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ABSTRACT

ANALYTICAL FORMULATION FOR

STATIC AND TEMPORAL PATTERN ASSOCIATION:

NEURAL ARCHITECTURES AND ALGORITHMS

By

Jiansheng Ho'u

Currently, most Artificial Neural Network (ANN) models have standard layered

structure of interconnected neurons where the connections (weights) are computed

using off-line or on-line methods. The process of finding an appropriate weight

(matrix), if it exists, is usually computationally expensive.

This dissertation focuses on new design and training of artificial neural networks

used for storing static or temporal patterns. A product-of-norm model of artificial

neural networks is presented. It is shown that this model can store an arbitrary data

set as stable system equilibria — without the need for performing training process to

determine the weights. Consequently, the process of iteratively finding the weight

matrix is eliminated. The need of defining the weights is in fact replaced by defining

(or augmenting) the architecture.

The properties of this new model are investigated, and various modifications are

adapted for practical applications. In particular, the use of the log form of the energy

function and the subgrouping method are introduced to reduce the computational
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effort. Moreover, methods for recognizing shifted images are proposed by adding

penalty terms to the energy function.

This investigation also includes ways to improve the current algorithms for training

recurrent networks to store temporal patterns. Specifically, two algorithms are

proposed to avoid the backward integration mode in the time-dependent recurrent

back-propagation method.
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CHAPTER 1

INTRODUCTION

1 . 1 Overview

Since the birth of the first electronic digital computer — the Von Neumann machine,

human civilization has entered a new era of information processing. Today, computers

have been used in almost every area in our life, from home to office, from science to

industry. It is hard to imagine what life will look like without computers today. Even

though the digital computers are so advanced and so widely used, they still have

many limitations when compared to human brains. Many things, which can be done

so easily by human brains, can be very difficult, if not impossible, to be accomplished

by digital computers. A good example is the processing of visual information: an one-

year-old baby is much faster at recognizing human faces and objects than the best

computers today [HKP90]. The following distinguished features have been attributed

to human brain (neural networks):

0 Robust and fault tolerant. Nerve cells die every moment and this does not affect

the performance of neural networks significantly.



0 Flexible and adaptive. It can easily adjust to a new environment by “learning”.

It does not have to be programmed like a digital computer.

0 High degree of parallelism and distributed storage.

0 The ability to process information that is fuzzy, probabilistic or inconsistent.

o Compactness.

These features have inspired generations of researchers to study the human brain

— neural networks, to investigate the principles of how human brain works and to

build models to mimic the behavior of the human brain. This lead to the birth of

“artificial neural network” (ANN) —— “ the next generation of computers”.

The study of artificial neural network has gone through several circles of up and

down. It began in the 1940’s with McCullough and Pitt. Second peak happened in

the 1960’s with Rosenblatt’s perceptron convergence theorem. It began to explode

again in the 1980’s inspired by John Hopfield’s energy approach and the modern

era of multi-layered neural networks and back-propagation algorithm. Researchers

have been investigating the possible applications of artificial neural networks in all

areas. Information association using artificial neural networks is a major field which

researchers have studied extensively. The research results can be used in a wide range

of real world applications, such as image association, pattern recognition, associative

memory and etc..

Associative memory is one of the early themes of the research works on artificial

neural networks. It is such a kind of network that presents the same output when sim-

ilar inputs are applied. Many artificial neural network architectures and algorithms

have been proposed and studied by researchers. Some of the prOposed networks
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use feedforward structures, while the majority use feedback structures (the recurrent

networks). The focus of this dissertation research is on the recurrent networks.

1.2 Problem Statement

Some major issues in designing functional neural networks are [8891, SWC91]:

1. the ability to store (or learn) any number of pre-specified set of data successfully;

2. the determination of a set of parameters (or weights) which would archive 1

using efficient off-line or on-line computations.

While it is possible to employ analogous approaches to the algorithms employed in

systems theory, control and adaptive control, the amount of computation may be

prohibitive by present implementation media. In particular, for n—neuron neural

network update methods, one must update or determine in the order of n2 weights.

Consequently, most learning or weight updating methods can successfully store in the

order of 7: patterns while updating about 112 weights. In addition, the weight updating

computation is largely time consuming. Another limitation of current algorithms is

the insufficient ability to store arbitrary set of data. Many of the algorithms require

the data to be stored meet certain prerequisite conditions.

In this thesis, current ANN architectures and algorithms used in static information

association will be analyzed. New ANN architectures and algorithms will be presented

to overcome the limitations identified in the analysis. Specifically, this thesis will focus

on reducing the computation complexity of the networks and increasing the capacity

of ANN networks. Implementation of new models via hardware will be investigated

too.
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ANN networks used for temporal pattern association is another area which has

great potential applications. Most algorithms proposed so far are, to certain degree,

extensions of the back-propagation method. The computation is very expensive.

Ways to improve the performance of ANN used in temporal pattern association will

be investigated in this thesis too.

1.3 Research Goals of the Thesis

Goal 1:

Objective:

Significance:

Approach:

Improve the performance of ANN used for static pattern association

Analyze Current ANN network architectures, models and algo-

rithms, especially recurrent networks will be analyzed, so that their

limitations can be identified. New architectures and algorithms will

be presented to overcome the limitations identified.

Analysis of current approaches is a very important step. Through

this step, advantages and limitations of current ANN networks used

for association of static patterns will be identified. Thus new archi-

tectures and algorithms can be generated. A new architecture with

better performance will have a wide range of applications. It is a

step further in mimicking the behavior of neural networks.

Current models and methods of ANN used for association of static

patterns, especially feedback networks, will be investigated first. The

capacity, speed, convergence and computation complexity of various

nets will be studied. A new ANN architecture will be proposed
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Goal 2:

Objective:

Significance:

Approach:

with a new “energy” function. The resulting network will be a

gradient-like system, thus it will have nice stable behavior. The

proposed system will be able to store arbitrary analog data set.

The determination of network parameters (weights) will be simplified

using this model. Static patterns will be stored as stable equilibria

of the system so that given enough hint (input) the network will be

able to retrieve the correct pattern. Simulations will be performed

to verify the theoretic results and demonstrate the potential usage

of the new model.

Generalization and extension of the proposed model.

The proposed model will be generalized. Several ways of modifying

the “energy” function will be investigated so that the resulting

network can be tailored for various application needs.

Generalization of the “energy” function can gain insights of the

property of the new model. Investigation of ways to modify the

“energy” function will lay a foundation for the new model to be

used in real world applications.

Different forms of the “energy” function will be explored to simplify

the model and improve the performance. Ways to modify the model

so that it can be easily modularized and parallelized will be inves-

tigated. Methods of modifying the model so that it can be used

in image association and recognition will be studied. In particular,

variations of the “energy” function to recognize shifted images will
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Goal 3:

Objective:

Significance:

Approach:

Goal 4:

Objective:

Significance:

be investigated. Software simulations will be performed to verify the

correctness of theoretical result and computation complexity.

Micro-electronic hardware implementation

Study ways to implement the proposed network in hardware; par-

ticularly, VLSI technology. Basic circuits building blocks will be

presented.

Implementing the new ANN model in hardware makes it possible to

employ this model in real world applications. The implementation

process can also provide feedback about directions to improve the

theoretical model.

Analog MOS transistors biased in subthreshold region will be used

as the basic elements of circuits for the new ANN model. Circuit

building blocks will be designed and verified using “Pspice”. Small

networks will be built.

Extensions to for temporal pattern association

Analyze current models and algorithms used for temporal patterns

association. Improve the performance of ANN by proposing new

models or algorithms.

ANNs used for temporal pattern association have great potential

usage in real world applications.
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Approach: Current models and algorithms for temporal pattern association

will be surveyed first, then the limitations and advantages of each

approach will be analyzed. New algorithms will be proposed to

improve the performance and overcome the limitations identified.

1.4 Major Contributions

The major contributions of this work can be summarized as follows:

0 A new ANN architecture — the product-of—norm model — is proposed. This

model eliminates the dynamic learning of the weight connections. Weights are

fixed instead. This network can store arbitrary set of data as stable system

equilibria. Thus the data are guaranteed to be recallable. This model can be

used in a wide range of real world applications.

0 Various methods of simplifying the product-of-norm model are presented, such

as using the log form of the “energy” function, the infinity norm and subgroup-

ing method. The simplified network can be easily parallelized and modularized.

0 Several ways of tailoring the “energy” function of the product-of—norm model

are pr0posed so that the model can be used in specific applications. In partic-

ular, tailoring the “energy” function for recognizing slightly shifted images is

demonstrated.

0 Basic building blocks for implementing the product-of-norm model in hardware

using VLSI technology are proposed.
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0 Numerical algorithms are proposed which extend the time-dependent recurrent

back-propagation method used in storing temporal patterns using recurrent

networks. They eliminate the need of integration backward in time as needed

in the original time-dependent recurrent back-propagation method. Rules are

developed for setting the final boundary conditions of the co—state and the initial

values of the neurons of the time-dependent recurrent back-propagation method

are derived using optimal control theory.

Overall, this work improves the current methods for artificial neural networks used

for general association. Arbitrary data set can be stored and retrieved. “Learning”

become simpler.

1.5 Organization of the Thesis

The rest of the dissertation is organized as follows:

Chapter 2 gives a basic introduction to artificial neural networks used in associa-

tion of static patterns and identifies limitations of current approaches.

Chapter 3 presents a new model of artificial neural network — the product-of-

norm model of ANN. A new “energy” function is proposed and the system dynamic

equations are derived from the “energy” function. The stability of this new system

is investigated. The properties of the new model using different kinds of norms are

analyzed, especially the L2 norm.

Chapter 4 further investigates the ways to modify and generalize the “energy”

function proposed for the new model, specifically the log form of the “energy”

function. The subgrouping method is proposed to localize the connections. It
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also demonstrates the ways of tailoring the “energy” function for image recognition

purpose. Simulations are proved.

Chapter 5 presents some circuit building blocks for the new model using analog

transistors biased in the subthreshold region. “Pspice” simulations are given for some

of the networks. A one-neuron-/two-pattern network of the new model is also showed.

Chapter 6 analyzes the current approaches for temporal pattern association prob-

lem using artificial neural networks. It identifies the limitations and advantages of

each method. Finally it presents some new algorithms to overcome some of the

limitations.

Finally, chapter 7 summarizes the whole thesis, points out the future research

direction.
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CHAPTER 2

ARTIFICIAL NEURAL

NETWORKS FOR

INFORMATION ASSOCIATION

2.1 Background

Some of the major concerns or criteria in designing associative neural networks are:

0 How many patterns can a network store? Can it store arbitrary patterns? How

big is the network capacity (we define the capacity of an associative network as

the ratio of the number of patterns it can store over the number of neurons in

the network) ?

0 Will there be any spurious patterns stored? In other words, does the network

store patterns which are not desired?

10
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11

o How are the patterns stored? What is the training method? Can the network

be trained on-line?

o How easy is it for the network to store additional patterns without altering the

patterns which have already been stored?

0 Speed of the network. How fast can it be trained? How fast can a pattern be

retrieved?

0 Can the network be easily implemented in hardware/software?

These criteria measure the merit of a designed associative artificial neural network.

In general, the above criteria apply to associative networks for both static and

temporal patterns.

Many artificial neural network architectures and algorithms have been proposed

and studied by researchers. Most of them are focused on the applications of associative

memory. Some of the networks proposed use the feedforward structure. While the

majority use the feedback structure (the recurrent structure). Our main interest is

in the later. In the following sections, we will study some of the popular ANNs used

for store static or temporal patterns.

2.2 The Hopfield Model

The analog Hopfield model [Hop84] is a recurrent network. One of the major contri-

butions of this model is that it can be easily built with analog circuit and it is suitable

for VLSI implementation. Figure 2.1 shows a circuit model of an element (neuron)

of a Hopfield model. Figure 2.2 shows a Hopfield network. In Hopfield model, each
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processing unit (neuron) i, i = 1,2, . . . ,n, is an amplifier with a capacitor C: and

a resistor p; at the input node. The processing node uses a sigmoid function S to

transfer input u,- to output vi. Node (neuron) i is connected to node (neuron) j via a

finite conductance Tij~ The connection matrix T = [ng] is symmetric and T.-,- = 0 for

i 6 {1,2, . . . ,n}. The system dynamic equations can be derived by using KCL, and

are expressed as:

dug 7' U:

7t— Zfij(vj-u.)—;+I.
j=l

= ZTaJ-vj- (ZT..+——)u.—+I i=1,2,...,n, (2.1)

:1

Ci

where I, is an input bias current to neuron i, and

vj=S(u,-) j=1,2,...,n. (2.2)

Let Ry: T and

_1_ _ l. n _1_

Bi Pi “=1n<R'fj

Pi j=1

The system differential equations become:

Cd , n ,

071—1; 2:72-11),- — E:- + 1,2 =1,2,...,n. (2.4)

j=1
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The “energy” function of the system is defined as

n n

__ ...._.. "_1_‘“-1..E— ZZTUW), 21.2”: 12‘ f0 5 (170.117,. (2.5)

i=1 j=1 i— £21

The derivative of the energy function along the trajectory of the system can be derived

 

as:

9'5— ” 1‘15““) a—E-2 (26)
dt — i=1 C,‘ du, 02); i

where v,- = S(11;) and S is a sigmoid function. Thus

d

d—iT > 0. (2.7)

Since C; > 0 and (jg-EV Z 0,

if g 0 for t 2 o. (2-8)

When “a? = 0

3E

E): 0 2 — 1,2, ,n

du,

=> Cg? — 0

So u.- is a equilibrium point of the system. Therefore the system will converge to a

stable point (equilibrium point) starting from any point. This system is a gradient-like

system. [SWC91] has more detailed analysis of this system.

Hopfield network functions as associative memory by storing desired patterns as
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Figure 2.1. A neuron of an analog Hopfield model

stable equilibrium points of the system. Thus, when the system is presented with an

input “similar” to one of the stored patterns ( within the region of attraction of one of

the stable equilibrium point ), the system will converge to the closest stored pattern.

However, it is difficult to determine the symmetric connection (weight) matrix T. The

network cannot store arbitrary patterns either. There are many papers published on

ways of finding the weight matrix for a set of given patterns, such as the one proposed

by Barbosa [Bar91], and the one by Tseng et al [THL93].

There is a discrete version of Hopfield model too [Hop82]. The system dynamics

can be described by:

V: = sign (2 Tij) (2-9)

1

We omit the detailed analysis here.

The Hopfield—type model has the following limitations:

0 The storage capacity is relatively small, i.e. for a fixed number of neurons the



15

 

 

 

 

   

      

Il I2 1..

T. T... T.

T2 T2 Th

Tn T,z
Th

9. p. p.

 

  
 

  

  

Figure 2.2. A network of Hopfield model
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number of “storable” patterns is small.

0 Given an arbitrary set of patterns to be stored, it is difficult and maybe

impossible to find a weight matrix. That is, the network cannot store arbitrary

sets of patterns. For example, assume I, = 0, then the system equilibria of the

Hopfield model must satisfy the condition: FT(Vi)Vj = FT(VJ')V'i, for i 75 j;

where F(V) = R’IS‘1(V) [SWC91].

0 On-line learning is difficult and computationally expensive.

2.3 Bidirection Associative Memory

Bart Kosko extended the original Hopfield type associative memory to a two-layer

network [Kos88], as shown in Figure 2.3. Each layer can represent a vector (or

pattern) and the two layers can have different number of neurons. The two layers are

connected through the weight matrix (connection matrix) M and its transpose MT.

When the system is given an initial input to layer one, say A’, the system works like

this: the output of the layer two is calculated by B’ = S(MA’), S() is a threshold

function; the output of layer two is then fed to layer one again through [connection

MT; the output of layer one then become A” = S'(MTB)’ until B = S(MA) and

A = S(M,TB) A and B are the stored patterns of the network ( may not be a desired

one ). Given pattern A as the input, the network can retrieve pattern B; similarly,

given B as a input the network can retrieve pattern A for layer one. Kosko [K0388]

proved that any real matrix M is bidirectionally stable (i.e. use matrix M as the

connection matrix, the resulting network is stable). Kosko proposed the following

way to find the connection matrix: for a given set of patterns (A1, Bl), (A2, 32), . . .,
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(Am, Bm), matrix M can be constructed as follows:

M = ZXFIG, (2.10)
i=1

where X,- and Y.- are the bipolar form of patterns A,- and B,- respectively and are

defined as:

a;,- If (1.5 > 0

1‘35 = , (2.11)

—1 If (1,} S 0

bgj if (25,“ > 0

31.3 = . (2.12)

—1 if 12,-,- g 0

   
 

Figure 2.3. Structure of Bidirection Associative Memory

However, as pointed by Wang et al. [WCM89], this proposed matrix cannot

. guarantee the recall of the desired patterns, i.e. some of the desired patterns may
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not be stable equilibrium points of the system. Wang et al. proposed “multiple

Training Method” to build the matrix M, which can guarantee a successful recall of a

single pair of patterns [WCM90]. To guarantee the recall of all training pairs, Wang

proposed a method called “Dummy Augmentation Encoding” [WCM90]. The basic

idea is to increase the dimension of the stored patterns to make them “noise-free”.

