

lllllllllllllm
LIBRARY H l

Michigan State

University

This is to certify that the

thesis entitled

A VLSI Chip Architecture For The B-spline

Surface Evaluation

presented by

Chia-Yiu Maa

has been accepted towards fulfillment

of the requirements for

Master . Science

degree in

agar/gmMar
Major professor

Date 8-28-87

0-7639 MSU i: an Affirmative Action/Equal Opportunity Institution

MSU
LIBRARIES

.___.

RETURNING MATERIALS:

Place in book drop to

remove this checkout from

your record. FINES will

be charged if book is

returned after the date

stamped below.

A VLSI CHIP ARCHITECTURE FOR THE

B-SPLINB SURFACE EVALUATION

By

Chia-Yiu Maa

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Electrical Engineering

1987

ABSTRACT

A VLSI CHIP ARCHITECTURE FOR THE

B-SPLINE SURFACE EVALUATION

By

Chia-Yiu Maa

This thesis describes the architecture design of the SE (Surface Evaluation) chip,

a VLSI chip dedicated to the B-spline surface evaluation, which can be used to ease

the Computer-Aided Geometric Design (CAGD) of B-spline surfaces. The

reconfigurable structure of the SE chip can perform on-chip blending function formula-

tion and high-speed vector-matrix multiplication at less hardware cost. Pipelining and

parallel processing techniques are applied to the inter- and intra-functional unit designs

to speed up the calculation of the surface evaluation algorithm. The symbolic example

and the description of the SE chip written in RTL (Register Transfer Language) verify

the correctness of the design. Area estimation confirms the feasibility of a semi-

custom implementation approach with current technology and speed estimation shows

at least an order of magnitude improvement over existing graphics hardware in per-

forming surface evaluation. The SE chip architecture can also be used to execute the

coordinate transformation, tangent and normal vector derivation, and shading.

ACKNOWLEDGMENTS

I wish to express my greatest appreciation to my parents for getting me started

right and continued support and encouragement throughout my studies, and my wife

Mei-Ling, without her patience, understanding and love, nothing would have become

reality. I express my deep gratitude to my advisors, Dr. M. Shanblatt and Dr. E.

Goodman, for their guidance and encouragement throughout this research. Special

thank is also due to Jane Hawkins for providing the mathematical preliminary of B-

spline and helpful discussions.

Table of Contents

 LIST OF TABLES - - -_ v

LIST OF FIGURES ... vi

1. INTRODUCTION ... 1

1.1 Problem Statement .. 3

1.2 Approach ... 4

1.3 Overview of the Thesis .. 6

II. VLSI System Design ... 7

2.1 Characteristics and Trends in VLSI Design .. 7

2.2 Design Methodology .. 9

2.3 New Design Technology .. 14

III. MATHEMATICAL PRELIMINARIES .. 17

3.1 B-spline Curve .. 17

3.1.1 Knot Vector ... 20

3.1.2 Blending Functions .. 23

3.2 Rational B-spline .. 30

3.3 B-spline Surface ... 34

IV. LITERATURE REVIEW ... 39

4.1 Uniform Subdivision .. 39

4.2 Adaptive Subdivision” ... 40

4.3 Cox-deBoor Algorithm ... 41

4.4 Pickelmann’s Algorithm ... 43

V. SURFACE EVALUATION AND SHADING ... 48

5.1 Evaluation Algorithm ... 48

5.2 The Derivative and Normal Vectors .. 51

iii

5.3 Shading ... 53

VI. ARCHITECTURE DESIGN .. 57

6.1 System Specification ... 58

6.1.1 Design Objective ... 58

6.1.2 I/O Specification .. 59

6.2 Architecture Development .. 60

6.2.1 Functional Units 60

6.2.2 Timing and Pipelining ... 70

6.2.3 Storage Scheme ... 73

6.3 Architecture of SE chip .. 78

6.3.1 Architecture Synthesis ... 78

6.3.2 Hardware Description in RTL .. 82

VII. ARCHITECTURE EVALUATION ... 84

7.1 Architecture Verification .. 85

7.2 Area Estimation .. 88

7.3 Speed Estimation .. 92

VIII. CONCLUSION .. 95

APPENDIX 1 ... 98

APPENDIX 2 ... 110

APPENDIX 3 ... 1 11

APPENDIX 4 ... 113

APPENDIX 5 ... 116

APPENDIX 6 ... 118

BIBLIOGRAPHY .. 120

iv

3.1

4.1

6.1

7.1

7.2

LIST OF TABLES

Blending function table .of the example. ... 28

Subpatch and corresponding control points. .. 46

Cycle count for different evaluation routines. ... 82

Transistor count of the SE chip. .. 89

Evaluation time for different evaluation routines. .. 94

1.1

1.2

2.1

2.2

2.3

2.4

3.1

3.2 '

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

4.1

4.2

5.1

5.2

6.1

6.2

6.3

6.4

LIST OF FIGURES

Viewing of 3D objects. . ..

An enhanced graphics pipeline [2]. ...

Speed versus integration scale [3]. ...‘.......................

Hierarchical layout. ..

The "Y-chart" display of design representations. ..

Cooperating expert agents for VLSI design [8]. ...

B-spline curve. ..

Example of locality. ...

Blending function cascade. ..

Blending function tree. ...

Blending function tree - segment 1. ..

Blending function tree - segment 2. .._..........

Plot of blending function. ..

Third order B-spline. ..

Strictly rational B-spline. ...

B-spline control point net. ...

B-spline surface. ..

B-spline control point net [11]. ..

B-spline surface [11]. ...

Normal vector and tangent vector of a point on the surface [18].

The geometry of shading [l2]. ..

The block diagram of a 5-by-5 Baugh-Wooley two’s complement

array multiplier [24]. ..

(a) Basic MAC block. (b) MAC array structure to compute a

polynomial of order 3. (c) MAC array structure to find the

first derivative of a polynomial with order 3. ...

The block diagram for calculating the blending function and

the first derivative. ...

Block diagram for calculating of the inner product of X and Y.

vi

13

15

18

22

24

25

26

27

29

30

33

37

38

47

47

52

55

6O

62

64

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

7.1

A four-operand adder formed by CSA tree. .. 65

The functional block diagram of a full carry lookahead adder. 65

Logic circuits for realizing the carry-generate, carry-propagate,

and sum functions. ... 66

The schematic logic circuit of a 4-bit carry lookahead (CLA) unit. 67

A carry lookahead array divider with 8-bit divisor in two’s

complement representation [25]. ... 68

Three basic types of cells to be used in constructing the division

array of Figure 6.9 [25]. .. 69

Thegeneral form ofadatapath [23]. .. 71

The two-phase clocking scheme [26]. .. 71

Pipelined four-segment multiplier and its clock scheme. 72

Datafiow of vector-matrix multiplication. ... 74

Skewed storage pattern with (a) 8:0, and (b) Sal. 76

Skewed storage with output multiplexing. 77

Simplified diagram of the SE chip. - -- - 79

Multiplying-and-adding (M&A) unit. ... 81

Flowchart of the evaluation algorithm in the SE chip. 86

vii

CHAPTER I

INTRODUCTION

Geometric modelling is a broad field in computer graphics which

uses computational geometry to develop representation techniques for

three-dimensional objects. It can be divided into two sub-fields: 1)

surface modelling, which represents three-dimensional objects using

various types of closed surfaces (quadratics, polygonal meshes,

parametric bicubic patches, etc.), and 2) solid modelling, which aims at

developing object representations which are complete, unambiguous,

realizable, accurate, efficient, productive, flexible and minimal.

Surface modelling is especially useful in the aerospace and automotive

industries, while solid modelling is gradually becoming useful for a

variety of mechanical CAD/CAM applications. In this thesis, we shall

deal only with the topic of surface modelling, but insofar as most solid

modelling systems utilize a curve -- and surface -- based boundary

representation (B-rep) for at least graphics calculations, the work

described here is quite directly.applicable to solid modelling system

development.

The process used to generate the realistic computer images from a

geometric data base is called image synthesis. It generally involves

several steps:

1) transformation of the data base from world coordinates to the

2)

3)

4)

appropriate viewing coordinates (see Figure 1.1);

elimination of hidden surfaces by way of depth sorting (sort the

polygons by their distance from the viewpoint and to place them

into the refresh buffer in order of decreasing distance), 2.

buffering (a buffer is used to record the smallest 2 value

encountered for each (x,y) as the search porgresses), scan-line

processing (by using scan-line coherence and edge coherence to

determine the projecting result of all polygons onto the xy-

plane), or area subdivision (recursively subdivide the area of

the projection plane image until it is easy to decide which

polygon or polygons are visible in the area);

shading the visible surfaces by taking the light sources, the

surface characteristics, and the relative positions and

orientations of the surfaces and sources into consideration;

taking account of shadows, transparent and translucent

materials, surface texture, surface detail, and aliasing (some

31) world “PM '0'“ Normalised device

coonduune . coondhudee coondhufles

deecrl u l
f |

p (“1 cup filflhufl» E Ffiofiun.onhb uJEP%%E"‘%¢ Trenenn1n

*dew'vchune ‘flp u“, in 23:55; °d '—€>lhflfidggflfleelbe>

pnubc n P '3 .eoo ll tee e co

Figure 1.1. Viewing of 30 objects.

of these can be handled by ray tracing).

The formulation of a realistic three-dimensional image does not

necessarily follow the order of steps stated above. For example, a

chip set designed by Hewlett-Packard Co. has a graphics pipeline as

shown in Figure 1.2 [2].

531$:th :33. runs “WC“ scan me n

cigar F4, .32," same “I 9522* u'vecnotusn "I “5": "WA?" —.
usr sums

.—__. ' .___. Inn—m l—J, .—. lL—J. _.

onuavxut

.uuiiiin‘e'l‘fiiom rul'éi‘l'l'fma. scan couvsnsnon IMAGE nuwv

Figure 1.2. An enhanced graphics pipeline [2].

1.1 Problem Statement

Researchers at the A. H. Case Center for Computer-Aided Design,

Michigan State University, have developed a surface assessment package

called MSU COLORSCOPE to produce accurate shaded images by calculating

and shading surfaces evaluated at the pixel level. Recently, several

algorithms developed by Pickelmann [I] allowed for more efficient

evaluation of the entire range of rational/non-rational curves and

surfaces. Though these algorithms speed up the response time of the

interactive CAD/CAM system which uses them, the time for generating a

shaded image is still too long (typically more than few minutes) and

thus far away from the goal of high quality "real-time" realistic image

generating for the interactive CAD graphics system.

1 It has been shown that the time required for three-dimensional

surface evaluation and transformation demands a significant percentage

of the total time needed to realize a new shaded image. If we can

download the surface evaluation and transformation to high speed

hardware, the overall computation time will be reduced dramatically.

I The surface evaluation routines shown in [l] involve numerous

matrix multiplications and thus are candidates good for implementing on

regular structured hardware. The very best candidate for the hardware

implementation is VLSI (Very Large Scale Integration), which has shown

great potential for improving system performance by implementing

concurrent numerical algorithms directly in hardware. Furthermore,

advances in CAD (Computer-Aided Design) and CAB (ComputereAided

Engineering) systems for VLSI have enabled such implementation to be carried

out in a custom design with relatively low costs in both time and money.

1.2 Approach

The purpose of this research is to investigate and specify the

major hardware components of a custom-designed VLSI chip architecture

for the surface evaluation algorithm given in [l].

The surface evaluation chip is to work as a coprocessor to the

host, a graphics processor taking care of all the graphics processing

except for surface evaluation. It downloads necessary information from

the host and evaluates either a point or a patch (by recusively

evaluating the point on the patch). Fixed-point calculations are

assumed throughout the design. This implies that any necessary scaling

is performed in the host system.

The overall design follows the top-down approach. The system

criteria will be stated first, followed by the definition of each

building block. When specifying the system criteria, the I/O problem,

one of the main considerations in dealing with matrix operations, must

be solved in order to guarantee better performance. A proper VLSI array

structure suited for matrix multiplication is also to be employed in the

design.

In order to achieve the highest system throughout, the pipeline

concept is extensively applied to the inter- and intra-functional units.

The timing scheme for supporting pipelining will also be introduced.

The storage scheme of the surface evaluation chip will be addressed

particularly because of the special pattern of memory access used. A

reconfigurable structure with higher resource utilization and less

number of functional components will then be given.

In order to simulate as well as verify the design, the chip

architecture will be expressed in the form of a program written in RTL

(Register Transfer Language). By comparing the simulation results with

the software surface evaluation algorithm, mistakes will be corrected

and modifications will be made to improve the system performance.

1.3 A Overview of the Thesis

Chapter Two introduces basic VLSI technology and design

methodologies. Chapter Three presents the mathematical preliminaries

required for the surface evaluation algorithm. A literature review is

given in Chapter Four. Chapter Five gives the surface evaluation

algorithm and the idea of shading. The development of the chip

architecture is covered in Chapter Six. The simulation results and

conclusions are presented in Chapter Seven.

CHAPTER II

VLSI SYSTEM DESIGN

The goal of this thesis is to develop a dedicated VLSI chip for

surface evaluation. This chapter introduces the characteristics as well

as trends of VLSI technology. The discussion will emphasize semicustom

and custom VLSI, also called application-specific integrated circuit

(ASIC) design. VLSI design methodologies such the silicon compiler and

AI approaches will also be covered.

2.1 Characteristics and Trends in VLSI Design

Recent advances in VLSI technology -- in system and circuit design

environments, process sophistication, manufacturing cost effectiveness,

reliability, and packaging -- have spurred the identification of new

system applications which are now feasible with more advanced

technology. Offering excellent noise immunity, wide operating margins

with respect to power supply voltage and temperature, lower drive

currents, decreased power consumption, ease of design for VLSI circuits,

and scalability to submicrometer dimensions with improved performance

and reliability relative to alternative technologies, CMOS is the most

suitable technology for the majority of these emerging applications.

CMOS designs present a disadvantage in that the die size required is

larger than that required by NMOS for the same circuit. New

technologies, however, such as domino circuits and clocked circuits, are

reducing the die size difference between CHDS and NMOS.

In the ultra-high-speed region, ECL and CML technologies are used.

Their performance superiority is irresistible, but other costs are

higher. In a much higher speed region, new semiconductor devices are

being explored. Gallium arsenide devices are expected to be applied to

real-world systems in the near future and are one of the most promising

technologies. Figure 2.1 shows the distribution of operation speed and

scale of integration for gate arrays achieved by various technologies

[3].

Two CHOS technologies have been prominently used: the silicon-gate

Se tt Mum;

speed (net

! si-qete Obs (emote metal!

. l

I

5 t St-oete 008 ldoeble metal)

-------- -- -J----

l r
fl

5 . m :l *o_e—c-oqpoj '

2 i i' . |

r4 I '

Ll - I

it ,tzuztztztgja--__-J
F _-— - _. '

' a

' o

' I

0.5? I o

o r

I r

L................. ‘J

CCL

on}

Scale of

1 .‘c—

0.1 Inteeretton
10° 1 S 1000 I 5 10000 2 ‘°.‘.’

Figure 2.1. Speed versus integration scale [3].

CHOS and metal-gate CMOS. The former has become dominant because it

allows for higher operation speed and higher degrees of integration by

using finer pattern geometries. For example, 1.2 to 1.5 pm design rule

devices exhibit 1.0 to 1.2 ns delays and subnanosecond delay is expected

by using submicrometer rules [4];

The types of integrated circuits that are used for semicustom and

custom designs include:

1) Gate Arrays (GAs). These are prefabricated unwired standard

transistor arrays. The function of the gate array is defined

by properly interconnecting transistor patterns on the chip.

2) Standard Cells (SCs). These allow for the design of

application-specific integration circuits by composing circuits

from elements stored in cell library.

3) Full Custom integration circuits (FCs). These are hand

customized by system designers. Full custom designs are the

most time-consuming to produce, but are capable of the highest

density.

2.2 Design Methodology

..Custom chips developed for particular applications tend to be more

dedicated to the target system and less general purpose. The term

"application-specific 16' clearly describes the present situation where

many different types of circuits are being used in small quantities for

specific applications. Smaller size, lower cost, higher speed and

10

higher reliability have been goals in the development of ASICs. Higher

integration of devices, however, has led to longer design times, and

made it difficult to maintain design reliability. In order to solve

this dilemma, research and development work on various customization

technologies and automated design technologies is being accelerated,

with emphasis on design methodologies and automated tools.

Design methodology is defined as a set of codified techniques that

are applicable to the VLSI design process. The objective of studying

design methodology according to Baller [5] is to facilitate the

creation of better designs. A final design must be functionally and

physically correct, qualitatively acceptable, testable, and easily

modified.

The prevalent design methodology today is hierarchical in nature.

A hierarchical layout using the standard cell approach is given as an

example in Figure 2.2 [6]. The VLSI techniques are categorized by

those used for design, or synthesis, of a VLSI circuit and those used

for its verification. In both categories, a further distinction is made

between techniques relating to physical and functional views of the

design. Physical design supports partitioning, layout, and topological

analysis at all design levels. Functionality, testability, and physical

design must be considered in parallel throughout the design process.

A design model is first defined according to some initial

objectives and requirements. A top-down design process is normally used

to decompose the desired operations of a circuit into a network of

orchestrated smaller and simpler functional modules. Once a functional

11

F—
—1[11"08UFF18']

_t ‘

l I

z’ 5 R. ./

C) (D

A. L IJ I! E

B P C3 3

u , U

P 1' P

F , F F

f“ A

A. I C

V V

C:th'R.L L

R C>rw ,e 3 E

“ ': —‘—

rat-55:...” .04

LAYOUT OP BLOCKS

STANDARD CELL LIBRARY

Figure 2.2. Hierarchical layout.

implementation strategy has been determined, a bottom-up process is

commonly used to complete the physical design. Design results are

simulated at different levels throughout the design process to evaluate

correctness and performance [7].

The ”Y" chart shown in Figure 2.3 has three axes that depict

functional (behavioral), structural (architecture), and geometric

(physical) representations of VLSI design. The functional axis

12

describes the functionality of the design, the structural axis

represents the structural implementation of the design, and the

geometric dimension represents the hardware realization of the design.

Higher level of abstractions are encountered moving out radially from

the origin. Commonly used levels of structural representation are the

processor/memory/switch (PMS), the register-transfer, and the circuit

level. Geometric representations include layout planning, cells, and

physical mask geometries. VLSI design methodology, from this

perspective, is a sequence of one-to-many mappings from higher to lower

levels of abstraction and between different design representations in

the design space. A particular mapping sequence taken by a certain

school of thought, not surprisingly, more or less reflects a particular

environment (usually expressed in needs and constraints of human,

technological and financial resources) under which that particular

methodology has evolved.

The design tools available to IC designers today usually encompass

several of the lower level representations shown on the Y chart. For

example, the designer can expect to enter at the logic level or perhaps

the circuit level and find support for layout, logic and circuit

simulation, design rule checking, and timing and critical path analysis.

Many of these systems support designer interaction at any level of the

design process and provide consistent database services across the

entire range of design activities [4].

13

mucrurm.

summon mm”

Mmflomry/Swttoh Subm-

Wt ‘l‘l'enster Mm

Circulte 3.01..“ We

._ leak Geometriee'

-Celis

_ layout Planning

cmmmc

MUTATION

Figure 2.3. The "Y-chart" display of design representations.

14

2.3 New Design Technology

In software design, for the ease of programming, algorithms are

written in high level languages. The same principle is applied to

hardware design for which high level hardware description languages

(HDL) are necessary. More than clarifying module specification

definitions as in the early age, a ideal HDL should provide both

functional and structural descriptions at all levels of abstraction.

Many HDL's exist, but no one is widely used.

Besides HDL, silicon compilers have drawn much attention from CAE'

system developers. Silicon compilers have the goal of generating mask

patterns directly from an HDL. In this case, the entire physical design

process of a VLSI system can be reduced into a compilation process such

that most of the characteristics of the chip under design can be

accurately estimated. This allows system designers to focus on higher

level design and to experiment with various algorithm/architecture

alternatives with much less effort and cost. An elementary version of a

silicon compiler is the module generator used to generate the mask

layouts of some regular modules, such as basic cells in gate arrays and

standard cells. "Concorde" is an example of one released by Seattle

Silicon Technology and is more precisely classified as a macro-compiler.

But the chip geometry generated by a macro-compiler is usually not

optimal. How to automatically generate close-to-optimal geometry and

achieve full compilation rather than macro-compilation are the two

issues remaining to be solved for the silicon compiler in the near

15

future.

