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ABSTRACT

STUDIES OF SUBSTRUCTURE IN GALAXY CLUSTERS: A TWO

DIMENSIONAL ANALYSIS

By

Jeffrey R. Kriessler

ABSTRACT

In this thesis I explore a procedure for the detection and quantification of sub-

structure in the projected positions of galaxies in clusters. The method is first tested

by application to the 56 well-studied galaxy clusters that make up the morphological

sample of Dressler (1980). This method is then applied to a much larger, volume-

limited sample of 119 Abell clusters originally identified of Hoessel, Gunn, & Thuan

(1980). This sample includes all Abell clusters with distance class 3 4 and richness

class 2 0 with |b| > 30. Two tests for substructure, one parametric and one nonpara-

metric, are applied to the galaxy positions and the results are compared. The KMM

algorithm partitions the data into Gaussian sub-populations and estimates their sta-

tistical significance via a hypothesis test. The DEDICA algorithm is a nonparametric

technique that identifies peaks in the projected galaxy density and determines their

significance with respect to the background. After a K-S test is employed on the

magnitude distributions to remove background/foreground groups, 64% :t 15% of

the large cluster sample is found to contain significant substructure.

Nonparametric methods of density estimation are explored and applied to the

construction of contour plots and the calculation of radial number-density profiles for



each of the sample clusters. An average core radius of 150 :1: 100 kpc (H0 = 75 km s“)

is obtained. This is however, likely to be an upper limit due to mis-specification of

the cluster centers. Inside of l Mpc, the space density is found to vary as p or r‘wio'3

after a correction is made for background galaxies.

The large fraction of clusters with presently-detectable substructure, as well as

the shallow space—density profiles, are used to argue that rich clusters of galaxies are

still in the process of formation during the present epoch and are not well described

by equilibrium models. If clusters are currently accreting large amounts of material,

this implies a high-density Universe, with Q 2 0.4.
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Chapter 1

INTRODUCTION

The human spirit is characterized, among other things, by an intense desire to explain

the world around us. Of all the physical sciences, cosmology is perhaps the most

ambitions, for it seeks to explain how and why the Universe we see today came

into existence. From the fertile minds of scientists have sprung forth an incredible

array of theories, from the Earth-centered, non-evolving universe of Ptolemy to the

Inflationary Big Bang cosmologies which are popular today. The role of observational

cosmology is to constrain these theories and try to find the model which best explains

the real Universe. As a science, cosmology is still in its infancy. Only within this

century have the theories been taken from the realm of pure conjecture about how the

Universe ought to be, to testable theories which describe the Universe as it, at present,

appears. The reasons for this transition are: 1) The existence of the mathematical

frame work of General Relativity which describes the interaction of matter with space

and time, 2) advances in high energy physics which have extended our understanding

of the forces which act between particles at very high temperature and pressure, and

3) extension of the astronomical observations to include nearly the full range of the

electromagnetic spectrum.



1.1 The Standard Model

Recent progress in observational cosmology has led to the general acceptance of the

Hot Big Bang theory or, borrowing a term from high energy physics, the “standard

model.” The success of the standard model of the Universe rests on its ability to ex-

plain, in a simple manner, three important observations. These are: 1) the blackbody

spectrum of the microwave background radiation, 2) the abundance of the light ele-

ments (D, He, and Li) in the Universe, and 3) the expansion of the Universe. Though

there remain a number of problems with the standard model, the current evidence

indicates that it is at least a useful approximation to the real Universe.

The standard model indicates that the Universe did not exist in its present state

forever, but was created a finite time ago in an event commonly referred to as the

Big Bang. At this time the Universe existed in a singular state of unimaginable

temperature and pressure where current theories of physics can not be applied. From

this hot, radiation-dominated state, the Universe started to expand and cool. This

process continues today as observed in the redshifts of galaxies and the, now relatively

cool, 2.7 K cosmic background radiation. While there are many interesting transitions

which took place as the Universe cooled, this thesis is primarily concerned with events

which occurred after the decoupling of the radiation and the matter, about 3 x 105

years after the Big Bang. This is commonly referred to as the “era of recombination” ,

because only then is it possible for electrons to bind with protons to form atoms. This

era is of interest because it signals the earliest possible formation time of structures

such as galaxies and clusters of galaxies. Although it is believed that the density

fluctuations which collapsed into these structures must have already existed before

the era of recombination, they could not have begun to collapse due to the radiation

pressure that dominated the Universe at these times. For a density fluctuation to



grow due to gravitational instability it must have a mass greater than the Jeans mass

MJ. At the time of recombination the Universe becomes transparent to light and

particles of matter can slow to non-relativistic speeds. This transition causes the

Jeans mass to change abruptly from MJ a: 1016M® (about ten times the mass of the

Coma cluster) to MJ z 106MQ. The time scales for collapse of cluster-sized, Gaussian

perturbations will be discussed in detail in Chapter 5.

Despite the successes of the standard model, there are a number of fundamental

questions that remain unanswered. These questions include: What is the mass density

of the Universe, 00? Will the Universe expand forever, or collapse sometime in

the future? What is the present value of the Hubble constant, H0? How old is

the Universe? What is the value of the cosmological constant, A? In a rapidly

expanding, uniform Universe, how can structures such as galaxies, clusters of galaxies

and superclusters of galaxies form? Does structure form on large scales and then

fragment into smaller units, or do smaller units form first and join together to create

larger objects? What is the nature of dark matter and how does it affect the evolution

of the Universe?

Clusters of galaxies play an important role in addressing these questions. In a low-

density Universe clusters at the present epoch are expected to be in free expansion.

Therefore, they should not be accreting new material. On the other hand, in a high-Q

Universe clusters can continue to grow in the present epoch. The inflow of material

into clusters should be observed as substructure (Richstone et al. 1992, Kauffmann &

White 1993) and flattened density profiles (Crone et at. 1994, Jing et at. 1995, Crone

et al. 1997).



1.2 Observational Properties of Clusters

One of the biggest challenges faced by the researcher in the field of galaxy clusters is

defining just what constitutes a cluster, with different researchers adopting different

criteria. The problem is to identify galaxies which are gravitationally bound to one

another, often through the use of only their projected positions on the sky and their

apparent magnitudes, parameters easily estimated from photographic surveys. Abell’s

(1958) solution was to visually examine the red plates of the Palomar Optical Sky

Survey (POSS) and define a cluster as a region where there existed at least 30 galaxies

within two magnitudes of the third-brightest galaxy within a projected radius of

1.512“1 Mpc (one Abell radius). (Throughout this thesis H0 = 100h km s‘1 Mpc"l

with h=0.75.) The centers of the clusters were determined by eye and the distance to

the cluster was estimated using the apparent magnitude of the tenth-ranked galaxy.

The resulting catalog of clusters (after extending it to the southern sky [Abel], Corwin,

& Olowin 1989]) contains 4076 systems. Abell divided the sample into “richness

classes” and “distance classes,” as defined in Table 1.1. Column (1) provides the

richness class R. Column (2) lists the number N of galaxies within two magnitudes

of the third-ranked galaxy for each richness class. The distance class D is given in

column (3). The magnitude range of the tenth-ranked galaxy mm in the V band for

each distance class is listed in column (4).

The Abell catalog has received a number of criticisms over the years. First, strict

use of a radius within which to look for cluster members tends to favor inclusion of

only those clusters which are concentrated and roughly circular, often referred to as

“regular.” Large, spread-out clusters or elongated clusters having a large fraction of

their members outside the Abell radius would be missed. Second, since the clusters

were chosen only on the basis of concentrations in the projected galaxy distribution,



Table 1.1. Abell Richness and Distance Classes

 

 

R N D mm

(1) (2) (3) (4)
 

0 30-49 0 < 13.3

1 50-79 1 13.3-14.0

2 80-129 2 14.1-14.8

3 130-199 3 14.9-15.6

4 200-299 4 15.7-16.4

5 > 300 5 16.5-17.2

 

the possibility arises that a large number of the clusters may simply be due to the

superposition of background and foreground groups. In fact a number of numerical

simulations indicate that identifying clusters using Abell’s method may lead to a

catalog within which as much as 30% of the richness class 1 clusters are due simply

to projection effects and that a similar percentage of real clusters have been missed

(van Haarlem 1996). On the other hand, a study by Briel & Henry (1993) of Abell

clusters with detectable X-ray emission by ROSAT (indicating the presence of a real

potential well) found that only 10% of the Abell richness class 1 clusters are likely to

have been mis-identified due to foreground/background projection.

In the past decade, the somewhat subjective nature of the Abell catalog has been

addressed by the development of machine-generated catalogs (Dalton et al. 1994),

but these do not as yet exist for the entire sky. Furthermore, advances in X—ray

astronomy have led to the hope that a cluster catalog can be produced using X—ray-

derived temperatures. If the hot intercluster gas is assumed to be in hydrostatic

equilibrium, then the temperature of the gas will be a direct measure of the depth

of the potential well, eliminating all possibility of mis-identified clusters. Although

catalogs of clusters have been made from the ROSAT All Sky Survey (Giacconi &



Burg 1993, Ebeling et al. 1996), at present they are still incomplete. Furthermore, a

higher-resolution survey (with 5-10 arcsec resolution) is required for easy separation of

point and extended sources. Thus, despite the potential problems, the Abell catalog

is still the most complete catalog of rich clusters available for the entire sky.

A typical line-of-sight velocity dispersion for a rich Abell cluster is a, z 103 km

S“. If clusters of galaxies are assumed to be bound, the viral theorem can be used

to determine the mass of the cluster. Typically this mass for rich Abell clusters is on

the order of a few x1015M®.

One important dynamical time scale is the crossing time. The crossing time is the

time it takes the average galaxy to get from one end of the cluster to the other. In

convenient units it is given by:

R 103km 3‘1

tcfoss z 1 9 __ — , 1.1

0 yr (Mpc) ( 0,. ) ( )

where R is the radius of the cluster and a, is the line-of—sight velocity dispersion.

This provides a lower limit for the time it takes substructure to be erased. For rich

clusters this is about a billion years, or one-tenth the age of the Universe. Analytical

work suggests that the smallest groups on radial orbits will be disrupted by tidal

forces in a single crossing time, while a merger between two equal-sized clusters may

take as long as four crossing times to be erased (Gonzalez—Casado et al. 1994). On

the other hand, numerical simulations span the full spectrum of possible relaxation

times, from a single crossing time to several Hubble times, depending on the initial

conditions assumed (West, Oemler, & Dekel 1988; Cavaliere et al. 1992; Nakamura et

al. 1995). Ultimately, it appears as though observations of clusters will be necessary

to constrain these initial conditions.



1.3 Previous Studies

The modern study of clusters of galaxies was initiated with Zwicky’s (1933) study

of the Coma cluster (A1656). Using positions projected on the plane of the sky and

line of sight velocities obtained from redshifts of spectral lines in the galaxies, he

concluded that the amount of matter needed to keep the Coma cluster from flying

apart on a time scale of a billion years was many times larger than the matter visible

in the galaxies. This was the first indication of the existence of large amounts of

dark matter in the Universe. In a follow-up study, Zwicky (1937) concluded that the

distribution of bright galaxies was very similar to the distribution of mass density in

an isothermal gas sphere. For the following five decades the Coma Cluster has been

considered the prototype of a relaxed, rich galaxy cluster.

With advances in computer speed and availability over the past 20 years has come

enormous strides in statistical techniques which can be used to analyze data in new

ways. With this and the advent of X-ray astronomy, the idea that clusters of galaxies

could be described as relaxed systems in isothermal equilibrium has been challenged.

The evidence used to argue against equilibrium cluster models includes: a) “clumpy”

distributions of galaxies seen in projection on the sky, b) apparent structure in the

distribution of radial velocities for cluster members, and c) multiple centers of X-

ray emission in the cluster, and other complexities in the X—ray-derived temperature

profiles, suggestive of ongoing subcluster collisions.

Studies using solely the projected positions of galaxies in clusters have concluded

that between 20% and 80% of clusters have statistically-significant substructure.

Geller & Beers (1982, hereafter GB) made contour maps of the projected galaxy

density for 65 clusters with data from Dressler (1976) and Dressler (1980). These

authors concluded that 40% of the clusters in the combined Dressler samples have



substructure based on multiple peaks in the contour maps. Baier (1983), on the ba-

sis of secondary peaks in radial number-density distributions for some 100 clusters,

concluded that as much as 80% of the clusters in his sample had substructure. More

recent investigations are discussed in Baier et al. (1996). The image analysis tech-

niques of West & Bothun (1990) led them to conclude that some 30% of the Dressler

sample has substructure. Rhee, van Haarlem & Katgert (1991) applied six tests for

substructure to the projected positions of galaxies in 104 Abell clusters obtained from

digital scans of copies of the Palomar Sky Survey plates, and found that 26% had

significant substructure. Salvador-Sole, Sanroma & Gonzalez-Casdado (1993, here-

after SSG) looked for deviations in the density profiles of 15 clusters (after applying

a redshift filter to remove obvious foreground/background galaxies), and found that

50% of their sample showed evidence of substructure.

Dressler & Shectman (1988) obtained the first sample of galaxies in clusters with a

sufficient number of measured redshifts to include velocity information in the search

for substructure, and concluded that 30% to 40% of their sample (of 15 clusters)

exhibited deviations in the local vs. global kinematic properties, consistent with the

existence of dynamically-significant substructure. Bird (1993) applied a number of

statistical tests using both spatial and velocity data to demonstrate that between

30% and 80% of clusters could have substructure, depending on the test employed.

Escalera et al. (1994) applied the wavelet analysis technique to projected galaxy

positions and velocities in 16 clusters and found that only three clusters could be

classified as unimodal. The simple kinematic test of Dressler & Shectman (the A-

test) was applied to a sample of 73 clusters in the ESO Nearby Abell Cluster Survey

(ENACS) by den Hartog (1995), who found that 50% showed evidence of substructure.

Jones & Forman (1992) found that of the 208 clusters observed by the EINSTEIN

satellite with X—ray emission bright enough to classify, some 22% showed clear sub-



structure. Mohr, Frabricant & Geller (1992) examined X—ray surface brightness mo—

ments of 40 EINSTEIN cluster observations, and found that 68% showed evidence of

substructure. Buote & Tsai (1996) used a power-ratio technique (essentially a ratio

of higher-order moments of a two-dimensional potential to the monopole moment) to

examine 59 clusters with X-ray maps available from ROSAT which had substructure

obvious to the eye, in order to specify the dynamical states of the clusters in their

sample. These authors conclude that most clusters have some level of substructure

and that the evolutionary state of the cluster can be specified by its influence on the

gravitational potential.

1.4 Goals of the Thesis

Most of the above studies have used relatively small numbers of clusters which suffer

more or less from selection effects. Although Rhee et al. applied a battery of sub-

structure tests to their sample clusters, they concluded that only 26% of them had

evidence for substructure. Furthermore, no single test resulted in more than 10% of

the sample being classified as containing significant substructure. Their conclusion is

clearly at odds with the growing evidence that suggests most clusters do indeed have

substructure. It may well be that the statistical tests applied by Rhee were simply

not sensitive enough to the substructure which they were designed to detect. On

the other hand, Jones & Forman studied a large sample of clusters with EINSTEIN

pointed observations with which they went as far as classifying the morphologies of

the clusters based on the appearance of the images. While such a catalog is poten-

tially very useful, especially for comparison to optical maps such as the ones presented

in this thesis, this catalog is not readily available. Also, in his thesis, Beers (1983)

argued that estimates of the true fraction of X—ray clusters which exhibit substruc-

ture obtained with the EINSTEIN survey are only lower limits due to selection biases
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in the observations. In particular, because the unvignetted field of view is only 40

arcminutes, subclusters with separations greater than about 20 arcminutes from the

cluster center will be missed.

Therefore, armed with new and potentially very powerful techniques for the de-

tection of substructure in clusters, the time is ripe to re-examine the question of

substructure in the projected galaxy distributions of a statistically-complete sample

of nearby Abell clusters. The goal of the thesis is to identify a subset of Abell clus-

ters which are likely to contain dynamically-significant substructure. The fraction of

clusters with substructure and the radial density profiles of clusters are used to place

constrains on the cosmological density parameter, $20.

1 .5 Chapter Overview

In Chapter 2 the motivation and selection criteria for the cluster sample is explained.

The use of the Automated Plate Scanner (APS) catalogs of star and galaxy positions

is discussed. In particular, the accuracy and completeness of the galaxy catalogs is

addressed. The background contamination within an Abell radius of each cluster is

estimated to be between 10% and 30%.

Chapter 3 presents the basic concepts behind nonparametric density estimation.

The motivation behind the use of the adaptive-kernel technique is explained. These

concepts are applied in the construction of contour maps for each of the sample

clusters. These maps can be used to identify peaks in the projected galaxy positions

for detailed comparison with X-ray surface brightness maps.

The tests employed for the detection of substructure are presented in Chapter 4.

Two tests are applied to the sample clusters and the results discussed and compared.

Comparisons are made with other techniques and the advantages and disadvantages,
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are explored.

In Chapter 5, the theory behind the estimation of $20 from the fraction of clusters

with detectable substructure is reviewed. The results of Chapter 4 are used to argue

that if the density perturbations are Gaussian at the time of recombination and if

substructure is erased on the order of four crossing times, S20 is likely to be greater

than 0.4. This is about twice the amount of matter currently inferred from the

dynamics of galaxy clusters.

Chapter 6 presents non-parametric density profiles for the sample clusters. The

question of the existence of constant-density cores in clusters is addressed. The steep-

ness of the radial-density profiles is compared to numerical simulations which suggest

a high-Q Universe.

Conclusions and suggestions for future work are presented in Chapter 7.



Chapter 2

DATASET

2.1 The Cluster Samples

In this thesis two samples of clusters will be examined for the presence of substructure

in the projected galaxy positions. These are the 56 clusters included in Dressler’s

morphological study (1980) and the 119 clusters in the sample identified by Hoessel,

Gunn, & Thuan (1980, hereafter HGT). There is an overlap of 25 clusters between

the two samples which will be used to compare the APS (Automated Plate Scanner

project at Minnesota) data with that obtained by Dressler. The combined samples

contain a total of 150 clusters.

2.1.1 Dressler’s Data

Theisample of clusters selected by Dressler includes clusters with 2 S 0.06 (oz 3 18000

km S“), and N Z 50 with magnitude my _<_ 16.5 contained in an area of few square

degrees on the sky. Unlike Abell’s definition of a cluster, the area definition was

left purposefully vague in order to avoid selecting only circularly-symmetric clusters.

This nevertheless includes 38 Abell clusters from the northern catalog, though some

(6.9. A14) have richness class 0 due to the different area definitions. In addition,

18 southern clusters (those with prefix DC and Centaurus) satisfying these criteria

12
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were identified in the southern sky using the plate copies of the ESO Quick Blue Sky

Survey. Though many of the these clusters have since been given Abell numbers in

the expanded ACO (Abell, Corwin, & Olowin 1989) catalog, the older designation

will be retained here for easy comparison with previous work. The cluster redshift

was obtained by Dressler from the literature when available. When not available he

obtained redshifts for at least two cluster members.

Dressler (1980) lists positions, estimated magnitudes rounded to the nearest mag-

nitude, bulge sizes, ellipticities, and morphological type for each galaxy in the survey.

The fact that this information was published and that these are among the closest

clusters has made members of the Dressler sample some of the most well-studied clus-

ters in the sky, hence a good test bed for the evaluation of new statistical techniques.

The background in the Dressler sample was estimated by taking an additional

15 plates at random areas of the sky and repeating the same procedure of galaxy

identification carried out for the program plates. A median value of 8 galaxies deg‘2

is quoted by Dressler or 0.0022 galaxies arcmin‘z. Follow-up studies which included

the gathering of redshift data confirmed that in most cases this is a good estimate

(Dressler & Shectman 1988).

2.1.2 HGT Sample

In addition to a re-examination of the question of substructure in the 56 clusters of

Dressler’s morphological sample, this study also includes the 119 Abell clusters in the

sample of HGT (1980). This sample was an attempt to be a volume-limited sample,

in that it consists of all northern clusters in the Abell catalog with distance class less

than or equal to 4 and richness class greater than 0, with galactic latitude |b| Z 30

(107 clusters). In addition it contains 12 clusters with richness class 0 and distance

class 3 or less at high galactic latitude.
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Although the APS project offers the unique possibility of testing (1112714 northern

Abell clusters, the reason for choosing to study these 119 clusters first is that these

clusters are the richest and closest clusters to us. As such, they have attracted the

most attention from the astronomical community and are likely to continue to do so in

the coming years. They are among the most likely targets for new redshift surveys. At

least 54 of these clusters have detectable X—ray emission indicating that they are real

systems and not simply due to the projection of physically different foreground and

background groups. (At the time of this writing 36 have pointed ROSATobservations

available from the public archive.) Each cluster has a measured redshift, so that their

distances do not need to be approximated. Lastly, avoiding clusters close to the plane

of the Galaxy helps to minimize the effect of obscuring dust which would need to be

estimated and corrected for in the calculation of a limiting magnitude, as well as

helping to keep down the number of misclassified stars in the sample.

Table 2.1 is a listing of cluster parameters for the HGT sample. Column (1) lists

the cluster name. Columns (2) and (3) list the center of the cluster as specified by

Abell in 1950 coordinates. The galactic latitude is given in column (4). Distance

classes and richness classes are given in columns (7) and (8), respectively. Column

(7) lists the Bautz-Morgan (BM) type (Bautz & Morgan 1970). The revised Rood-

Sastry (RS) type given by Struble & Rood (1982) is listed in column (8). Column

(9) lists the cluster redshift from Struble & Rood (1991).
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TABLE 2.1. HGT Cluster Parameters

 

 

Cluster RA (1950) DEC (1950) b D R BM RS 2

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A 21 00 07.9 +28 22 —33.74 4 l I B 0.0948

A 76 00 07.2 +06 30 —55.97 3 0 II-III L 0.0377

A 85 00 09.1 —09 38 -72.08 4 1 I cD 0.0556

A 88 00 00.4 —26 20 —87.80 3 1 III 0.1086

A 104 00 47.1 +24 15 —38.35 4 1 II-—III F 0.0822

A 119 00 53.8 -—01 32 -64.11 3 1 II—III C 0.0446

A 121 00 55.0 -07 17 -69.83 4 1 III I 0.1048

A 147 01 05.6 +01 55 —60.42 3 0 III I 0.0441

A 151 01 06.4 —15 41 —77.62 3 1 II cD 0.0526

A 154 01 08.3 +17 24 --44.95 3 1 II B 0.0612

A 166 01 12.1 —16 33 -77.90 4 1 III F 0.1156

A 168 01 12.6 -00 02 —62.05 3 2 II—III I 0.0457

A 189 01 21.1 +01 24 -60.19 4 1 III I 0.0349

A 193 01 22.5 +08 27 —53.25 4 1 II cD 0.0478

A 194 01 23.0 —--01 46 ~63.10 1 0 II L 0.0178

A 225 01 36.2 +18 38 -42.56 4 1 II—III I 0.0692

A 246 01 42.1 +05 34 -54.62 4 1 II—III F 0.0753

A 274 01 52.2 —06 32 —64.29 4 3 III I 0.1289

A 277 01 53.3 —07 38 -65.04 3 1 III I 0.0947

A 389 02 49.1 —25 07 -—63.04 4 2 II F 0.1160

A 399 02 55.2 +12 49 -39.47 3 1 I—II cD 0.0725

A 400 02 55.0 +05 50 —44.93 1 l II—III I 0.0231

A 401 02 56.2 +13 23 —38.87 3 2 I cD 0.0752

A 415 03 04.4 —12 15 —54.89 4 1 II cD 0.0788

A 496 04 31.3 +13 22 -36.49 3 1 I cD 0.0326

A 500 04 36.8 -22 12 -38.49 4 1 III I 0.0666

A 514 04 45.5 -20 32 —36.02 3 1 II—III F 0.0697

A 634 08 00.5 +58 12 +3364 3 0 III F 0.0266

A 671 08 25.4 +30 36 +3311 3 0 II—III C 0.0497

A 779 09 16.8 +33 59 +44.41 1 0 I—II cD 0.0201

A 787 09 23.5 +74 38 +3620 4 2 II F 0.1355

A 957 10 11.4 -—00 40 +4288 4 1 I—II L 0.0437

A 978 10 18.0 —06 17 +40.35 3 1 II F 0.0527

A 993 10 19.4 —04 43 +4169 3 0 III I 0.0530

A 1020 10 25.2 +10 40 +5233 4 1 II-III I 0.0650

A 1035 10 29.2 +40 29 +5846 3 2 II-III F 0.0799

A 1126 10 51.3 +17 08 +6098 4 1 I—II B 0.0828

A 1139 10 55.5 +01 47 +52.66 3 0 III I 0.0376

A 1185 11 08.1 +28 57 +67.76 2 1 II C 0.0349

A 1187 11 08.9 +39 51 +6585 3 1 III I 0.0791

A 1213 11 13.8 +29 33 +6901 2 1 III C 0.0484

A 1216 11 15.2 —04 12 +51.14 4 1 III F 0.0524

A 1228 11 18.8 +34 37 +6944 1 1 II—III F 0.0344

A 1238 11 20.4 +01 23 +5642 4 1 II C 0.0716

A 1254 11 23.8 +71 22 +44.46 3 1 III I 0.0628

A 1257 11 23.4 +35 37 +7005 3 0 III F 0.0339

A 1291 11 29.3 +56 19 +57.77 3 1 III F 0.0586
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Cluster RA (1950) DEC (1950) b D R BM RS 2

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A 1318 11 33.7 +55 15 +5900 3 1 II C 0.0189

A 1364 11 41.1 —01 30 +5680 4 1 III C 0.1070

A 1365 11 41.8 +31 11 +7488 4 1 III F 0.0763

A 1367 11 41.9 +20 07 +7304 1 2 II—III F 0.0205

A 1377 11 44.3 +56 01 +5911 3 1 III B 0.0509

A 1382 11 45.6 +71 43 +4482 4 1 II cD 0.1046

A 1383 11 45.5 +54 54 +6017 4 1 III I 0.0598

A 1399 11 48.6 —02 50 +5645 4 2 III I 0.0913

A 1412 11 53.1 +73 45 +4307 4 2 III C 0.0839

A 1436 11 57.9 +56 32 +5947 3 1 III I 0.0646

A 1468 12 03.1 +51 42 +6420 4 1 I C 0.0853

A 1474 12 05.4 +15 14 +7417 4 1 III I 0.0778

A 1496 12 10.9 +59 33 +5718 4 1 HI I 0.0961

A 1541 12 24.9 +09 07 +7086 4 1 I-II B 0.0892

A 1644 12 54.6 -17 06 +45.48 4 1 II CD 0.0456

A 1651 12 56.8 —03 56 +5861 4 1 I—II cD 0.0842

A 1656 12 57.4 +28 15 +87.96 1 2 II B 0.0230

A 1691 13 09.1 +39 29 +7722 3 1 II cD 0.0722

A 1749 13 27.3 +37 53 +7679 4 1 II CD 0.0562

A 1767 13 34.2 +59 29 +5699 4 1 II CD 0.0712

A 1773 13 39.6 +02 30 +6281 3 1 III F 0.0776

A 1775 13 39.6 +26 37 +7870 4 2 I B 0.0718

A 1793 13 46.1 +32 32 +7663 4 1 III I 0.0849

A 1795 13 46.7 +26 51 +77.16 4 2 I cD 0.0631

A 1809 13 50.8 +05 25 +6355 4 1 II . cD 0.0788

A 1831 13 56.9 +28 14 +7497 3 1 III F 0.0749

A 1837 13 59.1 —10 56 +4808 4 1 I—II cD 0.0376

A 1904 14 20.3 +48 48 +6229 3 2 II—III C 0.0719

A 1913 14 24.5 +16 54 +6659 4 1 III I 0.0533

A 1927 14 28.8 +25 54 +6768 4 l I—II cD 0.0740

A 1983 14 50.4 +16 57 +6011 3 1 III F 0.0458

A 1991 14 52.2 +18 51 +6051 3 1 I F 0.0589

A 1999 14 52.6 +54 32 +5477 4 l II—III I 0.1032

A 2005 14 56.6 +28 01 +6184 4 2 III B 0.1251

A 2022 15 02.2 +28 38 +6066 3 1 III F 0.0565

A 2028 15 07.1 +07 43 +5188 4 1 II—III I 0.0772

A 2029 15 08.5 +05 57 +5055 4 2 I cD 0.0777

A 2040 15 10.3 +07 37 +51.18 4 1 III C 0.0456

A 2048 15 12.8 +04 35 +4886 4 1 III C 0.0945

A 2052 15 14.3 +07 12 +5012 3 0 I—II CD 0.0351

A 2061 15 19.2 +30 50 +57.17 4 1 III L 0.0782

A 2063 15 20.6 +08 49 +4972 3 1 II cD 0.0337

A 2065 15 20.6 +27 54 +5656 3 2 III C 0.0722

A 2067 15 21.2 +31 06 +5676 4 1 III cD 0.0726

A 2079 15 26.0 +29 03 +5653 3 1 II—III cD 0.0657

A 2089 15 30.6 +28 12 +5443 4 1 i1 CD 0.0743

A 2092 15 31.3 +31 20 +5461 4 l II—III I 0.0669
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TABLE 2 . 1. (continued)

 

 

Cluster RA (1950) DEC (1950) b D R BM RS z

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A 2107 15 37.6 +21 56 +5150 4 1 I CD 0.0421

A 2124 15 43.1 +36 14 +5231 3 1 I cD 0.0671

A 2142 15 56.2 +27 22 +4870 4 2 II B 0.0911

A 2147 16 00.0 +16 03 +4449 1 1 III F 0.0377

A 2151 16 03.0 +17 53 +4453 1 2 III F 0.0360

A 2152 16 03.1 +16 35 +4402 1 1 II F 0.0444

A 2162 16 10.5 +29 40 +4604 1 0 II—III I 0.0318

A 2175 16 18.4 +30 02 +4442 4 1 II cD 0.0978

A 2197 16 26.5 +41 01 +4381 1 1 III L 0.0303

A 2199 16 26.9 +39 38 +43.71 l 2 I cD 0.0312

A 2255 17 12.2 +64 09 +3495 3 2 II—III C 0.0747

A 2256 17 06.6 +78 47 +31.74 3 2 II—III B 0.0550

A 2328 20 45.4 ~18 00 ~33.56 4 2 I I 0.1470

A 2347 21 26.7 ~22 26 ~44.17 4 1 III I 0.1196

A 2382 21 49.3 ~15 53 ~4694 4 1 II—III L 0.0648

A 2384 21 49.5 ~19 47 ~48.40 4 1 II—III F 0.0943

A 2399 21 54.9 ~08 02 —44.57 3 1 III I 0.0587

A 2410 21 59.4 ~10 09 ~4658 4 1 III I 0.0806

A 2457 22 33.3 +01 13 ~46.60 4 1 I~II C 0.0597

A 2634 23 35.8 +26 46 ~33.06 1 1 II CD 0.0315

A 2657 23 42.3 +08 53 ~50.29 3 1 II F 0.0414

A 2666 23 48.4 +26 53 ~33.80 1 0 I cD 0.0273

A 2670 23 51.6 ~10 41 ~68.52 4 3 I~II CD 0.0774

A 2675 23 53.0 +11 10 -49.l2 4 1 II F 0.0726

A 2700 00 01.3 +01 48 —58.63 4 1 II cD 0.0978
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2.2 Digital Sky Surveys

In an effort to make the large photographic surveys (such as POSS) conducted over

the last half century or so more easily accessible and therefore more useful, a number

of projects have been carried out, or are currently underway, to transfer them to an

electronic form. These include the APM at Cambridge, APS at Minnesota, COSMOS

at Edinburgh, PDS at STScI and PPM at the US. Naval Observatory (see Lasker 1995

for a review). The existence of these databases will greatly facilitate computerized

procedures for catalog construction, and the making of finding charts. It also offers

the possibility of doing science such as the large-scale distribution of stars in the Milky

Way Galaxy (Larson 1996) or, as in this case, the distribution of galaxies within a

large number of galaxy clusters.

