p .‘t‘ -‘_ 23' ‘ . A .. .-' ‘m‘. 7'13 ' ,‘ #6 WW6? 7W " y; :W ,l t ‘1 Jr. ‘ igliézt' ‘ -9- '::~ -' wi‘fi ' LBI BRARIES Illlllllllllllllllll‘llllllllllllllllHl‘lllllllllll 31293 0168 26 This is to certify that the dissertation entitled A Gauss-Galerkin Finite Element Method for a Class of Singular Diffusion Equations in Two Space Variables presented by Li Liu has been accepted towards fulfillment of the requirements for Ph.D. degree in Applied Mathematics Dam/174““ Major professor [hue December 301 1997 MS U i: an Affirmative Action /Equal Opportunity Institution 0-12771 LIBRARY MIchIgan State nIverany PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. DATE DUE MTE DUE DATE DUE use animus-mi A GAUSS-GALERKIN FINITE ELEMENT METHOD FOR A CLASS OF SINGULAR DIFFUSION EQUATIONS IN TWO SPACE VARIABLES Li Liu A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Mathematics 1998 ABSTRACT A GAUSS-GALERKIN FINITE ELEMENT METHOD FOR A CLASS OF SIN GULAR DIFFUSION EQUATIONS IN TWO SPACE VARIABLES By M Liu In this dissertation we are concerned with a Gauss-Galerkin finite element method for a class of singular diffusion equations in two space variables. More specifically, we consider the Fokker-Planck equation Bu _ 6(au) +162(b2u) 6(cu) +162(d2u) 5t— _ 6x 2 63:2 _ 6y 2 ayz (3:,y,t) 6 (0’ 1)? x [OaTl- We are concerned with the case when the problem is “singular” in the x variable and “regular” in the y variable, i.e., the coefficient b2 may vanish along a: = 0 and a: = 1, but c and d2 are bounded away from zero for y 6 [0,1]. In the proposed Gauss-Galerkin finite element method, finite element discretization is made in the y variable and the Gauss-Galerkin method is used in the x variable be- cause of the nature of the problem. Convergence of the finite element approximation is established first. Then we analyze the convergence of the resulting Gauss-Galerkin approximation. Finally, by combining the above results, the convergence of the Gauss- Galerkin finite element approximation is obtained. A number of test problems are studied. The numerical results show that the pro- posed Gauss-Galerkin finite element method is efficient in solving singular diffusion equations of the type considered here. To my parents, my wife and my son iv ACKNOWLEDGMENTS I would like to extend my gratitude and thanks to my advisor, Professor David H.Y. Yen, for his suggestion of the dissertation problem and the helpful directions he has proposed in solving it. His advice and encouragement are greatly appreciated. I would also like to extend my warm thanks to other members of my guidance commit- tee: Professors Tien-Yien Li, Gerald D. Ludden, Habib Salehi and Zhengfang Zhou for their advice and helpful suggestions. Most of all, I want to acknowledge and thank the people whose lives were most affected by this work: my wife, Bei Zhang, to whom I offer the greatest thanks for her taking on all household and child-minding duties as I spent long hours at work, my son, Terrance Liu, for his ability to make me focus on what was important, and my parents, Xianrong Liu and Changqun Song, for their unconditional pride and belief in me. Thank you, I couldn’t have done it without your overwhelming support, encouragement, understanding and patience. TABLE OF CONTENTS LIST OF TABLES viii LIST OF FIGURES xi 1 Introduction 1 1.1 Background and Motivation ....................... 1 1.2 Organization of the Dissertation ..................... 5 2 Preliminaries 7 2.1 Markov Process .............................. 7 2.2 Transition Probability .......................... 8 2.3 Diffusion Process ............................. 9 2.4 Fokker-Planck Equation for a Diffusion Process ............ 10 2.5 Stochastic Differential Equation ..................... 12 2.6 Existence and Uniqueness ........................ 13 3 Problem Formulation and Mathematical Properties 14 3.1 Initial-Boundary Value Problems and Their Weak Formulation . . . . 14 3.2 Mathematical Analysis of Initial-Boundary Value Problem ...... 19 4 Gauss-Galerkin Finite Element Method 27 4.1 Finite Element Approximation in the y Variable ............ 27 4.2 Gauss-Galerkin Approximation in the x Variable ............ 34 5 Convergence Results 51 5.1 Convergence of Semi-Discrete Finite Element Approximation in y . . 51 5.2 Convergence of the Gauss-Galerkin Approximations in x ....... 57 6 Numerical Results 73 6.1 Piecewise Linear Finite Element Space ................. 73 6.2 A Test Problem .............................. 81 6.3 Dependence of Solution upon Parameters in the Singularities ..... 93 vi 6.4 Dependence of Solution upon Lower Order Terms ........... 123 7 Conclusions and Discussions 149 BIBLIOGRAPHY 151 vii 6.1 6.2 6.3 6.4 6.8 6.9 6.10 6.11 6.12 LIST OF TABLES Gauss-Galerkin Finite Element Method: Changes of the three nodes #, + and x at y = 0.5 as t increases ................... Gauss-Galerkin Finite Element Method: Changes of the weights at the three nodes at, + and x at y = 0.5 as t increases ............ Gauss-Galerkin Finite Element Method: Changes of the “moment” m§,(y, t) with three nodes *, + and x at y = 0.5 as t increases GaussGalerkin Finite Element Method: Changes of the “total mo- ment" 11;“) with three nodes at, + and x at as t. increases ...... Gauss-Galerkin Finite Element Method: Changes of the five nodes 0, o, x, + and t at y = 0.5 as t increases .................. Gauss-Galerkin Finite Element Method: Changes of the weights at nodes 0, o, x, + and at at y = 0.5 as t increases ............ Gauss-Galerkin Finite Element Method: Changes of the “moment” mf,(y, t) with five nodes 0, o, x, + and a: at y = 0.5 as t increases . . Gauss-Galerkin Finite Element Method: Changes of the “total mo- ment” M},(t) with five nodes 0, o, x, + and :- as t increases ..... Gauss-Galerkin Finite Element Method: Changes of the exact total moment M i(t) as t increases ...................... Gauss-Galerkin Finite Element Method: Changes of the errors between the exact total moment M‘It) and their approximation Mn(t) as t increases ................................. Gauss-Galerkin Finite Element Method: Changes of the relative errors between the exact total moment M ‘(t) and their approximation M..(t) as t increases ............................... Gauss—Galerkin Finite Element Method: Changes of the nodes at, + andxaty=0.5withp=2andq=2astincreases ......... viii 91 92 94 95 96 97 98 99 100 101 6.13 Gauss-Galerkin Finite Element Method: Changes of the weights at nodes't,+andxaty=0.5withp=2andq=2astincreases .. . 6.14 Gauss-Galerkin Finite Element Method: Changes of the “moment” m§,(y,t) at y=0.5 withp=2 and q: 2 as t increases ........ 6.15 Gauss-Galerkin Finite Element Method: Changes of the “total mo- ment” Mf,(t) with p = 2 and q = 2 as t increases ........... 6.16 Gauss-Galerkin Finite Element Method: Changes of the nodes *, + andxaty=0.5 withp=1andq=2astincreases ......... 6.17 Gauss-Galerkin Finite Element Method: Changes of the weights at nodes #, +andxaty==0.5withp= 1 andq=2astincreases 6.18 Gauss-Galerkin Finite Element Method: Changes of the “moment” mj,(y, t) at y = 0.5 with p = 1 and q = 2 as t increases ........ 6.19 Gauss-Galerkin Finite Element Method: Changes of the “total mo- ment” Mf,(t) at y = 0.5 with p = l and q = 2 as t increases ..... q 6.20 Gauss-Galerkin Finite Element Method: Changes of the nodes at, + and x at y = 0.5 with p = 2 and q = 1 as t increases ......... 6.21 Gauss-Galerkin Finite Element Method: Changes of the weights at nodes at, + and x at y = 0.5 with p = 2 and q = l as t increases ... 6.22 Gauss-Galerkin Finite Element Method: Changes of the “moment” mf,(y, t) at y = 0.5 with p = 2 and q = 1 as t increases ........ 6.23 Gauss-Galerkin Finite Element Method: Changes of the “total mo- ment” Mf,(t) at y = 0.5 with p = 2 and q = 1 as t increases ..... 6.24 Gauss-Galerkin Finite Element Method: Changes of the nodes t, + and x at y = 0.5 with p = land q = 1.5 as t increases ........ 6.25 Gauss-Galerkin Finite Element Method: Changes of the nodes at, + andxaty=0.5 withp=landq=2.5astincreases ........ 6.26 Gauss-Galerkin Finite Element Method: Changes of the nodes 1!, + andxaty=0.5 withp=landq=3astincreases ......... 6.27 Gauss-Galerkin Finite Element Method: Changes of the nodes at, + andxaty=0.5 withp=landq=4astincreases ......... 6.28 Gauss-Galerkin Finite Element Method: Changes of the nodes at, + andxaty=0.5withp=1andq=lastincreases ......... 6.29 Gauss-Galerkin Finite Element Method: Changes of the weights at nodes t, + andxaty=0.5withp= l andq= 1 astincreases 6.30 Gauss-Galerkin Finite Element Method: Changes of the “moment” m§,(y,t) at y=0.5 withp=l and Q: l as t increases ........ 108 109 116 117 129 130 6.31 6.32 6.33 6.34 6.35 6.36 6.37 6.38 6.39 Gauss-Galerkin Finite Element Method: Changes of the “total mo- ment”‘Mf,(t) aty=0.5 withp=1andq=1astincreases ..... Gauss-Galerkin Finite Element Method: Changes of the nodes at, + and x at y = 0.5 with s = 0, u = 0.375, V = 0.375 as t increases Gauss-Galerkin Finite Element Method: Changes of the weights at nodes at, + and x at y = 0.5 with s = 0,p = 0375,11 = 0.375 as t increases ................................. Gauss-Galerkin Finite Element Method: Changes of the “moment” m§,(y, t) at y = 0.5 with s = 0,11 = 0.375, V = 0.375 as t increases Gauss-Galerkin Finite Element Method: Changes of the “total mo- ment” Mf, (t) at y=0.5 with s = 0, p = 0.375, V =‘0.375 as t increases GaussGalerkin Finite Element Method: Changes of the nodes i, + andxaty=0.5 withs=2,h=0.5,p=0,u=0astincreases Gauss-Galerkin Finite Element Method: Changes of the weights at nodes at, + and x at y = 0.5 with s = 2,h = 0.5,p = 0,11 = 0 as t increases ................................. Gauss-Galerkin Finite Element Method: Changes of the “moment” mf,(y, t) at y = 0.5 with s = 2, h = 0.5,p = 0,11 = 0 as t increases Gauss-Galerkin Finite Element Method: Changes of the “total mo- ment” Mf, (t) at y=0.5 with s = 2, h = 0.5,;1 = 0,11 = 0 as t increases 141 142 143 144 145 146 147 148 ' 6.1 6.2 6.3 6.4 6.6 6.7 LIST OF FIGURES Gauss-Galerkin Finite Element Method: Movement of the nodes i, + and x as t increases ............................ Gauss-Galerkin Finite Element Method: Movement of the nodes 0, o, x, + and e as t increases ......................... Gauss-Galerkin Finite Element Method: Movement of the nodes at, + and x with p = 2 and q = 2 as t increases ................ Gauss-Galerkin Finite Element Method: Movement of the nodes t, + and x with p = 1 and q = 2 as t increases ................ Gauss-Galerkin Finite Element Method: Movement of the nodes *, + and x with p = 2 and q =1 as t increases ................ Gauss-Galerkin Finite Element Method: Movement of the nodes at, + and x at y = 0.5 with s = 0,11 = 0.375, V = 0.375 as t increases Gauss-Galerkin Finite Element Method: Movement of the nodes 1:, + and x at y= 0.5 with s = 2,h= 0.5,u= 0,u= 0 as t increases xi 134 135 136 137 138 139 140 CHAPTER 1 Introduction 1.1 Background and Motivation In this dissertation we are concerned with a Gauss-Galerkin finite element method for a class of singular diffusion equations in two space variables. Let Q = (0,1)2 be the unit square. We consider the Fokker-Planck equation Bu _ 3931 162(b2u) _ M 102nm) 797 _ 82: 2? 6y 2 6y? (1'1) with boundary conditions Bu 2 g on (O,T) x BIZ (1.2) and initial condition u(x,y,0) = uo(2:,y) on $2 (1.3) (1.1 ) describes the probability density u = u(:1:, y, t) for a stochastic process governed by a set of two stochastic differential equations in (x,y) with the respective drifts a = a(.7:, t) and c = C(y, t) and diffusions b = b(2:, t) and d = d(y, t): dY = cdt + ddW2 (1.4) P{X(0) = 2:, Y(0) = y} = p(:v, y) = given where W1 = W1(t) and W2 = W2(t) are independent standard Wiener processes. This is a special case of (2.19) with n = 2 and b12 = b21 = 0. We are concerned with the case when the problem is “singular” in the x variable and “regular” in the y variable, i.e., the coefficient b2 may vanish along :1: = 0 and a: = 1, but c and d2 are bounded away from zero for y E [0, 1]. We shall propose and analyze a numerical method called the “Gauss-Galerkin finite element method” to solve the initial-boundary value problems for the above Fokker- Planck equations. The method is a generalization of the one dimensional Gauss- Galerkin method which was originally proposed by Dawson[1] and further developed by Hajjafar, Salehi and Yen [4]. We shall briefly describe the one dimensional Gauss- Galerkin method here. More details can be found in [4]. Consider the stochastic differential equation dX = a(X, t)dt + b(X, saw (1.5) for X = X (t) with the initial condition X(O) 2 X0 given. (1.6) The state space is assumed to be a finite interval which we take as [0, 1] and W = W(t) above is the standard Wiener process. It is assumed that the coefficients a and b in (1.5) are continuous functions of X and t in [0,1] x [0, T] where T > 0 is a constant. The initial value X0 in (1.6) is assumed to be a random variable so that the solution X (t) to (1.5) and (1.6) is a Markov process. It is known that if the law of the process X (t) has a smooth density u(:z:, t), then u(:r, t) satisfies the Fokker-Planck equation Bu _ _ 8(au) 1 62(b2u) u(:1:, 0) = given, (1.8) plus boundary conditions at :2: = 0 and a: = 1. The operator L = L(t) is known as the forward Kolmogorov operator. (1.7) and (1.8) lead to a parabolic initial boundary value problem for u(a:, t). The formal adjoint L‘ = L“(t) of L above is and is known as the backward Kolmogorov operator. For each u 2 22(5):) in some appropriate space V, we may multiply (1.7) by v, integrate with respect to :1: from 0 to 1 and obtain %(u,v) = (u,L"v), v E V, (1.10) where (-, ) stands for the L2 inner product. We note that in order to lead to (1.10) from (1.7) it is necessary that all the boundary terms resulting from integrations by parts vanish. We are concerned with singular processes for which the coefficients a and b vanish at boundary :1: = 0 and :c = 1. To solve (1.10), we replace u(a:, t)d:r by M: dun($,t) = ak(t)6z,.md:c (1.11) k 1 associated with an n-point discrete measure pn(t), where