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ABSTRACT

FUNCTIONAL CORROBORATION OF A DIGITAL

MULTILAYER NEURAL NETWORK

By

Qaiser Hameed Malik

A model ofthe digital multilayer neural network (DMNN), has been implemented

in sofiware using the C programming language. The DMNN employs a stochastic

nonlinear fimction in the backpropagation learning rule. A suite oftest cases is applied to

the sirmrlated DMNN and its performance is analyzed with reference to an ordinary

Artificial Neural Network (ANN) employing a sigmoidal function. The backpropagation

learning algorithm, used in the DMNN, has been revised in order to accelerate the

convergence process. A modified DMNN has been simulated based upon the refinements

suggested in the backpropagation algorithm The modified DMNN has been found to

converge for a wider range oflearning rates (17) and momentum factors (a).

Three networks, DMNN, modified DMNN and ANN, are simulated on an 80486

based Personal Computer (PC). The learning pattern of each network is determined for

the test cases and their performance is analyzed.
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CHAPTER 1

INTRODUCTION

Artificial Neural Networks (ANN) are systems made of a large number of simple

neurons or Processing Elements (PE), whose fimction is determined mainly by their

interconnection topology. These systems are capable of solving. computationally intensive

and ill-defined problems such as pattern classification, adaptive control, optimization and

many more data processing tasks. Currently there are many models available that can be

implemented via software and hardware. SoftWare implementation usually employs an

algorithm, which is based on the architecture and an tmderstanding of neural networks,

mapped onto the conventional digital computers. This thesis presents a software model of

a pulse mode Digital Multilayer Neural Network (DMNN) developed by Kim [1]. The

capabilities of the network are validated and compared with an ordinary ANN by using

data encoding and pattern classification problems.

This chapter begins with a brief overview of the DMNN model. The problem to

be solved is then defined, followed by the research tasks. Finally the organization of this

thesis is outlined.



1.1 Overview

Conventional digital computers are very useful in solving well-defined problems

since they can be represented by sequences of instructions. However, conventional

computers can not compete with the performance of human beings in solving ill-defined

random problems such as pattern recognition, classification, speech understanding, vision

and so on. The typical characteristics of human nervous system and the brain are;

adaptive learning, generalization, error correction, robustness, and creativity. Its

computational power is due to its massive interconnection and asynchronous parallel

commtmication among neurons (basic anatomical units ofthe nervous system).

Biologically inspired computing machines, often referred to as artificial neural

networks (ANN), work in a way similar to the neurons in the human brain. In the past

few years, neural networks have received a great deal of attention and are being touted as

one ofthe important computational tools developed so far. Much ofthe excitement is due

to the apparent ability of the neural networks to imitate the brain’s ability to make

decisions and draw conclusions when presented with complex, noisy, irrelevant and/or

partial information. It is believed that the massive parallelism and computational power of

the human brain is due to the complex interconnections among a large number ofneurons

and not due to the complexity of an individual neuron. Artificial neural networks are

inspired both by neurobiology and various mathematical theories of learning and

information processing. The main objective of the ANN research is to design new



architectures and algorithms that can solve problems which are difiicult to solve by

conventional digital computers.

With the enormous developments in the fields of VLSI technology and with

improved understanding of the human nervous system, it has become possible to

implement models ofneural nets by mimicking some aspects ofthe nervous system of the

mammals. The implementation of artificial neural networks is based on a large number of

sinrple computational elements. Currently there are many models ofANNs [2-4] that can

be implemented via hardware or software. Software implementation usually employs an

algorithm which is based on the architecture and an understanding ofthe neural networks,

mapped onto the conventional digital computers. Software implementation is very flexible

since one can easily modify codes or algorithms in order to implement another ANN

model or learning mechanism. Hardware implementation is more suitable to implementing

large ANNs and its computational speed is nnrch faster than that of the sofiware

implementation. With the current advancements in VLSI technology, dedicated hardware

implementation ofANNs is progressing and many analog and digital ANN models have

been built [5-8].

Recently, a new digital approach has been introduced in which a synaptic

multiplication and neuron activation function is implemented with the simple logic gates

using stochastic computing techniques [9,10]. Based on this technique, a statistical model

of a pulse mode Digital Multilayer Neural Network (DMNN) has been developed [1].

The applicability of the developed network has been demonstrated using benchmark

comparisons and character recognition problems.



This thesis presents the functional validation of the DMNN presented by Kim [1].

A software simulation of the DMNN is presented and its results are compared with an

ordinary ANN. The backpropagation algorithm, used in the DMNN, is modified to

accelerate the convergence. Based on these modifications, an improved DMNN is

presented and its performance is evaluated by solving a suite oftest cases.

1.2 Problem Statement

Many researchers have worked on the implementation of artificial neural networks.

Consequently a number of ANN models have been developed both in software and

hardware. Software implementation offers more flexibility in carrying out the performance

evahration of various ANN models. However, the software implementation sufiers from

the major disadvantages of excessive conrputational time and increased memory

requirements with increase in the number of neurons (processing elements). Hardware

ANN implementation models have been built using analog and digital components [10-

13]. Analog implementation due to its inherent drawbacks, such as, inaccuracy of analog

computations and low design flexibility of the analog electronic devices, limit their chip

density thus restricting their applications.

The advanced design techniques of current VLSI technology have facilitated the

digital implementation of the ANN5. To reduce the area requirements of a conventional

digital approach, stochastic corrrputing techniques have been developed that have resulted

in the possibility of a low cost and high speed digital ANN implementation. In these



architectures, algebraic operations are replaced by random processes and the network

performs pseudo-analog computations with operands ranging from 0.0 to 1.0. An

operand x in the pulse mode representation is the probability of pulse occurrence in the

corresponding binary pseudo-random pulse sequence x(,.), generated at each clock [9,10].

Based on this technique, a pulse mode digital multilayer neural network (DMNN)

architecture and its corresponding statistical model has been developed by Kim [1]. Kim

has employed the VHSIC (Very High Speed Integrated Circuits) Hardware Description

Language (VHDL) for simulating the DWN [1]. However, there is a need to verify the

applicability ofthe developed network using software sinrulation techniques. The DMNN

needs to be compared with some standard ANN model to observe the performance ofthe

stochastic fimction used in the backpropagation algorithm.

1.3 Research Tasks

The research tasks identified for this work are:

1. Sirmrlate the statistical model of the digital multilayer neural network (DMNN),

developed by Kim [1], in software using the C programming language.

2. Apply a suite oftest cases to the simulated DMNN, and verify its results.

3. Verify validity of the DMNN by solving the test cases with a conventional ANN

using a sigrnoidal fimction and comparing their results.



To simulate the statistical model of the DMNN, the first step is to understand the

model developed by Kim [1]. The research is, therefore, initiated with the study of

artificial neural networks. An understanding of the various models of ANN5, based on

different learning algorithms, is developed with a special emphasis on the backpropagation

algorithm A detailed study of the statistical model of the DMNN developed by Kim, is

undertaken. The DMNN is simulated in C, using a 80486 based Personal Computer (PC).

A suite oftest problems is applied to the DMNN and the results achieved by Kim

are validated. The DMNN is first applied to the famous XOR problem. Next, an 8x3 data

encoder is sinmlated and the results compiled in graphical form Efforts are then directed

to simulate the character classification problem. Two experiments are attempted: one with

a 5-digit classifier and the other with a lO-digit classifier. Each experiment is first

performed with an ideal set ofdigits and then with an addition ofnoisy data.

For the last task, an artificial neural network (ANN) using an ordinary sigrnoidal

fimction is sinmlated using C language. The network is presented with the same set oftest

problems and results are compared with the performance ofthe DMNN.

A number of research constraints have been encountered that have restricted the

verification of the character classification problem The proficiency of the simulated

DMNN is enhanced by incorporating a number ofvariations in the program structure and

its logic. The backpropagation algorithm is modified in an attempt to sinmlate the

character classifier given the limitations ofthe PC.



1.4 Organization of the Thesis

This thesis has been organized in six chapters. Chapter 2 discusses the background

of artificial neural networks. It begins with a brief history of the different development

phases and the important contributions made by various researchers and scientists in this

field. Working models ofbiological and artificial neurons are presented and basic building

blocks of an artificial neural network are introduced. Various ANN models are presented

and their learning rules are defined. The chapter concludes with a discussion of few

implementation techniques.

Chapter 3 is a summary/review of Kimls work [1]. The digital multilayer neural

network developed by Kim is presented The stochastic computing techniques are

introduced and the nonlinear neuron activation fimction used in the DMNN is presented.

Basic computing elements of the DMNN are introduced and a modular DMNN

architecture is discussed. The DMNN is applied to a suite of test cases and its

performance is presented.

Chapter 4 discusses the implementation of the backpropagation algorithm in the

DMNN. A complete mathematical derivation ofthe feedforward and feedback processes

is presented. A two layer feedforward DMNN is simulated in C using the

backpropagation learning rule. The backpropagation learning rule is analyzed for its

weaknesses and improvements are suggested to accelerate the convergence process.



The DMNN simulation results are presented in Chapter 5. The results of the

application problems are compared to those attained through a standard ANN using a

sigmoidal function. The improvements suggested in Chapter 4 are then incorporated to

enhance the performance of the DMNN. The results are tabulated in graphical form for

ease of comparison.

Finally, Chapter 6 lists major contributions of the research and identifies firture

directions ofthis work.



CHAPTER 2

BACKGROUND

2.1 Introduction

The human brain is the most complex computing device known to man. The

brain's powerful thinking, remembering, and problem-solving capabilities have inspired

many scientists to attempt modeling ofits operation. One group ofresearchers has sought

to create a computer model that matches the fimctionality ofthe brain in a very simplified

manner, the result has been the study ofArtificial Neural Networks (ANN).

This chapter discusses the brief history of artificial neural networks. A review of

biological and artificial neurons is provided. Next, various learning mles and typical

network models based on these learning rules, with a special emphasis on the feedforward

multilayer perceptron using backpropagation learning, are discussed. Thereafter, difi‘erent

implementation techniques currently employed are introduced.
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2.2 Historical Background

This section briefly discusses the history of artificial neural networks. From now

onwards the artificial neural networks will be referred to as neural networks, neural nets or

ANNs.

Attenrpts to tmderstand the human brain go back a long way, even centuries. It

has been almost exactly a century, 1890, since William James's text, Psychology (Briefer

Course) provided insights into brain activity and foreshadowed current theories [14].

Authors of many texts and papers quote the following from William James's text as an

example:

“ Let us then assume as the basis ofall our subsequent reasoning this law: When

two elementary brain processes have been active together or in immediate

succession, one of them, on re-occurring, tends to propagate its excitement into

the other. "

In 1936, Alan Turing was the first to use the brain as computing example. In

1943, McCulloch and Pitts published one ofthe most famous neural network papers about

how neurons might work [15]. McCulloch and Pitts derived models of neural networks

based on what was known about the biological structures in the early 19405. In coming to

their conclusions, they stated five physical assumptions:

1. The activity of a neuron is an ‘all-or-none’ process.



ll

2. A certain fixed number of synapses must be excited within a period oftime during

which the neuron is able to detect the values present on its inputs, the synapses, in

order to excite a neuron at any time. This number is independent of previous

activity on the neuron.

3. The only significant delay within the nervous system is synaptic delay, i.e., the time

delay between sensing inputs and acting on them by transmitting an outgoing

pulse.

4. The activity ofan inhibitory synapse absolutely prevents excitation ofthe neuron at

that time.

5. The structure ofthe net does not change with time.

The neuron described by these five assumptions is known as McCulloch-Pitts

neuron. The next personality in the Age of Conception is Donald 0. Hebb, whose 1949

book was the first one to define the method of updating synaptic weights that we now

refer to as Hebbian [16]. Donald 0. Hebb is among the first to use the term

‘connectionism’. The 19505 was the age of computer sinmlation. It became possible to

test theories about nervous system fimctions. The IBM research laboratories conducted

an tmsuccessful software simulation of a neural network model based on Hebb's work It

was not tmtil the mid 19505, when with the collaboration from Hebb and others,

successful adaptations were made. Theories began to be modified

In the summer of 1956, the Dartmouth Summer Research Project on Artificial

Intelligence (AI) gave birth to neural nets. The following year, John von Neumann
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suggested imitating simple neuron functions by using telegraph relays and vacuum tubes

[17]. In 1958, a milestone paper by Frank Rosenblatt referred to the perceptron as a

neural network structure [18]. The perceptron was simulated in detail on an IBM 704

computer at the Cornell Aeronautical Laboratory. The perceptron was probably the first

‘learning machine’. The primary learning mechanism of a perceptron is ‘self-organizing’

or ‘self-associative’ in the sense that an initially random process tends to become

organized.

In 1959, Bernard Widrow and Marcian Hofi’ developed models for ADALINE,

and MADALINE (Multiple ADAptive LINear Elements). This was the first neural

network applied to a real-world problem, i.e., adaptive filters to eliminate echoes on

phone lines. Widrow and Hofl’s paper [19] is considered to be ‘prophetic’. They

suggested several practical implementations oftheir ADALINE:

“ If a computer were built of adaptive neurons, details of structures could be

imparted by the designer by training (showing it examples what he would like to

do) rather than by direct designing. ”

Then came the so called ‘Dark Age’ for neural network research. In 1969, Marvin

Minsky and Seymour Papert published a book [20], which condenmed the Rosenblatt's

perceptron. The charge was that it could not solve any ‘interesting’ problems. This

brought a halt to nmch of the funding for neural network research. Many researchers

turned their attention to expert systems, which make decisions based on a set of pre-

defined rules under certain conditions.
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Some of the disappointed researchers continued working. These included James

Anderson, a neurophysiologist at Brown University, who developed a network model with

the name of Brain-State-in-a-Box (BSB) [21]. Research also continued in Japan and

Europe. Kunihiko Fukushima developed the Neocognitron, a neural network model for

visual pattern recognition [22]. Teuvo Kohonen, an elecnical engineer at Helsinki

University, independently developed a similar model to Anderson's BSB [23]. There were

others, plugging away quietly in their labs: Grossberg, Rumelhart and McClelland, Marr

and Poggio, Amari, Cooper, and many others.