While there are a number of such projects, the only one suitable for the present

work is the APS catalog of POSS I at Minnesota. The APS survey offers positions and

magnitudes as well as a classification of objects as stars or galaxies, unlike the PDS

scans at STScI which only provide images. And, although only partially completed,

the APS survey is available to the public, unlike the APM survey which is only

available for collaborative use.

2.3 The Minnesota Automated Plate Scanner

The Automated Plate Scanner (APS) project at the University of Minnesota (Pen-

nington et al 1993) uses a “flying spot” laser scanner. The light from a helium-neon

laser is sent through a rapidly rotating, eight-sided prism. A lens and beam-splitting

prism are used to form three 12 micron spots simultaneously on the E (red) and O

(blue) plates of POSS I as well as a reticle for positional reference of the other two

spots. The spots are detected using silicon photodetectors.
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Of the three available modes of operation, the POSS I plates have been scanned in

the threshold densitometry mode. That is, pixel information is saved only when the

density exceeds 65% above the median background value, which corresponds roughly

to 23.5 B mag arcsec"? The position of the ingress (when the density threshold has

been met), the position of egress (when the density threshold is no longer met) and

the pixel data in-between are recorded. Positions are measured at a resolution of

0.366 microns, which corresponds to 0.0245 arcsecs on the sky, with a repeatability

error of 0.6 arcsecs.

The magnitudes on each plate are estimated from the image diameter size. The

integrated isophotal magnitudes of galaxies are listed as being accurate to 0.5 mag-

nitudes. However, this error is just the reproducibility error in the measurement on

any given plate. Due to variation in the emulsion of various plates the actual error

in magnitudes is higher. Comparison of galaxies in the plate overlap regions indicate

the the plate to plate variation is in some cases as high as 1.0 magnitude on the blue

plates. This indicates the need for better magnitude calibration if studies involving

luminosity functions or comparisons between objects on different plates is to be done.

This does not however, affect the current study, except that the sampling depth in

each cluster is not really a constant but may vary slightly frOm cluster to cluster.

In those clusters which include data from more than one plate, the magnitudes were

calibrated using the mean value of all galaxies in the overlap region.

2.4 Neural Network Star/Galaxy Classification

In general, a single POSS I plate will produce on the order of 250,000 detected images.

In order to classify this many objects, a fast and fully-automated procedure is needed.

The solution of Odewahn et al. (1992) was to employ a neural network.
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Neural networks are a family of artificial intelligence algorithms which are capable

of performing pattern recognition. Typically, a neural network is trained using a

sample of pre-classified objects. To perform the star/galaxy separation 14 parameters

of the image are input into the neural network. These are: diameter, ellipticity,

average transmission, central transmission, ratio of ellipse area to area from the pixel

count, the logarithm of the area from pixel count, first moment of the image, rms error

of ellipse fit to transit endpoints, the Y centroid error, and the five image gradients

 

defined as:

G..- = T" ‘ T‘. (21)
7‘5 — 7‘]:

where T,- is the median transmission value in an elliptical annulus and semimajor axis

Ti.

Although the performance of a neural network can be judged by viewing the

output, it is not generally clear by what criteria the classification is being made. For

instance, the original training set at APS contained stars and galaxies, but did not

contain double stars. As a result, any suitably-elongated image was classified as a

galaxy with high probability. Although this problem has be identified and remedied

with a training set of double stars and the plates are being re-processed, some of the

data used in this thesis were classified before such improvements were made.

2.4.1 Contamination from Stars

The catalog of galaxy positions and magnitudes used in this thesis includes objects

classified as galaxies by the neural net with a probability of 0.85 or higher. Each

galaxy assigned a magnitude brighter than 19.0 on the blue plate was examined using

the Digitized Sky Survey (DSS) done with the PDS machines at STScI. (Although

there are plans to place the APS images online, at the time of writing these are still
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only available for a small fraction of the online catalogs.) Objects which were actually

stars or binary stars were deleted from the catalogs. From this, it was noticed that

several plates had far more contamination than the expected 10-20%. A2666, on

plate mlp 779, had the most misclassified stars with a contamination rate of 42%.

The reason for such a large contamination is probably due to the fact that A2666 is

a nearby cluster and therefore the 1.5 Mpc region covers a large area of sky, which

includes relatively more optical binary and bright stars. Furthermore, A2666, at a

galactic latitude of ~33, is relatively close to the plane of the Galaxy. This was a

major reason to limit this study to clusters with |b| 2 30. In this and other clusters

that showed a contamination rate greater than 10%, every galaxy was examined. In

all 16,000 galaxies were examined, or about half of the catalog used in this thesis.

Above 19.0 magnitude, an overall contamination rate of 12% was observed. The

breakdown with magnitude is as follows: m S 16.5, 23%; 16.5 S m < 18.0, 19%;

19.0 S m < 18.0, 13%; and m > 19.0, 8%. It is somewhat surprising that the

greatest contamination level is for galaxies brighter than 16.5 magnitude. In general

this appears to be due to bright, saturated stars being classified as galaxies. Also,

there is a sharp drop off in the number of stars deleted at magnitudes fainter than 19.0.

This is likely to be a result of the greater difliculty encountered in the determination

of which objects are stars and which are galaxies as the plate limit is approached, and

should not be used to estimate contamination levels at these magnitudes. However, if

it is assumed that the major source of misclassified galaxies (those which are actually

double stars) remains constant with magnitude and that the overall contamination

level is on the order of 15%, then the contamination left in the sample after deleting

the probable stars should be near the 8% level. This is considered acceptable since

misclassified stars should appear randomly (with a constant density) over the cluster

and as such are very unlikely to be identified as coherent substructure.
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There are also a number of objects in the APS catalog which are classified as

galaxies, usually with with very high probability, with a magnitude of 8.00. In these

cases the neural network has become confused by bright, and therefore large, stars

or galaxies. When such an object was encountered and determined to be a galaxy

from examination of the DSS image, the Third Reference Catalog of Bright Galaxies

(de Vaucouleur et al. 1991, hereafter 3RC) was searched for a nearby galaxy. The

photographic magnitude listed there (mg) was transformed to the m0 magnitude of

the APS using the average offset calculated from other galaxies on the same plate

which also had 7723 listed in 3RC. An average 1.0 magnitude needed to be added to

mB to obtain m0. In 5 cases, an entry was not found in 3RC and these galaxies were

assigned a magnitude of 16.5, the limit to which 3RC attempted to be complete plus

one magnitude.

Lastly, one cluster, A2079, had to be deleted from the sample due to a bright star

which caused a hole in the galaxy catalog. Its map is still given for completeness but

it is not used in any calculations.

2.4.2 Completeness

Because the goal was to make the analysis of each cluster as consistent as possible,

the magnitude limit for each cluster was set to an absolute magnitude Mo = ~16.2 +

510g h, as opposed to simply a fixed apparent magnitude. The value of this limit

was obtained by finding the absolute magnitude of the faintest galaxies on the plate

which contained the furthest cluster. That is, the cluster A2328 at z = 0.147 has a

magnitude limit of mo = 22.2. With the magnitude limit so defined, each cluster

is sampled to the same depth in the luminosity function, or about three magnitudes

below the knee in the Schechter luminosity function.

The luminosity function for galaxies is usually fit to an analytic function due
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to Schechter (1976). The number of galaxies with luminosity in a range of L + dL

according to the Schechter function is

n(L)dL = N“(L/L’)‘°‘ exp(~L/L*)d(L/L*) (2.2)

where L“ is a characteristic luminosity and is often referred to as the “knee” in the

Luminosity function. Likewise the integrated luminosity function is

N(L) = n*F(1 — a, L/L*) (2.3)

where I‘(a, :r) is the incomplete gamma function.

Two effects can cause cluster-to-cluster variation. The first is that the sensitivity

of the emulsion on the photographic plates may vary either across a single plate or be-

tween plates and thereby cause variations in the measured magnitudes of the galaxies.

As already mentioned, this could be as much as one magnitude, as measured by the

difference in magnitudes of galaxies in the plate overlap regions. The second is vari-

ations in sample completeness, which is a function of the apparent magnitude cutoff

used. In general there will be proportionately fewer galaxies detected at a magnitude

of 22 than at a magnitude of 19. There are two reasons for this eflect. First, galaxies

near the plate limit may fall below the detection limit due to random fluctuations

in the background or emulsion sensitivity. Second, small compact galaxies, such as

dwarf ellipticals, are more likely to be misclassified as stars at fainter magnitudes.

Odewahn et al. (1993) have examined the completeness of the APS data by

comparing the APS output for an area centered on the north galactic pole region

with that of other studies of this region. From this it was concluded the APS data

is 95% complete at an m0 = 19.5, 90% complete for 19.5 < mo < 20.0, and 80%

20 < mo < 21. Thus more distant clusters with a magnitude cutoff of 21 can have the

galaxy counts depleted by as much as 20% as compared to a nearby cluster. One way
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to avoid this completeness problem would be to use a brighter absolute magnitude for

the cutoff. However, if this is done nearby clusters will have their magnitude cutoff

raised as well. For some sparsely populated clusters, such as A194 or A634, this

would result in too few member galaxies to carry out the substructure tests with any

reliability. With this cutoff the cluster with the smallest number of galaxies is A634

with 71 galaxies. The Monte Carlo tests discussed in chapter 4 indicate that, with

this number of galaxies, only very wide separations between the groups are likely to

returned as significant most of the time. In retrospect, clusters with redshifts greater

than 2 = 0.1 should probably not have been included.

2.5 Estimation of Background Contamination

Not all of the galaxies which appear in the cluster maps will be gravitationally bound

to the clusters. The presence of some galaxies will be due to the projection of back-

ground or foreground galaxies onto the plane of the sky. (For convenience both

background and foreground galaxies will be lumped together under the term back-

ground.) An estimate of an assumed constant-density background can be obtained

for each cluster from the adaptive-kernel procedure discussed in Chapter 3. The back-

ground density can be taken as the density at the point with the largest bandwidth

factor A,- (see section 3.5). Defined as such, this density corresponds to the lowest

density region (but not necessarily the lowest density) in each map. Although other

definitions of the background density are possible, this one has the advantage of being

based on a density measurement for each cluster. This is quite different from esti-

mates that count the number of galaxies in random areas of the sky and then assume

that the background rate is constant for all clusters. It is possible that this procedure

overestimates the background since we would expect that even at the lowest densities

in the 1.5h‘1 Mpc region, some of the density there will be due to cluster members.
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On the other hand, there is really no reason to assume that the background density

is actually constant. Maps of the clusters may contain background groups and other

clusters, providing a clumpy background. Some examples include A85, which con-

tains the more distant cluster A89 (as well as the cluster A87 which is at the same

distance as A85 [den Hartog 1995]), and A1999, which contains A2000. In such cases,

contamination could be greater. Unidentified foreground clusters are not expected

to be as big of a potential problem because they will appear larger and contribute a

nearly constant density across the cluster maps, which should be well approximated

by this method of background determination. It is this background estimate that the

significance of the subclusters is estimated against in the program DEDICA discussed

in Chapter 4.

The background density estimates are listed in Table 2.2 for the Dressler clusters

and Table 2.3 for the HGT sample clusters. The cluster is listed in column (1).

Column (2) provides the total number of galaxies in each cluster. The number of

expected background galaxies is given in column (3). Column (4) is the percentage of

the total number. Column (5) is the density of the estimated background in galaxies

arcmin'z. For the Dressler clusters, the estimated background varies from half that

estimated by Dressler to nearly five times as much for A2256.
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TABLE 2.2. Estimated Background — Dressler sample

  

 

CIUSter Ntot Nback %Ntot 0'back

(1) (2) (3) (4) (5)
 

A 0014 79 17 21 0.0035

A 0076 72 10 14 0.0028

A 0119 116 15 13 0.0040

A 0151 105 15 14 0.0019

A 0154 79 17 21 0.0047

A 0168 106 6 6 0.0016

A 0194 75 18 24 0.0022

A 0376 119 25 21 0.0080

A 0400 92 11 12 0.0011

A 0496 81 15 18 0.0041

A 0539 99 17 17 0.0021

A 0548 234 24 10 0.0030

A 0592 61 12 19 0.0014

A 0754 150 26 18 0.0033

A 0838 62 38 61 0.0046

A 0957 82 16 19 0.0020

A 0978 62 12 20 0.0015

A 0979 86 18 21 0.0022

A 0993 91 27 30 0.0034

A 1069 47 8 18 0.0010

A 1139 63 10 16 0.0013

A 1142 59 8 13 0.0009

A 1185 44 15 33 0.0030

A 1377 52 12 24 0.0029

A 1631 90 23 25 0.0028

A 1644 145 19 13 0.0024

A 1656 245 22 9 0.0028

A 1736 166 18 11 0.0022

A 1913 86 26 30 0.0035

A 1983 123 20 16 0.0025

A 1991 53 9 18 0.0013

A 2040 108 20 19 0.0028

A 2063 110 13 11 0.0017

A 2151 152 13 8 0.0017

A 2256 83 25 30 0.0100

A 2589 72 20 27 0.0055

A 2634 132 27 21 0.0064

A 2657 82 17 21 0.0048

DC 0003-50 79 11 14 0.0014

DC 0103-47 53 12 22 0.0014

DC 0107-46 55 10 18 0.0013

DC 0247-31 48 15 32 0.0019

DC 0317-54 65 17 26 0.0021

DC 0326-53 161 37 23 0.0045

DC 0329-52 190 12 6 0.0014
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CIUSter Ntot Nback %Ntot aback

(1) (2) (3) (4) (5)

DC 0410-62 64 24 37 0.0029

DC 0428-53 131 21 16 0.0025

DC 0559-40 112 10 9 0.0013

DC 0608-33 122 6 5 0.0008

DC 0622-64 98 12 13 0.0015

DC 1842-63 55 15 27 0.0018

DC 2048-52 216 42 19 0.0052

DC 2103-39 108 12 11 0.0015

DC 2345-28 95 30 32 0.0037

DC 2349-28 68 24 35 0.0030

Centaurus 73 18 24 0.0022
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TABLE 2.3. Estimated Background -— HGT sample

  

 

011131391. Ntot Nback %Ntot ”back

(1) (2) (3) (4) (5)
 

A 21 291 40 14 0.0306

A 76 195 31 16 0.0045

A 85 323 64 20 0.0146

A 88 72 24 33 0.0237

A 104 151 27 18 0.0153

A 119 268 22 8 0.0036

A 121 145 34 23 0.0312

A 147 155 24 15 0.0038

A 151 342 43 13 0.0102

A 154 272 19 7 0.0069

A 166 157 19 12 0.0219

A 168 235 22 9 0.0038

A 189 157 26 16 0.0024

A 193 264 55 21 0.0108

A 194 129 8 7 0.0002

A 225 202 20 10 0.0082

A 246 103 33 32 0.0137

A 274 174 18 10 0.0246

A 277 230 43 19 0.0324

A 389 173 10 6 0.0116

A 399 254 16 6 0.0067

A 400 190 31 16 0.0014

A 401 288 23 8 0.0108

A 415 243 56 23 0.0295

A 496 226 20 9 0.0017

A 500 225 30 14 0.0114

A 514 282 24 8 0.0108

A 634 71 23 32 0.0014

A 671 293 52 18 0.0108

A 779 115 14 12 0.0006

A 787 154 29 19 0.0448

A 957 288 40 14 0.0066

A 978 295 29 10 0.0069

A 993 272 56 21 0.0135

A 1020 265 49 18 0.0175

A 1035 283 31 11 0.0169

A 1126 248 57 23 0.0349

A 1139 168 38 23 0.0047

A 1185 335 48 14 0.0037

A 1187 227 28 13 0.0150

A 1213 261 13 5 0.0025

A 1216 102 24 24 0.0057

A 1228 278 37 13 0.0038

A 1238 180 23 13 0.0101

A 1254 263 26 10 0.0087
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CIUSter Ntot Nback %Ntot aback

(1) (2) (3) (4) (5)

A 1257 212 47 22 0.0046

A 1291 395 29 7 0.0069

A 1318 286 20 7 0.0055

A 1364 226 37 16 0.0358

A 1365 163 19 12 0.0094

A 1367 200 39 19 0.0015

A 1377 402 88 22 0.0198

A 1382 183 43 23 0.0398

A 1383 284 30 11 0.0092

A 1399 284 33 11 0.0229

A 1412 244 32 13 0.0189

A 1436 358 46 13 0.0161

A 1468 166 29 18 0.0175

A 1474 187 34 18 0.0182

A 1496 355 59 16 0.0437

A 1541 205 7 4 0.0048

A 1644 297 36 12 0.0061

A 1651 205 14 7 0.0083

A 1656 424 24 6 0.0011

A 1691 247 46 19 0.0203

A 1749 219 44 20 0.0130

A 1767 308 35 11 0.0146

A 1773 282 16 6 0.0080

A 1775 268 52 19 0.0213

A 1793 248 44 18 0.0269

A 1795 288 44 15 0.0142

A 1809 308 49 16 0.0259

A 1831 308 45 15 0.0205

A 1837 268 32 12 0.0038

A 1904 386 26 7 0.0111

A 1913 276 33 12 0.0080

A 1927 245 24 10 0.0111

A 1983 439 75 17 0.0123

A 1991 368 74 20 0.0215

A 1999 187 18 10 0.0164

A 2005 139 19 14 0.0250

A 2022 322 55 17 0.0148

A 2028 231 33 14 0.0167

A 2029 437 62 14 0.0309

A 2040 278 69 25 0.0121

A 2048 314 37 12 0.0280

A 2052 270 37 14 0.0038

A 2061 285 47 16 0.0233

A 2063 211 12 6 0.0012

A 2065 422 43 10 0.0188

A 2067 283 34 12 0.0153

A 2079 318 67 21 0.0247
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TABLE 2.3. (continued)

 

CIUSter Ntot Nback %Ntot 0back

(1) (2) (3) (4) (5)
 

A 2089 158 11 7 0.0050

A 2092 267 24 9 0.0089

A 2107 275 45 16 0.0067

A 2124 298 47 16 0.0169

A 2142 311 29 9 0.0197

A 2147 465 35 8 0.0037

A 2151 388 61 16 0.0071

A 2152 471 81 17 0.0095

A 2162 124 17 14 0.0015

A 2175 448 35 8 0.0284

A 2197 313 35 11 0.0027

A 2199 389 46 12 0.0035

A 2255 417 22 5 0.0117

A 2256 451 38 8 0.0115

A 2328 131 14 11 0.0258

A 2347 90 15 16 0.0176

A 2382 197 13 6 0.0044

A 2384 127 10 8 0.0075

A 2399 256 26 10 0.0075

A 2410 235 29 12 0.0157

A 2457 248 16 7 0.0049

A 2634 411 76 18 0.0062

A 2657 171 17 10 0.0025

A 2666 171 31 18 0.0018

A 2670 255 26 10 0.0121

A 2675 182 33 18 0.0149

A 2700 129 38 30 0.0308

 



Chapter 3

PROBABILITY DENSITY

ESTIMATION

3.1 Introduction

Probability density estimation has a wide field of application. As such, it has received

a great deal of interest from the statistical community. The question which density

estimation attempts to answer is the following: given a sample of n independent

observations, X, . . .Xn, what is the probability that the next observation will be at

any given position 2:. Or, what is f (x), the probability density function (PDF), such

that

b

P(a < X < b) = / f(:r) day. (3.1)

This problem can be approached parametrically or nonparametrically. In the

parametric approach, the form of the PDF is assumed and various parameters mea-

sured. The most commonly applied PDF is the normal or Gaussian distribution,

where the average u and the standard deviation 0 of the observations are estimated

from the data. In fact, it has become so widely used that many researchers continue

to use p and 0 even for distributions which are not Gaussain, and for which robust

estimators for the location and scale of the data are required. If, as is often the

31
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case in astronomy, there is no apriorz' reason to assume a particular form of f (:13) a

nonparametric approach that makes as few assumptions as possible about the density

being estimated is desirable.

3.2 The Histogram

The oldest and most widely used form of nonparametric density estimate is the his-

togram, which dates back at least to the work of Graunt in 1662. The density estimate

of a histogram, f(:z:), is defined as:

f(a:) = N15(no. of X, in same bin as x), (3.2)

where h is the width of the bins and N is the total number of observations. In addition

to specifying the bin width h which controls the smoothness of the histogram, it is

also necessary to specify an origin for the bins. While the choice of origin may seem

to be a trivial matter, it can have quite an effect on the shape of the histogram

constructed, especially with small to moderate-sized data batches. As an example,

Figures 3.1 and 3.2 show histograms constructed from 88 measured redshifts of Abell

400. The data are taken from Beers et al. (1992) and have errors on the order of

50 km 5". Both histograms are constructed using the same data and the same bin

width, 300 km S“. The only difference between the plots is the choice of bin origin.

In Figure 3.1 the origin of the bins has been set at 5000 km 3‘1 while that of Figure

3.2 has been shifted by 200 km s‘1 and set at 5200 km 3“. Although statistically the

two histograms show the same thing, one gives the impression of bimodality while

the other does not. In this case, it turns out that most choices of bin origin lead to

a bimodal histogram, as correctly identified by Beers et al., and the first choice of

origin was simply unfortunate.
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Fig. 3.1.— Histogram of A400 velocity measurements from Beers et al. (1992). The

bin width is 300 km s'1 and the bin origin is at 5000 km s‘l.
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Fig. 3.2.— Histogram of A400 velocity measurements from Beers et al. (1992). The

bin width is 300 km s"1 and the bin origin is at 5200 km ‘1.



35

3.3 Generalizations of the Histogram

There are two simple ways to free the histogram from dependence on bin origin.

Perhaps the most obvious solution is to construct m histograms, each one with the

origin shifted by 6 = h/m, and average them together as discussed by Chamayou

(1980). The result is referred to as an Average Shifted Histogram (ASH). Thus:

fla=mzma (u)

where f,- is the histogram estimator given in equation (3.2) with bin origins of 0,

h/m, 2h/m, ..., (m — 1)h/m, respectively. It is possible to rewrite this in a more

computationally convenient form by defining a new bin width 6 = h/m (see Scott

1992). Then,

A 1 ml

f(x —_nh wm(zz)[no. of X,- in same bin as x], (3.4)

i=l~~m

where the bin is now the smaller bin and wm(z') is a weight function given by:

wm(z') = 1 — (3.5)

Note that unlike the histogram, with its box-shaped weight function, the weight

function for the ASH is an isosceles triangle. An example of the ASH is given for

the Abell 400 data in Figure 3.3 with m = 32 and bin width of 300 km 3“. Here

the bimodal nature of the PDF is clear, thus justifying the above statement that the

choice of bin origin in Figure 3.1 was merely unfortunate. There is also evidence of

the possible third peak at higher velocity causing the density estimate to flatten off.

An alternative solution is referred to by Silvermann as the “naive estimator.”

Instead of rigidly fixing the bins to some arbitrary origin on the coordinate axis

and counting the number of observations which lie in each bin, as in the classical
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Fig. 3.3.— Average Shifted Histogram of A400 velocity measurements. The bin width

is 300 km s’1 and m=32.
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histogram, in the naive estimator the bin origins are allowed to float based on the

position of each data point. This is accomplished by placing a box of width 2h and

height 1/(2hn) centered on each data point and summing the box heights at each

coordinate position 2:. Or:

 fps) = 271%; w (1'3 1X1), (3.6)
1

The function w(:z:) is again a weight function and in this case is:

1 if |:1:| < l
_ 2

10(3) _ { 0 otherwise. (3'7)

Figure 3.4 shows a density estimate constructed in this manner, again for the A400

data. Notice that this density estimate leads to very sharp peaks which can be

aesthetically unpleasant at best and misleading at worst. Also, like the histogram, its

derivative is zero everywhere except at those points where it is discontinuous, in this

case at each X,- d: h. Nevertheless, it clearly shows the two peaks as well as the lower

density plateau at high velocity; in short, all the information shown in the ASH.

3.4 The Kernel Estimator

Although both the ASH and the naive estimator discussed above are independent of

the the choice of origin, they still retain the discontinuous nature of the histogram.

This prevents them from being useful when derivatives of the density estimate are

sought, as in the peak identification procedure employed in Chapter 4. The discon-

tinuities in both the naive estimate and the ASH arise from the discontinuity of the

weight functions: the box shape in the naive estimator and the histogram or the

triangle shape in the ASH. This problem can be overcome by generalizing the weight

functions to different shapes which are themselves continuous. Thus we can gener-
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Fig. 3.4— “Naive estimator” for the A400 velocity data. Again the bin width is set

to 300 km s“.
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alize equation (3.6) by replacing the weight function w(:r) with a continuous kernel

function K(2:) where:

/_°° K(x)d:c = 1. (38)

Instead of placing a box over each data point and summing the boxes, a bump with

shape controlled by the kernel function and width specified by the smoothing pa-

rameter h is used. In the ASH, the weights must sum to m so that wm(z') could be

replaced by

. _ mK(i/m)

”mm“ "“1 KU/m)j=1—m

 i=1—m,...,m~1. (3.9)

Some commonly used kernel functions are:

Epanechnikov:

§(1— 12:2) for :52 <1
_ 4

K05) _ { 0 otherwise ’ (3'10)

Biweight:

-1—(1 — 3:2)2 for lxl < l
_ 16

K(:z:) _ { 0 otherwise ’ (3'11)

and Normal:

1 _32/2

K(11:) = . (3.12)——e

\/ 271'

A density estimate constructed by summing a series of K(X,) will inherit all of the

continuous and differential prOperties of K(:17).

