

This is to certify that the

dissertation entitled

The influence of IHF and FIS on the binding DnaA protein to oriC, the \underline{E} . \underline{coli} chromosomal origin

presented by

Carla Margulies

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Biochemistry

Date April 4, 1997

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due.

DATE DUE	DATE DUE	DATE DUE

MSU is An Affirmative Action/Equal Opportunity Institution c/circ/datedua.pm3-p.1

THE INFLUENCE OF IHF AND FIS ON THE ORDERED BINDING OF DnaA PROTEIN TO *oriC*, THE *E. coli* CHROMOSOMAL ORIGIN

By
Carla Eva Margulies

A DISSERTATION

Submitted to

Michigan State University
in partial fulfillment of the requirements

of the degree of

DOCTOR OF PHILOSOPHY

Department of Biochemistry

1997

Abstract

THE INFLUENCE OF IHF AND FIS ON THE ORDERED BINDING OF DnaA PROTEIN TO *oriC*, THE *E. coli* CHROMOSOMAL ORIGIN

By Carla Eva Margulies

Initiation of Escherichia coli chromosomal replication from oriC is dependent on the sequence specific DNA binding protein, DnaA protein. Although DnaA protein is known to bind to four indirect repeats (called DnaA boxes R1, R2, R3, and R4) within oriC, little is known of whether DnaA protein binds these sequences in a random or ordered manner or whether other oriC binding proteins affect the binding of DnaA protein. Gel mobility shift, footprinting and in vitro replication assays, were used to study the binding of DnaA protein to oriC and the effect of two sequence specific DNA binding proteins, integration host factor (IHF) and factor for inversion stimulation (FIS), on the binding of DnaA protein. From these studies, DnaA protein was found to bind to oriC in an ordered manner in which DnaA boxes R1 and R4 are bound at low concentrations of DnaA protein, and the interior boxes, R2 and R3, are bound at higher concentrations. In addition replication of an oriC plasmid correlates with the binding of all four sites. Neither IHF nor FIS affects the binding of DnaA protein to a linear oriC fragment. However, IHF acts as a positive factor in *in vitro* replication, whereas FIS acts as a negative factor.

To my parents and brother

Acknowledgments

I would like to take this opportunity to thank the many who have made my work possible. First, I would like to thank Jon Kaguni who has been my thesis advisor. Next, I would like to thank Laurie Kaguni, my secondary advisor, for her opinions and lab materials. Thanks to my committee members, John Wison, Lee Kroos, Susan Conrad, Steve Triezenberg and alternate member Zack Burton for their advice and guidance.

As both Kaguni labs work closely with each other, I have enjoyed the company of the members of both labs. In particular, I enjoyed the sense of humor of Dave Lewis, The Studier of Butterflies. Ice cream outings with Dave provided an excellent forum for discussions on evolution, movies, books, and the opposite sex. I had the good fortune to be co-founder of the MSU Biochemistry Brewing Company with Dave and the Kaguni institution, Kevin "Mac" Carr. As his name would suggest Kevin has been very helpful with my countless computer problems. I thank Mark Sutton for the useful scientific discussions and teaching me the importance of The Bears and Mike Ditka. From Mark I also learned of the nutritional value of corn dogs. I enjoyed Yuxen Wang's many stories of growing up in China and his observations and sense of humor on American culture and society. I have enjoyed discussions on the virtues of wine, travel and other things of life with Matias Vicente Cruz, a fellow activist for the cause of federally funded travel. Members of the lab long gone, Jarek Marszalek and Ted Hupp not only indocternated me to the workings of the Kaguni labs but also introduced me to Bob Dylan. I would like to thank other member the Kaguni labs, past and present including; Wenge Zhange, Nikki Mather, Scott Cherry, Carol Farr, Andrea Williams, Jianjun Wang, Angie Kolhoff, Matt Olson, Li Fan, Anthony Lagina and the many undergraduates.

Outside of the lab many contributed to my work much more than they may realize. Leaving here for New York, I will miss my Friday morning coffee/journal club with Drs. Cindy Petersen and Marty Reiger. They are friends who have endured my bicycle rides and my rantings on many subjects. Janek Werel and Geoff and Erin Williams are friends who sustained me with their company their cooking and their appreciation of good red wines and whiskey, Thomas Derderian, who I had the fortune to meet on one of my wanderings in the Lansing area via bicycle, endured my rantings, provided endless support and encouragement in addition to food and drink, and a room with a view. Lastly, I thank those I met through Velocipede Peddler who have taught me about cycling, accompanied me on many bicycling outings, and kept my wheels turning smoothly.

Finally, I would like to thank Beth Gantt, Jerry Dietzer, Bibi Chromwell, and Susan Gottesman who have influenced me long before I came to East Lansing. Most importantly, I thank my parents for providing the opportunities and the freedom for exploration. I thank my brother, Martin, often has provided me with inspiration and reminders of real biology.

Table of Contents

F	Page
List of Tables	viii
List of Figures	ix
List of Abbreviations	xii
Chapter I. Literature Review	1
Introduction	2
Physiological characteristics of chromosomal replication	3
The origin of chromosomal replication, oriC	6
Initiation of replication from oriC	12
The molecular model of initiation of chromosomal replication	12
Other factors required for oriC-dependent replication	16
oriC-independent replication	17
DnaA protein	18
The dnaA gene	18
The promoter and regulation of the dnaA gene	21
Biochemical properties of DnaA protein	22
Structural organization of DnaA protein	24
Role in the cell other than initiation of chromosomal replication	27
Replication of plasmids	27
Regulation of Transcription	31
Regulation of initiation at oriC	32
DnaA protein in the regulation of chromosomal replication	32

Other proteins which bind oriC	34
Inhibitor of chromosomal initiation (IciA)	35
Histone like proteins	35
Dam methylation	38
Transcription around oriC	40
Thesis overview	42
Chapter II. The ordered and sequential binding of DnaA protein to oriC	
the chromosomal origin of Escherichia coli	44
Abstract	45
Introduction	46
Experimental Procedures	51
Gel mobility shift assays	51
In situ cleavage with 1,10 phenanthroline-copper	52
Complementiation replication assays	53
Results	54
Six discrete complexes are formed on binding of DnaA protein to	
oriC	54
Formation of Complex VI correlates with formation of an active	
replication complex	58
Relative binding affinities of DnaA protein to supercoiled and linear	
DNA	63
Ordered binding of DnaA protein to oriC	66
DnaA protein binds to DnaA box R4 with greater affinity than to	

R1	71
Discussion	74
Chapter III. The influence of IHF on the binding of DnaA protein to	
oriC	80
Abstract	81
Introduction	82
Experimental procedures	88
Reconstituted replication assays	88
Probing complexes with antibodies	89
Determination of the dissociation rate constant of the IHF	
Complex 1	90
Results	92
IHF substitutes for HU in purified oriC-dependent replication	92
IHF forms a single major complex with oriC whereas HU forms	
multiple complexes	93
IHF binds oriC at a single site	97
Novel complexes with oriC form in the presence of IHF and DnaA	
protein	97
IHF does not aid the binding of DnaA protein to the weaker inside	
DnaA boxes within oriC	106
IHF does not stabilize DnaA-oriC complexes	106
Discussion	114
Although IHF and HU bind to oriC differently, they can replace	

each other in oriC replication	114
IHF does not affect the affinity of DnaA protein for DnaA boxes	
within oriC	115
Chapter IV. The influence of FIS on the binding of DnaA protein to oriC	
and on replication from oriC	117
Abstract	118
Introduction	119
Experimental procedures	125
Supercoiling assay	125
Results	126
FIS forms multiple complexes with a DNA fragment containing	
oriC	126
FIS binds several sites within oriC	126
FIS dissociated from oriC more slowly that DnaA protein	133
Novel oriC complexes are formed in the presence of both FIS and	
DnaA protein	134
FIS and DnaA protein binding are not mutually exclusive	134
FIS does not affect DNA replication on binding of oriC	140
FIS can not substitute for HU in in vitro replication assays	147
Binding of FIS to oriC does not affect initiation from oriC in RNA	
polymerase dependent initiation	147
Discussion	155
FIS hinds specifically to ariC	155

Specific binding of FIS to oriC has no effect on initiation of	
chromosomal replication in vitro	155
Roles of FIS in initiation at oriC	156
Chapter V. Summary and Perspectives	158
Bibliography	

List of Tables

Chapter II.	
Page	
Table 1. Sequences of DnaA boxes in oriC and the dnaA promoter	
region	55

List of Figures

Chapter I.	Page
Figure 1. Schematic presentation of the relationship between chromosomal	
replication and cell division	4
Figure 2. Consensus sequence of the minimal chromosomal origin	8
Figure 3. A schematic representation of relevant sequences in and	
flanking oriC	10
Figure 4. Model of initiation from oriC	14
Figure 5. A schematic of the dnaA operon and its promoter region	19
Figure 6. E. coli DnaA amino acid deduced sequence compared with the	
DnaA consensus sequence	25
Figure 7. Structure-function of DnaA protein	28
Chapter II.	
Figure 1. The <i>oriC</i> region	47
Figure 2. DnaA protein bound to oriC forms six complexes that are	
resolved by native polyacrylamide gel electrophoresis	56
Figure 3. Formation of Complex VI correlates with DNA replication	
activity	59
Figure 4. Discrete complexes are formed by ATP- or ADP-bound form of	
DnaA protein	61
Figure 5. Both supercoiled and linear oriC plasmids are comparable in	
reducing binding of DnaA protein to DnaA box R4	64

Figure 6.	In situ footprinting of complexes with 1,10-phenanthroline-	
copper		67
Figure 7.	DnaA protein binds to DnaA box R4 with greater affinity than	
to R1		72
Chapter II	II.	
Figure 1.	The oriC region	85
Figure 2.	IHF can replace HU in vitro oriC-dependent replication in the	
presen	ce or absence of RNA polymerase	93
Figure 3.	Both IHF and HU bind oriC	95
Figure 4.	In situ footprinting of IHF complexes with 1,10-phenanthroline-	
copper	T	98
Figure 5.	Novel complexes form in the presence of both IHF and DnaA	
proteir	1	101
Figure 6.	The novel complexes contain both DnaA protein and IHF	104
Figure 7.	The order of DnaA protein binding to oriC is not altered by	
IHF		107
Figure 8.	Determination of the half-life of the IHF Complex 1	111
Figure 9.	The dissociation of DnaA protein from oriC was not altered by	
IHF		112
Chapter I	v.	
Figure 1.	The oriC region	222
Figure 2.	FIS bound to oriC forms multiple complexes that are resolved	

by native polyacrylamide gel electrophoresis	127
Figure 3. In situ footprinting of complexes with 1,10-phenanthroline-	
copper	129
Figure 4. The dissociation of DnaA-oriC and FIS-oriC complexes	135
Figure 5. Novel complexes with oriC form in the presence of both DnaA	
protein and FIS	138
Figure 6. In situ footprinting of the DnaA-FIS-oriC complexes with	
phenanthroline-copper	141
Figure 7. At high levels, FIS inhibits in vitro oriC-dependent	
replication	143
Figure 8. FIS binds <i>oriC</i> in the presence of supercoiled vector DNA	145
Figure 9. Inhibitory levels of FIS induce a highly negatively supercoiled	
topoisomer of pBSoriC	148
Figure 10. Only high levels of FIS inhibit oriC replication in the presence	
of variouis amounts of HU	150
Figure 11. FIS binding oriC does not affect initiation from oriC in RNA	
polymerase dependent initiation	151

List of Abbreviations

ATPase ATP synthase

bp base pairs

Dam deoxyadenosine methyltransferase

DnaA box the 9-mer DNA consensus sequence recongized by DnaA protein

DTT dithiothreitol

EDTA (ethylenedinitrilo)tetraacetic acid

FIS factor for inversion stimulation

HEPES 4-(2-hydroxyethyl)-1-piperazineethane-sulfonic acid

IHF integration host factor

kDa kilodalton

PVA polyvinyl alcohol

rRNA ribosomal RNA

tRNA transfer RNA

SDS sodium dodecyl sulfate

Tris Tris(hydroxymethyl)aminomethane

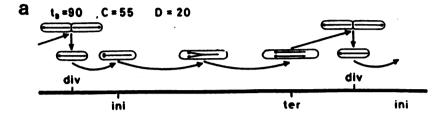
Chapter I

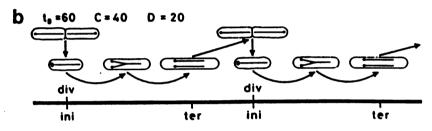
Literature Review

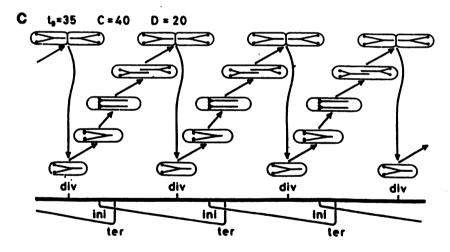
Introduction

Cell division is essential for the survival of *Escherichia coli* or any organism. Cell division depends on the doubling of all the cell's components; the chromosome, the cytoplasm, the cell wall and the outer and cytoplasmic membranes. Without duplication and proper segregation of chromosomal material, daughter cells will not survive to pass on the instructions to allow the two new daughter cells to carry out their functions. Therefore, chromosomal replication must be tightly controlled and coordinated to growth of the cell. In 1963, Jacob proposed a model for the regulation of replication and the segregation of the bacterial chromosome (Jacob *et al.*, 1963). He envisioned that replication initiated from a unique site on the chromosome and the bacterial cell envelope served as a scaffold in much the same way that the eukaryotic spindle functions. As new material was incorporated into the growing membrane, new material would be inserted between the two new nucleoids.

The genetic material of *E. coli* is contained on a single circular chromosome of 4,720 kilobase-pairs (Kohara *et al.*, 1987). As Jacob speculated, replication of this chromosome occurs from a unique site (now referred to as *oriC*) located at approximately 85 minutes on the revised *E. coli* chromosome map (Louarn *et al.*, 1974; Marsh and Worcel, 1977). DNA synthesis then proceeds bidirectionally and terminates near the *trp* gene located at 25 minutes on the *E. coli* chromosome map (Bird *et al.*, 1972). In early studies, Messelson and Stahl determined that a newly replicated DNA molecule contained one newly synthesized strand and one old strand (Messelson and Stahl, 1958). This type of replication is referred to as semiconservative replication.


Physiological characteristics of chromosomal replication.


The frequency of initiation of replication and not the rate of elongation regulates chromosomal replication. This conclusion is based on observations from dividing the bacterial cell cycle into three periods and measuring the length of these periods during various growth rates (Cooper and Helmstetter, 1968; Helmstetter, 1968) (Figure 1). The minimum amount of time required to replicate the entire chromosome, period C, is approximately 45 minutes (Trueba *et al.*, 1982). Because period C and the time between the completion of chromosomal replication and cell division, period D, remains relativity constant regardless of variation in generation times from 22 to 70 minutes (Skarstad *et al.*, 1983), the time required to achieved the capacity to initiate chromosomal replication, period I, is concluded to be variable (Helmstetter, 1994).


The fact that the doubling time of *E. coli* can proceed twice as fast as the time required to replicate the chromosome seems to be contradictory. However, initiation of subsequent rounds of chromosomal replication can occur before previous replication cycles are completed (Figure 1). Thus, a fast growing cell contains multiple copies of the chromosome (Skarstad *et al.*, 1985). In rapidly growing cultures with multiple chromosomal origins, all *oriC* within an individual cell initiate at the same time (Skarstad *et al.*, 1986). This is called synchronous initiation. Mutations of factors involved in the regulation of initiation often result in asynchronous timing of initiation (Boye and Lobner–Olesen, 1990; Lu *et al.*, 1994; Skarstad *et al.*, 1988).

Central to models of the regulation of initiation is the idea that the ratio of cell mass to the number of chromosomal origins within a cell triggers initiation

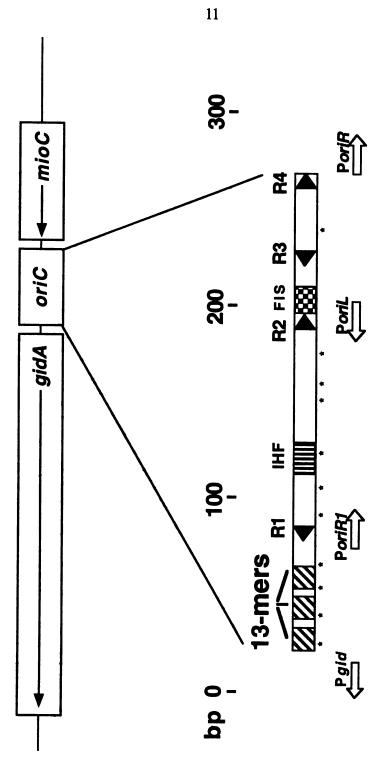
Figure 1. Schematic presentation of the relationship between chromosomal replication and cell division (von Meyenburg and Hansen, 1987). t_D represents the generation time. The bacterial cell cycle can be divided into distinct periods, C and D. C represents the time between initiation (ini) and termination (ter) of chromosomal replication. D represents the time between termination of chromosomal replication and cell division (div). The time of initiation varies as a function of t_D. a) When t_D is greater than the sum of the periods C and D, initiation occurs after the division event. b) When t_D is equal the sum of the periods C and D, initiation occurs at the time of the division event. c) When t_D is less than the time for C and D, initiation occurs before the prior cycle is complete. As a result a single cell will contain more than one *oriC*. All origins within a cell initiate simultaneously.

(Donachie, 1968). This ratio is called the initiation mass and remains constant irrespective of growth rate. Initiation of replication is dependent on *de novo* protein synthesis, as blocking protein synthesis with antibiotics allows the completion of replication but prevents additional initiation events (Lark and Renger, 1969; Messer, 1972). These observations led to the speculation that the accumulation of a specific protein may link initiation mass with initiation. DnaA protein, a protein involved in the first steps of initiation, is an obvious candidate for such a regulator of initiation.

Asynchronous initiation was mentioned as a common phenotype of initiation mutants. Another characteristic which differentiates genes involved in initiation of replication from those involved in chain elongation is slow and fast stop phenotypes (Kohiyama et al., 1966). Temperature sensitive mutants defective in chain elongation result in an immediate stop in DNA replication at nonpermissive temperatures; they exhibit a fast stop phenotype. In contrast, mutants of genes involved in initiation, such as dnaA and dnaC, result in the completion of the round of replication but fail to initiate the next round of replication; they exhibit a slow stop phenotype (Wechsler, 1975; Zyskind et al., 1977).

The origin of chromosomal replication, oriC

The origin of chromosomal replication (oriC) located between the dnaA and bglA genes was mapped by pulse labelling of synchronized cells (Louarn et al., 1974; Marsh and Worcel, 1977). The minimal sequence of oriC required to confer autonomous replication on non replicating DNA is a 245 base pair


sequence (Oka et al., 1980) (Figure 2). From mutagenesis (Oka et al., 1984) and sequence comparison of oriC sequences from members of the Enterobacteriaceae family (Zyskind et al., 1983), several key sequences are identified as important for replication (Figure 2): 1) an A-T rich region located at the left border of oriC, 2) four indirect repeats of the sequence 5'-TTAT(C/A)CA(C/A)A-3', called DnaA boxes, and 3) 8 Dam methylation sites (5'-GATC-3'). The AT-rich region is composed of three 13-mers, identified as left, middle and right (Figure 3). The four DnaA boxes are named, R1, R2, R3 and R4. Dam methyltransferase catalyzes the transfer of a methyl group to the N6 position of the adenine on both strands within its recognition sequence (Marinus and Morris, 1974). All three sequences will be discussed in more detail.

In addition to these sequences, several promoters are located within and flanking the minimal oriC (Figure 3) (Asai et al., 1992; Braun and Wright, 1986; Lother and Messer, 1981; Schauzu et al., 1987). Transcripts from the promoter PoriL originate from just right of DnaA box R2 within oriC and proceed toward the left end of oriC (Figure 3). This promoter appears to be negatively regulated by the binding of DnaA protein to boxes R2 and R4 (Asai et al., 1992). Transcription from PoriR1, which begins near the 13-mers and proceeds rightward, appears to be positively regulated by DnaA protein (Asai et al., 1992). An additional promotor, PoriR, is located just to the right of R4 and directs transcription to the right (Schauzu et al., 1987). From a promoter located left of the AT-rich 13-mers, gidA (glucose inhibition of division) transcription is directed away from oriC (Kolling et al., 1988). mioC (modulation of initiation at oriC) is located several hundred base-pairs to the right of oriC and is transcribed into

Figure 2. Consensus sequence of the minimal chromosomal origin (Zyskind et al., 1983). The sequences from six bacterial chromosomal origins are compared. They were aligned to minimize the number of changes of the consensus sequence. The large box indicates the boundaries of the minimal oriC sequence required to confer autonomous replication. A large capital letter indicate that the residue is found in all six bacteria; a small capital letter indicates that the residue is found in five of the six origins; a lower case letter indicates that it is found in three or four origins; and n indicates that all four nucleotides are found at that position. Dashes indicate deletions. The bold letters indicate residues where single base substitutions produce a oriC-phenotype (Oka et al., 1984). The AT-rich 13-mers are indicated with the arrows at the left border of oriC. The DnaA boxes and their orientations are indicated by arrows and are labelled R1, R2, R3, and R4. The Dam methylation sites (GATC) are underlined.

BomHI SO BOLLI BOLLI BOLLI SO BOLLI 100 BOMHI 100	CAAGG.TCCGGC CCCGG.TCCTGT GTCAG.TCCACG GTCAG.TCCGCG GTCATTATTCAT CTGGA.AATGAT	150 40211 150 40211 150	######################################
SATĊGnnnnnnig	CACTECC CECCAGE ACTETET ACTETET TCTTATE CAGETTE	CTGGGATCAnAATG	Anthe Annun - 6 A
So NTC CENTATIAG	·····<	150 Avall, C.66A.C. G.66T.C. C.6TT.C. C.6TT.C. C.AGC.A.	250 EthanCatanTTATCCA CCTGA . G. G TTG. C. G. G TTA. G. T. G CTT. C. TT. C
IA-AGATCI-TT-T	 	376AÀTGAT ce el	GettnhtGeancetttenanCGA. CA.CT.CCTGAGA. CA.CT.TCC.CGA. CA.CT.TTC.CGA. CA.CT.TTC.GGA. CA.CT.TTC.GGA. CA.CT.TTA.G C.TTA ACCAGATTA.G .AAAG. ACT.GA.CTT.C
AGATCT ATTATT		egatCnhtencTe A. ATTAA. A. ACTAE. A. ACAAT. A. CTTT. TT CTTAC. T. AAATCT	TTT66ATAACTAcn6
EnnghtacTaaAaanA	666CT666CT66CT66CT66CT676776AGT6AAC.TA T6A	ATCAnnunTuhune - caace caaa tecet caaa Acet Aacaa ceat Aacaa ceat Aacaa.	Ang accinegitate to a constant accident
GGATC		101 101 101 101 101 101 101 101 101 101	AAAA

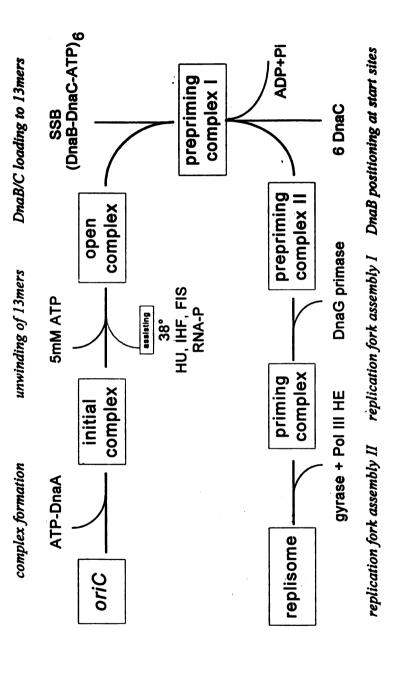
Figure 3. A schematic representation of relevant sequences in and flanking oriC. The top figure represents oriC between mioC and gidA. The directions of transcription of these genes are indicated by the arrows. The lower figure illustrates the location of important sequences involved in initiation. The promoters and their orientations are indicated by the open arrows; the three 13-mers by the slashed boxes; the DnaA boxes and their orientations by the filled triangles; an IHF binding site by the vertical lined box; and the FIS binding site by the checkered box. The astericks indicate the Dam methylation sites.

without transcribing through *oriC*. The function of the gene products encoded by *gidA* and *mioC* are not known.

The difficulty of studying replication of the entire chromosome is overcome by the cloning of *oriC* on plasmids, called minichromosomes (Messer *et al.*, 1978). These plasmids are dependent on *oriC* for replication and retain many of the same characteristics as chromosomal replication including bidirectional fork movement (Meijer and Messer, 1980), synchronous initiation (Helmstetter and Leonard, 1987b; Leonard and Helmstetter, 1986), dependence on protein and RNA synthesis (Lark and Renger, 1969; Messer, 1972), and dependence on growth rate (Lobner-Olesen *et al.*, 1987).

Initiation of replication from oriC

The development of *in vitro oriC* dependent replication assays using crude enzyme extracts (Fuller *et al.*, 1981) or purified proteins (Kaguni and Kornberg, 1984), led to a model by which DNA replication is initiated from *oriC*. Like *in vivo*, *in vitro* replication from *oriC* proceeds bidirectionally (Kaguni *et al.*, 1982; Meijer and Messer, 1980), requires a negatively supercoiled template (Kowalski and Eddy, 1989; von Freiesleben and Rasmussen, 1992), and is dependent on DnaA protein (Carl, 1970; Wechsler and Gross, 1971), DnaB protein (Zyskind and Smith, 1977b), and DnaC protein (Wechsler, 1975).


The molecular model of initiation of chromosomal replication

Biochemical studies have indicated that the first step in the replication of the *E. coli* chromosome involves recognition and topological alteration of the

oriC region by DnaA protein (Figure 4) (Fuller et al., 1984). The initial binding of DnaA protein to the DnaA boxes is proposed to enhance the binding of additional DnaA molecules. The final DnaA-oriC complex that is thought to be active in promoting initiation of DNA replication contains approximately 30 to 40 DnaA monomers (Fuller et al., 1984). oriC appears to be wrapped around a core of DnaA molecules. In the presence of HU or integration host factor (IHF) (Hwang and Kornberg, 1992a; Skarstad et al., 1990), this nucleoprotein complex is proposed to distort the topology of oriC resulting in unwinding of the AT-rich 13-mers, forming the open complex (Bramhill and Kornberg, 1988a). In the absence of HU or IHF, unwinding of the 13-mers can be facilitated by RNA polymerase (Baker and Kornberg, 1988). Although DnaA protein binds to oriC equally well in the presence or absence of nucleotide (Bramhill and Kornberg, 1988a), unwinding of oriC requires the ATP-bound form of DnaA protein (Sekimizu et al., 1988a; Yung et al., 1990).

Following unwinding in the presence of ATP, six DnaC monomers form a complex with a hexameric DnaB helicase (termed DnaBC complex) (Kobori and Kornberg, 1982; Wickner and Hurwitz, 1975). DnaA protein is proposed to guide the DnaBC complex into the open complex thorough a direct DnaA-DnaB interaction to form the prepriming complex (Marszalek and Kaguni, 1994). DnaB helicase then is proposed to unwind the strands of DNA bidirectionally (Baker et al., 1986), (Baker et al., 1987). In this model, the presence of DnaC protein in the preinitiation complex inhibits DnaB helicase activity (Allen and Kornberg, 1991). DnaC protein is thought to dissociate from the complex of DnaA protein and DnaB protein bound to the origin sequence (Allen and Kornberg, 1993). Once

Figure 4. Model of initiation from oriC (Messer, 1996). Initiation occurs in 6 steps: 1) DnaA binds to oriC to form the initial complex; 2) DnaA unwinds the 13-mers to form the open complex; 3) DnaBC complex enters the unwound oriC to form the prepriming complex I; 4) DnaC dissociates from the prepriming complex; 5) primers are formed; and 6) DNA polymerase III holoenzyme uses these primers to initiate DNA synthesis.

DnaB helicase has separated a portion of the origin in both directions, primase enters the initiation complex to synthesize short RNAs (van der Ende *et al.*, 1985) which act as primers for DNA polymerase III holoenzyme (Maki and Kornberg, 1988). Elongation of these primers ultimately results in the formation of two daughter chromosomes.

Other factors required for oriC-dependent replication

In addition to DnaA protein, DnaB protein, DnaC protein, HU, primase and DNA polymerase III holoenzyme, several other proteins are required for *in vitro* replication. Several of these proteins, such as RNA polymerase, topoisomerase I and DNA gyrase are involved in changing the topology of DNA. Others factors, such as RNase H, are involved as *oriC* specificity factors (Kogoma *et al.*, 1985). Lastly, single stranded DNA binding protein (SSB), is involved in stabilizing single-stranded DNA (Sigal *et al.*, 1972) which is exposed during DNA replication. Though DnaA protein can unwind the origin in the absence of SSB (Bramhill and Kornberg, 1988a), SSB stimulates DnaB helicase activity (LeBowitz and McMacken, 1986) and the processivity of DNA polymerase III holoenzyme (Fay *et al.*, 1981; Fay *et al.*, 1982; LaDuca *et al.*, 1983).