in (1.11) :13,c = mk(t), k = 1,2, - . -,n, are the nodes and the ak’s are the corresponding weights. We also let {u,-(x)},z' = 1, 2, - - - , 2n, be a set of linearly independent functions in V. Substituting pn(:r,t) and each of v,(a:) into (1.10) yieds —Zak(t)v,((xkt =20. Lv,(:z:k(t)),z'=1,2,---,2n. (1.12) This is a system of 2n ordinary differential equations for the n nodes and the n weights as functions of t. A convergence analysis as n tends to infinity is made in [4]. An algorithm for computational purpose is also given in [4] along with numerial results of several test problems. The results show that the Gauss-Galerkin method gives ex- cellent results and is efficient in capturing the singularities at the boundary for large t. As there seems to exist no straightforward way to generalize the one dimensional Gauss-Galerkin method to a two dimensional one (there is no direct Gauss quadra- ture formula in two dimensions), Huang and Yen [5] made a modest generalization by discretizing the partial differential equations by the finite difference method in the y direction and then solving the resulting systems of partial differential equations in x and t by the Gauss-Galerkin method. The results showed that the method in [5] is indeed capable of treating singular parabolic partial differential equations. In our Gauss-Galerkin finite element method, finite element method is made of the y variable while one dimensional Gauss-Galerkin method is used for the x variable. The convergence of the finite element approximation is established first based on the so called “energy” type estimates. Then, using the theories of measures and moments, the Gauss-Galerkin approximation for the semi-discrete equations is shown to con- verge when one dimensional Gauss—Galerkin approximation is made in x direction. Finally, Combining the above results, the convergence of Gauss-Galerkin finite ele- ment approximation is established. We use piecewise linear finite elements in our numerical computations. we first test a problem where the exact solution is known. By comparing the numerical solution with the exact solution, we find that the approximation is very efficient and accurate, even when only a few finite elements and only a few Gauss-Galerkin nodes are used. For our model problem I Case I and model problem II, we compare the numerical solutions between our Gauass-Galerkin finite element method and Gauss-Galerkin finite difference method [5]. Those two methods produce almost identical numerical solutions. Whereas in [5] it is shown that the Gauss-Galerkin finite difference method is superior to the traditional two dimensional finite difference method in achieving high accuracy for solving this type of singular Fokker-Planck equations, Our results suggest that the Guass-Galerkin finite element method is at least as efficient and accurate as the Gauss-Galerkin finite difference method. We also study the depen- dence of the solutions upon parameters in the singularities and the dependency of the solutions upon lower order terms in our Fokker-Planck equations by applying our method to several problems. The numerical solutions obtained show that the pro- posed method is indeed capable in handling initial-boundary problems for singular diffusion equations of the type considered here. 1.2 Organization of the Dissertation This dissertation is organized as follows. Chapter 2 contains some basic material related to stochastic processes and Fokker-Planck equations. Chapter 3 discusses the problem formulation and some mathematical properties. We set up the Fokker-Planck equations with a set of boundary conditions. Then we obtain a weak form in the y variable for fixed x and t. We also obtain several energy estimates. Chapter 4 estab- lishes the Gauss-Galerkin finite element approximation and includes two parts. One is the one dimensional finite element approximation in the y variable while the other the one dimensional Gauss-Galerkin approximation in the x variable. In Chapter 5 we study the convergence of the Gauss-Galerkin finite element approximation. First, we establish the convergence of the semi-discrete finite element approximation in y. We then prove the convergence of the Gauss-Galerkin approximation in x. Finally, by combining the above results, the proof of the convergence of the Gauss-Galerkin finite element approximation is completed. In Chapter 6 we present our numerial results for problems involving several partial differential equations and discuss such numerical results. Chapter 7 contains conclusions and further discussions. CHAPTER 2 Preliminaries 2. 1 Markov Process Let T C [0, 00) and BRn be the Borel a—algebra of IR”. Consider a stochastic process in) = (X1(t),X2(t), - --,X,,(t))T,t e T, defined on a probability space (9, Jr, P). For all s and t in T such that 0$s P(s,:i:'; t, B) is measurable from R" into [0, 1], and (c) For all fixed .3, t, a? and B, the conditional probability P satisfies the Chapman- Kolmogorov equation (2.6). 2.3 Diffusion Process Markov process {X(t),t E T} is called a diffusion process if (a) Forallc>0,a:€IR" and0§t 0. There exists a function Ei(:i:', t) = (a1(i', t),a2(:i:', t), - - - ,an(§:', t))T such that for allc>0,:i:'ElR",jE{1,2,---,n} andO§t 0,f€R",j,k€{1,2,~-,n} and0§t 0 be a time interval of interest, 9 = g(x, y, t) and uo = uo(x, y) 2 0 be given data. We consider the following Fokker- Planck equation Bu __ _M 182(b2u) _ 8_(c_u_) +_1_(92(d2u) 1 ‘5?" 0x 2 6x2 6y 2 6y? n (O’Tlxn (3'1) with boundary conditions Bill. 2 g,- 011 (0,T) X 69 (Z = 1, 2,3,4) (3.2) and initial condition u(x,y,0) = uo(x,y) on 9 (3.3) 14 15 (3.1 ) describes the probability density u = u(x, y, t) for a stochastic process governed by a set of two stochastic differential equations in (x,y) with the respective drifts a = a(x, t) and c = c(y, t) and diffusions b = b(x, t) and d = d(y, t): dX _—. adt + del dY = cdt + (1sz (3-4) P{X(0) = 27, WW = y} = p(rr, v) = given where W1 = W1(t) and W2 = W2(t) are independent standard Wiener processes. We note that in the more general case with drift vector ('1' = (a1, a2)T and diffusion ma- b11 12 trix b = that depend on x, y and t, the stochastic differential equations (’21 b22 are given by the following: dX : aldt + blldWI + b12dW2 dY = 0.th + bgldW1 'I" b22dW2 (35) P{X(0) = I. Y(0) = y} = p(x, y) = given- The probability density function p(x, y, t) is governed by the following (Schuss [9]): 3P _ a(all?) 3(a2p)+_1_02(a11p) 16201121?) 16201211?) 302612219) at 62: By 2 662 2 6x03} 2 Byax + 2 83/2 (3.6) where aij = (bbT)ij Z,j = 1, 2. In the particular case, a1 = a1(x,t), a2 = a2(y, t), bu = b11(x,t), by = b22(y,t) and b12 = b21 = 0, the above equation (3.6) reduces to (3.1) with p being replaced by u, a1 being replaced by a, a2 being replaced by c, bu being replaced by b and b22 being replaced by d. Henceforth, we shall be primarily concerned with (3.1). 16 We assume that a, b, c and d are smooth functions with uniformly bounded derivatives of all orders. Many significant results in solving parabolic problems and efficient numerical methods are obtained by Luskin and Rannacher [6], Quarteroni and Valli [8], Strang and Fix [13], Thomee [14], [15], [16], Stoer and Bulirsch [12]. In this dissertation, we shall be concerned with the case when the problem is “singular”. More specifically, we are concerned with the case when the problem is “singular” in the x variable and “regular” in the y variable, i.e., the coefficient b2 may vanish along x = 0 and x = 1, but c and d2 are bounded away from zero for y E [0, 1]. For boundary conditions in the y-direction we consider along y = 0 the Dirichlet condition B3u = u(x, 0, t) = 0 along y = 0 (3.7) or the Neumann condition 6u(x, 0, t) B = 3” 8y 2 0 along y = 0 (3.8) Similarly along y = 1 we consider the Dirichlet condition B4u = u(x, 1, t) = 0 along y = 1 (3.9) or the Neumann condition 8u(x, 1, t) B = 4’“ 6y = 0 along y = 1 (3.10) The boundary conditions Blu = 0 and Bgu = 0 depend on the type of singularity one has at x = 0 and x = 1. Suppose that b2(x,t) = 0(x”) as x —> 0 (3.11) 17 b2(x,t) = 0((1— x)q) as x —> 1 (3.12) where p and q are constants satisfying p Z 1 and q 2 1. The appropriate boundary conditions, according to Feller [2] in his study of one-dimensional singular stochastic problems on (0, T) x (0,1), Keller and Voronka [7], are Blu=u(0,y,t)=0 if p>1 Bluzlgxuzo if p=1 and or , 16(b2u) . _ Blu—alcign){au—-2- 6x }—0 1f p—l and and Bgu=u(1,y,t)=0 if q>1 Bw==li13(1—x)u=0 if q=1 and or , 16(b2u) , _ Bgu—algr}{au—§ 8x }—0 1f q—l and We now consider the following initial-boundary problem: . a—u—O+Lu f in (or)xa at — . I u,(x 0 ,=t) on (0 T) x (0,1) u,(x 1 t,)=0 on (0 T)x(0,1) Blu(0, y, t) = 0 on (0 T) x (0,1) B2u(1,y,t) = 0 on (0 T) x (0,1) u(x, y, 0) = uo on Q where L _ 8(au) _162(b2u) 6(cu)_1 32(d2u ) u — 3x 2 8x2 8y _2 By? a(0, y, t) = O 0(0, y, t) as 0 (3.13) a(1, y, t) = 0 00.11.10 9* 0 (3.14) (3.15) (3.16) 18 It is seen that for simplicity in the subsequenct analysis we have assumed Dirichlet conditions at y = 0 and y = 1. Problems with Neumann conditions at y = 0 and y = 1 require only minor modifications. Also we have included a non homogeneous term f = f (x, y, t) in the partial differential equation. Let V = HMO, 1). Multiplying both sides of the partial differential equation in (3.15) by v = v(y) E V and integrating over (0,1), we get /.‘Z.—“ Mi.“— . — 44/323222 (3.17) —/1162é::u)vdy=/1fvdy. 0 98-?” 16(80. vd—y [01 la2;::u)vd y+/o1 g—Suvdy+/Olcg—:vdy .1- — . 3 22—; :63) y_ :=/ Since vlyzo = 0, v|y=1 = 0, we get (3.18) +/olcg—:-v dy :olégglu%dy+l 0 2 d%:%:dy =/0 fvdy. Let the bilinear form a(-, ) be defined by a(u,v) = [01 6S:)vdy— 01%62;::u)vdy+/01 535mm?) (3.19) +AICQS-Wd +Alé%€lugflw +/02d2c9y 23_UZU@ 19 a(u,v) = (Bight) — (é 62;::“),v) + (3311,11) By’ 2 8y ’6y 2 By’ay ’ 1 where (f, g) = [0 f(x,y,t)g(:r,y,t)dy is the scalar product of f and g in L2(0, 1) (3.20) with respect to variable y. We also denote the norm of f E L2(O, 1) with respect to 1 y by ||f(x,-,t)ll3 = [0 |f(:c,y.t)|2dy The weak formulation of (3.15) now reads as follows: Given f and no, find 11 such that (114,12) + a(u,v) = (f, 12) V1) 6 V < (3.21) u(x, y, 0) = uo. We note here that if homogeneous Neumann conditions are posed,the weak formu- lation above is to be modified with the space HMO, 1) replaced by H1(0, 1) as such Neumann conditions are “natural” boundary conditions. 3.2 Mathematical Analysis of Initial-Boundary Value Problem Let the bilinear form b(-, .) be defined by b(u, v) = a(u, v) — (1(1), 11) (3.22) 20 Taking 'u = u in (3.20), we have __ 6(au) 182(b2u) ac Bu a(u,u) —— ( 6:1: ,u) — (5 82:2 ,u) + (53711, u) + (055,11) 2 8y ’8y 2 By’ay Taking v = 11., in (3.22), we obtain (3.23) b(u, at) = a(u, ut) — a(ut, u) 3(au) u _ 102(b2u) u + 26-11 11 3:1: 1 t 2 61:2 a t 0y 7 t 8(aut) 182 (b221,) go ( 0:1: “) (2 (9:02 ’“ + ayut’“ ay’ 2 6y "ay 2 ay’ay ' Letting ....) z (a<;;u>,.) _. (21.122...) . (_.,.) + 93 + 16(d2)tu6_u + _1_(d2)8_u it) “ay’” 2 8y ’6y 2 ‘ay’ay (3.25) we have 1 21 ) 1 62 ((122) ,u) (2— 8x2 0(d2). 011 6(d2) 73? 0(atu) 8:1: "(Z-Mb .) _ (_ ....) G) 2).)H )—) ( 1 2 1 2 62((b2)u,) 63:2 02((b2)U) 02:2 ’ _ l 62( ()b2 ))t’U, ,u 2 012:2 2811. 3__ut 2 (9y 0_y ))’U.t 1 62“ ’ u 2 5:2) 9M 3%)) 29+) 9 2U)ut) u’ay 2 59y“ 3y 1 2011) (911 1 2611 But 2“l M:y’ay) + (2‘1 6y 8y) ,)-)(———)2<1;)) u + @1111 + c9211 1 6y: taya ~22)» +Euu+c 7“ 8y“ 6126—1“ (911 a_y B—y ...) . (<1...) .. (. l ——,u V\_l_/ 0 Bu 8 ant ) _, u y _a at) y 22 10(d2)¢ Bu 1 2 Bu Bu ('2' 6y “’a)+(é‘d”a’a)} 6(au) 1 02((b2)u) ac Bu 2{( a) Wt) “ (577)”) + (5?“ 1“) + (CW) 2 0y)“ ’20 (2 371’???» 0(aut) 182( ()b2 )u, But {(7 ) (2i— ax) )“)+(§§“~"+) (Cw) + Gag: __ u 126—2“ Bu )ut’afl) (2d 07’ ’02)} + (’21?) ) 6%)“ )+(-W)+(c§%e) 10(d7)u %_ut 612,611, 621—: 2 Oyu 2d 0y 6y So d flaw, u) = at(u, u) + 2a(u, ut) — b(u, at). (3.26) Thus we have 1 1 1 a(u,ut) = Eat-a(u, u) — iat(u, u) + §b(u, ut) (3.27) We now ssume that a(-, ) is continuous and coercive, i.e., there is a positive constant a, independent of t, such that a(v,v) _>_ allvllf, V1) 6 V. (3.28) Theorem 3.2.1 If no 6 L2(O,1),f E L2(0, 1), then for almost every :1: 6 (0,1), the 23 energy estimate 0113+ a(mu) :HUMHS%flfl%nM%+;W@mfl% 1 (1 Integrating over (0, 7'), T E (0, T], we obtain 1 Td T E/Eflm($mfl%fi+afllmfinflmfi a T :1:-,, d —/0 ,-,t2dt _Ya/an MHt+2 ”Mm m 5mmwm—wMW 0)It+ [HuHI%S;foHHM lWWwflfi+aAlWWmflmflSH%@r)m+EAflU($nt)%fi So, T 1 T FMXW($HQ%+QAlWWmflmfiSWM%J%+EAlUWmflMfl D 0 0 is a constant independent of T. Proof. By (3.21), (uhv) + a(u,v) :- (f, 1)). Taking v = at, we obtain (abut) + a(u, at) = (f, at) “WHO +a(u, Ut): (f Ht)- By (3.27), we obtain lat(u,u) + %b(u,ut) = (f, at). a(u, u) — 2 1 2 -— 25 So, (u,u) = é—at(a,u) — %b(u, at) + (f, at) C C 5IIuII3 + 5HU|I1|IIIz||o+l|~ 1 Hutllgi’ 237a |/\ Integrating over (0, t),t E (O, T], we obtain [IIusII3ds+5/‘js —aquId t 55/ IIuII3ds+—/ IIIIIllllusllod8+f IImsIIds o 2 o o t t 1 t 1 t t 36/0 IIuII3ds+c2/O IIuII3ds+5/O IIusII3ds+5/O llusll3d8+/O IIfII3ds. Hence, 1/‘II ||2ds+lftd ( )d8 < cI1+cI/‘IIIII2ds+/‘IIIII2ds — s — —a u,u _ I - 2 o u 0 2 0 ds 0 1 o 0 By (3.29), we have fIIuII3ds<—51,-IIuoII3+ fi/ IIfII3ds. So, 1/ ‘ llusllfids + 5aIuItI, u(t)) — 5aIuI0I, IIOII sc<1+c)IIUoll3+ (1+4 C))/0T”f“3d3 5/Hmna+5MWIIumI $1 01% +1+(1+C))/0Tllf||§d& 5a (u (0) u(0))+ 26 By assumption of (3.28) and (3.30), we have a(U(t)IU(t))ZallIIlli, a(U(0)IU(0))SCIIUOIIi and Huollgflluolli- Therefore c(1+c) /5||u.||3ds+5 I|u||3_ 5I|u uo||3+ || uo||3+ +c T ))/ I|f||3ds 0 1 1+c 2 c1+c T IIu|I3+— ;/|Ius||3ds <—(5+ a )|Iuo||3+5(I+ ( ))/ ||f||3ds 0 2 8n 2 2 T 2 sup ||u|| +51] ll—llodt<0 ||u0I|1+/0 ||f||od3 III t€(0T), A simple consequence of Theorem (3.2.2) is given by Corollary 3.2.1 Assume that for almost every :2: 6 (0,1) andt E [0, T], u in Theo- rem 3. 2. 