It can be shown that the Epanechnikov kernel function (Epanechnikov 1969) min-

imizes the mean integrated square error (MISE) between the density estimate and

the true density, provided the optimal value of h is used. The choice of the form of
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the kernel function is not critical since the efficiencies of the other kernels differ from

that of the Epanechnikov kernel only slightly (Silvermann 1986). Thus, the choice

can be made on the basis of the desired differentiability of the estimate or speed

of calculation. For instance, the Epanechnikov and the biweight kernels both have

discontinuous derivatives at a: = :I:1. On the other hand, the normal kernel has a

continuous derivative everywhere, but suffers from infinite tails.

Figure 3.5 shows the density function constructed with the A400 data employing a

normal kernel. As with the ASH the two peaks are seen clearly in the kernel estimator

as is the possible third, lower-density peak at higher velocity. This similarity between

the ASH and the kernel density estimates is not an accident. It can be shown (Scott

1992) that in the limit as m —> 00 the ASH estimate approaches that of the kernel

estimate and the two techniques are equivalent.

Although the previous examples used only one-dimensional data, the same argu-

ments apply in two. In fact, the problem of bin origin becomes even worse since not

only is the two dimensional histogram affected by shifts in the :1: and y position of

the origin, but also by rotations of the coordinate axis. Since this thesis is primarily

concerned with density estimation in two dimensions, in the following discussion the

kernel estimator is generalized apprOpriately.

3.5 Adaptive Smoothing Methods

The kernel estimator provides a smooth density estimate which is independent of

origin. However, use of a fixed value of h will yield a density estimate which is

over-smoothed in high-density regions, tending to hide real structure, and under-

smoothed in low-density regions, which are subject to Poisson noise. One solution to

this difficulty is to vary the kernel width based on the local density.
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Fig. 3.5.— Adaptive-kernel density estimate of A400 velocity data. The smoothing

parameter h = 150 km s“.
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Perhaps the simplest nonparametric adaptive smoothing method is the nearest

neighbor density (hereafter NND.) The NND estimate in two dimensions is defined

by:

fix) — ~41“)— (3.13)
— 7mmc (:13)2 ’

where “(22) is the distance to the kth nearest neighbor and n is the number of obser-

vations. In the NND, it is the value of k which controls the smoothing. Astronomers

generally set k = 10, though It or iii/(“+9 gives the best estimate in d dimensions

(Silvermann 1986) with the “constant” of proportionality depending on the position

CE.

There are, however, a number of problems with the NND estimate. The tails of

the estimate will fall off very slowly, or 1", regardless of the true distribution. Thus

the NND estimate over-smooths in low density regions and generally performs worse

than the fixed-kernel estimator. (This is true in one and two dimensions, but for

d 2 5 the NND performs better than the fixed kernel estimator at least in the case

of a normal density distribution.) Furthermore, the NND is not a smooth function

since the derivative is discontinuous at the points 1/2(X(j) — X(3440) where the X(j)

are the order statistics of the sample (216. X(1) g X(2) g . . . g X(m.)

An alternative to the NND, first proposed by Fix & Hodges (1951) and discussed

in detail in the monograph by Silvermann (1986), is to vary the kernel width based on

an estimate of the local density. Construction of the adaptive-kernel density estimate

proceeds as follows:

Obtain a “pilot estimate” f(a:) which satisfies f(X,-) > 0 for all 2'.

Define “local bandwidth factors” A,- by:

/\.- = {fig-AF (3.14)
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where g is the geometric mean of the f(X,—):

logg = n’1 ilog f(X,-) (3.15)

i=1

and a is a sensitivity parameter satisfying 0 S a g 1.

Define the “adaptive-kernel estimate” f(:z:) by:

f(x) = n-1 2.: h““A,‘“K{h‘1A,-‘l(x — X,)}, (3.16)

i=1

where d is the dimensionality of the data (in this case d = 2).

Note that the adaptive-kernel estimator defined above is the same as the non-

adaptive (fixed) kernel estimator, except that the window width h is now replaced

by hA,, the local bandwidth indicators. The result is that the window width in the

adaptive-kernel estimator is decreased in high-density regions and increased in low-

density regions. The amount by which the window width is decreased or increased

can be altered by changing the sensitivity parameter oz. With a = 0, for instance,

all the bandwidth factors become 1 and the pilot density estimate is returned. As a

approaches 1, the density estimator is similar to a nearest-neighbor method, which

is prone to local noise and has heavy tails. It can be shown (Abramson 1982) that a

value of a = 1/2 provides a smaller bias in the density estimate than that obtained

using a fixed kernel width in both one and two dimensions (this is not necessarily

true for other choices of (1.) Thus the value of a = 1/2 is adopted throughout this

thesis.

It needs to be pointed out that current statistical research indicates that the

adaptive-kernel technique outlined above is not well behaved asymptotically (as the

number of observations approaches infinity.) For data sets larger than 20,000, it

can be shown that the adaptive procedure performs significantly worse than a fixed

kernel estimator (Scott 1992). While this is cause for concern the adaptive-kernel
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has, at present, the best track record for a wide variety of PDF’s with N g 200 and

is therefore employed in this thesis.

So far in the discussion, little attention has been paid to the subject of the smooth-

ing parameter size. Since the choice of smoothing parameter has the greatest effect

on the accuracy of the density estimate, a great deal of effort has be expended by

statisticians searching for the best possible value of h. Unfortunately, the optimal

smoothing size depends on the unknown density for which an estimate is sought and

no value of h (or even a prescription for finding h) will give the best estimate for all

density distributions. Because of this, many statisticians recommend choosing the

smoothing parameter subjectively. That is, vary h until the desired level of smooth-

ness is achieved. In fact, Scott (1992) has expressed the opinion that there is no wrong

choice of h, as information is gained by all values. The drawback of this method is

that different researchers will no doubt have different opinions of when an estimate

is “smooth enough.” There is a great temptation to oversmooth since this leads to

neater looking plots. This temptation should be avoided since further smoothing

can be done by eye, but an oversmoothed estimate can not be un-smoothed, and

real effects in the data can be lost. To avoid this, an automatic selection is clearly

desirable.

Two different methods for choosing h will be applied in this thesis. The first

involves choosing the optimal smoothing parameter based on minimizing the MISE

for a given kernel function with respect to a particular distribution or family of

distributions. For density estimation of a bivariate-normal distribution this is:

h1, = A(K){1/2(a: + 03)}1/2N“l/6, (3.17)

where A(K), a constant that depends on the kernel function, is 0.96 and 2.04 for

the normal and biweight kernels, respectively. This prescription is often referred to



45

as the “normal rule.” Being based on the normal distribution, density estimates

constructed with hn will oversmooth multimodel densities. Based on experience,

Silvermann suggests using h = 0.85h,, as a good compromise, as it works well with

bimodal as well as skewed distributions. This method, which is quick and simple to

calculate, will be used in constructing a consistent set of contour maps for the galaxy

clusters. Because most of the clusters show evidence of multimodality, a value of h =

0.75hn is used. It should be noted that the factor of 0.75 is based on experience using

the adaptive-kernel technique with clusters of galaxies and is somewhat arbitrary.

Clearly, there is a trade ofl. A unimodal-normal cluster will be undersmoothed to

some extent, while a multi-modal cluster will tend to be oversmoothed. Use of an

adaptive-kernel technique however, partially compensates for this effect, and the final

density estimate is relatively insensitive to variations in kernel width within 15% to

20% of the optimal value.

The other method, least squares cross validation (LSCV), involves finding the

value for h = hcv which minimizes the cross validation term in the expression for the

integrated square error (ISE). The ISE is given by:

ISE(f) = / f2(:r)da:+ / f2(:v)d:1:~2 / f(a:) f(:1:)da:. (3.18)

Because the first term depends only on the actual density it is constant with respect

to changes in h. Therefore minimizing the ISE is equivalent to minimizing the term:

M001) = / f(:c)2dx~2 / f(:r)f(:c)d:c. (3.19)

Unfortunately, this still depends on the unknown density f (2:) To get around this,

it can be shown that:

E {2/f(a:)f($)da:} = E {2N‘1:f_,(X,-)} , (3.20)
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where E is the expectation operator and f,_1 is the density estimate obtained with

the ith observation deleted from the calculation. If

N

Mow) = / fa) - 2N4 gm.) (3.21)

then under the mild assumption that the minimizer of E {Mo(f)} is near the mini-

mizer of Mo, hay will minimize the ISE. Furthermore, due to a result of Stone (1984),

in the limit as N —> oo, hcv will be the best possible choice of smoothing parameter

(in the sense that a density estimate constructed using it will have the minimum ISE)

and could not be improved upon even if f (2:) were known exactly.

Despite the superior asymptotic performance of the LSCV method, it nevertheless

can run into problems when applied to real data sets. In particular, Silvermann (1986)

shows that for small values of h, Mo(h) can become extremely sensitive to small scale

effects (such as the rounding of real numbers) in the data. He therefore recommends

searching of hcv only in the range of 0.25hn < h < l.5h,,, where h" is given by the

normal rule.

3.6 Application: Galaxy Number-Density Plots

To find the pilot estimate of density in the cluster contour maps, the kernel estimator

is employed on a 100x100 grid with a fixed window width. The window width is set

automatically based on the total number of galaxies in each cluster and scaled by

their average marginal variance, For this application, the kernel function is taken to

be the biweight kernel:

K2(X) =

—1 _ 'r 2 '1‘
{3n (1 x x) forx x<1 (3.22)

0 otherwise.

The biweight kernel function is employed because it gives a smoother appearing con-

tour plot than the Epanechnikov calculated on the same number of grid points.
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The contour plots in Figure 3.6 are constructed from the positions of galaxies

previously published by Dressler (1980). The bar in each plot indicates the initial

smoothing scale (h = 0.75h,,), the size of which varies from 0.16 to 1.11 Mpc. The

positions of the galaxies classified as D or cD by Dressler are indicated by filled

circles. The crosses and plus marks indicate the median positions of the groups that

are returned as significant by the KMM and DEDICA algorithms, respectively, as

discussed in Chapter 4. The maps are centered on the median position of all the

galaxies in each cluster.

Table 3.1 presents the parameters of each map. Column (1) gives the cluster

name. The number of galaxies in each cluster is listed in column (2). The RA and

DEC (1950 coordinates) of the median galaxy position for each cluster are in columns

(3) and (4). Column (5) lists the surface density of the highest contour in galaxies per

square arcmin. Column (6) lists the surface density of the lowest contour, which is

set to one galaxy per resolution element. Listed in column (7) is the contour spacing.

Columns (8) and (9) are the initial smoothing scale in arcmin and Mpc, respectively.
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50

Fig. 3.6.— Adaptive kernel maps of the Dressler sample clusters. Map pararnters

are listed in Table 3.1.
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For comparison, Figures 3.7 and 3.8 show four examples of the improvement of

the adaptive-kernel maps over those of GB. The GB map is shown on the left, while

the corresponding adaptive-kernel map (produced with the same data) is on the

right. The GB maps were constructed using 50% overlapping boxes (in essence a

two-dimensional ASH with m=2) with fixed window width of 0.24, 0.48 or 0.72h'1

Mpc (the scale bar at the upper left of the GB maps indicates the width used). The

plots in Figure 3.7 were chosen to illustrate how details in high—density regions could

easily be oversmoothed, hiding structure in the core of the clusters. In both Abell

496 and Abell 754 the GB maps were smoothed using their smallest window width

of 0.24h"1 Mpc. Although Abell 754 is obviously elongated, the structure in the core

is not resolved. This structure is clearly resolved in the adaptive-kernel maps, even

though the initial smoothing window is larger than that used in the corresponding GB

map. Figure 3.8 illustrates how undersmoothing of low-density regions can lead to

“noise”. Most commonly, this noise arises from small numbers of galaxies located in

isolated regions on the outskirts of clusters, but with separations smaller than the size

of the fixed window width. While it is possible that some of these density fluctuations

in the outskirts of the clusters may be due to galaxies that are gravitationally bound

to the cluster and not just Poisson noise of the background, they are very unlikely to

be dynamically significant to the evolution of the cluster. Essentially all of this noise

is eliminated in the adaptive-kernel maps. For comparison purposes the positions of

the galaxies are plotted in the adaptive-kernel maps.
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Fig. 3.7.— Comparison of adaptive-kernel maps with those of GB. In both A496

and A754 detail in the high density regions, which is oversmoothed in the GB maps,

is resolved in the adaptive-kernel map.
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Adaptive-kernel maps of the HGT sample clusters are given in Figure 3.9. Again,

the crosses and plus marks indicated the positions of groups found significant by

either KMM or DEDICA respectively. The cross and plus marks with squares and

circles around them indicate possible foreground or background groups based on the

magnitude distribution (see Chapter 4). The positions of the filled circles in this

case indicate the galaxies identified as cD by Struble & Rood (1982). The scale bar

indicates the size of the initial smoothing window in Mpc.

Table 3.2 gives the same quantities for the HGT sample as Table 3.1 did for the

Dressler sample, except that column (5) now lists the apparent 0 magnitude cutoff

used for each cluster. For the 25 clusters which are in common between the two

samples comparison of APS data with that of Dressler shows that on average the

maps made from the APS data have 33% more galaxies than in the Dressler maps.

This is due to the inclusion of fainter magnitude galaxies in the maps made with

the APS data. Because Dressler was interested in studying the morphology of the

galaxies in these clusters, he was forced to use a brighter limiting magnitude to ensure

accurate classification.
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Fig. 3.9.— Adaptive kernel maps of the HGT Sample. Map parameters are listed

in Table 3.2
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Figure 3.9. Adaptive-Kernel Maps for the HGT Clusters
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For the clusters which are common to both samples it is of interest to compare the

maps made with the different data sets. Although this comparison is made somewhat

difficult by the different sizes of the maps, it is clear that most of the features visible

in the Dressler maps are still visible in the maps made with the APS data. There are

a number of special cases which require further attention.

The peaks to the north and south of A119 are washed out in the larger APS data

set, so much so that the DEDICA program no longer finds them significant, although

the KMM partition remains. This could mean that the fainter magnitude cutoff used

in the second map (my z 18.6 for the APS data as opposed to my 2 16.5 in the

Dressler data) has increased the background to the point where the structure is being

washed out. However, comparison of the estimates for background listed in tables

2.2 and 2.3 indicate the opposite is true; the Dressler map has a higher background.

This is likely a consequence of the slightly larger area plotted in the APS map, which

follows A119 into a lower density region near the edge of the map. The elongated

peak to the northeast of A400 in the map made from the Dressler data is beginning

to become resolved into two components in the APS map. Lastly, the elongation seen

in the core of A1656 in the Dressler map is completely obscured in the APS map.

This is not due to the larger data set employed but to the increased area plotted in

the map. In Figure 3.10 the core region of the cluster is plotted using the APS data.

Here the bimodal nature of the density is evident.

In fact, a large fraction of the clusters in the HGT sample show a similar effect. In

the case of the Coma cluster the reality of the structure in the core can be confirmed

by corresponding peaks in the X-ray surface brightness map of the cluster (Davis

& Mushotzky 1993). A400, shown in Figure 3.11, is another example of a cluster

with apparent core substructure. In this case the EINSTEIN X-ray map is elongated

in a direction similar to the small scale structure in the core of the cluster (Beers
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et al. 1992). Further evidence of the reality of this substructure is given by the

bimodal (and possibly even trimodal) appearance of the velocity distribution plotted

in the examples of density estimation given above. While a more detailed study is

clearly called for, this raises the intriguing possibility that most clusters could have

substructure in their cores at scales of approximately 250h‘1 kpc, or the canonical

size of the core radius of clusters. By choosing to search for substructure in the 1.5h‘1

region, this study misses identification of this small-scale core structure.
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Chapter 4

TESTS FOR SUBSTRUCTURE

4.1 Introduction

Although the adaptive-kernel maps discussed in Chapter 3 can give an indication

of the existence of substructure within galaxy clusters, the presence of peaks in the

maps alone cannot prove the statistical significance of those groups. For this a test

for substructure must be employed. Proving a particular feature, such as a second

density peak, exists in a particular data set can be a difficult problem. In general it

is a simpler task to shOw that alterative descriptions of the data are not true. This is

referred to as hypothesis testing.

In this chapter two tests for substructure will be discussed and applied to the

projected galaxy positions of the sample clusters, both of which are hypothesis tests.

The first test, KMM (McLachlan & Basford 1988, hereafter MB), is a parametric

approach which fits the data to bivariate Gaussian distributions and tests whether

a single Gaussian or multiple Gaussians provide the best fit to the data. Significant

substructure is claimed for those clusters where a likelihood-ratio test rejects the

hypothesis that the data are drawn from a single Gaussian.

Although fitting the projected distribution of galaxies in a self-gravitating system

to Gaussians cannot be justified from theoretical arguments, the Gaussian neverthe-

94
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less remains the best available choice. Given the freedom to choose any mean and

standard deviation, the two-dimensional Gaussian is capable of approximating a wide

variety of shapes. More importantly, from the perspective of hypothesis testing as

applied here, it is the most well-studied statistical distribution. Other theoretically-

derived PDFS for clusters such as the Michie—King models or the isothermal sphere

are mathematically more complex and have not been well-studied by statisticians.

Furthermore, the observational evidence for such distributions in galaxy clusters is

still open to debate (see discussion in Chapter 6.)

The second test, DEDICA, is the nonparametric technique due to Pisani (1993,

1996). In this approach no assumptions are made about the shapes which the groups

might have, only that each group is identifiable by a single peak in the PDF. Each

detected peak, in turn, is assumed to belong to the background and the likelihood

of the fit evaluated. Significant substructure is claimed for for those groups where a

likelihood-ratio test rejects the hypothesis that they belong to the background.

Although in this thesis these tests will be applied only in two dimensions, the :1:

and y positions of the galaxies projected onto the plane of the sky, both algorithms

are capable of using redshifts to test for clustering in three dimensions. With the large

redshift surveys currently planned, such as SLOAN (see Bahcall 1995) and ENACS

(see den Hartog 1995), it is important that these potentially very powerful techniques

be well studied and tested.

4.2 The KMM Algorithm

KMM implements the Expectation Maximization (EM) algorithm of Dempster et al.

(1977) as described by McLachlan & Basford (1988, hereafter MB). The program is

also discussed for use in the detection of bimodality in univariate data by Ashman,
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Bird & Zepf (1994, hereafter ABZ), and has been applied extensively in the analysis

of substructure in clusters by Bird (Bird 1994a, Bird 1994b, Bird 1995, Bird, Davis

& Beers 1995 ). The KMM program provides a maximum-likelihood fit of a data

set to a mixture of Gaussian distributions, and can be used for hypothesis testing by

evaluation of a likelihood-ratio test. The number of Gaussians to be fit, 9, as well

as an initial g-group partition of the data is specified by the user. Alternatively, the

user can specify a first guess at the parameters of the individual Gaussians to be fit

(locations and covariance matrices) along with an estimate of the mixing proportions.

For this application specification of an initial partition is our preferred choice, rather

than specification of the unknown positions and sizes of the groups. Furthermore,

several objective partitioning algorithms exist that can be employed to specify the

initial partition (see Kaufmann & Rousseeuw 1990 and references therein).

If it is assumed that the data points, x1, . . .xN (the a: and y positions of the galax-

ies) are independently drawn from 9 Gaussian probability density functions (PDF),

G1, . . . 09, then the PDF for the superpOpulation G can be represented as:

9

f(x; (’5) = gflifiIX; 9), (4-1)

where f,(x; 0) is the PDF of G, and 71,- is the fraction of the superpopulation belonging

to G,. Here 0 contains the elements of the mean vectors ,u, and the covariance matrices

2,- for each group, and the vector

as = («S W (42)

is the vector transpose of all unknown model parameters. The log-likelihood of the

complete data can then be defined as:

g n

LC(¢) = ZZ Zij [108 7r1+108 fi(xi; 9)], (4-3)

i=1j=1
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where 23,-,- is an indicator variable:

2":{1 iijEG,

'3 0 if x, 3 0,.

Once an initial partition has been specified by the user, KMM calculates the log-

likelihood of the fit using equation (4.3). The program then proceeds to find the

value of (13, say (1’)“), which maximizes the expectation of the log-likelihood conditional

on the observed data and the initial fit. Using 45(1), posterior probabilities for group

membership can be estimated by:

, _. (1) _ Wifi(xj§9)

73094) )_Zf=17rtft(xj10)’ (4.4)

 

for i = 1... g. Here 7,-(xj; 4)) is the probability that the object with observation x]-

is a member of group G,. The expectation of the log-likelihood is then re-calculated

using equation (4.3) with the 2,, replaced by the 7,-(xj, ¢(1)), the posterior probabil-

ities. The program then searches for the value of 43, say (1(2), which maximizes the

expectation of the log-likelihood. These two steps, E (expectation) and M (maxi-

mization), are repeated iteratively until LC(¢) has converged to a local maximum,

provided a maximum exists (for a discussion of the convergence properties see Wu

1983). Objects are then assigned to the group for which their posterior probability

of membership is the highest.

The final value of LC(¢) is used to evaluate the improvement of the g-group fit over

the null hypothesis that the galaxies are drawn from a distribution of go Gaussians

by calculating the log-likelihood ratio A:

_ LOW)

*‘LdeV Mm

where LC(¢)(9°) is the log-likelihood of the go group fit. The greater the value of A,

the greater the improvement in the fit.
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In order to quantify the improvement in the fit obtained by the addition of another

Gaussian, the percentile (p-value) of the log-likelihood ratio can be estimated using

a bootstrap procedure, as follows. Random data samples are generated under the

null hypothesis that the data are drawn from a mixture of go Gaussians with means,

covariance matrices, and mixing proportions specified by the likelihood estimates from

the go-group fit to the original data. For each bootstrap sample, A is calculated after

fitting mixture models for both go and 9 groups. The value of A from the actual

data can then be compared to the null distribution of A values calculated from the

bootstrap samples to find the significance. In this paper go = g — 1, thus requiring

that any g-group fit be a significant improvement over the (g — 1)-group fit.

It is important to note that the EM algorithm discussed above is not the only way

to maximize the likelihood equation. Various other algorithms have been proposed

and applied. The most well known of these are a group of algorithms based on

Newton’s method (Press at al. 1986). There are also algorithms due to Fletcher &

Reeves (1964) and Nelder & Mead (1965.) Six methods are compared by Everitt

(1984) for the case of a mixture of two univariate normal densities. In general,

convergence was fastest using Newton’s method with exact expressions of the first and

second derivatives of the likelihood equation. This advantage over the EM algorithm

disappears when finite-difference approximations for the derivatives are used. Both

the Fletcher-Reeves and the Nelder-Mead algorithms showed a tendency to find points

from which no improvement could be made even though not at a local maximum. The

main advantage of the EM algorithm is that each iteration is guaranteed to improve

the fit. This is not always true for Newton’s method (McLachlan & Basford 1988).

In general less than 100 iterations are required for convergence, which on a Sun Sparc

2 takes less than 30 seconds. Thus speed of convergence was not a big issue.
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4.2.1 Monte Carlo Simulations

In order to assess the strengths and weaknesses of the KMM algorithm three questions

need to be addressed. First, how often is KMM likely to classify a given data set as

having significant substructure when such substructure does not exist? Second, for

cases where real substructure exists, under what circumstances is KMM likely to fail

to recover it? The former is traditionally referred to as an error of type 1, while

the later is referred to as an error of type 2. Finally, what is the effect of random

background/foreground contamination? In order to answer these questions a number

of Monte Carlo experiments was conducted, following ABZ.

Data points were drawn randomly from two-dimensional Gaussian distributions

with a covariance matrix of 0n = ayy = 1.0 and 03,, = 0.0, which remained fixed for

all data sets. For each case 250 data sets were generated, with the number of points

set to 50, 100, 250, and 500, with an assumed constant-density background of 0%, 10%

and 20% of the total number (numbers most relevant to the data sets, see Chapter

2). KMM was run on each data set for both the homoscedastic (common covariance)

and the heteroscedastic (independent covariance) situations. In the homoscedastic

tests, the Gaussians are forced to share a common shape, while they are allowed to

have independent shapes in the heteroscedastic case. The significance of the resulting

partitions was evaluated using the bootstrap procedure (1000 resamples) described in

the previous section, with the modification that the analytical means and covariance

matrices of the null hypothesis were used instead of the likelihood estimates. This

avoided the need to bootstrap each realization of a data set, which was impractical

due to the CPU time required.

The experiments can be divided into two broad categories, corresponding to the

different error types. Category I contains those data sets generated under the null
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hypothesis in order to test KMM’s prOpensity to identify substructure which is not

real. Category II contains data sets generated with hypothesized substructure in

order to test the ability of KMM to correctly recover the input (real) substructure.

In category I, data points were generated from a single Gaussian with mean (0,0)

and covariance described above, and KMM was requested to find two groups. Futher-

more, random data sets were generated from two equally-populated Gaussians with

the mean of the first group set to (0,0) and the mean of the second group varied

between (1.50,0.0) and (4.00,0.0) in steps of 6x = 0.25. Again, the covariance matrix

of each group remained the same as above. In this instance, KMM was asked to iden-

tify three groups. In category 11, two equally-populated Gaussians were generated as

described above, and KMM was requested to find two groups.

For category I experiments KMM was started with an objective partitioning of the

data supplied by the program PAM (Partitioning Around Medoids). As described by

Kaufmann & Rousseeuw (1990), PAM searches for a user-specified number of repre-

sentative objects (the medoids). The medoids are chosen such that the dissimilarity

(or distance) between the groups is maximized while at the same time the dissimilar-

ity within each group is minimized. A final partition is effected by simply assigning

each object to the closest medoid. In category II the initial partition of the data was

obtained by assigning each object to the closest Gaussian (note that this is the same

as running PAM with the medoids forced to be the centers of the Gaussians, without

the CPU time required by actually running PAM).

In order to compare the results of the experiments with the fits obtained using

real data, a generalization of the dimensionless parameter A11 defined by ABZ is

employed:

11,-,-

‘ /0,'0’j ,

 

A1111 = (4-6)
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where dij is the distance between the averages of groups 2' and j, and a,- is the standard

deviation of group 2' along the vector joining the average positions of groups 1' and

j. Note that with the averages and covariance matrices of the Gaussians described

above, An is simply equal to the average a: position of the second group.

For all category I experiments using homoscedastic fits, the rate of false positives

(type 1 errors) at the 90% significance level remained below 10%. When groups with

less the 20% of the total number of galaxies in each cluster were rejected, as done

in this thesis, the rate of false detection falls to 5%. The corresponding numbers for

the 95% and 99% significance levels are 3% and 1%, respectively. These error rates

changed little by the rejection of small groups or the distance between the groups.

In general, the effect of adding a constant density background lowered the rate of

substructure detection.

The results for the heteroscedastic runs show the opposite behavior. The highest

error rate at the 90% significance level reached 85%. These error rates depend less

on the significance level then on the separation of the groups and the background

level added, with wider separations and higher background leading to higher error

rates. However, the error rate is most sensitive to the small-group cutoff level. By

rejecting groups with less than 20% of the total number, the error rate, in the case

of 500 galaxies with a 20% background, is cut from 84% to 30%, with these values

remaining constant for the 90%, 95% and 99% significance levels. Applying a 20%

cutoff for small groups, the error rate only reaches the 10% level for groups with

250 or more members. It can be concluded that in the heteroscedastic case KMM

has a propensity to return highly-significant groups with few members. Therefore,

in large data sets a 20% small-group cutoff needs be employed because increasing

the significance level does not lower the error rate. When dealing with large data

sets, N g 200, the following procedure has been found to give good results. KMM
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is run first for the homoscedastic case. If a g-group partition is found to be a good

improvement (at the 90% level or better) over the (g —1)-group partition, then KMM

can be run for the heteroscedastic case using the same initial partition to see if an

improvement can be made over the homoscedastic fit, as judged by the Anderson-

Darling statistic (see McLachlan & Basford 1988 and section 4.2.3 of this thesis). In

this way the freedom to attain a better fit by allowing the groups to have different

covariance matrices is retained without losing the robustness of the homoscedastic

case. Furthermore, the Hawkins test described below will often give a good indication

of whether a heteroscedastic fit is required.

