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ABSTRACT

VISCOUS FINGERING DURING REACTIVE FILLING: A THEORETICAL STUDY
OF THE PHENOMENON IN LIQUID MOLDING

By

Chilukuri Nageshwara Satyadev

During the mold filling stage in liquid molding operations, the resin
flowing through fiber “preforms” is continuously polymerizing, leading to a changing,
adverse viscosity gradient in the filled region. The effects of resin age distribution and the
polymerization kinetics on the stability of mold filling flows are investigated here. When
the extent of reaction is significant, the driving force for resin penetration into the fiber
bundles has been found to increase as the viscosity increases, thus improving the wetting
of fibers. But the adverse viscosity gradient generated has an inherent tendency to generate
fingers. A linear stability analysis of the equations describing the mold filling operation
has been performed to derive criteria for growth/decay of fingers. When the derivative, S,
of the reaction rate with respect to conversion is negative, fingers of large widths are
damped; conversely, when this factor S is positive, disturbances of all sizes grow without
attenuation. Small fingers are not stabilized by the reactive coupling. This is attributed to
the relatively long time scale of chemical reaction, in comparison to the time scale of
finger growth: fingers grow faster than reactive coupling can act to damp them out.
Marginal stability plots have been computed to illustrate the effects of several resin
parameters like gel time, activation energy and fill time/reaction time on the fingering
phenomenon. It has also been found that the combined effect of chemical reaction and

mass dispersion is to stabilize disturbances of both large and small wavelengths; this is in



contrast to the cases where dispersion alone damps out narrow fingers and reaction alone

helps damp out large fingers.
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NOTATION

All variables with an overbar () indicate base case quantities.
All variables with a hat (*) indicate dimensioned quantities.

All primed (') variables indicate the perturbations.

a length scale used for Deborah number calculation
A amplitude of conversion disturbance

AR, Ay Arrhenius constants

b defined in eq. (4-22)

bl Kx/KI

b,  K/K

c concentration of reactant (mol/m3)

Co inlet concentration of reactant (mol/m3)

C,, R, concentration and reaction rate at reference conditions

C volume fraction averaged specific heat capacity (J/kg K)

p

C,, C, constants in the viscosity expression

D isotropic dispersion coefficient (m?/s)

Da  Damkohler number, tp/tp

5

Deborah number

E, activation energy for viscosity

E, activation energy for the reaction (J/mol)

Xii



Er  dimensionless activation energy for reaction, Ey/(Rg AT,4)

G’ shear storage modulus

H,W transverse dimensions of the shell in shell balance

i3 unit vector in the flow direction
I initiator concentration
k wavenumber

K permeability tensor

Kp dimensionless permeability tensor

Ky initiator rate constant

K} longitudinal permeability

kg rate constant for simple n-th order kinetics

K, transverse permeability

K, Newtonian transverse permeability (constant)

ky, ky disturbance wavenumbers in the transverse directions
k;, ky rate constants for non-simple kinetics (e.g. eq. 2-2)
LMMDR[f,I] logarithmic mean mobility difference ratio
m,n order of reaction

m,  apparent mobility

mg, my apparent mobility for regime I and at the front, respectively
M the initial mobility ratio

P amplitude of pressure perturbation

P, inlet pressure for constant injection process

Xiii



P pressure

Pe Peclet number, tp/tg

q velocity in the moving reference frame

q amplitude of the &-component of the velocity disturbance

R rate of reaction (mol/m3-s)

R,  gas constant (J/mol °K)

X reaction rate with no explicit temperature dependence
S JdR/da
t time (s)

T temperature

tp, zp dispersive scales for time and length

tp zgp flow scales for time and length

to» Vo» Zogeneral scaling factors for time, velocity, length respectively
T, inlet temperature

tr reactive scale for time

T reference temperature

tp, tp, tgtime bounds for flow regimes I, I, III respectively
u velocity in the fixed frame of reference

Up interstitial velocity (m/s)

U, uniform injection (superficial) velocity

\% d(In A)/dE = —p x (dovdE)

X,y coordinate directions transverse to the flow
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ya  location of the front at time t;

z length, in the fixed reference frame

zZf position of the flow front

Greek Symbols

a conversion

a, gel conversion
B defined in eqn.6

-AHg heat of reaction (J/mol)

AT, adiabatic temperature rise (°C)

Az shell thickness

Ao 0,-04, the initial jump in conversion across the interface
€ porosity

0 (Da) x (Pe) = tp/tg

A 1/

n viscosity = 1/mobility

W initial viscosity

Ko(T) Arrhenius’ term in the viscosity expression

E length coordinate along the flow direction in the moving reference frame

p d(In )/dx
Ps volume fraction averaged density (kg/m3)

c exponential growth rate

Xv



T relaxation time
v stream function form of the velocity perturbation, defined in egn.35

o frequency (rad/s)

Xvi



CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION AND MOTIVATION

This work investigates the flow of reactive, polymeric liquids through fiber bundles
with specific reference to viscous fingering during the mold filling stage in liquid molding
operations. The effect of the polymerization reaction along with the various
thermochemical properties of the resin, and the effect of dispersion during the filling
process, on the growth of fingers, are stﬁdied.

The motivation for this study comes from a necessity to understand the flow
processes involved in the manufacture of fiber reinforced polymer composite materials.
The relevant composite manufacturing process is Liquid Molding, of which Resin
Transfer Molding (RTM) and Structural Reaction Injection Molding (S-RIM) are specific
techniques. Flaw-free parts are the major requirement of any composite manufacturing
process. Microstructural defects in the final part may arise from a number of causes --
uneven distribution of the resin, voids embedded within the fiber bed and viscous fingering
of fresh resin with a lower viscosity into aged resin of higher viscosity within the mold.
The scale of the defects is important to determine whether they affect the mechanical
performance of the molded part signiﬁcantl,y. Inhomogeneities, caused either by voids or
by an uneven distribution of the resin across the fiber bed, may lead to weak spots in the
final parts. The possible role of viscous fingering during mold filling, in the generation of
these inhomogeneities, is studied.

Mold filling processes involve the flow of polymeric matrix material past

1
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anisotropic arrays of fibers. Since the dimensions of the fiber tows are extremely small in
comparison to those of the mold itself, the impregnation of the bed of fibers is treated as a
flow through porous media. As a result of the polymerization reaction occurring during
mold filling, a continuous variation of viscosity of the resin develops across the filled
portion of the mold, at any time. Such a viscosity gradient is found to result in the
phenomenon called fingering of more mobile fluid.

This phenomenon of viscous fingering has been observed in solvent-flushing of
packed beds and filters [Hill, 1952], as also in the secondary extraction of crude oil from
rock formations under the surface of the earth, and has been reviewed by Homsy (1985).
During mold filling, one possible mechanism for the formation of inhomogeneities could
be the rejoining of the fingers downstream, as they grow, thus enclosing a region
containing resin with properties drastically different from those of the resin in its
neighborhood. The structure and behavior of the fingers is expected to depend on the
fibrous nature of the medium, due to its effect on the degree of mixing by dispersion, and
also on the thermochemical properties of the resin being injected.

An introduction to liquid molding processes and the effects of fluid rheology
thereon are also discussed briefly in this chapter. The current state of the art and the
background to studies in viscous fingering are presented in the subsequent chapters in this
section. The mechanism of the effect of adverse viscosity gradients on the growth or
attenuation of fingers, is also reviewed.

The focus of this dissertation is on the effect of the polymerization reaction on the
stability of the mold filling process. Chapter 2 discusses the types of polymer resins used

in liquid molding operations, with emphasis on their reaction kinetics. This chapter offers
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an insight into the factors one needs to look at, to have an a priori inkling of what to
expect would happen to any incipient disturbances during the mold filing process.

The rheological data for an epoxy resin and a vinyl ester resin were taken and a
mathematical model presented for the adiabatic, one-dimensional filling of fiber bundles
with these reacting resins in an end-gated mold. The prediction of the moving front and
the evolving pressure distribution inside the filed portion of the mold at any time are
presented in chapter 3. This analysis and results were presented at the VII Annual
Advanced Composites Conference and Expo, at Detroit in October, 1991 (Jayaraman and
Satyadev, 1991).

The stability analysis on the mold filling process and the results on its application
to a polyurethane resin, along with the base state results, are presented and discussed in
Chapter 4. The effects of dispersion were not included in this analysis and so this chapter
discusses the influence of polymerization reaction on the finger growth in the absence of
any other stabilizing/destabilizing mechanism. These results were presented at the Annual
AIChE Meeting at Miami in November, 1992. The combined effects of mass dispersion
and chemical reaction are presented in Chapter 5. A model problem is discussed, that
depicts this combined effect on the initial growth rates by means of a simple, analytical
method. This analysis was presented at the V International Conference in Numerical
Methods in Industrial Forming Processes - NUMIFORM ‘95 at Ithaca in June, 1995
(Satyadev and Jayaraman, 1995).

The last chapter in this dissertation presents the conclusions from this work on the

effects of chemical reaction on the stability of mold filling in liquid molding operations.



1.2 BACKGROUND
1.2.1 LIQUID MOLDING OPERATIONS

Resin transfer molding (RTM) and Structural - Reaction Injection Molding (S-
RIM) are techniques thét are commonly treated under the category of liquid molding
operations in the polymer composites manufacturing industry. In both these techniques,
the method consists of injection of a low viscosity, unreacted polymer resin inside a closed
mold with a fiber preform in place. The mold must be filled well before the viscosity of the
resin rises to gelation. The main difference between the two techniques lies in the desired
production rate of finished parts; S-RIM is a high speed process, while RTM involves
relatively larger fill times. These differences eventually translate to difference in

operational costs, too.

1.2.2 EFFECTS OF FLUID RHEOLOGY IN RTM

Analysis of the filling process in resin transfer molding is usually done with the
assumption that liquid advancing through the fiber preform maintains a constant viscosity
and remains inelastic (Coulter and Guceri, 1988; Kim et al, 1991; Parnas and Phelan,
1991; Bruschke and Advani, 1990). This assumption is frequently questionable, in
practice for the following reasons.
a) Often a thermoplastic binder holds the fiber tows or fabric together and allows it to be
shaped before impregnation with resin; this binder usually dissolves in the resin and is
removed from the fiber surface by miscible displacement (Owen et al, 1989). Dissolution
of binder raises the viscosity by a factor of two or more, as observed by Chen et al (1995).
b) High speed versions of resin transfer molding that are now under development employ

resins that cure very fast (Babbington et al, 1987). In filling large preforms with these
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resins the extent of reaction at various time steps of filling is significant, producing
changes in both shear viscosity and extensional viscosity.
c) In contrast to filling of empty mold cavities where fluid memory effects are not
significant (Wang and Hieber, 1988), viscoelastic effects may be significant in filling of
molds with fiber preforms. Permeation rates transverse to the fiber axis have been
observed to be significantly lower for viscoelastic fluids, compared to that for inelastic
resins with the same shear viscosity (Chmielewski and Jayaraman, 1992). The reduction
in permeation rate depends on the extensional viscosity displayed by the fluid as it is
subjected to varying stretch rates in the fiber array.

Hence the changing resin rheology (both inelastic and elastic components) during
the miscible displacement of binder or during the reactive filling process affects the resin

pressure distribution in the mold in a complex way.

