

THESIS

7 lllllllllflllllllllllllllllllllllJIIIIIHlllllllllllllllll
301579 6604

LIBRARY

Michigan State

University

This is to certify that the

dissertation entitled

Noise Tolerant Compression Protocols

for Wireless Environments

presented by

Stephen James Perkins

has been accepted towards fulfillment

of the requirements for

Ph . D . degree in Wience

fiea/my
Major professor

Date gal‘l/ 0?¢/’ /§f7]

MSUis an Affirmative Anion/Equal Opportunity Institution 042771

PLACE N RETURN BOXto remove this oheckwt from your record.
TO AVOID FINES return on or bdore date due.

DATE DUE DATE DUE DATE DUE

AUG 2 3%9:. H

L m
MSU leAn Atflnnetive AotiorVEquel Opportunity Instituion

Wanna-9.1

NOISE TOLERANT COMPRESSION PROTOCOLS FOR WIRELESS

ENVIRONMENTS

By

Stephen James Perkins

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

1997

ABSTRACT

NOISE TOLERANT COMPRESSION PROTOCOLS FOR WIRELESS ENVIRONMENTS

By

Stephen James Perkins

Wide area wireless networks will have limited bandwidth. One standard approach for

increasing the effective throughput on such links is to employ data compression. In such

systems, the sender applies a compression algorithm to selected portions of a datagram

and the receiver reverses the process to obtain a duplicate of the original. Implicit in this

process is the notion that both endpoints maintain identical state information so that their

work can remain synchronized. Errors in the data can cause a loss of synchronization that

will eventually lead to incorrect results after decompression.

This work investigates the performance of two link level compression algorithms Oper-

ating in the presence of noise. The initial sections explore system operation by providing

a low—bandwidth traffic survey and a detailed analysis of the noise—free behavior of the

compression algorithms. The remainder of the document investigates algorithm behavior in

the wirele environment. In this environment, it is likely that noise corruption will cause

synchronization loss and a corresponding reduction in system performance.

A new header compression protocol and a new payload compression protocol are pre-

sented. The modified algorithms allow the compressors to better tolerate errors. The new

header compression protocol is shown to behave comparably to the standard algorithm un-

der noise-free conditions. It significantly outperforms the standard under noisy conditions.

The new payload compression protocol is also shown to successfully reduce the effects of

synchronization loss. However, its throughput is limited by the failure of the TCP im-

plementation to adequately handle noise. The TCP problem is further investigated and

references are presented that address the deficiency.

© Copyright 1997 by Stephen James Perkins

All Rights Reserved

This work is dedicated to my parents. Their love and support kept me going.

ACKNOWLEDGMENTS

I first and foremost want to thank my friends for helping me with the transition from a

warm Southern climate to a cold Northern landscape. Y’all will remain the brightest part

of my MSU memories! I also want to thank my professors for all their guidance and hard

work. Y’all got me moving in the proper direction. A special thanks goes to TechSmith

Corporation! I couldn’t have finished without their financial and technical support. Thank

you! Also, thanks go to Lighthouse Design for their superb academic software, NeXT Soft-

ware, Inc. for their OS support, and Watershed Technologies for their software donations.

Finally, I wish to thank all those who helped collect data using the PPP software. Chapter

4 would not exist without you folks!

vi

TABLE OF CONTENTS

LIST OF TABLES x

LIST OF FIGURES xi

1 Introduction 1

1.1 The Wireless Bandwidth Constraint 1

1.2 Approaches to Performance Enhancement 3

1.2.1 Increasing Actual Channel Capacity 3

1.2.2 Increasing Perceived Channel Capacity 4

1.3 Data Compression 5

1.3.1 Header and Payload Compression 6

1.3.2 Compression Dictionaries 6

1.3.3 Synchronization Requirements 8

1.4 Problem Statement - Synchronization Loss in Wireless Environments 9

1.5 Contributions of this Work 10

1.6 Document Organization 11

2 Previous Work 12

2.1 Wireless Network Error Characteristics 13

2.1.1 Channels with Memory 13

2.1.2 Propagation Models 14

2.1.3 Fading Models 16

2.1.4 Analytical Models 17

2.1.5 Model Selection 20

2.2 Traffic Models 21

2.3 Compression Based Enhancements 23

2.3.1 Specific Application Stream Compression 24

2.3.2 Header Compression 24

2.3.3 Payload Compression 26

2.4 ARQ Mechanisms 27

3 The Collection Environment 30

3.1 The Communications Testbed 31

3.1.1 The Berkeley Packet Filter 31

3.1.2 The TCPDUMP Program 31

3.1.3 BPF and TCPDUMP Modifications 32

3.2 The PPP Implementation 33

3.3 The Noise Models 34

3.4 Dependent Error Characteristics 35

3.5 Hitchman Partitioned Markov Chains 35

3.6 The Pl'itchman Parameters 37

3.7 Error Generation 38

3.8 Summary 39

4 ’lraflic Analysis 43

4.1 Introduction 43

4.2 The Collection Environment 44

4.3 Results of Analysis 45

4.3.1 Gross Statistics 45

4.3.2 Protocol Statistics 46

4.4 Analysis of Approach 50

4.5 Summary 52

5 Compression Analysis 54

5.1 Introduction 54

5.2 Compression Analysis 55

5.3 Size and Protocol Transitions 66

5.4 Summary 68

6 Header Compression 70

6.1 Introduction 70

6.2 The VJ Algorithm 71

6.2.1 Packet Loss 73

6.2.2 Synchronization 74

6.3 Performance Analysis of the VJ Algorithm 74

6.4 The New VJ Algorithm 76

6.4.1 No VJ Slot Compression 77

6.4.2 Selective Application of VJ 78

6.4.3 Interpacket Dependency Removal 80

6.5 Performance Evaluation of the New VJ Algorithm 81

6.6 Overhead and Optimizations 85

6.7 Summary 87

7 Payload Compression 88

7.1 Introduction 88

7.2 LZW Packet Payload Compression 89

7.2.1 The LZ78 Compression Algorithm 90

7.2.2 The Lempel—Ziv—Welch Algorithm 91

7.2.3 The Algorithmic Implementation 92

7.2.4 Packet Compression and Emitted Size 93

7.3 Performance Analysis of the LZW Algorithm 94

7.4 Dictionary Size and Clearing 95

7.5 Packet Loss and Synchronization 98

7.5.1 Performance Analysis in the Presence of Noise 100

7.5.2 Throughput Figures 100

7.6 The New LZW Algorithm 103

7.6.1 Dictionary Checkpoints 104

7.6.2 Packet Errors and RESETREQ/RESETACK Behavior 105

viii

7.7 Performance of the New LZW Algorithm 106

7.8 Receiver Controlled Synchronization 110

7.9 TCP Failure 112

7.10 Summary 113

8 Conclusion 116

8.1 Document Review 116

8.2 Future Work 119

8.2.1 Further LZW Analysis 119

8.2.2 Multiple Compressor Comparison 120

8.2.3 CPU Tradeoffs and Alternate Implementations 120

8.2.4 IPv6 ... 121

BIBLIOGRAPHY 122

3.1

4.1

4.2

4.3

5.1

5.2

5.3

6.1

7.1

7.2

7.3

LIST OF TABLES

Ritchman Transition Values 37

Cross Statistics 46

Top Six Protocols 47

All Protocols 52

Inbound transitions (794590 packets counted) 66

Outbound transitions (737650 packets counted) 67

Protocol Transitions 67

Effects of Slot Compression in a Noisy Link 77

Error Statistics for Standard LZW Scheme 102

Error Statistics for the New LZW Scheme With 15 Bit Dictionary 109

Error Statistics for the Receiver Directed LZW Scheme With 15 Bit Dictionary 112

LIST OF FIGURES

1.1 Areas of System Optimization 3

2.1 The Rayleigh PDF 18

2.2 The Gilbert Model 18

3.1 Error Statistics 35

3.2 A One State Fritchman Partitioned Markov Model 36

3.3 The Gap Distribution 39

3.4 The Error-Flee Run Distribution 40

3.5 The Burst Distribution 41

3.6 The Burst Interval Distribution 42

4.1 Total Incoming and Outgoing Traffic Grouped by Protocol 48

4.2 Total Incoming 'ITaffic Grouped by Protocol 49

4.3 Total Outgoing Traffic Grouped by Protocol 50

4.4 Total Incoming and Outgoing Byte Count Grouped by Protocol 51

5.1 Inbound FTP (Gzip) 58

5.2 Outbound FTP (Gzip) 58

5.3 Inbound FTP (Postscript) 59

5.4 Outbound FTP (Postscript) 59

5.5 Inbound FTP (Executables) 59

5.6 Outbound FTP (Executables) 59

5.7 Inbound NNTP Traflic 60

5.8 Outbound NNTP Traffic 60

5.9 Inbound SMTP Traffic 61

5.10 Outbound SMTP Tiaffic 61

5.11 Inbound HTTP 'ITaffic 62

5.12 Outbound HTTP Traffic 62

5.13 Inbound POP3 'Il'affic 63

5.14 Outbound POP3 Traffic 63

5.15 Inbound LOGIN Traffic 64

5.16 Outbound LOGIN 'Ii'aflic 64

6.1 Standard VJ, Random Noise, 1500 Byte MTU 76

6.2 Standard VJ, Random Noise, 296 Byte MTU 77

6.3 Stande VJ, 1500 Byte MTU, Cutoff Size of 160 79

6.4 Standard VJ, 296 Byte MTU, Cutoff Size of 160 79

6.5 New VJ Performance With No Noise, 1500 Byte MTU 82

6.6 New VJ Performance With No Noise, 296 Byte MTU 83

6.7 New VJ Performance With Random Noise, 1500 Byte MTU 83

6.8 New VJ Performance With Random Noise, 296 Byte MTU 84

6.9 New VJ Performance With Burst Noise, 1500 Byte MTU 84

6.10 NewVJ Performance With Burst Noise, 296 Byte MTU 85

7.1 LZ Dictionary 91

7.2 LZW Compression With a 1500 Byte MTU 95

7.3 LZW Compression With a 296 Byte MTU 96

7.4 Compression With Varying Values of check.gap 98

7.5 LZW Compression With Random Noise 101

7.6 LZW Compression With Burst Noise 102

7.7 The Generational Model 104

7.8 Various Generation Gaps Under Error Fme 'Il'ansmission 107

7.9 New Algorithm With Random Error 108

7.10 New Algorithm With Burst Error 109

7.11 TCP Sequence Numbers Over Time 114

7.12 TCP Sequence Numbers Over Time 115

Chapter 1

Introduction

Wide—area wireless networks will play an increasingly important role as societies move

toward ubiquitous connectivity. While wired networks are approaching data rates that make

the use of many existing communications protocols inefficient, their wireless counterparts

continue to be bandwidth limited. Enhancements to these wireless links will be critical for

providing a robust and usable network infrastructure. This introduction chapter discusses

how bandwidth constraints and wireless noise characteristics require special consideration in

the design of low—level compression routines. It outlines the steps taken in this dissertation

to develop new error tolerant data compression protocols. These new protocols provide

superior performance in a noisy environment while maintaining good performance in the

error free environment. The discussion will start by addressing wireless bandwidth.

1.1 The Wireless Bandwidth Constraint

Cost factors, spectrum allocation, and a variety of channel impairments will impose

severe bandwidth limitations on wide—area networks [3, 21, 22, 27]. It is important to un-

derstand the significance of the bandwidth problems facing wireless systems. While wire

2

based systems may overcome bandwidth limitations via technology (e.g., analog phone sys-

tems being replace by ISDN, xDSL, and other higher bandwidth systems), wireless systems

are faced with a fundamentally different obstacle, that of shared frequency spectrum. Since

the electro—magnetic spectrum is a truly shared resource, strict laws govern its use. National

and international regulatory agencies allocate most of the usable spectrum and devices are

not allowed to arbitrarily increase their operating bandwidth. To make matters worse,

wireless communication systems typically receive narrow spectrum allotments for their use.

Since bandwidth is directly related to the maximum signalling rate, narrow band allo-

cations put an upper limit on the signalling speeds of a wireless transceiver. Roden [41]

examines this limit and provides the mathematical relationship between bandwidth and

signalling rate. Briefly, he shows that in order to increase the rate at which a signal changes

(i.e., increase its baud rate), one must allow the signal to range over a larger set of fre-

quencies (i.e., take up greater bandwidth). Given a fixed bandwidth allotment, and thus

a maximum signalling rate, the only options for increasing the data rate are to use larger

signalling constellations that allow more bits per band to be transferred. This is the mech-

anism that has been used to provide V.32 and V.34 telephone modems. Unfortunately, this

approach quickly becomes limited by noise.

Since signalling rates are fixed by the allocation of spectrum, and the number bits per

band is limited by the attainable constellation size given the noise, other mechanisms must

be employed to further increase the throughput of these systems. The following section

outlines several general approaches that can be used to increase the performance of these

systems.

3

1.2 Approaches to Performance Enhancement

Communications systems are large and contain many complex interacting components.

Enhancements to such systems can be performed in many independent areas and with

independent optimization goals. Figure 1.1 provides a way of looking at optimization areas.

While this is certainly not the only way of grouping optimizations, it is useful for discussing

where this work fits with respect to other performance enhancement endeavors.

[mm............. J

/\
[increase Actual] [Increase Perceived

Channel Capacity Channel Capacity

 e

[Application Specific]

GraiSo
Solutions;

Figure 1.1: Areas of System Optimization

1.2.1 Increasing Actual Channel Capacity

Enhancement techniques that fall into this category attempt to increase the actual channel

capacity of a system. There are several ways of doing this:

0 Increase the bit rate of the channel. This can be done by increasing the bits per

baud on analog systems. For example, moving from V.32bis to V.34 on modem based

systems keeps the same baud rate but adds one more hit per band (doubling the

number of values that can be decoded).

0 Provide better source encoding by matching the source encoding to the particular

operating environment chosen. Error detection and error correction schemes have a

4

tradeoff between performance and overhead.

e Reduce the noise on the channel. As confirmed by Shannon’s channel capacity theorem

[42], reducing the noise present on a channel will increase the capacity of the channel.

Indeed, if it was not for noise, any channel (regardless of its bandwidth) could have

infinite capacity. Examples of noise reduction would be:

— Line conditioning for analog telephone lines.

— Interference reduction in wireless media, either through CDMA techniques, MAC

techniques, or by moving to a less crowded area of the spectrum.

e Move to a higher bandwidth media. For example, moving from twisted pair wire to

coaxial cable or from coaxial cable to fiber—optics.

It should be apparent that most of this work is actually performed at the link and physical

layers. Rather, it is typically a technological solution. That is to say that increases in

performance are typically gained by employing better technology. However, many of these

techniques reach a point of diminishing returns as one approaches the maximum theoretical

limits of a channel. At some point, it may not be worth the cost (either in terms of dollars

or computing power) to increase the bit rate of a particular system configuration.

1.2.2 Increasing Perceived Channel Capacity

Enhancement techniques that fall into this category attempt to increase the effective band-

width of the system. These techniques are designed to reduce the latency and perceived wait

time that users experience while using the system. These methods can again be broken into

two separate categories:

5

Application Specific These enhancements are designed to increase the performance of

one particular application. Users will perceive an increase in performance only as long

as they are using that specific application. Examples of such optimizations would be

custom compression techniques for certain data types (e.g., JPEG for images) or opti-

mization of specific data transfers (e.g., Protocol Assist from TechSmith Corporation

or XRemote for X—Window sessions). The effectiveness of these techniques may be

reduced when multiple applications share the use of a single channel.

General These enhancements increase the system performance independent of specific

applications. The mechanisms may take the form of better support for multiple access,

quality of service mechanisms for shared channels, or data compression of low-level

multiplexed data streams.

This dissertation focuses on increasing the perceived bandwidth of a wireless system

by enhancing data link level compression algorithms that operate in the noisy wireless

environment. By concentrating on compressors at the data link layer, all higher layer traffic

will benefit from the compression algorithms. Data link layer compressors are “general”

solutions and fall into the shaded “General Solutions” box of Figure 1.1. The compressors

are further described in the following section.

1.3 Data Compression

Since wide-area wireless links have such low bit—rates, the sending system has enough

time to execute algorithms that compress the data prior to transmission. If the receiver

decompresses the data before handoff to the receiving process, then that process will appear

to see a link that has higher capacity. While such compression mechanisms can exist

6

at several layers of a communications stack, this dissertation will focus on compression

algorithms that exist at the data link layer. As such, the input to the compressor will be

datagrams that are passed down from the network layer.

1.3.1 Header and Payload Compression

The datagram structure naturally leads to a class of compressors that focus on reducing

protocol header Size and a class of compressors that focus on reducing packet payload size.

Protocol header compression algorithms are important because they can significantly reduce

the overhead of transport protocols for interactive sessions. These compressors provide

noticeable benefits for systems that require a small maximum transmission unit (MTU).

Unfortunately, header compression algorithms are usually tied closely to the structure of a

protocol header and cannot be extended to the datagram payload. Instead, they provide a

small but fixed gain using few CPU cycles.

Algorithms that are applied to the payload of a datagram can significantly reduce the

datagram size. While these algorithms may not provide ratios as high as header compressors

when specifically applied over header data, they can be applied over the more general

payload data. Payload compression, especially when measured on bulk data transfers, can

give byte reductions that far exceed the effects of header compression. This is of utmost

importance for wireless and other low-bandwidth interfaces.

1.3.2 Compression Dictionaries

The datagram compression process requires the maintenance of some type of state ta-

ble or dictionary. This dictionary directs the encoding and decoding process. The earli-

est compression algorithms maintained a fixed dictionary that was created and initialized

7

identically in both the compressor and decompressor before operations began. This hard-

coded dictionary did not change during operation and removed the need for the compressor

to explicitly communicate its dictionary to the decompressor. Since the encoding was fixed,

all compressed packets were encoded in an identical fashion and did not depend on each

other. The drawback of the encoding was that the dictionary had to be designed to give

the best “overall” performance and could not adapt to variations in the input. Therefore,

the compression ratios provided by this type of compression were not very good.

More complex compression algorithms used an adaptive dictionary. In such systems, the

encoding dictionary was built according to the characteristics of the incoming data. Custom

built dictionaries allowed these algorithms to provide better ratios than the fixed dictionaries

described earlier. The problem with adaptive strategies was that the dictionary had to be

communicated to the peer. This could be done one of two ways. Explicitly, meaning the

dictionary was sent to the decompressor before the sequence began, or implicitly, meaning

the dictionary was recreated at the peer according to the data received.

Explicit dictionary communication has some unfortunate drawbacks for use in a packet

based environment. First, it requires a large transmission overhead. This is not acceptable

in a low—bandwidth environment. It also makes the assumption that the input is entirely

available and already compressed. This is not the case for packet based compressors. In

these systems, input can be considered as an infinite stream of datagrams passed down from

higher layers. To address these concerns, implicit transmission is used.

The implicit transmission approach requires that the compressor and decompressor start

out with identical (possibly empty) dictionaries. As the compressor encodes the input, it up-

dates its dictionary and sends enough information to the peer to allow it to decode the input

and create a dictionary entry. In this way, the compressor and decompressor dynamically

8

build up identical copies of the dictionary based on the characteristics of the transmitted

data. Proper implementation of this approach can allow the implicit transmission of a

dictionary with almost no transmission overhead.

1.3.3 Synchronization Requirements

Algorithms that build dictionaries through implicit transmission must maintain precise

synchronization between the endpoints. Since the decompressor’s dictionary is derived from

the input stream, that stream must precisely match the stream generated as the output of

the compressor. For file based compressors, this is typically not a problem since the path

from the compressor to disk to decompressor is typically error free. However, for wireless

channels, this is not the case. A single lost or corrupted packet can cause the receiver’s input

data stream to become unsynchronized with the compressor’s output stream. Continued

operation will cause the dictionaries to diverge and will produce incorrect decompressed

output.

In order to maintain dictionary coherence, techniques are employed to monitor the

datastream and detect loss of synchronization. Upon such detection, the algorithms enter

a resynchronization state. While in this state, all received packets are discarded until

synchronization is regained. Upon resynchronization, normal operation begins again. It is

then the responsibility of a higher layer (the TCP transport layer in this case) to detect

any discarded packets and retransmit them.

The resynchronization mechanism can cause severe reductions in system performance.

A naive resynchronization implementation can give acceptable performance when there are

not many errors. However, in the wireless environment, the higher probably of error can

cause a naive implementation to reduce the performance of the compressor to below that of

9

not using compression. More sophisticated resynchronization procedures are needed when

operating in such environments.