The results of the two—group, category II, homoscedastic fits with no background

are in good agreement with the univariate experiments of ABZ where the p-value was

obtained by assuming that the null distribution of the LRTS was distributed as x2, as

opposed to the bootstrap procedure employed here. In Figures 4.1 and 4.2 the results

are plotted for the homoscedastic and heteroscedastic mixture models, respectively,

using a 20% small-group cutoff, with a 10% background. With N = 50, the rate

of detection at the 99% significance level does not achieve 90% until An = 4.00,

a rather large separation. The corresponding numbers for N = 100, 250 and 500

are Ap=3.25, 2.75, and 2.50, respectively. In the heteroscedastic experiments, it

can be seen that the necessary separation needs to be larger for a given rate of

detection. Again, the addition of a constant-density background, at least to the 20%

level, lowers the significance of the fits. This result underscores the need for deep

catalogs of galaxies which sample well into the cluster luminosity function, without

over-sampling background galaxies.

Although these Monte Carlo experiments can provide a useful guide to situations

in which KMM is likely to succeed or fail to detect substructure, too much emphasis

should not be placed on them because the cases tested are quite specific. Questions
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not addressed by these experiments include how often in KMM likely to identify a

single Gaussian as three or even four Gaussians, and how good is KMM at detecting

substructure which is not Gaussian. Testing the vast array of possible parameter

space where KMM might be applied is beyond the scope of this study. However,

limited tests indicate that if a group is peakier than Gaussian, as clusters of galaxies

are expected to be (Beers & Tonry 1986), KMM will perform slightly better than

the above results indicate in the sense that closer groups can be identified. On the

other hand, highly skewed distributions may be identified as significant substructure,

especially with a large background. This can be guarded against by employing the

Hawkins test as discussed in section 4.2.3 of this thesis.

4.2.2 Application of KMM to the Dressler Sample

KMM was run on each of the Dressler clusters for g = 2, g = 3, and g = 4 groups.

The initial partition of the data was effected by assigning each galaxy to the closest

user-chosen medoid. The medoids were generally chosen to correspond to the density

peaks observed in the adaptive-kernel maps. However, multiple medoids were used for

each cluster to ensure that KMM converged to a global maximum. In the cases where

different solutions were found, the mixture model with the highest log-likelihood was

chosen. The log-likelihood ratio was calculated with go = g — 1 and the bootstrap

carried out with 1000 iterations to estimate the significance of the fit. A p-value

_<_ 0.05 was considered to be significant. From the Monte Carlo simulations, it can be

estimated that this choice corresponds to an error rate of approximately 8%. Although

a smaller error is easily achievable by applying more strict criteria, it was decided that

without redshift data such refinements would not be meaningful.

The clusters for which KMM rejects the null hypothesis at the 95% level are listed

in Table 4.1. Although a number of clusters have more than one acceptable partition,
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only the one with the best Anderson-Darling statistic is listed. Furthermore, only

those clusters with at least two groups containing more than 20% of the total are

listed. (A151 is listed in Table 4.1, even though the second group does not meet the

20% criteria, for comparison with the DEDICA results discussed below.) Column (1)

lists the cluster name. Column (2) gives the number of galaxies in each group. The

percentage of the total number of galaxies for each group in given in column (3). In

columns (4) and (5) the :1: and 3; positions along with their respective one-a errors of

the groups are listed in arcminutes. Column (6) is the significance of the partition.

It is interesting to note that several of the clusters which show multiple conden-

sations in their adaptive-kernel maps are returned by KMM as not having significant

substructure. For instance, there are four clusters, A978, A1991, DC1842-63 and

Centaurus, which appear to have two similar-density condensations near their cen-

ters. These groups are fit by KMM and have Au values of 2.1, 1.3, 0.5, and 1.7

respectively. From the Monte Carlo experiments it can estimated that the probabil-

ity (assuming these structures are real) of KMM returning significant p-values to be

0.09, 0.06, 0.02, and 0.10, respectively. These numbers would of course improve with

a larger number of galaxies. Therefore, the absence of a given cluster from Table

3.1 should not be interpreted to mean that the cluster does not have substructure,

but that a more detailed analysis (or deeper catalog of galaxies) might be required

to detect it. Centaurus for instance, is known to have substructure in its velocity

distribution (Lacey, Currie & Dickens 1986), a result that might have been predicted

from the adaptive-kernel map.
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TABLE 4.1. Mixture Model Parameters - Dressler Sample

 

 

 

Cluster N % of total :I: :l: a, y :1: 0,, S

(arcmin) (arcmin)

(1) (2) (3) (4) (5) (6)

A 119 65 56 0.7 i 11.1 0.0 :l: 5.3 1.000

28 24 —3.1 :1: 11.1 20.5 :1: 5.3

23 20 6.8 :1: 11.1 —l6.7 :1: 5.3

A 151 88 84 -2.9 :1: 18.3 3.0 :1: 15.1 0.972

17 16 —2.6 :1: 20.0 —32.5 :1: 4.5

A 154 37 47 2.5 d: 7.6 —2.0 :h 8.8 0.999

21 27 6.7 :l: 7.6 14.5 :1: 8.8

21 27 —14.4 :1: 7.6 —15.0 :t 8.8

A 194 45 60 -4.3 :f: 21.1 0.3 :1: 21.3 0.980

30 40 6.5 :t 16.8 -3.3 :1: 17.7

A 496 51 63 -—0.2 :t 5.0 —2.2 :t 12.8 0.999

17 21 -22.9 :t 5.0 0.6 :1: 12.8

13 16 17.2 :1: 5.0 3.7 d: 12.8

A 548 157 67 —11.9 :t 19.1 8.1 i 16.0 1.000

77 33 22.2 :1: 8.5 -l9.6 :t 7.8

A 754 84 56 —12.1 :1: 13.9 —0.2 :1: 12.6 0.999

40 27 13.1 :1: 13.9 9.7 :1: 12.6

26 17 18.6 :1: 13.9 —27.4 :h 12.6

A 838 38 61 3.7 :1: 15.7 —4.0 :h 12.8 0.999

16 26 —33.1 :1: 15.7 26.5 :1: 12.8

8 13 27.5 :1: 15.7 —31.2 :1: 12.8

A 957 46 56 -—7.9 :t 20.2 —0.5 :1: 22.9 1.000

36 44 5.4 :1: 19.2 0.1 :1: 17.9

A 979 50 58 0.8 :1: 19.3 0.5 :l: 7.8 0.998

19 22 6.0 :h 19.3 -37.6 :1: 7.8

17 20 4.5 :1: 19.3 30.2 :1: 7.8

A 993 45 49 —6.4 :1: 20.8 4.9 :t 11.8 0.982

25 27 13.2 :1: 6.6 -5.5 :t 23.0

21 23 —9.6 :1: 24.1 —38.1 :1: 7.4

A 1069 26 55 2.4 :1: 12.8 —10.5 :h 15.1 0.995

21 45 5.7 :1: 20.5 8.0 :t 21.0

A 1631 69 77 0.3 :1: 16.7 4.9 d: 8.6 1.000

21 23 0.3 :1: 16.7 —24.5 :1: 8.6

A 1736 133 80 —5.1 :1: 17.0 —5.4 :1: 15.6 0.984

33 20 21.4 :t 17.0 22.8 :1: 15.6

A 2151 74 49 -1.0 :1: 16.7 —2.0 :l: 7.9 1.000

47 31 —0.1 :1: 16.7 25.7 :1: 7.9

31 20 12.0 :1: 16.7 -28.0 :1: 7.9
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TABLE 4.1. (continued)

 

 

Cluster N % of total a: :l: a; y d: a” S

(arcmin) (arcmin)

(1) (2) (3) (4) (5) (6)

A 2634 66 50 0.9 :I: 11.4 —0.6 :l: 7.5 0.953

34 26 -8.0 :1: 11.4 11.7 :1: 7.5

32 24 8.4 :1: 11.4 —l6.8 :l: 7.5

A 2657 61 74 4.4 i 8.4 —0.8 i 8.9 0.960

21 26 —19.4 :t 8.4 —2.3 :l: 8.9

DC 0103-47 25 47 —19.2 :1: 10.8 0.2 :l: 9.6 0.995

16 30 13.4 :1: 10.8 -11.9 :1: 9.6

12 23 9.9 :t 10.8 32.7 i 9.6

DC 0247—31 34 71 -3.7 :t 19.8 -4.8 :l: 24.0 1.000

14 29 —0.2 :l: 2.1 0.6 :t 1.8

DC 0326-53 97 60 5.5 :1: 20.1 -l3.l 2’: 13.9 1.000

64 40 —11.5 :1: 20.1 21.6 :1: 13.9

DC 0428-53 89 68 —1.2 :t 20.7 3.8 :1: 19.2 0.999

42 32 0.4 :l: 3.7 -2.6 :l: 8.5

DC 0559-40 47 42 —9.5 :1: 12.6 6.4 :h 16.6 0.999

45 40 2.4 :t 11.4 -2.3 :l: 4.0

20 18 32.9 :1: 10.2 -7.8 :t 26.1

DC 0622—64 55 67 —0.2 :1: 18.9 9.3 :1: 18.9 0.992

24 24 —5.0 :1: 18.9 —25.7 :1: 9.3

19 19 —1.8 :1: 18.9 30.0 :1: 9.3

DC 2048-52 96 44 2.1 :h 19.3 -5.1 :1: 14.4 1.000

77 36 6.5 :1: 15.2 -10.4 i: 12.8

43 20 -5.0 :1: 14.7 35.5 :1: 6.4

DC 2103-39 94 87 1.9 :1: 19.7 —1.3 :1: 16.8

14 13 --7.9 :1: 11.3 3.5 i: 23.6

DC 2345-28 41 43 1.4 :l: 5.0 1.8 :1: 13.7 0.998

31 33 —15.3 :1: 5.0 —2.8 :1: 13.7

23 24 19.3 i 5.0 —1.4 :1: 13.7

DC 2349-28 42 62 —3.4 :1: 14.6 —6.9 :1: 8.0 0.973

26 38 —1.0 d: 14.6 19.7 :1: 8.0
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Two other clusters — A400 and Coma (A1656) - are also known to have substruc-

ture from detailed kinematic and X-ray surface-brightness studies, but are absent

from Table 3.1. Although the adaptive-kernel map of A1656 shows an elongated

plateau to the east (suggesting unresolved substructure), the adaptive-kernel map of

A400 shows no evidence of substructure in its core (Beers et al. 1992 suggest that

the low-density peak to the northeast is likely to be a background group). In both of

these clusters, the substructure is resolved in the adaptive-kernel maps made with a

deeper galaxy survey (Kriessler, Beers & Odewahn 1995).

From table 4.1 it can be seen that 26 out of 56 clusters (46%) in the Dressler sample

are better described by a multi—modal Gaussian fit than by a unimodal Gaussian, at

the 95% confidence level (again, A151 is not counted.) The Gaussian sub-groups have

a median separation from the global cluster centers of 0.6h‘l Mpc. These results are

in concert with those of Geller & Beers (1982, hereafter GB), although there are

disagreements for individual clusters. There are six clusters — A1142, A1983, A1991,

DC 0317—54, DC 0326-53, and DC 0410-62 — for which GB claim substructure which

is not confirmed by KMM. A1142 has a three-group partition that is significant at

the 90% level, and therefore did not make the 95% cut. A1991 has two clear peaks in

the central region of the cluster, one of which contains the D/cD galaxy. As discussed

above, the groups are simply be too close together in this cluster for KMM to find a

significant two-group partition.

4.2.3 Application of KMM to the HGT Sample

In the same manner as above, KMM was applied to the APS data for the HGT

sample of clusters. Because the limiting magnitude used for each cluster was fainter

than the my = 16.5 used in the Dressler sample, the HGT sample has more galaxies

available and possibly larger field contamination. In an attempt to keep the error
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rate low, the cutoff for significant structure was raised from 95% to the 99% level for

this study. Furthermore, in the previous section no attention was paid as to whether

or not a Gaussian was a good fit to the individual groups. The small sizes of the

groups found in the Dressler sample made rejecting the the Gaussian hypothesis for

the individual groups difficult and unreliable in many cases. Futhermore, the Monte

Carlo experiments suggested little need for such precautions. (In any case, all of

the partitions listed in Table 4.1 for the Dressler clusters meet the criteria outlined

below.)

The situation is different using the larger data sets offered by the APS. With

some clusters having 500 members and the possibility of 30% field contamination,

the Monte Carlo simulations discussed previously suggest that the errors could in

these cases be much larger than desired. A simple experiment illustrates the dangers.

If KMM is run on a data set which consists of 250 points drawn randomly from a

bivariate Gaussian distribution and 100 points drawn from a uniform distribution,

there is a high probability of a three-group partition being a significant improvement

over that of a two—group partition. In these cases the heavy tails on either side of the

single-peaked Gaussian have been fit as two separate Gaussians.

It should be noted that this type of error is not simply a problem which pertains

specifically to the KMM algorithm, but to all hypothesis tests. If the null hypothesis

is fundamentally wrong, it is possible to get positive results even if the hypothesis

being tested for does not pertain.

To explore the goodness of the Gaussian assumption for the groups a test due

to Hawkins (1981) is employed. Although more complicated than a x—square test,

the Hawkins’ test does not require binning of the data and can be used to test for

homoscedasticity at the same time. This test is briefly outlined below.
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To apply the Hawkins test it is necessary to assume that the mixture model

returned by KMM is the true underlying density distribution. Then the Mahalanobis

squared distance is calculated between each observation and the average of the group

(calculated excluding zij) to which it belongs. Or, if 23,5 is the jth observation in the

ith group and 5:,- is the average of the 2' group, the Mahalanobis squared distance is

defined as:

D(£L‘i, Iii, ; S) = (3317' — ji)($ij — 53,-)'S’1(a:,-j — ii). (4.7)

Here, the matrix S is given by

9

S = 20% — 1)Si/(N - 9) (4-8)

i=1

with S,- the covariance matrix of the ith group

29:1(9025 — 530035 — ii)’

714—1

5.: (4.9)

As with the mean, 5',- is calculated with 32,-]- deleted in case it contaminates the esti-

mates of the mean and covariance matrix. It can be shown that the quantity:

(721' — 1)l/

("'2'pr +10 - 1)

 
D($ij,ji; S) (4.10)

is an F distribution with d and V = n—g—d degrees of freedom (dis the dimensionality

of the data, in this case d = 2.) If “(0') denotes the tail area under F4,” to the right

of the calculated value of equation (4.10), then under the hypothesis that the ith

group is normal the aij will be distributed approximately uniformly over the interval

[0,1]. A summary of this information can be given by the Anderson-Darling statistic,

defined as:

"i

W,- = —”i — :0]- - 1) [108 020') + 108(1 - ai(m.--j+l))] /ni, (4-11)

1:1
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where for each 2' = 1,. . . ,9, am) 3 01(2) _<_ . . . g aim). According to the Monte Carlo

simulations carried out by Hawkins (1981), if W,- is greater than 2.5 the normality of

the ith group can be rejected at the 95% level. However, in applying the Hawkins test

MB recommend not using a hard cutoff since equation (4.11) only holds exactly as

N —> 00. This is because the a,,- can not be exactly uniform on the interval [0,1] unless

there is an infinite number of them. This advice has been followed here. Groups with

an Anderson-Darling statistic much greater than 3 were rejected as not significant.

However, groups in the range of 2.5 to 4 were kept if DEDICA also returned the group

as significant. The intention was to avoid rejecting significant groups simply because

they are not well fit by a Gaussian, yet at the same time avoiding the identification

of skewness or heavy tails, which usually have W,- z 7 — 12, as additional groups.

The results are given in Table 4.2. Again, only the best-fitting partition is listed.

In this case, 83 clusters out of 118 (70%) have a significant multimodal Gaussian fit.

Of the 25 clusters that are in both the Dressler and the HGT samples, if substructure

was identified in the Dressler sample then in general it was identified in the HGT sam-

ple. Again this comparison is made more difficult because of the different sizes used.

An illustrative case is that of A194. Since a similar magnitude cutoff is employed for

both data sets (m0=17.6 is approximately mV=16.5), the larger number of galaxies

in the APS data is due almost entirely from the larger area used. In the Dressler

data, KMM splits the core region of the cluster into two groups. Even though the

core region is more clearly elongated in the map made with the APS data, it is not

partitioned. Instead, KMM is drawn to the groups which lie to the southeast (A207)

and to the northwest. This same situation applies to the clusters A496, A957, and

A2634. This indicates that substructure in the core regions of the clusters is being

missed by the analysis done here and that a follow-up study which includes only the

galaxies within 1/2 of an Abell radius show be conducted.
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TABLE 4.2. Mixture Model Parameters for HGT Sample

 

 

 

Cluster Ng %N¢at %Ltot a: :l: a; y :l: 0,, mm“; mJ-m S

(arcmin) (arcmin) (0) (O)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A 21 146 50 52 —0.8 :l: 7.7 0.4 :h 4.0 19.9 18.6 1.000

82 28 28 3.0 :l: 7.7 12.1 :1: 4.0 20.1 18.9

63 22 21 —4.0 :l: 7.7 —11.7 :1: 4.0 20.2 19.1

A 85 204 63 63 -0.6 :1: 13.7 2.5 :1: 16.5 18.8 17.5 1.000

69 21 19 —22.8 :1: 3.8 —2.9 :1: 16.6 19.0 18.1

50 15 18 —9.4 :1: 14.4 —29.8 :l: 1.7 18.9 18.2

A 88 43 60 68 —0.2 :l: 7.3 -4.7 :l: 4.9 17.8 17.0 0.996

22 31 26 -7.4 :l: 7.1 6.8 :l: 3.6 18.0 18.5

7 10 6 -1.2 :1: 10.7 0.0 :h 11.4 18.4 0.0

A 104 115 76 68 —4.3 :l: 7.2 —0.9 :1: 10.0 19.9 18.8 0.992

36 24 32 14.4 :1: 3.5 2.1 :l: 9.7 19.5 19.0

A 119 142 53 56 3.7 :l: 15.9 1.1 :l: 9.4 18.6 17.0 0.999

67 25 22 5.1 :h 15.9 —23.8 i- 9.4 18.4 18.0

59 22 22 —10.1 :1: 15.9 25.9 i 9.4 18.5 17.8

A 121 44 30 28 —9.2 :l: 4.2 8.0 :l: 4.9 19.9 19.3 1.000

42 29 38 1.9 :l: 4.2 -3.0 :l: 4.9 20.3 19.6

30 21 17 —8.2 :l: 4.2 —9.7 :l: 4.9 20.0 20.0

29 20 17 8.5 :l: 4.2 10.1 :1: 4.9 20.4 20.4

A 151 184 54 59 -0.4 :1: 6.5 -5.4 :l: 16.1 19.0 17.6 1.000

93 27 26 -21.0 :1: 6.5 —-2.2 :1: 16.1 19.0 18.1

65 19 15 20.9 :1: 6.5 -—5.1 :1: 16.1 19.2 18.4

A 154 111 41 35 —0.5 :f: 12.4 -.0.3 :t 5.8 19.5 18.4 0.996

91 33 42 -4.1 :l: 12.4 —16.6 :1: 5.8 19.3 17.9

70 26 23 1.4 :t 12.4 17.0 :t 5.8 19.3 18.6

A 166 60 38 38 3.5 :l: 6.8 -2.1 :l: 3.2 20.1 19.2 0.994

52 33 34 2.8 :l: 6.8 9.0 :t 3.2 20.4 19.8

45 29 27 —l.9 :l: 6.8 —10.7 :t 3.2 20.2 19.6

A 168 114 49 48 —1.2 :1: 18.8 —0.5 :l: 8.3 18.6 17.4 0.995

74 31 25 -0.2 :t 18.8 23.6 :h 8.3 18.8 18.1

47 20 28 6.6 :1: 18.8 —24.9 d: 8.3 19.0 18.4

A 189 66 42 54 —26.7 :1: 10.3 16.9 :t 19.1 18.2 17.5 0.996

61 39 30 3.4 :l: 17.4 —0.6 :t 28.0 18.5 17.6

30 19 17 35.8 :1: 9.6 -16.1 :1: 18.7 18.3 18.3

A 193 168 64 58 0.6 :f: 13.8 0.6 :1: 15.0 18.8 17.4 0.992

56 21 15 —21.1 :1: 13.8 —18.8 :1: 15.0 19.0 18.4

40 15 27 21.3 :f: 13.8 19.8 :1: 15.0 19.2 18.9
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TABLE 4.2. (continued)

 

 

Cluster Ng %Ntot %L¢ot a: :l: a, y :1: 0y mmed mjm S

(arcmin) (arcmin) (0) (O)

(1) (2) (3) (4) (5) (6) (7) (3) (9)

A 194 66 51 57 -3.7 :1: 34.0 0.5 :1: 40.4 16.9 16.2 0.990

34 26 26 -47.0 d: 28.9 -53.6 :l: 23.5 17.0 16.8

29 22 17 58.8 :t 22.0 59.4 :1: 22.9 17.1 17.1

A 225 142 70 69 ~10.2 :l: 8.0 -0.5 :1: 11.9 19.6 18.4 0.997

60 30 31 9.8 :l: 8.0 —0.2 :1: 11.9 19.5 18.8

A 246 82 80 80 ~1.3 :t 12.8 0.3 :1: 13.1 19.8 19.3 0.999

21 20 20 18.0 :l: 4.3 17.0 :f: 4.7 20.0 0.0

A 274 122 70 68 -6.2 :h 4.4 -0.2 :l: 7.0 19.7 18.5 0.999

52 30 32 5.4 :l: 4.4 -0.8 :f: 7.0 20.0 19.1

A 277 115 50 50 1.1 :h 3.9 -0.8 :l: 8.7 19.7 18.2 0.996

70 30 34 —10.6 2!: 3.9 -1.3 :l: 8.7 20.0 18.9

45 20 16 12.4 :t 3.9 3.3 :l: 8.7 19.5 19.0

A 415 121 50 61 -2.6 :l: 9.6 8.1 :t 6.4 20.0 18.7 1.000

122 50 39 -1.1 i 9.6 -10.0 :1: 6.4 19.9 18.9

A 496 143 63 61 5.5 :1: 23.9 -6.9 :h 16.0 18.2 17.1 0.992

83 37 39 13.3 :1: 23.9 34.5 :1: 16.0 18.1 17.1

A 514 130 46 40 —9.3 :l: 7.1 —1.0 :t 9.2 19.6 18.5 0.994

78 28 35 —1.9 :t 12.6 —18.3 :t 2.7 19.5 18.5

74 26 25 11.9 :1: 6.1 3.7 :l: 10.4 19.5 18.7

A 787 111 72 59 4.4 :l: 4.5 1.5 :l: 5.6 20.4 18.9 0.995

43 28 41 —8.3 :h 2.8 0.2 :l: 7.0 20.2 19.5

A 957 143 50 54 -0.5 :h 19.5 2.0 :l: 7.6 18.6 17.5 1.000

88 31 31 -6.2 :t 19.5 -24.6 :1: 7.6 18.9 17.7

57 20 15 -3.5 :t 19.5 30.8 :f: 7.6 18.9 18.4

A 978 114 39 39 —0.3 :t 14.3 -0.4 :l: 7.0 19.0 17.9 0.996

124 42 40 -0.1 :1: 14.3 -20.6 :l: 7.0 19.2 17.7

57 19 21 4.9 :1: 14.3 19.3 :l: 7.0 19.0 18.2

A 993 215 79 77 -2.5 :b 16.4 -1.3 :1: 17.8 19.1 17.4 1.000

57 21 23 22.8 :1: 4.9 5.1 :t 17.9 19.0 18.1

A 1139 106 63 73 —14.0 :1: 13.7 -0.3 :t 22.8 18.4 16.7 0.990

62 37 27 22.6 :1: 13.7 —3.2 :1: 22.8 18.4 17.7

A 1185 155 46 52 0.9 :1: 23.8 —0.1 :l: 7.3 17.8 16.3 1.000

105 31 31 —5.7 :1: 26.6 -32.3 :t 11.7 17.8 16.7

75 22 17 —6.1 :1: 30.6 34.1 :l: 13.5 18.1 17.2

A 1213 118 45 57 2.3 :l: 8.1 1.5 :1: 17.6 18.6 17.2 0.994

94 36 28 -22.5 :1: 8.1 1.6 d: 17.6 18.9 17.9

49 19 15 24.5 :l: 8.1 -—2.4 :1: 17.6 18.8 18.4
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TABLE 4.2. (continued)

 

 

Cluster N9 %Ntot %Ltot a: :1: a; y :t 0,, mmed mjm S

(arcmin) (arcmin) (0) (O)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A 1238 77 43 49 --0.3 :1: 4.8 —1.9 :1: 12.0 19.8 18.9 1.000

57 32 27 —16.4 :1: 4.8 7.7 :t 12.0 20.0 19.6

46 26 24 15.9 :h 4.8 -7.5 :t 12.0 19.9 19.6

A 1254 211 80 70 -5.1 :1: 12.2 0.3 :1: 13.4 19.8 17.9 0.990

52 20 30 17.1 :1: 6.4 —10.9 :1: 9.3 19.6 19.0

A 1257 89 42 44 2.9 :1: 21.8 2.9 :1: 18.4 18.2 16.6 0.997

47 22 16 18.9 :1: 18.7 -36.5 :1: 8.8 18.2 17.6

39 18 15 5.5 :1: 25.1 40.5 :1: 5.9 18.4 17.9

37 17 25 —41.8 :t 5.5 6.0 :1: 26.6 18.0 17.6

A 1318 114 40 70 2.2 :1: 14.5 —12.1 :1: 9.6 19.3 17.7 0.995

104 36 20 5.5 :t 10.5 11.1 :1: 10.0 18.9 17.6

49 17 8 -23.0 :1: 4.6 10.7 :t 13.2 18.9 18.3

19 7 2 25.5 :1: 2.8 25.1 :1: 2.3 19.3 0.0

A 1364 178 79 80 0.5 :1: 7.9 2.7 :1: 8.0 19.8 18.1 1.000

48 21 20 —11.7 :1: 2.5 -7.9 :1: 5.3 19.6 19.1

A 1365 58 36 43 —2.6 :1: 8.6 —0.4 :1: 3.3 19.3 18.5 1.000

67 41 39 1.6 :1: 11.5 —12.3 :1: 4.3 19.7 18.5

38 23 18 —0.6 :1: 13.2 14.2 :h 5.1 20.0 19.6

A 1377 176 44 56 —12.1 :t 10.5 —6.8 :t 10.3 18.9 17.3 1.000

91 23 22 16.0 :1: 10.5 15.3 :1: 10.3 19.1 18.0

68 17 12 17.5 :t 10.5 —18.5 :h 10.3 19.2 18.2

67 17 10 -18.1 :1: 10.5 19.6 :1: 10.3 18.9 18.2

A 1382 84 46 56 0.3 :1: 3.5 —0.6 :1: 8.4 20.0 19.0 0.995

55 30 23 -10.9 :1: 3.5 -0.5 :1: 8.4 20.4 19.8

44 24 20 11.3 :1: 3.5 1.2 :1: 8.4 20.3 19.9

A 1399 164 58 72 —1.2 :1: 8.8 3.5 :1: 7.2 19.7 18.2 1.000

83 29 21 3.1 :1: 8.3 —10.3 :1: 4.8 20.1 18.9

37 13 7 —10.5 :t 5.5 15.8 :1: 1.6 20.3 20.1

A 1436 197 55 57 —0.4 :1: 12.6 -1.3 :1: 5.5 19.4 17.7 1.000

95 27 31 —2.9 :1: 12.6 16.5 :t 5.5 19.2 18.2

66 18 12 2.4 :1: 12.6 —18.1 :t 5.5 19.5 19.0

A 1474 76 41 39 —3.4 :1: 5.6 6.6 :1: 7.1 19.8 18.8 1.000

50 27 29 -l3.4 :1: 5.6 -7.2 :t 7.1 20.0 19.1

32 17 14 11.5 :1: 5.6 11.4 :t 7.1 19.9 19.8

29 16 18 10.3 :1: 5.6 -10.8 :h 7.1 19.3 19.4

A 1496 233 66 71 1.5 :1: 8.3 —0.4 :l: 9.1 19.8 17.8 0.997

82 23 22 -14.2 :1: 2.4 -0.7 :1: 8.1 20.0 18.5

40 11 7 12.1 :1: 3.6 12.1 :1: 3.9 20.0 19.7
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TABLE 4.2. (continued)