In 1982, John J. Hopfield at California Institute of Technology, published a paper

reviving the neural network’s field [24]. His follow-on paper was published in 1984 [25].

With clarity and with mathematical analysis, he showed how neural networks could work

and what they could do. The fixture ofartificial intelligence started to brighten once again

What had been thought to be the failures of artificial intelligence could now be overcome.

In 1985, the American Institute of Physics began an annual Neural Networks for

Computing meeting. In 1987, the Institute of Electrical and Electronics Engineers’

(IEEE) First International Conference on Neural Networks drew more than 1,800

attendees and 19 vendors. Later the same year, the International Neural Network Society

(INNS) was formed lmder the leadership of Grossberg in U.S., Kohonen in Finland, and

Amari in Japan.

The International Joint Conference on Neural Networks (IJCNN), held in Inc

1989, produced 430 papers, 63 of which focused on the application development. The
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January 1990 IJCNN in Washington, DC. included a concert ofmusic generated by neural

networks.

Today, there are numerous joumals/magazines published monthly/quarterly on

neural networks all over the world. A number of different conferences and symposia are

held periodically and a large number ofpapers are presented by researchers on the various

aspects and applications ofthe neural networks.

2.3 Artificial Neural Networks

This section presents a briefreview ofbiological and artificial neurons followed by

the network architecture. Several learning rules are discussed. Based upon these rules,

difl‘erent types ofANN models are introduced with a detailed mathematical treatment for

the multilayer feedforward perceptron using backpropagation rule: the model subsequently

used in the simulation ofDigital Multilayer Neural Networks (DMNN).

2.3.1 Biological and Artificial Neurons

2.3.1.1 Biological Neuron

Before we describe the building blocks and operation of an artificial neural

network, it is instructive to briefly examine the corresponding components of the brain

which inspired neural computing. The basic anatomical lmit in the biological nervous

system is a specialized cell called the neuron. The brain is composed of about 1011

neurons of many different types. Figure 2.1 portrays a conceptual diagram of a typical
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neuron. Most neurons can be divided into four distinct regions, each performing a

Specialized function. A tree-like network of nerve fiber called dendrites are connected to

the cell body or soma, where the cell is located.

Synapse

Dendme\ l 7n Hliiock

/’"Axon

SWWN Nucleus within the cell body

Figure 2.1. Biological Neuron [26].

Extending from the cell body is a single long fiber called the axon. The axon

eventually branches or arborizes into strands and substrands. At the end of these are the

transmitting ends of the synaptic junctions or synapses, to the other neurons. Receiving

ends of these junctions on other cells can be found both on the dendrites (1&3 in Figure

2.1) and on the cell bodies themselves (2 in Figure 2.1). The axon of a typical neuron

makes a few thousand synapses with other neurons [26].
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are unidirectional in nature and determine the direction of signal flow. Axons are

specialized for carrying signal towards other cells without much afl‘ecting its magnitude.

Action potentials originate at the axon hillock, travel towards synapses and pass to other

cells. Dendrites receive signals fi'om sensory organs or from the axons of other neurons,

convert these signals into electrical impulses and transmit them to the cell body. The cell

body receives signals independently either through dendrites or through synapses directly

connected with it. If electrical impulses are greater than a certain threshold, action

potentials ill the form ofthe pulse streams, are generated and actively conducted down the

axon. The signal flow goes fi'om dendrites, through the cell body and out through the

axon. The axon terminal from a presynaptic cell sends chemical or electrical signals

through a synaptic gap. The signals are collected by a postsynaptic cell.

Two types ofsynapses are believed to exist in a biological neural system; electrical

synapses and chemical synapses. The two differ in both structure and fimction. Figure 2.2

shows the schematic of an electrical synapse. Cells commlmicating by electrical synapses

are connected by gap junctions which allow an electrical pulse to pass fiom the

presynaptic cell to the postsynaptic cell. Action potential is generated ill the postsynaptic

cell. Chemical substances, called neurotransmitters, are responsible for transmitting the

signals in chemical synapses [27].



 

   
Plasma

Membrane

Gap Junction

Connection

 

 

             

€-~a..-~_~.-.~r.m:-... .. w. .. ~.

I ‘Postsynaptic Cell g 1

Figure 2.2. Electrical Synapse [1].

Two types of signals are generated in synapses: excitatory and inhibitory. In

excitatory synapse, the signal from the presynaptic cell causes a change in the plasma

membrane of the post synaptic cell that tends to induce an action potential. Action

potentials are pulse streams with a pulse-width of about 1 msec. With an inhibitory

synapse, a nerve impulse in a presynaptic neuron prevents the generation of an action

potential by affecting the electrical properties of the post synaptic membrane. Excitatory

and inhibitory stimuli often affect a single neuron in combination [1].

2.3.1.2 Artificial Neuron

An artificial neuron, a unit analogous to a biological neuron is referred to as a

processing element (PE). Just as a biological neuron, the artificial neuron is a many-input
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single-output processing element. Each input is weighted. The output is a linear or

nonlinear function of weighted sum of its inputs. Figure 2.3 portrays a single artificial

neuron.

 

 

 
Figure 2.3. Artificial Neuron.

The inputs and the weights on the inputs are represented as vectors, [x], xi, x,.]

and [w,, W), wn], respectively. The total input signal is the dot or inner product ofthe

two vectors and this is compared to a threshold value to determine the output. Ifthe total

input is greater than the threshold value, the processing element fires (excitatory), and if it

is less, the processing element does not fire (inhibitory). Mathematically, ify is the output

of a neuron and 6 is the threshold value, the required neuron transfer fimction can be

expressed as



l9

y=f[‘:xjwj 49) (2.1)

j=i

wherefi-) is a linear or nonlinear threshold function. Some of the commonly used

nonlinear functions are shown in Figure 2.4. The most pervasive threshold function is the

sigmoid function because it is a bounded, monotonic and non-decreasing function that

provides a graded, nonlinear response, most resembling a biological neuron.

fix) f(x)
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i l/
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Sigrnoid Functions

Figure 2.4. Sample Activation Functions.

2.3.2 Network Architecture

So far a single neuron (processing element) has been discussed. These processing

elements are combined together to form a layer of neurons whose cell body is called a
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node. Inputs could be connected to many nodes with difi'erent weights. Each node has an

individual output. A neural network layer is shown in Figure 2. 5.
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Figure 2.5. Neural Network Layer.

 

 
 

Several layers can be interconnected to form a neural network. The layer that

receives the inputs is called the input layer or input buffer. The network output is

generated from the output layer or the output buffer. The intermediate layers are called

the hidden layers. The network is said to be fully connected if every output fi'om one layer

is passed along to every node in the next layer. Figure 2.6 shows a fully connected

network.



'.ili i.

Hiddar Layers

Figure 2.6. A Fully Connected Neural Network.

2.3.3 Learning Rules

The main characteristic of a neural network is its ability to learn. Artificial neural

networks are constructed according to some learning rule used to change the

interconnected weights. In a very broad sense, neural networks employ two modes of

operation. In the first mode, the operational mode, a neural network computes the output

for a given set of inputs. This mode assumes that the interconnected weights are fixed to

some desired values. The other mode, called the learning mode, the interconnected

weights are adjusted using an appropriate learning law with the objective of training the

neural network to give a desired output. In most cases, the operational mode is followed

by the learning mode, that is, first the desired accuracy is achieved through the learning

process and then the neural network is used in the operational mode.
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The weights can be dynamically adjusted to produce a given output. This dynamic

modification of the weights is the very essence of the learning process. Learning is the

process by which a neural network modifies its weights in response to the external inputs.

The equation that specifies this change is called the learning law, or the learning rule.

Before discussing various learning rules, learning types, that is, supervised, unsupervised,

and reinforced learning are defined.

Supervised learning requires a teacher. The teacher may be a training data set or

an observer who grades the performance. In either case, the teacher is used to form an

error signal which is used in some kind oflaw to update the interconnected weights ofthe

neural network When there is no external teacher, the neural net rmrst organize itself by

utilizing some internal criteria designed into the network This type of learning, called

lmsupervised learning is based on the input/output values of the neural net. This kind of

learning is often used in the feature extraction applications. For reinforced learning, the

weights connected to a neuron are not updated in direct or inverse proportion to the error

signal ofthat particular neuron, but instead they are updated in proportion to some type of

global reinforcement signal. A binary or a trinary neural network is an example of such

type oflearning. In a binary neural net, weight update can only take two values (+1 or -1)

whereas in a trinary network three update values are allowed (+1, 0, -1).

Many learning laws are in the common use. Research has continued, however, and

new ideas are being tried. The definition of a few learning laws, generally omitting the

mathematical details, is given here.



2.3.3.1 Hebb's Rule

The first rule was introduced by Donald Hebb. He stated in his book [16]:

“ Ifa processing element receives an inputfrom another processing element, and

ifboth are highly active (mathematically have the same sign), the weight between

the processing elements should be strengthened ”

2.3.3.2 The Delta Rule

This rule is also known as the Widrow-Hofi’ Learning Rule. The Delta Rule is

based on the idea ofcontinuously modifying the strengths ofthe connections to reduce the

difi’erence (delta) between the desired output value and the current output value of the

processing element. If there is no difference between the two, no learning takes place.

The rule for changing the weights, following the presentation ofthe input/output pair p, in

case ofno hidden layers, is given by

A pwU = 7] (th — Ori)ipl = "as! is" (2'2)

where t” is the target input for thejth component ofthe output pattern for pattern p, 0,,- is

thejth element ofthe actual output pattern produced by the presentation of input pattern

p, i,- is the value of the ith element of the input pattern, 6,, = ty- - OH, and Apr is the

change to be made to the weight fiom the ith to thejth lmit following the presentation of

the patternp. Widrow and Halfused this rule in their ADALINE model [28].
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2.3.3.3 Gradient Descent Rule

In this rule the weights are modified by an amount proportional to the first

derivative ofthe error with respect to the weight. IfWg' is the connection weight between

the neuron i and neuronj, and Ep is the error cost filnction for the pattern p; the gradient

descent rule states

DE

A Fwy cc #6:: . (2.3)

This corresponds to performing the steepest descent on a surface in the weight

space whose height at any point in the weight space is equal to the error measure [3]. Due

to a mathematical approach to minimize the error between the actual and the desired

outputs, the gradient descent rule converges to a point of stability very slowly.

2.3.3.4 Kohonen's Learning Law [2,29]

This rule is based on the unsupervised leaming approach. In this procedure, the

processing elements compete fer the opportunity of learning. The processing element

with the largest output is declared the winner and has the capability of inhibiting its

conrpetitors as well as exciting its neighbors. Only the winner is permitted an output, and

only the winner plus its neighbors are permitted to adjust their weights. Further, the size

ofthe neighborhood can vary dluing the training period. The usual pattern is to start with

a larger definition ofthe neighborhood, and narrow it as the training proceeds.
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2.3.3.5 Grossberg Learning Rule [2]

In the Grossberg's model, every neural network is made up of the instars and the

outstars. An instar is a processing element receiving many inputs and an outstar is a

processing element sending its output to many other processing elements. The

connections allow recall of a concentrated image fiom a single outstar node. The pattern

is stored distributively. If both the input and the output activities of a node are high, the

weights change significantly. If either the total input or the output is small, the change in

the weights is very small, and the weights could even approach to 0 on unimportant

connections. Time is important in Grossberg learning. If an input stimulus is removed

over time, the output response reduces as forgetting sets in The network threshold is

important: if set too high, the network responds to every little nuance and if it is set too

low, the network ignores too much. Learning is turned ofl’during any recall.

2.3.3.6 Backpropagation Learning Rule

The backpropagation of errors technique is the most commonly used

generalization of the Delta Rule. This technique involves two phases The first phase,

called the forward phase, occurs when the input is presented and propagated forward

through the network to compute an output value for each processing element. For each

processing element, all the current outputs are compared with the desired output, and the

difi’erence, or the error, is computed. In the second phase, called the backward phase, the

recurring difference computation (from the first phase) is performed in a backward

direction. The new inputs can only be presented when these two phases are complete.



26

Generally this technique is applied to the hierarchical networks involving hidden layers.

At the output layer, the actual output from each node and the expected output is known.

The ‘magic’ ofthis rule is, how the adjustment ofweights take place in hidden layers [2].

There are several important drawbacks: backpropagation is very slow, requires

much off-line training, exhibits temporal instability (can oscillate), and has the tendency to

get stuck at a local minima (see Section 4.3).

2.3.4 Neural Network Models

There are basically three types of neural network models: feedback models,

feedforward models and recurrent models. A brief description of these models is

presented here. A detailed mathematical treatment has been given to the multilayer

feedforward perceptron model to facilitate its subsequent use.

2.3.4.1 Feedback Model

In feedback neural networks, the neural elements are connected to one another by

the feedback paths fiom outputs to the inputs of the neural elements. A key issue for

these networks is the definition of an energy flmction which always decreases during the

dynamical evolution. The Hopfield model is a typical example ofthe feedback models.

The Hopfield model is a one-layered feedback network which consists of

interconnected nonlinear neurons Many implementations have been built using this

model One version ofthe original net [2,24] which can be used as a content addressable
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memory is described here. This net, shown in Figure 2.7, has N nodes containing hard

limiting nonlinearities and the binary inputs and the outputs taking on the values +1 and -1.

The output ofeach node is fed back to all the other nodes via the weights denoted Wg'.

OUTPUT S (validafterconvergence)

yo yr ‘ yn-Z yl-I

 

 

   

     

    
  l l
x1 x2 ‘ x54 xii-l

INPUT S (appliedattime zero)

Figure 2.7. Hopfield Neural Network Model [2].

The weights are first set from exemplar patterns for all classes using

Ail

x‘x", ...... i¢ '

wu= ..o ‘ 1 J (2.4)

0,............ i=j,0$i,jSM-l,

where Wg is the connection weight fiom node i to nodej. xr’, which can be +1 or -1, is the

element i ofthe exemplar for class 5 and M is the total number ofclasses.