There has recently been much interest in using expert systems

modeled on human expert knowledge. Such systems aim to capture the

style and expertise of the human expert and provide flexibility to deal with

a wide range of applications. Designs in VLSI usually involve

certain forms of heuristics, such as those used for placement and

routing, and thus it is appropriate to use expert system techniques to convert

a hierarchical circuit description into a full-custom VLSI

layout. The expert system for VLSI design may consist of a number of

cooperating expert agents connected through a central manager. An

example is given in Figure 2.4 [8]. Much effort has gone into the

development of an expert system for VLSI design. Several issues,

however, still remain open.

Structural moot

Physical output

Figure 2.4. Cooperating expert agents for VLSI design [8].

16

l) The expert system should contain as much knowledge of VLSI

design as possible.

2) The machine's learning capabilities should be augmented.

3) Special artificial intelligence machines msut be deveIOped

for providing high throughput expert systems.

This thesis focuses mainly on the design of a surface evaluation

chip at the system, algorithmic,-and register transfer levels. The

final design will be expressed by a program written in RTL (Resigter

Transfer Language).

CHAPTER III

MATHEMATICAL PRELIMINARIES

This chapter covers the mathematical preliminaries on which the

surface evaluation algorithm is based. The B-spline space curve and

rational B-spline space curve will be introduced first. Next the B-

spline surface patch is defined and extended to the rational B-spline

patch. In order to give the reader a clear picture of B-splines, simple

examples are given. Finally, various classifications of B-spline are

discussed.

3.1 B-spline Curve

A curve can be represented by a piecewise linear approximation in

which each segment of the approximation is a straight line. Likewise, a

curve can be represented as a piecewise polynomial approximation in

which each segment of the composite figure is defined by a polynomial.

A piecewise polynomial curve is called a spline.[10]

A B-spline is a parametric spline which consists of one or more

segments. Each segment represents the curve over a range of the

parameter t, for example 1 s t < 2. The curve is partially defined by a

set of control points { P0 P1 P2 Pn I (coordinate values) which

produce an open-sided polygon when connected sequentially by straight

i7

18

lines. Each segment of the curve is defined by a subset of the control

points. A three-segment cubic B-spline curve with its control point

polygon is shown in Figure 2.1. Segment ends are denoted by an X. The

control points that are used to compute a particular segment are listed

beside that segment [11].

Y

4+ P:

3 a

a. ‘ Pa

Fed-'29:

1.. t3 p

P 39‘? 3

I I P

F% I 1 3 ‘14 HI x

Figure 3.1. B-spline curve.

Let P(t) be the Cartesian position along a curve as a function of

the parametric variable t. A segment of the spline is defined by the

following equation:

19

n

P(t) - 2 P N (c) (2.1)
1-01 1.1;

where

P1 is the control point,

n+1 is the number of control points,

Ni,k is the blending function associated with P1, and

k is the order of the blending functions.

The order k of the B-spline curve is the degree + 1, i.e., a quadratic

is an order 3 curve and a cubic is an order 4 curve. P1 represents the

vector of the control point coordinates such as [xi,y1] for a 2-space

curve, and likewise P(t) represents the vector of solution equations for

the coordinates of points along the curve, such as [x(t),y(t)]. If the

number of control points exceeds the order of the curve, the B-spline

will have more than one segment. In this case, only a subset of the of

control points is used for each segment, because the result of

formulation of the blending functions associated with these unused

control points for the segment are zero. Examples will be given in the

following sections.

The number of segments the curve will have can then be represented

as a function of the number of control points, n41 and the order, k, as

number of segments - n - k + 2. (3.2)

The parameter range for each segment can be determined by simple

observation of the knot vector which will be introduced next.

20

3.1.1 Knot Vector

The blending functions are determined by a set of values called

knots. They are displayed as [x0 x1 x2 x3 x1] and are called

the knot vector. In order to make the curve pass through the end

points, the first and last entries of the knot are repeated k times

where k is the order of the curve. Thus xO-x1-...-xk_1 and x£_(k-1)-

...-xl-1-xl. The length of the knot vector refers to the number of

elements (knots) in the vector. The above vector has length - 1+1. The

length is a function of the control points (n+1) and the order (k) of

the curve, given by n+k+l. The order of the curve must be less than or

equal to the number of control points.[11]

For example, if n+1 - 4 and k - 4 (cubic), the knot vector is [0 0

0 0 1 1 1 l]. This curve is a special case of the B-spline, called the

Bezier spline, and has only one segment. If n+l-4 and k~3 (quadratic),

one possible knot vector is [0 0 O 1 2 2 2]. There are n - k + 2 - 2

segments. The first segment of the curve, produced by the knot vector

shown, has the parameter range t-O to t-l and a zero blending function

with the fourth control point. The second segment has a zero function

associated with the first control point and covers the parameter range

t-l to 12-2.

Since each segment of a spline depends on a subset of control

points, each control point affects only a local area of the B-spline

curve. This property is called locality and is one of the key features

of the B-spline. The B-spline curve can be modified by simply moving

21

the locations of some control points. An example of locality is given

in Figure 3.2 with n94, kp3 (quadratic), and knot vector [O O O l 2 3 3

3] which results in a three segment curve. The first segment depends

only on the first three control points and has the parameter range of

t-O to t-l. The second segment depends on the middle three control

points and has the parameter range of t-l to t-2. The third and last

segment depends on the last three control points and has the parameter

range of t-2 to t-3. In Figure 3.2(a), the location of the first

control point is moved, and in Figure 3.2(b) the second control point is

moved.

A knot vector with a repeated interior knot, such as [0 0 0 l l 2

2 2] with n94 and k-3, causes the length of the second segment of the

curve to be zero. Usually, the order of the continuous derivative of a

B-spline curve at its segment joints is up to k-2. For example, the

order of a B-spline curve with k-4 should have continuous zero, first,

and second derivatives. Repeating a knot once (multiplicity of knot -

2) causes the curve to lose the highest order derivative continuity at

the segment joint corresponding to that knot. The relationship between

multiplicity m, the order of the curve k, and the order of the

derivatives that are continuous across a segment joint is (0, 1, ..., k-

m-l). Thus, if the B-spline curve is a cubic (k-4) and an interior knot

has a multiplicity of 4, then k-m—l--1 and the curve will be in general

discontinuous pointwise and in all derivatives.

22

(b)

Figure 3.2. Example of locality (a) effect of moving the first

control point, (b) effect of moving the second control point.

23

It is not necessary that the knot values be integer. If all

interior knots are consecutive integeters, this type of knot vector is

called a uniform knot vector. Relaxing a uniform knot vector to allow

repeated interior knots an produces enhanced uniform knot vector [1].

The general knot vector with monotonically non-decreasing real knot

values produces a nonuniform knot vector, for example [O O 0 .3 .7 1 1

l].

3.1.2 Blending Functions

As illustrated in the previous examples, the relationships between

the knot vector, the control points, and the curve are that the curve is

defined by the control points and the blending functions which are

functions of the knots. The formal definition of blending functions are

1 if xi 5 t < x1+1

N1 1“) "
0 otherwise

(t - x) N (t) (k - t) N (t)
”1 km _ 1 i,k-1 + 1+1: i+1,k-1 . (3.3)

xi+k-l ’ xi xi+k ' x1+1

The x1 is the value of the ith position of the knot vector, for example:

x-[oooorzaass 7 s 9 9 9 9].

i - 0 1 2 3 4 5 6 7 8 9 10 ll 12 l3 14 15

From equation (2.3),if xi - x1+1 , then Ni,l(t) - 0, which causes the

24

curve to lose the highest-order derivative continuity as mentioned in

the last section. For each segment there is one Ni,1(t) that is

nonzero. This nonzero function cascades down to the final blending

functions associated with that segment as shown in the Figure 3.3. Note

that the number of nonzero blending functions per segment is equal to

the order of the curve.[ll]

"1,1.

.Ni-1,2 .Ni.2.

”W ’ “is? “ii-t

Ni'ir‘ Ni'2:; Ni'1:; Ii'?

Figure 3.3. Blending function cascade.

A clear example of blending functions quoted from [2] is:

Control points : (0,0) , (2,2) , (3,1) , (3,0)

Order : k - 3

Knot vector : [0 0 0 1 2 2 2]

l - 0 l 2 3 4 5 6.

3

From equation (2.1),the spline equation is P(t) - Z

i 0

Pi Ni,3° There

25

are four blending functions NO,3’ N1’3, N2’3, and N3,3 that need to be

formulated. Tracing from the bottom of the tree shown in Figure 3.4, we

know which blending functions need to be computed.

o o 1 it one I it l(t<2 o ‘ o

s”... NI. N... AC. ,N..N3',

\\ / \ / \ / \\ / \ 0/

edidz Iqtz I‘ll ”‘11, xbrzl

\ / \ / \ / \ /

N N N
OJ 13 21 ”'31

Figure 3.4. Blending function tree.

In this example, only two of N are not zero, which agrees with
i,1

the fact that the curve will have two segments. The function tree used

for determining the first segment is given in Figure 3.5 Therefore, the

blending functions N N 3 , and N2 3 are nonzero and will be a
0,3 ’ 1

function of N1,2 and N2.2

into equation (3.2). Then one can get the following blending functions:

found by substituting the corresponding values

(x - t) N

N1,2 - - 1 - t (3.4)

x - x

3 2

26

Figure 3.5. Blending function tree - segment 1.

(t - x) N

2 2,1

N2,2 ' x _ x ' t (3.5)

3 2

(t - X) N (x ; t) N

No 3 - 1 012 + 3 1'2 - c2 - 2c + 1 (3.6)

x2 ' x0 x3 ' x1

(t - x) N (x - t) N

N1 3 - 1 1'2 + a 2'2 - -1.5c2 + 2: (3.7)

x3 ‘ x1 x4 ‘ x2

(t - x) N (x - c) N

N2 3 - 2 2'2 + 5 3'2 - .5c2 (3.8)

xé'xz XS'XB

Note that the convention of 0/0 - 0 is used when computing the blending

functions.

For the second segment the blending functions N1 3, N2 3, and N3 3

are nonzero and can be formulated by N2 2 and N2 3 as shown in Figure

3.6. These are computed in

(x4 - t) N

27

a manner similar to the first segment as:

3,1 _ 2 _ t

"a'x3

(t-x)N
3 3,1 _ t _ 1

“4"‘3

(t - x) N (X ' t) N
1 1.2 + 4 2'2 - ,5c2 - 2t + 2

X3-X1
xa'xz

(c - x) N (x - t) N2 2.2 + 5 3.2 - -1,5t2 + 4c - 2

xa'xz x5.x3

(II-X)"
(X‘t)N

3 3.2 + 5 4'2 - t2 - 2t + 1.

xS-x3
x6°xh

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

Figure 3.6.

Blending function tree - segment 2.

28

Table 3.1 summarizes the blending functions computed above and

Figure 3.7 gives a plot of the blending functions.

After the blending functions have been determined, the spline

equation of the first segment, 0 s t < 1, can be expressed as

F t2 - 2t + 1 ‘

x(t) 0 2 3 3 2

- -1.St + 2: (3.14)

y(t) 0 2 1 0 2

0.5t

b O A

and for the second segment, where 1 s t < 2,

. o .

x(t) 0 2 3 3 2

- 0.5: - 2t + 2 (3.15)

y(t) 0 2 1 0 2

-1.St + 2t - 2

. t2 - 2: + 1

Table 3.1. Blending function table of the example.

1 Ni 3(1:), 0 s t < 1 N1,3(t)’ 1 s t < 2

o c2 - 2: + 1 o

1 -1.5c2 + 2t . 0.5:2 - 2: + 2

2 0.5:2 -1.5c2 + 4c - 2

3 0 t2 - 2t + 1

29

l . 0

d ...e I

8 t /

I L
0 0 . I a, /

Q‘ N

3 ‘ I/ 0.3 N 3.3 .7e s ,p“ . m‘

A 9 O 3 1" ‘.§a. .z”' ‘Na, /
e r. O ‘. ’

g e. I N g \. / h N \\

d .0. ./ u \ ’ u \

F f ‘. ” .\ \(\

u 0 ° “V I. . e I ‘X ‘ ‘1

n f a git 3% ’7 \
c o e i \ \

t d 'l x s\. I \\

i e, 4 I ‘. j r \\

o o e 2 "I ‘v. ’7 ’ ¥‘ I \‘

fl / ’ h. ‘\ \

3 it I a .e. ‘ \ \

f x” / ‘s ‘\
' 0 ° e...“ I .‘.

. ' o.- I T I I. W I f I r I I I F“? ‘l

0.0 0.5 1.0 1.5 2.0

Pam-eta: - t

Figure 3.7. Plot of blending functions.

The plot of this two segment curve is shown in Figure 3.8 along

with the polygon of control points; the segment joint is marked with an

X.

As demonstrated in the above example, when the blending functions

for a segment of a B-spline are cmputed, only a subset of the knot

vector is used.

knot vector.

This subset of the knot vector is called the effective

The length of the effective knot vector is equal to 2(k-

l), where k is the order. In above example, the length of the effective

30

4:? ate 1:!

Figure 3.8. Third order B-spline.

knot vector is 2(3-l)-4, which agrees with the computation of blending

functions. The only knot values used in the computation of the blending

functions of the first segment are x and x4, or [O 0 1 2],
19 x2! x3!

while the blending functions for the second segment use only the knot

values x2, x3, x4, and x or [0 1 2 2].
5’

3.2 Rational B-splines

A rational B-spline is one in which the control points are

expressed in homogeneous coordinates. A point is given an additional

coordinate which can be thought of as a scale factor. Instead of P(x,y)

a point is represented as P'(wx, wy, w). The last coordinate is the

31

homogeneous variable. There are an infinite number of homogeneous

representations of a single coordinate point, for example the coordinate

x-l, y-2, or (1,2), can be represented by (1,2,1), (2,4,2), or (5,10,5).

If the homogeneous variable is equal to 1, then the other variables

represent the actual Cartesian coordinates. If the homogeneous

variable, also called the weight in rational B-splines, is not equal to

1, then the transformation back to actual coordinates, P(x,y,l), is

calculated by dividing each coordinate of P' by the calculated value of

w.

There is no effect on the blending functions when the control

points are expressed in homogeneous coordinates, because the blending

functions depend only on the knot vector. A point WP(t) along the

spline in homogeneous coordinates can then be expressed as

n

time) - X NC?1 * N1 k(c), (3.16)

i-O ’

where the WCP1 are the homogeneous coordinate values of the weighted

control points. WP(t) represents wx(t), wy(t), and w(t), which is the

vector of homogeneous coordinate values. The Cartesian coordinate

values of points P(t) along the spline are then calculated as follows.

wx(t)

x(t) - -—————— (3.17)

w(t)

wy(t)

y(t) ' ---- (3.18)

w(t)

Extending the earlier example,let the weights of control points

32

(0,0), (2,2), (3,1), and (3,0) be 1, 2, l, and 1, respectively, for

example. The control points in weighted or homogeneous form are:

'
0 I (0.0.1):‘

'
1
1

I

(4.4.2);

'
1
1

I

(3.1.1);

P - (3,0,1).

The computation of coordinates WP(t) for the first segment is then

straightforward.

wx(t) ' o a 3 c2 - 2 c + 1

wy(t) - o a 1 -1.5 c2 + 2 t

w(t) . 1 2 1 L .s c2 .

. 2 1

-4.5 t + 8 t -

- 2 (3.19)

-5.5 t + 8 t

h -1.5 t2 + 2 t + 1 .

-a.5 :2 + 8 c -s.5 :2 + 8 c

Thus x(t) - 2 83d Y(t) ' 2

-1.5 t + 2 t + 1 -l.5 t + 2 t + 1

for 0 s t < 1. Notice that x(t) and y(t) are now ratios of polynomials

in t. Similarly, we can calculate the WP(t) for the second segment.

F .

wx(t) a 3 3 .5 c2 - 2 c + 2

wy(t) - a 1 o -1.5 c2 + a t - 2

w(t) 2 1 1 _ c2 - 2 c + 1 .

33

.S t2 - 2 t + 5

_ 2 (3.20)

S t - 4 t + 6

b5t2-2t+3‘

.5c2-2c+5 .5t2-4t+6

Thus x(t) - 2 and y(t) - 2

.St-2c+3 .5t-2t+3

for l s t < 2.

The solid line curve in Figure 3.9 is the rational B-spline derived

above and the dashed line is the nonrational B-spline from the previous

example. Note how the double weight on the (2,2) coordinate pulled the

curve toward it.[ll]

Figure 3.9. Strictly rational B-spline.

34

Weighting each of the control points gives another degree of

freedom to the curve per control point and allows the representation of

curves that can not be fitted with nonrational B-splines, such as

circular arcs derived from conic sections.

The example shown above is restricted to 2-dimensional curves. The

representation of curves in 3-dimension space (x(t), y(t), and z(t))

with B-splines can be achieved by simply adding another row to the

control point matrix for the calculation of zw(t).

3.3 B-spline Surface

The extension from the spline curve to the surface patch is done by

adding a second parametric coordinate and an associated knot vector. The

most commonly used surface representation is the four sided patch. Each

point on the patch is a function of two parameters, s and t. One edge

or side of the patch and its opposite side are chosen as curves that

depend only on s and the other two edges are functions only of t. Both

s-varying sides share the same knot vector, as do both t-varying sides.

The s knot vector does not have to equal the t knot vector. They can be

of different orders and have a different number of control points. If

the s edges have m+1 control points and the t edges have n+1, then there

will be a total of (m+1)o(n+l) control points. The control points

joined together by straight lines form what is called a control point

net. The general shape of the patch will mimic the net (more precisely,

the surface is contained within the convex hull formed by the control

points).

35

The general formula for determining the coordinates of a point on

the B-spline surface is

P(s,t) -130 1:0 M],h(s) - P1,] - Ni,k(t) (3.21)

or in matrix form

P(s,t)- M0,h(s) Ml,h(s) Mm,h(s) PPOO P01 Pogq. N0,k(t) I (3.22)

P10 P11 Pln Nl,k(t)

.ng _.njk.., J

where

1.1

n+1

m+l

N11

M11

is

is

is

is

is

is

is

one

the

the

the

the

one

0116

of the (n+1)-(m+l) control points,

order of the curve in the t direction,

order of the curve in the s direction,

number of control points in the t direction,

number of control points in the 3 direction,

of the n+1 blending functions of order k,

of the m+l blending functions of order h.

Just as the B-spline curve consisted of segments, the Bospline

surface consists of subpatches. The s edge B-splines have (m-h+2)

segments and the t edge B-splines have (n-k+2) segments. Each subpatch

is formed by a segment of the s edge paired with a segment of the t

edge. Therefore, the number of subpatches is (m-h+2)-(n-k+2). Each

36

subpatch covers a range of s and a range of t.

Example [2]:

g_gdgg§ m+l-4, h-3 (quadratic), knot vector [0 0 O l 2 2 2]

;_§ggg§ n+l-2, k-2 (linear), knot vector [0 0 1 l]

There are two subpatches in this case, since there are two segments

in the 3 direction and one in the t direction. One subpatch covers the

range of s-O»1 and t-Oel, and the other covers the range of s-1~2 and

t-Oel. There are altogether (n+1)-(m+l) - 8 control points, but each

subpatch use only a subset of the control points. The number of control

points that contribute to each subpatch is h-k, which is 6 in this

example. The subpatch with the range of s-Oel and t-0~1 has the

following blending functions.

2
”0,3(8) - s - 23 + 1 N0,2(t) - 1 - t

M1’3(s) — -1.5s2 + 23 N1,2(t) - c

M2'3(s) - 0.532

M3,3(s) - 0

The coordinate of a surface point on this subpatch can then be

calculated as

’ P P l

P(s,t) - 32-25+l -1.532+25 0.532 00 01 l-t

P10 P11 t (3.23)

P20 P21

37

The first column elements of the control point matrix are the first

three control points of one of the s edges. The first row elements of

the control point matrix are the two control points on one t edge. The

surface points for the other subpatch with the range of s-leZ and t-O~1

are computed by

p a

P P

P(s,t)- 0.532-25+2 -1.532+as-4 32-23+l 0.5e2 1° 11 l-t

P20 P21 t (3.24)

lP3° P31
If we choose the control points given in Figure 3.10 for this

example, we can generate the B-spline surface shown in Figure 3.11.[1l]

More complex surfaces may be constructed if a weight is also

assigned to each control point of the B—spline surface. To determine

Figure 3.10. B-spline control point net.

38

We!”

5p, SUXKNCH 2

y ,. fl.

Figure 3.11. B-spline surface.

points on the surface, equation (3.16) is used in the homogeneous

coordinate system as described above._

More examples of B-spline curves and surfaces can be found in [11]

and in [1]. The next chapter will give a literature review of the work

being done by others related to surface representation and evaluation.

