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ABSTRACT

SEMI-PARAMETRIC ESTIMATION OF BIVARIATE DEPENDENCE UNDER MIXED
MARGINALS

By

Wenmei Huang

Copulas are a flexible way of modeling dependence in a set of variables where the association
between variables can be elicited separately from the marginal distributions. A semi-parametric
approach for estimating the dependence structure of bivariate distributions derived from copulas
is investigated when the associated marginals are mixed, that is, consisting of both discrete and
continuous components. The semi-parametric likelihood approach is proposed for obtaining the
estimator of the dependence parameter under unknown marginals. The consistency and asymptotic
normality of the estimator is established as sample size tends to infinity. For constructing confi-
dence intervals in practice, an estimator of the asymptotic variance is proposed and its properties
are investigated via simulation. Extensions to higher dimensions are discussed. Several simula-
tion studies and real data examples are provided for investigating the application of the developed
methodology of inference. This work generalizes prior results obtained on the estimation of de-

pendence when the marginals are continuous by Genest et al. [11].
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CHAPTER 1

INTRODUCTION

Copulas are functions that join or “couple” multivariate distribution functions to their one-
dimensional marginal distribution functions. Essentially, a copula is a funétidrom [0, 1]D
(D > 2) to [0, 1] with the following properties:

1. For every(uy,...,up) € [0, 1]D,
C(uq,...,up)=0ifatleastone ofiy, =0, fork =1,...., D (1.2)
and
C(uy,...,up) = up if uj = lforallj#k, k=1,....D (1.2)
2. Forevery(uy,...,up) and(vy, ...,vp) € [0, 1]D suchthaty, < v fork =1,..., D, which

defines aD-box V = [uq,v] x [ug, v9] X ... x [up,vp] € [0,11P. Then

> sgrc)C(c) >0 (1.3)
where the sum is taken over all vertiaesf I and sgific) is given by

1, if ¢, = uy, for an even number of’s,
sgn=
—1, if ¢, = uy, for an odd number of’s.

Alternatively, copulas are multivariate distribution functions whose one-dimensional marginals are

uniform on the intervalo, 1].



Since their introduction by Sklar [46], copulas have proved to be a useful tool for analyzing
multivariate dependence structures due to many unique and interesting featurds. (Lgt =
P(Xj, <xp.)fork =1,2,..., D denoteD continuous distribution functions on the real line, and
let F' denote a joint distribution function oD whosek-th marginal distribution corresponds to
F}.. According to Sklar’s Theorem [46], there exists a unique funati¢n, , ..., u ) from [0, 1]D

to [0, 1] satisfying

F(zq,..,0p) = C(F(21),...,Fplzp)), (1.4)

wherexq, ...,z ) areD real numbers. The functiafi is known as @-copula function that couples
the one-dimensional distribution function$., k = 1,2,..., D to obtainF'. If not all marginals
are continuous;’ is uniquely determined oRanFy X ... x RanF'p, whereRanF}. is the range
of F;.. Equation (1.4) can also be used to constibedimensional distribution functions whose
marginals are the pre-specified distributidrs, £ = 1,..., D: Choose a copula functiofi and
define the distribution functio#’ as in (1.4). It follows thatF" is a D-dimensional distribution
function with marginalsy. , k =1,..., D.

Investigating dependence structures of multivariate distributions has always been an important
area for researchers; see, for example, [26], [27], and [35]. For example, one of the central prob-
lems in statistics concerns testing the hypothesis that random variables are independent. Prior to the
very recent explosion of copula theory and application, the only models available in many fields to
represent the dependence structure were the classical multivariate models, such as Gaussian multi-
variate model. These models entailed rigid assumptions on the marginal and joint behaviors of the
variables. Therefore, they provide limited usefulness.

Though the phrase “copula” was first used by Sklar [46] in 1959 and traces of copula theory
can be found in Hoeffdings work during the 1940s, the study of copulas and their application in
statistics is a rather modern phenomenon. Earlier efforts have addressed different statistical aspects
of specialized as well as general copula-based joint distributions. Inference procedures for bivariate

Archimedean copulas have been developed and discussed by Genest et. al [12]. Demarta et al.,
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[8], studied properties related tecopulas, whereas Genest et al., [11] and [13], gave a goodness
of fit procedure for general copulas. Estimation techniques and properties of the estimators have
been well studied with applications ranging from statistics to mathematical finance and financial
risk management; see, for example, Shih et al. [44], Embrechts et al. [9], Cherubini et al. [5], Frey

et al. [10] and Chen et al. [4].

Many multivariate models for dependence can be generated by parametric families of copulas,
{Cy : 0 € ©}, typically indexed by a real or vector-valued paramétdexamples of such systems
are given in [23], [30], [22], and others. The recent monograph by Hutchinson and Lai [17], which

includes an extensive bibliography, constitutes a handy reference to this expanding literature.

Copula-based models are natural in situations where learning about the association between
the variables is important, since the effect of the dependence structure is easily separated from
that of the marginals. In such situations, there is typically enough data to obtain nonparametric
estimators of the marginal distributions, but insufficient information to afford nonparametric es-
timation of the structure of the association. In such cases, it is convenient to adopt a parametric
form for the dependence function while keeping the marginals unspecified. To estimate the depen-
dence parametét, two strategies could be adopted depending on the circumstances: (i) if valid
parametric models are already available for the marginals, then it is straightforward in principle to
write down a likelihood function for the data, which makes the estimatighroérgin-dependent,
because the estimators of the parameters involved in the marginals would be indirectly affected by
the copula. This is the parametric approach. (ii) when nonparametric estimators are contemplated
for the marginals, however, inference about the dependence pargmeatidoe margin-free. This
is the semi-parametric approach. Clayton [6], Hougaard et al. [15] and Oakes [36] have pointed
out that the margin-free requirement is sensible in applications where the focus of the analysis is

on the dependence structure.

Given a sample of; observation§(j = (le,XQj, .. ,XDj),j =1,2,...,n from the joint

distribution F'(zq,29,...,2p) = Cyp(F1(z1),..., Fp(xzp)), the estimation procedure involves

3



selectingén to maximize the semi-parametric likelihood

n

00) = 109 [cp(Fi,y(X15)s- - Fpp(Xpj))] (1.5)
j=1

where Fj.,, denotesn/(n + 1) times the empirical distribution function of theth component
observation@(kj forj =1,2,...,n,andcy is the density o’y with respect to Lebesgue measure
on [0, 1]D. The utilization of I}, instead of the empirical distribution here avoids difficulties
arising from the potential unboundedness ofdg@u, ..., u ) as some of the;.’s tend to 1.

A central assumption made in the earlier studies is that the marginals associated with the joint
distribution F' should be continuous. In reality, there are many situations where this assumption
is not satisfied and the marginals can be mixed, that is, they contain both discrete and continuous
components (see, for example, Kohn et al. [37]). Based on the continuous assumption and the
regularity conditions, Genest et al. [11] have shown tHa(tQén is asymptotic normal, wher@,
is the semi-parametric estimatorin (1.5).

Our work extends previous methodology by accounting for mixed marginal® fer 2 and
© C R. Uniqueness is an important consideration when estimating the unknown parameters cor-
responding to a copula. Since our mixed marginals have discrete components, one way to achieve
uniqueness is to restrict to belong to a particular parametric family. Under this assumption, We
develop an estimation technique for finding the semi-parametric maximum likelihood estimator,
On, for the parametric family{Cy : 0 € O} in the bivariate situation in Chapter 2. The esti-
mation methodology involves integrals corresponding to the discrete components and is therefore,
non-standard. Consistency and asymptotic normality of the semi-parametric maximum likelihood
estimatord;, is developed in Chapter 3. A a variance estimatagfo is developed in Chapter 4.

Note that for multivariate observations, copulas allow flexible modelling of the joint distribution

via its marginal distributions as well as the correlation between pairwise components of the vector
of observations. Therefore, the theory presented in Chapter 2 and Chapter 3 can be extended to
higher dimensions, and this is given in Chapter 5. In Chaptéri6,restricted to a particular para-

metric family of copula, theé-copula, and findings related to the&opula are provided. Numerical
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simulations and application of the methodology to real biometric data are presented in Chapter 7.

We summarize our work and discuss future research directions in Chapter 8.



CHAPTER 2

A MODEL FOR BIVARIATE
DISTRIBUTIONS

2.1 Joint Distributions with Mixed Marginals

Let F and be two distributions on the real line that are mixed, that is, FodndG consist of a

mixture of discrete as well as continuous components. The general forfigogiven by

dp dp .
F(z) = Z pERLip <y (1= Z PFR) f(w) dw, (2.1)
= {Dpp=t} —= /_OO

where[{A} is the indicator function of setl (that is,I{A} = 1if Ais true, and) otherwise);
in (2.1), the distribution functior” consists ofd - discrete components denoted By, with
F(Dpy,) — F(D}—?h) =ppp forh = 1,2,...,dp wherex™ denotes the left limit ofr, and f
is the density (continuous) component8f The discrete componen3z;,, h = 1,2,...,dp
correspond to jump points in the distribution functibnand are called the jump points 6t All
other points on correspond to points of continuity &, thatis,F'(z) — F(z™) = 0if z # Dpy,.
The set of jump and continuity points @f are denoted by/ (F') andC(F'), respectively. In the

same way, writing

Gy) = 1 Lip +(1- pGl> g(w) dw, (2.2)
= {Dgi<y} = 50



similar definitions can be given for the quantiti§s, p;;, D;; andg. We denote the set of jump
and continuity points of; by 7(G) andC(G), respectively.

Let Hy be the bivariate function defined by

Hy(x,y) = Cy(F(x),G(y)) (2.3)

for 0 € © with F andG as in (2.1) and (2.2), respectively. It follows from the properties of a

copula function that

Theorem 2.1.1.The functionty, as defined in (2.3), is a valid bivariate distribution function on

R2 with marginalsF andG.

Proof:  For Hy(x,y) to be a valid distribution function oR?, the following four conditions
should be satisfied:
(1)0 < Hy(z,y) < 1forall (z,y),
(2) Hy(x,y) — 0 as maxz,y) — —oo,
(3) Hy(x,y) — 1 as min(z,y) — +oo, and

(4) for everyzy < x9 andy; < 9,

AH = Hy(xg,y2) — Hy(z1,y9) — Hy(x,y1) + Hy(x1,91) > 0.

Note that sincefiy(z,y) = Cy(F(z),G(y)) = P(U < F(z),V < G(y)), (1) follows. To
prove (2), note that'(z) — 0 andG(y) — 0 when maxz,y) — —oo. Hence,Hy(x,y) — 0
from the property of a cumulative distribution function. (3) follows similarly. To prove (4), we use
the facts that’(z) < F(z9) for x1 < x9 andG(yy) < G(y9) for y; < y9, and

AH = // cg(u,v) dudv. (2.4)
[F(x1),F(22)]x[G(y1),G(y2)]
Sincecy(u,v) > 0, AH > 0 follows. Proof completed.
We turn now to give a characterization of the dendiyz, y), of Hy(z, y). For afixedz,y) €

R2, the two components dfr, y) correspond to either a point of continuity or a jump point of
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the corresponding marginal distribution function. Kof,Y) ~ Hy, hy(z,y) has four different

expressions, namely,
P{X € (v,x+al,Y € (y,y +b]}

”ma,b—>0 - if z € C(F),y € C(G),
limy, g P{X:”’”’Ybe vy +bl} it o € J(F),y € C(G),
hg(x,y) =
iim,,_g TAX € <I’"”a+ al. Y =y} if 2 € C(F), y € J(Q), and
\P{X:x,Y:y} ifeeJ(F),yeJG),
(2.5)

The following theorem gives workable expressions/fg(z, y) in terms of the copula:

Theorem 2.1.2.For each(z,y) € R?,

[ F(@) gly) cp(F(2). Cw) it € C(F),y € C(0),
y(y) /[F(m_) o) co(u, G(y)) du ifveJ(F),yeC(G),
hﬁ(x7y) =
f(x) /[G(y_) ] co(F(x),v)dv ifz € C(F),y e J(G),
| St rwpeiaty g o0 12T TO)

(2.6)

Proof: Whenz € C(F) andy € C(G),

P{X € (z,z+a],Y € (y,y+b]} = //[F(x),F(a:—i—a)]x[G(y),G(y+b)] cp(u,v) du dv

from (2.4). This is approximately

ab f(x) g(y) cg(F(x), G(y))

for smalla andb.

Whenz € J(F) andy € C(G), note that

PLC=Y ey = | /[F<:c—>,F<x>1x[G<y>,G<y+b>1 ol

8



again from (2.4), which is approximatebyg(y)/ cg(u, G(y)) du for smallb. The
_ o [F(z7),F ()]
third case follows similarly and the fourth expression is straightforward. Proof completed.
The terms inhy(x,y) that involve the densitieg and g do not depend or¥ and can,
hence, be ignored for the estimation 6f Subsequently, we focus on the functiop =

CZ(F(I_), F(z),G(y™),G(y)) defined by

( co(F(r),G(y)) if v € C(F),y € C(G),
/[F(a:_) Pl cp(u, G(y)) du if v € J(F),y € C(G),
¢ = ’ 2.7)
/[G(y_)G(y)} cp(F(x),v)dv if r € C(F),y e J(G),
coplu,v)dudv if x € J(F), J(G).
Tt rnsicmro OO 12 €IERYEIE)

2.2 Semi-Parametric Estimation off

If not all marginals are continuou&;in (1.4) is no longer unique. Uniqueness is an important con-
sideration when estimating the unknown parameters corresponding to the copula function. Since
our marginals have discrete components, one way to achieve uniqueness is to¢esiteiong
to a particular parametric family. From now on, {€t, : ¢ € ©} be a restricted parametric family
of copulas.