1.2.3 VISCOUS FINGERING

Hill (1952) published the first paper on viscous fingering while studying the
displacement of sugar liquors by water (lesser viscosity) during regeneration of packed
beds, where he observed significant channeling of the water through the more viscous
sugar solution. Saffman and Taylor (1958) developed a stability criterion to explain
viscous fingering in immiscible fluids. They showed that the differences in viscosity
between the displacing and displaced fluids, along with the velocity of displacement,
governed the growth rates of disturbances. When the viscosity gradient is unfavorable (the
displacing fluid is lower in viscosity), the flow system is inherently unstable and leads to

growing fingers. This effect of an adverse viscosity gradient on the growth, or otherwise,
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of disturbances is discussed briefly below. This discussion is equally valid for both

immiscible and miscible fluids.
Effect of adverse viscosity gradient: In Figure 1.1(a) is shown a single finger that has just

developed. To the left of its boundary is the displacing fluid I of viscosity pt; (unshaded
portion); to its right is the displaced fluid II of viscosity |1, (shaded portion). Let the
pressure at the plane AA’ be P, and the pressure at the plane BB’ be P;. Let the distance

between the two planes AA’ and BB’ be €. We assume, for this discussion, that the
permeability K of the porous medium and the velocity U of the fluid are constant

throughout the flow domain. The pressure P, at BB’ is determined by Darcy’s law:

P, = Po-(%)-u (1-1)

In the absence of the disturbance, the space between the planes AA’ and BB’ would be

occupied by fluid II; so the pressure P, is governed by the value of W, - higher the
viscosity, lower the pressure P} in comparison to P, (i.e. Py ;), and vice versa (i.e. P} ;).
Once the disturbance has been initiated, however, the fluid inside the finger, at M™ has a
viscosity lL;; consequently the pressure just inside the boundary, at M", would be P,, as
seen in Figure 1.1(b).

Figure 1.1(b) shows the pressure profiles for the cases of (i) 1;>W5, (ii) 11 <M5, and
(iii) py=p5 (dashed line). If p; > i, then the pressure just outside the finger, at M*, would
be Py ; which is greater than P,; thus there would be a tendency for flow from the fluid II
into fluid I, reducing the finger size; this signifies stable behavior. If b, < p,, however, the

pressure just outside the finger,



A B
Figure 1.1(a)
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Figure 1.1 Mechanism of finger growth due to viscosity gradients
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at M*, is P, ;; which is lower than the pressure P, at M*; this pressure gradient across the
finger boundary would cause fluid I to flow outward into fluid II, indicating finger growth
- instability.

Thus it may be concluded that incipient fingers would grow if the displacing fluid
is of lower viscosity than the displaced fluid, while the fingers would be damped if a
higher viscosity fluid displaces a fluid of lower viscosity. The driving force for finger
growth is the pressure gradient across the finger boundary, which is determined by the
viscosity difference across the two fluids. When a fluid displaces another fluid of higher
viscosity, the unfavorable viscosity difference in the flow direction leads to flow
instability, causing the low-viscosity fluid to channel through the second fluid, yielding
‘fingers’.

Viscous fingering has been studied by researchers in petroleum engineering in the
context of secondary oil recovery, using external fluids to push oil from the reservoirs up
into the wells. Water has been used, with considerable success, for this purpose. Water,
being lower in viscosity than the subterranean oil, pushes the latter through the porous
rock formations. But it was observed that this scheme did not always extract all the oil in
the formation, with water coming out of the wells after a certain period. This has been
seen in laboratories, too, and has been attributed to the phenomenon of viscous fingering.
Fingering in both immisciblé and miscible displacement has been studied by various
workers and has been reviewed by Homsy (1987).

Chuoke et al (1959) developed the first mathematical linear stability analysis for
the displacement of two immiscible fluids. They included interfacial tension effects in

their analysis, to obtain the necessary and sufficient conditions for instability of slow
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liquid-liquid displacement in porous media.

In liquid molding operations, however, the displacing and displaced fluids are both
completely miscible, both comprising the same reactive resin, albeit of different degrees
of polymerization. There is, thus, no interface between the two fluids, and the analyses
done will correspond to those for miscible displacement problems. As will be seen below,
the miscible nature of the two fluids in question provides an opportunity for dispersive
mixing at the edges of fingers, thus smoothing out the viscosity profile. In addition the
fresh resin, that pushes the older resin in the mold, is at a lower degree of polymerization
than the latter, hence of lower viscosity. An adverse viscosity gradient is, thus inevitable in
the liquid molding scenario. Fingers were observed in RTM experiments performed by
Losure (1994). To illustrate the generétion of fingers, the mold was first fed with the resin
and left to react for a certain period. A fresh batch of the resin was then injected; this batch
was dyed, to aid visualization of the generated fingers. Figure 1.2 shows a typical liquid
molded part, as an illustration.

Miscible displacement does not involve any interfacial tension. Slobod and
Thomas (1963) performed experiments to show the development of fingers by a fluid
displacing another miscible fluid at different flow velocities. They found that a single,
large finger was generated at small velocities and also saw that the edge of the finger was
quite blurred and attributed this behavior to dispersive mixing of the two fluids across the
edge. Larger flow velocities yielded a number of small fingers that merged, over time, into
fewer fingers, though of considerably smaller widths than those seen in the low velocity
experiments. No rigorous mathematical analysis was, however, presented in this paper.
The type of finger that is produced, i.e. whether it is a single, large finger or comprises

several fingers of smaller widths (finger splitting) is discussed by Park and Homsy (1985),
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Figure 1.2 Typical molded plaque: to illustrate the generation of fingers. White - older
resin; Shaded: fresh resin [after Losure, 1994]
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where a dimensionless group (Capillary number) is used as a criterion to describe a finger
splitting regime in immiscible flows.

Perkins and Johnston (1963) published a review of the effects of diffusion and
_ dispersion in miscible displacement processes in flows through porous media. A summary
of the different empirical equations for longitudinal and transverse dispersion coefficients
is also given. In a later paper, the same authors (Perkins and Johnston, 1965) suggest a
useful way of denoting the size of a finger, as the ratio between the finger width to the
spacing between successive fingers.

Schowalter (1965) formulated stability criteria for steady, constant velocity,
miscible displacement of fluids in an infinite porous medium and discovered that the
criteria for marginal stability are affected by variations in density, viscosity, the
displacement velocity and also the effect of diffusion. Paterson (1985) used the analogy
between flow through porous media and a Hele-Shaw cell and used viscous dissipation of
energy in the displaced fluid as a stabilizing mechanism, to obtain bounds on the
disturbance wavelengths for undamped growth for miscible fluids.

A linear stability analysis on miscible displacement, in the absence of any
mitigating factors such as dispersive mixing, was performed by Hickernell and Yortsos
(1986). The inherent instability of the miscible displacement process, in the presence of an
adverse viscosity gradient, is observed and appropriate stability criteria are derived in this
theoretical paper. Their results are presented schematically in Figure 1.3. Disturbances of
all widths (wavenumbers) are seen to be unstable.

Tan and Homsy (1986) found that, in the presence of an adverse viscosity gradient
between two miscible fluids in a porous medium, the flow is inherently unstable and that

dispersion tends to stabilize the process by spreading out the mobility profile, more so for
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growth rate

wave number

Figure 1.3  Filling with no reaction or dispersion [after Hickernell and Yortsos, 1987]
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the higher wave number disturbances. They also studied the effect of anisotropic
dispersion on the growth rate; they found that a small transverse dispersion increases the
growth rate drastically in comparison to an isotropic case, resulting in a shift to smaller
finger widths, while a large transverse dispersion tends to stabilize the system at all length
scales. Their results are shown schematically in Figure 1.4, where the growth rates are
plotted against wavenumbers at several times. Fingers of large wavenumbers are seen to
be stabilized by the dispersion process.

Yortsos and Zeybek (1988) emphasized the dependence of dispersion coefficient
on flow rate and concluded that the velocity dependence causes instability at large
wavenumbers through a kind of a feedback mechanism. Nonlinear interactions of viscous
fingers are discussed in later work by Homsy and co-workers (Tan and Homsy (1988),
Zimmerman and Homsy (1991, 1992)). The effect of nonmonotonic viscosity profiles, as
opposed to those cénsidered in earlier literature, is presented by Manickam and Homsy
(1993). In another paper, Tan and Homsy (1992) include permeability heterogeneities in
the porous medium, described by a statistical model, and find a coupling between these
heterogeneities and viscous fingering. Bacri et al (1992) experimentally confirm the
theoretically predicted trends of the effects of various parameters, e.g. viscosity, flow rate
and permeability heterogeneity, on fingering, after including effects of gravity and
nonlinear dispersion in their analysis. Gorell and Homsy (1985) made predictions of the
most dangerous wavenumber, i.e. the wavenumber at which growth rate is the largest,
which would be the fastest growing

Porosity variations can occur in certain situations, e.g. during injection of acid into
the formation, to increase crude oil production from a well. Chadam et al (1986)

investigate these reaction-induced porosity variations and their effect on fingering
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growth rate

Figure 1.4 Filling with dispersion, no reaction [after Tan and Homsy, 1986])
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instabilities. In a later paper, Chadam et al (1991) looked at the coupling of porosity

variations with viscosity changes. Schincariol et al (1994) present an analysis of the
growth of disturbances in a variable density flow and develop criteria for the growth or

decay of disturbances.

1.3 LIQUID MOLDING AND VISCOUS FINGERING

Since the resin being injected in liquid molding operations is continuously
polymerizing, the fluid in the filled region of the mold at any time has a constantly
changing viscosity; fluid at the flow front has a higher viscosity than the fluid at the inlet to
the mold. Though the question of two fluids does not arise, the flow situation may still be
visualized as one in which the fresh fluid is pushing the older fluid and, thus, analyses
done on miscible displacement of fluids would be applicable. Owing to the adverse
viscosity gradient, in the absence of any stabilizing mechanism, the flow would be
expected to be inherently unstable. Based on existing literature discussed above, it is
easily seen that dispersion across the edge of a finger helps damp out the disturbance.
Also, a higher transverse dispersion (transverse to the bulk flow) increases this smearing
out effect. A brief discussion of the dispersion coefficients in several types of fiber
preforms may be found in Losure (1994).

As seen in Figure 1.4, the fingers that are most likely to grow are the ones with the
most dangerous wavenumber, seen in Figure 1.4 as corresponding to the peak.
Disturbances at both ends of the spectrum of wavenumbers have comparatively lower
growth rates. The actual dimensions of the liquid molding cell play a major role in

determining the size of the fingers. If the most dangerous wavenumber corresponds to a
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finger width that is larger than the dimensions of the cell, the instability will not be seen in
experiment.

The mechanical properties of a finished part are affected by viscous fingering. The
time of generation of a finger, with respect to the injection of fresh resin, governs the
strength of the edge of the finger. When the incipient disturbance is closer to the inlet, the
degree of polymerization is still fairly low, and there is adequate opportunity for
subsequent reaction to create crosslinks across the edge of the finger, thus bringing the
finger close enough to the rest of the finished part in mechanical properties. On the other
hand, if a disturbance is generated at a later time, when the conversion is fairly high, there
is lesser scope for crosslinking across the edge of the finger, which makes the region of the

finger behave as an inhomogeneity in the final part, with comparatively poorer mechanical

properties.

