
 

LIBRARY

Mlchlgan State

UnlversIty

   

PLACE IN RETURN BOX

to remove this checkout from your record.

TO AVOID FINES return on or before date due.

 

DATE DUE DATE DUE DATE DUE

 

   

 

   

 

  

 
 

 

   

 

        
1m cJCIRCJDanOuupfi-nu

 



VISCOUS FINGERING DURING REACTIVE FILLING: A THEORETICAL STUDY

OF THE PHENOMENON IN LIQUID MOLDING

By

Chilukuri Nageshwara Satyadev

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemical Engineering

1998



ABSTRACT

VISCOUS FINGERING DURING REACTIVE FILLING: A THEORETICAL STUDY

OF THE PHENOMENON IN LIQUID MOLDING

By

Chilukuri Nageshwara Satyadev

During the mold filling stage in liquid molding operations, the resin

flowing through fiber “preforms” is continuously polymerizing, leading to a changing,

adverse viscosity gradient in the filled region. The effects of resin age distribution and the

polymerization kinetics on the stability of mold filling flows are investigated here. When

the extent of reaction is significant, the driving force for resin penetration into the fiber

bundles has been found to increase as the viscosity increases, thus improving the wetting

of fibers. But the adverse viscosity gradient generated has an inherent tendency to generate

fingers. A linear stability analysis of the equations describing the mold filling operation

has been performed to derive criteria for growth/decay of fingers. When the derivative. S,

of the reaction rate with respect to conversion is negative, fingers of large widths are

damped; conversely, when this factor S is positive, disturbances of all sizes grow without

attenuation. Small fingers are not stabilized by the reactive coupling. This is attributed to

the relatively long time scale of chemical reaction, in comparison to the time scale of

finger growth: fingers grow faster than reactive coupling can act to damp them out.

Marginal stability plots have been computed to illustrate the effects of several resin

parameters like gel time, activation energy and fill time/reaction time on the fingering

phenomenon. It has also been found that the combined effect of chemical reaction and

mass dispersion is to stabilize disturbances of both large and small wavelengths; this is in



contrast to the cases where dispersion alone damps out narrow fingers and reaction alone

helps damp out large fingers.
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C volume fraction averaged specific heat capacity (J/kg K)
P

C1, C2 constants in the viscosity‘expression
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De Deborah number

Eu activation energy for viscosity
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CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION AND MOTIVATION

This work investigates the flow of reactive, polymeric liquids through fiber bundles

with specific reference to viscous fingering during the mold filling stage in liquid molding

operations. The effect of the polymerization reaction along with the various

thermochemical properties of the resin, and the effect of dispersion during the filling

process, on the growth of fingers, are studied.

The motivation for this study comes from a necessity to understand the flow

processes involved in the manufacture of fiber reinforced polymer composite materials.

The relevant composite manufacturing process is Liquid Molding, of which Resin

Transfer Molding (RTM) and Structural Reaction Injection Molding (S-RIM) are specific

techniques. Flaw-free parts are the major requirement of any composite manufacturing

process. Microstructural defects in the final part may arise from a number of causes --

uneven distribution of the resin, voids embedded within the fiber bed and viscous fingering

of fresh resin with a lower viscosity into aged resin of higher viscosity within the mold.

The scale of the defects is important to determine whether they affect the mechanical

performance of the molded part significantly. Inhomogeneities, caused either by voids or

by an uneven distribution of the resin across the fiber bed, may lead to weak spots in the

final parts. The possible role of viscous fingering during mold filling, in the generation of

these inhomogeneities, is studied.

Mold filling processes involve the flow of polymeric matrix material past

I
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anisotropic arrays of fibers. Since the dimensions of the fiber tows are extremely small in

comparison to those of the mold itself, the impregnation of the bed of fibers is treated as a

flow through porous media. As a result of the polymerization reaction occurring during

mold filling, a continuous variation of viscosity of the resin develops across the filled

portion of the mold, at any time. Such a viscosity gradient is found to result in the

phenomenon called fingering of more mobile fluid.

This phenomenon of viscous fingering has been observed in solvent-flushing of

packed beds and filters [Hill, 1952], as also in the secondary extraction of crude oil from

rock formations under the surface of the earth, and has been reviewed by Homsy (1985).

During mold filling, one possible mechanism for the formation of inhomogeneities could

be the rejoining of the fingers downstream, as they grow, thus enclosing a region

containing resin with properties drastically different from those of the resin in its

neighborhood. The structure and behavior of the fingers is expected to depend on the

fibrous nature of the medium, due to its effect on the degree of mixing by dispersion, and

also on the thermochemical properties of the resin being injected.

An introduction to liquid molding processes and the effects of fluid rheology

thereon are also discussed briefly in this chapter. The current state of the art and the

background to studies in viscous fingering are presented in the subsequent chapters in this

section. The mechanism of the effect of adverse viscosity gradients on the growth or

attenuation of fingers, is also reviewed.

The focus of this dissertation is on the effect of the polymerization reaction on the

stability of the mold filling process. Chapter 2 discusses the types of polymer resins used

in liquid molding operations, with emphasis on their reaction kinetics. This chapter offers
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an insight into the factors one needs to look at, to have an a priori inkling of what to

expect would happen to any incipient disturbances during the mold filing process.

The rheological data for an epoxy resin and a vinyl ester resin were taken and a

mathematical model presented for the adiabatic, one-dimensional filling of fiber bundles

with these reacting resins in an end-gated mold. The prediction of the moving front and

the evolving pressure distribution inside the filed portion of the mold at any time are

presented in chapter 3. This analysis and results were presented at the V11 Annual

Advanced Composites Conference and Expo, at Detroit in October, 1991 (Jayararnan and

Satyadev, 1991).

The stability analysis on the mold filling process and the results on its application

to a polyurethane resin, along with the base state results, are presented and discussed in

Chapter 4. The effects of dispersion were not included in this analysis and so this chapter

discusses the influence of polymerization reaction on the finger growth in the absence of

any other stabilizing/destabilizing mechanism. These results were presented at the Annual

AIChE Meeting at Miami in November, 1992. The combined effects of mass dispersion

and chemical reaction are presented in Chapter 5. A model problem is discussed, that

depicts this combined effect on the initial grth rates by means of a simple, analytical

method. This analysis was presented at the V International Conference in Numerical

Methods in Industrial Forming Processes - NUMIFORM ‘95 at Ithaca in June, 1995

(Satyadev and Jayararnan, 1995).

The last chapter in this dissertation presents the conclusions from this work on the

effects of chemical reaction on the stability of mold filling in liquid molding operations.



1.2 BACKGROUND

1.2.1 LIQUID MOLDING OPERATIONS

Resin transfer molding (RTM) and Structural - Reaction Injection Molding (S-

RIM) are techniques that are commonly treated under the category of liquid molding

operations in the polymer composites manufacturing industry. In both these techniques,

the method consists of injection of a low viscosity, unreacted polymer resin inside a closed

mold with a fiber preform in place. The mold must be filled well before the viscosity of the

resin rises to gelation. The main difference between the two techniques lies in the desired

production rate of finished parts; S-RIM is a high speed process, while RTM involves

relatively larger fill times. These differences eventually translate to difference in

operational costs, too.

1.2.2 EFFECTS OF FLUID RHEOLOGY IN RTM

Analysis of the filling process in resin transfer molding is usually done with the

assumption that liquid advancing through the fiber preform maintains a constant viscosity

and remains inelastic (Coulter and Guceri, 1988; Kim et a1, 1991; Pamas and Phelan,

1991; Bruschke and Advani, 1990). This assumption is frequently questionable, in

practice for the following reasons.

a) Often a thermoplastic binder holds the fiber tows or fabric together and allows it to be

shaped before impregnation with resin; this binder usually dissolves in the resin and is

removed from the fiber surface by miscible displacement (Owen et a1, 1989). Dissolution

of binder raises the viscosity by a factor of two or more, as observed by Chen et al (1995).

b) High speed versions of resin transfer molding that are now under development employ

resins that cure very fast (Babbington et a1, 1987). In filling large preforrns with these
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resins the extent of reaction at various time steps of filling is significant, producing

changes in both shear viscosity and extensional viscosity.

c) In contrast to filling of empty mold cavities where fluid memory effects are not

significant (Wang and Hieber, 1988), viscoelastic effects may be significant in filling of

molds with fiber preforrns. Permeation rates transverse to the fiber axis have been

observed to be significantly lower for viscoelastic fluids, compared to that for inelastic

resins with the same shear viscosity (Chrnielewski and Jayararnan, 1992). The reduction

in permeation rate depends on the extensional viscosity displayed by the fluid as it is

subjected to varying stretch rates in the fiber array.

Hence the changing resin rheology (both inelastic and elastic components) during

the miscible displacement of binder or during the reactive filling process affects the resin

pressure distribution in the mold in a complex way.

1.2.3 VISCOUS FINGERING

Hill (1952) published the first paper on viscous fingering while studying the

displacement of sugar liquors by water (lesser viscosity) during regeneration of packed

beds, where he observed significant channeling of the water through the more viscous

sugar solution. Saffman and Taylor (1958) developed a stability criterion to explain

viscous fingering in immiscible fluids. They showed that the differences in viscosity

between the displacing and displaced fluids, along with the velocity of displacement,

governed the growth rates of disturbances. When the viscosity gradient is unfavorable (the

displacing fluid is lower in viscosity), the flow system is inherently unstable and leads to

growing fingers. This effect of an adverse viscosity gradient on the growth, or otherwise,
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of disturbances is discussed briefly below. This discussion is equally valid for both

immiscible and miscible fluids.

Efiecr ofadverse viscosity gradient: In Figure 1.1(a) is shown a single finger that has just

developed. To the left of its boundary is the displacing fluid I of viscosity It] (unshaded

portion); to its right is the displaced fluid II of viscosity [12 (shaded portion). Let the

pressure at the plane AA’ be Po and the pressure at the plane BB’ be P1. Let the distance

between the two planes AA’ and BB’ be e. We assume, for this discussion, that the

permeability K of the porous medium and the velocity U of the fluid are constant

throughout the flow domain. The pressure P1 at BB’ is determined by Darcy’s law:

P1 = PO—(-I;(—e)-u (1-1)

In the absence of the disturbance, the space between the planes AA’ and BB’ would be

occupied by fluid 11; so the pressure P, is governed by the value of 112 - higher the

viscosity, lower the pressure P1 in comparison to Po (i.e. P1.ii)’ and vice versa (i.e. Phi)-

Once the disturbance has been initiated, however, the fluid inside the finger, at M' has a

viscosity u]; consequently the pressure just inside the boundary, at M', would be PX, as

seen in Figure 1.1(b).

Figure 1.1(b). shows the pressure profiles for the cases of (i) 119112, (ii) u1<u2, and

(iii) u1=tt2 (dashed line). If It] > “2, then the pressure just outside the finger, at M+, would

be Phi which is greater than PX; thus there would be a tendency for flow from the fluid 11

into fluid 1, reducing the finger size; this signifies stable behavior. If u] < 1.12, however, the

pressure just outside the finger,
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Figure 1.1 Mechanism of finger growth due to viscosity gradients
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at MI”, is Plii which is lower than the pressure Px at M+; this pressure gradient across the

finger boundary would cause fluid I to flow outward into fluid H, indicating finger growth

- instability.

Thus it may be concluded that incipient fingers would grow if the displacing fluid

is of lower viscosity than the displaced fluid, while the fingers would be damped if a

higher viscosity fluid displaces a fluid of lower viscosity. The driving force for finger

growth is the pressure gradient across the finger boundary, which is determined by the

viscosity difference across the two fluids. When a fluid displaces another fluid of higher

viscosity, the unfavorable viscosity difference in the flow direction leads to flow

instability, causing the low-viscosity fluid to channel through the second fluid, yielding

‘fingers’.

Viscous fingering has been studied by researchers in petroleum engineering in the

context of secondary oil recovery, using external fluids to push oil from the reservoirs up

into the wells. Water has been used, with considerable success, for this purpose. Water,

being lower in viscosity than the subterranean oil, pushes the latter through the porous

rock formations. But it was observed that this scheme did not always extract all the oil in

the formation, with water coming out of the wells after a certain period. This has been

seen in laboratories, too, and has been attributed to the phenomenon of viscous fingering.

Fingering in both immiscible and miscible displacement has been studied by various

workers and has been reviewed by Homsy (1987).

Chuoke et al (1959) developed the first mathematical linear stability analysis for

the displacement of two immiscible fluids. They included interfacial tension effects in

their analysis, to obtain the necessary and sufficient conditions for instability of slow
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liquid-liquid displacement in porous media.

In liquid molding operations, however, the displacing and displaced fluids are both

completely miscible, both comprising the same reactive resin, albeit of different degrees

of polymerization. There is, thus, no interface between the two fluids, and the analyses

done will correspond to those for miscible displacement problems. As will be seen below,

the miscible nature of the two fluids in question provides an opportunity for dispersive

mixing at the edges of fingers, thus smoothing out the viscosity profile. In addition the

fresh resin, that pushes the older resin in the mold, is at a lower degree of polymerization

than the latter, hence of lower viscosity. An adverse viscosity gradient is, thus inevitable in

the liquid molding scenario. Fingers were observed in RTM experiments performed by

Losure (1994). To illustrate the generation of fingers, the mold was first fed with the resin

and left to react for a certain period. A fresh batch of the resin was then injected; this batch

was dyed, to aid visualization of the generated fingers. Figure 1.2 shows a typical liquid

molded part, as an illustration.

Miscible displacement does not involve any interfacial tension. Slobod and

Thomas (1963) performed experiments to show the development of fingers by a fluid

displacing another miscible fluid at different flow velocities. They found that a single,

large finger was generated at small velocities and also saw that the edge of the finger was

quite blurred and attributed this behavior to dispersive mixing of the two fluids across the

edge. Larger flow velocities yielded a number of small fingers that merged, over time, into

fewer fingers, though of considerably smaller widths than those seen in the low velocity

experiments. No rigorous mathematical analysis was, however, presented in this paper.

The type of finger that is produced, i.e. whether it is a single, large finger or comprises

several fingers of smaller widths (finger splitting) is discussed by Park and Homsy (1985),
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Figure 1.2 Typical molded plaque: to illustrate the generation of fingers. White - older

resin; Shaded: fresh resin [after Losure, 1994]
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where a dimensionless group (Capillary number) is used as a criterion to describe a finger

splitting regime in immiscible flows.

Perkins and Johnston (1963) published a review of the effects of diffusion and

. dispersion in miscible displacement processes in flows through porous media. A summary

of the different empirical equations for longitudinal and transverse dispersion coefficients

is also given. In a later paper, the same authors (Perkins and Johnston, 1965) suggest a

useful way of denoting the size of a finger, as the ratio between the finger width to the

spacing between successive fingers.

Schowalter (1965) formulated stability criteria for steady, constant velocity,

miscible displacement of fluids in an infinite porous medium and discovered that the

criteria for marginal stability are affected by variations in density, viscosity, the

displacement velocity and also the effect of diffusion. Paterson (1985) used the analogy

between flow through porous media and a Hole-Shaw cell and used viscous dissipation of

energy in the displaced fluid as a stabilizing mechanism, to obtain bounds on the

disturbance wavelengths for undarnped growth for miscible fluids.

A linear stability analysis on miscible displacement, in the absence of any

mitigating factors such as dispersive mixing, was performed by Hickemell and Yortsos

(1986). The inherent instability of the miscible displacement process, in the presence of an

adverse viscosity gradient, is observed and appropriate stability criteria are derived in this

theoretical paper. Their results are presented schematically in Figure 1.3. Disturbances of

all widths (wavenumbers) are seen to be unstable.

Tan and Homsy (1986) found that, in the presence of an adverse viscosity gradient

between two miscible fluids in a porous medium, the flow is inherently unstable and that

dispersion tends to stabilize the process by spreading out the mobility profile, more so for
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Figure 1.3 Filling with no reaction or dispersion [after Hickemell and Yortsos, 1987]
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the higher wave number disturbances. They also studied the effect of anisotropic

dispersion on the growth rate; they found that a small transverse dispersion increases the

growth rate drastically in comparison to an isotropic case, resulting in a shift to smaller

finger widths, while a large transverse dispersion tends to stabilize the system at all length

scales. Their results are shown schematically in Figure 1.4, where the growth rates are

plotted against wavenumbers at several times. Fingers of large wavenumbers are seen to

be stabilized by the dispersion process.