Supposeg (Xj, Yj)T, j=1,2,...,n}is the set ol independent and identically distributed
bivariate random vectors arising from the joint distributifi (=, y) in (2.3). The parameter of
interest is the bivariate dependence parameétemd the log-likelihood function corresponding to

then observations is
n
Z |Ogh9(l’j,yj).
J=1
The estimation of) is complicated by the presence of nuisance parameters consisting of the
unknown distributions”” and G (only the numberl - and jump pointsDpy,, h = 1,2,...,dp

9



of I (correspondinglyd and pointsD; of ) are known). An objective function that hés

as the only unknown parameter can be obtained by replaciagdG by Fy, andGy, in the log-
likelihood function, where), (and respectively(zy) is n/(n + 1) times the empirical cdf of”
(respectively(7). The rescaling by./(n+ 1) avoids difficulties arising from the unboundedness of

the log-likelihood function as the empirical cdfs tend to 0 or 1, and has been employed by Genest
et al. in [11]. Thus, the unique semi-parametric maximum likelihood estimatér &f, is the

maximizer of
n
L(0) = Y~ log{cj ;(Fu(@} ), Fn(w)). Gnly; ). Gnly;)} (2.8)
j=1
(that is,0, = arg maycg L(0)), where

027]- = cg(Fn(a:;),Fn(ﬂfj),Gn(yj_)aGn(yj)),

ignoring terms that do not depend 61in 2?21 log h@(;tj, yj). In the special case when no dis-

crete components are present, Genest et al. [11] developed a semi-parametric approach to estimate
the unknown parameters based on the semi-parametric likelihood. Subsequently, it was shown that
the resulting estimators were consistent and asymptotically normally distributed; see [11] for de-
tails. Expressions (2.7) and (2.8), respectively, are generalizations of the methodology of Genest
et al. [11] whenF' andG contain discrete components. Note that the challenge in maximizing

the semiparameteric log-likelihood in (2.8) is that it involves several integrals corresponding to

discrete components (rxj,yj), j=1,2...,n.
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CHAPTER 3

ASYMPTOTIC PROPERTIES OF
SEMI-PARAMETRIC ESTIMATOR IN
BIVARIATE DISTRIBUTIONS

3.1 Statement of the Main Theorem

In view of its similarity with the semi-parametric maximum likelihood estimator for continuous
marginals, we expect that, in the case of mixed marginals to be consistent and asymptotically
normal. To prove this, we denot§, uy, uy, v1,v9) = log {02 (u1,u9,v1,v9)} and use the nota-
tion Iy andlg’e to denote the first and second derivative efith respect ta. The estimato#y,

satisfies

OL()

o0

S|
SRS

lg(0; (), Fu(x)), Gn(y; ), Gnly;)) = 0. (3.1)
-1

J

Here is some heuristics of the proof of asymptotic normality. Expanding in a Taylor’s series, one

obtains,

5 =0mAp— (én —0)Bnp, (3.2)



where

and

Bn = 3" lgg(6. Fa(a}). Fu(z;). Gn(y} ) Gnlyj).
j=1

It follows from equation (3.2) thatl/Q(én —0) ~ nl/QAn/Bn. From the theory of multivariate

rank statistics, one can get the following limiting behaviors:
Bpn — 6 =—E(lgg{0, F(X ), F(X),G(Y),G(Y)}) (3.3)

almost surely, andzl/QAn is asymptotically normal with zero mean and variance of which

the explicit form will be provided in Section 3.4.

Thus, we have

Theorem 3.1.1.Under suitable regularity conditions, the semi-parametric estimépis consis-

tent andnl/z(én — 0) is asymptotically normal with medhand variancep = 02/62.

We start with the proofs of consistency in Section 3.2, the asymptotic propertigs and Ay,
in Section 3.3 and Section 3.4 respectively, on which Theorem 3.1.1 is based, and complete this

Chapter by proving Theorem 3.1.1 in Section 3.5.

Here are some notations which will be used later in this Chapter. Jdg} =
[F(Dpy), F(Dpp)l forh = 1,2, ....dp, Sy = [F(Dy), F(Dgy)l for L = 1,2, ... d;. Under

the situation that botl*” andG only have one jump point, the previous notations can be simplified

tODF,DG,SF = [F(DF

), F(Dp)], andS = [G(DC_;), G(D¢)), respectively.

12



3.2 Consistency of),

Nothing thatdy, satisfying (3.1), by letting/ = /g, which is a function or{0, 1)2, we only need to

show that

n
Rp = % 21 J(Fp(X;),Gn(Y;)) = 0 a.s. (3.4)
J]=

SinceHy involves one or more jump point&;, can be written as
n

R = 37 J(Ea(X]), Fa(X;),Gn(¥]),Gn(Y))) 35
j=1

We introduce some notations for the subsequent presentatiodcdlet{cd}, {dc}, and{dd}
be the events that( X, Y) : X e C(F),Y e C(G)},{(X,Y): X € C(F),Y € J(G)}, {(X,Y):
X e JWF),Y € C(G)} and{(X,Y) : X € J(F),Y € J(G)}, respectively. Further, let
Ace =17 : (Xj, Y;) e {cc}}. Similarly, one can defind.;, A ;. andA4 ;;. Note thatthe setd g
for S = {cc}, {cd}, {dc}, and{dd} is a partition of the set of integefd,2,...,n}. We consider
the decomposition aR;, based on these four partition sets, namaly,= RS+ RS + rde 4 pdd

where

Ry = % -Z JS(Fn(X;),Fn(Xj),Gn(Yj_),GMYj)),

for S = {cc}, {cd}, {dc}, and{dd}, and.J® is given by

( J(ug, v9) if = {cc}

JCd(UQ,Ul,UQ) if = {cd}
JS(ul,uQ,vl,Ug) = p (3.6)
J(uy,u9,v9) if ' ={dc}

(

\ Jdd uy,u9,v1,v9) if S ={dd}.

The functions/®, whereS = {cc}, {cd}, {dc} and{dd}, are assumed to be continuous on
their respective domains. For examplé’(uy,v9) is assumed to be continuous {ml]Q; this

, , , : , , 0
is a reasonable assumption to make since candidate& fowill be elther% log cy(ug,v9) OF

13



2

% log cy(ug, vo) in this Chapter, which are continuous functionsugfandvy. JCd(uQ, v{,v9)

is assumed to be continuous @31]3. A particular candidate ofd is
cd 9
J % (ug,v1,v9) = —log/ cg(ug,v)dv
90" Jlog,v9)]

which is continuous iy, v1 andvg. Similarly for J4¢ and.jdd,

Almost sure convergence &, is established in the following theorem:

Theorem 3.2.1.LetJ = Iy, r(u) = u(l —u), 6 > 0, p and ¢ are positive numbers satisfying
1/p+1/q = 1. Leta andb be numbers given by= (-1 + ¢)/p andb = (—1 + §)/q. Consider
the conditions

(C1) J(ug, vg) < My r(ug)®r(vg)?,

(C2) J% (ugy, vy, v9) < My r(ug)® (independent of; andvsy), and

(C3) JUC(uy, ug, v9) < M3 r(vy)? (independent of; andus).

(C4) In a small neighborhood of eacéW(D;h), F(Drp), G(D(_;l), G(Dgy)) €10, 1]4, for h =
1,2,...dpandl = 1,2, ... d¢r, JU(uy, ug, vy, v9) is finite.

Under conditions (C1-C4)ky, — (= 0) almost surely. where
k= E[N(X,Y) + NUX,Y) + N(x,Y) + NU(x,v)), (3.7)

with E[NC(X,Y)], E[N4(X,Y)], E[NY(X,Y)] and E[N9(X,Y)] are given as below, re-
spectively,
J(u,v)ep(u,v) du dv,
/ /{<o,1>m<uiilsph>6}x{<o,1>m<u§l£18(;l>0} ’

day

I, G(DA), G(Dey))
/(071)Q(UdF15Fh)CZZ1{ ar “l /SGZ

h
dp

dc — ;
/(0,1)ﬂ(ufGlgGl)chzl{J (F(Ppp, ) F(PEp), )/S

dd . P cp(u, v) dudv.
%J (F(D7,), F(D ), G(DG,)). G(Dey) /SFhX g Ol

cg(u,v) dv} du,

cg(u,v) du } dv,
Fh
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Remark: In the case of-copulas (as defined in (6.1)),andb can be chosen such that

2 2 —1+9 —14+9
a< -2, b< -2 a= + , b= i for somep, ¢ andd.
v v p q

Proof:  Without loss of generality, we consider the case that there is only one point of dis-
continuity in bothF7" andG, i. e.,Dp andD;. Let Cp(u,v) be the empirical copula defined by

the sample
n

1
]—

We consider the decomposition of the empirical copula measure into 4 sub-meﬁgﬁréﬁd,

cde andcdd, where

n

1
Cile0) =0 3 Iy (X,)<u.GnlY)) <0}
jEAS
for S = {cc}, {cd}, {dc} and{dd}, and
Cn(u,v) = Z C’;?(u, v).
Se{ce,cd,de,dd}

Then by the Glivenko-Cantelli Theorer@S¢(u, v) converges uniformly ta' (u, v), C,,Cld(u,v)
converges uniformly t@’Q(u, v), Cgc(u, v) converges uniformly t«ﬁ3(u, v), andCﬁld(u, v) con-

verges uniformly tcC4(u, v) respectively, and" (u,v) fori =1,2,3,4, are given by

clu,v) =
[ P(F(X) < wandG(Y) < v) i (u,0) € (0, F(D7)) x (0,G(D)
P(F(X) € (0,u) N S5 andG(Y) < ) i (u,0) € [F(DR). 1) x (0,G(Dg))
P(P(X) < uandG(Y) € (0,0) N S%) i (u,0) € (0, F(DR)) x [G(D), 1)
P(F(X) € (0,u) N 8% andG(Y) € (0,0) N S if (u,0) € [F(DR), 1) x [G(Dg), 1)
C2(u,v) =
0 if v € (0,G(Dg)
P(F(X) <uandY = D) i (u,v) € (0, (D) x [G(D). 1)

P(F(X) € (0,u) 8% andY =Dg) if (u,v) € [F(D5).1) x [G(Dg), 1)
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C3(u,v) =
0 ifue (0,F(Dp))
P(X =Dp andG(Y) <) if (u,v) € [F(Dp),1) x (0,G(D))
P(X =DpandG(Y) € (0,v)NSg) if (u,v) € [F(DR), 1) x [G(Dg), 1)
andC4(u, v) only put massP?(X = D andY = D) on asingle poin{ F'(Dg)} x {G(Dg)}-

Note thatC'! (u,v),i=1,...,4, are not probability measures and

4 .
= Z C'(u,v).
i=1
To obtain the almost sure convergence, it takes four steps.
Step 1.Let
RCC:// J (u, v)dCEE (u, v).
W= gy R )
Now we prove thaR%® — ;¢ = E[N“C(X,Y)] almost surely. We show thdt“ is uniformly in-
tegrable with respect to the measudés;¢(u, v) by showing//( 2 |7 (u, v) |1 TEACCE (u, v)
0,1
is bounded for some > 0. Using the Hilder’s inequality and the assumption (C1), one can de-
rive the following chain of inequalities, noting thét'Sc(u, v) putting mass- on each continuous
n

point:

/ / 012 |7 (u, 0) |1 FEACEE (u, v)

a(1+4€) ., )0(1+€) yoCC . o
< M [f 7@ ack
1/p 1/q
() @AFED goce b (P g v
< Ml{/(ojl)2 (1P dCge u, >} {/(07”2 (w14 ac(a, >}
1/p 1/q

< My, 2 DN

{nJEAcc ( +1) nJEACC (n—i—l)

n Py (n—l—l)

1

< M du < 00,

0 {u(l— u)(1—5)<1+e)}
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for ¢ < §. Combining the result above with the fact that®(u,v) uniformly converges to

Cl(u, v), we have

cc_, CClu.v Loy v) = Clu, v)ep(u,v) dudv
i //<o,1>2‘] ey //<<o,1>ﬂ8%>><<<o,1>ﬂ8€;>J gt o) dud

almost surely, which completes step 1.

Step 2.Let
Red ——// JCd(u,v U )dC’Cd(u,v).
n (071>2 1,Y2)%n

Now we prove thatRCd — p@ = E[N°(X,Y)] almost surely. We show that
JCd(u,vl,U2) Is uniformly integrable with respect to the measud&%d(u,v) by showing

//0 2 |JCd(u,vl,v2)|1+€d0ﬁd(u,v) is bounded for some > 0. Using the Hilder's in-
equality and the assumption (C2), one can derive the following chain of inequalities, noting that

dCﬁd(u, v) putting mass% on each point ori(0,1) N SIC;,) x Gn(Dq):

Sz e i)

" //0 1)2 “rac)

1/p 1/q
(0@ goed iy, (1+€)qgg0cd y o

( - Na(l+e)p p
= Gh)

r 1/p

o % | T(nil)<_1+6)<1+€)

1 1 1/p
= {/0 fu(l - u><1—5><1+6>}d”}

< o0,

IN

IN

IA

Mo

3I>—‘

IN

if e < 6. Combining the result above with the fact t@d(u, v) uniformly converges to’J2(u, v),
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we have

J(u,G(D), G(Dg)) / cg(u,v) dv du

/((0,1)ﬂ8%) SG

almost surely, which completes step 2.
Step 3. Under the assumption (C3), the proof fﬂﬁc — /Jdc = E[NdC(X, Y)] is similar to
that in step 2, so it is omitted.

Step 4.The convergence drz%d can be established using the SLLN. Let
dd _ // dd dd
Ry” = J " (u,u9,v1,v9)dCH" (u, v).
n <071)2 ( 1,42, Y1 2) n (u,v)

Now we prove thathd — udd = E[Ndd(X Y)] almost surely. We show that

Jdd ul,u2,v1,v2) is uniformly integrable with respect to the measudf%d (u,v) by show-

ing // ul,u2,v1,v2)|1+€d0gd(u,v) is bounded for some > 0. Noting
0, 1

*
n
that dC39(u,v) putting massﬂ on the single point(Fyn(Dg),Gn(Dg)), Where ”jid is

the number of observations OXJ, ;) such thatX =Dp andY D¢

dd 1 dd
L R e A

k
n
%Udd(ULUZULUQ)ﬁ—H

< 00,

as long as]dd(ul, u9,v1,v9) is finite, which is the assumption (C4). Combining the result above

with the fact thaﬁgd(u, v) uniformly converges t«ﬁ4(u, v), we have

Rdd — //01 ul,u2,vl,v2)d04(u,v)

= Jd(p(p ) F(Dp), G(Dé),G(DG))//SFXSG co(u,v) dudv

almost surely, which completes step 4.
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In summary, note that
Rn = REC 4 R 4 pde 4 pdd,

Theorem 3.2.1 is true.

3.3 Asymptotic Behavior of B,

In the case whei/y and.J are both continuous, in [11], by letting= [y 4, one can see of interest

is the asymptotic behavior of the statisttg, defined by

1 n
Ry =~ 21 J(Fn(X;), Gn(Y5)) (3.8)
j:

whereJ(-, -) is a function on(0, 1)2. Genest et al. [11] have shown that

asn — oo almost surely.
In the present case, the appropriate statistic is similar in form,tdbut with a significant
difference,H involves one or more jump points. Therefore, can be written of the form as in

(3.5), withJ = [y ». Almost sure convergence &fy, is established in the following theorem:

Theorem 3.3.1.Let J = le,e’ r(u) = u(l —w), d > 0, pandq are positive numbers satisfying
1/p+1/q = 1. Leta andb be numbers given by= (-1 + §)/p andb = (—1 + 4)/q. Consider
the conditions

(C1) J(ug,v9) < My r(uz)ar(vz)b,

(C2) 7 (ug, v1,v9) < My r(ug)® (independent of anduvy), and

(C3) 9 (uy, ug, v9) < M3 r(vy)P (independent ofi; andus).

(C4) In a small neighborhood of ea¢|ﬂ“(Dl§h), F(Dpy,), G(Dél), G(Dgyp)) €10, 1]4, for h =
L2,.,dpandl=1,2,.. dgq, Jdd(ul,UQ,Ul,UQ) is finite.

Under conditions (C1-C4)R,, — (3 almost surely where
B=E[N“(X,Y) + NUX,v)+ N(x, V) + NV (X v)), (3.9)
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with E[N° (X, Y] defined as in (3.7), anl = {cc}, {cd}, {dc}.

Since the proof is similar to that in Theorem 3.2.1, it is omitted here.