In [WCJ91], Wang proposed a necessary and sufficient condition for a generalized

connection matrix (also called correlation matrix in Wang’s paper) of a bidirectional

associative memory (BAM) which guarantees the recall of all the training pairs. He

also proposed to use linear programming techniques to find such matrix. However,

for a given set of patterns this condition may not be satisfied.

The advantage of BAM is its ability to store patterns in pairs. The major

limitation with BAM is that it cannot guarantee to store an arbitrary set of patterns.

It is also difficult to find the connection matrix if it exists at all.

2.4 Existing Models for Storing Temporal Pat-

terns

Many algorithms have been prOposed for training ANNs so that they can

store/generate temporal patterns. To be able to generate temporal patterns, A

recurrent network structure is usually required. Our main interest here is to extend

current algorithms and to improve the performance of current methods. In this

section, a brief introduction will be given to some popular algorithms. Detailed

analysis will be given in later chapters. Our focus is on the algorithms of training a

recurrent network to store/generate temporal patterns.
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Back-Propagation Through Time

Back-propagation through time was proposed by Rumelhart, Hinton and Williams

[RHW86]. This method “unfold” a fully connected recurrent network through time,

so that the network can be represented by a feedforward network with each layer

corresponding to a state of the recurrent network at certain time constant. The

connections between each layer are the same, and they are the weight matrix of

the original recurrent network. Therefore, the popular back-propagation method of

feedforward network can be slightly modified to be used to train this kind of network.

The limitation is that this algorithm cannot be used to train arbitrary length patterns.

The length of the training patterns need to be fixed and known. This method also

requires too much computer resources and is difficult to implement in hardware.

Real-time Recurrent Learning

A method proposed by Williams and Zipser [WZ89b, WZ89a] can be used to train

general recurrent networks. It does not require the patterns to have fixed length. The

training algorithms use a gradient descent method to update weights. The derivative

of the “energy” function with respect to weights is calculated by integrating forward

the derivative of the outputs of the neurons with respect to weights. Thus this

method is a forward propagation method. The drawbacks with this method are: it is

computationally very expensive, each time step requires 0(n4) of operation. It also

needs large memory storage.

Time-dependent Recurrent Back-propagation

This method was proposed by Pearlmutter [Pea89] to train general recurrent

neural networks. Other researchers developed similar method, such as the “adjoint

function” method proposed by Toomarian and Barhen [TB91]. The time-dependent
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recurrent back-propagation method is in essence an extension to the backepropagation

method used in feed forward networks. This method updates the weight/connections

using a gradient-descent algorithm too. However, this time, the derivative of the

“energy” function with respect to weights is calculated using a co—state variable

(adjoint system). The computation per time step is in the order of 0(n2). However,

it needs to integrate the co—state backward in time. Thus difficult to be used on-line

and hard to be implemented in hardware.

The Green’s Function Method

Sun, Chen and Lee proposed another way of finding the derivative of the “energy”

function with respect to weights [SCL91]. Instead od using back-propagation method,

it used a “Green” function. This method can be integrated forward in time. The

computation steps are in the order of 0(n3). This method needs to solve a linear

equation at each time step, which may not have a unique solution in numerical

simulations.

In the rest of this dissertation, we will first propose a new model of artificial neural

networks for association of static patterns. This new model will overcome some of

the limitations we have pointed out in current approaches. Then we will investigate

the ways to improve current methods and models used for association of temporal

patterns.
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CHAPTER 3

THE PRODUCT-OF-NORM

MODEL OF ARTIFICIAL

NEURAL NETWORKS

3.1 Motivation

As can be seen from previous chapters, two of the major issues in the design of

functional artificial neural networks (ANN) are [$391, SWC91]: (1) the ability to

store (or learn) any number of pre—specified set of data (patterns) successfully; (2)

the determination of a set of parameters (or weights, connections) which would achieve

(1) by using efficient off—line or on-line computations.

Dynamic learning has been a more attractive way in (adaptively) computing

the parameters of an ANN. For (static) feedforward artificial neural network mod-

els, the error-back-propagation is one of such dynamic methods [RHW86]. Pineda

[Pin87, Pin88, Pin89] and some other researchers have ported the back-propagation

21
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techniques to recurrent networks too. Other learning methods such as the one

proposed by Perlmutter [Pea89] in essence are error back-propagation method too.

However, most of the proposed algorithms proposed so far are computationally

expensive and the number of sets of data (patterns) which can be reliable learned

is limited. Moreover, additional data may be inadvertently learned making what is

known as spurious states.

The usual models of ANN fix the architecture and the number of units (neurons)

first, then seek to “compute” parameter values, either through off-line or on-line

methods, which render a given set of data stable equilibria of input/output pair.

The structure is not dependent on the number of elements of the set of data. These

networks spend lots of time in learning stage and are well known to have limited

capacity in storing arbitrary set of data.

In this proposed model, we make trade-offs: we eliminate the dynamic learning

of parameters but make the number of units or neurons dependent on the number

of data to be stored. The resulting network does not “waste” any time on adapting

its parameters and the given patterns are guaranteed to be the stable equilibria of

the system (i.e. they are guaranteed to be recalled). However, the network’s “size”

will depend on the number of desired data to be stored. The network becomes more

complex: the connectivity or interaction among neurons increases.



3.2

We st

with:

W[18?



23

3.2 Proposed Mathematical Model

We start the network by proposing a new general “energy” function of the network

with:

E =1ftm)Hne'H;, (3.1)
p l=1

where e1 9—- [(vi'l - v1), (viil — “02),. - . 7(1):] - vnlli

||e1||p means the p-th norm of vector e’ with 1 < p < 00,

(p = 1 and p = 00 need special treatment) ;

v,- : the output of the j-th neuron;

n : the number of neurons of the system;

m : the number of patterns (data set) to be stored;

v : the l-th specified pattern;

v- : the j-th component of vector V”;

f : a scaling function and f(m) > 0;

u,- : the input to the j-th neuron, and v,- = S(u,~);

S : a sigmoid function (a bounded, monotone increasing diffeomorphism);

In particular we have used 5 = tanh() in our simulations.

We define the system dynamic equations by

0E
12' : __

' 0v,-

i=1,2,...,n. (3.2)

This is a gradient-like system. It preserves all the characteristics of a gradient

system, such as no oscillations and global convergence. Since E Z O, the “energy”

is bounded from below. Thus, the system is guaranteed to converge to its limit set
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which is composed of equilibria only [H874].

3.3 Stability Analysis

For the new artificial neural network architecture, the first issue we want to address

is: if the desired patterns are the stable equilibria of the system, i.e. can they be

recalled? Theorem 3.1 answers this question.

Theorem 3.1 For the system defined by equation (3.1) and equation (3.2), suppose

V" = [vf', 125’, . . . ,v’,“,’]T, l = 1,2, . . . ,m, are the desired/pre-specified patterns (note:

in this paper we use bold face to represent vectors), Then V", I = 1,2,.. . ,m, are

asymptotically stable equilibria of the system, i.e. they are guaranteed recallable.

Proof:

Since

el(v) = [(1)1 _ v1): (v2 _ ’02), - ° ~ 1(2):;1— vnllTa

then

e’(v") = [0, 0, . . . ,0]T

and

Ile’llp = 0 => E(V") = o.

If

VaiéV‘l Vl=l,2,...,m,

then

new)”, >0 v1=1,2,...,m.
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Since % > 0 and f(m) > 0, thus

E(V)>0 Wé {V'1,V"2,...,V"m}.

Therefore, V", l = 1,2,... ,m, are isolated minima of the “energy” function (we

assume V‘“, l = 1,2, . . . ,m, are distinct). Consider a small nerghberhood Q around

pattern k such that V"" is the only system equilibrium point inside 0, It is obvious

that E(V) is continuously differentiable over 9. E(V’k) = 0 and E(V) > 0 for

V 94 V“, V 6 Q. The derivative of the “energy” function along the trajectory of the

system can be expressed as:

dE(V) ” 8E 62),- ,

i=1

n BE 2 av.-

'-*Xdaflznr an

i=1

 

where 32—3: = 513%). By our choice of the function 5', we have git? > 0. Thus

dflV)
a <0 mrv¢v* mm 

Therefore, according to Lyapunov’s stability theorem [Kha91], V'k is an asymptoti-

cally stable equilibrium point of the system.

The second question about the new system is if the regions of attraction for each

pre-specified patterns can be estimated, i.e. how stable are the desired patterns?

From the proof above we know that the “energy” function E can serve as a

Lyapunov function for the equilibrium point V‘k over the region Q(V"‘). Thus we
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can calculate the Lyapunov surface to estimate the regions of attract for each V‘“,

k=1,2,...,m.

In this section, we investigated the overall stability of the new architecture. We

will analyze this new model for specific norms in the following sections.

3.4 The Product-of-norm Model Using L2 Norm

When using L2 norm (p = 2) in the product-of—norm model, the “energy” function

can be written as:

E = gnmrfiuetvmi
l=1

= gummnvrhvu:

= if(m)1'[[(v;’+—v1)2 (valgv2)2+...+(v;I—vn)2]. (3.6)

The system dynamic equations now become

in = f(m)Z((vfl-v.) f1 IIV'k- VH3

l=l kil

_—_ f(m)(f:v”’—v,-)fi [fluff—22,)2] i=1,2,...,n. (3.7)

l=1 k=1j-l

k¢l

From the above system dynamic equations, it is obvious that at any desired

pattern, say V", U = 0. It should also be observed that for a vector V to be a
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system equilibrium point, i.e.

m) in? — v.) 11 [for — ..,)2] ,
(=1 k=1 i=1

k¢l

its components must satisfy the following conditions:

min{v‘-"I :l=1,,.2 ..,m}$v,- i=1,2,...,n

(3.8)

max{v,-‘“ :l=1,,.2 ..,m}2v,~ i=1,2,...,n.

Otherwise, there will exist an i 6 {1,2, . . . ,n} such that

(vII—vg)fizl(v;- I‘-vJ-)2>0 Vl€{1,2,...,m} (3.9)

52;}“=1

or

.“—v,))H —vJ-)<0 VlE{1,2,...,m}. (3.10)

k=1j=1(v

k 1

Thus it,- # 0, and V is not a system equilibrium point. Inequality (3.8) specifies the

range of the locations of all the system equilibria. To summarize the above, we have

the following theorem:

Theorem 3.2 For the dynamic system defined by equation (3.7)

o The desired patterns V", l = 1, 2, . . . , m, are the asymptotically stable equilibria.

o For a vector V to be a system equilibrium point, it must satisfy the inequality

(3.8).

Note that this theorem can be applied to general pth norm also.
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3.4.1 One-neuron/m—pattern Case

For one-neuron/m-pattern case, the system’s characteristic can even be further in-

vestigated. When n = 1, the “energy” function becomes

E = —f(m) H(v" — v)2 (3.11)

and the system dynamic equation becomes:

m

u = f(m) (E: (1)“1 — v) fiw'k — v)2 . (3.12)

=1 iii

Theorem 3.3 The system represented by equation (3.12) has the following proper-

ties:

o The system has a total of 2m — 1 equilibrium points.

0 The pre-specified patterns v". (l = 1,2, . . . ,m) are asymptotic stable equilibria.

The other m — 1 equilibria are unstable.

0 Suppose v", (I = l,2,...,m), are distinct and v"1 < v"2 < < 22"”, then

for every i E {l,2,...,m — 1}, there is an unstable equilibrium point v'li'f‘l'”

between v‘“ and v41“).

Proof:

Let us define a new function:

m

H(v) = f(m): (v"l — v) fi(v'k - v)2 . (3.13)

l=l k=l

k¢l
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Then the roots of H(v) are the equilibria of the system defined by equation (3.12).

Since H(v) is a polynomial of order 2m — 1, it generally has a total of 2m — 1 roots.

That means system (3.12) will have at most 2m - 1 equilibria.

Rewrite H(v) as

H(v) = f(m)[ImI(v"-v)] filer-v)
l=l l=1 til

= Ho(v)H1(v), (3.14)

where we define

Hotv) = f(m) (fun—w], (3.15)

H1(v) = in: fi (v'l -- v) . (3.16)

52::

It is obvious that at the specified patterns 12'“ (l = 1, 2, . . . , m),

110(1)“) = 0 and H(v") .-= 0. (3.17)

Thus 1)", l = 1, 2, . . . , m, are equilibria of the system. The other m — 1 equilibria will

be given by the roots of function H1(v).

At a specific pattern v”,

H100“) = ifi(vtk_v¢i)
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= liljwk — v")] [ f} (M — m] . (3.13)

k=i+l

Since v'k — v" < 0 for every k 6 (1,2,. .. ,i — 1],

{-1

Sign (H(v‘k - v”)) = (-1)“‘,
k=1

i.e. sign(H1(v‘f)) = (—1)l'1. Therefore

H1(v")H1(v'(‘+1))< 0 i = 1,2, . . . ,m — 1.

Because H1(v) is a continuous function of v, there must be a root v‘llt‘H) in each

interval (v‘i,v’(‘+1)), i = l,2,...,m — 1, such that H1(v'li’f+1)) = 0. The total

number of roots we have now is 2m — 1. Since H(v) is a polynomial of order 2m — 1,

these roots must be the only equilibria of the system.

The stability of the system at the pre—specified patterns v", i = 1, 2, . . . , m, has

been shown at previous section. The instability of patterns v‘li'l“), i = 1, 2, . . . , m —

1, can be proved as follows:

The function H1 (v) may now be expressed as

H1(v) = eniil(v‘(q’q+ll — v), (3.19)

q=l

where c > 0, and c is a constant.

Evaluating the derivative of equation (3.14) with respect to v at v‘lr'r’”), we obtain

d d
__ ’.(r,r+l) = :(r,r+l) _ .(r'r+])

dell ) Ho(v )dv H1(v ). (3.20)
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where

d 1 +1) "H ( +1) ( +1)_ :1 r,r : _ t q,q _ n1 r,r

de1(v ) c 3;]; (v v )

q¢r

m—1

= (—1)'"‘c H Iv‘m’“) — NW”). (3.21)
:1

3.1+

Therefore

- d 111(1'1'4-1) T-I

Sign EH1“) ’ ) = (—1) . (3.22)

Since

sign (Ho(v'("'+1))) = sign (f(m) LH(v'l — v'("'+1))])

:1

thus

_d_H(v1-1(r,r+1)) = 1H (vt(r,r+1))Ho(vn-(r,r+1)) < 0 (3 24)

do dv ‘ ‘ '

Therefore, Vim“), r = 1,2, . . . ,m — 1, are the maxima of the “energy” function.

So they are unstable equilibria. QED

Figure 3.1 and 3.3 show two example plots of the “energy” function for two one-

neuron/m-pattern cases. As we can see from the plots, all the desired patterns

are global minima of the “energy” function. The corresponding system differential

equations are plotted in Figure 3.2 and 3.4 where we can see that all the desired

points are the roots at which the plots cross the :r-axis with a negative slope. All the

roots between the desired ones are between two consecutive stable ones and the plots

cross the :r-axis at those points with a positive slope.
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Figure 3.2. The plot of function H(v) with v"‘1 = 0.25 and v'2 = 0.75
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Figure 3.3. The plot of “energy” function E = 0.5(0.25 — 2:)2(0.5 -— :r)2(0.75 -— 0:)2
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Figure 3.4. The plot of function H(v) with v‘1 = 0.25 v“2 = 0.5 and v"'3 = 0.75
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Let us look back again at the proof of theorem (3.3). We find that for the one-

neuron/m-pattern case, we can even further control the regions of attractions for

each specified pattern by specifying the unstable equilibria between the stable ones.

1 2
For example, suppose we want to store 22" , v“ , - - - , and 22"" as the stable equilibria.

Without loosing generality, we assume v"1 < v"2 < < u”, then we can select

m — 1 points: 111,122, - . - , 11““, such that

‘1 < 0""; (3.25)v‘l<vl<v'2<v2<v’3<~-<vm

and the system differential equation can be constructed as

u = (1)"1 — v)(v1- v)(v"2 — v) - - - (v'm — v)

= Lfi(v" — 12)] [iii-1(2)“ — v)] . (3.26)

The locations of 121, v2 ,---, and v"“1 will control the regions of attractions for those

stable equilibria. Figure 3.5 and figure 3.6 show two example functions H(v) defined

this way.