1.4 SUMMARY

An introduction to the phenomenon of viscous fingering has been presented in the
preceding sections of this chapter. The appearance of fingers during mold filling, and their
effect on the properties of the final liquid molded parts, was briefly discussed. It was seen
that no work has been done on the effects of reactive coupling on the stability of the flow
through porous media. The following chapters of this dissertation deal with the role of the

polymerization reaction on viscous fingering.



CHAPTER 2 POLYMER SYSTEMS IN LIQUID MOLDING: A REACTION

KINETICS POINT OF VIEW

2.1 INTRODUCTION

Reaction Injection Molding (RIM), the precursor to Resin Transfer
Molding (RTM) and Structural - Reaction Injection Molding (S-RIM), involves
polymerization inside the mold. This is in contrast to conventional thermoplastic injection
molding (TIM), where polymer is injected into the mold and allowed to cool to form a
solid polymer. Monomer casting and thermoset injection molding processes also use
polymerization inside the mold, but they employ heating of the mold walls to activate the
reaction. In RIM, monomer and mold temperatures are usually quite close and the reaction
is activated by impingement mixing of the reactants just before they enter the mold. A
schematic of the RIM machine is shown in Figure 2.1 (Macosko). The two reactants A and
B are mixed in appropriate ratios just before they enter the mold, to initialize the
polymerization reaction. The resin far from the mold inlet has undergone considerable
polymerization reaction compared to resin at the mold inlet.

RIM production began with polyurethanes. Nylon 6, dicyclopentadiene,
acrylamate, epoxies, unsaturated polyesters and phenolic materials are several other

chemical systems currently in use for RIM operations.

18
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Figure 2.1 Schematic of a RIM Machine [after Macosko, 1989]
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As will be seen in chapter 4, the chemical reaction kinetics of the resin
used in liquid molding is an important factor in the determination of flow stability of the
mold filling step; the stability is dependent on the rate of (polymerization) reaction and its
derivatives with respect to conversion and temperature. Thus the form of rate expression
that describes the polymerization reaction has a direct effect on subsequent analyses. For

example, polyurethanes are usually represented by simple n-th order kinetics:
R = kp(1-a)" @1

while unsaturated polyesters and epoxies have been known to follow more complex rate
expressions of the type:

R = (ky+ky-a™) - (1-a)" (2-2)

Several types of chemical reactions are schematically depicted in Figure

2.2, where the reaction rate, R, is plotted against the conversion, o, showing the different
classes of reaction systems by the trends in variation of (JR/dc) = S. Reactions with
kinetics given by equations of the type eqn. (1) have a negative S for all ranges of
conversion, for nonzero orders of reaction, shown in Figure 2.2 as curves (a) and (b), while
reactions with kinetics given by eqn. (2) would depend on the values of the kinetic
constants and the conversion. When the order of reaction is zero, the reactions follow line

(c).
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Figure 2.2 Types of chemical reactions classified by S behavior
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The solidification process in all liquid molding operations involves
crosslinking. The viscosity variations arising from this process are linked to the reaction
kinetics of the polymerization process. The rheological changes during a single RIM
cycle, up to gelation, are shown in Figure 2.3. The initial viscosity of the reactant mixture
is low enough to enable rapid mixing. As the monomers react to form high molecular
weight resin, the viscosity rises. This build up must be slow enough for the entire mold to
be filled. Once the mold is filled, injection of reactants is stopped and the viscosity

allowed to increase rapidly to gelation.

\
\
\
\
\
z \ \
o \ \ °
g \ Mol filling \  Curing
> \ \
\ \
: :
: :
\
\ \
\ Shut Off \
Gelation
ﬁ
Reaction time

Figure 2.3 Viscosity changes during a RIM cycle

Though fast polymerization reaction is essential for a polymer system to be

successfully used in RIM processes, not all such fast polymerizations are suitable.
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Polymerizations in solution, emulsion or suspension are not suited for production of a
molded part; polyethylene or polypropylene, which are made only in solution or
suspension, are ruled out. Polyesters, which need extensive condensation of a small
molecule, are poor candidates for liquid molding. Monomers that need to be heated to
their melting temperature for polymerization also are unsuitable since this would need
preheating the mold to high temperatures for the reaction to occur, followed by cooling to
cause crystallization. High initial viscosity of the monomeric liquid makes some polymer
systems unsuitable for RIM.

A brief study of some polymer systems that are amenable to liquid molding
follows. The focus of the discussion in the rest of this chapter will be on the reaction
kinetics of the polymer system under consideration and its effects on the viscosity, since
they are the factors essential for the analysis of the stability of mold filling processes in

later chapters.

2.2 POLYURETHANES

Formation of polyurethanes involves the reaction of isocyanates with
compounds containing an active hydrogen. The active hydrogen compound, e.g. an
alcohol, adds across the carbon-nitrogen double bond of the isocyanate group.

R-NCO+HO-R'">R-NH-CO-0-F (2-3)
The {-NH-CO-O-} linkage is called the urethane bond.
Water reacts with isocyanate to form a urea, so careful drying of reactants

and catalysts is done; typical water level in RIM materials is < 0.07%. Reaction of amines
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with isocyanates also yields ureas. Organometallic compounds can greatly increase the
rate of urethane formation. Isocyanates can also undergo addition or auto-condensation
reactions. Dimerization of isocyanates is reversible at high temperatures, while the
products of trimerization (Isocyanurates) are more stable.The urethane bond is also known
to be reversible at high temperatures and care has to be taken during RIM and postcuring
operations, where temperatures can go to fairly high levels. Urethane reactions give no by-
products. They go to a high degree of conversion and also can be very fast, depending on
the active hydrogen compound. These factors render urethanes well suited to liquid
molding operations.

RIM processes require that a polymerization goes to completion in a few
minutes, preferably less than one. Reaction kinetic data are necessary for modeling the
rheological changes which control mold filling and curing. It has been observed (Macosko
1989) that most urethane reactions proceed according to the following, simple n-th order,

kinetic expression:

_ dINCO]
dt

= kg [NCO]™ 2-4)

Here the reactants are assumed to be in stoichiometric ratios, as is normally the case, and
the concentration of the catalyst is absorbed into the rate constant. The overall order of the

reaction “m” typically has a value of 2. The rate constant, kg, is described by the usual

Arrhenius form:

E, |
kp = Ag exp(—ﬁ) (2-5)

In terms of the extent of reaction (conversion), ¢, the rate expression then becomes:
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_ do _ Ea) m
R = i Ap exp( RT (1-a) (2-6)

From this form of the rate equation, it may be seen that polyurethanes
follow chemical reactions of the type (a) or (b) in Figure 2.2, depending on the order of the
reaction.

Viscosity is dependent on conversion and temperature, both of which are
continuously varying during the molding process. Kinetic results can be combined with
structural relations (probability arguments) to derive expressions for the evolution of the
molecular weight with time and temperature. From these molecular weight expressions,
viscosity is also easily determined. Empirical data on several polyurethane resins

suggested the following expression for the viscosity:

o C,+Ca
b= R, (T) [a—Lg_a] @7
where p(T) is represented by an Arrhenius type of equation:
E,
hoT) = 4, exp(Z2) 2-8)

0 in these equations is the gel conversion for the urethane formulation in question due to

formation of a network. Equation 7 suggests that viscosity depends on the reaction

kinetics through the extent of reaction, c.

2.3 POLYAMIDES

Polyamides are the basic unit of Nylon 6 and are the most studied non-

urethane RIM system. They have the advantage of a high modulus, high impact strength
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and high temperature stability. They are commonly made by anionic polymerization of e-
caprolactum with a suitable initiator and metal catalyst. The mechanism involves a step-
propagation. Acyl lactam is an example of initiator used. Sodium caprolactam and
Magnesium caprolactam are the most commonly used catalysts.

The reaction kinetics for the formation of polyamides has been well studied
(Malkin et al 1982). An autocatalytic model fits a large amount of data for the sodium

catalyzed reaction. The rate equation is found to be of the form:

2
%(—: =k, cxp(—%) (;To) (1-a) (1 +If’7(}) (2-9)
where “I” is the concentration of the initiator and is the same as the catalyst concentration.
M, is the initial monomer concentration and o is the extent of reaction (conversion), “k;”
is the rate constant and “k;” is an autocatalytic term. It is seen that the reaction kinetics for
this polymer follows a more complicated rate expression than for the polyurethane system,
due to the presence of the autocatalytic term.

From the above form of rate expression, it is seen that JR/da is negative
for conversions greater than or equal to 50%; for lower conversions, it depends on the
numerical values of the initiation rate constant, “k;”, and the initiator concentration “I”.

The reactant viscosity is low and the reaction rate is relatively slow. This
ensures that molds are easily filled. Gel times are typically over 20s. However, the low
viscosity may lead to bubble problems. One disadvantage for this Nylon 6 system is that

of a high operating temperature and require high temperature RIM machines.
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2.4 EPOXIES

Suitable catalysts and hot molds are needed to adapt epoxy formulations to
liquid molding. Most epoxy formulations are based on bisphenol A and aliphatic
diamines. Highly crosslinked networks result from the reaction since both amino
hydrogens can react with the epoxy groups. A typical reaction scheme for an epoxy
system is shown in Figure 2.4. The reaction is found to follow simple n-th order kinetics,

given by a rate equation of the form:

do. - _&) o\t _
7l Ap exp( RT (1-o) (2-10)

The order of the reaction, “n”, depends on the polymer system being considered. An
amino-ethyl-piperazine formulation is found to have an order n = 2.8 (Osinski 1983),
while a Diglycidyl ether of bisphenol A (DGEBA) / triethylene tetramine (TETA) system
has an order n=1.64 (Kim and Kim 1987). Like the polyurethanes, epoxies also are seen to

be represented by curves (a) or (b) in Figure 2.2.

The viscosity in typical epoxy resins is high; so the reactants have to be
preheated to enable easy mold filling. The need for hot molds and a typically large
exotherm can cause degradation problems. However, the reactions themselves are
relatively slow compared to typical injection times. Therefore the problems arising from
viscosity buildup and premature gelation are absent.

Kim and Kim (1987) have found that the viscosity rise during reaction, for

the DGEBA/TETA system, follows equation 7 that was presented in the discussion of

polyurethanes. The gel time for a DGEBA/TETA system at 50°C has been found by
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Figure 2.4 Reaction scheme for an Epoxy system
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Losure (1994) to be about 30 minutes. Thus, in comparison to both polyurethanes and

polyamides, the epoxy resins have a significantly higher gel time.



CHAPTER 3 VISCOSITY VARIATIONS DURING REACTIVE FILLING OF FIBER

PREFORMS

3.1 INTRODUCTION

Analysis of the mold filling process in liquid molding is usually done with the
assumption that liquid advancing through the fiber preform maintains a constant viscosity
and remains inelastic. This assumption is frequently questionable. During the filling
process in resin transfer molding there is a constant variation of the viscosity of the resin,
and also a significant rise in the elastic nature of the resin, due to various reasons, which
were discussed in chapter 1.

Hence, the changing resin rheology during the miscible displacement of binder or
during the reactive filling process affects the resin pressure distribution within the mold in
a complex way. The next section presents an analysis to show the effect of resin rheology
on several measurable quantities during mold filling in an end-gated mold. Rheological
data taken from experiments conducted on an epoxy resin and a polyester are used to

investigate these effects of changing rheology.