3.4 Asymptotic Behavior of A,

By taking J = [y in (3.5), we have the following Theorem:

Theorem 3.4.1.Letr(u) = u(l —u), d > 0, pandq be as in Theorem 3.3.1. Léﬁ and J§ be
the partial derivatives offS with respect tav and v, respectively, folS = {cc}, {cd}, {dc}, and
{dd}. Also, leta andb be numbers given by = (—0.5 + ¢)/p andb = (—0.5 + ) /q. Consider

the conditions

(D1)  J%(u9,v9) < My r(uz)ar(UQ)b,With partial derivatives satisfying
JE5 (g, v9) < Mar(u9)® Lr(vg)? and J§S (ug, ve) < Myr(ug)®r(vg)" ™,
(D2) T g, vy, v9) < Myr(ug)™ with Jﬁg (g, v1,v9) < Mg r(ug)* L,

v2
[ cptug,onto < v r(us)®,
vl

Z {|Jﬁd(u2, G(Dél)’ G(Dep))l cg(ug,v)dv } dug < 00
l

/(Oﬂm{UhSFh}C Sai

withn = vq or vy, Jﬁg (ug,v1,v9) is continuous w.r.tug onC(F') almost surely,
d d . . ,

Joy (ug, v1,vg) and Jyg (ug, vy, vo) are continuous w.r.tv anduvy respectively in

the small neighborhoods of rectangleégr”) x (G(D(_}l)’ G (D)) almost surely

forl=1,..,Dg,
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(D3) Jdc(ul, u9,v9) < My T(UQ)b with ngc(ul,uQ,vQ) < Mg 7"(112)6_1,

u9 b
ce(u,vz)du < Mg r(vg)”,
ul

7 r v cplu,vo)du » dv 00
/(0,1)m{ul5Gl}czh:{|Jn (F'(Dpyp,), F(Dpp), 2)|/5Fh g(u,v9)d }d 5 <

with ) = uq or ug, Jﬁlg(ul, u9,v9) is continuous wW.r.tvg onC(G) almost surely,
Jgf (u1,u9,v9) and Jgg (u1,u9,v9) are continuous w.r.tu) anduy respectively in
the small neighborhoods of rectangl(d@(D];h), F(Dpy,)] x C(G) almost surely
forh=1,..,Dp,

(D4) J{‘ff(ul,-, ) Jgg(-,ug,-,-), Jg{l(~,-,v1, ), andjgg(-,-, -,v9) are continuous w.r.t.
u1,u9,v] andvy, respectively, in a small neighborhood(dT(DZ;h), F(Dpp),

G(Dg,).G(Dgy) foranyh = 1,... Dpandl = 1,..., Dg.

Under conditions (Dl-D4)n1/2(Rn —K) — N(O,a2) in distribution asn — oo, wherex is

defined in (3.7), and
o2 = var | MC(X,Y) + M°Ux, V) + MU(x, V) + MU (X,Y)], (3.10)
with MC(z,y), MCd(x, v), Mdc(x, y) and Mdd(x, y) are given as below, respectively,

JEF (), GO pec(F) yec(@))
(F(2'), GW))dHp(' o)

I Jis
</ /{R\{UhDFh}}X{R\{UlDGl}} o=’y 2 (3.11)

' //{R\{UhDFh}}X{R\{UlDGl}} Iy <ty T (F(), Gy dHp(2', o),
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M I (x), G(Dg), G(D)I {zeC(F),y=Dgy}

/R\{Uhp 8! I{x<$/} JTSCQZ(F(:U/)a G(D(_;l), G(DGl))dHH(:U/,DGl)
=1 F -

e

+ I I P, G(DA,), G(Dey))dHy (2, D
> /R\{UhDFh} (y=D ) TS, GO G, GDG)AHy ' Dy

e
cd o — N
dp

hz_:l JdC<F(D];h)a F(Dpp). G(y))]{yec(g)}
93

dc —
+}L2::1/R\{UZ’DGZ} ]{ySyI}JUQ(F(DFh)’F(DFh)7G<y/))dH9(DFh,y/)

dp

’ h; /R\{UZDGZ} Ho<Dpy) A (P (D), F(Dpy,), G dHy Dy, )

dp

dc — / p
: hzzzl /R\{UZDGZ} Lig<D oy} Jug (F(Ppyp), F(Dpp). GW))AHg(Dpp. v,

% JU(F(D L, ). F(DEy,), G(Dg)), GG o=y y=D )

+2
hl

Hly<pog Jgg(F(D}h), F(Dpyp,),G(Dgy), G(Dgy)

Hy<Dey) JA(F(Dy,), F(DEp), G(DG), G(Dgy))

dd — -
T I{x<DFh} Jul <F(DFh)’ F(Dpp), G(DGZ), G(Dgy))
dd — -
-P(X =Dpy,, Y =Dgy).
In the case when botHy and.J are continuous, Genest et al. [11] showed that the stafigfic
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was a special case of multivariate rank order statistics whose asymptotic behavior was thoroughly
studied by Ruymgaart et al. [41], Rumyaart [42] arigsBnhendorf [40]. For continuou$, and.J ,

Genest et al. [11] proposed regularity conditions ensuring almost sure convergence and asymptotic
normality. In the present casfly involves one or more jump points, which causes. ftfenction

to be discontinuous of®, 1)2 as well.

In the rest of this Chapter, we will provide a scratch proof of Theorem 3.4.1. Without loss of
generality, we will show the theorem is true in the case that there is only one discontinuity point in
both F' andG, which should be completed in the subsequent sections, using arguments similar to
those used in [41].

We shall need the following empirical processes

Note that
P(Qg) = P({w : Fn(F~Y(F)) = Fn,Gn(G™1(G)) = Gp,forall 2,y andn}) = 1. (3.12)

The above identitiean(F_l(F)) = Fp and Gn(G_l(G)) = (G, are true even for the case
when there are jump points. At the jump point/of one can see thdf_l(F(DF)) = Dp. The

similar result holds fory as well.

3.4.1 Asymptotic normality of R

For small positivey define the set

Qv = {w isup [Fp — F| <v/2, sup |Gp — G| < v/2}. (3.13)
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Forw € 0y N Q~,,, the Mean Value Theorem gives
/270 (Fy, ) = nl 2 C(F, ) + Un(F) IS (@n, ),

for all z € C(F). In the formula aboveb,, is defined by®,, = F + n(Fn — F), wheren =

n(w,x,n) is a number betweehand1. Let

AF = [XlnvDF)U (DFaXnn],
Ag = Y1 Da)U (Dg, Yanl,

where
Xp(0rYyy) =ming <<y Xj (0rYy),
Xnn( or Ynn) = maxlgjgn Xj ( Oerj).
Note that
3 4
nl2(REC— 1) =3 Ay + Y By, + By + Cn,
=1 1=1
where
= E[N(X,Y)] with oy replaced by in (3.9),
A= 2] TP (), Gy)d[Hn (. ) — Hy(z, ),
{R\Dp}x{R\Dg}

(F(2))Jug (F(x), G(y)dHg(z, y),

on = //{R\DF}X{R\DG} o

A0 =[] iyt T EOEE R GO )

_ c ypl/2 (B (x
Byin= XM [f Ly 60

—J(F(z), G(y))|dHn(z,y) — Aoy},
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yon= (@) [ /{ D0 U P (0n(2). G

IS (F (), G))| dHn(x,y).

X (@) / /{A FXAGIN{{R\Dp}x{R\D:}} UnlE(z))

Jig (F(x), G(y))d[Hn(x,y) — Hy(x,y)],

v4n — X(Q’m){ (F(z))-

Un
/[{AFXAG}W{{R\DF}X{R\DG}}

TGS (F(x). Gy))dHp(w,y) = Az, |

L N )
—J(F(x),G(y))] dHp(z,y) — Agp,
Cn— n1/2 JCCFnZ‘,Gn —JCCFnZ‘,G
L ;e 2 (e Gnlo) = o), Gl

—JE(F(2), Gn(y)) + JE(F (1), ()] dHn(z,y).

wherex (€2+,,) denotes the indicator function 6%y,,; Hy(z,y) is the empirical cumulative distri-
bution of Hy(z,y) .

Note that with a further decomposition 6f,, one has

Cy1n = x(QF, [T (Fn(z), Gn(y)) — J“(Fn(2), G(y))

| [{R\Dp}x{R\DG}

(P (2), Gn(y) + JC(F (2). Gly)] dHin(, ).
Cran= 3 [ 1 gy U (B0, Gl

—J§5 (@n(2), G))| dHn(x.y).

We start with a few lemmas to be used in the proof.
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Lemma 3.3.1 For any¢ > 0 and function-(u) = u(1 — u), the functionr(u)_5 is symmetric
about%, decreasing or(O, %] and has the property that for eaghn (0, 1) there exits a constant
M = Mﬁ such that

r(8s) 8 < Mr(s)™¢ for0<s<

Y

DO | —

and
(1= B(1 = )8 < Mr(s)~5 for% cs<l.

Proof of Lemma 3.4.1 can be found in [41].

Lemma 3.3.2 Let 5, and ¥y, be functions om\,,; andA,,5, where

(X1, Xnnl, if Xpn # DdF
A

nl

and
[Y1n7 YnnL if Ypn # DdG

>
|

n2 —

respectively, satisfying

min(F, Fp) < &p < max(F, Fp)

and

min(G, Gp) < ¥y, < max(G,Gp)
where defined. Then uniformly for=1,2,-- -,

() sup r(®n)~Sr(F)S = Op(1), for eacht > 0,
At

(i) sup r(¥n)” Tr(G)'T = Op(1), for eachn > 0.
An2
Proof. It suffices to prove (i). From Lemma A.3 in [45] and (3.12), it follows that one needs

to show that for each > 0, there exists a constaft= ¢ in (0, 1) such that
PQp)=PHw:0F <Fhp<1-p(1-F)anyz(w) onan}) >1—c¢, (3.14)
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for all n andF.
LetA={w:B8F < Fp <1-p6(1-F)anyz(w) € A, NC(F)},andB = {w : BF <
Fn<1-p6(1-F)anyz(w) € A, NJ(F)}

Note that in our case,

P({w:BF < Fp <1-04(1-F)anyz(w)onA,})
— P(AUB)
= P(A)+ P(B)
= P{w:z(w) € A1 NC(F)}) - P({w: BF < Fn <131~ F) | z(w) € A1 NC(F)})

+P{w:z(w) € Ay NT(F)})-
P{w:BF <Fp<1-0(1-F)|zw)eA,;NT(F)}).

/
In Lemma 6.1 in [41] (3.14) has been verified for all continudufor a constants = 3, which

givesusP({w: BF < Fp <1-p3(1—F) | z(w) € C(F)NA,1}) > 1 — €. Noting that
P({w: 2(w) € By NCIRN) + P({w: a(w) € By NT(F)}) = 1,

to prove (3.14) we only need to show whefw) € A,,1 N J(F), P({w: BF < Fp <1—6(1—
F)| anyz(w) € A,y NJ(F)}) > 1 — €is true for a constant = ﬁz. This is a direct result of
the Glivenko-Cantelli Theorem, which completes the proof.
Lemma 3.3.3 Uniformly in all F', we have
(i) sup |Un(F)— Uﬁ(F)|r(F)p_1/2 —P 0, asn — oo, foreachp >0,
an

(i) sup Un(F)|r(F)P~Y/2 = 0p(1), asn — oo, foreachp > 0,
(—00,00)\{U, D }

whereU,s (F(z)) = nl/Q(Fn(az) — F(z)), andFy, is the empirical distribution of'. Note thatF},
was defined to be—— £3,.
n+1

Proof: (i) Note that

Un(F) - V(P2 = /2 F o2
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and that for any fixed € (0, 1), we have

n n

Since F'(X;) are i.i.d. uniform random variables, given any arbitrary- 0, we can choose a

3 = B¢ in (0,1) such that

P(ggF(Xln)gF(Xnn)gl—g) >1—¢

for all n and all " with F'(D ) # 1, which is obvious since

i (§ < F(Xqp) < F(Xpn) <1- é)

n

for sufficiently smalls.

Combining with all above results, we proved (i). (ii) follows from (i) and (iii) of Lemma 4.2 in

[41]. Proof completed.
Proof of Asymptotic normality of RSC.

(1) Note thatAy,, can be written as
1/2 -
Apy =nY > At
j=1

whereAy ;, = J(F(X;), G(Y})) - IticAee} ~ pee. The Ay ;, are iid. with mean zero. By
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the assumptiofD1) and the Hlder’s inequity, we have
2+9,
| T(F (@), G(y)|“T°0dHp(z, y)
/ /{R\DF} x{R\Dq}
2+0

o(F(2N (2160 b(2+0() .
//{R\DF}X{R\DG}Ml (=) (G) [dHy(z,y)

1/pg
r(0)(2400)d0 4
[/(07” ()P 2+ Od]

1/190 1 1/Q0
240y oy (— 3+ (2+00) i (=5 HO)(2450)
K /(0?1) " d] U(o,l) v d]

IN

1

< 00,
for some selecteg), gy ando satisfying(1 — §)(2 + dp) < 1, which means thaﬂljn has a finite
absolute moment of ordert- o) for somedy > 0. Moreover, the term on the left hand is uniformly
bounded above of order+ §. Using the CLT, we get the asymptotic normality4f,,.

(2) Note thatA,,, can be written as

— pl/2 o (2) — F(2))JEE (F(x x
Ay L0yt ) ~ DB Gty
n1/2 nﬂf—An[E EC x), Z,
i )~ S (). Gty
- A§n1 +A§n2’

whereFy, (z) is the empirical distribution function of. Let

0 |f€C<XJ

cij(ﬂf):

n

* i —-1/2 , , —

Then A5 ; can be written as n / E Agjn,  where A, =
j=1

//{R\DF}X{R\Dg}(¢Xj(x) — F(2))Jy5(F(z),Gy))dHg(x,y) are iid. with mean

zero. Note thatngXj(x) — F(x)| < 1. Under the assumption (D1), we have

; r0=L(F(2))r? x,y).
2jnl <M [ o impgy ™ @GOy
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Note that// ra_l(F(x))rb(G(y))dHQ(x,y) < oo uniformly as long as we
_ {R\Dp}>x{R\Dq}

can find some; andgq; satisfyingl/p; +1/¢; = 1 and(a — 1)p; > —1 andbgy > —1. Thus,

we have shown tha@n1 has an absolute moment of orde#- 41, which leads to the asymptotic

normality of A3 . Note that with the samgy andg;

; n1/2 7 cc
A2n2 - n+1 /[{R\DF}X{R\DG} Fn(ZE)JUQ (F(x), G(Q))dHe(x7 Y)
n!/2 z cc
S Tsw |[Fn ()] //{R\DF}X{R\DG} TGS (F(x), G(y))dHp(, )
= op(1).

Therefore, we have the asymptotic normality4f,, .

(3) Similarly, note thatds,, can be written as

Agp = (Gnly) = G(y)Jog (F(2), G(y))dHg(x, y)

" //{R\DF}x{R\DG}

nl/2 n(y) — Gn € (F(x), .
" /{R\DF}X{R\DG}(G <y) G <y))J 2<F( ) G(y))ng( y)

— * *
= Azn1 T 4302
where G (y) is the empirical distribution function ofy’.  Similarly, the A§n1 can
n
be written asn~1/23" A3:.. where A3:, //
= ’ {R\Dp}x{R\Dg}

G(y))Jgg(F(:c), G(y))dHy(z,y) are i.i.d. with mean zero. The same asymptotic conclusion can

(¢Yj (y) —

be drawn forAs,, .

n
(4) Note that thed,, + Ay, + A3, can be written aSZ n_l/Q(Aljn + A2jn + A3jn) +
J=1

n
* * 2 : —1/2 ;%% * * Kk

1Ljn Ln = A1jn + A2jn + A3jn

J=1
depends or(Xj,Y]-) only, hence are i.i.d. with mean zero, and the term:,sn2 —P (0 and

A§n2 —P 0 asn — oo. Using the CLT, we have that thé;, + Ao, + A3, is asymptoti-
cally normally distributed with mea

The asymptotic negligibility of thé3— andC'— terms will be stated as corollaries.
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Corollary 1. For fixedy, B, 1y, —P 0 andCy 1y —P 0asn — .