3.4.2 The Number of Equilibria for Product-of-norm Net-

works

From theorem (3.3), we have already known the number of equilibria and their

locations for the case of one-neuron/m-pattern. Here we will investigate some special

cases for two-neuron networks.
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Figure 3.5. An H(v) function with stable equilibria 0.2, 0.4, 0.7 and unstable ones at

0.3 and 0.6

 

  
 

 
Figure 3.6. An H(v) function with stable equilibria 0.2, 0.4, 0.7 and unstable

equilibria at 0.3, 0.5
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When n = 2, the system differential equations are :

0, = [23(1):l — v1) in [(vf" — 121)2 + (ka — v2)2]

:1 :1

m *3? . (3.27)

112 = 2(v31— 1’2) H [(vik — v112 + (”5" — "2)21

l=1 £2}

Since the shift or rotation of the axes does not change the relative locations and the

number of equilibria of the system, we can always transform the system to simplify

the system equations in the analysis.

For the case of n = 2 and m = l, The system is trivial

1'11 = (vi - '01)

(3.28)

112 = (v; — 122)

It is obvious that the system only has one equilibrium point and the equilibrium point

is stable.

For the case of m = 2, since we can always transform the coordinates to simplify

the system, we can assume, without losing generality, 051 = 1252 = 0.

The system equations are

1'11 = (v? - 'v1)l('vi‘2 - v1)? + v3] + (v12 - 121)[(vi‘1 - v1)2 + v3]
(3.29)

122 = —v2[(v‘2 — 111)2 + v3] — 121(1)." — v2)? + v3]

Therefore, at system equilibria we have

u; = 0 and (vi'1 — v1)(v;'2 — 211)2 + (121"2 — v1)(v‘l — 121)2 = 0.
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01 v02
. . .

So v1 = v“, v"‘2 or 31%. Thus the system has a total of three equrllbrla.

For the case of m = 3 and n = 2, the system becomes complicated. Here we

only investigate the special case: the three pre-specified patterns are located on one

straight line. Without losing generality, we assume v31 = of = v;3 = 0 and 12:3 = 0.

The system differential equations become

1'11 = (vil - v1)[(vi'2 - v1)2 + villvf + 03]

+(vi‘2 - 1201(1);1 - 111)2 + 1231112? + v31

+(—vlll(vi2 '— ”112 + vilKvil — ”02 + ”21 (3-30)

and

112 = ’vzflvi'2 - 01)“ + villlvi3 - '01)2 + 0%]

+111? + v§][(v;‘ — 1).)? + v5]

+102“ — 1).)? + vilhvf" — 1).)? + v31}. (3.31)

At an equilibrium point v2 = 0 and

0 = ('01.1 — ”111(012 " ”llzllvil +

(”i2 - ”llllvil " 1)2llvil "' lllllviz — ”1121104l - ”llzl

0 = 112(v1'2 — 111) + v]"(v;‘l — v1) — v1(v]"2 — v1)(v;'l — v1). (3.32)
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Thus v1 = 0 or

0 = 221(vi‘2 — v1) + 121(vi'1 - v1) — (vi'2 — v1)(v;'1 — v1) (3.33)

 

 

—(v;1 + 1:021: ,/(..;1)2_ 1111):: + (112)?
-3 '

=> ’01 = (3.34)

The system has a total of five equilibria.

3.5 The Case of Loo Norm

For the case of p = 00 ( Loo norm ), the derivative of the norm does not always

exist. The “energy” function is not continuous. This case need special treatment in

software or hardware implementations. Here we define the “energy” function as:

E = f(m)fi|lV"-Vlloo
l=1

f(m) fi max Iv;fl — vJ-I. (3.35)

l=l '7

Since the partial derivative aimllV"I - Vlloo does not always exist, to make the

system gradient-like, we define

0 if (1);.“ — 12,-! 71 111311111123“I - v.)

a .1 def . 1 .1
EZIIV - Vlloo — —1 1f v1- — 12,-: —mJax|vJ — ml (336)

° .1 _ cl '

1 if v,- -— v, — mjax [v]- — vJI

"z“ a“. (3-37)
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The system differential equations are defined as

u,- = f(m) E 6;..- H mJax lug" — vJ- . (3.38)

i l=1

111

Since the a. is not continuous, we need to choose f(m) to be very small in software

simulations.

I \

1
'

/ \

1
.

ll 11 l

I

Figure 3.7. An example vector field for Loo norm

Figure 3.7 shows how the vector field of this system will look like around a stable

equilibrium point in two dimension case. As it can be seen from the figure that the

system has limit number of directions to go at any point. If we fix the step size fo the

system, the system will become a grid system. The system will move from one node

of the grid to another. This may make it easier to simulate the system using digital

computers.
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3.6 Simulation Results

To verify the correctness of the theoretic results and demonstrate how this model can

be used in practical applications, we present several simulation results of this model

used in image recognition and association. In the following examples, we use the

outputs of neurons to represent pixels of images. Each pixel is shown as a square

in the figures below. The neuron output value of 1 represents a full back square

in the figures, the value of 0 represents a full white square and values between 0

and 1 represent black squares proportional to the values. We use L2 norm in the

simulations.

In example one, we considered a 304-neuron network. For each desired image, we

stored the image and an assigned code in the network. This way we can read the

output of the network by reading the outputs of the neurons representing the codes.

To compare its performance with BAM [WCM89, WCM90, WCJ91], we have used

the same image patterns as those used in [WCM89].

Figure 3.8 shows an example where six image-code pairs are stored. When the

network was given the initial input as shown in the figure, the network retrieved the

corresponding images correctly.

In example two, we used a network with 37011 (169x219) neurons to store two

facial images as shown in figure 3.9. Figure 3.10 shows that given a part of an image,

the network was able to retrieve the who image correctly.
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Figure 3.8. Initial and final outputs of the network with six pre-specified patterns
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Figure 3.9. Stored two facial images

  

 

   

   

         
Figure 3.10. Image retrieving process



CHAPTER 4

GENERALIZATION AND

VARIATIONS OF THE

“ENERGY” FUNCTION FOR

PRODUCT-OF-NORM MODEL

In general, the proposed product-of—norm model is very complex: neurons are fully

connected to one another. For the L2 norm case, the order of the system increases as

the number of data sets increases. It is also difficult to modularize or parallelize the

system in software simulations or hardware implementations. In this chapter, we will

investigate various ways to simplify the system. We will also present some example

ways of tailoring the “energy” function for specific applications. Our focus here is

the L2 norm form of the product-of-norm model. However, the techniques discussed

here can be applied to other forms of norm too.

43
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4.1 The Log Form of the “Energy” Function

If we take log() on both sides of the original “energy” function (3.1). We get a new

“energy” function as:

1‘2 élogE=f.(m)+}:logne'H:, (4.1)
l=1

where fl is a function of m. It is a scaling function like f(m)

Now the system differential equations can be calculated as:

111'

ll 1

I
V
]

 

—-7||e‘||” i=1,2,...,n. (4.2)

These dynamic equations describe a gradient-like system. Different from the

original product-of-norm model (3.1), this system has been changed to a sum-ofnorm

form. In the system differential equations, the terms corresponding to each pattern are

now computed separately and then added together. However, the “energy” function

is no longer bounded below. Fortunately, the points at which the “energy” function

goes to negative infinity are the pre-specified patterns. In simulations, the system can

stop at certain point according to the specified accuracy. Thus in simulation, even

though the “energy” function is not bounded below, starting from any initial point,

the system will still “converge” to one of its stored patterns.

To avoid the problem that the “energy” function is not bounded from below, we
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can modify the “energy” function as follows:

E 2 S": [log(ne'n; + on] . (4.3)
l=1

where c) > 0, l = 1,2, . . . ,m, are pre-chosen constants.

The new system differential equations become

3. m 1 , p .
i=- —— =1,2,...,. 4.4

" Elle‘llhczavd'e“? ‘ " ( )

This system “energy” function now is bounded from below. In addition, it preserves

the features of gradient systems. The terms corresponding to each pre-specified

pattern in the system differential equations are added together. However, the pre-

specified patterns will generally no longer be system equilibria. We will address the

relation between the equilibria of the new log-form system and the original product-

of—norm system next.

Lemma 4.1 For a system with “energy” function

E = fitlle’llt + or). (4.5)

where c; > 0 (l = 1,2, . . . ,m), and c; are constants. The system diflerential equations

are defined by:

. m a r .
u,- = 1}; 8—mue'ngg [||e'°||;+c,.] z = l,2,...,n. (4.6)

- 11321

If V' is a (isolated) local energy minima of the system (4.5), then V' is a (isolated)



46

local minima of the “energy” function of (4.3).

Proof:

To distinguish the two “energy” functions, we refer to the “energy” defined by

equation (4.3) as E in this proof. Since V“ is a local minima of the “energy” function

of (4.5), there exists a small neighborhood I) of V", V" 6 R, such that for any point

ofV#V*andV€Q,wehave

E(V) — E(V‘) 2 0.

For the system (4.5), since E > 0,

Thus

Since

Thus

E(V)—E(V') = logE(V)—logE(V")

_ E(V)

 

E( )= log E(V) and E(V") = log E(V‘).

(4.7)

(4.3)

(4.9)

(4.10)

(4.11)

(4.12)
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and

 2 0. (4.13)

Therefore, V' is a local minima of the new “energy” function (4.3) too. It can been

seen from the proof above that if we change the inequalities to strict form we can

prove the case of isolated “energy” minima. We omit the proof here. QED.

Lemma 4.2 A pattern V" is an asymptotically stable equilibrium of the system

defined by (4.4)/(4.6) iff it is an isolated local minima of the “energy”function defined

by (4.3)/( 4.5).

Proof:

Firstly, we want to show that if V" is an asymptotically stable equilibrium of the

system (4.4)/(4.6) it must be a local “energy” minima of (4.3)/(4.5). We prove it by

contradiction method.

Case 1. Suppose V‘ is an asymptotically stable equilibrium of (4.4)/(4.6), but it

is not a minima of the “energy” function (4.3)/(4.5). Define a small neighborhood D

around V‘, such that V“ is the only system equilibrium point inside D. Consider a

new function E 2- E(V‘) — E(V) It is obvious that E is continuously differentiable

over D. Since V‘ is not a local minima of the energy function E, there exits some

V0 with arbitrarily small llVo — V‘H and

E(Vo) < E(V“) => E(vo) > E(vr) = 0. (4.14)

Define a set 5 as

n = {v e B. : E(V) > 0} (4.15)
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where the ball B, 3 {V E R" : ||V — V*|| g r} and B, C D. Along the trajectory of

the system

E=—E

5E 8v,- .

- £37317;

3v,- 2
= 2:51:12;

> 0 for VEB. (4.16)

According to Chetavev’s theorem [Kha91], V" is unstable. Contradiction! thus, V"

must be a local energy minima.

Case 2. Suppose V“ is a local energy minima of the system (4.3)/(4.5) but not an

isolated one. Then for any small neighborhood of V" defined by Q = {V : [lV—V'II <

e}, e > 0, there exits a local energy minima V0 6 I? such that 3% = 0 —-> Ulv0 = 0.

Thus V" is not asymptotically stable. contradiction! Therefore, V‘ has to be an

isolated local energy minima.

Now we will show that if V“ is an isolated “energy” minima, then it is an

asymptotically stable equilibrium point.

Since V“ is an isolated “energy” minima,

0E

WIV. = 0. (4.17)

Thus V" is an equilibrium of the system (4.4)/(4.6). Consider an small neighborhood

0 around V‘ such that V“ is the only system equilibrium point inside (I. Then

consider the continuously differentiable function E(V) over It, E(V') = 0 and
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E(V) > 0 for V 75 V‘, V E 9. Thus E can serve as a Lyapunov function candidate

over 9. Along the trajectory of the system,

  

dE(V) _ dE(V)

dt _ dt

< 0 for v¢vzven (4.13)

Thus V" is an asymptotically stable equilibrium of the system (4.4)/(4.6). QED

Lemma 4.3 Suppose V", l = 1,2, . . . ,m, are the pre-specified patterns of the sys-

tem defined by equations (4.5) and (4.6). Given any small positive constant r, there

always exist a set of constants c; > 0, l = 1,2, . . . ,m, such that, for l = 1,2, . . . ,m,

the system (4.5) has a local “energy” minima V" and “V"1 — ‘7‘!“ < r; V" is an

equilibrium point of system (4.6).

Proof:

For simplicity, let us start by choosing

0<c1<1 l=1,2,...,m.

Define a small neighborhood (I of V"‘1 as:

Q ={(V.1+ AV) I ”AV” E 7'1, 7" > T1) 0} (4.19)

such that

v:1 go, l=2,3,...,m. (4.20)
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Define another neighborhood 91 of V"1 as:

01 = {(V'"1 + AV) : r1 2 “AV“ 2 r2, r1 > r2 > 0}.

The Open neighborhood Q; is defined as

$12 = Q — (21.

Consider the system “energy” function (4.5) at pattern V'I:

E(V“) [Ile‘(V“)II£ + c1] E -ltve)

= CrEn—1(Vd)a

here [Ie1(V'1)||p = 0 and we define

13,._1 = II [Hang + a] .

l=2

At a point V = V'1+AV, V E 91,

E(V) = [A8 + Cl]En_1(V),

where Ac = ||e1(V)||§. Therefore,

E(V) — E(V’l) = [Ae +, c1]E _1(V'I+AV) — clEn_1(V'l)

= AeEn-1(V’1+AV) + C1 En-1(V'1+AV) '-

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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ClEn-1(VT1)

> AeE.._1(V‘1+AV) + c1173.-. (v:1+ AV) —

61En_1(VT1). (4.26)

where En_1(V) = {I}; [lle’llg + 1] and En_1(V) = 117;, Mel”; . For V‘1+AV 6 91,

Ae > 0, En_1(V*1+AV) > 0 and c1 > 0,

Since Ae and En-1 (V*l+AV) are continuous with respect to AV over the compact set

Q1, there exists a > 0, such that AeEn-1(V"l+AV) > a for every point (V‘1+AV) 6

I'll. Similarly, there exists b > 0 such that En_.1(V"1) < b for V‘1+ AV E 91.

Therefore, for V’l+AV E 521, we can always find a constant c1 > 0 such that

a

Cl < h and c1 < 1. (4.27)

Thus, for any (V‘1+AV) E (11

AeE.._1(V"'1+AV) + C; [E -1(V"1+AV) — E,_,(v*1)] > a — clb

> 0. (4.28)

Since E(V) is continuous over the compact set 9, E(V) must have a minima V" 6 0

such that E(V“) S E(V) for every V 6 9. From inequality (4.28), we know

“V”l — V'lll < r2 < r, i.e. V“ 6 02. (4.29)
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That is V" is a local “energy” minima. Since this is a gradient like system, V“ is a

equilibrium point of the system.

Similarly we can prove the existence of c), l = 2,3, . . . ,m. we omit the detail

here. QED

From lemma 4.1 and lemma 4.3 we have the following theorem:

Theorem 4.1 Suppose V", l = l,2,...,m, are the pre-specified patterns of the

system defined by equations (4.3). Given any small positive constant r, there always

exist a set of constants C) > 0, l = l,2,...,m, such that, for l = l,2,...,m, the

system (4.3) has a equilibrium point V" and [[V"'1 — V‘IH < r.

For the case of L2 norm, we can further study the stability of the equilibria of the

new system.

Lemma 4.4 For case of L2 norm, suppose V", l = 1,2, . . . , m, are the pre-specified

distinct patterns of the system defined by equations (4.5) and (4.6). Given any small

positive constant 6, there always exist a set of constants c) > 0, l = 1,2, . . . ,m, such

that, forl = l,2,...,m, the system (4.6) has a corresponding asymptotically stable

equilibrium point V" and ”V" — V"[| < 6.

Proof:

For L2 norm, equation (4.6) becomes

4:4: (v:’—v.-)II [Ile"||§+61] 1'
(=1

l,2,...,n. (4.30)

k=l

k¢l
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It can be written in general vector form as

U = f(U)1 (4°31)

where f is a C1 vector field. Similarly, by taking f(m) = 2, we can write equation

(3.7) as

U = f"(U). (4.32)

Note that when c1: 0, l=1,2, . . . ,m, we have f = f‘.

We have already showed V", l = 1, 2, . . . , m, are asymptotically stable equilibria

of the system (3.7). The Jacobian matrix of system (3.7) evaluated at a specified

pattern V" is

2\1

Df(U)  
,,.. = (4.33)

  ’\n
J

where

m n .. .12 av.-

A1=-HLZ(”jk‘vjl[[a—m
k=l i=1

k¢l

 

] < 0. (4.34)

Therefore V", l = 1, 2, . . . , m, are hyperbolic equilibria. It is obvious that Df(U)|v.1

is invertible.