CHAPTER IV

LITERATURE REVIEW

A fundamental area of interest in computer graphics and computer-

aided geometric design is the representation of a 3-space object whose

shape is delineated by free-form surfaces. Various mathematical

models as well as special purpose hardware have been developed to meet

the requirement for implementation in an interactive computer-aided

geometric design system. This chapter presents a review of techniques

in use for the display of free-form surfaces.

4.1 Uniform Subdivision

There are two stages involved in displaying parametrically defined

surfaces in most existing system -- creating a polygonal approximation

of the surface and displaying the approximation by use of the standard

polygon display techniques [10]. Uniform subdivision is the simplest

technique to produce the polygonal database for displaying the surface.

In uniform subdivision, a single patch is divided uniformly in parameter

space and the resulting mesh of evaluated points are treated as vertices

of the approximating triangles, for example. The more subdivisions, the

smoother the approximating surface.

39

40

Note that the vertices of the approximating triangle are used for

interpolating the points on the patch. Yet the control points used in

B-splines define the patch rather than interpolate the patch. This is

the key difference between B-spline and piecewise linear approximation.

The first attempt at displaying a bicubic surface, a surface with

order equal to 4 in both the s and t directions, directly from the

parametric mathematical definition of the surface (i.e., without

polygonalizing) was done by Catmull [13]. Catmull subdivided the patch

in parameter space down to the pixel basis. Then the subpatch was

passed to displaying and shading routines.

4.2 Adaptive Subdivision

Adaptive subdivision, proposed by Lane and Carpenter [14],

adaptively divides a patch into polygons according to the flatness of

the patch. A "flat" patch can be displayed as a single polygon while a

curved patch is subdivided into smaller subpatches until each of the

subpatches meets the criteria of the flatness test. Compared to uniform

subdivision, adaptive subdivision generates ”enough" polygons to

adequately represent the surface whereas the uniform subdivision spends

a longer time to generate ”more than enough“ polygons [10].

All surface patches are represented in terms of an appropriate

tensor product of Bernstein basis functions. Using Bernstein basis

functions, curves are generated by interpolating their first and last

control points. Then the points are assembled into quadrilaterals. The

41

flatness test is carried out on the quadrilaterals, which are further

subdivided if necessary. The final subdivision produces polygons for

display by a conventional routine [10].

In order to decide which portion is the most curved one of the

segment or patch, the calculation of curvature is usually involved. Yet

the evaluation of curvature is difficult and time-consuming. Van Book

has since developed a method similar to the Lane-Carpenter method, but

in which no calculation of curvature is necessary. Van Hook evaluated

more than enough points on the surface to achieve the flatness test.

This method was classified by Whitton [10] as a semi-adaptive

subdivision.

4.3 Cox-deBoor Algorithm

The most popular B-spline algorithm in many CAD/CAM systems is the

Cox-deBoor algorithm [16,17]. It works well for point evaluation as

well as the derivative evaluation of the point. The algorithm for

formulating the blending functions presented by deBoor [17] is

reproduced below:

N(1,l) - l;

for s - 1 to k-l

begin

DP(s) - t -t;
1+8

DM(s) - t-ti+l-s;

42

N(l,s+l) - O;

for r - 1 to s

begin

M - N(r,s) / (DP(r) + DM(s+l-r));

N(r,s+l) - N(r,s+1) + DP(r) * M;

N(r+1,s+1) - DM(s+l-r) * M;

endfor,

endfor.

Where

k is the order of the blending functions,

t1 are the knots of the knot vector,

and t1 5 t < t1+1.

The B-spline is then evaluated by

k-l

P(t) - 2 CP . N (c), (4.1)
i-O i i,k

where Ni k is the kth column of N in the above algorithm.

Note that N is a triangular matrix. To evaluate derivatives, the

appropriate column of N would be used. The general routine given by.I

deBoor for derivative evaluation is

k- -1

me - <k-1> - - - (k-j) Aim - Ni 1w(t). (4.2)
1-0 '

43

where

j is the order of derivative and 0 s j < k,

N

th
i,k-j is the (k-j) column of N,

and

(0) _
A1 CPi’

(.1) _ (J-l) _ (J-l)
A (A1 A 1
1 1- t

(4.3)
) / (ti+k-j ' 1"

4.4 Pickelmann's Algorithm

One problem embedded in the Cox-deBoor algorithm is that when the

knot values of the knot vector become very large, the error will also

increase. Knot vectors are, in Pickelmann's work [1], translated (or

shifted) so that the parameter range being evaluated (the middle of the

effective knot vector) is always [0,1). This translation both limits

the number of possible effective knot vectors and has a beneficial

effect on numerical accuracy of the blending function calculations. The

CURBS algorithm proposed by Pickelmann [1] thus produces a three-to-one

reduction in machine operations over the Cox-deBoor algorithm, for cubic

splines. For higher order splines, the reduction ratio is even larger.

From the last chapter, only the effective knot vector (a subset of

the knot vector is used to compute any given blending function. Also,

the length of the effective knot vector is 2(k-1). Pickelmann showed

that a B-spline with an infinite number of possible knot vectors can be

processed as several individual subsegments, each with one effective

knot vector. In what follows, only enhanced uniform knot vectors will

44

be considered (note that Pickelmann showed that this is not actually a

restriction on the class of all nonuniform rational B-splines; he

derived an algorithm for converting an arbitrary NURB surface into one

with an enhanced uniform knot vector). And for EURB knot vectors, using

the knot vector translation just mentioned, the number of possible

effective knot vectors is finite and equal to 2(2k-4). For a cubic,

k-4, there are 2(2o4-4) or 16 possible effective knot vectors for a

subsegment. For k-S, there are 64 possible knot vectors.

Each of the 2(2k'4) knot vectors yields a unique set of blending

functions. In order to easily determine which set of blending functions

should be used for a given subsegment, each subsegment is given a label

or pointer to the correct set of preformulated blending functions. The

label is determined by a special subroutine in which the effective knot

vector is compressed into a binary-encoded label. Then the shape of a

subpatch is formed by the labels in both the s and t directions and the

corresponding control points. To get a clear picture of the algorithm,

an example is given as follows.

W

§_§ggg§ - number of control points : m+l - 4

order : h - 3 knot vector : [O O 0 l 2 2 2]

§_§gggg - number of control points : n+1 - 4

order : k - 3 knot vector : [O O O 1 2 2 2]

45

Control point matrix : P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

For k-3, there are 2(2.3-h) - 4 possible knot vectors. The above

knot vector uses only two of them, [0 0 l 2] and [0 l 2 2], and the

second effective knot vector can be translated to [-l 0 l 1] which

will have the same label as [o 1 2 2 1. The label of [0 0‘1 2 1 is

LABl - 2, and the label of [-l 0 l 1] is LABZ - l. The way to label

the effective knot vector was given in [1].

Since (n-k+2) - 2, we know there are two segments in both the s and

t directions, which results altogether in four subpatches. The blending

functions of one of the four subpatches can then be retrieved from the

preformulated blending function basis according to LABl and LAB2. The

labels and the corresponding control points used to form the subpatch

are given in Table 4.1. Figure 4.1 shows the B-spline control net and

Figure 4.2 gives the B-spline surface.

Conceptually, the four subpatches have different parameter ranges

.as shown in the above table. But for purposes of computation,

subpatches can be treated individually as if each of them had the

parameter range of s-Oel and t-Oel, so long as the "bookkepping" of the

proper control point indices is maintained.

46

TABLE 4.1. Subpatch and corresponding control points

subpatch label of s label of t control ponints

P P P
s _ 0‘1 00 01 02

LABl LABl P P P
t _ 0+1 10 11 12

P20 P21 P22

P P P
s _ 1‘2 10 11 12

LABZ LABl P P P
t _ 041 20 21 22

P30 P31 P32

P P P
s _ 0‘1 01 02 03

LABl LABZ P P P
t _ 1+2 11 12 13

P21 P22 P23

P P P
s _ 1‘2 11 12 13

LAB2 LABZ P P P
t _ 1‘2 21 22 23

P31 P32 P33

47

Figure 4.1. B—spline control point net [11].

Figure 4.2. B-spline surface [11].

CHAPTER V

SURFACE EVALUATION AND SHADING

This chapter describes the surface evaluation algorithm for both

nonrational B-splines and rational B-splines. The computation of the

derivative and the normal vector of the points on the B-spline surface

are given. Finally, based on the normal of the surface, the concept of

shading is introduced and the shaded image of the B-spline surface is

visualized.

5.1 Evaluation Algorithm

From equation (3.20) we know a point on the B-spline patch can be

represented in matrix form as

P(s,t) - [BF(8)] ' [CP] ' [BF(t)] (5 1)

where CP is the control point matrix with size (m+l)x(n+l), and BF(s)

and BF(t) are the blending function vectors of s and t, respectively.

In the last chapter, we showed that the computation of the points on a

subpatch can be treated individually such that the point on a subpatch

can now be defined as

P'(S.t) - [BF(S)] ' [09'] ° [BF(t)] (5 2)

48

49

where CP' is the corresponding control point matrix with size hxk, and

each element of BF(s) and of BF(t) is a polynomial of s and of t,

respectively. For a bicubic surface, h-kn4, we may rewrite equation

(5.2) as

23 ’1‘
P'(s,t) - [1 s s s] M4x4 CP'4x4 N4x4 . (5.3)

t

t2

btad

u4x4 and N4x4 are the blending coefficient matrices by which the

blending function is formulated. This assumes that all the blending

coefficient matrices have been preformulated according to the labels

determined from the effective knot vector. Note that the formulation of

the blending functions is done only once and the results are stored for

later use. The algorithm, as stated below, also assumes that the

subsegment labels are calculated or read in with the control points that

define the surface.

The algorithm requires the following information for evaluating a

subpatch: .

1) corresponding control point matrix for the subpatch (CP');

2) subpatch labels in s and in t direction (LABS and LABT);

3) orders of the subpatch in s and in t direction (h and k);

4) parametric value (between 0.0 and 1.0) (s and t);

5) the value of rational indicator (RATNOT).

50

The major steps of the algorithm for evaluating a subpatch are:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Use LABS and h to retrieve the proper set of blending

coefficient matrix, uhxh' Similarly use LABT and k to

retrieve kak.

Construct the a vector [l s ... sh.1];

construct the t vector [1 t ... tk"1].

Evaluate blending functions

h-

[BF(s)l-[ls..-s ll-Iflhxh];

k-l T
[BF(t)] - [kak] s [1 t ... t]

Calculate homogeneous points

WX - [BF(S)] - [CP’(X)l - [BF(t)];

WY - [BF(S)] ° [CP'(y)l ° [BF(t)];

WZ - [BF(S)l ° [CP'(2)] - [BF(t)];

and if it is a strictly rational B-spline, then

W ' [BF(S)] ° [CP'(V)] ' [BF(t)]-

Calculate the three-dimensional point if strictly rational

X - wX/W:

Y - wY/W;

z - w2/w.

51

5.2 The Derivative and Normal Vectors

If the derivatives of the point with respect to the parametric

variable are required, the algorithm must be modified. The appropriate

derivative of the a vector and t vector are taken and used in step 3 to

evaluate an alternative set of blending functions. This set of blending

function derivatives is then used in step 4. An example to get the

derivative of bicubic patch in both the s and t directions is given

below.

2 P 1 1
3.113.? ' l 0 1 23 39] M4x4 CP 4x4 N4x4 t (5.4)

t2

b t3 d

- 1 ‘2 3 M CP' N ' o - S 5
§£1§251 [3 3 3 1 4x4 4x4 4x4 1 (°)

2::

D 3:2 d

If the surface is nonrational, then aX/as, aY/as, and 62/83 can be

obtained by substituting CP'(x), CP'(y), and CP'(z), respectively. The

derivatives in the t direction can be derived similarly by applying

equation (5.5). If the surface is strictly rational, then the chain

rule must be employed to replace step 5 to calculate the derivative.

For example, to calculate aX/as it would be necessary to use

52

dX__§.LliXAil_.L-_M__ -.&H.- (5.6)

as as W as as

The tangent vector to parametric curve P - P(s,te), where to is a

constant, is a multiple of the vector aP/as - (aX/as aY/as aZ/as).

Similarly, the tangent vector to the curve P - P(se, t) is a multiple of

aP/at - (aX/at aY/at 62/8t). The tangent plane at the intersection of

these curves at P(se, to) contains these two tangent vectors, so that

the normal to the surface is a multiple of their vector product (see

Figure 5.1). The unit normal vector n is then given by

Figure 5.1. Normal vector and tangent vectors of a

point on the surface [18].

53

X

n ' | aP/ae x aP/ac |

i j k

where (aP/as x aP/at) - 8X/as BY/as 32/33 - ai + bj + ck

BX/at av/at 82/8t

and | aP/as x aP/ac | - (a2 + b2 + c2)“.

5:3 Shading

The process of taking a three-dimensional description of a scene

and generating a two-dimensional array (typically 1024x1024) of

intensities (pixels) that will be displayed on a CRT is called

rendering. The description of a scene may be modeled by polygons,

parametric patches, or splines. Generally, rendering of a scene also

needs information about the (one or more) light sources, such as the

intensity, direction, and model of the light sources. Many alternative

models for light sources and their interactions with surfaces are in

common usage.

Rendering begins by transforming the objects into the eye-

coordinate system, or what is called viewing transformation (clipping,

perspective transformation also included) in which objects outside the

field of view are clipped away (see Figure 1.1). The remaining objects

must be compared to decide which objects, and/or portions of objects,

are visible from the view point. Then the hidden surface removal

54

problem is taken into account. Three popular hidden surface removing

algorithms are the z-buffer, priority, and scan-line algorithms [20].

The next step in visualizing an image, after hidden surfaces have

been removed, is to shade the visible surfaces taking into account the

light sources, surface characteristics, and the positions and

orientations of the surfaces and sources. Next, we examine the

interaction of different components of point light sources shining on

the surfaces of objects.

The light reflected from a surface can be modeled in a common

simplification with two components, diffuse and specular. For diffuse

reflection, scattering of light is assumed to be equally in all

directions, so that the surfaces appear to have the same brightness from

all viewing angles. Ideal specular surface, however, reradiates light

in only one direction, the reflected light direction. For real objects,

the reflected light contains both diffuse and specular components. For

example, illuminate an apple with a bright light; the highlight is

caused by specular reflection, while the light reflected from the rest

of the apple is caused by diffuse reflection. In order to generate

realistic images, both components need to be taken into consideration.

In Figure 5.2, E is unit vector that points to the eye while L is unit

vector to the light source. E' indicates the reflected eye direction and

N is the unit normal vector at the point P. It is very simple to

compute the diffuse component. According to Lambert's Law, the diffuse

component can be calculated by N-L, the inner product of N and L. The

computation of the specular component, however, is much more

55

Figure 5.2 The geometry of shading [12]

complicated.

An approximation of the specular component proposed by Phong [21]

took the form

"(L)'Cosn(a) (5.7)

where t is the incident angle and a is the angle between E' and L. W(t)

is used to model the change of the ratio of incident light to reflected

light as the incident angle changes. In practice, according to [20],

W(L) has been ignored by most implementers. The order of cos(a), n, is

the shininess factor. When L and E' in the same direction, i.e. a-O,

cosn(a) reaches maximum, and it will decrease very fast in the off-axis

direction as n increase.

56

More complex methods to calculate the specular component can be

found in [19]. The modeling of a third component, termed ambient light,

is given also in [19].

Once we know how to shade a point, we can shade a surface according

to the same principle. Rather than going through the extra shading

computation for every point to be displayed (i.e., pixel), several

approximation methods have been proposed [21,22]. The drawback of these

approximation methods is that they do not generally represent the original

surface precisely. If high-speed hardware was available to reduce the

computation cost of shading for each point, more precise visualizing of

a surface would then be possible. Based on the B-splines and the

algorithm introduced in previous chapters, a VLSI chip architecture is

proposed in the next chapter which performs a crucial part of the work

to achieve real-time shading, now a bottleneck of interactive computer

graphics.

CHAPTER VI

ARCHITECTURE DESIGN

The architecture of a computational system can be characterized in

many ways depending on the designer's view as well as the design level.

The architecture here is collectively defined by a specification of the

functional capabilities of its physical components, the logical

structure of their interconnections, the nature of the information flow,

and the control mechanism.

In the section on system specification, the design objectives and

criteria as well as special functional configuration requirements will

be presented. The functional units and the clocking scheme used in the

design are discussed in detail. The data flow is then manipulated in

such a way that maximum system throughput is achieved. The architecture

which meets the system specification is then presented in block diagram

form. The algorithm of surface evaluation is expressed in the form of a

program written in RTL (Register Transfer Language).

57

58

6.1 System Specification

6.1.1 Design Objective

The objective is to design a basic VLSI chip architecture dedicated

to the fixed-point computation of the surface evaluation for a host

graphics processor. This chip will work as a coprocessor to the host.

It will be activated whenever a surface evaluation request is invoked;

otherwise, it remains in a quiescent mode.

The following criteria have been established, based on the

application requirement analysis, to guide in making various design

decisions.

CMOS technology with a feature size of 1.5pm or below and a

clock of up to ZOMHz are to be used.

0 Blending coefficient matrices will be stored in ROM and the

blending functions will be generated on chip in order to avoid

possible I/O bottlenecks.

o In order to simplify the overall design, the surface to be

evaluated is assumed to be defined by a bicubic patch.

0 Intra-functional 'unit pipelining is to be used in order to

achieve higher system throughput.

0 Minimum cycle time and minimum interconnections are sought, with

the former being a major concern.

In the design of the SE (Surface Evaluator) chip, the three

following rules from Mead and Conway [23], which are adequate to

guarantee the correct functioning of a bus-oriented chip design, are

59

rigidly followed:

Rule 1: The system is driven by a two-phase, nonoverlapped clock;

input of phase one is from phase two output and vice-

versa.

Rule 2: Functional units are timeless C/L (Combinational Logic);

operations on data are separated by the two-phase clock.

Rule 3: A standard bus scheme is used; data transfer through the

bus occurs during phase one, and the bus is precharged

during phase two.

6.1.2 I/O Specification

The input to the proposed SE chip consists of LABS and LABT, values

of both a and t, an information bit for indicating rational or

nonrational, and the three (four if rational) 4-by-4 control point

matrices. The output of the SE chip is the three-dimensional point (x,

y, 2). If the normal vector at this particular point is desired,

further calculations are needed. All of the information, except for the

rational indication bit, are 32-bit, two's complement, fixed-point

representations. Necessary pre-scaling and post-scaling of the data are

assumed to be done by the host processor.

Communication of the control point matrices is the bottleneck of

the SE chip. Efficient pipelining of the input stage and the functional

units of the SE chip in order to obtain the highest throughput, is,

therefore, the major design endeavor.

60

6.2 Architecture Development

6.2.1 Functional Units

The elementary arithmetic operations needed for the surface

evaluation calculation are multiplication, addition, and division. The

schematic block diagram of a Baugh-Wboley two's complement array

multiplier [24] is shown in Figure 6.1. It is the basic structure of a

multiply-and-add cell (MAC).

J. be ‘4 b:

a For i.) ' 0. 1. 2. 3 and (i,1) - (4, 4)
I

05.33 osj$3

“ego “350 “2‘0 ‘1 1’0 ‘050

,b

zb‘ - .M o o o o
1.0, ‘

a. b. 1 z “:1 Q

, o mimic

We 0 f
l

Figure 6.1. The block diagram of a S-by-S Baugh-Wooley two's

complement array multiplier [24].

61

The first step of the surface evaluation calculation is to form the

blending functions of s and of t. If we compute the blending function

of s, for example, by the multiplication of vector [1 s 32 s3] and the

corresponding blending coefficient matrix chosen according to LABS, we

need to calculate the square and the cube of s beforehand. This

requires at least two more cycles to perform. However, there is an

alternative way of forming the blending functions, which does not

require computing the square and the cube in advance.

If the MAC, represented in block form shown in Figure 6.2(a), is

used, then the polynomial of a variable x with order equal to 3 can be

obtained by using three MAC's as shown in Figure 6.2(b). Calculation of

the first derivative of a polynomial of x with order - 3 can then be

performed by the block diagram shown in Figure 6.2(c). Based on this

approach, Figure 6.3 gives the data flow and the structure to calculate

the blending function of s as well as its first derivative. The

blending function of t and its first derivative can be obtained

similarly. Note that in Figure 6.3 there is a need to multiply by 2 and

3 (*2 and *3) in the forming of the first derivative. Actually, no

multiplication is necessary here. Multiplication by 2 can be achieved

by just shifting the input data one bit left and multiplication by 3 can

be obtained by adding three duplicates of the operand. The reason for

adding the 4-stage delay is that piplined MAC will has 4 segments as

will be covered shortly.

