LIBRARY

Michigan State
University

PLACE IN RETURN BOX
to remove this checkout from your record.
TO AVOID FINES return on or before date due.

DATE DUE DATE DUE DATE DUE

198 c/CIRC/DateDue.pB5-p.14

INTEGRATING INFORMAL AND FORMAL APPROACHES
TO OBJECT-ORIENTED ANALYSIS AND DESIGN

By

Yile Enoch Wang

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DoOCTOR OF PHILOSOPHY

Department of Computer Science

May 10, 1998

Advisor: Professor Betty H. C. Cheng

INTEGR.

s clearly

i e :
B2 the neys
where jrs COTTY
of Software, §, h
W figsrously
Mlatiing are
bt
Hiding verif,
~JALS G0
Curmrucr a f
'l'bf‘urnern Coy
lal

N A
THatie g, .

ABSTRACT
INTEGRATING INFORMAL AND FORMAL APPROACHES TO
OBJECT-ORIENTED ANALYSIS AND DESIGN
By
Yile Enoch Wang

It is clearly evident that the impact of software is significantly increasing. Accord-
ingly, the need to have high assurance in software’s correctness increases for systems
where its correct operation is imperative. As a means to facilitate the development
of software, formal software specifications are gaining increasing attention as a means
to rigorously document requirements and design information since the well-defined
notations are amenable to automated processing for numerous analysis tasks, in-
cluding verification of the correctness of resulting systems. However, attempting to
construct a formal specification directly from an informal, high-level requirements
document can be challenging. Formal descriptions potentially involve considerable
syntactic details and may require careful planning and organization on the part of
the developer in order to develop modular (easily-decomposed and amenable to reuse)
specifications. In contrast, object-oriented analysis and development techniques, such

as the Object Modeling Technique (OMT), comprising diagramming techniques that

e use of i1
el today. Howew

{

o edetied e

e, Pallicina:

wegnh IS to LT

sorwise formal,
dieloment pro
patfations thy

betwoen Jovels of

make use of intuitive and easy to understand graphical notations, are extensively
used today. However, the informal nature of the diagramming notations and the lack
of well-defined semantics pose the potential to introduce errors in the development
process, particularly as the systems become more complicated. The objective of this
research is to introduce formal semantics to the graphical notations of OMT, includ-
ing a formal definition of their integration, and to propose a process to conduct a
stepwise formal, rigorous refinement of the diagrams during the design phase. The
development process should enable a semi-automated generation of executable formal
specifications that can be used to simulate the behavior and check the consistency

between levels of specification refinements.

© Copyright May 10, 1998 by Yile Enoch Wang
All Rights Reserved

To my deg

10 my

omy gra

To my dear wife, whose companionship is a blessing from God,;

to my parents, who raised me to be a faithful Christian;

to my grandparents, who shed their unconditional love on me.

Twsld sincerely
HOTAZement g1,
¥4 10 thank D,
C Panowski for
Dnminee,

[wonlq alvo |
(e, Grete] (
1 the Software I
Ll iy the p,
Finall}'. [y,

al Tt of all ¢

Ak
g furward t

ACKNOWLEDGMENTS

I would sincerely like to thank my advisor, Dr. Betty H.C. Cheng, without whose
encouragement and wisdom, this dissertation would not have been possible. I also
wish to thank Dr. Philip K. McKinley, Dr. Anthony S. Wojcik, and Dr. Bryan
C. Pijanowski for their constructive suggestions and commitment for being on my
committee.

I would also like to thank Gerald C. Gannod, William E. McUmber, Yonghao
Chen, Gretel V. Coombs, Laura A. Campbell, Andrew S. Chen, and other members
in the Software Engineering Research Group for all their friendship, support, and
kindness in the past five years.

