
HOLISTIC PERFORMANCE CONTROL FOR MISSION-CRITICAL
CYBER-PHYSICAL SYSTEMS

By

Jinzhu Chen

A DISSERTATION

Submitted
to Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science – Doctor of Philosophy

2014

ABSTRACT

HOLISTIC PERFORMANCE CONTROL FOR MISSION-CRITICAL
CYBER-PHYSICAL SYSTEMS

By

Jinzhu Chen

Recent years have seen the growing deployments of Cyber-Physical Systems (CPSs) in

many mission-critical applications such as security, civil infrastructure, and transportation.

These applications often impose stringent performance requirements on system sensing fi-

delity, timeliness, energy efficiency and reliability. However, existing approaches treat these

concerns in isolation and hence are not suitable for CPSs where the system performances are

dependent of each other because of the tight integration of computational and physical pro-

cesses. In this dissertation, we investigate the dependencies between these performances and

propose the holistic performance control approaches for two typical mission-critical CPSs,

which are Wireless Cyber-phyiscal Surveillance (WCS) systems and data centers. We first

propose a holistic approach called Fidelity-Aware Utilization Controller (FAUC) for WCS

systems that combine low-end sensors with cameras for large-scale ad hoc surveillance in

unplanned environments. By integrating data fusion with feedback control, FAUC enforces

a CPU utilization upper bound to ensure the system’s real-time schedulability under dy-

namic CPU workloads at runtime because of stochastic detection results. At the same time,

FAUC optimizes system fidelity and adjusts the control objective of CPU utilization adap-

tively in the presence of variations of target/noise characteristics. The testbed experiments

and the trace-driven simulations show that FAUC can achieve robust fidelity and real-time

guarantees in dynamic environments.

We then present a proactive thermal and energy control approach for data centers to

improve the energy efficiency while ensuring the data center reliability. It consists of a

high-fidelity real-time temperature prediction system and a predictive thermal and energy

control (PTEC) system. The prediction system integrates Computational Fluid Dynamics

(CFD) modeling, in situ wireless sensing and real-time data-driven prediction. To ensure

the forecasting fidelity, we leverage the realistic physical thermodynamic models of CFD to

generate transient temperature distribution and calibrate it using sensor feedback. Both

simulated temperature distribution and sensor measurements are then used to train a real-

time prediction algorithm. Based on the temperature prediction system, we propose the

PTEC system, which leverages the server built-in sensors and monitoring utilities, as well as

a network of wireless sensors to monitor the thermal and power conditions of a data center.

It predicts the server inlet temperatures in real-time, and optimizes temperature setpoints

and cold air supply rates of cooling systems, as well as the speeds of server internal fans,

to minimize their overall energy consumption. To ensure the data center reliability, PTEC

enforces a set of thermal safety requirements including the upper bounds on server inlet

temperatures and their variations, to prevent server overheating and reduce server hardware

failure rate. A partition-based approach is proposed to solve the control problem efficiently

for large-scale data centers. Extensive testbed experiments and trace-driven CFD simulations

show that PTEC can safely reduce substantial cooling and circulation energy consumption

compared with traditional approaches, and can adapt to the realistic and dynamic data

center workload.

Copyright by
JINZHU CHEN

2014

To my beloved family.

v

ACKNOWLEDGEMENTS

There would be no possibility for me to finish this dissertation without the guidance from

my dissertation guidance committee, the help from my colleagues and friends, as well as the

support from my family members. I sincerely own my gratitudes to all these people who

make this dissertation possible.

I would like to express my deepest gratitude to my advisor, Dr. Guoliang Xing, for his

guidance and generous support throughout my entire doctoral study. He provided me the

opportunity to work with excellent team members and guided me to build up my research

vision and capability. Every discussion with him comprised a wonderful journey where I

was guided to be a mature and independent researcher. This rewarding experience will

benefit my entire life. Besides my advisor, I would like to thank the rest of my guidance

committee members: Dr. William F. Punch, Dr. Subir Biswas and Dr. Li Xiao, for their

strong encouragement, critical comments, and helpful suggestions. In particular, I thank

Dr. Punch for supporting my experiments in HPCC. I also thank Dr. Juyang Weng for his

guidance in early stage of my dissertation.

Special thanks go to Dr. Rui Tan, who had greatly supported all my projects. I cannot

express how much I have learned from him. We worked together through many late nights

and deadlines. To me, he is a sincere friend, an enthusiastic collaborator and an inspiring

mentor. I also thank Dr. Xiaorui Wang for his professional comments that steered me in

the right research direction. My fellow colleagues, Xiaodong Wang and Xing Fu, from Dr.

Wang’s team, had helped me through various technical difficulties. I thank Dr. Dirk Colbry

and Jim Leikert for helping me access the HPCC server room and the server data. I thank

Kelly Climer for donating us several computing servers, as well as Dr. Eric Torng, Linda

Moore, Norma Teague, Debbie Krunch and Cathy Davison for their administrative support.

I am also thankful for the continuous funding support from National Science Foundation. In

vi

addition, I specially thank my supervisor Dr. Fan Bai at General Motors, who offered the

maximum flexibility for me to finish the dissertation.

I sincerely thank my fellow lab-mates in eLANS: Ruogu Zhou, Dennis Philips, Moham-

mad Moazzami, Yu Wang, Tian Hao, Jun Huang, Yuanteng (Jeff) Pei, Pei Huang, Fernando

Cintron-Gonzalez, Souror Soltani, Sayeed Choudhary, Kanthakumar Pongaliur. They helped

me progress and our friendship made my journey complete. In particular, I thank Yu for

helping me carry the burden of constructing the testbed, and Tian for helping with my every

single request. I thank Ruogu and Dennis for their advices about the hardware implementa-

tion, without which I could not complete my experimental systems. I also thank Mohammad

for helping me understand several hard concepts through various pleasant discussions.

My sincere gratitude also goes to my dear parents. Their unconditional love, sacrifice,

support and encouragement from the beginning of my life accompany my every step. Their

hardworking hands allow me to quest the knowledge freely. I deeply thank my grandmother,

who gives all her love to me no matter where I am. I still remember her tears at the time

when I was leaving for my study. I am very grateful to my extended family (in-laws), who

always financially and emotionally support my wife and me with their best. I also thank my

parents and mother-in-law for taking care of our baby and our family in the lonely foreign

country. Besides, I would like to thank my little dog for the warmest welcome everyday.

How lucky I am to be with my beloved beautiful wife through the toughest study. No

words can express how much you have sacrificed for me. Thank you for loving me, waiting

for me, being with me, and understanding me. Thank you for giving birth to our lovely

daughter, for all your company when I was working late, for all your tough days when I was

on foot cast and for all your delicious cooking. Finally, I thank my lovely daughter, for your

coming, crying, laughing, and every kissing, which make me a father and make the hard

study a fascinating journey.

vii

TABLE OF CONTENTS

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER 1 INTRODUCTION . 1

1.1 Performance of CPS . 2
1.2 Wireless Cyber-Physical Surveillance System 5
1.3 Data Center . 6
1.4 Contributions . 8
1.5 Dissertation Organization . 9

CHAPTER 2 RELATED WORK . 10

2.1 Fidelity and Timelinesss Control . 10
2.2 Reliability and Energy Control for Data Centers 11

2.2.1 Data Center Thermal Modeling . 11
2.2.2 Thermal and Energy Control . 12
2.2.3 Data Center Thermal Monitoring . 13

CHAPTER 3 FIDELITY-AWARE REAL-TIME UTILIZATION CON-

TROL . 14

3.1 Introduction . 14
3.2 Preliminaries . 16

3.2.1 Sensor Measurement Model . 16
3.2.2 Data Fusion Model . 16

3.3 Problem Statement . 17
3.3.1 System Model . 17
3.3.2 Problem Formulation . 19

3.4 Performance Modeling . 22
3.4.1 System Detection Performance . 22
3.4.2 Impact of Packet Loss . 23
3.4.3 System CPU Utilization . 24

3.5 Fidelity-Aware Utilization Controller . 26
3.5.1 The Design of FAUC . 26
3.5.2 Stability and Convergence . 28
3.5.3 Online System Parameter Estimation 28
3.5.4 Optimizing Detection Error Rate . 29

3.6 Testbed Experiments . 30
3.6.1 Experimental Methodology . 30
3.6.2 Light Spot Detection . 31

3.6.2.1 Sensor Measurement Performance 32
3.6.2.2 Stability and Convergence 33

viii

3.6.2.3 Effectiveness . 34
3.6.3 Acoustic Target Detection . 36
3.6.4 Impact of Packet Loss . 38
3.6.5 Impact of the Number of Sensor Nodes 39
3.6.6 Multi-cluster CPSs . 39

3.7 Trace-Driven Simulations . 41
3.7.1 Simulation Methodology and Settings 41
3.7.2 Simulation Results . 42

3.8 Conclusion . 44

CHAPTER 4 HIGH-FIDELITY TEMPERATURE PREDICTION FOR

DATA CENTERS . 45

4.1 Introduction . 45
4.2 Problem Statement and Approach Overview 47

4.2.1 Problem Statement . 47
4.2.2 Approach Overview . 49

4.3 CFD Modeling and Calibration . 51
4.3.1 Background on CFD . 52
4.3.2 A Case Study . 52
4.3.3 CFD Calibration . 55

4.4 Real-Time Temperature Prediction . 55
4.4.1 Real-Time Prediction Model . 56
4.4.2 Model Training . 57

4.4.2.1 Regularized Regression . 58
4.4.2.2 Training Data Generation using CFD 59

4.4.3 Dimension Reduction . 59
4.5 System Implementation and Deployment . 60

4.5.1 Testbeds and Sensor Deployment . 61
4.5.2 Implementation of the Sensor Network 62
4.5.3 Discussion . 63

4.6 Performance Evaluation . 64
4.6.1 Single-Rack Testbed Experiments . 65

4.6.1.1 Predication under Dynamic Workloads 65
4.6.1.2 Multi-Horizon Prediction 67
4.6.1.3 Effectiveness of Regularized Regression 68
4.6.1.4 Performance under Noisy Sensor Measurements 69
4.6.1.5 Multi-Channel Prediction 70
4.6.1.6 Sufficiency of Training Data from CFD 71

4.6.2 Production Testbed Experiments . 74
4.6.2.1 Dimension Reduction . 75
4.6.2.2 Long-term Monitoring . 77
4.6.2.3 CFD-Assisted Prediction . 78

4.7 Conclusion . 80

ix

CHAPTER 5 PREDICTIVE THERMAL AND ENERGY CONTROL

IN DATA CENTERS . 81

5.1 Introduction . 81
5.2 Problem Statement and Approach Overview 84

5.2.1 Problem Statement . 84
5.2.2 Approach Overview . 85

5.3 Power Consumption Models . 86
5.3.1 Server Fan Power Consumption Model 86
5.3.2 CRAC Power Consumption Model 87

5.4 Design of PTEC . 89
5.4.1 Problem Formulation . 89
5.4.2 Real-Time Temperature Prediction 92
5.4.3 Dynamic Fan Speed Control . 93
5.4.4 Predictive Controller . 95
5.4.5 Scalable Partition-Based Predictive Controller 95

5.5 Implementation . 98
5.5.1 Testbed and Sensor Deployment . 98
5.5.2 System Implementation . 99

5.6 Performance Evaluation . 100
5.6.1 Effectiveness of DFSC . 100
5.6.2 Effectiveness of Predictive Controller 101

5.6.2.1 Comparison with max cooling 102
5.6.2.2 Comparison with reactive control 103

5.6.3 Impact of Predictive Controller Settings 105
5.6.3.1 MAT . 105
5.6.3.2 RSDU . 106

5.6.4 Trace-Driven Computational Fluid Dynamics Simulations 107
5.7 Conclusion . 110

CHAPTER 6 CONCLUSION . 112

APPENDICES . 113

Appendix A Mean and Variance under Temporal Sampling 115
Appendix B Summary of Notations in PTEC 117
Appendix C Algorithm of Partition-Based Predictive Controller 119

BIBLIOGRAPHY . 123

x

LIST OF TABLES

Table 4.1 Evaluation scheme of replacing sensors with CFD 80

Table 5.1 Average power consumption (Watt) . 102

Table B.1 Summary of notations. 117

xi

LIST OF FIGURES

Figure 3.1 The architecture of FAUC controller. 21

Figure 3.2 The closed-loop system to control the fusion threshold according to the
CPU utilization feedback. 27

Figure 3.3 Testbed for light spot detection. 4 TelosB motes and a webcam detect
the light spot. For interpretation of the references to color in this and
all other figures, the reader is referred to the electronic version of this
dissertation. 31

Figure 3.4 (a) The CDF of the light intensity measurements of a TelosB mote; (b)
The CDF of estimation errors of noise and target profiles. 33

Figure 3.5 The temporal evolution of the light spot detection in dynamic environments. 34

Figure 3.6 (a) The average detection error rate under different target/noise dynam-
ics. (b) The CDF of the absolute CPU utilization error. 35

Figure 3.7 Testbed for acoustic target detection. 3 Iris motes and a webcam detect
the moving toy car. 36

Figure 3.8 The temporal evolution of the acoustic target detection in dynamic en-
vironments. 37

Figure 3.9 (a) Average detection error;(b) Average camera switched-on times. 38

Figure 3.10 Average error rate under different number of sensor nodes. 39

Figure 3.11 The temporal evolution of the light target detection in dynamic environ-
ments, where the CPU utilization reference is set to 39%. (a) Cluster
1; (b) Cluster 2. 40

Figure 3.12 The temporal evolution of the vehicle detection in the presence of chang-
ing noise (17 sensors). 43

Figure 3.13 (a) System error rate versus the number of sensor nodes; (b) System
error rate versus SNR (17 sensors). The error bars are plotted with 5%
and 95% quantiles. 43

Figure 4.1 Prediction system architecture. 50

xii

Figure 4.2 (a) Server geometries with temperature sensor locations; (b) Side view
of the steady-state temperature map when the servers in Group 1 and
Group 2 are running with full utilization. 53

Figure 4.3 Real sensor readings and CFD prediction. Case 1: servers in Group 1
and Group 2 run with full utilization; Case 2: AC failure. 54

Figure 4.4 Transient temperatures at the outlet of the lowest server (sensor: real
sensor readings; CFD: transient simulation result of CFD; calibrated:
calibrated transient simulation result of CFD). 55

Figure 4.5 Testbeds. (a) Single-rack testbed; (b) Prodution testbed (HPCC) 61

Figure 4.6 CPU utilization of the training data. 65

Figure 4.7 Top: CPU utilization of test data. Middle: temperature measurements
and predictions at an outlet of Group 5 with 10 minutes prediction
horizon. Bottom: temperature measurements and predictions at an
inlet of Group 3 with 10 minutes prediction horizon. 66

Figure 4.8 Temperature evolution prediction. Each solid rectangle represents the
temperature measurement at current time instance and the white rect-
angles are the predicted temperatures at four different prediction hori-
zons (0.5, 2.5, 5 and 7.5 minutes). 67

Figure 4.9 Root-mean-square error (RMSE) of multi-horizon temperature prediction. 68

Figure 4.10 RMSE of prediction versus λ in cross-validation experiments. 69

Figure 4.11 RMSE under noisy data . 70

Figure 4.12 Average absolute temperature prediction error (prediction horizon = 5
minutes) . 71

Figure 4.13 Example of training data generated from CFD for AC failure emergency.
The simulation starts with all the servers in idle status, followed by a
uniform random change on CPU utilization at about the 4th minute.
Then, the AC fails at about the 14th minute and resumes at about 24th
minute. 72

Figure 4.14 Horizon-induced prediction error versus horizon. 73

Figure 4.15 Prediction errors with incremental training samples. 73

Figure 4.16 Front view of the two rows of racks, which face to each other in the
server room. 74

xiii

Figure 4.17 CPU utilization of servers on upper and lower levels of Rack-2 75

Figure 4.18 Prediction error versus the percentage of selected variables in dimension
reduction. (a) All data are used for testing; (b) Only transient data are
used for testing. 76

Figure 4.19 Long-term monitoring with 10 minutes prediction horizon. Sensor 20
and sensor 12 are located at server outlet and inlet, respectively. 77

Figure 4.20 Absolute errors with the 90% error bound for each sensor with 10 min-
utes prediction horizon. 77

Figure 4.21 Empirical CDF of absolute error (a) for all sensors with different pre-
diction horizons; (b) when different subsets of sensors are used in model
training. 78

Figure 4.22 RMSE of CFD calibration in production testbed. 79

Figure 5.1 PTEC system architecture. 85

Figure 5.2 PWM duty cycle vs. server inlet temperature in fan speed control.
Curve r1 is the native fan speed control algorithm. Our new Dy-
namic Fan Speed Control algorithm consists of the curves r1, r2, . . . , rM
(cf. Section 5.4.3). 87

Figure 5.3 (a) Power of a server fan vs. PWM duty cycle; (b) AC power vs. return
hot air temperature. 88

Figure 5.4 Predictive control scheme. 89

Figure 5.5 Histograms of prediction errors with k = 1, 3, and 6. (time step = 30s) . 92

Figure 5.6 Minimal required PWM duty cycle (marked curve) vs. server inlet tem-
perature under various CPU utilization. Sub-figures (a) and (b) are the
results for different CPU temperature upper bounds (46◦C and 40◦C).
A DFSC setting ri comprises two endpoints of a dashed line. 94

Figure 5.7 Example of partitioning. The servers within an oval are associated with
the CRAC in the oval. Region g2 contains CRAC3 only since Server5
and Server6 are associated with CRAC3 only. CRAC1 forms a region
since Server3 is associated with CRAC1 only. No servers are associ-
ated with CRAC2 exclusively. Therefore, CRAC2 will be merged with
CRAC1 to form region g1. 96

Figure 5.8 A single-rack testbed that consists of a base station, a portable AC, a
rack of 15 servers, and a total of 23 temperature/power sensors. 99

xiv

Figure 5.9 Server power and CPU temperatures under DFSC and the baseline ap-
proach when the server is idle. 101

Figure 5.10 Evolution of PTEC and max cooling baseline on a server. (a) AC power;
(b) CPU utilization; (c) Server power excluding non-idle CPU power;
(d) Server inlet temperature. 102

Figure 5.11 Reactive control approach when the servers are idle. (a) AC power; (b)
Server power excluding non-idle CPU power; (c) Server inlet tempera-
ture. Three periods are marked from B1 to B3. 103

Figure 5.12 Inlet temperature under PTEC and reactive control. R(TU , TB) de-
notes a reactive control baseline with settings TU and TB. 104

Figure 5.13 AC power consumption of reactive control baselines and PTEC when
the server is idle. 105

Figure 5.14 Impact of MAT. (a) AC power; (b) CPU utilization; (c) Server inlet
temperature. Three periods are marked from C1 to C3. 105

Figure 5.15 Evolution of inlet temperature under different RSD requirements. 106

Figure 5.16 PTEC in CFD simulations. (a) Average server inlet temperatures of
each server rack; (b) CRAC power. 107

Figure 5.17 Temperature control under dynamic CPU utilizations. 108

Figure 5.18 (a) CDF of temperature overshoot; (b) Average execution time vs. the
number of CRACs. 109

Figure 5.19 Performance comparison between the brute-force and partition-based
approaches. (a) power; (b) execution time. 110

Figure C.1 Illustration of the offline stage. The server clusters are labeled by in-
dex or index/weight, whereas the CRAC systems are labeled by index
only since their weights are constantly zero. Sub-figure (1), (2) and (3)
are three example iterations that form different CRAC groups. In par-
ticular, the thick dashed rectangles show the CRAC groups formed in
the current iteration while the thin dashed rectangles show the CRAC
groups formed in previous iterations. In addition, the thick rectangles
show the server clusters associated with the CRACs grouped in the
current iteration. 120

xv

CHAPTER 1

INTRODUCTION

Embedded systems have been increasingly deployed to improve people’s daily life and

can be found in diverse domains including automotive, manufacturing, transportation, en-

tertainment, etc. However, traditional embedded systems are mostly standalone, close-loop

systems. In recent years, Cyber-Physical System (CPS) [1] has emerged as a new class of

embedded systems which tightly integrate computational and physical processes. The CPS

usually consists of a networked embedded systems with sensing and actuation capabilities

to interact with the physical process. Its operation is highly dependent on the coordination

and synergy between the computational and physical components of the system. This dis-

sertation focuses on a set of mission-critical CPSs that have stringent system performance

requirements. For example, data centers are complex CPSs which consist of hundreds of

thousands of networked servers and several cooling systems. The thermal characteristics of

the data centers are inherently affected by both physical (e.g., complex airflows and server de-

ployment layout) and cyber (dynamic server workloads) factors. In particular, the dynamic

workload and other server activities, e.g., disk and network access, generate significant heat

over time. The heat is dissipated by complex airflow and removed by the cooling systems.

However, the recirculated heat may increase the room temperature and cause potential hot

spot. The overheated servers in the hot spot may experience heat-induced protective shut-

down, causing data center service outages. Therefore, the data centers usually consume

excessive energy to remove the heat in order to prevent the server overheating. Due to the

increasing data center scales, electricity price and demands of reliable server services, the

data centers are required to meet stringent energy-efficiency and reliability requirements.

1

1.1 Performance of CPS

Recent years have seen the growing deployments of CPSs in many mission-critical appli-

cations such as security, civil infrastructure, computing infrastructure, transportation and

safety. The failure of these CPSs will result in security/safety breach, significant economical

loss or even catastrophic consequences. Therefore, these applications often impose stringent

performance requirements to the system design including fidelity, timeliness, reliability and

energy efficiency.

Fidelity : Fidelity refers to a system’s capability of maintaining its performance to an

acceptable level when noise and errors exist in its input and/or its components. A mission-

critical CPS requires high-fidelity sensing and actuation resulted from the computational

process. However, the computational process usually depends on the dynamic physical pro-

cess that imposes significant challenges for achieving high-fidelity actuation. For example, a

surveillance system [2] needs to reach accurate detection results based on the physical light

and acoustic signals collected by distributed sensors. The target detection results largely

depend on the sensor measurements, which are commonly inaccurate due to several phys-

ical uncertainties, such as noises, hardware biases and dynamics from monitored physical

process. Despite the physical uncertainties, the mission-critical CPSs are still required to

achieve high-fidelity sensing and actuation.

Timeliness : The mission-critical CPSs are usually real-time systems that must handle

the computational and physical dynamics in a timely fashion. The computational tasks

usually need to be completed within certain timing constraints to avoid undesirable or even

catastrophic consequences. For example, a CPS for earthquake detection minimizes the

communication and computational overhead in seismic data collection and earthquake event

detection to meet the stringent deadline (e.g., less that one second delay [3]). The viola-

tion of timeliness requirement for such mission-critical CPSs will largely reduce the system

effectiveness and may result in significant economical and life loss.

2

Reliability : In many CPS applications, the system consists of a set of wirelessly net-

worked devices that interact with the physical world. The reliability of each individual

hardware and the communication link of the network substantially affect the performance

of the entire system. However, these systems are usually deployed in harsh environments [3]

where the natural conditions, e.g., weather, temperature and humidity adversely impact the

reliability of wireless links and the electronic devices. In addition, the mobility of the CPSs

[4] also introduces considerable wireless link dynamics. For instance, in data centers, the

abnormal physical server temperatures will cause potential heat-induced server shutdown,

resulting in computing and storage resource outages and substantially degrading the data

center reliability.

Energy efficiency : Energy efficiency is an intrinsic requirement for CPSs. First, many

CPSs require an ad hoc deployment of networked sensor nodes in the environment without

infrastructure support. With limited power resources, the energy efficiency is a key factor

that affects the lifetime of the system. Second, some large-scale CPSs such as data centers

consist of hundreds of thousands of networked devices which generate significant amount of

heat. The data centers usually consume excessive energy to remove the heat due to inefficient

operation of their cooling systems (e.g., Computer Room Air Conditioning (CRAC)), which

can account for up to half of their energy consumption. Therefore, energy efficiency is critical

to their sustainability and operational costs.

Traditionally, these requirements of computing systems have been addressed by different

approaches separately. The fidelity of a CPS is mainly affected by three factors: measurement

noises, hardware biases, and physical dynamics. As CPSs are deeply integrated in physi-

cal environments, noises are inevitably captured by sensors as part of data measurements.

Advanced signal processing techniques such as data fusion [5] have been widely employed

by existing sensor systems to mitigate the impact of noisy data. Moreover, the hardware of

a CPS often has systematic biases due to imperfect manufacturing process and operational

conditions. Various calibration methods [6][7][8] have been developed to correct hardware

3

biases, which usually map the output of a hardware component to the ground truth of known

stimulus. To deal with physical dynamics such as the unpredictable evolution of physical

processes of interest, a CPS is often manually re-tasked based on human input. Timing con-

straints of computing and communication systems can be handled by real-time scheduling

algorithms that schedule tasks based on their worst case execution times. The reliability

of the systems can be maintained by adding redundant nodes and communication links, or

increasing the safety margins (e.g., overcooling the data centers). In addition, the energy

efficiency can be improved through hardware improvement, power states optimization [9]

and various energy-efficient task scheduling algorithms [10][11][12].

Unfortunately, simply combining or extending these approaches is inadequate for si-

multaneously addressing those requirements of CPSs. First, these requirements are highly

dependent on each other. As a result, addressing one requirement in isolation inevitably

affects the other. For example, when the system fidelity is controlled in an online manner,

it results in resource contention with other real-time tasks and hence affects the system

timeliness. In [2], the detection fidelity of a cyber-physical surveillance system is maximized

under several physical dynamics. However, it does not account for the impact on system

timeliness. Moreover, various uncertainties such as unpredictable environmental variations

and noise not only affect the fidelity of a CPS, but also lead to significantly variable com-

putation and communication workload making it difficult for meeting timing constraints of

real-time tasks. For instance, scheduling CPU tasks triggered by noise or biased sensors not

only wastes computing resources but also hurts the systemÕs real-time performance. How-

ever, overshooting fidelity by aggressive system calibration or signal processing should also

be avoided due to the potential resource contention with real-time tasks in the system. In

addition, the workloads of servers are distributed to achieve even hot exhaust temperatures

at the back of the server racks [13]. This allows the air conditioner systems to reduce safety

margin by increasing the room temperature, achieving significant energy saving. However,

it doesn’t explicitly account for the overheating prevention and the unpredictable tempera-

4

ture variations may overheat the servers. Therefore, without a joint consideration on these

performance requirements, the CPSs may not achieve globally optimized performance. This

dissertation focuses on the holistic performance control for the following two mission-critical

CPSs by jointly considering those performance requirements.

1.2 Wireless Cyber-Physical Surveillance System

A typical Wireless Cyber-physical Surveillance (WCS) system consists of battery-powered

cameras, sensors, and embedded computers that communicate through wireless networks [2].

Without the reliance on wired power and communication infrastructure, WCS systems can

be rapidly deployed in an ad hoc manner for large-scale surveillance in unplanned envi-

ronments for detecting the events of interest. This is a key advantage for many critical

domains such as security, transportation, and natural/physical hazard monitoring. For in-

stance, in 2008, a number of wirelessly connected cameras were deployed for real-time and

high-fidelity surveillance over a 26-mile course of the Boston Marathon which attracted over

20,000 runners and more than one million spectators [14]. In other scenarios like border se-

curity, WCS systems need to provide surveillance and intruder detection during an extended

period of time up to several years. Because of the tight budget on power resources and

network bandwidth, WCS systems often operate in an on-demand fashion where low-end

(e.g., acoustic/infrared/magnetic) sensors serve as “sentinels" that wake up high-quality but

power consuming sensors (e.g., pan-tilt-zoom cameras) once a possible target is detected.

High-quality sensing results (e.g, images) are then transmitted to an embedded computing

device for high-fidelity object detection and recognition [2].

Both fidelity and timeliness are essential requirements of the WCS systems described

above. As an example, users may require any target of interest to be detected “at high

fidelity (both missing and false alarm rates lower than 1%) and in real time (delay within

five seconds)". However, a key challenge is that the timeliness and fidelity of a WCS system

are tightly dependent of each other. First, the performance of low-end sensors is extremely

5

sensitive to dynamics in the physical environment. It is shown in [15] that individual dual-

axis magnetometers on Mica2 motes [16] can exhibit up to 60% false alarm and missing rates.

As low-end sensors trigger image capture and processing, their poor fidelity can significantly

affect the workload and real-time performance of the system. For instance, the false alarms

from low-end sensors not only lead to energy waste of cameras but also generate extra

computation workload for image processing. On the other hand, reducing CPU workload

and camera activity unnecessarily may lead to the increased target missing rate to degrade

the fidelity of the WCS systems.

