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ABSTRACT

SEMI-PARAMETRIC ESTIMATION OF BIVARIATE DEPENDENCE UNDER MIXED

MARGINALS

By

Wenmei Huang

Copulas are a flexible way of modeling dependence in a set of variables where the association

between variables can be elicited separately from the marginal distributions. A semi-parametric

approach for estimating the dependence structure of bivariate distributions derived from copulas

is investigated when the associated marginals are mixed, that is, consisting of both discrete and

continuous components. The semi-parametric likelihood approach is proposed for obtaining the

estimator of the dependence parameter under unknown marginals. The consistency and asymptotic

normality of the estimator is established as sample size tends to infinity. For constructing confi-

dence intervals in practice, an estimator of the asymptotic variance is proposed and its properties

are investigated via simulation. Extensions to higher dimensions are discussed. Several simula-

tion studies and real data examples are provided for investigating the application of the developed

methodology of inference. This work generalizes prior results obtained on the estimation of de-

pendence when the marginals are continuous by Genest et al. [11].
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CHAPTER 1

INTRODUCTION

Copulas are functions that join or “couple” multivariate distribution functions to their one-

dimensional marginal distribution functions. Essentially, a copula is a functionC from [0, 1]D

(D ≥ 2) to [0, 1] with the following properties:

1. For every(u1, ..., uD) ∈ [0, 1]D,

C(u1, ..., uD) = 0 if at least one ofuk = 0, for k = 1, ..., D (1.1)

and

C(u1, ..., uD) = uk if uj = 1 for all j 6= k, k = 1, ..., D (1.2)

2. For every(u1, ..., uD) and(v1, ..., vD) ∈ [0, 1]D such thatuk ≤ vk for k = 1, ..., D, which

defines aD-boxV = [u1, v1]× [u2, v2]× ...× [uD, vD] ⊂ [0, 1]D. Then

∑
sgn(c)C(c) ≥ 0 (1.3)

where the sum is taken over all verticesc of V and sgn(c) is given by

sgn=





1, if ck = uk for an even number ofk′s,
−1, if ck = uk for an odd number ofk′s.

Alternatively, copulas are multivariate distribution functions whose one-dimensional marginals are

uniform on the interval[0, 1].
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Since their introduction by Sklar [46], copulas have proved to be a useful tool for analyzing

multivariate dependence structures due to many unique and interesting features. LetFk(xk) =

P (Xk ≤ xk) for k = 1, 2, . . . , D denoteD continuous distribution functions on the real line, and

let F denote a joint distribution function onRD whosek-th marginal distribution corresponds to

Fk. According to Sklar’s Theorem [46], there exists a unique functionC(u1, ..., uD) from [0, 1]D

to [0, 1] satisfying

F (x1, ..., xD) = C(F1(x1), . . . , FD(xD)), (1.4)

wherex1, ..., xD areD real numbers. The functionC is known as aD-copula function that couples

the one-dimensional distribution functionsFk, k = 1, 2, . . . , D to obtainF . If not all marginals

are continuous,C is uniquely determined onRanF1 × ... × RanFD, whereRanFk is the range

of Fk. Equation (1.4) can also be used to constructD-dimensional distribution functionsF whose

marginals are the pre-specified distributionsFk , k = 1, . . . , D: Choose a copula functionC and

define the distribution functionF as in (1.4). It follows thatF is a D-dimensional distribution

function with marginalsFk , k = 1, . . . , D.

Investigating dependence structures of multivariate distributions has always been an important

area for researchers; see, for example, [26], [27], and [35]. For example, one of the central prob-

lems in statistics concerns testing the hypothesis that random variables are independent. Prior to the

very recent explosion of copula theory and application, the only models available in many fields to

represent the dependence structure were the classical multivariate models, such as Gaussian multi-

variate model. These models entailed rigid assumptions on the marginal and joint behaviors of the

variables. Therefore, they provide limited usefulness.

Though the phrase “copula” was first used by Sklar [46] in 1959 and traces of copula theory

can be found in Hoeffdings work during the 1940s, the study of copulas and their application in

statistics is a rather modern phenomenon. Earlier efforts have addressed different statistical aspects

of specialized as well as general copula-based joint distributions. Inference procedures for bivariate

Archimedean copulas have been developed and discussed by Genest et. al [12]. Demarta et al.,
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[8], studied properties related tot-copulas, whereas Genest et al., [11] and [13], gave a goodness

of fit procedure for general copulas. Estimation techniques and properties of the estimators have

been well studied with applications ranging from statistics to mathematical finance and financial

risk management; see, for example, Shih et al. [44], Embrechts et al. [9], Cherubini et al. [5], Frey

et al. [10] and Chen et al. [4].

Many multivariate models for dependence can be generated by parametric families of copulas,

{Cθ : θ ∈ Θ}, typically indexed by a real or vector-valued parameterθ. Examples of such systems

are given in [23], [30], [22], and others. The recent monograph by Hutchinson and Lai [17], which

includes an extensive bibliography, constitutes a handy reference to this expanding literature.

Copula-based models are natural in situations where learning about the association between

the variables is important, since the effect of the dependence structure is easily separated from

that of the marginals. In such situations, there is typically enough data to obtain nonparametric

estimators of the marginal distributions, but insufficient information to afford nonparametric es-

timation of the structure of the association. In such cases, it is convenient to adopt a parametric

form for the dependence function while keeping the marginals unspecified. To estimate the depen-

dence parameterθ, two strategies could be adopted depending on the circumstances: (i) if valid

parametric models are already available for the marginals, then it is straightforward in principle to

write down a likelihood function for the data, which makes the estimation ofθ margin-dependent,

because the estimators of the parameters involved in the marginals would be indirectly affected by

the copula. This is the parametric approach. (ii) when nonparametric estimators are contemplated

for the marginals, however, inference about the dependence parameterθ will be margin-free. This

is the semi-parametric approach. Clayton [6], Hougaard et al. [15] and Oakes [36] have pointed

out that the margin-free requirement is sensible in applications where the focus of the analysis is

on the dependence structure.

Given a sample ofn observationsXj = (X1j,X2j, . . . , XDj), j = 1, 2, . . . , n from the joint

distributionF (x1, x2, . . . , xD) = Cθ(F1(x1), . . . , FD(xD)), the estimation procedure involves
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selectingθ̂n to maximize the semi-parametric likelihood

`(θ) =
n∑

j=1

log [cθ(F1n(X1j), . . . , FDn(XDj))] (1.5)

whereFkn denotesn/(n + 1) times the empirical distribution function of thek-th component

observationsXkj for j = 1, 2, . . . , n, andcθ is the density ofCθ with respect to Lebesgue measure

on [0, 1]D. The utilization ofFkn instead of the empirical distribution here avoids difficulties

arising from the potential unboundedness of logcθ(u1, ..., uD) as some of theuk ’s tend to 1.

A central assumption made in the earlier studies is that the marginals associated with the joint

distributionF should be continuous. In reality, there are many situations where this assumption

is not satisfied and the marginals can be mixed, that is, they contain both discrete and continuous

components (see, for example, Kohn et al. [37]). Based on the continuous assumption and the

regularity conditions, Genest et al. [11] have shown thatn1/2θ̂n is asymptotic normal, wherêθn

is the semi-parametric estimator ofθ in (1.5).

Our work extends previous methodology by accounting for mixed marginals forD = 2 and

Θ ⊂ R. Uniqueness is an important consideration when estimating the unknown parameters cor-

responding to a copula. Since our mixed marginals have discrete components, one way to achieve

uniqueness is to restrictC to belong to a particular parametric family. Under this assumption, We

develop an estimation technique for finding the semi-parametric maximum likelihood estimator,

θ̂n, for the parametric family{Cθ : θ ∈ Θ} in the bivariate situation in Chapter 2. The esti-

mation methodology involves integrals corresponding to the discrete components and is therefore,

non-standard. Consistency and asymptotic normality of the semi-parametric maximum likelihood

estimator̂θn is developed in Chapter 3. A a variance estimator ofθ̂n, % is developed in Chapter 4.

Note that for multivariate observations, copulas allow flexible modelling of the joint distribution

via its marginal distributions as well as the correlation between pairwise components of the vector

of observations. Therefore, the theory presented in Chapter 2 and Chapter 3 can be extended to

higher dimensions, and this is given in Chapter 5. In Chapter 6,C is restricted to a particular para-

metric family of copula, thet-copula, and findings related to thet-copula are provided. Numerical
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simulations and application of the methodology to real biometric data are presented in Chapter 7.

We summarize our work and discuss future research directions in Chapter 8.
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CHAPTER 2

A MODEL FOR BIVARIATE

DISTRIBUTIONS

2.1 Joint Distributions with Mixed Marginals

Let F andG be two distributions on the real line that are mixed, that is, bothF andG consist of a

mixture of discrete as well as continuous components. The general form forF is given by

F (x) =

dF∑

h=1

pFh I{DFh≤x} + (1−
dF∑

h=1

pFh)

∫ x

−∞
f(w) dw, (2.1)

whereI{A} is the indicator function of setA (that is,I{A} = 1 if A is true, and0 otherwise);

in (2.1), the distribution functionF consists ofdF discrete components denoted byDFh with

F (DFh) − F (D−
Fh

) = pFh for h = 1, 2, . . . , dF wherex− denotes the left limit ofx, andf

is the density (continuous) component ofF . The discrete componentsDFh, h = 1, 2, . . . , dF

correspond to jump points in the distribution functionF , and are called the jump points ofF . All

other points onR correspond to points of continuity ofF , that is,F (x)−F (x−) = 0 if x 6= DFh.

The set of jump and continuity points ofF are denoted byJ (F ) andC(F ), respectively. In the

same way, writing

G(y) =

dG∑

l=1

pGl I{DGl≤y} + (1−
dG∑

l=1

pGl)

∫ y

−∞
g(w) dw, (2.2)
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similar definitions can be given for the quantitiesdG, pGl,DGl andg. We denote the set of jump

and continuity points ofG byJ (G) andC(G), respectively.

Let Hθ be the bivariate function defined by

Hθ(x, y) = Cθ(F (x), G(y)) (2.3)

for θ ∈ Θ with F andG as in (2.1) and (2.2), respectively. It follows from the properties of a

copula function that

Theorem 2.1.1.The functionHθ, as defined in (2.3), is a valid bivariate distribution function on

R2 with marginalsF andG.

Proof: ForHθ(x, y) to be a valid distribution function onR2, the following four conditions

should be satisfied:

(1) 0 ≤ Hθ(x, y) ≤ 1 for all (x, y),

(2) Hθ(x, y) → 0 as max(x, y) → −∞,

(3) Hθ(x, y) → 1 as min(x, y) → +∞, and

(4) for everyx1 ≤ x2 andy1 ≤ y2,

∆H ≡ Hθ(x2, y2)−Hθ(x1, y2)−Hθ(x2, y1) + Hθ(x1, y1) ≥ 0.

Note that sinceHθ(x, y) = Cθ(F (x), G(y)) = P (U ≤ F (x), V ≤ G(y)), (1) follows. To

prove (2), note thatF (x) → 0 andG(y) → 0 when max(x, y) → −∞. Hence,Hθ(x, y) → 0

from the property of a cumulative distribution function. (3) follows similarly. To prove (4), we use

the facts thatF (x1) ≤ F (x2) for x1 ≤ x2 andG(y1) ≤ G(y2) for y1 ≤ y2, and

∆H =

∫∫

[F (x1),F (x2)]×[G(y1),G(y2)]
cθ(u, v) du dv. (2.4)

Sincecθ(u, v) ≥ 0, ∆H ≥ 0 follows. Proof completed.

We turn now to give a characterization of the density,hθ(x, y), of Hθ(x, y). For a fixed(x, y) ∈
R2, the two components of(x, y) correspond to either a point of continuity or a jump point of

7



the corresponding marginal distribution function. For(X, Y ) ∼ Hθ, hθ(x, y) has four different

expressions, namely,

hθ(x, y) =





lima,b→0
P{X ∈ (x, x + a], Y ∈ (y, y + b]}

ab
if x ∈ C(F ), y ∈ C(G),

limb→0
P{X = x, Y ∈ (y, y + b]}

b
if x ∈ J (F ), y ∈ C(G),

lima→0
P{X ∈ (x, x + a], Y = y}

a
if x ∈ C(F ), y ∈ J (G), and

P{X = x, Y = y} if x ∈ J (F ), y ∈ J (G),

(2.5)

The following theorem gives workable expressions forhθ(x, y) in terms of the copula:

Theorem 2.1.2.For each(x, y) ∈ R2,

hθ(x, y) =





f(x) g(y) cθ(F (x), G(y)) if x ∈ C(F ), y ∈ C(G),

y(y)

∫

[F (x−),F (x)]
cθ(u,G(y)) du if x ∈ J (F ), y ∈ C(G),

f(x)

∫

[G(y−),G(y)]
cθ(F (x), v) dv if x ∈ C(F ), y ∈ J (G),

∫∫

[F (x−),F (x)]×[G(y−),G(y)]
cθ(u, v) du dv if x ∈ J (F ), y ∈ J (G).

(2.6)

Proof: Whenx ∈ C(F ) andy ∈ C(G),

P{X ∈ (x, x + a], Y ∈ (y, y + b]} =

∫∫

[F (x),F (x+a)]×[G(y),G(y+b)]
cθ(u, v) du dv

from (2.4). This is approximately

ab f(x) g(y) cθ(F (x), G(y))

for smalla andb.

Whenx ∈ J (F ) andy ∈ C(G), note that

P{X = x, Y ∈ (y, y + b]} =

∫∫

[F (x−),F (x)]×[G(y),G(y+b)]
cθ(u, v) du dv,

8



again from (2.4), which is approximatelyb g(y)

∫

[F (x−),F (x)]
cθ(u,G(y)) du for smallb. The

third case follows similarly and the fourth expression is straightforward. Proof completed.

The terms inhθ(x, y) that involve the densitiesf and g do not depend onθ and can,

hence, be ignored for the estimation ofθ. Subsequently, we focus on the functionc∗θ ≡
c∗θ(F (x−), F (x), G(y−), G(y)) defined by

c∗θ =





cθ(F (x), G(y)) if x ∈ C(F ), y ∈ C(G),

∫

[F (x−),F (x)]
cθ(u,G(y)) du if x ∈ J (F ), y ∈ C(G),

∫

[G(y−),G(y)]
cθ(F (x), v) dv if x ∈ C(F ), y ∈ J (G),

∫∫

[F (x−),F (x)]×[G(y−),G(y)]
cθ(u, v) du dv if x ∈ J (F ), y ∈ J (G).

(2.7)

2.2 Semi-Parametric Estimation ofθ

If not all marginals are continuous,C in (1.4) is no longer unique. Uniqueness is an important con-

sideration when estimating the unknown parameters corresponding to the copula function. Since

our marginals have discrete components, one way to achieve uniqueness is to restrictC to belong

to a particular parametric family. From now on, let{Cθ : θ ∈ Θ} be a restricted parametric family

of copulas.

Suppose{ (Xj, Yj)T , j = 1, 2, . . . , n } is the set ofn independent and identically distributed

bivariate random vectors arising from the joint distributionHθ(x, y) in (2.3). The parameter of

interest is the bivariate dependence parameter,θ, and the log-likelihood function corresponding to

then observations is
n∑

j=1

loghθ(xj, yj).

The estimation ofθ is complicated by the presence of nuisance parameters consisting of the

unknown distributionsF andG (only the numberdF and jump pointsDFh, h = 1, 2, . . . , dF

9



of F (correspondingly,dG and pointsDGl of G) are known). An objective function that hasθ

as the only unknown parameter can be obtained by replacingF andG by Fn andGn in the log-

likelihood function, whereFn (and respectively,Gn) is n/(n + 1) times the empirical cdf ofF

(respectively,G). The rescaling byn/(n+1) avoids difficulties arising from the unboundedness of

the log-likelihood function as the empirical cdfs tend to 0 or 1, and has been employed by Genest

et al. in [11]. Thus, the unique semi-parametric maximum likelihood estimator ofθ, θ̂n, is the

maximizer of

L(θ) =
n∑

j=1

log{c∗θ,j(Fn(x−j ), Fn(xj), Gn(y−j ), Gn(yj))} (2.8)

(that is,θ̂n = arg maxθ∈Θ L(θ)), where

c∗θ,j ≡ c∗θ(Fn(x−j ), Fn(xj), Gn(y−j ), Gn(yj)),

ignoring terms that do not depend onθ in
∑n

j=1 loghθ(xj, yj). In the special case when no dis-

crete components are present, Genest et al. [11] developed a semi-parametric approach to estimate

the unknown parameters based on the semi-parametric likelihood. Subsequently, it was shown that

the resulting estimators were consistent and asymptotically normally distributed; see [11] for de-

tails. Expressions (2.7) and (2.8), respectively, are generalizations of the methodology of Genest

et al. [11] whenF andG contain discrete components. Note that the challenge in maximizing

the semiparameteric log-likelihood in (2.8) is that it involves several integrals corresponding to

discrete components in(xj, yj), j = 1, 2, . . . , n.
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CHAPTER 3

ASYMPTOTIC PROPERTIES OF

SEMI-PARAMETRIC ESTIMATOR IN

BIVARIATE DISTRIBUTIONS

3.1 Statement of the Main Theorem

In view of its similarity with the semi-parametric maximum likelihood estimator for continuous

marginals, we expect that̂θn in the case of mixed marginals to be consistent and asymptotically

normal. To prove this, we denotel(θ, u1, u2, v1, v2) = log {c∗θ(u1, u2, v1, v2)} and use the nota-

tion lθ andlθ,θ to denote the first and second derivative ofl with respect toθ. The estimator̂θn

satisfies

1

n

∂L(θ)

∂θ
=

1

n

n∑

j=1

lθ(θ, Fn(x−j ), Fn(xj), Gn(y−j ), Gn(yj)) = 0. (3.1)

Here is some heuristics of the proof of asymptotic normality. Expanding in a Taylor’s series, one

obtains,

1

n

∂L(θ)

∂θ

∣∣∣∣θ=θ̂n
= 0 ≈ An − (θ̂n − θ)Bn (3.2)
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where

An =
1

n

n∑

j=1

lθ(θ, Fn(x−j ), Fn(xj), Gn(y−j ), Gn(yj))

and

Bn = − 1

n

n∑

j=1

lθ,θ(θ, Fn(x−j ), Fn(xj), Gn(y−j ), Gn(yj)).