Topoisomerase I and DNA gyrase are responsible for maintaining the negative superhelicity of the chromosome (Pruss, et al., 1982; Wang, 1996). Mutations in gyrA or gyrB which encode the A and B subunits of DNA gyrase, respectively, suppress deletion mutations in topA, encoding topoisomerase I (DiNardo et al., 1982; Pruss et al., 1982). Topoisomerase I and DNA gyrase have opposite effects; topoisomerase I relaxes negative supercoils (Pruss et al., 1982),

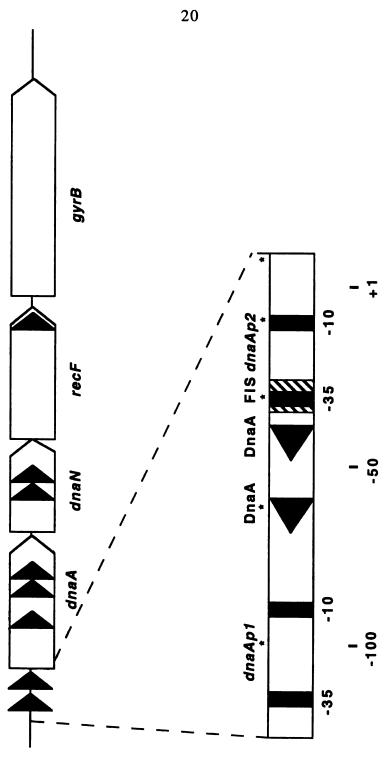
whereas DNA gyrase introduces negative supercoils (Marians et al., 1977).

DNA Gyrase plays an important role in maintaining the negative superhelicity required for initiation of chromosomal replication (Hiasa and Marians, 1994b; Kowalski and Eddy, 1989) and releasing positive supercoils that form ahead of the replication forks (Filutowicz and Jonczyk, 1983; Kreuzer and Cozzarelli, 1979). Both DNA gyrase and topoisomerase I, are involved in modulating the changes in supercoiling due to chain elongation by RNA polymerase (Liu and Wang, 1987). DNA Gyrase acts ahead of transcribing RNA polymerase removing positive supercoils whereas topoisomerase I acts behind RNA polymerase relaxing negative supercoils.

oriC-independent replication

Chromosomal replication can occur in the absence of *oriC* and *dnaA* via three different mechanisms. The first mechanism is by integrating a plasmid or phage origin into the chromosome (Koppes and Nordstrom, 1986). Replication can be also driven from other origins (collectively known as *oriK*) already located on the *E. coli* chromosome via induction of the SOS response (Magee *et al.*, 1992). This type of replication is termed damage-induced stable DNA replication (iSDR) and is thought to enable the cell to meet various environmental stresses (Hong, et al., 1995; Kogoma *et al.*, 1979). In addition, mutations in *rnhA* can suppress *oriC* and *dnaA* deletions (de Massy *et al.*, 1984; Kogoma *et al.*, 1985). However, these strains grow poorly. *rnhA* encodes RNase H which specifically degrades RNA-DNA hybrids (Arendes, et al., 1982; Miller *et al.*, 1973) which could potentially could act as primers for DNA polymerase III holoenzyme.

Mutations in *rnhA* are thought to allow RNA primers other than those located at *oriC* to serve as primers for DNA polymerase III (Horiuchi *et al.*, 1984). In support, *in vitro* replication remains dependent on *oriC* in the presence of RNA polymerase only with the addition of RNase H (Ogawa *et al.*, 1984).


DnaA protein

The dnaA Gene

The *dnaA* gene was originally identified by the identification of temperature sensitive mutants that exhibited a slow stop phenotype at elevated temperatures (Kohiyama *et al.*, 1966). Employing a temperature sensitive mutant, the *dnaA* gene was mapped and cloned by complementation (Hansen and von Meyenburg, 1979; Miki *et al.*, 1979). The *E. coli dnaA* gene is located at 83 minutes on the revised *E. coli* genetic map, close to *oriC*. From the deduced amino acid sequence, the gene encodes a basic polypeptide of 467 amino acids with a calculated mass of 52.5 kDa (Ohmori *et al.*, 1984). The *dnaA* gene is the first gene in an operon containing *dnaN* (Sakakibara *et al.*, 1981), encoding the β sliding clamp of DNA polymerase III holoenzyme (Burgers *et al.*, 1981), *recF*, encoding a protein involved in recombination (Ream *et al.*, 1980) and *gyrB*, encoding the B subunit of DNA gyrase (Hansen and von Meyenburg, 1979) (Figure 5).

DnaA protein appears to be found in all bacteria from E. coli and Bacillus subtilis to Mycoplasma and cyanobacteria (reviewed in Messer, 1996). Both the conservation of the arrangement of the dnaA operon and the similarity of the DnaA amino acid sequence in a large variety of bacteria suggests that DnaA

Figure 5. A schematic of the *dnaA* operon and its promoter region. The genes and the direction of transcription are indicated by the open boxes. Promoters are indicated by the filled arrowheads. The *dnaA* promotor region is expanded below. The -10 and -35 sequences are indicated by the filled boxes, the DnaA boxes and their orientation by the shaded triangles; the FIS binding site with the slashed box; and the Dam methylation sites by the asterisks.

protein shares a common function in these bacteria (Ogasawara and Yoshikawa, 1992; Yoshikawa and Ogasawara, 1991).

The promoter and regulation of the dnaA gene

The dnaA gene contains two promoters, dnaAp1 and dnaAp2, located 250 and 160 nucleotides, respectively, from the translational start site (Hansen et al., 1982) (Figure 5). A DnaA box identical in sequence to boxes R1 and R4 of oriC is located between the two promoters. Protection experiments reveal another potential DnaA box, also located between the promoters (Wang and Kaguni, 1987). This second site contains the sequence 5'-TTTTCCACA-3' which fits the more relaxed definition of the DnaA box (see below). Binding of DnaA protein to these sites inhibits transcription from both promoters (Braun et al., 1985; Lee and Hwang, 1997; Wang and Kaguni, 1987). Like oriC, the promotor region also contains numerous Dam-methylation sites. Transcription from dnaAp2 is more efficient when the promoter region is fully methylated (Braun and Wright, 1986; Kucherer et al., 1986). Factor for inversion stimulation (FIS), a histone-like protein involved in regulating transcription from some promoters in relation to the rate of growth (Finkel and Johnson, 1992), binds to sequences that overlap the -35 box of dnaAp2 (Froelich, 1996). FIS appears to negatively regulate dnaA expression as fis null mutants have a 2.5 fold increase in the level of DnaA protein (Froelich, 1996). The *dnaA2p* promoter, the DnaA box and several of the GATC sites are conserved between E. coli, S. typhimurium and S. marcesces suggesting that the dnaA gene in these different bacteria is regulated in a similar manner (Skovgaard and Hansen, 1987).

Biochemical properties of DnaA protein

DnaA protein was first purified by a DNA binding assay then by complementing crude extracts from a dnaA(ts) strain in in vitro oriC replication assays (Chakraborty et al., 1982; Fuller and Kornberg, 1983). DnaA protein has several biochemical activities: DNA binding (Fuller et al., 1984); ATP binding (Sekimizu et al., 1987); ATP hydrolysis; cAMP binding (Hughes et al., 1987); interaction with acidic phospholipids (Sekimizu et al., 1988b), and self aggregation (Sekimizu et al., 1988b).

DNase I protection and filter binding were used to demonstrate the ability of DnaA protein to bind the four DnaA boxes within oriC (Fuller et al., 1984). DnaA protein binds to an oligonucleotide containing the sequence of oriC DnaA box R4 in its native context with a K_D of 1 nM (Schaper and Messer, 1995). Using gel mobility shift assays with 21-mer oligonucleotides, the DnaA protein recognition sequence is rigidly defined as 5'- TTATNCACA-3' (Schaper and Messer, 1995). However, flanking sequences adjacent to DnaA boxes are also important in determining the efficiency with which DnaA protein will bind as its affinity for a 21-base pair oligonucleotide containing the oriC DnaA box R4 is reduced 50 fold by changing the flanking sequences. Surprisingly, DnaA protein binds an oligonucleotide containing oriC DnaA box R3 with an affinity no greater than an oligonucleotide containing random sequences. The ability of DnaA protein to protect R3 contained within oriC is thought to be the result of cooperativity. The binding of highly divergent sequences in the presence of an adjacent strong consensus site is common for DnaA protein and suggests that protein-protein interactions facilitate the binding to weaker sites (Stenzel et al.,

1991; Wang and Kaguni, 1987). The combination of the effect of flanking sequences and cooperative binding may explain why DnaA protein appears to also recognize a more relaxed definition of the DnaA box, 5'(T/C)(T/C)(A/T/C)T(A/C)C(A/G)(A/C/T)(A/C)-3' (Schaefer and Messer, 1991).

As expected from the conserved ATP binding motif, DnaA protein binds ATP and ADP with high affinity (K_D of 0.03 uM and 0.1 uM, respectively) (Sekimizu *et al.*, 1987). DnaA protein is speculated to have a second lower affinity site based on the requirement of 5 mM ATP to unwind the AT-rich 13-mers (Sekimizu *et al.*, 1987). Hydrolysis of ATP to ADP occurs slowly; 50% of bound ATP is hydrolysed in 15 minutes. This ATPase activity is dependent on DNA. ATP hydrolysis is not required for DnaA protein dependent unwinding of *oriC* as the nonhydrolyzable ATP analog, ATPγS, can substitute for ATP in unwinding *oriC*. Instead, the binding of ATP is thought to produce a conformational change which is important for unwinding (Yung and Kornberg, 1989).

DnaA protein also binds cAMP with high affinity (K_D 1 uM) (Hughes *et al.*, 1988). Although ATP inhibits cAMP binding, this inhibition is noncompetitive. Dissociation of ADP from DnaA protein in the presence of ATP is slow (Sekimizu *et al.*, 1987). cAMP increases the rate of dissociation of bound ADP but not of bound ATP (Hughes *et al.*, 1988).

Typically 50% of DnaA protein expressed from its natural promoter is found in the membrane fraction, suggesting a DnaA protein-membrane interaction (Sekimizu, et al., 1988b). Mutants of phospholipid metabolism which limit the levels of anionic phospholipids exhibit a slow stop phenotype (Heacock and

Dowhan, 1989; Xia and Dowhan, 1995). This phenotype is suppressed by mutations in *rnhA* (encodes RNase H) (Xia and Dowhan, 1995) which circumvents the requirement for *oriC* and *dnaA* (Ogawa *et al.*, 1984; von Meyenburg *et al.*, 1987). Acidic phospholipids inhibit the reassociation of DnaA protein with ATP and ADP. However, in the presence of *oriC*, DnaA protein can rebind both ATP and ADP, even in the presence of phospholipids (Castuma *et al.*, 1993; Crooke *et al.*, 1992; Sekimizu and Kornberg, 1988; Yung and Kornberg, 1988). This phospholipid effect does not discriminate between ATP and ADP; however, the cellular concentration of ATP is approximately 10 times higher than that of ADP (Mathis and Brown, 1976), suggesting a mechanism for regeneration of the ADP bound form of DnaA protein.

DnaA protein is isolated as a monomer and an aggregate (Hwang et al., 1990). The aggregate is poorly characterized. This multimerization is thought to be important in DnaA protein function when bound at oriC (Fuller et al., 1984) and even at promoters (Lee and Hwang, 1997). In electron micrographs, DnaA-oriC complexes appear to contain 20 to 30 monomers. Furthermore, a mutant of DnaA protein, which is defective in specific DNA binding and is inactive in oriC replication, is able to augment the limiting levels of wild type in vitro oriC replication (Sutton, 1996).

Structural organization of DnaA protein

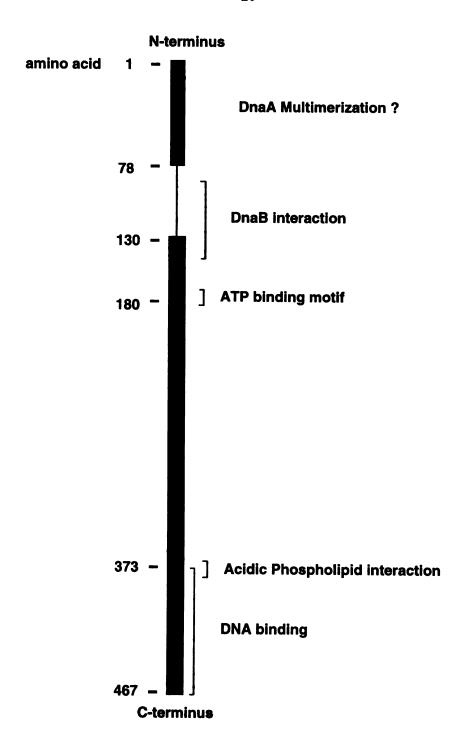
Until recently, little was known about structure function relationships of DnaA protein. Only sequence comparisons gave any information of the DnaA protein structure (Figure 6). This comparison divided the protein into a Figure 6.

E. coli DnaA amino acid deduced sequence compared with the DnaA consensus sequence (Messer, 1996). The deduced amino acid sequence of E. coli is indicated relative to the consensus sequence obtained from comparing fifteen different dnaA homologs (Escherichia coli, Salmonella typhimurium, Serratia marcescens, Proteus mirabilis, Buchnera aphidicola, Pseudomonas putida, Bacillus subtilis, Streptomyces coelicolor, Micrococcu luteus, Caulobacter crescentus, Rhizobium meliloti, Synechocys sp., Borrelia burgdorferi, Spiroplasma citri, Mycoplasma capricolum). An underlined letter in the conserved sequence indicates a residue conserved in 12 or more of the 15 homologs. A letter represents a residue conserved in 9 or more. A dot () indicates a residue conserved (either identical residue or conservative replacement) in less than 9. See Messer, 1996 for a description of the method used for the sequence comparison.

	1 MSLSLWQQCLARLQDELPATEFSMWIRPLQAELSDNTLALYAPNRFVLDWVRDKYLNNIN MSL.LW.Q.LA.LELFWIR.LQ.ELTL.L.APN.FVLDWVKYLI.	
E. coli	1 120 GLLTSFCGRIAPQLRFEVGTKPVTQTPQAAVTSNVAAPAQVAQTQPQRAAPSTRSGWDNV .LLFL.F.YW	
	180 PAPAEPTYRSNVNVKHTFDNFVEGKSNQLARAAARQVADNPGGAYNPLFLYGGTGLGKTHS. <u>V</u> N.K.T <u>F</u> DN <u>FV</u> E <u>G</u> .S <u>N</u> . <u>LA</u> .AAAR.VADNPG.A <u>YNPLFLYG</u> G. <u>GLGKTH</u>	
18 E. coli consensus	240 LLHAVGNGIMARKPNAKVVYMHSERFVQDMVKALQNNAIEEFKRYYRSVDALLIDDIQFF LLHAVGNMPNAK <u>VVYM</u> .S <u>E</u> RFV.D <u>MV</u> .ALQ.N.IEE <u>FK</u> .Y <u>YR</u> SV <u>D</u> .LLIDDIOFF	
24 E. coli consensus	300 ANKERSQEEFFHTFNALLEGNQQIILTSDRYPKEINGVEDRLKSRFGWGLTVAIEPPELE A.KEQEEFTHTFNALLEQIILTSDRYPKEI.GVEDRLKSRF.WGL.VAIEPPELE	
3(E. coli consensus	360 TRVAILMKKADENDIRLPGEVAFFIAKRLRSNVRELEGALNRVIANANFTGRAITIDFVR TRVAIL.KKADEI.LP.EV.F <u>FIA</u> .RL.SN <u>VRELEGAL</u> NRVIA.A. <u>F</u> IT <u>ID</u> FV.	
36 E. coli consensus	420 EALRDLLALQEKLVTIDNIQKTVAEYYKIKVADLLSKRRSRSVARPRQMAMALAKELTNH E.LRD <u>LLE.LYTIDNIQK.YAEYYKIKY.DL</u> LSKR <u>R</u> SRSYARP <u>ROMAM.L</u> .KE <u>LT</u> NH	
42 E. coli consensus	21 SLPEIGDAFGGRDHTTVLHACRKIEQLREESHDIKEDFSNLIRTLSS SLPEIGD.FGGRDHTTVLHACRKIE.LR.EDIK.DFLIR.L	

conserved N-terminal segment, a less conserved linker segment and the larger conserved C-terminal segment which contains the conserved ATP-binding motif (G-X-X-G-X-G-K-T- X₅-V) between residues 172-185 (Fujita *et al.*, 1990;

Ogasawara et al., 1985; Skovgaard and Hansen, 1987; Yoshikawa and Ogasawara, 1991). There is little direct evidendence that ATP actually binds this site. Suggestive evidence is provided from a mutation of amino acid 184 from an alanine to a valine which results in a DnaA protein defective in binding ATP (Carr and Kaguni, 1996).


The C-terminal 94 amino acids of DnaA protein are responsible for DNA binding (Roth and Messer, 1995) (Figure 7). The region from residues 372-381 appears to be involved in phospholipid mediated turnover of bound nucleotide. A fragment containing residues 115 to 381 releases ATP in the presence of acidic phospholipids, whereas a peptide of residues 115 to 372 binds ATP, fails to release the nucleotide in the presence of phospholipids (Garner and Crooke, 1996).

Sequences near the N-terminus are speculated to be involved in DnaA-DnaA interactions (Mark Sutton, personal communication). Residues 111-148 near the N-terminus are involved in the interaction with DnaB protein (Marszalek and Kaguni, 1994; Marszalek et al., 1996).

Roles in the cell other than initiation of chromosomal replication
Replication of plasmids

DnaA protein is also involved in the replication of other replicons such as phage P1 (Mukhopadhyay et al., 1993) and plasmids pSC101 (Murakami et al.,

Figure 7. Structure-function of DnaA protein. The amino acid sequences which are highly conserved among the dnaA homologs are indicated by the filled sequences. The less conserved residues are indicated by a line. The residue numbers are indicated to the left.

1987), R1 (Masai and Arai, 1987), R6K (Wu et al., 1992), and F (Hansen and Yarmolinsky, 1986). All replicons contain one or more DnaA boxes. We are only beginning to understand the role of DnaA protein in the initiation of these replicons.

These replicons have a structure similar to *oriC*. They contain several repeats, called interons, which are bound by a plasmid-encoded initiator protein, and an AT-rich region. Until recently, all *dnaA* mutants defective in *oriC* replication was found to be inactive for pSC101 replication (Felton and Wright, 1979; Frey *et al.*, 1979; Hasunuma and Sekiguchi, 1977). However, recently C-terminal point and deletion mutants that were active in pSC101 and inactive in *oriC* repication were isolated (Sutton, 1996). The other replicons (P1, F, RK2, R6K) can be maintained by various *dnaA*(ts) but could not be maintained in *dnaA* null mutants (Hansen and Yarmolinsky, 1986; Gaylo *et al.*, 1987; MacAllister, T. W. *et al.*, 1991; Wu, F. *et al.*, 1992). Although DnaA protein is required for R1 replication *in vitro* (Masai and Arai, 1987; Ortega *et al.*, 1986), R1 can be maintained *in vivo* though less efficiently without DnaA protein (Bernander *et al.*, 1991).

Although the role of DnaA protein at these origins is thought to be similar to that which it plays at *oriC*, primary recognition of the origin appears to be the role of a plasmid encoded initiator. DnaA protein is thought to be involved primarily in unwinding and/or loading of DnaB protein. However, evidence for DnaA protein actually unwinding or loading DnaB protein onto these origins is lacking except for the requirement of DnaA protein for unwinding the P1 origin (Mukhopadhyay *et al.*, 1993). In contrast to *in vitro* requirements, *in vitro*

replication of R1 and R6K plasmids proceeds independently of DnaA protein (Masai and Arai, 1987; Wu et al., 1992).

Regulation of Transcription

DnaA protein regulates its own expression (Braun et al., 1985; Wang and Kaguni, 1987) and the expression of other genes (Wang and Kaguni, 1987).

Transcription of mioC, rpoH and dnaA is negatively regulated by the binding of DnaA protein to DnaA boxes located within promoters of these genes (Braun et al., 1985; Hansen et al., 1987; Lother, et al., 1985; Schauzu et al., 1987; Stuitje et al., 1986; Wang and Kaguni, 1987; Wang and Kaguni, 1989). The binding of DnaA protein to a dnaA promoter fragment has been demonstrated to occlude binding of RNA polymerase (Lee and Hwang, 1997). Although many genes have been reported to contain DnaA boxes within their promoters, not all have been shown to be regulated by DnaA protein (Garrido et al., 1993).

DnaA protein is also been reported to function as a transcriptional terminator (Gielow, et al., 1988; Schaefer and Messer, 1988). This termination activity is dependent upon the orientation of the DnaA box (Schaefer and Messer, 1989). Flanking sequences may also be required as not all DnaA boxes in the correct orientation are capable of terminating transcription (Wang and Kaguni, 1989).

In contrast to its more common role as a negative regulator of transcription, at least one operon, the *nrd* operon encoding the subunits of ribonucleoside diphosphate reductase, appears to be stimulated by the binding of DnaA protein (Augustin *et al.*, 1994). Though the mechanism of this stimulation is not known,

DnaA protein might change the topology of the promoter to make RNA polymerase binding more efficient.

Regulation of initiation at oriC

It is well documented that DNA replication in vivo is regulated at initiation and not at elongation or termination (Helmstetter, 1994). Little is known about the mechanism of its regulation. Models include the accumulation of the initiator protein (Donachie, 1968) or the dilution of repressor proteins (Pritchard, 1969). Any model must account for the physiological observations that the rate of initiation corresponds with the rate of cell growth, and that all origins are initiated synchronously.

Although DnaA protein is central to most models, there is a period of time in the cell cycle during which *oriC* is refractory to further initiation, even when activators, such as DnaA protein, are present in excess. This refractory period is now referred to as the eclipse period. For example, when some *dnaA*(ts) mutants are held at non-permissive temperature for several mass doublings and then returned to permissive temperatures, the first two rounds of replication are initiated 25 to 30 minutes apart, which defines the eclipse (Hanna and Carl, 1975; Helmstetter and Krajewski, 1982). The eclipse period presumably involves negative regulatory factors.

DnaA protein in regulation of chromosomal replication

Because DnaA protein acts in initiation of chromosomal replication and regulates the expression of a number of genes, it is an obvious candidate for

regulating the time of initiation. Both biochemical and genetic evidence indicates that DnaA protein plays a role in triggering initiation at the appropriate time. First, dnaA mutants result in a slow stop phenotype, indicating that DnaA protein plays a role in initiation (Kohiyama, et al., 1966; Wechsler and Gross, 1971). Second, mutants that reduce the ability of DnaA protein to bind ATP result in asynchronous initiation (Skarstad et al., 1986; Skarstad et al., 1988). Third, temperature sensitive mutants, dnaA46 and dnaA5, retain the potential to initiate even when incubated at nonpermissive temperatures (Evans and Eberle, 1975; Hanna and Carl, 1975). When returned to the permissive temperatures the missed initiation events proceed. These initiations are independent of de novo protein synthesis but still dependent on RNA synthesis (Lark, 1972). Fourth, in a strain containing a temperature sensitive suppressor, initiation is rapidly inhibited when amber mutants of dnaA are shifted to the non-permissive temperature. This suggests that continuous synthesis of DnaA protein is required for initiation (Schaus et al., 1981).

If the concentration of DnaA protein is important in determining the initiation mass, changes in the amount of DnaA protein expressed should change the initiation mass. In earlier studies, no change in DNA content is detected when wild type DnaA protein is overproduced (Churchward et al., 1983). More recently, several groups using more sensitive techniques have observed that initiation is shifted to an earlier time in the cell cycle, when DnaA protein was overproduced (Atlung et al., 1987; Lobner-Olesen et al., 1989; Pierucci et al., 1987; Skarstad et al., 1989; Xu and Bremer, 1988). This led to the speculation that initiation was controlled by de novo DnaA protein synthesis and that the

concentration of DnaA protein would increase with the age of the cell. Although growth rate and cell cycle-dependent changes in the concentration of *dnaA* transcripts are observed (Campbell and Kleckner, 1990; Chiaramello and Zyskind, 1990; Polaczek and Wright, 1990), the concentration of DnaA protein does not appear to change (Hansen *et al.*, 1991; Sakakibara and Yuasa, 1982). This issue should be revisited using more sensitive techniques.

It may not be the concentration of DnaA protein but its activity in replication that is regulated (Hupp and Kaguni, 1993a). Several studies have led to suggestions that the levels of DnaA protein need not vary during the cell cycle but it may be modulated by interactions with nucleotides, acidic phospholipids, cAMP or possibly other proteins. The high affinity of DnaA protein for nucleotides may be significant for regulating DnaA protein *in vivo*. Tightly bound ADP can be released by DnaA protein interaction with phospholipids (Sekimizu and Kornberg, 1988) or cAMP (Hughes *et al.*, 1988). Another possible mechanism may involve a specific inactivator protein (Katayama and Crooke, 1995), or activators (Hupp and Kaguni, 1993b; Hwang *et al.*, 1990).

Other proteins which bind oriC

oriC binding proteins other than DnaA protein may also be involved in the regulation of initiation. These proteins could indirectly regulate DnaA protein activity by binding oriC, thereby stimulating or inhibiting the binding of DnaA protein or unwinding of oriC.

Inhibitor of chromosomal initiation (IciA)

IciA, originally identified for its ability to bind specifically to the AT-rich 13-mers of oriC (Hwang and Kornberg, 1990), is able to inhibit oriC dependent in vitro replication when added to the reaction prior to DnaA protein (Hwang and Kornberg, 1992b). IciA inhibits replication by blocking the DnaA-dependent unwinding of the AT-rich region (Hwang and Kornberg, 1990; Hwang and Kornberg, 1992b). However, no phenotype is observed in iciA null mutants, suggesting that it is not a key regulator of the timing of initiation in vivo (Thony et al., 1991).

Histone-like proteins

Histone-like proteins are thought to organize the bacterial chromosome, absorbing superhelical density induced by the negative superhelical nature of the bacterial chromosome, or in some circumstances, increasing superhelical tension to facilitate the melting of DNA necessary for replication and transcription (Pettijohn, 1988; Tanaka et al., 1995). Histone-like proteins HU, inversion host factor (IHF) and factor for inversion stimulation (FIS) act in DNA replication (Dixon and Kornberg, 1984; Filutowic, et al., 1992; Skarstad et al., 1990), site-specific recombination (Kano et al., 1989; Mertens et al., 1986; Nash and Robertson, 1981), and regulation of transcription (Kohno et al., 1994; Molina et al., 1994; Ninnemann et al., 1992; Rouviere and Gros, 1975) by changing the topology of the DNA and acting as architectural elements by stabilizing protein-protein and protein-DNA interactions (Finkel and Johnson, 1992; Segall, 1994). At oriC, HU or IHF facilitate the activity of DnaA protein in initiation.

HU binds DNA with little sequence specificity but has a preference for dA tracts (Shimizu et al., 1995), bent DNA (Tanaka, 1984), and kinked DNA (Pontiggia et al., 1993). On the binding of several dimers of HU, HU bends DNA (Shimizu et al., 1995). Furthermore, HU can induce supercoiling in relaxed plasmids in the presence of topoisomerase I (Rouviere et al., 1979).

Unlike HU, both IHF and FIS bind to specific DNA sequences (Finkel and Johnson, 1992; Wang et al., 1995) to induce a bend. IHF binds bent DNA with a higher affinity than unbent DNA (Bonnefoy and Rouviere, 1991). Although IHF can induce supercoiling in relaxed DNA similar to HU, this occurs only at concentrations 10 times that required by HU (Tanaka et al., 1995). Both IHF and FIS have a binding site in oriC (Filutowicz and Roll, 1990; Gille, et al., 1991).

HU is required for efficient *in vitro* replication of an *oriC* minichromosome (Dixon and Kornberg, 1984). HU facilitates DnaA protein-dependent unwinding of the AT-rich sequences within *oriC* (Bramhill and Kornberg, 1988a). HU is thought to bend *oriC* by wrapping DNA around several heterodimers (Broyles and Pettijohn, 1986). This is thought to aid DnaA protein in inducing torsional stress that is required to separate the two strands at the AT-rich region. HU may bind specifically to a naturally bent sequence, or a sequence bent by the binding of other proteins, and further bends *oriC* in a manner similar to IHF. In support of this idea, HU appears to bind preferentially to *oriC* in prepriming complexes visualized in electron micrographs and probed with anti-HU antibodies (Funnell *et al.*, 1987). The bending introduced by HU may aid DnaA-DnaA and/or DnaA-*oriC* interactions. IHF can replace HU in *in vitro* replication assays and in facilitating DnaA protein dependent unwinding of the AT-rich sequences

(Skarstad et al., 1990). Although IHF and HU have different DNA binding characteristics, the mechanism by which they aid DnaA protein in unwinding the origin may be similar.

Ample evidence exists for the role of IHF in *in vivo* replication. *oriC* contains an IHF site located between DnaA boxes R1 and R2 (Filutowicz and Roll, 1990). When several point mutations are introduced at this site, the mutant minichromosomes fail to replicate (Roth *et al.*, 1994). *In vivo*, footprinting in synchronized cells suggests that IHF binds just prior to initiation (Cassler, 1995). Mutations in *himA* or *hip*, encoding the α and the β IHF subunits, respectively, fail to replicate minichromosomes in a manner characteristic of *oriC* dependent replication (Filutowicz and Roll, 1990). In addition mutations in *him* result in asynchronous initiation (Boye *et al.*, 1993). IHF is not generally thought to be a candidate for the regulation of initiation as it is found at high cellular concentrations, 8,500 to 17,000 dimers per cell, levels well above the K_D for binding *oriC* (Ditto *et al.*, 1994). However, this conclusion appears to contradict the *in vivo* footprinting results that indicate that the IHF binding site in *oriC* is bound only just before initiation of replication (Cassler, 1995).

