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ABSTRACT

Rare Gas Atoms and Cluster of Atoms Inside Microporous Solids

By

Boyong Chen

Physical properties of both quantum and classical rare gas atoms and cluster

of atoms confined inside microporous solids have been studied in this thesis.

In microporous media characterized by pore size in the range 5 ~ 15 A, mass

transport of He atoms at low temperatures is quantum mechanical in nature. By

solving the one-particle Schrodinger equation, we investigate the effective mass

m“/m of He atoms (bare mass m) moving inside one-dimensional tubular chan-

nels consisting of cylindrical cages connected by necks of different diameters and

lengths. We find that m/m“ is a highly nonlinear function of the geometrical

parameters characterizing these channels. We also find that in the presence of

an attractive potential produced by positive ions located on the channel wall, the

atoms are trapped near the wall, resulting in a drastic reduction in m/m‘.

Low lying excitations of 4He and 3He atoms confined inside zeolite cages have

been modelled by Bose-Hubbard and Mott-Hubbard rings with strong intrasite

repulsion and finite intersite attraction. Calculated temperature and concentra-

tion dependence of the heat capacities agree well with the experiment except at

very low temperatures. We argue that the discrepency with experiment is due



to the disorder effects which exist in the system. After the inclusion of the ef-

fect of tunnelling disorder, we obtained theoretical results which in much better

agreement with experiment. results.

Thermal properties and dynamic properties of X83c cluster and Xe60AM — a

cluster assembled material confined inside L-zeolite cages have been investigated

using extensive Monte Carlo (MC) and molecular dynamics simulations. By mon-

itoring the temperature (T) dependence of the average energy < E > and the

bond length fluctuation (6), we find that unlike a free Xes cluster which starts to

‘melt’ at a reasonably well defined T, the confined Xeac cluster for similar lengths

of MC runs shows a series of ‘melting’ temperatures. However, the average of

many long MC runs gives a relatively smooth variation of < E > and 5 with

temperature. One can still identify a ‘melting’ transition but at a much higher

temperature than that seen in the free cluster. On the other hand, X850AM sys-

tem shows a well defined ‘rnelting’ transition. The molecular dynamics simulation

demonstrates that Xe50AM has a much more stable structure than Xego.

The percolation properties of Ar and He atoms in the mixed ion pillared lay-

ered silicate clay systems [C'r(e'n)§+],,[C'o(en)‘.3Jr — (en)]1_,- fluorohectorite(FHT),

where (en) is an ethylenediamine ligand, at room temperatures have been investi-

gated using continuum MC simulation method. We find that the adsorptive and

diffusive properties depend sensitively on the size of the diffusing species and the

concentrations a: and (1 — 23) of the intercalants. Ar adsorption studies in the

above FHT system shows a percolative response when 2: reaches 0.79. Using sim-

ple geometrical models to describe these microporus media, along with computer

simulation, we can understand the a: = 0.79 percolation threshold.
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Chapter 1

Introduction

Physical properties of molecular or atomic systems are known to be dramatically

modified by confinement in restricted geometry. However, making explicit and

unambiguous connections between the geometry of the confining space and the

molecular properties have proven to be difficult in general, and the connections,

when made, are frequently controversial [1]. Nevertheless, behavior of these con-

fined systems is of considerable fundamental and practical interest. From a fun-

damental point of view, confinement reduces the phase space accessible to the sys-

tem. For example, the system of molecules/atoms can behave as a d-dimensional

system with d < 3 and we know that physical properties such as phase transitions,

transport and electronic properties are profoundly affected by the dimension d.

In addition, confinement can introduce inhomogeneities and disorder produced by

the confining medium which can also modify the physical properties of the imbibed

system. From a practical point of view, a wide class of porous confining media

such as zeolites, vycors, aerogels etc. are used commercially in such diverse fields

as chromatography, oil recovery, catalysis and membrane separation technology.

Many experimental and theoretical studies have been carried out to investigate



adsorption, diffusion and thermodynamic and dynamic properties of molecules

trapped inside porous media [1]-[11]. In addition, computer simulations have been

extremely useful in elucidating the behaviour of molecules confined in different

types of porous media [12H23]. One of the major tasks of theoretical condensed

matter physics is to model the physical system possible and to explain the observed

electronic, magnetic, structural, and dynamical properties of the confined system

and furthermore, to predict the properties of new but related systems.

During the years of my research in condensed matter theory in the group of

Prof. Mahanti, I have been focusing my attention on understanding the general

physical properties of rare gases trapped inside microporous materials, such as

pillared clays and zeolites. I have studied the behavior of He systems which behave

quantum mechanically at low temperatures and classically at room temperature

and Xe, Ar which are of practical interest. Because of their heavy mass, Xe and Ar

can be treated classically. In this chapter, I will give a general introduction to the

confining media of interest to me, namely zeolites and pillared layered silicates.

In addition, I will give a brief description of the Hubbard model which I have

used to represent the quantum mechanical behaviour of He atoms trapped inside

zeolites. I also give a brief description of the contents of each following chapter.

1.1 Characterization of porous media

Systems characterized by spatial restrictions and low dimensions, such as zeolites,

membranes, polymers, and porous glasses and minerals, are called porous media.

According to their pore size, porous media can be divided into three classes [24].

The first class includes macroporous media, where the length scale of the pore

 



is greater than 500A. Mesoporous media constitute a second class in which the

pores are larger than ~ 20A and smaller than 500A. A third class, with which

we are concerned in the thesis, embraces microporous (MP) media, with pore

sizes less than 20A. Zeolites are the most common examples of the MP media

[25]. Furthermore, depending on the pore structure, the effective dimensionality

of the physical system can be different. For example, parallel—walled slit pores,

such as those thought to occur in some partially graphitized carbon blacks [26],

graphite intercalation compounds [27] and pillared clays [28], restrain the particles

to move in two-dimensions, i.e., the system has one finite dimension out of 3D.

An example of restrictions in two finite dimensions is provided by the cylindrical

pores in porous vycor [29, 30]. Zeolites are mostly 3D constriction but with

periodic structures [25]. Aerogels and vycor glasses have much more complicated

pore structures which make the effective dimensionality of the system become a

non-integer number, namely their geometry is fractal [31].

1.1.1 Zeolites as examples of microporous (MP) solids

Zeolites are microporous inorganic compounds [25, 32]. Their crystal structure

contains large pores and voids which are usually regular and the effective pore

sizes are in the range from 3A to over 10A which are sufficient to permit the

diffusion of small organic molecules — a feature which gives rise to many of the

important applications of these materials, such as heterogenous catalysts and

molecular sieves. Most zeolite networks are aluminosilicates.

There are many kinds of zeolites. One of the simpliest zeolites with which

we are interested in our research is L-zeolite. Fig. 1.1 is a view along the [001]

direction of the aluminosilicate framework of L-zeolite [33, 34]. The idealized



composition per unit cell of L- zeolite is KaNaa[(A102)9(3i02)27]21H20. The

structure of the Linde type L-zeolite[34, 35] consists of a series of one-dimensional

channels which form hexagonal crystal structure and the c axis is along the channel

direction. The main channel has twelve framework oxygen atoms bounding the

aperture which is a nearly regular dodecagon. Six atoms form a ring of radius of

4.92A and the other six form a ring of radius 5.25A. The main channel opens up to

a diameter of 14.43A and then narrows back down in a unit cell length of 7.5A. Fig.

1.2 gives another view of the main channel seen along the c-axis. As can be seen

in fig. 1.1 the main channel is surrounded by six symmetrically spaced secondary

channels that connect the main channels of adjacent unit cells. We will refer to

these secondary channels as 8-channels because of the elongated octagon shape of

the channel when viewed along an axis parallel to the main channel. According

to this same viewpoint, there are six 4-channels which surround the main channel

and separate the 8-channels, and adjacent to each 4—channel on the opposite side

from the main channel is a 6-channel. A unit cell of this zeolite contains one

main channel, two 6-channels, three 8-channels, and six 4-channels. The shape

of the unit cell is that of a rhomboid with side length 18.4A, an interior angle

of 60 degrees, and a depth of 7.52A. The symmetry of the crystal is P6/mmm

as described in ”The International Table for X-ray Crystallography” [36]. The

total number of framework atoms in this unit cell is 108, with 72 Oxygen and 36

T-atoms (Si or A1).

K-L zeolite has the same overall structure as L—zeolite but with nearly nine K+

ions in each cage, for example there are 8.94 K+ ions and 0.61 N(1+ ions/unit cell.

There are four of these nearly nine K+ ions sitting near the wall of the cages while

the rest of them are distributed in the aluminosilicate framework. The presence



 
Figure 1.1: A [001] view of the framework of L—zeolite.



Active Y

 

Figure 1.2: A unit cell of L—zeolite (also called cage) showing the main channel

viewed along the channel axis. Only oxygen atoms of the framework are shown.



of K+ ions near the wall of the cage and inside the silicate frame in K-L zeolite

provide additional attractive potential on the adsorbed atoms and also introduce

disorder in the system.

1.1.2 Pillared layered silicates (pillared clays)

Pillared clays are intercalation compounds in which stable pillaring ions of various

sizes are intercalated into the galleries of layered silicates. The layered silicates

are usually alumina—silicate minerals or clay minerals such as vermiculiate, fluoro-

hectorite, and montmorillonite. Fig. 1.3 is a schematic illustration of an idealized

2:1 layered silicate which has two tetrahedral sheets fused to a central octahedral

sheet [37, 38]. In ideal case, the layers are neutralized. But in most cases, there

are net negative charges in the layers because of the random replacement of Si4+

by Al“. Usually, these charges are neutralized by small positive ions , such as

Na+, in between the layers. Using special techniques, one can replace these small

ions by some large cations(called pillars) into the galleries of the layers to obtain a

new material which has large voids or inter lamellar microporous space accessible

to guest molecules.

Because of the nature of the layers and large pores (about 20A), pillared clays

are excellent two-dimensional microporous materials inside which large molecular

species can diffuse into active surface sites [33] and undergo catalytic reaction.

1 .2 Hubbard model

Hubbard model [39, 40], one of the simplest models describing an interacting

many-body system, was proposed by Gutzwiller, Hubbard and Kanamori in early
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Figure 1.3: An idealized 2:1 layered silicate. Open circles are oxygens, small closed

circles are tetrahedral site cation Si, Al. Large closed circles are octahedral site

cation Al, Mg, Fe, Li, vacancy.



sixties. This model has been applied to study a great variety of physical systems,

electrons in solid [39], liquid 3He [41], Bose condensation of 4He in disordered

media [42] etc. Recently, this model and its generalizations have been found to

be quite promising to study the strong correlation physics in pristine and doped

Mott insulators, the latter showing high temperature superconductivity, colossal

magneto-resistance etc.

The simplest Hubbard model for fermions with spin is usually written as fol-

lows:

H = —t Z CLCJ', + UanTnu (1.1)

<ij>c i

where cL(c;,) are creation (annihilation) fermion operators associated with site i

and spin 0'; 11,-, = glad-a is the number operator. Attention is normally restricted

to hopping (or tunnelling) between neighbouring atoms, denoted by < ij >.

The first term corresponds to chemical bonding and is known as ‘hopping’

[39, 40]. This term is a single particle term and represents a transfer of a particle

from one site to a nearest neighbor site with hopping matrix element t. This con-

tribution favours itinerancy or delocalization by reducing the one particle energy

(also refered to as the kinetic energy).

The second term corresponds to the Coulomb repulsion between two particles

when they occupy the same localized site and is therefore a two particle interaction

term. The long range contributions to the electron-electron interaction is assumed

to be screened and only the interaction when both the particles are on the same

site is retained, yielding a repulsive energy of U. The model can be extended to

take care of both longer-range hopping (t —) t;,-) and longer-range interaction.
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For fermions (electrons or 3He) the Hubbard model is also refered to as the Mott-

Hubbard model because Mott realized the significance of the repulsive U term in

the problem of metal-insulator transition. If we apply the model to Bosons (such

as 4He), then c’s become Boson operators and the model is called Bose-Hubbard

model.

There are some basic properties of the Hubbard model. Two of them are

important in the current study, namely (i) n, = 2;, c[,c,-,, commutes with H,

therefore it is a good quantum number, and (ii) there is particle-hole symmetry.

1.3 Contents of different chapters

We will next briefly describe the contents of each chapter.

In chapter 2, we investigate the effective mass m‘/m of He atoms (bare mass m)

moving inside one-dimensional tubular microporous channels consisting of cylin-

drical cages connected by necks of different diameters and lengths by solving

the one-particle Schrddinger equation numerically. These channels are simplified

models of L—zeolite channels. From the relation between the effective mass, wave

function and the geometrical parameters, we can get some insight into the single

particle transport property. Most of the contents in this chapter were published in

Phys. Rev. B. [43]. In chapter 3, we discuss the low-lying excitations of He clus-

ters inside K-L zeolite using extended Mott—Hubbard and Bose-Hubbard models.

The results of the heat capacities are compared with experiments. The content of

this chapter was published in Phys. Rev. Lett. [44]. In chapter 4, we extend our

Mott-Hubbard and Bose-Hubbard models introduced in chapter 3 by including

disorder effect into the models. We study in detail the effects of disorder in the
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tunnelling on the low temperature thermal properties. This modification has led

to a much better agreement with experiments especially at very low temperatures.

In chapter 5, thermodynamic and dynamic properties of an isolated Xenon

cluster confined inside L—zeolite (denoted as Xem, 2 S n S 6) and Xenon clusters

confined inside L—zeolite as a cluster assembled material (denoted as XencAM,

n = 6) are studied by Monte Carlo and molecular dynamic simulation meth-

ods. The differences between free Xe3 cluster, X63,; and X660AM are explored.

