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ABSTRACT

NEURAL MECHANISMS OF GOAL-DIRECTED ACTION SELECTION BY
PREFRONTAL CORTEX: IMPLICATIONS FOR BRAIN-MACHINE

INTERFACES

By

Ali Mohebi

Initiating a movement goal and maintaining that goal throughout the planning and exe-

cution of a goal-directed action is an essential element of all goal-directed behavior. In the

context of Brain Machine Interfaces (BMIs), a direct communication pathway between the

brain and a man-made computing device, continuous access to movement goals is essential,

so as to guide the control of neuroprosthetic limbs that provide neurologically impaired sub-

jects with an alternative to their lost motor function. The Prefrontal cortex (PFC) has been

suggested as an executive control area of the brain that bridges the temporal gap between

incoming sensory information and ensuing motor actions. The mechanisms underlying the

dynamics of PFC neural activity, however, remain poorly understood. The main objective

of this dissertation is to elucidate the role of PFC neurons in mediating goal initiation and

maintenance during goal-directed behavior.

Using a combination of electrophysiological recordings, optogenetic and pharmacologi-

cal manipulation of population activity and behavioral assays in awake behaving subjects,

we demonstrate that the PFC plays a critical role in the planning and execution of a two-

alternative forced choice task. In particular, PFC neurons were mostly goal selective during

the choice epoch of the task when subjects had to select the action with the highest util-

ity while suppressing all other unrewarded actions. Decoding PFC neural activity using

advanced machine learning algorithms showed robust single trial prediction of motor goals,



suggesting that PFC may be a candidate site for inferring volitional motor intent. In ad-

dition, results from inactivation experiments demonstrate a lateralized performance decline

with respect to the inactivation site, further confirming the critical role of the PFC in me-

diating the motor- but not the sensory- information during the execution of goal-directed

behavior. Taken together, our results suggest that the design of next generation BMIs could

be further improved by incorporating goal information from cognitive control areas of the

brain, thereby augmenting the capability of current designs that only rely on decoding the

moment-by-moment kinematics of intended limb movements from motor areas of the brain.
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PREFACE

A man is a success if he gets up in the morning

and gets to bed at night, and in between he does

what he wants to do.

— Bob Dylan

I used this quote from Bob Dylan in my comprehensive exam report and I am repeating it

again here to emphasize the influence he had through his words and tunes on me during this

period of my training as a doctoral student at Michigan State, aka the second half decade

of my 20s, which will never come back. Of course I have enjoyed ‘knocking on heavens door’

and ‘like a rolling stone’, but the most I learned from Bob is through his lifestyle depicted

best in the amazing motion picture ‘I am not there’ directed by Todd Haynes, staring the

fabolous trio Cate Blanchett,Christian Bale and Heath Ledger. Bod Dylan taught me that

you are a success if you do what you like to do in between getting in and out of the bed.

Like a Bob Dylan beavering away on finding some meaning for life, love and faith, I

experienced many different and often apparently conflicting experiences to get to this point

where I am and probably in future I would not remain still here. My first memories of

existence in this world are all accompanied with books and novels. I was not a sports guy. I

was not into dance and music. And for all not being these I regret, but this is how I grew up:

being surrounded by books, spending hours and hours reading over and over. For all kids

growing up in the same era I did, Jurassic Park and genetic engineering was a big fantasy.

I remember reading that book and its sequels dozens of times, each time diving deeper and

deeper, amazed by the chaos theory pieces that Ian Malcolm talked about throughout the

book. Later in high school all those looked science-fiction to me. I distanced myself from

biology and got into physics. I guess what made the awe in me for physics was the predictive
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power of the theories I was studying in mechanics and the power of mathematical modeling of

natural phenomenon. I was thrilled by the noticing that a mathematical formula can predict

the trajectory of a flying ball, and same principles can be applied to predict the trajectory of

a planet revolving around a star. This was amazing, I knew I wanted to become a physicist.

But then physics was looked down back home. Smart, brilliant kids in my school all used to

either pursue medical school or top engineering programs. Only those who couldn’t get into

these disciplines got science majors. So this time unlike Bob Dylan I followed the mainstream

and got into a prestigious electrical engineering program.

College years awakened the rebel inside me. While attending the engineering courses I

followed my other interests in literature, arts and philosophy, working as a freelance writer

in a literature magazine of which I was elected later as the editor-in-chief. I finally got my

diploma in electrical engineering with a concentration in control theory. This was where

I steered back to some old thoughts I had and applied chaos theory to analysis of some

biological phenomenon: heart-rate variability. Of course at the time I was a cocky ignorant

young man, biological system was far more complex and my ambitious efforts of modeling

were not predicting any real phenomenon. I got a chance to get to the nation’s top biomed-

ical engineering program and work on a thesis under the supervision of the brilliant Prof.

Soltanian-Zadeh. Good times and great experiences.

Long story short, at the age of 25 I joined Michigan State electrical engineering program.

I like to think that I had a role in this, but honestly it was a matter of luck that my PhD

adviser and mentor had very similar interests in science of brain where I was starting to

branch out at the end of my Master program. Five years later, here I am starting the

fourth decade of my life, still know nothing about brain function but I now have more and

more knowledge about my ignorance. Compared to where I was standing when joined this
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program, I am now a much more educated ignorant and I like it this way.

This dissertation summarizes parts of my journey during the past 5 years. I would

expect the reader to share some of my enthusiasm in discovering the unknowns of the most

complicated computing machine that ever existed on the earth. I have tried to shed light

on some aspects of its function, but the ocean of known unknowns and unknown unknowns

of brain function stays unexplored ahead of us, calling for passionate and ambitious sailors.

So read the diaries of one young cabin boy who has joined the exploratory trip. When you

finish reading, you would not find me at the end. I am not there, I am sailing away.

Ali Mohebi — East Lansing, MI

xi



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

KEY TO SYMBOLS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . xxiv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization of this dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Brain-Machine Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Temporal Organization of Action . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Delayed Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Neurophysiology of Delayed Reactions in rodents . . . . . . . . . . . . . . . 24
2.6 The role of basal ganglia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 On the functional role of secondary motor areas . . . . . . . . . . . . . . . . 32
2.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1 Delayed Choice Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Behavioral training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Early habituation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Subject Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2.1 Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2.2 Target Selection . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2.3 Nosepoke . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2.4 Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2.5 Two Cues (w/ visual aid) . . . . . . . . . . . . . . . . . . . 43
3.2.2.6 Two Cues . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Reaction Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Reversible inactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Electrophysiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 Surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xii



3.5.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.2.1 Symlet Wavelet . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.3 Spike Detection and Sorting . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.3.1 EZsort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Single Unit Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6.1 Peri-Event Time Histogram (PETH) . . . . . . . . . . . . . . . . . . 64

3.6.1.1 Statistical significance of a PETH . . . . . . . . . . . . . . . 65
3.7 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7.1 Introduction to time-frequency analysis . . . . . . . . . . . . . . . . . 68
3.7.2 Morlet wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.8 Decoding population activity . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.8.1 Bayesian decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.8.2 Machine Learning approaches to decoding . . . . . . . . . . . . . . . 74

3.8.2.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . 74
3.8.2.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . 76

3.9 Inhibition using Opto genetics . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter 4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Behavioral Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 Task Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.2 Response characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.3 Perceptual discrimination . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.4 Effect of delay period . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Reversible Inactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4 Electrophysiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.1 Histology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.2 Single Unit Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.3 Field Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.4.4 Ensemble Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Optogenetic Inactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5.1 Histology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.5.2 Total suppression effect . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Chapter 5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.1 Working memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 A 4-Hz oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3 Possible role of prefrontal cortex in action selection . . . . . . . . . . . . . . 120

Chapter 6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Appendix A. Animal Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Appendix B. Video tracking of head orientation . . . . . . . . . . . . . . . . . . . 135
Appendix C. Behavior-locked suppression of neuronal activity . . . . . . . . . . . 139

xiii



BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

xiv



LIST OF TABLES

Table 2.1 Distribution of reaction times across different rats. . . . . . . . . . . 17

Table 1 List of animal subject recruited for different experiments. . . . . . . 132

Table 2 Detail session information about A39. . . . . . . . . . . . . . . . . . 133

Table 3 Detail session information about PFC2. . . . . . . . . . . . . . . . . 133

Table 4 Detail session information about PFC3. . . . . . . . . . . . . . . . . 134

xv



LIST OF FIGURES

Figure 2.1 Basic components of a Brain-Machine Interface. 1) a record-
ing array, implanted through or on top the cortex and records the
activity of a population of cells on multiple channels. 2) a decoding
algorithm (often one sort of regression) that translates the brain ac-
tivity into motor commands 3) an output device controlled by the
translated motor commands 4) and sensory feedback often in forms
of auditory or visual feedback .Adapted from [118] . . . . . . . . . . 10

Figure 2.2 Schematic of the top-down control of a goal-directed action
(a) Any goal-directed behavior is mediated through an interactive
neural control with the prefrontal cortex as the top of the hierar-
chy. Different brain areas are specialized to translate the motor plans
(schema) into muscle movements or relay the movement related sen-
sory information from the environment required for online monitoring
of the task execution. (b,c) Afferent(red) and efferent(blue) of the
prefrontal cortex involved in the monitoring and execution of goal-
directed tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.3 Experimental apparatus used in Hunter experiment a) Schematic
of the design and b) the apparatus used in the rat version of the study. 16

Figure 2.4 The experimental design Jacobsen used to study the PFC
where differential cues determined whether a right or left box is re-
warded. However the cues were concealed from the subject and the
subject had to use a memory trace to decide about the target location.
Adapted from Banich and Compton [19] . . . . . . . . . . . . . . . . 19

Figure 2.5 Raster plot of a sample cell recorded in primate dlPFC, across
different trials during a delay period. Adapted from Fuster’s seminal
study [96]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.6 A memory cell observed in dlPFC of a monkey performing
an oculomotor task, with orientational tuning. Raster plots of the
cell’s spiking across multiple trials the average firing rate are plotted
for different orientations. Adapted from [94]. . . . . . . . . . . . . . 23

xvi



Figure 2.7 Rodent two-armed bandit task (a) Schematic of the task design
that shows the distinct epochs: delay (D), go (G), approach (A),
reward (Rw), and return (Rt) (b) Body posture of the subject shows
two distinct trajectories (c) Percentage of selective neurons recorded
from different parts of the prefrontal cortex. Adapted from [220] . . 25

Figure 2.8 T-Maze design to study short-term plasticity in the pre-
frontal circuit (a) A forced two-choice task using a T-maze. (b)
Average estimation of firing rate and across trial raster plots for a
sample PFC cell selective for the targets. (c) Correlation between the
firing rate of a sample couple of cells as a function of the travelled dis-
tance in the maze, depicting very transient dependency between the
two cells. (d) Separate networks inferred using a correlation analysis
between the firing rates of the two cells for different motor targets.
Adapted from [92] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.9 A 5-hole nosepoke design used to study the selective role of
basal ganglia in a reaction task, adapted from [99]. . . . . . . . 30

Figure 2.10 PETH for cells recorded in different brain areas during the
execution of the a delayed response task A) PETH for cells
recorded from M1, MSN and FSI cells of the striatum and GP cells.
B) Peaks responses for the same cells and instances of selectivity. C)
Across population average PETH for the signals recorded from differ-
ent brain area. D) Percentage of cells with target selective responses
during different task epochs. Adapted from [99] . . . . . . . . . . . 31

Figure 2.11 Population response in the rat premotor area during a de-
layed response task A,B) Six sample neurons showing contralat-
eral and ipsilateral preferences in their firing rates C) Percentage of
target selective cells. Adapted from [83] . . . . . . . . . . . . . . . . 34

Figure 3.1 Flowchart of a sample trial showing the sequence of actions
and events during a trial. The subject initiates a trial on their
own by poking their nose inside the fixation hole. Briefly after the
nosepoke, an instruction cue (a single frequency tone) is played fol-
lowed by a delay period. The subject is required to maintain their
nose inside the fixation hole until the presentation of the Go cue.
Any premature retraction will cause the trial to be aborted and the
subject is penalized by a time-out. After a delay period of random
length, a Go Cue (auditory white noise) is presented and the subject
is free to move towards the instructed target. Successful trials are
rewarded by a 45mg food pellet while failed trials are timed out for
15 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xvii



Figure 3.2 Proposed study to investigate the role of the rat mPFC in
an instructed delayed response task (a) Time-course of the pro-
posed task, showing the relative timing of the instruction cue, Go cue
and the delay period. Subject’s entrance into the fixation and target
holes are monitored with millisecond precision (b) Schematic of the
operant conditioning box with the fixation hole and the two target
holes (c) A 3-D anatomical view of the target area in the mPFC, the
prelimbic cortex (PrL). Also the primary motor cortex (M1), premo-
tor cortex (M2) and the striatum are shown. . . . . . . . . . . . . . 39

Figure 3.3 A simulated ex-Gaussian distribution, showing the characteris-
tic shape of proposed model for reaction time distribution, illustrating
different distribution variables µ, σ and δ. Adapted from [237]. . . . 45

Figure 3.4 Opening of voltage-gated channels and the generation of ac-
tion potential. As described by Hodgkin and Huxley [125], during
an action potential conductances of Na+ and K+ changes and this
ultimately attributes to generation of an action potential. Adapted
from [137]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.5 Recording unit activity using a multisite electrode. Schematic
showing how multisite electrodes (here a tetrode for example), will
be placed in the vicinity of a neuronal population to pick up the
extracellular activity. If the sites are close to each other, one can
use triangularization of the action potentials to better isolate single
units. Adapted from [39]. . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 3.6 Examples of different multielectrode array designs A) Cy-
berkinetics 100 channel silicon array B) recording sites of the Cy-
berkinetics array C) Neuronexus Michigan probe, another silicon-
based MEA D) Tucker-Davis microwire MEA E) a close-up view of
the TDT microwire array F) Moxon’s ceramic-based MEA G) Cy-
bekinetics 36 channel probe .Adapted from [236]. . . . . . . . . . . . 50

Figure 3.7 Separating LFPs from the high frequency signal An example
of the trace of an extracellular potential recorded on a single channel
(Black). Using Symlet wavelets, the signal is decomposed into lower
and higher frequencies. The lower frequency (red) is called LFP
and shows slow oscillations where the higher frequency (blue) carries
information about action potentials . . . . . . . . . . . . . . . . . . 53

Figure 3.8 Three level wavelet tree decomposition, showing approxima-
tions and details for each level. . . . . . . . . . . . . . . . . . . . . . 54

xviii



Figure 3.9 Basis functions for the Symlet wavelet. a) Scaling function and
b) wavelet function . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 3.10 Pattern recognition approach to spike sorting Using a thresh-
olding method, spike events are detected and discriminative features
are extracted. Then a clustering algorithm is applied to use the
extracted features to group the events together and determine the
boundary decisions based on the training data. Decision boundaries
are later used on the test data to separate different groups of extra-
cellular action potential waveforms. Adapted from [178] . . . . . . . 59

Figure 3.11 Snapshot of the EZsort software, developed for the purpose of
this dissertation using the GUIDE toolbox in MATLAB . . . . . . . 62

Figure 3.12 Firing rate estimation using different kernels. A) Raster plot of
a spiking neuron, each marker shows on spike sampled at 1 msec
bins. B) Discrete-time firing rate estimated using ∆=100 msec bins.
C) Discrete-time firing rate using sliding windows of ∆=100 D)
Continuous-time estimation of firing rate using a Gaussian kernel
of σ=100 msec E) Firing rate estimated using an α function where
1/α=100 msec.Adapted from [66] . . . . . . . . . . . . . . . . . . . 63

Figure 3.13 A sample Peri-Event Time Histogram (PETH), of a neuron in
the LIP area of a non-human primates brain, in response to a visual
stimulus. Adapted from [163] . . . . . . . . . . . . . . . . . . . . . . 65

Figure 3.14 Morlet wavelet functions,(a) Even (b) Odd. . . . . . . . . . . . 70

Figure 3.15 About Support Vector Machines,(a) An example of two linearly
separable clusters, the decision boundary and support vectors (b)
Two non-linearly separable clusters and the inferred decision bound-
ary using SVM kernel trick. . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 3.16 One the use of SVM for single trial prediction, Data is parti-
tioned into train and test subsets. Features for each set is calculated.
Features and labels of the train set are used to estimated parameters
of the support vector machines. Then the same parameters are used
to predict the labels for the test set trials. Performance of the SVM
is determined by comparing the predicted and original labels for the
test trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 3.17 Different categories of light-activated opsins Channelrhodopsin,
excitatory blue light-activated cation channel. Halorhodopsin, in-
hibitory chloride pump. Bactereorhodopsin, inhibitory proton pump.
Adapted from [247]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xix



Figure 3.18 Setup of an optogenetic experiment in awake behaving sub-
jects a) The optical source is connected through FC cables to a
rotary joint. This is used to ensure that the cable is not twisted and
tangled while the subject is freely moving in the cage b) Snapshot
of the subject inside the cage with the fiber optic attached. Note: in
our latest experiments we used a type of connector that blocks any
light power leakage. This picture is for demonstration purposes only
c,d) Two different optical cannula type with a magnetic or threaded
designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 4.1 Distribution of behavioral performances across subjects, to
ensure that the subjects have acquired the task and following the
rules, performance for both ipsilateral (top, blue) and contralateral
(top, red). If the subject is not attending to the rules, the perfor-
mance should be around or below the chance level (50%). . . . . . . 85

Figure 4.2 Distribution of error types, Incorrect responses where the subjects
(n=6) selected the wrong direction contributes the most to the error
types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 4.3 Distribution of reaction time and time to target a) Distribu-
tion for the reaction times, estimated parameters of an ex-Gaussian
distribution: µ = 115 msec, σ = 30msec, τ = 215 msec−1. b) Distri-
bution of the time to target . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 4.4 Perceptual discrimination of the auditory tone As the fre-
quency of the instruction cue increases from the base frequency (5
KHz), the subject tends to be albe to better discriminate the two
tones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 4.5 Delayed vs. non-Delayed version of the task a) Performance of
the subjects is not significantly different for delayed versus the non-
delayed versions of the task. b,c) However both distributions for the
reaction time and the time to target are skewed to the right for the
non-delayed version. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 4.6 Delay length effect, a) the length of the delay period showed no
significant effect on the choice performance. b) however, percentage
of the premature retractions were increased linearly as a function of
the delay length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 4.7 Delay length effect on the task timing, a) reaction time has a
significant negative correlation with the length of the delay period b)
no correlation is observed between the time to target and the delay
period length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xx



Figure 4.8 Performance under the effect muscimol inactivation, Lateral-
ized suppression of the performance under 3µL of muscimol injection. 94

Figure 4.9 Dosage curve for reversible inactivation, the lateralized decline
in performance is a function of the volume muscimol injected (n=6
subjects). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 4.10 Histological evaluation of the implanted brain tissue, horizon-
tal brain sections depicting the probe location (midline on the left,
posterior at bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 4.11 PETH of a representative unit with contralateral prefrence,
a) raster plot of the spiking activity of the one cell for different trial,
blue for the contralateral and black for the ipsilateral trials. b,c)
binned PETH (overlapping windows) of the unit for both contralat-
eral and ipsilateral trials. Bins with significant (KS-test p < 0.01)
firing rates between the two trial conditions are shown in red. . . . . 99

Figure 4.12 Population selectivity during the delay period a) Population
selectivity for either of the target memorys. Units are sorted vertically
based on the timing of their selectivity b) percentage of the units in
the population with selective responses for either of the units. Shown
in light brown is the instruction period between 0 and 500 msec.
Shown in cyan is the delay period between 500 and 1500 msec and
the shadede gray area is the variable length of the delay period. . . . 100

Figure 4.13 Population selectivity during the reaction and choice epochs
a,b) individual units and percentage of the units selective for the
target memory during the reaction epoch, t=0 is the onset of the
go cue c,d) individual units and percentage of the units selective for
the target memory during the choice epoch, t=0 is the moment of
breaking out of the fixation beam and the start of the movement . . 101

Figure 4.14 Spectrogram during the delay period a) for the contralateral
trial and b) ipsilateral trials. . . . . . . . . . . . . . . . . . . . . . . 102

Figure 4.15 Spectrogram during the choice epoch a for the contralateral
trial and b) ipsilateral trials. . . . . . . . . . . . . . . . . . . . . . . 103

xxi



Figure 4.16 Decoding of neural activity was performed to extract infor-
mation about the encoding mechanisms of cell assemblies.
Different features of neuronal response were sequentially decoded
across time using an SVM classifier. Black trace shows hybrid fea-
tures of spikes and LFPs while in green and blue, only LFP and spike
features were used respectively. Chance level is at 50%. To make sure
that the performance of is not biased, we randomly labeled trials and
run them through the decoder which as expected, resulted in chance
level performance shown in cyan . . . . . . . . . . . . . . . . . . . . 104

Figure 4.17 Effect of binsize and channel count on decoding performance(a)
Dependence of the decoder performance on the bin size used to ex-
tract hybrid (black), LFP (green) and spike (blue) features. (b) Per-
formance of the decoder increases with incorporating features from
more channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 4.18 Histological evaluation of ArchT expression, a fluorescent im-
age of a slice of brain infected with AAV-CaMKII-ArchT-GFP, a 50
µm coronal section at approximately +3mm from bregma. The trans-
fection site is fluorescing in green. . . . . . . . . . . . . . . . . . . . 107

Figure 4.19 Behavioral effects of optogenetic inhibition, only trials with a
target memory on the contralateral site with respect to inhibition
using the green laser were affected by the optical inhibition. . . . . . 108

Figure 5.1 Brain circuits involved in voluntary action, a) Primary mo-
tor cortex receives two sets of inputs. The first is routed through
the SMA area which itself receives inputs from the prefrontal cortex
and the basal ganglia and the other loop relays sensory information
through primary sensory cortex, parietal cortex and the premotor
cortex b) brain activity recorded in different brain regions preceding
a movement in the right hand. Adapted from [112] . . . . . . . . . . 124

Figure 5.2 Cortical and thalamic inputs to the striatum distributed in
dorsomedial to ventrolateral regions. Note that the topographical
organization in the corticostriatal projections is the leading organi-
zational principle. Adapted from [231] . . . . . . . . . . . . . . . . . 125

Figure 5.3 Corticostriatal thalamic loop, illustrating the direct and indirect
pathways. Adapted from [81] . . . . . . . . . . . . . . . . . . . . . . 126

Figure 5.4 Model for action selection via striatal D1 cells and the sub-
thalamic nucleus, cortical input provides utility values for the ac-
tions which in turn leads to the basal ganglia to release inhibition on
the action with highest value, suppressing the rest. Adapted from [218]126

xxii



Figure 6.1 Selective inactivation of the prelimbic circuit using optoge-
netics toolbox: ArchT and green light (520 nm) Inhibiting
the activity of prelimbic cells a)throughout the trial and during b)
fixation period, c) the instruction cue presentation, d) delay period,
e) reaction epoch and f) choice epoch. . . . . . . . . . . . . . . . . 130

Figure 2 Tracking head orientation a One captured frame during the delay
period of the subject performing the task, showing the midline, two
LEDs and the head orientation angle θ. b Head orientation through-
out different epoch of the task, averaged across right and left trials. 136

Figure 3 Flowchart of the algorithms developed to track the head
orientation, using colored images captured at 87 fps. . . . . . . . . 137

Figure 4 Samples of video tracking Right panel shows the raw image cap-
tured while the subject performed the task and the left panel is the
final output of the algorithm that shows the location of the LEDs.
(a) The subject is moving toward the fixation hole (b) the subject
inside the fixation whole during a delay period (c) reflection of the
red LED causing the detection of a third object. . . . . . . . . . . . 138

Figure 5 Changes in lateralized performance deficit, lateralized perfor-
mance deficit is one metric of suppression effectiveness. As shown
here, this measure is declining throught consecutive repetition of op-
togenetic suppression. . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Figure 6 Performances under epoch specific suppression of activity,
n=4 subjects, 2,000 trials. . . . . . . . . . . . . . . . . . . . . . . . 141

xxiii



KEY TO SYMBOLS AND ABBREVIATIONS

Abbreviation Description

BMI Brain-Machine Interface

MD Medio Dorsal Nucleus

PFC Prefrontal Cortex

mPFC Medial Prefrontal cortex

PrL Prelimbic area (of mPFC)

SVM Support Vector Machine

LFP Local Field Potential

WM Working Memory

ChR2 Channel Rhodopsin (Version 2)

ArCh Archaerhodopsin

M1 Primary motor cortex

M2 Secondary motor area

MSN Medium Spiny Neurons

FSI Fast Spiking Interneurons

xxiv



Chapter 1

Introduction

Principles and logic do not give birth to reality.