3.2 ROLE OF RESIN RHEOLOGY IN LIQUID MOLDING

The problem addressed in this section is the adiabatic flow of reacting resin
through a fiber preform placed in an end gated rectangular mold. The fibers are aligned
transverse to the flow and the model pertains to one dimensional motion of the resin with

constant inlet pressure P at the gate (see Figure 3.1). A complete description of reactive

30
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filling would couple the changing rheology to the species mass balance and the energy
balance (Garcia et al). The effect of changing rheology is illustrated directly with the help
of rheological data obtained on the resin as it cures within the gap of a rheometer.

The rate of change in rheology with increasing extent of cure, varies with resin
formulation. With some resin formulations for which the conversion at the gel point is low,
this variation is abrupt -- the change is hardly noticeable upto the gel conversion; then
gelation occurs very rapidly. With other formulations, the change in rheology occurs
smoothly -- both the viscosity and the elastic modulus of the resin change over a range of
conversions leading up to the gel point. The effect of such changes in resin rheology upon
the front motion, and upon the resin pressure distribution during the filling process in resin
transfer molding is examined here with a rectangular, end gated mold at constant inlet

pressure.

3.2.1 RESIN RHEOLOGY AND APPARENT PERMEABILITY

The changing rheology of two different resin formulations has been monitored in
the gap between parallel plates in an RMS-800 instrument. Both the Devcon epoxy resin
and the Derakane vinyl ester resin reach the gel point over a time frame of several minutes
in the laboratory. Figures 3.2 and 3.3 show the time evolution of the steady shear viscosity
and of the dynamic shear storage modulus G’ at a fixed, low frequency w of 1 rad/s, for

these resins. A fluid relaxation time, T, may be calculated with the expression

G

T = 3
@

(3-1
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Figure 3.1 One-dimensional flow of resin, transverse to fibers, in an end-gated mold
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Figure 3.2 Rheology of Devcon epoxy resin
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Different regimes were identified on the basis of these curves. In the first regime (t < t;),
the resin is an inelastic fluid of constant viscosity. In the second regime (t; < t < ty), the
fluid remains inelastic but displays an increasing viscosity. In the third regime (t > ty), the

fluid develops viscoelasticity in addition to an increasing shear viscosity. The fluid
viscoelasticity developed at various stages is associated with increasing extensional
viscosity of the resin. These figures show that the progression from inelastic resin to gel is
more abrupt for the Derakane resin.

The bulk flow of incompressible, Newtonian fluids through porous media at low
Reynolds numbers is described by Darcy's law. This macroscale representation of the
superficial velocity in anisotropic media requires the specification of two or more
directional permeability coefficients defined by the geometry of the preform. The

permeability K, transverse to the fiber axis is typically several times lower than the

longitudinal permeability along the fiber axis. The apparent transverse permeability of
fiber arrays with hexagonal packing and a fiber volume fraction of 30 percent, to
viscoelastic liquids, is plotted against a measure of viscoelasticity on Figure 3.4.
Increasing viscoelasticity is represented by increasing values of a dimensionless ratio of

fluid time scale to flow time scale -- the Deborah number, De.

U,
De = (3-2)
a

The permeability K, (normalized with the constant value for Newtonian liquids,
K,,) starts to drop at an onset Deborah number of 0.4 and continues to decrease with

increasing De. At higher values of the Deborah number, the apparent permeability reaches

an asymptotic value.
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Figure 3.4 Apparent transverse permeability Vs. viscoelasticity - Hexagonal array
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3.2.2 THE MATHEMATICAL MODEL

The one dimensional flow along the y -direction transverse to the fiber axis in the
fiber array, is described by the following equations. First we define a coordinate moving
with the front

E=z-2 s ' (3-3)

where z¢denotes the location of the front. Then, we obtain

Continuity EEO =0
U

Permeation 9P _ _Zo (3-4)
13 m,
M X de UO
otion of front rriary

U, is the superficial velocity through the fiber array, € is the porosity of the array and m, is

the apparent mobility defined by

m,

a (3-5)
vl
the apparent permeability K, and the viscosity .

The boundary conditions for operation at constant inlet pressure are

P=P at §=—Zf

(3-6)
P=0 at E=0

Analysis Of Model Equations: Three different regions are identified on the basis of

apparent resin mobility, which is the ratio of apparent permeability through the fiber
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preform, to the viscosity of the resin. The mobility of fluid flowing through the first region
close to the inlet is uniform because the shear viscosity is constant and the Deborah
number is lower than the onset value for viscoelastic effects. The mobility of fluid flowing
through the second region decreases towards the front only because of the increasing shear
viscosity. The mobility of fluid flowing through the third region is affected by both
variations in extensional viscosity and increasing shear viscosity.

The analysis of the filling process is presented for two different situations: filling
with constant mobility and filling with the first two types of regions. For the purpose of
this dissertation, the viscoelastic effects are not considered. It was observed by Gonzalez-
Romero and Macosko (1985) that the viscosity of several polyurethane systems is
independent of the shear rate, i.e. Newtonian behavior of the polymeric fluids may be
assumed, up to the gel point. Since the viscoelastic regime does not begin until the
viscosity is quite high, this assumption is made for these resins also.

The solution for the first situation is classic (Collins, 1961). In the other situation,
analytical expressions are developed for the resin pressure distribution and for the velocity
at any given time by assuming an exponential variation of mobility over each subregion.
These expressions are combined with numerical integration over time for the location of
the front and of the crossover planes for onset of shear viscosity increases. The constant
inlet pressure condition leads to progressively lower superficial velocities with time so that
the residence time corresponding to a location in the mold increases with time. In other
words, after the start of the filling operation, fluid elements entering the mold at any time
undergo the same rheology changes at shorter distances from the gate.

Filling With Constant Mobility: The mobility is constant throughout the resin up to time t;
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from the start of the filling operation and is described by

m,

Klo
m, = u— (3’7)

The front has advanced for a time period less than t;, the solution to the model equations

(eq. 3-4) is readily obtained as

P=-"2==(z,-2)
/ f /
1
_ [ 2mP,t 2 (3-8)
Z =
/ €
U = mIPo
o
%y

The location of the front at time t;, denoted by y,, may be found from the above equation

as

2m,P t2
Vg = [ l8 0 I:I (3-9)

The velocity at the onset of rheology changes is m{P,/y 5. This velocity will be used as a

reference velocity for analysis of the second region.

Filling With Shear Viscosity Changes: Over the time period t; to ty;, the region behind the
advancing front may be divided into two subregions -- one of uniform mobility m; and
another where the mobility varies because of the changing shear viscosity alone. The

mobility at the front mg is then given by

KIO
m, =
ATe

for region II (3-10)

The viscosity is evaluated at the time corresponding to z;. The location of
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crossover between the two subregions, termed yj, also varies with time. It is convenient to
fit the variation in mobility from this crossover plane to the front in region II with an
exponential at any given front location or a given time. This choice has been validated by
the final converged values of residence times at different locations behind the advancing

front. The velocity U, at a given front location is then obtained from the following

equation.

m,;P v Zf=y

1o _ J+( ! ")LMMDR[f,I] (3-11)
YaUs,  ya Ya

This equation involves four dimensionless groups. The group [m;P,/(U,y )] represents a

factor by which the velocity is reduced from the velocity at the onset of rheology changes.

The group (z¢/y ) is the current location of the front relative to its location at the onset of
rheology changes. The group (y/y) is the current location of the crossover between the

first two regions. The final group termed LMMDR [f,]] is the ratio of a logarithmic mean
mobility difference (between the crossover plane and the front) to the mobility at the front;

this group is given by the following expression.

m —
LMMDR[f, 1] = ml ~L
re
m;

If there were no changes in fluid rheology during the filling process (m¢ = mj = constant),

(3-12)

this group would have a value of 1.
The increments in front location and in the crossover location corresponding to
increments in time are determined by integrating eq. (3-4) and an analogous equation for

y1 with the trapezoidal rule.



Azp = At ——— (3-13)

These equations are combined with Eq. (3-11) to determine the velocity at the next time

value.
3.2.3 DISCUSSION OF COMPUTED RESULTS

The expressions derived above have been used to compute the motion of the front
and of thé different crossover planes, as well as the evolving pressure distribution, for
several cases. These cases are represented by different values of the characteristic velocity
myp,/y A ranging from 3.59 mm/s to 6.22 mm/s. Scaling all displacements by y, and the
pressure by the inlet pressure P, then yields one curve for each of these quantities that
covers all values of inlet pressure and of Newtonian liquid permeability (K,,) provided the
rheology variation with time is given; something in the nature of a master curve is
obtained.

Penetration: The resin penetration into the fiber bundle is plotted against time on Figure
3.5. The front crosses over at 0.5 min into the region of changing shear viscosity and into

the region of developing modulus at a time of 2 min and a location 1.94y 5. Between 0.5

min and 2 min, the change in shear viscosity leads to a 20 percent higher drop in velocity
than would be obtained with unchanging mobility. At longer times -- 4 min, the changing
rheology leads to a 94 percent higher drop in velocity than would be obtained with the

mobility fixed at the value corresponding to 2 min. The dimensionless plot of velocity on

Figure 3.6 shows these trends. It must be kept in mind that the sharper drop at greater



42

Yi/ya

Figure 3.5 Resin penetration into fiber bundles



43

(Vo ya)/ (my Po)

Yt/ ya

Figure 3.6 Dimensionless superficial velocity at various flow front positions
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Figure 3.7 Location of y; at various positions of the flow front
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Figure 3.8 Location of yp at various positions of the flow front
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times 1s caused not just by permeability drops in the third region but also by the expanding
region of changing fluid rheology.

Figures 3.7 and 3.8 show the location of the two crossover planes with time. From these
curves, it is seen that the extent of region with changing fluid rheology expands to the
entire filled region at the end of 4 min. As the front moves forward, the location of yj,
which marks the beginning of rheology changes, is seen to move towards the inlet port of
the mold. This is shown in Figure 3.7. Once the front enters the third region, this onset
plane for all rheology changes moves more rapidly toward the inlet; given sufficient time
for this filling operation, y; would be expected to reach the inlet port, depending on the
nature of rheology of the resin. Once the front has reached yy;, the third regime begins,
which corresponds to an increasing elastic behavior of the fluid. As the front progresses,
however, the location of yyj, i.e., the onset plane for extensional viscosity effects moves
toward the inlet of the mold. Again, with progressing flow front, the rate at which yy;

moves toward the inlet increases, as shown in Figure 3.8.

A Unified Correlation: A very simple relation is obtained between the logarithmic mean
mobility difference ratio and a velocity reduction factor. The latter quantity is defined as
follows. The hypothetical velocity that would be obtained for constant mobility
throughout is given by eq. (3-8). The ratio of this quantity to the actual superficial velocity
is termed the velocity reduction factor. The velocity reduction factor is plotted against
LMMDR [f,I] on Figure 3.9. This figure shows that the two quantities are identical over
most of the region (though not exactly same). This may also be seen from equation 3-11

after some simplification. Hence, the effect of changing fluid rheology on the filling
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process can be correlated effectively by comparing these two quantities. Figure 3.10

shows the LMMDR's at various front locations.