Numerous real-time scheduling algorithms have been proposed to achieve real-time guar-

antees for computing systems. However, many of them require detailed knowledge of CPU

workload while WCS systems are subject to stochastic workload because of the impact of

physical dynamics. Several recent approaches [17, 18, 19] can handle variable system work-

load. However, they are incognizant of system fidelity requirements. On the other hand,

although sensor calibration [8] and signal processing [5] techniques are available to improve

the fidelity of a sensing system, they do not account for the impact on system timeliness.

For instance, minimizing target missing rate often leads to a high false alarm rate [5], which

in turn poses undesirable CPU workload for a WCS system as discussed earlier.

1.3 Data Center

Data centers have become a critical computing infrastructure in the era of cloud com-

puting. As complex Cyber-Physical Systems, the data centers are tightly coupled with their

environment and inherently affected by a tight integration of computational and physical

processes. With the rapid increasing demands and usages on computation, data storage and

networking tasks, the scales and the power densities of the data centers increase significantly.

In a 2007 report to the US Congress [20], the Environmental Protection Agency (EPA) es-

timated that the annual data center energy consumption in the US will grow to over 100

billion kWh at a cost of $7.4 billion by 2011. In addition to excessive energy consumption

6

and adverse environmental implications, the high heat dissipation caused by improper data

center design and thermal management may lead to significant hardware malfunction and

heat-induced server self-protective shutdown, causing the service outage of the entire data

center. Research has shown that more than 23% of data center outages are caused by servers’

self-protective shutdowns because of overheating [21]. A total of 2.8 million hours of server

downtime worldwide has been estimated for 2011, which costs as much as 426 billion dollars

a year [22]. Therefore, the energy efficiency and reliability of a sustainable data center are

two fundamental performance requirements in data center design and management.

Various efforts have been made to improve data center energy efficiency. New green data

center technologies have proven their effectiveness in a few latest industrial scale data centers.

For instance, the new Google data centers reduce the non-computing energy ratios down to

about 10% [23]. However, these technologies require a clean slate redesign and hence are cost

prohibitive to apply in existing data centers. In addition to data center redesign, a variety

of thermal control schemes have been recently proposed to prevent thermal emergencies in

a data center while reducing the energy costs. The existing approaches either optimize a

single thermal variable (e.g., server workload, CRAC setpoint, or fan speed, etc.) [24][25]

or a combination of them [26][27] to minimize the energy costs. However, most of these

approaches are based on a reactive scheme, which reactively controls the cooling systems to

eliminate detected hot spots. Unfortunately, this approach often cannot achieve desirable

energy efficiency, primarily due to the complex thermodynamics of data centers. For instance,

the heat generated by increased server workload takes substantial delays to be recirculated

to the server inlets. To react to the detected hot spots at the server inlets, the CRAC

systems need to adopt sufficiently low temperature setpoints, which, however, significantly

downgrade their energy efficiency [25].

7

1.4 Contributions

Different from the previous researches addressing the performance requirements of these

Cyber-Physical Systems (CPSs) separately, this dissertation focuses on the holistic perfor-

mance control that jointly addressing these performance requirements under various uncer-

tainties, such as stochastic system workload and dynamic environmental noises. In particular,

this dissertation makes the following contributions:

• We propose a novel fidelity-aware utilization control problem formulation to jointly

enforce the fidelity and timeliness requirements of a WCS system. Then, It develops

Fidelity-Aware Utilization Controller (FAUC) that adaptively controls the WCS system

to bound the CPU utilization for timeliness and schedulability while minimizing the

system detection error rate. FAUC has been implemented on a small-scale WCS testbed

and evaluated under real dynamics and extensive simulations based on real acoustic

data traces.

• We propose a novel cyber-physical system approach for predicting temperature dis-

tribution of data centers. This approach integrates Computational Fluid Dynamics

(CFD) modeling and real-time data-driven prediction to achieve high fidelity tempera-

ture forecasting in various thermal conditions of data centers, including rare but critical

thermal emergency situations like AC failures.

• We propose a proactive thermal and energy control approach based on the proposed

real-time temperature prediction. By proactively controlling the cooling system and

server internal fans, it significantly reduces the total energy consumption that comprises

cooling and air circulation energy consumption while ensuring the thermal safety of

the data center. Moreover, we propose a two-stage partition-based approach to solve

the control problem efficiently for large-scale data centers.

8

1.5 Dissertation Organization

Chapter 2 discusses the related work. Chapter 3 investigates the problem of addressing

both fidelity and timeliness requirements of a Wireless Cyber-physical Surveillance (WCS)

system. A Fidelity-Aware Utilization Controller (FAUC) is proposed to adaptively controls

the WCS system to bound the CPU utilization for timeliness and schedulability while min-

imizing the system detection error rate. Chapter 4 and Chapter 5 discuss a system for

predictive thermal and energy control in data centers. In particular, Chapter 4 describes

a high-fidelity real-time temperature prediction approach and discuss its performance with

both a single-rack testbed and a 5-rack section of a production data center. Based on this

temperature prediction approach, Chapter 5 designs a predictive thermal and energy control

system that accounts for energy efficiency of both data center cooling systems and server

internal fans. Chapter 6 concludes the dissertation.

9

CHAPTER 2

RELATED WORK

2.1 Fidelity and Timelinesss Control

Data fusion [5] is an effective signal processing technique that improves the fidelity of

sensing systems by mitigating the impact of noise. Most previous studies [5] focus on ana-

lyzing the optimal fusion strategy of a given sensing system. In [28, 29], authors study the

impact of data fusion on spatial and temporal coverage of large-scale sensor networks. Sensor

calibration can also improve system fidelity by correcting sensor biases. In [7], the biases

of light sensors are estimated by solving the equations that correlate their measurements.

Similarly, in [8], the parameters of ranging sensors are estimated based on pair-wise range

measurements. In [30], sensors are jointly calibrated to improve the system-level perfor-

mance of fusion-based sensor networks. The above approaches calibrate sensors according to

known ground truth inputs and hence work in an open-loop fashion. In [2], authros develop

a feedback-based calibration algorithm that maintains system sensing fidelity in the presence

of environmental dynamics. However, data fusion and sensor calibration are not concerned

with meeting other requirements, such as energy efficiency and timing constraints.

Feedback control techniques have shown great promise in providing real-time guarantees

for CPSs by adapting to workload variations based on dynamic feedback. For instance,

feedback-based CPU utilization control [17, 18, 19] has been demonstrated to be an effective

way of meeting the end-to-end deadlines for real-time systems. However, most of these

algorithms rely on task rate adaptation and hence cannot handle unpredictable task rate

variations that may be caused by low system fidelity. Different from these studies, we aim

to jointly address the requirements on system fidelity and timeliness.

10

2.2 Reliability and Energy Control for Data Centers

2.2.1 Data Center Thermal Modeling

Several researches have focused on the modeling and prediction of temperature distri-

bution to prevent thermal emergencies. In [31][32], the temperature distribution of a single

server is emulated based on simplified thermodynamic laws, CPU temperature/utilization,

and airflow velocity. In [33], a heat flow model is proposed to characterize the heat recircula-

tion and predict the temperature distribution. In [34], artificial neural network is employed

to learn and predict the steady-state temperature distribution under static workload assign-

ment. However, these approaches rely on steady-state thermal models, which cannot well

model the temperature evolution when the heat dissipation from servers is dynamic. They

also require a controlled training procedure which is usually intrusive or even infeasible to a

production data center. Moreover, such data-driven approaches often suffer low prediction

fidelity due to insufficient training data, especially for rare but critical thermal emergency

conditions like cooling system failures. In [35], a CFD model is constructed to enable the

offline temperature prediction and analysis for critical thermal emergencies, however, with-

out online perdition capability. In [36], a forecasting model, called ThermoCast, predicts

the temperature distribution in the near future based on a simplified thermodynamic model.

However, the model relies on several specific assumptions on the airflow dynamics, which

may not hold in diverse data center environments. For instance, it assumes that the cold

air runs vertically from raised floor tiles. This does not hold in many data centers where

the cooling equipment is placed in the row of the racks [37][38] or near the racks [39], which

generates significant side-to-side airflow. A recent work [40] predicts the temperature as

weighted average of contributing temperatures of each heat source, where the model coeffi-

cients are determined via offline CFD simulations. Thus this approach does not leverage the

real temperature measurements in a data center to ensure the prediction accuracy.

11

2.2.2 Thermal and Energy Control

Existing data center thermal and energy control approaches can be broadly divided into

two categories. The first category of approaches minimizes the energy consumption or a

cost function by controlling a single type of thermal variables, e.g., server workloads [25,

41], CRAC setpoints [24], fan speeds [42], CPU frequencies [43], or the number of virtual

machines [44]. Thermal-aware load balancing (e.g., [25]) can prevent hotspots and help

increase room temperature for energy saving. In [24], CRAC systems are controlled to

maintain the temperatures of selected locations at their setpoints. In [42], fan speeds of

blade servers are controlled to minimize the total fan power consumption subject to an

upper bound on CPU temperatures. In [43], the sum of CPU frequencies is maximized

under a certain power budget. All the above approaches focus on controlling one type of

thermal variables to reduce the power consumption.

The second category of approaches controls multiple types of thermal variables to reduce

the overall power consumption. In [45], server fan speeds, CPU power states and workload

migration are controlled to minimize the overall power consumption within a blade server

enclosure. In [32], server thermal management policies are selected based on predicted

temperatures. However, these two approaches [32][45] do not consider the cooling energy

consumption. In [26], computing jobs are assigned to the servers with the highest cooling

efficiencies. The CRAC setpoints are then calculated based on the job assignment to ensure

thermal safety for servers. The approach in [46] minimizes the cost of electricity and quality

of service degradation while maintaining the server temperature within a predefined range.

In [27], the CRAC setpoints are first determined based on data center utilization levels, and

then a feedback server fan control approach is applied to achieve a trade-off between server

leakage power and fan power. However, it does not minimize the overall energy consumption

of CRAC systems and server fans. The approach in [47] minimizes a holistic cost metric,

accounting for the availabilities and prices of the traditional/renewable electricity sources,

multiple cooling options, and data center workload status. However, this approach accounts

12

for neither the variability of fan power, nor the complex dynamics of server temperatures. In

[48], floor-mounted adaptive vent tiles and CRAC cooling provision are controlled to reduce

the cooling cost. However, the server fan power consumption is not considered. Moreover,

their approach cannot be readily applied to other cooling structures such as in-row cooling

that is commonly adopted in data centers.

2.2.3 Data Center Thermal Monitoring

Several sensor systems have been developed for temperature monitoring in data cen-

ters [49][50]. RACNet [49] is designed for reliable data collection in large-scale data centers,

where each node is connected with multiple daisy-chained temperature sensors. In [51], a

fusion-based approach is developed to detect hot spots in data centers using measurements

of multiple sensors. Robotic systems have also been designed to roam inside the data centers

for plotting thermal map [52] and energy management [53]. In [54], thermoelectric coolers on

server processors are used to remove the heat directly from hot processors. However, these

studies are not concerned with the real-time temperature prediction or could not be used for

legacy data centers, where the servers are not equipped with thermoelectric coolers.

13

CHAPTER 3

FIDELITY-AWARE REAL-TIME UTILIZATION CONTROL

3.1 Introduction

This chapter investigates the problem of addressing both fidelity and timeliness require-

ments of Wireless Cyber-physical Surveillance (WCS) systems. The fidelity is defined as a

system’s capability of reaching correct conclusions even when the sensing results from the

dynamic physical environment are noisy. In addition to fidelity, timeliness is another fun-

damental requirement as many computational tasks in a CPS must complete within tight

deadlines in order to avoid undesirable or even catastrophic consequences. The fidelity and

real-time concerns of WCS systems must be jointly addressed because of the tight integration

of system computational and physical components.

Numerous real-time scheduling algorithms have been proposed to achieve real-time guar-

antees for computing systems. However, many of them require detailed knowledge of CPU

workload while WCS systems are subject to stochastic workload because of the impact of

physical dynamics. Several recent approaches [17, 18, 19] can handle variable system work-

load. However, they are incognizant of system fidelity requirements. On the other hand,

although sensor calibration [8] and signal processing [5] techniques are available to improve

the fidelity of a sensing system, they do not account for the impact on system timeliness.

For instance, minimizing target missing rate often leads to a high false alarm rate [5], which

in turn poses undesirable CPU workload for a WCS system as discussed earlier.

Unlike previous literatures, this chapter proposes a novel approach to holistically ad-

dress the fidelity and timeliness requirements of WCS systems. This approach integrates

multi-sensor data fusion [5] with feedback control to achieve adaptive fidelity and real-time

guarantees for WCS systems operating in dynamic environments. Specifically, this chapter

14

makes the following major contributions:

1. We propose a novel problem formulation for the fidelity-aware utilization control prob-

lem where a given upper bound on the CPU utilization is enforced while system detec-

tion error rate is minimized. The formulation is based on rigorous performance models

that characterize the fusion-based detection performance and the expected CPU uti-

lization induced by processing stochastic detection results.

2. We develop Fidelity-Aware Utilization Controller (FAUC) that adaptively adjusts the

data fusion threshold to bound the CPU utilization according to user requirement.

At the same time, FAUC minimizes the system detection error rate while ensuring

real-time schedulability.

3. FAUC has been implemented and tested on a small-scale WCS testbed consisting of

TelosB motes, Iris motes, and cameras. The extensive experiments on light and acoustic

target detection show that FAUC can achieve robust fidelity and utilization control in

the presence of significant physical dynamics and unreliable wireless links.

4. We conduct extensive simulations based on real acoustic data traces collected in a

military vehicle surveillance experiment. The simulations evaluate the performance of

FAUC under a wide range of settings of network size and signal-to-noise ratio.

The rest of this chapter is organized as follows. Section 3.2 presents the background on

sensing and data fusion models. Section 3.3 describes our problem and provides an overview

of our approach. Section 3.4 and 3.5 model system performance and present the design of

FAUC, respectively. Section 3.6 and 3.7 present the testbed experiment results and trace-

driven simulation results, respectively. Section 3.8 concludes this chapter.

15

3.2 Preliminaries

3.2.1 Sensor Measurement Model

Assuming that sensors measure the energy of received signals for event detection, let si

denote the signal energy received by sensor i, which is affected by several factors and varies

for different sensors. First, each sensor may have its hardware bias. Second, the measurement

value is stochastic as it inevitably contains environmental noise. Third, the signal path loss

between the event and sensor varies with distance and terrain. Depending on the hypothesis

that the target is absent (H0) or present (H1), the measurement of sensor i, denoted by yi,

is given by

H0 : yi = ni, H1 : yi = si + ni,

where ni is the energy of noise in sensor i’s measurement. Assume that the noises of sensors

are independent and follow the normal distributions, i.e., ni ∼ N (µi, σ
2
i), where µi and σ2i

are the mean and variance of ni, respectively. The sensor measurement model described

above has been widely adopted in the literature of event detection [55] and also have been

empirically verified [56, 57]. However, many previous studies assume that the parameters of

the above model, i.e., si, µi and σi, are known a priori. Unfortunately, this assumption often

does not hold in reality because of the stochastic nature of sensing and these parameters are

assumed to be unknown in this work.

3.2.2 Data Fusion Model

Data fusion [5] has been proposed as an effective signal processing technique to improve

the system performance of sensing systems. A system based on data fusion is usually orga-

nized into multiple clusters. Each cluster has a cluster head that gathers information from

member sensors and makes the system decision regarding the presence of the target. This

work adopts a simple data fusion model where the system decision is made by comparing

the sum of member sensors’ measurements against a threshold T , which is referred to as

16

the fusion threshold hereafter. The cluster head makes a positive decision if the sum of

measurements exceeds the threshold. Such a model has been adopted by several previous

studies[28, 2]. Suppose there are N sensors in a cluster. The sum of measurements, de-

noted by Y , is given by Y =
∑N

i=1 yi. Let H̃0 and H̃1 represent the detection decisions

that the target is absent and present, respectively. Denote S =
∑N

i=1 si, µ =
∑N

i=1 µi and

σ2 =
∑N

i=1 σ
2
i . Depending on whether the target is present, the sum of sensor measurements

follows the normal distribution, i.e., Y |H0 ∼ N (µ, σ2) or Y |H1 =
∑N

i=1 ∼ N (µ+ S, σ2). A

target is detected only if the sum of sensor measurements is greater than the threshold T ,

i.e., Y > T . The detection of a target is inherently stochastic because of the random noises

in sensor measurements. The system detection performance is characterized by two metrics,

namely, the false alarm rate (denoted by PF) and missing probability (denoted by PM). PF

is the probability of deciding H̃1 when no target is present, and PM is the probability of

deciding H̃0 when a target is present. PF and PM can be computed by PF = Q
(
T−µ
σ

)
and

PM = Q
(
−T−µ−S

σ

)
, where Q(x) is the Q-function of the standard normal distribution, i.e.,

Q(x) = 1√
2π

∫ +∞
x exp

(
− t2

2

)
dt.

3.3 Problem Statement

This section describes the problem of fidelity-aware utilization control. It first discusses

the system model in Section 3.3.1. It then formulates the problem and provide a brief

overview of the approach in Section 3.3.2.

3.3.1 System Model

Assume that a Wireless Cyber-physical Surveillance (WCS) system consists of a base

station and multiple sensor clusters. Each cluster is composed of low-end and high-quality

sensors. The low-end sensors (e.g., acoustic and infrared sensors) usually have a low man-

ufacturing cost and low energy consumption. As a result, their sensing capability is often

17

limited. As discussed in Section 3.2.2, the system performance can be improved by em-

ploying data fusion on the measurements of low-end sensors. The high-quality sensors (e.g.,

pan-tilt-zoom cameras [58] and active radars [59]) can provide high-accuracy sensing and

detection at the price of higher manufacturing cost and energy consumption. In this work, it

is assumed that there is only one high-quality sensor in each cluster. However, this approach

can be easily extended to the case of multiple high-quality sensors, where they may fuse

their measurements to yield a detection result.

In accordance with the heterogeneous system architecture, The WCS adopts a two-phase

target detection process. Initially, the low-end sensors periodically sense the environment

while the cameras remain asleep because their power consumption is typically several orders

of magnitude higher than low-end sensors [16]. The cluster head fuses data from low-end

sensors and makes a decision according to the threshold T . If it is a positive decision, the

cluster head then activates the camera to capture an image of the surveillance region, and

sends the image to the base station. Finally, a target recognition algorithm is executed by

the base station to process the images and detect whether a target of interest is present.

The key advantage of such a two-phase target detection scheme is that the system power

consumption can be significantly reduced without sacrificing the detection performance. In

particular, most false alarms can be filtered out by the data fusion of low-end sensors and

hence the high-quality sensors (i.e., cameras) can sleep for most of the time and be switched

on only when the probability of target presence is high. As a result, the system can achieve

high-fidelity surveillance for extended lifetime in unplanned environments without wired

power infrastructure. It is worth noting that, this approach is not restricted to the particular

WCS system architecture described above. It can be applied to similar heterogeneous system

architectures where computation intensive tasks are triggered by the sensing results of low-

power sensors.

18

3.3.2 Problem Formulation

The objective of this work is to achieve satisfactory timeliness and fidelity of WCS sys-

tems. To guarantee the end-to-end timeliness required by a WCS system, the delay of each

stage of the entire process of sensing, communication, and computing must be carefully

considered. In previous studies [60], achieving real-time sensor sampling, data fusion, and

wireless communications in surveillance systems has been extensively studied. This work

focuses on providing the real-time guarantee on target detection in base station that must

run computation-intensive tasks to process high-quality sensor data such as images. Specifi-

cally, the system controls the CPU utilization to enforce appropriate schedulable utilization

bounds, e.g., the Liu and Layland bound for rate-monotonic scheduling [61], despite sig-

nificant uncertainties in system workloads. In the meantime, utilization control can also

enhance system survivability by providing overload protection against workload fluctuation

[62]. Our approach can be integrated with previous solutions [60] to ensure the end-to-end

timeliness of a WCS system. For instance, the deadline of target detection can be ensured by

enforcing sub-deadlines for sensing, communication, and computing separately. Particularly,

the delay of computation is often significant when complex sensing data such images need

to be processed.

Several challenges must be addressed to satisfy both timeliness and fidelity requirements

simultaneously for WCS systems. First, the timeliness and fidelity performance of a system

are highly dependent of each other. For instance, although the false alarms of low-end

sensors can be dealt with by turning on the camera more frequently, it inevitably increases

CPU workload and impedes system timeliness. On the other hand, reducing CPU workload

and camera activity aggressively may lead to an increased target missing rate. Second,

system CPU workloads are highly variable because of several factors such as uncertain image

processing time and stochastic detection performance of low-end sensors. The probability

that the camera is activated and an image needs to be processed is highly dependent on the

data fusion results, which in turn are affected by time-varying noise and target characteristics

19

in dynamic environments.

This proposes a control-theoretic solution called Fidelity-Aware Utilization Controller

(FAUC) to address these challenges. FAUC employs a feedback controller to enforce the

specified upper bound on CPU utilization of base station while minimizing the overall system

detection error rate. By taking advantage of the adaptivity of the controller, FAUC allows a

WCS system to achieve robust assurance on timeliness and fidelity in dynamic environments.

We formally formulate our problem as follows.

Definition 1 (Fidelity-Aware Utilization Control). To find a stable and converging control

algorithm for the fusion threshold T at the cluster head based on the feedback of the base

station, such that the expected CPU utilization E[u] is upper bounded by us while the de-

tection error rate Pe is minimized, where us is a constant that ensures system’s real-time

schedulability.

In the above formulation, the CPU utilization bound us is a predefined user input to

the controller, and we focus on the utilization control of only one cluster. When there

exist multiple clusters in the system, their CPU utilization bounds can be determined by

schedulability analysis [61] and then separately enforced by multiple FAUC controllers. The

detection error rate Pe in Problem 1 is the probability that the system makes a wrong

detection decision, which jointly accounts for false alarms and misses. Such a metric is

widely adopted in the literature of sensing systems [5]. We choose fusion threshold T as the

control input as it affects both the system detection performance and timeliness. Specifically,

when T is lower, the missing rate is lower while more false alarms may be triggered by noise

leading to higher system workload. On the other hand, a higher T reduces both false alarm

rate and system workload while a target is more likely to be missed.

Figure 3.1 illustrates the architecture of FAUC and a WCS system. We now describe

the three main components in the system architecture. (1) Two-phase fusion-based target

detection (Section 3.4). The measurements of low-end sensors are first fused by the cluster

head. If a positive decision is made, the camera is activated and the captured image is then

20

CPU Utilization Bound
Utilization

Model

Fidelity-aware CPU

Controller

Utilization Monitor

Image Processing/

Target Recognition

CPU

Base Station

H
ig

h
t-q

u
ality

 S
en

so
r

(e.g
., cam

era)

data

T
arg

et/n
o

ise

P
ro

file E
stim

atio
n

Data Fusion

Cluster Head

F
u
sio

n
 M

o
d

el

F
u
sio

n
 T

h
resh

o
ld

C
alib

ratio
n

data

On/Off

Low-end Sensors

Control Path

Optimization Path

Data Path

Figure 3.1 The architecture of FAUC controller.

processed by the base station for target recognition. (2) Utilization feedback control loop

(Section 3.5.1 and 3.5.2). The FAUC utilization controller adaptively calibrates the fusion

threshold T to enforce a user-specified utilization upper bound when the system workloads

vary significantly as a result of stochastic camera activations and uncertain image processing

time. The utilization monitor measures the average CPU utilization and provides feedback

for calibrating the fusion threshold. The controller design is based on analytical models of

CPU utilization and system fidelity. (3) Detection performance optimization loop (Section

3.5.3 and 3.5.4). FAUC employs the k-means clustering algorithm [63] to periodically es-

timate system parameters (e.g., target and noise models) from sensor measurements. The

results are used to optimize the fusion threshold and adjust the control objective of CPU uti-

lization. In the presence of physical dynamics (e.g., variations of target/noise energy), such

an optimization mechanism adapts utilization control objectives and maintains satisfactory

system fidelity.

21

3.4 Performance Modeling

In this section, we formally model the performance of WCS systems. The results provide

a foundation for the design of FAUC controller in Section 3.5. We first model the system

detection error rate in Section 3.4.1. The impact of communication packet loss is analyzed

in Section 3.4.2. Finally, we model system CPU utilization in Section 3.4.3.

3.4.1 System Detection Performance

Before formally modeling the system detection performance, we first make the following

assumptions. First, the probability that a target is present at any time instance is Pa, which

is unknown but can be estimated from detection history. Second, the false alarm rate and

missing probability of the high-quality sensor, denoted by PFH and PMH , are known. PFH

and PMH can often be measured via offline experiments. Because of the high accuracy of the

high-quality sensor, both PFH and PMH are close to zero. In addition, we let PFL and PML

denote the false alarm rate and missing probability of low-end sensors. The system detection

error rate Pe is the weighted sum of the joint false alarm rate and missing probability of

high-quality and low-end sensors. Specifically,

Pe=(1−Pa)·PFL ·PFH+Pa ·(PML+(1−PML)·PMH) , (3.1)

where PFL · PFH corresponds to the case that both the low-end sensors and the camera

raise a false alarm, and PML+(1−PML) · PMH corresponds to the case that the low-

end sensors make a correct detection but the activated camera misses the event. We now

discuss how to achieve the minimal Pe. In Section 3.2.2, we have derived the expressions for

the false alarm rate and missing probability of low-end sensors, i.e., PFL = Q
(
T−µ
σ

)
and

PML = Q
(
−T−µ−S

σ

)
. By replacing PFL and PML in Eqn. (3.1) with these expressions

and solving the condition for minimal Pe, i.e., ∂Pe
∂T

= 0, the optimal fusion threshold Topt

that minimizes Pe is given by

Topt =
δ · σ2
2S

+ µ+
S

2
,

22

where δ = 2 ln
(
1−Pa
Pa

· PFH
1−PMH

)
. Note that the performance modeling above is based on

the assumption that all the packets sent by low-end sensors are correctly received.

3.4.2 Impact of Packet Loss

Packet loss due to unreliable wireless communication can cause the system detection

performance of low-end sensors to deviate from the theoretical results derived in Section 3.4.1.

We propose to address the impact of packet loss by exploiting temporal sampling, where the

number of samples that each low-end sensor transmits to the cluster head is determined by

the quality of communication links. In this section, the quality of a communication link from

a sensor to the cluster head is characterized by the end-to-end packet reception rate. Suppose

sensor i samples m times in a detection process. Let yij denote the jth noisy measurement

of sensor i in a detection, pi denote the end-to-end packet reception rate of the path from

sensor i to the cluster head, and uij ∈ {0, 1} denote the packet delivery state of measurement

yij. Hence, uij is a Bernoulli random variable with success probability of pi. In the temporal

sampling scheme, the cluster head fuses all measurement received during a detection process

to make a decision, where the fusion statistic Y is given by Y =
∑N

i=1

∑m
j=1 uij · yij. In the

absence of target, the mean and variance of Y are given by:

E[Y |H0] = m ·
N∑

i=1

pi · µi,

Var[Y |H0] = m ·
N∑

i=1

pi · σ2i + µ2i · (pi − p2i).

In the presence of target, the mean and variance of Y are given by

E[Y |H1] = m ·
N∑

i=1

pi · (si + µi),

Var[Y |H1] = m ·
N∑

i=1

pi · σ2i + (si + µi)
2 · (pi − p2i).

The detailed derivations of the above equations are in Appendix A. As Y is the sum of

N · m independent random variables, according to the Central Limit Theorem (CLT), Y

23

follows the normal distribution when N ·m is large enough. Although N is often limited in

practice, we can increase the number of samples during a detection to satisfy the condition

of CLT. Denote µ′ = m · ∑N
i=1 pi · µi, S′ = m · ∑N

i=1 pi · si, σ′H0
=

√
Var[Y |H0] and

σ′H1
=

√
Var[Y |H1]. The system false alarm rate and missing probability of low-end sensors

are given by PFL = Q

(
T−µ′
σH0

)
and PML = Q

(
−T−µ′−S′

σH1

)
, respectively. Therefore, when

the impact of packet loss cannot be ignored, we need to separately estimate the variances

for the cases of target absence and presence, respectively. By replacing PFL and PML in

Eqn. (3.1), the equation ∂Pe
∂T

= 0 has two roots, which are given by

σ2H0
S′−σ2H1

µ′+σ2H0
µ′±σH1

σH0

√
δ′σ2

H1
−δ′σ2

H0
+S′2

σ2H0
− σ2H1

,

where δ′ = 2 ln
(1−Pa)PFHσH1
Pa(1−PMH)σH0

.1 The optimal fusion threshold Topt that minimizes Pe is

one of the above roots that gives the smaller Pe.