An lmknown pattern is imposed on the net at time zero by forcing the output of

the net to match the unknown pattern, i.e.,
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u,(0)=x,, --------- osisN—l, (2.5)

where u, (t) is the output ofnode i at time t and x, which can be +1 or -1, is element 1' of

the input pattern. N is the total number ofnodes.

Following this initialization, the net iterates in descrete time steps expressed using

the formula

u,(t+l)= f,[§wuu,(t)], ------ OS j_<. M-l, (2.6)

where fl. is the hard limiting nonlinearity. The process is repeated until node outputs

become constant on successive iterations. The node outputs then represent the exemplar

pattern that best matches the lmknown input. The pattern specified by the node outputs,

after convergence, is considered the net output.

Hopfield has proven that the net converges when the weights are symmetric

(wg=w,-,-) and the node outputs are updated asynchronously using the equations mentioned

above [24]. Hopfield also demonstrated that the net converges when the graded

nonlinearity, similar to the sigmoid nonlinearity in Figure 2.4, is used [25]. The Hopfield

model has also been applied to the combinatorial optimization problems where it

converges to a good solution in a few time constants [30,31]. When the Hopfield network

is used as an associative memory, the net output after convergence is used directly as the

conrplete restored memory. While applying the Hopfield model as a classifier, the output

afier convergence has to be compared to the M exemplars to determine if it matches an

exemplar exactly. If it does, the output is that class whose exemplar matches the output

pattern. Ifit does not, then a ‘no match’ result occurs [2].
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2.3.4.2 Feedforward Model

Feedforward networks were first studied in detail by Rosenblatt in the early 1960's

[32]. A number of algorithms for training of these networks have been developed since

then. These networks can learn a set of input-output pairs as examples and can

successftu generalize the learned patterns. Feedforward networks have been applied to

pattern recognition, robotics, and control problems [33,34].

2.3.4.2.1 Single Layer Perceptron

This net generated much interest when developed initially because of its ability to

learn to recognize simple patterns. A simple perceptron is a single layered feedforward

neural network consisting of n inputs and an output layer. Figure 2.5 illustrates an

example of a single layer perceptron. x.” is the ith element of the input pattern and yf‘ is

the output of the neuron i when pattern p is presented to the network W5 is the

connection weight between the neuron i and the jth element of the input pattern. If the

number of patterns is p such that ,u = 1,2,...,p, the output of the output layer can be

described by

y,” = f Z-Ewy x; 44),] (2.7)

~ 1
y,” = f[’Z-gw, xj) , (2.8)
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where x0“=l for all p and w,0=i9, is a bias. fl) is the continuous. nondecreasing and

differentiable function.

The system's performance is measured by the error cost firnction which is defined

as

1

E=3§lEu

é—Z Z“: (1,.“ - y,“)2 (2.9)

é—zaltr - fl; mil

where t,” is the desired output of the neuron i for the input pattern p. The connection

weights, w”, are changed by the gradient descent rule (Section 2.3.3 .3)

Aw . = -11— (2.10)
U

flé(’ru‘yru)f'[zwrj x51) (2-11)

The simple perceptron can not solve problems in which input patterns are linearly

dependent, and may offer alternate partial solutions. However, multilayer feedforward

neural networks with nonlinear neuron elements can overcome this limitation [1].
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2.3.4.2.2 Multilayer Perceptron

Multilayer perceptrons are backpropagation neural networks consisting of an input

layer, an output layer and one or more hidden layers of neurons. Figure 2.8 depicts a

neural network which has one input layer, 1, one output layer, K, and one hidden layer, J.

The input layer, 1, consists of n. neurons, the output layer, K, consists of in, neurons, and

the hidden layer, J, consists of n, neurons.
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Figure 2.8. A Three Layer Neural Network.

The mathematical expressions for the network are

"I

0,. =f(ZH,W,-,,) ,~ H,=1.0 whenj=0 (2.12)

j=0
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and H, =f(ZI.W.,) .- 1,=1.o wheni=0, (2.13)
=0

wheref (-) is a continuous differentiable function, m is the adjustable weight parameter

connecting the jth hidden layer neuron to the kth output layer neuron, and W, is the

adjustable weight parameter connecting the ith input layer neuron to the jth hidden layer

neuron.

The outputs, 0;, for the output layer K and H, for the hidden layer J, are calculated

using equations (2.12) and (2.13), for k = 1,2,...,nr and j = 1,2,...,n,-, respectively. Ya" are

the desired outputs for k = 1,2,...,nt. The objective is to minimize the difference between

the desired outputs, Ytd, and the observed outputs, Or, for k = l,2,...,nr. Conventionally,

the error cost function for each k is defined as

1 d 2

ek = 3(Yk-0k) for k = 1,2, ... ,nk . (2.14)

The variable parameters in the neural networks are the connecting weights that can be

adjusted by minimizing the cost function. Therefore, minimizing the cost filnction for the

kth output node with respect to the weight connectingjth hidden node, produces

5et d 601'
— - Y - 0

.

2.15

aij ( k k) 6W1} ( )

  

Substituting equation (2.12) in equation (2.15) yields

aet

aw},
 

"1

= -(Y:'0k)f'(zHiWflr)Hl
; Hi = 1.0 when j = 0. (2-16)

j=0
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The kth gradient of the error cost function, equation (2.15), with respect to the weight

parameter connecting thejth hidden neuron to the kth output neuron is given by equation

(2.16). Defining

a. = (Yi-Ot)f'(iH,W,t) (2.17)

1'0

and substituting the value of5., in equation (2.16) leads to

be;

am.

 

= 43*,” (2.13)

Backpropagation is a gradient descent learning rule that minimizes the error cost

function, 8C1uation (2.14), according to the following formula

5

W,.ln+ 1] = w,.lnl+ n(- a 8*
 

)+aAW,-,,[n]. (2.19)

jk

Substituting equation (2.18) in (2. 19), gives the backpropagation law to update the weight

parameters connecting the hidden layer to the output layer. The expression is given as

W}, [n+ l] = W,,,[n]+ 175,, H). + aAW,, [n] (2.20)

where n is the time index, n is the learning rate, a is the momentum factor, and AW,t[n] is

the change in weight, connecting the jth hidden neuron to kth output neuron, in the last

step.

Equation (2.20) can be easily implemented for weights connecting the output layer

to the last hidden layer, for example, in Figure 2.8 for layer K to layer J. However,

equation (2.20) can not be used to update weights connecting any other two layers. For
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example, weights, W9, connecting the input layer, 1, to the hidden layer, .I, can not be

adjusted using equation (2.20). The reason being that there is no known target response

for the hidden layer neurons. However, the contribution in the total error by the hidden

layer neurons at the output layer neurons must be propagated back. In Figure 2.8, weights

W.) are updated reflecting back the error fiom all the output nodes to thejth hidden node.

Mathematically, this is accomplished by the relationship

        W,ln+11 = Wanna-i?" in]. (2.21)
i=0 r;

In equation (2.21) the factor involving partial derivatives is calculated using the

chain rule given by

 

 

 

 

 

.. a m (2.22)

e__t_

i—(rt-00’]
E—6W.- .2newt-2

,06—6, a—H,6W;

6H

=-Z (Yt-0..)0f’ (Em-Wow,- .
i=0 aWy

Substituting equation (2.17) in equation (2.22) gives

in aek n.

"" = 8 W . 2.23

gm- 6W.-Z: ‘ ”‘ ( )

From equation (2.13), we have

6H}- - ' nl

- f (XL-Mn. . (2.24)

5W.) i=0



Substitution of equation (2.24) in equation (2.23) gives

as a n, m

2““ = -f’(Z/.W,)I.-Zr5rw,r.
(2.25)

k=0 aWU i=0 k=0

“Whiting 6,— = f '(21. W,-)Z6t Wn (2.26)

i=0 i=0

allows equation (2.25) to be written as

"k

6e
__L

= ' i . 2.27

Finally, substituting equation (2.27) into equation (2.21) produces

W,-[n+ 1] = Wain1+ n6,1.— + aAngn] . (2.28)

Similarities between equations (2.20) and (2.28) are obvious. In a more general

form, the parameter adjustment between a node a and a node b can be given as

Wn[n+ 1] = Wa[n]+ ”abSa + aAWalnl - (229)

Here Sn, the symbolizing source, is the output of node a or an external input to the

network and 8b is an associated error at the node b. 8;, can be calculated as

6b = Sh (Y: —Sb) (230)

for the output layer nodes, and

a, = 5,2 W,,5, (2.31)

b

for the hidden layer nodes.
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2.3.4.3 Recurrent Model

In recurrent networks, connections in either direction, i.e., between a pair of layers

and within a layer to itself; are possible. The Boltzmann machine is a typical example of

the recurrent networks with symmetric connections.

The Boltzmann Machine is comprised ofvisible units (input units and output units)

and hidden units [35,36]. Figure 2.9 illustrates the structure of a Boltzmann machine.

The units are stochastic and take output value v.- = :1 with a certain probability. A

sinmlated annealing procedure is used to achieve a global minimum. Boltzmann machines

have been used for pattern recognition and the optimization problems. However, these

networks take a very long time to converge and their hardware implementation is not

practical

 

Visible Units (output)

Figure 2.9. Boltzmann Machine.
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2.4 Neural Network Implementation

The preliminary efforts of neural network modeling were mostly theoretical since

the implementation tools had not been developed with the same pace. As sophistication ill

the field of computers progressed, many practical models have been presented. Software

simulations have not only moved this fledgling technology along, but also provided an

environment that nurtures testing and experimentation. The goal ofmany researchers has

been, and still is, to find implementations which are fast and yet not too expensive. This

generally means implementing in hardware, however, many current models have been

sinmlated ill software using serial or parallel digital computers. To date a number of

hardware and software prototypes have been built using electronic/optoelectronic

techniques and employing various programming tools. Network implementations can be

divided into two broad categories: hardware implementation and software implementation.

This section briefly discusses these categories.

2.4.1 Hardware Implementation

Hardware implementation can be divided into two categories based upon the

method used to express the values within the network: analog, and digital
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2.4.1.1 Analog Implementation

Analog implementations are mostly based upon the physical properties of analog

components such as the behavior of voltage/current in resistors, capacitors, and

semiconductor devices. The interconnections in an analog neural network can be simple

fixed value resistors representing the synaptic weight values. Such networks, however,

are not ofmuch practical significance since these networks can not be made programmable

due to constant value synaptic weights.

To design a programmable network, the synaptic weights have to be stored in a

memory. A weight can be stored as the voltage difference between the two capacitors

[37]. This technique, however, requires a refiesh circuitry to overcome the problem of

leakage in the capacitors. Static memory cells have been used for storage ofweight vahres

[6]. This method is also not very eflicient since most applications require a higher

resolution. The weights can also be stored digitally but this technique requires a D/A

converter at each connection to perform analog multiplication of the stored weights with

the input signal.

Hardware implementations using analog computations are less expensive because

the network operations can be performed using inexpensive hardware. This category

however, sufi‘ers from a number of disadvantages, such as low accuracy and limited

dynamic range, due to physical constraints of the analog components. The design

flexibility in analog implementation is also strictly constrained because only mathematical

flmctions resulting from physical principles are available.
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2.4.1.2 Digital Implementation

Since the artificial neural networks require a large amount of intercOnnections and

computation, especially in training, the development of a specialized high performance

processor is needed. Digital implementation is a reasonable alternative for realizing neural

network VLSI processor. Several digital neural networks based on custom VLSI design

have been developed where a neuron is a processing element consisting of computing

units, registers, and a lookup table. Suzuki and Atlas mapped a network to an array of

custom processors [38,39]. This ANN hardware has a high design flexibility, but sufl‘ers

fiom a large hardware requirement.

In order to achieve a high design flexibility and high chip density, digital networks

using stochastic computing techniques have been proposed [9,10,13]. In this approach

algebraic operations are replaced by stochastic processes using pseudo-random pulse

sequences. Simple logic gates alongwith other digital components perform nmltiplication

and nonlinear transformation of signals. The values for synaptic weights and the input

operands are restricted in the range between 0.0 and 1.0 both for training and testing [1].

An operand x in the pulse mode representation is the probability of a pulse occurrence ill

the corresponding binary sequence xm at each clock Stochastic computations using

random pulse sequences inherently utilize concurrent processing in all synaptic and neuron

elements. Use of simple logic gates allows high neuron density and compact network

architecture. The network can be made programmable thus increasing the design

flexibility. A pulse mode digital multilayer neural network has been developed by Kim [1].

Details ofKim’s model are presented in the next chapter.
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2.4.2 Software Implementation

Software implementation or simulations can be affected either on general purpose

computers or on special purpose computers. General purpose parallel computers with a

large number of processing elements are being used for ANN simulations. Processing

elements commlmicate through a single high speed data path and may have a dedicated

memory to store data.

Warp machine was used to implement a backpropagation network using a systolic

array of 10 processing elements. [40]. Forrest, et al., used a Distributed Array Processor

(DAP) comprised of 4096 processors to implement a Hopfield network [41]. The DAP

was able to perform 25 million additions per second General purpose parallel computers

can solve problems of limited size within a reasonable time. But, as the size of ANN

increases, the computational load increases beyond the acceptable bounds and these

computers take hours to solve a given problem.

Special purpose computers designed for ANN simulations are called

neurocomputers. Neurocomputers are attached to a host computer as coprocessors and

are controlled through a user program. Mark III and Mark IV neurocomputers were

developed by TRW [42]. These machines were able to process up to 450,000 and

5,000,000 interconnections per second respectively.
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CHAPTER 3

DIGITAL MULTILAYER NEURAL NETWORKS

3.1 Introduction

Artificial Neural Networks present a practical approach to solving many

computationally intensive and ill-defined problems such as pattern recognition,

optimization, and other complex information processing tasks. Kim [1] has developed a

new architecture for a digital feedforward neural network A statistical model of the

digital multilayer neural network (DMNN) is also evolved based on stochastic computing.