Reality comes first and the principles and logic

follow.

— Haruki Murakami, 1Q84

1.1 Motivation

Brian Kolfage is an Iraq war veteran, who lost his right arm in an insurgent attack back

in 2004. Koni Dole, a Montana high school football player, suffered a compound fracture

on the field that cost him his leg. Christopher Reeve, an American actor, film director and

producer became a quadriplegic after being thrown from a horse during a competition in

Virginia.

Partial or full loss of movement ability is not limited to these individuals and indeed is

a widespread affliction. A report published by Christopher and Dana Reeve foundation in

2009, estimated that almost 5.6 million people in US only, are suffering from some form of

paralysis, with the leading causes being stroke, spinal cord injury and multiple sclerosis [47].

Ziegler-Graham et al. [251] also estimated that there are nearly 2 million people living with

limb loss in the United States, with main causes being vascular disease, trauma and cancer1.

Amputations occur at the rate of 185,000 per year in the United States and is estimated to

1Like Augustus Waters, the male love interest in John Green’s New York Times bestseller The
fault in our starts, who suffered a limb loss due to cancer.
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cost over $8.3 billion [82,182].

What is common among all these different cases of movement disabilities is that the

patients have lost their motor execution abilities, but their brain regions responsible for

planning the movements and initiating a will to move is still intact. It has been proposed

that one can utilize these intact brain signals to decode motor commands and drive prosthetic

to restore motor function.

My first encounter with the idea that decoding thoughts and intentions is possible through

electrodes implants on top of the skull was in third grade elementary school through the

brilliant science-fiction trilogy by John Christoher: The White Mountains (1967), The City

of Gold and Lead (1968) and The Pool of Fire (1968)2. In this post-apocalyptic novel,

humanity has been conqured and enslaved by ‘The tripods’. Humans are controlled by

Masters through caps implanted on their skull at the age of 14. People who are capped

happily follow and serve the masters, as their minds are controlled by them. The story rolls

with the narrative of Will Parker, a rebellious teenagers who joins the rebels camouflaged in

the white mountains working on a strike plan against the tripods.

Around the same time that John Christopher was writing his ingenious novels in England,

Eb Fetz had recently graduated from Massachusetts Institute of Technology with a PhD in

physics and had started a post-doctoral fellowship at University of Washington in Seattle

where he later became a professor of physiology and biophysics3. Using the same idea that

2Here I should acknowledge my amazing creative writing teacher Mr.Adel who introduced me
to these novels.

3In 2013 during his visit to Michigan State University, when I picked him up from the Lansing
airport, during our brief trip to campus, he told me how strange it was back in 1965 for someone
from department of physics at MIT to work on a dissertation topic barely related to the so called
‘mainstream physics’ and the hardship he had to go through to get the dissertation accepted. The
trick was easy though, he changed the dissertation title to ‘Physics of spinal cord injury’. Use of
the term ‘physics’ in the title made the magic! And finally he joked to me and said you are in
the department of electrical engineering, maybe you can title your dissertation as ‘the circuits of
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inspired Christopher, Fetz adopted the technique called electrophysiology to record activity

of individual nerve cells from the motor cortex of awake behaving rhesus macaque monkeys.

He discovered that the primates were able to volitionally control the activity of these motor

cortex cells without eliciting any overt limb movement. Results of this study was published

in the prestigious journal Science, brought him fame and kicked off the modern science of

Brain-Machine Interface (BMI) [88–90,171].

Brain Machine Interface (also called direct neural interface) is an interdisciplinary field

of research where the main goal is to restore sensory and motor function of the brain using a

direct communication pathway between brain and an external device. Since its infancy, the

field has exploited on the capacities to restore impaired hearing and sight senses and motor

functions. Although the underlying mechanism of BMI function is very poorly understood,

but speculations are that BMIs work through the amazing properties of the brain tissue

known as ‘plasticity’ [169], which in simple terms is attributed to changes in structural and

functional properties of brain circuitry due to changes in the environment or learning and

can occur at different levels.

Here at Neural System Engineering Lab (NSEL) where I am a contributing member,

our research is focused around the Brain Machine Interfaces at multiple development areas.

Although the idea of a BMI has been around for a long while, and early implementations

of BMI have shown success, the progress in the field has been very incremental. Inception

of the modern science of BMI idea can be traced back to Eb Fetzs work in 1967, where he

showed volitional control of one degree of freedom using brain signals. State-of-the-art BMI

from the BrainGate group reports 3 DoF control in 2012 which is still far from the 27 DoF

required of natural hand control. This slow progress in BMI capabilities is puzzling and

prefrontal cortex’.
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becomes more puzzling when one considers the progress in robotics which is the backbone

of any BMI. Majority of current BMIs use brain signals from the motor cortex and apply

regression algorithms to decode the trajectory of a robotic arm movement for multiple degrees

of freedom. It has been suggested [166, 189] that BMIs can adopt an intermittent level of

control where the job of the decoder be rapid realization of intended actions rather than

decoding moment-by-moment changes of the trajectory. In this scheme, upon motor intent

decoding, the robotic algorithm will take control of finding the optimal movement trajectory

and the decoding algorithm will monitor the neural activity for any possible ‘action switch’.

The question underlying this switch between or choice of different action plans has long

been studied under different terminologies such as ‘decision making’, ‘action selection’ etc

[200]. Different brain regions may contribute to the action selection process and thus signals

collected from different brain regions have been suggested to be exploited on for the so called

‘cognitive BMIs’ [10]. Although the idea of ‘modularity’ in cognitive functions of the brain

has been refuted and the whole brain as an entity is believed to be engaged in all aspects of

our behavior, still some brain regions are more involved in certain tasks than others. Thus

it makes sense to look for the optimal brain region for decoding motor intents.

Prefrontal cortex, sitting on top of the hierarchy of cognitive control in brain is one of

the least understood regions of the neocortex. In this dissertation I will explore the role of

prefrontal cortex of rodents in action selection through a delayed choice task. The results

of this study can be insightful to for the design of next generation cognitive Brain Machine

Interfaces.
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1.2 Organization of this dissertation

This dissertation is organized into 6 independent but interconnected chapters. In the chapter

following this introductory chapter, I review the related literature about Brain Machine

Interfaces, prefrontal cortex and delayed reaction tasks. In this chapter only the basics and

concrete concepts related to each topic will be covered. I have kept the more speculative

studies for the discussion chapter. I also review a number of recent studies where a very

similar experimental design was used to study roles and functions of different brain regions.

Chapter 3 has been dedicated to the methods used throughout this study. Given the

extent and the number of different experiments and analysis used in this study, I have

dedicated some good portion of the document elaborating on the techniques and analysis

methods. The methods are in fact the key to collect the required empirical evidence in

order to answer the scientific question I am after. Thus I paid attention to the choice of

methods acquired for this dissertation and the reader may come across a body of references

throughout the methods chapter.

Chapter 4 which is the heart of this dissertation showcases and compiles results from

different experiment and analysis. Here I try to use graphics and statistics to summarize

mass of information collected to answer research questions of my interest. To the extent that

is possible I have interpreted the results as illustrating them, but thorough interpretation of

the results were left to the next chapter. I tried to keep the order of the presented results

in a way to make it more intuitively comprehensible and represent the line of thought that

I followed during the design of the experiment. Wherever required I had highlighted and

emphasized the most important results that the reader should pay careful attention to and

gloss over the less important results.
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Chapter 5 is the discussion chapter. The purpose of this chapter is to give meaning to

the previously presented results by binding them to the previously established theories. I

have also made an effort to extrapolate from the results and come up with explanations for

still unknown mechanisms of action selection in brain.

And at last in chapter 6 I will have the concluding remarks where I try to recap the

previous five chapters and provide suggestions for future works based on the results of this

study. Limitations of the study will also be discussed in this chapter and suggestions are

made to overcome these limitations.
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Chapter 2

Literature Review

Contained within each of these articles is the

joy of learning for its own sake... But research

is only the first step, we can’t ignore the

lingering question of how we can -and should-

use scientific evidence to our advantage.

— Dan Ariely, The Best American Science and

Nature Writing 2012

2.1 Introduction

The main objective of this dissertation is to explore the role of prefrontal cortex circuits in

initiating and processing information related to motor action selection and execution. The

idea is to use the information as an input to cognitive motor prosthesis in form of flexible

control signals, which will ultimately provide an unprecedented opportunity for patients suf-

fering from amputation or paralysis. As mentioned earlier, this problem is mainly studied in

the framework of Brain-Machine Interface (BMI) among the neural engineering community.

In this chapter dedicated to literature review, I will start with a brief introduction of the

Brain-Machine Interface problem, its history, scope and challenges. Then I will review the

literature related to cognitive neural prosthetic, which is a relatively newer concept trying

to approach the BMI from a different perspective. I will describe the rationale supporting

the use of cognitive prosthetic for the BMI application.
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As will be described in the following sections of this chapter, different signal modalities

from myriad of brain regions have been recruited for cognitive neural prosthetic. My proposal

in this dissertation is to utilize neuronal signals from the prefrontal cortex for this purpose.

Prefrontal cortex compared to other parts of the brain has been studied less, partly due to

complexity of the anatomy and difficulty in interpretation of the results of recorded activity.

Especially in the context of BMI, I am not aware of any study using signals from prefrontal

cortex. Here I suggest recruiting prefrontal cortex to obtain a flexible drive signal for the

BMI devices. Thus the final section of this review will be dedicated to explore the literature

of theories of prefrontal cortex function in order to endorse our suggestion.

2.2 Brain-Machine Interfaces

2.2.1 Introduction

Over 10 million people are suffering from different types of motor disabilities, in US only.

These disabilities range from paralysis to limb amputation [47, 82, 182, 251]. A common

feature of many of these disabilities is that although their motor apparatus is impaired but

the regions in the cortex responsible for voluntary movement planning and execution are

intact. The main idea behind the Brain-Machine interfaces is to use brain signals from these

regions, decode the motor volition using computer algorithms and use the information to

drive prosthetic arms [123] for amputees or to use Functional Electrical Stimulation (FES)

to move the paralyzed limb, bypassing the spinal cord [84]. An FES system uses electrical

pulses to activate muscles in an orderly fashion in order to drive the limbs [188].

Use of prosthetic limbs to replace amputated arm/leg is not a modern invention. In

fact historical references for such prosthetic can be traced back to 1500 BCE, in a Hindu
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holy book that mentioned the warrior queen Vishpala who had a leg amputation in a battle

that was replaced by an iron limb [168, 183]. However, the idea of using brain signals to

derive movement information used for prosthetic is not more than half a century old. Miguel

Nicolelis, himself one of the front runners of this field, considers [171] the seminal study of

Eberhard Fetz of the University of Washington as a game changer for the field [88–90].

In these series of experiments, Fetz and others recorded activity of single cells from

intact brain of an awake behaving monkey using a single metal microelectrode. The activity

was conditioned by reinforcing higher rates of neuronal discharge with delivery of a food

pellet. In short, firing rate of the individual cell was transformed to parameter controlling

an auditory/visual feedback using a mathematical formula. The feedback was provided to

the monkey so that the subject was aware of the state of the cell’s firing rate at each moment

in time. Modulating the firing rate beyond a fixed threshold was reinforced using reward

pellets. Fetz and colleagues showed that after several training sessions, the monkey were

able to volitionally modulate the firing rate of individual cells by up to 500 percents beyond

the rates before reinforcement, without intervening movements.

This observation that subjects can volitionally control firing rates of individual cells in

their brain using a (neuro)feedback, paved the way for the emergence of the Brain-Machine

Interfaces (BMI) as a scientific field of study. Figure 2.1 summarizes the main idea behind

a closed-loop motor BMI.

First the activity of multiple brain cells in a single or multiple motor-related areas of the

brain is recorded using a multielectrode array device. After some preprocessing steps(similar

to those that I recruited in the Chapter 3), the signal is passed to a decoding algorithm,

that transforms the recorded brain activity into kinematic and kinetic variables such as

joint angle and velocity [72, 146]. Decoded kinematic parameters are then used to drive the
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Figure 2.1: Basic components of a Brain-Machine Interface. 1) a recording array,
implanted through or on top the cortex and records the activity of a population of cells on
multiple channels. 2) a decoding algorithm (often one sort of regression) that translates the
brain activity into motor commands 3) an output device controlled by the translated motor
commands 4) and sensory feedback often in forms of auditory or visual feedback .Adapted
from [118]
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prosthetic device through a desired trajectory and the subject receives information regarding

this movement via visual feedback.

2.2.2 Challenges

While BMIs have provided an unprecedented opportunity to explore brain’s ability to directly

control artificial machines, they are still far from being clinically viable. A recent human

study of tetraplegic patient has shown the capability of an advanced BMI to control 4 degrees

of freedom (DOF) for a reach to grasp task [123]. More recently, Andrew Schwartz’s group

reported successful control of 7 DOF using two 96-channel implanted arrays in the motor

cortex of one patient suffering from tetraplegia [53]. Although this is quite an achievement for

the scientific community, there is a long way to go for approaching a natural hand control.

Human arm has 7 DOFs and the whole hand has been modeled using 27 DOFs or even

higher [111]. Thus in order to restore an able-bodied level control of the prosthetic, higher

DOFs are required. Whether current approaches of transforming activity of ensembles of

neurons to individual degrees of freedom will enable generalized control of more degrees of

freedom is yet to be studied [102,118,151].

This in fact is the main challenge of the current implementation of BMIs. Recent progress

in control and robotic engineering provides simultaneous control of many degrees of freedom

for a robotic arm that in turn enables very dexterous reach and grasp actions. One may

expect that this dexterous control of robotic arm gets translated in cortically driven neu-

roprosthetics as well. In my opinion, part of the limitation is rooted in the ‘majority’

approach to the decoding problem in BMI. It has become a common practice to decode the

trajectory of the prosthetic arm on a moment-by-moment basis from the recorded neural

data [20,44,214,222]. An alternative ‘minority’ approach promoted by Richard Andersen at
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Caltech is to decode movement goals from the brain activity and delegate the problem of

finding the optimal trajectory to the robotics [10, 166,189].

2.3 Temporal Organization of Action

Since the discovery of the so called memory cells [96], Joaquin Fuster has dedicated his career

to do research on the prefrontal cortex. In the fourth and latest edition of his popular book

The Prefrontal Cortex [95], he introduced a framework to understand and interpret the role

of the prefrontal cortex in the Temporal Organization of action. His model is based on the

following three propositions:

1. Frontal cortex is dedicated to representation and production of action.

2. There exists a causal relation between the neural substrate of action representation

and production.

3. That neural substrate is organized hierarchically, with the lowest compartment being

primary motor cortex responsible for the production of elementary action and dor-

solateral prefrontal cortex (in primates) sitting at the top representing abstract and

complex plans.

The proposed model disputes the modular view (rooted from sensory and motor phys-

iology) for the function of frontal lobe and instead emphasizes on the network view that

supports widely distributed cognitive networks across many different brain areas. While em-

phasizing the role of prefrontal cortex in the top-down control of action, the framework does

not support an initiation role for the prefrontal cortex or any other brain area but rather ad-

vocates a theory of parallel and circular perception-action cycles with no true origin, neither
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cortical nor subcortical. In other words, in this model the prefrontal cortex is not considered

a central executive unit but a principal conductor of an orchestra would be a better analogy1.

It is the continuous flow of information between the organism and the environment that en-

ables goal-directed behavior and the prefrontal cortex is the supreme temporal integrator in

that cycle. In the functional hierarchy of the frontal cortex or we should call it the action

cortex, primary motor cortex is located at the lower stage of representing and producing

action with the premotor areas sitting on top of that below the supplementary motor areas.

Lateral prefrontal areas are at the top of this hierarchy. Whereas in the primary motor

cortex there is a somatotopy, premotor and prefrontal cortices represent actions in a more

global level, by goal and trajectory. A schematic block-diagram of this hierarchy is shown

in Figure 2.2.

Goal-directed behavior should be distinguished from habits in the sense that goal-directed

actions are educated choice that the organism make in order to satisfy and end through an

interaction with the environment. This type of action is routinely considered deliberate since

it is motivated by a deliberation of choices and their corresponding risks and values. There are

two basic principles that one should bare in mind in order to interpret the temporal dynamics

of neural representation in the prefrontal cortex during execution of a goal-directed action.

First is that any goal-directed action is structured sequentially based on the goal of the action

and the relations between its component actions. And second, that the structure of the action

is determined by an on-line interaction between the organism and the environment, with

prefrontal cortex playing the role of an orchestra conductor controlling temporal integration

and sequencing of the actions.

1The analogy is mine, Fuster might have use a different.
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(a) (b)

(c)

Figure 2.2: Schematic of the top-down control of a goal-directed action (a) Any goal-
directed behavior is mediated through an interactive neural control with the prefrontal cortex
as the top of the hierarchy. Different brain areas are specialized to translate the motor plans
(schema) into muscle movements or relay the movement related sensory information from
the environment required for online monitoring of the task execution. (b,c) Afferent(red)
and efferent(blue) of the prefrontal cortex involved in the monitoring and execution of goal-
directed tasks.
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Fuster’s framework utilizes more than 50 years of electrophysiology and imaging studies of

the frontal lobe. Under the umbrella of this general framework, we will review some relevant

literature in more details and use those as a basis and motivation to design an experiment

that helps elucidate the mechanism of prefrontal cortex function in more details.

2.4 Delayed Reaction

In an episode of the Tom and Jerry c© show, Jerry is sneaking in the room to run away with

some cheese while Tom is leisurely laying down on a pillow with his back to the cheese. He

notices some noise and turns his head to the other side that he glances at Jerry. Noticing

that, Jerry runs towards the wall and jumps into one of the three holes in the wall before

Tom can react. Not surprisingly, after Jerry escapes into the hole, Tom will move towards

the hole where Jerry is hiding and a series of pursuit starts.

Inspired by observing a similar scene in 1913 William Hunter wrote a PhD dissertation

on The delayed reaction in animals and children [132]. The phenomenon that he studied

is a very typical mammalian behavior in which the determining stimulus is absent at the

moment of response. More specifically he asked two questions: “1) How long after the

determining stimulus has disappeared can an animal wait and still react correctly? 2) Does

the animal give any behavior cues as to its method of solving the problem? If so, what are

they?” He then postulates that some images or ideas are the driving force for the reaction

in the absence of determining stimuli.

In a quest to answer the above mentioned question, he designed an experiment very

similar to the case of Tom and Jerry skit, with a subtle difference where he used three lights

inside the holes to cue the animals of the location of the food. A picture of rat version of the
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(a) (b)
Figure 2.3: Experimental apparatus used in Hunter experiment a) Schematic of the
design and b) the apparatus used in the rat version of the study.

experimental apparatus is shown in Figure 2.3. He repeated variants of the this experiment

for dogs, raccoon and children.

The animal is initially located in the area R(release) of the cage and one of three targets

(area L) is lighted while the animal is still in area R. After a few seconds the light in target

is turned off and the animal is released after 5 seconds and is free to move to the target. The

behavior of the animal is monitored throughout the session and correct visits are rewarded.

A careful detailed record is kept of the animal orientation before and after the release. The

animal should go to the lighted box and come back to the entrance area in order to get

rewarded. The maximum length of the delay period for different animal subjects is shown

in Table 2.1.

Only four out of the 14 animals reached a maximum delay greater than 1 second. Rac-

coons performed a bit better (one of them reached a maximum of 25 seconds of delay versus

the maximum of 10 seconds in rat) and one of the dogs could perform at 68% with delays

of up to 5 minutes (although the second dog subject could not exceed 10 seconds depicting

very high subject variability). Above all, human children could keep a memory of up to 25
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Subject ID Maximal Delay Correct Responses (%)
2 1 sec 64
4 1 sec 52
5 did not learn association N/A
6 did not learn association N/A
7 3 secs 56
9 10 secs 72
10 1 sec 76
11 1 sec 64
12 1 sec 72
13 4 secs 88
14 3 secs 80
15 1 sec 86
16 1 sec 50
17 1 sec 37

Table 2.1: Distribution of reaction times across different rats.

minutes.

With regards to the second question that Hunter was looking after, he observed animals

using three different startegies:

1. Orienting head or whole body towards the target

2. No orientation cues used by the animal

3. Animal moves to get closer to the target location inside the release area

Hunter concluded that the animals use the ideas in a similar fashion to humans to

direct their action toward the goal. He also pointed out that these ideas could be ideas

of objects (representing stimulus aspects of the situation) or ideas of movement and its

sensory consequences. The methods he used at the time were not developed enough to help

dissociate the sensory aspects of the memory from their motor aspects. He mentions that

“An experimental technique to isolate and control the movement factor would be extremely
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difficult if not impossible to devise. I doubt that whether experimental technique can ever

control this movement factor.”

To my knowledge, this is the very first study that investigated the delayed reaction

behavior systematically which inspired a corpus of ongoing research in cognitive neuroscience.

Many of the concerns he brought up (such as the subjects’ use of body orientation in directing

behavior) are valid question need to be addressed in any subsequent study.

In his work, Hunter was more interested in the behavioral aspects of the delayed task

and the across species comparison. He did not posit any mechanism for the formation and

maintenance of the ideas that he believed were the key to delayed reaction. Time needed

to pass by so that other investigators will build up on his contributions and investigate the

mechanisms by which the animals performed the task.

Almost 20 years had to pass so that Jacobsen would publish the results of his work [135].

The work later became one of the classical papers of neuroscience (reprinted by the Society for

Neuroscience in their archive of classics). At the time there was a controversy on whether

the frontal lobe of the animal cortex exerts a functional role in the animal’s behavior as

some lesioning studies had shown “ no symptoms indicative of affection or impairment of

the special sensory or motor faculties ”. Reviewing the fuzzy literature about the realm

of frontal cortex function, Jacobsen described a series of experiments designed to answer

the question of the exclusive role of the frontal areas of the cortex in the production of the

behavior: Do frontal areas mediate a behavior that the animal is incapable of expressing

when the frontal cortex is impaired?

In one experiment that is relevant to the subject matter of this discussion, he tested

primates for their delay responses where differential cues determined whether a right or left

box is rewarded. However the cues were concealed from the subject and the subject had to
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Figure 2.4: The experimental design Jacobsen used to study the PFC where dif-
ferential cues determined whether a right or left box is rewarded. However the cues were
concealed from the subject and the subject had to use a memory trace to decide about the
target location. Adapted from Banich and Compton [19]

use a memory trace to decide about the target location. A cartoon summarizing experimental

design is shown in Figure 2.4.