3.4.3 System CPU Utilization

To guarantee the real-time schedulability (e.g., by rate-monotonic scheduling [61]), the

CPU utilization of each task at the base station shall be maintained at a certain level. In

this section, we derive the CPU utilization model. The CPU workload of the base station

is mainly generated by processing the images captured by the camera. As the camera is

activated by the stochastic decisions of data fusion, the CPU workload is hence subject

to change over time. We define that a control cycle consists of m detections. In each

detection, low-end sensors send their measurements to the cluster head for data fusion. We

now derive the expected CPU utilization in m detections of a control cycle, denoted by E[u],

by accounting for the workload generated by both correct decisions and false alarms.

1We assume δ′σ2H1
− δ′σ2H0

+ S′2 ≥ 0 such that there exists optimal fusion threshold
minimizing Pe; otherwise, Pe will be monotonically decreasing function of T and there is no
optimal fusion threshold.

24

We define the following notations subject to a control cycle: 1) nf1 and nd1 are the

numbers of false alarms and correct detections made by the cluster head, respectively. Note

that they are unknown to the system; 2) nf2 and nd2 are the numbers of positive decisions

made by the cluster head but regarded as false alarms and correct detections by the camera,

respectively. These two numbers can be counted by the base station after processing the

images of the camera. We have the following relationships:

nf1 + nd1 = nf2 + nd2, (3.2)

nf2 = nf1 · (1− PFH) + nd1 · PMH , (3.3)

nd2 = nf1 · PFH + nd1 · (1− PMH). (3.4)

Eqn. (3.2) holds because either a correct decision or false alarm from data fusion would

trigger an image processing task at the base station. The result of image processing can

then again be classified as correct decision or false alarm. In Eqn. (3.3), nf1 · (1 − PFH)

represents the number of false alarms that are correctly identified by the high-quality sensor,

and nd1 · PMH represents the number of correct detections that are incorrectly decided as

false alarms. In (3.4), nf1 · PFH represents the number of false alarms that are incorrectly

decided as correct detections, and nd1 · (1−PMH) represents the number of detections that

are correctly identified. From (3.3) and (3.4), the unknown nf1 and nd1 can be estimated as

nf1 =
nf2(1− PMH)− nd2PMH

1− PFH − PMH
,

nd1 =
nd2(1− PFH)− nf2PFH

1− PFH − PMH
.

Therefore, the estimates of PFL and PML, denoted by P̃FL and P̃ML, respectively, are given

by

P̃FL =
nf1

m−m · Pa
, P̃ML =

m · Pa − nd1
m · Pa

. (3.5)

The high-quality sensor sends the data to the base station for image processing, which

consumes the CPU resource. We assume that the average CPU execution time with or

without processing an image is e or e′, respectively. Note that e′ may equal zero if no

25

processing is required when the data fusion produces a negative result. Let Td represent the

duration of a control cycle and u represent the CPU utilization of the base station. The

expected CPU utilization, denoted by E[u], is given by

E[u] = (nf1 + nd1) ·
e

Td
+ (m− nf1 − nd1) ·

e′

Td
. (3.6)

By replacing nf1 and nd1 in Eqn. (3.6) with Eqn. (3.5), we have

E[u] =
m · e′
Td

+
m·(e−e′)

Td

(
(1−Pa)·P̃FL+Pa ·(1−P̃ML)

)

≃K1+K2

(
(1−Pa)Q

(
T−µ
σ

)
+PaQ

(
T−µ−S

σ

))
, (3.7)

where K1 = m·e′
Td

and K2 =
m·(e−e′)

Td
. When the impact of packet loss cannot be ignored,

P̃FL and P̃ML should be replaced by PFL = Q

(
T−µ′
σH0

)
and PML = Q

(
−T−µ′−S′

σH1

)
,

respectively, where S′, µ′, σH0
and σH1

are derived in Section 3.4.2. From Eqn. (3.7), the

expected CPU utilization monotonically decreases with T because both PFL and 1−PML

decrease with T .

3.5 Fidelity-Aware Utilization Controller

Based on the performance modeling presented in Section 3.4, we first design the fidelity-

aware CPU controller in Section 3.5.1 and discuss its stability and convergency in section

3.5.2. After that, we discuss the estimation of system parameters in Section 3.5.3 and the

approach to optimizing the detection error rate in Section 3.5.4.

3.5.1 The Design of FAUC

The objective of Problem 1 is to ensure E[u] ≤ us while minimizing system detection

error rate Pe, where E[u] is a function of the fusion threshold T given by Eqn. (3.7) and us

is a user-specified utilization bound. As the threshold T is calibrated every control cycle,

Problem 1 is a typical discrete-time control problem, in which us is the reference, T is control

26

Figure 3.2 The closed-loop system to control the fusion threshold according to the CPU
utilization feedback.

input and E[u] is the controlled variable. In the following, we present the design of Fidelity-

Aware Utilization Controller (FAUC). We first discuss how FAUC ensures the utilization

bound, i.e., E[u] ≤ us. In Section 3.5.4, we discuss how to minimize the system detection

error rate Pe under the given utilization bound.

The block diagram of the FAUC feedback control loop is shown in Figure 3.2. The key

challenge of deriving the transfer function Gp(z) is that Q(x) in Eqn. (3.7) is a nonlinear

function. In this work, we adopt the linear approximation of Eqn. (3.7), which is given by

E[u](T) ≃ E[u](T0) +
∂E[u]
∂T

∣∣∣
T0

· (T − T0), where the derivative ∂E[u]
∂T is given by

∂E[u]

∂T
=− K2

σ
√
2π

(1−Pa)·e

− (T−µ)2
2σ2 +Pa ·e

− (T−µ−S)2
2σ2

 . (3.8)

T0 is referred to as the operating point, which greatly affects the control performance. We

will discuss how to choose T0 in Section 3.5.3. Hereafter, we denote F (T0) =
∂E[u]
∂T

∣∣∣
T0

. By

taking z-transform to the linear approximation, we have Gp(z) = F (T0). Therefore, the

system to be controlled is a zero-order system. We can estimate E[u] based on the samples

of CPU utilization at the base station in a control cycle. This estimate is then fed back to

compare with the reference us. As the estimation takes one control cycle, H(z) = z−1 which

represents a delay of one cycle. We now design Gc(z) to solve Problem 1. As Gp(z) is zero-

order, a first-order controller is sufficient to meet stability and convergence requirements.

Therefore, we let Gc(z) be

Gc(z) =
a

1− b · z−1
, (3.9)

where a > 0 and b > 0. The coefficients a and b should be chosen to ensure the system

27

stability and convergence. The conditions of system stability and convergence are analyzed

in Section 3.5.2.

3.5.2 Stability and Convergence

We first analyze the system stability. The closed-loop transfer function, denoted by Tc(z),

is given by Tc(z) =
Gc(z)Gp(z)

1+Gc(z)Gp(z)H(z)
=

a·F (T0)·z
z−(b−a·F (T0))

. The closed-loop system has a pole

at z = b − a · F (T0). From control theory [64], if the pole is within the unit circle centered

at the origin, i.e., |b− a · F (T0)| < 1, the system is stable. As F (T0) is always negative, the

sufficient condition for stability is b+1
F (T0)

< a < b−1
F (T0)

.

We then analyze the steady-state error of the system. The open-loop transfer function,

denoted by To(z), is given by To(z) = Gc(z)Gp(z)H(z) =
a·F (T0)
z−b

. By letting b = 1, the

system is a type I system [64], in which the controlled variable E[u] can converge to the

reference us provided that the system is stable. Hence, by replacing b with 1, the condition

for both stability and convergence is 2
F (T0)

< a < 0.

According to Figure 3.2, we have Gc(z) =
T (z)

us−H(z)E[u](z)
. By replacing Gc(z) with

Eqn. (3.9) and letting H(z) = z−1, we have the z-domain equation T (z) = b · T (z) ·

z−1 + a · (us − z−1 · E[u](z)), which is equivalent to the equation in time-domain as T [n] =

b ·T [n−1]+a · (us−E[u][n−1]), where E[u][n−1] is the average CPU utilization measured

in the (n − 1)th calibration cycle, T [n] and T [n − 1] are the fusion thresholds for the nth

and (n− 1)th control cycle, respectively.

3.5.3 Online System Parameter Estimation

There exists a fundamental trade-off between the stability and transient response perfor-

mance of a control system [64]. In our problem, the system converges faster for a larger a at

the price of greater system oscillations. Therefore, the best setting for a is a value close to

its lower bound 2
F (T0)

. The stability can be enforced if we can online estimate the F (T0).

We now discuss how to choose T0 and estimate F (T0). According to Eqn. (3.8), in order to

28

compute F (T0), several parameters, i.e., e, e′, µ, σ, and S, need to be estimated. Because

e and e′ are subject to change because of the stochastic task execution time, we calculate

the average execution time for the tasks for the estimation. Assuming that µ, σ, and S

can slowly change over time because of the uncertainty of the environment, we employ the

k-means [63] clustering algorithm to estimate these parameters. Specifically, the k-means

algorithm iteratively constructs two clusters of sensor measurements which correspond to

the cases of target absence and presence, respectively. The noise mean µ is estimated by

averaging the measurements in the cluster representing the noise. The target energy S can

be calculated by subtracting µ from the average of measurements in the cluster represent-

ing the case of target presence. Note that if the impact of packet loss can be ignored, the

variance σ2 is estimated by averaging the variances from two clusters; otherwise, we use the

separate variances from the two clusters. As the CPU utilization shall be controlled around

us, the operating point T0 of the linearization is obtained by solving E[u] = us where E[u] is

given by (3.7) with the estimated µ, σ2 and S. With the chosen T0, we can compute F (T0).

3.5.4 Optimizing Detection Error Rate

So far, our discussion is only concerned with controlling the utilization bound while the

impact on detection error rate is not considered. Although such a solution can meet the

deadline once a target is detected, it may lead to low system fidelity such as excessive false

alarms and consume unnecessary energy. In this section, we discuss how to optimize system

detection performance without violating the utilization bound.

According to our performance modeling in Section 3.4.1, the detection performance is

optimized if the fusion threshold T is set to Topt. However, we cannot simply adjust the

current threshold to Topt without accounting for the impact on CPU utilization. FAUC ad-

dresses this issue by implementing a dual-cycle control strategy. In each control cycle, CPU

utilization is enforced to the utilization bound u that is initially set to the user-specified

constant us. Each optimization cycle consists of multiple control cycles. The system pa-

29

rameters are estimated every optimization cycle as discussed in Section 3.5.3 and then used

to update Topt and compute the expected utilization u∗ according to our utilization model

(Eqn. (3.7)). If the estimated utilization is lower than the initial utilization bound, i.e.,

u∗ < us, it will be set as the new control objective for the following control cycles until the

start of next optimization cycle. Therefore, the optimization process opportunistically lowers

the utilization bound if the system detection performance can be optimized. In other words,

the CPU utilization never exceeds the initial value specified by user. Hence, the real-time

schedulability is always satisfied.

3.6 Testbed Experiments

To evaluate the performance of FAUC, we have conducted two testbed experiments for

detecting light and acoustic targets, respectively. The results allow us to evaluate the effec-

tiveness of our approach for different sensor modalities. Section 3.6.1 discusses the experi-

mental methodology. Section 3.6.2 and 3.6.3 present the experimental results of detecting

light and acoustic targets, respectively. Section 3.6.4 and Section 3.6.5 evaluate the impact

of packet loss and number of sensor nodes to the system by using the light spot detection

experiment. Section 3.6.6 shows a multi-cluster system that works with FAUC to have all

the clusters’ utilization well-controlled.

3.6.1 Experimental Methodology

We adopt a baseline approach referred to as fixed-step closed-loop heuristic for perfor-

mance comparison. In this heuristic algorithm, the expected CPU utilization E[u] is fed

back to compare with the reference us. As E[u] is a decreasing function of threshold T , if

E[u] > us, the new threshold T [n] is calculated by adding a fixed step ∆T to the previous

threshold T [n − 1]; otherwise, ∆T is subtracted from previous T [n − 1] to calculate new

threshold T [n] if E[u] < us. However, this approach does not consider system stability and

30

Figure 3.3 Testbed for light spot detection. 4 TelosB motes and a webcam detect the light
spot. For interpretation of the references to color in this and all other figures, the reader is
referred to the electronic version of this dissertation.

convergence. In the experiment, we employ different ∆T for this approach to evaluate the

impact of step size on the system performance.

Our evaluation focuses on two performance metrics: utilization error and average detec-

tion error rate. The utilization error is the error between the measured CPU utilization and

the reference in each control cycle. In order to calculate the detection error rate, we log

the ground truth information regarding the target appearance to compute the system false

alarm and missing rates in each control cycle. The detection error rate is then computed

as the weighted sum of the false alarm and missing rates, with weights (1 − Pa) and Pa,

respectively.

3.6.2 Light Spot Detection

In the light spot detection experiment, four TelosB motes [16] and a webcam are attached

against the LCD screen of a desktop computer to detect a light spot that is randomly

displayed on the screen (see Figure 3.3). The display of the light spot is controlled by a

computer program, simulating the random presence of the target at a probability of Pa = 50%

in each one-second time slot. Note that a similar method has been adopted by previous

31

work [2]. We vary the light intensity of each pixel on the LCD screen to simulate the

changeable characteristics of noise and target. To create noise in sensor measurements, each

pixel is assigned a small random light intensity value IN with the mean of µ. IN varies

over time to simulate the changing environmental noise. To create the target, a constant

light intensity value IT is added to the noise for each pixel. Note that IT decreases with the

distance from the center of the light spot. Similarly, IT varies to simulate the change of target

profile. The TelosB motes measure the light intensity every 250 milliseconds via the on-board

Hamamatsu S1087-01 light sensors [16] and transmit the measurements to the cluster head

that is connected to a base station laptop. The cluster head fuses the readings received

within every 250 milliseconds and detects the light spot. When the cluster head makes a

positive decision, the webcam is triggered to take an image and compare the average intensity

over all pixels with a threshold. The false alarm and missing rates of the webcam are 5.1%

and 3.9%, respectively, which are estimated in a separate offline experiment. We evaluate

the utilization control algorithms under a variety of settings. Moreover, each experiment

consists of two phases. Specifically, in the first phase, the mean of IN as well as IT remain

at their initial values. The second phase starts after 12 control cycles, where we vary the

mean of IN or IT to simulate the changes of noise or target profile.

3.6.2.1 Sensor Measurement Performance

We first verify the Gaussian noise assumption made in Section 3.2. Figure 3.4(a) plots

the Cumulative Distribution Function (CDF) of a light sensor’s measurements in office en-

vironment. We can see from the figure that the sensor measurements well match the normal

distribution. We then evaluate the performance of the k-means algorithm that is used to

estimate the online noise and target profiles. Note that the FAUC adjusts the control ref-

erence based on the estimates given by the k-means algorithm. Therefore, the estimation

accuracy can affect the performance of FAUC. Figure 3.4(b) plots the CDF of relative errors

of the estimated µ, σ2 and S with respect to their ground truths, respectively. We can see

32

50 60 70 80
0

0.5

1

(a) Light intensity

C
D

F

10
−5

10
0

0.2

0.4

0.6

0.8

1

(b) Relative error

C
D

F

N(74.6286, 5.78506)

measurement

noise energy mean

signal energy mean

noise energy variance

Figure 3.4 (a) The CDF of the light intensity measurements of a TelosB mote; (b) The CDF
of estimation errors of noise and target profiles.

that all of them can be estimated accurately. For instance, about 40% of the estimated σ2

has a near-zero error and the maximum error is only about 2%.

3.6.2.2 Stability and Convergence

We now evaluate the stability and convergence of FAUC in dynamic environments. Fig-

ure 3.5 shows the temporal evolution of the system when noise mean is increased at the

12th control cycle. Each optimization cycle comprises five control cycles. The initial CPU

utilization reference is set to be 0.62. Based on this setting, FAUC computes an initial fusion

threshold T , which is very low as shown in the top sub-figure in Figure 3.5. As a result,

the noise occasionally exceeds the fusion threshold causing a false alarm rate of about 5%.

At the end of the first optimization cycle, i.e., the 5th control cycle, FAUC computes the

optimal fusion threshold Topt based on the estimated target/noise parameters. As Topt > T ,

there exists an opportunity to reduce system false alarms. FAUC thus computes a new

utilization bound of 0.38 based on Topt, which causes the controller to increase T . The

bottom two sub-figures in Figure 3.5 show that the measured utilization quickly converges

to the new reference and system error rate drops to zero. When the noise energy is increased

at the 12th control cycle, the CPU utilization increases accordingly because false alarms

33

100

200
L

ig
h
t

d
at

a

threshold noise mean target with noise mean

0.5

1

C
P

U
u
ti

li
za

ti
o
n

reference measurement

0 5 10 15 20 25
0

0.02

0.06

Time (control cycle)

A
v
er

ag
e

er
ro

r
ra

te

Figure 3.5 The temporal evolution of the light spot detection in dynamic environments.

from low-end sensors trigger extra image processing tasks. FAUC then attempts to lower

the utilization by increasing T . At the next optimization cycle, i.e., the 15th control cycle,

FAUC estimates the target/noise parameters and computes a new Topt that is lower than T .

As the utilization reference (about 0.6) that corresponds to the new Topt is still lower than

the initial bound 0.62, FAUC increases the reference to reduce false alarms, as discussed

in Section 3.5.4. At the next optimization cycle, i.e., the 20th control cycle, Topt exceeds

the current T . FAUC then lowers the utilization reference again, which frees more CPU

resources. The above results demonstrate several salient features of FAUC when it operates

in dynamic environments. First, it yields satisfactory control performance as the CPU uti-

lization quickly converges to the reference even when false alarms introduce unpredictable

system workloads. Second, FAUC can effectively adapts the utilization reference to minimize

system error rate.

3.6.2.3 Effectiveness

We now compare the performances of various approaches in seven groups of experiments

with a variety of target and noise dynamics. In the first four groups of experiments, we

34

0 0.2 0.4
0

0.5

1

(b) CPU utilization error

C
D

F

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

(a) Experimental group

A
v

er
ag

e
er

ro
r

ra
te

FAUC

heuristic (step = 20)

heuristic (step = 5)

heuristic (step = 5)

FAUC

heuristic (step = 20)

n+40

n+20

t−70

n: noise
mean
t: target mean

t−30

t−50

n+80

n+60

Figure 3.6 (a) The average detection error rate under different target/noise dynamics. (b)
The CDF of the absolute CPU utilization error.

increase the noise mean from 20 to 80 with a step of 20. In the last three groups of exper-

iments, we decrease the target signal by 30, 50 and 70, respectively. Figure 3.6 (a) shows

the average detection error rate in different group of experiments. We can see that all three

approaches can maintain small detection error rates when the noise increases. Although the

increasing noise causes more false alarms for low-end sensors, the false alarms can be effec-

tively filtered out by the image-based target detection. When the target signal decreases, all

three approaches yield higher error rates. In particular, the heuristic algorithm with a step

size of 5 misses about 16% targets. When the step size is 20, it has fewer misses because the

controller settles faster. FAUC achieves the minimal error rate under all settings.

Figure 3.6 (b) plots the CDF of the utilization errors in the seven groups of experiments.

We can see that FAUC significantly outperforms the heuristic algorithm with various settings.

In particular, about 80% of errors of FAUC fall within 10%. In contrast, the heuristic

algorithm does not exploit the relationship between the control input and the controlled

variable and hence yields considerable steady-state errors. We can conclude from Figure 3.6

(a) and (b) that FAUC yields excellent control performance while maintaining satisfactory

fidelity even when target/noise have dynamic characteristics.

35

Figure 3.7 Testbed for acoustic target detection. 3 Iris motes and a webcam detect the
moving toy car.

3.6.3 Acoustic Target Detection

In the second set of testbed experiments, we use three Iris motes [16] and a webcam to

detect a radio-controlled toy car. Figure 3.7 illustrates the setup of the experiments. The

cluster head is connected to the base station laptop. The microphone of MTS300 sensor

board [16] on Iris mote samples at 100Hz to detect acoustic signals from the toy car. Each

mote calculates the acoustic signal energy every 50 samples and transmits to the cluster

head every 500 milliseconds. The cluster head fuses the measurements received from the Iris

motes and activates the webcam to capture an image if a positive decision is made. The base

station compares the image with the stored background image to detect the target using the

ImageMagick tool [65]. Note that another webcam connected to another computer records

the ground truth information. It is challenging to detect the toy car using the low-cost Iris

motes because of the significantly dynamical characteristics of the toy car. Specifically, as

the toy car moves through the surveillance region quickly, the acoustic signal emitted by the

car varies significantly with the car’s location and speed.

Figure 3.8 shows the evolution of system performance over 16 control cycles. The CPU

utilization reference is set to be 0.3. We intentionally adopt such a low reference to study the

36

0

5000
A

co
u

st
ic

D
at

a

0

0.5

C
P

U
U

ti
li

za
ti

o
n

2 4 6 8 10 12 14 16
0

1

2

Time (Control Cycle)

R
at

e

threshold noise target with noise

reference measurement

low−end sensor error rate target presence prob.

Figure 3.8 The temporal evolution of the acoustic target detection in dynamic environments.

trade-off between utilization and detection performance. Each optimization cycle comprises

four control cycles and each control cycle comprises 70 detections. The toy car moves along

a circular path that crosses the surveillance region. The target appearance probability varies

during the experiment as shown in the bottom sub-figure of Figure 3.8. The fusion threshold

is initially set to a low value, which leads to many false alarms and image processing tasks.

This in turn causes higher CPU utilization which exceeds the required CPU utilization

reference. In response, FAUC increases the fusion threshold and hence the CPU utilization

quickly drops to the reference at the second control cycle. Afterward, the CPU utilization is

well controlled at the reference. The slightly changing target appearance probability leads

to slightly changing CPU utilization and fusion threshold. In addition, the car’s acoustic

signal happens to decrease at the 13th cycle, which causes a higher false alarm rate and may

increase the CPU utilization. However, the target appearance probability is slightly reduced

at that time so that the CPU utilization does not increase substantially. To adapt to this

change, the threshold also slightly decreases. Overall, the results of this experiment show

that the system is robust to the variations of target energy and appearance probability.

37

0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

(a) Packet loss rate

A
v

er
ag

e
er

ro
r

ra
te

1 2 3 4 5
0

50

100

(b) Packet loss rate

A
v

er
ag

e
ca

m
er

a
o

p
en

 t
im

es

FAUC iFAUC FAUC iFAUC

Figure 3.9 (a) Average detection error;(b) Average camera switched-on times.

3.6.4 Impact of Packet Loss

As shown by the analysis of impact of packet loss on FAUC in Section 3.4.2, we can

improve the performance by increasing the number of sensor nodes or number of samplings

per detection in the condition of the packet loss. Based on this result, we design an improved

FAUC (iFAUC) and evaluate it in light detection experiment. In FAUC, each sensor takes

one sample every 250 milliseconds and sends to the cluster head for data fusion. On the

contrary, each sensor in iFAUC samples every 25 milliseconds and transmits to the cluster

head once every 10 samples. Taking each sample as a packet, we apply different packet

loss rates to iFAUC and FAUC for evaluation. The experiments are conducted the same

way as described in the Section 3.6.2. Figure 3.9 (a) shows the average detection error rate

comparison between iFAUC and FAUC under the different packet loss rates. Although both

methods achieve low average detection error rate, iFAUC significantly outperforms FAUC

under all the packet loss rates. Due to the better accuracy, iFAUC has more chances to reduce

the CPU utilization reference, thus releasing more CPU resources. Comparison of camera

switched-on times between iFAUC and FAUC shows iFAUC always switch the camera on less

frequently than FAUC in all packet loss rates (Figure 3.9 (b)). As the camera switched-on

times is proportional to the CPU utilization in Eqn. (3.6), iFAUC outperforms FAUC again

38

1 2 3 4
0

0.01

0.02

0.03

Number of sensors
A

v
er

ag
e

er
ro

r
ra

te

Figure 3.10 Average error rate under different number of sensor nodes.

regarding average CPU utilization.

3.6.5 Impact of the Number of Sensor Nodes

In CPSs that adopt sensor data fusion, the number of sensors may affect the performance

of the system. Based on the light detection experiment, we conducted experiments with

different number of sensors to evaluate the resulted performance. We vary the number of

sensor from one to four and conduct experiment described in Section 3.6.2. From Figure 3.10,

the average error rate doubles when there is only one sensor compared to two sensors. We

can see from Figure 3.10 that the error rate of four sensors is slightly higher than that of

three sensors. In the experiment, the fourth sensor receives the lowest signal-to-noise ratio

(SNR). As the data fusion rule adopted in this work treats all sensors with equal weight,

fusing the reading from a sensor with low SNR may not be beneficial. We note that if we

adopt more effective data fusion rule that accounts for sensors’ SNRs [5], system detection

performance would not degrade even if low-SNR readings are fused.

3.6.6 Multi-cluster CPSs

We now extend our evaluation to the case of multiple clusters that may exist for large

CPSs. In order to assure the real-time performance of the base station whose resources are

shared by all clusters, the CPU utilization of the base station shall be carefully maintained

39

20

40

60
L

ig
h
t

d
at

a

0

20

40

L
ig

h
t

d
at

a

0 5 10 15 20 25 30

0.39
0.5

1

(a) Time (control cycle)

C
P

U
 u

ti
li

za
ti

o
n

10 20 30 40

0.39
0.5

1

(b) Time (control cycle)

C
P

U
 u

ti
li

za
ti

o
n

total (all clusters) ref. Cluster 1

threshold noise target w/ noise target w/ noise threshold noise

total (all clusters) ref. Cluster 2

Figure 3.11 The temporal evolution of the light target detection in dynamic environments,
where the CPU utilization reference is set to 39%. (a) Cluster 1; (b) Cluster 2.

according to the real-time scheduling strategy. In this experiment, we deploy two clusters,

each of which is used to monitor a light spot. Two light spots are generated by computer

program, separately, with a target present probability of 50%. One high-quality camera is

used for each cluster to confirm the presence of the light spots, respectively. However, we

deploy different number of sensor nodes and apply the different control and estimation cycle

length for the two clusters. Cluster 1 contains two sensor nodes and comprises 100 samples

per control cycle with 400 samples per estimation cycle. On the other hand, Cluster 2

contains only one sensor nodes and comprises 80 samples per control cycle with 320 samples

per estimation cycle. We conduct the experiment with changeable noise for both light spots.

Based on the real-time scheduling strategy, we set the base station CPU utilization’s upper

bound to be 78% and then assign 39% utilization for each cluster. Figure 3.11 (a) shows the

time evolution for Cluster 1 in light spot detection. It performs similarly as in the previous

light spot detection experiment. In the first 12 control cycles, CPU utilization is controlled

around 39%. We can see the system tries to reduce the CPU utilization reference for Cluster 1

at the 4th cycle. At the 12th cycle, the noise increases, hence the CPU utilization consumed

by Cluster 1 increases due to the higher false alarm rate of low-end sensors. This change

on the CPU utilization of Cluster 1 is also reflected in the total CPU utilization. Then the

40

system quickly adapts the threshold to reduce the CPU utilization of Cluster 1 to the set

point within three cycles. Accordingly the total CPU utilization of base station reduces to a

lower level than the reference 78%. At the 16th cycle, the estimated Topt requires higher CPU

utilization. However this higher utilization is still lower than the original user setpiont for

Cluster 1. As a result, the system increases the CPU utilization reference accordingly. The

system then controls the CPU utilization of Cluster 1 on this reference for the rest of time.

Similarly, Figure 3.11 (b) shows the time evolution for Cluster 2. As there is only one sensor

node in the cluster, it is more likely to have higher false alarm rate and missing probability.

However, from the 5th, 20th, 25th and 37th cycle, we can see the system adapts to the CPU

utilization changes very quickly by adjusting the threshold under the environment dynamics.

From the time evolutions of the two clusters, we can see that the individual CPU utilization

of each cluster is well controlled at the reference, and the average CPU utilization of the base

station is always quickly controlled to around 70%, which meets the real-time requirement.

3.7 Trace-Driven Simulations

In addition to the testbed experiments, we also conduct trace-driven simulations to ex-

tensively evaluate the performance of FAUC under a wide range of settings including network

size and signal-to-noise ratio (SNR).

3.7.1 Simulation Methodology and Settings

The data traces used in the simulations were collected in the DARPA SensIT military

vehicle localization experiment [66], where 75 WINS NG 2.0 nodes are deployed to localize

Amphibious Assault Vehicles (AAVs) driving through a three-way intersection. We refer

to [66] for detailed setup of the experiment. The dataset used in our simulations includes

the ground truth data and the acoustic time series recorded by 17 nodes at a frequency of

4960Hz. The ground truth data include the positions of sensors and the trajectories of AAV

41

runs recorded by GPS devices. However, as the vehicle localization experiment [66] only

comprises a limited number of AAV runs, the dataset cannot be readily used to evaluate the

detection performance of FAUC. We note that, in order to evaluate the average error rate,

the system needs to conduct enough detections in both cases of target presence and absence.