It follows from equation (3.2) thatn1/2(θ̂n− θ) ≈ n1/2An/Bn. From the theory of multivariate

rank statistics, one can get the following limiting behaviors:

Bn → β = −E(lθ,θ{θ, F (X−), F (X), G(Y−), G(Y )}) (3.3)

almost surely, andn1/2An is asymptotically normal with zero mean and varianceσ2, of which

the explicit form will be provided in Section 3.4.

Thus, we have

Theorem 3.1.1.Under suitable regularity conditions, the semi-parametric estimatorθ̂n is consis-

tent andn1/2(θ̂n − θ) is asymptotically normal with mean0 and variance% = σ2/β2.

We start with the proofs of consistency in Section 3.2, the asymptotic properties ofBn andAn

in Section 3.3 and Section 3.4 respectively, on which Theorem 3.1.1 is based, and complete this

Chapter by proving Theorem 3.1.1 in Section 3.5.

Here are some notations which will be used later in this Chapter. LetSFh =

[F (D−
Fh

), F (DFh)], for h = 1, 2, ..., dF , SGl = [F (D−
Gl

), F (DGl)] for l = 1, 2, ..., dG. Under

the situation that bothF andG only have one jump point, the previous notations can be simplified

toDF ,DG, SF = [F (D−F ), F (DF )], andSG = [G(D−G), G(DG)], respectively.
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3.2 Consistency of̂θn

Nothing thatθ̂n satisfying (3.1), by lettingJ = lθ, which is a function on(0, 1)2, we only need to

show that

Rn =
1

n

n∑

j=1

J(Fn(Xj), Gn(Yj)) → 0 a.s. (3.4)

SinceHθ involves one or more jump points,Rn can be written as

Rn =
1

n

n∑

j=1

J(Fn(X−j ), Fn(Xj), Gn(Y−j ), Gn(Yj)) (3.5)

We introduce some notations for the subsequent presentation. Let{cc}, {cd}, {dc}, and{dd}
be the events that{(X, Y ) : X ∈ C(F ), Y ∈ C(G)}, {(X, Y ) : X ∈ C(F ), Y ∈ J (G)}, {(X, Y ) :

X ∈ J (F ), Y ∈ C(G)} and {(X,Y ) : X ∈ J (F ), Y ∈ J (G)}, respectively. Further, let

Acc = {j : (Xj, Yj) ∈ {cc}}. Similarly, one can defineAcd, Adc andAdd. Note that the setsAS

for S = {cc}, {cd}, {dc}, and{dd} is a partition of the set of integers{1, 2, . . . , n}. We consider

the decomposition ofRn based on these four partition sets, namely,Rn = Rcc
n +Rcd

n +Rdc
n +Rdd

n

where

RS
n =

1

n

∑

j∈AS

JS(Fn(X−j ), Fn(Xj), Gn(Y−j ), Gn(Yj)),

for S = {cc}, {cd}, {dc}, and{dd}, andJS is given by

JS(u1, u2, v1, v2) =





Jcc(u2, v2) if S = {cc}
Jcd(u2, v1, v2) if S = {cd}
Jdc(u1, u2, v2) if S = {dc}
Jdd(u1, u2, v1, v2) if S = {dd}.

(3.6)

The functionsJS , whereS = {cc}, {cd}, {dc} and{dd}, are assumed to be continuous on

their respective domains. For example,Jcc(u2, v2) is assumed to be continuous on[0, 1]2; this

is a reasonable assumption to make since candidates forJcc will be either
∂

∂θ
log cθ(u2, v2) or
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∂2

∂θ2
log cθ(u2, v2) in this Chapter, which are continuous functions ofu2 andv2. Jcd(u2, v1, v2)

is assumed to be continuous on[0, 1]3. A particular candidate ofJcd is

Jcd(u2, v1, v2) =
∂

∂θ
log

∫

[v1,v2]
cθ(u2, v)dv

which is continuous inu2, v1 andv2. Similarly for Jdc andJdd.

Almost sure convergence ofRn is established in the following theorem:

Theorem 3.2.1.Let J = lθ, r(u) = u(1 − u), δ > 0, p and q are positive numbers satisfying

1/p + 1/q = 1. Leta andb be numbers given bya = (−1 + δ)/p andb = (−1 + δ)/q. Consider

the conditions

(C1)Jcc(u2, v2) ≤ M1 r(u2)ar(v2)b,

(C2)Jcd(u2, v1, v2) ≤ M2 r(u2)a (independent ofv1 andv2), and

(C3)Jdc(u1, u2, v2) ≤ M3 r(v2)b (independent ofu1 andu2).

(C4) In a small neighborhood of each(F (D−
Fh

), F (DFh), G(D−
Gl

), G(DGl)) ∈ [0, 1]4, for h =

1, 2, ..., dF andl = 1, 2, ..., dG, Jdd(u1, u2, v1, v2) is finite.

Under conditions (C1-C4),Rn → κ(= 0) almost surely. where

κ = E[Ncc(X, Y ) + Ncd(X, Y ) + Ndc(X,Y ) + Ndd(X,Y )], (3.7)

with E[Ncc(X, Y )], E[Ncd(X, Y )], E[Ndc(X,Y )] and E[Ndd(X, Y )] are given as below, re-

spectively,
∫∫

{(0,1)∩(∪dF
h=1

SFh)c}×{(0,1)∩(∪dG
l=1

SGl)
c}

Jcc(u, v)cθ(u, v) du dv,

∫

(0,1)∩(∪dF
h=1

SFh)c

dG∑

l=1

{
Jcd(u,G(D−

Gl
), G(DGl))

∫

SGl

cθ(u, v) dv

}
du,

∫

(0,1)∩(∪dG
l=1

SGl)
c

dF∑

h=1

{
Jdc(F (D−

Fh
), F (DFh), v)

∫

SFh

cθ(u, v) du

}
dv,

∑

h,l

Jdd(F (D−
Fh

), F (DFh), G(D−
Gl

), G(DGl))

∫

SFh×SGl

cθ(u, v) du dv.
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Remark: In the case oft-copulas (as defined in (6.1)),a andb can be chosen such that

a ≤ −2

ν
, b ≤ −2

ν
, a =

−1 + δ

p
, b =

−1 + δ

q
for somep, q andδ.

Proof: Without loss of generality, we consider the case that there is only one point of dis-

continuity in bothF andG, i. e.,DF andDG. Let Cn(u, v) be the empirical copula defined by

the sample

Cn(u, v) =
1

n

n∑

j=1

I{Fn(Xj)≤u,Gn(Yj)≤v}.

We consider the decomposition of the empirical copula measure into 4 sub-measuresCcc
n , Ccd

n ,

Cdc
n , andCdd

n , where

CS
n (u, v) =

1

n

n∑

j∈AS

I{Fn(Xj)≤u,Gn(Yj)≤v},

for S = {cc}, {cd}, {dc} and{dd}, and

Cn(u, v) =
∑

S∈{cc,cd,dc,dd}
CS

n (u, v).

Then by the Glivenko-Cantelli Theorem,Ccc
n (u, v) converges uniformly toC1(u, v), Ccd

n (u, v)

converges uniformly toC2(u, v), Cdc
n (u, v) converges uniformly toC3(u, v), andCdd

n (u, v) con-

verges uniformly toC4(u, v) respectively, andCi(u, v) for i = 1, 2, 3, 4, are given by

C1(u, v) =



P (F (X) ≤ u andG(Y ) ≤ v) if (u, v) ∈ (0, F (D−F ))× (0, G(D−G))

P (F (X) ∈ (0, u) ∩ Sc
F andG(Y ) ≤ v) if (u, v) ∈ [F (D−F ), 1)× (0, G(D−G))

P (F (X) ≤ u andG(Y ) ∈ (0, v) ∩ Sc
G) if (u, v) ∈ (0, F (D−F ))× [G(D−G), 1)

P (F (X) ∈ (0, u) ∩ Sc
F andG(Y ) ∈ (0, v) ∩ Sc

G) if (u, v) ∈ [F (D−F ), 1)× [G(D−G), 1)

C2(u, v) =



0 if v ∈ (0, G(DG))

P (F (X) ≤ u andY = DG) if (u, v) ∈ (0, F (D−F ))× [G(DG), 1)

P (F (X) ∈ (0, u) ∩ Sc
F andY = DG) if (u, v) ∈ [F (D−F ), 1)× [G(DG), 1)
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C3(u, v) =



0 if u ∈ (0, F (DF ))

P (X = DF andG(Y ) ≤ v) if (u, v) ∈ [F (DF ), 1)× (0, G(D−G))

P (X = DF andG(Y ) ∈ (0, v) ∩ Sc
G) if (u, v) ∈ [F (DF ), 1)× [G(D−G), 1)

andC4(u, v) only put massP (X = DF andY = DG) on a single point{F (DF )} × {G(DG)}.
Note thatCi(u, v), i = 1, ..., 4, are not probability measures and

Cθ(u, v) =
4∑

i=1

Ci(u, v).

To obtain the almost sure convergence, it takes four steps.

Step 1.Let

Rcc
n =

∫∫

(0,1)2
Jcc(u, v)dCcc

n (u, v).

Now we prove thatRcc
n → µcc ≡ E[Ncc(X,Y )] almost surely. We show thatJcc is uniformly in-

tegrable with respect to the measuresdCcc
n (u, v) by showing

∫∫

(0,1)2
|Jcc(u, v)|1+εdCcc

n (u, v)

is bounded for someε > 0. Using the Ḧolder’s inequality and the assumption (C1), one can de-

rive the following chain of inequalities, noting thatdCcc
n (u, v) putting mass

1

n
on each continuous

point:
∫∫

(0,1)2
|Jcc(u, v)|1+εdCcc

n (u, v)

≤ M1

∫∫

(0,1)2
r(u)a(1+ε)r(v)b(1+ε)dCcc

n (u, v)

≤ M1

{∫

(0,1)2
r (u)a(1+ε)p dCcc

n (u, v)

}1/p {∫

(0,1)2
r (u)b(1+ε)q dCcc

n (u, v)

}1/q

≤ M1





1

n

∑

j∈Acc

r

(
j

n + 1

)a(1+ε)p




1/p 



1

n

∑

j∈Acc

r

(
j

n + 1

)b(1+ε)q




1/q

=
M1
n

∑

j∈Acc

r

(
j

n + 1

)(−1+δ)(1+ε)

≤ M1

∫ 1

0

1

{u(1− u)(1−δ)(1+ε)}
du < ∞,
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for ε < δ. Combining the result above with the fact thatCcc
n (u, v) uniformly converges to

C1(u, v), we have

Rcc
n →

∫∫

(0,1)2
Jcc(u, v)dC1(u, v) =

∫∫

((0,1)∩Sc
F )×((0,1)∩Sc

G)
Jcc(u, v)cθ(u, v) dudv

almost surely, which completes step 1.

Step 2.Let

Rcd
n =

∫∫

(0,1)2
Jcd(u, v1, v2)dCcd

n (u, v).

Now we prove thatRcd
n → µcd ≡ E[Ncd(X, Y )] almost surely. We show that

Jcd(u, v1, v2) is uniformly integrable with respect to the measuresdCcd
n (u, v) by showing∫∫

(0,1)2
|Jcd(u, v1, v2)|1+εdCcd

n (u, v) is bounded for someε > 0. Using the Ḧolder’s in-

equality and the assumption (C2), one can derive the following chain of inequalities, noting that

dCcd
n (u, v) putting mass

1

n
on each point on((0, 1) ∩ Sc

F )×Gn(DG):

∫∫

(0,1)2
|Jcd(u, v1, v2)|1+εdCcd

n (u, v)

≤ M2

∫∫

(0,1)2
r(u)a(1+ε)dCcd

n (u, v)

≤ M2

{∫

(0,1)2
r (u)a(1+ε)p dCcd

n (u, v)

}1/p {∫

(0,1)2
1(1+ε)qdCcd

n (u, v)

}1/q

≤ M2





1

n

∑

j∈Acd

r

(
j

n + 1

)a(1+ε)p





1/p

· 1

= M2





1

n

∑

j∈Acd

r

(
j

n + 1

)(−1+δ)(1+ε)





1/p

≤ M2

{∫ 1

0

1

{u(1− u)(1−δ)(1+ε)}
du

}1/p

< ∞,

if ε < δ. Combining the result above with the fact thatCcd
n (u, v) uniformly converges toC2(u, v),
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we have

Rcd
n →

∫∫

(0,1)2
Jcd(u,G(D−G), G(DG))dC2(u, v)

=

∫

((0,1)∩Sc
F )

Jcd(u,G(D−G), G(DG))

∫

SG

cθ(u, v) dv du

almost surely, which completes step 2.

Step 3. Under the assumption (C3), the proof forRdc
n → µdc ≡ E[Ndc(X, Y )] is similar to

that in step 2, so it is omitted.

Step 4.The convergence ofRdd
n can be established using the SLLN. Let

Rdd
n =

∫∫

(0,1)2
Jdd(u1, u2, v1, v2)dCdd

n (u, v).

Now we prove thatRdd
n → µdd ≡ E[Ndd(X,Y )] almost surely. We show that

Jdd(u1, u2, v1, v2) is uniformly integrable with respect to the measuresdCdd
n (u, v) by show-

ing
∫∫

(0,1)2
|Jdd(u1, u2, v1, v2)|1+εdCdd

n (u, v) is bounded for someε > 0. Noting

that dCdd
n (u, v) putting mass

n∗dd
n

on the single point(Fn(DF ), Gn(DG)), where n∗dd is

the number of observations of(Xj, Yj) such thatXj = DF andYj = DG:

∫∫

(0,1)2
|Jdd(u1, u2, v1, v2)|1+εdCdd

n (u, v)

=
n∗dd
n
|Jdd(u1, u2, v1, v2)|1+ε

< ∞,

as long asJdd(u1, u2, v1, v2) is finite, which is the assumption (C4). Combining the result above

with the fact thatCdd
n (u, v) uniformly converges toC4(u, v), we have

Rdd
n →

∫∫

(0,1)2
Jdd(u1, u2, v1, v2)dC4(u, v)

= Jdd(F (D−F ), F (DF ), G(D−G), G(DG))

∫∫

SF×SG

cθ(u, v) du dv

almost surely, which completes step 4.
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In summary, note that

Rn = Rcc
n + Rcd

n + Rdc
n + Rdd

n ,

Theorem 3.2.1 is true.

3.3 Asymptotic Behavior ofBn

In the case whenHθ andJ are both continuous, in [11], by lettingJ = lθ,θ, one can see of interest

is the asymptotic behavior of the statisticRn defined by

Rn =
1

n

n∑

j=1

J(Fn(Xj), Gn(Yj)) (3.8)

whereJ(·, ·) is a function on(0, 1)2. Genest et al. [11] have shown that

Bn → −E(lθ,θ{θ, F (X), G(Y )})

asn →∞ almost surely.

In the present case, the appropriate statistic is similar in form toRn but with a significant

difference,Hθ involves one or more jump points. Therefore,Rn can be written of the form as in

(3.5), withJ = lθ,θ. Almost sure convergence ofRn is established in the following theorem:

Theorem 3.3.1.Let J = lθ,θ, r(u) = u(1 − u), δ > 0, p and q are positive numbers satisfying

1/p + 1/q = 1. Leta andb be numbers given bya = (−1 + δ)/p andb = (−1 + δ)/q. Consider

the conditions

(C1)Jcc(u2, v2) ≤ M1 r(u2)ar(v2)b,

(C2)Jcd(u2, v1, v2) ≤ M2 r(u2)a (independent ofv1 andv2), and

(C3)Jdc(u1, u2, v2) ≤ M3 r(v2)b (independent ofu1 andu2).

(C4) In a small neighborhood of each(F (D−
Fh

), F (DFh), G(D−
Gl

), G(DGl)) ∈ [0, 1]4, for h =

1, 2, ..., dF andl = 1, 2, ..., dG, Jdd(u1, u2, v1, v2) is finite.

Under conditions (C1-C4),Rn → β almost surely where

β = E[Ncc(X, Y ) + Ncd(X,Y ) + Ndc(X, Y ) + Ndd(X, Y )], (3.9)
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with E[NS(X, Y )] defined as in (3.7), andS = {cc}, {cd}, {dc}.

Since the proof is similar to that in Theorem 3.2.1, it is omitted here.

3.4 Asymptotic Behavior ofAn

By takingJ = lθ in (3.5), we have the following Theorem:

Theorem 3.4.1.Let r(u) = u(1 − u), δ > 0, p andq be as in Theorem 3.3.1. LetJS
u andJS

v be

the partial derivatives ofJS with respect tou andv, respectively, forS = {cc}, {cd}, {dc}, and

{dd}. Also, leta andb be numbers given bya = (−0.5 + δ)/p andb = (−0.5 + δ)/q. Consider

the conditions

(D1) Jcc(u2, v2) ≤ M1 r(u2)ar(v2)b, with partial derivatives satisfying

Jcc
u2

(u2, v2) ≤ M2r(u2)a−1r(v2)b andJcc
v2

(u2, v2) ≤ M3r(u2)ar(v2)b−1,

(D2) Jcd(u2, v1, v2) ≤ M4 r(u2)a with Jcd
u2

(u2, v1, v2) ≤ M5 r(u2)a−1,
∫ v2

v1
cθ(u2, v)dv ≤ M6 r(u2)a,

∫

(0,1)∩{∪hSFh}c
∑

l

{
|Jcd

η (u2, G(D−
Gl

), G(DGl))|
∫

SGl

cθ(u2, v)dv

}
du2 < ∞

with η = v1 or v2, Jcd
u2

(u2, v1, v2) is continuous w.r.t.u2 onC(F ) almost surely,

Jcd
v1

(u2, v1, v2) andJcd
v2

(u2, v1, v2) are continuous w.r.t.v1 andv2 respectively in

the small neighborhoods of rectanglesC(F )× (G(D−
Gl

), G(DGl)] almost surely

for l = 1, ..., DG,
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(D3) Jdc(u1, u2, v2) ≤ M7 r(v2)b with Jdc
v2

(u1, u2, v2) ≤ M8 r(v2)b−1,
∫ u2

u1
cθ(u, v2)du ≤ M9 r(v2)b,

∫

(0,1)∩{∪lSGl}c
∑

h

{
|Jdc

η (F (D−
Fh

), F (DFh), v2)|
∫

SFh

cθ(u, v2)du

}
dv2 < ∞

with η = u1 or u2, Jdc
v2

(u1, u2, v2) is continuous w.r.t.v2 onC(G) almost surely,

Jdc
u1

(u1, u2, v2) andJdc
u2

(u1, u2, v2) are continuous w.r.t.u1 andu2 respectively in

the small neighborhoods of rectangles(F (D−
Fh

), F (DFh)]× C(G) almost surely

for h = 1, ..., DF ,

(D4) Jdd
u1

(u1, ·, ·, ·), Jdd
u2

(·, u2, ·, ·), Jdd
v1

(·, ·, v1, ·), andJdd
v2

(·, ·, ·, v2) are continuous w.r.t.

u1, u2, v1 andv2, respectively, in a small neighborhood of(F (D−
Fh

), F (DFh),

G(D−
Gl

), G(DGl)) for anyh = 1, ..., DF andl = 1, ..., DG.

