

“31“?“V' '$242.?“ I '21 1.2 .. . 2'12. 223222;.2‘211
"16:8'5‘1!'1111u'llqi'i'l‘l‘f'11%KVe'61.¥1‘.mu {J ‘2-

A'" '2'; :
.

I «1:42:51».“1

11"5‘13'13I‘?l :1“ Q};

:3....2...3N2. 2 .._ ., II -'
:4; ‘- .3132 ,

2. 22221,: 222:2

12'2“:'2'2’2. 2?“. . .22.
, ,. II»: . .
‘7 h ’ ‘,

3'12
2] ‘43.: {“1" “it"

212%.422211:‘1own”,3,!

3."!.2.v§\‘iv' .'

 1'1““11:3»' '2.”

.183:
.; .

.7‘.' .1' $1 I .2.'29111“
‘1'. 5‘11'2'kg11‘" 2'21?‘- lI‘I ' "3'11“” 2"".

.. 2.21“") ,2 'J 111w;

"'"'""‘13"""13312131»‘11""11222.322.":1' 1'.2“?”‘1‘1'1'2"1‘2‘228'1' ‘I ‘'1’

1

- 11"",1 . :53“... 1' I ~ 2’ '-.

412°22‘22“ 3222221%"7 3. 3‘1"“"""'" 21211"11’2'1'“ """"'""1""'" '.':"

~ .2 222.2.2222.222 222.222..... 21 2..I22‘ \“13‘2"? M1. Lfin‘ifw 2.21"” mfi‘fififl‘nI4 “.23 1‘7".“ 319313113“

£15151“:5 I"’1I"‘'11“.;.1%:2thW12;1%9.32.3.521,3131 . 1M¥W “'121‘22'211‘:‘®. 2211‘.29 $3211),.21232:12:21:32;

‘ " ~l y ' E"? ‘ ‘ ‘ ‘4 i: ‘ L‘ 6%“.i‘é ‘ ".§:Lv"% ‘

“2:115"'1'?“"'2;""“""'2"k'5
"‘3"6‘11““‘12‘22‘11‘ '12‘

- .2 :2 . -. . ““I222; 2. . 222.2.2222‘22-12‘-:2.
241-17 17 ‘1‘." '21":1"111.1%“111'“ 11:I“‘7“ I {1' 'Ig'rl'i‘fi 1‘5 "1.1-. ‘ 0.1.9.15” 151" “1‘: Lm“

‘13." v I .ii'l‘141p' mm . 1331‘ . ' .9151: ' 1'2‘1'9‘1‘“ J ' 'l'
h flafvz‘gaitfi“11'ng£51.11“1..“1‘i ‘1" 111w$131.11:1"; ‘ ‘1‘}.3‘ $1,123?!, I . . . 1 . .111"

I: ‘1'.

"'51)"viI 3‘ 'I' I

1"21".1111h21'3“.5r 1'12 '1 ‘ 21‘ ..'LI2.2 .22 III,”3335,3331?

~.%:‘.

1"“1‘1'l"‘1’1:11'111"" .122' 2

1f11-12512“‘21‘3‘2‘1‘2'6:

.
J
-
V

'
.
”

\
4

.

:
B
a
u
f
z
'
.

..
'.

..
2

4
.

'
C
‘
u

.
[
J
i
g
—
”
v

‘

4
7

.
’

.
2213212.2...2..12 ‘

J
b

1' .1

'1:""I‘1{"""":‘1

' “' ‘2‘: ‘ '. 7*.‘1'fiz‘2'3" "13.,"‘l'I" 1'

"2"1‘ ‘LI‘I’ II ' 3‘ 11‘1" '_"":'I"711‘",'161'21‘i-1'I‘1‘"'21"

2 1'11? "'I'A‘I' , 1‘. . 22223111411232'12 “

‘11“. n: ‘ ~ ”:02”‘1' 21.11.3."?{1% {3-}3311132 31" \I ' (3:45:11
82 ' _ a" ‘1 '22?“. '1 1.9.2:, '

2‘ 2- I»? ‘2 s‘!‘ 1'41] ' 1 13‘“ '" '_,'I ‘1‘": 4 ‘5 ‘5‘

.22122.2.2222 1.2.2222-2:... 2 , 22.22:»
‘ 1". 11' ‘71 1' 2122‘22‘1VI222-H'1'. 115'5"-.) 2:. 15271931“:

.2121122.13.“ 5212315111”HIS 2.: 2- 2 “4.2-

.3112"""1";'£'"1“'I1;Z‘“'“I? ""151?“2 I. ' ."'."'-' “1“‘3' "
"3' “1 3.51.? 'L? IO‘“§ o” ' I'“ ’ "fig" 5'.

"33.37119 ‘I':(._12..1§""-"'{‘1'I;'_, 5‘2}: 111 . 45;. 3. .
1.1‘3"11‘:8,, 121.3%“.23.‘313.1”.1 3 2 ,

. v A “‘Q' "I 23.17.1111);

3 . . ‘. 2' I “I"-

22252.3.1'==11'22‘~1-.‘.2 'II. I2.22,.2.:17
22.2. .I- ,12 “12.2,; - , 2131131.,

I}, " '1. 31411,"...1'23; 1111'2’111'112‘2‘2 1111'3'22."313"“1'1213

'2'11911 “-2 ~:'.‘2‘1":'1_2',2 o‘1111fi2i,1:I-‘,"ég 1 '2‘5'1'. ‘ ‘9'.“"'-'

‘II "'1'22:'2“'2‘-'2I52"I""'I‘"""* 2:,33221222222122.1112222121'2'152‘ ‘ , ‘ 2L. 2,: '2'1‘.'-' 21.:‘31'. '31 3 v u' '1‘”,

' "1112f."..7}; 2‘I331‘2212‘ 112-, 1’131‘163'2‘ "413.2231.:fi'éfi‘aM12125:

'1"?2.12.222152222122 '1 :I' 21,1"1'2'2 ‘,.2‘.11‘.‘1"-'"‘.'.'I:I=“
.‘ 1,. 1:211 .. ‘41 “5133;111:2116; {13111: 2

‘. 4:121”:

‘ 1 "~21‘12:2 ‘1'1’1"

111'"$,3

"2'2. 1.I2'I“"1‘1‘1'1""?1xk'uw'fl1“

2-22 2.2 .2. ‘

1
’
:

‘
“
.
7
.

r
.
-

.
o
o
‘
;

4
"

:
2
4
"

v

.
0

-
.

. ' ‘. ‘: _ 31.1111mg

0.1111“. :11"' ‘ .(0 1.:

I" 2210-2231222 .‘IM'I‘I' 1- 314": “'12.. 3‘‘32 ‘, - 12:,- ,2
. 1:. I‘21'II.I‘~I”’2,22°II. .11 1“.". .211%: 22'1 @322“ 2'221272121 1212;355:311};

”11122 “I “1'.“ .‘.:.‘:‘:1l “1" ‘.I‘1:11;1‘:l‘l' '1"'\§'K“1216'!1'""1‘"11\2‘ (.1 . _

‘ 1' I,~. '{4“(5112“. \"fifiMW ‘3'2'1’21; twigs" T‘Eifin

‘53” 1'11}? 1; ," 1.1.11

""""1'21'11‘22‘111f}222222.‘:3'
2":

.2215”.32""' 321111"' "W""'1

2 .3211.

. ’I-‘s‘... 222-1'1‘.'12

1111212"'1‘1‘1“
3211131'22"

113112322

" 2
stfiIn" 2- ’11:..‘4"

:' I - ,

3:. 2‘: In 22"." 3.2-: ,

'31'11111‘1".1" ‘ "1:"‘2‘; ' '4 u“ -
‘ .

o
f

 o

.
m
-

g
;

,
-

7
‘
w
a

‘.' I U 1. ‘

3“: 2 2121' “'3" 2.1 .‘ "‘ " M mt,

2.2222222222221212 1‘21....,.‘2,I12
2,2".2

. 12.2 2113‘
.. 3.23.2 , II

:_. "'i‘égi'x"
.

:2

‘2‘ 1‘"

Q1132, 3%: ‘2'

21"2212111' 1W3:22

.‘ '21

. : I .'

' ' ,11"“A

. ‘3

£I3€':‘:lz1lfi'

1

. ‘1‘ I .. .

11 .2 322.1'2'5'2‘ 2“ . :qu

: r 22." 12.12 21122131“: 22.21

'

2‘ ‘ug1l"1“'\n' '1'???”‘ijfxskhr‘.4J'IY‘A':

1 . ~ 3.3.21 .31II"'1‘“'1‘: ..
‘ .1“. I, .,1. H.121"

.2- 2 2 .2221 2. . 2‘22 3,
11:” :1 "I ‘ "‘1‘ "i“”1"1'1i'l'r"""h"'w t .1111' 42‘ 2 |

' 1 2222‘.“" 23132123322—2222222512222

THESES

SIIBTYL

llllllllllllllllllllllllllllll
31293011592

LIBRARY

Michigan State

University

This is to certify that the

dissertation entitled

A GENETIC ALGORITHM-BASED SCHEDULING SYSTEM FOR

DYNAMIC JOB SHOP SCHEDULING PROBLEMS

presented by

Shyh-Chang Lin

has been accepted towards fulfillment

of the requirements for

Ph.D. Electrical Engineering
degree in

Major professor

fcl/ 4 ” ' ' '2

Date l/ibuiv'v'ifi / 7/) /?C/ 7

MSU is an Affirmative Action/Equal Opportunity Institution 0-12771

PLACE ll RETURN BOXtomnwcmbehockmmmm.

TO AVOID FINES return on or baton dd. duo.

DATE DUE DATE DUE DATE DUE

fitting? Infig‘égiq‘gs

.29

i

l
O ' ; .-

l
s ,. V I

e . ‘ 9» ..

l

MSU I. An Affirmative Action/Ema] Opportunity Intuition

Wanna-9.1

A GENETIC ALGORITHM-BASED

SCHEDULING SYSTEM FOR

DYNAMIC JOB SHOP SCHEDULING PROBLEMS

By

Shyh-Chang Lin

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering

1997

ABSTRACT

A GENETIC ALGORITHM-BASED

SCHEDULING SYSTEM FOR

DYNAMIC JOB SHOP SCHEDULING PROBLEMS

By

Shyh-Chang Lin

In manufacturing systems, inputs of resources, such as materials, labor, machines,

energy, and information, are transformed to finished products for output. Managing the

transformation process in an efficient and effective manner has been recognized as

essential to survival in the current competitive marketplace. Among the operations-

management functions, scheduling, which is the last step before operations plans are

converted into productive activities, is concerned with allocating available resources to

Specific jobs and orders in the best manner to meet the operations objectives.

The goal of this research is to develop an efficient genetic algorithm-based scheduling

system to address a general scheduling problem -- the dynamic job shop scheduling

problem. Based on the Giffler and Thompson algorithm, we have extended that approach

by providing two new operators, THX crossover and mutation, which better transmit

temporal relationships in the schedule. The approach produced excellent results on

Standard benchmark job Shop scheduling problems. We further tested many models and

scales of parallel genetic algorithms in the context ofjob shop scheduling problems. In our

experiments, the hybrid model consisting of coarse-grain GAS connected in a fine-grain-

GA-style topology performed best, appearing to integrate successfully the advantages of

coarse-grain and fine-grain GAS.

In the simulation study, the objective functions examined were weighted flow time,

maximum tardiness, weighted tardiness, weighted lateness, weighted number of tardy

jobs, and weighted earliness plus weighted tardiness. We further tested the approach under

various manufacturing environments with respect to the machine workload, imbalance of

machine workload, and due date tightness. The results indicate that the approach performs

well and is robust with regard to the objective function and the manufacturing

environment in comparison with priority rule approaches.

To my parents

ACKNOWLEDGMENTS

First and foremost, I would like to express my deep gratitude to my advisor, Dr. Erik

D. Goodman, for introducing me to Genetic Algorithms, and his invaluable help and

patience. Without his guidance and expert knowledge in Genetic Algorithms, this

dissertation would not have been possible. I am grateful for the opportunity to learn from

his example as both a researcher and an engineer.

I would like to thank the other members of my committee, Dr. William F. Punch, Dr.

Michael Shanblatt, and Dr. Gary Ragatz for many helpful comments on this research. My

special thanks to Dr. Punch for giving constructive criticism in many fruitful discussions.

Thanks to the members of the GARAGe research group for their assistance and

comments. Special thanks go to Dr. Min Pei and Y'mg Ding for many stimulating

discussions.

I would also like to thank my friends and colleagues for giving help, advice, and

encouragement throughout my doctoral work.

Finally, I would like to thank my parents for providing me with the opportunity to

complete this study. Their love and support accompanied me through the years of this

work.

TABLE OF CONTENTS

LIST OF TABLES ... ix

LIST OF FIGURES .. xi

1 INTRODUCTION ... 1

1.1 Problem Statement.. 3

1.2 Goal of the Research .. 4

1.3 Overview of the Dissertation 6

2 BACKGROUND .. 8

2.1 Genetic Algorithms ... 8

2.2 Job Shop Scheduling Problems 13

2.2.1 Static JSSPS .. 14

2.2.2 Dynamic JSSPS 22

2.2.3 Types of Schedules 22

2.3 Previous Approaches ... 23

2.3.1 Priority Rules ... 25

2.3.2 Local Search Procedures 27

2.3.3 Constraint-Based Methods............................... 30

2.4 Genetic Algorithm Methods 32

2.5 Summary .. 39

3 The GA-based Scheduling System 42

3.1 Static Model .. 42

3.1.1 Representation .. 45

3.1.2 Crossover .. 47

3.1.3 Mutation... 49

3.1.4 Objective Functions 51

vi

3.2 Dynamic Model ... 51

3.2.1 Genetic Operators 51

3.2.2 Time Decomposition Method 52

3.2.3 Rescheduling Method 54

3.2.4 Objective Functions 56

Parallel GA Architectures.. 58

4.1 Premature Convergence Problem 58

4.2 Coarse-grain GAS ... 61

4.2.1 Migration Method 62

4.2.2 Connection Scheme 63

4.2.3 Node Homogeneity 64

4.2.4 Injection Island GAs (iiGAs) 65

4.2.4.1 iiGA Heterogeneity 65

4.2.4.2 iiGA Migration Rules g . 66

4.2.4.3 iiGA Advantages 67

4.3 Fine-grain GAS ... 69

4.4 Hybrid PGA Models ... 7O

Computational Study - Static JSSPs 72

5.1 The Effect of Parallelizing GAS 72

5.2 Comparison of PGA models 78

5.3 Other Benchmark Results 81

5.4 Summary .. 83

Computational Study - Dynamic JSSPS 86

6.1 Deterministic dynamic JSSPS 87

6.1.1 Experimental Design 87

6.1.2 Experimental Results and Discussion 89

6.2 Stochastic dynamic JSSPS 99

6.2.1 Experimental Design 99

6.2.2 Experimental Results and Discussion 100

6.3 Summary ... l 15

Conclusions... 117

7.1 Summary ... 117

vii

7.2 Contributions .. 1 19

7.3 Future Research .. 121

BIBLIOGRAPHY... 124

viii

2.1

2.2

2.3

2.4

3.1

5.1

5.2

5.3

5.4

5.5

6.1

6.2

6.3

6.4

6.5

6.6

6.7

LIST OF TABLES

An example of 6x6 JSSP ... 18

An example of 3x3 | | Cmax .. 21

A list of example priority rules 26

G&T—algorithm-based GA approaches 36

Objective functions in dynamic JSSPS 57

Best Results obtained by previous approaches on the two FF problems 73

The population structures of the PGA models 78

Computational results of the ABZ benchmarks 81

Computational results of the YN benchmarks 82

Computational results of the ORB benchmarks 84

The characteristic of the test deterministic JSSPs 88

Priority rules for (normalized) weighted flow time in deterministic dynamic

JSSPS .. 90

Priority rules for (normalized) weighted tardiness in deterministic dynamic

JSSPS .. 91

Priority rules for (normalized) maximum tardiness in deterministic dynamic

JSSPS .. 92

Priority rules for (normalized) weighted lateness in deterministic dynamic

JSSPs .. 93

Priority rules for (normalized) weighted number of tardy jobs in deterministic

dynamic JSSPS .. 94

Priority rules for (normalized) weighted earliness plus weighted tardiness in

deterministic dynamic JSSPS 95

ix

6.8

6.9

The average percentage of improvement over the best found by priority rules

and Fang’s GA and the corresponding level of significance (1.............. 98

The normalized results of the GA and the percentage improvement over the

priority rules ... 114

2.1

2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

5.1

5.2

5.3

5.4

6.1

6.2

LIST OF FIGURES

A classical genetic algorithm .. 9

An example of machine Gantt chart 19

An example ofjob Gantt chart 19

Disjunctive graph for 3x3 1 l Cmax (Table 2.2) 21

A complete selection for 3x3 1 | Cmax (Table 2.2) 21

The Giffler and Thompson algorithm 24

Four types of approach for the validity problem 43

General representation of JSSPS 45

Example of representation .. 46

An example of THX crossover 48

An example of mutation ... 50

An example of time decomposition method 53

An example of modifying a schedule from the last population to the initial

population of the new problem 55

Examples of the hybrid models 71

Average (100 runs) best results for three test models, various population sizes 74

Single-population GAS with popsize 100 and 250 75

Island I GA with popsize 100 and 250 76

Average best of the five PGA models with various population sizes 79

Comparison of priority rules and GA approaches for (normalized) weighted

flow time in deterministic dynamic JSSPS 90

Comparison of priority rules and GA approaches for (normalized) weighted

tardiness in deterministic dynamic JSSPS 91

xi

6.3

6.4

6.6

6.7

6.9

6.1

6.1

6.1

6.1

6_1(

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

Comparison of priority rules and GA approaches for (normalized) maximum

tardiness in deterministic dynamic JSSPS 92

Comparison of priority rules and GA approaches for (normalized) weighted

lateness in deterministic dynamic JSSPS............................... 93

Comparison of priority rules and GA approaches for (normalized) weighted

number of tardy jobs in deterministic dynamic JSSPS 94

Comparison of priority rules and GA approaches for (normalized) weighted

earliness plus weighted tardiness in deterministic dynamic JSSPS 95

Comparison of priority rules and GA approaches for (normalized) weighted

flow time in stochastic dynamic JSSPS 101

Comparison of priority rules and the GA approach for (normalized) weighted

tardiness in stochastic dynamic JSSPS under balanced workload 103

Comparison of priority rules and the GA approach for (normalized) weighted

tardiness in stochastic dynamic JSSPS under unbalanced workload......... 104

Comparison of priority rules and the GA approach for (normalized) maximum

tardiness in stochastic dynamic JSSPS under balanced workload 105

Comparison of priority rules and the GA approach for (normalized) maximum

tardiness in stochastic dynamic JSSPS under unbalanced workload 106

Comparison of priority rules and the GA approach for (normalized) weighted

lateness in stochastic dynamic JSSPS 107

Comparison of priority rules and the GA approach for (normalized) weighted

number of tardy jobs in stochastic JSSPS under balanced workload 109

Comparison of priority rules and the GA approach for (normalized) weighted

number of tardy jobs in stochastic JSSPS under unbalanced workload 1 10

Comparison of priority rules and the GA approach for (normalized) weighted

earliness plus weighted tardiness in stochastic JSSPS under balanced

workload .. 111

Comparison of priority rules and the GA approach for (normalized) weighted

earliness and weighted tardiness in stochastic JSSPS under unbalanced

workload .. l 12

xii

CHAPTER 1

INTRODUCTION

In manufacturing systems, inputs of resources, such as materials, labor, machines,

energy, and information, are transformed to finished products for output. Managing the

transformation process in an efficient and effective manner has been recognized as

essential to survival in the current competitive marketplace. Among the operations-

management functions, operations planning seeks to determine the best utilization of

available resources which will satisfy expected demand. Based on the planning horizon,

there are several levels of planning [53, 54, 55]. The period of long-range planning

typically exceeds 2 years. At this level, demand forecasting, facility layout and design are

considered. At the middle-range planning level, the planning horizon is approximately 6 to

18 months. Aggregate planning is concerned with matching supply and demand in the

medium future and setting limits on master scheduling, which is the medium term plan for

production of each major product model. The short-range level is involved with

scheduling, which is the last step before operations plans are converted into productive

activities. While long-range planning and middle-range planning deal with the acquisition

of resources, scheduling is concerned with allocating available resources to specific jobs

and orders in the best manner to meet the operations objectives. The importance of

scheduling is derived from the considerations of production costs and service levels. First,

bad scheduling results in poor utilization of resources. This increases production costs and

reduces the competitiveness in the marketplace. Second, inefficient scheduling often

delays some orders and results in unhappy customers. Therefore, scheduling of the tasks

to be performed under limited resources is crucial to the efficiency and control of

operations.

The construction of advance schedules to satisfy customer desires or maximize shop

throughput is a very difficult and complex problem. First, there are large numbers and a

variety of constraints involved. For example, there may be precedence constraints which

specify a process routing of the operations for each job. Or it may not be possible to use

two different resources simultaneously on the same operation. Or some resources may be

unavailable during a specified period due to Shifts or planned maintenance. Second,

manufacturing environments in the real world are subject to many sources of change and

uncertainty, such as new job releases, job cancellations, machine breakdowns, due date

changes, etc. Third, scheduling typically seeks to achieve several conflicting objectives,

such as low work—in-process inventories, high shop utilization, and satisfaction of

customer demand. From the computational viewpoint, most scheduling problems are NP-

hard [1] -- i.e., the time required to compute an optimal schedule increases exponentially

with the size of the problem. Because brute-force or undirected search methods are

computationally prohibitive, at least for problems of any size, scheduling problems tend to

be solved using a combination of search and heuristics to get optimal or near optimal

solutions. Among various search methodologies used for scheduling problems, the

Genetic Algorithm (GA) [9, 30], inspired by the process of Darwinian evolution, has been

recognized as a general search strategy and optimization method which is often useful in

I0

Eh.

attacking combinatorial problems. In contrast to other local search techniques such as

simulated annealing and tabu search, which are based on manipulating one feasible

solution, the GA utilizes a population of solutions in its search, giving it more resistance to

premature convergence on local minima. Since Davis proposed the first GA-based

technique to solve scheduling problems in 1985 [31], GAS have been used with increasing

frequency to address scheduling problems. This dissertation considers a general

scheduling problem -- the job shop scheduling problem (JSSP) --, and develops a GA-

based scheduling system to address it.

1.1 Problem Statement

Job shop scheduling, in general, consists of a set of concurrent and conflicting goals to

be satisfied using a finite set of machines. Each job has a processing order through the

machines which specifies the precedence restrictions. The importance of job j relative to

the other jobs in the system is denoted by the weight wj. The main constraint of jobs and

machines is that one machine can process only one operation at a time and preemption of

any operation on any machine is prohibited. Additionally, we assume that the processing

times are known when jobs arrive at the shop and the machines are always available

(whenever not in use by another job). Usually we denote the general JSSP as JxM, where J

is the number ofjobs and M is the number of machines. Based on the release times ofjobs,

JSSPS can be classified as static or dynamic scheduling. In static JSSPs, all jobs are ready

to start at time zero. In dynamic JSSPS, job release times are not fixed at a single point;

that is, jobs arrive at various times. Dynamic JSSPS can be further classified as

deterministic or stochastic based on the manner of specification of the job release times.

DU!

155

(llsl

CO}

im

\Vt‘

Ill

Deterministic JSSPS assume that the job release times are known in advance. In stochastic

JSSPS, job release times are random variables described by a known probability

distribution.

In this dissertation, we mainly consider the dynamic JSSP with jobs arriving

continually. Both deterministic and stochastic models of the dynamic problem are

investigated. The objective functions, that is, the measure of performance, examined are

weighted flow time, maximum tardiness, weighted tardiness, weighted lateness, weighted

number of tardy jobs, and weighted earliness plus weighted tardiness.

1.2 Goal of the Research

The goal of this research is to develop an efficient GA-based scheduling system to

address JSSPS, especially dynamic JSSPS. To achieve this goal, the following plan is

organized in a stepwise and overlapping fashion.

(1) Design of GA-based Scheduling System for Static JSSPS

The main difficulty in applying GAS to highly constrained and combinatorial

optimization problems such as JSSPS is maintaining the validity of the solutions

(Section 3.1). This problem is typically solved by modifying the breeding opera-

tors or providing penalties on infeasible solutions in the fitness function. The

issues of validity and representation are discussed. Two new operators, namely,

THX crossover and mutation, which better transmit temporal relationships in the

schedule, are developed.

(2) Validation of the Static GA-Based Scheduling System

Much previous research has been done on the static JSSPS and therefore many

(3)

(4)

benchmarks exist. The designed GA-based scheduling system in (1) is tested on

some standard benchmark JSSPs and compared with other approaches proposed.