Kim presents a compact and expandable pulse mode DMNN architecture employing

simple logic gates and modular design techniques. The colossal parallelism embedded in

the stochastic computations, using random pulse streams, is thoroughly explored with this

architecture. Kim makes use of VHDL hardware description language to model and

simulate all the components of the DMNN coprocessor. Kim also demonstrates the

applicability ofhis model by using benchmark and character recognition problems [1,43].

This chapter presents a brief overview of Kim’s work with a view to develop a

thorough understanding ofthe DMNN.
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3.2 Stochastic Computing in DMNN

3.2.1 Generating Probability

Stochastic computing techniques, using random pulse streams, were proposed in

the 19605 [44,45]. In stochastic computations, the operands are normalized and

represented by probabilities which are actually encoded in random pulse streams.

Probability is estimated as a relative frequency of 1 pulse occurrences in a finite but long

pulse stream. Since the probability can not be measured exactly, errors by estimation are

introduced in the form of variance when the stochastic computing techniques are used.

This idea has been used as an alternative to the deterministic computations in the area of

artificial neural networks since late 19805. The main reason is that stochastic computing

using random pulse sequences shares important characteristics with ANN dynamics, i.e.,

network performance depends on the collective properties of the network where each

processing element does not necessarily perform correct computations.

Stochastic computing techniques require that values of all the operands lie between

0 and 1. The fiactional numbers represented by the probabilities are encoded in the

random pulse streams. Ifthe fractional number is stored in an n-bit register, the resolution

is 1/(2"-l). The random pulse streams corresponding to a fractional number can be

generated by comparing the number with a pseudo random number. The pseudo random

number can be generated fi'om a PN sequence by taking all the bits of a tapped Linear

Feedback Shift Register (LFSR) in parallel. An n-bit LFSR is shown in Figure 3.1.
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2 3 -- - n-l n

 

——-—-> MSB ---- LSB

       
 

  

 

Figure 3.1. Block Diagram of a Linear Feedback Shift Register (LFSR) [1].

Fractional numbers from 1/(2"-l) to 1, equally spaced by 1/(2"-1), are generated

exactly once in a period (2"-l). The distribution of the pseudo random number is close to

an ideal uniform distribution. Figure 3.2 shows the diagram of a Random Pulse Generator

(RPG) for a fractional number x. The generating probability x is the probability of pulse

occurrence in the corresponding random pulse sequences x(,,) at each clock pulse. x is

estimated in a sampling clock period. The sampling clock period is defined as finite clock

periods taken for the estimation ofx.

   

   

Digital

Comparator
   

 

clock LFSR

 

 
 

   
  

 

Figure 3.2. Random Pulse Generator (RPG) [1].
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Error (noise) is involved in estimating the generating probability in finite clock

periods. Estimate it is taken as the original signal plus random noise. The generating

probability of the random pulse generator has been modeled as a binomial distribution in

the literature [45]. However, the pulse occurrence in x(,,) is not perfectly independent

because a maximum length LFSR generates fractional numbers between 1/(2"-l) and I

.such that each number occurs exactly once in a clock period. Accordingly, the pulse

occurrence in xm has statistical dependency. The sampling distribution of x can be

modeled closely by a hypergeometric distlibution. The details of this statistical model are

given in [1]. This new statistical model has been used to perform an analysis on random

noise effects in digital multilayer neural networks (DMNN).

3.2.2 Basic Stochastic Computing

Stochastic computing exploits the similarities between probability algebra and

Boolean algebra. A random pulse sequence x(,.) is a sequence of pulses whose probability

x can not be measured during any one clock period. It can, however, be approximated by

a measurement of the average pulse rate. Any Boolean operation over individual pulses

corresponds to an algebraic operation among variables represented by their respective

average pulse rates [45]. If two sequences rm and yo.) are statistically independent, the

probability of pulse occurrence in an output sequence 20., of an AND gate is

z = P[z(,,, = l] (3.1)

= P[x(n) = 1 AM») = 1] (3-2)
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= P[x(,,, = 1]P[ym= 1] (3.3)

=xy, ‘ (3.4)

The probability of pulse occurrence in an output sequence 2,,” of an OR gate is

z =P[z(,,)= l] (3.5)

= Pixel = 1 Vym = 1] (3-6)

= Pl:x(r1)=1]+ PLVw): 1]-P[x(,,,= 1 Ay(n)=1] (3-7)

=x+y-xy. (33)

Instead of being statistically independent, if the two sequences are mutually exclusive, i.e.,

x y = O, the logical OR performs a direct summation.

A NOT gate produces an output pulse whenever no input pulse occurs. If x(,,) is

the input sequence of a NOT gate, the probability of pulse occurrence in the output

sequence 2(a) is

Z =P[Z(n) = 1] ' (3.9)

=1 -P[x(,,)=l] (3.10)

=1 -x. (3.11)

Examples of stochastic computations utilizing the duality between Boolean and algebraic

operations can be found in [45].
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3.2.3 Stochastic Computing in the DMNN

Neural operations in the DMNN are performed with basic gates using pulse

sequences as inputs. Let w,-,- and v,- be the connection weight between neurons 1' and j, and

the neural activation of neuron j, respectively. If two sequences WW.) and v,~(,,) are

statistically independent, the probability of pulse occurrence in an output sequence mm") of

an AND gate is

m.) = P[m,-,(,,) =l ] (3.12)

=P[w,«,(,,) = l /\ v10.) = l] (3.13)

=leyln) = 1 IPletn) = 1} (3-14)

=w,-j 12,-. (3.15)

Input summation and nonlinear transformation is performed simultaneously using a

logical OR operation. The inputs of an OR gate are product sequences, mgr"), produced

from AND gates. Two kinds of synaptic weights are necessary for most feedforward

networks: positive or excitatory weights, Wy‘+, and negative or inhibitory weights, w,,-'.

Two separate OR gates per neuron are, therefore, necessary to form excitatory and

inhibitory net inputs.
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Figure 3.3. Stochastic Computation in the DMNN: (a) Stochastic Multiplication; (b)

Logical OR; (c) Neural Activation [1].

Let net} be the probability of a pulse occurrence in the output sequence net“.f of

an n-input OR gate for excitatory net input in neuron i, and, net; likewise for an inhibitory

net input (Figure 3.3). net,+ and net; can be described as

net,+ = P(net,‘:,,) =1) (3.16)

= P(m,*,(,, = wing“, = 1v vm;(,, = 1) (3.17)

=1-(1-P(m;;(,, =1))(1-P(m:,(,, =1))...(1—P(m;(,,) =1)) (3.18)

=1-fi(1-m;) (3.19)
j-l
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:1— (l—w’v)
(3.20)

U 1

and net,“ = l- (1+w’v ). (3.21)
U 1

\
.

1
1
‘

Two net inputs, formed by dedicated OR gates are ANDed together to form the

activation function. The probability of a pulse occurrence, v,, for two statistically

independent sequences netf and net,’, is given by

=P(net+ =1Anet,}n)= ) (3.22)
l(n)

= net: (1 - netf) (3 .23)

f n n

= [l- 1:1(1—wyvj) 111(1+w,jvj) . (3.24)

The nonlinear activation filnction in equation (3.24) is both continuous and

differentiable and therefore a good candidate for backpropagation training [3]. This form

of stochastic computation has been used by Kim [1] in the development of the DMNN

architecture, a subject for the next section.

A detailed mathematical derivation of the backpropagation algorithm using the

above stochastic filnction is covered in Chapter 4.



TC
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3.3 Hardware Implementation

3.3.1 Basic Computing Elements

Kim developed a modular network architecture by developing the basic building

blocks in the form of a Random Pulse Generator (RPG), a Synaptic element (SYN), an

Input Neuron Body element (INB), and a Regular Neuron Body element (RNB) [1].

3.3.1.1 Random Pulse Generator (RPG)

The RPG is comprised of a tapped LFSR and a digital comparator. The tapped

LFSR is constructed using D flip-flops and XOR logic gates [1]. Figure 3.4(a) shows an

8th order LFSR, with a feedback function f(x) = x2 $ x3 9 x4 $ x3, as implemented by

XOR logic gates. The period ofthe sequence v(,,, is 28-] = 255. Figure 3.4(b) presents an

RPG. A logic ‘1’ or ‘0’ pulse is generated at every clock pulse for v, 2 x and v, < x,

respectively.
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Figure 3.4. (a) An 8-bit LFSR with a Primitive Polynomial; (b) An RPG for v,- [1].

3.3.1.2 Synaptic Element

The synaptic element (SYN) consists of an RPG, a weight register, two AND

gates, and two wired-OR lines [1]. Figure 3.5 shows the structure and block diagram of a

digital synaptic element. Weight w.) represented as an r-bit fractional number is loaded

into a weight register and the corresponding random pulse stream WW, is generated

through the RPG. The pulse stream is transmitted to the two AND gates for

discrimination of positive and negative weights. If the synaptic weight is positive, a

resulting product sequence mm"; is transmitted to an excitatory net-input line. Otherwise,

mm"; is transmitted to an inhibitory net-input line.



3.3.]
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Figure 3.5. (a) A Synaptic Element; (b) Block Diagram of SYN [1].

3.3.1.3 Input Neuron Body Element (INB)

An INB consists of an n-bit register and an RPG [1]. The INB converts the value

of the ith element in an input pattern, v,-, to a corresponding random pulse sequence van).

Figure 3.6 shows the structure and block diagram ofthe INB.
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Figure 3.6. (a) Input Neuron Body (INB) Element; (b) Block Diagram ofINB [1].

3.3.1.4 Regular Neuron Body Element (RNB)

An RNB consists of an AND gate, an OR gate, an up-counter, a 2x1 multiplexer, a

bufier, and an RPG[1]. Two net-input pulse streams, transmitted fi'om synaptic elements,

are collected in an up-counter through an AND gate to form a neural activation. Figure

3.7 shows the structure and block diagram ofan RNB.

v,- is estimated as v, which is actually the value of the up-counter after each

iteration. The signal new_iter changes from ‘0’ to ‘1’ after each iteration and transfers the

output of the counter to a buffer via a 2x1 multiplexer at the next clock. At the same

time, the up—counter is reset. This output is used to generate a new action pulse sequence

A

15-0,, while the up-counter continues to accumulate incoming pulses. v , (dotted line) is used
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as an output of a neuron i in the output layer, while van) (solid line) is used in the hidden
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Figure 3.7. (a) A Regular Neuron Body (RNB) Element; (b) Block Diagram ofRNB [1].

3.3.2 DMNN Architecture

The DMNN has been constructed using four basic modules: Input Layer Module

(ILM), Synaptic Array Module (SAM), Regular Neuron-body Array Module (RNAM),

and Interconnection Module (ICM) [1].

The ILM is composed of a group of INB elements. It receives input and

transforms them into corresponding binary pulse sequences. These pulse sequences are

transmitted to the SAM through the ICM. The SAM consists of a group of synaptic
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elements and net input lines. All synaptic multiplications in the same layer are performed

simultaneously. The ICM is a group of connection lines that transmit action pulse

sequences fiom the previous layer to the SAM in the next layer. Pulses on two net-input

sequences transmitted from the SAM are collected at the RNAM. All v,(,,,’s from the

RNAM are produced simultaneously. Using these modules, any size of DMNN, with any

number of neurons in each layer and any number of layers, can be configured. Figure 3.8

portrays architecture ofthe DMNN.
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Figure 3.8. DMNN Architecture [1].

3.3.3 DMNN Coprocessor

The DMNN coprocessor is composed of a controller, a memory, an iteration

counter and a clock generator. Figure 3 .9 shows the architecture of a DMNN
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coprocessor. The controller consists of a microprocessor and a control unit which may be

either programmed or hardwired. The training of the network is performed on a host

computer. The trained weights, network configuration, input patterns and some control

commands are downloaded from the host memory.
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Figure 3.9. DMNN Coprocessor [1].

3.4 Behavioral Model of a DMNN Coprocessor

3.4.1 Design Methodology

The design of any hardware typically starts from a gate or circuit level schematic.

However, as the system becomes complex, a top down approach is needed to reduce the

development cost as well as the design cost. The top down design starts with a high level
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specification which is subsequently reduced to lower level specifications in a hierarchical

manner. Hardware Description Languages (HDL) are very important tools for a high level

or top down design [46]. VHSIC Hardware Description Language (VHDL) is a typical

behavioral description language which is semantically oriented for digital systems. VHDL

can be used to model the behavior of systems and simulate them to verify the design.

Modeling involves specifying the inputs and outputs of a device, and describing its

behavior and/or structure [47].

A top down approach was needed to model the DMNN coprocessor. Kim used

VHDL to model the proposed DMNN architecture. The coprocessor model starts with a

high level specification ofthe network which is decomposed into lower level specifications

in a hierarchical fashion [1]. Figure 3.10 shows the design hierarchy of the DMNN

coprocessor. The DMNN itself consists of three layers: input layer, hidden layer, and an

output layer. Each component is described in VHDL using the two styles of description:

behavioral and structural. The components in the lower branches of the hierarchy are

modeled using behavioral descriptions and all the other components are modeled using

structural descriptions.
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Figure 3.10. DMNN Structural Hierarchy [1].

Coprocessor Control

Kim’s approach for modeling the DMNN coprocessor is elaborated below:

The network is trained using software simulations and the backpropagation rule.

(A detailed derivation of the backpropagation algorithm, using Kim’s stochastic

model, is presented in Chapter 4). The trained weights, input patterns and the test

patterns are written in files.

The DMNN coprocessor reads the weights file and the file for test patterns.

The coprocessor initializes the LFSRs in the network and loads synaptic weight

registers with the trained weight values.



58

Step 4. The coprocessor initiates the controller to start generating the control signals.

Step 5. The DMNN starts classifying the input patterns and writes the output patterns

into a file.

The complete VHDL code for the DMNN coprocessor is given in [1].

