

1.796. All of the discrimination parameters also had values very close to the parameter of 1.5. No 

values were out of the range from 0.5 and 2.5. The difficulty parameters were generated from 

normal distributions with a mean of 0.5 or -0.5, and a standard deviation of 0.4 within the range 
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of -2 to 2. The generated difficulty parameters showed the proper level of mean and standard 

deviation for the data sets. The means of the difficulty parameter sets were 0.497 and 0.495 for 

the mean parameter of 0.5, and they were -0.515 and -0.497 for the mean parameter of -0.5. 

Their standard deviations were close to 0.4, and there were no extreme values outside the range 

of -2 to 2.    

4.1.2   Parameter Generation 

There were eight types of ability distributions under the conditions characterized by the 

degree of skewedness of the distributions, the direction of skewedness, and the correlation 

between specific factors. The normal distributions were generated from a standard normal 

distribution with a mean of 0 and a standard deviation of 1. The parameter values for the skewed 

distributions were means of 0.3 for the negatively skewed distributions, and -0.3 for the 

positively skewed distributions, standard deviations of 1, skewedness of 0.8, and correlations 

between the specific factors of 0.2 or 0.8.  

The descriptive statistics of the generated   parameters are provided in Tables 4-2, 4-3, 

and 4-4. The generated ability distributions showed means standard deviations, skewedness, and 

correlations near their anticipated values. The general factor distributions were generated from 

normal distributions or positively skewed distributions (See Table 4-2). The means of the normal 

distribution means were from -0.002 to 0.010, and the means of their standard deviations were 

from 0.997 to 1.003. The positively skewed distributions had means that ranged from -0.308 to -

0.302, and means of skewedness that ranged from 0.798 to 0.807.  
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Table 4-1. Descriptive Statistics of Generated Item Parameters 

 Mean (SD) Factors  Mean SD Min Max 

Disc. 

Parameters 

1.3 (0.15) 

General 

Min 1.245 0.128 0.841 1.480 

Mean 1.298 0.151 0.994 1.689 

Max 1.331 0.188 1.106 1.957 

Specific1 

Min 1.224 0.096 0.858 1.471 

Mean 1.309 0.151 1.028 1.631 

Max 1.372 0.196 1.174 1.791 

Specific2 

Min 1.235 0.114 0.870 1.481 

Mean 1.304 0.149 1.018 1.639 

Max 1.369 0.217 1.132 1.953 

1.8 (0.15) 

General 

Min 1.764 0.106 1.349 2.039 

Mean 1.802 0.148 1.485 2.178 

Max 1.840 0.179 1.583 2.490 

Specific1 

Min 1.739 0.111 1.411 1.945 

Mean 1.804 0.151 1.518 2.134 

Max 1.880 0.192 1.617 2.349 

Specific2 

Min 1.734 0.112 1.344 1.976 

Mean 1.796 0.156 1.493 2.155 

Max 1.888 0.211 1.621 2.350 

Diff. 

Parameters 

-0.5 (0.4) 

Specific1 

Min -0.625 0.281 -1.993 -0.025 

Mean -0.515 0.405 -1.330 0.338 

Max -0.382 0.534 -0.901 0.946 

Specific2 

Min -0.698 0.323 -1.719 -0.205 

Mean -0.497 0.395 -1.315 0.283 

Max -0.287 0.491 -0.937 0.641 

0.5 (0.4) 

 

Specific1 

 

Min 0.340 0.301 -0.700 1.065 

Mean 0.497 0.399 -0.293 1.297 

Max 0.601 0.501 -0.013 1.743 

Specific2 

Min 0.294 0.289 -0.637 0.952 

Mean 0.495 0.386 -0.281 1.291 

Max 0.710 0.519 0.044 1.828 

* Disc. Parameters: Discrimination parameters; Diff. parameters: difficulty parameters 
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Although this study didn’t consider  urtosis as a simulation factor, the skewedness of the 

distributions affected the kurtosis of the distributions. Standard normal distributions with a mean 

of 0 and standard deviation of 1 have skewedness of 0 and kurtosis of 3 when the standardized 

fourth moment is used for the formula of the kurtosis (DeCarlo, 1997).  Therefore the kurtosis 

values of the normal distributions from conditions 1 to 4 in Table 4.2 show values acceptable to 

be regarded as a standard normal distribution. From conditions 5 to 8, the means of kurtosis 

values range from 3.551 to 3.646, which are higher than the values for the non-skewed 

distribution, showing that the kurtosis values are related to the skewedness of the distribution. 

Based on the simulation conditions, all of the first specific distributions were positively 

skewed (See Table 4-3). The generated factor distributions had means of means that ranged from 

-0.305 to -0.297, means of the standard deviations that ranged from 0.995 to 1.004, and the 

means of skewedness that ranged from 0.788 to 0.805.  

 

The data sets of second specific factors were generated from positively skewed 

distributions and negatively skewed distributions (See Table 4-4). For the positively skewed 

distributions, the means of the distributions were from -0.309 to -0.300, and the means of 

skewedness were from 0.783 to 0.807. For the negatively skewed distributions, the means were 

from 0.296 to 0.308, and the means of skewedness were -0.834 to -0.812.  

The descriptive statistics for the correlations between specific factors in each of the eight 

distributional simulation conditions of   parameters showed that those distributions had values of 

correlations close to 0.2 or 0.8 (See Table 4-5).  The mean correlations of distributions generated 

with the correlation of 0.2 were 0.192, 0.199, 0.194, and 0.197, and those generated with the 

correlation of 0.8 were 0.792, 0.794, 0.791, and 0.793.  
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Table 4-2. Descriptive Statistics of General   Parameters Generated 

Cond. Distribution Stat Mean SD Min Max Skew Kurtosis 

1 Normal 

Min -0.043 0.960 -4.371 2.845 -0.151 2.841 

Mean -0.002 0.997 -3.431 3.397 0.006 2.988 

Max 0.048 1.041 -2.889 4.131 0.105 3.335 

2 Normal 

Min -0.047 0.962 -4.430 2.775 -0.097 2.733 

Mean -0.002 1.003 -3.405 3.440 0.005 2.967 

Max 0.046 1.037 -2.807 4.333 0.151 3.239 

3 Normal 

Min -0.057 0.958 -4.587 2.878 -0.121 2.751 

Mean -0.001 0.998 -3.478 3.439 -0.005 3.005 

Max 0.034 1.027 -2.952 3.979 0.111 3.461 

4 Normal 

Min -0.035 0.954 -4.149 2.968 -0.094 2.789 

Mean 0.010 1.002 -3.387 3.481 0.004 2.997 

Max 0.063 1.045 -2.929 5.050 0.094 3.264 

5 
Positively 

Skewed 

Min -0.347 0.961 -1.868 3.266 0.706 3.288 

Mean -0.305 0.999 -1.868 4.192 0.807 3.616 

Max -0.253 1.045 -1.866 5.656 0.938 4.202 

6 
Positively 

Skewed 

Min -0.361 0.970 -1.868 3.192 0.683 3.091 

Mean -0.308 0.996 -1.868 4.243 0.798 3.579 

Max -0.261 1.036 -1.866 5.838 0.914 4.075 

7 
Positively 

Skewed 

Min -0.347 0.964 -1.868 3.427 0.698 3.176 

Mean -0.302 0.999 -1.868 4.267 0.802 3.602 

Max -0.260 1.040 -1.864 5.781 0.978 4.425 

8 
Positively 

Skewed 

Min -0.350 0.957 -1.868 3.352 0.681 3.119 

Mean -0.305 0.999 -1.868 4.151 0.798 3.551 

Max -0.249 1.036 -1.867 5.378 0.923 4.020 

* Cond.: Numbers of   simulation conditions 
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Table 4-3. Descriptive Statistics of First Specific   Parameters Generated 

Cond. Distribution Stat Mean SD Min Max Skew Kurtosis 

1 
Positively 

Skewed 

Min -0.363 0.949 -1.868 3.133 0.670 3.028 

Mean -0.300 0.995 -1.868 4.185 0.788 3.546 

Max -0.259 1.033 -1.866 5.981 0.939 4.119 

2 
Positively 

Skewed 

Min -0.341 0.969 -1.868 3.395 0.669 3.056 

Mean -0.297 1.002 -1.868 4.262 0.794 3.578 

Max -0.259 1.035 -1.865 5.544 0.973 4.468 

3 
Positively 

Skewed 

Min -0.343 0.967 -1.868 3.182 0.679 3.060 

Mean -0.303 1.004 -1.868 4.190 0.805 3.591 

Max -0.247 1.044 -1.867 5.572 0.985 4.569 

4 
Positively 

Skewed 

Min -0.364 0.967 -1.868 3.408 0.698 3.177 

Mean -0.298 0.999 -1.868 4.242 0.803 3.607 

Max -0.251 1.051 -1.867 5.568 0.939 4.339 

5 
Positively 

Skewed 

Min -0.350 0.965 -1.868 3.228 0.613 2.960 

Mean -0.300 1.000 -1.868 4.172 0.790 3.526 

Max -0.243 1.041 -1.867 5.467 0.897 3.932 

6 
Positively 

Skewed 

Min -0.352 0.970 -1.868 3.461 0.691 3.219 

Mean -0.301 1.001 -1.868 4.150 0.801 3.563 

Max -0.254 1.050 -1.867 5.174 0.893 3.969 

7 
Positively 

Skewed 

Min -0.352 0.955 -1.868 3.310 0.681 3.097 

Mean -0.305 0.996 -1.868 4.268 0.799 3.609 

Max -0.258 1.044 -1.866 5.717 0.912 4.165 

8 
Positively 

Skewed 

Min -0.358 0.962 -1.868 3.418 0.727 3.235 

Mean -0.305 1.000 -1.868 4.266 0.803 3.601 

Max -0.230 1.041 -1.865 5.572 0.957 4.473 

* Cond.: Numbers of   simulation conditions 
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Table 4-4. Descriptive Statistics of Second Specific   Parameters Generated 

Cond. Distribution Stat Mean SD Min Max Skew Kurtosis 

1 
Positively 

Skewed 

Min -0.359 0.966 -1.868 3.262 0.660 3.129 

Mean -0.309 0.997 -1.868 4.170 0.785 3.518 

Max -0.270 1.031 -1.866 5.279 0.928 4.313 

2 
Positively 

Skewed 

Min -0.348 0.965 -1.868 3.540 0.623 3.127 

Mean -0.300 1.001 -1.868 4.188 0.788 3.543 

Max -0.257 1.042 -1.866 5.323 0.929 4.107 

3 
Negatively  

Skewed 

Min 0.269 0.967 -5.797 1.870 -0.980 3.240 

Mean 0.305 1.000 -4.391 1.871 -0.821 3.664 

Max 0.365 1.035 -3.324 1.871 -0.721 4.501 

4 
Negatively  

Skewed 

Min 0.253 0.963 -6.221 1.870 -1.012 3.074 

Mean 0.308 0.996 -4.358 1.871 -0.819 3.690 

Max 0.364 1.030 -3.245 1.871 -0.663 4.922 

5 
Positively 

Skewed 

Min -0.353 0.966 -1.868 3.127 0.643 3.021 

Mean -0.303 0.999 -1.868 4.107 0.783 3.534 

Max -0.252 1.034 -1.868 5.850 0.951 4.200 

6 
Positively 

Skewed 

Min -0.354 0.960 -1.868 3.458 0.630 2.979 

Mean -0.305 0.998 -1.868 4.356 0.807 3.618 

Max -0.250 1.047 -1.867 5.655 0.939 4.297 

7 
Negatively  

Skewed 

Min 0.250 0.967 -5.539 1.870 -0.958 3.035 

Mean 0.296 1.004 -4.295 1.871 -0.812 3.607 

Max 0.347 1.040 -3.358 1.871 -0.702 4.140 

8 
Negatively  

Skewed 

Min 0.242 0.942 -5.740 1.870 -0.965 3.181 

Mean 0.301 1.002 -4.442 1.871 -0.834 3.720 

Max 0.368 1.041 -3.516 1.871 -0.680 4.688 

* Cond.: Numbers of   simulation conditions 
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Table 4-5. Correlations Between Two Specific   Parameters Generated 

Condition 1 2 3 4 5 6 7 8 

Correlation 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

Min 0.133 0.772 0.149 0.781 0.151 0.771 0.158 0.776 

Mean 0.192 0.792 0.199 0.794 0.194 0.791 0.197 0.793 

Max 0.231 0.828 0.258 0.806 0.241 0.806 0.227 0.807 

 

4.2. Bifactor Analysis 

For each condition of the latent trait distributions and item parameters, item and   

parameter estimation was evaluated. The tables in the body text show the mean and variance of 

the mean bias of the parameter estimates. More details of the descriptive statistics such as 

minimum and maximum values of the mean and variance are attached in Appendix B, C and D.    

