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ABSTRACT
INTEGRATING INFORMAL AND FORMAL APPROACHES TO
OBJECT-ORIENTED ANALYSIS AND DESIGN
By
Yile Enoch Wang

It is clearly evident that the impact of software is significantly increasing. Accord-
ingly, the need to have high assurance in software’s correctness increases for systems
where its correct operation is imperative. As a means to facilitate the development
of software, formal software specifications are gaining increasing attention as a means
to rigorously document requirements and design information since the well-defined
notations are amenable to automated processing for numerous analysis tasks, in-
cluding verification of the correctness of resulting systems. However, attempting to
construct a formal specification directly from an informal, high-level requirements
document can be challenging. Formal descriptions potentially involve considerable
syntactic details and may require careful planning and organization on the part of
the developer in order to develop modular (easily-decomposed and amenable to reuse)
specifications. In contrast, object-oriented analysis and development techniques, such

as the Object Modeling Technique (OMT), comprising diagramming techniques that
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make use of intuitive and easy to understand graphical notations, are extensively
used today. However, the informal nature of the diagramming notations and the lack
of well-defined semantics pose the potential to introduce errors in the development
process, particularly as the systems become more complicated. The objective of this
research is to introduce formal semantics to the graphical notations of OMT, includ-
ing a formal definition of their integration, and to propose a process to conduct a
stepwise formal, rigorous refinement of the diagrams during the design phase. The
development process should enable a semi-automated generation of executable formal
specifications that can be used to simulate the behavior and check the consistency

between levels of specification refinements.
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Chapter 1

Introduction

It is clearly evident that the impact of software is significantly increasing [1]. Ac-
cordingly, the need to have high assurance in software’s correctness increases for
systems where its correct operation is imperative. Formal specifications are gain-
ing increasing attention as a means to rigorously document requirements and design
information since the well-defined notations are amenable to automated processing
for numerous analysis tasks [2], including verification of the correctness of resulting
systems. However, attempting to construct a formal specification directly from an
informal, high-level requirements document can be challenging. Formal descriptions
potentially involve considerable syntactic details and may require careful planning and

organization on the part of the specifier in order to develop modular specifications.
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2

1.1 Problem Description and Motivation

A complementary approach to describing requirements is the use of graphical model-
ing notations. For example, the Object Modeling Technique (OMT) (3] is extensively
used as a popular object-oriented modeling technique in industry and is commonly
taught as an object-oriented methodology in academic settings. Its popularity is
largely due to its simple notation and the notational support for describing struc-
tural, behavioral, and functional aspects of a system through the object, dynamic,
and functional models, respectively. The object model is represented in a notation
similar to entity-relation (ER) diagrams [4]. The dynamic model is described in terms
of a state diagram. And the functional model is captured by a data flow diagram. In
order to effectively use OMT, particularly for design purposes, there must be a well-
defined method to integrate the three models. Otherwise, OMT is only a combination
of three separate, independent models that provide little more than intuitive diagrams
that may help to clarify some ideas within the corresponding, separate models.

One approach that takes advantage of the automated processing afforded by formal
specifications and the ease of use provided by graphical modeling techniques is to
construct a well-defined syntax and semantics for the graphical models in terms of
an existing specification language. A significant advantage to formalizing a modeling
notation such as OMT is that it has a uniform notational support for modeling
requirements, design, and detailed design information. Therefore, the corresponding
formalization rules for diagrammatic models can be used to perform analysis and

design tasks throughout the development process, rather than be limited to a specific
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phase (e.g., requirements), as is the case with numerous specification languages and /or
modeling notations.

However, some features of the formal specifications, such as the equations in al-
gebraic specifications, cannot be represented by graphical notations in an intuitive
fashion. Thus fully automated generation of formal specifications is not realistic.
Furthermore, the formalization rules can only derive formal specifications from the
resulting models, but cannot help to conduct the development process. The applica-
tion of the formal specifications may be limited by the fact that their corresponding
models, from which the specifications are generated, are derived in an informal, ad
hoc approach. Therefore, a process that supports a formal and rigorous development
and refinement of analysis and design information with the use of formal semantics

for graphical notations is necessary.