1.4 Problem Statement — Synchronization Loss in Wireless

Environments

It should be clear that wide—area wireless networks are bandwidth constrained and

noise limited. Maximizing the capacity of such links is critical for providing a robust

and usable environment. Current packet compression algorithms do not work well in this

wireless environment. Noise corrupted packets tend to invoke expensive resynchronization

procedures. Excessive packet loss and retransmissions then significantly reduce the usable

capacity of the link. By making these compression algorithms more tolerant to noise, one

could reduce the number of discarded and retransmitted packets. This would increase the

perceived capacity of a link by removing redundant transmissions.

In order to write noise tolerant algorithms effectively, one must understand many aspects

of the system operation. Specifically, one needs to:

e Understand the channel. Wide—area wireless links are often noisy and error prone.

To account for the errors, one must understand their characteristics.

0 Identify the types of application level traffic being generated, taking into account

the low—bandwidth nature of the underlying channel. This traffic must be carefully

examined since it forms the input to the compression algorithms.

e Identify what trafic is actually flowing over the link. On top of application level

traffic types, one must account for the effects of protocol overhead and the reductions

provided by data compression.

10

0 Identify the shortcomings of current compression algorithms in noisy environments.

How do current algorithms perform when moved to the hostile wireless environment?

e Enhance selected algorithms so that they demonstrate reasonable performance over

noisy links.

This dissertation addresses all these areas by examining a working system and analyzing its

behavior when wireless noise characteristics are added. It is asserted and shown that new

noise tolerant compression protocols can reduce the synchronization requirements between

the compressor and decompressor. Such protocols will work in a noise free environment

with little noticeable degradation while their performance in a noisy environment can far

exceed the original protocols.

1.5 Contributions of this Work

This work will make several contributions. A traffic survey and analysis yields infor-

mation on traffic mixes produced by users on restricted bandwidth systems. The results

presented are based on end—point collections rather than the standard network backbone

collections. This survey provides hard evidence about what applications people choose to

use when they are on bandwidth restricted systems. The second contribution is an analysis

of exactly how compression affects packets on a link. Typical compression statistics provide

an average compression ratio. This work goes beyond simple ratio statistics and investi-

gates the effectiveness of compression by looking at individual application level protocols

at the packet level of granularity. Such information provides important details that can be

used to enhance specific application level and link level compressors. Finally, this disser-

tation presents two noise tolerant protocols for use with compression algorithms Operating

11

in wireless environments. Using the top application level traffic types found in the traffic

survey, the new compression protocols are shown to outperform their original counterparts

when used in Gaussian and dependent error environments.

1.6 Document Organization

This dissertation is presented in a bottom up fashion. Following the review of previous

work in Chapter 2, Chapter 3 addresses the environment used for all experiments. It Specif-

ically combines the results in several fields of communication to present an error model that

generates burst noise characteristics similar to those found in wide—area wireless networks.

Chapter 4 reassesses the assumptions made in previous traffic analysis experiments and

then describes a traffic survey conducted under conditions similar to a wide—area wireless

network. Unlike previous surveys, this work takes into account the low—bandwidth nature

of the channel and then analyzes application level traffic on a per user basis. The per user

results provide the data for the analysis in Chapter 5. Chapter 5 looks at the effectiveness

of current compression protocols over noise—free channels and provides a base of comparison

for later enhancements. Using the noise—free channel as a base, Chapters 6 and 7 Show how

current protocols fail to operate successfully in a noisy environment. Each of these chapters

then describes a new noise tolerant method for communicating compressed packets over

noisy channels. Chapter 8 summarizes the entire document and describes areas for future

work.

Chapter 2

Previous Work

Chapter 1 motivates investigations in several diverse fields including error modeling,

network traffic analysis, data compression, and network protocols. This chapter outlines

relevant works in those areas. Because the areas are somewhat dissimilar, a section will

be devoted to each with the understanding that later chapters will draw from these previ-

ous works. Since noise characterization is a basic requirement for developing and testing

noise tolerant protocols, noise modeling techniques will be addressed first. Following that

is a review of network traffic collection endeavors. The review includes a rationale for why

previous works are inadequate for this investigation and identifies why the traffic analysis

presented in Chapter 4 is unique. Finally, data compression methodologies and their com-

munications protocols are reviewed. This last section includes reviews of advanced ARQ

protocols that are designed to enhance the performance of TCP connections. While the

ARQ works do not seem immediately relevant, these protocols will become important for

understanding the results presented in Chapter 7.

12

13

2.1 Wireless Network Error Characteristics

Shannon’s pioneering work on information theory ([42]) describes channel capacities in

the presence of noise. It shows noise as being the fundamental limitation in any communi-

cations channel. Because of its importance, any investigation of channel performance must

start with a solid characterization of noise. This section will discuss models for describing

burst noise channels and provides a justification for the noise model chosen.

2.1.1 Channels with Memory

Noise models are tied closely with the medium over which they occur. Wide—area

wireless channels can be characterized as having numerous impairments including multi—

path fading, power constraints, spectrum constraints, environmental characteristics (e.g.,

rain or snow), terrain impairments (e.g., hills and foliage), and co—channel transmission

interference. It is universally acknowledged that errors encountered in such transmission

systems occur in bursts [28]. With burst errors, there is a statistical dependence that

is not captured using a Gaussian error distribution. Channels exhibiting these statistical

dependencies are said to have memory.

Kanal et a1. [26], mathematically describe the motivation to investigate channels having

dependent error characteristics (memory). Briefly, they Show that a channel model known

as the binary discrete memoryless channel (DMC) gives maximum entropy. Assigning this

maximum entropy value the name Ho, they further observe that channels having memory (a

dependence between Observed errors) have an upper bound entropy that is less than HO. Let

p be the difference in entropy for a channel having memory and the DMC having the same

bit error rate. The quantity pHo describes the unused capacity of a channel having memory

versus the DMC. Unlocking this extra capacity though an understanding of dependent error

l4

characteristics is the motivating factor for channel model investigations.

Two approaches have been pursued for modeling dependent channels. The first approach

attempts to physically model the propagation characteristics of the channel. These models

focus on very specific environments and attempt to estimate received signal strength. They

can give highly accurate error predictions. The second approach attempts to analytically

model the channel. Analytic models are usually less computationally expensive but require

the use of simplifying assumptions. Both approaches will be reviewed.

2.1.2 Propagation Models

Propagation models are mathematical representations that attempt to define the statis-

tical characteristics of received signal strength under adverse (signal attenuating) conditions.

Estimating the received strength allows one to calculate the signal—to—noise ratio and to

determine the probability of receiving bit errors. The field of propagation modeling is well

established and contains a significant amount of theory. This section describes several useful

models that were evaluated for this investigation. It is not intended to be a comprehensive

review of the field of propagation modeling.

Received Signal Strength

The pre—detection average signal power arriving at the output of the antenna of a receiver

can be modeled by:

_ EIRPG’,
S _ L.Lo (2.1)

S is the average signal power. EIRP is the efl'ective radiated power in watts. G, is the

gain of the receiving antenna, L, is the space loss and Lo are other losses that occur in the

15

system (such as the small scale fading described later). Very simple models set:

L, = ($)2 (2.2)

d is the distance between the transmitter and receiver and A is the wavelength of the signal.

The loss is then proportional to the square of the distance. These models are known as

free—space loss models.

Log—Distance Path Loss Models

The simplest extension to the previous model is based on the observation that the path

loss at a particular distance d from a known location is log-normally distributed about

the mean distance—dependent value. That is to say that if one traveled in a circle around

a source (e.g., always maintained a fixed distance from that source), the signal strength

would vary log—normally about the mean. If one represents signal strength using equation

2.1, along with the expanded representation for L, found in equation 2.2, then the average

received strength can be represented as:

_ EIRPG,A2

S — (41r)2d2Lo
+ X. (2.3)

X,Jr is a zero—mean log—normally distributed random variable with standard deviation 0.

A second extension to the model is to replace the power of two in equation 2.2 by n.

The number two represents free—space loss while higher values represent greater loss in

more hostile environments. Values less than two have been used for in-building line of sight

systems while values as high as six are reported for shadowed urban cellular radio systems

[39]. Further details for such models may be found in [2].

16

Other Path Loss Models

The Log—Distance Path Loss model varies an exponent to change the space loss param-

eter L... Several other models have been used to derive L,. The Okumura Model [34] is

widely used for urban propagation studies. It is based on a set of frequency vs. distance

curves that give a free space median attenuation correction in an urban environment. The

path loss is calculated by determining the free space loss at the point of interest. Then

a set of attenuation correction factors are derived from the curves and added to the free

space loss. These correction factors attempt to account for variable terrain parameters and

antenna heights.

The Okumura model is considered highly accurate but has complexity drawbacks. Hats

[19] developed a model that attempts to create an empirical version of the Okumura curves.

While it does not have all the path Specific corrections present in the Okumura model, its

predictions compare favorably with that model. A detailed description of both models are

presented in [39].

2.1.3 Fading Models

The previous models estimate path loss caused by signal attenuation due to the separa-

tion distance between the transmitter and receiver. Such loss can be termed as “large—scale”

fading since the distance d is usually large. To adequately model error characteristics, these

large scale fading models must be combined with “small—scale” fading models that attempt

to model the variations in signal strength that occur when a receiver moves distances of

only a few feet around a point.

Small—scale fading can cause large variances in received signal strength and is usually

caused by multi-path propagation. It is independent of the separation distance d and highly

17

dependent on factors such as mobile unit speed, signal bandwidth, time—delay spread of the

received signal, and rate of change of the channel. Small—scale fading can be classified as

either flat fading or frequency selective fading. Flat fading means that the system exhibits

a constant gain and linear phase response over the bandwidth of the transmitted signal. If

this is not the case, then the system exhibits frequency selective fading. Flat fading models

are appropriate for this investigation.

There are two common flat fading models in wide spread use. They are based on

the Rayleigh and Rician probability density functions [39]. The choice of which one to

use depends on whether there is a dominant signal component. Rician is typically used

when there is line—of—site propagation while Rayleigh is used when a transmitter or receiver

is located in a cluttered environment. The Rayleigh environment is well suited for the

environment under consideration. It has the following probability distribution function:

.. .; (2L3!)
P(7‘)=T 0 S 1‘ S 00 (2.4)

02 is the variance of the received Signal r. Figure 2.1 shows this distribution for several

values of a. Values drawn from this distribution modify the large—scale model by affecting

the value of L0 in Equation 2.1.

2.1.4 Analytical Models

This subsection addresses analytical models. The pioneering work on this type of de-

pendent channel modeling was performed by Gilbert [17]. He modeled errors using a finite

state Markov chain that consists of a good state, in which no errors occur, and a bad state

in which errors may or may not occur according to some probability. In order to simulate

18

P
r
o
b
a
b
i
l
i
t
y

p
o

o

N
h
i

fi

0 H

 0
Figure 2.1: The Rayleigh PDF

the burstiness of errors, the state transition values are assigned such that when you enter

either of the states, you are likely to stay there for awhile. This channel model is known as

the Gilbert Channel and can be represented with the finite state diagram shown in figure

2.2.

Q1

«=2 o :eC «2
‘11

Figure 2.2: The Gilbert Model

The Gilbert Channel has some problems. Analytically, it is difficult to determine the

entropy of a data stream because the model does not have the desired property of being

unifilar. This is the property of being able to derive the state sequence of the Markov model

by observing the output of the model. Since the bad (error) state may or may not generate

an error, one is unable to determine if a state transition to the bad state occurred and then

did not generate any errors. While the non-unifilar aspect of the process is not important

when the model is just used to generate an error sequence, there is a more serious problem.

19

There are statistical dependencies between the lengths of good sequences and error bits.

The Gilbert Channel is unable to model these dependencies because it is a renewal process.

In other words, when a state transition occurs out of the bad state, the system starts over

fresh in the good state. There can be no dependence between these transitions.

While the Gilbert Channel has some problems, it sparked a flurry of activity in the mod-

eling of channels with memory. Elliot [12] later made a simple modification to the Gilbert

Channel model that allowed errors to also occur in the good state (with some probability

1:). This channel model, known as the Gilbert—Elliott channel was widely used. Kanal et

al. [26] provide an excellent review of many of the other modifications. They describe work

on infinite—state Markov models, higher order Markov models, and gap Markov models.

A particularly important model to this dissertation was proposed by Fritchman [16]. The

Fritchman model was developed to try to bridge some of the previous models. Fritchman

observed both finite and infinite state models. He noted that the finite—state Markov models

were inflexible while the infinite—state models were too diflicult to handle in a tractable

manner. Fritchman proposed a finite state Markov chain that was partitioned into two

groups. States in the Good partition were error free states while states in the Bad partition

were error generating states. This model is attractive but again has the drawback of being a

non—unifilar model. By adding the constraint that the Bad partition only contain one state,

the model becomes unifilar. This constrained model has the strength that its parameters

can be easily generated by computing some simple statistics from observed channel error

data.

20

2.1.5 Model Selection

The objective for this investigation is not to derive an extremely accurate channel error

model. Rather it is to provide a reasonable error model that can be used to investigate the

performance of new noise tolerant data compression protocols. Therefore, an approximate

characterization of the channel is sufficient.

There were two noise models that were used for this investigation. The initial system

used the Hata loss model (as presented on page 16) with Rayleigh fading channels. The

strength of this approach is that the output of the model is defined in terms of the energy—

per—bit/noise—power—spectral—density (7%). This value is the standard metric used to define

the expected bit error rate performance of a modulation scheme. Thus, the model could

be used to derive error characteristics for a variety of modulation schemes. However, there

were several drawbacks with the model. The first is that the model was computationally

expensive. Changes in selected parameters meant costly recomputation time. Second,

there were many parameters involved. Small changes in these parameters could lead to

large changes in the resulting error characterization. While it would be possible to perform

sensitivity analyses on these parameters, it was deemed that other models could provide

adequate error streams with fewer parameters, less calculation, and simpler verification and

validation of correctness. For these reasons, the propagation model was dropped in favor

of an analytic model. Specifically, a Simplified Fritchman Partitioned Markov Model. This

model is well understood, gives accurate results, and is more computationally feasible than

a propagation model.

The choice of the Fritchman model was influenced by an investigation performed by

Swarts and Ferreira [44]. Their work specifically investigates the Markov characterization

of fading mobile channels. The authors, using dedicated hardware, generated actual error

21

streams for a slow moving mobile unit in an urban environment and a fast moving mobile

unit in a highway environment. Analysis of the resultant data allowed the authors to derive

parameters for both four and five state Fritchman models. These models were found to

generate favorable approximations to the observed errors. For each of the slow and fast

moving conditions, the authors also investigated four different modulation schemes. This

lead to parameters for eight Fritchman modelsl. This dissertation uses a subset of these

reported parameters to derive a set of error streams that are then applied to our channel.

A full description of this PYitchman model is provided in Chapter 3.

2.2 Traffic Models

Trafic models are important to this investigation since there is a direct correspondence

between the compressibility of the source and the number and Size of compressed packets

generated by the compressor. This section identifies why existing traffic works are not

entirely appropriate to the environment being investigated. Chapter 4 provides a new

survey and naturally contrasts against previous works.

There are many examples of network traffic pattern analysis projects that concentrate on

analyzing large dumps collected between high—speed stub or gateway networks [5, 18, 25, 35].

However, these papers are concerned with traffic over the “wide—area” more so than over

an endpoint. While they give insight into the behavior of many protocols throughout the

Internet, the trafic collections are not appropriate for low—bandwidth network study for

the following reasons:

Single Endpoint — Traffic on a network backbone is a collection of many users’ data. It

is diflicult to determine the behavior of a specific endpoint since there is no guarantee

1Because of the similarity of results, the authors only report on the four state models.

22

that all host traffic will traverse the backbone.

Reduced Server Ti‘aflic - 'Il'aces on a LAN will contain packets generated by applica-

tions that probably will not run on a low-bandwidth endpoint (NFS, routed, standard

X windows protocol, etc.). While these applications have the ability to run over such

links, they are either too bandwidth intensive (NFS) or not necessary (routed).

Maximum 'D'ansmission Unit (MTU) — Packet size distributions may be different

since some protocols can select a variable MTU before operation. This can affect

the amount of protocol overhead presented to a compressor.

User Mind Set — Users will behave differently when using a low—bandwidth network. For

instance, the link speed significantly affects the decision of whether or not to download

a one megabyte file or to view graphically intensive WWW pages.

Filtering — Since such large volumes Of data can be collected on a high—speed backbone,

many collection processes keep only a filtered subset of data. Many packets are never

saved for analysis. In a high speed network, these filtered packets probably do not

afl'ect the link to a large degree. However, the high transmission latency produced

by any packet being transmitted on a low—bandwidth link can significantly affect all

other packets.

To identify trafic patterns on low—bandwidth endpoints, this work, as further described

in Chapter 4, provides a traffic analysis in low—bandwidth conditions similar to those en-

countered in wide—area wireless networks. The investigation identifies gross overall traffic

trends and identifies the top application level protocols in terms of packet and byte counts

for users of low—bandwidth networks. It then compares these results to those collected from

high speed networks.

23

The proposed data collection work is unique because it deals with the data collection

of an individual user’s session and concentrates on low—bandwidth networks. Since the

collection is taken on a low—bandwidth link, current systems have more than enough CPU

and disk capacity to collect and store all packets for later analysis (usually with no visible

overhead to the user). This is in contrast to other systems that usually filter out many

packets and only collect subsets of the available data. A full collection allows us to accu-

rately determine the mix of traffic appearing on the link, and thus, as input to the packet

compressors.

2.3 Compression Based Enhancements

The previous section outlined the mechanisms used to select traffic types that will be-

come the input to packet level compressors. This section addresses the algorithms that

will operate on that traflic to form compressed packets streams. A review is presented of

various compression protocols. Since this investigation presents new header and payload

compression protocols, the focus will center on those types of compressors.

Before delving into the protocols, one should understand that packet based compressors

are typically created by modifying a general data compression algorithm. These modifi-

cations usually focus on packetization and synchronization issues. The general algorithms

themselves have been thoroughly investigated by such works as [20, 29, 48]. These texts

typically have a pedagogical flavor and deal with generalizations and theoretical limits of

various algorithms. While such texts address the problem of variability in compression

ratios, their quantifications are not at the granularity of application level protocols. They

instead try to give overall averages for data compression. This investigation specifically

targets packet based compressors. The following sections review working implementations.

24

2.3.1 Specific Application Stream Compression

Datagram compression can significantly improve the performance of low-bandwidth con-

nections. In such systems, the sender applies a. compression algorithm to selected portions of

a datagram and the receiver reverses the process to obtain a duplicate of the original data-

gram. Algorithms must be selective about which portions of a datagram are changed since

some protocol information must remain intact. They typically trade off CPU processing

and memory for compression ratio.

Several specific systems have been developed that capitalize on compression or other en-

hancements at the protocol level. A well known example is the XRemote protocol, later to

evolve into the Low—Bandwidth X (LBX) protocol, developed by Network Computing De-

vices (NCD). This protocol is specifically designed to enhance transport of the X—Windows

data stream. It employs several mechanisms of compression including an application of

LZW compression to the entire data stream. Another example is TechSmith Corporation’s

ProtocolAssist. This technology optimizes client server interactions over low—bandwidth

dial up links. Both these examples enhance communications between a client and a specific

server through combinations of intelligent caching, differencing, prefetching, and in some

cases, compression. While such enhancements may employ packet level data compression,

their goals are to optimize a specific protocol. In contrast, the goals presented in this work

are aimed at enhancing general compression algorithms that will support all traffic types.

2.3.2 Header Compression

Datagram compression can be applied to the protocol header information found in pack-

ets. Such compression can significantly reduce the communications overhead of certain pro-

tocols. These routines require few CPU cycles and typically give you a fixed gain. Several

25

types of non-proprietary header compression have been discussed in the Internet commu-

nity. Some of the earliest are the Thinnet protocols. Thinnet is proposed in Request for

Comments (RFC) 914 [13] and consists of three schemes employing varying degrees of com-

plexity. Thinnet is described for TCP, UDP, and TP4. However, it is a general scheme

that can be applied to any new protocol that arises. Mathur and Lewis [31] present another

algorithm for compression of Novell IPX headers. Most important for this discussion is VJ

compression [23]. It is similar in nature to Thinnet II but is tailored to TCP. It provides

significantly better compression than Thinnet II while relaxing the constraints imposed on

the data link layer.