4.2.1 Item Parameters 

For evaluating the bifactor model under the different distributional conditions, the mean 

and variance of the mean bias of the estimated parameters were calculated. Table 4-6 and 4-7 

show means and variances of item parameter mean bias under each of eight   simulation 

conditions, and more detailed statistics are provided in Appendix B. Among the simulation 

conditions, there were four noticeable patterns of item parameter estimation.  
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Table 4-6. Means of Item Parameter Mean Bias 

Cond. 1 2 3 4 5 6 7 8 

  Cond. 

G (0) (0) (0) (0) (+) (+) (+) (+) 

S1 (+) (+) (+) (+) (+) (+) (+) (+) 

S2 (+) (+) (-) (-) (+) (+) (-) (-) 

Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

Disc:  1.3 

Diff: -0.5 

 a0 0.121 0.391 0.137 0.407 0.118 0.382 0.110 0.395 

a1 -0.207 -0.714 -0.190 -0.750 -0.144 -0.715 -0.170 -0.736 

a2 -0.166 -0.715 -0.116 -0.689 -0.188 -0.681 -0.146 -0.717 

d -0.433 -0.431 0.005 0.023 -0.840 -0.845 -0.420 -0.426 

Disc:  1.3 

Diff:  0.5 

 a0 0.143 0.444 0.134 0.413 0.206 0.488 0.171 0.449 

a1 -0.097 -0.678 -0.123 -0.713 -0.109 -0.629 -0.088 -0.671 

a2 -0.125 -0.634 -0.171 -0.728 -0.056 -0.659 -0.210 -0.754 

d -0.443 -0.438 -0.003 0.008 -0.872 -0.860 -0.428 -0.430 

Disc:  1.8 

Diff: -0.5 

 a0 0.216 0.494 0.282 0.538 0.202 0.502 0.185 0.508 

a1 -0.308 -0.978 -0.289 -1.007 -0.284 -0.954 -0.235 -1.000 

a2 -0.321 -0.979 -0.215 -0.957 -0.274 -0.955 -0.290 -0.993 

d -0.611 -0.611 -0.001 0.054 -1.204 -1.195 -0.602 -0.586 

Disc:  1.8 

Diff:  0.5 

 a0 0.305 0.615 0.266 0.542 0.421 0.709 0.334 0.617 

a1 -0.208 -0.891 -0.214 -0.961 -0.145 -0.854 -0.177 -0.921 

a2 -0.208 -0.891 -0.214 -0.961 -0.145 -0.854 -0.177 -0.921 

d -0.635 -0.615 -0.015 0.009 -1.278 -1.249 -0.623 -0.620 

* Cond.: Numbers of   simulation conditions 

* G, S1, & S2: Distributions of general, first specific, and second specific factors 

* a0, a1, and a2: Discrimination parameter for general, first and second specific traits; d: d-

parameter 

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* Corr.: Correlation between specific factor distributions 
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Table 4-7. Variances of Item Parameter Mean Bias 

Cond. 1 2 3 4 5 6 7 8 

  
Cond. 

G (0) (0) (0) (0) (+) (+) (+) (+) 

S1 (+) (+) (+) (+) (+) (+) (+) (+) 

S2 (+) (+) (-) (-) (+) (+) (-) (-) 

Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

Disc:  1.3 

Diff: -0.5 

 a0 0.019 0.018 0.025 0.021 0.020 0.019 0.025 0.022 

a1 0.013 0.020 0.013 0.026 0.011 0.020 0.011 0.021 

a2 0.012 0.020 0.013 0.020 0.012 0.019 0.013 0.020 

d 0.008 0.008 0.204 0.210 0.009 0.009 0.196 0.209 

Disc:  1.3 

Diff:  0.5 

 a0 0.031 0.024 0.022 0.022 0.030 0.021 0.022 0.023 

a1 0.014 0.022 0.014 0.022 0.017 0.020 0.014 0.022 

a2 0.015 0.021 0.012 0.025 0.014 0.023 0.014 0.030 

d 0.011 0.011 0.207 0.213 0.016 0.015 0.209 0.220 

Disc:  1.8 

Diff: -0.5 

 a0 0.020 0.023 0.026 0.034 0.028 0.026 0.045 0.030 

a1 0.017 0.023 0.016 0.027 0.015 0.020 0.016 0.025 

a2 0.014 0.023 0.018 0.025 0.015 0.022 0.018 0.022 

d 0.011 0.011 0.415 0.423 0.012 0.011 0.393 0.412 

Disc:  1.8 

Diff:  0.5 

 a0 0.031 0.032 0.025 0.033 0.027 0.034 0.036 0.043 

a1 0.016 0.020 0.018 0.025 0.019 0.026 0.019 0.027 

a2 0.017 0.023 0.016 0.031 0.020 0.027 0.017 0.035 

d 0.018 0.018 0.410 0.425 0.028 0.028 0.437 0.449 

* Cond.: Numbers of   simulation conditions 

* G, S1, & S2: Distributions of general, first specific, and second specific factors 

* a0, a1, and a2: Discrimination parameter for general, first and second specific traits; d: d-

parameter 

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* Corr.: Correlation between specific factor distributions 
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First, the degree of skewedness of the general factor was influential in the estimation of 

d-parameters. Table 4-6 shows the mean of the mean bias related to the item parameters. Under 

conditions 5, 6, 7, and 8 having the skewed general factor distribution, the d-parameter estimates 

show a larger amount of the mean bias than under conditions 1, 2, 3, and 4 having the normal 

distribution of the general factors. Table 4-7 includes the variances of the mean bias of item 

parameter estimates. When the variances of d-parameter estimates are compared across the 

conditions, there is no significant pattern with respect to the d-parameter variances, and this 

result shows that the degree of skewedness of the general factor is influential not in the variances 

of d-parameters biases but in the means of d-parameter biases.  

Second, the condition of the skewedness directions combined with the skewed specific 

factor distributions was influential in d-parameter estimations. When two specific factors had 

distributions with the same direction, for example, two positively skewed distributions or two 

negatively skewed distributions, the d-parameters had larger biases, the values of which under 

the conditions 1, 2, 5, and 6 shown in Table 4-6, whereas the d-parameters had smaller amounts 

of bias when the directions of the skewed distributions were different under the conditions 3, 4, 7, 

and 8.  The amounts of bias increased when the general factor distributions were also skewed. 

The results for the d parameters under conditions 1 to 4 had smaller amounts of bias than the 

results under conditions 5 to 8.  

Also, the direction of skewedness of the skewed distributions affects the variance of the d 

parameters. As shown in Table 4-7, the d parameters had large variances under conditions 3, 4, 7, 

and 8 when the two specific trait distributions had different directions of skewedness. On the 

other hand, the variance of the discriminations (a0, a1 and a2) related to the general, first and 
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second specific factors had no significant patterns depending on the directions of skewedness of 

the distributions. These patterns were shown across all four item parameter conditions.  

Third, the strength of the correlation between the specific factors had a noticeable effect 

on the estimation of discrimination parameters. The distributional conditions with a high 

correlation of 0.8 between the specific factors had larger amounts of mean bias in item 

discrimination parameter estimation than the conditions with a smaller correlation of 0.2 between 

the specific factors. Table 4-6 shows that the discrimination parameter estimates under 

conditions 2, 4, 6, and 8 with a high correlation of 0.8 had larger mean biases than the results 

under conditions 1, 3, 5, and 7 with a lower correlation of 0.2. For example, under the mean 

discrimination parameter of 1.3 and difficulty parameter of -0.5 condition in Table 4-6, with a 

low correlation of 0.2 between the specific factors, mean biases of the discrimination parameters 

related to the general factor range from 0.110 to 0.137 for conditions 1, 3, 5, and 7. However, 

corresponding the range of the mean biases with the high correlation is from 0.382 to 395 under 

conditions 2, 4, 6, and 8. This pattern was found regardless of the item parameter combination. 

The high correlation also affects the variance of discrimination parameter estimates for the 

specific factors. The discrimination parameters had large amounts of variance in the mean bias 

when there was a high level correlation between the two specific factors under conditions 2, 4, 6, 

and 8 in Table 4-7. 

Lastly, generally the item discrimination parameters related to the general factor were 

overestimated, whereas the discrimination parameters related to specific factors and d parameters 

were underestimated. Negative or positive values of bias indicate underestimation or 

overestimation, respectively, because bias is the result of subtracting a parameter from its 

estimated value. In Table 4-6, all mean biases of the discrimination parameters related to the 
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general factors were positive values, which means the parameters tend to be overestimated. Most 

of the discrimination parameters related to the specific factors and d parameters had negative 

mean biases, except for some d parameters, especially under conditions 3 and 4. 

Based on the results, it was demonstrated that the degree of skewedness of the general 

factor distributions, the skewedness directions of the specific factor distributions, and the 

correlation between the specific factor distributions are influential in estimating the item 

parameters. No noticeable pattern of item parameter estimates across the four item parameter 

conditions was found.  

4.2.2   Parameters 

Similar to the item parameter estimation,   parameter estimation was evaluated under the 

eight distributional conditions across four item parameter conditions. In this section, the mean of 

the mean biases, variance of the mean biases, and correlation between the generated and 

estimated trait distributions for the general, first specific and second specific factors are 

investigated.  

a. Mean of Mean Biases 

The results for mean bias of the   parameters are shown in Table 4-8. The   parameters 

were generated from a standard normal distribution, from a negatively skewed distribution with a 

mean of 0.3, or from a positively skewed distribution with a mean of -0.3. The mean values of 

mean biases in Table 4-8 are very close to 0, -.3, or .3. They are the discrepancies from 0 that is 

the mean of a standard normal distribution to the simulation parameters. Item response functions 

are manipulated by the item and   parameters, but the   continuum is not a fixed scale, or an 

arbitrary one. Because of this indeterminacy, the estimation procedure should select the method  



53 
 

Table 4-8. Means of   Parameter Mean Bias 

Cond. 1 2 3 4 5 6 7 8 

  Cond. 

