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ABSTRACT

INTEGRATING INFORMAL AND FORMAL APPROACHES TO

OBJECT-ORIENTED ANALYSIS AND DESIGN

By

Yz'le Enoch Wang

It is clearly evident that the impact of software is Significantly increasing. Accord-

ingly, the need to have high assurance in software’s correctness increases for systems

where its correct operation is imperative. As a means to facilitate the development

Of software, formal software specifications are gaining increasing attention as a means

to rigorously document requirements and design information Since the well-defined

notations are amenable to automated processing for numerous analysis tasks, in-

cluding verification of the correctness of resulting systems. However, attempting to

construct a formal specification directly from an informal, high-level requirements

document can be challenging. Formal descriptions potentially involve considerable

syntactic details and may require careful planning and organization on the part of

the developer in order to develop modular (easily-decomposed and amenable to reuse)

Specifications. In contrast, object-oriented analysis and development techniques, such

as the Object Modeling Technique (OMT), comprising diagramming techniques that
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make use of intuitive and easy to understand graphical notations, are extensively

used today. However, the informal nature of the diagramming notations and the lack

of well-defined semantics pose the potential to introduce errors in the development

process, particularly as the systems become more complicated. The objective of this

research is to introduce formal semantics to the graphical notations of OMT, includ-

ing a formal definition of their integration, and to propose a process to conduct a

stepwise formal, rigorous refinement of the diagrams during the design phase. The

development process should enable a semi-automated generation of executable formal

specifications that can be used to simulate the behavior and check the consistency

between levels of specification refinements.





© Copyright May 10, 1998 by Yile Enoch Wang

All Rights Reserved



T0 my (lift

to my 1

to my gra



To my dear wife, whose companionship is a blessing from God;

to my parents, who raised me to be a faithful Christian;

to my grandparents, who shed their unconditional love on me.

 



 
lat-hid Slnt‘t‘ft‘ll :1

rhcattIragerItettt atu

rat to thank Dr.

C Pijarrowslzi for

tittrzmittre.

lrotrld also 1

Chen. Gretel V. C

in the Software
l

‘riz-izrss in the p.

finally. I trot;

331 must of all (

75"” Mm,
.“.5 forward I



ACKNOWLEDGMENTS

I would Sincerely like to thank my advisor, Dr. Betty H.C. Cheng, without whose

encouragement and wisdom, this dissertation would not have been possible. I also

wish to thank Dr. Philip K. McKinley, Dr. Anthony S. Wojcik, and Dr. Bryan

C. Pijanowski for their constructive suggestions and commitment for being on my

committee.

I would also like to thank Gerald C. Gannod, William E. McUmber, Yonghao

Chen, Gretel V. Coombs, Laura A. Campbell, Andrew S. Chen, and other members

in the Software Engineering Research Group for all their friendship, support, and

kindness in the past five years.

Finally, I would like to thank my wife, Tong, for all her support, understanding,

and most of all confidence in me. I appreciate the sacrifices She has made and am

looking forward to more time together with her.

vi



 

lISI OF TABLE

llSI OF FIGL'R

1 Introduction

lPr-ohlern Dew

l‘l SIIIrtItarx oil

3Defir3iItiotts . .

‘54 Organization

2 Background

2.1 Object Rimle-

33 Formal .\lt7‘ l

13 Sp(Illtdll'tfi

240USjE‘tI .\.‘(J(lt

3 Related Wor
‘31

Jl FtJllli'dllZ[dih-
97

‘

1* -\Jll~”OlJJi‘i'P'

33 c . .o_5[tr1a1 l( -

4 Object Mod.



TABLE OF CONTENTS

LIST OF TABLES x

LIST OF FIGURES xi

1 Introduction 1

1.1 Problem Description and Motivation .................... 2

1.2 Summary of Research Contributions .................... 4

1.3 Definitions ................................... 6

1.4 Organization of Dissertation ......................... 7

2 Background 8

2.1 Object Modeling Technique Overview .................... 8

2.2 Formal Methods ............................... 12

2.3 Specification Languages Used in Project .................. 18

2.4 Object Model Formalization ......................... 21

3 Related Work 30

3.1 Formalization of Object-Oriented Modeling Approaches .......... 30

3.2 Non-Object-Oriented Based Approaches .................. 49

3.3 Systematic Approaches to Refinement of Analysis Information for Design 55

4 Object Model Formalization Revisited 60

4.1 The Derivation of Algebraic Specifications ................. 60

4.2 Distinguished Sort .............................. 61

4.3 An added formalization rule ......................... 62

4.4 Formal Representation of Algebraic Specification ............. 65

5 Dynamic Model Formalization 67

5.1 Preliminary Formalization .......................... 68

5.2 Formalizingstate diagrams of individual objects .............. 71

5.3 Concurrent State Formalization ....................... 86

5.4 Integration with Other OMT Models .................... 94

5.5 Summary ................................... 98

6 Functional Model Formalization 99

6.1 The Data Flow Diagram (DFD) ....................... 101

6.2 DFD Notation Modification ......................... 103

6.3 Integrating the Functional Model into OOD ................ 110

vii



i.
'I‘

'1 l

61 Fllllt‘llttlld
l .\I..

It.) lit-.3193 atl
tII‘I \3‘3'

.36 Summary

7 Model lutegr:

7.1 Integratiun of

7.3 The Corretrtt.

.3I. Spti‘lfitdltul.

71 Analysis of .‘I

8 Design Proce

‘l O'I'E‘l'l'lflt' Ui-

iil IhePrI'mt-sr

5.3 The Design

3.4 Summary

9 Case Study

9.1 The Project

7 Focus of th.

3 Overview o:
l

3

'1'.

9'.

‘1
3 System 1.3

5}'Stem De:

Design Ana

Summary

9

93

'3.‘

19 Conclusion
it}

.«1 Summary I

23.2 I
'Impact ()f '

BIBLIOGRA‘.



viii

6.4 Functional Model Formalization ....................... 116

6.5 Integration with Object and Dynamic Models ............... 145

6.6 Summary ................................... 146

7 Model Integration and Analysis 147

7.1 Integration of the Three Models of OMT .................. 147

7.2 The Correctness, Consistency, and Completeness of the Formalization Rulesl51

7.3 Specification Analysis Techniques ...................... 153

7.4 Analysis of Model Integration ........................ 158

8 Design Process 165

8.1 Overview of Strategies Proposed Approach ................. 168

8.2 The Proposed Rigorous Design Process ................... 171

8.3 The Design Process Applied to An Example ................ 178

8.4 Summary ................................... 206

9 Case Study 209

9.1 The Project .................................. 210

9.2 Focus of the Case Study ........................... 213

9.3 Overview of the Requirements Analysis ................... 213

9.4 System Level Modeling ............................ 215

9.5 System Design ................................ 225

9.6 Design Analysis and Refinement ....................... 245

9.7 Summary ................................... 267

10 Conclusions and Future Investigations 269

10.1 Summary of Contributions .......................... 270

10.2 Impact of Research and Future Investigations ............... 273

BIBLIOGRAPHY 276

APPENDICES 284

A The Object Model Formalization Rules 284

B The Dynamic Model Formalization Rules 286

C The Functional Model Formalization Rules 291

D Complete LOTOS specification for Disk Manager Behavior 296

E Instantiated LOTOS specification for Disk Manager 299

F LSL specifications 301

G LOTOS specification for revised Disk Manager 303



H Complete LOl



ix

H Complete LOTOS specification of ENFORMS for static analysis 306



 

3.1 The models t



LIST OF TABLES

8.1 The models that will be developed during a given iteration of design . . . 173



l .A 111611131111} 5

13 A generlt‘ til;

3.3 .An (.Iperat It

3.1 .A dt’lll.rldllHI

2.3 A Larch alIv

3.6 .A typical L(.

..I BasiIC ap1TH;

2.5 HIgh-lexil 5t

.ASIII'Iple I31.

111. The Corn»\‘Y,

3113mmcm 11

31'. Sunmar} II

-
\
.
J

~13 ASIIIIIIEE"31.,

214 .Ahtghluv

15 .eAhig-h1+th

I
v

The ACT (

A Sample 5

he 3mm;

medal

41

A?

43

A 111110131 5

'A t‘ph'dl 5

The State.

A C07]7

5.1

3.?

5.3

5.1 r:

)3 The Std? (I

73.1 T11;‘pft

J5 A San};1

39f I“ dn ,

. TAII'

3‘1Spp(lfi(ae

3.153 , ‘ -.

. l~ SdUlplp SI

5.}

r 3 ill-Ural

1‘ r I
t“) ‘ 31:3,;
"J

l



LIST or FIGURES

2.1 A predicate specification of integer square root ............... 14

2.2 A generic algebraic specification of stack .................. 15

2.3 An operational specification of integer square root ............. 16

2.4 A denotational specification of boolean expression ............. 18

2.5 A Larch algebraic specification of table ................... 19

2.6 A typical LOTOS process algebra specification ............... 21

2.7 Basic approach to formalization........................ 22

2.8 High-level structure of LSL specifications .................. 23

2.9 A simple object model ............................ 25

2.10 The corresponding algebraic specification of Figure 2.9 .......... 25

2.11 Summary of Object Model Semantics .................... 26

2.12 Summary of Object Model Semantics (continued) ............. 27

2.13 A simplified disk manager .......................... 27

2.14 A high-level Storage class specified in Larch ................ 28

2.15 A high-level Storage class specified in ACT ONE ............. 29

4.1 The ACT ONE Specification for person .................. 63

4.2 A sample object model that contains attributes for object O ....... 64

4.3 The automatically generated formal specification from the sample object

model ................................... 65

5.1 A typical statechart .............................. 70

5.2 A typical state diagram ........................... 72

5.3 The state diagram for the Compressor object ............... 78

5.4 A Compressor class and its behavior specified in LOTOS ......... 80

5.5 The state diagram for Storage ........................ 83

5.6 The specification (in Full LOTOS) of the Storage (1) ........... 83

5.7 The specification (in Full LOTOS) of the Storage (2) ........... 84

5.8 A sample state diagram with interleaving dynamic models ........ 88

5.9 The aggregation concurrent state diagram for Disk Manager ....... 91

5.10 The LOTOS specification for a simplified Disk-Manager ......... 92

5.11 Specification for a simplified Disk_Manager with hidden internal gates . . 93

5.12 Sample state diagram with instantiated parameters of distinguished sorts 95

5.13 LOTOS specification of the sample state diagram ............. 96

6.1 A typical data flow diagram ......................... 101

6.2 An OFM that contains services of an individual object .......... 105

6.3 An OFM of an integer stack object ..................... 105

xi

 



 

6.1 A system level

6.3 AII 313151 >1.II‘~'

5131111115

116 .All 8131:.“ 111;!

6.7 An $13151 \\“.t'

6.3 An 513111 wit

119 81519111 1e\‘e1 1.

5.111 A simplified I1

6.11 The 0111 for

6:13 The 0151 hr

513 The 311131 1«

6.11 The ACT (‘13

6.173 The ACT (15

6.16 The Full 1.11"

nuns and

6.1". The Full LU

110115 101 :

5.15 A typical 51:“:

6.19 A pan of 11}.

530 The forumliz

6.31 The form-£1111

6.32 The Full U;

101 8(3th

1133 The Full LC

110113 for

6.34 The 1.81. spe

625 The Proof 01

I1 The finrruatn‘)

‘

I.
he error II.

..3
.e testing

II
sing am *1

is) An exhausri
I6 .11 interacti

51
T1113 1.0771111.1");
Models

in I1

K

.{I The sysiezu
;1

The ACT
0':"J

The
S‘A.“("I'1.535 TI

1 1
3

.Ie “ -

; ~
‘

«513(f UH

me ~.
“

‘
~

Ir-m

33 I; 1.23;: ‘1 a

11" “N i



xii

6.4 A system level OFM derived during analysis ................ 107

6.5 An SRFM shows how a system service is implemented in terms of object

services .................................. 108

6.6 An SRFM that introduces an additional internal function ......... 108

6.7 An SRFM with split and aggregate data flows ............... 109

6.8 An SRFM with refined input and output data flows ............ 110

6.9 System level object functional model for Disk Manager .......... 112

6.10 A simplified disk manager .......................... 113

6.11 The OFM for Storage ............................. 113

6.12 The OFM for Compressor .......................... 114

6.13 The SRFM for Disk_Manager.Retrieve ................... 114

6.14 The ACT ONE specification for Disk Manager ............... 119

6.15 The ACT ONE specification for Storage .................. 120

6.16 The Full LOTOS specification for Disk Manager with algebraic specifica-

tions and distinguished sort ....................... 123

6.17 The Full LOTOS specification for Disk Manager with pre- and postcondi-

tions for services ............................. 126

6.18 A typical state diagram ........................... 128

6.19 A part of the refined ACT ONE specification for Disk Manager ..... 135

6.20 The formalization of the refined data items shown in Figure 6.7 ..... 139

6.21 The formalization of the data duplicator and selector shown in Figure 6.8 141

6.22 The Full LOTOS specification for Storage with pre— and postconditions

for services ................................. 143

6.23 The Full LOTOS specification for Compressor with pre- and postcondi-

tions for services ............................. 144

6.24 The LSL specification for the refined Disk Manager ............ 144

6.25 The proof of the example constraint using LP ............... 145

7.1 The format of formal specifications ..................... 149

7.2 The error in the behavior specification of the Storage detected by LSA . 158

7.3 The testing process used to test the behavior of Disk Manager ...... 160

7.4 Using accept_test testing process to test the specified Disk Manager . . . 161

7.5 An exhaustive test using process accept-test ................ 162

7.6 An interactive simulation of the process composed for testing ....... 164

8.1 The formalization process dimension of the suggested framework ..... 169

8.2 Models in the order of development ..................... 174

8.3 The system object model for Disk Manager ................ 179

8.4 The ACT ONE specification for system level object model of Disk Manager179

8.5 The system functional model for Disk Manager .............. 181

8.6 The specification for Disk Manager that specifies its services and propertie8182

8.7 The system dynamic model for Disk Manager ............... 182

8.8 The complete Full LOTOS specification for system level object model of

Disk Manager ............................... 183

8.9 The testing process used to analyze the behavior of Disk Manager . . . . 184

 



 

H11 15111g1211r’.-

111111? 111111115111'.

8.7;? The ACT ON

5.13 The objmjt 111

3.11 The ohjeei (1A

5.1-5 The 5111311111 11?

5.15 The 51113111111. .1‘

3.7... The object 11.:

3.15 The ohjeet I1

5.9 T119 Spuihzd

5.311 An exaIIIII‘II-

5.31 The service I

3512 The service r

5.33 The refi'II-I-Iil

5.31 The 151. 5;»

3'1? The proof 0:

An example

.AII exarIIIp‘o

AII exarupml

The refi 1111

The {9115011

The 191; '111‘1

J

(
'
.
1
“
)

1
‘
1
?
)

J
r
)

3
’
)

‘
1
”
.

.
-

I
I
.
)

(
”
p

I
.
)

0
—
)

V
(
.
9
w(
I
)

All

The 1111111111

(111181111

II
-
l

(
:
3

(
I

Q
(
”
P
A

(
I
‘

SA 551111; (Mr (_

IigI‘I-lm
.

119 (19:51;
:3

The form

he fauna
97

he trans
0;

check
I.5

The trans
r

for sin
n

he
fIIrII

F”
eonrlii'

7;. .A test p.
H

The tram



8.10

8.11

8.12

8.13

8.14

8.15

8.16

8.17

8.18

8.19

8.20

8.21

8.22

8.23

8.24

8.25

8.26

8.27

8.28

8.29

8.30

8.31

8.32

8.33

8.34

8.35

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

xiii

Using accept_test testing process to analyze the specified Disk Manager . 185

The refined object model for Disk Manager ................. 189

The ACT ONE specifications for object models of Storage and Compressor 189

The object functional model for Storage .................. 190

The object dynamic model for Storage ................... 191

The specification for object Storage in Full LOTOS ............ 192

The specification for object Storage in Full LOTOS ............ 193

The object functional model for Compressor ................ 194

The object dynamic model for Compressor ................. 194

The specification for Compressor in Full LOTOS ............. 195

An example refined object model ...................... 196

The service refinement functional model for function Input of Disk Manager196

The service refinement functional model for function Output of Disk Manager197

The refined ACT ONE specification for Disk Manager ........... 197

The LSL specification for the refined Disk Manager ............ 198

The proof of the example constraint using LP ............... 198

An example dynamic model for object 0 .................. 200

An example SRFM for service S1 of object O ............... 200

An example refined dynamic model for object O .............. 201

The refined dynamic model for Disk Manager ............... 202

The revised refined dynamic model for Disk Manager ........... 202

The refined ACT ONE specification for Disk Manager ........... 203

The refined dynamic model for Disk Manager that is composed by parallel

dynamic models .............................. 205

The composed specification for Disk Manager ............... 205

Using accept_test testing process to analyze the behavior of the refined

Disk Manager (1) ............................. 206

Using accept-test testing process to analyze the behavior of the refined

Disk Manager (2) ............................. 207

A high-level view of the architecture .................... 212

The design models of ENFORMS at the system level ........... 216

The formal specification automatically generated from system models (1) 217

The formal specification automatically generated from system models (2) 218

The transcript of running LSA over ENFORMS formal specification to

check inter-model consistency ...................... 219

The transcript of running LOLA over ENFORMS formal specification

for simulation ............................... 220

The formal specification with algebraic specifications and pre/post-

conditions ................................. 222

A test process for the refined formal specification of ENFORMS . . . . 223

The transcript of testing that runs OneExpand of LOLA over the refined

ENFORMS formal specification .................... 224

The transcript of testing that runs TestE'zpand of LOLA over the refined

ENFORMS formal specification .................... 226



 

9.11 Th9 {093111199 1191:

9.1“} The (11.351111 1111 11

9.13 The 31111111111111.1-

914 The formal 11pm

pre 'p11~‘1~1‘-.1

9.13 The design 1111-

9.16 The “1111;111:1111

93.1- The 31111111111119!

9.15 The {111111111 1;:

and pro;11

99T1ed1\"111
1;

9.3“ T16 31111111

9.31 The 2111111111213

932 The formal .

PT? 'lme-1

:33 The SRHT 1'1

31 The 2111111111;1

93-3 The refined 1f

9135 The 131111111111"

modeT of

:3; T9: d3~'ne1111i1

' aUILJIli‘i'

STEHTS1n

9‘3 Th9 r1finpd

9111Thed1<1znr

31The 21111311111

Of CIIU'T"

3:21 The rexiwd
. 3 The 21111111111
1'1?

behax'i1'1r
- qvntzn'c(TINT

W
ifieation

:—--1 sing expa
9F

'

u part
of t‘

W
pendix I

«~‘Jl

9311
3 “51“d

93C!

6
TUHIAT

zetranser

91"» T9 13 refinu
p

9
119 {PC

:‘
C

”at [1n
r. ‘

UTHI‘HIJV ‘

.112 T5
1 1 :1.

FIT‘T.
IJIW

‘1':
OP‘

I1
3 313

d“
' 9

.3

..
dr4|4f1(j

'



9.11

9.12

9.13

9.14

9.15

9.16

9.17

9.18

9.19

9.20

9.21

9.22

9.23

9.24

9.25

9.26

9.27

9.28

9.29

9.30

9.31

9.32

9.33

9.34

9.35

9.36

9.37

9.38

9.39

9.40

9.41

9.42

9.43

xiv

The refined object model for ENFORMS: an overview of the architecture 228

The design models for Name_Server ..................... 229

The automatically generated formal specification for Name_Server . . . . 230

The formal specification for Name-Server with algebraic specifications and

pre/post-conditions ............................ 231

The design models for Archive_Server .................... 232

The automatically generated formal specification for Archive Server ( 1) . 233

The automatically generated formal specification for Archive Server (2) . 234

The formal specification for Archive-Server with algebraic specifications

and pre/post-conditions ......................... 235

The design models for Client ......................... 236

The automatically generated formal specification for Client ........ 237

The automatically generated formal specification for Client ........ 238

The formal specification for Client with algebraic specifications and

pre/post-conditions ............................ 239

The SRFM for Retrieve service of ENFORMS .............. 240

The automatically generated formal specification for the SRFM of Retrieve 240

The refined design model for ENFORMS ................. 241

The automatically generated formal specification from the refined dynamic

model of ENFORMS .......................... 242

The dynamic models composed in parallel ................. 244

The automatically generated formal specification that describes the con-

stants in the refined models of ENFORMS .............. 246

The refined object model for ENFORMS with Channel object ..... 248

The design models for channel ........................ 248

The automatically generated formal specification from the design models

of Channel ................................. 250

The revised design models (with a Channel object) composed in parallel 251

The automatically generated formal specification that synchronizes the

behavior of individual objects ...................... 253

Syntax checking and semantics analysis of the refined enforms formal spec-

ification .................................. 254

Using expansion transformation to detect synchronization error ..... 255

A part of the EFSM transformed from the LOTOS Specification in Ap-

pendix H .................................. 256

The refined dynamic model of Client .................... 257

The formal specification for the refined Idle state of Client ........ 258

The transcript of expansion transformation after the behavior of the Client

is refined .................................. 258

The test process for the refined formal specification of ENFORMS . . . 259

Communication among individual objects are hidden ........... 260

The test process is rejected by the refined behavior specification of EN-

FORMS .................................. 261

The added operations and equations that are resulted by the SRFM of

Figure 9.23 ................................ 262



 

9.44 The trarrsrripr r

are addml

94.3 The further rr-fi

9.46 The hirmal an

9.4? The result oi T

refined . .

 



XV

9.44 The transcript of Testhrpand test after necessary operations and equations

are added ................................. 263

9.45 The further refined dynamic model of Client ................ 265

9.46 The formal specification for the refined Idle state of Client ........ 266

9.47 The result of TestExpand after the behavior of the Client object class is

refined ................................... 267



 

 
Chapter

Introdu<

it E clearly evidcr:

trniingi}: the rim:

S'stems Where its

in; increasing am

ntairrriation since

{Oi numerous and

~3>iEnis. Haiufm'v

inf[V‘T '
i

.
J mal. hlgirlf‘t

[flip ”U.
. '

,2 mail} lllVUlV-

Off”.
' '

Wildliiiin on
Y



Chapter 1

Introduction

It is clearly evident that the impact of software is significantly increasing [1]. Ac-

cordingly, the need to have high assurance in software’s correctness increases for

systems where its correct operation is imperative. Formal specifications are gain-

ing increasing attention as a means to rigorously document requirements and design

information since the well-defined notations are amenable to automated processing

for numerous analysis tasks [2], including verification of the correctness of resulting

systems. However, attempting to construct a formal specification directly from an

informal, high—level requirements document can be challenging. Formal descriptions

potentially involve considerable syntactic details and may require careful planning and

organization on the part of the specifier in order to develop modular specifications.
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2

1.1 Problem Description and Motivation

A complementary approach to describing requirements is the use of graphical model-

ing notations. For example, the Object Modelng Technique (OMT) [3] is extensively

used as a popular object-oriented modeling technique in industry and is commonly

taught as an object-oriented methodology in academic settings. Its popularity is

largely due to its simple notation and the notational support for describing struc-

tural, behavioral, and functional aspects of a system through the object, dynamic,

and functional models, respectively. The object model is represented in a notation

similar to entity-relation (ER) diagrams [4]. The dynamic model is described in terms

of a state diagram. And the functional model is captured by a data flow diagram. In

order to effectively use OMT, particularly for design purposes, there must be a well-

defined method to integrate the three models. Otherwise, OMT is only a combination

of three separate, independent models that provide little more than intuitive diagrams

that may help to clarify some ideas within the corresponding, separate models.

One approach that takes advantage of the automated processing afforded by formal

specifications and the ease of use provided by graphical modeling techniques is to

construct a well-defined syntax and semantics for the graphical models in terms of

an existing specification language. A significant advantage to formalizing a modeling

notation such as OMT is that it has a uniform notational support for modeling

requirements, design, and detailed design information. Therefore, the corresponding

formalization rules for diagrammatic models can be used to perform analysis and

design tasks throughout the development process, rather than be limited to a specific
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phase (e.g., requirements), as is the case with numerous specification languages and/or

modeling notations.

However, some features of the formal specifications, such as the equations in a1-

gebraic specifications, cannot be represented by graphical notations in an intuitive

fashion. Thus fully automated generation of formal specifications is not realistic.

Furthermore, the formalization rules can only derive formal specifications from the

resulting models, but cannot help to conduct the development process. The applica-

tion of the formal specifications may be limited by the fact that their corresponding

models, from which the specifications are generated, are derived in an informal, ad

hoc approach. Therefore, a process that supports a formal and rigorous development

and refinement of analysis and design information with the use of formal semantics

for graphical notations is necessary.

Thesis Statement: The objective of the proposed research is threefold: (1) de-

velop formal syntax and semantics for all three OMT models; (2) develop a formal

definition for the integration of all three models; and (3) develop a refinement process

for refining analysis information into design information. These three tasks will de-

fine a new object-oriented design paradigm that supports rigorous analysis of 0MT’s

graphical models through specification execution, consistency verification, and stepwise

refinement.
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1.2 Summary of Research Contributions

This section gives highlights of the four major contributions of this research.

Formalization of Dynamic Model. New rules are proposed to formalize the

dynamic models in terms of process algebra specifications expressed in LOTOS (Lan-

guage of Temporal Ordering Specification) specifications. In OMT, the behavior of

an individual object is modeled as a state diagram. The proposed rules formalize

the state diagrams for individual objects in terms of LOTOS behavior specifications.

The state diagrams of concurrent, communicating objects are formalized in terms of

synchronized LOTOS behavior specifications. The formalization enables the precise

specification of the behavior of objects and the simulation of system behavior through

executable specifications.

Formalization of Functional Model. In order to integrate the functional models

into object-oriented technology, the functional model of OMT has been modified. Two

functional models, Object Functional Model (OFM) and Service Refinement Func-

tional Model (SRFM), are introduced. An OFM captures the services provided by an

object. An SRFM describes how a service of an object is implemented in terms of

the services provided by the object at a lower level of abstraction. In addition, guide-

lines for deriving algebraic specifications from the object and functional models are

given. Based upon algebraic specifications, pre- and postconditions are introduced to

describe the requirements and constraints for services. The pre- and postconditions

of services enable symbolic execution of the high-level design model thus providing a
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means to perform simulation, verification, and validation during the early phases of

software deveIOpment.

Integration of the Three Complementary Models. The integration of the

three complementary models is three-fold. First, the functional and dynamic models

are derived in the context of object models. By associating a functional model and

a dynamic model to every individual object, the conflicts can be resolved between

the models with respect to their respective development philosophies. Second, the

integration is achieved through the underlying formal semantics imposed by the for-

malization rules. By sharing common language constructs among the specifications

derived from the object, functional, and dynamic models, the three models are inte-

grated and represented in terms of a single formal specification. Third, the integration

is achieved by composing: (1) the dynamic models of concurrent objects hierarchically

according to the system structure specified in the object model; and (2) the SRFMs

of an object in terms of the services provided by the aggregate objects.

The integration and formalization of the three models that describe a system from

complementary aspects enable designers to perform analysis tasks by using the derived

formal specifications. In addition, based upon the formalization and integration,

a design process that incorporates formal specifications in a transitional, parallel

successive refinement approach [5] is also possible.

Process for Model Construction, Specification, and Refinement. Based

on the investigations into the formalization and integration of the models of OMT, a
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design process is proposed to facilitate the development of formal design specifications

in parallel with the development of OMT’S semi-formal, graphical models. Because

of the rigorous mathematical foundation of formal specifications, both customers

and designers can have a more precise means to describe the design thus avoiding

ambiguities. In addition, symbolic simulation of the design can help designers better

understand the design as well as facilitate the communication among designers and

even with the customers. And finally, specification analysis can be performed during

model refinement of the design process to detect and eliminate design flaws during

earlier stages of software development.

1 .3 Definitions

Since our research focuses on the application of formal methods and the design pro-

cess, it is important for us to clarify what we mean by the terms correctness, con-

sistency, and completeness. These terms have been given different meanings based

on various perspectives [6, 7], but for the remainder of the dissertation, the following

definitions apply.

0 Correctness: after a refinement of a service, the postcondition of the services

can still be satisfied.

0 Consistency: the formal specifications derived from the models (1) do not

have syntactical and semantic errors, (2) do not have deadlocks among concur-

rent, communicating objects, and (3) the test cases that are satisfied by the

design specification of a higher level abstraction can still be satisfied after one

refinement iteration.

o Completeness: the formal specifications describe all the required functionali-

ties as well as the behavior of the system under all circumstances.
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1.4 Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 gives an overview

of the Object Modeling Technique (OMT), formal methods, the formal specification

languages that will be used, and preliminary investigations into the formalization of

the object model of OMT. Chapter 3 discusses work related to this research. Chap-

ter 4 revisits the object model formalization and introduces an additional formal-

ization rule. Chapter 5 describes the formalization of the dynamic model of OMT

in terms of the LOTOS specification language. Chapter 6 integrates the functional

model into object-oriented technology and discusses the formalization rules for the

functional models. Chapter 7 discusses how the object, functional, and dynamic mod—

els are integrated in terms of their underlying formal semantics. It also discusses how

the corresponding specifications can be used to simulate the behavior of the system

and to perform specification analysis. Chapter 8 proposes design process that con-

ducts a stepwise refinement of design by using the diagrammatic models and formal

specifications. Chapter 9 describes a case study that applies the proposed design

process to a large-scale project, ENFORMS. Chapter 10 gives the conclusions and

discusses future investigations. Appendices A through H give complete formalization

rules and formal specifications generated from OMT models.
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Chapter 2

Background

This chapter presents background material relevant to the dissertation research. OMT

is overviewed, including how it is used during the analysis and design phases, respec—

tively. Next, the specification languages Larch and LOTOS are briefly introduced.

Finally, the formalization of the object model is overviewed.

2.1 Object Modeling Technique Overview

The Object Modeling Technique (OMT) is a methodology developed by Rumbaugh,

et al [3], to facilitate object-oriented analysis and design (00A and OOD). It includes

three diagramming techniques to describe different aspects of a system.

2.1.1 Complementary diagramming techniques

The essence of the Object Modeling Technique is to build a model of an application

domain during the analysis of a system that can be augmented with implementation
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details during the design phase. The modeling consists of three orthogonal models,

object model, dynamic model, and functional model, each depicting different features

of a system. Each model is applicable during all stages of development and acquires

implementation detail as the development progresses. The models are represented as

the object diagram, state diagram, and data flow diagram, respectively.

Object Model. An object diagram is used to capture information about the real

world that is important to an application. Thus it is the most important of the

three diagrams. It describes the static objects in a system by showing their identity,

their relationships to other objects, their attributes, and their operations. Therefore,

it is straightforward to derive abstract data types (ADT) from the object diagrams.

The object diagram forms a basic framework upon which the dynamic and functional

models are based. The diagram provides an intuitive visual representation of a system

that can be valuable in the communication between the customers and the developers

since the diagrams serve to document the structure of a system. In OMT, boxes repre-

sent classes; lines between boxes represent associations; empty, solid circles at the end

of association lines represent different multiplicities; diamonds represent aggregation

relationships; triangles represent inheritance relationships.

Dynamic Model. A state diagram graphically represents the dynamic models that

describe the behavioral aspects of a system concerned with events, time, and changes.

Each state diagram depicts the state and event sequences allowed in a system for one

class of objects. The notation used for dynamic models is a variation of Harel’s
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Statechart notation [8], where ovals represent states; arcs with arrows represent state

transitions. In OMT, rounded rectangles represent states; labels on arrows represent

events that trigger state transitions. State diagrams also reference the other OMT

diagrams. Functions in a data flow diagram correspond to the actions from the state

diagram; Operations on objects in the object diagram are modeled as events in a state

diagram.

Functional Model. The functional model, depicted in the form of data flow dia-

grams, is the third dimension of the three orthogonal modeling techniques of OMT.

Data flow diagrams (DFD) consist of nodes and arcs, which correspond to processes

and data flows, respectively. The data flow diagram also specifies the meaning of

the Operations in the object model and the actions in the dynamic model, as well as

constraints for values within an object model.

2.1.2 Requirements Analysis

In OMT, the objective of requirements analysis is to devise a precise, concise, un-

derstandable, and correct model of the real-world [3]. The analysis models describe

three aspects of objects: static structure (object model), sequencing of interactions

(dynamic model), and data transformation (functional model).

The object model describes real-world object classes and their relationships to each

other, and it should be the first model to be derived from a problem statement because

the static structure of a system is usually better defined, less dependent on application

details, more stable as the solution evolves, and easier for humans to understand.



 

During the analysi~

 
and operations. arv

prepared: inherit.

ohjeet model at the  
and refinements.

The dynamic tn

«*i‘tieets. it is the s

or more scenarios. '

eternal display for

include all signals.

has-d upon the st:

diagram.
which

ie

event flow diagra:

”litigant for each

tier.“ . .

"*5 the Object

5
3
.a1}

.
~

eient fit iW di

The function;

noat consider

.Lut laerg

-‘ ( ‘

.ii



11

During the analysis phase, modeling entities, such as classes, associations, attributes,

and operations, are identified; a data dictionary that contains all modeling entities

is prepared; inheritance relationships between object classes are identified. The final

object model at the end of the analysis phase is obtained through repetitive iterations

and refinements.

The dynamic model shows the time—dependent behavior of the system and the

objects. It is the second model to be derived during the analysis stage. Initially, one

or more scenarios (a scenario is a sequence of events) that show the major iterations,

external display formats, and information exchanges are prepared. The events, which

include all signals, inputs, decisions, interrupts, transitions, and actions, are identified

based upon the scenarios. And each scenario is described in terms of an event trace

diagram, which is an ordered list of events between different objects. In addition,

event flow diagrams that depict events between classes are derived. Finally, a state

diagram for each object class with nontrivial dynamic behavior that describes the

events the object receives and sends is obtained based upon the event trace diagrams

and event flow diagrams.

The functional model that shows data dependency and how values are computed

without considering sequencing, decisions, or object structure is the last model to

be derived. In OMT, similar to the process used in structured analysis, input and

output values of the system are first identified. A top level data flow (DFD) diagram

is developed according to the input and output values. Then each nontrivial process

is recursively expanded into a low-level DFD until every process corresponds to a

function. A description for each function, which can be in natural language, math-
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ematical equations, pseudo—code, or some other appropriate form, should be written

once the DFD has been refined to a sufficient level of detail.

2.1.3 Design

OMT decomposes the design phase into system design and object design stages [3].

System Design. The objective of the system design stage is to establish high-level

guidelines for the object design and to make global decisions concerning the design. In

this stage, objects are grouped into subsystems according to services that the system

is to provide, concurrency is identified, subsystems are allocated to processors and

tasks, decisions about data store management and software control implementation

are made. The implicit presumption of all these activities is that the models obtained

from the analysis phase are sufficiently detailed to contribute to this phase.

Object Design. During the object design, decisions about how the classes are

going to be implemented according to the strategy chosen during system design are

made. This stage includes determining the data structure of attributes, algorithms

for operations, association design, and addition of internal objects, and so on.

2.2 Formal Methods

A formal method is characterized by a formal specification language and a set of rules

governing the manipulation of expressions in that language. A formal specification

language provides [9]:
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o a syntactic domain: the notation in which the specifications are written.

0 a semantic domain: a universe of elements that may be specified, and

o a satisfaction relation: indicates which elements in the semantic domain satisfy

(implement) which specifications in the syntactic domain.

Formal specifications can be checked by tools that help explore the consequences

of analysis results and design decisions [2], detect logical inconsistencies [10], simulate

execution [11], execute symbolically [12], and prove the correctness of implementations

steps (refinements) [13].

There exists many types of formal specifications. Formal specification languages

can be partitioned according to a high-level classification [14]. The formal speci-

fications are commonly categorized into three classes: axiomatic, Operational, and

denotational.

2.2.1 Axiomatic specifications:

The axiomatic approach to specification implicitly defines the semantics of a pro-

gramming language by a collection of axioms and rules of inference, which enable

the proof of properties of programs, such as program correctness, in terms of speci-

fied input/output relations. The assertions about programs can be proven by either

a mathematical or an operational definition and mathematical reasoning. The ax-

ioms are rules of inferences that can be regarded as theorems within the framework

of mathematical semantics. The objective of the axiomatic formal specification is

to provide a formal system that enables a proof to be constructed using only the

uninterpreted specification text.
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Axiomatic specifications can be further classified into predicate specifications [15]

and algebraic specifications [16].

Predicate specifications:

A predicate specification explicitly describes properties of the behavior of a system

that a given implementation must satisfy. The specifications describe the system’s

required functionality. Predicate specifications are not bound by the constraint of

constructivity. The properties can be stated separately and then combined, which

facilitates specification modularity. The properties include input/output constraints

and other behavior conditions, such as fault tolerance, safety, security, response time,

and space efficiency. Figure 2.1 contains a predicate specification describing a proce-

dure that, given an appropriate argument, 3:, computes an integer approximation to

its square root.

 

Precondition S Postcondition

Precondition: :1: 2 O A integer(x);

Postcondition: Vi : 0 S i g :t: : abs(x — result x result) 3 abs(x — i x i)

 

 

Figure 2.1: A predicate specification of integer square root

 

Algebraic specifications:

An algebraic specification is a mathematical description language, based largely on

equations, commonly used to specify abstract data types (ADT). An ADT is a well-
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defined data structure described by the available services and properties of these

services. The properties of the data type are specified in terms of equations.

An algebraic specification typically consists of

o Sort{s): the names of the abstract data types being described.

0 Operati0n(s): the services applicable to instances of the abstract data type and

syntactically describe how they have to be invoked (signatures).

o Axioms or theorems: formally describe the semantic properties of the algebraic

specification.

In Figure 2.2, an algebraic specification describing the prOperties of the stack is

given in the Larch specification language.

 

Stack: 111i;

introduces

new: —> S

push: E, S —> S

p0p: S —> S

asserts V s: S, e: E

pop (new) :2 new

p01) (push(e, 5)) == 8

Figure 2.2: A generic algebraic specification of stack

 

2.2.2 Operational specifications:

An operational specification [17] gives one solution that satisfies the required proper-

ties, instead of describing the required behaviors. Commonly, the operational specifi-

cation is similar in format to a program. This approach has an advantage in that the
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operational specifications can be executed directly as a rapid prototype of the system

being specified. Thus the specifiers and their clients can obtain feedback about the

software system quickly. The disadvantages are that it is difficult to extract the essen-

tial properties that the system must fulfill and the specifications tend to be relatively

longer than behavioral specifications. The operational specification in Figure 2.3 gives

a simple implementation algorithm to compute the square root of an integer.

 

int sqrt (int x)

reguires x 2 0;

effects

i=0;

Whileixi<x

i=i+1§gd

ifabs(i x i-x) > abs((i- 1) x (i-1)-x)

then return i - 1

else return i

 

 

Figure 2.3: An operational specification of integer square root

 

2.2.3 Denotational specifications:

The denotational specification [18] maps a specification directly to its meaning, called

its denotation. The denotation is usually a mathematical value, such as a number

or a function. No interpreters are used; a valuation function maps a specification

directly to its meaning.

A denotational definition is more abstract than an operational definition, since it

does not specify computation steps. Its high-level, modular structure makes it espe-
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cially useful to language designers and users, since the individual parts of a language

can be studied without having to examine the entire definition. On the other hand,

the implementor of a language is left with more work. The numbers and functions

must be represented as objects in a physical machine, and the valuation function must

be implemented as the processor.

Therefore, denotational semantics is more abstract than an operational specifica-

tion and less abstract than an axiomatic specification. Like an algebraic specification,

it can be stated in modules, which makes it especially useful to system analysts and

designers.

Figure 2.4 shows a denotational specification of boolean expressions. The value

denoted by an expression depends on the state because it may contain variables. E

maps an expression onto a function from states to boolean values. For a particular

expression, 5, Elk]: _S_ —> _B_o<_)l is a function from _S_ to M, which corresponds to

a set of values. States, S, is the set or data-type of functions from identifiers, fie,

to _V_al_t;e_. A particular state, a, is a particular function from variables to values.

Therefore, a specific value is obtained by evaluating the expression _E_[[e]|a: 1335;],

where or gives the state in terms of identifiers and their values. Suppose o[[:t:][ = trite

and 0[y] = false then the boolean expression :1: and n_ot y can be evaluated as:

E122 and n_0t 31ch

= E11310 A El n_0t yla

= E19310 A nElz/la

= lel A "Ulyl

= tr_ue A nhlie

=m
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Ease:

e::=a_nde|

e_o_re|

petsl

tonal

£a_1§§|

5

List

6 :2: syntax for identifiers

E: Egg; —> E —> 5291

EI[€ a_n_d_ 5’]0 = E[[e]]0 /\ E]€']]0

E[[e g €']]a = E[[5]|a V E[[€']]o

E[[ got 5]]0 = -: El]e]]o

El] _tr_u§ ]]0 = true

E[[ fag ]]a = false

Elela = GM

0: Szflea Value

Figure 2.4: A denotational specification of boolean expression

 

2.3 Specification Languages Used in Project

This section overviews two specification languages that will be used in the formaliza-

tion of OMT.

2.3.1 Larch

The Larch family of specification languages [19] uses a two-tiered approach to formal

specifications in which one tier, the Larch Shared Language (LSL), is an algebraic

specification language used to specify pr0perties that are independent of a particular
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programming language and paradigm. Algebraic specifications can be used to describe

object-oriented software in a straightforward manner, using abstract data types as

the basic unit in software specification. Accordingly, the basic unit of specification

in LSL is the trait, which axiomatizes theories about functions and data types that

are used in programs. A collection of general purpose traits that are designed for

constructing application-specific traits is called a trait handbook [19]. The other tier,

the Larch Interface Language (LIL), specifies program behavior and programming

language interfaces. For example, LCL [20] is a LIL for the C language that specifies

program behavior in terms of predicate logic and function and procedure interfaces in

terms of C syntax. In Figure 2.5, an algebraic specification describing the properties

of the table is given in the Larch specification language. There are three operators for

the table: create a new table, add an integer, and test for membership. The properties

stated in the asserts section indicate that there are no elements in a newly created

table and an existing element can be found using a linear search.

 

Table: trait

includes Integer

introduces

new: —+ Tab

add: Tab, Ind, Val —+ Tab

6: Ind, Tab —+ 8001

asserts V i il: Ind, v: Val, 12: Tab

'1 (i 6 new);

i6add(t, i1,v) ==i=ilVi€t

Figure 2.5: A Larch algebraic specification of table
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2.3.2 LOTOS

LOTOS was originally designed to specify the behavior of networking and commu-

nication systems [21]. Basic LOTOS, based upon process algebras (an operational

specification) [22, 23, 24], contains the primitives that enable specifiers to model

simple external, observable behaviors without data exchange; Full LOTOS [21, 25]

consists of an algebraic specification language [26], ACT ONE, and a process alge—

bra. Full LOTOS enables specifiers to specify both abstract data types and external

behaviors along with process communication and value passing.

The algebraic specification language, ACT ONE, which is similar to the Larch

Shared Language, is used to describe the abstract data types that are used in LOTOS

specifications. A system, as a whole, can be specified as a single process, possibly

consisting of several subprocesses. Each subprocess is considered to be a process, and

thus the entire system may be viewed as a hierarchy of processes.

The general form of a Full LOTOS event consists of a gate and a list of interaction

parameters, where each parameter can either be a value offered at the gate (labeled

with “1”) or a variable accepted at the gate (labeled with “?”). An example is as

follows: 9 !3 ?data: Nat;. This event offers value 3 and accepts a value of sort Nat

(natural number) for variable data at gate 9.

A behavior expression models the activity of a process. Behavior expressions

are built from actions and other behavior expressions by using a predefined set of

operations: action prefix, choice, parallel composition, enable, and disable.
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For example, Figure 2.6 shows a typical LOTOS process algebra specification. In

this specification, process statel has two gates in the form of [a,b] and a parameter

s of type S. Keyword noexit specifies that the process state does not terminate.

The choice operator, [], captures the notion that two alternative choices are possible.

Once an event occurs, then the choice for the path to take is determined.

 

process statel [a,b] (s: S): noexit:=

b ?k:K; b !b(s,k);

state1 [a,b](s)

[l

a ?d:D;

statel [a,b](s)

endproc

Figure 2.6: A typical LOTOS process algebra specification

 

2.4 Object Model Formalization

When using OMT, the object model is central to the construction of the other two

models. While this dissertation focused on the formalization of the dynamic and

functional models, an overview of the formalization of the object model is included

for completeness sake and to provide context for the dissertation.

Bourdeau and Cheng [27] identified a subset of the object model notation ap-

propriate for describing requirements and added formal syntax and semantics to the

notations. In object diagrams, rectangles enclose the names of classes, where a class

describes a particular type of object in the system. Relationships between objects,

called associations in OMT, are specified by connecting the classes involved in the
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relationship by a line with the name of the association centered on the line. Object

models expressed in the context of requirements analysis are referred to as A-schemata

to represent analysis object schemata. An A-schema describes the static structure of

a system. It consists of a set of classes and associations among those classes.

In Bourdeau and Cheng’s formalization, the semantics of the A-schemata and

instance diagram notations are described by an algebraic formalization. A graphical

overview of this formalization process is given in Figure 2.7.

 

 

  
 

OMT semantics

A—Schemata > m

formalized as : testing?“ formalized as

I

v i v

31:31:18;ons > Algebras

algebraic semantics

Figure 2.7: Basic approach to formalization.

 

In this figure, the arrow labeled “OMT semantics” represents the currently in-

formal concept of consistency between an instance diagram and an A-schema. The

arrow labeled “algebraic semantics” represents the formal concept of consistency be-

tween an algebra and an algebraic specification that has been well-developed in the

literature [28]. In Bourdeau and Cheng’s formalization, A-schemata are formalized

as algebraic specifications, and instance diagrams are formalized as algebras. As a

result, the OMT semantics, which were previously not well-defined, are now described

in terms of an algebraic semantics.
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First, the semantics of classes, objects, and object-states will be given. Next, the

semantics of associations will be addressed, and finally, the combination of all of the

formalizations will be presented in order to describe the semantics of A-schemata.

Bourdeau and Cheng used the Larch Shared Language (LSL) [19] to illustrate how

these basic formalisms are incorporated into a structured, algebraic specification. In

Figure 2.8, SPECNAME is the name of the specification module. The sorts that

are to be considered as the parameters of the module are given in the parameter list

following the name of the trait. Includes indicates other traits upon which the given

trait is built. The introduces section itemizes function signatures, each of which gives

the number and types of input arguments and result type of a function. Asserts

defines the constraints for the specification. When using LSL, one assumes that a

basic axiomatization of Boolean algebra is a part of every trait. This axiomatization

includes the sort BOOL, the Boolean constants true and false, the connectives ‘A’

and ‘V’, implication ‘=>’, and negation ‘—.’,

 

SPECNAME ( parameters ) : trait

includes

list of pre-existing specification modules to be used

introduces

syntax declarations for functions are listed here

asserts

axioms are listed here

Figure 2.8: High-level structure of LSL specifications
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2.4.1 Semantics for Classes and Object States

Let S be an A-schema, and let C = {C1, . . . ,Cn} be the set of class names given in

S. Formally, each class name C,- E C, where 1 S i g n, is considered to be the name

of a sort (type). For each class name C,, a sort Ci-STATES is introduced, which

characterizes the set of states that are possible for any Ci-object. For each object-

state 3 of class C,, s is specified with the signature (syntax and type specifications

for input arguments and output value)

8 I —) Ci-STATES

States are nullary functions with no input arguments, therefore they are considered to

be constants. For every class C,, the set of possible states defined by Ci-STA TES must

include a state undefC“ in which case the state of C, is undefined. The corresponding

signature is

undefci : ——+ Ci-STATES'

For every pair of object-states 31 and 82 of C,- (including undefci), 31 7!: 32. In order

to bind a Ci-object to one of its possible states, a valuation function, $, is introduced

with the signature

$ : C, —> Ci-STATES ,

for each class name C. E C. Figure 2.9 contains a simple object model that has

an object class C and its states 31 and 82 (the target of double-headed arrows).

 



figure 2.

Times 3

‘5‘.-

{:5

ru.
:ng ,1 _



25

Figure 2.10 shows its corresponding A—schema 83, containing object-states 31 and 32.

Figures 2.11 and 2.12 give a summary of the formalization of the object models.

 

 

   

Figure 2.9: A simple object model

 

 

SCHEMA_diagram: trafi;

includes CLASS_C

CLASS_C: trait

introduces

err_C : -> C

82 : -> C_STATES

31 : -> C_STATES

state_C : C -> C_STATES

asserts

fbrafl x, y: C_STATES

(x=s2 / y=sl) => (X"=y);

Figure 2.10: The corresponding algebraic specification of Figure 2.9

 

Figure 2.13 shows an object diagram of a simplified disk manager [27, 29] that is

composed of (represented by a diamond) Storage and Compressor. The disk manager

stores compressed data in the Storage and decompresses data that is retrieved from

the Storage. We will use this example throughout this dissertation.
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Definition (Semantics of object models) :

Let 0 be an object model. Let R be a binary association in 0 relating objects from classes D1 and

D2. The semantics of O is an algebraic specification satisfying the following data.