To address this issue, we reuse the data traces as follows. In the simulations, we assume

that the target appears at a fixed location within the deployment region. For each detection,

an AAV run is randomly selected. In the presence of target, a sensor’s measurement is set

to be the sum of random noise and the real measurement when the AAV in the selected

run is closest to the fixed location. In the absence of target, the sensor’s measurement is

only set to the random noise. Such a simulation methodology accounts for many realistic

affecting factors such as terrain and the dynamical characteristics of the vehicle. Moreover,

we can evaluate the performance of FAUC under different SNRs by changing the parameters

of the noise generator. The target appearance probability Pa is set to be 50%. As there is

no extra high-quality sensor such as camera in the SensIT experiment [66], we use a pseudo

camera in the simulations, which generates random detection results based on the ground

truth. The pseudo camera’s false alarm rate and missing probability, i.e., PFH and PMH

are set to be 2%. If the pseudo camera is activated in a detection, the CPU utilization in the

detection follows a normal distribution with mean of 40% and standard deviation of 10%.

The utilization bound us is set to be 35%.

3.7.2 Simulation Results

We first evaluate the temporal evolution of FAUC in the case of changing noise. The

change of noise mean over time is shown in Figure 3.12. The standard deviation of noise is

initially set to be 0.1 and increased by 0.1 at the 200th and 350th control cycle. As we select

a relatively high utilization upper bound, the low-end sensors are allowed to raise more false

alarms and the system can minimize the error rate. As a result, from Figure 3.12, we can

see that the calibrated threshold is around the noise mean. From the figure, we can also

42

0

10

20

A
co

u
st

ic
D

at
a

threshold noise mean target with noise mean

0.2

0.3

0.4

C
P

U

u
ti

li
za

ti
o
n

reference measurement

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

Time (control cycle)

P
ro

b
ab

il
it

y

system error rate target presence prob.

Figure 3.12 The temporal evolution of the vehicle detection in the presence of changing noise
(17 sensors).

10 12 14 16 18

0

0.02

0.04

0.06

0.08

(a) Number of nodes

E
rr

o
r

ra
te

0 5 10

0

0.05

0.1

(b) Signal−to−noise ratio (dB)

E
rr

o
r

ra
te

Figure 3.13 (a) System error rate versus the number of sensor nodes; (b) System error rate
versus SNR (17 sensors). The error bars are plotted with 5% and 95% quantiles.

see spikes in utilization and error rate, which are caused by the changes of noise profile.

However, the system can adapt to these changes within 20 control cycles.

In the second set of simulations, we evaluate the impacts of the number of sensors and

SNR on the performance of FAUC. Figure 3.13(a) shows the system error rate versus the

number of sensors used in the simulations. Other settings are the same as in Figure 3.12. We

can see from the figure that the system detection performance increases with the number of

43

sensors. Figure 3.13(b) shows the system error rate versus SNR. Note that SNR is defined

as 10 log10 S/σ. We can see that the system detection performance increases with SNR. For

both Figure 3.13(a) and (b), the CPU utilization can be controlled to meet the upper bound

us. Therefore, FAUC can work in wide range of settings of network size and SNR.

3.8 Conclusion

In this chapter, we propose a holistic approach called Fidelity-Aware Utilization Con-

troller (FAUC) to address both fidelity and timeliness requirements of Wireless Cyber-

physical Surveillance (WCS) systems. FAUC integrates data fusion with feedback control

to enforce CPU utilization upper bound although system workloads vary significantly at

runtime because of stochastic detection results. FAUC also optimizes system fidelity and ad-

justs the control objective of CPU utilization adaptively in dynamic environments. We have

implemented FAUC on a small-scale WCS testbed consisting of TelosB/Iris motes and cam-

eras. Our experiments on light and acoustic target detection show that FAUC can achieve

robust fidelity and enforce desired utilization bounds in the presence of significant variations

of target/noise characteristics and unreliable wireless links. Moreover, extensive simulations

based on real acoustic data traces collected in a vehicle surveillance experiment show that

FAUC can work in a wide range of settings including network size and SNR.

44

CHAPTER 4

HIGH-FIDELITY TEMPERATURE PREDICTION FOR DATA CENTERS

4.1 Introduction

Data centers have become a critical computing infrastructure in the era of cloud comput-

ing. Research has shown that more than 23% of data center outages are caused by servers’

self-protective shutdowns because of overheating [21]. For instance, Wikipedia, a popular

online encyclopedia, went down on March 24th, 2010 because of server overheating [67].

Currently, the common practice to prevent overheating is to overcool the server rooms. Due

to such a conservative strategy, the cooling systems consume excessive power, which takes

up to 50% of the total energy consumption in many data centers [20].

Various thermal management schemes for improving the energy efficiency of data centers

rely on real-time and high-fidelity ambient temperature monitoring [24][68][25][41]. How-

ever, the existing data centers typically have limited temperature monitoring capability. For

instance, the servers in many legacy data centers are equipped with motherboard tempera-

ture sensors only, which cannot accurately measure the ambient temperature [49]. Recently,

Wireless Sensor Networks (WSN) has been identified as an ideal enabling technology for

thermal monitoring in data centers due to several of its salient advantages, including suffi-

cient coverage and no reliance on additional network and facility infrastructure in already

complicated data center environments. However, the precise temperature monitoring alone

may not be sufficient for preventing unexpected server shutdowns, because various thermal

emergencies may quickly cause overheating. Therefore, it is important to design temperature

prediction systems to forecast potential overheating events such that the thermal actuators

(e.g., the cooling systems) have enough time to react. Moreover, the prediction system can

also send alarm messages to the data center administrators for human intervention if nec-

45

essary. In addition to the overheating alarming, proactive thermal control systems for data

centers can be built upon the real-time temperature prediction to improve the energy effi-

ciency and hardware reliability. Specifically, with accurately predicted temperature evolution

in the near future, the cooling systems can safely increase the temperature setpoints with-

out leading to server overheating and thus improving energy efficiency in data centers [24].

Moreover, the proactive control can reduce the transient temperature variation, which is

shown to contribute to the hardware failure rates in data centers [69].

However, several major challenges must be addressed in designing a real-time and high-

fidelity temperature prediction system. First, data centers are complex Cyber-Physical Sys-

tems (CPS) whose thermal characteristics are inherently affected by both physical (e.g.,

complex airflows and server deployment layout) and cyber (dynamic server workloads) fac-

tors. Therefore, prediction algorithms designed based on simplified physical and cyber mod-

els would not yield satisfactory performance. Second, the number of locations where the

temperatures are of particular interest (e.g., the inlets and outlets of all servers) is often

large, making it prohibitively expensive to deploy a sensor at each of such locations. It is

challenging to reduce the number of sensors while maintaining satisfactory temperature pre-

diction accuracy. Third, it is desirable to decouple the prediction system and the computing

resources of the monitored data center. This design not only avoids the potential interrup-

tions to the prediction system due to unexpected server shutdowns, but also improves the

system portability. To this end, the prediction system must operate on limited computing

resources while maintaining high prediction fidelity.

To address the above challenges, we propose a novel cyber-physical approach that in-

tegrates in situ wireless sensors, transient Computational Fluid Dynamics (CFD) modeling

[70] and real-time data-driven prediction algorithms. CFD is a widely adopted numerical

tool that can simulate the future evolution of temperature distribution of data centers. How-

ever, without accounting for runtime behaviors of the data center, CFD has highly variable

accuracy, poor scalability, and prohibitive computational complexity, which make it ill-suited

46

for high-fidelity online prediction. To overcome these limitations, our approach leverages the

realistic physical thermodynamic models provided by CFD to generate simulated tempera-

ture distribution, which is then integrated with the real sensor measurements to train the

real-time prediction algorithm. Moreover, unlike traditional thermal management solutions

where CFD is used in an open-loop fashion, our approach utilizes real sensor feedback to

calibrate the CFD simulation results. Our approach has the following advantages.

First, by leveraging transient CFD modeling, our approach ensures the fidelity of pre-

dicting many rare but critical thermal emergencies (e.g., cooling system failures) that may

not be captured by real sensors in operational data centers. Second, by integrating realistic

physical CFD models and real sensor measurements, our approach only requires prediction

algorithms with low computational complexity. This enables the development of portable

thermal management systems that do not rely on the infrastructure of the monitored data

center. Finally, as CFD can simulate the temperature at the uninstrumented locations, our

approach significantly reduces the number of sensors without leading to substantial degra-

dation of prediction fidelity.

We implemented our temperature prediction system using 36 wireless motes equipped

with temperature and airflow sensors. We deployed our system in a single-rack testbed,

composed of 15 running servers, and a small-scale production data center testbed composed

of five racks and 229 servers. The extensive evaluation shows that our system can predict

the temperature evolution of servers with highly dynamic workloads at an average error of

0.52 ◦C, within a duration up to 10 minutes.

4.2 Problem Statement and Approach Overview

4.2.1 Problem Statement

The temperatures at the inlet and outlet of a server are critical thermal conditions for

the operation of the server. The inlet temperature is often defined as the server’s operating

47

ambient temperature, which is required to be within a small range (e.g., 15◦C to 27◦C [71]).

The outlet temperature characterizes the amount of heat that needs to be removed by the

air conditioners (ACs) to avoid overheating. Therefore, in this work, we aim to predict the

temperatures at the inlets and outlets of the servers of interest. The set of these temperatures

is referred to as temperature distribution. The accurate prediction of the temporal evolution

of temperature distribution is challenging because of the complex thermal and air dynamics

in data centers. Specifically, the dynamic workload and other server activities, e.g., disk and

network access, generate different amount of heat over time. The heat is dissipated by the

extremely complex airflows, which are driven by server internal fans and ACs. Moreover,

the heat dissipation is highly dependent on the racks and other physical structures in a data

center.

Our temperature distribution forecasting system is designed to meet the following objec-

tives. (1) High fidelity . We aim to achieve high prediction fidelity with about 1◦C error

bound. This requirement ensures that the predicted temperature will not trigger excessive

false alarms of overheating or miss real overheating events. Moreover, as shown in [25],

an 1◦C increase of the maximum server inlet temperature can lead to 10% higher cooling

costs. Therefore, high prediction fidelity allows servers to operate with less conservative tem-

perature setpoints, improving the energy efficiency of data centers. (2) Long prediction

horizon . The system should achieve satisfactory prediction accuracy in a considerably long

time duration (e.g., 10 minutes), referred to as prediction horizon, into the future. We focus

on providing a prediction horizon in the order of minutes. This is motivated by the fact that

it usually takes up to several minutes to reach the overheating temperature [72] in the ther-

mal emergencies (e.g., excessive server overload or AC failure). This provides enough time

for the thermal actuators (e.g., ACs) to prevent overheating as well as for the data center

administrators to take necessary intervention. However, a longer prediction horizon often

requires the sacrifice of prediction fidelity. (3) Full coverage of thermal conditions. Our

approach is designed to predict the temperature distribution under normal working condi-

48

tions of the data center, in which overheating is mainly due to high workload, as well as the

abnormal and emergency situations (e.g., AC failures) that can lead to catastrophic conse-

quences. (4) Timeliness and low overhead . To enable prompt actuation, the prediction

should be performed in an online fashion with tight real-time requirement. The overhead

of the prediction system should be affordable to low-end servers, desktop computers or even

embedded computing devices, such that the system can be easily deployed and operated in

a noninvasive fashion, without relying on the infrastructure of the monitored data center.

Computational Fluid Dynamics (CFD) [70] is a widely used tool to guide the data center

layout and cooling system design. The predictive nature of CFD also allows the user to

simulate the future evolution of temperature distribution. However, CFD has the following

two major limitations. First, the accuracy of CFD highly depends on how well the adopted

thermodynamic models reflect the realities. Considerable expertise and labor-intensive fine

tuning are often required in the modeling process, which makes fine-grained CFD simulation

intractable for medium- to large-scale data centers. Moreover, CFD often has considerable

temperature modeling errors that range from 2◦C to 5◦C [51, 73]. This often leads to

highly conservative temperature setpoints, resulting in excessively high power consumption

of cooling systems in a data center. Second, CFD has high computational complexity that

prohibits it from temperature prediction at run time. For instance, it can take 5 minutes

on a high-end 12-core server to simulate 5 seconds of the temperature evolution of a rack

equipped with 15 servers. As a result, CFD alone is not sufficient for high-fidelity and

real-time temperature prediction in data centers.

4.2.2 Approach Overview

Our approach integrates in situ wireless/on-board sensors, transient CFD simulation,

and real-time prediction modeling to achieve high-fidelity temperature prediction in data

centers. The sensors collect environment temperature and airflow velocity data at various

physical locations (e.g., server inlets, outlets, fans, raised floor tiles, AC cold air inlets

49

Physical Geometry Model

Data Center

w/

wireless sensors

Temperature t

Data Collection

Air flow Velocity v
& Temperature c

CPU Utilization u

FAN Speed s

MCMH Temperature

Prediction
CFD Modeling &

Calibration

Calibration

Linear Prediction

Model

Real-time Prediction

MCMH Training

Steady/Transient CFD

Numerical Solution

t, v, u, s, c

Figure 4.1 Prediction system architecture.

and hot air outlets). The collected data are then used to train the time series prediction

models. To ensure the modeling fidelity, multiple models are used to capture the normal

and various abnormal working states such as the failure of different AC units. A challenge

of such training-based approach is to collect sufficient data sets that cover various thermal

conditions, especially for the abnormal and emergency situations that rarely happen, but

have catastrophe consequences. The controlled experiments for generating these situations

are often intrusive or even harmful in operational data centers. To address this issue, we

leverage transient CFD simulation, which is capable of simulating any overheating condition,

to generate additional training data for the prediction models. This approach avoids running

the computationally intensive CFD in an online fashion, yet preserves realistic physical

characteristics of the training data. The CFD simulation results are also calibrated by

runtime sensor measurements. As a result, our approach only requires moderately accurate

CFD modeling, significantly reducing the efforts of CFD model tuning. Another advantage

of our approach is that, by integrating CFD simulation and runtime sensor measurements,

the number of required sensors is significantly reduced, leading to lower deployment costs

and less intrusiveness to the production data centers.

Figure 4.1 illustrates the architecture of our prediction system. The system consists of

50

three major components. (1) Data collection . This component periodically collects the

measurements of CPU utilization and server fan speed through on-board sensors, while using

a wireless sensor network to collect the measurements of temperatures and airflow velocities.

The historical measurements are used to calibrate the CFD modeling and train the prediction

models, while the runtime sensor measurements are fed to the real-time prediction component

to predict temperatures. (2) CFD modeling and calibration . In addition to the sensor

measurements, a key feature of our system is to leverage the transient CFD simulation

to compute the fine-grained temperature evolution, which assists the training of the time

series prediction models. Our system uses in situ sensor measurements to calibrate the

transient CFD simulations, and generate calibrated temperature time series data for normal

and various abnormal thermal conditions, such AC failures. These results are then fed as the

training data to the real-time prediction component. (3) Real-time multi-channel and

multi-horizon temperature prediction . The real-time prediction component constructs

time series prediction models with training data from both historical measurements and CFD

simulations, and outputs the runtime temperature predictions. Although complex non-linear

models may achieve good prediction accuracy, they often have high complexity. Our solution

uses multiple simple linear models to approximate the complex non-linear thermodynamic

laws. For each different major thermal condition (hereafter referred to as channel), such

as the failure of different AC units, multiple prediction models with different prediction

horizons are constructed. Different prediction horizons of our system give administrators

more flexibility to implement thermal actuators, e.g., taking appropriate measures in an

incremental fashion.

4.3 CFD Modeling and Calibration

In this section, we first briefly introduce the Computational Fluid Dynamics (CFD) and

then present a case study of modeling a rack of servers using CFD. The case study helps us

understand the major limitations of CFD. We then present an approach to calibrating CFD

51

using real sensor measurements.

4.3.1 Background on CFD

CFD is a widely adopted numerical tool to simulate the future temperature evolution. It

iteratively solves a system of fluid and heat transfer equations in the form of non-linear partial

differential equations under the constraints of mass, momentum and energy conservation.

The non-linear nature of these equations and the complex boundary conditions in data center

environment (e.g., the physical structures) usually make it impossible to solve these equations

analytically. Therefore, CFD typically solves these equations using numerical approaches.

Specifically, by dividing the continuous fluid field into small cells, CFD solves the fluid and

heat transfer equations in each cell with significantly simplified boundary conditions. The

global optimal solution is found iteratively where all cells meet the convergence requirements,

giving the steady-state temperature distribution. For the transient simulation, the model is

also discretized into small time steps in time domain. At each time step, CFD iteratively finds

the global optimal solution, giving the transient temperature distribution. The boundary

conditions such as AC airflow temperature, velocity, and power consumption of servers can

also be set for each time step with user-defined values (e.g., sensor measurements) such that

CFD can simulate any normal or abnormal thermal situations. Therefore, the accuracy of

the transient CFD modeling is particularly important for achieving high prediction fidelity.

4.3.2 A Case Study

We now present a case study of using CFD to model a testbed of rack servers, which

helps us understand the performance limitations of CFD. Figure 4.2(a) shows the physical

geometry of rack server testbed. A total of 15 servers on the rack are grouped into 5

server groups. The detailed settings of the server rack can be found in Section 4.5. For

CFD modeling, we use wireless sensors to measure the boundary conditions including the

temperatures and velocities of the air discharged by the AC and exhausted by the ceiling

52

AC Inlet

F
ro

n
t

co
ld

 a
ir

B
ac

k

Ceiling Vent
Temperature

 sensor

Group 1

Group 2

Group 3

Group 4

Group 5

(a)

37.2

35.7

34.2

32.7

31.1

29.6

28.1

26.6

25.1

23.5

22.0

20.5

19.0

17.5

15.9

14.4

12.9

11.4

9.87

8.35

6.83

 (C)

F
ro

n
t

B
ac

k

A
C

 c
o

ld
 a

ir

Ceiling

Vent

(b)

Figure 4.2 (a) Server geometries with temperature sensor locations; (b) Side view of the
steady-state temperature map when the servers in Group 1 and Group 2 are running with
full utilization.

vent. A total of 30 sensors are deployed to measure the temperature distribution around the

rack. Node 1 to 15 are installed at the outlets of the servers and Node 16 to 30 are installed

at the inlets of the servers.

Figure 4.2(b) shows the steady-state temperature map calculated by CFD software (Flu-

ent) when servers in Group 1 and Group 2 are running with full utilization (referred to as

Case 1). We can see that the cold air is mostly drawn by the lower servers and the two

groups of servers running with full utilization have much higher exhaust air temperatures

than other servers. Figure 4.3 plots the sensor readings as well as the temperatures calcu-

lated by CFD. We can see that, for Case 1, CFD can accurately predict the steady-state

temperature distribution. The root-mean-square error (RMSE) across all sensors is only

0.7◦C. The result in Figure 4.3 is achieved by extensively tuning CFD with the help from

an expert with 20 years of experience in CFD modeling. For instance, the exhaust airflow of

servers, the cooling airflow of AC and the corresponding sensor locations in the CFD physical

53

1 5 10 15 20 25 30
0

20

40

Sensor ID

T
em

p
er

at
u

re
 (

°
C

)

Case 1, sensor readings

Case 1, CFD

Case 2, sensor readings

Case 2, CFD

Figure 4.3 Real sensor readings and CFD prediction. Case 1: servers in Group 1 and Group
2 run with full utilization; Case 2: AC failure.

model were carefully adjusted in a number of iterations. We note that such an extensive

tuning process is a common practice for constructing CFD for real data centers. We then use

the well-tuned CFD to predict the steady-state temperature distribution for the case of AC

failure (referred to as Case 2). Figure 4.3 shows that the CFD exhibits considerable errors

(RMSE of 4.4◦C) in case of AC failure. In addition to the steady-state prediction, we also

examine the accuracy of CFD in transient simulation, which is critical for the performance

of real-time prediciton. Figure 4.4 shows the temporal evolution at the location of sensor 1

computed by CFD, as well as the real readings from sensor 1. During this period, the CPU

utilizations of servers are varied, resulting in highly dynamic temperature at this sensor lo-

cation. It can be clearly seen that CFD result contains significant biases with respect to the

real sensor readings. The major reason of those errors is that CFD does not exactly model

the true data center environment and all the important system parameters (e.g., material

properties). In practice, it is extremely difficult and labor-intensive to construct a CFD

model that is accurate in all thermal conditions. Therefore, to make CFD practical in our

prediction system, we discuss in Section 4.3.3 how to calibrate the temperature data simu-

lated by CFD using real sensor measurements collected in the data center. Such calibration

significantly reduces the dependency of prediction performance on CFD modeling.

54

0 3 6 9 12

18

20

Time (hour)

T
em

p
er

at
u
re

 (
°
C

)

calibrated

CFD

sensor

Figure 4.4 Transient temperatures at the outlet of the lowest server (sensor: real sensor
readings; CFD: transient simulation result of CFD; calibrated: calibrated transient simulation
result of CFD).

4.3.3 CFD Calibration

The results from Section 4.3.2 show that the CFD simulation exhibits considerable errors,

particularly in transient-state simulations. To address this limitation, we propose to calibrate

the CFD simulation results using runtime sensor measurements. By denoting xi and yi as

the temperature calculated by CFD and the calibrated temperature at the position of sensor

i, the calibration function is given by yi =
∑K

k=0 ai,k · xki , where K is the order of the

calibration function and ai,k’s are the coefficients to be learned from training data. By

providing real sensor data as yi, the coefficients ai,k’s can be learned based on least square

criterion. For each sensor, a calibration function is constructed as long as there are sufficient

real sensor measurements collected. As an example, we use the first 3 hours of data in

Figure 4.4 to construct the calibration function for each sensor and then use all the data for

testing. Figure 4.4 also shows an example of calibrated CFD results with K = 1.

4.4 Real-Time Temperature Prediction

This section first presents our approach of predicting the temperature distributions using

a linear prediction model, and then discusses the training of the prediction model.

55

4.4.1 Real-Time Prediction Model

Suppose that wireless temperature sensors are deployed at the inlets and outlets of a total

of N monitored servers. The temperature distribution is defined as T = [t1in; t
1
out; . . . ; t

N
in ; t

N
out] ∈

R2N×1, where tnin and tnout denote the temperatures at the inlet and outlet of the nth server.

The prediction model should include the observable variables that significantly affect T to

achieve the accurate prediction of T. In this work, our prediction model accounts for the

temperatures (denoted by C) and velocities (denoted by V) of the cold airflow distributed

by the ACs, CPU utilization (denoted by U), and internal fan speeds (denoted by S) of all

monitored servers. Moreover, the historical temperature distributions also largely affect the

temperature distributions in the near future. Therefore, we define the state of the monitored

servers at a time instance, denoted by P, as the concatenation of T, C, V, U and S. Specif-

ically, P = [T;C;V;U;S]. Our approach can be easily extended to include other observable

variables to address various kinds of servers. For instance, hard disc access rates can play

an important role in the temperature distribution of file servers.

We assume that each variable in P can be measured periodically and synchronously

by multiple sensors. In the rest of this chapter, the period of data collection is referred

to as time step. Intuitively, the most recent states significantly affect the current and the

future states. In our approach, we predict the temperature distribution at time step (t+ k)

based on the most recent R states, where t ∈ Z denotes current time step and k ∈ Z is

referred to as prediction horizon. For a given k, we assume that the predicted temperature

distribution1 at time step (t+ k) is given by T̂(t+ k) = fk(P(t),P(t− 1), . . . ,P(t−R+1)),

where fk(·) is the function characterizing the physical law governing the thermodynamic

process. However, fk(·) is often difficult to find in practice due to the high complexity of

data center environment. In this work, we propose a linear prediction model to approximate

fk(·), which allows the online real-time prediction at low overhead. Suppose P = [p1; p2; . . .],

define Ps = [ps1; p
s
2; . . .] where s ∈ Z. Moreover, we define q(t) = [P(t);P2(t); . . . ;Ps(t)]

1For clarity of presentation, we let x̂ denote the predicted value of x.

56

and x(t) = [q(t);q(t − 1); . . . ;q(t − R + 1)]. According to the Taylor’s theorem, the high

order Taylor polynomial can well approximate a function. The sth order Taylor polynomial

of fk(·) is given by the linear combination of all the combinatorial terms of the elements

in x(t), which however results in exponential complexity with respect to N . Therefore, we

ignore all the cross terms in the Taylor polynomial and adopt the following linear prediction

model:

T̂(t + k) = Ak · x(t) (4.1)

where Ak ∈ R2N×M and M is the length of x(t).

Since only the arithmetic calculations are involved in Eq. (4.1), the prediction can be

efficiently computed even on low-power embedded platforms. Note that Ak is different

for each prediction horizon k. By setting increasing prediction horizons, Eq. (4.1) predicts

the temporal evolution of the temperature distribution. Intuitively, because the correlation

between T and P decreases over time in a dynamic environment, the prediction with a larger

k becomes less accurate.

4.4.2 Model Training

During the normal running state of the data center, the training data are collected from

the wireless sensors (e.g., temperature and airflow velocity) or server on-board sensors (e.g.,

CPU utilization and fan speed). In addition to the sensor data, CFD data are generated

for normal and abnormal running states by manually giving different boundary conditions

to the CFD transient simulations. For example, different ACs can be shutdown during the

CFD transient simulation. Suppose a data set with time step index from 1 to L is collected

after system deployment or generated by CFD to train the linear model Ak for any given k.

57

We adopt the least square criterion to train Ak. Specifically,

Ak = argmin
Ak

L−k∑

t=R

‖T(t + k)− T̂(t + k)‖2ℓ2

= argmin
Ak

L−k∑

t=R

‖T(t + k)−Ak · x(t)‖2ℓ2,

where ‖ · ‖ℓ2 represents the Euclidean norm. A desirable property of the above formulation

is that the problem can be decomposed to the sub-problems of finding the rows of Ak

separately. The separation can significantly reduce the computation complexity in training.

By denoting aj as the jth row of Ak and tj(t + k) as the jth element in t(t + k), the

sub-problem is

aj = argmin
aj

L−k∑

t=R

(
tj(t+ k)− aj · x(t)

)2
. (4.2)

The closed-form solution of aj is aj = (X⊤X)−1X⊤tj , where X = [x(R),x(R+1), . . . ,x(L−

k)]⊤ and tj = [tj(R+ k); tj(R+ k + 1); . . . ; tj(L)]. The matrix Ak can be constructed once

all its rows are computed.

We now discuss two practical issues related to model training.

4.4.2.1 Regularized Regression

As the variables in the state P may be affected by the same thermal conditions, they

may be correlated with each other. This is called multicollinearity in regression analysis.

Multicollinearity can lead to inflation of the estimated coefficients in aj , and hence adversely

affects the performance of model training. A common approach to deal with multicollinearity

problem is to use regularized regression[74]. Specifically,

aj = argmin
aj

L−k∑

t=R

(
tj(t+ k)− aj · x(t)

)2
+ λ‖aj‖2,

where λ is the regulation factor. By including the norm of aj in the minimization, the

inflation of the coefficients in aj can be effectively restricted. The closed-form solution of aj

58

is aj = (X⊤X − λI)−1X⊤tj . As shown in Section 4.6.1.3, with proper settings for λ, the

regulation can improve the performance of the model training.

4.4.2.2 Training Data Generation using CFD

A practical issue about training data generation using CFD is how to generate sufficient

training data to ensure that the trained model well captures the underlying thermal dynamics

and hence delivers accurate predictions. A naive solution is to generate training data to fully

cover all possible thermal conditions. For instance, to generate training data for the channel

that addresses AC failure, the naive solution needs to simulate the AC failure under all

possible initial states. However, a major challenge here is that the state P has combinatorial

complexity. Due to the high dimensionality of P, enumerating all possible initial states in

the generated training data will incur extremely high computation overhead. Intuitively, a

certain amount of simulated data traces with initial states that sparsely span in the state

space may be sufficient to train the linear regression model. Based on this intuition, we

generate data traces with random initial state P that is uniformly distributed within its

possible range. The number of generated data traces should be large enough to prevent

overfitting. In Section 4.6.1.6, our experiments show that 10 transient data traces generated

by CFD are sufficient for training the model characterizing AC failure for a rack of 15 servers.