G (0) (0) (0) (0) (+) (+) (+) (+) 

S1 (+) (+) (+) (+) (+) (+) (+) (+) 

S2 (+) (+) (-) (-) (+) (+) (-) (-) 

Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

Disc:  1.3 

Diff: -0.5 

G 0.003 0.006 0.002 -0.010 0.305 0.308 0.303 0.308 

S1 0.301 0.297 0.304 0.298 0.299 0.301 0.305 0.305 

S2 0.309 0.300 -0.305 -0.308 0.304 0.305 -0.295 -0.301 

Disc:  1.3 

Diff: 0.5 

G 0.001 0.004 0.000 -0.010 0.303 0.303 0.301 0.302 

S1 0.301 0.297 0.303 0.298 0.299 0.301 0.303 0.305 

S2 0.307 0.300 -0.306 -0.308 0.302 0.305 -0.296 -0.302 

Disc:  1.8 

Diff: -0.5 

G -0.001 0.006 0.006 -0.016 0.308 0.309 0.306 0.301 

S1 0.301 0.297 0.306 0.298 0.302 0.301 0.308 0.305 

S2 0.305 0.300 -0.302 -0.308 0.304 0.305 -0.296 -0.301 

Disc:  1.8 

Diff: 0.5 

G 0.001 0.002 0.001 -0.010 0.311 0.308 0.301 0.300 

S1 0.300 0.296 0.304 0.297 0.303 0.301 0.304 0.305 

S2 0.308 0.300 -0.306 -0.308 0.305 0.305 -0.297 -0.302 

* Cond.: Numbers of   simulation conditions 

* G: General factor distribution; S1: First specific factor distributions; S2: Second specific 

distributions 

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* Corr.: Correlation between specific factor distributions 

 

 



54 
 

Table 4-9. Variances of   Parameter Mean Bias 

Cond. 1 2 3 4 5 6 7 8 

  Cond. 

G (0) (0) (0) (0) (+) (+) (+) (+) 

S1 (+) (+) (+) (+) (+) (+) (+) (+) 

S2 (+) (+) (-) (-) (+) (+) (-) (-) 

Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

Disc:  1.3 

Diff: -0.5 

G 0.383 0.546 0.408 0.570 0.399 0.559 0.413 0.579 

S1 0.471 0.851 0.491 0.889 0.457 0.832 0.471 0.874 

S2 0.469 0.856 0.455 0.816 0.470 0.845 0.454 0.833 

Disc:  1.3 

Diff: 0.5 

G 0.419 0.574 0.403 0.570 0.412 0.558 0.395 0.558 

S1 0.454 0.823 0.448 0.808 0.468 0.803 0.450 0.802 

S2 0.463 0.832 0.490 0.903 0.466 0.813 0.509 0.922 

Disc:  1.8 

Diff: -0.5 

G 0.374 0.542 0.399 0.577 0.396 0.559 0.423 0.591 

S1 0.479 0.852 0.506 0.909 0.470 0.841 0.483 0.894 

S2 0.484 0.862 0.461 0.812 0.476 0.850 0.468 0.835 

Disc:  1.8 

Diff: 0.5 

G 0.415 0.578 0.398 0.575 0.411 0.560 0.390 0.559 

S1 0.461 0.817 0.451 0.800 0.472 0.809 0.455 0.796 

S2 0.466 0.830 0.515 0.927 0.479 0.820 0.531 0.948 

* Cond.: Numbers of   simulation conditions 

* G: General factor distribution; S1: First specific factor distributions; S2: Second specific 

distributions 

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* Corr.: Correlation between specific factor distributions 
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to set up the mean and variance of the   distribution in order to estimate unique   parameters 

(Lord, 1980; Reckase, 2009). The most frequently used method is to appoint a mean of 0 and a 

variance of 1. The IRTPRO software used for this research sets the mean and variance of the   

distribution to 0 and 1, respectively, as default values, and the results showed the average 

discrepancies between the generated parameters and 0. Therefore, the mean biases close to 0, -

0.3, or 0.3 indicate that the means of the estimated   parameters were at ‘0’. This result shows 

that in order to evaluate the mean of mean bias of the   distribution, some alternative method for 

giving the mean value needs to be utilized instead of using the fixed value of 0 for the mean of 

the distribution. The   estimates were also consistently centered at ‘0’ regardless of the item 

condition.   

b. Variances of Mean Biases 

The condition of the latent trait distributions with the most important effect on the 

variance of the mean biases was the correlation between specific factors. The variances of   

parameter mean biases are shown in Table 4-9. Different from the results for the means of mean 

biases, the variance results showed a specific pattern depending on the correlation between the 

specific factors. The amount of variance in the mean bias increased under conditions 2, 4, 6, and 

8with a high correlation between the specific factors (correlation=0.8), compared to the amount 

of variance in mean bias under conditions with a low correlation between the specific factors.  

While the general, first specific and second specific factors all had a large amount of variance in 

mean bias with the high correlation, the specific factor distributions showed more variance in 

mean bias than the general factor distributions across all item conditions. In order to investigate 

information about estimation precision, as a first insight, the correlations between the generated   

parameters and the estimated   parameters were calculated.  
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c. Correlations between Generated and Estimated Parameter Distributions 

Tables 4-10, 4-11 and 4-12 show the results of the mean correlations between the 

generated and estimated   parameters, and more detailed information is provided in Appendix D. 

Under the various   and item conditions, no noticeable patterns related to the correlation between 

the generated and estimated general factor distribution were found. The correlations between the 

generated and estimated distributions for the general factor are shown in Table 4-10. The 

estimated general factor scores showed constant high mean correlations regardless of the   and 

item conditions, although the correlations were slightly lower when the level of correlations 

between the specific factors was high. Most of the mean correlations were greater than .77 under 

conditions 1, 3, 5, and 7, with a low correlation of 0.2 between specific factors, and the mean 

correlations were greater than .70 under conditions 2, 4, 6, and 8 with a high correlation of 0.8 

between the specific factors.    

 The first and second specific factors showed the estimation precision to be sensitive to 

the level of correlation between the specific factors. Under the low correlation of 0.2 between the 

specific factors, the mean correlations of the generated and estimated first specific factors, shown 

in Table 4-11, and of the generated and estimated second specific factors, shown in Table 4-12, 

were over 0.7, although those correlations were slightly lower than the correlations between the 

generated and estimated parameters for the general factor. Whereas the level of correlation 

between the specific factors was only slightly influential on the observed correlation between the 

generated and estimated general factor   parameters, the mean correlations between the 

generated and estimated parameters for the first and second specific factors were below 0.5 

under conditions 2, 4, 6, and 8 with the high correlation between the specific factors.      
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The correlation between the generated and estimated parameters of the specific factors 

also showed noticeable patterns according to item condition (see Tables 4-11 and 4-12). While 

the mean correlations between the generated and estimated parameters of the specific factors did 

not show a distinguishable difference depending on the level of item discrimination parameters 

(mean discrimination parameters of 1.3 vs. 1.8), they showed a significant pattern depending on 

the level of the item difficulty parameters (difficulty parameters of 0.5 and -0.5) especially under 

conditions 4 and 8, which had specific factors with a high correlation and distribution skewed in 

opposite directions. The first specific factors had lower correlations between the generated and 

estimated parameters under conditions 4 and 8 when the item difficulty parameters had a mean 

of -0.5, whereas the second specific factors had lower correlations under conditions 4 and 8 

when the item difficulty parameters had a mean of 0.5.  This result implies that the effect of the 

correlation between the specific factor distributions on the correlation between the generated and 

estimated parameters for the specific factors is related to not only the direction of skewedness of 

the distributions but also to the item parameter conditions.  

d. Kolmogorov-Smirnov Test (KS test) 

In order to compare the generated and estimated   distributions, the KS test was utilized 

with the entire   parameter set, and with specific ranges of the   parameters. Tables 4-13 shows 

summary results of the KS test; complete results of the KS tests are included in Appendix E. 

Every simulation condition was replicated fifty times, and among fifty replications the values in 

the tables show the numbers of frequencies that were statistically significant under the 

significance level of 0.05. For example, in Table 4-13, under Condition 1 with the mean of 

discrimination parameters equal to 1.3 and mean of difficulty parameters equal to -0.5, 18 of the 

estimated   distributions among fifty replications were shown to be significantly different from  
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Table 4-10. Mean of the Correlations of the General Factors 

 

Condition 1 2 3 4 5 6 7 8 

  

G (0) (0) (0) (0) (+) (+) (+) (+) 

S1 (+) (+) (+) (+) (+) (+) (+) (+) 

S2 (+) (+) (-) (-) (+) (+) (-) (-) 

Correlation 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

General 

  

(1.3, -0.5) 0.789 0.720 0.775 0.708 0.780 0.711 0.772 0.703 

(1.8, -0.5) 0.767 0.702 0.777 0.709 0.771 0.707 0.782 0.712 

(1.3,  0.5) 0.794 0.724 0.779 0.707 0.782 0.713 0.766 0.699 

(1.8,  0.5) 0.768 0.700 0.779 0.708 0.771 0.704 0.784 0.713 

* Condition: Numbers of   simulation conditions 

* G: General factor distribution; S1: First specific factor distributions; S2: Second specific 

distributions 

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* (1.3, -0.5): Discrimination parameters with mean of 1.3 and Difficulty parameters with mean of 

-0.5 

* Correlation: Correlation between specific factor distributions 

 

the generated   distribution by the p-value for the KS test statistic being less than the 

significance level of 0.05. 

Most of the ten specific categories of the estimated general factor distributions were not 

significantly different from the generated distributions when they were generated from a standard 
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Table 4-11. Correlation Means of the First Specific Factors 

 

Condition 1 2 3 4 5 6 7 8 

  

G (0) (0) (0) (0) (+) (+) (+) (+) 

S1 (+) (+) (+) (+) (+) (+) (+) (+) 

S2 (+) (+) (-) (-) (+) (+) (-) (-) 

Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

S1    

(1.3, -0.5) 0.726 0.431 0.719 0.386 0.740 0.442 0.728 0.403 

(1.8, -0.5) 0.722 0.434 0.708 0.378 0.730 0.443 0.722 0.395 

(1.3,  0.5) 0.739 0.448 0.747 0.457 0.730 0.465 0.741 0.463 

(1.8,  0.5) 0.732 0.457 0.744 0.465 0.728 0.459 0.736 0.467 

* Cond.: Numbers of   simulation conditions 

* G: General factor distribution; S1: First specific factor distributions; S2: Second specific 

distributions 

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* (1.3, -0.5): Discrimination parameters with mean of 1.3 and Difficulty parameters with mean of 

-0.5 

* Corr.: Correlation between specific factor distributions 

 

normal distribution under the conditions 1, 2, 3, and 4, whereas the KS tests on the entire set of 

parameters more often showed significant differences between the generated and estimated 

distributions. For example, under Condition 2 with the mean discrimination parameter equal to 
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Table 4-12. Correlation Means of the Second Specific Factors 

 

Cond. 1 2 3 4 5 6 7 8 

  

G (0) (0) (0) (0) (+) (+) (+) (+) 

S1 (+) (+) (+) (+) (+) (+) (+) (+) 

S2 (+) (+) (-) (-) (+) (+) (-) (-) 

Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

S2   

(1.3, -0.5) 0.729 0.425 0.741 0.448 0.729 0.433 0.743 0.441 

(1.8, -0.5) 0.718 0.423 0.735 0.451 0.726 0.431 0.733 0.442 

(1.3,  0.5) 0.734 0.447 0.718 0.374 0.732 0.449 0.705 0.355 

(1.8,  0.5) 0.730 0.447 0.701 0.359 0.721 0.443 0.692 0.341 

* Cond.: Numbers of   simulation conditions 

* G: General factor distribution; S1: First specific factor distributions; S2: Second specific 

distributions 

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* (1.3, -0.5): Discrimination parameters with mean of 1.3 and Difficulty parameters with mean of 

-0.5 

* Corr.: Correlation between specific factor distributions 

 

1.3 and mean difficulty parameter equal to -0.5 in Table 4-13, all of the replications were 

significant when the entire data set was tested, but few estimated parameter distribution 

replications (between one and three) were significantly different from the generated true 

parameter distribution when KS tests were conducted on ten specific categories of the   values.   
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When the correlation between the specific factor distributions was high, the frequencies 

of significant test results for differences between the estimated and generated general factor 

distributions increased. Compared to conditions1 and 3, under conditions 2 and 4 significant 

results under the KS test were found much more frequently. For example, in Table 4-13, with the 

mean discrimination parameter equal to 1.3 and mean difficulty parameter equal to -0.5, KS test 

results from all of the fifty replications of the entire data sets showed significant differences 

between the generated and estimated parameters under the high level correlation between 

specific factors (Condition 2 and  4) whereas only eighteen or twenty two replications are 

significant under lower level correlation.  