Pressure Distribution: For the constant inlet pressure process, the pressure profiles at
various instants of filling time in the mold are shown in Figure 3.11. When the front is at

locations up to y,, the entire saturated portion contains resin of uniform rheology and so

the pressure profile is linear, as seen in the innermost curve in this figure. As the front
moves further, the rheology changes in the second regime and the pressure in this region is
considerably higher than what it would have been if the rheology had not changed. The
pressure drop is still fairly linear in the first regime. The curve begins to become
increasingly convex, as the front moves forward, and the pressure drop across a small
portion of the fluid, close to the front, is large. That is, the pressure gradients in the bulk of
the fluid are lower than those at the moving front. As the front enters the third regime, the
pressure profile becomes increasingly flatter in the bulk and steeper closer to the front.
This type of pressure distribution with a steep drop near the front is significant for
practical operation with clusters of filaments making up the preform. The driving force for
longitudinal wetting of individual filaments in a cluster would be uniformly high in the
present instance over the bulk of the region swept by the front. In contrast, without

rheology changes, this driving force decreases linearly.

3.2.4 SUMMARY

The motion of the front, and the pressure distribution, have been tracked in the
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above analysis, by modeling the measured viscosity profile in a simple fashion. The effect
of rheological changes on the reduction of the flow velocity, in a constant injection
pressure situation, have been represented by a simple relation between two quantities - a
velocity reduction factor and a ratio of the logarithmic-mean mobility difference versus

the mobility at the front.



CHAPTER 4 VISCOUS FINGERING DURING REACTIVE FILLING OF FIBER

PREFORMS: EFFECT OF CHEMICAL REACTION

4.1 INTRODUCTION

It has been found that viscous fingering occurs during mold filling in liquid
molding operations (Losure, 1994). This phenomenon is attributed to growth of
disturbances inside the flow domain, hence to instabilities of the flow process involved in
the mold filling stage. The disturbances themselves arise due to minute variations in any of
the variables, such as velocity, conversion, viscosity, etc., occurring due to
inhomogeneities in the porous medium or in resin mixing.

The viscosity of the polymeric resin, coupled with the polymerization reaction, has
an effect on the stability of the miscible displacement process occurring during mold
filling. A linear stability analysis is done to obtain the criteria for flow stability. The onset
of instabilities arising from adverse viscosity gradients of displacement processes without
reactive coupling is compared to that with reaction in this chapter. It is found that, in the
absence of dispersion, the reactive coupling mechanism tends to stabilize the lower wave
number disturbances. The effect of varying permeability is also considered.

Most of the available literature on fingering, cited in chapter 1, refers to
displacement processes occurring in the context of secondary recovery of oil from
subterranean formations. Liquid molding is a means of manufacturing polymer composite

materials, with major applications in the automotive and aviation industry. In this process,

52
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a polymeric resin flows through a bed of reinforcing fibers placed inside a mold. After

filling, the mold is left to cure, during which time the resin hardens; subsequently the part
is removed from the mold. An important qualitative requirement in these industries is the
avoidance of voids and/or inhomogeneities in the manufactured part, since they would
weaken the structure. Disturbances arising during the filling stage, over a range of
wavenumbers, can grow with time at various growth rates, resulting in fingers. The
properties of the resin in the fingers would be different from those of the resin in its
vicinity, due to possible differences in the degrees of crosslinking from different ages.
Upon curing, then, these fingered structures would be retained in the final part as
inhomogeneities.

Before entering the mold, the resin is in an unreacted (monomeric constituent)
state and the polymerization reaction begins as soon as the fluid enters the mold. The bed
of fibers is a preform and may be random with isotropic permeability or aligned with
anisotropic permeability. The concentration of the fresh fluid entering the mold is different
from that of the older fluid, as the latter has already begun to polymerize. Thus the
incoming fluid, which pushes the older fluid, is less viscous than the latter, creating an
adverse viscosity gradient - a filled region, in the mold, of increasing viscosity in the flow
direction. It is to be noted that the displaced and displacing fluids in liquid molding,
differing only in the degree of polymerization, are completely miscible. Also, the viscosity
gradients in the mold filling problem are continuous across the entire flow domain (due to
a continuous base state concentration profile), while earlier literature considered abrupt
changes in viscosity at an interface (a step profile of base state concentration). Mobility,

defined as a ratio of permeability and viscosity, would thus decrease in the direction of
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miscible displacement (for uniform permeability in the flow direction), causing fingering
instabilities. The mechanism of generation of fingers under an adverse viscosity gradient
has already been dealt with in chapter 1.

Due to the nature of the fluids and the physical processes considered, earlier
literature has dealt only with the effects of dispersion, surface tension, permeability and
gravity on fingering. Since liquid molding uses reactive flow systems, the stability of the
flow process is also affected by the nature of the polymerization reaction. The effect of
reaction and anisotropic permeation on flow stability during reactive filling, in the absence
of dispersion, is explored in this chapter.

Hickernell and Yortsos (1986) presented the linear stability behavior of miscible
displacement processes in porous media, in infinite domain, in the absence of dispersion.
In their paper, upper and lower bounds on the growth rate were derived when dispersion
was absent, and these bounds were found to be directly dependent on the lowest and
highest values of the viscosity gradients in the domain of the problem. The inherent
instability of the miscible displacement process, in the presence of an adverse viscosity
gradient, is observed and appropriate stability criteria are derived in their theoretical paper.
Disturbances of all wavelengths are seen to be unstable. In our problem, too, dispersion is
absent; however there are two major differences. First, the domain of their problem is
infinite, while the liquid molding problem discussed in this chapter is finite. Secondly, in
the current problem, chemical reaction plays a major role in both generation of the
viscosity gradient and growth/decay of disturbances; the problem investigated by
Hickernell and Yortsos (1986), however, involved no-chemical reaction.

Polymerization reactions may follow various types of kinetics (see chapter 2);
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reactions having simple n-th order kinetics are considered (e.g. polyurethanes follow
simple second order kinetics). Conditions under which the filling process would be stable
to infinitesimal disturbances will be presented, as marginal stability curves. A frozen
profile approximation, valid when the growth rate of the disturbances is much greater than
the rate of change of the base state (the moving front), is used. The problem is formulated
and described in the next section, where the governing equations are presented, the base
case solution is discussed and the eigen value problem obtained from the stability analysis
is presented and discussed. The solution approach is described in Section 4.3, followed by
a description of the results and their discussion in Section 4.4. Some important

conclusions that emerge from this study are listed in Section 4.5.

4.2 PROBLEM FORMULATION
4.2.1 THE GOVERNING EQUATIONS

Figure 4.1 shows the flow situation being considered. Fiber bundles are placed
inside the mold and the resin enters the mold at an end-gate across the entire cross section.
The figure shows the advancing flow front at some instant of time. A constant injection
rate is considered, which means that the pressure drop along the mold varies as the mold is
filled. This is in contrast to the problem investigated in chapter 3, where a constant
injection pressure was used. Another major difference from the problem discussed in
section 3.2 is the contribution of polymerization kinetics to the resin rheology. In that
section, the effect of changiﬂg rheology was included directly with the help of rheological

data obtained on the resin as it cures within the gap of a rheometer. In the following

-
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discussion, however, these kinetic parameters are included explicitly in a component
balance equation. One more distinction from section 3.2 that has to be kept in mind is the
arrangement of fibers inside the mold: in section 3.2 the fibers were all oriented transverse
to the flow of the resin, in ordered arrays, while this section deals with a more realistic
fiber preform. It is assumned, for the purpose of this analysis, that the fiber and resin in the
filled region are at the same temperature, as would occur if the heat transfer coefficient at
the fiber-resin interface were extremely large. The thermal parameters of the resin and
fibers are also lumped as a volume fraction weighted average for the filled region. Another
important assumption is the absence of dispersion,; this yields the effect of chemical
reaction on the growth of disturbances, independent of the dispersive effects seen by Tan
and Homsy (1986).

Since the fluid moves with a constant velocity U, in the z-direction, a Lagrangian frame of
reference is used for convenience, based on the location of the flow front at any time; the

length coordinate in the flow direction, in the moving frame of reference is, then,
€=2-2,=2-U,1 @-1)

The impregnation of the fiber arrays is treated as flow through porous media, and is

described by Darcy's law.
f=q+U, 7 = -(‘11) (K o« VP) 4-2)

where u and q are the velocities in the fixed and moving frames of reference respectively.
The permeation equation (Darcy’s law) involves a permeability tensor, which would be
diagonal if the principal axes are assumed to lie along the coordinate directions. Also, the

permeability is assumed to be equal in both the transverse directions, yielding just two
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independent terms in the permeability tensor,

R, 00
K = 0 ky 0 (4-3)
0 0 X
The equation of continuity, the reactant mass balance and the energy balance,

lumping the fiber and resin temperatures together and assuming an adiabatic process with

no heat transfer with the surroundings, in the moving frame of reference, would be

Continuity Veg =0
Reactant Mass Balance §+ geVe =- RET
4-4
Energy Balance %Z: +qe VI =8 R T) @4
-AH AT
where B= L —
pCp c,

The adiabatic temperature rise, AT,,, is given by (Bc,) and will be the scaling factor for
temperature in this dissertation.

To demonstrate the theory being developed in this chapter, a polyurethane resin
system is chosen. The reaction is of second order kinetics and the viscosity of the resin has
an Arrhenius' type dependence on the temperature. The various kinetic, thermal and
rheological properties are taken from Castro and Macosko (1982) and are listed in Table

4.1. The reaction rate and viscosity for this resin are given by the equations:

R@,T) = k,cX(1-8) exp[i“-]

R,T
(4-5)
_ a \(1.5+8) E,
A=A, (1 -agel) exp[a{l
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Table 4.1 Thermal, kinetic and rheological data for the resin and glass fibers

RESIN GLASS
Cp U/kg K) 1,840 790
p (kg/m’) 1000 2,500
k, (m>/mol s) 10,560
E, (J/mol) 53,200
¢o (mol/m?) 2,410
-AH, (J/mol) 96,300

Viscosity described by an Arrhenius’ type equation:

W7, o) = Auexp[— ﬂ]

RT
where

Ey (J/mol) 41,300

A, (Pa-s) 103x 10

0 0.65

Lumped value of (pC,) for the resin-filled fiber mat = 1.9 x 10 Jym3K.



4.2.2 SCALING

All the quantities in the preceding equations are dimensional and appropriate
scales are chosen to make them dimensionless. The chosen scaling factors for the different
variables are listed in Table 4.2. Reaction is the important physical phenomenon in this
problem, so the time and length scales are based on the reaction rate at the inlet
composition and a reference temperature. The scale for temperature is the adiabatic
temperature rise, AT,4. Viscosity is scaled with the viscosity at the reference temperature.

Using these scales, the equation of continuity, the component mass balance and the energy

balance, in dimensionless form, yield

Continuity Veg =0
do

Reactant Mass Balance 35 +gqe Vo = R(a, T) (4-6)
oT

Energy Balance 35 +qeVT =R(a,T)

while the permeation equation becomes

= —l KOVP—‘I::; (4'7)
where
b, 00
K=100b,0
001
A==
T
blsﬁIr bZE&
K, Kk

In these equations b; and b, are measures of the anisotropic nature of the medium

permeability, while A is the dimensionless mobility, whose gradient will be seen to have
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Table 4.2 Scaling factors for different variables

Concentration:

Permeability:

Pressure:

Velocity:

Reaction:

Temperature:

Time:

Length:

Viscosity:

Activation energy:

c=c, (1-a)
K=K K
w U U,
P= 0 i o-o .P
( K, ) [R(co, T,ef)J
Q= Uo'g

R@,T) = R(c,, T, ) - R
T=AT,, T

c

)

[4

) R(co’ Tref) !