Yortsos and Zeybek (1988) emphasized the dependence of dispersion coefficient

on flow rate and concluded that the velocity dependence causes instability at large

wavenumbers through a kind of a feedback mechanism. Nonlinear interactions of viscous

fingers are discussed in later work by Homsy and co-workers (Tan and Homsy (1988),

Zimmerman and Homsy (1991, 1992)). The effect of nonmonotonic viscosity profiles, as

opposed to those considered in earlier literature, is presented by Manickam and Homsy

(1993). In another paper, Tan and Homsy (1992) include permeability heterogeneities in

the porous medium, described by a statistical model, and find a coupling between these

heterogeneities and viscous fingering. Bacri et al (1992) experimentally confirm the

theoretically predicted trends of the effects of various parameters, e.g. viscosity, flow rate

and permeability heterogeneity, on fingering, after including effects of gravity and

nonlinear dispersion in their analysis. Gorell and Homsy (1985) made predictions of the

most dangerous wavenumber, i.e. the wavenumber at which growth rate is the largest,

which would be the fastest growing

Porosity variations can occur in certain situations, e.g. during injection of acid into

the formation, to increase crude oil production from a well. Chadam et a1 (1986)

investigate these reaction-induced porosity variations and their effect on fingering
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Figure 1.4 Filling with dispersion, no reaction [after Tan and Homsy, 1986]
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instabilities. In a later paper, Chadam et al (1991) looked at the coupling of porosity

variations with viscosity changes. Schincariol et al (1994) present an analysis of the

growth of disturbances in a variable density flow and develop criteria for the growth or

decay of disturbances.

1.3 LIQUID MOLDING AND VISCOUS FINGERING

Since the resin being injected in liquid molding operations is continuously

polymerizing, the fluid in the filled region of the mold at any time has a constantly

changing viscosity; fluid at the flow front has a higher viscosity than the fluid at the inlet to

the mold. Though the question of two fluids does not arise, the flow situation may still be

visualized as one in which the fresh fluid is pushing the older fluid and, thus, analyses

done on miscible displacement of fluids would be applicable. Owing to the adverse

viscosity gradient, in the absence of any stabilizing mechanism, the flow would be

expected to be inherently unstable. Based on existing literature discussed above, it is

easily seen that dispersion across the edge of a finger helps damp out the disturbance.

Also, a higher transverse dispersion (transverse to the bulk flow) increases this smearing

out effect. A brief discussion of the dispersion coefficients in several types of fiber

preforrns may be found in Losure (1994).

As seen in Figure 1.4, the fingers that are most likely to grow are the ones with the

most dangerous wavenumber, seen in Figure 1.4 as corresponding to the peak.

Disturbances at both ends of the spectrum of wavenumbers have comparatively lower

growth rates. The actual dimensions of the liquid molding cell play a major role in

determining the size of the fingers. If the most dangerous wavenumber corresponds to a
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finger width that is larger than the dimensions of the cell, the instability will not be seen in

experiment.

The mechanical properties of a finished part are affected by viscous fingering. The

time of generation of a finger, with respect to the injection of fresh resin, governs the

strength of the edge of the finger. When the incipient disturbance is closer to the inlet, the

degree of polymerization is still fairly low, and there is adequate opportunity for

subsequent reaction to create crosslinks across the edge of the finger, thus bringing the

finger close enough to the rest of the finished part in mechanical properties. On the other

hand, if a disturbance is generated at a later time, when the conversion is fairly high, there

is lesser scope for crosslinking across the edge of the finger, which makes the region of the

finger behave as an inhomogeneity in the final part, with comparatively poorer mechanical

properties.

1.4 SUMMARY

An introduction to the phenomenon of viscous fingering has been presented in the

preceding sections of this chapter. The appearance of fingers during mold filling, and their

effect on the properties of the final liquid molded parts, was briefly discussed. It was seen

that no work has been done on the effects of reactive coupling on the stability of the flow

through porous media. The following chapters of this dissertation deal with the role of the

polymerization reaction on viscous fingering.



CHAPTER 2 POLYMER SYSTEMS IN LIQUID MOLDING: A REACTION

KINETICS POINT OF VIEW

2.1 INTRODUCTION

Reaction Injection Molding (RIM), the precursor to Resin Transfer

Molding (RTM) and Structural - Reaction Injection Molding (S-RIM), involves

polymerization inside the mold. This is in contrast to conventional thermoplastic injection

molding (TIM), where polymer is injected into the mold and allowed to cool to form a

solid polymer. Monomer casting and thermoset injection molding processes also use

polymerization inside the mold, but they employ heating of the mold walls to activate the

reaction. In RIM, monomer and mold temperatures are usually quite close and the reaction

is activated by impingement mixing of the reactants just before they enter the mold. A

schematic of the RIM machine is shown in Figure 2.1 (Macosko). The two reactants A and

B are mixed in appropriate ratios just before they enter the mold, to initialize the

polymerization reaction. The resin far from the mold inlet has undergone considerable

polymerization reaction compared to resin at the mold inlet.

RIM production began with polyurethanes. Nylon 6, dicyclopentadiene,

acrylamate, epoxies, unsaturated polyesters and phenolic materials are several other

chemical systems currently in use for RIM operations.

18
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Figure 2.1 Schematic of a RIM Machine [after Macosko, 1989]
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As will be seen in chapter 4, the chemical reaction kinetics of the resin

used in liquid molding is an important factor in the determination of flow stability of the

mold filling step; the stability is dependent on the rate of (polymerization) reaction and its

derivatives with respect to conversion and temperature. Thus the form of rate expression

that describes the polymerization reaction has a direct effect on subsequent analyses. For

example, polyurethanes are usually represented by simple n-th order kinetics:

R = kR(1—0t)" (2-1)

while unsaturated polyesters and epoxies have been known to follow more complex rate

expressions of the type:

R = (k,+k2-a"')-(1—a)" (2-2)

Several types of chemical reactions are schematically depicted in Figure

2.2, where the reaction rate, R, is plotted against the conversion, or, showing the different

classes of reaction systems by the trends in variation of (BR/act) E S. Reactions with

kinetics given by equations of the type eqn. (1) have a negative S for all ranges of

conversion, for nonzero orders of reaction, shown in Figure 2.2 as curves (a) and (b), while

reactions with kinetics given by eqn. (2) would depend on the values of the kinetic

constants and the conversion. When the order of reaction is zero, the reactions follow line

(c).
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The solidification process in all liquid molding operations involves

crosslinking. The viscosity variations arising from this process are linked to the reaction

kinetics of the polymerization process. The rheological changes during a single RIM

cycle, up to gelation, are shown in Figure 2.3. The initial viscosity of the reactant mixture

is low enough to enable rapid mixing. As the monomers react to form high molecular

weight resin, the viscosity rises. This build up must be slow enough for the entire mold to

be filled. Once the mold is filled, injection of reactants is stopped and the viscosity

allowed to increase rapidly to gelation.
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Figure 2.3 Viscosity changes during a RIM cycle

Though fast polymerization reaction is essential for a polymer system to be

successfully used in RIM processes, not all such fast polymerizations are suitable.
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Polymerizations in solution, emulsion or suspension are not suited for production of a

molded part; polyethylene or polypropylene, which are made only in solution or

suspension, are ruled out. Polyesters, which need extensive condensation of a small

molecule, are poor candidates for liquid molding. Monomers that need to be heated to

their melting temperature for polymerization also are unsuitable since this would need

preheating the mold to high temperatures for the reaction to occur, followed by cooling to

cause crystallization. High initial viscosity of the monomeric liquid makes some polymer

systems unsuitable for RIM.

A brief study of some polymer systems that are amenable to liquid molding

follows. The focus of the discussion in the rest of this chapter will be on the reaction

kinetics of the polymer system under consideration and its effects on the viscosity, since

they are the factors essential for the analysis of the stability of mold filling processes in

later chapters.

2.2 POLYURETHANES

Formation of polyurethanes involves the reaction of isocyanates with

compounds containing an active hydrogen. The active hydrogen compound, e.g. an

alcohol, adds across the carbon-nitrogen double bond of the isocyanate group.

R-NCO+H0—R’—)R—NH-C0—0—R' (2-3)

The { -NH-CO-O-} linkage is called the urethane bond.

Water reacts with isocyanate to form a urea, so careful drying of reactants

and catalysts is done; typical water level in RIM materials is < 0.07%. Reaction of amines
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with isocyanates also yields ureas. Organometallic compounds can greatly increase the

rate of urethane formation. Isocyanates can also undergo addition or auto-condensation

reactions. Dimerization of isocyanates is reversible at high temperatures, while the

products of trimerization (Isocyanurates) are more stable.The urethane bond is also known

to be reversible at high temperatures and care has to be taken during RIM and postcuring

operations, where temperatures can go to fairly high levels. Urethane reactions give no by-

products. They go to a high degree of conversion and also can be very fast, depending on

the active hydrogen compound. These factors render urethanes well suited to liquid

molding operations.

RIM processes require that a polymerization goes to completion in a few

minutes, preferably less than one. Reaction kinetic data are necessary for modeling the

rheological changes which control mold filling and curing. It has been observed (Macosko

1989) that most urethane reactions proceed according to the following, simple n-th order,

kinetic expression:

_ dINCO]
dt = k, [NCO] (2-4)

Here the reactants are assumed to be in stoichiometric ratios, as is normally the case, and

the concentration of the catalyst is absorbed into the rate constant. The overall order of the

reaction “m” typically has a value of 2. The rate constant, kR, is described by the usual

Arrhenius form:

Ea .

kR = AR exp(-fi) (2-5)

In terms of the extent of reaction (conversion), or, the rate expression then becomes:
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_ do: _ Ea m

R — dt — AR exp( RT) (1 a) (2-6)

From this form of the rate equation, it may be seen that polyurethanes

follow chemical reactions of the type (a) or (b) in Figure 2.2, depending on the order of the

reaction.

Viscosity is dependent on conversion and temperature, both of which are

continuously varying during the molding process. Kinetic results can be combined with

structural relations (probability arguments) to derive expressions for the evolution of the

molecular weight with time and temperature. From these molecular weight expressions,

viscosity is also easily determined. Empirical data on several polyurethane resins

suggested the following expression for the viscosity:

(1 C1 + C201

u = MT) [Ag—as_ a] (2—7)

where [10(T) is represented by an Arrhenius type of equation:

Eu
uom = A, expL-fi) (2-3)

as in these equations is the gel conversion for the urethane formulation in question due to

formation of a network. Equation 7 suggests that viscosity depends on the reaction

kinetics through the extent of reaction, or.

2.3 POLYAMIDES

Polyamides are the basic unit of Nylon 6 and are the most studied non-

urethane RIM system. They have the advantage of a high modulus, high impact strength
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and high temperature stability. They are commonly made by anionic polymerization of e-

caprolactum with a suitable initiator and metal catalyst. The mechanism involves a step-

propagation. Acyl lactam is an example of initiator used. Sodium caprolactam and

Magnesium caprolactam are the most commonly used catalysts.

The reaction kinetics for the formation of polyamides has been well studied

(Malkin et al 1982). An autocatalytic model fits a large amount of data for the sodium

catalyzed reaction. The rate equation is found to be of the form:

2

‘1‘}? = kl exp(—§—;-,) [11%] (l - a) (l + 1:172) (2-9)

where “I” is the concentration of the initiator and is the same as the catalyst concentration.

M0 is the initial monomer concentration and or is the extent of reaction (conversion), “k1"

is the rate constant and “k1” is an autocatalytic term. It is seen that the reaction kinetics for

this polymer follows a more complicated rate expression than for the polyurethane system,

due to the presence of the autocatalytic term.

From the above form of rate expression, it is seen that dR/da is negative

for conversions greater than or equal to 50%; for lower conversions, it depends on the

numerical values of the initiationrate constant, “k1”, and the initiator concentration “I”.

The reactant viscosity is low and the reaction rate is relatively slow. This

ensures that molds are easily filled. Gel times are typically over 205. However, the low

viscosity may lead to bubble problems. One disadvantage for this Nylon 6 system is that

of a high operating temperature and require high temperature RIM machines.
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2.4 EPOXIES

Suitable catalysts and hot molds are needed to adapt epoxy formulations to

liquid molding. Most epoxy formulations are based on bisphenol A and aliphatic

diamines. Highly crosslinked networks result from the reaction since both amino

hydrogens can react with the epoxy groups. A typical reaction scheme for an epoxy

system is shown in Figure 2.4. The reaction is found to follow simple n-th order kinetics,

given by a rate equation of the form:

dd _ Ea) n

37 —- AR exp( RT (1 Ct) (210)

The order of the reaction, “n”, depends on the polymer system being considered. An

amino—ethyl-piperazine formulation is found to have an order n = 2.8 (Osinski 1983),

while a Diglycidyl ether of bisphenol A (DGEBA) / triethylene tetramine ('TETA) system

has an order n=1.64 (Kim and Kim 1987). Like the polyurethanes, epoxies also are seen to

be represented by curves (a) or (b) in Figure 2.2.

The viscosity in typical epoxy resins is high; so the reactants have to be

preheated to enable easy mold filling. The need for hot molds and a typically large

exotherm can cause degradation problems. However, the reactions themselves are

relatively slow compared to typical injection times. Therefore the problems arising from

viscosity buildup and premature gelation are absent.

Kim and Kim (1987) have found that the viscosity rise during reaction, for

the DGEBA/TETA system, follows equation 7 that was presented in the discussion of

polyurethanes. The gel time for a DGEBA/TETA system at 50°C has been found by
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Losure (1994) to be about 30 minutes. Thus, in comparison to both polyurethanes and

polyamides, the epoxy resins have a significantly higher gel time.



CHAPTER 3 VISCOSITY VARIATIONS DURING REACTIVE FILLING OF FIBER

PREFORMS

3. 1 INTRODUCTION

Analysis of the mold filling process in liquid molding is usually done with the

assumption that liquid advancing through the fiber preform maintains a constant viscosity

and remains inelastic. This assumption is frequently questionable. During the filling

process in resin transfer molding there is a constant variation of the viscosity of the resin,

and also a significant rise in the elastic nature of the resin, due to various reasons, which

were discussed in chapter 1.

Hence, the changing resin rheology during the miscible displacement of binder or

during the reactive filling process affects the resin pressure distribution within the mold in

a complex way. The next section presents an analysis to show the effect of resin rheology

on several measurable quantities during mold filling in an end-gated mold. Rheological

data taken from experiments conducted on an epoxy resin and a polyester are used to

investigate these effects of changing rheology.

3.2 ROLE OF RESIN RHEOLOGY IN LIQUID MOLDING

The problem addressed in this section is the adiabatic flow of reacting resin

through a fiber preform placed in an end gated rectangular mold. The fibers are aligned

transverse to the flow and the model pertains to one dimensional motion of the resin with

constant inlet pressure P0 at the gate (see Figure 3.1). A complete description of reactive

30



31

filling would couple the changing rheology to the species mass balance and the energy

balance (Garcia et al). The effect of changing rheology is illustrated directly with the help

of rheological data obtained on the resin as it cures within the gap of a rheometer.

The rate of change in rheology with increasing extent of cure, varies with resin

formulation. With some resin formulations for which the conversion at the gel point is low,

this variation is abrupt -- the change is hardly noticeable upto the gel conversion; then

gelation occurs very rapidly. With other formulations, the change in rheology occurs

smoothly -- both the viscosity and the elastic modulus of the resin change over a range of

conversions leading up to the gel point. The effect of such changes in resin rheology upon

the front motion, and upon the resin pressure distribution during the filling process in resin

transfer molding is examined here with a rectangular, end gated mold at constant inlet

pressure.