Proof: Note thatP(Q%n) — 01in (3.13) for anyH by the Glivenko-Cantelli Theorem, and

because the distribution efip | F,(x) — F'(x)| does not depend oHy. This completes the proof.
T

Corollary 2. For fixedy, B —P 0 and Cyon —P0asn — oo.

v2n

: L 1 . .
Proof:  According to Lemma 3.3.3 (ii) withh = 3 for givene > 0, there exists a constant

M’ such that
P(q,,) = P(w : {sup |Un(F)| < M andz € C(F)}) > 1 —¢ (3.15)
X
for all n and Hy), andM"" such that

P(Q,) = P(w: {gup r @S (F) < M} > 1 -,

nl

which givesP (€2, N 9,,) > 1 — 2¢. Also,
X(Q1,, N1 Q9 )[Byoy
< M Swp Ly |65 (@n (@), Gly)) — G5 (F().G)]

X, 0602) / /{<—oo,X1n>u<Xm,oo>}x{(—oo,nmu(xfm,oo)} UnlF ()

[T (Pn (), G(y)) — Jig (F(x), G(y)]dHn (z, y)

By the Glivenko-Cantelli Theorem,
P{(=00, X1p) U (Xnn,00)} x {(=00,Y1p) U (Ynn, 00)}) — 0

for any Hy, so the second term on the right side of the inequality above converges to
0, asn — oo. The function Jﬁ%(uz,vz) is uniformly continuous on(0,1)2. Since

|®p — F| < |Fp — F| where &, is defined, the Glivenko-Cantelli Theorem yields
SUPA 12 A Jﬁ%(@n(:r), G(y)) — Jﬁ%(F(x), G(y))| —P 0 uniformly for Hy. Therefore, we
have shown thaB. o, — 0 asn — oc.

A similar argument may be used ffit' 9, |. Proof completed.
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—P 0asn — oo.

Corollary 3. For fixedy, B3,

Proof:  Noting that{Ap x A} N {{R\Dp} x {R\Dg}} = Ap x Aqg,

Bysn = x(Qp) Un(F(x))Jug (F(x), G(y))d[Hn(z,y) — Hy(z,y)]
73 X5y //AFXAG 2 Y Y Al
=00 [} PP, CMatr) )

O ) [ UnlP) ), Cdlnte ) ~ Hylow)

(3.16)
where(2,,, is as defined in (3.15).
Note that the second term in (3.16) convergeg ito probability, and
(@ o) [f Un(F(2))JGS (F (@), G(y))d[Hn (. y) — Hy(a,y)]
AFXAG
< x@u oM [[ JSE (F(x), G(y))dlHn (2, y) — Holw,p)].
AFXAG
< @ MM ([ ditnay) - Hyo)
AnxA
F*2G

whereM'" = SUDA 1x A )JCC (y))‘. From the Theorem 1.9, (i), from [43], the above

integral converges t0 in probability asn — oo. Proof completed.
Corollary 4. For fixed~, Boan —P 0asn — oo.

Proof: Note that

Boan = x(Qyn N0, { /] s sy, U@ CiHg(o.y) = Agn}

(g N9 ) { A e, Ut x>>J5;<F<x>,G<y>>dH9<:c,y>—Azn}
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X 081n) / /{<—oo,X1n>u<Xnn7oo>}x{(—oo,nmu(mn,oo» UnlF)

Jig (F(x), G(y)) dHp(x,y)

+X( @y N 95,) { /] g, U VS FE). Gty o)~ Azn}

where €y, is as defined in (3.15). By the Glivenko-Cantelli Theorem,
P({(—00, X1,) U (Xnn,o0)} x {(—00,Y1y,) U (Ynn,00)}) — 0 for any Hy. Combining

with the fact that.]ﬁ% is uniformly continuous or{0, 1)2, the righthand side converges@pas

n — oQ.

To seeBs,, converging to 0 in probability as — oo, let us notice that

4

B.;, =nl/2 JC(F(x), Gn(y)) — JE(F(x), G(y))|dHn (z,
3 L0y g 2 G0 = S0 GO0

—Ag,, .

In summary, we have shown that all thés¢erms and’'-term are negligible. Combining with

the results of thesd-terms, we have established the asymptotic normaliti

3.4.2 Asymptotic normality of R/ and R’

It suffices to show the asymptotic normalityBﬁd. Note that

4 6
2R ) = 37 Ay + > By,
i=1 i=1

where
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A = nl/? [{R\DF} U F(2), G(DZ), G(DG)dlHu(w, D) — Hyl, DG
= T cd x P T :
Agyy = /{ 1y UV (F(2). G(DG). PG ity D)

Va(G(DR)) T (F(2). G(DG). G(Dg))dHg (x, Dg):

J
J

By, = /{ Un(F(2))JE(@n(), Gn(D), Gn(D))dlHn(z, D) — Hyl, D)
/{ Va(G(DG) JEUF(x), ©n(Dg), Gn(D))dlHn(z. Deg) — Hylw, D)

B3, = /{R\DF}Vn(G(Dg))Jgg(F(x),G(DC_;),\I/n(DG))d[Hn(%pG)_He(%pg)]
= 2N[gcd 2).Gn(D2). G
Bin =y P @2, 6n(0G).Gn(G)

~J§A(F (), G(DG), G(P) | dHp(x. Dgy)

_ — cd _
By, = /{R\DF}vn<G<DG>>[JU1<F<x>,@n<DG>,Gn<DG>>

—I§l(P(@), (D), G(D)) | dHy(x, Dg)

cd - — n
/{R\DF} Va(G(DE)) IS (), G(DG), Un (D)

~J§d(F(2), G(D), G(Dg))| dHy (e, Dg)

whered®,(-), On(-), and¥y (-) are defined by the Mean Value Theorem.

Next, we will show that thed— terms are asymptotic normal and tBe- terms converge t0

in probability.
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(1) Note thatAq,, can be written as
1/2 S
Ay =n"Y > Al
Jj=1

whereAy j, = JCd(F(Xj), G(Dg™), G(DG))']{jeAcd} — @, Note thatd, ;,, are i.i.d. with
mean zero. Since
v2

JCd(U,Ul,UQ) = %Iog cg(u,v)dv,
U1

using assumption (D2), we have

cd - 244,
/{R\DF}U (F(x),G(Dg ™), G(De)|“T0dHy (2, D)

cd - (2+6p)p L/po
{[{R\DF}U (F(2),G(Dg ™), G(DPg))[M*T70 OdH@(x,DG)}

(24+4() Yo
: 1 0)90dHy(x, D
{/{R\DF} ot G)}

cd, — (2+dq)p
{ /(0,1)mslgu (u, G(DG ™), G(Dg))|(2+H0)P0 /SG

IN

1/pg
cg(u, v)dv du} :

Under the assumption (D2),
IJCd(u’ULUz)I(QMO)pO/S co(u, v)dv du
G

< M / Tua(2+50)p0/ cp(u,v)dv du
*lonss, ) s Y

/(0,1)m81%

(1) M2100)P0 1 (1))@ g
< M4M6/(0’1)m3% () 20000, () 4

< o0,

if a(2 + 6g)pg + a > —1. By the CLT, we have the asymptotic normality 4f .
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(2) Note thatAs,, can be written as

4 — n1/2 FAn €T F x 'Lcl/'! X s Z) y 3?,
2n — /{R\D }( ( ) ( ))J 2(1 ( ) G( G ) G(EG»dH@( DG)
+7’L]'/2 In.fE —I-Aniﬂ 5 ! l’,(;’D 7(;D dH .CE,D
/{R\D }( (z) (z))J 2( (), G( G ), G( G)) 6( G)

_ * *

2n2-
Furthermore A% . can be written ag—1/2 Ao, whereAs :/ oy . (r)—
2nl j=1"2jn 2jn {R\DF}< Xj( )
F(x))Jng(F(x),G(DG_),G(DG))dHe(x,DG) are i.i.d. with mean 0. Using the assumption

(D2), we have

—1
| A9 | §M5/ r¢ (u)/ cg(u, v)dv du
J (0.1)NS, Sc
< Mj MG/ T2a—1(u)du < 00

(0,1)NS%
as long ag2a — 1) > —1. Thus we have the asymptotic normalityA);nl. Using the assumption

(D2), we have

* _ \/ﬁ - cd —
Aopo = n+ 1 [[R\DF} Fn(x)JuQ(F(@,G(DG ), G(Dg))dHy(z,Dcy)
i ; cd —
< Lt lFn() {R\DF}JuQ(F(m),G(DG ),G(Dg))dHg(x, D)

Therefore, the asymptotic normality df,,, has been established.

(3) Note thatAs,, can be written as

Ag, =nl/2 /{ R\DF}[én(DG—) — G(DGIIF(x), G(DG ™), G(Dg))dHy(x, D)

nl/2 - }[Gn(DG_)—Gn(DG_)]J{fii(F(x),G(DG_),G(DG))ng(a:,DG)
F

o ES k
= A3, A3,

Similarly, A% | can be written as—1/2yn A3, whereAds,, = /

I~ tmopy 176
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Gn(DG_))Jgf(F(x), G(Dg ), G(Dg))dHg(z, D) are i.i.d. with mean zero. and

1 ifY: <u,
Yy . (y) = J
J 0 if Yj > .

Noting that the absolute value of the random Q&l;t? (D) — Gn(Dg )| in A3 jp, is bounded

above byl, we have

Azl < /(o s, 1754, G(DG ™), G(Dg) y/ (u, v)dv du.

By the assumption (D2), the integral above is finite. Therefﬂ@m has an absolute moment of
order2 + 9 for somed; > 0, which leads to the asymptotic normalityﬂgnl.

Using argument similar to that used fA§n2 as in (2), one can show th@n2 = op(1). In
summary, we have the asymptotic normality/Af,, .

(4) Result ofA,, can be obtained in a similar way by noting thif,, can be written as

Ay = 012 [ (Gn(Dg) - GG F(@).G(DG ). G(DG))dHy(x. D)
{R\Dp}
+nl/2 / Gn(Dg) — Gn(D@)JSH(F(x),G(Dg ™), G(Dg))dHg(x. D)
{R\Dp}
Azklnl + AZnQ’
n

and A7 | can be written as—1/2 > Ayjp, where Ay,

j=1 /{R\DF}
Gn(DG))Jgg(F(x), G(Da™),G(Dg))dHy(x, D¢y) are ii.d. with mean zero.

(d)yj (Pg) -

Using arguments similar to those in (3), we can get that is asymptotically normally dis-
tributed with mearn.

(5) Finally, we show that the sum of;,,, i = 1, ..., 4, converges to a normal random variable
n

with mean0. Note that the sum can be written s’ n_1/2(A1jn + Agjp + Agjin + Agjn) +
j=1
A% o+ A% o+ A Zn V2455 4 A% A% 4 A% o whereARt = Aq. &
2n2 3n2 dn2 = 2in 2n2 3n2 dn2: 2jn Ljn
7=1

Agjn + A3jp + Ayjp depends orfX;, Y;) only, hence are i.i.d. with meehas shown before

37



(Similarly, we can defineﬁlggn for R%C), and A3, 5, A§n2 and Aj‘m are negligible. Using the

CLT, we have that the sum of;,,, 7 = 1, ..., 4, is asymptotically normally distributed with mean

0.

We will finish the proof ofR¢? by a few corollaries.
Corollary 5. By,, =P 0 asn — oc.

Proof: Note that

—He(:t,DG)]
c - cd ). Gn (D5 n n(z
(@6, /{R\DF}Un(F( NI (@ (@), Gn(Dg). Gn (D))l (2, Dg)

where()y,, is defined in (3.15), which tells us the second term on the righthand side of the equality

above goes to 0 in probability as— oo. Also,
Q1) /{R\DF} Un(F(2))J53(®n(x), Gn(Dg), Gn(D@))d[Hn(z, D) — Hy(w, D)

M’ T (®n(x), Gn(D), Gn(Dg))d[Hn(z, Dg) — Hy(x, Dg)

IN
=
s
P S
ey
—
>,
&
——
S
[}

= (@) [ M’ T (@n(x), Gn(D), Gn(Dg))d[Hn(z, Dg) — Hy(x, D)) +

M I (@n (), Gn(Dg), Gn(Dg))d[Hn(z, D)

the second term on the righthand side of the inequality goes to 0 in probabitity-aso by the
Glivenko-Cantelli theorem and the assumption (D2). Siﬁ[@%(@n(x), Gn(D(_;), Gn(Dg)) is
bounded above almost surely where A - and Hy,(z,y) converges tddy(z,y) in distribution
asn — oo, using Theorem 1.9 (i), [43], once again, we have the first term on the righthand side of

the inequality above converges to 0. In summary, we have showBthat-F 0 asn — oc.
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Corollary 6. By,, —F 0 andB3,, =P 0 asn — oc.

Proof. It suffices to show the result faBy,,. By the CLT,V,(G(D ")) converges to a

normal random variable as — oo, S0 we can define a s&,, such that
P(S2p) = P{{w: sup [Va(G(Dg )| < M'})>1 e
Therefore,

By, = x(Qgy) /{R\DF} Va(G(DG )5 (1), 0n(D), Gn(D))dlHn (2. D)

—Hy(z,D¢y)]

C

+x (9%, Va(G(DG ) JEL(F(x), 0n (D), Gn(Dg))dlHn(x, Dg)

)/ g
{E\Dp}
—Hy(z,Dg)],
and the second term on the righthand side of the equality above goes to 0 in probability as.