Finally, I would like to thank my wife, Tong, for all her support, understanding,
and most of all confidence in me. I appreciate the sacrifices she has made and am

looking forward to more time together with her.

vi

LIST OF TABLE
LIST OF FIGUR

I Introduction

I Problem Dese
11 Summary of 1
.3 Definitions .
4 Organization

2 Backoround
1 Object Mo
Furmal \ti+
v,;emﬁcanl.xn
Obj@(fl .\!(0(10

\AA

P s 1 e
VIR R

Related Wor
M Formatigay,,
3 \ Jll- (')‘JJ. (1
33 Sie

ed o adad

SMematje

¢ Object \fqq,
T}IQ D("'i\dv:
Dl\u‘lg‘u\ KL

'\n ddl](d {,
F‘erdl PU T

4.2

D\ nannc \I(

l Ilhﬂdr\

TABLE OF CONTENTS

LIST OF TABLES x
LIST OF FIGURES xi

1 Introduction 1
1.1 Problem Description and Motivation 2
1.2 Summary of Research Contributions 4
1.3 Definitions 6
1.4 Organization of Dissertation 7

2 Background 8
2.1 Object Modeling Technique Overview 8
2.2 Formal Methods 12
2.3 Specification Languages Used in Project 18
2.4 Object Model Formalization 21
3 Related Work 30
3.1 Formalization of Object-Oriented Modeling Approaches 30
3.2 Non-Object-Oriented Based Approaches 49
3.3 Systematic Approaches to Refinement of Analysis Information for Design 55
4 Object Model Formalization Revisited 60
4.1 The Derivation of Algebraic Specifications 60
4.2 Distinguished Sort L 61
4.3 An added formalizationrule 62
4.4 Formal Representation of Algebraic Specification 65
5 Dynamic Model Formalization 67
5.1 Preliminary Formalization 68
5.2 Formalizingstate diagrams of individual objects 71
5.3 Concurrent State Formalization 86
5.4 Integration with Other OMT Models 94
9.9 Summary 98
6 Functional Model Formalization 99
6.1 The Data Flow Diagram (DFD) 101
6.2 DFD Notation Modification 103
6.3 Integrating the Functional Model into OOD 110

vii

il Mo
64 Functional \it
55 loregration Wi

56 Summary . .

7 Model Integr:
11 Inegration of
72 The Correer,
T3 Specification,
T4 Analysis of N

§ Design Proce
L Overview of
‘2 Thi‘ PI!'\}hm
83 The Desizn

M Summary

¥ Case Study
11 The Projeey
12 Focus of 11,
13 Overview o
Sestem Ly
%3 Svstem D
%5 Design Ay,
i Summary

10 Conclysiop,
01 Summar_\' |
12 Impact of

BBLIOGR 4
APPENDI CF
* The Objec
B The Dy,
C The F“nct

D ComplE‘te

6.4 Functional Model Formalization 116
6.5 Integration with Object and Dynamic Models 145
6.6 Summary e e e e 146
7 Model Integration and Analysis 147
7.1 Integration of the Three Models of OMT 147
7.2 The Correctness, Consistency, and Completeness of the Formalization Rules151
7.3 Specification Analysis Techniques 153
7.4 Analysis of Model Integration, 158
8 Design Process 165
8.1 Overview of Strategies Proposed Approach 168
8.2 The Proposed Rigorous Design Process 171
8.3 The Design Process Applied to An Example 178
84 Summary e 206
9 Case Study 209
9.1 TheProject 210
9.2 FocusoftheCaseStudy 213
9.3 Overview of the Requirements Analysis 213
9.4 System Level Modeling 215
9.5 System Design 225
9.6 Design Analysis and Refinement 245
9.7 Summary e e 267
10 Conclusions and Future Investigations 269
10.1 Summary of Contributions 270
10.2 Impact of Research and Future Investigations 273
BIBLIOGRAPHY 276
APPENDICES 284
A The Object Model Formalization Rules 284
B The Dynamic Model Formalization Rules 286
C The Functional Model Formalization Rules 291
D Complete LOTOS specification for Disk Manager Behavior 296
E Instantiated LOTOS specification for Disk Manager 299
F LSL specifications 301
G LOTOS specification for revised Disk Manager 303

H Complete LOT

1x

H Complete LOTOS specification of ENFORMS for static analysis 306

31 The models o

ListT OoF TABLES

8.1 The models that will be developed during a given iteration of design. . . 173

] -\prmn ale s
27 Agenenc alz
13 An operation,
24 Adenotativg
25 Alarch alae
26 A wpical Lo
27 Basic appr. .
High-leve) «