3.2.1 RESIN RHEOLOGY AND APPARENT PERMEABILITY

The changing rheology of two different resin formulations has been monitored in

the gap between parallel plates in an RMS-800 instrument. Both the Devcon epoxy resin

and the Derakane vinyl ester resin reach the gel point over a time frame of several minutes

in the laboratory. Figures 3.2 and 3.3 show the time evolution of the steady shear viscosity

and of the dynamic shear storage modulus G' at a fixed, low frequency a) of l rad/s, for

these resins. A fluid relaxation time, 1:, may be calculated with the expression

1 = (3-1)

GI

2

(on
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Figure 3.1 One-dimensional flow of resin, transverse to fibers, in an end-gated mold
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Different regimes were identified on the basis of these curves. In the first regime (t < t1),

the resin is an inelastic fluid of constant viscosity. In the second regime (t1 < t < tn), the

fluid remains inelastic but displays an increasing viscosity. In the third regime (t > tn), the

fluid develops viscoelasticity in addition to an increasing shear viscosity. The fluid

viscoelasticity developed at various stages is associated with increasing extensional

viscosity of the resin. These figures show that the progression from inelastic resin to gel is

more abrupt for the Derakane resin.

The bulk flow of incompressible, Newtonian fluids through porous media at low

Reynolds numbers is described by Darcy's law. This macroscale representation of the

superficial velocity in anisotropic media requires the specification of two or more

directional permeability coefficients defined by the geometry of the preform. The

permeability Kl transverse to the fiber axis is typically several times lower than the

longitudinal permeability along the fiber axis. The apparent transverse permeability of

fiber arrays with hexagonal packing and a fiber volume fraction of 30 percent, to

viscoelastic liquids, is plotted against a measure of viscoelasticity on Figure 3.4.

Increasing viscoelasticity is represented by increasing values of a dimensionless ratio of

fluid time scale to flow time scale -- the Deborah number, De.

De = 0 (3'2)
 

The permeability Kt (normalized with the constant value for Newtonian liquids,

Kw) starts to drop at an onset Deborah number of 0.4 and continues to decrease with

increasing De. At higher values of the Deborah number, the apparent permeability reaches

an asymptotic value.
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3.2.2 THE MATHEMATICAL MODEL

The one dimensional flow along the y -direction transverse to the fiber axis in the

fiber array, is described by the following equations. First we define a coordinate moving

with the front

5 E z - 2f ‘ (3-3)

where 2f denotes the location of the front. Then, we obtain

C t' , BUD 0

on Inurty 5: _

U

Permeation 8—13 = .._0 (3-4)

35 ma

M . dzf U0

I _ = _0 Ion of front dt 8

U0 is the superficial velocity through the fiber array, 8 is the porosity of the array and ma is

the apparent mobility defined by

ma K‘ (3 5)
u

the apparent permeability K, and the viscosity It.

The boundary conditions for operation at constant inlet pressure are

P=P at éz-Zf

(3'6)

P = O at i = 0

Analysis OfModel Equations: Three different regions are identified on the basis of

apparent resin mobility, which is the ratio of apparent permeability through the fiber
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preform, to the viscosity of the resin. The mobility of fluid flowing through the first region

close to the inlet is uniform because the shear viscosity is constant and the Deborah

number is lower than the onset value for viscoelastic effects. The mobility of fluid flowing

through the second region decreases towards the front only because of the increasing shear

viscosity. The mobility of fluid flowing through the third region is affected by both

variations in extensional viscosity and increasing shear viscosity.

The analysis of the filling process is presented for two different situations: filling

with constant mobility and filling with the first two types of regions. For the purpose of

this dissertation, the viscoelastic effects are not considered. It was observed by Gonzalez-

Romero and Macosko (1985) that the viscosity of several polyurethane systems is

independent of the shear rate, i.e. Newtonian behavior of the polymeric fluids may be

assumed, up to the gel point. Since the viscoelastic regime does not begin until the

viscosity is quite high, this assumption is made for these resins also.

The solution for the first situation is classic (Collins, 1961). In the other situation,

analytical expressions are developed for the resin pressure distribution and for the velocity

at any given time by assuming an exponential variation of mobility over each subregion.

These expressions are combined with numerical integration over time for the location of

the front and of the crossover planes for onset of shear viscosity increases. The constant

inlet pressure condition leads to progressively lower superficial velocities with time so that

the residence time corresponding to a location in the mold increases with time. In other

words, after the start of the filling operation, fluid elements entering the mold at any time

undergo the same rheology changes at shorter distances from the gate.

Filling With Constant Mobility: The mobility is constant throughout the resin up to time t,
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from the start of the filling operation and is described by

m E m, = J (3-7)

The front has advanced for a time period less than t1, the solution to the model equations

(eq. 3-4) is readily obtained as
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The location of the front at time t1, denoted by yA, may be found from the above equation

as

N
I
—

 

2mPt

yA=[ 2"? (am

The velocity at the onset of rheology changes is mIPo/yA. This velocity will be used as a

reference velocity for analysis of the second region.

Filling With Shear Viscosity Changes: Over the time period t, to tn, the region behind the

advancing front may be divided into two subregions -- one of uniform mobility m1 and

another where the mobility varies because of the changing shear viscosity alone. The

mobility at the front m, is then given by

K10

m =

f I10

 for region I] (3-10)

The viscosity is evaluated at the time corresponding to 2f. The location of
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crossover between the two subregions, termed yl, also varies with time. It is convenient to

fit the variation in mobility from this crossover plane to the front in region 11 with an

exponential at any given front location or a given time. This choice has been validated by

the final converged values of residence times at different locations behind the advancing

front. The velocity U0 at a given front location is then obtained from the following

equation.

mIPo yl

yAUo yA

 
 + (Zf_y’)LMMDR[f, 1] (3-11)

VA

This equation involves four dimensionless groups. The group [mIPO/(onAfl represents a

factor by which the velocity is reduced from the velocity at the onset of rheology changes.

The group (Zf/YA) is the current location of the front relative to its location at the onset of

rheology changes. The group (y1/yA) is the current location of the crossover between the

first two regions. The final group termed LMMDR [f,I] is the ratio of a logarithmic mean

mobility difference (between the crossover plane and the front) to the mobility at the front;

this group is given by the following expression.

mf — mI
l

’"f “(’31)

"’1

LMMDR[f, I] = (342)

If there were no changes in fluid rheology during the filling process (m, = m, = constant),

this group would have a value of l.

The increments in front location and in the crossover location corresponding to

increments in time are determined by integrating eq. (34) and an analogous equation for

y] with the trapezoidal rule.
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U old + Unew

0 0

2 8 (3-13)
 

AZf = AI

These equations are combined with Eq. (3-1 I) to determine the velocity at the next time

value.

3.2.3 DISCUSSION OF COMPUTED RESULTS

The expressions derived above have been used to compute the motion of the front

and of the different crossover planes, as well as the evolving pressure distribution, for

several cases. These cases are represented by different values of the characteristic velocity

mlpo/yA ranging from 3.59 mm/s to 6.22 mm/s. Scaling all displacements by yA and the

pressure by the inlet pressure Po then yields one curve for each of these quantities that

covers all values of inlet pressure and of Newtonian liquid permeability (Kw) provided the

rheology variation with time is given; something in the nature of a master curve is

obtained.

Penetration: The resin penetration into the fiber bundle is plotted against time on Figure

3.5. The front crosses over at 0.5 min into the region of changing shear viscosity and into

the region of developing modulus at a time of 2 min and a location 1.94yA. Between 0.5

min and 2 min, the change in shear viscosity leads to a 20 percent higher drop in velocity

than would be obtained with unchanging mobility. At longer times -- 4 min, the changing

rheology leads to a 94 percent higher drop in velocity than would be obtained with the

mobility fixed at the value corresponding to 2 min. The dimensionless plot of velocity on

Figure 3.6 shows these trends. It must be kept in mind that the sharper drop at greater
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times is caused not just by permeability drops in the third region but also by the expanding

region of changing fluid rheology.

Figures 3.7 and 3.8 show the location of the two crossover planes with time. From these

curves, it is seen that the extent of region with changing fluid rheology expands to the

entire filled region at the end of 4 min. As the front moves forward, the location of y],

which marks the beginning of rheology changes, is seen to move towards the inlet port of

the mold. This is shown in Figure 3.7. Once the front enters the third region, this onset

plane for all rheology changes moves more rapidly toward the inlet; given sufficient time

for this filling operation, y] would be expected to reach the inlet port, depending on the

nature of rheology of the resin. Once the front has reached y“, the third regime begins,

which corresponds to an increasing elastic behavior of the fluid. As the front progresses,

however, the location of yn, i.e., the onset plane for extensional viscosity effects moves

toward the inlet of the mold. Again, with progressing flow front, the rate at which yn

moves toward the inlet increases, as shown in Figure 3.8.

A Unified Correlation: A very simple relation is obtained between the logarithmic mean

mobility difference ratio and a velocity reduction factor. The latter quantity is defined as

follows. The hypothetical velocity that would be obtained for constant mobility

throughout is given by eq. (3-8). The ratio of this quantity to the actual superficial velocity

is termed the velocity reduction factor. The velocity reduction factor is plotted against

LMMDR [f,I] on Figure 3.9. This figure shows that the two quantities are identical over

most of the region (though not exactly same). This may also be seen from equation 3-1 1

after some simplification. Hence, the effect of changing fluid rheology on the filling
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process can be correlated effectively by comparing these two quantities. Figure 3.10

shows the LMMDR's at various front locations.

Pressure Distribution: For the constant inlet pressure process, the pressure profiles at

various instants of filling time in the mold are shown in Figure 3.1 1. When the front is at

locations up to yA, the entire saturated portion contains resin of uniform rheology and so

the pressure profile is linear, as seen in the innermost curve in this figure. As the front

moves further, the rheology changes in the second regime and the pressure in this region is

considerably higher than what it would have been if the rheology had not changed. The

pressure drop is still fairly linear in the first regime. The curve begins to become

increasingly convex, as the front moves forward, and the pressure drop across a small

portion of the fluid, close to the front, is large. That is, the pressure gradients in the bulk of

the fluid are lower than those at the moving front. As the front enters the third regime, the

pressure profile becomes increasingly flatter in the bulk and steeper closer to the front.

This type of pressure distribution with a steep drop near the front is significant for

practical Operation with clusters of filaments making up the preform. The driving force for

longitudinal wetting of individual filaments in a cluster would be uniformly high in the

present instance over the bulk of the region swept by the front. In contrast, without

rheology changes, this driving force decreases linearly.

3.2.4 SUMMARY

The motion of the front, and the pressure distribution, have been tracked in the
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above analysis, by modeling the measured viscosity profile in a simple fashion. The effect

of rheological changes on the reduction of the flow velocity, in a constant injection

pressure situation, have been represented by a simple relation between two quantities - a

velocity reduction factor and a ratio of the logarithmic—mean mobility difference versus

the mobility at the front.



CHAPTER 4 VISCOUS FINGERING DURING REACTIVE FILLING OF FIBER

PREFORMS: EFFECT OF CHEMICAL REACTION

4.1 INTRODUCTION

It has been found that viscous fingering occurs during mold filling in liquid

molding operations (Losure, 1994). This phenomenon is attributed to growth of

disturbances inside the flow domain, hence to instabilities of the flow process involved in

the mold filling stage. The disturbances themselves arise due to minute variations in any of

the variables, such as velocity, conversion, viscosity, etc., occurring due to

inhomogeneities in the porous medium or in resin mixing.

The viscosity of the polymeric resin, coupled with the polymerization reaction, has

an effect on the stability of the miscible displacement process occurring during mold ‘

filling. A linear stability analysis is done to obtain the criteria for flow stability. The onset

of instabilities arising from adverse viscosity gradients of displacement processes without

reactive coupling is compared to that with reaction in this chapter. It is found that, in the

absence of dispersion, the reactive coupling mechanism tends to stabilize the lower wave

number disturbances. The effect of varying permeability is also considered.

Most of the available literature on fingering, cited in chapter 1, refers to

displacement processes occurring in the context of secondary recovery of oil from

subterranean formations. Liquid molding is a means of manufacturing polymer composite

materials, with major applications in the automotive and aviation industry. In this process,

52
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a polymeric resin flows through a bed of reinforcing fibers placed inside a mold. After

filling, the mold is left to cure, during which time the resin hardens; subsequently the part

is removed from the mold. An important qualitative requirement in these industries is the

avoidance of voids and/or inhomogeneities in the manufactured part, since they would

weaken the structure. Disturbances arising during the filling stage, over a range of

wavenumbers, can grow with time at various growth rates, resulting in fingers. The

properties of the resin in the fingers would be different from those of the resin in its

vicinity, due to possible differences in the degrees of crosslinking from different ages.

Upon curing, then, these fingered structures would be retained in the final part as

inhomogeneities.

Before entering the mold, the resin is in an unreacted (monomeric constituent)

state and the polymerization reaction begins as soon as the fluid enters the mold. The bed

of fibers is a preform and may be random with isotropic permeability or aligned with

anisotropic permeability. The concentration of the fresh fluid entering the mold is different

from that of the older fluid, as the latter has already begun to polymerize. Thus the

incoming fluid, which pushes the older fluid, is less viscous than the latter, creating an

adverse viscosity gradient - a filled region, in the mold, of increasing viscosity in the flow

direction. It is to be noted that the displaced and displacing fluids in liquid molding,

differing only in the degree of polymerization, are completely miscible. Also, the viscosity

gradients in the mold filling problem are continuous across the entire flow domain (due to

a continuous base state concentration profile), while earlier literature considered abrupt

changes in viscosity at an interface (a step profile of base state concentration). Mobility,

defined as a ratio of permeability and viscosity, would thus decrease in the direction of
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miscible displacement (for uniform permeability in the flow direction), causing fingering

instabilities. The mechanism of generation of fingers under an adverse viscosity gradient

has already been dealt with in chapter 1.

Due to the nature of the fluids and the physical processes considered, earlier

literature has dealt only with the effects of dispersion, surface tension, permeability and

gravity on fingering. Since liquid molding uses reactive flow systems, the stability of the

flow process is also affected by the nature of the polymerization reaction. The effect of

reaction and anisotropic permeation on flow stability during reactive filling, in the absence

of dispersion, is explored in this chapter.

Hickemell and Yortsos (1986) presented the linear stability behavior of miscible

displacement processes in porous media, in infinite domain, in the absence of dispersion.

In their paper, upper and lower bounds on the growth rate were derived when dispersion

was absent, and these bounds were found to be directly dependent on the lowest and

highest values of the viscosity gradients in the domain of the problem. The inherent

instability of the miscible displacement process, in the presence of an adverse viscosity

gradient, is observed and appropriate stability criteria are derived in their theoretical paper.

Disturbances of all wavelengths are seen to be unstable. In our problem, too, dispersion is

absent; however there are two major differences. First, the domain of their problem is

infinite, while the liquid molding problem discussed in this chapter is finite. Secondly, in

the current problem, chemical reaction plays a major role in both generation of the

viscosity gradient and growth/decay of disturbances; the problem investigated by

Hickemell and Yortsos (1986), however, involved no~chemical reaction.

Polymerization reactions may follow various types of kinetics (see chapter 2);
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reactions having simple n-th order kinetics are considered (e.g. polyurethanes follow

simple second order kinetics). Conditions under which the filling process would be stable

to infinitesimal disturbances will be presented, as marginal stability curves. A frozen

profile approximation, valid when the growth rate of the disturbances is much greater than

the rate of change of the base state (the moving front), is used. The problem is formulated

and described in the next section, where the governing equations are presented, the base

case solution is discussed and the eigen value problem obtained from the stability analysis

is presented and discussed. The solution approach is described in Section 4.3, followed by

a description of the results and their discussion in Section 4.4. Some important

conclusions that emerge from this study are listed in Section 4.5.

4.2 PROBLEM FORMULATION

4.2.1 THE GOVERNING EQUATIONS

Figure 4.1 shows the flow situation being considered. Fiber bundles are placed

inside the mold and the resin enters the mold at an end-gate across the entire cross section.

The figure shows the advancing flow front at some instant of time. A constant injection

rate is considered, which means that the pressure drop along the mold varies as the mold is

filled. This is in contrast to the problem investigated in chapter 3, where a constant

injection pressure was used. Another major difference from the problem discussed in

section 3.2 is the contribution of polymerization kinetics to the resin rheology. In that

section, the effect of changing rheology was included directly with the help of rheological

data obtained on the resin as it cures within the gap of a rheometer. In the following
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discussion, however, these kinetic parameters are included explicitly in a component

balance equation. One more distinction from section 3.2 that has to be kept in mind is the

arrangement of fibers inside the mold: in section 3.2 the fibers were all oriented transverse

to the flow of the resin, in ordered arrays, while this section deals with a more realistic

fiber preform. It is assumed, for the purpose of this analysis, that the fiber and resin in the

filled region are at the same temperature, as would occur if the heat transfer coefficient at

the fiber-resin interface were extremely large. The thermal parameters of the resin and

fibers are also lumped as a volume fraction weighted average for the filled region. Another

important assumption is the absence of dispersion; this yields the effect of chemical

reaction on the growth of disturbances, independent of the dispersive effects seen by Tan

and Homsy (1986).