Based on the results, possible modifications of the scheduling system are made in

order to improve the performance.

Design of GA-based Scheduling System for Dynamic JSSPS

The scheduling system is extended to address dynamic JSSPS. When faced with a

relatively volatile environment, the scheduling system should be able to reac-

tively revise schedules in response to unexpected events. Instead of putting a

large effort into finding the optimal schedule, producing a good schedule and

maintaining this performance in a dynamic environment are the main concerns.

First, the scheduling system is modified to deal with deterministic JSSPS. The

stochastic JSSP then is decomposed into a series of deterministic problems by the

method proposed by Raman et al. [56]. A deterministic problem is generated at

each occurrence of a nondeterministic event, and then solved by the GA. The

issue of the rescheduling problem is discussed and an innovative rescheduling

method, which modifies the adapted population into a new population between

successive events, is proposed.

Comparison of Parallel GA Architectures

Although “classical” GAS can be made somewhat resistant to premature conver-

gence (i.e., inability to search beyond local minima), there are methods which

can be used to make GAS even more resistant. One approach to reduce the prema-

ture convergence of a GA is parallelization of the GA into disjoint subpopula-

tions, which is also a more realistic model of nature than a single population.

Parallel GAS (PGAS) retard premature convergence by maintaining multiple,

somewhat separated subpopulations which may be allowed to evolve more inde-

pendently (or, more precisely, by employing non-panmictic mating). Various

models and scales of PGAS are tested and compared in the context of static

JSSPS.

(5) Computational Study of Deterministic JSSPS

A test set of 12 deterministic problems taken from [53] is tested. The scheduling

system with the best PGA architecture found in (4) is compared with priority

rules and another GA-based approach proposed by Fang [59] to assess the rela-

tive performance.

(6) Computational Study of Stochastic JSSPS

A simulation model of a stochastic job shop, tested in various manufacturing

environments with respect to the machine workload, imbalance of machine work-

load, and due date tightness, is presented. The simulation model is used to pro-

vide the performance of the scheduling system for comparison with priority

rules. The results are also used to assess the robustness of the scheduling system

with regard to the objective function and the manufacturing environment.

1.3 Overview of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 introduces GAS and

discusses the JSSPS. A review of related research on the JSSPS, especially using GA-based

approaches, is presented. Chapter 3 first describes the basic framework of the GA-based

scheduling system for static JSSPS. The extension of the basic framework to dynamic

JSS

fun.

pres

Ch;

are

bus

C011

JSS

rule

JSSPS is then presented. Chapter 4 describes the models of PGA architectures. Two

fundamental models, coarse-grain GAS and fine-grain GAS, and two hybrid models are

presented. Chapter 5 applies the basic framework of the scheduling system described in

Chapter 3 to some benchmark JSSPS. Different models of PGAs described in Chapter 4

are tested and compared in the context of JSSPS. Chapter 6 applies the extension of the

basic framework to some test problems of deterministic dynamic JSSPS. The results are

compared with another GA-based scheduling system and some priority rules. In Stochastic

JSSPs, the simulation model is described and the results are compared with some priority

rules. Finally, Chapter 7 provides conclusions and suggestions for future research.

CHAPTER2

BACKGROUND

It is well known that the JSSP is not only NP-hard [60] it is also among the hardest

combinatorial optimization problems. Due to the complexity and the vast search space of

JSSPS, conventional optimization methods, such as mathematical programming, dynamic

programming, and branch-and-bound, are computationally infeasible. This has led to

recent interest in using heuristic search methods to find a near optimal solution within

reasonable computation time. Among the heuristic search methods, GAS are increasingly

being used to address the JSSPs. In this chapter, a brief review of the GA is presented in

the first section. The description of the JSSP studied is given next. A literature review of

previous related research, especially using GA-based approaches, is covered in the last

section.

2.1 Genetic Algorithms

In 1975, Holland described a methodology, later called GA, for studying natural

adaptive systems and designing artificial adaptive systems [9]. The GA is now frequently

used as an optimization method, based on analogy to the process of evolution. [9, 30, 61]

contain a theoretical analysis of the GA. Roughly speaking, the GA is one kind of search

strategy which combines survival of the fittest among the space of string structures with a

Step

Step

Step

Step

Step

Step

Step

Step

1:

Randomly generate the initial population, C.

2:

Evaluate fitness of all initial individuals.

3:

Let N be a null population.

4:

(a) Select two individuals from C with

probability'rg proportional to their

fitness.

(b) Recombine the two selected parents with

probability Pg to form two offspring.

(c) Mutate each bit of the two offspring

with probability Pb.

(d) Insert the two offspring into N1

5:

Return to Step 4 until N'is full.

6:

Replace C with N;

Evaluate fitness of all individuals in C.

7:

Return to Step 3 until the termination

criterion holds.

8:

Print the results and exit.

Figure 2.1 A classical genetic algorithm

51

SH

dc

10

stochastic information exchange mechanism. As opposed to many other optimization

methods, GAS work with a population of candidate solutions instead of just a Single

solution. GAS assign a value to each string in the population according to a problem-

specific objective function. A “survival-of-the-fittest” step selects strings from the old

population. A reproduction step applies operators such as crossover or mutation to these

strings to produce a new population that is more fit than the previous one. An informal

description of a classical GA is shown in Figure 2.1. The basic components of the classical

GA and some variations are explained below.

(1)

(2)

Initialization

In Holland’s original GAS, the encoded individual -- i. e., chromosome, represents

a set of binary parameters. The initialization of a population is performed by ran-

domly generating a binary string. To reduce the sampling error, superuniform ini-

tialization, which guarantees that the initial population contains all possible

combinations of length less than or equal log2(population size), is developed. For

non-binary representations, the initialization procedure typically randomly gen-

erates valid chromosomes such as a feasible tour in traveling salesperson prob-

lems (TSPS) and a feasible schedule in JSSPS. The main consideration of

initialization is to ensure a high degree of diversity in the initial population.

Fitness scaling

For a “raw” fitness-based selection mechanism, extraordinary individuals can

quickly dominate the population, and similar objective function values of indi-

viduals in the population in the later phase of a GA run can rapidly reduce the

selection pressure. Both situations lead to a premature stagnation of the search

(3)

11

process. To control the selection pressure, the objective function values are often

transformed to fitness values by some scaling function. A variety of scaling meth-

ods have been proposed, such as linear scaling [30], linear dynamic scaling [62],

window scaling [52], logarithmic scaling [62], exponential scaling [62], Boltz-

mann scaling [63], and sigma truncation [64]. The one used in the dissertation is

sigma truncation, which is formulated as

fitness, = max(0,f,- - (fm.g - s*sigma)) (2.1)

where fl is the objective function value of individual i; favg is the average objec-

tive function value of current population; and sigma is the standard deviation.

The parameter s is used to control the bias towards highly fit individuals.

Selection

The selection mechanism assigns each individual a selection probability, PS, then

selects parents based on their PS. The original GAS proposed by Holland use pro-

portional selection (roulette-wheel selection) in which P3 is directly proportional

to its fitness. Another fitness-based selection is stochastic universal sampling

[65]. In contrast to proportional selection, n equally spaced pointers (instead of

one pointer) are placed on a spinning wheel and a single spin results in a com-

plete pool of mating parents. This selection mechanism has minimum spread

about the desired distribution. Another selection scheme is based on the ranking

of individuals according to their objective functions. One example is linear rank-

ing proposed by Baker [66]. The selection probability of individual i is defined as

. l i- 1

Ps“) - 3(nmux _ (nmat - nmin);_—l) (22)

(4)

(5)

12

where n and n are the expected numbers of individuals with rank 1 and
max min

rank n respectively. Due to the constraints, the relation 1511",“,52 and

nm = 2.0 — um“ must be satisfied. Brindle described a different selection scheme,

tournament selection [67], which randomly chooses k individuals from the popu-

lation and returns the fittest one as a parent.

Recombination

The crossover operator is the most important search operator in GAS. The basic

idea of crossover is that “useful characteristics” of different parents may be com-

bined to produce better offspring. The traditional one-point crossover introduced

by Holland exchanges substrings between parents starting at a point chosen ran-

domly on the strings. Some extensions are 2-point crossover, k-point crossover,

and uniform crossover [68]. For permutation-type problems such as TSPS, the

“useful characteristics” are the ordering information or the edge information.

Several permutation-type crossover Operators have been developed, such as par-

tially matched crossover (PMX) [70], order crossover (OX) [72], linear order

crossover (LOX) [88], position-based crossover (PX) [41], cycle crossover (CX)

[72], uniform order-based crossover [69], and edge recombination [71].

Mutation

The main purpose of mutation is to reintroduce lost alleles into the population. In

the original bit mutation, each bit of the chromosome is given a probability Pm of

undergoing mutation. One problem of applying the bit mutation operator in per-

mutation-type problems is that the ordering information has nothing to do with a

single bit or a single field. Many other types of mutation, such as swap mutation

13

[34] and scramble sublist mutation [69], can be employed on permutation-type

problems.

(6) Replacement

Depending on the replacement strategy, GAS are classified as generational or

steady-state [73]. The original GA proposed by Holland is generational, i.e., the

next generation is calculated entirely from the current generation and the next

generation replaces the current generation only after the new population is com-

pletely created. In steady—state GAS, the reproduced offspring is immediately put

back into the current population so the parents and offspring can co—exist.

Another important replacement strategy is elitism, which guarantees the survival

of the best individual under selection and reproduction.

(7) Termination criterion

The termination criterion is often the maximum number of generations or the

maximum number of function evaluations. Other criteria used are related to

diversity measures. One example is the maximum bias [52], in which the bias

measure of a population -- i. e., the percent converged loci, indicates the degree of

genotype diversity. Other examples are maximum number of converged loci [52],

maximum number of generations passed without creating a new genome [52],

and percent resemblance to best individual [63].

2.2 Job Shop Scheduling Problems

The JSSP has been an active research area, partly because of the many possible

applications, and also because of the great difficulty of the problem, which challenges

4

14

existing search methodologies. Roughly speaking, a JSSP may be defined as a problem of

allocating resources subject to precedence and resource constraints so that some measure

of performance achieves its optimal value. Based on the release times of jobs, JSSPS are

categorized as static or dynamic scheduling problems [53, 59, 74]. In the following

subsections, both models are described.

2.2.1 Static JSSPs

In JSSPS, the resources are called machines, and basic tasks are called jobs. Each job

is a request for the scheduling of a set of operations according to a process plan (or

referred to as process routing) which specifies the precedence restrictions. We adopt the

three-field classification, (1 | B | y, to characterize the structure of the scheduling problem

[3, 10]. The number of machines is denoted by M and the number ofjobs is denoted by J.

The first field, (It, describes the machine environments. Because only JSSPS are considered

in this dissertation, JxM is used to indicate the size of the job shop. The second field, B,

indicates the number ofjobs and machine characteristics, which are defined as follow,

(1) P : There are identical parallel machines in the problem, i.e., some

machines in parallel have equal speeds.

(2) Q : There are uniform parallel machines in the problem, i.e., some

machines in parallel have different speeds, which are independent of

the jobs.

(3) R : There are unrelated parallel machines in the problem, i.e., some

machines have different speeds, which are dependent on the jobs.

(4) a : Each job has one or more alternative process plans.

(5) b

(6) d

(7) r

(8) s

15

: Machines break down unexpectedly or are unavailable due to sched-

uled maintenance. If P, Q, or R is present, some jobs can be resched-

uled.

: Jobs arrive randomly over a period of time and a job can be can-

celed.

: The release dates may differ for each job.

: The setup times are sequence-dependent.

The third field, 7, refers to the optimality criterion, i.e., the objective to be minimized. The

completion time and due date of job j are denoted by CJ- and dj, respectively. The lateness

ofjobj is defined as

The tardiness of job j is defined as

The earliness of job j is defined as

Lj= Cj-dj (2.3)

Tj = max(Lj, 0) (2.4)

The unit penalty of job j is defined as

l ‘f c. d.

U.={ l I) J (2.6)
J .

O otherwzse

The following are some common objective functions,

(1) Cmax : Makespan, defined as max(C,, . . . , C").

(2) Tmax : Maximum tardiness, defined as max(T1, . . . , Tn).

(3)

(4)

(5)

(6)

(7)

(8)

(9)

16

2C]- : Flow time.

ijCj : Weighted flow time.

ijTj : Weighted tardiness.

XWij : Weighted lateness.

2U]- : Number of tardy jobs.

ZwJ-Uj : Weighted number of tardy jobs.

ij(EJ- + Tj) : Weighted earliness plus weighted tardiness or just-in-time.

Except for the objective (1), (3), and (4), these objective functions are due-date-related.

Also note that the weighted earliness plus weighted tardiness is a nonregular objective

function -- finishing a job earlier may not represent improved performance.

In a classical static JSSP, Jle I y, the following are assumed [2, 5, 6].

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

One machine can process only one operation at a time.

Once processing begins on a job, it must be performed to completion.

Once processing begins on an operation, it must be performed to com-

pletion.

Each job is an entity; that is, no two operations of the same job may be

processed Simultaneously.

The setup time is sequence-independent and can be included in process-

ing time.

The transportation time between machines is negligible.

In-process inventory is allowable.

There is only one of each type of machine.

The number ofjobs is known and fixed.

17

(A10) The processing times are known and fixed.

(A11) Due dates, if they exist, are fixed.

(A12) All jobs are ready to start at time zero.

(A13) Machines never break down and are always available.

(A14) The process plan for each job is given and no alternative plans are per-

mitted.

The determination of an optimal schedule can be formulated as an integer

programming problem [6]. Let xik denote the completion time of job i on machine k, ’ijk

denote the processing time of operation j of job i on machine k. To build a schedule, we

have to decide all variables xik. In order to represent the precedence constraints, suppose

that operation j of job i requires machine k and operation 0-!) ofjob i requires machine h.

Then in order for a set of xik to be feasible, it’s necessary to have

For the first operation (i=1) the constraint is

In addition it is necessary to employ a large number of constraints to assure that no two

Operations are processed simultaneously by the same machine. Suppose that job i precedes

job p on machine k. Then it’s necessary to have

P

On the other hand, if job p precedes job i on machine k, then it’s necessary to have

xik _ tijk 2 xpk

In order to accommodate these constraints in the formulation, an indicator variable

yipk is defined as

18

_ 1 if job i precedes job p on machine k

y'”" 0 otherwise

Then the constraints become

xpk-xik+H(1—yipk)2tqu (2.9)

xik_xpk+H-yipk2tijk (2.10)

where H is a very large positive number. For the JxM l | yproblem the entire formulation is

Minimize 'y (2.1 1)

Subject to (2.7), (2.8), (2.9), and (2.10).

One of the oldest, simplest, and still one of the most useful methods of representing

schedule information is the Gantt chart. The horizontal axis represents time. In the

standard machine Gantt chart, the vertical axis indicates machines, and the jobs shown

occupy the machine at each point of time. In the standard job Gantt chart, the vertical axis

indicates jobs, and the machines shown occupy the job at each point of time. Table 2.1

shows an example of 6x6 benchmark JSSP, FT6x6 [8]. In this example, job 1 must go to

Table 2.1 An example of 6x6 JSSP

Job Machine Routing (Processing Time)

1 3 (1) 1 (3) 2(6) 4(7) 6(3) 5 (6)

2 2(8) 3(5) 5 (10) 6 (10) 1(10) 4(4)

3 3 (5) 4 (4) 6(8) 1 (9) 2 (l) 5 (7)

4 2(5) 1 (5) 3 (5) 4(3) 5 (8) 6(9)

5 3 (9) 2(3) 5 (5) 6(4) 1 (3) 4(1)

6 2(3) 4(3) 6(9) 1 (10) 5(4) 3(1)

l9

o oo oo oo oo oo oo oo

mm “1311612151

no 2141611151151

m1|3l1215141 H

oo ['3‘] m [Tl—1‘1 17s

as I 2115141613111

.oo 13|16121571l41

o 10 oo 30 4o 50 oo oo

Figure 2.2. An example of machine Gantt chart

o oo oo oo oo oo oo oo

oil—n I—fl r—rrmr—sr

422l3I5116111fl

asWHlGlrFl ['71

oo 121111314151; m

J5 1312151 [Tl ITIH

oo 12M 6 I 1 IS]!

0 10 20 30 40 50 60 70

Figure 2.3 An example ofjob Gantt chart

20

machine 3 for 1 unit of time, then machine 1 for 3 units of time, machine 2 for 6 units of

time, and so on. Figure 2.2 represents a machine Gantt chart of a feasible schedule of

Fl‘6x6 problem. Machine 1 first processes the operation of job 1 from time 1 to time 4,

then the operation ofjob 4 from time 13 to time 18, and so on. Figure 2.3 represents a job

Gantt chart of a feasible schedule of FT6x6 problem. Job 1 is first scheduled on machine 3

from time 0 to time 1, then machine 1 from time 1 to time 4, and so on. Both schedules are

feasible because there are never two jobs on a machine at one time; a job is never

scheduled on more than one machine at one time; and the operations of each job are

processed in the order Specified in Table 2.1.

The problem JxM I | Cmax can also be expressed by a disjunctive graph, G=(N, A, E),

where N is the node set, A is the conjunctive are set, and E is the disjunctive arc set. The

nodes N correspond to all of the operations and two dummy nodes, a source and a Sink.

The conjunctive arcs A represent the precedence relationships between the operations of a

single job. The disjunctive arcs E represent all pairs of operations to be performed on the

same machine. The length of each arc emanating from a node is the processing time of the

operation performed at that node. The source has conjunctive arcs with length zero

emanating to all the first operations of the jobs and the Sink has the conjunctive arcs

coming from all the last operations of the jobs. A feasible schedule corresponds to a

selection of exactly one arc from each disjunctive arc pair such that the resulting directed

graph is acyclic. The problem of minimizing the makespan (p. 15) reduces to finding a set

of disjunctive arcs that minimize the length of the longest path or the critical path in the

directed graph. Table 2.2 Shows an example of 3x3 I l Cmax. The disjunctive graph is

shown in Figure 2.4. The operation of job j on machine m is denoted by operation (i, m).

2]

Table 2.2 An example of 3x3 l l Cmax

Job Machine Routing (Processing Time)

1 f 3 (1) 1 (3) 2 (6)

2 2(8) 3 (5) 1 (4)

3 3 (5) 2(4) 1 (8)

Figure 2.4. Disjunctive graph for 3x3 1 | CW (Table 2.2)

Source

Figure 2.5 A complete selection for 3x3 1 l Cmax (Table 2.2)

22

Figure 2.5 shows a complete selection of the disjunctive graph. The directed graph is

acyclic and the length of the critical path, in bold face arcs, is 24.

2.2.2 Dynamic JSSPS

By relaxing assumption A9 and A12 , JSSPS become dynamic. In dynamic JSSPS, job

release times are not fixed at a single point, that is, jobs arrive at various times. Some

examples are JxM I r I Tmax and JxM | d l ijUj. Dynamic JSSPS can be further classified

as deterministic or stochastic based on the manner of specification of the job release times.

Deterministic JSSPS assume that the job release times are known in advance. In stochastic

JSSPS, job release times are random variables described by a known probability

distribution. The release time of job j is denoted by rj. Some objective functions in last

subsection are modified to take account of the job release times as follows:

(1) 2(CJ- - rj) : Flow time.

(2) 2wj(Cj - rj) : Weighted flow time.

In dynamic JSSPS, minimizing makespan is of less interest because the scheduling

horizon is open and the makespan gives no credit for jobs that finish well before the last

one finishes. Reducing turnaround time through the shop or reducing the amount of

tardiness is usually the primary objective.

2.2.3 Types of Schedules

Because arbitrary amounts of idle time can be inserted between adjacent pairs of

operations on any machine, the number of feasible schedules is infinite. It Should be clear

that such excess idle time is useless under any regular measure of performance. Therefore,

three types of schedules without excess idle time are defined as follows.

l)ef

I)efi

I)efh

the St

Optnn

there

appro;

2.6 is ;

INEQUa

COmpe

any Op

SChedu

2.3 p

Beer
C

23

Definition 2.1 A nondelay schedule is a feasible schedule in which no machine is kept

idle at a time when it could begin processing some operation.

Definition 2.2 A semi-active schedule is a feasible schedule in which no operation can be

completed earlier without changing the job sequence on any of the

machines.

Definition 2.3 An active schedule is a feasible schedule in which no operation can be

completed earlier by changing the processing sequence on any of the

machines without delaying some other operation.

Clearly the set of active schedules iS a subset of the set of semi-active schedules, and

the set of nondelay schedules is a subset of the set of active schedules. Furthermore, in

optimizing regular objective functions, the optimal schedules are active schedules but

there is no guarantee that the nondelay subset contains an optimum. A systematic

approach to generate active schedules was proposed by Giffler and Thompson [46]. Figure

2.6 is a brief outline of the G&T algorithm. The key condition in the G&T algorithm is the

inequality rJ-mo < t(C) in Step 3, which generates a conflict set consisting only of operations

competing for the same machine. Once one operation is decided, it is impossible to add

any operation that will complete prior to t(C), making the generated schedule an active

schedule.

2.3 Previous Approaches

Because a considerable amount of literature has been created, a thorough discussion of

all available approaches would be impossible. We will restrict ourselves to the most

significant heuristic approaches, paying special attention to recent developments and

24

Step

Step

Step

Step

Step

1:

Let C'contain the first schedulable operation

of each job;

Let 13m = O, for all operations (j, m) in C.

(13m is the earliest time at which operation

(j, m) can start.)

2:

Compute t(C) = (j,l£j‘;c{rjm + pjm}

and let m* denote the machine on which the

minimum is achieved.

3:

Let G denote the conflict set of all

operations (j, m*) on machine m* such that

rjmo < t(C) .

4:

Randomly select one operation from G and

schedule it.

5:

Delete the operation from C;

include its immediate successor in C;

update rjm in C and return to step 2 until all

operations are scheduled.

Figure 2.6 The Giffler and Thompson algorithm

25

omitting the details. A more comprehensive survey can be found in [2, 3, 11, 12, 13, 14,

15].

2.3.1 Priority Rules

The most often used heuristic method is the priority rule, which is also known as

dispatching rule or scheduling rule. The priority is based on some easily computed

parameters of the jobs, operations, or machines, such as processing times, due dates,

release times, and machine loadings. Whenever a machine becomes available, the priority

rule is applied and then the job with the highest priority is selected for work. A priority

rule is thus dynamic in nature and continually adjusts to changing conditions. Some

survey papers of priority rules can be found in [16, 17, 75, 76, 77]. Priority rules are

computationally efficient and are useful for finding a reasonably good schedule with

regard to a Single objective such as the makespan, the flow time, or the maximum

tardiness. However, the objectives are often more complicated in practice. Although more

elaborate priority rules [17], which are basically a combination of a number of the

elementary priority rules, can address more complicated objective functions, prioritizing

the jobs based on only a few job or machine parameters restricts the search capability in

real-world scheduling problems.

Table 2.3 is a list of the priority rules used for comparison in this dissertation. The total

processing time and remaining processing time of job j are denoted as Pj and Rj

respectively. Further, pm is the processing time of operation (i, m); nj is the number of

remaining operations ofjob j; and pm is the average operation processing time on machine

m.

26

Table 2.3 A list of example priority rules

Rule Description Priority of operation (j, m) at time t

RANDOM Randomly select a schedulable equal priority

operation

FCFS First Come First Serve 1 / r}-

WSPT Weighted Shortest Processing wj /pjm

Time

WLWKR Weighted Least Work Remaining wj / R}-

WTWORK Weighted Total Work wj / Pj

EGD Earliest Global Due date 1 / d}-

EOD Earliest Operational Due date 1 / [rj + (dj - rj) Rj/ Pj]

EMOD Earliest Modified Operational 1 / max(rj + (dj - rj) Rj/ P-, t + pjm)

Due date

MST Minimum Slack Time -(dj - Rj - t)

WS/OP Weighted Slack per OPeration wj[1 - (dj - Rj - t) / nj)] / pjm

WCR Weighted Critical Ratio w,-[1 - (d,- - t) le)] I pjm

WCOVERT Weighted COVERT wjtl - (dj - R,- - 0+ / 2R,-)]+ /p,-m

WR&M Weighted R&M wj exp[-(dj - Rj - t)+ / 2P,,,)] / 12,-m

Prc

Sche

If (ht

27

2.3.2 Local Search Procedures

The local search procedures usually attempt to find a good schedule through a search

in the neighborhood of the current schedule. A comprehensive survey of recent local

search procedures can be found in [78, 79]. Basically, this approach can be specified by

three components: the method of obtaining the initial schedule, called the seed, the

mechanism of generating the neighborhood of the seed, and the method of selecting a

schedule to replace the seed. The seed is usually generated by priority rules or other

heuristic methods. The neighborhood generating mechanism is an important aspect of

local search procedures. Some simple generating mechanisms are adjacent pairwise

interchange and pairwise interchange. More sophisticated neighborhoods can be obtained

by interchanging a pair of adjacent operations on the critical path of the directed graph

which specifies the current schedule by completely selecting the disjunctive arcs. Other

generating mechanisms are one-step look-back interchange, multi-step look-back

interchange, one—step look-ahead interchange, and multi-step look-ahead interchange [10],

which generate the neighborhood by backtracking one or more steps after an adjacent

pairwise interchange is made.