We define the Cl—norm [IhIIC1 of a vector field h E v(R") (v(R") means all the

vector field over R”) to be the least upper bound of all the numbers of ||h(U)|| and

||Dh(U)||, for U E R". According to the perturbation theory [H874], for any 6 > 0

there always exists a neighborhood a = {g : ||g — f‘HCx < r, r > 0} C v(R")
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of f“ such that for any 9 E a there is a unique equilibrium V"1 of U = g(U) and

“V“1 — V*1[[< 6.

Since [If—f‘llcx is a continuous function of C), l = 1,2, . . . ,m, and [If-f‘llcx = 0

when c1 = 0, l = 1,2, . . . ,m, we can always find a c1 = c; > 0 such that the vector

field

f“) E a, (4.35)

where

M) = f()I..=..=...=c-=o. (436)

Therefore, there is a unique equilibrium point V“ of U = f(1l(U) and “V"1 —

V‘IH < 6. Further more V“ is asymptotically stable and hyperbolic.

Now consider a vector field f(2) defined by

f(2)() = f()lcl=c;,C3=C4=-~=cm=0 (4.37)

Since V'"1 is a hyperbolic equilibrium of U = f(1)(U), the eigenvalues of the Jacobian

matrix Df(1)
 
v.1 will have nonzero real parts. Thus, Df(l)

 
9.1 is invertible. According

to the perturbation theorems, there exists a neighborhood 01 of f(1) such that for

any g, E 01 there is a unique equilibrium point V“ of U = g1(U) and ”V” —

V'lH < 61 < 6. Since ”V" — V“|| < e, we can always make cl small enough so that

“Val — V*1|| < 6. Further more, V1.1 is hyperbolic and asymptotically stable. Since

Hflzlllcx is a continuous function of c2, and fl?) 2 fm when c2 = 0, there exists a

open set (0, b1) with b1 > 0 such that for very 62 E (0, b1), fl“) 6 01. Thus, there exits
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a unique asymptotically stable equilibrium point VT] of U = f(2)(U) and

—._-*

(IV 1 — V“|| < e. (4.33)

Since V‘“ is a hyperbolic asymptotically stable equilibrium point of f(1) too (this can

be verified like those of f‘, we omit the detail here), we can similarly show that there

exists a set (0,b2) with b2 > 0 such that for every c2 6 (0,b2), there exits a unique

asymptotically stable equilibrium point V‘“ of U = f(2)(U) and

[IV‘2 — V‘zll < e. (4.39)

We can choose c; E (0,min(b1, b2)) to have both (4.38) and (4.39) hold.

Similarly, we can show that there exist C3 > 0, c4 > 0, . . ., cm > 0 such that there

exits a unique asymptotically stable equilibrium V", l = 3,4,... ,m and ”V" —

V"|| < e. QED

From lemma (4.1), (4.2) and (4.4) we have the following theorem:

Theorem 4.2 For case of L2 norm, suppose V", l = l,2,...,m, are the pre-

specified distinct patterns of the system defined by equations (4.3) and (4.4). Given

any small positive constant 6, there always exist a set of constants c) > 0, l =

l,2,...,m, such that, forl = l,2,...,m, the system (4.4) has a corresponding

asymptotically stable equilibrium point V" and ||V"" —- V‘lll < e.

The proof is straight forward. We omit it here.

From theorem 4.2, we know that we can use the new log form system to store

patterns as close to (not equal to) the desired ones as we want.



56

For the new system, the right hand side of the equations (4.4) is in the form of

summation, and the effects of the desired patterns are additive. This would make it

easier to implement the model in standard software/hardware modules which can be

easily parallelized. This parallelized architecture of modules is depicted in Figure 4.1.

As can be seen from the picture, each processing module works on one pattern

alone. Therefore, the process can be parallelized. Some simulations have shown that,

compare to those networks which use the original “energy” function, networks using

this log-form “energy” function converge (retrieve) faster. It can also be observed

that it is easier for this system to “learn” new patterns. To “learn” (store) a new

pattern, the original structure of the system does not have to be changed, only a new

module is added to the original network. The stored patterns of the old system are

still stored (to certain degree) in the new system.

4.2 Localization of the Product-of—norm Model

4.2.1 Motivation

The original product-of—norm system model described in equation (3.7) is fairly

complex: the feedbacks are nonlinear; the structure is fully connected. As the number

of units (neurons) increases, the number of connections will increase in the order of n“.

This will limit the size of the network in implementations. In software, the limitation

will appear in the time to simulate a reasonable-sized network. In hardware, the

limitation will manifest itself in the full connectivity. Thus it appears to be difficult

to directly implement this model in hardware using present technology. Therefore it

is necessary to simplify the original networks.



 

 

Processing

Module 1

 

 

     

 

 

Processing

Module M

 

 

Processing

Module 2 '

Neurons

   

 

Figure 4.1. A modularized structure of Product-of-norm model
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In last section we investigated the way to use log-formed “energy” function to

modularize the original system. In this section we will explore other approaches to

simplify the network. Our first goal here is to localizethe connectivity. As oppose to

haphazard structure, we seek to select a local structure that in addition to preserving

some of the delineated features of the original product-of—norm model, would only

add a limited number of spurious equilibria.

The specific approach rests on retaining the gradient systems property while

rendering the pre-specified patterns as isolated minima of the “energy” function.

Hence it can be guaranteed that the pre-specified patterns will always be asymptotic

stable equilibria of the system.

4.2.2 Subgrouping Method

A naive way to simplify the network is to divide the whole network into smaller

subnetworks which are isolated from one another. One builds each subnetwork

separately and assembles the small networks together to form the large network.

Figure 4.2 depicts an example of a network grouped this way. The “energy” function

which describes this model is:

E = i ITZ('J.‘-'-vj)2+l'nl2(1).l"-v1)2
l=IjEN1 [=1 jEN2

+... +11 2 (v;l—vj)2 , (4.40)

l=1j€Np

Where Nk, for k = 1,2, . . . , p, are the index of neuron in subnet k (p is the total

number of subnetworks). N,- r) NJ- : 05, for i 9193' and i,j 6 {1,2, . . . ,p}. The system
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dynamic equations are:

Di=-—. i=1,2,...,n (4.41)

i.e.

4:701) lion-10ft : («at—1).)? . (4.42)
k=1 JEN}.

1‘9“ 16M.

Since at the pre-specified pattern V", the “energy” E(V'“) = 0 and E(V) > 0

for V 94 V", l = 1,2, . . . ,m, V" are the isolated “energy” minima of the system.

Therefore they are asymptotic stable equilibria.

However, all the combinations of the minima of the separated p subnets are stable

equilibria of the system also. This leads to the generation of more so-called spurious

equilibria. Thus the region of attractions for each equilibrium point will become

smaller than that in the original product-of—norm model.

In this model, each neuron is only directly connected to neurons in its own subset.

Compared to the original model, the connectivity has dropped dramatically. A similar

approach is to divide the original network into smaller ones too. However, this time

each small subnetworks is coupled with one or more other subnetworks. That is, the

subnets overlap with one another. Figure 4.3 shows one example structure of such

network whose original network is divided into four subnetworks. The neurons which

are marked in dark color belong to two subnets, while the rest belong to one subnet

only.

The motivation of building subnetworks with overlap is to overcome the generation

of spurious equilibria of the previous model. In the previous model, each subnetwork

works almost independently. Thus any combination of the “energy” minima of each

subnet composes one system stable equilibrium point. While in this new model,
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the “energy” minima of one subnet will affect the minima of other subnets. Thus

intuitively, it should have fewer spurious equilibria than the previous model does.

Compared to the previous model, this model will have more connections. The

network will be a little more complex. However, compared to the original product-

of-norm model, the connectivity is much less and the structure is much simpler. The

system is still a gradient-like system and retains the features of a gradient system. The

choice of the size of each fully connected subnetworks and the degree of overlapping

with their “neighbor” subnetworks should be chosen judiciously for each application,

i.e. they should be application dependent. We observe that there will always be a

trade-off between the connectivity of these subnetworks and the application-related

performance.

The “energy” function for this new approach can be formalized as:

l m kl m :l

E = a H 211.- -v.-)2+II 21v.- w)?
(=1J'5N; (=1 jeNz’

+ . .. + fi 2 (1);! _ 101-)2 , (4.43)

l=l jENT',

where p is the total number of subnetworks. N = {1,2,. . . ,n}, N: C N for every

i€{1,2,...,p}.Ni’f'i{N,’,N§,...,N,-’_,,N,-’+1,...,N1’,}9E 45 for i = l,2,...,p, and

ULM=N.

If we define I‘(i) to be the set of subnets which contains neuron i, that is

mmmm,gnwg MM)



61

 
 

     

 

 

 

       Group 3

Figure 4.2. An example structure of dividing a big network into isolated smaller

subnetworks

 
 

 

     
 
 

 
 

 

      
Figure 4.3. An example structure of dividing a big network into overlapped smaller

subnetworks



and

i e N; 4:) N,’c c Ni), (4.45)

then, the system dynamic equation for the model can be expressed as

11,-: f(m) Z Z (1):“ — v.) H 2 (vs-”f — vJ-)2 , i=1,2,...,n. (4.46)

N66I‘(i) l=l 52:} JEN;

As we will show in the simulation examples later, if the portion of neurons correspond-

ing to those coupling neurons (neurons belonging to more than one group, shown in

dark color in Figure 4.3) are the same for all the pre-specified patterns, the coupling

neurons may lose their coupling effects, i.e. they may fail to pass information between

the two overlapping subnetworks, therefore, they cannot prevent the generation of

spurious equilibria.

4.2.3 Simulation Results

To investigate the performance of the two new models, we built a network with 288

neurons using different models presented in previous section to store three patterns.

Figure 4.4 shows the patterns/images to be stored by the network. Figure 4.5 shows

the two test patterns which we used as input to the network.

Network one is built using the “energy” function described by equation (4.40).

Figure 4.6 shows the grouping used in this network, which does not use overlapping

method. Network two is built using the “energy” function (4.43). Figure 4.7 shows the

grouping used in this network. In the simulation, both networks successfully retrieved

the correct patterns when applied with the test patterns shown in figure 4.5.
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Figure 4.4. Three stored patterns

  
Figure 4.5. Test patterns
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Figure 4.8 and figure 4.9 show the retrieve process for these two network when a

given input is composed of half of the image “1” and half of the image of“3”. The

network which was built using overlap method successfully retrieved a stored image

“1”, while the one with no overlap failed to retrieve a stored image.

Group 1

/ g

 

Figure 4.6. No over-lap grouping

.
-
-
-
-
-
"
‘
U

l

 

Figure 4.7. Over-lap grouping

From the simulation results presented above, we can make the following remarks:

0 The grouping of the neurons affects the performance of the network. The
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Figure 4.8. The retrieving process of the network using non-overlap method

  
Figure 4.9. The retrieving process of the network using overlap method
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grouping is dependent on the patterns to be stored.

o The model of overlapping groups has better overall performance for correct

retrieval of the stored patterns. This demonstrated that the overlapping among

subnetworks is essential for prohibition of the generation of spurious equilibria

and the enlargement of the basin of attraction for the desired patterns.

4.3 Modified Product-of—norm Models for Recog-

nizing Shifted/Translated Input Patterns

4.3.1 Motivation

The original product-of—norm model described in equations (3.7) cannot retrieve the

correct patterns effectively when the input pattern is a shifted/translated stored

pattern. An example network which stored patterns shown in figure 4.4 failed to

retrieve the correct pattern when given a shifted version of the stored pattern as

shown in figure 4.10. In this section we will explore various approaches to modify the

original model, so that it can tolerate (to certain degree) shifted/translated images

while retaining the features of being a gradient-like system. This section also serves

as an example of how the “energy” function can be tailored to suit specific application

needs.

4.3.2 Modified “Energy” Functions

We seek to modify the “energy” function to take the shift/translation effects into

account. Let us assume the images to be stored are in rectangular form and the
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Figure 4.10. Shifted input pattern

neurons are indexed in such a way that the images are represented row by row, that

is, the first row of the image corresponds to neuron 1 through c (c is the number

of columns of the image), and the second row corresponds to neuron c + 1 through

2c, - - -. We propose a modified “energy” function as follows:

1 m n

E — 5701011 Ztv.’ — v.)” +
[:1 j=1

. 2

$14 f]: L 2 (v;‘ — an] (4.47)

1=11=1 =(i—l)c+l

where K : is a constant and K > 0. Used here as a scaling factor;

c : the number of columns of the digital image/pattern;

12 : total number of neurons of the network, which equals

to the total number of pixels of the stored image;

r : the number of rows of the digital image/pattern;

m : number of images/patterns to be stored.
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In comparison with the original “energy” function (3.7), this modified “energy”

function has an additional term, which actually measures the error (i.e. the difference

between the current output of the neurons and the stored images) of each row as a

whole. This term serves as a penalty function. It is zero when the input pattern

is a horizontally shifted version of one of the stored patterns, while is non-negative

otherwise. It is obvious that at a stored pattern V", l = 1,2, . . . ,m, E = 0. Thus

V"1 is an isolated minima of the “energy” function. Therefore, V", l = 1,2, . . . ,m,

are stable equilibria of the system. When the current state of the system is close to a

shifted version of a stored pattern, the added term will be relatively small and make E

small also compared to the case of a random image as input. This, in a sense, builds

a “energy” valley to attract t hose shifted images to the correct patterns stored. This

can also be viewed as a simple feature mapping, the goal is to choose such maps that

will separate input patterns in feature space while being shift-invariant.

The “energy” function introduced this way may introduce more local “energy”

minima (spurious equilibria) and in general will not be able to recognize all the

shifted versions of the pre-specified patterns. The value of K becomes crucial when

it is used for different applications. The new dynamic equations now become:

111' = f(m)ZW‘-01)(HzUri-”02+

l=l k=l j=1

krfil

m J(3)+C m 1- pc 2

K: T Z (”id—‘04)] II XL 2 (vii—v11]
i=1 1'_J(.') k=1 p=l ’=(:'-1)c+1

k¢l

for i = 1,2,. . . ,n, (4.48)

where R(i) is the index number of the row which contains neuron i, and J(z) is the
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index of the first neuron of H(i).

Another way of modifying the “energy” function to achieve the same goal is to

add the penalty function as follows:

Kill 2 (v;’—v,-)] (4.49)

i=1 =(i-1)c+l

The “energy” function of this form can be used in conjunction with the log modifi-

cation method described earlier to achieve faster speed. It will also be easier to be

parallelized or be modularize in software simulation or hardware implementation.

The effects of this term can be controlled via the coefficient K. Later simulations

showed that varying this constant is a very effective way of changing the regions

of attractions for each stable equilibrium point. While, technically speaking, the

values of K should be computed from a nonlinear version of the Lagrange multiplier

approach, we opted for simplicity and practical implementation in software in our

treatment.

It should be clear from the discussion above that we can similarly construct an

“energy” function such that the resulting neural network would be able to recognize

vertically shifted patterns as well. Here we omit the detailed derivation.

To modify the network so that it is shift-invariant, i.e. it is able to recognize

both horizontally and vertically shifted images, we can obviously combine the two

penalty functions used for horizontal shift and vertical shift together. Here we want

to present a different approach. We propose to divide the network, more precisely
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the neurons whose outputs represent an image, into small regions as we did in the

subgroup method (See Figure 4.11 for example). Each region consists of a number of

neurons which form a rectangular area of the image. For a region, I, obtained this

way, we define the error for region I corresponding to the stored pattern V" as

e,= 2(1)- -v.-)], (4.50)

i6!

where V is the current output vector of the neuron and v.- is its ith component.

We use the summation of the errors of all the regions as the penalty term and add

it to the original “energy” function. The new “energy” function can be expressed as:

m n

E m)H 2(1)}! — vj)2+

1:1 j=l

zéngfiZ[Z(v:-—v.-)]2, (4.51)

l- 1166' iEI

where K > 0 and G is the set of all the regions. The penalty term can also be added

as in equation (4.49) to take the advantage of the log forms later. The new system

differential equations are (assuming regions not overlapping with one another):

"1);“fl — vi) H 2(1), " "1)2

(=1 k=l j=1

k¢l

m 2

+KZ 2(1);- ’,—v)H 2k[:(v;- “-vj)] , (4.52)

(=1 :61. Igé} leG jEI

where I,- is the region which contains neuron 2°.

The motivation for choosing such an error function can be explained as follows:
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Figure 4.11. An example way of dividing the network into small regions
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Referring to the grouping of neurons shown in Figure 4.11, if the input image is

shifted one box (pixel) in the direction shown by the arrow, the changes in the error

for each region will be in the order of (595-)? In general, if the region is w pixel wide

and I pixel high (long) and the shift is hl pixels horizontally and fig pixels vertically,

the change of errors for each region will be in the order of [1 — Egg—"Mr. When

In and h; is much smaller than w and I respectively, the change of errors for each

region will be very small. When h1 = h; = 0, the change equals zero. Thus it is not

sensitive to shifts. This will help the network recognize shifted images as we explained

in the horizontal-shift case. There is a trade-off between the tolerance to shift and

the complexity of the computation. The choice of the size of the region is important.