Since the fluid moves with a constant velocity U0 in the z-direction, a Lagrangian frame of

reference is used for convenience, based on the location of the flow front at any time; the

length coordinate in the flow direction, in the moving frame of reference is, then,

Z-U f (4-1)
0

E = 2 — 2,

The impregnation of the fiber arrays is treated as flow through porous media, and is

described by Darcy's law.

. ,. ': 1 A
u = q-I-Uo 13 = {13) (KOVP) (4-2)

where u and q are the velocities in the fixed and moving frames of reference respectively.

The permeation equation (Darcy’s law) involves a permeability tensor, which would be

diagonal if the principal axes are assumed to lie along the coordinate directions. Also, the

permeability is assumed to be equal in both the transverse directions, yielding just two
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independent terms in the permeability tensor,

a
)

I
I

 

[1,00

02,0

_oofr,

(4-3)

 

The equation of continuity, the reactant mass balance and the energy balance,

lumping the fiber and resin temperatures together and assuming an adiabatic process with

no heat transfer with the surroundings, in the moving frame of reference, would be

Continuity

Reactant Mass Balance

Energy Balance

where
 
 

Vat: = 0

% .__ .
5+9 Vc _ R(c,T)

3§+§wr=3 men) (4‘4)

_—AHR _ ATM

B: pCp - co

The adiabatic temperature rise, ATM, is given by (Boo) and will be the scaling factor for

temperature in this dissertation.

To demonstrate the theory being developed in this chapter, a polyurethane resin

system is chosen. The reaction is of second order kinetics and the viscosity of the resin has

an Arrhenius' type dependence on the temperature. The various kinetic, thermal and

rheological properties are taken from Castro and Macosko (1982) and are listed in Table

4.1. The reaction rate and viscosity for this resin are given by the equations:

Rm.

6:

or

 n=A,@—
gel

T) = kociu --6t)2 exp[ Ea]

)-(l.5 + (‘1)

 

RT
8

E
J.exp[R8T]

(4-5)
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Table 4.1 Thermal, kinetic and rheological data for the resin and glass fibers

RESIN GLASS

cp (J/kg K) 1,840 790

p (kg/m3) 1000 2,500

k0 (m3/m61 8) 10,560

EaU/mol) 53,200

co (moi/m3) 2,410

arr, (Ilmol) 96,300

Vrscosity described by an Arrhenius’ type equation:

110,61) = Auexp[— 51]
RT

where

Bud/moi) 41,300

A" (Pa-s) 10.3 x 10'8

0tg 0.65

Lumped value of (pCp) for the resin-filled fiber mat = 1.9 x 106 J/m3 K.
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4.2.2 SCALING

All the quantities in the preceding equations are dimensional and appropriate

scales are chosen to make them dimensionless. The chosen scaling factors for the different

variables are listed in Table 4.2. Reaction is the important physical phenomenon in this

problem, so the time and length scales are based on the reaction rate at the inlet

composition and a reference temperature. The scale for temperature is the adiabatic

temperature rise, ATad. Viscosity is scaled with the viscosity at the reference temperature.

Using these scales, the equation of continuity, the component mass balance and the energy

balance, in dimensionless form, yield

Continuity Voq = 0

8a
Reactant Mass Balance at +q0 0t R(or, T) (4-6)

3T
Energy Balance 5 + q 0 VT = R(a, T)

while the permeation equation becomes

q = 4. K-VP—i3 (4-7)

where

b, 0 0

K = 0 b2 0

O 0 1

1 (4‘8)

71.5-

p.

k, K

K: K:

In these equations b, and b2 are measures of the anisotropic nature of the medium

permeability, while It is the dimensionless mobility, whose gradient will be seen to have
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Table 4.2 Scaling factors for different variables

Concentration:

Permeability:

Pressure:

Velocity:

Reaction:

Temperature:

Time:

Length:

Viscosity:

Activation energy:

c=c0-(1—01)

N
’

ll K,-K

P = (”is") ' [11:24)]?

 

R(&, T) = R(co, Tref)~R

T = ATad- 1

Co

= R(CO: Tref) . t

H
)

UOCO

- = _— ' Z

R(co’ Tref)

N
)

 
 

fl=u¢u

E

agar“, agar“,
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considerable importance later in this chapter.

4.2.3 THE BASE STATE EQUATIONS

(NOTE: All base state quantities are identified by an overbar.)

Since the only velocity component is Uo in the z-direction (one-dimensional flow),

the base state solution for the velocity vector, in the moving frame of reference (see

equation 4-2), is

(I = 0 (4-9)

The base state solutions for the conversion, temperature and pressure profiles are obtained

by solving the following simplified forms of equations 4-6 and 4-7.

36!.

E = Rut, T)

37 _ _ —
E — R(0t, T) (4-10)

- _ - an

~74“, T) 5E - 1

The boundary conditions to be used in conjunction with the above equations are:

P = 0 at E, = 0 front

('1 = 0; '— = T0 at E = -zf inlet (4-11)

bi = 0; T = T0 at t = O

For an isothermal process, the equations are independent of temperature and only the first

and third equations of (4-10) need to be solved. For an adiabatic reaction, the first two

equations of (4-10), when combined using the inlet conversion and temperature as the

initial conditions, yield

"
1
1

1| 9
|

.1
.

"
I

(4- 12)
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Thus, taking

91(6r)aR(6t, T) Ema, 70+ 6:) (4-13)

we can rewrite the first equation of (4-10) as:

— = arm) (4-14)

The rate of reaction and viscosity, after scaling , is given by

are. T) = (1 - 602 “4&6‘ 'rl‘ll

_ a, —(i.5+a) 5,, 1 1

(0%. T) = (1- ) ex (———)

” age, p[RgATad T To

(4-15)

 
 

Incorporating Eq. 12 for an adiabatic process and using definitions for the dimensionless

activation energies for reaction and viscosity growth, ER and E,l respectively, shown in

Table 4.2, we get the following equations for the dimensionless reaction rate and viscosity:

ERG”:

10(10 + an]

- -(1.5 a) -E 0'1

11 = (l- or ) + exp[——P—:—]

age, T0(T0+a)

9i =(1—6t)2 exp[

(4-16)

 

The rate of reaction is plotted as a function of the conversion, for a range of values of the

activation energy ER, in Figure 4.2. Setting ER = 0 yields the isothermal case. For low

values ofER (up to a value of about 14.26), the derivative (dR/dor), described in later

sections, is negative, while at higher values the plot goes through a peak, corresponding to

a change in sign of the derivative. The effect of this derivative on the flow stability will be

discussed after the stability analysis has been presented.

Figure 4.3 shows the viscosity profile as a function of conversion, for different
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values of EII’ the dimensionless activation energy for viscosity. E,,=0 corresponds to the

isothermal case, since the thermal dependence vanishes. For E,,<16.45, the viscosity is

always increasing with conversion. As 15,, is increased, the viscosity corresponding to a

given conversion becomes lower. Also, for higher values of E,,, the viscosity gradient

changes sign for increasing conversion. This implies that V, the gradient of the viscosity

defined later in this chapter, changes sign somewhere in the filled region, affecting the

stability of the flow process.

4.2.4 THE BASE STATE SOLUTION

To obtain the base state conversion profiles, the initial value problem described by

equation 4-14 is solved for different positions of the flow front, Zf, with the initial

condition given in (4-11). The independent variable, time, corresponds to a location (2) in

the filled portion of the mold, since

2 = U02
(4-17)

=> 2 = t

The base case is a plug flow for which every location in the filled portion of the mold

would correspond to a unique conversion and temperature with given inlet conditions.

Since it is a constant injection process, all fluid elements spend the same amount of time to

reach a given location in the mold and, therefore, would attain the same conversion when

they reach this location.

For an isothermal process the initial value problem can be solved analytically,

since the exponential term in equation 4-16 vanishes. For an adiabatic process, due to this

exponential factor, a numerical approach is needed. Once the conversion profile is
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Figure 4.2 Non-dimensional reaction rate for polyurethane resin: isothermal and adiabatic

cases, To = 325°K
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Figure 4.3 Non-dimensional viscosity for polyurethane resin: isothermal and adiabatic

cases, To = 325°K
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available, the temperature profile is easily computed in the adiabatic case using equation

4-12.

The solution to equation 4-14 is shown in Figure 4.4, for several values of the

dimensionless activation energy and for a fixed inlet temperature, as a plot of conversion

versus the dimensionless distance from the mold inlet. The range of values for ER is

obtained by varying the activation energy E3. The case of ER = 0 corresponds to

“isothermal” filling, since the temperature dependence of the reaction rate vanishes. For

this case the fluid travels a larger distance in the mold before reaching the gel point,

compared to a case of high ER. Thus, as the process moves away from the "isothermal"

state, gel conversion is reached much faster and the length of mold that can be filled by the

resin is much smaller.

The solution to Darcy’s law, given in equation 4-10, is now obtained using the

conversion profiles of Figure 4.4. The pressure profiles are shown in Figure 4.5, for the

adiabatic case under the following conditions: ER = 53; E,, = 41; gel conversion = 0.65;

Inlet temperature = 325°K. The base state pressure is plotted against the dimensionless

distance, 2, from the mold inlet, for several flow front positions, Zf. As the mold gets filled,

the pressure at the inlet rises due to the increasing resin viscosity. This means that the

pressure at which the resin is pumped into the mold is continuously increasing, for a

constant injection rate to be maintained. For isothermal filling, however, the conversion

profile indicates a slower approach to gelation. The corresponding pressure profile for the

isothermal case would be expected to show lower injection pressures for the same extent

of mold filling.

The derivative of the reaction rate w.r.t. conversion, (dR/dor), is termed S and is
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Figure 4.5 Base state dimensionless pressure profiles: adiabatic case, ER = 53, E" = 41,

age, = 0.65, T0 = 325°K
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found to have a significant role on the stability of the flow process. Figure 4.6 shows S and

the mobility gradient V, (defined as d[ln X]/d§), for the polyurethane resin up to a

conversion of about 0.6, under isothermal conditions. By this time the viscosity has risen

to a fairly large value (gel conversion is 0.65). As will be explained in a later section, S < 0

is a necessary condition for stability and V at 0 in the domain of the problem is a sufficient

condition for real growth rates (from an exchange of stabilities analysis). It is seen that

both S and V are negative throughout the domain for the isothermal case, which means

that the growth rate is real and negative for at least some wave numbers (in the small

wavenumber region). The quantities S and V are calculated and plotted for the adiabatic

case with ER=52.67 and an inlet temperature of 325°K in Figure 4.7. For this case while S

is always positive, V changes sign in the flow domain considered. Hence it is expected that

at all lengths of filling (2f), the flow would be unstable to disturbances. The behavior of S,

for different values of ER, may also be seen from an inspection of the plot of rate versus

conversion (Figure 4.2). For small values of the dimensionless activation energy, i.e. for

ER less than about 14.26, the reaction rate curves have a negative slope at all conversions.

This suggests stability of the flow process under these conditions.

4.2.5 STABILITY ANALYSIS

In order to study the growth behavior of infinitesimal disturbances that the filling

process may be subjected to, a linear stability analysis is to be performed on the model

equations in (4—6). Perturbations on each of the variables are introduced into the problem,

described by:
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P: P(i, t) +P'(x, y, g, t)

it; t) + Nor. y, t. t)

= a(§, t) + a'(x, y, g, t) (4'18)

q(§. t) + q’(x. y. 5. t)

= T(§. t) + T(x. y. 6 t)N
I
Q
Q
P

Here the base state variables are dependent only on one space variable (E) and time, while

the disturbances (primed quantities) are three dimensional and time dependent. All the

variables in equations 4-6 and 4-7 are replaced by the representation given in (4-18) and

the equations are then linearized. For an adiabatic reaction, the lumped energy balance

may be combined with the component mass balance and equation 4.12 for the base state

solution, to yield the following relation between the temperature and conversion

perturbations: T’ = or’. This is valid for reactions 'that are much faster than the rate at

which heat transfer takes place. Linearization of the continuity equation incorporating

Darcy's law yields

- 32 32 a(- _d__'p i.
l b — ' b — ' +— l. -—)= 0 4-19

[‘ .2“ 2a,”) a: 8‘5 1 ‘ ’

while linearization of the reactant mass balance results in

aa' +(k_’_ 7.1. $31)?)3&_ dSR or’ (44,»

a: a: at:

Frozen profile approximation: It may be noted that the base state in the filling problem is

time dependent. It is assumed that the growth rate of disturbances is much faster than the

rate of change of base state. That is, a'quasi-steady state is assumed and the stability

analysis is done with time frozen at to. The rate of change of the base state, dE/dt, may be
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represented by the reaction rate R, which provides a bound for the time of applicability of

the quasi-steady state approximation. For times of the order of about ln(R) and lower, the

QSSA is inapplicable. From the conversion profiles in Figure 4.4, at large values of ER,

d-dldt is much higher than at low ER. This suggests that the quasi-steady state

approximation may possibly be invalid at large values of ER.

In the limit of applicability of the QSSA, the disturbances are, decomposed into

Fourier components:

01' ~ A(5) t”=XPIi(k,.X + kyYI + 000”]

12' ~ p(§) eXP[i(k,x + kyy) + 600m (421)

1.":- 37-; 01' ~ 5% A(§) exp[i(kxx + kyy) + o(t0)t]

Here, it is noted that N is tied to the conversion disturbance 11' since viscosity is directly

related to conversion. In these equations kx and It). are the wavenumbers of the

disturbances in the respective directions and are, later, combined into a single

wavenumber, k. 0(t0) is the quasistatic growth rate of the disturbance, evaluated at time t0

and is a complex quantity. If 0' has a negative real part the disturbances would decay with

time, while they would grow if it has a positive real part. If the imaginary part of the

growth rate is non-zero, then it indicates an oscillatory trajectory for the disturbances with

time. It may be shown that it is a real quantity for this eigenvalue problem (Appendix A).

Using the above definitions of the disturbances, we get from eq. 4-19,

8 -8p 1 d - - 2
AF— “:11 A = A bk34 at Ma (§)] ( )p (442)

where bk2 = b,k§+b,k§

A relation obtained by substituting the Fourier expansions of the disturbances into
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eq. (4-20) is

- d a -

(4-23)

This equation relates the amplitudes of conversion and pressure disturbances and is a

useful relation in simplifying the equations at a later stage.

Combining eqs. 4-22 and 4-23 we get:

a - dp (O-S) _ 2 " -

'a'EP‘ dE (o—S+V)] ' bk 1” (4 24)

where S, V are defined by

d9i

55-1

1 d dim d d (4.25)

In equations 4-25, S and V are the quantities referred to during the discussion of the base

state solution. The former is the derivative of the reaction rate w.r.t. concentration

(conversion) and the latter is a viscosity gradient. Both these quantities are seen to be

associated with the growth rate 0', which is also the eigen value in equation 4-23, and so

determine the stability characteristics of the filling process. An analysis of the exchange of

stabilities for the eigen value problem indicates that a sufficient condition for the growth

rate to be a real quantity is a non-zero V, or that V does not change sign in the entire

domain. It may be shown that a sufficient condition for the quasistatic growth rate, 0', to be

a real quantity is that V does not change sign in the entire domain, and is non-zero.

The boundary conditions used in solving the eigen value problem are
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dp _ _ _

d—fi - at g — Zf (4’26)

p = 0 at E = 0

The first condition is obtained by taking the disturbance in conversion to be zero (i.e. A=0)

at the mold inlet and using eq. (4-22), while the second boundary condition implies an

undisturbed pressure at the flow front.