The third component is the selecting method, which decides the behavior of the search

procedures. Here we describe three well-known procedures.

(1) Hill Climbing

Hill climbing is a standard local search procedure. It selects the first or the best

improvement in the neighborhood to replace the seed [6]. If the neighborhood of a

schedule is small, then it’s reasonable and feasible to generate them all and select the best.

If the neighborhood is very large, then to even generate them all might take a very long

C:

Si

bt

Ill

pr

PH

“'0

Car

COr

uhC

28

time. In this case it may be best to select the first improvement. One possible variation is

selecting the best improvement from a fixed number of sampled schedules in the

neighborhood. It is worthwhile noticing that there is no way to escape the first encountered

local optimum since any move in the local neighborhood produces a worse schedule.

(2) Tabu Search

Tabu search [18, 20] allows the possibility that the selected schedule is worse than the

current schedule in an organized way. It maintains a list of tabu restrictions to prevent the

reversal, or sometimes repetition, of certain moves. Every time a move is made, the

reverse move is put at the top of the list and the restriction at the bottom is deleted. If a

candidate move is tabu, the aspiration criteria are given an opportunity to override the tabu

status. Thus the primary goal of the tabu restrictions is to prevent the search from

becoming trapped at local optima. An important consideration in tabu search iS the tabu

list size. If the number of restrictions in the tabu list is too small, cycling may occur. If the

number of restrictions is too large, the search may be constrained improperly. The

preferred tabu list sizes should lie in intervals related to problem dimension.

(3) Simulated Annealing

Unlike tabu search, simulated annealing [l9] escapes from local minima in a

probabilistic way. Besides accepting better schedules, it also to a limited extent accepts

worse schedules to replace the seed. Let Sk and S denote the current schedule and the

candidate schedule selected from the neighborhood of Sk. Also y(Sk) and 7(5) denote the

corresponding values of the objective function. Then the acceptance criterion determines

whether S replaces Sk by applying the following acceptance probability:

C(

513'

m

fur

fun

PFOC

to of

energ-

NM

fUnctt

29

1 if 7(5) SY(Sk)

PC ccetS = S — S (2.12)k(a P) CXPC(k) 7()) if 'Y(S)>'Y(Sk)

Ck

The c02c12...20 are cooling parameters which determine the speed of

convergence. Because Ck decreases with k, the acceptance probability for a nonimproving

move is lower in later iterations of the search process. Also, if the candidate schedule is

significantly worse, the acceptance probability is very low and the move is not likely to be

made.

One advantage of these three local search procedures is that they don’t have to know

much about the structural properties of the problem, such as derivatives of the objective

function. This feature is attractive for problems in which derivatives of the objective

function are unknown. If the derivative of the objective function can be determined, the

advantage vanishes and these three procedures typically become inferior to gradient-type

methods, since they require much computing time to evaluate each new schedule during a

local search. Here we describe one gradient-type method, Hopfield neural networks (Hp

NNS), which has been applied to JSSPS [21, 22, 23].

A Hp NN is characterized as a highly interconnected network of simple analog

processors. The network energy decreases continuously in time and the network converges

to one of the stable minima in the state space. To solve problems using NNs, the network

energy function is mapped to a certain objective function that needs to be minimized. Hp

NNs can solve the integer programming problem described in (2.11) [24]. The energy

function is defined as

der

inn

'dllr

ink

the

islc

2.3.

C0m

Of c

Vaua

Prob;

job a

WW0]

Sched]

30

n

zzxiki + 2 2 HxF(xik— —t,.jk)+ szxF(x,k—t,,k) (2.13)

i=1 i=lj=2 i=1

+ k2 2H3 X (F(xpk- xik+H(l —yipk)—tqu) +F(xik_xpk+Hy1'pk-tijk))

= l‘ P

where H1, H2, and H3 are large positive constants. F is a nonlinear function whose

derivativef is defined as

0 x20

f(X) = { (2.14)

x otherwise

Each local minimum is an attractor in the state space. The set of initial states which

initiates the evolution terminating in one attractor is called the basin of attraction. The

attractor and the basin of each attractor are determined by the energy function and the

internal parameters of the NN. A Hp NN is a deterministic local search procedure. Once

the initial state is selected, it will converge to the minimum in whose basin the initial state

is located. The advantage of Hp NNS is their fast convergence to a stable minimum.

2.3.3 Constraint-Based Methods

JSSPS are conveniently formulated as either constraint satisfaction problems (CSPs) or

constraint optimization problems (COPS). A CSP is defined by a set of variables and a set

of constraints that restrict the values which can simultaneously be assigned to these

variables. A COP is a CSP with an objective function to be optimized subject to the

problem constraints. For JSSPS, the precedence constraints are that the operations in each

job are performed in a particular order. The resource constraints are that each machine

performs at most one task at any given time. Other constraints which may affect

scheduling are release times, due dates, transfer times, setup times, resource availability,

sch.

con

inst

sor.

Tl]:

int

dew

PFC

nut

113

Oil:

31

etc. Some constraints are relaxable, such as due dates, frequency of tool changes,

inventory levels, etc. To solve the CSP, a schedule is incrementally built by instantiating

one scheduling decision (or variable) after another. One well—known example is OPIS

[112], which uses domain-Specific constraints, multiple layers of abstraction, and other

scheduling heuristics to converge on near-optimal solutions. An important concept in

constraint-based search methods is constraint propagation. Whenever a variable is

instantiated, a new search state is created, where new constraints are used to deduce that

some other unexplored values become inconsistent with the decision and must be pruned.

Therefore constraint propagation reduces the amount of search needed to generate a

schedule. However, constraint propagation cannot detect all inconsistencies during

schedule construction. If a partial schedule is reached that cannot be completed without

violating a problem constraint, one or several earlier assignments need to be altered. Such

a process is called backtracking. Because the problem is NP-complete, backtrack search

may require exponential time in the worst case. Research in CSP has produced several

techniques to improve the efficiency of the backtrack search procedure [111]. Recently,

intensive research on CSP and COP has applied constraint logic programming (CLP) to

develop scheduling systems [25, 26, 27, 28, 29]. CLP is the result of generalizing logic

programming unification to constraint solving over a computation domain. The declarative

nature of CLP makes it easy to express the problem constraints. One advantage of CLP is

its ability to capture incremental knowledge, reducing the search and handling the trade-

offs between conflicting objectives.

str

sui

n3

nit

ahi

Sui

der

\I'hj

and

cxe

Spct

SCht

feds

SChe

Etch

the t.

Rn n

ldr

(
I
Q

(
Z
)

nUmh

32

2.4 Genetic Algorithm Methods

The use of GAS for JSSPS has been explored previously. “Classical” GAs use a binary

string to represent a potential solution to a problem. Such a representation is not naturally

suited for ordering problems such as the TSP and the JSSP, because no direct and efficient

way has been found to map possible solutions 1:1 onto binary strings. Another problem

with a “classical” GA representation is that simple crossover or mutation on strings nearly

always produces infeasible solutions. Thus, previous researchers used some variations on

standard genetic operators to address this problem.

Davis [31] was the first to suggest and demonstrate the feasibility of using GA’S on a

simple JSSP, 20x6 I R, s I Zmachine_cost. A complete schedule is derived from a time-

dependent preference list for each machine. A time iS associated with each preference list

which contains some permutation of contracts (groups of jobs), plus the elements “wait”

and “idle”. It is interpreted as Showing which contract the machine should prefer to

execute at the associated time or whether it should wait or stand idle. This problem-

Specific representation doesn’t directly represent a schedule but instead is a decoder, or

schedule builder, which performs the transition from chromosome representation to a

feasible schedule. The schedule builder guarantees the feasibility and consistency of the

schedules. Three domain-dependent operators are specified. The CROSSOVER operator

exchanges preference lists for selected machines. The SCRAMBLE operator rearranges

the elements of a selected preference list. The RUN-IDLE operator can insert idle times

for machines. One disadvantage of this approach is that the representation is somewhat

large. The total Size of a solution is roughly the product of the number of machines, the

number of time periods, and the number ofjobs in the system.

33

Meanwhile, several GA-based approaches to TSPS found the introduction of domain

knowledge to be the most important source of high performance operators and led to clues

for more effective representations and operators for JSSPS [43, 44, 45]. Cleveland and

Smith [32] investigated the applicability and effectiveness of a variety of the non-standard

representations and operators introduced from GA work on TSPS. They focused

specifically on a sector scheduling problem, which is a multi-stage, in-series problem,

with a number of machines in parallel at each stage, and they made some simplifying

assumptions to treat JSSPS as order sequencing problems. Unpredictable recirculation

could occur in the job Shop. Besides the ordered sequence representations, they also tested

one direct representation, which specifies the starting time on the chromosome, and

Davis’s preference list. Some interesting results were found. First, the use of domain

knowledge in GA operators was found to be variably effective at different stages of the

search. Second, the GA was robust with respect to the unpredictable recirculation. Third,

pure sequencing approaches were dramatically downgraded when the work-in-process

times were included in the objective function. The direct representation and time-

dependent preference list schemes, which contain the time information in the

chromosome, got significantly better final solutions than the pure sequencing schemes.

Whitley et al. [33] reviewed the operators for TSPS and defined a new edge

recombination operator. They applied this new operator to TSPS and obtained good

results. However, they didn’t get noticeably better results when applying the operator to

more typical scheduling problems. Some of their conclusions are worth noticing. First,

high performance operators should exploit the right information from the parent structure.

Second, it’s possible to achieve balanced Optimization in a Situation where GA’s only

"
0

H
Q

l0(

Ar

be

COT

34

generate partial schedules, which are then evaluated based on the performance of the fully

expanded schedules.

Syswerda [41] also implemented a similar method on a more realistic JSSP, which was

represented as a TSP-like chromosome. He discussed the issues concerning the integration

of domain knowledge into chromosome representation, interpretation, evaluation, and

operators. In his approach, the schedule builder performs a local search and generates a

feasible schedule with respect to the strong constraints. The knowledge Of weak

constraints and global evaluation factors are incorporated into the schedule evaluator. The

global search is provided by a GA. He also mentioned that the direct schedule

representation, although is cumbersome and needs complicated Operators, has a definite

advantage when dealing with complicated real-world problems. In the conclusion, he

suggested a basic architecture for the GA-based approach, which provided for a mix of

local and global search and a separation of the GA from the details of the problem.

Another similar TSP-like approach can be found in [87].

Although JSSPS can be reduced to TSPS, some restrictions and simplifications need to

be made and the TSP-like approaches have their limitations when applied to more

complicated JSSPS. Some researchers have abandoned the TSP-like approach and

developed more realistic representations and more complicated Operators for JSSPS.

Nakano and Yamada [35] used a binary representation to select the disjunctive arcs and

conventional operators to generate new strings. Here the schedule builder not only

produces schedules from feasible strings, but also applies a complicated repair procedure

to find feasible schedules from infeasible strings. A treatment called forcing replaces an

infeasible string with a similar, but feasible string. He applied this approach to three well-

th

CC

SC]

Ch

Chi

Cm

PFC

35

known FT JSSPS, 6x61 lCmax, 10x10l lCmax, and 20x5| ICmax [8]. He found the optimal

solution for the 6x61 lCmax problem, but didn’t do well on the other two problems. He

concluded that, first, a conventional GA can effectively solve JSSPS if the schedule builder

is well designed. Second, the replacement of infeasible strings with feasible ones can help

the population converge quickly, but too many replacements may cause premature

convergence. The same idea of using a binary representation to select the disjunctive arcs

is also found in Tamaki and Nishikawa’s work [37] with a different repair procedure.

Bagchi et al. [34] and Uckun et al. [38] dealt with a more realistic JSSP, Jle R, a

IXCJ; A problem-Specific indirect representation includes all information, i.e., job order

permutation, process plan for each job order, machines performing the operations

specified in the plan. They applied problem-specific Operators to ensure the validity of the

chromosome. Thus, GAS do the all search and the schedule builder just creates a feasible

schedule from the chromosome. Local hill climbing is used to improve the best

chromosome discovered by the GA and the modified chromosome can replace the original

chromosome. The results Show that a representation comprising complete information

ends up with a good solution, but the slower convergence due to the large search space

prevents the applicability on real-world scheduling problems. Bruns [42] considered a

similar problem, JxM l R, r, a | XTJ-z, but used a direct representation which includes all

information as well as the start time. This approach also suffered from the problem of slow

convergence.

Although the approaches discussed so far have developed many knowledge-

augmented operators, none of these operators rely on any kind of theoretical foundation.

Other approaches are based on the hybridization of GAS and some existing algorithms.

pl

to

31

[31

CO

eff

Opt

fur

$131

$011

36

Yamada and Nakano [36] used operation completion times for their representation, and

proposed a novel crossover operator, GA/GT, based on Giffler and Thompson’s algorithm

to ensures assembling valid and active schedules. The GA/GT crossover works as follows:

at each decision point in the G&T algorithm (step 4 in Figure 2.6), one parent is selected

randomly. However, in GA/GT crossover, the schedulable operation which has the earliest

completion time reported in the parental schedule is chosen to be scheduled next. The

effect of GA/GT crossover is the same as applying uniform crossover and using the G&T

algorithm to interpret the resulting invalid chromosomes. They applied this scheme to the

same three JSSPS as Nakano and Yamada [35] and achieved modest success. The optimal

solutions of these three problems are sometimes found, but the chance of obtaining

optimal solutions is Still small. The authors suggested the use of local search heuristics for

further improvements. Later, Davidor et al. [86] implemented this approach on a steady

state parallel GA, a 2-dimensional grid structured population, and improved the average

solution quality without additional computational cost.

Table 2.4 G&T-algorithm-based GA approaches

reference representation crossover

Yamada and Nakano [84] completion time uniform

Park and Park [85] job order modified uniform

Storer et al. [83] perturbed processing time standard

Domdorf and Pesch [80] starting time standard

Domdorf and Pesch [81] priority rule standard

Kobayashi et al. [82] job order subsequence exchange

Kim and Lee [89] priority rule PMX, OX, and PX

mgo

The

appr

deco

appn

owec

for d

pnon

used.

Pa

intotj

genen

0r ‘9‘ .

hasn‘t

lS ltd

nuinb,

emhg

[he re.‘

”“flho

COMM.-

Promio

Far

37

Domdorf and Pesch [80] encode the operation starting times and apply the G&T

algorithm to decode the invalid offspring which are generated from standard crossover.

The GA is integrated with a local search procedure. Other G&T-algorithm—based

approaches are similar to the two above. The G&T algorithm is used as an interpreter to

decode any Offspring into an active schedule. Table 2.4 lists the G&T-algorithm-based GA

approaches. The test problems are all static JSSPS with the minimizing makespan

objective. These approaches are designed to transmit “useful characteristics” from parents

for the creation of potentially better offspring. These “useful characteristics” can be

priority rules or job sequences, depending on the representation and crossover methods

used.

Paredis [39] also proposed a novel approach which embedded constraint propagation

into GAS. The constraints are exploited in the generation of the initial population, and in

genetic operators and evaluations. The representation is a ternary string, consisting of 0, I,

or ?, which defines the selections of the disjunctive arcs. A ? means that the selection

hasn’t yet been decided. By using the ?, the probability of generating infeasible schedules

is reduced. In this approach, each string represents a set of promising solutions. The

number of promising solutions of one string depends on the number of ?. The fitness of

each string is derived from the objective values of the valid schedules in the set. Although

the results were not good, this approach did Show some ways to improve the GA-based

methods. First, constraints can introduce background knowledge into GA’S. Second,

constraint propagation effectively reduces the search space and helps GA’S explore

promising regions.

Fang et al. [40] proposed a GA which uses a variant of an indirect representation

devi:

unde

conV

perft

nay:

due

prob

the (

frorr

trade

“inc

the r

fixes

appr

Smile

(Hher

aPDrO

38

devised for the TSP. The schedule builder guarantees the validity of the schedule produced

under crossover and mutation. In Fang’s approach, some methods dealing with the gene

convergence rate and the redundancy in the representation were applied to enhance the

performance. They also considered the rescheduling problem and described two possible

ways of rescheduling. One is rescheduling from scratch which is obviously to be avoided

due to the large processing time required. Another is to construct a smaller scheduling

problem from those affected parts of the current schedule. Such a method might preclude

the discovery of an Optimal schedule which might possibly be obtained by rescheduling

from scratch. Clearly, a more sophisticated method Should be developed to deal with the

trade-off between schedule quality and processing time. Besides, their representation,

which is indirect, exhibits one problem in the dynamic environment -- it’s difficult to use

the previous work done by the GA since the partial preservation of a schedule and local

fixes of a schedule cannot be done on the chromosome level. Fang further tested the

approach on a set of deterministic dynamic problems with different objective functions

[59]. According to the results reported, the approach outperformed priority rules.

Another Significant and recent result is that of Mattfeld et al. [90]. The approach is

based on the earlier research of Bierwirth [91]. In this approach the representation is

defined by a permutation with repetition, which only represents feasible schedules.

Crossover is done by a generalization of OX. The approach was implemented on a parallel

GA with social-like behavior of GA-individuals, which specified a local recombination

strategy. The Optimal solutions of the three FT JSSPS were found. They further tested

other benchmark JSSPS and got impressive results. Bierwirth et al. [92] extend this

approach to dynamic JSSPS. Stochastic dynamic JSSPS are decomposed into a sequence

of d

then

flow

rules

objet‘

2.5

real-ti

local

Althor

proble

detem

solutjo

resoum

bOIIICm

Produce

Son

(‘1)

39

of deterministic dynamic JSSPS. Whenever a job is released, a new problem is generated,

then the GA solves the problem from a new initial population. The objective is the mean

flow time. A simulation study shows that the approach clearly outperformed the priority

rules. Rixen et al. [93] also applied this approach to dynamic JSSPS with a just-in-time

objective.

2.5 Summary

Previous approaches either deal with simple, unrealistic JSSPS or take no account of

real-time dynamic JSSPS. Priority rules and local search procedures only consider the

local information and have strong limitations when the problems become complicated.

Although constraint-based methods can effectively reduce the search Space, several

problems exist. First, the order in which the variables are instantiated is difficult to

determine. Besides, different instantiation orders will limit search to other plausible

solution Space. For example, OPIS schedules high-contention resources before other

resources, thereby limiting subsequence search to a subspace constrained by the

bottleneck resource allocation procedure. Therefore, constraint-based methods tend to

produce poor solutions in a large problem space.

Some problems in previous GA-based approaches are summarized as follows:

(1) Most GA-based research only studied the static JSSPS with the makespan objec-

tive. In dynamic JSSPS, which are more realistic, jobs can arrive at some known

(deterministic JSSPS) or unknown (stochastic JSSPS) future times. Further, the

importance of each job can be different and the objective is more complex. From

a practical vantage, a large number of priority rule approaches have been pro-

(2)

(3)

(4)

40

posed and tested to address dynamic problems. While priority rules are computa-

tionally efficient and are useful for finding a reasonably good solution,

prioritizing the jobs based on only a few job or machine parameters restricts the

search capability. As was asserted by Adams et al. [94], given the computing

power available today, it becomes more important to design effective approaches

to obtain better schedules, even at additional computational cost.

Most GA-based approaches need Specific operators to ensure the validity of solu-

tion or to integrate the domain knowledge. Although the specific operators are

difficult to design, if problem-specific knowledge is successfully incorporated

into the operators, the GA can work more effectively on the particular problem.

In JSSPS, the temporal relationships among all operations in a schedule are

important. Simply working on the chromosome level usually focuses on only a

small part of the schedule and overlooks the change of the temporal relationships

in the whole schedule.

Some problem-specific indirect representations suffer from the problem of false

competition -- different representations of the same schedule competing against

one another -- which is found in [89, 59]. In some indirect representations, such

as prioritization of scheduling rules [81, 89], it is difficult to encode the schedule

back to the chromosome. Furthermore, it’s not easy to extend or adjust the indi-

rect representation to a dynamic environment.

Although Fang et al. [40] considered the rescheduling problem, a more elaborate

method is necessary to deal with the trade-off between schedule quality and pro-

cessing time. Besides, the dynamic JSSP studied is too simple and the approach

(5)

(6)

41

is not general to other nondeterministic events, such as new job releases, machine

breakdowns, or change ofjob priority.

The rescheduling approach in [92] is done by discarding the Old population and

then constructing the new schedule from scratch. Consider the final population in

the last time period before new jobs arrive. Because typically only a few opera-

tions are removed from the last (deterministic) job shop problem to generate the

new problem, only a small fraction of the information in the population has

changed. The old population still contains useful information. Thus it is reason-

able to create an initial population by modifying the already adapted individuals

to the needs of the new problem, and then to allow the GA to continue the search

based on the modified population. No previous researcher has implement this

idea.

The manufacturing environment studied is too Simple. No previous researchers

investigated the influence of the manufacturing environment, such as different

machine workloads, imbalance of machine workload, and different flow allow-

ances.

As

Inanna

and ge

schedu

Mgornl

vahdn)

with d:

JSSP]:

Chi. F

P0pula1

3.1 5;

(Has

reprC‘SEr

b€CaUse

bmaO’M

on String

CHAPTER 3

The GA-based Scheduling System

AS discussed in the previous chapter, when solving JSSPS using GAS, it is difficult to

maintain the validity of the solutions. This problem arises in the design of representation

and genetic operators, and affects other components of GAS. In this chapter, the basic

scheduling system for static JSSPS is described in Section 3.1. Based on the G&T

algorithm, two new operators, THX crossover and mutation, are proposed. The problem of

validity is also discussed. In Section 3.2, the basic scheduling system is extended to deal

with deterministic dynamic JSSPS. For stochastic dynamic JSSPS, a deterministic dynamic

JSSP is generated at each occurrence of a nondeterministic event, and then solved by the

GA. Furthermore, an innovative rescheduling method, which modifies the adapted

population into a new population between successive events, is proposed.

3.1 Static Model

Classical GAS use a binary string to represent a potential solution to a problem. Such a

representation is not naturally suited for ordering problems such as TSPS and JSSPS,

because no direct and efficient way has been found to map possible solutions 1:] onto

binary strings. Another problem with classical GAS is that simple crossover or mutation

on string-representing schemes nearly always produces infeasible solutions. Four types of

42

43

Evaluation

with Penalty

Invalid

Solutions

NormalInvalid ‘ .

GA Operators
. —> Selection

Solutions

(a)

Normal Invalid . . .

‘ GA Operators Solutions Repair F» Evaluation —~Selectron

(1))

Valid Normal Valid . ‘ ‘ .

Solutions GA Operators‘ Solutions Evaluation —> Selection

(C)

Valid Specific . Valid , q .

Solutions GA Operators Solutions Evaluation "—> Selection

((1)

Figure 3.1 Four types of approach for the validity problem

3P

e\'

int

up

Sht

Cd

int

Sir.

sol

‘31

1831

in [h

44

approach to this problem are shown in Figure 3.1.

Type (a) uses normal operators and allows invalid solutions in the population. In the

evaluation stage, the invalid solutions are penalized with a relatively bad fitness so the

invalid solutions do not tend to survive in the selection stage. Two problems exist in this

approach. First, it is not easy to construct the penalty function. The penalty function

Should be harsh enough so that the GA does not converge to invalid solutions. But, if the

penalty function is too severe, the information provided by invalid solutions will be lost.

Care must be taken to find a balance between the validity of solutions and preservation of

information. Another problem of this approach is that if the space of valid solutions is very

small compared to the whole representation Space, the probability of finding one valid

solution is very small. Thus, the GA will waste most of its time on invalid solutions. This

type of approach is inefficient for JSSPS because of the second problem.

Type (b) also uses normal operators and allows invalid solutions in the population, but

it uses a “repair” operator to transform the invalid solutions into a similar valid solutions.

In general this is done by a small modification of the representation. Some examples are

Nakano and Yamada [35], Yamada and Nakano [84], and Domdorf and Pesch[80].

Type (c) uses normal operators and only allows valid solutions in the population. The

validity problem is addressed in the representation scheme so the chromosomes always

represent valid solutions. Some examples are Domdorf and Pesch [81] and Storer et al.

[83].

All the previous types of approach use normal operators. Most of the approaches to

JSSPS to date are type (d), which develop specific operators and only allow valid solutions

in the population. The design of problem-specific operators focuses on the integration of

donn

ofiSp

(dla

3.1.