2 satisfies IIU($I -It)||§ S C(IILUWI °,t)||3 + “WEI °,t)lli)- (3-32) Then for almost every x 6 (0,1) it satisfies the estimate 2 2+ £3331”qu W’t)” Eli/OT{6L($8,T— 0 (3.33) s 0.. (Hugo, -III3 + [0 ”f(x, at-,:II|3dt} Proof. Estimate (3.33) follows at once from (3.32), (3.31) and (3.29), since Lu : 8n f — 55. CHAPTER 4 Gauss-Galerkin Finite Element Method 4.1 Finite Element Approximation in the y Vari- able Let Vh C H3(0, 1) be a finite dimensional subspace and {¢I(y)}f:”0 be base functions of Vh. By (3.18), we have 16a 10(au) l132(b 0 6t vyd H/o—di—vdy o 2 8:5 2 (ml/0133’ Cuvdy 4.1) 1 8u1d21(0 d28_u6_v_d ( +/0 candy+ 0 ~2—-(—y—ug — dy+/12: y—/:.fvdy Taking v = ¢I(y),l = O, 1, - - -,Ny, we obtain ‘35qu 16;“ (ydy) —1162(b2“)dI Id 0 z( 0 2 8:1: 2 (y y 116d? +/g —u¢IIyIdy+/?x c—IIIIII IIId +/5 -(—y ) udIIydyI (4.2) +/5d1 d3g—yudIII/I dy— / deIyIdy 27 28 We approximate u(x, y, t) by “(I’M/t'V Zaj($It)¢j(y-) (4-3) From (4.2), we obtain Mao-(Mt 16(a()aa:t) J l 3 )d __ _ __.7_______( go— )/ My )My )3! Z/( Mindy Nv 1 2 2a. :1) C +5121) 6 (b53315 ’t))¢z(y)¢j(y)dy-N 201ml?) 0 (ligwywyywy N” 16dz( ) (4.4) ~20aI-IdtI [0 chIII ~2aII :rt)/ —dIIy Id dI-IyIdII or, 1 N5, 1 1 —§gaj(x,t) [0 33¢;(y)¢;(y)dy+ f0 de(y)dy ( Bao($,t) \ 6018(2),” (WIO) dIIIII dIIINII) ‘5‘ Ba 11:,t I——-—”3§ )) _ 23/1333,“ ——-——-dIIyIdI-IyIdy (4.5) +§§Ala(bg;§$’ t))¢,y()¢,-(y) )—dy gay-(cam %¢I(y)¢j(y)dy NV 1 N1, 18 ‘gaihhtl f0 C¢I(y)¢3(y)dy - 520301315) [0 iayl¢i(y)¢j(y)dy 3:0 1 NV 1 2 I I 1 71235.33) [0 d ¢,(y)¢,(y)dy+ f0 deIyIdy, 29 where day) = [01¢z(y)¢j(y)dy- Thus ( 43(0, 0) 45(0, 1) ¢(1I0) ¢(1,1) {Z/laaa,(xt =_ Z/Iama,“ N" 13(aaj(ddI :)) KEEI/O 3:1: ( .1. 25:0 1N \ d(N,,,0) ¢IN5,1) W W (I’M/(3} )ij(3/ )dy / ”v 1 2 20.3: Z/o a (b 3;: ,t))¢0(y)¢j(y)dy , l32(‘52032'(117It)) + ‘ [I 2 j=0 1NI 1 82(b20j(.’13,t)) 39:2 ¢1(y)¢j(y)dy Kig/O 83:2 ¢NI (y)¢j(y) ( 300 (2:, t) at 601(1), t) at \ dy / W And 30 Nv . t 1 6C d (12:30:03, ) 0 a—y¢N,(3/)¢j(y) y) {£255 -/01§£d2—¢o(y)¢- dy\ i=0 52501138 a“? —-)y¢'1(y )¢I(y)dy 52C” j/olaécf) GSA/"(3! )¢j(y 30d?!) ( [01 f¢o(y)dy ) [0‘ f¢o(y)dy ( fol f¢o(y)dy ) N, 1 ( gajmtvo C¢o(y)¢}(y)dy \ N5 1 EGAN) f0 c¢1(y)¢3(y)dy ( :aI-Ix, t) [01 cd~.IyId;IyIdy ) ( liaj/o d2¢0(y) y) 1%: '/1d2¢’()M)d 23:00] 0 1y y y 1"“ (gzdI/O d3dII,IyIdI I y, 31 ( acreage,” \ f if; memm \ 23% = _qu 23/1 a( (a___a__J( x, t)) wag-(may W / K Jill W:~:(y)¢j(y)dy / f g]: [01 ‘92“:9 t))¢o(y)¢j(y)dy \ 1 1 NU 102 2 . IE, +- —2 [O (b 3;: t))¢1(y)¢j(y)dy 1 N” 1 82 201' a: \ 5&1) (b 6;: ’t))¢~y(y)¢j(y)dy) N11 1 C ( 20‘2” t)/0(9 8—y¢o(y MHZ/My \ _-1 Define 32 (”201(1513/0 C¢o(y)¢3(y)dy \ NV 1 gag-(m) [0 c¢l(y)¢3(y)dy \§,01((xt>>/ c¢~ydy ) [01u(x.y,0>¢1(y)dy al (1:, O) = ‘1 (4.12) (awn) ) ( /1u(x.y,o>¢~.dy ) 4.2 Gauss-Galerkin Approximation in the x Vari- able We approximate aj(a:, t)da: by dpj( x, t) 2:21wij(t) —a:,-J-)(t)d:1:, j: 0,1,~-,Ny, (4.13) i.e., each aJ-(x, t) is associated with an n-point discrete Dirac-delta function, or “mea- sure”, xij (t), 1 S i g n, are the n “nodes” and wij(t), 1 _<_ i g n, are the corresponding “weights”. We choose :13", 0 g k 3 2n -— 1 as test functions. Multiplying by 33", k = 0,1,-- - , 2n — 1, and integrating over [0, 1] in (4.2) we obtain [01 folat B_U¢M(y) xkdxdy +/01/01 aglxunifiy )3::1;-—kcl:2:d—/Ol [01- 1 82;::1‘)q51( (yx) kdxdy +/01/01 3511chxkdasdy+/O/00—¢z(y)xykdxd +/0 [0218ng Wkdflidy 1 11 28a , k _ 1 1 k +/., lo 5" 5§¢‘(y)“’ dxdy -/0 [0 My” dmdy (414) 35 Using integration by parts, we obtain [01 [0181: @WW) +/01 [01 gSu¢¢(y)dxdy + [01 [)1 c%¢)(y)d$dy +/01/0116—(a——:2)( u¢z(y )ydscd +/011/02d2—-¢,(y )dxdy (4.15) +/01 {an — _3(§:“)}: y)dy =/01/01 f¢z(y)drvdy ('6 = 0)- =0 and [IA1—¢lxkd$dy—[)1/()Ukauxk1¢ldzdy—/01/01;kb2u$k—2¢ld$dy +/01/01—u¢z(y) xkdzdy+/0 [0 c—¢)(y) )xykdxd +/0/01§18__(5_d2 y)xkd$dy 1 ¢)(y)dy 1:20 1 2U +/0101d2-—y-¢l(y)$kd$dy+/l{augjk_ giggx k+kb2u$k_1y} = [01 [0‘ 141(4)::skdxdy (k 2 1). (4.16) By the assumed boundary condition (3.13) and (3.14), the boundary terms above drop out in all except the special case when p = q = 1 and a = 0 at x = O and :1: = 1. We shall assume in the subsequent analysis that we are not in this special case. Problems in which special case occurs will be handled separately. (See, e.g., the test problem in Section 6.2). 36 Thus, we have [01 [01 gtgdhdxdy + [01 [01 guffizdxdy +1: [01 c-Z—Zqfizdcrdy +//lla-(—d2) u¢ldx dy +/ / Edz—qbfdxdyzfolfolfgbldxdy (k=0) (4.17) and [0 l0 g—t—qfizxkdxdy— [0 [01 kaux" l¢ldxdy— f0 folék bz—umk 2‘15: dxdy +/01/0 —u¢¢xkdxdy+/l [01 c—¢zxkdzdy+/01/Olgagf)u¢ixkdxdy 1 11 26—11. I k _ 1 1 k +/0 0 2d 6y¢‘(y)$ divdy—fo [0 fable/)2: dxdy (1:21). (4.18) We get the following by using (4.3), (4.18) and (4.17), Nvdl k 1 Zaowmmmi4wwwm .40 =2;/ / kanw 1"" 1¢I¢dedy+2/ [lék 1,0,3; as" 2414.41.44.21 /f&=”@WJ“WyZ//%anw)%m 2,] [11659012 5.424. 101wa] [1; 4243414442244 +/01/01 f¢z(y)-’Ekdxdy (k 2 0). (4.19) From (4.19) we obtain (40,0) 40.1) 40,42») :22] / kaaja: 2:" 14,4,dzdy+Z/O [1%]: 37 { dilt— 01a0(x,t)ackd2: \ g-/lo.r(31: t):rkdr dt 0 1 ’ ‘ if (Nd \dtoaw’ 3’ 3’} bzozjx :r" 2¢1¢jdxdy —:/01/01‘6_ya BC Wxtfibt “WU/)3; kdxdy— Z/Ol [1 CCYj($t);t/¢1( )¢jy( )1: kdxdy HI“? My + [01 fol f¢z(y)y’°d$dy- or, ( 440,0) 440,1) ¢(1,0) (15(1, 1) K (b(NyaO) ¢(Ny11) 9M y)a:—kda:dy 2/0 f0 2dzaj¢,() ¢(0,Ny) ){d/O ao(x,t)a:dx\ d d 1 k 32/0 al(:c,t)a: d3: Ny,Ny) ) \a/OIQNJatflkdx) M )1? "dydy (4.20) 38 N1 1 1 ( gfo f0 may”,tlxk’1¢o(y)¢j(y)dydy \ N1 1 1 k 2 f0 [0 Mag-(my: -2¢1(y)4j(y)da:dy \:/01A kan-((:1:t)k—1¢Ny( y)¢](y)d1:dy) (Z/O [011k k-l )b201(($ W k 2(150(y)414 mdxdy) / [186a] (,)(xtqboy ) kdxdy \ fin/0 [DIS—Z: (1:, t) )¢1( (y)1: kdxdy )2]; lolgcafl (,)(xthNyy )(bjg/()1:kd1:dy} 39 f/ca,1t¢0 W5)kd$dy\ Nu 23/01/01ch t)¢1(y)¢ ( )y *dydy i=0 ”11 1 1 \2/0 [0 caj(1:,t)¢Ny(y)¢;-(y)xkd12dyj f/Haf) W’1 23/0 A1k2k—1)b2aJ-(x,t)xk 2q§1(y )qu-(y)d:cdy \2/0 [011162 k—1)b2ch-(:c,):ct k 2q>1vy(y )q’JJ-(y y)d:z:dy} NV 1 1 c - @3/0 [0 g—yajcc,t)¢~y(y)¢j(y)xkdxdy ) Nv i=0 Z//11L2:%M)¢J(y)xkdxdy\ ->:/0/116——y—§,)a-(:c '(ymmfldmy -Z/ [16 2 (3% a3(x,,,t)¢>'N( (wa-(ywdzdy ) ELI/0100““? t)¢1(y )053 (y )x kdxdy 41 2:] [0130 --aj( :13 t)¢o(y )qu (30$ dxdy \ 1:] [01660014 (,2: t) )(gbly (ycc) "dccdy :2]- /0 ca,-( :13, t) )(qfioy y)cckd:cdy \ :30]; fol caj( cc, t) )(ngyy (ycc) cckdccdy) 42 Nu 1 11 { gfo f0 561201166,t)¢6(y)¢}(y)xkdivdy \ NV 1 11 zgfo /0 §d2aj($,t)¢;(y)¢;(y)xkdmy J: NV 1 11 2 I I \fg/O [0 5d aj($,t)¢~y(y)¢j(y)$kdxdyj ( fol/01 f¢o(y)xkdxdy \ 1 1 +_1 /0/0f¢I(y)xkd:rdy \ [(11/()lf¢Ny(3/)$kd$dy / where / MD) MI) ¢(0,Ny) \ (I): we) can) ¢(1,N,,) \¢(Ny10) ¢(Ny,1) ¢(NyaNy) ) and { $(0,0) $(0,1) $(0,Ny) \ (p4 = 50,0) 60,1) $0,114,) \‘flNz/ao) a(Nwl) $(Ny’Ny) ) Let L; be the formal adjoint operator of L1 given by (4.21), we can write (4.21) as d Emu, t),a:k) = [0 (&($, t), LI(2:k))- (422) 43 From (4.13) and (4.21), we have ( $521.11“th—xio(t))xkdx ) dEt-fol :wil(t)6(x — xil(t))xkd:1: d 1 n k (a; [0 gwiNy(t)6(x—xmy(t))x da: } ”v 1 1 n { 2/0 [0 kagwifltMW—3713‘(t))$k_l¢o(y)¢j(y)d$dy \ NV 1 1 n = (9—1 23/ / ka2w1j(t)6(:r — $ij(t))$k-l¢1(y)¢j(y)d$dy 0 0 i=1 szg/O f0 kagwifltww —$ij(t))$k_l¢Ny(y)¢j(y)d$dy / NV 1 1 n f 211/0 f0 $14k — 1)b2;wij(t)6($ - $11(t))$k-2¢o(y)¢j(y)d$dy \ Nu 1 11 n +-1 23/0 [0 319(k-1)b2§wg(t)5($-arij(t))x’““2¢1(y)¢j(y)d$dy N1; 1 1 n (go/0 f0 “$1109“1)b2;wij(t)5($—$ij(t))$k"2¢Ny(y)¢j(y)d$dy ) 44 { :AIAI-g—Sgwu(t)6(x _<1>—1 i/olfggwuwa Nu 1 1 n 1,424) /0 g—zjgwij(t)6(x — wig-(wwoowJ-(kadxdy ) — x11¢1(y)¢j(y)xkdxdy - xij(t))¢~,, (y)¢j(y)m’°dxdy ) —xu~( 111101.21 >¢gy< ) *dzdy _mij“ ))¢1(y )¢j3/( )33 kd$dy \ _q)-1 Z/f 28_-y Ny 1 d2 2/ / :a—Ery) Z/f 110(d2 2 6y) 116()d2 " )2 “if“ i=1 wU( i=1 i=1 —a:z-,(t may )asjonkdzdy ) 221-]- (t))¢’1(y)¢j(y)$"d=vdy :1:—xij(t))¢'1vy(y)¢j(y)$kd$dy } 45 -‘1 § [1 [1 $112 imam — zij(t)>¢a¢;(y>xkdxdy '=0 0 0 1—1 NV 1 n I I $k x (120/0 [0 ; 42%me—xij(t>>¢Ny(y)¢J--1 [01 [01 f¢1(y)xkdxdy +-1 _(p-l Ny n f 22%“) j=Oi=1 N” n 2 20%“) j: —Oi=l N” n (ZZWJU) J'=O i=1 (NM ZEWUU) j:0 i=1 NV n 22%“) j=0i=1 (22%“) j=0i= 1 Ny n ( 20mm 2 Zea-fit) j=Oi=1 (SEW-(t) J=Oi=1 46 1(01/0 ka($ij(t)1ya t)¢0(y)¢j(y)dy \ 0] ka( a:(.-J-¢1(y)¢J-(y)dy Wfo ka¢o(>¢J(y)dy) flu) file — 111221 (:cJ-J( y t)¢11y>¢J(y)dy 40/01ng — 1)b2($ij(t)a y, ”(My (y)¢j(y)dy / -J(if)1/0 84mg), 31’ t) ¢o(y)¢J(y)dy \ gym] acoJJ-(t),y’t)JJ(y)¢J(y)dy 8y WA admins/:1), y, t) ¢Ny (y)¢j (y)dy / (4.23) 47 (NZZW'J(thiJ( ”/1C(xlj(t)vth)¢0(y)¢3(y)dy \ J':0 i=1 _qJ—I EEXJJJJW JJJ( n/‘c (JJJdy J':0 i=1 KZELMA) JJ(t>/0 c(xJ-J-a),th)¢NJ-vr;.)dz IU(3/)--7rh(y)l2 = (lift/(Z) -7r§.(Z))d~2)2 y I I 2 y S In (2) — Jrh(z)| dz/ dz w 311' = (y — 313')/yj+1 IU( )- 71:1(z)|2dz 311 1 Ila—mug = / lam-mafia N,— —1 yj+1| 2 = 23/] )(-7Th y)ldy 3:0 111' yJ+1( yJ+1 I s :[y (y— y. )/ Iu’z( #444124sz h2 NV 1 J 1 = __ 2: [W z)—7r;,(z)|2dz j=0 yj = 33/0 lu’(z)—7r§.(z)l2dz = ‘2—“11' — Willi- Inequality (5.3) follows at once from (5.2). Theorem 5.1.1 Ifuo E H6(0,1), f E L2(0, 1) andu satisfies the following condition, H1433, 30“? S C(IILU(:E, -.t)||3 + IIU($. -,t)l|i), (5-4) then the energy estimate max ||u(t )— u,.(t)||g + a [OT ||u(t) — uh(t)ll¥ 0 0 is a constant independent of h. Proof. For each t E (0, T] define eh(t) = u(t) — uh(t). Taking v = v), in (3.21), we get the weak form (ut, ’Uh) + a(u, vh) = (f, vh) (5.6) Subtracting (5.1) from (5.6), we obtain (Ea—till) Uh) + “(U — uh’vh) = 0’ (665th) ’ Uh) + a(eh(t)7 Uh) : O (5.7) For almost any fixed t, choose 1)), = uh(t) — wh, w), E V), in (5.7). For each 6 > O and for almost any t E [0, T] we find , u — w), + w), — uh(t)) + a(eh(t), u — 111,, + w), — uh(t)) ,u — 10h) + a(eh(t), ”U. — 112),) + (aegft) , w), — uh) + 0(6),“), 11)), - uh). By (5.7) (8eh(t) at ,wh — Uh) + a(eh(t),wh - Uh) = 0. 55 Therefore, we have gem). em) + «(2.1021(2) = :25”, u — wh) + a(eh(t), u — 112),) _<_ )—( nu — will. + cuehumluum — win. 0 g J; 0 Ha — while + j—Znu — will? + diam”?- Let w). = Jrh(u(t)) be the linear interpolant of u, for t E [0, T]. By Lemma 5.1.1 and Lemma 5.1.2, we have IIW) - 7rz.('tt(15))llo S 7h2IIU(t)||2 (5-8) and IIU(t) - rh(U(t))lli S 72h2IIU(t)Il§- (5-9) We thus obtain 1 68h at 7h2IIUI|2+ —72hQIIU(t)H§+€||eh(t)lli- 0 (5.10) a «(can elm) + a(ehu), em» 3 Using (3.28), we have a(eh(t), eh(t)) 2 oz||eh(t)||¥. If we choose 5 = 55-, then 1 6 2am ( 164(4)) + )auehumf 1 8( S ”gt— (6)105) €h(t )+ a(eh(t),eh(t)) (5.11) 06,, 62 oz <flateh 0:7h2llull +"— 20 72h2llu(t)li + Elle/JUNK- So 1 d CY 6e 5d—Illeh(t )IIS + Elleh(tlll2< _ a—h 7112))qu + 2—-’y2h2||u(t mg. (5.12) 0 56 Integrating over (0, t) for t E (0, T], we obtain t 2/—IIe1.(II.aIr+§ [0 IIehmIIJdr ta€:(7' ) c2 T a, 7h2IIU(T)II2dT+%72h2/O llu(r)||§dr |/\ o\.o 0 2 s .12 [0‘ ( 883:” 0 + Ilu(r)ll§) .1. + 1211225,; [0" llu(r)||§dr = 'th/OT( 6:35-71 +(1+—)IIU (THIS) (17' 1 T aem) 2 < _ 2 2 _ ,0...h [0 (—,,T O+||u(r)||2) .1. So 1 2 1 2 1 2 T Beh(r) 2 _ .. <_ 2lleh(t)llo 2IIe.(o>II3+ 3116.114. 2c..,,1.(/0 37 0+llur()ll2d Since lleh(0)||3 = ”no - uh,o||3 and agha) 2 311(1) _ auha) 2 < 811(t) 2 Buh(t) 2 6t 0 at at 0- 8t 0 6t 0’ it follows that IIeIt>II2+a/‘IIe(T)II2dr J t)J.(J >J J?/( ) dJ) 3:0 2:1 *5: «10.5% in: (005% (t1)/0 6420-53, y’ t)¢s(y)¢J-(y)dy) j=0i=1 Nu ~ Nv n (5.20) 22252;: (42.124252) / cIJ..<> w w my) Since |¢J(y)l S 1. |¢3(y)l S 1 and /1/1|f¢s(y) kudde< / / IfIdde (5.21) —i/ /. 'flzdxdy} {/ / dandy} =||f(t )II. we have 5,175.5) Nu ”11 n {KJMj,-1(J)+ KJMg-2(J) + 15(7)} dJ ( ) 5.30 t .. ... -o = / (am-T) {mm-1(7) + [gm-2(7) + R'(J)} d7 0 -o t .. M,15(t) = / emu—T) {R1(T)d7'} S 0 0 —o t -o -o M§(t) = / eK1<‘-T>{K2M,1(J)+ R2(T)d7'} g 0 0 By induction, Mgn-la) S 0. Therefore, mm) s fii’(t), l=0,1,2,---,2n—1 (5.31) 64 Define ( 77‘1“) \ (774) 7731—10) 774 M10) 2 5 1'3" = (5.32) n'i,(t) 7-7.4 40 -o \m“) )(l+1)(Ny+1)x1 \"4/(z+1)(Ny+1)x1 (K1 K2 K3 0 0 0 0) 0 K1 K2 K3 0 0 0 0 0 K1 K2 0 0 0 A: g g g g g 3 3 . (5.33) 0 0 0 0 K1 K2 K3 0 0 0 0 0 K1K2 (0 0 0 0 0 0 K1) We have d d—JM'“) = AM‘0) + llf(t)||oB’ (5.34) m§(0)=m§,n(0), 0“1||/0 [0 Iu( J,J,0)IJJJJ 5 “(VIII {[01 [01 (1103,21, 0)l2d$dy}% {[01 [01 dzvdyf = II‘P‘IIHIUoHo- (5.39) Substituting (5.37), (5.38) and (5.39) into (5.36), we have “mm”Se'lAIIT”‘I’-1””“°”°+"4if. M” ”W U. ||f( )IIngf _ 1 =ellAllT|| 1||||u0||0+774{2“A” (32llA||t_1)} {f0 ||f( )W} SeIIAHTII‘I’_1||||uo||o+774{2“2“(BQHAHT—l }{/< |lf( )I|=3dT} cm.) (5.40) where 00,15) = e“"“TII"llllluJ||o + J. {5'1” (JZIIAIT —1)}2 {fat ||f('r)||3dr)§ (5.41) So, for each given l, {77120) : n 2 5(1 + 1)} is uniformly bounded. Now, we consider the equicontinuity of {172205) : n 2 5(l + 1)} in [0,T]. By the 66 mean-value theorem, |t2 — t1|, t1,t2 e [0,T], g e (t1,t2). (5.42) d |m§,n(t2) — 7723,45): = lamb“) Following the same process leading to (5.26), we also obtain d «I —- t .5 ..< > .. _<. llKlllllTfiMtllloo + llellllTfiL—VtNloo + IlKallllmL—2(t)||oo + llf(t)||o774 (5.43) s (IIK1||+||K2||+||K3||)C(l,Ny)+ 05,525,. “mum. Therefore, lm;,n(t2) — m;,n(t1)l S é”, Nil/)It? _ tlla t1: t2 6 [0) T] (544) This proves the equicontinuity of {fiz£,(t) : n 2 —;-(l + 1)} in [0, T]. D Lemma 5.2.2 Given Ny, there exists a sequence kmkn —) 00, and a sequence of *1 functions {m,(t)} such that for every fixed integer l, we have lim m;n(t)=mi(t), Vte[0,T]. ‘ (5.45) [cu—>00 Proof. For each I and j, using the Ascoli-Arzela theorem [17] and Lemma 5.2.1, we get a subsequence of {mg-Mt) : n _>_ %(l + 1),t E [0,T]} that converges uniformly to a limit which we denote by m§,,,(t). Taking intersections of these subsequences successively with respect to j and applying a diagonal selection principle with respect 67 to l, we obtain a sequence kn, such that lim m;n(t)=m‘(t), Vt€[0,T] a * kn—ioo Given a sequence {mn};',°:0, define the following differences Aomn :2 mu, (5.46) Akmn = A’s-1m“ _ Ak_lmn+1, k =1,2,... We have the following result concerning with the classical moment problem [10]. Theorem 5.2.1 A necessary and sufi‘lcient condition for the existence of a solution of the Hausdorff moment problem, i.e., the existence of a unique nonnegative measure u satisfying m, 2/01x'du,l= 0,1,2,---, is that Akmz 20, k,l=0,1,2,---. Lemma 5.2.3 Given Ny, for each 0 g j g Ny and for anyt E [0,T], the elements of the sequence {mg-”(fire 1—0 are the moments of a nonnegative measure, i.e., there exists a nonnegative measure de,,..(x, t), such that for each I Z 0 and each 0 S j g Ny, we have 1 / x‘de,.(x,t)=m§-,(t), Vt€[O,T]. (5.47) 0 , 68 Proof. For given j and n, {m’- (t),t 2 0} are moments of the measure dug-Kt). By .7," Theorem 5.2.1, the related differences satisfy 0 g AWL“), Vi =0,1,2,---, and lg 2n— 1. By Lemma 5.2.2, for any I, we have lim Thin“) = 775’ (t), Vt e [0,T]. a: kn—mo Hence 0 g Aimia), vm = 0,1,2,.