A manuscript based on the contents in this chapter is going to be published

[21]. In chapter 6, we use continuum diffusion simulation to probe the per-

colative properties of Argon and Helium atoms in the heteroionic pillared clay

[Cr3+(en)3],[Co3+(en)2 + (en)]1-,—fluorohectorite(FHT), respectively. The con-

tents of this chapter was published in J. Chem. Phys [45]. Finally, we give a brief

conclusion in chapter 7.
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Chapter 2

Single Quantum Particle in 1D

MP Channels

2.1 Introduction

It is known that the physical properties of helium atoms (3H8, 4He), when mov-

ing in restricted geometry, differ dramatically from those in the bulk, particularly

at low temperatures, due to the influence of the topology of the confining medium

and the adsorption potentials exerted by the medium on the He atoms. Typi-

cal examples are: helium adsorbed on graphite [46, 47] and alkali metal [48, 49]

substrates, inside porous glass such as vycor [50, 51], aerogel [31] or microporous

media such as zeolites [52]-[60]. In fact, recent sorption measurements [61] of he-

lium in fullerite crystals and films show that helium atoms are mobile within the

microporous space of these crystals, thus opening up the possibility of realizing a

new type of three-dimensional quantum fluid.

One of the fundamental quantities that not only controls the mobility (trans-

port), but also other physical properties such as heat capacity and magnetic sus-

ceptibility (through density of states and interaction effects) in a confining geom-

etry is the effective mass (m‘/m) of He atoms. Depending upon the strength of

12
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the substrate potential and the nature of the microporous geometry, m"/m can

vary enormously. In particular, if this effective mass ratio is much larger than

1, any small perturbation such as coupling to the vibrational degrees of freedom

of the confining medium, inter-particle interaction or static disorder will tend to

localize the particles, thus strongly affecting their transport and thermodynamic

properties. Therefore, before one attempts to understand the effects of disorder

(both structural and thermal) and inter—particle interaction, one must understand

the effect of periodic geometry on the motion of a single helium atom.

In this chapter, we address the question of the effective mass of a single helium

atom moving in one-dimensional microporous channels found in K-L zeolite [57,

58], immogolite [62] and similar one dimensional zeolites. We focus on K-L zeolite

for which we will construct simple geometric models. Our results are however quite

general. We also present some results about a few low-lying excited states. We

study these systems primarily for two reasons. First, one-dimensional systems are

relatively simple and second, extensive studies of low-T thermodynamic properties

of 3He and 4He atoms in K-L zeolite have been made [57] which we can address

theoretically. As discussed in chapter 1, K-L zeolite consists of one-dimensional

channels of about 14.43 A diameter modulated by constrictions (necks) of about

7.5 A in diameter. Other one-dimensional zeolites in which helium adsorption

studies have also been made are ZSM-23 [59, 60], whose diameter is ~ 5.5 A.

Before going to the zeolite, we would like to point out that such physical

systems for which our calculations of m/m" are also relevant are electrons moving

inside the narrow channels of electrides [63] where the channels are formed in

the space between large organic cage-like molecules encapsulating positive alkali
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ions. Channels in a typical electride are shown in fig. 2.1 and fig. 2.2 [64].

Electrides are an exciting new class of systems which exhibit a wide variety of

electronic properties governed by the channel geometry. We also show in fig.2.3

and fig.2.4 [64] the channels in L—zeolite for comparison. Also recently electronic

energy band structures have been obtained by Lent et.al. [65] for electrons moving

inside periodically modulated channels, but these authors have not focussed on

the question of the effective mass which is of major interest here.

The atomic structure of an actual K-L zeolite as we have discussed before

is quite complicated. However we can analyze the essential physics of quantum

transport along the channel axis by using a simple model of the microporous

geometry. In a later chapter where we deal with classical systems such as Xe, we

will use a realistic atomic model of zeolite. Fig. 2.5a gives a schematic picture

of K-L zeolite, whose channels consist of cages connected by neck regions. The

boundary walls are formed by Si-O-S'i networks. In K-L zeolite, some of the S'i4+

ions are replaced by Al"+ ions and in addition there are charge compensating K+

ions. Some of these K+ ions are attached to the interior walls of the cage and the

rest are embedded in the silicate framework. The K+ ions on the wall provide

an attractive potential on the helium atoms. Thus in addition to the geometrical

confinement effects, the attractive potential produced by the K+ ions and the

silicate framework can also affect m/m‘ dramatically, particularly when the neck

becomes narrow.
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Figure 2.1: A typical channel structure of Cs+(18Crown6)3e‘ electride. The ring

structures are (18Crown6): and spheres are Cs ions, each Cs ion is sandwiched

between two (18Crown6) molecules.
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Figure 2.2: The channels of Cs+(18Crown6)2e‘ electride (It is the negative pic-

ture of the previous figure ) at 0.54 A from the molecular van der Waals surfaces.

Major channels are about 1.9 A by 4 A in cross section and 2-3 A long, with a

pronounced ”pinch” in the channel center caused by hydrogen atoms of the crown

center. Those major channels are connected by narrow channels which are z 1.5

A in diameter and z 4 A long.
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Figure 2.3: A channel structure of L-zeolite which is formed by silicate framework
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Figure 2.4: The channels of L-zeolite (It is the negative picture of the previous

figure) at 2.4 A from the channel surfaces. The porosity is about 57 %.
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(a)

 
 

 

 

(b)

Figure 2.5: (a). Schematic picture of a one-dimensional tubular channel in K-

L zeolite; (b). Geometrical parameters describing the one dimensional model

channel
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2.2 System and method

Fig. 2.5b describes the geometrical parameters used in our simple one-dimensional

model of the channels in K-L zeolite: A given channel is assumed to be cylindrical

and periodic along the z-axis with periodicity a. The channel consists of cages

(chambers) of diameter b and length 0 S c S a, connected by necks of diameter

d and length a — c. Transport properties of a quantum particle in such a channel

are influenced both by the geometry and the potential. For simplicity, we assume

that the boundary is a hard wall where the wave function vanishes.

The single particle Schrodinger equation inside the cages is:

h

-§;V2¢+V¢=E¢ (2'1)

We solve the single particle Schriidinger equation by setting the eigenfunctions

as Bloch functions, ¢n,1,k(1',¢, z) = un,l,k(r, qS, z)e““'. We then solve the equation

for the cell periodic part um”. and eigenvalues enl(k). The numerical method used

is the optimized iterative method for eigenvalue problems [66] for the ‘1D’ case,

i.e. 1])(1', 45, z) —) 1M2), with appropriate generalization to our problem. It includes

the following steps

1. Divide the unit cell into n, x n, x 124, mesh.

2. Give an initial guess of the wave function ¢° which is normalized properly.

3. The energy of the system is then given by

E =< ¢|H|¢ >= /(1V v’ 21) + v¢'¢)dr (2.2)

where it = 1,00, V = V/eo and so is the energy unit we have used in this chapter

(so = hz/(2mA’), m is the mass of the particle).
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4. Modify the wave function as following:

1/2’ =(1— Haw"

where dt is a fake time interval. Then, normalize it’.

5. Repeat step 3 and 4 until [AB] 2 [EH1 — E‘] S e , where e is an appropri-

ately chosen convergence parameter. Thus, we get the ground state energy and

the wave function for a fixed wave number It.

To get the first excited state, the only thing we have to do is, after step 4,

not only normalize the wave function but also orthogonalize it to the previously

obtained ground state wave function.

Using the above method we can get the eigenvalues and corresponding eigen-

vectors for the ground state and several low lying excited states. To probe the

effect of the dimensionality of the lateral (perpendicular to the tube axis) confine-

ment, we have also studied the two dimensional case where 1M3, y, z) = 1/2(z, 2).

Although we have obtained excited states in some case, here we discuss only

the lowest energy band for a fixed overall size of the channel i.e. fixed a, b shown

in fig. 2.5b, but with different cage size c and neck diameter d. Fig. 2.6 shows the

typical ground state energy band structure. Using this band structure and the

effective mass concept, i.e. assuming that E = hzkz/(2m') = (m/m")k2(h2 /2m)

near the bottom of the energy band, we have calculated m/m‘. The unit of energy

is h2 /(2m A”). For 3He this turns out to be 8K. One can easily see that m/m’ = 1

when c = 0 and/or d = b which correspond to the propagation of a free particle

along the z-axis. Thus, if m/m‘ 2 1, the particle can move freely along the

channel axis and if m/m‘ < 1, the effective mass of the particle becomes large,

i.e. the particle becomes heavier so that it is harder to move along the channel.
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As m/m“ —> 0, the particle has a tendency to get localized in the presence of

structural or thermal disorder and/or interparticle interaction. In addition to

m/m’, we have obtained the wave function densities (uz) for the k = 0 state to

show what happens to the unit cell wave functions as m/m‘ —> 0. Finally, to see

the effect of the K+ ions, we have compared the difference between m/m‘ for two

cases, i.e. with and without the attractive potential produced by the K+ ions.

2.3 Results for the ground state

2.3.1 Effect of geometry on the energy spectrum and

m/m"

To examine exclusively the dependence of the m/m‘ on the geometry, we

assume that the potential inside the channel is zero (i.e. V=0 in eqn. 2.2). The

mesh for the results we present in this section is 40x40 for the 3D case and

80x80 for the 2D case (in 3D case, we can integrate out the angular dependence

analytically when there is no extra potential).

We will first present our results for fixed values of a and b and different values

of cage length (c) and neck diameter (d). For simplicity, in this paper we choose

a = b = 10 A, we do not expect much qualitative change from our present results

when we take a. 76 b. We will discuss the a dependence later. We find that the

effective mass has a very complex geometry-dependence.

In fig. 2.7 we give the c-dependence of m/m' for three different values of d

(= 3.5 A, 5.0 Aand 6.5 A) for the 2D case, and in fig. 2.8, similar results are

given for the tubular channel (3D case) for two different values of d (= 3.66 A,
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5.12 A). The general trend is as follows: For small c, m/m" ~ 1. It decreases with

increasing c and attains a minimum for c ~ d. Then it increases with increasing c.

The decrease is quite sharp for the tubular channel when d is small. In this case,

there is a large region of c for which m/m‘ << 1. Finally, when c = a and d < 10

A, m/m‘ is still less than 1 because in this limit the particle still feels the effect

of geometry even if the neck length —> 0. In fact m/m" —+ 1 only when d —) b, in

which case the particle moves freely inside a tube of uniform cross section.

Fig. 2.9(a) and (b) are the corresponding ground state energy curves. As we

can see, the ground state (k=0) energy curves are relatively simple and they go

to the minimum when c = a.

To understand the physical origin of the sharp drop in m/m“ ie. enhanced

tendency to localize as we increase the cage length c, we plot in fig. 2.10(a) (c = 2

A) and fig. 2.10(b) (c = 6 A) the square of the ground state wave function (k = 0)

for the neck size (1 = 3.5 A for the 2D case. For c = 2 A< d, m/m" 2: 1 and the

probability of the particle inside the neck region is quite high, wheras for c = 6

A> (I, most of the probability is in the cage with almost vanishing probability in

the neck. In the latter case when we make k 75 0, the k-dependence of the energy

comes from small inter-cage tunnelling process. This leads to a rather low value

for m/m‘ which for these parameter values is 2 0.19.

One can also study the above tendency to ‘localize’ by changing the neck

diameter d for fixed values of the cage length c. In fig. 2.11, we give m/m‘ as a

function of d for three different values of c (= 2.5 A, 5.0 A, 7.5 A) for the tubular

channel. Similarly, in fig. 2.12 we give m/m‘ as a function of d for the 2D case.

For small values of d, m/m" —-> 0 but as we increase d, there is a rapid increase
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(b)

Figure 2.10: Square of the wave function (14’) in a unit cell of a particle moving in

3.5 A. For these parameters,b=10 A, (a). c=2.0A andd

cage length is smaller than the neck diameter and m/m‘ for this case 2 0.83 2 1.

(b). c = 6.0 A and d

a channel for k = 0 corresponding to the 2D case. The channel parameters of the

unit cell are: a

3.5 A. For these parameters, cage length is larger than

the neck diameter and m/m‘ 2 0.19 < 1.
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in m/m“ to 1. The sharpness of this increase depends on c, the increase being

sharpest for small c. The value of d at which m/m‘ = 0.5, initially increases with

c but then tends to saturate at about 6 A.

After discussing the geometry dependence of the effective mass, we would like

to briefly discuss the a dependence of the energy, particularly the ground state

energy, E, and the effective mass ratio. We have calculated Em,“ and m/m‘ by

changing the overall length scale (a) but keeping all the ratios b/a, c/a, d/a same

and we find that Emgn scales as inverse square of a (see fig. 2.13, the insert is a

log-log plot) while the effective mass ratio m/m' is unchanged (see fig. 2.14), the

small differences are due to numerical inaccuracies.

2.3.2 Analytical fits to m/m*

In order to express the geometry-dependence of m/m‘ in a simple analyti-

cal form, we have attempted to express m/m‘ as a function of the scaled vari-

ables b/a,c/a,d/a. In our calculation, we have fixed b/a = 1 and changed

0 < c/a,d/a < 1. When d/a is small and c/a is large, one knows that m/m" —> 0

exponentially as d/a —> 0 due to tunnelling between the cage states. But to

capture the d/a, c/a dependence over a broad parameter space, we have used a

different functional form. In fact, a two parameter function that fits m/m‘ data

reasonably well is given by

m [1 _ Jas(1—Jé)]a(1—JE)

71—1.: 1 + (3%)”

 

where E E c/a, cf E- d/a and the two parameters are a and n.
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In fig. 2.15 we compare the results of Eqn. 2.3 with the numerically calculated

values of m/m‘ as a function of E for two different values of (I (=0.366, 0.512). We

see that the parameter (1 controls the sharpness of the rapid decrease in m/m" as

5 increases from 0. For large values of E, m/m‘ is relatively insensitive to a. In

fig. 2.16, we give similar results but fix a and vary 12.. Clearly the m/m’ values

depend sensitively on n as E —> 1 and there is hardly any n—dependence for E < 0.4.

The parameters which fit our calculated results well are a = 18 and n = 4. One

can obviously fit the data better by increasing the number of parameters but one

does not necessarily gain any additional insight.

2.3.3 Effects of attractive potential due to adsorbed ions

on the cage surface and silicate framework

In many zeolites, there are positive ions distributed inside the structure which

can provide additional attractive potential to the atoms moving in the channels.