The transformation

" _ 4W

A p ’ 275 (4-27)

with I]! = 0 at the inlet

leads to the following simplified eigenvalue problem:

d2 div S + V
J—V—-b k2["——"] =0
4:2 dz; o-S ‘1’ (4-28)

with the boundary conditions

111 = 0 at E = —zf

(4-29)

§§V=0 at §=0

Equation 4—28 may be compared to the eigenvalue problem developed by Hickemell and

Yortsos (1986) in eq. (2.19) in their paper, rewritten as:

illLv $-13 [11!] 1|! = 0 (4-30)
(15,2 dé o

This equation is subject to decay of the disturbance at infinite distances on either side of

the interface. It is easily seen that the main difference between equations 4-28 and 4-30 is

the factor {-8) added to the growth rate in equation 4-28. The boundary conditions in our

problem .ply refer to decay of the pressure and conversion disturbances at the inlet and
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front respectively. When we take a chemical reaction with S = 0, i.e. a zeroth order

reaction, then, the behavior of the fingers would be predicted by the results in their paper,

i.e. the growth rate is bound by the values of the viscosity gradient:

inf V<O<sup V

i i

That is, the growth rates are bound by the infemum and supremum values of V in the

(4-31)

domain of the problem. If V is positive everywhere in the domain, the flow process is

unstable for all wavenumbers.

When the chemical reaction is of a higher order, however, a direct comparison

cannot be made. Even though S is being subtracted from the growth rate (in equation 4-

28), the fact that S, unlike the growth rate, is dependent on the location, a, complicates the

problem; if S were independent of the location, (0 - S) could be combined into a new,

reduced, growth rate and the results of Hickemell and Yortsos (1986) applied.

4.3 NUMERICAL APPROACH

The results of the stability calculations are presented as growth rate data and

marginal stability curves, solving the eigen value problem (equation 428), using the

boundary conditions in equation 4-29. This equation is solved using an orthogonal

collocation scheme on finite elements (Finlayson, 1980).

The numerical procedure is illustrated in the schematic shown in Figure 4.8. The

flow domain is divided into two elements based on the viscosity profile. The interface

between the two elements, depicted by z, in the figure, is the location in the flow domain

where the viscosity gradient increases sharply. The number of collocation points in each



81

Figure 4.8 Schematic of the numerical scheme - orthogonal collocation on finite elements

with Legendre polynomials
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element is N. The index in this figure denotes each collocation point. Legendre'

polynomials are used to approximate the solution in each element. The domain in each

element is then transformed into the Legendre’ domain where the boundary locations are

at 0 and 1. Thus we have 2N collocation points at which the eigenvalue problem (equation

4-28) is applied. The boundary conditions in equation 4-29 are applied at the left end of

the first element (2 = 0, the inlet) and at the right end of the second element (2 = Zf, the

front). The solution from each element is matched at the interface between the two

elements (location 21); that is, the solution I]! and its first derivative from each element are

equated). We obtain a system 0f linear, homogeneous, algebraic equations with the

unknowns being the values of w at each collocation point, as well as the eigen value, 0.

”(2N+2)x(2~+2)"1’(2~+2)x1 = 9(2~+2)x1 (4'32)

That is, we have (2N+2) equations with (2N+2) unknowns. There are two other

parameters: the wavenumber, k, and the quasistatic growth rate, 0'. A nontrivial solution

for this system of equations requires that the coefficient matrix, M, of the linear system be

singular. The resulting characteristic equation for 0' solved at a range of chosen values for

the parameter, k and the most dominant root is taken as the growth rate. The eigenvalue

problem is solved for several values of N, the number of collocation points in each

element and convergence was observed for N=6.

The cutoff wavenumber is defined as the wavenumber at which the growth rate

changes its sign. This is computed directly from the characteristic equation by setting a =

0 and solving the resulting polynomial in (k). The characteristic equation has also been

used to obtain marginal stability plots on a variety of parameter planes.
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4.4 RESULTS AND DISCUSSION

The base state solution, as obtained for a polyurethane resin with second order

kinetics, was discussed in section 4.3. The solution of the eigen value problem is presented

and discussed in this section as growth rate and marginal stability curves. Some of the

operating conditions and properties of the resin are then varied and their effect on the flow

stability of each of these new formulations is examined.

4.4.1 ISOTHERMAL REACTION

It is instructive to consider the ER = 0 limit of isothermal reactive filling at first.

This limit is more representative of therrnosetting polyester resins, for which the gel

conversion is very low and the heat liberated by reaction is low upto the gel point.

The growth rate 0’ is evaluated for this case at a few locations (Zf) of the flow front

and plotted against the wave number (represented by bmk) in Figure 4.9. It is seen that,

for any 2f, the growth rate is negative at low wavenumbers and becomes positive for larger

values of (k). This implies that the process is stable for disturbances of large wavelength.

The results for isothermal filling are shown in Table 4.3 where the cutoff

wavenumbers are tabulated for varying filling time and gel conversion. The range of

' wavenumbers over which the flow is stable may be shown on a plot of the cutoff

wavenumbers. Figure 4.10 is one such plot, in which the cutoff wavenumbers are plotted

as a function of the Damkohler number, which is the ratio between flow and reaction time

scales. It can easily be shown that the Damkohler number (Da) is equivalent to the length

of the mold that has been filled by the resin. It is seen that the flow becomes unstable for a
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Figure 4.9 Growth rate curves for isothermal filling of polyurethane resin: 2, = 0.8, 1.0,

1.2, 1.5; ER = 53, E,l = 41, age, = 0.65, T0 = 325°K
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Table 4.3 Computational results for isothermal reaction
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To = 325°K; ER = 52.64; E,, = 40.68

—AHR = 96,300 J/mol-°K; (pop) = 1909221106 J/m3-°K

Arm, = 121.56°C

 

   
 

 

 

 

 

 

 

      
 

 

 

       

“8 I If I “f I (bkzlc (b=kI.0) (0:01)

VARYING EXTENT OF FILLING (2,)

0.65 05 0.3333 6.1760 2.4852 7.8588

0.65 0.7 0.4118 1.6992 1.2920 4.0856

0.65 0.9 0.4737 0.5449 0.7382 2.3343

0.65 1.2 0.5455 0.1016 0.3187 1.0080

0.65 1.5 0.6000 0.0132 0.1150 0.3637

VARYING GEL CONVERSION

0.65 1.5 0.6000 0.0132 0.1 150 0.3637

0.73 1.5 0.6000 0.0986 0.3140 0.9930

0.8 1.5 0.6000 0.2597 0.5096 1.6115

0.9 1.5 0.6000 0.7700 0.8775 2.7749
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Figure 4.10 Marginal stability curve for isothermal filling, data from figure 9:

Damkohler number (Da = flow time I reaction time)
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wider range of wave numbers, with increasing Zf. This implies that, as the mold gets filled

to a greater length, the flow becomes increasingly unstable. At the larger filling times, the

degree of conversion is larger than at small filling times; from Figure 4.6, it may be seen

that at these larger conversions, the magnitude of S is lower (sign of S is negative). Since

the flow is more stable when S is more negative, the results of Figure 4.10 are

understandable. In terms of the ratio of the time scales, a small Da indicates a slower

chemical reaction in comparison to the flow rate.

Efi’ect ofanisotropic permeability: The effect of anisotropic permeability is seen by

comparing the ordinate in Figure 4.10 for several values of the degree of anisotropy, b. It is

clear from this figure that when the transverse permeability is smaller than the

permeability in the longitudinal direction (b < 1), the cutoff wavenumber, kc, is larger than

it is for the isotropic case (b = 1). That is, the range of wavenumbers for which the flow

becomes stable is greater when the transverse permeability is small. This may be

understood from an inspection of equation 4—19 which is a combination of the equation of

continuity and Darcy’s law for disturbances. When the transverse permeability is small,

i.e. when b, and b2 are small, conservation of mass dictates that for a disturbance to

survive or propagate, the spatial pressure gradients in the disturbances have to be very

large. This means that only sharp fingers (disturbances of large wavenumbers) would

grow, while those of small wavenumbers are eliminated. Thus anisotropy with low

transverse permeability helps in elimination of large fingers.

Efiect oforder ofreaction and S: The dependence of reaction rate on conversion, i.e. the
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order of reaction, governs the stability of the flow process. To understand the effect of

reaction on the stability of the system, we compare the growth rates of the second order

reaction system with the solution to the eigen value problem with S=0. The latter situation

corresponds to a reaction with zeroth order kinetics with the same inlet and front

conversions, and the same viscosity profile. Figure 4.11 is a plot of the growth rate curves

a resin with the same viscosity behavior but with 8:0. It is seen that for this case the

growth rate is always positive, while for S < 0 it was negative for large disturbances. Thus,

if the same converison profile is obtained with a zeroth order reaction, there is no stable

region. Only when S<0 (for the second order reaction), do we get a stable region.

In Figures 4.9 and 4.11, the plots approach a finite growth rate asymptotically, for

large wavenumbers. These asymptotic limits are plotted for various flow front positions

for both S=0 and S<0, termed ultimate growth rate (on), in Figure 4.12. This ultimate

growth rate is seen to be higher for the no-reaction case, again indicating the dependence

of flow stability on the order of reaction.

The results from an analysis of the isothermal mold filling, thus, provide us an idea

of the behavior of the flow process governing mold filling, and it is expected that adiabatic

operation of liquid molding would lead to similar results.

4.4.2 ADIABATIC REACTION

Some liquid molding operations can be carried out under adiabatic conditions.

Mathematically this is slightly more complex, due to the involvement of an additional

balance equation (energy balance); however the adiabatic nature simplifies the equations



92

Figure 4.1 1 Growth rate curves for S = 0 for isothermal filling for identical base state

viscosity profiles as for Figure 9
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Figure 4.12 Upper limit of growth rate Vs Damkohler number for isothermal filling, To

= 325°K
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to some extent, as seen in section 4.3. To be even more realistic, fully non-isothermal

equations would have to be solved, which render the model equations and their stability

analyses, and consequently their solution, more complicated.

The results of the computations are now presented for mold filling under adiabatic

conditions. Figure 4.13 shows the growth rate curves for several values of ER. ER may be

altered by modifying the resin formulation to one with a different activation energy or a

different heat of reaction. It is seen that for small values of ER, there exists a range of

wavenumbers with a negative growth rate, corresponding to a stable regime. This leads us

to examine the stability characteristics of other formulations of the polyurethane resin,

obtained by altering the kinetic and rheological parameters. The stability of the filling

process may be affected by the thermochemical properties of the resin and the operating

conditions. In the following analysis, several parameters are varied independently and the

flow stability examined. In each of these cases, except for the case of varying Zf, the mold

is filled to the same length enable comparison. The effect of varying the inlet temperature

is also presented. The results are presented in the form of marginal stability plots.

Dependence ofstable regime on various parameters:

For the adiabatic case, the parameters that may be varied are the fill time (which is

equivalent to the Damkohler number), adiabatic temperature rise (ATad) (which may be

changed by choosing appropriate values of the inlet concentration (c0) and the heat of

reaction (-AHR)), the kinetic activation energy (15,), the inlet temperature (To) of the resin

and the gel conversion (age,) of the polymer system. Most of these parametric studies have

been done for a resin with the following properties:
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Figure 4.13 Growth rate curves for varying activation energy during adiabatic fill
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IE;m = 131.17; ER = 168.96; ATad = 37.87°K; age, = 0.8; reference temperature = 370°K.

The activation energy and initial concentration of the resin were not changed from the

values taken for earlier calculations but the heat of reaction was altered from 96,300 J/mol

to 30,000 I/mol, which changed the adiabatic activation energy. For this lower exotherm, it

was found that the viscosity gradient, V, did not change sign, thus satisfying the condition

for exchange of stabilities. The results of the computations are presented in Tables 4.4 and

4.5.

a) The effect of changing the dimensionless activation energy, ER, on the stability at a

fixed inlet temperature, noted earlier in Figure 4.13, is shown in Figure 4.14 as a marginal

stability plot. As observed earlier, a decrease in ER leads to an expansion of the range of

stable wavenumbers, in the low-wavenumber region. This change in ER may be

accomplished by decreasing the kinetic activation energy, 13,. A higher activation energy

means that more energy is required for the polymerization reaction to occur, which makes

it more difficult for the viscosity on either side of the edge of an incipient finger to rise.

This, in turn, means that the driving force available for finger growth (pressure drop across

the edge of the disturbance) does not reduce as fast as it would for a lower Ea case, making

it more stable than the case of a higher Ea.

b) Figure 4.15 depicts marginal stability plots for changing Da (= tF/tR) and varying inlet

temperature, in adiabatic mold filling using a resin with ER = 14.26, which does have a

stable regime as seen in Figure 4.14. The plot indicates, as in the isothermal case, that the



Table 4.4 Computational results for adiabatic reaction
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No. (AT)ad ER To age, 15,, t

= : _ :-

Varying ER with fixed To

1. 121.56 52.67 2.67 0.65 40.86 0.206

2. 121.56 25.00 2.67 0.65 40.86 0.527

3. 121.56 14.26 2.67 0.65 40.86 0.801

4. 121.56 5.00 2.67 0.65 40.86 1.194

Varying 05.1

5. 37.87 168.96 9.242 0.65 131.17 0.85

6. 37.87 168.96 9.242 0.80 131.17 0.85

7. 37.87 168.96 9.242 0.90 131.17 0.85

Varying T.

8. 37.87 168.96 8.58 0.80 131.17 0.85

9. 37.87 168.96 8.98 0.80 131.17 0.85

10. 37.87 168.96 9.242 0.80 131.17 0.85

11. 37.87 168.96 9.51 0.80 131.17 0.85
 

Varying Exotherm, which alters both (A'T).d and ER, hence To

 

 

 

       

 

 

 

        

12. 25.25 253.45 13.86 0.80 196.73 0.85

13 37.87 168.96 9.24 0.80 131.17 0.85

14. 50.50 126.72 6.93 0.80 98.36 0.85

Varying filling time

15. 37.87 168.96 9.242 0.8 131.17 0.535

16. 37.87 168.96 9.242 0.8 131.17 0.750

17. 37.87 168.96 9.242 0.8 131.17 0.850

18. 37.87 168.96 9.242 0.8 131.17 0.950   
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Table 4.5 Cutoff wavenumber data for adiabatic reaction

 

   
 

 

 

 

 

 

       
 

 

 

       

No. I 011‘)“, BR TO I 13,l 1 I (bk2)c

fl VaryingT—o—_—__—

1. 37.87 168.96 8.58 131.17 0.85 0

2. 37.87 168.96 8.98 131.17 0.85 0

3. 37.87 168.96 9.242 131.17 0.85 0.47096

4. 37.87 168.96 9.51 131.17 0.85 0.5435

Varying filling time

5. 37.87 168.96 9.242 131.17 0.535 3.2122

6. 37.87 168.96 9.242 131.17 0.750 0.9041

7. 37.87 168.96 9.242 131.17 0.850 0.47096

8. 37.87 168.96 9.242 131.17 0.950 0.2281
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region of stability becomes smaller with increasing fill time. The reason for this behavior

follows exactly from that discussed in the isothermal case. Also, an increase in the inlet

temperature is found to expand the range of stable wavenumbers of fingers. The higher

temperature would make the reaction go faster, thus making the viscosity profile less

steep. This reduces the pressure drop across the edge of the disturbance, making the

process less unstable. This effect is opposite to that of the activation energy.

c) The effect of anisotropic permeability in adiabatic filling is seen, as in the isothermal

case, by looking at the ordinate in Figure 4.15 for various values of the degree of

anisotropy, b. The range of wavenumbers over which fingers are damped is much larger

for the case with lower transverse permeability.

c) Figure 4.16 depicts the effect of gel conversion on the stability of the mold filling

process. A larger gel conversion implies stability over a wider range of wavenumbers. At

lower gel conversions, the viscosity increase with conversion is faster, and makes the

molecules less mobile. The number of sites available for further reaction, as a

consequence, is much lower and this causes the driving force for finger growth to decrease

at a slower rate, making the process more unstable.

Geometric limitations: The wavenumbers (k) referred to above may be converted to

appropriate wavelengths of the fingers (1“,), using the relation (k = 211: 15c] Aw), where lsc is

the length scale for the problem. To illustrate the significance of these results, the finger

wavelengths corresponding to the cutoff wavenumbers are compared to the actual physical
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Figure 4.15 Marginal stability curve for adiabatic filling: fill time and varying

temperature; ER = 169, E,, = 131, age, = 0.80, ATM = 38°K
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dimensions of the mold. The thickness of the mold, B, represents the largest possible

finger size, while the diameter of the fiber tow, d,, is the smallest possible finger width.