4.4.3 Dimension Reduction

A monitored temperature instance (i.e., an element of the temperature distribution T)

may not be strongly correlated with every other variable in the state P. For small-scale

deployments such as a rack, the dimension of the state P is limited. With sufficient training

data, the regression result can accurately characterize the correlations between the monitored

temperature and every other variable in P. However, for large-scale deployments such as a

server room with many racks, the dimension of P is high. For instance, on our small-scale

production data center testbed (cf. Section 4.6.2), the dimension of P is 229. As a result, the

59

regression is prone to overfitting, leading to poor prediction performance. Therefore, before

constructing the prediction model in Eq. (4.1), it is desirable to choose a subset of variables

in P that are most correlated to the monitored temperature to increase the prediction ac-

curacy. In this work, we present a dimension reduction approach, which adopts the partial

correlation metric [75] to rank the variables in P regarding their correlation with the moni-

tored temperature. We note that other approaches may also be applicable to the dimension

reduction problem [76]. Our approach performs dimension reduction based on the variable

ranking for each monitored temperature separately. Specifically, let n denote the dimension

of state P, and pi denote the ith element of P. To compute the partial correlation of the

monitored temperature tj and a variable pi, we first construct the linear regression models for

predicting tj and pi based on the remaining variables in P, i.e., {p1, · · · , pi−1, pi+1, · · · , pn},

using the approach described in Section 4.4.2. Let t̂j and p̂i denote the predictions based on

the remaining variables in P. The partial correlation, denoted by ρ(tj , pi), is given by the

correlation coefficient of the errors in predicting tj and pi using remaining variables, i.e.,

ρ(tj , pi) = r(tj − t̂j , pi − p̂i),

where r(·) measures the correlation coefficient. Therefore, the ρ(tj , pi) measures the partial

correlation between tj and pi at a particular horizon while the effects from all other input

variables are removed. After calculating the partial correlations {ρ(tj , pi)|i ∈ [1, n]}, we

choose a subset of variables in P with the highest partial determination coefficients (i.e.,

ρ2(tj , pi)). With the chosen variables, we construct the linear regression model in Eq. (4.2),

where the elements of aj corresponding to the unselected variables are set to be zeros. Note

that the dimension reduction result varies with prediction horizon k.

4.5 System Implementation and Deployment

We have implemented the proposed system and deployed it on two testbeds. Now we

first describe the set-up of the two testbeds, and then discuss the system implementation.

60

Ceiling Vent
airflow sensor

Ceiling vent
temperature sensor

Temperature
sensor

Insulation

Airflow sensor

AC inlet

(a)

Chained

temperature sensor

In-row AC unit

Temperature

sensor

Airflow
sensor

(b)

Figure 4.5 Testbeds. (a) Single-rack testbed; (b) Prodution testbed (HPCC)

4.5.1 Testbeds and Sensor Deployment

Our first single-rack testbed, shown in Figure 4.5(a), consists of a rack of 15 1U 2 servers

in a 5 × 6 square feet room insulated by foam boards. Two types of servers (4 DELL

PowerEdge 850 nodes and 11 Western Scientific nodes), are placed on the rack. The rack

is placed directly under an infrastructure ceiling vent that exhausts the hot air out of the

room. A portable AC made by Tripp Lite, Inc. (model SRCOOL12K) is placed out of the

room. It delivers cold air through the AC inlet located at the bottom of the room in front of

the rack, which is consistent with the cooling airflow of popular raised floor cooling design.

On the rack, the 15 servers are grouped every three servers with a 2U distance between

every adjacent two groups. A total of 15 Iris [16] temperature sensors are mounted with

brackets at the inlets of the 5 group of servers, and another 15 temperature sensors (8 Iris

2U is the unit of the height of a server, which is 1.75 inches.

61

and 7 TelosB [16]) are mounted with brackets at the outlets of these servers. At the ceiling

vent, a temperature sensor (TelosB) is mounted with bracket and a F333 airflow velocity

sensor [77] is taped to face the exhausting airflow. To monitor the AC cold airflow, we place

a temperature sensor (Iris) in the AC inlet register and tape a same airflow velocity sensor in

front of the register. This small testbed allows us to study the fine-grained thermal dynamics

of a single rack. Moreover, by controlling the AC system, the testbed can emulate various

thermal emergency scenarios.

Figure 4.5(b) shows the second testbed in a server room of High Performance Computer

Center (HPCC) at Michigan State University. The testbed consists of 229 servers with 2016

CPU cores on five server racks. Those racks are arranged in two rows with a cold aisle

between them. One row of racks is shown in Figure 4.5(b). In addition to the raised floor

cooling system which blows cold air vertically from the floor tile into the cold aisle, two in-

row AC cooling units are installed between the racks for each row, which produce major cold

air at different heights and generate significant side-to-side airflow. To prevent the major hot

air recirculation, two pieces of glass wall are installed at the end of the cold aisle. We chain

the sensors and mount them at both the front and rear doors of the server racks to monitor

the inlets and outlets temperatures, respectively. For one rack, we deploy 8 sensors evenly

to monitor the server inlets and 8 sensors to monitor the server outlets, respectively. For

other racks, we mount one or two sensors to monitor the server inlets and outlets at different

heights. We monitor two out of four in-row AC units by mounting a bundle of temperature

sensor and airflow sensor at cold air inlets. Another two bundles are fixed at the floor tile

and the ceiling vent. The details of sensor deployment can be found from Figure 4.16.

4.5.2 Implementation of the Sensor Network

Wireless Sensors: In each of our testbed implementations, we use a single-hop network

architecture where the base station sends the data collection requests to sensors sequentially

and each sensor transmits the measurements. Every 5 seconds, the base station performs

62

a round of sequential data collection from all sensors. We note that a multi-hop network

topology can be employed when more server racks need to be monitored. As this collection

scheme works in a time-division fashion, the system does not generate many collisions be-

tween the data transmissions of different sensors. TelosB [16] and Iris [16] motes are used

for collecting temperature data. To collect the airflow velocity data, we connect the Senshoc

mote, an implementation of the open design of TelosB, to a standalone air velocity sensor [77]

via I2C interface. The programs on these motes are implemented in TinyOS 2.1 [78].

On-board Sensors: CPU utilization and fan speed are two important thermal variables

that the system needs to collect from the on-board sensors of each server. Data centers

typically run various server monitoring utility tools (e.g., atop, ganglia) that can collect

on-board sensor information. These tools are used to implement the data collection of

CPU utilization and fan speed for our production testbed. In our single-rack testbed, we

implement a simple program to control and measure the CPU utilization, and report fan

speed from either lm-sensors or ipmimonitoring utilities, which are commonly available

in GNU/Linux distributions. Similar to the wireless sensor data collection, the base station

requests the CPU utilization and fan speed from each server sequentially. However, instead of

using wireless links, the base station takes advantage of the existing Ethernet infrastructure

to collect these on-board sensor data.

4.5.3 Discussion

We now discuss the costs and benefits of deploying our temperature prediction system in

data centers. Our prediction system comprises low-cost wireless sensor nodes and PC-class

base stations. Moreover, it is even more cost-effective in newer data centers where the servers

may have already been equipped with inlet temperature sensors. In addition to the costs

of the wireless sensor network, our system requires compute-intensive CFD simulations to

assist the temperature prediction, where the major costs are due to the computing resources,

labor of model construction and CFD software license. Since our system only requires off-

63

line CFD simulations, it can leverage the existing data center computing resources during

off-peak hours for training the prediction models. Once the models are constructed, our

system will no longer consume any computing resources in the data center. In addition,

many data centers have already incorporated the CFD analysis in the thermal design, which

can be reused to reduce the extra labor and license costs for CFD.

The benefits of deploying our prediction system are two folds. First, heat-induced server

shutdown contributes more than 23% of server outages in data centers [21]. It equals 0.2 mil-

lion US dollars loss per year for a data center on average [79]. With accurate multi-horizon

temperature prediction, the data center administrators can be alerted of the potential ther-

mal emergencies, e.g., server overheating, allowing more time for necessary actuations such

as migrating server workload to prevent these emergencies. Second, the real-time temper-

ature prediction could enable the proactive thermal control at a higher room temperature

in data centers without causing the server overheating, achieving as much as 30% of total

energy saving as we discuss in Chapter 5. For instance, the proactive thermal control system

can dynamically adjust the cold air temperatures and velocities of the cooling system based

on the predicted future temperatures instead of the measured temperatures.

4.6 Performance Evaluation

To evaluate the performance of our prediction system, we conduct extensive experiments

on the single-rack testbed and the small-scale production testbed. On the single-rack testbed,

we can conduct controlled experiments such as simulating AC failures to extensively evaluate

our system. The production testbed allows us to evaluate our system under realistic, long-

term computation workloads.

64

0 2 4 6 8 10 12 14 16 18 20
Time (hour)

C
P

U
 u

ti
li

za
ti

o
n

(2
%

 o
r

9
0

%
)

group1 group2 group3 group4 group5

Figure 4.6 CPU utilization of the training data.

4.6.1 Single-Rack Testbed Experiments

Figure 4.2(a) shows the server groups and the temperature sensor locations on the rack

of single-rack testbed. Five server groups, denoted as Group 1 to Group 5, are controlled

to run in either idle state (about 2% CPU utilization) or full utilization (about 90% CPU

utilization). These settings are consistent with many data centers where servers running

computational-intensive batch jobs tend to use all available CPUs [25]. We conduct various

controlled experiments by adjusting servers’ CPU utilization to simulate the normal running

state of data centers, as well as turning off the cooling function of the AC to simulate a

thermal emergency.

4.6.1.1 Predication under Dynamic Workloads

The first experiment evaluates the performance of our system in response to the CPU

utilization changes. A total of 25 hours of data were collected during 6 days. As the infras-

tructure ceiling vent is regularly shut down every night, we concatenate the data collected in

different days when the ceiling vent is running. We use the first 20 hours of data as training

data and the remaining 5 hours of data for testing. The settings of the prediction model

include R = 1 and k = 10min. Figure 4.6 shows CPU utilization of the training data and

Figure 4.7 shows the CPU utilization and temperature prediction at both inlets and outlets.

We can see that our system can accurately predict the temperatures. From the middle graph

of Figure 4.7, at about the 30th minute from the start, the temperature reached equilibrium

65

0 1 2 3 4 5
16

18

20

22

0 1 2 3 4 5

C
P
U
 u
ti
li
za
it
o
n

(2
%
 o
r
9
0
%
)

measurement
prediction

group1 group2 group3
group4 group5

A B

T
em

p
er
at
u
re
 (
°
C
)

Time (hour)
0 1 2 3 4 5T

em
p
er
at
u
re
 (
C
)

°

22

20

24
measurement
prediction

Inlet

Outlet

Figure 4.7 Top: CPU utilization of test data. Middle: temperature measurements and
predictions at an outlet of Group 5 with 10 minutes prediction horizon. Bottom: temperature
measurements and predictions at an inlet of Group 3 with 10 minutes prediction horizon.

as the start of our experiment. In the first 3 hours, as only Group 1 to Group 4 changed

their running states, the measurements of Sensor 2 at an outlet of Group 5 did not change

significantly. A small temperature rise during this period was caused by the complex airflow

at the back of the rack. When the servers in Group 5 changed to full utilization during the

4th hour, a significant temperature rise is observed. With a 10-minute prediction horizon,

each point on dashed curve is calculated using measurements of all sensors 10 minutes be-

fore. We can see that the temperature at the future time instant B is accurately predicted

at the actual time instant A when the system observes the CPU utilization change. While

the prediction results well match the sensor measurements during the first 3 hours, however,

we observe a considerable gap between the predicted temperatures and sensor measurements

in a duration of 10 minutes (i.e., between A and B shown in the figure) after the CPU

utilization change of Group 5. This is due to the fact that the system is not aware of the

state change of Group 5 at time instance A. In this work, this type of error is referred to

66

0 4 10 20

19

21

23

T
em

p
er
at
u
re
 (
°
C
)

Time (minute)

Groundtruth
CPU utilization
Current measurement

0

1 C
P
U
 U
ti
li
za
ti
o
n

Prediction

Figure 4.8 Temperature evolution prediction. Each solid rectangle represents the temper-
ature measurement at current time instance and the white rectangles are the predicted
temperatures at four different prediction horizons (0.5, 2.5, 5 and 7.5 minutes).

as horizon-induced prediction error. According to the multi-horizon prediction scheme dis-

cussed in Section 4.6.1.2, the duration that suffer horizon-induced prediction error can be

shortened by setting a smaller prediction horizon. This hypothesis will be verified in Sec-

tion 4.6.1.6. Different from the temperature at the outlets, the temperature at the inlets is

mainly affected by the complex heat recirculation. The bottom graph shows that our system

can also accurately predict the temperature at the inlet. During the 5-hour testing period,

the average absolute prediction error over all sensors is only 0.3◦C.

4.6.1.2 Multi-Horizon Prediction

In our prediction system, by training models with different k in Eq. (4.1), we can build

multiple models to predict the evolution of temperature in the future. Figure 4.8 shows the

results of different prediction horizons of 0.5, 2.5, 5 and 7.5 minutes. At about the 4th minute

when the CPU utilization just started to increase, the predicted temperatures at different

prediction horizons are similar to the current measurement. After the system evolved to

the second solid rectangle where the CPU utilization had increased significantly from 2%

to 90%, the system predicts an increasing trend of temperature evolution for the following

four horizons. From the time instance of the 3rd solid rectangle, the predicted temperature

evolution starts to match the ground truth. Figure 4.9 shows the root-mean-square error

67

5 10 15 20 25 30
0

0.5

1

Sensor ID

R
M

S
E

 (
°
C

)

prediction horizon = 0.5 min.

prediction horizon = 5 min.

prediction horizon = 10 min.

Figure 4.9 Root-mean-square error (RMSE) of multi-horizon temperature prediction.

(RMSE) of multi-horizon predictions for each sensor. We can see that the RMSE generally

increases with the prediction horizon. This conforms to the intuition that the temperature

at a farther time instance in the future is less correlated with historical measurements in a

dynamic environment. The RMSEs are less than 0.5◦C for most sensor locations. Slightly

larger RMSEs are observed at sensor 28 and 29. We found that this is caused by the slight

displacement of the two sensors during the experiment. Nevertheless, the RMSEs are still

less than 1◦C.

4.6.1.3 Effectiveness of Regularized Regression

In this experiment, we conduct cross-validation based on the 14-hour data set used in

Section 4.6.1.2 to evaluate the effectiveness of the regularized regression discussed in Sec-

tion 4.4.2.1. Performance evaluation of model training depends on how the data set is

partitioned into training and test data. Ten-fold cross-validation [80, p. 435] is commonly

used to mitigate the impact of data set partitioning in evaluating model training perfor-

mance. Specifically, in each fold, we choose 1.4 hours of continuous data for testing and the

remaining data for training. For each fold, given a regulation factor λ, we conduct model

trainings and predictions with 5 different horizons from 0.5 minutes to 10 minutes. The av-

erage RMSE of prediction over all horizons is used to represent the average prediction error

given λ. The above process is repeated for 10 times (i.e., 10 folds) with different partitions

of training and test data sets. Figure 4.10 shows the average RMSE for three individual

68

0.04 0.1 0.2 0.3 0.4
0

0.5

1

λ

R
M

S
E

 (
°
C

)

fold 4 fold 5 fold 2 average

Figure 4.10 RMSE of prediction versus λ in cross-validation experiments.

folds versus λ. In the experiment of fold 4, the average RMSE of prediction is as high as

1◦C when the training is not regularized (i.e., λ = 0). The average RMSE decreases with

λ when λ < 0.3 and exhibits a slight increase after that. The experiment of fold 5 shows

similar trend with much lower RMSE. In the experiment of fold 2, the average RMSE always

increases with λ. Figure 4.10 also shows the average RMSE over all folds, which charac-

terizes the expected performance given any training/test data partition. From the average

RMSE over all folds shown in Figure 4.10, we can see that in a large range of λ (i.e., from 0

to 0.4), the regularized regression outperforms the unregularized version (i.e., λ = 0). Note

that the typical setting of λ is no greater than one. Moreover, when λ = 0.04, the average

RMSE is minimized and reduced by 25% with respect to the unregularized result. Under

this setting, the trained models yield good prediction accuracy across all folds. Therefore,

0.04 is a desirable setting for λ for our single-rack testbed.

4.6.1.4 Performance under Noisy Sensor Measurements

In this section, we evaluate the prediction performance under noisy sensor measurements

with dynamic CPU utilizations. In particular, we manually add the Gaussian white noises

to the sensor measurements. The standard deviation of the noises are proportional to the

range of its readings in the data traces. Figure 4.11 shows the RMSE of predictions versus

the increasing noise standard deviation for each thermal variable under different prediction

horizons. Consistent with intuition, the RMSE increases with the noise level. However, even

with noise standard deviation up to 15% of the sensor reading range, the RMSEs are still

69

1 5 10 15 20

0.5

1

1.5

Noise standard deviation (%)

R
M

S
E

 (
°
C

)

0.5 min 5 min 10 min

Figure 4.11 RMSE under noisy data

within 1◦C. In practice, various noise suppression techniques, e.g., moving window average,

can be employed to mitigate the sensor measurement errors and improve the prediction

accuracy.

4.6.1.5 Multi-Channel Prediction

In this experiment, we evaluate the accuracy of prediction in multiple thermal conditions

(i.e., channels). As the AC malfunction is a major cause of server overheating in data

centers, we conducted a controlled experiment to simulate the AC failure on our single-

rack testbed. We construct two channels corresponding to the normal running state and

the AC failure, respectively. A total of 10 hours of data were collected when the servers

run in normal state with different CPU utilization combinations. These data are used to

train the normal channel of the prediction system. The prediction horizon is set to be 5

minutes. Then, another 14 hours of data, which contain both normal running state and

AC failure, were collected. A transient CFD simulation is conducted using the sensor data

(after excluding the temperature measurements at server inlets/outlets) collected during this

14-hour experiment. The CFD-simulated training data, together with the 10 hours of real

measurements in normal running state, are then used to train the channel of AC failure. In

real data centers, it is often infeasible to collect training data for the scenario of AC failure.

Therefore, to ensure the realism of our experiments, we did not use the sensor measurements

during AC failure to calibrate the CFD.

70

0 2 4 6 8 10 12

0

2

4

6

Time (hour)

A
b

so
lu

te
 e

rr
o

r
(°

C
)

Abnormal channel

Normal channel

AC failure

Figure 4.12 Average absolute temperature prediction error (prediction horizon = 5 minutes)

Figure 4.12 shows the absolute prediction errors of the two channels with respect to

the ground truth sensor measurements. The system exhibits very small absolute error in

normal state, while it suffers up to 6◦C absolute error during the AC failure. This is because

the training data for the normal channel do not capture this abnormal situation. On the

contrary, AC failure channel exhibits slightly higher absolute error than the normal channel

during the normal state, while it has significantly lower absolute error during the AC failure.

From this result, we can see that the simulated training data generated by CFD can help

the real-time prediction model capture various thermal emergencies. In practice, several

different abnormal channels can be constructed with CFD according to the possible cooling

system failure situations. The detection results from different channels can further be fused

by existing data fusion techniques [5].

4.6.1.6 Sufficiency of Training Data from CFD

In this set of experiments, we evaluate the training data generation approach described

in Section 4.4.2.2. These experiments focus on the thermal emergency of AC failure. We first

explain how we generate the training data traces. Figure 4.13 shows the temperature trace

of a server inlet in one of the transient simulations. The simulation starts with all servers

in idle state with 0% CPU utilization, followed by a change of CPU utilization at about

the 4th minute. Following the random approach described in Section 4.4.2.2, the new CPU

utilization of a server group is randomly drawn from a uniform distribution over [0%, 100%].

71

0 10 20 30 40 50 60 70

20

30

40

Time (minute)

T
em

p
er

at
u

re
 (

°
C

)

40 training simulations

2 training simulations

Ground truth

AC resumes

Horizon

Horizon

CPU changes

Horizon

AC fails

Figure 4.13 Example of training data generated from CFD for AC failure emergency. The
simulation starts with all the servers in idle status, followed by a uniform random change on
CPU utilization at about the 4th minute. Then, the AC fails at about the 14th minute and
resumes at about 24th minute.

The inlet temperature shown in Figure 4.13 starts to rise because of the air recirculation. The

simulated AC failure occurs at about the 14th minute and the AC recovers from failure at

about the 24th minute. We conduct 50 transient simulations to generate the training data,

where the CPU utilization of each server group is drawn from the uniform distribution.

Moreover, we conduct two transient simulations with extreme conditions, that is, the CPU

utilization of all server groups is either 100% or 0%.

As discussed in Section 4.4.2.2, the number of generated data traces should be large

enough to prevent over-fitting. We design an experiment to evaluate the impact of the

amount of training data on the performance of model training. We choose 10 out of 50

transient simulations as the test data. Initially, only the two transient simulations with

extreme conditions are included in the training data set. We then incrementally add a

simulation that is chosen from the unused simulations to the training data set. For each

training data set, we evaluate the prediction performance of the trained model using the test

data of 10 transient simulations. When we compute the RMSE to characterize the prediction

error, we carefully choose the testing results to exclude the horizon-induced prediction error,

which is explained in Section 4.6.1.1. For instance, we exclude the durations labeled by

“Horizon” in Figure 4.13, which suffer horizon-induced errors. The root cause of this type of

72

0.5 1 2 4 6
0

2

4

6

Prediction horizon (minute)

A
v

er
ag

e
R

M
S

E
 (
°
C

)

Figure 4.14 Horizon-induced prediction error versus horizon.

0 10 20 30 40

0.2

0.4

0.6

Numer of training simulations

R
M

S
E

 (
°
 C

)

K=1 K=2 K=4 K=8 K=12

Figure 4.15 Prediction errors with incremental training samples.

errors (as shown in Figure 4.14) is horizon, rather than the insufficiency of training data.

Figure 4.13 shows two traces of prediction when 2 and 40 transient simulations are used as

training data, respectively. Figure 4.15 shows the prediction error versus the size of training

data set (i.e., the number of transient simulations), under various settings of prediction

horizon. We can see that the prediction error generally decreases with the size of training

data set. In particular, when more than 10 transient simulations are used to train the

model, the prediction error becomes flat. This result shows that, by our training data

generation approach, a small number of transient simulations can be sufficient to train the

model. Moreover, from Figure 4.15, we do not see strong correlation between the prediction

error and horizon. This is because, after excluding the durations suffering horizon-induced

prediction error, the remaining durations are mostly steady states, where horizon is not an

major factor.

73

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

29

2

4

7

27

8

26

28

39

34

30

32

5

3

6 31

35

38

136

2537

33

Rack-1 Rack-2 Rack-3 Rack-4Rack-5

A
C

-2

A
C

-1

A
C

-3

A
C

-4

airflow sensor at AC inlets temperature sensor at rack front

temperature sensor at rack rear

Ceiling vent

Floor tiles

airflow sensor at ceiling vent

Figure 4.16 Front view of the two rows of racks, which face to each other in the server room.

4.6.2 Production Testbed Experiments

We also deployed and evaluated our system on a small-scale production testbed in a

server room of High Performance Computer Center (HPCC) at Michigan State University.

In this testbed, we deployed 35 temperature sensors and 4 airflow velocity sensors. Fig-

ure 4.16 shows the sensor deployment from the front view of the two rack rows. To evaluate

the impact of sensor density, we deploy 16 sensors on one rack (Rack-2) while other racks

are instrumented with 2 or 4 sensors. Different from the single-rack testbed whose CPU

utilization is controlled, the CPU utilization in HPCC testbed is subject to real use and

hence dynamic. Therefore, the accurate temperature prediction is more challenging. Fig-

ure 4.17 shows the average CPU utilization of the upper and lower section of the servers on

Rack-2 in a 12-day period. We can observe that the lower section of servers usually has high

CPU utilization, except on April 8, which is a Sunday. On the contrary, the upper section

of servers has more variable CPU utilization. In this section, we evaluate our prediction

approach in HPCC testbed using the data collected in 15 continuous days. The data from

74

03−Apr 04−Apr 05−Apr 06−Apr 07−Apr 08−Apr 09−Apr 10−Apr 11−Apr 12−Apr 13−Apr 14−Apr
0

1

0

1

C
P

U
 u

ti
li

za
ti

o
n

lower servers

upper servers

Figure 4.17 CPU utilization of servers on upper and lower levels of Rack-2

the first three days (March 31 to April 2, 2012) are used as training data, while the data of

the following 12 days are used for prediction evaluation.

4.6.2.1 Dimension Reduction

On our single-rack testbed described in Section 4.6.1, the dimension of the state P is

64. However, on the production data center testbed, the dimension of the state P grows

to several hundreds. As discussed in Section 4.4.3, it is desirable to perform dimension

reduction to avoid overfitting. In addition to the partial correlation approach described in

Section 4.4.3, we employ two baseline approaches. The first baseline approach, referred to

as random approach, randomly selects variables. The second baseline approach, referred to

as location approach, selects the variables that are geographically closest to the monitored

location. In following experiments, we vary the percentage of selected variables over all

available variables.

Figure 4.18(a) shows the average RMSE of the prediction results with prediction hori-

zons of 5 and 10 minutes. For the partial correlation approach, RMSE drops from 3◦C to

about 0.6◦C when the percentage of selected variables reduces from 100% to 7%. This result

conforms to our motivation for dimension reduction discussed in Section 4.4.3. However,

when the percentage continues to decrease, RMSE starts to increase since the number of

variables is too small to contain enough information for a good prediction. When the per-

75

2 7 20 40 70 100
0

1

2

3

Percentage (%) of thermal variables used

R
M

S
E

 (
°
C

)

partial location random

(a)

4 20 40 70 100
0

1

2

3

Percentage (%) of thermal variables used

R
M

S
E

 (
°
C

)

partial location random

(b)

Figure 4.18 Prediction error versus the percentage of selected variables in dimension reduc-
tion. (a) All data are used for testing; (b) Only transient data are used for testing.

centage reduces from 100% to 7%, the RMSE of the location approach is larger than that of

the partial correlation approach which, however, is outperformed by the location approach

when the percentage is lower than 7%. With the location approach, the monitored tem-

perature itself is assigned with a very high weight in aj given by Eq. (4.2) when a small

percentage of variables are chosen. Therefore, the resulted prediction models tend to follow

an autoregression model. As a result, when the temperatures are in steady state, the autore-

gression prediction is highly accurate. As the test data used for Figure 4.18(a) includes lots

of steady states, the location approach yields good performance when the percentage is low.

However, such a autoregression prediction model is not helpful for predicting overheating

in emergencies such as AC failures because the variables related to AC may not be chosen

by the location approach. In practice, it is unlikely to create these thermal emergencies in

the production data center for system training. As a compromise, we manually select tran-

sient states, which are mainly caused by the changes of CPU utilization, as the test data.

With these transient test data, the partial correlation approach consistently outperforms the

location approach, as shown in Figure 4.18(b), achieving the minimal RMSE when 4% of

variables are selected. Moreover, from both Figure 4.18(a) and Figure 4.18(b), the partial

correlation approach achieves low RMSE in a wide range of settings (2% to 70%), which

76

03−Apr 04−Apr 05−Apr 06−Apr 07−Apr 08−Apr 09−Apr 10−Apr 11−Apr 12−Apr 13−Apr 14−Apr

20

25

30
T

em
p
er

at
u
re

 (
°
C

)

prediction measurement

sensor 20

sensor 12

Figure 4.19 Long-term monitoring with 10 minutes prediction horizon. Sensor 20 and sensor
12 are located at server outlet and inlet, respectively.

1

2

Sensor IDA
b
so
lu
te
 e
rr
o
r
(°
C
)

Average

0
5 10 15 20 25 301

Outlet
Inlet

Others

34

Figure 4.20 Absolute errors with the 90% error bound for each sensor with 10 minutes
prediction horizon.

allows flexible setting without sacrificing the prediction performance substantially. For the

experiments conducted in the rest of this chapter, we perform dimension reduction using

partial correlation approach with the setting of 4%. From Figure 4.18(a) and Figure 4.18(b),

the random approach consistently yields the worst performance.

4.6.2.2 Long-term Monitoring

Figure 4.19 shows the prediction results at two locations during 12 days. The prediction

horizon is set to be 10 minutes. We can observe that our prediction results well match the

groundtruth measurements of both server inlet and outlet sensors. Sensor 20, located at a

server outlet, exhibits slightly larger prediction errors. This is because the server outlets

suffer more influence from system workloads and hence have more dynamic thermal profiles.

Figure 4.20 shows the average absolute prediction error and the 90% error bound for all sensor

locations. We can observe that the prediction errors on outlet sensors are slightly higher than

inlet sensors. Nevertheless, the average absolute error of outlet predictions is only around

77

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Absolute Error (°C)

E
m

p
ri

ca
l

C
D

F

1 min.

5 min.

10 min.

20 min.

(a)

0 0.5 1 1.5 2
0

0.5

1

Absolute Error (°C)

E
m

p
ir

ic
al

 C
D

F

Case 1

Case 2

Case 3

Case 4

Case 5

(b)

Figure 4.21 Empirical CDF of absolute error (a) for all sensors with different prediction
horizons; (b) when different subsets of sensors are used in model training.