The nature of the attractive potential V(r) produced by the positive ions on

the channel wall and silicate framework depends sensitively on the location and

number of positive ions inside the zeolite cage. As an example, let us discuss the

case of K-L zeolite. Depending on the number of K+ ions, there will be several

minima in V(r) as one goes around the wall of the cage. Fig. 2.17 shows the

azimuthal potential distribution of K—L zeolite as the number of K+ ions changes.

To represent the general features of this ion-induced attractive potential, we add

to the channel in fig.2.5 a potential of the form

—%Zwr—2-jsin2(p¢), 0 < z < c

0, otherwise

V(r,¢,z) = [ (2-4)
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Figure 2.15: Comparison between the two—parameter function (Eqn.2.3) for m/m“

and the calculated m/m‘ as a function of c/a for different values of d/a; varying

parameter a and fixing n.
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In the above, 1' is the radial distance of the quantum particle, for example a He

atom, from the axis of the tube, V}, and p characterize, respectively, the strength

and the angular periodicity of the attractive potential. Here we have assumed, for

simplicity, that the K+ ions do not affect the helium atoms when they are inside

the neck region. In a more realistic model, one may have to relax this simplifying

approximation.

In fig. 2.18, we plot the square of wave function for a particle moving inside a

tubular channel as a function of the angle along the cage wall when the attractive

potential in Eqn. 2.4 is present. In fig. 2.18a, we choose p=2 and V}, = 560. In fig.

2.18b, we choose p=3 and V0 = 580 but set two of the potential peaks zero. One

can see very clearly that the quantum state of the particle depends very strongly

on the potential shape.

To understand the full effect of the attractive potential, we have chosen as

beforea=b= 10 A.Wefixc=6A,d=5A,takep=2andvaryVoinEqn. 2.4.

We find that when V0 = 0, m/m‘ 2: 0.19, when V0 = 2a., (co = hz/ZmAz), m/m“ 2

0.06 and when V0 = 5.080, m/m‘ = 0.03. Thus, an attractive potential produced

by the cations located on the cage wall tends to increase the effective mass. The

underlying physics is quite simple. When V0 = 0, m/m‘ << 1 indicating that

inter-cage tunnelling rate is small. As we turn on V3, the particles get attracted

towards the wall thus decreasing their inter-cage tunnelling probability and hence

decreasing m/m‘. As VI) becomes sufficiently strong, the particles get trapped

near the cage wall and do not contribute to the mass transport along the tube

axis. However, these trapped particles can dominate the low-T thermodynamic

properties, particularly at low He concentrations as we will discuss in the following
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Figure 2.18: Square of the wave function (11.2) at k = 0 in the center of the channel

as a function of azimuthal angle 4’ with a fixed r. The channel parameters are:

a = b = 10 A, c = 6.0 Aand d = 5.0 A; (a). with attractive potential p=2 and

Va 2 5.060 (b). with attractive potential, V0 2 5.060 and p=3 but two of the

peaks in the potential were set to zero.
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two chapters.

The square of wave function u.2 E 1,02 for k = 0 is plotted in fig. 2.19 for the

three above values of V0. When V0 2 0, the cage size is large enough such that the

particle spends most of the time inside the cage (m/m“ = 0.19). However, u2 is

reasonably large near the tube axis indicating an appreciable inter-cage tunnelling

probability. As we increase V0, u2 near the cage axis tends to decrease and for

V0 2 5.080, the particle spends most of the time away from the tube axis, i.e. they

are trapped near the cage walls. In this case, inter-cage tunnelling is practically

zero. The excitations of these particles then come from tunnelling around the

cage wall, an intra—cage process.

2.4 Excited state

It is also interesting to investigate the excited energy bands and the wave functions.

Since the method we used is good for only low-lying excited states (because of

numerical accuracy), here we only present our results for a small number of these

excited states. We show, in fig. 2.20, the ground state, the first and the second

excited state energy bands for the 2D case with a = b = 10 A, c = 7.5 Aand

d = 5.0 A, and without the attractive potential. The unusual feature is the near

absence of dispersion of the first excited state. Physically it means that if we can

excite the particle from the ground state to the first excited state, the particle

will get localized.
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2.5 Summary

In summary, we have investigated the effects of geometrical confinement on the

effective mass m‘/m of quantum particles moving along tubular channels. We

find that m.“ /m is a highly nonlinear function of the geometrical parameters such

as cage size c/a and/or neck diameter d/a. There are large regions of parameter

values where the m‘/m is quite large. Consequently any small perturbations like

defects, scattering from thermal vibration of the wall or inter-particle interaction

will have a strong effect on the mass transport along the channel axis. The effect

of positive ions embedded in the channel walls can also be very significant. In

particular, in the low helium atom concentration regime, helium atoms will be

trapped in states near the wall with an extremely low probability of inter-cage

motion. These states will not contribute to mass transport but will show up in

low-temperature thermal excitations [44].



Chapter 3

Low-Temperature

Thermodynamic Properties of

Helium Clusters in K-L Zeolite

3. 1 Introduction

Properties of 4He and 3H6 atoms confined to move in restricted geometry have

been of considerable interest during the last several decades. Examples of con-

fining media are Vycor [50], aerogels [67], zeolites [54]-[60], fullerites [61] and the

surface of graphite [68]. Some of the basic questions that have attracted both

theoretical and experimental attention include the nature of Bose-Einstein con-

densation in porous media (singly and multiply connected pore structure) [69]-[72],

quantum transport through microporous channels [73], and the ground and ex-

cited states of quasi one-dimensional bosonic and fermionic quantum liquids, the

so called Luttinger-liquids [74, 75, 76].

In chapter 2, we have discussed the nature of single particle states and the

effective mass of transport (m‘) through a simplified 1-dimensional zeolite chan-

nel. We argued that in the presence of a strong attractive potential produced by

44
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the ions located near the cage wall, the particle gets bound near the wall and the

effective mass associated with intercage motion is large (m‘/m —> 00). In this

case the particles are trapped inside the cages and the motion is primarily along

the cage walls perpendicular to the channel axis. In this Chapter, we discuss the

results of our theoretical studies on the low-lying excitations of small numbers

of 4He and 3H8 atoms (Helium clusters) tunneling inside a single cage of K-L

zeolite along the cage wall. These low—lying excitations have been obtained using

Bose-Hubbard (BH) and Mott-Hubbard (MH) models [44] with strong intrasite

repulsion and finite intersite attraction. For small number of particles and at low

enough temperatures, these systems can be represented by one-dimensional BH

or MH rings containing a finite number of sites. Differences between ‘He and 3H8

arise due to mass and statistics peculiar to the finite number of sites on the ring.

We show how, in principle, these two effects can be disentangled. Calculated tem-

perature and concentration dependences of the heat capacity agree qualitatively

with experiment, but a quantitative comparison suggests that effects of disorder

are extremely important at very low temperatures which will be discussed in the

next chapter.

In section 3.2, we give a detailed description of the physical system and what

is interesting to us. In section 3.3, we give some results from experiment done by

Kato et.al. [58]. In section 3.4, we give the models that we have used based on

the physics that we have described. Then, we give our numerical results in section

3.5 and compare our results with the experiments of Kato et.al. In section 3.6,

we summarize our work.
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3.2 Physical system

In chapter 2, we have shown a schematic picture of a typical K-L zeolite chan-

nel. In fig.3.1, we give a slightly different schematic picture of the cross-section

of the one-dimensional channels of K-L zeolite. In this figure we also show a

few He atoms trapped near the cage wall. The K-L zeolite crystal has a hexag-

onal lattice structure with lattice constants of a = 18.4A and c = 7.5A, and it

has one-dimensional channels along the c axis [58]. Each channel is composed of

cages, about 13A in diameter and 7.5A in length. These cages are interconnected

through apertures of diameter about 7.4A. On the cage walls there are K+ ions

(large circles in fig.3.1) which exert an attractive potential [43] on the He atoms in

addition to the potential produced by the Si (Al) and O atoms of the zeolite net-

work. Also the K+ ions block the pathway for the He atoms connecting different

channels. The potential produced by the zeolite cage gives rise to binding sites

(in this case eight) for the He atoms; these binding sites (and associated localized

cage states) are arranged in a ring geometry along the cage wall shown as small

circles in the figure where we also indicate that some of these binding sites are

occupied by He atoms (medium circles). Our aim is to develop a suitable theo-

retical model for this system and to understand how the difference in statistics

(bosons and fermions) shows up both in the ground and excited states when the

atoms are confined to move inside the cage in a ring geometry. But before that,

we would like to briefly summarize the main experimental observations.
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Figure 3.1: Schematic picture of a cross section of K—L Zeolite channel showing

the silicate framework and ring arrangement of He adsorption sites (small circles).

Large and medium circles are respectively K+ ions along the channel walls and

adsorbed He atoms.
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3.3 Experimental results

Kato et.al. [58] have made detailed measurements of the low—T (T < 5 K) heat

capacity of He atoms adsorbed inside K-L zeolite. Fig. 3.2(a) and (b) show

their results of the heat capacities as a function of He concentration for fixed

temperatures (fig. 3.2(a) is for 4He and fig. 3.2(b) is for 3He). Their results can

be broadly divided into two regimes; regime 1 where < n >, the number of He

atoms/ cage 5 nc, regime 2, < n > > nc. In regime 1, they find the following:

(i) for fixed T 3 2K, the heat capacity/atom, C vanishes at both < n >= 0,

and < n >= nc = 8 and is a relatively flat function of < n. > between these

limits. In this regime C is nearly symmetric about nc/2 for 3H6 but not so for

4He. (ii) For a given < n >, C is a monotonically increasing function of T. (iii)

At same T and < n >, C for 3H6 is larger than that for 4He by more than

25 %. A careful analysis of the experimental data suggest that in regime 1, He

adatoms are trapped near the wall of the cage (we will denote it as cage state).

The number of cage states is 8 per cage. In regime 2, where nc << n >< 12, the

excess He adatoms over nc, i.e., < n > - nc, move along the channel axis in the

presence of ne He atoms bound in the potential minima of the cage, and behave

as a one—dimensional quantum liquid [74]-[76]. When < n > is increased above

about 15 atoms/cage, the heat capacities become small for both 3H8 and 4H6.

This indicates the freezing out of thermal motion of the He adatoms which form

a solid-like structure.

In this chapter we study the thermal-excitations of He atoms in regime 1 where

only the cage states which are localized along the cage walls are thermodynami-

cally relevant.
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3.4 Models of the system

As discussed in the previous section, at low temperatures (T < 10K) and for

sufficiently small concentration n, He atoms are bound near the wall of the K-

L zeolite cage. The probability of He atoms going from one cage to another is

extremely small because the barrier for this inter-cage motion is estimated to be

about 150K from the isosteric heat measurements [58]. The dominant mode of

thermal excitation at low-T is therefore tunneling from one binding site to another

inside a single cage. These bound states are referred to as the cage states [43].

When n is increased beyond a critical value 116, n.6 He atoms fill up all the cage

states and the additional n — nc atoms move in the region near the cage axis

and go from one cage to another. These states will be referred to as the channel

states. Of course, at higher temperatures, the atoms trapped in the cage states

get thermally excited to the channel states and undergo intercage motion. As

has been stated above, our interest is to study the thermal-excitations of low-

temperature cage states. Our model is designed to study this low temperature (T

< 10K) behavior of 3H6 and 4He in the concentration regime 0 S n S nc. At

these temperatures, the channel states are practically unoccupied and one has to

deal with the statistical mechanics of cage states only.

The excitations of the 4H8 system in the manifold of cage states can be de-

scribed by an extended Bose-Hubbard mode1[44, 71, 72]. The Hamiltonian for

this model is given by

N,“ U Nm Nm

H = —t 2(bfbpr1 + h.c.) + 3 217.502.,- — 1) + VanngH, (3.1)

3:1 i=1 3:1

where Nm is the number of binding (localized) sites which equals to 8 for the
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present case, b.- (b,+ ) destroy (create) a boson (B) at the ith localized site, U is the

repulsive energy between two He atoms occupying the same binding site and V is

the attractive energy between two atoms occupying neighboring sites. The boson

creation and destruction operators satisfy the usual commutation rules and the

number operator for the ith site 17.,- has eigenvalues 0,1,2, etc.

The 3H6 system is similarly described by an extended Mott-Hubbard model

[40, 44] and the corresponding Hamiltonian is given by

N". NmNm

H = —t Z(f$fi+la + hue) + [12114an + Vanng+1 (3.2)

.3: mi

Here the fermion destruction (fic) and creation (fit) operators associated with

state i and spin 0' satisfy the usual anti-commutation rules and ng, can have

eigenvalues 0 or 1. The total number of fermions at site i is n,- = ngT + nu. Since

the spin exchange energy is quite small (about t2 /U ~ 0.01K), we first ignore

the spin degrees of freedom of the 3H6 atoms and treat them as spinless fermions

(SF’s) and later we will discuss the effects of including spin on the many— particle

energy spectrum in the limit of large U. In fact, He—He repulsion is quite strong

when two atoms occupy the same binding site, we therefore let U —+ 00. Then,

n.- can have eigenvalues 0 or 1 for both bosons and fermions. In this limit both B

and SF systems can be described by a single Hamiltonian.

N". Nm

H = —t 2(c2'qH + h.c.) + Vanng+1 (3.3)

i=1 i=1

where c,- = b.-(f,-) and 11,-: ci'c; = 0 and 1.

This hamiltonian can be diagonalized exactly numerically for different values of

Nm

Nm and n 2 Eng. The heat capacity is then calculated by using the fluctuation-

i=1
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dissipation theorem:

1

C(n, T) 2 Wk E(n,T)2 > — < E(n, T) >2), (3.4)

where

EEK-fig”

J'

< E(n,T) >=w,

j

and

ZEfe’fiE"
< E(n,T)2 > j= —Ze—fiEj

J'

The summation goes over all the energy levels of the n particle system.