Sonr

ofsc

sche

sche

com

'lhe

Show

sche

flflse

Ofer

Pfior

45

domain knowledge and the transmission of “useful characteristics” from parents to

offspring. The scheduling system for static JSSPS developed in this dissertation is of type

(d) and is described in the following subsections.

3.1.1 Representation

Two approaches have been used to deal with the problem of representation. The first is

an indirect representation, which encodes a string of instructions to a schedule builder.

Some examples of an indirect representation are job order permutation and prioritization

of scheduling rules. In these schemes, the schedule builder guarantees the validity of the

schedules produced. Another approach is to use a direct representation which encodes the

schedule itself. Some examples of direct representations are the encoding of the operation

completion times or the operation starting times.

Our approach uses a direct representation, which encodes the operation starting times.

The number of the fields on the chromosome is the number of operations. Figure 3.2

Shows a general representation. Figure 3.3 gives an example of the representation of the

schedule in Figure 2.2. Such a direct representation doesn’t suffer from the problem of

false competition (Section 2.5). Another advantage in the direct representation is the ease

of encoding the schedule into the chromosome. In some indirect representations, such as

prioritization of scheduling rules, it is difficult to encode the schedule back to the

ISILIISthl . . . ISII.M StIJIStLZI . . . ISII'MI SIN’] SID/.21 . . . StN,M

J J k

v V Y

Job 1 Job 2 Job N

Figure 3.2 General representation of JSSPS

46

Steal}? Machine

nine 1 2 3 4 5 6

l 1 16 O 30 49 42

2 38 0 8 48 13 28

.D 3 18 27 I 6 42 10

'2 4 l3 8 22 27 30 45

5 48 22 13 52 25 38

6 28 13 42 16 38 19
Starting time of each operation in the example of Figure 2.2

l1 l16|0|30|49l42l38j0j8l48|13l28|18127l 116 |42110|

Job 1 Job 2 Job 3

'13] 8 l22l27l30l45l48l22l13l52l25l38P8ll3l42l16l38l19l

Job 4 Job 5 Job 6

Chromosome representation

Figure 3.3 Example of representation

chr

CBC

3.1

111V

uh

185

Sir

scl

cor

the

CFO

cro

inft

zire

CF05

47

chromosome. This advantage is more important in our approach because the designed

genetic operators work on the schedule level and the modified schedules need to be

encoded back to the chromosomes.

3.1.2 Crossover

In the direct representation, not every encoding corresponds to a valid schedule. If

invalid encodings are allowed in the population, a type (a), (b), or (c) approach can be

applied to maintain the validity of the schedule. Because our approach doesn’t allow

invalid encodings in the population, we must design Specific genetic Operators as

described in the type (d) approach.

The crossover operator is inspired by the G&T algorithm. Some related approaches

which are G&T-algorithm-based have been briefly reviewed in the previous chapter. In

JSSPS, the temporal relationships among all operations in a schedule are important.

Simply working on the chromosome level usually focuses on only a small part of the

schedule and overlooks the change of the temporal relationships in the whole schedule. In

contrast to previous approaches, which work on the chromosome level, we have designed

the time horizon exchange (THX) crossover, which works on the schedule level. THX

crossover randomly selects a crossover point just as a standard crossover does, but instead

of using the crossover point to exchange two chromosomes, THX crossover uses the

crossover point as a scheduling decision point in a G&T algorithm to exchange

information between two schedules.

Figure 3.4 shows an example of THX crossover in the FI‘ 6x6 problem. The schedules

are presented in a machine Gantt chart. The portion of the child schedule before the

crossover point is exactly the same as in one parent. The temporal relationships among

L
T
D

P
l

1

48

o to ; so so 40 oo 00 7o

.o tom Ltd a u . I 2 Isi

In In 1 I ‘ l'l ‘l’l H

on In 3 1 j ‘ H

.. o. m in [711 [TI

.o .o I7=IISIiI¢l=llrl

no as I 3:11 ' l 3 151 ‘ 1‘]

o to f so so 40 so oo 70

crossover point crossover point

parentl parent2

o to no so no so so 70

In Him l‘l ’ ll ' 151 I 2 I

I2 In 2 l‘ 1'] ' Isl H

m m a z o 4 fl

.. .. [71 m [Tl—1‘1 a m

as no I 2 ll 51 3 l ‘ l ‘ I 'l

as no I 3 II ' [m [‘1 2 L“ l

o 10 ac so 40 so 00 70

Childl 1 Chile

Figure 3.4 An example of THX crossover

opera

possi

3.1.:

"
r
-

disju

whic

prOP‘

purer

blot‘l

macl

immt

last .

Whic

mUtdt

IMO I);

49

operations in the remaining portion are inherited from the other parent to the extent

possible (i.e., while maintaining a valid schedule).

3.1.3 Mutation

Another important operator in GAS is mutation. The mutation operator is based on the

disjunctive graph of the schedule. Although exchanging a single pair of adjacent tasks

which are on the same machine and belong to a critical path can preserve the acyclic

property of the directed graph, the number of child schedules that are better than the

parent tends to be very limited, as was observed by Grabowski et al. [95]. They defined a

block as a sequence of successive operations on the critical path which are on the same

machine with at least two operations. The reversal of a critical arc can only yield an

immediate improvement if at least one of the reversed operations is either the first or the

last operation of the block (however, other exchanges may be needed before the step

which actually yields an improvement). Thus our mutation focuses on the block. Two

operations in the block are randomly selected and reversed. After two operations are

reversed, the resulting child might be valid or invalid. We then apply the G&T algorithm to

interpret the child. Unlike type (b) approach for the validity problem, which only repairs

invalid solutions to valid solutions, the valid child is also interpreted by the G&T

algorithm and transformed into an active schedule. In this mutation scheme, no cycle

detection is needed. Furthermore, the G&T algorithm guarantees that the two selected

operations are reversed in the new schedule and that the new schedule is active.

Figure 3.5 shows an example of the mutation. Figure 3.5 (a) is the parent before

mutation. The operations belonging to the critical path are Shaded in light gray. There are

two blocks in the schedule. One is operation (2, 3) and (5, 3). The other iS operation (5, 6),

50

o to so so so so so 70

In [TI I 3 I4I 2 ISI L 2 I

In 23614] 4131E

.o‘ 3 l—TI—s—I 1—41 Fl

m 171m I—1_I 171 E 131

as I 2 1m 271 4 I 1I°I

us I 3 I 6 I I511] 2 J 4 L

o to 20 so 40 so so 70

(a) Before mutation

o to 20 so 40 so so 70

m ITI I 2 I41 2 Isl I 2 I

m 2 16|4I IISIH

us a ITITI ['71 H

on [71171 I—t'l 171 II I71

us I 2IISIalI4IIIG—I

no FTTe—I m I‘TI

o to 20 so 40 so so 70

(b) Swap two operations in one block

o 10 20 so 40 so so 70

m [TI I 2 I41 6 IISI 2 I

In 2 IBI4I 11515

as a [TITS—l [TI II

on [71131 [TI [71 Fl [71

us I2llsl3ll4l1l°l

us I 2d 2 I 2 [‘12] L 4 I

o to 20 so so so no 70

(c) After interpretation of the schedule in (b) by the G&T algorithm

Figure 3.5 An example of mutation

(1. (Ill

resulti

two 0]

Figure

that on

other c

after th

3.1.4

In

minim;

most S

selecte

JSSPS.

3.2 j

If

after a

3.2.1

Th

ASSUn‘

alé’OritI

51

(1, 6), and (2, 6). Assume operation (5, 6) and (2, 6) are selected and swapped. The

resulting schedule is given in Figure 3.5 (b). Note that the schedule is invalid. After the

two Operations are swapped, the schedule is then interpreted by the G&T algorithm.

Figure 3.5 (c) shows the child schedule, which is not only valid but also active. Note also

that only operations (5, 6) and (2, 6) are reversed and the temporal relationships among

other operations are preserved. In this example, an improvement of makespan is made

after the mutation.

3.1.4 Objective Functions

In static JSSPS, makespan is a good performance measure. The schedule with the

minimal makespan often implies a high utilization of machines. Because the objective of

most static JSSP benchmarks is to minimize the makespan, the makespan objective is

selected for comparison and to assess the performance of the scheduling system in static

JSSPS.

3.2 Dynamic Model

The scheduling system described in the Section 3.1 can be applied to dynamic JSSPS

after a few modifications, which are presented in the following subsections.

3.2.1 Genetic Operators

The two genetic operators, THX crossover and mutation, are G&T-algorithm-based.

Assume the release time Ofjob j is rj. For deterministic dynamic JSSPS, step 1 of the G&T

algorithm is modified to take account of the job release times as follows:

Step 1:

Let C contain the first schedulable operation

AI:

dynam

whenei

considc
ASSUIllI

into acc

3.2.2

Exam

Aldct

“‘IhICI

remot

52

of each job;

Let r” = r. for all operations (j, m) in C.
m 3

After the modification, the genetic operators are able to deal with deterministic

dynamic JSSPS. For stochastic dynamic JSSPS, a deterministic problem is generated

whenever a new job enters the system. Besides the job release time, it is also necessary to

consider the machine blocked-out time, which is discussed in the next subsection.

Assuming the machine is available at time am, we modify step 1 of G&T algorithm to take

into account the machine blocked-out times as follows:

Step 1:

Let C contain the first schedulable operation

of each job;

Let rjm = max(rj, am) , for all operations

(j, m) in C.

3.2.2 Time Decomposition Method

The method, proposed by Raman et al. [56], decomposes the stochastic dynamic JSSP

into a sequence of deterministic dynamic JSSPS. Whenever a new job enters the system,

the job information is updated. If job j is completed before that point in time, we remove

job j from the system. If only some operations of job j are completed before that point or

being processed at that point, we modify job j by removing these operations and update

the release time of job j. Because one or more machines can be busy at the time of a job

arrival, such machines are blocked out for the period of commitment. Figure 3.6 shows an

example of the time decomposition method. A new job 6 arrives at the system at time 25.

Machines 1, 3, 4, and 6 are blocked out because they are busy at time 25. Any period in

which a machine is blocked-out is shaded in gray in Figure 3.6 (b). Some operations are

removed from the system and the information for job 6 is added to the new problem. The

10

53

Job Release time Machine routing (processing time)

1 0 3(1) 1(3) 2(6) 4(7) 6(3) 5(6)

2(8) 3(5) 5110) 6(10) 1(10) 4(4)

3(5) 4(4) 6(8) 1(9) 2(1) 5(7)

2(5) 1(5) 3(5) 4(3) 5(8) 6(9)

3(9) 2(3) 5(5) 6(4) 1(3) 4(1)(
I
I
-
#
0
0
1
0

O
O
O
O

Machine 12 3 4 5 6

Available time 0 O 0 0 O O

20 30 40 50 60

job 6 arrives at time 25

(a) The deterministic problem before job 6 arrives

25 30 40 so on

m 1 I 2 [5| Job Release time Machine routing (processing time)

1 26 6(3) 5(6)

m H 2 33 100) 4(4)

:[
3 27 2(1) 5(7)

“3 4 27 4(3) 5(8) 6(9)

m [T] H 2| 5 25 5(5) 6(4) 1(3) 4(1)

6 25 2(3) 4(3) 6(9) 1(10) 5(4) 3(1)

as $1 4 I 1 I 2 I

no I‘I 5I ‘ I

Machine I 2 3 4 5 6

Available time 27 25 27 26 25 33

25 30 40 so on

(b) The deterministic problem after job 6 arrives

Figure 3.6 An example of time decomposition method

job rel

3.2.3

In :

arrival.

reschec

indii‘id

system

which

period

from It

fraction

an initi

problei

P0pula

an inn.

G&T

proble

Proble

The OI

mOdlllc

54

job release times and machine available times are updated.

3.2.3 Rescheduling Method

In stochastic JSSPS, after a new deterministic problem is generated at the time of a job

arrival, the current schedule needs modifications. Two methods can address the

rescheduling problem. One is to discard the old population and construct the new

individuals (schedules) from scratch. This can be done Simply by restarting the scheduling

system with the new deterministic JSSP. The other method uses a special feature of GAS

which was observed by Bierwirth et al. [96]. Consider the final population in the last time

period before the new jobs arrive. Because typically only a few operations are removed

from the last (deterministic) job shop problem to generate the new problem, only a small

fraction of the information in the population has changed. Thus it is reasonable to create

an initial population by modifying the already adapted individuals to the needs of the new

problem and then to allow the GA to continue the search based on the modified

population. Bierwirth et al. did not do further investigation on this idea. Here we propose

an innovative method to modify the adapted population. This method is also based on the

G&T algorithm. When constructing an individual in the initial population of the new

problem, the temporal relationships among the operations which are also in the last

problem are inherited from an individual in the adapted population to the extent possible.

The operations of the new job(s) are randomly scheduled among the old jobs. This

modification process is implemented by changing step 4 of the G&T algorithm as follows:

Step 4:

Randomly select one operation from G.

If the operation is from the new job(s), schedule

NH

IIZ

1'4

55

oo oo oo .o .o oo oo

4L21115l Ii

5111314121

ITIITI'T‘I HTI

10 20 30 40 50 60 70

(a) A schedule in the last population before job 6 arrives

ooh 1—21 [Fl—TI

no

on H

some [TI a

M5 514I3I11 17")

so 111615|4l

.o oo .o 7.

(b) The modified schedule of (a) in the initial population

of the new problem

Figure 3.7 An example of modifying a schedule from the last population

to the initial population of the new problem

fi

thein

The I

ther

the

\OS

COI

po

pr

()1

(
A
)

56

else :EHedule the operation in G which is from the

old problem with the earliest starting time

reported in the individual of the adapted

population.

Figure 3.7 shows an example of modifying an individual from the last population to

the initial population of the new problem. This example follows the example in Figure 3.6.

The operations of the new job 6 are inserted among the other operations as shown in

Figure 3.7 (b). Notice that the temporal relationships among the old operations in Figure

3.7 (a) are preserved to the extent possible.

The two rescheduling methods can work together to achieve the superior results. If

there is enough time, rescheduling primarily from scratch, but with a small proportion of

the population consisting of modified individuals, can do a more thorough search without

losing all information found in the old population. If the old population is mostly

converged, rescheduling primarily from modified individuals with some proportion of the

population generated from scratch can increase the diversity in the new population. The

proportions of the population generated from these two methods should be problem

dependent

3.2.4 Objective Functions

As described in subsection 2.2.2, reducing turnaround time through the shop or

reducing the amount of tardiness is usually the primary objective in dynamic JSSPS.

Therefore, we consider the objective functions shown in Table 3.1. For reporting purposes,

we use the normalized value of the objective, which is also defined in Table 3.1. Except for

the Objective of weighted flow time, these objective functions are due-date-related. Also

notice that the weighted earliness plus weighted tardiness is a nonregular objective

S7

function.

Table 3.1 Objective functions in dynamic JSSPs

Objective Function Definition Definition (Normalized)

Weighted Flow Time 2wj(Cj—rj) [Ewe rj))/(ijpj)

} i

1

Maximum Tardiness max r]. max 1M2pI.)

1' J j

Weighted Tardiness ZWJ'TI ZWjTjj/(XWJPJJ

1 I 1'

Weighted Lateness zijj zijj (Zwjp1)

I j

Weighted Number of Tardy Jobs zijj

J

Weighted Earliness plus Weighted Tardiness ij(Ej+Tj-)

I

CHAPTER 4

Parallel GA Architectures

One common problem in Classical GAS is premature convergence -- i.e., inability to

search beyond local minima. While classical GAS are more resistant to premature

convergence to local minima than other local search procedures (Section 2.3.2), GAS are

not immune. One approach to reduce the premature convergence of a GA is parallelization

of the GA into disjoint subpopulations, which is also a more realistic model of nature than

a single population. Parallel GAS (PGAS) may be implemented using parallel processors

or processes, or may be done in a Single process, via time-Shared execution of the code for

each subpopulation. The advantages of a PGA are thus - 1) fighting premature

convergence, and 2) allowing speedup via use of parallel processors. These processors

need only be loosely coupled, which is another advantage of PGAS as an optimization

method.

Currently, there are two kinds of PGAS that are widely used: coarse-grain GAS

(chAS) and fine-grain GAS (ngAs). This chapter described the premature convergence

problem and these two PGAS. TWO new hybrid models are also presented in this chapter.

4.1 Premature Convergence Problem

To understand premature convergence, we first examine the concept of genetic drift.

58

59

Genetic drift is the modification of a population resulting from random events. Under no

selection pressure (a random walk), a population will be dominated by genetic drift and

converge [97]. So whether selection or drift dominates, convergence is inherent in

classical GAS and is the reason that classical GAS can not maintain different high fitness

individuals in one population. Once a suboptimal individual dominates the population,

selection is likely to keep it there and prevent further adaptation within any practical

timeframe. This is the premature convergence problem.

Previous research has focused on two general approaches to avoid premature

convergence. The first approach is to lower the convergence Speed so the GA can do a

more thorough search before converging, increasing the chance of finding the global

Optimum. This scheme often makes modifications in the fitness scaling stage or selection

stage as described in Section 2.1. The second approach focuses on keeping the diversity of

the population high by modifying the traditional replacement scheme and genetic

operators, as described in the following examples.

De Jong introduced the concept of a crowding scheme [98]. In a crowding scheme, an

offspring replaces an existing individual according to its Similarity with other individuals

in a randomly drawn subpopulation of Size CF (crowding factor). The similarity measure

is based on the Hamming distance between solutions in the subpopulation. Similar

individuals compete in the same subpopulation, reducing the speed at which one

individual can dominate the whole population.

Mauldin introduced a uniqueness operator to maintain high genotype diversity [99].

The insertion of an Offspring into the population is possible only if the offspring is

genotypically different from all other individuals of the population (specified as a given

6O

Hamming distance).

Goodman introduced a form of mating restriction, called incest reduction, to promote

diversity, while preserving all members of the selection-biased pool (or their offspring)

into the next generation [114]. In this scheme, after the individuals are selected to produce

offspring for the next generation, pairs for crossover are picked by randomly choosing the

first parent from the survivors, without replacement, then randomly choosing a number of

candidates for the second parent from the survivors. The Hamming distance of each

candidate from the first parent is calculated, and the one with the greatest Hamming

distance is picked for the crossover. The two selected parents are removed from the list of

survivors for subsequent crossovers after the crossover is completed.

Goldberg defined a sharing function [100] that permits the formation of stable

subpopulations centered on different individuals, thereby permitting the parallel

investigation of many peaks in the search space. This scheme determines the selection

probability according to the average fitness of similar individuals in the population. The

Similarity criterion can be the distance between either encoded genotypes or decoded

phenotypes.

Crow used a phenotypic comparison function to enforce restricted mating [101]. Only

similar individuals are allowed to mate. Although this scheme is used to fight the “lethals”

problem -- i.e., the production of low fitness offspring which could be produced from the

mating of incompatible individuals, it also works against diversity.

Although all of the above schemes partially alleviate the convergence problem, some

are not appropriate for real-world problems. First, a similarity evaluation between all

individuals is computationally expensive and therefore degrades performance.

61

Furthermore, these evaluations are sequential in nature and hard to parallelize, a

disadvantage for some GA implementations. Second, a phenotypic similarity evaluation is

domain specific, requiring a special encoding for each new problem. These encodings are

necessarily domain-dependent and not easily applied to other problems. Among the

previous schemes, some are not computationally expensive, such as Delong-style

crowding and incest reduction. These schemes can be easily applied to single-population

GAS without degrading the performance. It is clear that some PGA models such as chAs

(described below) can incorporate these schemes in each node to further maintain the

diversity and improve the performance.

An alternative approach to deal with premature convergence is parallelization of GAS.

The PGA produces a more realistic model of nature than a Single-population GA. Unlike

some examples in the previous two approaches, which pay a high computational cost for

maintaining subpopulations based on similarity comparisons, PGAS retard premature

convergence by maintaining multiple, somewhat separate subpopulations which may be

allowed to evolve more independently (or, more precisely, by employing non-panmictic

mating). This allows each subpopulation to explore different parts of the search space,

each maintaining its own high-fitness individuals, and allows control of how mixing

occurs among subpopulations, if at all.

4.2 Coarse-grain GAS

chAS, also called island-parallel GAS, maintain distinct subpopulations, each of

which acts as a Single-population GA [47, 102, 103, 104]. In general, each subpopulation

contains a large number of individuals. Subpopulations may or may not be divided among

62

more than one node (a process or processor). All subpopulations may, of course, be run

within a single process by sequencing through them in some fashion or by time sharing

their workloads. At certain intervals, some individuals can migrate from one

subpopulation to another. While not an exhaustive description, chAs are categorized

along three dimensions: migration method, connection scheme, and node homogeneity.

4.2.1 Migration Method

The migration method determines how often, and under what timing constraints,

individuals are exchanged between subpopulations.

(1) Isolated Island GAS

There is no migration between subpopulations. This is the simplest model of chAs.

(2) Synchronous Island GAS

The migration between two subpopulations is synchronized. By synchronizing

migration, the subpopulations evolve at roughly the same “rate” before exchanges occur.

This rate measure (number Of generations, convergence percentage, etc.) determines the

synchronicity of the subpopulations. Dedicated parallel hardware can directly support

such synchronization, but synchronization in a distributed workstation environment can

cause uneven work loads. Different machine speeds and different loads can cause some

nodes to “wait”, Slowing the speed of evolution to that of the slowest node.

(3) Asynchronous Island GAS

Asynchronous GAS allow migration based on a single event that does not relate to the

state of evolution across all of the system’s subpopulations. Such asynchronous behavior

is the kind of migration typically found in nature, Since different environments are

responsible for differences in evolution speed. Our recent work has focused on

63

asynchronous GAS, since we implement chAs on distributed workstations in a Shared-

use (campus computing) environment. In this setting, each GA process competes for

computing resources with whatever users/processes are on the same machine. The

different loads and diverse machine architectures cause different evolution speeds in each

node, making asynchronous migration more appropriate. This is especially true when the

number of processing nodes is large, and the machine architecture types diverse, as occurs

in MSU’S chA runs. From our previous research [47], the insertion of a relatively high-

fitness individual from a fast-evolution node into a low-fitness population on a slow-

evolution node helps the low-fitness subpopulation find the global optimum of a graph

partition problem, for example. Although further investigation is needed, the preliminary

results Show asynchronous PGAS to be a promising approach.

4.2.2 Connection Scheme

The connectivity of the processing nodes, in terms of the degree of connectivity and

the topology of connection, affects the performance of a chA. More interestingly,

another question is how such connections might be allowed to change over time.

(1) Static Connection Scheme

The connections between nodes are established at the beginning of the run and are not

modified, keeping the network topology static during execution. Topologies can be of

various types, including: lines, rings, n-cubes, etc., but the topology determines which

neighbors can exchange information, and that topology is Static.

(2) Dynamic Connection Scheme

The topology of node connection is mutable during runtime. There are two basic

reasons to allow modification of the topology during runtime. First, such modifications

make 1

GA pi

pIOCCS

|
progrc

evohu

nenih:

be git

donnn

whhor

cknern‘

appror

can be

neighh

nunnta

4.2.3

No

PTOCCS

lDutan.

e”Codi

a(ham

64

make distributed workstation parallelism practical in a real-world environment. If a node’s

GA process is stopped, then reconfiguration of the network occurs SO as to continue

processing. chAS can withstand a number of such events before losing evolutionary

progress. Second, reconfiguration could occur based on changes that occur in the

evolution of the subpopulations. One of the drawbacks of chAs is that the insertion of a

new individual from another subpopulation may not be effective. The new individual may

be grossly incompatible with that subpopulation, and therefore either be ignored or

dominate the subpopulation. To avoid this, the subpopulations could start processing

without any neighbors, and when a migration occurs, the node’s neighbors could be

determined by Similarity (or dissimilarity) with other subpopulations (whichever may be

appropriate for the problem at hand). For example, the best individuals of each population

can be compared, and those with the closest Hamming distance could be established as

neighbors. This establishes a distance connection topology that changes over time, and

maintains interchange between only similar (or dissimilar) subpopulations.

4.2.3 Node Homogeneity

Node homogeneity is a measure of how similar the GA processes are on different

processing nodes.

(1) Homogeneous Island GAS

The GA on each node uses the same parameters (population size, crossover rate,

mutation rate, migration interval, etc.), genetic operators, objective functions, and

encoding methods. Most research on PGAS has focused on homogeneous PGAS. One

advantage of homogeneous island GAS is that they are relatively easily implemented.

(2) Heterogeneous Island GAS

H(}A

l’Ul’II

nflgr

4.2..

sohn

be a]

bflir

Such

repre

lepret

65

Heterogeneous Island GAS allow the evolution of subpopulations via GAS with

different parameters, genetic operators, objective functions, and/or encoding methods. In

general, it is difficult to find the best initial parameter settings for a GA. This is especially

true in the case of multiple objective optimization problems where various parameter

settings can cause a GA to focus search in different portions of the search Space. More

importantly, many problems can be encoded in a GA using different methods, each with

particular advantages and disadvantages. Such variations in parameter settings and

encoding methods pose problems for interchange between populations, but these problems

can be addressed, and have been addressed successfully, for example, in [47, 113].