3.5 DMNN Applications

3.5.1 Application Methodology

Binary classification problems are applied to the DMNN coprocessor as test bench

problems. The sampling data, comprised of the training data and the testing data, is

selected first for each problem. The DMNN is trained off-line on a host computer using

the training data. The training is carried out using the backpropagation algorithm

(Chapter 4). Afier the training is complete, the network architecture is setup and the test

data is applied to the DMNN coprocessor. The performance of the DMNN is evaluated

based on the test results.

Each pattern is represented as an array ofbinary numbers. The number ofneurons

in the input and output layers of the DMNN are directly dependent on the nature of the

problem The number of neurons in the input layer are one more than the number of

elements in the pattern vector. The additional input is used to provide a permanent I as a

threshold input to the synaptic elements located in the upper layers. The number of

neurons in the output layer is the same as the number of categories into which the

sampling patterns are to be classified.
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Kim’s results show that two layers (one hidden layer) are enough for a binary

classification. He has also shown that a relationship exists between the existence of

solutions, the value ofthe sum squared error and the ratio of input vs output values. Kim

has suggested the ratio value as 0.1 and used 0.55 and 0.45 as target values to represent

the ON and OFF states ofthe output neurons. The network configuration is a matrix that

represents the interconnection of all the neuron elements in the network. It can also be

represented as no x n, x n; . . . x n,,, where no denote the number of elements in the input

layer, n1, n3, . . . ,n,;, denote the number ofelements in the hidden layers and n, represents

the number ofelements in the output layer. A minimal network configuration is defined as

the network that converges to an error state equal to or below the predefined error

threshold with a minirmrm number ofneurons in the hidden layers and minimum number of

hidden layers.

3.5.2 Benchmark Problems

Two benchmark problems: the XOR problem and an 8x3 encoding problem were

applied to the DMNN coproce550r to test its ability to classify linearly unseparable

patterns and whether it can work as a data compressor.

3.5.2.1 XOR Problem Solver

The Exclusive-OR (XOR) problem is a dual input single output problem with

linearly unseparable patterns. Figure 3.11 displays an XOR problem. The nonlinearity

associated with the XOR is also represented graphically. A network configuration of
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3x2x1 was considered. Table 3.1 represents XOR problem for a DMNN showing four

input patterns and their corresponding target patterns. The DMNN was able to classify

the patterns correctly when the register length was more than ‘6’. Values below ‘6’

degraded the network performance considerably.
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I1 I2 0

0.0 0.0 0.45

0.0 1.0 055

1.0 0.0 0.55

1.0 1.0 0.45

I2

(0,1) 0 (1,1)

x >

(0.0) (1.0) I]

Figure 3.11. The XOR Problem

Table 3.1. An n-bit Two-layer DMNN XOR Results [1].

0 i

I. I; n=10 n=9 n=8 n= n=6 n=

0.0 0.0 0.451 0.456 0.461 0.468 0.469 0.500

0.0 1.0 0.549 0.556 0.563 0.563 0.688 0.563

1.0 0.0 0.549 0.556 0.570 0.578 0.719 0.563

1.0 1.0 0.457 0.449 0.445 0.484 0.625 0.438       
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3.5.2.2 8x3 Encoder

In order to see the behavior of DMNN as a data compressor, an 8x3 encoding

problem was applied. A minimal network configuration of 9x3x3 was considered. Figure

3.12 portrays an example of the 8x3 encoder. The problem is represented in Table 3.2.

The DMNN successfully encodes the 8-bit data when the register length is more than ‘8’.

 
Figure 3.12. 8x3 Encoder.

Table 3.2. Truth Table for an 8x3 Encoder [1].

 

 

 

 

 

 

 

 

  

Ir I: la 14 Is 16 17 la 01 02 03

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.45 0.45 0.45

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.55 0.45 0.45

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.45 0.55 0.45

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.55 0.55 0.45

0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.45 0.45 0.55

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.55 0.45 0.55

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.45 0.55 0.55

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.55 0.55 0.55            
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3.5.3 DMNN Character Recognizer

The DMNN was used as a character recognizer for solving two problems: a five-

digit problem for classifying digits 0 to 4 and a ten-digit classifier for digits 0 to 9. The

network was trained with two sets oftraining data for each prOblem The first set consists

of ideal digits and the second set contained 10% noisy patterns (three patterns per digit).

An additional set of 20% noisy patterns (three patterns per digit) was added in the test

data set. For the five-digit classifier, each ofthe five digits were represented by a matrix of

6x4 pixels whereas the pixel size was increased to 7x5 ill the ten-digit problem Figures

3.13 and 3.14 depict the pixel images for the five-digit and ten-digit problems.

Kim compared the performance of the DMNN with an ordinary multilayer neural

network employing a sigmoidal filnction. Typical results ofhis comparison using a 5-digit

classifier are shown ill Table 3.3. The ‘*’ values indicate minimal network configuration

and N1 and N2 are the number of neurons in the first and second hidden layers

respectively. Each figure in the table is the average value based on ten different initial sets

ofweights. A learning rate (7]) = 0.2, momentum factor (a) = 0.5, and sum squared error

(ss-error) = 0.0001 are used for the DMNN while 7] = 1.0, a = 0.5, and ss-error = 0.01

are used for the ordinary neural network. Lower values of 17 and ss-error used for

training ofthe DMNN are due to the constraints in its operation range.



  

  

  

 

   

 
 

      

 

  

 

 

               

   

   

Figure 3.14. 10-Digit Classifier Patterns: (a) Ideal; (b) 10%Noisy; (c) 20% Noisy [1].
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Table 3.3. Average Number of Iterations for 5-Digit Classifier [1].

 

 

 

 

 

 

 

 

 

 

 

DMNN ANN

Trained with a = 0.0 Trained with a = 0.5 Trained with a = 0.5

N1 N2 No ofiterations NI N2 No ofiterations NI N2 No ofiterations

*4 0 2086 *4 0 1738 ‘5 0 13311

10 0 420 10 0 293 10 0 17212

30 0 332 30 0 182 15 0 11905

50 0 274 50 0 135 25 0 14108

6 4 12263 6 4 7482 8 4 79320

8 6 10446 8 6 4959 8 8 35480

10 8 7427 10 8 2972 10 8 44520

12 10 6135 12 10 1820 12 10 55025           
 

Kim’s results show that the DMNN network can be trained with a significantly

reduced number of iterations compared to an. ordinary ANN. The fast convergence

obtained in the DMNN is due to the fact that the values ofthe output neurons can take on

intermediate vahles between 0 and 1 as target values. The number of iterations generally

increase with the number ofhidden layers and decrease with the increase in the number of

neurons in the hidden layers ofthe DMNN.

Performance results for a 5-digit recognizer are tabulated in Table 3.4. A DMNN

model with 8-bit and 9-bit register lengths and a C simulated DMNN are compared for

nrisclassification errors. The misclassification occurs when no neuron or more than one

neurons are turned on during the test mode. Each figure is based on an average result of

20 tests and for each test a new set of synaptic weights are loaded The results indicate

that a 9—bit character recognizer behaves very close to a deterministic simulation It is also

noted that the performance of DMNN improves when training data contains noisy

patterns.
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Table 3.4. Performance of 5-Digit Classifier [1].

 

Trained with ideal digits Trained with ideal

+ 10% noisy data

 

 

 

    

MisJassi/ied error Misclassified error Msclassi/ied error

on 10% noisy data on 20% noisy data on 20% noisy data

8-Bit DMNN 32.2% 55.6% 38.7%

9-Bit DMNN 11.7% 30% 26.7%

C-simulation 8.5% 43% 35.3%  
 

Table 3.5 shows the performance results for a 10-digit classifier. The learning rate

(7]) = 0.05, momentum factor (a) = 0.0, and ss-error = 0.005 are used. Only two layers

are considered for this experiment and minimal network configurations are 36x9x10 and

36x30x10 for ideal set and ideal plus noisy sets oftraining data, respectively. The results

are compared with those of the deterministic simulations and ordinary ANN classifier.

Each figure in the table is the average vahre based on twenty sets of weights The

classification rates obtained from the DMNN are close to the results of the deterministic

sinmlations when the register length is greater than 8.

Table 3.5. Performance of 10-Digit Classifier [l].

 

 

 
  

 
 

  

 

 

   
   

Trained with ideal digits Trained with ideal

+ 10% noisy data

Miscfisification Misclassification Misclassification

error on 10% noisy error on 20% noisy error on 20%

data data noisy data

TRW—WI. % 433% W—z.4 0

9-bit DMNN 9.7% 363% 20.3%

' C-simulation 6.7% 35.3% 13.5%

L ANN 15.8% 30.8% I6.’7% ‘
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3.6 Performance Summary

A pulse mode digital multilayer neural network architecture implementable with

simple logic gates, developed by Kim, has been presented. The DMNN employs

stochastic computing techniques and a modular architecture that is compact and

programmable. All operations in a layer are performed in parallel and operations between

two layers are performed in a pipeline fashion thus utilizing fill] parallelism. The

processing speed depends only on the clock speed and the register length; not on the

network size. Therefore, any size of network can be constructed by interconnecting the

desired number of modules without compromising speed The DMNN has been applied

successfully to binary classification problems such as XOR, 8x3 encoding, and character

recognition. Kim simulated the DMNN in VHDL and found the performance comparable

to deterministic DMNN simulations and ordinary backpropagation neural networks.



CHAPTER 4

BACKPROPAGATION IN THE DMNN

4.1 Introduction

The digital multilayer neural network is a feedforward neural network which can

be trained with the backpropagation algorithm discussed in Section 2.3.4.2.2.

Backpropagation performs an iterative gradient descent over a Stun-squared error

measure. This chapter discusses the method ofimplementing the non traditional stochastic

flmction, used by Kim (Chapter 3), into the backpropagation algorithm Kim, though he

uses the backpropagation algorithm in his DMNN, does not provide the mathematical

details ofthe C simulation program [1]. In order to understand his C code and to be able

to develop an improved simulation technique, it is essential to derive the backpropagation

equations. These equations are subsequently used ill the software sinmlation of the

DMNN.

The backpropagation technique is criticized and its inherent weaknesses are

identified. Enhancements are suggested in the end to improve the performance of the

DMNN.
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4.2 Backpropagation Implementation

4.2.1 Review of the Stochastic Function

The stochastic filnction developed by Kim [1] has been presented in Section 3.1.3.

This non-linear, non-decreasing, continuously difi‘erentiable function has been used in the

development of a digital multilayer neural network. This section discusses a software

sinnllation of the DMNN using the backpropagation algorithm discussed in Section

2.3.4.2.2. To review the stochastic firnction, a three layered feedforward neural network

presented in Figure 2.8, is redrawn again as Figure 4.1 for ease ofreference.

m
—
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c
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Input Layer, I
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Figure 4.1. Three Layered Neural Network.
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In the above figure, v,- is the output of the ith input layer passive neuron, v,- is the

output of thejth hidden layer active neuron, and vi is the output of the of the kth output

layer neuron. w.) ’s are the synaptic weights connecting the ith input layer neuron to thejth

hidden layer neurons and WI), '3 are the synaptic weights connectingjth hidden layer neuron

to the kth output layer neurons.

From Section 3.2.3, we know that the excitatory net input for thejth neuron in the

hidden layer is given by

net; = l-fi(l—w;v,) (4.1)

1.0

and the inhibitory net input for thejth neuron ill the hidden layer is given by

Ill

net; = l-H(1+w,;v,) . . (4.2)
i-O

In equations (4.1) and (4.2), v,- = 1 for i = 0, and n,~is the total number of neurons in the

input layer.

Similarly, the excitatory net input for kth neuron in the output layer is

net; = 1-fi(1-wj’;vj) (4.3)

j-O

and the inhibitory net input for the kth neuron in the output layer is

net; =1-1gI(l+w;,vj) . (4.4)

j-O
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In equations (4.3) and (4.4), v] = l for j = O, and nj is the total number of neurons

in the hidden layer. Therefore the output ofthe kth neuron in the output layer is

v, =nez;(l—nez;). (4.5)

From equations (4.3) and (4.4)

"J

v, = [l—fi(l—w;kvj)] (l+w;,vj) (4.6)

j=0 j=0

where v, is the output ofthejth hidden layer neuron given by

v) = net;(l -net;) . (47)

Finally, from equations (4.1) and (4.2)

v}. =[l-In](l-w;v,)]]31(l+w,;v,) . (4.8)

i=0 i=0

4.2.2 Backpropagation Analysis

The outputs, v), for the output layer and v, for the hidden layer, are calculated using

equations (4.1) and (4.3) for positive weights and equations (4.2) and (4.4) for negative

weights. Let it be the desired outputs. The objective is to minimize the difference

between the desired outputs, it, and the actual outputs vr.
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Define the error cost firnction Er for each k as

l 2

E, =—2-(z, - v,) . (4.9)

Therefore, minimizing the cost function for the kth output node with respect to the weight

connectingjth hidden node involves using

as, _ 6E, av, '(410)
 

 

 

 
 

 

+ " . +

0W}. 0V. 5W).

(E 6E 6v

and f = ' o f . 4.11

aw... av. aw... ‘ ’

From equations (4.9) and (4.10)

6E, _ 6v,

—aw;, - (r, v,) aw}; (4.12)

and fiom equations (4.9) and (4.11)

6E, 6v,

aw]; (t, -v,) aw]; (4.13)

Applying the chain rule gives

6v, 6v, anet;

—_+’ = , 0 + 4.14

aw, aim, 6w], ( )

and av, — av, am" (4.15) ___ _, _-

aw, finer, aw,
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From equation (4. 5), we find

 

 

avr
= 1- net'

anet: "

av

and ’_ = «net,+ .
anet,

From equations (4.3) and (4.4), we obtain

  

 

where,v,-=1forj=0.

(4.168)

(4.16b)

(4.17)

(4. 18)

Now baclmacking by substituting equations (4.16), (4.17), (4.18) ill equations

(4.14) and (4.15) and then substituting equations (4. 14) and (4.15) ill equations (4.12) and

(4.13) at appropriate places, we obtain

 

 

 

 

BE

6,}; =-(t.-v.)(1-mt;)(1-mr:),_fj;,j

6E

and aw}: = -(t,-v,)(net:)(1-net;)1+3;ka .