3.5 Results for Bosons (B) and Spinless

fermions (SF)

3.5.1 Difference between B and SF due to statistics

Although the Hamiltonians for B and SF have the same form, the differences

between B and SF cases lie in the commutation properties of the operators and

the transfer energy t arising from the 3H6 and 4He mass difference. For the same

t and V, the spectrum of bosons and spinless fermions are identical for an open

chain [77]. For the ring geometry, the statistics induced differences between B and

SF systems can be seen by writing down the Hamiltonian matrix in localized (on

the ring sites) representation. We denote the system of Nm sites and 11 particles
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as (Nm,n). For the same t and V, one gets identical matrices for the two systems

when n is odd [77]. Therefore, the corresponding energy spectra and C are also

identical. However, when n is even, they differ considerably. For example, the

hamiltonians for 4 site 2 particle systems are:

  

  

(V000tt\

OVOOtt

OOVOtt

HB‘ OOOVtt

ttttOO

\ttttOO/

whereas

{V000t—t\

OVOOtt

OOVO—tt

HSF‘ OOOV—t—t

tt—t—tOO

\—ttt—t00)

Thus, in addition to the mass difference, the different statistics can give rise to

differences in the heat capacity of the 3He and 4He systems in this ring geometry

due to the difference in energy spectrum for even-n values. In fact we will argue

that the difference in the statistics can explain the observed [58] trend in C whereas

the mass difference goes the other way.

An example of the energy spectrum is shown in fig.3.3 for the system (8,4). It

has 8! /4!x4! = 70 states. Ift is finite and V=0, then the SF states can be obtained

simply by singly occupying the one particles states k,- = (1r/4)(0, :lzl, :l:2, :l:3,4)

with energy —2tcosk,-. But if V 76 0, one must diagonalize the 70 X 70 matrix.

The lowest 20 states for both V = 0 and V at 0 are shown in fig.3.3. It shows that
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the energy spectrum depends sensitively on both the statistics and the intersite

attraction. One characteristic feature of these results is that for SF, each energy

level is 2n-fold degenerate whereas for B, the levels can be both 2n and 2n+1~fold

degenerate.

In fig.3.4, we show the T—dependence of the molar heat capacity NAC(n, T) /n

for the Nm = 8 system for different even values of 11. Here, NA is the Avogadro’s

number. Bosons are found to have much smaller heat capacity than spinless

fermions. The reason for this result is that for the same t and V, the lowest

energy gap for the bosons is found to be considerately larger than that for the

spinless fermions whereas the ratio of the degeneracy of the first excited state to

the ground state is 2 for both the systems. (For odd n, B and SF systems have

identical heat capacity). We suggest that one should be able to see this difference

between even and odd-n systems experimentally. In fact, one can use the odd

11 results to extract the effect of mass difference (through t) and in principle

disentangle the effects of mass and statistics on the heat capacity. In practice this

is not easy because due to fluctuations in n from one cage to the other [58], one

usually measures C as a function of average 11.

3.5.2 Difference between B and SF due to mass

To see the difference between B and SF due to mass, we choose boson statistics

and vary the t parameter(which depends on the mass). Fig. 3.5 shows the heat

capacities for a (8,4) system with bose statistics and two different values of the

tunnelling parameter t. It can be seen clearly that when t is small, i.e. when the

mass is large, the heat capacity is large. The same qualitative results are obtained

using fermion statistics. This means that if only mass difference is taken into
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the energy levels indicate their degeneracy.
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Figure 3.4: Temperature dependence of the molar heat capacity for 8-site n-

particle spinless fermion and boson systems. The parameter values are t = 14K

and V = —24K.(For a discussion of the parameter values, see text)
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consideration, the heat capacity of 4He should be larger than the heat capacity

of 3H8.

3.5.3 Comparison with experiments

To compare our theoretical results with experiments of Kato et.al. [58] we note

that C was measured as a function of < n >, where < n > is the mean occupation

number of atoms/cage. In order to obtain a uniform distribution of He atoms

inside different cages, Kato et.al. [58] heated the system to a temperature To in

order to facilitate a nearly uniform density of He atoms throughout the system and

then measured C(< n >,T) vs T at T < T,. At T < 2K where C was measured,

the intercage equilibration is extremely slow. We therefore assume that

C(,=<n>T) ZO(nT)P T) (3.5)

n=0

where

s

< n >= ZnP(n,To),

n=0

and

_ Z(n,To)z”

P(n’T°) _ L(z,To) ’

L(z,To) = Z Z(n,To)z"

n=0

2 : efiou : efl/kBTo.

where p is the external chemical potential. In other words, the distribution P(n,T.,)

of He atoms in different cages is governed by the quenching temperature To (E’
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20K in the experiment of Kato et.al. [58]) whereas C is measured at temperatures

T << To. At these T, different cages have different number of He atoms, this

distribution corresponds to the higher temperature To.

As regards the parameter values, we have estimated (see appendix A) V to

be about -20K to -25K. A large component of this attraction comes from the

3-body He—K+-He interaction. The hopping parameter t was chosen such that

the heat capacity for both the He systems is of the same order as the experiment

(2 0.6J/K/mol at T 2 1.5K). We have fixed t=14K and V=-24K for our numerical

calculation of C. The bandwidth W=2t is of the same order as the magnitude

of V. With the same parameter values, i.e. when the mass effect is not taken

into account, we calculate C for both 3H6 and 4He systems. The effect of mass

difference will be commented upon later.

For comparison with the experimental results [58], the computed theoretical

values of C (heat capacity/atom) multiplied by a constant, which the experiment

gives as 1 atom/cage=0.217mmol. Fig.3.6(a) gives the theoretically calculated

values of C(< n >,T) as a function of < n > and T for three different T values

for the spinless fermions. As expected, C = 0 when < 1:. >= 0 and 8 when the

sites are either all empty or full. The rapid increase in C as one moves away from

these two limits and a relatively flat structure of C for 2 << n >< 6 is reproduced

nicely in our calculations. The theoretical values agree well with experiment at

1.5K but are about 30 % smaller at lower temperatures. Fig. 3.6(b) gives the heat

capacity vs. T curve for fixed < n >. The insert is the experimental results. Our

calculated results have captured the main features of this sytem although we still

have some discrepancies at very low-T. Fig. 3.7 shows the discrepacies between
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experimental and our results.

For the bosons, we also see a similar n—dependence but with the choice of the

same parameter values, the theoretical values of C are much too small compared

with the experiment (see fig. 3.8). Also, for the bosons, a small particle hole

asymmetry is observed [58] in the experiment whereas our model has in-built

particle-hole symmetry. Our calculated C drops much faster with T compared

to the experiment and for T < 0.75K, the theoretical values are practically zero.

A plausible reason for this may be that the value of t is too large. Since 4He is

heavier than 3H8, we expect the value of t to be smaller for 4He. This will reduce

the excitation energy and hence increase the low-T heat capacity. For example,

for the system (8,4), if we choose t=12K instead of 14K, the lowest energy gap

(A) changes from 10.3K to 7K. This reduction in A increases the heat capacity

at 1K from 0.015 to 0.189 J/K/mol, an increase by nearly a factor of 10. We find

that for < n >= 1.67, our theoretical value is 0.344 J/K/mol compared to the

experimental value of 0.4 J /K/mol. However, the theoretical values are still too

small at temperatures less than 0.5K. From the above discussions, we see that (i)

the difference in statistics leads to a larger heat capacity for the spinless fermions

whereas the mass difference, through a smaller excitation energy gap, leads to a

larger heat capacity for the bosons, and (ii) theoretical values are smaller than

experiment at very low T.

3.5.4 Spin effect

In the above sections, we have neglected the spin of 3H6 and treated them as

spinless fermions. In this section, we will discuss the effect of including spin of 3H6

on the low-T heat capacity. Inclusion of spin for 3H6 dramatically increases the
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Figure 3.6: (a).Heat capacity for the spinless fermions as a function of < n >,

average number of particles per cage, at three different temperatures. The symbols

are experimental values for 3H6. Theoretical values have been obtained using

t = 14K and V = —24K. (b).Temperature dependence of the heat capacity for

spinless fermions for three different values of < n >, average number of particles

per cage. In the insert we give the experimental results for 3He obtained by Kato

et.al. [58]
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Figure 3.7: Temperature dependence of the heat capacity for spinless fermions

for three different values of < n >, average number of particles per cage. which

shows the differences between our calculated results and the experiments by kato

et.al. [58].
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Figure 3.8: (a).Heat capacity for the bosons as a function of < n >, average

number of particles per cage, at three different temperatures. The symbols are

experimental values for 4He. Theoretical values have been obtained using t =

14K and V = —24K. The values for T=0.5K are very small to be plotted.

(b).Temperature dependence of the heat capacity for bosons for three different

values of < n >, average number of particles per cage. The symbols give the

 

experimental results for 4He obtained by Kato et.al. [58]
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dimension of the Hilbert space. For example, if we include spin in the system (8,4),

the manifold of states we have to consider is 1120 instead of 70 for the spinless

fermions. But, if the spin and translational degrees of freedom had decoupled [78]

(spin-charge separation) as in the case of an open chain geometry or an infinite

system (both with U z 00), then the T-dependence of C would have been identical

for the SF and fermions excepting for a delta function at T = 0 for the latter;

the total number of states associated with this peak being 24 z 24 for the open

chain with 4 particles. On the other hand, for the ring geometry, the spectrum

of SF and fermions differ from each other and in principle the heat capacities

should be different. Furthermore, for fermions, one has to take into consideration

the thermal equilibration between states differing in total spin quantum number

as in the classic ortho and para hydrogen (H2) problem [79, 80]. Computations

in the (8,2) and (8,3) systems suggest that, after taking into account the above

thermal equilibration (or lack there of) between manifold of states with different

total spin quantum numbers, the heat capacities for the SF and fermion systems

are comparable. In fig.3.9, we see that for the (8,2) and (8,3) systems, the T-

dependence of the heat capacities have similar behavior for SF and F and, C(2,T)

for F is smaller but C(3,T) for F is larger compared to the corresponding SF

values. Thus we expect that inclusion of spin and averaging over 11 will not

change C(< n >,T) very much. However we have not done this averaging for the

spinful fermions because of our lack of any detailed knowledge of the equilibration

problem (as in the case of otho and para hydrogen).
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systems. t=14K, V=-24K.
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3.6 Conclusion

In summary, we have shown that the low-T thermodynamic properties of 3H6

and 4H6 atoms trapped inside the cages of K-L zeolite can be modeled by Mott

(Bose)-Hubbard rings. The ring geometry brings out nicely the differences be-

tween bosons, spinless fermions and fermions. This behavior should be character-

istics of He atoms trapped inside other zeolitic cages such as Na—Y zeolite [55, 56].

The disagreement between theory and experiment at very low temperatures ( both

for SF and B, particularly for the later) suggests that at very low T, effects of

disorder might be important, we therefore explore the effect of disorder next.



Chapter 4

Effect of Tunneling Disorder on

the Low Temperature Heat

Capacity of 3He and 4He in

Zeolite Channels

4. 1 Introduction

In the last chapter, we argued that the thermal excitation inside K-L zeolite of

He system within the manifold of the cage states (for n < 12.6) can be described

by Bose-Hubbard (for 4He) or Mott-Hubbard (for 3He) model with binding sites

localized on a ring. As pointed out before, the K+ ions located close to the cage

walls and the silicate network provide the potential in which the He atoms are

bound. But the K+ ions are not necessarily situated symmetrically around the

ring. As a matter of fact, there are six equivalent sites available for the K+

ions and a maximum of only four K+ ions are available per cage to occupy these

sites randomly. In addition there is disorder in the silicate framework because

some of the silicon ions are randomly replaced by aluminum ions and K+ ions

not located near the cage wall are also randomly distributed inside the silicate

67
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framework. This random distribution of the ions can give rise to disorder in

the physical parameters of the Hubbard-type models describing the excitations of

the He system, namely the single—site binding energy, inter-site tunnelling matrix

elements (also called hopping parameters), etc. Consequently the low temperature

heat capacity will be affected by the disorder. In this chapter, we introduce the

effects of disorder in our model by treating the hopping parameters as random

variables and computing the average heat capacity of the He system using different

probability distributions.

The presence of disorder in the model, as noted in chapter 3, is expected to

improve agreement of the computed results with experiment. This is so because

the system without disorder has low-lying energy levels which are discrete (due

to the small size) and separated from one another. Suppose the lowest energy

gap is A. Then, the heat capacity of the system must exhibit Schottky-type of

anomaly [81], leading to an exponentially decreasing heat capacity at tempera-

tures T << A/kB. In the present case, the discrete energy levels of the system

calculated in chapter 3 lead to A/kB _>_ 5K. Hence one gets vanishingly small heat

capacity at temperatures below 0.5K. In the presence of disorder the low lying

excitation spectrum should be drastically modified and we expect an increase in

the density of low energy excitations arising primarily from the region of smaller

hopping parameters. This should result in an enhancement of the heat capacity

at low temperatures when a proper averaging over the various disorder states is

performed.

Before discussing our model and results, we would like to briefly review the

models of disorder which have been proposed to explain the enhanced heat capac-
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ities seen in glasses (disordered insulators) at low temperature. A rather simple

model was proposed by Kaplan, Mahanti, and Hartmann (KMH) [82] within the

context of the standard Hubbard model with its three characteristic parameters;

single-site energy (6), tunnelling matrix element (t), and intra—site Coulomb in-

teraction (U). In the KMH model, the single-site energies (5;) are assumed to be

random, t = 0, U = constant. For a continuous distribution of a; one obtains a

heat capacity linear in T at low T. In the context of Hubbard-type models, our

present work is an extension of the KMH model taking into account a finite but

random t, constant 6;, U = 00, and a finite inter-site Coulomb interaction V.

The most general case is however when all the parameters of the Hamiltonian are

random.