4.2.4 Injection Island GAS (iiGAs)

We have developed a new PGA architecture called injection island GAS (iiGAS).

iiGAs are a class of asynchronous, static- or dynamic-topology, heterogeneous GAS. We

run them on a distributed network. The two most interesting aspects of an iiGA are its

migration rules and the heterogenous nature of its nodes.

4.2.4.1 iiGA Heterogeneity

GA problems are typically encoded as an n-bit string which represents a complete

solution to the problem. However, for many problems, the resolution of that bit string can

be allowed to vary. That is, we can represent those n bits in n’ bits, n ’< n, by allowing one

bit in the n ’-long representation to represent r bits, r>l, of the n-long bit representation. In

such a translation, all r bits take the same value as the one bit from the n’-long

representation. Thus the n’-long representation is an abstraction of the n-Iong

representation. More formally, let

ll

01

 onh'i

I)

St

In

differ:

is req

uuo t

mi grit

44244

AI
T0 all

Where

from (

dOne

repres

ThUS .

IHedi

66

n = p x q where p and q are integers, p, q 2 1

Once p and q are determined, we can re-encode a block of bits p’ x q’ as 1 bit if and

only if

p=lXp, q=m><q wherelandmareintegers, l,m21

Such an encoding has the following basic properties,

(1) The smallest block size is 1x1. The search space is 2“.

(2) The largest block size is pxq. The search Space is 21:2.

(3) The search space with a block size p’xq’ is 2“” 'x 2‘1/‘1 ’.

In general, an iiGA has multiple subpopulations that encode the same problem using

different representations which are not necessarily defined in the block structure. All that

is required is the mapping function which transforms any subpopulation’s representation

into the representation in a more detailed level. This mapping function then allows

migrations from a low resolution to a high resolution node as described in Section 4.2.4.2.

4.2.4.2 iiGA Migration Rules

An iiGA may have a number of different block sizes being used in its subpopulations.

To allow interchange of individuals, we only allow a one-way exchange of information,

where the direction is from a low resolution to a high resolution node. Solution exchange

from one node type to another requires translation to the appropriate block size, which is

done without loss of information from low to high resolution. One bit in an n’-long

representation is translated into r bits with the same value in an n-long representation.

Thus all nodes inject their best individual into a higher resolution node for “fine-grained”

modification. This allows search to occur in multiple encodings, each focusing on

di fl

_)' V\

of n

with

this,

IE!

4.2.4

ii(

67

different areas of the search space.

More formally, we note that node x with block size p,xq1 can pass individuals to node

y with block size pzxqz if and only if

p1= jszo qt = kxq;

where j, k are integers, j, k 2 1

This establishes a hierarchy of exchange, where node x (lower resolution) is the parent

of node y (higher resolution) and node y is the child of node x. The direct child is the child

with the largest block size; others are “heirs” of the lower-resolution “ancestors.” Based on

this general migration rule, we have designed the four following static topologies:

2 Simple iiGAS

Each node passes individuals to only one node, the node with the highest resolution (a

block size of 1x1).

2 Complete iiGAs

Each node passes individuals to all of its heirs (of higher resolution) in the hierarchy.

2 Strict iiGAs

Each node passes individuals only to its direct children.

2 Loose iiGAS

Each node passes individuals to both its direct children and the node with the highest

resolution (block size of 1x1).

4.2.4.3 iiGA Advantages

iiGAs have the following advantages over other PGAS.

(1)

(2)

(3)

(4)

(5)

68

Building blocks of lower resolution can be directly found by search at that resolu-

tion. After receiving lower resolution solutions from its parent node(s), a node of

higher resolution can “fine-tune” these solutions.

The search space in nodes with lower resolution is proportionally smaller. This

results in finding “fit” solutions more quickly, which are injected into higher res-

olution nodes for refinement.

Nodes connected in the hierarchy (nodes with a parent-child relationship) share

portions of the same search Space, Since the search space of parent is contained in

the search Space of child. Fast search at low resolution by the parent can poten-

tially help the child find fitter individuals.

iiGAS embody a divide-and-conquer and partitioning strategy which has been

successfully applied to many problems. Homogeneous PGAS cannot guarantee

such a division since crossover and mutation may produce individuals that belong

to many subspaces -- i.e., the divisions cannot be maintained. In iiGAS, the

search Space is fundamentally divided into hierarchical levels with well defined

overlap (the search space of the parent is contained in the search space of the

child). A node with block Size r = p’ x q’ only searches for individuals separated

by Hamming distance r.

In iiGAs, nodes with smaller block size can find the solutions with higher resolu-

tion. Although DPE [123] and ARGOT [124] also deal with the resolution prob-

lem using zoom or inverse zoom operators, they are different from iiGAs. First,

they are working on the phenotype level and only for real-valued parameters.

iiGAs divide the string into small blocks regardless of the meaning of each bit.

A
.
.
-
—

fe<

Ind

51%

Slat

pOpl

para

each

requ

foun

“nei;

StrOn

indiy

delcn

POpuI

indivj.

69

Second, the sampling error can fool them into prematurely converging on sub-

optimal regions. Unlike PDE and ARGOT, iiGAS search different resolution lev-

els in parallel and reduce the risk of searching the wrong target interval.

4.3 Fine-grain GAS

Instead of running a number of GAS in parallel, ngAs parallelize the GA itself.

ngAs are motivated by nature. In nature, there is no global selection and no panmictic

mating. Natural selection and natural mating take place in an individual’s local

environment. Because each individual evolves only based on local information, this model

is naturally parallel and it is easy to make use Of parallel machines such as the Connection

Machine [125], DAP [126], and Transputer [127].

In ngAs, individuals are spatially arrayed in some manner and an individual in the

population can interact only with individuals “close” to it [105, 106]. If implemented on

parallel hardware, then in contrast to chAs, only one or a few individuals are assigned to

each processor. Migration between neighbors or mating outside the local subpopulation is

required, and the frequency of migration between neighbors is typically much higher than

found in chAs. The topology of individuals in the “template” which defines the breeding

“neighborhood” determines the degree of isolation from other individuals and therefore

strongly influences the diversity of the individuals in the population. Therefore, each

individual is, in effect, part of multiple subpopulations, with membership typically

determined by the network connection topology of the processors. Thus the entire

population can be viewed as numerous, small, overlapping subpopulations, and all the

individuals can be considered to be continuously moving around within their

neigh

neigh

susce

uiH r

can 51

4.4

It

embei

subpo

ofnug

uidnr

each I

occasi

Ti

meco

fiflaht

node

neighI~

III Wh;

7O

neighborhoods, so that global communication is possible, but not instantaneous.

The main concern in ngAs is the network topology. High connectivity between

neighbors increases the spread of high-fitness individuals, making subpopulations

susceptible to domination and perhaps premature convergence. Limiting the interactions

will partially solve this problem, but essentially reduces the Size of subpopulations, and

can slow search dramatically.

4.4 Hybrid PGA Models

Two hybrid PGA models have been developed and are presented here. One is an

embedding of ngAS into chAs. Figure 4.1 (a) shows an example in which each

subpopulation on the ring is a ngA with toroidal connections. There are two frequencies

of migration in this model: frequency of migration on the ring and frequency of migration

within the torus. The frequency of migration on the ring is much smaller than that within

each torus. This model allows multiple ngAs to evolve somewhat independently, with

occasional interchange of solutions between these subpopulations.

The other hybrid model is a compromise between a chA and a ngA. In this model,

the connection topology used in the chA is one which is typically found in ngAs, and a

relatively large number of nodes is used. Figure 4.1 (b) shows an example in which each

node of the torus is a Single-population GA. The frequency of migration between

neighbors is resembles that found in chAs. This model can be viewed as a special chA

in which subpopulations are spatially arrayed in some ngA connection topology.

71

j
n
fl

(a) An example of embedding ngAs into chAs

l_l

OIOO

o

Single-population GAL

\

r

[
—

r L
Q
Q
Q
I
Q
Q
J

"o
ooro
OOIO
ooo

99499

(b) An example of connecting chAs in a ngA-style topology

Figure 4.1 Examples of the hybrid models

the

(LA

11th

scht

U
l

f
.
.
.

(1111}

GA]

and

relal

bec;

sum;

EXCe

remd

mUIat

CHAPTER 5

Computational Study - Static JSSPS

The static GA-based scheduling system is evaluated on some benchmark JSSPS before

the extended scheduling system is applied to dynamic JSSPS. First, the single—population

GA is tested on two famous benchmark problems. This chapter then focuses on the

investigation of the effect of parallelizing GAS and comparison of PGA models. The

scheduling system with the best PGA model is also applied to other benchmark JSSPS.

5.1 The Effect of Parallelizing GAS

The scheduling system described in Chapter 3 has been implemented in GALOPPS

(http://isl.cps.msu.edu/GA/) [63], a freeware GA development system from the MSU

GARAGe, and run in a UNIX environment. As a benchmark, two FT problems, FTlelO

and FT20x5 [8], were tested. (The FT 6x6 problem is of less interest because it is

relatively easy to obtain the optimum.) These two FT problems are of particular interest

because almost all JSSP algorithms proposed have used them as benchmarks. Table 5.1

summarizes the best results obtained by previous approaches for the two FT problems.

Except for the first three approaches, which are based on branch and bound methods, the

remaining approaches are GA-based methods. In our experiments, the crossover and

mutation rates were 0.6 and 0.1 respectively, and offspring replaced their parents, with

72

ehhm

uoch

With

F110

file]

GAS

Pf0ble

Iheefi‘

73

Table 5.1 Best Results obtained by previous approaches

on the two FT problems

reference 10x10 20x5

Baker and McMahon (l985)[l 16] 960 1303

Adams et al. (1988)[94] 930 1178

Carlier and Pinson (1989) [115] 930 1165

Nakano and Yamada (1991)[35] 965 1215

Yamada and Nakano (l992)[36] 930 1 184

Storer et al. (l993)[83] 954 1180

Domdorf and Pesch (l993)[80] 930 1165

Fang et al. (l993)[40] 949 1 189

Juels and Wattenberg (1994)[107] 937 l 174

Mattfeld et al. (l994)[90] 930 1165

Domdorf and Pesch (1995)[81] 938 1178

Bierwirth (1995)[91] 936 1181

Kobayashi et al. (1995)[82] 930 l 173

Lin et al. (1996) [108] 930 1165
elitism protecting the best individual from replacement. The selection method was

stochastic universal sampling [65]. The fitness scaling method was sigma truncation [64]

with sigma_trunc = 2.0 followed by linear scaling [30] with scalemult = 1.3. For the

FTlelO problem, the average execution time of a single-population GA with population

size 100 and 2000 generations is 110 sec. on a SUN Ultra 1. By using Single-population

GAS with our THX operators, we were able to find the global optima for the two

problems, which are 930 and 1165, respectively. The FTlelO was also used to evaluate

the effectiveness of PGAS and to compare the performance of the various PGA models.

tht‘

IIU‘

Peri

74

980 1

single-population GA —4——

islandl ---x---

' island" mot--

97s ._ -

it
970 r- .l

965 e". '

t

‘ o

\“

960~ ~. ~
\-

\
‘.

\.

A
v
e
r
a
g
e
B
e
s
t

955 .

950 ~ -

945- 940 l l l

Population Size

Figure 5.1 Average (100 runs) best results for three test models,

various population sizes

To investigate the effect of parallelizing GAS, we used one single-population GA and

two chAs with different population sizes on the FTlelO problem. We varied the total

population size in each case to test for its effect. The population sizes used were 50, 100,

250, 500, 1000, and 2000. Both chAs, called island I and island H, are connected in a

one-way ring. The best individual is migrated to the next neighbor every 50 generations.

The number of subpopulations in the island 1 GA was fixed at 5, so the subpopulation size

is the total size divided by 5. In the island 11 GA, the subpopulation Size is fixed at 50, so

the number of subpopulations is obtained by dividing the total population size by 50. The

number of generations for all runs is 2000.

Figure 5.1 shows the average best results of the three models on various population

sizes based on 100 runs. The single-population GA doesn’t Show any improvement in

performance after the population size 250 mark. In the single-population GA, the

Single—population GA Popsize=100 Gen=2000

Best

1040“

-l"

lO20‘--

lW—li;;bc;-I . I ------

no. III-I - I

'IIIII-II II-- III.

980 ...l-I-.-.Iol III-I

«cl-IIIIouoIIoI- s...-

2-‘.-o.. a... I.-

9m‘ 'Iullo- III-I l'n

9404 - -

.o.,o.oo,as.o,oof

500 1000 1500

Number of Generations to Best

Single-population GA Popsize=250 Gen=2000

Best

1040“

1020‘”

1000-L

980""""'°"‘ .

-o.........o

.I'IIIII - o

960‘

940‘

.oroooo1oooojoooo

500 1000 1500

Number of Generations to Best

75

(a)

(b)

Single-population GA Popsizc=100 Gen=2000

 .1.

950

. . ,

1000 1050

Best

Single-population GA Popsizie=250 Gen=2000

F

Figure 5.2 Single-population GAS with popsize 100 and 250

76

Island 1 GA Nodes=5 Subpop=20 Gen=2000

Best

1040*

1020‘

.i

1000— :'

980‘.;.:-?

--:-I.-: : o .

- ;-i:--I. ------ .

960— :::E::'...:. ;
q ----,--T --- .I -

940~ .i.’i.;..:::."”

I o u

I I I T I I I l I T T Y I I I I Ijfi

500 1000 1500

Number of Generations to Best

(a)

Island 1 GA Nodes=5 Subpop=50 Gen=2000

Best

1040‘

1020‘

1000‘

980d '
o . U I .

- - In --

960~ I I I . I I I I I o

940‘ I I I I I I I I

I l I I I .l I I V I I I r T f TfiT

500 1000 1500

Number of Generations to Best

(b)

140‘

120‘

80‘

Island 1 GA Nodes=5 Subpop=20 Gen=2000

H

I I

940 960 980 1000

Best

Island I GA Nodes=5 Subpop=50 Gen=2000

I

T I

940 960 980

Best

Figure 5.3 Island I GA with popsize 100 and 250

77

probability to have extraordinary individuals in the initial population is higher in larger

populations. Therefore, if the selection pressure is high, the extraordinary individuals can

quickly dominate the entire population and cause premature convergence. This might

explain why there is no improvement in performance after the population size 250 mark in

the single-population GA. Although the problem also appears in the island I GA model, it

is alleviated by maintaining five subpopulations and the island I GA outperforms the

single—population GA. The island [1 GA doesn’t suffer as much from premature

convergence. The larger the number of subpopulations, the better the diversity that is

maintained. An average best of 940 is reached when the population size is 2000. By

considering the average turnaround time of each subpopulation to calculate a fixed number

of generations, we can analyze the speed—up of PGAS. In general, increasing the number

of processors leads to approximately linear speed-up. For example, for a total population

size fixed at 1000, the speed-up for runs with either 5 or 20 subpopulations are 4.7 and

18.5, respectively. We believe that the degraded performance is due to the communication

overhead. In PGAS, we are more interested in the time needed to reach a given solution

quality. Figure 5.2 shows the two-dimensional cell plot and the histogram of the single-

population GA with population size 100 and 250, based on 1000 runs. The same plots of

the island I GA is shown in Figure 5.3. In both figures, increasing the population size

causes that the distribution of the results move to the left corner of the two-dimensional

cell plots and to the left of the histogram. This indicates the improvement is made due to

the increasing population Size from 100 to 250. By comparing Figure 5.2 (b) and Figure

5.3 (b), in the two-dimensional cell plots, we can observe that the distribution of the

results moves to the left comer in the island I GA. That is, the parallelization of the GA

78

yields better results using fewer evaluations. Actually, the average number of generations

to obtain the best result in the island I GA is 732, compared to 852 for the single-

population GA. Because the average best result of the island I GA is better than that of the

Single-population GA, the Speed-up under “time-tO-solution” is greater than 852 / (732/

4.7) = 5.47.

5.2 Comparison of PGA models

We examined 5 PGA schemes -- the two chAS discussed in Section 5.1, plus one

ngA toms model and two hybrid models. (We didn’t examine iiGAs because it is difficult

to generate a meaningful but less detailed representation for the scheduling problem being

addressed, such that less detailed individuals or schedules can be injected into

subpopulations with more detailed representations while preserving their beneficial

properties.) The migration interval for the chAs is 50 generations (i.e. an exchange

between subpopulations every 50 generations). The population structures are Shown in

Table 5.2 in a subpopulation_size:connection_topology format. In the torus model, the

subpopulation Size is fixed at 2. In the hybrid I model, each island on the ring is a torus and

the number of islands is fixed at 5. The number of generations for all runs is 2000. Figure

Table 5.2 The population structures of the PGA models

Popsize Island IIsland II torus hybrid I hybrid H

250 50:5 50:5 2:25x5 2:5 islands, each islandz5x5 torus 10:5x5

500 100:5 50:10 2:25x10 2:5 islands, each island: 10x5 torus 1025x10

1000 200:5 50:20 2:25x20 2:5 islands, each island: 10x10 torusl 10:10x10

2000 400:5 50:40 2:25x40 2:5 islands, each island: 10x20 torusl 20: 10x 10

79

985 1

“a

islandl —‘—-

island ll ---X--—

980:;

mm W. I
hybridl mow
h rid II "'3'“

975 -

Yb I
970 I-

965 - a

m 960 _
" eo

'u‘
‘4—

?
jI'\—‘—_—.—'—/——

‘ “I-

a 955 ’- ““‘

................................

-l

2
xx

............................
--{

“~~..
............i

950».\ “““““““““

I
945)- V‘.\‘.-e_____________

"r...................

""""""""14-._.-._,‘__
-H-“NHH“-"""““

940 L
.........................

V"

935 -

.....j ’

930 '
I

250
500

1000

2000

Population Size

Figure 5.4 Average best of the five PGA models with various population sizes

5.4 shows the average best of the five PGA models based on 100 runs. The hybrid I and

toms models have similar performance because both models are based on the ngA

model. Although both models are inferior to island I when the population Size is less than

1000, their average best result improved for larger population sizes. The island 11 and

hybrid H models are superior to the other approaches. The best performance is achieved

by hybrid H model. Notice that in the hybrid II model at population size 2000, the optimal

schedule is found 40 times in 100 runs and the average result is 936, which is within 0.7%

of the optimum, and the standard deviation is 5.62. Because not all previous researchers

reported their means and standard deviations, here we compare our best results with Juels

and Wattenberg [107] and Mattfeld et al. [90]. Comparing with these two groups then, our

PGA approach shows superior performance with a significance levels better than 0.0001.

Discussion: Finding a proper propagation speed of building blocks among

80

subpopulations is a major determinant of the performance of PGAS. With too rapid

propagation, good individuals will quickly spread to other subpopulations and dominate

the population. This results in premature convergence. If the propagation is too Slow,

PGAS will be close to multiple independent single-population GAS running at the same

time and the advantage of interacting subpopulations in PGAS will vanish.

In ngAs, if the population size is small, any strong local optima can be quickly

propagated to the entire population, and ngAs may perform worse than island GAS. That

is why the torus and hybrid I models, which are based on the ngA model, are inferior to

island I when the population size is less than 1000. When the population Size is large,

these three models, -- torus, hybrid I, and island I -- will suffer from the problem of high

selection pressure, as described in Section 5.1. Because the propagation speed in the torus

and hybrid I models is less than in island I when the population size is large, both torus

and hybrid I have better ability to maintain the diversity in the population and perform

better than island I, aS shown at population Size 2000 in Figure 5.4. In the island II model,

because of the fixed subpopulation Size, the island H model doesn’t suffer much from the

problem when the population Size is large. Besides, the longer ring supports Slower

propagation and allows more diversity to be maintained among subpopulations. That is

why the island H model outperformed the torus, hybrid I, and island I models, as shown in

Figure 5.4. In the hybrid H model, because the connection topology of ngAs supports

better propagation than in island I, the hybrid H model does better than the island H model,

as shown in Figure 5.4.

In summary: ngAs appear to lose genetic diversity too quickly, in comparison to

chAs. Improvement can be made if a different migration strategy is applied [90]. In

81

Table 5.3 Computational results of the ABZ benchmarks

SB I SB H Hybrid PGA

. Best

Problem Size Known

err.% sec.l err.% sec.l err.% sec.2

ABZS 10x10 5.83 5.70 0.41 1503 O 128 1234

ABZ6 10x10 2.01 12.67 0 1101 0 133 943

ABZ7 20x15 9.77 118.87 6.77 1269 1.20 4356 665[117]

ABZ8 20x15 15.52 125.02 6.87 1775 3.13 4036 670[118]

ABZ9 20x15 9.48 94.32 7.14 1312 2.91 4278 686[119]

1. The computing times were obtained on a VAX 780/11 [94].

2. The computing times were obtained on a SUN Ultra 1.

chAS, increasing the number of islands improves performance more than simply

increasing the population size. Additionally, a good connection topology can further

improve the propagation of building blocks and increase the performance. Best results

were Obtained with the hybrid model consisting of chAs connected in a ngA-Style

topology.

5.3 Other Benchmark Results

Besides the well-known FT benchmark problems, there are many benchmark JSSPS

available. The scheduling system with the best PGA model -- i.e., the hybrid model

consisting of chAs connected in a ngA-style topology, was applied to three sets of

benchmark JSSPS, which can be obtained from OR-Library (http://mscmga.ms.ic.ac.uk/

info.html). In the following experiments of the hybrid PGA, the connection topology is a

82

Table 5.4 Computational results of the YN benchmarks“

Random GA/GT Single-pop. GA Hybrid PGA
Best

Problem Known

Average Best Average Best Average Best Average Best

YNl 52.79 26.80 10.25 8.90 5.29 2.70 3.49 2.36 888[120]

YN2 44.58 21.05 4.50 3.62 4.25 3.07 3.29 2.85 912[121]

YN3 46.27 23.27 6.57 5.90 5.34 2.78 3.12 1.56 898[120]

YN4 44.76 23.03 8.50 7.68 5.94 3.17 3.17 2.66 977[120]

* The results shown are the percentage of the relative error to the best known result.

10x10 torus and the subpopulation size on each node is 10. The number of generations for

each run is 2000.

The first set is five instances prefixed with “ABZ,” which were generated by Adams et

al. [94]. The processing times were randomly drawn from a uniform distribution on the

interval [50, 100] for ABZS, [25, 100] for ABZ6, and [11, 40] for ABZ7-9. Adams et al.

applied the shifting bottleneck algorithm to the five problems. SB I and SB H are the

straight and the enumerative versions of the Shifting bottleneck algorithm, respectively.

Table 5.3 Shows the computational results of SB 1, SB H, and the hybrid PGA scheduling

system. The relative error is calculated by 100*(best_result - best_known) / best_known.

The best results and the average computing times of the hybrid PGA were based on 100

runs. When the problem Size is large, GAS found much better results than the other two

methods, at additional computational cost.

The second set is four 20x20 instances prefixed with “YN,” which were generated by

83

Yamada and Nakano [36] with processing times randomly drawn from a uniform

distribution on the interval [10, 50]. As described in Chapter 2, Yamada and Nakano

designed a GT-algorithm-based operator, GA/GT crossover. They applied this operator to

the four JSSPS. Without Showing the computation time, they compared the results of GA/

GT with the randomly generated 400,000 active schedules for each problem. Table 5.4

shows the comparison of the hybrid PGA with the Single-population GA, GA/GT, and

randomly generated active schedules. The population Size of the Single-population GA is

250. The results shown are the percentage of the relative error to the best-known result.

The average and best results of the hybrid PGA and the single-population GA are based on

100 runs. For the four problems, hybrid PGA, which yields averages within 4% and best

within 3% of the best known, outperforms other methods. Compared to GA/GT, the better

results obtained by the Single-population GA also Shows that THX crossover and mutation

can transfer better information than GA/GT.

The last set is 10 10x10 instances prefixed with “ORB,” which were generated by

Applegate and Cook [109]. Applegate and Cook are able, through a combination of bottle,

Shuffle, and edge-finder, to solve the ten problems, but they did not report their run times.

The bottle and shuffle are two heuristic methods for obtaining an initial schedule. The

edge-finding algorithm is a branch and bound method. Table 5.5 shows the results

obtained by the hybrid PGA. The hybrid PGA found the optimum in 9 out of 10 problems.