-.. Thus, for each j, there exists a nonnegative measure de,.(x, t) such that 1 m§-,,,,(t)=/0 x’de,,.(x,t). E] Let dP.(x,t) = (dP0,,.(x,t),dP1,,.(x,t),---,de,,.(x,t))T. We have the following corollary. Corollary 5.2.1 Given Ny, for any f E C[O,1], we have 1 lim f(x)d[i""(x,t)= [01 f(x)dP.(x,t), Vt€[O,T]. (5.48) kn—ioo 0 Proof. For every fixed integer l 2 0, by Lemma 5.2.2 and Lemma 5.2.3 we have 1 1 _, lim x’dflk"(x,t) lim m;n(t)=m' (t) = / mans), Vte [0,T] 0 kn—mo o — kn—mo 69 000 is dense in C[O,T]. By the well-known Weierstrass approximation theorem, {x’} So for any continuous function f, 1 1 _, Iim f(x)dfl""(x,t) = [0 f(ar)dP.(:r.t), Vt e [0,T] D kn—yoo 0 Using (5.15) and definition of L'{, we could write (4.22) as follows, 5,55.) = [01 WWW) (5.49) Lemma 5.2.4 Given Ny, for each I, we have mun—751(0) = [[01 L'f(x’)dP..(x, s)ds= [Gt/01 L’f(x’)p',.(x,s)dxds. (5.50) Proof. Integrating (5.49) over (0, t), we get Similar to the proof of inequality (5.26), we have 1 [o L'i‘(x‘)dfi""(s) s K mil... (t) + Kzn'il:l(t) + mafia) + llf(t)llofi. By the Lebesgue dominated convergence theorem, Lemma 5.2.2 and Corollary 5.2.1, we obtain as kn —-> 00, 151(5) —mf,(0) = [0’ A1L§(x‘)dP.(x,s)ds= [at A1L{(xl)fi.(x,s)dx [:1 Theorem 5.2.2 Under all the previous assumptions, given Ny, for any function f E 70 C[0,1], we have lim f(x)d[I;-‘(x,t) =/01f(x)d'j(x,t)dx (5.51) Proof. From Lemma 5.2.4, for any l, we have (xl,p',.(x,t))— x,p,.( x, 0)) )=/0 /01( L*(x )p..( x, s) )dxds Since {x‘} is dense in G[0,1], we see that {fi.(x,t)} are the weak solution of (4.7). Since (4.7) has a unique solution, we conclude that the limit of {[Z’cn} is independent of the choice of subsequences. It follows that the whole sequence is convergent. This completes the proof of (5.51) . [:1 Theorem 5.2.3 Under all the previous assumptions, for any continuous functions g(x) and h(y) in [0,1], we have lim 11m 2] [o h(y)g(x xy)q5j( )duj() ()dy2/0/0u u(,t)xy, ()g)dxdy. (5.52) N,, —+oo "400 Proof. 23/ [h ((9)993c5a y)d#1)-dy [0 [01:11 Hwy. h(y)g( )dwdy =2] / h(y)g svy)¢j( )du?(t )-dy 23/0 [Ohm g(x)¢y-()a,-(a:,t)dxdy} +2]0 [h(y >450; )a.(xt)dxdy— / [u u(,t)xy, Wlhawmdy} (5.53) 71 For fixed Ny, using Theorem 5.2.2, we get ,,1i_,Ig°{_NZy/01/Olh(y)($)¢j(y)du}‘(t)dy-Z/o [)h(y $)¢j (wag-(113 t)dzdy} =,,1i_,rg;/01My)¢y(y y){/g(x>( >(du,<)—a.(xt)dx)}dy =0- Now, we estimate the second term in (5.53). Since x)¢j(y y)aj( x, t) )—dxdy [0 [Cu (x ,ty, )h(y )g(x)dxdy 1 ”V 0 Mg(:)/:y)g h(21/) ({Z¢j(y)aj(x 15) - 14:1: 31. t)}dydx Z ¢j(y)aj($’ t) _ U($, y: t) dydIL‘ s [019(4){ 011455245? {[01 Eat-(mote t)— amt) dy}2 dz 1:0 1 2 ={ 01|h(y)l2dy}%/olg(x){/01 §E¢j(y)aj(x, t)— u(x,y,t) dy}2dx { 1 % 1 _<_ wordy} { 0 )g(x.-5244:} / [0 z ¢.(y>a.(x. t>— u(x. MI 4.444. j=0 (5.54) In Theorem 5.1.1, by choosing 110,), = uo, we get 2 2 2 T 2 Orggym )— 24(4)“. 3 04.4 (lino||1+ [0 Ilfllodt) (555) We then obtain 2 l T 454430.52], (114.11% [0 115134044 (5.56) Z ¢.a.(x, t) — u(x. y, t) 72 Therefore, Nllirnoo{Z// :1:y)¢>j()aj(x,t)—dxdy fell/Du u(,txy, )hy=()g(x)dxdy} 0 This proves (5.52). C] CHAPTER 6 Numerical Results In this chapter, we shall consider the following partial differential equations 1 2 ut = —(au)I + §(b u)m + uyy. (6.1) (6.1) models a family of singular processes with singularities at x = 0 and x = 1. We shall use the Gauss-Galerkin finite element method to find the solutions. We use the finite element method in the y-direction with piece-wise linear finite element space and the Gauss-Galerkin method in the x-direction to solve the proposed problems. Our numerical results will show that the Gauss-Galerkin finite element method is a efficient method dealing with a variety of such singular problems. 6.1 Piecewise Linear Finite Element Space We choose grid points {yj};:_‘_’0 by dividing [0,1] into Ny equal subintervals with h = 1 —,yj = jh,j = 0,1,---,Ny, such that Ny 0=yo————o 0 A A A A A A1 .710 311 .712 313 31N,-2 filmy—1 311v, _10 o———o l) ¢’2(y) () 10 0—0 0 A A A A A A1 .710 311 312 313 yNy-z yNy—l yN, _14) °_____. 77 3(y) 4) 10 o———o 0 A A A A A A A A1 310 311 le—l yj yj+1 .71N,,—1 3m, _10 o—o v [Ivy—1(9) () 1" o——o 0 A A A A A A A A1 310 91 30—1 313‘ UN,—2 yNy—l 311vy _10 78 My) 4) 10 o———-o O A A A A A A A A1 310 311 311—1 y] y~,_2 y~;_1 yiv, ...—10 1) 4;" when 0 < y < y h a _ 1 450(31) = { 01 When yl S 31 S 1 if, when 0 g y < yl (151(31) = ‘Hfla when 311 S 31 < 292 01 When 312 .<.. 31 S 1 0, when 0 S y < yl ”in, when 3113 31 < 312 (52(31) = ”Egg, when 312 S 31 < 313 01 When 313 S y S 1 (1514(9) = ¢v(y) ¢j+1(31) = We have 79 when 0 S y < yj_2 when 5... s y < y.-. when 31j—1 S 31 < 313' when yj g y S 1 when 0 g y < yj_1 when 31j—1 S 31 < 311' when 3/j S 31 < 31j+1 when yj+1 S 31 S 1 when 0 g y < y]- when 313‘ S 31 < yj+1 when yj+1 S 31 < 31j+2 when yj+2 S 31 S 1 when 0 g y < yNy_2 when yN,_2 S y < y~,_1 when y~,_. s y s 1 when 0 S y < er1 when 31Ny—1 S 31 S 1 when0, 0, x, + and *, respectively, for each grid line y = yj. We only show the numerical results along grid line y = 0.5. The results along grid lines y = 0.25 and y = 0.75 are similar. We use =11, + and x (or O, o, x, + and =11) to indicate the nodes moving to the boundary x = 0 , interior point(s) and the boundary x = 1. 89 We difine by m3-An(t) the ith “moment” along the jth grid line y = y,, mgAn(t) = [01 x'duflx, t) (6.47) and by M},(t) the ith “total moment” "v 1 1 , M:.(1)=;/0 / m'¢.(1)d11;~‘(x,1)dy (6.48) Figure 6.1 shows the movement of the three nodes as t increases. Table 6.1 shows the changes of the nodes *, + and x as t increases. Table 6.2 shows the changes of the weights at the three nodes *, + and x as t increases. Table 6.3 shows the changes of the ith “moment” m§,(y, t) at y = 0.5 as t increases. Table 6.4 shows the changes of the “total moment ” M,’,(t) as t increases. Figure 6.2 shows the movement of the five nodes 0, o, x, + and =1: as t increases. Table 6.5 shows the changes of the five nodes 0, o, x, + and :1: as t increases. Table 6.6 shows the changes of the weights at the five nodes 0, o, x, + and * as t increases. Table 6.7 shows the changes of the ith “moment” m§,(y, t) at y = 0.5 as t increases. Table 6.8 shows the changes of the “total moment ” Mf,(t) as t increases. Table 6.9 shows the changes of the exact total moment M 1'(t) as t increases. Table 6.10 shows the changes of the errors between the total moment M 1(t) and their approximation Mn(t) as t increases. Table 6.11 shows the changes of the relative errors between the total moment M 1(t) and their approximation Mn(t) as t increases. We observe the following results: (1) Table 6.8 shows that M2(t) = 1 and M; (t) = 0.5 for t 2 0. This shows that the approximation of the 0th and lst total moments equal the exact total moments. (2) At t = 1.5, the solution reaches the steady state based on the tolerance chosen. (3) The solution becomes uniform in y as t increases. 90 (4) The solution approaches zero in the interior and “piles” up at the boundary x = 0 and x = 1 as t increases. (5) The weights for the interior nodes tend to zero as t increases. (6) The weights at the other two nodes tend to 0.5 as t increases. They are the amounts of the fluxes leaking out from x = 0 and x = 1. (7) Tables 6.10 and 6.11 show that the errors and relative errors between the exact total moments and their approximations are very small. So the approximation is very accurate. (8) Table 6.4 and 6.8 shows that there is no significant difference for the approxi- mations of the total moments between using three nodes and using five nodes in the x direction. 91 Table 6.1. Gauss-Galerkin Finite Element Method: Changes of the three nodes 1:, + and x at y = 0.5 as t increases time 131 $2 $3 0.00 0.1127016654 0.5 0.8872983346 0.05 0.08265386728 0.5 0.9173461327 0.10 0.06390525119 0.5 09360947488 0.15 005111110621 0.5 09488888938 0.20 004185349059 0.5 09581465094 0.25 003487139567 0.5 09651286043 0.30 002944063013 0.5 09705593699 0.35 002511492851 0.5 09748850715 0.40 002160400788 0.5 09783959921 0.45 00187107586 0.5 09812892414 0.50 001629656768 0.5 09837034323 0.55 001426107726 0.5 09857389227 0.60 0.01252981511 0.5 09874701849 0.65 001104633973 0.5 09889536603 0.70 0009767086224 0.5 09902329138 0.75 0008657887541 0.5 09913421125 0.80 0007691567891 0.5 09923084321 0.85 0006846241354 0.5 09931537586 0.90 0006104085625 0.5 09938959144 0.95 0005450442828 0.5 09945495572 1.00 0004873149834 0.5 09951268502 1.05 0004362032427 0.5 09956379676 1.10 0003908518293 0.5 09960914817 1.15 0003505337425 0.5 09964946626 1.20 0003146287663 0.5 09968537123 1.25 0002826049383 0.5 09971739506 1.30 0002540037654 0.5 09974599623 1.35 0002284283277 0.5 09977157167 1.40 0002055336282 0.5 09979446637 1.45 0001850187067 0.5 09981498129 1.50 0001666201483 0.5 09983337985 92 Table 6.2. Gauss-Galerkin Finite Element Method: Changes of the weights at the three nodes 11:, + and x at y = 0.5 as t increases time 011 £02 013 0.00 02777777778 04444444444 02777777778 0.05 02851871392 04296257215 0.2851871392 0.10 02992481303 04015037395 0.2992481303 0.15 03148991793 03702016414 0.3148991793 0.20 03304744604 03390510791 0.3304744604 0.25 03453345547 03093308906 03453345547 0.30 03592303075 0281539385 0.3592303075 0.35 03720822962 02558354075 0.3720822962 0.40 03838908217 02322183565 0.3838908217 0.45 03946948176 02106103648 0.3946948176 0.50 04045515536 0.1908968929 0.4045515536 0.55 04135260497 0.1729479006 0.4135260497 0.60 04216853657 0.1566292687 0.4216853657 0.65 04290954774 0.1418090453 0.4290954774 0.70 04358195877 0.1283608245 0.4358195877 0.75 04419172578 01161654845 0.4419172578 0.80 0.4474440172 01051119655 04474440172 0.85 04524512591 009509748189 0.4524512591 0.90 04569863005 008602739892 0.4569863005 0.95 04610925419 007781491628 0.4610925419 1.00 04648096777 007038064451 0.4648096777 1.05 04681739356 006365212877 0.4681739356 1.10 04712183232 005756335362 0.4712183232 1.15 04739728751 005205424985 0.4739728751 1.20 04764648919 004707021628 0.4764648919 1.25 04787191679 00425616641 0.4787191679 1.30 0480758206 00384835879 0.480758206 1.35 04826024173 003479516532 0.4826024173 1.40 04842703071 00314593858 0.4842703071 1.45 0485778646 002844270799 0.485778646 1.50 04871426277 00257147447 0.4871426277 93 6.3 Dependence of Solution upon Parameters in the Singularities In this section, we shall consider the following partial differential equations: ut = (xp(1 — x)qu)m + uyy. (6.49) The right hand side of (6.49) is the divergence of the vector field ((x”(1 — x)qu),,, uy). Again, let P(x, y, t) express the flux across x in the positive direction and Q(x, y, t) express the flux across y in the positive direction at time t respectively, we have P($?y1t) : _($p(1_ $)qu)x (6'50) 00.4.1) = -.., (6.51) P(O, y, t), P(1,y, t), Q(x,0, t) and Q(x, 1, t) express the fluxes across x = 0, x = 1, y = 0 and y = 1 in the positive direction at time t respectively. Model I We consider the following initial-boundary problem with different parame- ters p and q: u, = (xp(1 — x)"u)m + uyy in (0,T) x (2 (6.52) with the boundary conditions (40.11.13) = U(1.y.t) = 0 0n (0. T) X (0.1). (6-53) uy(x,0,t) = uy(x,1,t) = 0 on (0,T) x (0,1), (6.54) 94 Table 6.3. Gauss-Galerkin Finite Element Method: Changes of the “moment” m;(y, t) with three nodes *, + and x at y = 0.5 as t increases time mo m1 m2 m3 m4 m5 0.00 1 0.5 0.333333 0.25 0.2 0.166667 0.05 l 0.5 0.349347 0.27402 0.228824 0.198693 0.10 1 0.5 0.363821 0.295732 0.254878 0.227642 0.15 1 0.5 0.376905 0.315358 0.278429 0.25381 0.20 1 0.5 0.388732 0.333098 0.299718 0.277464 0.25 1 0.5 0.399423 0.349134 0.318961 0.298845 0.30 1 0.5 0.409086 0.363629 0.336355 0.318172 0.35 l 0.5 0.417821 0.376731 0.352078 0.335642 0.40 1 0.5 0.425717 0.388575 0.36629 0.351433 0.45 1 0.5 0.432854 0.399281 0.379137 0.365707 0.50 1 0.5 0.439305 0.408958 0.390749 0.37861 0.55 1 0.5 0.445137 0.417705 0.401246 0.390273 0.60 1 0.5 0.450408 0.425612 0.410734 0.400816 0.65 1 0.5 0.455173 0.432759 0.419311 0.410345 0.70 1 0.5 0.45948 0.439219 0.427063 0.418959 0.75 1 0.5 0.463373 0.445059 0.434071 0.426745 0.80 1 0.5 0.466892 0.450338 0.440405 0.433784 0.85 1 0.5 0.470073 0.455109 0.446131 0.440146 0.90 1 0.5 0.472948 0.459422 0.451307 0.445896 0.95 1 0.5 0.475547 0.463321 0.455985 0.451095 1.00 1 0.5 0.477897 0.466845 0.460214 0.455793 1.05 1 0.5 0.48002 0.470031 0.464037 0.460041 1.10 1 0.5 0.48194 0.47291 0.467492 0.46388 1.15 1 0.5 0.483675 0.475513 0.470615 0.46735 1.20 1 0.5 0.485244 0.477866 0.473439 0.470487 1.25 1 0.5 0.486661 0.479992 0.475991 0.473323 1.30 1 0.5 0.487943 0.481915 0.478297 0.475886 1.35 1 0.5 0.489101 0.483652 0.480383 0.478203 1.40 l 0.5 0.490149 0.485223 0.482267 0.480297 1.45 1 0.5 0.491095 0.486643 0.483971 0.48219 1.50 1 0.5 0.491951 0.487926 0.485511 0.483901 95 Table 6.4. Gauss-Galerkin Finite Element Method: Changes of the “total moment” Mi,(t) with three nodes *, + and x at as t increases time M0 M1 M2 M3 M4 M5 0.00 1 0.5 0.333333 0.25 0.2 0.166667 0.05 1 0.5 0.349347 0.27402 0.228824 0.198693 0.10 1 0.5 0.363821 0.295732 0.254878 0.227642 0.15 1 0.5 0.376905 0.315358 0.278429 0.25381 0.20 1 0.5 0.388732 0.333098 0.299718 0.277464 0.25 1 0.5 0.399423 0.349134 0.318961 0.298845 0.30 1 0.5 0.409086 0.363629 0.336355 0.318172 0.35 1 0.5 0.417821 0.376731 0.352078 0.335642 0.40 1 0.5 0.425717 0.388575 0.36629 0.351433 0.45 l 0.5 0.432854 0.399281 0.379137 0.365707 0.50 1 0.5 0.439305 0.408958 0.390749 0.37861 0.55 1 0.5 0.445137 0.417705 0.401246 0.390273 0.60 1 0.5 0.450408 0.425612 0.410734 0.400816 0.65 1 0.5 0.455173 0.432759 0.419311 0.410345 0.70 1 0.5 0.45948 0.439219 0.427063 0.418959 0.75 1 0.5 0.463373 0.445059 0.434071 0.426745 0.80 1 0.5 0.466892 0.450338 0.440405 0.433784 0.85 1 0.5 0.470073 0.455109 0.446131 0.440146 0.90 1 0.5 0.472948 0.459422 0.451307 0.445896 0.95 1 0.5 0.475547 0.463321 0.455985 0.451095 1.00 1 0.5 0.477897 0.466845 0.460214 0.455793 1.05 1 0.5 0.48002 0.470031 0.464037 0.460041 1.10 1 0.5 0.48194 0.47291 0.467492 0.46388 1.15 1 0.5 0.483675 0.475513 0.470615 0.46735 1.20 l 0.5 0.485244 0.477866 0.473439 0.470487 1.25 1 0.5 0.486661 0.479992 0.475991 0.473323 1.30 1 0.5 0.487943 0.481915 0.478297 