Asimple ot

ec>

D T.IP Curre \v
l Shmm'\ X

<13 A shmpli,
4'\h\ 2h-leve.
1 '\hl h leve

2
1
2 Summary
1
e
1
o

(RN ERY O [ROR R
- '_) ['
- e

1l The ACT ¢
11 A Sampl(} C
3 The anrey,
Mode]
3l \t}'p il
’) A Wpicy]
% The State
?.4 Y Cr)n i
)3 Thf’ State
JG Th‘“ ipp
JT The Speci
- A sam),
jg ¢ d;lh
.)IJ Tdf* L(JTt
u1] Specin 0
D e |
i3 Ldmm“ St
- ()TUS .
£
f:» A T’-\'Di(*al

LisT OF FIGURES

2.1 A predicate specification of integer square root 14
2.2 A generic algebraic specification of stack 15
2.3 An operational specification of integer square root 16
2.4 A denotational specification of boolean expression 18
2.5 A Larch algebraic specification of table 19
2.6 A typical LOTOS process algebra specification 21
2.7 Basic approach to formalization.. 22
2.8 High-level structure of LSL specifications 23
2.9 Asimpleobjectmodel 25
2.10 The corresponding algebraic specification of Figure 2.9 25
2.11 Summary of Object Model Semantics 26
2.12 Summary of Object Model Semantics (continued) 27
2.13 A simplified disk manager oL, 27
2.14 A high-level Storage class specified in Larch 28
2.15 A high-level Storage class specified in ACTONE 29
4.1 The ACT ONE specification for person 63
4.2 A sample object model that contains attributes for object O 64
4.3 The automatically generated formal specification from the sample object
model 65
5.1 A typicalstatechart. 70
5.2 A typical state diagram, 72
5.3 The state diagram for the Compressor object 78
5.4 A Compressor class and its behavior specified in LOTOS 80
5.5 The state diagram for Storage L. 83
5.6 The specification (in Full LOTOS) of the Storage (1) 83
5.7 The specification (in Full LOTOS) of the Storage (2) 84
5.8 A sample state diagram with interleaving dynamic models 88
5.9 The aggregation concurrent state diagram for Disk Manager 91
5.10 The LOTOS specification for a simplified Disk_Manager 92
5.11 Specification for a simplified Disk_Manager with hidden internal gates . . 93
5.12 Sample state diagram with instantiated parameters of distinguished sorts 95
5.13 LOTOS specification of the sample state diagram 96
6.1 A typical data flow diagram 101
6.2 An OFM that contains services of an individual object 105
6.3 An OFM of an integer stackobject 105
Xi

i4 4 svstem leved
§3 An SREM sl
Services

if An SREM Ih;::
67 AnSREM wu
63 Ao SREM wir
59 System level ¢
510 A simplified
611 The OF M for
612 The OF\ for
6.13 The SREM 1
614 The ACT O
65 The ACT O
6.6 The Fell Loy
uons and

617 The Full L0y
tions for
S8 A tvpical «1.
519 A part of 1},
220 The foryal,
520 The formal;,
522 The Fy)| I Le
for servi

633 The Fu” L(
tions f,r

€?4 The LS Y
i The Proof

The for Mat
e error j;,
he testing
~5mg Qree t;’

An e.\;ha]Ni

Ay im“fa(:ti

- -1 - - - .
’
’
h
’

Crr e SO o —
o

Tuf» form, wl
\AJd(1\ ”J r}

xii

6.4 A system level OFM derived during analysis 107
6.5 An SRFM shows how a system service is implemented in terms of object

SEIVICES . . v v v v e e i e e e e e e e e e e e e e 108
6.6 An SRFM that introduces an additional internal function 108
6.7 An SRFM with split and aggregate data flows 109
6.8 An SRFM with refined input and output data flows 110
6.9 System level object functional model for Disk Manager 112
6.10 A simplified disk manager oL, 113
6.11 The OFM for Storage 113
6.12 The OFM for Compressorv..... 114
6.13 The SRFM for Disk_Manager.Retrieve 114
6.14 The ACT ONE specification for Disk Manager 119
6.15 The ACT ONE specification for Storage 120
6.16 The Full LOTOS specification for Disk Manager with algebraic specifica-

tions and distinguished sort Lo 0oL 123
6.17 The Full LOTOS specification for Disk Manager with pre- and postcondi-

tions for services L 126
6.18 A typical state diagram 128
6.19 A part of the refined ACT ONE specification for Disk Manager 135
6.20 The formalization of the refined data items shown in Figure 6.7 139