Under conditions (D1-D4),n1/2(Rn − κ) → N(0, σ2) in distribution asn → ∞, whereκ is

defined in (3.7), and

σ2 = var
[
Mcc(X, Y ) + Mcd(X, Y ) + Mdc(X,Y ) + Mdd(X, Y )

]
, (3.10)

with Mcc(x, y), Mcd(x, y), Mdc(x, y) andMdd(x, y) are given as below, respectively,

Jcc(F (x), G(y))I{x∈C(F ),y∈C(G)}
+

∫∫

{R\{∪hDFh}}×{R\{∪lDGl}}
I{x≤x′} Jcc

u2
(F (x′), G(y′))dHθ(x′, y′)

+

∫∫

{R\{∪hDFh}}×{R\{∪lDGl}}
I{y≤y′} Jcc

v2
(F (x′), G(y′))dHθ(x′, y′),

(3.11)
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dG∑

l=1

Jcd(F (x), G(D−
Gl

), G(DGl))I{x∈C(F ), y=DGl}

+

dG∑

l=1

∫

R\{∪hDFh}
I{x≤x′} Jcd

u2
(F (x′), G(D−

Gl
), G(DGl))dHθ(x′,DGl)

+

dG∑

l=1

∫

R\{∪hDFh}
I{y<DGl} Jcd

v1
(F (x′), G(D−

Gl
), G(DGl))dHθ(x′,DGl)

+

dG∑

l=1

∫

R\{∪hDFh}
I{y≤DGl} Jcd

v2
(F (x′), G(D−

Gl
), G(DGl))dHθ(x′,DGl),

dF∑

h=1

Jdc(F (D−
Fh

), F (DFh), G(y))I{y∈C(G)}

+

dF∑

h=1

∫

R\{∪lDGl}
I{y≤y′}J

dc
v2

(F (D−
Fh

), F (DFh), G(y′))dHθ(DFh, y′)

+

dF∑

h=1

∫

R\{∪lDGl}
I{x<DFh} Jdc

u1
(F (D−

Fh
), F (DFh), G(y′))dHθ(DFh, y′)

+

dF∑

h=1

∫

R\{∪lDGl}
I{x≤DFh} Jdc

u2
(F (D−

Fh
), F (DFh), G(y′))dHθ(DFh, y′),

∑

h,l

Jdd(F (D−
Fh

), F (DFh), G(D−
Gl

), G(DGl))I{x=DFh, y=DGl}

+
∑

h,l

[
I{y<DGl} Jdd

v1
(F (D−

Fh
), F (DFh), G(D−

Gl
), G(DGl))

+ I{y≤DGl} Jdd
v2

(F (D−
Fh

), F (DFh), G(D−
Gl

), G(DGl))

+ I{x<DFh} Jdd
u1

(F (D−
Fh

), F (DFh), G(D−
Gl

), G(DGl))

+ I{x≤DFh} Jdd
u2

(F (D−
Fh

), F (DFh), G(D−
Gl

), G(DGl))

]

·P (X = DFh, Y = DGl).

In the case when bothHθ andJ are continuous, Genest et al. [11] showed that the statisticRn
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was a special case of multivariate rank order statistics whose asymptotic behavior was thoroughly

studied by Ruymgaart et al. [41], Rumyaart [42] and Rüschendorf [40]. For continuousHθ andJ ,

Genest et al. [11] proposed regularity conditions ensuring almost sure convergence and asymptotic

normality. In the present case,Hθ involves one or more jump points, which causes theJ function

to be discontinuous on(0, 1)2 as well.

In the rest of this Chapter, we will provide a scratch proof of Theorem 3.4.1. Without loss of

generality, we will show the theorem is true in the case that there is only one discontinuity point in

bothF andG, which should be completed in the subsequent sections, using arguments similar to

those used in [41].

We shall need the following empirical processes

Un(F (x)) = n1/2(Fn(x)− F (x)),

Un(F (x−)) = n1/2(Fn(x−)− F (x−)),

Vn(G(y)) = n1/2(Gn(y)−G(y))),

Vn(G(y−)) = n1/2(Gn(y−)−G(y−)).

Note that

P (Ω0) = P ({ω : Fn(F−1(F )) = Fn,Gn(G−1(G)) = Gn, for all x, y andn}) = 1. (3.12)

The above identities,Fn(F−1(F )) = Fn andGn(G−1(G)) = Gn are true even for the case

when there are jump points. At the jump point ofF , one can see thatF−1(F (DF )) = DF . The

similar result holds forG as well.

3.4.1 Asymptotic normality of Rcc
n

For small positiveγ define the set

Ωγn = {ω : sup |Fn − F | < γ/2, sup |Gn −G| < γ/2}. (3.13)
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Forω ∈ Ω0 ∩ Ωγn, the Mean Value Theorem gives

n1/2Jcc(Fn, ·) = n1/2Jcc(F, ·) + Un(F )Jcc
u2

(Φn, ·),

for all x ∈ C(F ). In the formula aboveΦn is defined byΦn = F + η(Fn − F ), whereη =

η(ω, x, n) is a number between0 and1. Let

∆F = [X1n,DF )
⋃

(DF , Xnn],

∆G = [Y1n,DG)
⋃

(DG, Ynn],

where

X1n( or Y1n) = min1≤j≤n Xj ( or Yj),

Xnn( or Ynn) = max1≤j≤n Xj ( or Yj).

Note that

n1/2(Rcc
n − µcc) =

3∑

i=1

Ain +
4∑

i=1

Bγin + B5n + Cn,

where

µcc = E[Ncc(X,Y )] with lθ,θ replaced bylθ in (3.9),

A1n = n1/2
∫∫

{R\DF }×{R\DG}
Jcc(F (x), G(y))d[Hn(x, y)−Hθ(x, y)],

A2n =

∫∫

{R\DF }×{R\DG}
Un(F (x))Jcc

u2
(F (x), G(y))dHθ(x, y),

A3n =

∫∫

{R\DF }×{R\DG}
Vn(G(y))Jcc

v2
(F (x), G(y))dHθ(x, y),

Bγ 1n = χ(Ωc
γn){n1/2

∫∫

{R\DF }×{R\DG}
[Jcc(Fn(x), G(y))

−Jcc(F (x), G(y))]dHn(x, y)− A2n} ,
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Bγ 2n = χ(Ωγn)

∫∫

{R\DF }×{R\DG}
Un(F (x))[Jcc

u2
(Φn(x), G(y))

−Jcc
u2

(F (x), G(y))
]
dHn(x, y),

Bγ 3n = χ(Ωγn)

∫∫

{∆F×∆G}∩{{R\DF }×{R\DG}}
Un(F (x))·

Jcc
u2

(F (x), G(y))d[Hn(x, y)−Hθ(x, y)],

Bγ 4n = χ(Ωγn)

{∫∫

{∆F×∆G}∩{{R\DF }×{R\DG}}
Un(F (x))·

Jcc
u2

(F (x), G(y))dHθ(x, y)− A2n

}
,

B5n = n1/2
∫∫

{R\DF }×{R\DG}
[Jcc(F (x), Gn(y))

−Jcc(F (x), G(y))] dHn(x, y)− A3n,

Cn = n1/2
∫∫

{R\DF }×{R\DG}
[Jcc(Fn(x), Gn(y))− Jcc(Fn(x), G(y))

−Jcc(F (x), Gn(y)) + Jcc(F (x), G(y))] dHn(x, y),

whereχ(Ωγn) denotes the indicator function ofΩγn; Hn(x, y) is the empirical cumulative distri-

bution ofHθ(x, y) .

Note that with a further decomposition ofCn, one has

Cγ 1n = χ(Ωc
γn)n1/2

∫∫

{R\DF }×{R\DG}
[Jcc(Fn(x), Gn(y))− Jcc(Fn(x), G(y))

−Jcc(F (x), Gn(y)) + Jcc(F (x), G(y))] dHn(x, y),

Cγ 2n = χ(Ωγn)

∫∫

{R\DF }×{R\DG}
Un(F (x))[Jcc

u2
(Φn(x), Gn(y))

−Jcc
u2

(Φn(x), G(y))
]
dHn(x, y).

We start with a few lemmas to be used in the proof.
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Lemma 3.3.1 For anyξ ≥ 0 and functionr(u) = u(1− u), the functionr(u)−ξ is symmetric

about
1

2
, decreasing on

(
0,

1

2

]
and has the property that for eachβ in (0, 1) there exits a constant

M = Mβ such that

r(βs)−ξ ≤ Mr(s)−ξ for 0 < s ≤ 1

2
,

and

r(1− β(1− s))−ξ ≤ Mr(s)−ξ for
1

2
< s < 1.

Proof of Lemma 3.4.1 can be found in [41].

Lemma 3.3.2 Let Φn andΨn be functions on∆n1 and∆n2, where

∆n1 =





[X1n,Xnn], if Xnn 6= DdF

[X1n,Xnn), if Xnn = DdF

and

∆n2 =





[Y1n, Ynn], if Ynn 6= DdG

[Y1n, Ynn), if Ynn = DdG
respectively, satisfying

min(F, Fn) ≤ Φn ≤ max(F, Fn)

and

min(G,Gn) ≤ Ψn ≤ max(G,Gn)

where defined. Then uniformly forn = 1, 2, · · · ,

(i) sup
∆n1

r(Φn)−ξr(F )ξ = Op(1), for eachξ ≥ 0,

(ii) sup
∆n2

r(Ψn)−ηr(G)η = Op(1), for eachη ≥ 0.

Proof: It suffices to prove (i). From Lemma A.3 in [45] and (3.12), it follows that one needs

to show that for eachε > 0, there exists a constantβ = βε in (0, 1) such that

P (Ωn) = P ({ω : βF ≤ Fn ≤ 1− β(1− F ) anyx(ω) on∆n1}) > 1− ε, (3.14)
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for all n andF .

Let A = {ω : βF ≤ Fn ≤ 1 − β(1 − F ) anyx(ω) ∈ ∆n1 ∩ C(F )}, andB = {ω : βF ≤
Fn ≤ 1− β(1− F ) anyx(ω) ∈ ∆n1 ∩ J (F )}.

Note that in our case,

P ({ω : βF ≤ Fn ≤ 1− β(1− F ) anyx(ω) on∆n1})
= P (A ∪B)

= P (A) + P (B)

= P ({ω : x(ω) ∈ ∆n1 ∩ C(F )}) · P ({ω : βF ≤ Fn ≤ 1− β(1− F ) | x(ω) ∈ ∆n1 ∩ C(F )})
+P ({ω : x(ω) ∈ ∆n1 ∩ J (F )})·
P ({ω : βF ≤ Fn ≤ 1− β(1− F ) | x(ω) ∈ ∆n1 ∩ J (F )}).

In Lemma 6.1 in [41] (3.14) has been verified for all continuousF for a constantβ = β
′
ε, which

gives usP ({ω : βF ≤ Fn ≤ 1− β(1− F ) | x(ω) ∈ C(F ) ∩∆n1}) > 1− ε. Noting that

P ({ω : x(ω) ∈ ∆n1 ∩ C(F )}) + P ({ω : x(ω) ∈ ∆n1 ∩ J (F )}) = 1,

to prove (3.14) we only need to show whenx(ω) ∈ ∆n1 ∩ J (F ), P ({ω : βF ≤ Fn ≤ 1− β(1−
F ) | anyx(ω) ∈ ∆n1 ∩ J (F )}) > 1 − ε is true for a constantβ = β”

ε . This is a direct result of

the Glivenko-Cantelli Theorem, which completes the proof.

Lemma 3.3.3 Uniformly in all F , we have

(i) sup
∆n1

|Un(F )− U∗n(F )|r(F )ρ−1/2 →p 0, asn →∞, for each ρ ≥ 0,

(ii) sup
(−∞,∞)\{∪hDFh}

|Un(F )|r(F )ρ−1/2 = Op(1), asn →∞, for each ρ ≥ 0,

whereU∗n(F (x)) = n1/2(F̂n(x)−F (x)), andF̂n is the empirical distribution ofF . Note thatFn

was defined to be
n

n + 1
F̂n.

Proof: (i) Note that

|Un(F )− U∗n(F )|r(F )ρ−1/2 = n1/2 F̂n
n + 1

r(F )ρ−1/2,
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and that for any fixedβ ∈ (0, 1), we have

r

(
β

n

)ρ−1/2
= r

(
1− β

n

)ρ−1/2
= O(n−ρ+1/2).

SinceF (Xi) are i.i.d. uniform random variables, given any arbitraryε > 0, we can choose a

β = βε in (0, 1) such that

P

(
β

n
≤ F (X1n) ≤ F (Xnn) ≤ 1− β

n

)
> 1− ε

for all n and allF with F (DF ) 6= 1, which is obvious since

P

(
β

n
≤ F (X1n) ≤ F (Xnn) ≤ 1− β

n

)

=

(
1− β

n
− β

n

)n

=

(
1− 2β

n

)n
→ e−2β > 1− ε,

for sufficiently smallβ.

Combining with all above results, we proved (i). (ii) follows from (i) and (iii) of Lemma 4.2 in

[41]. Proof completed.

Proof of Asymptotic normality of Rcc
n .

(1) Note thatA1n can be written as

A1n = n−1/2
n∑

j=1

A1jn,

whereA1jn = Jcc(F (Xj), G(Yj)) · I{j∈Acc} − µcc. TheA1jn are i.i.d. with mean zero. By
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the assumption(D1) and the Ḧolder’s inequity, we have
∫∫

{R\DF }×{R\DG}
|Jcc(F (x), G(y))|2+δ0dHθ(x, y)

≤
∫∫

{R\DF }×{R\DG}
M

2+δ0
1 |r(F (x))a(2+δ0)r(G(y))b(2+δ0)|dHθ(x, y)

≤ M
2+δ0
1

[∫

(0,1)
r(u)a(2+δ0)p0du

]1/p0
[∫

(0,1)
r(v)b(2+δ0)q0dv

]1/q0

= M
2+δ0
1

[∫

(0,1)
r(u)

(−1
2+δ)(2+δ0)

du

]1/p0
[∫

(0,1)
r(v)

(−1
2+δ)(2+δ0)

dv

]1/q0

< ∞,

for some selectedp0, q0 andδ satisfying(1− δ)(2 + δ0) < 1, which means thatA1jn has a finite

absolute moment of order2+δ0 for someδ0 > 0. Moreover, the term on the left hand is uniformly

bounded above of order2 + δ0. Using the CLT, we get the asymptotic normality ofA1n.

(2) Note thatA2n can be written as

A2n = n1/2
∫∫

{R\DF }×{R\DG}
(F̂n(x)− F (x))Jcc

u2
(F (x), G(y))dHθ(x, y)

+n1/2
∫∫

{R\DF }×{R\DG}
(Fn(x)− F̂n(x))Jcc

u2
(F (x), G(y))dHθ(x, y)

= A∗2n1 + A∗2n2,

whereF̂n(x) is the empirical distribution function ofX. Let

φXj
(x) =





0 if x < Xj

1 if x ≥ Xj

Then A∗2n1 can be written as n−1/2
n∑

j=1

A2jn, where A2jn =

∫∫

{R\DF }×{R\DG}
(φXj

(x) − F (x))Jcc
u2

(F (x), G(y))dHθ(x, y) are i.i.d. with mean

zero. Note that|φXj
(x)− F (x)| ≤ 1. Under the assumption (D1), we have

|A2jn| ≤ M2

∫∫

{R\DF }×{R\DG}
ra−1(F (x))rb(G(y))dHθ(x, y).
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Note that
∫∫

{R\DF }×{R\DG}
ra−1(F (x))rb(G(y))dHθ(x, y) < ∞ uniformly as long as we

can find somep1 andq1 satisfying1/p1 + 1/q1 = 1 and(a − 1)p1 > −1 andbq1 > −1. Thus,

we have shown thatA∗2n1 has an absolute moment of order2 + δ1, which leads to the asymptotic

normality ofA∗2n1. Note that with the samep1 andq1

A∗2n2 =
n1/2

n + 1

∫∫

{R\DF }×{R\DG}
F̂n(x)Jcc

u2
(F (x), G(y))dHθ(x, y)

≤ n1/2

n + 1
sup
x
|F̂n(x)|

∫∫

{R\DF }×{R\DG}
Jcc
u2

(F (x), G(y))dHθ(x, y)

= op(1).

Therefore, we have the asymptotic normality ofA2n.

(3) Similarly, note thatA3n can be written as

A3n = n1/2
∫∫

{R\DF }×{R\DG}
(Ĝn(y)−G(y))Jcc

v2
(F (x), G(y))dHθ(x, y)

+n1/2
∫∫

{R\DF }×{R\DG}
(Gn(y)− Ĝn(y))Jcc

v2
(F (x), G(y))dHθ(x, y)

= A∗3n1 + A∗3n2,

where Ĝn(y) is the empirical distribution function ofY . Similarly, the A∗3n1 can

be written as n−1/2
n∑

j=1

A3jn, where A3jn =

∫∫

{R\DF }×{R\DG}
(φYj

(y) −

G(y))Jcc
v2

(F (x), G(y))dHθ(x, y) are i.i.d. with mean zero. The same asymptotic conclusion can

be drawn forA3n.