Of particular interest to this area is work performed by Degermark et al.[9, 10] on

soft state header compression strategies for IP version six (IPv6). Their work has similar

goals to the work presented in Chapter 6. They start out with similar assumptions about

wireless networks. Namely, that these networks will be bandwidth limited, that packet

header bandwidth is large when packets are small, that you can trade off processing and

storage for saved bandwidth, and that links will have many consecutive packets from the

same connection. However, Degermark’s work is based on the notion of soft state and applies

to non—TCP related IPv6 traffic versus the TCP based IPv4 traffic of our algorithm.

A key difference in the Degermark work relates to the reliability of the transport. Since

their work is targeted towards UDP based traffic, there will be no retransmissions for lost

packets. This means that VJ’s TCP retransmission detection approach to state monitoring

will not work. To maintain synchronization, the authors employ a soft state algorithm

that uses periodic state updates. By associating generation counts within the state, lost

synchronization can be detected and recovered. Degermark et al., make the assumption

that the unmodified VJ algorithm will be used for TCP streams. Since the Degermark and

26

VJ algorithms target different protocols, they can operate concurrently.

A novel feature of the work is their use of a slow start algorithm. This algorithm

attempts to balance the need for sending many header updates to allow for quick synchro-

nization recovery versus sending few header updates to allow for high channel utilization

and compression. With the algorithm, their compressor starts out sending updates over

small intervals. The intervals exponentially increase until a nominal rate is achieved. A

synchronization loss causes the interval to reset.

The soft state algorithm is less prone to synchronization loss when packets are dropped.

It has some similarities to the state maintenance used in the LZW compression work de—

scribed in Chapter 7. However, their work assumes simplex links while the LZW work makes

use of a duplex link that has a reliable signalling channel. The Degermark algorithm does

not suffer from the drawbacks of the original VJ algorithm and it addresses synchronization

loss over non—reliable streams.

2.3.3 Payload Compression

Algorithms that are applied to the payload of a datagram can significantly reduce the

datagram size. There are many examples of payload compressors in the Internet com-

munity. Several Request for Comments (RFC) documents [7, 15, 38, 49] propose control

mechanisms for various payload compressing algorithms. Indeed, the LZW algorithm em-

ployed in Chapter 7 has been in use for many years. However, the study of datagram

compression performance in the presence of noise seems to be under-represented in the lit-

erature. The author is unaware of any published studies of data—link payload compression

in the presence of noise.

27

2.4 ARQ Mechanisms

As mentioned at the beginning of this chapter, an overview of ARQ mechanism is

important for understanding the results presented in Chapter 7. A review of previous ARQ

works is now presented with the understanding that such works could be used in conjunction

with the new error tolerant protocols developed in this dissertation.

Packet based compression techniques typically require some mechanism for dealing with

loss of synchronization. As suggested in the Compression Control Protocol RFC [37], com-

pression algorithms should provide their own mechanism for detecting and dealing with

packet loss. Most current algorithms work in conjunction with a reliable transmission layer.

The reliability can either be provided below the compressor at the data link level, or above,

at the transport layer. Since the performance of the retransmission system critically affects

the overall performance, it is natural to review that work.

Considerable research has gone towards optimizing Automatic Repeat Request (ARQ)

protocols for noisy channels. Any work with such a system must define both a model for

the noise and a model for ARQ (Stop—and—wait, Go—Back—N, Selective—Repeat, etc). Noise

models usually characterize errors as either dependent or independent and apply either to

data bits or packets. Dependent channel errors are considered to be more appropriate for

wireless links.

One approach for enhancing ARQ protocols is to modify the data link layer to support

reliable datagram delivery. Through combinations of error detection, forward error correc-

tion, and retransmission it is possible to hide many link layer errors from the higher level

transport protocols. Farber et al. [13] propose a reliable SLIP link. Choski [8] gives a com-

prehensive overview of much of the work on data link layer (DLL) retransmission schemes.

A particularly interesting work is that by DeSimone, et al. [11]. This investigation not

28

only shows the benefits of DLL retransmissions, but quantifies the adverse effects gener-

ated by competing transport and data link layer retransmission schemes. In many cases,

especially as error rates rise, the competition renders the benefits of DLL retransmission

useless. Finally, it may be the case that a reliable link is simply not available. Such is the

case with standard PPP. Non-reliable data link layers will be assumed within the context

of this investigation.

A second approach to enhancing ARQ operation is proposed by Caceres and Iftode [6].

This work proposes an end-to—end quick retransmission scheme for TCP. The rationale

behind such a scheme relies on the fact that TCP interprets packet loss as being caused

by network congestion. Upon such loss, congestion avoidance mechanisms are initiated

[24]. These mechanisms lead to unacceptably high delays for retransmissions. The authors

show that differentiating between network congestion and packet loss due to link errors can

improve response of TCP connections. Their new retransmission scheme behaves better

under error conditions that are not caused by congestion.

Finally, several investigators have proposed variations of what is known as split TCP.

Such systems take a TCP connection between a fixed host and a mobile host and split it into

two separate connections, one between the fixed host and the base station and one between

the base station and the mobile host. The mobile support base station transfers datagrams

betWeen the two TCP connections. Bakre and Badrinath [4] suggest that each split TCP

link consists of a standard TCP connection. Yavatkar and Bhagawat [50] propose a special

wireless link between the mobile host and base station. A similar system to the split TCP

concept is proposed by Amir et al. [1]. They suggest the addition of a retransmission snoop

layer at the mobile host base station. Such a layer intercepts and handles retransmission

requests. The snoop layer moves part of the retransmission engine closer to the source of

29

most errors. In all cases, the idea is to shield the sender from the error characteristics of

the wireless link.

The work presented in this investigation is an enhancement independent from ARQ

strategies, but reliant upon such strategies. It should work in conjunction with all ARQ

strategies. Loss of synchronization in our algorithms will appear as packet loss to an ARQ

strategy, so the more effectively an ARQ strategy deals with packet loss in a noisy envi-

ronment, the more effectively our scheme will work. This is assumed to be especially true

of ARQ strategies that work well for dependent packet error environments. Since loss of

synchronization means that sets of contiguous packets will be dropped, strategies that han-

dle burst packet loss will excel. It is important to note that this investigation relies on the

standard TCP retransmission scheme. There is little reason to believe that error tolerant

compression protocols would adversely affect any of these schemes.

Chapter 3

The Collection Environment

This chapter discusses the testbed used to gather all the statistics presented in later

chapters. A working implementation was chosen over both analytically based and simula-

tion based approaches due to the complexity of the system. While analytical solutions can

be derived for some of the projected system parameters (e.g., average bit error rates for a

given noise model), the analytical model will not allow for a detailed understanding of the

interactions between different communications layers. An analytical model with the needed

number of parameters would become intractable. Making the required simplifying assump-

tions would hide many of the interesting aspects that arise in real systems. Simulations

have their own set of drawbacks. Simulations are only as good as their design assumptions.

Verification and validation of a simulation model is a demanding process. If proposed simu-

lated solutions cannot be implemented in a reasonable fashion then they do not hold much

value. The work involved in a reasonable software based simulation approach is similar to

that needed to implement a working system since, in both cases, the algorithms need to be

coded. Having an implementation guarantees that practicality will be maintained. Further,

a working system reduces the need to justify many design decisions since one is already be

working with real data.

30

31

3.1 The Communications Testbed

A testbed was developed that has characteristics similar to wireless networks (low—

bandwidth and possibly noisy links) while avoiding the drawbacks (high cost, limited access,

and limited control over outside interference). This testbed is based on low-bandwidth

connections that use the Point—to—Point (PPP) protocol [43]. It consists of a two station

network where each station is directly connected through a serial link as well as connected

through an Ethernet adaptor. The serial link is used to emulate a. wireless media while the

Ethernet link allows for monitoring the serial communications without significantly affecting

the results. Both systems are running a modified Mach kernel under the NeXTSTEP

operating system. Both systems contain a non-standard implementation of the BSD Packet

Filter (BPF) [32] and a modified version of TCPDUMP [46].

3.1.1 The Berkeley Packet Filter

The Berkeley Packet Filter (BPF) is a kernel level module that provides a protocol

independent interface to the data link layer of a system. It works by allowing higher level

applications to define a filter program that runs on a Filter Machine that exists inside BPF.

This Filter Machine provides an instruction set, accumulator, registers, scratch memory,

and program counter. By fashioning an appropriate filter program, applications can select

datagrams that they find interesting. The BPF will then hand to applications copies of

those datagrams passing the filter.

3.1.2 The TCPDUMP Program

TCPDUMP is an application level program that works in conjunction with BPF. TCP-

DUMP provides a high level interface to the BPF Filter Machine and has knowledge of

32

standard frame formats like PPP, SLIP, and Ethernet. Using TCPDUMP, one is able to

construct boolean operations that are converted to Filter Machine programs and installed

inside BPF. TCPDUMP can then analyze the headers of any packets that pass the filter

and, optionally, store those packets for later recall.

3.1.3 BPF and TCPDUMP Modifications

The BPF and TCPDUMP packages are used to gather most packet based statistics for

this investigation. However, because of the nature of data compression and the statistics

needed, both BPF and TCPDUMP were modified to work in a non—standard manner. These

modifications were not to the Filter Machine, but rather to the packet interface between

BPF and the application level programs.

The BPF typically passes framed packets up to the requesting application. It is up to

the requesting application to parse the framed packets and understand their formats. Un-

fortunately, part of this investigation required that packet information be gathered during

multiple stages of framing and compression. Such information allows one to monitor the

efficiency of the compressor. The drawback is that all information needed to parse a com-

pressed data frame is not available in the frame. Instead, some information is maintained

with the state of the compressor and decompressor algorithms.

To account for this, the interface between BPF and TCPDUMP was modified to allow

more information to pass between the kernel and the requesting application. These addi-

tions allow the application to receive enough information so that it can gather appropriate

statistics on the compression process. The downside is that the TCPDUMP application

reads and writes files that are not compatible with standard TCPDUMP.

33

3.2 The PPP Implementation

The PPP driver is an RFC compliant client/server implementation. It consists of two

pieces that, together, provide PPP connectivity. PPPD is a user level daemon that im-

plements the PPP negotiation engine. This daemon works in conjunction with a loadable

kernel server that provides PPP framing and data compression at the data link layer of the

OS kernel. Compression is negotiated and controlled via the user level daemon through the

Compression Control Protocol (CCP). This protocol allows optional negotiation of software

compression mechanisms. The actual compression/decompression engines are implemented

in the kernel.

The compression algorithms supported by the testbed include the popular Van Jacobson

(VJ) TCP Header compression mechanism [23] and a payload compressor that is based on

the LZW scheme used in the BSD compress program. The VJ algorithm will be discussed in

detail in chapter 6. The LZW scheme was modified to Operate in a packet based environment

and will be further discussed in chapter 7.

Together, PPP, BPF, and TCPDUMP allow tracking of compression and timing infor-

mation on individual packets as they flow through selected portions of the protocol stack on

each machine. During any data collection session, the system stores a time—stamped copy

of the first 68 bytes of each packet sent and received. The packet header allows determina-

tion of the higher level protocols encapsulated in the frame. In addition, the system stores

timing and compression ratio information about each packet as it passes through various

stages of the compression routines. The information collected describes all compression that

is applied including: PPP specific address/control/and protocol compression, Van Jacobson

TCP header compression, and LZW packet payload compression.

Having two directly connected and independent systems allows for full control over both

34

ends of the communications network. Having such control frees us to make modifications on

the server as well as the client endpoints of a point—to—point link. The PPP environment

itself was chosen for several reasons. The optional software based compression allows for

selective modification and application of compression under various circumstances. Also,

since it is not a wireless environment, we have tight control over outside interference. Ex-

traneous noise and co—channel interference are not present over the standard link. However,

for this investigation, a noise stream is required. The following subsection describes how

noise is modeled on this system.

3.3 The Noise Models

Chapter 2 reviewed several methods that can be used to generate bitstreams that Show

dependent error characteristics similar to those found on wireless links. This section will

detail the method selected to generate and insert noise over the PPP testbed link. A special

type of Markov model, known as a Fritchman Partitioned Markov Chain, was chosen because

it accurately represent noise found on wide—area links using existing wireless technology.

It is reiterated that any reasonable error model will suffice. An exact noise environment is

not necessary since no error correction is done at the data link level. A single bit will force

a packet CRC checksum to fail just as effectively as a stream of dependent errors. Before

describing the Markov model, a review of error characterization statistic is presented. This

is necessary Since these statistics are used to describe the output of the resultant error

model.

35

3.4 Dependent Error Characteristics

Dependent errors (errors generated on channels having memory) are typically used to

model wireless links. These errors can be described by a set of standard error statistics.

Figure 3.1 describes the potential regions that may occur on a dependent error channel.

The gap is defined as the region that exists between any two consecutive errors. It contains

...1 0290 10101100011 0115104451098 1111

_v__1 L J L
V- V J W4

Gap Burst Burst Interval Cluster

Figure 3.1: Error Statistics

no error bits. A burst is a region where the the local bit error rate exceeds a given threshold

value. A burst region must start and end with an error bit. A subsequent burst cannot start

with the ending error from the previous burst. The burst interval is the region between two

consecutive bursts. Finally, a cluster is a set of contiguous error bits and also obviously

qualifies as being a burst. By appropriate analysis of these regions, one may derive the

Error—Free Run probability denoted by P (Omll) (see Kanal et al. [26] for details). This is

the probability that an error will be followed by at least m error—free bits.

3.5 Fritchman Partitioned Markov Chains

Figure 3.2 shows the general structure of a FTitchman Partitioned Markov model ([16])

with one error state. In such models, all states in partition A are reduced error states,

meaning their transitions have a low probability of producing errors. The states in partition

B (one state in this simplified model) are the high probability error states. 'Il'ansitions while

in partition B will most likely produce error bits. In general, partitioning is done between

36

the low probability error and high probability error states. In a Fritchman model, no

Partition A Partition B

Figure 3.2: A One State Hitchman Partitioned Markov Model

transitions are allowed between states in partition A. 'Transitions to partition B signal that

errors will probably occur. ’Il‘ansitions out of state B signal that reduced error states will

begin. The probability of remaining in state B afi'ects the cluster distributions while the

probabilities of entering state B afiect all other error statistics. This investigation used a

simplified Ritchman model which limits the number of states in partition B to one and

simplifies the probability of generating an error on a transition. In the simplified model,

transitions in states of partition A never generate an error and transitions in the single state

in partition B always generate errors.

As described by Tsai [45], exponential curve fitting techniques may be applied to the

Error-Free Run distribution of an existing error stream in order to derive appropriate values

for the parameters shown in the figure. Using such parameters allows the model to generate

an error stream that has a similar Error—Free Run distribution. Such curve fitting was

performed on an actual wireless error stream and the results for a Simplified Fritchman

Partitioned Markov Chain were derived.

37

Table 3.1: Fritchman Transition Values

Parameter DPSK Freeway

p1 1 0.371954

p22 0.900030

p33 0.999464

p44 0.385774

1941 0.416705

p42 0. 12401 1

1243 0.073510

p14 0.532679

p24 0.099970

p34 0.000536

3.6 The Hitchman Parameters

In 1994, Swarts and Ferreira [44] applied Tsai’s error modeling technique to the results

of experiments that were undertaken in both urban and freeway environments in South

Africa. Using existing hardware and custom error recording equipment, they evaluated the

performance of several existing wireless digital communications systems employing FSK,

DPSK, QPSK, and 8-ary PSK modulations. By comparing the received data to the trans-

mitted data, the authors were able to determine the error performance of each modulation

scheme in a specific but real environment. Horn the recorded statistics, they were able

to apply the curve fitting techniques and generate a Fritchman Partitioned Markov Chain.

The resulting four state model is shown to accurately represent the observed error charac-

teristics. The parameters for their models are given in [44] and are subsequently used to

generate the error patterns in the PPP testbed. Table 3.1 lists the transition values.

38

3.7 Error Generation

The parameters shown in Table 3.1 model the output of a differential phase shift key

(DPSK) modulator working in a city environment. These values were placed into a Math-

ematics model for a Simplified Fritchman Partitioned Markov Chain and an appropriate

error stream was generated. This error stream consisted of a series of bits with a one

representing an error. The stream was compressed and stored as a static array suitable

for inclusion into a C program. This array was linked into the testbed’s Mach kernel and

referenced by the PPP kernel level routines. While in error mode, the PPP routines would

determine the length of time it took to transmit packets of data. They would then check

an equivalent number of bits in the bitstream to see if an error occurred. If so, PPP would

purposely corrupt the CRC checksum so that the appropriate packets would fail during

decoding.

A random error stream was generated along with the dependent errors created from the

Markov model. This random stream has the same probability of bit error as the dependent

stream and allows for investigation of short bursts of traflic without regard for the long

gaps and burst intervals that may arise with dependent noise. The following figures Show

the error statistics for the two error streams. Figures 3.3 and 3.4 Show the Gap Distribution

and Error-Free Run Distribution for both the random and dependent channels. Figures 3.5

and 3.6 Show the Burst Distribution and Burst-Interval Distribution. These last two are

only for the dependent errors as the random stream does not display burst characteristics.

They use a value of 0.60 as the threshold local ratio value for determining a burst.

39

1 i -""'t' ain't"

——”E- /P‘

b / /

>1 0 . 8 .

3 ///

‘” / Burst

5‘ 0 6o

H

.. r

.4 I

g 0.4 ? l

g ’ / Uniform
u l

o 2 /l/
t

: “Ad-m/

0 b «I -——"'r

l 10. 100. 1000. 10000.

Length

Figure 3.3: The Gap Distribution

3.8 Summary

This chapter described the data collection testbed that was used to collect the results

presented throughout this work. The testbed is based on the industry standard Point—to—

Point protocol (PPP). It models low—bandwidth systems by operating over restricted baud

serial links. Using the standard PPP negotiation mechanisms, the links can be configured

to support (or deny) various packet compressing algorithms. Specifically supported are the _

Van Jacobson (VJ) TCP header compression algorithm and a LZW based packet payload

compressor.

The system also uses the Berkeley Packet Filter and TCPDUMP utilities. This testbed

is capable of collecting detailed low—bandwidth trafic statistics in real time and with little

noticeable overhead. Along with the ability to collect standard trafic dumps, the collection

40

 1: . - "N... 7 i

i \\ llwiforr'n ‘

0 C
h

F
r
e
q
u
e
n
c
y

 /
/

/

1 10. 100. 1000. 10000.

Length

Figure 3.4: The Error—Free Run Distribution

facility is aware of the existence of the data compressors. Through BPF modifications, the

testbed is able to track the compression statistics of packets as they flow through the system.

Such capabilities will be necessary to understand where and how compression affects specific

protocols.

Finally, the testbed has the ability to inject errors into the datastream. Such streams

will be used to develop noise tolerant protocols that operate in wireless environments.

The selected noise model was presented along with a justification of its suitability for this

investigation.

O
0

C
u
m
.

R
e
l
.

F
r
e
q
u
e
n
c
y

0

O.

41

Figure 3.5: The Burst Distribution

1 l.

I Burst

a //

. /

I //

6

l

4 [IF

i

2

5 10 20.

Length

O (
D

C
u
m
.

R
e
l
.

F
r
e
q
u
e
n
c
y

0 N

O
O b

42

v
v

v
v

a/fi

redflfl/

// Burst

/

/

/

10. 100. 1000.

Length

Figure 3.6: The Burst Interval Distribution

Chapter 4

Traffic Analysis

4.1 Introduction

A thorough understanding of low—bandwidth traffic characteristics is necessary in order

to understand the input that is fed to packet level data compressors. Previous wide—area

traflic studies gathered data from high speed LAN8 and network backbones. However, future

wireless networks will make use of physical connections having orders of magnitude lower

bandwidth than is available on wire based networks. Such low—bandwidth networks (LBNs)

will impose restrictions that ftmdamentally change the way users access the network, and

thus, the trafic patterns that flow over the network. To understand these new patterns,

trafic studies must be performed in conditions near that of projected wireless systems.

This chapter describes an application level traffic analysis for LBNs. This analysis

will quantify traffic generated by users of low—bandwidth systems. Data are collected over

low—bandwidth endpoints that use point—to—point connections. Gross behavior patterns

and detailed protocol analysis information are presented and compared to previous high

bandwidth traffic analysis. The analysis provides a mechanism for selecting appropriate

traffic models for use as input to packet level compression routines.