(0M1) Each class C in the object model 0 is denoted by a sort of the same name.

(0M2) For each class C, a sort C—STATES is introduced as well as two nullary functions given by

undefc : —-> C—STATES , errc : ——) C .

(0M3) Each object-state s, for which a double-headed arrow leads from a class C to the oval

containing 3, is denoted by a function with signature 3 : —> C—STATES , and for every

pair of object-states 31 and 32, the axiom 31 7E 32 is included.

(0M4) For each class C, a valuation function ‘$’ is introduced with the signature

3 : C —> C-STATES

The valuation of the error object is added as an axiom:

$(errc) = undefc

(0M5) If there is a double-headed arrow labeled a (to indicate an attribute), leading from a class

C to a class D (which depicts an attribute a of C), then the function signature

a:C—>D ,

is added to specification for class C.

(0M6) If the class D in rule (0M5) is an external class, then the trait for D is included by the

specification for C. If D has no parameters, then the clause

includes

CLASS-D

is added. If D has parameters p1, . . . , pk, and there is a line connecting each p,- to a class qi,

then the following clause is added:

includes

CLASS-p1. ..., CLASS-pk,

CLASS-D ( q1 for p1, ..., Q]. for pk)

Figure 2.11: Summary of Object Model Semantics
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(0M7) Association R is denoted by the predicate

R:D1,D;c —> BOOL.

(0M8) The endpoints of association R determine a set of axioms. Suppose the Dl-endpoint depicts

a multiplicity of m and the Dg-endpoint depicts a multiplicity of n. Then the axioms are

derived by the following steps:

1. Decompose the m-to—n association R into an m-to-l and l-to—n binary association,

2. Determine the second-order specifications, P1 and P2, of each of these associations using

the basis schemata,

3. Calculate the “intersection”, P, of the specifications P1 and P2,

4. Unfold and skolemize P, yielding a set of first—order axioms that are included in the

trait for R.

(0M9) Error object constraints are introduced:

(Vd1le,d2:Dz O R(eerl,d2)/\d1;/: 87‘7‘0l => fiR(d1,d2)) ,

(Vd1 : D1,d2 : Dz I R(d1,err02) Adz 9‘: £1702 => fiR(d1,d2))

Figure 2.12: Summary of Object Model Semantics (continued)
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Figure 2.13: A simplified disk manager
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Applying the Object model formalization, Figure 2.14 contains the Larch speci-

fication for the Storage Object class. Empty and non_empty are two states for the

Storage class objects. The axiom in the asserts part specifies that the two states are

mutually exclusive.

 

CLASS_Storage : trait

introduces

orr-Storage : ->Storage

empty : —> Storage_STATES

non_ompty : -> Storage_STATES

Stato_Storage : Storage -> Storage_STATES

asserts

flora" x, y : Storage_STATES

(xsempty /\ y=non_empty) 8) (x ‘= y);

Figure 2.14: A high-level Storage class specified in Larch

 

Given the similarity between LSL and ACT ONE, both of which are algebraic

specificationsthe previous discussion and definitions are also applicable to the ACT

ONE syntax. As a means to facilitate the integration between the Object and dynamic

models, we will use ACT ONE syntax instead of LSL to specify the Object model in

the remainder of this dissertation. Figure 2.15 contains the ACT ONE specification

for the Storage Object class. Respectively, the sorts and opns parts declare the sorts

and specify the operators (constants are nullary Operators) along with the signature

for the type. The eqns section lists the equational axioms that the Operators must

satisfy. Empty and non_empty are two states for the Storage class Objects. The axiom

in the eqns part specifies that the two states are mutually exclusive.
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type CLASS_Storege is Boolean

sorts

Storage. Storage_STATES

opns

err_Storege : ->Storege

empty : -> Storage_STATES

non_empty : -> Storage_STATES

Stete_Storege : Storage -> Storage-STATES

eqns

forall x, y : StoragejTATES

ofsort Bool

(x=empty /\ y=non-empty) => (x '= y);

Figure 2.15: A high-level Storage class specified in ACT ONE

 



Ch

R003

Inerth



Chapter 3

Related Work

In this chapter, we overview related work. The related work is grouped into three

categories: formalization of object-oriented development techniques, formalization of

non-object-oriented approaches, and systematic refinement approaches.

3.1 Formalization of Object-Oriented Modeling

Approaches

This section introduces object-oriented modeling approaches. TROLL [30] and

ROOA [31] propose formal semantics for the models. ROOA and the Fusion

method [7] provide detailed guidelines that facilitate the derivation of models.

30



3.1.1

Overvi

system

is a It?!

htegrai

tion :34

.is 3 cc

plflpen

Forma

Th6 pr

l

3‘3 an

Tsz

Emilie
£1

‘
i1.

:Ji’JH-Jl

_‘C‘LE‘



31

3.1.1 TROLL—A Language for Object-Oriented Specification

of Information Systems

Overview

Jungclaus et al. developed a formal specification language, TROLL [30], to support

the requirement specification phase in the early stages of object-oriented information

systems development, including OMT. The underlying formal semantics of TROLL

is a temporal logic [32]. Using object-oriented structuring mechanisms, TROLL

integrates elements of algebraic specifications of data types [33], process specifica-

tion [34, 35], the specification of reactive systems [36], and conceptual modeling [37].

As a consequence of the integration, TROLL is able to specify both the structural

properties of objects via attributes and the behavior of objects through events.

Formalization Approach

The primary specification construct of TROLL is the class template that includes

declarations for data types, attributes, and events, constraints on the observable states

and on the evolution of attribute values, effects of events, behavior specification, and

object activities. A class specification is composed of a class template specification

and an identification mechanism that is used to distinguish individual objects of the

class.

TROLL also provides the abstraction mechanisms, specialization and role, to de-

scribe an object from different aspects. Specialization describes objects belonging to

subclasses that depend on observable properties (attributes) whereas roles describe
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objects belonging to subclasses that depend on certain situations during an object’s

life (occurrence of events).

Composite objects that are composed of other objects are also supported by

TROLL. In TROLL, a composite object is specified by including specifications of

component objects in the composite object specification and synchronizing the inter-

actions between component objects.

For a system comprising interaction objects, TROLL uses relationships and in-

terfaces to define the interconnections among relatively independent objects. The

relationship construct supports the specification of communication and constraints

among objects. Using relationship constructs, the interconnection and communica-

tion patterns among separately defined objects can be defined; the constraints among

instances of classes can be described. The interface construct is used to define ob

ject interfaces that are accessible to other objects, thus providing an information

encapsulation mechanism.

Comparison with our approach

Similar to our approach, TROLL also proposes a set of formalization rules for object-

oriented models. Its formalization rules cover all three basic aspects of an object-

oriented system (static, dynamic, and functional). The formalization is similar to

ours in that objects are formalized as ADTs and dynamic behavior is specified as

event sequencing patterns. However, TROLL was proposed for use in the require-

ments analysis phase but not for design. TROLL has a new specification language

that currently lacks tool support offered by other existing specification languages.
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The advantage of designing a new specification language is that the structure and

constructs of the language may fit the formalization objective very well. In addition

to formalization rules, specific guidelines are also needed to facilitate analysts in the

derivation of the formal specifications during analysis.

3.1.2 Rigorous Object-Oriented Analysis

Overview

The Rigorous Object-Oriented Analysis (ROOA) [38, 31, 39] formalizes object-

oriented analysis notations in terms of the LOTOS specification language and includes

a set of rules to conduct object-oriented analysis. The resulting formal, executable

specifications of ROOA integrate the static, dynamic, and functional properties of a

system. The specifications are amenable to checking the conformance of the specifi-

cation against the original requirements and may be used to detect inconsistencies,

omissions, and ambiguities early in the development process.

Analysis process

ROOA advocates a development process for object-oriented analysis. The process

includes three stages: object model derivation, object model refinement, and formal

specification derivation.

At first, a high-level, informal object model is built by using any of the usual

object-oriented analysis methods, such as the methods of Coad and Yourdon [40] and

OMT [3]. During the refinement stage, the object model is completed by adding in—
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terface objects, static relationships, and attributes; the dynamic behavior is identified

by defining interface scenarios, event trace diagrams (ETDs), object communication

table (OCT), and adding message connections; the object model is structured into

subsystems or aggregates to achieve modularity. Finally, formal specifications are

derived to specify the static, dynamic, and functional properties of the system. This

stage consists of the following steps: creating the object communication diagram

(OCD); specifying the class templates as LOTOS processes and ADTs; composing

objects; prototyping the object model by executing the LOTOS specifications; and

refining the specifications according to the results of the rapid prototyping.

Formalization approach

ROOA formalizes objects in terms of LOTOS processes and abstract data types,

where the LOTOS processes are used to specify the dynamic behavior of the objects,

and the abstract data types (ADTs), given as parameters of the processes, are used

to specify the state information of the objects. An object that merely plays the role

of an attribute of another object is specified as a single abstract data type in ROOA.

In order to avoid design issues, ROOA, proposed for use in the analysis phase, defines

ADTs that contain only the necessary information to allow the specification to be

prototyped with state information and values to be passed during the inter-object

communication.

ROOA uses a class template, which is specified as a LOTOS process definition

with ADTS as parameters, to represent common features of objects of the same kind.

A class that represents a collection of objects consists of a class template and an
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object identifier. An object identifier is an instance of a special LOTOS ADT used to

uniquely identify objects. An Object, a member of a class, is created by instantiating

a class template and is assigned a unique identification value.

In ROOA, each object attribute is formalized as an ADT; each object service

is formalized as an operation of an ADT. ADT operations that belong to an object

specification are referenced as LOTOS value declarations in the corresponding process

that describes the behavior of the object.

The communication between objects are formalized in terms of LOTOS communi-

cation constructs that include full synchronization, interleaving, and synchronization

operators. Two objects that communicate and exchange data are specified as two pro-

cesses that are synchronized through events on a gate. Complex object interactions

may be built of simpler interactions by using the LOTOS composition Operators.

Comparison with our approach

ROOA is similar to our approach in that both use the LOTOS formal specification

language to formalize the object-oriented models. However, ROOA focuses on for-

mal specification derivation during the analysis phase, while we focuses on the design

phase. The formalization rules of ROOA do not treat the data properties of an object

as an ADT but formalize every attribute as an ADT. The approach that ROOA uses

to specify the dynamic features of objects is entirely different from what we proposed.

ROOA defines states as sets of attribute values and formalizes states as process pa-

rameters. In contrast, we recognized that the date types and their corresponding

values are not available neither during the analysis nor the high-level design stages.
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Therefore we symbolically formalized the states in terms of processes of process al-

gebras and focused on the behavior in different states of an object. The functional

aspect, which is another important feature of a system, is not fully addressed in

ROOA. This may leave the specification incomplete for the design phase. We feel

that there is too much design information included in the analysis information, such

as the attributes and services provided by individual objects. This may interfere with

design decisions. However, its introduction of the object identifier is interesting and

may be worth investigating further.

3.1.3 The Fusion Method

Overview

Coleman et al. [7] proposed the Fusion object-oriented development method to sup-

port the entire software development life cycle, including analysis, design, and imple-

mentation. It can be used to develop sequential object-oriented systems as well as

certain restricted types of concurrent systems. By integrating and extending OMT [3],

Booch [41], CRC [42], and formal methods, Fusion attempts to provide a direct route

from a requirements definition to a programming language implementation. How-

ever, the use of formal methods in the context of Fusion does not have the typical

connotation. No specific formal specification language is used to describe the models.

Instead, sets of informal check lists expressed in natural language for different phases

of software development are given to check the completeness and consistency of the

models.
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The approach

Fusion includes a set of models and a process for software development. The graphical

notations of the models are based on the existing, well-known notations, such as those

of OMT [3] and Booch [41] methods. The development process divides the software

life cycle into phases and indicates what should be done in each phase. Guidelines

give the order of the tasks to be completed within phases and the criteria that indicate

when to move to the next phase in order to ensure that development makes progress.

Analysis. The analysis phase of Fusion is mainly based on OMT [3] with some

variations. Unlike OMT, the individual objects during the analysis of Fusion have no

interface and no dynamic behavior. Instead, Fusion focuses on the intended behavior

of the system during the analysis phase. The analysis results in three models: system

object model, life-cycle model, and operation model.

The system object model defines the static structure of the information of a system

in terms of a set of objects to be built. It is derived by eliminating the classes and

relationships that belong to the environment in the original object model. The life-

cycle model characterizes the allowable sequencing of system operations and events

to describe how the system communicates with its environment from creation until

its termination. The Operation model depicts the behavior (effect) of each system

operation by defining their effect (by using preconditions and postconditions) in terms

of the state change it causes and the output events it sends. The life-cycle model and

the operation model together specify the behavior of a system.
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The informal checklist given by Fusion includes the completeness checking and

consistency checking. The intent of completeness checking is to ensure that the three

models (system object, life-cycle, and operation) cover all the static information,

possible system scenarios, and system operations. The consistency checking is used

to ensure that the information expressed by different models are consistent with each

other.

Design. The design phase of Fusion is based upon the CRC [42] and Booch [41]

methods. During design, Fusion introduces software structures to satisfy the abstract

definitions generated during analysis. The systematic design process is derived from

CRC, whose main goal is to explore object interactions from the operation model

produced during analysis. During design, four models are developed and refined:

object interaction model, visibility model, class description model, and inheritance

model.

For each system Operation in the operation model, an object interaction model

is derived to show how functionality is distributed across the objects of a system.

An object interaction model defines the sequences of messages that occur between a

collection of objects to implement a certain operation. Based on the object interaction

model, a visibility model is derived for each class to describe the object communication

paths in the system. A visibility model shows how a class is referenced. A class

description model for a particular class collates information from the system object

model, object interaction model, and visibility model to derive the methods, data

attributes, and object-valued attributes of the class, respectively. Given the functional
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definition of operations in the object interaction models, the consequences to the class

reference structures in the visibility models, and the class specifications in the class

description models, commonalities and abstraction can be identified to introduce an

inheritance model for the classes of the system.

All the models produced during the design phase can be checked against the

analysis models. In addition, rules are also given to check the consistencies among

the design models.

Comparison with our approach

This approach is an attempt to integrate the best aspects of different well-known

development methods. Similar to our approach, Fusion proposes checklists to check

the consistency between the models in order to eliminate errors introduced during

the development process. Although formal methods are mentioned and claimed to

be used, there is no use of formal specification languages for representing the mod-

els, thus preventing rigorous analysis of the models and leaving the checklists in an

informal format. Our approach introduces formal specifications in terms of a formal

specification language beginning with the analysis phase. Our development paradigm

proposed for design focuses on a stepwise refinement that is based on formal speci-

fications. Our approach has significant advantage over the Fusion approach in that

mathematical reasoning about the properties of the target system and formal, rig-

orous consistency checking between models are possible. However, the development

paradigm for analysis and design of Fusion is easier to follow than that of OMT and

may be useful for our design paradigm development.
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3.1.4 The Unified Method

Overview

The Rational Corporation founded by Grady Booch and James Rumbaugh has been

attempting to develop a unified method that can be used as a standard method for

object-oriented software development. Joining forces with other software development

methodologists (e.g., Ivar Jacobson, Bran Selic, etc.), Rational has made significant

progress in the past year (1997). The promising products of Rational include the

Unified Modeling Language (UML) [43, 44, 45, 46], which has been adopted as the

standard object modeling language by the Object Management Group (OMG) in

October 1997, the Object Constraint Language (OCL) [47] that uses simple logic

for specifying invariant properties of systems comprising sets and relationships be—

tween sets, and a development process, Objectory [48], that covers the entire software

development life cycle.

Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a language for specifying, visualizing, con-

structing, and documenting the artifacts of software systems, as well as for business

modeling and other non-software systems [44]. The primary goals of UML are as

follows:

0 Provide users with a ready-to-use, expressive visual modeling language to be

used to develop and exchange meaningful models.

0 Provide extensibility and specialization mechanisms to extend the core concept.

0 Be independent of particular programming languages and development pro-

cesses.
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0 Provide a formal basis for understanding the modeling language.

0 Encourage the growth of the 00 tools market.

0 Support higher-level development concepts such as collaborations, frameworks,

patterns, and components.

Integrate the best software engineering development practices.

UML focuses on providing ( 1) a common metamodel (which unifies semantics of

different object modeling approaches), and (2) a common notation (which provides a

human rendering of these semantics).

The semantics of UML diagrams are described in terms of the UML metamodel.

The UML metamodel is described in a combination of graphic notation, natural

language, and formal language.

The abstract syntax for UML diagrams is provided as a model described in a

subset of UML notation, consisting of a UML class diagram and a supporting natural

language description. (In this way, UML is bootstrapping itself in a manner similar

to how a compiler is used to compile itself.) The well-formedness rules for UML

diagrams are provided using a formal language, Object Constraint Language, and

natural language (English). Finally, the semantics for UML diagrams are described

primarily in natural language, but may include some additional notation, depending

on the part of the model being described.

In terms of the views of a model, the UML defines the following graphical dia-

grams:

0 Use case diagram: describes the relationship among users and use cases (sce-

narios that a system is used) within a system.

0 Class diagram: describes the types of objects in the system and the various

kinds of static relationships that exist among them.
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0 Behavior diagrams: describe different perspectives of the behavior of the

objects.

— Statechart diagram: shows the sequences of states that an object or

an interaction goes through during its life in response to received stimuli,

together with its responses and actions.

— Activity diagram: is a variation of a state machine in which the states are

activities representing the performance of operations and the transitions

are triggered by the completion of the operations. (It represents a state

machine of procedure itself; the procedure is the implementation of an

Operation on the owning class.)

— Interaction diagrams: describe how groups of Objects collaborate in

some behavior.

* Sequence diagram: shows an interaction arranged in time sequence.

4: Collaboration diagram: shows an interaction organized around the

objects in the interaction and their links to each other.

0 Implementation diagrams: show aspects of implementation, including

source code structure and run-time implementation structure.

— Component diagram: shows the dependencies among software compo-

nents, including source code components, binary code components, and

executable components.

— Deployment diagram: shows the configuration of run-time processing

elements and the software components, processes, and objects that live on

them.

Object Constraint Language (OCL)

OCL is a formal language that can be used to express side-effect-free constraints.

UML uses OCL to specify the well-formedness rules of the UML metamodel. In the

context of UML modeling, OCL can be used for a number of different purposes [47]:

e To specify invariants on classes and types in the class model.

0 To specify type in invariants for Stereotypes (concrete examples).

0 To describe pre- and postconditions on Operations and Methods.

0 To describe Guard on transitions in state diagrams.

e To specify constraints on operations.
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Because OCL is a pure expression language (declarative language with no side

effect), the state of the system will never change because of an OCL expression,

even though an OCL expression can be used to specify a state change, e.g., in a

postcondition.

As a typed language, OCL provides a set of predefined types, with associated

operations, for modelers. The predefined types, including Boolean, Integer, Real,

String, etc., are independent of any object model and part of the definition of OCL.

In the context of UML, all types/classes from the UML model are types in OCL that

are attached to the model.

OCL expressions can refer to types, classes, interfaces, associations and data types.

All attributes, association-ends, methods, and operations without side-effects (change

the state of the system) that are defined on these types can be used.

Objectory process

Objectory [48] is a process developed by Rational to support the full life cycle of

software development. Objectory advocates a controlled iterative process, with strong

focus on architecture. It is a use-case driven, object-oriented process, using UML as

a notation for its models.

The Objectory process can be described in two dimensions: time and process

components. In terms of time, the Objectory process divides a development cycle

into four consecutive phases:

0 Inception phase: establishes the business case for the system and delimits the project

scape.



o ElabOration

the WeCt

. ConsllUCllC
is ready to

 
0 Transition

Similar 10 Oll

porterrts that Ob

o Requiremen

velopers an

supplemenll

o Analysis an

phase.

0 Implement;

0 Test: verift

Comparison a

Rational's prod

quite different i:

l'lll. orig:girl.

:15?le
our

am.

he notation in.

er ‘7 V
.mmnhuadi

.llalmt‘ rnt3(],.[

a , .m object are in

flat: »a flow refiner



44

e Elaboration phase: analyzes the problem domain, establishes a sound architectural

foundation, develops the project plan and eliminates the highest risk elements of

the project.

0 Construction phase: iteratively and incrementally develops a complete product that

is ready to transition to its user community.

0 Transition phase: transitions the software to the community.

Similar to other software development processes, the four engineering process com-

ponents that Objectory has are:

0 Requirements capture: describes what the system should do and allows the de-

velopers and the customers to agree on that description. A use-case model and

supplementary requirements are the results of this component.

0 Analysis and design: shows how the system will be realized in the implementation

phase.

0 Implementation: produces the sources that will result in an executable system.

0 Test: verifies the entire system.

Comparison with our approach

Rational’s products share a lot of similarities with our approach, yet they are still

quite different in several aspects.

UML originated from OMT [3], Booch’s method [49], and OOSE [50]. OMT is

used in our approach as the graphical front end. The OMT notation is a subset of

the notation included in UML, with the exception that data flow diagrams are not

explicitly used in UML. The Activity diagram in UML shares similar concepts with our

dynamic model refinement. Both of them are intended to describe how the methods of

an Object are implemented. Our newly introduced SRFM that focuses on describing

data flow refinement does not have a counterpart in UML. While UML notation is the
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crucial product component from Rational, OMT notation only serves as the graphical

front—end in our approach. The emphasis and focus of our approach are the underlying

formal semantics. OCL in UML allows users to specify pre- and postconditions for

methods and operations, and guarding conditions for state diagrams. In our approach,

operators defined in the algebraic specifications (in ACT ONE) are used for the same

purpose. Since OCL uses methods depicted in Class diagrams instead of Operators

defined in well-defined algebraic specifications, no rewriting mechanism is available

to support a rigorous reasoning of the pre- and postconditions expressed in terms

of OCL. The Objectory process covers the entire life cycle of software development

and utilizes UML notation. Our design process focuses on utilizing formalized OMT

graphical notations to conduct a stepwise refinement during the design phase, while

it is anticipated that the technique can be extended to the implementation phase of

software development.

In general, the underlying motivation and philosophy of Rational’s and our ap-

proach are quite different. Rational attempts to introduce standardized notation for

object-oriented modeling as well as a development process that utilizes the UML no-

tation. A large amount of design effort of Rational’s Objectory process is contributed

to demystify the design process. Concerned with the lack of familiarity of the software

engineering community with formal methods, only a light-weight formal specification

language, OCL, is introduced to describe a part of the system during modeling. In

Contrast, the motivation of our research from the beginning has been to introduce

formal methods into software development. In order to alleviate the difficulty of

usulg fOrmal methods and textual, abstract formal notation, we chose OMT as the
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graphical front-end and formalized its notation. A well-defined formal specification

framework with sound mathematical foundation forms the basis of our formalization

and serves as the back-end of the approach. Our design process is developed to utilize

the formalized and integrated graphical notation in order to systematically employ

formal methods during the design process. The process advocates a stepwise refine-

ment of design. Because well-defined formal specifications constitute the underlying

formal semantics of the graphical notation, rigorous analysis and specification analy-

sis are amenable to designers. Therefore our research serves to provide a means for

developers to move from an easy-to-use graphical modeling technique to the benefits

of a formal description of a system amenable to automated analysis.

3.1.5 The Real-Time Object-Oriented Modeling

Overview

Real-Time Object-Oriented Modeling (ROOM) [51, 52] is an object-oriented method

for real-time systems developed originally at Bell-Northern Research by Bran Selic

and Garth Gullekson. ROOM is a method for developing real-time software that com-

bines the object paradigm with advanced domain-specific modeling concepts. Special

emphasis is placed on modeling the architectural levels of software that are key to re-

liability, understandability, and evolvability. The method is also distinguished by its

ability to take advantage of computer-based automation (through executable mod-

els, reuse, and automatic code generation) for better product quality and greater

Productivity.
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The approach

ROOM includes a modeling language, a set of modeling heuristics, and a work orga-

nization framework.

The modeling language. The ROOM modeling language was developed as a real-

time modeling language rather than as a general-purpose language. Based upon a

principle of using the same set of models for all phases of the development process,

the modeling language is developed to avoid introducing any arbitrary or unnecessary

discontinuities into the development process. The key concept in ROOM is an actor.

Actors are objects that are independent, concurrently active logical machines. ROOM

models are composed of actors that communicate with each other by sending messages

along protocols. Actors may be hierarchically decomposed, and may have behaviors

described by ROOMcharts, a variant of Harel’s state charts. Descriptions of actors,

protocols, and behaviors can all be reused through inheritance.

In terms of the views of a model, ROOM defines the following graphical diagrams:

0 Actor class diagram: captures all high-level structures of a system.

0 ROOMchart: captures the high-level behavior of actors.

ROOM also has a standard ROOM linear form that can be used to represent

ROOM specifications, described in terms of graphical diagrams, in textual format.

This enables ROOM to subject its model specification to some type of analysis. Given

the executable nature of ROOMcharts, formal analytical approaches to validation is
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possible. Validation of ROOM models is primarily by execution of scenarios, which

are specified in terms of test cases.

Modeling heuristics. Based upon the modeling language, ROOM provides a set

of modeling heuristics to conduct model development. The heuristics include a model

development process that advocates an iterative approach to model construction and

validation and heuristics that pertain to the architecture Of a system, which forms

the basis for the system’s long-term evolution.

Work organization. Work organization refers to the top-level process issues in-

volved with creating products and managing projects. Based upon actual industrial

experience with large complex projects, ROOM advocates a product-oriented devel-

opment methodology.

Comparison with our approach

ROOM and our approach share a number of similarities. Both ROOM are our ap-

proach attempt to use the same set of models for all phases of the software devel-

opment process. Although the specific modeling techniques of the two approaches

are different, both of them focus on modeling individual objects, their behavior, and

the interaction between active, concurrent objects. The executable nature of the se-

mantics for the behavior model enables both approaches to perform formal validation

analysis. However, ROOM has special strength in describing static structures of a

System. The key difference between the two approaches is that our approach has a

well-defined, solid mathematical foundation in terms of process algebras and algebraic
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specifications, whereas ROOM relies on rigor definition of ROOMcharts. This enables

more rigorous analysis methods amenable to our specifications other than validation

analysis only.

3.2 Non-Object-Oriented Based Approaches

This section gives an overview of the formalization of three non-Object-oriented based

approaches. SAZ [53] and Semmen’s method [54] both use the Z specification language

to formalize structured development methods. France [55] formalized an extended

data flow diagram in terms of an algebraic specification language.

3.2.1 SAZ Method

Overview

The SAZ Project [53] combines the benefits of the Structured Systems Analysis and

Design Method (SSADM), comprising data flow and entity—relationship diagrams,

with that offered by the Z specification language. In SAZ, Z can be used either as a

pure quality assurance tool or as an integral systems analysis technique.

Formalization approach

There are two uses of Z in the SAZ project. The simpler one is its use for quality

audits. A formal data model is prepared after requirements analysis and formal

mOdels of logical processing are derived at the end of requirements specification in

terms of Z specifications by a third party in conjunction with the development process.
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If any problems or ambiguities are identified in the Z specifications, alterations have

to be referred back to the development team.

The other approach is to integrate the use of Z into the SSADM development

process to conduct a rigorous, formal software development. The SSADM method

includes five modules: feasibility, requirements analysis and specification, logical and

physical design. The system state of the logical data model (LDM), which is a varia-

tion of Entity-Relationship models, and parts of the functional requirements that are

particularly complex or critical are then presented in the specification language Z. It

comprises three main elements: the specification of the system state (or a sub-model

of the state), the specification of critical processing, and the specification of selected

inquiries. The specifications can also be refined with the development of the system.

The principal benefits of the integrated method are:

e the ability to express features of the functional system requirements that are not

well documented or which have been omitted from the SSADM requirements

specification;

0 the expression of all functional requirements in a common, mechanically-

checkable notation;

e the ability to provide (formal or informal) reasoning about, for instance, pre-

conditions to operations;

0 the facility for concise expression of error processing.
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Comparison with our approach

SAZ is also an attempt to introduce formalisms into a software development process

in order to eliminate inconsistency, ambiguity, and incompleteness. The formalized

Logical Data Structure (LDS, the diagrammatic part of LDM) and DFD have coun-

terparts in our approach. Its formalization mechanism is entirely different from our

approach. Z is a specification language based on set theory. SAZ’s specification

focuses on obtaining a state specification of the system, which comprises type defini-

tions, entity types, entity sets, and relationships that represent the state of a system.

In addition, SAZ is currently still a proposed methodology and, so far, there is no

sophisticated tool support. Our approach is based upon algebraic specification, pred-

icate specification, and process algebras. We advocate an systematic approach to

employ formal methods during software design process in a stepwise fashion. The in-

tegration of the OMT graphical models and formal methods also makes our approach

easier for the developers to use.

3.2.2 Yourdon and Z

Overview

For the Yourdon modeling approach, Semmens and Allen [54] have developed a Z

Syntax for the Entity Relationship diagrams (ERDs), Data Flow diagrams (DFDs),

and data dictionary to integrate formal methods with structured analysis.
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Formalization approach

Initially, Z specifications are derived from ERDs. During this stage, basic types and

schema types are defined corresponding to the attributes of each entity and the en-

tities, respectively; state schemas for the instances of each entity and its subtypes

are derived; relationships in the diagram are declared; the entity and relationship

schemas are combined to provide a complete specification of the system state. Based

upon the formal specifications derived from ERDs, DFDs are formalized as Z Opera-

tion schemas. The DFD does not give enough information to specify completely the

operations, but some parts of the Operation schemas can be obtained directly from

the diagram and the data dictionary.

The result of the analysis by using the proposed integrated method is a formal

specification that describes both static and dynamic properties of the system. These

can help to significantly reduce the chances of specification errors remaining unde—

tected until later phases of the life cycle when conventional, informal methods are

used.

Comparison with our approach

Semmen’s approach is another attempt to formalize models of structured software

development method. Its formalization of ERDs is similar to SAZ’S formalization

of LDS, which is a variation of ERD. Since the dynamic behavior of the system in

the Yourdon modeling approach refers to DFDs instead of state diagrams, Semmen’s

approach, unlike ours, formalizes DFDs as a means to formally describe the dynamic
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behavior of the system. The difference that lies in the nature of structured methods

and object-oriented methods puts Semmen’s and our approaches in distinct fields

of application. By proposing a stepwise development framework, our approach may

better serve the software development process rather than only providing a set of

formalization rules. Although Semmen’s method is proposed as a means to intro—

duce formalisms into analysis for structured methods, the information captured and

formalized from DFDs is also applicable to our approach.

3.2.3 Semantically Extended Data Flow Diagrams

Overview

France defined a semantically Extended DFD (ExtDFD)[55] based on a control-

extended DFD (C-DFD), which is a DFD supplemented with notation for describing

control dependencies among its elements, associated with formal semantics. By giving

formal semantics to the C-DFD, ExtDFD allows the specifiers to investigate desired

application properties and verify semantic decompositions of data transformations.

Formalization approach

ExtDFD formalizes C-DFD in terms of algebraic specifications. The components of

C-DFD, including the data and state transformation, asynchronous flows, external

entities, and data stores, are formalized as processes; and a C-DFD is semantically

interpreted as a system of communicating processes. Processes, specified algebraically
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by algebraic state transition systems (ASTSS) [56, 57], are composed of sets of states

and events and classes of behaviors.

The semantics of a C-DFD are specified in terms of ASTSs generated in a bottom-

up fashion from ASTSs that describe the individual C-DFD components in the fol-

lowing approach:

1. Derive ASTSs characterizing the behavior of each C-DFD component from specifier-

supplied descriptions. The resulting set of ASTSs, together with the C—DFD, is

called the Basic Interpreted C—DFD.

2. Derive an ASTS characterizing the synchronous interactions that can take place

among C-DFD components from the Basic Interpreted C-DFD. This ASTS is called

the Synchronous Interaction Specification (SIS). The SIS, together with the C—

DFD, is called Basic ExtDFD.

3. Derive an ASTS characterizing the permissible time-dependent relationships among

the synchronous interactions specified in the SIS from the Basic ExtDFD. The

resulting ASTS is called the Behavioral Specification (85).

Given the formal semantics of C-DFDS in terms of ASTSs, syntactic consistency

and I/O consistency are defined for the ExtDFD in order to formally and rigorously

verify the consistency between levels of refinements.

Comparison with our approach

Although ASTS, the underlying formal specification language, is also an algebraic

specification language similar to LSL and ACT ONE, the ExtDFD is significantly
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different from our approach. The ExtDFD is proposed for structured methods; our

approach is intended for object-oriented methods. The ExtDFD does not contain

any model that is similar to the object model. The integration of the data flow

information and control information in ExtDFD is achieved from extending the DFDs

by including state and control information, whereas the integration of the two models

in our approach is achieved in terms of the underlying formal semantics of the models.

In ExtDFD, the formalization rules only formalize C-DFDs in terms of ASTSs but

do not contribute to model integration. In our approach, the three OMT models are

formalized in terms of algebraic specifications, predicate specifications, and process

algebras. The integration among the models are achieved in terms of the underlying

formal semantics of the models. In addition, our approach also includes a design

process to take advantage of the formalization and integration techniques.

3.3 Systematic Approaches to Refinement of Anal-

ysis Information for Design

In this section, we describe two approaches that advocate rigorous, systematic refine-

ment for software development.
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3.3.1 Vienna Development Method (VDM)

Overview

VDM [58, 59] was originally developed to be used for language definition and com-

piler design in the 1960’s. The original objective was to develop a systematic design

process that progresses from a rigorous definition of a given programming language

to its implementation. Later, the objective was broadened to include the systematic

development and refinement of designs.

Formalization approach

VDM includes both a formal description language (META-IV) and a systematic de—

velopment process. The VDM design is a series of specifications in META-IV, starting

with an abstract specification of the functions that the system will perform. Each

specification in the series is a refinement of the previous one that is more concrete

and closer to the implementation. Proof obligations that ensure the correctness of the

refinement are identified and must be fulfilled by further development and refinement.

The VDM [59] specification language constructs include: modules, interfaces, type

definitions, state definitions, value definitions, function definitions, and operation

definitions. A VDM specification defines a set of states and a set of operations that

rely on and transform the states. A single Operation is specified in terms of pre— and

postconditions. Given a specification, the design phase realizes data objects by data

reification (refinement) in high-level design stages and develops control constructs

to satisfy postconditions by Operation decomposition in low-level design stages. In
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addition to the rules that conduct data reification and operation decomposition, proof

obligations are also given by VDM to guarantee the correctness of data reification and

operation decomposition.

Comparison with our approach

VDM also focuses on stepwise design and correctness preservation in the refinement

process. It is function-oriented and is suitable for structured development methods.

The formal specifications are derived directly from requirements and refined in a

stepwise fashion without assistance of intuitive graphical models. However, its rules

for data reification and operation decomposition, particularly, the proof obligations

that ensure the correctness of refinement are worthy of further investigation and may

benefit our formalization of the design paradigm.

3.3.2 Correctness preserving program refinements

Overview

Based on Dijkstra’s work [60], Back [61] proposed a program development approach

that deals with refinements concerned with data representations, control structures,

program transformation rules, and implementation of procedure. In addition, the

total correctness of a program can be syntactically proved (not semantically argued)

by reasoning about the correctness of refinement steps in a formal system with a set

of axioms and proof rules.
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The approach

The underlying logic that carries out proofs of program properties is an infinitary

logic, Law, which is an extension of ordinary first-order logic, that allows disjunctions

and conjunctions over a countably infinite number of formulas and quantifications only

over finite sequences of variables. There are also inference rules that have a countably

infinite number of premises.

Back used the language of descriptions to describe state transformations, that is,

the language is used to specify a program. The primitive statement constructs of the

language includes: a nondeterministic assignment, control structures of composition,

selection, iteration, and nondeterministic binary choice.

Having a set of theorems for proving refinement correctness in terms of weakest

preconditions, Back further proposed a top-down stepwise refinement using descrip-

tions. The proposed formal development approach allows the use of proof rules for

refinement to establish the correctness of the refinement steps.

Comparison with our approach

Both Back’s and our approaches advocate a stepwise refinement during the software

development process. However, Back’s approach deals with the refinement of low-

level program development and algorithm design, whereas ours focuses on high-level

specification refinement during the design process. The application areas of Back’s

method and ours are totally different. Back’s approach mainly treats the develop-

ment of procedures and assumes that the Specification of program termination can be
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acquired and directly represented in terms of wa. Our specification derivation may

serve as the preceding stage for Back’s method. This method is directly applicable

to the implementation of the detail design specification and may be valuable for our

further research when we move from design to the implementation phase.



Chapter 4

Object Model Formalization

Revisited

In this chapter, we re-examine the object model formalization and introduce a new

formalization rule for the object model.

4.1 The Derivation of Algebraic Specifications

Although the algebraic specification shown in Figure 2.15 can be used for requirements

analysis purposes, it does not provide sufficient design information for implementation

such as attributes and operations. The original intent of the object diagram formal-

ization [27] was to define formal semantics for the high-level object diagram used in

the analysis phase, where these specifications should be amenable to refinement to

include design details. However, the acquisition of such detailed specifications is not

easy to obtain and requires more information than can be directly determined from
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the formalized object diagrams. Since the design stage typically introduces more de-

tails about operations that describe the system behavior, we use information from

the functional and dynamic models to contribute to the design specifications.

The functional model represents the operations and data transformations of the

system in terms of data flow diagrams. At the most detailed level, each of the op-

erations, or processes, are operators of objects depicted in the object model. The

process bubbles in a data flow diagram determine the services of the system, thereby

defining the operators for the objects and the events, actions, and activities in the

dynamic model. From the formalization perspective (see Chapter 6), the signature

of a given operator for an object is determined by the input and the output data

flows to/from the corresponding process bubble. This signature information is used

in both the object model definition during the design stage and in the dynamic model

specification.

4.2 Distinguished Sort

In a specific problem domain, by sharing some commonality, a set of objects can

be abstracted into a class. In the world of software engineering, the commonality is

represented as attributes that are expressed in terms of specific data values. In the

corresponding algebraic specification for a class of objects, each attribute is repre-

sented by a data sort that denotes a range of values for the attribute. In order to

refer to the set of sorts for attributes of an object class, a sort that represents the

object class and a tuple operator can be introduced into the algebraic specification.
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The sort of the Object class is defined as distinguished sort, which is sometimes called

the type of interest or data sort [19]. The tuple operator is proposed to contain the

attributes of an object to form a value of the distinguished sort. The distinguished

sort together with the tuple operator are like a typical record type declaration con-

struct provided by most programming languages. If, for some reason, the attributes

of an object class cannot be identified, an abstract sort can be declared as the dis-

tinguished sort instead. The abstract distinguished sort may be refined into sorts of

its attributes later during the design process when it is necessary. In order to achieve

rigorous specification, we insist that every object class must have a distinguished sort.

For instance, every person in our society has a gender and a social security number

(SSN). In the world of computer science, this commonality is represented as attributes

for the person class. In terms of algebraic specifications, the Person distinguished sort

with Gender and SSN as attributes results in the LOTOS specification in Figure 4.1.

In this specification, the tuple operator is also named Person.

4.3 An added formalization rule

In addition to the object model formalization rules given in Section 2.4, another

rule, OM10, is added to formalize the attributes of an Object class in terms of a

distinguished sort. The attributes of an object are a list of variable-type pairs in

OMT’s object model. The motivation for this rule is to enable access to individual

attribute values. The object class and types of attributes are formalized as sorts of

algebraic specifications. A tuple that maps from the sorts of attributes to the sort
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type Person is

sorts

Person, Gender, Nat

opns

male : —> Gender

female : -> Gender

Person : Gender, Nat -> Person

getgender : Person -> Gender

getssn : Person -> Nat

eqns

forall p: Person, 5: Nat, g: Gender

ofsort Person

Person (getgender(p), getssn(p)) = p

ofsort Gender

getgender(Person(g,s)) = g

ofsort Nat

getssn(Person(g,s)) = s

endtype

Figure 4.1: The ACT ONE specification for person

 

of their corresponding object class is also introduced. The variables are formalized

in terms of operations that map from the sort of the object class to the sorts of the

variables.
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OM10 The attributes, in the form of variable-type pairs, of an object class are formalized as sorts and a

tuple that maps attribute types to the distinguished sort that represents the object class.

For Object 0, given attributes a1 : A1,a2 : A2,...,an : An (where a1,a2,...,an are

variables and A1,A2, ...,An are types), create the following expression in LOTOS

specification

typedef 0 is

sorts

C), 14-1, i4-2, . .., zl-n

opns

0 : A-1, A_2, ..., A-n ——> 0

get_a-1 : 0 ——) A_l

get_a_2 : O —-) A_2

get an : O —) A-n

eqns

forall a_1: A-1, a_2: A_2, ..., a_n: A.n

ofsort.A_1

get_a_1(0(a_1, a_2, ..., a_n)) = a_1

ofsort A_2

get_a_2(0(a_1, a_2, ..., a-n))

ofsort A_n

get_a.n(0(a-1, a_2, ..., a_n))

(1.2

II .9 :3

endtype

 

Regardless of whether attributes are given to object 0, sort 0 is treated as the dis-

tinguished sort. Figure 4.2 gives a sample object diagram. Based upon formalization

rule OM10, the automatically generated formal specification is shown in Figure 4.3.

 

 

 

d1: D1

d2: D2

d3: D3

   

Figure 4.2: A sample object model that contains attributes for object O
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typedef 0 is

sorts

0, D1, D2, D3

opns

0 : D1, D2, D3 -> 0

get_d1 : 0 -> Di

get_d2 : 0 -> D2

get_d3 : 0 -> D3

eqns

forall d1: 01, d2: D2, d3: D3

ofsort Dl

get_d1 (0(d1, d2, d3)) = d1;

ofsort D2

get_d2 (0(d1, d2, d3)) = d2;

ofsort D3

get_d3 (0(d1, d2, d3)) = d3;

endtype

Figure 4.3: The automatically generated formal specification from the sample object

model

 

4.4 Formal Representation of Algebraic Specifica-

tion

An algebraic specification can be represented as a tuple (<1), 1", \II, gt), where <I> is a

set of sorts, P is a set of operators with their signatures, \11 is a set of axioms, and

(b (E (1)) is a distinguished sort. The operators I‘ can be classified into four categories:

generators, observers, extensions, and auxiliaries. The generators create all the values

of the distinguished sort. The extensions are the remaining operators, such as delete,

whose range is the distinguished sort. The observers are the operators whose domain

includes the distinguished sort and whose range is some other sort. The auxiliaries

are similar to observers but the domain does not include the distinguished sort.
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In order to facilitate the discussion of the dynamic model formalization, we orthog-

onally classify the operators as modifiers and non-modifiers. The modifiers include

generators and extensions, whose range is the distinguished sort; the non-modifiers

consist of observers and auxiliaries, whose range is some other sort. Thus I‘ is parti-

tioned into two mutually exclusive sets, 9 and O, where Q is the set of modifiers and

O is the set of non-modifiers. According to this classification, operator 0 in Figure 4.3

is a modifier; operators get_d1, get_d2, and get_d3 are non-modifiers.
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Chapter 5

Dynamic Model Formalization

The dynamic model in OMT [3] is based on David Harel’s statecharts [8]. In our

formalization [62, 63], we retain the hierarchical structure and most of the syntactic

notations of statecharts. The OMT approach for creating state diagrams is to create

numerous scenarios, generate event trace and event flow diagrams from the scenarios,

and then create state diagrams from the event diagrams. Although this ad hoc ap-

proach may be useful in determining necessary operations of objects and interactions

between objects, the lack of explicit formal semantics makes the derived dynamic

models inherently exempt from formal, automated analysis. Therefore we define a

formal semantics for the dynamic model so that formal specifications can be derived

for the reasoning and analysis at the intra—model and inter-model levels.

We have chosen LOTOS as the formal specification language to describe the dy-

namic models of OMT. The major motivations for selecting LOTOS as the target

specification language are as follows.

67
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o It has a sound mathematical foundation defined in terms of process algebras

and algebraic specifications so that formal analysis can be conducted.

0 It provides support for integrating algebraic specifications with process algebras.

o It supports concurrency.

0 There are numerous support and analysis tools.

0 The behavior specifications are executable thus enabling behavior simulation

and requirements validation.

o It has been accepted as an ISO standard and has been successfully used for

numerous industrial projects [64, 65, 66].

The remainder of this chapter is organized as follows. Section 5.1 discusses a

preliminary formalization of the state diagrams. Section 5.2 gives the formalization

of the dynamic models for individual objects. Section 5.3 shows how concurrent state

diagrams are formalized. Section 5.4 discusses the integration of the dynamic model

with two other models. Section 5.5 summaries the chapter.

5.1 Preliminary Formalization

In OMT, a state diagram is used to describe the aspects of a system that are concerned

with time and change, flow of control, interactions, and sequencing of operations

in a system of concurrently active objects. In general, this objective is ambitious.

Accordingly, we restrict the dynamic model to describe only the (observable) behavior

of a system. (Unless otherwise noted, behavior refers to observable behavior.)

Observable behavior. The observable behavior of an object, as the name implies,

refers to its interactions with the environment and the sequences of interactions that
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can take place. The interactions can be observed outside of the object; the environ-

ment can either be other objects or the system environment.

Definition-1: Observable Behavior: Observable behavior is defined to be in-

teractions (inter-object communication and object operations) between the object and

its environment and the interaction pattern.

Dynamic model. In most cases, interaction is a synonym for communication.

Here, the interaction includes the inter-object communication and the action ini-

tiation and reaction of the objects. The inter-object communication is the communi-

cation between objects. Therefore, the behavior of an object consists of all its possible

communication and operation sequences with the environment.

Definition-2: Dynamic Model: The dynamic model formally specifies all the

possible interaction patterns of an object; inter-object communication and object op-

erations are considered interactions.

Communication model. The communication mechanism is not explicitly ad-

dressed in OMT [3]. The state diagrams in the text imply a broadcasting communi-

cation mechanism. Figure 5.1 shows a typical Harel statechart (with a broadcasting

communication mechanism [67]), whose notation is used in OMT and other process-

control modeling systems, including RSML [68]. The condition, in(G), under which

event f triggers the state transition from B to C is valid in statechart notation. How-

ever, when the statechart is introduced into an Object-oriented methodology without

any modification, potential problems arise. Since A and D are two concurrent states,
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they are actually the dynamic models of two independent objects in OMT. Because

the class objects are encapsulated information, information is passed only by meth-

ods, the only inter-object communication mechanism. Obviously, condition “D is in

G” is not visible to A, and therefore it is invalid to use dynamic models of OMT in

exactly the same way as the original statechart is used [67].
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Figure 5.1: A typical statechart

 

With respect to information encapsulation, one key characteristic of any object-

oriented methodology is that a change in an object is not visible to external objects.

The only means that a change can be reflected to other objects is through inter-object

communication. Accordingly, the inter-Object communication is the only communi-

cation mechanism in the formalized model; the visible events of an object are carried

by the inter-object communication external to the object.

Definition-3: Communication Model: Inter—object communication is the only

communication mechanism in the formal model.
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5.2 Formalizingstate diagrams of individual ob-

jects

In this section, we briefly introduce the formalization of the dynamic model in

terms of a LOTOS specification. In order to facilitate our discussion and the

presentation of the formalization, a state diagram is represented as a tuple D =

(S, 23 A) A, (p) C1 Ea ill, A) 6) {pa C) 80) CO), “There

S is a finite set of states; so is the initial state in D

E is a finite set of events

A is a set of variables

A is a set of actions and activities, and A g I‘ (P are operators defined in

the corresponding algebraic specifications derived from object and functional

models)

(I) is a set of data sorts defined in the corresponding algebraic specification

C is a set of guarding conditions; c0 represents an empty condition that always

holds (true)

5 is a set of external events to be triggered

if) : S x )3 X C t—> S; tb is a transition function mapping S x E x C to S (1,!) can

be a partial function)

A : S l—> A; A is a function that associates a state with an activity (A can be a

partial function)

6 : S x E x C t——> A; 6 is a function that associates a transition with an action

(,0 : S x E t—> 2"”; cp is a function that maps a state and an event to a set of

variable-data-sort pairs that are associated with the event

C : S x E x C +—+ E; C is a function that maps a transition to an external event

to trigger

In the process of bringing formalisms into the dynamic model, we introduced

some new notations in order to enhance the formality of the state diagrams (The
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most recent release of UML [69, 70] indicates that its state diagram is also using a

similar set of notations.)