Also,

1(Qa,) /{ - Va(G(Dg ™) JEHF(2).0n(DG). Gnl(De))d|Hn(x. Dg)

M JEUF (2), 00(D,), Gn(D@))d[Hn(w, D) — Hy(z, D)

IN
=
[\~
S
m
ey
—
3
&
—
W

NG /AF M JG(F(), 0n(DG), Gn(De))dlHn(w, D) — Holw, D) +
W) | ey ey M (@) 60(DG). Gr(PE . g)
—Hy(z, D)l
the second term on the righthand side of the inequality goes to 0 in probabitity-aso by the
Glivenko-Cantelli theorem and the assumption (D2).
From the assumption (D2), combining with the definition ©f,(-) and the fact that

Jgg(uz,vl,@) is continuous with respect tay, vy, and v9 on (0,1)3, we know that
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Jﬁ%(F(m),@n(Dé),Gn(DG)) is bounded above almost surely for € Ap. Noting that
Hp(r,y) converges taHy(x,y) in distribution asn — oo, using Theorem 1.9 (i), [43], once
again, we have the first term on the righthand side of the inequality above converges to 0. In

summary, we have shown th&b,, — 0 asn — .
Corollary 7. By,, =P 0 asn — .
Proof:  Note that
By =x(Q1) /{R\DF} Un(F(2) 5 (@n (2), Gn(Dg), (D)
—J§A(F(2), Gn(Dg), Gn(Dg)) | dHy(z, D)
) /{ 1y U IS (20(2).Gn(D). Gn(D)

—J§A(F (), Gn(Dg), Gn(Dg)) | dHy(x, D)
where(2;,, is defined in (3.15). Therefore, the second term on the righthand side of the equality

above goes to 0 in probability as— oo. Also,

cd —
() /{R\DF} Un(F @) (@n (), Gn (D), Gn(Dg)

~JEA(F (), Gn(Dg), Gn(Dg)) | dHg(x, Dgy)

IN

1 red —
(@) /{R\DF}M 50 (@n (@), Gn (D), Gn(D)

~J§3(F(2),Gn(Dg), Gn(Dg))| dHg(x, D)

= () [ M (@n@), Gn(D).Gn(PE)
F

— I (F(2), Gn(Dg), Gn(Dg))| dHp(x, D) +

! yed " —
(S /{ ety ! S @02 6. Gn(PG)
~J§3(F(2),Gn(Dg), Gn(Dg))| dHg(x, D),
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the second term on the righthand side of the inequality goes to 0 in probability-aso by the
Glivenko-Cantelli theorem and the assumption (D2). Si|nl%(c1>n(x), Gn(DC_;), Gn(Dg)) —
Jgg(F(x), Gn(DC_;), Gn(D¢))| is bounded above almost surely whenc A and Hy(z,y)
converges tdiy(x, y) in distribution as» — oo, using Theorem 1.9 (i), [43], once again, we have
the first term on the righthand side of the inequality above converges to 0. In summary, we have

shown thatB,,, —F 0 asn — co.
Corollary 8. Bs,, — 0 andBg,, =P 0 asn — .

Proof:  Using similar arguments to those used in the proof of Corollary 7 and Corollary 8,
one can see this is true, so proof omitted.

In summary, we have the asymptotic normalityRﬁd.

3.4.3 Asymptotic normality of R4’
Note that
P 4
nl/Q(R% - 'ud )= Z App + Z B
k=1 k=1

where
pdd = EINYd(X,Y)),

Ay = nM25U(P(DR), F(DR), G(DR), G(DG))[dHI — ar ),

Agp = ValG(DE)JIF(DR), F(DR),G(Dg,), G(Dg))dHY,

Agp = Un(F(Dp))Jde

u9 (F(Dr F<DF>7G<D_

) o) G(Dg))dH™,

Agn = ValG(D))IEUF (D), F(Dp), G(D), G(Dg)dHY,

Asp = Un(F(Dp)J4U(P(DR), F(DR), G(Dg), G(Dg))dH Y,
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By = Va(G(D)JH(F(DR), F(DR),G(D), ¥y)dHA

—J3d(F(D7), F(Dp),G(DL), G(De)dHM),

o)
By = Un(F(Dp)[J44(F(DR), @n, G(DL), G(Dg))dH

~JH(F(Dy), F(DR),G(Dg), G(Dg))dH™M),

By = Va(G(D))IEF(DR), F(Dp), On, G(Dg))dH

~J§(F(Dy), F(DR),G(D), G(Dg))dH™M],
By= Un(FDR)J{d(Tn, F(DR),G(DG), G(Dg))dHT?

—J(F(DR), F(DR),G(Dg), G(Dg))dH ),

with ”:ld = {the number of observations such tl'ja]t =Dp ande =Dg}fork =1,2,..,n,

and
*
n
amft = 4
dHY — P(X = Dp andY = D).
We need to show that thé-terms are asymptotically normal, and tBeterms converge t0 in

probability asn — 0. By the SLLN, it is obvious thadngd — dH almost surely ag — oo,
and by the CLT, in distribution

nl/2[qgdd — qdd) - N(o, [aH(1 — ardd))
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asn — oo. Note that

JU(F(D}), F(DR),G(DE),G(Dg)),
JA(F(DL), F(DR),G(Dg), G(Dg)
J(F(DL), F(DR),G(Dg), G(Dg)),
J4(P(DR), F(DR), G(DS),G(Dg)), and
J(F(DL), F(DR),G(Dg), G(Dg)),

in Ay, Aoy, Asp, Ay, and As,, respectively, are fixed numbers. Therefore, théeerms are
asymptotically normally distributed with mean 0. To show the sum ofAkterms is still normal,

one only need to notice that

Un(F(Dy)) = nt/2(En(D +nl/2(Fp(D

— 12 2 (Ux,(Pp) = F(DR) + op(1)
j=1

=)~ F(Dy)) o) — Fn(D7)

'
~1/2 x
— p1/ ST HE +op(1)
j=1

Un(F(DR)) = nl/2(Bn(Dp) — F(Dp)) +nt/2(Fa(Dp) — En(Dp))

— p1/2 3 (¢Xj (Dp) — F(Dp)) + op(1)
j=1

—-1/2
= RN Hy +opl)
J=1

Va(G(Dg)) = nl/2(Gn(Dg) - G(DG)) +nl2(Gu(Dg) — Gu(Dg)

= 0123wy, (Dg) ~ G(DR)) + op(1)
j=1

n

_ —-1/2 *

= n / ZHBkn+0p<1)
j=1

Va(G(Dg) = nl2(Gn(Dg) - G(Dg) +nl/2(Gn(Dg) - Gn(De))
= 07123 6y, (PG) ~ G(DG)) +opl1)
j=1

n

= 023" HE 4 op(1)
j=1
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and

n n
12 pdd  pddy . —1/2 dd\ _ —1/2 "
nl/2[qpdd _ gpdd) — ,—1/ §j<1{j€Add}—dH ):n 25" HE
j=1 7=1

WhereH;kkn are i.i.d. and depend ofX;, Y;) only, fork = 1,....5. The Ay, + Aoy, + A3y, +

Ay, + As,, can be written aszn: n_l/QAji;fn, whereAy7, are i.i.d. sum of products o, |
and some certain fixed numt])e:r,land four negligible terms. Using the CLT one more time, we have
that the sum ofA-terms is asymptotically normally distributed with mean

Under the assumption (D4)3; converges t® asn — oo, for: = 1,..., 4, in probability. We

have shown that thR%d is asymptotically normally distributed with mean

3.4.4 Asymptotic normality of R,

To show thata /2R, = nl/Z(R%C + R¢d 4 Rdc | Rddy s asymptotic normal, we need the

following notations:

nb/2(REE — u) = R ~ N(0,var(M(X,Y))),
n2(RGE — o) = R~ N (0, var(Md(X,Y)),

n/2(Re — ey = RAC ~ N(0,var(M9e(X, Y))),
nl/2(Rdd — ,ddy o Rdd _ N(0,var(MI9(X, 1))

Noting that
nl/z(R%C — ey =

n_1/2A>1k;fn + afew negligible terms

=

I
—_

J

nl/2(Red — yedy = n_l/QAEfn + afew negligible terms

=

7=1

nl/2(Rde — dey = n_l/QAg;fn + afew negligible terms

=

I
—_

J
n1/2(R%d _ Ndd) _

M=

n_l/QAZ;n + a few negligible terms
1

.
I
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by the CLT, we have

1/2 Z n_1/2 Aljn + AQJ” + A3jn + A4]n) + afew negligible terms
7=1
2
= N(0,0%)

wherep = (€ + p¢d + pde 4 ;) and

o2 =varMC(X,Y) + MUX,Y) + MU(X,Y) + MU (X, Y)].

3.5 Proof of the Main Result

We finish this Chapter by providing the proof of Theorem 3.1.1.
Proof of Theorem 3.1.1As shown in Section 3.3B, — ( almost surely, and in Section

3.4 Ap, is asymptotically normal with meahand variancer2

, asn — oo. Using the Slutsky’s
Theorem,nl/Q(én —0) = nl/QAn/Bn is asymptotically normal with meaf and variance
0=02/8%

In summary, we have shown the consistency and asymptotic normality of the semi-parametric

estimatord,.
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CHAPTER 4

A VARIANCE ESTIMATOR OF
BIVARIATE DISTRIBUTIONS

2
In Chapter 3, we provided an explicit formula for= % Suppose estimatore andﬁ2 could

be found fors2 and 62 respectively. A rough-and-ready estimator of the asymptotic variange of
would then be given by = ;_; If the variables given in (3.9) and (3.10) could be observed, one
could simply estimate2 and/j by the respective sample variance and sample mean. As this is not
possible, the corresponding pseudo-observations can be used instead, which are defined in term of

Chn, the re-scaled empirical copula function of the bivariate sample, namely

Ll
C’n(u,v)zﬁ ZI

S { Pa(X))<uGn(Y)) <o}

cc jed  de dd ; *
Let 19’9, leﬂ, 59,0’ andleﬂ be the decomposed componentség;@ with respect ta, in (2.7)

under different situations. Similarly, one can deflﬁ‘é lgd, lgc, andlgd for ly.
From (3.9), we have the following:

B = [N6e 4 N6 e 4 N, (4.1)

1

S|

n

J
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; I 5 3 Z 5 6 7
<Xj Yj) (2.1,1.0)| (2.5,0.5)| (3.2,1.0)| (3.2,1.5)| (3.2,2.0)| (3.5,2.5)| (3.7,2.5)
Bx) | 1 2 > ° ° ° !
0 M L I N N LT I A

Table 4.1. Relationship amortg;, ;), R x( ;). andRy- .
where
\TCC cC (p . .
N3 = e el p0n: Fn(X)). Gn(Y))
Nt = [{jeAcd}lgfle(énaFn(Xj)’G”%—)’G"(Yj))
NIC = Ipieq, 3105 0n. Fa(X}). Fn(X ). Gn(Y)))

To geté—2 for o2 in (3.11), we need more notation. Note that rearrangﬁﬂ(g-, Yj}, j =

1,...,n, shall not change the value 6f. Therefore, we assume the sample is in an order such that

Xj’s are in non-decreasing order. Let

Ry() =2 T(x<x,)

be the rank ofXj in the sequence oX’’s (Similarly, we can defineRy(j) for Y’s), and let

be the next lower rank taRX(j) within the X’s sequence. Similarly, we can deflrﬁay(j) for

By = 22 11x<x)

Ry(j) within theY’s sequence.

Under the current setting, for any 7, the following always holds:

Rx (i) = Bx(jy

a7




Table 4.1 gives a simple example showing the relationship art@rXf}ngj), R

RY(j)' As shown in the tabIeRX(B) = RX(4) = RX(5) = b, andRX(5)

oo

X(3) ~ Rx () = 2 by definition.

:R_

x(j) and

X(4) ~

Now we can work on the details. Note that in (3.16)2, is the variance of the sum of

MS(X, Y), whereS = {cc}, {cd},{dc},or{dd}. For a given sampIéXj,Yj), o

timated by the sample variance of the following items:

2

can be es-

M = 16(0n, Fn(X )Gn()ﬂgeAw}+

RX%)RY%)
* ZRY@ﬁﬁﬁ%ﬁ9W2G%’n+1’n+1 keAcc)

NG = 16 O, F(X), GV ), Gin(Y, IN{eA,q,Y=Dey)

+ Zzlﬁug

=1 k=j
& (é Ry Py Ry

G n (A Bx) By By g

LD DENED DR

- Bx) By (k)
22%“2< M+l n+1

I
n+1’n+1’n+1) {keA g, Yp,=Dgy}

I
n+1’n+1’n+1) {k€A q. Y=Dgi}

G R
P S SN~ e e 4 e R
oo\ n+1  n+l’ n+l {k€A 0, Y.=Dcy}

=1 RY(k)>RY( )

M;ic = Zl (On, Fn(X )Fn( i), Gn(Y, ))[{]EAdch =Dy}

dp R,
P N SN e (L0 X k) My
n Ovo \ ™™ n+1" n+1’ n+1
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d —
oy e [ fxe frw)
Our \ 7" 1 n+1 n+l

d —
L e i xo) Bxoy By,
Tkl a1 ny 1 | k€A Xp=Dpp}

dp dg
M;ld = Z Zlgd(gn,Fn(X;),Fn( )GTL( ), Gn(Y ))]{X DFh,Y DGZ}
h=11=1
NESES S dd (g “X(k) Bxw) v iy )
01 ™™ n+1  n+l1 n+l n+l

h=1 [=1 RY(/{:)>RY(j)

I
{Xp.=Dpp, Y, =Dgy}
dp dg R~ RS
PSS (g, XW) X (k) Ty My
0,v9 "m4+1" " n+1" " n+1" n+1
h=1[=1 RY(]{?)ZRY(j)

L X =Dp),. Vi=Dgy)

e dd ( Txw) Pxw) My RY(’@).

+ZZ Z l97ul n+l n+1" " n+1" n+1

N X =Dp),. vi=Dgy)

R ( Bxm Bxw) By Rm)),

+ZZZZ9“2 n+l’ n+1’  n+1’ n+1l

h=11=1 k=j
*
ﬂ
"Xp=Dpp Vi=D}
wherenhl {the number of observations(;, Y;) : X; = Dpy,. Y; = Dy}

Next, to establish the consistency @&, it suffices to show tha&% and 6% are themselves

consistent. To prove thak, — 3 converges almost surely, for example, express the difference as

z_: g, Fn(X; ). Fn(X5), Gn(Y; ), Gn(Yy)) — ElJp(F(X ), F(X),G(Y ), G(Y))]
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in terms ofJy = Iy . By the triangle inequality, this quantity is no greater than

J A (Fn(X]_), Fn(Xj)7 Gn(Yj_)a Gn(Y]))

- Jg(Fn(Xj_); Fn(X5), Gn(yj_)’ Gn(Yj))

ST T Ea(X ), Fa(X)), GulY), GalY)) — BL(F(X ), F(X),G(Y ), G(Y))]
j=1

Assuming thatJ, is bounded by an integrable function in a neighborhood of the true value
of 8, by the convergence of maximum likelihood estimators, the first summand then converges to
zero by the Dominated Convergence Theorem. Since the second term vanishes asymptotically by
a similar argument as used in Chapter 3, it follows that— 3 almost surely. The argument for
on, Is similar, though somewhat more involved. It will not be presented here.

In summary, we provided a variance estimatop0é, and illustrated its consistency.
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CHAPTER 5

EXTENSIONS TO HIGHER
DIMENSIONS

The previous developments extend more or less automatically to situations where it is desired to
estimate a multidimensional dependence semi-parametrically.

Let a boldfaced letter such asdenotes aD-tuple (D > 2) vector of real numbers, that is,
x = (21,... ,xD)T wherez;. € Rfork =1,...,D,andFy, ..., F, denoteD univariate mixed

marginals on the real line given by

d d

k k

Frlog) = D pknlyp,, <oy (1= 3 PW/ f(w)dw,
h=1 Kh="k h=1 WL,

whereDy, is theh-th jump point of . with P(X;. = Dy;,) = ppp, forh =1, ..., d;., and f1.(+)
is a continuous density function with support on the real line.
When restricted to a particular copula family, sgyy : 6 = (91,...,9q)T € A C R}, a

multivariate joint distribution function fofz1, . .. ,a:D)T can be defined as follows:

FP(zy, .. xp) = Cy(Fi(x1),- .., Fplzp)). (5.1)

Result 1: FD(xl, ...,z ) defined in (5.1) is a valid joint distribution function aP.
Proof: FOI’FD(xl, ...,z ) to be a valid distribution function oD, the following four

conditions should be satisfied:
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W) 0< FP(zy,....xp) <iforall (z1,...,2p),

(2)FD(x1,...,xD) — 0asmaxzy,...,rp) — —o0,

@) FP(xy,...,2p) = 1asminzy, ...,z ) — +oo, and

(4) for every pair of(zq,...,zp) and(yy,...,yp) € R with v <y fork=1,.,D,
which defines @-box V' = [z, y1] x [v9,y2] X ... X [z4,yp]. Then

> “sgr(c)F(c) >0

where the sum is taken over all vertiaesf IV and sgif-) is defined as in (1.3).