(4) Note that theA1n + A2n + A3n can be written as
n∑

j=1

n−1/2(A1jn + A2jn + A3jn) +

A∗2n2 + A∗3n2 ≡
n∑

j=1

n−1/2A∗∗1jn + A∗2n2 + A∗3n2, where theA∗∗1jn = A1jn + A2jn + A3jn

depends on(Xj, Yj) only, hence are i.i.d. with mean zero, and the termsA∗2n2 →p 0 and

A∗3n2 →p 0 asn → ∞. Using the CLT, we have that theA1n + A2n + A3n is asymptoti-

cally normally distributed with mean0.

The asymptotic negligibility of theB− andC− terms will be stated as corollaries.
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Corollary 1. For fixedγ, Bγ1n →p 0 andCγ1n →p 0 asn →∞.

Proof: Note thatP (Ωc
γn) → 0 in (3.13) for anyHθ by the Glivenko-Cantelli Theorem, and

because the distribution ofsup
x
|Fn(x)− F (x)| does not depend onHθ. This completes the proof.

Corollary 2. For fixedγ, Bγ2n →p 0 andCγ2n →p 0 asn →∞.

Proof: According to Lemma 3.3.3 (ii) withρ =
1

2
, for givenε > 0, there exists a constant

M ′ such that

P (Ω1n) = P (ω : {sup
x
|Un(F )| ≤ M ′ andx ∈ C(F )}) > 1− ε (3.15)

for all n andHθ, andM ′′ such that

P (Ω2n) = P (ω : { sup
∆n1

r−ξ(Φn)rξ(F ) ≤ M ′′}) > 1− ε,

which givesP (Ω1n ∩ Ω2n) > 1− 2ε. Also,

χ(Ω1n ∩ Ω2n)|Bγ2n|
≤ M ′ sup∆F×∆G

∣∣∣Jcc
u2

(Φn(x), G(y))− Jcc
u2

(F (x), G(y))
∣∣∣ .

+χ(Ω1n ∩ Ω2n)

∫∫

{(−∞,X1n)∪(Xnn,∞)}×{(−∞,Y1n)∪(Ynn,∞)}
Un(F (x))·

[Jcc
u2

(Φn(x), G(y))− Jcc
u2

(F (x), G(y))]dHn(x, y)

By the Glivenko-Cantelli Theorem,

P ({(−∞, X1n) ∪ (Xnn,∞)} × {(−∞, Y1n) ∪ (Ynn,∞)}) → 0

for any Hθ, so the second term on the right side of the inequality above converges to

0, as n → ∞. The function Jcc
u2

(u2, v2) is uniformly continuous on(0, 1)2. Since

|Φn − F | ≤ |Fn − F | where Φn is defined, the Glivenko-Cantelli Theorem yields

sup∆F×∆G

∣∣∣Jcc
u2

(Φn(x), G(y))− Jcc
u2

(F (x), G(y))
∣∣∣ →p 0 uniformly for Hθ. Therefore, we

have shown thatBγ2n →p 0 asn →∞.

A similar argument may be used for|Cγ2n|. Proof completed.
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Corollary 3. For fixedγ, Bγ3n →p 0 asn →∞.

Proof: Noting that{∆F ×∆G} ∩ {{R\DF } × {R\DG}} = ∆F ×∆G,

Bγ3n = χ(Ωγn)

∫∫

∆F×∆G

Un(F (x))Jcc
u2

(F (x), G(y))d[Hn(x, y)−Hθ(x, y)]

= χ(Ωγn ∩ Ω1n)

∫∫

∆F×∆G

Un(F (x))Jcc
u2

(F (x), G(y))d[Hn(x, y)−Hθ(x, y)]

+χ(Ωγn ∩ Ωc
1n)

∫∫

∆F×∆G

Un(F (x))Jcc
u2

(F (x), G(y))d[Hn(x, y)−Hθ(x, y)]

(3.16)

whereΩ1n is as defined in (3.15).

Note that the second term in (3.16) converges to0 in probability, and

χ(Ωγn ∩ Ω1n)

∫∫

∆F×∆G

Un(F (x))Jcc
u2

(F (x), G(y))d[Hn(x, y)−Hθ(x, y)]

≤ χ(Ωγn ∩ Ω1n)M ′
∫∫

∆F×∆G

Jcc
u2

(F (x), G(y))d[Hn(x, y)−Hθ(x, y)].

≤ χ(Ωγn ∩ Ω1n)M ′M ′′′
∫∫

∆F×∆G

d[Hn(x, y)−Hθ(x, y)]

whereM ′′′ = sup∆F×∆G

∣∣∣Jcc
u2

(F (x), G(y))
∣∣∣. From the Theorem 1.9, (i), from [43], the above

integral converges to0 in probability asn →∞. Proof completed.

Corollary 4. For fixedγ, Bγ4n →p 0 asn →∞.

Proof: Note that

Bγ4n = χ(Ωγn ∩ Ω1n)

{∫∫

∆F×∆G

Un(F (x))Jcc
u2

(F (x), G(y))dHθ(x, y)− A2n

}

+χ(Ωγn ∩ Ωc
1n)

{∫∫

∆F×∆G

Un(F (x))Jcc
u2

(F (x), G(y))dHθ(x, y)− A2n

}
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= −χ(Ωγn ∩ Ω1n)

∫∫

{(−∞,X1n)∪(Xnn,∞)}×{(−∞,Y1n)∪(Ynn,∞)}
Un(F (x))·

Jcc
u2

(F (x), G(y)) dHθ(x, y)

+χ(Ωγn ∩ Ωc
1n)

{∫∫

∆F×∆G

Un(F (x))Jcc
u2

(F (x), G(y))dHθ(x, y)− A2n

}

where Ω1n is as defined in (3.15). By the Glivenko-Cantelli Theorem,

P ({(−∞, X1n) ∪ (Xnn,∞)} × {(−∞, Y1n) ∪ (Ynn,∞)}) → 0 for any Hθ. Combining

with the fact thatJcc
u2

is uniformly continuous on(0, 1)2, the righthand side converges to0, as

n →∞.

To seeB5n converging to 0 in probability asn →∞, let us notice that

4∑

i=1

Bγin = n1/2
∫∫

{R\DF }×{R\DG}
[Jcc(F (x), Gn(y))− Jcc(F (x), G(y))]dHn(x, y)

−A2n.

In summary, we have shown that all theseB-terms andC-term are negligible. Combining with

the results of theseA-terms, we have established the asymptotic normality ofRcc
n .

3.4.2 Asymptotic normality of Rcd
n and Rdc

n

It suffices to show the asymptotic normality ofRcd
n . Note that

n1/2(Rcd
n − µcd) =

4∑

i=1

Ain +
6∑

i=1

Bin,

where
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µcd = E[Ncd(X,Y )],

A1n = n1/2
∫

{R\DF }
Jcd(F (x), G(D−G), G(DG))d[Hn(x,DG)−Hθ(x,DG)];

A2n =

∫

{R\DF }
Un(F (x))Jcd

u2
(F (x), G(D−G), G(DG))dHθ(x,DG);

A3n =

∫

{R\DF }
Vn(G(D−G))Jcd

v1
(F (x), G(D−G), G(DG))dHθ(x,DG);

A4n =

∫

{R\DF }
Vn(G(DG))Jcd

v2
(F (x), G(D−G), G(DG))dHθ(x,DG);

B1n =

∫

{R\DF }
Un(F (x))Jcd

u2
(Φn(x), Gn(D−G), Gn(DG))d[Hn(x,DG)−Hθ(x,DG)]

B2n =

∫

{R\DF }
Vn(G(D−G))Jcd

v1
(F (x), Θn(D−G), Gn(DG))d[Hn(x,DG)−Hθ(x,DG)]

B3n =

∫

{R\DF }
Vn(G(DG))Jcd

v2
(F (x), G(D−G), Ψn(DG))d[Hn(x,DG)−Hθ(x,DG)]

B4n =

∫

{R\DF }
Un(F (x))[Jcd

u2
(Φn(x), Gn(D−G), Gn(DG))

−Jcd
u2

(F (x), G(D−G), G(DG))
]
dHθ(x,DG)

B5n =

∫

{R\DF }
Vn(G(D−G))[Jcd

v1
(F (x), Θn(D−G), Gn(DG))

−Jcd
v1

(F (x), G(D−G), G(DG))
]
dHθ(x,DG)

B6n =

∫

{R\DF }
Vn(G(DG))[Jcd

v2
(F (x), G(D−G), Ψn(DG))

−Jcd
v2

(F (x), G(D−G), G(DG))
]
dHθ(x,DG)

whereΦn(·), Θn(·), andΨn(·) are defined by the Mean Value Theorem.

Next, we will show that theA− terms are asymptotic normal and theB− terms converge to0

in probability.
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(1) Note thatA1n can be written as

A1n = n−1/2
n∑

j=1

A1jn,

whereA1jn = Jcd(F (Xj), G(DG
−), G(DG)) ·I{j∈Acd}−µcd. Note thatA1jn are i.i.d. with

mean zero. Since

Jcd(u, v1, v2) =
∂

∂ θ
log

∫ v2

v1
cθ(u, v)dv,

using assumption (D2), we have

∫

{R\DF }
|Jcd(F (x), G(DG

−), G(DG))|2+δ0dHθ(x,DG)

≤
{∫

{R\DF }
|Jcd(F (x), G(DG

−), G(DG))|(2+δ0)p0dHθ(x,DG)

}1/p0

·
{∫

{R\DF }
1(2+δ0)q0dHθ(x,DG)

}1/q0

≤
{∫

(0,1)∩Sc
F

|Jcd(u,G(DG
−), G(DG))|(2+δ0)p0

∫

SG

cθ(u, v)dv du

}1/p0
.

Under the assumption (D2),

∫

(0,1)∩Sc
F

|Jcd(u, v1, v2)|(2+δ0)p0
∫

SG

cθ(u, v)dv du

≤ M4

∫

(0,1)∩Sc
F

r(u)a(2+δ0)p0
∫

SG

cθ(u, v)dv du

≤ M4 M6

∫

(0,1)∩Sc
F

r(u)a(2+δ0)p0r(u)a du

< ∞,

if a(2 + δ0)p0 + a > −1. By the CLT, we have the asymptotic normality ofA1n.
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(2) Note thatA2n can be written as

A2n = n1/2
∫

{R\DF }
(F̂n(x)− F (x))Jcd

u2
(F (x), G(DG

−), G(DG))dHθ(x,DG)

+n1/2
∫

{R\DF }
(Fn(x)− F̂n(x))Jcd

u2
(F (x), G(DG

−), G(DG))dHθ(x,DG)

= A∗2n1 + A∗2n2.

Furthermore,A∗2n1 can be written asn−1/2 ∑n
j=1 A2jn, whereA2jn =

∫

{R\DF }
(φXj

(x)−

F (x))Jcd
u2

(F (x), G(DG
−), G(DG))dHθ(x,DG) are i.i.d. with mean 0. Using the assumption

(D2), we have

|A2jn| ≤ M5

∫

(0,1)∩Sc
F

ra−1(u)

∫

SG

cθ(u, v)dv du

≤ M5 M6

∫

(0,1)∩Sc
F

r2a−1(u)du < ∞

as long as(2a− 1) > −1. Thus we have the asymptotic normality ofA∗2n1. Using the assumption

(D2), we have

A∗2n2 =

√
n

n + 1

∫

{R\DF }
F̂n(x)Jcd

u2
(F (x), G(DG

−), G(DG))dHθ(x,DG)

≤
√

n

n + 1
sup
x
|F̂n(x)|

∫

{R\DF }
Jcd
u2

(F (x), G(DG
−), G(DG))dHθ(x,DG)

= op(1).

Therefore, the asymptotic normality ofA2n has been established.

(3) Note thatA3n can be written as

A3n = n1/2
∫

{R\DF }
[Ĝn(DG

−)−G(DG
−)]Jcd

v1
(F (x), G(DG

−), G(DG))dHθ(x,DG)

+n1/2
∫

{R\DF }
[Gn(DG

−)− Ĝn(DG
−)]Jcd

v1
(F (x), G(DG

−), G(DG))dHθ(x,DG)

= A∗3n1 + A∗3n2.

Similarly, A∗3n1 can be written asn−1/2 ∑n
j=1 A3jn, whereA3jn =

∫

{R\DF }
(ψYj

(DG) −
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Gn(DG
−))Jcd

v1
(F (x), G(DG

−), G(DG))dHθ(x,DG) are i.i.d. with mean zero. and

ψYj
(y) =





1 if Yj < y,

0 if Yj ≥ y.

Noting that the absolute value of the random part|ψYj
(DG) − Gn(DG

−)| in A3jn is bounded

above by1, we have

|A3jn| ≤
∫

(0,1)∩Sc
F

|Jcd
v1

(u,G(DG
−), G(DG))|

∫

SG

cθ(u, v)dv du.

By the assumption (D2), the integral above is finite. Therefore,A3jn has an absolute moment of

order2 + δ1 for someδ1 > 0, which leads to the asymptotic normality ofA∗3n1.

Using argument similar to that used forA∗2n2 as in (2), one can show thatA∗3n2 = op(1). In

summary, we have the asymptotic normality ofA3n.

(4) Result ofA4n can be obtained in a similar way by noting thatA4n can be written as

A4n = n1/2
∫

{R\DF }
[Ĝn(DG)−G(DG)]Jcd

v2
(F (x), G(DG

−), G(DG))dHθ(x,DG)

+n1/2
∫

{R\DF }
[Gn(DG)− Ĝn(DG)]Jcd

v2
(F (x), G(DG

−), G(DG))dHθ(x,DG)

= A∗4n1 + A∗4n2,

and A∗4n1 can be written asn−1/2
n∑

j=1

A4jn, where A4jn =

∫

{R\DF }
(φYj

(DG) −

Gn(DG))Jcd
v2

(F (x), G(DG
−), G(DG))dHθ(x,DG) are i.i.d. with mean zero.

Using arguments similar to those in (3), we can get thatA4n is asymptotically normally dis-

tributed with mean0.

(5) Finally, we show that the sum ofAin, i = 1, ..., 4, converges to a normal random variable

with mean0. Note that the sum can be written as
n∑

j=1

n−1/2(A1jn + A2jn + A3jn + A4jn) +

A∗2n2 + A∗3n2 + A∗4n2 ≡
n∑

j=1

n−1/2A∗∗2jn + A∗2n2 + A∗3n2 + A∗4n2, whereA∗∗2jn = A1jn +

A2jn + A3jn + A4jn depends on(Xj, Yj) only, hence are i.i.d. with mean0 as shown before
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(Similarly, we can defineA∗∗3jn for Rdc
n ), andA∗2n2, A∗3n2 andA∗4n2 are negligible. Using the

CLT, we have that the sum ofAin, i = 1, ..., 4, is asymptotically normally distributed with mean

0.

We will finish the proof ofRcd
n by a few corollaries.

Corollary 5. B1n →p 0 asn →∞.

Proof: Note that

B1n = χ(Ω1n)

∫

{R\DF }
Un(F (x))Jcd

u2
(Φn(x), Gn(D−G), Gn(DG))d[Hn(x,DG)

−Hθ(x,DG)]

+χ(Ωc
1n)

∫

{R\DF }
Un(F (x))Jcd

u2
(Φn(x), Gn(D−G), Gn(DG))d[Hn(x,DG)

−Hθ(x,DG)]

whereΩ1n is defined in (3.15), which tells us the second term on the righthand side of the equality

above goes to 0 in probability asn →∞. Also,

χ(Ω1n)

∫

{R\DF }
Un(F (x))Jcd

u2
(Φn(x), Gn(D−G), Gn(DG))d[Hn(x,DG)−Hθ(x,DG)]

≤ χ(Ω1n)

∫

{R\DF }
M ′ Jcd

u2
(Φn(x), Gn(D−G), Gn(DG))d[Hn(x,DG)−Hθ(x,DG)]

= χ(Ω1n)

∫

∆F

M ′ Jcd
u2

(Φn(x), Gn(D−G), Gn(DG))d[Hn(x,DG)−Hθ(x,DG)] +

χ(Ω1n)

∫

{(−∞,X1n)∪(Xnn,∞)}
M ′ Jcd

u2
(Φn(x), Gn(D−G), Gn(DG))d[Hn(x,DG)

−Hθ(x,DG)],

the second term on the righthand side of the inequality goes to 0 in probability asn → ∞ by the

Glivenko-Cantelli theorem and the assumption (D2). SinceJcd
u2

(Φn(x), Gn(D−G), Gn(DG)) is

bounded above almost surely whenx ∈ ∆F andHn(x, y) converges toHθ(x, y) in distribution

asn →∞, using Theorem 1.9 (i), [43], once again, we have the first term on the righthand side of

the inequality above converges to 0. In summary, we have shown thatB1n →p 0 asn →∞.
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Corollary 6. B2n →p 0 andB3n →p 0 asn →∞.

Proof: It suffices to show the result forB2n. By the CLT,Vn(G(DG
−)) converges to a

normal random variable asn →∞, so we can define a setΩ2n such that

P (Ω2n) = P ({ω : sup
ω
|Vn(G(DG

−))| ≤ M ′}) > 1− ε.

Therefore,

B2n = χ(Ω2n)

∫

{R\DF }
Vn(G(DG

−))Jcd
v1

(F (x), Θn(D−G), Gn(DG))d[Hn(x,DG)

−Hθ(x,DG)]

+χ(Ωc
2n)

∫

{R\DF }
Vn(G(DG

−))Jcd
v1

(F (x), Θn(D−G), Gn(DG))d[Hn(x,DG)

−Hθ(x,DG)],

and the second term on the righthand side of the equality above goes to 0 in probability asn →∞.

Also,

χ(Ω2n)

∫

{R\DF }
Vn(G(DG

−))Jcd
v1

(F (x), Θn(D−G), Gn(DG))d[Hn(x,DG)

−Hθ(x,DG)]

≤ χ(Ω2n)

∫

{R\DF }
M ′ Jcd

v1
(F (x), Θn(D−G), Gn(DG))d[Hn(x,DG)−Hθ(x,DG)]

= χ(Ω2n)

∫

∆F

M ′ Jcd
v1

(F (x), Θn(D−G), Gn(DG))d[Hn(x,DG)−Hθ(x,DG)] +

χ(Ω2n)

∫

{(−∞,X1n)∪(Xnn,∞)}
M ′ Jcd

v1
(F (x), Θn(D−G), Gn(DG))d[Hn(x,DG)

−Hθ(x,DG)],

the second term on the righthand side of the inequality goes to 0 in probability asn → ∞ by the

Glivenko-Cantelli theorem and the assumption (D2).