Thesis Statement:  The objective of the proposed research is threefold: (1) de-
velop formal syntaz and semantics for all three OMT models; (2) develop a formal
definition for the integration of all three models; and (3) develop a refinement process
for refining analysis information into design information. These three tasks will de-
fine a new object-oriented design paradigm that supports rigorous analysis of OMT’s
graphical models through specification execution, consistency verification, and stepwise

refinement.
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1.2 Summary of Research Contributions

This section gives highlights of the four major contributions of this research.

Formalization of Dynamic Model. @ New rules are proposed to formalize the
dynamic models in terms of process algebra specifications expressed in LOTOS (Lan-
guage of Temporal Ordering Specification) specifications. In OMT, the behavior of
an individual object is modeled as a state diagram. The proposed rules formalize
the state diagrams for individual objects in terms of LOTOS behavior specifications.
The state diagrams of concurrent, communicating objects are formalized in terms of
synchronized LOTOS behavior specifications. The formalization enables the precise
specification of the behavior of objects and the simulation of system behavior through

executable specifications.

Formalization of Functional Model. Inorder to integrate the functional models
into object-oriented technology, the functional model of OMT has been modified. Two
functional models, Object Functional Model (OFM) and Service Refinement Func-
tional Model (SRFM), are introduced. An OFM captures the services provided by an
object. An SRFM describes how a service of an object is implemented in terms of
the services provided by the object at a lower level of abstraction. In addition, guide-
lines for deriving algebraic specifications from the object and functional models are
given. Based upon algebraic specifications, pre- and postconditions are introduced to
describe the requirements and constraints for services. The pre- and postconditions

of services enable symbolic execution of the high-level design model thus providing a
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means to perform simulation, verification, and validation during the early phases of

software development.

Integration of the Three Complementary Models.  The integration of the
three complementary models is three-fold. First, the functional and dynamic models
are derived in the context of object models. By associating a functional model and
a dynamic model to every individual object, the conflicts can be resolved between
the models with respect to their respective development philosophies. Second, the
integration is achieved through the underlying formal semantics imposed by the for-
malization rules. By sharing common language constructs among the specifications
derived from the object, functional, and dynamic models, the three models are inte-
grated and represented in terms of a single formal specification. Third, the integration
is achieved by composing: (1) the dynamic models of concurrent objects hierarchically
according to the system structure specified in the object model; and (2) the SRFMs
of an object in terms of the services provided by the aggregate objects.

The integration and formalization of the three models that describe a system from
complementary aspects enable designers to perform analysis tasks by using the derived
formal specifications. In addition, based upon the formalization and integration,
a design process that incorporates formal specifications in a transitional, parallel

successive refinement approach [5] is also possible.

Process for Model Construction, Specification, and Refinement.  Based

on the investigations into the formalization and integration of the models of OMT, a
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6
design process is proposed to facilitate the development of formal design specifications
in parallel with the development of OMT’s semi-formal, graphical models. Because
of the rigorous mathematical foundation of formal specifications, both customers
and designers can have a more precise means to describe the design thus avoiding
ambiguities. In addition, symbolic simulation of the design can help designers better
understand the design as well as facilitate the communication among designers and
even with the customers. And finally, specification analysis can be performed during
model refinement of the design process to detect and eliminate design flaws during

earlier stages of software development.

1.3 Definitions

Since our research focuses on the application of formal methods and the design pro-
cess, it is important for us to clarify what we mean by the terms correctness, con-
sistency, and completeness. These terms have been given different meanings based
on various perspectives [6, 7], but for the remainder of the dissertation, the following

definitions apply.

e Correctness: after a refinement of a service, the postcondition of the services
can still be satisfied.

e Consistency: the formal specifications derived from the models (1) do not
have syntactical and semantic errors, (2) do not have deadlocks among concur-
rent, communicating objects, and (3) the test cases that are satisfied by the
design specification of a higher level abstraction can still be satisfied after one
refinement iteration.

e Completeness: the formal specifications describe all the required functionali-
ties as well as the behavior of the system under all circumstances.
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