Figure 5.2 gives a typical state diagram with an initial state

and three state transitions. A label on an arc in the format of

e(d1 : D1,d2 : D2,...,d,, : Dn)[c]/a(dx1,dm2,...,dxm)"0.e’(dy,,dy2,...,dm) denotes

an event 6, data items (d1, d2, ..., dn) associated with the event e, a guarding

condition c, the corresponding action a, and the event 6’ of object O to be triggered.

The remainder of this section introduces formalization rules for each component

of a state diagram. The application of these formalization rules yields a portion of

the formal specification of the corresponding state diagram.

 

el(d11:Dll,d12:DlZ.....d1m:Dlm)[cl]

/al(d12,dlm)"01.e2(dl l,d13)

  

  

eZ(d21:D21,d22:D22.....d2n:D2n)[c2]/a2

e3/a2"02.el

Figure 5.2: A typical state diagram

   

 

5.2.1 State

The derivation and justification of object states is one of the most difficult issues for

dynamic modeling. The root of this difficulty is that the role of the states is not

clearly defined within OMT. With the formal definition of the dynamic model given
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in Definition-2, it is straightforward to ascertain that the basic function of the states

is to describe the different interaction sequences.

Since the formalized object model requires that every leaf class contain a distin-

guished sort (type of interest), we model the behavior of a leaf class as an individual

state diagram, whose states are determined by partitioning the values of the distin-

guished sort into classes.

 

DFR-l The object states S are formalized as LOTOS processes.

For every state 3, s E S, create the following LOTOS expression

process 5 : noexit :=

endproc

 

Given that most transitions involve attribute value changes, the processes that

formally specify the states are associated with a parameter of the distinguished sort.

 

DFR—2 Every process that formally specifies a state 3 is associated with a parameter :r of the distinguished

sort 4).

For every state 3, s E S, and distinguished sort 45 E <I>, create the following LOTOS expression

process 5 (x: (p): noexit z:

endproc

 

5.2.2 Communication model and event

An event is defined as inter-process communication because only the observable ex-

ternal behavior is well-defined and thus can be modeled. While this convention may

seem restrictive, it is well-defined and exactly models the communication in the real

world; it also achieves information encapsulation in the event definition.
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For a given object, the use of an operator determines whether it corresponds to

observable behavior (that is, inter-object communication) or is internal to the object.

Therefore, the inter-object communication is a subset of the object Operators, F.

The gate construct in LOTOS is used to describe the interface to the external

world and is able to accept and deliver data. It is straightforward to specify the

events of the dynamic model as gates in LOTOS specifications. The inter-Object

communication (message passing) is modeled as an event arriving at a certain gate

 

that corresponds to a specific operator.

 

DFR-3 The events of an object together with the events to be triggered are formalized as the inter-object

communication external to the object, which is a subset of I‘ (set of the object Operators). The

events, 2, and events to be triggered, E, in a state diagram D are specified as a formal gate list

[2 U E] for the processes in S.

For every state 3, s E S, distinguished sort (p, events 2, and events to be triggered E (d) E

<I>, E Q P), create the following expression

process 5 [E U E](x: (t): noexit 2:

endproc

 

For those events that are associated with arguments, the following rule is used to

formalize the event definition.1

 

1The notations x,- : a,- and (x,,a,-) are used interchangeably, both of which represent a variable

and its type declaration.
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DFR—4 Attribute pairs 9:,- : a,- (data items) associated with an event e are formalized as variable decla-

rations ?x,~ : 0,- associated with a LOTOS gate e.

For every state 3 and event 6 (s E S,e 6 E), distinguished sort 4), events 2, and events to

be triggered E (d) 6 Q,E (_Z I‘), if the partial function cp maps (s,e) to pairs x1 : a1,x2 :

a2,...,x,, :an, a non-empty subset of A x Q ({(x1,a1), (x2,a2), ..., (xn,an)} E 2"”), create

the following expression

process 5 [E U E](x: a): noexit :=

e ?x1:a1, ?$2 202, ..., III?” :a,,;

endproc

If the partial function go maps (s,e) to an empty set (no associated attribute for event e),

create the following expression

process 5 [E U E](x: (b): noexit :2

9:

endproc

 

In some cases, a transition may be associated with a triggerable event of another

Object. This case is formalized as a value declaration of the data to be transferred at

the corresponding gate.

 

DFR—5 An event to be triggered, e’, is formalized as a value declaration (Iy,) at a LOTOS gate.

For every state 3, event 6, and condition c (s E S,e E E, c E C), distinguished sort (,3, events

2, and events to be triggered E. (o 6 Q, E _C_ I‘), if the partial function 6 maps (s,e,c) to a

triggerable event e’, create the following expression

process 5 [E U E](x: rt): noexit z:

e’ lyl, lyg, ..., lym;

endproc,

where {y1, y2, ..., ym}, a subset of {3:1, 1:2, ..., 2:”, x}, is specified in the corresponding state

diagrams.

 

5.2.3 Condition

A condition, in the form of predicates, is used to describe circumstances under which a

state transition can take place. We formalize guarding conditions as LOTOS guarded

expressions in form of a predicate preceding a behavior expression, which becomes

possible when the predicate holds.
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DFR—6 A guarding condition c is formalized as a guarded expression [c].

For every state 3, event 6, and condition c (s E S, e E E, c E C), distinguished sort 4), events

2, and events to trigger E ((15 E (I), 2 C_: I‘), if the partial function (p maps (s,e) to pairs 2:1 :

01,32 : a2,...,:1:,, : an, a non-empty subset ofA x <I> ({(zrl,a1), (x2,a2), ..., (:rn,an)} 6 2A“) a

non-empty subset of sorts <I> ({al , a2, ..., an} E 24’), and c aé c0, create the following expression

process 5 [2 U E](x: (1)): noexit :=

e ?$1 101, ?$2 I (12, ..., ?.’13n : (In; ([C] —) ...)

endproc,

where 31,32, ..., 3:” are variables to hold the attributes associated with the event.

 

A predicate that is newly introduced in a guarding condition is formalized in terms

of an operation of Boolean sort in the algebraic specification section.

 

DFR—7 A newly introduced predicate in a guarding condition is formalized as an operation of type

Boolean in the algebraic specification section.

Given object D, for every state 3, event 6, condition c (s E S, e E 2, c E C), distinguished

sort 43, and predicate p introduced in condition c, if 331,32, ...,mn are the arguments for p of

sorts X1, X2, ..., X", create the following expression

specification D [2 U E](x: 45): noexit

typedef 43 is Boolean

opns

p: X1,X2,...,X,, —> Bool

endtype

process 5 [2 U E](x: d): noexit :=

endproc

endspec

 

5.2.4 Action and activity

The activities and actions are defined as operators in the algebraic specification (ac-

tions are considered instantaneous; activities may occur over a period of time). Since

a behavior specification in LOTOS can reference the operators that are defined in the

algebraic specification part, we model the actions and activities in the state diagrams

as operator references in the LOTOS specification. The difference between activities
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(labeled graphically as “do: activity”) and actions is not straightforward to de-

termine. It depends on the experience of the designer to determine which operators

should be modeled as activities and which operators should be modeled as actions.

An action can be formalized in terms of a value declaration by a reference to an

operator (defined in the algebraic specification) at the corresponding gate.

 

DFR—S An action a is formalized in terms of a value declaration la by an Operator reference at the

corresponding gate e.

For every state 3, event e, and condition c (s E S, e E Z, c E C), if the partial function (,0

maps tuple (s,e) to sorts a1,a2, ..., an (a non-empty subset of sorts (I) ({a1,a2, ...,an} 6 2°»,

0 ¢ co, and the partial function 6 maps tuple (s, e) to an action a (a E A), create the following

expression

process 5 [E U E](x: o): noexit :=

e 72:1 :al, ?:1:2 :az, ?:r,, : an;

(M -+ e !a(y1. y2. ym))

endproc,

where {y1, y2, ..., ym}, a subset of {2:1, 2:2, ..., at", x}, is specified in the corresponding state

diagrams.

 

With the built-in internal event, 2', predefined in LOTOS, we are able to specify the

activities as value declarations preceded by an internal event, which can be interpreted

as “the return of a result takes time to complete.”

 

DFR-9 An activity a is formalized as a value declaration la at the corresponding gate 6 preceded by a

nondeterministic internal event 2'.

For every 3, 3 E S, distinguished sort qfi, events 2, events to be triggered E (d) E (D, 2 Q I‘),

and arguements y1, y2, ..., yn of sorts Y1, Y2, ..., Yn for activity a, if the partial function /\

maps state 3 to an activity a (a E A), create the following expression

process 5 [E UE](x: 43, y; :Yl, y; : Y2, yn : Yn): noexit :=

i; e !a(y1. yz. yn);

endproc

 

Consider the state diagram of the Compressor object shown in Figure 5.3. As

a notation convention in the discussion of diagrams and specifications for diagrams,

the italic font will be used to denote diagram components and the courier font will
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denotes specification components. The compress and decompress operations transi-

tion from state idle to compression and then to decompression, respectively. Since

the compress and decompress operations, which may take some duration of time to

complete, cannot be considered instantaneous, they should no longer be modeled

as actions, but, instead, considered as activities in the corresponding states. The

done event, (denoted by an unlabeled arrow leaving an activity state), representing

the completion of compression or decompression, activates the actions to return the

results and trigger state transitions.

 

 

[ Compressor: c
 

 

  
    

   

   

    

  

/ W

decompress(d:D) compress(d:D)

W compression

decompress(d) compress(d)

\ j
 

Figure 5.3: The state diagram for the Compressor object

 

Figure 5.4 contains a complete LOTOS specification for the Compressor class

based on the formalization rules presented thus far (the exception is that the con-

struction of specifications for transitions which is discussed next). The specification

describes both the abstract data type and the behavior of a Compressor object. The

first part of the specification describes the abstract data type of the object class in

terms of ACT ONE; the second part captures the object behavior in terms of pro-

cess algebras. The expression “i;cornpresslcompress(data)” exactly models the

compress activity in the state diagram. The behavior specificatoin captures:
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o The Compressor is initially in idle state.

a A decompress request triggers the transition from idle state to decompression

state.

a In the ldecompression! state, the Compressor performs the decompression

activity.

0 Upon the completion of the decompression activity, the Compressor returns

the decompresed data and transitions back to idle state.

0 A compress request triggers the transition from idle state to compression

state.

0 In the lcompressionl state, the Compressor performs the compression activity.

0 Upon the completion of the compression activity, the Compressor returns the

compresed data and transitions back to idle state.

5.2.5 Transitions

The change of state caused by an event is a transition. Although an event, inter-

object communication, or internal event, is the cause of a transition, the transition is

actually triggered by the corresponding action or activity.

However, a state transition does not necessarily imply a state change. Only those

transitions whose starting state is different from its ending state can cause a state

change. Since only modifier operators can trigger a state change, the state transition

that is fired by a non-modifier does not change state.

 

DFR—lO A transition can cause a state change if and only if the action that corresponds to a transition

is defined as a modifier Operator.

For every state 3 and event 6 (s 6 S,e E E), if the partial function 1p does not map tuple

(s,e) to state 3 (3 ¢ ¢(s,e)), then the partial function 6 maps tuple (s,e) to a modifier

operator (6(s,e) E 0); if the partial function 6 maps tuple (s,e) to a non-modifier operator

(6(s,e) E 9), then the partial function 11) maps tuple (s,e) to state 3 (s = w(s,e)).
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specification Compressor [compress, decompress] (c: Compressor): noexit

fibmary

NaturalNumber

endlib

type Compression is NaturalNumber

sorts

Compressor, Data

(urns

undef_data : -> Data

compress : Data -> Data

decompress : Data -> Data

sizeof : Data -> Nat

eqnw

forall 1:: Data ofsort Nat

sizeof(undef_data) = O;

ofsort Bool

sizeof(x) = 0 => x = undef_data;

sizeof(x) ge sizeof(compress(x)) = true;

sizeof(x) 1e sizeof(decompress(x)) = true;

ofsort Data

decompress(compress(x)) = x;

endtype

behavior

Idle_State [compress, decompress] (c)

where

process Idle_State[compress,decompress]: (c: Compressor)

noexit:=

compress ?data:Data; Compress_State[compress,decompress] (c, data)

[I

decompress ?data:Data; Decompress_State[compress,decompress] (c, data)

endproc

process Compress_State [compress,decompress] (c:Compressor,data:Data): noexit:=

i; compress !compress(data);

Idle_State[compress,decompress] (c)

endproc

process Decompress_State[compress,decompress](c:Compressor,data:Data)::noexitu:

i; decompress !decompress(data); Idle_State[compress,decompress] (c)

endproc

endspec

Figure 5.4: A Compressor class and its behavior specified in LOTOS
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The state transitions in the dynamic model of OMT are formalized in terms of

LOTOS process instantiations.

 

DFR—ll The state transitions are formalized as process instantiations.

For every state 3 and event e (s E S, e E Z), distinguished sort at, events 23, and events to be

triggered E (d) E Q, 2 Q P), if the partial function 90 maps (3, e) to pairs 2:1 : a1,a:2 : a2, ...,:rn :

an, a non-empty subset of A x Q ({(x1,a1),(:rz,a2),..., (zn,a,,)} 6 2““), the partial function

6 maps tuple (s, e) to an action a (a E A), the partial function d) maps tuple (s, e) to a. state

3’ (s’ e S), and a is of sort ()5, create the following expression

process 5 [2 U E](x: d): noexit z:

e ?2:1 :01 ?:2:2 :a2 ?:r,, : an;

S’lE U Shah/1.312. yml)

endproc

if a is not of sort q), create the following expression

process 5 [E U E](x: d): noexit 2:

e ?2:1:a1?:r2:a2 711:" :an;

e !a(y1, y2, ym);s’[EUE](x)

endproc

 

In cases, where there are multiple state transitions from a single state, the multi-

ple transitions are specified as multiple process instantiations composed by a choice

operator (“[1”).

 

DFR-12 Multiple state transitions from a single state are formalized as process instantiations composed

by a choice Operator (adding more transitions may add more choice Operators.

For every state 3, events e1 and e2 (3 E S, 61,82 6 2), distinguished sort ()3, events 2, and

events to be triggered E (d E Q, 2 g P), if e1 79 eg, the partial function (p maps tuple (s,el)

to {$11 2 011,112 I (112,...,$1n I {11"}, (3,82) 130 {$21 I (121,1722 2 (122,...,$2j I a2j} (where

{($11,011).)$12,012),---,($1main)},{($21,021),($22,022),---,($2j,02j)} E 2Ax¢ly the partial

function 6 maps tuple (3, e1) to al, (8,62) to a2 (a1,a2 6 A), and the partial function 1,!) maps

tuple (3, cl) to 31:, (3, eg) to 32:, create the following expression‘

process 5 [2 U E](x: d): noexit :=

e1 ?:1:11 :a11 11:12 : 012 ?:r1,,:a1,,;

6: lai(yn 1112 yim): silleEMX)

82 ?.’€21 $021 ?$22 I (122 ?£E2J‘ 1021';

62 !32(y21 3122 312k); 5242 UEKX)

endproc

 

‘The expression may differ according to DFR—lO depending on the sort of a,.
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5.2.6 State diagram

Given the formalization rules for the components of a state diagram, we are able to

formalize the diagram in terms of its components.

 

DFR—13 A state diagram can be formalized as either a LOTOS specification or a LOTOS process

definition.

For state diagram D = (S, 2, A,A, Q, C,E, 1,1), A, 6, «,9, C, so, c0), we can have either

process D [2 U E] (x: a) :noexit :=

$0 [3 U E] (X)

where

( algebraic specification )

( process definitions )

endspec

OR

specification D [2 U E] (x: a) :noexit

( algebraic specification )

behaviour

50 [>3 U 5] (X)

where

( process definitions )

endspec,

where the first format is used if the process will be composed within other specifications to

form more complex behavior specifications; the second format is used if the specification is a

top level specification.

 

An example. Figure 5.5 gives a dynamic model for Storage that corresponds to a

part of the object diagram given in Figure 2.13. Its corresponding class and behavior

specifications are given in Figures 5.6 and 5.7.

In Figure 5.5, the empty and non_empty states are formalized as the empty_state

and non_empty_state processes, respectively in Figures 5.6 and 5.7. The events,

insert, retrieve, and delete, are formalized as the three gates visible to the

external objects. The guarding conditions are “count(s) gt Succ(0)” and

“count(s) eq Succ(0)”. Since empty_state is the default state that a Storage

object enters when it is initially created, the behavior of a Storage object is specified



I
I

Speci

librar

Boc

endli

80!

Up;

9Q

9116



83

 

 

l Storage:s l

inscrt(d:D,k:K)/insert(s,d,k)

insert(d:D,k:K)/insert(s,d,k)

U retrievc(k:K)/retrieve(s,k)

delete(k:K)[count=l ]/delcte(s.k)

delete(k:l()[count>l ]/dclete(s,k)

L /
  

Figure 5.5: The state diagram for Storage

 

 

specification Storagefinsert,retrieve,delete] (3: Storage): noexit

fibrary

Boolean, NaturalNumber

endlib

sorts

Storage, Data, Key

opns

new : -> Storage

undef_Data: -> Data

undef_Key : -> Key

count : Storage -> Nat

retrieve : Storage, Data, Key -> Data

delete : Storage, Key -> Storage

- eq _ : Data, Data -> 8001

_ eq _ : Key, Key -> 8001

eqns

flora“ d: Data, k, k1, k2: Key, 3: Storage

ofsort Nat

count(new) = O;

count(insert(s,d,k)) = Succ(0) + count(s);

ofsort Data

retrieveP(new,d,k) = undef_Data;

(k1 eq k2) => retrieve (insert(s,d,k2),k1)= d;

not(k1 eq k2) => retrieve (insert(s,d,k2),k1) = retrieve (3, k1);

ofsort Storage

delete(new,k) = new;

(k1 eq k2) => delete(insert(s,d,k2),k1)=s;

not(k1 eq k2) => delete(insert(s,d,k2),k1)= insert(de1ete(s,k1),d,k2);

endtype

Figure 5.6: The specification (in Full LOTOS) of the Storage (1)
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behavior

empty_state[insert,retrieve,delete] (s)

where

‘process empty_state[insert,retrieve,delete](s: Storage): noexit:=

insert? d : Data ? k : Key;

non-empty_state[insert,retrieve,delete](insert(s,d,k))

endproc

process non_empty_state[insert,retrieve,delete](s: Storage): noexit:=

retrieve ?k:Key; retrieve !retrieve(s,k);

non_empty_state[insert,retrieve,delete](s)

[I

insert ?dzData ?k:Key;

non_empty_stateEinsert,retrieve,delete](insert(s,d,k))

i]

delete ?k:Key; (

[count(s) gt Succ(0)] ->

non_empty_state[insert,retrieve,delete](delete(s,k))

[l

[count(s) eq Succ(0)] ->

empty_state[insert,retrieve,delete](delete(s,k))

)

endproc

endspec

Figure 5.7: The specification (in Full LOTOS) of the Storage (2)

 

as “empty_state[insert,retrieve,de1ete](new).” This specification enables a

Storage object to enter the empty state when it is first initialized. The transition from

empty to non_empty triggered by the insert event is formalized in the empty_state

process as:

insert?d : D?k : K ; non_empty_state [insert , retrieve , delete] (insert (3 , d , k) ).

The specification “insert ?d:D ?k:K;” indicates that the process is to wait for

an event to occur at the insert gate. In addition, two data values of type D and K

must also be associated with the upcoming event at gate insert.

 

 



the:

DOD

H011

3p;



85

Once an insert event with the two required data values occurs at the insert

gate, the insert action is performed and the transition from the empty state to the

non_empty state is triggered. The transition is formalized as the process instantiation

non_empty_stateEinsert,retrieve,de1ete](insert(s,d,k)),

where “insert(s,d,k)” executes the insert action, and the instantiation of the

non_empty_state process makes the object leave the empty state and enter the

non_empty state.

In the specifications of both empty_state and non_empty_state processes, sort

S, which includes all the data values relevant to a Storage object, is formalized as

a process parameter. The “insert(s,d,k)” Operation of sort S, which formalizes

the insert action, inserts the newly received data associated with its key into the

storage space and thereby derives the updated storage. The result of this action is

that the storage is no longer empty. Consequently, the non_empty_state process is

instantiated with parameter “insert (8 ,d,k))” that represents a non-empty storage

object.

5.2.7 Summary.

So far, we have addressed the formalization of the state diagram for an individual

object. Objects that consist of an aggregation of objects are modeled by parallel

composition constructs, addressed in the following discussion.
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5.3 Concurrent State Formalization

A typical system is usually composed of concurrent subsystems. In a system that

is implemented by an object-oriented approach, the objects can always be consid-

ered concurrent. In OMT, this concurrency is modeled as aggregate concurrency; in

statecharts, it is modeled with AND states.

The parallel composition operators of LOTOS provide sufficient semantics to com-

pose parallel and concurrent processes. There are three types of parallel composition

operators:

0 Full interleaving: No communication and synchronization between processes.

0 Full synchronization: Every action must be synchronized.

0 Normal synchronization: Only a select set of actions are synchronized.

In the previous sections, we have shown that the formalization of the object and

the dynamic models are inter-related by attributes, operations, events, gates, and state

transitions. Similarly, the formalization of the concurrent composition in the state

diagram is related to the aggregation associations that are identified and specified in

the object diagrams.

Theoretically, all the objects in a system are concurrent. In order to manage large,

complex systems, we advocate a hierarchical approach to modeling the concurrent

behavior that follows the system structure described in the object diagrams. The

following rules describe the relationship between the aggregation relationship in the

object model and the synchronization in the dynamic model.
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DFR-14 Every aggregate object is responsible for composing the behavior of its concurrent aggregation

objects to form one behavior specification.

DFR—l5 The behavior of every aggregation Object must be composed by and only by its aggregate Object.

DER-16 Only when there is an association between two aggregation objects, can the aggregate Object

model the corresponding synchronization between the two objects.

 

Synchronization mechanism and notations. The synchronization between con-

current object dynamic models are specified by name binding. If two dynamic models,

synchronized in a state diagram, share a common service, which is described as a gate

in terms of LOTOS, the two dynamic models are synchronized through the shared

service. The services (gates) modeled in the dynamic models for individual Objects

can be considered as parameterized services. When an object is composed with other

concurrent objects in parallel, the names of its services can be substituted by ac-

tual names in the composition state diagram, such as the one shown in Figure 5.9.

The dynamic models that share common actual names of services are synchronized

through the shared services.

In OMT, dashed lines are used to separate concurrent dynamic models in a given

state diagram. If two concurrent dynamic models in a state diagram share no common

service, they are composed in terms of interleaved LOTOS process algebras. However,

under some circumstances, even if two dynamic models share common services, we

still want to compose them as interleaving dynamic models. This happens when both

of the objects use the same actual service to synchronize with objects other than

each other. A new notation is introduced to represent the forced interleaving. The

notation has three parallel lines drawn in vertical to the dashed line that separates
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the interleaving dynamic models. A sample diagram is given in Figure 5.8, where

dynamic models d2 and d3 are interleaved.
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Figure 5.8: A sample state diagram with interleaving dynamic models
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The following rules use LOTOS’ normal synchronization construct [21] indicating

that only a selected set of gates are synchronized.
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DFR—l7 In a state diagram that composes dynamic models of concurrent objects, the dynamic

behaviors are synchronized through shared services.

The state diagram D = (S, 2, A, A, Q,C,E, i/J,)\,6, 90, C, so,c0) composed of

D1=(51,21,A1,A1,4’1,01,31,1/J1,/\1,51,‘P1,Ci,810,C0),

Dz = (52,£2,A2,A2.‘1’2,Cz,52,1l’2,A2r52,¢2,C2,320,CO), ------ r

and Bu 2 (Sn,2,,,A,,,An,Qn,C,,,E,,,i/Jn,/\n,6,,,gon,cn,sno,c0) is formalized as:

specification DESI U 22 U U 2,. U E] (x:¢,x1:¢1,x2 d2 , . . . ,xn:d>,,): noexit

(algebraic specification>

behaviour

80 [SUE] (X)

| [T1] |

(D1[21 U 51] (X1)

I [T2] |

(Dz [22 U 32] (X2)

I [T3] |

( .....

| [Tn] l

Dn [2,, U 3,] (x,,)

D)

where

(process definitions)

endspec,

where T1, T2, ..., Tn are shared services.

DFR-18 In a state diagram, the interleaving dynamic models are grouped together in terms of

LOTOS interleaving process algebras.

Ifstate diagrams DI =(51,21,A1,A1,¢1,CI.31.¢1,A1,51,991,C1,810,CO),

Dz = (52,532,1)2,Amq’erczfizrll’z,A2,52,<P2.C2,820,Co), ------ ,

and Dn : (Sn:2n,AnaAniénaCmSnall’naAnadna‘pnaCnasnOyCO) are interleaVing d)"

namic models in a given state diagram, the following specification shall be generated:

behaviour

(

DIEEIUEIJ (X1)

Ill

D2EE2U52] (X2)

III

III

D,,[2,,UE.,,] (xn)

 

In the object diagram shown in Figure 2.13, a Disk Manager is an aggregation

of Storage and a Compressor (notice the one-to-one relationship between aggregate

and aggregation objects specified both in the diagram and in its corresponding formal

specification). Hence, the possible synchronizations and communication are between
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Disk Manager and its two components. Figure 5.9 contains the aggregated concur-

rent state diagram for the Disk Manager class. The dashed lines indicate that the

individual state diagrams are active in parallel. The individual dynamic models are

synchronized through shared services. The state diagram captures that: (1) the input

operation is implemented in terms of the compress and insert operations of Compres-

sor and Storage, respective, and (2) the output operation is implemented in terms of

the decompress and retrieve operations of Compressor and Storage, respective.

Figure 5.10 gives the major parts of the specification with the descriptions of

Storage and Compressor omitted (a complete LOTOS specification is given in Ap-

pendix D).

The expression “Storage [ins,ret,del] I [ins,ret] lDisk_Manager [input,

output,com,dec,ins,ret]” specifies that processes Disk_Manager and Storage

communicate and synchronize through actual gates ins and ret. Storage’s formal

gates, insert, retrieve, and delete are substituted by the actual gates ins, rot, and

del, respectively. These two processes, in fact, model the communication and

synchronization between their corresponding objects. The communication and

synchronization between Disk Manager and Compressor are similarly modeled.

Since the services com, dec, ins, ret, and del are actually internal services to object

Disk Manager, they can be hidden from the external objects by using the gate hiding

construct provided by LOTOS. Thus only gates input and output are externally visible.

Any design decision or implementation change to the Disk_Manager will not affect

other objects that are externally related to Disk_Manager, as long as the behavior

specification of implementation meets the Disk_Manager’s original individual behavior
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Disk_Manager

/ Storage \

ins(d:D.k:K)/insert(d,k)

ins(d:D,k:K)/insen(d.k)

fl UR ret(k:K)/retrieve(k)

delete(k:K)[count= 1 ]/delete(k)

delete(k:K)[count>1]/deletc(k)

~---—-—-_-—-—-——--—_-_--—————-——-———-——_-_-——-—---—————_--a

   

Disk_Manager

output(k:K)"Storage.ret(k)

 

   

     

 

input(d:D,k:K)"Compressor.com(d)

com(d: D)"Storage.ins(d,k) ret(d:D)"Compressor.dec(d)

dec(d:D)/output(d)

........................................................ l

Compressor

dec(d:D) com(d:D)

decompression 0

Figure 5.9: The aggregation concurrent state diagram for Disk Manager
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specification DiskJianager [input , output , com , dec , ins , ret , delete]

(ds: Disk_Manager, 8: Storage, c: Compressor)

type Disk_Manager_REF is Disk_Manager, Storage, Compressor

endtype

behavior

(Storage[ins,ret,del] (s)

Ifins,ret]l

Disk_Manager[input,output,com,dec,ins,ret,del] (ds))

l[com,dec]l

Compression[com,dec] (c)

where

process Disk_Manager [input , output , com, dec , ins , ret , delete] : noexit:=

id1e[input,output,com,dec,ins,ret,delete] (ds)

endproc

process idle [input,output ,com,dec,ins ,ret,delete] (ds: Disk_Manager) : noexit:=

input ?dzD ?k:K; com !d !k; wait[input,output,com,dec,ins,ret,delete](ds, k)

[1

output ?sz; ret !k; wait[input,output,com,dec,ins,ret,delete](ds, k)

endproc

process wait [input ,output ,com,dec, ins ,ret ,delete] (ds:Disk_Manager,k:K) : noexit:=

com ?d:D; ins !d !k; idle[input,output,com,dec,ins,ret,de1ete] (ds)

[1

ret ?dzD; dec !d; wait[input,output,com,dec,ins,ret,delete](ds, k)

[l

dec ?dzD; output !d; idle[input,output,com,dec,ins,ret,delete] (ds)

endproc

process Storage[insert,retrieve,de1ete] (3: Storage): noexit :=

....... ()1rzittecl .... ...

process Compressor [compress,decompress] (c: Compressor): noexit :2

....... Omitted

endspec

Figure 5.10: The LOTOS specification for a simplified Disk_Manager

 

specification that only contains services input and output. Figure 5.11 shows how the

internal gates com, dec, ins, ret, and del are hidden in the LOTOS specification,

denoted by the hide keyword.

In order to perform analysis on the state diagrams that compose the dynamic

models of concurrent objects, the parameters of distinguished sorts may be instan-

tiated. Rules DFR-19 and DFR-20 formalizes the constants, newly introduced by
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specification DiskJianager[input,output] (ds: Disk_Manager, 3: Storage, c: Compressor)

type Disk_Manager_REF is Disk_Manager, Storage, Compressor

endtype

behavior

hide com,dec,ins,ret,de1ete in

(Storage[ins,ret,de1] (s)

|[ins,ret]|

Disk_Manager[input,output,com,dec,ins,ret,del] (ds))

I [com,dec] l

Compression[com,dec] (c)

where

endspec

Figure 5.11: Specification for a simplified Disk_Manager with hidden internal gates

 

the instantiation of parameters of distinguished sort, in terms of LOTOS algebraic

specification. The formalization rules introduce a nullary operation for each of the

newly introduced constant and use equations to specify the equality among the con-

stants. Specifically, DFR-19 introduces equations asserting that a constant is equal

to itself and every two constants of the same sort are not equal.
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DFR—19 If e is a constant, of sort C, introduced by the instantiation of parameter :1: of distinguished

sort 0 for object 0 in a state diagram, then create the following expression

type 0 is

sorts

endtype

DFR-20 For all constants c1,c2, ..., c,, of sort C introduced in object 0, create the following expression

type 0 is Boolean

sorts

cccccc

eqns

ofsort C

c1 eq c1 = True;

02 eq C2 = True;

03 eq C3 = True;

c1 eq C2 = False;

c1 eq C3 = False;

c1 eq on = False;

c,,_1 eq c" = False;

endtype

For instance, the state diagram in Figure 5.12 introduces constants storage, dm01,

and zip for the Storage, Disk Manager, Compressor objects, respectively. The corre-

sponding algebraic specification generated to describe the newly introduced constants

and their relationships is given in Figure 5.13.

5.4 Integration with Other OMT Models

We have, in fact, implicitly addressed the integration of the object, functional, and

dynamic models through the discussion of the formalization of the dynamic model.

The LOTOS specification in Figures 5.4, 5.6, and 5.7 contain two typical examples
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Disk_Manager

/ Storage: s=storage \

ins(d:D.k:K)/insert(d,k)

ins(d:D,k:K)/insert(d,k)

a U” ret(k:K)/retrieve(k)

delete(k:K)[count= l ]/delete(k)

delete(k: K)[count> l ]/delete(k)

   

Disk_Manager: dm=dm01

output(k:K)"Stroage.ret(k)

  
input(d:D,k:K)"Compressor.com(d)

  

  
ret(d:D)"Compressor.dec(d)

  com(d:D)AStorage.ins(d,k)

  

dec(d:D)/output(d)

[- ————————————————————————————————————————————————————————

Compressor: c=zip

      
 

 

   

 

dec(d:D) com(d:D)

decompress(d):
compress(d)

 

  
k 1

Figure 5.12: Sample state diagram with instantiated parameters of distinguished sorts

 



specif.

type I

of

eq;

efldtg

“he

Wt

911



96

 

specification Disk_Manager [input , output , com , dec , ins , ret , delete] :noexit

type Disk_Manager_REF is Disk_Manager, Storage, Compressor

opns

storage : -> Storage

dm01 : -> Disk_Manager

zip : Compressor

eqns

ofsort Bool

endtype

behavior

storage eq storage = True;

undef_Storage eq undef_Storage = True;

storage eq undef-Storage = False;

undef_Storage eq storage = False;

dm01 eq dm01 = True;

undef_Disk_Manager eq undef_Disk_Manager = True;

dm01 eq undef_Disk_Manager = False;

undef_Disk_Manager eq dm01 = False;

zip eq zip = True;

undef_Compressor eq undef_Compressor = True;

zip eq undef_Compressor = False;

undef_Compressor eq zip - False;

Ifide com, dec, ins, ret, del in

(Storage[ins,ret,del] (storage)

I[ins,ret]l

Disk_Manager[input,output,com,dec,ins,ret,del] (dm01))

l[com,dec]|

Compression[com,dec] (zip)

endspec

Figure 5.13: LOTOS specification of the sample state diagram
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that illustrate the integration. Although the formalization of the functional model

will be addressed in Chapter 6, the services and operators whose availability we have

assumed and discussed intensively in this chapter are both derived from functional

models. The object and functional models together contribute to the formation of

the algebraic spefication in our formalization rules.

In general, the use of LOTOS does not automatically lead to an integration of the

formal specifications of the three models, though its constructs allow algebraic spec-

ifications and process algebras to share common language primitives thus providing

a possibility to integrate the two types of specifications. In our formalization, the

integration of the three models is achieved through explicitly imposing certain rela-

tionships upon the constructs of algebraic specifications and process algebras. The

integration is three-fold. First, the dynamic model is derived in the context of object

models. This approach to modeling provides a degree of integration between the two

models. Second, the integration is achieved in terms of the formalization of individual

state diagrams. The integration includes:

0 The distinguished sort in algebraic specifications serves as state process param-

eters in process algebras.

o Operators defined in algebraic specifications serve as actions and activities in

state diagrams.

o The data types used in process algebras are defined in algebraic specifications.

0 Services (externally accessible operators) defined in algebraic specifications serve

as gate lists for process algebras.

o The parameters associated with operators serve as attributes associated with

events.
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Third, the integration is achieved by composing the dynamic models of concurrent

objects hierarchically according to the system structure specified in the object model.

5.5 Summary

In this chapter, we introduced a set of formalization rules for the dynamic model of

OMT. The formalization enables the precise specification of the behavior of objects

and the simulation of system behavior through executable specifications. The pro-

posed formalization also integrates the object, functional, and dynamic models in an

intuitive fashion that facilitates analysis and design. Furthermore, the integration

enables system developers to check both intra— and inter-model consistency, as well

as to conduct system development in a stepwise fashion, where consistency between

two adjacent levels of refinement can be checked.
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Chapter 6

Functional Model Formalization

The data flow diagram (DFD) was first introduced in structured design for repre-

senting data and the processes that transform data [71, 72]. Since the DFD visually

models a system in terms of input/output data flows and processes as well as pro-

vides a means to systematically decompose a system, it has been successfully used

in the development of transaction systems, whose primary objective is to process

information [6].

Based on notions such as modularity, abstraction, encapsulation, and reuse,

object-oriented development methods have advantages over structured methods in

modeling, maintenance, and reuse. In order to present the functional aspect of sys—

tems and objects, many object-oriented approaches have attempted to incorporate

DFDs into the object-orientation paradigm [3]. However, no well-defined approach or

method has been developed thus far. The difficulty is due to the incompatible philoso-

phies of structured and object-oriented methods, particularly with respect to their

contradictory system decomposition strategies. The structured approaches decom-

99
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pose systems according to functionality while the object-based approaches conduct

decomposition according to the static object structure. Therefore, how to use and

integrate the DFD, as a powerful and useful tool that describes the functionalities of

systems and objects, into the object-oriented methods warrants further investigation.

Given the fundamental philosophical differences, there have been two strategies

for handling the situation. One strategy advocates a concurrent development of DFDs

and object models, followed by an explicit association of the processes to objects [3].

Since this approach does not deal with the fundamental, philosophical difference

between the structured and object-oriented methods, the association of processes

with object methods at the end of the design phase is nearly impossible. The other

strategy warns, and even avoids the use of DFDs, for fear that it will irrevocably bias

subsequent object modeling towards a function-orientation [7, 73, 74].

Considering the fundamental contradiction between structured and object-

oriented methods and the successful application of DFDS in the history of software de-

velopment, neither approach discussed above is satisfactory. This chapter attempts to

integrate DFDs into object-oriented methods without violating the object-orientation

philosophy [75]. The proposed approach extends DFDs and introduces formal seman-

tics to functional models in terms of algebraic specifications. The formalization of

the DFD is developed in the context of the formalizations for the object model that

provides the static structure of the objects and the dynamic model that describes the

behavior, thereby enabling integration in terms of their underlying formal semantics.

The remainder of the chapter is organized as follows. Section 6.1 gives a brief

overview of the background of DFDs. Sections 6.2 and 6.3 show how the DFD is
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extended and integrated into object-oriented methods. Section 6.4 discusses the

formalization of functional models in terms of algebraic specifications. Section 6.5

summarizes the integration of functional model with object and dynamic models.

Section 6.6 gives the summary of this chapte.

6.1 The Data Flow Diagram (DFD)

Notations for DFDs. There are numerous variations of data flow diagrams; Fig-

ure 6.1 shows a typical conventional DFD drawn with the primitive notations, where

a rectangle represents an external entity, a circle represents a process or transforma-

tion, a labeled arrow represents a data flow, and a pair of parallel lines represents a

data store.

 

 

 

 

   
   

 

 

   

 

 

 

   

Data
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Data item External

External Input information .
7 , entity

entity Process tcrrnediate data flow 9mm" .

inform. n

Output
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entity > Process ntennediate data flow information External
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Figure 6.1: A typical data flow diagram

 

In addition, notations for real-time systems were also introduced by Ward [76]

and Hatley [77] to capture the control information and the data flows. Since the
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statechart is used in OMT to describe the dynamic aspects of a system, which already

includes the control information, only the primitive notations are needed to depict

the functional aspects in our object-oriented models.

DFDs in structured and object-oriented designs. Structured design is an it-

erative refinement process in which the DFD serves as a powerful tool. The purpose

of design is to decompose a system into small pieces according to functionality, so

that the fine-grained pieces can be directly implemented by programming languages.

In each refinement step, processes in the DFDs are further decomposed into more

detailed DFDs. A process that cannot be further decomposed will be directly imple-

mented as a function.

In an object-oriented design, a system is usually decomposed into a collection

of objects that communicate with each other. The services provided by the objects

together with the inter-object communications carry out the functionalities for which

the system is intended. Since the DFD models the functionality of a system or an

object, it is also called a functional model in the object community. Although the

services provided by individual objects may specify a certain aspect of functionality,

without DFDS, it is difficult to capture the overall required functionality and to verify

whether the requirements are satisfied.

There are two advocated strategies that deal with the functional model in the

object community. One strategy is used in the object modeling technique (OMT) [3],

where the functional models are developed and refined in parallel with the object and

dynamic models during the analysis phase. Then, during the detailed design phase,
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the processes of the functional models are assigned to individual objects according to

its associated input/output data flows and data stores. Since the philosophies under-

lying the DFD and the object model differ dramatically, the integration of different

models during the later stages of the software development life cycle is considerably

more difficult and perhaps even impossible [78].

Recognizing that the concept of functional modeling directly conflicts with the

spirit of object—orientation, Booch [73] and de Champeaux [74] both warn against the

use of even throw-away functional models in order to avoid irrevocably biasing object

modeling towards a function orientation. The latest revision of the Unified Model-

ing Language (UML) [70, 69] also omitted the functional model from its notations.

However, this strategy goes to such an extreme that little information about the func-

tional aspects of a system is covered in the proposed models [79]. This deficiency may

have an impact and pose difficulties during the design stages, since one of the major

purposes of design is to provide implementation details for the functions required for

the system.

6.2 DFD Notation Modification

In order to make use of the functional model while retaining the spirit of object-

orientation in object-oriented design, it is necessary to modify the DFD notations

and redefine the role of a functional model.

Unlike the structured approaches, functions are distributed into objects in the

object-oriented methods. Thus we model: (1) the services provided by individual



104

objects, and (2) how the services of individual, aggregate objects can be composed

to implement the services of their corresponding aggregation object. Accordingly, we

prOpose two types of functional models, object functional model (OFM) and service

refinement functional model (SRFM), where the only notations for both models are

external objects, processes, and data flows. Since a data store is modeled in terms of

an object in the object-oriented methods, an explicit data store notation is no longer

needed. All the interactions with a data store object are modeled as communications

with the services associated with the object that represents the data store.

6.2.1 Object function model

Definition-1: Object functional model: identifies and describes the services pro-

vided by an object and the data flows that flow in and out of services.

Figure 6.2 contains an OFM that illustrates the services provided by an object,

03, and how data items flow into and out of the services S,. The rounded rectangle

represents the object with its name in the upper left rectangle. The process bubbles

(ovals) represent the services. The labeled arrows represent the data flows. The

ground wires associated with services represent the accesses to the internal data of

objects, which is invisible to external objects. For instance, in Figure 6.3, the OFM

of an integer stack object provides services push, pop, and top. All three services need

to access the internal data structure in order to accomplish the required functionality.

This internal data access is represented by ground wires.

Unlike conventional DFDs, the OFM only contains services accessible to external

objects; the operations/functions internal (private) to the object are not of concern
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to the OFM, and therefore are not represented in the OFM. Given that the services

will be ultimately implemented as functions, we further require that every process

bubble have at most one output data flow that represents the return value from a

service. This constraint guarantees that there is only one return value from any

service. Indeed, the return value can be of any simple or complex data type.

In Figure 6.2, S1 is a service that has an input and an output data flow that are

In1 and Outl, respectively. S3 has two input data flows and shares 1712 with S2. S1,

S2, and 53 can be considered as functions with input parameters and return values.

S4 and S5 only have output and input data flows, respectively. Example uses for two

such operations are: (1) an operation that sets an attribute of an object only requests

input parameters, and (2) an operation that retrieves an attribute and returns the

value without input.

6.2.2 Service refinement functional model

Definition-2: Service refinement functional model (SRFM): models a sys-

tem/object service in terms of the services/operations provided by the aggregate ob-

jects.

Unlike structured modeling approaches, functions are distributed into objects in

the object-oriented methods. The SRFM shows how the service of a target system or

an aggregation object is implemented in terms of the services/operations provided by

the aggregate objects. Figure 6.4 shows a system level functional model, the highest

level of abstraction for an OFM that is comparable to a Level 0 data flow diagram,

developed during the analysis phase. The SRFM for service S2 of the system is
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illustrated in Figure 6.5, where S2 is composed of three services, 03.S1, 09.S1, and

08.S2, provided by aggregate objects 03, 09, and 08, respectively (the dashed oval

encapsulates system service SQ). Similar to conventional DFDS, SRFMS focus on

showing how data flows among services provided by the aggregate objects. The order

in which the services are triggered is captured in the dynamic models (state diagram)

but not in SRFMs.

 

 

 

Inl A Outl
Av 31 >

> 52 ——>

In3 X Out3 _

xv '

In4 Am OM44

 

  
Figure 6.4: A system level OFM derived during analysis

 

The SRFM given in Figure 6.5 is relatively simple, because the services provided

by aggregate objects are adequate to compose service S2. When services provided by

aggregate objects are inadequate to compose the services of the aggregation object,

additional internal functions for the aggregation object need to be introduced. For

example, in Figure 6.6, an additional internal function Fring, which might convert

data types, is introduced to process the output from 08.52 and generate the input for
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] Out2

 

Figure 6.5: An SRFM shows how a system service is implemented in terms of object

services

 

09.51. Unlike external services, an internal function represents a functional compo-

nent that is imperative, together with aggregate object services, to construct a service

of an aggregation object. The internal function does not have to be literally imple-

mented as a function or a procedure. It may even be implemented as a piece of code

inside the service of the aggregation object. Since each function of an aggregation

object or service provided by an aggregate object has only one output data flow and

circular data flow is not allowed, the services and functions of a SRFM construct an

acyclic directed graph.

 

 

Figure 6.6: An SRFM that introduces an additional internal function
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6.2.3 Data refinement

In addition to the refinement of services, an SRFM may also be used to describe

data refinement. When refining services of aggregation objects in terms of services

of aggregate objects, a data flow at one level of abstraction may consist of two or

more data flows of a lower level of abstraction. For example, the input and output

data flows, In1 and Ooutl, for service S1 in Figure 6.4 are refined into two input

flows (Inll and In12) and two output flows (Out18 and Out14) shown in Figure 6.7.

A solid box with one inflow and multiple outflows represents data splitting, where

each split data line is a part of the original data line, and the split data lines are

mutually exclusive; a solid box with multiple inflows and one outflow represent data

aggregation. The diagram shows that: (1) the input data flow In1 splits two input

data flows, Iml and In12, that flow into O3.S2 and 09.S3 respectively; and (2) the

output data flow consists of two data flows, Out18 and Out14, that flow out of the

corresponding services provided by the aggregate objects. The semantics of the new

notations, data aggregation and splitting, will be further discussed and formalized in

Section 6.4.

 

 

Figure 6.7: An SRFM with split and aggregate data flows
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Another type of data flow refinement occurs when input/outflow of a service is

supplied to multiple services without further splitting into finer-grained data flows

(data duplicator), or the input/output data flow of a service is one out of a set of data

flows (data selector). In order to represent this data duplicator/selector relationship,

a graphical construct, empty box, is introduced. In Figure 6.8, input data In1 might

be used by both services 03.S2 and 09.S3; output data Outl can be either 0ut18 or

0ut14, but not both. The data duplicator/selector in the figure also requires In1,

Iml, and In12 to be at least mutual convertible types (values of the types can be

converted into each other); the same constraint applies to Outl, Out18, and 0ut14.

The uses of the services along with their data flows in the SRFMs must be consistent

with the services and data flows depicted in the corresponding OFMs.

 

 

Figure 6.8: An SRFM with refined input and output data flows

 

6.3 Integrating the Functional Model into OOD

Instead of developing functional models in parallel with object models or exclud—

ing functional models from the object-oriented design, the OFM together with the
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SRFM can be used and integrated in the object-oriented design without violating the

philosophy underlying OOA and OOD.

6.3.1 System level object functional model and refinement

The system level OFM, a special OFM whose object is the target system, can be

obtained from the results in the analysis stage. In fact, the system level functional

model describes the functionalities that are required to be implemented in the target

system. (The detailed rules for transformations from analysis to design is beyond the

scope of this dissertation.) Figure 6.9 shows the system functional model for Disk

Manager. As a notation convention in the discussion of diagrams and specifications

for diagrams, the italic font will be used to denote diagram components and the

courier font will denotes specification components. There are two services, insert and

retrieve, that satisfy the requirement that the system should be able to store and

retrieve data. The insert service takes data and its corresponding key as input, and

stores them inside Disk Manager. The retrieve service outputs the data according to

the key it receives. Service insert does not have explicit output. It either stores data

in the internal data structure of Disk Manager or passes data to an aggregate object.

However, from a perspective external to Disk Manager, the implementation details

about how data is to be processed and stored is not of interest.

After the system is decomposed into aggregate objects and their corresponding

OFMs are constructed, the services in the system level object functional model can

be refined in terms of the services provided by the aggregate objects. Each SRFM



112

 

 

] Disk_Manager]

( D

Data

\

//

Key

K m Dtaey >& a >

 

  L s

Figure 6.9: System level object functional model for Disk Manager

 

shows how a service of the system is implemented in terms of services provided by

the aggregate objects.

Figure 6.10 illustrates the simplified Disk Manager with aggregate objects Storage

and Compressor. The OFMs for Storage and Compressor are shown in Figures 6.11

and 6.12, respectively. Figure 6.13 shows the SRFM for the Retrieve service of the

Disk Manager, whose system functional model is given in Figure 6.9. The SRFM

(Figure 6.13) depicts how operation Retrieve of Disk Manager is implemented by

composing Retrieve and Decompress services provided by aggregate objects Storage

and Compressor, respectively.

In order to ensure the consistency between the different functional models, the

SRFMS need to be checked against OFMs to make sure the referenced services to-

gether with their input/output data flows are consistent with their counterparts de-

picted in OFMs. If we check the SRFM in Figure 6.13 against the OFMS in Fig-
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ures 6.11 and 6.12, we will find that the number of input and output data flows

associated with Storage.Retrieve and Compressor.Decompress and the labels of the

data flows are consistent with services Retrieve and Decompress.

During the service refinement process, two types of design defects, service incom-

pleteness and service redundancy, can be detected.

Service incompleteness: If a system service cannot be refined in terms of the aggre-
 

gate object services, then either the aggregate objects or the services provided by

aggregate objects are not sufficient to support the system services.