From the assumption (D2), combining with the definition ofΘn(·) and the fact that

Jcd
u2

(u2, v1, v2) is continuous with respect tou2, v1, and v2 on (0, 1)3, we know that
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Jcd
u2

(F (x), Θn(D−G), Gn(DG)) is bounded above almost surely forx ∈ ∆F . Noting that

Hn(x, y) converges toHθ(x, y) in distribution asn → ∞, using Theorem 1.9 (i), [43], once

again, we have the first term on the righthand side of the inequality above converges to 0. In

summary, we have shown thatB2n →p 0 asn →∞.

Corollary 7. B4n →p 0 asn →∞.

Proof: Note that

B4n = χ(Ω1n)

∫

{R\DF }
Un(F (x))[Jcd

u2
(Φn(x), Gn(D−G), Gn(DG))

−Jcd
u2

(F (x), Gn(D−G), Gn(DG))
]
dHθ(x,DG)

+χ(Ωc
1n)

∫

{R\DF }
Un(F (x))[Jcd

u2
(Φn(x), Gn(D−G), Gn(DG))

−Jcd
u2

(F (x), Gn(D−G), Gn(DG))
]
dHθ(x,DG)

whereΩ1n is defined in (3.15). Therefore, the second term on the righthand side of the equality

above goes to 0 in probability asn →∞. Also,

χ(Ω1n)

∫

{R\DF }
Un(F (x))[Jcd

u2
(Φn(x), Gn(D−G), Gn(DG))

−Jcd
u2

(F (x), Gn(D−G), Gn(DG))
]
dHθ(x,DG)

≤ χ(Ω1n)

∫

{R\DF }
M ′ |Jcd

u2
(Φn(x), Gn(D−G), Gn(DG))

−Jcd
u2

(F (x), Gn(D−G), Gn(DG))
∣∣∣ dHθ(x,DG)

= χ(Ω1n)

∫

∆F

M ′ |Jcd
u2

(Φn(x), Gn(D−G), Gn(DG))

−Jcd
u2

(F (x), Gn(D−G), Gn(DG))
∣∣∣ dHθ(x,DG) +

χ(Ω1n)

∫

{(−∞,X1n)∪(Xnn,∞)}
M ′ |Jcd

u2
(Φn(x), Gn(D−G), Gn(DG))

−Jcd
u2

(F (x), Gn(D−G), Gn(DG))
∣∣∣ dHθ(x,DG),
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the second term on the righthand side of the inequality goes to 0 in probability asn → ∞ by the

Glivenko-Cantelli theorem and the assumption (D2). Since|Jcd
u2

(Φn(x), Gn(D−G), Gn(DG)) −
Jcd
u2

(F (x), Gn(D−G), Gn(DG))| is bounded above almost surely whenx ∈ ∆F andHn(x, y)

converges toHθ(x, y) in distribution asn →∞, using Theorem 1.9 (i), [43], once again, we have

the first term on the righthand side of the inequality above converges to 0. In summary, we have

shown thatB4n →p 0 asn →∞.

Corollary 8. B5n →p 0 andB6n →p 0 asn →∞.

Proof: Using similar arguments to those used in the proof of Corollary 7 and Corollary 8,

one can see this is true, so proof omitted.

In summary, we have the asymptotic normality ofRcd
n .

3.4.3 Asymptotic normality of Rdd
n

Note that

n1/2(Rdd
n − µdd) =

5∑

k=1

Akn +
4∑

k=1

Bkn,

where

µdd = E[Ndd(X,Y )],

A1n = n1/2Jdd(F (D−F ), F (DF ), G(D−G), G(DG))[dHdd
n − dHdd],

A2n = Vn(G(DG))Jdd
v2

(F (D−F ), F (DF ), G(D−G), G(DG))dHdd,

A3n = Un(F (DF ))Jdd
u2

(F (D−F ), F (DF ), G(D−G), G(DG))dHdd,

A4n = Vn(G(D−G))Jdd
v1

(F (D−F ), F (DF ), G(D−G), G(DG))dHdd,

A5n = Un(F (D−F ))Jdd
u1

(F (D−F ), F (DF ), G(D−G), G(DG))dHdd,
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B1 = Vn(G(DG))[Jdd
v2

(F (D−F ), F (DF ), G(D−G), Ψn)dHdd
n

−Jdd
v2

(F (D−F ), F (DF ), G(D−G), G(DG))dHdd],

B2 = Un(F (DF ))[Jdd
u2

(F (D−F ), Φn,G(D−G), G(DG))dHdd
n

−Jdd
u2

(F (D−F ), F (DF ), G(D−G), G(DG))dHdd],

B3 = Vn(G(D−G))[Jdd
v1

(F (D−F ), F (DF ), Θn,G(DG))dHdd
n

−Jdd
u1

(F (D−F ), F (DF ), G(D−G), G(DG))dHdd],

B4 = Un(F (D−F ))[Jdd
u1

(Γn, F (DF ), G(D−G), G(DG))dHdd
n

−Jdd
u1

(F (D−F ), F (DF ), G(D−G), G(DG))dHdd],

with n∗dd = {the number of observations such thatXj = DF andYj = DG} for k = 1, 2, ..., n,

and

dHdd
n =

n∗dd
n

dHdd = P (X = DF andY = DG).

We need to show that theA-terms are asymptotically normal, and theB-terms converge to0 in

probability asn → 0. By the SLLN, it is obvious thatdHdd
n → dHdd almost surely asn → ∞,

and by the CLT, in distribution

Un(F (D−F )) → N(0, [F (D−F )(1− F (D−F ))])

Un(F (DF )) → N(0, [F (DF )(1− F (DF ))])

Vn(G(D−G)) → N(0, [G(D−G)(1−G(D−G))])

Vn(G(DG)) → N(0, [G(DG)(1−G(DG))])

n1/2[dHdd
n − dHdd] → N(0, [dHdd(1− dHdd)])
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asn →∞. Note that

Jdd(F (D−F ), F (DF ), G(D−G), G(DG)),

Jdd
v2

(F (D−F ), F (DF ), G(D−G), G(DG)),

Jdd
u2

(F (D−F ), F (DF ), G(D−G), G(DG)),

Jdd
v1

(F (D−F ), F (DF ), G(D−G), G(DG)), and

Jdd
u1

(F (D−F ), F (DF ), G(D−G), G(DG)),

in A1n, A2n, A3n, A4n andA5n, respectively, are fixed numbers. Therefore, theA-terms are

asymptotically normally distributed with mean 0. To show the sum of theA-terms is still normal,

one only need to notice that

Un(F (D−F )) = n1/2(F̂n(D−F )− F (D−F )) + n1/2(Fn(D−F )− F̂n(D−F ))

= n−1/2
n∑

j=1

(ψXj
(D−F )− F (D−F )) + op(1)

= n−1/2
n∑

j=1

H∗1kn + op(1)

Un(F (DF )) = n1/2(F̂n(DF )− F (DF )) + n1/2(Fn(DF )− F̂n(DF ))

= n−1/2
n∑

j=1

(φXj
(DF )− F (DF )) + op(1)

= n−1/2
n∑

j=1

H∗2kn + op(1)

Vn(G(D−G)) = n1/2(Ĝn(D−G)−G(D−G)) + n1/2(Gn(D−G)− Ĝn(D−G))

= n−1/2
n∑

j=1

(ψYj
(D−G)−G(D−G)) + op(1)

= n−1/2
n∑

j=1

H∗3kn + op(1)

Vn(G(DG)) = n1/2(Ĝn(DG)−G(DG)) + n1/2(Gn(DG)− Ĝn(DG))

= n−1/2
n∑

j=1

(φYj
(DG)−G(DG)) + op(1)

= n−1/2
n∑

j=1

H∗4kn + op(1)
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and

n1/2[dHdd
n − dHdd] = n−1/2

n∑

j=1

(
I{j∈Add} − dHdd

)
= n−1/2

n∑

j=1

H∗5kn,

whereH∗ikn are i.i.d. and depend on(Xj, Yj) only, for k = 1, ..., 5. TheA1n + A2n + A3n +

A4n + A5n can be written as
n∑

j=1

n−1/2A∗∗4jn, whereA∗∗4jn are i.i.d. sum of products ofH∗ikn

and some certain fixed number, and four negligible terms. Using the CLT one more time, we have

that the sum ofA-terms is asymptotically normally distributed with mean0.

Under the assumption (D4),Bi converges to0 asn → ∞, for i = 1, ..., 4, in probability. We

have shown that theRdd
n is asymptotically normally distributed with mean0.

3.4.4 Asymptotic normality of Rn

To show thatn1/2Rn = n1/2(Rcc
n + Rcd

n + Rdc
n + Rdd

n ) is asymptotic normal, we need the

following notations:

n1/2(Rcc
n − µcc) ⇒ Rcc ∼ N(0, var(Mcc(X, Y ))),

n1/2(Rcd
n − µcd) ⇒ Rcd ∼ N(0, var(Mcd(X,Y ))),

n1/2(Rdc
n − µdc) ⇒ Rdc ∼ N(0, var(Mdc(X, Y ))),

n1/2(Rdd
n − µdd) ⇒ Rdd ∼ N(0, var(Mdd(X,Y ))).

Noting that

n1/2(Rcc
n − µcc) =

n∑

j=1

n−1/2A∗∗1jn + a few negligible terms,

n1/2(Rcd
n − µcd) =

n∑

j=1

n−1/2A∗∗2jn + a few negligible terms,

n1/2(Rdc
n − µdc) =

n∑

j=1

n−1/2A∗∗3jn + a few negligible terms,

n1/2(Rdd
n − µdd) =

n∑

j=1

n−1/2A∗∗4jn + a few negligible terms,
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by the CLT, we have

n1/2(Rn − µ) =
n∑

j=1

n−1/2(A∗∗1jn + A∗∗2jn + A∗∗3jn + A∗∗4jn) + a few negligible terms,

⇒ N(0, σ2)

whereµ = (µcc + µcd + µdc + µdd), and

σ2 = var[Mcc(X, Y ) + Mcd(X,Y ) + Mdc(X, Y ) + Mdd(X,Y )].

3.5 Proof of the Main Result

We finish this Chapter by providing the proof of Theorem 3.1.1.

Proof of Theorem 3.1.1As shown in Section 3.3,Bn → β almost surely, and in Section

3.4 An is asymptotically normal with mean0 and varianceσ2, asn → ∞. Using the Slutsky’s

Theorem,n1/2(θ̂n − θ) = n1/2An/Bn is asymptotically normal with mean0 and variance

% = σ2/β2.

In summary, we have shown the consistency and asymptotic normality of the semi-parametric

estimator̂θn.
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CHAPTER 4

A VARIANCE ESTIMATOR OF

BIVARIATE DISTRIBUTIONS

In Chapter 3, we provided an explicit formula for% =
σ2

β2
. Suppose estimatorŝσ2 andβ̂2 could

be found forσ2 andβ2 respectively. A rough-and-ready estimator of the asymptotic variance of%

would then be given bŷ% =
σ̂2

β̂2
. If the variables given in (3.9) and (3.10) could be observed, one

could simply estimateσ2 andβ by the respective sample variance and sample mean. As this is not

possible, the corresponding pseudo-observations can be used instead, which are defined in term of

Cn, the re-scaled empirical copula function of the bivariate sample, namely

Cn(u, v) =
1

n

n∑

j=1

I{
Fn(Xj)≤u,Gn(Yj)≤v

}.

Let lccθ,θ, lcdθ,θ, ldc
θ,θ, andldd

θ,θ be the decomposed components oflθ,θ with respect toc∗θ in (2.7)

under different situations. Similarly, one can definelccθ , lcdθ , ldc
θ , andldd

θ for lθ.

From (3.9), we have the following:

β̂ =
1

n

n∑

j=1

[N̂cc
j + N̂cd

j + N̂dc
j + N̂dd

j ], (4.1)
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j 1 2 3 4 5 6 7
(Xj, Yj) (2.1,1.0) (2.5, 0.5) (3.2,1.0) (3.2,1.5) (3.2,2.0) (3.5,2.5) (3.7,2.5)
RX(j) 1 2 5 5 5 6 7

RY (j) 3 1 3 4 5 7 7

Table 4.1. Relationship among(Xj, Yj), RX(j), andRY (j).

where

N̂cc
j = I{j∈Acc}l

cc
θ,θ(θ̂n, Fn(Xj), Gn(Yj))

N̂cd
j = I{j∈Acd}l

cd
θ,θ(θ̂n, Fn(Xj), Gn(Y−j ), Gn(Yj))

N̂dc
j = I{j∈Adc}l

dc
θ,θ(θ̂n, Fn(X−j ), Fn(Xj), Gn(Yj))

N̂dd
j = I{j∈Add}l

dd
θ,θ(θ̂n, Fn(X−j ), Fn(Xj), Gn(Y−j ), Gn(Yj)).

To get σ̂2 for σ2 in (3.11), we need more notation. Note that rearranging{Xj, Yj}, j =

1, ..., n, shall not change the value ofσ̂2. Therefore, we assume the sample is in an order such that

Xj ’s are in non-decreasing order. Let

RX(j) =
∑

i

I{Xi≤Xj}

be the rank ofXj in the sequence ofX ’s (Similarly, we can defineRY (j) for Y ’s), and let

R−
X(j)

=
∑

i

I{Xi<Xj}

be the next lower rank toRX(j) within the X ’s sequence. Similarly, we can defineR−
Y (j)

for

RY (j) within theY ’s sequence.

Under the current setting, for anyi < j, the following always holds:

RX(i) ≤ RX(j).
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Table 4.1 gives a simple example showing the relationship among(Xj, Yj), RX(j), and

RY (j). As shown in the table,RX(3) = RX(4) = RX(5) = 5, andR−
X(5)

= R−
X(4)

=

R−
X(3)

= RX(2) = 2 by definition.

Now we can work on the details. Note that in (3.10),σ2 is the variance of the sum of

MS(X, Y ), whereS = {cc}, {cd}, {dc}, or{dd}. For a given sample(Xj, Yj), σ2 can be es-

timated by the sample variance of the following items:

M̂cc
j = lccθ (θ̂n, Fn(Xj), Gn(Yj))I{j∈Acc} +

1

n




n∑

k=j

lccθ,u2

(
θ̂n,

RX(k)

n + 1
,
RY (k)

n + 1

)

+
∑

RY (k)≥RY (j)
lccθ,v2

(
θ̂n,

RX(k)

n + 1
,
RY (k)

n + 1

)
I{k∈Acc}

M̂cd
j =

dG∑

l=1

lcdθ (θ̂n, Fn(Xj), Gn(Y−j ), Gn(Yj))I{j∈Acd, Yj=DGl}

+
1

n




dG∑

l=1

n∑

k=j

lcdθ,u2


θ̂n,

RX(k)

n + 1
,
R−

Y (k)

n + 1
,
RY (k)

n + 1


 I{k∈Acd, Yk=DGl}

+

dG∑

l=1

∑

RY (k)>RY (j)

lcdθ,v1


θ̂n,

RX(k)

n + 1
,
R−

Y (k)

n + 1
,
RY (k)

n + 1


 I{k∈Acd, Yk=DGl}

+

dG∑

l=1

∑

RY (k)≥RY (j)

lcdθ,v2


θ̂n,

RX(k)

n + 1
,
R−

Y (k)

n + 1
,
RY (k)

n + 1


 I{k∈Acd, Yk=DGl}

M̂dc
j =

dF∑

h=1

ldc
θ (θ̂n, Fn(X−j ), Fn(Xj), Gn(Yj))I{j∈Adc,Xj=DFh}

+
1

n




dF∑

h=1

∑

RY (k)≥RY (j)

ldc
θ,v2


θ̂n,

R−
X(k)

n + 1
,
RX(k)

n + 1
,
RY (k)

n + 1


 ·

I{k∈Adc, Xk=DFh}
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+

dF∑

h=1

∑

RX(k)>RX(j)

ldc
θ,u1


θ̂n,

R−
X(k)

n + 1
,
RX(k)

n + 1
,
RY (k)

n + 1


 ·

I{k∈Adc,Xk=DFh}

+

dF∑

h=1

n∑

k=j

ldc
θ,u2


θ̂n,

R−
X(k)

n + 1
,
RX(k)

n + 1
,
RY (k)

n + 1


 I{k∈Adc,Xk=DFh}




M̂dd
j =

dF∑

h=1

dG∑

l=1

ldd
θ (θ̂n, Fn(X−j ), Fn(Xj), Gn(Y−j ), Gn(Yj))I{Xj=DFh, Yj=DGl}

+




dF∑

h=1

dG∑

l=1

n∑

RY (k)>RY (j)

ldd
θ,v1


θ̂n,

R−
X(k)

n + 1
,
RX(k)

n + 1
,
R−

Y (k)

n + 1
,
RY (k)

n + 1


 ·

I{Xk=DFh, Yk=DGl}

+

dF∑

h=1

dG∑

l=1

n∑

RY (k)≥RY (j)

ldd
θ,v2


θ̂n,

R−
X(k)

n + 1
,
RX(k)

n + 1
,
R−

Y (k)

n + 1
,
RY (k)

n + 1


 ·

I{Xk=DFh, Yk=DGl}

+

dF∑

h=1

dG∑

l=1

n∑

RX(k)>RX(j)

ldd
θ,u1


θ̂n,

R−
X(k)

n + 1
,
RX(k)

n + 1
,
R−

Y (k)

n + 1
,
RY (k)

n + 1


 ·

I{Xk=DFh, Yk=DGl}

+

dF∑

h=1

dG∑

l=1

n∑

k=j

lθ,u2


θ̂n,

R−
X(k)

n + 1
,
RX(k)

n + 1
,
R−

Y (k)

n + 1
,
RY (k)

n + 1


 ·

I{Xk=DFh, Yk=DGl} ·
n∗hl
n ,

wheren∗hl = {the number of observations(Xj, Yj) : Xj = DFh, Yj = DGl}.
Next, to establish the consistency of%̂n, it suffices to show that̂σ2

n and β̂2
n are themselves

consistent. To prove that̂βn − β converges almost surely, for example, express the difference as

1

n

n∑

j=1

J
θ̂n

(Fn(X−j ), Fn(Xj), Gn(Y−j ), Gn(Yj))− E[Jθ(F (X−), F (X), G(Y−), G(Y ))]
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in terms ofJθ = lθ,θ. By the triangle inequality, this quantity is no greater than

1

n

n∑

j=1

∣∣∣∣Jθ̂n
(Fn(X−j ), Fn(Xj), Gn(Y−j ), Gn(Yj))

− Jθ(Fn(X−j ), Fn(Xj), Gn(Y−j ), Gn(Yj))
∣∣∣

+

∣∣∣∣∣∣
1

n

n∑

j=1

Jθ(Fn(X−j ), Fn(Xj), Gn(Y−j ), Gn(Yj))− E[Jθ(F (X−), F (X), G(Y−), G(Y ))]

∣∣∣∣∣∣

Assuming thatJθ is bounded by an integrable function in a neighborhood of the true value

of θ, by the convergence of maximum likelihood estimators, the first summand then converges to

zero by the Dominated Convergence Theorem. Since the second term vanishes asymptotically by

a similar argument as used in Chapter 3, it follows thatβ̂n → β almost surely. The argument for

σ̂n is similar, though somewhat more involved. It will not be presented here.