Basically the subject observes the experimenter hiding the food under either of the food

ports but shortly before the subject can act and reach for the food, the experimenter puts

an opaque the subject and the food ports. After a variable delay the subject the door is

removed and the subject is allowed to reach for the food and the subject will be rewarded

only if reaches for the correct target.

This piece of the experiment is very similar and in fact inspired by Hunter’s work. The

novelty in Jacobsen’s experiment was linking brain activity to the subject’s behavior in

delayed responses. Subjects were trained to perform the task with higher than 80% accuracy

and after they reached the final stage, different parts of their frontal cortex were surgically

removed in different subjects and their postoperative performance was measured.

Unilateral removal of frontal association area did not affect the monkey performance in

the delayed reaction task, however when it was removed simultaneously from both hemi-

spheres, the performance was impaired permanently. Lesions to the temporal and parietal
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areas left the delayed reaction task intact. Lesions to motor and premotor areas impaired

the motor movement, to the extent that the subject was not able to open the food port door

and after pointing to the door, the experimenter had to open the door for them. However,

the accuracy of the performance was not affected.

Jacobsen’s study was a major breakthrough for the cognitive neuroscience research. For

the first time, the now called dorsolateral prefrontal cortex (dlPFC) was shown to be critical

to the execution of delayed response tasks. More importantly, Jacobsen showed that the

dlPFC is exclusively required for the performance of the task. Thus he concluded that the

machinery required to perform the delayed reactions is localized in this area. However, it was

still early to discover the cellular details of this machinery. Technology needed to advance

and another 40 years had to pass.

It was in 1971 that Joaquin Fuster used the newly invented electrodes to record brain

activity of dlPFC in primates while performing a delayed reaction task at a cellular level [96].

Fuster began by reviewing Hunter and Jacobsen’s investigations and postulated that if the

so called prefrontal cortex has a role in the performance of delayed reaction tasks, one

should observe a modulation in the temporal dynamics of single cells’ firing throughout the

execution of the task. The experimental design Fuster used was very similar to that of

Jacobsen’s in which one of the visible targets was baited and shown to the subject and the

subject’s field of view was blocked for a delay period. The subject would be rewarded only

if reached to the baited target after the delay period. Single unit activities were recorded in

the prefrontal cortex and MD neucleus of thalamus using chronic implants. Delay periods

were varied between 15 seconds and 60 seconds. Both baseline and task related activities

were recorded in prefrontal (110 single cells) and MD thalamus (57 single cells). Most of the

cells (both in MD and PFC) showed higher levels of modulation (with different magnitudes)
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Figure 2.5: Raster plot of a sample cell recorded in primate dlPFC, across different
trials during a delay period. Adapted from Fuster’s seminal study [96].

during the task execution compared to the baseline. Some cells were only active during the

cue presentation, some during the delay period and some in both. Figure 2.5 shows one such

unit with sustained activity during delay periods of five consecutive presentations of the cue.

Fuster did not observe any unit with differential responses to the two positions of the

rewards and thus concluded that whatever the functional role of these cells is, it is not coding

the information about the test cues. He also suggested that the activation of MD cells in

thalamus might be indicative of shifting attention to specific stimuli, required to guide an

action.

The discovery of cells in primate prefrontal cortex with sustained activity modulation

during delay periods, that were later called memory cells was a great breakthrough in the

study of delayed reactions. However as Xiao Wang mentioned in a review article [233], the be-

havioral responses were manually controlled and these made some concerns about functional

interpretation of the sustained activities measured during the delay period. The one study

published in 1989 by the late neuroscientist Patricia Goldman fulfilled this drawback [94].

In order to enforce accurate temporal control on the behavior of the monkey Goldman and

colleagues had to deviate from the original experimental design that Hunter, Jacobsen and

Fuster used. They trained the monkey to perform delayed oculomotor tasks and examined

the spatial memory properties of the cells in the prefrontal cortex. The subjects were trained
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to fixate on a central spot on the screen in front of them and maintain their gaze during a

brief presentation of a peripheral cue followed by a delay period (of up to 6 seconds). Upon

the extinction of the fixation marker, the subject was required to make a saccade toward the

peripheral target in order to receive a reward. Peripheral targets were presented randomly

in one out of eight uniformly distributed locations separated by 45 degrees. Incorporation

of eight peripheral targets, extended the investigation of the mnemonic processes from a

right-left paradigm to a multi-object test.

A total number of 228 neurons were recorded in the dlPFC area, 170 of which showed

modulated activity during at least one phase of the task with 87 cells active only during

the delay period. About 79% of these 87 cells showed directional responses, meaning that

the modulated delay activity response was repeatedly observed in certain directions. One

sample of such cell having a preferred direction of 270◦ is shown in Figure 2.6.

The overall conclusion of the study was that dlPFC in primates maintain information

regarding the spatial location of the visual cues during delay periods and different neurons

were shown to encode different target locations, consistently repeated across multiple pre-

sentation of the same cue. That being said, Goldman and colleagues introduced the concept

of memory map in the primate dorsolateral prefrontal cortex.

Even though the original delayed reaction task was designed for and tested in rodents,

but majority of the neurophysiology investigation was performed in primates. However with

the advent of microelectrode arrays, performing electrophysiology in rodents became much

more appealing and some investigators tapped into examination of the neural correlates of

delayed reaction tasks in rodents. I will conclude the review of primate neurophysiology

work at this point and in the next section we will review some rodent experiments.
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Figure 2.6: A memory cell observed in dlPFC of a monkey performing an ocu-
lomotor task, with orientational tuning. Raster plots of the cell’s spiking across multiple
trials the average firing rate are plotted for different orientations. Adapted from [94].

23



2.5 Neurophysiology of Delayed Reactions in rodents

I mentioned earlier that the original delayed reaction task was designed for rodents. However

the ease of recording electrophysiological data from primates, probably paved the way for

most of the neurophysiology of frontal cortex to be carried out in primates, limiting the rats

solely for lesioning studies of PFC impairment. But the game has changed in the last decade

with more investigators developing interest in rodent electrophysiology.

There is a long-lasting debate whether rats have prefrontal cortex. Although there are

apparent anatomical differences between primate and rodent prefrontal cortex, attempts

have been made to find functional similarities between the two. A very popular hypothesis

is that rodent prelimbic area (PrL) in medial prefrontal cortex (mPFC) is later developed as

dorsolateral prefrontal cortex (dlPFC) in primates and the two areas share some functional

properties [213].

For about a century, different maze designs have been used to test cognitive aspects

of rodent performance in laboratory [80, 238]. This appeal of the maze design, made it a

number one choice for those interested to perform delayed reaction experiments. However

as we will discuss, the choice of maze might not be the most appropriate choice for the

study of delayed reactions. In this section we will review some recent studies of rodent

delayed response experiments and discuss their strengths and shortcomings. This will make

a foundation to start introducing our own experimental design.

Min Whan Jung has been studying value-based action selection in different frontal areas

for years. In a recent article published in Neuron [220], Jung and colleagues presented

some data on the distinct role of rodent orbitofrontal and medial prefrontl cortex in decision

making. Neural signals were recorded from prelimbic and infralimibic areas (total of 751
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(a) (b)

(c)

Figure 2.7: Rodent two-armed bandit task (a) Schematic of the task design that shows
the distinct epochs: delay (D), go (G), approach (A), reward (Rw), and return (Rt) (b) Body
posture of the subject shows two distinct trajectories (c) Percentage of selective neurons
recorded from different parts of the prefrontal cortex. Adapted from [220]

neurons), as well as the lateral orbitofrontal cortex (a total of 1148 single neurons) while the

subjects performed a dynamic two-armed bandit task.

Behavioral task was divided into a few stages based on the spatial location of the rat in

the maze. A schematic of the maze design is shown in Figure 2.7. Note the delay (D), go

(G), approach (A), reward (Rw), and return (Rt) epochs of the task.

Surprisingly, (as some of the results shown in Figure 2.7 suggest) neural signals represent-

ing upcoming choice were not found in the rat mPFC and OFC. This was unexpected if one

considers the preparatory activity observed in the primate dlPFC. The authors suggested

that this different response pattern might be due to different experimental designs used in

primates and rodents. Whereas in primate experiments the subjects were sitting in front
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of a screen and required to gaze towards the target, the rats “navigated toward a branching

point before committing their goal choices”. The authors also suggested that if the rats were

allowed to make a choice without a need to navigate, the choice signals might have appeared

earlier in the mPFC. The findings of this study supported the encoding of action values in

the mPFC.

In another popular study, Gyuri Buzsaki and colleagues used a T-maze design and studied

the temporal dynamics of the prelimbic area of mPFC in a working memory task required

odor-place matching [92]. A schematic of the task design is shown in Figure 2.8. The task

required the subject to associate an odor (cheese or chocolate) presented in the start box of

the maze with a T-maze arm (left or right correspondingly). Correct visits to the left and

right arm were correspondingly rewarded with cheese and chocolate .

A total of 633 single units were recorded from the prelimbic area across different subjects.

Many of the cells showed location specific modulations during different epoch of the task.

One example response is shown in Figure 2.8. The differential firings however, were only

active during a very short life-time.

The authors suggested that environmental stimuli and motor behavior cannot account

for the observed activity and thus there is need for an internally generated signal to guide

the subsequent action. Then the authors used a cross-correlation technique and inferred

functionally connected networks of spiking neurons which they believed is representing the

internal signal. This can be regarded as an empirical evidence for the Hebbian idea of cell

assembly [41,115,119].

Besides the very interesting finding of functionally distinct networks of interacting cells,

this study suffers from the same drawback that Jung et al. mentioned in their own study

design [220]. Since the sensory and motor components of the task are not decoupled in
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(c) (d)

Figure 2.8: T-Maze design to study short-term plasticity in the prefrontal circuit
(a) A forced two-choice task using a T-maze. (b) Average estimation of firing rate and across
trial raster plots for a sample PFC cell selective for the targets. (c) Correlation between
the firing rate of a sample couple of cells as a function of the travelled distance in the maze,
depicting very transient dependency between the two cells. (d) Separate networks inferred
using a correlation analysis between the firing rates of the two cells for different motor targets.
Adapted from [92]
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the T-maze task design, any conclusion about the temporal evolution of the PFC response

and the content of the encoded signal, will be susceptible of having confounds of sensory or

motor influences. Buzsaki and Jung findings along with some other electrophysiology of the

mPFC in rodents [141, 145, 167], show a selective modulation of neural response during the

delay period and thus suggest a functional similarity between the rodent mPFC and primate

dlPFC.

Most of these rodent studies neglect the overt movement during the so called delay period

that was accounted for in Goldman’s study [94] by enforcing the subject to fixate and start

the movement after a Go cue. The question has been risen among the scientific community

and a few investigators [58, 85, 103] have suggested that the selective activity observed in

rodent mPFC might have sensorimotor confounds and after all, rodent mPFC might have a

different role rather the maintanance of the short-term (working) memory in delayed reaction

tasks.

Gisquest-Verrier and Delatour [103] questioned the role of rat mPFC in short-term mem-

ory storage. They used a delayed version of a win-shift task in a radial arm maze. PrL

lesioned rats performed the task at the same level of the control subjects, even in trials with

delay periods of up to 5 minutes. The conclusion of the authors was that the PrL circuit is

not necessary (and thus not directly involved) in holding specific information over a 5 min

time period.

This controversial opinions on the role of mPFC in the delayed reactions on one hand

and the lack of experimental designs that provide very precise control over the temporal

dynamics of rodent behavior, motivates the design of the experiment that will be described

in the following chapter of this proposal. The design helps to decouple the sensory and motor

elements of the task both in temporal domain and behavioral domain. This is crucially
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needed to study the temporal dynamics of neural reponses. But before moving to the next

chapter we will briefly review two very recent studies investigating the role of different cortical

and subcortical areas in a delayed reaction task. The design of these two experiments are

very similar to what we propose. Given that the both area studied by Berke et al. [99] and

Brody et al. [83] are monosynaptically connected to mPFC, comparison between the patterns

of activity of the two areas (Striatum and secondary motor area correspondingly) and those

of the prefrotnal cortex will shine some light on the puzzling question of the neural response

structures in a delayed reaction task in rodents.

2.6 The role of basal ganglia

Basal ganglia which consist of four nuclei, play an important role in voluntary movements

[137]. Patients with Parkinsons and Huntington disease, all of which have characteristics

of motor disturbances, were shown to have pathological changes in these areas using post-

mortem histology. These disorders were either slowness or paucity of movement (in Parkin-

sonian patients) or unwanted movements (in Huntington’s victims). Animal models of basal

ganglia function have shown their involvement in a number of behavior including (and not

limited to) 1) motivation toward goals [18], 2) selection of specific actions [208], 3) timing

of action initiation [155], 4) evaluation of the results [198] and 5) learning new skills [142].

Given the substantial drawbacks of of maze task when investigating temporal evolution

of neural activity, Berke et al. [99] used an operant conditioned instructed delay reaction

task where the timing of key events could be closely monitored throughout each trial. A

schematic of the task is shown in Figure 2.9. Rats were put in operant boxes with five

nosepoke holes. Illumination of a center hole determined initiation of each trial and the
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Figure 2.9: A 5-hole nosepoke design used to study the selective role of basal
ganglia in a reaction task, adapted from [99].

rat had to poke inside that hole and maintain their nose inside until a go cue is presented.

Immidiately after the rat pokes inside the center nosepoke a tone is played that is either a

pure 1 KHz tone or a 4 KHz tone. The rat has to turn right for trials with a 1 KHz tone

and to left for 4 KHz tone trials, but the movement should not start until a go cue (a white

auditory noise) is presented.

Berke et al. then implanted the subjects with movable tetrodes and simultaneously

recorded activity of multiple single cell. A total of 437 distinct cells were recorded in different

brain regions (striatum: 239, M1: 73, GP: 25) and differentiated the putative cell types based

on the shapes of the action potentials of each cell. As shown in Figure 2.10 , many cells

showed selective response modulation during two epochs of the task: choice and reward.

However, changes in firing rates of clusters of cells were observed before the movement onset

both in M1 and striatal cells (with an average of -55 msec and -117 msec before the movement

onset in M1 and striatum respectively).
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Figure 2.10: PETH for cells recorded in different brain areas during the execution
of the a delayed response task A) PETH for cells recorded fromM1, MSN and FSI cells of
the striatum and GP cells. B) Peaks responses for the same cells and instances of selectivity.
C) Across population average PETH for the signals recorded from different brain area. D)
Percentage of cells with target selective responses during different task epochs. Adapted
from [99]
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Any voluntary action can be distinguished in three different stages of preparation, se-

lection and execution, performed sequentially through time [100]. The authors suggest that

based on the experimental results of the study, basal ganglia is more involved during the

execution of a voluntary task rather than preparation and selection.

2.7 On the functional role of secondary motor areas

Premotor areas receive most of their afferents from the prefrontal cortex and send efferent

projections to the primary motor cortex [36]. Although the neural correlates of premotor

cortex activity has been extensively studied in primates [4, 8, 49], the functional properties

of this area is still unclear in rodents.

Brody et al. [83] used a very similar experimental design to that of Berke et al. [99]

to study the temporal dynamics of secondary motor area in rats. Again, the use of this

experimental design enabled high temporal control over the behavioral events. The only

major deviation from Berke et al. [99] design was in the type of the instruction cue. Whereas

Berke et al. [99] used single tone auditory cues of different frequency to instruct for the

orientation of the movement, tone pip of a constant frequency were used as the instruction

cue and the click rate, determined the orientation of the movement (20 clicks/sec for left

and 100 clicks/sec for right).

Upon completely acquiring the task, the subjects were implanted in their secondary

motor area (M2) with microwires and the activity of multiple single cells were recorded

simultaneously. A total of 242 cells were recorded in five subjects. The majority of the cells

recorded depicted a prospective encoding for the orientation of the future movement. The

population became significantly active about 850 msec before the Go cue. Figure 2.11 shows
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the development of choice selective activity through time.

The overall conclusion of this work is the finding of an area in rodent frontal cortex (M2)

responsible for preparation and planning of orienting movements.

Later in this proposal I will get back to Berke et al. and Brody et al. experiments and

try to describe my preliminary results in accordance with the results of these studies.

2.8 Chapter Summary

In this chapter I reviewed some studies related to the subject matter of this proposal. Start-

ing with Fuster’s framework for prefrontal cortex function, I reviewed the historical evolution

of delayed response tasks. Bill Hunter’s dissertation on the delayed responses in animal and

children from 1913 was reviewed. To my knowledge this document is the first scientific inves-

tigation of a delayed reaction. Constructing a foundation for such investigations, Jacobsen

conducts his seminal research in 1935 and found the prefrontal cortex areas to be responsible

for the execution of such tasks. He discovers that lesions to prefrontal xortex in primates

impairs the subject to perform a delayed reaction task.

Fuster is the first neuroscientist to record neural correlates of a working memory task

in primates. He finds the first evidence of cells in the dorsolateral area of the primate

cortex to have elevated responses selective of a goal. Patricia Goldman later uses a very

structured experimental design to have better control on the events during an experiment

while recording from cell in dorsolateral prefrontal cortex of non-human primates. While the

results of her discovery verifies those of Fuster’s, the findings also suggest a model of tuning

for the cells in the prefornal cortex activity during a delay period.

Some early rodent studies of delayed responses were also reviewed. Majority of delayed
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Figure 2.11: Population response in the rat premotor area during a delayed re-
sponse task A,B) Six sample neurons showing contralateral and ipsilateral preferences in
their firing rates C) Percentage of target selective cells. Adapted from [83]
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response investigation was performed using different types of navigation mazes. Experiments

from Jung and Buzsaki were reviwed both of which suggested a similar function between

primate dlPFC and rodent mPFC. However other pieces of literature discount the role of

rodent mPFC in the maintanance of short-term memory and investigate the confounds of

sensorimotor contributions in the observed responses so far. Studies from McNaughton and

Delatour were reviwed in this regard. Lastly, some very recent studies were reviewed which

investigated the role of the rodent basal ganglia system and premotor areas in voluntary

movements.

In the next chapter we will use what we have learned so far from the literature reviewed

and design an experimental design to help answer some of the concerns about the study of

rodent mPFC during delayed response tasks.
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Chapter 3

Methods

If no experiences could, in principle, count for

or against a proposition, then it is not only

unknowable. It is devoid of content.

— Rebecca Goldstein, Betraying Spinoza - The

Renegade Jew Who Gave Us Modernity

3.1 Delayed Choice Task

In this section, I will describe a framework of operant conditioning for rodents which have

been used to test a few cognitive tasks [21,34,83,99,165]. In this framework, the subjects are

required to fixate inside a nosepoke hole and maintain their snout inside until the presentation

of a go cue. During the delay period the subjects are presented with a range of instruction

cues that will guide them to select the appropriate action. The experimental design enforces

the subject to minimize its overt movement over a brief interval and thus minimize the

sensorimotor confounds on the neural responses observed during critical moments of decision

making and motor preparation. A schematic flowchart of the task is shown in Figure 3.1.

The task uses a five-hole nosepoke design that is conventionally used for 5-choice serial

reaction time task studies [21]. The operant conditioning box (Coulbourn H10-11R-TC)

consists of a five-hole nosepoke wall (Coulbourn H21-06R) on the left side and a food delivery

trough on the opposite side (Coulbourn H14-01R). The center nosepoke hole is considered as a

‘fixation’ hole and the four other holes (two on each side of the fixation hole) are motor target
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Figure 3.1: Flowchart of a sample trial showing the sequence of actions and events
during a trial. The subject initiates a trial on their own by poking their nose inside the
fixation hole. Briefly after the nosepoke, an instruction cue (a single frequency tone) is
played followed by a delay period. The subject is required to maintain their nose inside
the fixation hole until the presentation of the Go cue. Any premature retraction will cause
the trial to be aborted and the subject is penalized by a time-out. After a delay period of
random length, a Go Cue (auditory white noise) is presented and the subject is free to move
towards the instructed target. Successful trials are rewarded by a 45mg food pellet while
failed trials are timed out for 15 seconds.
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holes. Each hole is equipped with an (tri-color) LED and an infrared beam emitter-detector

package to detect entrance and retraction from the fixation hole. A programmable tone

generator (Coulbourn A12-33) is used to generate single frequency tones with millisecond

precision and is connected to a speaker mounted inside the operant box. The tone generator

and nosepokes are controlled through the Habitest Linc system (Coulbourn H02-01) in the

Graphic State software. The software provides millisecond timescale monitoring of behavioral

events and control of cues and responses.

Time course of task events is shown in Figure 3.2. A flashing light in the fixation hole

signals the subject to start a trial at their own will. Immediately after the subject poke

inside the fixation hole, the light turns off and the instruction cue is played. Instruction cue

is followed by a silent delay period during which the subject should still maintain their snout

inside the nosepoke hole. Length of the delay period is randomly chosen between 1.3-1.8

seconds based on a uniform density during each trial. 1 Termination of the delay period

is announced to the subject by a Go cue which is an auditory white noise. The subject is

allowed to retract from the fixation hole and initiate the movement anytime after the Go

cue.

Rats have been shown [114,142] to be capable of discriminating single frequency tones of

quarter octave distance. One trials with either a 5 KHz instruction cue the subject should

turn right to be rewarded, while the 14.2 KHz instruction cues instructed a left choice.

All correct visits to the target holes were rewarded with a 45mg food pellet delivered in

a food port on the opposite wall of the cage.

Erroneous trials were timed out for 15 seconds and the subject was required to wait until

1In this experiment I am more interested to study the sensorimotor contribution to mPFC
response in the delayed reaction task and thus to rule out any temporal prediction by the subject
(the subject anticipating a go cue) we suggest to choose the delay period length randomly.
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Figure 3.2: Proposed study to investigate the role of the rat mPFC in an instructed
delayed response task (a) Time-course of the proposed task, showing the relative timing
of the instruction cue, Go cue and the delay period. Subject’s entrance into the fixation
and target holes are monitored with millisecond precision (b) Schematic of the operant
conditioning box with the fixation hole and the two target holes (c) A 3-D anatomical view
of the target area in the mPFC, the prelimbic cortex (PrL). Also the primary motor cortex
(M1), premotor cortex (M2) and the striatum are shown.
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the fixation hole light starts flashing. There are three types of error the subject can commit.

Premature retraction errors occur when the subject retracts from the fixation hole before

the Go cue. Commission errors occur when the subject visits a target hole that was not

instructed (e.g. visiting the right target hole when was instructed to go left). Omission

errors occur when the subject does not visit any hole before the trial times out.

The subjects were trained in a sequence of protocols in order to reach 85% of performance.

Details of subject training are described in the next section.

3.2 Behavioral training

All animals were housed on a 12:12 hour reverse light/dark cycle. The experiments were

carried out during the dark phase. All animal subjects were housed in Michigan State

University ULAR facility in the basement of Trout building. The subjects were carried

to the lab in their home cage and kept in a dark behavioral training room were all the

experiments were carried out. All animal procedures were approved by the Michigan State

University Institutional Animal Care and Use Committee (IACUC) under the animal use

forms of 07/07-102-00, 05/10-054-00 and 06/13-120-00.

3.2.1 Early habituation

The subject is gradually food restricted to 5 gr per 100 gr of the subjects normal weight

(e.g. over the course of 3 days). It should maintain an 85-90% of their ad libitum weight.

The subject is habituated to handling by the experimenter starting from the first day of food

deprivation. The subject is then place in the operant conditioning box and food pellets are

provided in the pellet trough to encourage the subject to explore the cage and get familiar
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with the reward delivery location.