In the evaluation process, many matrix-vector multiplications are

involved. After multiplying elements of the vector [1 s 52 $3] with

62

(a)

P(x)

=((<A1l X)+A2)!X+A3)IX+A4

(b)

are 3

3““

MAC P’(x)

. n x

(C)

Figure 6.2. (a) Basic MAC block. (b) MAC array structure to compute

a polynomial of order 3. (c) MAC array structure to find the first

derivative of a polynomial with order - 3.

63

A41 A42 A43

A31 A38 A33

A21 A82 A23

A11 A12 A13

A44

A34

A24

A14

4-stage

4nu delay

unit

, 4DU

* T llMAC IT IMAC IT l]MAC }——BFT(I)

,. BFT(2)

BFT(3)

BFT(4)

ilg IT If;eTl llMAC l—-—DBFT(1)

DBFT<2>

DBFT(3)

DBFT(4)

Figure 6.3. The block diagram for calculating the blending

functions for evaluating the point and the first

derivative.

64

the corresponding elements of a row (or a column) of the blending

coefficient matrix, we need to sum up the products to get the final

result. The MAC can be used to achieve matrix-vector multiplication as

given in Figure 6.4. This requires four MAC cycles to get the final

result; a time cost that is too high. However, we may perform the

multiplications concurrently and then add the products in one step. In

so doing, we need a special multi-operand adder. A four-operand adder

formed by carry-save adder (CSA) trees is given in Figure 6.5. Note

that the '~' on the carry output lines indicates that the carries are

shifted left one bit with a zero entering from the right end before

they are fed into the CSA inputs at the next level. The partial carry

and partial sum from the last stage of the CSA is then feed into a carry

lookahead adder. The functional block diagram of a full carry lookahead

adder is shown in Fig. 6.6 and the details of each unit are given in

Figures 6.7 and 6.8.

X1—‘ — - .

~~= ts—iI—‘mgnaw......
‘ of X and Y

Figure 6.4. Block diagram for calculation of the inner product of

X and Y.

65

Figure 6.5. A four-operand adder formed by CSA tree.

 LkhchvI-I. III

Carry Generate/Propagate Unit.

8-bit CLA Unit c4: C-

Summetion Unit

C-$(——-(A+I)+C.

Figure 6.6. The functional block diagram of a full carry

lookahead adder.

l

AHA—"+1

Figure 6.7. Logic circuits for realizing the carry-generate,

carry-propagate, and sum functions.

67

P6, P6,, PG,PG,

'?.f:bi£_CL-_A_U2£

C1

Ca C2 C1 Co

Figure 6.8. The schematic logic circuit of a h-bit carry

lookahead (CLA) unit.

The last requried functional unit is a divider. There are three

types of cellular array dividers: restoring division, nonrestoring

division, and nonrestoring with carry lookahead array dividers. The

area cost of the CLA dividers is higher than the other two array

dividers, but on the average it is 5 times faster [25]. Since in the SE

chip speed is the major concern, the nonrestoring CLA array divider is

68

chosen for the calculation of division in the evaluation of a rational

surface. Figure 6.9 shows the diagram of a carry lookahead array

divider and Figure 6.10 gives the three basic types of logic cells used

in Figure 6.9 [25].

N0 5‘ ”I " ”I ‘ N1 - ”a 0mm N - No. ~,~,~,~,~,~.A,~.

o 0 I o o l Dmsov u - Do. 0,0,1“).

Ououenl o - on. 0‘ 919,0.

aIEJIIEIINII”'
: ‘I a: flWNW;

:‘TCV—EE .flflflk

Figure 6.9. A carry lookahead array divider with 8-bit divisor

in two's complement representation [25].

69

S1,” Cf. O‘a‘s

\’ II OSIsn

m

“'1

i tK'

I

I

I

I

l

I

1 1c!

l "

|

I

.._1

q

4:K‘

.
.
-
-
q
-
_
—
—
J

----J

C,‘

(Ea. 8.55!

(C)

Figure 6.10. Three basic types of cells to be used in constructing

the division array of Figure 6.9. (a) The A cell located at the jth

digit position of the ith row; (b) the 8 cell located at sign

position of the ith row; and (c) the CLA cell for the ith row [25].

70

6.2.2 Timing and Pipelining

In the synchronous discipline of design, tasks are accomplished

through a logical sequence of events with each event realized under the

constraint of the physical timing of transporting information

(electrical signals) from one point to another. This dual meaning of

timing is bound by a system-wide clock which serves both as the sequence

reference and as the time reference. Hence the design of the clocking

scheme has paramount important to the system's correct functioning and

performance [26].

The general form of a data path and the corresponding two-phase

clock scheme are illustrated in Figure 6.11 and 6.12.

Since the evaluation process involves repeated vector-matrix

multiplications, it is of great advantage to have a multiplier and an

adder form a computational pipeline. This is because the piped

operation will save bus bandwidth and increase the overall throughput as

well as eliminate the need to store temporary results.

From the timing diagram of the two-phase clocking scheme, it is

clear that the minimum clock period is the sum of the maximum C/L delays

of phase-one and phase-two plus some small propagation overhead and

preset time. Intuitively, the C/L delay due to the multiplier may

constitute the largest delay component in the minimum clock period

calculation and thus one may further be motivated to introduce

additional "subpipelining" into the multiplier to shorten the clock

period.

71

Phasel 0P1 Phase2 0P2 Phasel

i I i I I
aI

I I I I I I

l
——a

R C/L R C/L R

Figure 6.11. The general form of a data path [23].

r————————-(flock perkxl-————————1

Phase] s/f 1_.__.__

Phase2 1 \

lax delay lax delay”)l

of C/L of c L
a .— odd / ...,,‘I .-

Deuq'ux . lfi1metthmm
Deuw'un

Phasel Phase2 for Phasez

Pnuun.thne

for Phasel

Figure 6.12. The two-phase clocking scheme [26].

A pipelined four-segemnt multiplier is given in Figure 6.13 with

its clocking scheme [26]. Note that the clocking scheme used here is

slightly different from the general single phase latches as shown in

R -—->

Dynamic

Raghner

l-stage

dehy

nun; l_____

——a mu I——-a mu ———1 mu

Q a; _, 9.19.: ___I¢: Q.

R BIN”: in -3InPYa-9I R -aIMPY3

...... ...J L........J..____J

(n)

25; Cycle Time

._/ __.

1DU I

as.

R I«)IMI’Y4

4
fl:

Is—e.

Worst case path delay

Figure 5.13.

(b)

clock scheme.

Ihuty'ICyniha 131nm:

(a) Pipelined four-segment multiplier and (b) its

R

9c

73

Figure 6.12. When using the clocking scheme in Figure 6.12, each C/L

section is actually activated during only half of a clock cycle.

However, the clocking scheme in Figure 6.13 allows the C/L sections to

operate in a single phase and thus allows a shorter clock period; the

price is a slight increase in chip area because of the use of dynamic

registers.

The advantage of pipelined multiplication of the blending functions

and control point matrix is in more efficient computation. The data

flow and the interconnection between adder and multiplier are

illustrated in Figure 6.14. The adder and four four-segment multipliers

form a whole pipeline for calculation of the inner product.

Note that the above discussion of pipelining doesn't include the

divider. It should be segmented into 10 segments for the sake of

synchronizing with the system clock.

6.2.3 Storage Scheme

The 3E chip architecture takes advantage of parallelism and

pipelining, but two key problems have not yet been discussed: I/O and

the data storage scheme. In the case of evaluation of bicubic rational

surfaces, four 4-by-4 control point matrices need to be fed into the SE

chip. Because of the constraint on the number of I/O pins, it is

impossible to input the data in a few cycles. But one thing should be

noted: as long as the values of s and t and the labels are given, the

1:5 PX(21)

t4 PX(11)

t3 PV<41>

t2 Hun/(31)

t1 PV(21)

1:0 PV(11)

Figure 6.14.

BFTQ)

74

PX(22)

PX<12>

PV(42)

PV(32)

PV<22>

PV<12)

 BFT(2)

4-0PERAND

PX<23)

PX<13)

was)

PV<33>

was)

was)

BFT(3)

PX(24)

PX(14)

PV<44)

PIA/(34)

PV<24>

PV<14>

EFT“)

t5 PVl

t6 PVZ

t7 PV3

t8 PV4

t9 PXl

1:10 PX2

Dataflow of vector-matrix multiplication.

7S

formation of blending functions can be overlapped with the input of

control point matrices. By so doing, the I/O bottleneck can be reduced

if not eliminated.

The question remaining is how to store the data in order to support

the pipelined process. One straightforward way is to store the control

point matrices in registers. The area cost of using registers is quite

high and the control of that many registers is complicated. An

alternative is to store the data in RAM (Random Access Memory), which is

easier to control and occupies much less chip area. In the SE design,

the latter is used to store the control point matrices.

As stated in the last section, the inner product multiplications

are executed concurrently. In order to provide the necessary data for

parallel multiplications, the RAM is divided into four modules and each

module stores one fourth of the three (four, if rational) control point

matrices. But row accessing as well as column accessing are necessary

for the matrix-vector multiplication. In order to access either a row

or a column of the control point matrices in one cycle, a special skewed

storage scheme is used.

Let S (stride or skewing distance) be the distance measured in

columns that each array row has been shifted relative to the row above

it. Let H be the total number of memory modules, m(a) be the memory

1.1

module number of element a and q(a) be the local address within

13 ' 13

that module. Then the storage scheme can be represented by the

following equations:

76

m(aij) - (i-S + j) mod N

4(611) - i

(6.1)

(6.2)

The storage pattern used in the SE chip is a skewed storage scheme

with 8-1 and M—4; an example is given in Figure 6.15. A multiplexing

(a)

(b)

Figure 6.15. Skewed storage pattern with (a) S-0, and (b) S-l.

77

INPUT UUTPUT

01 00 n1 D2 03 n4

0 0 A11 A12 A13 A14

0 1 A21 A22 A23 .A24 _

'A31 A32 A33 A34

A41 A42 A43 A44H
H

.
.
.
0

Figure 6.16. Skewed storage with output multiplexing.

78

output circuit of the skewed storage module is shown in Figure 6.16.

The table in the figure gives an example of row accessing. If column

accessing is desired, proper addressing must be applied to each module

in order to get the appropriate elements.

6.3 Architecture of SE Chip

6.3.1 Architecture Synthesis

After the presentation of the details of the functional units,

clock scheme, and storage scheme, a simplified block diagram of the SE

chip can now be drawn as shown in Figure 6.17. When the SB chip is

activated by the host processor, one of the two main routines in the

control memory will become active according to the rational/nonrational

indication bit received from the system control input. One routine is

in charge of rational surface evaluation and the other takes care of the

nonrational case.

The first four input items received by the I/O circuit are the

values of s, t, LABS, and LABT, which will be stored in the register

file. As long as these four items are known, the formation of blending

functions of s and t can be performed in the arithmetic unit by

retrieving the proper blending coefficient matrices according to LABS

and LABT. At the same time, the I/O circuit will store the incoming

control point matrices in RAM based on the skewed storage scheme. The

register keeps the blending function vectors, the intermediate output of

79

System ‘ System Data
Control

input Input/Output

Q TEX m/Wiicmcm 7f

'_ L \U/

_- m (com-nor.

77’ point matrices)

C
O
N
T
R
O
L
M
E
M
O
R
Y

II? ii

A

son I Am 1001c mm
(mm ——\,

.______7/com .

rumors)

:
I

m
m
“

I
J
/
K
J
—

x
(
‘
I
.

Fig. 6.17. Simplified diagram of SE chip.

80

the matrix-vector multiplication, and the final result. All

calculations, including formation of blending function, matrix-vector

multiplication, and division, are performed in the arithmetic unit.

According to the functional dependency, the arithmetic unit can be

subdivided into two parts: division unit and multiplying-and-adding

(M&A) unit. The data flow of the division unit is trivial. It receives

data WX, WY, W2, and W (if rational) from the register file and then

sends the division results X, Y, and 2 back to the register file. Data

flow and interconnection of the M&A unit, however, is much more

complicated.

The design of the MfiA unit must enable calculation of both blending

functions and matrix-vector multiplication with a minimum number of

functional units. To meet this requirement, the circuit diagram shown

in Figure 6.18 is developed. The interconnection of the M&A unit is

determined by only one control signal, MODE. When MODE is low, the M&A

unit acts as the circuit showed in Figure 6.3. All the 0th input bits

of the multiplexers will be selected, thus the blending functions as

well as the first derivatives of the blending functions, can be

computed. If MODE becomes high, the M&A unit acts as four parallel

multipliers with a four-operand adder to sum up the inner-product, as

showed in Figure 6.14.

For simplicity, Figure 6.18 shows only the interconnection of the

M&A unit with MODE-O. When MODE-l, one of the inputs of the four active

MAC's is from RAM and the others are from the register file. Note also

that the multiplexing is now implicitly embedded in the four-operand

M
O
D
E

C
o
r
r
e
s
p
o
n
d
i
n
g

b
l
e
n
d
i
n
g

c
o
e
f
f
i
c
i
e
n
t
m
a
t
r
i
x

b
l
e
n
d
i
n
g

f
u
n
c
t
i
o
n

.
v
e
c
t
o
r

f
i
r
s
t

d
e
r
i
v
a
t
i
v
e

o
f
b
l
e
n
d
i
n
g

f
u
n
c
t
i
o
n
s

A
0

F
i
g
u
r
e

6
.
1
8
.

M
u
l
t
i
p
l
y
i
n
g
-
a
n
d
-
a
d
d
i
n
g

(
M
6
A
)

u
n
i
t
.

81

82

adder. As MODE-O, the addition is performed on the first four inputs

(pins 0, l, 2, and 3) of the adder, and while MODE-l, the addition is

performed on the other four inputs (pins 4, 5, 6, and 7).

6.3.2 Hardware Description in RTL

The last section covered only the structural specification of the

SE chip. The functional description is yet to be given. A program

written in RTL (Register Transfer Language) and given in the Appendix 1

is used to functionaly describe and verify the SE chip. The RTL program

specifies the data flow among the functional units and storage units.

Table 6.1 gives the cycle count for different evaluation routines based

on the RTL program. The patch evaluation in the table means the

evaluation of multiple points on the same patch. The startup time is

the time mainly to input the control point matrices whereas the average

Table 6.1. Cycle count for diflerent evaluation routines

Routine

nonrational point evaluation 52 79

nonrational patch evaluation 52 49

rational point evaluation 68 110

 rational patch evaluation 68 64

83

cycle time is the average time to evaluate multiple points on the patch

except for the first evaluated point. The average cycle time for single

point evaluation is longer than the average time for patch evaluation

(or multiple point evaluation), because for single point evaluation, it

includes startup delay for each evaluation routine, but for the patch

evaluation, only the evaluation of the first point involves the startup

delay. But one should note that if the multiple points to be evaluated

were defined by two separate effective knot vectors, then you have to pay

the startup delay twice. In other words, as long as the point to be

evaluated across the patch boundary defined by the effective knot

vector, you have to repay the price for startup time delay. The

drawback of the RTL program is that, because of its simplicity, some

details of the architecture can not be described thoroughly, such as the

skewed storage scheme.

CHAPTER VII

ARCHITECTURE EVALUATION

Speed and area costs are the two most prevailing parameters for

evaluating the ”goodness" of a hardware design. Without physical design

and simulation, however, it is impossible to get the precise values of

these parameters. Even worse, different technologies, such as NMOS or

CMOS, and different physical design approaches, like gate array,

macrocell, or full-custom design, result in different time/area

evaluations. Without at least a qualitative estimation of the time/area

complexity of the chip, however, a decision of whether or not to carry

on the physical design work is difficult to make.

In this research, no attempt is made to acquire accurate speed and

area costs of the SE chip. Yet, some basic statistics of the chip are

provided in order to show the practicality of implementation of the chip

under current technology. This chapter starts with the architecture

verification of the SE chip. The area estimation is then given in detail

followed by the speed estimation.

84

85

7.1 Architecture Verification

To better understand the evaluation algorithm in the SE chip, a

flowchart is given in Figure 7.1. There are two main routines, one for

the evaluation of nonrational spline points and the other for the

evaluation of rational spline points. When the SE chip is activated

according to the value of RAT, it takes four cycles to input the

parameters, s and t, and their labels, LABS and LABT. As long as the

parameters and their labels are known, the formulation of the blending

functions and their first derivatives can be performed in parallel with

the input of the control point matrices. Then the Cartesian coordinates

of the point are evaluated and sent back to the host. If a rational

spline point is to be evaluated, three more divisions are necessary to

obtain the desired coordinates. If a patch is to be evaluated, then the

parameter values for the evaluation of next patch point will be given

followed by the formulation of blending functions and their first

derivatives, otherwise stop. Note that when evaluating points of a

patch, the control point matrices need to be brought in only once.

A symbolic example is given in the Appendices to illustrate the

dataflow of the evaluation of a nonrational point. Starting from top of

the flowchart in Figure 7.1, the input of s, t, LABS, and LABT are

trivial and thus not shown in the example. Appendix 2 gives the input

sequences of control point matrices and Xij, Yij, and Zij (the Cartesian

coordinates of a control point). Appendix 3 shows the content of each

86

hunte.t

labs. and labt

I.

formulating input input formulating

of blending eentsel eentnl of blending

functions of point point function of

s and of t Instrbes matrices s and of t

and their and their

first delive- first deriva-

tiv' uves

X - [EH-)l‘ichl‘ilmn 1" - Eat-)Igflvllggtg

Y - [BK-)l'ichl‘ilmll 1’1 - s) CPI '-

. I"! - [BK-)l‘icPrl‘ian
2 [manual-[um] n _ [BK-)1{cal-[sun]

l l

output a Y. and Z X - PW

’ Y - 97/"

z - 92/"

l

I output 2.1. and z'

Figure 7.1. Flowchart of the evaluation algorithm in the SE chip.

87

latch element in every cycle for the formulation of blending functions

and their first derivatives. Appendix 4 gives the result in each

functional stage. Sij and T1] are the blending coefficient matrices

retrieved from ROM according to IABS and LABT, respectively. BFS(i) and

BFT(i) are the blending functions and DBFS(i) and DBFT(i) are their

first derivatives. All the intermediate output are shown in

parenthesises. For example, (M243) is the intermediate output in the

third stage of the second MAC unit.

' Similarly, Appendix 5 shows the contents of each element for the

evaluation of the Cartesian coordinates and Appendix 6 gives the result

in each functional stage. The IT(i,j) in the Appendices are used to

store the result of the inner product of BFS and the control point

matrices.

It is noted that in Appendices 3 and 5, the contents of the latches

are strobed in at the beginning of each cycle and held throughout the

cycle whereas in Appendices 4 and 6, the result of each functional stage

is valid at the end of the cycle. If a patch evaluation is desired, the

same time table in Appendices 3 and 4 can be used to formulate the

blending functions and their first derivatives of next point to be

evaluated. The principle of this example can be easily applied to the

evaluation of rational spline points by considering one more control

point matrix and three more divisions.

88

7.2 Area Estimation

The real size of a VLSI chip depends on many physical design

factors such as transistor layout, placement of building blocks, and

routing (wiring). Optimal design is very hard to obtain in any aspect

and even a close-to-optimal solutions cost the designer much effort to

achieve.

Without actual layout, placement, and routing of the chip, we are

short of knowledge of all physical design factors about the chip. To

overcome this dilemma, this research used the physical device count, or

transistor count more precisely, as the major parameter in order to get

a realistic picture of the area required for the SE chip.

The transistor counts for various function units and components in

the SE chip are listed in Table 7.1. All transistor counts are based

on CMOS technology.

The central part of the MAC is a Baugh-Wooley array multiplier

which requires n(n-l)+3 full adders, n2 2-input AND gates, and Zn

inverters for the multiplication of two n-bit inputs, where n is the

bandwidth of the data [24]t In terms of physical layout, the full

adder, 2-input AND gate, and inverter take 28, 6, and 2 transistors,

respectively [29]. Thus the total transistor count for a n-by-n Baugh-

Wooley multiplier is

NT(BW) - [n-(n-l) + 31-23 + n2-6 + 2n-2

- 34n2 - 24n + 84 (7.1)

89

Table 7.1. Transistor count of the SE chip.