In summary, we provided a variance estimator of%, %̂, and illustrated its consistency.
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CHAPTER 5

EXTENSIONS TO HIGHER

DIMENSIONS

The previous developments extend more or less automatically to situations where it is desired to

estimate a multidimensional dependence semi-parametrically.

Let a boldfaced letter such asx denotes aD-tuple (D ≥ 2) vector of real numbers, that is,

x ≡ (x1, . . . , xD)T wherexk ∈ R for k = 1, . . . , D, andF1, ..., FD denoteD univariate mixed

marginals on the real line given by

Fk(xk) =

dk∑

h=1

pkhI{Dkh≤xk} + (1−
dk∑

h=1

pkh)

∫

w≤xk

fk(w)dw,

whereDkh is theh-th jump point ofFk with P (Xk = Dkh) = pkh, for h = 1, ..., dk, andfk(·)
is a continuous density function with support on the real line.

When restricted to a particular copula family, say{Cθ : θ = (θ1, ..., θq)T ∈ A ⊆ Rq}, a

multivariate joint distribution function for(x1, . . . , xD)T can be defined as follows:

FD(x1, . . . , xD) = Cθ(F1(x1), . . . , FD(xD)). (5.1)

Result 1: FD(x1, . . . , xD) defined in (5.1) is a valid joint distribution function onRD.

Proof: For FD(x1, . . . , xD) to be a valid distribution function onRD, the following four

conditions should be satisfied:
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(1) 0 ≤ FD(x1, . . . , xD) ≤ 1 for all (x1, . . . , xD),

(2) FD(x1, . . . , xD) → 0 as max(x1, . . . , xD) → −∞,

(3) FD(x1, . . . , xD) → 1 as min(x1, . . . , xD) → +∞, and

(4) for every pair of(x1, . . . , xD) and(y1, . . . , yD) ∈ RD with xk ≤ yk for k = 1, ..., D,

which defines aD-boxV = [x1, y1]× [x2, y2]× ...× [xd, yD]. Then

∑
sgn(c)F (c) ≥ 0

where the sum is taken over all verticesc of V and sgn(·) is defined as in (1.3).

Note that since FD(x1, . . . , xD) = Cθ(F1(x1), . . . , FD(xD)) = P (U1 ≤
F1(x1), ..., UD ≤ FD(xD)), (1) follows. To prove (2), note thatFk(xk) → 0 for all k = 1, ..., D

when max(x1, . . . , xD) → −∞. Hence,FD(x1, . . . , xD) → 0 from the property of a cumula-

tive distribution function. (3) follows similarly. (4) is the direct result of (1.3) and (5.1). Proof

completed.

Define C(Fk) to be the collection of all points of continuity ofFk and J (Fk) =

{Dk1, ...,Dk dk
} to be the collection of all jump points ofFk.

For a fixedx ∈ RD, every component ofx corresponds to either a point of continuity or

discontinuity of the corresponding marginal distribution. Suppose the indexesc1, c2, ..., c
H′ ∈

{1, 2, ..., D} corresponds toxch
∈ C(Fch

) (i.e.,xch
belongs to the set of continuity points ofFch

)

and the remaining indexes, sayd1, d2, ..., dL′, with H′ + L′ = D, are the indexes of marginals

such that

xdl
= Ddl,idl

, l = 1, 2, ..., L′.

When{c1, c2, ..., cH′} = {1, 2, ..., D}, the density ofFD is given by

dFD = cθ(F1(x1), . . . , FD(xD))
D∏

k=1

fk(xk),
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and if{c1, c2, ..., c
H′} ⊂ {1, 2, ..., D} the density ofFD is given by

dFD =

∫
...

∫
∏L′

l=1[Fdl
(D−

dl,idl
),Fdl

(Ddl,idl
)]

cθ(u1, . . . , uD)dud1
...dud

L′
·
H′∏

h=1

fch(xch),

whereuch = Fch(xch). Note that the above can be written as

c∗θ(F1, ...FD)(x) ·
H′∏

h=1

fch(xch).

LettingXj = (X1j,X2j, ..., XDj)T wherej = 1, ..., n represent a random sample fromFD,

the semi-parametric estimatorθ̂n of θ would then be obtained as a solution of the system

1

n

n∑

j=1

∂

∂θi
log[dFD(X1j, . . . , XDj)] = 0, (1 ≤ i ≤ q) (5.2)

Sinceθ is the only vector of parameters of interest, the components of likelihood that matters is

1

n

n∑

j=1

∂

∂θi
log[c∗θ(F1, ...FD)(X1j, . . . , XDj)] = 0, (1 ≤ i ≤ q) (5.3)

Using the same techniques as in Chapter 3, Theorem 3.1.1 can be extended to theD-

dimensional case. Furthermore, the limiting variance-covariance matrix ofn1/2(θ̂n − θ) is then

B−1ΣB−1, whereB is the information matrix associated withCθ. To give the explicit form of

Σ, we need some notations:

Let

F
p
k

(xk) =





Fk(xk) ≡ uk2, if xk ∈ C(Fk),

(Fk(x−
k

), Fk(xk)) ≡ (uk1, uk2), if xk ∈ J (Fk).

Note that in the present case, the relevant statistic in (5.3) can be written as, for1 ≤ i ≤ q,

Ri,n =
1

n

n∑

j=1

Ji(F1(X−1j), F1(X1j), ..., FD(X−Dj), FD(XDj))

=
1

n

∑

Q

n∑

j=1

J
Q
i (F

p
1 (X1j), ..., F

p
D(XDj)),
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whereQ = {Q1, ..., QD} is a D-sequence consisting of letters of{c} or {d}, with the fol-

lowing properties: (i) whenQ is combined with a pointx and the marginalsF1, ..., FD, say

x ∈ Q(F1, ..., FD), a ‘c’ at the k-th component ofQ refers toxk belonging toC(Fk), and

a ‘d’ at the k-th component refers toxk belonging toJ (Fk), for k = 1, ..., D; (ii) when Q

is combined withJi or Ji’s derivative with respect touk1 or uk2, a ‘c’ at the k-th compo-

nent refers toFp
k

(Xkj) = Fk(Xkj), and a ‘d’ at the k-th component refers toFp
k

(Xkj) =

(Fk(X−
kj

), Fk(Xkj)), for k = 1, ..., D.

Using the same techniques as those used in Chapter 3, one can see thatΣ is the variance-

covariance matrix of theq-dimensional random vector whosei-th component is given by

var(
∑

Q

M
Q
i (X1, ..., XD));

the following is a general form ofMQ
i (X1, ..., XD)). AssumingQ = {c1, c2, ..., cH′} ∪

{d1, d2, ..., dL′}, andL′ andH′ can be any value among{0, ..., D}, such thatH′ + L′ = D.

Then

M
Q
i (x1, ..., xD) =

∑

id1

...
∑

idL′
J
Q
i (F

p
1 (x1), , ..., F

p
D(xD))

H′∏

h=1

I{xch
∈C(Fch

)}·

∏L′
l=1 I{xdl

=Ddl idl
} +

D∑

k=1

Lik.

The set of jump points forFdl
is {Ddl1

, ...,Ddl ddl
}, andLik is given as below:

(i) if the k-th component inQ = c;

Lik =
∑

id1

...
∑

id
L′

∫

{R\{∪dc1
n=1Dc1 n}}

...

∫

{R\{∪
dc

H′
n=1 DcH′ n}}

I(xk ≤ x
′
k)·

J
Q
iuk2

(F
p
1 (x′1), ..., F

p
D(x′D))dF (x

′
1, ..., x

′
D)

with x′dl
= Ddl idl

;
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(ii) if the k-th component inQ = d;

Lik =
∑

id1

...
∑

id
L′

∫

{R\{∪dc1
n=1Dc1 n}}

...

∫

{R\{∪
dcH′
n=1 Dc

H′ n}}
I(xk < x

′
k)·

J
Q
iuk1

(F
p
1 (x′1), ..., F

p
D(x′D))dF (x

′
1, ..., x

′
D)

+
∑

id1

...
∑

id
L′

∫

{R\{∪dc1
n=1Dc1 n}}

...

∫

{R\{∪
dc

H′
n=1 DcH′ n}}

I(xk ≤ x
′
k)·

J
Q
iuk2

(F
p
1 (x′1), ..., F

p
D(x′D))dF (x

′
1, ..., x

′
D),

with x′dl
= Ddl idl

.

As the parallel with the caseq = 1 andD = 2 described earlier in Chapter 2 and Chapter 3,

an estimator of the variance-covariance matrix ofθ̂n could be found by repeating the procedure

described in Chapter 4.
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CHAPTER 6

JOINT DISTRIBUTIONS USING

t-COPULA

6.1 Joint Distributions Using t-copula

In this Chapter, we develop the joint distributions with the family oft-copulas, see, [34], and [8].

The reason we chooset-copulas is not only it is a generalization of the Gaussian copulas, but also

it has the great tail dependence property. This property allows us to study the limiting association

between random variablesX andY as bothx andy go to their boundaries. Our finding is that

the limiting association is governed by the correlation coefficientρ together with the degrees of

freedomν, which is listed in Lemma 6.1.3. In reality, there are situations where random variables

are still associated in a certain level even in the tails. For instance, in biometric recognition, the

genuine and imposter distributions generated from the same biometric trait or different biometric

traits in a multimodal biometric system, tend to have not exact the same but similar tail behavior,

as shown in Chapter 7, Section 7.2.2. Thet-copula models can fit in this case more appropriately

than a copula family which does not have the tail dependency.

Before defining thet-copula, we develop some notations for the presentation. LetΣ denote a

positive definite matrix of dimensionD × D. For such aΣ, theD-dimensionalt density withν
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degrees of freedom will be denoted by

fD
ν,Σ(x) ≡ Γ(ν+D

2 )

(πν)
D
2 Γ(ν2)|Σ|

1
2

(
1 +

xT Σ−1x

ν

)−ν+D
2

,

with corresponding cumulative distribution function

tDν,Σ(x) ≡
∫

w≤x
fD
ν,Σ(w) dw.

The matrixΣ with unit diagonal entries corresponds to a correlation matrix and will be denoted by

R.

TheD-dimensionalt-copula function is given by

Cν,R(u) ≡
∫

w≤t−1
ν (u)

fD
ν,R(w) dw (6.1)

wheret−1
ν (u) ≡ (t−1

ν (u1), . . . , t−1
ν (uD))T , t−1

ν is the inverse of the cumulative distribution

function of univariatet with ν degrees of freedom, andR is aD×D correlation matrix. Note that

Cν,R(u) = P{X ≤ t−1
ν (u)}, for X = (X1, . . . , XD)T distributed astDν,R, demonstrating that

Cν,R(u) is a distribution function on(0, 1)D with uniform marginals. The density corresponding

to Cν,R(u) is given by

cν,R(u) =
∂DCν,R(u)

∂u1∂u2 . . . ∂uD
=

fD
ν,R{t

−1
ν (u)}

∏D
k=1 fν{t−1

ν (uk)}
, (6.2)

wherefν in (6.2) is the density of the univariatet distribution withν degrees of freedom.

We consider the joint distributions of the form

FD
ν,R(x) = Cν,R{F1(x1), . . . , FD(xD)} (6.3)

with Cν,R defined as in (6.1). It follows from the properties of a copula function thatFD
ν,R is a

valid multivariate distribution function onRD. The identifiability of the marginal distributionsFk,

k = 1, . . . , D, the correlation matrixR, and the degrees of freedom parameter,ν, are established

in the following theorem:
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Theorem 6.1.1.LetFD
ν1,R1

andGD
ν2,R2

denote two distribution functions onRD obtained from

equation (6.3) with marginal distributionsFk, k = 1, . . . , D andGk, k = 1, . . . , D, respectively.

Suppose we haveFD
ν1,R1

(x) = GD
ν2,R2

(x) for all x. Then,Fk(x) = Gk(x) for all k, ν1 =

ν2 andR1 = R2.

In order to prove identifiability of(ν, R) in Theorem 6.1.1, we first must state and prove several

lemmas.

Lemma 6.1.1 Fix ν. Let FD
ν,R1

andGD
ν,R2

denote two cumulative distribution functions on

RD obtained from equation (6.3) with marginal distributionsFk, k = 1, . . . , D andGk, k =

1, . . . , D, respectively. Suppose we have

FD
ν,R1

(x) = GD
ν,R2

(x) (6.4)

for all x. Then,Fk(x) = Gk(x) for all k andR1 = R2.

Proof: By takingxi, i 6= k tending to∞, we get thatFD
ν,R1

(x) → Fk(xk) andGD
ν,R2

(x) →
Gk(xk). It follows thatFk(x) = Gk(x) for all k.

Next we show that the correlation matricesR1 andR2 are equal. We first prove this result

for D = 2. Note that whenD = 2, R1 andR2 can be determined by one correlation parameter,

namely,ρ1 andρ2, respectively, so, we have

F2
ν,ρ1

(x) = Cν,ρ1{F1(x1), F2(x2)} ≡
∫

w≤t−1
ν (v)

f2
ν,ρ1

(w) dw (6.5)

and

G2
ν,ρ2

(x) = Cν,ρ2{F1(x1), F2(x2)} ≡
∫

w≤t−1
ν (v)

f2
ν,ρ2

(w) dw (6.6)

wherev = (F1(x1), F2(x2))T , so, one only needs to proveρ1 = ρ2.

Now, for any real numbersa andb, the bivariatet-cumulative distribution function,t2ν,ρ(a, b),

with ν degrees of freedom and correlation parameterρ is a strictly increasing function ofρ. Note

that

t2ν,ρ(a, b) =

∫ a

−∞

∫ b

−∞
f2
ν,ρ(m,n)dmdn

=

∫ a

−∞

∫ b

−∞

∫ ∞
0

φ(m,n, ρ, w) gν(w) dw dm dn,
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where

φ(m, n, ρ, w) =
1

2πw(1− ρ2)1/2
exp

{
−m2 − 2ρmn + n2

2w(1− ρ2)

}

andgν(w) is the probability density function of the inverse Gamma distribution defined as

gν(w2) ∼ IG(
ν

2
,
2

ν
). (6.7)

Differentiatingt2ν,ρ(a, b) with respect toρ, we get

∂t2ν,ρ(a, b)

∂ρ
=

∫ a

−∞

∫ b

−∞

∫ ∞
0

∂φ(m,n, ρ, w)

∂ρ
gν(w) dw dmdn

=

∫ a

−∞

∫ b

−∞

∫ ∞
0

w
d2φ(m,n, ρ, w)

dmdn
gν(w) dw dm dn

=

∫ ∞
0

w φ(m,n, ρ, w) gν(w) dw > 0,

using the fact that∂φ(m,n, ρ, w)/dρ = w ∂2φ(m,n, ρ, w)/∂m∂n.

Note that (6.5) and (6.6) can be re-written asF2
ν,ρj

(x) = t2ν,ρj
(a, b) for j = 1, 2 with a =

t−1
ν (F1(x1)) andb = t−1

ν (F2(x2)). So,F2
ν,ρ1

(x) = F2
ν,ρ2

(x), which gives

t2ν,ρ1
(a, b) = t2ν,ρ2

(a, b).

Since whenν is fixed, for anya andb, t2ν,ρj
(a, b) is an strictly increasing function ofρ, the equality

above implies thatρ1 = ρ2 must hold. The proof is completed.

Now, we prove Lemma 6.1.1 for generalD. Let R1 = ((ρkk′,1)) andR2 = ((ρkk′,2)) be

the representation of the correlation matricesR1 andR2 in terms of their entries. Note that the

condition (6.4) can be reduced to the caseD = 2 by takingxi, i 6= k, k′ tending to infinity. Thus,

we haveF2
ν,ρ

kk′,1(xk, xk′) = G2
ν,ρ

kk′,2(xk, xk′), but this impliesρkk′,1 = ρkk′,2 from the

caseD = 2.

Next, we state and prove two more relevant lemmas:

Lemma 6.1.2 Fora > 0, tν{−(aν)1/2} is a decreasing function ofν.

Proof: Let Y ∼ tν(·). ThenZ = Y/ν1/2 has pdffν(z) = [Γ{(ν + 1)/2}/{Γ(ν/2)}]
(
1 + z2

)−(ν+1)/2
π−1/2. One can see that ifν1 ≤ ν2, {fν2(|z|)/fν1(|z|)} is a strictly de-

creasing function of|z|. SinceI{|Z|≥a1/2} is a nondecreasing function ofa, mimicking the
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proof of Lemma 2 in [28], one can prove thatEν(I{|Z|≥a1/2}) is a decreasing function ofν. It

follows that

tν{−(aν)1/2} = P{Y ≤ −(aν)1/2} = P{Z ≤ −a1/2} =

Eν(I{|Z|≥a1/2})
2

is decreasing inν.

Lemma 6.1.3 For the bivariatet-copulaCν,ρ(u, v), let

λ∗ = lim
v→0+

{
∂Cν,ρ(u, v)

∂v

}

u=v
and µ∗ = lim

v→0+

{
∂Cν,ρ(u, v)

∂v

}

u=1−v
.

Then, it follows that

λ∗ = tν+1

[
−

{
(ν + 1)

1− ρ

1 + ρ

}1/2
]

andµ∗ = tν+1

[
−

{
(ν + 1)

1 + ρ

1− ρ

}1/2
]

.