3.2.2 Subject Training

The task suggested here needs precise coordination between perception of an auditory cue,

self-inhibition and movement execution. Thus the subject needs to be gradually trained

step-by-step in order to perform the final task. At each stage, the subject needs to maintain

above 75% behavioral performance for more than three consecutive training sessions before

it is allowed to enter the next stage of training. After reaching the final stage of training,

the subject should be kept for an entire week to ensure the performance is maintained at

a desirable level. The subject will then be ready for further electrophysiology recordings or

lesioning experiments.

3.2.2.1 Start

At this stage the subject needs to become familiar with the nosepoke holes, food delivery

trough and association between correct nose poke holes and rewards. To do this, one out of

four targets is selected on a random schedule. The Go cue (white auditory noise) is played

and a red flashing LED (0.3 sec pulse duration) goes off inside the hole. Upon visiting the

target hole, the subject is rewarded by delivering one food pellet (45mg) on the opposite side

of the cage. Erroneous visits should not be punished at this stage. The trial should timeout

after 30 seconds and a new trial should start immediately.

3.2.2.2 Target Selection

This stage is very similar to Stage 1. The only difference is punishing erroneous visits of the

non-target holes in each trial. If the subject pokes inside an incorrect hole, the flashing LED
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in the correct hole should turn off followed by 3 seconds of black-out and then a new trial

starts without any reward delivery.

3.2.2.3 Nosepoke

The subject should have learned during the previous stage to associate flashing light holes

with reward. At this stage they learn to poke inside the fixation hole to initiate a trial. The

session starts with the fixation hole flashing yellow light. Once the subject pokes inside the

fixation hole, one out of the four target holes should be selected randomly and the red LED

turns on flashing. The subject should be rewarded upon visiting the correct hole. Incorrect

visits should be penalized by 5 seconds of timeout.

3.2.2.4 Delay

After the subject learns the strategy of poking inside the fixation hole to initiate a trial, they

should learn to maintain their nose inside that same hole until they are cued with a Go cue.

At this stage, they gradually learn to wait for an average period chosen by the experimenter

(e.g. 500 msec). The subject is required to maintain their nose inside the hole for a random

delay period with an average of 500msec, and immediately after the termination of the delay

period they are cued with the Go Cue. After the Go Cue presentation one out of four possible

targets is randomly selected and the LED light associated with that target starts flashing.

Upon visiting the correct target hole, the subject is rewarded. Premature retractions (before

the Go Cue) and incorrect visits are penalized by a timeout.
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3.2.2.5 Two Cues (w/ visual aid)

To rule out any effect of anticipating the delay period, the length of the delay period should

be randomly chosen between 1.3-1.8 seconds based on a uniform density during each trial.

The instruction cues are introduced at this stage. Instruction cues consist of single fre-

quency tones, pulsed in triplet (150 msec pulse duration with 100 msec interpulse interval).

The triplet are known to help the rats distinguish the pitch of the auditory stimulus34,35.

Instruction cues are presented immediately after the subject enters the fixation hole. Ulti-

mately four distinct auditory cues are presented to the subject where each pair of the tones

instructs a specific motor target (Table 1). However, only two out of four instruction cues,

corresponding to different motor targets are introduced at this stage. After the Go Cue the

LEDs inside the target hole will be flashing. This provides an assistive cue for the subject.

Later, when the subject learns to associate the auditory cue with the target hole the assistive

cue is removed.

3.2.2.6 Two Cues

Ultimately the subjects should plan for moving towards the target hole merely based on the

auditory cue. Earlier in the training protocol we used visual cues (flashing LEDs inside the

target holes) as a conditioning stimulus to assist the subject to associate tones with targets.

Gradually the assistance should be removed and the subject should learn to only use the

auditory cue to select the target. Here we remove the assistive visual cue for the target holes.

All the other parameters of the task remain similar to the previous stage.
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3.3 Reaction Time Analysis

Reaction time (RT) which is also called response time or latency, is defined as the time

between a stimulus and response to that stimulus [80, 86, 106, 133, 217]. Reaction times are

considered to be modeled as a stochastic process; their value changes from one realization

to another even under same conditions. Distribution of reaction times is best modeled as an

ex-Gaussian distribution, which is convolution of an exponential function with a Gaussian

function [77,144]. The ex-Gaussian distribution can be written as:

f(x) =
1

τ
exp(

µ

τ
+

σ2

2τ2
− x

τ
)Φ(

x− µ− σ2
τ

σ
) (3.1)

This distribution has three parameters, µ and σ for the mean and standard deviation of

the Gaussian segment and τ representing the decay constant of the exponential distribution.

The parameters along with a sample RT distribution are shown in Figure 3.3.

The bimodal distribution of the reaction time, is often attributed to two different pro-

cesses: fast and slow responses with different neuronal mechanisms arising each one [121,211].

To estimate the parameters of the distribution, I used a maximum-likelihood (ML) approach

where determined the parameters such that the likelihood of the observed data is maximized.

Here, likelihood is defined as

L(θ|χ) =
N
∏

i=1

f(xi|θ) (3.2)

Here, θ = [µ, σ, τ ] is a vector of the parameters, χ is the observations of the reaction time

and xi are the samples. Since both exponential and Gaussian distributions are expressed

in forms of exponential functions, it is easier to perform the optimization on the log of the
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Figure 3.3: A simulated ex-Gaussian distribution, showing the characteristic shape of
proposed model for reaction time distribution, illustrating different distribution variables µ,
σ and δ. Adapted from [237].

likelihood function. Thus the problem of maximum likelihood can be re-formulated as a

minimum log-likelihood problem:

logL(θ|χ) = −
N
∑

i=1

ln f(xi|θ) (3.3)

I used the MATLAB optimization toolbox (Simplex method) to solve for the minimum

log-likelihood problem.

3.4 Reversible inactivation

The ability to stereotaxically target certain brain areas and manipulate their activity, pro-

vides many opportunities to study the role of certain brain area and their relation to or-

ganism’s behavior [45]. Ablation and permanent extraction of the tissue are the have been
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widely used for that purpose. This can be easily done by aspirating the brain tissue. How-

ever, lesioning the brain tissue is not reversible and thus it would be hard to design control

experiments to establish a causal relation between the role of the lesioned tissue and any

behavioral/functional impairment.

One other way is to use pharmacological agents that bind to certain receptors and can

selectively activate or inactivate specific types of ion channels or receptors. These phar-

macological agents can be either agonist or antagonists. While agonists can activate their

targets, antagonists inhibit the biological activity. Muscimol is a popular GABA ago-

nist drug that increases the effects of inhibition and thus is widely used to inhibit neural

circuitry during in vivo electrophysiology experiments both in mPFC and other brain ar-

eas [7, 83, 99, 134,209,243].

In the next phase of this experiment I will examine the effect of reversible inactivation of

the mPFC on the subject’s performance. Subjects would be trained on the task and upon

accomplishment, muscimol will be delivered to the target area using a bilatral chronically

implanted guide cannulae. 1µL of a baclofen-muscimol cocktail (GABAB-GABAA agonists,

respectively) should be injected at each side using a Hamilton microsyringe. Control in-

jections of saline will be used to rule out any confound of the injection prodecure on the

subject’s performance.

Given the results so far and the selective modulation of the PFC cells, we expect that

by temporarily inactivating the prelimbic circuits, the performance of the subject will be

impaired and thus there would be a significant decrease in the performance between the

muscimol and saline treated session. However the extent of this impairment has to be

shown.
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3.5 Electrophysiology

The neuron doctrine is the fundamental premise of modern neuroscience, which states that

individual neurons are the basic building blocks of the brain responsible for sensing the

environment and producing actions to affect the environment [107,137,172]. Since the early

introduction of the concept, the ultimate goal of the neuroscience has been dedicated to

understand how the activity of these cells gives rise to mind: our ability to perceive, act and

memorize [59, 60, 229].

In short, neurons are believed to function collectively through generating brief electrical

potentials called action potential or spikes. Action potential is a short-lasting change in

the cell’s membrane potential caused by input dendritic currents moving the membrane

potential closer to a threshold (typically considered to be around -55 mV). Consequently

the action potential from a neuron will get propagated through the axon and may activated

its downstream neurons. A neuron that emits spikes is said to ‘fire’. Action potential of

an individual cell can be measured intracellularly using a technique called ‘patch clamp’.

Figure 3.4 shows a sample of such recording, illustrating the underlying mechanism of action

potential generation which is basically changes in the conductance of Sodium and Potassium

channels [137].

Although recording the intracellular potential is the gold standard for measuring a single

neuron activity, its application in limited due to practical issues. In practice, neurophysiol-

ogists measure extracellular potentials recorded at the tip of a metal electrode penetrated

inside the brain tissue (with respect to a reference electrode) and use that as a proxy for

multiple single cell activity [39]. In fact, by placing more than one electrode inside the brain

tissue one can record the activity of multiple single neurons at a time. Figure 3.5 shows
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Figure 3.4: Opening of voltage-gated channels and the generation of action poten-
tial. As described by Hodgkin and Huxley [125], during an action potential conductances
of Na+ and K+ changes and this ultimately attributes to generation of an action potential.
Adapted from [137].
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Figure 3.5: Recording unit activity using a multisite electrode. Schematic showing
how multisite electrodes (here a tetrode for example), will be placed in the vicinity of a
neuronal population to pick up the extracellular activity. If the sites are close to each other,
one can use triangularization of the action potentials to better isolate single units. Adapted
from [39].

a schematic of an extracellular electrophysiology recording of brain activity. As apparent

in the figure, electrodes are located in the vicinity of multiple cells and consequently will

pick up activity from more than one cell, unlike the intracellular recording where the volt-

age traces show activity of a single cell. Thus the extracellular recorded signal needs to be

processed to isolate the activity of single cells. This procedure is called ‘spike sorting’ and

will be described later in this chapter.

In recent years, the advent of multielectrode arrays (MEA) has enabled very large-scale

recording of multitude cells at a time in awake behaving animals [25, 39, 170, 206]. Several
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Figure 3.6: Examples of different multielectrode array designs A) Cyberkinetics 100
channel silicon array B) recording sites of the Cyberkinetics array C) Neuronexus Michigan
probe, another silicon-based MEA D) Tucker-Davis microwire MEA E) a close-up view
of the TDT microwire array F) Moxon’s ceramic-based MEA G) Cybekinetics 36 channel
probe .Adapted from [236].

different MEA designs have already being commercialized and ready to use for research

purposes. These include but not limited to the Michigan probes from NeuroNexusR©, Utah

probes from Blackrock microsystemsR© and the microwire arrays from Tucker-Davis Tech-

nologies R©. Figure 3.6 shows pictures of these different probe designs.

Among these different probe designs, each one comes with their pros and cons and the

choice of the optimal design is dependent on the application [236]. Geometrical design,

number of electrodes, sturdiness of the device and tissue response of a few parameters to

50



consider [170, 192, 236]. During the pilot studies for this experiment I used two kinds of

probes: Michigan probes and TDTmicrowire arrays. While the planar design of the Michigan

probes, provided more localized recording of neighboring cells, device integrity and longevity

of the recorded signals made me to choose TDT microwire arrays. Similar observations

was reported in other labs through personal conversations and documented in the Ward

study [236]. I used a 4x8 microwire array that enabled targeting two different regions:

mPFC and M2. Only the mPFC data is used for this dissertation, while the M2 data is

reserved for further investigations. This left me a total of 16 recording channels per subject

spanning a good area of the prelimbic cortex in the AnteroPosterior (A-P) axis. The data

used for this dissertation is from the subjects with a neural yield of more than 70%, meaning

that at least one unit was detected on each channel.

3.5.1 Surgery

Once the subject is implanted with the recording device, we allow up to a week of post-

operation recovery period before putting the subject back on food deprivation protocol. It

is important to monitor the weight of the animal and both food and water intake on a daily

basis. In case needed, special food supplements should be provided to compensate for the

weight loss.

3.5.2 Data Preprocessing

After the subject is ready for recording, we tether them to the data acquisition system (TDT

RZ2 system) using a high impedance headstage. Full band signal (no frequency filtering)

is recorded from 32 channels at the rate of 25KHz/channels. The data is then digitized in
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16-bit format and stored on the hard disk in a TDT specific format. A modified version of

the ActiveX controller provided by TDT is used to import the data into MATLAB. All the

subsequent analyses is performed in MATLAB unless mentioned otherwise.

Wide-band neural signal picked up at the tip of penetrating electrodes is a superimposi-

tion of electrical current contributions from all active processes in a brain tissue surrounding

the electrode [42]. It has become a tradition among neurophysiologists to use a lowpass

butterworth filter to extract LFP (cut-off frequency of 200 Hz) and a bandpass filter (cutoff

frequency between 500-5000 Hz) to extract spiking information. Although the butterworth

filtering is easy to implement, the simplicity comes at the price of introducing distortion

in temporal domain [244]. Our lab has previously shown the merit of using wavelets for

neural data preconditioning, preserving the spike SNR [6,178,181]. Here I adopted the same

techniques and used the Symlet wavelet family to separate the lower frequency content of

the recorded extracellular potential from the higher frequency signal carrying information

about individual cells’ activity. Lower frequency, slowly-varying local field potentials (LFP)

and higher frequency extracellular potential carrying action potential information of a few

neighboring cells. In Figure 3.7 I have shown a trace of the recorded data of a single channel

recorded from layer V, prelimbic area in subject PFC2.

Black trace is showing the wide-band extracellular data (no filtering), amplified and

sampled at 25KHz. Red trace is the slowly-varying LFP and the blue is the higher frequency

content. High amplitude events are the spikes from presumably individual cells (called ‘units ’

from now on), two examples of which are shown in the figure inset.
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Figure 3.7: Separating LFPs from the high frequency signal An example of the trace
of an extracellular potential recorded on a single channel (Black). Using Symlet wavelets,
the signal is decomposed into lower and higher frequencies. The lower frequency (red) is
called LFP and shows slow oscillations where the higher frequency (blue) carries information
about action potentials
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Figure 3.8: Three level wavelet tree decomposition, showing approximations and details
for each level.

3.5.2.1 Symlet Wavelet

Wavelet analysis is a relatively modern signal processing tool first introduced in the late 80s

for seismology applications [152, 153]. The analysis consists of an atomic decomposition of

a signal successively into different frequency bands, given some orthonormal basis function.

The packet is a set of shifted and dilated versions of a scaling function ϕ(n) and a bandpass

wavelet function ψ(n). In short, DWT of a discrete signal x(t) is calculated using a cascade

of filters, also called a ‘filter bank ’. At each level, the signal is simultaneously decomposed

into low-frequency and high-frequency components, by convolving the signal in high-pass

and low-pass filter. The procedure also known as ‘wavelet tree decomposition’ is illustrated

in Figure 3.8.

The basis functions at each step can be obtained from the mother wavelet and scaling

functions using the following formula:

ψjk(n) = 2−j/2ψ(2−jn− k) ; j=1,2,. . . ,L , k=1,2,. . . ,N (3.4)

54



ϕjk(n) = 2−j/2ϕ(2−jn− k) ; j=1,2,. . . ,L , k=1,2,. . . ,N (3.5)

ψ(
n

2
) =

√
2
∑

k

h(k)ψ(n− k) (3.6)

ϕ(
n

2
) =

√
2
∑

k

g(k)ϕ(n− k) (3.7)

In the formula, h(k) and g(k) are impulse responses of the previously mentioned low-pass

and high-pass filter which can also be expressed as the following dot product:

h(k) =

〈

1√
2
ϕ(
n

2
), ϕ(n− k)

〉

(3.8)

g(k) =

〈

1√
2
ψ(
n

2
), ϕ(n− k)

〉

(3.9)

I performed the above procedure in MATLAB, using the wavedec command in the

Wavelet Toolbox. A trivial question to ask is the choice of wavelet basis where one may

argue that the choice of these basis may affect the SNR. Given that most wavelets share

common properties such as symmetry and biorthogonality, this may not be a straightfor-

ward question. Oweiss and Anderson [180] have quantitatively compared the effect of dif-

ferent wavelet basis of a large dictionary of basis such as Haar, Daubechies, Symlet, coiflet,

etc [50, 63–65, 152]. The conclusion was that ‘symlets seem to be the closest match in wave-

form shape to the neural spike waveforms’ [177]. In the same study, Oweiss and Anderson

evaluated the effect of the symlet wavelet order on the waveform SNR and identified the 4th
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(a) (b)

Figure 3.9: Basis functions for the Symlet wavelet. a) Scaling function and b) wavelet
function

order to be the optimal. Following this advice, I have adopted a 4th order symlet wavelet

for filtering out LFPs from the higher frequency contents of the extracellular signal. Scaling

and basis function of the wavelet are plotted in Figure 3.9.

Once the signal is decompsed to different band components using the wavelet decompo-

sition tree method, coefficient thresholding is used to separate different band content. To

extract the low-frequency LFP signal, all the ‘detail’ coefficients are set to zero, and to ob-

tain the higher frequency signal, the approximation will be zeroed out. In each case, the

signal is reconstructed with zeroed out coefficients. Thresholding and reconstruction proce-

dures are performed using MATLAB wavelet Toolbox via wthcoef and waverec commands

respectively.

3.5.3 Spike Detection and Sorting

As illustrated in Figure 3.7, higher frequencies of the extracellular potential recorded on a

single channel probe, contain spiking information of individual cells. Similar to the intracel-
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lular action potential shown in Figure 3.4, extracellular spikes are reflected as very shown

as very brief (shorter than 1 msec) changes in the recorded potential, the prominent feature

of which is an amplitude modulation. Thus exact timing of a spike can be determined using

a threshold crossing method [147, 178]. Thus a first step in preprocessing spiking data is

to detect these ‘putative’ spikes through a process called ‘spike detection’. Assuming that

the neurons’ activity can be distinguished from the background noise biological noise via

the height of the event, a threshold is adaptively determined using the background noise

level for each channel. Threshold detection is not the only spike detection algorithm but

the most common approach due to its simplicity, accuracy and ease of hardware/software

implementation. The threshold is conventionally [73,147,177,178,196] determined using the

following formula:

Thresh = 4× σn ; σn = median
|x|

0.6745
(3.10)

Here x is the band-passed (using wavelet) signal and σn is an estimate of the background

biological noise. The rationale of using the median instead of the standard deviation (which

some groups use) is that the standard deviation is affected by the large amplitude spikes and

thus may lead to a large threshold where the median is robust against such large deviations

and thus the interference from spikes are diminished or minimal.

As mentioned in an earlier section of this chapter, extracellular electrophysiology enables

recording the activity of potentially more than one cell using a single channel electrode. Thus

one required preprocessing step to analyzing single cell data is to cluster the detected action

potentials into coherent clusters. Grouping of detected events is mainly performed using their

shape, with the assumption that different neurons in the vicinity of the electrode tip may fire
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action potentials of different shapes given their type or the proximity to the electrode may

affect their shape either via the amplitude or the width of the spike [22,42,105]. There is no

physiological evidence to illustrate that spikes clustered together in a same group belong to

the same neuron. In fact these could come from different similar cells located in relatively

similar three dimensional distances from the recording electrode tip. Thus it is common

to call these ‘putative’ neurons a ‘unit’ to emphasize this uncertainty. I will observe this

nomenclature throughout the text of this dissertation.

Two general approaches have been proposed for the problem of spike sorting: 1) is

a pattern recognition approach that relies on the features extracted from single detected

events and 2) a Blind Source Separation (BSS) approach that operates on the raw data

[178,179]. Each approach has its own advantages and disadvantages and here I pick to adopt

a pattern recognition approach one the grounds of its simplicity and ease of implementation

in MATLAB.

In the pattern recognition approach to spike sorting, each detected event is considered

as a vector data point. However prior to feature extraction, these events are required to

be aligned with respect to a common reference point. ‘Alignment’ of spikes are done using

different techniques references such as the maximum peak, minimum peak, energy etc. Here

I use the maximum peak to align the detected events. After the spikes are aligned, ‘d’

discriminative features are extracted from each spike so each event will be represented as

a single point in a d -dimensional space. Finally, a clustering algorithm partitions the d -

dimensional space into P distinct clusters. Figure 3.10 illustrates these steps.

Principal Component Analysis is an increasingly popular feature extraction used for spike

feature extraction as well [215]. In this method, individual events are stacked into rows of a

matrix S. Then the matrix is zero-meaned and a transformation W is calculated such that
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Figure 3.10: Pattern recognition approach to spike sorting Using a thresholding
method, spike events are detected and discriminative features are extracted. Then a clus-
tering algorithm is applied to use the extracted features to group the events together and
determine the boundary decisions based on the training data. Decision boundaries are later
used on the test data to separate different groups of extracellular action potential waveforms.
Adapted from [178]

each row vector is mapped into new vectors of principal component scores tk(i), in a way

that successive variables of t inherit the maximum variability:

tk(i) = Si ⊙Wk (3.11)

Finding the appropriate weight matrix W is done via an algorithm known in ‘linear alge-

bra’ as Singular Value Decomposition (SVD). Once the feature matrix is formed, a clustering

algorithm such as Expectation Maximization (EM) [68], Fuzzy C-mean (FCM) [184], etc is

used to cluster the data into a pre-determined number of distinct clusters. Here I used the

FCM algorithm based on its simplicity of implementation and speed of execution.

Once the spike sorting is done, I use a number of quality metrics to asses isolation of

each classified cluster.
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• Initially, the clusters’ waveform are visually inspected for any physiologically unac-

ceptable shape. These can be motion artifacts induced by movements of the head,

chewing artifact induced by the Electromyography (EMG) signals from jaw muscles or

background EM noise. These contaminated clusters are removed and excluded from

further analysis.

• Furthermore, stability of the spike waveform is inspected throughout the recording

session. For this purpose I developed a ‘temporal evolution’ graph illustrating the

features of the detected spikes of each cluster through time. Non-stable clusters are

also excluded from further analysis.

• Once a neuron fires an action potential, it goes through a so called ‘refractory period’

during which it will not fire any spikes. This delay period is considered to be in a

range of 1 millisecond. Thus a clean isolated unit should not contain spikes happening

within 1 millisecond of each other. To asses this sanity test, one may form a histogram

of interspike intervals, ISIH, and ensure that there are no events happening withing

the refractory period. If the cluster shows violation of the refractory period, one may

go back and redo the clustering step.

I developed a MATLAB based spike sorting package called EZsort that contains imple-

mentations of different algorithms mentioned above and tools to do sanity inspection. The

software is provided in two different ‘Basic’ and ’Advanced’ versions. Details of the package

is described in the next section.
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3.5.3.1 EZsort

There are a number of commercial software solutions available for spike sorting. The list

includes SpikeSort 3D from NeuralynX, OpenSorter from TDT, OfflineSorter from Plexon

etc. Also exists a number of open-source solutions developed with different objectives in

consideration [31,116,143,196,207,241] . Here I developed a MATLAB -based spike sorting

Graphical User Interface (GUI) with all the above mentioned options. The software is called

EZsort, on the grounds that the User Interface is very simple and all processing capabilities

are reachable from the main window. Since the process of spike sorting is to some extent

subjective, it is important to provide as much visual aid as possible. To this end, the software

is equipped panels showing ISI distribution, Peak Distribution, Temporal Evolution of the

peak, Principal Components and the waveforms. A user can select to merge clusters together,

split a cluster into subclusters, remove a cluster or remove an entire channel. An additional

‘outlier removal’ tool will help removing events that are far from the center of the cluster

(beyond 4 times standard deviation of the cluster). A screen-shot of the EZsort GUI is

shown in Figure 3.11 .