6.21 The formalization of the data duplicator and selector shown in Figure 6.8 141
6.22 The Full LOTOS specification for Storage with pre- and postconditions

forservices. e 143
6.23 The Full LOTOS specification for Compressor with pre- and postcondi-

tions for services Lo 144
6.24 The LSL specification for the refined Disk Manager 144
6.25 The proof of the example constraint using LP 145
7.1 The format of formal specifications 149
7.2 The error in the behavior specification of the Storage detected by LSA . 158
7.3 The testing process used to test the behavior of Disk Manager 160
7.4 Using accept_test testing process to test the specified Disk Manager . . . 161
7.5 An exhaustive test using process accept_test 162
7.6 An interactive simulation of the process composed for testing 164
8.1 The formalization process dimension of the suggested framework 169
8.2 Models in the order of development 174
8.3 The system object model for Disk Manager 179
8.4 The ACT ONE specification for system level object model of Disk Manager179
8.5 The system functional model for Disk Manager 181
8.6 The specification for Disk Manager that specifies its services and properties182
8.7 The system dynamic model for Disk Manager 182
8.8 The complete Full LOTOS specification for system level object model of

Disk Manager e 183

8.9 The testing process used to analyze the behavior of Disk Manager 184

$0 Using aiory 22
il The refined o
2 The ACT ON
413 The object fu
414 The obieet da
325 The specific
3.6 The specitica
7 The object
L8 The object
g Tht‘ Spt‘&'iﬁ: d
20 An example
L2 The service 1
2 The service 1
223 The refined
14 The LSL s,
225 The proof o
£ An examy).
27 An examp;.
R \n exanply
829 The tefined
-%30 The revise
31 The refpeg
132 The tefined
i Thpd}czamz:
H ing g
18 acre
. Dk AW
R Ks'mg Qrrs

Disk \f

0 .
ui A high e,
v.d (0 du\
43 .
'44 Tde f(}[‘“l i
;.. e {(Jrn;(4
B le tr&{l'\\
i o Check
o The
tralh
- Or g
3‘ Sy
¢ fur“
by COnddjy,
. (#—'\t
19 U p
he tr{qv
O\
IR \F(
Tne Tar ’

xiii

8.10 Using accept_test testing process to analyze the specified Disk Manager . 185

8.11 The refined object model for Disk Manager. 189
8.12 The ACT ONE specifications for object models of Storage and Compressor 189
8.13 The object functional model for Storage 190
8.14 The object dynamic model for Storage 191
8.15 The specification for object Storage in Full LOTOS 192
8.16 The specification for object Storage in Full LOTOS 193
8.17 The object functional model for Compressor 194
8.18 The object dynamic model for Compressor 194
8.19 The specification for Compressor in Full LOTOS 195
8.20 An example refined object model 196

8.21 The service refinement functional model for function Input of Disk Manager196
8.22 The service refinement functional model for function Output of Disk Manager197

8.23 The refined ACT ONE specification for Disk Manager. 197
8.24 The LSL specification for the refined Disk Manager 198
8.25 The proof of the example constraint using LP 198
8.26 An example dynamic model for object O 200
8.27 An example SRFM for service S1 of object O 200
8.28 An example refined dynamic model for object O 201
8.29 The refined dynamic model for Disk Manager 202
8.30 The revised refined dynamic model for Disk Manager 202
8.31 The refined ACT ONE specification for Disk Manager. 203
8.32 The refined dynamic model for Disk Manager that is composed by parallel

dynamicmodels o 205
8.33 The composed specification for Disk Manager 205
8.34 Using accept_test testing process to analyze the behavior of the refined

Disk Manager (1) e 206
8.35 Using accept_test testing process to analyze the behavior of the refined

Disk Manager (2) 207
9.1 A high-level view of the architecture 212
9.2 The design models of ENFORMS at the system level 216

9.3 The formal specification automatically generated from system models (1) 217
9.4 The formal specification automatically generated from system models (2) 218
9.5 The transcript of running LSA over ENFORMS formal specification to

check inter-model consistency 219
9.6 The transcript of running LOLA over ENFORMS formal specification

for simulation 220
9.7 The formal specification with algebraic specifications and pre/post-

conditions L 222
9.8 A test process for the refined formal specification of ENFORMS 223
9.9 The transcript of testing that runs OneEzpand of LOLA over the refined