5.4 Summary

This chapter applied the GA scheduling system, based on the G&T algorithm, to static

JSSPS. Our extensions to the G&T algorithm, the THX crossover and mutation operators,

are designed to transmit the temporal relationships in the schedule. For both FT problems,

84

Table 5.5 Computational results of the ORB benchmarks

Problem Best of 100 runs Average Time (sec.) Optimum

ORB 1 1059 1071.8 326 1059

ORB2 888 890.4 303 888

ORB3 1005 1024.5 401 1005

ORB4 1005 1016.2 365 1005

ORBS 889 892.8 222 887

ORB6 1010 1019.3 329 1010

ORB7 397 400.0 173 397

ORB8 899 910.7 358 899

ORB9 934 938.0 280 934

ORB 10 944 945 .2 290 944

85

the methods introduced found the optimum. The results Show that although the specific

operators are difficult to design, if problem-specific knowledge is successfully

incorporated into the operators, the GA can work more effectively on the particular

problem.

We further compared single-population GAS and PGAS on the FTlelO problem. The

effect of parallelizing the GA was twofold. PGAS not only alleviated the premature

convergence problem and improve the results, but also found the solution in a fewer

number of evaluations compared to single-population GAS. We also reported on various

PGA models. In chAS, the number of islands used in the run had a greater positive effect

on performance than simply increasing population size. In the ngA model, premature

convergence was Still a problem, Since the overlapping subpopulations are susceptible to

domination by high-fitness individuals. Furthermore, the hybrid H model performed best

due to the integration of the advantages of chAs and ngAs.

In Section 5.3, we tested three sets of benchmark JSSPS. The impressive results Show

the effectiveness of the genetic Operators and the hybrid PGA model. Although the

scheduling system didn’t find the best results known for some problems, the small relative

errors Show that near-optimal results were still obtained. From a practical viewpoint,

instead of putting a large effort into finding the optimal schedule, producing a good

schedule and maintaining this performance in a dynamic environment are the main

concerns. Besides, the models described by static JSSPS are usually only crude

representations of the actual problems, so the optimal schedule for the model may not lead

to the best schedule for the actual problem. In the next chapter, we will apply the

scheduling system to a more realistic model -- i.e., dynamic JSSPS.

CHAPTER 6

Computational Study - Dynamic JSSPS

Manufacturing environments in the real world are subject to many sources of change

which are typically treated as random occurrences, such as new job releases, machine

breakdowns, job cancellations, due date changes, etc. Due to their dynamic nature, real

world scheduling problems are rather computationally complex and are known to be

strongly NP-hard [1]. This chapter considers dynamic JSSPS, in which jobs arrive

continually. In practice, the most often used heuristic method is priority rules. As

described in Section 2.3, when a machine becomes available, the priorities of the jobs

currently available to the machine are calculated and the highest priority job is scheduled

for work. General speaking, priority rules are computationally efficient and are useful for

finding a reasonably good solution.

Instead of using priority rules, this chapter applies the GA-based scheduling system

described in Chapter 3 to address dynamic JSSPS. In deterministic dynamic JSSPS, a set of

benchmark problems is tested and the results are compared with another GA-based

scheduling system and some priority rule-based systems. In stochastic JSSPS, a simulation

model under various manufacturing environments is designed. The results are also

compared with use of some priority rule-based systems.

86

87

6.1 Deterniinistic dynamic JSSPs

Deterministic dynamic JSSPS can be solved in either an exact or a heuristic manner.

One example of an exact method is a depth-first branch-and-bound algorithm which builds

a schedule forward in time [58]. Heuristic methods are especially interesting for practical

applications. The most often used heuristic method is the priority rule approach, which

schedules the highest priority job whenever a machine becomes available. The priority is

based on some easily computed parameters of the jobs, operations, or machines, such as

processing times, due dates, release times, and machine loadings. This section applies the

GA-based scheduling system developed here to deterministic dynamic JSSPS, using a

variety of Objective functions. The results of priority rules and another GA-based

scheduling system are also presented for comparison.

6.1.1 Experimental Design

The test set of 12 deterministic problems is taken from [53]. The characteristics of

these problems are Shown in Table 6.1. The tardiness factor measures approximately the

proportion of tardy jobs. Due dates are then tightened or loosened to give the specific

tardiness factor. For example, if the tardiness factor is set at 0.3, roughly 30% of the jobs

are tardy. The due dates of the 30% jobs are then set tight, and the due dates of the

remaining jobs are set loose. In this experimental design, the bottleneck machine is

determined as the machine with the largest expected processing time.

The objective functions examined (Table 3.1) are weighted flow time, maximum

tardiness, weighted tardiness, weighted lateness, weighted number of tardy jobs, and

weighted earliness plus weighted tardiness. The definitions of the priority rules used for

comparison in this chapter can be found in Table 2.3. In minimizing the weighted flow

88

Table 6.1 The characteristic of the test deterministic JSSPS

. Tardiness Utilization of

Problem Size Factor Bottleneck

Machine

181 10x3 0.44” 0.6

IB2 10x3 0.2 0.6

JB4 10x5 0.7 0.6

JB9 15x3 0.7 0.9

JBl 1 15x5 0.2 0.9

JB 12 15x5 0.4 0.6

LJBl 30x3 0.5 0.6

LJBZ 30x3 0.5 0.75

LJB7 50x5 0.4 0.6

LJB9 50x5 0.7 0.9

LJB 10 50x8 0.7 0.6

LJB 12 50x8 0.7 0.9

89

time, we compared our GA approach with five priority rules -- RANDOM, FCFS, WSPT,

WLWKR, and WTWORK. For the other objective functions, the priority rules used for

comparison were WSPT, EGD, EOD, EMOD, MST, WS/OP, WCR, WCOVERT, and

WR&M, except that in minimizing the maximum tardiness, which does not consider the

weights of jobs, the non-weighted version of the priority rules, obtained by removing the

weighted coefficient from the weighted version, was used. In addition to these priority

rules, we also compared our results with Fang’s results [59]. Fang’s GA approach is

described in Chapter 2.

In all runs, the crossover and mutation rates were 0.6 and 0.1 respectively, and

offspring replaced their parents, with elitism protecting the best individual from

replacement. Two versions of the GA were tested for the deterministic problems. One was

a single-population GA with population Size 50. The other was a hybrid PGA in which 25

single-population GAS with subpopulation size of 20 were connected in a 5x5 torus. The

migration interval was 50 generations. The length of the run number for both versions was

50x(number of jobs). The best result obtained from 10 runs of the corresponding GA for

each problem was recorded.

6.1.2 Experimental Results and Discussion

The results for each objective function are given below. The reported results are the

normalized values (Table 3.1).

(1) Weighted Flow Time

Table 6.2 Shows the results of priority rules. The best result for each problem is shaded

in light gray. WSPT, which found the best result in 9 out of 12 problems, performed better

than the other four priority rules. Figure 6.] presents the comparison of the best results

90

Table 6.2 Priority miles for (normalized) weighted flow time in deterministic

dynamic JSSPs

Problem

Priority rules

I Fang‘s GA

El Singlepopulaflon GA

E! Hybrld PGA

B
u
t

N
o
r
I
n
I
l
l
a
o
d
V
a
l
u
e

Figure 6.1 Comparison of priority rules and GA approaches for (normalized)

weighted flow time in deterministic dynamic JSSPS

91

Table 6.3 Priority rules for (normalized) weighted tardiness in deterministic

dynamic JSSPs

Problem WCOVERT WR&M

l

JBZ 0.087

IB4

JB9

S

E I Priority Men

'2 I Fang‘s GA

% El Sings-manor! GA u

E a Hybfld PGA

z

8
n

éfiéfi

J
8
1

1

J
8
1
2

U
8
1

U
8
2

L
J
B
7

U
8
9

U
8
1
0

U
8
1
2

Figure 6.2 Comparison of priority rules and GA approaches for (normalized)

weighted tardiness in deterministic dynamic JSSPs

92

Table 6.4 Priority rules for (normalized) maximum tardiness in deterministic

dynamic JSSPs

Problem SPT CR COVERT R&M

0.170 0.064 0.064 0.064

0.227 0.091 0.105 0.105

0.047 0.015 0.015

0.065 0.081

0.079 0.108

0.031 0.036

0.091

0.050 0.068

0.037 0.098

B
u
t
N
o
r
m
a
l
i
z
e
d
V
a
l
u
e

Figure 6.3 Comparison of priority rules and GA approaches for (normalized)

maximum tardiness in deterministic dynamic JSSPS

93

Table 6.5 Priority rules for (normalized) weighted lateness in deterministic

dynamic JSSPS

Problem WSPT EGD EOD EMOD MST WS/OP WCR WCOVERT WR&M

-0.158 —""_—‘_

~0.677

B
e
e
t
N
o
r
m
a
l
l
u
d
v
u
u
o

.6 M

'03 ‘ Jun

Figure 6.4 Comparison of priority rules and GA approaches for (normalized)

weighted lateness in deterministic dynamic JSSPS

94

Table 6.6 Priority rules for (normalized) weighted number of tardy jobs in

deterministic dynamic JSSPs

Problem EGD EOD WCR WCOVERT WR&M

1B]

1132

IB4

IB9

B
o
o
t
N
o
m
a
l
l
u
d
V
a
l
u
e

0 5

J
3
1

J
8
2

J
8
4

Figure 6.5 Comparison of priority rules and GA approaches for (normalized)

weighted number of tardy jobs in deterministic dynamic JSSPS

95

Table 6.7 Priority rules for (normalized) weighted earliness plus weighted

tardiness in deterministic dynamic JSSPs

Problem WCR WCOVERT WR&M

1

J82 0.984

0.418

0.587

0.505

0.678

0.915

0.568

0.965

0.950

0.684

B
o
a
t
N
o
r
m
a
l
l
u
d
V
a
l
u
e

Figure 6.6 Comparison of priority nrles and GA approaches for (normalized)

weighted earliness plus weighted tardiness in deterministic dynamic JSSPS

96

obtained by priority rules and GA approaches. In general, priority rules and GA

approaches show similar performance in small problems such as 1B1, B2, and JB4.

Among the GA approaches, Fang’s GA found better results than priority rules in 8

problems. Our single-population GA dominated priority rules and outperformed Fang’s

GA (only for LJBIO did Fang’s GA find a better result). Furthermore, the hybrid PGA

found the best results of any of the methods on all problems.

(2) Weighted Tardiness

Table 6.3 gives the results of priority rules. WCOVERT, which found the best results

in 6 problems, shows better performance than other priority rules. Compared to GA

approaches (Figure 6.2), both the single-population GA and the hybrid PGA found results

at least as good as those obtained by priority rules. Among the GA approaches, Fang’s GA

found better results than the single-population GA in only 3 problems (JB4, LJB], and

LJB 10). The hybrid GA yields the best overall performance.

(3) Maximum Tardiness

Table 6.4 shows the results of priority rules. EGD yields the best performance. The

comparison of priority rules and GA approaches is shown in Figure 6.3. Both the single-

population GA and the hybrid PGA found results at least as good as those found by

priority rules and Fang’s GA. Moreover, the hybrid PGA yields the best performance.

(4) Weighted Lateness

The results of priority rules are shown in Table 6.5. Basically, minimizing weighted

flow time and minimizing weighted lateness are equivalent. The best priority rule in the

objective of minimizing weighted flow time, WSPT, also gave the best performance

among priority rules here. Figure 6.4 presents the comparison of priority rules and GA

97

approaches. Both the single-population GA and the hybrid PGA dominated priority rules.

Among the GA approaches, single-population GA found better results than Fang’s GA in

9 problems. The hybrid PGA found better results than Fang’s GA in 11 problems and

found results at least as good as those obtained by the single-population GA. Therefore,

the hybrid PGA shows the best performance.

(5) Weighted Number of Tardy Jobs

Table 6.6 presents the results of priority rules with the objective of minimizing

weighted number of tardy jobs. Among the priority rules, WSPT and WCOVERT show

better performance than other priority rules. Figure 6.5 shows the comparison of priority

rules and GA approaches. The GA approaches outperform the priority rules in most

problems. Compared to priority rules, a great improvement is made by GA approaches in

8 problems (JBl, JB9, and all LJB problems). Among GA approaches, the hybrid PGA

yields the best overall performance.

(6) Weighted Earliness plus Weighted Tardiness

Table 6.7 presents the results of priority rules. WCOVERT, which found the best

results in 8 problems, gave the best performance among priority rules. Figure 6.6 shows

the comparison of priority rules and GA approaches. The single-population GA yields

results better than or equal to Fang’s results in 10 problems. Only in JB4, Fang’s GA

found a better result than the hybrid PGA.

In summary: our single-population GA and hybrid PGA both performed consistently

better than the priority rules. The single-population GA yields results better than or equal

to Fang’s in 61 of 72 scenarios. The hybrid PGA is seen to provide the best results. Only 3

of its 72 scenarios are worse than Fang’s results. The average percentage of improvement

98

Table 6.8 The average percentage of improvement over the best found by

priority rules and Fang’s GA and the corresponding level of significance 0L

Single-population GA Hybrid PGA

Objective function

Improvement % 0: Improvement % a,

Weighted Flow Time 1.03 0.0093 2.46 0.0048

Weighted Tardiness 3.35 0.063 9.88 0.022

Maximum Tardiness 5 .67 0.045 10.80 0.0054

Weighted Lateness 10.85 0.030 19.63 0.024

Weighted Number of Tardy Jobs 0.46 0.15 5.79 0.029

Weighted Earliness plus 2.18 0.12 1 1.51 0.010

Weighted Tardiness

over the best found by priority rules and Fang’s GA with respect to various objective

functions is shown in Table 6.8. The relative improvement of the hybrid PGA is larger for

weighted tardiness, maximum tardiness, weighted lateness, and weighted earliness plus

weighted tardiness. Table 6.8 also shows the corresponding level of significance (1 for a

one-tailed test concerning paired differences. Both GA approaches retain their

effectiveness for all objective functions. As shown in the table, all results hold at

significance levels of 0.15 or bette, and all PGA improvements are significant at the 3%

level or better. The superior results show that the THX crossover and mutation

successfully transmit useful characteristics -- i.e., the temporal relationships among

operations. Furthermore, the hybrid PGA performs better than the single-population GA

because the premature convergence problem is alleviated by parallelizing the GA,

99

allowing better global search.

6.2 Stochastic dynamic JSSPS

To study the effectiveness of the scheduling system in stochastic dynamic JSSPS, a

simulation model of JSSPS provides an easy way to predict the performance and compare

several alternatives under a wide variety of environments. The due date tightness and

machine utilization are the main factors in the design of the simulation model. Another

consideration is that the relative machine utilizations are unlikely to be equal in a

manufacturing environment.

In this section, the simulation model is presented. Then, the results of the scheduling

system are compared with those of priority rules with respect to different objective

functions and manufacturing environments. Furthermore, the proposed rescheduling

method is compared with rescheduling from scratch, for the objective of minimizing

weighted flow time.

6.2.1 Experimental Design

The stochastic job shop simulated has 5 machines with jobs arriving continually

according to a Poisson process. The process is observed until the completion of 100 jobs.

Each job has a random routing through the system. The operation processing times at each

machine are uniformly distributed with various means to yield different levels of machine

workload. Two classes of problems were designed. One was a balanced workload, with

five levels of average machine utilization —- 75%, 80%, 85%, 90%, and 95%. The other

was an unbalanced workload, with five levels of average machine utilization -- 60%, 65%,

70%, 75%, and 80%, in a 3:2 ratio of machine loads. The weights of jobs were uniformly

100

distributed between 1 and 2. For the objective of weighted flow time, no due date was

assigned to the 10 scenarios, and 10 test problems were randomly generated for each

scenario. In total, therefore, 100 problems were created for the objective of weighted flow

time. For the other due-date-related objective functions, jobs have due dates set at arrival

time plus F times their processing times, where F is the flow allowance factor to control

due date tightness. Five levels of due date tightness were tested -- F = 2, 3, 4, 5, and 6.

Therefore, there were 50 scenarios. For each scenario, 5 problems were randomly

generated, so 250 problems were created in total for each due-date-related objective

function.

The priority rules for comparison were the same as in the study of deterministic

problems. In the stochastic problems, a deterministic problem is generated whenever an

event occurs -- e. g., new job(s) arrive. The number of generations was set at 200 for each

event. The average computational cost for each event is 7.0 seconds. For the objective of

weighted flow time, two versions of the single-population GA were examined. The first

reschedules the new deterministic problem from scratch. The second reschedules by using

a modified population as described in Section 3.2. For the other objective functions, we

applied only the second single-population GA to compare with the priority rules.

6.2.2 Experimental Results and Discussion

The results of the simulation experiment for each objective function are presented

below. The reported results are the normalized values. The results of the two genetic

approaches for the objective of weighted flow time are the average best results on the ten

problems of each scenario, and the best results were obtained from 10 runs for each

problem. For other objective functions, the results given are the average best results of the

101

5.6

—+— Priority rules 1 r

5.4 - ---><--- GA- rescheduling from scratch

------* GA - rescheduling from modified population

5.2

a) 5

2

§ 4.8

8
.5 4.6

a

E 4.4

2
.. 4.2
(I)

0

m 4 .

3.3~

3.6 1?.” -

3.4 ' L 1

0.75 0.8 0.85 0.9 0.95

Load

(a) Weighted flow time vs. load, balanced workload

4.4

—+— Priorit'y rules

---x—-- GA - rescheduling from scratch

-----x GA - rescheduling from modified population

 4.2

B
e
s
t
N
o
r
m
a
l
i
z
e
d
V
a
l
u
e

0
)

C
D

3.6

J

3.4 -

”a"?

-

""“’""?."
.’.‘2‘.".

‘.".’.‘:¥
'

.—.—.-.-
:.-::'.‘

.‘: 1‘
31??

?§
...

3.21
.

.
.

0.6 0.65 0.7 0.75 0.8

Load

(b) Weighted flow time vs. load, unbalanced workload

Figure 6.7 Comparison of priority rules and GA approaches for (normalized)

weighted flow time in stochastic dynamic JSSPS

102

5 problems of each scenario, and the best results were obtained from 5 GA runs for each

problem.

(1) Weighted Flow Time

In the priority rules, WSPT is dominant at all utilization levels of balanced and

unbalanced workload. Figure 6.7 shows the comparison of the best results of priority rules

and GA approaches. The two GA approaches consistently found better results than

priority rules and yielded comparable or better results at utilization levels less than 90%.

The relative superiority of the GA with rescheduling from the modified population is

higher under heavy workload, such as the runs of the 90% and 95% balanced workload

models. This agrees with the implications of Section 3.2. Under heavy workload, jobs

arrive closely after each other. Because only a few operations are removed from the

system, most information retained in the last population before the new jobs arrive is still

useful for the new problem. The modification process successfully preserves the

information of the temporal relationships and enhances the efficiency of genetic search.

(2) Weighted Tardiness

The best four priority rules in the simulation are WCOVERT, WR&M, EGD, and

MST. The results of others which have been consistently dominated by these four priority

rules are omitted for greater clarity in presentation. In general, the problems become easier

when the due dates are set loosely. While the GA dominates the priority rules at all flow

allowances, the differences at flow allowance of 4, 5, and 6 are marginal. Figure 6.8 and

Figure 6.9 show the comparison of the GA and the four priority rules at flow allowances of

2 and 3 under balanced and unbalanced workload. The GA is superior to the priority rules.

The difference between the GA and the priority rules is increasingly significant with a

103

1.1

1

0.9

3 0.8

9
'o 0.7

0)

.5

a 0.6

E

2 0.5

Ta";00 0.4

0.31 . ‘ .

0.2 ‘7.;.;:':'£'5'3j;j',i,-" ‘ .

0.18/5. L L 1

0.75 0.8 0.85 0.9 0.95

Load

(a) Weighted tardiness vs. load at F=2, balanced workload

1.2 l l r

——I— EGD

---><--- MST

We! WCOVERT ,1:

1 '- +3 WR&M / _

~--I--- GA ’

Q)

2m _

>

'O

o .

z
.5

..

a:
m

0.75 0.8 0.85 0.9 0.95

Load

(b) Weighted tardiness vs. load at F=3, balanced workload

Figure 6.8 Comparison of priority rules and the GA approach for (normalized)

weighted tardiness in stochastic dynamic JSSPs under balanced workload

104

m

2

as

>

'O

0)

.5

Ti

E
0

Z

175
Q)

m

' 0.6 0.65 0.7 0.75 0.8

Load

(a) Weighted tardiness vs. load at F=2, unbalanced workload

0.25 l l T

—4— EGD

---><--- MST

-----.* WCOVERT

---I--- GA

0)

2

m

>

'0 0.15 '-

d)

.E

E

E

3 0.1 -

‘6
Cl)

03

0.05 -

0.6 0.65 0 7 0.75 0.8

(b) Weighted tardiness vs. load at F=3, unbalanced workload

Figure 6.9 Comparison of priority rules and the GA approach for (normalized)

weighted tardiness in stochastic dynamic JSSPs under unbalanced workload

105

0.035

0.03

0.025

0.02

0.015

B
e
s
t
N
o
r
m
a
l
i
z
e
d
V
a
l
u
e

 0.01
c:

0.005 ‘ l 1

0.75 0.8 0.85 0.9 0.95

Load

(a) Maximum tardiness vs. load at F=2, balanced workload

0.035

0.03

0.025

0.02

0.015

B
e
s
t
N
o
r
m
a
l
i
z
e
d
V
a
l
u
e

0.01

o .3.

' I ...-

o ..

r .8

¢ .0

I a

a . .-'

o .

I

I

f.o L l l

0.75 0.8 0.85 0.9 0.95

Load

(b) Maximum tardiness vs. load at F=3, balanced workload

Figure 6.10 Comparison of priority rules and the GA approach for (normalized)

maximum tardiness in stochastic dynamic JSSPs under balanced workload

106

(1026 I r l ,

—+—— MST xx’;

0024 - :32: 3339‘” —

(1022

d)

D

'6 (102

> jinn.......

'83 0.018

‘2
5 (1016

z

‘3' 0.014

m

0.012 :5»....................
_

............... an“...

0.01 - _
_______a"

(1008 ‘ ’4 '

(16 (165 (17 (175 (18

Load

(a) Maximum tardiness vs. load at F=2, unbalanced workload

0.016 . I I r

—l— MST

---x--- WS/OP '

(1014 - '

(1012 e
(D

.2

m

>’ (101 _

8
.E

'3 (1008 ~

E
O

5 0.006 ~

(I)

d)

m

(1004 -

x------------------ x

0.002

or
(16 (165 (17 (175 (18

Load

(b) Maximum tardiness vs. load at F=3, unbalanced workload

Figure 6.11 Comparison of priority rules and the GA approach for (normalized)

maximum tardiness in stochastic dynamic JSSPs under unbalanced workload

107

I

”,,:<

X------------.x”””’

Q) _.

3

B

> a!

'8 3“ ---------------- ale """""" fl

.5 /
a

fil—

EaZ

#5 ”NB ...

m a-

m —l

-0.4 E I l r

0.75 0.8 0.85 0.9 0.95

Load

(a) Weighted lateness vs. load at F=2, balanced workload

0.7 I 1 r

——+— WSPT

05 _. ---X--- EGD ’2‘

--*--- WR&M

05 i-B GA
1’ _,

3 0.4

‘>°
'0 0.3
Q)

.5

'03 0.2

E

2 0.1

‘53 a

g 0

-0.1 are-

-0.2‘

-0.3

0.6 0.65 0 7 0.75 0.8

(b) Weighted lateness vs. load at F=2, unbalanced workload

Figure 6.12 Comparison of priority rules and the GA approach for (normalized)

weighted lateness in stochastic dynamic JSSPs

108

decrease in the flow allowance. At flow allowance of 2, the difference is at the 0.0013 level

.of significance for balanced workload and at the 0.0029 level of significance for

unbalanced workload.

(3) Maximum Tardiness

The GA is superior to the priority rules more significantly when the due dates are tight.

Figure 6.10 and Figure 6.11 depict the comparison of the GA and the best three priority

rules -- MST, WS/OP, and WCR, at flow allowances of 2 and 3 under balanced and

unbalanced workloads. The GA retains superiority at significance levels of 0.05 or better

for the case of balanced workload at flow allowances of 2, 3, 4, and 5, and at the

significance levels of 0.15 for the case of unbalanced workload at flow allowances of 2, 3,

and 4.

(4) Weighted Lateness

Consistent with the results of weighted flow time, WSPT dominates other priority

rules at all flow allowances and load levels under balanced and unbalanced workloads.

Figure 6.12 (a) and (b) show typical graphs of the comparison of the GA and the best three

priority rules -- WSPT, EGD, and WR&M under balanced and unbalanced workloads,

respectively. Unlike the results from previous objective functions, the GA performed

consistently better than all priority rules at all flow allowances. The superiority is retained

at significance levels of 0.0005 or better for the case of balanced workload, and 0.0039 or

better for the case of unbalanced workload.

(5) Weighted Number of Tardy Jobs

The best three priority rules are WSPT, WCOVERT, and WR&M. When the flow

allowance is 5 or 6, the difference between the GA and the priority rules is marginal.