The role of FIS at *oriC* is not well understood. *fis* mutants have an asynchronous phenotype (Boye *et al.*, 1993), are inefficiently transformed by minichromosmes, and are unable to stably maintain *oriC* plasmids (Gille *et al.*, 1991). Point mutations in the FIS binding site, located in *oriC* between DnaA boxes R2 and R3, inactivate *oriC* in vivo (Roth *et al.*, 1994). *In vivo* footprinting studies suggest that FIS is bound to *oriC* until the time of initiation (Cassler, 1995). Binding of FIS to this site is proposed to occlude DnaA protein from

DnaA box R2 (Gille et al., 1991). Dissociation of FIS immediately prior to initiation is thought to allow DnaA protein to bind. On the other hand, FIS has also been speculated to facilitate unwinding the AT-rich region (Messer, 1996).

Interestingly, FIS levels vary with growth phase (Ball et al., 1992). In early log phase, its cellular concentration reaches a maximum of 33,000 dimers per cell then diminishes over 500-fold. A burst of FIS dependent transcription of rRNA and tRNA operons occurs upon resumption of growth from stationary-phase cultures. Nutritional shift-up to a faster growth rate is accompanied by an increase of FIS levels (Ball et al., 1992; Xu and Johnson, 1995). Consequently, it is speculated to serve as an element involved in the coupling of the growth rate to nutritional and environmental conditions.

Dam Methylation

Proteins proposed to function in the control of replication during the eclipse period include Dam methylase, and a number of membrane bound proteins that bind hemimethylated DNA. Dam methylase is a methyltransferase that modifies adenosine residues of the sequence GATC. Eleven Dam methylation sites are located within *oriC* and are conserved throughout the enterobacterial family (Zyskind *et al.*, 1983). *dam* mutants are asynchronous (Boye *et al.*, 1988; Lobner-Olesen *et al.*, 1994). Overexpressing Dam causes random timing of initiation (Bakker and Smith, 1989; Boye and Lobner-Olesen, 1990). Finally, in contrast to pBR322, minichromosomes isolated from *dam*⁺ strains have a lower transformation efficiency into *dam*⁻ strains than wild type strains (Landoulsi *et al.*, 1989; Messer *et al.*, 1985). Since DNA is replicated semiconservatively, newly

replicated DNA is hemimethylated. Hemimethylated *oriC* is speculated to be inactive for replication *in vivo*. In agreement with this hypotheses, Russel and Zinder found that hemimethylated DNA accumulated in a *dam* mutant when transformed with fully methylated DNA (Russell and Zinder, 1987).

Most Dam methylation sites on the *E. coli* chromosome are fully methylated within 3 minutes after passage of the replication fork. Methylation at *oriC* and at the *dnaA* promotor occurs more slowly, occurring approximately 13 minutes after replication (Campbell and Kleckner, 1990), suggesting that *oriC* is sequestered from Dam methylase following replication. In support of this hypothesis, overproducing Dam methylase shortens the time between initiation events (Smith *et al.*, 1985). Based on the observations that membrane fractions bind specifically to hemimethylated *oriC*, Ogden *et. al.* speculated that the cellular membrane is involved in sequestration (Ogden *et al.*, 1988). This model is supported by the observation that membrane fractions, which bind specifically to hemimethylated *oriC*, inhibit replication specifically from hemimethylated *oriC* (Boye, 1991; Landoulsi *et al.*, 1990).

A number of different proteins isolated from membrane fractions are implicated in *oriC*-membrane interactions (Chakraborti *et al.*, 1992; Herrick *et al.*, 1994; Jacq *et al.*, 1989; Jacq and Kohiyama, 1980; Jacq *et al.*, 1983; Landoulsi *et al.*, 1990). SeqA protein is the best studied of these and has characteristics suggesting its involvement in sequestration. The *seqA* gene was identified by its ability to restore the transformablity of a *dam* strain with methylated plasmids (Lu *et al.*, 1994; von Freiesleben *et al.*, 1994). *seqA* mutants exhibit an asynchronous phenotype. In addition, the life time of hemimethylation of *oriC* is reduced in a

seqA mutant. SeqA binds hemimethylated DNA with an affinity 5 times greater than that for methylated oriC (Slater et al., 1995). However, SeqA binds specifically to oriC only when it is fully methylated suggesting that there must be other factors that are involved in specifically sequestering hemimethylated oriC.

Transcription around oriC

In vivo, the RNA polymerase inhibitor, rifampicin, inhibits replication from oriC (Lark, 1972). This requirement for RNA synthesis is independent of subsequent protein synthesis. As a result, RNA polymerase was identified as a factor in initiation. Originally, RNA polymerase was thought to form the primer that DNA polymerase III holoenzyme extends from oriC. However, omission of primase and inclusion of RNA polymerase resulted in very inefficient in vitro replication (van der Ende et al., 1985). In contrast, efficient in vitro replication occurs when primase is included in the reaction and RNA polymerase omitted, suggesting that primase fulfills the function of priming. Currently, RNA polymerase is thought to involve changing the topology of oriC. Efficient in vitro replication can be made dependent on RNA polymerase by non optimal levels of the histone-like HU protein, low temperatures, or high levels of topoisomerase I (Baker and Kornberg, 1988; Ogawa et al., 1985).

Changes in DNA topology by RNA polymerase can have a negative or a positive effect on initiation. RNA polymerase forms positive supercoils ahead of the transcriptional complex, which inhibit unwinding of *oriC* and forms negative supercoils behind, which aid in unwinding (Liu and Wang, 1987). Transcription away from *oriC* stimulates initiation (Asai *et al.*, 1992), whereas transcription into

oriC inhibits initiation.

Sequestration of hemimethylated *oriC* appears to inhibit replication from occurring in the first portion of the eclipse period. As oriC is fully methylated 10 to 20 minutes after the previous initiation event (Campbell and Kleckner, 1990; Ogawa and Okazaki, 1994; von Freiesleben et al., 1994), inhibition by sequestration is overcome one third through the eclipse period. However, initiation induced by DnaA protein does not occur for about another 15 minutes (Hanna and Carl, 1975; Helmstetter and Krajewski, 1982; Leonard et al., 1982). Recently, transcription from promoters flanking oriC has received attention because of the proposal that transcription of mioC inhibits initiation after sequestration, and transcription from gidA stimulates initiation (Figure 3). However, transcription from these promoters is not required for replication of oriC containing plasmids either in vivo (von Meyenburg, 1980) or in vitro (Kaguni and Kornberg, 1984). However, several reports indicate that replication of minichromosomes is more efficient in the presence of these promoters (Lobner-Olesen et al., 1987; Ogawa and Okazaki, 1991; Stuitje et al., 1986; Stuitje and Meijer, 1983).

Both *mioC* and *gidA* promoters are stringently controlled by ppGpp (Ogawa and Okazaki, 1991; Rokeach and Zyskind, 1986). This signal molecule is the mediator of the stringent response, varying in concentration following shifts in growth rates or amino acid starvation (Svitil *et al.*, 1993). Transcription from these promoters is cell cycle dependent, indicating a link with the timing of initiation (Bogan and Helmstetter, 1996; Theisen *et al.*, 1993). In synchronized cells, at the time of initiation *mioC* transcription is down-regulated. Transcription

from an inducible promoter into *oriC* from the right strongly inhibited initiation, consistent with transcription of *mioC* being inhibitory (Tanaka and Hiraga, 1985). In contrast, transcription from *gidA* is highest at the time of initiation (Bogan and Helmstetter, 1996; Ogawa and Okazaki, 1994; Theisen *et al.*, 1993). This is consistent with the notion that the formation of negative superhelicity due to *gidA* transcription would enhance unwinding of the AT-rich 13-mers.

Other properties of the *mioC* promotor add support to the model. The promotor region contains a DnaA box and transcription is repressed by DnaA protein (Bogan and Helmstetter, 1996; Lother, et al., 1985; Nozaki, et al., 1988; Schauzu *et al.*, 1987) MGG 209,518). Maximal transcriptional activity requires that the promotor is fully methylated (Schauzu *et al.*, 1987). These observations suggest the importance of transcription from these promoters in the proper timing initiation from *oriC*. However, recent studies indicate that these promoters can be deleted with no apparent effect on the timing or the synchrony of initiation (Bogan and Helmstetter, 1996).

VI. Thesis overview

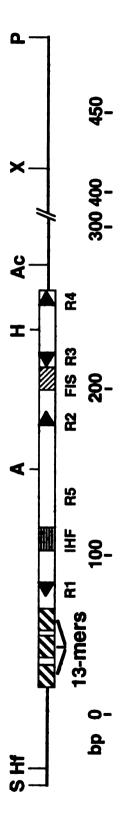
My thesis project involves investigating the detailed mechanism of binding of DnaA protein to *oriC*. This investigation, described in Chapter 2, resulted in the observation that DnaA protein binds to *oriC* in a sequential manner, in which DnaA protein recognizes the outer DnaA boxes with higher affinity than the interior boxes. In addition, the formation of a complex in which DnaA protein bound all four DnaA boxes correlated with intiation of DNA replication. Furthermore, *in vivo* observations supportes the notion that binding of the

interior boxes may be important for the regulation of initiation at oriC (Cassler et al., 1995; Samitt et al., 1989). Additional in vivo observations suggestes that other oriC binding proteins, IHF and FIS, may play a role in binding of DnaA protein to the interior boxes. As little is known of the role of FIS in replication and the mechanism by which IHF stimulates replication, we investigated the effect of both proteins on the binding of DnaA protein and on oriC-dependent replication which is described in Chapters 3 and 4.

Chapter II

Ordered and Sequential Binding of DnaA Protein to oriC, the Chromosomal Origin of Escherichia coli

Abstract


DnaA protein of Escherichia coli acts in initiation of chromosomal DNA replication by binding specific sequences, termed DnaA boxes in the chromosomal origin, oriC. On binding, it induces a localized unwinding to create a structure recognized by other replication proteins that act subsequently in the initiation process. In this report, we examined the binding of DnaA protein to each of the DnaA boxes in oriC. By gel mobility-shift assays, DnaA protein formed at least six discrete complexes. ATP or ADP included in the reaction mixture prior to electrophoresis was required. Chemical cleavage of isolated complexes with 1,10-phenanthroline-copper revealed that DnaA protein binds in an ordered manner to the DnaA boxes in oriC. Preferential binding to one DnaA box (R4) was confirmed by demonstration that a DNA fragment containing it was bound with greater affinity than another DnaA box sequence (R1). In vitro replication activity correlated with a complex formed at a ratio of 30 DnaA monomers per oriC in which all DnaA boxes are occupied. The last site bound is DnaA box R3. This event may be critical in promoting initiation from oriC as it correlates with in vivo observations that binding of DnaA protein to box R3 occurs at the time of initiation of chromosomal replication whereas other DnaA boxes are bound by DnaA protein throughout the cell cycle (M. R. Cassler, J. E. Grimwade, and A. C. Leonard (1995) *EMBO J.* 14, 5833-5841).

Introduction

DnaA protein of *Escherichia coli* is a sequence-specific DNA binding protein, proposed to recognize 9-mer sequences termed DnaA boxes, present in 4 copies within the chromosomal origin, *oriC* (Figure 1) (Fuller *et al.*, 1984). At *oriC*, its binding promotes an ordered series of events to result in the initiation of chromosomal DNA replication (reviewed in Bramhill and Kornberg, 1988b). The binding of DnaA protein to *oriC* has been examined by a variety of methods. By electron microscopy (Crooke *et al.*, 1993; Funnell *et al.*, 1987) and DNase I footprinting (Fuller *et al.*, 1984), a large nucleoprotein structure containing 20-30 monomers of DnaA protein is formed at *oriC*. Experiments to examine its interaction with individual DnaA boxes led to the conclusion that it bound to the two centrally located DnaA boxes in *oriC* (R2 and R3) with greater affinity than to the flanking DnaA boxes (R1 and R4) (Schaefer and Messer, 1991). This was based on an indirect assay that assessed the activity of DnaA protein as a transcriptional terminator *in vivo*. Expression from the *lac* promoter, located upstream to the mutant DnaA box being examined, was measured.

By contrast, gel mobility shift assays with oligonucleotides of 21 base pairs containing various DnaA boxes with natural flanking sequences indicated that DnaA protein binds to DnaA boxes R1 and R4 of *oriC* with higher affinity than R2 (Schaper and Messer, 1995). DnaA box R3 was bound as poorly as non-specific oligonucleotides. In addition to these *in vitro* findings, *in vivo* footprinting of *oriC* plasmids with dimethylsulfate in exponentially growing cells revealed protection of DnaA boxes R1, R2, and R4 with little binding to R3

Figure 1. The oriC region. DnaA boxes R1-R4 are the 9-mers recognized by DnaA protein. DnaA box R5 (Matsui et al., 1985) is also shown. Binding sites for IHF (Filutowicz and Roll, 1990; Polaczek, 1990), and Fis (Filutowicz et al., 1992; Finkel and Johnson, 1992; Gille, et al., 1991), 13-mer motifs recognized by IciA protein (Hwang and Kornberg, 1990), and restriction enzyme sites (S, Sma I; Hf, Hinf 1; A, Ava II; H, HinD III; Ac, Acc I; X, Xho I; and P, Pst I) of pBSoriC are indicated.

(Cassler, 1995; Samitt et al., 1989). These observations, suggesting that the binding of DnaA protein to R3 is critical for the initiation process, are supported by the observation that occupancy of R3 occurs at the time of initiation of DNA replication in synchronized cultures. Another study reported that mutations in single DnaA boxes (R1 and R4) of oriC reduced binding of DnaA protein to respective sites (Schaefer and Messer, 1991) but only reduced replication activity when both mutant sequences were present together (Holz et al., 1992). The replication activity of oriC may tolerate an alteration of one of the binding sites (Holz et al., 1992), perhaps by the speculated cooperative binding of DnaA protein, or occupancy of all four DnaA boxes is not required for replication.

Other proteins have been characterized to bind to specific regions of *oriC*. IciA protein was isolated by its ability to bind specifically to 13-mer motifs near the left boundary of *oriC* (Hwang and Kornberg, 1990) (Figure 1). Its binding inhibits the initiation process. IHF, and Fis binding sites in *oriC* have been described (Filutowicz and Roll, 1990; Filutowicz *et al.*, 1992; Finkel and Johnson, 1992; Gille *et al.*, 1991; Polaczek, 1990). Rob protein binds to a region near the right boundary of *oriC* but its significance is unknown (Skarstad *et al.*, 1993).

The studies summarized above do not provide a clear understanding of whether DnaA protein binds to sites in *oriC* randomly, or in an ordered and sequential manner in the process of initiation of chromosomal replication. If this event is ordered, the binding of other proteins to *oriC* may inhibit or augment the initiation process. In this report, we use gel mobility-shift and DNA footprinting techniques to characterize complexes of DnaA protein bound to *oriC*. Results indicate that DnaA protein binds to *oriC* in an ordered manner. DnaA box R4 is

bound first, then R1, and finally the two inner boxes. Formation of these discrete complexes was dependent on ATP or ADP. Replication activity correlates with binding to all four DnaA boxes.

Experimental Procedures

Reagents and chemicals--4-(2-hydroxyethyl)-1-piperazineethane-sulfonic acid (HEPES), Tris, and dithiothreitol (DTT) were obtained from Calbiochem-Behring. Cesium chloride was obtained from Gallar-Schlesinger Industries, Inc.; triton X-100 from Research Products International, Co.; agarose from Gibco BRL; acrylamide from Fisher Biotech; bisacrylamide from Boehringer Manheim; urea from Research Organics; (ethylenedinitrilo)tetracetic acid (EDTA) and CuSO₄ from JT Baker Chemical Co.; 1, 10-phenathroline and 2,9 dimethyl-phenanthroline were obtained from Aldrich; [α-³²P] dNTPs (3000 Ci/mmol) from DuPont-New England Nuclear Corp; [³H]TTP obtained from ICN Radiochemicals.

Proteins and plasmids---SmaI was obtained from New England Biolabs: Xhol from United States Biochemicals; the large fragment of DNA polymerase I from Boehringer Manheim. All plasmids were purified by cesium chloride gradient.

Gel mobility-shift assays (Fried and Crothers, 1981; Garner and Revzin, 1981)--Unless noted, a Sma I-Xho I fragment containing oriC, gel-purified from pBSoriC (Baker and Kornberg, 1988) with a Qiaex DNA extraction kit (Qiagen) and quantified by absorbance at 260 nm, was 3' end-labelled with the large fragment of DNA polymerase I, and [α^{32} P-dTTP], then combined with the same unlabelled fragment to adjust its specific radioactivity to 4 x 10³ cpm per 25 fmol of DNA. Reactions (10 µl) with the labelled oriC fragment (25 fmol) and

indicated amounts of DnaA protein were incubated in buffer containing 20 mM HEPES¹-KOH pH 8.0, 5 mM magnesium acetate, 1 mM EDTA, 4 mM DTT, 0.2% Triton X-100, 5 mg/ml bovine serum albumin, and 0.5 µM ATP (unless noted otherwise) at 20 °C for 5 min (Parada and Marians, 1991). The samples were electrophoresed in a 4% polyacrylamide gel (60 parts acrylamide:1 part bis-acrylamide) (13.5 x 13.5 x 0.15 cm) in 45 mM Tris-borate, and 1 mM EDTA at 80 V for 3 to 4 hours. Gels were dried and autoradiographed with Hyperfilm MP (Amersham) at -70 °C using a Cronex Quanta III intensifying screen, or image-analyzed with a Molecular Dynamics PhosphorImager.

In situ cleavage with 1,10 phenanthroline-copper (Kuwabara and Sigman, 1987)--Gel mobility-shift assays were performed as above but scaled up 10-fold. After electrophoresis, the wet gel was immersed for 2.5 to 4.5 min in 200 ml of 42 mM Tris-HCl pH 8.0, 0.2 mM phenanthroline, 38 μM CuSO₄, and 5 mM 3-mercaptopropionic acid at room temperature. To quench the reaction, 2,9 dimethyl-phenanthroline was added to 2.3 mM followed by incubation for 2 min. The gel was quickly washed with water and autoradiographed for 1 h at room temperature. The developed film was used to guide excision of the complexes. DNA from the gel slices was eluted overnight at 37 °C in 500 μl of elution buffer (0.5 M ammonium acetate, 0.2% SDS, 1 mM EDTA, 10 μg/ml Proteinase K, and 100 μg/ml tRNA). After recovering the elution buffer, an additional 200 μl of elution buffer was used to wash the gel slices, and both were pooled. The eluted DNA was ethanol precipitated, washed with 70% ethanol, dried, and resuspended in 5 μl of 80% (v/v) formamide, 10 mM NaOH, 1 mM EDTA, 0.1% bromophenol

blue, and 0.1% xylene cyanol, heated to 95 °C for 2 min, and electrophoresed at 50 W on a pre-run 6% sequencing gel. After autoradiography, beta emission scanning was with a Molecular Dynamics PhosphorImager. Graphed with Excel (Microsoft), the radioactivity in each lane was normalized to the cleavage pattern of unbound DNA that was isolated from the gel.

DNA replication assays--Reactions (25 μl) were performed as described (Hwang and Kaguni, 1988) with a crude protein fraction deficient in DnaA protein activity, M13*oriC*26 DNA (25 fmol) as a template and the indicated amounts of DnaA protein. Incubation to measure DNA synthesis was at 30 °C for 20 min. Acid-insoluble incorporation of [³H]TTP was quantified by liquid scintillation counting.

Results

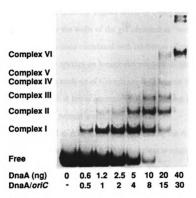

Six discrete complexes are formed on binding of DnaA protein to oriC--By footprint analysis, and electron microscopy, the nucleoprotein complex of DnaA protein bound to oriC is estimated to contain 20-30 monomers organized to occupy the four DnaA boxes (Crooke et al., 1993; Fuller et al., 1984; Funnell et al., 1987). Sequence comparison of these DnaA boxes reveal that R1 and R4 are identical, whereas R2 and R3 differ at the fifth and seventh positions, respectively (Table 1). Inasmuch as other studies indicated that several nucleotide changes at each of the positions only marginally affected the ability of DnaA protein to bind to oriC, and that mutant DnaA boxes of oriC did not affect in vivo replication activity when singly present (Holz et al., 1992), the binding of DnaA protein to oriC may not show a strong preference to one site relative to others. To investigate this, we examined the binding of DnaA protein to sites in oriC by use of a gel mobility-shift assay. With increasing amounts of DnaA protein, six discrete complexes were observed (Figure 2). Complex I was observed at the lowest ratio of DnaA protein to oriC fragment. Complexes of slower mobility were observed at higher ratios. Compared to other complexes, the minor abundance of Complexes IV, and V suggests their lesser stability. Complex VI was predominant at a ratio of 30 monomers of DnaA protein per DNA fragment, consistent with electron microscopic measurements (Fuller et al., 1984). In this lane, other material near the well of the gel corresponds to that formed by a self-aggregate of DnaA protein (unpublished results).

Table 1. Sequences of DnaA boxes in oriC and in the dnaA promoter region

<u>DNA</u>		Sequence ^a	
oriC R1	CGGATCCTTG	TTATCCACA	GGGCAGTGCG
oriC R2	GAATGAGGGG	TTATACACA	ACTCAAAAAC
oriC R3	CAACCGGTAG	TTATCCAAA	GAACAACTGT
oriC R4	CCTGACAGAG	TTATCCACA	GTAGATCGCA
DnaA box in the dnaA promoter region	TTTTCCCGAT	TTATCCACA	GGACTTTCCA
DnaA box in M13mp18	ATCACTCGAG	TTATCCACA	CTAGAGTCGA
Position	-10 -1	123456789 core sequence	10 19

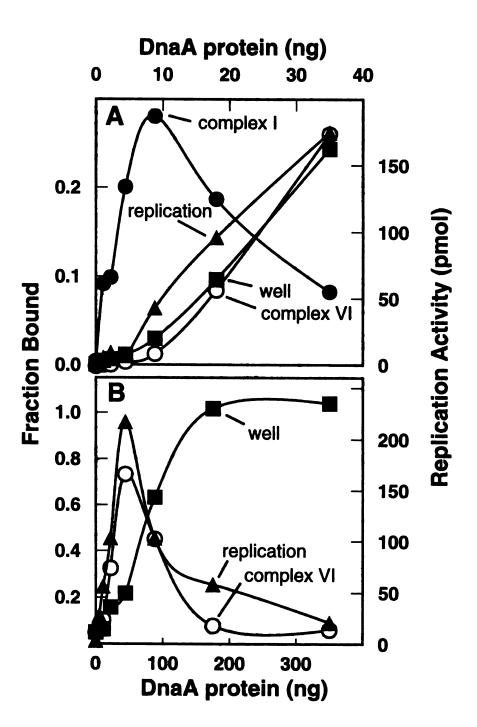
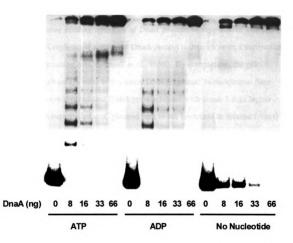
^aThe polarity of respective DnaA boxes is from left to right.

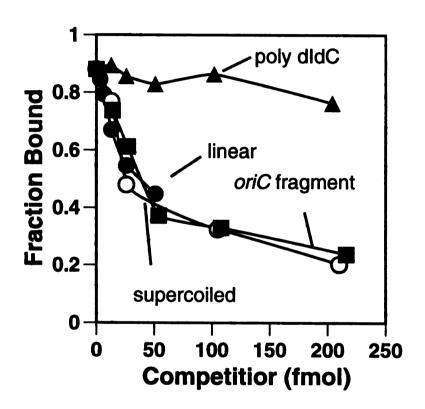
Figure 2. DnaA protein bound to *oriC* forms six complexes that are resolved by native polyacrylamide gel electrophoresis. Gel mobility-shift assays were performed as described in "Experimental Procedures" with the indicated amounts of DnaA protein and a ³²P-labelled DNA fragment containing *oriC*. Unbound DNA is noted as "Free."

Formation of Complex VI correlates with formation of an active replication complex--Quantitative analysis was done of complexes in an experiment comparable to that of Figure 2 but with a larger range of added protein (Figure 3). In parallel, the replication activity of DnaA protein was measured. Replication activity correlated with the level of DnaA protein that formed Complex VI. At this level, complexes of greater mobility were relatively minor in abundance (as in Figure 2). Higher levels of DnaA protein resulted in material that remained near the wells of the gel (denoted as "well" in Figure 3). This material, whose appearance correlated with inhibition of replication activity, could be resolved into two species on longer electrophoresis (data not shown). For simplicity, quantitative analysis of Complexes II-V has not been shown in Figure 3 as their abundance at lower amounts of DnaA protein are represented in Fig. 2, and at higher DnaA protein levels, they were rare.

DnaA protein bound to ATP is active in unwinding the AT-rich 13-mers located in *oriC* (Figure 1) whereas the ADP-bound form is relatively inert (Bramhill and Kornberg, 1988a; Yung *et al.*, 1990). The importance of the nucleotide-bound form led us to investigate the effect of ATP and ADP on complex formation. Formation of discrete complexes was dependent on inclusion of ATP or ADP in the reaction prior to electrophoresis (Figure 4), although with ADP, the amount of Complex VI was reduced. The minor species resolved between complexes V and VI in Figure 4 were rarely observed in other comparable experiments. In the absence of nucleotide, trace amounts of Complex I and VI were observed. Instead, the labelled DNA remained near the wells of the gel. The effect of nucleotide on formation of discrete complexes may relate to the

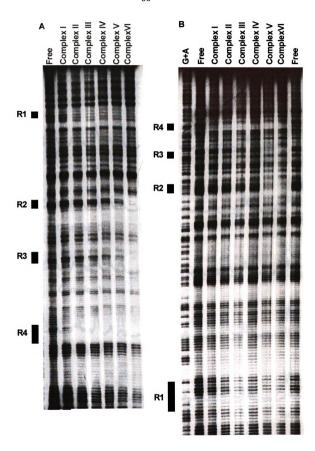
Figure 3. Formation of Complex VI correlates with DNA replication activity. A gel mobility-shift assay was performed with the indicated levels of DnaA protein. The relative amounts of Complex I, VI, (as well as Complexes II-V, not shown) and material near the well were quantified by beta emission scanning. In a parallel experiment, replication activity of DnaA protein was measured (see "Experimental Procedures").

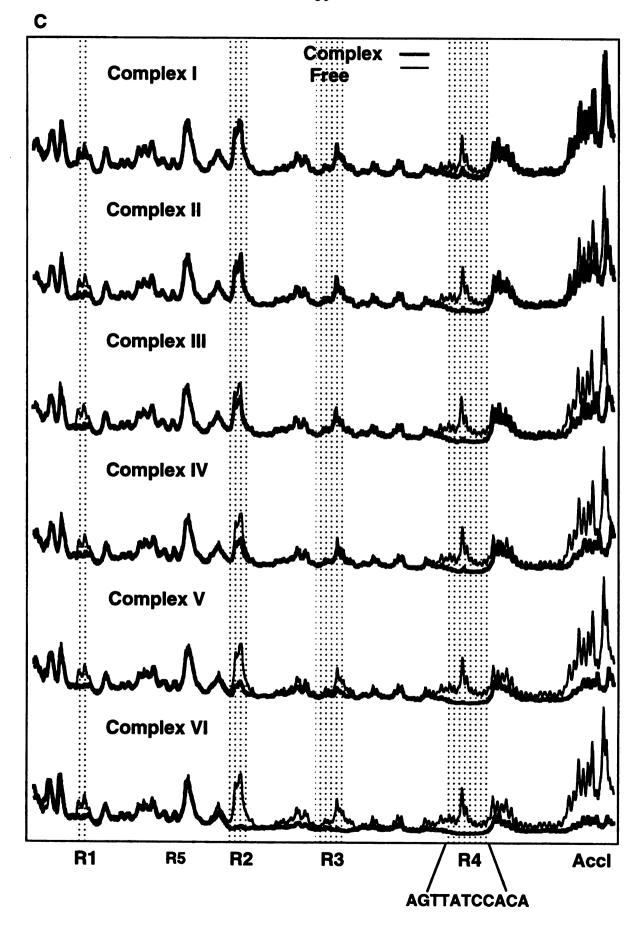



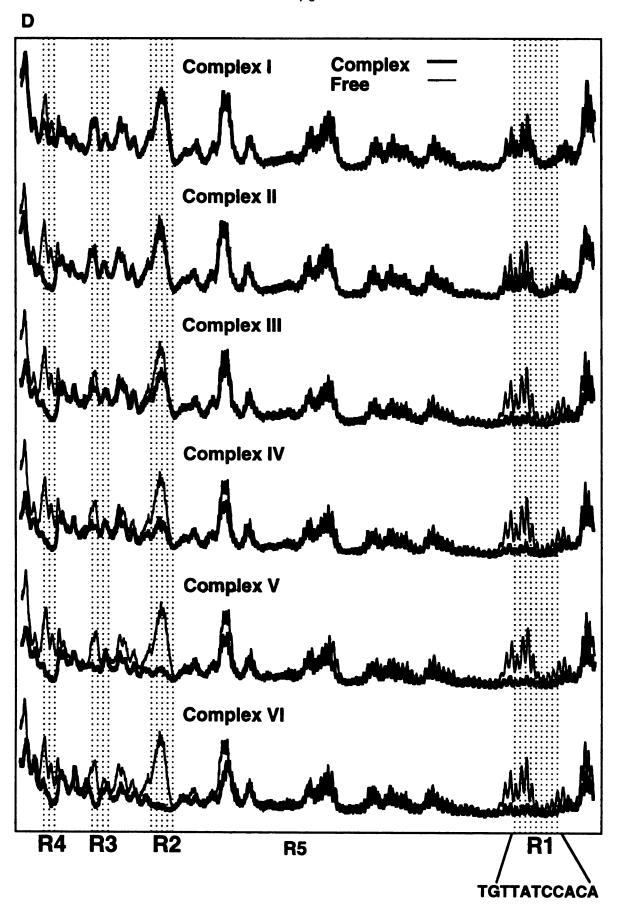

Figure 4. Discrete complexes are formed by the ATP- or ADP-bound form of DnaA protein. Gel mobility-shift assays were performed as described in "Experimental Procedures" with the indicated amounts of DnaA protein and a ³²P-labelled DNA fragment containing *oriC*. ATP or ADP (2 mM each) were included in the indicated reactions.

observation that DNase I protection of DnaA boxes in *oriC* by the ATP-bound form of DnaA protein was localized to the DnaA boxes whereas binding by the nucleotide-free form was less specific (Hwang and Kornberg, 1992b) By electron microscopy (Crooke *et al.*, 1993), the classes of structures formed in the presence of either nucleotide may correlate to some of the complexes resolved here (Figures 2, & 4).