Let 8: =(t, -v,)(l-net;)

and 6; = (t, —v,)(net;) .

(4.19)

(4.20)

(4.21)

(4.22)
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Hence equation (4.19) becomes

 
 

  

(915‘I v.
= _ 5+ 1_ t+ J

aw}; k( nek)l-W;kvj

and from equation (4.20)

aEt v}
=— ' l— t‘

6w}, 5"( ne ‘)1+wj',vj

where, vj= l, forj = 0.

(4.23)

(4.24)

Backpropagation is a gradient descent learning rule. For excitatory weights, it is

given by

 

as
w;,[n+l] = w,’,[n]+n[- mi]

and for inhibitory weights, by

 

6E

w‘[n+1]=w‘[n]+n[- 1‘]
ft 1k 6W.“

where n is the number of presentation and 77 is the learning rate.

(4.23) and (4.24) in equations (4.25) and (4.26) respectively gives

v]
+

l wj,vj

 w;,[a+ l] = w;,[n] +118: (l—acr;)

v1

1+wfl‘vj

 and w;.in+11= w;.inl -n6;(1-net;)

where,v,-= 1forj=0.

(4.25)

(4.26)

Substituting equations

(4.27)

(4.28)
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It is important to note that equations (4.27) and (4.28) are only valid for weights

connecting the jth hidden layer neurons to the kth neuron in the ouput layer. Weights

connecting any other two layers are updated by reflecting back the error or difference at

the output neurons. Therefore, referring back to Figure 4.1, weights, w.) are updated

reflecting back the error from all the output nodes to thejth hidden node.

 

 

. , + " 6E,

That 15, w” [n+1] = w” [n] +1] — aw,

k-i y

" 6E

and wgin+li=wginl+n[-X ’1)
kn] my

Using chain rule gives

'6E,_ 6E, av anet; 6v .Ianet
  

 

k-l aWJ- k-l av; .Ianet .Jav ”anet

" 6E,_ 6E av, anet; 6v anet‘

.Wdr

   

 

 

and Shimmy M aw; M av anet;.15v anet' aw- '

We knowthat %-_(tk—vk)s

67622;; -1 net; ,

and 6:2; ‘ -net;’

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34a)

(4.34b)
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5E (3V

Therefore, 6v: om=-(t, —v,)(1—net;) =—5;

5E 6v + -

and Bf.-6n—eif=-(t*-v*)(-netk)=8* .

Next, from equations (4.3) and (4.4) we write

  

  

and — =—(l-net,) _

 

 

6v]
5 etj (l-netj)

d j t‘

  

  

anet“
J + l

, = l—net ,

6w” ( 1)1—wyv,

d duet; (I 1‘ vi

=- -ne

an an»; 1 1+w;,

(4.35)

(4.36)

(4.37)

(4.38)

(4.398)

(4.3%)

(4.40)

(4.41)

Substituting equations (4.33) through (4.41) in equations (4.31) and (4.32) at appropriate

places, we obtain
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‘1

 
 

 

   

 

  

 
 

=— i 1— t? — 2’ - ., ° 4.4H 6w; m (6,)( ne L)1-W,}V, (1 mt} )(1 Iltt})1_w’;vl ( 2)

n 5E), n “5): V

=_ - _ - * — ‘ ' . 4.and M 6w; H (5,)(1 netk) ”wit", (net) )(1 net!) l+w,;v,. ( 43)

Now, define the identities

n W+

5‘: 1— r 5* 1— 1* —’-"-—— 4.44

J ( nej)k=l k( nek)l—wikvr ( )

w"

5'. = r: 5' 1— r "’ . 4.45
and ’ ne 1; "( ne ’) l+w;,vj ( )

Hence, equations (4.42) and (4.43) become

" 6E, + + v,

w aw: —-5,(1—net,.)l_w,v (4.46)

I) u I

" 6E

d “ =—6'. 1— r: . .an H 6w; )( ne ’)1+wv’.v, (4 47)

Substituting equations (4.46) and (4.47) in equations (4.29) and (4.30) respectively, we

 

 

. + + + 4» vi

obtaln w”. [n+ l] = w”. [71] +115]. (1— net!) 1_ wfv (4.48)

l} l

a -[ 11— -[ 1 sh -) v.-an w”. n+ —w,.j n +1] I —netj 1+ngr . (4.49)

Finally, rewrite the above equations as

Aw;[n+ l] = no; (1 - net;)-]-:i‘—+‘T (4.50)

U I
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_ - _ v,
and Awy [n+1]: 775}(1—netj)1+w;v, (4-51)

where n is the number of presentation steps and Awy[n+ l] is the change in weight required

for the next presentation.

Flowcharts representing the implementation ofDMNN using this backpropagation

algorithm are placed in Appendix A.

4.3 Reviewing Backpropagation Philosophy

We know that each input vector V,- in a backpropagation algorithm has a

corresponding desired output vector T. In response to V.-, the system yields its own output

vector V1. The backpropagation philosophy considers performance error to be the vector

difference between V), and T, that is, error vector E is

E: T- Vk = ( [(I'VkI], [trvkzL a [tn'vlm] ) ' (4°52)

Minimizing the squared length ofthe error vector E amounts to minimizing the sum ofthe

squares of each ofthe elements or

n E 112 = [2,-v.,]2+ [trvu]2+ + [1,411,]2 . (4.53)

The main idea is to minimize E by adjusting each weight in the ANN. The

technique is similar to the Widrow-Hoff algorithm for linear systems [48], even though an

ANN is typically nonlinear. The entire approach rests on the desire to modify each weight

by an amount proportional to how it can decrease the output error. In other words
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fl:_ dllEllz (454)

dt n dw '

where dw/dt is the amount of adjustment each weight would receive for one training

exposure. Each weight is updated as

w[n+1] =w[n]+-::v—t. (4.55)

The critical difference between the backpropagation and the Widrow-Hoff model

is that the former uses PBS with nonlinear output transfer functions and the latter uses a

linear function. This poses a problem for the backpropagation algorithm. In a linear

system, any arrangement of rows of PBS with linear data processing could always be

reduced to just two rows. As a consequence, error minimization amounts to adjusting

those weights which will maximize the descent down an n-dimensional parabolic basin, the

least mean-squared error surface. This makes implementation of equation (4.54) straight

forward in linear systems [48]. Figure 4.2 portrays the least mean squared error surfaces

ill—3h
(a) (b)

in a linear and a nonlinear ANN.

 

 

 

 

 

Figure 4.2. Error Surface in: (a) Linear ANN; (b) Nonlinear ANN.
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An ANN with rows ofnonlinear PEs cannot, in general, be reduced to fewer rows.

This has two major consequences :

1. We must carry out the same algorithm foral_l rows when adjusting the weights.

2. The error surface is gutted with many basins of which few should ever resemble

the analytically appealing paraboloid (Figure 4.2).

The consequences of these two issues as well as a few others [49] are examined in the

following sections.

4.3.1 Backpropagation through Noise

Since, the system error is first derived at the output, the error signal must

propagate back through the rows in order to reach every row. To begin with, however,

every row is assigned random weights. Thus the error becomes increasingly meaningless

as it backpropagates through the net ofrandomized weights A5 a consequence, the fiont

rows are ‘misled’ into what adjustment was truly needed Afier this almost random

' correction at the front rows, the back rows will now receive data corrupted by the updated

fiont rows. This noisy commrmication appears to be very ineficient because some simple

training tasks may require thousands oftraining cycles.
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4.3.2 Simultaneous Change

The mathematical derivation of the formula for weight adjustment uses partial

derivatives, which assume that nothing else is being changed except the weight in

question. However, in the true gradient descent method the weight change is affected

after the complete set of training patterns have been presented to the network. If the

weight change is to be implemented at the presentation of each pattern then the learning

rate has to be small enough to enable minimization ofthe error fimction.

4.3.3 Numerous Basins and Crests

One reason why the mean-squared method worlm well for linear systems is that the

error fimction yields only one n-dirnensional parabolic error surface having only one

minima at the paraboloid’s bottom Nonlinear systems, on the other hand, will typically

have an error sin-face indented with numerous basins. For backpropagation, the problem

is enhanced since these basins are usually non-parabolic and time varying as shown in

Figure 4.3.
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-/

/

slope = 0; => no change

Figure 4.3. Local Minimas and Relative Weight Changes.

Zero slopes exist between any two basins as well as at the bottom of each basin

(local minima). This implies that the weight modification may be very slow within regions

of relative maximum error as well as at the relative minimas. This is yet another cause for

slow learning. Since there is no simple relation between slope and distance to a relative

minima, large misguided adjustments can frequently occur, sending the system state

straight down through the local minima and far up the other side, giving the system an

error performance worse than prior to the adjustment.

4.3.4 Lack of Digital Convergence Proof

It can be shown mathematically that if one uses infinitesimally small weight

adjustments, which also requires infinitely long patience, the convergence to an optimal
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behavior will occur in a backpropagation network. The reality, however, requires a finite

training period and therefore a fixed valued learning constant. Thus, digital applications

may not necessarily converge and there is no way to find out when to stop the training

session.

4.3.5 Dependence on Initial Conditions

The presence of numerous minimas with unequal depths is another significant

issue. Convergence towards one minima may yield a lower mean squared error than

convergence towards another. There is no direct way to determine whether the

backpropagation has reached a local minima or a global minima. The only way of

reaching better results is to randomize the weights and re-train again and again. The final

performance, therefore, is partially dependent upon the randomized initial conditions for

..g

4.3.6 Non-real Time Adaptation

The backpropagation tends to fade its memory of previously learnt patterns as it

learns the new patterns. The consequence is that every new pattern for training requires

all the old patterns to be recycled alongwith inorder to achieve a long term noise irnnnmity

during the training



4.4 Accelerating the Convergence

Several heuristics are available for attaining improvements in the rate of

convergence [3,49,50]. The methods adopted by Kim [1] are discussed, and variations are

suggested to further accelerate the convergence process.

4.4.1 Momentum Factor (01)

Rumelhart suggests that one way to increase the learning rate without leading to

oscillations is to modify the generalized delta rule to include a momentum term [3]. This

can be accomplished by the rule

Awlin+11 = 77 (5110:») + a Awg{n] (455)

where n is the presentation number, AWg{n+ 1] is the weight change required for the next

step and or is the momentum factor such that 0 S a S 1. or determines the efi‘ect of past

weight changes on the current direction of movement in the weight space. It provides

each connection weight “’9' with a kind of momentum so that it tends to change in the

direction of the average downhill force instead of oscillating with the high fiequency

variations of the error surface in the weight space. In turn, the effective learning rate 17

can be made larger without initiating oscillations.

Adding the momentum term in equations (4.50) and (4.51) gives
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Aw;[n+ l] = 776:0 —net;)-1—v‘—.—+aAwu’[n] (4.57)

— w” V.

and Aw; [72+ l] = 7,6;(1— neg) 1+1), _ + a Awgln] . (4.58)

W” V.

4.4.1.1 Implementing the Momentum Factor

Kim uses following procedure for implementing the momentum factor:

Step 1. A number of registers equal to the number of weights (w) in the network are

designated for weight change (Aw[n]). All registers are initialized to zero before

presenting the first pattern (p).

Step 2. First pattern is presented and weight changes, Aw[n+1], are calculated using

equations (4.57) and (4.58). Here the momentum term is zero due to Step 1.

Step 3. Next pattern is presented and weight changes are calculated using the results of

step 2 in the momentum term.

Step 4. All patterns are presented one after the other and corresponding weight changes

are calculated in a similar fashion.

Step 5. Weight changes calculated for the last pattern are dropped.

Step 6. Feedforward and then go to step 1 for the next iteration until the desired error or

maximum number of iterations is reached.
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In other words the weight change calculated for the previous pattern is used in the

momentum term for calculating the weight change for the next pattern (except the first

pattern), and the weight change calculated for the last pattern is not considered for this

purpose (see flowchart in Appendix A).

4.4.1.2 Analysis of Kim’s Technique

Kim’s technique suffers fiom two problems:

1. All the registers are initialized to zero at the beginning of each iteration thereby

discarding the last calculation of weight change in the previous iteration. Hence

the weight changes calculated for the first pattern are without a momentum term

2. The weight change calculated for one pattern is used in the momentum term for

calculation ofweight change for the next pattern.

The training results indicate the following response attributable to the above

mentioned observations:

1. The convergence range is extremely restricted. Weight values for most of the

processing elements tend to cross the limits (-1.0 S w S +1.0) and start increasing

without bound.

2. The network takes a long time (too many iterations) to converge.
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4.4.1.3 Redefining the Implementation of Momentum Factor

In order to achieve better results, the procedure for implementing the momentum

factor is redefined as follows:

Step 1. A number of registers, equal to the number of patterns (p), are designated for

weight changes (Awp) in each weight (w) in the network All the registers are

initialized (Aw,[n] = 0) at the beginning ofthe training mode.

Step 2. All patterns are presented one by one and weight changes, Aw,[n+1], are

calculated using equations (4.57) and (4.58). Here, the momentum term is zero

for all the patterns for the first iteration (n = 0) only.

Step 3. In the next iteration (n +1), weight changes, Awp[n +1], are calculated using the

results of step 2 in the momentum term

Step 4. Go to step 2 lmtil the desired error or maxirmlm number ofiterations is reached.

In essence, the weight change is calculated separately for each pattern and it is

used in the momentum term for calculating the next weight change for the same pattern.

Moreover, n_o weight change is discarded.