3.6 Single Unit Analysis

Once spike sorting is performed and single ‘units’ are identified, activity of each unit can

be represented as a binary series of time bins where 1 represents occurrence of an action

potential. The obtained time series is conventionally called a spiketrain. Since the refractory

period of a neuron is considered to be around 1 millisecond and thus no two spikes from a

single unit can happen withing one millisecond, it is reasonable to downsample the data into

1 millisecond bins. In this section I will describe the methods I used for single unit analysis.
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Figure 3.11: Snapshot of the EZsort software, developed for the purpose of this disser-
tation using the GUIDE toolbox in MATLAB

In short, the goal of this analysis is to establish a functional relation between a neural time

series (spiketrain) and some behavioral element of the task. This functional relationship is

often referred to as a ‘neural code’ [66, 163]. Spiketrains are discrete-time binary processes,

mathematically best modeled as point processes [66, 87, 205].

Another way to describe a single neuron’s activity is to use a measure known as firing

rate. Firing rate denoted as r(t) is the probability density for the occurrence of a spike. Due

to limited amount of observational data, we can not analytically determine the firing rate of

a cell. However different methods of estimating the firing rate have been suggested in the

literature. Figure 3.13 shows a few estimate of a firing rate from a single spiketrain. Local

likelihood methods can be used to estimate the PETH in terms of a mathematical function

if needed [122,150].

Spiketrain is represented using the a sum of shifted Dirac functions with spikes occurring
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Figure 3.12: Firing rate estimation using different kernels. A) Raster plot of a spiking
neuron, each marker shows on spike sampled at 1 msec bins. B) Discrete-time firing rate
estimated using ∆=100 msec bins. C) Discrete-time firing rate using sliding windows of
∆=100 D) Continuous-time estimation of firing rate using a Gaussian kernel of σ=100 msec
E) Firing rate estimated using an α function where 1/α=100 msec.Adapted from [66]
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at times ti:

ρ(t) =
n
∑

i=1

δ(t− ti) (3.12)

Firing rate is thus calculated through convolving this spiketrain with a Gaussian kernel

h(t) = a exp(− t2

2σ2
). Parameter a is selected such that the units of the calculated firing rate

is spike per second. Thus the firing rate can be calculated using the following formula:

r(t) =

∫ T

0
dτh(τ)ρ(t− τ) =

n
∑

i=1

h(t− ti) (3.13)

Throughout this dissertation, whenever a firing rate is required I use a Gaussian window

with a standard deviation of σn = 50msec, unless mentioned otherwise.

3.6.1 Peri-Event Time Histogram (PETH)

Peri-Event Time Histogram (PETH) is a histogram of the times that a neuron has fired a

spike. This histogram is often the first step to analysis of a functional relationship between

a stimulus or a task event and the firing rate of a cell. Prior to calculating a PETH, often

the spiketrain is binned into larger (overlapping) bin of size ∆. Regular values for ∆ are

25,50,100 msec, however the conclusions from the analysis should not be dependent on the

bin size. Then spike timing of the binned data is aligned to the onset of the behavioral event.

The stimulus (or event) is repeated for a total number of N times. Number of spikes for

occurred during each bin is counted, ki spikes within bin i. The histogram value is calculated

as
ki

N×∆ in units of spikes per second. Figure 3.13 shows a sample PETH of a neuron in the

LIP area of a non-human primate’s brain, in response to a visual stimulus. The histogram

shows a clear modulation with respect to the stimulus and also can illustrate the delay in
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Figure 3.13: A sample Peri-Event Time Histogram (PETH), of a neuron in the LIP
area of a non-human primates brain, in response to a visual stimulus. Adapted from [163]

the neuron’s response to the stimulus.

3.6.1.1 Statistical significance of a PETH

Often, once a PETH is constructed using the above mentioned algorithms, a comparison

is required between PETHs corresponding to different conditions of the experiment. The

problem of neural encoding then becomes whether the cell is encoding a certain feature of

the stimulus or a certain condition of the task. A trivial question to be asked is whether the

neuron is selective for any condition of the stimulus. This would be a classical hypothesis

testing problem, discussed vastly in statistics and signal detection theory [193,204]. A more

delicate question is to determine the exact timing of the different modulations in neuron’s

response to task conditions.

Here, in order to determine whether a unit is response-selective, at any point during

the trial, I divided correctly performed trials into contralateral-choice and ipsilateral-choice

groups. At each time point, I used a two-sample Kolmogorov-Smirnov test [109,240] to assess
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whether the firing rate is selective for contra versus ipsi trials. Kolmogorov-Smirnov is a non-

parametric test, often used to determine whether two underlying probability distributions

differ from one another. The test was performed in MATLAB using the kstest2 command

and a p−value of 0.05 was used for the significance level. For each unit, ipsi and contra trials

were randomly shuffled 1000 times and the test was repeated for cross-validation. Individual

time-bins were labeled as random if less than 5% of the shuffled tests resulted in significant

differences between the two groups. A cell is considered to be significantly encoding one of

the conditions if its firing rate is selective for one of the conditions for at least 50 msec. A

selectivity index is used to determine whether a unit is selective for contra versus ipsi choice,

using the following formula:

SI(t) =
PETHcontra(t)− PETHipsi(t)

PETHcontra(t) + PETHipsi(t)
(3.14)

An index of +1 will indicate a preference to the contralateral choice while -1 is indicative

of ipsilateral. The absolute value of the index will show the magnitude of selectivity, the

closer to zero indicates less selectivity for the unit.

3.7 Spectral Analysis

Oscillation is a fundamental property of many natural systems, speech [67], climate [101,186],

and seismic data [246] just to name a few. Oscillation is also abundant in biological systems

including ‘rhythms of the brain’ [40, 71, 138]. Thus, to better understand the underlying

dynamic of these characterizing the oscillatory behavior of the system is essential. Such

oscillatory behavior is better characterized in ‘frequency domain’ rather than ‘time domain’.
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Frequency domain and time domains are related through the fourier transform [174].

X(f) =

∫ ∞

−∞
x(t)e−2πftdt (3.15)

X(f) calculated via the above formula is a continuous version of the frequency represen-

tation of signal x(t). Attention to the limits of the integral shows that in order to extract

the exact frequency information of a signal one need to a) observe the signal for its entirety

and b) have continuous representation of the signal. In reality, however a signal is sampled

at (often) fix frequency and is observed only for a brief period of time.

Thus, only an an estimation of the true frequency content of a signal is feasible for real

signals. A discrete-time formulation of Fourier transform can be for a discrete-time signal

x(k) sampled at ∆ intervals for N samples (k = 0, 1, 2, . . . , N − 1) can be obtained using the

following:

X̂(f) = ∆
N−1
∑

k=0

x(k)e−2πkf∆ (3.16)

Although the Fourier transform provides very useful information regarding the the fre-

quency content of a signal, there are two major drawbacks of using a frequency domain

representation for the biological signal. First, there is an inherent assumption of station-

arity in Fourier transform that the nature of biological signals violate. Secondly, since in

calculating the Fourier transform of a signal, temporal information is discarded due to the

sinusoid kernel used, changes in frequency content of the signal cannot be displayed using

this method. The need to represent the temporal changes in frequency content of the brain

signals justifies the use of a time-frequency analysis method. Below we will discuss a number

of popular time-frequency analysis techniques and justify the use of a wavelet approach in
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this dissertation.

3.7.1 Introduction to time-frequency analysis

Number of different time-frequency analysis techniques have been introduced, developed

and tailored for different applications [30, 51]. As mentioned earlier, all these techniques

deal with simultaneous representation of time and frequency information of a time-series

and are suitable for short-lived non-stationary signal whose statistics are subject to change

in time. Short-Time Fourier Transform (STFT) [174], wavelet transform [128, 152], hilbert

transform [113] and multitaper methods [164, 190] are among the popular methods of time-

frequency analysis in neuroscience [52].

Detailed descriptions of these techniques is outside the scope of this dissertation. Here I

will briefly elaborate of the limitations of each and justify the use of a wavelet approach for

the current application.

A major drawback of STFT method is the fixed time and frequency resolution, imposed

by the specific tiling of time-frequency space recruited in this method. In fact, the width

of the window determines the resolution of the transform and dictates the way the signal is

represented. A wide window provides good frequency resolution at the price of poor temporal

resolution and correspondingly a narrow window sacrifices frequency resolution for a good

temporal resolution. This is a major drawback that indeed motivated the development of

filterbanks and wavelets.

The multitaper method was originally developed to address the issue of bias and variance

in spectral estimation [13,224,225]. Though the multitaper method is beneficial in analyzing

noisy data with limited number of realizations, it suffers from over-smoothing lower frequen-

cies of the time-series and thus make it difficult to isolate discrete-time events. This becomes

68



a challenge in some neuroscience applications where oscillations of interest are low-frequency

(delta or theta oscillations).

On the other hand, wavelet transforms provide a compromise between temporal and

frequency resolutions by using different window widths for different frequency ranges of

interests. Thus, I used a wavelet based approach to analyze the time-frequency features of

the neural signal. Among different wavelet approaches, I chose to use Morlet wavelets for

the reasons I will describe in the next section.

3.7.2 Morlet wavelets

The problem with Fourier transform is that the lack of temporal localization of frequency

content. This is due to the sinusoid kernel used in the transformation. The amplitude of a

sinusoid wave is constantly fluctuating between two peak from negative infinity to positive

infinity. Thus multiplying this kernel with the time-series and summing over the product

will smear any temporal information. It seems a logical next step to use a windowed sinusoid

and use one or a few cycles of the sinusoid as the kernel. This is known as boxcar temporal

weighting. The main issue with boxcar windowing is the edge artifacts, since it weights all

the data points in the box-car equally. A good solution is to use a Gaussian taper to window

the sine wave. The Gaussian taper will eliminate the sharp edge and also provides a control

over the desired precision between temporal and frequency resolution. A sine wave windowed

by a Gaussian taper is called aMorlet or Gabor wavelet first introduced by Dennis Gabor [98]

in 1946. Jean Morlet later formulated this as a wavelet basis and showed applications of the
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transform in seismology [110]. The kernel can be formulated as following:

Ge(t) =
1√
2πσ

e
− t2

2σ2 sin(2πft) (3.17)

Go(t) =
1√
2πσ

e
− t2

2σ2 cos(2πft) (3.18)

The transformation can be written in two odd or even versions based on the core kernel

used. Using a cosine function will result in an odd transformation and a sine kernel will yield

to an even Morlet wavelet. These two wavelet basis are shown in Figure 3.14.

(a) (b)

Figure 3.14: Morlet wavelet functions,(a) Even (b) Odd.

To make a Morlet wavelet, one should construct a sinusoid wave at a desired frequency,

and multiply that with the time-series on a point-to-point fashion. Frequency of the sine

wave is also the wavelet frequency and is considered called the peak or center frequency.

Standard deviation of the Gaussian kernel is calculated using the following formula:

σ =
n

2πf
(3.19)
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where f is the peak frequency and n is the number of wavelet cycles. The parameter n

controls the trade-off between temporal and frequency resolution. The larger the parameter

n is selected, the frequency resolution will be finer, at the expense of temporal resolution. A

wavelet decomposition method involves a many different wavelets of different frequencies.

As seen by the differences between the odd and even wavelet basis, the phase offset

between the wavelet and the data affects the results of the convolution. Furthermore, Mor-

let transform is practically equivalent to band-pass filtering and thus provides no explicit

information regarding the power and phase of the transform. In order to resolve these limita-

tions a different formulation for the Morlet wavelet is suggested. In this new complex Morlet

wavelet, time-series is convolved with wavelets that have both real and imaginary parts. This

provides both power and phase information and also the result of the convolution would not

be dependent on the phase offset between the wavelet and the time-series.

A complex Morlet wavelet can be formulated very similar to the Morlet wavelet with the

difference that the real sine wave is replaced with a complex sine wave:

G(t) =
1

(σ
√
π)

1
2

e
− t2

2σ2 e2πft (3.20)

Using Euler’s formula this can be decomposed into real cosine and imaginary sine com-

ponents. Similar to the Morlet wavelet, f here is the peak frequency. Once the complex

wavelet basis is convolved with the time-series, the result will be a complex number. The

magnitude of this number will indicate the power of the signal at any point in time and the

phase of the number is an estimate of the phase of the signal at each point.
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3.8 Decoding population activity

Studying the activity of individual neurons and their functional relationship with stimuli

or actions has provided tremendous amount of information abut the mechanics of nervous

system during the past decades. The approach as mentioned and also pursued in this disserta-

tion is to study single-cell responses average across several repetitions of stimuli or behavior.

However, the brain uses information from a large population of cells to gather information

and make decisions in a single-trial. Thus, one trending approach in neuroscience, promoted

by the advent of microelectrode arrays [28, 61, 139, 206] is to study collective activity of a

number of units in a single trial.

There are two major approaches to processing single-trial information being carried by

a population of neurons. The first uses decoding algorithms to predict a given stimulus or

behavior from the observed pattern of population activity, and the other incorporates con-

cepts from information theory to calculate the amount of information that the population

response carries about the stimulus or a certain behavior. Decoding is primarily concerned

with reconstruction of the stimulus or prediction of a behavior, the more accurate we can

reconstruct an input from a given population response the population carries more infor-

mation. It is important to distinguish between two types of decoding: continuous decoding

and discrete decoding. In continuous decoding, a neural response is used to regress over a

continuous variable (such as an arm kinematics or spatial location of an animal in a maze),

whereas in discrete decoding accumulated population responses are used to predict a discrete

behavioral variable such as a discrete movement or gaze direction or deflection of specific

whisker pads in an anesthetized rat. On the other hand, information theory approaches

use bits to quantify the amount of information transfer between the input and output of
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a system. The information theory approach has been extensively discussed in the liter-

ature [5, 26, 66, 178, 212]. Here I use a decoding approach to study population encoding

mechanism of the mPFC neurons. Following is a description of two known decoding schemes

I implemented for this dissertation.

3.8.1 Bayesian decoding

Decoding is the prediction of which stimulus or behavior evokes a particular neural response

in a given trial. In a Bayesian framework, encoding and decoding are two sides of a same

problem. Let r represents response of a population of N neurons, r = (r1, r2, . . . , rN ), and

let s represents a stimulus or a behavior parameter. Then using Bayes theorem, we obtain:

P (s|r) = P (r|s) · P (s)
P (r)

(3.21)

where

P (r) =
∑

s

P (r|s) · P (s) (3.22)

And P (s) is the probability that the stimulus s is presented, which is often called the

‘prior probability’. P (s|r) is called a posterior probability and shows the odds of observing

the response r, had the stimulus s was presented. The posterior probability can be calculated

for all possible values of s and the one value that maximizes the posterior probability will

be selected as the prediction of the decoder:

s∗ = argmax
s

{P (s|r)} (3.23)
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For the sake of comparison, I have implemented Bayesian decoding of neural responses in

MATLAB. However, given the very high dimensionality of neuronal spiking data, to calculate

an unbiased estimate of the probability densities, large amounts od data is required that is

typically not practical for awake behaving subjects. To overcome this limitation, model based

estimation of probability densities have been suggested [37, 185, 191, 239]. An alternative

approach is to use machine learning algorithms where there is no explicit requirement for

calculating the probability densities. These are discussed in the next section.

3.8.2 Machine Learning approaches to decoding

An area of study concerned with learning rules and making inference from data is called Ma-

chine Learning. These algorithms are optimized to represent the observed data in a robust,

generalizable fashion such that the inferences are valid for the unseen data [27]. Repre-

sentation and generalization are the two most important aspects of any machine learning

approach and are dealt with in independent steps. Often some form of transform is used to

represent certain features of the data, this procedure if called feature extraction and is very

dependent on the type of the data and the required analysis. Once features are extracted

different methods of regression are used to partition the data and explore orders within the

dataset. Below I will describe the approach I used for extracting features from the population

of spiketrains and local field potentials. Next I will elaborate on the regression technique I

used to partition the data.

3.8.2.1 Feature extraction

Similar to the single-unit analysis, here I used a Gaussian kernel to convert the binary

spiketrain into a continuous-valued time-series. However, unlike that analysis, the kernel
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used here is causal (one-sided), since the decoding analysis is supposed to determine the

predictability of the neural response up to time t, and thus should not be affected by the

spikes happening after time t. Assume that R1:T is the observed population response during

a single trial, through time T , smoothened with a causal Gaussian kernel. Response matrix

will have a dimension of Nu×T , where Nu is the number of sorted units and T is the number

of timebins. This sample response matrix is then projected onto a ‘Template’ matrix, M .

This template matrix is obtained using SVD analysis and contains the first 50 modes of a

previously analyzed training dataset and ensures the largest variability among the projected

features. This step is performed due to the very high dimension of the neural data and in fact

will reduce the dimension of the data to a set of features that maximizes the variance. Given

the limited size of the observed data, this step if required to guarantee the generalizability

of the decoding algorithm, otherwise the algorithm will suffer the curse of overfitting to the

observed sample [27].

To extract features from local field potentials, a very similar approach is adopted. Using

the time-frequency analysis described earlier in this chapter, the field potential is decomposed

into different frequency components. The sample response matrix will then be of size Nf ×T

where Nf is the number of frequency components. The rest is very similar to the feature

extraction procedure, where a template matrix is constructed using a training dataset and

the sample response matrix is projected onto the reduced dimension space.

I also used a hybrid feature vector where features from spiketrain and LFP were calculated

independently using the described method and augmented to construct a hybrid feature

vector.

Ultimately, the extracted features are passed on to the regression algorithm to partition

the data. Details of the regression algorithm used in this study, known as support vector
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machines, is described in the following section.

3.8.2.2 Support Vector Machines

Support Vector Machine (SVM) is basically a binary linear classifier that takes a set of input

data and predicts for each given data point which of the two possible classes it may be-

long to. To better understand the concept of Support Vector Machines (SVM), one should

start with two-class linear classifiers. Similar to all classification problems, the data sam-

ple are represented by single (possibly multi-dimensional) points in a feature space. The

problem is to find the best line that separates the data point belonging to different classes.

Mathematically, we are interested to find the coefficients ~w of the following equation:

y = f(~w · ~x+ b) = f(
N
∑

j=1

wjxj + b) (3.24)

In the above equation, b is just an offset value, N is the number of the features for each

data point, ~x is the set of features representing eah data point, ~w is the linear classifier

features and y is the output score assigned to each data point. The classifier coefficients (~w)

should be selected such that the output score y be the indicator of the class labels for each

data point. One useful convention is to define a dummy variable Ci for each data point such

that the product of Ci and yi always remains positive: Ciyi ≥ 0. This leads to choosing

Ci = +1 for class 1 and Ci = −1 for class 2.

A training dataset will be used to determine the classifier coefficients. In case of a linear

function, f is selected as a unity function. However, in general f can be any kernel function.

One can imagine the linear classifier to be a hyperplane dividing the feature space into two

partitions. This hyperplane is also called a decision boundary.
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(a) (b)

Figure 3.15: About Support Vector Machines,(a) An example of two linearly separable
clusters, the decision boundary and support vectors (b) Two non-linearly separable clusters
and the inferred decision boundary using SVM kernel trick.

SVMs, in their original definition and use, are nothing but a linear classifier that maxi-

mizes the margin of the decision boundary. The margin is defined as the distance between

the decision boundary and the closest of the data points (known as support vectors). By

definition the distance is defined by the following equation:

Ciy(xi)

‖~w‖ =
Ci(f(~w · ~x) + b)

‖~w‖ (3.25)

The maximum margin solution could thus be found using the following equation for ~w

and b [27]:

argmax~w,b

{

1

‖~w‖miniCi(f(~w · ~x) + b)

}

(3.26)

We are interested to evaluate the performance of an SVM classifier [27, 75, 129, 131] in

distinguishing the condition under which the neural response was observed. We train the

classifier sequentially in time and the performance is assessed at each step (timebin) to
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determine the temporal evolution of the neural response.

The data was always divided into a training (which comprised 70% of trials) and a test

set. The training set was randomly chosen from across all successful trials and was used to

compute the SVM parameters and the test set was used to evaluate the performance of the

decoder. This was repeated for niter = 50 times to rule out any bias effect due to training

and test set selection and 95% confidence intervals were computed.

In order to evaluate the information stored and passed to other processing areas through

different mechanisms, we used different neural features as input features of our classifiers. In

particular we used spike, LFP and hybrid features. Spike features were extracted by binning

the spiketrain and calculating the spikecount in overlapping bins. On the other hand, LFP

features were obtained using a short-time Fourier analysis in overlapping windows and the

power of the signal in each window was selected as the input features [156,250]. In the hybrid

mode, the features from spikes and LFPs were combined to boost up the performance. As a

sanity check, we randomly labeled the trials to destroy any cue or target selective information.

We expect an unbiased decoder not to significantly perform above chance level in this case.

A range of different bin widths were used and the maximum decoding performance for

each was calculated. Also different channel counts (randomly chosen from available channels)

were used and the maximum performance under each channel count was computed and cross-

validated by niter = 50 iterations.

3.9 Inhibition using Opto genetics

Reversible inactivation using pharmacological intervention provides a useful tool to study

the role of a specific brain area in certain behavior. But what if one is interested in detailed
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Figure 3.16: One the use of SVM for single trial prediction, Data is partitioned into
train and test subsets. Features for each set is calculated. Features and labels of the train set
are used to estimated parameters of the support vector machines. Then the same parameters
are used to predict the labels for the test set trials. Performance of the SVM is determined
by comparing the predicted and original labels for the test trials.

timing of the circuit recruitment in the action? Using pharmacological agents, there is no

easy way of briefly activating or inactivating the brain circuits.

The advent of optogenetics, provided means of cell-type specific interrogation of neural

circuits with millisecond precision [33, 158, 226]. Optogenetics recruits light activated ioc

channels to either excite or inhibit the activity of individual cells of certain type. This is

done through inserting2 opsin genes into the cells of the brain.

Shown in Figure 3.17 are three popular such channels. Channelrhodopsins (ChR) are

blue light-activated (470 nm) cation channels that enables the flow of inward (excitatory)

currents. Halorhodopsins (NpHR) are inhibitory chloride pumps, while the other inhibitory

channel category (bactereorhodopsins and proteorhodopsins BR/PR) are proton pumps.

Both inhibitory type channels are most active at around amber light wavelength (590 nm).

To investigate the temporal dynamics of prelimbic circuit recruitment, I suggest to use

2Gene delivery can be done through different means. A popular way that has been used in our
lab is to transfect the tissue using a viral vector (AAV or Lenti).
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Figure 3.17: Different categories of light-activated opsins Channelrhodopsin, excita-
tory blue light-activated cation channel. Halorhodopsin, inhibitory chloride pump. Bactere-
orhodopsin, inhibitory proton pump. Adapted from [247].

the optogenetics toolbox with either Halorhodopsins or Archrhodopsin. Using an amber

laser or LED light source to silence the circuit only during certain epochs of the task. Figure

3.18 shows a design for such an experiment.
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(a)

(b)

(c)

(d)

Figure 3.18: Setup of an optogenetic experiment in awake behaving subjects a)
The optical source is connected through FC cables to a rotary joint. This is used to ensure
that the cable is not twisted and tangled while the subject is freely moving in the cage b)
Snapshot of the subject inside the cage with the fiber optic attached. Note: in our latest
experiments we used a type of connector that blocks any light power leakage. This picture
is for demonstration purposes only c,d) Two different optical cannula type with a magnetic
or threaded designs

.
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Chapter 4

Results

I have no data yet. It is a capital mistake to

theorize before one has data. Insensibly one

begins to twist facts to suit theories, instead of

theories to suit facts.