Relative binding affinities of DnaA protein to supercoiled and linear DNA--DNA replication activity of DnaA protein is dependent on a supercoiled plasmid containing oriC (Funnell et al., 1986). By comparison, the gel mobility-shift assays were with a linear DNA fragment. Nitrocellulose filter binding assays showed that DnaA protein bound with about 3-fold higher affinity to a supercoiled *oriC* plasmid than to the linearized or relaxed form (Fuller and Kornberg, 1983). To examine this issue with the gel mobility-shift assay, unlabelled competitor DNA was added to reactions containing a fixed level of DnaA protein and radioactively labelled *oriC* fragment (Figure 5). Addition of either supercoiled (estimated to be contaminated by ~10% nicked DNA by resolution by agarose gel electrophoresis and quantitative densitometry), linearized oriC plasmid, or the same unlabelled restriction fragment resulted in a comparable reduction of DNA binding to the labelled DNA, measured by densitometric analysis of the autoradiogram. By contrast, poly dIdC was an ineffective competitor. These results indicate a comparable binding affinity of DnaA protein to supercoiled or linear DNAs containing oriC. The apparent discrepancy between these observations and the cited study may be due to the absence of ATP in the filter binding assays (Fuller and Kornberg, 1983) whereas it

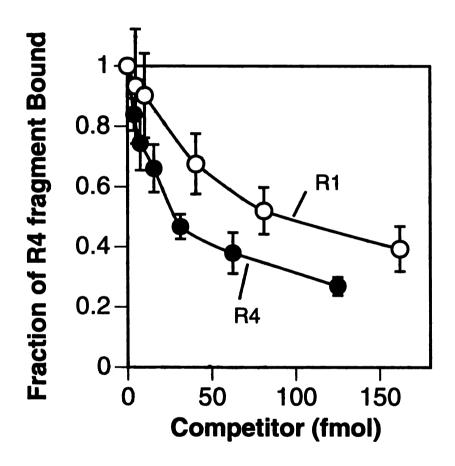

Figure 5. Both supercoiled and linear oriC plasmids are comparable in reducing binding of DnaA protein to DnaA box R4. The indicated amounts of unlabelled DNAs (supercoiled pBSoriC, it linearized with Pst I, or the Sma I-Xho I oriC fragment) as competitor were combined with a Sma I-Xho I oriC-containing fragment (25 fmol) radioactively labelled by 3' end-filling of the Xho I site with $[\alpha$ - $^{32}P]$ TTP. DnaA protein (18 ng) was then added. Poly dIdC was added in equivalent mass to plasmid DNA. Other procedures were as described in "Experimental Procedures". The amount of free DNA in each lane was quantified by beta emission scanning to calculate the amount of DNA bound.




was present in the gel mobility-shift experiments (Figure 5). We have not examined the effect of ATP on binding affinity to different topological forms of *oriC*-containing plasmids nor compared the effect of supercoiled and linear *oriC*-containing DNAs by each assay method.

Ordered binding of DnaA protein to oriC--To determine the sites bound by DnaA protein in the separated complexes, in situ footprint analysis was performed with 1,10 phenanthroline-copper (Kuwabara and Sigman, 1987). Complexes formed with DNA labelled in the top or bottom strand were examined (Figure 6 A, B). Regions protected from chemical cleavage were identified by quantitative analysis of the resultant autoradiograms (Figure 6 C, D). Complex I consisted of DnaA protein bound to R4. R1 was additionally protected in Complex II. Complex III differed from Complex II by protection of R2 as well as sequences to the left of R4 in vicinity of the Acc I site. Binding to the region encompassing the Acc I site is likely not responsible for the electrophoretic position of this and more slowly migrating complexes (described below). Gel-mobility shift experiments with a DNA fragment lacking the Acc I site resulted in a similar number and proportion of complexes (data not shown). The scarcity of Complex IV and V relative to other complexes (Figure 2, lanes with 10-40 ng of DnaA protein) suggests that these may be of lesser stability. Nonetheless, greater protection of R2 was observed in Complex IV compared to Complex III (as well as protection of the region containing the Acc I site). Whereas some protection of R3 was seen in Complex IV (Figure 6 D), it was enhanced in Complexes V and VI. Complex VI consisted of protection of the 4 DnaA boxes as well as flanking sequences in the region from R2 to R4. The altered mobility of Complex IV and V

Figure 6. In situ footprinting of complexes with 1,10-phenanthroline-copper. In situ cleavage was performed as described in "Experimental Procedures" with a Sma I-Xho I fragment labelled at the Xho I site with the large fragment of DNA polymerase I and all 4 [α^{32} P] deoxyribonucleotides (top strand, panel A), or at the Hinf1 site of a Hinf1-Pst I fragment by incorporation of all 4 [α^{32} P] deoxyribonucleotides and subsequently cleaved with Xho I (bottom strand, panel B). The cleavage pattern of respective complexes was analyzed by beta emission scanning and compared to the cleavage pattern of the corresponding unbound fragment that was treated similarly (panels C and D). Maxam-Gilbert G and G+A reactions performed on the appropriate oriC fragment served as size markers. The sequence of R4 (panel C) and R1 (panel D) with sequences at -1 and -2 positions (Table 1) is presented at the bottom.



relative to III may be due to more stable binding of DnaA protein to R2, and R3, possibly by interaction among proteins bound to different DnaA boxes by bending or looping of the DNA. In summary, these findings indicate that DnaA protein binds, in order, to R4, R1, then R2 and R3. These methods do not distinguish the possible contribution that binding to one site may have on subsequent binding to another site due to cooperativity.

DnaA protein binds to DnaA box R4 with greater affinity than to R1--Results from gel retardation and footprinting experiments indicated that DnaA box R4 is bound with greater affinity than R1 by DnaA protein. To determine the relative affinity of DnaA protein to restriction fragments containing only box R1 or R4, gel shift assays were performed with unlabelled DNAs as competitors. Addition of increasing amounts of unlabelled fragment containing R4 resulted in proportional inhibition of binding to the labelled R4 fragment present at a constant level (Figure 7). By comparison, addition of unlabelled R1 fragment was less effective. These results, the average of 3 independent experiments, confirm that DnaA protein binds to R4 in oriC with greater affinity than R1. As the 9-mer sequence of R4 is identical to that of R1, sequences that flank the DnaA box appear to contribute to binding affinity. The protection of residues at -1 and -2 positions (Table 1) outside the 9-mer sequence of R4 in Complex I (Figure 6C) and of R1 in Complex II (Figure 6D) supports this conclusion. Also, the binding affinity to R2 and R3 apparently is less and may be due to sequence differences in respective 9-mers in addition to the influence of flanking sequences (Table 1).

Figure 7. DnaA protein binds to DnaA box R4 with greater affinity than to R1. An Eco01091-Pst I restriction fragment (25 fmol) containing DnaA box R4 from pBSR4, radioactively labelled by end-filling at the Eco01091 site with [α^{32} P] dGTP, was incubated with the indicated amounts of the same unlabelled fragment, or an unlabelled Sma I-Ava II restriction fragment containing DnaA box R1. pBSR4 was constructed by insertion of the Hind III-Pst I fragment (gel-purified) containing DnaA box R4 of oriC into corresponding sites of pBluescript II SK+ (Stratagene). DnaA protein (3 ng) was added and complexes resolved from free DNA as described in "Experimental Procedures." After autoradiography, the amount of free DNA remaining in each lane was quantified by beta emission scanning, then the amount of DNA bound was calculated. The amount of radiolabelled DNA bound in the absence of competitor was normalized to 1.

Discussion

retardation assay in conjunction with protection from cleavage by 1,10 phenanthroline-copper, the binding of DnaA protein to sequences in *oriC* was found to be ordered and sequential. The 6 discrete complexes (and material near the wells seen at higher levels of DnaA protein) may correlate with the seven unique structures detected by electron microscopy (Crooke *et al.*, 1993). At higher levels of DnaA protein, the inhibition of replication activity correlated with formation of material that entered the gel poorly (Figure 3). Complex VI (Fig. 2) may correspond to structure 3 (Crooke *et al.*, 1993) as the formation of both correlated with optimal replication activity. Second, both structure 3 and complex VI formed more efficiently with ATP than with ADP in the reaction mixture. In the absence of nucleotide DnaA protein failed to form discrete complexes. This apparently is due to aggregation of DnaA protein that occurs on its incubation without ATP (J. Marszalek and J. M. Kaguni, unpublished results).

By comparison, similar experiments with a *dnaA* promoter fragment containing a DnaA box identical to R4 of *oriC* (Table 1) and a weak DnaA box have been performed (unpublished results). We observed two prominent complexes and two minor, more slowly migrating species.

A supercoiled template containing oriC is required for in vitro replication (Funnell et al., 1986). Relating this requirement to structure 3, it was observed more frequently with supercoiled DNA than linear DNA (Crooke et al., 1993). We have not determined whether complex VI forms more efficiently on

supercoiled DNA than linear or relaxed DNA, despite attempts to resolve complexes formed on supercoiled DNA in low percentage agarose gels. In addition, we have been unsuccessful in demonstrating ordered binding of DnaA protein on a supercoiled oriC-containing plasmid. The method used was quantitative footprint analysis with DNase I or 1,10 phenanthroline of complexes formed in solution, followed by primer extension. Footprinting in solution provides an averaged picture of complexes formed. At lower ratios of DnaA protein to oriC where we expected to see preferential binding to DnaA box R4 then to R1, we presume that the amount of free DNA masks the protection pattern resulting from ordered binding. Also, we presume that this reason explains why ordered binding was not observed in previous reports (Fuller et al., 1984; Hwang and Kornberg, 1992b). Although solution footprinting on supercoiled DNA failed to detect ordered binding, competition experiments demonstrated that DnaA protein binds with a similar affinity to supercoiled or linear DNAs containing oriC (Figure 5). This suggests that DnaA protein binds to either topological form by a similar mechanism.

Despite the identical 9-mer sequences of R1 and R4 (Table 1), DnaA protein bound to R4 with about 3-fold higher affinity than to R1 (Figure 7). Presumably, sequences that flank the 9-mer in R4 contribute to its higher binding affinity. Indeed, the protection of flanking sequences at -1 and -2 positions of R4, and R1, clearly seen in Complexes I and II (Figure 6C & 6D), indicates that DnaA protein binds to residues outside of the core sequence. Whether the differences in sequences at the -2 position of R4 compared to R1 is responsible for the different binding affinities can be tested directly. Other evidence supports the

notion that flanking sequences contribute to binding affinity. With a nitrocellulose filter binding assay, we found that DnaA protein bound 4-fold greater to the DnaA box in a *dnaA* promoter-containing fragment than to a synthetic DnaA box (9-mer) inserted into the multiple cloning site of M13mp18 (Table 1) (Q. Wang and J. M. Kaguni, unpublished results). These observations are also supported by the 50-fold difference in binding affinity to a specific DnaA box when flanking sequences were varied (Schaper and Messer, 1995).

The observations described here are in contradiction to the conclusion that DnaA protein bound with higher affinity to central DnaA boxes (R2 and R3) relative to the flanking sites (R1 and R4) (Schaefer and Messer, 1991). This deduction was based on an indirect method that measured expression of galK dependent on transcription from the lac promoter. The DnaA box sequence being assessed was positioned between the promoter and the galK gene. The relative ability of DnaA protein to function as a transcriptional terminator to affect galK expression was the basis of the assay. It is possible that differences in mRNA stability and/or translational efficiency may have influenced the results obtained.

Four lines of evidence correlate the initiation of DNA replication to the binding of DnaA protein to DnaA box R3. First, dimethylsulfate treatment of an *oriC* plasmid carried in an exponentially growing strain revealed that DnaA box R3 was not bound whereas the remaining sites were (Samitt *et al.*, 1989). Such minichromosomes in which plasmid replication occurs from *oriC* are duplicated once per generation (Koppes and von Meyenburg, 1987), and synchronously with the bacterial chromosome (Helmstetter and Leonard, 1987a). Assuming that

replication fork movement is the same as that of the bacterial chromosome, oriC plasmid replication should be completed within a few seconds. As dimethylsulfate treatment was for 2 min, most plasmids should not be active in replication. These observations suggest 2 possibilities. One is that the level of DnaA protein throughout most of the cell cycle may be insufficient to bind to this site, and that a critical level must be attained to promote initiation. Alternatively, this site may be occluded (see below). Second, in synchronous cultures, initiation of oriC plasmid replication correlated with the binding of DnaA protein to R3 (Cassler, 1995). Third, elevated expression of DnaA protein stimulated initiation (Atlung et al., 1987; Lobner-Olesen et al., 1989; Skarstad et al., 1989), possibly by increased occupancy of DnaA box R3. Fourth, formation of Complex VI in which DnaA box R3 is occupied last correlated with replication activity (Figure 3 & 6).

The method used here does not provide a clear picture of the structure of Complex VI except for additional protection of sequences flanking the DnaA boxes. The protected site between R1 and R2 (Figure 6D) contains the sequence TTATACGGT that resembles the DnaA box sequences (TTATA/_CCAA/_CA) of *oriC* and presumably is bound for this reason. The protected region between R2 and R3 contains a Fis binding site (Figure 1) (Filutowicz *et al.*, 1992; Finkel and Johnson, 1992; Gille *et al.*, 1991). That *fis* null mutants maintain poorly *oriC*-dependent plasmids (Filutowicz *et al.*, 1992; Gille *et al.*, 1991), and are asynchronous in initiation (Boye *et al.*, 1993) suggests a positive role for Fis binding. However, certain *in vitro* conditions demonstrate that Fis is inhibitory to *oriC* plasmid replication (Hiasa and Marians, 1994a), a finding consistent with the

report that binding of DnaA protein to R3 is mutually exclusive to the binding of Fis at its respective site (Gille et al., 1991). Indeed, footprinting studies of oriC minichromosomes in synchronous cultures suggest that Fis blocks the binding of DnaA protein to R3 (Cassler, 1995). At initiation, the protection pattern attributed to Fis was not observed. Instead, DnaA box R3 was protected. Shown here, occupancy of R3 by DnaA protein correlates with optimal replication activity (Fig. 3 & 6). DnaA protein and Fis may compete for binding with contrasting effects on replication activity.

HU protein or IHF act in initiation (Dixon and Kornberg, 1984; Skarstad et al., 1990) to facilitate unwinding of the 13-mers near the left boundary of oriC (Hwang and Kornberg, 1992a). A preferred IHF binding site between R1 and R2 (Filutowicz and Roll, 1990; Polaczek, 1990) suggests the possibility that IHF may enhance one or more steps in formation of Complex VI as a prerequisite to unwinding. In synchronously growing cells, IHF occupies this site just before initiation (Cassler, 1995). IHF and DnaA protein were concluded to bind independently to oriC, based on the lack of effect of IHF on the DNase I protection pattern by DnaA protein (Fig. 5 of (Hwang and Kornberg, 1992a)). However, the level of DnaA protein examined was in excess of the level optimal for formation of Complex VI (Figure 2), and would have obscured detecting enhancement of DnaA protein binding.

In addition to the 4 DnaA boxes described above, a fifth site, R5, has been proposed as a site of binding of DnaA protein (Matsui *et al.*, 1985). Little, if any, protection was observed at this site. This may be partly due to the reduced ability of phenanthroline-copper to cleave in this region.

Except in Complex I and II, all other complexes revealed a protected region encompassing the *Acc* I site. DNase I footprinting with the nucleotide-free form of DnaA protein showed that it bound to this region (Hwang and Kornberg, 1992a). However, this region was not protected by DnaA protein bound to ATP, ADP, or ATPγS. Although the studies presented here involved incubation of DnaA protein with the *oriC*-containing restriction fragment and 0.5 μM ATP prior to electrophoresis, protection of the region containing the *Acc* I site suggests that dissociation of DnaA protein and rebinding of the nucleotide-free form occurs during electrophoresis. The significance of binding to this site is unclear as it is not part of the functional *oriC* sequences (Asai *et al.*, 1990).

Chapter III

The influence of IHF on the binding of DnaA protein to oriC

Abstract

The role of integration host factor (IHF) in initiation of DNA replication at the *E. coli* chromosomal origin (*oriC*) was investigated by studying the effect of IHF on the binding of DnaA protein to *oriC*. *In vitro*, IHF can replace HU for *oriC* dependent replication (K. Skarstad, T, A. Baker, A. Kornberg (1990) *EMBO J.* 9, 2341-2348). HU or IHF is required in addition to DnaA protein for efficient unwinding of the AT-rich 13-mers found within *oriC* (D. S. Hwang, A. Kornberg (1992) *J Biol. Chem.* 276, 23083-23086). For initiation, DnaA protein binds four sites, termed DnaA boxes, within *oriC*. Binding to the two outside DnaA boxes R1 and R4, is followed by the binding to the two inner boxes, R2 and R3. As IHF bends DNA on binding and as the IHF site is located between R1 and R2, IHF has been proposed to enhance DnaA-DnaA interactions and to facilitate the binding of DnaA protein to R2 and R3. Experiments described here indicate that IHF does not facilitate DnaA binding to linear *oriC*.

Introduction

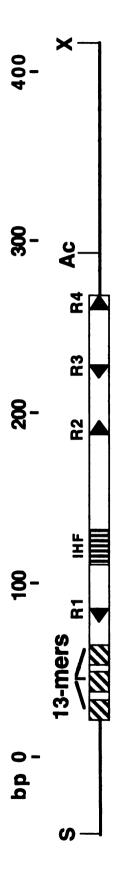
HU and integration host factor (IHF) are abundant, small basic DNA binding proteins organize the bacterial nucleoid (Pettijohn, 1988). In addition, these proteins have been implicated in site specific recombination, transcription (Goosen and van de Putte, 1995), and the initiation of plasmid and chromosomal replication (Dixon and Kornberg, 1984; Funnell *et al.*, 1987; Gamas *et al.*, 1986; Skarstad *et al.*, 1990). HU and IHF are often interchangeable in many (Goodman *et al.*, 1992; Hwang and Kornberg, 1992a; Surette *et al.*, 1989) but for not all processes (Segall, 1994). These bacterial processes are dependent on highly ordered nucleoprotein complexes. HU and IHF are thought to play a role in stabilizing these complexes.

Both IHF and HU are composed of two subunits and share 50% amino acid similarity (Drlica and Rouviere, 1987). Based on mutational studies (Goshima et al., 1992; Goshima et al., 1990) and protein crystallographic analysis (Rice et al., 1996; Tanaka, 1984), each subunit contains an anti parallel β -ribbon "arm" that contacts DNA. On binding DNA, the β -ribbon from each subunit inserts into the minor grove with one β -ribbon positioned on one side of the DNA strand and the other β -ribbon on the other side to encircle the DNA (Wang et al., 1995; Yang and Nash, 1989).

Despite their homology, HU and IHF differ in their DNA binding properties. HU binds DNA that contains bends, cruciform structures or single stranded gaps with higher affinity, but it has little sequence specificity (Bonnefoy et al., 1994; Castaing et al., 1995; Pontiggia et al., 1993; Shimizu et al., 1995). In

contrast, IHF is a sequence specific DNA binding protein (Craig and Nash, 1984; Goodrich *et al.*, 1990). Second, IHF bends DNA on binding of a single heterodimer, whereas DNA bending by HU is thought to require the binding of 3 heterodimers (Tanaka, 1984). Furthermore, the models for their ability to bend DNA are different. Besides interacting with the residues on the β-ribbon, DNA interacts with the body of IHF to stabilize a bend. HU is proposed to introduce bends in DNA through protein-protein interactions with HU dimers bound to adjacent DNA sequences (Tanaka, 1984; Yang and Nash, 1989).

IHF is proposed to be a structural element in protein-DNA complexes by bending DNA to draw distantly located DNA elements into close proximity (Finkel and Johnson, 1992; Segall, 1994). In support of this model, lambda integration reactions were made independent of IHF by replacing the IHF binding site with either stably bent DNA or binding sites for other proteins that bend DNA (Giese et al., 1992; Goodman and Nash, 1989; Goodman et al., 1992). In the latter studies, site specific recombination became dependent on the sequence specific DNA binding protein, cyclic AMP activator protein (CAP) or lymphoid enhancer-binding protein (LEF-1), whose site replaced the IHF site (Giese et al., 1992; Goodman and Nash, 1989).


HU may facilitate the formation of nucleoprotein complexes via a general mechanism similar to IHF as HU can replace IHF in stimulating lambda excision (Goodman et al., 1992), and Mu transposition (Surette et al., 1989). In lambda excision, both proteins stabilize the binding of lambda recombinase, Int, to its DNA substrate (attL) which contains an IHF binding site between two binding sites for Int (Segall, 1994). As IHF inhibits HU binding to a fragment containing

this site (Segall, 1994), HU appears to bind to the IHF binding site when Int is bound to attL. HU may bind specifically to the sequences between Int binding sites because these sequences may be bent. Alternatively, the binding of Int may bend attL to stimulate HU binding.

As in site specific recombination, IHF facilitates replication of the *E. coli* plasmid pSC101 by stabilizing protein-DNA interactions. Replication of pSC101 requires IHF and DnaA protein as well as the plasmid encoded RepA protein (Gamas *et al.*, 1986). The pSC101 origin contains one consensus DnaA box, called dnaA_s (Stenzel *et al.*, 1991) and other sites, dnaA_w, that do not rigorously match the consensus sequence and are bound weakly. In footprinting studies, little binding of dnaA_w is observed when the adjacent dnaA_s site was deleted (Stenzel *et al.*, 1991). Binding to these weak sites is probably mediated through protein-protein interactions by the bending of the intervening sequences. IHF binds to a site between the dnaA_s and the two dnaA_w sites. The binding of IHF enhances the binding of DnaA protein to both its sites, presumably by the ability of IHF to bend the intervening sequences (Stenzel *et al.*, 1991).

Replication from the *E. coli* chromosomal origin (*oriC*) also depends on DnaA protein and IHF (Kaguni and Kornberg, 1984; Skarstad *et al.*, 1990). *oriC* contains four DnaA boxes, R1, R2, R3, and R4 (Fuller *et al.*, 1984) (Figure 1). DnaA protein binds to R1 and R4 with higher affinity than to R2 and R3 (Schaper and Messer, 1995). As in the pSC101 origin, *oriC* contains an IHF binding site located between a strong site and a weak site; in the case of *oriC* the IHF binding site is located between R1 and R2 (Filutowicz and Roll, 1990; Polaczek, 1990). The binding of DnaA protein to all four DnaA boxes is thought

Figure 1. The oriC region. The 245 bp minimal oriC is indicated by the open rectangle. The IHF consensus sequence is indicated by the vertically striped box. DnaA boxes R1-R4 which are the 9-mers recognized by DnaA protein are indicated by the filled in triangles. The 13-mer motifs and restriction enzyme sites (S, Sma I; Acc I; and X, Xho I) of pBSoriC are indicated.

to be required for unwinding of the AT-rich 13-mers adjacent to the DnaA boxes (Margulies and Kaguni, 1996; Oka et al.., 1984). Either HU or IHF facilitates unwinding of the 13-mers (Hwang and Kornberg, 1992a). The mechanism by which IHF facilitates unwinding has not been determined. In a mechanism similar to the function of these proteins in replication of pSC101, IHF may act in early events at oriC by stimulating the binding of DnaA protein. Alternatively, it may act at the subsequent step of unwinding the AT-rich region. Here, we investigate whether IHF promotes the binding of DnaA protein to the DnaA boxes within oriC.

Experimental Procedures

Reagents and chemicals--3-(cyclohexylamino)-1-propanesulfonic acid (CAPS) was obtained from United States Biochemical Corporation (USB); sodium pyrophosphate and trichloroacetic acid (TCA) from J.T. Baker

Proteins and enzymes--The monoclonal DnaA antibody, M43, was obtained as described in (Marszalek et al., 1996). The polyclonal IHF antibody was obtain as a gift from Dr. Howard Nash at the National Cancer Institute, NIH. Horseradish peroxidase-conjugated goat anti-mouse IgG and goat anti-rabbit IgG were obtained from Bio Rad. Highly purified replication proteins were obtained as described (Hwang and Kaguni, 1988), DnaB protein (Fraction V, 6 x 10⁵ units/mg); DnaC protein (Fraction VI, 6 x 10⁵ units/mg); primase (Fraction V, 2 x 10⁶ units/mg); single stranded DNA binding protein (SSB) (Fraction V, 4 x 10⁵ units/mg); DNA polymerase III holoenzyme (Fraction V, 2 x 10⁵ units/mg); DNA gyrase A subunit (Fraction III, 2 x 10⁵ units/mg); DNA gyrase B subunits (Fraction V, 1 x 10⁵ units/mg); RNA polymerase (4 mg/ml); RNase H (fraction IV, 8 x 10⁵ units/mg), topoisomerase I (fraction IV, 5 x 10⁴ units/mg). HU was purified as described (Dixon and Kornberg, 1984). IHF was a gift from Dr. Filutowiz at the University of Wisconsin, Madison. DnaA protein was purified as described (Sekimizu et al., 1988b).

DNA replication assays--DNA replication reactions using purified enzymes were performed as previously described (Hwang and Kaguni, 1988). The reactions (25 µl) contained: HEPES-KOH, pH 7.8, 25 mM; Tris-HCl, pH 7.5,

20 mM; sucrose 4% (w/v); ATP, 2 mM; CTP, GTP, and UTP, each at 0.5 mM; dATP, dCTP, dGTP and (³H)TTP (30 cpm/pmol) each at 100 μM; magnesium acetate, 11 mM; phosphocreatine, 2 mM; DTT, 5 mM; creatine kinase, 100 μg/ml; bovine serum albumin, 0.08 mg/ml; SSB, 160 ng; gyrase A subunit, 500 ng; gyrase B subunit, 600 ng; primase, 10 ng; DnaB protein, 50 ng; DnaC protein, 40 ng; DnaA protein, 100 ng; DNA polymerase III holoenzyme, 300 ng; pBS*oriC* supercoiled DNA, 25 fmol; and the indicated amounts of HU or IHF. The reactions were assembled at 0 °C. After incubating at 30 °C for 30 minutes, the reactions were stopped and the DNA precipitated with 1.0 ml 10% (wt/vol) trichloroacetic acid and 0.1 M sodium pyrophosphate. The incorporated (³H)TTP was measured by collecting the precipitated DNA by filtration through glass-fiber filters (Whatman GF/C). The filters were dried and the radioactivity collected on the filters was quantified by liquid scintillation counting.

DNA binding assays—The gel mobility shift assays were performed as described (Chapter 2).

DNA protection assay--In situ cleavage with 1,10-phenanthroline-copper was performed as described (Chapter 2).

Probing complexes with antibodies--Gel mobility shift assays were performed as described in Chapter 2 except that the reactions were scaled up 5-fold. After electrophoresis, the complexes were transferred from the wet gel to a PVDF membrane (Schleicher & Schuell) in 9.9 mM 3-(cyclohexylamino)-1-propanesulfonic acid (CAPS) pH 11, and 10% (vol/vol) methanol for 9 hours at 150 mAmp. The membrane was incubated with 2% (w/vol) milk then probed with anti-DnaA monoclonal antibody (M43) followed by a horseradish peroxidase-

conjugated goat anti-mouse IgG. Detection was by chemiluminescence (ECL, Amersham). The membrane was stripped with 0.2 M glycine (pH 2.8) and 1 mM EGTA, reblocked and reprobed for IHF with anti-IHF polyclonal antibody followed by horseradish peroxidase conjugated goat anti-rabbit IgG. Detection was as above. To locate the ³²P labelled *oriC* fragment, the blot was exposed to film after the ECL signal decayed.

Determination of the dissociation rate constant of the IHF Complex 1. A Sma I-Xho I oriC fragment 3'-end labelled at the Xho I site with $[\alpha^{32}P]$ TTP was preincubated with IHF for 5 minutes under standard gel mobility shift conditions (Chapter 2) in a total of volume of 120 µl. After preincubation, a 20 µl aliquot was removed to a separate tube and 10 µl of this was loaded onto a native 4% polyacrylamide gel. A 100-fold molar excess of pBSoriC was added to the remaining reaction mixture and 10 µl was immediately loaded onto the gel electrophoresing at 90 V. Additional 10 µl aliquots of the mixture were then loaded onto the gel at various times after the addition of the competitor DNA. At the end of the time course the remaining, 10 µl of the mixture with IHF not containing the competitor and another 10 µl of the mixture containing just the labeled DNA were loaded. An additional control in which a 100 fold molar excess competitor was added before IHF was loaded onto the gel at the beginning of the time course. Electrophoresis continued for 4 hours at 90 V after the last sample was loaded. The amount of DNA bound at each time point was quantitated using β emission scanning. The data was plotted and the curve fitted according to the equation Bound, /Bound_o = $e^{(-k)}$ off⁰, where Bound_o is the

amount of DNA bound at time t, $Bound_o$ is the amount of DNA bound immediately prior to the addition of competitor, and k_{off} is the dissociation rate constant.