ENFORMS formal specification 224

9.10 The transcript of testing that runs TestEzpand of LOLA over the refined
ENFORMS formal specification 226

411 The refined ol
022 The destzn mon
113 The autumatic
014 The formal spr-

pre ‘p(INEIRE
3.5 The desizn ne
016 The autumat
17 The automati
528 The formal ~

and pre p
89 The desion
820 The autolnat:
421 The automae;
30 The formal -

pre "purI-(
23 The SRFM 7§,
24 The auton. g
423 The refined ¢
826 The autume:

mode] of
877 The dvnam;,
128 The auton g

stants ip
39 Th(’ rtlﬁned ‘
A Th(‘ d(isi;n I
31 The Ao,
0 I of Cf.'un.'
) € Tevined
33 T}

‘

[VA RIS

€ antoy,,

g 3 b“ha\'i(v.r
. \,\nf’d_\- (.hp(]
e,
03 ':inﬁ(dtl“n
“HE eXnge
% ba:

fam p(h(iix I
-7 The g
By, ed
. he f(j)r“.
i The
Mgy
14 T S Tefiy,.
- e t(‘St
1s Ct pbr
Gy oy
! i
T8 e
P ",
i T OR‘ I
¥
e aqqu

xiv

9.11 The refined object model for ENFORMS: an overview of the architecture 228

9.12 The design models for Name_Server 229
9.13 The automatically generated formal specification for Name_Server 230
9.14 The formal specification for Name_Server with algebraic specifications and
pre/post-conditions 231
9.15 The design models for Archive_Server 232

9.16 The automatically generated formal specification for Archive Server (1) . 233
9.17 The automatically generated formal specification for Archive Server (2) . 234
9.18 The formal specification for Archive_Server with algebraic specifications

and pre/post-conditions 235
9.19 The design models for Client 236
9.20 The automatically generated formal specification for Client 237
9.21 The automatically generated formal specification for Client 238
9.22 The formal specification for Client with algebraic specifications and

pre/post-conditions 239
9.23 The SRFM for Retrieve service of ENFORMS 240
9.24 The automatically generated formal specification for the SRFM of Retrieve 240
9.25 The refined design model for ENFORMS 241
9.26 The automatically generated formal specification from the refined dynamic

model of ENFORMS 242
9.27 The dynamic models composed in parallel 244
9.28 The automatically generated formal specification that describes the con-

stants in the refined models of ENFORMS 246
9.29 The refined object model for ENFORMS with Channel object 248
9.30 The design models for channel 248
9.31 The automatically generated formal specification from the design models

of Channel 250

9.32 The revised design models (with a Channel object) composed in parallel 251
9.33 The automatically generated formal specification that synchronizes the

behavior of individual objects L. 253
9.34 Syntax checking and semantics analysis of the refined enforms formal spec-
ification 254
9.35 Using expansion transformation to detect synchronization error 255
9.36 A part of the EFSM transformed from the LOTOS specification in Ap-
pendix H. 256
9.37 The refined dynamic model of Client 257
9.38 The formal specification for the refined Idle state of Client 258
9.39 The transcript of expansion transformation after the behavior of the Client
isrefined 258
9.40 The test process for the refined formal specification of ENFORMS . . . 259
9.41 Communication among individual objects are hidden 260
9.42 The test process is rejected by the refined behavior specification of EN-
FORMS e 261

9.43 The added operations and equations that are resulted by the SRFM of
Figure 9.23 L 262

144 The transcript «
are added
145 The further e
436 The formal spe
047 The result of
refined . .

XV

9.44 The transcript of TestEzrpand test after necessary operations and equations

areadded 263
9.45 The further refined dynamic model of Client 265
9.46 The formal specification for the refined Idle state of Client 266

9.47 The result of TestEzpand after the behavior of the Client object class is
refined 267

Chapter

Introdu

s clearly evigey

trdingly,

16 T
TS where s
Bl increasing

dalte

Lmmatign Since

fr Mmergg aliy

a8

Ve, Howes,

ik i
Loy, hig}, e

PlEuig])y vy

JI&*iﬁlZali(ixn on

Chapter 1

Introduction

It is clearly evident that the impact of software is significantly increasing [1]. Ac-
cordingly, the need to have high assurance in software’s correctness increases for
systems where its correct operation is imperative. Formal specifications are gain-
ing increasing attention as a means to rigorously document requirements and design
information since the well-defined notations are amenable to automated processing
for numerous analysis tasks [2], including verification of the correctness of resulting
systems. However, attempting to construct a formal specification directly from an
informal, high-level requirements document can be challenging. Formal descriptions
potentially involve considerable syntactic details and may require careful planning and

organization on the part of the specifier in order to develop modular specifications.