— Sir Arthur Conan Doyle, Sherlock Holmes

4.1 Introduction

So far I have elaborated on the problem of cognitive neural prosthetic as a means of restoring

motor function for the motor disabled patients. I have proposed exploring the potential

of using motor related signal in the prefrontal cortex as sources of obtaining robust and

stable driver signals for the prosthetic. I have selected rodents as the animal model for this

experiment knowing the trade-off between cognitive complexity and low cost of performing

experiments on the rodents. I have described the experimental design we used to investigate

the role of rodent prefrontal cortex in execution of a delayed choice task. Different techniques

such as reversible inactivation, electrophysiology and optogenetics have been used, details

of which are described in the previous chapter. In this chapter I will describe the results of

each experiment. I will leave interpretation of these results and their significance to the next

chapter.

A total number of 24 adult female Sprague-Dawley rats were used for this project. This

number does not include the subjects used for mastering the techniques and practices. Details
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regarding each subject is described in the appendix. A total of 10 subjects were recruited

for the reversible inactivation experiment, 8 were dedicated to the optogenetics experiment

and the remaining cohort of 6 were assigned to the electrophysiology recordings. Number of

animal subjects was chosen to satisfy the trade-off between the power of each test (number

of recorded units for electrophysiology subjects were used instead of number of subjects) and

the cost/duration of each experiment.

4.2 Behavioral Results

Subjects were food deprived to maintain 85% to 90% of their ad-libitum weight. Subjects’

access to water was unlimited and each subject was caged individually in University Labo-

ratory Animal Resources (ULAR) facility at Michigan State University Trout Food Science

Building. Standard rat enrichment toys were provided in each cage. Subjects were also

kept in a reverse 12-12 hour dark/light cycle (6 a.m to 6 p.m dark). All the experiments

were performed during the dark cycle in dark acoustically isolated behavioral boxes. Each

training/recording session lasts for 90 minutes and each subject receive 1-2 training sessions

per day, 5 days a week. Over the weekends each subject received 12 grams of ‘free food’ 1.

All subjects were trained similarly until reached and maintained a pre-determined per-

formance measure (overall success rate of above 75%). After meeting the criterion, they were

assigned to different experiments and depending on the experiment were either implanted

with a recording microelectrode array, chronically implanted with a bilateral cannula or

injected with an opsin carrying virus and implanted with a fiber optic cannula.

1Per fellow graduate students’ public belief, this is the most rewarding reinforcement that can
drive any experiment
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4.2.1 Task Acquisition

The task designed for this experiment is considered a rather complex task for the subjects.

In order to accomplish the task correctly a number of different faculties should be involved.

The subjects should a) maintain their snout inside a fixation hole until a Go cue. This

requires an inhibitory control process in which prefrontal cortex is believed to be involved.

b) the subject should attend to the sensory cue and c) associate the sensory cue with a

target memory and d) plan for reaching to the correct target.

Thus it is essential to control different performance measures to ensure that the results

obtained are not contaminated by the subject choosing an undesired strategy to accomplish

the task because after all the subjects are not (presumably) aware of our intention as the

experiment and the goals of the experiment and only seek the reward.

The first measure defined in this task is percentage of correct trials. Since the low and

high pitch auditory cues are randomly assigned to right and left target memorys and the

probability and amount of the two targets are equal, one expects no statistically significant

difference between performance of the subject during trials in which right or left targets are

instructed. Performance here is defined as the ratio of the trials where the instructed target

is correctly reached. Performance of the subject is monitored on a daily basis. The subject

may develop a bias towards a given target, if the bias is consistent a temporary reinforcement

strategy is adopted to motivate the less visited target.

Figure 4.1 shows a distribution of performance across 24 sessions for the (n=3) subjects

that received a microelectrode array implant for the two types of trial: contralateral trials

where the subject is instructed to select the target contralateral to the implant side and

ipsilateral trials where the subject is instructed to move to the same side with respect to
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the implant. If the subject discards the instruction cue and randomly selects a target at

each trial, the performance should theoretically be 50%. This is shown as the chance level

in the graph. However as shown in Figure 4.1, the performance is significantly different from

chance level (p < 0.01, KS − test). Also the performance of the contralateral trials is not

significantly different from the ipsilateral trials(p > 0.5, KS − test). This depicts that the

subjects were attending to the instruction cue, maintaining some form of memory during the

delay period and finally selecting a target memory given that instruction cue.

Figure 4.1: Distribution of behavioral performances across subjects, to ensure that
the subjects have acquired the task and following the rules, performance for both ipsilateral
(top, blue) and contralateral (top, red). If the subject is not attending to the rules, the
performance should be around or below the chance level (50%).

The other behavioral parameter to monitor is the rate of errors of different types. In
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this task four types of errors may occur: a) Premature retraction, b) incorrect responses, c)

fouls and d) omission errors. Figure 4.2 shows the percentage of each error type, averaged

across n=3 subjects from whom electrophysiology data was collected. The majority of errors

(56% ± 4%) were due to incorrect responses that is committed when once instructed to

a specific target, the opposite side is selected. Premature retractions contribute to other

portion of errors where the subject retracts from the fixation beam prior to the Go cue. This

constitutes 42%± 6% of the errors. Omissions contributed to 2%± .5% of the trials, where

the subject dropped the trial after the go cue and did not reach for any of the targets within

3 seconds from the go cue. Fouls that are reaching to most distal targets in the cage did not

happen in these well-trained subjects.

Figure 4.2: Distribution of error types, Incorrect responses where the subjects (n=6)
selected the wrong direction contributes the most to the error types.

4.2.2 Response characteristics

Once the subject initiates a movement towards the target, a ballistic process is engaged.

Prior to that a controlled cognitive process is recruited to perceive the cue, recall a target

86



memory associated with the instruction, maintain the target memory and waits for the Go

cue. The boundary between the controlled process and the ballistic process can be conceived

as the ‘point of no return’ after which the task is bound to execution [175]. Reaction time,

the time elapsed between the onset of the go cue and the initiation of the overt movement

can be indicative of cognitive processes involved in execution of the task, while the time to

target is reflecting the ballistic movement. Figure 4.3 shows a distribution of the reaction

times and the time to target for the chronically implanted subjects, pooled together across

24 sessions.

(a) (b)

Figure 4.3: Distribution of reaction time and time to target a) Distribution for
the reaction times, estimated parameters of an ex-Gaussian distribution: µ = 115 msec,
σ = 30msec, τ = 215 msec−1. b) Distribution of the time to target

Using the maximum-likelihood method explained earlier, an ex-Gaussian function esti-

mate of the distribution was fitted to the observed data. The estimate has a an average of

µ = 115msec and standard deviation of σ = 30msec for the Gaussian segment and a decay

constant of τ = 215msec−1 for the exponential part.
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4.2.3 Perceptual discrimination

As mentioned earlier, two single frequency auditory tones were chosen as the sensory cues

instructing the subject towards different target memories. A low pitch frequency tone (5KHz)

was associated with the right target and a high pitch tone (14.2 KHz) was assigned to the

left target. The frequencies were picked such that they are perceptually distinct. Evidences

of rodent auditory discrimination studies suggest that rodents are capable of differentiating

tones as low as 0.1 octave apart in their low threshold auditory range [114, 120]. The two

frequencies selected here are 1.5 octave apart ensuring that they are perceptually distinct.

To test that however, I designed an experiment results of which are illustrated in Figure 4.4.

Figure 4.4: Perceptual discrimination of the auditory tone As the frequency of the
instruction cue increases from the base frequency (5 KHz), the subject tends to be albe to
better discriminate the two tones.

In this experiment a base frequency of f0 = 5KHz was selected. During each trial, a

single tone frequency (f1) tone was played as the instruction cue. f1 was selected to be δ

octave apart from f0 where δ was selected from a uniform distribution between 0 and 1.5.

88



For δ < 0.75 the subject had to select the right target after the delay period and for trials

were δ > 0.75, a left target was the correct answer.

In Figure 4.4, the y-axis shows the percentage of trials where the subject selected the right

target. As we expect, this number is close to 100% illustrating that the subject can clearly

associated low pitch tones to the right target. On the other hand, as the frequency get further

from the base and δ approaches 1.5, percentage of the trials in which the subject selects a

right target gets closer to zero. However, when close to the threshold (0.75), the ratio of the

trials where the subject chooses a right target is close to 50%, that is the chance level. This

suggests that for these ‘fuzzy’ frequencies, which are perceptually hard to distinguish, the

subject prefers to guess the correct target. This can be used as an additional evidence, along

with behavioral performance results shown in Figure 4.1 that the subjects are attending to

the task, have learned the associations between the instruction cue and the target memorys

and basically are not just winging it!

4.2.4 Effect of delay period

Before delving into the problem of encoding mechanism of delayed choice in the prefrontal

circuits, one question requires attention and that is the effect of delay length on the perfor-

mance of the subject. The question is how long can a subject wait before wandering off the

task. This problem has been studied for over a 100 years and has shown to be dependent on

the subject species, age, sex and task requirements [15, 132, 162, 216]. Here I examined the

effect of delay length in my experimental design using two modifications of the experiment.

In the first experiment, two cohorts of subjects were trained on two different tasks. Task

number 1 is the regular experiment, where a single frequency instruction tone is followed by

a delay period of length τ where τ varies from trial to trial and is pulled from a uniform
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distribution between 1 and 1.5 seconds with millisecond precision. After the delay period a

go cue (auditory white noise), instructs the animal to select the appropriate target. In the

second version, no delay period and no go cue is present. This means that the onset of the

instruction cue can be used as a go cue and as soon as the instruction is played, the subject

is allowed to select the target. Figure 4.5 illustrates the behavioral measures for the two

experiments.

(a)

(b) (c)
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Figure 4.5: Delayed vs. non-Delayed version of the task a) Performance of the subjects
is not significantly different for delayed versus the non-delayed versions of the task. b,c)
However both distributions for the reaction time and the time to target are skewed to the
right for the non-delayed version.

Depicted in Figure 4.5a, there is no significant (p > 0.47KS − test) difference between

average percentage of correct trials in two experiments. This suggests that the introduction

of this delay period will not affect the memory requirements of the task and whatever memory
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mechanism is involved is robust for the selected delay period length.

On the other hand, reaction times and times to target illustrate two very different distri-

butions. While the reaction time distribution for the delayed version of the task is relatively

narrow, the distribution is broad for the no-delay version. The same is true for the time to

target distribution. This implies that the subject is using the delay period as a preparation

epoch and thus the reaction to the go cue is much faster. The shorter execution time for the

delayed version of the task suggests that kinematics of the task are also affected if a motor

preparation window is provided to the subject and the preparation will yield to less motor

variability [48].

In a different variation of the experiment, the length of delay period was varied randomly

across trials pulled from a uniform distribution between 0 and 3 seconds with millisecond

precision. The effect of the length of the delay period on percentage of correct trials and the

rate of premature retraction is shown in Figure 4.6 .

(a) (b)

Figure 4.6: Delay length effect, a) the length of the delay period showed no significant
effect on the choice performance. b) however, percentage of the premature retractions were
increased linearly as a function of the delay length

As depicted in Figure 4.6a, the performance defined by the percentage of correct trials is
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not affected by the length of delay period. However, Figure 4.6b that shows the percentage

of premature retractions suggests that as the length of delay period increases, there is higher

chance that the subject discards the task prematurely. In other words, if the subject shows

enough patience and waits until the go cue, they will perform the task with same precision.

Length of the delay period also affects the response characteristics. As shown in Figure

4.7, there is a negative correlation (r = −0.25, p < 0.01) between the length of delay period

and reaction time, meaning that the shorter the delay period, the more time it takes the

subject to respond to the go cue. However, there exists no significant correlation between

the delay period duration and the time to target (r = −0.01, p > 0.42).

All in all, results of these tests on the effects of the delay length period indicate that

the delay length has little effect of the task performance, however the means of reaching the

target (quantified by the reaction time or preparation time) are affected by that quantity.

4.3 Reversible Inactivation

Before investigating the detailed role of the prefrontal cortex in performing the delayed

choice task, we have to test whether this area play a role at all. Knocking out a brain

region and observe the effects of that on the subject’s performance is an old established

method for that. I decided to adopt a reversible inactivation method for that purpose.

Muscimol which is a GABAA agonist and induces inactivation through inhibition increase,

was diluted in ACSF until reached the concentration of 1mg/ml and injected unilaterally in

the prefrontal cortex tissue through a chronically implanted bilateral cannula. Subjects were

lightly anesthetized for the duration of injection using Isofluorane delivered through a gas

mask and were immediately taken off the anesthesia and recovered upon the completion of
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Figure 4.7: Delay length effect on the task timing, a) reaction time has a significant
negative correlation with the length of the delay period b) no correlation is observed between
the time to target and the delay period length.

the injection procedure. After 90 minutes of recovery period, the subjects were placed in the

test boxes. Figure 4.8 shows the results of injecting 3.5µL of the 1mg/ml muscimol cocktail

on the subjects’ performance (n=3 subjects across n=21 sessions).

The graph in Figure 4.8 illustrates the performance of the subject under the influence

of different injection conditions. For the experimental group 3µL of 1mg/ml muscimol was

injected unilaterally, while for the sham injections the same volume of ACSF was injected.

Control sessions had no injections and the subject were just anesthetized for the same period

of the injection and were let recover for 90 minutes before the test. As evident by the results,
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Figure 4.8: Performance under the effect muscimol inactivation, Lateralized suppres-
sion of the performance under 3µL of muscimol injection.

performance of the subject was affected only during those trials in which the subject was

instructed to move contralateral to the injection side, i.e. if the drug was infused in the left

hemisphere, the performance of subject was affected during trials with a right instruction

cue. No significant drop in the contralateral performance was observed for the sham injection

and control sessions.

The differential performance between the ipsilateral and contralateral trials is also de-

pendent on the amount of diffused muscimol. Figure 4.9 shows the dosage curve for the

muscimol effect.

As evident in Figure 4.9, the higher concentrations of the diffused Muscimol will result in

larger differential performance between ipsilateral and contralateral trials. This hints that

with an increase in the volume injected, larger area of the prefrontal cortex will be influenced

by the drug and thus leads to stronger bias towards the ipsilateral choice.
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Figure 4.9: Dosage curve for reversible inactivation, the lateralized decline in perfor-
mance is a function of the volume muscimol injected (n=6 subjects).

4.4 Electrophysiology

A cohort of subjects were implanted with microelectrode arrays after reaching the behavioral

performance criterion and maintaining the performance level for a few consecutive sessions.

Few days prior to the surgery the subjects were removed from the food deprivation protocol.

Subjects were implanted with 16 channels of a microwire array in their layer V prelimbic

cortex (+2.5-4mm AP, 0.6-0.9mm ML, -2.4mm DV). Individual ground and reference wires

were soldered to different skull screws mounted posterior to the lambda point, on top of the

cerebellum. This choice was due to the small amplitude of cerebellar LFP which elevate the

quality of LFPs recorded in the PFC. Implanted probe was secured to the skull using dental

cement. Subject was given analgesic and allowed to recover. Subject’s health status, weight

and food/water intake were constantly monitored. Upon recovery, almost after a week the

subject was food deprived and tethered to the data acquisition system via a commutator.

Full-band signals were amplified using a preamplifier, sampled at a rate of 25KHz/channel
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and digitized using a 16-bit quantizer and recorded to file on a PC.

4.4.1 Histology

To verify the location of the implanted electrodes, post-mortem histology was performed

upon completion of the experiment and collecting the required data. The subjects were

trancardially perfused, the brain tissue was explanted and postfixed. Serial 50µm thick

transverse sections were collected (through and perpendicular to probe locations). Sections

were immunostained for NeuN and Neurofilament and counterstained with Hoechst for tissue

response.

Figure 4.10 shows one such section. Electrode locations are evident in the image, and

their relative coordinates can be verified, recording signals from the prelimbc area of the

medial prefrontal cortex along the anterioposterior axis.

(a) (b)

Figure 4.10: Histological evaluation of the implanted brain tissue, horizontal brain
sections depicting the probe location (midline on the left, posterior at bottom).
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4.4.2 Single Unit Analysis

Following the methods explained earlier, full-band extracellular potential was recorded for

multiple channels simultaneously from an awake behaving subject inside a training box.

Behavioral events were synchronized with the neural signal using an analog input to the

data acquisition system and were sampled using the same sampling frequency and saved on

the same machine. This provided sub-millisecond synchronization between the neural signals

and behavioral events.

Using a wavelet method, lower frequencies of the extracellular potential signal containing

LFPs were filtered out. Spike events were detected using a thresholding method. Manual

spike sorting was performed using custom-designed MATLAB based software EZSort. Clus-

ters were manually examined for inconsistencies and violation of the assumptions for a clean,

well-isolated unit.

Spiketrains for each trial were constructed aligned to different behavioral epochs of the

task. Due to variable delay period length from trial to trial, and the differences in reaction

time and the interest to study the timing of neural response in a millisecond resolution, 3

different raster plots were constructed for each trial. For the first raster plot, neural events

were aligned to the onset of the instruction cue. Instruction cue was presented for a fixed

duration of 500msec followed a variable delay period of length 1-1.5 seconds. For the next

raster plot, neural signals were aligned to the onset of the go cue. This event is a timemarker

for the initiation of the reaction period. Signals prior to this point can be attributed to motor

preparation. And last but not the least is an event aligned to the breaking out of the fixation

nosepoke. This event marks the onset of the choice period is which the subject has chosen the

target memory and is executing the motor plan. Corresponding to each event, a Peri-Event
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Time Histogram (PETH) is constructed and used to investigate the encoding mechanism of

a single unit. Figure 4.11 illustrates such a PETH for a sample unit, aligned to the choice

event.

For every single unit, trials of similar instruction cue are grouped together and for every

event at each timepoint, the firing rates each group of trials were examined to determine

whether the unit is selective for any of the groups. A paired Kolmogorov-Smirnov test

was used at each timebin to compare the firing rates of the contralateral versus ipsilateral

trials. As mentioned, the algorithm operates on each timebin independently. The timebins

in Figure 4.11 where the firing rate of the unit is significantly different (KS− test, p < 0.01)

for the contralateral versus ipsilateral trials, are shown in red and period where the firing

rates are different is depicted in red asterisks. Same procedure was repeated for all units

recorded across all sessions (n=334 units across n=24 sessions). In Figure 4.12a, for each

unit, epochs where the unit shows a selective response for the target memorys are shown in

black.

The neural response in Figure 4.12 is aligned to the onset of the instruction cue that

lasts for 500 msec, and the delay period that lasts for the minimum length of 1 second. In

Figure 4.12a, units are sorted to indicate the first timebin that their response is selective for a

target. Figure 4.12b indicates the percentage of population at each timepoint with selective

response for the target. The plot illustrates a bump at the end of instruction period and a

rather constant synfire chain like activity during the delay period.

Similar to the selectivity raster plot shown in Figure 4.12, two selectivity plots are con-

structed where the neural responses are aligned to the onset of the go cue and the onset of

the movement. These plots are shown in Figure 4.13.

As Figure 4.13d depicts, the maximum population selectivity is achieved around the time
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Figure 4.11: PETH of a representative unit with contralateral prefrence, a) raster
plot of the spiking activity of the one cell for different trial, blue for the contralateral and
black for the ipsilateral trials. b,c) binned PETH (overlapping windows) of the unit for
both contralateral and ipsilateral trials. Bins with significant (KS-test p < 0.01) firing rates
between the two trial conditions are shown in red.
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Instruction Delay

Figure 4.12: Population selectivity during the delay period a) Population selectivity
for either of the target memorys. Units are sorted vertically based on the timing of their
selectivity b) percentage of the units in the population with selective responses for either of
the units. Shown in light brown is the instruction period between 0 and 500 msec. Shown
in cyan is the delay period between 500 and 1500 msec and the shadede gray area is the
variable length of the delay period.

where the subject is executing the task, i.e. the choice epoch.

4.4.3 Field Potentials

Using a complex Morlet wavelet, spectrogram was calculated for the LFPs recorded on

different channels. A total of 60 wavelet were recruited for frequencies between 0.5-80 Hz

in a logarithmically increasing steps. Number of cycles used for each wavelet was selected

as a function of the peak frequency. Calculated spectrogram was normalized to a baseline
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Figure 4.13: Population selectivity during the reaction and choice epochs a,b)
individual units and percentage of the units selective for the target memory during the
reaction epoch, t=0 is the onset of the go cue c,d) individual units and percentage of the
units selective for the target memory during the choice epoch, t=0 is the moment of breaking
out of the fixation beam and the start of the movement

spectrogram computed from the baseline activity recorded during the fixation period.

Shown in Figure 4.14 is the spectrogram for both the contralateral and ipsilateral trials,

aligned to the onset of the instruction cue.

Figure 4.15 on the other hand illustrates an average of the spectrogram for the LFPs

aligned to the movement onset.
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(a)

(b)

Time (sec)

Figure 4.14: Spectrogram during the delay period a) for the contralateral trial and b)
ipsilateral trials.

4.4.4 Ensemble Analysis

Decoding is a popular way of studying the mechanisms under which the neural circuits ex-

tract information in single-trial activity of neuronal population [202]. Information may be

deciphered using different signal modalities and different signals may carry different infor-

mation during different epochs of the task.

We used population spiking activity and LFPs as the input features of the classifier.

Spiketrain were smoothed using causal Gaussian kernels (SD=50 msec) and spectral power

density of LFPs were obtained using short-time-fourier transform and were used as input

features to the classifier. Support Vector Machines (SVM) with linear kernels were recruited

to perform the classification [131]. The data was divided into a train and test segments
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Figure 4.15: Spectrogram during the choice epoch a for the contralateral trial and b)
ipsilateral trials.

(70% and 30% respectively). The train set was used to estimate the optimal coefficients of

the SVM classifier. Using those coefficients, target memorys were predicted for single trials

of the test set. The percentage of the correct predictions in the test set were considered

as the accuracy of the decoding. Features were extracted for every time bin and thus the

accuracy is a function of time and is a representative of the amount of information that can

be extracted about the upcoming/ongoing motor decision from different modalities of the

neural signals (Multiple single neurons vs. LFPs). To cross validate the decoding results,

this process was repeated for 100 times and each time a different set of trials were chosen

for training and test.

In Figure4.17a, the green trace shows the performance of the decoder when only features
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Figure 4.16: Decoding of neural activity was performed to extract information
about the encoding mechanisms of cell assemblies. Different features of neuronal
response were sequentially decoded across time using an SVM classifier. Black trace shows
hybrid features of spikes and LFPs while in green and blue, only LFP and spike features
were used respectively. Chance level is at 50%. To make sure that the performance of is not
biased, we randomly labeled trials and run them through the decoder which as expected,
resulted in chance level performance shown in cyan

from LFPs were used. The purpose of the decoder would here be to determine the target

memory from the observed neural activity. Since there are only two possible targets (right

and left), a random decoder would perform at 50% performance which we consider it as the

chance level. As depicted in Figure4.17a, performance of the decoder using only the LFP

features is not significantly different from the chance level before the start of the movement

(time 0). However the performance reaches ¡90% after 200 msec from the start of the

movement. This implies that LFP signal carries almost no information about the movement

intention before the movement onset, but the information becomes immediately available

after the action starts.

On the other hand, the blue line in Figure4.17a depicts the performance of the decoder

using only population spiking activity. The performance is above chance level before the

movement onset (although not by a large margin, only 60%) but after the start of the
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movement the performance increases gradually to about 80%.

To benefit the most from all the available data we used hybrid features (where we com-

bined features from both spikes and LFPs) as the input to the SVM classifiers. As expected

the performance of this decoder is a combined performance of the two previously designed

decoders.

As a sanity check, we randomly labeled trials used during the training of SVMs and used

the derived SVM structure to classify the test set trials. Not unexpectedly the performance

was not different from chance level. The performance is captured in the cyan trace of

Figure4.17a.