1◦C and 90% of predictions have errors lower than 2◦C. We also evaluate the prediction

errors under different settings of prediction horizons. Figure 4.21(a) shows the empirical

Cumulative Distribution Function (CDF) of prediction error over all sensor locations. Similar

to the results in Figure 4.9, the prediction error increases with the prediction horizon.

4.6.2.3 CFD-Assisted Prediction

In this section, we evaluate the performance of using CFD to assist the temperature

predictions. We focus on evaluating how effective the CFD modeling reduces the number

of required sensors under the normal running state because no thermal emergencies were

observed on the production testbed during the 15-day experimental period. Specifically,

during the model training, we remove the measurements of some sensors and replace them

with CFD transient simulation results. The removed temperature sensors will not be selected

as thermal variables. However, with their CFD replacements, they can be used as output to

train the temperature predictions at those locations. We use the first 3 days of boundary

condition data (e.g., CPU utilization) to drive the CFD transient simulation. Then, the

sensor data of the first day are used to construct the calibration functions discussed in

78

1 5 10 15 20 25 30 35
0

2

4

6

Sensor ID

R
M

S
E

 (
°
C

)

CFD CFD with calibration

Figure 4.22 RMSE of CFD calibration in production testbed.

Section 4.3.3. After that, all the 3-day simulated training data are calibrated using the

calibration functions. Figure 4.22 shows a significant accuracy improvement after the CFD

calibration.

We evaluate the performance of the CFD-assisted prediction by gradually removing sen-

sors in the model training. As shown in Table 4.1, we gradually replace measurements of

some sensors with CFD simulation results. In Case 1, all total 39 sensors are used for train-

ing. Then, we replace sensor 10, 12, . . . , 24 from Case 1 to generate Case 2, which uses 31

sensors in total for training. In Case 5, 26 sensors (i.e., 67% of all sensors) are replaced with

data generated from CFD. The empirical CDF of absolute errors of different cases are plot-

ted in Figure 4.21(b). The prediction horizon is 10 minutes. We can see that the prediction

accuracy increases with the number of sensors. This is consistent with the intuition that the

CFD data is not as accurate as the actual sensor measurements. However, it can be seen that,

even when less than 40% of sensors are deployed in Case 5, 85% of predictions have absolute

errors lower than 1◦C. Overall, our approach can reduce 67% of sensors for monitoring the

inlets and outlets of all servers while only increasing the average prediction error by 0.2◦C.

For all cases, the average RMSEs are less than 1◦C, while the maximum RMSE is within

2◦C. This result clearly demonstrates the advantage of integrating calibrated transient CFD

modeling with real sensor measurements. Currently, the sensor reduction is performed em-

pirically. The number of required sensors to achieve a certain prediction accuracy is highly

affected by the physical properties in the data center. This is still an open issue and left for

79

Table 4.1 Evaluation scheme of replacing sensors with CFD

Case Sensors removed Total

1 none 39
2 10, 12, 14, 16, 18, 20, 22, 24 31
3 32, 3, 29, 27, 4, 26 25
4 9, 17, 13, 21, 36, 1 19
5 5, 6, 25, 37, 7, 28 13

our future work.

4.7 Conclusion

In this chapter, we describe the design and implementation of a novel cyber-physical

system for predicting temperature distribution of data centers. Our approach integrates

Computational Fluid Dynamics (CFD) modeling and real-time data-driven prediction to

achieve high fidelity temperature forecasting in various thermal conditions of data centers,

including rare but critical thermal emergency situations like AC failures. We have imple-

mented the system on a single-rack testbed and a testbed of 5 racks and 229 servers in a

production high performance computing center. Extensive experimental results show that

our approach can accurately predict the temperatures up to 10 minutes into the future, even

in the presence of highly dynamic server workloads.

80

CHAPTER 5

PREDICTIVE THERMAL AND ENERGY CONTROL IN DATA CENTERS

5.1 Introduction

Thermal and energy management has become a key challenge in the design and operation

of data centers. A recent worldwide data center survey shows that the non-computing energy

takes average 45% and up to 60% of total energy [81]. One of the key reasons for these

data centers to have excessive energy consumption is the inefficient operation of Computer

Room Air Conditioning (CRAC) systems. Because of the lack of visibility in the operating

conditions, the CRAC systems often use unnecessarily low temperature setpoints to reduce

the risk of server overheating. Due to such a conservative strategy, the CRAC systems can

account for up to half of the energy consumption of a data center [20]. Moreover, data centers

usually maintain unnecessarily high levels of air circulation by adopting static settings or

simplistic control strategies for the circulation systems including server fans. As a result,

the server fans can take up to 23% of server power consumption [42]. Thus, improving the

efficiency of cooling and circulation systems plays an important role in reducing the total

energy consumption of a data center.

Various efforts have been made to improve data center energy efficiency. New green

data center technologies have proven their effectiveness in a few latest industrial scale data

centers. For instance, the new Google data centers reduce the non-computing energy ratios

down to about 10% [23]. However, these technologies require a clean slate redesign and

hence are cost prohibitive to apply in existing data centers. A recent survey reveals that

85% of existing data centers have non-computing energy ratios higher than 40% [81]. There-

fore, low-cost effective thermal management systems that can retrofit existing data centers

with better energy efficiency are highly appealing. Data center operational guidelines have

been revised recently to avoid overly conservative settings. For instance, the American So-

81

ciety of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) recommends to

increase the environmental temperatures in data centers up to 27◦C to reduce cooling en-

ergy consumption [71]. However, without a real-time thermal control system that ensures

the thermal safety, the higher environmental temperature setpoints will increase the risk of

server overheating. In fact, a survey in 2013 shows that 90% of data centers still operate

under 24◦C [82].

A variety of thermal control schemes have been recently proposed to prevent thermal

emergencies in a data center while reducing the energy costs. The existing approaches either

optimize a single thermal variable (e.g., server workload, CRAC setpoint, or fan speed,

etc.) [24][25] or a combination of them [26][27] to minimize the energy costs. However, most

of these approaches are based on a reactive scheme, which reactively controls the cooling

systems to eliminate detected hot spots. Unfortunately, this approach often cannot achieve

desirable energy efficiency, primarily due to the complex thermodynamics of data centers.

For instance, the heat generated by increased server workload takes substantial delays to

be recirculated to the server inlets. To react to the detected hot spots at the server inlets,

the CRAC systems need to adopt sufficiently low temperature setpoints, which, however,

significantly downgrade their energy efficiency [25].

In contrast to the existing reactive thermal control schemes, this chapter proposes a

proactive approach to prevent potential future hot spots. Specifically, our approach predicts

the energy consumption and thermal conditions resulted by each possible CRAC/circulation

control action in real time, and then executes the best one. We need to address two major

challenges to realize such a proactive control scheme. First, the thermal characteristics of a

data center are inherently affected by both physical (e.g., complex airflows) and cyber (e.g.,

dynamic server workloads) factors. In particular, the temperature evolution, the energy

consumption of CRAC/fan systems, and their control decisions are tightly coupled together.

Moreover, the control decisions not only need to improve the energy efficiency, but also must

account for servers’ thermal safety requirements. Second, a large number of variables in a

82

data center may affect the temperatures and the total energy consumption, including the

fan speed of each server and the temperature setpoint of each CRAC system. The global

energy optimization based on all controllable variables often has prohibitive computational

complexity. Moreover, to ensure system reliability even in certain thermal emergencies, the

thermal control system should not resort to the computing resources of the monitored data

center.

This chapter presents a real-time Predictive Thermal and Energy Control (PTEC) system

that improves the energy efficiency of both the cooling and circulation systems of a data cen-

ter, while meeting a set of thermal safety requirements. PTEC leverages the server built-in

sensors and monitoring utilities, as well as an external easy-to-deploy wireless sensor network

to monitor both the cyber and physical status of a data center, which includes CPU utiliza-

tion, dynamic air flow, temperature distribution, and CRAC/fan settings. Based on these

measurements, PTEC predicts the server inlet temperatures in real time and proactively

controls the temperature setpoints and blower speeds of CRAC systems, and the speeds of

server fans, to reduce their overall energy consumption. PTEC enforces a set of thermal

safety requirements including the upper bounds on server inlet temperatures and their tem-

poral variations. A high inlet temperature directly indicates server overheating and potential

server shutdowns, while a high temporal variation of server temperature can significantly in-

crease hardware failure rate [69]. To make the energy optimization problem tractable, PTEC

adopts a coordinated control approach. Specifically, a novel dynamic fan speed control al-

gorithm is first developed to automatically control the server fans based on the server CPU

utilization and the inlet temperature. Then, PTEC searches for the temperature setpoints

and blower speeds of CRAC systems to minimize the overall energy consumption of CRAC

systems and server fans. Moreover, we propose a partition-based algorithm, which divides

the CRAC systems to multiple regions based on their spatial thermal correlations with the

servers, to reduce the computational overhead of PTEC for large-scale data centers.

We prototyped PTEC and deployed it on a hardware testbed consisting of 15 servers

83

and a total of 23 temperature and power sensors. The results show that PTEC can reduce

the cooling and circulation energy consumption by up to 34% and 30%, compared with an

overcooling strategy and a reactive control strategy, respectively. We also conducted trace-

driven Computational Fluid Dynamics (CFD) simulations for an existing data center with

229 servers to validate the effectiveness and scalability of PTEC.

5.2 Problem Statement and Approach Overview

5.2.1 Problem Statement

The CRAC systems are the major source of energy consumption in many existing data

centers [20]. Another thermal-related source of energy consumption is the server fans, which

can take up to 23% of server power [42]. It has been shown that the cooling efficiency of a

CRAC system increases with its temperature setpoint [25]. With a higher setpoint, a CRAC

system can remove the same amount of heat with up to 40% less energy consumption[25].

However, a higher CRAC setpoint increases the likelihood of server overheating and heat-

induced server shutdown. Moreover, it may adversely increase server fan speeds for removing

the heat generated by the servers, resulting in higher overall energy consumption. This work

aims to design a control system to reduce the overall energy consumption of CRAC systems

and server fans, subject to a set of thermal requirements including upper bounds on server

inlet temperatures and their temporal variations. Upper-bounding them can prevent server

overheating and severe temperature fluctuations that can cause high hardware failure rates

[69].

A CRAC and server fan control system has to address the following two fundamental

issues. First, the data center has complex thermodynamics and tight thermal coupling

among the servers, the CRAC systems, and the physical environment. It is challenging to

accurately model the thermodynamics, which, however, is the base for designing an effective

thermal control system. Second, to adapt to the unpredictable dynamics of the data center,

84

CRACs

Data Center Predictive

Controller

Real-time Temperature Prediction

Online PredictionError Model

Constrained

Optimization

Thermal/Energy

Modeling

Control Solution Servers/Fan

Sensing & Monitoring

CPU utilization Fan speed

CRAC Setpoint/Blower spd.

Power Temperature

invoke

Figure 5.1 PTEC system architecture.

the control system must run in a real-time manner. However, the optimal control algorithm

is computation-intensive due to the complex and non-linear relationships among control

actions, energy efficiency, and thermal conditions.

This chapter designs a data center thermal and energy control system based on a pre-

dictive scheme. This design choice is based on the key observation that there are various

time delays in the data center thermodynamics. For instance, the extra heat generated

by suddenly increased server workload takes a considerable delay to be recirculated by the

server fans and the CRAC systems to the server inlets. Moreover, due to limited cooling

capacity, it typically takes a considerable delay for a CRAC system to reach the new tem-

perature setpoint. Thus, it is desirable to proactively control the CRAC/fan systems in an

energy-efficient manner to prevent potential future hot spots.

5.2.2 Approach Overview

Figure 5.1 illustrates the architecture of PTEC based on a predictive control scheme. It

consists of three major components:

Sensing and monitoring: PTEC periodically collects the measurements of the variables

that affect the temperatures in a data center, which include server status (CPU utilizations,

system temperatures, fan speeds, and powers) and CRAC status (powers, temperature set-

85

points, and blower speeds) from the built-in sensors and monitoring utilities, and a few

critical temperatures (e.g., server inlet and CRAC return hot air temperatures) from a small

number of wireless sensors. These wireless sensors, powered by either onboard batteries or

USB interface of servers, can self-organize into a network for data collection. Therefore, the

overhead of sensor installation process is small. Figure 5.8 shows the sensor deployment on

a single rack testbed.

Real-time temperature prediction: The system can rapidly predict the evolution of

temperature distribution based on the collected sensor data and a candidate CRAC/fan

control solution. Such a real-time prediction enables the system to assess a large number of

candidate control solutions during runtime.

Predictive controller: We model the power consumption of server fans and CRAC systems.

Based on the models, we formally formulate the problem of minimizing the predicted overall

energy consumption of server fans and CRAC systems, subject to a set of thermal safety

requirements. A predictive controller assesses the temperature evolution in the future for

each candidate control solution and chooses the most energy-efficient one. The solution

comprises the temperature setpoints, blower speeds of CRAC systems, and server fan speeds.

5.3 Power Consumption Models

5.3.1 Server Fan Power Consumption Model

Air circulation is critical for cooling servers in a data center. A server system is typically

equipped with several internal fans for cooling different components, such as power supply

unit and CPU. A server fan often regulates its speed according to the duty cycle of a pulse

width modulation (PWM) signal. Most servers control the fan speed using a simple native

algorithm, which linearly increases the PWM duty cycle based on the server inlet temper-

ature [83]. In Figure 5.2, curve r1 illustrates the input and output of the algorithm, which

is parameterized by two thresholds V1 and W1. When the server inlet temperature is lower

86

P
W

M
 d

u
ty

 c
y

cl
e Max

Min

Inlet

temperature

V1 W1 WM

r1
rM

ri, i=2, 3, ...

VM

Figure 5.2 PWM duty cycle vs. server inlet temperature in fan speed control. Curve r1
is the native fan speed control algorithm. Our new Dynamic Fan Speed Control algorithm
consists of the curves r1, r2, . . . , rM (cf. Section 5.4.3).

than V1, the algorithm sets a minimal PWM duty cycle to maintain the lowest allowed fan

speed. When the inlet temperature exceeds V1, the algorithm increases the PWM duty cycle

(and hence the fan speed) linearly with the inlet temperature. When the inlet temperature

exceeds W1, the algorithm sets the maximal PWM duty cycle, maintaining the full fan speed.

The relationship between the fan power and the PWM duty cycle can be estimated from

either offline experiments or online measurements. We conduct an experiment to measure the

power of a server fan (Delta Electronics BFB1012EH) under various PMW duty cycles. The

results are shown in Figure 5.3(a). Let D(T) denote the PWM duty cycle determined by the

native control algorithm, where T is the inlet temperature. We adopt a discrete-time model

with equal time steps. Let tn denote the time instant of the nth time step. For the lth server,

let PFl(D(Tl(tn)) denote the instantaneous power of its fan at time instant tn, where Tl is the

inlet temperature. Therefore, with the predicted inlet temperature Tl(tn+k) at time instant

tn+k, the predicted server fan instantaneous power is given by PFl(D(Tl(tn+k)), which is

abbreviated as PFl(tn, k) hereafter. The notation used in this chapter is summarized in

Appendix B.

5.3.2 CRAC Power Consumption Model

The power of a CRAC system is mainly determined by its temperature setpoint, blower

speed, and return hot air temperature. At time instant tn, the power consumption of the jth

CRAC system is denoted as PCj(Sj(tn), Bj(tn), THj(tn)), where Sj(tn), Bj(tn), and THj(tn)

87

60 73 87 100
12

20

29.4

PWM duty cycle (%)

P
o

w
er

 (
W

at
t)

(a)

15 20 25 30 35
1

1.25

1.5

Return hot air temperature (°C)

A
C

 p
o
w

er
 (

k
W

)

power

Compressor
transient power

(b)

Figure 5.3 (a) Power of a server fan vs. PWM duty cycle; (b) AC power vs. return hot air
temperature.

represent the temperature setpoint, the blower speed, and the return hot air temperature

for this CRAC system. For a CRAC system with continuous setpoint and blower speed, the

parameters of PCj can be obtained by interpolation based on offline measurements. With

the predicted return hot air temperature THj(tn+k) at time instant tn+k, the predicted in-

stantaneous power of the jth CRAC system is given by PCj(Sj(tn+k), Bj(tn+k), THj(tn+k)),

which is abbreviated as PCj(tn, k) hereafter.

As an example, we empirically study the power consumption model of a Tripp Lite

SRCOOL12K air conditioner (AC), which is specially designed for data centers. The resulted

model will be also used in our testbed experiments in Section 5.6. This AC has three

selectable blower speeds and a maximum cooling power of 1.5 kW. Figure 5.3(b) shows that

the power of this AC almost linearly increases with the return hot air temperature when

the compressor is not in a transient state. When the compressor is off, its power is almost

constant (not shown in Figure 5.3(b)) if the blower speed is fixed. Moreover, as different

blower speeds result in less than 10W power difference regardless of the compressor status,

we round up the power consumption of the blower to its maximal value to simplify the model.

When the compressor transits from off to on, there is a spike of transient power. However,

this spike lasts for about 15 seconds only and takes about 0.5% of the total energy under

normal settings. Therefore, it is neglected in our power consumption model. This AC does

88

tn+ktn

control cycle

(m =4) time

control cycle

(m =4)

optimization horizon (K=9)

tn+1 tn+K

Figure 5.4 Predictive control scheme.

not allow us to program the temperature setpoint. Therefore, for this particular AC, we only

control the on/off states of the blower and the compressor. As a result, the status of this AC

can be represented by two binary variables, which are the compressor status S ∈ {0, 1} and

the blower status B ∈ {0, 1}, where 0 and 1 represent off and on states. The instantaneous

power of this AC can be described by PC = B · [S · (ω1TH +ω0)+ω2], where the parameters

ω0, ω1, and ω2 can be estimated from the data shown in Figure 5.3(b).

5.4 Design of PTEC

5.4.1 Problem Formulation

PTEC adopts a predictive control scheme illustrated in Figure 5.4. Suppose the current

time instant is tn. The time interval between tn and tn+1 is referred to as a time step,

which is the period for sensor sampling and temperature prediction. Our system collects

measurements from sensors at the beginning of every time step. A control cycle is defined

as m consecutive time steps. At the beginning of each control cycle, PTEC determines the

CRAC settings and the server fan speeds to minimize the predicted overall power consump-

tion of the CRAC systems and server fans subject to a set of thermal requirements during

the following K time steps (i.e., from tn to tn+K), where K is the optimization horizon.

Based on this scheme, this section formulates the predictive control problem.

For a total of J CRAC systems and L servers, the predicted average power consumption

89

during the future K time steps is

P (tn) =
1

K

K∑

k=1

J∑

j=1

PCj(tn, k) +
L∑

l=1

PFl(tn, k)

 , (5.1)

where PCj is the power consumption of the jth CRAC system and PFl is the fan power

consumption of the lth server. We note that the server temperatures also affect the leakage

powers of server electronics. However, their temperature-induced changes are negligible

compared to the power consumption of server fans [69]. Therefore, our objective function in

Eq. (5.1) does not account for server leakage power.

PTEC enforces that the servers will not be overheated in the future K time steps. Let

Tl,k and TU denote the inlet temperature of the lth server at time instant tn+k and the

maximum allowed temperature (MAT) at any server inlet, respectively. PTEC aims to ensure

Tl,k < TU , ∀l ∈ [1, L] and ∀k ∈ [1, K]. A challenge in the design of any predictive control

system is how to cope with prediction errors [84][40]. Let T̂l,k denote the predicted inlet

temperature for the lth server at the prediction horizon k. We assume that the prediction

error (i.e., T̂l,k−Tl,k) follows the normal distribution N (µl,k, σ
2
l,k), which will be empirically

verified in Section 5.4.2. Thus, the actual temperature Tl,k ∼ N (T̂l,k − µl,k, σ
2
l,k). PTEC

requires that the actual temperature Tl,k is lower than TU with a confidence level α, i.e.,

Pr(Tl,k < TU) > α. Therefore, the upper bound for T̂l,k, denoted by T̃l,k, can be derived as

T̃l,k = TU + µl,k − σl,kQ
−1(1− α), (5.2)

where Q(·) is the Q-function of the standard normal distribution, i.e.,

Q(x) =
1√
2π

∫ +∞

x
exp(−z2

2
)dz.

Note that the parameters µl,k and σ2l,k should be estimated for each server l and prediction

horizon k. They can be continuously updated using the most recent historical measurements.

A data center should be prevented from significant temperature variation. The proba-

bility of a server outage can be doubled when the temporal temperature variation increases

90

by 50% [69]. PTEC computes the temperature variation over a moving window with size

of w ≥ K, from time instant tn−(w−K) to tn+K . The values before the time instant tn are

historical measurements and the values after that are predicted temperatures. We use the

relative standard deviation (RSD) to quantify the temperature variation, i.e., RSD = σT /µT ,

where σT and µT are the standard deviation and mean of the temperatures in the moving

window. We denote RSDl the RSD for the lth server. PTEC requires that the RSD of

each server is upper-bounded by a constant RSDU specified by the data center operator.

For instance, the setting RSDU = 0.04 can maintain a satisfactorily low fluctuation-induced

hardware error rate [69].

We now formally formulate the thermal and energy control problem that minimizes the

power consumption of CRACs and server fans. For a total of J CRACs and L servers, let D,

S, and B denote the vectors of server fan PWM duty cycles, CRAC temperature setpoints

and blower speeds over the optimization horizon, respectively, i.e., D = [D1, . . . , DL], S =

[S1, . . . , SJ], and B = [B1, . . . , BJ]. We formulate the problem as follows:

Problem 1. To find D, S, and B to minimize the predicted average power consumption

given by Eq. (5.1), subject to that, ∀l ∈ [1, L], ∀k ∈ [1, K],

1. the predicted inlet temperatures are lower than an upper bound: T̂l,k ≤ T̃l,k, where T̃l,k

is given by Eq. (5.2); and

2. the RSDs of the inlet temperature are lower than an upper bound: RSDl ≤ RSDU .

PTEC solves Problem 1 at the beginning of each control cycle and controls the CRAC

systems and server fans according to the solution. Problem 1 is a non-linear constrained

optimization problem with prohibitive computational complexity due to the complex thermal

interactions between CRAC systems and server fans. In particular, the exhaustive search

has an exponential complexity with respect to the total number of CRAC systems and

server fans. To make the problem tractable and achieve satisfactory real-time performance,

91

−1 0 1
0

20

40

60 µ= 0.04

σ
2
= 0.06

error (k=1)

O
c
c
u
rr

e
n
c
e

−1 0 1
0

20

40
µ= 0.00

σ
2
= 0.11

error (k=3)
−5 0 5
0

20

40

60
µ= 0.00

σ
2
= 0.87

error (k=6)

Figure 5.5 Histograms of prediction errors with k = 1, 3, and 6. (time step = 30s)

we propose a coordinated control approach. Specifically, the servers will control the fan

speeds autonomously according to server inlet temperatures and CPU utilizations, by using

an algorithm in Section 5.4.3. Thus, the variables of Problem 1 are reduced to S and B

only. It is important to note that, when PTEC assesses each candidate solution 〈S,B〉, the

resulted fan speeds under the autonomous control algorithm will be used to calculate the

predicted average power consumption, inlet temperatures, and RSDs. Thus, this coordinated

control approach accounts for the interdependence between server fans and CRAC systems.

Therefore, it does not substantially degrade the solution quality.

5.4.2 Real-Time Temperature Prediction

PTEC integrates the real-time data-driven temperature prediction system proposed in

Chapter 4, which predicts server inlet temperatures based on cyber and physical status

of the data center. The input of the system includes the temperatures at a set of selected

locations, e.g., server inlets and CRAC hot air return registers, measured by either a deployed

wireless sensor network or server built-in sensors. For a total of D temperatures, we define

the temperature distribution T = [T1;T2; . . . ;TD] ∈ RD×1, where Td is the temperature

at the dth location in the data center. The temperature distribution is predicted by a

set of thermal variables that significantly affect T and are monitored by sensors. They

include the CRAC setpoints S and blower speeds B, server fan speed control settings R,

and CPU utilizations U. Moreover, the historical temperature distributions also largely

92

affect the temperature distributions in the near future. Therefore, we define the state of the

monitored data center at a time instant, denoted by p, as a collection of thermal variables,

i.e., p = [S;B;R;T;U]. The state p is measured every time step. At the beginning of

a control cycle, the temperature distribution at time instant tn+k, denoted by T(tn+k), is

predicted based on the most recent R states. By setting increasing prediction horizon k, the

system predicts the temporal evolution of T. This machine-learning-based prediction system,

which is trained with data from real sensors and offline CFD simulations, achieves a desirable

trade-off between prediction fidelity and computation overhead. Moreover, its high-speed

feature allows PTEC to iteratively search for the best control solution (cf. Section 5.4.4).

Figure 5.5 shows the histograms of temperature prediction errors for a server inlet. The

errors can be well characterized by normal distributions. Consistent with intuition, the error

variance increases with the prediction horizon. The error means and variances for different

prediction horizons are used in Eq. (5.2).

5.4.3 Dynamic Fan Speed Control

The main purpose of server fan is to prevent the internal electronic components, e.g.,

CPU, from overheating. A key drawback of the native fan speed control approach discussed

in Section 5.3.1 is the neglect of the server status (e.g., CPU utilization) that also affects com-

ponent temperatures. For instance, the fan may run at an unnecessarily high speed when

the server is idle. Feedback fan control has been proposed to reduce the fan energy con-

sumption [27]. However, the fan speeds under the feedback control are often unpredictable,

making it difficult to model and minimize the total system energy consumption.

Our new fan speed control approach, called Dynamic Fan Speed Control (DFSC), jointly

considers CPU utilization and inlet temperature. Figure 5.6 shows the minimal fan speeds

(in PWM duty cycle) to meet two given upper bounds of CPU temperature (46◦C and

40◦C) versus server inlet temperature, under various CPU utilizations. We can observe

that the minimal fan speed has a near-linear relationship with the inlet temperature. More

93

25 30 35 40
60

73

87

100

CPU temp. upper bound = 46°C

(a) Inlet Temperature (°C)

P
W

M
 d

u
ty

 c
y
cl

e
(%

)

20 25 30 35
60

73

87

100

CPU temp. upper bound = 40°C

(b) Inlet Temperature (°C)

P
W

M
 d

u
ty

 c
y
cl

e
(%

)

CPU=0.9

CPU=0.5

CPU=0.1

CPU=0.9

CPU=0.5

CPU=0.1

r
1

r
2

r
3

r
2

r
3

r
1

Figure 5.6 Minimal required PWM duty cycle (marked curve) vs. server inlet temperature
under various CPU utilization. Sub-figures (a) and (b) are the results for different CPU
temperature upper bounds (46◦C and 40◦C). A DFSC setting ri comprises two endpoints of
a dashed line.

importantly, such a relationship varies with the CPU utilization. Thus, DFSC reuses the

native fan speed control algorithm but adjusts its setting in response to the CPU utilization

changes while meeting a CPU temperature upper bound requirement. Specifically, DFSC

discretizes the CPU utilization into M levels. The first level represents full utilization while

the Mth level represents idle. Each level is mapped to a setting of two thresholds of the

native control algorithm. As illustrated in Figure 5.2, the setting for the ith CPU utilization

level is denoted by ri = 〈Vi,Wi〉, where i ∈ [1,M]. When the CPU utilization is at the ith

level, the native algorithm will be invoked with the setting ri. Under the setting r1, the

CPU temperature upper bound should be met when the server is fully utilized. Similarly,

under the setting rM , the CPU temperature upper bound should be met when the server is

idle. The settings {r1, r2, . . . , rM} are hardware-dependent and can be empirically measured,

e.g., through offline experiments, or provided by hardware manufacturers. The servers can

also run an online feedback fan controller [27] for a certain period of time to measure these

settings when the CPU temperature is stable. Once the settings are measured, the servers

can start using DFSC. In Figure 5.6, the endpoints of dashed lines show the DFSC settings

with M = 3.

94

5.4.4 Predictive Controller

In our current implementation of PTEC, we use the constrained simulated annealing

(CSA) algorithm [85] to search for the CRAC setting (S and B) that minimizes Eq. (5.1)

subject to the thermal safety requirements. The CSA algorithm is more efficient than the

brute-force search and can asymptotically converge to the optimal solution [85]. For instance,

for 229 servers and 4 CRAC units, each of which has 6 different states of setpoint and blower

speed, it takes the CSA algorithm only 5 seconds on a 3.4GHz desktop computer to converge

to a near-optimal solution with an optimization horizon of 8.