Uoco
= ——7
R(co’ Tref)

[TV }]

A=p,p

E, . E,

RAT,; W T RAT,,

ER=
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considerable importance later in this chapter.

4.2.3 THE BASE STATE EQUATIONS

(NOTE: All base state quantities are identified by an overbar.)

Since the only velocity component is U, in the z-direction (one-dimensional flow),
the base state solution for the velocity vector, in the moving frame of reference (see
equation 4-2), is

g=0 4-9)
The base state solutions for the conversion, temperature and pressure profiles are obtained
by solving the following simplified forms of equations 4-6 and 4-7.

Jo

> = R@T)

T _ o~ =

3 = R@T) (4-10)
-A@, T) 3—5 =1

The boundary conditions to be used in conjunction with the above equations are:

P=0 at E=0 front
a=0, T=T, at £ = -z inlet (4-11)
a=0 T=T, at t=0

For an isothermal process, the equations are independent of temperature and only the first
and third equations of (4-10) need to be solved. For an adiabatic reaction, the first two
equations of (4-10), when combined using the inlet conversion and temperature as the

initial conditions, yield

~l
!
Rl
+
Dﬂ

(4-12)
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Thus, taking

R(@)=R(@, T)=R(G, T,+o) (4-13)
we can rewrite the first equation of (4-10) as:

W e
5 = F@ (4-14)

The rate of reaction and viscosity, after scaling , is given by

R@T) = (1-%)° °XP[E5AETG_M(% 7))

_ o - (1.5+3) E 1 1
= (1o gl 21 1)
we 7) o, p[RgATad T°T,

(4-15)

Incorporating Eq. 12 for an adiabatic process and using definitions for the dimensionless

activation energies for reaction and viscosity growth, Eg and E,, respectively, shown in

Table 4.2, we get the following equations for the dimensionless reaction rate and viscosity:

Ega
T(T,+ (‘i)]

g \-(1.5+&) -E a
p= (l— x ) * exp[—"—_]
o, T(T,+)

X = (l—ﬁt)2 exp[
(4-16)

The rate of reaction is plotted as a function of the conversion, for a range of values of the

activation energy Ep, in Figure 4.2. Setting ER = 0 yields the isothermal case. For low
values of Eg (up to a value of about 14.26), the derivative (dR/do), described in later
sections, is negative, while at higher values the plot goes through a peak, corresponding to
a change in sign of the derivative. The effect of this derivative on the flow stability will be
discussed after the stability analysis has been presented.

Figure 4.3 shows the viscosity profile as a function of conversion, for different
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values of E, the dimensionless activation energy for viscosity. E,=0 corresponds to the
isothermal case, since the thermal dependence vanishes. For E,;<16.45, the viscosity is
always increasing with conversion. As Ey, is increased, the viscosity corresponding to a
given conversion becomes lower. Also, for higher values of E,,, the viscosity gradient
changes sign for increasing conversion. This implies that V, the gradient of the viscosity

defined later in this chapter, changes sign somewhere in the filled region, affecting the

stability of the flow process.
4.2.4 THE BASE STATE SOLUTION

To obtain the base state conversion profiles, the initial value problem described by
equation 4-14 is solved for different positions of the flow front, z;, with the initial
condition given in (4-11). The independent variable, time, corresponds to a location (z) in

the filled portion of the mold, since

2=U_1
° 4-17)
= z=t

The base case is a plug flow for which every location in the filled portion of the mold
would correspond to a unique conversion and temperature with given inlet conditions.
Since it is a constant injection process, all fluid elements spend the same amount of time to
reach a given location in the mold and, therefore, would attain the same conversion when
they reach this location.

For an isothermal process the initial value problem can be solved analytically,
since the exponential term in equation 4-16 vanishes. For an adiabatic process, due to this

exponential factor, a numerical approach is needed. Once the conversion profile is
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Figure 4.2 Non-dimensional reaction rate for polyurethane resin: isothermal and adiabatic
cases, T, = 325°K
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Figure 4.3 Non-dimensional viscosity for polyurethane resin: isothermal and adiabatic
cases, T, = 325°K
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available, the temperature profile is easily computed in the adiabatic case using equation
4-12.

The solution to equation 4-14 is shown in Figure 4.4, for several values of the
dimensionless activation energy and for a fixed inlet temperature, as a plot of conversion

versus the dimensionless distance from the mold inlet. The range of values for Ey, is
obtained by varying the activation energy E,. The case of Eg = 0 corresponds to

“isothermal” filling, since the temperature dependence of the reaction rate vanishes. For
this case the fluid travels a larger distance in the mold before reaching the gel point,
compared to a case of high Eg. Thus, as the process moves away from the "isothermal”
state, gel conversion is reached much faster and the length of mold that can be filled by the
resin is much smaller.

The solution to Darcy’s law, given in equation 4-10, is now obtained using the
conversion profiles of Figure 4.4. The pressure profiles are shown in Figure 4.5, for the

adiabatic case under the following conditions: Eg = 53; E,, = 41; gel conversion = 0.65;

Inlet temperature = 325°K. The base state pressure is plotted against the dimensionless
distance, z, from the mold inlet, for several flow front positions, z;. As the mold gets filled,
the pressure at the inlet rises due to the increasing resin viscosity. This means that the
pressure at which the resin is pumped into the mold is continuously increasing, for a
constant injection rate to be maintained. For isothermal filling, however, the conversion
profile indicates a slower approach to gelation. The corresponding pressure profile for the
isothermal case would be expected to show lower injection pressures for the same extent
of mold filling.

The derivative of the reaction rate w.r.t. conversion, (dR/da), is termed S and is
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Figure 4.5 Base state dimensionless pressure profiles: adiabatic case, Eg = 53, l:'.,_l =4],
Olge) = 0.65, T, = 325°K
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found to have a significant role on the stability of the flow process. Figure 4.6 shows S and
the mobility gradient V, (defined as d[In A)/dE), for the polyurethane resin up to a
conversion of about 0.6, under isothermal conditions. By this time the viscosity has risen
to a fairly large value (gel conversion is 0.65). As will be explained in a later section, S <0
is a necessary condition for stability and V # 0 in the domain of the problem is a sufficient
condition for real growth rates (from an exchange of stabilities analysis). It is seen that
both S and V are negative throughout the domain for the isothermal case, which means
that the growth rate is real and negative for at least some wave numbers (in the small

wavenumber region). The quantities S and V are calculated and plotted for the adiabatic
case with Eg=52.67 and an inlet temperature of 325°K in Figure 4.7. For this case while S

is always positive, V changes sign in the flow domain considered. Hence it is expected that

at all lengths of filling (z¢), the flow would be unstable to disturbances. The behavior of S,
for different values of Eg, may also be seen from an inspection of the plot of rate versus

conversion (Figure 4.2). For small values of the dimensionless activation energy, i.e. for

ER less than about 14.26, the reaction rate curves have a negative slope at all conversions.

This suggests stability of the flow process under these conditions.

4.2.5 STABILITY ANALYSIS

In order to study the growth behavior of infinitesimal disturbances that the filling
process may be subjected to, a linear stability analysis is to be performed on the model
equations in (4-6). Perturbations on each of the variables are introduced into the problem,

described by:
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=PED+P(x,yE1
AME D+ N (x, .8 1)
aiE, n+a'(x 81 (4-18)
gD +q(x &1
=TED+T(xy851)

P
A
o
q
T

Here the base state variables are dependent only on one space variable (£) and time, while
the disturbances (primed quantities) are three dimensional and time dependent. All the
variables in equations 4-6 and 4-7 are replaced by the representation given in (4-18) and
the equations are then linearized. For an adiabatic reaction, the lumped energy balance
may be combined with the component mass balance and equation 4-12 for the base state
solution, to yield the following relation between the temperature and conversion
perturbations: T’ = o’. This is valid for reactions that are much faster than the rate at
which heat transfer takes place. Linearization of the continuity equation incorporating
Darcy's law yields

= 32 a2 a 5 o X

while linearization of the reactant mass balance results in

oo ( A _x ap) ao _ dSR o (4-20)

o &) & -

Frozen profile approximation: It may be noted that the base state in the filling problem is
time dependent. It is assumed that the growth rate of disturbances is much faster than the
rate of change of base state. That is, a quasi-steady state is assumed and the stability

analysis is done with time frozen at t,. The rate of change of the base state, da/dt, may be
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represented by the reaction rate R, which provides a bound for the time of applicability of

the quasi-steady state approximation. For times of the order of about In(R) and lower, the

QSSA is inapplicable. From the conversion profiles in Figure 4.4, at large values of Eg,
dov/dt is much higher than at low Eg. This suggests that the quasi-steady state
approximation may possibly be invalid at large values of Eg.

In the limit of applicability of the QSSA, the disturbances are, decomposed into

Fourier components:
o ~A(E) expli(k,x+ k,y) +0(t,)t]
p'~ p(&) expli(k,x+kyy)+0(1,)1] @-21)
A= :% o ~ Z—?’i A(E) expli(k x+ k,y) +o(t,)t]

Here, it is noted that A’ is tied to the conversion disturbance o' since viscosity is directly

related to conversion. In these equations k, and k, are the wavenumbers of the

disturbances in the respective directions and are, later, combined into a single

wavenumber, k. 6(t,) is the quasistatic growth rate of the disturbance, evaluated at time t,

and is a complex quantity. If ¢ has a negative real part the disturbances would decay with
time, while they would grow if it has a positive real part. If the imaginary part of the

growth rate is non-zero, then it indicates an oscillatory trajectory for the disturbances with
time. It may be shown that it is a real quantity for this eigenvalue problem (Appendix A).

Using the above definitions of the disturbances, we get from eq. 4-19,

ar-9p 1ds -
-2‘—_)» A - ;\. bk
55[ ¥ s (&)] (bk%)p .

where  bk® = bik.+ b,k

A relation obtained by substituting the Fourier expansions of the disturbances into
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eq. (4-20) is

(* %) o2

A= c-S+V

(4-23)

This equation relates the amplitudes of conversion and pressure disturbances and is a
useful relation in simplifying the equations at a later stage.

Combining eqgs. 4-22 and 4-23 we get:

dfy dp _(6-S) T_;,2 % -
"ag[" € (c-S+ V)] = bk Ap @249
where S, V are defined by
dRX
S=—
1 d dla dsz d “4-23)
VeiE i@ E

In equations 4-25, S and V are the quantities referred to during the discussion of the base
state solution. The former is the derivative of the reaction rate w.r.t. concentration
(conversion) and the latter is a viscosity gradient. Both these quantities are seen to be
associated with the growth rate 6, which is also the eigen value in equation 4-23, and so
determine the stability characteristics of the filling process. An analysis of the exchange of
stabilities for the eigen value problem indicates that a sufficient condition for the growth
rate to be a real quantity is a non-zero V, or that V does not change sign in the entire
domain. It may be shown that a sufficient condition for the quasistatic growth rate, G, to be
a real quantity is that V does not change sign in the entire domain, and is non-zero.