43

44

4.2 The Collection Environment

The intent of this analysis is to gain an understanding of the application level traffic

that flows over low—bandwidth wide—area wireless networks. Existing wireless networks

present several barriers for eflective data collection and trafic analysis. First, access is not

widely available. Many wireless systems exist either as pilot programs in a single city or are

deployed only around major cities. Second, the high cost of access can significantly affect

the traffic mixture. Most wireless systems charge either by connect time, packet count, or

byte count. This rate system can cause users to change their normal access behavior. To

address these problems, data were collected on systems that are not wireless but present a

similar environment and promote Similar usage.

'ITaffic dumps for this study were gathered using the PPP implementation described

in chapter 3. For this portion of the investigation, noise generation was disabled. The

dumps were generated with the help of a group of nine volunteers spread throughout three

countries (Germany, United Kingdom, and the USA). A survey of the volunteers shows

that there is a mix of both recreational and professional users. These volunteers modified

their systems such that the collection process automatically starts when the IP layer of

their link comes up. During their session, the system stores a timestamped copy of the

first 68 bytes of each packet sent and received. This collection size is chosen because 68

bytes is enough to capture the IP and transport headers of the packets. When the link is

brought down, the collection process is stopped and the dump file is augmented with overall

system and session statistics. Finally, the dump is compressed, PGP encrypted (since there

is potentially sensitive information in the dump), and eventually electronically mailed to

the collection site.

45

4.3 Results of Analysis

A suite of programs was written to analyze the data. Since the information collected is

based on many individual sessions (versus the large dumps taken in previous papers), there

are two types of statistics that can be collected. The first set, called Gross Statistics, deals

with the overall statistics on the dialup PPP sessions. It includes statistics measuring time

of day during which the dump was taken, the duration of the session, the speed of the link,

and the number of both packets and bytes sent and received. The second set of statistics

are called Protocol Statistics. They are generated as a result of analyzing what went on

during a particular session.

4.3.1 Gross Statistics

The following subsection gives a high level summary of the statistics gathered on ses-

sions. Table 4.1 describes average counts and connect times for users. Since users are

equipped with different speed modems, sessions are broken into groups based on user mo-

dem speed. The Modem Speed column describes the connect speed of the modem. While

actual transmission speeds of modems may vary dynamically with signal and line quality,

it was decided to categorize systems based on the maximum speed of modems. The direc-

tion indicators (In or Out) describe the direction of data when viewed from the endpoint

collection host (a PPP client). Thus, In is coming from the LAN/Internet to the endpoint

and Out is leaving the collection host and going to the LAN/Internet.

It is interesting to note that the ratio of incoming bytes to outgoing bytes is a little over

five to one for 14.4K modems and closer to two and a half to one for 28.8K modems. As

identified by Paxson in [35], data sets can vary significantly from site to site. The variance in

ratios shows that the same holds true for our person to person collection (which is really site

46

Table 4.1: Gross Statistics

Speed Speed

Stats 14000 28800

Num Sessions 149 261

Total packets 621174 1012836

Total Bytes In 167783683 138867597

Total Bytes Out 31800322 57567647

Avg. Bytes In 1126064 532060

Avg. Bytes Out 213424 220566

Avg. Dur. (Sec) 3865 2348

to site). Another interesting statistic is the difference between link speeds, packet counts,

and total bytes. The packet totals are higher for 28.8K (as one might expect). However,

the average packet size and incoming byte usage is higher for 14.4K links. Part of this is

due to the choice of MTU size selected by individual users.

4.3.2 Protocol Statistics

Since the focus of this investigation is to determine the input to packet based com-

pressors, this section will concentrate on protocol statistics that are derived from viewing

the entire data collection. To properly interpret the following statistics, one must have a

clear understanding of exactly where in the transmission stage this information was col-

lected and how this affects the results. Unlike high speed links, packets that are sent over

a low—bandwidth physical link typically undergo several stages of data compression (i.e.,

VJ TCP header compression [23] and hardware compression by the transmitting device).

These compression schemes variably affect how many bytes of a packet actually get trans-

mitted over the link. For the compression schemes implemented at the endpoint (e.g., VJ

Header Compression), the endpoint can determine the effects. However, for intermedi-

ate devices such as compressing modems, endpoints cannot determine exact compression

47

statistics. Therefore, this chapter does not consider compression. Packet lengths are given

either before any compression takes place (for transmitting) or after all decompression has

been applied (receiving). This allows us to directly compare byte counts to previous studies.

Table 4.2 shows the top six highly used protocols (based on byte count) for the LBNs

compared to the top six (in 1994) as described by Paxson in [36]. As Shown, the mixture

is quite similar in a few categories. However, there are the notable difierences of X11 and

POP3. As expected, the protocols are even less similar when compared to the LAN traffic

described by Gusella in [18]. In Gusella’s paper, the presence of NFS and Sun’s ND traflic

accounts for approximately 65% of his analyzed traffic but do not occur at all in this survey.

This protocol breakdown supports the assumption that users will attempt to use LBN

systems in a similar manner as their high speed counterparts. Further it verifies that

previous system surveys do not give a completely accurate profile of LBN systems. To

further study this issue, Figures 4.1, 4.2, and 4.3 take Table 4.2 and graphically break down

Table 4.2: Top Six Protocols

Protocol Statistics

Rank Low Speed High Speed

First nntp ftp

Second smtp nntp

Third ftp X11

Fourth http http

Fifth pop3 shell

Sixth exec smtp

the information based on packet count for each protocol according to direction of transfer.

Figure 4.1 gives an overall picture of the total data flow in the system. Figures 4.2 and 4.3

show the same graph when filtered to Show just incoming or outgoing traflic respectively.

In each figure, the X axis describes the packet size while the Y axis determines the number

48

of packets of that size.

The two protocols that probably need mentioning are Combined and UnknTCP. To

make the display of the graph manageable, Combined is a collection of packet counts for

protocols that did not have enough total packets to reach a threshold. For these graphs, the

threshold was set at 20,000 packets. The UnknTCP category refers to packets that did not

seem to be destined for any well-known TCP port. While the data have been combined for

the graph display, the data reduction was done after the collection. Since all packets were

captured in this study, information is available for each protocol in either of these groups.

Total Packet Count Grouped by Protocol

combined

Combined

login

6X90

nntp

P
a
c
k
e
t
C
o
u
n
t

E
l
I
I
I

"
I
I
I
I
I

o—ueeensues:as:assessessessssscsa§§§§

Packet Size/ 10 ' '

Figure 4.1: Total Incoming and Outgoing Ti'afiic Grouped by Protocol

Table 4.3 shows the mixture of all the well known ports [40]. This table gives an

appropriate overview of the typical usage patterns of current users. As in the graphs, many

protocols have been checked against the threshold and combined. The counts in parenthesis

49

Total Incoming Packet Count Grouped by Protocol

I Combined

250000 1' I login

I exec

W exec I nntp

com

200000 -- m. I pop3

'5 “mp www-http

0 150000 «+ I W nntp I ”We”
'5; D UnknTCP

'5

E
100000 .. m m

http I http "mp

no "I
itp : I . : a; L.lnitnwn nu : l pop3

0 . I .7 . - I n

cw«eveoeees:sszsfiaaaasaaasassscsa§§§§
I : :

Packet Size / 1 0

Figure 4.2: Total Incoming 'Il'affic Grouped by Protocol

Show the number of different protocols in the threshold group as well as the threshold size

(1000).

In order not to be mislead as to the “amoun ” of data sent (versus the number of

packets), Figure 4.4 describes the same statistics based on byte count. It was previously

shown that incoming trafic accounts for approximately two and a half to five times the

amount of outgoing traffic. But as one might expect, mail activity accounts for a large

majority of outgoing bytes.

This SMTP traflic is non—interactive and much of the incoming is a mix of interactive and

non—interactive. This is important because header compressors help to enhance interactive

traffic, and thus must be very sensitive to the interaction between outgoing non—interactive

50

Total Outgoing Packet Count Grouped by Protocol

-r

500000 .. combined

'09!“ I combined

'5 °x°° I login

(:3 400000 -- I exec

3‘2 A I 0003

8 300000 ' www-http

0' I smtp

200000 1, 9°93 I ftp-data

El UnknTCP

http

orweeweswas:as:sesaaassssessssssszgg§

Packet Size / 10

Figure 4.3: Total Outgoing TTaffic Grouped by Protocol

traffic and outgoing interactive acknowledgments. It is important to provide good support

for these types of interactive services.

4.4 Analysis of Approach

It is necessary to pause and validate the approach taken. Will the point—to—point traces

be representative of future wireless wide—area access? To answer these questions, it is

necessary to analyze the assumptions.

'lkaflic Similarity From the standpoint of the OSI network model, our data collection

occurs at the data link layer. However, the results analyzed are for the encapsulated

protocol datagrams at the network and transport layers. The separation of layers

51

Top Protocols by Byte Count

200000

1‘23
g 150000

e

E 100000 .totai

2.; .ln

5 50000
Clout

é _I:_I:I_L-_
0

nntp smtp ftp http pop3 exec

Figure 4.4: Total Incoming and Outgoing Byte Count Grouped by Protocol

ensures that the mechanics of physical layer transmission are hidden below the network

layer. Link speed is one of the few physical layer properties that will be indirectly

visible at higher layers. The network layer will not know if the physical medium

is point—to—point or broadcast. Thus, the choice of IP over point—to—point dialup

connections versus IP over actual wireless connections should not significantly affect

the results. Phrther, the Cellular Digital Packet Data (CDPD) forum has recently

adopted the TCP/IP suite of protocols as their standard. This lends credence that

this suite of protocols will be important for future wide—area wireless networks.

LBNs will remain LBNs It is generally acknowledged that there is a lack of allocated

spectrum for efl'ective wireless trafic[33]. This is not necessarily a technological prob-

lem. While faster wireless interfaces can no doubt be designed, the fundamental

52

Table 4.3: All Protocols

Protocol Usage

Protocol Num Packets

nntp 563004

smtp 284235

http 194367

ftp+ftp—data 186602

pop3 135435

Unknown TCP 77380

exec 73433

login 50167

domain 32005

telnet 10004

time 8300

TCPThresh (28@1000) 3819

Unknown UDP 1748

sunrpc 1426

ntp 1342

UDPThresh (19@1000) 347

limitation of available spectrum will keep wide-area wireless devices from attaining

high bandwidths.

4.5 Summary

This dissertation deals with data compression algorithms operating in noisy environ-

ments. Since the performance of these algorithms is tightly coupled to the characteristics

the input data, one must justify the types of traffic that will be used in a compression inves-

tigation. Previous traffic studies dealt with traffic flowing over high bandwidth links. These

studies do not accurately describe the trafiic patterns found in low—bandwidth networks.

This chapter described a mechanism that effectively captures session statistics for actual

low—bandwidth user traffic. The collected dumps were analyzed to provide individual user

level behavior statistics that are not found in previous work. The results are used to justify

53

the selected traffic patterns that will form the input to the data compressors in Chapters 6

and 7.

Chapter 5

Compression Analysis

5.1 Introduction

In the ubiquitous wireless architecture, the low—bandwidth link is a critical resource that

must be tuned for performance. Data compression is a primary mechanism employed for

this enhancement. Theory, experience, and common sense tell us that the compressibility

of information varies according to the input content. The previous chapter describes how a

low—bandwidth testbed was employed to derive usage patterns for a class of low-bandwidth

network users. This chapter continues that work by presenting an analysis of the noise—free

compression characteristics for the top protocols found in the traffic survey. An under-

standing of the compression characteristics in this clean environment will give a benchmark

against which one can measure performance of the same algorithms in an error prone envi-

ronment. The rest of this chapter is organized as follows: Section 5.2 describes compression

statistics for the traffic gathered in Chapter 4. Section 5.3 analyzes the collected transition

information and Section 5.4 summarizes the work and relates it to the overall direction of

this dissertation.

54

55

5.2 Compression Analysis

This section describes the results of the compression analysis of application level proto-

cols. It investigates compressibility factors, and in some cases transition probabilities, for

the top six protocols identified in Chapter 4. These protocols, in order, are: Network News

Ti'ansfer Protocol (NNTP), Simple Mail 'Il'ansfer Protocol (SMTP), HyperText TTansfer

Protocol (HTTP), File 'D'ansfer Protocol (FTP), Post Office Protocol 3 (POP3), and the

Login Protocol (LOGIN). While these protocols were identified in the last chapter, that work

did not include the kernel modifications necessary to track the compression sizes. Conse-

quently, new data had to be generated using the controlled conditions of the testbed. In

each case, the characteristics of the protocol are maintained. Each subsection will describe

the methods used to generate the data.

Graph Descriptions

During communication sessions, size information is collected for each packet as it tra-

verses through the various compression and encapsulation routines. Specifically, size in-

formation is stored on the original received size, the size before/after Van Jacobson TCP

header compression, and the size before/after LZW packet compression. The negligible

efl'ects of PPP address, control, and protocol compression can be inferred from these values

and are subsequently ignored. For inbound packets, the original size included the PPP level

framing bytes as well as the entire compressed payload. For outbound packets, the original

size was that of the IP packet as delivered to the link layer from the protocol stack. During

post processing, packets were quantized based on their original received size and direction

of travel. Packet sizes referred to in graphs actually represent quantized packet Sizes.

A stacked bar graph was generated for each of the desired protocols. The graph describes

56

the average compression of all packets based on their quantized size. Compression percent-

ages include the quantization, averaging, and roundoif error inherent in such techniques.

Directionality is maintained by providing a separate graph for the inbound and outbound

packets. Individual stacked bars in a graph are labeled by a quantized packet size. The

number at the top of each bar describes the percentage of total packets that fall into that

quantization size. The Counted field at the bottom of each graph describes the total per-

centage of packets represented by the graph. This number is influenced by 3 Threshold

value which is also supplied when used. Quantization levels having fewer than Threshold

packets do not have a bar displayed. This leads to a less cluttered and more understandable

graph. Finally, the Overall [De]Comp field describes the overall efiect of compression. This

value is calculated as the appropriate ratio between the total received bytes and the total

bytes after all [de]compressions have been applied.

Graphs that describe inbound packets are designed to show the increase in packet size

as the packet goes through various decompression routines. For inbound packets, LZW

decompression is applied followed by VJ decompression. Decompression is shown as a

percentage of original packet size. Thus, all packets start out as 100 percent of their original

size and grow thereafter. For outbound packets, VJ compression is applied followed by LZW

compression. Again, all sizes are shown as a percentage of the original size so outbound

packets start out as 100 percent of their original size and shrink accordingly.

The following subsections describe each protocol in more detail. Attention is given to

both the method of collection and analysis of results. In some cases, a more detailed analysis

is performed on individual protocols. In these cases, protocol size transitions are included

to help clarify a certain behavior. Since the FTP protocol exhibits predictable behavior, it

was selected as the first graph to be presented even though it is not the top low—bandwidth

57

protocol in terms of usage. This gives the reader a familiar base against which to compare

the other graphs.

The File Transfer Protocol

The File Transfer Protocol (FTP) is a well known and well understood protocol. How-

ever, the problem with using FTP for a compression study is that the compressibility figures

depend heavily on the type of file being transmitted. To help address this problem, three

different FTP graphs are represented. Figures 5.1 and 5.2 describe the compressibility of

inbound and outbound packets for the transfer of a previously compressed file. Figures 5.3

and 5.4 represent the same information for uncompressed text files while Figures 5.5 and

5.6 are for executable files.

The collection process used the FTP put command to transfer the files. Statistics were

also gathered on the get command with the expected result that the inbound and outbound

packet graphs were reversed. The collected data includes the protocol exchange that sets

up the FTP session and only includes Domain Name Service DNS and FTP packets. To

help reduce the chance of anomalies, each session transferred multiple but distinct files of

the same type (compressed, text, or executable).

Careful inspection of graphs 5.1 and 5.2 will show expected results. Discussion starts

with the transfer of previously compressed files (using GNU’S gzip utility). In such a

condition, the packet payload contains data that is not compressible. Van Jacobson TCP

header compression, which is unafi'ected by packet payload, accounts for all the compression

applied to packets. As expected, VJ compression significantly impacts the small return TCP

acknowledgment packets. It has a reduced effect on the larger outbound traffic, as its effect

must be amortized over the larger Size of those packets.

58

FI'P Zip In FTP Zip Out

Tarred gzipped - 'Put' Tarred gzipped - 'Put'

W 100 0.7% 0.5% 02% 93.6%

5 350 s 90 E

2 80

250 60 E

g 200 IAvglnSlu 5 50 I Isms“

. 150 WW E g I am

i 100 .m § 20 I lwc

i 5° 1! 10 H

0 0

40 to 5G1 550

PMS!!!

OHM Decornp: 246.3% Cwntert 99.9% OWN! Camp: 6.0% Counted: 100.0%

Figure 5.1: Inbound FTP (Gzip) Figure 5.2: Outbound FTP (Gzip)

In Figures 5.3 and 5.4, the transfer of text based material shows the significant effects

of LZW packet compression. In this case, packet payload is highly compressible. It is

interesting to note that the smaller inbound packets do not tend to compress well with the

LZW algorithm. Of further interest, and as shown in the final sets of FTP figures, is the

fact that executable files tend to be highly compressible. It seems that compression of such

files would be beneficial for low-bandwidth network based file systems.

The Network News 'lkansfer Protocol

The Network News Transfer Protocol (NNTP) traffic represents traffic generated by an

NNTP based news reader. It is assumed that the majority of NNTP traffic will be inbound

as users typically query news server for articles. The traffic collection does not include traffic

generated by posting articles to the server. As the majority of NNTP transfers consist of

textual data, compression ratios are expected to be high. Figures 5.7 and 5.8 validate this

assumption.

It is interesting to note that using a small threshold (5 packets) resulted in 13% of

FTPText In

Postscript and text - 'Pui'

lmum

aw

VIM

40500111000100110

MUM

MWMWMM CMMWM

FTP Text Out

_
.

P
e
r
c
e
n
t
C
o
m
m
i
e
"

o
8
8
8
$
8
8
3
8
8
8

Imam

am

Im

eunnmmwmw

mun WMWWM% cmmmm

Figure 5.3: Inbound FTP (Postscript) Figure 5.4: Outbound FTP (Postscript)

FTP Executables In

3Exewiables-‘Pul'

P
e
r
c
e
n
t
n
e
c
o
m
p
r
e
e
a
i
o
n

°
s
§
§
§
§
§
§
§

CMMWM

FTP Executables Out

.
e

P
e
r
c
e
n
t
C
o
m
p
m
a
i
o
n

0
8
8
8
8
8
8
3
8
8
8

Cmmmm Overal Comp: 39.5%

Figure 5.5: Inbound FTP (Executables) Figure 5.6: Outbound FTP (Executables)

60

NNTP In NNTP Out

34.4% 8.3% 3.5% _

250 100 '

5 g 90
e 200 - 80

i an
E 150 a. so

3 IAvglnSlza g 2 ISlu Sent

E100 saw 15 3° EELZW

§ so IVJC § 20 lwc

: .2 1o

0 0

40 70 no 120 no 1010

PICIMSIII

Overall Decornp: 118.3% Threshold: 5 Counted: 87.0% Overall Comp: 60.8% Threshold: 5 Counted: 96A

Figure 5.7: Inbound NNTP Traffic Figure 5.8: Outbound NNTP Traffic

the packets failing to pass the filter. This shows a wide variability in packet size for this

protocol. A closer examination of size transitions showed that packets of size a: were followed

by packets also of size a: only 72% of the time. Contrast this to a 95.8% average (over all

three file types) for the FTP protocols previously discussed.

The Simple Mail 'Ik'ansfer Protocol

Simple Mail Transfer Protocol (SMTP) traflic was collected by monitoring sendmail

transactions with a UNIX mail server. Since low—bandwidth links typically operate in dis—

connected environments, it is assumed that they run POP clients for retrieving mail. Ac-

cordingly, this traffic only describes outbound SMTP transfers while inbound POP transfers

are described later. The collection of messages used in the investigation includes both ASCII

and MIME mail. The mail messages selected for transmission are duplicates of those sent

by third parties to one of the authors during one stande business day. These messages

were collected and resent through the testbed mechanism.

While MIME mail may contain many types of data, this investigation concentrates

SMTPm

350

33m
0

£250

£200

E 100

E 50 Inc

a o .

10 so 70 n no In no

Pacbisu

cadmium” Cuned:lO0.0%

Figure 5.9: Inbound SMTP Traffic

61

SMTPOm
6.8% 2‘1)“ 02% 02%

100

s so

0
3- so

i 70

E. 60

8 453 Isms“

g 20 Inc

L 13

to so so In no 210 no 1010

“Site

MOWER!“ Thmholdta Cotnled:97.6'k

Figure 5.10: Outbound SMTP 'ITaflic

mainly on text based messages. No graphics, video, or sound were included in the messages.