4.4.2 Updating the Weights

The network weights are not updated afier presenting each pattern. Rather, the

weights are modified only after all input patterns have been presented. After each pattern
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is presented, all weight changes are calculated, as usual, but these changes are not

immediately applied. Instead, the changes for each weight are summed separately for all

the input patterns, and the sum is applied to modify the weight after each iteration. That

is,

Aw” [n +1] = :pry [n]. (4.59)

114

Note that n represents the iteration number rather than the presentation number,

since the weights are updated only once per iteration for all the patterns. The flowchart in

Appendix A elaborates the above procedure ill detail

4.4.3 Varying the Learning Rate (17)

An intelligence is incorporated in the program to check the rate of convergence

and apply the appropriate remedial measures. The learning rate (7]) is varied in

accordance with the performance index (total error for all patterns for each iteration). If

an update results in reduced total error, 7] is multiplied by a factor ¢ > 1 for the next

iteration. If a step produces a network with a total error more than a few (typically 1-5)

percent above the previous value, all changes to the weights are rejected and n is

multiplied by a factorfl <1. a is set equalto zero and the step is repeated. or is reset to

its original value only after execution ofa successful step.



The rationale behind this maneuver is the idea that as long as the topography of the

terrain is relatively uniform and the descent is relatively smooth, the memory implicit in or

will aid convergence. If; however, a step results in a degradation of the performance of

the system, then clearly the topography ofthe terrain demands a change in the direction of

the optimization. Moreover, experience incorporated in the term in or will be misleading

rather than beneficial Hence or is set to zero so that memory from the previous steps is

lost. a will assume a nonzero value only after the network has taken a step that reduces

the total error.

4.5 Summary

The mathematical derivation of the stochastic function in backpropagation

algorithm has been presented A critical analysis of the backpropagation technique is

given. Measures taken by Kim to improve the performance index of the DMNN are

discussed and possible improvements are suggested to further improve the performance of

the DMNN.



CHAPTER 5

DDTNN ANALYSIS AND APPLICATIONS

5.1 Introduction

The DMNN developed by Kim [1] has been simulated using a software model.

The simulated DMNN is applied to the benchmark and the character recognition problems

and its results are compared to an ordinary ANN using a sigmoidal fimction. The

improvements suggested in Chapter 4 are also implemented and their afi‘ect is observed.

The dificulties and constraints encountered during the course of this research are

discussed at the end.

5.2 Methodology

5.2.1 General Methodology

Three networks have been considered for application and analysis: the DMNN, the

modified DMNN and the ANN. The DMNN and the ANN incorporate the algorithm

discussed in Sections 4.4.1.3 and 4.4.2. The modified DMNN incorporates the technique

discussed in Section 4.4.3. Each network is tested for three basic classification problems:

89
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the XOR, data encoder, and pattern recognizer problems. The sampling data (patterns)

for each problem is divided into the training data and the testing data. Each network is

trained first with the set of training data. To study the learning pattern, networks are

trained iteratively for a wide range ofvalues for the learning rate (77) and the momentum

factor ((2). Once the training is completed, the test data is applied to the trained networks.

Based on these results, the performance ofthe networks is evaluated.

Each pattern in the sampling data is an array of binary values. The number of

neurons in the input layer ofa network equals the number ofelements in the pattern vector

plus one. The additional input is required to provide the synaptic elements located in the

upper layers of the network with a constant threshold input of 1.0. The number of

neurons in the output layer is the same as the number of categories into which the

sampling patterns are to be classified.

The network configuration defines, in matrix form, the interconnection layout of

the processing elements in the network A minimal network configuration for solving a

particular problem can be defined as the network that converges to an error state equal to

or below the predefined error threshold with a minimum number ofneurons in the hidden

layers and minimum number ofhidden layers. Kim suggests that a two layer network (one

hidden layer) with minimal network configuration is enough for solving most problems.

He selects 0.0 and 1.0 to represent a logic 0 and a logic 1 respectively. A150 0.45 and

0.55 have been used as target vahles corresponding to ON and OFF thresholds at the

output neurons. The above mentioned selections are incorporated in the three networks

for solving the test cases. Input variables are selected ill the following manner:
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Learning Rate (77): 77 is varied from 0.1 to 1.0 with a step size of O. 1.

Momentum Factor ((2): a is varied from 0.0 to 0.9 with a step size of 0.1. Since this

value is changed for each 77, a total of 100 different combinations for each problem are

applied to the networks.

Synaptic Weights (w): The synaptic weights are generated randomly. To be able to

compare and draw meaningful conclusions, results are averaged over 20 repetitions for

each combination.

Maximum Sum-squared Error (as-error): A value of 0.00001 is used for all the

problems because the higher vahles (ss-error > 0.00001) do not sufficiently train the

networks.

A comparison of the selection of input variables with those selected by Kim, is

given ill Table 5.1.

Table 5.1. Comparison ofInput Variables.

 

 

 

 

 

 

 

    

Input Variable Kim’s Value [1] This Research

Learning Rate 77 0.2 0.1 to 1.0

Momentum Factor 71 0.5 0.0 to 0.9

SS - Error 0.0001 0.00001

Maximum Iterations 30,000 30,000

Range ofFinal Weights -1.0 to +1.0 -1.0 to +1.0

Network Configuration minimal minimal

Range ofWeight Generation 0.0 to +1.0 0.0 to +0.5 
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5.2.2 Training and Classification

Each network is trained with a set of training and target patterns. Thereafter it is

tested for classification using a set of test patterns. The synaptic weights are randomly

generated once and updated continuously during the training session until the desired

convergence is achieved. The training steps are listed below:

Step 1. Load the desired network configuration which defines the network according to

the nature of the problem. Input the values of learning rate (77) and the

momentum factor ((1). Also input the values of phi (45) and beta (E) in case of

the modified network discussed in Section 4.4.3.

Step 2. Randomize all the synaptic weights between 0.0 and +0.5.

Step 3. Apply all the training and target patterns one by one. Perform feedforward

operation and calculate the sum-squared error for the network.

Step 4. Apply all the training and target patterns one by one. Perform the feedback

operation to prepagate the error in a backward direction and modify the synaptic

weights.

Step 5. Go to step 3 until the network converges and the sum-squared error value

reaches below the threshold value of 0.00001. If the network oscillates or is

stuck in a local minima, terminate the operation after 30,000 iterations.

Step 6. Save the final weights for testing the desired patterns.
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Step 7. Check ifthe values of all synaptic weights are valid, i.e., -1.0 S w 5 1.0. In case

ofinvalid weights, repeat steps 1 to 6.

Flowcharts elaborating the above procedure are given in Appendix A.

5.3 Benchmark Problems

The benchmark problems inchide an XORproblem and an 8x3 data encoder

problem An analysis ofthese problems is presented in the following two sections.

5.3.1 XOR Problem Solver

The XOR problem is a classic problem involving hidden imits. This problem has

invariably been applied to the neural networks to study their nonlinear behavior. The

XOR problem is applied to each network with a network configuration of 3x2x1. The

performance ofthe DMNN for 0.1 S n S 0.8 and a momentum factor, a = 0.2, is shown in

Figure 5.1. A three dimensional view of the network’s learning pattern is presented in

Figure 5.2, where, 0.1 _< 77 50.8 and 0.0 _< a _< 1.0. The graphical representation identifies

the values of r) and a for which the network learns faster. Figure 5.2 shows that the best

combination is for 0.6 S 77 S 0.7 and 0.3 S a S 0.4 when the network learns below 2000

iterations. These values are useful for the future learning and testing ofthe network The

3-D graph in Figure 5.2 also indicate the operational bounds ofthe DMNN.
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The learning pattern for the ANN is presented in Figures 5.3 and 5.4. The pattern

indicates several peaks and troughs showing an extremely divergent behavior. For

comparison, similar values of n and a have been selected. The network generally learns

faster with the increase in both the above mentioned variables. Figure 5.4 indicates that

the best learning values are, n = 0.8 and a =0.9, when the iterations are below 2000.

These are, however, only the troughs, as the learning does not follow a set pattern.

In case of the modified DMNN, the training starts with an initial value of learning

rate (11), and momentum factor (a), set by the operator. The learning rate is modified

throughout the training cycle. it is therefore impractical to draw any meaningful sketch

of its learning behavior. It has been noticed that the modified DMNN would invariably

learn faster if the training is initiated with the acceptable values of n and (1. Moreover,

due to its construction, the network would respond to a wider range of n and a.
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Figure 5.1. DMNN as XOR Solver for a Momentum Factor on = 0.2.
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Figure 5.2. DMNN XOR Solver in 3-D, n vs at vs Number of Iterations.
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Eta

Figure 5.3. ANN as XOR Solver for a Momentum Factor a = 0.2.

  
Eta

Figure 5.4. ANN XOR Solver in 3-D, 1] vs a vs Number of Iterations.
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5.3.2 8x3 Encoder

The purpose ofthe 8x3 encoder problem is to test the data compression ability of

the networks. A network configuration of9x3x3 has been considered. DMNN and ANN

encoders are presented with the same set ofvalues for the learning rate, 7], and momentum

factor, a. The learning performance of the DMNN is represented graphically in Figures

5.5 and 5.6. The ANN counterpart is portrayed in Figures 5.7 and 5.8. The learning

pattern shows that DMNN learns fast for n S 0.3. The performance degrades

logarithmically as the learning rate is increased above 0.3. The ANN on the other hand,

performs well for 17 2 0.2 and shows poor performance for lower values of r]. The

divergent behaviors ofthe two networks indicate difi‘erent characteristics ofthe squashing

fimctions used in the networks.

The performance ofthe modified DMNN is tested for different initial values of 77

and a. The network converges relatively faster when r] S 0.4 for the same reasons

mentioned in the above section.
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Figure 5.5. DMNN as 8x3 Encoder for a Momentum Factor on = 0.2.
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Figure 5.6. DMNN 8x3 Encoder in 3-D, 1] vs or vs Number of Iterations.
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Figure 5.7. ANN as 8x3 Encoder for a Momentum Factor on = 0.2.
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Figure 5.8. ANN 8x3 Encoder in 3-D, 11 vs a vs Number of Iterations.
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5.4 Character Recognizer

The problem of classification of numeric characters is considered in two levels.

The first level involves classifying five digits fi'om 0 to 4 and the second level involves

classifying ten digits from 0 to 9.

Each pattern in a 5-digit classifier is represented by the arrangement of 0’s and 1’s

in a 6x4 bit matrix (Figure 3.13). The network configuration is 25x4x5. The network is

trained first with a set of ideal digits (noise free). The simulation results are depicted by

plots in Figures 5.9 and 5.10. The learning pattern indicates that the DMNN learns

comparatively faster (less than 2000 iterations) for 17 2 0.2 and 0.1 S a .<. 0.4. The

surface, however, looks rocky for 0.1 s n S 0.45 and 0.4 S a S 1.0. The learning pattern

for the ANN is shown in Figures 5.11 and 5.12. It is observed that the ANN produced

more encouraging results. A flat surface is observed (learning in less than 1000 iterations)

for 0.2 S n S 1.0 and 0.4 S as 0.9.

The S-digit classifier is tested (after training on ideal digits) for a misclassification

error on 10% noisy patterns and 20% noisy patterns. All networks showed similar results.

The performance is considerably reduced when the test is conducted for 20% noisy data.

The average misclassification error results are presented in Table 5.2. Five sets of noisy

patterns, in each category, are considered for each network and the results are averaged

out. The performance ofthe networks can improve considerably ifthey could also be
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Figure 5.9. DMNN as S-Digit Classifier for a Momentum Factor on = 0.2.
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Figure 5.10. DMNN S-Digit Classifier in 3-D, 11 vs a vs Number of Iterations.
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Figure 5.11. ANN as S-Digit Classifier for a Momentum Factor a = 0.2.
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Figure 5.12. ANN 5-Digit Classifier in 3-D, 1] vs or vs Number of Iterations.
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trained for noisy patterns. Due to time and machine constraints (Section 5.5), the

networks could not be trained for noisy patterns.

Table 5.2. Performance of 5-Digit Classifier Trained with Ideal Digits.

  

 

 

Missclassified Error Rate on Missclassified Error Rate ‘

10% Noisy Data on 20% Noisy Data

DMNN 18% 54%

ANN 17.5% 52%     
 

It is observed that pattern classification is beyond the scope of the computational

equipment used in this research. Even an ideal 5-digit classifier presents a computational

load that takes a considerable time. Each learning cycle for an ideal 5-digit classifier takes

an average of one hour. One learning cycle means training the network for a particular

value of 77 and a. 100 combinations of r] and a (ranging from 0.1 to 0.9 with a step size

of 0. l) are presented to each network and each combination is repeated twemy times for

averaging the results. It, therefore, takes approximately 2000 computational hours (84

days) for an 80486 based PC to obtain the rearlts of one S-digit DMNN classifier. The

computational time for an ANN sinmlation is almost one half of the DMNN simulation.

Eight similar PCs were engaged for 15 days to obtain the results ofthis experiment. The

training with 10% noisy patterns was attempted but appreciable results could not be

obtained within a reasonable time.
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The second level involves classifying 10 digits fiom 0 to 9. The simulation entails

a much larger data set: a pattern size of 5x7 bit matrix to represent each digit and a

network configuration of 36x9x10. The network data segment becomes too large for a

PC to handle. This experiment was, therefore, abandoned. A more powerful machine is

the only solution to solve classification problems beyond an ideal 5-digit.

Input data in the form ofnetwork configuration, training patterns and test patterns

for each problem discussed above, is given in Appendix B.

5.5 DMNN Simulation Analysis

The Digital Multilayer Neural NetWork was implemented using software

sinmlation on a 80486 based PC with 8MB RAM. Kim [1] performed the simulation

work on the Sun-SPARC stations, a much more powerfiil machine compared to a PC.

This section analyses the simulation performance ofKim’s DMNN on a PC. The need to

incorporate improvements in the network is discussed and performance of different

variations to the backpropagation algorithm is presented.

5.5.1 Kim’s DMNN

The backpropagation algorithm variant used by Kim [1] is implemented first. The

problems encountered during this phase are discussed in the following sections.
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5.5.1.1 Program Compatibility

Kim developed a software simulation on Sun-SPARC workstations. Sun

workstation operate under the UNIX operating system The program is therefore not

compatible with the DOS/windows environment. It was to be appropriately modified to

work on a PC. In addition, many logical improvements were needed in the program to

make it more eficient.