0.475886 1.35 1 0.5 0.489101 0.483652 0.480383 0.478203 1.40 1 0.5 0.490149 0.485223 0.482267 0.480297 1.45 1 0.5 0.491095 0.486643 0.483971 0.48219 1.50 1 0.5 0.491951 0.487926 0.485511 0.483901 96 Table 6.5. Gauss-Galerkin Finite Element Method: Changes of the five nodes 0, o, x, + and a: at y = 0.5 as t increases time .761 $2 $3 1134 $5 0.00 0.046910077 0.2307653449 0.5 0.7692346551 0.953089923 0.05 0.023013041 0.2191331593 0.5 0.7808668407 0.976986958 0.10 0.014685321 0.2160106921 0.5 07839893079 0985314678 0.15 0010483349 02145721597 0.5 07854278403 0989516650 0.20 0992038063 07862514012 0.5 02137485988 00079619366 0.25 0006288393 02132174718 0.5 07867825282 0.993711606 0.30 0005101903 02128481441 0.5 07871518559 0994898096 0.35 0004220822 02125776662 0.5 07874223338 0995779177 0.40 0996456245 07876280313 0.5 02123719687 0003543754 0.45 0003009645 02122110044 0.5 07877889957 0996990355 0.50 0997420468 07879177936 0.5 02120822064 0002579531 0.55 0997772625 07880227035 0.5 0.21 19772965 0002227374 0.60 0998064888 07881094017 0.5 02118905983 0001935111 0.65 0001689814 02118180894 0.5 07881819106 0998310185 0.70 0998518012 0788243161 0.5 0211756839 0001481988 0.75 0998695503 07882953389 0.5 0.2117046612 0001304496 0.80 0001151877 0211659892 0.5 0788340108 0998848122 0.85 0998980124 07883787575 0.5 02116212425 0001019875 0.90 0000905124 02115876985 0.5 07884123015 0999094875 0.95 0000804931 02115584512 0.5 07884415489 0999195068 1.00 0000717112 02115328475 0.5 07884671526 0999282887 1.05 0999360118 07884896454 0.5 0.2115103546 0000639881 1.10 0999428241 07885094665 0.5 0.2114905335 0000571758 1.15 0000511513 02114730193 0.5 07885269808 09994884863 1.20 0999541887 07885424939 0.5 0.2114575061 0000458112 1.25 0999589318 07885562638 0.5 0.2114437362 0000410681 1.30 0999631524 07885685095 0.5 0.2114314905 0000368475 1.35 0999669141 0788579418 0.5 0211420582 0000330858 1.40 0000297284 02114108501 0.5 07885891499 0999702715 1.45 0000267278 02114021563 0.5 07885978436 0999732721 1.50 0000240431 02113943805 04999999998 07886056192 0999759568 97 Table 6.6. Gauss-Galerkin Finite Element Method: Changes of the weights at nodes 0, o, x, + and * at y = 0.5 as t increases time (.421 (1)2 (.03 L04 LL15 0.00 0118463442 0239314335 0284444444 0.239314335 0.1 1846344 0.05 0139977042 0.225973313 0268099287 0225973313 013997704 0.10 0170874697 0206626649 0244997305 0.206626649 017087469 0.15 0200965839 0.187750113 0222568094 0187750113 020096583 0.20 0228907253 0170212913 0201759666 0.170212913 0.228907253 0.25 0254494478 0154150051 0182710939 0.154150051 0.254494478 0.30 0277794365 0139521743 0165367781 0.139521743 0.277794365 0.35 0298953252 0126236970 0149619555 0.126236970 0.298953252 0.40 0318138876 0114190794 0135340657 0.114190794 0.318138876 0.45 0335519514 0103277744 0122405482 0103277744 0.335519514 0.50 0351255856 0093397020 0110694245 00933970208 0.351255856 0.55 0365497910 0084454487 0100095204 0.084454487 0.365497910 0.60 0378384055 0076363286 0090505316 0.076363286 0.378384055 0.65 0390041077 0069043827 0081830190 0.069043827 0.390041077 0.70 0400584668 0062423478 0073983707 0.062423478 0.400584668 0.75 0410120113 0056436136 0066887501 0.056436136 0.410120113 0.80 0418743061 0051021748 0060470380 0.051021748 0.418743061 0.85 0426540302 0046125821 0054667753 0.046125821 0.426540302 0.90 0433590516 0041698952 0049421061 0.041698952 0.433590516 0.95 0439964991 0037696382 0044677252 0.037696382 0.439964991 1.00 0445728284 0034077575 0040388279 0.034077 57 5 0.445728284 1.05 0450938838 0030805835 0036510650 0.030805835 0.450938838 1.10 0455649546 0027847952 0033005002 0.027847952 0.455649546 1.15 0459908267 0025173873 0029835718 0.025173873 0.459908267 1.20 0463758298 0022756413 0026970575 0.022756413 0.463758298 1.25 04672388082 0020570978 0024380426 0.020570978 0467238808 1.30 047038522 0018595325 0022038909 0.018595325 0.47038522 1.35 0473229572 0016809337 0019922181 0.016809337 0.473229572 1.40 0475800836 0015194822 001800868 0.015194822 0.475800836 1.45 0478125214 0013735330 0016278911 0.013735330 0.478125214 1.50 0480226393 0012415985 0014715243 0.012415985 0.480226393 98 Table 6.7. Gauss-Galerkin Finite Element Method: Changes of the “moment” m:,(y, t) with five nodes 0, o, x, + and * at y = 0.5 as t increases time m0 m1 m2 m3 m4 m5 m6 m7 m8 mg 0.00 1 0.5 0.333 0.25 0.2 0.1667 0.1429 0.125 0.111 0.1 0.05 1 0.5 0.349 0.274 0.228 0.1987 0.1772 0.161 0.148 0.138 0.10 1 0.5 0.363 0.295 0.254 0.2276 0.2082 0.193 0.182 0.173 0.15 1 0.5 0.376 0.315 0.278 0.2538 0.2362 0.223 0.212 0.204 0.20 1 0.5 0.388 0.333 0.299 0.2775 0.2616 0.249 0.240 0.233 0.25 1 0.5 0.399 0.349 0.319 0.2988 0.2845 0.273 0.265 0.258 0.30 1 0.5 0.409 0.363 0.336 0.3182 0.3052 0.295 0.287 0.281 0.35 1 0.5 0.417 0.376 0.352 0.3356 0.3239 0.315 0.308 0.302 0.40 1 0.5 0.425 0.388 0.366 0.3514 0.3408 0.332 0.326 0.321 0.45 1 0.5 0.432 0.399 0.379 0.3657 0.3561 0.348 0.343 0.338 0.50 1 0.5 0.439 0.409 0.390 0.3786 0.3699 0.363 0.358 0.354 0.55 1 0.5 0.445 0.417 0.401 0.3903 0.3824 0.376 0.372 0.368 0.60 1 0.5 0.450 0.425 0.410 0.4008 0.3937 0.388 0.384 0.381 0.65 1 0.5 0.455 0.432 0.419 0.4103 0.4039 0.399 0.395 0.392 0.70 1 0.5 0.459 0.439 0.427 0.419 0.4132 0.408 0.405 0.4028 0.75 1 0.5 0.463 0.445 0.434 0.4267 0.4215 0.417 0.414 0.412 0.80 1 0.5 0.466 0.450 0.440 0.4338 0.4291 0.425 0.422 0.420 0.85 1 0.5 0.470 0.455 0.446 0.4401 0.4359 0.432 0.430 0.428 0.90 1 0.5 0.472 0.459 0.451 0.4459 0.442 0.439 0.436 0.435 0.95 1 0.5 0.475 0.463 0.456 0.4511 0.4476 0.445 0.442 0.441 1.00 1 0.5 0.477 0.466 0.460 0.4558 0.4526 0.450 0.448 0.447 1.05 1 0.5 0.48 0.47 0.464 0.46 0.4572 0.455 0.453 0.452 1.10 1 0.5 0.481 0.472 0.467 0.4639 0.4613 0.459 0.457 0.456 1.15 l 0.5 0.483 0.475 0.470 0.4674 0.465 0.463 0.461 0.460 1.20 1 0.5 0.485 0.477 0.473 0.4705 0.4684 0.466 0.465 0.464 1.25 1 0.5 0.486 0.48 0.476 0.4733 0.4714 0.47 0.468 0.468 1.30 1 0.5 0.487 0.481 0.478 0.4759 0.4742 0.472 0.471 0.471 1.35 1 0.5 0.489 0.483 0.480 0.4782 0.4766 0.475 0.474 0.473 1.40 1 0.5 0.490 0.485 0.482 0.4803 0.4789 0.477 0.477 0.476 1.45 1 0.5 0.491 0.486 0.484 0.4822 0.4809 0.48 0.479 0.478 1.50 1 0.5 0.492 0.487 0.485 0.4839 0.4828 0.481 0.481 0.480 99 Table 6.8. Gauss-Galerkin Finite Element Method: Changes of the “total moment” M;(t) with five nodes 0, o, x, + and a: as t increases time M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 0.00 1 0.5 0.333 0.25 0.2 0.1667 0.1429 0.125 0.1111 0.1 0.05 1 0.5 0.349 0.274 0.228 0.1987 0.1772 0.161 0.1485 0.1384 0.10 1 0.5 0.363 0.295 0.254 0.2276 0.2082 0.1936 0.1822 0.1732 0.15 1 0.5 0.376 0.315 0.278 0.2538 0.2362 0.223 0.2128 0.2046 0.20 1 0.5 0.388 0.333 0.299 0.2775 0.2616 0.2496 0.2404 0.233 0.25 1 0.5 0.399 0.349 0.319 0.2988 0.2845 0.2737 0.2653 0.2586 0.30 l 0.5 0.409 0.363 0.336 0.3182 0.3052 0.2954 0.2879 0.2818 0.35 1 0.5 0.417 0.376 0.352 0.3356 0.3239 0.3151 0.3082 0.3028 0.40 1 0.5 0.425 0.388 0.366 0.3514 0.3408 0.3329 0.3267 0.3217 0.45 1 0.5 0.432 0.399 0.379 0.3657 0.3561 0.3489 0.3433 0.3388 0.50 1 0.5 0.439 0.409 0.390 0.3786 0.3699 0.3634 0.3584 0.3543 0.55 1 0.5 0.445 0.417 0.401 0.3903 0.3824 0.3766 0.372 0.3683 0.60 1 0.5 0.450 0.425 0.410 0.4008 0.3937 0.3884 0.3843 0.381 0.65 1 0.5 0.455 0.432 0.419 0.4103 0.4039 0.3991 0.3954 0.3924 0.70 1 0.5 0.459 0.439 0.427 0.419 0.4132 0.4088 0.4055 0.4028 0.75 1 0.5 0.463 0.445 0.434 0.4267 0.4215 0.4176 0.4145 0.4121 0.80 1 0.5 0.466 0.450 0.440 0.4338 0.4291 0.4255 0.4227 0.4205 0.85 1 0.5 0.470 0.455 0.446 0.4401 0.4359 0.4327 0.4302 0.4282 0.90 1 0.5 0.472 0.459 0.451 0.4459 0.442 0.4391 0.4369 0.4351 0.95 1 0.5 0.475 0.463 0.456 0.4511 0.4476 0.445 0.4429 0.4413 1.00 1 0.5 0.477 0.466 0.460 0.4558 0.4526 0.4503 0.4484 0.447 1.05 1 0.5 0.48 0.47 0.464 0.46 0.4572 0.455 0.4534 0.452 1.10 1 0.5 0.481 0.472 0.467 0.4639 0.4613 0.4594 0.4579 0.4567 1.15 1 0.5 0.483 0.475 0.470 0.4674 0.465 0.4633 0.4619 0.4608 1.20 1 0.5 0.485 0.477 0.473 0.4705 0.4684 0.4668 0.4656 0.4646 1.25 1 0.5 0.486 0.48 0.476 0.4733 0.4714 0.47 0.4689 0.468 1.30 1 0.5 0.487 0.481 0.478 0.4759 0.4742 0.4729 0.4719 0.4711 1.35 1 0.5 0.489 0.483 0.480 0.4782 0.4766 0.4755 0.4746 0.4738 1.40 1 0.5 0.490 0.485 0.482 0.4803 0.4789 0.4778 0.477 0.4764 1.45 1 0.5 0.491 0.486 0.484 0.4822 0.4809 0.48 0.4792 0.4786 1.50 1 0.5 0.492 0.487 0.485 0.4839 0.4828 0.4819 0.4812 0.4807 100 Table 6.9. Gauss-Galerkin Finite Element Method: Changes of the exact total mo- ment M i (t) as t increases time M0 M1 M2 M3 M4 M5 M6 M7 M3 M9 0.00 l 0.5 0.333 0.25 0.2 0.166 0.1429 0.125 0.1111 0.1 0.05 1 0.5 0.349 0.273 0.228 0.198 0.1768 0.1607 0.1481 0.1381 0.10 1 0.5 0.363 0.295 0.254 0.227 0.2076 0.193 0.1816 0.1725 0.15 1 0.5 0.376 0.314 0.277 0.253 0.2354 0.2222 0.2119 0.2037 0.20 1 0.5 0.388 0.332 0.298 0.276 0.2606 0.2486 0.2393 0.2319 0.25 1 0.5 0.398 0.348 0.318 0.297 0.2834 0.2726 0.2641 0.2574 0.30 1 0.5 0.408 0.362 0.335 0.317 0.304 0.2942 0.2866 0.2805 0.35 1 0.5 0.417 0.375 0.351 0.334 0.3226 0.3138 0.3069 0.3014 0.40 1 0.5 0.425 0.387 0.365 0.350 0.3395 0.3315 0.3253 0.3203 0.45 1 0.5 0.432 0.398 0.378 0.364 0.3548 0.3475 0.3419 0.3374 0.50 1 0.5 0.438 0.408 0.389 0.377 0.3686 0.362 0.3569 0.3528 0.55 1 0.5 0.444 0.416 0.400 0.389 0.3811 0.3752 0.3706 0.3669 0.60 1 0.5 0.449 0.424 0.409 0.399 0.3924 0.3871 0.3829 0.3795 0.65 1 0.5 0.454 0.431 0.418 0.409 0.4027 0.3978 0.394 0.391 0.70 1 0.5 0.458 0.438 0.426 0.417 0.4119 0.4075 0.4041 0.4014 0.75 1 0.5 0.462 0.444 0.433 0.425 0.4203 0.4163 0.4132 0.4107 0.80 l 0.5 0.466 0.449 0.439 0.432 0.4279 0.4243 0.4215 0.4192 0.85 1 0.5 0.469 0.454 0.445 0.439 0.4348 0.4315 0.429 0.4269 0.90 1 0.5 0.472 0.458 0.450 0.444 0.441 0.438 0.4357 0.4339 0.95 1 0.5 0.475 0.462 0.455 0.450 0.4466 0.4439 0.4418 0.4402 1.00 1 0.5 0.477 0.466 0.459 0.454 0.4517 0.4492 0.4474 0.4459 1.05 1 0.5 0.479 0.469 0.463 0.459 0.4563 0.4541 0.4524 0.451 1.10 1 0.5 0.481 0.472 0.466 0.463 0.4604 0.4584 0.4569 0.4557 1.15 1 0.5 0.483 0.474 0.469 0.466 0.4642 0.4624 0.461 0.4599 1.20 1 0.5 0.484 0.477 0.472 0.469 0.4676 0.466 0.4647 0.4637 1.25 1 0.5 0.486 0.479 0.475 0.472 0.4707 0.4692 0.4681 0.4672 1.30 1 0.5 0.487 0.481 0.477 0.475 0.4735 0.4721 0.4711 0.4703 1.35 1 0.5 0.488 0.483 0.479 0.477 0.476 0.4748 0.4739 0.4731 1.40 1 0.5 0.489 0.484 0.481 0.479 0.4783 0.4772 0.4764 0.4757 1.45 1 0.5 0.490 0.486 0.483 0.481 0.4803 0.4794 0.4786 0.478 1.50 1 0.5 0.491 0.487 0.485 0.483 0.4822 0.4813 0.4806 0.4801 101 Table 6.10. Gauss-Galerkin Finite Element Method: Changes of the errors between the exact total moment M 2'(t) and their approximation Mn(t) as t increases time EMO EM1 EM2 EM3 EM4 EM5 0.00 2.2e-16 5.6e-17 -5.6e-17 2.8e-17 5.6e-17 2.8e-17 0.05 1.1e-16 1.1e-16 -000015 -000023 -000027 -000031 0.10 4.4e-16 5e-16 -000028 -000041 -00005 -000055 0.15 4.4e-l6 1.7e-16 -000037 -0.00056 -0.00067 -0.00075 0.20 7.8e-16 5e-16 -000045 -000068 -000081 -00009 0.25 4.4e-16 5e-16 -000051 -000077 -000092 -0.001 0.30 7.8e-16 6.7e-16 -000055 -000083 -0001 -00011 0.35 5.6e-16 5.6e-16 -0.00059 -000088 -00011 -00012 0.40 8.9e-16 5.6e-16 -00006 -0.00091 -00011 -00012 0.45 1.1e-15 6.19-16 -000062 -000092 -00011 -00012 0.50 1e-15 7.2e-16 -000062 -000093 —00011 -00012 0.55 1.6e-15 8.3e—16 -0.00062 -000092 -00011 -00012 0.60 1.6e-15 6.1e-16 -000061 -000091 -00011 -00012 0.65 1.4e—15 7.2e-16 -0.00059 -0.00089 -0.0011 -0.0012 0.70 1.8e-15 1.2e-15 -000058 -000087 -0001 -00012 0.75 1.3e—15 le-15 -000056 —000084 -0001 -00011 0.80 1.7e—15 8.3e-16 ~000054 -000081 -000097 -00011 0.85 2.1e-15 1.2e—15 -000052 -0.00078 —0.00094 -0001 0.90 2.1e-15 8.9e-16 -00005 -000075 -00009 -0001 0.95 2.3e-15 1.1e-15 -000048 -000071 -000086 -000095 1.00 2.6e-15 1.4e-15 -0.00045 -000068 -000081 -000091 1.05 2.6e-15 1.4e-15 -000043 -000064 -000077 -000086 1.10 2.7e—15 1.3e-15 -000041 -000061 -000073 -000081 1.15 2.7e-15 1.2e-15 -000039 -000058 -000069 -000077 1.20 3.3e-15 1.4e-15 -000036 -000055 -000065 -000073 1.25 3e-15 1.4e-15 -0.00034 -000051 -000062 -000068 1.30 3.2e-15 1.4e-15 -000032 -000048 -000058 -000064 1.35 3.6e-15 1.7e-15 -00003 -000045 -000054 -00006 1.40 3.8e-15 1.7e-15 -000028 -000043 -000051 -000057 1.45 3.8e—15 1.6e-15 -000027 -00004 -0.00048 -0.00053 1.50 4.1e-15 1.9e-15 -000025 -000037 -000045 -00005 102 Table 6.11. Gauss-Galerkin Finite Element Method: Changes of the relative errors between the exact total moment M ’(t) and their approximation Mn(t) as t increases time REMO REMI REM2 REM3 REM4 0.00 1.6867e-16 1.6867e-16 1.6867e-16 1.6867e-16 1.6867e—16 0.05 -000027869 -000027869 -000027869 -000027869 -000027869 0.10 -000054912 -000054912 -000054912 -000054912 -000054912 0.15 -000079 -0.00079 -0.00079 -000079 -000079 0.20 -000099243 -000099243 -000099243 -0.00099243 -0.00099243 0.25 -00011547 -00011547 -00011547 -0.0011547 -0.0011547 0.30 -00012788 -00012788 -00012788 -00012788 -00012788 035 -00013688 -00013688 -00013688 -00013688 -00013688 0.40 -00014291 -00014291 --00014291 -00014291 -00014291 0.45 -00014642 -00014642 -00014642 -00014642 -00014642 0.50 -00014783 -00014783 -00014783 -00014783 -00014783 0.55 -00014753 -00014753 -00014753 -00014753 -00014753 0.60 -0.0014584 -00014584 -00014584 -00014584 -00014584 0.65 -00014305 -00014305 -0.0014305 -0.0014305 -00014305 0.70 -00013939 -00013939 -00013939 -00013939 -00013939 0.75 -0.0013508 -0.0013508 -00013508 -00013508 -00013508 0.80 -00013028 -00013028 -00013028 -00013028 -00013028 0.85 -00012513 -00012513 -00012513 -00012513 -00012513 0.90 -00011975 -00011975 -00011975 -00011975 -00011975 0.95 -00011424 -00011424 -00011424 -00011424 -00011424 1.00 -0.0010867 -0.0010867 -00010867 -00010867 -00010867 1.05 -00010312 -00010312 -00010312 -00010312 -00010312 1.10 -000097627 -000097627 -000097627 -000097627 -000097627 1.15 -000092237 -000092237 -000092237 -000092237 -000092237 1.20 -000086983 -000086983 -000086983 -000086983 -000086983 1.25 -000081888 -0.00081888 -0.00081888 -000081888 -000081888 1.30 -00007 6971 -0.00076971 -000076971 -000076971 -000076971 1.35 -000072245 -000072245 -0.00072245 -0.00072245 -000072245 1.40 -000067719 -000067719 -000067719 -000067719 -000067719 1.45 -000063398 -000063398 -0.00063398 -0.00063398 -000063398 1.50 -000059284 -000059284 -000059284 -000059284 -000059284 103 and initial conditions 2 7T3! . u(x,y,O) = 7rcos (—2—) sm(7r:r) on Q. (6.55) Case I p = 2, q = 2 This implies that both :1: = 0 and :1: = 1 are natural boundaries. In this example, for fixed y, one can show that the density u(x, y, 00) = 0, Va: 6 (0,1), is a steady state solution and escaping to the boundary a: = 0 and :c = 1 as 1: becomes arbitrary large and u will “pile” near boundary a: = O and a: = 1 with a Dirac-delta function singularity formed at a: = 0' and a: = 1‘. Our numerical result will show this. We apply the Gauss-Galerkin Finite Element method using finite element ap— proximations in the y-direction and Gauss-Galerkin approximations in the x-direction. We divided y E [0, 1] into four equal subintervals. Then we get five grid lines y, = jh, j = 0,1,---,4,h = 0.25. In the x—direction we use three nodes labeled by *, + and x for each grid line y = y,-. We only discuss the results along grid y = 0.5. The results along y = 0.25 and y = 0.75 are similar. We use *, + and x to indicate the nodes moving to the boundary x = O , interior point and the boundary a: = 1. Figure 6.3 showes the movement of the three nodes as t increases. Table 6.12 shows the changes of nodes *, + and x as t increases. Table 6.13 shows the changes of the weights at the three nodes *, + and x as t increases. Table 6.14 shows the changes of the ith “moment” m§,(y, t) at y = 0.5 as t increases. Table 6.15 shows the changes of the “total moment” Mf, (t) as t increases. (1) Integrating (6.49) over $2, integrating by parts and using boundary condition (6.53), (6.54) we have % fol f01u(.r, y, t)d$dy = fol fg((x2(1—a:)2u)u+uyy)dxdy = 0 This shows that the total probability is conserved. Therefore, the rate of change of the exact 0th total moment £20,451 2 0 So, the exact 0th total moment M°(t) = M°(0) = fol fol u(x,y,0)d:rdy = 1. 