To test the effect of bin size used to extract the features on the performance of the

decoder, we performed the decoding for different bin size values ranging from 10 msec to

400 msec. The results of the maximum performance of the decoder for each bin size is

shown in Figure4.17b. While the performance of the decoder is almost independent of the

bin size when only LFP features are used, the performance of the spike decoder exhibits a

clear bin size dependence. The performance is relatively constant for bin sizes of up to 100

msec but dramatically drops afterward. These results are not surprising due to the nature

of these signals. According to temporal encoding theory of the neurons [66], information

about external stimuli and internal states are encoded via precise spike timing, while the

LFP signal is naturally a very slowly changing signal. According to these results we used

time bin of 50 msec throughout this study unless stated otherwise.

Another issue is the number of channels used for decoding. Figure4.17c shows the maxi-

mum performance for each decoder when different the features were extracted from different

number of channels. What can be immediately inferred from these results is the linear in-

crease of the spike decoder performance with the number of channels used, while the LFP
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decoder performance curve reaches a plateau soon. This can be seen in accordance with the

previously developed theories on the role of cell assemblies in working memory [74,78,221].

(a) (b)

Figure 4.17: Effect of binsize and channel count on decoding performance(a) De-
pendence of the decoder performance on the bin size used to extract hybrid (black), LFP
(green) and spike (blue) features. (b) Performance of the decoder increases with incorpo-
rating features from more channels

4.5 Optogenetic Inactivation

Using reversible inactivation, I have shown that knocking out the prefrontal cortex will affect

the performance of the subject in a graded lateralized fashion. In other words, injection of

the muscimol will cause a negative bias towards the contralateral trials (contralateral with

respect to the injection site). This differential effect was shown to be a function of the

amount of the drug delivered to the tissue, the more drug infused into the tissue the bolder

the effect. Problem with the muscimol reversible inactivation is the very poor temporal

resolution of the induced inactivation. Once injected, the drug will induce inactivation that

will last up to 24 hours.

Introduction of optogenetics toolbox, enables fast millisecond precision control over the

activity of trasfected cells. Here I used this technique to deliver and express ArchT, a proton
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pump, in the membrane of excitatory pyramidal cells of the prefrontal cortex expressing

CamKIIα.

4.5.1 Histology

To ensure that the expression of the ArchT in the tissue, post-mortem histology was per-

formed. The channel was tagged with GFP that fluoresce green, when exposed to light in

the blue to ultraviolet range. Brain tissue was perfused, explanted and 50µmcoronal sections

were collected using a vibratome. Figure 4.18 illustrates a sample of the sections with ArchT

expression in the prelimbic area. Subjects with poor expression of the channel were excluded

from further analysis.

Figure 4.18: Histological evaluation of ArchT expression, a fluorescent image of a slice
of brain infected with AAV-CaMKII-ArchT-GFP, a 50 µm coronal section at approximately
+3mm from bregma. The transfection site is fluorescing in green.
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4.5.2 Total suppression effect

Optogenetic constructs carrying the microbial channel ArchT provided by Ed Boyden at

MIT, was delivered to the tissue packaged in an Adeno-Associated Virus in UNC vector

core. The virus was injected unilaterally using a micropipette and 1.2µL of the virus was

injected. Fiber optics were implanted chronically in the same tranfected area. Green laser

system was used to deliver a green (520 nm) light of 120 mW/mm2 power at the fiber tip.

Figure 4.19 shows the behavioral performance obtained the optogenetic inhibition effect.

Figure 4.19: Behavioral effects of optogenetic inhibition, only trials with a target
memory on the contralateral site with respect to inhibition using the green laser were affected
by the optical inhibition.

Results depicted in Figure 4.19, illustrate a significant (KS − test, p < 0.01) lateralized

decrease in behavioral performance. Similar to results obtained for the reversible inactivation

study, these results here show a negative bias towards the choice of the contralateral target.

Two types of control experiments were performed. During the first experiment, the light

was turned off during a subset of trials. No significant drop in the performance was observed

for either type of the trials: neither ipsilateral nor contralateral. The second control, was

designed to study whether the light has an effect on the choice of the subject or it is in fact
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the suppression of the activity induced by the proton pump that is causing a bias in behavior.

To this end, a blue laser (473nm) was used instead of the green laser. The wavelength of the

blue laser is not supposed to activate the ArchT channels and thus is supposed not to have

any neural activity suppression effect. Not to our surprise, the blue light showed no effect

on the performance of the subject.
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Chapter 5

Discussion

Memories can be distorted. They’re just an

interpretation, they’re not a record, and they’re

irrelevant if you have the facts.

— Leonard Shelby, Memento

Amid the corpus of research conducted on the anatomy and physiology of prefrontal

cortex, the functional significance of this part of the neocortex has remained the subject

of debate. Since the early findings of Jacobsen in 1940s [135, 136], different functions in

human and animal subjects have been linked to the prefrontal cortex. These function include

and is not limited to motor planning and control, short-term memory, attention, response

inhibition, decision making, strategy set shifting etc [95,219]. In this dissertation I explored

the role of rat medial prefrontal cortex in action selection.

The vast repertoire of human motion and dexterous control over movement is all executed

through some 650 skeletal muscles, all of which are under the control of the central nervous

system. Arguably, motor processing starts with an internal representation1: a desire to

move and a motor goal. Following Schall [210], here I distinguish between decisions and

goals. In this framework, decisions are perceptions based on sensory evidences, but goals

are the locations or objects that the subject chooses as a target for their action. The motor

system is believed to be organized in a functional hierarchy [112,137,203,249]. The highest

1These internal representations however are not fixed and need to be continuously updated via
the incoming sensory input and the efference copy of the motor commands to maintain accurate
movement.
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and most abstract level, which is affiliated with prefrontal cortex, is supposedly dealing with

the purpose of a movement. This is shown in a schematic by Haggard in Figure 5.1.

As illustrated in Figure 5.1, primary motor cortex (M1) which is considered to be the

final cortical stage of motor control, receives two sets of input. One key group is reaching M1

through supplementary motor area (SMA), prefrontal cortex (PFC) and the Basal Ganglia

(BG). The second network is gathering information from posterior lobe of the cortex which

is mainly dedicated to sensory processing. The frontal cortical network is believed to play

a critical role in motor goal initiation and maintenance. This network is considered the

highest level in motor control. The next level is concerned with forming a movement plan

and has anatomically been mapped to the posterior parietal and premotor cortices [112]. As

shown in the schematic, premotor cortex forms the details of the movement plan based on

the sensory information it receives from the sensory areas of the cortex. And the lowest level

of the hierarchy coordinates spatiotemporal details related to muscle contraction which is

required to execute the already planned movement.

The sixty-four-thousand dollar question here is how the sensorimotor mappings generate

a movement to a desired location. Though the detailed mechanism of such sensorimotor

integration remains largely unknown, one can speculate on a few required steps. For starters,

the target location has to be identified and localized with respect to the body’s coordinate

system, aka an egocentric coordiante. Then the current configuration of the arms and the

corresponding muscles should be determined to enable a detailed plan for muscle recruitment

to be established. Thus through a series of sensory inputs, required information is collected

and transformed into detailed plans of muscle recruitment.

In the presence of a barrage of incoming sensory information which may carry different

information supporting conflicting choices, an executive system, gates irrelevant information

111



and supports expression of appropriate actions. A working hypothesis that has increasingly

received empirical support through the past decade is that prefrontal cortex as the major

player in cognitive control process, provides a mechanism for active maintenance of goals and

means to achieve them in the form of persistence activity [160]. It is through this biasing

influence of the prefrontal cortex that its role in input and output gating of sensory inputs

and motor commands can be studied [46]. As I will describe later, attention and response

selection are alternative terms for input and output gating.

The motivation behind this dissertation is to better understand the role of prefrontal

cortex in sensorimotor integration. For practical and ethical reasons I have selected rats as

my animal model, despite the fact that non-human primates’ brain is evolutionarily closer

to human brain. There has always been disputes between two groups of scientists on the

anatomical and functional similarities and differences of rodent and human prefrontal cortex

[62,140,173,194,213,227]. Being aware of these discussions, in my working hypothesis I chose

the rat medial prefrontal cortex (mPFC) as an analogue to primate dorsolateral prefrontal

cortex (dlPFC) and adopted a delayed choice task to test the sensorimotor procedure.

One major advantage of this design compared to a bulk of previous experimental se-

tups used for PFC working memory investigation in rodents is the precise temporal control

capability between different epochs of the task. A typical rodent working memory task

involves some sort of maze like a T-maze, where a cue is presented in the central arm of

the maze and the subject has to select either of the two arms based on the instructed cue.

The lapse of the time between the instruction cue and the moment of turning towards the

periphery arms where the subjects is running along the central arm of the maze is often

considered as the motor planning or working memory period. However the main drawback

of these designs is the poor temporal control over the behavioral events of the task which
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in turn leads to smearing the temporal accuracy of the inferred results. In order to over-

come these limitations, I adopted an operant conditioning task used previously to study the

neural dynamics in the Basal Ganglia and premotor cortex as well as the study of attention

mechanisms [21,34,83,99,211].

5.1 Working memory

By definition, working memory is an alternative memory system proposed by Alan Baddeley

to account for some of the shortcomings of the Atkinson and Shiffrin’s short-term memory

model [12,14,16]. Although the model has changed dramatically over the years since it was

first introduced almost 40 years ago, still it is valid model capable of answering a corpus of

observed phenomenon [17]. The model is basically describing how human brain is capable

of actively maintaining and manipulating a limited number of memory pieces, to be used

later in order to guide a future act. Research in this field has identified a crucial role for a

number of brain regions in working memory including the prefrontal cortex, parietal cortex,

anterior cingulate cortex and specific nuclei of the basal ganglia. Most of this information is

obtained through neuroimaging studies in human and detailed cellular knowledge of working

memory mechanism has remained unknown.

Albeit the underlying mechanism is unclear and disputable, there is sort of a consensus

that the prefrontal cortex (on top of other putative roles), is capable of and crucial for ‘tem-

poral bridging’ between the sensory information and motor actions. This has been denoted

from very early lesioning experiments and subsequent experiments reproducing the results

supporting this hypothesis [95,136,219]. By this account, prefrontal cortex is responsible for

maintaining some memory of information required to accomplish the task. This leads to the
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idea of ‘memory cells’, showing sustained activity during the delay period. So far, two major

models for maintaining a memory without an external cue in a neuronal network has been

suggested [78]: recurrent excitation within cell assemblies and synfire chains, although many

different models for working memory encoding have been proposed since the introduction of

these two important model [23, 24, 117,148,149,221,245].

The recurrent excitation idea underlies the classical Hopfield neural network model, sug-

gested as a mechanism for storing discrete memory items [126]. In the Hopfield model,

memory items are stored in the synaptic weight matrix of a network. In this model, neurons

that cooperatively encode the same pattern have higher inter-connectivity weight, forming

a cell assembly, whereas neurons that are representing different items have weaker recipro-

cal weights (or have inhibitory connections). The weights are often calibrated through a

Hebbian like learning scheme [119] that reinforces connections between two coactive neurons

given the thumb rule of ‘neurons that fire together, wire together’. Adaptation of this model

to describe working memory was mainly accomplished through the works of Xiao-Jing Wang

and through collaborations with Patricia Goldman-Rakic and was based on the delayed task

data collected from non-human primate dlPFC [55, 201, 223, 233]. One problem with such

a recurrent excitatory network is instability, meaning that excitation of a portion of the

network will consequently lead to more excitation which in turn drives the whole system

into an unstable state. It was suggested that such instability would not occur if excitation is

sufficiently slow, compared to the negative feedback, since recurrent synapses are mediated

through NMDA receptors with a slow time constant of 50-100 msec.

On the other hand, an alternative method to sustain the activity within a local network in

the absence of external sensory cue is a synfire chain [1,2,70], suggested by Moshe Abeles. A

synfire chain is ‘essentially a feed-forward network of neurons with many layers (or pools)’ [3].

114



A neuron in each pool receives many excitatory feeds from the previous pool and also feeds

onto the a number of next pool neurons. Thus the activity is maintained throughout the

ensemble in a cascade like form where a volley of spikes propagates from one pool to another.

The results I have obtained so far from the analysis of single units’ activity during the

delay period support the later model. As shown in Figure 4.12(a), unlike the activity of

memory cells recorded from primate dlPFC(two samples of which already shown in Figures

2.5 and 2.6), units recorded from the rat mPFC (specifically layer V prelimbic cortex) do

not show sustained activity throughout the delay period. On the other hand, these units

become selective for one aspect of the task for a short ‘lifetime’. However, as depicted in

the graph, this lifetime starts at different latencies with respect to the initiation of the delay

period for different cells. Similar to an Olympic torch, the responsibility of maintaining a

representation required to accomplish the task is relayed from one group of cells to another.

This observation is more suggesting a synfire chain like mechanism for working memory

representation in the rat prelimbic cortex. The observation is also consistent with predictions

of Izhikevich’s polychronous model for working memory [221].

Persistent activity of prefrontal cells, has been shown to be correlated with a number of

task-relevant information such as a previously presented cue, a forthcoming response or a

particular contingency between the cue and response [32,94,97,195,199,232]. An important

question regarding the memory function of the prefrontal cortex is whether this memory

is prospective or retrospective. Prospective memory is where the content of the represented

memory is about something that is to happen in future, whereas retrospective memory is

about past events. In other words retrospective memory is all about a recollection or main-

taining a past episode where prospective memory is about ‘remembering to remember’,

or like remembering an intended action in future.
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Specifics of the experimental design in the delayed choice task I used throughout this

experiment provides a good test bed to investigate the type of memory encoding in the

prelimbic cortex. In a regular center out saccade task which is common among the non-

human primate studies (such as the one used for By Goldman-Rakic [94]), a peripheral

target on a circle is shown to the subject. The subject is required to fixate on the center

of the circle until a go cue is presented and then move their gaze to the target in order to

receive the reward. A similar rodent version is a delayed alternation task [127]. In this task

the subject has the option to select between either of the two locations in a maze to receive

a reward and is required to alternate between the options, i.e. visiting a previously visited

target would not obtain a reward. In both of these tasks, the sensory cue driving the action

is the same as the spatial location of the target, which makes decoding the content of the

encoded memory tricky.

In our experimental design however, the sensory cues and appropriate action are com-

pletely unrelated. In other words, there is no natural or ecologically valid association between

the sensory cues and the action goals(motor targets). The two auditory cues corresponding

to two motor targets are selected arbitrarily by the experimenter. Although this choice of

cue-action association is cognitively more costly and would elongate the learning period, but

it serves the purpose of distinguishing the identity of the encoded memory by the prefrontal

cortex cells.

The inactivation studies performed through the application of GABA agonist muscimol

or the proton pump archaerhodopsin (ArchT), cast light on the encoding mechanism of

memory in the prelimbic cortex. I start with describing the reversible inactivation results.

Muscimol is a GABAA agonist commonly used for reversible inactivation of a small volume

of brain tissue through increasing inactivation. Certain amounts of muscimol were injected
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unilaterally in the prelimbic cortex via chronically implanted cannulae, while the subjects

were lightly anesthetized. After a recovery period of typically about an hour, the subjects

were put in their training cage. As shown in Figure 4.8, the performance of the subjects

significantly dropped under the injection effect and only for those trials where the cue was

instructing towards a target on the contralateral side with respect to the injected brain

hemisphere. The key to answer the question regarding the encoded memory represented

in the prefrontal cortex is the lateralized suppression of performance. Lateralization is a

well-known phenomenon in the nervous system. Especially in the motor system, a corpus

of stimulation and inactivation studies have supported the dominant modulatory role of one

brain hemisphere on the contralateral limbs [137]. Same is true for the visual system where

the visual information coming from one eye changes crisscross at the optic chiasm and finally

ends up being processed by the contralateral brain hemisphere. However, processing of single

tone frequencies is not lateralized in the cortex. Both hemispheres have auditory cortices

dedicated to processing a range of frequency and to my knowledge no evidence of frequency

specific dominance in one hemisphere has been reported. Following that line of reasoning,

had the prefrontal cortex been involved in retrospective encoding, we would have expected

to observe either a) a drop in performance of both types of trials following a unilateral

injection or b) no change in performance of either type of trials. The latter could possibly

be due to one hemisphere compensating for the temporarily inactivated one and the former

could have happened because of the decline in memory capacity due to inactivation of one

hemisphere. However, only in trials where the target contralateral to the injection side was

instructed were impaired. Thus I speculate that the memory encoding in the prelimbic circuit

is a prospective one, maintaining information regarding the location of the future action.

This may be interpreted as biasing effect of prefrontal cortex over the motor actions [159].
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Different action plans are competing for expression and only those who receive stronger

support from the executive control unit will get expressed. It is one hypothesized role of

the prefrontal cortex to provide this bias signal for the motor actions, collecting continuous

sensory evidence from the environment, comparing those with expectations and past motor

history and finally providing this bias signal for different actions and thus enforcing a top-

down control over the behavior. Injecting muscimol causes a temporary inactivation of the

affected tissue and thus the action which is supposed to receive a support signal (which

in this case is ‘moving towards the contralateral side of the injection’) will be dampened.

Consequently the other competing action, will receive a stronger support and the subject’s

movement will become biased towards the ipsilateral side. This bias is then quantified as the

ipsi-contra differential performance and calculated for different scenarios of the experiment.

Shown in Figure 4.9 is the dosage curve showing the biasing effect of the muscimol

application as the function of the amount injected. The more volume injected, the stronger

the bias effect until a point where almost all responses on the contralateral side to the

injection side were suppressed and the subject is totally biased towards the ipsilateral targets.

Prelimbic cortex is a relatively big brain region. Following Paxinos and Watson’s mea-

surement of the prelimbic cortex [187], it extends in the anterior-posterior direction from

+2.5-5mm (AP), 0-1.5mm in the mediolateral (ML) and 2-4mm in the dorsoventral (DV)

direction. Different methods have been suggested to indirectly quantify the spatial extent of

muscimol effect such as glucose uptake [154], evoked field potentials [242], multi-unit activity

levels [11, 79] and finally a more direct method of using fluorescent muscimol [9]. As a rule

of thumb, 1µL of injection will spread into about 1mm of the tissue2.

2However this does not indicate the level of inactivation in the tissue with respect to the injection
site
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One possible explanation for the volume dependent differential bias effect is that as more

muscimol volume is injected in the tissue larger prelimbic regions will get suppressed and

thus the differential effect will grow as a function of the volume muscimol injected.

Results of the optogenetic suppression of the activity also support the findings of musci-

mol inactivation. Subsets of trials were selected and green light was delivered intracortically

to the transfected tissue to suppress the prefrontal activity during the trial. Rest of the

trials did not receive any light or the blue light with an spectrum far from the excitation

wavelength of the ArchT channels was delivered. In consistence with the above mentioned

results performance of the subject was affected only during those trials where suppression

has occurred on the contralateral prefrontal cortex. This further supports our argument that

the content of the memory encoded by the prefrontal cortex is motor related, rather than a

mere sensory memorandem.

5.2 A 4-Hz oscillation

Spectral analysis of the local field potential signal throughout the task, shows a modulation

in low frequency (≈ 4Hz) during the choice epoch of the task as illustrated in Figure 4.15.

The role of neural oscillations in information processing is not yet fully clear [40, 43, 235].

However, there is a consensus on that oscillations represent a brain mechanism for sculpting

temporal coordination of neural activity among different brain networks [230, 234]. Inter-

areal communication between different brain regions are believed to be coordinated through

synchronous activity of a population of cells that gives rise to coherent neural oscillations.

Lower frequency oscillation (4-8 Hz) conventionally known as theta has been well studied in

the hyppocampus during spatial exploration and navigation [29, 38, 228]. It is hypothesized
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that theta oscillation in hippocampus is a mechanism of forming and retrieval of spatial

information by the so called pyramidal place cells. Theta oscillation has also been observed

in human neocortex during working memory task [157,197].

A recent study of Fujisawa and Buzsaki [93], studied the role of 4-Hz oscillation in pre-

frontal cortex, hippocampus and ventral tegmental area (VTA) in rodents during a working

memory maze navigation task. Results of the study showed that the neuronal activity in

three regions is coordinated via a 4-Hz oscillation. It was also observed that goal-predicting

cells in both PFC and hyppocampus are phase-locked to the oscillation. These results sug-

gested 4-Hz oscillation as a means of retrieving spatial memory.

The observation of target selective modulation of 4-Hz oscillation throughout the trial,

is in accordance with the results reported by Buzsaki et al. and suggests that the role of

oscillation in retrieving spatial memories and exploiting on the motor memories of goal-

achieving motor actions.

5.3 Possible role of prefrontal cortex in action selection

I talked earlier on the conflict between two important roles of the prefrontal circuit, one is

to provide a flexible online mechanism for updating the goals in presence of continuously

changing environment and the other being robustly maintaining the same goals. One possible

solution to this conflict is the idea of working memory gating [35, 57, 91]. Such ‘input’ and

‘output’ gating of the working memory are hypothesized to be relying on the corticostriatal

loops [46]. This new hypothesis speculates that similar to the input gating mechanism

(also denoted as attention) where only task relevant sensory information are gated in the

working memory pool, there should exist an output gating mechanism that selectively chooses
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the top-down control of the prefrontal cortex on behavior. When the gate is closed, the

working memory content will be maintained but would not have the top-down influence on

the actions [54, 124,130].

Prefrontal cortex is reciprocally connected to the basal ganglia through its input struc-

ture, striatum. Patterns of that connectivity is illustrated in the schematic of Figure 5.2.

A major principle of the cortico-basal ganglia relations is the parallel organization of

the connections from prefrontal cortex to basal ganglia to thalamus and back to prefrontal

cortex [104] (Figure 5.3 for detailed pathways). As depicted in Figure 5.2 , the striatal

projections from cytoarchitecturally and functionally distinct prefrontal cortical areas are

distributed in a somatotopical fashion along the entire longitudinal axis of the striatum. The

medial prefrontal areas project to the ventral and medial parts of the nucleus accumbens,

the so called ‘shell’ region, and to the medial parts of the caudate-putamen complex. These

projections concentrate in the most rostral part of the striatum and diminish caudally. Thus

a ventral-to-dorsal axis in the medial prefrontal cortex corresponds to a ventromedial-to-

dorsolateral axis in the striatum. The information derived from distinct prefrontal cortical

fields will remain fairly segregated in the striatum.

There is a recurrent idea in the literature that one main role of the basal ganglia is

action selection [56, 69, 81, 200]. The ‘action selection’ becomes an issue whenever two or

more competing actions are competing for limited motor resources 3. In this framework

different action compete for expression and the one that receive more higher level support

will get expressed and the rest will get suppressed. This model is often called a ‘winner-take-

all’ mechanism where only one out of many different actions will get implemented. Basal

ganglia has been shown to provide suppression of the prepotent but inappropriate actions

3‘Decision making’ is also synonymous to action selection in this context.
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during the ‘choice’ epoch of a task [99].

Recent models of the basal ganglia take advantage of the great deal of inhibitory connec-

tions in the basal ganglia to explain action selection [161]. Stewart and Eliasmith proposed

a model for such action selection in basal ganglia [81, 218]. The underlying assumption is

that action selection is context-dependent, meaning that different actions do not have inher-

ent priority over others, but the context of the task attributes different utilities to different

actions. Then the task of the basal ganglia is to incorporate the utility value and suppress

the low-utility actions. A toy example of the proposed model is shown in Figure 5.4.