Although mathematically our present model is an extension of the KMH model

[82], physically it is much closer to the one proposed by Anderson, Halperin, and

Varma (AHV) and [83] by Phillips [84]. This model was proposed to explain

the observed low-temperature specific heat varying linearly with T in a variety

of insulating glasses. The essence of the model was the hypothesis that in any

glass system there should be a certain number of atoms (or group of atoms) which

can sit more or less equally in two or more equilibrium positions. The thermal

excitation between the associated localized ‘tunnelling levels’ leads to a Schottky-

type heat capacity with a characteristic energy A. A statistical distribution P(A)

of these localized tunnelling levels (LTL’s) gives a linear heat capacity at low

T. Although this model describes the correct physics of the observed large low-T

heat capacity in insulating glasses, a microscopic picture of these LTL’s is not easy

to come by [85]. Our model of Helium atoms trapped inside zeolitic cages with

random tunnelling matrix elements indeed gives one possible microscopic picture
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of these LTL’s.

It is in general quite difficult to compute thermodynamic quantities by intro-

ducing disorder in the Hamiltonian and then averaging over the disorder. The

ring geometry with a small number of sites in the present problem leads to some

simplifications, but even then, the computations are quite involved. Therefore,

only some calculations illustrating the important trends at low temperatures are

presented below. Nevertheless, the numerical evaluation of the effect of disorder

by introducing randomness and computation of the average heat capacities is an

important feature of the present work. It must be emphasized that the aim of our

work is to show the improvements in the computed low temperature specific heat

vis-a-vis experiment by including disorder rather than fitting the experimental

results accurately.

4.2 Model with disorder

Disorder in the system can arise due to various reasons. One reason could be the

random occupation of K+ ion sites by the ions. Distortions, imperfections etc

would give rise to additional disorder. In terms of the Hamiltonian, there can

be randomness in the single-site energies, tunneling parameter t, the attractive

potential V and the intrasite repulsion U. We consider only the disorder in the

tunneling parameters and take single site energies to be zero. Then, the Hubbard

Hamiltonian in the limit U —> 00 may be written as

' Nm Nm

HB(SF) = - Z t;(c,?Lc,-+1 + hue) + VZ(n,-n,-+1), (4.1)

i=1 i

where the tunneling parameters are random numbers which follow some distribu-

tion function f(t,-,a'), with a' defining the width of the distribution. Note that the
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number operator n.- has eigenvalues of 0 or 1 in the case of both bosons (B) and

spinless fermions (SF) since the intra-site repulsion energy U = 00.

The heat capacity for a set of (ti, i=1,...,Nm} can be obtained as before through

C(n, T, {t;}) = (< E2 > — < E >’)/kT2. (4.2)

Here, the thermal averaging is done with the help of the exact partition function.

Next, one must perform the configurational averaging for disorder. We have chosen

both uniform and gaussian distributions but will report the results for the latter.

The gaussian distribution for the random tunneling parameters is giving:

f(t.-, 0) = e“““°”/"'- (4-3)
 

0' 7r

These distributions are symmetric around t,- = to. The heat capacity for the

canonical ensemble may be configurationally averaged over the disorder and the

concentration distributions as follows:

C(n, T) = g: f: f: C(n,T,{t;}P(n,To,{t;})f(t1,o')...f(tNm,a)dt1...dtNm(4.4)

For simplicity, in the numerical calculations we have assumed that P(n, To, {t,-}) =

P(n, To, {to‘v’i}). In this way, we can seperate these two averages. The integration

is performed numerically by using 6-point Gaussian quadrature. Finally, C(n,T)

of Eq. 4.4 is averaged over the distribution in number of particles/cage in the

same way as discussed in chapter 3 using P(n, To, {toVi}).

4.3 Results and discussions

Before presenting our results for the 8—site system appropriate to the He atoms

inside K—L zeolite let us discuss a simpler system consisting of 4 sites and two
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spin-less 3H3 atoms. This will help us elucidate the nature of the tunnelling

states in this system. Let (i,j) denote a state when two particles are located at

site i and j, respectively. In the absence of tunnelling (t=0), the ground state is

4-fold degenerate corresponding to the bound pairs (we take V=-24K following

chapter 3), (1,4), (3,4), (2,3), and (1,2). The excited state is 2—fold degenerate

corresponding to the unbound pairs (1,3) and (2,4) since site 1 and 3 and 2 and

4 are next nearest neighbors. The energy splitting between the ground and the

excited state is 24K, quite large. In the presence of tunnelling the ground state

degeneracy is lifted partially. The spectrum now consists of three doublets which,

for t=-7K, have energies -30.44K, -24K, +6.4K respectively. The lowest energy

gap reduces dramatically from 24K to 6.44K. One can physically think of this

splitting as resulting from tunnelling of a bound pair from one configuration to

another. This lowest energy gap depends on t in a nonlinear fashion, the three

values of the gap corresponding to t=-7K, -14K,and -20K are respectively 6.44K,

18.46K, and 29.76K. Thus for a distribution of t, one expects to see smaller energy

gaps and hence an increased heat capacity at low-T. Fig. 4.1 gives the comparison

of the density of states with and without disorder for the spinless fermions (fig.

4.1(a)) and for bosons (fig. 4.1(b)) for the 4 site 2 particle system. The energy

and the disorder parameter a' are in unit of to. The dashed lines correspond to the

system without disorder. One can easily see that the density of states is shifted to

the lower energy in the presence of disorder. Fig. 4.2 gives the comparison of the

corresponding heat capacity changes. The disorder increases the low temperature

heat capacities.

Next we present the numerical results for the 8—site system. Since in chapter 3

we concentrated on the spinless fermion model, we will discuss in detail the effects
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Figure 4.1: Comparison of the density of states with (solid line, <7 = 0.5) and

without (dashed line) disorder for the 4 site 2 particle case. Energy and a in unit

to, V=0. (a) Spinless fermions. (b)Bosons.
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Figure 4.2: Comparison of the heat capacity with (dashed line, a' = 0.5) and

without (solid line) disorder for the 4 site 2 particle system. Temperature (T) and

a' are in unit to, V=O. (a) Spinless fermions, (b)Bosons.
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of disorder for this system. In our calculation, we kept the inter-site attraction

parameter V the same as in the non disorder case (V=-24K) and varied the mean

value of the tunnelling parameter to and the width of the gaussian distribution a

to get an optimal fit with the experiment for different values of < n > and T. The

parameter values for which we present our results are: to=-17K, V=~24K, and

0:7.OK. The ratio of the disorder parameter to the mean band width is about

0.2 which looks quite reasonable. Fig. 4.3 gives the results of the temperature

dependence of the heat capacity for 3He treated as spinless fermions without

(fig.4.3(a)) and with (fig.4.3(b)) disorder. As we can see, the effect of disorder is to

enhance the low-temperature heat capacity as expected. Fig.4.4 gives the results

of helium concentration (< n >) dependence of the heat capacity again without

(fig.4.4(a)) and with (fig.4.4(b)) disorder. It is obvious that the results with

disorder agree much better with experiments especially at very low temperatures.

But, there is still a large discrepancy between our calculations and experiment

for < n > larger than 6. We do not understand the reason for this rather large

discrepancy.

We have carried out the same calculations for bose system. As we can see from

fig. 4.5, there is a dramatic increase in the very low temperature heat capacity in

the presence of disorder.

4.4 Summary

In summary, we have investigated the effect of disorder on the low-T heat capac-

ity of small He clusters inside K-L zeolite by extending the model developed in

the previous chapter by taking a random distribution of tunnelling parameters,
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Figure 4.3: Heat capacity vs. temperature for fixed helium atom concentration for

3He. Symbols are experimental results and lines are our corresponding calculated

results. (a) without disorder, =-14K, V=-24K. (b) with disorder, t=—17K, V=-

24K, 0 = 7.0K.
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Figure 4.4: Heat capacity vs. helium atom concentration < n > for fixed temper-

atures for 3He. Symbols are experimental results and lines are our corresponding

calculated results. (a) without disorder, t=-14K, V=-24K. (b) with disorder, t=-

17K, V=-24K, a' = 7.0K.
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Figure 4.5: Heat capacity vs. temperature for fixed helium atom concentration for

4He. (a) without disorder, t=-14K, V=-24K. (b) with disorder, t=-14K, V=-24K,

0‘ = 8.0K.
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computing the energies and averaging the heat capacity using different probability

distributions. This approach to a quantitative evaluation of the effects of disorder

on the low-T heat capacity yields results in much better agreement with experi-

ment although detailed quantitative agreement is still lacking. Our model gives a

microscopic picture of disorder induced low energy excitation spectrum associated

with the correlated tunnelling motion of cluster of He atoms.



Chapter 5

Thermal Excitations of Xenon

Clusters Inside a Model

L-Zeolite

5. 1 Introduction

As we have discussed in earlier chapters, an important feature of the intracrys-

talline space of zeolites is its inhomogeneous nature. To see how the thermody-

namic properties of clusters of atoms or molecules confined inside these micro-

porous media depend on their internal inhomogeneity we have investigated the

physical properties of small rare gas clusters confined inside the cages of L-zeolite.

In the previous chapters (chapter 2, 3, 4), we discussed the case of interacting

helium particles (‘He, 3He atoms) by modeling the internal inhomogeneity of the

confining medium and the inter-particle interaction through Hubbard-like models.

In this chapter and the next one, we focus our attention on confined classical sys-

tems instead but take into account the effect of the microporous hosts in a more

realistic fashion [21].

We have chosen cluster of Xe atoms inside L—zeolite, because these atoms are
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excellent NMR probes and their physical properties can be experimentally studied

using NMR experiments. It is also possible to directly probe the structure of the

confined cluster by either X-ray or neutron diffraction measurements.

Thermodynamic and dynamic properties of rare gas atoms, such as Ar and

Xe, trapped inside intracrystalline cavities of zeolites (referred to as hosts) have

attracted considerable attention in recent years.[86]-[92] These trapped atoms (re-

ferred to as guests), depending on their number density and the relative strengths

of the guest-guest and the guest-host interactions, form clusters whose structure

and physical properties can differ dramatically from those of their free counter-

parts. One of the interesting features is the so called gas/liquid phase coexistence

[90] resulting from a rapid exchange between the gas phase atoms inside zeo-

lite cages with those adsorbed on the intracrystalline surface. Depending on the

thermodynamic state of the adsorbed atoms one may think of this as gas/solid

coexistence instead. To develop a microscopic understanding of the above men-

tioned coexistence, Li and Berry carried out preliminary studies of the dynamics

of six Ar atoms trapped inside model cavities.[90] Their model cavity consisted of

a spherical shell with the guest-host interaction modeled by Morse potential, with

comparable strengths of the guest-guest and guest-host potentials. They observed

that the confinement strongly altered the geometry i.e. instead of 2 minima and

4 saddles seen in Are in free space they found 5 minima and 8 saddles. The over-

all melting characteristics were however quite similar for both the free and the

confined Are clusters. Our interest here is to introduce a more realistic host and

study the above mentioned properties.

In addition to isolated confined clusters, there is also a great deal of current
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interest in cluster assembled materials(CAM), where a solid is formed out of clus-

ters. A simple example of CAM is Can solid. Physical properties of CAM’s are

expected to be dramatically different from their atomic counterparts. A simple

way to fabricate CAM’s is by trapping the clusters inside the intra—crystalline

space of inhomogeneous hosts such as zeolites, layered silicates etc..

5.2 Method and the physical system

We have concentrated on the thermodynamic and dynamic properties of two types

of confined Xe clusters, (1) a single 6 atom Xe cluster inside an L-zeolite cage

(denoted as Xcan) and (2) a periodic array of X63c which we identify as a cluster

assembled material and denote as X850AM. For the thermodynamic properties,

we have used Monte Carlo (MC) method, the details of which can be found in the

earlier work of Etters and Kaelberer who were the first ones to study the ‘melting’

of free Lennard-Jones clusters [93]-[95]. For the dynamics studies we have used

classical constant temperature molecular dynamics simulation [96].

The structure of the L-zeolite has been shown in fig. 1.1 and fig. 1.2. Most of

the zeolites normally contain a mixture of Si and Al atoms in the silicate frame-

work and for overall charge neutrality there are a number of charge compensating

cations which occupy different positions inside the system. For simplicity, in the

present study we assume the framework contains no Al ions and therefore we do

not have to worry either about the disorder in the positions of framework anions

or the charge compensating alkali (K and Na) cations as in the L and K-L zeo-

lites. We expect the basic physics underlying both melting and dynamics at high

temperatures not to be greatly affected by this approximation.
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Before performing the simulation with many Xe atoms, the potential energy

surface for a single Xe atom was analyzed to get an idea of how the single par-

ticle potential V, varied inside the cage of the main channel and whether it was

possible for a single Xe atom to go from one main channel to another through

the subsidiary 4- and 8-channels. Following Vernov et.al. [88] the interaction

between the Xe and Si atoms has been replaced by an effective Xe-O interaction

potential and by readjusting the Oxygen Lennard-Jones parameters. Hence the

cage consists of only a frame work of Oxygen atoms. The Lennard Jones pa-

rameters used in this calculation are: a'x,_o=3.3A, ex._o=151K, ax,-x,=4.1A,

and ex,_x¢=221K. We also compared the potential calculated using the effective

Xe-O parameters with that obtained using more realistic Xe—Si and Xe—O param-

eters [97] and the two results agreed very well. It is found that the energy barrier

along the transverse direction (perpendicular to the channel axis which we denote

as the z axis) is extremely high, of the order 150,000 K for a rigid framework.

For the temperature range in which we are interested in this paper (room tem-

perature or less), the probability of Xe atoms escaping from one main channel

to other neighboring channels in this transverse direction is therefore extremely

small. Therefore, periodic boundary conditions are applied only along the 2 di-

rection of the cell. The position of the cage is taken symmetrically to be about

220. Hence each time the potential produced by the framework atoms on a Xe

atom is required, the coordinate of the latter is folded back to the central cage.

This ensures the calculation of the potential due to all the Oxygen atoms within

a given cutoff radius.

We have chosen a cut off radius of 4-50'xe-0, where O'Xe—o is the length pa-

rameter associated with the Xe-O Lennard Jones potential. A cage consisting of
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five unit cells along the z direction, and parts of the neighboring unit cells along

in the x—y plane are used to satisfy the cutoff requirement from any point inside

the central unit cell. The total number of Oxygen atoms inside the cut-off radius

turns out to be 1464.