All of the specific factor distributions were positively or negatively skewed, and the 

results of the KS test showed that the estimated   distributions were significantly different from 

the generated   distributions. According to Stapleton (2008), the KS test is powerful when the 

tested distributions are away from normality, as long as the sample size is sufficient. That means 

that when the sample size increases, the sensitivity of the KS test becomes stronger. The tests on 

the entire parameter distributions that included 2,000 values could have been more sensitive than 

the tests on the specific categories, which included 200 parameter values. For example, Table 4-

13 shows that the KS tests for the entire data set were more frequently significant than the tests 

within the   sub-categories.  
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Table 4-13.  Frequency of Significant Differences between Distributions of Generating and 

Estimated General Factor   Parameters 

Item 

Discrimination Mean:1.8 / SD: 0.15 

Difficulty Mean:-0.5 / SD: 0.4 Mean:0.5 / SD: 0.4 

  

Cond. 1 2 3 4 1 2 3 4 

G (0) (0) (0) (0) (+) (+) (+) (+) 

S1 (+) (+) (+) (+) (+) (+) (+) (+) 

S2 (+) (+) (-) (-) (+) (+) (-) (-) 

Correlation 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

1 to 2000 18 50 22 50 34 50 21 49 

1 to 200 0 1 0 2 0 5 0 4 

201 to 400 0 3 0 3 0 4 0 3 

401 to 600 0 3 0 4 0 2 0 4 

601 to 800 0 2 0 0 0 4 0 0 

801 to 1000 0 2 0 0 0 4 0 0 

1001 to 1200 0 2 0 2 0 1 0 4 

1201 to 1400 0 2 0 1 0 0 0 2 

1401 to 1600 1 2 0 1 1 3 0 2 

1601 to 1800 0 2 1 6 0 1 0 6 

1801 to 2000 1 3 0 1 0 1 0 3 

* Cond.: Numbers of simulation conditions 

* G: General factor distribution; S1: First specific factor distributions; S2: Second specific 

distributions 

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* Corr.: Correlation between specific factor distributions 
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Table 4-13 (cont’d) 

Item 

Discrimination Mean:1.8 / SD: 0.15 

Difficulty Mean:-0.5 / SD: 0.4 Mean:0.5 / SD: 0.4 

  

Condition 1 2 3 4 1 2 3 4 

G (0) (0) (0) (0) (+) (+) (+) (+) 

S1 (+) (+) (+) (+) (+) (+) (+) (+) 

S2 (+) (+) (-) (-) (+) (+) (-) (-) 

Correlation 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

1 to 2000 28 50 46 50 50 50 46 50 

1 to 200 0 1 1 4 1 1 0 5 

201 to 400 1 1 0 4 0 3 0 5 

401 to 600 2 3 1 6 0 2 1 6 

601 to 800 0 2 1 2 0 3 1 0 

801 to 1000 0 2 1 2 0 3 1 0 

1001 to 1200 0 1 0 5 0 1 0 3 

1201 to 1400 0 3 0 1 0 2 0 1 

1401 to 1600 1 2 0 1 1 4 1 2 

1601 to 1800 1 2 1 6 1 1 0 6 

1801 to 2000 0 3 0 0 0 3 0 5 

* Cond.: Numbers of   simulation conditions 

* G: General factor distribution; S1: First specific factor distributions; S2: Second specific 

distributions 

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* Corr.: Correlation between specific factor distributions 
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5. Discussion 

5.1 Summary of the Results 

Item parameter estimation was affected by the degree of skewedness of general factor, 

the directions of skewedness of the specific factors, and the correlation between specific factors. 

These influential conditions of the latent trait distributions had different effects on item 

parameter estimation depending on the type of item parameter. First, the degree of skewedness of 

the general factor was influential in the estimation of the d parameters. Second, the direction of 

skewedness of the specific factor distributions was also influential in d parameter estimation. The 

skewedness direction affected both the mean and variance of the d parameter mean biases, and 

the effect on estimation increased when the general factor distribution was also skewed. Third, 

the correlation between the specific factors had a noticeable effect on the estimation of 

discrimination parameters. While estimation of discrimination parameters related to both the 

general and specific factors was affected by the size of the correlation between the specific 

factors, the discrimination parameters of the specific factors exhibited much more variance in 

their mean biases as a result than the discrimination parameters corresponding to the general 

factor. Lastly, generally the item discrimination parameters related to the general factor were 

overestimated, whereas the discrimination parameters related to the specific factors and d 

parameters were underestimated. 

The estimated   distributions had means of 0, and so the mean biases of the   

distributions had values close to 0, -0.3, and 0.3, depending on the direction of the generated 

distribution. Based on the variances of the mean biases and correlations between generated and 

estimated parameters, the most significant condition of the latent trait distribution in   parameter 

estimation was the correlation between the specific factors. The amount of variance in the mean 



65 
 

bias increased under conditions with a high correlation of 0.8 between the specific factors.  

While all three factors, general, first specific and second specific, had large amounts of variance 

in mean bias with the high correlation, the specific factor distributions showed much more 

variance than the general factor distributions across the item conditions.  

Whereas  only a slightly noticeable pattern was found related to the correlation between 

the generated and estimated distributions for the general factor, the correlations between the 

generating and estimated distributions for the first and second specific factors were markedly 

lower when the correlation between the specific factors was high (0.8) than when it was low 

(0.2). Also the effect of the correlation between the specific factors depended on the item 

condition, and this result implies that the effect of the correlation between the specific 

distributions is related to not only the direction of skewedness of the distributions but also to the 

item parameter conditions.  

By the Kolmogorov-Smirnov test, most of the ten specific categories of the estimated 

general factor distributions were not found to be significantly different from the generated 

distributions when the parameters were generated from a standard normal distribution. When the 

correlation between the specific factor distributions was high, the frequencies of significant test 

results for the general factor distribution increased. All of the specific factor distributions were 

positively or negatively skewed distributions, and the results of the KS test showed that the 

estimated   distributions were significantly different from the generated   distributions. 

5.2 Implications 

The use of measurements based on the concepts of multi-dimensional and non-normal 

distributions have been increasing in various fields. Latent trait models have been developed in 
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order to represent these complicated measurement properties. Researchers have studied 

appropriate estimation methods for each model, and the recommended methods have been 

evaluated in empirical situations. As an extension of these studies, this research examines the 

estimation performance of a bifactor model under various distributional conditions of the general 

and specific factors. 

In many cases, the distributions of latent traits represent particular participant 

characteristics are non-normal. For example, it is not unusual to find that satisfaction 

measurements from a program evaluation or interaction frequencies in a social networking 

analysis have a skewed distribution with a long tail or with high kurtosis. When measurement 

models are used to estimate the parameters from data that do not follow a normal distribution, 

the normal distribution assumption of the estimation method may be violated. Therefore, new 

models and estimation methods should be developed in order to solve these problems: how the 

estimation of the model can be made robust when the normal distribution assumption is violated, 

or how the empirical data distribution can be substituted for  a normal distribution in the 

estimation procedure. Woods and Thissen (2006) introduced Ramsay-Curve IRT, which is a non-

parametric estimation procedure for the IRT latent distribution, and showed the capability of the 

method with normal and non-normal latent distributions. Also a complex model to allow 

correlations between the latent trait factors has been studied (Fujimoto, 2014; Cai 2010). For 

these newly-developed methods, it is necessary to evaluate their capability in different empirical 

situations to determine their limitations and produce further developments. This research 

evaluated the estimation quality of the bifactor model and the results showed how conditions of 

the item and   parameter distributions affect item and   parameter estimation under particular 
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estimation assumptions. As previous research has done, this research is expected to provide 

information about estimation performance and guidelines for future research.   

One of the most important conditions studied in this research was the non-normality of 

the distribution of the latent traits being measured. Varying the amount and direction of 

skewedness of the distributions and the correlation between the specific factors, the results 

showed that in the analysis of data generated from skewed   distributions, both the item and   

conditions influenced the quality of estimation. Also, the conditions had different effects 

depending on the type of item parameter estimated. The results from this research showing the 

effect of skewed latent trait distributions are consistent with the results of previous studies. Sass 

et al. (2008) demonstrated the effect of skewed distributions on estimating the   distribution and 

item parameters using a unidimensional latent trait model. In that study, difficulty parameter 

estimates were particularly affected by the presence of a skewed latent trait distribution. 

Similarly, in my research the amount and direction of skewedness of the latent trait distributions 

had a significant influence on the mean and variance of d parameters’ mean biases, which relates 

to the estimation of difficulty parameters.  

The most significant condition of the latent trait distributions for   estimation was the 

correlation between the specific factors. The correlation of the specific factors had a remarkable 

impact on   estimation not only by itself but also in conjunction with particular item parameter 

conditions. This result shows that the combination of the item and   conditions and the 

distributional assumptions should be considered simultaneously when the model and estimation 

method are evaluated.    
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The skewed distributions were transformed from normal distributions via the Copula 

method, and Kolmogorov-Smirnov tests were used to evaluate the distributional differences 

between the generated and estimated   parameter distributions. My application of those methods 

has suggested some implications for future research. The Copula method requires identification 

of a transformation function, and in this research two polynomial functions were used for 

transformation to produce negatively and positively skewed latent trait distributions. Even 

though the   s of the functions were values very close to 1 (.999), it should be noted that the 

extreme values were particularly sensitive to the polynomial transformation function selected. 

Also, Kolmogorov-Smirnov tests showed the differences between the generated and estimated   

parameters in specific   ranges; however, this method had very high power to detect differences 

when entire   distributions were compared. . Especially for the skewed distributions, all cases in 

each category were significant, using a significance level of 0.05. That shows that the skewed 

distributional condition tended to have significant differences between the generated and 

estimated parameter distributions, however, it could not provide specific information and details 

for each   range. Therefore, more sophisticated and alternative methods are required for the 

transformation and the evaluation procedures.    

In an effort to measure the structure of complex constructs, multidimensional latent trait 

models have been developed. The bifactor model is one of those multidimensional models, and is 

connected mathematically to other major classes of multidimensional measurement models. This 

research evaluates the bifactor model to determine how well it model works in various empirical 

contexts. While the distributions of latent traits are often assumed to be normal, the distributions 

observed in empirical data are not always normal.  Also, despite the advantages of the bifactor 

model, it restricts the latent traits to be orthogonal.  
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The results from this research provided information about the estimation properties of 

bifactor models under conditions when their distributional and relational assumptions are not met. 