Service redundancy: If every system service is already modeled in terms of aggregate
 

object services and an aggregate object service 0,.Sj has not been used by any

system service, then aggregate object service 0,.Sj is redundant in the context of

the system functionality.

Service incompleteness implies either more services need to be identified and as-

sociated with aggregate objects or more objects need to be introduced to provide

more services. The nature of the services that are needed determine which approach

to take. Introducing services to existing objects should be given higher priority to

minimize the number of objects. If this approach cannot resolve the service incom-

pleteness issue, new objects need to be introduced. If the object that contains a

redundant service is a newly designed object (in contrast to a reused object), then

the redundant service should be excluded from the corresponding OFM in order to

achieve conciseness and preciseness.
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6.3.2 Object functional model and refinement

The object functional modeling and service refinement functional modeling is an itera-

tive process. Similar to the system level object functional modeling and its refinement,

the objects obtained in the previous iteration of modeling are further decomposed into

aggregate objects, and their corresponding services are further refined in terms of the

services provided by the aggregate objects.

6.4 Functional Model Formalization

The OFMS and the SRFMs are tightly coupled with the object and dynamic models.

In order to integrate the three models formally, the functional models are formalized

in terms of algebraic specifications and process algebras. In this section, we introduce

the formalization rules for the OFM and the SRFM.

6.4.1 Formalization of the object functional model

The OFM specifies the services that an object provides to the external world. In our

proposed formalization rules, the input/output data items are formalized as sorts of

an algebraic specification. Sorts are similar to the programming language concept of

type, but it is important not to confuse these concepts. Sorts represent disjoint non-

empty sets of values and are used to indicate the domains and ranges of operators.

A sort can be implemented as different types in a specific language. Since the im-

plementation details are gradually added during the design process, we choose sorts



instead Of ill

rule forrnaliz'

”11.1 Each d3

For all ll

declaratii

In order I

resenting an

\

PPR-2 FOr ever

undef.s

\

The servi

external worl

Though obje:

projects [31].

ture of Opera

from tuples
(

a sort for its



117

instead of types of a specific programming language to represent data. The following

rule formalizes the data flows in an OFM.

 

FFR—l Each data item in an OFM is formalized as a sort in the corresponding algebraic specification.

For all the data items, D,(1 g i g n), in an OFM, create the following expression in the sort

declaration part of an ACT ONE specification of Full LOTOS

sorts

D_1, D_2, ..., D_n

 

In order to handle potential exceptions, we also introduce a nullary operator rep-

resenting an undefined data value for each sort.

 

FFR-2 For every sort, S , used in the object specification, introduce Operator

undef_s: —) S.

 

The services provided by an object are the only means for interaction with the

external world. The gates in Full LOTOS specifications serve an analogous purpose.

Though object services are formalized as operators of algebraic specifications in some

projects [31], this approach has not been adopted in this research because of the na-

ture of operators of algebraic specifications. That is, an operator represents a map

from tuples of values to values; its signature is a tuple of sorts for its domain and

a sort for its result. The objective of an operator is to describe the mathematical

relationship between sorts of values. Thus the operators are often used to capture

the properties of systems. Though procedures/functions of a specific programming

language share some similarity with operators of algebras, there is a fundamental dis-

tinction between the two. A procedure/function consists of a sequence of data/control

operations that are intended to perform certain actions on data, whereas operations

defined in algebraic specifications describe mathematical relations between sorts. The
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former focuses on operation, the latter focuses on prOperty. Therefore services are

not formalized as operators of algebraic specifications in our proposed formalization

rules. Instead, the services are formalized in terms of gates in a Full LOTOS speci-

fication to capture the interface of an object with its external world. The following

rule formalizes the services in an OFM.

 

FFR—3 Each service in an OFM is formalized as a gate that is associated with input and output in the

corresponding Full LOTOS specification.

For all the services, S,(1 g i g n), with inputs, 1,, (1 S ij 3 IL] (1,- represents the permutation of

the input data), and outputs, 0,, in the OFM of object OBJECT, create the following expression

specification OBJECT [51, S2, ..., Sn] :noexit :=

(II! 51 : T1, 111,, 1:12 1112, ..., illlil 111”1| -> 01 Ill)

(Ill 32 2 i2, 212,, 122 2122, ..., l2|12| :12|12| -> 02 1k)

(* Sn 1 2:1" 211", 2'1fl 211", ..., inllul 21",,“ -> 0n *)

opns

SI 111, [12, ‘l 11”,] —> 01

52 12,, I22, , 12”,, ‘> 02

Sn . II", 11", a [nun] > 0n

endtype endspec

 

Since LOTOS does not currently support typed gates [80], the input/output ar-

guments for gates/services are given in annotations delimited by the (* and *) pairs.

For those services without input arguments, the left side of the arrow “->” will be

left blank; for those services without output arguments, a special sort “Void”, repre-

senting an empty set, is used as the output argument. The i’s represent parameter

variables of the corresponding sorts. Currently the description of services in terms of

typed gates are not supported by LOTOS. Therefore, in order to facilitate the analy-
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sis of the automatically generated formal specification, the services are also described

as operations in the opns section of algebraic specification.

According to formalization rules FFR-l, FFR—2, and FFR-3, the OFMS for

system Disk Manager and object Storage lead to the generation of the algebraic

specifications in Figures 6.14 and 6.15, respectively. Sort Void is a special sort that

indicates no value will be returned. The Storage algebraic specification of includes

Disk\_Manager, because the aggregate object usually uses the data sorts defined by

the corresponding aggregation object.

 

specification Disk_Manager [Insert, Retrieve] : noexit z:

(* Insert : d: Data, d: Key -> Void *)

(* Retrieve : k: Key -> Data *)

type Disk_Manager is

sorts

Data, Key, Void

opnus

undef_Data: -> Data

undef_Key : -> Key

Insert : Data, Key -> Void

Retrieve : Key -> Data

endtype

endspec

Figure 6.14: The ACT ONE specification for Disk Manager

 

6.4.2 Derivation of pre— and postconditions for services

The rules given thus far have focused on how to formalize the graphical notations in an

OFM in terms of LOTOS constructs. Next, we discuss an extension to the formalized

OFM to include pre— and postconditions in order to further describe services.
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specification Storage [Insert, Retrieve] : noexit z:

(* Insert : d: Data, k: Key -> Void *)

(* Retrieve : k: Key -> Data *)

type Storage is Disk_Manager

sorts

Storage

opns

Insert : Data, Key -> Void

Retrieve : Key -> Data

endtype

endspec

Figure 6.15: The ACT ONE specification for Storage

 

Algebraic specifications for Objects

Before pre- and postconditions for services can be addressed, we must investigate the

abstract algebraic specifications generated from the FRMs that describe the prOperties

of objects. The algebraic specifications form the foundation upon which pre- and

postconditions of services can be stated and about which the properties of the objects

can be reasoned.

Although such algebraic specifications cannot be generated automatically, we are

not without some general ideas of how to construct these specifications. The sorts

and services depicted and formalized in the previous subsections together with the

results of requirements analysis may all serve as clues to derive algebraic specifications.

Some high—level guidelines, denoted by GL-X, will be given in the following discussion

about algebraic specification derivation.

The derived algebraic specifications shall include a set of sorts that represent

the attributes for objects, a set of operators, and a set of axioms that describes
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the prOperties of objects in terms of attributes and their operators. The operators

together with axioms should be sufficient to support the construction of pre— and

postconditions.

The purpose of the algebraic specifications is to describe the properties of the

modeled objects. Pre— and postconditions of services are themselves expressions of

the properties of an object at a certain time. Since attributes may change over

time, operators that manipulate the attributes need to be introduced to reflect and

describe the potential change. Based upon the operators, pre- and postconditions

can be constructed to assert the property of an object before and after an external

service is invoked.

 

GL-l Sufficient operators for the sorts declared in the algebraic specification shall be provided to

construct pre— and postconditions.

 

The operators of data sorts only represent a set of manipulations that may be

applied to corresponding sorts. The exact semantics of the Operators are described

through axioms. Therefore, without a set of axioms, no reasoning can be performed

against pre— and postconditions.

 

GL-2 If reasoning about pre— and postconditions is expected, related axioms for algebraic specifica-

tions need to be derived.

 

Formalization of attributes.

An algebraic specification is a high-level abstraction intended to describe a class of

objects instead of a particular object. For instance, the algebraic specification given
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in Figure 4.1 only describes the abstract data types of a class of objects, it provides

no means to represent a particular object with concrete values for it attributes. In

order to present individual objects, a mechanism, other than algebraic specifications,

that can represent objects in terms of concrete values for their attributes is desired.

As mentioned previously, in Full LOTOS, in which algebraic specifications is a

component, a specification can have a set of parameters of sorts that are defined in

algebraic specifications. This capability provides a convenient mechanism to describe

individual objects. By making the distinguished sort of an object class as a parameter

of its Full LOTOS specification, we are able to represent particular objects. According

to the formalization rules for dynamic models, processes of a Full LOTOS specification

represent states of an object, therefore the distinguished sort is also formalized as a

parameter for the corresponding processes of the specification.1

 

FFR-4 The set of attributes of an object is formalized as a parameter of the distinguished sort for the

corresponding Full LOTOS specification.

For object class 0, and its distinguished sort 4) and a set of services 2, create the following

specification 0 [2] (0 : a5) : noexit :2

expression endspec

 

Based upon the guidelines to derive algebraic specifications and rule FFR—4,

the Full LOTOS specification for Disk Manager is given in Figure 6.16, where the

italic text denotes the newly added specification components to what was previously

derived in Figure 6.14. Sort Disk is the distinguished sort for Disk Manager. Since the

design is still at a high level, the distinguished sort does not contain other sorts but

 

1This is related to the formalization of the dynamic model, in which processes represent object

states.
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is an abstract sort representing the potential attributes of Disk Manager. Operators

insert and retrieve are derived to describe potential manipulations on sort Disk.

The services provided by Disk Manager imply that data items may be inserted into

and retrieved from Disk Manager thus giving guidance for the derivation of operators

for sort Disk. Though the operators and the services share similar names, it is not a

necessity.

 

specification Disk_Manager [Insert, Retrieve] (disk: Disk) :noexit :2

(* Insert : d: Data, k: Key -> Void *)

(* Retrieve : k: Key -> Data *)

type Disk_Manager is

sorts

Data, Key, Void

Disk (* Distinguished sort *)

opns

undef_Data: -> Data

undef_Key : -> Key

empty : -> Disk

insert : Disk, Data, Key -> Disk

retrieve : Disk, Key -> Data

eqns

forall disk: Disk, data: Data, 1:], k2: Key

ofsort Data

retrieve (empty, key) = undeflData;

retrieve (insert(disk, data, 1:1), k2) = if k1=k2 then data

else retrieve(disk, k2)

endtype

endspec

Figure 6.16: The Full LOTOS specification for Disk Manager with algebraic specifi-

cations and distinguished sort

 

Pre- and postconditions for services.

The services along with their input/output data flows only describe the interfaces of

an object to the external world. The object properties exhibited by services as well
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as constraints for services cannot be represented by gates and their corresponding

signatures alone. In order to describe the constraints and requirements for object

services, we make use of concepts used in the Larch Interface Languages (LILs) [19].

The specific approach is to use pre- and postconditions to depict requirements and

constraints for a service. Thus the specification of a service consists of a service

declaration followed by a body of the form:

 

<service declaration)

requires <requirement expression)

modifies <modification expression>

ensures <ensuring expression)

 

For every service, we presume two states for the objects: the state when the ser-

vice is invoked, the pre-state, and the state when it terminates, the post-state. More

specifically, the pre- and post-states represent two sets of values of the attributes of

an object. In order to refer to the values contained by the attributes of a distin-

guished sort in the pre- and post-states of a service, the postfix Operators " and ’,

respectively, are introduced. When applied to a variable/parameter of a simple sort,

for instance variable x of sort 5, x" and 33’ yield the stored value in pre- and post-

states, respectively. When applied to a variable/parameter of a complex sort, such as

a distinguished sort containing sorts for attributes, A and ’ yield a tuple containing

the values stored in the variable or parameter.

A requires clause (precondition) is used to state restrictions on the values in the

pre-state of both attributes of the corresponding object and parameters for the service.
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An omitted requires clause is equivalent to the weakest possible requirement, “requires

true”.

A modifies clause states which attribute(s) of the object can be changed during

the invocation of the service. Unless an attribute of an object is listed in the modifies

clause, the service must not change the value of the attribute, and the attribute must

have the same value in the pre- and post-states. If no modifies clause is given, then

nothing may be changed.

An ensures clause (postcondition) places requirements and constraints on the func-

tionality of a service. It relates the pre-state and post-state of a service. The reserved

keyword result represents the value/output (if any) returned by the service.

Figure 6.17 shows the specification for Disk Manager with pre- and postconditions

for services Insert and Retrieve, delimited by (*, *) pairs. For service Insert: the

requires clause of Insert requires that the input parameters of sort Data and Key

contains valid values; the modifies clause states that the values of the attributes of

sort Disk will be changed when Insert is invoked; the ensures clause guarantees

that after the attribute disk is changed, its value will reflect the fact that a pair of

data and key is inserted. The ensures clause for service Retrieve ensures that the

returned value will be exactly what retrieve (disk,k) describes.

Integrating pre— and postconditions into dynamic models.

Our specification approach is attempting to integrate the Larch and LOTOS spec-

ification frameworks in order to provide a three-pronged approach to specification,

where the algebraic specifications provide the integration mechanism since both Larch
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specification Disk_Manager [Insert, Retrieve] (disk: Disk) :noexit :=

(* Insert : d: Data, k: Key -) Void *)

(* requires d eq undef_Data = false and k eq undef_Key = false *)

(... modifies disk *)

(* ensures disk’ eq insert(disk“, d, k) = true *)

(* Retrieve : k: Key -> Data *)

(It requires disk eq empty = false and k eq undef_Key = false *)

(* ensures result = retrieve (disk, k) *)

type Disk_Manager is

sorts

Data, Key, Void, Disk

opns

undef_Data: -> Data

undef_Key : -> Key

empty : -> Disk

insert : Disk, Data, Key -> Disk

retrieve : Disk, Key -) Data

eqns

forall disk: Disk, data: Data, k1, k2: Key

ofsort Data

retrieve (empty, key) = undef_data;

retrieve (insert(disk, data, k1), k2) = if k1=k2 then data

else retrieve(disk, k2)

endtype

endspec

Figure 6.17: The Full LOTOS specification for Disk Manager with pre— and postcon-

ditions for services

 

and LOTOS have algebraic components. In both cases, the algebraic specifications

provide the foundation to describe and reason about properties of objects. The ser-

vices/functions specifications describe the services accessible to the external world as

well as the pre- and postconditions that shall be satisfied. The process algebras depict

the behavior of the objects and illustrate how the services/functions are invoked and

interact during the life cycle of their objects. However, the services/functions in our

approach are more abstract than those typically specified in the Larch Interface Lan-

guage, whose interfaces are usually specified in the syntax of a specific programming
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language. Since LOTOS does not currently support specifications for pre- and post-

conditions of services, they are currently introduced as annotations for Full LOTOS

specifications. A new language that supports our needs, where services/functions, to-

gether with their pre- and postconditions, of an object need to be explicitly developed;

and corresponding tools are also desired to support the construction, refinement, and

analysis of these heterogeneous specifications.

Though service declarations and pre- and postconditions specification are not

explicitly supported by LOTOS currently, we can still formalize them in terms

of constructs provided by LOTOS. The functional models and dynamic mod-

els share some common features, one of which is that the actions invoked by

events in the dynamic models usually are services/functions defined in functional

models. Figure 6.18 gives a typical state diagram with an initial state and

three state transitions. A label on an arc in the format of e(d1 : D1,d2

D2,...,d,, : Dn)[c]/a(d,,,,dx,,...,dxm)"0.e’(dy,,dy,,...,dy,) denotes an event 6, data

items (d1,d2, ...,dn) associated with the event e, a guarding condition c, the corre-

sponding action a (with parameters dx,,d,,,, ..., dxm), and the event e’ of object O to

be triggered. An event is a request for a services that occurs at a gate representing

the corresponding service (see FFR—3). Usually, if the service is not further refined

into internal functions and services provided by aggregate objects, then the event

will directly trigger the service to which it refers to. Either a service or an inter-

nal function is invoked, the associated pre— and postconditions can be specified in

the corresponding process algebras that describe the dynamic behavior of the object.
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The related formalization rules along with the rules for the dynamic model together

contribute to generate formal specifications in terms of process algebras.

 

cl(dll:Dll,d12:D12.....dlm:Dlm)[cl]

/a1(d12.d1m)"01.e2(d1l,d13) .

‘ 82

 

 

 

e3/a2"02.e1

Figure 6.18: A typical state diagram

 

In Chapter 5, we developed a formalization for dynamic models. We will not go

into the details of that formalization, but, instead, concentrate on integrating pre- and

postconditions into the process algebras generated according to the dynamic model

formalization rules given in Chapter 5.

Usually, both pre- and postconditions are used to describe the properties and con-

straints of a service/function in terms of the pre- and post-states of the attributes

of their corresponding object in addition to the input and output data. Since the

value of an attribute may change after a service/function is triggered, a mechanism is

needed to save the pre-state values of attributes. In the course of the dynamic model

formalization, we introduced a local variable to save the values of attributes when

a process, representing a state in the dynamic model, is entered. The values of the

attributes may be changed by a service/function invoked by an event, thus making

the object transition into another state. Therefore, the values stored in the local vari-
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able represent the attributes of the object in the pre-state of the services/functions.

The following rule formalizes the introduction of a variable to store the value of the

attributes prior to the execution of a service.

 

FFR—5 The pre-state of the attributes of an object is stored in a local variable when a process, representing

a state in the dynamic model, is entered.

For object class 0, and its distinguished sort d and a set Of services 2, if p is a process, representing

a state in the dynamic model, defined in the process algebras, then create the following expression

that introduces local variable PRE to store values Of attributes at the entrance of the process

specification 0 [E] (o : d) : noexit z:

process I? [2] (0 : rt) : noexit :=

( let PRE:= o in

)

endproc

endspec

 

A non-trivial (not a true Boolean expression) precondition, expressed in a requires

clause, refers to input parameters of a service/function and attributes in the pre-state

of the corresponding object in order to state the conditions that must be satisfied

before the service/function can be invoked. A guarding condition of a transition in

the dynamic models is used to describe circumstances under which a state transition

can take place. We formalize both the guarding conditions of the dynamic models and

the preconditions of the functional models in terms of guarded expressions supported

by LOTOS. Only when both the guarding conditions and the preconditions hold can

the corresponding service/function be invoked.
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FFR-6 The guarding condition and the precondition that are associated with the action of a state

transition are conjuncted and formalized in terms of a guarded expression in LOTOS process

algebras.

Suppose event e (associated with arguments x1 : a1,x2 : a2, ...,xn : on), condition c. action a (a

refers to a service/function and is associated with parameters y1, y2, ym, if event e directly

refers to service a, then the y's and x’s are identical too). together constitute a state transition

from state 3 of an object with distinguished sort (b and services 2, if p is the precondition for

service/function a, create the following expression

process 8 [E] (O: (b): noexit :=

e ?xl :al, ?x2:a2, ..., ?xn :an;

([C and pl —) <a(y12 y‘Z: yni)>)

endproc

 

The postcondition, expressed in an ensures clause, of a service/function states

the conditions that must be satisfied at the termination of the service/function. If

it is formalized in the process algebras fashion similar to the formalization rule for

preconditions in FFR—6, then a guarding expression is introduced. The guarding

condition serves to check whether the postcondition is satisfied before leaving the

state of the corresponding object. Specifically, for FFR-6, the guarding expression

will be given after <a(y1, yg, ..., ym)> in order to ensure that the postcondition is

satisfied.

 

FFR—7 The postcondition that is associated with the action of a state transition is formalized in terms

of a guarded expression in LOTOS process algebras.

Suppose event e (associated with arguments x1 : a1,x2 : a2, ...,xn : an), condition c, action

a action a (associated with parameters y1, y2, ym, if event e directly refers to service a,

then the y's and x's are identical too), together constitute a state transition from state 3 of an

object with distinguished sort d and services 2, if p and q are the pre- and postconditions for

service/function a, create the following expression

process 8 [21(0: 45): noexit :=

e ?x1:a1, ?x2:a2, ..., ?xn2an;

([C and pi -) <a(yl! y?! '°° ym)>);

([q]——>...)

endproc
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There is no doubt that FFR—7 is a legitimate formalization rule for postcondi-

tions. However, unless we presume that the invoked service/function performs certain

actions that either modify the attributes of an object or returns a value, then it is

impossible to check whether the postcondition is satisfied. It is only during the later

stages of software development, when individual services/functions already have a

specific implementation, that we can make such a presumption. During the early

stages of design, when services/functions are not implemented, the postcondition

cannot be analyzed and checked, but, instead, can only serve as a specification. In

order to facilitate the validation, verification, and analysis of design, we further inves-

tigated the use of postconditions and developed two alternative formalization rules.

Given these two rules, the derived formal specification of an object is amenable to

symbolic execution for simulation purposes.

A postcondition contains assertions about constraints/requirements in three ba-

sic format categories. The first category includes the assertions of the form:

“result := <expression>.” This form of postcondition is usually associated with

services/functions that return values. The expression on the right hand side of key—

word result specifies the value to be returned in terms of the Operators of the alge-

braic specification for the corresponding object. Since the exact return value of a

service/function is not available during the early stages of design, in order to facil-

itate design analysis and simulation, the abstract, declarative return value given in

the assertion, result = <expression>, is used for symbolic execution.
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FFR—S The postcondition that is associated with the action of a state transition, in the form Of result =

(expression), is formalized in terms of a value declaration in LOTOS process algebras.

Suppose event 6 (associated with arguments x1 : a1,x2 : a2, ...,xn : an), condition c, action a

(associated with parameters y1, y2, ym, if event e directly refers to service a, then the y's

and x's are identical too), together constitute a state transition from state 3 of an Object with

distinguished sort 45 and services 2, if q is an expression, in the form Of result = op (zl, z2, ..., 2;)

(Op is an operator defined in the corresponding algebraic specifications, 2,- (1 5 i g l) is a subset

of y,- (1 5 i g m) and attributes) within the postcondition for service/function a, then create the

following expression

process 8 [E] (o: (b) : noexit :=

e ?xlzal, ?x2za2, ..., ?xnzan;

([c and p] —) e! op(21. 22. 31))

endproc

 

The modifies clause lists the object attributes that may be changed during the

execution of a service/function. As a consequence, the ensures clause that follows

the modifies clause always describes the constraints/requirements on the changes

of the specified attributes. Among the descriptions of attribute changes, several

(C a ’9 C‘ A ”

assertions have the form: 0 := or o .a : , where 0 represents the

set of attributes, and a represents one attribute. This format defines the second

category of assertions of postconditions. Similar to the first category, the second

category of assertions specifies the value, in terms of operators of the corresponding

algebraic specifications, to be assigned to the corresponding attributes. Since the

service/function at such an early phase of design does not change the attributes

specified in the modifies clause, we use the abstract value given in the second category

of assertions to facilitate the validation and verification of design. For instance, the

specification in Figure 6.17 gives the pre— and postconditions for services Insert and

Retrieve. During the design phase, no implementation of the service is available

for Retrieve. However, its postcondition result = retrieve (disk, k) precisely
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specifies the returned value in terms of algebras. Therefore, retrieve (disk, k)

can be used symbolically to simulate the system behavior or to validate the design

during design phase.

 

FFR—9 The postcondition that is associated with the action of a state transition can be formalized in

terms of a local variable declaration in LOTOS process algebras.

Suppose event e (associated with arguments x1 : a1,x2 : a2,...,x,, : an), condition c, ac-

tion a(associated with parameters y1, y2, ym, if event e directly refers to service a. then

the y’s and x's are identical too), together constitute a state transition from state 3 of an

object with distinguished sort rt and services 2, if Q is a set of expression, in the form of

o".a, = op,- (z,,,z,~,,...,z,-,)(1 S i g k) (op,- is an operator defined in the corresponding al-

gebraic specifications, 2,). (l g j S l) is a subset of y,- (1 S i S m) and attributes) within the

postcondition for service/function a, create the following expression

process 8 [E](o: d): noexit :=

e ?x1:a1, ?x2za2, ..., ?xn :an;

([c and p] —>

(let POST.a1 := op1(zl,,zl,,... 21,),

POST.a2 := op2(22,.222.--- Z21):

POST.a;c := opk(zk,,zk,,... 2;“) in

)

)

endproc

 

An assertion in a postcondition that does not belong to either of the first two

categories falls into the third category that describes the constraints/requirements

to a service/functions indirectly. By indirectly, we mean that the specifications of a

postcondition only assert the conditions that shall be satisfied after the execution of

the service rather than giving a symbolic value that can be rewritten by the algebraic

constructors. Thus we are not able to use the abstract values to represent the return

value of a service or the attributes after modification. If a postcondition contains such

an assertion of the third category, the only applicable formalization rule is FFR—7.

Since the services/functions, at such a high level of design, do not cause any actual

change to object attributes nor return a specific value, no mechanism exists to verify if
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a postcondition of the third category can be satisfied. Therefore, symbolic execution

and analysis are not possible. However, in most cases, the postconditions can be

covered by the assertions of the first two categories, thus enabling us to perform

formal analysis.

6.4.3 Formalization of the service refinement functional

model

This subsectiOn discusses the formalization of the service refinement functional model

(SRFM).

Formalization of refined objects.

The purpose of the SRFM is to refine the services of aggregation objects in terms

of services provided by aggregate objects. Therefore, the formalization of SRFMS

leads to the refinement of the existing algebraic specifications that correspond to

aggregation objects. Since the refinement is based upon existing models and their

corresponding algebraic specifications, the refined algebraic specifications should in-

clude their specifications before the refinement for reference use.
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FFR—lO The refinement of object 0, results in a refined algebraic specification, S-REF, that includes

additional operators and axioms.

For every object 0 that is further refined into a set of aggregate Objects 01, O2, 0,,, create

the following expression

type 0_RF.F is

endtype

FFR—ll In a refined algebraic specification for an object (or system), the algebraic specifications for

the aggregate objects are included in order to make use of the services defined in the aggregate

Objects.

For every object 0 that is further refined into a set of aggregate objects 01, 02, 0", create

the following expression

type 0-REF is 01, 02, ..., 0,,

endtype

 

For instance, given the SRFMS for the services of Disk Manager, the algebraic spec-

ification Disk-Manager will be refined to form a new specification, Disk-Manager-REF.

 

type Disk_Manager_REF is Storage, Compressor, Disk_Manager

endtype

Figure 6.19: A part of the refined ACT ONE specification for Disk Manager

 

Formalization of internal functions and data refinement.

Similar to the formalization of services in OFMs, new internal functions introduced

in the SRFMS are declared along with the services as annotations. Since the internal

functions are not accessible to external objects, they are not formalized in the gate

list of the corresponding specification.
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FFR—12 Each internal function in an SRFM is declared along with services as annotations and Operators

of algebraic specification.

For all the internal functions, F,(1 _<_ i g n), with inputs, 1,,(1 g ij 3 [1,] (I,- represents the

permutation of the input data), and outputs, 0,, in the OFM of object OBJECT, create the

following expression

specification OBJECT [< service list>]] :noexit :=

(‘1‘ F1 2 2.112111, 2.12 2112, ..., illlil 211”” -> 01 *)

(* F2 : 221 :I2,, 222 :122, ..., 22”“ :I2,,2, -> 02 *)

(* Fn : i1" :11", i1" :11”, ..., inunl :InuflI -> On *)

opns

F1 3 [1,, I12, ..., 11”” '> 01

F2 2 I21, I22, ..., Izllzl -> 02

F" I I1", 11", ..., Inllnl '> 0n

endtype endspec

 

According to this rule, function Fun3 introduced in Figure 6.6 is formalized as

FUTL3 : out54 : Out64 —> Out33 in the corresponding refined algebraic specification. In

addition to the function declaration, pre- and postconditions shall also be specified

for the internal functions.

The splitting/aggregation data flow refinements described in SRFMs (denoted

by solid box) map an abstract sort into a set of sorts, which is similar to a record or

struct type definition in commonly used programming languages. The formalization is

achieved by redefining the abstract sort in terms of a set of LOTOS sorts, operations,

and equations. However, there is a significant difference between the splitting and

aggregation data flow refinements. The composition of aggregate data flows form a

data item that will be supplied to a process to perform a data transaction. Therefore,

all the inflows, and only those inflows, shall constitute the data components for the
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refined data sort. This feature of data aggregation introduces a constraint to the

functional models: if there are multiple data aggregations, given in functional models,

for the same outflow data item, then their inflows must be identical to each other.

The constraint requires that there only be one refinement for every data item. Unlike

data aggregation, when a data is split into a set of outflows, it does not necessarily

imply that the outflow data items cover all data components of the split data type.

It only specifies that the split data item shall, at least, contain the data items to

which the outflow data items correspond. Thus a specific data splitting cannot itself

be formalized as a record data type. Instead the union of data splitting for the same

split data item shall be formalized in terms of record data items.



138

 

FER-13 If a data flow D is aggregated into a set of data flows, D1, D2, D", then D is rede-

fined/refined as a set of Operations that constitute D from D1, D2, D,, and single out D1,

D2, ..., Dn from D.

For every data flow D that is aggregated into a set of data flows, D1, D2, Dn, create the

following expression

sorts

D-l, D_2, ..., D_n

opns

D :D_1, D.2, ..., D_n ——> D

get_d-1 : D —-> DJ

get_d_2 : D —-> DJ

get_d_n : D —> D_n

eqns

forall d_1: D_1, d-2: D_2, ..., d_n: D_n

ofsort D_l

get_d_1(D(d_1, (1.2, ..., d_n)) = d_1

ofsort D.2

get_d_2(D(d_1, d_2, d-n)) = v-2

ofsort D_n

get_d_n(D(d_1, d_2, ..., d_n)) II P
“
3

FFR-14 All the data splittings for a data flow D together with D is redefined/ refined as a record data

type.

For data flow D and all the sets of data flows, 5'1, S2, Sn, into which D is split, if data items

D1, D2, Dm cover all the data items in S,- (1 g i g n) and do not contain redundant data

items, then create the following expression

sorts

DJ, 0.2, ..., D_n

opns

D:D-1,D_2,...,D_n ——> D

get_d_1 : D —+ DJ

get_d_2 : D —-+ DJ

get_d.n : D —> D_n

eqns

forall d-1: D_1, d_2: D_2, ..., d.n: D_n

ofsort D_1

get_d-l(D(d-l, d-2, ..., d_n)) = d_1

ofsort D_2

get_d_2(D(d_1, d_2, ..., d_n)) = (1.2

ofsort D_n

get_d_n(D(d_1, d.2, ..., d_n)) = d_n
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Given formalization rules FFR—13 and FFR—14, the SRFM in Figure 6.7 will

result in a redefinition of Outl and In1 (assuming that there is only one data splitting

for In1). The diagram is formalized in Figure 6.20.

 

sorts

Outl, 0ut14, 0ut18, In1, In11, In12

opns

Outl : 0ut14, 0ut18 -) Outl

get_out14 : 0ut1 -> 0ut14

get_out18 : Outl -> 0ut18

In1 : In11, In12 -) In1

get_in11 : In1 —> In11

get_in12 : In1 -> In12

eqns

forall outl: 0ut1, out14: 0ut14, out18: 0ut18, in1: In1, in11: In11, in12: In12

ofsort 0ut14

get_out14(0ut1(out14,out18)) = out14;

ofsort 0ut18

get_out18(0ut1(out14,out18)) = out18;

ofsort In11

get_In11(In1(in11, in12)) = in11;

ofsort In12

get_In12(In1(in11, in12)) = in12;

Figure 6.20: The formalization of the refined data items shown in Figure 6.7

 

The axiom presented in Figure 6.20 states that: (1) S1 is fully implemented in

terms of 03.32 and 09.33; (2) the input of 51 is split into input for 03.S2 and 09.53;

(3) the output of SI comprises the outputs from O3.S2 and Og.S3.

The duplicator/selector data flow refinement requires or implies that the involved

data types are mutually convertible. So that for any pair of mutually convertible

data types, D1 and D2, two operators, D1_2_D2 and D2_2.Dl, and corresponding

axioms are introduced to describe the mutual convertibility. The difference between
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a duplicator and a selector lies in that the former can have multiple effective outflows

while the latter can have only one effective inflow at a given time. The mutual

exclusiveness between the inflows of a data selector has direct impact on its semantics

and the formalization. This issue will be further addressed in the discussion of the

formalization of service composition.

 

FFR-15 If a data flow D is duplicated to or selected from a set of data flows, D1, D2, Dn, Operators

D.2_Dl, Dl_2_D, D.2_D2. D2.2.D, D-2_D,,, and Dn_2_D, in the formats of

opns

D_2_D1: D —) D1

D_2_D2: D —) D2

D.2_D,,: D —> D,,

are introduced in the refined algebraic specification. In addition, the following axioms are used to

specify the mutual convertibility:

eqns

forall x: D

ofsort D

D1.2_D (D_2_Dl (x)) = x;

022.0 (13.2.02 (10) = x;

Dn_2_D (D_2_D,, (x)) = x;

 

Given formalization rule FFR-15, the SRFM in Figure 6.8 will introduce

Operators In1_2_In11, In11_2_In1, In1_2_In12, In12_2_In1, 0ut1_2_0ut14,

0ut14_2_0ut1, 0ut1_2_0ut18, and 0ut18_2_0ut1. The diagram is formalized in

Figure 6.21.

Formalization of service composition.

The SRFM only presents which aggregate object services and internal functions are

composed to implement a higher-level object service and illustrates how information

flows among services and functions. The control information and the order in which
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opns

In1_2-In11: In1 -> In11

In11_2_In1: In11 -) In1

In1_2-In12: In1 -) In12

In12_2_In1: In12 -> In1

0ut1_2-0ut14: 0ut1 -> 0ut14

0ut14_2_0ut1: 0ut14 -> Outl

0ut1_2-0ut18: 0ut1 -) 0ut18

0ut18_2_0ut1: 0ut18 -> 0ut1

eqns

forall x: In1, y: 0ut1

ofsort In1

In11_2-In1(In1_2-In11(x))

In12_2_In1(In1_2_In12(x))

ofsort 0ut1

0ut14_2_0ut1(0ut1.2_0ut14(y)) = y;

0ut18.2_0ut1(0ut1_2_0ut18(y)) y;

Xi

Xi

Figure 6.21: The formalization of the data duplicator and selector shown in Figure 6.8

 

the services and functions are activated are beyond the sc0pe of functional models;

they are described in dynamic models. However, the functional model does capture

the data dependency relationships between the services provided by aggregate objects.

Since each service has at most one output data flow and circular data flow is not

allowed, each SRFM forms an acyclic directed graph where services are depicted

as vertices and data flows as directed edges. Therefore, algebraic axioms can be

introduced to describe the constraints on the hierarchical acyclic directed structure

in which the aggregate object services are related with each other. Because the

services are specified in terms of pre- and postconditions, we pursue the use of the

pre- and postconditions as a means to impose design constraints.

The pre— and postconditions of two services, suppose 31 and 32, that share a

common data flow are related. If the output data flow of 31 serves as an input data
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flow of 32, a basic constraint is that the postcondition of 31 does not imply false of

the precondition of 32, in other words, they are not contradictory. Thus we impose a

verification obligation upon SRFMS to check that the pre- and postconditions of two

adjacent services do not form a contradiction.

 

FFR—16 The post- and preconditions of two adjacent services in a SRFM shall not form a contradiction.

For any two services 31 and 32 in a SRFM, if (1) the output of 31 serves as an input of 32, (2)

p,, and q,, are the pre- and post conditions for 31, and (3) p,2 is the precondition for s2, create

and prove the following expression

(p,,,=>((q,,1 and p8,) eq false)) = false

 

Figure 6.22 and 6.23 show the specifications for Storage and Compressor with pre-

and postconditions for the corresponding services. Given the SRFM in Figure 6.13,

according to rule FFR—16, the postcondition of service Storage.Retrieve and

the precondition of service Compressor.Decompress can be analyzed to check the

consistency of function refinement. Since the result of Storage .Retrieve will be fed

into Compressor.Decompress, given the pre- and postconditions of the two services,

the constraint is

(s neq empty =>(resu1t=retrieve(s,k) and result eq undef_d) eq false)=false.

There are basically two approaches to perform the consistency checking. One

is to conduct a manual proof; the other is to use proof tools. Unfortunately, there

is currently no sophisticated proof tool for the algebraic specifications of LOTOS.

Since ACT ONE is a subset of the LSL of Larch, we translated the LOTOS algebraic

specifications into LSL specifications and used Larch Prover (LP) [19] to check the

consistency of pre-and postconditions. The corresponding LSL specifications are given

in Appendix F. Figure 6.24 gives the LSL specification for the refined Disk Manager.
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specification Storage [Insert, Retrieve] (s: S) :noexit :2

(* Insert : d: Data, k: Key -) Void *)

(It requires d eq undef_Data = false and k eq undef_Key = false *)

(... modifies s 4:)

(* ensures 3’ eq insert(s‘, d, k) = true *)

(* Retrieve : k: Key -) d: Data *)

(... requires 3 eq empty = false ...)

(... ensures result = retrieve (s, k) *)

type Storage is Disk_Manager

sorts

S, Data, Key

opns

empty : -> 3

insert : S, Data, Key -) S

retrieve : S, Key -> Data

eqns

forall s: S, data: Data, k1, k2: Key

ofsort Data

retrieve (empty, key) = undef_data;

retrieve (insert(s, data, k1), k2) = if k1=k2 then data

else retrieve(s, k2)

endtype

endspec

Figure 6.22: The Full LOTOS specification for Storage with pre- and postconditions

for services

 

The proof obligation is simplified to " (s=empty)=>" (retrieve(s ,n) =undef_d) and

given in the implies clause (the logic simplification can also be assisted by tools, such

as PVS [81]). Figure 6.25 shows the result of the proof by using LP.

By using the induction proof method provided by LP, we have reached a point

that shows Current subgoal: false (in Figure 6.25) that means there are cases

that yield false for the constraint. The proof detects an inconsistency between the

postcondition of Storage.Retrieve and the precondition of Compressor.Decompress,

thus requiring us to perform a further inspection into the problem. This problemm

is further discussed in Chapter 8 in the context of the overall development process.
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specification Compressor [Compress, Decompress] (c: C) :noexit :=

(* Compress : d: Data —) Data *)

(It requires :1 eq undef_Data 'it)

(It ensures result = compress(d) and size(result) 1e size(d) *)

(* Decompress : d: Data -> Data *)

(* requires d eq undef_Data 10:)

(... ensures result = decompress(d) and size(result) ge size(d) *)

type Storage is Disk_Manager, NaturalNumber

sorts

C (* Distinguished sort *)

opns

compress : Data -> Data

decompress : Data -> Data

size : Data -> Nat

eqns

forall data: Data

ofsort Bool

size(data) ge size(compress(data)) = true;

size(data) 1e size(decompress(data)) = true

endtype

endspec

Figure 6.23: The Full LOTOS specification for Compressor with pre— and postcondi-

tions for services

 

 

Disk_ref (D, K): trait

includes Storage(D,K) , Compressor(D)

implies

V s: S, n: N

~(s=empty) => ~(retrieve(s,n) = undef_d);

Figure 6.24: The LSL specification for the refined Disk Manager
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LP2: display proof

Conjecture Disk_refTestTheorem.1: ~(s = empty) => ~(retrieve(s, n) = undef_d)

Attempting a proof by depth 2 structural induction on ‘8’

Level 2 subgoal 2 (basis step) for proof by induction on s:

~(insert(empty, n1, n2) = empty)

=> ”(retrieve(insert(empty, n1, n2), n) = undef_d)

Current subgoal: ~((if n = n2 then n1 else undef_d) = undef_d)

Attempting a proof by depth 2 structural induction on ‘n’

Level 3 subgoal 1 (basis step) for proof by induction on n:

~((if O = n2 then n1 else undef_d) = undef_d)

Attempting a proof by depth 2 structural induction on ‘nl’

Level 4 subgoal 1 (basis step) for proof by induction on n1:

~((if 0 = n2 then 0 else undef_d) = undef_d)

Attempting a proof by depth 2 structural induction on ‘n2’

Level 5 subgoal 2 (basis step) for proof by induction on n2:

~((if O = succ(0) then 0 else undef_d) = undef_d)

Current subgoal: false

Attempting a proof by normalization

LP3:

Figure 6.25: The proof of the example constraint using LP

 

6.5 Integration with Object and Dynamic Models

The functional model is integrated with the object and dynamic models in terms of

the underlying formalization rules. The integration is three-fold. First, both OFMs

and SRFMs are derived in the context of object models. This approach to modeling

provides a degree of integration between the two models.

Second, the integration is achieved by sharing common language constructs among

specifications derived from the object, functional, and dynamic models. The integra-

tion includes:

0 Operators defined in algebraic specifications are used to define pre- and post-

conditions for services.

0 Services defined by functional models serve as actions and activities in state

diagrams.
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o Algebraic specifications used to describe the postconditions of a service can

replace the service reference in the process algebraic specification in order to

enable symbolic simulations.

0 The data types used in process algebras are defined in the functional models

and are formalized in terms of algebraic specifications.

0 Services (externally accessible operators) defined in functional models serve as

gate lists for process algebras.

o The pre— and postconditions specified during functional modeling impose extra

constraints to the corresponding actions in the dynamic models.

0 The postconditions specified during functional modeling can be used to instan-

tiate the corresponding actions in the dynamic models.

Third, the integration is achieved by composing the SRFMs hierarchically accord-

ing to the system structure specified in the object model.

6.6 Summary

In this chapter, we showed how the functional model is modified, formalized, and

integrated into object-oriented design. Formalization rules are also introduced to

formally and rigorously specify both the OFMs and SRFMS. In addition, guidelines

for deriving algebraic specifications are given. Based upon algebraic specifications,

pre- and postconditions are introduced to describe the requirements and constraints

for services. The pre- and postconditions of services enable symbolic execution of the

high-level design model thus providing a means to perform simulation, verification,

and validation during the early phases of software development. Proof obligations

for pre- and postconditions of adjacent services in SRFMs serve as a means to detect

conflicts that may be introduced into design during refinement.
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Chapter 7

Model Integration and Analysis

We have, in fact, implicitly addressed the integration of the object, functional, and

dynamic models through the discussion of their formalization rules. This chapter

explicitly summarizes the integration of the three models and discusses the static and

dynamic analysis of inter-model and intra-model integration enabled by the formal-

ization.

7.1 Integration of the Three Models of OMT

In general, the use of LOTOS does not automatically lead to an integration of the

formal specifications of the object, functional, and dynamic models, though its con-

structs allow algebraic specifications and process algebras to share common language

primitives thus providing a possibility to integrate the two types of specifications. In

our formalization, the integration of the three models is achieved through explicitly

imposing certain relationship upon the three models as well as the constructs of al-

147
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gebraic specifications, predicate specifications, and process algebras. The integration

is three-fold.

First, the functional and dynamic models are derived in the context of object

models. By associating a functional model and a dynamic model to every individual

object, we resolved the conflicts between the models with respect to their respec-

tive development phiIOSOphies. The functional model and dynamic model describe

the services and dynamic behavior of their corresponding object, respectively. Thus

the modeling technique provides a degree of integration between the three models.

A formal specification for a specific object shall be derived from three models: ob—

ject model, object functional model, and dynamic model. The three complementary

models of an object describe different aspects of the object and forms a single formal

specification.

Figure 7.1 shows an outline of a specification derived from object, functional, and

dynamic models. The words in bold fonts are keywords; the words in “< >” pairs are

the components of formal specifications.

The components of a formal specification includes:

0 Class name: identifies a class of objects that share the same interfaces, attribute

types, and behavior.

0 Services: services provided/needed by a class of objects.

O Distinguished sort: a sort that consist of sorts of all the attributes to a class of

objects.

0 Services specification: specifies the signatures and pre- and postconditions of the

services (the pre- and postconditions shall be supplied by specifiers).

o Algebraic specification: specifies the properties that an object may have in terms

of algebraic specifications (this part of specifications shall be supplied by speci-

fiers).
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specification (class name) [<services>] (<distinguished sort>) noexit:=

(... .......................... ...)

(* <services specifications) *)

(* .......................... ...)

typedef

endtype

(starting state) [<services>] (<distinguished sort>)

process <state name) [<services>] (<distinguished sort>) noexit:=

endproc

endspec

Figure 7.1: The format of formal specifications

 

0 Behavior specification: specifies the patterns that an object interacts with other

objects.

0 State name: identifies different states in which an object may be during its life

cycle.

0 Starting state: the state that an object enters after being instantiated.

A specification depicts four aspects of a class: identity, interface, functionality, and

behavior. Class name and the distinguished sort together contribute to the identity of

classes and objects. Services describe the interface of a class. Services specifications

delineate the functionalities that the services provide. Behavior specifications, state

names, and the starting state capture the behavior of a class. With the exception

of a part of the algebraic specifications that specify the properties of objects and

the pre- and postconditions that describe services provided by object classes, all

other components of the formal specifications can be automatically generated from

diagrammatic models according to our formalization rules.
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Second, the integration is achieved by sharing common language constructs among

specifications derived from the object, functional, and dynamic models. The integra-

tion includes:

The distinguished sort in algebraic specifications serves as state process param-

eters in process algebras.

Operators defined in algebraic specifications are used to define pre- and post—

conditions for services.

Services defined by functional models serve as actions and activities in state

diagrams.

Operators defined in algebraic specifications can be used to substitute services

referenced in process algebras.

The data types used in process algebras are defined in algebraic specifications.

Services (externally accessible operators) defined in functional models serve as

gate lists for process algebras.

The parameters associated with operators serve as attributes associated with

events.

The pre- and postconditions specified during functional modeling impose extra

constraints to the corresponding actions in the dynamic models.

The postconditions specified during functional modeling can be used to instan-

tiate the corresponding actions in the dynamic models.

Third, the integration is achieved by composing (1) the dynamic models of concur-

rent objects hierarchically according to the system structure specified in the object

model, and (2) the SRFMs of an object in terms of the services provided by the

aggregate objects.
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7.2 The Correctness, Consistency, and Complete-

ness of the Formalization Rules

Since both the formalization and integration of the models greatly rely on the formal-

ization rules, it is worthwhile to discuss the correctness, consistency, and completeness

of our proposed formalization rules. The informal graphical notations do not have

precise semantics. The purpose of formalization rules are two-fold. First, the rules

introduce precise meaning to the graphical notations. Second, the rules provide a

graphical front-end for the constructs of formal specifications.

Correctness. Although the informal graphical notations do not have precise seman-

tics, they still have underlying general semantics. The formalization rules attempt to

give precise meanings to the graphical notations by introducing formal specifications

to describe the graphical models. A formalization rule can be considered correct if

it imposes the right semantics to the graphical notations. Because, there is no spe-

cific, formal definition for the semantics of graphical notations, we have no means to

formally prove the correctness of the formalization rules. Given this situation, the

correctness of the formalization rules is pursued in the context of general reasoning,

which is justified in the chapters of formalization, the model construction and use

presented by Rumbaugh [3], and empirical experience through the case studies.

Consistency. If the formalization rules do not conflict with each other, they can

be considered consistent. From the perspective of graphical notations, because each

graphical notation is formalized in terms of one language construct of formal spec-
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ifications, the formalization rules are consistent from the perspective of graphical

notations. From the perspective of formal languages, the consistency of formalization

rules can be discussed under two circumstances. First, for the formalization rules

whose corresponding constructs of formal specification language are not related with

each other in the formal specifications, consistency is automatically inherited from the

perspective of formal specifications. Second, for the formalization rules whose corre-

sponding constructs of formal specification language are related with each other, be-

cause the relationship is maintained through language semantics developed by Larch

and LOTOS, the consistency of the formalization rules can be reduced to the consis-

tency between different types of specifications in Larch and LOTOS. Neither Larch

nor LOTOS has addressed this consistency issue. However, the large number of appli-

cations of Larch and LOTOS have not reported any inconsistency between different

types of formal specifications thus far.

Completeness. Since the rules serve as a bridge between informal graphical no-

tations and language constructs of formal languages, the completeness of the rules

can be discussed from two perspectives. From the perspective of formal languages,

the rules can be considered complete if every part of a formal specification has corre-

sponding graphical notations from which formal specifications can be automatically

generated. From the perspective of graphical notations, the rules can be considered

complete if every graphical notation can be described in terms of formal specifications.

Because the axioms of algebraic Specifications cannot be easily expressed by graphical
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notations, our formalization rules only preserve the property of completeness from the

perspective of graphical notations.

7.3 Specification Analysis Techniques

The integration and formalization of the three models that describe a system from

complementary aspects enable designers to perform analysis tasks by using the derived

formal specifications.