We now discuss the settings of control cycle m and optimization horizon K. First, intu-

itively, the system with a short control cycle can respond to the thermal condition changes

quickly. However, a short control cycle allows less time for solving the optimization prob-

lem. Second, it is desirable to set a larger optimization horizon K such that the predictive

controller accounts for a longer period of thermal dynamics into the future. However, its

setting must also consider both the prediction accuracy and the controller’s computational

overhead. Therefore, the settings for m and K should achieve a satisfactory trade-off be-

tween control quality and computational overhead. In our testbed experiment with 6 servers

and a portable AC, the control decision can be computed within a second when K is set to

6 to 9 minutes. Therefore, we set m = 1 to 3 minutes since the AC should not be switched

frequently. Under these settings, nearly 90% of prediction errors are within 1◦C.

5.4.5 Scalable Partition-Based Predictive Controller

Due to the non-convexity of Problem 1, the computational overhead of CSA increases

exponentially with the number of CRAC systems. The resulted delay may jeopardize the

real-time performance of PTEC for large-scale data centers. This section presents a partition-

based algorithm that can significantly reduce the computational overhead while maintaining

satisfactory solution quality. It consists of an offline stage and an online stage. The offline

stage partitions the data center into several regions based on the thermal correlation index

95

CRAC2

CRAC1

CRAC3

1

2
4

5

6

Server
3

g
1

g
2

Figure 5.7 Example of partitioning. The servers within an oval are associated with the
CRAC in the oval. Region g2 contains CRAC3 only since Server5 and Server6 are associated
with CRAC3 only. CRAC1 forms a region since Server3 is associated with CRAC1 only.
No servers are associated with CRAC2 exclusively. Therefore, CRAC2 will be merged with
CRAC1 to form region g1.

(TCI) [24], which characterizes the cooling effectiveness for a location provided by a CRAC

system. The online stage solves Problem 1 within each region, and iteratively revises the

sub-solution for each region to meet the thermal requirements of the servers out of any

regions.

The TCI for the lth server and the jth CRAC system is defined as γl,j =
∆Tl
∆TCj

, where

∆TCj denotes a step change of the supply air temperature of the jth CRAC system and

∆Tl is the resulted steady temperature change at the lth server inlet. A larger γl,j indicates

a stronger capability of the CRAC system to remove the heat from the server. TCI can

be experimentally measured by perturbing CRAC setpoints or numerically obtained from

Computational Fluid Dynamics simulations [24]. The lth server and the jth CRAC system

are associated if γl,j ≥ λ, where λ ∈ (0, 1) is a threshold specified by the system operator.

Thus, the temperature at the lth server’s inlet is mainly affected by its associated CRAC

systems. For instance, in Figure 5.7, Server5 and Server6 are associated with CRAC3 only,

and their inlet temperatures are mainly affected by CRAC3.

The offline stage partitions the data center into a number of regions based on the TCIs.

For a region denoted by g, let Cg denote a set of CRAC systems in this region and Eg denote

a set of servers that are associated with the CRAC systems in Cg exclusively. Formally,

Eg = {l|γl,j ≥ λ, ∃j ∈ Cg, ∀l} ∩ {l|γl,j < λ, ∀j /∈ Cg, ∀l}. For example, the two dash-dotted

rectangles in Figure 5.7 show two such regions, denoted as g1 and g2. In this example,

96

Cg1 = {CRAC1,CRAC2}, Cg2 = {CRAC3}, Eg1 = {Server1, Server2, Server3}, Eg2 =

{Sever5, Server6}. We note that some servers that are associated with many CRAC systems

may be out of any Eg, e.g., Server4 in Figure 5.7. These servers are called ungrouped servers.

Let C and G denote the set of all CRAC systems and the set of all regions. The offline

stage looks for a partition scheme to minimize max∀g∈G |Cg| subject to 1)
⋃
g∈GCg = C,

2) Cg ∩ Ch = ∅, ∀g 6= h, and 3) Eg 6= ∅, ∀g ∈ G. As we will solve Problem 1 within each

region g in the online stage, the objective of minimizing the maximum number of CRAC

systems in any region significantly reduces the computation overhead of the online stage.

We develop a heuristic algorithm based on an existing Maximum-Weight Independent Set

(MWIS) algorithm [86] to solve this partitioning problem. In Appendix C.1, we use an

example to illustrate our algorithm.

Based on the regions partitioned by the offline stage, the online stage solves Problem 1.

Algorithm 1 shows the pseudocode of the online stage algorithm. Initially, for each region

g, Problem 1 is solved for Cg and Eg using the CSA algorithm. The solution for a region is

called a sub-solution. The initial solution for the data center thus comprises all sub-solutions.

However, this solution may not meet the thermal requirements for the ungrouped servers.

The online stage iteratively updates the solution by solving Problem 1 for each region plus

all these ungrouped servers. As an ungrouped server is cooled by the CRAC systems from

multiple regions, its MAT constraint can be relaxed in each region where it is associated with

a CRAC system. The relaxation in each iteration is as follows. For a prediction horizon k,

the predicted inlet temperature T̂l,k of the lth ungrouped server can be computed based on

the solution in the previous iteration. If the predicted temperature T̂l,k exceeds the upper

bound T̃l,k given by Eq. (5.2), the deviation T̂l,k − T̃l,k characterizes the amount of extra

heat that needs to be removed from the lth server inlet[87]. PTEC allocates this extra heat

to each region g proportionally based on the total TCI of all CRAC systems in g. This is

achieved by relaxing the MAT constraint for the lth ungrouped server in each region g as

T̃
g
l,k

= T̂l,k−
∑

j∈Cg γl,j∑
j∈C γl,j

· (T̂l,k− T̃l,k). Problem 1 is solved for each region g with the relaxed

97

MAT constraint T̃
g
l,k

for each ungrouped server l. The above process is repeated until all

ungrouped servers’ thermal requirements are satisfied. The pseudocode of the online stage

and its convergence proof can be found in Appendix C.2.

In the partition-based predictive controller, Problem 1 is solved for each small region, re-

sulting in significantly lower computation overhead compared with that of solving Problem 1

for the whole data center. In Section 5.6.4, we will evaluate the overhead and effectiveness

of this approach.

5.5 Implementation

5.5.1 Testbed and Sensor Deployment

We implemented PTEC on a single-rack testbed shown in Figure 5.8. It consists of a rack

of 15 1U 1 servers in a 5×6 square feet room insulated by foam boards. On the rack, 15 servers

are grouped every three servers with a 2U distance between every adjacent two groups. Each

server is equipped with 2 PWM-controlled fans (Delta Electronics BFB1012EH) to cool the

internal components. Each fan consumes a maximum of 29.4W input power and the two

fans contribute up to 25% of total power consumption of a server. Each server also has

three on-board temperature sensors to monitor the CPU and server inlet temperatures. A

Tripp Lite portable AC (SRCOOL12K) with a rated power of 3.5 kW is placed aside the

server rack within the room. To enable its automatic control, we connect it to several power

relays, which can be remotely switched by a program. Its return hot air register faces the

side of server outlets, drawing the hot air. It delivers cold air through a register located

at the bottom of the room in front of the rack, which is consistent with the popular raised

floor cooling design in production data centers. However, due to this AC’s limited cooling

capacity, up to 6 servers can be running at the same time in our experiments. A total of 15

Iris temperature sensors are mounted with brackets at the outlets of the 5 group of servers.

1U is the unit of the height of a server, which is 1.75 inches.

98

Cold air
inlet

Base
station

AC

Power

relay

Hot air
return

In
su

la
ti

o
n

Exhaust

Server

inlets

P
o

w
er

 m
et

er

Temp.
sensor

Server rack

Figure 5.8 A single-rack testbed that consists of a base station, a portable AC, a rack of 15
servers, and a total of 23 temperature/power sensors.

To monitor the AC status, we place an Iris temperature sensor at the AC cold air register

and another at the hot air return register. To measure the power consumption of the servers

and AC, we attach a wireless power meter for each server and AC. This small testbed allows

us to study the fine-grained performance of PTEC.

5.5.2 System Implementation

Our system consists of two data collection networks and a base station that runs the

predictive controller. The base station collects the data from the wireless sensors connected

via 802.15.4 wireless links and the internal server sensors (inlet temperature sensor and fan

speed sensor) over the Ethernet. It also runs the optimization algorithm and sends the

control commands to the AC. The data collection is implemented with JAVA on the base

station, while the temperature prediction and the predictive controller are implemented with

MATLAB.

Sensor network. We use a single-hop network architecture, where the base station sends

the data collection requests to the sensors sequentially and each sensor transmits the mea-

surements back. Every 30 seconds, the base station performs a round of sequential data

99

collection from all sensors. Note that a multi-hop network topology can be used when more

server racks are monitored. As this collection scheme works in a time-division fashion, the

system experiences few collisions between the data transmissions of different sensors. The

programs on all wireless sensors are implemented in TinyOS 2.1.

Server network. CPU utilization, on-board temperatures, fan speeds and DFSC settings

are important thermal variables from each server. Data centers typically run various server

monitoring tools (e.g., atop, ganglia) that can collect on-board sensor information. We

implement a program to control and measure the CPU utilization, and report on-board

temperatures and fan speeds from the lm-sensors utilities. The base station leverages the

existing Ethernet infrastructure to collect these on-board sensor readings and DFSC settings.

Fan speed and AC control. A GNU BASH script running on each server implements the

DFSC algorithm. A separate wireless connection is established between the base station and

a TelosB mote that connects to a power relay control circuit board of the AC. When the

mote receives the control signal from the base station, it turns on/off the AC.

5.6 Performance Evaluation

We evaluate the performance of PTEC with testbed experiments in Section 5.6.1 to 5.6.3,

and trace-driven Computational Fluid Dynamics simulations in Section 5.6.4.

5.6.1 Effectiveness of DFSC

DFSC adopts two settings, i.e., r1 = 〈28◦C, 34◦C〉 and r2 = 〈30◦C, 42◦C〉. We employ

a baseline approach that controls the fan speed solely based on the setting r1 to meet the

MAT requirement when the server is fully utilized. This baseline is consistent with the

static fan speed control scheme used in most servers. As both algorithms adopt r1 when

the CPU is fully utilized, we compare them when the server is idle. The two curves in

Figure 5.9(a) show the server power consumption under the two approaches. The server

100

30 32 34 36 38

160

180

200

(a) Inlet temperature (°C)

P
o

w
er

 (
W

)

30 32 34 36 38

40

45

50

(b) Inlet temperature (°C)

C
P

U
 t

em
p

.
(°

C
)

baseline

DFSC

baseline

DFSC

Figure 5.9 Server power and CPU temperatures under DFSC and the baseline approach
when the server is idle.

power consumption of the baseline increases with inlet temperature much faster than DFSC.

It reaches about 200W when the temperature is 34◦C. In comparison, DFSC consumes less

than 180W at the temperature of 34◦C. Therefore, each individual idle server can save more

than 20W if TU is 34◦C. Moreover, as shown in Figure 5.9(b), the CPU temperatures under

our DFSC approach are slightly higher than those under the baseline approach. However,

they are still significantly lower than the maximum allowed temperature of the CPUs (69◦C).

This result shows that DFSC can save significant amount of energy on the idle or low utilized

servers.

5.6.2 Effectiveness of Predictive Controller

In this experiment, we compare PTEC with two baselines. The first baseline, referred to

as max cooling, sets a fixed low CRAC setpoint while the server fans maintain the full speed.

This baseline provides the maximum cooling capability to prevent overheating. The second

baseline, referred to as reactive control, applies DFSC to control server fans and a hysteresis

principle to control the AC reactively, so that the inlet temperatures are maintained within

a range. Let R(TU , TB) denote a reactive control strategy specified by two parameters, i.e.,

the temperature upper bound TU and the temperature band TB. Specifically, when the

inlet temperature exceeds TU , the AC starts to work until the inlet temperature is reduced

to TU − TB. Then, the AC is turned off.

101

0

800

1500

P
o

w
er

(W

)

0
0.5

1
C

P
U

u

ti
l.

160

180

200

P
o

w
er

(W

)

5 5.5 6 6.5 7
26

28

30

32

34

Time (Hours)

In
le

t
te

m
p

.

(°
 C

)

AC

Server

A1 A2 A3 A4

(c)

(b)

(a)

(d)
T
U
=33

Figure 5.10 Evolution of PTEC and max cooling baseline on a server. (a) AC power; (b) CPU
utilization; (c) Server power excluding non-idle CPU power; (d) Server inlet temperature.

Table 5.1 Average power consumption (Watt)

A1 A2 A3 A4

AC power 903 639 931 1254
Server power 1065 1035 1077 1279

5.6.2.1 Comparison with max cooling

Figure 5.10 shows the comparison between PTEC and the max cooling scheme. The

optimization horizon K = 12 (6 minutes), the control cycle length m = 2 (1 minute), and

the MAT constraint TU = 33◦C. We intentionally use a large RSDU to study the effect of

MAT constraint. The entire experiment comprises four periods, i.e., A1 to A4. Periods A1 to

A3 run PTEC and Period A4 runs the max cooling. In Period A1, the CPU is fully utilized

(Figure 5.10(b)), which generates significant heat and may cause fast temperature rise. In

response to this high CPU utilization, DFSC configures server fans to r1, resulting in an

average server power consumption of 170W (Figure 5.10(c)). Note that, in Figure 5.10(c),

CPU power consumption is not included and the power fluctuations are mostly caused by the

fan speed changes. In Figure 5.10(d), we can see that the MAT constraint is satisfied. When

the system enters Period A2, the server switches to idle state. With lower CPU utilization,

DFSC configures server fans to r2, resulting in a relatively low server power consumption

102

0

800

1500

P
o

w
er

(W
)

155
160
165
170

P
o

w
er

(W
)

0 0.5 1 1.5 2
28

30

32

33

34

Time (Hours)

In
le

t
te

m
p

.

(°
 C

)

AC

Server

(a)

B2 (b)B1

(c)T
B
=3

T
B
=2

T
B
=3

T
U

 =32

T
U

 =33 AC failure Overheat

B3

Figure 5.11 Reactive control approach when the servers are idle. (a) AC power; (b) Server
power excluding non-idle CPU power; (c) Server inlet temperature. Three periods are marked
from B1 to B3.

(Figure 5.10(c)). Since the CPU utilization is low in Period A2, the system maintains a

higher inlet temperature without overheating the servers. Thus, the AC can be turned off

more frequently to save energy. In Period A3, the server CPU utilization becomes high again

and the inlet temperature is maintained at a lower level. In Period A4, we apply the max

cooling approach. Table 5.1 shows the average AC and server power consumption during

each period. PTEC in Period A1 (i.e., full CPU utilization) and A2 (i.e., server idle) reduces

total power consumption by 22% and 34%, respectively, compared with the max cooling in

Period A4.

5.6.2.2 Comparison with reactive control

Figure 5.11 shows the experiment results for the reactive control. We start the control

with TU = 32◦C and TB = 3◦C. At about 50 minutes, we increase TU to 33◦C. Under both

settings, the inlet temperature remains below TU . After 1.5 hours, we set TB = 2◦C. An

unexpected AC failure occurred in this experiment, during which the AC failed to respond

to the turning-on request due to a wireless link disconnection. However, this failure lasts

103

28

30

32
33
34

T
em

p
er

at
u
re

(°
 C

)

0 30 60 90
0

0.5
1

Time(minute)

C
P

U

u
ti

l.
R(32, 2) R(33, 2) R(33, 3) PTEC

Figure 5.12 Inlet temperature under PTEC and reactive control. R(TU , TB) denotes a
reactive control baseline with settings TU and TB.

for 3 minutes only and does not affect the rest of the experiment. After about 2.3 hours,

the temperature exceeds TU for 2 minutes even if the AC has been turned on to react to

overshooting TU . Thus, for the reactive control approach to cope with the dynamic heat

generated in a data center, TU should be sufficiently low and TB should be sufficiently large.

Such conservative settings often lead to overcooling and excessive power consumption.

Figure 5.12 shows the results of the inlet temperature of a server under PTEC and the

reactive control approach with TU = 33◦C. Control cycle length is set to m = 6 (3 minutes).

It can be seen that PTEC consistently maintains the temperature below TU . The reactive

control with TU = 33◦, however, exceeds the MAT constraint TU frequently. By lowering

the TU to 32◦C, the reactive control can maintain the temperature below TU . Note that as

all approaches adopt the DFSC, their fan power consumptions are similar. Figure 5.13 shows

the AC power consumption of PTEC and the reactive control approach when the servers are

idle. PTEC can reduce the power by up to 30%. In addition, PTEC also reduces the power

by up to 20% when the servers are fully utilized.

104

30 31 32 33
600

800

1000

Upper bound T
U

 for reactive control (°C)

A
C

 p
o

w
er

 (
W

)

T
B
=2°C T

B
=3°C PTEC

Figure 5.13 AC power consumption of reactive control baselines and PTEC when the server
is idle.

0
800

1500

P
o
w

er
(W

)

0
0.5

C
P

U

u
ti

l.

0 0.5 1 1.5
28

34

38

Time (Hours)

In
le

t
te

m
p
.

(°
 C

)

inlet T
U

C1 C2 C3

(a)

(c)

(b)

Figure 5.14 Impact of MAT. (a) AC power; (b) CPU utilization; (c) Server inlet temperature.
Three periods are marked from C1 to C3.

5.6.3 Impact of Predictive Controller Settings

5.6.3.1 MAT

This section evaluates the impact of TU on PTEC. We set K = 18 (9 minutes). In

Period C2 of Figure 5.14, we configure all the servers to be fully utilized. With TU = 34◦C,

the system turns on the AC to reduce the inlet temperature in response to a predicted

temperature rise. At the beginning of Period C3, we intentionally reconfigure TU = 38◦ to

allow increased inlet temperature due to the full utilization of servers. In this period, the AC

is on intermittently, resulting in a higher average inlet temperature than that in Period C2.

However, PTEC does not increase the inlet temperature close to TU , because, otherwise, the

increased server fan power due to higher speeds will cancel the energy saving of the AC by

105

30

32

34

T
em

p
.

(°
C

)

40 50 60 70
0

0.5

1

Time (minutes)

C
P

U
u

ti
l.

0

0.5

1

1.5

A
C

 P
o

w
er

(k
W

)

RSD
U

 = 0.05 RSD
U

 = 0.02

RSD
U

 = 0.05

RSD
U

 = 0.02

Figure 5.15 Evolution of inlet temperature under different RSD requirements.

reducing working time.

5.6.3.2 RSDU

We now evaluate the impact of RSDU setting. The RSD computing window size w is

set to 36 (18 minutes). Other settings are: m = 6, K = 12, TU = 35◦C. The RSDU

is set to either 0.05 or 0.02 to evaluate its impact. Figure 5.15 shows the results of an

inlet temperature under different settings of RSDU . In the first 45 minutes, the servers are

fully utilized and PTEC cannot turn off the AC without exceeding TU . After 45 minutes

under the setting RSDU = 0.05, PTEC turns off the AC since the servers are idle, without

violating the constraints on inlet temperatures and their RSDs. However, under the setting

RSDU = 0.02, the AC has to remain on to avoid temperature variations. This result suggests

that an inappropriately small RSDU may restrain the AC from changing operating status,

thus eliminating the opportunity for energy saving. As suggested in [69], RSDU = 0.05 is a

practical setting for real data centers.

106

15

22

26
In

le
t

te
m

p
.

(°
C

)

0 0.5 1 1.5 2 2.5 3 3.5

10
20
30

Time (hours)

P
o

w
er

(k
W

)

Rack 1 Rack 2 Rack 3 Rack 4 Rack 5 T
U

(b)

(a)

Figure 5.16 PTEC in CFD simulations. (a) Average server inlet temperatures of each server
rack; (b) CRAC power.

5.6.4 Trace-Driven Computational Fluid Dynamics Simulations

In addition to the testbed evaluation, we study the performance of PTEC by Compu-

tational Fluid Dynamics (CFD) simulations driven by real workload data traces collected

from the High-Performance Computing Center (HPCC) of Michigan State University. We

use a commercial CFD software (ANSYS Fluent) to model a part of this data center, which

hosts five racks of totally 229 servers. The racks are arranged in two rows with a cold aisle

between them. Two in-row CRAC systems are installed for each row. Due to the lack of a

complete CFD model of HPCC, we model each CRAC system as a cooling unit with three

discrete cooling powers, i.e., 24 kW (rated power of each CRAC system in HPCC), 17 kW,

and 9.6 kW. Thus, PTEC selects a cooling power instead of tuning temperature setpoint.

Moreover, each CRAC system has two blower speeds. The simulations are driven by the

server workload traces of these 229 servers. A time step is 5 minutes. Other settings are:

m = 4 (20 minutes), K = 8 (40 minutes), and w = 18 (1.5 hours).

Figure 5.16(a) shows the results of server inlet temperatures under PTEC. Initially, we set

TU = 26◦C. We can see that PTEC controls the server inlet temperatures at around 26◦C.

At about 1.3 hours and 2.3 hours, we set TU = 22◦C and TU = 26◦C, respectively. All inlet

temperatures are maintained at around TU . Figure 5.16(b) shows the resulting CRAC power

consumption. After we increase TU from 22◦C to 26◦C at about 2.3 hours, PTEC controls

107

15

20

24
26

In
le

t
te

m
p

.

(°
C

)

0

0.5

1

C
P

U

u
ti

l.

0 2 4 6 8 10 12 14 16 18 20 22 24

10

15

25

Time (hours)

P
o

w
er

(k
W

)

Rack1 Rack2 Rack3 T
U

Rack1 Rack2 Rack3

PTEC TAPO (0.81) TAPO (0.5)

(b)

(a)

(c)

Figure 5.17 Temperature control under dynamic CPU utilizations.

the CRAC systems to gradually increase the server inlet temperatures without violating the

RSD requirement, and the CRAC power consumption is reduced by up to 35%.

We now evaluate the effectiveness of PTEC under dynamic CPU utilization. The real

CPU utilization traces span 96 hours. We select a portion of 24 hours that exhibit the

highest dynamic levels to drive the simulation. For clear illustration, Figure 5.17 shows the

results of only three racks. The average CPU utilizations of these three racks are shown in

Figure 5.17(b). Initially, we set TU = 24◦C. Since the average utilizations of all three racks

are high, PTEC keeps relatively low inlet temperatures to prevent overheating. At the 5.2

hours, we increase TU to 25◦C. Since the CPU utilization is still high, PTEC cannot further

increase the inlet temperatures. After about 6 hours, the CPU utilization of Rack3 drops

significantly. PTEC is then able to increase the inlet temperature without violating the new

TU . After 8 hours, PTEC reduces the inlet temperatures in response to the increased utiliza-

tion of Rack3. After about 14 hours, we set TU = 26◦C. Initially, the inlet temperatures are

maintained at a low level due to the high CPU utilization. After 16 hours, PTEC gradually

increases the inlet temperatures close to TU in response to the reduced CPU utilizations.

This experiment shows that PTEC can well adapt to the dynamics of realistic data center

108

0 1 2
0.7

0.8

0.9

1

Temperature overshoot (°C)

C
D

F

brute−force

partition

(a)

1 2 3 4
0

20

40

60

80

Number of CRACs

E
x

ec
u

ti
o

n
 t

im
e

(s
)

brute−force

partition

(b)

Figure 5.18 (a) CDF of temperature overshoot; (b) Average execution time vs. the number
of CRACs.

server workload.

We also compare PTEC with a baseline approach that is a variant of an existing represen-

tative control approach TAPO [27]. TAPO uses a fixed low CRAC temperature setpoint TL

if the CPU utilization is higher than a predefined threshold u. Otherwise, it uses a fixed high

CRAC temperature setpoint TH . In our simulations, we set TL = 22◦C and TH = 26◦C.

In [27], the threshold u is 0.5. Under this setting, as shown in Figure 5.17(c), TAPO al-

ways uses TL since the CPU utilizations in the simulation never drop below 0.5. By setting

u = 0.81, the cooling power consumption under TAPO is comparable to that under PTEC.

This result shows that the setpoints of TAPO need to be manually tuned to achieve the

desirable performance. As the CPU utilization is unpredictable in real data centers, TAPO

may not well adapt to dynamic CPU utilization.

We finally evaluate the partition-based algorithm in Section 5.4.5. We partition HPCC

to four regions, each of which contains one CRAC system. We compare our approach with

a brute-force approach that exhaustively searches the optimal solution to Problem 1 for

the whole data center. Figure 5.18(a) shows the Cumulative Distribution Function (CDF)

of the inlet temperature overshoots over TU in a 12-hour simulation. For the brute-force

approach, 90% of temperatures do not exceed TU , and more than 95% of all temperatures

109

40

80

100
P

o
w

er

(k
W

)

0 0.5 1 1.5 2 2.5 3 3.5
0

50

100

Time (hours)

E
x

ec
u

ti
o

n

ti
m

e
(s

)

partition brute−force

partition brute−force

(b)

(a)

Figure 5.19 Performance comparison between the brute-force and partition-based approaches.
(a) power; (b) execution time.

fall within 1◦C above TU . The performance of our approach is slightly lower than the

brute-force approach. As shown in Figure 5.18(a), for a temperature overshoot of 1◦C, the

two approaches are comparable. In practice, we can set 1◦C safety margin between the

setpoint and the overheating temperature. Figure 5.19 shows that our approach achieves

comparable total power consumption and reduces the execution time significantly, compared

with the brute-force approach. The average execution time of our approach is only 5% of that

of the brute-force approach. Moreover, Figure 5.18(b) shows that the execution time on an

Intel Core i7-2600K 3.4GHz CPU of the brute-force approach increases exponentially with

the number of CRAC systems. On the contrary, the execution time of our approach increases

slowly and linearly with the number of CRACs. These results show that our approach can

find near-optimal solutions with satisfactory scalability. The low computational overhead

enables PTEC to be implemented on portable hardware without relying on the computing

infrastructure of monitored data center.

5.7 Conclusion

This chapter presents the design and evaluation of PTEC – a system for predictive

thermal and energy control in data centers. PTEC leverages the server built-in sensors and

110

monitoring utilities, as well as a wireless sensor network to monitor the thermal and power

conditions of a data center. Based on the sensor data, it predicts the server temperatures in

real time, and optimizes temperature setpoints and cold air supply rates of cooling systems,

as well as the speeds of server internal fans, to minimize their overall energy consumption.

Moreover, PTEC enforces a set of thermal safety requirements including the upper bounds

on server inlet temperatures and their variations, to prevent server overheating and reduce

server hardware failure rate. Experiments on a small hardware testbed and trace-driven

CFD simulations based on a production data center show that PTEC can reduce the cooling

and circulation energy consumption by up to 34% and 30%, compared with an overcooling

strategy and a reactive control strategy, respectively.

111

CHAPTER 6

CONCLUSION

This dissertation presents the holistic performance control approaches of two types of

mission-critical Cyber-Physical Systems. First, it presents a fidelity-aware real-time CPU

utilization control approach to jointly ensure the fidelity and timeliness performance require-

ments of wireless cyber-physical surveillance systems. It proposes a novel problem formu-

lation to enforce a given upper bound on the CPU utilization while minimizing the system

detection error rate. The problem formulation is based on rigorous performance models

that characterize the fusion-based detection performance and the expected CPU utilization

induced by processing stochastic detection results. Then, it develops Fidelity-Aware Utiliza-

tion Controller (FAUC) that adaptively adjusts the data fusion threshold to bound the CPU

utilization for ensuring real-time schedulability while minimizing the system detection error

rate. FAUC has been implemented on a small-scale WCS testbed to evaluate the FAUC

under real dynamics and conducted extensive simulations based on real acoustic data traces.

The extensive experiments show that FAUC can achieve robust fidelity and timeliness control

in the presence of significant physical dynamics and unreliable wireless links.

Second, we present a proactive thermal and energy control approach for data centers

to improve the energy-efficiency performance while ensuring the data center reliability. It

consists of a high-fidelity real-time temperature prediction approach and a predictive ther-

mal and energy control (PTEC) system. The prediction approach integrates Computational

Fluid Dynamics (CFD) modeling and real-time data-driven prediction to achieve high fidelity

temperature prediction in various thermal conditions of data centers. Extensive experimental

results show that this approach can accurately predict the temperatures up to 10 minutes

into the future, even in the presence of highly dynamic server workloads. PTEC system

leverages the server built-in sensors and monitoring utilities, as well as a network of wire-

112

less sensors to monitor the thermal and power conditions of a data center. Based on the

sensor data, it use the proposed prediction approach to estimate the server temperatures in

real-time, and optimize temperature setpoints and cold air supply rates of cooling systems,

as well as the speeds of server internal fans, to minimize their overall energy consumption.

To ensure the data center reliability, PTEC enforces a set of thermal safety requirements in-

cluding the upper bounds on server inlet temperatures and their variations, to prevent server

overheating and reduce server hardware failure rate. Extensive experiments and trace-driven

CFD simulations show that PTEC can safely reduce substantial cooling and circulation en-

ergy consumption compared with traditional approaches, and can adapt to the realistic data

center workload.