Before analyzing the interplay of Xe—cage and Xe—Xe interactions we first in-

vestigated the thermal properties of a single Xe atom and then starting from the

ground state configuration of the Xegc cluster, we slowly heated up this system.

‘Melting’ of the Xegc cluster is monitored by recording the average energy (< E >)

and average bond length fluctuation (6) which typically show a characteristic rapid

change even for small clusters.[90, 93, 94, 95]. For the Xegc system, we have taken

two sets of MC runs. A set of 11 runs, each consisting of 105 MC step/particle

(MCS/p) at each temperature; the other set consists of 3 runs where the number

of MC steps is increased by a factbr of 10. We will discuss the comparison of

these results later. For the XewAM system, we do the same steps as for the X66¢

system. We have taken 3 runs and each run takes 105 MCS/p for the heating

process and at least 2 x 10" MCS/p for the cooling process. The step length is

0.165 (in unit of cow“) for heating and 0.033 for cooling. We will discuss the

step length problem later.

The molecular dynamics simulation method we have used to probe the dynam-

ics is the well-known Nosé dynamics [96] which generates a canonical ensemble (or

constant temperature ensemble). In this method, an additional degree of freedom

3 is introduced, which acts as an external system. The interaction between the

physical system and s is expressed via scaling of the velocities of the particles,

V; = 31",'. (5.1)
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The Lagrangian of the extended system of particles and s is given by

L = Z: 1%321‘3 — ¢(r) + g-z — (f +1)kT,qln(s). (5.2)

where the third term and the fourth term are the kinetic energy and the potential

energy associated with the dynamic variable 8, respectively. The quantity f is the

number of degree of freedom of the physical system and Q has the dimensions of

energy. Tea is the required equilibrium temperature.

The equation of motion for the particles are

1 043 — 31’s.. (5.3)

mgsz 0r; 3

  

The equation of motion for s is

_ (f + mu,

8

Q5 :2 2min? (5.4)

To make sure that the system is at equilibrium, we first run MC simulation

upto 105 time steps/particle at the temperature we want. Then, we read the

configuration and use this to initiate the MD run. The time interval is 10‘5ns

and the total time period that we followed is typically about 1.6ns.

5.3 Results

5.3.1 MC simulation

A single Xe atom inside L-zeolite channel

Figures 5.1 and 5.2 show the potential energy lanscape for the z=0 plane for

different values of the azimuthal angle <I> and r, the distance from the center as
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one approaches the cage wall (please see fig. 1.1 and fig. 1.2 for the L-zeolite

structure). The potential has nearly 12-fold azimuthal symmetry as we approach

the cage wall, the symmetry is slightly broken because the 12 oxygen atoms,

although at the same distance from the center, are not uniformly distributed in

multiples of 30 degrees along Q. In addition, there are 6 pairs of oxygen atoms

further away which are oriented parallel to the z-axis, and are separated by 60

degrees intervals along ‘1’. These oxygens atoms also break the 12-fold degeneracy.

The primary minima, with energy -2391K, are located at r=4.45A. The difference

in the energy values of the primary and secondary minima is about 80K. As r is

reduced or the particle moves away from the cage wall, the potential shows nearly

6-fold symmetry. We see from the figure that the <I>-barrier goes from about 350K

for r=4.4A to a few K for r=3A. As regards the barriers along the channel axis,

we show in fig. 5.3 how the potential changes as we change z starting from one of

the (1)-minima, for different values of r. For r = 0, i.e along the channel axis, the

potential is minimum near the aperture (neck) and maximum near the cage center,

the energy barrier to move along the channel axis being about 250K. Therefore

the most likely path taken by a Xe atom in going from a primary minima near

the wall to that near the neck is to first move towards the cage center and before

actually making it to the center move towards the neck.

In fig. 5.4 we give the results of MC simulation for a single Xe atom in the

temperature range 5K< T <150K. Starting from the ground state where the

particle occupies one of the primary minima, as we heat the system, the average

energy < E > initially increases linearly with a slope 1.5, consistent with that

for a 3-dimensional harmonic oscillator. In the temperature interval 10-70K, the

slope rises and then changes back to 1.5 after about 70K. The physical origin
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of this temperature dependence of the slope can be attributed to the existence

of six secondary minima separated from the primary minima by an energy A of

about 80K. The particle still behaves like a harmonic oscillator as regards r and z

degrees of freedom. On the other hand the partition function for the Q degree of

freedom can be approximated as Z4, = 6(1 + exp(-A/kT))Zo,c which gives a cross

over region in T dependence of < E > at kT near 0.5A. This is in accordance

with our MC simulation results.

X85¢ cluster

At first, the ground state structure of Xe,“ clusters was determinated by Monte

Carlo quenching (some times referred to as MC docking). Because of the strong

one particle potential, the Xe atoms occupy essentially the primary minima as

long as nS6 per cage. In fact the distance between two Xe atoms occupying the

two nearest primary minima is about 4.45A whereas the distance between two

isolated Xe atoms at their LJ minimum is 4.60A at which distance the Xe—Xe

pair energy is -221K. Since the Xe—Xe pair energy at a separation 4.45A is about

-210K, the Xe atoms prefer to form a nearly commensurate structure with the

zeolite single particle potential. The ground state of the Xesc cluster is therefore a

ring where the Xe atoms are located very close to the six primary minima as shown

in the fig. 5.5. In contrast, the free Xee cluster has the usual bi-pyramid structure

(see fig. 5.6). Thus the guest-host interaction strongly affects the structure of

confined Xeac.

The melting of the XC3c system is studied by slowly heating the system in

temperature intervals of 8K. As mentioned in the method section we carried out
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Figure 5.6: The ground state of a free Xea cluster
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two sets of MC runs, one with 105 MCS/p and the other with 10" MCS/p. Fig.

5.7(a) shows the average energy < E > as a function of temperature for the first

set of runs. Fig.5.7(b) gives the corresponding value of the average bond length

fluctuation. In this set of runs, for each T, the number of MC steps were 100,000,

following 20,000 discarded sweeps for thermalization. The line in each figure is the

average taken over all the 11 runs. Fig. 5.8 shows the same functions as fig. 5.7

except in this case the number of MC steps is 10 times more than in the previous

set. At low T the excitations of the 6-atom ring are those of a harmonic oscillator

and hence one expects to see a slope of 1.5 in the < E > vs T curve. The observed

slope in fig. 5.7 and in fig. 5.8 is 1.4. We find that ‘melting’ of the cluster occurs

when one of the six ring Xe atoms is dislodged and moves towards the center of

the cage and then towards the neck region. The movement of the remaining five

Xe atoms between the ring sites becomes much more likely and this process can be

looked at as a vacancy moving from one ring site to another. We will refer to this

excited state structure as the (5—1) cluster. The average bond-length fluctuation 5

increases rapidly in the neighborhood of 120K which may be close to the ‘melting’

temperature of the confined Xeac cluster. We also note that the value of 5 above

the melting temperature is larger for the longer MC runs. This results from the

intercage diffusive motion of the excited Xe atom.

The energy needed to excite one Xe atom from one of the primary minima (ring

sites with energy about ~2400K) to the minimum energy position of the ‘odd’ atom

of the (5-1) cluster is about 1150K (see fig. 5.3, r=1-1.5A). The T=0 energy of

the (5—1) cluster differs from the true ground state (6-atom ring) by about 1000K.

Thus the rapid increase in 5 vs T near 120K must be due to reasons other than

simple energy considerations. One contributing reason for this rapid change is the
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higher degeneracy of the (5—1) cluster. Another contributing factor could be the

rather large phase space available to the ‘odd’ atom in the (5—1) cluster compared

to the very tightly confined atoms near the primary minima. To see how zeolite

confinement alters the thermal properties of a Xea cluster , we show in figs. 5.9

and 5.10 the variation of < E > and 5 as a function of T for a free X65 cluster.

Compared to Xegc in L-zeolite, the fluctuation in < E > is smaller for a free Xea

cluster and also the melting temperature of the free Xee cluster is much lower,

about 11K.

Melting of XeacAM solid—a cluster assembled material

XewAM corresponds to an one-dimensional solid made out of Xea rings and with

one ring/cage. The ‘melting’ curve is obtained by gradually heating the system

from 15.1K and at a interval of 8K. We run up to 105 MC steps for each tempera-

ture point and the step length is 0.165A. We have averaged over three sets of MC

runs. The cooling curve is much harder to get. It takes at least 2 x 10" MC time

steps and the step length has to be reduced to 0.033A. This is because there exist

some metastable states in this complex potential which make it very difficult for

the system to relax to its equilibrium configuration. Fig. 5.11 shows the average

energy/cage vs. T curves for both heating and cooling processes. Comparing to

the XCac system, the ‘melting’ of XewAM system is much more well defined, but

the melting temperature is quite close to but slightly larger than that for a single

X83.: cluster. This reduction in the fluctuation in going from X65., to XeGCAM is

clearly due to the inter-cluster interactions. This inter-cluster interaction effects

also clearly show up in the difference of < E > for Xsac (shown as a solid line)

and Xe50AM in the same figure.
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5.3.2 MD simulation

To study the dynamics of Xe atoms in L-zeolite, we performed molecular dynamics

simulation at about room temperature using Nosé dynamics [96]. As we have

stated before, we run MC first to make sure that the system is in equilibrium and

then observe the diffusion of Xe atoms using MD simulation. Fig. 5.12 is the

averaged 7'2 vs. time for the Xegc system. Results for three runs are shown in the

figure, each with a different initial configuration. As can be seen from the figure,

the path depend sensitively on the initial condition. This is due to the complexity

of the system potential. The plateau in one of the curve means that there are no

inter-cage motions while the sharp increase in the other means some particle (or

particles) is undergoing inter-cage motion. Fig. 5.13 is the 1'2 vs. time for each

individual Xe for the run 3 which gives evidence for the above statements (note:

the cage length is about 7.5A.).

We next study the temperature dependence of the inter- and intra—cage dy-

namics. In fig. 5.14 we give the averaged 1'2 vs. time for X33,, system at three

different temperatures starting from the same initial configuration. The diffusion

are quite different in the three runs and for the three temperatures that we have

chosen. From our limited number of runs we find that the diffusion rate does not

necessarily increase with temperature. Our limited simulation studies indicate

that one needs much longer runs and averaging over many more initial configura-

tions to probe the dynamics in this highly inhomogeneous medium accurately.

For the XeacAM system, we also take three runs for 1‘2 vs. time at temperature

302K. As we can see in fig. 5.15, the diffusions is much slower than that of X66,:

system shown in fig. 5.12 (note the scale differences between the two figures).
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Also, there are no inter-cage motion occuring during the time period that we

followed which means that it is much harder for Xe atoms to diffuse through

the channel in the X6504M system. This is due to the strong particle-particle

interactions between the thermally excited atoms in nearest neighbor cages. Fig.

3, 232, y2 and .2:2 vs. time in run 1. It shows that there is almost no5.16 gives r

intercage motion along the channel axis(i.e. in the z direction). Fig. 5.17 is the

effective diffusion rate D(t) vs. time for the three runs. Clearly the dynamics is

not diffusive since D(t) decreases ( perhaps approches zero) with time.

5.4 Discussion

Monte Carlo studies of confined (in L-zeolite) and free Xee clusters clearly brings

out the dominant role played by the guest-host interaction. The inhomogeneous

nature of the single particle potential produced by the zeolite cage profoundly

alters both the single particle and many particle potential energy surfaces and

consequently their thermal properties. Unlike the free cluster where the melting

process is rather smooth, i.e. 100,000 MC steps/atom give reasonably converged

results for the T dependence of < E > and 5, the fluctuation effects are large

in the case of the confined cluster. A careful inspection for the two sets of runs

indicates that melting process shifts to a lower temperature in fig. 5.8 which

consists of runs 10 times longer than for those shown in fig. 5.7. The reason

could be traced back to the large potential energy barriers present in the zeolite

systems. The energy barriers for particles close to the wall is estimated to be

~ 1200 K. This corresponds to an exponential factor emp(—fl =I= AE) ~ 10'“ for

temperature ~ 100 K. Since the transition is triggered by the dislodging of one of
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the six ring atoms it is possible to miss this transition for small MC steps/particle.

But with increasing number of MC steps the chance of accepting the move which

would dislodge the particle becomes more probable thereby causing the melting

temperature to shift to a lower value. For increasing number of runs the ‘melting’

asymptotically becomes a continuous process as it should be but with a rapid

change (with T) in 5 determined purely by the equilibrium canonical distribution.

If one can relate the MC steps to the actual time scale in which a real time

experiment is performed, then depending upon the waiting time one should see

different transition temperature as observed in our simulation. In addition if one

experimentally probes the dynamics of Xe atoms, say through NMR, one should

see two distinct type of dynamics: one associated with the correlated hopping

of Xe atoms from one ring site to the other and the second associated with the

intercage motion of the excited ‘odd’ atom of the (5-1) system. Xe604)“ system

shows a very well defined ’melting’ curve. This is because that the system has

a rather stable structure. The inter-cluster interaction reduces the flunctuations

and its effects are seen clearly when we study the diffusion of the system , namely

the inter-cage diffusive motion is dramatically suppressed in the XcmAM system.



Chapter 6

Percolation and Diffusion in 2D

Microporous Media: Pillared

Clays

6.1 Introduction

Although adsorption and diffusion of gases in porous media have been the subject

of investigation since the beginning of the century, it is only in recent years that

any fundamental understanding of the underlying physical processes have begun

to emerge[98]. As we have already discussed in the earlier chapters, a simple

way to incorporate the effects of a porous medium on the dynamical properties of

particles moving through it is through geometrical constraints. These constraints

can not only alter these dynamical properties drastically but their thermodynamic

properties as well. For example, in a macroporous medium one sees capillary

condensation of the adsorbed gas to a liquid phase at a pressure which is less than

the bulk saturated vapor pressure, a result of the shifted gas-liquid transition

temperature caused by the confining geometry [99]. The diffusion rates both in

the gas and the liquid phases are also known to be profoundly affected by the

porosity leading, in certain cases, to the phenomena of percolation [100].