Results

IHF substitutes for HU in purified oriC-dependent replication--In the absence of RNA polymerase, HU or IHF is required for optimal replication (Figure 2A) (Skarstad et al., 1990). In vitro replication can be made to be dependent on RNA polymerase by including topoisomerase I and RNase H. RNA polymerase is not involved in forming primers but is more likely involved in altering the topology of oriC making it more susceptible to unwinding. Either protein facilitates DNA replication in the presence and absence of RNA polymerase (Figure 2B). HU and IHF promote replication by altering the topology of oriC to facilitate DnaA protein unwinding the AT-rich 13-mer of oriC (Hwang and Kornberg, 1992a).

IHF forms a single major complex with oriC whereas HU forms multiple complexes--To investigate whether these proteins affected the initial binding of DnaA protein to the four DnaA boxes within oriC, gel mobility shift assays were performed. Although HU and IHF are similar at the amino acid and the structural level (Drlica and Rouviere, 1987), they are strikingly different in their DNA binding characteristics. These differences were also demonstrated on binding to oriC (Figure 3A and B). Three complexes were observed in proportion to the amount of IHF added (Figure 3A). A major and minor complex (Complex 1 and Complex 2, respectively) were formed at lower levels of IHF (0.6-10 ng). The third complex, Complex 3, with lower mobility was observed only when at least 10 ng of IHF was added.

In similar assays, HU formed as many as eight complexes with oriC (Figure

Figure 2. IHF can replace HU in in vitro oriC-dependent replication in the presence or absence of RNA polymerase. IHF () or HU () were titrated in reconstituted replication assays which were independent (A) or dependent (B) on RNA polymerase as described in "Experimental Procedures".

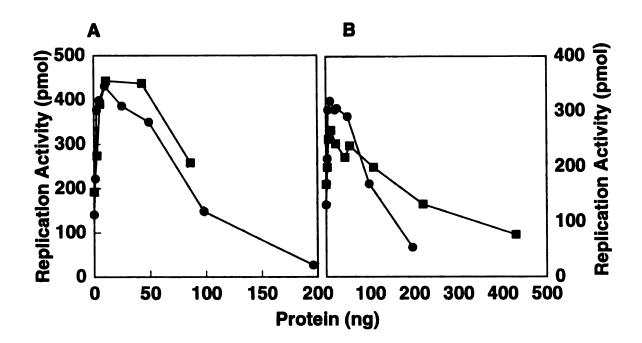
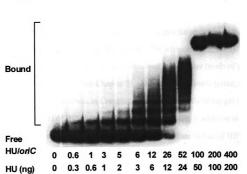


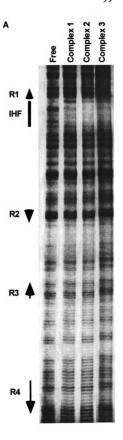
Figure 3. Both IHF and HU bind oriC. Gel mobility shift assays were performed as described in "Experimental Procedures" with the indicated amounts of IHF (A) and HU (B) protein and 25 fmol of a Sma I-Xho I oriC fragment labelled at the Xho I site with the large fragment of DNA polymerase I and $[\alpha^{32}P]$ TTP. Unbound DNA is noted as "Free".



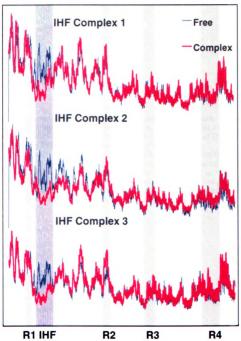
Free

IHF/oriC 0 1 3 5 10 20 40 IHF (ng) 0 0.6 1.3 2.7 5.4 10 22

В

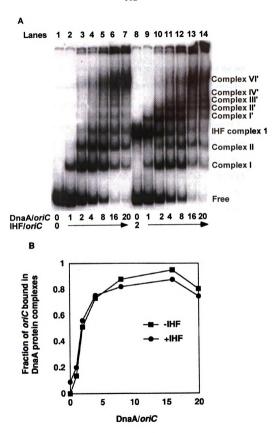

3B). The HU-oriC complexes decreased in mobility proportional to the amount of HU added. Only one complex was resolved when HU was added at levels above 24 ng (Figure 3B). As the IHF binding site was located near the center of the oriC fragment (Figure 1), the large retardation of the IHF complexes relative to the unbound DNA suggested that the fragment was highly bent by the binding of IHF. In contrast, the small change in mobility of the first HU complex suggested that less bending of the fragment occurred on the binding of a single HU dimer.

IHF binds oriC at a single site--To investigate the DNA sequences bound, the IHF complexes were footprinted using an in situ method with phenanthroline-copper. In each of the complexes, the IHF binding site between DnaA boxes R1 and R2 was protected (Figure 4). Complex 2 included additional protection of flanking sequences compared with Complexes 1 and 3.


Novel complexes with oriC form in the presence of IHF and DnaA protein--As the binding of IHF to oriC resulted primarily in a single complex when IHF was added at lower amounts, gel mobility shift assays were used to investigate the effect of IHF on binding of DnaA protein to oriC. In the absence of IHF, DnaA protein formed at least 6 complexes with oriC (Figure 5). Complexes with slower mobilities were observed with higher levels of protein added (Figure 5 lanes 2-7, see Chapter 2). At the highest levels tested, the majority of the fragment was in Complex VI and at the wells of the gel (lane 7).

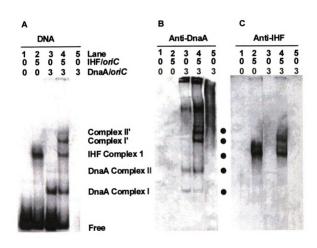
With a level of IHF sufficient to form IHF Complex 1, addition of DnaA protein resulted in complexes with mobilities intermediate to that of IHF Complex 1 (lane 8) and that of DnaA Complex VI (lane 7). Based on the relative mobilities

Figure 4. In situ footprinting of IHF complexes with 1,10-phenanthroline-copper. In situ cleavage was performed as described ("Experimental Procedures") with IHF and a Sma I-Xho I fragment labelled at the Xho I site with the large fragment of DNA polymerase I and all 4 [α^{32} P] deoxyribonucleotides. The IHF complexes were resolved on a standard native gel. The entire gel was immersed in a phenanthroline-copper solution. The reaction was stopped. Film was exposed to the gel and was used to guide the excision of the complexes. The DNA was eluted, precipitated, resuspended in formamide buffer then loaded on a standard 6% sequencing gel. The resulting cleavage patterns are shown in panel A. The gel was quantified by β emission scanning. The quantified cleavage pattern of each complex was compared with the cleavage of unbound and shown in panel B.


В

R1 IHF

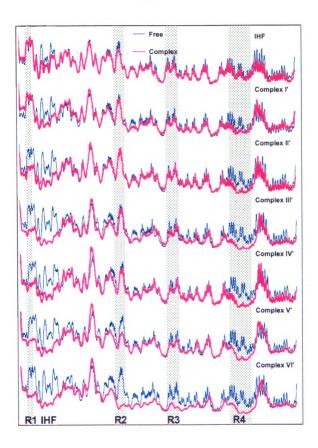
R2


Figure 5. Novel complexes form in the presence of both IHF and DnaA protein. A) Gel mobility-shift assays with DnaA protein, IHF or both and a Sma I-Xho I oriC fragment labelled at the Xho I site with the large fragment of DNA polymerase I and $[\alpha^{32}P]$ TTP were performed essentially as described in "Experimental Procedures" of Chapter 2. IHF was added to the reaction before DnaA protein. B) The gel was quantified by β emission scanning. The total amount bound in each lane (1 though 7) was quantified and expressed as the fraction bound of oriC (\blacksquare). The fraction of oriC bound in complexes containing DnaA protein in lanes 8 through 14 was determined by subtracting the amount of oriC bound in the position of IHF Complex 1 from the total oriC bound in each lane (\blacksquare).

of these complexes (Complex I' through Complex VI') to the mobility of IHF complex, they presumably were the result of binding of DnaA protein to IHF-bound *oriC*.

Western blot analysis was performed to determine whether the novel complexes contained both IHF and DnaA protein (Figure 6). Autoradiography of the membrane was also performed to locate the ³²P-labelled oriC fragment (Figure 6 A). To minimize the complexity of this experiment, a ratio of 3 molecules of DnaA protein to oriC was used so that only Complexes I and II formed. In the lane in which no DNA was added, DnaA protein runs as a large smear from the top of the gel (Figure 6B, lane 5). In reactions with DnaA protein and an oriC fragment, DnaA protein was detected in Complexes I and II, as well as Complex I' and II', as expected (lane 3). Likewise, IHF was located in IHF Complex 1 formed with IHF alone and Complex I' (Figure 6C). Complex II' also cross reacts with anti-IHF antibody (data not shown). These observations supported the conclusion that Complexes I' through VI' each contain both DnaA protein and IHF bound to oriC. The ratio of DnaA protein to oriC appears higher in Complex I' than in Complex I (compare lanes 3 and 4 in Panel A and B) suggesting that IHF facilitated the binding of DnaA protein to oriC. However, the total amount of oriC fragment bound in DnaA-oriC complexes was similar in the presence and absence of IHF (Figure 5 B) indicating that IHF did not alter the affinity of DnaA protein for an oriC fragment. Results may indicate that IHF increased DnaA-DnaA interactions.

Figure 6. Novel complexes contain both DnaA protein and IHF. Gel mobility shift assays were performed as in Figure 5 ("Experimental Procedures" of Chapter 2) except that reactions were scaled-up 5-fold. In all reactions containing IHF and DnaA protein, IHF was added first. The complexes were electrophoretically transferred to a membrane then probed for DnaA protein and IHF as described in "Experimental Procedures". The ³²P-labelled *oriC* fragment was detected by autoradiography. No *oriC* was added to lane 5. The position of unbound *oriC* is noted as "Free". The positions of the various complexes are marked.


IHF does not aid the binding of DnaA protein to the weaker inside DnaA boxes within oriC--DnaA protein bound to oriC in an ordered manner as demonstrated by in situ footprinting (Chapter 2). At lower levels, DnaA protein formed Complex I and II (Figure 5A, lanes 2 and 3) by binding to the outside DnaA boxes, R1 and R4 (Margulies and Kaguni, 1996). At higher concentrations, DnaA protein formed higher ordered complexes by the additional binding to the interior boxes, R2 and R3.

More DnaA protein appeared to bind in Complex I' than Complex I indicating additional sites in *oriC* may be bound by DnaA protein in the presence of IHF (Figure 6A and B lane 4). To investigate this possibility, *in situ* phenanthroline-copper footprinting was performed (Figure 7). As expected, *oriC* was protected from cleavage at the IHF binding site in the complex which had the same mobility as IHF Complex 1. In Complex I', both the IHF site and DnaA box R4 were protected. In Complex II, additional protection of DnaA box R1 was observed. Only in the lowest mobility complexes was protection of R2 and R3 observed. The same order of binding was observed in complexes with or without IHF bound. This suggests that IHF does not facilitate the binding of DnaA protein to sequences within an *oriC* fragment.

IHF does not stabilize DnaA-oriC complexes--Although the order of binding of DnaA protein was not altered by binding of IHF, the kinetics of binding of DnaA protein to oriC might be altered in the presence of IHF.

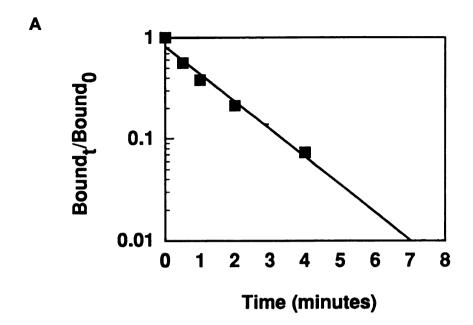

Competition gel shifts were used to investigate whether IHF might stabilize DnaA protein binding by decreasing the dissociation rate of DnaA protein bound to a radiolabelled oriC fragment. These assays were performed by incubating the

Figure 7. The order of DnaA protein binding to oriC is not altered by IHF. Gel mobility shift assays were performed as described ("Experimental Procedures" of Chapter 2) except that reactions were scaled-up 10-fold. In all reactions containing IHF and DnaA protein, IHF was added first. In situ cleavage with 1,10-phenanthroline-copper was performed as described ("Experimental Procedures" Chapter 2) with a Sma I-Xho I fragment labelled at the Xho I site with the large fragment of DNA polymerase I and all 4 [α^{32} P] deoxyribonucleotides. The cleavage pattern of respective complexes was analyzed by β emission scanning and compared to the cleavage pattern of the corresponding unbound fragment that was treated similarly.

appropriate proteins with an *oriC* fragment under standard conditions as described (see "Experimental Procedures") except that the complexes were challenged with unlabelled supercoiled *oriC* plasmid as a competitor. The half-life of IHF Complex 1 was approximately 1 minute on the addition of 100-fold excess of supercoiled *oriC* plasmid (Figure 8). To avoid competing IHF from *oriC*, a 20 base pair oligonucleotide containing one DnaA box sequence was used as a competitor to investigate whether IHF affected the dissociation of DnaA protein form *oriC*. On the addition of the competitor, DnaA-*oriC*Complexes I and II dissociated quickly (Figure 9). When DnaA-IHF-*oriC* complexes were challenged with an excess of the oligonucleotide containing a DnaA box, Complexes I and II have comparable half-lives as Complexes I' and II'. These results suggested that IHF did not stabilize DnaA protein bound to *oriC*. DnaA protein complexes of lesser mobility formed with or without IHF dissociated at similar rates on the addition of competitor DNA (data not shown, Chapter 4).

Figure 8. Determination of the half-life of the IHF Complex 1. Dissociation of IHF/oriC Complex 1 was measured by preincubating IHF with an end-labelled Sma I-Xho I oriC fragment under gel mobility shift assay conditions for 5 minutes at 20 °C (described in "Experimental Procedures"), then 100-fold molar excess of supercoiled pBSoriC to the labelled oriC fragment was added. At various times aliquots were removed and electrophoresed on a native 4% polyacrylamide gel. A) This graph represents the data derived from the experiment below. Boundorepresents the amount of DNA bound by IHF prior to the addition of unlabeled DNA. Boundtrepresents the amount of DNA in complex with IHF at time t. The resulting line is described by the equation $f(t) = 0.91 e^{-0.63t}$. The first order dissociation rate constant, k_{off} , is 0.63 min-1 and corresponds to a half-life of 1 minute for Complex 1. B) Autoradiograph of the gel mobility shift assay. The asterisks indicate that the challenge DNA was added before the protein. Time 0 has no competitor DNA added.

В

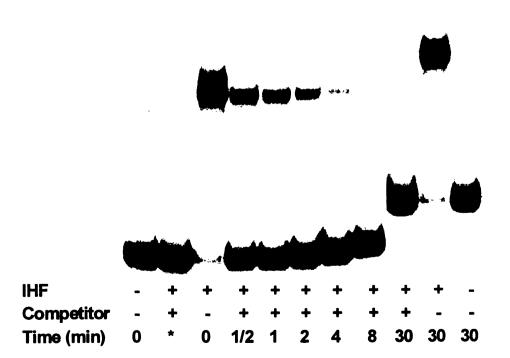
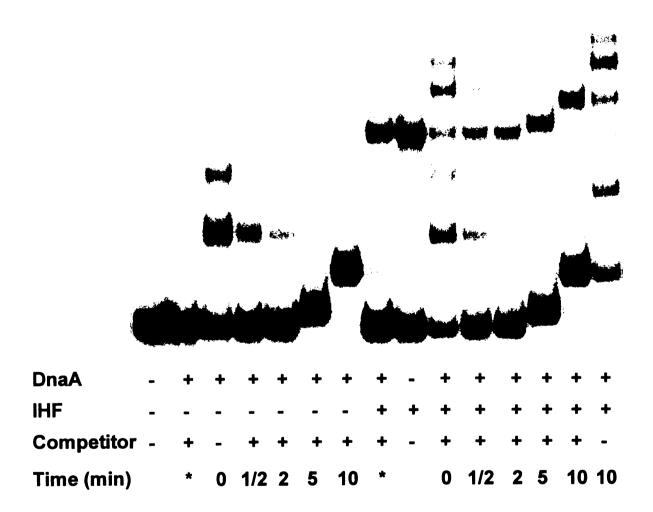



Figure 9. The dissociation of DnaA protein from oriC was not altered by IHF. DnaA protein and/or IHF as noted was incubated with an end-labelled Sma I-Xho I oriC fragment in a scaled-up gel mobility shift assay. The complexes were challenged with a 1000-fold molar excess of an unlabelled double stranded oligonucleotide containing a DnaA box. At various times aliquiots were removed and separated on a 4% polyacrylamide gel. The asterisks indicate that the challenge DNA was added before the protein.

Discussion

Although IHF and HU bind to oriC differently, they can replace each other in oriC replication--Eight complexes were formed on the 464 base pair oriC fragment on binding of HU, suggesting that at least 8 HU dimers could bind a single oriC fragment. However, Bonnefoy et al. (Bonnefoy and Rouviere, 1991) found that two complexes were formed with 21- and 29-mer double stranded oligonucleotides, and four complexes with a 42-mer oligonucleotide, suggesting that a HU dimer could bind approximately every 11 bp. Based on one dimer every 11 bp, as many as 40 dimers may bind to the *oriC* fragment used. At the highest level of HU tested (a ratio of 100 dimers per oriC fragment), the complex formed was much more resistant to phenanthroline-copper cleavage than free DNA or the complexes with greater electrophoretic mobility (data not shown) suggesting that oriC in this complex was coated with a large amount of protein. As expected for a DNA binding protein with little sequence specificity, no distinct protection pattern of oriC was seen in any of the HU complexes (data not shown). Because of the large number of complexes formed, gel shift assays investigating the effect of HU on DnaA protein binding was not pursued.

Addition of IHF to the oriC fragment resulted in three complexes by gel mobility shift analysis. IHF is thought to bind as a heterodimer composed of IHF- α and IHF- β subunits (Nash and Robertson, 1981). However, the homodimer IHF- β was reported to bind specifically to the same IHF site as the heterodimer, albeit with lower affinity (Zulianello $et\ al.$, 1994). Cu-phenanthroline footprint analysis of the IHF complexes with oriC revealed protection patterns that were essentially identical. As crosslinking studies suggested that IHF forms

homodimers and trimers and tetramers (Bonnefoy and Rouviere, 1991). A possible explanation for the differing mobilities of these complexes is the binding of homodimers or possibly the binding of trimers or tetramers to *oriC*.

As HU can replace IHF in some processes (Goodman et al., 1992; Surette et al., 1989), HU has been speculated to bind specifically to DNA sequences involved in forming nucleoprotein complexes. Results from immunoelectron microscopy localizing HU to oriC in replicative complexes with minichromosomes (Funnell et al., 1987) and footprinting of HU when bound in a Mu invertasome complex, (Lavoie and Chaconas, 1993; Lavoie and Chaconas, 1994) indicated that HU could be targeted by the binding of other proteins.

HU can replace IHF in *oriC*-dependent replication (Figure 1). Both act early in initiation to facilitate DnaA protein-dependent unwinding of *oriC*. They have been speculated to produce a bend in *oriC* thereby facilitating the cooperative binding of DnaA protein. Although HU has no sequence-specific DNA binding activity, it might bind specifically to some bent or kinked DNA to facilitate DnaA protein function at *oriC*. This model was supported by the observations that a relatively low ratio of HU to DNA was required for stimulation of replication (Figure 2) and that HU has been localized by immunoelectron microscopy to a complex involved in initiation at *oriC* (Funnell *et al.*, 1987).

IHF does not affect the affinity of DnaA protein for DnaA boxes within oriC--Based on crude estimates by electron microscopy, 20-40 monomers of DnaA protein were bound to oriC to form an active complex (Fuller, et al., 1984). Because the spatial arrangement of individual DnaA boxes in oriC is important (Oka et al., 1984; Zyskind et al., 1983), it is likely that this nucleoprotein complex

has a specific structure.

Results by Fuller et al. (Fuller et al., 1984) suggested that the binding of DnaA protein to oriC is cooperative, possibly involving interactions among DnaA protein monomers. The high affinity DnaA boxes, R1 and R4, probably could be filled without any protein-protein interactions, as a single monomer binds to an oligonucleotide containing these DnaA box sequences (Schaper and Messer, 1995). Binding to the other two sites, R2 and R3, was weaker (Schaper and Messer, 1995) and may be stabilized by protein-protein interactions. Whereas the severe bend introduced by IHF between DnaA boxes R1 and R2 (Figure 3A) might aid in the binding of DnaA protein to R2 and R3, the studies presented here indicated that IHF did not aid in the formation or stabilization of DnaA complexes with a linear oriC fragment. One interpretation of these results is that the bent structure induced by IHF is not required to form the DnaA-oriC complex that is active in replication. Alternatively, the proposed interaction among DnaA protein monomers may be sufficient in formation of a large nucleoprotein complex. A third possibility is that a supercoiled *oriC* plasmid is required to observe an effect of IHF on DnaA protein binding. The studies described here were with a linear DNA containing oriC.

Chapter IV

The Influence of FIS on the Binding of DnaA Protein to oriC and on Replication from oriC

Abstract

A model of factor for inversion stimulation (FIS) protein function in initiation of replication from oriC is based largely on observations from in vivo footprinting of oriC in synchronized cells (M. R. Cassler, J.E. Grimwade, and A. C. Leonard (1995) EMBO J. 14, 5833-5841). From these experiments, the FIS protein binding site appears to be occupied throughout much of the cell cycle but is vacant just prior to the time of initiation. Furthermore, dissociation of FIS is coincident with binding of DnaA protein to DnaA box R3. As binding of DnaA protein to R3 correlates with initiation of chromosomal replication in vivo and in vitro, this event appears to be a key step in the initiation process. Because FIS may antagonize the binding of DnaA protein to DnaA box R3 due to their overlapping binding sites (H. Gille, J. B. Egan, A. Roth, W. Messer (1991) Nucleic Acids Res. 15, 4167), we investigated the effect of FIS in reconstituted in vitro replication, gel mobility shift and footprinting assays. Contrary to our expectations, our results suggest that FIS does not block the binding of DnaA protein to the two DnaA boxes R2 and R3; nor does it inhibit in vitro replication. In light of these results, other possible mechanisms in which FIS might play a role in initiation of replication are discussed.

Introduction

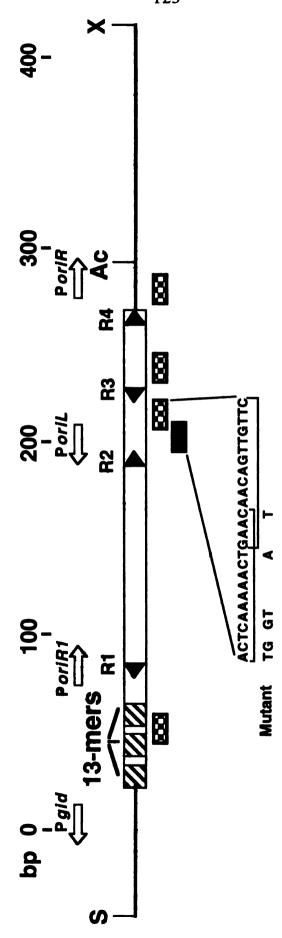
The factor for inversion stimulation (FIS), a small basic histone-like protein, is a member of a group of DNA-binding proteins that are proposed as major constituents of nucleoid (Pettijohn, 1988). FIS is a homodimer composed of 11.5 kDa subunits. X-ray diffration studies indicate that each subunit contains four α-helices (Kostrewa et al., 1991; Kostrewa et al., 1992) with the two N-terminal helices of each subunit interdigitated to form the homodimer. The C-terminal helices form a helix-turn-helix DNA binding motif. The N-terminal 26 amino acids are disordered in the crystal structure and are thought to be involved protein-protein interactions (Heichman and Johnson, 1990; Koch et al., 1991; Osuna, et al., 1991). FIS is thought to interact physically with proteins, such as σ70, and Hin recombinase (Muskhelishvili et al., 1995; Newlands et al., 1992; Osuna et al., 1991; Ross et al., 1990).

FIS was originally identified by virtue of its ability to stimulate DNA inversion by a family of site specific recombinases, Hin, Gin and Cin (Haffter and Bickle, 1987; Johnson et al., 1988; Koch and Kahmann, 1986). Hin controls flagellar phase variation in Salmonella typhimurium; Gin and Cin control tail-fiber expression for bacteria phage Mu and P1, respectively. FIS also stimulates lambda excision (Thompson et al., 1987) and integration (Ball and Johnson, 1991). Finally, FIS acts both as a positive and a negative transcriptional regulator. FIS operates via several different mechanisms in these processes. In some processes, DNA binding of FIS sterically inhibits the binding of another protein to an overlapping DNA sequence (Ball and Johnson, 1991; Ball et al.,

1992; Froelich, 1996; Ninnemann et al., 1992; Numrych et al., 1991; Thompson and Landy, 1988). In other processes, FIS stabilizes nucleoprotein complexes through bending DNA and possibly via protein-protein interactions (Koch et al., 1991; Muskhelishvili, et al., 1995; Numrych, et al., 1992; Osuna, et al., 1991; Ross, et al., 1990).

Although FIS is considered a sequence specific DNA binding protein, recognizing the highly degenerate sequence (G/T)NNN(A/G)NN(T/A)NNTNNN(C/A), DNA topology is as important as sequence in determining FIS affinity (Bailly *et al.*, 1995; Finkel and Johnson, 1992). Like the other histone-like proteins, HU and integration host factor (IHF), FIS bends DNA upon binding. Bent angles of 40° to 90° have been measured for different FIS-DNA complexes (Gille *et al.*, 1991; Thompson and Landy, 1988).

Expression of FIS protein is growth-rate dependent (Ball et al., 1992; Thompson et al., 1987). The expression of FIS is greatest in early log phase. FIS concentrations increase rapidly when cells move from stationary to log phase growth and decrease through mid to late log phase. Consequently, it is speculated to serve as an element involved in the coupling of the growth rate to nutritional and environmental conditions.


Initiation at *oriC*, the *E. coli* chromosomal origin, is dependent on the binding of DnaA protein to four DnaA boxes (Fuller *et al.*, 1984)(referred to as R1, R2, R3 and R4; see Figure 1) within *oriC*. On binding its four sites in *oriC*, DnaA protein is proposed to unwind the AT-rich 13-mers allowing other replication proteins access to single stranded DNA to form primers which are then elongated by DNA polymerase III holoenzyme (Bramhill and Kornberg, 1988a;

Bramhill and Kornberg, 1988b). Although the general mechanism for initiation of replication is well understood, its regulation is not.

The binding of DnaA protein to DnaA boxes within *oriC* is cell-cycle dependent (Cassler, 1995; Samitt *et al.*, 1989). This could be due to either an increase of DnaA protein concentration or its activity. However, there is little evidence for variations in DnaA protein concentrations as a function of cell cycle (Hansen *et al.*, 1991; Sakakibara and Yuasa, 1982). Other models for the regulation of chromosomal replication involve the regulation of DnaA protein activity by its interaction with ATP (Sekimizu *et al.*, 1988a), acidic phospholipids (Sekimizu and Kornberg, 1988) or possibly other proteins (Hupp and Kaguni, 1993b; Katayama and Crooke, 1995). Another model involves other *oriC* binding proteins that either facilitate or inhibit DnaA binding to *oriC*. It has been suggested previously that FIS is one of these factors (Gille *et al.*, 1991).

Four lines of evidence suggest that FIS is involved in initiation of chromosomal replication at *oriC*: 1) mutants of FIS are asynchronous in initiation from *oriC* (Boye *et al.*, 1993); 2) *fis* mutants inefficiently maintain plasmids dependent on *oriC* for replication (Filutowicz *et al.*, 1992); 3) mutations (Figure 1) in the FIS binding site within *oriC* result in an inactive origin; and 4) *in vivo* footprinting of *oriC* suggests that FIS is bound throughout the cell cycle until just prior to the time of initiation (Cassler, 1995). Based primarily on the latter observation, a model was proposed in which the binding of FIS to a site overlapping with DnaA box R3 occludes the binding of DnaA protein to this site (Gille *et al.*, 1991). Under this model, dissociation of FIS is required for the binding of DnaA protein to box R3. Previously, we determined that DnaA

Figure 1. The oriC region. The 245 bp minimal oriC is indicated by the open rectangle. The arrows indicate promoters and their direction of transcription. DnaA boxes R1-R4, the 9-mers recognized by DnaA protein, are indicated by filled triangles also indicating their orientation. The AT-rich 13-mer motifs are indicated by cross-hatched squares. Restriction enzyme sites (S, Sma I; Acc I; and X, Xho I) of oriC are indicated. The sequences that match the FIS consensus sequence (Finkel and Johnson, 1993) are indicated by the checkered boxes. The sequences that diverge from the consensus sequence are indicated by the shaded box. The sequence of the putative FIS binding sites between DnaA boxes R2 and R3 are indicated. A set of point mutations that destroy binding of FIS between R2 and R3 and inactivate oriC for in vivo replication is indicated.

protein binds to DnaA boxes in *oriC* in an ordered manner (Margulies and Kaguni, 1996). Its binding to DnaA boxes R2 and R3 correlates with optimal replication activity. Because of the possibility that FIS binding may modulate the initiation process, we investigated the effect of FIS on *oriC* replication using *in vitro* assays, gel mobility shift, footprinting and reconstituted *oriC* dependent replication. Our results indicate that FIS does not occlude binding of DnaA protein to box R3 within *oriC*.

Experimental Procedures

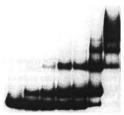
Proteins and plasmids--FIS protein was a generous gift of Reid Johnson (Department of Biological Chemistry, University of California, Los Angeles).

DNA binding assays-- The procedure used for the binding reactions was described in "Experimental Procedures" in Chapter 2.