104 (2) Multiplying (6.49) by a: and integrating over $2, integrating by parts and using boundary condition (6.53), (6.54) we have %f01f01u(x,y,t)xdxdy = fol f01(($2(1 -— :r)2u)mx + uyyx)d:rdy = 0 This means the rate of change of the exact lst total moment £491 = 0 So, the exact lst total moment M1(t) = M1(0) = fol f0l u(x,y, O)a:dxdy = 0.5. (3) Table 6.15 shows that M30) = 1 = M°(t) for t Z 1. This means the total mass = 1. Table 6.13 shows that is equal to the sum of the two weights at the boundaries :1: = 0 and :r = 1. (4) Table 6.15 shows that M,1,(t) = 0.5 = M1(t) for t 2 1. This shows that the approximation of the lst total moment equals the exact lst total moment. (5) At t = 30, the solution reaches the steady state based on the tolerance chosen. (6) The solutinon becomes uniform in y as t increases based on observations of the numerical results along the other y-grid lines. (7) The solution approaches zero in the interior and “piles” up near the boundaries 2r = 0 and :2: = 1 as t increases. The steady state solution is %(6(x) + 6(23 — 1)). (8) The weight for the middle node tends to zero as t increases. (9) The weights at the other two nodes tend to 0.5 as t increases. (10) Table (6.15) shows that the ith “total moments” of the steady state solution are all about 0.5 for i from 1 to 5. Since the weight tends to zero for the interior node and 0.5 for the other two points which approach to x = 0 and a: = 1, the contribution of u to the ith total moment is the contribution of these two weights to the ith total moment. The total moment contributed by the weight at a: = 0 is zero and the total moment contributed by the weight at :1: = 1 is 0.5 which is equal to the weight at :r = 1. 105 We now discuss how the movement of nodes depends on the parameters p and q. We know that the degree of singularities of (6.52) depend on the parameters p and q. If p < q(or p > q), the singularity at :1: = 0 will be less (or greater) than the singularity at :1: = 1. The movement of nodes to boundary a: = 0 should be faster (or slower) than the movement of nodes to boundary 2: = 1. Following Examples shall show that. In the following Case II, Case III, and case IV, we use the same method as in Case I to get the numerical results. Case II p < q We take p = 1 and q = 2 as an example. The numerical results are in Figure 6.4 and Tables 6.16, 6.17, 6.18 and 6.19. We observe that the nodes move to the boundary :1: = 0 faster than to the boundary a: = 1. Case III p > q We take p = 2 and q = 1 as an example. The numerical results are in Figure 6.5 and Tables 6.20, 6.21, 6.22 and 6.3. We observe that the nodes move to the boundary a: = 0 more slowly than to the boundary a: = 1. Case IV Fixing p and changing q Tables 6.24 6.25 6.26 and 6.27 show how the movement of nodes to boundary x = 1 depends on the parameter q. Nodes with smaller parameter q move to the boundary :1: = 1 faster than those with larger q. 106 Model II. Let‘ p = 1 and q = 1. This implies that both :1: 2 0 and :1: = 1 are exit boundaries. We consider the following initial -boundary problem: 11, = (x(1 — x)u)“. + aw in (0,T) x Q (6.56) with the boundary conditions ii_r1(1)xu(x,y,t) = 1333(1 — x)u(x, y,t) = 0 on (0,T) x (0,1), (6.57) uy(:c,0,t) = uy(:r,1,t) = 0 on (0,T) x (0,1), (6.58) and initial conditions u(x, y, 0) = 7r 0.55 — 0.1 cos2 (gfl :rsin(7ra:) on {2. (6.59) By (6.50), P(x, y, t) = —(:1:(1-— x)u); = —(1 — x)u + mu — x(1 — x)ux. (6.60) Using the boundary condition (6.57) we have P(O,y,t)=-U(0.y.t) and P(1.y.t)=U(1.y.t). (6-61) 107 Table 6.12. Gauss—Galerkin Finite Element Method: Changes of the nodes *, + and x at y = 0.5 with p = 2 and q = 2 as t increases time 1:1 2:2 1:3 0.00 01776790146 0.5 08223209854 0.20 01569951415 0.5 08430048585 0.40 01387971313 0.5 08612028687 0.60 0124213992 0.5 0875786008 0.80 08875133494 0.5 01124866506 1.00 01028788815 0.5 08971211185 2.00 007248655953 0.5 09275134405 3.00 005589220564 0.5 09441077944 4.00 004523506173 0.5 09547649383 5.00 003777675115 0.5 09622232489 6.00 003227123193 0.5 09677287681 7.00 002805416464 0.5 09719458354 8.00 002473328072 0.5 09752667193 9.00 09779398506 0.5 002206014938 10.0 001986926287 0.5 09801307371 11.0 001804605226 0.5 09819539477 12.0 001650877966 0.5 09834912203 13.0 001519767562 0.5 09848023244 14.0 001406812019 0.5 09859318798 15.0 00130862042 0.5 09869137958 16.0 001222575257 0.5 09877742474 17.0 001146627805 0.5 0988533722 18.0 001079154418 0.5 09892084558 19.0 001018853736 0.5 0.9898114626 20.0 0009646719368 0.5 09903532806 21.0 0009157475852 0.5 09908425241 22.0 0008713703905 0.5 09912862961 23.0 0008309499947 0.5 09916905001 24.0 0007939920837 0.5 09920600792 25.0 000760079916 0.5 09923992008 26.0 0007288599021 0.5 0992711401 27.0 0007000302461 0.5 09929996975 28.0 0006733319251 0.5 09932666807 29.0 0006485414691 0.5 09935145853 30.0 0006254651387 0.5 09937453486 108 Table 6.13. Gauss-Galerkin Finite Element Method: Changes of the weights at nodes at, + and x at y = 0.5 with p = 2 and q = 2 as t increases time w1 w2 w3 0.00 02279202041 05441595918 0.2279202041 0.20 02708900461 04582199078 02708900461 0.40 02993447133 04013105734 0.2993447133 0.60 03216170199 03567659601 0.3216170199 0.80 03402289554 03195420892 0.3402289554 1.00 0356218263 0287563474 0.356218263 2.00 04112542944 01774914111 0.4112542944 3.00 04421675514 01156648973 0.4421675514 4.00 04606419939 007871601222 0.4606419939 5.00 04721989331 005560213382 0.4721989331 6.00 04797123027 004057539469 0.4797123027 7.00 0484765015 003046997007 0.484765015 8.00 04882673879 002346522416 0.4882673879 9.00 04907622074 001847558527 0.4907622074 10.0 04925835524 001483289517 0.4925835524 11.0 04939430195 00121139611 0.4939430195 12.0 04949781889 001004362224 0.4949781889 13.0 04957807059 0008438588265 0.4957807059 14.0 04964129983 0007174003459 0.4964129983 15.0 04969184809 0006163038117 0.4969184809 16.0 049732793 0005344140008 0.49732793 17.0 04976635516 0004672896755 0.4976635516 18.0 04979416325 0.004116735089 0.497 9416325 19.0 04981742991 0003651401712 0.4981742991 20.0 04983707076 0003258584867 0.4983707076 21.0 04985378601 0002924279736 0.4985378601 22.0 0.498681 1764 0002637647259 0.4986811764 23.0 04988048972 0002390205651 0.4988048972 24.0 04989123752 000217524967 0.4989123752 25.0 0499006286 0001987428079 0.499006286 26.0 04990887838 0001822432463 0.4990887838 27.0 04991616173 0001676765466 0.4991616173 28.0 04992262168 0001547566318 0.4992262168 29.0 04992837609 0001432478197 0.4992837609 30.0 04993352268 0001329546435 0.4993352268 Table 6.14. Gauss-Galerkin Finite Element Method: Changes of the “moment” 109 mf,(y,t) at y = 0.5 with p = 2 and q = 2 as t increases time m0 m1 m2 m3 m4 m5 0.00 1 0.5 0.297358 0.196036 0.138456 0.102747 0.20 1 0.5 0.313742 0.220613 0.165612 0.129676 0.40 1 0.5 0.32811 0.242164 0.189855 0.154364 0.60 l 0.5 0.340834 0.261252 0.211579 0.176861 0.80 1 0.5 0.352182 0.278273 0.231117 0.197338 1.00 1 0.5 0.362355 0.293532 0.248751 0.215991 2.00 1 0.5 0.400328 0.350492 0.315467 0.287848 3.00 1 0.5 0.424419 0.386628 0.358529 0.335276 4.00 l 0.5 0.440532 0.410798 0.387702 0.367925 5.00 1 0.5 0.451771 0.427656 0.408265 0.391235 6.00 1 0.5 0.459894 0.43984 0.423259 0.408413 7.00 1 0.5 0.465946 0.448919 0.434518 0.421429 8.00 1 0.5 0.470578 0.455867 0.443191 0.431532 9.00 1 0.5 0.474206 0.461309 0.450024 0.439544 10.0 1 0.5 0.477106 0.465659 0.455513 0.446017 11.0 1 0.5 0.479466 0.469199 0.459999 0.451333 12.0 1 0.5 0.481416 0.472124 0.463721 0.455762 13.0 1 0.5 0.48305 0.474575 0.466849 0.459499 14.0 1 0.5 0.484436 0.476654 0.469511 0.462688 15.0 1 0.5 0.485624 0.478436 0.471799 0.465437 16.0 1 0.5 0.486652 0.479978 0.473784 0.467828 17.0 1 0.5 0.48755 0.481325 0.47552 0.469925 18.0 1 0.5 0.48834 0.48251 0.47705 0.471776 19.0 1 0.5 0.489039 0.483559 0.478408 0.473422 20.0 1 0.5 0.489663 0.484494 0.47962 0.474894 21.0 1 0.5 0.490222 0.485333 0.480709 0.476217 22.0 1 0.5 0.490726 0.486088 0.48169 0.477412 23.0 1 0.5 0.491182 0.486773 0.482581 0.478497 24.0 1 0.5 0.491596 0.487395 0.483391 0.479486 25.0 1 0.5 0.491975 0.487963 0.484131 0.48039 26.0 1 0.5 0.492322 0.488483 0.48481 0.481221 27.0 1 0.5 0.492641 0.488962 0.485435 0.481986 28.0 1 0.5 0.492935 0.489403 0.486012 0.482692 29.0 1 0.5 0.493208 0.489812 0.486546 0.483347 30.0 1 0.5 0.49346 0.490191 0.487042 0.483955 Table 6.15. Gauss-Galerkin Finite Element Method: Changes of the “total moment” 110 Mf,(t) with p = 2 and q = 2 as t increases time M0 M1 M2 M3 M4 M5 0.00 1 0.5 0.297358 0.196036 0.138456 0.102747 0.20 1 0.5 0.313742 0.220613 0.165612 0.129676 0.40 1 0.5 0.32811 0.242164 0.189855 0.154364 0.60 1 0.5 0.340834 0.261252 0.211579 0.176861 0.80 1 0.5 0.352182 0.278273 0.231117 0.197338 1.00 1 0.5 0.362355 0.293532 0.248751 0.215991 2.00 1 0.5 0.400328 0.350492 0.315467 0.287848 3.00 1 0.5 0.424419 0.386628 0.358529 0.335276 4.00 1 0.5 0.440532 0.410798 0.387702 0.367925 5.00 1 0.5 0.451771 0.427656 0.408265 0.391235 6.00 1 0.5 0.459894 0.43984 0.423259 0.408413 7.00 1 0.5 0.465946 0.448919 0.434518 0.421429 8.00 1 0.5 0.470578 0.455867 0.443191 0.431532 9.00 1 0.5 0.474206 0.461309 0.450024 0.439544 10.0 1 0.5 0.477106 0.465659 0.455513 0.446017 11.0 1 0.5 0.479466 0.469199 0.459999 0.451333 12.0 1 0.5 0.481416 0.472124 0.463721 0.455762 13.0 1 0.5 0.48305 0.474575 0.466849 0.459499 14.0 1 0.5 0.484436 0.476654 0.469511 0.462688 15.0 1 0.5 0.485624 0.478436 0.471799 0.465437 16.0 1 0.5 0.486652 0.479978 0.473784 0.467828 17.0 1 0.5 0.48755 0.481325 0.47552 0.469925 18.0 1 0.5 0.48834 0.48251 0.47705 0.471776 19.0 1 0.5 0.489039 0.483559 0.478408 0.473422 20.0 1 0.5 0.489663 0.484494 0.47962 0.474894 21.0 1 0.5 0.490222 0.485333 0.480709 0.476217 22.0 1 0.5 0.490726 0.486088 0.48169 0.477412 23.0 1 0.5 0.491182 0.486773 0.482581 0.478497 24.0 1 0.5 0.491596 0.487395 0.483391 0.479486 25.0 1 0.5 0.491975 0.487963 0.484131 0.48039 26.0 1 0.5 0.492322 0.488483 0.48481 0.481221 27 .0 1 0.5 0.492641 0.488962 0.485435 0.481986 28.0 1 0.5 0.492935 0.489403 0.486012 0.482692 29.0 1 0.5 0.493208 0.489812 0.486546 0.483347 30.0 1 0.5 0.49346 0.490191 0.487042 0.483955 111 Table 6.16. Gauss-Galerkin Finite Element Method: Changes of the nodes *, + and x at y = 0.5 with p =1 and q = 2 as t increases time :01 2:2 :53 0.00 0.1776790146 0.5 0.8223209854 0.20 004737482572 04409938921 08241783121 0.40 002403084443 04448604727 08476643036 0.60 001482958065 04550658882 08673940809 0.80 001008567793 04651212708 08830828805 1.00 0.007289118074 04740494633 08956991781 2.00 0002250069707 05051335296 09335385097 3.00 00009863745097 0524526958 09522693971 4.00 00005184071064 05382862795 09632779238 5.00 00003076309523 05484473913 09704182539 6.00 00001992931646 05560949596 09753690413 7.00 00001378318697 05619588701 09789751276 8.00 00001001977718 05665471543 09817040036 9.00 7.572609049e-05 05702100595 09838329178 10.0 5.902989083e-05 0573188811 09855354713 11.0 4.718510394e-05 05756514259 09869252876 12.0 3.850700958e—05 05777170269 09880795345 13.0 3.197534068e-05 05794717514 09890522877 14.0 2.694566813e-05 05809791037 09898824725 15.0 2.299607804e-05 05822867591 09905987671 16.0 1.984166688e—05 0.5834311111 09912227338 17.0 1.728481074e—05 05844403654 09917708763 18.0 1.518516201e-05 05853366859 09922560286 19.0 1 .344095633e-05 05861377084 09926883123 20.0 1.197703012e-05 05868576267 0993075812 21.0 1.073694277e-O5 05875079836 09934250589 22.0 9.677678823e—06 05880982562 09937413846 23.0 8.7660117286—06 05886362931 09940291821 24.0 7 .975961631e—06 05891286474 09942921025 25.0 7.286987989e-06 05895808303 09945332042 Table 6.17. Gauss-Galerkin Finite Element Method: Changes of the weights at nodes 112 *, + and x at y=05 withp= 1 and q: 2 as t increases time wl W2 013 0.00 0.2279202041 0.5441595918 0.2279202041 0.20 0208671766 04229852476 03683429864 0.40 02621331027 0327113844 04107530533 0.60 03051459394 02600779851 04347760755 0.80 03380120395 02105440153 04514439451 1.00 03633954976 0172785513 04638189894 2.00 04313189796 007435985001 04943211704 3.00 04583094813 003807751325 05036130054 4.00 04714473737 002208861808 05064640082 5.00 04787955491 00140616475 05071428034 6.00 04833461619 0009598700584 05070551375 7.00 04863870524 000690942014 05067035274 8.00 0488539708 