If w or I is too small, then the error defined for each region:

 

wl

e z [1— (I _ “1““ " M] (4.53)

will be too large for a small shift of the image. If the region is too large, the term

[2w — 4)]? (4.54)

in the penalty function may become too small to detect the shift of the image.

4.3.3 Simulation Results

To test the performance of the proposed modifications, we tried to build three 288-

neuron networks using different “energy” functions. We used the images shown in

Figure 4.12 as images to be stored and used images shown in Figure 4.13 as test
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input patterns. Using these patterns, we tested three networks built using different

models. Network one was built using the “energy” function (3.6). Network two was

built using the “energy” function (4.47). Network three was built using the “energy”

function described in (4.51).

Table 4.1 compares the retrieve results for each case. As can be seen from the

table, the proposed new network was able to recognize the shifted images in addition

to those input images which are blurred by noises. However, we noticed that the

modified network converges slower than the original model does in simulation. This

is due to the complexity of the added connections.

Table 4.1. Simulation results

 

 

Test Patterns

(60 (b) (C) ((1)

model 1 x x \/ \/

model 2 \/ \/ x \/

model 3 \/ \/ \/ \/

Note: \/ means successful and x means failed.
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V

 

 

 

K
K
K

K
K
K
E

          
 

4.3.4 Discussion and Remarks

So far we have surveyed current models and algorithms for neural networks used for

information association, such as associative memory, especially in the application of

character recognition and image retrieval. Our focus was on recurrent networks. We
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Figure 4.12. Stored patterns

 
(d) (e) (D

Figure 4.13. Test patterns
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proposed a product-of—norm model which has the following features:

0 The system eliminates the dynamic “learning” process. It can also be viewed

as that the learning process becomes “static”.

o The stored patterns are built into the network by design. In theory, such

network can store any pattern as the system equilibria. There is no limit as to

how many patterns can be stored.

o The system is a gradient system which has no oscillation. The system is globally

convergent .

Some of the limitations of this network are: the original network is fully connected

and is very complex, making it difficult to be implemented in hardware.

We also investigated the product-of-norm model using different norms. Based on

the original production-of—norm model, we proposed several modified network models.

All of them retain the property of being a gradient-like system while still being able

to store the desired patterns as stable equilibria. Especially, we investigated ways of

tailoring the “energy” function for the application of image retrieval. We proposed

ways of modifying the “energy” function of the original network to control the regions

of attractions for each pattern, so that the network can recognize slightly shifted

images.

We proposed ways to simplify the network, specifically, we proposed to use “log”

form of the “energy” function. Such networks can be easily parallelized in software

simulation and modularized in hardware implementation. To store additional pat-

terns, the network does not have to be built from scratch, it only needs to add some

new modules to the original one.
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We analyzed various ways to divide the original network into subnetworks so

that the connectivity of the network can be reduced while we can still store the

desired patterns. We demonstrated that the grouping with overlapping has better

performance.

We want to remark here: the simulation/application examples shown here are for

demonstration purpose only. They illustrated how this model may be used in real life

applications. The examples here are not intended for real image associations. Some

of the methods are heuristic.

As demonstrated by the examples, the new proposed models have great potential

of being used in a wide range of real life applications: such as associative memories,

categorization, character recognition and image association, etc..



CHAPTER 5

THE BUILDING BLOCKS FOR

MICRO-ELECTRONIC CIRCUIT

REALIZATION OF THE

PRODUCT-OF-NORM MODEL

5.1 Motivations .

One of the goals of the research on artificial neural networks is to understand how

human brain works so that we can use hardware (circuits) to mimic the human brain

to solve problems in real life applications. With today’s technology of very large

scale integrated (VLSI) circuits, it is possible to fabricate tens of millions of devices

(transistors) interconnected on a single wafer. This makes it possible to build complex

ANN circuits for real world applications where digital computers have limited use.

In this chapter, we will investigate ways of implementation of the product-of-norm

77
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model using analog transistors biased in the subthreshold region. There are several

advantages with circuits operating in the subthreshold region [Mea89]:

0 Power dissipation is extremely low - from 10‘12 to 10'6 watt for a typical circuit;

0 In the subthreshold region, a MOS transistor’s drain current saturates in a few

KT/q (thermal voltage), allowing the transistor to operate as a current source

over most of the voltage ranging from near ground to Vdd;

o The exponential nonlinearity is an ideal computation primitive for many appli-

cations.

First, we will propose some basic circuits which can be used as building blocks for

the implementation of product-of-norm model of ANNs. We will then present some

examples of ways of implementation of small product-of-norm model. Please note

that the example circuits presented here are for demonstration purpose only. They

are not targeted to specific real world applications.

5.2 Background and Basic Circuits

5.2.1 MOS Transistors in Subthreshold Region

The drain current of an N-channel metal-oxide-semiconductor (MOS) transistor bi-

ased in the subthreshold region can be expressed as [Mea89]:

I = Ioe;#”(e95? — 6%,), (5.1) I
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where V9 : gate voltage.

V, : souce voltage.

Vd : drain voltage.

10 : a constant for a given MOS transistor.

Isl .
q . thermal voltage.

When all voltages are normalized to quantity of %, the above equation can be

written as:

I = Ioe"V9(e’V‘—e"v")

.—. Ioer-V-(r — 67V“), (5.2)

where Vd, is the voltage between the drain and source nodes. When V4, is large

enough, we have

I z I... = Ioe"V9‘V' (5.3)

where I... is the so-called saturation current of the transistor. Figure 5.1 shows the

relationship of the saturation current vs gate voltage.

5.2.2 Current Mirrors

Figure 5.2 shows two diode-connected transistors, their gates are connected to their

drains respectively. For a typical process, Io is so small that even the smallest drain

current used (10'12 amp) requires IQ, approximately equal to 0.4 volt [Mea89], thus

makes the transistor well intro the saturation region of the drain current. Higher

drain current requires higher V2,, (V4,). Thus for any useful V9,, the drain current of
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Figure 5.1. I,“ vs V9,

the transistor has the same exponential dependence on the gate-source voltage. The

current can be controlled by V9,.

In circuit design, it is often necessary to change the sign (direction) of a current.

Figure 5.3 shows two types of current mirrors using diode connected transistors. The

input current I,“ biases a diode-connected transistor Q1. The resulting Vg, is just

sufficient to bias the second transistor Q2 to a saturation current 10“. equal to 1m. As

long as Q; stays in saturation region, ID“, is nearly independent of the drain voltage

Of Q2.

5.2.3 Differential Pair

Figure 5.5 shows a circuit which is usually called “differential pair”. The circuit uses

the difference of the voltages as the input. Since we will use this kind of circuits quite
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Figure 5.2. Two diode-connected transistors

often, I will give a brief analysis here.

Assume all transistors are working in the saturated region, the saturation current

can be calculated as:

I,M _—. IOeKVv-V'. (5.4)

Thus we have

I1 = Ioe‘VI'V, (5.5)

12 = Ioean-V. (5.6)

Since

15 = 11 + 12

= Ioe’v(e"v1 + e"V’), (5.7)

we have,

6'“ - I” l (5.8)
10 city] + 85V; °
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Figure 5.3. Two types of current mirrors

Substitute e‘V back to equation (5.5) and (5.6), we obtain the following:

CKVI

I] = 15W (5.9)

88V:

12 = bm, (5.10)

and

CKV] _ eKVg

I] — 12 = “65V; + 63V;

— V2

= 15 tanh flY—l. (5.11)

When V1 — V2 is small enough,

K

11- 12 z 1550/1 - V2). (5-12)

Figure 5.4 shows the relationship of II, 12, 11 — 12 vs V1 — V2. Using current mirror,
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Figure 5.4. II, I; and 11 — 12 vs V1 — V2

  

Figure 5.5. Differential pair
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Figure 5.6. Transconductance amplifier
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we can easily get 11 — 12 as output. As shown in Figure 5.6, where

V — V

[out = II — 12 = 1;, tanh K—(-—l—2—2—). (5.13)

The circuit shown in Figure 5.6 is called transconductance amplifier.

5.2.4 Current-voltage Multiplier

Figure 5.7 shows a prototype of current-voltage multiplier circuits. "Compared to

the transconductance amplifier shown in the last section, the circuit output 10m now

is drawn through two current mirrors instead of directly from the differential pair.

Therefore, the output does not disturb the operation of the differential pair. It is

obvious that the output current is:

”(V1 - V2)
10‘“: [1 —12=Ibtanh 2 (5.14)

When V1 - V2 is small enough,

1

Iout z 516(% — ‘6) (5°15)

Compared with the differential pair, 15 now is controlled by the input current In

via a current mirror. In normal operation, the bias transistor will be in saturation

region. Thus Ib = Iin and

”(V1 — V2)
[out = [in tanh (5.16)

I
?

glinU/l - V2) (5'17)
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So [out is the product of the input current and the difference between the input

voltages.

Figure 5.9 shows a pspice simulation for this circuit. We use the schematic symbol

shown in Figure 5.8 to denote this circuit. Since Ib cannot be negative, this circuit is

a two-quadrant multiplier.

Figure 5.8. Schematic symbol for current-voltage multiplier
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Figure 5.9. The plot of a current-voltage multiplier
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Figure 5.10. Gilbert multiplier

5.2.5 Four-quadrant Multiplier

Figure 5.10 shows a four-quadrant multiplier which is also called the “Gilbert Multi-

plier”. From the analysis of the differential pair, we know

eKVI

”85V; + eKV2

N

u
—
l

I
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_ [b H(Vi-Vz)
— 2(1+tanh 2 ),

I _

12 =§b(1—tanhM ).

Similarly, we can obtain the following currents:

4(V3 - V.)
—————2),

114 = %(1 — tanh iii/3512),

"(V8 — WI)

2 3

NM - V4)

2 )

I

113 = é—(l+tanh

123 = 123(1-l-tanh

I

124 = -23(1—tanh

Thus

11+12 + I] —12tanh K(%—%)

2 2 2

 

1+:

and

= I1+Iz _ Il-Iztanh’cUé—V”).

2 2 2

 

Therefore,

[out : 1+ "I-

= (II — 12)tanh “(fig—“Q

———”(V1_ V”) tanh= lb tanh 2 2

When V1 — V3 and V3 — V, are small enough, we have

2

I... z 1,,1‘4—(14 — V2)(V3 — v4).

“(V3 - V4)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)
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Figure 5.11 shows a pspice simulation of this circuit.
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Figure 5.11. Spice simulation of a Gilbert-multiplier

In the following section, we will need to calculate (V1 —V2)2 for the product-of-norm

model. We can use this four-quadrant multiplier to achieve that by setting V3 = V1

and V4 = V2. Figure 5.12 shows the schematic symbol for this square voltage-square

circuit.

 

._. SQ ..L

  
 

Figure 5.12. Schematic symbol of a voltage square circuit
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5.3 An Example Circuit of One-neuron/two-

pattern Product-of—norm Model

As we discussed in section 3.4.1 for one-neuron/m-pattn case, the product-of-norm

model’s dynamic equations can be written as:

it = f(m) 2 (v‘1 — v) H (v'“ - v)2 . (5.28)

1:1

when m = 2, the equation becomes

a = f(m)[(v" — v)(v'2 — v)” + (v‘2 -— v)(v" - vfl. (5.29)

If we use voltage to represent the output (state of the neurons), the terms (1)"1 — v)2

can be easily calculated with the voltage-square circuit.

Figure 5.13 shows an example circuit of the one-neuron/two—pattern case. As can

be seen, the circuit structure is symmetric. The state of the neuron is represented by

the voltage 1) over the capacitor C. For the voltage-square circuit, 12" and v are given

as input. The output current [1 is then given by

(v‘1 — v) Ir.(v"'l — v)

11 = 1;, tanh K tanh (5.30)

This current is then fed to a current-voltage multiplier X2 through a current mirror.

Thus the output current 12 of the current-voltage multiplier can be written as:

t2

2

12 = Iltanh ”(v —v)
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Figure 5.13. One-neuron/two—pattern circuit

:1 _ 2 12 _

= 1,, tanhU tanhM. (5.31)

2 2

When I)"1 — v and v'"2 — v are small, 12 can be written as

12 = 01(1)"2 — '1))(v"'1 — v)”, (5.32)

where a is a constant which incorporates the effects of I), and 1:. Similarly, we can

show that the current 1., can be expressed as

'2 __ .1 __

I4 = Ib[tanh ”CE—{£212 tanh 5(2) 2 ’0)

0(1)"1 — 1))(1)"2 — v)”. (5.33)22
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Currents I; and 14 are then summed up and fed to the capacitor C. Thus the voltage

over the capacitor has the following dynamics:

Ci) = 12 + 14. (5.34)

When 1)”1 — v and v‘"2 -— v are small, we have

C1) = a(v"'l — v)(1)"2 — v)2 + (1)"2 - 1))(1)"l — 1))“. (5.35)

The formula above is a differential equation for a one-neuron/two—pattern product-

of-norm model.

The PSpice code and simulation examples are presented in Appendix A.



CHAPTER 6

ARTIFICIAL NEURAL

NETWORKS FOR

TEMPORAL-PATTERN

ASSOCIATION

6.1 Introduction

In previous chapters, we studied networks that could store static patterns and were

used in applications like image recognition, pattern classification and associative

memory. In this chapter, we will investigate neural networks that can store/learn

temporal patterns. This type of networks can be used in many applications, such as

speech recognition, temporal pattern generation and forecast.

Learning or storing temporal patterns can be viewed as an extension to the general

association of static patterns. Temporal patterns can be discrete or continuous. The

94
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problem of learning temporal patterns can be classified into three different tasks

[HKP90]:

1. Sequence Recognition: Here one wants to produce a particular output

pattern when (or perhaps just after) a specific input pattern is seen). There is no

need to reproduce the input pattern. This is appropriate for speech recognition

problems where the output might indicate the word just spoken. It can also be

used for pattern categorization.

2. Sequence Reproduction: In this case, the network must be able to generate

the rest of the sequence itself when it receives part of it. This is the generaliza-

tion of auto-association or pattern completion of dynamic patterns. It would

be appropriate for learning a set of songs or for predicating the future course of

a time series from examples.

3. Temporal Association: In this case, a particular pattern must be produced

in response to a specific input pattern. The input and output patterns might

be quite different, so this is the generalization of hetero-association to dynamic

patterns. It includes , as special case, pure pattern generation and the previous

two cases.

6.2 Methodology Review

There are many methods proposed so far to address some of the tasks mentioned

above. The first task —— sequence recognition — does not necessarily require a

recurrent network. For the other two tasks, recurrence is usually needed. In this
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section, we will review some of the models currently available.

6.2.1 Tapped Delay Lines

Tapped delay line networks turn a temporal sequence into a spatial pattern on the

input layer of a feedforward network. Therefore, the conventional back-propagation

method can be used to learn and recognize sequences. Figure 6.1 shows a typical

structure of such network. In this type of network, values of :1:(t), :1:(t — A), ...,

a:(t — (m — 1)A) from an input signal a:(t) were presented simultaneously to the input

layer of the network. The values are usually obtained by feeding the signal into a delay

line that is tapped at various intervals. In a synchronous network, a shift register can

be used. The tapped delay line network has been widely used in speech recognition

problem [Wai89, WHH+89].

There are several drawbacks of this approach used for sequence recognition

[M0289]. The length of the delay line or shift register must be chosen in advance

to accommodate the longest possible sequences. It cannot handle arbitrary-length

patterns. The input signal must be properly registered in time with the clock

controlling the delay line and must arrive at exactly the correct rate.

Tank and Hopfield [TH87] suggested a way of compensating the last limitations

mentioned above. The idea is to replace the fixed delays by filters that broaden the

signal in time as well as to delay it.
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6.2.2 Context Units (Partially Recurrent Networks)

There are several approaches falling into this category. The idea of the approach

here is to introduce a carefully chosen set of feedback connections in a feedforward

network. The recurrence lets the network remember cues from the recent past but

does not complicate the training. In most cases, the feedback connections are fixed,

not trainable, so back-propagation algorithm may easily be used for training.

Figure 6.2 shows several popular architectures of this type of network which can

recognize sequences on the basis of its state at the end of the sequences. In some

cases it can generates sequences too. For each net, it is not known what kind of

patterns the network will be able to generate in advance. Bert DeVries proposed a

Gamma model which introduces subnetworks as short-term memories to be added to

the network [VP92].

6.2.3 Back Propagation Through Time

This type of networks is usually fully connected. Figure 6.3 shows a simple example

of such network. If the patterns we are interested are of a maximum length, we

can turn such network into a feedforward network by unfolding it through time.