Representative values are chosen as below:

Mold thickness, B: 10mm

Fiber tow diameter, d,: 0.1mm

Injection velocity, U0: 0.5 cm/s

The data for polyurethane resins given in Table 4.1 are used, to obtain a length scale (15,)

of 0.0637 mm.

The results of Figure 4.16 are now transformed into wavelengths. From Table 4.5,

the cutoff wavenumber when 2, is 0.535 is kc = 1.79. When converted to dimensional

finger widths, this corresponds to 2., = 0.22 mm. All fingers narrower than 0.22 mm will

grow; conversely, all fingers wider than this are eliminated. This limiting finger width is

now compared to the physical dimensions B and d,. It is seen that the tow diameter is

much less than kc; similarly, the mold thickness is much larger than this cutoff value.

While very large fingers are eliminated, small fingers are undamped. A similar analysis

may be done for other values of Zf, and it is clear that, as the mold gets filled, even fingers

of large sins tend to grow.

The above discussion was done for the case of isotropic permeability (b=1). As

dicussed earlier, if the transverse permeability is less than the longitudinal permeability (b

< 1), the cutoff wavenumbers are larger, which means that a wider range of disturbance

wavelengths is stabilized. For example, when b=0.l, we get kc = 5.67, which corresponds

to a wavelength of 71,, = 0.07mm. All disturbances wider than this are eliminated. Since
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this is less than the fiber tow diameter, it may be concluded that any disturbance that is

generated by the adverse viscosity gradient is damped out due to the low transverse

permeability.

4.5 MECHANISM OF STABILIZATION

4.5.1 EFFECT OF S ON THE GROWTH RATE

Eq. 4-23 may also be expressed, using Eq. 4—27, as

o-S - dp __ 2
[o—-S+V] 2. FE _ b k u (4.33)

From this equation it is seen that when the wavenumber is zero, for non-zero amplitudes

of the disturbances, the growth rate is equal to S. The necessary condition for dampening

of disturbances is, then,

S < 0 (4-34)

This means that there is a possibility of stabilizing disturbances of small wavenumbers

(large finger widths) when the criterion in equation (4-34) is satisfied.

The effect of S on the growth rate is demonstrated by the schematic shown in

Figure 4.17, which represents an incipient disturbance at some instant. The line AA’ is the

base state solution. Before the onset of the disturbance (t<0), the points M-, M-I- are at the

same, base state, conversion. The deviation from the base state, shown in the figure,

corresponds to an increase in conversion (positive amplitude, A(E)); at this time (t=0), the

conversions at M-, M+ are in an increasing order.

Ifthere were no disturbance, then the fluid particles at the two points would react

at the same rate and remain at the base state conversion at t > 0. In the presence of the
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Figure 4.17 Schematic representation of the effect of S on growth rate
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disturbance, however, several possibilities exist for the behavior of the disturbance at t > 0,

depending on the shape of the reaction rate curve (Figure 4.2).

i) If S < 0, since the conversion at M- is lesser than that at M+; thus the polymerization

rate at M- is higher than that at M+, bringing the conversions at the two points closer. This

decreases the amplitude of the disturbance at t > 0.

ii) If S > 0, the higher conversion at M+ results in a higher rate of polymerization than at

M-, widening the gap in conversion between the two points at longer times, t > 0. Thus the

disturbance grows with time for positive values of S.

The above discussion was presented by taking k = 0, to demonstrate the effect of S

on the growth rate. However, it has to be remembered that the viscosity gradient, V, also

dictates the stability behavior of fingers.

4.5.2 STABILIZATION OF LARGE FINGERS

It was seen that chemical reaction, in addition to creating an adverse viscosity

gradient that causes fingers, can couple with the flow process to stabilize large fingers but

not small fingers. The mechanism for this inability to eliminate small fingers may be

explained by plotting the growth rate against the ratio, It, between a reference growth rate

and the reaction rate. The former is the growth rate, at a given wavenumber, for a

hypothetical fluid with the same viscosity and conversion profiles as the resin, but with S =

0, i.e. a zeroth order reaction. A low value of the ratio K, then, corresponds to a fast

reaction in comparison to disturbance growth rate. In addition the reference growth rate, as

seen in Figure 4.11, increases with an increasing wavenumber; thus a small value of 1C

implies small wavenumbers and vice versa. To illustrate the mechanism, the growth rate vs
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Figure 4.18 Effect of S on growth rates for identical conversion and viscosity profiles in

the base state
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K plot for a specific case is shown in Figure 4.18. It is seen that the growth rate is negative

for small It and becomes positive at large K. At large values of K (short wavelengths), the

time scale for finger growth is much smaller than the reaction time scale. This means that

the growth of fingers occurs faster than chemical reaction can damp them out. Since large

values of 1: correspond to small finger widths, we may conclude that small fingers cannot

be eliminated by the reactive coupling mechanism. On the other hand, at low It (large

wavelength), the reaction time scale is small, which means that the chemical reaction is

faster than the rate at which the finger would grow; this enables damping of these large

fingers.

4.6. SUMMARY

Flow of reacting resin through a fiber preform located in a a mold produces a

continuous distribution of resin age from the inlet to the advancing resin front. The effect

of this age distribution on fluid mixing within the fille dregion has been examined with a

linear stability analysis. The results of this analysis for isothermal and adiabatic reactive

filling indicates that the role of reaction is two fold. In the first place, it generates an

adverse viscosity gradient, which leads to generation of fingers. Secondly, it contributes to

stabilization of these fingers at smaller wavenumbers.

The effect of reactive coupling on the fingering is derived as an eigen value

problem, the largest eigen values of which are the growth rates used to determine the

stability behavior of the filling process. Reactive coupling occurs in the form of a quantity

S, defined as a gradient of the reaction rate with conversion, and V, the viscosity gradient.
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For positive values of S, the process is always unstable and disturbances of all

wavelengths would grow; for polymeric systems with a negative S throughout the flow

domain, mold filling can be stable and large disturbances can be damped. Thus the

kinetics of the polymerization reaction determines the stability of the mold filling process.

The stability characteristics of a polyurethane resin have been investigated for a

variety of parameter planes. It is seen that the resin may be reformulated suitably, altering

the kinetics or rheological properties, to reduce the amount of fingering during mold

filling. The gel conversion, adiabatic temperature rise and transverse permeability may be

increased to help eliminate fingers, while the process becomes less stable as the mold gets

filled. Stabilization may also be achieved by raising the inlet temperature.

 



CHAPTER 5 VISCOUS FINGERING DURING REACTIVE FILLING OF FIBER

PREFORMS: EFFECTS OF DISPERSION AND REACTION

5.1 INTRODUCTION

Mold filling in liquid composite molding processes involves the flow of a

polymerizing liquid mixture through an anisotropic porous medium comprised of fiber

reinforcements. The work of Homsy and co-workers has established that dispersion within

the porous medium is a stabilizing influence at higher wavenumbers or narrower finger

widths. In the present application, spatial variations in monomer concentration are

brought about not only by dispersion but also by the polymerization reaction within the

porous medium. Hence it is important to understand the influence of these two factors on

the finger widths most likely to grow during the mold filling process.

The fiber bed is, in general, anisotropic both for permeation of the resin through the

preform and dispersion of the monomer in the reaction mixture. The permeability of the

preform is determined by its physical structure and can vary according to the kind of fiber

arrangement chosen, viz. random or aligned. The effective dispersion coefficient is

dependent on the characteristics of both the porous medium and the resin. Due to the

polymerization reaction, the molecular weight of the resin increases with time; this affects

the dispersion of the monomeric resin (of low molecular weight) through the polymerized

resin. The bulk dispersion depends on the injection velocity as well as the length scale of

the fiber bed.

114
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The object of this chapter is to analyze viscous fingering during reactive filling of an

end gated mold containing a pre-located porous fiber bed. The mechanism for growth or

attenuation of fingers in flow of a reacting liquid mixture through a porous medium is

explored here. This mechanism is directly related to the reaction kinetics of the resin and

dispersion characteristics of the monomer through the polymerized resin and will also lead

to criteria for attenuation of fingers in the presence of reactive and dispersive effects.

5.2 MODEL PROBLEM AND EQUATIONS

In order to study the combined effect of dispersion and reaction on the generation of

fingers, the flow situation is described by a simplified model problem. The physical

problem is posed in the context of multiple shot injection of two-component resins, mixed

in-line, into a mold. A batch of fluid is injected into the mold and allowed to react for

some time, during which it undergoes polymerization, with a rise in viscosity. At a later

time (t=0), another shot of resin is injected. Due to the difference in ages of the two shots

of fluid, a step jump A01 in the extent of reaction is observed at the interface of the two

shots. This multiple shot approach was used by Losure (1994) to prepare molded

composites with a variety of fingered rnicrostructure; the mechanical properties of such

composite specimens were found to be affected significantly by the details of the

microstructure. It may also be noted that the step jump in the extent of reaction is quite

different from the continuous conversion profile seen in actual liquid molding operations,

as discussed in chapter 4. The purpose of this chapter is to present a simplified analysis of

the combined effects of dispersion and chemical reaction on the stability of the mold
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filling process. A more realistic problem would involve a continuous conversion profile

(hence, viscosity profile), which will not be part of this dissertation.

In order to delineate clearly the effect of chemical reaction on fingering,

mathematically, we pose the problem in an infinite porous medium, as in the work of Tan

& Homsy (1986) which addressed dispersion alone. The locations far from an incipient

disturbance, in this analysis, are assumed to be unaffected by it and, therefore, may be

assumed to correspond to infinity with no significant loss of accuracy. Figure 5.1a depicts

the flow domain at the initial time t=0. Region I in this figure is resin that has been injected

and allowed to react till an extent of reaction or, (corresponding to viscosity Ill). The

instant of time when fresh resin with an extent of reaction 01/2 (viscosity 112) is injected is

termed (t = 0) for the purposes of this analysis. The velocity of injection is a constant, U0.

The defining equations for this model problem are the equation of continuity,

Darcy's law (for flow through porous media), an equation for the location of the moving

flow front and a component mass balance written for the monomer concentration. The

bulk flow is, as in chapter 4, in the z-direction. The differential balance equations

governing this problem, expressing the velocity as a three dimensional vector since it is

required for the later stability analysis, are

Continuity V013 = 0

Darcy’s Law 12 = 35—171 KOVP (5_1)

Reactant Mass Balance %%+ 13 0 V6 = — R + V0[D 0 V6]

The velocity vector in Darcy’s Law represents the local velocity inside the porous

medium. In the reactant mass balance equation, the change in concentration both due to
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Figure 5.1a Flow of reacting liquid through a porous medium (moving frame)

Figure 5. lb Profiles of conversion, viscosity and S at t=0
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mass dispersion and chemical reaction are included; the former was missing in the balance

equations dealt with in chapter 4.

A moving frame of reference is defined, using the uniform flow velocity U0 and the

location of the interface zI, introducing the new coordinate E. In this moving reference

frame, the x- and y- coordinates are unaltered due to the one-dimensional nature of the

bulk flow.

2:24,st 2‘ (5-2)
0

The velocity vector in the moving frame of reference has a corresponding change.

= ill-U0 i3 (5-3)

I
Q
>

The model equations may then be rewritten, in the moving reference frame, as

Continuity Voq = 0

Darcy’s Law Q+Uo i3 = 11:17, KOVP (54)

Reactant Mass Balance $+§0VE = — R+VO[DO V8]

Figure 5.1b schematically shows the profiles of conversion and viscosity at the

initial time, t=0, when the second shot of fluid has been injected. Both these quantities see

a step jump at E =0. (The quantity 8 on both Figures 5.1a and 5.1b will be discussed in

section 5.4.)

5.3 SCALING AND DIMENSIONLESS FORM OF THE EQUATIONS

Appropriate scales are used to make these equations dimensionless. The problem

discussed in chapter 4 had chemical reaction as the only important physical phenomenon,
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which made the choice of scales for length and time rather easy. In this problem, however,

both mass dispersion and chemical reaction are dominant mechanisms. As a result we

have two possible choices for the length and time scales: one based on the reaction

kinetics and another based on dispersion. In keeping with the work of Tan and Homsy

(1986) and others, who solved similar problems but with no chemical reaction, the length

and time scales for this problem are based on the dispersion characteristics of the porous

medium and are taken to be, respectively, D/Uo and D/Uoz; this choice eliminates the

Peclet number from the equations. (A brief discussion on the choice of scaling factors is

given in Appendix B.) In dimensionless quantities, then, eq. (54) may be rewritten as

V0q=0

8a
E'PQ'VCX 0 R(01, T) + V20:

In these equations, the permeability has been normalized by the longitudinal permeability

K], with K = KD/e = (1/8) x (K/Kl). In addition, as in chapter 4, X = NH.

The component mass balance, then, is left with only one non-dimensional

parameter, 0, which is the product of the Damkohler number and the Peclet number. The

Damkohler number (Da = tf/tR) is the ratio of flow time scale to reaction time scale. The

Peclet number (Pe = tD/tf) is the ratio of the dispersive time scale to the flow time scale.

The product of these two, 0, represents a ratio of the dispersive time scale to the reaction

time scale (0 = tD/tR). A large value of 0 corresponds to a small value of tR in comparison

to tD, which implies that the chemical reaction is much faster than the rate at which

dispersion takes place; in other words, the effect of a large 0 is a smothering of dispersion
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effects by chemical reaction. The choice of dispersive scales has, thus combined the Peclet

and Damkohler numbers into a single dimensionless quantity.

5.4 STABILITY ANALYSIS

Linear stability analysis leads to the following eigenvalue problem with two

coupled equations. The analysis is similar to that presented in chapter 4 for the reaction-

only case, with the same forms of base state and perturbation variables (eq. 4-18),

linearization of the perturbed equations and decomposition of the disturbances into

Fourier components (eq. 4-21).

2 (E __ .2 _ k'2 p(E)A

8R 2 2 _ 861
[CS—9 E H: —D ]A — - (Ad) 52- q,

(5-6)

qg is the amplitude of the velocity disturbance and A is the amplitude of the conversion

disturbance. It must be noted that, in these equations, the base state conversion has been

normalized by (Art), the initial step change in conversion across the interface. That is, E =

(E°/A0t). This yields d5 =(1/A0t) dE", where 5° is the un-normalized base state

conversion. This ensures that the limits of the conversion are 0 - 1 and enables direct

comparisons to the results of Tan and Homsy (1986) as a limiting case.

The two coupled equations in eq. (5-6) are combined to obtain



86L

__ _1__ 2 a- _ .2 _
where L=[p(§) (D +p(§) Ea D k )] (5 7)

and p(§) = — é: j—EX

L is an operator as defined above, while p(§) is related to the quantity V defined in chapter

4 (eq. 4-25).

. In this problem, 0 is the exponential growth rate of disturbances and is the

eigenvalue, and k is the wavenumber. The boundary conditions associated with the

eigenvalue problem are the decay conditions at 00 (the effect of the disturbances is not felt

by the fluid at locations far from the interface), and continuity conditions at the interface,

on disturbances in velocity, conversion and pressure (Tan and Homsy, 1986). These

boundary and continuity conditions are discussed in greater detail in section 5.5.2

Other groups arising in the scaled eigenvalue problem are S = (BEBE) - the

incremental rate of reaction with increasing extent, discussed in chapter4; and p = -d(lnX)/

d5, where (—p) x (daldfi) = V represents the gradient of mobility (X) along the flow

direction (also discussed in chapter 4). As explained in chapter 2, the type of resin

polymerization affects the stability of the mold filling process, through the parameter S.

Figure 5.1b shows a sample profile of S at time t=0; given the step jump in conversion

profile, S also follows a similar pattern. Some polymerization reactions involve

consumption of inhibitor almost up to the gel point, the rate of which is independent of the

monomer concentration (Gonzalez-Romero & Macosko, 1985). For this zeroth order

reaction, 8:0, and the stability of the mold filling process is unaffected by the chemical

reaction. In other polymerization reactions, the initial stage of the network forming
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process is of first order kinetics, which leads to a constant value of S. For many

polymerization reactions 8 is negative and it becomes increasingly negative as the reaction

progresses. For example, polyurethanes follow second order kinetics (Castro & Macosko

1982). Figure 2-2 shows the behavior of S for different types of chemical reactions,

schematically, and has been discussed in more detail in chapter 2.