110
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Until now we have been looking at one-dimensional microporous systems such

as zeolites. Now we shift our attention to two-dimensional microporous system.

A novel class of porous media that has been also of great interest during the last

decade or so are pillared clays and related complex layered oxides. In this sys-

tems the guest particles diffuse between host layers held apart by laterally spaced

pillaring agents. Pillared clays, in general, are intercalation compounds obtained

by intercalating large pillaring ions into the galleries of layered oxides such as

vermiculite [101], fluorohectorite [28], and montmorillonite [101]. Intercalation

implies the insertion of guest species into a layered material without disturbing

the main structural features of the host [102]. Intercalation compounds have been

of interest for many years [6, 7, 20, 27, 103, 104]in part because they provide a

two dimensional(2D) arena for both theoretical and experimental studies of many

physical properties such as diffusion, percolation, commensurate-incommensurate

structures, 2D—melting on corrugated substrates, 2D magnetic phase transition

and so on. In clay intercalation compounds (CIC’s), the host layers are highly

rigid towards transverse distortion. In fact, one needs a large transverse layer

rigidity to form good MP medium, otherwise the host layers will collapse around

pillaring ions thereby precluding gallery access.

In almost all the CIC’s there are fixed negative net charges in the layers which

are compensated by counter ions in the intralamellar gallery space. These clays

have the ability to be intercalated by guest ions or intercalants through ion-

exchange mechanism [38, 105]. When the guest ions are of nanoscopic dimen-

sions the resultant pillared clay is characterized by host layers that are propped

apart by these laterally spaced guest ions, sometimes called pillars. The lateral

separation between these guest ions can range from a few A to as large as 10-20
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A(considerably larger than their lateral size) thus giving a well characterized 2D

MP system with varying degree of microporosity. The specific sites where these

intercalants reside depend on the charge of the intercalants, their lateral size and

the commensuration energy associated with the interaction of the intercalants

with the atoms of the host layers.

In this chapter, we model a real physical system representing such a 2D MP

system (section 6.2), and then briefly discuss the experimental results on adsorp-

tion [38] and diffusion [28] carried out in this system (section 6.3). We introduce

in section 6.4, microscopic lattice models with different levels of physical reality to

characterize the microporosity, probe diffusion and percolation of particles mov-

ing in this MP medium using simulation techniques and compare our results with

experimental measurments wherever available. Finally we give a brief summary

of this work in section 6.5.

6.2 Physical system and the geometrical model

Mixed ion (or Heteroionic) clays with different size intercalants occupying spe-

cific gallery sites are excellent models of 2D MP media. Examples of such

systems in which adsorption and diffusion measurements can be performed are

ternary intercalated layered silicates A3314 — Y, where Y is the host layer; A

and B represent the gallery cations which have different sizes [28, 38, 104, 105].

One usually studies the diffusion of a neutral guest species C (for example He,

Ar) inside this 2D MP medium [28, 103]. An example of such MP medium is

[C"r(en)§+],.,[C’o(en)‘,’+ — enli—a - FHT, where FHT stands for fluorohectorite, a

layered silicate, and the intercalants are Cr and Co complexes with en ligands.
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The geometrical characteristics of the mixed-ion systems are the following: The

precise positions and the structure of the intercalants inside the gallery of FHT are

not known. However, from the X—ray measurement of the in-plane packing of the

intercalants (pillars) in smectic clays as a function of relative pillar charge (pillar

ion charge/clay surface charge ratio), there is strong evidence that the intercalants

form a triangular lattice [106]. From a physical point of view it is reasonable to

assume that the intercalants form an incommensurate triangular lattice. The size

of the intercalants C'r(en)g+ and C'o(en)§+ are ~5.4A° compared to the lattice

constant a ~ 5.2A°, where a is a measure of the size of the hexagonal cage of the

substrate Kagomé network of O-atoms. In fact, the Ar and N3 adsorption data

[38] shows that the lateral size of these complexes are slightly larger than 5.4A".

Thus, one expects the substrate commensuration energy to be rather small. This

is in contrast to the well known alkali-graphite intercalation compounds [27, 107].

Ifwe neglect, in the leading order, the effect of substrate corrugation, then we have

a system of (3+) ions interacting via unscreened Coulomb interaction. The ground

state structure of such a system is known to be a triangular lattice. Consequently,

we can model the [C'r(e'n)§3,+]a.,[C'o(en)‘2’+ — en]1_z — FHT system as a triangular

net whose sites are randomly occupied by C"r(en)§+ and Co(en)g+ ions, the lattice

constant being 10.22A".

In order to characterize the microporosity, we will briefly review the discussion

presented by Cai et.al.[103]. Assuming that the intercalants(to be denoted as

cations for simplicity) A, B and the diffusing molecule C can be represented by

cylinders with (diameter,height) given by (dA,hA), (d3,hB), and (dc,hc), one
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can define a set of porosity parameters by the following:

 

 

 

.91 = 0[a;CdA]

1, = 0["_‘"§:—d"/21

13 = 0[“;c""]

1. : (NZ—3

.15 = 0[:—:-

where the function 0(3) 2 1 if a: > 1, 0(3) = 0 if a: < 1, and a is the

distance between two nearest neighbor(nn) cations which are assumed to form

a triangular lattice. Although the ideas presented here are not restricted to a

triangular lattice, we will argue later that for the physical systems we have studied,

a triangular lattice is the appropriate model. If C can pass between two nn A

cations laterally, then .91 = 1, otherwise 31 = 0. Similar definitions can be given

for s; and 33 which are the other two lateral porosity parameters. The parameters

34 and .95 describe the vertical porosity of the MP medium. We however note that

the transverse rigidity of the host layers can significantly alter the definition of

these vertical porosity parameters. For a given system, the diffusion of the guest

particle C is controlled by the above set of five porosity parameters. Depending

on the values of sg’s, one can have no diffusion, complete diffusion, one or two

percolation thresholds [103] in the system A2314 — Y as one changes x from 0

—+ 1. Our physical system was modeled with the assumption that the heights of

the intercalants and the guest species do not influence the diffusion in the plane,

ie. we take .94 = 1 and s5 = 1. Later we will argue that this is reasonable
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for the systems under study. Thus there are only three relevant lateral porosity

parameters .9 = (31,32,133) left to deal with.

Rare gas adsorption [38] and diffusion [28] experiments were done in het-

eroionic pillared clay [Cr3+(en)3],[Co3+(en)3ll-z — FHT, where en is ethylene-

diamine ligand. This system has the following properties: At room temper-

ature C'o(en)§+ and C'r(en)§+ have the same diameters and height ~5.4 A.

They prop up the gallery of FHT to a height of ~5.4 Aand the average dis-

tance between two adjacent intercalants is about 10.22 A. This allows atoms

like Argon(dc E (1);, = 4.0 A[28]) and Helium (dc E (13, = 2.6 A[25])

to pass through the space between AA, BB and AB pairs of intercalants, ie.

s=(1,1,1). When the system is heated to a temperature somewhere between

1000 to 1500, 003+(en)3 complex breaks into C03+(en)2 + (en), which has

smaller vertical dimension (about 3.8 A) and larger lateral dimension(> 6 A)

than the parent cation. The Cr3+(en)3 cations remain unchanged during heat-

ing. So if one takes a system [Cr3+(en)3],[003+(en)3]1_, — FHT and heats

upto a temperature between 100°C and 150°C, the resultant system becomes

[013+(en)3].[003+(en), + (en)]1—. — FHT. Using the values of the lattice con-

stants and diameter of the pillars and the diffusing particles, we find that for

Argon atoms s=(0,0,1), whereas for Helium atoms s=(1,1,1) and remains un-

changed. This implies that Argon atoms can pass only through two nn Cr3+(en)3

(see fig.6.1), and therefore in this case there exists a threshold 23.: such that the

Argon atoms can not diffuse through the system at all when a: < 23¢, ie. one should

see one percolation threshold as observed in adsorption measurements [38]. Z. X.

Cai [108] used lattice model simulation and I have used continuum diffusion sim-

ulation to probe this percolative property. In section 6.4, I will introduce both
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the models and compare the simulation results with experiments.

6.3 Review of experimental situation

Before we discuss the details of our simulations, we briefly review the exper-

imental situation. Two types of studies have been done [28, 38]. (1) Mass

adsorption measurement were carried out [38] where the mass uptake of Ar-

gon in the system [Cr3+(en)3]e[Co3+(en)g + (611)]1_,B — FHT was measured(see

fig.6.2) as a function of x at room temperature. The measurements show that

for 0 < z < 0.8, the system does not take up Argon except for some background

effects whose cause is not completely known. As x exceeds 0.8, there is a rapid

increase in the mass uptake indicating that the system begins to open up to Ar-

gon which can diffuse through the system and get adsorbed at available sites.

(2) Diffusion experiments were carried out [28] where the diffusive property of

Argon and Helium gas was measured at room temperature in both unannealed

C03+(en)3—FHT and annealed C03+(en)2+(en)—FHT films. These two systems

have the same effective properties as the x=1 and x=0 limits of the mixed system

[Cr3+(en)3],[003+(en)2 + (en)]1_, — FHT, because the unannealed 003+(en)3

has the same dimensions as Cr3+(en)3. Helium gas was found to diffuse through

both the systems but with different saturation time (t,) [28], 308. and 1800s.

respectively [109]. The corresponding diffusion constants(D) were estimated to be

~ 10‘6cm2/s and 10‘8cm2/s). On the other hand Argon gas could diffuse only

through the unannealed system, i.e. when x=1, with t, = 26008, and D ~ 10‘8

cmz/s. No Argon diffusion was detected in the annealed system i.e. when x=0.
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Intercalants

 
Figure 6.1: Argon atoms diffusing in the annealed [003+(en)3]1_,[Cr3+(en)3]. —

FHT. Single circles represent Cr3+(en)3. Concentric circles represent C03+(en)3

where smaller circles are for the ions before annealing and larger circles are for

the ions after annealing.
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as a function of x. [38]
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6.4 Results of computer simulation

To understand the adsorption, diffusion and percolation in the above system, we

have constructed models with different levels of sophostication and have stud-

ied the diffusion and percolation properties using different computation tech-

niques. The simulations were done on a triangular lattice where the Cr3+(en)3

and 003+(en)3 + (en) cations were randomly distributed on the triangular lattice

sites with probability x and l-x respectively.

6.4.] Lattice model

A simple lattice model was constructed by Cai and Mahanti [108] to see if one

can understand the sharp rise in the Ar adsorption near about 80% concentration

of Cr3+(en)3 intercalants. The Cr3+(en)3(A) and 003+(en)2 + (en)(B) complexes

were assumed to occupy the triangular lattice sites randomly. They further as-

sumed that only AA bonds are large enough so that Argon atoms(see fig.6.3) can

diffuse through it and get adsorbed near these bonds. Thus if we look at the

dual honeycomb lattice(DHL), a bond is open or closed depending on whether

two sites of the triangular lattice on the two ends of this bond have A atoms or

not. We assume that when the open bonds on the DHL percolate then only there

is significant Ar adsorption. The rationale behind the assumption is that one

needs access before adsorption in macroscopic scale can occur. However as will

be discussed later, this assumption may not be completely correct and one sees

observable macroscopic adsorption even below this threshold. Here we consider

this type of adsorption as background effect.

For the A381.c system when a: < 0.5, one does not have an infinitely perco-
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Cr3+(en)3 003+(en)2 + (en)

Figure 6.3: Lateral constraints on Argon atoms diffusing in the annealed system

[003+(en)3]1_.[0r3+(en)3]. — FHT. The dashed lines are closed bonds and the

solid lines are open bonds of the honeycomb lattice on which the Argon atoms is

diffusing.
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lating A cluster. For 0.78 > a: > 0.5, although we have a infinite percolating A

cluster, the concentration of AA bonds is not large enough for the corresponding

bond percolation to occur on the DHL. In fig.6.4, we plot the fraction of AA bonds

i.e. the fraction of open bonds(P) on the DHL belonging to the infinite percolating

cluster for different lattice sizes. Near a: z 0.78 one sees the usual rapid increase

of P with x and we estimate the percolation threshold cc to be 0.78 < 2: < 0.80.

For the following discussion we take 22,, = 0.79.

Now let us compare the pure bond percolation on the honeycomb lattice with

the above percolation threshold. Associating the sites of the triangular lattice

with a variable 0’,- such that a,- = 1, if the site i is occupied by an A atom, and

a“; = —1, if it is occupied by an B atom, we can define a parameter bij associated

with the bond between site i and site j (or equivalently the bond on the DHL).

The parameter bi,- = 1, if the bond is open, Ibij = 0, if the bond is closed. The

relation between bij and ag’s is

1

bi,- = 10+ 01' + 01' + 01°01], (6-1)

and

< 055 >= 232 (6.2)

where we have used < 0 >= (22: — 1), x being the concentration of A atoms, and

< 030’,- >=< 0’; >< O'j >.

Since the bond percolation threshold for a honeycomb lattice is 0.6527 [110],

from Eqn. 6.2 we find that 1:: = 0.6527, which gives me = 0.8079. This is slightly

larger than our result 0.79 for 23¢. Equivalently, the latter gives a lower percolation

threshold (~ 0.6241) for the DHL. The reason for this is that the bonds on the
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DHL are not statistically independent but are correlated instead. The correlation

between two adjacent bonds (2;,- and by, is found to be:

< 0,305]. > — < 0.3 >< 0;], >= 33(1 —- 2:) (6.3)

This correlation is positive and is relatively large near a: z 0.75 ie. if a bond (ij)

is open then (ik) has a slightly more probability of being open than when the

bonds are randomly open or close. This results in the percolation threshold being

smaller by ~ 4% compared to the random case(0.6527).