In situ Cleavage with 1, 10-Phenanthroline -Copper--The procedure used for the protection experiments was described in "Experimental Procedures" in Chapter 2.

Dissociation of protein-oriC complexes--The procedure used for comparing the dissociation of DnaA-oriC complexes and FIS-oriC complexes were performed as described in "Experimental Procedures" in Chapter 3.

Replication assays—The reconstituted replication assays were performed as described in "Experimental Procedures" in Chapter 3.

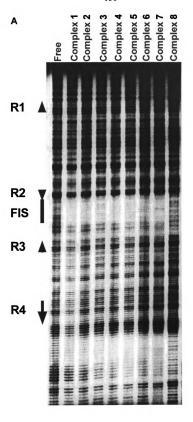

Supercoiling assay--Reactions (20 μl) containing 90 fmol of supercoiled pBSoriC, the indicated amounts of FIS and 20 mM Tris-HCl (pH 7.5) 10 mM MgCl₂, 2 mM DDT, 5% glycerol and 5 mM NaCl were preincubated for 15 minutes, at 30 °C. *E. coli* topoisomerase I (15 U) was added. Reactions were incubated for 30 minutes at 30 °C and then quenched with 5 μl 30% glycerol, 10 mM EDTA, 6% SDS, and heated to 85 °C for 3 minutes prior to electrophoreses through a 0.8% alkaline agarose gel containing 1 μg/mL chloroquine.

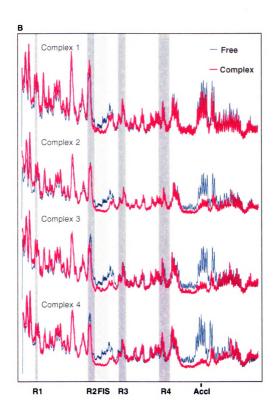
Results

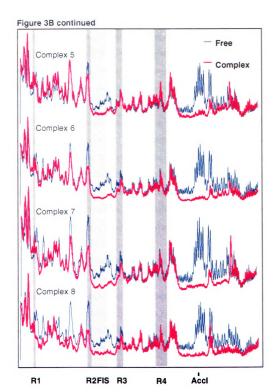
Fis forms multiple complexes with a DNA fragment containing oriC--The consensus DNA binding site recognized by FIS is highly degenerate [(G/T)NNN(A/G)NN(T/A)NNTNNN(C/A)] (Finkel and Johnson, 1992). Although oriC contains several exact and close matches to the FIS consensus sequence (Figure 1), the consensus is a poor indicator of FIS binding. FIS binding is in a large part dependent on DNA topology (Bailly et al., 1995). To determine whether FIS bound specifically to a DNA fragment containing oriC, gel mobility shift assays were performed (Figure 2). Multiple complexes were resolved by the binding of FIS to oriC. At levels as low as 0.1 ng, FIS formed a single complex (Complex 1). At higher levels (0.4 ng), Complex 1, as well as a second complex (Complex 2) were observed. At levels greater than 0.8 ng of FIS, complexes with slower electrophoretic mobilities were observed. The resolution of multiple complexes suggested the binding of FIS to several sites in oriC.

Fis binds several sites within oriC. To determine which sites were bound in each complex, FIS-oriC complexes were footprinted by cleaving the DNA in situ with phenanthroline-copper and analyzed quantitatively. The only site protected in Complex 1 was located between DnaA boxes R2 and R3 (Figure 3A and 3B). Two FIS sites are predicted between R2 and R3, with the site bound as the more degenerate of the two (Figure 1). Protection of sequences between R2 and R3 was seen in all FIS-oriC complexes. In Complex 2 and the other complexes of lower mobility, additional sequences to the right of DnaA box R4 were protected. The protection pattern of Complexes 3, 4 and 5 was similar to

Figure 2. FIS bound to oriC forms multiple complexes that are resolved by native polyacrylamide gel electrophoresis. Gel mobility shift assays were performed as described in "Experimental Procedures" with the indicated amounts of FIS protein and 25 fmol of a ³²P labelled Sma I-Xho I oriC fragment. Unbound DNA is noted as "Free."




FIS Complex 5 FIS Complex 4 FIS Complex 3 FIS Complex 2


FIS Complex 1
Free

FIS (ng) FIS/oriC

0 0.1 0.2 0.4 0.81.6 3.2 0 0.2 0.3 0.7 1.4 2.8 6 Figure 3. In situ footprinting of complexes with 1,10-phenanthroline-copper. In situ cleavage was performed as described ("Experimental Procedures"). The FIS complexes were resolved on a standard native gel. The entire gel was immersed in a phenanthroline-copper solution. The reaction was stopped. Film was exposed to the gel and was used to guide the excision of the complexes. The DNA was eluted, precipitated, resuspended in formamide buffer and loaded on a standard 6% sequencing gel. The resulting cleavage patterns are shown in panel A. The gel in panel A was quantified by β emission scanning. The quantified cleavage pattern of each complex was compared with the cleavage of free DNA in panel B.

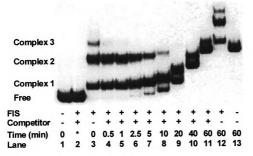
that of Complex 2 except that protection between R2 and R3 extended into R2. In Complexes 6 and 7, the protected sequences between R2 and R3 extend into boxes R2 and R3. In addition, sequences to the right of R1 were protected. In Complex 8, protection by FIS became more pronounced and was seen within DnaA boxes R1, R2, and R3. These observations suggest that FIS at high levels may inhibit binding of DnaA protein to *oriC* to inhibit the initiation of DNA replication.

FIS dissociates from oriC more slowly than DnaA protein. DnaA protein formed several complexes with oriC in gel mobility shift assays (Margulies and Kaguni, 1996) (Figure 5, lane 2 and 9). In order to compare the dissociation rates of DnaA-oriC complexes with the dissociation rate of FIS-oriC complexes, the appropriate protein was preincubated with radiolabelled oriC, and then challenged with a 100-fold molar excess of unlabelled oriC plasmid. At the indicated times, reactions were electrophoresed in native polyacrylamide gels to separate bound from unbound DNA.

Without competitor, DnaA protein (at a molar ratio of protein to DNA equal to 30) formed a specific complex termed Complex VI (Figure 4A) that involveed the binding of DnaA protein to all four DnaA boxes in *oriC* (Margulies and Kaguni, 1996). At the earliest time point (30 seconds) after addition of the unlabelled *oriC*, most of the radiolabelled *oriC* fragment migrated to the position of "free" fragment indicating the half-life of Complex VI was less than 30 seconds. The complex with the greatest half-life, Complex I, had a half-life of approximately 30 seconds (data not shown, see Chapter 3, Figure 9).


At a molar ratio of 1.5 of FIS to oriC fragment that resulted in the

formation of three discrete complexes, the addition of the unlabelled competitor did not result in the dissociation of FIS from the radiolabelled *oriC* fragment until 5-10 minutes had elapsed (Figure 4B, C). These results suggest that FIS dissociates from its respective binding sites at a rate slower than DnaA protein (Figure 4C).


Novel oriC complexes form in the presence of both FIS and DnaA protein. To determine whether FIS-DnaA-oriC complexes could be resolved from DnaA-oriC and FIS-oriC complexes, binding reactions with both proteins were compared to reactions with the individual proteins. At a fixed level of FIS and the lowest level of DnaA protein a complex (labelled A) was resolved with an intermediate mobility to DnaA Complexes II and III (Figure 5). Two other novel complexes, labelled B and C, were resolved at higher levels of DnaA protein. These intermediates complexes suggested that both FIS and DnaA protein were bound in a single complex.

Binding of FIS and DnaA protein are not mutually exclusive--We were interested in confirming the report that the binding of DnaA protein to DnaA box R3, and that of FIS to the site between R2 and R3 were mutually exclusive (Gille, et al., 1991). Gel mobility shift assays similar to that shown in Figure 5 were performed, except that the level of FIS used was sufficient for forming only FIS Complex 1 in which FIS was bound only to the site between R2 and R3. To determine the sites bound in these novel complexes, in situ footprinting with Cuphenanthroline was performed. Complex A contained protection at DnaA box R1 and R4, and the FIS site between R2 and R3 (Figure 6). Complex C was protected at all four DnaA boxes and the FIS site between R2 and R3. These

Figure 4. The dissociation of DnaA-oriC and FIS-oriC complexes. The gel mobility shift assay as described in "Materials and Methods" was scaled-up 10-fold. After incubating the appropriate protein with a 32 P-labelled DNA fragment containing oriC, pBSoriC (100-fold molar excess over the oriC fragment) was added. Aliquots of the binding reactions were loaded on an already electrophoresing nondenaturing polyacrylamide gel at the indicated times following addition of the challenge DNA. A) DnaA protein was added (at a protein to oriC fragment ratio of 30) and incubated for 5 minutes at 20 °C prior to adding the challenge DNA. B) FIS was added (at a protein to oriC fragment ratio of 1.5) and incubated for 90 minutes at 20 °C prior to adding the challenge DNA. The asterisks in lane 2 indicates that the challenge DNA was added prior to FIS. C) The resulting gels in panels A and B were quantified by β emission scanning. The total oriC bound in each lane was expressed as a fraction of the amount bound prior to the addition of challenge DNA.

В

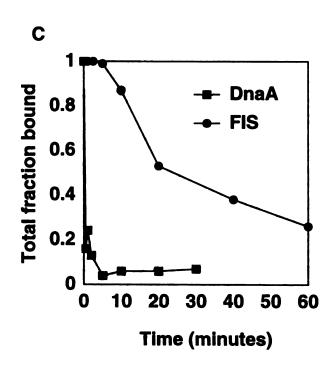
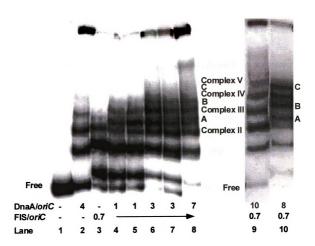



Figure 5. Novel complexes with oriC form in the presence of both DnaA protein and FIS. Examples of two gel mobility shift experiments with DnaA protein or FIS or both proteins were performed essentially as described in "Materials and Methods" except that reactions were incubated for 30 minutes before loading on a polyacrylamide gel. Lanes 1 through 8 represent results from one experiment and lanes 9 and 10 from another.

results indicate that FIS bound to the site between R2 and R3 does not apparently block the binding of DnaA protein to these respective sites.

FIS does not affect DNA replication on binding oriC--The influence of FIS on oriC plasmid replication was examined in a reconstituted DNA replication assay. This assay is dependent on a supercoiled template containing oriC and purified DnaA, DnaB, and DnaC proteins, HU, primase, gyrase, DNA polymerase III holoenzyme, and single stranded DNA binding protein (SSB). The same molar amount (25 fmol) of oriC plasmid was used in the replication assays as in the gel shift assays described above in Figure 1. When FIS was included at levels (0.1 to 3 ng) tested in gel mobility shift assays (Figure 2), its effect was negligible (Figure 7A). Only at elevated levels (greater than 100 ng) was inhibition seen (Figure 7B).

To investigate the possibility that the vector sequences included on the oriC plasmid were competing FIS from binding the oriC sequences in replication assays, unlabelled supercoiled plasmid containing only the vector sequences were included in of gel mobility shifts with a labelled oriC fragment (Figure 8). Even at the lowest level tested (0.5 ng), FIS bound oriC in the presence of the vector sequences. At levels (160 ng) which were inhibitory for replication, a complex with low mobility formed. These results verified that levels of FIS required to bind sequences within oriC did not inhibit replication.

We investigated the biochemical basis of this inhibition, suspecting that these high levels of FIS may result in overwinding of the plasmid, as HU does when added at inhibitory levels for *oriC* replication (Skarstad *et al.*, 1990). The topological alteration in *oriC* plasmids bound by FIS could be fixed with *E. coli*

Figure 6. In situ footprinting of the DnaA-FIS-oriC complexes with phenanthroline-copper. In situ cleavage was performed as described in "Experimental Procedures" with a Sma I-Xho I fragment labelled at the Xho I site with the large fragment of DNA polymerase I and all 4 [α^{32} P] deoxyribonucleotides. The cleavage pattern of respective complexes was analyzed by β emission scanning and compared to the cleavage pattern of the corresponding unbound fragment that was treated similarly.

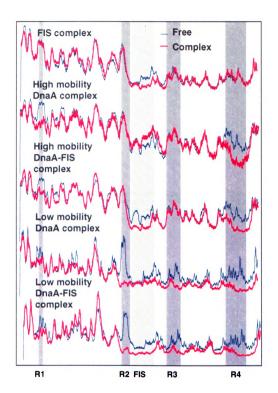


Figure 7. At high levels, FIS inhibits in vitro oriC dependent replication. Reconstituted replication assays were performed with pBSoriC as a template as described in "Experimental Procedures". FIS was added prior to DnaA protein. The FIS/oriC molar ratio is indicated in parenthesis for the different levels of FIS added to each reaction.

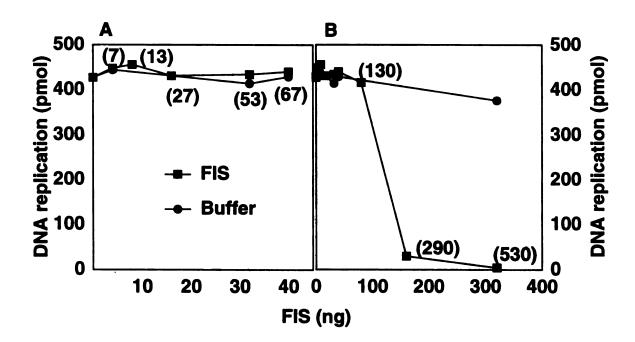
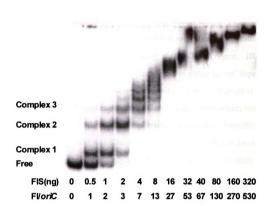



Figure 8. FIS binds oriC in the presence of supercoiled vector DNA. Gel mobility shift assays were performed as described in "Experimental Procedures" with the indicated amounts of FIS protein and 25 fmols of a ³²P labelled Sma I-Xho I oriC fragment and 25 fmols of unlabelled supercoiled pBluescript. Unbound DNA is noted as "Free".

topoisomerase I and measured by electrophoresing the deproteinated plasmid on an agarose gel containing chloroquine (Figure 9). Levels of FIS that are inhibitory for replication form a highly negatively supercoiled topoisomer of the *oriC* plasmid.

potentially functionally substitute for HU and IHF in oriC plasmid replication.

Both proteins aid in DnaA-dependent unwinding of the AT-rich region. HU and IHF appear to perform similar functions. When HU was absent in oriC dependent replication assays, IHF could stimulate oriC plasmid replication (Skarstad et al., 1990). FIS was tested in the reconstituted oriC replication assay lacking both HU and IHF. In the absence of HU and IHF, replication occured, albeit less efficiently (Figure 10). Again, no effect was observed at levels at which FIS was known to bind to linear oriC (Figure 10A). Only at an 800-fold excess was FIS inhibitory (Figure 10B).

The effect of FIS at non-optimal levels of HU was examined to explore the possibility that FIS might be stimulatory. At various levels of HU, no effect of FIS was seen when added at levels known to bind linear *oriC* (Figure 10A). At higher levels, FIS was able to inhibit (Figure 10B). Similar experiments were performed in which non-optimal levels of IHF replaced HU with comparable results (data not shown). These experiments indicated that FIS cannot substitute for HU or IHF nor stimulated when the latter proteins were present at non optimal levels in *oriC* plasmid DNA replication.

Binding of FIS to oriC does not affect initiation from oriC in RNA polymerase dependent initiation--The sequences flanking and within oriC

Figure 9. Inhibitory levels of FIS induce a highly negatively supercoiled topoisomer of pBSoriC. E. coli topoisomerase I was add after FIS was preincubated with the supercoiled template DNA (lanes 1-9). The position of nicked and relaxed plasmid DNA migrates is indicated. Negatively supercoiled pBSoriC which is active for replication migrates to positions intermediate to the nicked and relaxed DNA (lane 10).

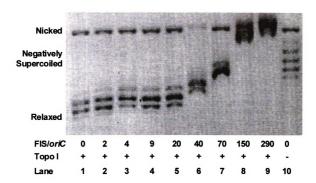
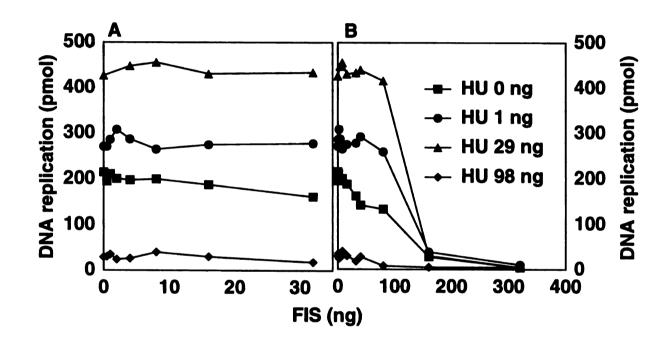
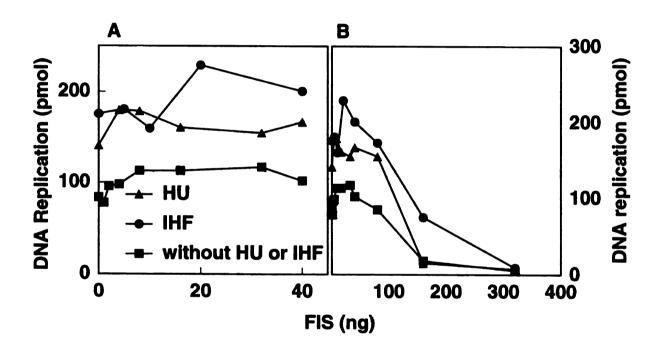




Figure 10. Only high levels of FIS inhibit oriC replication in the presence of various amounts of HU. Reconstituted replication assays were performed as described in "Experimental Procedures". The amount of HU added is indicated. FIS was added prior to DnaA protein.

contain several promoters (Figure 1). Transcription from promoters in and around oriC may influence, positively or negatively, replication initiation events that occur at this site (Asai et al., 1992). As FIS acts as a transcription factor (reviewed in (Finkel and Johnson, 1992)), FIS could modify transcription from promoters within or flanking oriC, thereby affecting replication. To investigate the effect of FIS in a reconstituted system containing RNA polymerase, it was titrated in assays in the presence and absence of either HU or IHF (Figure 11). As in the other replication experiments (Figures 7, and 10) FIS had little effect at low levels and was inhibitory at much higher levels. These findings suggest that FIS bound to oriC has no stimulatory effect under these in vitro conditions.

Figure 11. The binding of FIS to *oriC* does not affect initiation in RNA polymerase dependent initiation. Reconstituted replication assays were performed as described in "Experimental Procedures". IHF (11 ng) or HU (10 ng) were added as indicated. FIS was added prior to DnaA protein.

Discussion

FIS binds specifically to oriC. Here we showed that FIS bound to sequences near the right boundary of DnaA box R2, and did not bind to a proposed site (Gille et al., 1991) located nearer to R3 that more closely resembles the FIS consensus sequence (Figure 3). This finding confirmed those of Filutowicz et al. (Filutowicz et al., 1992). In complexes of greater mobility, protection by FIS extending into DnaA boxes R2 or R3 was not observed, as previously reported (Filutowicz et al., 1992; Gille et al., 1991). The discrepancies may be due to the procedures used. The previous footprinting studies used DNaseI, whereas we used phenanthroline-copper as a cleavage agent which is subject to less steric hindrance. Another procedural difference was that the DNaseI protection experiments were performed in solution with a mixture of FIS-oriC complexes, whereas we used an *in situ* method that analyzes separated complexes. Indeed, weak protection of the R2 and R3 boxes was observed in complexes of lower mobility. This protection may be due to FIS binding elsewhere on the oriC fragment and stabilizing weaker interactions to flanking sequences by the FIS dimer bound at the site between R2 and R3.

Specific binding of FIS to oriC has no affect on initiation of chromosomal replication in vitro. The binding of DnaA protein to DnaA box R3 was reported to be mutually exclusive to the binding of FIS (Gille et al., 1991). Not only was FIS able to inhibit the binding of DnaA protein when FIS was bound first, DnaA protein was able to inhibit FIS binding when DnaA protein was bound first. This observation is unexpected in light of the additive protection

pattern seen in the presence of DnaA protein and FIS (Figure 6), and the relative dissociation rates of DnaA protein and FIS when bound to *oriC* (Figure 4). The rapid dissociation of DnaA protein from *oriC* would allow the binding of FIS. A plausible explanation for these discrepancies is that DNaseI footprinting was performed when binding had not reached equilibrium, as FIS has a slow rate of association relative to DnaA protein (data not shown).

When added at a level 100-fold over that sufficient to fill the highest affinity site in oriC, FIS neither inhibited nor stimulated DNA replication from oriC (Figure 7). Inclusion of FIS did not alter replication in the presence of HU or IHF, or replication that was dependent on RNA polymerase (Figures 10 and 11). Only at high concentrations (greater than 80 ng) was FIS inhibitory. The conclusion that the inhibitory effect of FIS was not dependent on FIS binding to the site between R2 and R3 was supported by the observation that a mutant oriC plasmid (Mutant Figure 1) deficient in FIS binding to the site between R2 and R3 was equally inhibited by FIS as wild type oriC in vitro replication (Wold et al., 1996). Instead, inhibition correlated with an alteration in superhelical density of the DNA template (Figure 9). The in vitro inhibition of replication by high concentrations of FIS may be relevant in vivo as in early log phase the cellular concentrations of FIS are approximently 100-fold greater than required to inhibit in vitro replication.

Roles for FIS in initiation at oriC. The results presented here do not support a model in which FIS plays a direct role in initiation at oriC. However, as we used an in vitro system, some component critical for FIS function may be missing. For example, the cellular membrane has been speculated to play a role in

regulation of initiation by associating with *oriC*. In vitro replication is inhibited in the presence of cellular membrane fractions (Landoulsi et al., 1990). Several membrane proteins that bind *oriC* are speculated to play role in this inhibition (Jacq et al., 1983; Lu et al., 1994). The role of FIS may be to alter the binding of an inhibitor of initiation which was not included in these reconstituted replication assays.

Alternatively, FIS may not have a specific role in initiation. *In vivo* observations with *fis* mutants may be attributable to pleiotropic effects on supercoiling and/or transcriptional regulation of initiation factors. FIS is proposed to help organize the bacterial chromosome as *fis* mutants have aberrant nucleoid structure. *fis* mutants may have an altered chromosome that affects chromosome replication (Filutowicz *et al.*, 1992).

Furthermore, as FIS is also a transcription factor, it may indirectly affect initiation by changing the expression of replication factors. Recently, FIS was reported to change the expression of DnaA protein (Froelich, 1996). In *fis* null mutants, the level of DnaA protein increased approximately 2- to 3-fold relative to a wild type *fis* strain. A 2-fold increase in the level of DnaA protein was sufficient to cause asynchronous initiation (Atlung and Hansen, 1993; Lobner-Olesen *et al.*, 1989). Lastly, FIS may only play a role under specific growth conditions, such as at elevated temperatures or at the transition from stationary phase cell to exponential growth (Ball *et al.*, 1992; Filutowicz *et al.*, 1992).

Chapter V Summary and Perspectives

This thesis demonstrates that DnaA protein binds to the DnaA boxes within oriC in an ordered manner, and that the binding to all four DnaA boxes correlates with replication of an oriC plasmid. These findings not only reveal more detail into the mechanism of initiation but also provide insight into how initiation from oriC may be regulated. The binding of the interior boxes at higher concentrations of DnaA protein after the outer boxes are bound suggests that binding of DnaA protein to the interior boxes triggers initiation. This model is supported by in vivo footprinting which suggests that DnaA boxes R1, R2 and R4 are bound throughout the cell cycle and that only at the time of initiation is the R3 bound. Recently, mutational analysis of oriC plasmids, in which exchanging R3 and R4 sequences reduces oriC activity in vivo, also supports the model (Langer et al., 1996). It would be of interest to determine the order of binding of DnaA protein to this mutant and whether initiation is synchronous from this at other mutant origins which alter the binding of DnaA protein.

As little evidence exists for changes in DnaA protein concentration in a cell-cycle dependent manner, other modes of DnaA protein regulation have received attention. These include the regulation of DnaA protein activity through its ability to bind ATP or through its ability to bind oriC (Katayama and Crooke, 1995). The latter mechanism involves proteins which bind oriC and therefore altering the binding of DnaA protein to oriC. FIS has been speculated to be a regulatory factor as fis mutants have phenotypes that are consistent with this function (Boye et al., 1993, Gille et al., 1991) and mutations in the FIS

binding site inactivate oriC in vivo (Roth et al., 1994). In addition, binding of its site in oriC appears to be altered immediately prior to initiation (Cassler et al., 1995). Furthermore, FIS cellular concentrations vary with different growth conditions as might be expected for a regulatory protein (Ball et al., 1992). However, in vitro studies presented here do not support the model in which the binding of FIS to the site between R2 and R3 plays a direct role in initiation. Binding of FIS to its site between boxes R2 and R3 does not inhibit the binding of DnaA protein to the interior boxes as originally speculated.

These results do not exclude the possibility of FIS playing a role in initiation. The *in vitro* inhibition of replication by high concentrations of FIS may be relevant in vivo as in early log phase the cellular concentrations of FIS are approximately 100-fold greater than required to inhibit in vitro replication. It would be of interest to measure the rate and the synchrony of initiation and footprint oriC in vivo when FIS is present at various cellular concentrations. The conditions for *in vitro* replication vary from those *in vivo*. As these experiments were performed with highly purified proteins, factors important in FIS function may be lacking. Experiments adding inhibitors of oriC replication (i.e. membrane fractions, or possibly SeqA) to the purified system or using extracts deficient in FIS may reveal a direct effect of FIS on replication. However, FIS may not play a direct role in initiation. Initiation defective phenotype of fis mutants may be due to increased levels of DnaA protein in fis mutants rather than any direct interaction at oriC. Studies altering the levels of DnaA protein in a fis background may reveal that the fis mutant phenotype is the result of pleiotropic effects.

Another oriC binding protein which could affect DnaA protein activity at oriC is IHF. This protein is not thought to be a regulator of initiation as it is found at high cellular concentrations (Ditto et al., 1994). Although IHF can stimulate replication from oriC in the absence of HU, no effect of IHF on the binding of DnaA protein to a linear oriC fragment was observed. Because the DNA binding experiments were performed with linear DNA, and DnaA protein dependent unwinding of oriC only occurs on a supercoiled template, we can not exclude the possibility that IHF aids initial binding of DnaA protein only on a supercoiled template. Additional footprinting experiments using a supercoiled template may show that IHF stimulates the binding of DnaA protein to supercoiled oriC as was seen for the binding of Int protein to lambda attP involved in lambda integration (Richet et al., 1986). However, the results presented here suggest that IHF facilitates DnaA protein-dependent unwinding by promoting steps subsequent to the initial binding of DnaA protein to oriC.

Though my thesis has concentrated on three proteins involved in initiation, other factors (i.e. Dam methylase and SeqA) have been demonstrated to play a role in regulating replication, and other factors probably have yet to be identified. SeqA may remain bound to *oriC* even when fully methylated, inhibiting DnaA protein from interacting with *oriC*. As of now SeqA has not been tested *in vitro* for its ability to inhibit replication of hemimethylated or fully methylated *oriC*. Finally, genetic approaches have been useful in identifying factors involved in initiation in the past and may prove useful in identifying other factors that are important in regulating initiation. Hyperactive initiation mutants may be identified by selecting for an increased copy number of an *oriC*

minichoromosome carrying an antibiotic resistance marker.