5.5.1.2 Invalid Synaptic Weights

Either the network would not converge, or it would generate a number of invalid

synaptic weights (w > :tl.0). Once the synaptic weight vahres become invalid, they would

increase without bormd thus resulting in the overflow error.

5.5.1.3 Longer Convergence Cycles

In an attempt to relegate the problem ofinvalid weights, the values oflearning rate

(17) and momentum factor (a) are reduced in steps. The convergence starts at lower

values oflearning rate (n < 0.2), which makes the learning process very slow.

5.5.1.4 Implementation of Momentum Factor

Another aspect of Kim’s network is that the effect of past weight change of one

pattern is added in the momentum term for calculation of the weight change for the next
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pattern, thus resulting in a longer convergence cycle. The details of the procedure for

implementing the momentum factor are adequately covered in Section 4.4.1.1.

5.5.2 Variations and Improvements

In view of the above mentioned problems, there was a need i to improve the

performance ofthe program especially in the PC environment. A number of modifications

are incorporated, both in the program structure and in the implementation technique, to

make the network more efficient. The major modifications are discussed in the subsequent

sections.

5.5.2.1 Program Compatibility

The program was made compatible with DOS for the PC. To compensate for the

PC DOS’s limitation of a 64K stack segment, most of the local variables are converted

into global variables thus making them available via the ‘heap’. All variables in the

program are converted into double precision numbers (64-bit wide). The program is

compiled with a Borland CH (Ver. 3.1) compiler utilizing its options for speed

optimization. To make most of the RAM available to the network, a DOS-Extender

utility is employed. The PC is upgraded to a 486DX2-66MI-Iz processor with an

additional 8MB ofRAM. In addition, eight PCs with similar capabilities are engaged in an

effort to obtain the required results within a reasonable time.
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5.5.2.2 Generation of Random Weights

Slight modifications were made in the pseudo random number generator. Instead

of taking the seed from the user, a seed is now generated internally using the facility of

Borland C. The new design is code efficient.

5.5.2.3 Redefining the Implementation of Momentum Factor

The momentum factor is implemented by allocating separate registers (equal to

the number of patterns) for the weight change in each synaptic weights. The details of

this procedure is narrated in Section 4.4.1.2. This modification appreciably reduced the

number of iterations and improved the network learning.

5.5.2.4 Varying the Learning Rate (11)

The learning rate (11) is varied according to the performance index. Section 4.4.3

discusses the procedure for implementing this heuristic technique. A separate network

(modified DMNN) is implemented and is subjected to the defined problems. The

network converges much faster since the learning rate changes automatically, according

to the topography of the error surface.
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5.6 Summary

Three difi‘erent networks: the DMNN, modified DMNN and ANN, simulated in C,

are subjected to application problems. The networks are trained for a variety of learning

rates (77) and momentum factors (a). The learning pattern of each network is drawn and

its performance is compared/discussed. The software program used by Kim [1] is

discussed. Various improvements, suggested in Chapter 4, are implemented and their

effect is evaluated.



CHAPTER 6

CONCLUSION

A fimctional corroboration of the statistical model of DMNN developed by Kim

[1] has been performed in this thesis. The statistical model is used in the feedforward

multilayer neural network utilizing the backpropagation training algorithm The stochastic

fimction is compared with the standard sigmoidal fimction by subjecting the two networks

to test problems. It has been found that while Kim’s architecture has the desirable

properties of high speed and high density on a chip, the simulated DMNN generally

produces competitive results when compared with an ordinary ANN. An improved

backpropagation algorithm is implemented in an effort to improve the training of the

network As a result a small scale pattern classification has been achieved.

This chapter summarizes the research work, identifies the major contributions

made by this work and concludes with the outlining ofpossible future research tasks.

6.1 Summary

Presently, research is imderway to develop a fast, space eficient and

programmable architecture for dedicated VLSI ANNs which can be applied efi‘ectively to

the real engineering problems. The development of a pulse mode digital multilayer neural

109
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network by Kim [1] is a step towards the achievement of this goal. Kim developed a

DMNN architecture based on stochastic computing techniques which can be implemented

by using simple logic gates. Kim modeled the DMNN using VHDL code and analyzed its

performance in data compression and character classification problems.

The aim of this research was to validate the results of Kim’s model with a

software simulation technique using the C programming language. The stochastic

fimction developed by Kim [1] was employed in the backpropagation algorithm A two

layer DMNN was simulated using a C program The baclqiropagation algorithm was

analyzed, its weaknesses identified and various techniques were suggested for accelerating

the convergence process.

The DMNN and its improved variants are subjected to the problems ofXOR, data

encoding (8x3) and character classification (5-digit and lO-digit). The simulation results

indicate that the performance of the stochastic fimction is competitive, in this computing

environment, with that of a simoidal fimction.

An 80486 DX2 processor based personal computer was used for the training

simulations. Due to the intensive computational nature of the character classification

problems, these could not be represented adequately. In an efl‘ort to solve these

problems, the program structure and logic was improved appropriately.

To reduce the number of iterations required for the convergence, three

modifications are proposed in the backpropagation algorithm:
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1. The weight change, (Aw[n]), is calculated separately for each pattern and is used

for calculation of the next weight change, (Aw[n+1]), for the same pattern. This

method is more logical and has proved to reduce the training cycles.

2. Instead ofwasting the effect ofpast weight change for each pattern, it is saved and

used in the next iteration. This change not only proved to decrease the number of

iterations but also assisted in reducing the number ofinvalid weight values.

3. The learning rate (77) and the momentum factor (a) are varied dynamically so that

the system utilizes a near-optimum 1), determined by the local optimization

topography. Moreover, the momentum factor (a) is set to zero whenever its

efi‘ect is misleading rather than being beneficial.

The DOS extender mility is used in an attempt to flee maximum memory for the

program Eight systems are utilized to achieve the efi‘ect of parallel processing for the

pattern classification problems.

As a result of these changes, the 5-digit pattern classifier has been successfully

trained and tested for the ideal digits (noise free). The DMNN training involves

computations which are generally beyond the capabilities of a personal computer. Even

with all the possible eflons to enhance the capabilities of the PC, it was only possible to

solve the S-digit classification problem When the number of processing elements are

increased beyond a total of 34 and/or the number of patterns are more than five, the

network is unable to converge within a reasonable time. Even with five patterns, a 5-digit

classifier takes more than 8-10 hours for one training cycle. The misclassification error
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shows that the network needs more training, in terms of number of patterns and in terms

ofthe number ofiterations, to improve its performance.

6.2 Contributions

The major contributions ofthis research are:

1. The DMNN based on the stochastic random processes, developed by Kim [1], has

been sinmlated using C program and a fimctional validation ofhis results has been

performed.

2. The same set ofproblems have been solved by an ANN using a sigmoidal fimction

and the results ofthe two are compared.

3. Modifications to the backpropagation algorithm, incorporating the stochastic

fimction, have been presented and their efi‘ectiveness has been confirmed.

6.3 Future Research

The DMNN proposed by Kim has been partially validated, using a software

simulation technique, on a PC. A powerfiil system using multiprocessing can not only

validate the results of a lO-digit character classifier, but it can fiirther be used for solving

more complex pattern classification problems. Furthermore, instead of C, an object-
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oriented programming language (C++) can be applied which is better suited to such

problems.

The backpropagation technique can be improved finther by introducing the

concept of “expected source values”. Considering a more general form, the parameter

adjustment between a node a and a node b can be given as

W.b[n+1] = W.,,[n] + ndS. + aAWasz] (6.1)

where S., symbolizing source, is the output ofnode a or an external input to the network

and d. is an associated error at the node b. T. Samad suggests that instead of using the

current value ofthe source, S., use the following expected value ofS.

so = S. + ,6 5a (6.2)

where ,6 is any appropriate positive constant and 6.. is the error associated with node a.

The modified learning rule has proven to be rmrch faster [51].

Furthermore, recent advancements in firzzy logic set theory [52,53] can be

employed to vary 1], fl and a based on variation in the output error and the training time

(number of iterations) that has elapsed For instance, the learning rate, r], can have

following fiizzy rules:

1. ”(e,n) can be set to a large value when the output error, e, is large. This rule will

indicate that weights are far away fi'om the optimal value.
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2. At other instances, 77(e,r2) can be set to a small value when the output error, e, is

small. Thus indicating that weights are getting closer or are in the neighborhood

of optimal values.

3. 77(e,n) can be set to a large value if training time (number of iterations), is fairly

small indicating the beginning oftraining cycle.

4. ”(e,n) can be set to a small value for better convergence if the training time

(number ofiterations) is significantly large indicating the final stages ofthe training

process, and so forth.

Table 6.1 shows the possible firzzy associative memory (FAM) rules for n(e,n).

Similar rules can be developed for other parameters, ,6 and (I. These rules are based on

the relevant knowledge about the learning behavior.

Table 6.1. The Fuzzy Associative Memory (FAM) Rules for ”(e,n).

 

 

 

 

 

Output Error

Time (Iterations) Very small Small Large Very large

Less small large very large very large

Moderate very small small large very large

Large very small small large large       
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Flowcharts
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A.2 Feedforward Operation
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A.3 Feedback Operation

I START }

DEFINE LOCAL

VARIABLES

i

INCREASE rrER_CNT.

RESET DELTA WEIGHTS

6

( LOOP FOR ALLPATTERNH

v

 

   
 

 

 

 

 

 

   
 

 

   

 

 

     

 

 

 

 

 
 

 

 

 

    
 

 

 
 

 

      
  
 

/ LOOPFORALLOUTPUT \ math“)

LAYERNEURONS

0

ERR= (z, — v,)

i

LOOP FOR ALL NEURONS \

CONNECTED,WITH THIS

NEURON

YES NO

{__— ___-T

5; = (t, - v, )(net; ) 8; = (I, -v,)(l -net;)

l v l .
.. - - + _ o _ o 1

AW! [n+1] = 115.0 -mum Awp["+1] -‘I81(1 "“3 ) I __ ”a"!

l i

Aw} [n +1] = Aw;Ir [n + l] +aAw; [n] Aw; [n +1] = Aw; [n +1] +aAw;[n]

l l

Aw}[n] = Aw;[n+l] Aw} [n] = Aw;[n+1]

I T I

i
 

ABS_ERR-= ABS_ERR + IERRI

ss_ERR -= ss_ERR + (ERR?

I

   

 

I ss_ERR-s ss_ERR/ 2 ]
 

(Next Page )



118

LOOP FOR ALL HIDDEN

 

/

 

LAYER NEURONS

   

 

 

CONNECTED WITH THIS

LOOP FOR ALL NEURONS\

NEURON
 
 

   
 

 

n. W a, *

6;:netj’E8;(1-mt;)l—+-év—J 5;:(1-mtJEBIQ-netfi)lf%

  
 

 

l - l
 

 

 

- — - _ _ v
v

Aw” [n+1]— 1151(1 net} ,F—L—l-I-wgv, Aw;[n+ I] = 115:0- net; )_1_WW

yr 
  
 

I 
l
 

 

 

 

Aw§[n+ 1] = Awfln+ 1]+ aAwy'DI]   

Awfln-I-I]: Awfln+ll+aAwflnl

 

 

l

Aw',[n]=AW,'[ n+1 l

 

   

 

l

A wfln] = Aw;[n+1]

 

   

 
 

 

 
W

@

 

 



APPENDIX B

Input Data for DMNN Binary Classifiers



APPENDIX B

Input Data for DMNN Binary Classifiers

Input data in the form of network configuration, training patterns and testing

patterns used for XOR 8x3 encoding and S-digit classification problems are listed here.

For network configuration, the value in row 1' and column j represents the connectivity

between neurons 1' and j respectively. The ith element of the training and test pattern

vectors is the value applied to the ith neuron in the input layer. Input data for the lO-digit

classification problem has been omitted since the problem could not be represented. The

data is available in [1].

B.l XOR Problem

B.l.1 Network Configuration (xor.cnf)

 

B.l.2 Training Patterns (xor.pat)

0 0

 

B.l.3 Test Patterns (xor.tgt)

0
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B.2 8x3 Encoding Problem

B.2.l Network Configuration (8s3.cnl)

0

0 0

 
B.2.2 Training Patterns (8x3.pat)

 

B.2.3 Test Patterns (8x3.tgt)

0
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B.3 5-Digit Classification Problem

B.3.1 Network Configuration (5d.cnf)

l000000000000000000000000000000000

0l00000000000000000000000000000000

0010000000000000000000000000000000

0001000000000000000000000000000000

0000100000000000000000000000000000

0000010000000000000000000000000000

0000001000000000000000000000000000

0000000l00000000000000000000000000

0000000010000000000000000000000000

0000000001000000000000000000000000

0

0

0000000000001000000000000000000000

0000000000000100000000000000000000

00000000000000]0000000000000000000

0000000000000001000000000000000000

0000000000000000100000000000000000

0000000000000000010000000000000000

0000000000100000000000000

0000000000010000000000000

0000000000000000001000000000000000

0000000000000000000100000000000

0
0
0
0
0

0

0

0

0

0

0

0

0

0

0

000000000000000000001000000000

00000000000000000000001000000000

000000000000000000000100000000

00000000000000000000000100000000

llllllllll111111111111110000000001

lllllllllllllllllll11111000000000]

lllllllllllllllllll111110000000001

llllllllllll1111111111110000000001

000000000000000000000000l111000001

000000000000000000000000l111000001

0000000000000000000000001111000001

0000000000000000000000001111000001

000000000000000000000000l11.1000001

000000000000000000000000000000000l

B.3.2 Training Patterns for Ideal Digits (5d.pat)

0.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0

0.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.45 0.45 0.45 0.45 0.55 1.0

0.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

1.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.45 0.45 0.45 0.55 0.45 1.0

0.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0
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B.3.3 Test Patterns for Ideal Digits (5d.tgt)
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B.3.4 Test Patterns for Ideal Digits + 10% Noise (three noisy patterns per digit)
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B.3.6 Test Patterns for Ideal Digits + 10% Noise (three noisy patterns per digit) +

20% Noise (three noisy patterns per digit)
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