 

 

Cluster N9 %N¢a¢ %Ltot a: :1: a, y :1: 0y mmed mJ-m S

(arcmin) (arcmin) (0) (O)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A 1541 37 18 9 —2.8 :1: 3.0 -1.8 :t 1.3 19.6 19.4 0.998

123 60 81 3.2 :1: 8.6 6.4 :1: 5.9 19.8 18.2

45 22 10 -3.4 :1: 10.4 —11.2 :t 4.7 19.9 19.6

A 1651 103 50 49 —0.3 :1: 4.3 0.7 :1: 10.2 19.9 18.9 0.991

54 26 29 —14.1 :1: 4.3 2.0 :1: 10.2 19.7 19.3

48 23 23 12.7 :1: 4.3 —4.3 :t 10.2 20.1 19.3

A 1656 226 53 50 5.3 :1: 16.6 0.0 :t 34.2 17.1 15.3 1.000

108 25 20 —42.9 i 16.6 10.2 :1: 34.2 17.2 16.0

90 21 30 47.1 :1: 16.6 -7.9 :1: 34.2 17.2 15.9

A 1691 119 48 60 1.0 :t 4.9 0.5 i 12.1 19.1 17.8 0.997

72 29 24 15.5 i 4.9 2.1 :1: 12.1 19.6 18.6

56 23 17 -16.6 :1: 4.9 -5.0 :1: 12.1 19.6 19.0

A 1749 116 53 56 0.7 i 14.6 1.3 :1: 6.8 19.1 18.0 0.999

65 30 31 0.2 i 14.6 —16.8 :t 6.8 19.2 18.3

38 17 13 -9.3 :1: 14.6 19.9 :h 6.8 19.7 19.3

A 1767 186 60 62 -2.8 :t 11.5 -9.5 :1: 8.3 19.4 17.9 0.999

122 40 38 —0.9 :1: 11.5 9.2 :1: 8.3 19.3 18.3

A 1773 119 42 40 4.5 d: 9.4 —1.3 :1: 11.2 19.8 18.7 1.000

111 39 38 —13.2 :t 5.2 7.3 :1: 7.8 19.8 18.6

52 18 22 —2.2 :1: 2.3 —0.6 :1: 2.6 19.4 18.8

A 1775 202 75 76 5.1 :1: 11.4 0.0 :1: 11.5 19.6 17.8 0.998

66 25 24 —14.1 :1: 5.6 —8.4 :1: 7.4 19.3 18.6

A 1795 36 12 12 2.3 i 1.4 —1.6 :t 2.4 19.3 19.2 1.000

138 48 51 -2.6 :1: 14.1 11.7 :1: 9.3 19.2 18.1

114 40 37 —2.6 :t 13.7 —-13.2 :1: 7.1 19.5 18.3

A 1809 244 79 67 8.1 :1: 7.2 -1.8 :1: 10.4 19.8 17.8 1.000

64 21 33 -10.1 :1: 7.2 4.0 :1: 10.4 19.7 18.7

A 1831 132 43 44 1.6 :1: 11.6 6.5 :1: 9.8 19.6 18.2 0.995

122 40 43 1.0 :1: 11.5 —l.5 :t 10.9 19.4 18.1

54 18 13 -3.4 i 13.0 —12.3 :1: 6.5 19.7 19.1

A 1837 182 68 70 -3.1 :t 23.1 7.9 :1: 18.0 18.6 17.1 0.995

86 32 30 -2.0 :1: 19.7 —28.7 :1: 9.0 18.7 17.9

A 1904 135 35 29 —8.0 :t 9.1 8.5 :1: 9.8 19.7 18.4

107 28 28 —2.6 :1: 11.9 —17.2 d: 4.1 19.5 18.1

88 23 30 1.5 :1: 4.5 —2.5 :1: 4.9 19.2 18.1

56 15 13 16.7 :1: 4.6 1.1 :1: 12.1 19.6 18.8
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TABLE 4.2. (continued)

 

 

Cluster N9 %N¢o¢ %Ltot a: :1: a; y :1: a” mmed mjm S

(arcmin) (arcmin) (0) (O)

(1) (2) (3) (4) (5) (5) (7) (8) (9)

A 1913 193 70 67 4.4 :1: 12.9 1.1 :1: 14.8 19.2 17.6 0.994

60 22 26 -13.6 :1: 10.0 12.9 :1: 10.5 19.2 18.4

23 8 7 23.7 :1: 5.0 —18.0 :1: 8.3 19.3 19.5

A 1927 154 63 53 1.9 :1: 10.2 -1.3 :h 8.5 19.8 18.4 0.999

53 22 25 -11.0 :1: 6.3 15.4 :t 4.7 19.8 19.2

38 16 22 11.2 :1: 7.5 —l6.0 :1: 3.3 19.8 19.6

A 1983 328 75 78 0.4 :1: 19.8 —7.7 i 15.9 18.7 16.6 1.000

111 25 22 2.1 :1: 19.1 26.0 :1: 7.8 18.9 17.5

A 1991 235 64 68 —-0.3 :h 13.3 —5.7 :1: 11.9 19.1 17.5 1.000

96 26 24 -1.3 :t 16.4 19.3 :1: 6.6 19.4 18.2

37 10 8 23.5 :1: 2.9 -20.7 :1: 5.6 19.1 18.9

A 1999 116 62 59 —3.7 :1: 7.6 4.5 :t 4.9 20.1 18.7 1.000

71 38 41 0.0 :h 7.6 -8.4 :1: 4.9 19.8 18.7

A 2005 95 68 73 4.8 :1: 4.3 -—0.9 :t 6.8 20.3 18.9 0.998

44 32 27 —7.0 :1: 4.3 3.0 :1: 6.8 20.4 20.0

A 2022 214 66 74 -0.2 :1: 14.2 8.7 :t 9.9 19.2 17.4 0.995

108 34 26 4.6 :1: 14.2 -—14.5 :t 9.9 19.4 18.5

A 2028 164 71 68 —2.0 :1: 11.6 —1.1 :h 10.3 19.8 18.3 0.997

67 29 32 —0.5 :1: 12.2 15.7 :t 4.0 19.7 18.9

A 2048 200 64 63 —0.2 :1: 8.3 -1.4 :1: 8.1 20.1 18.4

100 32 34 9.2 :1: 5.5 9.4 d: 5.3 20.0 19.0

14 4 3 —11.7 :1: 4.6 —16.0 :1: 1.2 20.3 0.0

A 2063 117 55 53 -12.8 :t 23.2 1.1 :1: 28.6 18.3 17.3 1.000

48 23 22 30.4 :1: 10.9 —29.6 :h 15.2 18.4 18.1

46 22 25 1.7 :t 4.5 ~3.2 :1: 7.2 18.0 17.6

A 2067 181 64 59 0.2 :1: 10.7 0.3 :1: 11.8 19.9 18.8 1.000

67 24 25 18.4 :1: 3.8 -14.2 :1: 4.1 19.6 19.1

35 12 16 —11.1 :1: 5.2 15.6 :1: 4.0 19.7 19.4

A 2079 154 48 53 —14.7 :1: 7.4 8.0 :l: 9.6 19.5 18.2 0.995

109 34 33 8.5 :l: 9.3 -8.5 i 6.9 19.5 18.7

29 9 8 —6.4 :1: 10.8 —20.9 :h 2.9 19.7 19.7

26 8 6 21.3 d: 2.6 13.5 :t 9.2 19.7 19.9

A 2092 167 63 71 —2.1 :t 13.1 —6.7 :t 10.0 19.3 18.1 1.000

63 24 21 -8.6 :1: 6.7 11.9 :t 8.0 19.2 18.7

37 14 9 17.8 :1: 4.5 17.9 :1: 5.3 19.7 19.5

A 2142 198 64 66 1.1 :t 8.8 3.3 :1: 9.1 20.2 18.8 0.994

86 28 28 -8.2 :1: 6.5 -7.8 :1: 6.8 20.2 19.2

27 9 6 14.6 i 2.6 11.2 :h 5.0 20.4 20.4
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TABLE 4.2. (continued)

 

 

Cluster Ng %Ntot %Lto¢ a: :1: a, y :1: 0,, mmed mjm S

(arcmin) (arcmin) (0) (O)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A 2147 220 47 49 —-2.8 :1: 20.4 —1.9 :1: 17.2 18.4 16.6 1.000

168 36 37 -5.7 :1: 24.1 31.7 :t 9.6 18.3 16.8

43 9 7 —0.8 i: 27.4 —43.0 :t 2.9 18.7 18.1

34 7 6 -44.5 :t 1.7 0.7 :1: 24.1 18.4 18.3

A 2151 155 40 46 —1.3 :1: 22.2 -0.3 :t 9.1 18.3 16.7 1.000

123 32 30 —0.7 :1: 22.2 29.3 :h 9.1 18.3 16.9

110 28 24 7.8 :t 22.2 —29.6 :1: 9.1 18.6 17.2

A 2152 180 38 38 —8.5 :1: 13.7 —8.0 :t 25.1 18.5 17.0 0.995

152 32 37 32.9 :1: 9.6 -19.8 :t 14.4 18.5 16.8

112 24 21 17.0 :t 13.5 18.0 :1: 16.4 18.5 17.4

27 6 4 —40.4 :1: 2.8 —l.4 :t 26.4 18.8 18.8

A 2175 222 50 46 -1.6 :1: 8.3 1.3 :1: 8.3 20.2 18.9 1.000

161 36 38 —7.9 i 5.7 —6.6 i 5.3 20.2 18.9

65 15 15 9.3 :h 4.3 10.5 :1: 3.9 20.4 19.6

A 2197 202 65 62 —17.3 i 17.1 -—9.7 :1: 28.5 17.9 15.9 1.000

111 35 38 26.6 :1: 17.1 3.8 :1: 28.5 17.9 16.3

A 2199 155 40 45 —5.7 :1: 18.7 6.8 :1: 16.5 17.8 16.3 0.996

93 24 19 -—5.0 :1: 24.5 -30.7 :t 14.0 18.1 16.9

93 24 23 37.1 :1: 10.2 —2.6 :1: 27.8 17.9 16.7

48 12 12 -9.4 :1: 20.1 45.7 :1: 6.5 17.7 17.2

A 2255 276 66 71 —0.6 :1: 9.8 —6.0 :1: 7.0 19.6 17.9 1.000

141 34 29 ——1.1 :t 9.8 11.3 d: 7.0 19.8 18.5

A 2256 237 53 54 4.1 :1: 13.7 0.9 i: 13.5 19.0 17.3 0.995

121 27 21 —12.6 :1: 7.9 —16.1 :t 7.5 19.3 18.0

93 21 26 —0.5 :t 4.2 —3.7 :1: 3.8 18.8 18.0

A 2347 44 49 39 -0.5 :1: 7.0 -0.8 :1: 2.7 20.6 19.8 1.000

25 28 40 -—1.9 :1: 7.0 9.9 :h 2.7 20.9 21.0

21 23 21 —0.8 :t 7.0 -—9.7 :t 2.7 20.6 21.0

A 2399 149 58 57 8.4 :1: 9.4 0.7 :t 14.9 19.0 17.7 0.999

107 42 43 -14.3 :t 9.4 —0.3 d: 14.9 19.2 17.9

A 2410 183 78 84 1.2 :1: 10.7 —2.3 :1: 9.3 19.6 17.6 0.999

52 22 16 —10.2 :1: 5.4 13.5 :1: 5.0 19.5 18.9

A 2457 148 60 63 2.1 :t 13.5 1.2 :1: 5.9 19.1 17.8 1.000

58 23 19 2.7 :1: 13.5 -18.4 :h 5.9 19.5 18.8

42 17 17 7.9 :1: 13.5 19.9 :t 5.9 19.3 18.9

A 2634 280 68 73 —9.8 :1: 22.0 —6.1 :t 26.9 18.0 16.4 0.999

97 24 20 41.4 :1: 9.0 -1.9 :t 29.0 18.2 17.1

34 8 8 —43.2 :t 7.1 36.7 :1: 7.3 18.0 17.7
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TABLE 4.2. (continued)

 

 

Cluster N9 %Ntot %Ltot :L' :l: 0’; y :l: 0'” mmed mjm S

(arcmin) (arcmin) (0) (O)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A 2657 77 45 46 2.0 :1: 8.5 -1.4 :1: 20.2 18.5 17.8 0.999

56 33 32 —26.5 :1: 8.5 —4.9 :1: 20.2 18.5 18.0

38 22 22 28.9 :1: 8.5 —6.6 :1: 20.2 18.5 18.2

A 2666 103 60 70 —28.7 :1: 22.2 —2.7 :1: 37.1 17.8 16.5 1.000

68 40 30 31.4 :1: 16.7 0.9 :t 35.7 18.0 17.5

A 2670 132 52 57 0.0 :1: 4.4 1.9 :1: 10.8 19.0 17.9 1.000

77 30 25 —16.2 :1: 4.4 1.8 :1: 10.8 19.4 18.6

46 18 18 13.1 :1: 4.4 —3.0 :t 10.8 19.1 18.7

A 2675 100 55 50 -2.7 :1: 10.4 —6.9 :1: 8.4 19.5 18.4 0.999

82 45 50 —1.2 :1: 11.4 12.7 :1: 5.3 19.5 18.2

A 2700 66 51 51 —0.8 :1: 8.6 —l.4 :1: 5.6 19.6 18.9 1.000

43 33 35 4.3 :1: 7.9 9.0 :1: 5.2 19.8 19.2

20 16 14 -1.5 :t 8.0 -15.3 :1: 1.4 19.5 0.0
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Likewise, A151, with a larger area in the Dressler data, clearly has a low density

elongation to the east which is partly resolved in the smaller and deeper map of the

APS data. It is this elongation that KMM identifies as significant and not the peak

to the south as in the Dressler data. The peak to the south may still be significant

except that a number of its members did not make the one Abell radius cutoff. Other

clusters similar to A151 include A978, A1139, A1913, A1983, and A1991.

In six cases — A168, A1185, A1377, A1656, A2063, and A2256 — KMM indicates the

existence of substructure that is not present in the Dressler data. While it is possible

that three, A168, A1185, and A1656, are due simply to the increased size of the APS

map, the others are of similar size and the complexity in the maps is most likely

due the the inclusion of fainter galaxies. Whether or not these structures are real,

or simply due to the background, can only be resolved with redshift measurements.

However, using the procedure discussed below, it appears likely that the substructure

in A168, A1377, and A2063 is due to background contamination.

4.3 The DEDICA Algorithm

Many of the disadvantages associated with the use of KMM to detect substructure in

galaxy clusters can be eliminated by using a method which evaluates the significance

of the peaks in the probability density distribution. The easiest way to do this is a

procedure similar to that adopted by GB: count a peak as significant if its density is

30 above the background density. The main drawback to such a procedure is that

the significance of the group depends critically on the assumed background density.

Furthermore, as in KMM, it is advantageous to be able to assign individual galaxies

to a specific group and to ascribe membership probabilities, this time without making

any assumptions about the form of the underlying PDF for the groups. The details of
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such a clustering procedure have been worked out and implemented by Pisani (1996)

in the program DEDICA, which is summarized below.

First, the PDF of the cluster needs to be calculated. This is accomplished using

the adaptive-kernel method used in Chapter 3 for construction of the contour maps.

In this case it is advantageous to use the normal kernel despite its infinite support

and lower efficiency since the next step requires the calculation of the derivative of

f(:1:) Furthermore, more attention needs to be given to the choice of initial smoothing

parameter h, since the number of groups and their significance will be dependent on

the density estimate.

Pisani (1996) recommends choosing h by the method of minimizing the cross

validation term in the IMSE (least squares cross validation, LSCV). To accomplish

this DEDICA sets h = 4h" (hn being the smoothing window as specified by the

normal rule) and reduces it by a factor of 2 with each iteration till the value which

minimizes the CV term is found. However, because LSCV can be sensity to small-

scale effects in the data for small smoothing parameters (Silverman 1986), in this

thesis h is given a lower bound of 100 kpc. This is about the size of a large galaxy.

If LSCV returns of value of h smaller than this size, it is deemed to have failed and

a value of h = 0.85hn is ad0pted. Without taking this precaution, h can, at times,

be reduced to scales of 20 kpc or so and even the high-density peaks are assigned less

than 5% of the galaxies within an Abell radius. Thus the trend appears to be that

larger values of h will generally lead to larger subcluster sizes. This is due to the fact

that smaller smoothing parameters lead to density estimates with larger gradients,

and therefore a smaller spatial extent for the peaks found in the next step. In most

of the clusters hay g 0.85hopt, and is deemed to have failed in about 40% of the

cases. This poor success rate, taken with the fact that a majority of the rest of the

clusters have hcv 2: how, makes it difficult to justify the extra expense in CPU time



122

necessary to calculate hcv. Furthermore, it is unclear whether the goal of minimizing

the ISE of the density estimate is appropriate when calculation of the derivative of

the density estimate is sought.

The next step is to identify the peaks in the density estimate, and therefore

possible subclusters. This is done by an iterative scheme due to Fukunaga & Hostetler

(1975.) The local maxima of f (:1:) can be found by the limit of the sequence:

 Wm") (4.12)rm+1 = rm + a2

where m, the position vector, is set to the position vector of each data point in turn.

The factor (12 controls the rate of convergence of the sequence which is optimized

with:

2

fillVfU'O/“TIW'
(4-13)

 

0.2:

The iterative procedure is stopped when |rm+1 — rmI/rm g 10‘s.

A cluster is then defined as the group of points with positions vectors 7‘,- for which

equation (4.12) converges to the same value of r. Clusters with only a single member

are considered to be isolated points.

Once the set of V groups, C“, and no isolated points has been identified, f (r), the

PDF of the entire sample, can be defined as:

f (r) = 2 MT). (4.14)

:0

where f,,(r) is the PDF for each of the l/ groups:

f” = i Z K(rj.a,-;r). (4.15)

N 26014
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and fo(r) is the PDF of the background. The statistical significance of the nth group

can be evaluated using a likelihood-ratio test:

(4.16)

Thus defined, the likelihood ratio is distributed as chi-square with one degree of

freedom (Materne 1979). The quantity LN is the sample likelihood or:

i=1 [1:0

LN = H [i 12403)] 1 (4'17)

and L01) is the value that LN would have if the 11th cluster were described by f0(r)

and thus actually belonged to the background. Or:

I
I

N 1

111:1“[“61 -(f#Ti) +37 2 K(7”j,00;7‘i) . (4.18)

1'60»

As discussed in Chapter 2, the background density ad0pted here is the density at the

point with the largest bandwidth factor hAo in the adaptive-kernel density estimate.

Another choice of the background density fo(r) could be the density due to all points

defined as isolated. In many cases though, all points are assigned to one group or

another with no points listed as isolated. Finally, the probability that the ith galaxy

belongs to the 11th cluster can be defined as:

f__u(7'i)
P(z' E p): f—W (4.19)

One added degree of freedom available with the DEDICA algorithm which needs

to be mentioned is the ability to merge nearby groups into a single group. The

merging is accomplished by a minimum spanning tree technique. Thus the user can

specify, to some extent, on what length scales DEDICA is to search for substructure

by specifying a distance den-t. Density peaks which are further apart then do,“ will

be considered distinct, while those closer will be merged. With do.“ set very large,
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all galaxies will be in one large group; with dc,“ very small most galaxies will be in

their own group and isolated. This is different from the behavior of KMM, where the

scale of the substructure is set by the scale of the data, 1.6., by one Abell radius in

this case.

In the application of DEDICA to the clusters den-t is set such that all galaxies

are assigned to one large group. It is then lowered and the results analyzed as each

successive group is split off from the main cluster. The process is halted before the

significant groups found in previous steps are split into their generally non-significant

component parts.

4.3.1 Application of DEDICA to the Dressler Sample

The results of the DEDICA runs are given in Table 4.3. Only groups significant at the

99% level are included. Column (1) lists the cluster. Column (2) gives the number

of galaxies assigned to each group while column (3) gives the percentage of the total

number in the cluster. The median a: and y positions of the galaxies in each group is

listed in columns (5) and (6) along with their one sigma errors. Column (7) gives the

significance of each group evaluated against the background which is listed in Table

2.1.
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TABLE 4.3. DEDICA Cluster Parameters for Dressler Sample

 

 

 

Cluster N % of total a: :1: a, y :t 0,, S

(arcmin) (arcmin)

(1) (2) (3) (4) (5) (6)

A 14 61 77 —4.3 .1: 10.1 3.3 d: 8.7 1.000

18 23 12.2 :1: 7.7 —14.1 :1: 7.7 1.000

A 76 35 49 10.3 i 8.4 —4.4 :1: 12.0 1.000

25 35 —6.0 :1: 7.3 11.8 :1: 7.9 1.000

A 119 85 73 3.6 :1: 11.6 0.6 :1: 10.1 1.000

16 14 —13.1 :1: 7.0 21.7 :1: 5.2 1.000

15 13 0.2 :1: 6.2 —17.9 :1: 4.0 1.000

A 151 72 69 0.5 :1: 15.4 2.9 :1: 10.4 1.000

21 20 2.5 :1: 10.6 -29.4 :1: 7.2 1.000

A 154 41 52 4.4 :1: 8.3 0.3 :1: 6.7 1.000

18 23 -11.7 :t 7.4 —19.4 :1: 5.9 1.000

16 20 0.2 :h 5.1 18.3 :1: 4.8 1.000

A 194 37 49 9.1 d: 16.5 —11.0 :1: 11.5 1.000

29 39 —11.3 :1: 13.6 10.8 :1: 13.9 1.000

A 400 51 55 10.1 i 13.9 —1.8 :1: 13.8 1.000

29 32 —15.1 :1: 10.4 13.5 :1: 13.8 1.000

A 496 60 74 —0.9 :1: 16.0 4.6 :1: 12.5 1.000

21 26 0.4 :1: 4.4 —13.7 :1: 5.9 1.000

A 548 112 48 19.3 d: 10.3 -15.9 :1: 14.2 1.000

89 38 —24.8 :1: 11.9 6.0 :1: 12.2 1.000

33 14 —7.5 :1: 10.0 25.6 :1: 6.5 1.000

A 592 29 48 —2.0 :h 14.0 4.0 :t 10.6 1.000

14 23 -21.6 :1: 7.6 -9.7 :1: 8.6 0.999

9 15 39.6 :1: 0.8 18.1 :1: 17.0 0.994

A 754 46 31 —18.1 :t 11.3 -2.1 :1: 6.9 1.000

36 24 21.3 :1: 12.8 -19.6 :1: 24.9 1.000

33 22 2.1 :1: 4.3 5.0 :h 4.2 1.000

A 838 17 27 18.7 :1: 7.1 2.1 :t 10.4 1.000

14 23 —0.7 :t 3.1 —5.0 :1: 9.5 0.999

8 13 —40.8 :t 3.5 24.2 :1: 3.1 0.998

A978 32 52 —0.5 :1: 14.2 15.4 d: 12.6 1.000

30 48 0.3 :t 15.1 —12.8 :1: 7.7 1.000

A 979 47 55 -3.8 :1: 11.5 1.5 :1: 10.3 1.000

17 20 9.8 :1: 15.8 —38.2 2’: 4.9 1.000
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TABLE 4.3. (continued)

 

 

Cluster N % of total a: :1: a, y :b 01, S

(arcmin) (arcmin)

(1) (2) (3) (4) (5) (6)

A 993 28 31 —14.6 :1: 14.5 -0.5 :1: 7.7 1.000

21 23 7.0 :1: 7.6 16.0 :t 6.0 1.000

19 21 15.5 :1: 6.0 -20.5 :1: 15.8 1.000

A 1069 15 32 10.7 :1: 6.3 4.0 :t 11.8 1.000

15 32 -3.0 :t 6.8 -20.0 :1: 7.3 1.000

A 1139 39 62 6.2 :1: 18.7 5.2 :1: 10.7 1.000

20 32 —13.5 :1: 10.8 -11.6 :1: 11.0 0.999

A1142 19 32 -4.4 :h 3.2 20.0 :1: 14.2 1.000

17 29 7.3 :1: 8.4 -23.1 :h 6.3 1.000

12 20 13.4 :1: 11.7 2.8 :1: 9.8 0.997

11 19 —21.5 :1: 5.6 -2.4 :1: 4.8 1.000

A 1631 50 56 —2.9 :t 17.6 7.6 :1: 8.5 1.000

20 22 5.9 :h 5.5 —1.6 :1: 5.8 1.000

20 22 —3.8 :1: 14.4 -26.1 :1: 7.9 1.000

A 1644 67 46 3.3 :1: 19.7 18.1 :1: 11.0 1.000

63 43 —4.7 :t 17.4 —14.0 :1: 11.2 1.000

A 1656 132 54 —3.7 :1: 11.3 —0.5 :1: 10.8 1.000

64 26 24.3 i 9.2 —10.8 :1: 19.7 1.000

A 1736 76 46 —3.2 :1: 22.0 -15.2 :t 10.5 1.000

56 34 —2.4 :1: 13.3 8.2 :1: 9.8 1.000

A 1913 29 34 5.4 :1: 4.2 2.4 :1: 8.0 1.000

19 22 -8.4 :t 6.6 -3.4 :1: 10.8 0.997

A 1983 54 44 2.8 :1: 12.7 -3.2 :1: 10.0 1.000

35 28 0.6 :1: 11.0 20.8 :1: 8.0 1.000

A 1991 26 49 8.0 :1: 14.9 -6.9 :l: 9.7 1.000

18 34 —2.0 :1: 12.9 14.2 :1: 8.6 1.000

A 2151 73 48 11.3 :1: 12.8 -8.1 :1: 13.6 1.000

46 30 —3.8 :1: 12.6 26.2 :1: 8.8 1.000

25 16 -18.5 :1: 5.2 0.3 :h 7.4 1.000

A 2256 53 64 —2.7 :1: 9.8 -3.4 :1: 3.9 1.000

26 31 4.6 :1: 6.5 7.4 :1: 4.7 1.000

A 2589 31 43 -0.7 :1: 5.7 —8.7 :1: 7.8 1.000

30 42 6.0 :t 10.0 4.0 :t 4.7 1.000

A 2634 66 50 —1.4 :t 11.8 -3.4 i 7.4 1.000

38 29 -6.6 :1: 9.6 11.9 :1: 5.3 1.000

16 12 13.5 :1: 5.8 -14.4 :1: 4.8 0.999
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Cluster N % of total :I: :1: a, y :1: 0,, S

(arcmin) (arcmin)

(1) (2) (3) (4) (5) (6)

A 2657 58 71 —0.5 :1: 8.0 1.4 :1: 9.4 1.000

13 16 17.8 :1: 2.6 -0.1 :1: 7.3 1.000

11 13 --20.7 :1: 4.5 —ll.l i 4.7 0.999

DC 0103-47 26 49 —18.3 :t 10.5 0.0 :t 10.9 1.000

15 28 14.0 :1: 13.7 —10.3 :1: 11.4 0.999

12 23 9.6 :1: 6.6 33.4 :1: 7.5 1.000

DC 0317-54 47 72 2.8 :1: 10.7 8.2 :1: 19.5 1.000

17 26 —21.2 i 12.8 -20.0 :h 9.3 1.000

DC 0326-53 49 30 1.0 :1: 11.4 -13.8 :1: 10.0 1.000

33 20 —25.4 :1: 8.1 26.5 :1: 7.1 1.000

DC 0329-52 146 77 —3.5 :t 11.9 2.2 :1: 14.3 1.000

39 21 24.8 :1: 7.1 —17.1 :1: 14.5 1.000

DC 0410—62 31 48 7.0 :1: 14.5 —7.2 :1: 13.2 1.000

18 28 7.6 :h 18.1 36.1 :1: 8.2 0.996

15 23 —32.4 i 7.9 —2.7 :h 21.7 0.995

DC 0428—53 55 42 —0.1 :1: 9.7 -8.1 :1: 8.6 1.000

31 24 1.6 i 5.4 13.4 :1: 9.2 1.000

DC 0559—40 53 47 9.8 :1: 12.4 -5.4 :t 9.2 1.000

34 30 —12.1 :t 11.9 3.6 :1: 11.4 1.000

DC 0622-64 71 72 3.4 :t 15.9 1.7 :t 14.2 1.000

16 16 —13.0 :1: 10.8 —26.4 :1: 5.8 1.000

11 11 —10.5 :1: 8.3 32.8 :1: 8.2 0.998

DC 1842-63 25 45 ——4.0 :t 6.8 6.5 :1: 5.9 1.000

23 42 3.5 :1: 10.7 —5.1 :1: 6.7 1.000

DC 2048-52 144 67 1.4 :t 13.1 —8.8 :1: 13.0 1.000

35 16 —11.0 :1: 8.1 34.4 :1: 7.7 1.000

28 13 25.3 :1: 9.1 21.1 :1: 16.2 1.000

DC 2103-39 39 36 13.4 :1: 10.3 —3.2 :t 12.4 1.000

36 33 —8.9 i: 9.9 4.1 :1: 8.1 1.000

17 16 0.0 :1: 10.5 32.6 :1: 7.3 1.000

16 15 —18.5 :1: 5.4 —16.5 :1: 3.8 1.000

DC 2345-28 57 60 1.8 :1: 11.2 2.8 :1: 6.4 1.000

17 18 -15.9 :1: 6.9 —17.9 :1: 7.6 1.000

11 12 18.9 :1: 5.1 -9.4 :1: 3.5 1.000

DC 2349—28 31 46 3.9 :1: 10.8 —3.7 :1: 6.7 1.000

24 35 0.8 :1: 15.8 20.6 :1: 6.6 1.000

10 15 —11.8 :h 4.0 —17.8 d: 4.7 1.000

Centaurus 32 44 18.4 :t 10.7 -3.6 :1: 14.4 1.000

30 41 —13.9 :1: 8.9 2.4 :1: 19.0 1.000
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There are 39 clusters (70%) in the Dressler sample that have significant groups at

the 99% level. Many of the peaks visible in the adaptive-kernel maps which KMM

was unable to return as significant, because of the small 11 values of the groups, have

been identified by DEDICA. These include A76, A400, A978, A1139, A1983, A2657,

A1991, DC 0317—54, DC 0329-52, DC0410—62, DC 1842-63, and Centaurus. The

partitions of A14 and A1142 are returned by KMM with a significance of 90% and

therefore just missed the 95% cutoff. Note that all of the clusters identified by GB

as having substructure have been confirmed by DEDICA (although four clusters —

A119, A2657 DC 0622-64, and DC 2048-52 — are not counted in this study since in

these cases the number of galaxies in the groups is less than 20% of the total.) This

is not surprising given the similarity of the two approaches. Likewise, there are 22

clusters for which DEDICA gives positive results which did not meet the GB criteria.