Also, the influence of item parameters was shown. Based on this information, the results can be 

applied to analyses using models of multidimensional latent traits. The study of the effect of the 

latent trait distribution on parameter estimation is also significant in terms of providing 

information about measurement error for data analysis. With the increasing number of studies 

and practical need for multidimensional structures of latent traits, this research is expected to 

provide useful guidelines for investigating appropriate multidimensional models. 
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Appendix A 

Table A-1. Parameter Estimates of Quadratic Regression Function for Positively Skewed 

Distribution with 2,000 examinees 

    R Square Constant b1 b2 b3 

 

Mean 0.9980 -0.4508 0.9770 0.1461 - 

 

Var 0.0000 0.0006 0.0002 0.0001 - 

 

Min 0.9960 -0.4948 0.9418 0.1282 - 

  Max 0.9993 -0.3915 1.0128 0.1727 -  

*b1, b2, and b3: regression coefficients of linear, quadratic, and cubic terms 

 

Table A-2. Parameter Estimates of Cubic Regression Function for Positively Skewed 

Distribution with 2,000 examinees 

    R Square Constant b1 b2 b3 

 

Mean 0.9990 -0.4508 1.0167 0.1461 -0.0136 

 

Var 0.0000 0.0006 0.0003 0.0001 0.0000 

 

Min 0.9978 -0.4948 0.9772 0.1282 -0.0236 

  Max 0.9997 -0.3915 1.0652 0.1727 -0.0060 

*b1, b2, and b3: regression coefficients of linear, quadratic, and cubic terms 
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Table A-3. Parameter Estimates of Quadratic Regression Function for Positively Skewed 

Distribution with 10,000 examinees 

    R Square Constant b1 b2 b3 

 

Mean 0.9986 -0.4434 0.9793 0.1454 - 

 

Var 0.0000 0.0001 0.0001 0.0000 - 

 

Min 0.9978 -0.4701 0.9676 0.1337 - 

  Max 0.9993 -0.4261 0.9970 0.1557  - 

*b1, b2, and b3: regression coefficients of linear, quadratic, and cubic terms 

 

Table A-4. Parameter Estimates of Cubic Regression Function for Positively Skewed 

Distribution with 10,000 examinees 

    R Square Constant b1 b2 b3 

 

Mean 0.9995 -0.4434 1.0166 0.1454 -0.0125 

 

Var 0.0000 0.0001 0.0001 0.0000 0.0000 

 

Min 0.9993 -0.4701 0.9989 0.1337 -0.0175 

  Max 0.9998 -0.4261 1.0366 0.1557 -0.0086 

*b1, b2, and b3: regression coefficients of linear, quadratic, and cubic terms 
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Table A-5. Parameter Estimates of Quadratic Regression Function for Negatively Skewed 

Distribution with 2,000 examinees 

    R Square Constant b1 b2 b3 

 

Mean 0.9984 0.4516 0.9801 -0.1500 - 

 

Var 0.0000 0.0006 0.0002 0.0001 - 

 

Min 0.9964 0.3921 0.9453 -0.1785 - 

  Max 0.9995 0.4950 1.0173 -0.1308 -  

*b1, b2, and b3: regression coefficients of linear, quadratic, and cubic terms 

 

Table A-6. Parameter Estimates of Cubic Regression Function for Negatively Skewed 

Distribution with 2,000 examinees 

   R Square Constant b1 b2 b3 

 

Mean 0.9991 0.4516 1.0135 -0.1500 -0.0115 

 

Var 0.0000 0.0006 0.0003 0.0001 0.0000 

 

Min 0.9981 0.3921 0.9720 -0.1785 -0.0225 

  Max 0.9997 0.4950 1.0625 -0.1308 -0.0023 

*b1, b2, and b3: regression coefficients of linear, quadratic, and cubic terms 
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Table A-7. Parameter Estimates of Quadratic Regression Function for Negatively Skewed 

Distribution with 10,000 examinees 

    R Square Constant b1 b2 b3 

 

Mean 0.9988 0.4441 0.9798 -0.1462 - 

 

Var 0.0000 0.0001 0.0001 0.0000 - 

 

Min 0.9980 0.4223 0.9646 -0.1566 - 

  Max 0.9995 0.4705 0.9977 -0.1351  - 

*b1, b2, and b3: regression coefficients of linear, quadratic, and cubic terms 

 

Table A-8. Parameter Estimates of Cubic Regression Function for Negatively Skewed 

Distribution with 10,000 examinees 

    R Square Constant b1 b2 b3 

 

Mean 0.9996 0.4441 1.0151 -0.1462 -0.0119 

 

Var 0.0000 0.0001 0.0001 0.0000 0.0000 

 

Min 0.9993 0.4223 0.9976 -0.1566 -0.0164 

  Max 0.9998 0.4705 1.0360 -0.1351 -0.0079 

*b1, b2, and b3: regression coefficients of linear, quadratic, and cubic terms 
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Appendix B 

Table B-1. Mean and Variance of Item Parameter Biases under Disc of 1.3 and Diff of -0.5  

  Cond. 1 2 3 4 5 6 7 8 

  

G (0) (0) (0) (0) (+) (+) (+) (+) 

S1 (+) (+) (+) (+) (+) (+) (+) (+) 

S2 (+) (+) (−) (−) (+) (+) (−) (−) 

Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

Mean         

G 

Disc. 

min 0.0518 0.3207 0.0576 0.3393 0.0374 0.3084 0.0478 0.3176 

mean 0.1214 0.3910 0.1372 0.4072 0.1178 0.3824 0.1098 0.3952 

max 0.2168 0.4773 0.2348 0.5125 0.1995 0.4422 0.1665 0.4613 

S1 

Disc. 

min -0.5501 -0.8914 -0.5463 -0.9447 -0.3600 -0.8853 -0.5512 -0.9216 

mean -0.2066 -0.7139 -0.1895 -0.7500 -0.1442 -0.7150 -0.1697 -0.7357 

max -0.0482 -0.5252 0.0691 -0.6273 0.0698 -0.5660 0.0899 -0.5897 

S2 

Disc. 

min -0.3516 -0.9029 -0.4893 -0.8175 -0.4804 -0.8331 -0.7114 -0.8767 

mean -0.1661 -0.7150 -0.1157 -0.6894 -0.1879 -0.6814 -0.1456 -0.7172 

max 0.0331 -0.5773 0.1494 -0.5508 0.0080 -0.5188 0.0821 -0.5423 

D 

min -0.5161 -0.5358 -0.0651 -0.1145 -0.9444 -0.9847 -0.4985 -0.5359 

mean -0.4329 -0.4310 0.0054 0.0234 -0.8401 -0.8448 -0.4201 -0.4264 

max -0.3546 -0.3103 0.1018 0.1433 -0.7695 -0.7345 -0.3000 -0.2852 

Variance           

G 

Disc. 

min 0.0067 0.0107 0.0070 0.0113 0.0071 0.0115 0.0079 0.0147 

mean 0.0188 0.0177 0.0247 0.0212 0.0196 0.0193 0.0245 0.0221 

max 0.0727 0.0296 0.0615 0.0336 0.0686 0.0294 0.1181 0.0313 

S1 

Disc. 

min 0.0060 0.0075 0.0054 0.0125 0.0049 0.0067 0.0049 0.0105 

mean 0.0126 0.0203 0.0129 0.0259 0.0108 0.0203 0.0114 0.0213 

max 0.0369 0.0468 0.0274 0.0457 0.0196 0.0401 0.0249 0.0525 

S2 

Disc. 

min 0.0042 0.0073 0.0056 0.0077 0.0054 0.0094 0.0062 0.0080 

mean 0.0117 0.0195 0.0133 0.0199 0.0122 0.0186 0.0128 0.0198 

max 0.0256 0.0435 0.0343 0.0342 0.0271 0.0339 0.0345 0.0365 

D 

min 0.0039 0.0043 0.1592 0.1787 0.0059 0.0056 0.1528 0.1778 

mean 0.0077 0.0075 0.2043 0.2096 0.0092 0.0089 0.1964 0.2092 

max 0.0106 0.0115 0.2470 0.2478 0.0147 0.0137 0.2662 0.2436 

*Disc.: Discrimination item parameter / Diff.: Difficulty parameter 

* Cond.: Numbers of   simulation conditions 

* G: General factor; S1: First specific factor; S2: Second specific  

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* Corr.: Correlation between specific factor distributions 



76 
 

Table B-2. Mean and Variance of Item Parameter Biases under Disc of 1.3 and Diff of 0.5 

  Cond. 1 2 3 4 5 6 7 8 

  

G (0) (0) (0) (0) (+) (+) (+) (+) 

S1 (+) (+) (+) (+) (+) (+) (+) (+) 

S2 (+) (+) (−) (−) (+) (+) (−) (−) 

Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

Mean         

G 

Disc. 

min 0.0464 0.3541 0.0555 0.3390 0.1280 0.3927 0.0635 0.3637 

mean 0.1432 0.4437 0.1344 0.4133 0.2057 0.4875 0.1711 0.4491 

max 0.2692 0.5308 0.2398 0.5052 0.3134 0.5833 0.2394 0.5404 

S1 

Disc. 

min -0.5176 -0.8712 -0.4041 -0.8545 -0.6482 -0.8471 -0.3627 -0.8388 

mean -0.0974 -0.6775 -0.1226 -0.7126 -0.1087 -0.6289 -0.0878 -0.6714 

max 0.1969 -0.4658 0.0996 -0.4984 0.2257 -0.4316 0.1478 -0.4996 

S2 

Disc. 

min -0.5220 -0.9141 -0.4374 -0.9474 -0.3851 -0.8688 -0.7276 -1.0232 

mean -0.1249 -0.6341 -0.1708 -0.7281 -0.0564 -0.6590 -0.2103 -0.7537 

max 0.1200 -0.4482 0.0475 -0.5688 0.1772 -0.4432 0.0244 -0.6011 

D 

min -0.5524 -0.5218 -0.0893 -0.0972 -0.9769 -0.9906 -0.5214 -0.5450 

mean -0.4432 -0.4382 -0.0034 0.0077 -0.8721 -0.8598 -0.4282 -0.4304 

max -0.3359 -0.3474 0.0783 0.2179 -0.7575 -0.7560 -0.3112 -0.2353 

Variance           

G 

Disc. 

min 0.0084 0.0152 0.0079 0.0109 0.0098 0.0116 0.0088 0.0132 

mean 0.0306 0.0236 0.0218 0.0223 0.0295 0.0213 0.0217 0.0228 

max 0.0985 0.0353 0.1008 0.0341 0.1263 0.0300 0.0619 0.0398 

S1 

Disc. 

min 0.0065 0.0120 0.0050 0.0057 0.0063 0.0077 0.0057 0.0101 

mean 0.0139 0.0224 0.0142 0.0220 0.0172 0.0200 0.0143 0.0223 

max 0.0350 0.0628 0.0336 0.0604 0.0761 0.0388 0.0310 0.0486 

S2 

Disc. 

min 0.0048 0.0081 0.0059 0.0127 0.0059 0.0082 0.0059 0.0115 

mean 0.0146 0.0211 0.0117 0.0246 0.0143 0.0230 0.0143 0.0304 

max 0.0315 0.0430 0.0196 0.0733 0.0309 0.0631 0.0644 0.0617 

D 

min 0.0065 0.0065 0.1561 0.1804 0.0086 0.0096 0.1767 0.1825 

mean 0.0107 0.0108 0.2068 0.2130 0.0155 0.0147 0.2092 0.2201 

max 0.0152 0.0187 0.2699 0.2423 0.0234 0.0304 0.2582 0.2694 

*Disc.: Discrimination item parameter / Diff.: Difficulty parameter 

* Cond.: Numbers of   simulation conditions 

* G: General factor; S1: First specific factor; S2: Second specific  

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* Corr.: Correlation between specific factor distributions 
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Table B-3. Mean and Variance of Item Parameter Biases under Disc of 1.8 and Diff of -0.5 

  Cond. 1 2 3 4 5 6 7 8 

  

G (0) (0) (0) (0) (+) (+) (+) (+) 

S1 (+) (+) (+) (+) (+) (+) (+) (+) 

S2 (+) (+) (−) (−) (+) (+) (−) (−) 

Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

Mean         

G 

Disc. 

min 0.0679 0.3911 0.1290 0.4211 -0.0440 0.4045 -0.0789 0.4002 

mean 0.2163 0.4935 0.2820 0.5378 0.2016 0.5022 0.1850 0.5080 

max 0.3628 0.5746 0.4263 0.6272 0.3604 0.5831 0.3220 0.6128 

S1 

Disc. 

min -0.4473 -1.0972 -0.3875 -1.1511 -0.6284 -1.1186 -0.5386 -1.1185 

mean -0.3077 -0.9783 -0.2885 -1.0068 -0.2842 -0.9541 -0.2349 -0.9995 

max -0.1196 -0.8678 -0.0026 -0.8202 0.0696 -0.7873 0.2381 -0.8592 

S2 

Disc. 