Bibilography

Bibliography

- Allen, G. C., Jr and Kornberg, A. (1993) Assembly of the primosome of DNA replication in *Escherichia coli*. J. Biol. Chem. **268**: 19204-19209.
- Allen, G. J. and Kornberg, A. (1991) Fine balance in the regulation of DnaB helicase by DnaC protein in replication in *Escherichia coli*. J. Biol. Chem. **266**: 22096-22101.
- Arendes, J., Carl, P. L. and Sugino, A. (1982) A mutation in the *rnh*-locus of *Escherichia coli* affects the structural gene for RNase H. Examination of the mutant and wild type protein. J. Biol. Chem. **257**: 4719-4722.
- Asai, T., Chen, C. P., Nagata, T., Takanami, M. and Imai, M. (1992) Transcription in vivo within the replication origin of the *Escherichia coli* chromosome: a mechanism for activating initiation of replication. Mol. Gen. Genet. **231**: 169-178.
- Asai, T., Takanami, M. and Imai, M. (1990) The AT richness and *gid* transcription determine the left border of the replication origin of the *E. coli* chromosome. EMBO J. 9: 4065-4072.
- Atlung, T. and Hansen, F. G. (1993) Three distinct chromosome replication states are induced by increasing concentrations of DnaA protein in *Escherichia coli*. J. Bacteriol. 175: 6537-6545.
- Atlung, T., Lobner Olesen, A. and Hansen, F. G. (1987) Overproduction of DnaA protein stimulates initiation of chromosome and minichromosome replication in *Escherichia coli*. Mol. Gen. Genet. **206**: 51-59.
- Augustin, L. B., Jacobson, B. A. and Fuchs, J. A. (1994) *Escherichia coli* Fis and DnaA proteins bind specifically to the *nrd* promoter region and affect expression of an *nrd-lac* fusion. J. Bacteriol. **176**: 378-387.
- Bailly, C., Waring, M. J. and Travers, A. A. (1995) Effects of base substitutions on the binding of a DNA-bending protein. J. Mol. Biol. 253: 1-7.
- Baker, T. A., Funnell, B. E. and Kornberg, A. (1987) Helicase action of DnaB protein during replication from the *Escherichia coli* chromosomal origin *in vitro*. J. Biol. Chem. **262**: 6877-6885.
- Baker, T. A. and Kornberg, A. (1988) Transcriptional activation of initiation of replication from the *E. coli* chromosomal origin: an RNA-DNA hybrid near *oriC*. Cell **55**: 113-123.
- Baker, T. A., Sekimizu, K., Funnell, B. E. and Kornberg, A. (1986) Extensive unwinding of the plasmid template during staged enzymatic initiation of DNA

- replication from the origin of the Escherichia coli chromosome. Cell 45: 53-64.
- Bakker, A. and Smith, D. W. (1989) Methylation of GATC sites is required for precise timing between rounds of DNA replication in *Escherichia coli*. J. Bacteriol. 171: 5738-5742.
- Ball, C. A. and Johnson, R. C. (1991) Efficient excision of phage lambda from the *Escherichia coli* chromosome requires the Fis protein. J. Bacteriol. **173:** 4027-4031.
- Ball, C. A., Osuna, R., Ferguson, K. C. and Johnson, R. C. (1992) Dramatic changes in Fis levels upon nutrient upshift in *Escherichia coli*. J. Bacteriol. **174:** 8043-8056.
- Bernander, R., Dasgupta, S. and Nordstrom, K. (1991) The *E. coli* cell cycle and the plasmid R1 replication cycle in the absence of the DnaA protein. Cell **64**: 1145-1153.
- Bird, R. E., Louarn, J., Martuscelli, J. and Caro, L. (1972) Origin and sequence of chromosome replication in *Escherichia coli*. J. Mol. Biol. **70**: 549-566.
- Bogan, J. A. and Helmstetter, C. E. (1996) mioC transcription, initiation of replication, and the eclipse in *Escherichia coli*. J. Bacteriol. 178: 3201-3206.
- Bonnefoy, E. and Rouviere, Y. J. (1991) HU and IHF, two homologous histonelike proteins of Escherichia coli, form different protein-DNA complexes with short DNA fragments. EMBO J. 10: 687-696.
- Bonnefoy, E., Takahashi, M. and Yaniv, J. R. (1994) DNA-binding parameters of the HU protein of *Escherichia coli* to cruciform DNA. J. Mol. Biol. **242**: 116-129.
- Boye, E. (1991) The hemimethylated replication origin of *Escherichia coli* can be initiated *in vitro*. J. Bacteriol. **173**: 4537-4539.
- Boye, E. and Lobner-Olesen, A. (1990) The role of Dam methyltransferase in the control of DNA replication in *E. coli*. Cell **62**: 981-989.
- Boye, E., Lobner-Olesen, A. and Skarstad, K. (1988) Timing of chromosomal replication in *Escherichia coli*. Biochim. Biophys. Acta. **951**: 359-364.
- Boye, E., Lyngstadaas, A., Loebner-Olesen, A., Skarstad, K. and Wold, S. (1993) Regulation of DNA replication in Escherichia coli. DNA replication and the cell cycle. DNA replication and the cell cycle, p. 15-26. E. Fanning, R. Knippers, E. L. Winnacker (ed.) DNA Replication and the Cell Cycle. 43. Mosbacher Kolloquium. Springer, Berlin.

- Bramhill, D. and Kornberg, A. (1988a) Duplex opening by DnaA protein at novel sequences in initiation of replication at the origin of the *E. coli* chromosome. Cell **52:** 743-755.
- Bramhill, D. and Kornberg, A. (1988b) A model for initiation at origins of DNA replication. Cell **54**: 915-918.
- Braun, R. E., O'Day, K. and Wright, A. (1985) Autoregulation of the DNA replication gene *dnaA* in *E. coli* K-12. Cell **40**: 159-169.
- Braun, R. E. and Wright, A. (1986) DNA methylation differentially enhances the expression of one of the two *E. coli dnaA* promoters *in vivo* and *in vitro*. Mol. Gen. Genet. 202: 246-250.
- Broyles, S. S. and Pettijohn, D. E. (1986) Interaction of the *Escherichia coli* HU protein with DNA. Evidence for formation of nucleosome-like structures with altered DNA helical pitch. J. Mol. Biol. **187**: 47-60.
- Burgers, P. M., Kornberg, A. and Sakakibara, Y. (1981) The *dnaN* gene codes for the beta subunit of DNA polymerase III holoenzyme of *Escherichia coli*. Proc. Natl. Acad. Sci., U.S.A. 78: 5391-5395.
- Campbell, J. L. and Kleckner, N. (1990) E. coli oriC and the dnaA gene promoter are sequestered from Dam methyltransferase following the passage of the chromosomal replication fork. Cell 62: 967-979.
- Carl, P. L. (1970) Escherichia coli mutants with temperature-sensitive synthesis of DNA. Mol. Gen. Genet. 109: 107-122.
- Carr, K. M. and Kaguni, J. M. (1996) The A184V missense mutation of the *dnaA5* and *dnaA46* alleles confers a defect in ATP binding and thermolability in initiation of *Escherichia coli* DNA replication. Mol. Micro. 20: 1307-1318.
- Cassler, M. R., Grimwade, J.E. and Leonard, A. C. (1995) Cell cycle-specific changes in nucleoprotien complexes at a chromosomal replication origin. EMBO J. 14: 101-109.
- Castaing, B., Zelwer, C., Laval, J. and Boiteux, S. (1995) HU protein of *Escherichia coli* binds specifically to DNA that contains single-strand breaks or gaps. J. Biol. Chem. **270**: 10291-10296.
- Castuma, C. E., Crooke, E. and Kornberg, A. (1993) Fluid membranes with acidic domains activate DnaA, the initiator protein of replication in *Escherichia coli*. J. Biol. Chem. **268**: 24665-24668.
- Chakraborti, A., Gunji, S., Shakibai, N., Cubeddu, J. and Rothfield, L. (1992) Characterization of the *Escherichia coli* membrane domain responsible for binding *oriC* DNA. J. Bacteriol **174**: 7202-7206.

- Chakraborty, T., Yoshinaga, K., Lother, H. and Messer, W. (1982) Purification of the E. coli dnaA gene product. EMBO J. 1: 1545-1549.
- Chiaramello, A. E. and Zyskind, J. W. (1990) Coupling of DNA replication to growth rate in *Escherichia coli*: a possible role for guanosine tetraphosphate. J. Bacteriol. 172: 2013-2019.
- Churchward, G., Holmans, P. and Bremer, H. (1983) Increased expression of the dnaA gene has no effect on DNA replication in a dnaA+ strain of Escherichia coli. Mol. Gen. Genet. 192: 506-508.
- Cooper, S. and Helmstetter, C. E. (1968) Chromosome replication and the division cycle of *Escherichia coli* B/r. J. Mol. Biol. 31: 519-540.
- Craig, N. L. and Nash, H. A. (1984) E. coli integration host factor binds to specific sites in DNA. Cell 39: 707-716.
- Crooke, E., Castuma, C. E. and Kornberg, A. (1992) The chromosome origin of *Escherichia coli* stabilizes DnaA protein during rejuvenation by phospholipids. J. Biol. Chem. **267**: 16779-82.
- Crooke, E., Thresher, R., Hwang, D. S., Griffith, J. and Kornberg, A. (1993)
 Replicatively active complexes of DnaA protein and the *Escherichia coli* chromosomal origin observed in the electron microscope. J. Mol. Biol. 233: 16-24.
- de Massy, B., Fayet, O. and Kogoma, T. (1984) Multiple origin usage for DNA replication in *sdrA(rnh)* mutants of *Escherichia coli* K-12. Initiation in the absence of *oriC*. J. Mol. Biol. 178: 227-236.
- DiNardo, S., Voelkel, K. A., Sternglanz, R., Reynolds, A. E. and Wright, A. (1982) Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 31: 43-51.
- Ditto, M. D., Roberts, D. and Weisberg, R. A. (1994) Growth phase variation of integration host factor level in *Escherichia coli*. J. Bacteriol. 176: 3738-3748.
- Dixon, N. E. and Kornberg, A. (1984) Protein HU in the enzymatic replication of the chromosomal origin of *Escherichia coli*. Proc. Natl. Acad. Sci., U.S.A. 81: 424-428.
- Donachie, W. D. (1968) Relationship between cell size and time of initiation of DNA replication. Nature **219**: 1077-1079.
- Drlica, K. and Rouviere, Y. J. (1987) Histonelike proteins of bacteria. Microbiol. Rev. 51: 301-319.

- Evans, I. M. and Eberle, H. (1975) Accumulation of the capacity of initiation of deoxyribonucleic acid replication in *Escherichia coli*. J. Bacteriol. **121**: 883-891.
- Fay, P. J., Johanson, K. O., McHenry, C. S. and Bambara, R. A. (1981) Size classes of products synthesized processively by DNA polymerase III and DNA polymerase III holoenzyme of *Escherichia coli*. J. Biol. Chem. **256**: 976-83.
- Fay, P. J., Johanson, K. O., McHenry, C. S. and Bambara, R. A. (1982) Size classes of products synthesized processively by two subassemblies of *Escherichia coli* DNA polymerase III holoenzyme. J. Biol. Chem. **257**: 5692-9.
- Felton, J. and Wright, A. (1979) Plasmid pSC101 replication in integratively suppressed cells requires *dnaA* function. Mol. Gen. Genet. 175: 231-233.
- Filutowicz, M. and Jonczyk, P. (1983) The gyrB gene product functions in both initiation and chain polymerization of Escherichia coli chromosome replication: suppression of the initiation deficiency in gyrB-ts mutants by a class of rpoB mutations. Mol. Gen. Genet. 191: 282-287.
- Filutowicz, M. and Roll, J. (1990) The requirement of IHF protein for extrachromosomal replication of the *Escherichia coli oriC* in a mutant deficient in DNA polymerase I activity. New Biol. 2: 818-827.
- Filutowicz, M., Ross, W., Wild, J. and Gourse, R. L. (1992) Involvement of Fis protein in replication of the *Escherichia coli* chromosome. J. Bacteriol. 174: 398-407.
- Finkel, S. E. and Johnson, R. C. (1992) The Fis protein: it's not just for DNA inversion anymore. Mol. Micro. 6: 3257-3265.
- Frey, J., Chandler, M. and Caro, L. (1979) The effects of an *Escherichia coli dnaA*ts mutation on the replication of the plasmids ColE1 pSC101, R1001 and RTF-TC. Mol. Gen. Genet. 174: 117-126.
- Fried, M. and Crothers, D. M. (1981) Equilibria and kinetics of *lac* repressoroperator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9: 6505-6525.
- Froelich, J. M., Phuong, T. K. and Zyskind, J. W. (1996) FIS binding in the *dnaA* operon promoter region. J. Bacteriol. **178**: 6006-6012.
- Fujita, M. Q., Yoshikawa, H. and Ogasawara, N. (1990) Structure of the *dnaA* region of *Micrococcus luteus*: conservation and variations among eubacteria. Gene **93**: 73-78.

- Fuller, R. S., Funnell, B. E. and Kornberg, A. (1984) The DnaA protein complex with the *E. coli* chromosomal replication origin (*oriC*) and other DNA sites. Cell 38: 889-900.
- Fuller, R. S., Kaguni, J. M. and Kornberg, A. (1981) Enzymatic replication of the origin of the *Escherichia coli* chromosome. Proc. Natl. Acad. Sci., U.S.A. 78: 7370-7374.
- Fuller, R. S. and Kornberg, A. (1983) Purified DnaA protein in initiation of replication at the *Escherichia coli* chromosomal origin of replication. Proc. Natl. Acad. Sci., U.S.A. **80:** 5817-5821.
- Funnell, B. E., Baker, T. A. and Kornberg, A. (1986) Complete enzymatic replication of plasmids containing the origin of the *Escherichia coli* chromosome. J. Biol. Chem. **261**: 5616-5624.
- Funnell, B. E., Baker, T. A. and Kornberg, A. (1987) *In vitro* assembly of a prepriming complex at the origin of the *Escherichia coli* chromosome. J. Biol. Chem. **262:** 10327-10334.
- Gamas, P., Burger, A. C., Churchward, G., Caro, L., Galas, D. and Chandler, M. (1986) Replication of pSC101: effects of mutations in the *E. coli* DNA binding protein IHF. Mol. Gen. Genet. **204:** 85-89.
- Garner, J. and Crooke, E. (1996) Membrane regulation of the chromosomal replication activity of *E. coli* DnaA requires a discrete site on the protein. EMBO J. 15: 2313-2321.
- Garner, M. M. and Revzin, A. (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the *Escherichia coli* lactose operon regulatory system. Nucleic Acids Res. 9: 3047-3060.
- Garrido, T., Sanchez, M., Palacios, P., Aldea, M. and Vicente, M. (1993) Transcription of ftsZ oscillates during the cell cycle of Escherichia coli. EMBO J. 12: 3957-3965.
- Gaylo, P. J., Turjman, N., and Bastia, D. (1987) DnaA protein is required for replication of the minimal replicon of the broad-host-range plasmid RK2 in *Escherichia coli*. J. Bacteriol. **169**: 4703-4709.
- Gielow, A., Kucherer, C., Kolling, R. and Messer, W. (1988) Transcription in the region of the replication origin, *oriC*, of *Escherichia coli*: termination of *asnC* transcripts. Mol. Gen. Genet. **214**: 474-481.
- Giese, K., Cox, J. and Grosschedl, R. (1992) The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 69: 185-195.

- Gille, H., Egan, J. B., Roth, A. and Messer, W. (1991) The FIS protein binds and bends the origin of chromosomal DNA replication, *oriC*, of *Escherichia coli*. Nucleic Acids Res. **19:** 4167-4172.
- Goodman, S. D. and Nash, H. A. (1989) Functional replacement of a protein-induced bend in a DNA recombination site. Nature **341**: 251-254.
- Goodman, S. D., Nicholson, S. C. and Nash, H. A. (1992) Deformation of DNA during site-specific recombination of bacteriophage lambda: replacement of IHF protein by HU protein or sequence-directed bends. Proc. Natl. Acad. Sci., U.S.A. 89: 11910-11914.
- Goodrich, J. A., Schwartz, M. L. and McClure, W. R. (1990) Searching for and predicting the activity of sites for DNA binding proteins: compilation and analysis of the binding sites for *Escherichia coli* integration host factor (IHF). Nucleic Acids Res. 18: 4993-5000.
- Goosen, N. and van de Putte, P. (1995) The regulation of transcription initiation by integration host factor. Mol. Microbiol. 16: 1-7.
- Goshima, N., Kano, Y., Tanaka, H., Tanaka, H., Kohno, K., Yasuzawa, K. and Imamoto, F. (1992) Amino acid substitution in the C-terminal arm domain of HU-2 results in an enhanced affinity for DNA. Gene 121: 121-126.
- Goshima, N., Kohno, K., Imamoto, F. and Kano, Y. (1990) HU-1 mutants of *Escherichia coli* deficient in DNA binding. Gene **96**: 141-145.
- Haffter, P. and Bickle, T. A. (1987) Purification and DNA-binding properties of FIS and Cin, two proteins required for the bacteriophage P1 site-specific recombination system, *cin*. J. Mol. Biol. 198: 579-587.
- Hanna, M. H. and Carl, P. L. (1975) Reinitiation of deoxyribonucleic acid synthesis by deoxyribonucleic acid initiation mutants of *Escherichia coli*: role of ribonucleic acid synthesis, protein synthesis, and cell division. J. Bacteriol. 121: 219-26.
- Hansen, E. B. and Yarmolinsky, M. B. (1986) Host participation in plasmid maintainance: Dependence upon *dnaA* of replicons derived from P1 and F. Proc. Natl. Acad. Sci., U.S.A. 83: 4423-4427.
- Hansen, F. G., Atlung, T., Braun, R. E., Wright, A., Hughes, P. and Kohiyama, M. (1991) Initiator (DnaA) protein concentration as a function of growth rate in *Escherichia coli* and *Salmonella typhimurium*. J. Bacteriol. 173: 5194-5199.
- Hansen, F. G., Hansen, E. B. and Atlung, T. (1982) The nucleotide sequence of the dnaA gene promoter and of the adjacent rpmH gene, coding for the ribosomal protein L34, of Escherichia coli. EMBO J. 1: 1043-1048.

- Hansen, F. G., Koefoed, S., Sorensen, L. and Atlung, T. (1987) Titration of DnaA protein by *oriC* DnaA-boxes increases *dnaA* gene expression in *Escherichia coli*. EMBO J. 6: 255-258.
- Hansen, F. G. and von Meyenburg, K. (1979) Characterization of the *dnaA*, *gyrB* and other genes in the *dnaA* region of the *Escherichia coli* chromsome on specialized transducing phages λtna. Mol. Gen. Genet. 175: 135-144.
- Hasunuma, K. and Sekiguchi, M. (1977) Replication of plasmid pSC101 in *Escherichia coli* K12: requirement for *dnaA* function. Mol. Gen. Genet. **154**: 225-30.
- Heacock, P. N. and Dowhan, W. (1989) Alteration of the phospholipid composition of *Escherichia coli* through genetic manipulation. J. Biol. Chem. **264:** 14972-14977.
- Heichman, K. A. and Johnson, R. C. (1990) The Hin invertasome: protein-mediated joining of distant recombination sites at the enhancer. Science 249: 511-517.
- Helmstetter, C.-B. (1994) Timing of Synthetic Activities in the Cell Cycle. p. 1594-1605 in Neidhardt, F. C., Ingraham, J. L., Low, K. B., Magasanik, B., Schaechter, M. and Umbarger, H. E. (eds.), *Escherichia coli and Salmonella typhimurium*. Cellular and Molecular Biology. American Society for Microbiology, Washington, D. C.
- Helmstetter, C. E. (1968) DNA synthesis during the division cycle of rapidly growing *Escherichia coli* B/r. J. Mol. Biol. 31: 507-518.
- Helmstetter, C. E. and Krajewski, C. A. (1982) Initiation of chromosome replication in *dnaA* and *dnaC* mutants of *Escherichia coli* B/r F. J. Bacteriol. **149:** 685-693.
- Helmstetter, C. E. and Leonard, A. C. (1987a) Coordinate initiation of chromosome and minichromosome replication in *Escherichia coli*. J. Bacteriol. **169:** 3489-3494.
- Helmstetter, C. E. and Leonard, A. C. (1987b) Mechanism for chromosome and minichromosome segregation in *Escherichia coli*. J. Mol. Biol. 197: 195-204.
- Herrick, J., Kern, R., Guha, S., Landoulsi, A., Fayet, O., Malki, A. and Kohiyama, M. (1994) Parental strand recognition of the DNA replication origin by the outer membrane in *Escherichia coli*. EMBO J. 13: 4695-4703.
- Herrick, J., Kohiyama, M., Atlung, T. and Hansen, F. G. (1996) The initiation mess? Mol. Micro. 19: 659-666.

- Hiasa, H. and Marians, K. J. (1994a) Fis cannot support oriC DNA replication in vitro. J. Biol. Chem. 269: 24999-25003.
- Hiasa, H. and Marians, K. J. (1994b) Topoisomerase IV can support *oriC* DNA replication *in vitro*. J. Biol. Chem. **269**: 16371-16375.
- Holz, A., Schaefer, C., Gille, H., Jueterbock, W. R. and Messer, W. (1992) Mutations in the DnaA binding sites of the replication origin of *Escherichia coli*. Mol. Gen. Genet. **233**: 81-88.
- Hong, X., Cadwell, G. W. and Kogoma, T. (1995) *Escherichia coli* RecG and RecA proteins in R-loop formation. EMBO J 14: 2385-2392.
- Horiuchi, T., Maki, H. and Sekiguchi, M. (1984) RNase H-defective mutants of *Escherichia coli*: a possible discriminatory role of RNase H in initiation of DNA replication. Mol. Gen. Genet. 195: 17-22.
- Hughes, P., Landoulsi, A. and Kohiyama, M. (1988) A novel role for cAMP in the control of the activity of the *E. coli* chromosome replication initiator protein, DnaA. Cell **55**: 343-350.
- Hupp, T. R. and Kaguni, J. M. (1993a) Activation of DnaA5 protein by GrpE and DnaK heat shock proteins in initiation of DNA replication in *Escherichia coli*. J. Biol. Chem. **268**: 13137-13142.
- Hupp, T. R. and Kaguni, J. M. (1993b) Activation of mutant forms of DnaA protein of *Escherichia coli* by DnaK and GrpE proteins occurs prior to DNA replication. J. Biol. Chem. **268**: 13143-13150.
- Hwang, D. S., Crooke, E. and Kornberg, A. (1990) Aggregated DnaA protein is dissociated and activated for DNA replication by phospholipase or DnaK protein. J. Biol. Chem. **265**: 19244-19248.
- Hwang, D. S. and Kaguni, J. M. (1988) Purification and characterization of the dnaA46 gene product. J. Biol. Chem. 263: 10625-10632.
- Hwang, D. S. and Kornberg, A. (1990) A novel protein binds a key origin sequence to block replication of an *E. coli* minichromosome. Cell **63**: 325-331.
- Hwang, D. S. and Kornberg, A. (1992a) Opening of the replication origin of *Escherichia coli* by DnaA protein with protein HU or IHF. J. Biol. Chem. **267**: 23083-23086.
- Hwang, D. S. and Kornberg, A. (1992b) Opposed actions of regulatory proteins, DnaA and IciA, in opening the replication origin of *Escherichia coli*. J. Biol. Chem. **267**: 23087-23091.

- Jacob, F., Brenner, S. and Cusin, F. (1963) On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp. Quant. Biol. 28: 329-348.
- Jacq, A., Kern, R., Tsugita, A. and Kohiyama, M. (1989) Purification and characterization of a low-molecular-weight membrane protein with affinity for the *Escherichia coli* origin of replication. J. Bacteriol. **171**: 1409-1416.
- Jacq, A. and Kohiyama, M. (1980) A DNA-binding protein specific for the early replicated region of the chromosome obtained from *Escherichia coli* membrane fractions. Eur. J. Biochem. **105**: 25-31.
- Jacq, A., Kohiyama, M., Lother, H. and Messer, W. (1983) Recognition sites for a membrane-derived DNA binding protein preparation in the *E. coli* replication origin. Mol. Gen. Genet. 191: 460-465.
- Johnson, R. C., Ball, C. A., Pfeffer, D. and Simon, M. I. (1988) Isolation of the gene encoding the Hin recombinational enhancer binding protein. Proc. Natl. Acad. Sci., U.S.A. 85: 3484-3488.
- Kaguni, J. M., Fuller, R. S. and Kornberg, A. (1982) Enzymatic replication of *E. coli* chromosomal origin is bidirectional. Nature **296**: 623-627.
- Kaguni, J. M. and Kornberg, A. (1984) Replication initiated at the origin (*oriC*) of the *E. coli* chromosome reconstituted with purified enzymes. Cell **38**: 183-190.
- Kano, Y., Goshima, N., Wada, M. and Imamoto, F. (1989) Participation of hup gene product in replicative transposition of Mu phage in *Escherichia coli*. Gene **76:** 353-358.
- Katayama, T. and Crooke, E. (1995) DnaA protein is sensitive to a soluble factor and is specifically inactivated for initiation of *in vitro* replication of the *Escherichia coli* minichromosome. J. Biol. Chem. **270**: 9265-9271.
- Kobori, J. A. and Kornberg, A. (1982) The *Escherichia coli dnaC* gene product. III. Properties of the DnaB- DnaC protein complex. J. Biol. Chem. **257**: 13770-13775.
- Koch, C. and Kahmann, R. (1986) Purification and properties of the *Escherichia coli* host factor required for inversion of the G segment in bacteriophage Mu. J. Biol. Chem. **261**: 15673-15678.
- Koch, C., Ninnemann, O., Fuss, H. and Kahmann, R. (1991) The N-terminal part of the *E.coli* DNA binding protein FIS is essential for stimulating site-specific DNA inversion but is not required for specific DNA binding. Nucleic Acids Res. 19: 5915-5922.

- Kogoma, T., Subia, N. L. and von Meyenburg, K. (1985) Function of ribonuclease H in initiation of DNA replication in *Escherichia coli* K-12. Mol. Gen. Genet. **200:** 103-109.
- Kogoma, T., Torrey, T. A. and Connaughton, M. J. (1979) Induction of UV-resistant DNA replication in *Escherichia coli*: induced stable DNA replication as an SOS function. Mol. Gen. Genet. 176: 1-9.
- Kohara, Y., Akiyama, K. and Isono, K. (1987) The physical map of the whole *E. coli* chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell **50**: 495-508.
- Kohiyama, M., Cousin, D., Ryter, A. and Jacob, F. (1966) [Thermosensitive mutants of Escherichia coli K 12. I. Isolation and rapid characterization]. Ann. Inst. Pasteur. (Paris) 110: 465-486.
- Kohno, K., Yasuzawa, K., Hirose, M., Kano, Y., Goshima, N., Tanaka, H. and Imamoto, F. (1994) Autoregulation of transcription of the *hupA* gene in *Escherichia coli*: evidence for steric hindrance of the functional promoter domains induced by HU. J. Biochem. (Tokyo) 115: 1113-1118.
- Kolling, R., Gielow, A., Seufert, W., Kucherer, C. and Messer, W. (1988) AsnC, a multifunctional regulator of genes located around the replication origin of *Escherichia coli*, oriC. Mol. Gen. Genet. **212**: 99-104.
- Koppes, L. and Nordstrom, K. (1986) Insertion of an R1 plasmid into the origin of replication of the *E. coli* chromosome: random timing of replication of the hybrid chromosome. Cell **44**: 117-124.
- Koppes, L. J. and von Meyenburg, K. (1987) Nonrandom minichromosome replication in *Escherichia coli* K-12. J. Bacteriol. **169**: 430-433.
- Kostrewa, D., Granzin, J., Koch, C., Choe, H. W., Raghunathan, S., Wolf, W., Labahn, J., Kahmann, R. and Saenger, W. (1991) Three-dimensional structure of the *E. coli* DNA-binding protein FIS. Nature **349**: 178-180.
- Kostrewa, D., Granzin, J., Stock, D., Choe, H. W., Labahn, J. and Saenger, W. (1992) Crystal structure of the factor for inversion stimulation FIS at 2.0 A resolution. J. Mol. Biol. **226**: 209-226.
- Kowalski, D. and Eddy, M. J. (1989) The DNA unwinding element: a novel, cisacting component that facilitates opening of the *Escherichia coli* replication origin. EMBO J. 8: 4335-4344.
- Kreuzer, K. N. and Cozzarelli, N. R. (1979) *Escherichia coli* mutants thermosensitive for deoxyribonucleic acid gyrase subunit A: effects on deoxyribonucleic acid replication, transcription, and bacteriophage growth. J. Bacteriol. **140**: 424-435.

- Kucherer, C., Lother, H., Kolling, R., Schauzu, M. A. and Messer, W. (1986) Regulation of transcription of the chromosomal *dnaA* gene of *Escherichia* coli. Mol. Gen. Genet. **205**: 115-121.
- Kuwabara, M. D. and Sigman, D. S. (1987) Footprinting DNA-protein complexes in situ following gel retardation assays using 1,10-phenanthroline-copper ion: Escherichia coli RNA polymerase-lac promoter complexes. Biochem. 26: 7234-7238.
- LaDuca, R. J., Fay, P. J., Chuang, C., McHenry, C. S. and Bambara, R. A. (1983) Site-specific pausing of deoxyribonucleic acid synthesis catalyzed by four forms of *Escherichia coli* DNA polymerase III. Biochem. **22:** 5177-5188.
- Landoulsi, A., Hughes, P., Kern, R. and Kohiyama, M. (1989) Dam methylation and the initiation of DNA replication on *oriC* plasmids. Mol. Gen. Genet. **216**: 217-223.
- Landoulsi, A., Malki, A., Kern, R., Kohiyama, M. and Hughes, P. (1990) The *E. coli* cell surface specifically prevents the initiation of DNA replication at *oriC* on hemimethylated DNA templates. Cell **63**: 1053-1060.
- Langer, U., Richter, S., Roth, A., Weigel, C. and Messer, W. (1996) A comprehensive set of DnaA-box mutations in the replication origin, *oriC*, of *Escherichia coli*. Mol. Micro. **21**: 301-311.
- Lark, K. G. (1972) Evidence for the direct involvement of RNA in the initiation of DNA replication in *Escherichia coli* 15T. J. Mol. Biol. **64:** 47-60.
- Lark, K. G. and Renger, H. (1969) Initiation of DNA replication in *Escherichia* coli 15T-: chronological dissection of three physiological processes required for initiation. J. Mol. Biol. 42: 221-235.
- Lavoie, B. D. and Chaconas, G. (1993) Site-specific HU binding in the Mu transpososome: conversion of a sequence-independent DNA-binding protein into a chemical nuclease. Genes & Dev. 7: 2510-2519.
- Lavoie, B. D. and Chaconas, G. (1994) A second high affinity HU binding site in the phage Mu transpososome. J. Biol. Chem. 269: 15571-15576.
- LeBowitz, J. H. and McMacken, R. (1986) The Escherichia coli DnaB replication protein is a DNA helicase. J. Biol. Chem. 261: 4738-48.
- Leonard, A. C. and Helmstetter, C. E. (1986) Cell cycle-specific replication of *Escherichia coli* minichromosomes. Proc. Natl. Acad. Sci., U.S.A. 83: 5101-5105.