The boundary conditions used in solving the eigen value problem are
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dp _ _
EE = at = -2 f ( 4-2 6)
p=0 at E=0
The first condition is obtained by taking the disturbance in conversion to be zero (i.e. A=0)

at the mold inlet and using eq. (4-22), while the second boundary condition implies an

undisturbed pressure at the flow front.

The transformation
T, =Y
i (4-27)
with y=0 at the inlet
leads to the following simplified eigenvalue problem:
d \y c-S+V _
V@ R[] v=o (4-28)
with the boundary conditions
y=0 at § = -z
dy _ (4-29)

E - at E=0

Equation 4-28 may be compared to the eigenvalue problem developed by Hickernell and

Yortsos (1986) in eq. (2.19) in their paper, rewritten as:
d2 Vv
dvy_y dy_p2 ["__; ] v=0 (4-30)

This equation is subject to decay of the disturbance at infinite distances on either side of
the interface. It is easily seen that the main difference between equations 4-28 and 4-30 is
the factor (-S) added to the growth rate in equation 4-28. The boundary conditions in our

problem simply refer to decay of the pressure and conversion disturbances at the inlet and
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front respectively. When we take a chemical reaction with S =0, i.e. a zeroth order
reaction, then, the behavior of the fingers would be predicted by the results in their paper,

i.e. the growth rate is bound by the values of the viscosity gradient:

inf V<o<sup V
g 3

That is, the growth rates are bound by the infemum and supremum values of V in the

(4-31)

domain of the problem. If V is positive everywhere in the domain, the flow process is
unstable for all wavenumbers.

When the chemical reaction is of a higher order, however, a direct comparison
cannot be made. Even though S is being subtracted from the growth rate (in equation 4-
28), the fact that S, unlike the growth rate, is dependent on the location, £, complicates the
problem; if S were independent of the location, (G - S) could be combined into a new,

reduced, growth rate and the results of Hickernell and Yortsos (1986) applied.

4.3 NUMERICAL APPROACH

The results of the stability calculations are presented as growth rate data and
marginal stability curves, solving the eigen value problem (equation 4-28), using the
boundary conditions in equation 4-29. This equation is solved using an orthogonal
collocation scheme on finite elements (Finlayson, 1980).

The numerical procedure is illustrated in the schematic shown in Figure 4.8. The
flow domain is divided into two elements based on the viscosity profile. The interface

between the two elements, depicted by z; in the figure, is the location in the flow domain

where the viscosity gradient increases sharply. The number of collocation points in each
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Figure 4.8 Schematic of the numerical scheme - orthogonal collocation on finite elements
with Legendre polynomials
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"i"

element is N. The index "i" in this figure denotes each collocation point. Legendre'
polynomials are used to approximate the solution in each element. The domain in each
element is then transformed into the Legendre’ domain where the boundary locations are
at 0 and 1. Thus we have 2N collocation points at which the eigenvalue problem (equation

4-28) is applied. The boundary conditions in equation 4-29 are applied at the left end of

the first element (z = 0, the inlet) and at the right end of the second element (z = zg, the

front). The solution from each element is matched at the interface between the two
elements (location z;); that is, the solution Wy and its first derivative from each element are
equated). We obtain a system of linear, homogeneous, algebraic equations with the

unknowns being the values of y at each collocation point, as well as the eigen value, G.

Moneyx@nv+2)*Yonsoyx1 = 0an+2)x1 (4-32)
That is, we have (2N+2) equations with (2N+2) unknowns. There are two other
parameters: the wavenumber, k, and the quasistatic growth rate, 6. A nontrivial solution
for this system of equations requires that the coefficient matrix, M, of the linear system be
singular. The resulting characteristic equation for ¢ solved at a range of chosen values for
the parameter, k and the most dominant root is taken as the growth rate. The eigenvalue
problem is solved for several values of N, the number of collocation points in each
element and convergence was observed for N=6.

The cutoff wavenumber is defined as the wavenumber at which the growth rate

changes its sign. This is computed directly from the characteristic equation by setting ¢ =
0 and solving the resulting polynomial in (k). The characteristic equation has also been

used to obtain marginal stability plots on a variety of parameter planes.
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4.4 RESULTS AND DISCUSSION

The base state solution, as obtained for a polyurethane resin with second order
kinetics, was discussed in section 4.3. The solution of the eigen value problem is presented
and discussed in this section as growth rate and marginal stability curves. Some of the
operating coﬁditions and properties of the resin are then varied and their effect on the flow

stability of each of these new formulations is examined.
4.4.1 ISOTHERMAL REACTION

It is instructive to consider the Eg = O limit of isothermal reactive filling at first.
This limit is more representative of thermosetting polyester resins, for which the gel

conversion is very low and the heat liberated by reaction is low upto the gel point.

The growth rate G is evaluated for this case at a few locations (z¢) of the flow front

and plotted against the wave number (represented by b'2k) in Figure 4.9. It is seen that,
for any z;, the growth rate is negative at low wavenumbers and becomes positive for larger
values of (k). This implies that the process is stable for disturbances of large wavelength.
The results for isothermal filling are shown in Table 4.3 where the cutoff

wavenumbers are tabulated for varying filling time and gel conversion. The range of

" wavenumbers over which the flow is stable may be shown on a plot of the cutoff
wavenumbers. Figure 4.10 is one such plot, in which the cutoff wavenumbers are plotted
as a function of the Damkohler number, which is the ratio between flow and reaction time
scales. It can easily be shown that the Damkohler number (Da) is equivalent to the length

of the mold that has been filled by the resin. It is seen that the flow becomes unstable for a
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Figure 4.9 Growth rate curves for isothermal filling of polyurethane resin: z;= 0.8, 1.0,
1.2, 1.5, Eg =53, E| = 41, 03y = 0.65, T, = 325°K
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Table 4.3 Computational results for isothermal reaction

T, = 325°K; Eg = 52.64; E,, = 40.68
—AHp, = 96,300 J/mol-°K; (pC,) = 1.9092x10° J/m>-°K

AT,y = 121.56°C

o 2 o | O | b0y | )
I N I S
VARYINGE NT OF FILLING (z() ,
0.65 0.5 0.3333 6.1760 2.4852 7.8588
0.65 0.7 04118 1.6992 1.2920 4.0856
0.65 09 0.4737 0.5449 0.7382 2.3343
0.65 1.2 0.5455 0.1016 0.3187 1.0080
0.65 1.5 0.6000 0.0132 0.1150 0.3637
VARYING GEL CONVERSION

0.65 1.5 0.6000 0.0132 0.1150 0.3637
0.73 1.5 0.6000 0.0986 0.3140 0.9930
0.8 1.5 0.6000 0.2597 0.5096 1.6115
0.9 1.5 0.6000 0.7700 0.8775 2.7749
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Figure 4.10 Marginal stability curve for isothermal filling, data from figure 9:
Damkohler number (Da = flow time / reaction time)
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wider range of wave numbers, with increasing z;. This implies that, as the mold gets filled

to a greater length, the flow becomes increasingly unstable. At the larger filling times, the
degree of conversion is larger than at small filling times; from Figure 4.6, it may be seen
that at these larger conversions, the magnitude of S is lower (sign of S is negative). Since
the flow is more stable when S is more negative, the results of Figure 4.10 are
understandable. In terms of the ratio of the time scales, a small Da indicates a slower

chemical reaction in comparison to the flow rate.

Effect of anisotropic permeability: The effect of anisotropic permeability is seen by
comparing the ordinate in Figure 4.10 for several values of the degree of anisotropy, b. It is
clear from this figure that when the transverse permeability is smaller than the
permeability in the longitudinal direction (b < 1), the cutoff wavenumber, k., is larger than
it is for the isotropic case (b = 1). That is, the range of wavenumbers for which the flow
becomes stable is greater when the transverse permeability is small. This may be
understood from an inspection of equation 4-19 which is a combination of the equation of
continuity and Darcy’s law for disturbances. When the transverse permeability is small,

i.e. when b; and b, are small, conservation of mass dictates that for a disturbance to

survive or propagate, the spatial pressure gradients in the disturbances have to be very
large. This means that only sharp fingers (disturbances of large wavenumbers) would
grow, while those of small wavenumbers are eliminated. Thus anisotropy with low

transverse permeability helps in elimination of large fingers.

Effect of order of reaction and S: The dependence of reaction rate on conversion, i.e. the
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order of reaction, governs the stability of the flow process. To understand the effect of
reaction on the stability of the system, we compare the growth rates of the second order
reaction system with the solution to the eigen value problem with S=0. The latter situation
corresponds to a reaction with zeroth order kinetics with the same inlet and front
conversions, and the same viscosity profile. Figure 4.11 is a plot of the growth rate curves
a resin with the same viscosity behavior but with S=0. It is seen that for this case the
growth rate is always positive, while for S < 0 it was negative for large disturbances. Thus,
if the same converison profile is obtained with a zeroth order reaction, there is no stable
region. Only when S<O (for the second order reaction), do we get a stable region.

In Figures 4.9 and 4.11, the plots approach a finite growth rate asymptotically, for
large wavenumbers. These asymptotic limits are plotted for various flow front positions
for both S=0 and S<0, termed ultimate growth rate (c,,), in Figure 4.12. This ultimate
growth rate is seen to be higher for the no-reaction case, again indicating the dependence

of flow stability on the order of reaction.

The results from an analysis of the isothermal mold filling, thus, provide us an idea
of the behavior of the flow process governing mold filling, and it is expected that adiabatic

operation of liquid molding would lead to similar results.

4.4.2 ADIABATIC REACTION

Some liquid molding operations can be carried out under adiabatic conditions.
Mathematically this is slightly more complex, due to the involvement of an additional

balance equation (energy balance); however the adiabatic nature simplifies the equations
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Figure 4.11  Growth rate curves for S = O for isothermal filling for identical base state
viscosity profiles as for Figure 9



93

5.0 — ' v
=15
p z=1.0
=038
40 F =12
30p
(o) b
20F
10
0.0 S S
0.00 0.10 0.20
kb

Figure 4.11




94

Figure 4.12  Upper limit of growth rate Vs Damkohler number for isothermal filling, T,
=325°%K
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to some extent, as seen in section 4.3. To be even more realistic, fully non-isothermal
equations would have to be solved, which render the model equations and their stability
analyses, and consequently their solution, more complicated.

The results of the computations are now presented for mold filling under adiabatic
conditions. Figure 4.13 shows the growth rate curves for several values of Eg. Ex may be
altered by modifying the resin formulation to one with a different activation energy or a
different heat of reaction. It is seen that for small values of Eg, there exists a range of

wavenumbers with a negative growth rate, corresponding to a stable regime. This leads us
to examine the stability characteristics of other formulations of the polyurethane resin,
obtained by altering the kinetic and rheological parameters. The stability of the filling
process may be affected by the thermochemical properties of the resin and the operating
conditions. In the following analysis, several parameters are varied independently and the
flow stability examined. In each of these cases, except for the case of varying zg, the mold
is filled to the same length enable comparison. The effect of varying the inlet temperature

is also presented. The results are presented in the form of marginal stability plots.

Dependence of stable regime on various parameters:
For the adiabatic case, the parameters that may be varied are the fill time (which is

equivalent to the Damkohler number), adiabatic temperature rise (AT,;) (Which may be

changed by choosing appropriate values of the inlet concentration (c,) and the heat of
reaction (-AHR)), the kinetic activatién energy (E,), the inlet temperature (T,) of the resin

and the gel conversion (0ge;) of the polymer system. Most of these parametric studies have

been done for a resin with the following properties:
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Ep, = 131.17; Eg = 168.96; AT,q = 37.87°K; 0l = 0.8; reference temperature = 370°K.