Overall, mission-critical Cyber-Physical Systems often have stringent performance re-

quirements which are highly dependent on each other. Simply addressing each requirement

individually may not achieve an overall satisfactory performance. This dissertation investi-

gates the interdependencies between these performance requirements. We show that holistic

and coordinated performance control are essential for the mission-critical CPSs to meet a

multitude of performance requirements.

113

APPENDICES

114

APPENDIX A

MEAN AND VARIANCE UNDER TEMPORAL SAMPLING

In this appendix, we derive mean and variance of the fusion statistic Y under the temporal

sampling scheme described in Sectoin 3.4.2. In the absence of target, the mean and variance

of Y are given by:

E[Y |H0] =

N∑

i=1

m∑

j=1

E[uij · yij|H0]

=
N∑

i=1

m∑

j=1

E[uij] · E[yij |H0]

= m ·
N∑

i=1

pi · µi,

Var[Y |H0] =

N∑

i=1

m∑

j=1

Var[uij · yij |H0]

=

N∑

i=1

m∑

j=1

E[u2ij · y2ij|H0]−
(
E[uij · yij|H0]

)2

=
N∑

i=1

m∑

j=1

(
E[u2ij] · E[y2ij|H0]− p2i · µ2i

)

= m ·
N∑

i=1

pi · σ2i + µ2i · (pi − p2i).

115

Note that E[µ2ij] = pi and E[y2ij |H0] = σ2i + µ2i . Similarly, in the presence of target, the

mean and variance of Y |H1 are given by

E[Y |H1] = m ·
N∑

i=1

pi · (si + µi),

Var[Y |H1] = m ·
N∑

i=1

pi ·
(
σ2i +(si+µi)

2
)
−p2i · (si+µi)

2

= m ·
N∑

i=1

pi · σ2i + (si + µi)
2 · (pi − p2i).

Note that E[y2ij |H1] = σ2i + (si + µi)
2.

116

APPENDIX B

SUMMARY OF NOTATIONS IN PTEC

Table B.1 Summary of notations.

Symbol Definition Unit

T temperature ◦C

Tl inlet temperature of the lth server ◦C

∆t duration of a time step sec

tn beginning time instant of the nth time step ∆t

J the total number of CRAC systems n/a

L the total number of servers n/a

PFl instantaneous fan power of the lth server W

PCj instantaneous power of the jth CRAC system W

Sj temperature setpoint of the jth CRAC system ◦C

S S = [S1, S2, . . . , SJ] n/a

Bj blower speed setting of the jth CRAC system n/a

B B = [B1, B2, . . . , BJ] n/a

Dl PWM duty cycle of the lth server n/a

D D = [D1, D2, . . . , DL] n/a

THj return hot air temperature of the jth CRAC system ◦C

m control cycle length ∆t

k prediction horizon ∆t

K optimization horizon ∆t

P (tn) predicted average power between tn and tn +K W

117

Table B.1 (cont’d)

Symbol Definition Unit

TU user-defined maximum allowed temperature (MAT) ◦C

Tl,k true inlet temperature of the lth server at tn+k
◦C

T̂l,k predicted inlet temperature of the lth server at tn+k
◦C

T̃l,k MAT for the lth server at prediction horizon k (Eq. (5.2)) ◦C

RSDl RSD of the lth server’s inlet temperature n/a

RSDU maximum allowed RSD n/a

w size of the window for computing RSD ∆t

ri the ith setting of DFSC, ri = 〈Vi,Wi〉 n/a

M number of CPU utilization levels in DFSC n/a

Vi highest inlet temperature for maintaining minimal speed ◦C

Wi lowest inlet temperature for maintaining full speed ◦C

γl,j thermal correlation index (TCI) n/a

λ TCI threshold for associating a server and a CRAC n/a

g a region after partitioning n/a

G set of all regions n/a

Cg set of CRAC systems in region g n/a

C set of all CRAC systems, C =
⋃
∀g∈G Cg, |C| = J n/a

Eg set of servers in region g n/a

T̃
g
l,k

relaxed MAT for the lth ungrouped server and region g ◦C

TU temperature upper bound of reactive control approach ◦C

TB temperature band of reactive control approach ◦C

118

APPENDIX C

ALGORITHM OF PARTITION-BASED PREDICTIVE CONTROLLER

C.1 Offline Stage

In the offline stage, we design a heuristic partitioning algorithm based on an Maximum-

Weight Independent Set (MWIS) solver. Based on the Thermal Correlation Index (TCI),

each server has one or more associated CRAC systems. We cluster the servers so that the

servers in a cluster are associated with the same set of CRAC systems. The algorithm then

works on a bipartite graph G = (X, Y, Z) (Figure C.1(1)) that consists of the server cluster

vertices X, CRAC vertices Y , and the association edges Z. The associated CRAC systems of

each server cluster represent a potential CRAC group in the partition, which is referred to as

inferred CRAC group. For example, in Figure C.1, CRAC 7, 8 and 9 form an inferred CRAC

group of server cluster 8. Therefore, the partitioning problem can be solved by finding a set

of server clusters whose inferred CRAC groups cover all the CRAC systems.

Now we use the example illustrated in Figure C.1 to discuss the algorithm. Let Xi denote

a subset of server clusters with degree of i in the original bipartite graph. Moreover, Yi and

Zi denote the corresponding associated CRAC systems and the association edges of server

clusters in Xi, respectively. We define subgraph Gi = (Xi, Yi, Zi). Our algorithm partitions

the subgraphs G1, G2, . . ., sequentially. It first partitions G1 as illustrated in Figure C.1(1).

The server clusters in X1 are cluster 1, 2, and 6. Their weights are assigned as their degrees

(i.e., 1), whereas the weights of their associated CRAC systems are assigned as zero. This

assignment scheme is to ensure that more server clusters can be found in the results of MWIS

solver. After running the MWIS solver for G1, the resulted MWIS contains server cluster

1, 2, and 6, and thus their associated CRAC 1, 2, and 6 form individual CRAC groups, as

illustrated by the dashed rectangles in Figure C.1(1).

119

1 2 3 4 5 6

1/1 2/1 3 4 5 6/1 7 8

server cluster

CRACs

1 2 3 4 5 6

1 2 3/1 4/3 5/2 6 7 8

7 8 9

1 2 3 4 5 6

1 2 6 7/3 8/4

7 8 9

3 4 5

(1)

(2)

(3)

ungrouped
association

added edge

7 8 9

Figure C.1 Illustration of the offline stage. The server clusters are labeled by index or
index/weight, whereas the CRAC systems are labeled by index only since their weights are
constantly zero. Sub-figure (1), (2) and (3) are three example iterations that form different
CRAC groups. In particular, the thick dashed rectangles show the CRAC groups formed
in the current iteration while the thin dashed rectangles show the CRAC groups formed in
previous iterations. In addition, the thick rectangles show the server clusters associated with
the CRACs grouped in the current iteration.

Then, our algorithm partitions G2 with server cluster 3, 4, and 5, as shown in Fig-

ure C.1(2). The dashed edge is added between cluster 4 and 5, since they are associated

with a common CRAC system (i.e., CRAC 5). The added edge ensures that the shared

CRAC system falls in one CRAC group only. The weights of the server clusters are assigned

as the degree minus the number of CRAC systems that are already in CRAC groups. For

example, the server cluster 3 has a degree of 2. However, its weight is 1 since CRAC 2 is

already in a CRAC group during partitioning G1. Then, the resulted MWIS of G2 is server

cluster 3 and 4. Therefore, CRAC 2 and 3, associated with server cluster 3, forms a CRAC

group, while CRAC 4 and 5, associated with server cluster 4, form another CRAC group.

Similarly, in Figure C.1(3), the MWIS of G3 after weighting and adding edges contains server

cluster 8 only. Therefore, the CRAC 7, 8 and 9 form a group. At this point, all CRACs are

in one of the CRAC groups and our algorithm stops. Note that server cluster 5 and 7 are

120

not in any resulted MWIS and hence their servers are ungrouped servers.

In practice, our algorithm may work on Gi with large i only if several CRAC systems’

association are identical, which is unlikely in a large-scale data center.

C.2 Online Stage

The pseudocode of the online stage of our partition-based predictive controller is in

Algorithm 1. Note that, in Line 15, we initialize the relaxed MATs as infinity. Line 20 is

the relaxation discussed in Section 5.4.5. The following proposition proves the convergence

of the algorithm.

Proposition 1. Algorithm 1 converges.

Proof. In the ith iteration of Algorithm 1, the predicted inlet temperature of the lth un-

grouped server (i.e., T̂l,k) must satisfy the MAT constraint in the previous iteration (de-

noted by T̃
g
l,k
(i− 1)), i.e., T̂l,k ≤ T̃

g
l,k

(i− 1). From the relaxation in Line 20, the new MAT

T̃
g
l,k

(i) < T̂l,k ≤ T̃
g
l,k
(i − 1). Thus, both T̂l,k and T̃

g
l,k

in Algorithm 1 are non-increasing.

Therefore, the algorithm converges to a solution that satisfies T̂l,k ≤ T̃l,k, ∀l ∈ E0 and

∀k ∈ [1, K].

121

Algorithm 1 Online stage of the partition-based predictive controller.

Input: 1© set of TCIs {γl,j|∀j ∈ [1, J], ∀l ∈ [1, L]}; 2© results of the offline stage: regions
G = {g1, g2, . . .}, {Eg1, Eg2, . . .}, {Cg1, Cg2, . . . , }, and set of ungrouped servers E0

Output: CRAC temperature setpoints S and blower speeds B

1: for ∀g ∈ G do

2: use CSA to find the sub-solution 〈Sg,Bg〉 for the CRAC systems in Cg and the
servers in Eg with T̃l,k given by Eq. (5.2) as MAT constraint

3: end for

4: iteration index i ⇐ 0
5: loop

6: S =
⋃
g∈G Sg, B =

⋃
g∈GBg

7: for ∀l ∈ E0, ∀k ∈ [1, K] do

8: predict T̂l,k based on 〈S,B〉
9: end for

10: if thermal requirements for servers in E0 are satisfied then

11: return S and B

12: end if

13: if i = 0 then

14: for ∀g ∈ G, ∀l ∈ E0, ∀k ∈ [1, K] do

15: T̃
g
l,k

= +∞
16: end for

17: end if

18: for ∀g ∈ G, ∀l ∈ E0, ∀k ∈ [1, K] do

19: if T̂l,k > T̃l,k then

20: T̃
g
l,k

= T̂l,k −
∑

j∈Cg γl,j∑
j∈C γl,j

· (T̂l,k − T̃l,k)

21: end if

22: end for

23: for ∀g ∈ G do

24: use CSA to find the sub-solution 〈Sg,Bg〉 for the CRAC systems in Cg, the
servers in Eg with T̃l,k as MAT constraint, and the servers in E0 with T̃

g
l,k

as
MAT constraint

25: end for

26: i ⇐ i+ 1
27: end loop

122

BIBLIOGRAPHY

123

BIBLIOGRAPHY

[1] E. A. Lee, “Cyber physical systems: Design challenges,” in Proceedings of the 11th
IEEE International Symposium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing (ISORC), 2008, pp. 363–369.

[2] R. Tan, G. Xing, X. Liu, J. Yao, and Z. Yuan, “Adaptive calibration for fusion-based
wireless sensor networks,” in Proceedings of the 29th IEEE International Conference on
Computer Communications (INFOCOM), 2010, pp. 1–9.

[3] R. Tan, G. Xing, J. Chen, W.-Z. Song, and R. Huang, “Fusion-based volcanic earth-
quake detection and timing in wireless sensor networks,” ACM Transactions on Sensor
Networks (TOSN), vol. 9, no. 17, 2013.

[4] Y. P. Fallah and R. Sengupta, “A cyber-physical systems approach to the design of vehi-
cle safety networks,” in Proceedings of the 32nd International Conference on Distributed
Computing Systems Workshops, 2012, pp. 324–329.

[5] P. K. Varshney, Distributed Detection and Data Fusion. Springer, 1996.

[6] V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak, “A collaborative approach
to in-place sensor calibration,” in Proceedings of the 2nd ACM/IEEE International Con-
ference on Information Processing in Sensor Networks (IPSN), 2003, pp. 301–316.

[7] J. Feng, S. Megerian, and M. Potkonjak, “Model-based calibration for sensor networks,”
in Proceedings of IEEE Sensors, vol. 2, 2003, pp. 737–742.

[8] K. Whitehouse and D. Culler, “Calibration as parameter estimation in sensor networks,”
in Proceedings of the 1st ACM International Workshop on Wireless Senor Networks and
Applications (WSNA), 2002, pp. 59–67.

[9] G. Xing, C. Lu, Y. Zhang, Q. Huang, and R. Pless, “Minimum power configuration in
wireless sensor networks,” in Proceedings of the 6th ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc), 2005, pp. 390 – 410.

[10] H. Aydin, V. Devadas, and D. Zhu, “System-level Energy Management for Periodic Real-
Time Tasks,” in Proceedings of the 27th IEEE Real-Time Systems Symposium (RTSS),
2006, pp. 313–322.

[11] H. Aydin, R. Melhem, D. Mossé, and P. Mejía-Alvarez, “Dynamic and Aggressive
Scheduling Techniques for Power-Aware Real-Time Systems,” in Proceedings of the 22nd
IEEE Real-Time Systems Symposium (RTSS), 2001, pp. 95–105.

[12] J.-J. Chen, H.-R. Hsu, K.-H. Chuang, C.-L. Yang, A.-C. Pang, and T.-W. Kuo, “Multi-
processor energy-efficient scheduling with task migration considerations,” in Proceedings
of the 16th Euromicro Conference on Real-Time Systems (ECRTS), 2004, pp. 101–108.

124

[13] R. K. Sharma, C. L. Bash, c. d. patel, R. J. Friedrich, and J. S. Chase, “Balance of power:
Dynamic thermal management for internet data centers,” in IEEE Internet Computing,
vol. 9, January 2005, pp. 42–49.

[14] Strix Systems, Inc., 2010, http://www.strixsystems.com/.

[15] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru, T. Yan,
L. Gu, J. Hui, and B. Krogh, “Energy-efficient surveillance system using wireless sen-
sor networks,” in Proceedings of the 2nd International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2004, pp. 270–283.

[16] MEMSIC Inc., “TelosB, Iris, Mica2 datasheets,” 2011.

[17] J. A. Stankovic, T. He, T. Abdelzaher, M. Marley, G. Tao, S. Son, and C. Lu, “Feedback
control scheduling in distributed real-time systems,” in Proceedings of the 22nd IEEE
Real-Time Systems Symposium (RTSS), 2001, pp. 59–70.

[18] C. Lu, X. Wang, and X. Koutsoukos, “Feedback utilization control in distributed real-
time systems with end-to-end tasks,” IEEE Transaction on Parallel and Distributed
Systems, vol. 16, no. 6, pp. 550–561, 2005.

[19] J. Yao, X. Liu, M. Yuan, and Z. Gu, “Online adaptive utilization control for real-
time embedded multiprocessor systems,” in Proceedings of the 6th IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2008, pp. 85–90.

[20] U.S. Environmental Protection Agency, “Report to congress on server and data center
energy efficiency,” 2007.

[21] Aperture Research Institute, “Data center professionals turn to high-density computing
as major boom continues,” April 2007.

[22] Emerson Network Power, “State of the data center 2011,” http://www.
emersonnetworkpower.com.

[23] http://www.google.com/about/datacenters/.

[24] C. E. Bash, C. D. Patel, and R. K. Sharma, “Dynamic thermal management of air
cooled data centers,” in Proceedings of the 10th Intersociety Conference on Thermal
and Thermomechanical Phenomena in Electronics Systems (ITHERM), 2006, p. 452.

[25] J. Moore, J. Chasey, P. Ranganathanz, and R. Sharmaz, “Making scheduling “cool”:
Temperature-aware workload placement in data centers,” in Proceedings of the USENIX
Annual Technical Conference (USENIX), 2005, p. 5.

[26] A. Banerjee, T. Mukherjee, G. Varsamopoulos, , and S. K. S. Gupta, “Cooling-aware
and thermal-aware workload placement for green hpc data centers,” in Proceedings of
International Green Computing Conference (IGCC), 2010, pp. 245–256.

125

[27] W. Huang, M. Allen-Ware, J. B. Carter, E. Elnozahy, H. Hamann, T. Keller, C. Le-
furgy, J. Li, K. Rajamani, and J. Rubio, “TAPO: Thermal-aware power optimization
techniques for servers and data centers,” in Proceedings of International Green Comput-
ing Conference (IGCC), 2011, pp. 1–8.

[28] G. Xing, R. Tan, B. Liu, J. Wang, X. Jia, and C.-W. Yi, “Data fusion improves the cov-
erage of wireless sensor networks,” in Proceedings of the 15th International Conference
on Mobile Computing and Networking (MobiCom), 2009, pp. 157–168.

[29] R. Tan, G. Xing, B. Liu, and J. Wang, “Impact of data fusion on real-time detection
in sensor networks,” in Proceedings of the 30th IEEE Real-Time Systems Symposium
(RTSS), 2009, pp. 323–332.

[30] R. Tan, G. Xing, Z. Yuan, X. Liu, and J. Yao, “System-level calibration for fusion-based
wireless sensor networks,” in The 31st IEEE Real-Time Systems Symposium (RTSS).
IEEE, 2010, pp. 215–224.

[31] T. Heath, A. P. Centeno, P. George, L. Ramos, Y. Jaluria, and R. Bianchini, “Mer-
cury and freon: Temperature emulation and management for server systems,” in The
12th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2006, pp. 106–116.

[32] L. Ramos and R. Bianchini, “C-oracle: Predictive thermal management for data cen-
ters,” in IEEE 17th International Symposium on High Performance Computer Archi-
tecture (HPCA), 2008, pp. 111–122.

[33] Q. Tang, T. Mukherjee, S. K. S. Gupta, and P. Cayton, “Sensor-based fast thermal evalu-
ation model for energy efficient high-performance datacenters,” in Proceedings of the 4th
International Conference on Intelligent Sensing and Information Processing (ICISIP),
2006, pp. 203–208.

[34] J. Moore, J. Chasey, and P. Ranganathanz, “Weatherman: Automated, online, and pre-
dictive thermal mapping and management,” in The 3rd IEEE International Conference
on Autonomic Computing (ICAC), 2006, pp. 155–164.

[35] J. Choi, Y. K. An, J. Srebric, Q. Wang, and J. Lee, “Modeling and managing thermal
profiles of rack-mounted servers with thermostat,” in In Proceedings of the 13th Inter-
national Symposium on High-Performance Computer Architecture, 2007, pp. 205–215.

[36] L. Li, C.-J. M. Liang, J. Liu, S. Nath, A. Terzis, and C. Faloutsos, “Thermocast: A
cyber-physical forecasting model for data centers,” in Proceedings of the 17th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2011, pp. 1370–
1378.

[37] J. Niemann, “Best practices for designing data centers with the infrastruxure inrow RC,”
Application note of American Power Conversion, 2006.

[38] G. C. Bell, “Improving data center efficiency with rack or row cooling devices: Results
of ‘chill-off 2’ comparative testing,” Federal Energy Management Program, 2012.

126

[39] N. Rasmussen, “Cooling options for rack equipment with side-to-side airflow,” 2011.

[40] M. Jonas, R. R. Gilbert, J. Ferguson, G. Varsamopoulos, , and S. Gupta, “A transient
model for data center thermal prediction,” in Proceedings of the 3rd International Green
Computing Conference (IGCC), 2012, pp. 1–10.

[41] Q. Tang, S. K. S. Gupta, and G. Varsamopoulos, “Energy-efficient thermal-aware task
scheduling for homogeneous high-performance computing data centers: A cyber-physical
approach,” in IEEE Transactions on Parallel and Distributed Systems, vol. 19, no. 11,
2008, pp. 1458–1472.

[42] Z. Wang, C. Bash, N. Tolia, M. Marwah, X. Zhu, and P. Ranganathan, “Optimal
fan speed control for thermal management of servers,” in Proceedings of ASME 2009
InterPACK Conference, vol. 2, 2009, pp. 709–719.

[43] S. Li, T. Abdelzaher, and M. Yuan, “TAPA: temperature aware power allocation in data
center with map-reduce,” in Proceedings of International Green Computing Conference
and Workshops (IGCC), 2011, pp. 1–8.

[44] E. K. Lee, H. Viswanathan, and D. Pompili, “VMAP: Proactive thermal-aware virtual
machine allocation in hpc cloud datacenters,” in Proceedings of the 19th International
Conference on High Performance Computing (HiPC), 2012, pp. 1–10.

[45] N. Tolia, Z. Wang, P. Ranganathan, C. Bash, M. Marwah, and X. Zhu, “Unified thermal
and power management in server enclosures,” in Proceedings of ASME 2009 InterPACK
Conference, vol. 2, 2009, pp. 721–730.

[46] L. Parolini, N. Tolia, B. Sinopoli, and B. H. Krogh, “A cyber-physical systems approach
to energy management in data centers,” in Proceedings of the 1st International Confer-
ence on Cyber-Physical Systems (ICCPS), April 2010, pp. 168–177.

[47] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah, and C. Hyser,
“Renewable and cooling aware workload management for sustainable data centers,”
in Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint International
Conference on Measurement and Modeling of Computer Systems, 2012, pp. 175–186.

[48] R. Zhou, C. Bash, Z. Wang, A. McReynolds, T. Christian, and T. Cader, “Data center
cooling efficiency improvement through localized and optimized cooling resources de-
livery,” in ASME 2012 International Mechanical Engineering Congress and Exposition,
vol. 7, 2012, pp. 1789–1796.

[49] C. J. M. Liang, J. Liu, L. Luo, A. Terzis, and F. Zhao, “RACNet: A high-fidelity
data center sensing network,” in Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems (SenSys), 2009, pp. 15–28.

[50] S. Choochaisri, V. Niennattrakul, S. Jenjaturong, C. Intanagonwiwat, and C. A.
Ratanamahatana, “Senvm: Server environment monitoring and controlling system for
small data center using wireless sensor network,” in Proceedings of International Com-
puter Science and Engineering Conference (ICSEC), 2010.

127

[51] X. Wang, X. Wang, G. Xing, J. Chen, C.-X. Lin, and Y. Chen, “Towards optimal
sensor placement for hot server detection in data centers,” in Proceedings of the 31st
International Conference on Distributed Computing Systems (ICDCS), 2011, pp. 899–
908.

[52] C. Mansley, J. Connell, C. Isci, J. Lenchner, J. O. Kephart, S. McIntosh, and M. Schap-
pert, “Robotic mapping and monitoring of data centers,” in Proceedings of IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2011, pp. 5905–5910.

[53] J. Lenchner, C. Isci, J. Kephart, C. Mansley, J. Connell, and S. McIntosh, “Toward data
center self-diagnosis using a mobile robot,” in Proceedings of the 8th IEEE International
Conference on Autonomic Computing (ICAC), 2011, pp. 81–90.

[54] S. Biswas, M. Tiwari, T. Sherwood, L. Theogarajan, and F. T. Chong, “Fighting fire
with fire: modeling the datacenter-scale effects of targeted superlattice thermal manage-
ment,” in Proceedings of the 38th International Symposium on Computer Architecture,
2011, pp. 331–340.

[55] X. Sheng and Y.-H. Hu, “Maximum likelihood multiple-source localization using acous-
tic energy measurements with wireless sensor networks,” IEEE Transaction on Signal
Processing, vol. 53(1), pp. 44–53, 2005.

[56] M. Hata, “Empirical formula for propagation loss in land mobile radio services,” IEEE
Transaction on Vehicular Technology, vol. 29(3), pp. 317–325, 1980.

[57] D. Li and Y.-H. Hu, “Energy based collaborative source localization using acoustic
micro-sensor array,” Journal of EUROSIP Applied Signal Processing, vol. 2003, no. 4,
pp. 321–337, 2003.

[58] C. Wren, U. Erdem, and A. Azarbayejani, “Functional calibration for pan-tilt-zoom
cameras in hybrid sensor networks,” Multimedia Systems, vol. 12, no. 3, 2006.

[59] P. Dutta, A. Arora, and S. Bibyk, “Towards radar-enabled sensor networks,” in Proceed-
ings of The 5th International Conference on Information Processing in Sensor Networks
(IPSN), 2006, pp. 467–474.

[60] T. He, P. Vicaire, T. Yan, L. Luo, L. Gu, G. Zhou, R. Stoleru, Q. Cao, J. A. Stankovic,
and T. Abdelzaher, “Achieving real-time target tracking using wireless sensor networks,”
in Proceedings of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2006, pp. 37–48.

[61] C. L. Liu and J. Layland, “Scheduling algorithms for multiprogramming in a hard-real-
time environments,” Journal of the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[62] C. Lu, X. Wang, and C. Gill, “Feedback control real-time scheduling in ORB mid-
dleware,” in Proceedings of the 9th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2003, pp. 37–48.

128

[63] J. MacQueen, “Some methods for classification and analysis of multivariate observa-
tions,” in Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Prob-
ability, vol. 1, 1967, pp. 281–297.

[64] K. Ogata, Discrete-time control systems. Prentice-Hall, 1995.

[65] ImageMagick, 2010, http://www.imagemagick.org.

[66] M. Duarte and Y.-H. Hu, “Vehicle classification in distributed sensor networks,” Journal
of Parallel and Distributed Computing, vol. 64(7), pp. 826–838, 2004.

[67] WikiMedia Foundation, “Global outrage (cooling failure and dns),” 2010, http://blog.
wikimedia.org/2010/03/24/global-outage-cooling-failure-and-dns/.

[68] C. Bash and G. Forman, “Cool job alloction: Measuring the power savings of placing
jobs at cooling-efficient locations in the data center,” in Proceedings of USENIX Annual
Technical Conference (USENIX), 2007, pp. 1–6.

[69] N. El-Sayed, I. Stefanovici, G. Amvrosiadis, A. A. Hwang, and B. Schroeder, “Tem-
perature management in data centers:why some (might) like it hot,” in Proceedings
of the 12th ACM SIGMETRICS/PERFORMANCE joint International Conference on
Measurement and Modeling of Computer Systems, 2012, pp. 163–174.

[70] J. F. Wendt, Ed., Computational Fluid Dynamics – An Introduction, 3rd ed. Springer,
1995.

[71] ASHRAE Technical Committee 9.9, “2011 thermal guidelines for data processing envi-
ronments – expanded data center classes and usage guidance,” 2011.

[72] Active Power, Inc., “Data center thermal runaway: A review of cooling challenges in
high density mission critical environments,” 2007.

[73] U. Singh, A. K. Singh, P. S, and A. Sivasubramaniam, “CFD-based operational thermal
efficiency improvement of a production data center,” in Proceedings of the 1st USENIX
Workshop on Sustainable Information Technology (SustainIT), 2010, p. 6.

[74] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for nonorthogonal
problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970.

[75] A. Stuart, K. Ord, and S. Arnold, Kendall’s Advanced Theory of Statistics: Classical
Inference and the Linear Model, 6th ed. John Wiley & Sons, 2009.

[76] L. Van der Maaten, E. Postma, and H. Van Den Herik, “Dimensionality reduction: A
comparative review,” Journal of Machine Learning Research, vol. 10, pp. 1–41, 2009.

[77] Degree Controls, Inc., “F333 airflow sensor user guide.” 2011.

[78] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill,
M. Welsh, E. Brewer, and D. Culler, “TinyOS: An operating system for sensor networks,”
Ambient Intelligence, pp. 115–148, 2005.

129

[79] Emerson Network Power, “State of the data center,” 2011, http://www.
emersonnetworkpower.com/.

[80] N. Ye, Ed., The Handbook of Data Mining. Lawrence Erlbaum Associates, Publishers,
2003.

[81] M. Stansberry and J. Kudritzki, “Uptime institute 2012 data center industry survey,”
2012.

[82] M. Stansberry, “Uptime institute 2013 data center industry survey,” 2013.

[83] “Fancontrol - automated software based fan speed regulation,” http://linux.die.net/
man/8/fancontrol.

[84] J. Chen, R. Tan, Y. Wang, G. Xing, X. Wang, X. Wang, B. Punch, and D. Colbry, “A
high-fidelity temperature distribution forecasting system for data centers,” in Proceed-
ings of the 33rd IEEE Real-Time Systems Symposium (RTSS), 2012, pp. 215–224.

[85] B. W. Wah, Y. Chen, and T. Wang, “Simulated annealing with asymptotic convergence
for nonlinear constrained optimization,” Journal of Global Optimization, vol. 39, no. 1,
pp. 1–37, 2007.

[86] W. Brendel and S. Todorovic, “Segmentation as maximum-weight independent set,” in
Advances in Neural Information Processing Systems, 2010.

[87] P. v. Böckh and T. Wetzel, Heat Transfer: Basics and Practice. Springer, 2012.

130