11 Probler

Lumplementan u;
23 totations. For ¢
e as a pup\ﬂar e

It as an objec

2y due 1o its iy
twra. behavioral, ar,
e functional myl,
ilarto EOUItY-Tel 4
i astate diagran.
g effectively |
elred method g
ifthrep Sarate, iy,
L mgy belp 16]

One aproach 13
f?"*iﬁcatiuns and

R

et well.d,

2

1.1 Problem Description and Motivation

A complementary approach to describing requirements is the use of graphical model-
ing notations. For example, the Object Modeling Technique (OMT) (3] is extensively
used as a popular object-oriented modeling technique in industry and is commonly
taught as an object-oriented methodology in academic settings. Its popularity is
largely due to its simple notation and the notational support for describing struc-
tural, behavioral, and functional aspects of a system through the object, dynamic,
and functional models, respectively. The object model is represented in a notation
similar to entity-relation (ER) diagrams [4]. The dynamic model is described in terms
of a state diagram. And the functional model is captured by a data flow diagram. In
order to effectively use OMT, particularly for design purposes, there must be a well-
defined method to integrate the three models. Otherwise, OMT is only a combination
of three separate, independent models that provide little more than intuitive diagrams
that may help to clarify some ideas within the corresponding, separate models.

One approach that takes advantage of the automated processing afforded by formal
specifications and the ease of use provided by graphical modeling techniques is to
construct a well-defined syntax and semantics for the graphical models in terms of
an existing specification language. A significant advantage to formalizing a modeling
notation such as OMT is that it has a uniform notational support for modeling
requirements, design, and detailed design information. Therefore, the corresponding
formalization rules for diagrammatic models can be used to perform analysis and

design tasks throughout the development process, rather than be limited to a specific

s g TeqUiTe L
m deling notations
Huwever, sotne
sebzale specificatins
hion. Thus fil!
Furhermore, the {
Esdting models, b
tn of the forma]
mdels. from whic
" approach. T,
@d refinem ey of

for Taphical .,

phase (e.g., requirements), as is the case with numerous specification languages and /or
modeling notations.

However, some features of the formal specifications, such as the equations in al-
gebraic specifications, cannot be represented by graphical notations in an intuitive
fashion. Thus fully automated generation of formal specifications is not realistic.
Furthermore, the formalization rules can only derive formal specifications from the
resulting models, but cannot help to conduct the development process. The applica-
tion of the formal specifications may be limited by the fact that their corresponding
models, from which the specifications are generated, are derived in an informal, ad
hoc approach. Therefore, a process that supports a formal and rigorous development
and refinement of analysis and design information with the use of formal semantics

for graphical notations is necessary.

Thesis Statement: The objective of the proposed research is threefold: (1) de-
velop formal syntaz and semantics for all three OMT models; (2) develop a formal
definition for the integration of all three models; and (3) develop a refinement process
for refining analysis information into design information. These three tasks will de-
fine a new object-oriented design paradigm that supports rigorous analysis of OMT’s
graphical models through specification execution, consistency verification, and stepwise

refinement.

12 Sumn

Tissection @ives L)

Formalization of
damic models in
ziaze of Temporal
i dividual obi-
e state diagrans
Tke state diagrn
Slhronized L()7
Preification of ¢},

PeCtable speit

1

Formalization C

4

1.2 Summary of Research Contributions

This section gives highlights of the four major contributions of this research.

Formalization of Dynamic Model. @ New rules are proposed to formalize the
dynamic models in terms of process algebra specifications expressed in LOTOS (Lan-
guage of Temporal Ordering Specification) specifications. In OMT, the behavior of
an individual object is modeled as a state diagram. The proposed rules formalize
the state diagrams for individual objects in terms of LOTOS behavior specifications.
The state diagrams of concurrent, communicating objects are formalized in terms of
synchronized LOTOS behavior specifications. The formalization enables the precise
specification of the behavior of objects and the simulation of system behavior through

executable specifications.