Note that since FP(zy,...,zp) = Cy(F(a1),....Fplzp) = PU; <
Fi(z1),..,Up < Fp(zp)), (1) follows. To prove (2), note thafy.(z;.) — Oforallk =1,...,D
when maxzq,...,rp) — —o0. Hence,FD(xl, ...,xp) — 0 from the property of a cumula-
tive distribution function. (3) follows similarly. (4) is the direct result of (1.3) and (5.1). Proof

completed.

Define C(F}.) to be the collection of all points of continuity of}. and J(F}.) =

{Dy.q,.... D} dk:} to be the collection of all jump points df;..

For a fixedx € RD, every component ok corresponds to either a point of continuity or
discontinuity of the corresponding marginal distribution. Suppose the indgxes, e Cppt €
{1,2,..., D} corresponds toc; € C(Fch) (i.e.,xch belongs to the set of continuity pointsE&h)
and the remaining indexes, sdy, dy, ...,d s, with H' + L' = D, are the indexes of marginals

such that

/
:Edl = Ddl’zdl7 = 1,2, ...,L .

When{cq, c9, ...,cH,} ={1,2,..., D}, the density oD is given by

D
dFD = co(F(xq),.... Fplep)) ] frlzp).
k=1
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and if{cy, cg, ... c;ps} € {1,2, ..., D} the density ofF"? is given by

D / / 11
dF ce(ul,...,uD)dud ...dud . fc (xc ),
NF (D 1 L h*"Ch

Whereuch = Fch(:pch). Note that the above can be written as
g

p(F1, - Fp)x) - [ fep (xep,)-
h=1

Lettinng = (le,XQj, ...,XD]-)T wherej = 1, ..., n represent a random samplefrdﬁp,

the semi-parametric estimatéy;, of ¥ would then be obtained as a solution of the system

(5.2)

3IH

n
0 :
Z 97 log[dFP (X1j-- Xpl =0, (1 <i<q)
Sinced is the only vector of parameters of interest, the components of likelihood that matters is
1 n 9
- > oo loglep(F1, . Fp)(Xyj,....Xpj)l =0, (1<i<q) (5.3)

Using the same techniques as in Chapter 3, Theorem 3.1.1 can be extended?e the
dimensional case. Furthermore, the limiting variance-covariance matniJ(/gf(én — 0) is then

B~ 1y B~1, whereB is the information matrix associated widly. To give the explicit form of

3., we need some notations:

Let

Fy (ap,) = _ _
(Fk(xk ),Fk(xk)) = (ukl,qu), if T € j(F/{)

Note that in the present case, the relevant statistic in (5.3) can be written ass foK ¢,
1 n
R;, = - Jz‘(Fl(ij)aFl(le)7 ...,FD(XBj),FD(XDj))

Y

)
—_



whereQ = {Q1,...,Qp} is a D-sequence consisting of letters §f} or {d}, with the fol-
lowing properties: (i) wherQ is combined with a poink and the marginals™, ..., '), say
x € Q(Fy,...,Fp), a'c at the k-th component ofQ refers tox;. belonging toC(F}.), and
a ‘d’ at the k-th component refers ta;. belonging toJ (F}.), for k = 1,..., D; (ii) when Q
is combined withJ; or J;'s derivative with respect tai,.q or uzo, a ‘c’ at the k-th compo-
nent refers toFlf(ij) = Fk,(ij), and a d' at the k-th component refers Wlf(ij) =
(Fk(Xl;j),Fk(ij)), fork=1,..,D.

Using the same techniques as those used in Chapter 3, one can sEeightae variance-

covariance matrix of the-dimensional random vector whos¢éh component is given by

var>" MRy, . Xp)):
Q

the following is a general form oMlQ(Xl,...,XD)). AssumingQ = {Cl,CQ,...,CH/} U

{dy,dy,....d; s}, and L’ and H' can be any value amon@), ..., D}, such thatt/’ + L' = D.

Then
H/
MRy ) = 3o 3 I @) PR ap) TT ey €C(Fey )y
Zdl ZdL’ h=
r/ 2
=1 {xdl dl Zdl} k; 1

The set of jJump points foFdl IS {Ddll, .,Dy dg },»andL,;. is given as below:
l

(i) if the k-th component ifQ = ¢;

/
de I(x), <x)-
Z Z /{R\{U 1 Deyn}} /{R\{Unf{chH,n}} '

/ /

Jfgk2(Ff(:@1), o FE (@) dF (2, )

ithe!, =D, . :
WI xdl dlldl’
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(i) if the k-th component iQ = d,

ld i I /{R\{ Dcl n}} /{R\{Un}{/DcH/ nt}
Jgkl(Ff(xl) Fg(xD))dF(xll, 2y

/
DI - oy < 7p)

id) i, {R\{ A Deyndy {R\{U H'De 0t}

/

JZ%]CQ(F{)(ID’ ey Fg(ID))dF(fL‘l, ""xD)’

withz!, =D, . .
T T Mg,

As the parallel with the casg= 1 and D = 2 described earlier in Chapter 2 and Chapter 3,

an estimator of the variance-covariance matri¥gfcould be found by repeating the procedure

described in Chapter 4.
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CHAPTER 6

JOINT DISTRIBUTIONS USING
t-COPULA

6.1 Joint Distributions Using ¢-copula

In this Chapter, we develop the joint distributions with the family-abpulas, see, [34], and [8].

The reason we choosecopulas is not only it is a generalization of the Gaussian copulas, but also
it has the great tail dependence property. This property allows us to study the limiting association
between random variables andY as bothz andy go to their boundaries. Our finding is that

the limiting association is governed by the correlation coefficietigether with the degrees of
freedomv, which is listed in Lemma 6.1.3. In reality, there are situations where random variables
are still associated in a certain level even in the tails. For instance, in biometric recognition, the
genuine and imposter distributions generated from the same biometric trait or different biometric
traits in a multimodal biometric system, tend to have not exact the same but similar tail behavior,
as shown in Chapter 7, Section 7.2.2. Theppula models can fit in this case more appropriately

than a copula family which does not have the tail dependency.

Before defining the-copula, we develop some notations for the presentationXlagnote a

positive definite matrix of dimensioP x D. For such &, the D-dimensional density withv
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degrees of freedom will be denoted by

_v+D

PG <1+XTZ_1X> i

v, T D 1 ’
(7) 2T(5)|5|2 Y

The matrix> with unit diagonal entries corresponds to a correlation matrix and will be denoted by
R.

The D-dimensionat-copula function is given by

u) = D W A% .
Cy R( )_/wgtgl(u) fyr(wW)d (6.1)

—1

wheret;; () = (t; 1(uy), ... t; Yup)T, 1,1 is the inverse of the cumulative distribution

function of univariate¢ with v degrees of freedom, arfdis a D x D correlation matrix. Note that

Cy g(u) = P{X < t; 1 (w)}, for X = (X;,..., Xp)T distributed as!’,, demonstrating that

CV,R(U) is a distribution function or0, 1)D with uniform marginals. The density corresponding

to C,, p(u)is given by
oPc, ) ff Rty (W)

_ _ : 6.2
¢y, R(1) Oupdug ... 0up Hszl oty H(ug)} Y

wheref, in (6.2) is the density of the univariatelistribution withr degrees of freedom.

We consider the joint distributions of the form

FDp(x) = €, p{Fy(21)..... Fplzp)} (6.3)

Y

with €,  defined as in (6.1). It follows from the properties of a copula function H’\VQ}{ is a
valid multivariate distribution function oR”. The identifiability of the marginal distributions;,,
k=1,...,D,the correlation matripz, and the degrees of freedom parametegre established

in the following theorem:
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Theorem 6.1.1.Let F© andGP denote two distribution functions di” obtained from
V1,1t v, Ity
equation (6.3) with marginal distributions., £ = 1,..., D andG.k = 1,..., D, respectively.
D _ D _ _

Suppose we haVEl/l,Rl(X) = GVQ,RQ(X> for all x. Then,F).(z) = Gp(z)forall &,y =
V9 and R1 = RQ.

In order to prove identifiability ofv, R) in Theorem 6.1.1, we first must state and prove several
lemmas.

Lemma 6.1.1 Fix v. Let FV Ry andGll/)R2 denote two cumulative distribution functions on
RP obtained from equation (6.3) with marginal distributiofs, £ = 1,...,D andGy., k =

1,..., D, respectively. Suppose we have

Fl?Rl (x) = GQ 1y ) (6.4)

14
forall x. Then,F).(z) = G.(z)forall k and Ry = Ry.
Proof: By takingz;, i # k tending toco, we get thal‘FVl’)R1 (x) — Fp.(7p) andGl?R2 (x) —
G}.(xy.). Itfollows thatFy.(z) = G.(x) for all k.
Next we show that the correlation matricB3 and Ry are equal. We first prove this result
for D = 2. Note that whenD = 2, Ry andR9 can be determined by one correlation parameter,

namely,p1 andpy, respectively, so, we have

Fuz,pl (x) = Cup1 {1 (1), Fo(zo)} = /wgtgl(v) fg,pl (W) dw (6.5)
and
G2,y x) = Copy{Fr(e). Palag)} = | TN AL (6.6)

wherev = (Fq(z1), F2<x2))T, so, one only needs to proyg = po.
Now, for any real numbers andb, the bivariate’-cumulative distribution functiont,,%’p(a, b),
with v degrees of freedom and correlation paramgtisra strictly increasing function gf. Note

that

a b 9
t,2/7p(a,b) = /—oo /—oo [, p(m, n)dm dn

a b 00
= / / / ¢(m7nap7 'U}) gy(w) dw dm dn,
—o0 J—00J0
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where

2 2
1 m< — 2pmn +n
gb(manapaw) = expq —
2mw(l — p2)1/2 2w(1 — p?)
andgy (w) is the probability density function of the inverse Gamma distribution defined as

g (w?) ~ 1G(3, 7). 6.7)

Differentiatingt%j pla, b) with respect tg, we get

ot (a,b 00 9
u,g/()a ) :/ / / 9“’“”)’) gu(w) dw dm dn

:/ / /OO d%g:nznp’ ) g (w) dw dm dn

:/() w o(m, n, p,w) gy(w) dw > 0,

using the fact thado(m, n, p,w)/dp = w 82gb(m, n, p,w)/Omon.
Note that (6.5) and (6.6) can be re-written}a§p. (x) = t%,pj (a,b) for j = 1,2 with a =

(x) = F2 (x), which gives

t L (Fy (21)) andb = t, ! (Fy(29)). So,F2 2 oo

v,p1

15,5 (a,b) = 15 50 (a,).

Since whenv is fixed, for anya andb, t%’pj (a,b) is an strictly increasing function @f the equality
above implies thap; = p9 must hold. The proof is completed.

Now, we prove Lemma 6.1.1 for gener@l Let Ry = <(pkk’,1>> andRy = <<pkk’,2)) be
the representation of the correlation matri¢esand o in terms of their entries. Note that the
condition (6.4) can be reduced to the c#@3e- 2 by takingz;, i # k, k’ tending to infinity. Thus,
we havely PRl 1 (xk,xk/) = G’/’pkk’g(%’xk/)’ but this |mpI|es,okk,71 = Pkt 2 from the
caseD = 2.

Next, we state and prove two more relevant lemmas:

Lemma 6.1.2 Fora > 0, ty{—((ll/)l/2} is a decreasing function of

Proof: LetY ~ ty(-). ThenZ = Y/v1/2 has pdffy, (z) = [[{(v + 1)/2}/{T(v/2)}]

o\ —(r+1)/2 ~1/2 . . .
<1 +z ) T . One can see that if] < vy, {fuy(|2])/fr(|2])} is a strictly de-

creasing function ofz|. Since]{‘Z|>a1/2} is a nondecreasing function ef mimicking the
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roof of Lemma 2 in [28], one can prove thay (I is a decreasing function of It
p 126l one can prove BB 212112y 9
follows that
Bl 1/2y)
>ql/
tV{_(aV)l/z}:P{YS _(ay)l/Z}:P{ZS—al/z}: {]Z\_a }

2

is decreasing im.

Lemma 6.1.3 For the bivariate-copulaCy, p(u, v), let

oC oC
2= lim {—y,p(u,v)} and ,u* = lim {—y,p(u,v)} .
v—0T v U=0v v—0T v u=1—v

Then, it follows that

1/2 1/2
1-p IL+p
N =t — 1)—— du™ =t — 1)—— .
Proof: It is not hard to see that {fX, Y) ~ t,% p» then givent” = y,
() X 69
vt g2 (1 p2)L/2 v+l '
Therefore

Crpu,v) = PX <t (w),Y <t (v))

tljl(v) v1\1/2 ty_l(u)—py
- /_OO ty+1 <—V+y2) {—(1_p2)1/2 }] fv(y)dy.

Taking derivative with respect tg we get

1/2
Wvplwv) ”*1 / tu ptyl( )
v ISR | e Ty 2)1/2

, 1/2 1,7 ]
= ty41 {Vth;l 2} { p)tl’//2<)} , puttingu = v
p
p

B V+1 1/2 1—p) -
= ty+1 V—l—ty 2 1/2

=ty {(er)l+ }1/2]
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asv — 0+. The other expression can be derived similarly.
Remark: Lemma 6.1.3 tells the property of tail dependence@opulas.
Proof of Theorem 6.1.1
Using similar arguments as before, we only need to prove Theorem 6.1/1 fop. It easily

follows by takingz, — oo for i # k, thatFy.(z;.) = G.(xy.) for k = 1, 2. It follows that

C]/]_’pl (U,U) = Cy27p2<u,’l}) (69)

for all pairs of (u, v) of the form (£ (z1), Fo(x9)). Thus, (6.9) holds for all values @f, v) in

(0, 1)2 as in the case when both marginals are continuous. Nevertheless, since both marginals have
only a finite number of discontinuities, there are infinite value&uotb) for which the limits and
derivatives in Lemma 6.1.3 can be applied to obtsfrand ™. Since (6.9) holds, we must have

Al = Aj anduy = p3. Now without loss of generality, assurpg # pg andpy > po, from

the equality\™ = )\§ and Lemma 6.1.2, we must have > v5. On the other hand, the equality

p] = us givesvy < vg. Hence,pp > py implies thatvy = vp = v,say. Now, using Lemma

6.1.1, we gepy = py. The proof of theorem is completed.

Remark: Note that as the degrees of freedom- oo, thet-distribution converges asymptoti-
cally to a Gaussian distribution, so does thmpula. For the Gaussian copulas, the counterpart of
Theorem 6.1.1 also holds. Therefore, we have the following lemma:

Lemma 6.1.4 Let F]% and ng denote two distribution functions oRZ in the Gaussian
copula family with marginal distributions}., k = 1,..., D andGp,k = 1,..., D, respectively.
Suppose we hav_é’}lz_)1 (x) = G%Q (x) for all x. Then,F.(r) = G.(v)forall k, andRy = Ry.