Proof: It is not hard to see that if(X, Y )T ∼ t2ν,ρ, then givenY = y,

(
ν + 1

ν + y2

)1/2 X − ρy

(1− ρ2)1/2
∼ tν+1. (6.8)

Therefore

Cν,ρ(u, v) = P(X ≤ t−1
ν (u), Y ≤ t−1

ν (v))

=

∫ t−1
ν (v)

−∞
tν+1

[(
ν + 1

ν + y2

)1/2
{

t−1
ν (u)− ρy

(1− ρ2)1/2

}]
fν(y) dy.

Taking derivative with respect tov, we get

∂Cν,ρ(u, v)

∂v
= tν+1




{
ν + 1

ν + t−1
ν (v)2

}1/2 {
t−1
ν (u)− ρt−1

ν (v)

(1− ρ2)1/2

}


= tν+1




{
ν + 1

ν + t−1
ν (v)2

}1/2 {
t−1
ν (v)− ρt−1

ν (v)

(1− ρ2)1/2

}
 , puttingu = v

= tν+1




{
ν + 1

ν + t−1
ν (v)2

}1/2 {
t−1
ν (v)(1− ρ)

(1− ρ2)1/2

}


→ tν+1

[
−

{
(ν + 1)

1− ρ

1 + ρ

}1/2
]
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asv → 0+. The other expression can be derived similarly.

Remark: Lemma 6.1.3 tells the property of tail dependence int-copulas.

Proof of Theorem 6.1.1

Using similar arguments as before, we only need to prove Theorem 6.1.1 forD = 2. It easily

follows by takingxi →∞ for i 6= k, thatFk(xk) = Gk(xk) for k = 1, 2. It follows that

Cν1,ρ1(u, v) = Cν2,ρ2(u, v) (6.9)

for all pairs of(u, v) of the form(F1(x1), F2(x2)). Thus, (6.9) holds for all values of(u, v) in

(0, 1)2 as in the case when both marginals are continuous. Nevertheless, since both marginals have

only a finite number of discontinuities, there are infinite values of(u, v) for which the limits and

derivatives in Lemma 6.1.3 can be applied to obtainλ∗ andµ∗. Since (6.9) holds, we must have

λ∗1 = λ∗2 andµ∗1 = µ∗2. Now without loss of generality, assumeρ1 6= ρ2 andρ1 ≥ ρ2, from

the equalityλ∗1 = λ∗2 and Lemma 6.1.2, we must haveν1 ≥ ν2. On the other hand, the equality

µ∗1 = µ∗2 givesν1 ≤ ν2. Hence,ρ1 ≥ ρ2 implies thatν1 = ν2 = ν, say. Now, using Lemma

6.1.1, we getρ1 = ρ2. The proof of theorem is completed.

Remark: Note that as the degrees of freedomν →∞, thet-distribution converges asymptoti-

cally to a Gaussian distribution, so does thet-copula. For the Gaussian copulas, the counterpart of

Theorem 6.1.1 also holds. Therefore, we have the following lemma:

Lemma 6.1.4 Let FD
R1

andGD
R2

denote two distribution functions onRD in the Gaussian

copula family with marginal distributionsFk, k = 1, . . . , D andGk, k = 1, . . . , D, respectively.

Suppose we haveFD
R1

(x) = GD
R2

(x) for all x. Then,Fk(x) = Gk(x) for all k, andR1 = R2.

Proof: Without loss of generality, we prove Lemma for the case thatD = 2, i.e.,ρ1 = ρ2.

Notice that it suffices to prove that for any fixed(a, b) ∈ R2,

Pρ(Z1 ≤ a, Z2 ≤ b) = Φ2,ρ(a, b)

is increasing inρ, whereZi ∼ N(0, 1), i = 1, 2, with correlation coefficientρ.
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Note that

Φ2,ρ(a, b) =

∫ a

−∞

∫ b

−∞
φρ(z1, z2)dz1dz2,

which gives us

∂Φ2,ρ

∂ρ
(a, b) =

∫ a

−∞

∫ b

−∞
φ′ρ(z1, z2)dz1dz2

=

∫ a

−∞

∫ b

−∞
1

2π
√

(1− ρ2)

[
ρ

1− ρ2
+

(z1ρ− z2)(z2ρ− z1)

(1− ρ2)2

]
·

exp

{
−z2

1−2ρz1z2+z2
2

2(1−ρ2)

}
dz1dz2

=

∫ a

−∞

∫ b

−∞
∂2φρ(z1, z2)

∂z1∂z2
dz1dz2

= φρ(a, b)

which is always positive. Therefore, we have proved the uniqueness ofρ. The proof of Lemma is

completed.

Remark: It is not hard to see that for the Gaussian copulas, the tail dependence between

random variables no longer exists.

Using notations defined in Chapter 5, the density ofFD
ν,R at a fixed pointx ∈ RD, dFD

ν,R(x),

is a function onRD that satisfies

FD
ν,R(x) =

∫

w≤x
dFD

ν,R(w), (6.10)

wheredFD
ν,R(x) is given by

∫
...

∫
∏L′

l=1[Fdl
(D−

dl,idl
),Fdl

(Ddl,idl
)]

cν,R(u1, . . . , uD)dud1
, ..., dud

L′
·

H′∏

h=1

fch
(xch

),

whereuch
= Fch

(xch
), andH′ andL′ could be any value among{0, 1, ..., D} such thatH′ +

L′ = D. Note that the above density can be generally written as

c∗(ν, R, F1, ..., FD)(x) ·
H′∏

h=1

fch
(xch

). (6.11)

62



6.2 Estimation ofR and ν

6.2.1 Estimation ofR for fixed ν

Let X1, . . . ,Xn ben independent and identically distributedD-dimensional random vectors aris-

ing from the joint distributionFD
R,ν in (6.3),F̂kn denote the empirical distribution function ofFk

andFkn = nF̂kn/(n + 1).

From (6.11), the log-likelihood function corresponding to then i.i.d. observationsXj , j =

1, . . . , n, is given by

τ(ν,R) =
n∑

j=1

log dFD
ν,R(Xj)

=
n∑

j=1

log c∗(ν,R, F1, . . . , FD)(Xj)

(6.12)

For fixedν, our estimator ofR is taken to be the maximizer of̂τ(ν, R), that is,

R̂(ν) = arg maxR τ̂(ν, R). (6.13)

Note that there are two main challenges in maximizing the likelihoodτ̂(ν, R): Firstly, τ̂(ν,R)

involves several integrals corresponding to discrete components inXj, j = 1, . . . , n; c∗ is not

available in a closed form. Secondly,τ̂(ν, R) needs to be maximized over allD × D correlation

matrices. The space of all correlation matrices is a compact space of[−1, 1]D
2

since all entries of

a correlation matrix lie between−1 and1. However, this space is not easy to maximize over due

to the constraint of positive definiteness placed on correlation matrices.

The EM Algorithm

The difficulties mentioned can be overcome with the use of the EM algorithm; see, for example,

[31]. The EM algorithm is a well-known algorithm used to find the maximum likelihood estimator

(MLE) of a parameterθ based on datay distributed according to the likelihood̀obs(y; θ). In
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many situations, obtaining the MLE,

θ̂MLE = arg maxθ `obs(y; θ),

via maximization of̀ obs(y; θ) overθ turns out to be difficult. In such cases, the observed like-

lihood can usually be expressed in terms of an integral over missing components of a complete

likelihood; in other words, ifz and`com(y, z; θ), respectively, denote the missing observations

and the complete likelihood corresponding to(y, z), it follows that

`obs(y; θ) =

∫

Z(y)
`com(y, z; θ) dz

whereZ(y) is the range of integration ofz subject to the observed data beingy. The EM algorithm

is an iterative procedure that can be formulated in two steps: First, (i) the E-step, where the quantity

Q(θ(N), θ) = E
π( z | θ(N),y)

{log`com(y, z; θ)} (6.14)

is formed; the expectation in (6.14) is taken with respect to the conditional distribution ofZ given

y when evaluated at a particular value,θ(N), and the conditional distribution ofZ giveny is given

by

π( z | θ,y) =
`com(y, z; θ)

`obs(y; θ)
. (6.15)

Second, (ii) the M-step, whereQ(θ(N), θ) is maximized with respect toθ to obtainθ(N+1), that

is,

θ(N+1) = arg maxθ Q(θ(N), θ).

Starting from an initial valueθ(0), the sequenceθ(N), N ≥ 0 converges tôθMLE under suitable

regularity conditions.

The integrals in̂τ(ν, R) corresponding to the discrete components can be formulated as missing

components of a complete likelihood. Recall that the notationsch anddl were used to denote the

discrete and continuous components in the vectorx. We now extend this notation to represent

discrete and continuous components in thej-th observation vectorXj , j = 1, . . . , n. For j =
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1, . . . , n, let dlj, l = 1, . . . , L′j and chj, h = 1, . . . , H′j , respectively, denote the discrete and

continuous components ofXj with respect to the corresponding marginal distributions. Next,

define the vectoruj in the following way: Thedlj-th component ofuj , udlj
, is a number that

is allowed to vary between[Fdlj
(x−

dlj
), Fdlj

(xdlj
)], that is,ulj ∈ [Fdlj

(x−
dlj

), Fdlj
(xdlj

)] ≡
Slj , say, forl = 1, . . . , L′j . Thechj-th component ofuj , uchj

, is taken to beuchj
= Fchj

(xchj
)

for h = 1, . . . , H′j . In that case, we have

c∗(ν, R, F1, . . . , FD)(Xj) =

∫

S1j
. . .

∫

S
L′j

cDν,R(uj) dud1j
. . . dud

L′j

Making the transformationzj = t−1
ν (uj), the likelihood corresponding to thej-th observation in

(6.12) can be written asc∗(ν, R, F1, . . . , FD)(Xj) = NUMj/DENOMj , where

NUMj =

∫

t−1
ν (S1j)

. . .

∫

t−1
ν (S

L′j
)

fD
ν,R(zj) dzd1j

. . . dzd
L′j

and

DENOMj =

H′j∏

h=1

fν(zchj ),

wherezchj
= t−1

ν {Fchj
(xchj

)} andt−1
ν (Slj) = [t−1

ν {Fdlj
(x−

dlj
)}, t−1

ν {Fdlj
(xdlj

)}]. We

make several important observations. First, where the maximization ofR is concerned for fixedν,

it is enough to consider theNUMj terms. Thus, in the EM framework, we defineNUMj to be

the “observed likelihood” corresponding to thexj :

`obs(xj ; ν,R) =

∫

t−1
ν (S1j)

. . .

∫

t−1
ν (S

L′j
)

fD
ν,R(zj) dzd1j

. . . dzd
L′j

. (6.16)

If the variableszdlj
j = 1, . . . , L′j in (6.16) are treated as missing, the “complete likelihood”

corresponding to thej-th observation becomes

`com(xj,Zj ; ν, R) = fD
ν,R(zj)




L′j∏

l=1

I{zdlj
∈t−1

ν (Slj)}


 ,
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whereZj = { zdlj
, j = 1, . . . , L′j}. Next, we note that thet density,fD

ν,R, is an infinite scale

mixture of Gaussian densities, namely,

fD
ν,R(zj) =

∫ ∞
σ2
j=0

φD
R,σj

(zj) gν(σ2
j ) dσ2

j

where

φD
R,σj

(z) =
1

(2π)
D
2 σD

j |R|
1
2

exp


−zT R−1z

2σ2
j




and the mixing distribution onσj is the inverse Gamma distribution as defined in (6.7). In other

words, an extra missing component can be added into the E-step, namely, the mixing parameter,

σj . The complete likelihood specification for thej-th observation now becomes

`com(xj, Zj, σj ; ν, R) = φD
R,σj

(zj) · gν(σ2
j )




L′j∏

l=1

I{zdlj
∈ t−1

ν (Slj)}


 . (6.17)

The conditional distributionπ required to obtainQ in (6.14) is defined as

π(Zj, σj, j = 1, . . . , n; ν, R ) =
n∏

j=1

πj(Zj, σj ; ν, R )

where

πj(Zj, σj ; ν,R ) =
`com(xj, Zj, σj ; ν, R )

`obs(xj ; ν, R )
; (6.18)

see (6.15). Two distributions derived from (6.18) will be used subsequently: (i) the conditional

distribution ofσj givenZj , given by

πj(σ2
j | Zj, ν, R) = IG





ν + D

2
,


ν + zTj R−1zj

2



−1





,

and (ii) the marginal ofZjs (after integrating outσj), given by

πj(Zj ; ν, R) =

fD
ν,R(zj)


∏L′j

l=1
I{zdlj

∈t−1
ν (t−1

ν (Slj)}




∫

t−1
ν (S1j)

· · ·
∫

t−1
ν (S

L′j
)

fD
ν,R(zj) dzd1j

· · · dzd
L′j

.
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The E-step entails that the expected value of the logarithm of the complete likelihood (6.17) is

taken with respect to the missing components,Zj , and theN -th iterate ofR, R(N):

E
π(Zj,σj ; ν,R(N) )

{log`com(xj,Zj, σj ; ν, R ) } ≡ Ej {log`com(xj,Zj, σj ; ν, R )},

whereπj(Zj, σj ; ν, R ) is as defined in (6.18). The expected value can be simplified to

Ej


−

zTj R−1zj

2σ2
j


− 1

2
log|R| (6.19)

plus other terms that do not involve the correlation matrixR, and hence are irrelevant for the

subsequent M-step. The expectation in (6.19) is taken in two steps, namely,Ej = Ej1 Ej2 where

Ej2 is the conditional expectation ofσj givenZj , andEj1 is the expectation with respect to the

marginal ofZj . On takingEj2, the expression in (6.19) simplifies to

−ν + D

2
Ej1





zT
j R−1zj

ν + zT
j (R(N))−1zj



 = −ν + D

2
tr

(
R−1 W (N)

)
,

whereW (N) = ((w
(N)

kk′ )) is aD ×D matrix with entries

w
(N)

kk′ =

∫ 



zkjzk′j
ν + zT

j (R(N))−1zj



 πj(Zj ; ν,R(N)) dZj

for zj = (z1j, . . . , zDj)T .

The last integral is approximated by numerical integration on a grid. We partition each interval

t−1
ν (Slj), l = 1, . . . , L′j into a large number of subintervals and evaluate the integrand on the

partition points. Finally, a Reimann sum is obtained as an approximation to the integral.

TheM -step consists of maximizing the complete likelihood function (6.19),

Ej


−

zTj R−1zj

2σ2
j


− 1

2
log|R| = −ν + D

2
tr(R−1W (N))− 1

2
log|R|, (6.20)

with respect to the correlation matrixR. Since we have to maximize the objective function in

the space of all correlation matrices, this is somewhat a difficult task. We adopt the methodology
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presented by Barnard et al. [1] where an iterative procedure to maximize (6.20) is developed by

considering the maximization of one element ofR, sayρ, each time. In order to preserve the

positive definiteness ofR, one can show (see Barnard et al. [1] for details) thatρ should lie in an

interval [ρl, ρu]. The lower and upper limits of this interval are derived from the fact that in order

for R to be positive definite, it is both necessary and sufficient that all the principal submatrices of

R are positive definite. This is equivalent to a non-negativity condition on the determinant of each

principal submatrix, which translates to an interval for the range of values ofρ. This procedure is

repeated for the other elements ofR and cycled until convergence before going to the(N + 1)-st

iteration of the EM algorithm.

6.2.2 Selection of the Degrees of Freedom,ν

The above procedure is carried out for a collection of degrees of freedomν ∈ A, whereA is finite.

For each fixedν, we obtain the estimator of the correlation matrixR̂(ν) based on the EM algorithm

above. We select the degrees of freedom in the following way: Selectν̂ such that

ν̂ = arg maxν∈A
1

n
τ̂{ν, R̂(ν)}. (6.21)

6.3 Summary

In this Chapter, we introduced thet-copula family inRD, and showed that for any joint distribution

FD in RD, there exists a unique pair(ν, R) such thatFD
ν,R(x) = Cν,R(F1(x1), ..., FD(xD))

within this family. Furthermore, we developed a semi-parametric technique to estimate the un-

known pair(ν, R) using EM algorithm. The application of this approach will be presented in the

next chapter.
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CHAPTER 7

SIMULATION AND REAL DATA

RESULTS

7.1 Simulation Results

The results in this section are based on simulated data of four experiments. The first three are for

the bivariate case, whereas the fourth is for a trivariate distribution. The true distributions for the

observationsXj , j = 1, . . . , n, in all experiments are of the type as defined in (6.3).

In experiment 1,ν0 = ∞ in (6.3) corresponding to the Gaussian copula function. We choose

ρ = 0.75. The two mixed marginals,F1 and F2, have the following cumulative distribution

Sample size,n Average Absolute Relative Average Coverage
Bias Absolute Bias

500 0.0168 2.2 % 92.4 %
1000 0.0135 1.8 % 91.6 %
1500 0.0116 1.5 % 92.3 %
2000 0.0113 1.5 % 93.2 %
2500 0.0087 1.2 % 94.7 %

Table 7.1. Simulation results for Experiment 1 withν0 = ∞ andρ = 0.75. The absolute bias and
relative absolute bias of the estimatorρ̂n are provided, together with the empirical coverage of the
approximate95% confidence interval forρ based on the asymptotic normality ofρ̂n.
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functions:

F1(x1) = 0.3I{x1≥0.2} + 0.7φ(x1),

and

F2(x2) = 0.2I{x2≥0.1} + 0.8φ(x2),

whereφ(·) is the standard normal density function. Thus, we haved1 = d2 = 1 with D11 = 0.2,

andD21 = 0.1 with probabilitiesp11 = 0.3, andp21 = 0.2, respectively. The set of jump points

areJ (F1) = {0.2} andJ (F2) = {0.1} with continuous components ofF1 andF2 corresponding

to f1(x) = f2(x) = φ(x).

The sample sizen is taken fromn = 500 to n = 2500 in increments of500. In each trial,

we simulaten observations fromF2∞,0.75(x1, x2) and estimateρ within the Gaussian copulas

using the methodology presented in Section 6.2. Table 7.1 contains the simulation result from

Experiment 1. For each sample size, the experiment was repeated 1,000 times. The average

absolute bias and relative average absolute bias of the estimatorρ̂n are reported, together with

the empirical coverage of the approximate95% confidence interval forρ based on the asymptotic

normality of ρ̂n.