B
e
s
t
N
o
r
m
a
l
i
z
e
d
V
a
l
u
e

B
e
s
t
N
o
r
m
a
l
i
z
e
d
V
a
l
u
e

Figure 6.13 Comparison of priority rules and the GA approach for (normalized)

weighted number of tardy jobs in stochastic JSSPs under balanced workload

0.5

109

—+— WSP'T ' '

--—x--- WCOVERT 3....

0.45 - ------—x WR&M "“"‘

......51“” GA X-‘ ~. - '__..-"" I’,,J(

, ,E ,,,,,

0.4 ~~~~~~~

0.35

0.3

0.25

0.2 .

0.15 -
4

0.1 L ‘ L

0.75 0.8 0.85 0.9 0.95

Load

(a) Weighted number of tardy jobs vs. load at F=2, balanced workload

0.14

0.12

0.1

0.08

0.75 0.8

L

0.85

Load

0.9

0.95

(b) Weighted number of tardy jobs vs. load at F=4, balanced workload

B
e
s
t
N
o
r
m
a
l
i
z
e
d
V
a
l
u
e

0.45

0.4

0.35

l

——+—— WSPT

---x--- WCOVERT

1-....- WR&M

0.7

Load

0.75 0.8

(a) Weighted number of tardy jobs vs. load at F=2, unbalanced workload

B
e
s
t
N
o
r
m
a
l
i
z
e
d
V
a
l
u
e

0.22

0.2

0.18

0.16

0.14

0.12

l

l

——+— WSPT

---—x--- WCOVERT

mas-- WR&M

...... .3...... GA

0.75 0.8

(b) Weighted number of tardy jobs vs. load at F=3, unbalanced workload

Figure 6.14 Comparison of priority rules and the GA approach for (normalized)

weighted number of tardy jobs in stochastic JSSPS under unbalanced workload

B
e
s
t
N
o
r
m
a
l
i
z
e
d
V
a
l
u
e

111

—+—— WS/OIP ' '

---x--- WCOVERT

0.9 ” ----X- WCR "

.........3.... GA g '_,.-

xx —l

I’,::

x- ---------------*”,/ £3

.13..............................
"Ba" -

l l

0.75 0.8 0.85 0.9 0.95

Load

(a) Weighted earliness and weighted tardiness vs. load at F=2, balanced workload

B
e
s
t
N
o
r
m
a
l
i
z
e
d
V
a
l
u
e

1.8 r r l

-—+——- WS/OP

1 6 ---x--- WCOVERT

1.4

1.2

1

0.8

0.6 11;
q

.
E]...

E}
{a

0.4 l$.............. l

0.75 0.8 0.85 0.9 0.95

Load

(a) Weighted earliness and weighted tardiness vs. load at F=4, balanced workload

Figure 6.15 Comparison of priority rules and the GA approach for (normalized)

weighted earliness plus weighted tardiness in stochastic JSSPS under balanced

workload

112

—+— WS/O'P

-———--x WCOVERT

Q)

2
m

>

'O

(D

.e
a

E
0

Z

a
a)

a)

:3

0-3 ' """""""""""" E}
------------- .3

0.2 ' ' I
0.6 0.65 0.7 0.75

Load

0.8

(a) Weighted earliness and weighted tardiness vs. load at F=2, unbalanced workload

 2.2 .

—+— WS/OP

2 >_‘_~~:;-x-—- WCOVERT

---‘ae\-.-, WCR
1.8

1.6

1.4

1.2

1 ..

B
e
s
t
N
o
r
m
a
l
i
z
e
d
V
a
l
u
e

0.8 (J-
o
o.-

'-
'o s

.-
0.

'-
.
-..

o._

‘o

0.6 -

~
...

~
.

‘u

‘-
u
..

.

.-"

.-",-

.1"

.I'

--"_ .

....... .
.....

- .-
~ -
.....

0.4 1 '

‘-
.

'0
a

‘-

'.
o

'-

‘~
.
~

0.6 0.7

Load

(a) Weighted earliness and weighted tardiness vs. load at F=4, unbalanced workload

Figure 6.16 Comparison of priority rules and the GA approach for (normalized)

weighted earliness and weighted tardiness in stochastic JSSPs under unbalanced

workload

113

Figure 6.13 shows the comparison of the GA and the three priority rules at flow

allowances of 2 and 4 under balanced workloads. The difference between the GA and the

priority rules is more significant at tight due dates. The levels of significance are 0.003 and

0.0072 for flow allowances of 2 and 4, respectively. Notice also that WSPT dominates

other rules when the due dates are tight. At flow allowances of 4, 5, and 6, WR&M yields

better results than WSPT. The same findings are also shown in the case of unbalanced

workload (Figure 6.14).

(6) Weighted Earliness plus Weighted Tardiness

The GA dominates the priority rules across all flow allowances and load levels. The

relative improvement of the GA over the priority rules is retained at a significance level of

0.056 or better for the case of balanced workload and 0.0067 or better for the case of

unbalanced workload. Figure 6.15 and Figure 6.16 show the comparison of the GA and

the best three priority rules -- WS/OP, WCR, and WCOVERT, at flow allowances of 2 and

4 under balanced and unbalanced workloads. As seen from the figures, WCR and WS/OP

have similar performance. WCOVERT is the best priority rule at flow allowance of 2.

However, at flow allowance of 4, WCR and WS/OP outperform WCOVERT. Furthermore,

unlike the other (regular) objective functions, the values decrease when the load level

increases at flow allowances of 4, 5, and 6.

In summary: From the results of the objective function of weighted flow time, the

proposed rescheduling method successfully preserves the information of the temporal

relationships and enhances the efficiency of genetic search. Table 6.9 shows the results of

all objective functions with respect to different workloads and due date tightnesses. We

report only the results of the GA with rescheduling from a modified population and the

114

Table 6.9 The normalized results of the GA and the percentage improvement

over the priority rules

5 I Balanced Workload Unbalanced Workload 5

F

I 75% I 80% I 85% I 90% I 95% I 60% I 65% I 70% I 75% I 80% I

Weighted Flow Time

LN/Al 3.488(8.4) I4.076(10.7)I 4.098(6.7) I 4.305(9.0)I 5.135(5.6) I 3.268(6.6) I 3.304(8.7) I 3.350(8.2) I 3.748(6.9) I 3.869(9“

Weighted Tardiness

2 I0.105(34.0) 0.241(15.4) 0.394(19.6) 0.368(21 .0) 0.524(1 1.9)10.l31(37.0) O.l4l(21.7) 0.115(29.9) 0.268(8.2) 0.390(14.7)|

l0.005(70.6) 0.059(34.4) 0.179 (9.6) 0.229(21.8) 0.570 (2.9) 0.00*0.001 0.00‘0002 0.017(56.4) 0.002(71.4) 0.127 (-0.8)

l0.001(80.0) 0.068(299) 0.008(57.9) 0.112 (~24) 0.097(1 1.8) 0.004 (0.0) 0.000 (0.0) 0.00*0.001 0.000 (0.0) 0.00*0.00l

[0.000 (0.0) 0.000 (0.0) 0.001 (0.0) 0.006(25.0) 0.056(6.7) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.001(50.0) 0.000 (0.0)

3

4

5

6 I0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0)

Maximum Tardiness

10.009(40.0) 0.012(36.8) 0.021(16.0) 0.017(29.2) 0.021(12.5) 0.012(29.4) 0.011(35.3) 0.009(30.8) 0.016(ll.l) 0.017(22.7)

0.002 (0.0) 0.006(45.5) 0.013(23.5) 0.016(20.0) 0.024(17.2) 0.00‘0001 0.00*0.00I 0.003(50.0) 0.00 1 (50.0) 0.010(23. l)

0.001 (0.0) 0.006(33.3) 0.004(33.3) 0.006 (0.0) 0.008 (-14) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.00‘0.001

0.000 (0.0) 0.000 (0.0) 0.00‘0.001 0.002(33.3) 0.005(28.6) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0)

0
M
§
W
N

0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0)

Weighted Lateness

-0.36 (70.7) -0. 10(406) 0.098(67.8) 0.045(84.6) 0.208(44. 1) -0.29 (67.6) -0.27 (133) -0.29(68.9) -0.08(239) 0.079(66.7)

-l.24(23.6) -0.96(28.0) -0.74(32.6) -0.52(64.6) -0.01(107) - 1 41709) -l.339(5.7) -1.l40(14) -1.36(13.3) -0.871(5.4)

-2.251(8.3) -1.64(11.8) -l.72(13.6) -1 .84(10.0) -1.34(12.8) -2.415(4.0) ~2.259(6.8) -2.296(4.9) -2.318(6.4) -1.99(11.0)

~3.261(6.6) -3.091(5.2) -2.835(7.1) -2.674(7.2) -2.232(5.3) -3.535(2.5) ~3.334(3.7) -3.375(4.1) -3.235(5.6) -3.038(5.8)

0
5
1
1
1
-
t
h

-3.863(4.9) 4.062(47) -3.735(3.9) -3.898(5.1) -3.295(7.4) 4.431(22) 4.472(34) -4.245(3.1) -3.940(4.8) -3.957(4. l)

Weighted Number of Tardy Jobs

2 l0.105(46.7) 0.181(33.9) 0.252(23.2) 0.229(280) 0.261(15.8)[0.122(39.6) 0.142(37.7) 0.138(39.2) 0.176(33.3) 0.252(19.7)

doorman 0.065(49.6) 0.089(36.0) 0.128(31.9) 0.187(21.4)I0.002(60.0) 0.005(50.0) 0.036(56.6) 0.007(77.4) 0.080(12. 1)

4 I0.003(75.0) 0.041(56.4) 0.027(46.0) 0.025(62.7) 0.059(33.7) 0.000 (0.0) 0.000 (0.0) 0.003 (0.0) 0.000 (0.0) 0.006 (~50)

5 l0.000 (0.0) 0.000 (0.0) 0.007 (-17) 0.020 (4.8) 0.055(22.5) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.007 (0.0) 0.000 (0.0)

6J0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.003 (0.0) 0.004 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0)

Weighted Earliness plus Weighted Tardiness

2 l0.261(41.1) 0.367(18.8) 0.532(12.4) 0.495(18.7) O.615(l4.9j0.327(37.6) 0.284(36.0) 0.259(35.9) 0.396(13.9) 0.531 (8.0)

3Jo.260(63.7) 0.330(46. l) 0.450(31 .7) 0.564 (7.2) 0.873 (8.2) 0.388(59.6) 0.262(68.8) 0.338(54.3) 0.309(64.4) 0.400(40.8)

4 l0.552(63.9) 0.541(50.5) 0.437(57.2) 0.513(61 .4) 0.471(35.6)l0.756(56.6) 0.553(61.7) 0.697(57.2) 0.438(70.0) 0.418(63.3)

5 ll.018(55.8) 0.749(62.3) 0.665(62.9) 0.633(60.6) 0.711(48.7)ll.749(42.2) l.371(47.1) 1.1 10(585) 1.076(55. l) 0.682(64.5)

 6 Ir.097(57.4) 1.203(55.9) 0.927(61.9) 1.01 8(62.0) 0.699(55.9)l2.378(36.7) 2.434(369) 1.633(48.8) 1.01 1(59.5) 1.279(53.9)
*The GA found result 0 but the priority rules didn’t. lnstead of showing the improvement, the best found by the priority rules is shown.

115

percentage improvement over the priority rules. Any of our results which are worse than

the priority rules are shaded light gray. The GA results are worse than the priority rules in

only 5 of 260 scenarios. In general, the relative improvement of the GA is larger in tight

due date situations for weighted tardiness, maximum tardiness, weighted lateness, and

weighted number of tardy jobs. For loose due date problems, although the priority rules

yield similar results to the GA for the objective functions which only involve tardiness, the

GA outperforms the priority rules for all objective functions giving a credit or penalty to

earliness -- e. g., for weighted lateness and for weighted earliness plus weighted tardiness.

For the nonregular objective, i.e., weighted earliness plus weighted tardiness, the priority

rules perform much worse than the GA because such a nonregular objective is harder for

priority rules to optimize, given that they consider only a few pieces of local information

about jobs or machines, without the awareness of global information. This result also

shows the superiority of the GA for the nonregular objective function.

6.3 Summary

This chapter extends the GA-based scheduling system for static JSSPS to dynamic

JSSPS in which jobs arrive continually. The idea of a decomposition approach with

rescheduling using a modification of the adapted population is quite general, and can be

implemented for dynamic JSSPS with other stochastic events such as machine

breakdowns, job cancellations, due date changes, etc. For example, when a job is

cancelled, the information about the cancelled job can be removed to create a smaller

problem. The individuals of the old population are then modified by applying the G&T

algorithm to the newly generated problem, with the unaltered elements following their

116

relationships in the old individuals. Thus, the relationships among the operations are

preserved to the extent possible. The experimental results show that a significant

improvement over priority rule approaches was achieved for both deterministic and

stochastic dynamic JSSPS using a genetic algorithm approach, and at a reasonable

additional computational cost. Consider the results for various objective functions: while

no one priority rule dominated other priority rules for all objective functions, our approach

consistently outperformed the priority rules. Such a consistent superiority shows the

robustness of the GA to the objective functions. Another interesting result concerns the

manufacturing environment. Raman et al. [57] reported that the selection of a different

and appropriate scheduling rule improves the system performance under different

manufacturing environments. In contrast to that claim, our approach outperformed the

priority rules with respect to the machine workload, imbalance of machine workload, and

due date tightness. This shows the robustness of the GA to the manufacturing environment

on the JSSPS. The aspect of the robustness of the GA to the objective functions and the

manufacturing environment is more prominent and more important in real-world

manufacturing systems.

CHAPTER 7

Conclusions

The JSSP is one of the most general and most difficult of all traditional scheduling

problems. It has led to many techniques emanating from the fields of artificial intelligence

and operations research which provide approximate or exact solutions to JSSPS.

Throughout this dissertation, we have developed a GA-based scheduling system for

JSSPs, especially dynamic JSSPS. Although the problems studied are simplified models of

real-world scheduling problems, the impressive results show the promise for the

scheduling system as the basis of an approach to real-world scheduling problems.

7.1 Summary

The primary objective of this research is to develop an efficient GA-based scheduling

system to address JSSPS, especially dynamic JSSPS. To achieve this goal, first, the

representation scheme and the genetic operators were designed to address the validity

problem. In the scheduling system, the representation scheme was a direct representation,

which encodes the operation starting times. The two G&T-algorithm-based genetic

operators, THX crossover and mutation, were designed to better transmit the temporal

relationships in the schedule. The designed scheduling framework was tested on some

standard benchmark JSSPS. The superior results indicate the successful incorporation of

117

118

problem-specific knowledge into the genetic operators, and show the effectiveness of the

scheduling system.

We further investigated PGAS for JSSPS by comparing single-population GAs and

PGAS on the FI‘lelO problem and reported on various PGA models. In general, the

effect of parallelizing GAs is twofold. First, PGAS can alleviate the premature

convergence problem and improve the results. Second, PGAS can often find the same

quality of results in a fewer number of evaluations compared to single-population GAs.

Furthermore, in chAs, the number of islands has a greater positive effect on performance

than simply increasing population size. Additionally, a good connection topology can

further increase the performance. Best results were obtained with the hybrid PGA

consisting of chAs connected in a ngA-style topology.

The scheduling system was then extended to address dynamic JSSPS. In deterministic

dynamic JSSPS, the scheduling system was tested on a set of benchmark problems with

respect to different objective functions. Two versions of GAs were applied. One was the

single-population GA; the other was the hybrid PGA which achieved best performance in

static JSSPS. The results were compared with priority rules and another GA-based

scheduling system. The hybrid PGA was seen to provide the best results across a variety

of schedule quality criteria.

In stochastic dynamic JSSPS, we decomposed the stochastic JSSP into a series of

deterministic problem. A deterministic problem is generated whenever a new job enters

the system. At each such point in time, the job information is updated. We have also

presented an innovative rescheduling method which modifies the adapted population into

a new population between successive events. The temporal relationships among the

119

operations in each individual of the adapted population are preserved. To evaluate the

scheduling system, a simulation model of stochastic JSSPS representing a variety of

various manufacturing environments was designed. Two versions of GA were compared

with priority rules for the objective of minimizing weighted flow time. One used

rescheduling from scratch; the other used the newly designed rescheduling method. Both

versions of the GA outperformed the priority rules, and the GA with the newly designed

rescheduling method performed better than the GA with rescheduling from scratch. The

results indicate that the rescheduling method successfully preserves the information of the

temporal relationships and enhances the efficiency of genetic search. In other objective

functions, we compared the scheduling system with priority rules. The experimental

results show that the scheduling system outperformed the priority rules for all objective

functions with respect to the machine workload, imbalance of machine workload, and due

date tightness.

7.2 Contributions

The main contributions of this dissertation are summarized as follows:

(1) Given the computing power available, it becomes increasingly possible and more

important to design effective approaches to obtain better schedules, even at addi-

tional computational cost. This research has presented one such approach. The

GA-based scheduling system is successful on a wide variety of benchmark prob-

lems and simulation problems. Compared to traditional priority rules, the sched-

uling system yields significant improvement, at a reasonable additional

computational cost.

(2)

(3)

(4)

(5)

120

In contrast to previous GA approaches, the design of the genetic operators and

the rescheduling method developed here focuses on the schedule level instead of

the chromosome level. The excellent results indicate that such a design can effec-

tively incorporate the problem-specific knowledge into the GA and enhance

genetic search.

The effect of parallelizing GAs has been investigated. For these problems, PGAS

not only alleviate the premature convergence problem and improve the results,

but also can find the same quality of results in a fewer number of evaluations

compared to single-population GAS. The proposed hybrid PGA which consists of

chAs connected in a ngA—style topology performs best, appearing to integrate

successfully the advantages of chAs and ngAs.

The robustness of the GA-based scheduling system over various schedule quality

criteria has been demonstrated. In this research, no one priority rule dominated

other rules for all objective functions. The GA-based scheduling system consis-

tently outperformed the priority rules across all objective functions. The results

indicate that the GA-based scheduling system is robust with regard to the objec-

tive function and is a powerful general job shop scheduling tool.

The robustness of the GA-based scheduling system over various manufacturing

environments has been demonstrated. In this research, the GA-based scheduling

system outperformed the priority rules with respect to the machine workload,

imbalance of machine workload, and due date tightness. The results show that the

GA-based scheduling system is robust with regard to the manufacturing environ-

1116111.

121

(6) The decomposition approach with rescheduling from a modification of the

adapted population is quite general, and can be implemented for dynamic JSSPS

with other nondeterministic events such as machine breakdowns, job cancella-

tions, due date changes, etc. It is easy to see how the scheduling system can be

easily extended to deal with these events. Therefore, the scheduling system can

be a promising basis for an approach to real-world scheduling problems.

7.3 Future Research

With the framework presented by this research, many interesting directions for future

research exist.

(1) There are some possible ways to further improve the performance of the GA-

based scheduling system. In recent GA research, the incorporation of local search

(Section 2.3) into GAs has shown promise for enhancing genetic search [80, 90,

38, 110]. The incorporation can be done in the evaluation stage. After a schedule

is decoded from the chromosome, some local search technique would be applied

to the schedule. The re-optirnized schedule would then be encoded back into the

chromosome. Thus, the search space is restricted to local optima. Whether a GA

benefits from local search highly depends on the problem under consideration.

Further investigation is necessary. Another possible way to improve the perfor-

mance of the scheduling system is to apply a more sophisticated migration strat-

egy to the hybrid PGA. The migration strategy can be based on the diversity

measure of each subpopulation or similarity between subpopulations. The main

purpose is to maintain the diversity of the total population.

(2)

(3)

(4)

(5)

122

In the simulation model of stochastic dynamic JSSPs, because the load of the job

shop is zero at the beginning and the end of the run, the expected load is not

maintained during these two periods. We can investigate the influence of different

loads more accurately by preloading jobs in the shop and observing only some

interval in the run.

The rescheduling is done at the time of arrival of each job. Another possible way

is to reschedule jobs only at specified intervals and to allow new jobs to wait in

the shop. The penalty caused by queueing new jobs should depend on the length

of the interval and the characteristics of shop load. It is worthwhile to compare

these two rescheduling approaches.

Although the scheduling system can be easily extended to deal with other nonde-

terministic events, real world scheduling problems are more complex. By further

relaxing assumption (A5), (A8), and (A14) in Section 2.2, sequence-dependent

setup time, parallel machines, and alternative plans are allowed. It is necessary

to develop efficient methods to deal with these extensions. One possible method

is to extend the representation to incorporate the selection of alternative plans and

parallel machines. Another possible method is to introduce some heuristics into

the evaluation stage to choose the process plan as well as the parallel machine.

To make the scheduling system easy to use, a good user interface is important.

Besides facilitating the input of job information and the output of the generated

schedules by the GA, this user interface module may provide the user with a

number of algorithms or heuristics for comparison. After showing the schedule,

the module should allow the user to manually edit the schedule and ask the

(6)

123

scheduling system to re-optimize the modified schedule. Such modification can

be treated as a nondeterministic event and is easy to process in the scheduling

system.

A more thorough evaluation of the scheduling system on some real-world sched-

uling problems is important. This is essential prior to adopting the scheduling

system in practice.

BIBLIOGRAPHY

11]

12]

[3]

14]

151

[6]

17]

[8]

[91

[101

111]

[121

BIBLIOGRAPHY

Garey, MR. and Johnson, D.S., Computers and Intractability: A Guide to the

Theory ofNP-Completeness, Freeman, San Francisco, CA, 1979.

Mellor, P., “A Review of Job Shop Scheduling,” Operational Research Quarterly,

17, 2, pp. 161-171, 1966.

Lawler, E.L., Lenstra, J.K., and Rinnooy Kan, A.H.G., “Recent Development in

Deterministic Sequencing and Scheduling: A Survey,” Deterministic and Stochastic

Scheduling, Dempster, M. A. H. et al. (eds), pp. 35-73, Reidel, Dordrecht, 1982.

Coffman, E.G., Computer and Job—Shop Scheduling Theory, John Willey & Sons,

New York, NY, 1976.

French, 8., Sequencing and Scheduling: An Introduction to the Mathematics of the

Job-Shop, John Willey & Sons, New York, NY, 1982.

Baker, K.R., Introduction to Sequencing and Scheduling, John Willey & Sons, New

York, NY, 1974.

Conway, R.W., Maxwell, W.L., and Miller, L.W., Theory of Scheduling, Addison-

Wesley, Reading, MA, 1967.

Muth, J.F. and Thompson, G.L., Industrial Scheduling, Prentice-Hall, Englewood

Cliffs, NJ, 1963.

Holland, H.J., Adaptation in Natural and Artificial Systems, MIT Press, Cambridge,

MA, 1992.

Pinedo, M., Scheduling: Theory, Algorithms, and Systems, Prentice-Hall,

Englewood Cliffs, NJ, 1975.

Nononha, SJ. and Sarrna, V.V.S., “Knowledge-Based Approaches for Scheduling

Problems: A Survey,” IEEE Transactions on Knowledge and Data Engineering,

Vol.3, No.2, pp. 160-171, 1991.

Roadmmer, EA. and White, KB, “A Recent Survey of Production Scheduling,”

IEEE Transactions on Systems, Man, and Cybernetics, Vol. 18, No. 6, pp. 841-851,

1988.

124

[13]

[14]

1151

1161

117]

118]

119]

[20]

[211

1221

[23]

124]

125]

[261

127]

[281

125

Graves, S.C., “A Review of Production Scheduling,” Operations Research, Vol. 29,

No. 4, pp. 646-676, 1981.

Righter, R., “Scheduling,” Stochastic Orders, Shaked, M. and Shanthikumar, G.

(eds), pp. 381-432, Academic Press, San Diego, CA, 1994.

Herrmann, 1W. and Lee, C., “A Classification of Static Scheduling Problems,”

Complexity in Numerical Optimization, Pardalos, P.M. (ed), pp. 203-253, World

Scientific, Singapore, 1993.

Panwalkar, SS. and Iskander, W., “A Survey of Scheduling Rules,” Operations

Research, Vol. 25, No. 1, pp. 45-61, 1977.

Bhaskaran, K. and Pinedo, M, “Dispatching,” Handbook ofIndustrial Engineering,

Salvendy, G. (ed.), pp. 2184-2198, Wiley, New York, NY, 1992.

Glover, F., “Tabu Search: A Tutorial,” Interfaces, Vol. 20, No.4, pp. 74-94, 1990.

Kirkpatrick, S., Gelatt Jr., CD, and Vecchi, M.P., “Optimization by Simulated

Annealing,” Science, Vol. 220, pp. 671-680, 1983.

Dell’Amico, M. and Trubian, M., “Applying Tabu-Search to the Job Shop

Scheduling Problem,” Annals of Operations Research, Vol. 41, pp. 231-252, 1991.