Proof:  Without loss of generality, we prove Lemma for the case that 2, i.e.,p; = p9.

Notice that it suffices to prove that for any fixed b) € R?,
P,O(Zl < CL,Z2 < b) = @27p(a,b)

is increasing irp, whereZ; ~ N(0,1),7 = 1,2, with correlation coefficienp.
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Note that
a b
<I>2”0(a,b) = / / ¢p(21,22)d7;1d752,
—00 J—00

which gives us

a b ,
ap’p(a b) = /_Oo _Oo¢p(21722)d21d22

_ /“ /b 1 l P, (p—2)lopr—2)
—00 /=00 94 /(1 — p2) 1—p? (1—p?)?

2 2
25 —2pz129+2
exp{— 1~ =P*172 2}d21d22

2(1—p?)

0%6p(21, 29)
_ COPEL=2) g
/ /OO 821822 Zl 22

= ¢pla,b)
which is always positive. Therefore, we have proved the uniquengssidfe proof of Lemma is
completed.
Remark: It is not hard to see that for the Gaussian copulas, the tail dependence between
random variables no longer exists.
Using notations defined in Chapter 5, the densitTQR at a fixed point € RD, dFlf?R(x),
is a function onRL that satisfies

FVDR( ) = / dFPp(w), (6.10)
w<x ’
WheredF]fR(x) is given by
7
// L/ o CU,R(Ulv""“D)d“d1>“ dud / H fch xch)
lel[Fdl (dedl)aFdl (Ddl,idl)] h=1

whereuc, = Fey (zcp,), andH’ and L' could be any value among), 1, ..., D} such thatd’ +
L' = D. Note that the above density can be generally written as
H/

W R, Fy, ... Fp)(x) - H fch(xch). (6.11)
h=1
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6.2 Estimation of R and v

6.2.1 Estimation of R for fixed v

LetXq,..., Xy benindependent and identically distributéddimensional random vectors aris-
ing from the joint distributiorF]l%V in (6.3),F,m denote the empirical distribution function 6j.
andFy,,, = nFy,, /(n+1).

From (6.11), the log-likelihood function corresponding to thei.d. observationsz, Jj =

1,...,n,Iis given by

n
r(v,R) = ZlongVl?R(Xj)
j=1

n (6.12)
= Y log ¢*(v, R, Fy,...,Fp)(X;)
7=1
For fixedv, our estimator of? is taken to be the maximizer 6{v, R), that is,
R(v) = arg max, 7(v, R). (6.13)

Note that there are two main challenges in maximizing the likelinbedR): Firstly, 7(v, R)
involves several integrals corresponding to discrete componeﬂ(?,irj =1,...,n; c* is not
available in a closed form. Secondfy,, R) needs to be maximized over dll x D correlation
matrices. The space of all correlation matrices is a compact spaed ,dﬂD2 since all entries of
a correlation matrix lie betweenl and1. However, this space is not easy to maximize over due

to the constraint of positive definiteness placed on correlation matrices.

The EM Algorithm

The difficulties mentioned can be overcome with the use of the EM algorithm; see, for example,
[31]. The EM algorithm is a well-known algorithm used to find the maximum likelihood estimator

(MLE) of a parametet) based on datg distributed according to the likelihood,, (y; ¢). In
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many situations, obtaining the MLE,

éMLE = arg maxy £ ;s (y; 0),

via maximization off ;. (y; ) overd turns out to be difficult. In such cases, the observed like-
lihood can usually be expressed in terms of an integral over missing components of a complete
likelihood; in other words, itz and/com (y, z; ), respectively, denote the missing observations
and the complete likelihood corresponding$0z), it follows that

ol 0) = [ ) lom (.2 ) s
whereZ (y) is the range of integration afsubject to the observed data bejngThe EM algorithm
is an iterative procedure that can be formulated in two steps: First, (i) the E-step, where the quantity

N) oy .
QW) g) = Eﬂ(z V) ) {loglcom(y,z: 6)} (6.14)

is formed; the expectation in (6.14) is taken with respect to the conditional distributidrgiven

y when evaluated at a particular vallﬁéj,v), and the conditional distribution & giveny is given

by

r(z0,y) = Lom¥:% 9), (6.15)

Lops(ys 0)
Second, (ii) the M-step, whel@(e(N), 0) is maximized with respect B to obtainH(NH), that
is,
p(N+1) — arg may Q(G(N), 0).
Starting from an initial valué(o), the sequenc@(N), N > 0 converges t@MLE under suitable
regularity conditions.
The integrals irt (v, R) corresponding to the discrete components can be formulated as missing
components of a complete likelihood. Recall that the notatignandd; were used to denote the
discrete and continuous components in the vegtoMe now extend this notation to represent

discrete and continuous components in jh observation vecton, j=1,...,n. Forj =
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L..on, letdy, | = 1,...,L9 andey,, h = 1,...,H§., respectively, denote the discrete and

continuous components O(j with respect to the corresponding marginal distributions. Next,

define the vectonj

is allowed to vary betwee o)L F Jthatis,u;, € [F; (2, ), F;. . ) =
y iFdlj (wdlj% dlj(-%’dlj)] ugj €| d); (mdlj) dy; (wdlj)]

in the following way: Thedlj-th component ohj, Uy o is a number that
J

, .
Slj, say,forl =1,... ,Lj. Thechj-th component oﬁj, “Chj’ is taken to beachj = Fchj (:cchj)

forh=1,... ,H}. In that case, we have

c*(y,R,F,..., / / ) du ...du
1 Slj dl dL;

Making the transformationj = t,jl(uj), the likelihood corresponding to theth observation in

(6.12) can be written as*(v, R, F, ..., Fp)(X;) = NUM ;/DENOM j, where
NUM; _/_1 .../_1 f,PR( j 4y -,
ty (Slj) ty (S L

L’.)
J

and

<

H
DENOM ; = hH foleey,;).
=1

—1 —1 =1 — —1
wherezcy, ;= 1, {Fey, i (wep, )} andty, ~(S;) = [ty {Fdlj(xdlj)}’ty {Fdlj(ﬂﬂdlj)}]- We
make several important observations. First, where the maximizati@ritoncerned for fixed,

it is enough to consider thNUMj terms. Thus, in the EM framework, we defiﬂHJMj to be

the “observed likelihood” corresponding to th;:

D
14 (x»‘yR):/ / £ n(z )dz codzg (6.16)
obs\*j> ¥ — — R\%Z d d
/ sy Jhs) Lj L
J
If the variabIeSZdl g =1,... ,L; in (6.16) are treated as missing, the “complete likelihood”
J
corresponding to thg-th observation becomes
L’

leom(xj, 253 v, R) = H i ey sty Y|
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wherer = {zdl Li=1,... ,L;.}. Next, we note that thedensity,ff , IS an infinite scale
j )

mixture of Gaussian densities, namely,

oo
P = [ 0B, s

2_
O'j—() J
where
Tp—1
1 zt Rz
0R 5 (2) = — Tl
] D 204
(27?)70]. |R|2 J

and the mixing distribution om is the inverse Gamma distribution as defined in (6.7). In other

words, an extra missing component can be added into the E-step, namely, the mixing parameter,

0. The complete likelihood specification for thi¢h observation now becomes

L’.
écom(Xj, Zj, 045 v, R) = gbga_(zj) : gy(a?) H (6.17)
7 {Zdl €ty (Szj)}
The conditional distributiom required to obtaird) in (6.14) is defined as
n
W(Zj, a5, j=1,...,n;v,R) = H Wj(Zj, 0j; v,R)
j=1
where
l X, Z:, 5 v, R
7i(Zj, 05 v R) = comj. Z; ). (6.18)

gobs( j; v, R) ’
see (6.15). Two distributions derived from (6.18) will be used subsequently: (i) the conditional

distribution ofa givenzZ o given by

Tp—1, .\ 1
D v4+z: R 'z,
Wj(aj2|zj7VuR):IG v 7( / ]) )

2 2

and (ii) the marginal oEjs (after integrating outj), given by

L
D . . J
fu (=) (Hll [{zdljetﬂtyl(slﬁ})

g j) 42y ; - dg

L
J



The E-step entails that the expected value of the logarithm of the complete likelihood (6.17) is

taken with respect to the missing componerzft]c,, and theN-th iterate ofR, RN

E?T(Zj’,g ’ V,R(N) ){|Og€com(Xj,Zj,Uj; v,R)} = Ej {Iogﬁcom(xj, Zj,aj; v, R)},

whereyrj(Zj, iV, R) is as defined in (6.18). The expected value can be simplified to
Tp—1
z: Rz,
j J 1
E, | ————= | — =l 1
j 277 5 og|R| (6.19)
J

plus other terms that do not involve the correlation mafixand hence are irrelevant for the
subsequent M-step. The expectation in (6.19) is taken in two steps, ndi‘EleJy,Eﬂ Ej2 where
EJQ is the conditional expectation ofj given Zj, andEjl Is the expectation with respect to the
marginal Oij- On takingEjQ, the expression in (6.19) simplifies to

Tp—1,.
v+ D ZjR g v+ D —1 (V)
Ty Ej TAh—1. [~ 2 tr<R )
vtz (RVY) ™z
wherelv (V) = ((wlglj’))) iIsaD x D matrix with entries
Z/{: AR B
w(N,>:/ L ri(2;; v.R))az;
kk V+Zf(R(N))_1Zj

_ T
for Zj = (le, .. "ZDj> .

The last integral is approximated by numerical integration on a grid. We partition each interval
t;l(Slj), I =1,... ,L} into a large number of subintervals and evaluate the integrand on the
partition points. Finally, a Reimann sum is obtained as an approximation to the integral.

The M-step consists of maximizing the complete likelihood function (6.19),

Tp—1
z: R z; v+ D

j 1
E;| ——-— | —=loglR| = —

(R~ w Ny — %Iog|R|, (6.20)

with respect to the correlation matriX. Since we have to maximize the objective function in

the space of all correlation matrices, this is somewhat a difficult task. We adopt the methodology
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presented by Barnard et al. [1] where an iterative procedure to maximize (6.20) is developed by
considering the maximization of one elementof say p, each time. In order to preserve the
positive definiteness ak, one can show (see Barnard et al. [1] for details) thslould lie in an
interval[p;, pu|. The lower and upper limits of this interval are derived from the fact that in order
for R to be positive definite, it is both necessary and sufficient that all the principal submatrices of
R are positive definite. This is equivalent to a non-negativity condition on the determinant of each
principal submatrix, which translates to an interval for the range of valugs Diiis procedure is
repeated for the other elements®fand cycled until convergence before going to the+ 1)-st

iteration of the EM algorithm.

6.2.2 Selection of the Degrees of Freedom,

The above procedure is carried out for a collection of degrees of freedo, whereA is finite.
For each fixed/, we obtain the estimator of the correlation matfig ) based on the EM algorithm

above. We select the degrees of freedom in the following way: Seleath that

D = arg max,c 4 % v, R(v)}. (6.21)

6.3 Summary

In this Chapter, we introduced theeopula family inRD, and showed that for any joint distribution
FLPin RD there exists a unique pajir, R) such thatFyl?R(x) = CV,R(Fl(xl)’ - Fp(rp))

within this family. Furthermore, we developed a semi-parametric technique to estimate the un-
known pair(v, R) using EM algorithm. The application of this approach will be presented in the

next chapter.
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CHAPTER 7

SIMULATION AND REAL DATA
RESULTS

7.1 Simulation Results

The results in this section are based on simulated data of four experiments. The first three are for
the bivariate case, whereas the fourth is for a trivariate distribution. The true distributions for the

observation§(j,j =1,...,n,in all experiments are of the type as defined in (6.3).

In experiment 1y = oo in (6.3) corresponding to the Gaussian copula function. We choose

p = 0.75. The two mixed marginalsf; and Fy, have the following cumulative distribution

Sample sizep | Average Absolute Relative Average  Coverage
Bias Absolute Bias
500 0.0168 2.2% 92.4 %
1000 0.0135 1.8% 91.6 %
1500 0.0116 1.5% 92.3 %
2000 0.0113 1.5% 93.2 %
2500 0.0087 1.2% 94.7 %

Table 7.1. Simulation results for Experiment 1 with= oo andp = 0.75. The absolute bias and
relative absolute bias of the estimafgy are provided, together with the empirical coverage of the
approximateé5% confidence interval fop based on the asymptotic normality &f .
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functions:

Fi(w1) =031, 5.9} +0.70(x1),
and

Fy(z9) = 0.21{1,220‘1} + 0.8¢(z9),

whereg(-) is the standard normal density function. Thus, we héyve- dy = 1 with Dy; = 0.2,
andDyq = 0.1 with probabilitiesp{ = 0.3, andpy; = 0.2, respectively. The set of jump points
areJ (Fy) = {0.2} andJ (Fy) = {0.1} with continuous components éf; andF corresponding
to f1(z) = fa(z) = ().

The sample size is taken fromn = 500 to n = 2500 in increments oH00. In each trial,
we simulaten observations frorngo’O'75 (xz1,x9) and estimate within the Gaussian copulas
using the methodology presented in Section 6.2. Table 7.1 contains the simulation result from
Experiment 1. For each sample size, the experiment was repeated 1,000 times. The average
absolute bias and relative average absolute bias of the estimatare reported, together with
the empirical coverage of the approximat€s confidence interval fop based on the asymptotic
normality of py,.

Experiment 2 consists of the following choiceg: = oo in (6.3) corresponding to the Gaussian
copula function. We choosg) = 0.75. The two mixed marginals;; andF5, have the following

cumulative distribution functions:

Fy(21) = 0.250 ;) 509y +0.6t10(21) + 0151, 50 7y

and
Fy(z9) = 0.2]{1,220'3} + 0.5t (z9) + 0.3[{1,220‘6}.
Thus, we havel| = dy = 2 with Dy = 0.2, D19 = 0.7, Dy1 = 0.3 andDyy = 0.6 with

probabilitiesp;; = 0.25, p19 = 0.15, pp1 = 0.2 andpyy = 0.3, respectively. The set of jump
points are7 (F) = {0.2,0.7} and J (Fy) = {0.3,0.6} with continuous components @f; and

Fy corresponding tgf (z) = fo(z) = t1g(x).
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Figure 7.1. Density curves fardistribution with degrees of freedom= 3, 5, 10, 15, 20, 25 and
normal distribution. For interpretation of the references to color in this and all other figures, the
reader is referred to the electronic version of this dissertation.

For now, we select the set for the degrees of freedom agftiopula to bed = {3, 5, 10, oo} for
illustrative purposes. Note that we choaggvalues inA so that the correspondirtedistributions
are significantly different from one another. Figure 7.1 givestilensities for several, values,
including values ind. There exist significant gaps between thaensity curves corresponding to
vg = {3,5, 10}, but relatively smaller gaps fory = {15, 20,25, c0}. Table 7.2 provides thé -

distances between somedistributions in Figure 7.1.

The sample size is taken fromn = 500 to n = 2500 in increments 0600. In each trial, we
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PQ 3 5 10 00
0 0.0874 0.1705 0.2690
0.0874 0 0.0837 0.1835
po = 0.2 0.1705 0.0837 0 0.1005

0.2690 0.1835 0.1005 0
0 0.0896 0.1735 0.272
0.0896 0 0.0845 0.184¢
po = 0.75 10 0.1735 0.0845 0 0.100¢
00 0.2721 0.1844 0.1006 0

ow@ s owsS

U 4=

Table 7.2.L distances for paired values gf corresponding to two values pf), 0.20 and0.75.