0005182539881 05062777521 9.00 0490132959 0004015963892 05058510771 10.0 04913542797 0003194894872 05054508254 11.0 04923172628 0002597202503 05050855347 12.0 0493094267 0002149729241 05047560038 13.0 04937333422 0001806685886 05044599719 14.0 04942675308 0001538322743 05041941464 15.0 04947202406 000132468135 0503955078 16.0 04951084827 0001151994663 05037395226 17.0 04954448965 0001010532885 05035445707 18.0 04957390564 00008932708089 05033676728 19.0 04959983405 00007950388424 05032066207 20.0 04962285206 00007119678796 05030595115 21.0 04964341739 0.000641 1177727 05029247083 22.0 04966189742 00005802234192 05028008024 23.0 04967859031 00005275179256 0502686579 24.0 04969374041 00004816073189 05025809886 25.0 04970754986 00004413803845 0502483121 Table 6.18. Gauss-Galerkin Finite Element Method: Changes of the “moment” 113 mj,(y, t) at y = 0.5 with p = 1 and q = 2 as t increases time mo m1 m2 m3 m4 m5 0.00 1 0.5 0.297358 0.196036 0.138456 0.102747 0.20 l 0.5 0.332933 0.242511 0.185955 0.147129 0.40 1 0.5 0.360028 0.278982 0.22488 0.185462 0.60 1 0.5 0.381039 0.308246 0.257264 0.218551 0.80 1 0.5 0.397635 0.332077 0.284396 0.247027 1.00 l 0.5 0.410959 0.351707 0.307262 0.271535 2.00 1 0.5 0.449774 0.411751 0.380279 0.352931 3.00 1 0.5 0.467161 0.440382 0.417012 0.395875 4.00 1 0.5 0.476351 0.456138 0.437923 0.421054 5.00 1 0.5 0.481812 0.465774 0.451017 0.437138 6.00 1 0.5 0.485353 0.472153 0.459832 0.448121 7.00 1 0.5 0.487803 0.476637 0.466104 0.456017 8.00 1 0.5 0.489585 0.479937 0.470765 0.46193 9.00 1 0.5 0.490933 0.482456 0.474348 0.466503 10.0 1 0.5 0.491984 0.484435 0.47718 0.470135 11.0 1 0.5 0.492825 0.486027 0.479469 0.473083 12.0 1 0.5 0.493511 0.487334 0.481355 0.475518 13.0 1 0.5 0.494082 0.488424 0.482933 0.477563 14.0 1 0.5 0.494563 0.489347 0.484272 0.479301 15.0 1 0.5 0.494973 0.490136 0.485422 0.480796 16.0 1 0.5 0.495328 0.49082 0.486419 0.482095 17.0 1 0.5 0.495636 0.491417 0.487291 0.483233 18.0 1 0.5 0.495908 0.491943 0.48806 0.484238 19.0 1 0.5 0.496148 0.492409 0.488744 0.485132 20.0 1 0.5 0.496362 0.492826 0.489355 0.485932 21.0 1 0.5 0.496554 0.4932 0.489904 0.486652 22.0 1 0.5 0.496727 0.493537 0.490401 0.487303 23.0 1 0.5 0.496884 0.493843 0.490851 0.487895 24.0 1 0.5 0.497027 0.494122 0.491262 0.488435 25.0 1 0.5 0.497158 0.494378 0.491638 0.488929 _F“ 114 Table 6.19. Gauss-Galerkin Finite Element Method: Changes of the “total moment” Mfi,(t) at y = 0.5 with p = 1 and q = 2 as t increases time M0 M1 M2 M3 M4 M5 0.00 l 0.5 0.297358 0.196036 0.138456 0.102747 0.20 1 0.5 0.332933 0.242511 0.185955 0.147129 0.40 1 0.5 0.360028 0.278982 0.22488 0.185462 0.60 1 0.5 0.381039 0.308246 0.257264 0.218551 0.80 1 0.5 0.397635 0.332077 0.284396 0.247027 1.00 1 0.5 0.410959 0.351707 0.307262 0.271535 2.00 l 0.5 0.449774 0.411751 0.380279 0.352931 3.00 l 0.5 0.467161 0.440382 0.417012 0.395875 4.00 1 0.5 0.476351 0.456138 0.437923 0.421054 5.00 1 0.5 0.481812 0.465774 0.451017 0.437138 6.00 1 0.5 0.485353 0.472153 0.459832 0.448121 7.00 l 0.5 0.487803 0.476637 0.466104 0.456017 8.00 1 0.5 0.489585 0.479937 0.470765 0.46193 9.00 1 0.5 0.490933 0.482456 0.474348 0.466503 10.0 1 0.5 0.491984 0.484435 0.47718 0.470135 11.0 1 0.5 0.492825 0.486027 0.479469 0.473083 12.0 1 0.5 0.493511 0.487334 0.481355 0.475518 13.0 1 0.5 0.494082 0.488424 0.482933 0.477563 14.0 1 0.5 0.494563 0.489347 0.484272 0.479301 15.0 1 0.5 0.494973 0.490136 0.485422 0.480796 16.0 1 0.5 0.495328 0.49082 0.486419 0.482095 17.0 1 0.5 0.495636 0.491417 0.487291 0.483233 18.0 1 0.5 0.495908 0.491943 0.48806 0.484238 19.0 1 0.5 0.496148 0.492409 0.488744 0.485132 20.0 1 0.5 0.496362 0.492826 0.489355 0.485932 21.0 1 0.5 0.496554 0.4932 0.489904 0.486652 22.0 1 0.5 0.496727 0.493537 0.490401 0.487303 23.0 1 0.5 0.496884 0.493843 0.490851 0.487895 24.0 1 0.5 0.497027 0.494122 0.491262 0.488435 25.0 1 0.5 0.497158 0.494378 0.491638 0.488929 Table 6.20. Gauss-Galerkin Finite Element Method: Changes of the nodes *, + and 115 x at y = 0.5 withp= 2 and q =1 as t increases time 11:1 51:2 :133 0.00 0.1776790146 0.5 0.8223209854 0.20 01758216879 05590061079 09526251743 0.40 01523356964 05551395273 09759691556 0.60 01326059191 05449341118 09851704193 0.80 01169171195 05348787292 09899143221 1.00 01043008219 05259505367 09927108819 2.00 006646149033 04948664704 09977499303 3.00 004773060294 0475473042 09990136255 4.00 003672207624 04617137205 09994815929 5.00 00295817461 04515526087 0999692369 6.00 002463095868 04439050404 09998007068 7.00 002102487236 0.4380411299 09998621681 8.00 001829599644 04334528457 09998998022 9.00 001616708221 04297899405 09999242739 10.0 001446452871 0426811189 09999409701 11.0 001307471238 04243485741 09999528149 12.0 001192046553 04222829731 0999961493 13.0 001094771232 04205282486 09999680247 14.0 0.01011752754 04190208963 09999730543 15.0 0009401232879 04177132409 09999770039 16.0 0008777266222 04165688889 09999801583 17.0 0008229123669 04155596346 09999827152 18.0 0007743971397 04146633141 09999848148 19.0 000731168767 04138622916 0999986559 20.0 0006924188018 04131423733 0999988023 21.0 0006574941083 04124920164 09999892631 22.0 0006258615421 0.4119017438 09999903223 23.0 0005970817947 04113637069 0999991234 24.0 0005707897548 04108713526 0999992024 25.0 0005466795779 04104191697 0999992713 26.0 0005244932026 04100024907 09999933173 27.0 0005040114249 04096173381 09999938502 28.0 0004850468907 04092603019 09999943223 29.0 0004674385462 04089284431 09999947426 30.0 0004510472031 04086192151 09999951184 Table 6.21. Gauss-Galerkin Finite Element Method: Changes of the weights at nodes 116 *, + and x at y =05 withp= 2 and q=1 as t increases time w1 012 013 0.00 0.2279202041 0.5441595918 02279202041 0.20 0.3683429864 0.4229852476 0.208671766 0.40 04107530533 0.327113844 0.2621331027 0.60 04347760755 0.2600779851 0.3051459394 0.80 0.4514439451 0.2105440153 0.3380120395 1.00 0.4638189894 0.172785513 0.3633954976 2.00 0.4943211704 0.07435985001 0.4313189796 3.00 0.5036130054 0.03807751325 04583094813 4.00 0.5064640082 0.02208861808 0.4714473737 5.00 0.5071428034 0.0140616475 04787955491 6.00 0.5070551375 0.009598700584 04833461619 7.00 0.5067035274 0.00690942014 0.4863870524 8.00 0.5062777521 0.005182539881 0.488539708 9.00 0.5058510771 0.004015963892 0.490132959 10.0 05054508254 0.003194894872 0.4913542797 11.0 0.5050855347 0.002597202503 0.4923172628 12.0 0.5047560038 0.002149729241 0.493094267 13.0 0.5044599719 0.001806685886 0.4937333422 14.0 0.5041941464 0.001538322743 0.4942675308 15.0 0.503955078 0.00132468135 0.4947202406 16.0 0.5037395226 0.001151994663 0.4951084827 17.0 0.5035445707 0.001010532885 0.4954448965 18.0 0.5033676728 00008932708089 0.4957390564 19.0 0.5032066207 00007950388424 0.4959983405 20.0 0.5030595115 0.0007119678796 0.4962285206 21.0 0.5029247083 0.0006411177727 0.4964341739 22.0 0.5028008024 00005802234192 0.4966189742 23.0 0.502686579 00005275179256 0.4967859031 24.0 0.5025809886 00004816073189 0.4969374041 25.0 0.502483121 00004413803845 0.4970754986 26.0 05023921849 00004059428479 04972018722 27.0 05023074899 00003745686933 04973179415 28.0 05022284312 00003466637192 04974249051 29.0 05021544778 0000321737949 04975237843 30.0 05020851616 00002993845278 04976154538 117 Table 6.22. Gauss—Galerkin Finite Element Method: Changes of the “moment” m§,(y, t) at y = 0.5 with p = 2 and q = 1 as t increases time 7710 m1 m2 m3 m4 777.5 0.00 1 0.5 0.297358 0.196036 0.138456 0.102747 0.20 1 0.5 0.332933 0.256287 0.213507 0.186861 0.40 l 0.5 0.360028 0.301101 0.269119 0.249395 0.60 1 0.5 0.381039 0.33487 0.310512 0.295697 0.80 1 0.5 0.397635 0.360828 0.341898 0.330535 1.00 1 0.5 0.410959 0.381172 0.366192 0.357303 2.00 1 0.5 0.449774 0.437571 0.431919 0.428696 3.00 1 0.5 0.467161 0.461102 0.458453 0.456979 4.00 l 0.5 0.476351 0.472914 0.471475 0.47069 5.00 1 0.5 0.481812 0.479662 0.478792 0.478324 6.00 1 0.5 0.485353 0.483904 0.483334 0.48303 7.00 1 0.5 0.487803 0.486771 0.486373 0.486163 8.00 l 0.5 0.489585 0.488818 0.488527 0.488374 9.00 1 0.5 0.490933 0.490343 0.490122 0.490006 10.0 1 0.5 0.491984 0.491517 0.491344 0.491255 11.0 1 0.5 0.492825 0.492447 0.492309 0.492237 12.0 1 0.5 0.493511 0.4932 0.493087 0.493028 13.0 1 0.5 0.494082 0.493821 0.493727 0.493678 14.0 1 0.5 0.494563 0.494341 0.494262 0.494221 15.0 1 0.5 0.494973 0.494783 0.494715 0.49468 16.0 1 0.5 0.495328 0.495163 0.495104 0.495074 17.0 1 0.5 0.495636 0.495492 0.495441 0.495415 18.0 1 0.5 0.495908 0.49578 0.495735 0.495712 19.0 1 0.5 0.496148 0.496035 0.495995 0.495975 20.0 1 0.5 0.496362 0.496261 0.496225 0.496207 21.0 1 0.5 0.496554 0.496463 0.496431 0.496415 22.0 1 0.5 0.496727 0.496645 0.496616 0.496602 23.0 1 0.5 0.496884 0.49681 0.496784 0.49677 24.0 1 0.5 0.497027 0.496959 0.496935 0.496923 25.0 1 0.5 0.497158 0.497095 0.497074 0.497063 26.0 1 0.5 0.497277 0.49722 0.4972 0.49719 27.0 1 0.5 0.497387 0.497335 0.497316 0.497307 28.0 1 0.5 0.497489 0.49744 0.497423 0.497415 29.0 1 0.5 0.497583 0.497538 0.497522 0.497514 30.0 1 0.5 0.497671 0.497629 0.497614 0.497607 118 Table 6.23. Gauss-Galerkin Finite Element Method: Changes of the “total moment” Mfi,(t) at y = 0.5 with p = 2 and q = 1 as t increases time M0 M1 M2 M3 M4 M5 0.00 1 0.5 0.297358 0.196036 0.138456 0.102747 0.20 1 0.5 0.332933 0.256287 0.213507 0.186861 0.40 1 0.5 0.360028 0.301101 0.269119 0.249395 0.60 1 0.5 0.381039 0.33487 0.310512 0.295697 0.80 1 0.5 0397635 0.360828 0.341898 0.330535 1.00 1 0.5 0.410959 0.381172 0.366192 0.357303 2.00 1 0.5 0.449774 0.437571 0.431919 0.428696 3.00 1 0.5 0.467161 0.461102 0.458453 0.456979 4.00 1 0.5 0.476351 0.472914 0.471475 0.47069 5.00 1 0.5 0.481812 0.479662 0.478792 0.478324 6.00 1 0.5 0.485353 0.483904 0.483334 0.48303 7.00 1 0.5 0.487803 0.486771 0.486373 0.486163 8.00 1 0.5 0.489585 0.488818 0.488527 0.488374 9.00 1 0.5 0.490933 0.490343 0.490122 0.490006 10.0 1 0.5 0.491984 0.491517 0.491344 0.491255 11.0 1 0.5 0.492825 0.492447 0.492309 0.492237 12.0 1 0.5 0.493511 0.4932 0.493087 0.493028 13.0 1 0.5 0.494082 0.493821 0.493727 0.493678 14.0 1 0.5 0.494563 0.494341 0.494262 0.494221 15.0 1 0.5 0.494973 0.494783 0.494715 0.49468 16.0 1 0.5 0.495328 0.495163 0.495104 0.495074 17.0 1 0.5 0.495636 0.495492 0.495441 0.495415 18.0 1 0.5 0.495908 0.49578 0.495735 0.495712 19.0 1 0.5 0.496148 0.496035 0.495995 0.495975 20.0 1 0.5 0.496362 0.496261 0.496225 0.496207 21.0 1 0.5 0.496554 0.496463 0.496431 0.496415 22.0 1 0.5 0.496727 0.496645 0.496616 0.496602 23.0 1 0.5 0.496884 0.49681 0.496784 0.49677 24.0 1 0.5 0.497027 0.496959 0.496935 0.496923 25.0 1 0.5 0.497158 0.497095 0.497074 0.497063 26.0 1 0.5 0.497277 0.49722 0.4972 0.49719 27.0 1 0.5 0.497387 0.497335 0.497316 0.497307 28.0 1 0.5 0.497489 0.49744 0.497423 0.497415 29.0 1 0.5 0.497583 0.497538 0.497522 0.497514 30.0 1 0.5 0.497671 0.497629 0.497614 0.497607 119 Integrating (6.56) over Q, integrating by parts and using boundary condition (6.57 ), (6.58) we have d_dt/ol fou(:r,ty,)d:1:dy 2/01/0((:1:(1 —:1:)u u)m+uyy)d:1:dy l =/0:( :1:((1—:1:)11.):|,,:Oaly+/0 uylizodx =/:— P(x ,y,t) zody (6.62) =/ -{P(1.y.t)-P(1 y. t)}dy 0 l = -/ U(0.y.t)dy-/ U(l.y.t)dy- 0 0 Integrating (6.62) over 7' E (0, t), we have 1 1 1 1 / / u(x,y,tmdy— / / u(x,y.0)dxdy o o o o (6.63) t 1 t 1 = -/ / u(0,y,7')dyd'r —/ / u(1,y,T)dydT o o o 0 so, [O/u (,xy,t)d:1:dy 2/09/0“ “(“110 W61?! ([14 (.7011. )dydT—fofu (1,y, )dyd’r (6.64) =05—f / u(0,y,7‘)dydT—/ / u(1,y,'r)dydt:r. o o o o Multiplying by :1: and integrating (6.56) over 9, integrating by parts and using bound- ary condition (6.57), (6.58) we have ddt/o [0111 (:1: ,y,t):1:d:1:dy 2/0 [0(( :1:()ul—:1: )ma:+uyy:r)dxdy 1 :fo:( 2:( (1 —:1: u))x:1:|$:0dy+/ uy|;:0:rd:1: o = / —P05» Q3 8 20.4»- ‘ 0.3) .. 02" _ I' 01- - 4' .1 0 1' *J—Las—a—e—t—H—u—H—a—n—H—t—H—e—I—WH 0 5 10 15 20 25 30 Time Variable! Figure 6.7. Gauss-Galerkin Finite Element Method: Movement of the nodes :11, + and x at y = 0.5 with s = 2,h= 05,11: 0,1/ = 0 as t increases 141 Table 6.32. Gauss-Galerkin Finite Element Method: Changes of the nodes *, + and x at y = 0.5 with s = 0, [.1 = 0375,11 = 0.375 as t increases time 221 3:2 273 0.0 0.1776790146 0.5 0.8223209854 0.2 01642962137 0.5 08357037863 0.4 01574239668 0.5 08425760332 0.6 01534135247 0.5 08465864753 0.8 01509533372 0.5 08490466628 1.0 0.1493957345 0.5 08506042655 1.2 01483902464 0.5 08516097536 1.4 0147733336 0.5 0852266664 1.6 01473009068 0.5 08526990932 1.8 01470148679 0.5 08529851321 2.0 01468250667 0.5 08531749333 2.2 01466988646 0.5 0.8533011354 2.4 01466148369 0.5 08533851631 2.6 01465588394 0.5 08534411606 2.8 01465214994 0.5 08534785006 3.0 01464965907 0.5 08535034093 3.2 01464799703 0.5 08535200297 3.4 01464688782 0.5 08535311218 3.6 01464614749 0.5 08535385251 3.8 01464565331 0.5 08535434669 4.0 01464532343 0.5 08535467657 4.2 01464510321 0.5 08535489679 4.4 0146449562 0.5 0853550438 4.6 01464485805 0.5 08535514195 4.8 01464479253 0.5 08535520747 5.0 01464474879 0.5 08535525121 5.2 01464471959 0.5 08535528041 5.4 0146447001 0.5 0853552999 5.6 01464468708 0.5 08535531292 5.8 01464467839 0.5 08535532161 6.0 01464467259 0.5 08535532741 142 Table 6.33. Gauss-Galerkin Finite Element Method: Changes of the weights at nodes *, + and x at y = 0.5 with s = 0,11 = 0375,12 = 0.375 as t increases time 1121 1122 1.113 0.0 0.2279202041 0.5441595918 0.2279202041 0.2 02325481017 05349037966 0.2325481017 0.4 02375344137 0.5249311726 0.2375344137 0.6 02413979521 05172040959 0.2413979521 0.8 02441527197 05116945607 0.2441527197 1.0 02460550664 05078898671 02460550664 1.2 02473494077 0.5053011846 0.2473494077 1.4 02482233103 05035533794 02482233103 1.6 02488108053 05023783893 0.2488108053 1.8 02492047529 05015904942 0.2492047529 2.0 02494685031 05010629938 0.2494685031 2.2 0.2496449112 05007101777 0.2496449112 2.4 0249762826 0500474348 0.249762826 2.6 02498416103 05003167795 0.2498416103 2.8 02498942353 0.5002115294 0.2498942353 3.0 02499293807 05001412386 0.2499293807 3.2 02499528495 05000943009 0.2499528495 3.4 024996852 050006296 0.24996852 3.6 02499789828 05000420344 0.2499789828 3.8 02499859684 05000280633 0.2499859684 4.0 02499906322 05000187356 0.2499906322 4.2 02499937459 05000125082 0.2499937459 