The idea is to represent the state of the network at different time by a layer in a

feedforward network. Thus if the maximum length of the patterns concerned is T,

then the network will have T layers with each layer connected by the same weight

(connection) matrix. Figure 6.4 shows the unfolded version of the network shown

in Figure 6.3 with four time steps. The back-propagation method can be modified

to be used for training this new feedforward network. The desired patterns of the
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Figure 6.2. Architectures of networks using context units. Shaded arrows represent

fully connected connections



100

original net at different time become the desired values of different layer of the new

feedforward net. The main problem with this approach is the need for large computer

resources. It is probably very difficult to be implemented in hardware too. For a long

sequence or for a sequence of unknown length, this approach becomes impractical. It

cannot be used for continuous patterns either.

6.2.4 Real-Time Recurrent Learning

Williams and Zipser [WZ89b, WZ89a] proposed a way to construct a learning rule for

general recurrent networks. This method can handle patterns of fixed or indefinite

length. It can be run on-line too. Here is a brief description of this method.

Assume the system difference equation is

V,(t) = g(hi(t—1))= g(ngVJ-(t — 1) + C1(t - 1)), (6-1)

where (g(t) is the desired (target) output of unit 2' at time t. By differentiating this

equation with respect to w,,-, we have

0V1“)

awpq
= g’(h.-(t — 1)) amt — 1) +wa . (6.2)

awry

The desired values Ck(t) may be defined for some k’s and t’s only. The error on

neuron k at time t is defined by

Ck“) — Vk(t) if Ck is defined at t

Eklt) = . (6.3)

0 otherwise
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The system “energy” function (the overall network error) is

where

W) = @5512. (6.5)

Thus the gradient-decent weight updating rule can be written as

 

 

0E(t)

AW (t) = -r]
P9 aqu

3Vk(t)
7] Ek“) 1 (66)

P aw...

where r] is a positive constant. We have

Aqu = Z Aqu(t). (6.7)

t

Therefore, if we know “..,—$3, we can solve this equation recursively. Because we assume

that the initial state of the network has no functional dependence on the weight, we

have

014(0)

awpq

 = o. (6.8)

Williams and Zipser [WZ89b] found that updating the weight after each time step

instead of waiting until the sequence is ended ( at t = T ) worked well if )7 was

sufficiently small. They called it real-time recurrent learning.

This system requires large memory storage, and is computationally expensive.

The number of operations for each time step is 0(n‘).
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6.2.5 Time-dependent Recurrent Back-propagation

Pearlmutter proposed a training algorithm for general continuous-time recurrent

networks [Pea89]. Some other researchers derived the same result independently using

different approaches [SCL91]. The general system differential equations are described

by

dy,

Tia
=—y,~+0‘(x,')+1,' i=1,2,...,n, (6.9)

where x,- = Z,- wjiyj is the total input to unit 2, y.- is the state of unit 2, T.- is the time

constant of unit 2', a is a sigmoid function, wij, i,j = 1,2, . . . ,n, are the weights,

y.-(to) and the driving functions I,-(t) are the inputs to the system.

The “energy” function is defined by

T

E = f, 25.0) — f1(t))2dt, (6.10)
=0keo

where O is the index of the output neurons, fk(t) is the desired output of neuron k

at time t, T is the final time of concern. The functional derivative

544) = 555)) = 141a) — 5.5)]. (6.11) 

The derivative of E with respect to weight w,,- is defined by (See [Pea89] for detail)

BE 1
T r

aw“ = T/O yia ($j)ZJ'dt, (6.12)

1} 1
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where Z is the Lagrange multiplier (or co-state variable):

(VB

”(1“ = 0y.(t)’

 (6.13)

where 0+ denotes an ordered derivative. The dynamic equations of the co-state is

dz,- 12

7t- = i2 —Z:T:Wfia'(:rJ)zJ (6.14)

where

= g; = y.-(t) - W) (6.15)

Equation (6.14) can be derived using finite difference approximation [Pea89] or

calculus of variation and Lagrange multipliers [SCL91]. We omit the derivation detail

here. Similarly, we can find the derivative of the “energy” E with respect to the time

constant T,:

6B 1 T dy,
$-71?!) 2.5111. (6.16)

Therefore, we can use gradient-descent method to update w.-J and T5.

In the training process, we first integrate equation (6.9) forward from time to to

t1 = T. Then set the boundary condition Z.-(t1) = 0, and integrate the system Z

backward from t1 to to. In the backward process, o"(:cJ-)y,- and “ii are also integrated.

Thus at the end, we can computeaaw—Jandg— a(:1:,-)’ and y,- are stored in the forward

pass and replayed in the backward pass.

This algorithm can be used for training general continuous-time recurrent net-

works. It is related to other methods mentioned above. It can derive the real-
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time recurrent learning method. It may also be viewed as an extension of the back-

propagation through time, or extension to recurrent back-propagation.

The drawback of this approach is that it needs to integrate backward in time.

Thus it needs to store many intermediate values. Therefore, it needs large storage

and it is difficult to be implemented in hardware.

6.2.6 The Green’s Function Method

Sun, Chen and Lee [SCL92] proposed a method that uses a Green function to

construct the derivative of the “energy” function with respect to weight Wij. By

doing so, they avoided a lot of redundant computations. The resulting algorithm

does not need backward integration while the operations per time step is in the order

of 0(n3), which is one order faster than that of the real-time recurrent learning.

For a general system described by

at) = F(r(t), W. 1(0). (6.17)

where W is a matrix representing the set of weights and all other adjustable param-

eters. The nonlinear function F may look like

F(:r(t),W,I(t))= -a:(t)+g(W,:L‘)+I(t). (6.18)

The “energy” function can be given as

E(x,:r') = ft! e(:r(t),:r"(t))dt, (6.19)

to
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where :r'(t) is the target value at time t. Using gradient descent method, the weight

is modified according to

5E _ ‘1 Be 02:

The on-line form is

as 81:), (6.21)

AW“) = —7l (5; ' 5W-

where 1] is a positive constant. By using Green’s function (we omit the derivation

here, see [SCL92]) the weight updating becomes

AW = —n(v(t)n(t)), (6.22)

where 11 is a third order tensor with the following dynamics:

dII 6F

41 ( 0W . (6.23)

H(to) = 0

v is a vector and can be obtained by solving the following linear equation:

6e

v(t)U(t) — a—x. (6.24)

U(t) is a matrix and is defined by

dU(t) 3F

—— + U(t)— = 0

dt Bx . (6.25)

U(to) = 1
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From systems science point of view, this method is basically the transition matrix

method applied to the sensitivity function with the initial condition set to zero (V(t)

in [SCL92] is the transition matrix).

The advantage of this method is that it can be used on-line and the operations

required per time step is only 0(n3).

Overall, each algorithm has its own advantages and disadvantages. Current

approaches still have the following limitations:

0 Require large storage.

0 Computationally expensive

0 Difficult to implement

For training general recurrent networks, the time-dependent recurrent back propa-

gation approach is probably the best unless on-line learning is needed [HKP90]. It can

be used for both continuous-time and discrete-time systems. When on-line learning

is needed, the Green’s function method is a better choice.

In the rest of this chapter, we will focus on algorithms used for general recurrent

networks. We will several propose ways to improve the original time-dependent

recurrent back-propagation algorithm.

6.3 Motivation

Among the training algorithms proposed for recurrent networks so far, the time-

dependent recurrent back-propagation algorithm proposed by Pearlmutter and some

other researchers has the following advantages:
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The system is very general and can be applied to a wide range of applications.

It can derive many other learning algorithms.

The adjoint variable Z has clear physical meaning.

0 The operations required per time step is only 0(n2).

It can be easily extended using variational approach to solve other problems

beside trajectory learning.

However, the original algorithms did not fully address the following problem:

0 The effects of the initial state: The training algorithm does not specify

how the initial state of those neurons without desired values should be chosen

(if the initial values of those neurons can be controlled). If the initial values

are chosen arbitrarily during the training process, the retrieval process can have

totally different dynamics.

0 The final values of the system: How to control the final values of the system?

The final value of a pattern may be more important than the patterns of the

intermediate states. Pearlmutter’s original algorithm assumed a free ending

problem and set 2;, = 0.

o Avoiding the backward integration: How to avoid the backward integration

without increasing the computational complexity too much?

In the following sections we will try to further investigate the areas mentioned

above.
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6.4 The Initial Value Problem

The original algorithm of time-dependent recurrent back-propagation does not specify

how to set the initial values of all the neurons. It assumes that the initial values are

given and fixed. While in real life applications, the initial values of some of the

neurons mayinot be given, and are changeable. If the initial values used in the

retrieval process are different from those used in the training process, the system will

behave differently. Therefore, it is natural to ask how we should set those initial

values.

Let us take the XOR problem described in [Pea89] as an example, Figure 6.5

shows the structure of such network. The network has a total of four neurons, with

two neurons in input layer, one in output layer and the other one in hidden layer. The

input neurons have external connections. The goal is to select a proper set of weights

so that the relationship between the external inputs and the output of the output

neuron is XOR. Here the initial values of the neurons can be given to arbitrary values.

Obviously, some choices of the initial values will make the training easier while others

will not.

The co—state Z,-(t) used in [Pea89] is defined by

_ (TE

3.71)“)

 

21(1) (6.26)

That is, Z;(t) is the ordered derivative of E with respect to the system state y,(t).

Thus

6+E

2““) = air-(0)
 (6.27)



110

 

 
Input Hidden Output   
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111

Since aayfg) represents the change in E over the time period T caused by infinitesimal 

change of y,-(0), we can use gradient-descent method to update y;(0) in the training

process to find the optimal initial values by using

—= ”721(0), (6-28)

where 17 is a positive constant.

6.5 The Choice of the Final Value of the Co-state

For a general system defined by:

Y = f(X, 1,1), (6.29)

where X = WTY. If we define the performance index function as

J(t) = <I>(Y(tf),tf) + [01, L(X,I,t)dt, (6.30)

and the final state has constraint is

w(Y(tf),tf) = 0. (6.31)

The Hamiltonian is defined as

H(Y, 1,1) = L(X.I,T) — ZTf(X,I,t). (6.32)
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The boundary condition can be derived using optical control theory [L895]:

Y(to) is given

, (6.33)

(¢x 'f' 11’3” — Z)TltJd3/(tf)+ (451+ 1b,?!) + H)|¢Jdtf = 0

where v is also a Lagrange Multiplier. Since the final tf is fixed, we have

(I’x'l'dgv—Z) = 0

Z I), = (45. + 14;”v)|.,. (6.34)

Equation (6.34) specifies how to find the final value of the co—state Z. The boundary

condition used in original time-dependent recurrent back-propagation is a special case

of equation (6.34) which can be derived by setting <15: 2 0 and II): = 0:

2|., = 0. (6.35)

In real applications, we may have constrains on the final state and ¢(y(t;), t1) may

not be a constant either. A good example is to train a network to learn a circular

trajectory. It is desired to let the final state equal to the initial state. This can be

emphasized by given a constraint function (I).
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6.6 Avoiding Backward Integration in Time-

dependent Recurrent Back-propagation:

Method I

One major limitation of the original time-dependent recurrent back-propagation

method is that it needs to integrate the co-state Z backward. In the forward process,

the state variables and some other variables need to be stored so that they can be

played back during the backward integration. Therefore, this algorithm requires large

storage and is difficult to be implemented in hardware. There are other methods

available from optimal control theory [BcH75]. However, each method has its own

limitations, for example, the method of guessing the initial Z(to) and simulate Z

forward, the difficulty lies in guessing the Z(to) to be close enough to the correct one.

In this section, we will present a numerical algorithm that can avoid the backward

integration.

The system equations concerned can be written in matrix form:

Y./T -_- C—Y+0(X) (636)

X=WTY

9
Here we define the operator “./” as Anx1./Tnx1 [a,-/T,-]nx1. C is the input vector.

The co-state (the Lagrange multiplier) Z has the following dynamics:

2' = Z./T — E — {Wdiag[a’(:r)./T]}Z. (6.37)
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Here diag[V] is defined as a diagonal matrix with the diagonal elements equal to the

corresponding elements of vector V. E is defined as

E=Y"—Y, (6.38)

where Y“ is the desired value. The derivative of the “energy” E with respect to

weight W can be written as:

3E ‘1 , , T

6—W_ — to Y[d1ag[a ($)./T]Z] dt.

Or in other form:

BE :1 - I T

W_ /. d1ag[0' (:6)./T]ZY dt.

In the following discussion, we define

1b = diag[a'(:z:)./T].

Thus

6E

BWT

 

t

= f ’ zpszdt
to

and the derivative of the “energy” with respect to T is

6E 11 _ .

551-; = —/to d1ag[Z]Ydt.

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

Using the first-order approximation, the dynamic equation of the co-state becomes
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(See [Pea89])

Zn (1 — At. /:r)z,.+1 + 61E, + At(Wdiag[a’(X,,). /T]Z,,+1)

= {I — At./T + At(Wdiag[a’(:r,,)./T])}Zn“ + AtEn. (6.44)

Where I is an identity matrix. Define

p, = I — At(1./T — Wdiag[o’(:rn)./T])

(6.45)

B, = AtE,

Then,

Z, = annH + B". (6.46)

Write equation (6.42) in difference form:

0E N T

—6WT — At]; IlikaYk - (6°47)

Here we assume the final time T = NAt. At time t1, we have

21 = [1122 + B] (6.48)

m = I — At [I./T - Wdiag[a(X1)./T]] (6.49)

Bl = AtEl. (6.50)

If we denote

8E ) k T
— = 4,2,1! , (6.51)

(awn :4 ,
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we have

 

BE )

= 1121213” (6.52)

(aw/T1 1

= 1#1011 22 + Bl)Y1T (6.53)

= 2(11}41Z2Y1T + $131K]: (6.54)

At t2 we have

Zg = [1223 + Bz
(6.55)

 

8E T 6E

(aw). - W + (w).
= $2223? + $1M ZzYlT + I/JlBlYlT

= «12201223 + 82)}? + ¢1F1(#2za + 82))? + wall/1T

= $211223)”; + ¢il11fl2Z3Y1T + ¢2le/2T + $1.411 Bail/1T + $130,112 (6-56)

Similarly, at t3:

BE

3er 3
 

 

3E
T

wszsig + (aw)?

= 1123;13Z4Y3T + ¢2#2_#SZ4Y2T + ¢1l11fl211324Y1T +

2p333}? + WMBBYzT + wlfllflzBal/F +

¢2B2Y2T + $111132le +

$1 Bl Y1T°
(6.57)



 

If we consider jab: = [ BE ]
8W 8w.) an

Then at time t1 we have

BWk

At t2:

8E

('JlW,c

We define

6f

6;

3Wk
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3E

( ) = T/Jlfllylkzz + $113134:-

‘1

(—) = [Mikel/2k + ¢IPIF2Y1kl Z3 +

*2

[6219* + «ma/1*] 82

+¢IBIY1E

1111 Ylk

[1122162]c + wlfllylk]

¢2Y2k + Bic/11 -

(6.58)

(6.59)

(6.60)

(6.61)

(6.62)
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Then at time t3

8E

( ) = {$3}? + Mini/2k + walflzyikl [#324 ‘1‘ B3] + 3:32 + £81

t3

8Wk

= [$3Y3k + 5:112] [#3Z4 + B3] + 5:32 + flicBl- (6-63)

Thus by defining

Bf. = (6.1/n" + 61;l ,1..-“ n = 2,3, . . ., (6.64)

we have

6E k t k

— = Z + B
(8‘40): fl: Ft t+1 £31 I

= ,BtkfltZtH + Qf,
(6.65)

where

B; = At[€g(t)]nx1
(6.66)

[1: = I — At(I + Wdiag[a'(a:)./T]) (6.67)

t

Q? = Zfll‘Bz.
(6.68)

(=1

At the final step t = N and

BE

(5791:)“, = fllIiII‘NZT + in- (6-69)
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If we use the same boundary condition as used by Pearlmutter in [Pea89]:

Z7 2 0, (6.70)

we could further simplify equation (6.69) as:

0E N k
—— = B k=1,2,..., . 6.71

(awk)1v l 151 I n ( )

Thus

6E BE

(5675) ~ (567.),- ‘6'”)

6.6.1 Simulation Procedure

In simulation, from initial time to to the final time T, we need to calculate the

following at each time step (interval At):

First we need to simulate the system difference equation (6.36) forward, which will

calculate the values of K, E, and X). Then (I): can be computed using equation (6.41).