It is asserted that including such items in the messages leads to the same variabilities as seen

in the FTP protocol. For now, it is apparent that most mail messages are mainly composed

of text. Future work may address compressibility of MIME messages with varying content.

When viewing Figures 5.9 and 5.10, it is again interesting to note the variability of

packet sizes. These variabilities are in fact due, in part, to the HELO protocol initiated by

sendmail. The multiple stages of this protocol keep the distribution from looking like the

expected bimodal distribution as seen in the POP protocol (described later). Phrther, one

might notice that the majority of packets are small. This is due to sendmail opening a new

connection for each outbound message. There are proposals for SMTP pipelining [14] that

address just this issue. Overall, the text based nature of mail and HELO lend themselves

well to packet compression.

62

HTI'P In HTI'P Out
15% 1.7%

%
2“ 1.4%

: 200 100
g 5 90 :

:m g x
n a 60 7‘

E100 IAvghSIn 8 453 ‘ Isms»:

. 50 {gm ‘5 m ‘ fiLZW

5 lwc g 3 IVJC

r! 0 °‘ 0
«mommaomswso 40 so 70 130 140

m9! muse.

04ml Deoanp: 26.8% m10 Counsel: 88.6% Ovaral Coup: 442% TM: 10 Combd: $.4%

Figure 5.11: Inbound HTTP Traffic Figure 5.12: Outbound HTTP 'Irafiic

The HyperText Transfer Protocol

The HyperText Transfer Protocol (HTTP) data were gathered using LightHouse De

sign’s OmniWeb browser. This is a multi—threaded browser that provides support for most

Netscape extensions. The browser supports data and image caching. For collection, the

cache was initially cleared and graphics were set to display on each page. Data were col-

lected by starting at the Yahoo World Wide Web site (http://www.yahoo.com/) and then

following related links through several areas of interest. Only the HTTP protocol was used.

The mail, news, gopher, and file transfer options of the browser were not used.

As with NNTP, it was surprising to see the variability of packet sizes seen during the

sessions. A ten packet threshold filtered approximately 12% of the packets. Since browsers

are mainly consumers of information, a more defined bimodal packet distribution might

have been expected. Only 57% of inbound packets were followed by packets of the same

size. However, 81% of outbound packets were followed by packets of the same size. The

overall inbound compression was not as high as might be desirable. This is likely due to

the high graphic content present on most WWW pages. Since World Wide Web trafiic is

POP In

63

POP Out

3» "m 33.9% 29.1%

C m 7

3 5° 5 no

la» g ..
E 6 5°

3150 Imus:- 8 5° ISbsm

100 am: - 3 saw

so lwc E 20 Iwc

1o

0 o
0 no 70 an «snowman to 50

my: msu

mmwm mums mam. momma.“ ms mums.“

Figure 5.13: Inbound POP3 'Irafiic Figure 5.14: Outbound POP3 Traffic

starting to account for a major portion of traffic flowing over networks, this protocol may

merit special attention for compression and optimization.

The Post Office Protocol

The Post Office Protocol (POP) traffic was collected by monitoring the receipt of the

same messages that were previously sent in order to gather the SMTP traffic. It is interesting

to note that without the HELO protocol, there is a much larger percentage of large packets.

Further, the acknowledgment traffic is far more consistent. As expected, the compressibility

is fairly good and the overall compression figures for outbound SMTP and inbound POP

are similar.

The Login Protocol

The LOGIN protocol (produced using the rlogin command on UNIX systems) is very

similar to the TELNET protocol. It is a mechanism to open a text based terminal to an-

other host computer. Typically, such sessions are characterized by many outbound packets

LOGIN In LOGIN Out

: 350 100

em .5 3

{250 g 70

E 200 tel. 60

503150 IAvghSha 8 40

.100 WW E 30

g so IVJc § 20

R 10

40 50 so so no 10010501000

PMSIZD

09/9de Decomp: 66.3% W: 10 Comted: 83.1% moral Comp: 66.3% Counted: 99.9%

Figure 5.15: Inbound LOGIN Traffic Figure 5.16: Outbound LOGIN Traffic

produced by individual keystrokes and many inbound packets corresponding to individual

acknowledgments (used to echo typed characters). Occasionally, large bursts of data are

received as local screens get updated with new information.

’Irafl‘ic collection for this protocol was performed by opening a terminal onto a peer

computer. During the session, files were edited, mail was read, stande UNIX commands

were issued, and WW sites were viewed using the Lynx text based WWW browser. It is

asserted that regardless of what applications are used over the link, the text based nature

of the traffic patterns will remain fairly consistent. Thus, the behavior of the user probably

will not have much effect on the compression ratios observed. As can be seen, the majority

of packets are small and do not benefit from the LZW compression. Different compression

schemes that work well on small packets may merit consideration. Such schemes may be

generally applicable over all TCP sessions regardless of protocols.

65

Discussion

Besides the obvious compression figures, careful consideration of the graphs yield some

less obvious results. The first was a bit surprising but became quite obvious in retrospect.

The variability in LZW compression leads to a wider spread of packets into quantized levels.

While this does not cause problems, it may be of concern for optimization systems. It was

assumed that small packets would have regular size characteristics which could be exploited.

LZW seems to introduce irregularities into the system.

Also of interest are the discrepancies for LZW compression of small acknowledgment

packets. Return packets for some protocols (namely NNTP and some FTP) were not as

susceptible to LZW compression as other protocols. Since VJ compression had already been

applied, it was assumed that the bodies of thwe packets would all contain fairly similar data

and that they would all compress in a similar manner. Because acknowledgments make up

such a large percentage of packets, it may be worthwhile to investigate a hybrid environment

that includes special compressors for smaller packets.

Of further surprise was the poor compression characteristics of HTTP. It appears that

the graphic content, which is generally not very compressible with standard algorithms,

dominates many pages. Even a large text page with a small graphic may have the transmis-

sion dominated by the transfer of the graphic. Images in JPEG format should be considered

as being fairly incompressible. However, other types of binary data may be more susceptible

to data compression. This protocol probably merits special attention.

Finally, one of the most surprising result was that many protocols did not appear to have

a strong bimodal distribution as originally thought. For instance, outbound SMTP traffic

was originally thought to consist of many large packets that carried the mail messages to

the server (most mail messages were large enough to fully fill several packets). However, less

66

than 10% of the packets were considered large (the size of a packet’8 maximum transmission

unit). The majority of packets were under 100 bytes long. The compression schemes

employed work better when there are larger runs of data. As mentioned above, a hybrid

compression scheme that uses packet size as a selector may perform well.

5.3 Size and Protocol Transitions

Traffic collected during the original analysis described in Chapter 4 does not contain

enough information to determine compressibility statistics. However, protocol and size

transition information can be derived. For the sake of completeness, this section describes

the transition information for the traffic dumps previously collected. These transition figures

are much more indicative of what a low—bandwidth communications system may actually

encounter.

Table 5.1: Inbound transitions (794590 packets counted)

First Order Inbound Transitions Second Order Inbound 'D'ansitions

Previous Size Next Size Percentage Prev Two Sizes Next Size Percentage

40 40 20.149511 40,40 40 17.380684

300 300 22.523565 300,300 300 21.144390

550 550 10.901849 550,550 550 10.057527

1060 1060 13.617589 1060,1060 1060 12.721923

Previous Size = Next Size 72.699150 Prev 2 Sizes = Next Size 64.677879I

Previous Size 79 Next Size 27.300848T Prev 2 Sizes at Next Size 35.322121
Encompasses 61.3% of packets

I — not affected by 5% Threshold

Encompasses 67.2% of packets

I — not affected by 5% Threshold

Tables 5.1 and 5.2 show the first and second order quantized size transitions for inbound

and outbound packets respectively. Percentage thresholds are applied to limit the number

of transitions displayed. The Encompasses percentage describes the number of packets

67

passing the filter and included in the transition information. Percentages are also shown

for transitions that include a change in quantized size. These size change percentages are

not affected by the threshold and apply to all packets traveling in the required direction.

Table 5.3 views the same transitions from the perspective of application level protocols.

In this case, only change transitions were gathered and included. Thresholds were not

applied to this collection so these numbers represent percentages gathered for all packets.

Table 5.2: Outbound transitions (737650 packets counted)

First Order Outbound Transitions Second Order Outbound Transitions

 Encompasses 77.0% of packets

I — not affected by 5% Threshold

Previous Size Next Size Percentage Prev Two Sizes Next Size Percentage

40 40 56.540966 40,40 40 52.393955

50 50 5.539611 300,300 300 9.164780

300 300 9.450810 Prev 2 Sizes = Next Size 73.374336I

550 550 5.466677 Prev 2 Sizes 5:9 Next Size 26.625664I

Previous Size = Next Size 81.704994I

Previous Size at Next Size 18.295006I

Encompasses 61.6% of packets

I — not affected by 5% Threshold

Table 5.3: Protocol Transitions

Protocol 'Iransitions on Inbound packets Protocol Transitions on Outbound packets

 Encompasses 794590 packets

Prev Protocol = Next Protocol 91.226387 Prev Protocol = Next Protocol 89.989731

Prev Protocol 7S Next Protocol 8.773617 Prev Protocol 75 Next Protocol 10.010271

No Threshold in effect No Threshold in effect

Encompasses 737650 packets

68

Discussion

It is clear from the tables that packets come in runs of the same size and protocol. Since

many low—bandwidth systems act mainly as accessors of information, one might expect the

inbound traffic stream to have quite a variability in protocol mix. While this is the case, the

transitions between different protocols does not occur often. Long runs of the same protocol

mean that compression algorithms can rely on the ability to train their dictionaries. Further,

from the previous chapter it can be readily seen that the packet size distribution is skewed in

the well known bi—modal distribution. This validates previously held beliefs about protocol

behavior and bolsters optimization methods that rely on such assumptions.

As mentioned previously, packet compression variability tends to scatter packets into

many quantization levels. Enabling LZW compression will probably increase the percentage

of packets that are followed by packets of a different size. Such a scheme would reduce the

length of runs for packets of the same size. Schedulers that rely on this information would

not be as effective.

Finally, it would be interesting to compare these transitions to the data collected in the

previous section. However, this would be inappropriate. The LZW compression graphs are

limited to specific protocols and occur under controlled conditions. Protocol transitions

would obviously be skewed since only one protocol would be in use. Size transitions would

also be inaccurate since packet mixture from concurrently active protocols would not exist.

5.4 Summary

Packet payload compression is an effective mechanism for better utilizing the limited

bandwidth of wireless networks. The previous chapter identified the application level pro-

tocols commonly used in low—bandwidth networks. This chapter further analyzed those

69

protocols to generate compressibility statistics. Since the data compressors are working in

a noise free environment, the results presented here give us a base for comparison against

the same algorithms operating in the presence of noise. Such operation is described in the

following chapters.

Chapter 6

Header Compression

6.1 Introduction

AS shown in Chapter 5, data link level packet compression can significantly improve

the performance of low—bandwidth connections. One widely used transport protocol header

compression algorithm is known as Van Jacobson TCP header compression, named after

is creator [23]. An implementation of this algorithm now exists for almost every Point—

to—Point (PPP) and Serial Line IP (SLIP) package available today. Van Jacobson TCP

header compression, commonly designated as VJ compression, is mainly used to increase

the performance of interactive communications sessions. The compressor can reduce the

header size of common TCP traffic from approximately forty bytes to five or less. On low

speed links, this reduction allows interactive connections to exhibit better response.

Implicit in the VJ compression process is the notion that both endpoints maintain

state information. Each end must remain tightly synchronized with its peer. Loss of

synchronization leads to incorrect results from the decompressor. Incorrect results in turn

mean dropped packets, TCP retransmissions, and timeout latencies. On relatively clean

70

71

links, such as those provided by an error correcting telephone modem, loss of synchronization

is infrequent and performance effects are negligible. However, in the case of wireless links,

errors (especially lost packets) are more frequent. Loss of synchronization can significantly

degrade the performance of sessions employing VJ compression.

This chapter will focus on the problems caused by corrupted state and loss of syn-

chronization during VJ compression. The effects of corrupted state are quantified and a

new approach for resynchronization is proposed. This new noise tolerant approach removes

much of the dependency information implicit on the link. It is shown that the penalty for

this new method is small for noiseless links while the gain is significant when errors are

present. The rest of this chapter is organized as follows: section 6.2 gives brief overview

of VJ compression along with a performance evaluation, section 6.4 describes the removal

of dependency information and its related performance gain, and section 6.6 describes the

overhead of the new technique.

6.2 The VJ Algorithm

Van Jacobson TCP header compression is fully described, along with a reference im-

plementation, in RFC 1144 [23]. While it is not our intention to explain all the intricate

details of the algorithm, this section will review some of the basic concepts to give a base

for discussion of the modifications.

VJ compression is a transport header compression that is specifically tailored for TCP.

It uses intimate knowledge of TCP characteristics to achieve considerable compression of

TCP headers. VJ compression treats the physical link as consisting of two simplex links,

one each direction going from compressor to decompressor. This is important to note since

it implies that there is no direct backwards flow of information from the decompressor to

72

the compressor.

The basic premise of the VJ algorithm is that roughly half of the bytes of a TCP/IP

header will remain constant over the lifetime of the TCP connection. Of the half that

change, most change in a predictable fashion. With a copy of the header of the last packet

received on a connection, the VJ algorithm is able to discern these changes through a small

set of differential values that come in the VJ compressed header of the current packet.

Applying these changes to the old copy and updating that old copy allows the algorithm

to reconstruct the TCP/IP header at the decompressor and be ready for the next incoming

packet. Through some special casing, the forty byte TCP/1P header can be reduced to five

or even three bytes.

VJ Compression gives you a near fixed size reduction (plus or minus a few bytes). It

is unaffected by the size or type of data held in a TCP packet payload. As the maximum

transfer unit (MTU) of a datagram shrinks (i.e., with wireless systems), the overhead of

the TCP/IP protocol header increases. Smaller packets (those with less payload) exhibit

better compression ratios since the TCP/IP protocol header makes up a larger portion

of the total packet size. As the figures in the previous chapter Show, VJ compression is

useful for overhead reduction even with non-interactive traffic. Under ideal conditions, VJ

compression should never hurt performance as the header will never get larger.

One main characteristic of the algorithm is that the differential is applied between

successive packets. If a packet is dropped by the link layer due to noise, then that packet

will never reach the VJ decompression routine. Because the differential never gets applied

and the local copy of the TCP/IP header never gets updated, then future packets will

become corrupted as they get updated with incorrect information. This is known as losing

synchronization. Synchronization will be lost anytime that a packet gets dropped by noise.

73

The solution to lost synchronization is for the compressor to send an uncompressed TCP/1P

packet through to the decompressor. The decompressor can then save this entire correct

header and begin applying the future differentials again.

6.2.1 Packet Loss

It is important to understand where packets get dropped using this differential scheme.

There are potentially two places where errors can occur. The first is in the TCP stack.

The decompressor does not have a direct means to determine if it has lost synchronization.

If a packet gets dropped by the data link layer, then the next packet to arrive at the VJ

decompressor will be updated as normal, albeit incorrectly because of the lost differential

update of the previously dropped packet. No errors will occur in the VJ algorithm and

the packet will be passed on as usual. It is only later, in the TCP stack, that the packet

will fail the TCP checksum and be dropped. The lost packet causes the decompressor to

lose synchronization. Each successive packet that arrives gets dropped by TCP until an

uncompressed packet arrives and resynchronizes the system.

The second place that packets can get dropped is right at the start of the VJ algorithm.

One of the options available to VJ is to compress the connection identifier. Using this option,

the system will use the same connection as in the previous packet when no connection ID

is present. Unfortunately, if a packet gets dropped, then you may have missed a connection

identifier switch and you may be applying updates to packets on the wrong connection. In

some circumstances, there is the possibility that this type of error will go undetected even

by TCP. The VJ algorithm can be notified of a packet drop by the lower layer. If this

notification gets sent, then the VJ decompressor will toss every packet until it receives one

with an explicit connection ID.

74

6.2.2 Synchronization

The issue of synchronization is discussed in the VJ document. Since there is no back-

wards flow of information from the decompressor to the compressor, the compressor must

find some way to determine when the decompressor has lost synchronization. The mech-

anism used is to detect TCP retransmissions. Since loss of synchronization is one reason

that a packet may not have arrived intact at the destination TCP stack, the VJ algorithm

conservatively sends all retransmissions as uncompressed. Since uncompressed datagrams

will resynchronize the peer then if a loss occurred, it will be fixed during the retransmis-

sion. Of course, if there was a loss of synchronization, all packets that are sent before

resynchronization will eventually be dropped and retransmitted uncompressed.

6.3 Performance Analysis of the VJ Algorithm

VJ compression is mainly designed for interactive traffic but can also provide small gains

for bulk data transfer applications. Because of it low overhead and general effectiveness,

it is desirable to always use VJ compression. This is especially true as the datagram

MTU shrinks. Smaller MTUs means a larger percentage of the packet contains transport

protocol overhead. VJ compression can effectively remove much of that overhead. On a

noiseless channel, VJ compression should never decrease the throughput of a connection.

Unfortunately, this is not true when the channel becomes noisy.

The method chosen to measure the effectiveness of VJ compression is throughput of

bulk data transfers. Bulk transfers are used because they give a more accurate long term

measure of compression effectiveness. For this analysis, throughput values were collected

for three different files of sizes 344K, 328K, and 550K. Each file was sent five times, and the

75

average value used for graphing. Since VJ compression is not affected by packet payload

content, the content of the files, although shown, is unimportant.

To simulate a noisy wireless environment, a noise signal was combined with the datas-

tream at the data link layer. The noise, as described in Chapter 3, consists of a stream of

bits, zero representing error free transmission and one representing noise, that were added

to the incoming and outgoing data bits. For completeness, two separate noise streams were

tested. The first is a random noise stream having bit probability of error of approximately

7.3x10‘3. This model is useful in determining the effectiveness of the new algorithm inde-

pendent from the variances introduced by large error—free gaps that arise in burst models.

However, since wireless channels are better represented by a bursty model, the second error

stream was generated using the four state Fritchman—partitioned Markov Chain. While

both data streams have approximately the same probability of bit error, the random model

has a higher probability of packet error. This is because no error correction is done at

the data link layer. A single bit error will drop a packet as easily as a burst of bit errors.

Since the random model has relatively uniform error—free gaps, it consequently has a higher

probability of packet loss.

Figures 6.1 and 6.2 Show the performance of VJ compression both in a noiseless and a

random noise environment and with differing MTU values. It should be noted that in the

error free case, VJ compression always provides better throughput than no VJ compression.

Further, the effects of VJ are more pronounced for the smaller MTU packet.

As noted in section 6.2.1, it is possible for the VJ algorithm to lose synchronization.

When this happens, the decompressor starts to toss packets. When the VJ compressor

sees TCP retransmits, it will send the packets uncompressed thus resynchronizing the two

endpoints. You can see the effects if synchronization loss by looking at the performance in

76

‘ I VJ, Random Errors

- E] No v1, Random Errors

I V]. No Errors

2.0 — ‘ D No v1, No Errors

K
B
v
l
e
s
/
S
e
c

N M

1

0.5 —

 0.0 — _

344K 328K 550K

Figure 6.1: Standard VJ, Random Noise, 1500 Byte MTU

the presence of noise. It is far better to avoid the use of VJ compression than to use it in

the presence of noise. This is especially true for large MTU values.

6.4 The New VJ Algorithm

VJ compression is beneficial for use on noiseless links, especially those using small MTU

values. Wireless links now present a challenge. Since they typically have small MTU values,

it would be useful to employ VJ compression. However, since the links are error prone, it is

advantageous to avoid the use of VJ compression. The question that arises is what can be

done to improve VJ performance in the presence of noise? If one could raise the performance

of bulk transfers to the level achieved when not using VJ compression, then one would break

even on bulk transfers and still gain the advantages of VJ for interactive use. Outperforming

the no VJ case would indicate a measurable reduction in protocol overhead. The following

subsections describe a new algorithm that can attain this.

4.0 m

3.5 —

K
t
h
e
s
/
S
e
c

:
-

.
-

.
N

N
P
’

o
u
.

o
u
-

o

1
1

1

.
9
u
.