Function cell type No. of Transistors No. of Total No. of

. per units Units Transistors

MAC Dynamic Reg 10 32x40 12,800

Delay stage 8 32x17 4,352

Array Multiplier 34,132 5 170,660

2—1 MUX 4 32x10 1,280

Ripple-carry Add 28 51:48 6,720

subtotal 195,812

Divider Dynamic Reg 12 32x30 11,520

Array Divider 72,708 1 72,708

subtotal 84,228

Adder Dynamic Reg 12 64x4 3,072

2—1 MUX 4 64x4 1,024

CSA Tree 24 64x2 3,072

CLA(16x4) 4,100 1 4,100

subtotal 1 1,268

RAM RAM cell 6 32x64-o-64x32 24,576

Decoder 4 20 80

Driving Buf 4 l6x42+4x42 4,032

+2x42+2x42

4-1 MUX 12 32x4 1,536

subtotal 30,224

ROM ROM cell 1 32x16x16 8,192

Decoder 4 63 252

Driving Buf 4 64x(2+8+32) 10,752

subtotal 19,196

Driver 110 Buf 12 32x2 768

Delay unit 2-phase latch 8 32x15 3,840

Register 2-phase latch 14 32x2+64x4 3,300

+4x2+l+l

Grand Total 348,636

90

The transistor count of an array divider is not available, but the

gate count of a nonrestoring with l-level CLA and carry-save divider is

shown in [30]. A unit gate assumed in [24] is a 2-input NAND gate which

requires 4 transistors when implemented in CMOS technology. 80 the

transistor count of a nonrestoring array divider (AD) can be roughly

estimated by

NT(AD) - (18n2 + 28n + 11).4

- 72n2 + 112n + 44, (7.2)

where n is 15 in this case instead of 16, because the sign bit does not

contribute.

One might dispute the accuracy of this estimation. It is true that

the number of transistors will increase dramatically if there are many

gates with more than two input pins. On the other hand, hardware

implementation at the transistor level usually takes only 1/3 or 1/4 the

area when compared to implementation at the gate level [31]. These two

factors may balance each other out somewhat and thus make the above

estimation still reasonable.

The rest of the work on counting the transistors is based on CMOS

circuits taken from [29]. .In counting the transistors of the CLA, a

two-level CLA(8x4) is assumed, which takes one 8-bit CLA and eight 4-bit

BCLA (Block Carry Lookahead Adder) units.

Another issue to note is the signal driving capability. No signal

can drive an infinite number of loads, and thus certain fan-out has to

be defined in order to guarantee the validity of the driving signal. In

91

the SE chip, parallel retrieval of data from RAM or ROM requires one

decoded signal to drive 64 storage cells simultaneously, but this is

impossible under current technology. A reasonable solution is to use a

cascaded driving buffers. If we assume conservatively that one driving

buffer can drive four successive buffers, then three buffer stages are

good enough to drive the 64 cells. This is used to calculate the number

of transistors in the driving buffers for the RAM and ROM. Also note

that the I/O buffer requires larger area in order to drive a large

external load, so the I/O driving buffer is usually counted separately.

The transistor count of the control logic remains unknown until the

actual logic design is carried out. One may implement the control

circuit by ROM or PLA (Programmable Logic Array), whichever is more

convenient. With the help of the program written in RTL, this can be

easily achieved.

Under current VLSI technology, more than several million devices

have been successively fabricated in a single chip [33]. For a gate array,

it is quite normal to have more than 100,000 gates per chip and each

gate with 4 transistors [34]. According to these criteria and the grand

transistor count, it is possible that the SE architecture could be

fabricated on a single chip.

In this research, I counted the transistors of the SE chip first

based on 16-bit data bandwidth and obtained nearly 120,000 transistors

for the grand total count. When we increased the data bandwidth up to

32-bit, the overall increase is less than 3 times, even though the

increases of the array multipliers and array divider are 4 times. The

92

same principle would apply to a 64-bit data bandwidth; it is likely to

get a grand total count of nearly 1,000,000 transistors. In this case,

an SE chip set, instead of a single SE chip, will be the choice to

fulfill the proposed architecture. Also noted that replacing the array

divider with a reciprocal generating unit for the generation of the

reciprocal of a divisor may somewhat reduce the space cost for

fulfilling the division operations.

7.3 Speed Estimation

The SE architecure uses a two-phase nonoverlapped clock scheme as

mentioned previously. Thus, the minimum clock period is the sum of the

duty clock widths of phase one and phase two. The phase one duty clock

width, according to the specified clocking scheme, is the worst case

path propagation delay. Consider the transfer of data from the register

to the input latch of the functional units in Figure 6.18 as the worst

case path. The delay components include the register response time, bus

propagation delay, and the input latch response time. Following the

estimation process in [26], the phase one delay would be 12ns if a 0.6ns

gate delay is assumed [34].

The phase two clock width is the maximum combinational logic delay.

In the SE chip, one stage of the multiplier pipe or divider pipe can be

considered as the maximum combinational logic delay. Kawahito et al.

reported on the design and fabrication of a high-speed 32x32-bit binary

multiplier using 2-pm CMOS technology with a multiply time of S9ns [38].

93

A CMOS 32x32-bit Wallace tree multiplier with a multiply time of S6ns

has been also reported [39]. Since in the SE chip the multiplier has

been segmented into four stages and the delay time for the four stages

are about the same, the phase two clock is set to lSns, which is nearly

one fourth of the multiply time.

Summing the delay times of phase one and phase two, the clock

period of the SE chip is 27ns. Table 7.2 gives the computation time for

different evaluation routines. Compare with the transform engine of the

HP 32OSRX graphics workstation, which adopts 32-bit IEEE floating point

data format and transforms 180,000 coordinates per second, the SE chip

is 12.6 times faster for nonrational patch evaluation and 9.6 times

faster for the rational patch evaluation (noted that three coordinates

per evaluation in the SE architecture). But reader should note that the

SE chip adopted 32-bit fix-point operation whereas the HP 3208RX used

32-bit floating point operation. Also it is not clear whether the

performance of the HP 3208RX to transform 180,000 coordinates per second

is recorded for coordinate transformation (such as rotation or shifting)

or B-spline point evaluation or both. If it is for coordinate

transformation, the only operations are matrix-vector multiplications.

When the matrix-vector multiplication implemented in the SE chip, based

on the above criteria, 216ns is enough to calculate the multiplication

of 4-by-4 matrix and 4-by-l vector. In other words, 4.63 millions of

such matrix-vector multiplications per second is achieveable by using

the SE architecture.

94

Table 7.2. Evaluation time for different evaluation routines

Routine ‘ Startup Average Evalu- Number of Evalu-

Delay (us) ation Time Q13) ations per second

nonrational point evaluation 1,404 2,133 468,823

nonrational patch evaluation 1,404 1,323 755,857

rational point evaluation 1,836 2,970 336,700

rational patch evaluation 1,836 1,728 578,703

CHAPTER VIII

CONCLUSION

The goal of this research is to develop a dedicated VLSI chip for

surface evaluation, and the proposed SE chip architecture satisfies the

major design objectives. The architecture of the SE chip may not be

optimal, which is not our goal, however much effort has been devoted in

order to achieve higher system performance.

Compared to the hardware given in [10], the main advantage of the

SE chip is speed. This is mainly due to the introduction of pipelining

of functional units. Other features, such as parallel data retrieving,

and the overlapping of the input of control point matrices and the

formulating of the blending functions, also guarantee the high

throughput for the system. One feature not found in any other known

hardware design is the on-chip formulation of the blending function. It

not only saves time in calculating the blending functions, but also

prevents unnecessary I/O of the blending functions. In order to achieve

higher utilization of the functional units as well as to save hardware

components, a reconfigurable structure has been proposed for the M&A

unit.

In Chapter 6, the cycle counts for various evaluation routines are

calculated under the assumption that the chip receives one control point

coordinate at a time from the host processor. If we increase the I/O

95

96

bandwidth to send or receive two or even four control point coordinates

at a time by increasing the number of I/O pads and of I/O buffers, we

can reduce the startup time for patch evaluation and the overall

evaluation time for point evaluation.

Besides surface evaluation, different point transformations, such

as position translation, rotation, scaling and reflection, can easily be

done by the proposed architecture. Parallel projection and central

projection can also be achieved by the SE chip with a little more

complicated control routine.

Recall that in the formulation of the blending functions, their

first derivatives are being calculated at the same time, but they remain

unused for the following computation. The derivatives of the blending

functions are mainly for the calculating of the tangent and normal

vectors of the evaluated point, and the vectors can then be used to

shade the patch.

According to Pickelmann [l], a complete algorithm for interactive

design of B-spline surface should include the conversion of non-uniform

knot vectors to enhanced uniform knot vectors (defined in Section

3.1.1), knot vector translation, enhanced uniform knot vector

compression (or labelling), blending function formulation, point

evaluation, tangent vector and normal vector calculation, and shading.

The SE chip can now perform blending function formulation and point

evaluation. The routines for computing the tangent and normal vector

and shading are still to be done. The rest of the algorithm is assumed

to be accomplished by the host processor. The rest of the algorithm,

97

however, can be fully implemented into dedicated hardware. If this

implementation can be achieved at reasonable cost, it would be possible

to design a chip, or a chip set, to handle the preprocessing for the

interactive design of Bsspline surfaces. But the data transmission

between the preprocessing chip or chip set and the SE chip is still a

bottleneck. A possible solution to this is to design a specific

processor to accomplish the whole algorithm. Future research should

emphasize developing a dedicated VLSI processor for the Computer-Aided

Geometric Design (CAGD) of B-spline surfaces.

APPENDICES

APPENDIX 1

DESCRIPTION OF THE SE CHIP IN RTL

98

/* THE RTL DESCRIPTION OF SURFACE EVALUATION CHIP */

type REGISTERI : Bit<31:o>:

REGISTERZ : Bit<63z0>:

DYNREG : Bit<63=0>:

LATCHl : Bit<31:O>:

LATCHZ : Bit<63:O>:

RAM : Bit<31=0>:

ROM : Bit<31:0>:

var /* basic functional elements 1"/

of MAClMP!1_1,

MPYZ_1.

upr3_1,

MPY4_1,

MPYS_1,

ADDER or 311:263 : o>:

Dl,D2,D3,D4,D5,D6,D7,D8,09,DlO or

112213,

MPY2_2,

MPY3_2,

MPY4_2,

MPYS 2 '

MPY1_3.

MPY2_3,

MPY3_3,

MPY4_3,

MPY5_3,

/*

/* storage elements */

BLD(16,4,4) OF ROM:

CPM(4,4,4) OF RAM:

IT(4,4) OF RAM:

RBLDlZp4) OF RAM:

MPY1_4 or

MPY2_4 or

MPY3_4

MPY4_4

MPY5_4

4-operand Adder */

OF

OF

OF

Bit<63:O>:

Bit<63=0>;

Bit<63:0>:

Bit<63=0>:

Bit<63=0>:

Bit<63:0>:

/*

/*

/*

/*

/*

/* intermediate product term */

segments

segments

segments

segments

segments

/* blending coefficient matrices */

/* control point matrices */

/* for storing blending functions */

of MACZ

of MAC3

of MAC4

of MACS

RBLDD(2,4) OF RAM: /* first derivatives of blending functions */

/* dynamic registers and latches */

M1D3, M203, M3D3, M4D3, M503 OF LATCHZ: /* 3-stage delay within MAC's */

/* l-stage delay within MACl and MAC2 */MlDlo

DLY8 OF LATCHI:

LAD3 OF LATCHl:

M2Dl OF LATCHZ:

DLY4 OF LATCHl: /* 4-stage delay unit */

/* 8-stage delay unit */

/* 3-stage delay */

*/

*/

*/

*/

*/

/* segments of Dividor */

Ll_1, L142 OF DYNREG: /* input latches of MACl */

L2_l, L2_2 OF DYNREG: /* input latches of MACZ */

L3_l, L3_2 OF DYNREG; /* input latches of MAC3 */

L4_1, L4_2 OF DYNREG; /* input latches of MAC4 */

LS_l, L5_2 OF DYNREG; /* input latches of MACS */

LAl, LAZ, LA3, LA4 OF DYNREG: /* input latches of Adder */

LDl, LDZ OF DYNREG; /* input latches of Dividor */

/* registers and control signal */

INPUT, OUTPUT OF REGISTERl: /* input and output buffer */

RS, RT OF REGISTERI: /* registers for parameter s and t */

R(4) OF REGISTERZ; /* registers for WX, WY,WZ, and W */

LABS, LABT OF Bit<3:0>; /* labels of s and of t */

RAT OF Bit<0:o>: /* l for rational, 0 for nonrational */

PATCH OF Bit<0:0>; /* l for patch evaluation, 0 for point

evaluation */ '

Begin /* the routine for nonrational spline point evaluation */

Cycle (0): if RAT-O then

begin

(1): RS<-INPUT:

(2): RT<-INPUT:

(3): LABS<-INPUT:

(4):

(5):

(6):

(7):

(8):

(9):

(10):

(ll):

(12):

(13):

(14):

(15):

(16):

/* blending functions

(17):

(18):

(19):

(20):

99

LABT<-INPUT;

CPM(l,l,l)<-INPUT, Ll_l<-BLD(LABS,1,1),

MlD3<-BLD(LABS:1,2), DL4<-BLD(LABS,1,3),

DL8<-BLD(LABS,1,4), Ll_2<-RS, LAD3<-BLD(LABS,1,1):

CPM(2.1.1)<-INPUT. L1_l<-BLD(LABS,2,1),

M1D3<-BLD(LABS,2,2), DL4<-BLD(LABS,2,3),

DL8<-BLD(LABS,2,4), Ll_2<-RS, LAD3<~BLD(LABS,2,1):

CPM(3' 1’ 1)<-INPUT' L1_l<-BLD (LABS: 3' 1) '

M1D3<-BLD (LABS, 3, 2), DL4<-BLD (LABS, 3, 3) r

DL8<-BLD(LABS,3,4), Ll_2<-RS, LAD3<-BLD(LABS,3,1):

CPM(1,1,2)<-INPUT, Ll_l<-BLD(LABS,4, 1),

M1D3<-BLD(LABS,4,2), DL4<-BLD(LABS, 4, 3),

DL8<-BLD(LABS,4,4), L1_2<-RS, LAl<-O, LA2<-LAD3,

LA3<-LAD3, LA4<-LAD3, LAD3<-BLD (LABS, 4, 1) o'

CPM(2,1,2)<-INPUT, L4 l<-ADDER, L4_2<-RS,

M4D3<-M1Dl, L2_1<-MPYl_4, L2_2<-RS LA1<-O, LA2<-LAD3,

LA3<-LAD3, LA4<-LAD3;

CPM(3,l,2)<-INPUT, L4_l<-ADDER, L4_2<-RS,

M4DB<-M1Dl, L2_l<-MPY1_4, L2_2<-RS-LAl<-0, LA2<-LAD3,

LA3<-LAD3, LA4<-LAD3:

CPM(l,l,3)<-INPUT, L4_l<-ADDER, L4_2<-RS,

M4D3<-M1Dl, L2_1<-MPY1_4, L2_2<-RS-LA1<-O, LA2<-LAD3,

LA3<-LAD3, LA4<-LAD3:

CPM(2,1,3)<-INPUT, L4_l<-ADDER, L4_2<-RS,

M4D3<-M1Dl, L2_l<-MPY1_4, L2_2<-RS:

CPM(3,1,3)<-INPUT, L3_l<-MPY2_4, L3_2<-RS,

L5_l<-MPY4_4, L5_2<-RS, MSD3<~M2D1:

CPM(l,l,4)<-INPUT, L3_1<-MPY2_4, L3_2<-RS,

L$_l<-MPY4_4, LS_2<-RS, M5D3<-M2Dl:

CPM(2,1,4)<-INPUT, L3_l<-MPY2_4, L3_2<-RS,

L5_1<-MPY4_4, LS_2<-RS, M5D3<~M2Dl:

CPM(3, l, 4)<-INPUT, L3_l<-MPY2_4, L3_2<-RS,

L$_l<-MPY4_4, LS_2<-RS, MSDB<-M2Dl;

of s ------------------------------------ */

CPM(l,2,2)<-INPUT, RBLD(1,1)<-MPY3_4,

RBLDD(1,1)<-MPY5_4:

CPM(2,2,2)<-INPUT. RBLD(1,2)<—MPY3_4,

RBLDD(l,2)<-MPYS_4:

CPM(3,2,2)<-INPUT, RBLD(1,3)<-MPY3_4,

RBLDD(1,3)<-MPY5_4:

CPM(l,2,3)<-INPUT, RBLD(1,4)<-MPY3_4,

RBLDD(l,4)<-MPY5_4:

/* .. */

(23):

(24):

: CPM(2,2,3)<-INPUT,

: CPM(33233)<-INPUT'

Ll_l<-BLD(LABT,1,1),

MlD3<-BLD(LABT,1,2), DL4<-BLD(LABT, 1, 3),

DL8<-BLD(LABT,1,4), L1_2<-RT, LAD3<~BLD(LABT,1,1);

L1_l<-BLD(LABT, 2, 1),

MlD3<-BLD(LABT,2,2), DL4<-BLD(LABT, 2, 3).

DL8<-BLD(LABT,2,4), L1_2<-RT, LAD3<-BLD(LABT,2,1);

CPM(l, 2, 4)<-INPUT, L1_l<-BLD(LABT, 3, 1),

M1D3<-BLD(LABT, 3, 2), BL4<-BLD(LABT, 3 3),

DL8<-BLD(LABT, 3, 4), Ll_2<-RT, LAD3<-BLD(LABT,3,1);

CPM(2,2,4)<-INPUT, Ll_l<-BLD(LABT,4,1),

M1D3<-BLD(LABT,4,2). DL4<-3LD(LABT,4.3).

DL8<-BLD(LABT,4,4), Ll_2<-RT, LAl<-O, LA2<-LAD3,

LA3<-LADS, LA4<-LAD3, LAD3<~BLD(LABT,4,1);

(25): CPM(3,2,4)<-INPUT, L4_l<-ADDER, L4_2<-RT,

M4D3<-MlDl, L2_1<-MPY1_4,L2_2<—RTLAl<-O, LA2<-LAD3,

LA3<-LAD3, LA4<-LAD3:

(26): CPM(1,2,1)<-INPUT, L4_1<-ADDER, L4_2<-RT,

M4D3<-M1Dl, L2_l<-MPY1_4, L2_2<-RTLA1<-O, LA2<-LAD3,

LA3<—LAD3, LA4<-LAD3:

(27): CPM(2,2,1)<-INPUT, L4_l<-ADDER, L4_2<-RT,

M4DS<-M1Dl, L2_l<-MPYl_4, L2_2<-RTLAl<-O, LA2<-LAD3,

LA3<-LAD3, LA4<-LAD3:

(28): CPM(3,2,1)<-INPUT, L4_l<—ADEER, L4_2<—RT,

M4D3<-M1Dl, L2_1<-MPY1_4, L2_2<-RT:

(29): CPM(l,3,3)<-INPUT, L3_1<-MPY2_4, L3_2<-RT,

L5_1<-MPY4_4, L5_2<-RT, MSD3<-M2D1:

(30): CPM(Z, 3, 3)<-INPUT, L3_l<-MPY2_4, L3_2<-RT,

L5_l<-MPY4_4, L5_2<-RT, M5D3<-M2Dl;

(31): CPM(3, 3, 3)<-INPUT, L3_l<-MPY2J, L3_2<-RT,

L5_l<-MPY4_4, L5_2<-RT, M5D3<-M2Dl;

(32): CPM(l,3,4)<-INPUT, L3_l<-MPY2_4, L3_2<-RT,

L5_l<-MPY4_4, L5_2<-RT, M5D3<-M2D1:

/* blending functions of t --------------------------------------- */

(33): CPM(2,3,4)<-INPUT, RBLD(2,1)<-MPY3_4,

RBLDD(2,1)<-MPY5_4:

(34): CPM(3,3,4)<-INPUT, RBLD(2,2)<-MPY3_4,

RBLDD(2,2)<-MPY5_4:

(35): CPM(l,3,l)<-INPUT, RBLD(2,3)<-MPY3_4,

RBLDD(2,3)<-MPY5_4;

(36): CPM(2,3,1)<-INPUT, RBLD(2,4)<-MP23_4,

RBLDD(2,4)<-MPY5_4;

/* ... */

(37): CPM(3,3,1)<-INPUT

(38): CPM(l,3,2)<-INPUT

(39): CPM(2,3,2)<-INPUT

(40): CPM(3,3,2)<-INPUT

(41): CPM(l,4,4)<-INPUT

(42): CPM(2,4,4)<-INPUT

(43): CPM(3,4,4)<-INPUT

(44): CPM(l,4,1)<-INPUT

(45): CPM(2,4,1)<-INPUT

(46): CPM(3,4,1)<-INPUT

(47): CPM(1,4,2)<-INPUT

(48): CPM(2,4,2)<-INPUT

(49): CPM(3,4,2)<-INPUT

(50): CPM(1,4,3)<-INPUT

(51): CPM(2,4,3)<-INPUT

(52): CPM(3,4,3)<-INPUT

(53): Ll_l<-CPM(l,1,l), L1_2<-RBLD(1,1), M103<-O,

L2_l<-CPM(l,l,2), L2_2<-RBLD(1,2), M2D3<-O,

L4_1<-CPM(1,1,3), L4_2<-RBLD(1,3), M4D3<-O,

L5_1<-CPM(1,1,4), L5_2<-RBLD(1,4), MSD3<-O:

(54): Ll_1<-CPM(1,2,2), L1_2<-RBLD(1,1), MlD3<-O,

L2_1<-CPM(1,2,3), L2_2<-RBLD(1,2), M203<-O,

L4_l<-CPM(1,2,4), L4_2<-RBLD(1,3), M4D3<-O,

L5_1<-CPM(1,2,1), L5_2<-RBLD(l,4), M5D3<-0;

(55): Ll_l<-CPM(1,3,3), Ll_2<-RBLD(1,1), M103<-0,

L2_1<-CPM(1,3,4), L2_2<-RBLD(1,2), M2D3<-O,

L4_1<-CPM(1,3,1), L4_2<-RBLD(1,3), M4D3<-O,

100

(56):

(S7):

(58):

(59):

(60):

(61):

(62):

(63):

(64):

(65):

(66):

101

L1_1<-CPM(1,4,4), L1_2<-RBLD(1,1), MlD3<-0,

L4_1<-CPM(1,4,2), L4_2<-RBLD(1,3), M4D3<-0,

L5 1<-CPM(1,4,3), L5_2<-RBLD(1, 4), M5D3<-0:

L1 1<-CPM(2,1,1), L1:2<-RBLD(1,1), MlD3<-Or

L2 1<-CPM(2,1,2), L2-_2<-RBLD(1, 2), M203<-0,

L4 1<-CPM(2,1,3), L4:2<-RBLD(1, 3), M4D3<-0,

L5 1<-CPM(2,1,4), L3_2<-RBLD(1,4), M5D3<-0,

LA1<~MPY1_4, LA2<-MPY2_4, m3<~m>x4_4,

LA4<-MPY5_4;

L1_1<-CPM(2,2,2), L1_2<-RBLD(1, 1), M1D3<-0,

L2_1<-CPM(2,2,3), L2_2<-RBLD(1, 2), M203<-0,

L4_1<-CPM(2,2,4), L4:,2<-RBLD(1 3), M4D3<-0,

L5_1<-CPM(2,2,1), L5:2<-RBLD(1, 4), M5D3<-0,

LA1<-MPY1_4, LA2<-Mp¥2_4, LA3<-MPY4_4,

LA4<-MPY5_4 , IT (1, 1) <-ADDER;

L1_1<-CPM(2, 3, 3), L1_2<-RBLD(1, 1), MlD3<-0,

L2-_1<-CPM(2, 3,4), L2-_2<-RBLD(1, 2), M2D3<--0,

L4-_1<-CPM(2,3,1), L4:2<-RBLD(1, 3), M4D3<-0:

LS-_1<-CPM(2, 3, 2), LS_2<-RBLD(1,4), M5D3<-0,

LA1<-MPY1_4, LAZ<~MPY2_4, LA3<-MPY4_4,

LA4<-MPY5_4, 12(1, 2)<-ADDER:

L1_1<~CPM(2,4,4), L1_2<-RBLD(1,1), MlD3<-0,

L2_1<-CPM(2,4,1), L2_2<-RBLD(1, 2), M2D3<-0,

L4_1<-CPM(2,4,2), L4:2<-RBLD(1, 3), M4D3<-0,

L5_1<-CPM(2,4,3), L5-_2<-RBLD(1,4), M5D3<-0,

m1<~upr1_4, LA2<-MPY2_4, mourn_4,

LA4<-MPY5_4, 11(1, 3)<-ADDER:

L1__1<-c1>t4(3.1,1), L1_2<-RBLD(1,1), MlD3<-O,

L2_1<-CPM(3, 1,2), L2_2<-RBLD(1,2), MZD3<-0,

L4:1<-CPM(3, 1,3), L4:2<-RBLD(1, 3), M4D3<--0,

L5-_1<-CPM(3, 1, 4), L5-_2<-RBLD(1, 4), M5D3<--0,

LA1<-MPY1_4, LA2<‘MPY2_4, LA3<-MPY4_4,

LA4<-MPY5:4, IT(1, 4)<-ADDER:

L1_1<-CPM(3, 2,2), L1_2<-RBLD(1,1), M1D3<-0,

L2-_1<-CPM(3, 2, 3), L2:2<-RBLD(1, 2), M2D3<-0,

L4-_1<-CPM(3, 2, 4), L4:2<-RBLD(1, 3), M4D3<-0,

L5__1<-CPM(3,2,1), LS-_2<-RBLD(1, 4), M5D3<-O,

LA1<-MPY1_4, LA2<-MPY2_4, LA3<-MPY4_4,

LA4<-MPY5-_4, IT(2,1)<-ADDER:

L1_1<-CPM(3, 3, 3), L1_2<-RBLD(1,1), M1D3<-0,

L2-_1<-CPM(3, 3,4), LZ—_2<-RBLD(1, 2), MZD3<-0,

L4:1<-CPM(3, 3, 1), L4:2<-RBLD(1, 3), M4D3<-O,

L5-_1<-CPM(3, 3, 2), LS-_2<-RBLD(1, 4), M5D3<--O,

LA1<-MPY1_4, LA2<-MPY2_4, LA3<-MPY4_4,

LA4<-MPY5-_4, IT(2, 2)<-ADDER;

L1_1<-CPM(3, 4,4), L1_2<-RBLD(1,1), MlD3<-Oo

L2-_1<-CPM(3, 4,1), L2-_2<-RBLD(1, 2), MZD3<-0,

L4:1<-CPM(3,4, 2), L4:2<-RBLD(1, 3), M4D3<-0,

L5:1<-CPM(3, 4,3), L5-_2<-RBLD(1,4), MSD3<--0,

LAl<-MPY1_4, LA2<-MPY2_4, LA3<-MPY4_4,

LA4<-MPY5-_4, IT(2, 3)<-ADDBR:

LA1<—MPY1_4, LA2<-MPY2_4, LA3<-MPY4_4,

LA4<-MP‘1'5_4 , IT (2 , 4) <-ADDER:

LA1<-MPY1_4, LA2<-MPY2_4, LA3<-MPY4_4,

(67): LA1<-MPY1_4 I

LA4<-MPYS_4,

102

IT(3,1)<-ADDER:

LA2<-MPYZ_4, LA3<-MPY4_4,

IT(3,2)<-ADDER:

(68): LA1<-MPYL_4, LA2<~MPY2_4, LA3<-MPY4_4,

LA4<~MPY5_4, IT(3,3)<-ADDER:

(69): IT(3,4)<—ADDER:

(70): L1_1<-IT(1,1), L1_2<-RBLD(2,1), MID3<-O,

L2_1<-IT(1,2), L2_2<-RBLD(2, 2), M203<-0,

L4_1<-IT(1,3), L4_2<-RBLD(2, 3), M4D3<-0,

L5_1<-IT(1,4), L5_2<-RBLD(2, 4), MSDB<-0:

(71): L1_1<-IT(2,1), L1:2<-RBLD(2,1), M1D3<-0,

L2_1<-IT(2,2), L2:2<-RBLD(2, 2), M2D3<-O,

L4_1<-IT(2,3), L4:2<-RBLD(2, 3), M4D3<-0,

L5_1<—IT(2,4), LS:2<~RBLD(2, 4), MSD3<-O;

(72): LL_1<-IT(3,1), L1_2<-RBLD(2, 1), M1D3<-0,

L2_1<-IT(3,2), L2_2<-RBLD(2, 2), M2D3<-0,

L4_1<-IT(3,3), L4:2<-RBLD(2, 3), M403<-0,

L$_1<-IT(3,4), L5_2<-RBLD(2, 4), M503<-0;

(73):

(74): LA1<-MPY1_4, LA2<-MPY2_4, LA3<—MPY4_4,

LA4<-MPY5_4:

(75): LA1<-MPY1_4, LAZ<~MPY2_4, LA3<—MPY4_4,

LA4<-MPY5_4, R(2)<-ADDER:

(76): LA1<-MPY1_4, LA2<-MPY2_4, LA3<-MPY4_4,

LA4<~MPY$_4, R(3)<-ADDER, OUTPUT<-R(2);

(77): R(4)<-ADDER, OUTPUT<-R(3):

(78): OUTPUT<-R(4):

(79): it (PATCH-O or (3-1 and t-1)) then stop; /* stop here*/

else begin

/* input new parameter values */

(80): RS<-INPUT;

(81): RT<-INPUT:

(82): L1_1<-BLD(LABS,1,1), M103<-BLD(LABS,1,2),

DL4<-BLD(LABS, 1,3), DL8<-BLD(LABS,1,4),

L1_2<-RS, LAD3<-BLD(LABS,1,1):

(83): L1_1<-BLD(LABS,2,1), M1D3<-BLD(LABS,2,2),

DL4<-BLD(LABS, 2, 3), DL8<—BLD(LABS,2,4),

L1_2<—RS, LAD3<-BLD(LABS,2,1):

(84): L1_1<-BLD(LABS,3,1), MlDB<-BLD(LABS,3,2),

DL4<-BLD(LABS,3,3), DL8<-BLD(LABS,3,4),

L1_2<-RS, LAD3<~BLD(LABS,3,1):

(8S): L1_1<-BLD(LABS,4,1), MlD3<-BLD(LABS,4,2),

DL4<-BLD(LABS,4,3), DL8<-BLD(LABS,4,4),

L1_2<-RS, LAD3<~BLD(LABS,4,1), LA1<-o, LA2<-LAD3,

LA3<-LADB, LA4<-LAD3:

(86): L1_1<-BLD(LABT,1,1), M103<-BLD(LABT,1,2),

DL4<-BLD(LABT,1,3), DL8<-BLD(LABT,1,4),

L1_2<-RT, LAD3<-BLD(LABT,1,1), LA1<-O, LA2<-LAD3,

LA3<-LAD3, LA4<-LAD3, L4_1<-ADDER, L4_2<-RS,

M4D3<-M1D1, L2_1<-MPY1_4, L2_2<-RS,:

(87): L1_1<-BLD(LABT,-2,1), M1D3<-BLD(LABT, 2, 2),

(88):

DL4<-BLD(LABT, 2, 3): DL8<-BLD(LABT, 2, 4):

L1_2<-RT, LAD3<-BLD(LABT,2,1), LA1<-O, LA2<-LAD3,

LA3<-LAD3, LA4<-LAD3, L4_1<-ADDER, L4_2<-RS,

M4D3<-M1Dl, L2_l<-MPY1_4, L2_2<-RS:

L1_1<-BLD(LABTT3,1), MlD3<-BLD(LABT, 3,2),

(89):

(90):

(91):

(92):

(93):

(94):

'(95):

(96):

<97):

(9a):

(99):

(100):

(101):

103

DL4<-BLD(LABT,3,3), DL8<-BLD(LABT,3,4),

L1_2<-RT, LAD3<-BLD(LABT,3,1), LA1<-o, LA2<—LAD3,

LA3<-LAD3, LA4<-LAD3, L4_l<-ADDER, L4_2<-RS,

M4D3<-MlDl, L2_1<-u921_4, L2_2<-as:

L1_l<-BLD(LABT,4,1), M1D3<-BLD(LABT,4, 2),

DL4<-3LD(LABT, 4, 3), DL8<-BLD(LABT, 4, 4),

Ll_2<-RT, LAD3<-BLD(LABT,4,1), LA1<-o, LA2<-LAD3,

LA3<-LA03, LA4<-LAD3, L4_1<-ADDER, L4_2<-Rs,

M4D3<~M1D1, L2_1<-MPY1_4, L2_2<-RS:

LA1<-o, LA2<-LAD3, LA3<-LA93, LA4<-LAD3,

L3_1<-MPY2_4, L3_2<-RS, L$_l<-MPY4_4, Ls_2<-Rs,

M503<~uzn1, LA1<-o, LA2<-LAD3,LA3<-LAD3, LA4<-LAD3,

L4_1<-ADDER, L4_2<-RT, M403<-M1D1, L2_1<-MPY1_4,

L2_2<-RT:

LA1<-O, LA2<-LAD3,

L3_1<-MPY2_4,

L4_1<-ADDER,

L2_2<-RT:

LAI<-0, LA2<‘LAD3'

L3_1<-MPY2_4,

MSD3<-M2D1,

L4_1<-ADDER'

L2-2<-RT;

L3:1<-MPY2_4,

MSD3<~M2D1,

L4_1<-ADDER,

L2-2<-RT:

L3:1<-MPY2J,

M5D3<-M201,

L3_1<-MPY2J,

M5D3<~M2D1, RBLD(1,

L3_1<-MPY2_4,

M5D3<-M2D1,

L3_1<-MPY2J,

MSD3<-M2D1, RBLD(1,

RBLD(2, 2)<-MPY3-J,

RBLD(2, 3)<-MPY3-_4,

RBLD(2,4)<-MPY3_4,

end else:

end:

/* the routine for rational spline point

else begin

(1):

(2):

(3):

(4):

(5):

(6):

(7):

RS<-INPUT:

RT<-INPUT:

LABS<-INPUT:

LABT<-INPUT:

CPM(1,1,1)<-INPUT,

M1D3<-BLD(LABS,1,2)

DL8<-BLD(LABS,1,4),

CPM(1,1,2)<-INPUT,

MlDB<-BLD(LABS,2,2)

DL8<—BLD(LABS,2,4),

CPM(l,l,3)<-INPUT,

L3_2<-RS '

LAl<:o '

L4_2<-AT, M4D3<-M1D1,

m1<:o '

LAI<:O '

L4_2<-RT, M4D3<-MlDl,

RBLD(1,

RBLD(1,

LA3<-LAD3, LA4<-LAD3,

L5_1<-MPY4_4, L5_2<—RS,

LA2<-LAD3,LA3<-LAD3, LA4<-LAD3,

L2_l<-MPY1_4,

m3<-LAD3 ' m4<-LAD3 '

L5_1<-MPY4_4, L5_2<—RS,

LA2<-LAD3, LA3<-LAD3,LA4<-LADB,

L2_l<-MPY1_4,

L5_l<-MPY4_4, LS_2<-RS,

LA2<-LADB, LA3<-LAD3,LA4<-LAD3,

L2_l<-MPYl_4,

1) <‘MPY3_4 '

LS_2<-RT,

mLDD(1,1)<-Mpys_4:

L5_1<-MPY4_4, L5_2<-RT,

2)<-MPY3J, ABLBDu, 2)<-MPYS_4,-

LS_l<-MPY4_4, LS_2<-RT,

3)<-MPY3_4, ABLED(1,3‘)’<-MPYL4;

L5_l<-MPY4_4, LS_2<-RT,

4)<-MPY3J, RBLDD(1, 4)<-MPYL4:

RBLDD(2,1)<-MPY5_4:

ABLDD(2,2)<-Mpys_4:

RBLDD(2,3)<-MPYS_4:

RBLDD(2,4)<-MPY5_4, go to (53):

evaluation */

L1_l<-BLD(LABS,1,1),

, DL4<-BLD(LABs,1,3),

Ll_2<-RS, LAD3<-BLD(LABS,l,l):

L1_1<-BLD(LABs,2,1),

, DL4<-BLD(LABS,2,3),

L1_2<-RS, LAD3<-BLD(LABS,2,1):

L1_l<-BLD(LABS,3,1),

/* blending functions

(8):

(9):

(10):

(11):

(12):

(13):

(14):

(15):

(16):

(17):

(18):

(19):

(20):

(23):

(24):

(25):

(26):

(27):

104

MID3<-BLD (LABS, 3, 2) , DL4<-BLD (LABS, 3, 3) ,

DLB<¢BLD(LABS,3,4), Ll_2<-RS, LAD3<¢BLD(LABS,3,1):

CPM(1,1'4)<-INPUT, L1_1<-BLD(LABStqll-)I

M1D3<-BLD (LABS, 4, 2) , DL4<-BLD (LABS: 4, 3) ,

DL8<-BLD(LABS,4,4), Ll_2<-RS, LAl<-0, LA2<-LAD3,

LA3<-LAD3, LA4<-LAD3, LAD3<-BLD(LABS,4,1);

CPM(1,2,2)<'INPUT, L4_1<-ADDER, L4_2<-R3,

M4D3<-MlDl, L2_l<-MPY1_4, L2_2<-RS LA1<-0, LA2<-LAD3,

LA3<-LAD3, LA4<-LAD3:

CPM(1,2,3)<-INPUT, L4_1<-ADDER, L4_2<-RS,

M4D3<-M101, L2_1<-MPY1_4, L2_2<-RS LA1<-o, LA2<-LAD3,

LA3<-LAD3, LA4<-LAD3;

CPM(1,2,4)<-INPUT, L4_1<-ADDER, L4_2<-RS,

M4D3<-MlDl, L2_l<-MPY1_4, L2_2<-As LA1<-o, LA2<-LAD3,

LA3<-LAD3, LA4<'LAD33

CPM(1,2,1)<‘INPUT, L4_1<-ADDER, L4_2<-RS,

M4DB<-M1Dl, L2_1<-MPYl_4, L2_2<—RS:

CPM(1,3,3)<-INPUT, L3_1<-Mpyz_4, L3_2<-RS,

Ls_1<-MPY4_4, L5_2<-RS, MSD3<-M2D1:

CPM(l,3,4)<-INPUT, L3_1<-MPY2_4, L3_2<-RS,

Ls_1<4upy4_4, Ls_2<-As, M5D3<-M2D1;

CPM(1,3,1)<-INPUT, L3_l<-MPY2_4, L3_2<-RS,

L5_1<-MPY4_4, L5_2<-RS, M5D3<-M2D1:

CPM(1,3,2)<-INPUT, L3_1<-MPY2_4, L3_;<-RS,

L5_l<-MPY4_4, L5_2<-Rs, MSD3<-M2D1:

of s ------------------------------------ */

CPM(1,4,4)<-INPUT, RBLD(l,1)<-MPY3_4,

RBLDD(1,1)<-MPY5_4:

CPM(1,4,1)<-INPUT. RBLD(1,2)<-MPY3_4,

RBLDD(1,2)<-MPY5_4:

CPM(1,4,2)<-INPUT, RBLD(1,3)<-MPY3_4,

RBLDD(1,3)<-MPYS_4:

CPM(1,4,3)<-INPUT, RBLD(1,4)<-MPY3_4,

RBLDD(1,4)<-MPYS_4:

MlDB<-BLD(LABT,1,2), BL4<~BLD<LABT,1,3),

DL8<-BLD(LABT,1,4), L1_2<—RT, LAD3<-BLD(LABT,1,1):

CPM(2,1,2)<-INPUT, Ll_1<-BLD(LABT,2,1),

M1D3<-BLD(LABT,2,2), DL4<-BLD(LABT,2,3),

DL8<~BLD(LABT,2,4), Ll_2<-RT, LAD3<-BLD(LABT,2,1):

CPM(2,1,3)<-INPUT, Ll_1<-BLD(LABT,3,1),

MlD3<-BLD(LABT,3,2), DL4<-BLD(LABT,3,3),

DL8<-BLD(LABT,3,4), Ll_2<-RT, LAD3<-BLD(LABT,3,1);

CPM(2,1,4)<-INPUT, L1_1<-BLD(LABT,4,1),

M103<~BLD(LABT,4,2), DL4<-BLD(LABT,4,3),

DL8<-BLD(LABT,4,4), L1_2<—RT, LA1<-o, LA2<-LAD3,

LA3<-LADB, LA4<-LAD3, LAD3<-BLD(LABT,4,1):

CPM(2,2,2)<-INPUT, L4_1<-ADDER, L4_2<-RT,

M4D3<-M1Dl, L2_1<-MPY1_4,L2_2<-RTLA1<-O, LA2<-LA93,

LA3<-LAD3, LA4<-LAD3:

CPM(2,2,3)<-INPUT, L4_1<-ADDER, L4_2<-RT,

M4D3<-M101, L2_1<-MPY1_4, L2_2<-RTLAl<-O, LA2<-LA03,

LA3<-LAD3, LA4<-LAD3:

CPM(2,2,4)<-INPUT, L4_l<-ADDER, L4_2<-RT,

M4D3<-M1D1, L2_l<-MPY1_4, L2_2<-RTLAl<-O, LA2<-LAD3,

(28):

(29):

(30):

(31):

(32):

/* blending functions

(33):

(34):

(35):

(36):