F00, Y.S. and Takefuji, Y., “Integer Linear Programming Neural Networks for Job-

Shop Schedule,” IEEE ICNN, pp. 341-348, 1989.

Zhou, D.N., Cherkassky, V., Baldwin, TR, and Hong, D.W., “Scaling Neural

Network for Job-Shop Scheduling,” IEEE IJCNN, pp. 889-894, 1990.

Lo, Z. and Bavarian, B., “Multiple Job Scheduling with Artificial Neural

Networks,” Computers Elect. Eng, Vol. 19, No. 2, pp. 87-101, 1993.

Tank, D. and Hopfield, 1, “Simple Neural Optimization Networks: An AID

Converter, Signal Decision Circuit, and a Linear Programming Circuit”, IEEE

Trans. on Circuits and Systems, Vol. CAS-33, No. 5, pp. 533-541, 1986.

Wallace, M., “Applying Constraints for Scheduling,” Constraint Programming,

Mayoh, B., Tyugu, E. and Penjaam, J. (eds), NATO Advanced Science Institute

Series, Springer-Verlag, 1994.

Fox, MS. and Smith, SE, “ISIS: A Knowledge-Based System for Factory

Scheduling,” Expert Systems, Vol. 1, No. 1, pp. 25-49, 1984.

Van Hentenryck, P., Constraint Satisfaction in Logic Programming, MIT Press,

Cambridge, MA, 1989.

Smith, S.F., Fox, MS, and Ow, P.S., “Constructing and Maintaining Detailed

129]

[30]

[31]

132]

133]

134]

135]

1361

137]

[38]

[391

[40]

126

Production Plans: Investigations into the Development of Knowledge-Based

Factory Scheduling Systems,” AI Magazine, Vol. 7, No. 4, pp. 45-61, 1986.

Le Pape, C., “Implementation of Resource Constraints in ILOG SCHEDULE: A

Library for the Development of Constraint-Based Scheduling Systems,” Intelligent

Systems Engineering, Vol. 3, No. 2, pp. 55-66, 1994.

Goldberg, D., Genetic Algorithms in Search, Optimization and Machine Learning,

Addison-Wesley, Reading, MA, 1989.

Davis, L., “Job-Shop Scheduling with Genetic Algorithms,” Proc. Int’l Conf on

Genetic Algorithms and their Applications, pp. 136-149, Lawrence Erlbaum,

Hillsdale, NJ, 1985.

Cleveland, GA. and Smith, SE, “Using Genetic Algorithms to Schedule Flow

Shop Releases,” Proc. Third Int’l Conf on Genetic Algorithms, pp. 160-169,

Morgan Kaufmann, San Mateo, CA, 1989.

Whitley, D., Starkweather, T, and Shaner, D., “The Traveling Salesman and

Sequence Scheduling: Quality Solutions Using Genetic Edge Recombination,”

Handbook of Genetic Algorithms, Davis, L. (ed), pp. 350-372, Van Nostrand

Reinhold, New York, NY, 1991.

Bagchi, S., Uckun, S., Miyabe, Y., and Kawamura, K., “Exploring Problem-

Specific Recombination Operators for Job Shop Scheduling,” Proc. Fourth Int’l

Conf on Genetic Algorithms, pp. 10—17, Morgan Kaufmann, San Mateo, CA, 1991.

Nakano, R. and Yamada, T. “Conventional Genetic Algorithms for Job-Shop

Problems,” Proc. Fourth Int’l Conf on Genetic Algorithms, pp. 474-479, Morgan

Kaufmann, San Mateo, CA, 1991.

Yamada, T. and Nakano, R. “A Genetic Algorithm Applicable to Large-Scale Job-

Shop Problems,” Parallel Problem Solving from Nature, 2, pp. 281-290, North-

Holland, Amsterdam, 1992.

Tamaki, H. and Nishikawa, Y., “A Parallel Genetic Algorithm based on a

Neighborhood Model and It’s Application to the Jobshop Scheduling,” Parallel

Problem Solvingfrom Nature, 2, pp. 573-582, North-Holland, Amsterdam, 1992.

Uckun, S., Bagchi, S., and Kawamura, K., “Managing Genetic Search in Job Shop

Scheduling,” IEEE Expert, Vol. 8, No. 5, pp. 15-24, 1993.

Paredis, J ., “Exploiting Constraints as Background Knowledge for Genetic

Algorithms: a Case-study for Scheduling,” Parallel Problem Solving from Nature,

2, pp. 229-238, North-Holland, Amsterdam, 1992.

Fang, H., Ross, P. and Come, D., “A Promising Genetic Algorithm Approach to

Job-Shop Scheduling, Rescheduling, and Open-Shop Scheduling Problems,” Proc.

141]

1421

[431

144]

[451

[461

1471

[48]

[49]

1501

151]

152]

1531

127

Fifth Int’l Conf. on Genetic Algorithms, pp. 375-382, Morgan Kaufmann, San

Mateo, CA, 1993.

Syswerda, G., “Schedule Optimization Using Genetic Algorithms,” Handbook of

Genetic Algorithms, Davis, L. (ed), pp. 332-349, Van Nostrand Reinhold, New

York, NY, 1991.

Bruns, R., “Direct Chromosome Representation and Advance Genetic Operators

for Production Scheduling,” Proc. Fifth Int’l Conf. on Genetic Algorithms, pp. 352-

359, Morgan Kaufmann, San Mateo, CA, 1993.

Goldberg, DE. and Lingle Jr., R., “Alleles, Loci, and the Traveling Salesman

Problem”, Proc. First Int’l Conf on Genetic Algorithms and their Applications, pp.

154-159, Lawrence Erlbaum, Hillsdale, NJ, 1985.

Grefenstette, J ., Gopal, R., Rosmaita, B., and Van Gucht, D., “Genetic Algorithms

for the Traveling Salesman Problem,” Proc. First lnt’l Conf on Genetic Algorithms

and their Applications, pp. 160-165, Lawrence Erlbaum, Hillsdale, NJ, 1985.

Grefenstette, J., “Incorporating Problem Specific Knowledge in Genetic

Algorithms,” Genetic Algorithms and Simulated Annealing, Davis, L. (ed), pp. 42-

60, Morgan Kaufmann, Los Altos, CA, 1987.

Giffler, J. and Thompson, G.L., “Algorithms for Solving Production Scheduling

Problems,” Operations Research, Vol. 8, pp. 487-503, 1960.

Lin, S.-C., Punch, W.F., and Goodman, E.D., “Coarse-Grain Parallel Genetic

Algorithms: Categorization and New Approach,” IEEE SPDP, pp. 28-39, 1994.

Redder, D., Punch, W.F., Lin, S.-C., Tomanek, D., and Kim, S-G, “Using Genetic

Algorithms to Find Low Energy Configurations of Large Molecules”, GARAGe

Technical Report GARAGe94-3 (MSU Master’s Project Report), 1994.

Lin, S.-C., Punch, W.F., and Goodman, E.D., “A Hybrid Mode] Utilizing Genetic

Algorithms and Hopfield Neural Networks for Function Optimization”, GARAGe

Technical Report GARAGe95-01-02, Michigan State Universtity, 1995.

Punch, W.F., Averill, R.C., Goodman, E.D., Lin, S.-C., and Ding, Y., “Design Using

Genetic Algorithms -- Some Results for Laminated Composite Structures”,

accepted for publication in IEEE Expert, Jan, 1995.

Butler, R., and Lusk, E., “User’s Guide to the p4 Programming System” Technical

Report ANL-92/17, Argonne National Laboratory, Argonne, IL, 1992.

Schraudolph, N, and Grefenstette, J ., “A User’s Guide to GAucsd 1.4”, Technical

Report CS92-249, CSE Department, UC San Diego, La Jolla, CA, 1992.

Morton, T.E., and Pentico, D.W., Heuristic Scheduling Systems, John Wiley &

154]

[55]

[56]

157]

158]

[591

[60]

[611

1621

[63]

164]

165]

[66]

1671

128

Sons, 1993.

Schroeder, G.R., Operations Management: Decision Making in the Operations

Function, 4th ed., McGraw-Hill, New York, NY, 1993.

Dervitsiotis, N.K., Operations Management, McGraw-Hill, New York, NY, 1981.

Raman, N., Rachamadugu, R.V., and Talbot, F.B., “Real-time Scheduling of an

Automated Manufacturing center,” European Journal ofOperational Research, vol.

40, pp. 222-242, 1989.

Raman, N., Talbot, F.B., Rachamadugu, R.V., “Due Date Based Scheduling in a

General Flexible Manufacturing System,” Journal of Operations Management, vol.

8, no. 2, pp. 115-132, 1989.

Raman, N., and Talbot, F.B., “The Job Shop Tardiness Problem: a Decomposition

Approach,” European Journal ofOperational Research, vol. 69, pp. 187-199, 1993.

Fang, H., “Genetic Algorithms in Timetabling and Scheduling,” Ph.D. thesis,

Department of Artificial Intelligence, University of Edinburgh, 1994.

Garey, M.R., Johnson, D.S., and Sethi, R., “The Complexity of Flowshop and

Jobshop scheduling,” Math. Opel: Res, vol. 1, pp. 117-129, 1976.

Back, T., Evolutionary Algorithms in Theory and Practice: Evolutionary Strategies,

Evolutionary Programming, Genetic Algorithms, Oxford University Press, 1996.

Grefenstette, J.J . and Baker, J.E., “How Genetic Algorithms Work: A Critical Look

at Implicit Parallelism,” Proc. Third Int’l Conf on Genetic Algorithms, pp. 20—27,

Morgan Kaufmann, San Mateo, CA, 1989.

Goodman, E. D. An Introduction to GALOPPS -- the Genetic ALgorithm

Optimized for Portability and Parallelism System, Release 3.2, Technical Report

http://isl.cps.msu.edu/GA/papers/GARAGe96-07-0l.ps, Genetic Algorithms

Research and Applications Group, Michigan State University, 1996.

Forrest, 8., “Documentation for Prisoner’s Dilemma and Norms Programs that use

the Genetic Algorithm,” Technical Report, Univ. of Michigan, 1985.

Baker, J.E., “Reducing Bias and Inefficiency in the Selection Algorithms,” Genetic

Algorithms and Their Applications: Proc. Second Int’l Conf. on Genetic

Algorithms, pp. 14-21, Lawrence Erlbaum, Hillsdale, NJ, 1987.

Baker, J.E., “Adaptive Selection Methods for Genetic Algorithms,” Proc. Int'l

Conf on Genetic Algorithms and Their Applications, pp. 101-111, Lawrence

Erlbaum, Hillsdale, NJ, 1985.

Brindle, A., Genetic Algorithms for Function Optimization, Unpublished Ph.D.

168]

1691

[70]

171]

[721

173]

[74]

175]

176]

[77]

1781

179]

1801

129

thesis, University of Alberta, Edmonton, Canada, 1981.

Syswerda, G., “Uniform Crossover in Genetic Algorithms,” Proc. Third Int ’1 Con]:

on Genetic Algorithms, pp. 2-9, Morgan Kaufmann, San Mateo, CA, 1989.

Davis. L., “Oder-Based Genetic Algorithms and the Graph Coloring Problem,”

Handbook of Genetic Algorithms, Davis, L. (ed), pp. 72-90, Van Nostrand

Reinhold, New York, NY, 1991.

Goldberg, DE. and Lingle Jr., R., “Alleles, Loci, and the Travelling Salesman

Problem,” Proc. lnt’l Conf. on Genetic Algorithms and Their Applications, pp. 154-

159, Lawrence Erlbaum, Hillsdale, NJ, 1985.

Whitley, D., Starkweather, T., and Fuquay, D., “Scheduling Problems and Traveling

Salesmen: The Genetic Edge Recombination Operator,” Proc. Third Int ’l Conf. on

Genetic Algorithms, pp. 133-140, Morgan Kaufmann, San Mateo, CA, 1989.

Oliver I.M., Smith, D.J., and Holland, J.R.C., “A Study of Permutation Crossover

Operators on the Traveling Salesman Problem,” Genetic Algorithms and Their

Applications: Proc. Second Int’l Conf. on Genetic Algorithms, pp. 224-230,

Lawrence Erlbaum, Hillsdale, NJ, 1987.

Whitley, D., “GENITOR: a Different Genetic Algorithm,” Proc. Rocky Mountain

Conf on Artificial Intelligence, pp. 118-130, Denver, CO, 1988.

Bierwirth, C., Kropfer, H., Mattfeld, DC, and Rixen, 1., “Genetic Algorithm based

Scheduling in a Dynamic Manufacturing Environment,” IEEE Conf. an

Evolutionary Computation, Perth, IEEE Press, 1995.

Blackstone, J.H., Philips, D.T., and Hogg, G.L., “A State-of-art Survey of

Dispatching Rules for Manufacturing Job Shop Operations,” International Journal

ofProduction Research, vol. 20, no. 1, pp. 27-45, 1982.

Kiran, A.S., “Simulation Studies in Job Shop Scheduling - I: A Survey,” Computers

& Industrial Engineering, vol. 8, pp. 87-93, 1984.

Kiran, A.S., “Simulation Studies in Job Shop Scheduling - 11: Performance of

Priority Rules,” Computers & Industrial Engineering, vol. 8, pp. 95-105, 1984.

Vaessens, R.J.M., Aarts, E.H.L., and Lenstra, J.K., “A Local Search Template,”

Parallel Problem Solving from Nature, 2, pp. 65-74, North-Holland, Amsterdam,

1992.

Vaessens, R.J.M., Aarts, E.H.L., and Lenstra, J.K., “Job Shop Scheduling by Local

Search,” Memorandum COSOR 94-05, 2nd revised version, Eindhoven University

of Technology, Netherlands.

Domdorf, U. and Pesch, E. “Combining Genetic- and Local Search for Solving the

[811

[82]

[83]

[84]

185]

186]

[871

[881

189]

[90]

[91]

[921

130

Job Shop Scheduling Problem,” APMOD93 Proc. Preprints, pp. 142-149,

Budapest, Hungary, 1993.

Domdorf, U. and Pesch, E. “Evolution Based Learning in a Job Shop Scheduling

Environment,” Computers & Operations Research, vol. 22, no. 1, pp. 25-40, 1995.

Kobayashi, S., Ono, I., and Yamamura, M. “An Efficient Genetic Algorithm for Job

Shop Scheduling Problems,” Proc. Sixth Int’l Conf on Genetic Algorithms, pp.

506-511, Morgan Kaufmann, San Mateo, CA, 1995.

Storer, R. H., Wu, SD, and Vaccari, R. “New Search Spaces for Sequencing

Problems with Application to Job Shop Scheduling,” Management Science, vol. 38,

pp. 1495-1509, 1992.

Yamada, T. and Nakano, R. “A Genetic Algorithm Applicable to Large-Scale Job-

Shop Problems,” Parallel Problem Solving from Nature, 2, pp. 281-290, North-

Holland, Amsterdam, 1992.

Park, L. and Park, C.H., “Genetic Algorithm for Job Shop Scheduling Problems

Based on Two Representational Schemes,” Electronics Letters, vol. 31, no. 23, pp.

2051-2053, 1995.

Davidor, Y., Yamada, T., and Nakano, R., “The ECOlogical Framework H:

Improving GA Performance at Virtually zero cost,” Proc. Fifth Int’l Conf on

Genetic Algorithms, pp. 171-176, Morgan Kaufmann, San Mateo, CA, 1993.

Croce, F.D., Tadei, R., and Volta, G., “A Genetic Algorithm for the Job Shop

Problem,” Computers & Operations Research, vol. 22, no. 1, pp. 15-24, 1995.

Falkenauer, E. and Bouffouix, S., “A Genetic Algorithm for Job-Shop,” Proc. 1991

IEEE Int'l Conf. on Robotics and Automation, Sacramento, CA, 1991.

Kim, G.H. and Lee, C.S.G., “An Evolutionary Approach to the Job-shop

Scheduling Problem,” Proc. 1994 IEEE Int’l Conf on Robotics and Automation,

vol 1, pp. 501-506, San Diego, CA, 1994.

Mattfeld, D.C., Kopfer, H., and Bierwirth, C. “Control of Parallel Population

Dynamics by Social-Like Behavior of GA-Individuals,” Parallel Problem Solving

from Nature, 3, pp. 15-24, Springer-Verlag, Berlin, Heidelberg, 1994.

Bierwirth, C. “A Generalized Permutation Approach to Job Shop Scheduling with

Genetic Algorithms,” OR-Spektrum, Special Issue: Applied Local Search, Pesch,

E. and V0, S. (eds), vol. 17, No. 213, pp. 87-92, 1995.

Bierwirth, C., Kropfer, H., Mattfeld, DC, and Rixen, 1., “Genetic Algorithm based

Scheduling in a Dynamic Manufacturing Environment,” IEEE Conf. on

Evolutionary Computation, Perth, IEEE Press, 1995.

193]

194]

1951

[961

1971

[98]

1991

1100]

[101]

[102]

[103]

[104]

[105]

131

Rixen, I., Bierwirth, C., and Kopfer, H., “A Case Study of Operational Just-in-Time

Scheduling using Genetic Algorithms,” Evolutionary Algorithms in Management

Application, Biethahn, J. and Nissen, V. (eds), pp. 112-123, Springer-Verlag, 1995.

Adams, J., Balas, E., and Zawack, D. “The Shifting Bottleneck Procedure in Job

Shop Scheduling,” Management Science, vol. 34, pp. 391-401, 1988.

Grabowski, J., Nowicki, E., and Zdrzalka, S. “A Block Approach for Single

Machine Scheduling with Release Date and Due Date,” European J. Oper: Res.,

vol. 26, pp. 278-285, 1986.

Bierwirth, C., Kropfer, H., Mattfeld, DC, and Rixen, 1., “Genetic Algorithm based

Scheduling in a Dynamic Manufacturing Environment,” IEEE Conf. on

Evolutionary Computation, Perth, IEEE Press, 1995.

Goldberg, D. and Segrest, P., “Finite Markov Chain Analysis of Genetic

Algorithms,” Genetic Algorithms and Their Applications: Proc. Second Int’l Conf

on Genetic Algorithms, pp. 1-8, Lawrence Erlbaum, Hillsdale, NJ, 1987.

De Jong, K., An Analysis of the Behavior of a Class of Genetic Adaptive Systems,

University of Michigan, 1975.

Mauldin, M., “Maintaining Diversity in Genetic Search,” Nat. Conf. on Artificial

Intelligence, pp. 247-250, 1984.

Goldberg, DE. and Richardson, T., “Genetic Algorithms with Sharing for

Multimodal Function Optimization,” Genetic Algorithms and Their Applications:

Proc. Second Int’l Confi on Genetic Algorithms, pp. 41-49, Lawrence Erlbaum,

Hillsdale, NJ, 1987.

Crow, J.F., Basic Concepts in Population, Quantitative, and Evolutionary Genetic,

W.H. Freeman and Company, New York, 1986.

Pettey, C., Leuze, M., and Grefenstette, J ., “A Parallel Genetic Algorithm,” Genetic

Algorithms and Their Applications: Proc. Second Int’l Conf on Genetic

Algorithms, pp. 155-161, Lawrence Erlbaum, Hillsdale, NJ, 1987.

Starkweather, T., Whitley, D., and Mathias, K., “Optimization Using Distributed

Genetic Algorithms,” Parallel Problem Solving from Nature, pp. 176-185,

Springer-Verlag, Berlin, Heidelberg, 1990.

Tanese, R., “Distributed Genetic Algorithms,” Proc. Third Int'l Conf on Genetic

Algorithms, pp. 434-440, Morgan Kaufmann, San Mateo, CA, 1989.

Manderick, B. and Spiessens, P. “Fine-Grained Parallel Genetic Algorithms,” Proc.

Third Int’l Conf on Genetic Algorithms, pp. 428-433, Morgan Kaufmann, San

Mateo, CA, 1989.

132

[106] Muhlenbein, H. “Parallel Genetic Algorithms, Population Genetics and

Combinatorial Optimization,” Proc. Third Int’l Conf. on Genetic Algorithms, pp.

416-421, Morgan Kaufmann, San Mateo, CA, 1989.

[107] Juels, A. and Wattenberg, M. “Stochastic Hillclimbing as a Baseline Method for

Evaluating Genetic Algorithms,” Technical Report csd-94-834, University of

California at Berkeley, 1994.

[108] Lin, S.-C., Goodman, ED, and Punch, W.F., “Investigating Parallel Genetic

Algorithms on Job Shop Scheduling Problems,” Technical Report, Genetic

Algorithms Research and Applications Group, Michigan State University, 1996.

[109] Applegate, D. and Cook, W., “A Computational Study of the Job-Shop Scheduling

Problem,” ORSA Journal on Computing, vol. 3, no. 2, pp. 149-156, 1991.

[110] Axkley, D.H., A Connectionist Machine for Genetic Hillclimbing, Kluwer

Academic, 1987.

[111] Dechter, R., “Constraint Networks: A Survey,” Technical Report, Department of

Information and Computer Science, University of California at Irvine, CA, 1991.

[112] Smith, S.F., Fox, M.S., and Ow, P.S., “Constructing and Maintaining Detailed

Production Plans: Investigations into the Development of Knowledge-Based

Factory Scheduling System,” AI Magazine, vol. 7, no. 4, Fall 1986, pp. 45-61.

[113] Wang, G., Goodman, E. and Punch, W. F., “Simultaneous Multi-Level Evolution,”

GARAGe Technical Report GARAGe96-03-01, Michigan State University,

Submitted to Evolutionary Computation, 1996.

[114] Goodman, E.D., “An Introduction to GALOPPS -- The “Genetic Algorithm

Optimized for Portability and Parallelism” System,” Releases 2.35, Nov. 1994,

Technical Report GARAGe94-11-01, Michigan State University.

[115] Carlier, J. and Pinson, E., “An Algorithm for Solving the Job-shop Problem,”

Management Science, vol. 35, pp. 164-176, 1989.

[l 16] Baker, J.R. and McMahon, G.B., “Scheduling the General Job-shop,” Management

Science, vol. 31, pp. 594-598, 1985.

[117] Taillard, E., “Parallel Taboo Search Technique for the Jobshop Scheduling

Problem,” ORSA Journal on Computing, vol 6, pp. 108-117, 1993.

[118] Aarts, E.H.L., Van Laarhoven, P.J.M., Lenstra, J.K., and Ulder, N.L.J., “A

Computational Study of Local Search Algorithms for Job Shop Scheduling,” ORSA

Journal on Computing, vol. 6, pp. 1 18-125, 1994.

[119] Yamada, T. and Nakano, R., “Job Shop Scheduling by Simulated Annealing

Combined with Deterministic Local Search,” Metaheuristics International

[120]

133

Conference, Hilton Breckenridge, Colorado USA, pp. 344-349, 1995.

Wennink, M., Personal communication, (upper bounds found by a taboo search

algorithm), 1995.

[121] Balas, E. and Vazacopoulos, A., “Guided Local Search with Shifting Bottleneck for

Job Shop Scheduling,” Management Science Research Report #MSRR-609,

Graduate School of Industrial Administration, Carnegie-Mellon University,

Pittsburgh, Pennsylvania, 1994.

[122] Schraudolph, N. and Grefenstette, J., A User’s Guide to GAucsd 1.4, July, 1992.

[123] Schraudolph, N. and Belew, R., “Dynamic Parameter Encoding for Genetic

Algorithms,” Machine Learning, pp. 9-21, June, 1992.

[124] Shaefer, C.G., “The ARGOT Strategy: Adaptive Representation Genetic Optimizer

[125]

[126]

[127]

[128]

Technique,” Genetic Algorithms and Their Applications: Proc. Second Int’l Conf.

on Genetic Algorithms, pp. 50-55, Lawrence Erlbaum, Hillsdale, NJ, 1987.

Collins, R]. and Jefferson, D.R., “Selection in Massively Parallel Genetic

Algorithms,” Proc. Fourth Int ’1 Conf. on Genetic Algorithms, pp. 249-256, Morgan

Kaufmann, San Mateo, CA, 1991.

Spiessens, P. and Manderick, B., “A Massively Parallel Genetic Algorithm:

Implementation and First Analysis,” Proc. Fourth Int’l Conf on Genetic

Algorithms, pp. 279-286, Morgan Kaufmann, San Mateo, CA, 1991.

Gorges-Schleuter, M., “ASPARAGOS An Asynchronous Parallel Genetic

Optimization Strategy,” Proc. Third Int’l Conf. on Genetic Algorithms, pp. 422-427,

Morgan Kaufmann, San Mateo, CA, 1989.

Goldberg, D.E., “Sizing P0pu1ations for Serial and Parallel Genetic Algorithms,”

Proc. Third Int’l Confi on Genetic Algorithms, pp. 70-79, Morgan Kaufmann, San

Mateo, CA, 1989.

"1111111111111“