LOTOS is a formal abstract description language that can be used to precisely

describe a system, abstracting away realization details. This is particularly useful

in the design and analysis of the behaviors of systems that contain communicating

objects, where the interactions often have complex interdependencies. LOTOS is

based upon several mathematical models that make it possible to check the validity

of the specification, ensuring the correctness of the design. Because our formalization

and integration rules can serve to derive a single, integrated formal specification for an

object from its corresponding object, functional, and dynamic models, both static and

dynamic analysis tasks can be performed for specification analysis by using available

LOTOS tools. Currently, a rich set of LOTOS tools [82] are available for analyzing

LOTOS specifications. Among the available tools, TOPO [64, 83], LOLA [84, 85, 86,

87], SMILE [88, 89], and XELUDO [90] for Full LOTOS are promising tools.

0 TOPO is a toolset that supports product realization from LOTOS specifica-

tions. TOPO includes tools to perform static semantics analysis, specification

investigation (cross references, data type dependencies, etc), and it is able to

generate C or Ada code that may be compiled into a prototype.
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o LOLA is a transformational and state exploration tool with applications to

testing, simulation, and debugging. The transformation functionality allows the

generation of the equivalent Extended Finite State Machines (EFSM) [91]1 from

given LOTOS specifications. The execution functionality enables designers to

simulate LOTOS specifications in a stepwise fashion. The testing functionality

calculates the dynamic response of a system specification to a test according to

the testing equivalence prOperly.

o SMILE is a symbolic evaluation tool for LOTOS. It contains functions for the

analysis of the abstract data type part of the specification, execution and de-

bugging of the LOTOS specification or parts thereof, transformation of (parts

of) the specification into strong equivalent EFSMs.

o XELUDO is a toolset that support specification transformation and execution.

The execution functionality allows step-by-step execution of a specification. The

symbolic expansion transformation functionality generates equivalent symbolic

trees of a specification.

TOPO and LOLA, which cover most of the critical functionalities for LOTOS

specification analysis, are two intensively used tools in this research. Our discussion of

specification analysis will focus on the functionalities provided by TOPO and LOLA.

7.3.1 Static analysis

A static semantic checker for full LOTOS can check the consistency between the

algebraic and behavior specifications, such as operator references, parameter types,

and so on. Therefore, given a formal specification that describe a set of corresponding

models, inconsistencies among models that are introduced during the the construction

of a diagram will be detected by such a semantics checker. LSA (LOTOS semantics

analyzer) included in TOPO is an example of such a semantics checker. Figure 5.6

and 5.7 of Chapter 5 show an instance of static analysis performed by LSA.

 

1EFSMs are finite state machines that have output functions associated with transitions or states.
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The underlying formal semantics Of LOTOS is a Labeled Transition System

(LTS) [92, 93]. Based upon the formal semantics described by the LTS, equiva-

lence between behaviors Of LOTOS specifications is also defined [92]. The expansion

transformations provided by LOLA produces a compressed version Of Extended Finite

State Machines (EFSM) from a given LOTOS behavior specification. The behavior

of the generated EFSM is equivalent to the original LOTOS Specification. The effect

Of an expansion is the removal Of the most complex LOTOS Operations (e.g., paral-

lel Operators) from the specification, producing an equivalent specification in terms

Of action prefix, behavior choice, guards, and choice, etc. This transformation can

be used for state exploration, deadlock detection, deriving efficient implementations,

etc. Because the dynamic models Of the individual objects can be synchronized by

parallel Operators, we can use the expansion transformation tO check if the behavior

Of the synchronized Objects can be expressed in terms Of an equivalent EFSM without

parallel Operators. This transformation can be considered as a static analysis Of state

exploration. A deadlock detected by the transformation suggests that the behavior

Of the communicating Objects has a synchronization conflict.

7.3.2 Dynamic analysis

Although a static expansion transformation can exhaustively explore all the possible

execution paths for a given LOTOS specification, the variables in the given LOTOS

specification are treated symbolically during the static analysis. Therefore, potential

problems and conflicts caused by variable instantiation cannot be detected by static
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analysis. By running a test (a formal specification Of desired behavior) in parallel

with the target specification, we are able to instantiate the variables in the given

specification thus dynamically analyzing its behavior. This type Of dynamic analysis

is based on the definition Of Testing Equivalence [94] Of LOTOS Specifications. If

the behaviors exhibited by two LOTOS specifications cannot be distinguished from

external Observation, then the specifications are considered to be testing equivalent.

Therefore, if none Of the execution paths of a test running in parallel with the spec-

ification under test results in a deadlock, then the test and the specification under

test can be considered testing equivalent to one another. That is, we can assert that

the specification under test satisfies (or passes) the test.

LOLA provides functionality that enables designers to analyze the behavior Of a

given Specification dynamically in terms Of Testing Equivalence [84]. Tests are passed

by specifying a test process and Obliging it tO synchronize with the behavior under

test. The successful termination Of a test in a given execution consists in reaching a

state where the termination event (usually specified as success) is Offered. A test does

not terminate in a given execution if it reaches a deadlock situation. The results Of

the test are classified into three classes: Reject, Must Pass, and May Pass. If all the

execution paths terminate successfully, then the test is a Must Pass. If there is least

one execution that leads to the successful termination, then the test is considered May

Pass. Otherwise, the test is rejected, the specification under test will not satisfy/pass

the test under any means.

We can use this functionality provided by LOLA tO check the behavior Specifi-

cations derived from design models. The ability tO Specify test cases enables us to
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perform dynamic analysis on the design models. Given this analysis tOOl, test cases

can be Specified tO check the property Of a given specification. The variables in the

specification under test can also be instantiated with concrete values to detect com-

munication conflicts between interacting Objects. Furthermore, if the specifications

derived from models Of different levels Of abstraction both pass the same set Of testing

processes, they can be considered testing equivalent tO each other in the context Of the

given set Of testing processes. That is, their design models are considered consistent

in terms Of testing equivalence.

The executable nature Of LOTOS behavior specifications enables designers tO in-

teractively execute any LOTOS specification in a stepwise fashion, assigning values to

the variables defined in the specification and examining the response Of the specifica-

tion. We can use this functionality tO simulate the behavior Of design models in order

tO achieve a better understanding Of the design as well as a means to communicate

with customers and team members Of software development. In addition, we can use

the interactive execution to detect defective design models. If either a static or a

dynamic analysis Of the behavior Of a given specification leads to a deadlock, we can

recover the paths to deadlocks by investigating the log files, then run the specification

interactively in accordance with the deadlock paths. Such a stepwise execution may

help tO identify the cause Of deadlock.
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7.4 Analysis Of Model Integration

The specification analysis techniques discussed in the previous section can be used tO

perform analysis Of model integration.

7.4.1 Inter-model analysis

Based on our formalization rules, beginning with the initial stages Of modeling, the

models are no longer considered disjoint. A static semantic checker for full LOTOS,

LSA (LOTOS semantics analyzer), included in TOPO [64, 83], checks the consis-

tency between the algebraic and behavior specifications, such as Operator references,

parameter type, and so on. For example, an error in the behavior specification in

Figures 5.6 and 5.7 was detected by LSA, where the transcript Of the semantic check-

ing with LSA is given in Figure 7.2. Further investigation reveals that the error

was caused by an incorrect Operator reference in the behavior specification (derived

from the state diagram), retrieve(s) that should have been retrieve(s, k). Therefore

given a formal definition for the .model integration, inconsistencies between models

that may be introduced in the construction Of a diagram can be detected when the

corresponding formal specifications are analyzed.

 

lsa -1 /home/wangyi/Research/Tools/TOPO/stdlib/mod-is

-p com2 com2.lfe

com2.lot:116: lsa: undefined operation: retrieve

*** lsa: errors detected

Figure 7.2: The error in the behavior specification Of the Storage detected by LSA
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7.4.2 Intra—model analysis

Model integration is also achieved by composing concurrent Objects hierarchically

according to the system structure that is specified in the Object model.

The benefits brought by this integration include the ability tO refine both the struc-

ture and the behavior Of a system in a parallel, hierarchical, and systematic fashion.

In addition, a behavior specification, Obtained by composing concurrent aggrega-

tion Objects, can be checked against the behavior specification Of their corresponding

individual aggregate Objects tO guarantee the consistency between the behavior spec-

ifications during the refinement and development processes. For example, prior tO the

design stage, the Disk Manager may have a simple behavior specification with input

and output as the only gates. In order tO validate the behavior specification, a set Of

test processes, can be written in LOTOS tO simulate the environmental events. Then

the same set Of test processes can also be used to test the refined and concurrent

behavior specification, where the refined specification must also satisfy all the test

processes before it can be accepted.

The testing equivalence between two process algebras means that one cannot

detect the difference Of the behavior from outside the processes in terms Of testing.

Currently, we term intra—model consistency as the test equivalence in terms Of the

LOTOS specification language. This type Of intra—model consistency checking is

already supported by several tOOls designed for Full LOTOS, such as LOLA [84].

The process “accept-test” in Figure 7.3 was used tO test the behavior Of the Disk

Manager before it was decomposed intO Storage and Compressor. This testing prO-
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cess can also be used tO test the behavior specified in Figure 5.10 tO check if it is

also satisfied by the modified specification. In process accept_test, three data items

associated with keys 0,1, and 2, respectively are given, then two items Of data with

keys 0 and 2 are requested.

 

process accept_test [input, output, success] : noexit :=

let x:D=Hex(b),y1:K=succ(O),yO:K=O,y2:K=succ(succ(O)) in

input !x !yO;

input !x !yl;

input !x !y2;

output !yO; output ?dx: D;

output !y2; output ?dx: D;

success;

stop

endproc

Figure 7.3: The testing process used tO test the behavior Of Disk Manager

 

Figure 7.4 captures the transcript Of oneerrpand, a testing command in LOLA, that

composes the behavior Of disk manager in parallel with the testing process accept-test

through gates input and output, and executes a random trace Of the composed process.

The success event that appears in the tenth step shows that the test successfully

terminates.

Since the behavior specification Of Disk Manager only has a small number Of states,

we can exhaustively explore all the possible executions. Figure 7.5 shows such a test.

(For those cases with a large number Of states, LOTOS has facilities for performing

partial analysis.) There are three types Of termination for the testing analysis: must,

may, and reject. If the test terminates for every execution Of the composed process,

then the result is a must pass. If the test does not terminate for any execution, then

the test is a reject. If the test terminates for at least one execution, then it is a
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101a> oneexpand 10 success accept_test -v

oneexpand 10 accept_test O 1 -v

Composing behaviour and test :

accept_test [input,output,success]

I [input ,output] I

(hide com,dec,ins,ret,delete in

storage [ins,ret,de1ete]

l[ins,ret,de1ete]|

disk_manager_1 [input,output,com,dec,ins,ret,delete]

l[com,dec]l

compression [com,dec]

)

1 input ! hex(b) of d ! O of k;

2 input ! hex(b) of d ! succ(O) of k;

3 input ! hex(b) of d ! succ(succ(0)) of k;

4 output ! O of k;

5 i;

6 output ! decompress(data(entry(compress(hex(b)).0)));

7 output ! succ(succ(0)) of k;

8 i;

9 output ! decompress(data(entry(compress(hex(b)),

succ(succ(0)))));

10 success;

Process Test - accept_test

Test result SUCCESSFUL EXECUTION.

Transitions generated = 10

Figure 7.4: Using accept_test testing process to test the specified Disk Manager

 

may pass result. The result Of the test in Figure 7.5 is a may pass. In this test, five

executions were performed, where two Of the executions were successful, and three

were aborted due tO deadlock.

In Figure 7.6, we conducted a step-by-Step interactive simulation Of the original

behavior specification composed with the test process tO determine the source Of the

deadlock problems. In the first seventeen steps Of the simulation, there were no choices

for the developer to make. At the eighteenth step, three choices were presented tO
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lola> testexpand -1 success accept_test -v -y

testexpand -1 success accept_test -v 0 -y

Rewriting expressions in the specification.

Rewriting done.

Analysing unguarded conditions.

Analysis done.

Composing behaviour and test :

accept_test [input,output,success]

l[input,output]l

(hide com,dec,ins,ret,delete in

storage [ins,ret,delete]

I[ins,ret,delete]l

disk_manager_1 [input,output,com,dec,ins,ret,de1ete]

l[com,dec]l

compression [com,dec]

)

Exploration Tree lTransitsI States

0 - 10 / 7 - 9 / 7 - 10 / 4 - 6 / 4 - 8/ I 18| 17

Analysed states = 17

Generated transitions = 18

Duplicated states = 0

Deadlocks = 3

Process Test - accept_test

Test result MAY PASS.

5 executions analysed:

successes =

stops -

exits

cuts by depth

I

O
O
O
J
N

Figure 7.5: An exhaustive test using process accept_test
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the developer. This nondeterminism is introduced due tO gate hiding in the behavior

specification Of Disk Manager. Hiding the gates transformed the explicit event into

an internal event 2'. The three internal events appearing in a choice construct resulted

in nondeterminism. The first choice may lead tO a success event; the last two choices

will result in deadlock. This interactive simulation analysis answers why deadlocks

were detected in the previous testing. However, since the detected deadlocks were

caused by hidden gates, which were only hidden for the purposes Of testing, it is not

a real problem and will not cause deadlocks when the gates are not hidden.
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lola> step success accept_test

Rewriting expressions in the specification.

Rewriting done.

Analysing unguarded conditions.

Analysis done.

Composing behaviour and test :

accept_test [input,output,success]

l[input,output]|

(hide com,dec,ins,ret,de1ete in

storage [ins,ret,delete]

I[ins,ret,de1ete]l

disk_manager_1 [input,output,com,dec,ins,ret,delete]

l[com,dec]l

compression [com,dec]

)

1. [ 1] input ! hex(b) of d ! O of k;

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> 1

==> input ! hex(b) of d ! O of k;

........... (omitted)

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> Trace

1. [ 1] - input ! hex(b) of d l 0 of k;

2. [ 1] - i; (* com ! hex(b) of d *)

3. [ 1] - i;

4. [ 1] - i; (* com ! compress(hex(b)) *)

5. [ 1] - i; (* ins ! compress(hex(b)) ! O of k *)

6. [ 1] - input ! hex(b) of d ! succ(O) of k;

7. [ 1] - i; (* com ! hex(b) of d *)

8. [ 1] - i;

9. [ 1] - i; (* com ! compress(hex(b)) *)

10. [ 1] - i; (* ins ! compress(hex(b)) ! succ(O) of k *)

11. [ 1] - input ! hex(b) of d ! succ(succ(0)) of k;

12. [ 1] - i; (* com ! hex(b) of d *)

13. [ 1] - i;

14. [ 1] - i; (* com ! compress(hex(b)) *)

15. [ 1] - i; (* ins ! compress(hex(b)) ! succ(succ(0)) of k *)

16. [ 1] - output ! O of k;

17. [ 1] - i; (* ret ! 0 of k *)

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> Menu

18. [ 1] i; (* ret ! data(entry(compress(hex(b)),O)) *)

[ 2] choice d_189:d []

i; (* com ! d_189 *)

[ 3] choice d_191zd []

i; (* dec ! d_191 *)

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?>

Figure 7.6: An interactive simulation Of the process composed for testing

 



Chapter 8

Design Process

If the Objective Of software requirements analysis is tO achieve a comprehensive under-

standing Of software requirements for the target system, then the purpose Of design

is tO apply various techniques and principles for the purpose of defining a device, a

process, or a system in sufi‘icient detail to permit its physical realization [95]. Given

requirements Specifications derived from the requirements analysis stage, software de-

sign is the first step in the development process that involves a significant amount

Of engineering effort. The primary Objective Of software design is to build mod-

els/Specifications with sufficient detail such that there is enough information to de-

velop the corresponding source code. A design process typically incorporates intuition

and judgment based on the experience Of engineers in building similar systems, a set

Of principles and/or heuristics that guide the evolution Of the system, a set Of criteria

that enable quality tO be judged, and an iterative process that ultimately leads tO a

final design representation [6].

165
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Several design methods [3, 7, 41, 51, 72, 96] have been proposed during the last

three decades. However, unlike other engineering disciplines, such as mechanical or

electronic engineering, where strict mathematics is heavily involved in the design,

little or no mathematics is explicitly employed by most Of the proposed software de-

sign methods. This can be partly due tO the nature Of concrete mathematics, the

foundation Of computing, which is more abstract and perceived tO be more diflicult

tO master and manipulate than general mathematics. We will not go into an in-depth

discussion about concrete mathematics at this point. Nonetheless, mathematics is

the only means that we have, thus far, to achieve precise descriptions Of software

systems. The application Of formal methods tO software engineering attempts tO in-

troduce mathematical rigor as well as systematic methods into software development.

The well-defined notations used by the formal methods are amenable tO automated

processing for numerous analysis tasks [2], including verification Of correctness Of re-

sulting systems. Based on investigations by Dart et al. [97] and Brinkkemper [98],

Fraser et al. [5] classified design methods intO three categories according tO the degree

Of formal methods that are involved.

0 The informal category includes the techniques that do not have complete sets

of rules to constrain the models that can be created. Natural language and un-

structured pictures are typical examples.

 

o The semiformal category includes the techniques that have defined syntax.

Typical instances are diagrammatic techniques with precise rules that specify

conditions under which constructs are allowed and textual and graphical de-

scriptions with limited checking facilities. Example methods include entity-

relationship diagrams and variations on data/control flow diagrams [97, 98].

 

o The formal category includes the techniques that have rigorously defined syn-

tax and semantics. There is an underlying theoretical model against which a
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description expressed in a mathematical notation can be verified. Specification

languages based on predicate logic are typical instances. Example methods in-

clude Petri nets, state machines, Z (Zed), and VDM [97, 98, 99/.

Although formal specifications are gaining increasing attention as a means to

rigorously document requirements and design information given that the well-defined

notations are amenable tO automated processing for numerous analysis tasks [2], most

Of the popular design methods fall into the semiformal category. This phenomenon

can be partly attributed to the fact that (1) formal methods research has largely

focused on the development Of formal notation and inference rules, and (2) the nota-

tion and the conceptual grammar Of formal specification languages require familiarity

with discrete mathematics and symbolic logic that most practicing software engineers,

designers, and implementors do not have [5].

Most design techniques in the semiformal category use various diagrammatic tech-

niques with formal syntax for graphical notations to specify design models. However,

the lack Of formal semantics Of graphical notations deprives designers Of analysis

techniques that can help designers tO detect and eliminate design error during the

early stages Of software development process. In order to take advantages Of both

the intuitive diagrammatic and rigorous formal techniques, the integration Of the two

approaches is clearly motivated.

This chapter prOposes a design method, based upon our formalization and inte-

gration rules in the previous chapters, that provides designers with both intuitive

diagrammatic and formal methods techniques. The remainder Of the chapter is or-

ganized as follows. Section 8.1 gives a brief discussion Of strategies for incorporating
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formal methods into software development and an overview Of our proposed design

approach. Section 8.2 briefly describes the graphical models, the formal specifications

used tO describe these models, and the proposed design process. Section 8.3 gives a

detailed presentation about the models and the design process through the model and

design Of an example. Section 8.4 gives the summary Of this chapter.

8.1 Overview of Strategies Proposed Approach

In this section, a brief discussion Of the strategies that incorporate formal specifica-

tions into design is given tO serve as background and provide context for our research.

Then a short description Of the proposed approach is presented.

8.1.1 The integration strategies

Fraser et al. [5] developed a taxonomy for describing and assessing strategies that in-

corporate formal specification techniques in software development. Our design process

adheres tO the taxonomy. The framework consists Of two dimensions: formalization

support and formalization process. From the formalization support dimension, the

techniques are divided into computer assisted and unassisted categories according to

whether the formalization process is supported by computer or not. In the formaliza-

tion process dimension (shown in Figure 8.1), there are two approaches: direct and

transitional. The transitional approach can be further divided into sequential and

parallel successive refinement approaches. The definitions are as follows:
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Direct: directly moving from informal requirements tO formal specifications without

the use Of (semiformal) intermediate specifications.

Transitional: moving from informal requirements tO formal specifications through

the use Of (semiformal) intermediate representations. There are two further

refinements Of transitional approaches.

Sequential: formal specifications are derived from a final set Of semiformal

models.

Parallel successive refinement: the semiformal specifications are produced

through successive refinements, where the formal specifications are derived

from the semiformal specifications in parallel with the refinement process.

 

Software development process

 

 

 

 

 

Analysis 1 Design 1 Implementatiop

I I

. Direct use of formal specifications i

I >I Direct approach

I derivation of formal specifications I

I I

i Semiformal design techniques \ i

I = ;: Sequential approach

I I

1 final model : ("mm“)

i Stepwise refinement of semi formal specifications i

I . . . . Parallel successive
: Denvr g formal specrficauons refinement approach

' v (transitional)

.L -------- 1 ------------------------------------- -,

1 Formal specifications :

Informal software requriements Formal specification ofdesign

Figure 8.1: The formalization process dimension Of the suggested framework

 

Among the strategies that produce formal specifications, the computer-assisted,

parallel approach appears tO be the most promising. During the design process Of

this type Of approach, the semiformal methods guide the stepwise refinement. At

each design step, the computer-assisted supporting tools facilitate the generation Of
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formal specifications from newly refined semiformal models. The derived, refined

formal specifications can be verified against the formal specifications Of the higher-

level abstraction in order tO eliminate design inconsistencies. Detected problems may

also be traced back t0 the semiformal models. Thus the techniques Of this category

have the potential Of enabling semiformal and formal Specifications to be developed in

a synergistic fashion during the design refinement process. However, tO date, there do

not appear tO be examples Of a computer-assisted transitional—parallel formalization

strategy [5].

8.1.2 The proposed approach

The Objective Of our investigation is to propose a design process that employs the

computer-assisted transitional-parallel formalization strategy. The Object Modeling

Technique (OMT) [3] is the semiformal design technique upon which our proposed

method is based.

We formalized the three OMT models and integrated their corresponding formal

specifications in terms Of the underlying semantics in Section 2.4 and Chapters 4,

5, 6, and 7. Based upon the proposed formalization rules, programs can be written

to generate formal specifications directly from the semiformal models Of OMT. The

Object model is formalized in terms Of algebraic specifications [27] that provide a

framework Of the formal specifications; the formalization Of the functional model [75]

introduces formal interface functions and pre- and postconditions for services provided

by the system; the dynamic model is formalized in terms Of process algebras [62, 63]
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that capture the dynamic behavior Of the Objects. The formal specifications generated

from different models are complementary, and they, together, form a single formal

specification Of an Object. Based on the formalization and integration Of the three

models and the design process Of OMT, we have proposed a stepwise design process

that conducts design activities in an iterative fashion.

8.2 The Proposed Rigorous Design Process

In this section, a formal, rigorous development paradigm for design is proposed. The

design paradigm explicitly addresses the consistency between the formal specifications

Of two adjacent levels Of abstraction thus enabling stepwise refinement and consistency

checking.

8.2.1 Format of formal Specifications

Figure 7.1 in Chapter 7 shows an outline Of a specification that describes an Object

class, including its identity, interface, functionality, and behavior. The formal spec-

ifications that describe the OMT models serve as the foundation Of our prOposed

design process that employs a parallel transitional approach that incorporates formal

specifications into design.

8.2.2 Design models

Figure 8.2 shows the graphical models and the order in which they should be devel-

Oped during the development process. In this figure, a rectangle represents a model
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to be developed, an arrow describes a dependency relationship, a dashed arrow indi-

cates iteration, the numbers in the upper left hand corner indicate the order that the

model should be developed in a given iteration. The prOposed deveIOpment paradigm

includes iterations Of model refinement where each subsequent iteration adds more

design detail. In Figure 8.2, the first three models are system level Object, functional,

and dynamic models that describe the structural, functional, and dynamic behavioral

aspects Of a system, respectively. The subsequent three models capture information

that is similar tO the first three models, except they depict the structural, functional,

and behavioral features Of Objects at a level more detailed than that at the system

level. The service refinement functional model refines a service Of an Object in terms

Of the services provided by its aggregate Objects at a lower level Of abstraction. The

refined dynamic model refines the dynamic behavior Of an Object in terms Of its inter-

action with Objects at a lower level Of abstraction. The composed parallel dynamic

model is a composition Of a set Of dynamic models of Objects that are synchroniz-

ing with each other. Once the composed parallel dynamic model at a certain level

Of abstraction is Obtained and analyzed, the development enters the next iteration

Of model refinement and derivation. Table 8.1 describes the models and the formal

specifications that are derived from the corresponding models. The double lines are

used tO separate the (1) models that describe the system as a whole, (2) individual

aggregate Objects, and (3) the composition Of the aggregate Objects.



173

 

[ Models [ Use [ Formal Specifications
 

 

(System-Level)

Object Model

depicts the static structure Of

a system

derives class name and

class attributes
 

(System-Level)

Functional

Model

contains services provided by

a system

derives services and

service specifications

 

(System-Level)

Dynamic Model

specifies all the possible

interaction patterns Of a

system

derives state names,

behavior specifications,

and starting states
 

Refined Object

Model

decomposes an Object into

aggregate Objects and

describes the

inter-relationship between

the aggregate Objects

derives class name and

class attributes

 

 

 

Dynamic Model interaction patterns of an

Object

Object contains services provided by derives services and

Functional an object service specifications

Model (OFM)

Object specifies all the possible derives state names,

behavior specifications,

and starting states
 

 

Service

Refinement

Functional

Model (SRFM)

models a system/Object

service in terms Of the

services provided by

aggregate Objects

refines algebraic

specifications

 

Refined

Dynamic Model

refines the dynamic behavior

model Of a system/Object

and expresses its behavior in

terms Of the interaction with

aggregate Objects

refines states and

behavior specifications

 

Composed

Parallel

Dynamic Model  composes the dynamic

models Of an Object and its

corresponding aggregate

Objects in parallel  composes behavior

specifications

 

Table 8.1: The models that will be developed during a given iteration Of design
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(System)

Object Model

   

  

2 (System)

Functional Model

 

   

  

(System)

Dynamic Model

 

   

 l 

4” Refined (System)

Object Model

 

   

 l 

5/2

< Object Functional Model
 

  
 

Iterations

—- ofDesign

Refinement

ll

61) 62/3

Service Refinement Object Dynamic Model

Functional Model

    

 

      

  

 l  Refined (System)

Dynamic Model

 

     
 

3 Composed Parallel

Dynamic Model * ‘ ‘ _]
     

Figure 8.2: Models in the order Of development

 

8.2.3 Design process

Booch [49] asserted: “We have observed two traits that are common to virtually all

of the successful object-oriented systems we have encountered, and noticeably absent

from the ones that we count as failures: {1) the existence of a strong architectural

vision; (2) the application of a well-managed iterative and incremental development

life cycle.” Our investigation attempts tO address the second trait for successful

development Of systems.
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The prOposed design paradigm focuses on the process in order tO facilitate a step-

wise refinement Of designs. Since formal specifications can be generated for each

refinement step, analysis and verification technique can be used tO check the consis-

tency and correctness Of design. Instead Of providing specific decomposition heuristic

methods, the proposed design process serves as a framework within which decompo-

sition heuristics can be conducted and design consistency can be checked. Sufficient

freedom is left tO designers tO choose appropriate decomposition approaches during

design; decomposition heuristics is outside the scope Of this research.

The design process contains iterations Of model development that are introduced

in the preceding discussion. For each step Of model development during a given iter-

ation, corresponding formal specifications are derived or refined. As a consequence, a

progressive, incremental development Of formal specifications can be performed con-

currently with the development Of graphical models. At the end Of each iteration,

analysis Of formal specifications can be performed to check the consistency Of diagrams

and their refinements.

System design and architectural styles. The first 8 steps of model and formal

specification development are considered at the system design level. Since the Object

being decomposed in step 4 is a system, architectural styles [100, 101, 102] should

be taken into consideration tO facilitate the decomposition. An architectural style is

a recurring pattern Of system organization that provides an abstract architecture for

some family Of applications [103] (e.g., client-server architectural style). Based upon

the analysis results, choosing a specific architectural style for design is a step that
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transforms the results Of requirements analysis to design. Since the decomposition

Of a system is typically dependent upon the creativity, wisdom, and experience Of

a designer, we leave freedom for designers tO determine which architectural style

tO use. The proposed design framework provides the necessary means for designers

tO describe various architectural styles by using graphical models that can then be

analyzed according tO their formal specifications.

Detailed design and design patterns. After the first iteration (8 steps), indi-

vidual Objects are subject to decomposition and refinement in order to achieve higher

modularity and cohesion for implementation purposes. An Object is subject tO decom-

position, unless it can be directly implemented by programming languages. Design

patterns are descriptions Of communicating Objects and classes that are customized to

solve a general design problem in a particular context [104]. The designers can choose

various design patterns as means tO Object decomposition for detailed designs. We

employ the same philosophy for detailed design as we did for system design: freedom

is left tO the designers tO determine which design pattern or decomposition approach

to use; the design process only provides the necessary means for designers to specify

their design models and the formalization Of the OMT models enable the automated

analysis Of the user’s design.

8.2.4 Consistency checking of refinements

The advantage Of a computer-assisted transitional-parallel approach is that the formal

specifications can be used tO perform rigorous analyses during the design process in
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order to detect and eliminate design errors. The available formal analysis has already

been discussed in Chapter 7. Here we particularly emphasize two types Of analysis tO

conduct during the design process.

Consistency checking for function refinement. SRFMS describe the refine-

ment Of the services. An SRFM captures the data dependency relationships between

the services provided by aggregate Objects. Therefore, algebraic assertions can be in-

troduced tO describe the constraints on the hierarchical acyclic directed structure in

which the aggregate Object services are related with each other. Because the services

are specified in terms Of pre- and postconditions, we make use Of them as a means

to Specify design constraints and proof Obligations. Given two services 51 and 32, if

the output data flow Of 31 serves as an input data flow Of 82, a basic constraint is

that the postcondition Of 31 Should not imply the falseness Of the precondition for 32,

in other words, they are not contradictory. Thus we impose a verification Obligation

upon SRFMS tO check that the pre- and postconditions Of two adjacent services are

not contradictory.

Specification analysis for behavior refinement. Since the proposed design pro-

cess advocates an approach that generates formal specifications in parallel with the

successive refinement Of semiformal design models, a behavior specification, Obtained

by composing concurrent aggregation Objects, can be checked against the behavior

specification Of their corresponding individual aggregate Object tO detect inconsis-

tency. In order tO validate the behavior specification, a set Of test processes, can
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be written in LOTOS tO simulate the environmental events. Then the same set Of

test processes can also be used to test the refined behavior Specification, where the

refined specification must also satisfy all the test processes before it can be accepted.

In addition to the consistency checking, behavior simulation can also be conducted

in order to interactively verify and validate the design.

8.3 The Design Process Applied to An Example

This section gives detailed descriptions about the design models and their correspond-

ing formal specifications in the order that they are developed during the proposed

design process. In order tO facilitate the understanding Of the models and the design

process, a simple sample system is developed. The sample system is a Disk Manager

that stores data. Each step of the process is described in the remainder Of this section,

where the step number is enclosed in parenthesis. Although some diagrams and the

corresponding formal specifications have appeared in the previous chapters, in order

to facilitate the reading, we present them again in this chapter.

System Level Object Model (1). The first step in the process is tO create the

system level Object model, the highest level (most abstract) Of the Object model. It

depicts the system as a single entity tO be developed, and it establishes the starting

point for system development. Given the requirements specifications Of analysis, this

is the first step Of design. Usually, requirements analysis may generate an Object

model that includes multiple Objects. Some Of the Objects represent environment
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entities; some describe a part Of the target system to be developed. Therefore, by

giving the system level Object model, software engineers clearly identify the software

system to be deveIOped. A system level Object model generates a framework for

specification within which specifications for functional and dynamic features Of the

system will be filled.

Figure 8.3 shows the system level Object diagram for Disk Manager. Since Disk

Manager is the only object tO be built at the system level, there is only one Object.

Conceptually, every part Of the system will be organized under Object Disk Manager,

thus forming a set Of hierarchically aggregated Objects. The formal specification (in

Figure 8.4) for the Object diagram only contains a specification declaration, where

detailed information will be added based on the development Of the model.

 

 

Disk

Manager

  
 

Figure 8.3: The system Object model for Disk Manager

 

 

specification Disk_Manager [gates] : noexit

type Disk_Manager is

endtype

endspec

Figure 8.4: The ACT ONE specification for system level Object model Of Disk Man-

ager
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System Level Object Functional Model (2). A system level Object functional

model (OFM) describes the services, in terms Of data flow diagrams, provided tO the

external world by the system. This model is the highest level (most abstract) Object.

Given a system level OFM, the formalization rules in Chapter 6 can be used tO

automatically generate specifications that describe the services in terms Of a LOTOS

gate list. Meanwhile, based upon the requirements analysis results and the services

identified in the system level OFM, algebraic specifications can be derived by designers

tO describe the properties Of the Object. A set Of high-level guidelines that describes

how tO derive algebraic specifications is given in Chapter 6. In order to capture the

functionalities Of the services, pre- and postconditions for the services should also be

specified by designers in terms Of the Operations Of algebraic specifications.

The system level OFM for Disk Manager is given in Figure 8.5, where services,

including their interface signatures, that Disk Manager provides tO the external world

are depicted in terms Of processes and input/output data flows. This diagram intro-

duces three data types, Data, Key, and Void, and two Operations, Input and Output,

to the ACT ONE algebraic specifications in Figure 8.4. The ground wires associated

with services Input and Output indicate that the services need tO access internal data

structures in order to carry out the required functionality. The specification (Fig-

ure 8.4) augmented with algebraic Specifications that describe the prOperties Of the

Disk Manager is given in Figure 8.6. The algebraic specification that describes the

prOpertieS Of the Disk Manager is derived by the designer based upon the services

Of the Object. Since LOTOS currently does not support typed gates and pre- and
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postconditions, the input/output arguments for services and their corresponding pre-

and postconditions are given in annotations delimited by the (* and *) pairs.

 

 

  

[ Disk_Manager [

r 1

\“Data\‘

/

Key Q Data
-— ——>

\ J
 

Figure 8.5: The system functional model for Disk Manager

 

System Level Dynamic Model (3). Similar to the system level functional model,

the system level dynamic model is the Object dynamic model for the system to be

developed. Based upon the system functional model, the system level dynamic model

captures the dynamic behavior (interaction patterns) Of a system in terms of the

services that the system provides. According tO the formalization rules given in

Chapter 5, a formal specification in terms Of process algebras can be automatically

generated from the dynamic model, where the newly introduced Specification is largely

under the ‘behavior’ section Of the specification.

The system level dynamic model in Figure 8.7 contains only one state, Idle, associ-

ated with two transitions. If an event for either Input service or Output service occurs,

the corresponding Operation will be triggered. In Figure 8.8, the formal specification
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specification Disk_Manager [Input, Output] (disk: Disk) :noexit :=

(*I Input : d: Data, k: Key -> Void l*)

(*lrequires (1 eq undef_Data = false and k eq undef_Key = false |*)

(*lmodifies disk l*)

(*lensures disk’ eq input(disk“, d, k) = true l*)

(*l Output : k: Key -> Data |*)

(*lrequires disk eq empty = false and k eq undef_Key = false I*)

(*lensures result = output (disk, k) l*)

type DiskJ‘lanager is

sorts

Data, Key, Void, Disk

opnns

undef_Data : -> Data

undef_Key : -> Key

empty : -> Disk

input : Disk, Data, Key -> Disk

output : Disk, Key -> Data

eqns

forall disk: Disk, data: Data, k1, k2: Key

ofsort Data

output (empty, key) = undef_data;

(k1 = k2) => output (input(disk, data, k1), k2) = data

not(k1 = k2) => output (input(disk, data, k1), k2) = output(disk, k2)

endtype

endspec

Figure 8.6: The specification for Disk Manager that specifies its services and prOper-

ties

 

is augmented with the process algebras (delimited by “behavior” and “endproc”) that

capture the dynamic behavior Of Disk Manager depicted in the system dynamic model.
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Figure 8.7: The system dynamic model for Disk Manager
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specification Disk_Manager [Input, Output] (disk: Disk) :noexit :=

(*I Input : d: Data, k: Key -> Void l*)

(*lrequires d eq undef_Data = false and k eq undef_Key = false |*)

(*lmodifies disk l*)

(*lensures disk’ eq input(disk‘, d, k) = true |*)

(*l Output : k: Key -> d: Data |*)

(*lrequires disk eq empty = false and k eq undef_Key = false I*)

(*Iensures result = output (disk, k) |*)

type Disk_Manager is

sorts

Data, Key, Void, Disk

opns

undef_Data : -> Data

undef_Key : -> Key

empty : —> Disk

input : Disk, Data, Key -> Disk

output : Disk, Key -> Data

endtype

opnns

output : Disk, Key -> Data

eqns

forall disk: Disk, data: Data, k1, k2: Key

ofsort Data

output (empty, key) = undef_data;

(k1 = k2) => output (input(disk, data, k1), k2) = data

not(kl = k2) => output (input(disk, data, k1), k2) = output(disk, k2)

endtype

behavior

Idle [Input, Output] (empty)

where

process Idle [Input, Output] (disk: Disk) :noexit :=

(let PRE = disk in

Input ? d:Data ? k:Key;

[not(d eq undef_Data] and not(k eq undef_Key)] ->

(let POST = input(PRE,d,k) in Idle [Input, Output, Void] (POST))

[1

Output ? k:Key;

[not(PRE eq empty) and not(k, undef_Key)] ->

Output ! output(PRE, k); Idle [Input, Output] (PRE)

)

endproc

endspec

Figure 8.8: The complete Full LOTOS specification for system level Object model Of

Disk Manager
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Because a behavior specification in Full LOTOS is executable, given the specifica-

tion for Disk Manager, simulation and symbolic testing can be conducted tO perform

design verification and validation. In order tO conduct simulation and testing, we

instantiated sorts Data and Key in terms Of predefined sorts HexString and Natu-

ralNumber that are well defined with complete algebraic theories. The instantiated

Specification is given in Appendix E. The process “accept_test” in Figure 8.9 was

used tO test the behavior Of the Disk Manager before it was decomposed into Storage

and Compressor. In process accept_test, four data items associated with keys 4,1,3,

and 2, respectively are given, then two data items of data with keys 1 and 3 are

requested. The test process checks whether the Disk Manager returns correct values

in accordance with the corresponding keys.

 

process accept_test [input, output, success] : noexit :=

input !Hex(0) !succ(succ(succ(succ(0))));

input !Hex(3)+9 !succ(O);

input !Hex(5) !succ(succ(succ(0)));

input !Hex(8) !succ(succ(0));

output !succ(O); output !3+Hex(9);

output !succ(succ(succ(0))); output ! hex(S);

success;

stop

endproc

Figure 8.9: The testing process used tO analyze the behavior Of Disk Manager

 

Figure 8.10 captures the transcript Of oneexpand, a testing command in LOLA,

that composes the behavior Of Disk Manager in parallel with the testing process

accept_test through gates Input and Output, and executes a random trace Of the
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composed process. The success event that appears in the 9th step shows that the

test successfully terminates. This implies that the returned values by Disk Manager

are correct.

 

lola> oneexpand 10 success accept_test -v

oneexpand 10 accept_test 0 1 -v

Rewriting expressions in the specification.

Rewriting done.

Analysing unguarded conditions.

Analysis done.

Composing behaviour and test :

accept_test [input,output,success]

I[input,output]l

idle [input,output] (empty)

input

input

input

input

output

output

output

output

(
O
W
N
O
S
U
'
I
h
C
D
M
O
-
b ! hex(O) ! succ(succ(succ(succ(0))));

! 3 + hex(9) ! succ(O);

! hex(S) ! succ(succ(succ(0)));

! hex(8) ! succ(succ(0));

! succ(O);

! 3 + hex(9);

! succ(succ(succ(0)));

! hex(5);

SUCCGSS;

Process Test - accept_test

Test result SUCCESSFUL EXECUTION.

Transitions generated = 9

Figure 8.10: Using accept_test testing process to analyze the specified Disk Manager

 

Similarly, other testing cases can also be written tO check the behavior Of the Disk

Manager. In addition, a stepwise simulation can also be conducted to further analyze

the behavior Of Disk Manager. Since the behavior Specifications, case testing, and

stepwise simulation are event-based, both case testing and Simulation enables the
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designers tO detect design flaws that two or more related behavior sequences are

inconsistent.

Refined (System Level) Object Model (4). Decomposition is one of the most

important activities during design. Although decomposition heuristics is outside the

scope Of this research, it is necessary tO give an overview because Of its importance

during design.

Decomposition heuristics is an important issue Of design and is interwoven with

design refinement during the design process. At each step Of design refinement, de-

composition may be performed in order to decompose a part Of a system into smaller

modules for implementation. Software architectures and design patterns are two ma-

jor decomposition heuristics that have gained extensive interest in recent years. They

are also applicable during our proposed design process.

Software architecture: The component structure of a program or system, their in-

terrelationships, and principles and guidelines governing their design and evo-

lution over time [100].

Architectural style: A recurring pattern of system organization that provides an

abstract architecture for some family of applications [103].

Design pattern: Descriptions of communicating objects and classes that are cus-

tomized to solve a general design problem in a particular context [104].

Software architecture has long been recognized as an important issue for software

development [6] and has recently received significant attention [101, 102]. The emer-

gence Of research in software architecture is due tO two primary reasons [100]. One

reason is that over the years designers have begun tO develop a shared repertoire of

methods, techniques, patterns, and idioms for structuring complex software systems.
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The other reason is that the practice Of application development for different domains

now, after many years Of hard work, has resulted in reusable frameworks for product

families. The concern Of software architecture mainly focuses on the organization and

the connection Of the components Of a large system. The architecture style refers tO

a class Of architectures that share common characteristics. We, the Software Engi-

neering Research Group at Michigan State University, have further characterized the

architectural style in terms Of architectural topology, characteristics/constraints Of

components, and characteristics Of connections between components [105]. The most

popular architectural styles include client-server, pipeline, layered, and SO on.

Design patterns [104] provide reusable design blocks that help tO alleviate software

complexity during system design (for Simple systems) and detail design stages. They

supply the designers with design alternatives that have proven tO be successful. Design

patterns can be used for architecture design if a system is simple.

Though a design process and design decomposition have entirely different scopes

Of concern, there is a close relationship between the two. A design process focuses

on providing a process tO facilitate the decomposition and refinement Of design in-

formation. Architectures and patterns focus on the advantages and disadvantages

Of different architectural styles and design patterns and their ability to solve specific

types of problems. Thus choosing a certain architectural style or design pattern is an

important step during design.

During the Object-oriented design process, the Objects are decomposed into sets

Of finer-grained Objects in order tO achieve modularity that reduces complexity. This

decomposition activity is facilitated by Object model refinement in our proposed de-
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Sign process. A refined Object model depicts the decomposition Of Objects Of a higher

level Of abstraction. Since a refined Object model decomposes an Object into aggregate

Objects, it looks like a tree structure with a root and a set Of leaves. In this step,

architectural styles as well as design patterns should also be taken into consideration

in order to conduct better decomposition. The former is applicable for a system and

the latter for the decomposition Of an individual Object. During the first iteration Of

refinement, where the refinement Of a system-level Object model decomposes a system,

architectural styles Should be considered. For Object decomposition, existing design

patterns may help the designers tO conduct the refinement process. From the refined

Object model, frameworks Of formal Specifications for newly introduced Objects can

be automatically generated by using our proposed formalization rules.

We have thus far achieved a relatively complete formal specification in Full LOTOS

for the Disk Manager. The term “complete” used here means that the specification

includes the static, functional, and behavioral description Of an Object instead Of

implying that the design is completed. In order tO conduct the design to a more

detailed level, further refinement is needed.

Figure 8.11 gives a refined Object model for Disk Manager. The refined Object

model shows that Disk Manager is composed Of aggregate Objects Storage and Com-

pressor. The Object diagram in Figure 8.11 generates two specification frameworks for

Objects Storage and Compressor in Figure 8.12. Once the aggregate Objects, Storage

and Compressor, are further specified in terms Of functional and dynamic models,

more design details Of Disk Manager can be added by using formal specifications

generated by aggregate Objects.
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Storage Compressor

   

  

      

Figure 8.11: The refined Object model for Disk Manager

 

 

specification Storage [gates] : noexit

type Storage is Disk_Manager

endtype

endspec

specification Compressor [gates] : noexit

type Storage is Disk_Manager

endtype

endspec

Figure 8.12: The ACT ONE specifications for Object models Of Storage and Compres—

sor

 

Object Functional (5) and Dynamic Models (6a). The OFM describes the

services provided by an individual Object to its external world. When an aggregate

Object is introduced into a system for the first time during the refinement Of Object

models, its corresponding OFM should also be developed to specify what services the

Object provides. Similar to the system-level OFM, based upon OFMs for individual

Objects, formal specifications that describe the signatures Of the services can be au-

tomatically generated according to formalization rules, and pre- and postconditions

that describe the behavior Of services derived by designers.
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Based upon the OFM for an Object, an Object dynamic model can be developed

tO capture the dynamic behavior (interaction patterns) Of the Object in terms Of the

services provided by the Object. The formal specifications that are automatically

derived from dynamic models describe the behavior Of the Objects in terms Of process

algebras.

Similar tO the process used tO generate formal specification for the Disk Manager,

Figures 8.13, 8.14, 8.17, and 8.18 contain the OFMS and dynamic models for Objects

Storage and Compressor, respectively. Their corresponding specifications in Full LO-

TOS are given in Figures 8.15, 8.16, and 8.19. The used rules include 0M1, 0M2,

OM10, DFR—l, DFR—2, DFR—3, DFR—4, DFR—6, DFR—7, DFR-8, DFR—ll,

DFR-12, DFR—13, FFR—l, FFR—Z, FFR-3, and FFR-4.

 

 
I Storage [

f \

\.I)aia\‘

/ Key :

Key a Data
__ _.
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\ J

Figure 8.13: The Object functional model for Storage
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[ Storagezs
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( insert(d:D,k:K)/insert(s.d,k)

 

insert(d:D.k:K)/insen(s.d,k)

' retrieve(k:K)/retrieve(s,k)

delete(k: K)[count= 1 ]/delete(s.k)

delete(k:K)[count>1]/delete(s.k)

K J
  

Figure 8.14: The Object dynamic model for Storage

 

Service Refinement Functional Model (6b). The description of a service re-

finement functional model involves a few subtleties because its derivation involves

several models at different levels Of abstraction. Figure 8.20 gives an example Of a

refined Object model.

In Figure 8.20, Object O is a more abstract Object model that is decomposed

(refined) into objects 01, 02, ..., On in the refined Object model. Objects O, 01,

02, ..., O,, are all associated with corresponding OFMs identifying the services they

provide. If S is a service provided by O, then its corresponding SRFM depicts how S

is composed in terms Of the services provided by O], 02, ..., On. However, the SRFM

only illustrates the data transformation among the provided services, the control

information and the order in which the provided services are activated are not in the

scope Of SRFM. However, the SRFMS do capture the data dependency relationships

between the services provided by aggregate Objects. Therefore, algebraic axioms can

be specified tO describe the constraints on the SRFM in which the aggregate Object
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specification Storage [Insert, Retrieve, Delete] (8: S) :noexit :=

(*| Insert : d: Data, k: Key -> Void l*)

(*lrequires d eq undef_Data = false and k eq undef_Key = false l*)

(*Imodifies s It)

(*lensures 3’ eq insert(s‘, d, k) = true |*)

(*| Retrieve : k: Key -> d: Data I*)

(*lrequires 8 eq empty = false l*)

(*Iensures result = retrieve (s, k) |*)

(*| Delete : k: Key -> Void l*)

(*Irequires k eq undef_Key = false and 8 eq empty = false|*)

(*Imodifies s |*)

(*Iensures 3’ eq delete(s‘, k) = true |*)

type Storage is Disk_Manager, NaturalNumber

sorts

type S is (*l Distinguished sort 1*)

empty I insert (S, Data, Key)

endtype

opns

retrieve : S, Key -> Data

delete : S, Key -> S

count : S -> Nat

eqns

forall s: 8, data: Data, k1, k2: Key

ofsort Data

retrieve (empty, key) = undef_data;

retrieve (insert(s, data, k1), k2) = if k1=k2 then data

else retrieve(s, k2);

delete (empty, key) = empty;

delete (insert(s, data, k1), k2) = if k1=k2 then 8

else delete(s, k2);

count (empty) = 0;

count (insert(s, data, key)) = Succ(count(s));

endtype

endspec

Figure 8.15: The specification for Object Storage in Full LOTOS
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behavior

Empty_State [Insert, Retrieve, Delete] (empty)

where

process Empty_State [Insert, Retrieve, Delete] (3: S) : noexit :=

(let PRE = s in

Insert ?dzD ?k:K;

(let POST = insert(PRE, d, k)

in None_Empty_State [Insert, Retrieve, Delete] (POST))

endproc

process None_Empty_State [Insert, Retrieve, Delete] (8 : S) : noexit :=

(let PRE = s in

Retrieve ?k:K;

[not(s eq empty)] ->

Retrieve ! retrieve (PRE, k);

None_Empty_State [Insert, Retrieve, Delete] (PRE)

ll

Insert ?d:D ?k:K;

[not(d eq undef_Data) and not(k eq undef_Key)] ->

(let POST = insert(PRE, d, k) in

None_Empty_State [Insert, Retrieve, Delete] (POST)

)

[1

Delete ?k:K;

[not(k eq undef_Key) and not(s eq empty)] ->

([count(s) gt Succ(0)] ->

(let POST = delete (PRE, k)

in None-Empty_State [insert, retrieve, delete] (POST))

[l

[(count(s) eq Succ(0)) and (delete(s,k) eq empty)] ->

(let POST = delete (PRE, k)

in Empty_State [insert, retrieve, delete] (POST))

)

)

endproc

endspec

Figure 8.16: The Specification for Object Storage in Full LOTOS
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Figure 8.17: The Object functional model for Compressor
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decompress(dzD)

decompression
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  compress(dzD)
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compress(d)

Figure 8.18: The Object dynamic model for Compressor

     

 

 

services are related with each other. Because the services are specified in terms Of

pre- and postconditions, we can use them to describe design constraints.