In this model, there are three different action that have different ‘utility’ or ‘desirability’,

0.3, 0.8 and 0.5. The model’s task would be to choose one of them. Since the output from

basal ganglia is inhibitory, the desired action should produce a near zero output that would

consequently lead to suppression of all the other actions but the one with the highest utility.

The model shows both direct and indirect pathways. As shown, the one action with highest

utility will produce a zero output. It is evident that the proposed model is functional only

and only if the input utilities provided through cortex are valid. If the value of utilities are

close to each other or zero, the circuit will not function. One speculation of this dissertation

is the role of prefrontal cortex in maintaining robust and distinguishable representation of

the action values associated with prepotent actions in the context of the sensory input.

Gage et al. used a very similar experimental design to my experiment and recorded

multiple unit activities from multiple brain regions specifically fast spiking inhibitory (FSI)

striatal cells [99]. They reported a fast increase in selective recruitment of FSI cells during the

choice epoch. It was thus suggested that the FSI cells in sensorimotor striatum are involved

in the process of suppressing the prepotent but inappropriate action. The data presented

here constitute an empirical evidence to the long-debated problem of action selection and
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suppression in basal ganglia at a cellular level.

Whatever the input to the basal ganglia, setting the values for the actions remain un-

known. In the data shown in Figure 4.12, it is shown that the majority of prefrontal cells are

selective slightly prior and during the choice epoch. In fact peak of population selectivity

(17%) occurs at the moment of action selection, aka ‘the point of no return’ [175]. The tim-

ing of this functional population selectivity, patterns of reciprocal connectivity between the

prefrontal cortex and basal ganglia and the evidence of striatal selectivity during the choice

epoch prompts me to suggest that the prefrontal cortex provides a robust representation of

the action goals to downstream structures.

This suggestion is in accordance with the hypothesis about the cortical-basal ganglio-

thalamic loop. In this model, cortex provides, stores and manipulates representations, basal

ganglia maps brain states into courses of action and the thalamus performs real-time moni-

toring of body state and applies routing signals to cortical pathways [81].
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Figure 5.1: Brain circuits involved in voluntary action, a) Primary motor cortex
receives two sets of inputs. The first is routed through the SMA area which itself receives
inputs from the prefrontal cortex and the basal ganglia and the other loop relays sensory
information through primary sensory cortex, parietal cortex and the premotor cortex b)
brain activity recorded in different brain regions preceding a movement in the right hand.
Adapted from [112]
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Figure 5.2: Cortical and thalamic inputs to the striatum distributed in dorsomedial
to ventrolateral regions. Note that the topographical organization in the corticostriatal
projections is the leading organizational principle. Adapted from [231]
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Figure 5.3: Corticostriatal thalamic loop, illustrating the direct and indirect pathways.
Adapted from [81]

Figure 5.4: Model for action selection via striatal D1 cells and the subthalamic
nucleus, cortical input provides utility values for the actions which in turn leads to the basal
ganglia to release inhibition on the action with highest value, suppressing the rest. Adapted
from [218]
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Chapter 6

Concluding Remarks

Plato’s point is that we can never have true

knowledge of anything that is in a constant

state of change. We can only have opinions.

— Jostein Gaarder, Sophie’s World

Initiating a movement goal and maintaining that goal throughout the planning and execu-

tion of a goal-directed action is an essential element of all goal-directed behavior. Prefrontal

cortex has been implicated in the neural mechanisms underlying goal initiation and mainte-

nance. Patients with frontal lobe damage have been reported to suffer from ‘wandering off

the tasks’. The neural code for goal initiation and maintenance should be robust against po-

tential distracting cues and the continuous barrage of sensory information that could hinder

the organism from fully executing the task.

In the context of brain-machine interfaces (BMIs) aimed at restoring motor function

to motor impaired subjects, decoders aim to translate an ongoing pattern of neural activity

into control signals to actuate artificial - or natural, non functioning- limbs. However, decod-

ing has been primarily restricted to moment-by-moment kinematic variables of an intended

movement from premotor or motor cortical neurons without knowledge of the goals. These

conventional decoders suffer from a number of drawbacks such as the continuous need for

subjects attention and slowness. It is important to determine the latency of movement ini-

tiation to inform decoders of neural activity. On the other hand, advances in robotics have
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enabled very fast dexterous control of artificial limbs given a motor goal. Insights from this

study can be utilized in the design of next generation BMIs driven by decoding a cognitive

signal (representing motor intent) rather than moment-by-moment kinematics of a motor

task.

In this thesis, I have adopted an instructed delayed response task to study the neural

mechanism of motor goal initiation and maintenance in the prelimbic circuit of the rat

medial prefrontal cortex (mPFC). While the tuning characteristics of cortical neurons in

early sensory and late motor areas can be revealed by classical linear and nonlinear regression

analysis, the mixed selectivity of PFC neurons requires new machine learning algorithms that

can unveil their heterogeneous responses characteristics. Thus I have applied state-of-the-art

machine learning algorithms to the analysis of the mPFC neurons activity collected using

chronically implanted microelectrode arrays.

As shown and discussed earlier, lateralized inactivation of the prelimbic cortex using

muscimol results in lateralized deficit in the subject’s responses. These results strongly sup-

port my hypothesis that this area of the brain contributes to the execution of the delayed

choice task. However there are a number of limitation to this approach, some of which were

described earlier. First is the unknown extent of brain inactivation using reversible inactiva-

tion. Even, the recently suggested application of fluorescent muscimol, only shows the extent

of drug diffusion and would not help determining the spatial spread of inactivation. Second

is the poor temporal resolution of the inactivation using muscimol. The effects may last up

to hours after the injection (at variable degrees). Ideally to dissect the fine engagement of

brain circuits in action selection, we need to be able to suppress the activity with a temporal

precision not slower than ten millisecond which obviously in orders of magnitude faster of

the muscimol response.
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In this dissertation, I have shown the feasibility of using optogenetic techniques to sup-

press the activity of prefrontal cells using brief flashes of green light to the extent that a

behavioral effects is obtained in awake behaving subjects (results shown in Figure 4.19). I

have shown that the effect is dependent on the activation of light-activated proton pumps

since now effect was observed under the blue laser trials. The lateralized deficit was observed

while the light pulse was flashed throughout the trial, from the onset of the fixation period

until hitting the target.

Although I have collected some pilot data for an experiment where the optogenetic sup-

pression of activity was limited to individual epochs of the task, this experiment is beyond

the scopes of this dissertation. In this experiment during each session, a subset of trials were

selected and light was flashed during a given epoch, as illustrated in Figure . Preliminary

data (shown in the appendix) replicates the previous results regarding the differential later-

alized deficit when the light was flashed throughout the trial and no effect under the control

trials.

The data also suggests a lateralized deficit during trials where the light was flashed

through the delay and choice epochs, however this is part of an ongoing collaborative project

and it is premature at this stage to draw any conclusions before running enough controls and

collecting enough data from sufficient number of subjects to compensate for across subjects

variability. Results of this experiment may establish a temporally precise causal link between

the activity in the prefrontal cortex and the performance of the delayed choice task and may

be informative in the long-debated causality vs. correlation debate of neuronal responses.

Another extension to this study would be to simultaneously record from multiple brain

regions supposedly involved in this task and compare and contrast the response properties

of different units. Throughout the conduct of this project I intended to collect some prelim-
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(a) (b)

Figure 6.1: Selective inactivation of the prelimbic circuit using optogenetics
toolbox: ArchT and green light (520 nm) Inhibiting the activity of prelimbic cells
a)throughout the trial and during b) fixation period, c) the instruction cue presentation,
d) delay period, e) reaction epoch and f) choice epoch.

inary data where the activity is simultaneously recorded both in the prelimbic cortex and

secondary motor cortex (M2), where Erlich et al. have shown motor encoding signals during

the delay period [83]. However during these simultaneous recording, the quality of the M2

recordings was quite poor, which I speculate was due to the probe design used. I would sug-

gest developing a custom designed microdrive device specifically to target the prelimbic and

secondary motor cortices. This would hopefully provide means of fair comparison between

different functional properties of prefrontal and premotor neurons.
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Appendix A. Animal Subjects

Order ID Animal ID Experiment End Date

1 A4 Electrophysiology (Pilot) 04/06/2012
2 A26 Electrophysiology (Pilot) 02/22/2013
3 A28 Electrophysiology (Pilot) 05/05/2013
4 A39 Electrophysiology 02/11/2014
5 PFC2 Electrophysiology 04/30/2014
6 PFC3 Electrophysiology 06/01/2014
7 A35 Inactivation (Pilot) 08/01/2013
8 A27 Inactivation (Pilot) 09/23/2013
9 A36 Inactivation 12/02/2013
10 A37 Inactivation 04/11/2014
11 A45 Inactivation 02/07/2014
12 A47 Inactivation 04/28/2014
13 PFC4 Inactivation 07/01/2014
14 PFC5 Inactivation 07/01/2014
15 PFC12 Inactivation 07/01/2014
16 PFC13 Inactivation 07/01/2014
17 A19 Optogenetics (Pilot) 08/11/2012
18 A38 Optogenetics 01/17/2014
19 A48 Optogenetics 04/30/2014
20 PFC1 Optogenetics 04/30/2014
21 PFC14 Optogenetics 07/15/2014
22 PFC15 Optogenetics 07/15/2014
23 PFC16 Optogenetics 07/15/2014
24 PFC17 Optogenetics 07/15/2014

Table 1: List of animal subject recruited for different experiments.
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Electrophysiology

Subject ID: A39

Session Date Number of Units Performance
1 01/29/2014 12 71.11
2 01/30/2014 33 71.11
3 01/30/2014 18 78.05
4 01/31/2014 27 82.65
5 02/01/2014 37 72.27
6 02/03/2014 36 79.90
7 02/04/2014 25 79.29

Table 2: Detail session information about A39.

Subject ID: PFC2

Session Date Number of Units Performance
1 04/01/2014 19 82.82
2 04/02/2014 10 80
3 04/03/2014 13 82.51
4 04/09/2014 11 83.17
5 04/11/2014 11 81.81
6 04/16/2014 13 79.66
7 04/17/2014 10 79.13
8 04/21/2014 9 82.43

Table 3: Detail session information about PFC2.

Subject ID: PFC3
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Session Date Number of Units Performance
1 05/07/2014 9 80.98
2 05/08/2014 5 78.77
3 05/12/2014 8 81.28
4 05/13/2014 6 77.83
5 05/14/2014 4 82.08
6 05/15/2014 2 80.76
7 05/16/2014 8 78.83
8 05/19/2014 5 78.68
9 05/20/2014 2 80.31

Table 4: Detail session information about PFC3.
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Appendix B. Video tracking of head

orientation

From very early on, one of the main concerns of the delayed reaction tasks was the identi-

fication of the means of accomplishing the task [76, 132]. One possible suggestion was that

the subjects may use postural mediation and orient their body towards the target preparing

for a movement toward the target, whereas the other other hypothesis suggests the use of a

memory mechanism to maintain a plan for the forthcoming behavior.

To investigate the underlying means of performing the task, we used two LEDs on at-

tached to the recording headstage and obtained high speed video recording to extract the

location of the LEDs and thus infer the head orientation. Details of the method are described

in Appendix 6.

Figure 2 shows the head orientation averaged across many trials during a session for right

and left trials. The two trajectories share their pre-movement segments where the head is

almost at zero angle with respect to the midline. Trajectories start to diverge after the Go

cue. This suggest a strategy other than the use of body posture for task accomplishment.

To track the head orientation during the task performance, I used two LEDs(red and

green) on top of subjects head. Images were captured using a uEye camera at 87 fps rate
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(a) (b)

Figure 2: Tracking head orientation a One captured frame during the delay period of
the subject performing the task, showing the midline, two LEDs and the head orientation
angle θ. b Head orientation throughout different epoch of the task, averaged across right
and left trials.

and saved on a local computer for further offline analysis. Figure 3 shows the flowchart of

the analysis used to extract the spatial location of the LEDs through time and infer the head

orientation.

Briefly, each frame was acquired and the color image was converted to a grayscale image.

Using the Otsu’s method [176] a threshold was determined to segment the background and

the detected objects(presumably the LEDs). Following image segmentation, a black and

white is acquired. Morphological operations were used to detemine the number of objects

[108]. If exactly two objects are detected in the field of view (the two LEDs), the centroid of

each is determined and the head orientation is determined geometrically. In case less than

two objects were detected (e.g. when the subjects is out of the field of view or one of the

LEDs is blocked by the wires) or more than two objects are detected (e.g. by reflection of one

the LEDs), the algorithms returned a N/A. The N/A were estimated by a linear interpolation

during the postprocessing. Sample images recorded while the subject performing the task is

shown in Figure 4.
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Figure 3: Flowchart of the algorithms developed to track the head orientation,
using colored images captured at 87 fps.
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(a)

(b)

(c)

Figure 4: Samples of video tracking Right panel shows the raw image captured while
the subject performed the task and the left panel is the final output of the algorithm that
shows the location of the LEDs. (a) The subject is moving toward the fixation hole (b) the
subject inside the fixation whole during a delay period (c) reflection of the red LED causing
the detection of a third object.
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Appendix C. Behavior-locked

suppression of neuronal activity

In this dissertation, it has been shown that suppression of prefrontal cortex activity using an

optogenetic approach that enables a suppression temporally limited to the duration of the

trial results in lateralized deficit in subject’s performance. Furthermore I designed another

experiment where the suppression of activity was limited to individual epochs of the task.

In particular, subsets of trials throughout a session were selected in which the light was

delivered only fixation, instruction, delay, reaction and choice epochs. Also different subsets

of trials were selected in which light was either delivered throughout the trial or no light was

delivered at all. The latter was used as a negative control while the former was a positive

control to ensure that the light is effective.

To my surprise, effectiveness of optogenetic suppression dropped dramatically with con-

secutive suppression sessions. This rate of decline is shown for one subject in Figure ,

suggesting that after n=5 sessions the effect is almost negligible.

Following these results, to calculate the performance drop due to epoch-limited optoge-

netic suppression of activity, I only included the first 5 sessions for each subjects. Results

are shown in Figure 6.
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Figure 5: Changes in lateralized performance deficit, lateralized performance deficit
is one metric of suppression effectiveness. As shown here, this measure is declining throught
consecutive repetition of optogenetic suppression.

Although the data depicts a trend towards differential performance during choice, reac-

tion and delay suppression, but there exists no statistically significant difference between

the contralateral and ipsilateral trials. This can be in part due to the decline observed in

effectiveness of the optogenetic suppression. Long-term effects of optogenetics perturbation

of neuronal activity has not yet been fully studied. One possible hypothesis for the decline

in effectiveness of the suppression is the engagement of compensatory mechanisms that get

activated during artificial perturbation of neuronal activity [248]. However, more has to be

studied to fully explain the effects observed in this pilot dataset.
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Figure 6: Performances under epoch specific suppression of activity, n=4 subjects,
2,000 trials.
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[173] Öngür, D., and Price, J. The organization of networks within the orbital and
medial prefrontal cortex of rats, monkeys and humans. Cerebral cortex 10, 3 (2000),
206–219.

[174] Oppenheim, A. V., Schafer, R. W., Buck, J. R., et al. Discrete-time signal
processing, vol. 2. Prentice-hall Englewood Cliffs, 1989.

[175] Osman, A., Kornblum, S., and Meyer, D. E. The point of no return in choice
reaction time: controlled and ballistic stages of response preparation. Journal of Ex-
perimental Psychology: Human Perception and Performance 12, 3 (1986), 243.

[176] Otsu, N. A threshold selection method from gray-level histograms. Automatica 11,
285-296 (1975), 23–27.

[177] Oweiss, K. G. Multiresolution analysis of multichannel neural recordings in the
context of signal detection, estimation, classification and noise suppression. PhD thesis,
University of Michigan, 2002.

[178] Oweiss, K. G. Statistical signal processing for neuroscience and neurotechnology.
Academic Press, 2010.

[179] Oweiss, K. G., and Anderson, D. J. A new technique for blind source separation
using subband subspace analysis in correlated multichannel signal environments. In

157



Acoustics, Speech, and Signal Processing, 2001. Proceedings.(ICASSP’01). 2001 IEEE
International Conference on (2001), vol. 5, IEEE, pp. 2813–2816.

[180] Oweiss, K. G., and Anderson, D. J. Noise reduction in multichannel neural
recordings using a new array wavelet denoising algorithm. Neurocomputing 38 (2001),
1687–1693.

[181] Oweiss, K. G., Mason, A., Suhail, Y., Kamboh, A. M., and Thomson,

K. E. A scalable wavelet transform vlsi architecture for real-time signal processing
in high-density intra-cortical implants. Circuits and Systems I: Regular Papers, IEEE
Transactions on 54, 6 (2007), 1266–1278.

[182] Owings, M. F., and Kozak, L. J. Ambulatory and inpatient procedures in the
united states, 1996. Vital and health statistics. Series 13, Data from the National
Health Survey, 139 (1998), 1–119.

[183] Padhi, A. K. Development of a Limb prosthesis by reverse mechanotransduction.
PhD thesis, 2013.

[184] Pal, N. R., and Bezdek, J. C. On cluster validity for the fuzzy c-means model.
Fuzzy Systems, IEEE Transactions on 3, 3 (1995), 370–379.

[185] Paninski, L., Pillow, J., and Lewi, J. Statistical models for neural encoding,
decoding, and optimal stimulus design. Progress in brain research 165 (2007), 493–507.

[186] Parmesan, C., and Yohe, G. A globally coherent fingerprint of climate change
impacts across natural systems. Nature 421, 6918 (2003), 37–42.

[187] Paxinos, G., and Watson, C. The rat brain in stereotaxic coordinates. Academic
press, 2007.

[188] Peckham, P. H., Kilgore, K. L., Keith, M. W., Bryden, A. M., Bhadra,

N., and Montague, F. W. An advanced neuroprosthesis for restoration of hand
and upper arm control using an implantable controller. The Journal of hand surgery
27, 2 (2002), 265–276.

[189] Pesaran, B., Musallam, S., and Andersen, R. Cognitive neural prosthetics.
Current Biology 16, 3 (2006), R77–R80.

[190] Pesaran, B., Pezaris, J. S., Sahani, M., Mitra, P. P., and Andersen, R. A.

Temporal structure in neuronal activity during working memory in macaque parietal
cortex. arXiv preprint q-bio/0309034 (2002).

158



[191] Pillow, J. W., Ahmadian, Y., and Paninski, L. Model-based decoding, informa-
tion estimation, and change-point detection techniques for multineuron spike trains.
Neural Computation 23, 1 (2011), 1–45.

[192] Polikov, V. S., Tresco, P. A., and Reichert, W. M. Response of brain tissue
to chronically implanted neural electrodes. Journal of neuroscience methods 148, 1
(2005), 1–18.

[193] Poor, H. V. An introduction to signal detection and estimation. Springer, 1994.

[194] Preuss, T. Do rats have prefrontal cortex? the rose-woolsey-akert program recon-
sidered. Cognitive Neuroscience, Journal of 7, 1 (1995), 1–24.

[195] Quintana, J., and Fuster, J. M. From perception to action: temporal integrative
functions of prefrontal and parietal neurons. Cerebral Cortex 9, 3 (1999), 213–221.

[196] Quiroga, R. Q., Nadasdy, Z., and Ben-Shaul, Y. Unsupervised spike detection
and sorting with wavelets and superparamagnetic clustering. Neural computation 16,
8 (2004), 1661–1687.

[197] Raghavachari, S., Kahana, M. J., Rizzuto, D. S., Caplan, J. B., Kirschen,

M. P., Bourgeois, B., Madsen, J. R., and Lisman, J. E. Gating of human theta
oscillations by a working memory task. The journal of Neuroscience 21, 9 (2001), 3175–
3183.

[198] Rangel, A., Camerer, C., and Montague, P. R. A framework for studying
the neurobiology of value-based decision making. Nature Reviews Neuroscience 9, 7
(2008), 545–556.

[199] Rao, S. C., Rainer, G., and Miller, E. K. Integration of what and where in the
primate prefrontal cortex. Science 276, 5313 (1997), 821–824.

[200] Redgrave, P., Prescott, T. J., and Gurney, K. The basal ganglia: a vertebrate
solution to the selection problem? Neuroscience 89, 4 (1999), 1009–1023.

[201] Renart, A., Song, P., and Wang, X.-J. Robust spatial working memory through
homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38, 3 (2003),
473–485.

[202] Rieke, F., Warland, D., De Ruyter van Steveninck, R., and Bialek, W.

Exploring the neural code. Cambridge, Massachusetts: Institute of Technology (1996).

159



[203] Roskies, A. L. How does neuroscience affect our conception of volition? Annual
review of neuroscience 33 (2010), 109–130.

[204] Rosner, B. Fundamentals of biostatistics. Cengage Learning, 2010.

[205] Ross, S. M. Introduction to probability models. Academic press, 2006.

[206] Rousche, P. J., Normann, R. A., et al. Chronic recording capability of the utah
intracortical electrode array in cat sensory cortex. Journal of neuroscience methods
82, 1 (1998), 1.

[207] Rutishauser, U., Schuman, E. M., and Mamelak, A. N. Online detection and
sorting of extracellularly recorded action potentials in human medial temporal lobe
recordings, in vivo. Journal of neuroscience methods 154, 1 (2006), 204–224.

[208] SAMEJIMA, K., and DOYA, K. Multiple representations of belief states and ac-
tion values in corticobasal ganglia loops. Annals of the New York Academy of Sciences
1104, 1 (2007), 213–228.

[209] Samson, H. H., and Chappell, A. Muscimol injected into the medial prefrontal
cortex of the rat alters ethanol self-administration. Physiology & behavior 74, 4 (2001),
581–587.

[210] Schall, J. D. Neural basis of deciding, choosing and acting. Nature Reviews Neuro-
science 2, 1 (2001), 33–42.

[211] Schmidt, R., Leventhal, D. K., Mallet, N., Chen, F., and Berke, J. D.

Canceling actions involves a race between basal ganglia pathways. Nature neuroscience
16, 8 (2013), 1118–1124.

[212] Schneidman, E., Berry, M. J., Segev, R., and Bialek, W. Weak pairwise
correlations imply strongly correlated network states in a neural population. Nature
440, 7087 (2006), 1007–1012.

[213] Seamans, J. K., Lapish, C. C., and Durstewitz, D. Comparing the prefrontal
cortex of rats and primates: insights from electrophysiology. Neurotoxicity research
14, 2-3 (2008), 249–262.

[214] Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R., and

Donoghue, J. P. Brain-machine interface: Instant neural control of a movement
signal. Nature 416, 6877 (2002), 141–142.

160



[215] Shlens, J. A tutorial on principal component analysis. Systems Neurobiology Labo-
ratory, University of California at San Diego 82 (2005).

[216] Sonuga-Barke, E., Taylor, E., Sembi, S., and Smith, J. Hyperactivity and de-
lay aversioni. the effect of delay on choice. Journal of Child Psychology and Psychiatry
33, 2 (1992), 387–398.

[217] Sternberg, S. Memory-scanning: Mental processes revealed by reaction-time exper-
iments. American scientist (1969), 421–457.

[218] Stewart, T. C., Choo, X., and Eliasmith, C. Dynamic behaviour of a spiking
model of action selection in the basal ganglia. In Proceedings of the 10th international
conference on cognitive modeling (2010), Citeseer, pp. 235–40.

[219] Stuss, D. T., and Knight, R. T. Principles of frontal lobe function. Oxford
University Press, 2013.

[220] Sul, J. H., Kim, H., Huh, N., Lee, D., and Jung, M. W. Distinct roles of rodent
orbitofrontal and medial prefrontal cortex in decision making. Neuron 66, 3 (2010),
449–460.
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