min -0.5096 -1.1444 -0.3255 -1.0831 -0.6628 -1.1417 -0.6950 -1.1150 

mean -0.3206 -0.9786 -0.2154 -0.9570 -0.2740 -0.9550 -0.2901 -0.9927 

max -0.1832 -0.8407 -0.1340 -0.8116 0.0605 -0.7702 0.0484 -0.9018 

D 

min -0.7969 -0.7648 -0.1830 -0.1192 -1.4206 -1.3482 -0.8585 -0.8027 

mean -0.6106 -0.6111 -0.0009 0.0544 -1.2043 -1.1949 -0.6017 -0.5864 

max -0.4454 -0.4274 0.1481 0.2478 -1.0508 -1.0203 -0.4262 -0.3206 

Variance           

G 

Disc. 

min 0.0114 0.0136 0.0139 0.0203 0.0096 0.0136 0.0142 0.0199 

mean 0.0201 0.0225 0.0259 0.0336 0.0283 0.0260 0.0451 0.0300 

max 0.0640 0.0356 0.1055 0.0496 0.1399 0.0418 0.2533 0.0434 

S1 

Disc. 

min 0.0058 0.0109 0.0074 0.0138 0.0077 0.0104 0.0067 0.0122 

mean 0.0168 0.0228 0.0163 0.0270 0.0154 0.0204 0.0157 0.0250 

max 0.0373 0.0416 0.0286 0.0469 0.0336 0.0341 0.0289 0.0547 

S2 

Disc. 

min 0.0068 0.0098 0.0074 0.0132 0.0052 0.0114 0.0069 0.0106 

mean 0.0142 0.0227 0.0183 0.0246 0.0146 0.0215 0.0180 0.0216 

max 0.0263 0.0383 0.0339 0.0429 0.0340 0.0395 0.0751 0.0403 

D 

min 0.0072 0.0065 0.3004 0.3682 0.0076 0.0075 0.3244 0.3592 

mean 0.0112 0.0110 0.4151 0.4230 0.0119 0.0107 0.3932 0.4115 

max 0.0158 0.0181 0.4952 0.4753 0.0206 0.0150 0.5369 0.5031 

*Disc.: Discrimination item parameter / Diff.: Difficulty parameter 

* Cond.: Numbers of   simulation conditions 

* G: General factor; S1: First specific factor; S2: Second specific  

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* Corr.: Correlation between specific factor distributions 
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Table B-4. Mean and Variance of Item Parameter Biases under Disc of 1.8 and Diff of 0.5 

  Cond. 1 2 3 4 5 6 7 8 

  

G (0) (0) (0) (0) (+) (+) (+) (+) 

S1 (+) (+) (+) (+) (+) (+) (+) (+) 

S2 (+) (+) (−) (−) (+) (+) (−) (−) 

Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

Mean         

G 

Disc. 

Min 0.0205 0.5126 0.0211 0.4275 0.2486 0.5698 0.1853 0.5014 

Mean 0.3053 0.6149 0.2661 0.5419 0.4206 0.7092 0.3344 0.6165 

Max 0.4789 0.7022 0.3815 0.6671 0.5687 0.8086 0.4428 0.7829 

S1 

Disc. 

Min -0.4631 -1.0605 -0.3136 -1.0915 -0.2541 -1.0893 -0.3178 -1.0873 

Mean -0.2075 -0.8910 -0.2135 -0.9612 -0.1446 -0.8536 -0.1768 -0.9212 

Max -0.0386 -0.6841 0.0053 -0.8276 0.0221 -0.6149 -0.0555 -0.7876 

S2 

Disc. 

Min -0.3654 -1.0131 -0.4576 -1.1091 -0.2997 -1.0280 -0.4166 -1.1505 

Mean -0.1884 -0.8777 -0.3010 -0.9951 -0.1591 -0.8628 -0.3035 -1.0090 

Max 0.1765 -0.7680 -0.2001 -0.8612 -0.0055 -0.6371 -0.1684 -0.9012 

D 

Min -0.7658 -0.7621 -0.2331 -0.1928 -1.5176 -1.4091 -0.7523 -0.7552 

Mean -0.6353 -0.6148 -0.0147 0.0086 -1.2776 -1.2486 -0.6227 -0.6196 

Max -0.4744 -0.4390 0.2370 0.2027 -1.1127 -1.1132 -0.4510 -0.4308 

Variance           

G 

Disc. 

Min 0.0132 0.0217 0.0135 0.0193 0.0142 0.0212 0.0084 0.0235 

Mean 0.0306 0.0321 0.0253 0.0325 0.0270 0.0335 0.0363 0.0432 

Max 0.1981 0.0562 0.0770 0.0599 0.0599 0.0566 0.0779 0.0705 

S1 

Disc. 

Min 0.0052 0.0088 0.0092 0.0113 0.0068 0.0112 0.0100 0.0148 

Mean 0.0162 0.0204 0.0177 0.0245 0.0187 0.0263 0.0189 0.0273 

Max 0.0361 0.0411 0.0328 0.0438 0.0300 0.0574 0.0370 0.0591 

S2 

Disc. 

Min 0.0082 0.0117 0.0074 0.0154 0.0099 0.0119 0.0078 0.0138 

Mean 0.0174 0.0228 0.0157 0.0308 0.0195 0.0270 0.0170 0.0348 

Max 0.0314 0.0487 0.0282 0.0523 0.0300 0.0475 0.0304 0.0666 

D 

Min 0.0098 0.0094 0.3407 0.3794 0.0172 0.0137 0.3464 0.3523 

Mean 0.0183 0.0181 0.4104 0.4245 0.0283 0.0283 0.4371 0.4490 

Max 0.0358 0.0321 0.4890 0.4770 0.0520 0.0521 0.5564 0.5055 

*Disc.: Discrimination item parameter / Diff.: Difficulty parameter 

* Cond.: Numbers of   simulation conditions 

* G: General factor; S1: First specific factor; S2: Second specific  

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* Corr.: Correlation between specific factor distributions 
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Appendix C 

Table C-1. Mean and Variance of   Parameter Biases under Disc. of 1.3 and Diff. of -0.5 

Cond. 1 2 3 4 5 6 7 8 

  

G (0) (0) (0) (0) (+) (+) (+) (+) 

S1 (+) (+) (+) (+) (+) (+) (+) (+) 

S2 (+) (+) (−) (−) (+) (+) (−) (−) 

Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

Mean         

G 

Min -0.0488 -0.0625 -0.0352 -0.0793 0.2690 0.2224 0.2388 0.2542 

Mean 0.0028 0.0064 0.0021 -0.0096 0.3048 0.3084 0.3029 0.3078 

Max 0.0479 0.0818 0.0513 0.0568 0.3582 0.3697 0.3516 0.3638 

S1 

Min 0.2641 0.2586 0.2431 0.2510 0.2430 0.2538 0.2513 0.2301 

Mean 0.3011 0.2966 0.3042 0.2976 0.2989 0.3012 0.3046 0.3050 

Max 0.3671 0.3412 0.3503 0.3636 0.3568 0.3521 0.3598 0.3577 

S2 

Min 0.2681 0.2570 -0.3532 -0.3643 0.2483 0.2501 -0.3484 -0.3677 

Mean 0.3086 0.3003 -0.3051 -0.3079 0.3039 0.3047 -0.2950 -0.3014 

Max 0.3578 0.3479 -0.2684 -0.2527 0.3531 0.3538 -0.2346 -0.2418 

Variance 

G 

Min 0.3345 0.4924 0.3597 0.5294 0.3627 0.5197 0.3705 0.5306 

Mean 0.3827 0.5464 0.4077 0.5702 0.3990 0.5589 0.4129 0.5786 

Max 0.4680 0.5952 0.4981 0.6341 0.4601 0.6262 0.5272 0.6369 

S1 

Min 0.4169 0.7023 0.4116 0.7582 0.3874 0.7176 0.4160 0.7748 

Mean 0.4714 0.8506 0.4905 0.8886 0.4569 0.8322 0.4708 0.8738 

Max 0.6123 0.9790 0.6497 1.0351 0.5355 0.9342 0.5497 1.0342 

S2 

Min 0.4151 0.7733 0.4076 0.7341 0.4108 0.6922 0.3743 0.7218 

Mean 0.4688 0.8557 0.4546 0.8158 0.4698 0.8449 0.4537 0.8330 

Max 0.5209 0.9521 0.5657 0.9319 0.5523 0.9613 0.6878 0.9304 

*Disc.: Discrimination item parameter / Diff.: Difficulty parameter 

* Cond.: Numbers of   simulation conditions 

* G: General factor; S1: First specific factor; S2: Second specific  

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* Corr.: Correlation between specific factor distributions 
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Table C-2. Mean and Variance of   Parameter Biases under Disc. of 1.3 and Diff. of 0.5 

Cond. 1 2 3 4 5 6 7 8 

 G (0) (0) (0) (0) (+) (+) (+) (+) 

 S1 (+) (+) (+) (+) (+) (+) (+) (+) 

  S2 (+) (+) (−) (−) (+) (+) (−) (−) 

 Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

Mean         

G 

Min -0.0579 -0.0538 -0.0442 -0.1161 0.2325 0.2271 0.2487 0.2191 

Mean 0.0007 0.0043 0.0000 -0.0104 0.3033 0.3034 0.3006 0.3023 

Max 0.0463 0.0719 0.0656 0.0462 0.3606 0.3632 0.3483 0.3538 

S1 

Min 0.2534 0.2585 0.2469 0.2508 0.2404 0.2539 0.2572 0.2299 

Mean 0.3006 0.2965 0.3032 0.2975 0.2993 0.3011 0.3027 0.3048 

Max 0.3661 0.3411 0.3538 0.3635 0.3506 0.3515 0.3445 0.3577 

S2 

Min 0.2548 0.2569 -0.3568 -0.3644 0.2453 0.2500 -0.3389 -0.3678 

Mean 0.3070 0.3002 -0.3060 -0.3080 0.3019 0.3046 -0.2956 -0.3015 

Max 0.3724 0.3483 -0.2682 -0.2528 0.3524 0.3534 -0.2487 -0.2417 

Variance 

G 

Min 0.3616 0.5200 0.3526 0.5297 0.3571 0.5115 0.3553 0.5122 

Mean 0.4194 0.5741 0.4030 0.5698 0.4123 0.5578 0.3949 0.5581 

Max 0.5173 0.6330 0.4736 0.6306 0.5163 0.6333 0.4665 0.6049 

S1 

Min 0.3798 0.7138 0.3569 0.7004 0.3959 0.6914 0.3853 0.7350 

Mean 0.4540 0.8229 0.4479 0.8076 0.4676 0.8034 0.4496 0.8016 

Max 0.5882 0.9599 0.5479 0.9231 0.7469 0.9582 0.5219 0.9080 

S2 

Min 0.3922 0.7491 0.4265 0.8308 0.4104 0.6833 0.4231 0.7808 

Mean 0.4626 0.8316 0.4897 0.9025 0.4658 0.8125 0.5092 0.9221 

Max 0.5590 0.9164 0.5512 0.9843 0.5341 0.9619 0.7431 1.0380 

*Disc.: Discrimination item parameter / Diff.: Difficulty parameter 

* Cond.: Numbers of   simulation conditions 

* G: General factor; S1: First specific factor; S2: Second specific  

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* Corr.: Correlation between specific factor distributions 
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Table C-3. Mean and Variance of   Parameter Biases under Disc. of 1.8 and Diff. of -0.5 

Cond. 1 2 3 4 5 6 7 8 

  

G (0) (0) (0) (0) (+) (+) (+) (+) 

S1 (+) (+) (+) (+) (+) (+) (+) (+) 

S2 (+) (+) (−) (−) (+) (+) (−) (−) 

Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

Mean         

G 

Min -0.0752 -0.0751 -0.0515 -0.0815 0.2449 0.2489 0.2355 0.2266 

Mean -0.0006 0.0064 0.0062 -0.0158 0.3080 0.3092 0.3055 0.3014 

Max 0.0770 0.0755 0.0793 0.0325 0.3767 0.3796 0.3938 0.3713 

S1 

Min 0.2484 0.2587 0.2542 0.2512 0.2558 0.2539 0.2558 0.2299 

Mean 0.3009 0.2967 0.3057 0.2977 0.3018 0.3012 0.3080 0.3050 

Max 0.4024 0.3414 0.3610 0.3636 0.3512 0.3510 0.3857 0.3576 

S2 

Min 0.2614 0.2571 -0.3461 -0.3644 0.2461 0.2499 -0.3475 -0.3677 

Mean 0.3053 0.3003 -0.3022 -0.3079 0.3040 0.3047 -0.2957 -0.3013 

Max 0.3521 0.3481 -0.2544 -0.2528 0.3740 0.3533 -0.2395 -0.2421 

Variance 

G 

Min 0.3391 0.4948 0.3606 0.5362 0.3365 0.5172 0.3635 0.5561 

Mean 0.3737 0.5422 0.3989 0.5765 0.3959 0.5593 0.4227 0.5911 

Max 0.4285 0.5954 0.4342 0.6204 0.4531 0.6102 0.5729 0.6315 

S1 

Min 0.4215 0.7403 0.4629 0.8165 0.4059 0.7850 0.4283 0.8126 

Mean 0.4791 0.8520 0.5061 0.9091 0.4699 0.8405 0.4826 0.8936 

Max 0.5247 0.9537 0.5536 1.0262 0.5151 0.9308 0.5409 0.9735 

S2 

Min 0.4347 0.7870 0.4223 0.7219 0.4195 0.7551 0.4111 0.6987 

Mean 0.4844 0.8619 0.4608 0.8119 0.4761 0.8497 0.4679 0.8347 

Max 0.5302 0.9652 0.5055 0.8846 0.5481 0.9195 0.6768 0.9165 

*Disc.: Discrimination item parameter / Diff.: Difficulty parameter 

* Cond.: Numbers of   simulation conditions 

* G: General factor; S1: First specific factor; S2: Second specific  

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* Corr.: Correlation between specific factor distributions 
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Table C-4. Mean and Variance of   Parameter Biases under Disc. of 1.8 and Diff. of 0.5 

Cond. 1 2 3 4 5 6 7 8 

  

G (0) (0) (0) (0) (+) (+) (+) (+) 

S1 (+) (+) (+) (+) (+) (+) (+) (+) 

S2 (+) (+) (−) (−) (+) (+) (−) (−) 

Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

Mean         

G 

Min -0.0565 -0.0658 -0.0730 -0.0768 0.2499 0.2409 0.2534 0.2200 

Mean 0.0005 0.0022 0.0006 -0.0104 0.3108 0.3076 0.3010 0.3001 

Max 0.0640 0.0651 0.0742 0.0379 0.3715 0.3713 0.3475 0.3487 

S1 

Min 0.2505 0.2576 0.2435 0.2511 0.2358 0.2552 0.2502 0.2299 

Mean 0.2998 0.2963 0.3038 0.2973 0.3033 0.3014 0.3043 0.3048 

Max 0.3546 0.3408 0.3695 0.3636 0.3824 0.3526 0.3547 0.3576 

S2 

Min 0.2521 0.2559 -0.3656 -0.3646 0.2455 0.2499 -0.3638 -0.3678 

Mean 0.3078 0.3001 -0.3058 -0.3080 0.3052 0.3045 -0.2967 -0.3015 

Max 0.3620 0.3471 -0.2578 -0.2526 0.3549 0.3546 -0.2475 -0.2419 

Variance 

G 

Min 0.3821 0.5198 0.3686 0.5382 0.3768 0.5213 0.3580 0.4981 

Mean 0.4154 0.5780 0.3983 0.5753 0.4105 0.5599 0.3897 0.5585 

Max 0.5126 0.6286 0.4257 0.6249 0.4413 0.6044 0.4188 0.6138 

S1 

Min 0.4073 0.7006 0.4196 0.7288 0.4313 0.7346 0.4150 0.6650 

Mean 0.4614 0.8169 0.4509 0.8000 0.4715 0.8088 0.4554 0.7957 

Max 0.5468 0.9201 0.4836 0.8611 0.5162 0.8903 0.5117 0.8618 

S2 

Min 0.4155 0.7575 0.4742 0.8381 0.4219 0.7322 0.4887 0.8186 

Mean 0.4658 0.8296 0.5145 0.9271 0.4794 0.8197 0.5306 0.9475 

Max 0.4983 0.9384 0.5620 1.0190 0.5316 0.9070 0.5711 1.0542 

*Disc.: Discrimination item parameter / Diff.: Difficulty parameter 

* Cond.: Numbers of   simulation conditions 

* G: General factor; S1: First specific factor; S2: Second specific  

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* Corr.: Correlation between specific factor distributions 
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Appendix D 

Table D-1. Correlations between Generated and Estimated Factors with Discrimination 

Parameters from mean of 1.3 

Cond. 1 2 3 4 5 6 7 8 

  

G (0) (0) (0) (0) (+) (+) (+) (+) 

S1 (+) (+) (+) (+) (+) (+) (+) (+) 

S2 (+) (+) (−) (−) (+) (+) (−) (−) 

Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

Difficulty parameters with mean of  -0.5 and standard deviation of 0.4 

G 

Mean 0.7890 0.7200 0.7749 0.7079 0.7800 0.7106 0.7719 0.7033 

Var 0.0002 0.0002 0.0003 0.0002 0.0002 0.0001 0.0002 0.0002 

Min 0.7440 0.6867 0.7219 0.6737 0.7355 0.6736 0.7166 0.6698 

Max 0.8253 0.7504 0.8030 0.7347 0.8046 0.7364 0.7952 0.7329 

S1 

Mean 0.7260 0.4310 0.7186 0.3859 0.7396 0.4416 0.7276 0.4032 

Var 0.0007 0.0018 0.0007 0.0016 0.0004 0.0011 0.0003 0.0017 

Min 0.6280 0.3317 0.6346 0.2993 0.6904 0.3624 0.6905 0.2815 

 Max 0.7670 0.5216 0.7649 0.5044 0.7768 0.5251 0.7674 0.4973 

S2 

Mean 0.7295 0.4248 0.7414 0.4482 0.7289 0.4329 0.7431 0.4414 

Var 0.0003 0.0011 0.0003 0.0014 0.0004 0.0011 0.0011 0.0013 

Min 0.6969 0.3178 0.6718 0.3558 0.6685 0.3690 0.5572 0.3504 

 Max 0.7631 0.4932 0.7702 0.5161 0.7656 0.5059 0.7839 0.5397 

Difficulty parameters with mean of  0.5 and standard deviation of 0.4 

G 

Mean 0.7668 0.7024 0.7771 0.7085 0.7713 0.7066 0.7819 0.7119 

Var 0.0003 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002 

Min 0.7031 0.6677 0.7479 0.6711 0.7182 0.6664 0.7468 0.6867 

 Max 0.8047 0.7352 0.8046 0.7312 0.7980 0.7357 0.8037 0.7407 

S1 

Mean 0.7387 0.4480 0.7466 0.4572 0.7296 0.4650 0.7410 0.4625 

Var 0.0007 0.0019 0.0004 0.0017 0.0023 0.0016 0.0003 0.0015 

Min 0.6492 0.2882 0.7044 0.3705 0.4561 0.3751 0.6983 0.3786 

 Max 0.7742 0.5267 0.8015 0.5427 0.7702 0.5451 0.7850 0.5311 

S2 

Mean 0.7339 0.4470 0.7178 0.3736 0.7324 0.4487 0.7049 0.3549 

Var 0.0004 0.0010 0.0003 0.0015 0.0005 0.0020 0.0012 0.0024 

Min 0.6733 0.3722 0.6874 0.2322 0.6688 0.3681 0.5076 0.2216 

 Max 0.7746 0.5015 0.7508 0.4258 0.7721 0.5467 0.7505 0.4712 

* Cond.: Numbers of   simulation conditions 

* G: General factor; S1: First specific factor; S2: Second specific  

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* Corr.: Correlation between specific factor distributions 
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Table D-2. Correlations between Generated and Estimated Factors with Discrimination 

Parameters from mean of 1.8 

Condition 1 2 3 4 5 6 7 8 

  

G (0) (0) (0) (0) (+) (+) (+) (+) 

S1 (+) (+) (+) (+) (+) (+) (+) (+) 

S2 (+) (+) (−) (−) (+) (+) (−) (−) 

Corr. 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

Difficulty parameters with mean of  -0.5 and standard deviation of 0.4 

G 

Mean 0.7937 0.7243 0.7785 0.7072 0.7817 0.7125 0.7663 0.6992 

Var 0.0001 0.0002 0.0001 0.0001 0.0001 0.0002 0.0004 0.0001 

Min 0.7658 0.6891 0.7569 0.6724 0.7535 0.6867 0.6900 0.6771 

Max 0.8177 0.7471 0.7993 0.7244 0.8072 0.7399 0.7945 0.7217 

S1 

Mean 0.7215 0.4336 0.7083 0.3783 0.7304 0.4433 0.7219 0.3947 

Var 0.0002 0.0007 0.0002 0.0009 0.0002 0.0005 0.0002 0.0007 

Min 0.6959 0.3464 0.6830 0.2991 0.6950 0.3829 0.6914 0.3248 

 Max 0.7442 0.4907 0.7341 0.4266 0.7731 0.4833 0.7556 0.4463 

S2 

Mean 0.7184 0.4226 0.7351 0.4508 0.7255 0.4314 0.7333 0.4418 

Var 0.0002 0.0007 0.0002 0.0008 0.0003 0.0007 0.0008 0.0007 

Min 0.6863 0.3561 0.7057 0.3838 0.6624 0.3703 0.5923 0.3486 

 Max 0.7569 0.4847 0.7604 0.5123 0.7740 0.4996 0.7745 0.4911 

Difficulty parameters with mean of  0.5 and standard deviation of 0.4 

G 

Mean 0.7677 0.6997 0.7790 0.7075 0.7710 0.7041 0.7839 0.7129 

Var 0.0002 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 

Min 0.7055 0.6628 0.7563 0.6799 0.7490 0.6830 0.7648 0.6805 

 Max 0.7911 0.7315 0.8001 0.7348 0.7939 0.7398 0.8086 0.7482 

S1 

Mean 0.7323 0.4566 0.7439 0.4649 0.7276 0.4595 0.7362 0.4667 

Var 0.0002 0.0009 0.0001 0.0007 0.0001 0.0007 0.0001 0.0009 

Min 0.6942 0.3662 0.7172 0.4064 0.7069 0.4089 0.7027 0.4047 

 Max 0.7568 0.5181 0.7617 0.5211 0.7516 0.5106 0.7577 0.5344 

S2 

Mean 0.7305 0.4471 0.7007 0.3591 0.7211 0.4433 0.6917 0.3414 

Var 0.0002 0.0006 0.0002 0.0012 0.0002 0.0012 0.0002 0.0010 

Min 0.7053 0.3885 0.6766 0.2989 0.6995 0.3356 0.6651 0.2687 

 Max 0.7577 0.4987 0.7279 0.4371 0.7576 0.5178 0.7218 0.4105 

* Condition: Numbers of   simulation conditions 

* G: General factor; S1: First specific factor; S2: Second specific  

* (0): Standard normal distribution; (+): Positively skewed distributions; (-): Negatively skewed 

distributions 

* Corr.: Correlation between specific factor distributions 
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Appendix E 