In Figures 8.21 and 8.22, the SRFMS for services Input and Output provided by

Disk Manager are illustrated. The constraints introduced by the refinement Of the

service Output is described in terms Of ACT ONE axioms in Figure 8.23. Given

the SRFM in Figure 8.22, according to the formalization rules for SRFMS in Chap-

ter 6, the postcondition Of service Storage.Retrieve and the precondition Of service

Compressor.Decompress, which are given in Figures 8.15, 8.16, and 8.19 respectively,

should be consistent. The conjunction Of the two can be analyzed tO check the con-
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specification Compressor [Compress, Decompress] (c: C) :noexit :=

(*I Compress : d: Data -> Data |*)

(*lrequires d eq undef_Data = false |*)

(*lensures result = compress(d) and size(result) 1e size(d) l*)

(*l Decompress : d: Data —> Data |*)

(*lrequires d eq undef_Data = false |*)

(*lensures result = decompress(d) and size(result) ge size(d) |*)

type Storage is Disk_Manager, NaturalNumber

sorts

C (*I Distinguished sort |*)

opns

compress : Data -> Data

decompress : Data -> Data

size : Data -> Nat

eqns

forall data: Data

ofsort Bool

size(data) ge size(compress(data)) = true;

size(data) le size(decompress(data)) = true;

decompress(compress(data)) = data;

endtype

behavior

Idle_State [Compress, Decompress]

where

process Idle_State [Compress, Decompress] : noexit:=

Compress ?dzD; Compress_State [Compress, Decompress] (d)

[l

Decompress ?dzD; Decompress_State [Compress, Decompress] (d)

endproc

process Compress_State [Compress, Decompress] (dzD): noexit:=

i; Compress ! compress(d); Idle_State [Compress, Decompress]

endproc

process Decompress_State [Compress, Decompress] (dzD): noexit :=

i; Decompress ! decompress(d); Idle_State [Compress, Decompress]

endproc

endspec

Figure 8.19: The Specification for Compressor in Full LOTOS
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pg 53-53

Figure 8.20: An example refined Object model

 

sistency Of function refinement. Since the result Of Storage.Retrieve will be supplied

tO Compressor.Decompress, given the pre— and postconditions Of the two services, the

constraint is

((s neq empty =>(resu1t=retrieve(s,k) and result neq undef_Data) eq false)=false).

The equation specifies that, given a non-empty Storage Object, the retrieved data

for key k should be a valid data item that can be fed into the Decompress service

provided by the Compressor Object.

 

 

  

 

     

    

 

Disk_Managerlnput

Data Compressor.

Compress

 

Key Storage.

Insert

 

Figure 8.21: The service refinement functional model for function Input Of Disk Man-

ager

 

There are basically two approaches tO performing the consistency checking. As

mentioned previously, due tO the lack Of proof tOOl support for ACT ONE spec-
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Disk_Manager.Output

  

  

  

   

Storage.

Retneve

Data

  

Compressor.

Decompress  

Figure 8.22: The service refinement functional model for function Output Of Disk

Adanager

 

 

type Disk_Manager_REF is Storage, Compressor, Disk_Manager

eqns

forall s: S, d: Data, k: Key

ofsort Bool

not(s=empty) => not(retrieve(s,k) = undef_Data) = true

endtype

Figure 8.23: The refined ACT ONE specification for Disk Manager

 

ifications, we translated the specifications into LSL in order to use LP to check

for consistency between pre- and postconditions. The corresponding LSL specifi-

cations are given in Appendix F. Figure 8.24 gives the LSL specification trans-

lated from the ACT ONE specification for the refined Disk Manager given in Fig-

ure 8.23. The translation is currently performed manually, though a parer can be

written to perform the translation automatically. The prOOf Obligation is simplified

tO ”(s=empty) =>"(retrieve(s,n)=undef_d) and is given in the implies clause (the

simplification can also be assisted by tools, such as PVS). Figure 8.25 shows the result

Of the proof using LP.
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Disk_ref (D, K): trait

includes Storage(D,K) , Compressor(D)

implies

V s: S, n: N

~(s=empty) => ~(retrieve(s,n) = undef_d);

Figure 8.24: The LSL specification for the refined Disk Manager

 

 

LP2: display proof

Conjecture Disk_refTestTheorem.1: ~(s = empty) => ~(retrieve(s, n) = undef_d)

Attempting a proof by depth 2 structural induction on ‘8’

Level 2 subgoal 2 (basis step) for proof by induction on s:

~(insert(empty, n1, n2) = empty)

=> ~(retrieve(insert(empty, n1, n2), n) = undef,d)

Current subgoal: ~((if n = n2 then n1 else undef-d) = undef_d)

Attempting a proof by depth 2 structural induction on ‘n’

Level 3 subgoal 1 (basis step) for proof by induction on n:

~((if O = n2 then n1 else undef_d) = undef_d)

Attempting a proof by depth 2 structural induction on ‘n1’

Level 4 subgoal 1 (basis step) for proof by induction on n1:

~((if O = n2 then 0 else undef_d) = undef_d)

Attempting a proof by depth 2 structural induction on ‘n2’

Level 5 subgoal 2 (basis step) for proof by induction on n2:

~((if 0 = succ(O) then 0 else undef_d) = undef_d)

Current subgoal: false

Attempting a proof by normalization

LP3:

Figure 8.25: The prOOf Of the example constraint using LP
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By using the induction prOOf method provided by LP, we reach a point that Shows

Current subgoal: false (in Figure 8.25), which means there are cases that leads

tO false under that constraint. The prOOf detects an inconsistency between the post-

condition Of Storage.Retrieve and the precondition Of Compressor.Decompress, thus

requiring us tO perform a further inspection into the problem. Further investigation

reveals that the Storage.Retrieve Operation is Specified to return undef.d if it is given

a key that has never been inserted into the storage. In this case the precondition Of

Compressor.Decompress, which specifies that the input is not an invalid value, cannot

be satisfied. This situation must be taken into consideration when the dynamic model

Of Disk Manager is refined.

Refined (System) Dynamic Model (7). Once the services Of Object O are re-

fined in terms Of services provided by aggregate objects 01, 02, ..., On, and the

dynamic models Of 01, Oz, ..., 0,, are derived, the dynamic model Of O is refined

accordingly. The refined dynamic model substitutes the services Of O with services

provided by 01, 02, ..., 0,, and interacts with the dynamic models Of 01, 02, ...,

On. From the refined dynamic model, a specification in terms Of process algebras can

be automatically generated. The specification describes the refined behavior Of the

corresponding Object. For instance, Figure 8.26 Shows an example dynamic model for

Object O. The dynamic model contains only one state. Whenever an event 51 occurs,

the two arguments associated with the event are taken, the corresponding service, SI

is triggered tO provide the requested service.
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Figure 8.26: An example dynamic model for Object O

 

Figure 8.27 shows an example SRFM that refines service 81 Of Object O in terms

Of the services provided by Objects 01 and 02 that constitute O. In this diagram, the

data flows and the related services are depicted. Service 02.53 takes the output Of

service 01.82 as input, thus having a data dependency.

 

 

Figure 8.27: An example SRFM for service S1 Of Object O

 

The dynamic model in Figure 8.28 further refines the dynamic model Of Object 0

given in Figure 8.26 according to the SRFM in Figure 8.27. The diagram depicts the

behavior sequence Of Object O for a given event that requests for service 51. Once

0 receives a request for service 31: ( 1) 51 Of O takes two input arguments; (2) feeds

them intO 01.32; (3) takes the output from Ol.S2 and feeds it into 02.83; (4) then

takes the output from 02.83 and returns it tO the caller Of service SI.
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Figure 8.28: An example refined dynamic model for Object O

 

Based upon the SRFMS, the dynamic model Of Disk Manager is further refined

and given in Figure 8.29. Three intermediate states 1S1, 1S2, and 1S3 are added in or-

der to describe the refined dynamic behavior. The refined dynamic model reflects the

fact that the services Input and Output Of Disk Manager are implemented in terms

Of the services provided by Objects Storage and Compressor. However, the refined

dynamic model was derived before we conducted the consistency for the SRFMS. As

we have shown in the above discussion, the returned value from Storage.Retrieve,

under some circumstances, may be undef_Data, which is contradictory tO the pre-

condition for Compressor.Decompress. This needs to be addressed in the refined

dynamic model. Therefore a guarding condition is added tO the transition that trig-

gers the Compressor.Decompress event in order tO guarantee that the value passed

to Compressor.Decompress is valid. In addition, once an invalid value is returned

from Storage.Retrieve, the state Of Disk Manager should return to Idle instead Of

conducting further transactions. The revised dynamic model is given in Figure 8.30.

The corresponding refined specification in terms Of process algebras is given in Fig-

ure 8.31. The formalization rules used tO generate the formal specification include
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DFR—l, DFR—2, DFR—B, DFR-4, DFR—5, DFR—6, DFR—7, DFR-8, DFR—ll,

DFR-12, and DFR-13.
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Figure 8.29: The refined dynamic model for Disk Manager
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Figure 8.30: The revised refined dynamic model for Disk Manager

 

Composed Parallel Dynamic Model (8). Given the refined dynamic model Of

Object O and dynamic models Of aggregate Objects 01, 02, ..., On, a parallel dynamic

model can be composed tO model communication and interaction Of the aggregate

Objects. In the parallel dynamic model, the refined dynamic model Of O and the

dynamic models Of 01, 02, ..., On communicate with each other. With respect to

information encapsulation, one key characteristic Of any Object-oriented methodology
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type Disk_Manager_REF is Storage, Compressor, Disk_Manager

behaviour

Idle [Input,Output,Compress,Decompress,Insert,Retrieve]

where

process Idle[Input,Output,Compress,Decompress,Insert,Retrieve]::noexit:::

Input ?dzD ?k:K; Compress !d !k;

ISl[Input,Output,Compress,Decompress,Insert,Retrieve](k)

[l

Output ? sz; Retrieve ! k;

IS2[Input,Output,Compress,Decompress,Insert,Retrieve]

endproc

process ISl [Input ,Output ,Compress ,Decompress, Insert,Retrieve] : noexit :=

Compress ?dzD; Insert !d !k;

Idle[Input,Output,Compress,Decompress,Insert,Retrieve]

endproc

process IS2 [Input , Output ,Compress ,Decompress , Insert ,Retrieve] : noexit z:

Retrieve ?d:D;

([d eq undef_Data] ->

Idle[Input,Output,Compress,Decompress,Insert,Retrieve]

[]

[not(d eq undef_Data)] -> Decompress !d;

ISS[Input,Output,Compress,Decompress,Insert,Retrieve]

)

endproc

process I33 [Input ,Output ,Compress ,Decompress , Insert,Retrieve] : noexit :=

Decompress ?dzD; Output !d;

Idle[Input,Output,Compress,Decompress,Insert,Retrieve]

endproc

endspec

Figure 8.31: The refined ACT ONE specification for Disk Manager

 

is that a change in an Object is not visible tO external Objects. The only means that

a change can be reflected tO other Objects is through inter-Object communication.

Accordingly, the inter-Object communication is the only communication mechanism

in the formalized model; the visible events Of an Object are realized by the inter-Object

communication external tO the Object. The inter-Object communication is described

in terms Of LOTOS gate synchronizations (see Chapter 5). Formal specifications

can also be automatically generated from the composed parallel dynamic model (see
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Chapter 5). The formal specifications precisely capture the dynamic interaction Of the

corresponding models. In addition tO behavior simulation, the formal specifications

can used tO perform consistency checking against output O’s original dynamic model

before refinement.

Since the refined dynamic model Of Disk Manager triggers the services provided

by Storage and Compressor, a dynamic model that comprises the three behavioral

dynamic models in parallel is constructed in Figure 8.32. The corresponding formal

specification include both specifications for Storage and Compressor, in addition to

that for Disk Manager, in Full LOTOS. The specifications for Storage and Compressor

are treated as a Single complex process instead Of as separate specifications because

of the specification structure Of the LOTOS language. The entire specification is

given in Appendix G. The specification given in Figure 8.33 describes how the three

dynamic models are composed in parallel in terms Of LOTOS.

Given the refined LOTOS specification for Disk Manager in Figure 8.33, we can

use the same set Of testing processes for Disk Manager that were developed before the

refinement and decomposition to check the consistency Of the refined models. Fig-

ures 8.34 and 8.35 captures the transcript Of oneexpand that composes the behavior

Of the refined Disk Manager in parallel with the testing process accept_test (given

in Figure 8.9) through gates Input and Output, and executes a random trace Of the

composed process. The success event that appears in the 35th step in Figure 8.34

shows that the test successfully terminates. This result implies that the values re-

turned by Disk Manager are correct. If the internal events, 1, are removed from the
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I Disk_Manager I

( Storage: 3 \

( ins(d:D.k:K)/insen(d.k)

insld:D.k:K)/insert(d.k) .

ret(k: K )lretrieve(k)

delete(k: K )[count=l I/delete(k)

delete(k: K )[count>l l/deletelk)

l' ....................................................................

Disk_Manager: dm

output! k: K Y‘Storagcretl k)

input(d' 0.1:: K Y‘Compressorcormd)

   

 

ret(d:D)[d!=undef_Data] Ionipressordecid) com(d:D)"Storage.ins(d.k)

dec(d:D)/output(d

Compressor: c

dec(d‘ D) ( com(d'D)

decompress(d ):

 

  

 

 

compress(d)  

 

     
k J

Figure 8.32: The refined dynamic model for Disk Manager that is composed by

parallel dynamic models

 

 

type Disk_Manager_REF is Storage, Compressor, Disk_Manager

behaviour

hide Compress, Decompress, Insert, Retrieve, Delete in

Storage [Insert, Retrieve, Delete] l[Insert, Retrieve]|

Idle [Input, Output, Compress, Decompress, Insert, Retrieve]

l[Compress, Decompress]| Compressor [Compress, Decompress]

endspec

Figure 8.33: The composed Specification for Disk Manager
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result, we can find that the execution result is identical tO that given in Figure 8.9

(the testing process for Disk Manager before refinement).

 

lola> oneexpand 50 success accept_test -v -i

oneexpand 50 accept_test 0 1 -v -i

Composing behaviour and test :

accept_test [input,output,success]

|[input,output]|

(hide ins,ret,del,com,dec in

storage [ins,ret,del]

l[ins,ret,del]l

idle [input,output,com,dec,ins,ret,de1]

l[com,dec]l

compression [com,dec]

Figure 8.34: Using accept_test testing process tO analyze the behavior Of the refined

Disk Manager (1)

 

8.4 Summary

In this chapter, based upon the formalization and integration Of the models Of OMT

(presented in Section 2.4 and Chapters 4, 5, and 6), we prOposed a design process

that facilitates the deveIOpment Of formal design specifications in parallel with the

development Of OMT’s semi-formal, graphical models. Because Of the rigorous math-

ematical foundation Of formal specifications, both customers and designers can have

a more precise means to describe the design thus avoiding ambiguities. In addition,

symbolic simulation Of the design can help designers better understand the design as

well as facilitate the communication among designers and even with the customers.
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1 input ! hex(O) ! succ(succ(succ(succ(0))));

2 i; (* com ! hex(O) *)

3 i;

4 i; (* com ! compress(hex(0)) *)

5 i; (* ins ! compress(hex(0)) ! succ(succ(succ(succ(0)))) *)

6 input ! 3 + hex(9) ! succ(O);

7 i; (* com ! 3 + hex(9) *)

8 i;

9 i; (* com ! compress(3 + hex(9)) *)

10 i; (* ins ! compress(3 + hex(9)) ! succ(O) *)

11 input ! hex(S) ! succ(succ(succ(0)));

12 i; (* com ! hex(S) *)

13 i;

14 i; (* com ! compress(hex(5)) *)

15 i; (* ins ! compress(hex(5)) ! succ(succ(succ(0))) *)

16 input ! hex(8) ! succ(succ(0));

17 i; (* com ! hex(8) *)

18 i;

19 i; (* com ! compress(hex(8)) *)

20 i; (* ins ! compress(hex(8)) ! succ(succ(0)) *)

21 output ! succ(O);

22 i; (* ret ! succ(O) *)

23 i; (* ret ! compress(3 + hex(9)) *)

24 i; (* dec ! compress(3 + hex(9)) *)

25 i;

26 i; (* dec ! 3 + hex(9) *)

27 output ! 3 + hex(9);

28 output ! succ(succ(succ(0)));

29 i; (* ret ! succ(succ(succ(0))) *)

30 i; (* ret ! compress(hex(5)) *)

31 i; (* dec ! compress(hex(5)) *)

32 i;

33 i; (* dec ! hex(5) *)

34 output ! hex(5);

35 success;

Process Test

Test result

accept_test

SUCCESSFUL EXECUTION.

Transitions generated = 35

Figure 8.35: Using accept_test testing process tO analyze the behavior Of the refined

Disk Manager (2)
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Finally, consistency can be checked during model refinement Of the design process to

detect and eliminate design flaws during earlier stages Of software development. A

simple example that employed the prOposed process tO conduct design is also given.



Chapter 9

Case Study

As a means tO Obtain empirical credibility [106] for our research, we applied the for-

malization and integration rules and design process tO an industrial project. This

chapter shows a case study that applied our prOposed integration and formalization

rules and design process to an industrial project, the Environmental Information Sys-

tem (ENFORMS) [107, 108], developed by the Software Engineering Research Group

(SERG) at Michigan State University over a three year period involving 15 software

developers. The remainder Of this chapter is organized as follows. Section 9.1 intro-

duces background information about the project. Section 9.2 discusses the focus Of

the case study. An overview Of the requirements analysis for ENFORMS project is

given in Section 9.3. Section 9.4 describes the system level modeling Of ENFORMS.

Based upon the system modeling, Section 9.5 discusses the system design Of EN—

FORMS. The design analysis and refinement Of ENFORMS is given in Section 9.6.

A summary and conclusions drawn from the case study are given in Section 9.7.

209
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9.1 The Project

During this decade, NASA will launch many new platforms into earth orbit, including

the satellites that will make up the Earth Observing System (EOS). The remotely

sensed data Obtained from EOS can be used tO promote global and national security,

extend international cooperation, and improve our ability to understand and man-

age global environmental, economic, and social problems. In the past, NASA and

other agencies have focused on the acquisition Of data rather than the integration or

the dissemination Of data. Many organizations addressing grand challenge problems,

such as those defined by earth sciences, require the integration Of both physical and

human resource databases in an interactive manner. Such a capability allows reason-

ably informed policy analysts and related staff tO query an “Environmental Science

Workstation” SO as tO better understand how human uses impact our natural resource

base.

Scientific research addressing global change continues tO generate large quantities

Of information for analysis and understanding. However, the volume, distributed

nature, and diversity Of this information prohibits convenient access by many potential

users, including policy analysts, federal agency stafi, and local township planners.

ENFORMS [107, 108] has been developed tO facilitate the access, integration,

and analysis Of data relevant to a regional study that has local and global impacts.

Specifically, information from studies Of the Saginaw Bay Watershed region has been

used tO populate the ENFORMS archive. ENFORMS is the result Of a multidis-

ciplinary effort, largely sponsored by NASA, EPA, USDA, and the Consortium Of
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International Earth Science and Information Network (CIESIN). The project team

consists Of researchers and practitioners from fields including computer science, en-

tomology, ecology, land and resource management, sociology, and geography. The

project team is divided into user needs analysts, application scientists, and computer

scientists.

There were several motivating factors that led to the selection Of the Saginaw

Bay Watershed region as the focus Of the regional study [107, 108]. The Saginaw Bay

Watershed region is located in central Michigan around the mouth Of the Saginaw Bay

Of Lake Huron. It is over 8,700 square miles in size. Large areas are devoted toward

industry and agriculture. Several state and national forests are located in the area.

There is also one major river in the area (Saginaw River) with many tributaries that

flow into the Saginaw Bay. Thus, the entire watershed afiects the quality Of the Great

Lakes. The region is an excellent area tO study how humans affect the environment

because the major types Of land uses exist in the area. In addition, the Saginaw Bay

Watershed region is an important resource for the state Of Michigan as well as for the

United States. It is the center Of some Of the most productive agricultural soils in the

country. It contains several large industrial centers and thus supports many facets Of

the states’ economy.

The Saginaw Bay Watershed region has been identified by several United States

government agencies (e.g. EPA and USDA) as an area Of environmental concern

due tO the massive amount Of soil erosion that occurs in the area. The Great Lakes

Commission has reported that nearly 606 million tons Of soil are lost annually from
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the Great Lakes area, at the cost Of over 3 billion US. dollars worth Of lost nutrients

and productivity [109].

The Objective Of ENFORMS is tO provide users with convenient access tO large

amounts Of multimedia information that may be distributed across many sites. Fig-

ure 9.1 shows a high-level View Of the organization, where the rectangles represent

participating sites.

 

in ”m «is

fl Legend

m o W

“‘5‘ I [:1 Server processes

— Connection

 

   

 

Figure 9.1: A high-level view Of the architecture

The main requirements Of the system are threefold. First, the archive itself is

potentially large, and thus some sort of selective browsing mechanism is necessary

to help the user navigate through the archive. In order to keep the system flexible

for new users and new features, it it was necessary that the system design be able

to support a variety Of browsing mechanisms and not be tightly coupled with either
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the user interface or the user interface technology [110]. Second, information items

may be stored in a variety Of forms [111]: simple databases and data files, images,

documents, GIS maps, animations, parameterized models, and SO on; accordingly, the

system must be able tO determine which software tOOls are needed tO examine each

item. Finally, when accessing the archive, the distributed nature Of the stored items

should be transparent to the user with regards to the browser [111]; this requirement

also suggests that the system Should be able tO Operate both as a stand-alone system

and as a component Of a distributed system.

9.2 Focus of the Case Study

ENFORMS is a relatively large system that cost about 10 person years. In this

case study, we focus on the requirement that the distributed nature of the stored

items should be transparent to the user with regards to the browser when accessing the

archive. The case study shows that:

o The formalization and integration rules for OMT models can help the designers

to derive more precise and integrated descriptions Of the design.

0 The proposed design process facilitates the refinement Of design information.

0 Based on the formal specifications derived from OMT models, analysis can be

performed tO check design consistency and to facilitate the understanding about

the design.

9.3 Overview of the Requirements Analysis

This section focuses on the distributed query feature Of the ENFORMS system.
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A high-level description Of requirements analysis based on [112] is given as follows

tO provide an overview.

From the most abstract point Of View, the ENFORMS system allows a user tO

gain access to an archive Of data, where the identification Of the data Of interest is

achieved by browsing related indices (i.e., a classification scheme) about the data.

The ENFORMS uses a browse-analysis approach for decision support. Browsing

is the method used tO facilitate the construction Of queries about topics Of interest,

retrieval Of data related to those interests. Analysis services utilize data that is

retrieved from the archive after browsing.

In the browse-analysis framework, each browse-analysis task begins in the browse

state, where a user browses based on the type Of search model being employed. Search

models can vary from hierarchical and spatial to thematic. Once the search criteria

have been defined, data is retrieved, placing the browse-analysis task in the retrieve

state. If a search is successful (i.e., desired data has been found), the browse-analysis

task transitions into the analysis state, where a user can analyze the data using tOOls

that can manipulate the data.

From the user perspective, there will be two modes Of Operation, browsing and

analysis. Browsing is a process that results in the selection of datasets from the data

archive. Selected datasets become part Of a project that may be used by the analysis

services. Analysis services provide tOOlS for exploring and manipulating the content

Of selected data sets. Analysis services allow for data tO be subsetted, aggregated

both spatially and temporally, and the results displayed in a variety Of manners. The

results Of data analyses are data products, and the sequence Of Operations that define
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a given product (the product specification) can be used to represent the data product

rather than tO actually require the product tO be explicitly stored.

While original sources Of data may be single repositories (i.e., the EPA mainframe),

users have been moving towards network topologies in terms Of both computer use and

data distribution. The ENFORMS system has been designed and implemented with

the assumption that users, as well as the data that they wish tO access, is distributed in

nature. Figure 9.1 depicts this idea Of an archive that is accessible via many different

network sites and by many different users. In order for ENFORMS tO be usable by

a wide group Of users, it must be able to Operate within the distributed computing

paradigm. Requirements R01004 and R04001 are from the original requirement

analysis document [112].

R01004 The system must provide distributed data access services.

RO400l The system will provide services that allow for the transparent

distribution Of data across a network Of data archives.

9.4 System Level Modeling

Based on the requirement analysis, the system level Object model, Object functional

model (OFM), and dynamic model shown in Figure 9.2 give a description Of the

system tO be develOped at a very high level Of abstraction. The Object model iden-

tifies the ENFORMS system that includes both data archives and corresponding

data indices as the target system for development. The OFM depicts three services,

Browse, Retrieve, and Analysis, that the system is supposed tO provide. Based on

data indices, service Browse takes user input and formulates retrieve request. Ser-
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vice Retrieve retrieves records from data archives for given retrieve requests. Service

Analysis performs analysis on the retrieved records according tO user input. The

dynamic model captures the behavior Of the system where a Retrieve service request

must be preceded by Browse requests, and Analysis service request must be preceded

by Retrieve requests.
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Analysis(ar: Analysis_Request)

IAnalysis(ar)

k J

System level dynamic model

Figure 9.2: The design models Of ENFORMS at the system level

 

Figures 9.3 9.4 show the formal specification Of the system. The formalization

rules used tO generate the formal specification include OMl, 0M2, OM10, DFR-l,

DFR—2, DER-3, DFR—4, DFR—6, DFR-7, DFR—8, DFR—ll, DFR-12, DFR-

13, FFR-l, FFR—Z, FFR—3, and FFR—4. The specification can be automatically

generated by applying the formalization rules given in the previous chapters. The

specifications generated automatically from the diagrams give a formal description
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Of the services that the system provides and the behavioral dynamic aspects Of the

system.

 

specification ENFORMS [Browse, Retrieve, Analysis] (e: ENFORMS) : noexit

(* Browse: ui: User_Input -> Retrieve_Request *)

(* Retrieve: rr: Retrieve_Request -> Retrieve_Result *)

(* Analysis: ar: Analysis-Request -> Analysis_Result *)

library

Boolean

endlib

type ENFORMS is Boolean

sorts

Data_Archives, Data_Indices, User_Input, Retrieve_Request,

Retrieve_Result, Analysis_Request, Analysis_Resu1t, ENFORMS

opns

undef_Data_Archives : -> Data_Archives

_ eq _ : Data_Archives, Data_Archives -> 8001

undef_Data_Indices : -> Data_Indices

- eq _ : Data_Indices, Data_Indices -> 8001

undef-User_Input : -> User_Input

_ eq _ : User_Input, User_Input -> 8001

undef_Retrieve_Request : -> Retrieve_Request

_ eq _ : Retrieve_Request, Retrieve_Request -> Bool

undef_Retrieve_Resu1t : -> Retrieve_Result

_ eq _ : Retrieve_Result, Retrieve_Result -> 8001

undef_Analysis_Request : -> Analysis_Request

_ eq _ : Analysis_Request, Analysis_Request —> 8001

undef_Analysis_Result : -> Analysis_Result

_ eq _ : Analysis_Resu1t, Analysis_Result -> 8001

undef_ENFORMS : -> ENFORMS

_ eq _ : ENFORMS, ENFORMS -> 8001

Browse: User_Input -> Retrieve_Request

Retrieve: Retrieve_Request -> Retrieve_Result

Analysis: Analysis_Request -> Analysis_Result

isvalid : Retrieve_Request -> 8001

ENFORMS : Data-Archives, Data_Indices -> ENFORMS

getArchives : ENFORMS —> Data_Archives

getIndices : ENFORMS -> Data_Indices

endtype

Figure 9.3: The formal specification automatically generated from system models (1)

 

The automatically generated specification should be syntactically correct. Inter-

model checking can be performed tO check the consistency between the three models
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behavior

Browse?ui:User_Input; Browse!Browse(ui); Browse[Browse,Retrieve,Ana1ysis](e)

where

process Browse[Browse,Retrieve,Analysis](e:ENFORMS):noexit:=

Browse?ui:User_Input; Browse!Browse(ui);

Browse[Browse,Retrieve,Analysis](e)

[l

Retrieve?rr: Retrieve_Request;(

[isvalid(rr)] -> Retrieve!Retrieve(rr);

Analysis[Browse,Retrieve,Analysis](e)

[1

[not(isvalid(rr))] -> Browse[Browse,Retrieve,Analysis](e)

)

endproc

process Analysis[Browse,Retrieve,Analysis](e:ENFORMS):noexit:=

Browse?ui:User_Input; Browse!Browse(ui);

Browse[Browse,Retrieve,Ana1ysis](e)

[l

Analysis?ar:Analysis-Request; Analysis!Analysis(ar);

Analysis[Browse,Retrieve,Analysis](e)

endproc

endspec

Figure 9.4: The formal specification automatically generated from system models (2)

 

Of the ENFORMS system (see Figure 9.2). We use the LOTOS semantics analyzer

(LSA) [64, 83] tO ensure that the sorts and Operations used in the dynamic models

are previously modeled in the Object and functional models and have corresponding

definitions in the automatically generated formal specification. Figure 9.5 gives the

transcript that runs LSA over the formal specification shown in Figure 9.3. The

successful termination Of the analysis indicates that no inter-model inconsistency is

detected by LSA.

Although the automatically generated formal specification does not include a SO-

phisticated algebraic specification that describe the properties Of ENFORMS, the

executable feature Of the process algebras that describes the dynamic aspect Of the
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(131 aynow: > topo enforms_systemOl -v -s

TOPO_3R6 (Mon Jan 23 15:19:15 MET 1995) /usr/local/LOTOS/Tools/TOPO

semantics analysis ...

lfe enforms_system01.lot > Ta01614

mv Ta01614 enforms_system01.lfe

lsa -1 design -p enforms_system enforms_system.lfe

<132 aynow: >

Figure 9.5: The transcript Of running LSA over ENFORMS formal specification to

check inter-model consistency

 

system enables designers and end customers tO symbolically execute the formal spec-

ification. The simulation provides an intuitive means to understand the system’s

functionality and behavior and a concrete approach that facilitates the communica-

tion among designers and customers. Figure 9.6 Shows a transcript Of the execution Of

the formal specification by using LOLA. Because no constants for the sorts are intro-

duced in the automatically generated formal specification, the interactive simulation

is quite high-level. NO concrete values is given during the simulation process. The

interactive execution confirms the requirement that a Browse request must precede a

Retrieve request, a Retrieve request must precede an analysis request.

The formal specification automatically generated from diagrammatic models prO-

vides a framework into which algebraic specification can be added by designers. In

order tO further specify the prOpertieS Of ENFORMS and to perform better simula-

tion and analysis, more effort is needed to supply a well-defined algebraic specification

for ENFORMS. Figure 9.7 shows the refined formal Specification for ENFORMS

with a better-defined algebraic specification manually derived by using the guidelines

 

‘
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[ 1] analysis ! analysis(ar_18);

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> 1

==> analysis ! analysis(ar_18);

[ 1] browse ? ui_19:user-input;

[ 2] analysis ? ar_20:analysis_request;

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> t

[ 1] - browse ? ui_4:user-input;

[ 1] browse ! browse(ui_4);

[ 2] - retrieve ? rr_14:retrieve_request;

[ 1] - [isvalid(rr_14) = true]->

retrieve ! retrieve(rr_14);

[ 2] - analysis ? ar_18:analysis_request;

[ 1] - analysis ! analysis(ar_18);

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?>

Figure 9.6: The transcript Of running LOLA over ENFORMS formal specification

for simulation

 

given in Chapter 6. The refined Specification captures system properties, and con-

tains pre- and postconditions that depict the functionalities Of Browse and Analysis

services.

In the refined formal specification, two Operations (Browse and Retrieve), four

constants (dataArchives, dataIndices, valid_Retrieve_Request, valid_Retrieve_Result),

and a section that describes the properties Of the Operations in terms Of equations

are introduced into the algebraic specification part Of the formal specification. The

Signatures Of the newly introduced Operations Browse and Retrieve are different from

that Of the original services Browse and Retrieve in Figures 9.3 and 9.4: Operation
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Retrieve has an additional input argument Of sort Data_Archives; Operation Browse

has additional input argument Of sort Data_Indices. The additional input arguments

reflect the fact that internal data structures are involved for services Browse and Re-

trieve. The involvement Of internal data structures is already expressed in terms Of

the ground wire in the corresponding OFM for services Browse and Retrieve in Fig-

ure 9.2. The two constants, dataArchives and dataIndices, Of high-level abstraction,

represent the available data archives and data indices. Constants valid_User.Input,

valid.Retrieve_Request and valid-Retrieve_Result refer to the valid request arguments

for services Browse and Retrieve, and the result that Retrieve issues. Given the con-

stants, the equation section precisely defines the semantics Of Operations is Valid and

Retrieve. Since the distributed query feature is the focus Of this case study, services

Browse and Analysis are not further refined.

The newly introduced Operations are used tO describe the functionalities Of the

services in terms Of pre- and postconditions. The pre— and postconditions for ser-

vice Retrieve state that for a given valid retrieve request, ENFORMS checks the

data archives and returns a valid result. Based upon the formalization rules for the

pre- and postconditions, the pre- and postconditions are also integrated into the prO-

cess algebra section Of the specification, thus enabling more concrete simulation and

testing.

Figure 9.8 contains a test process for the refined specification Of ENFORMS. The

test process contains two consecutive browse-retrieve tests each Of which specifies that

after a Browse service request, given a valid retrieve request, the ENFORMS system
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specification ENFORMS [Browse, Retrieve, Analysis] (e: ENFORMS) : noexit

(* Browse: ui: User_Input -> Retrieve_Request *)

(# ensures result = Browse (ui, getIndices(e)) *)

(* Retrieve: rr: Retrieve_Request -> Retrieve_Result *)

(* requires isValid(rr) *)

(* ensures result = Retrieve (rr, getArchives(e)) *)

(* Analysis: ar: Analysis_Request -> Analysis_Result *)

library

Boolean

endlib

type ENFORMS is Boolean

sorts

Data_Archives, Data_Indices, User_Input, Retrieve_Request,

Retrieve_Result, Analysis_Request, Analysis_Resu1t, ENFORMS

opns

dataArchives : -> Data_Archives

dataIndices : -> Data_Indices

valid_User_Input : -> User_Input

valid_Retrieve_Request : -> Retrieve_Request

valid_Retrieve_Result : -> Retrieve_Result

Retrieve : Retrieve_Request, Data_Archives -> Retrieve_Result

Browse : User_Input, Data_Indices -> Retrieve_Request

eqns

forall rr, rrx, rry: Retrieve_Request, da: Data_Archives

ofsort Bool

isValid (valid-Retrieve_Request) True;

isValid (undef_Retrieve_Request) False;

isValid (valid_Retrieve_Result) = True;

valid_Retrieve_Request eq valid_Retrieve_Request = True;

undef_Retrieve_Request eq undef_Retrieve_Request ‘ True;

undef_Retrieve_Request eq valid_Retrieve_Request False;

rrx eq rry = rry eq rrx;

ofsort Retrieve_Result

isValid (rr) => Retrieve (rr, da) = valid_Retrieve_Result;

not(isValid(rr)) => Retrieve (rr, da) = undef_Retrieve_Result;

endtype

behavior

endspec

Figure 9.7: The formal specification with algebraic specifications and pre/post-

conditions
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should return a valid result. If both tests are satisfied by the given system, a success

event is reached.

 

process test [Browse, Retrieve, Analysis, success] : noexit :=

Browse ! valid_User_Input;

Browse 7 rr: Retrieve_Request;

Retrieve ! valid_retrieve_request;

Retrieve ? rr: Retrieve_Result;

([isValid(rr)] -> Browse ! valid_User_Input;

Browse ? rr: Retrieve_Request;

Retrieve ! valid_retrieve_request;

Retrieve ? rr: Retrieve_Result;

([isValid(rr)] -> success; stop))

endproc

Figure 9.8: A test process for the refined formal specification Of ENFORMS

 

OneExpand is a LOLA function that makes a random symbolic execution Of the

current behavior. We use it tO test the refined ENFORMS specification. The test

process and the behavior specification are composed in parallel, synchronizing all the

gates, except for the success event. LOLA analyzes whether the executions reach the

success event or not. A testing transcript that runs OneExpand with process test is

Shown in Figure 9.9. The test reaches the success event at the ninth step Of symbolic

execution.

Unlike OneExpand, which picks up a random symbolic execution, TestExpand can

perform an exhaustive test that explores all the symbolic execution paths of a specified

system. Figure 9.10 shows the testing transcript that applies the LOLA TestExpand

Operation tO the refined ENFORMS formal specification. Although unlimited depth

Of exploration is permitted for the exhaustive test, there is actually only one execution
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lola> oneexpand -1 success test 23 -v

oneexpand -1 test 23 1 -v

Rewriting expressions in the specification.

Rewriting done.

Analysing unguarded conditions.

Analysis done.

Composing behaviour and test :

test [browse,retrieve,ana1ysis,success]

l[browse,retrieve,ana1ysis]|

browse ? ui_8:user_input;

browse ! browse(ui_8,getindices(e_7));

browse [browse,retrieve,analysis] (e-7)

1 browse ! valid_user_input;

2 browse ! browse(valid_user_input,getindices(e_7));

3 retrieve ! valid_retrieve_request;

4 retrieve ! valid-retrieve_result;

5 browse ! valid_user_input;

6 browse ! browse(valid_user_input,getindices(e_7));

7 retrieve ! valid-retrieve_request;

8 retrieve ! valid_retrieve_result;

9 success;

Process Test = test

Test result SUCCESSFUL EXECUTION.

Transitions generated = 9

Figure 9.9: The transcript Of testing that runs OneExpand Of LOLA over the refined

ENFORMS formal Specification
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path for the given test process. During the exhaustive exploration Of testing, 9 states

are analyzed, 9 transitions are generated, but no deadlock is detected. The execution

reached the success event at the ninth step. Because no deadlock is detected during

the exhaustive testing, MUST PASS is given as the test result indicating that the

success event is always reached. The symbolic test, thus far, has shown very promising

testing results. Based upon the testing result, we can confidently claim that for valid

retrieve requests, the designed system is very likely tO return a valid result. Since the

Objective Of testing is tO detect errors in design instead .Of proving correctness, the

fact that no design flaw is reported after a large amount Of exhaustive testing does

not guarantee that the design is flawless.

9.5 System Design

The system design Of the ENFORMS system is based on the design presented

in [112].

Overview

ENFORMS is designed as a distributed system, where the functionality Of the sys-

tem is realized through a collection Of communicating software components. The

distributed Operation Of ENFORMS is supported via a client-server architectural

style. In this style, servers accept requests over a network, perform the relevant ser-

vices, and return the results. The Client is a software component that requests the

services. In the case Of the ENFORMS client, the purpose Of the requested services

_
L
—
“
I

fi
x
.
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lola> test success test -y -i

testexpand -1 success test -s -v 0 -y

Rewriting expressions in the specification.

Rewriting done.

Analysing unguarded conditions.

Analysis done.

Composing behaviour and test :

test [browse,retrieve,analysis,success]

|[browse,retrieve,analysis]I

browse ? ui_8:user_input;

browse ! browse(ui_8,getindices(e_7));

browse [browse,retrieve,analysis] (e_7)

Analysed states =

Generated transitions

Duplicated states

Deadlocks =

II

0
0
0
0

test

MUST PASS.

Process Test

Test result

successes

stops

exits

cuts by depth

II

O
O
O
H

Figure 9.10: The transcript Of testing that runs TestExpand Of LOLA over the refined

ENFORMS formal specification

 

is tO support the functionality realized at the GUI level. The requests that may be

issued by a client are categorized intO two types. First, Query requests may be issued

for selecting data items from data archives. Second, Server Table requests may be

issued for determining the set Of available servers. For each Of these cases, the com-

munication between a client and a server is essentially hidden from the user. That

is, the underlying details Of establishing connections and transmitting messages are

handled without user intervention.
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Two main types Of servers are supported by ENFORMS. The first is an Archive

Server that manages the searching and the manipulation Of items for an archive

site. The services provided by an archive server directly support the Query request

described above. The other type Of server supported by ENFORMS is referred tO

as the Name Server. The name server is responsible for maintaining a table Of the

active archive servers, referred tO as the Server Table. The address and port number

Of the name server is established prior tO the activation Of ENFORMS, such that

when an archive server is activated, the location Of the name server is already known.

Using this information, the archive server sends a registration message tO the name

server, providing its address for communicating with clients. The name server then

stores that information as an entry in the server table. Likewise, when an archive

server is deleted, the corresponding entry in the server table is removed. The name

server is also responsible for handling server table requests from clients.

Multiple archive servers may be active at one time, where each server provides

services for a particular archive site. However, a single instance Of a name server

answers the server table requests for the entire collection Of clients in ENFORMS.

An additional characteristic Of the distributed Operation Of ENFORMS is that a

client may send requests to any active archive server, and, likewise, an archive server

can provide services tO any Of the active clients. The relationship between the name

server, the archive servers, and the clients is illustrated in the architectural overview

shown in Figure 9.11. Figure 9.11 describes that the ENFORMS system is composed

Of (diamond) multiple (0 or more) clients and Archive Servers, and a Single Name

Server.

"
i
i

4
.
3
3
1
;
:
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Figure 9.11: The refined Object model for ENFORMS: an overview Of the architec-

ture

 

The execution Of the ENFORMS system is initiated by activating the name

server. The archive servers are then typically activated, followed by any number Of

clients, although the system does not preclude the possibility Of activating the clients

before the archive servers. During the normal Operation Of the system, archive servers

and clients may be started or stopped at any time, while the name server remains

continuously active.

9.5.1 Design models for individual Objects

The Object, functional, and dynamic models for Name_Server are given in Figure 9.12.

Services Register and GetTable are provided by Name_Server for external services.

The Register service accepts registration requests from Archive Servers and puts
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the corresponding records into Server Table. Service GetTable returns the current

Server- Table upon a request from Client.

 

 

 

N S I Name_Server: ns—I
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Figure 9.12: The design models for Name_Server

 

The formal specification automatically generated from the design models Of

Name_Server is shown in Figure 9.13. The formalization rules used tO generate the for-

mal specification include OMl, 0M2, OM10, DFR—l, DFR-2, DFR—3, DFR-4,

DFR—6, DFR—7, DFR—8, DFR-ll, DFR—lZ, DFR-13, FFR—l, FFR—2, FFR—3,

and FFR—4. The formal specification in Figure 9.14 extends the specification in Fig-

ure 9.13 with well-defined algebraic specifications, supplied by the specifiers according

to the guidelines given in Chapter 6, that describe the properties Of Name_Server and

pre- and postconditions that capture the functionalities Of the services.

The Object, functional, and dynamic models for Archive_Server are given in Fig-

ure 9.15. Service Query is provided by Archive_Server. During the initialization Of

 

:
fi
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specification Name_Server [Register, GetTable] (ns: Name_Server) : noexit

 (* Register: dan: Data_Archive_Name, a: Address -> Void *)

(* GetTable: -> Server_Tab1e *)

library

ENFORMS, Boolean

endlib

type Name_Server is ENFORMS, Boolean L]

sorts I

Name_Server, Server_Table, Data_Archive_Name, Address, Void I

opns I

undef_Name_Server : -> Name_Server u

_ eq _ : Name_Server, Name_Server -> 8001

undef_Server_Table : -> Server_Tab1e

_ eq _ : Server-Table, Server_Table -> 8001

undef_Data_Archive-Name : -> Data_Archive_Name

_ eq _ : Data_Archive_Name, Data_Archive_Name -> 8001

undef_Address : -> Address

_ eq _ : Address, Address -> 8001

Register : Data_Archive_Name, Address -> Void

GetTable : -> Server_Table

Name_Server : Server_Table -> Name_Server

getTable : Name_Server -> Server_Table

eqns

forall st: Server_Table

ofsort Server-Tab1e

getTable (Name_Server(st)) = st;

endtype

behavior

pollRQ [Register, GetTable] (ns)

where

process pollRQ [Register, GetTable] (ns: Name_Server) : noexit :=

Register ? dan: Data_Archive_Name ? a: Address; Register !Register(dan, a);

pollRQ[Register, GetTable] (ns)

[]

GetTable; GetTable ! GetTable; pollRQ [Register, GetTable] (ns)

endproc

endspec

Figure 9.13: The automatically generated formal specification for Name_Server
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specification Name_Server [Register, GetTable] (ns: Name_Server) : noexit

(* Register: dan: Data_Archive_Name, a: Address -> Void *)

(* ensures ns’ = Name_Server(insert(getTable(ns‘), dan, a)) *)

(* GetTable: -> Server_Table *)

(* ensures result = getTable(ns) *)

library

ENFORMS, Boolean

endlib

type Name_Server is ENFORMS, Boolean

sorts

Name_Server, Server_Tab1e, Data_Archive_Name, Address

opns

empty : -> Server-Table

insert : Server_Tab1e, Data_Archive_Name, Address -> Server_Table

getAddress : Server_Tab1e, Data_Archive_Name —> Address

delete : Server_Tab1e, Data_Archive_Name -> Server_Table

eqns

forall st: Server-Tab1e, dan1, dan: Data_Archive_Name, a: Address

ofsort Address

getAddress (empty, dan) = undef_Address;

dan1 eq dan => getAddress (insert(st, dan1, a), dan) = a;

not(dan1 eq dan) =>

getAddress (insert(st,dan1,a),dan) = getAddress (st,dan);

ofsort Server_Table

delete (empty, dan) = empty;

danl eq dan => delete (insert(st, dan1, a), dan) = st;

not(dan1 eq dan) =>

delete (insert(st,dan1,a),dan) = insert(delete(st,dan),dan1,a);

getTable (Name_Server(st)) = st;

endtype

behavior

endspec

Figure 9.14: The formal specification for Name_Server with algebraic specifications

and pre/post-conditions
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an Archive_Server, it registers its name and address tO a Name Server, then enters

the pollRQ state tO wait for query requests from Clients. The Query service accepts

query requests from Clients, performs the corresponding query, and returns the result

Of the query.

 

 

I Archive_Servcr : as I

r W

" e_Server.Register(getArchiveName(dan). getAddress(as))

 

Archive_Server

 

data_archive_name: Data_Archive_Name

data_archvie: Data_Archive Query(qr“. Query_Request. a: Address)

address: Address [HORISM é dress(a))]

  
 

Object Model

   

ery_Request. azAddress)

[isMyAd ess(a)]

do: Query

_Result Query(qr)

Object Functional Model Dynamic Model

[Archivefierver I

   

  

  

Query_Request

  Address

 

Figure 9.15: The design models for Archive_Server

 

The formal Specification automatically generated from the design models Of

Archive_Server is shown in Figures 9.16 and 9.17. The formalization rules used tO

generate the formal specification include OMl, 0M2, OM10, DFR—l, DFR—2,

DFR—3, DFR-4, DFR-6, DFR—7, DFR-8, DFR-9, DFR—ll, DFR—12, DFR-

13, FFR—l, FFR-2, FFR—3, and FFR-4. The formal specification in Figure 9.18

extends the specification with well-defined algebraic specifications, supplied by the

specifiers according to the guidelines given in Chapter 6, that describes the properties
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of Archive_Server and pre— and postconditions that captures the functionalities of the

services.