Formalization of Functional Model. Inorder to integrate the functional models
into object-oriented technology, the functional model of OMT has been modified. Two
functional models, Object Functional Model (OFM) and Service Refinement Func-
tional Model (SRFM), are introduced. An OFM captures the services provided by an
object. An SRFM describes how a service of an object is implemented in terms of
the services provided by the object at a lower level of abstraction. In addition, guide-
lines for deriving algebraic specifications from the object and functional models are
given. Based upon algebraic specifications, pre- and postconditions are introduced to
describe the requirements and constraints for services. The pre- and postconditions

of services enable symbolic execution of the high-level design model thus providing a

peals t0 perform ~.

shware develupues

[ntegration of th
LI Complelielt
a: derived in e
¢ dmamic mod.]
e models wirhy ¢
Seration s ack;
zalization ryles.
Trived from the

‘d("d and repre

N
Fathieveq by cay
“irding 16 1y
W a obiacy -
bbject ip T

The j
fintegrar

e
mer.‘fnf‘mar\- c

f‘jpy, R
gl >pe(’iﬁ(fa,

& degs

S
[N pr()(v.‘j.\‘

R
Nive r(.ﬁ“‘.

Process for \

(RN
R&Y ln“'p'\r i
Sz

4
a

means to perform simulation, verification, and validation during the early phases of

software development.

Integration of the Three Complementary Models. The integration of the
three complementary models is three-fold. First, the functional and dynamic models
are derived in the context of object models. By associating a functional model and
a dynamic model to every individual object, the conflicts can be resolved between
the models with respect to their respective development philosophies. Second, the
integration is achieved through the underlying formal semantics imposed by the for-
malization rules. By sharing common language constructs among the specifications
derived from the object, functional, and dynamic models, the three models are inte-
grated and represented in terms of a single formal specification. Third, the integration
is achieved by composing: (1) the dynamic models of concurrent objects hierarchically
according to the system structure specified in the object model; and (2) the SRFMs
of an object in terms of the services provided by the aggregate objects.

The integration and formalization of the three models that describe a system from
complementary aspects enable designers to perform analysis tasks by using the derived
formal specifications. In addition, based upon the formalization and integration,
a design process that incorporates formal specifications in a transitional, parallel

successive refinement approach [5] is also possible.

Process for Model Construction, Specification, and Refinement. Based

on the investigations into the formalization and integration of the models of OMT, a

gl proCess 18 pr
i paraliel with the

i the nigorous mas

and designers can |

|
andiguities. [ad
ndrsiand the di
&t with the ey

ol refinement ¢

BLLET Stages of g

13 Defin;

s

il

L2ce oyr researcl,

S0t g Mpory,

FEIeY, ang Con;

RO TN
i Yangyg p(»“p(.‘

drlllt]uns app]‘\-‘

' COrrectne:
@0 sri) y,,

[] .
ave Syt ad
;ﬂn' Conp,
Bion
“EN g NI
Ief pec,

ey, i
'C
Ueg .
\ “.‘.‘“

6
design process is proposed to facilitate the development of formal design specifications
in parallel with the development of OMT’s semi-formal, graphical models. Because
of the rigorous mathematical foundation of formal specifications, both customers
and designers can have a more precise means to describe the design thus avoiding
ambiguities. In addition, symbolic simulation of the design can help designers better
understand the design as well as facilitate the communication among designers and
even with the customers. And finally, specification analysis can be performed during
model refinement of the design process to detect and eliminate design flaws during

earlier stages of software development.

1.3 Definitions

Since our research focuses on the application of formal methods and the design pro-
cess, it is important for us to clarify what we mean by the terms correctness, con-
sistency, and completeness. These terms have been given different meanings based
on various perspectives [6, 7], but for the remainder of the dissertation, the following

definitions apply.

e Correctness: after a refinement of a service, the postcondition of the services
can still be satisfied.

e Consistency: the formal specifications derived from the models (1) do not
have syntactical and semantic errors, (2) do not have deadlocks among concur-
rent, communicating objects, and (3) the test cases that are satisfied by the
design specification of a higher level abstraction can still be satisfied after one
refinement iteration.

e Completeness: the formal specifications describe all the required functionali-
ties as well as the behavior of the system under all circumstances.

14 Organi

The remainder of 11,

i the Object Mode

es that will

he "ij<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>