The percolation threshold at 23,, = 0.79 is close to the concentration a: a: 0.8

where one sees a sudden increase in the Ar adsorption experiment. The uncer-

tainty in the experimental x values is much larger than 4% to distinguish between

correlated and random bond percolation. However we believe that we have cap-

tured the essential microscopic picture underlying the adsorption process in these

2D miroporous systems. In the following section we confirm this picture by study-

ing the diffusion of Ar and He atoms using a slightly more realistic model of the

MP medium.

6.4.2 Continuum diffusion

Recently, a novel approach has been introduced to study the diffusion and trans-

port properties of physical systems where the true continuum structure is main-

tained [111]. The random walk algorithm is used to calculate the diffusion constant

in this approach and we belive that this is a more realistic approach to probe the

microporosity of the pillared lamellar systems which have been studied experi-

mentally. We apply this method to calculate D for the system shown in fig.6.1.

We allow a walker to land at a random location on the system. If the walker
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obtained from simulation of 100 x 100, 400 x 400 and 2000 x 2000 lattices (averaged

over 10 different configurations for each lattice).
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lands on a pillar, it dies and is removed, if it lands on the remaining part of the

system, it begins to diffuse. The effective sizes of the pillars are taken to be either

((1,; + do) or (d3 + dc) and the walker is assumed to be a point object. The step

length (I) of the walker is fixed to be 0.1 in the unit of the lattice parameter(a),

but the direction of the step is picked randomly. The walker moves one step along

that direction. If the walker hits a pillar during its diffusive motion, it stays at its

original place, but the clock advances one step forward. The diffusion constant D

is then obtained from the distance(R) that the walker travels in a time t via the

relation

It:2 2 4Dt (6.4)

The diffusion constant for a particle freely diffusing in 2D in the absence of any

pillar is simply

D0 = [12 (6.5)

We have calculated the relative diffusion constant D/Do for different Cr3+(en)3

concentrations x in the system [Cr3+(en)3]c[Co3+(en)3 + (en)]1_., — FHT for both

Argon and Helium atoms. Because the diameter of He(~ 2.6 A) is much smaller

than that of Ar(~ 4.0 A), the diffusion property of He is quite different from

that of Ar. We chose a 50 x 50 triangular lattice, and our results were obtained

by averaging over 50 configurations of the A281”, — FHT system for a given x

and 20 random walkers in each configuration for Argon and 50 walkers in each

configuration for Helium. The number of steps taken was typically ~ 10°. We

have taken the diameter of both Cr3+(en)3 and 003+(en)3 to be 5.4 A(dA), and

the diameter of 003+(en)2 + (en) to be 7.2 A(d3). Since the lattice parameter
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of the triangular lattice is a : 10.22 A[28], Ar atoms can only pass through

AA bonds while He atoms can pass through all the bonds as suggested from the

measurements of Zhou [28]. Fig. 6.5 shows the typical curves for R2 and D/Do

vs. the number of time steps

We obtain the following results from our simulation.

(1). The relation between the relative diffusion constant of Argon atom( dA, =

4.0 A) and the concentration x of Cr3+(en)3 in [Cr3+(en)3]z[Co3+(en)2+(en)]1_.,—

FHT. Note that as the porosity of the system becomes smaller, more paths with

narrow necks (such as BB bond) contribute to D and therefore the step length

should be chosen smaller to properly access these narrow neck regions. But this

will consume enormous computer time. We have checked the dependence of D/Do

on I and find that D/Do increases with decreasing I and saturates for small enough

value of I (see fig. 6.6). As a compromise between small I (hence long computer

time) and large I (less accuracy of D/Do), we have chosen I = 0.1 (in unit of the

lattice parameter). This value of I is sufficient to give accurate information about

D/Do for He (within 5 ~ 10%) when x is near 1, whereas for Ar and for He near

2: ~ 0 one can make appreciable error. To check this we studied D/Do for Ar

when a: = 1 by taking several values of I from 0.1 to 0.01. We find that D/Do

increases by about 30% as we decrease I from 0.1 to 0.01. Thus we estimate of

D/Do for Ar is reliable up to 30%. Clearly one needs a more careful calculation of

D/Do by either choosing a smaller value of I or by using a completely independent

method. Fig. 6.7 gives our calculated values of D/Do vs. a: ( expressed in %). We

clearly see the percolation threshold near 77% is consistent with the me = 0.78.
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(2). The relation between the relative diffusion constants of Helium atom(

d3, = 2.6 A) and the concentration x of Cr3+(en)3 in [Cr3+(en)3],[003+(en)2 +

(en)]1_, — FHT. This is shown in fig.6.8.

(3). Because the dimension of Helium atom varies a lot from literature to litera-

ture, we have also calculated the Helium size dependence of DH‘(2: = 0)/DH°(1: =

1). This result is plotted in fig.6.9. As we can see in this figure, for Helium diam-

eter larger than ~ 3.02 A, there is no diffusion in the z = 0 system and there is a

rapid decrease of DH‘(z = 0)/DH‘(2 = 1) near this critical diameter.

6.4.3 Comparison with experiment and discussion

From fig.6.7, we see that in order for Argon atoms to pass through the annealed

[Cr3+(en)3],[C’o3+(en)2 + (en)]1-, - FHT system, the concentration of 0r3+(en)3

must be greater than 0.78, which is in good agreement with the lattice simulation

results (:0: ~ 0.79) and experiment(~ 0.8).

The diffusion results shown in fig.6.8 show that for this particular Heluim size

(d3. = 2.6 A), Helium gas can diffuse through this system for all concentrations

(x) with DH°(2 = 0)/DH‘(:c = 1) z 0.35. But experimental estimate gives this

ratio to be almost ~ 10". This large discrepancy is difficult to understand. One

possibility is because of the large value of Bye for a: = 1, the equilibration time is

so short that there may be a problem with estimating the experimental value of

D accurately for this concentration. Secondly, because of the very small porosity

for x=0, there may be quantum effects which make the effective size of Helium

atom larger than 2.6 A, thereby suppressing diffusion near narrow passage ways.

Furthermore, the size of the Helium is in fact not a well defined quantity. Thus
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there is a possibility that the actual size of Helium atom is larger than what

we have used. From fig.6.9, we can see that the value of d3, is in the range

where the ratio DH‘(z = 0)/DH‘(z = 1) decrease rapidly with dye. Even a small

change in (13,, or by increasing the size of the big pillars slightly (from 7.2 A—)

7.6 A), one can cause a very large change in this ratio which can then explain the

experimental observation. What it means physically is that the system containing

all large pillars is very near the critical threshold for He diffusion.

Finally there is another phenomena which needs to be addressed. It was found

experimentally that Bye for z = 0 and DA, for z = 1 were of the same order of

magnitude and D342: 2 0) was slightly larger than DA,(2: = 1). However, our

simulation gives DH,(2: = 0)/Do ~ 0.19 which is smaller than DA,(:c = 1)/Do (~

0.32). The experimental observation can be understood by taking into account the

mass difference between Argon and Helium atoms i.e. MA, /MHe z 10. In reality,

there is a 1/M1/2 dependence of D [33] which has not been taken into account in

our simulation and its inclusion can explain the experimental observation. This

mass dependence can be indirectly incorporated through D0 which is then different

for He and Ar atoms. However the precise mass dependence of Do needs further

study.

6.5 Summary

In summary, we have used two simulation methods to get some insight into the

percolative properties of heteroionic clays. According to the above discussions, we

suggest that more detailed experiments should be done for Helium gas diffusing in

the annealed [C'r3+(en)3],[Co3+(en)2 + (en)]1_, - FHT system for different values
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of x. Also an improved method is needed to calculate D, particularly when the

porosity of the system is small. It may be necessary to incorporate quantum effects

on diffusion because they may possiblely be important near narrow constrictions.

Finally, we would like to make some remarks on the large background observed

in the adsorption measurements. There appears to be a rapid increase in the

adsorption near 2: = 0.5 (see ref.[38]) where, as we discussed in sec.IV A, one

should have an infinite percolating cluster of A (Cr3+(en)3) atoms. This may

open up some gallery space where Ar atoms can get adsorbed although they

cannot diffuse through the entire system. A more realistic model of adsorption

phenomena is needed to check this idea.



Chapter 7

Conclusion

In the abstract, I have given a detailed summary of my thesis project. Here I

briefly discuss the main projects and what further work needs to be done. As

summarized in the abstract, I have investigated the thermodynamic and dynamic

properties of both quantum and classical rare gas atoms and clusters confined in-

side microporous media. I have compared my theoretical results with experiments

whenever possible and in most cases find a qualitative agreement.

For the mass transport of quantum particles inside K-L zeolite channels, single

particle Schréidinger equation has been solved for simplified model of the channel

geometry using finite difference iterative method for eigenvalue problems. For a

more realistic potential model, this method is not suitable because of the compli-

cated boundary conditions. In this case, quantum Monte Carlo simulation method

may be more appropriate.

Extended Mott-Hubbard and Bose-Hubbard models have been used to probe

the low temperature thermal excitations of helium clusters (bosons for 4He and

spinless fermions for 3He) confined inside K-L zeolite cages and the effect of

tunnelling disorder has been investigated. However, spinful fermion problem still

134
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needs to be solved more accurately and the effect of disorder in single-site energies

on the thermal properties should be explored. Furthermore, the dynamics of

confined quantum clusters should be very interesting because they can be probed

by inelastic neutron scattering measurements.

To study the ‘melting’ and dynamics of Xe clusters inside L-zeolite, classical

Monte Carlo and MD simulations have been employed. Monte Carlo studies of

melting bring out the difference between a single cluster and a cluster assembled

material. However, for a better understanding of the dynamics, more extensive

simulations have to be carried out. Finally, percolative properties of He and Ar

atoms inside a model 2D microporous medium pillared heteroionic silicate clay

have been studied using continuum classical MC simulations. It is possible that

He atoms even at room temperature can show quantum effects on the diffussion

rate because when they go through narrow constrictions, their de Broglie wave

length may be comparable to the pore width.



Appendix A

Estimation of nearest neighbor

He-He interaction in K-L Zeolite

We use the realistic geometry of the K-L zeolite cage to estimate the interaction

energy between two helium atoms trapped inside K-L zeolite. There are nine K+

ions in a unit cell of K-L zeolite and four of them are believed to be sitting near

the wall of the cage while others are located inside the aluminosilicate framework.

The four K+ ions which are near the wall of the cage can interact with helium

atoms and contribute to the binding energy of the He atoms in what we refer to

as cage states. Experiment suggests that there are eight binding sites per-cage

(or cage states) available to helium atoms. The schematic arrangement of the He

atoms and K+ ions is shown in fig. A.1. Fig. A.1(a) is the cross section of cage

center in K-L zeolite. Fig. A.1(b) shows the arrangement of two He atoms bound

near a K+ ion.

He—He interaction can be affected by the presence of K+ ions. The interaction

between two helium atoms include two parts: (i) He—He direct L-J interaction:

V1 (ii) He-He indirect interaction through K+2 Vz, i.e. one He atom polarize

the K+ ion which then interacts with another He atom. We estimate the two
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Figure A.1: A view of the geometrical arrangement of Helium atoms and K+ ions

of K-L zeolite cage.

O—O

He K+ He K+ He

(a) (b)

Figure A2: (a) Shows the interaction between one Helium atom and K+ ion. (b)

shows the interaction between two Helium atoms and K+ ion.

  

contributions V1, V2 to the He—He using the following procedure:

(1) Estimation of V1:

In K—L zeolite, the diameter of the cage d 2 13 A. The diameter of a He atom

is d3. 2: 2.6 A. Putting 8 He atoms as show in fig.A.1(a), one estimate the average

nearest neighbor seperation between the He atoms (133-3, 9: 2.7 A. Also, the L-J

parameters for He-He are: e = Me — 16erg, 0' = 2.56 A. So, we estimate

a 12 a
  

V1 = 4€[( )6] :3 —9K

dHe—He _ dHe-Hc

(2) Estimation of VZ:
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To estimate this potential, we first have to have the He-K+ effective L—J pa-

rameters. This can be estimated using the known results from quantum chemical

calculation by Rao et.al. [112] for He — K+ and He — K“L - He arrangements

shown in fig.A.2(a), (b) (Fig. A.2(a) shows one He atom interacting with one K+

ion. Fig. A.2(b) shows the interaction between two He atoms and one K+ ion).

The known results from quantum chemical calculations of binding energy 61, and

equilibrium bond length I5 are:

affix“ = —12.0mev

151"“ = 3.11A"

_ +_
851‘ K H“ = —24.9mev

zfe-m-He = 3.18A°

Using the above results for the He-K+ interaction, we can estimate the effective

L-J parameters. The He—K+ interaction includes two parts. One is the K+-He

polarization energy and the other is the K+-He L-J energy.

2

K+—H _ aHee aHe—K+ 12 aHe—K+ 6

V e — _2(r'1,qe_x+ )4 + (Ruffle—I“) "’ Tiara—1“) l:

where age = 0.205A"3 is the He atom polarizability. This potential energy

VK+ "H“ should be equal to the known value ef‘_K+ when rife—I“ = lye—I“

and its derivative should be equal to zero. From these relations, we obtained the

parameters

01 = 450115I2e-K+ = 8.83e — 17.9tatcouI2A"11

‘72 = “Ugh—In = 4.298 — 20.9ta.tco'u.lzz’1°11
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From these parameters, we can calculate He -— K+ —- He interaction energy

at If‘"K+—H‘ = 3.18A" which is VHc_K+.Hc = —23.7314mev. This should be

the binding energy of this system if there are no three-body effects. But the real

He—K+—He

binding energy 5,, = —24.9mev The difference between VH,_K+ _H, and

€f°_K+ "He is the indirect He—He interaction through polarizable K+ ion which is

V2. Thus we obtain

V2 = £3°"K+"H° — VH¢_K+_H, 2 —1.17me'v 2 —14K

Combining the direct and indirect He-He interactions, we get the total nearest

neighbor interaction energy

V=V1+V22—23K

The interaction between He—He atoms in real K—L zeolite is much more compli-

cated. The two contributions we have estimated are perhaps the most significant

OIICS .
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