 

specification Archive_Server[Query,Name_Server_Register]

(as:Archive_Server):noexit

(* Query: qr: Query_Request, a: Address -> Query_Result *)

library

ENFORMS, Boolean

endlib

type Archive_Server is ENFORMS, Boolean

sorts

Archive_Server, Data_Archive_Name,

Data_Archive, Address, Query_Request, Query_Result

opns

undef_Archive_Server : -> Archive_Server

_ eq _ : Archive_Server, Archive-Server -> 8001

undef_Data_Archive_Name : -> Data_Archive_Name

_ eq _ : Data_Archive_Name, Data_Archive_Name —> 8001

undef_Data_Archive : -> Data_Archive

_ eq _ : Data_Archive, Data_Archive -> 8001

undef_Address : -> Address

_ eq _ : Address, Address -> 8001

undef_Query_Request : -> Query_Request

_ eq _ : Query_Request, Query_Request -> 8001

undef_Query_Result : -> Query_Result

_ eq _ : Query_Resu1t, Query_Result -> 8001

Query : Query_Request, Address -> Query_Resu1t

isMyAddress : Address, Archive_Server -> 8001

Archive_Server : Data_Archive_Name, Data_Archive, Address -> Archive_Server

getArchive : Archive_Server -> Data_Archive

getAddress : Archive-Server -> Address

getArchiveName : Archive_Server -> Data_Archive_Name

eqns

forall dan: Data_Archive_Name, da: Data_Archive, a: Address,

as: Archive_Server, qr: Query_Request

ofsort Data_Archive_Name

getArchiveName (Archive_Server(dan, da, a)) = dan;

ofsort Data_Archive

getArchive (Archive_Server(dan, da, a)) = da;

ofsort Address

getAddress (Archive_Server(dan, da, a)) a;

endtype

Figure 9.16: The automatically generated formal specification for Archive Server ( 1)
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behavior

Name_Server_Register !getArchiveName(as) !getAddress(as);

pollRQ [Query, Name_Server_Register] (as)

where

process pollRQ [Query, Name_Server,Register] (as: Archive_Server) : noexit :=

Query ? qr: Query_Request ? a: Address; (

[isMyAddress(a, as)] -> Query [Query, Name_Server_Register] (as, qr, a)

[]

[not(isMyAddress(a, as))] -> pollRQ [Query, Name_Server_Register] (as))

endproc

process Query[Query,Name_Server_Register]

(as:Archive_Server,qr:Query_Request,a: Address):noexit:=

1; Query ! Query (qr, a); pollRQ [Query, Name_Server_Register] (as)

endproc

endspec

Figure 9.17: The automatically generated formal specification for Archive Server (2)

 

The object, functional, and dynamic models for Client are given in Figure 9.19.

Service Query is provided by Client. During the initialization time, a client retrieves a

Server Table that contains the current available archive servers from the name server,

then enters the idle state to wait for query requests from ENFORMS GUI. Once a

query request occurs, the client looks up the server table, issues the query request

to the corresponding archive server, waits for the query result from the archive, then

returns the result of the query.

The formal specification automatically generated from the Client design models

is shown in Figure 9.20. The formalization rules used to generate the formal speci-

fication include 0M1, 0M2, OM10, DFR—l, DFR—Z, DFR—3, DFR-4, DFR-5,

DFR—8, DFR—ll, DFR—12, DFR—13, FFR—l, FFR—2, FFR-3, and FFR—4. The

formal specification in Figure 9.22 extends the specification in Figures 9.20 and 9.21

with well-defined algebraic specifications, supplied by the specifiers according to the
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specification Archive_Server [Query, Name_Server_Register]

(as: Archive,Server) : noexit

(* Query: qr: Query_Request, a: Address -> Query-Resu1t *)

(* ensures result = Query (qr, getArchive (as)) *)

library

ENFORMS, Boolean

endlib

type Archive_Server is ENFORMS, Boolean

sorts

Data_Archive_Name, Data_Archive, Address,

Archive_Server, Query_Request, Query_Resu1t

opns

ofsort Bool

isMyAddress (a, as) = a eq getAddress(as);

isValid (valid_Query_Request) = true;

ofsort Query_Result

isValid (qr) => Query(qr, da) = valid_Query_Resu1t;

not(isValid(qr)) => Query(qr, da) = undef_Query_Result;

endtype

behavior

endspec

Figure 9.18: The formal specification for Archive_Server with algebraic specifications

and pre/post-conditions

 

guidelines given in Chapter 6, that describes the properties of Client and pre- and

postconditions that capture the functionalities of the services.

Similar to what we have done to the system level design model of ENFORMS

(see Figure 9.2), simulation and analyses can also be performed by manipulating the

derived formal specifications for the objects introduced above.
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Figure 9.19: The design models for Client

 

9.5.2 The SRFM and refined dynamic model for ENFORMS

Given the design models of the aggregate objects Client, Name Server, and

Archive_Server, the services of ENFORMS at the system level can be refined in

terms of the services provided by the aggregate objects. Because the case study fo—

cuses on the distributed query feature of ENFORMS, the SRFM of service Retrieve

of ENFORMS is given in Figure 9.23. The formalization rules used to generate the

formal specification include FFR—lO, FFR-ll, FFR—13, and FFR—14.

The SRFM shows how ENFORMS makes use of the Query service supplied by the

Client object in the client-server design architecture to implement the Retrieve func-

tionality. The examination of services Retrieve and Query reveals that the input data

flows of the two are incompatible: the input data flow for Retrieve is Retrieve-Request

while those for Query are Data_Archive_Name and Query-Request. This leads to the

data flow refinement of Retrieve_Request in the SRFM. The graphical notation splitter
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specification Client [Query, Name_Server_GetTab1e, Archive_Server_Query]

(c: Client) : noexit

(* Query: qr: Query_Request, dan: Nata_Archive_Name -> Query_Result *)

library

ENFORMS, Boolean

endlib

type Archive_Server is ENFORMS, Boolean

sorts

Data-Archive_Name, Address, Query_Request,

Query_Result, Server_Tab1e, Client

opns

undef_Data_Archive_Name : -> Data_Archive_Name

- eq _ : Data_Archive_Name, Data_Archive_Name -> 8001

undef_Address : -> Address

_ eq _ : Address, Address -> Bool

undef_Query_Request : -> Query_Request

_ eq _ : Query_Request, Query_Request -> Bool

undef_Query_Result : -> Query_Resu1t

_ eq _ : Query_Result, Query_Result -> Bool

undef_Server_Table : —> Server_Table

_ eq _ : Server_Tab1e, Server_Table -> 8001

undef_Client : -> Client

_ eq _ : Client, Client -> 8001

Client : Server_Table -> Client

getTable : Client -> Server_Table

eqns

forall st: Server_Table

ofsort Server_Table

getTable (Client(st)) = st;

endtype

Figure 9.20: The automatically generated formal specification for Client
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behavior

Name_Server_GetTable;

Init [Query, Name_Server_GetTable, Archive_Server_Query] (c)

where

process Init [Query, Name_Server-GetTable, Archive_Server_Query]

(c: Client) : noexit :=

Name_Server_GetTable ? st: Server_Table;

Idle [Query, Name-Server_GetTable, Archive_Server_Query] (c)

endproc

process Idle [Query, Name_Server_GetTable, Archive_Server_Query]

(c: Client) : noexit :=

Query ? dan: Data_Archive_Name ? qr: Query_Request;

Archive_Server_Query ! dan ! getAddress(getTab1e(c), dan);

WaitQuery [Query, Name_Server_GetTab1e, Archive_Server_Query] (c)

endproc

process UaitQuery [Query, Name_Server_GetTable, Archive_Server_Query]

(c: Client) : noexit :=

Archive_Server_Query ? qr: Query_Result; Query ! qr;

Idle [Query, Name_Server_GetTable, Archive_Server_Query] (c)

endproc

endspec

Figure 9.21: The automatically generated formal specification for Client

 

(the solid box) splits Retrieve_Request into Data_Archive_Name and Query-Request.

The SRFM also indicates that the output of Query is directly used as the output of

Retrieve. The formal specification automatically generated from the SRFM is given

in Figure 9.24.

In the formal specification further refined (by a developer) for ENFORMS,

data sort Retrieve_Request is refined as a tuple of sorts Data_Archive_Name and

Query-Request. This refinement is specified in terms of newly introduced operations

Retrieve_Request, get_data_archive_name, get_query_request, and their corresponding
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specification Client [Query, Name_Server_GetTab1e, Archive_Server_Query]

(c: Client) : noexit

(* Query: qr: Query_Request, dan: Nata_Archive_Name -> Query_Result *)

library

ENFORMS

endlib

type Client is ENFORMS

sorts

Data_Archive_Name, Address, Query_Request,

Query_Resu1t, Server_Tab1e, Client

opns

empty : -> Server_Table

insert : Server_Table, Data_Archive_Name, Address -> Server_Table

getAddress : Server_Tab1e, Data_Archive_Name -> Address

delete : Server_Table, Data_Archive_Name -> Server_Table

eqns

forall st: Server_Table, dan1, dan: Data_Archive_Name, a: Address

ofsort Address

getAddress (empty, dan) = undef_Address;

danl eq dan => getAddress (insert(st, dan1, a), dan) = a;

not(dan1 eq dan) =>

getAddress (insert(st, dan1, a), dan) = getAddress (st, dan);

ofsort Server_Table

delete (empty, dan) = empty;

danl eq dan => delete (insert(st, dan1, a), dan) = st;

not(dan1 eq dan) =>

delete(insert(st,dan1,a),dan) = insert(delete(st,dan),dan1,a);

getTable (Client(st)) = st;

endtype

behavior

endspec

Figure 9.22: The formal specification for Client with algebraic specifications and

pre/post-conditions
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Figure 9.23: The SRFM for Retrieve service of ENFORMS

 

 

type ENFORMS_REF is ENFORMS, Name_Server, Archive_Server, Client

opns

Retrieve_Request : Data_Archive_Name, Query_Request -> Retrieve_Request

get_data_archive_name : Retrieve_Request -> Data_Archive_Name

get_query_request : Retrieve_Request -> Query_Request

Retrieve_Result2Query_Result : Retrieve_Result -> Query_Resu1t

Query_Result2Retrieve_Result : Query_Result -> Retrieve_Result

eqns

forall dan, dan1, dan2: Data_Archive_Name, qr: Query_Request,

rr: Retrieve_Result, qu: Query_Resu1t

ofsort Data_Archive_Name

get_data_archive_name (Retrieve-Request(dan, qr)) = dan;

ofsort Query_Request

get_query_request (Retrieve_Request(dan, qr)) = qr;

ofsort Retrieve_Result

Query_Resu1t2Retrieve_Result(Retrieve_Result2Query_Result(rr)) = rr;

ofsort Query_Result

Retrieve_Resu1t2Query_Result(Query_Result2Retrieve_Result(qu)) = qu;

 

endtype

Figure 9.24: The automatically generated formal specification for the SRFM of Re-

trieve
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equations. The formalization rules FFR—14 and FFR-15 are given in Chapter 6.

Operations Retrieve_Result2Query_Result and Query_Result2Retrieve_Result together

with the related equations specify that sorts Query-Result and Retrieve_Result are

convertible to one another.

Based upon the SRFM given in Figure 9.23, the dynamic model of ENFORMS

is also refined in order to reflect the design that the Retrieve service of ENFORMS

is realized in terms of the Query services supplied by Client. Figure 9.25 gives the

refined dynamic model of ENFORMS. Since the object models describe the primary

static structure of a system, they are not affected by the SRFMS.
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Figure 9.25: The refined design model for ENFORMS
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In the refined dynamic model, a state, WaitQuery, is added to reflect the design

that the Retrieve service of ENFORMS is realized in terms of the Query services

supplied by Client. The changed part of the model specifies that: (1) once a Retrieve

request occurs, the input argument is processed to split into Data_Archive_Name and

Query-Request, (2) the request is redirected to a Client object for a Query service, (3)

the system enters WaitQuery state to wait for the query result from the Client, and (4)

after getting the query result from the Client, the system returns the converted result

to the end user. The formal specification automatically generated from the refined

dynamic model is shown in Figure 9.26. The formalization rules used to generate the

formal specification include DFR-l, DFR—Z, DFR—3, DFR—4, DFR—5, DFR-6,

DFR-7, DFR—8, DFR—ll, DFR-IZ, and DFR-13.

 

process Browse [Browse, Retrieve, Analysis, Client_Query] (e: ENFORMS) : noexit :=

Browse ? ui: User_Input; Browse ! Browse (ui, getIndices(e));

BrowseEBrowse, Retrieve, Analysis, Client_Query] (e)

[]

Retrieve ? rr: Retrieve_Request; (

[isValid(rr)] ->

Client_Query ! get_data_archive_name (rr) ! get_query_request (rr);

WaitQuery [Browse, Retrieve, Analysis, Client_Query] (e)

[I

[not(isValid(rr))] ->

BrowseEBrowse, Retrieve, Analysis, Client_Query] (e)

)

endproc

process WaitQuery[Browse,Retrieve,Ana1ysis,Client_Query](e:ENFORMS):noexit:=

Client_Query ? rr: Query_Result; Retrieve ! Query_Result2Retrieve_Result (II);

Analysis [Browse, Retrieve, Analysis, Client_Query] (e)

endproc

Figure 9.26: The automatically generated formal specification from the refined dy-

namic model of ENFORMS
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9.5.3 Composing the objects in parallel

The analysis of the formal specifications of individual objects enables designers to

detect design flaws brought by inter-model inconsistency and incorrect behavior mod-

eling for individual objects. Since the individual objects are designed to coordinate

with each other in order to implement the functionalities introduced at a higher level

of abstraction, it is necessary to compose the dynamic models of the concurrent ob-

jects and check if the objects, together, can realize the necessary functionalities (as

depicted by the dynamic model in Figure 9.27).

For this case study, the analysis is focused on checking whether the objects designed

in the client-server architectural style will realize the distributed query transparently.

Figure 9.27 gives a state diagram that composes the dynamic models of ENFORMS,

Client, Name_Server, and Archive_Server in parallel.

In the state diagram, the parameters of the distinguished sorts (Name_Server,

Client, and Archive_Server) for the objects are instantiated. Both the Client and

Name-Server objects are given empty server tables. Several data archives to which

ENFORMS must provide access are described in [112]. Two of the data archives are

used to instantiate the two Archive_Server objects.

STORET Ambient Water Quality Data: STORET archives data resulting

from the chemical analysis of water samples taken periodically from selected

sites. Samples are not necessarily taken at regular intervals for all sites. For each

sample, STORET gives a site description (latitude/longitude or landmarks)

where the sample was taken, date and time of sample, depth of sample, and

an analysis of the sample (water temperature, nutrient levels, dissolved oxygen,

etc.). The STORET archives are available via the EPA mainframe.

Permit Compliance System (PCS) Data: PCS contains data on permitted

surface water discharge sites, such as storm drains and waste discharge pipes.
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l ENFORMSJC l
fi

Retrieve(qr: Query_Request)

Browse (ui:User_lnput)
[not(isvalid(qr})]

/ Browse(ur)

 

   

  

  

. Name_Server: ns=Name_Server(empty)

Browse (ui User_Input)

/ Browse(ur)

Registefldan: Data_Archive_Name. it: Address)

lRegistcr(da. a)

A

GetTablc/GetTableO

Retrieve(qr. Query_Request)| isValid(qr)]

“Client.Query(get__Data_Archive_Name(qr),

get_Query_Request(qr))

Browse(ui:Use Input)

[Browse(ui)

ClientQuery(qr)

lRetrievc(Quer)_ResultZRetn'eve_Resultqr))

Anal ysi s( art Analysis_Request)

/Analysis(ar)

—
—
-
—
—
-
-
—
-
—
—
-
—
-
—
-
-
—
—
—
-
—
-
-
‘
-
—
—
-
—
—
—
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—
-
i

Client: c=Client(empty)

"Name_Server.GetTable()

  

Name_Serve .GetTable(st: Server_Table)

Query(dan; Data_Archive_Name, qr:Query_Request)

“Archive_ServerQuery(dan. getAddress(getTable(c). dan))

A

w

Archive_Server.Query(qr: Query_Result)/Query (qr)

p_—-----—__——-———__—--—-—-——.-_--———---——-——————¢_-——---——-—-—-——--—----—----——q¢--——---.

Archive_Server: as=Archive_Server(pcs. pcs_db. 4899) Archive_Server: as=Archive_Scrver(storet. storet_db. 5699)

 

  

   

   

 

   

  

   
   

Nzu e_Server.Registcr(getArchiveName(dan). getAddress(as)) e_Server.Register(getArchiveName(dan). getAddress(as))

Query(qr. Query_Request. a: Address)

[not(isMyAddress(a))]

Query(qr: Query_Request. azAddress)

[not(isMyAddress(a))]

Query(qr: O ery_Request. asAddress)

[isMyA . css(u)]

do: Query

Query(qr) Query(qr) 
Figure 9.27: The dynamic models composed in parallel
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For each permit, an ID code for the discharging facility is given. The type of

discharge is described and the limits on the discharges are specified. The PCS

data is available via the EPA mainframe, and from Great Lakes Envirofacts.

Since the design is at a very high level of abstraction, it is neither necessary nor

realistic to describe the two data archives in detail in terms of algebraic specifications.

Instead, we introduce constants storet and pcs to represent the archive names, and

storet_db and pcs_db to represent the archives for STORET and PCS, respectively.

Similarly, instead of developing a complete theory that describes the addresses for

the Archive Server objects, constants 4899 and 5699 of sort Address are randomly

chosen to refer to the two Archive_Server objects.

Based upon the formalization rules DFR—lS and DFR—19 given in Chapter 5,

algebraic specifications can be automatically generated to describe the newly intro-

duced constants. The ACT ONE specification in Figure 9.28 specifies the constants

in terms of nullary operations; it also asserts that every constant is equal to itself but

distinguished from other constants of the same sort.

9.6 Design Analysis and Refinement

This section describes the analysis of diagrams via their formal specifications. It also

discusses the refinement of the models based on errors detected during analysis.

9.6.1 Design flaw detected in models

Chapter 5 introduces name binding as the mechanism that synchronizes the dynamic

models of the concurrent objects. During the process that synchronized the dy-
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type ENFORMS_REF is ENFORMS, Name_Server, Archive_Server, Client

 
opns

pcs : -> Data-Archive_Name

pcs_db : -> Data_Archive

storet : -> Data_Archive_Name

storet_db : -> Data_Archive 1"

4899 : -> Address

5699 : -> Address

eqns

ofsort Bool

pcs eq pcs = True;

storet eq storet = True;

undef_Data_Archive_Name eq undef_Data_Archive_Name = True;

pcs eq undef_Data_Archive_Name = False;

undef_Data_Archive_Name eq pcs = False;

storet eq undef_Data_Archive-Name = False;

undef_Data_Archive_Name eq storet = False;

pcs eq storet = False;

storet eq pcs = False;

pcs-db eq pcs_db = True;

storet_db eq storet_db = True;

undef_Data_Archive eq undef_Data_Archive = True;

pcs_db eq undef_Data_Archive = False;

undef_Data_Archive eq pcs_db False;

storet_db eq undef_Data_Archive = False;

undef-Data_Archive eq storet_db False;

pcs_db eq storet_db = False;

storet_db eq pcs_db = False; -

4899 eq 4899 = True;

5699 eq 5699 = True;

undef_Address eq undef-Address = True;

4899 eq undef_Address = False;

undef_Address eq 4899 = False;

5699 eq undef_Address = False;

undef_Address eq 5699 = False;

Figure 9.28: The automatically generated formal specification that describes the con-

stants in the refined models of ENFORMS
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namic models through name binding, we encountered a problem. Since a Client

object can communicate with multiple Archive_Server objects, the service request

Archive_Server. Query of the Client object shall be bound with the Query services

provided by both of the Archive Server objects. Because the two Archive_Server ob-

jects are interleaved with one another (represented by the three parallel lines on their

border), given the semantics of LOTOS, either of them can respond to a Query request

from the Client object once they are bound. Thus nondeterminism results. Since the

nondeterminism is not a feature of the intended design, it must be eliminated.

A further investigation reveals that there is a modeling flaw in our design. The

distributed system is designed in terms of a client-server architecture. An underly-

ing communication mechanism between clients and servers is assumed in the system

design. However, the assumption is not modeled in the design, thus resulting in

the nondeterminism during the communication between clients and servers. In order

to eliminate the nondeterminism, the design models need to be refined in order to

incorporate the assumed communication support.

The Channel object class. Figure 9.29 shows a refined object model that intro-

duces a Channel object class to facilitate the communication between Client objects

and Archive_Server objects.

The modeling of Channel is relatively simple, because we do not intend to model

the entire operating system and networking support in this case study. Figure 9.30

gives the three OMT models for Channel. The Channel class is modeled exclusively

to be used by the Client object to communicate with the two Name_Server objects.
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ENFORMS

<>

Name_Server

l .

Client Archive_Server

Channel

Figure 9.29: The refined object model for ENFORMS with Channel object

   

 

  

  
 

  
 

  
 

   
  
 

 

 

 

 

I Channel: c ]
 

Channel (

Send (qr: Query_Request. a: Address)[a eq 4899]

"Channel4899(qr «

Object Model k.

 

    

   

  
 

Channel4899(qr: Query_Result)

/ Send(qr)

Channe15699(qn Query_Result)

/ Send(qr)

 

 

 
 

 
 

[ Channel 1

e R est

Qu [L equ WaitChanne15699

Qu y_Result

0 Send (qr: Query_Request. a: Address)[a eq 5699]

Address “Channcl5699(qr. a)

\

Object Functional Model Dynamic Model

Figure 9.30: The design models for channel
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A Channel object provides a Send service that accepts Data_Archive-Name and

Address and returns Query_Result. A Channel object is designed to redirect a Query

request from a Client object to the corresponding Archive Server object whose address

is specified in the request, wait for the query result from the Archive_Server object,

and then deliver the query result back to the requesting Client object. The formal

specification automatically generated from the OMT models of Channel is contained

in Figure 9.31. The formalization rules used to generate the formal specification

include 0M1, 0M2, OM10, DFR—l, DFR—Z, DFR-3, DFR-4, DFR—5, DFR—S,

DFR—ll, DFR—12, DFR-13, FFR—l, FFR—2, FFR—3, and FFR—4.

The revised state diagram. The revised state diagram that composes the dy-

namic models of individual objects in parallel is given in Figure 9.32. In the revised

diagram, a dynamic model of a Channel object is incorporated. The dynamic models

are also synchronized through name binding.

In the state diagram, the dynamic models of the individual objects are synchro-

nized as follows:

0 The two Archive-Server objects are interleaved.

o The Client_Query service request from ENFORMS’s front-end is synchronized

with the Query service provided by the Client object by sharing name Query.

0 The Archive-Server. Query service request from the Client object is synchronized

with the Send service provided by the Channel object by sharing the actual name

Archive_Query.

o The Name_Server.GetTable service request from the Client object is synchro-

nized with the GetTable service provided by the Name_Server object by sharing

the actual name GetTable.

o The Name_Server. Register service requests from the two Archive_Server objects

are synchronized with the Register service provided by the Name_Server object

by sharing the actual name Register.

 

F
*
—
_
—

.
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specification Channel [Send, Channel4899, Channe15699] (c: Channel) :

noexit

typedef Channel is ENFORMS, Channel

sorts

Channel

endtype

behavior

Idle [Send, Channel4899, Channe15699] (c)

where

process Idle [Send, Channel4899, Channe15699] (c: Channel): noexit :=

Send ? qr: Query_Request ? a: Address; (

[a eq 4899] -> Channel4899lqr !a;

WaitChannel4899 [Send, Channel4899, Channe15699] (c)

I]

[a eq 5699] -> Channe15699!qr !a;

WaitChanne15699 [Send, Channel4899, Channe15699] (c)

)

endproc

process WaitChannel4899 [Send, Channel4899, Chann615699] (c: Channel): noexit :

Channe14899 ?qr:Query_Resu1t; Sendlqr;

Idle[Send, Channel4899, Channe15699] (c)

endproc

process WaitChanne15699 [Send, Channel4899, Channe15699] (c: Channel): noexit :

Channe15699 ?qr:Query_Result; Sendlqr;

Idle[Send, Channel4899, Channe15699] (c)

endproc

endspec

Figure 9.31: The automatically generated formal specification from the design models

of Channel
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Figure 9.32: The revised design models (with a Channel object) composed in parallel
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o The Channe14899 service request from the Channel object is synchro-

nized with the Query service provided by the Archive-Server object, whose

Data_Archive_Name is pcs and Address is 4899, by sharing the actual name

Archive_Query4899.

o The Channel5699 service request from the Channel object is synchro-

nized with the Query service provided by the Archive_Server object, whose

Data-Archive_Name is pcs and Address is 5699, by sharing the actual name

Archive-Query5699.

The formal specification in Figure 9.33 can be automatically generated from the

state diagram (Figure 9.32) in which the behavior of individual objects are synchro-

nized. The nature of process algebra specifications synchronizes the processes that

specify the behavior of the individual objects through shared LOTOS gates. The

formalization rules used to generate the formal specification include DFR—l9 and

DFR—20.

9.6.2 Static analysis

The transcript in Figure 9.34 shows that the formal specification1 passes the syn-

tax checking and semantics analysis by LFE (a syntax analyzor) and LSA [64, 83],

respectively. This indicates

o The formal specification, including both parts that are automatically generated

and manually added, is syntactically correct.

0 The algebraic specifications of individual objects are semantically consistent.

o The application of name binding through which the behavior of objects are

synchronized does not result in inconsistency.

 

1Appendix H contains the formal specification automatically generated from the SRFM (Fig-

ure 9.23 and 9.24), the refined dynamic model of ENFORMS (Figure 9.25 and 9.26), and the state

diagram that synchronizes behavior of individual objects (Figure 9.32 and 9.33).

.
.
.
.
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specification ENFORMS_REF [Browse, Retrieve, Analysis, Query, GetTable,

Archive_Query, Register, Archive_Query4899, Archive_Query5699]

(e: ENFORMS): noexit

(* Browse: ui: User_Input -> Retrieve_Request *)

(* ensures result = Browse (ui, getIndices(e)) *)

(* Retrieve: rr: Retrieve_Request -> Retrieve_Result *)

(* requires isValid(rr) *)

(* ensures result = Retrieve (rr, getArchives(e)) *)

(* Analysis: ar: Analysis_Request -> Analysis_Result *)

library

ENFORMS, Name_Server, Archive_Server, Client, Boolean, Channel

endlib

behavior

(Browse ? ui: User_Input;

Browse ! Browse (ui, getIndices(e));

Browse [Browse, Retrieve, Analysis, Query] (e)

l[Queryll

(Client [Query, GetTable, Archive_Query] (Client(empty))

l[GetTable,Archive_Query]I

(Name_Server [Register, GetTable] (Name_Server(empty))

l[RegisterJI

(Channe1[Archive_Query, Archive_Query4899, Archive_Query5699] (channel)

I[Archive_Query4899,Archive_Query5699]I

(Archive_Server [Archive_Query4899,Register]

(Archive_Server(pcs,pcs_db,4899))

Ill

Archive_Server [Archive_Query5699,Register]

(Archive_Server(storet, storet_db, 5699))

)))))

endspec

Figure 9.33: The automatically generated formal specification that synchronizes the

behavior of individual objects
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<99 aynow:~ >topo enforms -v -syntax

TOPO_3R6 (Mon Jan 23 15:19:15 NET 1995) /usr/local/LOTOS/Tools/TOPO

syntax analysis ...

lfe enforms.lot > Ta01755

mv Ta01755 enforms.lfe

<100 aynow:~ >topo enforms -v -s -1 design

TOPO_3R6 (Mon Jan 23 15:19:15 MET 1995) /usr/local/LOTOS/Tools/TOPO

semantics analysis ...

lfe enforms.lot > Ta01777

mv Ta01777 enforms.lfe

lsa -1 design -p enforms enforms.lfe

Figure 9.34: Syntax checking and semantics analysis of the refined enforms formal

specification

 

The expansion transformations provided by LOLA [84, 85, 86, 87] produces a

compressed version of an Extended Finite State Machine (EFSM) from a given LO-

TOS behavior specification. The behavior of the generated EFSM is equivalent to the

original LOTOS specification. The effect of an expansion is the removal of the most

complex LOTOS operations (e.g., parallel operators) from the specification, produc-

ing an equivalent specification in terms of action prefix, behavior choice, guards, and

choice, etc. This transformation can be used for state exploration, deadlock detection,

deriving efficient implementations, etc.

Because the dynamic models of the individual objects are synchronized by par-

allel operators, we can use the expansion transformation to check if the behavior of

the synchronized objects can be expressed in terms of an equivalent EFSM without

parallel operators. This transformation can be considered a static analysis of state

exploration. A deadlock detected by the transformation suggests that the behavior

of objects has a synchronization problem. Figure 9.35 shows the transcript of such
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an expansion. The expansion transformation explored 191 states and generated 373

transitions. The 4 deadlocks detected by the expansion transformation suggests that

there is a problem with behavior synchronization among the communicating objects.

We need to investigate the EFSM generated by the expansion transformation to look

into the deadlock problem.

 

expand -1

Rewriting expressions in the specification.

Rewriting done.

Analysing unguarded conditions.

Analysis done.

Analysed states = 191

Generated transitions = 373

Duplicated states = 183

Deadlocks = 4

Removing Parameters.

Figure 9.35: Using expansion transformation to detect synchronization error

 

Figure 9.36 shows a part of the EFSM generated from the LOTOS specification

given in Appendix H. The four processes in Figure 9.36 leads the behavior of the

EFSM to deadlocks. A further investigation of the four processes reveals that the

deadlocks are caused by the synchronization between the Client and Channel ob-

jects. When the Client object raises a Archive-Query service request with constant

undef_Address as the argument for Address to the Channel object, the Channel object

enters a deadlock because the dynamic model of Channel (see Figure 9.30) did not

specify how to react for address other than 4899 and 5699.
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process duplicate3 [browse,retrieve,analysis,query,gettable,archive_query,register,

archive_query4899,archive_query5699] : noexit :=

register ! storet ! 5699;

stop

endproc

process duplicate4 [browse,retrieve,analysis,query,gettable,archive_query,register,

archive_query4899,archive_query5699] : noexit :=

register ! pcs ! 4899;

stop

endproc

process duplicate9 [browse,retrieve,analysis,query,gettable,archive_query,register,

archive_query4899,archive_query5699] (rr_92:retrieve_request) : noexit :=

archive-query ! get_query_request(rr_92) ! undef_address;

stop

endproc

process duplicate17 [browse,retrieve,analysis,query,gettab1e,archive_query,register,

archive_query4899,archive_query5699] (rr_92:retrieve_request) : noexit :=

archive_query ! get_query_request(rr_92) ! undef_address;

stop

endproc

Figure 9.36: A part of the EFSM transformed from the LOTOS specification in

Appendix H

 

Two approaches are available to eliminate the deadlock: (1) further refine the

dynamic model for the Channel object to handle Send request with addresses other

than 4899 and 5699, or (2) add a guarding condition to the dynamic model for the

Client object to ensure that the Address argument is valid before issuing the request

for the service provided by the Channel object. Since the Client object is our focus

of design, we choose the latter approach. Figure 9.37 shows a refined dynamic model

for the Client object class. A guarding condition is associated with the Query service.

If the argument of sort Address is not valid, constant undef_Query_Result is returned

-
1
.

.
.

.
l
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to the requesting object, otherwise, the Archive-Query service of the Channel object

will be requested to pass the request to the corresponding Archive Server object.

 

 

i Client: c I

(

"Name_Server.GetTabIe()

  
Name_Server.Get able(st: Server_Table)

Query(dan: Data_Archive_Name, anuery_Request)

[not(getAddress(getTable(c),dan) eq undef_Address)]

"Archive_Server.Query(dan, getAddress(getTable(c). dan))

ow
Archive_Server.Query( qr: Query_Result)/Query (qr)

Query(dan: Data_Archive_Name. qr:Query_Request)

[getAddress(getTabIe(c).dan) eq undef_Address]

L /Query(undef_Query_Result)   
Figure 9.37: The refined dynamic model of Client

 

The changes made in the refined dynamic model only affect the specification of

the Idle state of Client. Figure 9.38 contains the automatically generated formal

specification for the refined Client object. The formalization rules used to generate

the formal specification include DFR—l, DFR—Z, DFR-3, DFR—4, DFR—5, DFR-

6, DFR—7, DFR—ll, DFR—12, and DFR—13.

After the changed specification for the modified dynamic model of the Client

object class is extended to the formal specification in Figure 9.33, another expansion

transformation is conducted to perform a static analysis of the synchronization. The
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process Idle [Query, Name_Server_GetTable, Archive_Server_Query]

(c: Client) : noexit :=

Query ? dan: Data_Archive_Name ? qr: Query_Request;

([getAddress(getTab1e(c),dan) eq undef-Address]

-> Query ! undef_Query_Result;

Idle [Query, Name_Server_GetTab1e, Archive_Server_Query] (c)

I]

[not(getAddress(getTable(c),dan) eq undef_Address)]

-> Archive_Server_Query ! qr ! getAddress(getTable(c), dan);

WaitQuery [Query, Name_Server_GetTable, Archive_Server_Query] (c))

endproc

Figure 9.38: The formal specification for the refined Idle state of Client

 

transcript of the expansion transformation is given in Figure 9.39. No deadlock is

detected after the behavior of the Client class is refined.

 

expand -1

Rewriting expressions in the specification.

Rewriting done.

Analysing unguarded conditions.

Analysis done.

Analysed states = 205

Generated transitions = 415

Duplicated states = 211

Deadlocks = O

Removing Parameters.

Figure 9.39: The transcript of expansion transformation after the behavior of the

Client is refined
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9.6.3 Dynamic analysis

Figure 9.8 contains a test process that dynamically analyzes the behavior of EN-

FORMS before refinement. We can check the testing equivalence [94]2 between

the behavior of ENFORMS before and after the refinement by applying the given

test process to the refined behavior specification. Since new constants are intro-

duced during the refinement process, the test process is also adapted to reflect

the change. In the test process of Figure 9.40, the two valid_Retrieve_Request

constants are substituted by retrieve_request (pcs , val id_query_request) and

retrieve_request (storet, valid_query_request).

 

process test [Browse, Retrieve, Register, GetTable, success] : noexit :=

Browse ! valid_User_Input;

Browse ? rr: Retrieve_Request;

Retrieve ! retrieve_request (pcs, valid_query_request);

Retrieve ? rr: Retrieve_Request;

([isValid(rr)] -> Browse ! valid_User_Input;

Browse ? rr: Retrieve_Result;

Retrieve ! retrieve_request (storet, valid_query_request);

Retrieve ? qr: Retrieve_Result;

([isValid(rr)] -> success; stop))

endproc

Figure 9.40: The test process for the refined formal specification of ENFORMS

 

Because this case study focuses on checking whether the objects designed in the

client-server architectural style will realize the distributed query transparently, the

services, other than Browse, Retrieve, and Analysis, through which the individual ob-

ject communicate and synchronize with each other are hidden from external access.

 

2Two processes are considered testing equivalent to each other if no difference of their behavior

can be detected from external testing.
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This is described in terms of LOTOS gate hiding construct by hiding the correspond-

ing gates of the behavior specification given in Figure 9.33. The modified behavior

specification is shown in Figure 9.41.

 

behavior

hide Query, GetTable, Archive_Query, Register,

Archive_Query4899, Archive_Query5699 in

(Browse ? ui: User_Input;

Browse ! Browse (ui, getIndices(e));

Browse [Browse, Retrieve, Analysis, Query] (e)

l[Queryil

(Client [Query, GetTable, Archive_Query] (Client(empty))

I[GetTable,Archive_Query]l

(Name_Server [Register, GetTable] (Name_Server(empty))

I[Register]l

(Channe1[Archive-Query, Archive_Query4899, Archive_Query5699] (channel)

I[Archive_Query4899,Archive_Query5699]l

(Archive_Server[Archive_Query4899,Register](Archive_Server(pcs,pcs_db,4899))

Ill

Archive_Server[Archive_Query5699,Register]

(Archive_Server(storet, storet-db, 5699)))))))

Figure 9.41: Communication among individual objects are hidden

 

If the test process in Figure 9.40 can always reach the success event for the be-

havior specification given in Figure 9.41, then we can assert that the behavior of

ENFORMS before and after refinement preserve testing equivalence for the given

test. Unfortunately, the transcript generated by TestExpand in Figure 9.42 shows

that no success event is reached during the exhaustive test. Instead, 30 deadlocks are

detected and the test is rejected.
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lola> test -1 success test -y

testexpand -1 success test -y

Composing behaviour and test :

test [browse,retrieve,register,gettable,success]

I[browse,retrieve,analysis,gettable,register]I

(hide query,gettable,archive_query,register, ‘

archive_query4899,archive_query5699 in

browse ? ui_27:user_input;

browse ! browse(ui_27,getindices(e_26)); n,

browse [browse,retrieve,analysis,query] (e_26) I.

l[queryll

client [query,gettable,archive_query] (Client(empty))

l[get-table,archive_query]l

name_server [register,gettable] (name_server(empty))

l[registerJI

channel[archive_query,archive_query4899,archive_query5699] (channel)

l[archive_query4899,archive_query5699]I

archive_server [archive_query4899,register]

(archive_server(pcs,pcs_db,4899))

Ill

archive_server [archive_query5699,register]

(archive_server(storet,storet_db,5699))

)

Analysed states = 91

Generated transitions = 90

Duplicated states ' 0

Deadlocks = 30

Process Test = test

Test result = REJECT.

successes = 0

stops = 30

exits = O

cuts by depth = 0

Figure 9.42: The test process is rejected by the refined behavior specification of

ENFORMS
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Reviewing the log file generated by TestExpand reveals that the deadlock is caused

by specification incompleteness. The SRFM in Figure 9.23 refines data sort Re-

trieve_Request in terms of Data_Archive_Name and Query_Request and introduces sort

conversion operations for Query_Result and Retrieve_Result. However, the Boolean

operation is Valid Operation for both Retrieve_Request and Retrieve_Result sorts are

not further specified to cover the newly introduced operations. In the behavior spec-

ification, the is Valid operation of Retrieve_Request is used in Client to check if the

input is valid. In the test process the is Valid of Retrieve_Result is issued to check

whether the returned result is valid. Therefore, the less specified Boolean operations

result in deadlocks during the execution of TestExpand. The operations and equa-

tions are added to the algebraic specification of the refined ENFORMS to cover the

data refinement of Figure 9.23. The specification in Figure 9.43 shows the added

operations and equations.

 

type ENFORMS_REF is ENFORMS, Name_Server, Archive-Server, Client, Channel

opns

isValid : Data_Archive_Name -> Bool

isValid : Query_Result -> 8001

eqns

forall qr: Query_Request, dan: Data_Archive_Name, qu: Query_Result

isValid (qr) = not(qr eq undef_Query-Request);

isValid (dan) = not(dan eq undef_Data_Archive_Name);

isValid (Retrieve_Request(dan, qr)) = isValid (dan) and isValid (qr);

isValid (qr1) = not (qr1 eq undef_Query_Result);

isValid (Query_Result2Retrieve_Resu1t(qr1)) = isValid(qu);

endtype

Figure 9.43: The added operations and equations that are resulted by the SRFM of

Figure 9.23
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After adding the necessary Operations and equations into the refined algebraic

specification of ENFORMS, another round of exhaustive testing is executed. The

transcript of the test is shown in Figure 9.44. Fortunately, there are two execution

paths that led to the success event during the exhaustive exploration test. However,

the 80 deadlocks detected by the test are still discouraging. A further analysis is

necessary in order to determine the cause of the deadlocks.

 

lola> test -1 success test -y

testexpand -1 success test -s -y

Rewriting expressions in the specification.

Rewriting done.

Analysing unguarded conditions.

Analysis done.

Composing behaviour and test :

Analysed states = 293

Generated transitions 294

Duplicated states

Deadlocks = 80

II

0

test

MAY PASS.

Process Test

Test result

82 executions analysed:

I

I
0

successes -

stops -

exits

cuts by depth I
I
I
I
I

0
0
0
0 0

Figure 9.44: The transcript of TestExpand test after necessary operations and equa-

tions are added

 

ENFORMS is designed in terms of a client-server architectural style that reflects

and utilizes the distributed nature of the system. The execution of the ENFORMS
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system is initiated by activating the name server. The archive servers are then typ-

ically activated, followed by any number of clients, although the system does not

preclude the possibility of activating the clients before the archive servers. There-

fore, it is very likely that a client starts and accepts a service request before the

corresponding archive server is ready to serve. Under this circumstance, the client

is not able to return a valid query result. Our investigation of the log file generated

by TestExpand identifies a large number of these cases that have led to deadlocks.

However, under some circumstances, even when the two Archive_Server objects are

started and registered before the Client object accepts a Query request, deadlock still

appears. A stepwise interactive simulation that recovers the path to deadlock reveals

that the deadlock is caused by the current design that the Client object only acquires

a Server_Table during its initialization time but not afterwards. If the following se-

quence of events occurs, a deadlock will be produced.

1. The Client object starts and acquires an empty server table from the

Name-Server object.

2. The two Archive_Server objects are started and registered.

3. The Client object accepts a Query request from the test process.

4. The Client returns constant undef_Query_Result because there is no available

archive server.

5. The returned result leads the test process into a deadlock.

The above analysis indicates that a copy of an obsolete server table possessed by

the Client object will fail the test. There are many means of design that can handle

this problem in the context of a distributed system. The straightforward but not

necessarily optimal approach used in the case study is to let the Client object acquire
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a copy of an up—to-date server table from the Name Sever object before it attempts

to request services from Archive_Server objects. The refined dynamic model for the

Client object class is given in Figure 9.45. The formalization rules used to generate

the formal specification include DFR—l, DFR—2, DFR—3, DFR-4, DFR—S, DFR-

6, DFR-7, DFR—ll, DFR—lZ, and DFR-13.

 

I Client: c I

F \

hamgServcr GetTablcO

Name_ServerGet ablet st: Server_Table)

Query(dan: Data_Archive_Name. qr:Query_Request)

AI‘lathScrvcr.Gv:tTable()

 

  

  Name_ServerGetTablet st: Server_Table)

I getAddress(st.dan) eq undef_Address]

/ Query(undef_Qucry_Result)
   

   

  
Name_ServerGet 'able( st: Server_Table)

[not(getAddres Ldan) eq undef_Address)]

A’Chivc-Semr‘oucmqr Query-Resuwo' 0' (qr) "Arcluve Sev erQuctymr getAddress(st. dam)

  
Figure 9.45: The further refined dynamic model of Client

 

In the refined dynamic model, a new state, WaitTable, with associated transitions

are introduced, and the transition that leaves from Idle state given a Query service re-

quest is modified. The formal specification automatically generated from the changed

parts of the dynamic model is given in Figure 9.46.

Figure 9.47 shows the execution of the TestExpand after the design of the Client

object class is refined. In all, there are 802 states analyzed and 913 transitions
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process Idle [Query, Name_Server_GetTable, Archive_Server_Query]

(c: Client) : noexit :=

Query ? dan: Data_Archive_Name ? qr: Query_Request;

Name_Server-GetTable;

HaitTable [Query, Name_Server_GetTable, Archive_Server_Query] (c, qr, dan)

endproc

process WaitTable [Query, Name_Server_GetTable, Archive_Server_Query]

(c: Client, qr: Query_Request, dan: Data_Archive_Name) : noexit :=

Name_Server_GetTable ? st: Server_Table;

([getAddress(st,dan) eq undef_Address] ->

Query ! undef_Query_Result;

Idle [Query, Name_Server_GetTable, Archive_Server_Query] (c)

[]

[not(getAddress(st,dan) eq undef_Address)] -> h;

Archive_Server_Query ! qr ! getAddress(st, dan);

HaitQuery [Query, Name_Server_GetTable, Archive_Server_Query] (c))

endproc

Figure 9.46: The formal specification for the refined Idle state of Client

 

generated during the exhaustive test. Among the 160 execution paths, 112 reach the

success event, 48 result in deadlock. The designed ENFORMS system may pass the

test process given in Figure 9.40.

Our further study shows that all 48 deadlocks can be attributed to the nature

of distributed components. That is, the client cannot be guaranteed that all archive

servers will be active upon enter into ENFORMS. In this context, we can assert that

the client-server design ofENFORMS realizes the retrieve function over a distributed

data archives transparently.

h
.
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lola> test -1 success test -y

testexpand -1 success test -s -y

Rewriting expressions in the specification.

Rewriting done.

Analysing unguarded conditions.

Analysis done.

Composing behaviour and test :

Analysed states = 802

Generated transitions = 913

Duplicated states = 0 I

Deadlocks = 48 :n.

Process Test = test

Test result = MAY PASS.

160 executions analysed:

successes = 112

stops = 48

exits = O

cuts by depth = 0

Figure 9.47: The result of TestExpand after the behavior of the Client object class is

refined

 

9.7 Summary

In this chapter, through the application of the design process and the formalization

 

rules to a portion of ENFORMS, we have determined the following:

o The formalization and integration rules for OMT models can help the designers

to derive more precise and integrated descriptions of design.

0 The proposed design process facilitates the refinement of design.

0 Based on the formal specifications derived from OMT models, analysis can

be performed to check design consistency and to facilitate understanding and

communication about the design.



268

Four problems were detected during the refinement process through various anal-

ysis techniques:

0 An underlying communication mechanism between clients and servers is as-

sumed in the system design. However, this assumed support was not modeled

in the design, and resulted in nondeterminism during the communication be-

tween clients and servers.

0 A Client object may issue invalid requests to Archive_Servers and result in

deadlock condition.  
0 Data refinement in the SRFM of ENFORMS brought in incompleteness to

algebraic specification. The corresponding operations in the algebraic specifi-

cations are obligated to be further refined.
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0 An obsolete copy of a server table held by the Client object will cause a deadlock

condition.

 



Chapter 10

Conclusions and Future

Investigations

Formal specifications are gaining increasing attention as a means to rigorously doc-

ument requirements and design information since the well-defined notations are

amenable to automated processing for numerous analysis tasks [2], including veri-

fication of the correctness of resulting systems. However, attempting to construct a

formal specification directly from an informal, high-level requirements document can

be challenging. Formal descriptions potentially involve considerable syntactic details

and may require careful planning and organization on the part of the specifier in order

to develOp modular specifications.

A complementary approach to describing requirements is the use of graphical

modeling notations. The intuitive diagrammatic notations are easy to understand

and facilitate model construction. However, the lack of formal semantics of graphical

notations deprives designers of analysis techniques that can help designers to de-
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tect and eliminate design errors during the early stages of the software deveIOpment

process.

In order to take advantages of both the intuitive diagrammatic and rigorous formal

techniques, the integration of the two approaches is clearly motivated. Therefore, the

major motivation for our research was to provide developers with a means to take

advantage of the benefits of an easy to use, graphical-based modeling approach with

the advantages afforded by formal approaches to software development, all within the

context of facilitating technology transfer [113].

In this dissertation, we refined and introduced formalisms to the three comple-

mentary OMT models: object, functional, and dynamic models. An integration of the

three models is achieved in terms of the underlying formal semantics. Based upon the

formalization and integration, rigorous analyses can be applied to the formal specifi-

cations to perform specification analysis. In addition, a design process that employs

the formalization, integration, and analysis techniques is prOposed. A case study that

applied the proposed formalization rules and design process to an industrial project

is also discussed.

10.1 Summary of Contributions

There are three primary objectives for this research.

0 Improve and facilitate the software development process for software engineers,

with particular emphasis on the early stages of software development.

0 Provide a modeling and specification technique that integrates informal and

formal techniques, thereby enabling rigorous analyses in the early stages of

development.
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o Exploit and integrate existing formal methods technologies.

In order to help practicing software engineers, we solicited input from numerous

industrial organizations and contacts to determine what graphical, object-oriented

modeling techniques were commonly used. OMT was determined to be one of the

most widely used object-oriented modeling techniques, but it suffered from a lack

of ability on the part of software developers to determine ambiguity and incom-

pleteness problems in the early stages of development. In addition, OMT contains

simple, graphical models that are also used by other object-oriented modeling nota-

tions. Therefore, another advantage of this research is that any formalizations that

we develop are not specific to OMT.

Accordingly, the main objective of the formalization rules is to (1) introduce for-

mal semantics to the graphical notations, and (2) integrate the models in terms of the

underlying formal semantics. These rules also make the models amenable to auto-

matic formal specification generation. Given an integrated, single formal specification

for each object, automated specification analysis can be performed.

From the formal methods community, we identified Larch and LOTOS to be com-

monly used specification languages with rich tool support. In addition, the approach

proposed by Larch to describe design entities in terms of a two-tiered language is

also incorporated in the formal specification technique of this research. The large

number of available LOTOS tools greatly enhance the analyses applicable to the for-

mal specifications. The currently available specification analysis techniques include

(1) consistency checking among the three models of a single object, (2) behavior
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simulation and analysis for single objects, (3) synchronization analysis for multiple

communicating objects, and (4) specification simulation and debugging for commu-

nicating objects.

The contribution of this dissertation research is four-fold.

o Formalization of Dynamic Model.

Nineteen formalization rules have been developed to formalize the dynamic

models in terms of LOTOS process algebra specifications. The formalization of

the state diagrams is defined within the context of the object model formaliza-

tion [27]. The formalization enables the precise specification of the behavior of

objects and the simulation of system behavior through executable specifications.