/* ---

. CPM(3,1,1)<-INPUT

: CPM(3,1,2)<-INPUT

: CPM(3,1,3)<-INPUT

: CPM(3,1,4)<-INPUT

' CPM(3'2'2)<-INPUT

: CPM(3,2,3)<-INPUT

: CPM(3,2,4)<-INPUT

: CPM(3,2,1)<-INPUT

: CPM(3,3,3)<-INPUT

: CPM(3,3,4)<-INPUT

: CPM(3,3,1)<-INPUT

: CPM(3,3,2)<-INPUT

. CPM(3,4,4)<-INPUT

: CPM(3,4,1)<-INPUT

: CPM(3,4,2)<-INPUT

: CPM(3,4,3)<-INPUT

: CPM(4,1,1)<-INPUT

: CPM(4,1,2)<-INPUT

: CPM(4,1,3)<-INPUT

: CPM(4,1,4)<-INPUT

: CPM(4,2,2)<-INPUT

: CPM(4,2,3)<-INPUT

: CPM(4,2,4)<-INPUT

: CPM(4,2,1)<-INPUT

: CPM(4,3,3)<-INPUT

: CPM(4,3,4)<-INPUT

: CPM(4,3,1)<-INPUT

: CPM(4,3,2)<-INPUT

: CPM(4,4,4)<-INPUT

: CPM(4,4,1)<-INPUT

: CPM(4,4,2)<-INPUT

: CPM(4, 4,3)<--INPUT

: L1_1<-CPM(1, 1,1), L1_2<-RBLD(1,1), MlD3<-0,

L2-_1<-CPM(1, 1,2), L2:2<-RBLD(1, 2), M2D3<-0,

L4-_1<-CPM(1, 1,3), L4:2<-RBLD(1, 3), M4D3<-0,

105

LA3<-LAD3, LA4<~LAD3:

CPM(2,2,1)<-INPUT, L4_1<-ADEER, L4_2<-RT,

M4D3<-M1D1, L2_1<-MPY1_4, L2_2<-RT:

CPM(Z, 3, 3)<-INPUT, L3_1<-MPY2_4, L3_2<-RT,

L5_1<-MPY4_4, L5_2<-RT, M5D3<-M2D1;

CPM(Z, 3,4)<-INPUT, L3_l<-MPY2_4, L3_2<-RT,

L5 l<-MPY4_4, L5_2<-RT, M5D3<-M2D1:

cpfi(2,3,1)<-INPUT, L3_l<-MPY2_4, L3_2<-RT,

L5_1<-MPY4_4, L5_2<-RT, M5D3<-M2D1:

LS_1<-MPY4_4, Ls_2<-RE, MSD3<-M2D1:

of t '-------------------------------------

CPM(2,4,4)<-INPUT, RBLD(2,1)<-MPY3_4,

RBLDD(2,1)<-MPY5_4:

CPM(2,4,1)<-INPUT, RBLD(2,2)<-MPY3_4,

RBLDD(2,2)<-Mpys_4;

CPM(2,4,2)<-INPUT, RBLD(2,3)<-MPY3_4,

RBLDD(2,3)<-MPYS_4:

CPM(2,4,3)<-INPUT, RBLD(2,4)<-MPY3_4,

RBLDD(2,4)<-MPYS_4:

*/

(70):

(71):

(72):

(73):

(74):

(75):

(76):

(77):

(78):

(79):

(80):

106

L3_1<-CPM(1,1,4),

L1_1<-CPM(1,2,2),

L2_1<-CPM(1,2,3),

L4_1<-CPM(1,2,4),

L5_1<-CPM(1,2,1),

11_1<-CPM(1,3,3),

12_1<-cm4(1, 3, 4) .

14_1<-CPM(1,3,1),

15_1<-c2u(1,3,2),

11_1<-c2u(1,4,4),

L2_1<-CPM(1,4,1),

14_1<-CPM(1,4,2),

L5_1<-CPM(1'4'3)'

11_1<-CPM(2,1,1),

L2_1<-CPM(2,1,2),

L4_1<-CPM(2,1,3), L4:2<-RBLD(1, 3),

L5_1<-CPM(2,1,4), L5-_2<-RBLD(1,4),

LAl<-MPYI_4 , 1A2<-MPY2J,

LA4<-MPY5_4,

LS_2<-RBLD(1,4),

L1_2<-RBLD(1,1),

L2_2<-RBLD(1,2),

L4_2<-RBLD(1,3),

L5_2<-RBLD(1'4)'

L1_2<-RBLD(1,1),

L2_2<-RBLD(1, 2),

L4:2<-RBLD(1, 3),

LS-_2<-RBLD(1, 4),

L1:2<-RBLD(1,1),

L2:2<"RBLD(1 2):

L4:2<-RBLD(1, 3),

LS-_2<-RBLD(1, 4),

L1:2<-RBLD(1,1),

L2_2<-RBLD(1, 2),

MSD3<-0;

M1D3<-0,

M203<-0'

M4D3<-0,

M5D3<-0:

MID3<-0,

M203<-O'

M4D3<-0,

MSD3<-0:

MlD3<-0,

M203<-0,

M4DB<-O,

MSDB<-0:

M1D3<-0,

M2D3<-0'

M403<-0,

M5D3<-0,

L1_1<-CPM(2, 2, 2):

L2:1<-CPM (2, 2, 3) I

L4:1<-CPM(2, 2, 4):

L1_2<-RBLD(1,1), M103<-0,

15Y_1<-cpM(2,2,1),

LAI<~MPY1_4, 1A2<-MPY2_4,

LNK-MPYSJ, 11(1, l)<-ADDER:

11_1<-c2u(2, 3, 3), 11_2<-RBLD(1,1),

12Y_1<-CPM(2, 3,4), 12_2<-RBLD(1, 2),

14Y_1<-c2u(2,3,1), 14_2<-RBLD(1, 3),

15Y_1<-c2u(2, 3,2), 15:2<-RBLD(1, 4),

LAl<-MPY1_4, LA2<-MPYZJ,

LA4<-MprsYJ, 11(1, 2)<-ADDER:

11_1<-CPM(2, 4 4), L1_2<-RBLD(1,1),

L2:1<-CPM(2,4,1), 12_2<-RBLD(1, 2),

14_1<-CPM(2,4,2), 14_2<-RBLD(1, 3),

L3_1<-CPM(2,4,3), 15_2<-RBLD(1, 4),

LA1<-MPY1_4, 1A2<-MPY2_4,

LA4<-MPYSJ, 12(1, 3)<-ADDER;

L1_1<-CPM(3,1,1), L1_2<-RBLD(1,1),

12Y_1<-CPM(3, 1, 2), 12_2<-RBLD(1, 2),

14Y_1<-c2u(3, 1, 3), 14Y2<-RBLD<1, 3),

15Y_1<-CPM(3, 1,4), 15Y_2<-RBLD(1, 4),

LA1<-MPY1J, 1A2<-MpY2_4,

1A4<-MPYSY_4, 11(1, 4)<-ADDER:

L1_1<-CPM(3, 2, 2), 11_2<-RBLD(1, 1),

12Y_1<-CPM(3, 2, 3), 12Y_2<-RBLD(1, 2),

14Y1<-CPM(3, 2, 4), 143<-RBLD(1, 3),

L5_1<-CPM(3,2,1), L5_2<-RBLD(1, 4),

LA1<-MPYI_4, LA2<~MPY2_4,

LA4<~MPYSJ, 11(2, l)<-ADDER;

11_1<-CPM(3, 3, 3), L1_2<-RBLD(1,1),

12Y_1<-CPM(3, 3, 4), 12Y_2<-RBLD(1, 2),

L4_1<-CPM(3,3,1), 143<-RBLD(1, 3),

15_1<-CPM(3,3,2), 15Y2<-RBLD<1, 4),

1A1<-MPY1_4, 1A2<-MPY2_4,

LA4<-MPY5_4, IT(2,2)<-ADDER:

L1_1<-CPM(3,4,4), L1_2<-RBLD(1,1),

LSU2<-RBLD(1 4):

LA3<-MPY4_4,

M103<-O'

M2D3<-O,

M4D3<-0,

M5D3(-O(

LA3<-MPY4_4,

M103<-O,

M203<-0,

M4D3<-O(

M5D3<-0(

LA3<-MPY4_4,

MID3<-0,

M2D3<-0,

M4D3<-0,

M5D3<-0,

LA3<-MPY4_4,

M103<-0,

M203<-0,

M403<-O,

MSD3<-O,

LA3<-MPY4_4,

MID3<-0,

M2D3<--0,

M403<--0,

M5D3<--0,

(81):

(82):

(83):

(84):

(85):

(86):

(87):

(88):

(89):

(90):

(91L

(92)“

(93):

(94):

107

L2_1<-CPM(3,4,1), L2_2<-RBLD(1, 2), M203<-0,

L5_1<-CPM(3,4,3), LS:2<-RBLD(1: 4), M5D3<-0,

LA1<-Mpr1_4, LA2<-MPY2_4, LA3<-MPY4_4,

LA4<-MPY5_4, 12(2, 3)<-ADDER:

L1_1<-CPM(4,1,1), L1_2<-RBLD(1,1), MlDB<-0,

L2_1<-CPM(4,1,2), L2:,2<-RBLD(1 2), M203<-o,

L4_1<-CPM(4,1,3), L4:2<-RBLD(1, 3), M4D3<-0,

L5_1<-CPM(4,1,4), L5-_2<-RBLD(1,4), MSD3<-0,

LAl<-MPYL_4, LA2<-MPY2_4, LA3<-MPY4_4,

LA4<-MPY5_4, 11(2.4)<-Xnoea; '

L1_1<-CPM(4,2, 2), L1_2<-RBLD(1I1)I M1D3<-0:

L2_1<-CPM(4,2,3), L2_2<-RBLD(1,2), M2D3<-0,

L4_1<-CPM(4, 2 4), L4_2<-RBLD(1, 3), M4D3<-0,

L5-_1<-CPM(4,2,1), L5:2<-RBLD(1p4)p M503<-0,

LA1<-MPY1_4, LA2<-MPY2_4, LA3<-MPY4_4,

LA4<-MPY5-_4, IT(3,1)<-ADDER;

L1_1<-CPM(4, 3, 3), L1_2<-RBLD(1,1), MlD3<-0,

L2_1<-CPM(4, 3 4), L2_2<-RBLD(1,2), M2D3<-0,

L4__1<-CPM(4 3 1), L4_2<-RBLD(1,3), M403<-0,

L5-_1<-CPM(4, 3 2), L5_2<-RBLD(1,4), MSD3<-Or

LA1<-MPY1_4, LA2<-MPY2_4, LA3<-MPY4_4,

LA4<-MPY5_4 I IT (3! 2) ('ADDER;

L1_1<-CPM(4, 4, 4), L1_2<-RBLD(1,1), M1D3<-0,

L2-_1<-CPH(4, 4 1), L2:2<-RBLD(1, 2), M2D3<-0,

L4-_1<-CPM(4, 4 2), L4:2<-RBLD(1, 3), M4D3<-O,

L5._1<-CPM(4, 4 3), L5._2<-RBLD(1,4), M503<-0r

LA1<-MPYL_4, LA2<-MPY2_4, LA3<-Mpy4_4,

LA4<-MPY$_4, 11(3 3)<-XDDER:

LA1<-MPY1_4, LA2<-MPY2_4, LA3<-MPY4_4,

LA4<~MPY5-_4, IT(3,4)<-ADDER;

LA1<-MPY1J, LA2<-MPYZ_4, LA3<-MPY4_4,

LA4<-MPY5-_4, IT(4,1)<-ADDER:

LA1<-MPY1J, LA2<-MPYZ_4, LA3<-MPY4_4,

LA4<-MPYS:4, IT(4,2)<-ADDER:

LA1<-MPY1_4, LA2<-MPY2_4, LA3<-MPY4_4,

LA4<-MPYS_4, IT(4,3)<-ADDER;

IT(4,4)<-ADDER:

LL_1<-IT(1,1), Ll_2<-RBLD(2,1), M1D3<-0,

L2_1<-IT(1,2), L2_2<-RBLD(2,2), M203<-O,

L4_1<-IT(1, 3), L4_2<-RBLD(2,3), M4D3<-0,

L5:1<-IT(1 4), L5_2<-RBLD(2,4), MSD3<-0:

L1:1<-IT(2,1), LL_2<-RBLD(2,1), M1D3<-O,

L2_1<-IT(2 2), L2_2<-RBLD(2,2), M203<-0,

104:1<‘IT‘2' 3), L4_2<-RBLD(213)I M4D3<"0,

L5_1<-IT(2, 4), L5_2<-RBLD(2,4), M5D3<-O:

L1_1<-—IT(3 1), L1_2<-RBLD(2.1), MlD3<-0,

L2__1<-IT(3, 2), L2_2<-RBLD(2,2), M2D3<-0,

L4_1<-IT(3, 3), L4_2<-RBLD(2,3), M403<-0,

L5_1<-IT(3,4), L5_2<-RBLD(2,4), M5D3<-O:

L1_1<-IT(4,1), Ll_2<-RBLD(2,1), M1D3<-O,

L2_1<-IT(4,2), L2_2<-RBLD(2,2), MZD3<-0,

L4_1<-IT(4,3), L4_2<-RBLD(2,3), M4DB<-0,

L5_1<-IT(4,4), L5_2<-RBLD(2,4), M503<-0;

LA1<-Mpy1_4, LA2<-MPY2_4, LA3<-Mpy4_4,

LA4<-MPY$_4:

108

(95): LA1<-MPY1_4, LA2<-MPY2_4, LA3<-MPY4_4,

LA4<-MPYS_4, R(1) <-ADDER;

(96): LAl<-MPY1_4, LA2<-MPY2_4, LA3<-MPY4_4,

LA4<-MPYS_4, LD1<-ADDER, LD2<-R(1);

(97): LA1<-MPY1_4, LA2<-MPY2_4, LA3<-MPY4_4,

LA4<-MPY5_4, LDl<-ADDER, LDZ<-R(1):

(98): R(4)<-ADDER, LDl<-ADDER, LD2<-R(1):

(99):

(100):

(101):

(102):

(103):

(104):

(105):

(106): R(2)<-D10:

(107): R(3)<-DIO, OUTPUT<-R(2);

(108): R(4)<-D10, OUTPUT<-R(3):

(109): OUTPUT<-R(4):

(110): it (PATCH-0 or (s-l and t-1)) then stop;

else begin

/* input new parameter values */

(111): RS<--INPUT:

(112): RT<-INPUT:

(113): L1_1<-BLD(LABS,1,1), M1D3<-BLD(LABS,1,2),

DL4<~BLD(LABS,1,3), DL8<-BLD(LABS,1,4),

L1_2<-RS, LAD3<-BLD(LABS,1,1);

(114): L1_1<-BLD(LABS,2,1), MlD3<-BLD(LABS,2,2),

DL4<-BLD(LABS,2,3), DL8<-BLD(LABS,2,4),

L1_2<-RS, LAD3<-BLD(LABS,2,1);

DL4<-BLD(LABS,3,3), DL8<-BLD(LABS,3,4),

L1_2<-RS, LAD3<-BLD(LABS,3,1);

(116): L1_1<-BLD(LABS,4,1), M103<-BLD(LABS,4,2),

DL4<-BLD(LABS, 4, 3), DL8<-BLD(LABS,4,4),

L1_2<-RS, LAD3<-BLD(LABS, 4,1), LA1<-0, LA2<~LAD3,

LA3<-LAD3, LA4<-LAD3:

(117): L1_1<-BLD(LABT, 1,1), MlD3<-BLD(LABT,1,2),

DL4<-BLD(LABT,1,3), DL8<-BLD(LABT,1,4),

L1_2<-RT, LAD3<-BLD(LABT,1,1), LA1<-0, LA2<-LAD3,

LA3<-LAD3, LA4<-LAD3, L4_1<-ADDER, L4_2<-RS,

M4D3<-M101, L2_1<-MPY1_4, L2_2<-Rs,;

(118): L1_1<-BLD(LABT,2,1), M103<-BLD(LABT,2,2),

DL4<-BLD(LABT,2,3), DL8<-BLD(LABT,2,4),

L1_2<-RT, LAD3<-BLD(LABT,2,1), LA1<-0, LAZ<-LAD3,

LA3<-LAD3, LA4<-LAD3, L4_1<-ADDER, L4_2<-RS,

M4D3<-M1D1, L2_1<-MPY1_4, L2_2<-RS:

(119): L1_1<-BLD(LABT,3, 1), M103<-BLD(LABT, 3, 2),

DL4<-BLD(LABT, 3,3), DL8<-BLD(LABT, 3, 4),

L1_2<-RT, LAD3<-BLD(LABT,3,1), LA1<-0, LA2<-LAD3,

LA3<-LADB, LA4<-LAD3, L4_1<-ADDER, L4_2<-RS,

M4D3<~MlDl, L2_1<-MPY1_4, L2_2<-RS:

(120): L1_1<-BLD(LABT,4,1), M1D3<~BLD(LABT, 4,2),

DL4<-BLD(LABT, 4, 3), DL8<-BLD(LABT,4,4),

L1_2<-RT, LADB<-BLD(LABT,4,1), LA1<-0, LA2<-LAD3,

LA3<-LAD3, LA4<-LAD3, L4_1<-ADDER, L4_2<-RS,

M4D3<-M101, L2_1<-MPY1_4, L2_2<-RS:

/* stop here *

End.

(121):

(122):

(123):

(124):

(125):

(126):

(127):

(128):

(129):

(130):

(131)“

(132):

109

LA1<-O, LA2<-LAD3,

L3_1<-MPY2_4, L3_2<-RS, LS_1<-MPY4_4,

LAI<:0,

m3<-LAD3, m4<-m3,

L5_2<-RS p

LA2<~LAD3, LA3<-LAD3, -LA4<-LAD3,

L4_1<-ADDER, L4_2<-RT, M4D3<-M1D1, L2_l<-MPY1_4,

L2_2<-RT:

L3_1<-MPY2_4, L3_2<-RS I

MSD3<-M201, LAl<-0,

LA3<-LAD3, LA4<-LAD3,

L5_1<-MPY4_4, L5_2<-RS,

LA2<-LAD3, LA3<-LAD3, -LA4<-LAD3,

L2_2<-RT:

LA1<-O, LA2<-LAD3,

L3_1<—MPY2_4,

LA3<-LAD3, LA4<-LAD3:

L5_1<-MPY4_4, LS_2<-RS,

L4_1<-ADDER, L4_2<-RT, M4D3<-MlDl, L2_1<-MPY1_4,

L2_2<-RT:

L3 l<-MPY2_4, L3_2<-RS,

LAI<"O'max-mm,

L5_1<-MPY4_4 , L5_2<-RS,

LA2<-LAD3, LA3<-LAD3, LA4<-LA03,

L4__l<-ADDER, L4_2<-RT, M403<-M101, L2_1<-MPY1_4,

L2_2<-RT:

L5 1<-MPY4_4, L5_2<-RT,

MSDB<4M2017 RBLDTl,1)<-MPY3_4, RBLBD(1,1')'<-mys_4;

L5_1<-MPY4 4, LS_2<-RT,

M5D3<-M201, RBLD(1,2)<-MPY3_4, Rsnfib(1, 2)<-MPY5_4;

L3_2<-RT,

MSD3<-M201, RBLD(1,3)<-MPY3_4, RBLDD(1, 3)<-MPY5_4:

L3_2<-RT, LS_l<-MPY4_4 , LS_2<-RT,

MSD3<-M2D1, RBLD(1, 4)<-MPY3 4, RBLDD(1,4)<-MPYS_4:

RBLD(2,1)<-MPY3_4,

RBLD(2, 2)<-MPY3_4,

331.0(2, 3)<-MPY3:4,

RBLD (2, 4) <-MPY3_4 ,

end else:

end else;

11st (2,1) <-MPYS_4 .-

RBLDD (2, 2) <-MPYS_4 ,-

RBLDD (2, 3) <-m¥5_4 ,-

RBLDD(2,4)<-MPYS_4, go to (69);

APPENDIX 2

INPUT SEQUENCE OF CONTROL POINT MATRICES

Cycle (5):

(6):

(7):

(8):

(9):

(10):

(11):

(12):

(13):

(14):

(15):

(16):

(17):

(18):

(19):

(20):

(21):

(22):

(23):

(24):

(25):

(26):

(27):

(28):

(29):

(30):

(31):

(32):

(33):

(34):

(35):

(36):

(37):

(38):

(39):

(40):

(41):

(42):

(43):

(44):

(45):

(46):

(47):

(48):

(49):

(50):

(51):

(52):

CPM(1,1,1)

CPM(2,1,1)

CPM(3,1,1)

CPM(1,1,2)

CPM(2,1,2)

CPM(3,1,2)

CPM(1,1,3)

CPM(2,1,3)

CPM(3,1,3)

CPM(1,1,4)

CPM(2,1,4)

CPM(3,1,4)

CPM(1,2,2)

CPM(2,2,2)

CPM(3,2,2)

CPM(1,2,3)

CPM(2,2,3)

CPM(3,2,3)

CPM(1,2,4)

CPM(2,2,4)

CPM(3,2,4)

CPM(1,2,1)

CPM(2,2,1)

CPM(3,2,1)

CPM(1,3,3)

CPM(2,3,3)

CPM(3,3,3)

CPM(1,3,4)

CPM(2,3,4)

CPM(3,3,4)

CPM(1,3,1)

CPM(2,3,1)

CPM(3,3,1)

CPM(1,3,2)

CPM(2,3,2)

CPM(3,3,2)

CPM(1,4,4)

CPM(2,4,4)

CPM(3,4,4)

CPM(1,4,1)

CPM(2,4,1)

CPM(3,4,1)

CPM(1,4,2)

CPM(2,4,2)

CPM(3,4,2)

CPM(1,4,3)

CPM(2I413)

CPM(3,4,3)

(-

<-

<-

<-

<-

<—

<-

<-

(-

<-

<-

<—

<-

(-

<4—

(-

<-

<-

<-

<-

<-

<-

<-

<-

<—

<-

<-

<-

<-

<-

<-

<—

<-

<-

<-

<-

<-

<-

(—

(.-

<-

(-

<—

<—

<-

<-

<-

<—

110

X11

Y11

211

X12

Y12

212

X13

Y13

213

X14

Y14

214

X21

Y21

221

X22

Y22

222

X23

Y23

223

X24

Y24

224

X31

Y31

231

X32

Y32

232

X33

Y33

233

X34

Y34

234

X41

Y41

Z41

X42

Y42

242

X43

Y43

243

X44

Y44

244

APPENDIX 3

TIME TABLE OF LATCH ELEMENTS (I)

lll

Tmubleofhchelmtsfathefamdzfimof

Malling fractions and their first defivatives.