Variables ,n, and B, can be found using equation (6.45). We need to calculate Bf using

equation (6.64) for each R: = 1, 2, . . . ,n. Thus we can obtain Qf using equation (6.68)

for each 16 = 1,2, . . . ,n. At the final step T, we can compute the derivative of the

“energy” with respect to weight W using

6E

(m) = fitkfltZHl'l'Qfa (6-73)
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and

8E 6W

Therefore, we can update the weight using gradient-descent method:

AW = ——17 (31%) (6.75)

Wnew = WOld+AW’ (6.76)

here 1) is a positive constant.

Thus this algorithm needs only the forward integration. If we select ZT = 0, this

algorithm can be further simplified and used on-line too. The computation complexity

can be estimated as follows:

For each time step, calculating Y, E and X needs 0(2n2) operations. Computing

2,!) needs 0(n) operations. Updating p and B requires 0(4n2) operations. The total

operations for calculating ,B", k = 1, 2, . . . , n, is 0(n4 + n3). Calculating Q also needs

0(n3) operations per time step. Therefore, the total operations per time step will be

0(n4), which is the same order as the real-time recurrent method used by Williams

and Zipser [WZ89a]. The advantages of this method are that it can use the ZT

for different boundary conditions and it avoids backward integration. However, the

computation complexity is still high.

Figure 6.6 to figure 6.9 show the trajectories of an example XOR circuit, as shown

in figure 6.5, trained using the above method.
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Figure 6.6. XOR network with input = [0, 0]
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Figure 6.7. XOR network with input = [0, 1]
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Figure 6.9. XOR network with input = [1,0]
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6.7 Avoiding Backward Integration: Method II

In last section, we presented one way of avoiding the backward integration used

in time-dependent recurrent back-propagation method. In this section, we will

present another numerical algorithm, which avoids backward integration too while

not increasing computational complexity too much.

From last section, we know that the co-state dynamical equations can be written

in vector form as:

z' = Z./T - E — (Wdiag[a’(X)./T])Z, (6.77)

where Z. /T g [2,,- / tj] and diag[X] is a diagonal matrix with diagonal elements equal

to the element of vector X. In the following discussion, we denote 2p 2 diag[a’(X)/T].

The system defined by equation (6.77) is a linear time-varying system. It can be

written in general form as

z‘ = A(t)Z + 3(7). (6.78)

The transition matrix of this system <I>(t, to) can be calculated using

<i> —_— A(t)<I> with 600,70) = 1. (6.79)

and we have

t

z = <1>(t,to)z,,+ /. <I>(t,r)B(r)d7

= <1>(7,to)z,o + <I>(t,to) [it <I>‘l(7,to)B(‘r)d7-. (6.80)



124

Thus

6E

BWT

 = f” zszTdt

-_: ft! —t07[2[‘I>(t,to)Zto + <I>(t,to) [it <I>-1(7',t0)B(T)dT]YTdt

t t t

= 2,, ’¢¢(t,to)dt+/ ’¢¢(t,to) (1)-1(T,to)B(7)drdt. (6.81)
to to to

\ ’ L J

 

term 1 term 2

Both term 1 and term 2 can be calculated forward. If we define ‘11 = <1)“, then it can

be simulated with

\iI = —A(t)\I‘ with \Il(t,to) = 1 (6.82)

Zto can be calculated at final time tI using

Zto = <I>'l(tf,to)[Zt, — ft” <I>(tf,7')B(7')dT]. (6.83)

0

We now show how to implement the idea above numerically. We use the following

approximation with sufficiently small time step At:

Zn+l — Zn __ L

At — Zn, (6.84)

where 2,, = 2,3,“. Therefore,

271+] = -n + Ath

= 2.. + At(Zn./T — E, — (Wdiag[a'(X,,)./T]) 2.). (6.85)
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If we define

11,, = I + AtI./T — At(Wdiag[a’(Xn)./T])

, (6.86)

C, = —AtE,,

we have

Z,+1 = 14.2,. + C... (6.87)

From equation (6.87), we have:

Zn = Vn-IZ —1 + C -1

= Vn—lan—2Zn—2 + Cit-2] "l" C -l

= Vn—an—ZZn-2 + Vn—ICn-2 + 011-]

= Vn-an—z ' ' ' V1Z1 + Vn-an-2 ' ° ' V201 + Vn—IVn-2 ' ° ' V302 + '° ° + Cn—l-

Thus

Zk = pk-l 21 + qk_1 k = 2, 3, . . . , N, (6.88)

where we define:

(II: = quk—1 + Ck (6.89)

Pk = VkPk—i,
(6.90)

with

ql = Cl
(6.91)
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p1 = V1. (6.92)

The partial derivative of total “energy” with respect to weight can be approxi-

mated in the following way:

8E At i (p Z YT (6 93)—— = k I: ~ -

aWT k=1 k

Here we assume T = AtN. For simplicity, we omit the At in the following derivations.

If we define

6E k —

(BWT) = 226,257, (6'94)
1: [:1

then, at each time step we have

 613) = 912qu?” (6.95)

1

Q
)

Q
.
) 6
%
.

 

= $121KT + ¢2IV121 + Cl]}/2T (6.96)

Q
:

E "
l

 

dual/1T + 11126421 + CID/2T + ¢3IV2V121 + V201 + C21Y3T (6-97)

Q
)

(“
:1

 

Q
:

E "
I

Q
:
E
Q
D

~
3
0
:

V
V
V

II

I: k

= Z 97127-12le + Z «12qusz (6.98)

[:1 (:2

With 170 = I.

Consider the ith column of (5%)“ which is

$121}? + $211121)? +
. . . + liming-121K:

‘Hbz‘hY; + wsqu; + - -- + wkq._1Y,:. (6.99)
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By defining:

Ric = Ic—l + I(kph-1Y7: (6.100)

with

R0 = 0 (6.101)

and

k

Qk = 2: lbl‘IIAYIT, (6.102)

(:2

we have

6E i i ' 2'

W k = RkZ1 + Qk. (6.103)

Therefore, if Z; is known, we can integrate the system forward. However, the

boundary condition we know is ZN, not 21.

Now, let us consider simulating the co-state system backward using difference

equations. For sufficiently small At, we have the following approximations:

~ ~

Zn — 2,, '~
_—At+1 = -2“, (6.104)

from equation (6.104), we have:

Zn = Zn-H—Aténi-l

= 2,.... — At(Z,,+1./T — 137,.+1 — [Wdiag[or'(X,,+1)./T]]Zn+1).

We assume the simulation time period is [0, t1], and t1 = NAt, N is an integer.
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Define

pn+1 = I — AtI./T + At(Wdiag[a'(Xn+1)./T]) (6.105)

and

Bn+1 = AtEn+1. (6.106)

We have

2.. = MHZ... + Bu“. (6.107)

Thus, use equation (6.107) recursively:

Z1 = #222 + B2

= #201323 + 33) + 32

= 112/1323 + #233 + 32

= #2113 ° ' ' #1ka + #2fl3 ° ' ° #k—in + #2113 ' ' ' #k—sz—i + - - - + 32-

The equation above can be written in general format as

21 =Uka+Dk k=2,3,...,N, (6.108)

where we define:

U]: = Uk—lllk k = 3,4,...,N (6.109)

D}; = Dk-l +Uk_1Bk k =3,4,...,N (6.110)

D2 = 82 (6.111)
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U2 = [12. (6.112)

When the time step At is sufficiently small, the two systems 2 and 2 should be

so close that Z, x Z. Therefore, we have

ZN _—. ZN (6.113)

Thus equation (6.103) can be written as

(aWT), = 17,(UNZN + DN) + Q. (6115)

At k = N, it becomes

LE i — R‘ U 2 D "8W7 N -- N( N N + N) ‘1’ QN' (6116)

Since R, U, D and Q all can be calculated forward in time, we can simulate this

system forward in time and at time T calculate the quantity (gap-5:7). This way we

can avoid the backward integration.

6.7.1 Updating the Time-constant T

The partial derivative of total “energy” with respect to T can be approximated using:

6E N . - —
—- = —At 2 diag[Yk]Zk. (6.117)

8T k=l
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As with the updating of weight, we omit At in the following derivation. Therefore,

at time step 1 we have

6E . - -
('8'?)1 = —d1ag[Y1]Z1.

At step 2,

8E . . _

(fi)2 — —d1ag[Y2]Zg

=.- —diag[f€](u121+C1).

At step 3

6E _ . _

(5T), — —d1ag[Y3]Z3

= ’diale31(P2ZI+Q2)°

Define

S). = Sk_1+diag[Yk]Pk-1 k=1,2,...,N (6.118)

J). = J,._1+dia1g[1'/,.]q,._1 k=2,3,...,N, (6.119)

with initial conditions

50 = 0, (6.120)

J1 = Jo=0. (6.121)
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Then

(9E) _

— = —SN21 — JN. (6.122)

(3T total

Therefore, we can calculate S and .I forward. At the final step T, we calculate

Q
9

e
l
m

(a )total'

6.7.2 Computation Procedures

From the derivation above, we can summarize the computation flow as follows:

Start with k = 0, at time step k:

Step 1. Calculate Y and E (for k = 0,1, . . . ,N — 1) using:

Yk+1 = Y1: + At[0(Xk) + C1: + Ykl-/T

E]; = Y]; — Y]:

X;‘ = WTYk.

Step 2. Compute 70:

11):: = diag [0’(Xk)./T].

Step 3. Calculate u and C:

11,. = 1 + AtI./T — Athpk

Ck = —AtEk
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Step 4. Calculate p and B:

Mk = I—AtI./T+Ath)k

B). = A15).

Step 5. U and D (for k = 2,3, . . . , N) can be calculated with

Uk Uk—iflk

Dk = Dk—1+Uk-lBk

Step 6. Compute q and p (for k = 1,2, . . . ,N — 1) using

9!: = VkCIk—l'l'Ck

Pk = VkPk—l-

or using

Pk = (III-+11

‘11: = U131 Dk+1-

(6.123)

(6.124)

(6.125)

(6.126)

(6.127)

(6.128)

Step 6a. If we want to update T (for k = 1,2, . . . , N), we also need to calculate

S]: = Sk-1+diag[f/k]pk_1

Jk Jk-l + diag[Yquk—i-
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Step 7. Calculate Q:

Q1: = Qk—1+¢ka—1YkT

Q0 = Q1 = 0.

Step 8. For each column I, I = 1,2, . . . ,n, calculate

R; = 1224+ wkpk_1Y,: (6.129)

Step 9. Loop back to step 1 until k = N. Then, go to step 10.

Step 10. Calculate Z1:

21: UNZN + DN

Step 11. For each column I, I = 1,2, . . . ,n, calculate

6E )’ , ,

— = RNZI + QN-

(6W7 total

Step 11a. If we want to update T, we also need to calculate

6E)

— = —SNZ —JN. (6.131)

(8T total 1
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Step 12. Calculate new weight W with gradient-decent method.

3E

W = W — a (—) .pre

0W total

Calculate T with

3E

T = Tpre — 18 (—) -

6T total

Where a and 6 are updating rates for weight and time factor respectively. Loop

back to step 1 until the total “energy” is smaller than the desired value.

6.7.3 Simulation Examples

For comparison purpose, we try to solve the same XOR problem as used in [Pea89].

The network topology is shown in figure 6.5. The input layer neurons have external

input 11 and 12. The goal is to choose a proper set of weights so that the output of

the network is the XOR of the two input signals between time t = 2 and t = 3.

We define the “energy” to be E = Z). f23(yc(1k) - d("))2dt, where k ranges over the

four cases, d“) is the desired output for case In, yo is the state of the output neuron.

The input signals 11 and 12 were set to be [1,1], [1,0], [0,1] and [0,0] respectively for

each case. The sigmoid function is chosen as 0(3) = (1 + 6”) — 1. The initial values

Y of neurons are set to be I + 0(0). Initial weights W are chosen randomly from

(—1,1).

As with Pearlmutter’s case, when weight W and time factor T were updated

simultaneously, T tended to go to 0 too quickly. In our simulations, we usually

choose T’s update factor to be very small. Figure 6.10 to figure 6.13 show the network
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Figure 6.10. XOR network with input = [0, 0]
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Figure 6.11. XOR network with input = [0,1]
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Figure 6.12. XOR network with input = [1,1]
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Figure 6.13. XOR network with input = [1,0]
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dynamics after it has been trained.

6.7.4 Comparison and Discussion

The number of computations in each time step can be estimated as follows: For each

time step 1:, we need to calculate step 1 to 8. For step 1, the number of arithmetic

computations is 0(2n2). For step 2, the number of computation steps is 0(n). Step

3 and step 4 each needs 0(4n2) computations. Step 5 needs 0(2n3). Step 6 needs

0(2n3). Step 6a needs 0(2n2) number of computations. Step 7 needs 0(2n2). Step

8 needs 0(2n3). Thus the total number of computations is in the order of 0(4n3).

In the simulation process, we need to store variables: U, D, q, p, S, J, Q, and R.

The added storage is 0(n3).

Compare the proposed algorithm with the original time-dependent recurrent back—

propagation method, the proposed one avoids the backward integration, thus the

memory storage request is reduced. The price is the increase of computations per

time step.

Compared with other methods, This algorithm retains some of the advantages of

the original time-dependent recurrent back-propagation method. The system used

is very general and can be applied to many applications. The co-state Z has clear

physical meaning. The boundary condition ZT can be chosen according to the system

constraint.

Toomarian and Barhen proposed a way to avoid the backward integration of the

adjoint-function method [TB91]. They proposed similar way of finding Zto using ZT.

However, the computation may be numerically unstable.

Table 6.1 shows the comparison of each method.
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Table 6.1. Comparison of the algorithms

 

 

 

 

 

 

 

TDRBP RTRL Green’s proposed 1 proposed 2

function

Computations 0(n2) 0(n4) 0(723) 0(n4) 0(n3)

Backward yes no no no no

integration

On-line no yes yes yes yes

Remarks co—state co—state co-state

can be set can be set can be set

according according according

to system to system to system

constraint constraint constraint      
 

 



CHAPTER 7

SUMMARY AND CONCLUSION

7.1 Summary

Artificial neural networks have developed very rapidly in the past decade. They have

great potential of solving many problems which current digital computers cannot

solve efficiently or cannot solve at all. One of the fundamental problem of designing

artificial neural networks is to determine a set of weights such that the network can

store or learn patterns or signals. When an input is applied to the network, the

network can generate “desired” output. This behavior is referred to as “association”.

A simple association is to store static patterns and to retrieve the stored patterns

when some clues are given to the network as input. Associative memory is such

a kind of application. A more complex case is to store and to generate temporal

patterns.

Numerous architectures and algorithms have been proposed so far for these kinds

of tasks. Most of the proposed models have a pre-fixed structure. The weights

are computed through on-line/off-line algorithms, which are usually computationally

139
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expensive. In some cases, the weight matrix may not exist at all for a particular set

of patterns.

In this thesis, the product-of—norm model of artificial neural network architecture

is proposed. The new structure is based on gradient system theory using a special

“energy” function. Specifically, the product of the norm of the errors is used as

the “energy” function. The system dynamical equations are defined using gradient-

descent method. The resulting system is a gradient system and is globally stable.

By using the product of the norm of the errors as the “energy” function, the desired

patterns are guaranteed to be the global energy minima of the system. Thus they

can be retrieved from the network. A distinguished feature of this network is that the

weights are fixed by design. The weights learning is eliminated. The trade-off is the

increasing of the network complexity. The stability of the product-of-norm model was

analyzed using Lyapunov theory. Both theoretic proof and simulation results were

given in chapter 3 to show the ability of the network to store and retrieve arbitrary set

of patterns. For the one neuron case, the locations of the unstable system equilibria

were given too. Based on the analysis, another way of design one neuron networks

with pre-set stable and unstable equilibria was proposed. The possibility of using the

infinity norm in the product-of-norm model was also discussed.

In chapter 4, various techniques of generalizing of the “energy” function of the

product-of-norm model were proposed. Ways to simplify the network structure were

investigated too. It was shown that the system could be easily parallelized and

modularized using the log form of the “energy” function. Using the log form “energy”

function, the system can learn new patterns by simply adding modules to the existing

network. The subgrouping method was proposed to localize the connections of the
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network, so that the network could be simplified and the computations required could

be reduced. Several ways of subgrouping were discussed, in general we found that

the method of dividing the network into subgroups with overlapping neurons had

better performance. chapter 4 showed that the product-of-norm system could be

used to store and recognize digital image patterns by adding a penalty function to

the original “energy” function. In particular, a method of dividing the images into

small regions is discussed. The penalty function was calculated corresponding to each

region. The resulting network was able to recognize both vertically and horizontally

slightly shifted images.

Chapter 5 investigated possible ways to implement the product-of-norm model

in hardware. Analog transistors biased in subthreshold region were proposed as

basic building elements. Several building blocks were discussed and an example one-

neuron/twqpattern network was shown.

Artificial neural networks used for association of temporal patterns were studied

in chapter 6. Among training algorithms available for recurrent networks so far, time-

dependent recurrent back-propagation is the best if on-line learning is not concerned.