In these cases the difference is caused by the use of the adaptive-kernel density instead

of the fixed, box-car smoothed density of GB. With a smaller kernel width used in

the high-density regions, the peaks can have a higher density than if the galaxies in

that peak had been spread out over the larger area of the bin width used by GB.

On the other hand, there are six clusters for which substructure found by KMM is

not confirmed by DEDICA. These clusters are A957, A2657, DC 0247—31, DC 0608-

33, DC 2048-52, and DC 2345-28. Where these groups are identified by DEDICA,

they are listed in table 4.3. In most cases the groups simply did not have enough

members to make the 20% cutoff. This applies to a number of other groups identified

by KMM as well, such as the group to the south in A119 and the groups to the east

and west in A496. The exception to this is DC 2048-52 which does not have any

similar partition given by DEDICA. Although the Monte Carlo experiments indicate

that the probability of a false positive in a cluster with only 48 members is small, the

fact that there is no confirming homoscedastic fit or DEDICA partition for this case
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leads to the suspicion that the structure in this cluster is not real.

4.3.2 Application of DEDICA to the HGT Sample

In a similar fashion, DEDICA was applied to the HGT clusters with the results listed

in Table 4.4. Column (1) lists the cluster name. Column (2) gives the number of

galaxies in each group. The percentage of the total number of galaxies for each group

in given in column (3), while the percent of the total luminosity contained in each

group is given in column (4). In columns (5) and (6) the a: and 3; positions, along

with their respective 10 errors of the groups are listed in arcminutes. The median

apparent magnitude mmed for each group is listed in column (7). The average apparent

magnitude of the 10th-to-20th ranked galaxy is given in column (8). Lastly, column

(9) lists the significance of each group.

In all, 96 (81%) of the clusters in the HGT sample are returned by DEDICA as

having significant substructure. A comparison between the Dressler and APS samples

shows that the partitions found significant by DEDICA are much more stable than

KMM to variations in the chosen field size of the clusters. Despited the changes

in size and magnitude limit between the two samples, 12 clusters are returned with

essentially the same partition. In five cases — A957, A1185, A1377, A2040, and

A2063 — substructure was detected by DEDICA in the deeper survey that was not

detected in the Dressler data. However, these are all likely to be due to background

contamination. Other differences can be explained as groups leaving (as in A151) or

entering (as in A194 and A496) the field of view. In the case of A2256, however, it

is clear that the larger background population in the APS map has washed out the

structure so that it can no longer be identified. On the other hand, this larger number

of galaxies has enabled KMM to identify the group, which it could not in the smaller

Dressler sample.
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TABLE 4.4. DEDICA Cluster Parameters for HGT Sample

 

 

 

Cluster N %Ntot %Lm z :1: 03 y :1: 0,, mmed mjm S

(arcmin) (arcmin) (0) (O)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A 21 141 48 46 -2.6 :t 5.5 -0.2 :l: 5.4 20.0 18.8 1.000

69 24 25 3.4 :h 5.8 10.2 :t 4.6 20.0 19.0 1.000

39 13 17 —10.6 :1: 4.8 -12.8 :1: 3.3 19.7 19.2 1.000

A 76 90 46 50 2.1 :1: 13.9 —10.7 :1: 16.1 18.5 17.3 1.000

47 24 22 —14.8 :t 7.1 4.5 :1: 10.2 18.4 18.0 1.000

A 85 112 35 34 0.1 :1: 10.8 -l.6 :t 8.7 18.8 17.9 1.000

59 18 24 —18.1 :1: 6.5 -27.9 :1: 4.1 18.7 17.9 1.000

51 16 15 —20.4 :1: 4.5 -2.6 :h 7.3 18.8 18.2 1.000

A 88 43 60 59 1.3 :1: 7.3 —5.6 :t 5.3 18.0 17.3 1.000

24 33 35 —9.9 :1: 5.0 4.8 :1: 3.8 17.7 18.1 1.000

A 104 112 74 72 -1.6 :1: 8.8 —3.1 :1: 6.9 19.7 18.6 1.000

21 14 23 13.4 :1: 3.5 8.2 :1: 6.3 19.1 19.8 1.000

A 119 226 84 85 4.5 :1: 15.5 -—4.3 :1: 17.2 18.5 16.9 1.000

42 16 15 —18.0 :1: 12.1 27.3 :1: 8.1 18.5 18.2 1.000

A 121 59 41 35 —9.4 :1: 4.2 3.5 :t 8.8 20.0 19.3 1.000

40 28 35 1.3 :1: 4.7 —0.2 :1: 3.0 20.0 19.5 1.000

20 14 12 10.8 :t 2.9 10.4 :1: 2.8 20.2 20.6 1.000

13 9 6 -7.2 :1: 3.1 -l4.9 :h 1.7 20.3 0.0 0.998

A 147 56 36 33 —2.3 :1: 9.5 7.9 :1: 12.6 18.7 18.1 1.000

39 25 38 9.5 :1: 5.9 -12.8 :h 12.8 18.1 17.8 1.000

A 151 161 47 53 -0.8 :1: 6.6 -8.0 :1: 12.9 19.0 17.7 1.000

130 38 30 4.3 :1: 22.3 5.7 :1: 20.3 19.0 18.0 1.000

46 13 14 —-18.8 :1: 4.7 —9.9 :h 5.4 19.0 18.6 1.000

A 154 96 35 31 3.9 :1: 8.7 —2.0 :1: 7.9 19.3 18.3 1.000

83 31 39 —12.0 :1: 8.8 —14.7 :1: 7.2 19.2 18.0 1.000

80 29 25 2.0 :1: 13.5 16.2 :1: 6.2 19.3 18.5 1.000

A 166 78 50 45 1.9 :1: 8.3 -—8.2 :l: 4.5 20.1 19.2 1.000

44 28 32 5.1 :1: 5.3 9.2 :1: 3.3 20.2 19.8 1.000

27 17 20 —0.2 :t 2.4 0.1 :1: 1.9 20.0 20.1 1.000

A 168 88 37 37 -0.4 i 7.8 —1.2 :1: 9.8 18.6 17.6 1.000

44 19 19 7.0 :1: 9.9 18.3 :1: 8.1 18.7 18.3 1.000

33 14 11 —18.6 :1: 7.4 —15.6 :t 10.1 19.0 18.9 1.000

A 189 55 35 27 4.2 :1: 18.0 -7.2 :1: 31.4 18.5 17.9 1.000

37 24 40 -29.9 :1: 10.4 4.5 :t 10.3 18.1 17.8 1.000

29 18 14 36.8 :1: 8.9 —10.6 :1: 16.9 18.3 18.3 1.000

28 18 15 -16.2 :1: 11.4 27.0 :t 6.7 18.1 18.3 1.000
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TABLE 4.4. (continued)

 

 

Cluster N %N¢o¢ %L¢o¢ a: :h 0, y :1: 0,, mmed mjm S

(arcmin) (arcmin) (0) (O)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A 193 93 35 38. —1.1 :1: 7.9 -—0.3 :1: 7.8 18.6 17.7 1.000

77 29 20 —10.7 :1: 23.7 —23.2 :t 9.4 19.0 18.2 1.000

74 28 38 2.7 :1: 23.1 23.6 :1: 7.7 19.1 18.2 1.000

A 194 51 40 50 —10.9 i 23.6 0.4 :t 20.7 16.7 16.2 1.000

33 26 17 —-15.9 :1: 47.0 —65.3 :1: 11.9 17.2 17.1 1.000

27 21 18 59.6 :1: 20.4 59.9 :h 22.8 17.0 17.1 1.000

A 225 79 39 31 —6.3 :1: 8.8 10.7 :1: 10.9 19.8 19.0 1.000

67 33 40 7.9 :1: 8.2 -6.7 :t 7.6 19.3 18.7 1.000

56 28 29 —16.1 :t 5.0 —5.7 :1: 7.5 19.5 18.9 1.000

A 246 34 33 35 3.1 :t 8.6 —2.9 :1: 6.5 19.8 19.8 0.998

25 24 24 16.2 :1: 5.6 15.6 :t 6.2 19.8 19.9 1.000

16 16 14 —8.5 :1: 6.5 18.0 :1: 3.9 19.9 0.0 1.000

12 12 14 —18.9 :h 3.1 4.6 i: 5.8 19.4 0.0 0.995

A 274 60 34 29 —4.8 d: 5.3 --7.1 :1: 3.6 20.1 19.4 1.000

56 32 36 5.5 :h 4.5 0.7 :1: 6.1 19.6 19.0 1.000

44 25 26 —6.4 i 3.8 7.2 :1: 3.6 19.7 19.2 1.000

A 277 69 30 34 4.2 :h 6.6 —5.1 :1: 4.5 19.6 18.6 1.000

50 22 14 2.2 :1: 3.6 5.9 :1: 5.5 19.9 19.4 1.000

A 389 104 60 62 —0.4 :1: 6.6 0.5 :1: 4.6 20.2 19.2 1.000

38 22 25 —4.5 i 7.4 —9.5 :1: 3.2 20.2 20.0 1.000

31 18 13 7.4 :1: 4.8 10.4 :1: 2.8 20.4 20.4 1.000

A 400 52 27 28 -29.0 :1: 17.6 —1.3 :1: 196.1 17.3 16.9 1.000

38 20 20 2.5 :t 10.4 —7.1 :t 9.2 17.3 17.1 1.000

A 415 81 33 52 -3.1 :1: 6.0 5.7 :1: 4.4 19.8 18.8 1.000

69 28 20 —3.4 :1: 4.4 —9.0 :1: 5.4 20.0 19.4 1.000

A 496 110 49 51 6.3 :1: 14.0 —0.1 :1: 13.6 18.0 17.1 1.000

69 31 33 24.8 :t 20.5 39.6 :1: 10.8 18.0 17.2 1.000

A 514 101 36 32 —11.3 :1: 5.7 —2.3 :1: 6.3 19.6 18.6 1.000

58 21 27 -10.4 :t 7.0 —18.3 :1: 2.9 19.4 18.6 1.000

27 10 9 14.2 :1: 4.4 5.1 :h 4.7 19.5 19.7 1.000

A634 44 62 65 -12.6 :1: 19.0 16.1 :1: 20.8 17.9 17.6 1.000

23 32 31 38.0 :1: 19.2 —14.4 :1: 39.7 17.7 18.0 1.000

A 779 45 39 39 —10.6 :1: 16.9 —17.6 :1: 18.8 17.5 17.1 1.000

28 24 14 29.4 :1: 16.8 18.7 :t 22.7 17.5 17.6 1.000

A 787 113 73 56 4.5 :1: 4.7 2.2 :1: 5.6 20.3 19.0 1.000

27 18 32 —9.1 i 2.4 2.5 :1: 3.9 20.0 20.4 1.000

A 957 151 52 56 6.7 :t 16.9 2.3 :t 11.8 18.6 17.5 1.000

86 30 30 -17.0 i 15.0 —22.4 :1: 10.5 18.7 17.8 1.000

51 18 14 -6.7 :1: 22.0 33.2 :t 4.3 18.9 18.5 1.000
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TABLE 4.4. (continued)

 

 

Cluster N %N¢o¢ %Lto¢ :1: :1: 0, y :1: 0,, mmed mjm S

(arcmin) (arcmin) (0) (O)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A 978 119 40 42 1.2 :1: 13.9 2.3 :1: 8.0 18.9 17.9 1.000

107 36 36 6.9 :t 10.0 —19.6 :t 7.1 19.0 17.8 1.000

39 13 14 1.7 :1: 11.9 22.3 :1: 5.5 18.8 18.6 1.000

A 993 117 43 48 -7.5 :1: 11.4 8.0 :t 11.3 18.9 17.7 1.000

78 29 20 9.1 :1: 16.3 —22.1 :t 6.7 19.2 18.3 1.000

40 15 18 17.9 :1: 6.0 21.5 :t 6.0 18.6 18.1 1.000

A 1020 163 62 66 4.8 :l: 9.9 9.3 d: 9.4 19.5 17.9 1.000

102 38 34 —12.9 :1: 12.5 -9.7 :t 12.1 19.7 18.7 1.000

A 1126 98 40 26 —2.8 :1: 6.5 -1.9 :1: 4.1 19.8 18.7 1.000

89 36 29 5.9 :1: 11.8 11.5 :1: 4.5 19.8 18.5 1.000

41 17 40 8.8 :1: 4.4 —6.4 :t 4.3 20.1 19.7 1.000

A 1139 84 50 58 —2.7 :1: 12.4 8.2 :h 13.1 18.0 17.0 1.000

44 26 18 28.3 :1: 11.2 -12.2 :1: 26.8 18.4 18.1 1.000

20 12 12 -24.4 :1: 7.7 —22.5 :1: 6.5 18.7 19.0 1.000

A 1185 152 45 42 -20.5 :t 23.5 -19.7 :1: 39.2 17.8 16.6 1.000

126 38 41 -0.9 :1: 11.1 1.3 :t 8.9 17.7 16.5 1.000

A 1187 78 34 36 3.2 :1: 9.0 —2.9 :1: 7.1 19.7 18.7 1.000

56 25 21 -16.6 :1: 2.9 —6.4 :1: 7.0 19.6 18.9 1.000

36 16 16 —7.1 :1: 6.8 16.2 :1: 2.6 19.6 19.3 1.000

31 14 14 -5.5 :h 3.9 5.5 i 2.8 19.4 19.4 1.000

A 1213 139 53 63 9.0 :1: 12.4 2.9 :1: 13.5 18.6 17.1 1.000

63 24 18 —l8.8 :1: 7.7 13.3 :1: 10.4 18.8 18.2 1.000

59 23 18 -19.4 :t 21.8 -23.1 :1: 10.8 18.7 18.0 1.000

A 1216 47 46 45 14.0 :1: 9.4 -5.7 :1: 13.1 19.3 18.9 1.000

47 46 48 —12.3 :1: 10.5 6.0 :1: 17.0 19.1 18.7 1.000

A 1238 82 46 52 —0.5 :L- 6.5 0.3 :t 9.3 19.7 18.8 1.000

42 23 21 15.2 :1: 5.6 —13.8 :h 8.4 19.9 19.7 1.000

35 19 16 —16.8 i 2.8 17.5 :1: 3.3 20.1 20.0 1.000

A 1254 88 33 24 —3.0 :1: 5.7 4.7 i 7.7 19.8 19.0 1.000

73 28 25 —15.8 :1: 7.7 -12.5 d: 8.3 19.6 18.8 1.000

66 25 37 15.6 :t 7.2 -10.2 d: 8.7 19.6 18.7 1.000

A 1257 57 27 35 -36.8 i: 10.3 10.6 :1: 28.8 17.9 17.2 1.000

53 25 18 23.4 :1: 16.2 30.7 :1: 14.5 18.6 17.7 1.000

54 25 20 17.1 :1: 20.1 —35.4 :t 9.9 18.2 17.5 1.000

48 23 26 -3.6 :h 9.9 0.4 :1: 11.9 17.9 17.2 1.000

A 1291 103 26 31 —1.0 :1: 7.5 —5.0 :1: 8.6 18.8 17.5 1.000

94 24 20 -8.0 :1: 7.5 9.1 :1: 6.3 18.9 18.0 1.000

A 1318 116 41 63 —0.1 :1: 12.1 -9.7 :1: 9.4 19.1 17.5 1.000

74 26 20 5.0 :1: 8.5 12.9 d: 7.1 19.0 18.1 1.000
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TABLE 4.4. (continued)

 

 

Cluster N %Ntot %Ltot a: :t 0,, y :1: 0,, mmed mjm S

(arcmin) (arcmin) (0) (O)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A 1364 98 43 49 0.6 :1: 4.6 2.9 :l: 5.4 19.7 18.5 1.000

71 31 28 —10.8 i 3.4 -6.7 i 6.0 19.8 18.9 1.000

A 1365 49 30 37 0.8 :1: 4.5 -1.5 :h 3.5 19.3 18.6 1.000

48 29 28 -2.6 :1: 8.9 -12.2 :h 3.9 19.4 18.8 1.000

25 15 16 -15.7 :1: 3.6 5.3 :h 5.6 19.4 19.7 1.000

16 10 8 18.8 :1: 2.6 —13.7 :1: 5.7 19.7 0.0 1.000

15 9 7 -0.6 :1: 2.1 15.8 :t 2.8 19.7 0.0 1.000

A 1367 130 65 72 5.3 :h 25.6 -3.6 :1: 21.6 17.0 15.8 1.000

42 21 19 —3.0 :1: 22.7 30.6 :t 11.3 17.5 17.3 1.000

A 1377 165 41 57 —5.0 :1: 9.0 -1.3 i: 10.0 18.7 17.1 1.000

134 33 23 19.5 :1: 8.7 2.9 :t 22.4 18.9 17.7 1.000

103 26 20 —23.9 :1: 7.1 4.0 :1: 21.4 19.1 18.3 1.000

A 1382 78 43 50 0.6 :1: 5.3 -3.8 :t 5.0 20.0 19.2 1.000

56 31 29 —7.0 :l: 6.9 7.2 :1: 5.4 20.4 19.7 1.000

25 14 11 11.6 :1: 2.7 7.5 :1: 4.7 20.2 20.3 0.999

A 1399 83 29 25 0.8 :1: 4.9 2.5 :1: 4.9 19.6 18.6 1.000

79 28 20 4.8 :t 6.5 -9.6 :1: 4.8 19.9 18.9 1.000

61 21 12 —8.7 i: 5.9 13.8 :L- 3.8 20.1 19.5 1.000

A 1436 170 47 45 1.8 :t 7.4 -3.0 :1: 7.0 19.2 17.9 1.000

145 41 46 ~68 :1: 15.6 11.1 :h 10.3 19.3 17.8 1.000

A 1468 95 57 49 2.1 :h 10.3 —6.9 :1: 6.8 19.8 18.7 1.000

53 32 40 —6.9 :1: 7.8 8.6 :1: 5.6 19.7 19.0 1.000

A 1474 134 72 69 3.4 :t 9.5 4.9 :t 10.9 19.6 18.3 1.000

53 28 31 —13.3 :1: 4.6 —7.1 i 8.0 19.7 19.0 1.000

A 1496 173 49 59 4.0 :l: 7.1 -2.6 :1: 7.1 19.5 17.8 1.000

125 35 30 —12.2 :1: 4.6 2.8 :t 9.9 19.9 18.3 1.000

A 1541 98 48 76 5.9 :1: 8.3 8.3 :1: 5.3 19.7 18.4 1.000

95 46 22 -4.6 :1: 5.9 —2.8 :1: 5.9 20.0 19.0 1.000

A 1644 156 53 52 2.6 :1: 19.5 —11.9 :1: 11.4 18.7 17.3 1.000

88 30 31 -3.7 :1: 10.3 9.1 :t 7.2 18.7 17.6 1.000

A1651 142 69 69 0.6 :1: 9.0 —1.7 :1: 7.6 19.8 18.6 1.000

48 23 23 --11.8 :1: 9.4 11.9 :1: 10.5 19.9 19.5 1.000

A 1656 196 46 45 0.4 :1: 20.6 -3.6 :t 20.1 17.0 15.3 1.000

165 39 43 30.5 :1: 32.4 3.0 :1: 51.5 17.1 15.4 1.000

57 13 10 —46.9 :1: 12.1 14.0 :1: 14.1 17.1 16.4 1.000

A 1691 163 66 75 4.2 :1: 9.1 -1.8 :1: 10.5 19.2 17.7 1.000

34 14 10 —17.6 :1: 4.1 —13.8 :1: 6.3 19.6 19.4 1.000

32 13 9 13.9 :1: 5.3 16.4 i 3.1 19.5 19.4 1.000
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TABLE 4.4. (continued)

 

 

Cluster N %Nto¢ %Ltot a: :1: 0, y :1: 0,, mmcd mjm S

(arcmin) (arcmin) (0) (O)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A1749 128 58 66 8.0 :1: 10.9 0.8 :1: 10.4 19.0 17.7 1.000

63 29 26 —15.3 :1: 9.8 —15.5 :1: 9.9 19.2 18.5 1.000

A 1767 277 90 92 -—0.6 :t 10.7 -0.3 :1: 12.4 19.3 17.8 1.000

31 10 8 -19.1 :1: 3.6 -16.3 :1: 5.0 19.4 19.4 1.000

A 1773 133 47 51 0.0 i 6.7 -0.8 :1: 5.8 19.6 18.4 1.000

100 35 34 ~14.1 :1: 5.3 8.6 :l: 8.1 19.7 18.7 1.000

A 1775 181 68 68 7.7 :t 10.7 1.2 :1: 12.1 19.6 17.9 1.000

87 32 32 —12.7 :1: 6.6 —8.0 :1: 7.9 19.4 18.4 1.000

A 1793 135 54 54 0.6 :1: 5.8 2.3 :1: 6.2 19.6 18.5 1.000

47 19 27 5.7 :1: 8.0 -14.0 :1: 4.1 20.1 19.8 1.000

46 19 12 —15.5 :1: 3.2 1.7 :1: 10.2 20.2 19.9 1.000

A 1795 108 38 41 —7.8 :1: 13.3 15.2 i 8.2 19.2 18.2 1.000

89 31 34 3.3 :1: 6.2 -3.5 :1: 6.8 19.2 18.3 1.000

65 23 17 —10.8 :1: 9.0 —14.0 :t 5.8 19.7 19.0 1.000

A 1809 108 35 28 7.3 :1: 6.3 —4.1 :1: 4.3 19.7 18.6 1.000

61 20 19 1.3 :1: 3.9 3.5 :1: 4.9 19.5 18.7 1.000

A 1831 105 34 33 6.0 :1: 8.4 7.1 :1: 7.3 19.4 18.3 1.000

85 28 38 0.3 :1: 7.7 —l.4 i: 6.2 19.3 18.2 1.000

72 23 21 —10.2 :1: 6.7 -12.3 :1: 5.1 19.5 18.8 1.000

A 1837 89 33 33 -19.0 :1: 17.5 18.3 :1: 12.6 18.5 17.6 1.000

73 27 29 —5.6 :1: 10.2 —26.8 :1: 9.9 18.6 17.9 1.000

53 20 18 8.2 :t 7.7 -2.8 :1: 7.0 18.7 18.3 1.000

A 1904 161 42 52 2.8 :1: 6.5 —-3.7 :1: 8.8 19.2 17.7 1.000

149 39 27 —0.4 :1: 16.6 10.3 d: 11.1 19.7 18.4 1.000

76 20 22 —10.3 :1: 6.7 —16.3 :1: 5.2 19.3 18.3 1.000

A 1913 101 37 38 7.2 :1: 7.2 5.0 :1: 8.6 19.0 17.9 1.000

66 24 17 -5.6 :1: 8.4 —11.3 :1: 7.6 19.3 18.7 1.000

55 20 21 —13.8 :1: 7.9 12.8 :t 8.0 19.2 18.7 1.000

A 1927 148 60 56 2.8 :1: 10.4 -1.6 :1: 7.9 19.7 18.4 1.000

59 24 28 —10.8 :1: 6.5 14.9 :1: 5.4 19.8 19.1 1.000

38 16 15 10.5 :t 7.5 -16.0 :1: 3.1 19.8 19.6 1.000

A 1983 211 48 47 6.7 :1: 16.7 12.4 :1: 17.8 18.7 16.9 1.000

103 23 22 -5.3 :t 11.1 -2.5 :1: 5.4 18.6 17.4 1.000

68 15 19 —24.8 :1: 8.4 —22.4 :1: 9.4 18.5 17.8 1.000

A 1991 135 37 42 —2.7 :1: 7.5 -3.9 :1: 8.9 18.9 17.8 1.000

128 35 31 -0.3 :1: 18.3 17.1 :1: 8.0 19.3 18.1 1.000

85 23 23 16.9 :1: 7.8 -16.3 :1: 7.6 19.1 18.2 1.000

20 5 5 -20.1 :1: 5.4 —24.3 i 3.1 19.2 19.8 1.000
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TABLE 4.4. (continued)

 

 

Cluster N %N¢ot %Ltot a: :t 0,; y :1: 0,, mmed mjm S

(arcmin) (arcmin) (0) (O)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A 1999 102 55 53 —5.9 :1: 7.4 5.2 :1: 5.0 20.0 18.9 1.000