0 Formalization of Functional Model.

Two functional models, Object Functional Model (OFM) and Service Refine-

ment Functional Model (SRFM), are introduced in order to integrate the func-

tional models into object-oriented technology. Two guidelines for deriving alge-

braic specifications are given. Sixteen formalization rules have been introduced

to formalize the functional models in terms of algebraic and predicate speci-

fications. The pre— and postconditions of services enable symbolic execution

of the high-level design model thus providing a means to perform simulation,

verification, and validation during the early phases of software development.

0 Integration of the Three Complementary Models.

The integration of the three complementary models is three-fold. First, the func-

tional and dynamic models are derived in the context of object models. Third,

the integration is achieved by composing the dynamic models and SRFMS hier-

archically according to the system structure specified in the object model. The

integration and formalization of the three models enable designers to perform

analysis tasks by using the derived formal specifications.

0 Process for Model Construction, Specification, and Refinement.

A design process has been developed to facilitate the deveIOpment of formal

design specifications in parallel with the development of OMT’s semi-formal,

graphical models. The rigorous mathematical foundation of formal specifica-

tions provides a more precise means to describe the design thus avoiding ambi-

guities. The symbolic execution of the design specifications can help designers

better understand the design as well as facilitate the communication among

designers and even with the customers. Specification analysis can be performed

during model refinement of the design process to detect and eliminate design

flaws during earlier stages of software development.
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10.2 Impact of Research and Future Investigations

The formal description technique of this research is unique. It provides a means to

use an integrated, single formal specification framework to describe different aspects

of an object, yet the descriptions of the difl'erent aspects are integrated rather than

isolated. The graphical front-end (that is, the OMT models) of the technique makes

it more user-friendly and easy to use for general software designers. The proposed

design process provides a guideline for designers to systematically utilize this formal

technique during the design phase in a stepwise, incremental fashion. The specifi-

cation analysis enabled by the formal technique can help designers to detect design

flaws during earlier stages of software development. Although OMT was chosen as

the graphical front-end, this back-end formal technique can also be applied to other

graphical notations with some straightforward modifications.

Several avenues of research appear promising for future investigations.

0 UML has been adopted as a standard notation for object-oriented modeling [43,

44, 45, 46]. Given the fact that OMT is one of the original graphical notations

from which UML evolve, our back-end formal technique can be directly extended

to UML notation. However, in UML, the services and functionalities are not

explicitly modeled, no counterparts for OFMs and SRFMS of our notations are

identified. More effort is necessary to address this issue.

0 The results of the case study performed in this dissertation are quite encourag-

ing. Four design flaws were detected by the formal technique in our case study.
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However, in order to gain more empirical experience and to refine and fine tune

the proposed techniques, more case studies should be conducted.

The research focused on applying formal techniques during the design phase

of software development. Given that the Larch LIL is specific to programming

languages and LOTOS can produce prototype source code in C and Ada, the

research investigations can be extended to the implementation phase. Based on

the framework of the current formal techniques, automatic or semi-automatic,

computer assisted source code generation is a potentially promising research

topic.

Before the proposed technique can be accessible to general software developers,

tools that support graphical model construction, formal specification genera-

tion, and corresponding maintenance facilities must be developed first. Without

tool support, the advantages of the techniques will be more difficult to exploit.

The case study required the manual generation of all of the formal specifications

according to proposed rules, an extremely tedious and cumbersome endeavor.

The description of the signatures and pre- and postconditions of services pro-

vided by objects is not directly supported by LOTOS. Thus the descriptions,

originated from Larch’s LIL technique, are enclosed as annotations currently.

In order to fully exploit our formal technique, it is necessary to extend LOTOS

to include facilities with the similar expressiveness of Larch’s LIL language.

The recently proposed ELOTOS [80] has stronger expressiveness power, further

research is also needed to investigate how to use ELOTOS in our formal descrip-

 

.
.
-
x
.
_
-
.
—
_
.
_
.
.
.
—

a
;

 



275

tions. However, the drawback is that currently there is limited tool support for

ELOTOS.

Although intuitive graphical notations are used to develop the formal models,

the textual presentation of the results of formal analysis may be difficult for

most designer with limited background in mathematics and formal methods.

Further research and investigation on how to visually present the results of the

formal analysis in an intuitive fashion is necessary.

Although specification and modeling errors can be relatively easy to detect

with existing tools, the current tool support of LOTOS does not have a friendly

environment for specification debugging. Better tool support for debugging is

also desirable to facilitate a designer’s ability to identify and locate the cause

of design errors.
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Appendix A

The Object Model Formalization

Rules

The formalization rules for the object model are given in this Appendix.

Definition (Semantics of object models) :

Let 0 be an object model. Let R be a binary association in 0 relating objects from

classes D1 and D2. The semantics of O is an algebraic specification satisfying the

following data.

(0M1) Each class C in the object model (9 is denoted by a sort of the same name.

(0M2) For each class C, a sort C-STATES is introduced as well as two nullary functions given by

undefC : —-> C-STATES , errc : —> C .

(0M3) Each object-state s, for which a double—headed arrow leads from a class C to the oval

containing 3, is denoted by a function with signature 3 : -) C-STATES , and for every

pair of object-states 31 and 32, the axiom sl 54$ 32 is included.

(0M4) For each class C, a valuation function ‘$’ is introduced with the signature

3 : C —) C-STATES

The valuation of the error object is added as an axiom:

$(errc) = undefc

(0M5) If there is a double-headed arrow labeled a (to indicate an attribute), leading from a class

C to a class D (which depicts an attribute a of C), then the function signature

a:C—~>D ,

is added to specification for class C.

(0M6) If the class D in rule (0M5) is an external class, then the trait for D is included by the

specification for C. If D has no parameters, then the clause

includes

CLASS-D
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is added. If D has parameters p1, . . . , pk, and there is a line connecting each p,- to a class q,-,

then the following clause is added:

includes

CLASS-p1. .. ., CLASS-p;c ,

CLASS-D ( ql for m. ---. (1;. for Pk)

(0M7) Association R is denoted by the predicate

RIDI,D[¢ —i BOOL .

(0M8) The endpoints of association R determine a set of axioms. Suppose the Dl-endpoint depicts

a multiplicity of m and the Dg-endpoint depicts a multiplicity of n. Then the axioms are

derived by the following steps:

1. Decompose the m-to—n association R into an m-to—l and l-to—n binary association,

2. Determine the second-order specifications, P1 and P2, of each of these associations using

the basis schemata,

3. Calculate the “intersection”, P, of the specifications P1 and P2,

4. Unfold and skolemize P, yielding a set of first-order axioms that are included in the

trait for R.

(0M9) Error object constraints are introduced:

(le : Dl,d2 :02 o R(eer,,d2) A d1¢ errp1 => “'R(d1,d2)) 1

(le I Dl,d2 Z D2 . R(d19 87702) A d2 # 87702 3 fiR(d1!d2))

(OM10) The attributes, in the form of variable-type pairs, of an object class are formalized as sorts

and a tuple that maps attribute types to the distinguished sort that represents the object

class.

For object 0, given attributes a1 :A1,a2 : A2, ...,an :An (where a1,az, ...,an are variables and A1, A2, ...,/in

are types), create the following expression in LOTOS specification

typedef 0 is

sorts

O, A_1, A_2, . . . , A.n

opns

0 : A-1, A-2, ..., A_n —> 0

get_a_l : O ——> A_1

get_a.2 : O —) A_2

eqns

forall a_1: A_1, a-2: A_2, ..., a_n: A_n

ofsort A-1

get_a_l(0(a_1, a_2, ..., a-n)) = a-1

ofsort A-2

get_a.2(0(a-1, a_2, ..., a-n)) = (1.2

ofsort A_n

get_a.n(0(a-1, a_2, ..., a.n)) = a_n

endtype

 

 



Appendix B

The Dynamic Model Formalization

Rules

The formalization rules for the dynamic model are given in this Appendix. Rules

DFR—l to DFR-13 are for simple state diagrams; rules DFR-14 to DFR—20 are

for concurrent state diagrams.

DFR-l The object states S are formalized as LOTOS processes.

For every state 3, s E S, create the following LOTOS expression

process 5 : noexit :2

endproc

DFR-2 Every process that formally specifies a state 3 is associated with a parameter :1: of the distinguished

sort 45.

For every state 3, s E S, and distinguished sort (1) E (P, create the following LOTOS expression

process 5 (x: 43): noexit 2:

endproc

DFR—3 The events of an object together with the events to be triggered are formalized as the inter-object

communication external to the object, which is a subset of I‘ (set of the object operators). The

events, 2, and events to be triggered. E, in a state diagram D are specified as a formal gate list

[)3 U E] for the processes in S.

For every state 3, s E S, distinguished sort ()5, events 2, and events to be triggered E ((25 E

(I), E g I‘), create the following expression

process 5 [2 U E](x: (b): noexit :2

endproc

DFR-4 Attribute pairs 2:, : a, (data items) associated with an event e are formalized as variable decla-

rations ?:c.' : a,- associated with a LOTOS gate e.

For every state 3 and event 6 (s 6 5,8 6 E), distinguished sort ()5, events 2, and events to

be triggered E (d 6 (LE 9 P), if the partial function 4p maps (s,e) to pairs 11 : a1,a:2 :

a2,...,:cn : an, a non—empty subset of A x <I> ({(x1,a1), (2:2,a2), ..., (:rn,an)} 6 2Ax°), create

the following expression

process 5 [23 U E](x: d): noexit :=

e ?x1:a1,?zg:a2....,?xn:an;

endproc

if the partial function (,0 maps (s,e) to an empty set (no associated attribute for event e),

create the following expression '

process 5 [2 U E](x: ct): noexit :=

3;

endproc
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DFR-5 An event to be triggered, e’, is formalized as a value declaration at a LOTOS gate.

For every state 3, event e, and condition c (s 6 3,6 6 S,e 6 C), distinguished sort (23, events

2, and events to be triggered E (<13 6 Q, 2 Q I‘), if the partial function 6 maps (s,e,c) to a

triggerable event 8’, create the following expression

process 5 [2 U E](x: ct): noexit :2

e'!y1, !yg, !ym;

endproc.

where {y1, y2, ..., ym}, a subset of {11:1, 11:2, ..., xn, x}, is specified in the corresponding state

diagrams.

DFR-6 A guarding condition c is formalized as a guarded expression [c].

For every state 3, event e, and condition c (s E S, e E E, c E C), distinguished sort oi, events

23, and events to trigger E (d E Q, 2 g I‘), if the partial function cp maps (3, e) to pairs 2:1 :

a1,;c2 :az, ...,xn :an, a non-empty subset ofA x Q ({(x1,a1), (12,02),..., (xn,an)} E 21””), a

non-empty subset of sorts Q ({a1,a2, ..., an} E 2‘”), and c 76 c0, create the following expression

process 5 [2 U E](x: (b): noexit z:

e ?zl :al, ?932 202, ?xn : an; ([c] —) ...)

endproc,

where 2:1, 2:2, ..., 2:" are variables to hold the attributes associated with the event.

DFR-7 A newly introduced predicate in a guarding condition is formalized as an operation of Boolean

in the algebraic specification section.

Given object D, for every state 3, event 6, condition c (s E S, e E 2, c 6 C), distinguished

sort ¢, and predicate p introduced in condition c, if 11,32, ...,:cn are the arguments for p of

sorts X1, X2, ..., X“, create the following expression

specification D [E U E](x: (t): noexit

typedef (b is Boolean

opns

p: X1,X2,...,Xn ——-) Bool

endtype

process 5 [E U E](x: ¢)3 noexit :2

endproc

endspec

DFR—8 An action a is formalized in terms of a value declaration !a by an Operator reference at the

corresponding gate e.

For every state 3, event e, and condition c (s E S, e 6 E, c E C), if the partial function (,0

maps tuple (s, e) to sorts a1,a2, ..., an (a non-empty subset of sorts Q ({a1,a2, ...,an} E 2‘”)),

c 76 co, and the partial function 6 maps tuple (s, e) to an action a (a E A), create the following

expression

process 5 [E U E](x: (b): noexit :=

e 71:1 :al, ?z2 : a2. 72,, :an;

(lCl -+ e !a(y1. y2. yml)

endproc,

where {y1, y2, ..., gm}, a subset of {2:1, 9:2, ..., :13", x}, is specified in the corresponding state

diagrams.

DFR-9 An activity a is formalized as a value declaration la at the corresponding gate e preceded by a

nondeterministic internal event 2'. ~

For every 3, s E S, distinguished sort gb, events 23, events to be triggered E. (4) E Q, E g I‘),

and arguements y1, y2, ..., yn of sorts Y1, Y2, ..., K, for activity a, if the partial function A
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 maps state 3 to an activity a (a E A), create the following expression

process 5 [E UE](x: (15,311 : Y1, yg : Y2, yn : Yn): noexit :=

i; e !a(y1, 3’2: ”-0 y”)-

endproc

DFR—lO A transition can cause a state change if and only if the action that corresponds to a transition

is defined as a modifier Operator.

For every state 3 and event 6 (s 6 5,6 6 E), if the partial function w does not map tuple

(s,e) to state 3 (s 9:9 w(s,e)), then the partial function 6 maps tuple (s,e) to a modifier

operator (6(s,e) E 9); if the partial function 6 maps tuple (s,e) to a non-modifier operator

(6(s,e) E 9), then the partial function it maps tuple (s,e) to state 3 (s = w(s,e)).

DFR-ll The state transitions are formalized as process instantiations.

For every state 3 and event e (s E S, e E E), distinguished sort ¢, events E, and events to be

triggered E (d) E Q, E Q I‘), if the partial function 90 maps (3, e) to pairs 2:1 : a1,2:2 : a2, ...,zn :

an, a non-empty subset ofA x Q ({(z1,a1), (:22, a2), ..., (:rn,a,,)} E 2AX‘D), the partial function

6 maps tuple (s, e) to an action a (a E A), the partial function 111 maps tuple (s,e) to a state .~

3’ (s' E S), and a is of sort 4), create the following expression

.
L
.
.
-
’
V

.
‘
A

‘
.
.
\
_
.

process 5 [E U E](x: d2): noexit := ,...

e ?21 :al, 7232 : a2, ?xn :a,,;

s’[2 usuaul. y2. y...»
endproc

if a is not of sort (b, create the following expression

process 5 [2 U E](x: rt): noexit z:

 
e ?x1 :al, 72:2 102, ?zcn :an;

e !a(y1, yg, ym);s’[2 UE](x)

endproc

DFR—12 Multiple state transitions from a single state are formalized as process instantiations composed

by a choice Operator.

For every state 3, events el and e2 (3 E S, e1,e2 E E), distinguished sort 43, events 2, and

events to be triggered E. (d 6 Q, 2 g I‘), if e1 96 e2, the partial function «p maps tuple (3, e1)

to {2:11 : a11,212 : a12,...,:rln : am}, (3,82) to {1:21 : 021,122 : 022,...,:1:2j : agj} (where

{($11,011),)$12,012),m,($1n,ain)},“$21,020,($22,022),---,($2j,02j)} E 2M”: the partial

function 6 maps tuple (s,el) to a1, (3, eg) to a2 (a1, a2 6 A), and the partial function 1,12 maps

tuple (3, e1) to 31:, (3, eg) to 32' , create the following expression1

process 5 [2 U E](x: 45): noexit 2:

61 ?2311 20.11, ?1212 1012, ..., ?zln 101”;

61 !31(y11, 3112, ..., ylm); Slip: UEMX)

[l

62 ?121 1021, 27115222022, ..., 73:2): Iagj;

82 !32(3/21. 3122. 3121:): 52'[2 U 3[00

endproc

 

DFR-l3 A state diagram can be formalized as either a LOTOS specification or a LOTOS process

definition.

For state diagram D = (S, 2, A, A, Q, C,E,1,b, A,6,cp, C, so, c0), we can have either

process D [2 U E] (x: (15) :noexit :=

$0 [2 U E] (X)

where

( algebraic specification )

( process definitions )

endspec

OR

 

1The expression may differ according to DFR—lO depending on the sort Of a,.
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specification D [E U E] (x: o) :noexit

( algebraic specification )

behaviour

50 [E U El (X)

where

( process definitions )

endspec,

where the first format is used if the process will be composed within other specifications to

form more complex behavior specifications; the second format is used if the specification is a

top level specification.

DFR-l4 Every aggregate Object is responsible for composing the behavior Of its concurrent aggregation

Objects to form one behavior specification.

DFR-15 The behavior Of every aggregation Object must be composed by and only by its aggregate Object.

DFR-16 Only when there is an association between two aggregation objects. can the aggregate Object

model the corresponding synchronization between the two Objects.

DFR—l7 In a state diagram that composes dynamic models of concurrent Objects, the dynamic

behaviors are synchronized through shared services.

The state diagram D = (S, E, A, A, Q, C,E, w, /\,6,(p, C, 30, c0) composed of

D1 = (Si,21,1)1,A1,‘1’1,Chanda,A1,51,<P1,C1,310,Co),

Dz = (52, 22,1‘2: A2, 4’2, (72,52,1/12, A2,52,W2,C2, 820,00),

...... , and Du = (Sn,Zn,An,An,Qn,Cn,En,ibn,An,6n,cpn,(n,sno,co) is formalized as:

specification DESI U 22 UU 2,, U £](x:¢,x1:¢1,x2 432 , . . . ,xn:¢n): noexit

(algebraic specification)

behaviour

80 [SUE] (X)

l [T1] I

(01531 U El] (X1)

l[TEJI

(1)2[22 U 52] (12)

l [T3] l

( .....

l [Tn] l

Bu [2,, U En] (xn)

D)

where

(process definitions)

endspec,

where T1, T2, ..., Tn are shared services.

DFR-18 In a state diagram, the interleaving dynamic models are grouped together in terms of L0-

TOS interleaving process algebras.

If state diagrams D1 = (51, 21,A1)Ala¢lvclvsliwliA1761,”p1$C19810)CO),

D2 = (52, 22,A2) A2,‘I’2, 02,52,1/J2, A2,52,<P2,C2,320,CO),

...... , and Dn = (Sn, EmAn, An, Qn, Cmin, if)", An,6n,<pn, (n, sno, Co) are interleaving dy-

‘
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namic models in a given state diagram, the following specification shall be generated:

behaviour

(

Dl [21 U E:1] (X1)

l l I

Dz [22 U 32] (X2)

| l |

| l |

1),, [2,, u 3..) (xn)

)

DFR—19 If e is a constant. Of sort C, introduced by the instantiation Of parameter :i: of distinguished

sort 0 for Object 0 in a state diagram, then create the following expression

type 0 is

sorts

‘
i
‘
A
‘
T
F
V

4
.
“
-
.
.
4
_

1
“
.

.
I

u

endtype

DFR-20 For all constants c1 , C2, ..., cfl Of sort C introduced in Object 0. create the following expression

type 0 is Boolean

sorts

eqns

ofsort C

c1 eq c1 = True;

c2 eq C2 = True;

C3 eq C3 = True;

c1 eq c2 = False;

c1 eq C3 = False;

c1 eq 0,, = False;

cn_1 eq cn = False;

 
 

 



Appendix C

The Functional Model

Formalization Rules

The formalization rules for the functional model are given in this Appendix. Rules

FFR—l to FFR—ll are for simple OFMS; rules FFR—12 to FFR—16 are for SRFMS.

FFR-l Each data item in an OFM is formalized as a sort in the corresponding algebraic specification.

For all the data items, D,-(1 g i g n), in an OFM, create the following expression in the sort

declaration part Of an ACT ONE specification Of Full LOTOS

sorts

D-1, D_2, ..., D-n

FER-2 For every sort, S, used in the Object specification, introduce Operator undef_s: —> S.

FFR—3 Each service in an OFM is formalized as a gate that is associated with input and output in the

corresponding Full LOTOS specification.

For all the servicess, S,(1 g i S n), with inputs, Ii). (1 5 ij 5 IL] (I,- represents the permutation Of

the input data), and outputs, 0,, in the OFM Of Object OBJECT, create the following expression

specification OBJECT [81, S2, ..., Sn] :noexit :=

0' 31 : ill 2111, ha :112, ..., illlil:lll11l -> 01 I")

(* 32 : £21 :121, 1'22 :122, ..., izllzl :Izu2| -> 02 *)

(‘ Sn 1 i1" :11", i1" :11", ..., inllnl :Inllnl -> On ‘)

oooooo

opns

51 : Ill, [12, ..., 11”“ -> 01

52 : [21, 122, ..., 12|12| -> 02

Sn 3 [1", Ila, ..., Inllnl "> On

endtype endspec

FFR—4 The set Of attributes Of an Object is formalized as a parameter Of the distinguished sort for the

corresponding Full LOTOS specification.

For Object class 0, and its distinguished sort (I) and a set Of services 2, create the following

specification 0 [2] (o : ¢) : noexit :=

expression endspec
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FFR-5 The pre-state Of the attributes Of an Object is stored in a local variable when a process, representing

a state in the dynamic model, is entered.

For Object class 0. and its distinguished sort «:5 and a set Of services 2, if p is a process, representing

a state in the dynamic model, defined in the process algebras, then create the following expression

that introduces local variable PRE to store values Of attributes at the entrance Of the process

specification 0 [E] (o : o5) : noexit :=

process p [2] (o : ct) : noexit :=

(let FRI-2:: o in

)

endproc

endspec

FFR—6 The guarding condition and the precondition that are associated with the action Of a state

transition are conjuncted and formalized in terms Of a guarded expression in LOTOS process

p
h
l
x
.

I
A
“
E
L
—
.
.
-

algebras.

Suppose event e (associated with arguments 2:1 : a1,r2 : a2, ...,:rn : an), condition c. action a1 . _

(associated with parameters y1, y2, ym, if event e directly refers to service a, then the y's

and :c's are identical too), together constitute a state transition from state 3 Of an Object with

distinguished sort 4) and services 2, if p is the precondition for service/function a, create the

following expression

process s [E](o: ¢): noexit :=

0 ?I1 :01, ?12 :02, ..., ?In :an;

([c and p] —+ (a(yl, y2, ... yn,)>)

endproc

FFR—7 The postcondition that is associated with the action of a state transition is formalized in terms

Of a guarded expression in LOTOS process algebras.

Suppose event e (associated with arguments x1 : a1,a:2 : a2, ...,:rn : on), condition c, action a

action a (associated with parameters y1, y2, ym, if event e directly refers to service a, then the

y's and x's are identical too), together constitute a state transition from state 3 Of an Object with

distinguished sort rt and services 23, if p and q are the pre- and postconditions for service/function

a, create the following expression

process s [23(0: ¢): noexit :8

 

e ?31 :al, ?r2:a2, .... ?rn :an;

([c and p] —) <s(y1. y2, ym)>);
F1.

([q]—->. . .)

endproc

FFR—8 The postcondition that is associated with the action Of a state transition, in the form of result = . ‘

(expression), is formalized in terms of a value declaration in LOTOS process algebras. E]

Suppose event e (associated with arguments r1 : a1,:r2 : a2, ...,:cn : an), condition c, action a -[

action a (associated with parameters y1, y2, ym, if event e directly refers to service a, then the

y's and :r's are identical too). together constitute a state transition from state 3 Of an Object with

distinguished sort d) and services 2, if q is an expression, in the form Of result = op (21,22, ...,21)

(op is an Operator defined in the corresponding algebraic specifications, 2,- (1 g i g l) is a subset

Of y,- (1 5 i g m) and attributes) within the postcondition for service/function a, then create the

 

10 refers to a service/function.
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following expression

process s [23(0: ¢): noexit :=

e ?21 :a1. ?r2 :a2, ..., ?In :an;

([c and p] -+ e! Op(21, 22, ... 21))

endproc

FFR-9 The postcondition that is associated with the action Of a state transition can be formalized in

terms Of a local variable declaration in LOTOS process algebras.

Suppose event e (associated with arguments 1:1 : a1,:r2 : a2,...,a:n : on), condition c. ac-

tion a(associated with parameters y1, y2, ym, if event e directly refers to service a, then

the y’s and x's are identical tOO), together constitute a state transition from state 3 Of an

Object with distinguished sort 43 and services 2, if Q is a set of expression, in the form Of

o".a,~ = op,- (z,,,z.-,,...,z,-,)(1 g i g k) (op,- is an Operator defined in the corresponding al-

gebraic specifications, z,,. (1 g j g l) is a subset Of y,- (l g i g m) and attributes) within the

postcondition for service/function a, create the following expression

process s [23(0: ¢): noexit :3

0 ?$1 :01, ?12 :02, ..., ?xn :0”;

([c and p] —+

(let POST.“ := 0p1(211 le23°'° 21,)!

P0512112 :8 op2(22,.z22,... 22,).

P03T.ak :3 opk(zk,,zk2,... 2}") in

)

)

endproc

FFR-lO The refinement of Object 0, results in a refined algebraic specification, S_REF, that includes

additional Operators and axioms.

For every Object 0 that is further refined into a set Of aggregate Objects 01, O2, 0". create

the following expression

type OJU-ZF is

endtype

FFR-ll In a refined algebraic specification for an Object (or system), the algebraic specifications for

the aggregate Objects are included in order to make use Of the services defined in the aggregate

Objects.

For every Object 0 that is further refined into a set Of aggregate Objects 01, 02, On, create

the following expression

type 0_REF is 01, 02, ..., 0,.

endtype

FFR-12 Each internal function in an SRFM is declared along with services as annotations and Operators

Of algebraic specification.

For all the internal functions, F,(1 g i _<_ n), with inputs, 1,1.(1 _<_ i, 3 IL] (I,- represents the

permutation Of the input data), and outputs, 0,, in the OFM of Object OBJECT. create the
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following expression

specification OBJECT [< service list>]] :noexit :=

(i F1 : 1:11:11“ £12 :112, ..., illlil :Illlil -> 01 *)

(’ F2 : igl :121, i22 :122, ..., i2|12| :I2l12l -) 02 ")

(‘ Fn : i1" :11", 11" ill", ..., inllfll :Inllnl -> On ‘)

typedef OBJECT is

opns

F1 : Ill, [12, ..., Illlll -> 01

F2 : [21, [22, ..., Izllzl -> 02

Fn 2 11", 11”, ..., [nllfll ‘) On

endtype endspec

FFR—l3 If a data flow D is aggregated into a set of data flows, D1, D2, Dn, then D is rede-

fined/ refined as a set Of Operations that constitute D from D1, D2, D" and single out D1,

D2, D" from D.

For every data flow D that is aggregated into a set Of data flows, DI. D2, Dn, create the

following expression

sorts

DJ, 0.2, ..., D_n

opns

D : 0.1, 0.2, ..., 0.11 —> D

get-d-1 : D —) D-l

get_d-2 : D —) D_2

get_d-n : D —> DJ:

eqns

forall (1.1: 0.1, (1.2: 0.2, ..., d_n: D-n

ofsort D-1

get_d-1(D(d-1, d-2, ..., d-n)) = d-1

ofsort D..2

get_d-2(D(d_1, d_2, ..., d-n)) = (1.2

ofsort DJ:

get_d-n(D(d_1, d_2, ..., d-n)) = (1.11

FFR—l4 All the data splittings for a data flow D together with D is redefined/refined as a record data

type.

For data flow D and all the sets Of data flows, SI, S2, Sn, into which D is split, if data items

DI, D2, Dm cover all the data items in S,- (1 g i g n) and do not contain redundant data
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items, then create the following expression

sorts

D_1, D.2, ..., D.n

opns

D: D-1, D.2, ..., D-n —) D

get_d_1 : D —) D_1

get_d..2 : D —) D.2

get d-n : D —> D_n

eqns

forall (1-1: D-1, d_2: D.2, ..., d-n: D_n

ofsort D-l

get_d-1(D(d_1, d-2, ..., d_n)) = d-1

ofsort D-2

get_d_2(D(d_1, (1-2, ..., (1.71)) = d_2

ofsort D-n

get_d_n(D(d-l, d_2, ..., d-n)) I (1.11

FFR-15 If a data flow D is duplicated to or selected from a set Of data flows, D1, D2, Dn, Op-

erators D-2.Dl, D1.2_D, D-2.D2, D2_2.D, D.2.Dn, and Dn-2.D, in the formats Of

opns

D.2-D]: D —) D1

D.2-D2: D —> D2

D.2-Dn: D —) 0,.

are introduced in the refined algebraic specification. In addition, the following axioms are used to

specify the mutual convertibility:

eqns

forall x: D

ofsort D

Dl.2_D (D.2-D1 (x)) = x;

D2.2-D (D.2-D2 (x)) I x;

Dn._.2-D (D.2-Dn (x)) = x;

FFR—16 The post- and preconditions of two adjacent services in a SRFM shall not form a contradiction.

For any two services 31 and 32 in a SRFM, if (1) the output Of 31 serves as an input Of 32, (2)

p,1 and q,, are the pre- and post conditions for 81. and (3) p32 is the precondition for s2. create

and prove the following expression

(p,1=>((q,1 and p”) eq false)) I false

 

 

 



Appendix D

Complete LOTOS specification for

Disk Manager Behavior

specification Disk_ManagerEinput,output,com,dec,ins,ret,de1ete] : noexit

library

Boolean, NaturalNumber, HexString

endlib

type GenericData is NaturalNumber, HexString

endtype

type Data is GenericData renamedby

sortnames

D for HexString

K for Nat

Opnnames

sizeof for Length

endtype

behavior

hide com, dec, ins, ret, del in

Storage[ins,ret,del] I[ins,ret,del]| id1e[input,output,com,dec,ins,ret,de1]

l[com,dec]l compression[com,dec]

where

process idle[input,output,com,dec,ins,ret,delete]:noexit:=

input ?d:D ?k:K; com !d ; wait[input,output,com,dec,ins,ret,delete](k)

[]

output ?k:K; retlk; wait[input,output,com,dec,ins,ret,delete](k)

endproc

process waitEinput,output,com,dec,ins,ret,delete](k:K):noexit:=

com?d:D;insldlk;idle[input,output,com,dec,ins,ret,de1ete]

[J

ret?d:D;dec!d;wait[input,output,com,dec,ins,ret,delete](k)

[]

dec?d:D;output!d;idleEinput,output,com,dec,ins,ret,delete]

endproc

296
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process Storage[insert,retrieve,delete]:noexit:=

Empty_state[insert,retrieve,delete](new)

where

type Storage is Boolean, NaturalNumber, Data

sorts

S

opns

undef_d : -> D

undef_s : -> S

count : S -> Nat

insert : S, D, K-> S

retrieve S, K -> D

delete S, K -> S

_ eq _ : D, D -> 8001

- eq _ K, K -> 3001

eqns

forall d: D, k, k1, k2: K, s: S

ofsort Nat

count(new) = 0;

count(insert(s, e)) = Succ(O) + count(s);

ofsort D

retrieve(new, k) = undef-d;

k1 eq k2 => retrieve(insert(s,d,k2),kl) = d;

not(kl eq k2) => retrieve(insert(s,d,k2),k1)=retrieve(s,k1);

ofsort S

delete(new, k) = new;

k1 eq k2 => delete(insert(s,d,k2),k1)=s;

not(kl eq k2) =>de1ete(insert(s,d,k2),k1)=delete(s,k1);

endtype

process Empty_State[insert,retrieve,delete](s:S):noexit:=

insert ?d:D ?k:K; None_Empty_State[insert,retrieve,delete](insert(s,d,k))

endproc

process None_Empty_State[insert,retrieve,delete](8:8):noexit:=

retrieve ?k:K; retrieve !retrieve(s,k);

None_Empty_State[insert,retrieve,delete](3))

[J

insert ?d:D ?k:K;

None_Empty_State[insert,retrieve,delete](insert(s,d,k))

[]

delete ?k:K; (

[count(s) gt Succ(0)] ->

None_Empty_State[insert,retrieve,de1ete](delete(s,k))

[I

[count(s) eq Succ(0)] ->

Empty_State[insert,retrieve,delete](delete(s,k)))

endproc

endproc

process compression [compress, decompress] : noexit :=
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Idle_State [compress, decompress]

where

type Compression is NaturalNumber, Data

opns

compress : D -> D

decompress : D -> D

eqns

forall x: D

ofsort Bool

sizeof(x) ge sizeof(compress(x)) = true;

sizeof(x) 1e sizeof(decompress(x)) = true;

ofsort D

decompress(compress(x)) = x;

endtype

process Idle-State [compress, decompress] : noexit :—

compress ?datazD; Compress_State[compress,decompress](data)

[]

decompress?data:D;Decompress_State[compress,decompress](data)

endproc

process Compress_State[compress,decompress](data:D):noexit :-

i; compress !compress(data); Idle_State[compress,decompress]

endproc

process Decompress_State[compress,decompress](data:D):noexit .-

i; decompress!decompress(data);Idle_State[compress,decompress]

endproc

endproc

endspec

 



Appendix E

Instantiated LOTOS specification

for Disk Manager

specification Disk_Manager [Input, Output] : noexit

(* Input :D: Data, k: Key -> Void *)

(* requires d eq undef_d = false and k eq undef_k = false *)

(* modifies disk *)

(* ensures disk’ eq inputhisk‘, d, k) = true *)

(* Output : k:Key -> HexString *)

(* requires disk eq empty = false and k eq undef_k = false *)

(* ensures result = output (disk,k) *)

library

Boolean, HexString, NaturalNumber

endlib

type Disk_Manager is Boolean, HexString, NaturalNumber

sorts

Disk

opns

empty : -> Disk

input : Disk, HexString, Nat -> Disk

output : Disk, Nat -> HexString

undef_d : -> HexString

undef_k : -> Nat

eqns

forall disk: Disk, d,x: HexString, k, k1, k2: Nat, y: HexDigit

ofsort BOOl

undef_d eq undef_d = true;

undef_k eq undef_k = true;

undef_k eq 0 = false;

k ge 0 => succ(k) eq undef_k = false;

Hex(y) eq undef_d = false;

(y + x) eq undef_d = false;

ofsort HexString

output (empty, k) = undef_d;

(k1 eq k2) => output(input(disk,d,k1),k2) = d;

not(kl eq k2) => output(input(disk,d,k1),k2) = output(disk,k2);

endtype

299

T
T
T
—
T
"
‘
3
E
E
Z
I

- .3.i
7
“
“
‘

 



300

behavior

Idle[Input, Output] (empty)

where .

process Idle [Input, Output] (disk: Disk) :noexit:=

Input ?dzhexString ?k:Nat; Idle [Input, Output](input(disk,d,k))

[]

Output ? kzNat; Output ! output(disk, k); Idle [Input, Output](disk)

endproc

endspec

 



Appendix F

LSL specifications

Disk (D, K): trait

introduces

empty : —> Disk

input : Disk, D, K -> Disk

output : Disk, K -> D

delete : Disk, K —> Disk

undef_d : -> D

asserts

Disk generated by empty, input

\forall d: D, k, k1: K, disk: Disk

output (empty, k) == undef_d;

output (input(disk,d,k), k1) == if (k=k1) then d

else output(disk,k1);

delete (empty, k) == empty;

delete (input(disk,d,k), k1) == if (k=k1) then disk

else delete(disk,k1);

Storage (D, K): trait

includes Natural

introduces

empty : -> S

count : S -> N

insert : S, D, K -> S

retrieve : S, K -> D

delete : S, K -> S

undef_d : -> D

undef_s : -> S

asserts

S generated by empty, insert

\forall d, d1, d2: D, k, k1, k2: K, s, 31, 82: S

count(empty) == ;

count(insert(s, d, k)) == succ(count(s));

~(insert(s,d,k) = empty);
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retrieve(empty, k) == undef_d;

retrieve(insert(s, d, k2), k1) == if (k1 = k2) then d

else retrieve(s, k1);

delete(empty, k == empty;

delete(insert(s, d, k2), k1) == if (k1 = k2) then 8

else delete(s, k1);

Compressor (D): trait

includes Natural

introduces

compress : D -> D

decompress : D -> D

size : D -> N

asserts

\forall d : D

size (compress(d)) <= size(d);

size (d) <= size(decompress(d));

decompress(compress(d)) = d;

Disk_ref (D, K): trait

includes Storage(D,K), Compressor(D)

implies

\forall s: S, n: N

~(s=empty) => ~(retrieve(s,n) = undef_d);

 



Appendix G

LOTOS specification for revised

Disk Manager

specification Disk_Manager [input, output] : noexit

library

Boolean, NaturalNumber

endlib

type Disk-Manager is

sorts

D, K

endtype

behavior

hide com, dec, ins, ret, delete in

Storage[ins, ret, delete]

l[ins, ret]|

idleEinput, output, com, dec, ins, ret, delete]

l[com, dec]!

compression[com,dec]

where

process idle [input, output, com, dec, ins, ret, delete] : noexit :=

input ?dzD ?k:K; com !d !k; wait[input,output,com,dec,ins,ret,de1ete](k)

[1

output ?k:K; ret !k; wait[input, output, com, dec, ins, ret, delete](k)

endproc

process wait [input, output, com, dec, ins, ret, delete] (k: K) : noexit :

com ?d:D; ins !d !k; idle [input, output, com, dec, ins, ret, delete]

[]

ret ?dzD; dec !d; waitEinput, output, com, dec, ins, ret, delete](k)

[J

dec ?dzD; output !d; idle [input, output, com, dec, ins, ret, delete]

endproc

303

 



304

process Storage [insert, retrieve, delete] : noexit :=

(*behaviour*)

Empty [insert, retrieve, delete] (new)

where

type Storage is Boolean, NaturalNumber

sorts

S, D, K, E

opns

new : -> S

undef_d : -> D

undef_s : -> S

count : S -> Nat

insert : S, D, K -> S

retrieve S K

delete S K

_ eq _ : E, E -> 8001

_ eq _ D D

_ eq _ K K

eqns

forall d: D, k, k1, k2: K, s: S, e, e1, e2: E

ofsort Nat

count(new) = 0;

count(insert(s, d, k)) = Succ(O) + count(s);

ofsort D

retrieve(new, k) = undef_d;

k eq k1 => retrieve(insert(s,d,k), k1) = d;

not(k eq k1) => retrieve(insert(s,d,k), k1) = retrieve(s,k1);

ofsort S

delete(new, k) = new;

k1 eq k2 => delete(insert(s, d, k2), k1) = s;

not(kl eq k2) => delete(insert(s, d, k2), k1) = delete(s, k1);

endtype

process Empty [insert, retrieve, delete] (s: S): noexit :=

insert ? d : D ? k : K;

None_Empty [insert, retrieve, delete] (insert(s, d, k))

endproc

process None_Empty [insert, retrieve, delete] (s: S): noexit :=

retrieve ? k : K; retrieve ! retrieve (s, k);

None_Empty [insert, retrieve, delete] (s)

[I

insert ? d : D ? k : K;

None_Empty [insert, retrieve, delete] (insert(s,d,k))

[]

delete ? k : K; (

[count(s) gt Succ(0)] ->

None_Empty [insert, retrieve, delete] (delete(s,k))

[]

[count(s) eq Succ(0)] ->

Empty [insert, retrieve, delete] (delete(s,k))
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endproc

endproc

process compression [compress, decompress] : noexit :=

(*library

NaturalNumber

endlib*)

(*behavior*)

Idle [compress, decompress]

where

type Compression is NaturalNumber

sorts

D

opns

compress : D -> D

decompress : D -> D

sizeof : D -> Nat

eqns

forall x: D

ofsort Bool

sizeof(x) ge sizeof(compress(x)) = true;

sizeof(x) 1e sizeof(decompress(x)) = true;

ofsort D

decompress(compress(x)) = x;

endtype

process Idle [compress, decompress] : noexit :=

compress ? data: D; Compress [compress, decompress] (data)

[J

decompress ? data: D; Decompress [compress, decompress] (data)

endproc

process Compress [compress, decompress] (data: D) : noexit :=

i; compress ! compress (data); Idle [compress, decompress]

endproc

process Decompress[compress, decompress] (data: D) : noexit :=

i; decompress ! decompress (data); Idle [compress, decompress]

endproc

endproc

endspec

 

 



Appendix H

Complete LOTOS specification of

ENFORMS for static analysis

specification ENFORMS_REF [Browse, Retrieve, Analysis, Query, GetTable,

Archive_Query, Register, Archive_Query4899,

Archive_Query5699] (e: ENFORMS): noexit

(* Browse: ui: User_Input -> Retrieve_Request *)

(* ensures result = Browse (ui, getIndices(e)) *)

(* Retrieve: rr: Retrieve_Request -> Retrieve_Result *)

(* requires isValid(rr) *)

(* ensures result = Retrieve (rr, getArchives(e)) *)

(* Analysis: ar: Analysis_Request -> Analysis_Result *)

library

ENFORMS, Name_Server, Archive_Server, Client, Boolean, Channel

endlib

type ENFORMS_REF is ENFORMS, Name_Server, Archive_Server, Client, Channel

opns

Retrieve_Request : Data_Archive_Name, Query_Request -> Retrieve_Request

get_data_archive_name : Retrieve_Request -> Data_Archive_Name

get_query_request : Retrieve_Request -> Query_Request

Retrieve_Resu1t2Query_Result : Retrieve_Result -> Query_Result

Query_Result2Retrieve_Result : Query_Result -> Retrieve_Result

pcs : -> Data_Archive_Name

pcs_db : -> Data_Archive

4899 : -> Address

5699 : -> Address

storet : -> Data_Archive_Name

storet_db : -> Data_Archive

channel : -> Channel

eqns

forall dan, dan1, dan2: Data_Archive_Name, qr:

Query_Request, rr: Retrieve_Result, qr1: Query-Result

ofsort Data_Archive_Name

get_data_archive_name (Retrieve_Request(dan, qr)) = dan;
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ofsort Query_Request

get_query_request (Retrieve_Request(dan, qr)) = qr;

ofsort Retrieve_Result

Query_Result2Retrieve_Result(Retrieve_Resu1t2Query_Result(rr)) = rr;

ofsort Query_Result

Retrieve_Result20uery_Result(Query_Result2Retrieve_Resu1t(qr1)) = qr1;

ofsort BOOl

endtype

behavior

pcs eq pcs = True;

storet eq storet = True;

undef_Data_Archive_Name eq undef_Data_Archive_Name = True;

pcs eq undef_Data_Archive_Name = False;

undef_Data_Archive_Name eq pcs - False;

storet eq undef_Data-Archive_Name = False;

undef_Data_Archive_Name eq storet False;

pcs eq storet = False;

storet eq pcs = False;

pcs_db eq pcs_db = True;

storet_db eq storet_db = True;

undef_Data_Archive eq undef_Data_Archive = True;

pcs_db eq undef_Data_Archive = False;

undef_Data_Archive eq pcs_db = False;

storet_db eq undef_Data_Archive = False;

undef_Data_Archive eq storet_db = False;

pcs_db eq storet_db = False;

storet_db eq pcs_db False;

4899 sq 4899 True;

5699 eq 5699 True;

undef_Address eq undef_Address = True;

4899 eq undef_Address = False;

undef_Address eq 4899 = False;

5699 sq undef_Address = False;

undef_Address eq 5699 = False;

(Browse ? ui: User_Input;

Browse ! Browse (ui, getIndices(e));

Browse [Browse, Retrieve, Analysis, Query] (e)

l[QueryJI

(Client [Query, GetTable, Archive_Query] (Client(empty))

l[GetTable,Archive_Query]I

(Name_Server [Register, GetTable] (Name_Server(empty))

l[Register]|

(Channel[Archive_Query, Archive_Query4899, Archive_Query5699] (channel)

l[Archive_Query4899,Archive_Query5699]l

(Archive_Server [Archive_Query4899, Register]

(Archive_Server(pcs, pcs_db, 4899))

Archive_Server [Archive_Query5699, Register]

where

(Archive_Server(storet, storet_db, 5699)))))))
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process Browse [Browse, Retrieve, Analysis, Client_Query](e:ENFORMS):noexit:=

Browse ? ui: User_Input; Browse ! Browse (ui, getIndices(e));

BrowseEBrowse, Retrieve, Analysis, Client_Query] (e)

I]

Retrieve ? rr: Retrieve_Request; (

[isValid(rr)] -> C1ient-Ouery !get_data_archive_name(rr)

!get_query_request (rr);

HaitQuery[Browse, Retrieve, Analysis, Client_Query](e)

I]

[not(isValid(rr))] -> Browse[Browse,Retrieve,Ana1ysis,Client_Query](e)

)

endproc

process WaitQuery [Browse, Retrieve, Analysis, Client_Query] (e: ENFORMS) ?

: noexit := 3

Client_Query ? rr: Query_Result; Retrieve ! Query_Result2Retrieve_Resu1t (rr); ]

Analysis [Browse, Retrieve, Analysis, Client_Query] (e) ]

endproc ]

process Analysis [Browse, Retrieve, Analysis, Client_Query] (e: ENFORMS)

: noexit :=

Browse ? ui: User_Input;

Browse ! Browse (ui, getIndices(e));

BrowseEBrowse, Retrieve, Analysis, Client_Query] (e)

[1

Analysis ? ar: Analysis_Request;

Analysis! Analysis (ar);

Analysis[Browse, Retrieve, Analysis, Client_Query] (e)

endproc

 (testsssssssssso:ssssChannelsssssssssssssssssssssssssss)

process Channel [Send, Channel4899, Channe15699] (c: Channel) : noexit :=

Idle [Send, Channel4899, Channe15699] (c)

where

process Idle [Send, Channel4899, Channe15699] (c: Channel): noexit :=

Send ? qr: Query_Request ? a: Address; (

[a eq 4899] -> Channel4899 ! qr ! a;

waitChannel4899 [Send, Channel4899, Channe15699] (c)  []

[a eq 5699] -> Channe15699 ! qr ! a;

waitChann915699 [Send, Channel4899, Channe15699] (c)

)

endproc

process waitChannel4899 [Send, Channel4899, Channe15699] (c: Channel): noexit :

Channel4899 ? qr: Query_Result; Send ! qr;

Idle[Send, Channel4899, Channe15699] (c)

endproc

process waitChanne15699 [Send, Channel4899, Channe15699] (c: Channel): noexit :
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Channe15699 ? qr: Query_Result; Send ! qr;

Idle[Send, Channel4899, Channe15699] (c)

endproc

endproc

(ssssssssssssssssssssssssssssssClientsssssss*sssssssttssssssssssss*ss)

process Client [Query, Name_Server_GetTable, Archive_Server_Query] (c: Client)

: noexit :=

Name_Server_GetTable;

Init [Query, Name_Server_GetTable, Archive_Server_Query] (c)

where

F.

process Init [Query, Name_Server_GetTable, Archive_Server_Query] (c: Client) ]

: noexit :=
i.

(let PRE: Client = c in h;

Name-Server_GetTable ? st: Server_Table;

(let POST: Client = C1ient(st) in

Idle [Query, Name_Server_GetTable, Archive_Server_Query] (POST))

)

endproc

process Idle [Query, Name-Server_GetTable, Archive_Server_Query] (c: Client)

: noexit :=

Query ? dan: Data_Archive_Name ? qr: Query_Request;

Archive_Server_Query ! qr ! getAddress(getTable(c), dan);

WaitQuery [Query, Name_Server_GetTable, Archive_Server_Query] (c)

endproc

process WaitQuery [Query, Name_Server_GetTable, Archive_Server_Query] (c: Client)

: noexit :=

Archive_Server_Query ? qr: Query_Result;

Query ! qr; Idle [Query, Name_Server_GetTable, Archive_Server_Query] (c)

endproc

endproc

(testes:ssssssssssssssssArchive Serverssssessssssssssssssssssssssssss)

process Archive_Server [Query, Name_Server_Register] (as: Archive_Server)

: noexit :=

 

Name_Server_Register !getArchiveName(as) !getAddress(as);

pollRQ [Query, Name_Server_Register] (as)

where

process pollRQ [Query, Name_Server_Register] (as: Archive_Server) : noexit :=

Query ? qr: Query_Request ? a: Address; (

[isMyAddress(a, as)] -> Query [Query, Name_Server_Register] (as, qr)

[]

[not(isMyAddress(a, as))] -> pollRQ [Query, Name_Server_Register] (as))

endproc
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process Query [Query, Name-Server_Register]

(as: Archive_Server, qr: Query_Request) : noexit :=

i; Query ! Query (qr, getArchive(as));

pollRQ [Query, Name_Server_Register] (as)

endproc

endproc

(*ssstssstsss*ssssssssssname_serverssss*sstssss*sss***************)

process Name_Server [Register, GetTable] (ns: Name_Server) : noexit :=

pollRQ [Register, GetTable] (ns)

where

process pollRQ [Register, GetTable] (ns: Name_Server) : noexit :=

(let PRE: Name_Server = us in

Register ? dan: Data_Archive_Name ? a: Address;

( let POST: Name_Server = Name_Server(insert(getTable(PRE), dan, a)) in

pollRQ[Register, GetTable] (POST))
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GetTable; GetTable ! getTable(ns); pollRQ [Register, GetTable] (ns)

)

endproc

endproc

endspec
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