5.5 INITIAL GROWTH RATE

Thu purpose of this study is to describe the combined effect of dispersion and

chemical reaction on the stability of the process. The solution ofthe complete form of the

model equations for the base state (from eq. 5-5) and that of the eigenvalue problem (eq.

5-7) is quite involved and would require extensive numerical computations. The problem

is more involved than that ofTan and Homsy (1986) and that presented in chapter 4, where

only one of dispersion and reaction was present. In the current problem, both dispersion

and chemical reaction terms, and the corresponding Damkohler number, in the component

balance equations. However, a description of the disturbances in their initial period of

existence is very important, and governs their subsequent behavior. A study of the initial

growth rates is important and tells us a great deal about the stability of the flow process. In

addition, the initial growth rates may be studied relatively easily; some simplifications

may be made that make the equations amenable to mathematical analysis with

comparatively less, simple, numerical computations. Therefore, the following sections of

this dissertation chapter will present a semi-analytical solution to the eigenvalue problem

at small times after the two shots of fluid are brought into contact.
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5.5.1 DERIVATION OF THE PROBLEM

This section presents the steps involved in the derivation of eq. (5-7) at t = O to

yield the eigen value problem for initial growth rate analysis. The most important feature

of this initial growth rates analysis is the representation of the conversion profile in the

domain of the problem as a Heaviside step function (H(F,)), shown schematically in Figure

5.1b.

Using the initial (step) conversion profile, i.e. 0t(§) = (AOL) H(§), we get BEIGE =

(AOL) 5(§). Also, the definition p(§) = -(1/X) (deH) was used. This yields, from equation

(5.6),

.2

[ +p<§> ( a) 6(a) 1 Q ——B—(Aa) (5-3)

[Dz—o-k2+9 S]A = (AOL) (AOL) 8(§) qg

Eliminating A from these equations, we get

 

[Dz-049w S]{ 2““ [02+p(§) (Au) sew-I621 45,}

k' p(§) (5-9)

= (Aa) (Am) 5(a) Q

Since Aa and k’ are independent of 5,, this gives

[Dis-13w Sl{-'— [02+p<§) (Au) men-1621 4,}
Pg) (5-10)

= k'2 (Au) 5(a) q,

01'

[DZ—o—k2+6 S] ng = k'2 (Act) 6(§) qg (5-11)

where the operator L is given by
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= _1_

p(§)

Tan and Homsy (1986) solved a similar problem where they assumed a viscosity

L [02+ 9(a) (Au) 8(§)D-k'21 (5-12)

that varied exponentially with concentration. This means that p is independent of 5, hence

é. (Note that the viscosity itself does depend on g; it is only the first derivative of the

natural logarithm of viscosity, i.e. the mobility gradient, that is invariant.) Mobility is

defined as the ratio between permeability and viscosity. The mobility ratio, given by mR, is

then mR = mobzlmobl = 111/112 = exp(p) (where it, is the viscosity of the fluid to the right

of the interface).

In this problem, too, an exponential viscosity profile is chosen as a representative

example. This makes equations (5-11), (5-12) amenable to analytical solution at t=0; if the

fi-dependence of p were retained, these equations would be far more complicated and

would require numerical solution for the initial growth rate as well. This choice of

viscosity profile facilitates comparison of limiting case (h = 0) results of this analysis with

those obtained by Tan and Homsy (1986).

Thus, taking p to be independent of 5,, the eigenvalue problem becomes

[02+ka S][D2+P(§) (Au) 6(§)D-k’21q§ = k'2 p (Au) mg) 4, (5-13)

5.5.2 BOUNDARY CONDITIONS

Due to the discontinuity at the interface, this fourth order o.d.e. has to be solved

separately on either side of the interface (E < O and g > 0) and the two solutions matched at

the interface. Two of the conditions are given by the decay of the q: disturbance as E —)
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:00. That leaves us with two more conditions, needed to solve the fourth order o.d.e. In the

absence of any other simple, independent boundary conditions on qg, we use four

matching conditions on the disturbances at the interface. All these conditions are now

presented.

I. The decay of disturbances is given by:

At E = too qg = 0 (5-14)

I]. The matching conditions at the interface are given by:

3) Matching of the velocity disturbance.

At §= 0 qgw“) = q§(0') (5-15)

b) Matching of the conversion disturbance.

At g = 0 Am”) = A(o’ ) (5-16)

c) Matching of the pressure disturbance.

Using the equation of continuity, Darcy’s law and the Fourier expansions

for disturbances, the pressure disturbance p(§) may be expressed in terms of the velocity

disturbance qg. This relation is obtained as

 

1 dq

p(§) = - 2 _ 712; (5-17)

(bk ) 7»

Using the continuity of pressure at the interface, p(0+) = p(0"), we get

d4: 43

  

where am is the mobility ratio defined earlier.

111. The final condition involves integration of the o.d.e. (equation 5-13) across the
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interface, i.e. from 0’ to 0+.

0+

1 [Dz-u-k2+e SllDz+P(§) (Au) 6(:)D-k'21q¢ d:

0' + (5-19)
0

= k'2 9 (Au) J 6(a) q, d:
O-

The eigenvalue problem to be solved, thus, consists of the o.d.e. in equation (5-13), the

boundary conditions (5-14) and the matching conditions (5-15), (5-16), (5-18), (5-19).

5.5.3 ANALYTICAL SOLUTION

The initial growth rate for an exponential viscosity-concentration relationship, with

a step jump in concentration at time t=0, was analyzed by Tan & Homsy (1986). A similar

approach has been used in this work to obtain the initial growth rates (at t=0) for the model

problem with combined reaction and dispersion. The particular case in which viscosity

varies exponentially with conversion, i.e. p=constant, is chosen for the following analysis.

The first step is the representation of the solution for g at 0, using the decay

conditions. Since the base state profile is a step function, for § at 0, the Dirac delta function

in eq. (5-13) vanishes and the equation may be simplified to

[D2 —m2] [Dz-k'2]q§ = 0

(5-20)

where m2(§) = o + k2-95(§)

The solution to equation (5-20), on either side of the interface, is given by

qg = A1 exp[m_ :1 +31 exp[k'fi] for §<O (5 21)

qg = A2 exp[-m+§] + 32 exp [—k'§] for g > O

The constants A1, A2, B1, B2 are to be determined using the matching conditions.
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Applying eq. (5-15), i.e. matching of the velocity disturbance, on eq. (5-21), we

get

A1 = A2+Bz--B1 (5-22)

Applying eq. (5-18), i.e. matching of the pressure disturbance, on eq. (5-21), and

using the relation (5-22), we get

1

k' —m_

 A1 = [(k' + m+mR)A2 + (k' + k'mR)Bz] (5-23)

In applying eq. (5-16), i.e. matching of the conversion disturbance, since A 5 Mg,

we get

2 .2 0“

[D + P (Act) 5(5)!) - ’6 lqglo_ = 0 (5-24)

In this equation, using eq. (5-21), the first term (taking the second derivatives of q:) yields

2 0” 2 2 .2
D q§|0_ = (A2m+-Alm_ )+(Bz—Bl)k (5-25)

The second term, due to the presence of the dirac delta function 5(§), vanishes. The third

term also gives, using eq. (5-22),

43%|: = 0 (5-26)

Thus (5-24) may be simplified, using (5-22) and (5-23), as

 

2

m +m m k'+m +m k'

Bz=- [* * R< ‘) ‘] (5-27)

k’2 + k'mR(k' + m_ )+ m_k'

Three of the matching conditions have been used above, to obtain a simple relation

between two of the constants. The integral boundary condition (5-19) is now applied on

eq. (5-21) to get another relation between A2 and Bz. The integral equation is rewritten as
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0+ 0‘

[Ibis-13% .9qu, d§= k'2 9 (Au) 1 6(a) q, d:

0‘ 0’

a) The first term in the integral on the left hand side yields

0+

ID2(ng)d§ = D(ng)|:_
0-

Using the definition of Mg, this gives

D(Lqé) :_ = 0345': +p(Aa)5'(§)DQg|:_ +P(Aa)5(§)D24gl:_ 4’04); 2

Now, using the properties of the dirac delta function

==()5| =5,
0

0-

6" _ = 8'
o

 

0+

 

the second and third terms in eq. (5-30) vanish. We are now left with

+ O

0* 3 o 2 o
D(L ) = D - k' D

4: lo- ‘1: 0- ‘1: 0-

Using eq. (5-21), then, we get

D(ng) :_ = A2m+[mi + k'z] — A1m_ [m3 — k'z]

b) The second and third terms on the l.h.s. of eq. (5-28) vanish.

c) The right hand side of eq. (5-28) yields

0+

.2
'2k p (Au) j8(§) qg 61E = k P (Au) q§|§=o

0-

= k'2 p (Aa)[A2+Bz]

(5-28)

(5-29)

(5-30)

(5—3 1)

(5-32)

(5-33)

' (5-34)

Equations (5-33) and (5-34) are now plugged into eq. (5-28) to give, after simplifying,
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A
192 = —2-3—[—mi + m+k'2 -— k'2p(Aa) + m__ k'2 — m_ mi] (535)

k' D(Aa)

(5-27) and (5-35) are now combined to eliminate the constants A2 and Bz, yielding a

simple, algebraic equation involving the eigenvalue, 0', of the problem.

  

(m++m_) (Ic'2-—mfi)—k'2 p Au k'(m_ +m+ M)+m+(m++m_ M) 5 36

k' p Au ‘ ' (k'+m_) (1+M) (' )

where

MECXMP)

.2 2 2 2

k 5% = blkx+b2ky

2 2 (5-37)

m+ = o+k —9 S1

The parameters in the growth rate curves are 9, S] and 82. The cutoff wavenumbers

are defined as the wavenumbers at which the growth rate changes sign, implying a

transition between stable and unstable regimes. Eq. (5-36) may be solved for the cutoff

wavenumbers kc by setting 0:0. The roots of the algebraic equations in either case are

obtained by Newton-Raphson iterations. The initial guesses must be close to the roots, to

obtain convergence of the numerical scheme. Suitable guesses for the lower cutoff

wavenumber are obtained from the results of two different analyses. One was performed

by Hickemell & Yortsos (1986) for non-dispersive displacement through porous media,

and another was done for reactive filling without dispersion (Jayaraman et al 1992).

5.5.4 RESULTS

For consistency with the data used in chapter 4, a second order reaction is chosen to
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investigate the behavior of the initial growth rate profiles. For any n-th order reaction, the

first derivative of the reaction rate R w.r.t. 0t, i.e. S = dR/da, is S = - k n (l-a)“. Since

both k (reaction rate constant) and n (order of the reaction) are positive quantities, and so

is ( 1 -a), it follows that S is always negative and that at larger conversions the magnitude of

S is smaller. That is, lSll < ISZI (see Figure 5.1b). In addition, for a second order reaction

(as in polyurethanes), the range of possible values of S is {-2k to O}, which in

dimensionless terms is {-2 to O}. The choice of Act is also important. When AOL = 1.0 and

in the limiting case of 6 = O, the results would correspond to those obtained by Tan &

Homsy, 1986. In the physical problem under consideration, however, this is not practical

since it would require the fluid on the right of the interface to be completely reacted; hence

this particular case is only of academic interest.

For the purpose of illustration of this analysis, Aa has been chosen to be 0.2.

Specifically, the first shot of fluid is allowed to react till a conversion of 0.2 is reached and

then the second shot is injected, at which time we take t=0. The corresponding values of S

are 82 = -2.0 and S] = -1.6 (see Figure. 5.1b). Thus the conversion and S follow step

profiles and possess a discontinuity at §=0. As discussed in section 5.5.1, an exponential

viscosity profile has been chosen, and the value of p, the gradient of viscosity w.r.t.

conversion, has been taken to be 3.0. The parameter 9 is then varied and equation (5-36)

solved for the growth rate 0 as a function of the wavenumber k. The parameters used in.

this computation are, then:

time instant, t = O

p = 3:

Au: 1.0



132

Table 5.1 Computational results from eq. (5-36); Parameters: At: = 0.2; p = 3.0; 81 =

-l.6; 82 = -2.0



Table 5.1

 

 

 

 

 

 

 

 

 

      
 

 

 

 

 

 

   

9 = 0.0

0 k1 k2

0 0 0

0.001 0.0038 0.1448

0.002 0.0081 0.1393

0.003 0.0130 0.1333

0.004 0.0186 0.1268

0.006 0.0328 0.1107

0.007 0.0429 0.0996

0.008 0.0617 0.0800

9 = 0.003

6 k1 11‘2

0 0.0172 0.1268

0.001 0.0237 0.1194

0.002 0.0314 0.1108

0.003 0.0415 0.0999

0.004 0.0589 0.0818

0.0041 0.0626 0.0779   
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9 = 0.002

6 k1 k2

=

0 0.0105 0.1353

0.001 0.0159 0.1290

0.002 0.0220 0.1219

0.003 0.0293 0.1138

0.004 0.0384 0.1038

0.005 0.0520 0.0894

0.0052 0.0563 0.0849

0.0054 0.0628 0.0782

9 = 0.004

0' [(1 k2

W

0.001 0.0337 0.1078

0.002 0.0449 0.0958

0.0025 0.0533 0.0870

0.0027 0.0583 0.0818

0.0028 0.0620 0.0780
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Figure 5.2 Initial growth rate curves - varying 9
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Table 5.2 Cutoff wavenumber data at several values of 9; Parameters: Ant = 0.2; p =

3-0951 = -1.6; 32 = -2.0



ctcrs: infill

Table 5.2
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9 kcJ kuz

0 0 155:0:

0.001 0.0048 0.1430

0.002 0.0105 0.1353

0.003 0.0172 0.1266

0.004 0.0254 0.1169

0.005 0.0360 0.1045

0.006 0.0539 0.0851

0.0062 0.0617 0.0769
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S] = 'l.6;

82 = -2.0

The values of 9 are raised from 9:0 and the two solutions for the wavenumber k are

evaluated at increasing 6. These results are tabulated in Table 5.1. The values of the initial

growth rate, a, are plotted against the wave number, k, for the different values of 9 as

shown in Figure 5.2. The curve for 9:0 corresponds to the flow process dominated by

dispersion. It matches up well with the result of Tan & Homsy (1986). For this case, small

fingers get smeared out due to dispersion, while large fingers remain undamped. This is in

contrast to the case of S>0, where two different non-zero cutoff wavenumbers may be

identified. As the rate of chemical reaction is increased relative to the rate of dispersion, by

increasing 6, it is seen that only a small range of intermediate finger sizes are unstable.

The polymerization reaction combined with dispersion thus stabilizes a broader range of

fingers. For the chosen values of S], 82 and p (-1.6, -2.0 and 3.0 respectively) it is seen

that, when the rate of reaction is about two hundred times the rate of dispersion (6 >

0.005), disturbances of all sizes decay.

The marginal stability curve is plotted in Figure5.3. The cutoff wavenumbers k,: at

the different values of 0 are shown in Table 5.2. For a given 0, fingers of wavenumbers

within the envelope would grow, while the rest are damped out. The width of the unstable

region decreases with a rise in 6. These results may be compared to results reported earlier

for miscible displacement without reaction or dispersion. Hickemell and Yortsos (1986)

have reported that without dispersion, any incipient fingers would invariably grow.

The wavenumbers (k) referred to above may be converted to appropriate finger

widths (A), using the relation (k = 2n lsc/ 2.), where lSC is the length scale for the problem.
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To illustrate the significance of these results, the finger widths corresponding to the cutoff

wavenumbers are compared to the actual physical dimensions of the mold. The thickness

of the mold, B, represents the largest possible finger size, while the diameter of the fiber

tow, d,. is the smallest possible finger width. Representative values are chosen as below:

Mold thickness, B: 10mm

Fiber tow diameter, d,: 0.1mm

Dispersion coefficient, D: 0.001 cmzls (after Losure, 1994)

Injection velocity, U0: 0.5 cm/s

This yields a length scale (15c) of 0.0002 mm.

From Table 5.2, the cutoff wavenumbers when 0 is 0.004 are kc] = 0.0254 and kc2 =

0.1169. When converted to dimensional finger widths, these correspond to A] = 4.95 mm

and 2.1 = 1.075 mm. All fingers of sizes between these values will grow; conversely, all

fingers of widths outside this range are eliminated. These limiting finger widths are now

compared to the physical dimensions B and d,. It is seen that the tow diameter is much

lesser than the lower limit M. This means that all fingers with widths of the order of tow

diameter will be eliminated. Similarly, the mold thickness is much larger than the upper

limit, A]. While very large fingers are eliminated, there is an intermediate range of finger

widths that are undamped.