85 45 47 0.5 :1: 7.6 -7.4 :1: 5.1 19.8 18.5 1.000

A 2005 106 76 82 —0.7 :t 7.4 3.2 i 5.8 20.2 18.7 1.000

33 24 18 6.1 :1: 4.1 -8.2 :1: 3.4 20.2 20.1 1.000

A 2022 137 43 60 0.9 :1: 8.8 4.3 :1: 6.7 19.0 17.4 1.000

75 23 17 9.4 :1: 9.8 —16.0 :1: 7.4 19.5 18.8 1.000

A 2028 76 33 32 -0.1 :1: 5.0 0.6 :1: 5.5 19.9 18.8 1.000

75 32 40 —10.6 :1: 7.6 11.7 :t 6.3 19.6 18.7 1.000

A 2029 186 43 41 —2.8 i 6.9 -2.0 :h 6.2 19.6 18.4 1.000

119 27 25 15.0 :1: 6.4 -5.7 :t 13.1 19.7 18.6 1.000

67 15 13 5.2 :1: 4.2 14.3 :1: 3.9 19.7 19.1 1.000

A 2040 108 39 42 —2.4 :1: 8.6 -0.9 :h 12.5 18.7 17.8 1.000

70 25 26 17.3 :1: 14.4 23.5 :1: 10.3 18.9 18.3 1.000

59 21 18 21.2 :1: 9.0 -19.3 :1: 9.7 19.1 18.7 1.000

A 2048 127 40 44 -0.3 :1: 5.0 -3.3 i 5.5 19.8 18.6 1.000

121 39 38 8.3 :1: 6.2 8.9 d: 5.6 20.0 19.0 1.000

A 2063 134 64 67 -0.3 :1: 21.9 -3.9 :h 14.6 18.1 17.3 1.000

51 24 18 16.3 :1: 28.4 -40.8 :1: 7.9 18.4 18.1 1.000

26 12 14 -31.3 :1: 15.3 38.4 :1: 10.4 18.1 18.4 1.000

A 2065 181 43 44 3.2 :t 4.5 —0.5 :l: 6.6 19.6 18.6 1.000

136 32 30 -0.1 :1: 16.2 15.1 :1: 7.7 19.7 18.7 1.000

A 2067 136 48 45 3.1 :1: 7.5 4.3 :1: 9.8 19.8 18.9 1.000

75 27 28 17.7 :h 4.9 —14.1 :h 4.7 19.7 19.1 1.000

42 15 19 —12.3 :1: 4.9 15.1 :1: 5.2 19.6 19.2 1.000

30 11 8 -16.3 :1: 4.5 -14.3 :1: 6.3 20.0 20.0 1.000

A 2079 142 45 49 —-15.7 :t 7.7 9.9 :1: 9.5 19.5 18.2 1.000

121 38 35 5.4 :1: 9.9 -6.2 :1: 6.5 19.6 18.7 1.000

A 2089 86 54 59 0.5 :1: 8.9 4.2 :b 8.4 19.5 18.7 1.000

37 23 22 -12.1 :t 6.8 -7.3 :l: 6.2 19.6 19.4 1.000

A 2092 95 36 37 —0.3 :1: 7.6 0.1 :1: 5.2 19.2 18.3 1.000

50 19 17 -11.6 :1: 6.3 16.3 :1: 5.1 19.4 18.8 1.000

A 2107 106 39 45 3.8 d: 10.9 1.9 :h 7.6 18.4 17.5 1.000

69 25 25 2.5 :t 19.5 -28.1 :h 7.5 18.8 18.1 1.000

69 25 20 —29.2 :1: 8.5 12.8 :1: 23.6 18.7 18.0 1.000

A 2124 138 46 48 0.1 :1: 8.2 2.7 :1: 6.8 19.3 18.2 1.000

75 25 26 —11.8 :h 9.5 —18.0 :1: 6.2 19.5 18.7 1.000

A 2142 134 43 42 -0.2 :1: 7.7 -4.6 :1: 5.5 20.1 19.0 1.000

68 22 18 11.9 :1: 4.3 8.7 :1: 5.6 20.3 19.7 1.000

63 20 24 -7.2 :t 6.4 12.4 :1: 5.0 20.1 19.4 1.000
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TABLE 4.4. (continued)

 

 

Cluster N %Ntot %Lto¢ a: :1: 0, y :1: 0,, mmed mJ-m S

(arcmin) (arcmin) (0) (O)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A 2147 156 34 33 ~28.3 :1: 11.0 19.0 :t 18.4 18.2 17.0 1.000

111 24 24 7.6 :1: 15.6 28.7 :1: 9.7 18.3 17.2 1.000

105 23 26 4.9 :1: 9.0 —7.3 :1: 14.1 18.3 17.0 1.000

A 2151 118 30 29 4.9 :1: 24.2 27.3 :1: 10.1 18.3 17.0 1.000

116 30 24 15.5 :1: 18.5 -27.8 :1: 10.6 18.5 17.2 1.000

82 21 30 2.6 :1: 7.9 -0.8 :t 6.9 18.2 17.1 1.000

50 13 12 -24.7 :1: 8.4 0.0 :1: 9.5 18.1 17.6 1.000

A 2152 162 34 39 31.9 d: 10.4 -19.9 :1: 14.4 18.4 16.8 1.000

112 24 21 8.9 :t 15.2 17.9 :1: 10.4 18.4 17.5 1.000

84 18 18 -7.3 i 9.6 -7.7 :1: 9.2 18.3 17.3 1.000

A 2162 51 41 44 —0.3 :1: 25.0 25.6 :1: 12.7 18.0 17.6 1.000

32 26 33 —5.2 :1: 16.4 —13.1 :t 12.5 18.5 18.4 1.000

A 2175 121 27 27 -0.7 :1: 3.1 -0.6 i: 3.3 20.1 18.3 1.000

102 23 23 -7.8 :1: 2.8 —-5.4 :1: 2.8 20.3 18.4 1.000

79 18 18 8.4 :t 4.4 9.4 :1: 4.2 20.3 18.9 1.000

A 2197 152 49 51 -l4.5 :1: 25.3 -28.5 :1: 16.3 17.7 16.0 1.000

91 29 32 10.9 :1: 18.2 3.5 :1: 11.5 17.6 16.6 1.000

36 12 7 27.3 :1: 16.6 42.3 :1: 9.7 18.3 18.2 1.000

A 2199 130 33 38 -9.9 :1: 15.2 9.7 :1: 12.7 17.8 16.5 1.000

93 24 23 16.2 :1: 12.9 -16.6 :t 17.2 17.8 16.8 1.000

A 2255 315 76 78 —3.8 :1: 8.5 -2.4 :1: 9.8 19.6 17.9 1.000

50 12 14 2.6 :1: 4.3 14.6 :1: 3.3 19.4 18.9 1.000

A 2256 304 67 69 -0.4 :1: 10.7 —2.8 :h 8.0 19.0 17.2 1.000

71 16 10 —11.3 :1: 7.6 —21.8 i 3.9 19.4 18.6 1.000

A 2328 82 63 63 2.3 :1: 5.6 —2.6 :1: 4.8 20.2 19.1 1.000

30 23 12 -7.0 :1: 2.5 3.9 :1: 3.7 20.3 20.3 1.000

19 15 25 0.0 d: 2.6 8.6 :1: 2.0 20.2 0.0 1.000

A 2347 41 46 58 —3.7 :1: 7.3 6.6 :1: 5.3 20.5 20.1 1.000

29 32 27 —1.0 :1: 5.1 —8.6 :1: 3.4 20.5 20.6 1.000

15 17 11 7.8 :1: 3.8 —0.3 :1: 2.5 21.0 0.0 0.997

A 2382 95 48 51 3.1 :1: 11.3 —8.6 :1: 7.7 19.3 18.5 1.000

54 27 26 6.2 :1: 6.1 7.5 :h 7.4 19.4 18.9 1.000

16 8 9 —14.8 :1: 4.8 19.3 :t 3.6 19.2 0.0 1.000

A 2384 54 43 42 -1.4 :t 4.7 1.7 :1: 4.2 19.9 19.4 1.000

32 25 30 2.3 :1: 5.8 --10.1 :t 4.1 19.9 19.9 1.000

31 24 24 2.8 :t 9.6 13.4 :1: 4.1 20.1 20.0 1.000

A 2399 57 22 23 -5.3 :1: 6.7 —7.9 :1: 8.7 19.2 18.5 1.000

55 21 24 9.6 :1: 8.4 14.8 :1: 8.0 18.9 18.1 1.000

50 20 24 5.1 :1: 6.0 -1.2 :t 4.3 18.6 18.0 1.000
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TABLE 4.4. (continued)

 

 

Cluster N %Ntot %Ltot 2: :1: 0, y :1: 0y mmed mJ-m S

(arcmin) (arcmin) (0) (O)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A 2410 134 57 71 1.9 :1: 11.3 0.1 :1: 7.2 19.3 17.6 1.000

60 26 17 -11.3 :1: 5.2 12.9 :1: 5.7 19.5 18.9 1.000

38 16 11 4.2 :1: 7.8 -14.4 :1: 3.5 19.7 19.5 1.000

A 2457 122 49 51 0.7 :1: 8.6 2.9 :1: 7.6 19.2 17.8 1.000

91 37 37 12.8 :1: 10.4 —4.0 :t 19.3 19.2 18.0 1.000

30 12 11 -19.5 :1: 5.2 —4.2 :1: 11.2 19.1 19.1 1.000

A 2634 119 29 33 —0.4 :1: 10.8 -0.1 :1: 16.0 17.9 16.9 1.000

90 22 23 —26.8 d: 15.6 -33.7 :t 14.4 17.9 17.0 1.000

56 14 10 44.1 :1: 8.6 18.3 :t 9.2 18.3 17.9 1.000

A 2657 78 46 47 2.5 :1: 11.6 —0.3 :h 9.7 18.4 17.8 1.000

38 22 20 —25.2 :1: 9.6 -17.6 d: 13.3 18.5 18.3 1.000

A 2666 62 36 28 35.0 :1: 15.7 4.3 :1: 36.9 18.0 17.5 1.000

44 26 42 —46.4 :1: 14.1 31.7 :1: 17.7 p 17.3 16.6 1.000

43 25 17 —16.6 :1: 23.0 -45.1 :t 14.9 18.0 17.8 1.000

22 13 13 —7.7 :1: 11.1 1.7 :1: 10.0 17.7 17.9 0.999

A 2670 115 45 50 0.1 :t 4.4 3.9 :t 7.7 19.0 18.1 1.000

58 23 22 -14.7 i 5.1 9.4 :1: 7.3 19.3 18.7 1.000

46 18 18 9.5 :1: 6.0 -11.9 :1: 5.9 19.2 18.8 1.000

A 2675 78 46 47 2.5 :t 11.6 -0.3 :1: 9.7 18.4 17.8 1.000

38 22 20 —25.2 :1: 9.6 —17.6 :1: 13.3 18.5 18.3 1.000

A 2700 36 28 32 3.4 :t 3.8 —3.2 :1: 3.6 19.6 19.3 1.000

19 15 15 —6.3 :1: 2.3 3.0 :t 3.6 19.6 0.0 0.995

14 11 11 3.2 :1: 3.5 8.9 :L- 1.8 19.6 0.0 0.993
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4.4 Background/Foreground Cluster Identification

With the larger groups and unbinned magnitudes of the APS data, identification of

possible background/foreground groups can be carried out by applying a Kolmogorov-

Smirnov (K-S) test to the magnitude distributions for the galaxies assigned to the

different groups. In theory, if a group is sufficiently far away from the main cluster,

along the line of sight, its galaxies will on average be fainter than that of a closer

group of galaxies. Use of the K—S test in this fashion depends on the assumption

that all clusters and subclusters share a common luminosity function. If galaxies in

some clusters or subclusters are intrinsically fainter than others, the results of the

K—S test on the magnitudes will be misleading. In general it appears this assumption

holds, although there are a number of exceptions (Schechter 1976). Recently, Jones &

Mazure (1996) have used the ESO Nearby Abell Cluster Survey (ENACS) to examine

this assumption in detail. They conclude that galaxy clusters do not have a universal

luminosity function, with significant variations occurring at both the bright and faint

ends of the distribution. However, the middle of the distribution, from the 10th-

ranked galaxy to the 20th-ranked galaxy appears to be the most stable region. Thus,

they recommend using the average of the 10th to 20th ranked galaxies, or:

1 20

mm = 1_1-gum” (4.20)

where the m,- are the sorted magnitudes, to determine a redshift-independent distance

estimate to clusters. They again warn that there are exceptions and that in some

clusters the galaxies are simply fainter at all magnitudes. Despite these shortcomings,

without a massive redshift survey the magnitude distribution is the most reliable way

to determine distances to the clusters. Furthermore, subclusters of galaxies that are

intrinsically brighter or fainter would, in and of themselves, be interesting in the clues

they may hold for galaxy formation.
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Thus, with the above caution, the K-S test has been applied to each of the groups

identified by either KMM or DEDICA. Any groups which could be rejected as being

drawn from the same distribution at greater than the 90% level were considered to be

not physically associated with the main cluster. To assign the groups as either back-

ground or foreground, the median magnitude and mm in each group were examined.

In general these two numbers agreed. However, as examination of Tables 4.2 and

4.3 reveals, there were a number of cases where they gave opposite results. In these

cases, the ratio of the number fraction and the luminosity fractions for the groups was

examined. Ratios greater than 1 were considered background, while ratios less than

one were classified as foreground. The groups classified as background are plotted in

Figure 3.9 with an open circle and those that are foreground with an open square.

A number of clusters have other Abell clusters within an Abell radius and are so

labeled in Figure 3.9. In the cases where redshifts were quoted in the literature it

is possible to check the results of the K—S test. A85 has two clusters which appear

nearby, A87 and A89. Only A87 has a redshift quoted at 2:0.055 which is quite close

the the value of A85 at z=0.0518. A89 however, is likely to be a background group

even though the K-S test fails to reject it. This may result from contamination of

the group with galaxies that actually belong to A85, and contamination of A85 with

galaxies that actually belong to A89. The case of A1837 and A1836 should provide a

warning. Although both the DEDICA and KMM partitions reject the hypothesis that

the magnitudes of the two clusters are drawn from the same population at greater

than the 95% level, the KMM partition has both mmed and mJ-m greater for A1836

indicating it as a background object, while the Opposite is true for for the DEDICA

partition. In actual fact A1836 with 2:0.0362 is at roughly the same redshift as

A1837A at z = 0.03722 but is foreground to a second component to A1837 with

2:0.0718. The only other cluster with a redshift that are unambiguously identified
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by the substructure tests is the binary cluster A2675 and A2678 which have nearly

the same redshift and are likely to be gravitationally bound. The K-S test makes no

distinction between the two magnitude distributions.

4.5 Comparison of Results

With background and foreground groups removed, the best estimate for the fraction

of clusters in the HGT sample with significant substructure is 64:1:15%. The estimate

of error is the internal error between KMM and DEDICA. This error is only a lower

limit because it does not include the errors associated with the K-S determination

of background groups. Here a group was considered background/foreground if either

the KMM group or a nearby DEDICA group failed to pass the K-S test criteria.

According to the K-S test, 20% of the clusters in the sample are contaminated with

background groups within an Abell radius. This is midway between the numerical

results of van Haarlem (1996), which suggest contamination at the 30% level, and the

X-ray results of Briel (1993), which found contamination at the 10% level. Therefore,

the results of the K-S test are not wildly off from what is expected.

4.6 Comparison to other Studies

In order to compare the present results with those of other studies the characteristics

of the statistic used need to be taken into account. For instance, the study of Rhee

et al. (1991) found that of their six tests for substructure the test with the highest

rate of detection was the Lee test (described by Fitchett 1988), with 10% of the

sample clusters having substructure. With all the tests included, 26% of the sample

showed some evidence of substructure. However, there are a number of important

differences between that study and the work in this thesis. First, in an attempt to keep
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background contamination low, Rhee et al. only considered the 100 brightest galaxies

in each cluster. Second, substructure needed to be significant at the 99% level to be

considered “real” by Rhee et al. As seen with the Monte Carlo experiments above,

with only 100 galaxies in a cluster the 99% significance level is probably too restrictive

for KMM, and thus may also be for a number of the tests employed by Rhee et al.

More importantly, some of the tests used were only sensitive to very specific kinds

of substructure. The Lee test is only sensitive to bimodal structures; multi—modal

structures tend to lower the significance of the statistic (Fitchett & Webster 1987).

Other tests employed, such as the percolation test and the angular separation test

may not be sensitive enough to the structures they were designed to detect. Thus,

the higher percentage of substructure detected here is due the increased power of

the tests employed, especially the ability of KMM and DEDICA to fit clusters with

more than two subclusters, as well as the more complete sampling of the luminosity

function. In fact, of the 61 clusters common to both studies, 19 were identified by

Rhee et al. as containing substructure. All of these 19 clusters have been identified

by either KMM or DEDICA as containing substructure, though four are probably

due to background contamination.

Other recent studies have tended to find more substructure than Rhee et al., in

better agreement with the present results. The study by Salvador-Sole et al. (1993)

found that 50% of the 15 Dressler clusters they looked at had substructure at the 95%

significance level. If Abell 1736 is removed from consideration (since it was analyzed

as two separate clusters by SSG), the KMM and DEDICA results differ from those

of SSG for only three clusters. Substructure is found in A1644 with a significant

four-group partition from KMM (with three of the groups having less than 20% of

the total number) and a two-group partition from DEDICA. Other tests which use

velocity information, such as the A-statistic and the e-statistic (Bird 1993), and X-ray
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data (Davis 1994), confirm the existence of substructure in the cluster. Although a

two-group partition is found by KMM for DC 0247—31, it is likely that this structure

is not real. Finally, DEDICA finds a significant second peak in the PDF of A1656.

4.7 Conclusions

There are several conclusions to be drawn. First, the ability of DEDICA to separate

and test the significance of close groups of galaxies is clearly superior to that of

KMM. Second, DEDICA is not as sensitive as KMM to the choice of boundary for

the clusters. On the other hand KMM has more power than DEDICA to detect

substructure in the presence of background contamination, as seen in the case of

A2256.

One potential problem with the current version of DEDICA is the selection of

the smoothing parameter. The derivative of the density, as well as the density, is

important in the peak identification procedure. Scott (1992) shows that accurate

calculation of the derivative requires a larger smoothing window and more data points

than accurate calculation of the density. Furthermore, as will be discussed in the next

chapter, Merritt & Trembly (1994) find that when calculating the derivative of the

kernel density, the rules for choosing the smoothing parameter do not work very well.

Thus it is likely that the current implementation of the LSCV technique for finding

the smoothing parameter is undersmoothing and thus obtaining a steeper gradient in

the density than the true gradient. In general, this leads to a higher significance of

the groups, and smaller group sizes.

It is important to stress that the strength of a two-dimensional analysis lies not

in the ability of the statistics to establish, once and for all, whether a given cluster

does or does not contain substructure. A complete analysis needs to take advantage
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of all available data, including redshifts and X-ray surface-brightness maps. The

purpose here is to take the fullest possible advantage of the readily-available galaxy

position data offered by digitized sky surveys, in order to provide a guide to clusters

which might or might not harbor substructure. Once this type of analysis has been

carried out the researcher can more efficiently select clusters for a large redshift survey,

identify which galaxies within a cluster should have redshifts measured, predict how

the X-ray map for a given cluster is likely to appear, and have a framework within

which to discuss possible deviations. This same type of analysis could be done on

data from numerical simulations (such as those described by Pinkney et al. 1996 or

van Haarlem 1996), where problems of interpretation are similar to those encountered

in the study of real clusters.

These algorithms have several advantages over alternative techniques for the de-

tection of substructure in projected galaxy positions. They can fit any number of sub-

groups, unlike the Lee test, which is only sensitive to bimodal structures. Secondly,

the KMM algorithm is very robust. Although small numbers of outlying galaxies can

perturb the parameters of the fit (the estimated means and covariance matrices of the

groups) since all galaxies are assigned to at least one of the groups, KMM very rarely

returns such groups as significant. Because KMM fits the groups to two-dimensional

Gaussian distributions, a wide variety of shapes can be fit, from spherical to rather

elongated structures. DEDICA has even more flexibility in this respect since it does

not need the Gaussian assumption. Finally, unlike the method of SSG, these methods

are very visual. The positions, shapes, and sizes of the identified groups can be seen

in the adaptive-kernel maps and compared to X-ray maps for the clusters, unlike the

centroid shift methods which can only give a positive or negative result.

The disadvantages of this, or any two-dimensional analysis, is potential contami-

nation from foreground or background galaxies. While the Monte Carlo experiments
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indicate that a constant-density background of less then 15% lowers the significance

of substructure, foreground/background clusters pose a more serious problem. With

the larger catalogs of the APS data, very distant clusters can be detected by applying

a K—S test to the magnitude distributions for each group. Ultimately however, X-ray

and/or redshift data will need to be considered to confirm the results. Furthermore,

merger events occurring along the line of sight will not be detected. Lastly, KMM fits

the groups to two-dimensional Gaussians. Departures of the actual density profiles

from Gaussian will reduce the usefulness of the partitions obtained. While this can

be guarded against by employing the Hawkins test when the individual groups have

a large number of galaxies, for small groups the results are likely to be misleading.

These results indicate that a large fraction of the clusters in the sample of galaxy

clusters exhibits evidence of substructure in their projected galaxy distributions. This

substructure is very often seen in the core of the clusters, even if not identified in this

study. As a result of this, and with the possibility of line of sight mergers, the 64%

fraction of clusters with significant substructure is likely to be a lower limit. However,

a great deal of redshift information will need to be gathered in the coming years to

confirm or deny these results.



Chapter 5

ESTIMATION OF THE COSMIC

DENSITY PARAMETER {20

5. 1 Introduction

One of the reasons for studying substructure in clusters of galaxies is to place con-

straints on the curvature of the universe. In this chapter the possibility of using the

fraction of clusters with presently-detectable substructure to estimate {20 is explored.

First the theory is described, then the cluster catalog in this thesis is used to obtain

an estimate of $10. Other possible explanations for large amounts of substructure are

also discussed. The argument given below is based on the work of Gunn &. Gott

(1972) and Richstone, Loeb & Turner (1992, hereafter RLT).

5.2 The Theory

From General Relativity, the equation of motion in a Freidmann universe with the

Robertson-Walker metric is given by:

dzr 47erirf’ _ A

E = ___3_r 2 + ‘3‘” (5.1)

where r,- and p, are the separation of two fundamental observers (1.8., observers that

are expanding with the Universe) and the density at any given time t,. A is the

145
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cosmological constant. The analysis of RLT has shown that A has little effect on the

results for flat cosmologies, i. e. Q+A = 1. Therefore, for convenience the cosmological

constant is assumed to be zero in what follows. Integrating, this equation becomes:

87er,-r,- _,
——r ,4:2E1' + 3 (5.2)

where E is a constant of integration and has units of specific energy. Equation

(5.2) holds for any spherically-symmetric, homogeneous matter distribution with no

pressure. It is standard to define:

7" 87rGfi

where ,5 is the mean background density. In terms of the redshift z = ro/r — 1:

H(z) = Ho(1+ z),/1+ {202, (5.4)

and

—1—’—”°—)] 4. (5.5)11(2) 2 [1+ 00(1+z

Equations (5.4) and (5.5) hold only for a matter-dominated universe; 1.6. after re-

combination, or 2 § 103. For 2 >> 951 and defining the small quantity 6 as:

<< 1, (5.6)

equation (5.4) can be approximated by:

9(2) z 1 — 6(2). (5.7)

It is convenient to characterize the perturbations as the fractional overdensity 6

defined as:

6=€—L (s&
p
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Then for the perturbations, equation (5.2) can be rewritten as:

 

 = \/2E + 9:19,, + a). (59)

Upon substitution of equation (5.7) this becomes:

__e___-,-+ 6M3253333 __._, (5...)

where u = r/r,.

 

At this point in the calculation RLT set the constant of integration so that 11,- : Hi.

In other words the perturbation is initially expanding with the Hubble flow of the

background Universe. This choice has been criticized in a study by Bartelmann et

al. (1993, BES). These authors argue from the Zel’dovich approximation (Zel’dovich

1970, Buchert 1989, 1992) that in fact the existence of a density perturbation at time

t,- implies the existence of a potential perturbation, the gradient of which gives rise

to a velocity perturbation. They therefore conclude that the time scale for collapse

in the RLT analysis is too large. BES find:

21 = H,u-1/2[(1 — e.- + 6,) + (e,- — c6;)u]1/2, (5.11)

where the constant c is 5/3 in the analysis of BES and is 1 if the perturbation is

assumed to be expanding with the Hubble flow.

Inverting equation (5.11) and integrating, the time scale for collapse is given by

twice the time needed to reach maximum expansion at um”, or:

1/2

 

u7mm: u

0 [(1 -— e.- + 5,) + (e.- — 06,-)u]1/2’
(5-12)

where the initial time t,- is small compared to the present age of the Universe and has

therefore been set to 0 for simplicity. The maximum expansion is found by setting
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(5.11) equal to 0. Thus:

1—51'1'61

06, _ e,- , (5.13)umax =

from which it can be seen that perturbations with 6 _<_ (ei/c) will never collapse.

Integrating (5.12) and keeping only the leading terms in e,- and 6,:

~ 71'

~ H4665 - 6;)3/2.

 7' (5.14)

The time T to collapse can be written in terms of the present age of the Universe to

as:

11'

T(C§ — €,‘)3/2,

 

3, = 3,,0 :
(5.15)

where T = toH,.

Further progress cannot be made until adopting some distribution for the density

perturbations 6,. The choice of a Gaussian distribution is again one of convenience.

Although there exists the possibility of someday testing this assumption with a higher-

resolution microwave satellite, the present COBE results cannot resolve perturbations

on the scale of galaxy clusters. Nevertheless, the Gaussian assumption should be able

to give a good first-order estimate. With a Gaussian probability distribution:

 

.2

1 [-3331 .15., (5.16)

the probability of finding a perturbation 6,- 2 6’, where 6' at any arbitrary threshold,

is:

P(6,- Z 5!) = gerfc [Wily—)3] . (5.17)
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Solving equation (5.15) for 6,- as a function of t’ gives the minimum perturbation size

necessary to collapse before t’:

6,-(t’) — 1 [(33%)2/3 + 6,] . (5.18)

— 2

Substituting this for 6’ in equation (5.17) yields the probability for density perturba-

tions to collapse before t’:

P(t’) = gerfc {93—31335 [(%)2/3 + a] } . (5.19)

And finally, the fraction of present day clusters which have collapsed within the last

time interval t’ is given by:

my) = P(1)}:1g1‘t') (5.20) 

Equation (5.20) can be evaluated numerically for any {2 and time interval t’ once

a value of 0, the standard deviation of the distribution of density perturbations,

is known. RLT choose 0 such that P(1) gives the correct fraction of the Universe

currently in virialized clusters of mass m 1 x 1015h‘1M9. That faction is given by:

 

3 : <n>M
, 5.21

Pogo ( )

where (n) is the number density of rich clusters of mass M and pcflo is the mean den-

sity of the universe. With a number density of 6 x 10‘6h3 Mpc‘3 from Bahcall (1988),

and a mean cluster velocity dispersion of 750 km 3‘1 giving a mass of 1015h‘1MQ and

a critical density pc = 1.9 x 10‘29h2 g cm‘3, RLT find f = 0.021951.

This choice is criticized by BES who argue that the number density of currently-

collapsed clusters is poorly known. Indeed the number density quoted from Bahcall

is calculated for Abell clusters with richness class greater than 0 and z s 0.08. From

the discussion of the completeness of the Abell catalog given in Chapter 1, this could
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be in error by 10 to 30%. Furthermore, a similar measurement given by Postman et

al. (1992) finds (71) = 1.2 x 10‘5h3 Mpc‘3, or about twice that of Bahcall. Because

of these uncertainties, BES argue that it is better to calculate 0 from the assumed

power spectrum of the primordial density fluctuations. BES find that the argument

of RLT is strengthened by their analysis.

If the more conservative method of RLT is adopted, it can be seen that the use

of c = 5/3 merely has the effect of changing 0 to (3/5)0 and has no effect on the

probability of collapse given by equation (5.20). Thus, a lack of understanding in the

collapse time scales of clusters is normalized out, at least to some extent, in the final

calculation. This is not true for errors in the estimate of the current number density

of rich clusters of galaxies discussed above, nor for the times scales for relaxation in

clusters discussed below.

Along with the errors in the normalization discussed above, the major source of

error in determining (2 via the percentage of clusters with substructure is the estimate

of the time for such structures to be eliminated by dynamical processes. RLT adopt

a value of t/to = 0.1 or about the crossing time of a rich cluster. As discussed in

Chapter 1 this is only a lower limit on the relaxation time; substructure can not

be eliminated on time scales shorter than the crossing time. Numerical simulations

suggest that this time is likely to be much higher, in the range of 4 to 10 crossing

times, depending on the density profiles adopted for the model clusters (Nakamura et

al. 1995). The shortest time scales for erasure of substructure are for those clusters

with small core radii and steep density profiles. Given the results obtained from

clusters acting as gravitational lenses which indicate very small core radii, a value of

t/to = 0.4 is adopted here.
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5.3 Discussion

The results are shown in Figure 5.1, assuming that 64% :1: 15% of the clusters have

presently-detectable substructure. The solid line indicates the 64% fraction of clusters

with substructure, while the dotted lines are the estimated error. The solid curve is

calculated using the Bahcall (1988) normalization while the normalization used in the

dashed cureve is due to Postman et al. (1990). The results indicate 90 g 0.4 — 0.6,

though (2 = 2.5 is not ruled out. However, this result needs to be viewed with a great

deal of caution. First, the fraction of clusters with substructure presented here is

likely to be an underestimate since line of sight mergers will be missed. Second, the

relaxation times for clusters is very poorly known. Although a number of numerical

simulations have been performed, many of the results can be called into question

because of lack of resolution or arbitrary initial conditions. Also, most of these

numerical simulations have been conducted for head-on collisions only: substructure

resulting from collisions with a non-zero impact parameter is likely to last longer.