Experiment 2 consists of the following choices:ν0 = ∞ in (6.3) corresponding to the Gaussian

copula function. We chooseρ0 = 0.75. The two mixed marginals,F1 andF2, have the following

cumulative distribution functions:

F1(x1) = 0.25I{x1≥0.2} + 0.6t10(x1) + 0.15I{x1≥0.7},

and

F2(x2) = 0.2I{x2≥0.3} + 0.5t10(x2) + 0.3I{x2≥0.6}.

Thus, we haved1 = d2 = 2 with D11 = 0.2, D12 = 0.7, D21 = 0.3 andD22 = 0.6 with

probabilitiesp11 = 0.25, p12 = 0.15, p21 = 0.2 andp22 = 0.3, respectively. The set of jump

points areJ (F1) = {0.2, 0.7} andJ (F2) = {0.3, 0.6} with continuous components ofF1 and

F2 corresponding tof1(x) = f2(x) = t10(x).
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Figure 7.1. Density curves fort distribution with degrees of freedomν = 3, 5, 10, 15, 20, 25 and
normal distribution. For interpretation of the references to color in this and all other figures, the
reader is referred to the electronic version of this dissertation.

For now, we select the set for the degrees of freedom of thet-copula to beA = {3, 5, 10,∞} for

illustrative purposes. Note that we chooseν0 values inA so that the correspondingt-distributions

are significantly different from one another. Figure 7.1 gives thet-densities for severalν0 values,

including values inA. There exist significant gaps between thet-density curves corresponding to

ν0 = {3, 5, 10}, but relatively smaller gaps forν0 = {15, 20, 25,∞}. Table 7.2 provides theL1-

distances between somet- distributions in Figure 7.1.

The sample sizen is taken fromn = 500 to n = 2500 in increments of500. In each trial, we
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ρ0 ν0 3 5 10 ∞
3 0 0.0874 0.1705 0.2690
5 0.0874 0 0.0837 0.1835

ρ0 = 0.2 10 0.1705 0.0837 0 0.1005
∞ 0.2690 0.1835 0.1005 0
3 0 0.0896 0.1735 0.2721
5 0.0896 0 0.0845 0.1844

ρ0 = 0.75 10 0.1735 0.0845 0 0.1006
∞ 0.2721 0.1844 0.1006 0

Table 7.2.L1 distances for paired values ofν0 corresponding to two values ofρ0, 0.20 and0.75.

Sample size,n Percentage of timesMeanρ̂(ν̂) MSE(ρ̂(ν̂))
ν̂ = ν0

500 86% 0.7361 0.6312×10−3

1000 94% 0.7392 0.3869×10−3

1500 100% 0.7413 0.3808×10−3

2000 100% 0.7429 0.3035×10−3

2500 100% 0.7450 0.2861×10−3

Table 7.3. Simulation results for Experiment 2 withν0 = ∞ andρ0 = 0.75.

simulaten observations fromF2∞,0.75(x1, x2) and estimateρ0 andν0 based on the methodology

presented in Section 6.2. The trial is repeated 50 times. The simulation results, including percent-

age of times (out of 50) that the true value ofν0, mean ofρ̂(ν̂), and theMSE of ρ̂(ν̂) is chosen ,

are presented in Table 7.3.

In Experiment 3, we tookν0 = 10. The two generalized marginal distributions are the same

as in Experiment 2. The correlation parameterρ0 were selected to be0.20 and0.75, respectively.

The results are presented in Table 7.4. From the entries of Table 7.3 and Table 7.4, we see that

the estimation procedure is more effective in selecting the true degrees of freedom whenν0 = ∞
compared toν0 = 10. The reason of being that is the distribution corresponding toν0 = ∞ is

further away from all the other candidate distributions inA. Also, the estimation procedure is less

effected by the value ofρ0 as illustrated by the percentage of timesν̂ = ν0 column in Table 7.4.
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ρ0 Sample size,n Percentage of timesMeanρ̂(ν̂) MSE(ρ̂(ν̂))
ν̂ = ν0

500 84% 0.1861 0.7532×10−3

1000 88% 0.1877 0.6871×10−3

ρ0 = 0.20 1500 92% 0.1889 0.6095×10−3

2000 94% 0.1923 0.4173×10−3

2500 100% 0.1944 0.3664×10−3

500 82% 0.7398 0.7235×10−3

1000 88% 0.7401 0.6789×10−3

ρ0 = 0.75 1500 96% 0.7429 0.6565×10−3

2000 98% 0.7523 0.4546×10−3

2500 100% 0.7481 0.3648×10−3

Table 7.4. Simulation results for Experiment 3 withν0 = 10. The two correlation values consid-
ered areρ0 = 0.2 andρ0 = 0.75.

sample percentage mean mean mean total
size of getting ρ̂1(ν̂) ρ̂2(ν̂) ρ̂3(ν̂) MSE

trueν

500 85 % 0.1990 0.2760 0.1885 0.7143×10−3

1000 90 % 0.1830 0.2805 0.2005 0.6732×10−3

1500 95 % 0.1795 0.2845 0.1970 0.6714×10−3

2000 100 % 0.1820 0.2880 0.1880 0.6126×10−3

2500 100 % 0.1955 0.2920 0.1930 0.1335×10−3

Table 7.5. Simulation results for Experiment 4.
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In Experiment 4, we tookD = 3 andν0 = 10. The first two marginal distributions are the

same as before. The third marginal distribution is taken to be thet-distribution with 10 degrees of

freedom (thus, having no points of discontinuity). We took the correlation matrixR0 as

R0 =




1 0.2 0.3

0.2 1 0.2

0.3 0.2 1




3×3

=




1 ρ1 ρ2

ρ1 1 ρ3

ρ2 ρ3 1




3×3

, say. (7.1)

For different sample sizes, the experiment were repeated 20 times (instead of 50) to reduce compu-

tational time. The estimators ofρi, ρ̂i, i = 1, 2, 3, were obtained based on the iterative procedure

outlined in Section 6.2. Since the maximization step involves another loop within the M-step, the

objective function was maximized overρ-intervals in steps of0.01 to reduce computational time.

The iterative procedure within the M-step was not required whenD = 2 which enabled us to max-

imize the objective function over a finer grid (steps of0.0001). The results are given in Table 7.5;

note that (i) the estimators converge and (ii) the MSE reduces asn tends to infinity.

7.2 Application to Multimodal Fusion in Biometric Recogni-

tion

7.2.1 Introduction

Biometric recognition refers to the automatic identification of individuals based on their biological

or behavioral characteristics [20]. In recent years, recognition of an individual based on his/her

biometric trait has become an increasingly important method for testing “you are who you claim

you are”, see, for example, [18] and [29]. Biometric recognition is more reliable compared to tra-

ditional approaches, such as password-based or token-based approaches, as biometric traits cannot

be easily stolen or forgotten. Some examples of biometric traits include fingerprint, face, signature,

voice and hand geometry (See Figure 7.2). A number of commercial recognition systems based on

74



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.2. Some examples of biometric traits: (a) fingerprint, (b) iris scan, (c) face scan, (d)
signature, (e) voice, (f) hand geometry, (g) retina, and (h) ear.

these traits have been deployed and are currently in use. Biometric technology has now become

a viable alternative to traditional government applications (e.g., US-VISIT program [48] and the

proposed biometric passport which is capable of storing biometric information of the owner in a

chip inside the passport). With increasing applications involving human-computer interactions,

there is a growing need for recognition techniques that are reliable and secure.

Recognition of an individual can be viewed as a test of statistical hypothesis. Based on the

biometric inputQ and a claimed identityIc, we would like to test

H0 : It = Ic vs. H1 : It 6= Ic, (7.2)

whereIt is the true identity of the user.

The testing in (7.2) is performed by a matcher which computes a similarity measure,S(Q, T ),

based onQ andT ; large (respectively, small) values ofS indicate thatT andQ are close to (far
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from) each other (A matcher can also compute a distance measure betweenQ andT in which case

similarQ andT will produce distance values that are close to zero and vice versa). The distribution

of S(Q, T ) is called genuine (respectively, impostor) whenIt = Ic (It 6= Ic) underH0 (H1).

We denote the genuine (imposter) matching score distribution function byFgen (Fimp).

Assuming thatFgen(x) andFimp(x) have densitiesfgen(x) and fimp(x), respectively. The

Neyman-Pearson theorem states that theoptimal ROC curve is the one corresponding to the like-

lihood ratio statistic

NP (x) =
fgen(x)

fimp(x)

[14]. The ROC curve corresponding toNP (x) has the highest genuine accept rate (GAR) for every

given value of the false acceptance rate (FAR) compared to any other statisticU(x) 6= NP (x).

However, bothfgen(x) andfimp(x) are unknown, and are estimated from the observed match-

ing scores. The ROC corresponding toNP (x) may turn out to be suboptimal, which is mainly due

to the large errors in the estimation offgen(x) andfimp(x). Thus, for a set of genuine and im-

poster matching scores, it is important to be able to estimatefgen(x) andfimp(x) reliably and

accurately. The articles, [14] and [38], assume that the distribution functionF has a continu-

ous density with no discrete components. In reality most matching algorithms apply thresholds

at various stages in the matching process. When the required threshold conditions are not met,

specific matching scores are output by the matcher. For example, some fingerprint matchers pro-

duce a score of zero if the number of extracted minutiae is less than a threshold. This leads to

discrete components in the matching scores distribution that can not be modelled accurately using

a continuous density function (see Figure 7.3, Figure 7.4, Figure 7.5 and Figure 7.6) . Thus, dis-

crete components need to be detected and modelled seperately to avoid large errors in estimating

fgen(x) andfimp(x).

Another issue is that biometric systems based on a single source of information suffer from

limitations like the lack of uniqueness, non-universality and noisy data [21] and hence, may not

be able to achieve the desired performance requirements of real-world applications. In contrast,
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Figure 7.3. Histograms of matching scores, corresponding to genuine scores for Matcher 1. Con-
tinuous (respectively, generalized) density estimators is given by the dashed lines (solid lines).
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Figure 7.4. Histograms of matching scores, corresponding to genuine scores for Matcher 2. Con-
tinuous (respectively, generalized) density estimators is given by the dashed lines (solid lines).
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Figure 7.5. Histograms of matching scores, corresponding to impostor scores for Matcher 1. Con-
tinuous (respectively, generalized) density estimators is given by the dashed lines (solid lines). The
spike corresponds to discrete components. Note how the generalized density estimator performs
better compared to the continuous estimator (assuming no discrete components).
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Figure 7.6. Histograms of matching scores, corresponding to impostor scores for Matcher 2. Con-
tinuous (respectively, generalized) density estimators is given by the dashed lines (solid lines).
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some of the limitations imposed by unimodal biometric systems (that is, biometric systems that

rely on the evidence of a single biometric trait) can be overcomed by using multiple biometric

modalities[2], [24], [3], [25], [49] and [47]. Such systems, known as multibiometric systems, are

expected to be more reliable due to the presence of multiple pieces of evidence. In a Multimodal

biometric system, fusion can be done at (i) feature level, (ii) matching scores level, or (iii) decision

level. Matching score level fusion is commonly preferred because matching scores are easily

available and contain sufficient information to distinguish between a genuine and an imposter case.

Dass et al. [7] proposed a biometric fusion using generalized densities. In [7], a Gaussian cop-

ula model is chosen to estimate the correlation structure. In reality, sometimes the joint distribution

can be fitted better by using at-copula model instead of a Gaussian copula model, which is due to

the nature of the data set, so we consider the Gaussian copula andt-copula models together, and

choose the more appropriate model by model selection method based onBIC criteria (Publication

for this research is [16]).

7.2.2 Application in Biometric Fusion

When people deal with biometric fusion, a natural question people need to answer first is how to

get the joint distribution of multiple modalities. Previously, people simply assume independence

between the individual modalities, but this assumption is not always true, especially, when the

fusion is done on the same biometric trait with different matchers. Here we deal with the correlation

structure via semi-parametric copula models.

Based on fingerprint images in the MSU-Multimodal database, see [19], corresponding to

100 users, genuine and impostor similarity scores were obtained for two matchers: a correlation

matcher,S1 (see [32]), and a minutiae-based matcher,S2 (see [39]). A total of 2,800 and 4,950

vectors of similarity scores,Xj ≡ (S1(Q, T ), S2(Q, T ))T , were obtained for the genuine and im-

postor cases, respectively. The histogram plot of each marginal (both genuine and impostor) gives

strong indication of non-Gaussianity, thus, justifying the need for the methodology developed in
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Matching score type ν̂ ( ρ̂1, ρ̂2, ρ̂3 )
Genuine 14 ( 0.76, -0.11, -0.14 )
Impostor 25 ( 0.3, 0.04, 0.02 )

Table 7.6. Results of the estimation procedure forR andν based on the NIST database.

this thesis. The match scores are highly correlated sinceS1 andS2 are applied to the same finger-

print images. Further, bothS1 andS2 output the discrete score ‘0’ if certain “initial conditions” are

not met, resulting in a spike at0 in the corresponding marginal distributions. For both the genuine

and impostor distributions, the set of degrees of freedom,ν, considered isA = {1, 2, 3, . . . 25,∞}.
We obtained̂ν = 3 andρ̂(ν̂) = 0.4178 for the genuine scores,̂ν = 3 andρ̂(ν̂) = 0.1563 for the

impostor scores.

For the reasons mentioned above, joint distribution functions of the form (6.3) withD = 2 are

appropriate for strongly correlated biometric data as we have here.

The second experiment was carried out on the first partition of the Biometric Scores Set -

Release I (BSSR1) released by NIST, [33], consisting of face and fingerprint images from 517

users. Like the previous case, the marginal distributions have discontinuities: The first matcher,S1,

for the face biometric outputs the value -1 if certain alignment conditions do not hold for the query

and template face pair. The second face matcher,S2, outputs continuous values and therefore,

does not have any discrete components. The second fingerprint matcher of the MSU-Multimodal

database, renamedS3 here, is used for the fingerprint images resulting in a discrete score of ‘0’. We

obtained 517 and 266,772 vectors of similarity scores,Xj ≡ (S1(Q, T ), S2(Q, T ), S3(Q, T ))T ,

corresponding to the genuine and impostor scores, respectively. In this case,D = 3 and the

correlation matrixR0 can be written as in (7.1).A is taken as before. Table 7.6 gives the results

of the estimation procedure.

We investigate the performance of fusion obtained by combining theD similarity scores ob-

tained from theD different modalities. Since we assume that the genuine and impostor distri-

butions are of the form (6.3), the test of hypotheses (7.2) can be re-stated in terms of the score
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Figure 7.7. Performance of copula fusion on the MSU-Multimodal database

distributions underH0 andH1, namely,

H0 : FQ(x) = FD
ν0,R0

(x) vs. H1 : FQ(x) = FD
ν1,R1

(x)

for some(ν0, R0) and(ν1, R1). The optimal decision rule (fusion rule) then turns out to be the

likelihood ratioLR(x) = dFD
ν0,R0

(x)/dFD
ν1,R1

(x)from the Neyman-Pearson Lemma, following

in a similar fashion for the case in the single modality explained earlier. However, theLR rule

cannot be used in the current form since the parametersν0, R0, ν1 andR1 are unknown. The

methodology developed here can be used to obtain estimators of all of these parameters, thus

obtaining the estimated likelihood ratio statistiĉLR(x) = dFD
ν̂0,R̂0

(x)/dFD
ν̂1,R̂1

(x).

The effectiveness of the (estimated)LR fusion rule can be evaluated based on aK-fold cross
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Figure 7.8. Performance of copula fusion on the NIST database.
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validation procedure. In thek-th iteration,k = 1, . . . , K, a random subset, sayS0, of n0 genuine

scores from the total ofngen scores is selected for estimating the parametersν0 andR0. Similarly,

for estimatingν1 andR1, a (random) subsetn1 impostor scores, sayS1, is selected from a total

of nimp scores. The remaining genuine and impostor scores are used to obtain an estimator of

the false accept and genuine accept rates (FAR and GAR, respectively) for each thresholdλ. The

relevant formulas are

ˆFAR(λ) =

∑
j∈Sc

1
I{L̂R(xj)>λ }

nimp − n1
and ˆGAR(λ) =

∑
j∈Sc

0
I{L̂R(xj)>λ }

ngen − n0
,

whereSc
0 andSc

1 are the complements ofS0 andS1, respectively. The ROC (Receiver Operating

Characteristics) curve is the plot ofˆFAR(λ) versus ˆGAR(λ) with higher ROC values indicating

better recognition performance. Our experiments on the MSU-Multimodal and NIST databases

were based on the following choices:K = 10 andn0/ngen = n1/nimp ≈ 0.8. The fusion results

are presented in Figure 7.7 and Figure 7.8. Note that there is an dramatic overall improvement of

the performance indicating that the elicited joint distributions are good models for the distribution

of similarity scores.
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CHAPTER 8

SUMMARY AND CONCLUSION

Investigating dependence structures of multivariate distributions has always been an interesting

area for researchers. Copulas have proved to be a useful tool for analyzing multivariate dependence

structures by providing more flexibility than the classic parametric approach as they can easily

separate the effect of dependence structure from that of the marginals, especially in situations that

the marginals contain discrete points.

This thesis developed a semi-parametric approach to estimate the dependence structure for the

bivariate distributions with mixed marginals. The semi-parametric estimator established in this

thesis has been shown to be asymptotically consistent. A variance estimator has been provided

as well. The estimation methodology involves integrals corresponding to the discrete componets

and is therefore, non-standard. Furthermore, our approach was generalized to the higher dimen-

sional case under similar assumptions and using the same arguments. The higher dimensional case

requires more computing time.

The semi-parametric approach developed has been utilized in thet-copula family and the Gaus-

sian family, which is the limiting distribution of thet-copula family. Estimation of the correlation

matrix as well as the degrees of freedom corresponding to thet-copula were carried out based

on the EM algorithm. This estimation was also done for the estimation of the correlation matrix

corresponding to the Gaussian copula.
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We have shown large sample consistency of our estimates and demonstrated this based on sev-

eral simulation examples. Finally, the methodology was applied to real data consisting of match-

ing scores from various biometric sources. Fusion based on the generalized distributions gave

improved performance compared to the individual systems.

As future work, we will consider extensions to copula functions derived from general elliptical

distributions.
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