 [11
1
1
1
1
1

.
9

o

344K 328K

77

3.6

3-1 3-1 I V], RandomErrors

D No VJ, Random Errors

2.5

2.2 I V], No Errors

[:1 No v1, No Errors

550K

Figure 6.2: Standard VJ, Random Noise, 296 Byte MTU

6.4.1 No VJ Slot Compression

From the previous discussions on packet loss, one area to investigate would be the tossing

of packets with no connection identifiers. Table 6.1 gives some idea of how many packets

actually get discarded due to the compression of connection identifiers in noisy links. The

packet error field indicates the number of errors detected by the data link layer. The toss

field gives the number of packets that were discarded by the VJ decompressor in addition

to the lost packet at the data link layer. These numbers correspond to the transfer of the

file combinedps in the random noise graph.

Table 6.1: Effects of Slot Compression in a Noisy Link

MTU Number of Packet Errors Number of Additional Packets Discarded

296 169 707

1500 184 291

The obvious solution would be to always send the connection ID. In such cases, one

always adds an extra byte to the compressed TCP header with the benefit that the

78

decompressor does not get confused about connection identifiers and does not discard pack-

ets. Unfortunately, this solution does not address the problem of the missing update. Even

if the decompressor does not discard the packets, chances are that the errored packet be-

longed to the current connection. If that is so, then synchronization loss causes TCP to

drop all later packets. To see any real improvement, the synchronization issue must be

addressed.

6.4.2 Selective Application of VJ

A second approach to dependency removal would be to selectively apply VJ compression

to a subset of packet headers. Since large packets are more prone to be affected by an error,

one could choose to only apply VJ compression to small packets. In doing so, one gains the

benefits of VJ compression for the interactive traffic but does not not suffer many of the

drawbacks of operation over a noisy link. The bimodal traffic pattern described in chapter

4 provides a good value for a cutoff point based on packet size. As shown in figure 4.1, a

cutoff point between 110 and 290 bytes would capture a significant amount of the packets

passing a link. The exact value really depends on the MTU and resides just below that

MTU value. Figures 6.3 and 6.4 show the performance of compressing packets smaller than

160 bytes.

One can note a slight gain, in some cases, when using large MTU transfers. However,

for bulk transfers, the gain only provides throughput similar to that of not using VJ. As

the MTU size decreases, you lose the benefits of VJ compression in conjunction with small

MTU packet overhead. For this reason, a better approach is sought.

K
t
h
e
s
/
S
e
c

K
B
v
l
e
r
/
S
e
c

3.0 -

P u
.

.
N
o

— M

2
"

O

79

I v1. Errors, No Cutoff

E] v1. Errors. 160 Cutoff

I No v:

344K 328K 550K

Figure 6.3: Standard VJ, 1500 Byte MTU, Cutoff Size of 160

I VJ. Errors, No Cutoff

E] v1, Errors, 160 Cutoff

I No V:

Figure 6.4: Stande VJ, 296 Byte MTU, Cutoff Size of 160

80

6.4.3 Interpacket Dependency Removal

The previous subsections have outlined the reasoning behind loss of synchronization.

Since the standard VJ algorithm uses a packet based difierential encoding scheme, loss of a

packet causes loss of synchronization. Modifications to the standard algorithm can remove

a great deal of this dependency. Instead of sending differentials on a packet by packet basis,

differentials can I be sent against a base that changes infrequently. Further, to combat the

sequence number problem described in section 6.4.1, the implementation forces connection

identifiers to be sent with each packet. The main strengths of this approach are that most

packet losses will not cause a loss of synchronization (the exceptions are described below)

and that the core operation of the proven VJ algorithm remains unchanged. The drawbacks

include a minor increase in memory usage and a minor increase in the size of the compressed

header.

In the VJ algorithm, packets are encoded and decoded against a stored copy of the

previous packets header. The differentials are calculated and replace the header in the

outgoing packet. More importantly, the stored copy is updated to be a duplicate of the

header of the packet just being sent. At the decompressor, the reverse happens. Namely,

the stored copy is updated so that, after decompression, it is a copy of the header of the

packet just received. Using this mechanism it is easy to detect retransmissions because

they will contain TCP sequence numbers that are the same as or smaller than the current

stored header value. The proposed modification, called New VJ in this discussion, is to not

update the stored copied of the VJ header but to continue using the VJ algorithm in other

respects. Since all differential encoding is done using a fixed base at both ends, packet loss

will not cause endpoints to lose synchronization.

Such a scheme is not quite as simple as removing the header update code. Care must be

81

taken to maintain enough information such that the retransmission and special case policies

of VJ still function properly. This entails expanding the amount of information kept about

each active TCP connection. Along with the TCP/IP header that is kept, one must also

now keep the TCP window, acknowledgment, sequence number, and size of the last packet

flowing over each connection. This information is always updated with the last packet while

the stored TCP/1P header remains unchanged.

The new VJ algorithm is still able to use the same conservative mechanism that the

original VJ algorithm uses for detecting retransmissions and resynchronizing the link. The

question now arises as to why resynchronization is necessary? Since packet encoding is

performed on base copies, there is no interpacket dependency. Unfortunately, it is entirely

possible that the compressor may find it necessary to transmit an uncompressed packet. In

addition to retransmissions, such packets are occasionally sent to combat overflow problems

with the differential encoding. As they flow to the decompressor, they become the new

base packets against which differentials are calculated. If an uncompressed packet gets

dropped due to noise, then the algorithm still loses synchronization. In such cases, operation

degenerates to the same procedure as the standard VJ algorithm until an uncompressed

packet makes it through to the decompressor.

6.5 Performance Evaluation of the New VJ Algorithm

The following figures illustrate the performance characteristics of the new algorithm.

Figures 6.5 and 6.6 show the performance degradation of the new algorithm in a noiseless

environment. This degradation is due to several factors and will be discussed in section

6.6. In all cases, this degradation is small and the new algorithm still provides increased

performance as the MTU size decreases. The rest of the figures describe performance for

82

4.0 —

- 3.6 3-7

3.5 —

3.6 3.6 3.6 3-7

3.5 3.53.5

I New v1, No Errors

3.0 —

D V] . No Errors

2.5 —

I No VJ, No Errors

K
t
h
e
s
/
S
e
c

2.0 ~

344K 328K 550K

Figure 6.5: New VJ Performance With No Noise, 1500 Byte MTU

random and burst error models. One can note significant gains, in some cases up to 77%,

over the old VJ algorithm. The new algorithm also shows gains over the case of no VJ

compression.

The variances due to using differing MTU values in the same noise environment reflect

the increased probability of packet loss for large MTU transfers and the associated cost

of retransmissions when a packet is lost. Also, as previously discussed in section 6.3, the

random error environment has lower throughput because of its higher probability of packet

loss. However, it is important to note that the gains of the new algorithm increase in such

an environment. The performance of the old algorithm is intimately associated with the

number of dropped packets. The new algorithm has removed much of this dependency.

The approach of dependency removal has attained the goals of allowing transport header

compression to exist in a noisy environment while attaining better performance than if no

compression were applied.

K
B
v
r
e
s
/
S
e
c

K
B
y
t
e
s
/
S
e
c

3.0

83

I New VJ, No Errors

[:1 VJ , No Errors

I No VJ, No Errors

344K 328K 550K

Figure 6.6: New VJ Performance With No Noise, 296 Byte MTU

I New v1. Random Errors

D V], Random Errors

I No VJ. Random Errors

344K 328K 550K

Figure 6.7: New VJ Performance With Random Noise, 1500 Byte MTU

K
t
h
e
s
/
S
e
c

K
t
h
e
s
/
S
e
c

I New v1. Random Errors

E] v1. Random Errors

I No VJ, Random Errors

344K 328K 550K

Figure 6.8: New VJ Performance With Random Noise, 296 Byte MTU

I New VJ. Burst Errors

E] VJ. Burst Errors

I No v1, BurstErrors

344K 328K 550K

Figure 6.9: New VJ Performance With Burst Noise, 1500 Byte MTU

85

I New v1, Burst Errors

[3 VJ. Burst Errors

I No v1, Burst Errors

K
B
v
r
e
r
/
S
e
c

344K 328K 550K

Figure 6.10: NewVJ Performance With Burst Noise, 296 Byte MTU

6.6 Overhead and Optimizations

It is important to understand the overhead involved in the new approach. Dependency

removal adds some overhead to packet size and thus reduces its effectiveness over noiseless

channels. One fixed overhead addition is the added byte needed for a connection identifier.

This is required so that lost packets will not cause the decompressor to become confused

about the session to which a packet belongs. A second overhead is the reduction in the

coding efficiency as differential values grow larger that 255. Both the stande and new

algorithms use the same variable length encoding scheme. Positive values smaller than

256 take one byte while others values take three. Since the original VJ algorithm uses

interpacket dependencies, changes are usually small. However, when one starts to generate

changes based on a non—changing header, some values may grow larger than usual. To help

reduce these overheads, a few areas were exploited to possibly provide a marginal increase

in performance.

86

The compressed VJ header contains, as its first byte, a change mask that describes the

rest of the compressed header content. Of the eight bits available, only seven are used. One

can exploit this extra bit when sending TCP information. TCP Window values typically

oscillate around certain values. This means that both positive and negative values must be

transmitted. If the value is negative (needing three bytes for encoding), and its absolute

value would only require one byte to encode, the absolute value is sent and the extra bit is

used as a sign bit. All performance graphs displayed use this optimization.

A second approach would be to use the bit for backwards communication with the TCP

compressor. With such an approach, the bit could be used to signal that the decompres-

sor has become unsynchronized. This would obviate the need for the compressor to send

retransmissions uncompressed. In order to exploit this approach, the TCP decompressor

must perform a TCP checksum over the reconstructed packet. Failure of the checksum

indicated loss of synchronization. This approach was investigated and then discontinued.

Besides the obvious overhead of calculating the TCP checksum twice (our TCP stack and

VJ Decompressor do not communicate), the gains would not justify the other overheads.

Backwards communication adds a significant amount of protocol state and complexity. The

only benefit would be to reduce the number of uncompressed packets that flow across the

link. Since a new VJ header requires approximately 6 bytes and an uncompressed packet

requires 40, one only gains a savings of approximately 34 bytes per uncompressed packet.

In large transfers, the extra overhead of uncompressed packets will only amount to a few

thousand bytes total. This was verified by adding a mechanism to allow sending the first

copy of any retransmission compressed while allowing any further retransmissions to go

uncompressed. No significant performance gain was attained under the error conditions

present.

87

6.7 Summary

This chapter was devoted to showing how state maintenance in the VJ TCP header com-

pression algorithm could be modified to better tolerate errors. The original algorithm was

shown to behave poorly on noisy channels. The first proposed enhancement required that

connection identifiers always be sent with the compressed packet. This keeps the decom-

pressor from tossing packets while it waits for a new connection identifier. Unfortunately,

it did not address the loss of synchronization. This technique alone was not sufficient to

increase performance.

The results of Chapter 4 lead to the second enhancement. By selecting an appropri-

ate cutoff based on packet size distributions, an enhanced algorithm was proposed that

selectively applies VJ compression. A cutofl' size, somewhat smaller than the MTU, allows

one to capture a significant amount of traffic while avoiding compression of the large error

prone packets. This approach increased the performance to around that of not using VJ

compression. The benefit of the approach is that VJ compression is still applied to the

small packets typically found on interactive sessions.

In an effort to outperform a connection that avoids the use of VJ, a new noise tolerant

protocol was developed that removed most of the interpacket dependencies. These mod-

ifications do not alter the foundations of the VJ algorithm and they still maintain the

assumptions of simplex operation over an unreliable channel. Resynchronization, when

needed, is performed in the same manner as the original algorithm (i.e., by detecting TCP

retransmissions). The new protocol is tolerant of errors and allows superior throughput on

noisy links while maintaining good performance on noiseless links.

Chapter 7

Payload Compression

7.1 Introduction

Protocol header compression algorithms, as described in the last chapter, are important

because they can significantly reduce the overhead of transport protocols for interactive

sessions. Further, they can provide noticeable benefits for systems that require a small

maximum transmission unit (MTU). Unfortunately, the algorithms are usually tied closely

to the structure of a protocol header and cannot be extended to the datagram payload.

The compression investigation in Chapter 5 shows that payload compression algorithms

can also significantly reduce the datagram size. Measurements on bulk data transfers show

byte reductions that far exceed the effects of header compression. This is of utmost impor-

tance for wireless and other low—bandwidth interfaces and is the motivating force behind

investigating compression algorithms in the presence of noise.

One widely used payload compression algorithm is based on Welch’s modifications to the

popular Ziv—Lempel technique presented in 1978 [51]. Welch’s algorithm, known as LZW

(Lempel—Ziv—Welch) [47] is the same algorithm that is used in the common BSD UNIX

88

89

compress program. A free implementation of this algorithm now exists for a popular public

domain Point—to—Point Protocol (PPP) package [30]. LZW compression is mainly used to

increase the performance of bulk transfers over links employing low—bandwidth connections.

Spending extra CPU cycles at the endpoints can significantly reduce the amount of data

that must pass through the bottleneck low—bandwidth link of the network connection.

As with VJ Compression, loss of synchronization can significantly degrade the perfor-

mance of sessions employing LZW compression. This chapter will focus on the problems

caused by corrupted state and loss of synchronization during LZW payload compression.

The effects of corrupted state are quantified and a new approach to LZW state maintenance

is proposed. This new method removes much of the dependency information implicit on

the link. It is shown that the penalty for this new method is small for noiseless links while

the gain is significant when errors are present.

7.2 LZW Packet Payload Compression

Chapter 6 dealt with header compression over simplex links (i.e., no backwards commu-

nication from the decompressor to the compressor). This section will introduce the second

algorithm, a packet payload compressor. Unlike VJ header compression, this algorithm pro-

vides a logical control channel at the link layer. This allows full communication between the

decompressor and the compressor and allows more flexibility in the design of the algorithm.

The payload compression algorithm is based on an LZW implementation. LZW compres-

sion is mainly used to increase the performance of bulk transfers over links employing

low—bandwidth connections. Spending extra CPU cycles at the endpoints can significantly

reduce the amount of data that must pass through the bottleneck low—bandwidth link.

In the following discussion, it will be assumed that the input to the LZW compressing

90

algorithm will be an infinite stream of input symbols. The compressed output will transmit-

ted over an unreliable link to a peer process that will decompress the stream to its original

state. Unlike file based compression where the communication between compressor, decom-

pressor, and information source (a file on disk) is virtually noiseless, the unreliable nature of

the communication link requires the use of extra mechanisms to ensure synchronization be-

tween the compressor and decompressor. This section will provide an overview of both the

algorithmic process of LZW compression and the important details of the implementation.

A good understanding of both is required for understanding the proposed modifications.

Readers wanting a more thorough treatment of the LZW algorithm are referred to the

excellent presentation by Williams [48].

7.2.1 The LZ78 Compression Algorithm

Before describing the LZW technique, a review of its predecessor, LZ78, will be pre-

sented. To provide compression, the LZ78 algorithm uses the notion of a dictionary of

phrases. Starting with an empty dictionary, the algorithm scans the input datastream and

finds the longest sequence of characters that matches a phrase already in the dictionary

(this may be the empty string). It then sends a pair of values to the output. The first

is an index to the matching phrase found in the dictionary while the second is the first

input character following the longest matching phrase. Once the two codes are emitted,

the algorithm adds to its dictionary a new phrase that consists of the concatenation of the

matched phrase and the new character.

The dictionary can be conceptualized as a digital search tree. Similar to Figure 7.1,

each nodeis numbered and represents the phrase found by following the path from the root

to the node. To match the datastream input, one simply follows the tree using the input

data as a guide. Once a leaf node is encountered, the algorithm issues that node number as

91

output. Further, it emits the next data input character and then adds that character as a

new leaf node. Thus, the dictionary grows by one character for each pair of codes emitted.

.9.

pee

,6? :31

G are}

The receiver performs decompression in a similar manner. The decompression dictionary

starts out empty and, as the phrase index and next character pair arrive, the decompressor

reconstructs the dictionary and rebuilds the original input. It is important to note that no

explicit dictionary is ever transmitted to the receiver. Instead, the decompression dictio-

nary is dynamically recreated based on the input. This recreation requires that the input to

the decompressor precisely match the output of the compressor. Any discontinuity in the

datastream will result in an incorrect rebuilding of the decompressor’s dictionary and sub-

sequent incorrect generation of the uncompressed data. Maintaining this synchronization

is a key issue that will be discussed later.

7.2.2 The Lempel—Ziv—Welch Algorithm

The LZW algorithm is a variant of the LZ78 algorithm. Instead of explicitly transmitting

the first symbol found after a phrase match in the dictionary, the algorithm emits the

92

dictionary index only. It then uses the next character as the first in the subsequent phrase

lookup. In order for this algorithm to work, the dictionaries must initially be seeded with

each of the possible input symbols. Further, given an input phrase, the decompressor is

unable to update its copy of the dictionary until it decodes the first character of the next

phrase. These differences introduce a few special cases that must be addressed with the

LZW algorithm. However, removal of the explicit transmission of the last character is the

distinguishing factor of the algorithm.

Like LZ78, LZW compression gives highly variable data reduction and is critically depen-

dent on the characteristics of the input data. Under normal circumstances, it is relatively

unaffected by the size the datagram since the algorithm conceptually operates on an infinite

input stream that is created by the concatenation of all outgoing datagrams. As will be seen

later, practical considerations force the implementation to make less than ideal concessions.

7.2.3 The Algorithmic Implementation

Implementation details must address a variety of concerns that are conveniently glossed

over in an algorithmic description. Data constructs, error control, and synchronization

maintenance are all critical details that must be addressed. As will be shown, certain

implementation choices can critically affect the performance of the LZW algorithm. This

subsection will address those choices and analyze their effect on performance.

Packets arrive at the compressor in the form of TCP/IP datagrams. If a VJ header

compressor is available, TCP headers are compressed by that algorithm first. The (possibly

VJ compressed) datagrams are then run through the LZW compressor and framed for

sending. Since the compressor and decompressor must remain tightly synchronized, part

of the framing information contains a unique sequence number that is increased for every

93

compressed packet. Also, since certain framing and protocol information must remain

intact, the algorithm preserves certain portions of the datagram by creating a logical data

stream to pass to the compressor.

7.2.4 Packet Compression and Emitted Size

The Markovian nature of the LZW scheme leads to poor performance when the datas-

tream contains pre—compressed data. Link layer interleaving of different sources can further

reduce the performance of an LZW compressor. To account for this, the compressor will

compare the size of the original TCP/IP datagram with that of the compressed datagram.

It will always send the smaller of the two datagrams. Using such a mechanism ensures that

performance of the compressor will not drop below that of the uncompressed case. However,

such a choice does lead to two types of output packets. Compressed datagrams that contain

a unique link layer sequence number and normal TCP/1P datagrams that do not contain a

unique link layer sequence number.

An interesting byproduct of this mechanism is that the compressor’s dictionary gets

modified regardless of whether a compressed or uncompressed packet gets sent. This is an

important process since an empty dictionary must be seeded with initial information. An

empty dictionary typically yields a few uncompressed packets as it acquires a critical mass

of phrases and begins to really work. However, this also means that the uncompressed

packets that do not contain unique link layer sequence numbers can affect the dictionary.

This will be important for discussion of decompression in the presence of noise.

94

7.3 Performance Analysis of the LZW Algorithm

The method chosen to measure the effectiveness of LZW compression is throughput of

bulk data transfers. Bulk transfers are used because they give a more accurate long—term

measure of compression effectiveness. For this analysis, throughput values were collected

for two different files of sizes 344K and 550K. Each file was sent three times and the average

value was used for graphing. Since LZW compression is critically affected by packet payload

content, the content of the files must be justified.

The compression investigation in Chapter 5 shows that LZW compression is not effective

at compressing already compressed data. However, the packet size detection mechanism

discussed in Section 7.2.4 allows operation to proceed on such packets with no noticeable

decrease in performance. Fortunately, the results of Chapter 4 show that the top protocols

are mostly text based. So, for this investigation, files were chosen that contain highly

compressible data. For completeness, Figures 7.2 and 7.3 include the transfer of a previously

compressed file. Later graphs do not include this file. It is important to remember that

the actual content and exact throughput numbers are not as important as is the fact that

the data are compressible and causes a mix of compressed and uncompressed packets to be

sent. This gives the basis for examining modifications to the compression algorithm when

it is used in the presence of noise.

Figures 7.2 and 7.3 show throughput rates for two different maximum transmission unit

(MTU) sizes. The large 1500 byte MTU values work well for bulk data throughput but tend

not to work well in noisy environments. The smaller 296 byte MTU will be used throughout

the rest of the paper. Smaller MTU values are typical of wireless links and their use tends

to lead to better performance in the presence of noise. Figures 7.2 and 7.3 are for a noiseless

environment and represent throughput for varying choices of the size of the dictionary table

95

(as described in the next section). In these, and the following experiments, VJ header

compression is disabled. This is to remove the dependencies that VJ compression imparts

on the link. It is apparent that on a clear channel, LZW compression provides significant

throughput improvements independent of VJ compression and MTU values.