Furthermore, the model of gravitational collapse of a Gaussian perturbation is very

specific. Although BES have shown that the argument of RLT is affected little by the

generalization to the collapse of ellipsoidal perturbations, the effects of small scale

substructure on the collapse times of larger objects is not yet fully understood. In

a CDM dominated universe, structures are expected to grow hierarchically, from the

merging of smaller objects into larger ones. A necessary by-product of this is the

creation of small scale structures. As shown by Peebles (1990) gravitational collapse

of larger objects in the presence of these smaller clumps can be delayed.

Given the above uncertainties in the relaxation times, it may be interested to

turn the question around. If a value of {20 is assumed, these results can be used to

place limits on the relaxation time scales of the projected galaxy positions in clusters.
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Fig. 5.1.— Fraction of clusters with substructure vs. 90. The solid line is for the

normalization of Bahcall while the dashed line is for the normalization due to Postman

et al. The dotted lines show the estimated error in the fraction of clusters with

substructure.
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As measured by cluster dynamics, (20 z 0.20. To reproduce the current fraction of

clusters with substructure, the relaxation time of rich clusters needs to be on the order

of 5.8-7.4 crossing times (depending on the normalization used) or about 6.6 x 109h‘1

years.



Chapter 6

RADIAL NUMBER-DENSITY

PROFILES

6.1 Introduction

Estimation of the radial density profiles of clusters is important for several reasons.

First, numerical simulations which seek to explore dynamical evolution and mergers

of clusters generally assume a mass distribution function for the model clusters. Typ-

ical forms adopted are ones which involve the density approaching a constant in the

core of the cluster. Some models which have been chosen in the past include the mod-

ified Hubble law, the Michie-King models, and the non-singular isothermal sphere.

A number of the results, such as the survivability of substructure, depend critically

on the adopted size of the core radius. In general, smaller core radii lead to shorter

relaxation times because groups passing near these cores will be more efficiently dis-

rupted by tidal forces. Furthermore, several clusters are now known to contain arcs

of background galaxies. These arcs are formed by the foreground cluster acting as a

gravitational lens. The size and curvature of these arcs depend sensitively on the form

of the potential well of the lensing object. Since the light reacts to all gravitating

material, whether it is due to dark or luminous matter, for the first time it is possible

to compare the distribution of dark matter to the distribution of galaxies in clusters.
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Furthermore, clusters which have a density cusp at their centers or very small core

radii, are much more likely to act as lensing sources. Because the background, lensed

objects, are often times very faint they require long exposures with large telescopes

to detect. A great deal of observing time could be saved if a way existed to identify,

from a large sample of clusters, which ones were likely to be detectable lensing ob-

jects. Lastly, formation theories of cD galaxies depend sensitively on the form of the

potential well near the cores of clusters. The existence of a density cusp in the core of

a cluster makes merger events between galaxies much less likely and mass accretion

by tidal stripping more important.

In all of these applications it is crucial to know, not the projected profile which

is measured, but the true space-density profile. Because only projected positions are

available, it is necessary to make assumptions about the three-dimensional geometry.

Statisticians refer to this type of problem as “ill-conditioned.” Typically, spherical

symmetry is assumed and the de—projection is carried out using Abel’s equation:

1 00d}: dR

u(7‘) = -; r WW, (6.1)

where V is the space density, r is the three dimensional radius and 2 is the projected

distribution with R the projected radius. Note that this depends on the derivative of

2 and not directly on E.

It is customary to use a parametric approach when measuring the projected den-

sity profiles of clusters. The form is chosen (usually one of the above mentioned

forms) and various parameters measured. However, there is a great deal of danger

in such a procedure. Even fits which are statistically “good” in a x2 sense can have

significant deviations from the parametric model. The statistical literature is full of

examples where use of a parametric model masks information in the data which is

inconsistent with the model (for example see Gasset et al. 1984). In this case the
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problem is compounded because the Abel inversion requires the derivative be calcu-

lated and small errors in 2 can become large errors in u (Anderssen & Jakeman 1975,

Wahba 1990).

These problems were addressed by Merritt & ’Ifemblay (1994). They recommend

using a completely nonparametric approach based on a maximum likelihood density

estimate. Use of this method allows the smoothing to be carried out directly on the

estimate of 0 without the necessity of calculating 2 first. What follows is a brief

description of the use of maximum likelihood in density estimation and details of the

approach used by Merritt & Tremblay.

6.2 Maximum Penalized Likelihood Estimator

Given the success of the maximum likelihood approach used to estimate the PDF

of the Gaussian decomposition of clusters in Chapter 4, the question arises: can

the maximum-likelihood technique be employed to obtain a nonparametric density

estimate? The answer is yes, with a modification.

Given a set of n independent observations, X,- . . . X”, the likelihood that a curve

9 represents the underlying density is:

L(g) = [190(1)- . (62)

Unfortunately, this likelihood has no finite maximum. A little thought reveals, for

instance, that the likelihood will approach infinity as h —> 0 in any of the kernel

density estimates. It is easy to see with a box-shaped kernel:

- 1
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and

Hf(X.-) 2 (33%-3)” (6.4)

Therefore, the maximum-likelihood density estimate is a sum of Dirac delta functions

placed at the positions of the observations. While this preserves all of the information

in the data, it is not a useful probability density function.

The solution, first applied to density estimation by Good and Gaskins (1971), is to

penalize any density estimate which is not smooth to obtain the Maximum Penalized

Likelihood (MPL) estimate. Thus, the maximum is sought for the function:

IogLio‘) = flognx.) — APU). (65)
1:1

where P(f) (the penalty function) is some function which quantifies the roughness

of the curve f and A is a smoothing parameter. Typically P(f) is chosen to depend

on the squared derivatives of f. Good & Gaskins (1971) suggested using the penalty

function:

P(f) = [m “if fl] 2 dz, (6.6)
—oo

which will penalize density estimates with large curvature. It is also advantageous to

have P(f) depend on the logarithm of f so that the density estimate is forced to be

positive. Furthermore, the fluctuations in the estimate are penalized via their relative

size and not their absolute size.

Like the choice of kernel function in the kernel density estimate discussed in Chap—

ter 3, any reasonable choice of the penalty function can be used to provide good es-

timates of the density as long as the proper smoothing parameter is used. However,

as the smoothing parameter /\ is increased, the shape of the density estimate will
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tend toward the shape of the penalty function, yielding in effect a parametric density

estimate. For example, the penalty function defined by:

P(f) = j: [(%)3logf,]2dx (6.7)

is zero if and only if f is a normal distribution. Thus as /\ approaches infinity, the

MPL estimate will be a normal distribution with the mean and variance of the data.

The behavior of the limiting estimate for large smoothing parameter differs from

that of the kernel-based density estimators which approach a constant value as h is

increased. In the construction of the maps of Chapter 3 or the identification of peaks

in the DEDICA algorithm of Chapter 4 this eflect made little difference. It becomes

important in constructing radial density profiles when the primary interest is in the

behavior near the core. The kernel-based estimator will in general return an estimate

which approaches a constant density near the core unless the smoothing parameter

is made very small, which leads to a rather noisy estimate.

This problem can be overcome by using MPL with a penalty function of the form

employed by MT:

P(V) = / [dzlogV/dlogr2}2d(logr), (6.8)

which is zero when u = ar‘b. Thus an oversmoothed estimate will be the best-fit

power law approximation. Note also that it is the space density 11 that is being

penalized and therefore estimated. By calculating the maximum likelihood estimate

for the space density directly from the observations, the effect of compounding the

errors when calculating the derivative of the estimate of E can be avoided. An

estimate of E, can then be obtained by integrating the estimate of V, which is a

well-conditioned problem. Note that this does not change the nature of the problem
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in the sense that it is still ill-conditioned. It is merely that the smoothing is now

being performed directly on the derivative of 2.

As with the kernel estimators, the quality of the density estimate will depend

mostly on the choice of smoothing parameter. In this case there are really two den-

sity estimates which are sought: the estimate of 2 and the estimate of V, or in actual

fact the derivative of 23. Although they are related the smoothing parameter that

provides the best estimate for the one will not necessarily provide the best estimate

for the other. Scott (1992) shows that the derivative of the density requires a larger

smoothing parameter and larger number of points to achieve the same MISE as com-

pared to the density estimate. Furthermore, the Monte Carlo simulations performed

by MT show that none of the prescription for choosing the smoothing parameter work

well in this application. They recommend constructing a number of profiles and only

accepting as real those features that appear over a range of smoothing parameters.
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Fig. 6.1.— Nonparametric number-density profiles - HGT clusters
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6.3 Application to the Cluster Sample

The plots given in Figure 6.1 are constructed using the MPL method with the above

penalty function (equation 6.8). Both the projected density and the space density

are presented with V and 2 plotted on a log-log scale with the bottom 2: axis labeled

in kpc and the top labeled in arcminutes. The center of each cluster was chosen to

be the highest peak in the adaptive-kernel map of the 2 Mpc region. The solid line

is the estimate for either 2 or 11 while the dotted and dashed lines are the 95% and

97.5%, respectively, bootstrap confidence intervals. Because of the desire to avoid

spurious cores due to oversmoothing and the lack of a reliable, objective, data-based

choice for the smoothing parameter, each of the the estimates was calculated with

/\ = 1 x 10‘5. With this choice the space density profiles are deliberately under-

smoothed with further smoother left to the viewer. As a result, the estimates for u

can be seen in many cases to “fall” near the centers of the clusters. As the smoothing

parameter is increased, the density estimate in these cases will flatten out with a

value close to that of the maximum. Further smoothing of course leads profile with a

spurious, central cusp. Comparison with the numerical simulations of MT indicates

that this type of behavior is a possible indication of a density that approaches a

constant value in the core. In the caSe of a de Vaucouleur profile, which increases

all the way to the center, the undersmoothed estimates generally oscillate about the

true density.

6.3.1 Core Radius

It has been argued that a natural consequence of relaxation in a self-gravitating

system is the development of a physical core in which the mass density approaches

a constant value (King 1966). The core radius is usually defined as the radius at
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which the projected density falls to one half the central value. Because the density

estimate may decrease toward the center, due to the estimate being undersmoothed,

the maximum value of E was used here instead of the value at the center. Unlike the

plots shown in Figure 6.1, the profiles were constructed with a range of smoothing

parameters, including those for which the density estimate was clearly undersmoothed

and those which were merely power laws. In order to avoid creating spurious cores,

the density profiles which decreased near the core and were closest to flat were used.

For clusters that showed no sign of a flattened core in any of the calculated profiles,

the smallest smoothing parameter, /\ = 1 x 10‘s, was used.

The results are listed in Table 6.1. The :1: and y positions in arcminutes of the

center (chosen as the position of the maximum in the adaptive-kernel map) are listed

in columns (1) and (2). Column (3) is the estimate of the core radius, with its 95%

upper-bootstrap confidence interval listed in column (4). The median core radius for

the clusters in the HGT sample is 150 :1: 96 kpc, where the error is the one—sigma

error. This result is approximately half that of the often quoted value of 250 11'1 kpc,

or with h = 0.75, rem = 333 kpc. On the other hand it is about three times the value

obtained for some clusters with gravitational lens observations (Squires et al 1996).
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TABLE 6.1. Core Radius of HGT clusters

 

 

Cluster :1: y 1'6 95% error a 10 error

(arcmin) (arcmin) (kpc) (kpc)

(1) (2) (3) (4) (5) (6) (7)

A 21 —2.0 -0.5 130 254 -l.74 0.086

A 76 5.4 —5.4 289 632 —l.47 0.037

A 85 -6.3 -7.0 278 378 -l.67 0.182

A 88 -0.5 -l.7 121 130 -2.67 0.226

A 104 1.2 -0.4 168 223 —l.68 0.193

A 119 1.2 —0.4 92 144 —l.76 0.135

A 121 —2.8 —0.2 155 163 —l.94 0.104

A 147 —2.7 1.2 37 209 -l.63 0.097

A 151 1.0 0.3 149 170 -l.89 0.047

A 154 -0.8 —0.1 132 155 -2.01 0.048

A 166 -0.1 —0.1 37 218 —l.68 0.212

A 168 -1.1 1.9 201 237 -2.00 0.105

A 189 —29.3 7.7 170 192 -2.05 0.101

A 193 0.4 -1.1 38 272 -l.80 0.247

A 194 —l.0 4.8 94 332 -2.06 0.095

A 225 1.7 -3.7 70 177 —l.72 0.128

A 246 2.7 —5.2 317 718 -2.37 0.076

A 274 -3.9 —0.4 354 704 -l.12 0.106

A 277 -0.5 -1.3 82 91 —l.88 0.144

A 389 0.4 -0.4 295 311 —l.82 0.082

A 399 0.7 -0.7 252 501 —l.54 0.062

A 400 0.7 —2.2 91 100 -l.82 0.147

A 401 —0.2 1.6 85 584 -l.64 0.098

A 415 —2.8 4.6 136 146 —l.77 0.037

A 496 2.7 —7.0 119 374 -l.74 0.062

A 500 3.4 —0.3 238 282 —l.58 0.190

A 514 -6.8 —0.2 66 98 —2.06 0.165

A 634 —3.2 16.1 170 205 -2.52 0.123

A 671 -0.3 -l.0 62 70 -—2.10 0.128

A 779 -6.8 -9.9 485 627 -0.83 0.186

A 787 4.7 1.1 137 291 -1.72 0.046

A 957 5.1 0.4 157 181 -2.44 0.058

A 978 -0.3 1.6 55 70 -—2.16 0.215

A 993 -0.3 1.6 357 382 -3.11 0.120

A 1020 -0.3 10.3 112 168 -2.04 0.098

A 1035 -l.l 3.7 108 146 -1.63 0.124

A 1126 -0.2 —l.0 184 244 —l.95 0.089

A 1139 -9.4 6.7 172 515 —l.93 0.172

A 1185 0.6 1.7 78 89 —2.20 0.082

A 1187 —5.4 5.0 114 155 -l.96 0.357

A 1213 —0.4 —l.l 80 91 -2.12 0.092

A 1216 8.2 —3.6 31 175 -1.41 0.220

A 1228 -l7.2 -2.5 286 334 —l.60 0.066

A 1238 1.2 —0.7 94 102 —2.10 0.088
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Cluster 2: re 95% error a 10 error

(arcmin) (arcmin) (kpc) (kpc)

(1) (2) (3) (4) (5) (6) (7)

A 1254 -1.4 1.9 41 335 --l.52 0.196

A 1257 -2.5 —0.5 42 83 —-2.55 0.085

A 1291 —0.3 1.6 80 95 -1.84 0.147

A 1318 2.1 —2.1 678 1010 -1.62 0.060

A 1364 2.1 2.7 195 220 -2.16 0.074

A 1365 -0.2 -0.7 50 116 —2.11 0.145

A 1367 —2.4 —4.0 95 127 —1.61 0.103

A 1377 -2.3 0.3 97 654 —1.53 0.062

A 1382 —2.5 -1.8 324 446 -2.14 0.088

A 1383 0.3 1.4 34 700 -1.47 0.226

A 1399 0.9 2.8 360 394 -l.63 0.046

A 1412 —2.2 -3.5 176 200 -l.50 0.174

A 1436 4.0 3.9 221 273 -—1.30 0.159

A 1468 2.2 3.9 64 551 -2.07 0.210

A 1474 -1.1 4.6 346 470 -1.68 0.032

A 1496 1.2 —0.5 66 107 -1.99 0.248

A 1541 —2.5 -l.7 187 279 -1.50 0.165

A 1644 —1.9 8.0 161 336 -1.65 0.076

A 1651 -1.5 1.0 104 164 -1.78 0.193

A 1656 2.2 —2.2 113 146 -l.78 0.081

A 1691 3.6 0.2 320 432 -l.53 0.152

A 1749 2.0 -0.3 44 81 -2.09 0.118

A 1767 -0.7 —4.7 351 722 -0.87 0.179

A 1773 —2.0 —0.7 35 243 -1.68 0.206

A 1775 0.7 0.2 186 275 -1.66 0.126

A 1793 1.0 1.0 44 115 -2.12 0.164

A 1795 2.0 -2.0 127 178 —2.09 0.146

A 1809 5.9 -3.3 67 112 —1.73 0.082

A 1831 -0.2 -l.2 213 381 -l.35 0.087

A 1837 6.9 -l.4 197 396 -l.63 0.115

A 1904 —0.2 -4.6 217 227 -1.64 0.057

A 1913 4.8 6.1 51 161 -l.57 0.180

A 1927 —1.2 —2.6 123 623 -1.47 0.137

A 1983 —4.3 -3.5 169 213 —1.83 0.112

A 1991 —0.9 -0.9 71 527 —1.57 0.108

A 1999 —5.8 4.8 101 275 —1.88 0.046

A 2005 2.3 1.2 262 419 —2.10 0.051

A 2022 0.9 4.0 63 95 -2.11 0.181

A 2028 -0.2 0.7 166 191 —1.83 0.242

A 2029 0.7 —0.2 50 321 —1.51 0.151

A 2040 —0.4 1.1 34 353 -l.74 0.172

A 2048 —0.2 —0.5 132 266 -1.88 0.078

A 2052 0.5 0.5 30 584 -1.22 0.312

A 2061 —0.7 -0.7 365 519 —l.55 0.072

A 2063 0.5 -3.6 194 267 -l.54 0.267
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TABLE 6.1. (continued)

 

 

Cluster a: re 95% error a 10 error

(arcmin) (arcmin) (kpc) (kpc)

(1) (2) (3) (4) (5) (6) (7)

A 2065 3.1 —0.7 365 582 —l.55 0.072

A 2067 —0.7 4.5 90 200 -1.84 0.069

A 2089 1.6 0.7 323 350 —2.12 0.068

A 2092 0.3 0.8 314 425 -2.08 0.090

A 2107 2.0 1.2 35 313 —l.72 0.296

A 2124 0.8 1.8 102 232 —1.86 0.103

A 2142 —4.8 —5.9 204 737 —1.58 0.072

A 2147 1.4 1.4 95 153 -1.81 0.211

A 2151 —0.5 0.5 241 314 —1.67 0.113

A 2152 9.7 9.7 144 589 -l.49 0.060

A 2162 3.8 0.5 65 138 —2.19 0.170

A 2175 -0.9 —1.2 354 400 -1.68 0.061

A 2197 -21.0 -13.1 321 402 —1.70 0.099

A 2199 —l.7 4.0 81 218 -l.95 0.102

A 2255 0.6 —1.9 287 495 —l.72 0.043

A 2256 -0.3 —4.3 213 320 ,-l.33 0.164

A 2328 0.1 -0.6 284 379 —1.80 0.065

A 2347 -1.9 -2.7 61 119 -2.24 0.379

A 2382 —1.6 0.2 273 405 —1.62 0.074

A 2384 —1.6 0.2 90 177 -1.93 0.155

A 2399 1.5 —0.3 50 64 -1.91 0.292

A 2410 1.9 1.1 186 374 —l.50 0.089

A 2457 2.6 0.9 37 389 —1.55 0.140

A 2634 -5.0 1.7 160 450 —l.93 0.098

A 2657 2.1 1.2 36 237 -l.65 0.254

A 2666 —5.8 1.9 259 781 —1.85 0.123

A 2670 —1.2 —0.7 161 230 -1.44 0.141

A 2675 —2.6 —5.9 57 244 —2.07 0.166

A 2700 0.9 -l.9 166 225 —l.83 0.104
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Examination of the data in Table 6.1 indicates the presence of two outliers: A1318

with rc = 678 kpc, and A779 at rc = 485 kpc. In both of these cases, the reason for

such a large value is poor center specification. If, instead of using the maximum in the

adaptive—kernel map, the Abell center is used, these values drop to rc = 36 kpc, and

To = 57 kpc, respectively. This variation in core radius with center specification is a

well—known problem (Beers & Tonry 1986). In an attempt to minimize this variation,

it has become customary to seek a center which can be specified independently of the

galaxy distribution, such as the position of the X-ray peak or that of the cD galaxy.

However, these alternative center specifications do not solve the problem, but merely

provide other centers to try. For instance, in this study, if the position of the cD

galaxies are used as the center, approximately half of the core radii for these clusters

can be reduced, but several become significantly larger. The explanation for this

sensitivity appears to be the presence of small-scale structure in the cores of clusters.

As previously discussed (see Chapter 3) many of the clusters in this survey show

evidence of small-scale structure in their cores. In the case of A1656, this structure is

believed to be real because of the matching peaks in the the X-ray surface brightness.

A1656 has rc = 113 kpc listed in Table 6.1, with the center at (2’ .2, —2’.2), obtained

from the maximum density of the 2 Mpc region. Comparison with Figure 3.11 reveals

that this center misses the density peak in the smaller map by about two arcminutes.

Choosing the position of this peak as the center, the core radius is less than 50 kpc.

A similar situation applies to A400. It has been argued in this thesis that the core

structure seen in this cluster is also likely to be real. Choosing the position of the

south-western peak as the center, the core radius falls from the 91 kpc quoted in

Table 6.1 to 30 kpc. If on the other hand, the position of the dumb-bell galaxy, which

lies between the peaks in Figure 3.12, is chosen instead, rc = 140 kpc. Many more

examples could be cited from the HGT sample clusters. In these cases however, the
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reality of the structures is less certain.

The above discussion indicates two possible conclusions. If clusters really have

constant density cores, the core substructure observed in the adaptive-kernel maps can

not be real and must be due to contamination from background/foreground objects.

Hence it is difficult to estimate the size of these cores with confidence, due to the

sensitivity of the measurement to this contamination. Previous estimates of the core

radii of clusters are unlikely to be accurate. The more likely conclusion is that the

core substructure seen in the maps is, in many cases, real. When this substructure is

taken into account, the core radii of clusters drops to values that are consistent with

those measured for clusters containing arcs. The constant density cores observed for

clusters in the past as well as those seen in the profiles of Figure 6.1 are caused by

the failure to recognize the complexity of the cluster core.

The difference between the core radius measured from galaxies and that measured

from either X-ray gas or the gravitational lens observations, has been used to support

the claim that the dark matter in clusters is distributed differently than the galaxies.

While it may indeed be the case that the two distributions differ, the core radii

measured using the galaxy projected positions, either obtained by a parametric fit or

by the nonparametric procedure above, should not be used as evidence for this. The

reason is simply that the measurement errors are too large and have been consistently

under-estimated. While the bootstrap error listed above is an improvement over the

errors obtained using a parametric approach, it needs to be realized that this error

is only an error in the density estimate, and not in the actual density. Perhaps a

better estimate of the actual error would be to include in the bootstrap procedure

variations in smoothing parameter as well as variations in the position of the center.

Such refinements would be quite expensive computationally.
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6.3.2 Power Law Profiles and Estimation of £20

A number of studies, both numerical (Crone et al. 1994) and observational (Beers

& Tonry 1986), have found that power law fits are a good approximation for the

density profiles of galaxy clusters. Furthermore, the slope of the power law may have

cosmological implications. Simple gravitational collapse can be shown to give rise to

an r‘4 profile (Gott 1975; Gunn 1977). Observations, on the other hand, indicate

shallower profiles of 1’2 (Beers & Tonry 1986). This discrepancy can be explained

by secondary infall of surrounding material or accretion of smaller groups. Clusters

which have recently accreted material will exhibit a flatter density profile than clusters

which have not recently accreted material. As discussed in the previous chapter, in a

high-density Universe clusters continue to accrete material in the present epoch. On

the other hand, in a low-density Universe the mass should be too spread out at the

present epoch for accretion of appreciable amounts of material.

The best fit power law is calculated for each of the clusters in the sample. A line

was fit to the log-log plots of the space density profiles using a robust least-squares

algorithm. Since the estimates for V are not truly linear over the entire range, the

slope was calculated from the core radius of each cluster out to a radius of one Mpc.

Unlike the estimated values of core radius, changes in the smoothing parameter had

little effect on the slopes. The values for each cluster are listed in column (6), with

the one-sigma error in column (7) of Table 6.1. The median slope of -1.8 :t 0.3 was

obtained. If an average constant-density background of 30% is assumed, then Monte-

Carlo simulations indicate that the profiles will be too shallow by 0.15:l:0.05. The

background corrected slope is therefore likely to be —1.9 :l: 0.3, in good agreement

with previous results (Beers & Tonry 1986).

Comparison with numerical simulations (Efstathiou et al. 1988; Crone et al. 1994;
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Jing et al. 1995) indicates that this is most consistent with an (2 = 1 Universe with

a power-law initial perturbation spectra P(k) o< k’z. Because of the degeneracy

between the spectral—power index and {20, a lower-density universe with a power

index in the range of —-3 to —4 cannot be ruled out. However, such a steep power

law for the initial perturbation spectra is currently inconsistent with the observations

(Henry & Arnaud 1991, Fisher et al. 1993, Peacock & Dodds 1994, Feldman et al.

1994). On the other hand, the flattened profiles seen here and in other studies using

projected galaxy positions, may be due to incomplete background subtraction.

6.4 Conclusions

Despite the common conception of clusters containing constant-density cores in the

galaxy distribution, there is no real evidence to support this. As the core of a cluster

is approached, the number of galaxies available becomes smaller and the density

estimate is poorly constrained, as is clearly demonstrated by the bootstrap confidence

curves in Figure 6.1. It is invariably this poorly conStrained region that is identified as

a constant-density core using parametric techniques. Mis-specification of the cluster

center merely leads to less galaxies near the center, a larger poorly-constrained region,

and therefore a larger core radius. Thus, the core radii listed in Table 6.1 should be

viewed as an upper-limit which is likely to be set more by the sample statistics than

by a physical size of the core.



Chapter 7

CONCLUSIONS

7.1

This thesis calls into question the concept of clusters of galaxies being modeled as

isothermal spheres, Michie-King distributions, or with any other equilibrium model.

Clearly the idea that a galaxy cluster can be described by the two parameters of

core radius and velocity dispersion is an extreme over-simplification, and probably

not even a useful approximation to actual clusters. The growing body of evidence

suggests that clusters are still in the process of formation and accretion of material, as

evidenced by the large fraction of clusters with substructure and the flattened density

profiles, continues at the present epoch. While both of these can be taken as evidence

of a high cosmic density parameter ()0, possible alternative explanations exist.

The studies in this thesis have been based on the positions of galaxies in clusters.

However, the mass in luminous galaxies is only expected to make up about 1% of the

total cluster mass. Given this, it is quite possible that the galaxy positions have an

entirely difl'erent distribution from that of the total mass. If the gravitational lens

observations find steeper slopes are the norm, we would be forced to accept a low-

density, open cosmology. Although the results are still somewhat uncertain, studies

of several clusters with arcs indicate an isothermal profile away from the core, or

200
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2, is a good approximation (Bonnet et al. 1994, Smail et al. 1992, Tyson &p oc r”

Fisher 1995, Luppino & Kaiser 1997, Squires et al 1996), consistent with the results

found here.

Another possibility is the poorly-known effects of small-scale structure on the

collapse times of larger objects. If small-scale structure can delay the collapse of

galaxy clusters till the present epoch, then the substructure seen in clusters, as well

as the flattened density profiles, could be due to material that was accreted long ago

and just now collapsing.

7.2 Future Work

The most obvious extension of the work contained in this thesis is to apply this type

of cluster analysis to the entire Abell catalog. The existence of the APS project, as

well as other similar projects such as the APM survey, beg for such an extension to

be carried out. The importance of a consistent set of contour maps is hard to over

estimate. Any researcher studying Abell 787, for instance, should be aware that the

Abell center appears to be near of low-density trough with two high-density peaks to

the east and west.

With the significant groups identified in the projected surface density, it remains

for projection effects to be eliminated with the gathering of redshifts. Although a K-S

test on the distribution of magnitudes can be used to estimate whether distributions

of the groups are radically difl'erent, as in this thesis, evidence exists that there is not

a universal luminosity function for galaxy clusters (Jones & Mazure 1996). It appears

some clusters are simply fainter than other clusters. Therefore, the classification of

groups as foreground/background in this thesis may be more misleading then than

informative, as is demonstrated in the case of A1837 and A1836.
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For the clusters with X-ray observations, detailed comparison could be made be-

tween the X-ray maps and the adaptive-kernel maps. This may help clear up some of

the questions regarding background contamination, as well as indicate clusters that

have undergone recent mergers. Furthermore, a detailed comparison needs to be done

between the X-ray-derived mass profiles and the projected galaxy number-density

profiles where both profiles are calculated using a fully nonparametric technique.
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