The activation energy and initial concentration of the resin were not changed from the

values taken for earlier calculations but the heat of reaction was altered from 96,300 J/mol
to 30,000 J/mol, which changed the adiabatic activation energy. For this lower exotherm, it
was found that the viscosity grgdient, V, did not change sign, thus satisfying the condition
for exchange of stabilities. The results of the computatiéns are presented in Tables 4.4 and

4.5.

a) The effect of changing the dimensionless activation energy, Eg, on the stability at a

fixed inlet temperature, noted earlier in Figure 4.13, is shown in Figure 4.14 as a marginal

stability plot. As observed earlier, a decrease in Eg leads to an expansion of the range of
stable wavenumbers, in the low-wavenumber region. This change in Ex may be
accomplished by decreasing the kinetic activation energy, E,. A higher activation energy

means that more energy is required for the polymerization reaction to occur, which makes
it more difficult for the viscosity on either side of the edge of an incipient finger to rise.
This, in turn, means that the driving force available for finger growth (pressure drop across

the edge of the disturbance) does not reduce as fast as it would for a lower E, case, making

it more stable than the case of a higher E,.

b) Figure 4.15 depicts marginal stability plots for changing Da (= tx/tg) and varying inlet
temperature, in adiabatic mold filling using a resin with Eg = 14.26, which does have a

stable regime as seen in Figure 4.14. The plot indicates, as in the isothermal case, that the
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Table 4.4 Computational results for adiabatic reaction

No. (AT)yy Egp T, Olgel | E, t
Varying E with fixed T, |

1. 121.56 | 52.67 2.67 0.65 40.86 0.206

2. 121.56 | 25.00 2.67 0.65 40.86 0.527

3. 121.56 | 14.26 2.67 0.65 40.86 0.801

4. 121.56 5.00 2.67 0.65 40.86 1.194
Varying O

37.87 168.96 | 9.242 0.65 131.17 0.85

6. 37.87 168.96 | 9.242 0.80 131.17 0.85

7. 37.87 16896 | 9.242 0.90 131.17 0.85
Varying T,

37.87 168.96 8.58 0.80 131.17 0.85

9. 37.87 168.96 8.98 0.80 131.17 0.85

10. 37.87 168.96 | 9.242 0.80 131.17 0.85

11. 37.87 168.96 9.51 0.80 131.17 0.85

Varying Exotherm, which alters both (AT),4 and Eg, hence T,

12. 25.25 25345 13.86 0.80 196.73 0.85
13 37.87 168.96 9.24 0.80 131.17 0.85
14. 50.50 126.72 6.93 0.80 98.36 0.85
Varying filling time
1S. 37.87 168.96 9.242 0.8 131.17 0.535
16. 37.87 168.96 9.242 0.8 131.17 0.750
17. 37.87 168.96 9.242 0.8 131.17 0.850
18. 37.87 168.96 9.242 0.8 131.17 0.950
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Table 4.5 Cutoff wavenumber data for adiabatic reaction

No. (AT) o Eg T, E, t (bk?)c
Varying T, o
1. 37.87 | 168.96 8.58 131.17 0.85 0
2. 37.87 | 168.96 8.98 131.17 0.85 0
3. 3787 | 16896 | 9.242 | 131.17 0.85 | 0.47096
4. 37.87 | 168.96 9.51 131.17 0.85 0.5435
Varying filling time
5. 37.87 | 16896 | 9242 | 13117 | 0535 | 3.2122
6. 37.87 | 16896 | 9242 | 131.17 | 0.750 | 0.9041
7. 3787 | 16896 | 9242 | 131.17 | 0.850 | 0.47096
8. 3787 | 16896 | 9242 | 13117 | 0950 | 0.2281
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region of stability becomes smaller with increasing fill time. The reason for this behavior
follows exactly from that discussed in the isothermal case. Also, an increase in the inlet
temperature is found to expand the range of stable wavenumbers of fingers. The higher
temperature would make the reaction go faster, thus making the viscosity profile le.ss
steep. This reduces the pressure drop across the edge of the disturbance, making the

process less unstable. This effect is opposite to that of the activation energy.

c) The effect of anisotropic permeability in adiabatic filling is seen, as in the isothermal
case, by looking at the ordinate in Figure 4.15 for various values of the degree of
anisotropy, b. The range of wavenumbers over which fingers are damped is much larger

for the case with lower transverse permeability.

e) Figure 4.16 depicts the effect of gel conversion on the stability of the mold filling
process. A larger gel conversion implies stability over a wider range of wavenumbers. At
lower gel conversions, the viscosity increase with conversion is faster, and makes the
molecules less mobile. The number of sites available for further reaction, as a
consequence, is much lower and this causes the driving force for finger growth to decrease

at a slower rate, making the process more unstable.

Geometric limitations: The wavenumbers (k) referred to above may be converted to
appropriate wavelengths of the fingers (A,,), using the relation (k = 25t 1,/ A,,), where 1 is
the length scale for the problem. To illustrate the significance of these results, the finger

wavelengths corresponding to the cutoff wavenumbers are compared to the actual physical
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Figure 4.15 Marginal stability curve for adiabatic filling: fill time and varying
temperature; Eg = 169, E, = 131, a5 = 0.80, ATy = 38°K
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dimensions of the mold. The thickness of the mold, B, represents the largest possible

finger size, while the diameter of the fiber tow, d,, is the smallest possible finger width.
Representative values are chosen as below:

Mold thickness, B: 10mm

Fiber tow diameter, d;: 0.1mm

Injection velocity, U,: 0.5 cm/s

The data for polyurethane resins given in Table 4.1 are used, to obtain a length scale (1)
of 0.0637 mm.

The results of Figure 4.16 are now transformed into wavelengths. From Table 4.5,
the cutoff wavenumber when z¢ is 0.535 is k. = 1.79. When converted to dimensional
finger widths, this corresponds to A, = 0.22 mm. All fingers narrower than 0.22 mm will
grow; conversely, all fingers wider than this are eliminated. This limiting finger width is
now compared to the physical dimensions B and d,. It is seen that the tow diameter is
much less than A; similarly, the mold thickness is much larger than this cutoff value.
While very large fingers are eliminated, small fingers are undamped. A similar analysis
may be done for other values of zg, and it is clear that, as the mold gets filled, even fingers
of large sizes tend to grow.

The above discussion was done for the case of isotropic permeability (b=1). As
dicussed earlier, if the transverse permeability is less than the longitudinal permeability (b
< 1), the cutoff wavenumbers are larger, which means that a wider range of disturbance

wavelengths is stabilized. For example, when b=0.1, we get k. = 5.67, which corresponds

to a wavelength of A, = 0.07mm. All disturbances wider than this are eliminated. Since
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this is less than the fiber tow diameter, it may be concluded that any disturbance that is
generated by the adverse viscosity gradient is damped out due to the low transverse

permeability.
4.5 MECHANISM OF STABILIZATION
4.5.1 EFFECT OF S ON THE GROWTH RATE

Eq. 4-23 may also be expressed, using Eq. 4-27, as

6-S 157 dp _ 2
[0-—S+V] hE=PE Y @33

From this equation it is seen that when the wavenumber is zero, for non-zero amplitudes
of the disturbances, the growth rate is equal to S. The necessary condition for dampening
of disturbances is, then,
$<0 (4-34)

This means that there is a possibility of stabilizing disturbances of small wavenumbers
(large finger widths) when the criterion in equation (4-34) is satisfied.

The effect of S on the growth rate is demonstrated by the schematic shown in
Figure 4.17, which represents an incipient disturbance at some instant. The line AA’ is the
base state solution. Before the onset of the disturbance (t<0), the points M-, M+ are at the
same, base state, conversion. The deviation from the base state, shown in the figure,
corresponds to an increase in conversion (positive amplitude, A(£)); at this time (t=0), the
conversions at M-, M+ are in an increasing order.

If there were no disturbance, then the fluid particles at the two points would react

at the same rate and remain at the base state conversion at t > 0. In the presence of the
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Figure 4.17 Schematic representation of the effect of S on growth rate
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disturbance, however, several possibilities exist for the behavior of the disturbance att > 0,
depending on the shape of the reaction rate curve (Figure 4.2).
i) If S <0, since the conversion at M- is lesser than that at M+; thus the polymerization
rate at M- is higher than that at M+, bringing the conversions at the two points closer. This
decreases the amplitude of the disturbance at t > 0.
ii) If S > 0, the higher conversion at M+ results in a higher rate of polymerization than at
M-, widening the gap in conversion between the two points at longer times, t > 0. Thus the
disturbance grows with time for positive values of S.

The above discussion was presented by taking k = 0, to demonstrate the effect of S
on the growth rate. However, it has to be remembered that the viscosity gradient, V, also

dictates the stability behavior of fingers.

4.5.2 STABILIZATION OF LARGE FINGERS

It was seen that chemical reaction, in addition to creating an adverse viscosity
gradient that causes fingers, can couple with the flow process to stabilize large fingers but
not small fingers. The mechanism for this inability to eliminate small fingers may be
explained by plotting the growth rate against the ratio, kx, between a reference growth rate
and the reaction rate. The former is the growth rate, at a given wavenumber, for a
hypothetical fluid with the same viscosity and conversion profiles as the resin, but with S =
0, i.e. a zeroth order reaction. A low value of the ratio x, then, corresponds to a fast
reaction in comparison to disturbance growth rate. In addition the reference growth rate, as
seen in Figure 4.11, increases with an increasing wavenumber; thus a small value of x

implies small wavenumbers and vice versa. To illustrate the mechanism, the growth rate vs
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Figure 4.18  Effect of S on growth rates for identical conversion and viscosity profiles in
the base state
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x plot for a specific case is shown in Figure 4.18. It is seen that the growth rate is negative
for small x and becomes positive at large k. At large values of x (short wavelengths), the
time scale for finger growth is much smaller than the reaction time scale. This means that
the growth of fingers occurs faster than chemical reaction can damp them out. Since large
values of x correspond to small finger widths, we may conclude that small fingers cannot
be eliminated by the reactive coupling mechanism. On the other hand, at low x (large
wavelength), the reaction time scale is small, which means that the chemical reaction is
faster than the rate at which the finger would grow; this enables damping of these large

fingers.

4.6. SUMMARY

Flow of reacting resin through a fiber preform located in a a mold produces a
continuous distribution of resin age from the inlet to the advancing resin front. The effect
of this age distribution on fluid mixing within the fille dregion has been examined with a
linear stability analysis. The results of this analysis for isothermal and adiabatic reactive
filling indicates that the role of reaction is two fold. In the first place, it generates an
adverse viscosity gradient, which leads to generation of fingers. Secondly, it contributes to
stabilization of these fingers at smaller wavenumbers.

The effect of reactive coupling on the fingering is derived as an eigen value
problem, the largest eigen values of which are the growth rates used to determine the
stability behavior of the filling process. Reactive coupling occurs in the form of a quantity

S, defined as a gradient of the reaction rate with conversion, and V, the viscosity gradient.



113

For positive values of S, the process is always unstable and disturbances of all
wavelengths would grow; for polymeric systems with a negative S throughout the flow
domain, mold fillin