9.0

8.0

7.0

K
t
h
e
s
/
S
e
c

-
-

N
w

A
U
s

0
O

O
o

O

o
—

~
_

_ ..
_

9 1

Bits used to determine Dictionary size

I precompressed D exec I ps

Figure 7.2: LZW Compression With a 1500 Byte MTU

7.4 Dictionary Size and Clearing

If the LZW algorithm is operated as previously described, the compressor’s dictionary

size will increase forever. Since this is not practical, mechanisms must be in place to manage

the dictionary size and to control if and when the dictionary is cleared. The dictionary’s

maximum size is controlled by the output length of a dictionary index. If the compressor

is able to output an index that requires nine bits for representation, then the compressor

96

9.0

K
t
h
e
s
/
S
e
c

9 12 15

Bits used to determine Dictionary size

I preoompressed D exec I ps

Figure 7.3: LZW Compression With a 296 Byte MTU

must maintain a structure that has 29 = 512 entries. For this implementation, code sizes

are allowed to range from n = 9 to n = 15 bitsl.

The previous conceptualization of the LZW algorithm used a digital search tree for

representation. This search tree is actually implemented using a dual mode array. In one

mode the array is indexed from 0 to 2" - 1. These indices represent the node numbers in

Figure 7.1. Each index specifies a phrase in the dictionary and is output to the peer. Since

the LZW scheme requires the dictionary to be seeded with all possible input characters,

the first 256 slots (0—255) are always reserved. The largest code currently existing in the

dictionary will be deemed moment and can have any value between 256 and 2" — l.

The second use for the array is as a hash table. As phrases are built during compression,

1The actual index representation uses a variable encoding scheme that uses just enough bits to encode

the number. So, the index size can range from 9 to 11 bits depending on the magnitude of the index value.

97

hash keys are generated for indexing into the array for comparison. Upon a hash failure,

a matching phrase has been found and a new entry is added. New entries use the index

value of moment + 1. When the table becomes full (manent = 2" — 1), new values are no

longer added. In this case, compression still works, but only for the static codes that are

now contained in the table.

Once the dictionary becomes static, it is unable to adjust to variances in the input

stream. In such circumstances, a mechanism must be in place to clear the dictionary so that

it can restart growth using the characteristics of the input data. The current implementation

maintains a measure of the local compression ratio. Once the dictionary becomes full, the

algorithm will periodically compare the local ratio to a previously calculated ratio. Only

when the ratio appears to drop does the system issue a dictionary clear (i.e., setting manent

to 256).

This clearing mechanism is very important to the performance of the algorithm. Its

specific operation is based on a parameter called the chechgap. This value determines the

minimum number of input characters that pass between checks of the local compression

ratio. The word minimum is used because checks can only occur at the end of a datagram

since clears are only allowed between datagrams. Further, checks only occur when the dic-

tionary is full. If the dictionary is not full, the check will be bypassed. A large chechgap

reduces the number of checks allowing small transient variations in compression to go un-

noticed. Smaller values of check.gap allow more frequent checks of the ratio and possibly

more frequent clears.

Under error—free conditions, the check.gap size can significantly effect the operation of

the compressor. Figure 7.4 shows the average throughput of the two compressible files

using differing values of checkegap and an MTU of 296. The exec file is a concatenation of 3

98

.
‘
I

9
‘

9
°

3
"

U
.

O
u

0 J
[J CHECK_GAP=10000

I CHECK_GAP=5000

I CHECK_GAP=200

I
d
s
/
s
e
c

3
"

3
"

9
‘

9
‘
S

o
u

o
u

o

I
l
l
l
L
l
l
l
l
l
l
l
l
l
l
l
J
l

5
"
U
s

l

S
"

5
‘

U
!

0

l
1

l

exec 9 exec 12 exec 15 ps 9 ps 12 ps 15

Filo/bits

Figure 7.4: Compression With Varying Values of check.gap

common UNIX executable files while the pa file is a concatenation of 3 postscript files that

represent technical documents. Each file was transmitted using different values of n, the

number of bits used to represent an index. A larger n leads to a larger dictionary and better

compression. For these specific files, a smaller chechap value results in better compression.

Having too large a value of chechgap means that the dictionary cannot clear often enough

to eficiently track the changing nature of the input data. This concept will be revisited

later.

7.5 Packet Loss and Synchronization

State maintenance is a critical operation for a compression implementation. Proper

decoding requires that the compressor and decompressor maintain identical copies of the

dictionary. Since the decompressor updates its dictionary based on received input, any data

loss will destroy the continuity between the two endpoints. While data loss is typically not

99

a problem in file—based systems, the unreliable medium of a communication network forces

the implementation to add mechanisms to ensure both sides remain synchronized.

This implementation uses a combination of stop—and-wait ARQ combined with sequence

numbers. The PPP framing mechanism includes a checksum that will detect bit errors.

Upon error detection, packets, which in this case may be compressed framed IP datagrams,

will be dropped. The data compressor will not know that an error has occurred until it

receives the next numbered packet. Care must be taken here to note that not all packets

are numbered. As explained in section 7.2.4, uncompressed packets may be sent using

an unnumbered mode (no sequence number is included in the packet framing). So, it is

quite possible that several packets will arrive before the decompression engine realizes that

synchronization has been lost.

Upon the detection of synchronization loss, the decompression engine will set a flag that

causes all incoming packets to be dropped. It then issues a reset request (RESETREQ)

to the peer. Such a request, when received by the compressor, causes the compressor to

clear its dictionary to an empty state, flush any queued but already compressed datagrams,

and issue a reset acknowledgment (RESETACK). When the RESETACK is received back

by the decompressor, the decompressor resets the drop packet flag, clears its dictionary

and begins operation again. Operation of the RESETREQ/RESETACK control channel is

relegated to a user level program that provides reliable delivery through a retransmission

mechanism. The important things to note about this round trip reset are that all packets get

dropped between the detection of a lost packet and reception of the final RESETACK. This

may include some unnumbered packets that slip by before an error is detected on the next

numbered packet. These unnumbered packets get dropped by TCP when their checksums

fail. Further, the result of the RESETREQ/RESETACK is that both sides completely

100

clear their dictionary and start over with an empty copy. As mentioned in section 7.2.3,

this probably means that the next few packets will be sent uncompressed.

7.5.1 Performance Analysis in the Presence of Noise

One common trait of the wireless medium is noise. Data corruption and the subsequent

packet losses can significantly affect throughput numbers. Techniques such as forward error

correction (FEC) and TCP retransmission modifications [1, 4, 6, 50] have been proposed

in an attempt to reduce the effects of data errors. FEC is useful for removing errors while

TCP modifications help cope with the required retransmissions when unrecoverable errors

do occur. Unfortunately, data compression adds a new variable to the picture. Namely,

the compression dictionary synchronization issue. Loss of synchronization will lead to the

discarding of a large number of packets that arrive over the medium with no bit errors. While

these packets arrive intact, they cannot be decoded properly because of dependencies on

the compression dictionaries. This subsection investigates the extent of this dependency.

7.5.2 Throughput Figures

Figures 7.5 and 7.6 show the performance of LZW compression in a noisy environment

using an MTU of 296 bytes, no VJ compression, and the standard LZW algorithm. For

small dictionary sizes, it is apparent that performance is worse than when compression is

not enabled (0 bits). The only gain comes when the dictionary is large enough to provide for

significant compression. For these gains, the benefit of compression outweighs the penalty

of synchronization loss and discarded packets. The compression benefit is composed of two

parts. The first is due to the reduced number of bytes that must cross the low-bandwidth

link. The second is due to the reduced probability that a small packet will be hit by noise

101

as compared to its large uncompressed counterpart. None of the runs exhibit the large

increases displayed in the noiseless environment (Figure 7.3).

3.5 1

.

3.0 e

2.5 — E] Obits

U ‘ E] 9bits

% 2'0 j I 12 bits

'5 1.5 e I 15 bits

1.0 e

0.5 e

0.0

exec ps

File

Figure 7.5: LZW Compression With Random Noise

It is well known that standard TCP is not suited for a noisy environment[1]. In situations

of packet loss, TCP will assume congestion as the cause and will apply throttle—back and

slow—start mechanisms. While these definitely affect the throughput numbers displayed,

a more telling figure of the dependencies related specifically to LZW compression are the

number of packets discarded and the number of retransmissions required to complete the

transfers. Table 7.1 shows the average values for the graphs displayed. Each value represents

the average counts for transferring one copy the ezec file plus one copy of the ps file. Pkt

represents the number of IP packets successfully handed to the higher layers of the stack,

Err the number of errors encountered, Toss the number of packets discarded in addition to

the error packet because endpoints are out of synchronization, Retrans the number of TCP

102

4.5

4.0

3.5

D Obits

E] 9bits

I 12 bits

I 15 bits

3.0

2.5

K
b
v
t
e
s
/
S
e
c

2.0

l
i
l
u
l
1
l
1
l
i
l
i
l
i
l
i
l

0.5

1

0.0 ~

File

Figure 7.6: LZW Compression With Burst Noise

retransmissions, and Ratio, the ratio of received compressed bytes to uncompressed bytes.

As can be seen, the dependencies induced by the use of LZW compression cause a dramatic

increase in the number of retransmissions.

Table 7.1: Error Statistics for Standard LZW Scheme

103

7.6 The New LZW Algorithm

The previous section showed the performance hit taken when synchronization depen-

dencies were introduced at the data link layer. While it is possible to completely remove

errors by introducing a reliable data link layer below the data compression engine, it is not

clear that this is always desirable. For instance, DeSimone et al. [11] have shown that a

reliable link layer can lead to unwanted interactions between higher level retransmission

schemes. Working under the assumption that there is not a reliable link layer, this work in-

vestigates mechanisms for operating LZW compressors in a noisy environment. This section

will introduce techniques that reduce the cost of packet errors.

Close analysis of the compression behavior reveals undesirable characteristics of the

current mechanisms. The first is that a RESETREQ/RESETACK results in both sides

completely clearing their dictionaries. Since compressors do not perform well until they

have lengthy strings against which to compress, the compression efficiency will temporarily

degrade until dictionaries become partially full. The second is that once an error occurs, all

compressed packets must be discarded until the RESETREQ/RESETACK has successfully

restored the synchronization between the endpoints. All of these discarded packets must

eventually be retransmitted by the higher transport layer.

To address these problems, a new model of transmission is adopted. This model, from

here on referred to as a generational model, uses a series of dictionary checkpoints and the

already present reliable RESETREQ/RESETACK round trip communication channel to

remove many of the synchronization dependencies that exist in the current implementation.

Figure 7.7 describes the structure of this model. Individual compressed packets are identified

by a tuple consisting of the generation number and count within the generation. The

generation number refers to a dictionary checkpoint (described in the next section) that

104

is guaranteed valid on both ends. The packet count is used to detect lost packets and to

initiate generation changes at the appropriate points.

Generation A Generation B Generation M

Figure 7.7: The Generational Model

7.6.1 Dictionary Checkpoints

Section 7.4 described the implementation of the LZW dictionary as a dual use array. A

key component of this array is the value of moment. This variable holds the index into the

dictionary where the next code will be inserted and is the growth point of the dictionary.

As each code is inserted, moment is incremented. Clears have the effect of resetting moment

to its initial value.

The generational model introduces the notion of a dictionary checkpoint. A checkpoint

is a value of moment that is guaranteed to correctly exist on both sides. If both sides agree

on moment then it is also the case that they agree on all values in the dictionary that have

indices less than moment (i.e., they are synchronized for codes that have indices less than

or equal to moment).

Using the notion of checkpoints, it is possible to remove some of the interpacket depen-

dencies in the compressor algorithm. The key is to modify the compression algorithm so

that it assigns a unique checkpoint to each generation. As packets from generation A are

run through the dictionary, the compressor first grows the dictionary as it normally would

when packets get compressed. However, the portion of the algorithm that emits the dictio-

nary indices into the “compressed” packet is limited to emitting values that are less than

105

or equal to the value of the checkpoint for generation A. In essence, the maximum size of

the dictionary is artificially limited to this checkpoint, guaranteeing that every code in the

compressed packet has an index less than or equal to the checkpoint. This means that upon

decompression, every code is guaranteed to exist in the decompression dictionary. Further,

since all packets in generation A use the same checkpoint, a packet loss inside generation A

does not render the decompressor unable to continue decompression within that generation.

Generational changes are a critical point during operation. Packets within a generation

are independent from the decompressor point of view. Once n packets have been sent, the

compressor will bump the generation count. This process entails two important steps. The

first is that the checkpoint moment is changed to the real value of moment. This new

moment checkpoint will either incorporates all of the new strings that were added from the

last generation, or it will be reset to its initial position (a clear) if the local compression

ratio is deemed poor. The new setting will be used for the next generation and should allow

better compression since the dictionary has hopefully changed in a positive manner. The

second thing that happens is that the sequence number is modified to reflect that it belongs

to the next generation. This is an important step since this change signals the decompressor

that it should bump its checkpoint to agree with the compressor.

7.6.2 Packet Errors and RESETREQ/RESETACK Behavior

Remember that even though packets are output with artificially limited indices, the

compressor is still growing the real value of moment. As stated previously, a generational

change means that both sides start to use a larger value of moment and thus gain the added

benefit of longer strings in the dictionary. However, there is still the required maintenance

of guaranteeing that both sides are consistent up to the next checkpoint. This maintenance

106

is performed through the RESETREQ/RESETACK mechanism.

If the decompressor determines that a packet loss has occurred, then the state of the

decompression dictionary, somewhere past the current generational checkpoint, will be out

of synchronization with the compression dictionary. Since the compressor is not susceptible

to packet loss, then the decompressor can assume that its dictionary is in sync with the

compressor up to the value of moment that was generated by the decompression of the last

packet that successfully arrived in order. Using this knowledge, the decompressor can use

the reliable RESETREQ/RESETACK channel to notify the compressor of its state prior

to the detected loss. It does this by appending a value of the last known good moment

and packet sequence number to the RESETREQ. The compressor, upon receiving these

values, has reliable information about the decompressor’s state and can make a decision

about how to proceed. If it needs to perform a clear (or has detected it performed a clear

in a generation gap that is already in the pipeline) it will reset its dictionary. If not, it

will set its checkpoint to the value sent by the decompressor? Either way, the compressor

sends back a value of moment and a new sequence number that represents the start of a

new generation. The decompressor will use these new values unconditionally. This allows

the compressor to make the final decision on the new state.

7.7 Performance of the New LZW Algorithm

This section looks at the performance of the new algorithm both in a noiseless environ-

ment (Figure 7.8) and in noisy environments (Figures 7.9 and 7.10). Only LZW compression

using a fifteen bit dictionary index length is addressed. This is the most memory intensive

2This has the added benefit of jumping the checkpoint further into the dictionary before a. generational

gap has arrived.

107

case and provides the best noiseless compression.

The error free case is shown for various generation lengths. One may recall that the

compressor and decompressor are only allowed to clear their dictionaries between genera-

tions. This means that longer generations allow fewer clears. Part of the shown performance

differences are due to the lack of clears and are analogous to the check_gop graphs as pre-

viously described in Section 7.4. Longer generation counts have the same effect as larger

check.gap values. Longer generation counts can also have a negative effect on compression

ratios. Since the dictionary only grows at generational gaps, more packets are compressed

with an old (smaller) dictionary. Each of these packets does not benefit from the dictionary

growth generated by the previous packets in the current generation.

E] GenCount=l

E] GenCount=5

I GenCount=10

I GenCount=15

E] GenCount=20

I GenCount=25

I GenCoum=30

K
B
y
t
e
/
S
e
c

ps

Figure 7.8: Various Generation Gaps Under Error Ree 'Il‘ansmission

Noise adds a new factor in the determination of performance. Since packets within a

generation are independent, then larger generations provide for fewer discarded packets.

Recall that packets are only discarded when a RESETREQ/RESETACK is pending and

108

packets start to arrive from the next generation. Larger generation counts mean a higher

probability that the RESETREQ/RESETACK will complete within the same generation.

This must be balanced with the negative effects that large generation counts have on com-

pression. Figures 7.9 and 7.10 exhibit a curve that shows performance increasing as the

generation gap increases enough to balance the discarded packets. As the generation count

grows too high, the poor compression outweighs the benefits of fewer discarded packets and

performance drops off again. Table 7.2 shows this tradeoff. The ratio column clearly shows

the compression dropoff while the retransmission column shows the reduction in retrans-

missions. Compared with Table 7.1, one can see significantly fewer discarded packets over

the standard LZW scheme.

D GenCount=1

E] GenCount=5

I GenCount=10

I GenCount=15

D GenCoum=20

I GenCoum=25

I GenCoum=30

K
B
y
t
e
s
/
S
e
c

File

Figure 7.9: New Algorithm With Random Error

K
B
v
l
e
V
S
e
c

109

5.0 —

4.5 -‘

4.0 A

3.5 D Gen Coum=l

D Gen Count = 5

3~0 - Gen Count = 10

25 - Gen Count = 15

D Gen Count = 20

I Gen Count = 25

I Gen Count = 30

r
—
n
—
n

O
M

N o

l
l
l
l
l
l
l
l
l
l
l
|
l
l
l

P u

P o

File

Figure 7.10: New Algorithm With Burst Error

Table 7.2: Error Statistics for the New LZW Scheme With 15 Bit Dictionary

110

7.8 Receiver Controlled Synchronization

The previous sections discussed the Generational Model. This model has the advantage

that packets within a generation are independent. Dropped packets do not cause a synchro-

nization loss until a generational gap is encountered. When such a gap is encountered, all

packets are discarded until resynchronization is complete. This generational model removes

some of the interpacket dependencies and shows a significant reduction in the number of

discarded packets. However, there are still dependencies shared by the compressor and

decompressor. Both ends must simultaneously recognize generational gaps and simultane-

ously update the value of the generational mment at each generational gap. Since only

the receiver knows about packet losses, the system must endure large round latencies for

a RESETREQ/RESETACK. The round trip latencies cause packets to cross generational

gaps during error conditions and thus force the receiver into a packet discard mode. To

remedy this situation a second modification was performed. This modification makes heavy

use of the round trip control channel and gives the receiver complete control over when to

perform a generational update. With this new method, the compressor will never perform

a generational update unless requested by the receiver.

In the error free conditions, this second LZW algorithm is similar to the previous gen-

erational model. Operation of the compressor is essentially unchanged. It still compresses

all packets with the initial generational ma$_ent and keeps a separate copy of the real

maaent. However, the compressor will ignore the packet count and never assume that

a generational gap has been encountered. The decompressor also behaves in essentially

the same manner, but unlike the compressor, it keeps track of the generational gaps as it

normally would. After a fixed number of packets, the decompressor will signal the com-

pressor through the control channel. The signal, called a GENREQ/GENACK, is similar

111

to a RESETREQ/RESETACK but does not indicate that synchronization has been lost.

Such a message has the effect of telling the compressor that it may bump its generational

manent. However, unlike the RESETREQ/RESETACK, the value of the real max.ent is

left unchanged. So in essence, the GENREQ/GENACK notifies the compressor to perform

a generational update.

The signalling channel is used in a stop—and—wait mode. At any given time, only

one GENREQ/GENACK or RESETREQ/RESETACK can be outstanding. Since this

control channel is reliable, there is no need to worry about losing such a request due

to noise. If a request is outstanding and another request comes through, it is held un-

til the outstanding request is satisfied. Since both the RESETREQ/RESETACK and

GENREQ/GENACK must share the channel, a priority scheme is used for arbitration.

Outstanding RESETREQ/RESETACK packets will always override GENREQ/GENACK

since the operations performed by a RESETREQ/RESETACK include those performed by

a GENREQ/GENACK.

Use of the modified algorithm almost guarantees that the endpoints will never become

unsynchronized and simplifies synchronization. The only case in which the endpoints may

lose synchronization is if a GENACK (a very small packet) gets corrupted by noise and

dropped. In this case, the compressor has already updated its value of the generational

maz.ent but the decompressor will not receive the GENACK and so not make the update.

Any following packets on the link will then get dropped because they crossed a generational

boundary without a decompressor update. The decompressor can detect when this situation

arises since it will receive packets in a new generation. On occurrence, it will active the

standard RESETREQ/RESETACK to resynchronize the dictionaries.