- Leonard, A. C., Hucul, J. A. and Helmstetter, C. E. (1982) Kinetics of minichromosome replication in *Escherichia coli* B/r. J. Bacteriol. **149:** 499-507.
- Liu, L. F. and Wang, J. C. (1987) Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci., U.S.A. 84: 7024-7027.
- Lobner-Olesen, A., Atlung, T. and Rasmussen, K. V. (1987) Stability and replication control of *Escherichia coli* minichromosomes. J. Bacteriol. **169**: 2835-2842.
- Lobner-Olesen, A., Hansen, F. G., Rasmussen, K. V., Martin, B. and Kuempel, P. L. (1994) The initiation cascade for chromosome replication in wild-type and Dam methyltransferase deficient *Escherichia coli* cells. EMBO J. 13: 1856-1862.
- Lobner-Olesen, A., Skarstad, K., Hansen, F. G., von Meyenburg, K. and Boye, E. (1989) The DnaA protein determines the initiation mass of *Escherichia coli* K-12. Cell **57**: 881-889.
- Lother, H., Kolling, R., Kucherer, C. and Schauzu, M. (1985) DnaA protein-regulated transcription: effects on the *in vitro* replication of *Escherichia coli* minichromosomes. EMBO J. 4: 555-560.
- Lother, H. and Messer, W. (1981) Promoters in the *E. coli* replication origin. Nature **294**: 376-378.
- Louarn, J., Funderburgh, M. and Bird, R. E. (1974) More precise mapping of the replication origin in *Escherichia coli* K-12. J. Bacteriol. 120: 1-5.
- Lu, M., Campbell, J. L., Boye, E. and Kleckner, N. (1994) SeqA: a negative modulator of replication initiation in *E. coli*. Cell 77: 413-426.
- MacAllister, T. W., Kelley, W. L., Miron, A., Stenzel, T. T., and Bastia, D. (1991) Cooperativity at a distance promoted by the combined action of two replication initiator proteins and a DNA bending protein at the replication origin of pSC101. J. Biol. Chem. 266: 16056-16062.
- Magee, T. R., Asai, T., Malka, D. and Kogoma, T. (1992) DNA damage-inducible origins of DNA replication in *Escherichia coli*. EMBO J. 11: 4219-4225.
- Maki, S. and Kornberg, A. (1988) DNA polymerase III holoenzyme of *Escherichia coli*. III. Distinctive processive polymerases reconstituted from purified subunits. J. Biol. Chem. **263**: 6561-6569.
- Margulies, C. and Kaguni, J. M. (1996) Ordered and sequential binding of DnaA protein to *oriC*, the chromosomal origin of *Escherichia coli*. J. Biol. Chem. **271:** 17035-17040.

- Marians, K. J., Ikeda, J. E., Schlagman, S. and Hurwitz, J. (1977) Role of DNA gyrase in phiX replicative-form replication *in vitro*. Proc. Natl. Acad. Sci., U.S.A. 74: 1965-1968.
- Marinus, M. G. and Morris, N. R. (1974) Biological function for 6-methyladenine residues in the DNA of *Escherichia coli* K12. J. Mol. Biol. 85: 309-322.
- Marsh, R. C. and Worcel, A. (1977) A DNA fragment containing the origin of replication of the *Escherichia coli* chromosome. Proc. Natl. Acad. Sci., U.S.A. 74: 2720-2724.
- Marszalek, J. and Kaguni, J. M. (1994) DnaA protein directs the binding of DnaB protein in initiation of DNA replication in *Escherichia coli*. J. Biol. Chem. **269:** 4883-4890.
- Marszalek, J., Zhang, W., Hupp, T. R., Margulies, C., Carr, K. M., Cherry, S. and Kaguni, J. M. (1996) Domains of DnaA Protein Involved in interaction with DnaB protein, and in unwinding the *Escherichia coli* chromosomal origin. J. Biol. Chem. **271**: 18535-18542.
- Masai, H. and Arai, K. (1987) RepA and DnaA proteins are required for initiation of R1 plasmid replication in vitro and interact with the *oriR* sequence. Proc. Natl. Acad. Sci., U.S.A. 84: 4781-4785.
- Mathis, R. R. and Brown, O. R. (1976) ATP concentration in *Escherichia coli* during oxygen toxicity. Biochim. Biophys. Acta. **440**: 723-732.
- Matsui, M., Oka, A., Takanami, M., Yasuda, S. and Hirota, Y. (1985) Sites of DnaA protein-binding in the replication origin of the *Escherichia coli* K-12 chromosome. J. Mol. Biol. **184**: 529-533.
- Meijer, M. and Messer, W. (1980) Functional analysis of minichromosome replication: bidirectional and unidirectional replication from the *Escherichia coli* replication origin, *oriC*. J. Bacteriol. **143**: 1049-1053.
- Mertens, G., Fuss, H. and Kahmann, R. (1986) Purification and properties of the DNA invertase gin encoded by bacteriophage Mu. J. Biol. Chem. **261**: 15668-15672.
- Messelson, M. and Stahl, F. (1958) The replication of DNA in E. coli. Proc. Natl. Acad. Sci., U.S.A. 44: 671-682.
- Messer, W. (1972) Initiation of deoxyribonucleic acid replication in *Escherichia coli* B- r: chronology of events and transcriptional control of initiation. J. Bacteriol. **112:** 7-12.

- Messer, W., Weigel, C. (1996) Initiation of chromosome replication. p. 1579-1601 in Neidhardt, F. C. (eds.), *Escherichia coli* and *Salmonella*. ASM press, Washington, D.C.
- Messer, W., Bellekes, U. and Lother, H. (1985) Effect of Dam methylation on the activity of the E. coli replication origin, oriC. EMBO J. 4: 1327-1332.
- Messer, W., Bergmans, H. E., Meijer, M., Womack, J. E., Hansen, F. G. and von Meyenburg, K. (1978) Minichromosomes: plasmids which carry the *E. coli* replication origin. Mol. Gen. Genet. **162**: 269-275.
- Miki, T., Kimura, M., Hiraga, S., Nagata, T. and Yura, T. (1979) Cloning and physical mapping of the *dnaA* region of the *Escherichia coli* chromosome. J. Bacteriol. **140**: 817-824.
- Miller, H. I., Riggs, A. D. and Gill, G. N. (1973) Ribonuclease H (hybrid) in *Escherichia coli*. Identification and characterization. J. Biol. Chem. **248**: 2621-2624.
- Molina, L. J., Govantes, F. and Santero, E. (1994) Geometry of the process of transcription activation at the sigma 54- dependent *nifH* promoter of *Klebsiella pneumoniae*. J. Biol. Chem. **269**: 25419-25425.
- Mukhopadhyay, G., Carr, K. M., Kaguni, J. M. and Chattoraj, D. K. (1993) Open-complex formation by the host initiator, DnaA, at the origin of P1 plasmid replication. EMBO J. 12: 4547-4554.
- Murakami, Y., Ohmori, H., Yura, T. and Nagata, T. (1987) Requirement of the *Escherichia coli dnaA* gene function for *ori-2-* dependent mini-F plasmid replication. J. Bacteriol. **169:** 1724-1730.
- Muskhelishvili, G., Travers, A. A., Heumann, H. and Kahmann, R. (1995) FIS and RNA polymerase holoenzyme form a specific nucleoprotein complex at a stable RNA promoter. EMBO J. 14: 1446-1452.
- Nash, H. A. and Robertson, C. A. (1981) Purification and properties of the *Escherichia coli* protein factor required for lambda integrative recombination. J. Biol. Chem. **256**: 9246-9253.
- Newlands, J. T., Josaitis, C. A., Ross, W. and Gourse, R. L. (1992) Both fisdependent and factor-independent upstream activation of the *rrnB* P1 promoter are face of the helix dependent. Nucleic Acids Res. 20: 719-726.
- Ninnemann, O., Koch, C. and Kahmann, R. (1992) The *E.coli fis* promoter is subject to stringent control and autoregulation. EMBO J. 11: 1075-1083.

- Nozaki, N., Okazaki, T. and Ogawa, T. (1988) *In vitro* transcription of the origin region of replication of the *Escherichia coli* chromosome. J. Biol. Chem. **263**: 14176-14183.
- Numrych, T. E., Gumport, R. I. and Gardner, J. F. (1991) A genetic analysis of Xis and FIS interactions with their binding sites in bacteriophage lambda. J. Bacteriol. 173: 5954-5963.
- Numrych, T. E., Gumport, R. I. and Gardner, J. F. (1992) Characterization of the bacteriophage lambda excisionase (Xis) protein: the C-terminus is required for Xis-integrase cooperativity but not for DNA binding. EMBO J. 11: 3797-3806.
- Ogasawara, N., Moriya, S., von Meyenburg, K., Hansen, F. G. and Yoshikawa, H. (1985) Conservation of genes and their organization in the chromosomal replication origin region of *Bacillus subtilis* and *Escherichia coli*. EMBO J. 4: 3345-3350.
- Ogasawara, N. and Yoshikawa, H. (1992) Genes and their organization in the replication origin region of the bacterial chromosome. Mol. Micro. 6: 629-634.
- Ogawa, T., Baker, T. A., van der Ende, A. and Kornberg, A. (1985) Initiation of enzymatic replication at the origin of the *Escherichia coli* chromosome: contributions of RNA polymerase and primase. Proc. Natl. Acad. Sci., U.S.A. 82: 3562-3566.
- Ogawa, T. and Okazaki, T. (1991) Concurrent transcription from the *gid* and *mioC* promoters activates replication of an *Escherichia coli* minichromosome. Mol. Gen. Genet. **230**: 193-200.
- Ogawa, T. and Okazaki, T. (1994) Cell cycle-dependent transcription from the gid and mioC promoters of Escherichia coli. J. Bacteriol. 176: 1609-1615.
- Ogawa, T., Pickett, G. G., Kogoma, T. and Kornberg, A. (1984) RNase H confers specificity in the *dnaA*-dependent initiation of replication at the unique origin of the *Escherichia coli* chromosome *in vivo* and *in vitro*. Proc. Natl. Acad. Sci., U.S.A. 81: 1040-1044.
- Ogden, G. B., Pratt, M. J. and Schaechter, M. (1988) The replicative origin of the *E. coli* chromosome binds to cell membranes only when hemimethylated. Cell **54:** 127-135.
- Ohmori, H., Kimura, M., Nagata, T. and Sakakibara, Y. (1984) Structural analysis of the *dnaA* and *dnaN* genes of *Escherichia coli*. Gene **28:** 159-170.
- Oka, A., Sasaki, H., Sugimoto, K. and Takanami, M. (1984) Sequence organization of replication origin of the *Escherichia coli* K- 12 chromosome. J. Mol. Biol. **176:** 443-458.

- Oka, A., Sugimoto, K., Takanami, M. and Hirota, Y. (1980) Replication origin of the *Escherichia coli* K-12 chromosome: the size and structure of the minimum DNA segment carrying the information for autonomous replciation. Mol. Gen. Genet. 178: 9-20.
- Ortega, S., Lanka, E. and Diaz, R. (1986) The involvement of host replication proteins and of specific origin sequences in the in vitro replication of miniplasmid R1 DNA. Nucleic Acids Res. 14: 4865-4879.
- Osuna, R., Finkel, S. E. and Johnson, R. C. (1991) Identification of two functional regions in Fis: the N-terminus is required to promote Hin-mediated DNA inversion but not lambda excision. EMBO J. 10: 1593-1603.
- Parada, C. A. and Marians, K. J. (1991) Mechanism of DnaA protein-dependent pBR322 DNA replication. DnaA protein-mediated trans-strand loading of the DnaB protein at the origin of pBR322 DNA. J. Biol.. Chem. **266**: 18895-18906
- Pettijohn, D. E. (1988) Histone-like proteins and bacterial chromosome structure. J. Biol. Chem. **263**: 12793-12796.
- Pierucci, O., Helmstetter, C. E., Rickert, M., Weinberger, M. and Leonard, A. C. (1987) Overexpression of the *dnaA* gene in *Escherichia coli* B/r: chromosome and minichromosome replication in the presence of rifampin. J. Bacteriol. **169**: 1871-1877.
- Polaczek, P. (1990) Bending of the origin of replication of *E. coli* by binding of IHF at a specific site. New Biol. 2: 265-271.
- Polaczek, P. and Wright, A. (1990) Regulation of expression of the *dnaA* gene in *Escherichia coli*: role of the two promoters and the DnaA box. New Biol. 2: 574-582.
- Pontiggia, A., Negri, A., Beltrame, M. and Bianchi, M. E. (1993) Protein HU Binds Specifically to Kinked DNA. Mol. Micro. 7: 343-350.
- Pritchard, R. H., Barth, P.T. and Collins, J. (1969) Control of DNA synthesis in bacteria. Symp. Soc. Gen. Microbiol. 19: 263-297.
- Pruss, G. J., Manes, S. H. and Drlica, K. (1982) *Escherichia coli* DNA topoisomerase I mutants: increased supercoiling is corrected by mutations near gyrase genes. Cell 31: 35-42.
- Ream, L. W., Margossian, L., Clark, A. J., Hansen, F. G. and von Meyenburg, K. (1980) Genetic and physical mapping of recF in Escherichia coli K-12. Mol. Gen. Genet. 180: 115-121.

- Rice, R. A., Yang, S., Mizuuchi, K. and Nash, H. A. (1996) Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87: 1295-1306.
- Richet, E., Abcarian, P. and Nash, H. A. (1986) The interaction of recombination proteins with supercoiled DNA: defining the role of supercoiling in lambda integrative recombination. Cell **46:** 1011-1021.
- Robinson, A. C., Collins, J. F. and Donachie, W. D. (1987) Prokaryotic and eukaryotic cell-cycle proteins [letter]. Nature 328: 766.
- Rokeach, L. A. and Zyskind, J. W. (1986) RNA terminating within the *E. coli* origin of replication: stringent regulation and control by DnaA protein. Cell **46:** 763-771.
- Ross, W., Thompson, J. F., Newlands, J. T. and Gourse, R. L. (1990) E. coli FIS protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J. 9: 3733-3742.
- Roth, A. and Messer, W. (1995) The DNA binding domain of the initiator protein DnaA. EMBO J. 14: 2106-2111.
- Roth, A., Urmoneit, B. and Messer, W. (1994) Functions of histone-like proteins in the initiation of DNA replication at *oriC* of *Escherichia coli*. Biochimie **76**: 917-923.
- Rouviere, Y. J. and Gros, F. (1975) Characterization of a novel, low-molecular-weight DNA-binding protein from *Escherichia coli*. Proc. Natl. Acad. Sci. U.S.A. 72: 3428-3432.
- Rouviere, Y. J., Yaniv, M. and Germond, J. E. (1979) E. coli DNA binding protein HU forms nucleosomelike structure with circular double-stranded DNA. Cell 17: 265-274.
- Russell, D. W. and Zinder, N. D. (1987) Hemimethylation prevents DNA replication in *E. coli*. Cell **50**: 1071-1079.
- Sakakibara, Y., Tsukano, H. and Sako, T. (1981) Organization and transcription of the *dnaA* and *dnaN* genes of *Escherichia coli*. Gene 13: 47-55.
- Sakakibara, Y. and Yuasa, S. (1982) Continuous synthesis of the *dnaA* gene product of *Escherichia coli* in the cell cycle. Mol. Gen. Genet. **186**: 87-94.
- Samitt, C. E., Hansen, F. G., Miller, J. F. and Schaechter, M. (1989) *In vivo* studies of DnaA binding to the origin of replication of *Escherichia coli*. EMBO J. 8: 989-993.

- Schaefer, C. and Messer, W. (1988) Termination of the *Escherichia coli asnC* transcript. The DnaA protein/dnaA box complex blocks transcribing RNA polymerase. Gene 73: 347-354.
- Schaefer, C. and Messer, W. (1989) Directionality of DnaA protein/DNA interaction. Active orientation of the DnaA protein/dnaA box complex in transcription termination. EMBO J. 8: 1609-1613.
- Schaefer, C. and Messer, W. (1991) DnaA protein/DNA interaction. Modulation of the recognition sequence. Mol. Gen. Genet. 226: 34-40.
- Schaper, S. and Messer, W. (1995) Interaction of the initiator protein DnaA of Escherichia coli with its DNA target. J. Biol. Chem. 270: 17622-17626.
- Schaus, N., O'Day, K., Peters, W. and Wright, A. (1981) Isolation and characterization of amber mutations in gene *dnaA* of *Escherichia coli* K-12. J. Bacteriol. **145**: 904-913.
- Schauzu, M. A., Kucherer, C., Kolling, R., Messer, W. and Lother, H. (1987) Transcripts within the replication origin, *oriC*, of *Escherichia coli*. Nucleic Acids Res. 15: 2479-2497.
- Segall, A. M., Goodman, S.D., and Nash, H.A. (1994) Architectural elements in nucleoprotein complexes: interchangeability of specific and non-secific DNA binding proteins. EMBO J. 13: 4536-4548.
- Sekimizu, K., Bramhill, D. and Kornberg, A. (1987) ATP activates DnaA protein in initiating replication of plasmids bearing the origin of the *E. coli* chromosome. Cell **50:** 259-265.
- Sekimizu, K., Bramhill, D. and Kornberg, A. (1988a) Sequential early stages in the *in vitro* initiation of replication at the origin of the *Escherichia coli* chromosome. J. Biol. Chem. **263**: 7124-7130.
- Sekimizu, K. and Kornberg, A. (1988) Cardiolipin activation of DnaA protein, the initiation protein of replication in *Escherichia coli*. J. Biol. Chem. **263**: 7131-7135.
- Sekimizu, K., Yung, B. Y. and Kornberg, A. (1988b) The DnaA protein of *Escherichia coli*. Abundance, improved purification, and membrane binding. J. Biol. Chem. **263**: 7136-7140.
- Shimizu, M., Miyake, M., Kanke, F., Matsumoto, U. and Shindo, H. (1995) Characterization of the binding of HU and IHF, homologous histone-like proteins of *Escherichia coli*, to curved and uncurved DNA. Biochim. Biophys. Acta. **1264**: 330-336.

- Sigal, N., Delius, H., Kornberg, T., Gefter, M. L. and Alberts, B. (1972) A DNA-unwinding protein isolated from *Escherichia coli*: its interaction with DNA and with DNA polymerases. Proc. Natl. Acad. Sci., U.S.A. **69**: 3537-3541.
- Skarstad, K., Baker, T. A. and Kornberg, A. (1990) Strand separation required for initiation of replication at the chromosomal origin of *E.coli* is facilitated by a distant RNA--DNA hybrid. EMBO J. 9: 2341-2348.
- Skarstad, K., Boye, E. and Steen, H. B. (1986) Timing of initiation of chromosome replication in individual *Escherichia coli* cells [published erratum appears in EMBO J. 1986 Nov;5(11):3074]. EMBO J. 5: 1711-1717.
- Skarstad, K., Lobner-Olesen, A., Atlung, T., von Meyenburg, K. and Boye, E. (1989) Initiation of DNA replication in *Escherichia coli* after overproduction of the DnaA protein. Mol. Gen. Genet. 218: 50-56.
- Skarstad, K., Steen, H. B. and Boye, E. (1983) Cell cycle parameters of slowly growing *Escherichia coli* B/r studied by flow cytometry. J. Bacteriol. **154**: 656-662.
- Skarstad, K., Steen, H. B. and Boye, E. (1985) *Escherichia coli* DNA distributions measured by flow cytometry and compared with theoretical computer simulations. J. Bacteriol. **163**: 661-668.
- Skarstad, K., Thony, B., Hwang, D. S. and Kornberg, A. (1993) A novel binding protein of the origin of the *Escherichia coli* chromosome. J. Biol. Chem. **268**: 5365-5370.
- Skarstad, K., von Meyenburg, K., Hansen, F. G. and Boye, E. (1988) Coordination of chromosome replication initiation in *Escherichia coli*: effects of different *dnaA* alleles. J. Bacteriol. **170**: 852-858.
- Skovgaard, O. and Hansen, F. G. (1987) Comparison of *dnaA* nucleotide sequences of *Escherichia coli*, *Salmonella typhimurium*, and *Serratia marcescens*. J. Bacteriol. **169**: 3976-3981.
- Slater, S., Wold, S., Lu, M., Boye, E., Skarstad, K. and Kleckner, N. (1995) *E. coli* SeqA protein binds *oriC* in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration. Cell **82**: 927-936.
- Smith, D. W., Garland, A. M., Herman, G., Enns, R. E., Baker, T. A. and Zyskind, J. W. (1985) Importance of state of methylation of oriC GATC sites in initiation of DNA replication in *Escherichia coli*. EMBO J. 4: 1319-1326.
- Stenzel, T. T., MacAllister, T. and Bastia, D. (1991) Cooperativity at a distance promoted by the combined action of two replication initiator proteins and a

- DNA bending protein at the replication origin of pSC101 [published erratum appears in Genes Dev 1991 Dec;5(12A):2362]. Genes & Dev. 5: 1453-1463.
- Stuitje, A. R., de Wind, N., van der Spek, J. C., Pors, T. H. and Meijer, M. (1986)
 Dissection of promoter sequences involved in transcriptional activation of the *Escherichia coli* replication origin. Nucleic Acids Res. 14: 2333-2344.
- Stuitje, A. R. and Meijer, M. (1983) Maintenance and incompatibility of plasmids carrying the replication origin of the *Escherichia coli* chromosome: evidence for a control region of replication between *oriC* and *asnA*. Nucleic Acids Res. 11: 5775-5791.
- Sun Lee, Y. and Su Hwang, D. (1997) Occlusion of RNA polymerase by oligomerization of DnaA protein over the *dnaA* promoter of *Escherichia coli*. J. Biol. Chem. **272**: 83-88.
- Surette, M. G., Lavoie, B. D. and Chaconas, G. (1989) Action at a distance in Mu DNA transposition: an enhancer-like element is the site of action of supercoiling relief activity by integration host factor (IHF). EMBO J. 8: 3483-3489.
- Sutton (1996) Genetic and biochemical dissection of functional domains of the *Escherichia coli* replication initiation protein DnaA. PhD. dissertation
- Svitil, A. L., Cashel, M. and Zyskind, J. W. (1993) Guanosine tetraphosphate inhibits protein synthesis *in vivo*. A possible protective mechanism for starvation stress in *Escherichia coli*. J. Biol. Chem. **268**: 2307-2311.
- Tanaka, H., Yasuzawa, K., Kohno, K., Goshima, N., Kano, Y., Saiki, T. and Imamoto, F. (1995) Role of HU proteins in forming and constraining supercoils of chromosomal DNA in *Escherichia coli*. Mol. Gen. Genet. **248**: 518-526.
- Tanaka, I., Appelt, K., Dijk, J., White, S.W., and Wilson, K.S. (1984) 3-A resoultion structure of a protein with histone-like roperties in prokaryotes. Nature 310: 376-381.
- Tanaka, M. and Hiraga, S. (1985) Negative control of *oriC* plasmid replication by transcription of the *oriC* region. Mol. Gen. Genet. 200: 21-26.
- Theisen, P. W., Grimwade, J. E., Leonard, A. C., Bogan, J. A. and Helmstetter, C. E. (1993) Correlation of gene transcription with the time of initiation of chromosome replication in *Escherichia coli*. Mol. Micro. 10: 575-584.
- Thompson, J. F. and Landy, A. (1988) Empirical estimation of protein-induced DNA bending angles: applications to lambda site-specific recombination complexes. Nucleic Acids Res. 16: 9687-9705.

- Thompson, J. F., Moitoso, de Vargas, L., Koch, C., Kahmann, R. and Landy, A. (1987) Cellular factors couple recombination with growth phase: characterization of a new component in the lambda site-specific recombination pathway. Cell **50**: 901-908.
- Thony, B., Hwang, D. S., Fradkin, L. and Kornberg, A. (1991) iciA, an Escherichia coli gene encoding a specific inhibitor of chromosomal initiation of replication in vitro. Proc. Natl. Acad. Sci., U.S.A. 88: 4066-4070.
- Trueba, F. J., Neijssel, O. M. and Woldringh, C. L. (1982) Generality of the growth kinetics of the average individual cell in different bacterial populations. J. Bacteriol. **150**: 1048-1055.
- van der Ende, A., Baker, T. A., Ogawa, T. and Kornberg, A. (1985) Initiation of enzymatic replication at the origin of the *Escherichia coli* chromosome: primase as the sole priming enzyme. Proc. Natl. Acad. Sci., U.S.A. 82: 3954-3958.
- von Freiesleben, U. and Rasmussen, K. V. (1992) The level of supercoiling affects the regulation of DNA replication in *Escherichia coli*. Res. Microbiol. **143**: 655-663.
- von Freiesleben, U., Rasmussen, K. V. and Schaechter, M. (1994) SeqA limits DnaA activity in replication from *oriC* in *Escherichia coli*. Mol. Micro. 14: 763-772.
- von Meyenburg, K., Hansen, F. G. (1980) The origin of replication, *oriC*, of *Escherichia coli* chromsome: Genes near *oriC* and construction of *oriC* deletion mutations. UCLA symp. Mol. Cell. Biol. 19: 137-159.
- von Meyenburg, K., Boye, E., Skarstad, K., Koppes, L. and Kogoma, T. (1987) Mode of initiation of constitutive stable DNA replication in RNase H-defective mutants of *Escherichia coli* K-12. J. Bacteriol. **169**: 2650-2658.
- von Meyenburg, K. and Hansen, F. G. (1987) Regulation of chromosome replication. p. 1555-1577 in Neidhardt, F. C., Ingraham, J. L., Low, K. B., Magasanik, B., Schaechter, M. and Umbarger, H. E. (eds.), Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology. American Society for Microbiology, Washington, D. C.
- Wang, J. C. (1996) DNA Topoisomerases. Annual Review of Biochemistry 65: 625-692.
- Wang, Q. P. and Kaguni, J. M. (1987) Transcriptional repression of the *dnaA* gene of *Escherichia coli* by DnaA protein. Mol. Gen. Genet. **209**: 518-525.
- Wang, Q. P. and Kaguni, J. M. (1989) DnaA protein regulates transcriptions of the rpoH gene of Escherichia coli. J. Biol. Chem. 264: 7338-7344.

- Wang, S., Cosstick, R., Gardner, J. F. and Gumport, R. I. (1995) The specific binding of *Escherichia coli* integration host factor involves both major and minor grooves of DNA. Biochem **34**: 13082-13090.
- Wechsler, J. A. (1975) Genetic and phenotypic characterization of *dnaC* mutations. J. Bacteriol. **121**: 594-599.
- Wechsler, J. A. and Gross, J. D. (1971) *Escherichia coli* mutants temperature-sensitive for DNA synthesis. Mol. Gen. Genet. 113: 273-284.
- Wickner, S. and Hurwitz, J. (1975) Interaction of *Escherichia coli dnaB* and *dnaC(D)* gene products *in vitro*. Proc. Natl. Acad. Sci., U.S.A. 72: 921-925.
- Wold, S., Crooke, E. and Skarstad, K. (1996) The *Escherichia coli* FIS protein prevents initiation of DNA replication from *oriC in vitro*. Nucleic Acids Res. **24:** 3527-3532.
- Wu, F., Goldberg, I. and Filutowicz, M. (1992) Roles of a 106-bp origin enhancer and *Escherichia coli* DnaA protein in replication of plasmid R6K. Nucleic Acids Res. 20: 811-817.
- Xia, W. and Dowhan, W. (1995) Phosphatidylinositol cannot substitute for phosphatidylglycerol in supporting cell growth of *Escherichia coli*. J. Bacteriol. 177: 2926-2928.
- Xu, J. and Johnson, R. C. (1995) Identification of genes negatively regulated by Fis: Fis and RpoS comodulate growth-phase-dependent gene expression in *Escherichia coli*. J. Bacteriol. 177: 938-947.
- Xu, Y. C. and Bremer, H. (1988) Chromosome replication in *Escherichia coli* induced by oversupply of DnaA. Mol. Gen. Genet. **211**: 138-142.
- Yang, C. C. and Nash, H. A. (1989) The interaction of *E. coli* IHF protein with its specific binding sites. Cell **57**: 869-880.
- Yoshikawa, H. and Ogasawara, N. (1991) Structure and function of DnaA and the DnaA-box in eubacteria: evolutionary relationships of bacterial replication origins. Mol. Micro. 5: 2589-2597.
- Yung, B. Y., Crooke, E. and Kornberg, A. (1990) Fate of the DnaA initiator protein in replication at the origin of the *Escherichia coli* chromosome *in vitro*. J. Biol. Chem. **265**: 1282-1285.
- Yung, B. Y. and Kornberg, A. (1988) Membrane attachment activates DnaA protein, the initiation protein of chromosome replication in *Escherichia coli*. Proc. Natl. Acad. Sci., U.S.A. **85:** 7202-7205.

- Yung, B. Y. and Kornberg, A. (1989) The DnaA initiator protein binds separate domains in the replication origin of *Escherichia coli*. J. Biol. Chem. **264**: 6146-6150.
- Zulianello, L., de la Gorgue, de Rosny, E., P., v. U., van de Putte, P. and Goosen, N. (1994) The HimA and HimD subunits of integration host factor can specifically bind to DNA as homodimers. EMBO J. 13: 1534-15340.
- Zyskind, J. W., Cleary, J. M., Brusilow, W. S., Harding, N. E. and Smith, D. W. (1983) Chromosomal replication origin from the marine bacterium *Vibrio harveyi* functions in *Escherichia coli*: oriC consensus sequence. Proc. Natl. Acad. Sci., U.S.A. 80: 1164-1168.
- Zyskind, J. W., Deen, L. T. and Smith, D. W. (1977) Temporal sequence of events during the initiation process in *Escherichia coli* deoxyribonucleic acid replication: roles of the *dnaA* and *dnaC* gene products and ribonucleic acid polymerase. J. Bacteriol. 129: 1466-1475.
- Zyskind, J. W., Smith, D. W. (1977) Novel *Escherichia coli dnaB* mutant: Direct involvement of the *dnaB*252 gene product in the synthesis of an origin-ribonulceic acid replication. J. Bacteriol. **129**: 1476-1486.