Table E-1. Numbers of Frequencies Significant by KS Test under Condition 1 

Discrimination Mean: 1.3 / SD: 0.15  Mean: 1.8 / SD: 0.15 

Difficulty 
Mean: -0.5 

SD: 0.4 

Mean: 0.5 

SD: 0.4 

Mean: -0.5 

SD: 0.4 

Mean: 0.5 

SD: 0.4 

  G S1 S2 G S1 S2 G S1 S2 G S1 S2 

1 to 2000 18 50 50 34 50 50 28 50 50 50 50 50 

1 to 200 0 50 50 0 50 50 0 50 50 1 50 50 

201 to 400 0 50 50 0 50 50 1 50 50 0 50 50 

401 to 600 0 50 50 0 50 50 2 50 50 0 50 50 

601 to 800 0 50 50 0 50 50 0 50 50 0 50 50 

801 to 1000 0 50 50 0 50 50 0 50 50 0 50 50 

1001 to 1200 0 50 50 0 50 50 0 50 50 0 50 50 

1201 to 1400 0 50 50 0 50 50 0 50 50 0 50 50 

1401 to 1600 1 50 50 1 50 50 1 50 50 1 50 50 

1601 to 1800 0 50 50 0 50 50 1 50 50 1 50 50 

1801 to 2000 1 50 50 0 49 50 0 50 50 0 50 50 

* Condition: Numbers of   simulation conditions  

* G: General factor; S1: First specific factor; S2: Second specific factor 

* The frequencies under the significance level of .05 were counted. 
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Table E-2. Numbers of Frequencies Significant by KS Test under Condition 2 

Discrimination Mean: 1.3 / SD: 0.15  Mean: 1.8 / SD: 0.15 

Difficulty 
Mean: -0.5 

SD: 0.4 

Mean: 0.5 

SD: 0.4 

Mean: -0.5 

SD: 0.4 

Mean: 0.5 

SD: 0.4 

  G S1 S2 G S1 S2 G S1 S2 G S1 S2 

1 to 2000 50 50 50 50 50 50 50 50 50 50 50 50 

1 to 200 1 50 50 5 50 50 1 50 50 1 50 50 

201 to 400 3 50 50 4 50 50 1 50 50 3 50 50 

401 to 600 3 50 50 2 50 50 3 50 50 2 50 50 

601 to 800 2 50 50 4 50 50 2 50 50 3 50 50 

801 to 1000 2 50 50 4 50 50 2 50 50 3 50 50 

1001 to 1200 2 50 50 1 50 50 1 50 50 1 50 50 

1201 to 1400 2 50 50 0 50 50 3 50 50 2 50 50 

1401 to 1600 2 50 50 3 50 50 2 50 50 4 50 50 

1601 to 1800 2 50 50 1 50 50 2 50 50 1 50 50 

1801 to 2000 3 50 50 1 50 50 3 50 50 3 50 50 

* Condition: Numbers of   simulation conditions  

* G: General factor; S1: First specific factor; S2: Second specific factor 

* The frequencies under the significance level of .05 were counted. 
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Table E-3. Numbers of Frequencies Significant by KS Test under Condition 3 

Discrimination Mean: 1.3 / SD: 0.15  Mean: 1.8 / SD: 0.15 

Difficulty 
Mean: -0.5 

SD: 0.4 

Mean: 0.5 

SD: 0.4 

Mean: -0.5 

SD: 0.4 

Mean: 0.5 

SD: 0.4 

  G S1 S2 G S1 S2 G S1 S2 G S1 S2 

1 to 2000 22 50 50 21 50 50 46 50 50 46 50 50 

1 to 200 0 50 50 0 50 50 1 50 50 0 50 50 

201 to 400 0 50 50 0 50 50 0 50 50 0 50 50 

401 to 600 0 50 50 0 50 50 1 50 50 1 50 50 

601 to 800 0 50 50 0 50 50 1 50 50 1 50 50 

801 to 1000 0 50 50 0 50 50 1 50 50 1 50 50 

1001 to 1200 0 50 50 0 50 50 0 50 50 0 49 50 

1201 to 1400 0 50 50 0 50 50 0 50 50 0 50 50 

1401 to 1600 0 50 50 0 50 50 0 50 50 1 50 50 

1601 to 1800 1 50 50 0 50 50 1 50 50 0 50 50 

1801 to 2000 0 50 50 0 50 50 0 50 50 0 50 50 

* Condition: Numbers of   simulation conditions  

* G: General factor; S1: First specific factor; S2: Second specific factor 

* The frequencies under the significance level of .05 were counted. 
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Table E-4. Numbers of Frequencies Significant by KS Test under Condition 4 

Discrimination Mean: 1.3 / SD: 0.15  Mean: 1.8 / SD: 0.15 

Difficulty 
Mean: -0.5 

SD: 0.4 

Mean: 0.5 

SD: 0.4 

Mean: -0.5 

SD: 0.4 

Mean: 0.5 

SD: 0.4 

  G S1 S2 G S1 S2 G S1 S2 G S1 S2 

1 to 2000 50 50 50 49 50 50 50 50 50 50 50 50 

1 to 200 2 50 50 4 50 50 4 50 50 5 50 50 

201 to 400 3 50 50 3 50 50 4 50 50 5 50 50 

401 to 600 4 50 50 4 50 50 6 50 50 6 50 50 

601 to 800 0 50 50 0 50 50 2 50 50 0 50 50 

801 to 1000 0 50 50 0 50 50 2 50 50 0 50 50 

1001 to 1200 2 50 50 4 50 50 5 50 50 3 50 50 

1201 to 1400 1 50 50 2 50 50 1 50 50 1 50 50 

1401 to 1600 1 50 50 2 50 50 1 50 50 2 50 50 

1601 to 1800 6 50 50 6 50 50 6 50 50 6 50 50 

1801 to 2000 1 50 50 3 50 50 0 50 50 5 50 50 

* Condition: Numbers of   simulation conditions  

* G: General factor; S1: First specific factor; S2: Second specific factor 

* The frequencies under the significance level of .05 were counted. 
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Table E-5. Numbers of Frequencies Significant by KS Test under Condition 5 

Discrimination Mean: 1.3 / SD: 0.15  Mean: 1.8 / SD: 0.15 

Difficulty 
Mean: -0.5 

SD: 0.4 

Mean: 0.5 

SD: 0.4 

Mean: -0.5 

SD: 0.4 

Mean: 0.5 

SD: 0.4 

  G S1 S2 G S1 S2 G S1 S2 G S1 S2 

1 to 2000 50 50 50 50 50 50 50 50 50 50 50 50 

1 to 200 50 50 50 50 50 50 50 50 50 50 50 50 

201 to 400 50 49 50 50 50 50 50 50 50 50 50 50 

401 to 600 49 50 50 50 50 50 50 50 50 50 50 50 

601 to 800 49 50 50 49 50 50 50 50 50 50 50 50 

801 to 1000 49 50 50 49 50 50 50 50 50 50 50 50 

1001 to 1200 49 50 50 49 50 50 50 50 50 50 50 50 

1201 to 1400 50 50 50 49 50 50 50 50 50 50 50 50 

1401 to 1600 50 50 50 50 50 50 50 50 50 50 50 50 

1601 to 1800 50 50 50 50 50 50 50 50 50 50 50 50 

1801 to 2000 50 50 50 50 50 50 50 50 50 50 50 50 

* Condition: Numbers of   simulation conditions  

* G: General factor; S1: First specific factor; S2: Second specific factor 

* The frequencies under the significance level of .05 were counted. 
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Table E-6. Numbers of Frequencies Significant by KS Test under Condition 6 

Discrimination Mean: 1.3 / SD: 0.15  Mean: 1.8 / SD: 0.15 

Difficulty 
Mean: -0.5 

SD: 0.4 

Mean: 0.5 

SD: 0.4 

Mean: -0.5 

SD: 0.4 

Mean: 0.5 

SD: 0.4 

  G S1 S2 G S1 S2 G S1 S2 G S1 S2 

1 to 2000 50 50 50 50 50 50 50 50 50 50 50 50 

1 to 200 50 50 50 48 50 50 50 50 50 50 50 50 

201 to 400 50 50 50 50 50 50 50 50 50 49 50 50 

401 to 600 49 50 50 49 50 50 50 50 50 50 50 50 

601 to 800 50 50 50 50 50 50 49 50 50 49 50 50 

801 to 1000 50 50 50 50 50 50 49 50 50 49 50 50 

1001 to 1200 50 50 50 50 50 50 50 50 50 50 50 50 

1201 to 1400 49 50 50 48 50 50 50 50 50 49 50 50 

1401 to 1600 50 50 50 50 50 50 50 50 50 50 50 50 

1601 to 1800 50 50 50 50 50 50 50 50 50 50 50 50 

1801 to 2000 50 50 50 50 50 50 50 50 50 50 50 50 

* Condition: Numbers of   simulation conditions  

* G: General factor; S1: First specific factor; S2: Second specific factor 

* The frequencies under the significance level of .05 were counted. 
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Table E-7. Numbers of Frequencies Significant by KS Test under Condition 7 

Discrimination Mean: 1.3 / SD: 0.15  Mean: 1.8 / SD: 0.15 

Difficulty 
Mean: -0.5 

SD: 0.4 

Mean: 0.5 

SD: 0.4 

Mean: -0.5 

SD: 0.4 

Mean: 0.5 

SD: 0.4 

  G S1 S2 G S1 S2 G S1 S2 G S1 S2 

1 to 2000 50 50 50 50 50 50 50 50 50 50 50 50 

1 to 200 50 50 50 49 50 50 50 50 50 50 50 50 

201 to 400 50 50 50 49 50 50 50 50 50 50 50 50 

401 to 600 48 50 50 50 50 50 49 50 50 50 50 50 

601 to 800 50 50 50 49 50 50 50 50 50 49 50 50 

801 to 1000 50 50 50 49 50 50 50 50 50 49 50 50 

1001 to 1200 50 50 50 50 50 50 50 50 50 50 50 50 

1201 to 1400 50 50 50 50 50 50 50 50 50 50 50 50 

1401 to 1600 50 50 50 49 49 50 49 50 50 50 50 50 

1601 to 1800 50 50 50 49 50 50 50 50 50 50 50 50 

1801 to 2000 50 50 50 50 50 50 50 50 50 50 50 50 

* Condition: Numbers of   simulation conditions  

* G: General factor; S1: First specific factor; S2: Second specific factor 

* The frequencies under the significance level of .05 were counted. 
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Table E-8. Numbers of Frequencies Significant by KS Test under Condition 8 

Discrimination Mean: 1.3 / SD: 0.15  Mean: 1.8 / SD: 0.15 

Difficulty 
Mean: -0.5 

SD: 0.4 

Mean: 0.5 

SD: 0.4 

Mean: -0.5 

SD: 0.4 

Mean: 0.5 

SD: 0.4 

  G S1 S2 G S1 S2 G S1 S2 G S1 S2 

1 to 2000 50 50 50 50 50 50 50 50 50 50 50 50 

1 to 200 50 50 50 50 50 50 50 50 50 49 50 50 

201 to 400 50 50 50 50 50 50 50 50 50 50 50 50 

401 to 600 50 50 50 48 50 50 50 50 50 49 50 50 

601 to 800 50 50 50 50 50 50 50 50 50 50 50 50 

801 to 1000 50 50 50 50 50 50 50 50 50 50 50 50 

1001 to 1200 50 50 50 49 50 50 50 50 50 50 50 50 

1201 to 1400 50 50 50 48 50 50 49 50 50 49 50 50 

1401 to 1600 50 50 50 50 50 50 50 50 50 50 50 50 

1601 to 1800 49 50 50 50 50 50 50 50 50 49 50 50 

1801 to 2000 49 50 50 48 50 50 49 50 50 49 50 50 

* Condition: Numbers of   simulation conditions  

* G: General factor; S1: First specific factor; S2: Second specific factor 

* The frequencies under the significance level of .05 were counted. 
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