Cycle 1.4133 LA! LA2 LAB 1.44 L1_1 L1_2 M1D3 L2_1 L2_2 M2D3

5 $11 811 s 812

6 521 521 s 522

7 $31 831 5 S32

8 341 o 511 $11 S11 841 5 S42

9 o 521 $21 $21 (M1_4) s $13

10 0 $31 $31 $31 (M1_4) s 323

11 o 541 S41 S41 (M1_4) s 533

12 (Ml_4) s 543

13

14

15

16

17

18

19

2o

21 111 111 1 112

22 1'21 121 1 122

23 131 131 1 132

24 141 o 111 111 111 141 1 142

25 o 121 121 121 (Ml_4) 1 123

26 o 131 131 131 (Ml__4) 1 133

27 o 141 141 141 (Ml_4) 1 143

23

29

3o

31

32

112

Tune table of lamb elements for the formulation of blending

functions and their first defivatives (cont’d).

L3_1 L3_2 M303 L4_1 L4_2 M4D3 LS_1 L5_2 M5D3 D4 D8

5 $13 814

6 823 824

7 $33 $34

8 S43 S44

9 3x511 S 211812

10 311521 8 211822

11 311531 S 211832

12 311541 S 211842

13 (MZ_4) S 814 (M4_4) S $13

14 (MZ_4) S 824 (M4_4) S 823

15 (MZ_4) S 834 (M4_4) S 833

16 (M2_4) S S44 (M4_4) S S43

17

18

19

20

21 T13 T14

22 T23 1‘24

23 T33 T34

24 T43 T44

25 3lel '1' 2xT12

26 311121 ‘1‘ 211122

27 311131 '1‘ 2x132

28 3xT4l ‘1' 211142

29 (M2_4) 1 114 (M4_4) 1 . 113

.30 (mg) 1 124 (M4_4) 1 123

31 (1123) 1 134 (M4_4) 1 133

32 (M2_4) 1 144 (M4_4) 1 143

APPENDIX 4

TIME TABLE OF FUNCTIONAL STAGES (I)

Tune table of finncdonal stage: fat the fmnulation of

113

blending functions and their first derivatives.

Cycle ADDER MPY1_1 MPY1_2 MPY1_3 MPY1_4 MPY2_1 MPY2_2 MPY2_3 MPY2_4

5 (M1_4)

'6 (M1_4) (M1_2)

7 (M1_4) (M1_2) (M1_3)

8 3x811 (M1_4) (M1_2) (M1_3) (M1_4)

9 3x821 (M1_2) (M1_3) (M1_4) (M2_1)

10 311831 (M1_3) (M1_4) (1123) (M2_2)

11 311841 (M1_4) (M2_1) (M2_2) (M2_3).

12 (M2_1) (M23) (M23) (M2_4)

13 (M23) (M2_3) (M2_4)

14 012.3) (M23)

15 (M2_4)

16

17

18

19

20

21 (M1_4)

22 (M1_4) (M1_2)

23 (M1_4) (M1_2) (Ml-3)

2: 3lel (M1_4) (M1_2) (M1_3) (M1__4)

25 311121 (M1_2) (M1_3) (M1_4) (M2_1)

26 311131 (M1_3) (M1_4) (M2_1) (M2_2)

27 311141 (M1_4) (M2_1) (M2_2) (M2_3)

28 (M2_l) (M2_2) (M23) (M2_4)

29
(M2_2) (M2_3) (M2_4)

30 (M2_3) (M2_4)

31 (M2_4)

32

33

34

35

114

Tim table of functional stages for the {trunnion of blending

functions and their first derivative: (cont’d).

0N0 MPY‘3_1 MPY3_2 MPY3__3 MPY3_4 MPY4_1 MPY4_2 MPY4_3 MPY4_4

O
N
Q
G
M

11

12

13

14

15

16

17

18

19

20

1
3
.
5
2
8

26

27

28

29

30

3 1

32

33

35

(M33)

(M33)

(M33)

(M33)

(M33)

(M33)

(M33)

(M33)

(M33)

(M33)

(M33)

(3133)

(M33)

(M33)

(M33)

(M33)

M(3_3)

M(3_3)

M(3_3)

M(3_3)

M(3_3)

M(3_3)

M(3_3)

M(3_3)

31-30)

31:50)

BFSQ)

393(4)

BFI'(l)

BFI'(2)

BFI‘(3)

BFI'(4)

(M43)

(M43)

(M43)

(M43)

(M43)

(M43)

(M43)

(M43)

(M43)

(M43)

(M43)

(M43)

(M43)

(M43)

(M43)

(M43)

(M43)

(M43)

(M43)

(M43)

(M4_3)

(M4_3)

(M4_3)

(M4_3)

(M4_4)

(M4_4)

(M4_4)

(M4_4)

(M4_4)

(M4_4)

(M4_4)

(M4_4)

115

Time table of functional stage. for the formulation of blending

functions and their fin: derivatives (oont'd).

Cycle MPYS_1 MPY5_2 MPY5_3 MPY5_4

5

6

7

8

9

1o

11

12

13 (M5_1)

14 (M53) (M53)

15 (MS3) (MS3) (M53)-

16 (M5_1) (M5_2) (M5_3) napsu)

17 (M33) (M53) bursa)

18 (1453) DBFS(3)

l9 DBFS(4)

20

21

22

23

24

25

26

27

28

29 (M5_1)

30 (M5_1) (M5_2)

31 (1453) (M53) (M53)

32 (M5_1) (M5_2) (M5_3) DBFl‘(l)

33 (M5_2) (M5_3) Dar-1(2)

34 (M53) Dal-1(3)

35 oat-1(4)

APPENDIX 5

TIME TABLE OF LATCH ELEMENTS (II)

TimetableoflacchelememsfortheevaluationofX,Y,de.

116

Cycle 1.4133 1.41 1.112 1.43 1.14.4 L1_1 1.1.2 M1133

53 X11 BFS(1) o

54 1121 BFS(1) o

55 x31 81-30) 0

56 X41 BFS(1) o

57 (M1_4) (M2_4) (M4_4) (M5_4) Yll BFSO) o

58 (M1_4) (M2_4) (M4_4) (MS_4) 1(21 BFS(1) o

59 (M1_4) (M2_4) (M4_4) (M5_4) 1131 BFS(1) o

60 (M1_4) (M2_4) (M4_4) (M5_4) 1141 BFS(1) o

61 (M1_4) (M2_4) (M4_4) (M5_4) 211 BFS(1) o

62 (M1_4) (M2_4) (M4_4) (M5_4) 221 BFS(1) o

63 (M1_4) (M2_4) (M4_4) (M5_4) 231 BFS(1) o

64 (M1_4) (M2_4) (M4_4) (M5_4) 241 BFS(1) o

65 (M1_4) (M2_4) (M4_4) (M5_4)

66 (M1_4) (M2_4) (M4_4) (M5_4)

67 (M13) (Mz__4) (M4_4) (1453)

68 (M1_4) (MZ_4) (M4_4) (M5_4)

69

70 110.1) 331(1) 0

71 11(2,1) 331(1) 0

72 1113.1) 311(1) 0

73

74 (M1_4) (M23) (M4_4) (1)453)

75 (M1_4) (M2_4) (M4_4) (M5_4)

76 (M1_4) (112_4) (M4_4) (M5_4)

117

Time table of latch elements for the evaluation of X. Y, and Z (cont'd).

Cycle L2_1 1.2_2 112133 L4_1 L4_2 M4133 1.53 L5__2 M5D3

53 X12 358(2) 0 x13 358(3) 0 x14 358(4) 0

54 x22 358(2) 0 1123 358(3) 0 x24 358(4) 0

55 1132 358(2) 0 x33 358(3) 0 x34 358(4) 0

56 X42 358(2) 0 X43 358(3) 0 X44 358(4) 0

57 1112 358(2) 0 1113 358(3) 0 1114 358(4) 0

58 1122 358(2) 0 1123 358(3) 0 124 358(4) 0

59 Y32 358(2) 0 1133 358(3) . o 1134 358(4) 0

60 1142 358(2) 0 1(43 358(3) 0 1144 358(4) 0

61 212 358(2) 0 213 358(3) 0 214 358(4) 0

62 222 358(2) 0 223 358(3) 0 224 358(4) 0

63 232 358(2) 0 233 358(3) 0 234 358(4) 0

64 242 358(2) 0 243 358(3) 0 244 358(4) 0

65

66

67

68

69

7o 11(1,2) 351(2) 0 11(1,3) 351(3) 0 11(1,4) 351(4) 0

71 1112.2) 351(2) 0 « 11(23) 351(3) 0 11(24) 351(4) 0

72 11(32) 351(2) 0 1103) 351(3) 0 11(3,4) 351(4) 0

73

74

‘
3
“

G
M

APPENDIX 6

TIME TABLE OF FUNCTIONAL STAGES (II)

118

TinntableofMACmgafortheevaludmofX.Y,andZ.

Cycle ADDER MPY1_1 31mg MPY1_3 my m_1 MPY2_2 MPY2_3 MPY2_4

53 (M1_l) (3123)

54 (M13) (M13) (1123) (M23)

55 (M13) (M1_2) (M13) (1123) (M23) (Mz3)

56 (M13) (M13) (M13) (M1_4) (112.1) (M23) (1123) (1123)

57 110.1) (M13) (M1_2) (M13) (M13) (112.1) (M23) (M23) (M2_4)

58 1102) (M13) (M13) (M13) (M1_4) (1123) (M23) (1123) (M23)

59 1103) (M13) (M13) (M13) (M13) (1123) (1123) (1123) (M2_4)

60 1111.4) (M13) (M13) (M13) (M13) (M23) (M23) (1123) (312.4)

61 110.1) (M13) (M13) (M13) (M13) (M23) (M2_2) (1123) (142.4)

62 1112.2) (M13) (M1_2) (M13) (M13) (112.1) (M2_2) (1123) (M23)

65 1105) (M13) (M13) (M13) (M13) (1412.1) (M23) (1123) (M23)

64 132.4) (M13) (M13) (M13) (M1_4) (M23) (M23) (1123) (11123)

65 110.1) (M13) (M13) (M13) (M23) M3) (1123)

66 110.2) (M13) (M13) (1123) (1123)

67 113.5) (M13) (1123)

61 110.4)

69

7o (M1_l) (M23)

71 (M1_l) (M1_2) (M2_l) (M2_2)

72 (M13) (M1_2) (M13) (112-1) (M2_2) (1)123)

73 (M13) (M13) (M1_4) (1123) (1123) (112.4)

74 x (M1_3) (M1_4) (M23) (M2_4)

75 Y (Ml_4) (M2_4)

76 Z

119

Time table of functional me: for 111: «111mm ofX, Y, and Z (cont'd).

Cycle MPY4_1 MPY4__2 11m; MPY4_4 MPY5_1 1151153 MPY5_3 1151153

53 (M4_l) (M5_1)

54 (M43) (M43) (M5_1) (1153)

55 (M43) (M43) (M43) (M53) (1153) (1153)

56 (M43) (1143) (M43) (M4_4) (M53) (M53) (M53) (M53)

57 (1143) (M43) (1113) (M43) (M53) (1153) (1153) (M5_1)

51 (M43) (M13) (M43) (M4_4) (1153) (1153) (1153) (115.4)

59 (1143) (M43) (M43) (M4_4) (M53) (1153) (M53) (M5_4)

60 (M43) (M43) (M43) (M4_4) (M5_1) (1153) (M53) (115.4)

61 (M43) (M43) (M43) (M43) (M5_1) (1153) (1153) (M53)

62 (M43) (M43) (M43) (M43) (M5_1) (M5_2) (1153) (115.4)

63 (M43) (M43) (M43) (1143) (M5_1) (1153) (1153) (115.4)

64 (M43) (1143) (M43) (M4_4) (M5_1) (1153) (M53) (1153)

65 (M43) (M43) (M4_4) (1153) (M53) . (M53)

66 (M43) (M4_4) (1153) (M5_4)

67 (M4_4) (M5_4)

68

69

70 (M43) (M53)

71 (M43) (M43) (M53) (1153)

72 (M43) (M43) (1143) (M5_1) (M53) (M53)

73 (1143) (M43) (M4_4) (1153) (M53) (115.4)

74 (M4_3) (M4_4) (M5_3) (M5_4)

75 (M4_4) (M5_4)

76

BIBLIOGRAPHY

10.

11.

12.

13.

120

BIBLIOGRAPHY

Pickelmann, M.N., “The Design of Rational B-spline Algorithms for

Interactive Color Shading of Surfaces,“ Ph.D. dissertation, Michigan

State University, 1985.

'Nov 3-D Image Can Be Moved in Real Time,“ Electronics, August 7,

1985. pp. 97-100.

”Survey of custom and semicustom ICs,' VLSI Des., Oct. 1984, pp. 30-

43.

Bolton, U.C. and Gavin, R.K., "A Perspective on CMOS Technology

Trends," Proceedings of the 1523, Vol. 7h, No. 12, Dec 1986, pp.

1646-1668.-

Baller, H.H., 'VLSI/Software Engineering Design Methodology," IEEE

1984 workshop on the Engineering of VLSI and Software, IEEE Computer

Society Press, 1984, pp. 11-14.

Okuda, 8., Sugai, M., and Goto, 8.. "Semicustom and Custom LSI

Technology,“ Proceedings of the 1535, Vol. 74, No. 12, Dec 1986, pp.

1636-1645.

Vai, M.K~ and Shanblatt, M.A,, 'Some Issues in the—Design.Automation

of VLSI,“ Technical Report, Department of Electrical Engineering,

Michigan State Unversity, 1986.

Watanabe, W, and Ackland, 8., "FLUTE: An Expert Floor Planner for

Full-custom VLSI Design,“ IEEE Design & Test, Feb. 1987.

Subrahmanyam, P.A., “Synapse: An Expert System for VLSI Design,"

computer, July 1986, pp. 78-89.

Uhitton, M.C., I'Special Purpose Hardware For the Display of Free

Form Surfaces,“ Master thesis, North Carolina State University,

1984.

Hawkins, J.L., I"I'he Wonder of B-splines,‘ Case Center for Computer-

Aided Engineering and Manufacturing, Michigan State University,

1986.

Vanderploeg, M.J., "Surface Assessment Using Color Graphics," Ph.D.

dissertation, Michigan State University, 1982.

Catmull, E., ”A Subdivision Algorithm for Computer Display of Curved

Surfaces," Dept. of Computer Science, University of Utah, Dec. 1974.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

121

Lane. J.M., Carpenter, L.C.. Whitted, T., and Blinn, J.F., "Scan

Line Methods for Displaying Parametrically Defined Surfaces,"

Communication of the ACH, Vol. 23, No. 1, Jan. 1980, pp. 23-34.

Lane, J.M. and Riesenfeld, R.F., ”A Theoretical Development for the

Computer Generation and Display of Piecewise Polynomial Surfaces,"

IEEE Trans. on Pattern Recognition and Machine Intelligence, Jan.

1980. pp. 35-46.

Cox, M.G., ”The Numerical Evaluation of B-splines," J. Inst. Maths.

Applics, Vol. 10, 1972, pp. 134-147.

DeBoor, C., 'On Calculation with B-splines,' J. Approx. Theory, Vol.

6, 1972, pp. 50-62.

W.I.D. Faux- and

M.J. Pratt, Ellis Horwood Limited, 1983, England.

MW.J.D. Foley and A.

Van Dam, AddisoneWesley Publishing Company, 1982.

Amanatides, J., "Realism in Computer Graphics: A Survey," Computer

Graphics and Applications, Vol. 7, No.1, Jan. 1987, pp. 44-56.

Phong, B.T.'111umination for Computer General Pictures,“ comm.

ACM, V61. 18, No: 6, June 1975, pp. 311- 317.

Gouraud, M., “Continuous Shading of Curved Surfaces,” IEEE Trans.

Computers, Vol. C-20, No. 6, June 1971, pp. 623-629.

, C. Mead and L. Conway, Readings, MA:

Addison-Wesley, 1978.

ggnnuggx_5;1;hng;19, K. Mwang, John Wiley and Son, 1979, p. 184.

K. Hwang, op. cit., Chapter 8.

Leung, 8.8. and Shanblatt, M.A., “A VLSI Chip Architecture for the

Computation of the Kinematic Solution of a Robotic Manipulator,"

Dept. of EESS, Michigan State University, April 1985.

Gajski, D.D. and Kuhn, R.H., "New VLSI Tools," IEEE Computer, Vol.

16, No. 11, Dec. 1983, pp. 11-14.

Hartmann, A.C., "Software or Silicon? The Designer's Option,"

Proceedings of the 1552, Vol. 74, No. 6, June 1986, pp. 861-874.

211ng1nlgg_g£_§fl9§_!L§1_Qg§1gn, N. Waste and K. Eshraghian, Addison-

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

122

Wesley, 1985.

K. Mwang, op. cit., p. 279.

Vai, M.K., "Performance-Design Tradeoff of Hierarchical VLSI Design

Entry Points," M.S. Thesis, Michigan State University, 1985.

Ramachandran, V., "On Driving Many Long Wires in a VLSI Layout," J.

of the ACM, Vol. 33, No. 4, Oct. 1986, pp.687-701.

'TRN's Superchip Passes First Milestone," Electronics, July 10,

1986. PP. 49-54.

Panasuck, C., “High-density Gate Arrays," Electronic Design, Oct.

16, 1986. Pp. 94-100.

Uinard, M., ”Standard-cell Libraries Expand," Electronic Design,

Sept. 11, 1986, pp. 179-184.

Guttag, M., Aken, J.V., and Asal, M., "Requirements for a VLSI

Graphics Processor,“ Computer Graphics and Application, Vol. 6, No.

1, Jan. 1986, pp.32-47. “

Ikedo, T., "High-Speed Techniques for a 3-D Color Graphics Terminal,"

computer Graphics and Application, Vol. 4, No. 3, May

1984, pp. 46-58.

Kawahito, 8., Kameyama, M., Miguchi, T., and Yamada, M., “A. High-

Speed Compact Multiplier Based on Multiple-Valued Bi-directional

Current-Mode Circuit,“ Proc. 17th Int’l Symposium on Hu1tiple-Valued

Logic, Computer Society Press, Los Angles, Calif., May 1987, pp.

172-180.

Canal, A.E., et a1., ”A CMOS 32b Wallace Tree Multiplier-

Accumulator,” 1355 Digest Int’l Solid-State Circuits Cbnf., Feb.

1986, pp. 194-195.

HICHIGRN STRT

I 1111

E UNIV. LIBRRRIES

IIIH 1111111le1111111
9 91 37 1 2312 3015