For the case of 0 = 0.001, Table 5.2 lists kc] = 0.0048 and kc2 = 0.1430. These

correspond to 2.1 = 26.25 mm and 702 = 0.88 mm. It is clearly seen for this case that the

mold thickness is much lesser than the upper limit on unstable finger widths, 7L], and the

tow diameter is smaller than the lower limit, L2. This means that fingers of sizes of the
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order of tow diameter will be eliminated, while all fingers larger than A; will grow. A

similar analysis may be done for other values of 0, and it is clear that, as chemical reaction

becomes more significant in comparison to the dispersion mechanism, the range of sizes

of growing fingers becomes smaller.

For the hypothetical case where the parameters SI and 82 are both positive, chosen

as +3 and +1 respectively, which corresponds to a reaction with autocatalytic kinetics, the

unstable range of wavenumbers is larger with reaction than without reaction as seen in

Figure 5.4. This computation has been performed to confirm the necessary condition for

stabilization, S < 0, obtained in chapter 4. Compared to the no-reaction case (0:0), the

upper cutoff wavenumber is greater for higher 6. Also, for any given wavenumber of the

disturbance in the unstable range, the growth rate is higher for the 0>0 case. This means

that positive SI and 82 destabilize the flow process.

5.6 SUMMARY

The combined effects of chemical reaction and dispersion on the growth of flow

instabilities in reactive flow through a fiber bed are strikingly different from the effect of

dispersion alone, or that of reaction alone, on fingering. The model problem to make this

study was inspired by a multiple-shot injection experiment done by Losure (1994). Since

the initial growth rates govern subsequent behavior of any incipient disturbances, the

stability analysis of the model problem was simplified to obtain the initial growth rates,

and their behavior investigated. An analytical solution of the eigen value problem was

possible, under the conditions chosen.
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It is seen that the result depends on the type of reaction as seen in the incremental

rate of reaction with increasing extent of reaction, S. As the rate of chemical reaction is

increased relative to the rate of dispersion, the process becomes increasingly more stable.

If S is increasingly negative along the flow direction, and the reaction rate is several times

the rate of dispersion, it is possible to eliminate fingers entirely. When S is positive, the

unstable range of wavenumbers is increased with reaction. These effects are more

pronounced when the spatial variation in S is steeper. The wavenumbers may also be

converted to finger widths, and predictions on the growth or elimination of fingers may be

made by comparing the cutoff finger widths to the dimensions of the mold and fiber tows

used.

 



CHAPTER 6 CONCLUSIONS

6.1 SUMMARY AND CONCLUSIONS

A study of the flow of reactive, polymeric liquids through fiber bundles has been

presented in this dissertation. Following the observation of fingers during the mold filling

process and subsequent investigation of their deleterious effects on some of the

mechanical properties of the final parts (Losure, 1994), this work attempts to obtain

theoretical criteria that enable prediction of the generation and growth of these fingering

instabilities.

A simple model has been developed to track the motion of the flow front and the

pressure distribution inside the filled region of the mold at any time. The effect of

rheological changes on the reduction in flow velocity, in a constant pressure scenario, have

been represented by two quantities - a velocity reduction factor and the log-mean mobility

difference ratio (LMMDR). These analyses were done using representative rheological

data for an epoxy resin and a vinyl ester resin. The data enabled division of the entire flow

domain into three regimes - one with an invariant viscosity, another with a changing

viscosity, and a third regime where elastic effects come into play. The pressure

distributions, after the viscosity increase significantly, are steep very near the flow front

and provide greater driving force for fiber wet out, i.e. penetration of the resin into the

fiber tows to wet individual fibers is facilitated.

Since the resin in liquid molding operations is continuously undergoing

polymerization reaction, the viscosity of the resin also increases along the flow direction

towards the advancing front. An adverse viscosity gradient is known to generate fingers.
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However, the coupling between the evolving reaction and the viscosity gradient

complicates the mechanism and produces some stabilization at larger length scales. In the

moving frame of reference, the cutoff wavenumbers when the viscosity gradient is steady

are different from those when the viscosity gradient is produced by an evolving chemical

reaction. The study of the generation and subsequent behavior of disturbances is done by

performing a linear stability analysis on the equations describing the system. It is found

that a necessary condition for damping of fingers is given by equation 4-31, i.e. S < 0. The

effect of various parameters on finger growth has also been investigated. The

thermochemical properties of the resin, like the activation energy, gel conversion and

reaction exotherm, may suitably be altered to eliminate fingers during mold filling. In

addition, the operating conditions (resin inlet temperature, injection velocity, etc.) may be

changed to affect finger growth. The ranges of stable wavenumbers in each case are

presented in the form of marginal stability curves. The effect of anisotropy of permeability

has also been presented.

Disturbances of small wavenumbers, i.e. large finger widths, have been found to be

stabilized by the coupling of chemical reaction with the flow process. This is in contrast to

the stabilizing effect of dispersion for fingers of small widths (Tan and Homsy, 1986). The

complementary nature of the two mechanisms of damping of fingers is utilized in chapter

5 to obtain the ranges of stable wavenumbers in the presence of both mechanisms. The

combined effect of mass dispersion and chemical reaction, on the fingering process, was

examined in the context of a multiple-shot injection where the interface between resins of

different ages is examined. It has been found that the individual effects of chemical

reaction alone (chapter 4) and dispersion alone (Tan and Homsy, 1986) are both seen in
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this case. That is, disturbances at both ends of the spectrum of wavenumbers are

stabilized. In addition, it is found that an increase in chemical reaction rate increases the

range of stable wavenumbers; so much so, that at certain levels of reaction rates in

comparison with dispersion rates, all disturbances die out. The necessary condition

discussed earlier, i.e. S < 0, for stabilization is also confirmed by this analysis.

The sizes of fingers generated are limited by the geometric dimensions of the mold

and of the fiber tows used in the preform. In the case of an end-gated mold, the thickness

of the mold represents the largest finger size possible, while the diameter of the fiber tows

corresponds to the smallest finger size. The upper and lower cutoff wavenumbers in Table

5.2 and figure 5.2, for any 6, correspond to a lower and an upper limit on the widths of

growing fingers, respectively; all fingers with widths outside this range will be eliminated.

The relation between finger size (A) and wavenumber (k) is (k = 21: l“! A), where lSC is the

length scale. Using representative numbers for the various parameters (dispersion

coefficient, injection velocity, mold thickness and fiber tow diameters), the following

conclusions are arrived at (see figure 5.2).

(a) In general, the diameter of the fiber tows is less than the lower limit on finger

widths for growing fingers. This means that fingers of very small sizes, of the order of tow

diameter are eliminated, while those of intermediate sizes grow.

(b) When dispersion mechanism is more dominant, the mold thickness is lesser

than the upper limit of growing finger widths; this means that all large fingers in this

situation are unstable. As reaction becomes more significant in comparison to dispersion

(larger values of 9), some of the large fingers are eliminated.

A mechanism has been suggested for the stabilization of large fingers by reactive
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coupling. For resins with S < 0, small fingers grow at a faster rate than chemical reaction

can act to stabilize them; in the case of large fingers, the rate of growth of the fingers is

slow enough to enable the reactive coupling mechanism to damp them out.

6.2 RECOMMENDATIONS FOR FUTURE WORK

The main focus of this dissertation has been on the role of the polymerization

reaction on the stability of the flow process. In the discussion of chapter 3, where the flow

of resin past cylinder arrays was studied, the effects of viscoelastic properties of the resin

have not been looked into (in the third regime). A more detailed investigation of the elastic

effects would provide better understanding of the phenomenon.

Another area that deserves further attention is the combined effect of chemical

reaction and dispersion. In chapter 5, only the initial growth rates were considered. A

complete numerical computation of the eigen value problem, at all times, would be useful.

Though the presence of dispersion and reaction terms in the model equations makes the

numerical procedure more involved, the actual behavior of the disturbances at large times

would be an interesting topic for further research.



APPENDICES



APPENDDI A: EXCHANGE OF STABILITIES ANALYSIS FOR MOLD FILLING

WITH CHEMICAL REACTION, WITHOUT DISPERSION

In the stability analysis of Chapter 4, all disturbances are expressed as Fourier type

expansions. For example, disturbances in pressure are given by equations of the type:

I” = p(§) - e2913([z'{l~=,1r+k,y}l-¢=xr)(<!t)) (A-l)

where p(§) is the amplitude of the disturbance, kx and ky are the wavenumbers in the

respective directions and 0' is the growth rate. This follows the resolution of the

disturbances by the method of normal modes into various components, each satisfying the

linear system (eigenvalue problem). In general, the growth rate 0' is complex, described as

o = oR + io, (A-2)

where OR is the real part and 0'; is the imaginary part. When the real part of the growth rate

is positive, the disturbance in unstable; when it is negative, the disturbance attenuates with

time and is termed stable; when it is zero, it is said to be neutrally stable. The imaginary

part of the growth rate corresponds to an oscillatory variation in the disturbance.

The cutoff wavenumber is defined as the wavenumber of the disturbance at which

the real part, OR, of its growth rate, 0', is zero. This means that, at the cutoff point, the

disturbance neither grows nor decays. However, if the imaginary part, 01, of the growth

rate is non-zero, the disturbance retains an oscillatory variation with time and is termed

overstable. The principle of exchange of stabilities is said to be satisfied when both the
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real and imaginary parts of the growth rate vanish at the cutoff point. In this case, at the

onset of instability a stationary pattern of motions prevails, in contrast to the occurrence of

oscillatory motions at the onset of instability in case of overstability.

For the general eigenvalue problem

Lu = Au (A-3)

exchange of stabilities is examined by performing the following mathematical operation:

(v, Lu) = (Lev, u) (A-4)

where L is a linear operator, L9 is the complex conjugate of the operator L, A. is the

eigenvalue and <..> is the inner product operator.

For the problem discussed in chapter 4, in the absence of dispersion, the

eigenvalue problem was obtained as (equation 4-23)

In this eigenvalue problem, then, both sides of equation (A-S) are multiplied by the

complex conjugate of “p” to give, taking {(G-S) / (O-S+V) E h},

p*§E[X % 4:] = kapr“ (A-6)

This may be expanded to give

3858“”?Yd 'h'] 1(d_§)(:§)'h= “21W (A-7)

In differential form, this becomes

d[Xh(p*dpd_§ )]- Ah(d—£)(Zg)*d§ = bkzippfllfi (A-8)
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This equation may now be integrated in the limits (1'; = -zf) to (§ = 0), yielding

[mej—g))]l:—J' (Xh)(d—g)(Z—g)d: = j bkzippwg (A-9)

‘1; ’21

The boundary conditions at g = -zf and l; = 0 (equation 4-26) on the pressure disturbance

and its first derivative lead to the first term on the left hand side of equation (A-9) being

null. This results in

—j (Xh)(d—§)(d—g)dz; = j bk2pr’talg (A-lO)

“31“!

Both the products (pp*) and (dp/d§)(dp*ld§) are positive. In addition, (bkz) is positive.

This means that {pr*} and {X (dp/d§)(dp*/d§)} are both of the same sign. So “h” has to

be negative in the domain of the problem, for the above equation to be satisfied. Also,

since the right hand side of the equation is real, “h” has to be real, i.e. the imaginary part hI

is zero, in the equation

h = hR-r-ih, (A-ll)

Now, from this definition of “h”, we obtain

 

 

h +'h — ORHOFS (A12)
R 1’ - oR+io,—S+V -

whichyields

o,V

(oR—S+ V)2+o,

For h to be zero, we need V = 0 or 0'1 = 0. A sufficient condition that arises for real growth

rate, 1e for 01:-0, is that V must not equal zero anywhere1n the flow domain, 1e V
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should not change sign.

 



APPENDIX B: DERIVATION OF COMPONENT MASS BALANCE EQUATIONS

The schematic for the shell balance for one-dimensional flow past porous media is

shown:

 

  

 

Figure A] Schematic for shell balance

Let the change in concentration of the reactant, between the planes at {z} and {z+Az } , be

Ac.

The volume of the shell is [WHAz]. Uo here is the interstitial velocity and E is the

porosity.

Net accumulation (A) of the reactant, in time At is = [WHAz] 8 Ac.
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Reactant entering the shell by FLOW (Fin) in time At is = (At) [WH(ch)Iz]

Reactant leaving the shell by FLOW (Four) in time At is = At [WH(ch)Iz+AZ]

Reactant consumed by CHEMICAL REACTION (RR) in time (At) is = R At [WHAZ] E

Reactant entering the shell by DISPERSION (Din) in time At is = (At) [WH] [-D(ac/

(32)] | z e

Reactant leaving the shell by DISPERSION (Dout) in time At is = At [WH] [-D(3c/

82)] I Z+AZ E

The overall shell balance is now written by combining the individual terms

A = F. -F0u,—RR+Din—Dom (B-l)
m

That is,

[WHAz]e(AC) = (At)[WH[(UbC)l —(UbC)| AJ]-(At)[WHAz]£R

Z 2+

 

  
  

a a (B-2)

+ (At)eWH -D—C +D—C—j
32 32

z z+Az

Dividing through by [WHAZ] At, we get:

8C BC
—D— + D—

sA—C = (1,612— U,,C|2+ A: _eR + 8 az z 32 2+ AZ (133)

At A2 A2

Now, dividing through by 8 and taking limits as At, AZ -*0, we get, using the definition of

interstitial velocity (Ub = U0 8):

ac _ a a a
5; _ 3E(-U0C)-R+§Z-(D5—f) (BA)

Eq. (B-4) may be rewritten for a three dimensional flow field as
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gg+40Va—VO[DOVC] = -R (3'5)

Using the equation of continuity (dU/dz = 0) and assuming D to be constant, we get, for a

second order reaction,

2

Ba
- — - — 2— — -_Co-a—t— .. UOCOaz R0(1 0t) DCOBZZ (B 6)

This yields:

a a 82 Ror 0t 0t _ o _ 2 -

”a: + U”—32 —D—azz — (—C0)(1 0t) (B 7)

This is the final, component balance equation, in DIMENSIONAL quantities.

Scaling;

Equation (B-7) may be rewritten in dimensionless terms using appropriate scaling

factors. For the general scaling factors for time, length and velocity, given by to, 20,

UO(=zo/to) respectively, the following dimensionless form of the component balance

equation is obtained:

2

3a 80L ‘0 3a_ I0 2
.37 472—; g - tR(1—u) (B-8)

where t1) 5 202/1) is the dispersion time scale and tR .=_ co/Ro is the reaction time scale.

Also, let the flow time scale be t1; The time scale t0 may now be selected from the three

choices tD, tR, or tr.

We now define dimensionless quantities as below:

Peclet Number, Pe = tD/tF = (ono/D).
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Damkohler number, Da = tF/tR = (zo/Uo) / (co/R0).

9 = (Pe) x (Da) = tD/tR

.‘L 7 I16 '1' .1t1' 1t 111' . -‘0 1 e‘-11.111‘ L' .11...

time-to=tR=co/Ro;

length-z(,=zR=Uo co/Ro;

velocity - v0 = U0;

we obtain, in dimensionless quantities:

2

99.29-15 a_a - (1 - u)2 (B-9)

These scaling factors were used in chapter 4, where the problem of mold filling with

chemical reaction in the absence of dispersion was studied. In that problem, due to the

absence of dispersion, tD —) 0° and the third term on the l.h.s. of this equation vanishes.

A E . e -n: . dtime nits ar caled - .1- 1_ .- ' 1~ cl - 2(1).

time - to: tD = zole;

length - 20 = 21);

velocity - v0 = U0;

Using these definitions, the time scale may also be expressed as D/Uoz; the length scale as

D/Uo.

Applying these scales we obtain, in dimensionless quantities:

2 .

30. au au_tp 2
E 3.2-g-a (l-a) (B-IO)
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These scaling factors were used in the paper by Tan & Homsy (1986), where there was no

chemical reaction. This means that tR -—) 0° and the term on the r.h.s. of the equation

vanishes. In chapter 5 however, where both dispersion and chemical reaction are present,

this equation is rewritten using the definition 0 E (Pe) x (Da) = tD/tR.

2

Ba Ba 801 _ 2
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