4.4 02499958247 05000083506 0.2499958247 4.6 02499972125 0500005575 0.2499972125 4.8 0249998139 05000037219 0.249998139 5.0 02499987576 05000024848 0.2499987576 5.2 02499991706 05000016589 02499991706 5.4 02499994463 05000011075 02499994463 5.6 02499996303 05000007394 02499996303 5.8 02499997532 05000004936 02499997532 6.0 02499998352 05000003295 02499998352 143 Table 6.34. Gauss-Galerkin Finite Element Method: Changes of the “moment” m;(y, t) at y = 0.5 with s = 0,11 = 0.375, V = 0.375 as t increases time mo m1 m2 m3 m4 mg, 0.0 1 0.5 0.297358 0.196036 0.138456 0.102747 0.2 1 0.5 0.302391 0.203586 0.146988 0.111492 0.4 1 0.5 0.305751 0.208627 0.152669 0.117295 0.6 1 0.5 0.307994 0.211992 0.156458 0.121159 0.8 1 0.5 0.309492 0.214238 0.158986 0.123735 1.0 1 0.5 0.310492 0.215738 0.160674 0.125454 1.2 1 0.5 0.311159 0.216739 0.1618 0.126602 1.4 1 0.5 0.311605 0.217407 0.162552 0.127368 1.6 1 0.5 0.311902 0.217854 0.163054 0.127879 1.8 1 0.5 0.312101 0.218152 0.163389 0.128221 2.0 1 0.5 0.312234 0.218351 0.163613 0.128449 2.2 1 0.5 0.312322 0.218483 0.163762 0.128601 2.4 1 0.5 0.312381 0.218572 0.163862 0.128702 2.6 l 0.5 0.312421 0.218631 0.163929 0.12877 2.8 1 0.5 0.312447 0.218671 0.163973 0.128815 3.0 1 0.5 0.312465 0.218697 0.164003 0.128846 3.2 1 0.5 0.312476 0.218715 0.164023 0.128866 3.4 1 0.5 0.312484 0.218726 0.164036 0.128879 3.6 1 0.5 0.312489 0.218734 0.164045 0.128888 3.8 1 0.5 0.312493 0.218739 0.164051 0.128894 4.0 1 0.5 0.312495 0.218743 0.164055 0.128898 4.2 1 0.5 0.312497 0.218745 0.164057 0.128901 4.4 1 0.5 0.312498 0.218747 0.164059 0.128903 4.6 1 0.5 0.312499 0.218748 0.16406 0.128904 4.8 1 0.5 0.312499 0.218749 0.164061 0.128905 5.0 1 0.5 0.312499 0.218749 0.164061 0.128905 5.2 1 0.5 0.3125 0.218749 0.164062 0.128906 5.4 1 0.5 0.3125 0.21875 0.164062 0.128906 5.6 1 0.5 0.3125 0.21875 0.164062 0.128906 5.8 1 0.5 0.3125 0.21875 0.164062 0.128906 6.0 1 0.5 0.3125 0.21875 0.164062 0.128906 144 Table 6.35. Gauss-Galerkin Finite Element Method: Changes of the “total moment” M,‘,(t) at y=05 with 3 = 0, p = 0.375, V = 0.375 as t increases time M0 M1 M2 M3 M4 M5 0.0 1 0.5 0.297358 0.196036 0.138456 0.102747 0.2 1 0.5 0.302391 0.203586 0.146988 0.111492 0.4 1 0.5 0.305751 0.208627 0.152669 0.117295 0.6 1 0.5 0.307994 0.211992 0.156458 0.121159 0.8 1 0.5 0.309492 0.214238 0.158986 0.123735 1.0 1 0.5 0.310492 0.215738 0.160674 0.125454 1.2 1 0.5 0.311159 0.216739 0.1618 0.126602 1.4 1 0.5 0.311605 0.217407 0.162552 0.127368 1.6 1 0.5 0.311902 0.217854 0.163054 0.127879 1.8 1 0.5 0.312101 0.218152 0.163389 0.128221 2.0 1 0.5 0.312234 0.218351 0.163613 0.128449 2.2 1 0.5 0.312322 0.218483 0.163762 0.128601 2.4 1 0.5 0.312381 0.218572 0.163862 0.128702 2.6 1 0.5 0.312421 0.218631 0.163929 0.12877 2.8 1 0.5 0.312447 0.218671 0.163973 0.128815 3.0 1 0.5 0.312465 0.218697 0.164003 0.128846 3.2 1 0.5 0.312476 0.218715 0.164023 0.128866 3.4 1 0.5 0.312484 0.218726 0.164036 0.128879 3.6 1 0.5 0.312489 0.218734 0.164045 0.128888 3.8 1 0.5 0.312493 0.218739 0.164051 0.128894 4.0 1 0.5 0.312495 0.218743 0.164055 0.128898 4.2 1 0.5 0.312497 0.218745 0.164057 0.128901 4.4 1 0.5 0.312498 0.218747 0.164059 0.128903 4.6 1 0.5 0.312499 0.218748 0.16406 0.128904 4.8 1 0.5 0.312499 0.218749 0.164061 0.128905 5.0 l 0.5 0.312499 0.218749 0.164061 0.128905 5.2 1 0.5 0.3125 0.218749 0.164062 0.128906 5.4 1 0.5 0.3125 0.21875 0.164062 0.128906 5.6 1 0.5 0.3125 0.21875 0.164062 0.128906 5.8 1 0.5 0.3125 0.21875 0.164062 0.128906 6.0 1 0.5 0.3125 0.21875 0.164062 0.128906 Table 6.36. Gauss-Galerkin Finite Element Method: Changes of the nodes *, + and 145 xaty=05 withs=2,h=05,,u=0,V=0ast increases time 3:1 :132 1);; 0.00 0.1776790146 0.5 0.8223209854 1.00 007823484538 05855926881 09672094934 2.00 004055785446 05952942733 09882813902 3.00 002175701743 05935687484 0994844609 4.00 0.01176627035 05905610497 09975060185 5.00 0006369293956 05882085524 09987326259 6.00 0003445438578 0.5866681196 09993384161 7.00 0001862301052 058573549 0999649455 8.00 0001006005904 05851946307 09998127142 9.00 00005432371344 05848889872 09998994783 10.0 00002932798893 05847190463 09999459106 11.0 00001583142674 05846255329 09999708549 12.0 8.54529272e-O5 05845744192 09999842838 13.0 4.612291437e-05 05845466024 09999915218 14.0 2.489414189e—05 05845315072 09999954253 15.0 1.343607637e-05 0584523331 09999975313 16.0 7.251786085e-06 05845189076 09999986677 17.0 3.913956526e-06 05845165166 0999999281 18.0 2.112448808e-06 05845152244 0.9999996119 19.0 1.140134147e-06 05845145278 09999997906 20.0 6.153546255e—07 05845141503 0999999887 21.0 3.321198762e-07 05845139491 0999999939 22.0 1.792520631e-07 05845138348 09999999671 23.0 9.674608925e—08 05845137629 09999999822 24.0 5.221588395e-08 05845137595 09999999904 25.0 2.81820044e—08 05845137242 09999999948 26.0 1 .521042681e-08 05845137523 09999999972 27.0 . 8.209376512e09 05845136238 09999999985 28.0 4.430779077e—09 05845135372 09999999992 29.0 2.391380427e-09 05845133642 09999999996 30.0 1.290684337e-09 05845139703 09999999998 Table 6.37. Gauss—Galerkin Finite Element Method: Changes of the weights at nodes 146 *, + andxaty=05withs=2,h=05,;1=0,V=0astincreases time 011 W2 W3 0.00 0.2279202041 0.5441595918 0.2279202041 1.00 0203454735 03434686623 04530766027 2.00 01877795851 0.1832292954 06289911195 3.00 01795033149 009603249769 0.7244641874 4.00 01750216309 005062793336 07743504358 5.00 01725788113 002690733567 0800513853 6.00 0.1712492829 001438787971 08143628374 7.00 01705276659 0007723698604 08217486355 8.00 0.1701368564 0004155979967 08257071636 9.00 0169925507 0002239281609 08278352114 10.0 01698113081 0001207464186 08289812277 11.0 0.1697496338 00006513627194 08295990035 12.0 01697163352 00003514569213 08299322079 13.0 0.1696983599 00001896601995 08301119799 14.0 0.1696886572 00001023552587 08302089876 15.0 0.1696834201 5.524084473e-05 0830261339 16.0 0.1696805935 2.981393018e—05 08302895925 17.0 0.1696790679 1.6090994716-05 0.8303048411 18.0 0.1696782445 8.684585931e—06 08303130709 19.0 01696778001 4.687234992e-06 08303175127 20.0 0.1696775602 2.52979357e-06 083031991 21.0 0.1696774308 1.3653809746—06 08303212039 22.0 0.1696773609 7.369242155e-07 08303219022 23.0 0.1696773232 3.977332705e-07 08303222791 24.0 01696773028 2.146649293e—07 08303224825 25.0 0.1696772918 1.158591251e-07 08303225923 26.0 0.1696772859 6.253159069e-08 08303226516 27.0 0.1696772827 3.374960315e-08 08303226835 28.0 0.169677281 1.8215360866-08 08303227008 29.0 0.1696772801 9.831214716e-09 08303227101 30.0 0.1696772795 5.3061115626-09 08303227151 147 Table 6.38. Gauss-Galerkin Finite Element Method: Changes of the “moment” m;(y, t) at y = 0.5 with s = 2, h = 05,11 = 0, V = 0 as t increases time m0 m1 m2 m3 m4 m5 0.00 1 0.5 0.297358 0.196036 0.138456 0.102747 1.00 1 0.65527 0.542878 0.479022 0.436907 0.40716 2.00 1 0.738312 0.679577 0.645803 0.623033 0.606688 3.00 1 0.781637 0.750933 0.733402 0.72156 0.713057 4.00 1 0.804377 0.788174 0.778999 0.772813 0.768379 5.00 1 0.816426 0.807803 0.80295 0.799684 0.797349 6.00 1 0.822855 0.81824 0.815653 0.813914 0.812672 7.00 1 0.826302 0.823823 0.822437 0.821506 0.820842 8.00 1 0.828156 0.826821 0.826076 0.825576 0.825219 9.00 1 0.829154 0.828435 0.828034 0.827764 0.827572 10.0 1 0.829692 0.829304 0.829088 0.828943 0.82884 11.0 1 0.829983 0.829773 0.829657 0.829578 0.829523 12.0 1 0.830139 0.830026 0.829963 0.829921 0.829891 13.0 1 0.830224 0.830163 0.830129 0.830106 0.83009 14.0 1 0.830269 0.830236 0.830218 0.830206 0.830197 15.0 1 0.830294 0.830276 0.830266 0.83026 0.830255 16.0 1 0.830307 0.830298 0.830292 0.830289 0.830286 17.0 1 0.830314 0.830309 0.830306 0.830304 0.830303 18.0 1 0.830318 0.830315 0.830314 0.830313 0.830312 19.0 1 0.83032 0.830319 0.830318 0.830317 0.830317 20.0 1 0.830321 0.830321 0.83032 0.83032 0.83032 21.0 1 0.830322 0.830322 0.830321 0.830321 0.830321 22.0 1 0.830322 0.830322 0.830322 0.830322 0.830322 23.0 1 0.830323 0.830322 0.830322 0.830322 0.830322 24.0 1 0.830323 0.830323 0.830323 0.830322 0.830322 25.0 1 0.830323 0.830323 0.830323 0.830323 0.830323 26.0 1 0.830323 0.830323 0.830323 0.830323 0.830323 27.0 1 0.830323 0.830323 0.830323 0.830323 0.830323 28.0 1 0.830323 0.830323 0.830323 0.830323 0.830323 29.0 1 0.830323 0.830323 0.830323 0.830323 0.830323 30.0 1 0.830323 0.830323 0.830323 0.830323 0.830323 Table 6.39. Gauss-Galerkin Finite Element Method: Changes of the “total moment” 148 Mf,(t) at y=05 with s = 2, h = 05,11 = 0, V = 0 as t increases time M0 M1 M2 M3 M4 M5 0.00 1 0.5 0.297358 0.196036 0.138456 0.102747 1.00 1 0.65527 0.542878 0.479022 0.436907 0.40716 2.00 1 0.738312 0.679577 0.645803 0.623033 0.606688 3.00 1 0.781637 0.750933 0.733402 0.72156 0.713057 4.00 1 0.804377 0.788174 0.778999 0.772813 0.768379 5.00 1 0.816426 0.807803 0.80295 0.799684 0.797349 6.00 1 0.822855 0.81824 0.815653 0.813914 0.812672 7.00 1 0.826302 0.823823 0.822437 0.821506 0.820842 8.00 1 0.828156 0.826821 0.826076 0.825576 0.825219 9.00 1 0.829154 0.828435 0.828034 0.827764 0.827572 10.0 1 0.829692 0.829304 0.829088 0.828943 0.82884 11.0 1 0.829983 0.829773 0.829657 0.829578 0.829523 12.0 1 0.830139 0.830026 0.829963 0.829921 0.829891 13.0 1 0.830224 0.830163 0.830129 0.830106 0.83009 14.0 1 0.830269 0.830236 0.830218 0.830206 0.830197 15.0 1 0.830294 0.830276 0.830266 0.83026 0.830255 16.0 1 0.830307 0.830298 0.830292 0.830289 0.830286 17.0 1 0.830314 0.830309 0.830306 0.830304 0.830303 18.0 1 0.830318 0.830315 0.830314 0.830313 0.830312 19.0 1 0.83032 0.830319 0.830318 0.830317 0.830317 20.0 1 0.830321 0.830321 0.83032 0.83032 0.83032 21.0 1 0.830322 0.830322 0.830321 0.830321 0.830321 22.0 1 0.830322 0.830322 0.830322 0.830322 0.830322 23.0 1 0.830323 0.830322 0.830322 0.830322 0.830322 24.0 1 0.830323 0.830323 0.830323 0.830322 0.830322 25.0 1 0.830323 0.830323 0.830323 0.830323 0.830323 26.0 1 0.830323 0.830323 0.830323 0.830323 0.830323 27.0 1 0.830323 0.830323 0.830323 0.830323 0.830323 28.0 1 0.830323 0.830323 0.830323 0.830323 0.830323 29.0 1 0.830323 0.830323 0.830323 0.830323 0.830323 30.0 1 0.830323 0.830323 0.830323 0.830323 0.830323 CHAPTER 7 Conclusions and Discussions In the previous chapters, we proposed and studied a Gauss-Galerkin finite element method for solving a class of singular diffusion equations. The theoretic analysis is very general and therefore the results can be applied to a wide range of singular diffu- sion equations in two variables. In our examination of the test problems, even though we only use very few base functions in finite element approximation for y variable and very few nodes in Gauss-Galerkin approximation for x variable, the numerical approximation seems very efficient and accurate. In the proof of the convergence of Gauss-Galerkin finite method, we considered a set of boundary conditions under which the boudary terms drop out. Nevertheless, as our test problem in studing Section 6.2 shows, we can apply the proposed method even in those case where the boundary terms do not all drop out (there are net fluxes across the boundaries at :1: = 0 and x = 1). A number of important and interesting issues remain to be studied in the future. We state some of them here. How do we modify our Gauss-Galerkin method in general in the case that the boundary terms can not drop out. One possible solution is to approximate such boundary terms by the finite element method in the y variable and the Gauss-Galerkin method in the x variable. For singular diffusion equations with singularities in both x and y variables, a possible solution may need the Gauss- 149 150 Galerkin method in both directions. For example, given time t, we may alternately use one dimensional Gauss-Galerkin method in the x direction and then the y direc- tion repeatedly. Obviously much more work needs to be done in the future. BIBLIOGRAPHY BIBLIOGRAPHY [1] D. A. Dawson, Galerkin approximation of nonlinear Markov processes, Statistics and Related Topics (Proceeding of the International Symposium on Statistics and Related Topics held in Ottawa, Canada, May 5-7, 1980), North Holland, 317-339, 1981 [2] W. Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. Math., 55, 468-519, 1952. [3] Friedman, Stochastic Differential Equations and Application to P.D.E. ’3, Vol. 1, Academic Press, Inc. 1975 [4] A. Hajjafar, H. Salehi, D. H. Y. Yen, On a class of Gauss-Galerkin methods for Markov Processes, Proceeding of the Workshop on Nonstationary Stochastic Pro- cesses and Their Applications, August 1-2, 1991, pp.126—146, World Scientific, Virginia 1992. [5] L. Huang and D. H. Y. Yen, A Gauss-Galerkin Finite-Difference Method for Sin- gular Partial Differential Equations in Two Space Variables, Numerical Methods for Partial Differential Equations, 13, 331-355, 1997. [6] M. Luskin and R. Rannacher, On the Smoothing Property of the Galerkin Method for Parabolic Equations, SIAM J. NUMER. ANAL., Vol. 19, No. 1, 93-113, Februry 1981. [7] J. Keller and R. Voronka, Asymptotic Analysis of Stochastic Models in Popula- tion Genetics, Mathematical Biostatistics, Vol. 25, pp. 331-362, 1975. [8] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equation, Springer-Verlag, 1994. [9] Z. Schuss, Theory and Applications of Stochastic Differential Equations, John Wiley & Sons, 1980. 151 152 [10] J. A. Shohat and J. D. Tamarkin, The Problem of Moments, Mathematical Surveys, no.1, AMS, 1963. [11] C. Soize, The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solutions, World Scientific, 1994. [12] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-verlag, 1983. [13] G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice- Hall, INC., 1973. [14] V. Thomee, Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Mathematics, Springer-Verlag, 1984. [15] V. Thomee, Some convergence results for Galerkin methods for parabolic bound- ary value problems, in Mathematical Aspects of Finite Elements in Parial Dif- ferential Equations, pp. 55—88, Academic Press, New York, 1974. [16] V. Thomee, Negative norm estimates and superconvergence in Galerkin methods for parabolic problemsm, Math. Comp., 34, 93-113, 1980. [17] K. Yosida, Fuctional Analysis, Springer-Verlag, 1985. "11111111111111