One of the limitations of this method is that it needs to integrate the co-state

backward in time. Two algorithms were proposed to avoid the backward pass. The

penalty is the increase of computation complexity. However, they are still among

the simplest methods. Ways to set the initial values for the neurons and the final

conditions for the co-state Z were analyzed also using optimal control theory.
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7.2 Future Research Directions

The product-of-norm model is relatively complex. It requires high order feedbacks.

Future work should be focused on further simplifying the network. Current hardware

implementation example for product-of-norm model is not scalable for large networks.

Hardware implementation of the product-or-norm model is another area which needs

more investigation.
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APPENDIX A

THE PSPICE CODE AND

SIMULATIONS FOR‘A

ONE-NEURON/TWO-PATTERN

CIRCUIT

In chapter 5, we presented some basic circuits structures to be used in implementing

the product-of-norm model. In this chapter, we will list the PSpice code used for the

simulations of the circuits. The following PSpice library file contains the definitions of

some basic circuits: n-mirror, p-mirror, current—voltage multiplier and voltage-square

circuits.

**********************************************************************

* PSPice ciruit library: neuron.lib

*

* This library contains sub-circuits which may be used to

* build product-of-norm model neural networks

a:

143
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* Jiansheng hou

* Sun 02-23-1997 1:49:28 pm

a:

**********************************************************************

**********************************************************************

*

* MOSFET used in this library

*

***************************t************************#*****************

.MODEL nfet NMOS LEVEL=2.00000

+LD=0.2500U TOX=401.000E-10

+NSUB=6.257042E+15 VT080.771327 KP=5.60600E-05

+GAMMA=O.53 PHI=O.60 U0=650.996 UEXP=O.153507

+UCRIT=41931.5 DELTA=O.472546 VMAX=67660.8 XJ=0.2SOOOOOU

+LAMBDA=3.089401E-02 NFS=4.834708E+12 NEFF=1

+NSS=1.000000E+10 TPG=1.00000 RSH=29.600 CGSU=3.229249E-10

+CGDO=3.229249£-10 CGBO=6.72642QE-10 CJ=1.13650E-4

+MJ=O.6862O CJSH=5.3187OE-1O MJSH=O.26510 PB=O.80000

.MODEL pfet PMOS LEVEL=2.00000

+LD=O.209610U TOX=401.000E-10

+NSUB=6.722092E+15 VTO=-O.78821 KP=2.23000E-05

+GAMMA=O.5486 PHISO.60 U0=259 UEXP=O.182346

+UCRIT=12594.5 DELTA=O.844423 VMAX=41222.6 XJ=O.2SOOU

+LAMBDA=4.981694E-02 NFS=1.000E+11 NEFF=1.00I

+NSS=1.000000E+1O TPG=-1.00000 RSH=90.7OO CGSO=2.707532E-10

+CGDO=2.707532E-10 CGBO=5.839625E-10 CJ=2.513600E-4 "380.547100

+CJSH=2.9447OOE-10 MJSW80.318800 PB=O.80

*************#*******************************************************

*

* Sub-circuits

*

**************#******************************************************

***********#*******#***#*******************#***

Pmos current mirror
4:

a:

* +----- Iin

* l +--- Iout

* I l +- Vdd

. Ill

.. III

1 2 3.subckt pmirror
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m1 1 1 3 3 pfet L=12u H=4u

m2 2 1 3 3 pfet L=12u H=4u

.ends

.subckt pmirror2 1 2 3

m1 1 1 3 3 pfet L=7u H=4u

m2 2 1 3 3 pfet L=7u H=4u

.ends

.subckt pmirror3 1 2 3

m1 1 1 3 3 pfet L=24u H=2u

m2 2 1 3 3 pfet L=24u H=2u

.ends

***********************************************

a:

* N MOS mirror

:1:

* 1 ---Iin 2 -- Iout, 3 --- GND

.subckt nmirror 1 2 3

m1 1 1 0 O nfet L=12u H=2u

m2 2 1 0 0 nfet L=12u H=2u

.ends

* 1 ---Iin, 2 --- Iout, 3 --- GND

.subckt nmirror2 1 2 3

m1 1 1 O O nfet L=12u H=8u

m2 2 1 O O nfet L=12u H=8u

.ends

* 1 ---Iin 2 --- Iout, 3 --- GND

.subckt nmirror3 1 2 3

m1 1 1 O O nfet L=24u H=1u

m2 2 1 O 0 nfet L=24u H=1u

.ends

* 1 ---Iin 2 --- Iout, 3 --- GND

.subckt nmirror4 1 2 3

m1 1 1 O O nfet L=14u H=3u

m2 2 1 0 0 nfet L=14u H=3u

.ends
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*1 ---Iin 2---Iout, 3---GND

.subckt n_cascode_mirror 1 2 3

m1 1 1 3 3 nfet L=10u H=14u

m2 2 1 4 3 nfet L=10u H=14u

m3 5 5 3 3 nfet L=6u W=14u

m4 4 5 3 3 nfet L=6u H=14u

.ends

* 1 ---Iin 2 --- Iout, 3 --- GND

.subckt n_nmirror 1 2 3

m1 1 1 3 3 nfet L=1200u H=1u

m2 2 1 3 3 nfet L=1200u W=1u

.ends

* 1 ---Iin 2 --- Iout, 3 --- GND

.subckt w-nmirror 1 2 3

m1 1 1 O 0 nfet L=2000u H=16u

m2 2 1 O O nfet L=2000u H=16u

.ends

********************#******************#*******

* Wide range IV multiplier

a:

* 1 --- Iout, 2 ~-- Iin,

* 3 --- V1, 4.--- V2

* 5 ---Vdd, 6---gnd

.subckt iv_mul-wid 1 2 3 4 5 6

m1 8 3 7 O nfet

m2 9 4 7 0 nfet

*x0 2 7 O nmirror

x0 2 7 O n_nmirror

xi 8 1 5 pmirror

x2 9 10 5 pmirror

x3 10 1 O nmirror

.ends

*********************************#*****#*******

* IV multiplier

4:

* 1 --- Iout, 2 --- Iin,

* 3 --- V1, 4 --- V2,

* 5 --- Vdd, 6 ---gnd

*

* 6 is not really used
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*

.subckt iv_mul 1 2 3 4 5 6

m1 8 3 7 O nfet L=4u H=2u

m2 9 4 7 0 nfet L=4u H=2u

x0 2 7 O nmirror3

x1 8 1 5 pmirror2

x2 9 10 5 pmirror2

x3 10 1 0 nmirror

.ends

*******t********************#*********#********

1 --- Iout, 2 --- Iin, '

3 -" V1, 4 '-'V2,

5 ---Vdd, 6---gnd

6 is not really used

*
*
*
*
*
*

.subckt new_iv_mul 1 2 3 4 5 6

m1 8 3 7 O nfet L=4u H=2u

m2 9 4 7 O nfet L=4u H=2u

x0 2 7 O nmirror2

x1 8 1 5 pmirror2

x2 9 10 5 pmirror2

13 10 1 0 nmirror

.ends

******************************#******#*********

* 1 --- Iout, 2 --- Iin,

* 3 --- V1, 4 ---V2,

* 5 ---Vdd, 6---gnd

*

* 6 is not really used

*

.subckt new,iv_mul2 1 2 3 4 5 6

m1 8 3 7 0 nfet L=4u H=2u

m2 9 4 7 0 nfet L=4u H=2u

x0 2 7 O nmirror2

x1 8 1 5 pmirror2

x2 9 10 5 pmirror2

x3 10 1 O n_cascode_mirror

.ends

**t********************************************
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Negative IV multiplier

10 --- Iout, 2 --- Iin,

3 ---V1, 4 ---V2,

5 ---Vdd, 6 ---gnd

6 is not really used

*
*
*
*
*
*
*
*

.subckt neg_iv-mu1 10 2 3 4 5 6

m1 8 3 7 O nfet L=4u H=2u

m2 9 4 7 O nfet L=4u H=2u

x0 2 7 O nmirror2

xi 8 1 5 pmirror2

x2 9 10 5 pmirror2

x3 1 10 O n_cascode-mirror

.ends

tt************************#*********#**********

Negative IV multiplier*

*

* 1O --- Iout, 2 --- Iin,

* 3 ---V1, 4 ---V2,

* 5 ---Vdd, 6 ---gnd

1.:

a:

:1:

6 is not really used

.subckt neg_iv_mul2 10 2 3 4 5 6

m1 8 3 7 O nfet L=4u H=2u

m2 9 4 7 O nfet L=4u H=2u

x0 2 7 O nmirror2

11 8 1 5 pmirror2

x2 9 1O 5 pmirror2

13 1 1O 0 nmirror3

.ends

*t*****#***********************#****************

Test IV multiplier

I
'
l
-

* 1 --- Iout, 2 --- Iin,

3 --- V1, 4 ---V2,

5 ---Vdd, 6 ---gnd

.subckt iv_mul-test 1 2 3 4 5 6

m1 8 3 7 0 nfet

m2 1 4 7 0 nfet

xO 2 7 O nmirror

*
*
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x1 8 1 5 pmirror

*x2 9 10 5 pmirror

*x3 10 1 0 nmirror

.ends

************************************************

* N MOS pair

a:

* 1---V1, 2---v2, 3---Iout, 4---Iin1, 5---Iin2

.subckt n_pair 1 2 3 4 5 6

m1 4 1 3 0 nfet L=4u H=3u

m2 5 2 3 0 nfet L=4u H=3u

.ends

******************************#**************

* gilbert multiplier

* 1-v1, 2-v2, 3-v3, 4-v4, S-Ib, 6-Iout, 7-Vdd, 8-gnd

*

.subckt gilbert_mul 1 2 3 4 5 6 7 8

x0 3 4 10 12 6 8 n_pair

x1 3 4 11 6 12 8 n_pair

x2 1 2 9 10 11 8 n_pair

x3 12 6 7 pmirror

m1 9 S 8 8 nfet

.ends

***************************#***********************

* Voltage square circuit

a:

*1---v1, 2---v2, 3---Iout, 4---Ib, 8---Vdd, 9---gnd

.subckt v-square 1 2 3 4 8 9

10 1 2 10 5 6 9 n_pair

x1 1 2 11 6 5 9 n-pair

x2 1 2 12 10 11 9 n_pair

x3 5 3 8 pmirror3

x4 6 7 8 pmirror

x5 7 3 9 nmirror2

ml 12 4 9 9 nfet L=4u H=3u

.ends

****************************************************************

* another voltage square circuit

*

*1---v1, 2---v2, 3---Iout1, 7--Iout2, 4---Ib, 8---Vdd, 9---gnd
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*9 is not really used

:1:

.subckt new_v_square 1 2 3 7 4 8 9

x0 1 2 10 5 6 0 n_pair

x1 1 2 11 6 5 0 n_pair

x2 1 2 12 10 11 0 n-pair

x3 5 3 8 pmirror3

x4 6 7 8 pmirror3

*x5 7 3 O nmirror2

ml 12 4 O O nfet L=4u H=3u

.ends

**ttt**************t****#**********************************#*t**#

* v_sqaure circuit with two current outputs

*1---v1, 2---v2, 3---Iout1, 7---Iout2, 4---Ib, 8---Vdd, 9---gnd

.subckt v_square-2out 1 2 3 7 4 8 9

x0 1 2 10 5 6 O n_pair

x1 1 2 11 6 5 O n_pair

x2 1 2 12 10 11 O n_pair

x3 5 3 8 pmirror

x4 6 7 8 pmirror

*x5 7 3 O nmirror

ml 12 4 0 O nfet L=4u H=3u

*m1 is the bias mosfet

.ends

¢********************¢¢******¢***¢************

* test voltage square circuit

:1:

*1---v1, 2---v2, 4---Ib, 8---Vdd, 9---gnd

.subckt v-squaretest 1 2 3 4 8 9

x0 1 2 10 5 6 O n_pair

x1 1 2 11 6 5 0 n-pair

x2 1 2 12 10 11 0 n_pair

x3 5 3 8 pmirror

x4 6 7 8 pmirror

x5 7 3 O nmirror

ml 12 4 O 0 nfet

.ends

t*****tt***********t#*********#****t***#*****************

* Another test voltage square circuit

*

*1---v1, 2---v2, 3---Iout, 4---Ib, 8---Vdd, 9---gnd

.subckt v_squaretest2 1 2 3 4 8 9



x0 1 2 10 5 6 0 n_pair

x1 1 2 11 6 5 0 n_pair

x2 1 2 12 10 11 0 n-pair

x3 6 3 8 pmirror

x4 5 7 8 pmirror

x5 7 3 0 w_nmirror

mtesti 7 3 0 0 nfet L=12u H=4u

mtest2 7 3 0 0 nfet L=12u H=4u

ml 12 4 0 0 nfet

.ends
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The following is the PSPice file for a one-neuron/two—pattern circuit.

1n2p circuit

at

* This circuit is a one-neuron/two-pattern circuit

* of the product-of-norm neural network model

*

**********************************************

* The structure

******ttt*********************¥***************

x0 6 4 80 81 9 1 0 new_v_square

x1 61 82 5 6 1 0 new-iv_mul

x2 62 83 5 6 1 0 neg_iv_mu12

r1 80 82 0.00001

r2 81 83 0.00001

r5 61 6 0.00001

r6 62 6 0.00001

x3 6 5 70 71 9 1 0 new_v_square

x4 63 72 4 6 1 0 new_iv_mul

x5 64 73 4 6 1 0 neg_iv_mul2

r3 70 72 0.00001

r4 71 73 0.00001

r7 63 6 0.00001

r8 64 6 0.00001

**************************¥**#*****#**********

* The settings

*******#**************************************
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vd 1 O 5v

vc 6 0 iv

vb 9 0 0.5V

v_star1 4 0 0.6v

v_star2 5 0 0.4V

*#11:*******************************************

* The subcircuits

******************tt****tttt**********¥*******

********t*************************

* N MOS current mirror

* 1 ---Iin 2 --- Iout, 3 --- GND

.subckt nmirror8 1 2 3

m1 1 1 0 0 nfet L=20u H=2u

m2 2 1 0 0 nfet L=20u H=2u

.ends

*********************************

* N MOS current mirror

* 1 ---Iin 2 --- Iout, 3 --- GND

.subckt nmirror9 1 2 3

m1 1 1 0 0 nfet L=7u H=5u

m2 2 1 0 0 nfet L=7u H=5u

.ends

t*********#**********************

* Negative IV multiplier

a:

.subckt neg_iv_mul 10 2 3 4 5 6

m1 8 3 7 0 nfet L=4u N=2u

m2 9 4 7 0 nfet L=4u W82u

x0 2 7 0 nmirror2

x1 8 1 5 pmirror2

x2 9 10 5 pmirror2

x3 1 10 0 n_cascode_mirror

.ends

***********************************************

Another negative IV multiplier

3 --- V1, 4 ---V2,

1.:

1|:

* 10 --- Iout, 2 --- Iin,

*

. 5 ---Vdd, 6 ---gnd

1|:
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* 6 is not really used

:1:

.subckt neg_iv_mul2 10 2 3 4 5 6

m1 8 3 7 0 nfet L=4u H=2u

m2 9 4 7 0 nfet L=4u N=2u

x0 2 7 0 nmirror2

x1 8 1 5 pmirror2

x2 9 10 5 pmirror2

x3 1 10 0 nmirror9

.ends

*****************************¢*****************

IV multiplier*

:1:

* 1 --- Iout, 2 --- Iin,

* 3 --- V1, 4 ---V2,

* 5 ---Vdd, 6 ---gnd

:1:

:1:

:1:

6 is not really used

.subckt new_iv_mul 1 2 3 4 5 6

m1 8 3 7 0 nfet L=4u W=2u

m2 9 4 7 0 nfet L=4u H=2u

x0 2 7 0 nmirror2

x1 8 1 5 pmirror2

x2 9 10 5 pmirror2

x3 10 1 0 nmirror8

.ends

.lib c:/pspice/hou/neuron.lib

.TEMP 25

.dc vc 0 1.0 0.01

.probe

.end

Setting 0‘1 = 0.4V and v"2 = 0.7V, we plot the response of the circuit to different

initial voltages in Figure A.1. Figure A.2 shows the simulations of the same circuit

with v" = 0.3V and v‘2 = 0.75V. As can be seen from the figures, the circuit stored

two stable points, which are very close to the desired points. Because the circuit

function we derived can only work in certain range, the resulting circuit cannot store

arbitrary data.
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Figure A.1. The response of the one-neuron/two-pattern circuits to different initial

voltages. v"1 = 0.4V and v‘2 = 0.7V.
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Figure A2 The response of the One-neuron/two—pattern circuits to different initial

voltages. v"1 = 0.3V and v"2 = 0.75V
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