Table 7.3 shows the results of the same transfers using the new algorithm. As the

112

Table 7.3: Error Statistics for the Receiver Directed LZW Scheme With 15 Bit Dictionary

Error Type—Gen Count Pkt Err Toss Retrans Ratio

Random—1 4761 77 20 173 0.41

Random—5 4438 71 14 132 0.41

Random—10 4128 74 16 170 0.41

Random—15 3927 77 8 175 0.41

Random—20 3842 78 9 167 0.40

Random—25 3785 78 7 176 0.39

Random—30 3770 73 4 189 0.40

Random—35 3724 75 3 165 0.40

Random—40 3710 70 0 166 0.40

generation size grows, the chance of losing a GENACK decreases. One can note that in the

final stages there are almost no discarded packets and at forty, our results show zero extra

discarded packets.

Just as in the first modification, the receiver directed approach does have some draw-

backs. Since the system uses a stop—and—wait approach to generational updates, the round

trip time of the GENREQ/GENACK limits the speed at which these updates may occur.

This can lead to poor tracking of dictionary clears (analogous to having too large of a value

for the CHECK.GAP). This directly affects the compression ratios given by the algorithms.

7.9 TCP Failure

With the severe reductions in discarded packets, one may ask why there are not better

throughput gains. This is an excellent question that prompted further investigation. It turns

out that even with the reduced number of dropped packets and reduced retransmissions,

the compression engine is still waiting on the TCP implementation. The current TCP stack

is unable to keep the data pipe full with packets. Figures 7.11 and 7.12 show the increase in

TCP sequence numbers versus time for the best case performance of the first modification

113

of the LZW algorithm (using fifteen bits of compression and a generation count of fifteen).

Two arbitrary sections show significant time where the sequence numbers increment slowly

or not at all. Because it is know that there are relatively few retransmissions, it is asserted

that these slow increments are not due entirely to retransmissions. Instead, they are due to

the congestion avoidance mechanisms of TCP. Indeed, these graphs are reminiscent of those

produced by Caceres et al. [6] during their investigations in improving TCP performance

in mobile computing environments. Since TCP is above the level at which this compression

is implemented, any of the previously mentioned TCP optimizations (see Section 2) can

co—exist with this work. It is asserted that those mechanisms will be able to adjust the

TCP parameters in such a way that TCP will then be able to keep the pipe full. Under

such circumstances, the reduction in the number of retransmissions should increase the

performance of the link.

7.10 Summary

This chapter was devoted to showing how state maintenance in a LZW compression

implementation can be modified to better tolerate errors. Unlike the VJ protocol, the

LZW protocol maintains a reliable duplex signalling channel that can be used to convey

control information. This channel gives more latitude in making control decisions. The

original LZW system was shown to behave poorly on noisy channels. Upon detection

of a corrupted packet, it would drop excessive numbers of packets until the endpoints

regained synchronization. A new protocol was developed that allowed the system to better

tolerate errors. The new protocol can trade off compression efficiency for probability of

synchronization loss. It dramatically reduces the number of discarded packets. Because

of standard TCP mechanisms beyond the control of this testbed, throughput numbers did

114

25m T I I I I I I

200000 ~ .

3

5 150000 - -
z

3

g 100000 - .

95
p...

50000 - .

o L I l l l l l

10 20 30 40 50 60 70

Time (seconds)

Figure 7.11: TCP Sequence Numbers Over Time

not reflect the gains that should be present from the reduced number of discarded packets.

However, it was shown that the TCP implementation was at fault since it was unable to keep

the link active. Other investigators have addressed the TCP problem and their solutions

should solve that aspect of the operation.

T
C
P
S
e
q
u
e
n
c
e
N
u
m
b
e
r

115

i
i

 l I l l l

 O

110 120 130 140 150 160

Time (seconds)

Figure 7.12: TCP Sequence Numbers Over Time

170

Chapter 8

Conclusion

8.1 Document Review

This dissertation investigates two noise tolerant compression protocols. The work starts

with the basic assumptions that wide—area wireless networks are both bandwidth con-

strained and noise limited. From these assumptions it was surmised that the behavior of

low—bandwidth networks users would produce traffic patterns different from those presented

in previous works. Chapter 4 described a mechanism that effectively captured session statis-

tics in a distributed fashion. The collected dumps were first compared to traffic patterns

described in high speed traffic surveys. They were then further analyzed to provide indi-

vidual user level statistics that were not found in previous works. It was observed that

bandwidth constraints impose restrictions that cause traffic to vary from that provided in

previous works. However, it was also noted that most of the application level traffic consists

of the expected mixes of mail, news, login, and web.

The rationale for the traffic study was to justify the trafic types that would be used

as input to packet based compressors. It was found that the most common low—bandwidth

116

117

application level protocols have the potential to compress very well. To understand just

how these protocols compress, Chapter 5 analyzed the header and payload compression

characteristics of the top protocols found in the trafic analysis. Besides giving a compar-

ative base on the effectiveness of these types of compression, it showed that variations in

packet payload compressibility lead to a flattening of the standard bi—modal packet size

distribution. Any shift away from a small number of large sized packets has two effects

that were of interest to this work. First, increasing the number of smaller packets increases

the protocol overhead that exists on a channel. Additional protocol overhead cuts into the

usable capacity of an already limited link. Second, more packets mean that dependent noise

has the potential to disrupt a potentially large number of independent multiplexed streams.

This causes synchronization problems with packet level compressors.

In Chapter 6, it was shown that Van Jacobson (VJ) TCP header compression can be es-

pecially good at removing TCP protocol overhead in a noiseless environment. Unfortunately,

it was also shown that when moved to the noisy wireless environment, the performance of

this compressor dropped to below that of not using header compression. The contribution of

Chapter 6 is a description of modifications to the VJ communications protocol that allow it

to better tolerate errors. Drawing on both the size distributions presented in Chapter 4 and

the compression performance characteristics described in Chapter 5, several enhancements

were made to the standard VJ algorithm. These enhancements allowed the use of VJ com—

pression on interactive traffic while maintaining the same performance as links that avoid

VJ compression. Further enhancements removed many of the dependencies that were im-

plicitly transmitted on the link. This resulted in a new noise tolerant protocol that is nearly

as effective as the standard protocol on noiseless links and can significantly outperform the

standard on random or burst error channels.

118

With the success of the noise tolerant VJ protocol, Chapter 7 attempted to apply the

same concepts to a LZW payload compressor. Unfortunately, the architecture of LZW

communications channel was significantly different from that of the VJ channel. This meant

that the VJ mechanisms could not be used directly.

The LZW bi—directional communications protocol allowed greater leeway in operation

and provided a more sophisticated mechanism for detecting synchronization loss. Noise

tolerance was approached by adding a generational update structure on top of the protocol.

This structure helped to remove the interpacket dependencies implicit on the link. By

modifying the size of the generation, one was able to tradeoff compression efficiency against

the probability of synchronization loss. Such a scheme results in dramatic reductions in

packet loss on the link. To improve the scheme further, the protocol was again modified

to place all generational control in the decompressor. This removed almost all implicit

information stored on the link and reduced the shared state that was present in the original

algorithm. This modification resulted in even further reductions in packet loss. In some

configurations, no additional packets were discarded when a packet was dropped due to

noise.

The unfortunate reality of the LZW modifications is that throughput gains were not

readily apparent. Even though the noise tolerant aspects of the protocol were successful

(as shown by the dramatic reduction in discarded packets), throughput figures did not

significantly increase. After specific investigations as to the cause, it was shown that the

TCP implementation was unable to properly handle the noise present on the link. Even with

almost no added packet discards, TCP was unable to keep the link filled with data packets.

Frequent pauses, some lasting several seconds, reduced the efficiency of the transfer. The

good news is that this is not an unknown phenomenon. Several independent works have

119

identified this problem and have suggested techniques for modifying TCP so that it will

perform better on error prone links. It is asserted that these TCP modifications, which are

totally independent from this work, can correct the TCP deficiency and would allow the

noise tolerant LZW scheme to provide better throughput than its original counterpart.

8.2 Future Work

There are several directions that may be pursued with this work. This section outlines

areas that merit further investigation.

8.2.1 Further LZW Analysis

The most obvious extension would be to port the noise tolerant algorithms over to

a system that allowed modification of TCP. Then, one could combine the enhanced TCP

algorithms with the noise tolerant LZW scheme to determine the exact throughput increases

that could be generated.

A second direction for these algorithms would be to apply the slow—start algorithm

suggested by Degermark et al. ([9] and as described in Chapter 2 on page 26) to the

generational gap size in the receiver controlled LZW scheme. This mechanism would start

out by sending generational updates frequently. This would allow both sides to quickly build

up a their generational dictionaries at the expense of operating under a higher probability

of synchronization loss. Over time, the algorithm then slowly increases generational gap

to reduce the probability of synchronization loss. One would hope that this would help

balance the tradeoff between generation size and compression efficiency.

120

8.2.2 Multiple Compressor Comparison

Chapter 5 investigated the compressibilty of those protocols that are highly used on

low—bandwidth links. It would be interesting to implement some combination of the LZS-

DCP, Predictor, Gandalf FZA, Stac LZS, and Microsoft per—packet algorithms and compare

them using the same packet based graphing technique. Such a comparison could lead to

hybrid compressors that outperform any one algorithm. A dynamic selection of algorithm

combinations could also be investigated. Such a selector could tailor the algorithm choice

based on parameters such as the signal—to—noise ratio of the channel, the past history of

data flow (i.e. the transition information found in Chapter 5), and on packet size estimates.

8.2.3 CPU 'Iradeoffs and Alternate Implementations

VJ and LZW compression tradeoff memory and CPU processing to reduce transmis-

sion requirements. At some point there is a data rate at which one breaks even on the

tradeoff. This break even point is a moving target based on the ever changing ratio of

CPU cycles to link speed. With the success of programmable DSP based communications

solutions, it would be interesting to investigate high—speed DSP based implementations of

these algorithms to determine if they could be successfully applied on systems such as cable

modems and xDSL. Such systems usually have highly asymmetric bandwidth constraints

that could lead to further algorithmic enhancements. For instance, IEEE 802.14 based cable

modems will contend for a two megabit per second upstream channel and have access to

a forty megabit per second downstream. Upstream communication is subject to very high

latencies while downstream communication is totally controlled by the headend. Providing

the headend had enough computational power to provide compression, it is possible that

an implementation of the compression protocols could take advantage of the asymmetric

121

bandwidth to reduce the latency of the upstream. An asymmetric programmable compres-

sion solution that outperforms V.42bis would be quite valuable.

8.2.4 IPv6

IPv6 opens a new realm for exploration. As partially addressed by Degermark et al. [9,

10], protocol overhead will account for a larger percentage of the available bandwidth than

does IPv4. One question that needs answering regards the synchronization requirements

that link level encryption adds to the system. Such encryption could interfere with the

operation of data compressors. As an example, it appears that providing header compression

before encryption would hide important protocol information from the encryption scheme.

Applying header compression after encryption would fail since most header information

would be unintelligible. Further, since encryption probably requires its own synchronization,

the issue of their interoperation must be addressed. Algorithms need to be developed that

would allow each of the independent synchronization schemes to co—exist on a noisy channel.

BIBLIOGRAPHY

Bibliography

[1] Elan Amir, Hari Balakrishnan, Srinivasan Seshan, and Randy H. Katz, “Efficient TCP

over networks with wireless links,” in Proceedings Fifth Workshop on Hot Topics in

Operating Systems (HotOS- V), May 1995, pp. 35—40.

[2] Jorgen Bach Andersen, Theodore S. Rappaport, and Susumu Yoshida, “Propagation

measurements and models for wireless communications channels,” IEEE Communica-

tions, vol. 33, pp. 42—49, Jan 1995.

[3] BR. Badrinath and T. Imielinski, “Replication and mobility,” Technical report, De-

partment of Computer Science, Rutgers University, 1992.

[4] Ajay Bakre and RR. Badrinath, “I-TCP: Indirect TCP for mobile hosts,” in Proceed-

ings of the 15th International Conference on Distributed Computing Systems, May 30

— June 2 1995, pp. 136—143.

[5] Ramon Caceres, Peter B. Danzig, Sugih Jamin, and Danny J. Mitzel, “Characteristics

of wide-area TCP/1P conversations,” Proceedings of SIGCOMM ’91, vol. 21, pp. 101—

112, 1991.

[6] Ramon Ceceres and Liviu Iftode, “Improving the performance of reliable transport

protocols in mobile computing environments,” IEEE Journal on Selected Areas in

Communications, vol. 13, pp. 850—857, June 1995.

[7] D. Carr, “PPP gandalf FZA compression protocol,” RFC 1993, Network Working

Group, Aug. 1996.

[8] Ojas T. Choksi, “Performance of data link layer in cellular radio environment,” Mas-

ter’s thesis, Rutgers University, May 1994.

[9] Mikael Degermark, Mathias Engan, Bj6rn Nordgren, and Stephen Pink, “Low—

loss TCP/1P header compression for wireless networks,” Technical report,

CDT/Department of Computer Science, Lulea University, S—971 87 Lulea, Sweden,

1996.

[10] Mikael Degermark and Stephen Pink, “Soft state header compression for wireless

networks,” Technical report, CDT/Department of Computer Science, Lulea University,

S—971 87 Lulea, Sweden, 1996.

[11] Antonio DeSimone, Mooi Choo Chuah, and On-Ching Yue, “Throughtput performance

of transport—layer protocols over wireless LANs,” in Proceedings of IEEE Globecom,

volume 1, November 29 — December 2 1993, pp. 542-549.

122

123

[12] ED. Elliott, “Estimates of error rates for codes on burst—noise channels,” The Bell

System Technical Journal, vol. XLII, pp. 1977—1997, sep 1963.

[13] David J. Farber, Gary S. Delp, and Thomas M. Conte, “A thinwire protocol for

connecting personal computers to the internet,” RFC 914, Network Working Group,

Sept. 1984.

[14] N. Reed and A Cargille., “Smtp service extension for command pipelining,” RFC

1854, Network Working Group, Oct. 1995.

[15] R. Friend and W. Simpson, “PPP Stac LZS compression protocol,” RFC 1974, Network

Working Group, Aug. 1996.

[16] Bruce D. E'itchman, “A binary channel characterization using partitioned markov

chains,” IEEE Transactions on Information Theory, vol. IT—13, pp. 221—227, Apr.

1967.

[17] EN. Gilbert, “Capacity of a burst—noise channel,” The Bell System Technical Journal,

vol. XXXIX, pp. 1253—1265, Sep 1960.

[18] Riccardo Gusella, “A measurement study of diskless workstation traffic on an Ether-

net,” IEEE Transactions on Communications, vol. 38, pp. 1557-1567, Sept. 1990.

[19] M. Hata, “Empirical formulat for propagation loss in land mobile radio services,” IEEE

Transactions on Vehicular Technology, vol. VT—29, pp. 317-325, 1980.

[20] Gilbert Held, Data Compression, Second Edition, chapter 2, pp. 20—121 John Wiley

Kc Sons, 1987.

[21] T. Imielinski and RR. Badrinath, “Mobile wireless computing: Solutions and chal-

lenges in data managemen ,” DataMan Project, WINLAB, Rutgers University, 1992.

[22] John Ioannidis, Dan Duchamp, and Gerald Maguire, Jr., “IP—based protocols for

mobile internetworking,” in SIGCOMM 91, Sept. 1991, pp. 235—245.

[23] V. Jacobson, “Compressing TCP/IP headers for Low-Speed Serial Links,” RFC 1144,

Network Working Group, Feb. 1990.

[24] Van Jacobson, “Congestion avoidance and control,” in Proceedings ofACM SIGCOMM

’88, Aug. 1988.

[25] Raj Jain and Shawn A. Routhier, “Packet trains - measurements and a new model for

computer network traffic,” IEEE Journal on Selected Areas in Communications, vol.

SAC—4, pp. 986—995, 1986.

[26] Laveen N. Kanal and A.R.K. Sastry, “Models for channels with memory and their

applications to error control,” Proceedings of the IEEE, vol. 66, pp. 724—744, July

‘ 1978.

[27] Raymond J. Leopold and Ann Miller, “The IRIDIUM communications system,” IEEE

Potentials, vol. 12, pp. 6—9, Apr. 1993.

124

[28] Allen H. Levesque and Kaveh Pahlavan, “Wireless data,” in Jerry D. Gibson, edi-

tor, The Mobile Communications Handbook, chapter 35, pp. 553—567. CRC Press in

Cooperation with the IEEE Press, 1996.

[29] Robert W. Lucky, Silicon Dreams: Information, man, and machine, chapter 3,4, pp.

37—145 St. Martin’s Press, New York, 1989.

[30] Paul Mackerras, “PPP—2.3,” Available via anonymous FTP from cs.anu.edu.au, May

1996.

[31] S. Mathur and M. Lewis, “Compressing IPX headers over WAN media (CIPX),” RFC

1553, Network Working Group, Dec. 1993.

[32] Steven McCanne and Van Jacobson, “The BSD packet filter: A new architecture

for user-level packet capture,” Proceedings of the 1993 Winter USENIX Conference,

San Diego, CA., and available via anonymous FTP from ftp.ee.lbl.gov:/papers/bpf-

usenix93.ps.Z, 1993.

[33] Janice Obuchowski, “Wireless communications and spectrum conservation: Sending a

signal to conserve,” IEEE Communications Magazine, vol. , pp. 26—29, Feb. 1991.

[34] Y. Okumura, E. Ohmori, T. Kawano, and K. Fakuda, “Field strength and its variability

in VHF and UHF land mobile radio service,” Rev. elec. Communications Lab, vol. 16,

pp. 825—873, 1968.

[35] Vern Paxson, “Empirically—derived analytic models of wide—area TCP connections,”

IEEE Transactions on Networking, vol. 2, pp. 316—336, Aug. 1994.

[36] Vern Paxson, “Growth trends in wide—area TCP connections,” IEEE Network, vol. 8,

pp. 8—17, July/August 1994.

[37] D. Rand, “The PPP compression control protocol (CCP),” RFC 1962, Network Work-

ing Group, June 1996.

[38] D. Rand, “PPP Predictor compression protocol,” RFC 1978, Network Working Group,

Aug. 1996.

[39] Theodore S. Rappaport, Rias Muhamed, and Varun Kapoor, “Propagation models,”

in Jerry D. Gibson, editor, The Mobile Communications Handbook, chapter 22, pp.

355-369. CRC Press in Cooperation wit the IEEE Press, 1996.

[40] J. Reynolds and J. Postel, “ASSIGNED NUMBERS,” RFC 1700, Network Working

Group, Oct. 1994.

[41] Martin S. Roden, Analog and Digital Communication Systems. Englewood Cliffs, New

Jersey, 07623: Prentice Hall, 1991.

[42] Claude E. Shannon, “A mathematical theory of communication,” Bell Systems Tech-

nical Journal, vol. 27, pp. 379—423 and 623—656, July and October 1948.

[43] W. Simpson, “The point—to—point protocol (PPP),” RFC 1661, Network Working

Group, Dec. 1993.

125

[44] FYancis Swarts and Hendrik C. Ferreira, “Markov characterization of digital fading

mobile VHF channels,” IEEE Transactions on Vehicular Technology, vol. 43, pp. 977—

985, Nov. 1994.

[45] S. Tsai, “Markov characterization of the HP. channel” ,” IEEE Transactions on

Communication Technology, vol. COM-17, pp. 24—32, 1969.

[46] Van Jacobson, C. Leres, and S. McCanne, “tcpdump,” Available via anonymous FTP

from ftp.ee.lbl.gov, June 1989.

[47] T. A. Welch, “A technique for high—performance data compression,” IEEE Computer,

vol. 17, pp. 8—19, 1984.

[48] Ross N. Williams, Adaptive Data Compression. 101 Philip Drive, Assinippi Park,

Norwell, Massachusetts 02061 USA: Kluwer Academic Publishers, 1991.

[49] J. Woods, “PPP Defiate protocol,” RFC 1979, Network Working Group, Aug. 1996.

[50] Raj Yavatkar and Namrata Bhagawat, “Improving end—to—end performance of TCP

over mobile internetworks,” in Proceedings of the Workshop on Mobile Computing

Systems and Applications, Dec. 1995, pp. 146—152.

[51] J. Ziv and A. Lempel, “Compression of individual sequences via variable—rate coding,”

IEEE Transactions on Information Theory, vol. 24, pp. 530—536, 1978.

 HICHIGRN STR

[HIM III
13 S3

TE UNIV.

12 301579

LIBRARIES

[lHllWlHHl
6604