Sample sizep | Percentage of timesMeanj(v) | MSE(p(v))
V= I/O
500 86% 0.7361 | 0.6312x1073
1000 94% 0.7392 | 0.3869x103
1500 100% 0.7413 | 0.3808x103
2000 100% 0.7429 | 0.3035x10~3
2500 100% 0.7450 | 0.2861x10~3

Table 7.3. Simulation results for Experiment 2 with = oo andpg = 0.75.

simulaten observations from?gqo‘%(xl, r9) and estimatg andy based on the methodology
presented in Section 6.2. The trial is repeated 50 times. The simulation results, including percent-
age of times (out of 50) that the true valuergf mean ofj(2), and theM SE of 5() is chosen ,

are presented in Table 7.3.

In Experiment 3, we took = 10. The two generalized marginal distributions are the same
as in Experiment 2. The correlation paramefgmwere selected to b&20 and0.75, respectively.
The results are presented in Table 7.4. From the entries of Table 7.3 and Table 7.4, we see that
the estimation procedure is more effective in selecting the true degrees of freedomyvher
compared tayy; = 10. The reason of being that is the distribution correspondingyte= oo is
further away from all the other candidate distributionsdinAlso, the estimation procedure is less

effected by the value qgf as illustrated by the percentage of timies- vy column in Table 7.4.
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0 Sample sizep | Percentage of timesMeanp(v) | MSE(p(v))
U= Iz
500 84% 0.1861 | 0.7532«10°
1000 88% 0.1877 | 0.6871x10~3
po = 0.20 1500 92% 0.1889 | 0.6095x 103
2000 94% 0.1923 | 0.4173x10~3
2500 100% 0.1944 | 0.3664x10~°
500 82% 0.7398 | 0.7235x10°
1000 88% 0.7401 | 0.6789x10°
po = 0.75 1500 96% 0.7429 | 0.6565x10~°
2000 98% 0.7523 | 0.4546x10~°
2500 100% 0.7481 | 0.3648x10°

Table 7.4. Simulation results for Experiment 3 with = 10. The two correlation values consid-
ered arepy = 0.2 andpg = 0.75.

sample| percentage mean | mean | mean total
size | ofgetting | p1(0) | pa(?) | p3(P) MSE
truev

500 85 % 0.1990| 0.2760| 0.1885| 0.7143x 105
1000 90 % 0.1830| 0.2805| 0.2005| 0.6732x 103
1500 95 % 0.1795| 0.2845| 0.1970| 0.6714x10~3
2000 100 % | 0.1820| 0.2880| 0.1880| 0.6126x 103
2500 100 % | 0.1955| 0.2920| 0.1930| 0.1335x 103

Table 7.5. Simulation results for Experiment 4.

73



In Experiment 4, we tookD = 3 andy = 10. The first two marginal distributions are the
same as before. The third marginal distribution is taken to be-thstribution with 10 degrees of

freedom (thus, having no points of discontinuity). We took the correlation mAaffias

1 02 03 1 p1 po
Rp=1|[02 1 02 =, 1 p3 , say (7.1)
0.3 02 1 1
3x3  \F2 P3 3x3

For different sample sizes, the experiment were repeated 20 times (instead of 50) to reduce compu-
tational time. The estimators of, p;, 7 = 1,2, 3, were obtained based on the iterative procedure
outlined in Section 6.2. Since the maximization step involves another loop within the M-step, the
objective function was maximized ovgfintervals in steps of.01 to reduce computational time.

The iterative procedure within the M-step was not required whea 2 which enabled us to max-

imize the objective function over a finer grid (step9dafo01). The results are given in Table 7.5;

note that (i) the estimators converge and (ii) the MSE reducedesds to infinity.

7.2 Application to Multimodal Fusion in Biometric Recogni-

tion

7.2.1 Introduction

Biometric recognition refers to the automatic identification of individuals based on their biological

or behavioral characteristics [20]. In recent years, recognition of an individual based on his/her
biometric trait has become an increasingly important method for testing “you are who you claim
you are”, see, for example, [18] and [29]. Biometric recognition is more reliable compared to tra-
ditional approaches, such as password-based or token-based approaches, as biometric traits cannot
be easily stolen or forgotten. Some examples of biometric traits include fingerprint, face, signature,

voice and hand geometry (See Figure 7.2). A number of commercial recognition systems based on
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Figure 7.2. Some examples of biometric traits: (a) fingerprint, (b) iris scan, (c) face scan, (d)
signature, (e) voice, (f) hand geometry, (g) retina, and (h) ear.

these traits have been deployed and are currently in use. Biometric technology has now become
a viable alternative to traditional government applications (e.g., US-VISIT program [48] and the
proposed biometric passport which is capable of storing biometric information of the owner in a
chip inside the passport). With increasing applications involving human-computer interactions,
there is a growing need for recognition techniques that are reliable and secure.

Recognition of an individual can be viewed as a test of statistical hypothesis. Based on the

biometric input® and a claimed identity., we would like to test
Hy: Iy =1c vs. Hy: Iy #le, (7.2)

wherel; is the true identity of the user.
The testing in (7.2) is performed by a matcher which computes a similarity me&gael’),

based oy andT’; large (respectively, small) values Sfindicate thatl" and( are close to (far
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from) each other (A matcher can also compute a distance measure béhaeell” in which case
similar @ andT will produce distance values that are close to zero and vice versa). The distribution
of S(Q,T) is called genuine (respectively, impostor) whign= I (I; # Ic) underH (Hy).

We denote the genuine (imposter) matching score distribution functiofy, (Fimp)'
Assuming thatFgen(z) and £y, ,(x) have densitieggen (z) and f, (), respectively. The
Neyman-Pearson theorem states thabiiténal ROC curve is the one corresponding to the like-

lihood ratio statistic

_ fgen ()
fimp(fv)

NP(z)

[14]. The ROC curve corresponding P (z) has the highest genuine accept rate (GAR) for every
given value of the false acceptance rate (FAR) compared to any other statislic: N P(x).

However, bothfgen () and fl-mp(x) are unknown, and are estimated from the observed match-
ing scores. The ROC correspondingXd’(z) may turn out to be suboptimal, which is mainly due
to the large errors in the estimation ffen () andfimp(x). Thus, for a set of genuine and im-
poster matching scores, it is important to be able to estirfiatg (=) and fz‘mp(ff) reliably and
accurately. The articles, [14] and [38], assume that the distribution funétitvas a continu-
ous density with no discrete components. In reality most matching algorithms apply thresholds
at various stages in the matching process. When the required threshold conditions are not met,
specific matching scores are output by the matcher. For example, some fingerprint matchers pro-
duce a score of zero if the number of extracted minutiae is less than a threshold. This leads to
discrete components in the matching scores distribution that can not be modelled accurately using
a continuous density function (see Figure 7.3, Figure 7.4, Figure 7.5 and Figure 7.6) . Thus, dis-
crete components need to be detected and modelled seperately to avoid large errors in estimating
fgen(x) andfz-mp(a:).

Another issue is that biometric systems based on a single source of information suffer from
limitations like the lack of uniqueness, non-universality and noisy data [21] and hence, may not

be able to achieve the desired performance requirements of real-world applications. In contrast,
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Figure 7.3. Histograms of matching scores, corresponding to genuine scores for Matcher 1. Con-
tinuous (respectively, generalized) density estimators is given by the dashed lines (solid lines).
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Figure 7.4. Histograms of matching scores, corresponding to genuine scores for Matcher 2. Con-
tinuous (respectively, generalized) density estimators is given by the dashed lines (solid lines).
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Figure 7.5. Histograms of matching scores, corresponding to impostor scores for Matcher 1. Con-

tinuous (respectively, generalized) density estimators is given by the dashed lines (solid lines). The

spike corresponds to discrete components. Note how the generalized density estimator performs
better compared to the continuous estimator (assuming no discrete components).
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Figure 7.6. Histograms of matching scores, corresponding to impostor scores for Matcher 2. Con-
tinuous (respectively, generalized) density estimators is given by the dashed lines (solid lines).
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some of the limitations imposed by unimodal biometric systems (that is, biometric systems that
rely on the evidence of a single biometric trait) can be overcomed by using multiple biometric
modalities[2], [24], [3], [25], [49] and [47]. Such systems, known as multibiometric systems, are
expected to be more reliable due to the presence of multiple pieces of evidence. In a Multimodal
biometric system, fusion can be done at (i) feature level, (ii) matching scores level, or (iii) decision
level. Matching score level fusion is commonly preferred because matching scores are easily
available and contain sufficient information to distinguish between a genuine and an imposter case.
Dass et al. [7] proposed a biometric fusion using generalized densities. In [7], a Gaussian cop-
ula model is chosen to estimate the correlation structure. In reality, sometimes the joint distribution
can be fitted better by usingtacopula model instead of a Gaussian copula model, which is due to
the nature of the data set, so we consider the Gaussian coputacapdla models together, and
choose the more appropriate model by model selection method baged bariteria (Publication

for this research is [16]).

7.2.2 Application in Biometric Fusion

When people deal with biometric fusion, a natural question people need to answer first is how to
get the joint distribution of multiple modalities. Previously, people simply assume independence
between the individual modalities, but this assumption is not always true, especially, when the
fusion is done on the same biometric trait with different matchers. Here we deal with the correlation
structure via semi-parametric copula models.

Based on fingerprint images in the MSU-Multimodal database, see [19], corresponding to
100 users, genuine and impostor similarity scores were obtained for two matchers: a correlation
matcher,S| (see [32]), and a minutiae-based matclter,(see [39]). A total of 2,800 and 4,950
vectors of similarity scoresX ; = (51(Q,T), 59 (@, T))T, were obtained for the genuine and im-
postor cases, respectively. The histogram plot of each marginal (both genuine and impostor) gives

strong indication of non-Gaussianity, thus, justifying the need for the methodology developed in
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Matching score type » (P1, 092, 03)
Genuine 14| (0.76,-0.11,-0.14
Impostor 25| (0.3,0.04,0.02)

Table 7.6. Results of the estimation procedureR@andr based on the NIST database.

this thesis. The match scores are highly correlated sihcandS; are applied to the same finger-
printimages. Further, botky andSy output the discrete score ‘0’ if certain “initial conditions” are
not met, resulting in a spike atin the corresponding marginal distributions. For both the genuine
and impostor distributions, the set of degrees of freedgroonsidered isA = {1,2,3,...25,00}.

We obtained” = 3 and () = 0.4178 for the genuine scores, = 3 andp(v) = 0.1563 for the

impostor scores.

For the reasons mentioned above, joint distribution functions of the form (6.3)/With2 are

appropriate for strongly correlated biometric data as we have here.

The second experiment was carried out on the first partition of the Biometric Scores Set -
Release | (BSSR1) released by NIST, [33], consisting of face and fingerprint images from 517
users. Like the previous case, the marginal distributions have discontinuities: The first mégcher,
for the face biometric outputs the value -1 if certain alignment conditions do not hold for the query
and template face pair. The second face matchigr,outputs continuous values and therefore,
does not have any discrete components. The second fingerprint matcher of the MSU-Multimodal
database, renamet here, is used for the fingerprintimages resulting in a discrete score of ‘0’. We
obtained 517 and 266,772 vectors of similarity scokes,= (51(Q,T),59(Q,T),53(Q, T))T,
corresponding to the genuine and impostor scores, respectively. In this/gase,3 and the
correlation matrixR can be written as in (7.1)4 is taken as before. Table 7.6 gives the results

of the estimation procedure.

We investigate the performance of fusion obtained by combiningttsemilarity scores ob-
tained from theD different modalities. Since we assume that the genuine and impostor distri-

butions are of the form (6.3), the test of hypotheses (7.2) can be re-stated in terms of the score
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Figure 7.7. Performance of copula fusion on the MSU-Multimodal database

distributions under{y and/{, namely,

0: FQx) =F)) p () vs. Hy: Fo(x)=F) p (x)

for some(v, Ry) and(v1, R1). The optimal decision rule (fusion rule) then turns out to be the
likelihood ratioLR(x) = dFu%,RO (X>/dF£,R1 (x)from the Neyman-Pearson Lemma, following

in a similar fashion for the case in the single modality explained earlier. However, Rheile

cannot be used in the current form since the parametgrg(), »; and R are unknown. The
methodology developed here can be used to obtain estimators of all of these parameters, thus
obtaining the estimated likelihood ratio statisfii(x) = de . (x )/dFD . (x).

OB 1,1
The effectiveness of the (estimatefd) fusion rule can be evaluated based of dold cross
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Figure 7.8. Performance of copula fusion on the NIST database.
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validation procedure. In the-th iteration,k = 1, ..., K, a random subset, sa&y), of n; genuine

scores from the total of4er, Scores is selected for estimating the parametgend (). Similarly,

for estimatingyy and Ry, a (random) subset; impostor scores, sayy, is selected from a total

of Mgy SCOTeES. The remaining genuine and impostor scores are used to obtain an estimator of
the false accept and genuine accept rates (FAR and GAR, respectively) for each thieshuid
relevant formulas are

Zy’es{j [{LAR(xj)>)\}

Y

A 2jest Hrrx)=A)

FAR(\) = andGAR(\) =
Nymp — M1 ngen — 1

whereSS ande are the complements &}, andSy, respectively. The ROC (Receiver Operating

Characteristics) curve is the plot 6fAR()) versusGAR()) with higher ROC values indicating

better recognition performance. Our experiments on the MSU-Multimodal and NIST databases

were based on the following choices: = 10 andng/ngen = n1/njpy,), ~ 0.8. The fusion results

are presented in Figure 7.7 and Figure 7.8. Note that there is an dramatic overall improvement of

the performance indicating that the elicited joint distributions are good models for the distribution

of similarity scores.
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CHAPTER 8

SUMMARY AND CONCLUSION

Investigating dependence structures of multivariate distributions has always been an interesting
area for researchers. Copulas have proved to be a useful tool for analyzing multivariate dependence
structures by providing more flexibility than the classic parametric approach as they can easily
separate the effect of dependence structure from that of the marginals, especially in situations that

the marginals contain discrete points.

This thesis developed a semi-parametric approach to estimate the dependence structure for the
bivariate distributions with mixed marginals. The semi-parametric estimator established in this
thesis has been shown to be asymptotically consistent. A variance estimator has been provided
as well. The estimation methodology involves integrals corresponding to the discrete componets
and is therefore, non-standard. Furthermore, our approach was generalized to the higher dimen-
sional case under similar assumptions and using the same arguments. The higher dimensional case

requires more computing time.

The semi-parametric approach developed has been utilizeddrcthpula family and the Gaus-
sian family, which is the limiting distribution of thecopula family. Estimation of the correlation
matrix as well as the degrees of freedom corresponding te-timpula were carried out based
on the EM algorithm. This estimation was also done for the estimation of the correlation matrix

corresponding to the Gaussian copula.

86



We have shown large sample consistency of our estimates and demonstrated this based on sev-
eral simulation examples. Finally, the methodology was applied to real data consisting of match-
ing scores from various biometric sources. Fusion based on the generalized distributions gave
improved performance compared to the individual systems.

As future work, we will consider extensions to copula functions derived from general elliptical

distributions.
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